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To my parents



Abstract

For a sign-changing function a(z) € C2.(R™) with bounded Q* = {z € R | a(z) > 0},
we study non-negative entire solutions u(x) > 0 of the semilinear elliptic equation
—Au = a(z)u? +b(z)u? in R withn > 3. 0< g <1, p>gq, and A > 0. We consider
two types of coefficient b(z) € CZ2.(R"). cither b(x) < 0 in R™, or b(z) = 1. In each
case, we give sufficient conditions on a(z) for which all solutions must have compact
support. In case Q% has several connected components, we also give conditions under
which there exist “dead core” solutions which vanish identically in one or more of
these components. In the “logistic” casc h(x) < 0, we prove that there can be only
one solution with given dead core components. In the case b(z) = 1, the question of
existence is more delicate, and we introduce a parametrized family of equations by
replacing a(z) by a, = ya*(z) —a~(x). We show that there exists a maximal interval
v € (0,T) for which there exists a stable (locally minimizing) solution. Under some
hypotheses on a™ near infinity, we prove that there are two solutions for each v € (0,T).
Some care must be taken to ensure the compactness of Palais-Smale sequences, and
we present an example which illustrates how the Palais—Smale condition could fail
for certain a(z). The analysis is based on a combination of comparison arguments, a

preori estimates, and variational methods.
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Chapter 1

Introduction

In my thesis [ study the following elliptic problem in R*, n > 3:

-Au = a(z)u? +b(z)u? inR", 0<g<1, p>gq,

(1.0.1)
u > 0 in R", ue DVYR")

where a(z) and b(x) are Holder continuous in R™. By D'?(R™) we mean the space
of functions with finite Dirichlet “energy”, more precisely, it is the completion of
Cg°(R™) under the Dirichlet semi-norm, ([, [Vul?dz)'/?. The important feature of
this equation is that it combines a non-Lipschitz nonlinearity u? with a sign-changing
coefficient a(z), and it was originally observed by Schatzman [38] that solutions could
vanish on large sets and in fact that, under appropriate hypotheses on a(x), there
exist solutions with compact support. The goal of this thesis is to study compactly
supported solutions to (1.0.1). In particular, we give conditions on a(z),b(z) which
ensure that all solutions have compact support. We also study the number and support
properties of the solution set under differcut assumptions about the size and shape of

a(x) and the sign of b(x).

Equations of the type (1.0.1) arise as stationary solutions to degenerate reaction-

diffusion equations of the form which was proposed by Namba [31] as a mathematical
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model of population dynamics,
wy — A(w™) = wla(z) + b(x)w?), s>0and m > 1.

Assuming time-independence and making the change of variable u = w™, we arrive at
(1.0.1) withg = 1/m and p = (s+1)/m > ¢q. lf w(z,t) represents a population density,
then a(x) represents a sort of growth rate. and the region where a(z) > 0 is favorable
to population growth, whereas the region where a(x) < 0 is hostile to the species. The
initial-boundary value problem for the above reaction-diffusion equation is studied in

[6], and the attractivity properties of non-negative solutions are investigated in [23].

The sub-linearity hypothesis, 0 < ¢ < 1. is essential for phenomena which we study.
If instead we consider the same equation (1.0.1) with ¢ > 1, then a simple application
of the Strong Maximum Principle (see Lemma 2.1.1) shows that a nonnegative solution
must be strictly positive everywhere in R"”. and so compactly supported solutions, and

the rich structure of the solution spaces which we study here, would be impossible.

We denote as usual, a*(z) = max(0. a(z)) and a™(z) = max(0, —a(x)). The
support properties of the solutions depend principally on the regions where a(xz) >
0 and on the size of the positive part «™(z). Let QF = {& € R" | a(z) > 0},
Wt = {z e R" |a(z) >0} and @ = {x € R* | a(z) < 0}. As we will see, the
Strong Maximum Principle cannot be applied in the region 2~, which means that a
nonnegative solution may become identically zero in any subregion of Q@~. This is
consistent with the biological interpretation of 2~ as a region which is hostile to the
species, and it is natural both for mathematical reasons and for applications to assume

that the following condition is always met:
Basic Hypothesis: The domain 2 is hounded and non-empty.

In other words, the favorable region 2" consists of bounded islands, surrounded

by the unfavorable 2=. When QF consists of several connected components we must



make the following hypothesis about the nature of the favorable region:

QF has k < oo connected components with QF = UF_ O}

and each connected component 2] satisfies an interior ball condition.
(1.0.2)

We will see later (see Lemma 2.1.3) that the Strong Maximum Principle does apply in
each of the components ;" of Q*. The conclusion is that for any nonnegative solution

u of (1.0.1) and for each individual component Q;

, either u > 0in QF or u = 0 in
Q). In principle, given any sub-collection of the components ;, ¢ € I C {1,...,k},
we could hope to find a solution u with « > 0 for those components, and zero in the
others. Following Bandle, Pozio, and Tesci {7], we call such solutions, which vanish

identically in some part of the favorable region 2%, dead core solutions.

To organize the space of solutions of (1.0.1) according to the pattern of the supports,

we define the following classes of solutions:

Definition 1.0.1. M = {1,2,....k}

(1) For any non-empty I C M, denote by S; the class of solutions of (1.0.1) which

are positive in QF = Uer Q.

(2) Ny denotes the set {u € Sy | uv=0in Q*—-Qf}.

Thus, a solution in Sy, is positive in the entire set 27, whereas the elements of Ny,

I # @, have some dead cores.

The results for (1.0.1) are different depending on the sign of b(z). So we will
focus on two cases: first, if 6(x) < 0 we’ll call the nonlinearity of “logistic” type.
To emphasize this dependence, we denotc the equation by (1.0.1)g; for b(z) > 0 we
specialize to the case b(x) = 1, and denote the equation by (1.0.1),. We call this case
the “concave plus convex” nonlinearity, as we expect to prove multiplicity results along

the lines of Ambrosetti, Brezis, and Cerami [5] (see also [2].)



1.1 Logistic Nonlinearities

In this case equation (1.0.1) always admits a nontrivial nonnegative solution.

Theorem 1.1.1. There exists a classical mazimal solution U € DV2(R™) N L>°(R™) of

(1.0.1)y. Moreover U < w, where w 1is the unigue positive solution to

—Aw =a"w! R, limg_ew =0.

The existence and uniqueness of w(z) > 0 follows from Brezis and Kamin {12}, and
the Theorem is proven by means of monotone iteration method and sub-super solution

method.

If ¢ > 1, by the strong maximum principle there could not be any compactly
supported solution at all, so the sub-linearity of ¢ is crucial for the existence of solution
with compact support. In order for solutions to have compact support, we also require
more information about a(x). In case 2°* is unbounded, the strong maximum principle
leads us to expect that in general solutions will not have compact support. So to obtain

compactly supported solutions we will assume,
Q%" is nonempty and bounded. (1.1.1)

However, this hypothesis is not sufficient. and in addition we must impose some con-

ditions on the decay of the negative part a~(x). We prove:
Theorem 1.1.2. Assume (1.1.1). There exist n > 0 and p2 > 0 so that of

liminf a~ 2|29 > g (1.1.2)

jzx]— o0
every weak solution u of (1.0.1)y is classical and compactly supported, with supp( u)

contained in B(0, p3).

To understand the interdependence of the constants in Theorem 1.1.2, think of

a”(z) as being fixed ( here b(x) can vary ) and consider how the asymptotic behavior



of a”(x) affects the support of the solution. By the hypothesis (1.1.1) we can choose
p1 > 0 so that Q°F cc B(0, p). Then, the constant 1 will depend on g, p, n, py, and
[{a* || Loe(mmy- If @™ is decaying too rapidly to zero, then we may not have compact sup-
ported solutions (see Remark 3.1.12 at the end of Chapter 3 section 2.) Nevertheless,
we cannot claim that condition (1.1.2) is sharp, as we will see in Theorem 1.1.8 below.
The method we use to prove above theorcin is based on a priori estimates and compar-
ison method, inspired by Cortazar, Elgueta and Felmer [18] on the constant-coefficient
equation —Au = uP —u?, which is quite different from the one used by Schatzman [38],

who used Puel’s existence theorem [34] to construct compactly supported solutions.

In case a(x) is bounded away from zero at infinity the proof is somewhat simpler:

Corollary 1.1.3. Assume (1.1.1), and suppose that there exists a > 0 and p; > 0
such that
a (2) >« for all |z| > p1. (1.1.3)

Then,there exists R > 0 so that every weak solution u has support supp(u) C B(0, R).

Moreover, R depends only on q,p,n, p1, and ||a™||Le(mn).-

We cannot expect the result of Theorem 1.1.2 to hold in R! or R%. Nevertheless,
under the hypothesis (1.1.3) it is true that any L‘(R™) solution (with ¢ > 1) in R",
for any n > 1, must be compactly supported (see Theorem 1.2.2.) However, we
cannot prove the uniform control on the support in terms of the coefficients as in

Corollary 1.1.3.

We also study the structure of the solution set of (1.0.1)y in case the favorable
domain Q% has several components as stated in hypothesis (1.0.2). Recall that a
solution in Nj has dead cores, as it vanishes identically in part of the favorable set
Q0*. If dead core solutions do exist, the class S; can contain many elements: see the

following proposition and Theorem 1.1.8. However, in many cases the class N; can



have at most one solution. Following the idea in [7], we present a generalization of the

uniqueness result of Spruck [39]:

Theorem 1.1.4. Assume (1.0.2), if p > 1, then the number of elements in N is at
most 1 for any non-empty [. In particular if k = 1, then the solution to (1.0.1) is

unigque and its support is connected.

The method we adopt is from C. Bandle, M.A. Pozio and A.Tesei [7, 8], which
they used to show uniqueness for bounded domain with both Dirichelet and Neumann
boundary condition. We may also prove uniqueness of solutions in class N; with
g < p < 1 under some additional hypotheses on b(x); see Theorem 3.2.13. Actually
Spruck [39] imposed a monotonicity condition, - Va(z) < 0, and considered (1.0.1)g
with b(z) = 0. He proved uniqueness of compactly supported solutions by means of
a special version of Hopf’s boundary lemima. He also proved that, under the same

hypotheses, the support of the solution is star-shaped with Lipschitz boundary.

When Theorem 1.1.4 applies, the solution space of (1.0.1)y is completely char-
acterized by the support properties of the solutions. Consider the following exam-
ple: let QF, i = 1,...,k be any smooth. compact and connected sets in R", with
min; dist (©7,€7) > 0. Let b(x) = —1 and define a(z) = ax(x) by

A, dfeeQfi=1,...k,
a(r) = (1.1.4)
-1, ifa¢urb,QF,
where A > 0 is a fixed constant. (See figure 1.1.) Combining the results of Corol-

lary 1.1.3 and Theorem 1.1.4, we have:
Proposition 1.1.5. Assume a(z) is defined as in (1.1.4) with fired X > 0, b(x) = —1,

and p > 1.

(1) There exists 6* = §*(Q+, X) > 0 so that if min;; dist(Qf’,Qj) > 6%, then N;

contains exactly one solution for each I # 0.

6



2) There exists §, = 6,(Q2FT, ) > 0 so that if max,,; dist (QF, Q) < 6,, then (1.0.1)
#J 1 i

admits exactly one solution in R™. This solution is positive on the set Q7.

Note that in case (1), for Q with k connected components, the equation (1.0.1)

admits exactly 2% — 1 nontrivial solutions in all.

/7 ~
I ax)=A>0 )
- ~ \ ﬁ; / -

’/ \ N - / \\
ax)=a>0 | _ - { ax) =A>0
\ q,* Y, alv) = -1 / ~ \ at !
N -— - onlside f \ ~ 4
ax)=a>0 -

!
\ +
A Y hnﬁ/ /

Figure 1.1: a(z) as in the example (1.1.4).

Theorem 1.1.1 established the existence of maximal solution in general, that is,
positive in all of the favorable set 2%. In addition, under (1.0.2) we can assert the

existence of a minimal solution in S for cach I:

Theorem 1.1.6. Under the hypothesis (1.0.2), S; has a minimum element u; €
DV3(R™) N L>(R™) for any non-empty I C M.

In a bounded domain, the existence of ininimal solution in Sy is proven in Theorem

4 of [33]. There is a connection between the maximum solution of (1.0.1)¢ and the

minimum energy solution of the functional £ : DV3(R™) N LI} (R™) — R, defined by
E(v) = /n |Vul*dz — q—-lk—l . a(vt) iy — Z%I . b(vT)PHdz.

If we assume a(z) and b(z) are uniformly bounded in R", then E is smooth (see [22]).

The interesting fact is that inf,epizgn)nre+1@wny E(v) is achieved at a non-negative

function U, which is a solution of (1.0.1)y. By minimization it is easy to see that

U > 0 in all connected components of 2%, that is U € Sy;. By Theorem 1.1.4, when
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p > 1 this minimum energy solution is the (unique) maximal solution in Sy;. On the
other hand, as pointed out in (2], if there do exist dead core solutions (in some class
Nj, I # 0) then these solutions cannot be energy minimizers even modulo any finite
dimensional subspace. As a result, our study of dead core solutions to (1.0.1)¢ will
rely on comparison arguments, monotone iteration, and a priori estimates rather than

variational methods.

Another way to influence the support properties of the solutions is by varying the
relative strengths of the positive and negative parts of a(z). We introduce a parameter
A > 0, and set

ax(z) = Mat(z) — a” (2).

Clearly this does not affect the geometry of the favorable and unfavorable regions, and
QF, Q% and Q~ remain the same for the whole family of ay. Intuitively, we expect

that the size of the support of the solutions of
—Au = ay(z)u? + buP in R", u >0 and u € DM*(R™), (1.1.5)

should grow with increasing A. We will study the asymptotic behavior of solutions for
large and small A. To do so, we require a stronger condition on the geometry of the

function a(z) and its sets Q0*:

Definition 1.1.7. We say Q% is admissible if it is also bounded, (1.0.2) holds, Q°*
also has k connected components with O = UE_ Q0 and QF C Q¥ fori € M.

Moreover, dist(Q), Q)*) >0 fori # j.

For admissible 2°* we have the following Theorem:

Theorem 1.1.8. Assume Q°F is admissible, there exists A, > 0 so that for all A <
A«, all solutions of (1.1.5) are compactly supported and N} # @ for any non-empty
collection I C M.



Note that for A < A, the compact support of the solutions follows even in the
absence of asymptotic conditions on a(x). showing that condition (1.1.2) cannot be
sharp. To emphasize the dependence on A. equation (1.1.5) is often referred as (1.1.5)
(the subscript A is omitted if no confusion arises). For A big, we have the following

Theorem in case ¢ < p < 1.

Theorem 1.1.9. Assume (1.0.2), if ¢ < p < 1, there exists AT > 0 so that the equation
(1.1.5)s has a unique solution uy, which is positive in QF for all A > \f. Moreover,
uy w, ifp<l

lim —— =
A—o0 AT

W, pr = 1’

untformly on R™, where w,w, > 0 are as in Theorem 3.1.8 and Lemma 3.3.5.

In particular, combining Theorem 1.1.2 and above theorem we conclude that as

A — o0 the support must grow.

Corollary 1.1.10. Assume (1.0.2), if ¢ < p < 1 and liminfj . a7 |z|""20-9 = oo,
then there exists X5 > 0 so that problem (1.1.5) has a unique compactly supported
solution uy with uy > 0 in QF for all X > \5. Moreover, uy, increases point-wise as A

increases, and so supp (uy) expands to R" as A — oo,

Uasosupp(uy) = R™.

For the case p > 1, the asymptotic behavior is more complicated, and depends
strongly on the form of b(z). Some spccific results are proven in Theorem 3.3.7 in

section 4.

To illustrate our results on the parametrized problem (1.1.5), we return to the
previous piecewise constant a(z) from our example (1.1.4). For simplicity, assume

b(z) = 0. For A small enough, Theorem 1.1.8 applies and we conclude that (1.1.5)


http:inf1x1___.00

admits a unique solution in Ny for all I # ¢, so (1.1.5) admits exactly 2* — 1 solutions
in all, and all but one has dead cores. For A sufficiently large, by Corollary 1.1.10 the

equation has exactly one solution which is positive in all of 7.

In [7, 8] C. Bandle, M.A. Pozio and A.Tesei studied dead core solutions for this
problem in a bounded domain with both Dirichlet and Neumann boundary condition,
and S. Alama [2] used a bifurcation analysis for dead cores in the Neumann problem
for similar equations. Most other previous work on equations of the form (1.0.1)g has
been for bounded domains or for constant coefficient equations in the whole space R™:

see (10, 14, 17, 18, 21, 27, 33, 34, 29, 40} and the reference therein.

1.2 Concave Plus Convex Nonlinearity

In this part our equation takes the form.

—Au = a(x)u? + u? in R", n > 3,
(1.2.1)
©v>0 inR". u€D"*R"Y)

We must further restrict the nonlinear terms and asymptotic behavior of a: we assume

that Q% is bounded, non-empty and (1.0.2) holds, moreover we add the following
hypothesis:

2
0 <liminfa™(z) < limsupa™(z) < oo and 0<g<l<p< E—Jr—2 (1.2.2)
n —

frj—o0 |z|—oc

The additional hypotheses on p are important for several reasons, which will be
explained later on. The upper bound on p is related to the compactness in the Sobolev
embedding theorem, and it is well known that basic a priori estimates of solutions of

elliptic equations can fail when there is no such assumption on p.

Since b =1 and p > 1 the nonlinearity combines convex and concave terms in Q%

as has been studied by Ambrosetti, Brezis, and Cerami [5] (see also [2]), so we expect

10



some similar results. In particular, unlike the case discussed in the first part, we no
longer expect uniqueness of solutions in each set Ny, and seek a second solution using

variational methods.

To illustrate the difficulties which can arise in the concave plus convex case, first we
observe that Cortdzar, Elgueta, and Felmer [18] have proven that the equation —Av =
v?P —v? in R™ has a compactly supported solution with connected support, which is
unique up to translation. This suggests that (1.2.1) could have a solution whose
support lies completely in Q7. (Note that we prove this is impossible in the logistic

case b(x) < 0, see Lemma 3.2.10) Indeed. consider the following special example:

Example 1.2.1. Let Qf cC B(0,r) and a(z) = =1 in R™\ B(0,r) for some r > 0.
Again from [18], we may construct arbitrarily many solutions of (1.2.1) by gluing
together the compactly supported solutions of —Av = v — v? in disjoint balls in R™ —

B(0,r). (See figure 1.2.)

In particular, for such a(z), the variational functional associated to (1.2.1) cannot
satisfy the Palais—Smale condition. Furthermore, it leads us to the following difficult
question: when can we prove multiplicity of solutions of (1.2.1), so the solutions have

connected support? And, do the solutions differ in the set Q*?

Figure 1.2: a(z) as in Example 1.2.1.

We now state our results in the case h(x) = 1. First, all solutions of (1.2.1) must

11



again have compact support:

Theorem 1.2.2. Every weak solution of (1.2.1) is a compactly supported classical

solution.

The proof of this result also uses the technique from Cortazar, Elgueta, and Felmer
[18]. In contrast to Theorem 1.1.2, there is no uniform control on the support of
solutions due to lack of uniform a priori decay estimates on the solutions. Again, the

failure of such a uniform decay estimate can be seen from Example 1.2.1.

The existence of solutions to (1.2.1) is also more delicate than the logistic case. For
a given a(z) satisfying the required conditions there may not be an entire nonnegative
solution with support in Q7 at all. We are thus led to consider the parametrized family

as in the previous part,
~-Au=au'+uP, ue DYR™), u>0inR" (1.2.3)

where a, = ya* —a” and v > 0. When + > 0 is small, we show that there exists a
“small” solution, the minimal solution of (1.2.3), but for « large there is no nonnegative

solution at all:

Theorem 1.2.3. Assume (1.2.2). For any non-empty I C M, there ezists 0 < I'; < oo
such that:

(1) S; #0 when 0 <y <Tp;
(2) S =0 when~y > T,
(3) Si has a minimal element u; ., for all 0 <~ < Ty;

(4) lurylle — 0 asy — 0%,

In particular Sy is not empty for 0 < v < I'y;. This result is proven in two parts:

the existence of the interval (0,I';) is proven in section 2 of Chapter 2. The existence

12



of a minimal solution is in section 1 of the same chapter. The crucial step for proof
of above theorem is that for small v, we can construct an explicit super-solution in
R™ depending on y. We note that the existence of a solution at the endpoint v = [';
is not trivial, and follows from estimates of the minimal solution (see remark after
Theorem 1.2.5.) The condition p > 1 is necessary for construction of the super-solution

(see the proof of Lemma 4.2.2.)

As in [2, 3] we may view this existence theorem as a bifurcation result in the
parameter v. We expect that family of solutions bifurcates from the trivial solution
at v = 0, and the extremal value ['; is a sort of turning point in a bifurcation curve.
The difficulty with making this precise for (1.2.3) is that the linearization is singular
at u = 0, and so standard continuation methods (see Crandall and Rabinowitz [20])

do not apply.

Just as in Theorem 1.1.8 in the previous section, if Q°* is admissible, we also can

say something about the dead core solutions.

Proposition 1.2.4. Assume QU is admissible, there ezists v, > 0 so that for all

v < Y«, Ny # 0 for any non-empty collection I C M.

This proposition is proven in section 4.2. Although we have p > 1, we can not
show that NVj; has a unique element. Actually we expect that the element in Sy ( or

Nys ) is not unique!

To study multiplicity of solutions, we adopt a variational framework for our prob-
lem. As mentioned in the previous section. variational analysis of solutions with dead
cores (in Ny, I # M) is difficult since these solutions have infinite dimensional negative
spaces associated to them. So in the remainder of the results we will only consider
the solutions u € Sy, that is u(z) > 0 on all of Q*. In the following, we denote by
I' = 'y and U, the minimal solution in S,; for 0 < v < T'. We also denote by Sy, the

class of solutions of (1.2.3), from Definition 1.0.1.

13



Consider the Banach sapce
1 _ , 1,2 n: 1
H, = {ve D"*[R") | /Rn{fu[“dx<oo}
endowed with the norm

lolly = ([ (9o} + ([ i),

Define the energy functional I, : H] — R associated with (1.2.3) as

L(v) = / vaizda: - ————/ Hyatldy 4 _j-I a”(vh)itldz
Rn q

p+l
p+1 (v P de

From [19] we see that I, is C* from H, to R'. Consider the following minimization

problem in a convex constraint set
Inf {I,(v) | veY} and Y ={veH;| 0<v<Urael}.

