
Using Automatic Differentiation
to Implement a Family of

Material Models

Robert Mastragostino and W. Spencer Smith

January 2015

Eng 1 Technical Report

McMaster University

Contents

1 Introduction to Virtlab 1
1.1 Experimental Setup . 1
1.2 Physical Background . 1

2 Automatic Differentiation 4
2.1 An Overview of Automatic Differentiation 5
2.2 FADBAD++ . 7

3 User Interface and Compatibility 8
3.1 Creating a Material Model . 9
3.2 Running an Experiment . 10

4 Results 11
4.1 Accuracy . 11

4.1.1 Power Law Fluid . 11
4.1.2 Strain Hardening Material 13

4.2 Benchmark Tests for Speed 14

5 Conclusion 17

1

Abstract

Virtlab is a virtual material testing laboratory that works with a variety
of material models. These materials specify functions as part of their defini-
tion, some of which must be differentiated for use in the simulator. Virtlab
can be extended with new models by the user, and as a result all functions
needed will not be known at development time. To prevent the user from
calculating large error-prone expressions by hand, general purpose methods
for calculating these derivatives must be considered. Previously, Maple’s
symbolic computation and code generation facilities were used for this task.
However, this creates a dependency on a commercial software package and
an associated maintenance challenge if the Maple interface should be mod-
ified in the future. The goal of the current project is to use FADBAD++,
an automatic differentiation package, for the same task and to compare the
two methods. The refactored code proved to be faster in some cases, and
slower in others. Enough changes were made to the underlying code that
the particular reasons for this are unknown, and a more detailed analysis is
needed to determine the direction of future development.

1 Introduction to Virtlab

The focus of this project is on the Virtlab virtual material testing simulation
software [2, 5, 6]. Virtlab simulates various material tests using a variety of
constitutive equations and can be extended to easily include new models and
materials.

This ability to implement user-created models not known at development
time necessitates general purpose methods for computing various quantities,
especially derivatives. This motivated the use of Automatic Differentiation,
which is described in Section 2. The use of Automatic Differentiation resulted
in necessary changes to the interfaces used to define materials and run exper-
iments, which is described in Section 3. The results of these modifications
are discussed in the Section 4 and the conclusions are given in Section 5.

1.1 Experimental Setup

Virtlab uses the finite element method on a single hexahedral element to
simulate an experiment. The state of the element is defined by its eight ver-
tices, which have various boundary conditions (displacements and/or forces)
applied to them, according to the experiment being run. These boundary
conditions can be changed over the course of the experiment, allowing for
more complicated tests.

Tests can generally be classified as either displacement controlled or load
controlled, though Virtlab allows for arbitrary combinations of these, if de-
sired. Experiments will typically require various parameters, which must be
supplied in the input file (Section 3.2). The test used for the experiments
done in this report was a uniaxial extension test in the x-direction, as shown
in Figure 1.

All motion in the x-direction is controlled: the nodes in the yz plane are
fixed in the x-direction, while the other nodes are pulled along the x-axis at
a fixed displacement rate. Movement is otherwise unconstrained.

1.2 Physical Background

The presentation in this section is based on the physics presented in [2].
Assuming other body forces (gravity, inertia, etc.) are ignored, the block
must always satisfy the equilibrium equation:

1

y

x

z

Figure 1: Uniaxial extension test (from [2]).

LTσ = 0 (1)

where the differential operator LT is defined as

LT =

 ∂
∂x

0 0 ∂
∂y

0 ∂
∂z

0 ∂
∂y

0 ∂
∂x

∂
∂z

0

0 0 ∂
∂z

0 ∂
∂y

∂
∂x

 (2)

The stress tensor is represented here by a 6 dimensional vector as

σ = [σxx, σyy, σzz, σxy, σyz, σxz]
T (3)

where the first three stress components are normal to the block faces, and
the last three are the shear components.

The equilibrium equation is not enough to solve for the unknown dis-
placements and stresses. To have enough equations for a solution, one can
introduce the constitutive equation, which specifies how the stresses respond
to deformation. To represent deformation we introduce the strain tensor:

ε = [εxx, εyy, εzz, γxy, γyz, γxz]
T (4)

whose components are defined analogously to those in the stress tensor.

2

Virtlab is intended to model both elastic and viscoplastic behaviour. Elas-
tic behaviour exists when the stress tensor is proportional to the strain tensor,
defined by

∆σ = D∆εe (5)

∆εe is the most recent change in the elastic strain. The D matrix is
defined as follows:

D = χ

1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1−2ν

2
0 0

0 0 0 0 1−2ν
2

0
0 0 0 0 01−2ν

2

 (6)

where χ = E
(1+ν)(1−2ν) . E is Young’s Modulus and ν is Poisson’s ratio.