From Lemma 4.3.1 the infimum is attained at some function in Y, say v,, and v, €

Sn . Then under the following hypothesis

Q% has m < co connected components with Q% = U™ QF)

(1.2.4)
and (1.0.2) holds, ¥t N Q* 5 @ for every i= 1, ..., m
we show that these solutions are actually local minimizers of I, in the H ; topology:

Theorem 1.2.5. Assume (1.2.4). For 0 < v < T, vy is a local minimizer for I, in

Hy; that is, there exists > 0 such that

Ly(vy) < Ii(v) for all v € H, with |jv — Uyl <6

We recall that Brezis and Nirenberg [13] first observed that minimization in the C-
topology (for example, the sub- and super-solution construction above) yields minima

in the weaker H!-topology for a large class of subcritical elliptic variational problems.
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See also [4] for remarks on supercritical problems. Theorem 1.2.5 will be proven in

section 4.4.

As we have remarked above, the existence of a solution at the endpoint v = I'y is
not trivial, it is the result of a priori estimates for the family of minimal solutions .
as v — [';. It is an “extremal solution” of the family of stable solutions, and similar
results for bounded domains have been obtained by Alama and Tarantello {3]. In
addition, Cabré [15] has studied extremal solutions for certain autonomous equations
in bounded domains, and has shown that extremal solutions exist for stable solution
families even for nonlinearities with super-linear growth, for which usual Palais—Smale

type compactness results fail.

Given that we have a local minimizer of I, for v € (0,T'), we expect a second solu-
tion by using the celebrated Mountain—Pass Theorem of Ambrosetti and Rabinowitz
[35]. As mentioned above (see Example 1.2.1) the main obstacle is the Palais-Smale
condition, and we must impose some additional condition on the coeflicients in order
to apply Concentration—Compactness methods [30] (see also Struwe [41] and [9]). We

prove:
Theorem 1.2.6. Assume (1.2.4) and there exists a», > 0 and R > 0 so that

lim a () = ax > 0,
|zj—o0

a” (r) < ax for all |z| > R.
Then, if 0 < X < Ay, Sapy contains at least two elements for all v € (0,T).
Again, the natural question that ariscs is, do the two solutions in Sy, differ in

27?7 We conjecture that if we assume strict monotonicity, Va(z) - < 0, then these

two solutions should be distinct in €2*, but this is still an interesting open question.

Combining the above results, if the hypotheses of the above theorem are met, then

(1.2.1) admits at least two nonnegative solutions for v € (0,T) and at least one for
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v = T, mirroring the results of {2, 8, 5] for boundary-value problems.

Another way to recover compactness in unbounded domains is via radial symmetry,
a(z) = a(|z|). With no additional hypothesis, the minimal solution U, must be radially
symmetric. Let 7 = sup{r > 0] a(r) > 0}, 0 < r; < oo since 7 is bounded and
non-empty. We prove the following theorem via the moving planes method of Gidas,

Ni and Nerenberg [26].

Theorem 1.2.7. If a(r) is decreasing in [0, ri] and strictly decreasing in [r1, o0),
any non-zero solution of (1.0.1)y s radially symmetric and decreases as v increases.

In particular all solutions of (1.0.1); have connected support.

Indeed if a{r) is only decreasing, we can show that all radial solutions of (1.0.1});

must decrease as r increases, therefore thev must have connected support.

For radial (but not necessarily monotone) a(z) = a(|x|), after a few adjustment

from above method we claim that

Theorem 1.2.8. For 0 < A < Ay, if a(x) = a(|z]), then Sy contains at least two

elements with radial symmetry.

From previous theorem and some results from [32] we see that if a(r) is strictly
decreasing and smooth, these two radial clements in Sy, are different in Qt. We could
say one is small and the other one is big. in analogy with the results on convex and
concave non-linearities by Ambrosetti, Brezis, and Cerami [5]. 1 conjecture that if QF
is connected, there is a constant A > () independent of A\ so that Sy, has at most
one element with L*-norm less than A. A first step will be to do this when Q% is
a ball. The result cannot hold true if Q'+ is admissible and has more one connected

component.
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Chapter 2

Maximum Principle and Some

Applications

In this chapter we present some classical results for the maximum principle and some
applications to our equations. Comparison theorems will be very important to our
methods, and so we review some well-known theorems which are based on maximum

principles.

2.1 The Maximum Principle

Let us consider the following elliptic operator
Lv=—-Av-+c(z)v in D (2.1.1)
where c¢(x) is a continuous function and D is a open and bounded domain in R™.

Lemma 2.1.1 (Hopf’s Lemma [24]). Suppose v € C*(D) N CYD) and c¢(z) € L.
Assume

Lv>0 in D and v>0 in D.
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Suppose also v is not identically 0.

(1) If 2° € 0D, v(z°) = 0, and D satisfies the interior ball condition at z°, then
dv

— <0
on ’

where n is the outer unit normal vector of 0D at x°.

(i) Furthermore,

v>0m D
Theorem 2.1.2 ( Strong Maximum Principle [24]). Assume v € C*(D)NC*(D) and
c>0 inD.

Suppose also D 1s connected.

(i) If Lu <0 in D, and v attains a non-negative mazimum over D at an interior

point, then v is constant within D.

(it) If Lv > 0 n D, and v attains a non-positive minimum over D at an interior

point, then v is constant within D.

We remark that the hypothesis u € C? has been weakened by J. Serrin [37] to

include C! weak solutions.

As an immediate application of the strong maximum principle, we have:
Lemma 2.1.3. The classical solution u of (1.0.1) is either positive in Q) or entirely

zero in QF for anyi€ M.

Proof. Let us consider the set S = {z € Qf|u(z) = 0}. First, we claim that S is open
in QF. Indeed, if S # 0, then pick any @y € S, we have u(zg) = 0 and a(zg) > 0.
Therefore by continuity

a(z) + b(z)uP~Yx) > 0 in B(xg, €),
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for small € > 0. Hence we have
—Au = a(x)u?+b(z)u? = (a(z)+b(z)uP~")u? > 0in B(xzg, €) and u(x) > 0in B(zo, €).

So by maximum principle u(z) = 0 in B(:, ¢), which means S is open in €.

It is also clear by continuity that S is closed in ], therefore u > 0in Q] oru =0

in ©F due to the connectivity of Q. O

2.2 A Comparison Theorem
We will often use the following comparison theorem, which was proven in the case of
bounded domains and b(z) = 0 by Bandle. Pozio, and Tesei [7] (see also Spruck [39]):

Lemma 2.2.1. Assume (1.0.2), and let uy, up € CHR™) N W25(R™), s > n, be two

loc

functions such that for some I C M,

(1) u1,uy are positive in ?2?

(2) uy =0 in QF - QF;

(3) lim g oo u1(z) = limjyjmeo uz(z) = 0:
(4) For a.e. z € R",

"‘AU]

IA

au] + buf

—Nuy > aud + bub.
Then we must have u; < up n R

It is worth pointing out that if u, is positive everywhere in R", then the second
condition that u; = 0in QO+ — Qf is removable. This Lemma is proven for C? solutions

in a bounded domain in [7]. Here we provide a proof for completeness; the extension
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to solutions in CH(R™) N W2P(R™) is donc by applying Serrin's generalization of the

loc

maximum principle [37].

Proof. Suppose the contrary, D := {r € R*| u; > us} # 0. Let U) = 1—l(iui_q,

— 1 ,1=q
Up = 1=, ", so that

Uy >Usin D.

Since Hmygj—oo Ui () = limyy oo Ug(x) = 0, there exists a point zg € D where the

difference ¢ := U; — U, attains its maximun. Let us now distinguish two cases.

Case 1: Suppose that Us(zg) > 0 for some zg € D where § takes its maximum.
Denote by V the maximal connected component of the set Dy := {x € D : Us(x) > 0}

containing o, then § belongs to W25(V) and the above calculations show that
NS = AUy — AUy > (=uud VU 4 qud VU2 = b(ul ™ — ub™9).

It is easy to see that from u; > us in D we have

ud™' > w7 in D, u! > ub " in D.
So
A8 + qui™ (VU + VUL, V)
> (=)ui VU + qui T [VU)* + qui ™ [VUL P = quf ™[V UR[* — b(uf ™ — uf™%)
> (qui™ = quiT ) VU = b7~ b7
> 0.

Since ¢ assumes its maximum at an interior point of V. the weak maximum principle

of Serrin ([37]) ensures that § = constant in V. It then follows that
0=vé=VU, - VU, and No=0inV.
But by assumption in V' we have
0= A8 =q|VU P(uf™ —u{™") = b(u] ™ — ub™%) >0,
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which implies VU; = 0 in V, in turn we have VU; = 0 in V, so uy and uy must be
constant in V. But since limy oo u1(x) = limyg_oo ua(x) = 0, we must have u; = uy

in V. That is a contradiction, so case 1 is impossible.

Case 2: Suppose Us(zg) = 0 for ALL x, where § achieves its maximum. Let
C:={zxeD: §x)=0x)}

Note by assumption, U = 0 in C. Since d = §{zg) > 0in C, we have U; > 0in C. On

the other hand also by assumption u; = 0 in Q+ — Q. Hence we have
Cn(Qt-Qf)=0.

By hypothesis 1., Uy > 0 in QF, hence C N QF = 0. So we have

cCnNnQr =40,

which means that C and QF are at a positive distance to each other. Therefore there
exists a neighborhood U of C such that U N Q+ = @ and 6(z) > 0 in U. Then by
monotonicity, ming(u; — ug) > 0 is attained, where W is a connected component of

U.

Thus there exists b > 0 such that 6(2) < b < §(xg) for Vx € OW. For Ve > 0, we
define

1
U2€ = 1= q('Ug + 6)]_(1, 55 = U1 - Uze.

Clearly 4. < 4 in D. We can pick positive € small enough such that
Uy > Up + € and 0c(xg) > 0.

It follows that
de(x) < 8(x) < b < d(xg) Vx € OW.
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Hence . attains its maximum at some interior point in W and is not constant in W.

On the other hand, from assumption (1.0.2) we have ¢ <0 in W, therefore

q p
S () 2 g-1 2 Uy IO = Uz
Db = (—qui [VUL|" + q(uz + €)77 | VUs| +a(U2+6)q a—b(w (ug + €)4
q P
> (_ g1 2 _ oy, |2 Up oy - (w2t
2 (=@)uz + T (VO — VUL +al =g = 1) = b0l ™ — e

> (=) (uz + )TN ((V(U + Uao)), (Vo)) in W,
that is
— A6+ (—q)(ug + )TH(V(UL + Use)), (V6) <0 in W.

But by the weak maximum principle of Serrin {37}, d. can not achieve its maximum in

W unless it is constant. This is a contradiction, whence the result follows. d

One important use of Theorem 2.2.1 is to prove uniqueness of solutions within the

classes N; (as defined in Definition 1.0.1.)

Another application is to the solutions of:
—Aw = a*(z)w?, w(x) — 0as |z| — oo,

and

—DNwp = a+(x)wg + b(a:)w;,., W(I)b —0as |$| — 00,

with b(x) < 0. The function w will be used in Chapter 3 as super-solutions and will
appear as a limit of the solutions of the parametrized equations (1.1.5) as A — oco.
The existence of w follows from Brezis and Kamin [12] (see Theorem 3.1.8), and w;
exists by the sub and super-solution method, see Lemma 3.3.5. By Lemma 2.2.1 we

conclude that the solutions w,w, are unique, and that w, < w point-wise in R".
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Chapter 3

Logistic Nonlinearities

In this chapter, we study the semi-linear elliptic problem in R*, n > 3:

(3.0.1)

—Au = a(@)ui+ b)) mR*, 0<g<l,p>q
u > 0 in R* , ue DVY}(R")

where a(x) and b(x) are locally Holder continuous, and b(z) < 0.

3.1 Compact Support

In this section we prove Theorem 1.1.2. The method we use is derived from the
approach of Cortdzar, Elgueta and Felmer [18] on the constant-coefficient equation

—Au = uP — ul.

First we develop a few useful lemmas. Assume (1.1.1), and pick p; > 0 such that

QY cc B(0, ;).

Lemma 3.1.1. Assume (1.1.1). Then, any weak solution u of (1.0.1) is a classical

solution and limz_o u(z) = 0.
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Proof. The regularity of u follows from standard bootstrap arguments; see Appendix
B in Struwe [41] or Theorem 0 in Brezis [11]. Since u € D?(R™), then u € L* (R").

Hence for any € > 0, there exists R(e) > p; such that
[[ull L2* rn—B(o,r)) < € for all R > Rfe).

So for any x € R"— B(0, R(¢)+2), we have B(z,1) CC R*— B(0, R(¢)) and —Au(y) <
0 in B(z,1). Therefore by the property of subharmonic function, we have

1
(B(z, V)| /B

that is lim;)_e u(z) = 0. O

0 <u(z) < u(y)dy < Cllullpe sy < Ce,

Remark 3.1.2. Note that we only need to assume that Q% is bounded and u €
D'2(R"™). On the other hand, obtaining limy - u(z) = 0 is very crucial to the suc-
ceeding arguments. In Section 5, we will discuss solutions whose Dirichlet energy is

not assumed to be finite.

The next Lemma shows that u not only uniformly tends to zero, but also goes to

zero with certain speed, as |z| goes to infinity.

Lemma 3.1.3. Assume (1.1.1), then u(x) < Tﬁj, where C' = HuHLoo(Rn)p’f—Q and

z € R* — B(0, py).

Proof. Let v = |x|(":—2’ then by the special choice of C we have:
—Av(z) =0in R" — B(0, p;) and v(z) > u(z) on dB(0, py).
Now consider w = u — v, then w satisfies:
—Aw(z) <0in R™ — B(0,p,) and w(z) < 0 on dB(0, p;).

Moreover we see that lim,)_. w(z) = 0. We now claim that w(z) < 0in R*— B(0, p1).

Indeed, otherwise there would exist zq € R™ — B(0, p1) such that u(zg) > v(xe) > 0.
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We also notice that w(z) < 0 on 0B(0,p;) and limjg|—. w(z) = 0, we may assume w

attains maximum at xy. Therefore we would have
0 < —Aw(zg) = —Au(zg) <0,

a contraction. Hence, we have u < v = ﬁﬁ in R* — B(0, p1). O

Next, we must estimate the sup-norm of the solution. We prove:

Proposition 3.1.4. Assume (1.1.1). There exists a constant C so that for any solution

u of (1.0.1) we have:
HullLe®ny < Clg, p-n, ||at ||y, 1),

where this C tends to zero as ||at||p=(q+) tends to zero.

First, the maximum principle yields:

Lemma 3.1.5. |(uf|ze®n) can be attained in QOF, i.e. there exists xy € QF such that

Hu}| oo (rr) = u(xo).

Proof. Since limz|_. u(z) = 0, we may assume ||u||Lo(gn) is attained at z,, which is
not in *. Let © be the connected component of R® — Q+, which contains z;. By the
Strong Maximum Principle 2.1.2, u(z) = u(z;) in Q. Since QF N Q is not empty, we

are done.

g

First, we estimate the Dirichlet energy of the solutions. The claim in the following

proof will also be useful in our existence proofs in the next section:

Lemma 3.1.6. Assume (1.1.1), then we have

/quIZd:rS/ atuitldz

N
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Proof. Since u satisfies the equation —Au = au? 4+ buP, multiply both sides of the

equation by u and iterate by parts. We have for B > p;

15}
/ (Vu|’de —/ T udS = atuitlde +/ buPdx
B(0,R) 9B(0,R) on B(0,R) B(0,R)

< / atuitldz. (3.1.1)

We now claim that there exists a sequence {R,} and lim,_. R, = 0o, such that

f@B(O Rn) g—:‘;udS — 0 as n — oo. Indeed. we have the following estimate:

a U o (Bn n—2
aB(o,R) On Rn=> 8B(0,R)
|Jul oo @)y~
< T2 — 11|22 080,m) | Vil L20B(0.R))
CR*T
< WIIVUIILﬁ(aB(O,R))
C
< Fgllv'”'“m(aza(o,m)-
Notice co > HVUHQLZ(RH) = [ faB(o,m |Vu|2dSdr, so there should exist a sequence

{R,} with lim,_.o R. = 00, such that |[|Vu|lr28(0.Rr,)) — 0 as n — oo. Therefore

du
/ —udS — 0 asn— o,
8B(0,Rx) on

and the claim is proven.

Applying this to (3.1.1), we have
[Vul*dz < / atuitdz.
R‘ﬂ. n

O

The next step is a bootstrap argument. Recall p; is chosen such that Q%% CC
B(O, Pl)
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Lemma 3.1.7. For any positive integer s > 2, there exists a constant
C'= C'(q,p, n,s, “a+“L°°(Q+)a HUHLZ*(Rn)v Q+)
so that
] o1 2 gy < C-

Moreover, C' tends to zero as |[a™||peoa+) and [|u]|2: gn) tend to zero.

Proof. We rewrite equation (1.0.1) as
—Au+a u! = buf =atul.

Then we just follow the steps in Appendix B in Struwe [41] (or Theorem 0 in Brezis
[11].) The term a~u? — bu? are nonnegative and so they may be neglected. Note
that the existence of the integrals is assured a priori without truncation, since a* is

continuous and has compact support. O

The uniform estimate on u will be derived by comparison with the solution w €
DV2(R™) of

—Aw = at(z)w?, w(z)—0as x| - oo. (3.1.2)

Theorem 3.1.8. Assuming T is bounded and nonempty, there exists a unique non-

negative solution w € DV3(R™) to (8.1.2).

Proof. By the Basic Hypothesis, Q% is bounded, so it is easy to see that —Av = at in
R™ has a solution v(z) = [4. ®(x —y)at(y)dx, where ® is the fundamental solution of
Laplace’s equation. Furthermore, lim,_. v(z) = 0. Thus, the existence of @ follows

from Theorem 2’ in Brezis-Kamin {12]. O

Note that the conclusions of Lemmas 3.1.5, 3.1.6, and 3.1.7 also hold with w in

place of u.

We are now ready to complete the proof of Proposition 3.1.4.
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Proof. Asremarked above, w satisfies the conclusions of the above Lemmas 3.1.5, 3.1.6,

and 3.1.7. From Lemma 3.1.6, we know that
[Vwl?da < / atwitdz. (3.1.3)
]Rn i1
By the Sobolev embedding we also have

/R |Vw|?da > C“WHiz*(Rn) (3.1.4)

for some constant C' independent of w. Also by Holder we obtain

) = et e lwl|% (3.1.5)

/n atwildz < |lat || Lemem W] L?* (Rn)?

where t is the conjugate of q—2+~1 Therefore combine (3.1.3), (3.1.4) and (3.1.5), we get

CllollFz oy < e Hascan 5 gy

that is

s 1
HWHLT‘(R") < C(H“ﬂh*(l}kﬂ))‘”-

Choosing s so that (s+1)-"5 > (—'}i%(pﬂ. from Lemma 3.1.7, we know that ||| 1)

(R
is uniformly bounded. Apply the standard elliptic estimate (see [42]) on the do-
main Ot cc O = {z € R" |dist(z,Q2"") < €}, where € is chosen so small that

lla* | e (o) = lla™ || (+) and volume(O) < 2volume(€2*), we have

< Ol 21 ) + Il 2

ol 2,552 g L2 )

Then by Sobolev embedding theorem, in view of Lemma 3.1.5 we have shown that

there exists a constant C” = C"(q, p,n, [|a™ ||eo, £27) s0 that |lw|le < C".

To conclude, we use Lemma 2.2.1 with u; = u and u; = w, notice that w is positive
everywhere. Applying Lemma 2.2.1 we thus obtain 0 < u(z) < w(z) holds for all

x € R", for any solution u of (3.0.1), and the proposition is proven. O



Corollary 3.1.9. Assume (1.1.1), then

for any x € R™ — B(0, p1) and 0y is a number depending on q, p, n and ||a™||Leo®n)-
Now we are ready to prove Theorem 1.1.2:

Proof. This is a comparison argument using the method from [17]. For positive number

M, ¢, let w(s) be the function defined implicitly by

M It
‘ = V32s,
w(s) | /L ta+l

with constants M and c to be chosen later. Indeed we can write w(s) explicitly in

terms of s
T-q

+1 C
= | M - Vsl -
T

Notice that since 0 < ¢ < 1, then 1—35 > 2. So w(s) is at least twice continuously

differentiable in [0, B], where B is defined by

1 1
1\41—‘*’5—:\/513(1—2521—),/ €
q+1

It is easy to see that w(s) satisfies

w"(s) — cw?(s) =01n (0, B).

Moreover w(s) is a decreasing function in s, w(B) = w/'(B) = w"(B) = 0. Therefore,

by defining w(s) =0 for s € [B, 00), we obtain a non-increasing solution of
w”(s) — cw?(s) = 0 in (0, oo)

with w(0) = M and supp(w) = [0, B].
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n—2
We know from previous proposition that u(z) < Z£l for |z| > p;. Let us define

E
g(z) : R* — B(0, p;) — R to be the following

n—2

_ e -2l _gtl n
slo) = (o) - VA= 10, et

where we pick n > 0 such that

1

g+1 7 9] 2t
\/5(1——3—) q+1=(mp1 4L

We rewrite g(z) as the following form

1 {(mp?”)”;—l ~ Ve -4 1) 1 (lx‘ mEN

g(x): n— 1-q
(E ) 2 g+1" |z

By the assumption that liminf};_, a™ |22

)1=9) > p then there exists py > p; + 1,

which depends on a, such that

- n
g9(z) <0 for |z| > p; and a mefor lz| > po — 1.
Now we choose
n—2
. ph , B n
M= ——-——(p2 1y and ¢ = ————pgn_Q)(l_q).

Hence consider the function f(s): [0, 1] — R defined by

oM e - EL [
fls)=M V2s(1 —) =T

We find that f(0) > 0 and f(1) = g(p2) < 0 from above calculation, then according to

the mean-value Theorem

0< sup {t |f(s) >0 for s |0, t]} < 1.

0<t<1

Therefore for the choice of M and ¢, B is well-defined and 0 < B < 1.

Let v(z) = w(|z| — (p2 — 1)), then we sce that v satisfies

Lv—cv?! < 0imR"—B(0,p2 — 1)
v = MondR"—- B(0,p; — 1)).
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Also notice that for |z| € [p2 — 1, p2), a”™ > ]x|(n:72l)(1—q) > pg""g“—‘” =c.

For u we have

Nu+aul +buP = 0inR" — B(0,p — 1)

u < Mond(R"— B(0,py —1)).
By subtracting them, we have
—A(v—u) > —a(z)u? — ct? forx € R" — B(0,p2 — 1).

We now claim that v > u > 0 for x € R” — B(0, p2 — 1). Otherwise there would exist
zo € (R™ — B(0, po — 1)) such that u(xg) > v(zg) > 0, which implies that v — u attains

its global minimum at some point zo € R" — B(0, p, — 1). At xq,

0 2 —A(v—u)(zo)
2 (—a(zo)u’(zo) — cv¥(z0))
> —a(To)u’(wo) > 0 if v(zg) =0

(=a(zo) — c)v'(xp) > 0 if v(zo) >0,
a contradiction, and so the claim is proven.

So we must have v > u > 0 for x € (R” — B(0, py — 1)), which implies u has

compact support. Therefore supp(u) CC B(0, p2). O

In the end we note that the main ingredient in the above proof is the decay estimate
on the solution in the exterior of B(0, p,). Any improvement on the required decay

(1.1.2) of a=(x) would require a sharper cstimate in Corollary 3.1.9.

Remark 3.1.10. For solutions of (1.0.1) in R™, n = 1,2 we unfortunately do not have
decay estimates as in Lemma 3.1.3, principally because the fundamental solution does
not decay to zero at infinity in dimension n < 2. Nevertheless, Lemma 3.1.1 still holds

for any classical solution in L*(R™) for t > 1, so we can prove in very similar way
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that all classical solutions of (3.0.1) in L(R™) have compact supports under strong
assumption liminfig o a™(z) > 0. However, we can not uniformly control the size
of the support because the Sobolev inequalities are domain-dependent in dimensions

n = 1,2. The statement we can make in any dimension is the following:

Theorem 3.1.11. Assume (1.1.1), if iminf.ca™ > 0, all classical solutions in

LYH(R™) for t > 1 must have compact support.

Proof. The proof is much simpler since we do not need to choose the place where we
make the comparison. We may just pick M = ||u|| o (rr) and compare w with u outside

B(O,pl) O

Remark 3.1.12. If a=(x) decays too fast at infinity solutions may not have compact
support. Indeed, using the same trick as in [7, 2] we obtain that for any compactly

supported solution,

/ a(x) + bUP %z < 0. (3.1.6)
supp(U)

However, if we choose b =0 and a(z) € L' satisfying (1.1.1) with [5. a(z) > 0 then a
compactly supported solution could never satisfy (3.1.6), and thus no solution can have

compact support.
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3.2 Existence and Uniqueness

In this section we present the proof of the basic existence theorems, Theorem 1.1.1
and Theorem 1.1.6, and a more general form of the uniqueness result Theorem 1.1.4.

Throughout we assume the dimension n > 3.

We use the method of sub- and super-solutions (also known as the method of upper
and lower solutions). The basic idea is to find a sub-solution (lower solution) u and
a super-solution (upper solution) u which have the following properties: u < u at
each point in R", and each satisfies the equation (3.0.1) but with inequality replacing

equality:

—Au < a(x)u’ + b(x)uP, in R",

—AT > a(x)u! + b(z)wP, in R™.

The existence of a solution to (3.0.1) will come from iterating the equation starting
from either the sub- or super-solution. This process will be monotonic, and is called
“monotone iteration” (see e.g. Sattinger [36].) Existence results of this type are well-
known in the setting of bounded domains (see {7, 8|, for example,) and we adapt the
technique here for entire solutions in R™. It will be essential to be sure that at each
step in the iteration process we preserve the uniform boundedness of the solutions and

belongingness of the solutions in the function space DM?(R").

Recall from Theorem 3.1.8 the definition of w € DV?(R"). To begin the iteration,

we start with the following equation:
—Dz4+a 27 —b =at fCin R*, 2> 0 and z € DM*(R"), (3.2.1)
where f is Holder Continuous and 0 < f < w.

Lemma 3.2.1. (3.2.1) has a solution Z € D"?(R™) N L®(R") and Z < w.
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Proof. We use monotone iteration to prove this result. Let us consider the following

equation
—Nzy+a 28 — bk =at fYin B(0, n), 2 >0 and z € Hy(B(0, n)). (3.2.2)

It is easy to see that z = 0 is a lower solution, Z = f¢, ®(x—y)a™ (y) f¥(y)dy is an upper
solution, where ® is the fundamental solution of Laplace’s equation. Furthermore we
see that 7 < w since 0 < f < w. Therefore by lower-upper solution method the above

equation has a solution Z, < w.

Claim 1. The solution Z, is unique

Indeed if there is another solution Z,,. then we have

~N(Zn — Zp)dz + 0~ (28 — Z,Ydz — b(ZP — Z,)")dz = 0.

n

Then multiply both sides by Z, — Z,, and integrate by parts, we have

/ IV(zn—'Z‘;>|2dx+/ 0 (20~ Z") (2070 ) da— / W20 —TF)(Zo—Zo)dz = O
B(0, n) B(0, n)

B(0, n)

Since they are all nonnegative, we conclude that Z, = Z,.

It is easy to see that Z,; is an upper solution for (3.2.2), so by the uniqueness

Zny1 2 Zn. Moreover we have the following estimate

/ |VZn|2d:c+/ a_Zg“dx—/ bZﬁ“d;E :/ at f1Z,dx < / atwiidr.
B(0, n) B(0, n) B(0. n) B(0, n) n

Therefore let Z = lim,_,, Z,, then Z is a solution to (3.2.1) and it satisfies
IVZ|*dx +/ a~Z9%dx — / bZPHdx < / atwitldz. (3.2.3)
Rn n n n

and 7 < w. O

Next, in order to prove the uniqueness of the solution Z, we need to improve Lemma

3.1.3. Let

V= M (3.2.4)
(1+f=f?) 7"
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Of course V(z) is (up to scaling and translation) the unique solution of the familiar
critical Sobolev exponent equation in R". AV + Vis =0 (see [16]). Since Q7 is

bounded, we can pick g; > 0 so that Q@ CC B(0, g,). We have the following lemma.

Lemma 3.2.2. Assume Z in DV2(R") is a nonnegative smooth solution of —NZ <
0 in R™ — B(0, py). Then, there exists a constant C > 0 such that Z < CV in
R™—B(0, g1). Moreover there exists a increasing sequence { R} with lim, . R, = 00

so that faB(o. R») %rZ—LZ — 0 asn — oo.

Proof. From Lemma 3.1.1, we have lim;_ . Z(x) = 0. Following the proof of Lemma 3.1.3,
replace v in Lemma 3.1.3 by CV for some big constant C. Notice that —A(CV) > 0,
we can show that Z < CV in R® — B(0. p;). Therefore we have Z < C;|z|~»? for

some C1, then the last part follows from the claim in previous Lemma 3.1.6. O

Lemma 3.2.3. The solution obtained from previous lemma is unique.

Proof. Suppose there are two solutions Z. Z. which satisfy the estimates (3.2.3), then

we have

~AN(Z = 2)dx+a (29— Z")dx — b(ZP — ZF)dz = 0.

Then multiply both sides by Z — Z and integrate by parts over B(0, R), we have

/ |V(Z—7)|2d:c+/ a‘(Z"-—?’)(Z—?)dx—/ W(ZP - 7" Z -Z)dx
B(0, R) B(0, R) B(0, R)

+ / Q(_Z_”_Z)(Z - 2)dS =0
8B(0, R) on

From Lemma 3.2.2, there exists a sequence {R,} and lim, . R, = o0, such that

NZ-Z)

faB(o Rn) an"(Z - 7) — 0 as n — 0o. Let n — 0o, we have

|V(Z—7)|2d:c+/ a'(Zq—7q)(Z—7)dm—/ b(ZP — Z°)(Z — Z)dz = 0

n n

R~

So we can conclude Z = Z. O



Next we go to the main iteration process. Let us consider the following iteration

equation
—Atpir+aul —bub, =atul in R* | u, >0 and u, € DV*(R?),  (3.2.5)

where u; = u, for small p such that 0 < u, < w, and u, is constructed in the following

manner: take small ball B CC QF, let ¢ = inf.ega(z), define
0, elsewhere

where £ > 0 is the eigenfunction corresponding to the first eigenvalue of the following
problem

-ANE=xafin B and £ =0o0n 0B,

for details, see [7]. Notice that u, is Lipschitz in R™ and satisfies

/n Vu,Vodr < /n aulpdr + /Rn bubgdz for ¢ € C3°(R™),
since u,, 1s a lower solution.

Lemma 3.2.4. w > uy >y = Y, and

IVuQIQda:%—/ a'ugﬂdm—/ bu’2’+1dx_<_/ atwi*ldz. (3.2.6)

n

Rn

Proof. The proof is simple, we just go back to proof of Lemma 3.2.1. It is easy to see
that u, is a lower solution to the equation (3.2.2) and w is an upper solution, therefore

we have desired results. O

Base on the above lemma, we can start our induction process.

Lemma 3.2.5. w 2 Upt1 = Un 2 u, and

|Vu,|dz +/

n

a"ultlde — buP*dz 5/ atwitdx. (3.2.7)
R» JRn n
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Proof. From above lemma we know the initial step is true, now assume u, > un,—1, we
have

—AUpyy +a"ul | —bul | > —Dup +a"ul — bub,

that is

—D(up = Unt1) +a” (U = upg) = b(uf —upyy) <0
Then multiply both sides by (u, —un41)7. integrate over B(0, R), and follow the steps
in claim of Lemma 3.2.3, we will have

/ |(Un—un+1)+|2d$+f a.”(ufl—uf’lH)(u,,—un+1)+dx——/ b(uh—uh ) (Un—tn41)"dz < 0.

n

From above we conclude (u, — u,41)t = 0. which means u, 1 > un,. O
Now we are in position to prove Theorem 1.1.1:

Proof. We simply take U = lim,,_,o u,, then in view of the estimates from the previous
we know U is a solution of (3.0.1). So we prove the existence for (3.0.1). As for
the maximal solution, we follow the same process. Notice that during the proof for

Proposition 3.1.4, we have that u < w for any solution of (3.0.1) and
—Aw = a"w? > aw? + bw? in R™.

So we pick ug = w and iterate, only this time {u,} is decreasing sequence and u,, < w.
Furthermore we have that u, > u for any solution u of of (3.0.1). Therefore U =

lim, .00 Uy 1S the maximal solution. O

Remark 3.2.6. The boundedness of Q" is not essential for the ezistence of U, for a

more general existence result see [12].

Corollary 3.2.7. Under hypothesis (1.1.1). (1.0.1) has a classical compactly supported
solution U with its support contained in B(0, pg) if limpz oo a™(z)|z|""20-0 > g

where 1 and py are from Theorem 1.1.2.


http:limn__.00
http:limn__.00

In terms of the solution class Sy (defined in Definition 1.0.1), we obtain the following

existence result:

Corollary 3.2.8. Assume (1.0.2), then S; # 0 for any nonempty [ € M.

Proof. Construct a subsolution u, as a superposition of disjointedly supported sub-
solutions, one for each component of 7, as in the proof of Theorem 1.1.1. Monotone

iteration then produces a solution which is positive in each component. 0

With some minor modifications of thesc arguments we may now prove the existence

of minimal element in S; as announced in Theorem 1.1.6.

Proof. We first assume that hypothesis (1.0.2) holds. To prove the assertion we may
argue as in Theorem 4 of [33] , and define u; = inf,cgs, u(x), which (by [33]) is a

nonzero solution O

Finally, we also conclude that, for the parametrized family of problems (1.1.5), the

maximal solution Uy € Sy is monotone.

Corollary 3.2.9. Assume (1.0.2), the mazimum solution Uy € Sy of (1.1.5) is in-

creasing as A increases.

Proof. Tt is simple, for 0 < A; < Mg, we know that w > max(Uy,,Uy,). Then we

iterate this super-solution wfor (1.1.5),,, like above it results in a monotone decreasing

sequence {u,} and u, > max(Uy,, Uy, ). But Uy, < u, — U,,, we are done! O

We now turn to questions of uniqueness, and the characterization of the solution
space of (1.0.1) in terms of the supports of the solutions. First, we note that every

solution of (3.0.1) must be positive in at lcast one connected component of Q7.

Lemma 3.2.10. Assume (1.0.2), if [ = (), then Ny = {.
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Proof. If I = (, then for any u € Nj it is a subharmonic function. Thus, for any

r € R", we have

1
0 <ufz) <

|0B(z, R)| Jonw. m) W

since lim;)—oo u(x) = 0, which implies u(x) = 0. O

From Lemma 2.1.3 we know that any solution u of (3.0.1) is either positive in Q7 or
entirely zero in Q; for i € M, but for uniqueness we require that u should be positive
up to the boundary of each component. This will be guaranteed for p > 1 (see below),

but a delicate question for p < 1. We define a class of functions P by:

P={veC'RYNWRY|s>n, v>0inR* v>0in Q_;L ifv>0inQf forie M .}

loc

Lemma 3.2.11. Assume (1.0.2) and solution u of (3.0.1) is positive in U for some
i€ M. Then if p > 1, u>0in QF;

Yoifp <1 and g—% is uniformly bounded in QF,
u>01n ?2?

Proof. For p > 1, hypothesis.(l.O.Q) ensures that an interior ball condition is satisfied

by €, so we may directly apply Hopf’s Lemma to the equation
—Au — b(z)u” = a(z)u? > 0in ﬁf and u > 0 in @—;t

We conclude that v > 0 in QF.

For p < 1, if 7y € 0 and u(zy) = 0. since ; satisfies an interior ball condition,

we take a small ball B, C QF with radius ¢ and zy € dB,. For € small we have

—Au = alx)(1+ j;f((ii—))up—q)uq > 0in B..

Hopf’s Lemma implies that Vu(zo) # 0. Since u attains minimum at xy, Vu(zg) = 0,

a contradiction. O
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Definition 3.2.12. We say that b(z) is compatible with a(x) if any solution u of
(1.0.1) lies in the function set P.

From above lemma we see that any non-positive b(z) is compatible when p > 1,

but p < 1 requires some extra assumptions on b near 9.

Uniqueness in the classes N; now follows from the comparison Lemma 2.2.1, since
membership in the function set P ensures that the hypotheses are satisfied. The

following generalizes the uniqueness result in Spruck [39]. Theorem 1.1.4.

Theorem 3.2.13. Assume (1.0.2), of b(«) is compatible, then the number of elements
in Ny is at most 1 for any non-empty I. In particular if k = 1, then the solution to

(1.0.1) is unique and its support is connected.

Proof. In order to apply Lemma 2.2.1, we need the elements in N; decaying to zero at

the infinity, this is assured by Lemma 3.1.1. O

We may immediately combine the existence of a maximal solution from Theo-
Y Y

rem 1.1.6 with the uniqueness result to obtain:

Corollary 3.2.14. Assume (1.0.2), if b is compatible, the mazimal solution U is the

unique element in Syy.
Here we present the proof for Proposition 1.1.5.

Proof. For b(x) = —1, define a;(x) by
A ifzeQf,
ai(z) =
-1, ifz ¢ Qf,
Then we consider the following equation:

—Ou = a(z)u? —uP in R", u > 0and v € DV3(R™). (3.2.8)
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By regularity results and strong maximum principle, we see that solution to (3.2.8) lies
in the set P. Therefore by Lemma 2.2.1 the solution to (3.2.8) is unique, denoted by u;.
By uniqueness when Q2 moves, so does u;. Furthermore u; is also compactly supported
by Theorem 1.1.2. So if we choose d* big enough so that supp(u;) N supp(u;) = @ for
any ¢ # j, then by Theorem 3.2.13 N; contains exactly one solution for each [ . The

first part is done!

For the second part, notice that QF CC supp(u;). For nonempty I, choose any
i € I, then the minimum solution u; in S is super-solution for problem (3.2.8). By
uniqueness we find that u; > u; for any ¢ € I. So if we choose §, so small that
supp(u;) N # 0 for any 7 # j, then (3.0.1) has only one solution, which is positive
in Q. O

If we assume further that a(x) and b() are radially symmetric, we have the fol-

lowing:

Corollary 3.2.15. Assume (1.0.2), if a and b are radially symmetric and b is com-
patible, then the unique element in Ny is radially symmetric. If in addition QF is a
ball centered at the origin and b(xz) = 0 in QF, then the unique solution of (3.0.1) is

radially decreasing.

Proof. If a and b are radially symmetric. since Laplace’s operator is invariant under
rotation, we know that the element in N; is radially symmetric due to Lemma 2.2.1. If
Q7" is a ball centered at the origin and b(2:) = 0 in Q% then b is compatible. The result
follows from Strong Maximum Principle 2.1.2 and the fact that the unique solution

uniformly converges to zero at the infinity. ]

Remark 3.2.16. Note that we do not need to apply the moving planes method in this
setting since we have the uniqueness result. Furthermore, the moving plane process

would require more stringent hypotheses on a and b.
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3.3 The Parametrized Equation

In this section we consider the effect of the parameter A on the shape and multiplicity

of solutions to the parametrized family,
~Au = ay(2)u? + buP in R", u >0 and u € D*(R"), (3.3.1)

where ay(z) = Aat(z) — a™ ().

First we are going to discuss the asymptotic behavior of problem (3.3.1), actually
we already know that from Theorem 1.1.1. it has a maximum solution U, in L>®(R™)N
DV2(R™) for any A. The first question we want to ask is what will happen when A
tends to zero? Well assume b is compatible, if Q7 is admissible, we see that that the
maximum solution Uy of (3.3.1) breaks into pieces and each piece is also a solution of
(3.3.1). Actually We have the following Theorem 1.1.8, whose proof is very similar to
Theorem 2.5 in [7], so we briefly repeat it Lere. Before proving the Theorem, we need

two Lemmas.

Lemma 3.3.1. For any positive constant ¢, the equation ANu = cu? in R™ has a radial

(1-9)*¢

solution U = 97‘1_3#, where 0179 = L
2[n—q(n-2)]

Lemma 3.3.2. For any ball B CC R"— Q" any g(x) > 0, the following problem has

at most one non-negative classical solution,

—Av = a(x)v? + W’ in B v =g on 0B.

The proof for the first lemma is by direct calculation, the proof for the second
lemma is by direct comparison of two solutions. With the help of the above two

lemma, we can show the proof of Theorem 1.1.8:

Proof. By assumption Q°F is admissible. then dist(Q07, Q?Jr) > 0 for any ¢ # j. Let
6 = & infiy; dist(7, Q?“L), then ¢ > 0.
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As before, take p; > 0 so that Q" cC B(0, p;). Let
C; = {x € B(0, p +483) | dist(z, QF) <4}
It is easy to see that C; N C; = 0 for any 7 # j. Let C = U;emC;. We define
N = {z € B(0, p, +320) | dist(x, Q°F) > 44}.
For any € N, B(z,0) N C; = 0 for any i € M. Finally set
a= inf a”(z).
z€B(0, R+486)~C
By Lemma 3.3.1 we find that the following equation

AT =qau in B(z, §), 1=0(5)T% on 0B(x, 6)

— 2
has a solution U = 0|y — z|7-+, where z € N.

We now claim that the equation,

—Av =a (y)v? + bly)v” in Bz, 0) v="U on d B(z, 9)

2
has a unique solution v = U, if ||Us||,~ @y < 0(0)T4, where U, is the maximum

solution of (3.3.1). Indeed, from Lemma 3.1.4, we have limy_qU, = 0. Therefore

there exists A, > 0 such that ||Ux||Lewn) < 9(5)% for A < A,. Hence U is an upper

solution for the above equation and 0 is a lower solution, so the above equation has a

solution v. But it is clear the maximum solution U, is also a solution, by lemma 3.3.2

we know that the above equation has a unique solution v = U,. Therefore we have

0 < U(z) < U(z) = 0, which means U(x) = 0 for all z € N. Hence we can write

Ux = Ziemw; and supp(u;) N supp(u;) =0 for i # j,

where Q% C supp(u;), which means that £;c;u; € Nj.
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Remark 3.3.3. If in addition we assume b is compatible in Theorem 1.1.8, then
Lemma 2.2.1 will apply, we have uniqueness for Ny. So for A small, the support of the
mazimum solution Uy will break into k disjoint components, which generate the unique

element in Nj.

We finish the discussion when A is small, it is natural to ask what will happen when
X gets big. Under the assumption (1.0.2). fix I C M, by Theorem 1.1.6 the minimum
element of Sy exists, denoted by uy. Let vy = )\E%Tu,\, then v, satisfies the following
equation R".

— v = atel - %m + oA . (3.3.2)

For each fixed A, let S; be the corresponding set of S;, associated with the above
equation (3.3.2). Let us begin the process of proving Theorem 1.1.9 with a few Lemma.

Recall that Theorem 1.1.9 concerns the case p < 1.

Lemma 3.3.4. Assume (1.0.2), then vy is the minimum element in Si. Moreover, vy

is increasing as A increases, and vy < w, where w s as in (3.1.2).

Proof. Suppose 0 < A; < A9, since —i and bAT are increasing, then from Theorem
1.1.1 we see that vy, is an upper solution for the equation (3.3.2) at A = A, by choosing
suitable u, as lower solution, we get a solution v € S; of (3.3.2) at A = ); such that

vy, S v L wy,. The last part is from Theorem 1.1.6. O

We now identify a limit for vy as A — o0. When p < 1, the limit will be w, as in

Lemma 3.1.8. When p = 1 the linear term modifies the limit. We have:

Lemma 3.3.5. For Hélder continuous b(x) < 0, there exists a unique non-negative

solution w, € D*2(R™) to the following equation:

—Awy = a (z)wp? + b(x)wy,,  wp(z) — 0 as|z| — oo (3.3.3)
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Proof. Now, since b(z) < 0, w is a supcr-solution for the second equation. As in
section 3.2 we may construct a sub-solution supported in a ball compactly contained
in Q*, and follow the monotone iteration method as developed in that section. Notice
that we only needed to assume the Basic Hypothesis (2% bounded) for these results to

hold. The uniqueness follows from Lemma 2.2.1, as we remarked at the end of Chapter

2. O

Lemma 3.3.6. Assume (1.0.2), then

w(r), ifg<p<ly

wy(x), ifp=1,

lim vy (z) =

A—oc
uniformly in R™, where w is from (3.1.2) and wy is from Lemma 3.3.5.

Proof. From above Lemma we see that v, is increasing and uniformly bounded, let
V = lim,_,« vy, then it is easy to see that limy .. V(x) = 0, moreover from equation
(3.3.2) we have ||v;||c1ra(B(0,r)) is uniformly bounded for fixed R, therefore we have v,
uniformly converges to V. In either case. we may pass to the limit in the distributional
formulation of the equation and obtain that the limit solves (3.1.2) if p < 1 or (3.3.3)
if p = 1. Since lim;,, V(z) = 0, by uniqueness of the solution (in either case) we

obtain our conclusion. O
Now we are ready to prove Theorem 1.1.9:

1
Proof. Since uy = ATvv, and v, uniformly converges to V > 0 in R”. Since u, is
minimum element in S; and the choices for I are finite, all solutions of (3.3.1), are

positive in QF. Therefore Lemma 2.2.1 implies that Ny, has only one element! O

When we consider the case p > 1, it is easy to see that the above process should
L -p
not work, in part because now limy_. A1 = o0o. To obtain some asymptotic results

in this regime we must impose some conditions on b(x) on and around the set Q7.
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Let uy be any solution of (1.1.5). We prove:
Theorem 3.3.7. Assume (1.0.2) and p > 1.

(1) For any o > 0, limy Hu,\”’g;q&i))\'l = 0.