Viscoplastic behaviour occurs when stress (specifically the deviatoric stress
tensor) instead relates to the strain rate. The deviatoric stress tensor s is
defined as s = σ− [σm, σm, σm, 0, 0, 0]T , where σm = 1

3
(σxx +σyy +σzz). The

relationship between the viscoplastic strain rate and this tensor is assumed
to be proportional:

ε̇vp = λs (7)

Since we want Virtlab to handle materials that may express both elastic
and viscoplastic behaviour, we use the superposition principle and define

∆ε = ∆εe + ∆εvp = ∆εe + ∆tε̇vp (8)

Here ∆ε is the total strain from both effects, and ∆t is the timestep. We
can combine Equation 5 and Equation 8 to find

∆σ = D(∆ε−∆tε̇vp) (9)

This equation gives us the stress change in terms of a given strain incre-
ment. However, different materials can have very different viscoplastic strain
rates, and for our purposes this is what sets material models apart. A good
family of models that can represent a wide variety of elastic and viscoplastic
behaviours has been presented by Perzyna [3]:

3

ε̇vp = λ
∂Q

∂σ
= γ < φ(F) >

∂Q

∂σ
(10)

Where Q is the viscoplastic potential, γ is a fluidity parameter, F is the
yield function and

< φ(F) >=

{
0 F ≤ 0

φ(F) F > 0
(11)

φ(F) determines how the material behaves after it yields, and ε̇vp is 0
if the material has not yielded (i.e. it is entirely elastic within the yield
surface). It is the yield function F that lets the equation represent elastic,
viscous, viscoplastic and viscoelastic effects. Q depends entirely on σ, while
F depends on both σ and a hardening parameter κ(εvp). This lets us model
strain hardening and softening materials as well. Each component of this
equation is individual to a given material model. So to specify a model the
user must give Virtlab expressions for F,Q, φ, κ and the constant γ. These
expressions are part of the input to Virtlab.

An informative example is the specification of a power law fluid:

F (σ, κ) =
√

3J2
Q(σ) =

√
3J2

φ(F) = Fm

κ(εvp) = 0
γ = A

(12)

where J2 is the second invariant of the deviatoric stress tensor, and A and
m are material constants. While this is a relatively simple example, the
functions involved can be of widely varying and complicated forms (especially
D and Q), requiring a method that can work without knowing the particular
form of these functions.

2 Automatic Differentiation

As the previous section suggests, many derivatives need to be calculated
during the simulation of a given experiment. Often these are derivatives
of functions that are specific to a material model. Since Virtlab should
be capable of easily incorporating new models, these will not all be known
at development time. A generic method for calculating these derivatives

4

is desired so that the end user does not have to compute them by hand.
Previously a tool called MatGen [2] was implemented for this purpose using
Maple’s symbolic differentiation and code generation facilities. To create
a material model with MatGen, a user specifies definitions of F,Q, κ, φ, γ
and any needed material constants. The elastic modulus and Poisson’s ratio
are material properties that are always included, since they are needed to
define the elastic constitutive matrix D. Functions were specified in a high-
level domain-specific language, featuring many macros that are common in
material definitions, such as J2. Maple then take these definitions, calculates
the various derivatives, and uses this information to generate a C++ file
describing the material that MatCalc can then use to simulate an experiment.

The code generation in MatGen was done in a naive way, such that the
derivatives were included in the file (and therefore recalculated) every time
they were needed, rather than every time they were changed. This method
also subjected Virtlab to versioning issues: when Maple 15 was used instead
of Maple 14, the generated code failed to give proper answers. It also created
a large dependency on commercial software: only a small fraction of Maple’s
tools are needed for this project, so this dependency may unnecessarily limit
future usage of Virtlab. These issues justify a search for a new approach. In
the current work, the new approach involves automatic differentiation and
the FADBAD++ package [7].

2.1 An Overview of Automatic Differentiation

Automatic differentiation (AD) is a method of computing derivatives without
creating large unwieldy expressions (like symbolic differentiation) or intro-
ducing numerical inaccuracies (like numeric differentiation). To implement
AD we used the FADBAD++ program. FADBAD stands for “Forward Auto-
matic Differentiation and Backward Automatic Differentiation,” which rep-
resents the main two types of AD that FADBAD++ is capable of. Forward
AD was used for the majority of the project. To see why and how AD works,
we give a brief introduction to dual numbers.