(2) Ifinfzeq+ |b(z)]| > O, then |lual[<igny £ CA for some constant C' > 0 independent
of A

(3) Ifb(z) =0 in a ball B C QF for some i € M, then liminfy_.q |[usl| oomm)Aa=T >
0, for I = {i} and uy € S;.

(4) If{z € R" |b(z) = 0}NQ" has a open connected component O such that & NO #
0 for anyi € M, then the problem (1.1.5) has a unique solution, which is positive

mn QY for X\ large enough.

We first require some Lemmas. Let vy, = Aq—}lu,\, so that vy satisfies the followin
q g

modified equation.

a
—NAv =a*v? — —/\—v" +

——u} v in R, (3.3.4)

where we pick € > 0 small so that ¢ < 1—¢. Under the assumption (1.0.2) the equation
(3.3.4) admits a minimal solution Ty in the class S}, where S; is the corresponding set

of S1, associated with the equation (3.3.4).

Lemma 3.3.8. Assume (1.0.2), if for some o > 0, liminfy_ Hu,\[|’£;’&‘l))\_l < 0.
Then there ezists an increasing sequence { A, } with lim, .. A, = 00 50 that |[Tx || Lo ®m)

has a positive lower bound C(2}) independent of \ for large .

Proof. By assumption we can pick an increasing sequence {A,} with lim, . A, = 00

1
so that ||uy, |[1-5mmAr! < C for some C > 0. Hence we have [{uy,||L=@n) < CAL,

L>*(R")'n
SO
p—q—¢ —g—
u I‘_L_‘__(l__‘_)
A = =
12 € _<_ C/\7I) e e .
An 17O
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For this fixed ¢ > 0, we can choose € > 0 small so that I%g-;f <1- 1{3. Therefore

—2—u}"""° — 0 uniformly in Q+. By the same proof for Lemma 4 in [33], the result

1_
A, 9

follows. d

We are ready to prove the first two assertions in Theorem 3.3.7. For the first, since
under hypothesis (1.0.2) the choices for I ave finite, we only need to show the Theorem

is true for uy, which is the minimum element in S for each fixed I C M.
Let us prove by contradiction, assume otherwise for some o > 0,
o —qt+o y—1
lll\rgg)lf luall} LA™ < oo,
then take € and {\,} from the proof of above Lemma. So there exists C > 0, for

example C = C(Q])/2 from above lemma. so that for n large
Hus,lLoo@mny > [|ox, ||L=@ny 2> C,

1
which implies ||ux,||re@n)y > CAn™". But we assume at the beginning |{u, || @n) <
1
CAE™"* it is a contradiction! So we must have liminfy_ I|‘u,\|I’LZC"(TR‘Z)/\“1 = oo for

any o > 0.

For the second part, let us assume inf,cq+ |b(z)| = b > 0, from Lemma 3.1.5 we
see that
b(zo)ul (o) + alze)ul(wg) = —Auy(zo) > 0

— 1

where u, attains global maximum at zo € Q+. Hence we have
Al ooy 1]l o gy 2 (—b(0)) 1l e gy = BllAl e oy
that is ||ux|[fed(gny < )\Ha+||Loo(Rn)5_l. This proves the second assertion of the theorem.
To prove the third assertion, we require the following Lemma from [33]:

Lemma 3.3.9 (Lemma 4 of [33]). Assume (1.0.2), if b(z) = 0 in a ball B C QF for
some i € M, then ||Ux||=(B) has a positive lower bound C(B) independent of A for

large A.
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This proof of the third statement is then very simple. Take ¢ = %C’(B), where

C(B) is from above lemma. For large A,
ol oo @ny 2 O] Lo mry 2 €,

which leads to our conclusion.

Finally, we prove the fourth statement of Theorem 3.3.7 by contradiction. Since Q%
has finitely many connected components, we can assume that there exists an increasing
sequence {\,} with lim,_. A\, = 0o so that uy, > 0in Q7 for some i € Mand uy, =0
in Q; for some j # i. Take I = {i}, assume u,, is the minimum element in S,
then like the proof for Theorem 1.1.9, restricting to a subsequence if necessary, we
have vy, > 7y, — V in O, which solves —Aw = a*w? in O, by above Lemma and
maximum principle V > 0 in O, which contradicts our assumption! This concludes

the proof of Theorem 3.3.7.

3.4 Solutions not in D*(R")

In this section we consider the possibilitv that u is an entire solution to the P.D.E.
—QAu = a(x)u? + b(x)uP in R™, without requiring u to lie in the finite energy space
DV2(R™). When u € DV%(R") we prove the uniform decay estimates in Lemmas 3.1.1
and 3.1.3. Since these estimates are crucial for the proof of compact support (Theo-

rem 1.1.2) in the more general case we must recover them in some way.

In general, we do expect that there are solutions which are not in D*2(R"). For
example, consider the following equation

Az =127+ by(a)zP in R® — B(0,ry), (3.4.1)

where ¢; > 0,0 < ¢ < p and r; > 0, morcover by(z) = co(r — 7"1)1+1-_qz r~tforr >n

and c; > 0. We seek the form of solution = = (r — rl)l'z_q for some 6 > 0, plug it into
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the equation (3.4.1) and calculate, it is easy to see that if the following is satisfied

2 2 1—q _2(n )lp
c = 1—q(1—q 1) and Co = - )

then z = 0(r — r)7 %7 is a solution of the cquation (3.4.1), therefore let us look at the
equation

—Au = a(z)u’ + b(z)uP in R
where a{z) = —¢; in R* — B(0, R;) for some R; > 0 and b(z) < 0.

From Theorem 1.1.2 we find that there exists po > R; such that supp (u) C B(0, ps)
for any compact support solution u of above equation and p, is independent of b. Now
if we assume r; = py and b(z) = —bi(x) for |x| > po, then the above equation has a
solution U of the form

g b= forrzp
u forr < py

and it is clear that U ¢ DV2(R™)!
In the radial case we may prove the following result:

Theorem 3.4.1. Assume a(z) = a(|z|), b(z) = b(|z|) and liminf; . a™(z) =c > 0.

Then any smooth radial solution u(x) = w(|z|) has the property that

lim w(z) =0

|z|—oc

if u € L®(R") and lim, o, u,7~! = 0.

Proof. First pick R > 0 big enough so that a™(z) > 5 for any |r| > R, then we discuss
the behavior of u(r) in the domain [R, o0), we divide into three cases.

Case 1: there exists r; > R such that u,.(r;) = 0.

First we see that u(r) must attain local minimum at » = r;. Indeed if u(ry) = 0,

then we are done! So assume u(r;) > 0, then we have
Urr(T1) = Upr(T1) + (0 — Dup(ry)r™ = Aulry) = —a(r)u¥(ry) — b(r)uP(ry) > 0.
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Therefore u(r) attains local minimum at r = ry.

We now claim that u(r) = 0 for r > r;. Otherwise, there would exist ro > r;
such that u(ry) > 0. So we should have that u.(r) > 0 for r > ro. If not, there
would exist ry > ry such that u,.(r3) = 0, it is easy to see that u(r) attains local
minimum at r = r3, therefore u(r) achieves local maximum at some ry € (ry, 73),
but this is impossible because u,.(ry) = —a(ry)ul(ry) — b(ry)uP(ry) > 0. So we must
have u,(r) > 0 for r > ro. Since u € L*(R") we have u(r) T M as r — oo for
some positive constant M, this leads to a sequence {r,} and lim,_ 7, = 0o such that

limy, o0 Urr(Tn) = 0. But since lim, _ u,7~" = 0, then we should have

liminf u,.(r,,) = iminf(—a(r,; )ul(r,) — b(rp)uP(r,)) > 0.

n—o00 n—oo
This is a contradiction! So we have u(r) =0 for r > 7.
Case 2: u,(r) > 0 for any r € [R, o0). From the above proof we see that this case is
impossible.
Case 3: u,.(r) <0 for any r € [R, o0).
Let m = lim,_ ., u(r), then we must have m = 0. Otherwise m > 0, then we can find

a sequence {r,} and lim,_,.. r, = 0o such that

lim w,,.(r,) = 0.

n—oc

But
-1
lim inf u,.(r,) = lim inf(—a(rn)uq(rn)—b('r',,,)u”(rn)—n Ur (7)) 2 liminf(—a(r,)u?(r,)) > 0.
n-—00 n—oo Tn n—0oo
This is a contradiction, and hence we must have lim, o u(r) = 0! O

It should be interesting and possible to prove some results in non-radial settings.
In particular, Brezis—-Kamin (Lemma A.6 of [12])), if we could show that

1

_— u—0 as R — 0,
10B(0, R)| Japo.n)



then any smooth solution u € L*(R™) of (3.0.1) has the property that limg_ u(z) =

0. Many open questions remain.



Chapter 4

Concave Plus Convex

Nonlinearities

In this chapter we will deal with the special case when b(z) = 1, i.e. we study elliptic
problem in R*, n > 3:

—Au = a(z)u?+w? InR", O0<g<l<p<2—1,

(4.0.1)
u > 0 inR", ueDY(R").
Moreover we always make the following assumption on a,
0 < ag = liminf ™ < limsupa™ < oo, (4.0.2)

|z[—o00 || — 00
for a positive constant.

Notice that the solutions of problem (4.0.1) could support in the region Q= (see
example 1.2.1). Therefore in this chapter. if u is a solution of (4.0.1), we always mean
that u € DV?(R") is a weak solution of (4.0.1) and u is positive somewhere in Q.
We will see that in this case the property of u is quite different to the one in (3.0.1),
partially because that we do not have fixcd sign for the right side of the equation in a
neighborhood around infinity, hence we can not have results like Lemmas 3.1.3, 3.1.5,

3.1.6 and 3.1.4. Nevertheless, the solutions in D"2(R") still have compact supports.
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4.1 Compact Support and Minimal Solution

Just as in the logistic case (3.0.1), the solutions u of (4.0.1) still have compact support,
although we do not have the control on the size of the support. We first prove a very

useful lemma which is inspired by the paper of Cortdzar, Elgueta and Felmer [18].

Lemma 4.1.1. Given a smooth function v > 0, suppose it satisfies for some R > 0

A< —a v+ ovP in R" - B(0, R) and lim v(z) =0,

|lz|—00

then there exists g > 0 such that the set {+ € R*—~B(0, R) | 0 < v(z) < €} is bounded

for any € < €q, i.e. v 1s compactly supported.

Proof. Define the functions f(s), F(s) : R™ — R to be

1 1
f(S) =P — CSq, F(é) = _— Pt _ . sq+1’
p+1 qg+1

where ¢ = %aoo. Let D > 0 be the constant such that DP79 = c%, it is easy to see that

f(s) is decreasing in the range [0, D]. Since lim;|_ov(z) = 0 and liminf;.ca™ =

(oo, then pick R; > R such that
a (z)>c and v(z) <D forall x € R" — B(0, Ry).

Let w(r) be the function defined implicitly by

D
1‘.
/ _9% o
w(r) v/ —F(s)

It is easy to see that w(r) satisfies
w'(r) + f(w(r)) = 0in (0, A4),

where A is given by
D ds
V2A =

0 /—F(s)
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Moreover w(r) is a decreasing function in r, and it satisfies

Therefore by defining w(r) = 0 for r € [A, 00), we obtain a non-increasing solution
of

w’(r) + f(w(r)) = 0in (0, o0),
with w(0) = D and supp w = [0, Al.

Finally let V(z) = w(|z| — R;), then we have

AV —cVI+ VP < 0inR" - B(0, Ry)
V. = Dond(R" - B(0, Ry)).

Noticing for v we have

Av—a v?+v? > 0in R* - B(0,Ry)
v < DondR" - B(0,R))).

By subtracting them, we have

—AV —v) > VP —cVi+a (! =P for x € (R" — B(0, Ry))

Claim: V >v >0 for x € R* — B(0,R)).

Otherwise there exists 2o € R™ — B(0, R,) such that v(zg) > V(zp), which implies

that V — v attains global minimum at some point in R™ — B(0, R;). Without loss of

generality let us assume V — v achieves minimum at xo, then we must have

0 > —AV —v)z)
> VP(zo) — cV¥(xo) + a” (zo)v"(20) — vP (o)
> VP(ze) — V() + @~ (20)1" (o) — v7(20) + cv¥(xo) — cv? (o)
> (VP(o) — cV¥(xo)) = (vP(20) — cv?(z0)) + (@™ (20)v(z0) — cv?(0))
> 0,


http:a-(xo)v"(.To

a contradiction, and the claim is done.

Thus we must have V > v > 0 for x € (R* — B(0, Ry)), which implies v has

compact, support. Taking e¢q = %D, the Lemma then follows.

O

Now we introduce a Lemma which follows easily from an analogous result in [18].

For any ball B(z,1) CC B(x,2) we have:

Lemma 4.1.2. There exists a continuous function h: R* U{0} — R, with h(0) =0,
such that

I w Lo (BEan< KA u fla1(B2))-
The function h depends on q, p, n, and the constant K depends on ¢, p, n and

lallzee(Bz2)) -
Lemma 4.1.3. Assume u is a solution of (4.0.1), then limy;_ u(x) = 0.
Proof. Since we assume that u € DV?(R"). then for € > 0, there exists R, > 0, which

depends on ¢, such that

[ullprre - B0.R1) < €.

Hence for z € R" — B(0, Ry + 2), we have B(x,1) C B(z,2) C R* — B(0, R;). So from

Lemma 4.1.2 we get
fu(z)| < |ullpeBayn < KRh(l|ul|m(B@2))-

Notice that ||u||p1(B(z,2)) is controlled by |ju|lpr2@e—p(o,r,)), since h(t) is continuous

and h(0) = 0. Thus the lemma is proved. O
Combining the above two Lemmas, wc obtain the Theorem 1.2.2:

Theorem 4.1.4. Every weak solution of (4.0.1) is classical and has compact support.
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Remark 4.1.5. By comparing the proofs of Theorems 1.1.2 and 1.2.2 we immediately
notice the difference: in the logistic case, the mazimum value is attained inside Q°F

whereas in for (4.0.1) this may not be truc, as example 1.2.1 demonstrates.

We also note that the above theorem reclies heavily on the fact that liminf|;.c a™ >

Now we turn to the issue of minimal element of S if it is not empty. We have the

following theorem which is part of Theorem 1.2.3

Theorem 4.1.6. Assume (1.0.2), if S; # 0, then there exists a minimum element up

mn S[.

Before we are ready to prove this theorem, we need a few Lemmas.

Lemma 4.1.7. Assume (1.0.2), the solution u of the equation (4.0.1) is either positive
in QX or identically zero in QM for any 1 > i < m. If in addition u is positive in

QT then u is positive in QOF.

Proof. The first part is due to Lemma 2.1.3, and for the second statement we know

that the following is true
—Au=a(x)u? +u? >0in QT and u>0in QF,

since u is uniformly bounded in Q9. By the Hopf Lemma 2.1.1 we can conclude our

lemma. O

Let S; and N; be the corresponding sct of Sy and N; for the following equation:
—Au = au?, w € DY*(R™), u >0

Then by Lemma 2.2.1 we have the following result:



Lemma 4.1.8. Assume (1.0.2), if S; # ). then we have u > u; for any u € Sy, where

u; represents the minimum element in S;.

Proof. Since S; # 0, pick any u € Sy, then there exists J C M such that I C J and
u € N;. By the sub and super solution method, we conclude that N; is not empty.
Let us denote this unique element in N; by u, hence we have v < u. Since I C J,

then u € S;. So we have u > u > u;. This Lemma is done. d

We still need some results about the following equation
~Nv+a (z)v! =a* ()R + P in R” and v >0in R", (4.1.1)
where h is nonnegative, smooth and compact supported.

Lemma 4.1.9. There exists a compactly supported solution of the above equation

(4.1.1).
Proof. For R > 0, let us consider the Dirichlet boundary problem
—Av+a (z)v? =a(z)h? + R in B0, R) and v =0o0n dB(0, R).

Since h is nonnegative, then 0 is a lower solution to this equation. We also find out

that 7 = [o. ®(z — y)(a™(y)h(y) + hP)dy satisfies
~AT=ath?+ h > ath?+h? —a 77 in R,

where @ is the fundamental solution of the Laplace’s equation. So T is an upper
solution, then there exist a solution v € H}(B(0, R)) of this equation. Since h and
a~ are Holder continuous, then this solution v is classical. It is not hard to see that v

is also unique.



Next we employ the arguments from Lemma 4.1.1 to show that when R is large
enough, actually this solution v is compactly supported in B(0, R). Define the func-
tions f(s), F(s) : R* — R to be

1
5) = _qu, F(s) = —C—-SQ+1,
£(s) () =~

1

where ¢ = 5

ax. Let D > 0 be the constant such that D = |[|h|| e (rn), it is easy to see
that f(s) is decreasing in the range [0, D]. Since limj;j—c T = 0 and liminfy,.ca™ =

(s, then pick R; > 0 such that
a (z) >c forallz e R"~ B(0, Ry) and supp h CC B(0, Ry).

Let w(r) be the function defined implicitly by

D
s
=2
/w(r> V—F(s)
It is easy to see that w(r) satisfies

w"'(r) + f(w(r)) =01in (0, A),

where A is given by
D ds
V2A= | ———

o /—F(s)

Moreover w(r) is a decreasing function in », and it satisfies
w(0) = D, w(A) = w'(A) = w"(A) =0.

Therefore by defining w(r) =0 for 7 € [A, o0), we obtain a non-increasing solution
of
w’(r) + f(w(r)) =0 in (0, oo0),
with w(0) = D and supp w = [0, A].
Finally let V(z) = w(|z| — R;), then we have for R > Ri + A+ 1

AV —¢Ve < 0in B(0, R) — B(0, Ry)
V.= DondB(0.R))) and V =0 on 0B(0, R)).
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Noticing for v we have

Av—a"v? = 0in B(0, R)— B(0, Ry)
v < DondB(0.Ry) and v=0o0n dB(0, R)).

By subtracting them, we have

AV —v) > =cVI+a (x)v? forx € (B(0, R) — B(0, Ry))
Claim 2. V> v >0 for z € B(0, R) — B(0, Ry).

Otherwise there exists zg € B(0, R) — B(0, R;) such that v(zg) > V(zg), which

implies that V — v attains global minimum at some point in B(0, R) — B(0, R;).
Without loss of generality let us assume V' — v achieves minimum at z,, then we must

have

0 > —AV —v)(z)
> —cV ) + a (20)v(x0)

> 0.

a contradiction, this claim is done.

So we must have V > v > 0 for x € (B(0, R) — B(0, R;)), which implies v has
compact support in B(0, R) for R > R} + A+ 1, then v is clearly also a solution of
(4.1.1). So this lemma is proven. O

Lemma 4.1.10. The compactly supported smooth solution of (4.1.1) is unique.

Proof. Suppose there are two compactly supported smooth solutions v; and v,, then

they satisfies

~Avy +a v! = at(z)h? + WP and — Avy + a"vi = aT(z)h? + P in R™.



Subtracting them we have —A(vy — vy) + (v] — vd) = 0 in R™, multiply both sides by

(v; — v2) and integrate over R”, since they are compactly supported, we have

|V (v; — vy)|%dzx +/ a” (v — v)(vy — va)dz = 0.

n

R"

So we must have v; = vy. This lemma is done. OJ

Now we start the monotone iteration process, using the minimum element in S; as

the starting point. Consider the following iteration equation
—DNupyr +a"ul = a vl + ) in R" and u, > 0in R™. (4.1.2)
where %, is the minimum element in S;.

Lemma 4.1.11. Assume (1.0.2), then every u, is well-defined and is compactly sup-

ported.

Proof. From Lemma 4.1.9 and Lemma 4.1.10, we see that every u, is well-defined and

is compactly supported. O

Lemma 4.1.12. Assume (1.0.2), then u, > u,.
Proof. We know that u; and us satisfy the following equations
—Aup+a"ul =atu!l and - Auy+a"ud =atu] +uf in R

Subtract each other, we have —A(u; — u2) + a™ (v — ud) = —uf <0 in R, multiply
both side by (u; — ug)* and integrate over R™, we get
IV (uy — up)|?dx + / a (u? —ud)(u1 — up)Tdx <0.
Rn n
Therefore (u; — uz)* = 0, which implies u; > uy in R™. O

Lemma 4.1.13. Assume (1.0.2), then u, 1y > u,.
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Proof. We show this by induction, from the above lemma, we see that the first step is

right. Now we assume that u, > u,_;, then for u, and u,,; we have

p

- — at,,9 =9 — ot ; n
—Aup+a"ul =atul_ +ub_, and — Dupy +aTul =aTul + b in R

Subtract each other, we have —A(u, — w,41) + o™ (ud — uj,;) < 0 in R™, multiply

both side by (u, — un41)" and integrate over R™, we get

|19 = v Pt [ a7 (08 080) 0 = ) e < 0.
Therefore (u,, — uny1)* = 0, which implies w41 > u, in R™. O

Lemma 4.1.14. Assume (1.0.2), if S; # 0, then u, <u fof any u € Sy.

Proof. We also prove this by induction. Take any u € Sj, then by lemma 4.1.8, we
know that u > wy, so the first step of the induction is right, now we assume u > w,,

then we see that u,,; and wu satisfy
—Aupyr+a ul =a"ul +u, and - Au+a u! =atu? + o in R

Subtract each other, we have —A(un41 — 1) + a7 (ul; —u?) < 0in R*, multiply both

side by (un4+1 — u)* and integrate over R". we get

V(tny1 — u)tde + a (ul ;= u)(Upy — u)Tdz < 0.
. n+1

Therefore (un4y — u)™ = 0, which implies u,41 < u in R™ O
Finally we are ready to prove the Theorem 4.1.6.

Proof. Take any u € Sy, from above lemma we know that v, is increasing and u,, < u,
then denote u; to be the limit function of uy, it is clear that u; < u. So we only need

to prove that u; is a solution of (4.0.1).

Claim 3. u; is a solution of (4.0.1).

61



Indeed we know that u, is uniformly bounded by u, which is compact supported,
then we know from the equation (4.1.2) that ||us||c1.e®n) is uniformly bounded, then
from the Arzela—Ascoli Theorem we have w, uniformly converges to u;, moreover
u, — u; in DM?(R™). Now take any function ¢ € C°(R™), multiply ¢ to the equation

(4.1.2) both side and integrate over R™, we have

Vun 1 Vodr + a~ul_  odr = atulpdxr + uP pdz.
n+1 n n

Pass the limit we have

/ Vu1V¢dx+/ a"u‘,’cprl:z':/ a+u(}¢d$+/ ubpdz,

which implies u; is a solution of the equation (4.0.1) in the weak sense, by standard

bootstrap arguments, we see that u; is a classical solution. This theorem is done. [
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4.2 Existence for the Parametrized Equation

As mentioned in the introduction, unlike the logistic case where the existence of a solu-
tion is true under very weak hypotheses, for equation (4.0.1) the question of existence
is more delicate. Our approach is to include a parameter in the equation and vary the

strength of the positive part of a(x),
~Au=au!+v?, we DR, u>0inR", (4.2.1)

where a, = ya* —a” and v > 0. We only consider the dependence on 7, so a is
fixed. To emphasize the dependence on =y, problem (4.2.1) is often referred to as
problem (4.2.1).,. When there is no confusion, the subscript v will be omitted. For
the existence of (4.2.1)., the idea is not complicated, and has already appeared in the
proof of Lemma 4.1.9, namely we find a global super-solution, which is positive in R"
and uniformly goes to zero at the infinity. This super-solution is also a super-solution

of the following problem:
—-Au = ay(z)u? + uP in B(0, R) and u € Hy(B(0, R)), u>0, (4.2.2)

for any R > 0, then study the solution of above equation for large R.

First define for nonempty I € M := {1,2,...,k} (where we recall that k£ denotes

the number of connected components of {27):
Iy=sup{y>0] S;#0for (4.2.1),}.

Lemma 4.2.1. Assume (1.0.2), then T'; is finite.

Proof. Otherwise for each €)', i € I, we take a small ball B; such that B; cC Q}. We

1

define ¢;, v; to be the first positive eigenfunction and first eigenvalue of the following

eigenvalue problem
—Dp; = Ap;, in B, v; =0 on 0B,;.
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Next multiply (4.2.1), with ¢;, then integrate over B;, we have

/(—Au)apidx = / (1,7uq<pidx+/ uPpdx
Bi B, B,‘

= / 7a:fuq<pida:+/ uPp;dz.
13 Bi

But
dvi ou dp;
Dpu — Nup;Ydr = U — =—p;)ds =
/Bi( piu — Dup;)de /aBl(a,nu 5, ¥i)ds o5, On
that is
'yi/ ucpidac:/ —NAp;udr > —Auyp;dz.
L B; B;
Therefore
fyi/ utpid:EZ/ ~,fafuqcpida:+/ uPpdr
B; B; B;
i.e.

/ (viu —va; u? — uP)pidz > 0.
B;

Let ¢ = inf; cu,,B, a(z), then we have

/ (viu — yau? — uP)p;dr >0 fori € I and v > 0.
B;

We know by assumption u is positive in 27, but vt — yat? — t? < 0 for all £ > 0 when

u < 0,

v is sufficiently large, so this is a contradiction. Hence we must have I' < oo.

From the above lemma and remark, we can tell that the equation (3.0.1) and (4.0.1)
are quite different, we will see more later on. Next we are going to prove a few lemmas

to show that I'; > 0. First recall that in [16] the nonnegative smooth solutions of the

following equation
Av + vtz =0 for v € R® when n > 3.

are of the form ,
o o)\ 2] 52
o(z) = [n(n - 2)A% 4n_2’

(AN + oz -2
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for some X > 0 and z° € R™. Note that

(=25 _ oo = 2)]"F

n—2 — n— =c >\ I
(2 + o —2P) T N7 W

v(z) =

so we pick A > 0 such that ¢(\) = 1 and fix some z° € Q*. Denoted this special one

by V.

Lemma 4.2.2. There exists v, > 0 and M > 0 such that
—AMV) 2 a,(1)(MV)! + (MV,

where M depends on a and v < ..

Proof. Set a® = sup{a(z) | = € R"}, let B* be a fixed ball including Q* with center
2% such that

1
inf{a~(z) | z € R" - B} > 5 @co:

This could be done because liminfi;j—oc ¢~ = aoo. Let K = inf{V(z) | z € B}, 1
should mention that when the radius of the ball B* tends to infinity, K then goes to

Zero.

Next we want to show —A(MV) > a, (x)(MV)I4+(MV)? for some suitable positive

constant M and small v, or equivalently

n+2

MViE > a(z)(MV)+ (MV) in B

n+2

MViE > a(z)(MV)"+ (MV) in R" — BY.

First we discuss the part in R® — B*, where we need to get
M'“-9V579 > ) 4+ (MV)P9,
But we have in R* — Bt

oo + MPTT > ) + (MV)P.



1
So choose M so that 0 < M < ($ac)?—7. then we obtain

TL4

M7V

3795 0> —ap + M" 1 > a, + (MV)P9 in R* — BY.

that is for 0 < M < (%aoo)P—l?, we have

n+t2

MVn=2 > a (z)(MV)" + (MV)? in R" — BT.
Ifp= Z—f—g—, then 0 < M < 1 is enough.

Now we discuss the part in B*, where we need to get

n+2
n—

MV > o, (x)(MV)? + (MV),

But in Bt, we know

nt2 nt+2

MV = MKn=2,

v

ya>* M9+ MP

v

a () (MV)T + (MV)P.
Therefore we only need to show
MK > 5a* M7+ MP in B
Set A = a“K‘Z—g, B = K_%, it is equivalent to show
M™% >~A + BM?""%in B*.

that is
M9 _ BMPTY > YA in BT,

After some calculations we have the following results

(p— 11 —q)'
(P — g

]I—I' As I mentioned at the beginning of the

max{t'"7 — BtF"1 — yA} > 0 == (yA)P'B11 <

1

(1-q)
B(p—q)

proof, we can enlarge the radius of the Ball B*, make K small, in turn B is big and

the maximum achieves at tp = |

tp is small. Therefore we can choose B* large such that

1

1
0<tp < (an)p——“a,
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Take +, such that

p-1pl-q _ ([7 - 1)73—1(1 — q)l—q
2p — q)r~e
and choose M = tg. So for v < 1,, we have suitable M such that

(7 A)

v

—A(MV) > a, (MV)T+ (MV)? in R"™.
This lemma is proved. O
Remark 4.2.3. Notice that we can choose M so that M — 0 as v — O.

Lemma 4.2.4. T >0

Proof. Now we can see that MV is an upper solution for the equation (4.2.2), that is
—Au = a,(x)u? + ¥ in B(0, R) and u € Hy(B(0, R)), u>0,

where v < v,. Then we can adapt the proof of Lemma 4.1.1 just like we did for

Lemma 4.1.9, as we can always find a suitable lower solution. d

Combining above lemmas together, we reach the following theorem:

Theorem 4.2.5. Assume (1.0.2), then 0 < I'; < 0.

For later on we denote the minimal element of S; at v as uy .

Corollary 4.2.6. For0 < v < v <T,ui+ < trny,. Moreoverlim, o+ ||us || Loomrn) =

0

Proof. Tt is easy to see that u;., acts naturally as an upper solution for problem
(4.2.2),,, where we choose Rj; such that supp u;,, CC B(0, R). With proper lower
solution we see that (4.2.2),, has a non-negative solution v < uy ,,. Since supp uy,, CC
B(0, R), then u is also a solution of (4.2.1),, and u € S;,,, sowe have uy,, <u < Uso,.

Next result is from remark 4.2.3 since ||t 4||poo®ny < M(7). O
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Putting Theorem 4.1.6, Theorem 4.2.5 and Corollary 4.2.6 all together we obtain
Theorem 1.2.3 from the introduction. The proof of Proposition 1.2.4 is similar to the
analogous result Theorem 1.1.8 for the logistic case, but finding an appropriate super-
solution is more difficult. In order to prove this proposition, we need two lemmas and

a few notations.

Fix ¢ > 0, it will be chosen later, let F(s fo c t‘l dt and o = ni1%)ﬁ_"v

for 0 < e < o, it also will be decided later, denote § = f fo m
Lemma 4.2.7. Let B = {z € R" | |z| < 0}, then the equation
-Nv=v"—-—c?inB and v=-eon 0B

has a solution T such that TW(0) =0 and 0 < u(x) < e in B.

Proof. We are going to use the sub-super solution method to prove this lemma. First

construct the super-solution, let w(r) be the function defined implicitly by

e ls
| A=
w(r) “F(S)

It is easy to see that w(r) satisfies

-
n+1

w”(r) + wP(r) — wi(r) = 04n (0, 9)

where 4 is given by above, w(r) is a decreasing function in r, w(0) = e and w”(d) =
w'(§) = w(d) = 0.
Now let V(r) = w(é — r), then V(0) = V'(0) = V"(0) = 0, V() = e and V(r) is

increasing in [0, 4], furthermore

V7 (r)+ VP(r) —

/4 =01
n+1‘ (r)=01n (0, 9).

So we have

Vi(r) = /07‘ V"(s)ds = /OT - _(f_ 1V"(.s-) ~ VP(s)ds < ( Vi(r) = VP(r))r.

n+1
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Therefore for r # 0 we have

" ) < S Vi) = VP o (- 1)(—

T n+1 n+1

= 1cV"(r) —nVP(r) < cVi(r) — VP(r).

AV(r)y=V"(r)+

Va(r) - V¥(r)

For r = 0, take the limit we see that AV =0 = ¢cV?(0) — V?(0), therefore V satisfies
—AV > VP —cV9in B(0, 6) and V() =e on 0B(0, §),

which implies V(r) is a super-solution for the equation in the lemma. It is easy to
see that 0 Is a sub-solution, so we have a solution @ such that 0 < 7w < V < e and

2(0) = V(0) = 0. 0

Next pick a point zo € R™ and a positive number Ry > 0, and choose a continuous

function b(z) € C(B(zo, Ro), R) such that inf,cpzo, ry) = b > 0, denote 7 = (%q)v @
we also choose a continuous function g(a) € C(0B(zo, Rg), R)such that 0 < g(z) <7

for any = € dB(zg, Rpy). Then we have the following lemma.

Lemma 4.2.8. The equation
—Av =17 = b(x)v? in B(xg, Ry) and v = g(z) on dB(xy, Rp)
has at most one smooth solution v such that 0 < v < 7.

Proof. We show this result by contradiction. Let us assume there are two different
solutions v; and v,, which satisfy above equation. Since they coincide on the boundary,
we may assume that there is point z* such that vy(z*) > v1(2*). Therefore without

loss of generality we may assume (v; — v3) attains minimum at z*, then we see
02> —Av — v)(z") = (v7(z") = b(a )i (") — (VE(2") — b(z")wa(z")) > O,
a contradiction, this lemma is done. O
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Now we are going to use these two lemmas to prove Proposition 1.2.4.

Proof. By assumption Q°F is admissible, then dist(Q07, Q(JH) > 0 for any i # j. Let
6 = infiy; dist(Q*, Q)F), then § > 0.

Pick R > 0 such that Q% cC B(0, R). denote C; = {z € B(0, R+33) | dist(z, Q") <
£}, it is easy to see that C; N C; = 0 for any i # j. Let C = UienC.

We define

W | Ol

N ={x € B0, R+20)| dist(z, Q") > -},

then for any z € N, B(z, %)HCZ- =0Qforanvi € M. Finallylet a = inf_c gy pis5_ca (2,

then a > 0. Now we choose the constants ¢ and e mentioned before Lemma 4.2.7. Let

¢ = g, then 0 = (%5 %)bi_q. Denote 6, = = [¢ \/—_d———;—(s), we make the following choice

for e:

If &, > I%’ choose suitable e such that § =

5| el

1)
If6 < 6 choose e to be o.

Since the sup-norm of the minimal element uj, tends to zero as 7y goes to zero, we
pick 7y, > 0 so that

HuAMHLW(R") <e fory <.

Claim: If v < 44, then upr, = 0 for anv z € N. Actually take x € N, then consider

the following equation
—Avu(y) = vP(y) —a” (y)vi(y) in B(a. 0) and v =wum, on 0B(z, §), (4.2.3)

we see that from Lemma 4.2.8 this equation has a unique solution us-. But from

Lemma 4.2.7 and Lemma 4.2.8 we know the unique solution % of the equation

—Avu(y) = vP(y) — a(y) in B(x, §) and v=e on dB(z, §),
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is an super-solution for equation (4.2.3) and 0 is a sub-solution, therefore we have
0 < upy <. Since 7 < e and u(x) = 0, we have upy, = 0 for z € N. The claim is

done.

Since up~ is the minimal element in Sy, at 7, then wup , vanishes outside of
B(0, R+ 25). Thus, it is easy to that the support of upr~ consists of k disjoint
components, and thus its restriction to each component gives k compactly supported
solutions of (4.0.1). By taking an appropriate union over these pieces we construct an

element of N; for any choice of I C M. This concludes the proof of Theorem 1.2.4. O



4.3 Existence at I

So far we have established an interval of cxistence of solutions v € (0,I';) in the class
S;, where I € M indicates the components of Q% in which these solutions must be
positive. Now we assert that a solution of class S; must exist at the endpoint of the
maximal interval of existence, v = [';. This is the “extremal solution” for this family

(see [15]).

First we introduce the Banach space

2 n
H} = {veD"*R") | lv|"tdz < oo}

R~

endowed with the norm
ol = ( / (Vo2de)t + ([ o]+ da)i,
q Rn Rn
Define the energy functional I, : H, — R associated with (4.2.1) as

/ (l_(’()+)q+1dl‘—- 1

p+1 Rn

(’U+)p+1da§

1 Y
L — V’2d— + +q+lL
4(v) 5 Rn\ v|*dx q+1/na(v) (T+q+1
It is a standard fact that I, is a C* functional on H} (see [19].) Denote S; and Nj at

v by Sr4 and Nj,, and also denote S;r, and N;r, by Sr, and Nr,.

Lemma 4.3.1. Suppose @ € Ni5 for some 75, then Ni., admits an element w., for

every 0 < v < 7. Moreover uy, <u and I,(uy) <0.

Proof. For 0 < v <7, @ is an upper solution for the equation (4.2.1),, and 0 is a lower
solution. So we consider the following minimization problem in a convex constraint

set,

Inf {I,(v) | ve X} and X ={veH,| 0<v<Tae}

By some easy modifications to Theorem 1.2.4 of Struwe [41], the infimum is achieved

at some u, € X and (¢, I'(u,)) = 0 for all ¢ € C°(R"), and by routine regularity
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arguments u, is a solution to (4.2.1), since u, < @. Since u, € X, it vanishes on the

components 2 — Qf. It remains to show that u. does not vanish in QF.
Claim: u, does not vanish in Q7.

Indeed suppose for some 7 € I, u, ¥ 0 in ), then by Lemma 4.1.7 we have u, = 0
over —f Choose a ball B CC 0 and o with 0 < ¢ € C§°(B). Hence for small

positive t, (u, + t¢) € X and
L(uqy +td) = L () + (o) < I(uy),

since

p+1

1
L(t6) = 5t [ [VoPds -

1 tq+l’}‘/a+¢q+ldaj—— t

/ ¢ e < 0

B

for ¢ sufficiently small. This contradicts the choice of u, as the infimum of I, over X.
So we must have u, € N;5. Also notice that I,(t¢) < 0 for ¢ small enough, we have

I,(u,) < 0. This lemma is proved. d

Remark 4.3.2. Given the variational formulation of the problem as an infimum, it s
natural to ask whether the solutions obtained by above lemma are local minima of I, in
any sense. Notice this can not be the case when I # M. Indeed following the arguments

of the last part of the proof, we can decrease the value of I, near such solution by small

+

~, where j ¢ 1. So the existence of a second solution in the

perturbations in each )

classes Ny, I # 0 (with dead cores) remains an open question.

Corollary 4.3.3. For 0 < v < T, I (ur-) <0, where ur, is the minimum element in

Sty

Proof. Tt is simple, we just need to apply above lemma with % = w;,,5 = v and some
J C M such that I C J and u;, € N,.. Hence by above lemma we get a solution
Uy € St~ such that

L(u,) <0 and 0 <uy <upy.

73



Since uy is the minimum element in S; ., then we must have u, = u;,. This lemma

is done. O

In order to show the existence at I';, we need to do some estimates.
Lemma 4.3.4. ||us4||gy + l[urylle+1@®e) 1s uniformly bounded.
Proof. First we know that u;, satisfies the equation
—Aupy = ayui ., +uf

then multiply this equation by u;, and iterate over R™, notice that it has compact

support, we obtain

/Rn |Vus,|2dz = fy/Rn atultldr — /n a"uldz + /n ultlde. (4.3.1)
By above lemma, we also have L (ur,) <0, that is
1 v 24 1 - q+l g v u 9! Hd
5 Rn‘ U[Y’yl l+q—_'—_—1 Rua Uly,\',dﬂ/<°(;+—1— . I,ydl"*}-—_—— . x.
(4.3.2)

Put (4.3.1) into (4.3.2), we get

Y +1 1 +1 1/ 1 1 1
§/n ujl dr — Q/n u? d:z:+2/R”u’I’;dx+q—;L—1 a “ufllde

i q+1 1 p+1
< — de + —— dx,
q+ 1 * P+ 1 R™ UI’) v
that is
1 1 1 1 1 1
L2 ug*ld | wde e y(— =2 [ atuttd
(T 2)/n v (3= p+1)/Rn“” T <15 2)/Rna Uy O
Since 7 > 5 > =47, we have from above inequality
1 1 1 1
('2— - m) /n u’]"";ld:n < ’Y(_—}-_]-_- — :2‘)/ a+u’}+1dx (433)
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From basic hypothesis a* is compactly supported, hence we get

/ a+u?;1d:r S ||a+HLoo(Rn)/ . 'u.',’ﬁ,ldx S C(a+)||a+HLoo(Rn)||u1,.,||%ﬂ1(Rn),
R™ supp a
(4.3.4)
where C'(a™) is some constant depending on at and Q*. Put this back to (4.3.3), we
get
11 . 11 .
(5 - m)“uf,yugjﬂ(w) < C(a*)ﬁ,"(q 1 5)Ha+”L°°(IR")||UI,7H$+1(R71)7
therefore we have v
1 1 1 1
p—q Y L A TP R
a7y € €0 Vo= = Pl lemean (5 = =)

which implies that ||us,||zr+1(rn) is uniformly bounded, then plug this and (4.3.4) back
to (4.3.2). By basic hypothesis we conclude that ||Vuy4||2@ny and {|uy||Le+1mn) are

uniformly bounded. This lemma is proved. O

Theorem 4.3.5. Sr, is not empty.

Proof. Pick an increasing sequence {v,} with limit T';, by above lemma we see that

Wurllmy + w4l Lo+ @ey is uniformly bounded, then there exists ur, € H; such that,
u,, — ur, weakly in D**(R™), LPTY(R™) and L7 (R™).

Moreover u,, — ur, a.e. in R*. From Corollary 4.2.6 we know that u; , is increasing,

so by Monotone Convergence Theorem we see that
u,, — ur, strongly in L"*(R") and LITH(R™). (4.3.5)
Now for u,,, it satisfies the equation
—Du,, = ayul +ub .

Take any ¢ € C§°(R™), multiply both sides of above equation and integrate over R™,

notice that ., has compact support, we get

/ Vu%Vnpda::/ a%ufmcp—F/ uf o,
n JEN R»
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notice (4.3.5), pass the limit on n, we have

/n Vur,Vedz = /P” ar,ut ¢ + /Rn up @,

therefore ur, is a weak solution of (4.2.1)r,. By routine regularity arguments, we know

that ur, is a classical solution. O

Corollary 4.3.6. ur, constructed above is the minimum element in Sy, it.e. ur, =

urry-

Proof. From above theorem we see that Sy, is not empty, then pick any U € Sr,, we
just need to apply lemma 4.3.1 to the equation (4.2.1), with @ = U, ¥ = I'; and some
J C M such that I C J and U € Np,, then we get a solution u, for the equation
(4.2.1),, such that u, € Sr,, hence we have U > u, > u;,, since lim,_.p- us, = ur,,

we have U > ur,. This corollary is proved. O

For later on we denote upr,, by Ur and denote upr, by U,. We conclude this

section with a simple result:

Corollary 4.3.7. Assume a(x) = a(|z|). then U,(z) = U,(|z]) for 0 <y <T.
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4.4 Existence of Local Minimizers

Brezis and Nirenberg [13] first observed that minimization in the C*-topology (for
example, the sub- and super-solution construction above) yields minima in the weaker
H'-topology for a large class of subcritical elliptic variational problems. Now we
employ similar idea to prove Theorem 1.2.5. Recall that U, represents the minimum
element in Sy, for 0 <y < T, here I' = T'y;. Now consider the following minimization

problem in a convex constraint set
Inf {I,(v) | veY} and Y ={veH;| 0<v<Urae} (4.4.1)

From the result in Struwe’s book [41], the infimum is attained at some function in Y/,

say v, and vy € Sy

Lemma 4.4.1. Fach connected component of the set {x € R™ | U, > 0} at least
contains one connected component of Q0.

Proof. This lemma is true due to the fact that U, is the minimum element in Sy,
and a(z) satisfies hypothesis (1.2.4). O
Lemma 4.4.2. For 0 <~ < #, let u be a solution to (4.2.1), such that 0 <u < U; in

R", then u(z) < Us(z) for allz € A= {r € R* | Us(z) > 0}.

Proof. Let v =Us —u > 0 in R, since « and Uj satisfy the following equations
—AUy = (ya* —a)UZ+ U} and — Au = (yat — a7 )u? + P,
then we have
—AU; +a U =5aUL + UY > ya*u? + uP = —Au+a”ul.
So we obtain that in R", —A(Us — u) + = (U2 — u%) > 0. We rewrite this as

T4 _ 39
Uy u)v>0‘

-Av+a ( A
p
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Assume that for some xzq € A;, we have v(xy) = 0, where A; is one connected compo-
nent of A. Let S; = {z € A, | v(z) = 0}. then S; is not empty since zy € S;. Since
Us(xo) > 0, then take a small ball B = B(x, r) such that B cC A, then over B we

have
oo U
U:, —Uu Ury
which implies that [ﬁ__: uniformly bounded in B. Since v > 0 in R", then by max-

imum principle we have v = 0 in B, which means S; is open in A;. By continuity
S; is also close in A;, since S; is not empty, then S; = A;. From the above lemma
we see that A; contains some connected component of Q* by (1.2.4). This leads to a

contradiction when comparing the equations satisfied by u and U, O

Next we adjust the proof of proposition 5.2 in [2] to our setting and prove the

following theorem in detail, which is Theorem 1.2.5.

Theorem 4.4.3. Assume (1.2.4), for 0 <~ < T, vy is a local minimizer for I, in H; ;

that is, there exists & > 0 such that
L(v,) < IL,(v) forallve H; with |[v — v, ||y < 6.

Proof. From above we see that Y = {v € H] | 0 < v < Ur a.e.}, Ur is an upper
solution for (4.2.1), and v, is a solution to (4.2.1), with v, < Ur.
Suppose there exists a sequence {u,} C H, ; such that u, — v, strongly in H, and

I (un) < I,(v,). It is easy to see that u, — v, in H'(R™). Let

vp, = max{0, min{u,, Ur}}, u, = max{-u,, 0} and w,= (u,-Up)".