To construct the dual numbers, one augments the real number system
(R) with a new element ε, such that ε2 = 0 and ε 6= 0. The usual rules of
algebra otherwise apply [1]. A dual number can then be represented as

x+ x′ε (13)

5

where x, x′ ∈ R, while ε is not and is instead a new construction. The goal of
dual numbers in this context is to capture the behaviour given by truncating
the Taylor series to first order, which is the motivation for the definition of ε.
This implies that if we consider the x′ to be the derivative of x, the standard
rules of differentiation follow:

(x+ x′ε) + (y + y′ε) = (x+ y) + (x′ + y′)ε (14)

Here we see that the sum of derivatives is the derivative of the sum.
The product rule similarly arises naturally from multiplication, as follows:

(x+ x′ε) · (y + y′ε) = xy + xy′ε+ x′yε+ x′y′ε2 = (xy) + (xy′ + yx′)ε (15)

The real components are multiplied normally, while the computation of the
new dual component follows the same pattern as for the product rule. Second
order behaviour is ignored, thanks to the definition of ε.

The quotient rule can also be determined using algebraic manipulation,
as follows:

x+ x′ε

y + y′ε
=

(x+ x′ε)(y − y′ε)
y2 − y′2ε2

=
x

y
+
x′y − y′x

y2
ε (16)

These results can be extended to any smooth real function using its Taylor
series expansion of a dual number. As an example, one can consider sin(x+
x′ε), for which the Maclaurin series expansion is:

sin(x+ x′ε) =
∞∑
n=0

(−1)n(x+ x′ε)2n+1

(2n+ 1)!
(17)

From [1, p. 2], we have the formula for raising a dual number (x+x′ε) to
the power m:

(x+ x′ε)m = xm +mx′xm−1ε (18)

This formulae, using m = 2n + 1, can be substituted into Equation 17,
to yield:

∞∑
n=0

(−1)n[x2n+1 + (2n+ 1)x′x2nε]

(2n+ 1)!
=
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
+ εx′

∞∑
n=0

(−1)nx2n

(2n)!

(19)

6

The first series is the Maclaurin series for sin(x) and the second can be
recognized as the Maclaurin series for cos(x). Therefore,

sin(x+ x′ε) = sin(x) + cos(x)x′ε (20)

Since it is arbitrary, we can select the value of x′ to be 1. Using the value
of 1, a function applied on a dual number will return the derivative of the
function in the second/dual component.

AD builds on the idea that an algebra can be done directly on (value,
derivative) pairs. We adjoin a new element (multiple elements in the multi-
variate case) and apply the derivative rules of each operation and function
as they are called.

The theory of forward AD makes extensive use of dual numbers. We
would like to generalize these results to compute the gradients of multivari-
able functions. Fortunately this is straightforward using the FADBAD++
approach.

2.2 FADBAD++

FADBAD++ includes a template that will modify some other type (typi-
cally a double or float) into a type suitable for automatic differentiation. In
this way, a variable in FADBAD++ consists of a value and a gradient array.
When initialized, the array is empty. Before we use these variables in func-
tions, we must initialize these “gradient arrays” so that the partial derivatives
are calculated properly. As a simple example, consider the following code,
which is explained below:

fadbad:F<double > x=5,y=3;

x.diff (0 ,2);

y.diff (1 ,2);

fadbad ::F(double)v=x*y;

cout <<v.val()<<endl;

cout <<v.d(0)<<endl;

cout <<v.d(1)<<endl;

We can break this code down line by line:

7

fadbad:F<double > x=5,y=3;

At this point, x=5 [], and y=3 []. The gradient arrays are currently
empty.

x.diff (0 ,2);

y.diff (1 ,2);

Now x=5 [1,0], and y=3 [0,1]. The first argument to diff is the posi-
tion in the array that this variable will occupy (and therefore the component
which is initialized to 1). The second is the length of the array. Two vari-
ables must have the same length of array to be compatible. If two variables
are initialized to occupy the same position, the code will run but the results
will be incorrect, as the derivative calculations will overwrite each other at
various points.

fadbad ::F(double)v=x*y;

This is where the actual work happens. the ∗ operator has been over-
loaded to apply the product rule to each element of the array. So after
this line we find that v=15 [3,5]. Other operators and functions have been
overloaded to work similarly.

cout <<v.val()<<endl;

cout <<v.d(0)<<endl;

cout <<v.d(1)<<endl;

This are how we access the computed values. The first line gets the value
of v, which is 15. The second gets ∂v

∂x
(since x was initialized with position 0

in the gradient array), which is 3. The third line gets ∂v
∂y

= 5 similarly.
AD includes the virtues of both symbolic differentiation and numerical

differentiation. It gains the accuracy of symbolic derivatives, but eliminates
large expressions by using numerical values at every step. It gains the sim-
plicity of numerical differentiation for similar reasons, but does not suffer
from inaccuracies, due to its use of the chain rule and the symbolic deriva-
tive formulas for each individual operation.