So Uy = vy —uy, +Wn, vy, €Y, w, € H;, and u_ and w, have disjoint supports. Define

the measurable sets
Sp = supp(wy,), T, = supp(u,) and R,={zeR"| 0<u, <Ur}.
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Recall that here A = {x € R* | Ur(z) > 0}, let B =R — A, from the lemma above
we see that Ur > v, in A, and Lemma 4.1.7 implies that Q0+ cC A, hence B € Q.
Notice that A is bounded in R™.

We next claim that [ANS,| — 0 as n — oo. Indeed, let € > 0 be given. For § > 0,

set
E,.={z€A| uy>Ur>v,+6} and F,={r€A| u, > Ur and Ur < v, + d}.

It is clear that AN S, C E, U F,. From lemma 4.4.2, we see that

1
O=HeeA| U <u}=|n2 {zcA] UrS-me;}l

1
= hm{l'EAl UFS'U—Y'F;}l.

Jj—ox
Hence there exists 8, > 0 so that |F,,| < {r € A| Ur < v, + 81} < 3e for all n. But

on the other hand, since u,, — v, strongly in H ;, then there exists n; > 0 such that

for all n > n,y

1. ,
5(5126 > /n(u" —vy) dr > §idz = 82|E,|,

En

so we have |E,| < 3¢, which implies that
[ANS,| < |E.| + |F <e

For convenience set

1 1
e LU M e CAD

H,(z, v)=

Since u, = Ur + w, and v,, = Ur in §,,, we have:

I, = % |Vu,|*dr — H.(z, uy)dx
Rn R™
1 1 1 _
:/R (EIVUH,Z—HV(:L‘, 'vn))dx-k/s (§|Vun|2—H7(x, un))dx+/T (§]Vun lz)dx
1 1 1
:/ (§|an|2—H7(x, vn))d:c+/ (;Ianlz—Hw(a:, vn))da:+/ (§|Vu;|2)dx
Rn S, T
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+ [ n LIV (Ur +wo)l? = [Vo,P) — (H, (. Up) ~ Hy(z, v,))de

= /n(—;—|an[2— H. (z, vn))d:r+/ (%]anl2 — H.(z, vn))dx+/ (%IVu;|2)dm

Sn n

# [ UVt w ) = [TURP) = (Hyf, Ur) = Hya, Ur))ds

n

1
= / §|an|2 + VU, Vuw, — (H,(z, Up) — H,(z, Ur))dz

n

2

n

1
+ I (vn) + —/ (|Vu; *)dz.
Since Ur is an upper solution with respect to (4.2.1),, then we have
—AU, = arUL + U > a,Uf + UE,

multiply the above by w,, and integrate over R", notice that Ur has compact support,
we get

/ VU, Vuw, 2/ a,Ufw, + Ulw,dz = H.,(z, Ur)w,dz.

R™

Therefore we have

1 5
L(uy) > I(vs) + 5/ (|Vu; |2 + |Vw,|*)dz

-/ (H,(z, Up) — Hy(z, Up) — Hoo(z, Ur)ws)dz. (4.4.2)

n

Now we estimate each term in H,(z, Ur) on the set AN S, by the fact that this set

is small for n large,

n—

/ widz < |ANS,|4( / w? de)" < o()( | |Vwa|2dz), (4.4.3)
ANS, n Rn

in the same way we also have

/ wPtldr < o(1)( | |Vw,)*dz). (4.4.4)
ANS., Rn

Since Ur > 0 in 0°% then there exists I > 0 such that Ur > { for all z € Q0+, hence
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we have

1 ( )q+1 1 Uq+1 ] Ur+wn . Ur+wn qu
0 < ——(Ur+w, - —an:/ sds—/ s
g+1° " g+1 T r Ur Ur r
Ur+wn U[‘+wu
= / (s? = Uf)ds < / @l (s — Ur)ds
Ur Ul"
1
< §ql"_lwi for all x € Q°F,
so we have from (4.4.3)
0< / a,(z)( ! (Ur 4+ w,)"" - —I—U"‘L1 — Ubwn)dz
= Jans,aoor g+l " g+1°F ren

1
< rnfnmw)/ §qzq—1w§dx <o()(| |Vwn|’dz). (4.4.5)
ANS, NOQV+ R™

We notice that, On ANQ~,

1
a,(z) <0 and (Ur + w,)™ — —— U — Ufw, > 0,

+1 g+1
hence
1 1
——(Ur + wa)®™' = —UT = Ulw,)dz < 0. 446
| (g ) - U~ U < (446

To estimate the other term, we notice that there exists § = 8(x) € (0, 1)

1 1
0 < ——(Ur +w,)P*' — ——=URY' — Ulw,, = p(Ur + 6w, )P~}

2 -1 2
w: < C(l+wPHw
p+1 p+1 T n <Ol )

n?

1
2
as a consequence, from (4.4.3) and (4.4.4)

1 1
———(Up + w,)P™! — ——UPT — Uy, dz < C w? + wPtldz
/Ansnp+1( ) p+1 : g ANSy,

< o(1)(/Rn |Vw, |2dz). (4.4.7)
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Overall from (4.4.6) and (4.4.7), we have

/S A(H'y(-’f, Ur) — H,y(m, UF) - HW( UF)wn)d:L“

1 1
= / (q n 1a7(Ur + wn)q+1 + ——(Ur + w,)*Ndx
SnNA

p+1
1
—/' (——a (Up)+ +
SnNA qg+1

=/ w—4m+wW1
SpNA

1 1
+ (——=(Up + w, )P — ——U{Z“ — UPw,)dx

1
——(Up)P*? d:c—/ a,Udw, + Ulw,)dx
p+1( R SnﬂA( Tt rin)

1

g+ P LAY

p+1 p+1
1
= a Ur 4+ w,)? — — U — Ufw,)dz
/SnnArm(H 7((1 + 1( : ) q+ 1 rin)
1
+ a( Up + w,)™ — — U — Udw,)dz
/Snmmm ! Q+1( Q+1 r

1 1
U P UEY — URw,)d
b [ (o Ur ™ - VR~ U

<o) [ |V d:z:)+0+o(1)(/w Viunffdz) = o(1)( | [Vunf'dz).  (445)

To estimate the terms on the set B, we must notice the fact that B C 27. Since

Ur = 0 on B, then we have that

1 1
0> /Baw(:z:) " l(U[‘ + wy )T — q—:IUr’H — Utw,)dz
) ) _
=—— | a(2)witldz = —/ witlder (4.4.9
q+1.[3 ’Y()n Bq+1n ( )

It is easy to see that for any « € S, up(x) > Ur(z) > v4(x), so for any r € R"
0 < wa(z) = (un = Ur)"(2) < (un = vy)" (2) < fun(z) = vy(2)],
which implies that w, — 0 in LIt (R").
Claim: |P|={z € Q7 | w, > (a‘(.r))v-lé}] — 0 as n — o00.
Indeed, let € > 0 be given. For §; > 0 ( to be chosen later), set
E,={z€Q | & >uwn(z) > (a ()7}
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and

F,={zeQ | (a"(a:))Fi_v < wp(z) and w, > 62}

It is easy to see that P, C F, U F,, and
- _ 1
0=HzeQ | a™(2)=0} =[N {r e | a (x)SE}I
1
=lim |[{z€ Q" | a (z) < =},
j—oo J
which implies there exists d; > 0, depending on ¢, such that

Bl < lw e 0 | o (@) < (8P < e

On the other hand, since w,, — 0 in LIt (R"), there exists ny > 0 so that for all n > n,

%ww“z/wwmz/wwwmzwwwm

n

hence |F,,| < 3¢, and |P,| < |Ey| + |Fn| < €. This completes the proof of this claim.

Therefore
/ ! ———wPtldr = / : wh*de +/ ! ——whtldr
Bns, P+ 1 BnS.—pP, P+ 1 BnS.np, P T 1
1
= ——( wPdz +/ wPtdr)
P+ 1 Jpns,—p, BNS.NP,
1
- —— wh™IwItdy +/ whtldr)
p+1 Jpns,-p, BNSMPy
1
< a quda:—i—C P.Dw ptl
</ (P Dl 25 g
1
< — a”witldz + o(1)( | |Vw,|*dz).
p+1Jpns, " R"

So from (4.4.9) and above we have

1

——withde

H.,(z, Ur +wy) — H,(z, Ur) — Hy(z, Ur)w,dz = / a(
S.NB q+1
1

1 1
+/ ——wPtldr < ——— a”wit'dr+ / a”wi"dz+o(1)]lwnllf,
s.nB P+ 1 q+1Js,nB p+1Js.nm q

1 1 /
< (— - —— a~witdz + o(1 Vw,|*dz). (4.4.10
(erl q+1) s (1)( Rn! [°dz). ( )

SpNB
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Finally from (4.4.2), (4.4.8) and (4.4.10) we get

0> I(un) — Iy(vy)

1
25 [ (196 [VunPyis — [ (H, Ur) = ol Ur) = Hoalo, Urlun)de
]Rn

n

= 1/ (IVuy 2 + |[Vw,|*)dz - / (H.(z, Up) — Hy(z, Ur) = Hyy(z, Ur)wn)dz
2 Jrn SnnA

—/ (H,(z, Ur) — H,(x, Ur) — Hy,(z, Ur)w,)dz
SaNB

1 1 1
> = Vu, |* + |Vw,|?)dz — o(1 Vw,|*dz) + (—— — —— / a”wittde
5 ) (Vi IVual)dz —o()( | 1Vuwnlde) + (g =) [
1 1
25 [ IVugPPde + (5 = o) [ [Vwa|*da),
2 JRe 2 Rn

which implies that v, = 0 and w,, = 0 in R" for n large, hence for n large u, = vy,
from this we derive that I,(u,) = I,(v.) > I,(v,). This is a contradiction. This

theorem is done. Ot
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4.5 Second Solution in the General Case

From the previous section we know that there exists a family of local minimizers v.,
v € (0,T), for the energy functional I,. Here we seek a second solution in the form

u = v, + v with v > 0 by means of Mountain-Pass Theorem. We define

1
——(v")"™ — H(z,v)dz ve H,

g+1 qg+1

1 1
Jy(v) = 2 /o |Vo|2dz + ——09! —

where H(z,v) = [ h(z, s)ds with
h(z,v) = ay{(vy + v7) — v, ] + [(vy +0F)P — v,

Therefore we see that

1 1
Jo(v) = —H‘U_H?:L(Rn) + —/ |Vol> — H(z,v)dzx
2 Rn
1

g+1
1
—11q9+1 2
- s [ vePd
q+1|lv I|L0+1(R ) T3 Rnl v|“dx
1
— / - laﬁ[(u’ + o) — it — g iyt
R 4
+ p———-+ 1[(@;, +ut)Ptt '1{:“] - U,I;'U+dCL'
1 1 1
= — ]9t +—/ V’llel'———/ a (v, + v de
gy + 5 [ 190 = = [ ol + )
1 1 1
+—— | awitde — —— [ (v, + v )Pz + —-——/ vPtlde
q+1 Rn p+1.Rn p+1 n

9,1 Pyt
+/n ayviv” +vlvTdr

1 _ 1 1
[|v ||‘E,L+11(Rn) +3 /Rn |Vu|*dz + 3 /Rn IV(vy + v1)|Pdz

1 +1q+1 1 +yp+1
- m (I—Y(U’y + v ) dr — m ('U'y +v ) dz
Rn ]Rn

1 1 ' 1
-3 /n Vv, |2dz + o a,vi*de + p— /n vPtld

JRrn
1 1

+ —/ |V, |*dz — —/ IV(vy + vz + [ a,vlv™ + vPvtdr
2 R® 2 R» R v v
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_ 1 _
H H%ﬁl(mn) + [’Y(U’Y + 7"+) - I’Y(U’Y) + 5 . |VU |2d33

q+1
—/ V’L)WV’U+dFL‘+/ a,n,,’l;ﬁ{,v+d:1:+/ vPvtdzr
n Rn Rn
|
= Ly(vy + %) = L(0y) + 51V | oqgny + =707l - (4.5.1)

Since v, is a local minimum (Theorem 4.4.3), from the above formula we immedi-

ately conclude that v = 0 is a local minimum of J:

Lemma 4.5.1. Assume (1.2.4), for any fized 0 < v < ', there exists §; > 0 such that
Jy(v) = J5(0) = 0 with [|v||m; < 6.

We also have mountain—pass structure, that is, the functional J, takes values

strictly less than 0 = J,(0):

Lemma 4.5.2. Assume v > 0, and let ¢ € CF(R™) with ¢ 2 0 and supp(p) disjoints
from supp(v,). Then, there ezists a constant T > 0 such that J,(T¢) < 0.

Proof. By (4.5.1), and since the supports of v, ¢ are disjoint, we have

1 a-(z)
JATo) =1 =72 | = 2 __ytd / v AT p+1/ p+1
V(Te) = 1,(Te) /QIVM [ riid T lewl <0

for T sufficiently large, since ¢ < 1 < p. O

Lemma 4.5.3. Suppose v > 0, {vn} is a sequence in H, such that J,(v,) — c, and

Jl(un) — 0, then {vy + v} is uniformly bounded in H;.

Proof. First notice that J) (va)v, = —(I|Vuy [|Zagn) + ||v;||‘gil(Rn)), then we have

V07 ey + om ey < 5NNV 07 2gmy + v 2ot @)

IN

L (o) UV VS (Z2gny + Hom 17 oy + O(1))

IN

0(1)(||V'U5H%2(Rn) + o7 |7 Lo my) + 0(1),



hence we derive that
(1 = o(M)(IVeg [Iz2me) + I 17" Larigny) < o(1),
that is v, — 0 in H.
Therefore we may take u, = v, + v}, then we reach that
L(un) — I(vy) +¢  and I (uy)— 0.
Since I, (v,) < 0, we have

1 1 1
= | |VupPdz + — [ a ultdx - L/ atudtldz — ———/ utldz < e.
(4.5.2)

We also have

[—/y(un)un = / |Vunl2d$+/ a_u,vZHd:v——'y/ a+u‘,’f1dx—/ uffldl'
5 " R™ n

= o()]fun|la,-

Pick 6 such that 2 <0 <p+1, then =<3 < 1 < q+—1 hence from above we get

1 1 o 1
—/ |V, |?dz + —/ a ultldy — 7 / atudtlde — —/ uPtdz = o(1)]
0 Rn 0 n 0 JERE 9 n

Subtract (4.5.2) from (4.5.3) we get

(4.5.3)

1 1

(5 — 5) - lvuandl? +‘ T _)/ @ Uq+1d.’E (q +1 6) /n a'+ugl+1d'r
1

(g =) [ e < et o)l

D =

1 1
v . 2d - q+ld - / p+1d

1 1

_ + q+1d
=) [ ettt + et o) unlln

<(
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From Young inequality we have

1
atult! = (=a*)(eult) < (euft) T 4
€

a )(qii)*,

|

where we drop the two coefficient when applying Young inequality, (5—1—})* represents
the conjugate of ” + and € is small such that

prt 1 1

F€q+1(

Pick C such that

Overall we reach

1 1 2 —,,q+1 1.1 1 / p+1

S ~ G dz < )]l

(2 9)(/Rn|Vun| d:r:+/na ud dx)+2(9 p+1) IRnun z < c+C+o()||unll g,
(4.5.4)

Claim: There exists small positive 7 < min{3a., 3} and a constant C; > Osuch

that

/ [Vun|2dI + / av_u,ZL‘HdI -+ C'l Z n(HvunlIQLQ(Rn) -+ ||unH%_:_§l_l(R"))

Indeed, since liminfj;)—oa™ = as, then there exists 71 > 0 such that a™(z) > %
for x € R™ — B(0,r;). Now we see that

1 1 1
(1- 77)||vun||%2(w) 2 "Q'HVun”%?(R") > Tz'C(n)HunHir(Rn) 2 2 (n)Hun”iT‘(B(o, )

and
n"unHLqH(]Rn - /R" a—ugl+ld$ < Tlll'“n||f§+x (B(0, r)) = ﬁC(T1)1|un| LQ‘(BO )
So when 7 is small enough and C is large enough, we have
8 g

1 2
(1= Vunl[z2@n + C1 2 5CM)lwnllfa 50, ryy) + C

1
q+1 g+ q+ -, ,q+1
2 §C'(In’)||'u’77v“Lz*(B(0Y 1)) 2 WC(TI)”un”,,z*(B(O' n)) = 77””71” q+1(]Rn) - /Rﬂ a ugl dz
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The claim is done.
Now from (4.5.4) and above claim, enlarging the constant C, we get

1 1
(5 = )1 Tunl By + 134 )

<c+CH O(l)(||V7L,,|lL2(Rn) + ||un||Lq+1(Rn))
<c+C+ 0(1)(||VunH%2(]Rn) + ||un||‘},ﬁl(u§n) +0(1))

<c+C+ 0(1)(||Vun||iz(mn) + |lual Tq—il(mn)) +0o(1),

which implies that ||Vu, || 2@n) and ||u,||,.+1mn) are uniformly bound, going back to

(4.5.4), we have ||ug||Lp+1(rny also uniformly bounded.

a

Unfortunately the Sobolev embedding from H, to LP*!(R") is not compact, so we
must use Concentration Compactness arguments [30] to derive an alternative to the
classical Palais—Smale condition. To the end of the section we recall the hypothesis on

a(x) from the statement of Theorem 1.2.6 :

lim a™ () =a >0 and a (1) <a, foraxzeR"\ B(0,R). (4.5.5)

lz}|—00

First we mention the following result from [18].

Theorem 4.5.4. The following probelem
—~Aw=uwP —wlin R" and w>0wm R
has a unique compactly supported radially symmetric solution wy. Moreover the energy

at wy 1s positive, that is

1 1 1
I(WO) = 5 . |vw0|2d$ + m/ (11)3-)q+1d.’13' - m . (’LU(—){—)IH-ldI > 0.
n IRH n

Proof. See [18]. O
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Now we define the following energy functional I, which is the energy functional

L, at infinity,

1 a 1
Ioo —_ = v 2d > + q+1d I +p+1d Hl.
(v) 2/n| V| :1:+q+1 Rn(v) iy | R"(U) r vEH,
Corollary 4.5.5. The following problem
—Aw = wP — aew? in R" and w > 0in R” (4.5.6)

has a unique compact supported radial symmetric solution W. Moreover I.(W) > 0.

Proof. Let ¢; > 0 so that /" %ay = 1, then consider w; = c;w, by calculation, we see

that w, satisfies

1— , .
—Awy = ¢ "(w” —w?) in R™

Let ¢, > 0 so that c3c; " = 1, then consider wy(y) = wi(coy) = wy(z), it is easy to see

that wo(y) satisfies the following equation
—Dywa(y) = ¢ P (wh(y) — wily)) = wh(y) — wily) in R™.

Therefore from the uniqueness of above lemma, we derive the uniqueness of compact
supported radial symmetric solution W to (4.5.6). From Pohozaev identity we conclude

that Io(W) > 0. This corollary is done. O

From now on we denote the unique compact supported radial symmetric solution
to (4.5.6) by W, pick some zo in R" such that supp(W(z + x0)) N supp(v,(z)) =
0, and supp( W(z + z9)) C R*\ B(0, R). By the hypothesis (4.5.5), it follows that
a”(z) < ax in the support of W(z + zq). It is also easy to see that W (x + xp) is still
a solution to (4.5.6) and supp(W (z + z4)) CC Q~, we denote W(x + xy) by Wy. Now
define

S,={o€C([0. 1}, H)) | o(0) =0 and o(1) = TW,}.

where J,(TWy) < 0 and T > 1, this is possible because of Lemma 4.5.2.
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Let ¢, = infoes, maxep, 1 J4(0(s)), then from Lemma 4.5.1, we see that J,(v) > 0

with |[v]|lg, < ;. Therefore ¢, > 0.

Lemma 4.5.6. ¢, < I(W)).
Proof. Consider o(s) = sWy, s € [0, T]. We have from (4.5.5)

Jy(o(s)) = L(sWo +vy) — I,(vy) = L(sWy) + I, (v,) — Ly(vy) = I,(sWp) < Ioo(sWh).

Claim: I, (sWp) achieves its maximuin value at s = 1.

Indeed, we have

. s* 2 Qo 5T rq+1 i +1
[oo(SWO) = —2- IVVVQ' dr + ) WO dr — T1 ‘/Vé) dl‘,
R™ q R" p n

since —AWy = W§ — a. Wy in R®, we should have

IV Wo|?dz = / WPz — as / Witldz,
RTL n Rn

hence we get

82 5p+1 8q+1 82
I (sWy) = (= — WPrtlde + ay (—— — = / Ity
(sWo) (2 p+1)/n 0 dr +a (q+1 2) nIO T
52 gP+1 52 g9+1
:dl(“ - )_d2(_ - )7
2 p+1 2 q+1

where d; = fmn WEtHdr and dy = ao Jer Wo*ldz. For s huge, I.(sWj) is negative,
then we can assume I, (sW;) attains its maximum value at ¢, so I (tWy) = d,(t —
tP) — (t —t9)dy = 0, that is dy (t —t7) = do(t —t9), since p > 1 > ¢ > 0 and [(Wy) > 0,

we must have ¢ = 1. This lemma is done.

O

Corollary 4.5.7. If there exist u € Sy~ so that ¢y > L (u) — L, (vy) + Io(Wy), then

u ¢ Y, in particular u # v,.
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Proof. By assumption ¢, > I,(u) — I,(v,) + I(W,), from above lemma, we see ¢, <
I« (Wy), hence we have ¢, > I,(u) — I,(v,) + ¢, that is I,(u) < I,(v,). Butifu ey,

then I,(u) > I,(v,), it is a contradiction. Sou ¢ Y. O

Since our ultimate goal is find a second solution to (4.2.1),, so from now on we

assume that for any u € Sy
cy < Iy(u) — I (vy) + Too(Wh). (4.5.7)
Actually under the assumption (4.5.7), we will show the compactness of P-S sequence.

Lemma 4.5.8. Assume that u, is uniformly bounded in LITY(R"), Vu, is also uni-

formly bounded in L*(R™) and

sup / || de — 0 as n — oo,
yeR" J B(y, 1)

then u, — 0 inL*(R™) for o between g+ 1 and 2* as n — 0o.

Proof. See Lions [30)]. O

Lemma 4.5.9. Assume {u,} C H} and u, — ug weakly in H; for some ug € H} with
compact support, then there exists at least a subsequence, still denoted by {u,}, such

that

|t 7Y~ T ~ Juty — wo|" — 0 in LM(R™)

tnl? — [uolP — |tn — uol” — 0 in LY(R™),

2n
where 1 <t < —

Proof. By the weak convergence, restricting to a subsequence if necessary, we see that
un — up a.e. in R". Pick » > 0 big cnough so that supp(ug) cC B(0, r), then
we only need to prove the above claim in L'(B(0, r)) and LY(B(0, r)), restrict to a
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subsequence if necessary, we assume u,, — ug strongly in L® with 1 < s < 2*. Notice

that
™ = ol = ftn = 0[] < Cilfnf?*! +Juoft*")
unl? = Juol” — fun — uol"|" < Collunl™ + |uol™),
then Lebesgue Convergence Theorem applies and the lemma is proved. 0

Lemma 4.5.10. Suppose v > 0, {vn} is a sequence in H such that J,(v,) — ¢, and
J!(vn) — 0, then {vn} contains a strongly convergent subsequence in H;. Moreover if

v — Vg > 0, then up = v, + vy is a solution to (4.2.1).

Proof. In wiew of Lemma 4.5.3, we could take u,, = v} + v,, then we should have
L(uy) — L(vy) +c, and I’ (un) — 0.

Since there is no confusion, we put away some of the subscript v, we denote I, as I and
vat as a*, still keep I and c¢,. We also use L9*!, L? and LP*! instead of LI} (R™),

L*(R™) and LP*!(R"). Therefore we have

H{uy,) — I(v,) + ¢, and  I'(u,) — 0.

Again from Lemma 4.5.3, we have that ||V, || 2 + ||un){Le+t + ||un]|Le+1 is uniformly
bounded, then restricting to a subsequence if necessary, we assume that there exists
uo € H, so that

Up, — Uy weakly in H;.

By a diagonal process, restricting to a subsequence if necessary, we may assume u,, —
ug strongly in L9*1(B(0,r)) for any r > 0 and u, — ug a.e. in R™, then by interpolation
we have u, — ug strongly in L{(B(0,7)) for any r > 0 and ¢ + 1 < t < 2*. By local
compactness we see that vy > v, in R™. It is also easy to see that ug is a solution to

(4.2.1), so up has compact support.
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Now let us consider u} = u, — ug, since uq is compactly supported, (u, — ug)~ has

bounded support.
Claim: (up —uo)~ — 0in H,.

Indeed, since (u, — ug)~ has bounded support, then by local compactness (u, —
up)” — 0 in LPY' N L4971 We know that uy is a solution to (4.2.1),, then I'(ug) = 0,
hence (I'(un) — I'(uo))(un — ug)~ — 0, that is

(I'(un) — I'(ug)(un — ug)~
= IV = o) i~ [ ot ) — )l = [ (a =) — o) e

n

= =V (un — uo)"|[Z2 + o(1),

which implies ||V (u, — )|z — 0, so the claim is proven.

We may assume ul = u, —uy > 0 in R", then we find that

1Vunllze = [ Vuollze = [IVunllfe = IV ulZe = 1IVuollZ2 — [V (un — uo)llZ2

and

[lnllfors = luol|Fers — lfun — wol|Tos = / [n] ™ = Juo| ™ — Jun — uo|**'dz — 0
J supp(ug)

The second one is from Lemma 4.5.9. Therefore we have

1Vl 22 + luallZ51 = 1[Vu0l 22 + ol 32, + 11Vl e + il [175L +o(1)  (4.5.9)

Claim: I(u,) = I{uw) + Io(ul) + o(1)
Since lim|zj oo @~ = oo, Ug has compact support and u,, — ug strongly in L9*1(B(0,r))
for any r > 0, we get

1 1 1
—— [ aultldr= —— | auitde+ —— | aco(un — up)?dz + o(1),

q+1Jo- g+1 Jjo- qg+1 Jo-
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. +1
since [0 (Un — up)?t'de — 0 and [o0, a*ud™dz — [0, a*uf™ dx, we reach

1 1
—— [ audtlde = —— | ault'dx -
q+1 Jgn qg+1 Jgn qg+1

/ Qoo (Un — Up) ¥t dz +0(1). (4.5.10)
]Rn

From Lemma 4.5.9 it is also clear that

/ uPtdz :/ ubtlda +/ (un — uo)"*'dz + o(1). (4.5.11)

Since for I'(uy), I(up) and Io(ul), we have

1
I(un) - / Ivunl dr — —— / au?j‘ldx — ? Ufl—i_ldm‘
n " p Re
1
I(u) = 2/ |Vuol?dz — —— / auoﬂd:c _ 7 ugﬂdm
! I
I(u,) = 5/}1{ [Vup[*de + m/} Qoo ()T d — " l/R (ul)P+dz,

then from (4.5.8), (4.5.10) and (4.5.11) this claim is true.
Claim: I’ (u}l) — 0.

First we have for ¢ € C§°(R")

I (ul)e = V(un—uo)V<pdr+aM/ (1n — ug) npdz—/ n— ug)?
R" n R"
I'(ug)p = /Vu0V<,9d:l‘+/ a‘u}’)apd:c—/ atudodr — /uocpda:
n T n Rn
= 0
I'un)e = / Vunchdx—F/ a u"@dl—/ atulpdr — / Podr
= o()llellm;-

Since u,, weakly converges to ug and ug has compact support, we can pick r > 0 such

that supp( ug) CC B(0, 7). Hence

I'(up)p — I'(ug)p = / V(un — wg)Vipda + / a” (ud — ud)pdzx

_ / ot (ul, — ud)pdz — / (W2, ~ uB)pd,



then
Lo (up)e — (I'(un)g — I'(uo)g)
= / Qoo (Un — 1) pdx — / a” (ul — ud)pdz + / at(ul — ud)pdz
n Rn n
[( —ug)? + uf — ul)pda
=l/' o =4 )+ 0~ e
B(0, r
+ / (aoo — a7 )uldr — / [(un — ug)? + uf — ul]pdz.
B(0, r) B(0, r)
Therefore for € > 0 pick r enough so that

| (a0 — @™ Jujepdz| < “€||SOHL<:+1
R~ B(0, 7)

then by compactness over B(0, r) and Lemma 4.5.9, there exists ng > 0 so that for

n > ng

_ 1
l ( )[aoo(un. — uo)? —a” (ufy — ug) + @™ (uf, — wg)pdz| < LeflpllLon
B0, r

1
|/ (tn — o) + o — w2l < ~el|Vipll 2.
B(0, r) 4

Since I’(u,) — 0, then enlarge ny if necessary, assume for n > ng, |I'(u, )| < id!‘PHHga

then we should have for n > ng
o (un) el < ellollmy,
which implies I!_(ul) — 0 as n — oo.
Now we have
Lo (ul) = I(u,) — I(ug) + o(1) and I' (ul)—o0.
Let us define

§ = lim sup / |ul |9t dz.
n—oo yean JB y 1)
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If 6 = 0, then Lemma 4.5.8 implies that «! — 0 in LP*'. Since I’ (ul) — 0, then we

have
I' (ub)ul = / |Vu! |Pdr +/ jul |9 dx — / lulPdz — 0,
R" R R"
which implies that [o. |Vu}|*dz + [p. [up|""'dz — 0. So u, strongly converges to ug

in H ; and we are done.

If 6 > 0, we may assume the existence of {y.} C R™ such that

1
/ |1/v,l,|"+1dx > 4.
By, 1) 2

Let us define vl (z) = ul(z + yl) = ul(. + y}). For ¢ € CP(R™), we have
o)l = Lo (ug) (- — ya)l < o (w ) ol
Hence we have

Io(¥)) = Io(ul) = I(un) — I(ug) +0(1)  and I (v) — 0.

1

We may assume v, — v' weakly in H, for some v' € H) and v}, — v' a.e. in R™

Since [p, 4 [val?*dz > 36, it follows that

1
/ o' |1 dr > =6,
B(0, 1) 2

which implies that v! # 0. But u! weakly converges to zero in H!, so {yl} is un-
bounded. We may assume that lim,_. |y!| = oo. It is easy to see that v! is a solution

to (4.5.6), so v! has compact support, more important I (v?) > I (Wp).
Claim: (vy —v')” — 0in H}.

Indeed, since (v} — v')~ has bounded support, then by local compactness we may

assume (v —v')™ — 0 in LP*1 N L9+ We know that v! is a solution to (4.5.6), then
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I'_(v') =0, hence (Il (v}) — I’ _(v})) (v} —v')™ — 0, that is

(I () — I (@M@t — o)
= V(e — ) IR / 4o (027 — (1)) () — v')"dz

!Rn
- [ iy - ek - oty
RTL
= =|[V(vy = v1)7[[72 + o(1),
which implies ||V (v} — v!)7||z2 — 0, so the claim is proven.
2 _ 1

We may assume u2 = ul —v'(. — y!) > 0, then repeat above process again.

Claim:

IVuglize = IV |I2: +[IVeH 122 +0(1) and [lugllfen = lubllfen + o' |55 +o(1)
Actually we have

VL ][22 = ||Ve2 |22 — [|VOl (]2 = 2 /

Jite

VulVul(. —yl) — |V Pdr
= 2/ VoulVo! — |Volidz — 0

and

el = gt = Il = [ 1ol = ol = oh = o191z — 0
So this claim is done.

Claim: Io(u)) = Io(u?) + Io(v!) + o(1).

From Lemma 4.5.9 we see that

[ b = o = o) - ) = o)

and

/ (ul)P — (v} — 0"+ — (WP e = o(1).
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For Io(u)), Io(u?) and I (v') we have

1

1 a
L(ul) = IRl g deo et 2 1yl gy
W = [ GVl - )

o 1
— / —|V |2 ?11‘(&1 m(v )p—de

. O
L) = [ 3190 =0 = g+ = ot = gl

1
o (g = 0N (=) e
— / llv(vl _ Ul)'Q + x |U1 _ U1|q+l _ 1 (Ul _ vl)p“da:
. n g+1'n p+1- T

1
Ioo 1 — ~|Vu 2 A+l 1p+1d’
) = [ G0+ S - (el

then from above claim we see that this claim is true.
Claim: I/ (u2) — 0.
In fact, for any ¢ € C§°(R") we have
LYol =1 [ Vi, —v'( = y2))Ve + asl(uy — v (. —yp))|% — [(u), — v' (. — y,)) Pedz|
Rn

= I (vn = v))(- + 1)

< o (v = vIle (- + wd Ty < oo — v )y,

hence for the claim to be true, we only need to show I’ (v} — v') — 0. Indeed for

I' (vl — b, I (v}) and I/ (v') we have

I (v, — vy = /m; Vvl — 0"V + ag(v) — v')ip — (v} — v!)Podz
Lo = [ Vue+ an(ud)io - (0hPeds =0
I' (v = / VoV + ax (v — (v')Pedz = 0.
Hence we obtain

(Ta0h) = Lo = | V(6= o)+ () = (1)) = (827 = (0



then

n

(I (vn = v1) = (Lo (va) = I (v1)))p = a0 / [(vn = 01)7 = ((v3)? = (v")")]pda
— | [(wh = 0P = (0h)P = (v")"))pdz.
-

Notice that v! has compact support, fron1 Lemma 4.5.9 we have

(I (vn = v') = (I (vn) = I ("))l < oWl + o(DIIVpl|2 < o(1)[ol |3,
which implies that Io(v) — v') — 0, so this claim is done.
Now we have
Io(ul) = Io(ul) — Io(v') + 0o(1) and I (u?)— 0.
Again define

§; = lim sup / [uZ |t dz.
By, 1)

n—oo yeRn .

We have two cases.

If 6, = 0, then from Lemma 4.5.8 we conclude u? — 0 in LP*!, notice that
Lo (up)uly, = |[Vudl[fz + acolli ||Ten = [ludllTon = o)l ay,
so we derive that [|quI|H(} — 0, in turn we have I,(u2) — 0, which means that
Io(up) = Too(v") + 0(1) 2 Toa(Wo) + 0(1),
since I(u,) = I(v,) + ¢y + 0o(1) and I(u,) = I(up) + Io(ul), we have
&y + 1(uy) = 1(uo) + Lo(W),

which contradicts the assumption (4.5.5).

If 6, > 0, then there exists {y2} C R" such that

. 1
/ fu? | dr > =6.
By}, 1) 2
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Since I’ (u2) — 0, then we get

Lo (up)uh = [IVulllze + accllufIfas: — [ludllze: = o(1),

in turn we obtain

1 Coo
Io(u2) = §|lvuiiliz+q—+*{|lui|lﬁil———II 2||Pt,
— 1 1 2 p+ 1 g+1
= (3 ijl)Il A + °°(q+1 )|| 29 4+ o(1)
1 .
> ol — IS +ol1) 2

uniformly for all n with some positive € depending on ;. So we have
€ < oo(2) = Lo(td) = L") + 0(1) = I(un) — I(ttg) — Loo(0") + o(1),
since I(u,) = I(vy) + ¢y + 0(1), we have
ey > I{ug) — I{vy) + Lo (v') + € > I(ug) — I(v,) + Io(Wo) + €

which again contradicts the assumption (4.5.5).

So we must have § = 0, which means u, — ug strongly in qu. This lemma is

proved.

O

From above proof we see that the compactness of the support of ug and v! dramat-

ically reduce the complexity of the proof.

Corollary 4.5.11. Without the assumption (4.5.5), in the above lemma if un — up
weakly in Hy, but not strongly, then I,(uo) < I,(v,). In particular ug # vy andug ¢ Y.

Proof. Otherwise we have I,(up) > I,(v,). since ¢, < I(Wp), then ¢, < I(Wp) <
L (up) — I,(vy) + Io(Wp), so we have assumption (4.5.5) for free. Follow above proof,

we conclude the corollary. a
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Theorem 4.5.12. Suppose there exists 7., > 0 such that for any p € [0, 7,]
inf{J,(v) | lJvlln; = p} =0,

and ¢, = 0, then for each p € (0, n,). the problem (4.2.1), has a solution with

lu = vy = p.

Proof. For any fixed p € (0, n,), the set F' = dB(0, p) in H, satisfies the hypothesis of
theorem (1) in Ghoussoub and Preiss [25]. their Theorem (1.bis) asserts the existence
of a solution for each p € (0, n,) with the help of above Lemma 4.5.10, i.e. the

compactness of the P-S sequence. d

Corollary 4.5.13. Under assumption (4.5.5), the equation (4.2.1), has two element
in Sy for 0 <y <T.

Proof. 1f ¢, > 0, the result is from the Mountain-Pass theorem. If ¢, = 0, it is from

Theorem 4.5.12. d

Corollary 4.5.14. Under assumption (4.5.5), the equation (4.2.1)g has a compactly

supported nonzero solution.

Proof. We just need to change Y in (4.4.1) to Y, ={v€ Hy | 0<v < U, ael} itis
easy to see that when ~ is small enough. I achieves its infimum at v = 0, after that

everything is the same like the proof above theorem. O

Finally, we ask the following two questions. First, are these two solutions we obtain
in this way distinct in Q%7 And secondly. if we assume that a(tz®) is strictly decreasing
as t > 0 increases for any direction z* € S™, can we show that the the solutions of
(4.2.1), have connected support? We belicve that this is the case, but it remains an
open question in this generality. In the next section we specialize to the radial setting,

where can give a positive answer to thesc questions.
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4.6 Radial Symmetry

In this section we are going to use the method of moving plane by Gidas, Ni and
Nerenberg [26] to prove the radial symmetry of the solutions of (4.0.1). First assume
a(z) = a(]z|), then let us denote r; = sup{r > 0| a(r) > 0}, We should point out that
we do not assume here that Q% is not empty, so r; could be zero, but we still keep

the assumption (4.0.2). We also make the further assumption on a that
a(r) is decreasing in [0, ] and is strictly decreasing in [r;, oo) (4.6.1)
We have the following main theorem concerning the solutions of (4.0.1).

Theorem 4.6.1. Under the assumption (4.6.1), any solution u of (4.0.1) is radially

symmetric and decreases as r increases.

We will present a long list of lemmas to prove this theorem. Take any nonzero
solution of (4.0.1) in D2(R"), say u. by Theorem 1.2.2, u is compact supported, so we

can define ry = sup{|z| > 0| u(x) > 0}. It is clear 0 < ry < oo and u(9B(0, r3)) = 0.

Let us consider now an arbitrary direction 7, which for simplicity we can assume

to be 7 = ¢;. For A > 0 we define
2,\ = {(l‘],l‘«z, ,an) 1 vy > /\} and T,\ = 82,\

For z € R,, let * = 2(\ — z;)e, + = be the reflection of x with respect to T,. We

define the functions uy,ax, wy : R, — R' as

We set
A={A20]w\(r)>20Vz €Ly}

Clearly since u has compact support, A\g < o0o. In view ofLemma 4.1.7, since u is

nonzero, we may assume that u(rse;) > 0 for some r3 € (ry, 73).
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Lemma 4.6.2. ¥,, N B(0, m) #0, i.e. Ay <19

Proof. From Lemma 4.1.7 we see that a(1,) < 0. Since we also have u(0B(0, r5)) = 0,

then there exists 6; > 0 and o; > 0 such that
a~(r) > oy forr €[re — 0y, 1)
and
u(z) < Ay for a2 € B,.,_5, N B(0, m3),

where A]™7 = 211,

Now if there exists ; € £,,_5 N B(0, r2) such that
Wr,—g, (1) < 0.

Since wy,—g,(x) > 0 on 9[X,,—5, N B(0. ry)], then we may assume w,,_s attains
minimum at z;. Therefore we have
0 > —Aw"'2“61($1) = _Aur2~51(331) - (_Au(rl))

= ar—s (@), 5 (x1) + b _5 (21)] = [a(z)u?(21) + wP(21))]

> fa(@a)ul, g (01) + 02, s (20)] - [a(e)ut(@:) + (@) since ar, s (21) > alz)

> 0 since Ay > u(z1) > Ur,—5, (7)) > 0 and o™ (z1) > 03.

This is a contradiction, this lemma is proven. O

Now if Ay = 0, then Theorem 4.6.1 is proved. But if Ay > 0, then by definition of

Ao, there exists a sequence {A;} such that
A < Ao and M T Ao

and the function wy, possesses a negative minimum xzy in £y, N B(0, rp). It follows
that
wy, (zk) <0, Vuwy, (zx) =0 and zr € Ly, N B(0, ry).
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Consequently the sequence {z} is bounded, restricting a subsequence if necessary, we

can assume it converges to T € ¥y, N B(0, ). Moreover
Wy (Z) 0 and  Vuwy(Z) =0.
Lemma 4.6.3. If we assume that a=(Z) > 0, then u(Z) > 0.

Proof. Let us assume otherwise u(Z) = 0, since a™(Z) > 0, we may assume that there

exists oy > 0 such that
inf {a™ (z > o since T, — T
in N{ (zx)} = 02 k

and

sup{u(zi)} < Ay since u(zy) — 0.
keN

Now fix a particular k, then wy, (z) > 0 ou 9[X,, N B(0, m2)]. But

0o > ——Aw,\k(IEk) = —AU)\k(J?k) - (—A’II,(.”U]C))
= [ar (ze)ul, (z) + 05, (ze)] = la(an)u (zx) + oF (zx)]
> [a(zi)ul, (zx) + 5, (20)] = [a(ze)u(z) + uP(zk)]  (since ar (k) > a(zk))

> 0 (since Ay > u(zg) > up (x1) > 0 and a™ (xx) > 03.)
This is a contradiction, this lemma is proved. 0

Lemma 4.6.4. If we assume that a=(z) > 0 and T € 5, N B(0, 1), then wy,(z) =0

for all x € B(Z, €), where € is a small positive number.

Proof. From above lemma we see that u(z) > 0, then we can choose a small positive

€ such that

B(z, €) CC X5, N B(0, r7) and inf u(z) > 0.
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Since wy,(z) > 0 in Xy, N B(0, r3), then we see that inf ep(z, o) Uno(z) > 0.

In B(Z, €), the function w,, satisfies the following equation

— Dwy, + (a(z)u? +uP) = (ar(z)uf, +uh,)

= ~Auy, — (ax(T)ug, +uf,) + Du+ (a(z)u? +uF) =0,
but from ay, > a, we have

- Aw}\o + (a)\o(z)uq + up) - (ako (:':)u(,l\(, + uﬁo)

> —Auy, + (a(z)u? +uP) — (ar(x)uf, +uf ) = 0.

So we obtain

ud — u? uP —ul
20 4 20y, > 0in B(Z, €),

—Awy, + [axr ()

Upg — U Upg — U
. ud—ud ub—ul . . _
also notice that c(z) = ay(z)——=2 + =2 is uniformly bounded in B(Z, ¢) and
0 4]

wy, > 0 in B(Z, ¢€), therefore by the strong maximum principle w),(z) = 0 for all

x € B(Z, €) since w)y,(Z) = 0. This lemma is proved. O

Lemma 4.6.5. If we assume that a=(Z) > 0 and T € T, N B(0,72), then wy,(z) =0

for all x € B(Z, €), where € is a small positive number.

Proof. Since a(Z) > 0, it is clear that w(%) > 0, then we can choose a small positive

¢ such that

B(Z, €)NXy, C Xy, N B(0, 1) and li;(lf )u(a:) > 0.
rx€EB(Z, €

Since we assume Z € T),, then we see that inf,ep(z, ¢ ur,(z) > 0.

In B(Z, €) N %), the function w,, satisfies the following equation

— Dwy, + (a(z)e? +uP) = (ax, (2)uf, + )

= —Duy, — (ar (@)l +ul ) + Au+ (a(z)u? + vP) =0,
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but from a,, > a, we have

— Dwy, + (ax (T)u? +uP) = (ax, (T)ug, +u5,)

Z “AU’/\() + (a(z)uq + up) - (a/\o(x)u?\o + ul))\o) =0.

So we obtain

p

201wy > 0 in B(Z, €),
Upg — U Uy — U

ud — u‘/’\0 uP —u
—Awy, + [ax(z) +

ul —

ud—y9 i
 u— 0 js uniformly bounded in B(Z, €) N Xy,

Upg—U Uy, U

wy, > 0in B(Z, €)N Xy, and B(Z, €) N X, satisfies the interior ball condition at Z,

also notice that c(z) = ay,(x

therefore if w), is not identically zero in B(Z, €) NX,,, then by a refinement of Hopf’s

Lemma, au—’gfl@ < 0 since w,,(Z) = 0, but we already have Vw,,(Z) = 0. So we must
have wy,(z) =0 for all x € B(Z, €). This lemma is proved. O

Lemma 4.6.6. If r; > 0, then \g < 1.

Proof. Assume otherwise Ag > 71, then by the definition of r; we find out that (%) >
0, so from Lemma 4.6.3 we see that u(Z) > 0, which means that z ¢ 9B(0, ;). From
Lemma 4.6.4 and Lemma 4.6.5 we see either T € £, N B(0, 75) or T € T), implies
that wy,(x) = 0 in B(Z, €) for some small positive €. Since z, converges to Z, then

choose a particular large k such that 2, € B(Z, €) and a(xx) < 0, then we have
a(zp)ul(zg) + uP(r) = —Dulzyr) = —Duxg (wk) = arg(xr)u (ze) + vl (z1)-

Since wy, (zx) = un (zk) — u(zx) < 0, then u(zx) > 0. So from above we have
a(zy) = ay,(zk), but we also have a(xy) < ax,(zk). It is a contradiction. So we should

have Ay < r;. The lemma is done. O

From above lemma, we have the following interesting theorem:

Theorem 4.6.7. Under the assumption (4.6.1), if r; > 0, then any nonzero solution

of (4.0.1) is positive in B(0, r1).
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Proof. From the above lemma, we see that Ay < rq, since u(rze;) > 0 and r3 > r;, we
obtain u(rie;) > 0. Therefore by continuity and maximum principle, we have u > 0

in B(0, ). O

Lemma 4.6.8. If ry =0, then Ay = 0.

Proof. Assume otherwise \g > 0, then by the definition of r; we find out that a=(z) >
0, so from Lemma 4.6.3 we see that u(Z) > 0, which means that Z ¢ 0B(0, r2). From
Lemma 4.6.4 and Lemma 4.6.5 we see either Z € £, N B(0, ry) or T € Ty, implies
that wy,(z) = 0 in B(Z, €) for some small positive €. Since z; converges to Z, then

choose a particular large k such that z, € B(Z, ¢), then we have
a(ri)ul(zy) + uP(Th) = —Du(y) = —Duy (Tr) = arg (zx)u (zx) + uf (zk).

Since wy, (zx) = uy (zx) — u(zr) < 0, then u(zx) > 0. So from above we have
a(zr) = ay(xy), but now a(r) is strictly decreasing. It is a contradiction. So we

should have A¢g = 0. The lemma is done. O
Now we are in position to prove Theorem 4.6.1.

Proof. The above lemma already takes care of the case r; = 0, so we assume r; >
0, then from above Theorem 4.6.7 there exists 63 > 0 such that u(xz) > 0 for all
z € B(0, 7, +03). From lemma 4.6.3 we see that u(z) > 0 if z € B(0, r5), but
u(0B(0, r3)) = 0, which means that ¢ 9B(0, )

Now if a(Z) < 0, we can derive a contradiction like we did in Lemma 4.6.6.

If a(z) > 0, then u(z) > 0 and & € B(0, r + d3) N Xy, or OT),. Therefore we can
apply the same proof of Lemma 4.6.4 and Lemma 4.6.5 in B(0, r, + d3) N Xy, then

conclude that

u(z) =0 for all 2 € B(0, m + 83) N Xy,
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Hence we can pick a point z* € B(0, r; + d3) N 2, in the e; axis such that
a(z*) <0  and w(z*) = up(z*) > 0,
then we have ay,(z*) > a(z*), but we also have
a(z")u(z") + uP(z") = —Du(z") = —Auy, (%) = ax, (27)uf, (z7) + uf, (z7),

which implies a),(z*) = a(z*). So it is a contraction. We have \q = 0, this theorem is

proved.

Here we also have a supplement for Theorem 4.6.1:

Theorem 4.6.9. Assume a(r) is decreasing in r, then any nonzero radial solution u

of (4.0.1) decreases as r increases.

We still apply the moving plane method and the same notations from above, since
u is already radial, we only need to move in e; direction. We complete the proof in a

few lemmas.
Lemma 4.6.10. Xy < ry and u(z) > 0 in X, N B(0, 7).
Proof. Ao < 7 is simply from Lemma 4.6.2, then u(r) is decreasing in [Ag, 73], by the

definition of r, we get

u(r) > 0in [Ao, T2),

which implies that u(z) > 0 in X, N B(0. ro). O

Lemma 4.6.11. wy, s not identically zero on (0B(0, 13)) N E,,.

Proof. From above lemma u(r) > 0 in [Ag, 72), since u(r;) = 0, then w), is not

identically zero on (0B(0, r3)) N ,,. O



Lemma 4.6.12. If there exists § € £y, N B(0, r2) such that wx,(§) = 0, then wy, =0
mn Z)\O N B(O, T‘g).

Proof. Let us consider the set S = {z € X5, N B(0, r2) | wx,(z) = 0}, by assumption

S is not empty.
Claim: S is open in £y, N B(0, 73).
Now take any y € S, then from Lemma 4.6.10 u(y) > 0. So we can choose a small

positive € such that

B(y, €) CC 5, N B(0, 7o) and g’(lf )u(:v) > 0.
xeEB(zx, €

Since wy,(x) > 0 in Xy, N B(0, ry), then we see that inf ep(y, ) ur(z) > 0.

In B(y, €), the function w,, satisfies the following equation
—Awy,+H(a(@)u?+uP) = (ax, (2)uf +uf)) = —Duy,—(an, (2)u3, +ul, )+ Aut(a(z)u!+uP) = 0,
but from ay, > a, we have

— Awg+(ary (2)ud+uP) —(ar, (x)uf +uf, ) > —Awyy+(a(z)uf4uP)—(ar (z)u] +uh ) = 0.

So we obtain

q D 14
u! —u u —u
A X : _
—Awy, + [ax(7) 7+ - 2wy, > 0in B(Z, €),
Uy, — U Uxrg — U
. uq—u?\ u"fuz X . .
also notice that c(z) = ax,(z)3 =2 + -—=2 is uniformly bounded in B(y, €) and
0 0

wy, = 0 in B(y, €), therefore by the strong maximum principle wy,(z) =0 for all z €
B(y, €) since wy,(y) = 0. So S is open. By continuity S is also close in £,, N B(0, 73),
S0 wy, = 0 in X, N B(0, r2). This lemma is proved. O

Now if Ag = 0, then theorem is proved. But if Ag > 0, just exactly like above we

have the same z, A\x and Z.
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Lemma 4.6.13. If we assume that T € T\,NB(0, 73), then wy, = 0 in £,,NB(0, 7).

Proof. From Lemma 4.6.10 u(Z) > 0, according to Lemma 4.6.5 there exists a small

positive € such that

wy,(z) =0 for z € B(Z, ¢),

then appealing to Lemm 4.6.12 we have w,, = 0 in X, N B(0, r9). O
We are ready to give the proof of this Theorem 4.6.9.

Proof. If £ € 0B(0, r3), then a(Z) < 0. by Lemma 4.6.3 we have u(Z) > 0, con-
tradicting the fact that u(ry) = 0, so we must have either z € ¥,, N B(0, m2) or

z € T\, N B(0, rq), but from Lemma 4.6.12 and lemma 4.6.13 we have
Wyy = 0in Z/\() N B(O, T‘Q),

which contradicts Lemma 4.6.11 by continuity. So Ag = 0, the theorem is proved. [

111



4.7 Second Solution in the Radial Case

In this section we give an independent proof for the existence of a second solution
in Sy in the radial case. The symmetry allows us to simplify many steps in the
procedure, and we no longer require the assumption (4.5.5) on a(r), because of the
uniform decay of radial H' functions, as observed by Strauss [40]. Recall that U,
represents the minimum element in Sy~ for 0 < v < T with I' = I'y. Consider the

following minimization problem in a convex constraint set
Inf {I,(v) | veY} and Y ={veH; | 0<v<Urael} (4.7.1)

From Struwe [41] the infimum is attained at some function in Y, say v,, and v, € Sy 4.
Notice if we replace Ur with Us for some 5 > «, although we still can guarantee the

existence of v,, this v, may be different.
Lemma 4.7.1. For v € (0, I'], assume a(z) = a(|z|) ¢s radially decreasing, then v,

could be chosen so that v,(z) = v,(|z|) and it is also radially decreasing.

Proof. Since a(|z]) is radially decreasing and Uy is radial, then by Theorem 4.6.9 Ur
is also radially decreasing. Hence take the Schwartz Symmetrization of v, denoted by

3, it is easy to see that v] € Y.
Claim: ¢, a,(v2)"" > fp. ay(vy)

Indeed, pick a huge constant C such that C 4+ a, > 0 in R", thus we see that

(C + a,)* = C +a,. So we have, notice that v, has compact support,

[crayeyz [ ©rap,

that is [p. ay(v2)9* > fon ay(v,) 9% since [o, (v3)7! = [o. 03t

But we also know that

/ Voifde < | [V,\*dz and ()P de = / v dz,
Rn Rn R" R"
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therefore we have

1 1 1
I *y V*2d = /,}* q+ld = *p+ld
’Y(v'y) 2 Re l v'yl T q 4 1 - a”}(l'y) T p + 1 Rn(v'y) T
1 1 1
S 5 /Rn ‘VU,),!ZdI - q—+‘1— . (IA,,(U,Y)(H_ldIL' - m Rn('l),y)p_HdI = I’Y(U’Y)'

So we can choose v} as v,. The radially decreasing property of v, is from Theorem 4.6.9.

d

Remark 4.7.2. Here above we only assume that a(z) is radially non-increasing, not

strictly decreasing, otherwise the lemma would be trivial due to theorem 4.6.1.

Now we introduce some notation. Choose a ball B centered at the origin such that
supp(Ur) CC B, since Q% cC supp(Ur). then we have Q°* CC B. Denote H, as the

subspace of H ;, which consists of radial symmetric functions with the same norm.

Lemma 4.7.3. For vy € (0, '), then v, is a local minimizer for I, in H'(B), that s,

there exists 6 > 0 such that
L(v,) < L{(v) for all ve H'(B) with |jv — vy||g s < 0.
Proof. From Lemma 4.3.1 we have
L(v,) =inf{l,(v) | veY}.
Since supp(Ur) CC B, we also get
L(vy) = inf{I,(v) | ve H(B) and 0 <v < Ur}.
Then the result follows from Proposition 5.2 in [2]. O

Lemma 4.7.4. For vy € (0, T'), assume v, is radial, then v, is also a local minimizer

for I, in H,.
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Proof. From above lemma there exists ¢ > such that
I(vy) < L(v) for all v € H'(B) with ||v — vy||m(p) < 6.
Since H, — H!(B), there exists §; > 0 such that
v —vyllgsy < dif llv—v,lln, <.

Now take any function v € C§°(R"™) such that v € H, and ||v — v,||n, < 1, then we

have
I,(v)
1 2 1 1 _
dr— +(.,+ q+1d.’. / + q+1d . p+1d
/ |Vou|*dz q+1/na(v) 1+q+1 Rna( YT dx +1 Rn(v) x
1
IVU\de:————— a+(v+)q“d:c+ a” (vt ldr — (v yPHida
(]+1 B
1 1
+ = Vv 2da: 4+ —_ a (N lde — —— vt p“dac
2/"——Bl | qg+1 Jra_p ( ) p+1 R"—B( )
1 1 1
> L(v,) + —/ Vol2dr + —— a (v ldy — —— vT)PHde.
7( "I) 2 n_BI ' q+1 Br_B ( ) p+ 1 RH—B( )
Since Q%* CC B, then denote inf,cpn_pa~ by c, hence
L(v) > L(vy) + l/ |Vv|?dz + < (v*)"dz — L (vt)Ptldz.
i - K 7 2 n__B q+ 1 . Rn_B p+]. Rn_
Let
v(0B) z€B
v reR"—- B,
then V € H., so we have
1 c 1
I vZI(v)Jr—/ VV | e + —— yhIitlgy - —— VHPH g,
v(v) 2 L(v, 2Rn| l Q+1-R"—B( ) —— RH_B( )
that is
1 c 1
L(w)—L(vy,) > = [ |VV|%dz + — VHetldy - —— VHPridy,
7( ) 'Y( 'Y) - 2 Rnl | T q+ 1 . Rn_B( ) z p+1 Rn_B( ) T

114



We claim that:

1 c 1
E(V) == VV|%dr + — Yty —-—~/ VHPtde >0
(V) 5 Rnl | r+q+1 Rn_B( ) dx P (V)Ptide >

when §; is small enough.

n+2—p(n—2)

Indeed, By using Holder inequality, denote d = Tr—gn=2) We have
; d(g+1 (1-d
L WP < IV e IV (4.7.2)

Since d + (1 — d) %5 > 1, there exists « > 1 and § > 1 such that

=1, a=da(g+1)>¢+1 and B=75(1-d)2">2

er—‘

1
"5
Hence from (4.7.2) and the Young inequality, we get

/ [VHPHde < !
n_B C\f

Byv above and Sobolev inequality, we find

‘/+||I 1+1(R" B) + ”V+HL2 (Rn )

C( ) C q+1 1 x
E) > —— V|12 gn) + e 1|| e gn_py — m“vﬂriw(mn—m
1
- m\|V+||L2*(Rn_B)
C(n) 2 ¢ +1 1 5
> SRV oy + g IV W enoy = sV e

1 .
m|l‘/+HL2*(Rn—B)-

Since @ > ¢ + 1 and 8 > 2, then for §; small enough we get

E(v) > C( )

+ ¢ e+l 1 +(|&
HV H[} (R"—B) + q-+ 1”‘ FI (;,q+1(Rn_B) - m“v HL<1+1(R"—B)
1

- ml|v+llL2‘(Rn—B) > 0.

There for we have I,(v) —I,(v,) > 0 for §; small enough, that is, v, is a local minimizer

in H,. This lemma, is done. d
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Now if v, is radial, then from above lemma we see that v, is a local minimum for

the energy functional

1 1 1
L, = —/ |Vu|de — —— [ a (o) dz — —— [ (v*)P*ldz v e H,,
2 n q+ ]. R p+ ]. R"

which is associated with the equation (4.2.1),,

—Au = (ya© —a")ud +P.

It is easy to see that L (t¢) — —oo as t — oo for some positive radially symmetric
p € C(R™). So we have a Mountain-Pass structure. We expect to find a second

solution in the form u = v, + v with v > 0.

If v, solves the equation, then v should solve
—Av = a,{(vy +v)? = 0] + [(vy + V)P = VE].
Set

A(w,v) = al(v, +0") = ol + (0, + ) 2],

H(z,v) = /Ov h(z,s)ds = /Ov[(v7 +5)1 = v8] + [(vy 4+ 67)P — oF]ds

[(v’7 + U+)p+1 _ ,U:+1] _ U,’;,U+.

1
= may[(vﬂ, + o) — it — ot +

p+1
For v € H,, define the functional

1 1 1
Jy(v) = E/Rn |Vo|2dz + q—_l_—lu’“ - ;]?(v*')"+1 — H(z,v)dz.

By the same calculation we reach

| _ 1 _
Jo(v) = L(vy +v7) — I(vy) + QHVU ”%Q(R”) + m“” H(},ﬁl(w)-

Lemma 4.7.5. Assume v, is radial, then there exists 6, > 0 such that J.,(v) > J,(0) =

0 with ||v||g, < 6.
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Proof. From above calculation we have
Jy(v) = Iy(vy +v7) = L(vy) + HVU HLQ(R") + H —quﬂ(R")’
in view of Lemma 4.7.4 we see this lemma is true. O

Lemma 4.7.6. Assume v > 0, for any radially symmetric p € CP(R"™) with ¢ 2 0,
there exists a constant T > 0 such that J.(Typ) < 0.

Proof. By direct calculation. d

The most important fact about the radial case is the following lemma, due to
Strauss [40] (see also Berestycki and Lions [10]): Next two lemmas deal with the

compactness of P — S sequence.

Lemma 4.7.7 (Strauss [40]). H, compactly embeds in LPT}(R™) for 1 < p < 2* —1.

With this lemma, we can now prove the Palais-Smale condition holds in the radial

case.

Lemma 4.7.8. Suppose v > 0, {v,} is a sequence in H, such that J,(v,) — c and
J (vn) — 0, then {v,} contains a strongly convergent subsequence in H,. Moreover if

vp — Uy > 0, then ug = vy + Vg is a solution to (4.2.1).
Proof. In view of Lemma 4.5.3, we could take u, = v} + v,, then we should have
I(u,) = L(vy) +¢,  and I (u,) — 0.

Again from Lemma 4.5.3, we have that ||Vu,|| 2 + |Jun||pe+r + ||un||Lr+1 is uniformly

bounded, then restricting to a subsequence if necessary, there exist uy € H, such that

U, — ug weakly in H,.
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By Lemma 4.7.7 we also have
U, — Uy strongly in LPTH(R™).

By the weak convergence we can easily see that ug is a solution to the equation (4.2.1).,,

then uy has compact support and I’ (ug) = 0. So we get

n

(L (un) — I’ (u0)) (un — up) = |V (u, — uo)|*dz + / a” (vl — ud)(un — up)dz
Rn

— 7/ at(ul —ud)(up —ug)dz — [ (W — uf)(un, —ug)dz — 0 (4.7.3)
n R”

Since u, — ug strongly in LP*}(R™), then we have

/ (Ul — ub)(up — uo)dx — 0 and / at(ud — ud)(u, — up)dz — 0.

n

Therefore (4.7.3) reduces to

|V (un — uo)|?dx + / a” (ud — ud)(u, — up)dz — 0,

"

R~

which implies u, — ug in D¥?(R"). The final task is to show u, — ug in LIT(R").
Claim: u, — ug strongly in Lt1(R").

Indeed, we know that ug is a solution to the equation (4.2.1)., and has compact
support, then take a ball B centerred at the origin such that Q°* CC supp(ue) CC B,

since [p, a”(ug — ud)(un — up)dzr — 0, we have

/ 0= (uf — 1) (tn — uo)dz — O,
R"—B

that is

/ a~uldr — 0.
R*-B

By assumption (4.0.2) we get [p._pud*'dr — 0, which implies

U, — ug strongly in LITHR™),
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since u, — ug strongly in LPT1(R"). Therefore

U — ug Strongly in H,.
This lemma is done. O
Remark 4.7.9. It is worth pointing out that this lemma includes the case v = 0.

Theorem 4.7.10. Suppose there exists 11, > 0 such that for any p € [0, 1,]

inf{J,(v) | llvlls, = p} =0,

and ¢, = 0, which s defined in the next theorem, then for each p € (0, n,), the problem

(4.2.1), has a solution with |ju — v,||g, = p.

Proof. For any fixed p € (0, 7,), the set F' = 0B(0, p) in H, satisfies the hypothesis of
theorem (1) in Ghoussoub and Preiss [25]. their Theorem (1.bis) asserts the existence

of a solution for each p € (0, 7,) with the help of above lemma. ]

Remark 4.7.11. In their concave plus convexr example, Ambrosetti, Brezis, and Ce-
rami [5] prove uniqueness of a “small” solution for their problem. In order to prove
the same kind of result for ({.2.1),, the possibility of the type of degeneracy in Theo-

rem 4.7.10 must be eliminated.

Theorem 4.7.12. Assume a(x) = a(|z|). then for any v € (0, T'), Sp has at least

two elements.

Proof. Now for fixed v, we have U, and v, in S),, moreover U, is radial. If they are
different, then this theorem is done; if they are the same, then v, is radial, so consider

the following set

S, ={o€C(0, 1], H,) | o(0) =0 and o(1) = Ty}.
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where ¢ € C° N H,, ¢ > 0 and J,(T'¢) < 0, this is possible because of Lemma 4.7.6.
Let ¢, = infyes, maxsep, 1] Jy(0(s)), then from Lemma 4.7.5, we see that J,(v) > 0

with {|v||n, < &;. Therefore ¢, > 0.

If there exists some p < &; such that inf{J,(v) | |[v||ln, = p} > 0, then we have
¢y, > 0. By the Mountain-Pass Theorem of Ambrosetti and Rabinowitz, there exists a
solution V, of (4.2.1), with J,(V,) > 0, i.e. I,(V,) > I,(v,), which implies that V, is

different from v,.
If not, but ¢, > 0, we still have the same result like above.

If not and ¢, = 0, then for all p € [0, &), we have inf{J (v) | ||v||ln, = p} =0,
then from Theorem 4.7.10 we see that there are infinite many solutions of (4.2.1,. This

theorem is proved.

With more assumptions on a(|z|) we can distinguish the two solutions.

Corollary 4.7.13. Assume a(x) is radial and decreasing, then Syr., has at least two

radially decreasing solutions.

Proof. Since a(z) is radial and decreasing. then from Lemma 4.7.1 we can choose v,
to be radial and decreasing, so we can find a second solution V,, which is radial. From

Theorem 4.6.9, V, is also decreasing,. O

Corollary 4.7.14. Assume a(z) is radial and decreasing, in addition it is smooth,

then Sy~ has at least two radially decreasing elements, which are different in Q0.

Proof. From above corollary we have two different radially decreasing elements, v., and

V,, so at least one of them, say V,, does not coinside with U,,.

Claim: V,(0) > U,(0).
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Indeed, since U, is minimum element, then V,(0) > U,(0). Now if U,(0) = V,(0) =

a > 0, then for € < a, the following initial value problem has at most one solution
(r"tu(r))e + " Hay (Mud(r) +uP(r)) =0 u(0)=a, w(0)=0 and u>e

For proof, see proposition 2.35 in [32]. Also we notice that for ¢ sufficiently small,
the set S = {r € R* | 0 < V,(z) < ¢} CC Q by Lemma 4.1.7. Moreover if €
shrinks, the set S, shrinks since V/, is radially decreasing. Therefore just like the proof

of Lemma 4.2.8, we see that the following equation has at most one solution
—Av=avi+v?in S, v ="V, on 05..

So we should have U, = V, in R". It is a contradiction. Hence this theorem is done. O

In the end of this section we show the cxistence of a solution for (4.2.1), with v = 0.

Theorem 4.7.15. Assume a(z) = a(|z]). then (4.2.1), with v = 0 has a radial solu-

tion.
The proof is very similar to the case ~ > 0, so we briefly present the proof in a few
lemma.

Consider the following minimization problem in a convex constraint set
Inf {fH(v) | veY,} and Y. ={veH,;| 0<v<U,ae} (4.7.4)

Lemma 4.7.16. For v sufficiently small. ({.7.4) attains infimum at v = 0.

Proof. 1t is easy to see that for any v € Y., we have

IU > C’lHU”i?*(ﬁ{") - CQH'U“I[);’}(Rn)v

since U, has compact support. But lim,_g+ ||{U;||Lo@®n) = 0, then Io(v) > 0 for any
v € Y, and 7 small. In particular the infimum is achieved at v = 0 for ~y sufficiently

small. 0
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Now fix a small v > 0 such that above infimum reaches at v = 0, choose a ball
B, centered at the origin such that supp(U,)CC B,, since %% CC supp(U,), then we

have %t CC B,. We have two lemma similar to Lemma 4.7.3 and Lemma 4.7.4.

Lemma 4.7.17. v = 0 is a local minimizer for Iy in HY(B,); that is, there erists

4 > 0 such that

Iy(v) > 0 for all v e H'(B,) with |Jv— (s, <9

Proof. Since supp(U,)CC B,, we also get
I,(0) = inf{Iy(v) | ve HY(B,) and 0 <v < U,}.
Then the result follows from Proposition 5.2 in [2]. O

Lemma 4.7.18. v = 0 is also a local minimizer for Iy in H,.

The proof is exactly the same as in Lemma 4.7 4.
Next we see that

2 1 —(qgt1
L2(R™) + m”v HLq+1(Rn)-

Jo(®) = (") + 5|90

The following steps is the same as v > 0. we just simply replace v, with 0, then above
lemma and Lemma 4.7.6 assure the Mountain-pass structure, Lemma 4.7.8 gives the

compactness of P-S sequence and Lemma 4.7.10 takes care of special case.
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