3 User Interface and Compatibility

In this section we first look at how the original symbolically generated code
for creating material models was modified to use AD. We then look at how
the steps for actually running a material test have been changed.

8

3.1 Creating a Material Model

AD computes the gradient of a function alongside the function value itself.
Unlike the case for symbolic computation, no actual expression for the deriva-
tive is created; the calculations must be done at runtime and cannot be hard-
coded in advance. This necessitates treating the derivative as a black box
whenever it appears in a larger calculation, which in turn suggests rewriting
the code in a manner more similar to the mathematical formulas describing
it. For example, the code representing the Perzyna Equation (Equation 10)
is as follows:

Because of this abstraction, material models now only differ in a few
places: namely in the definitions of material-specific functions and wherever
material constants are called. This motivated the decision to consolidate the
perviously completely distinct material files into one, which could then have
these smaller parts replaced by a smaller file. Macros were used to construct
a simple generic material creation interface, intended as a proof of concept
in place of MatGen. Continuing with the example of the power law fluid, the
new interface is as follows:

A material is defined by a header file such as this, which is then included

9

in the generic material class. This header defines the macros in the generic
file to represent a given material. The user must specify the number of
constants (up to four), and their names. The constant macros are of the
form __CONST_n__, and must be given in numerical order (__CONST_2__
cannot be a specified if __CONST_1__ is not). The definitions of F,Q, κ, φ
and γ must also be given. Defintions of the same macros used in MatGen
are given to help with this.

3.2 Running an Experiment

The input file used to run a given experiment is unchanged from that used
previously [2].

The usage of the yield function and algorithm options have changed
slightly. In the original code, the derivatives were expanded symbolically
where needed, but these derivatives did not depend on all of the same inputs
as the function they were being called in, and so could have been calculated
less often. To do this in the revised AD code, we used members of the mate-
rial class to store the values and gradients of the Q and F functions. Other
gradients that were only called once per step were not stored this way. The
integrator and material class were then rewritten, so that the gradients are
now calculated directly after the stress is updated, and the values are then

10

accessed when needed. This reduced the number of gradient calculations in
half. However, as a side effect different parts of MatCalc are now incompat-
ible. Both the elastic and viscoplastic integrators are compatible with the
old materials, but not the new. Currently the radial return map algorithm
is the only one that works for the generic material file. The integrator had
to be modified to remove the redundant function calculations, breaking the
interface. The radial return map algorithm is the most accurate and can
handle all materials, so in the interests of time the other integrators were not
similarily modified to work with the generic material file.

A minor issue is that a material is no longer specified before running
a given experiment: to switch materials, the material-specific header that
is included in the generic material file must be changed. The user must
then go to .../3.0/matcalc and run make to rebuild MatCalc. This is an
inconvenience. A better system that avoids this and the error-related issues
inherent to macros could ideally be developed in the future.

4 Results

The simulation results for the AD code versus the symbolic code are very
similar, as presented in the next section. The benchmark experiments for
speed show more variety in the results, as discussed below.

4.1 Accuracy

Experiments done on the power law fluid and strain hardening material
showed negligible deviations from the results of the old code. The relative
difference between the stress vectors were calculated using the `2 norm as

||σnew − σold||2
||σold||2

× 100% (21)

The relative difference between the strain vectors is calculated similarly.

4.1.1 Power Law Fluid

Figure 2 shows the simulations results for a uniaxial extension of a power
law fluid, with three different values of the power m. The parameters used
to define the experiment are listed below.

11

Figure 2: Stress versus train for uniaxial extension of a power law fluid.

• Experiment: Uniaxial extension in the x-direction

• Material Model: Power Law Fluid

• Numerical Integration Algorithm: Radial Return Map

• Time Step: 2× 10−3 seconds

• Time Span: 3 seconds

• Element Dimensions: 1m by 1m by 1m

• Displacement Rate: 1× 10−2 metres/second

• Material Constants:

– Elastic Modulus: 3 · 104 Pa

– Poisson’s Ratio: 0.3

– A: 2× 10−4

– m: 1.4, 1.0, and 0.75.

The relative difference between the old code and new code is extremely
low, as shown in Table 1.

12

m σ % difference ε % difference

1.4 3.76 · 10−7 0.0
1.0 5.28 · 10−8 0.0
0.75 1.49 · 10−9 5.58 · 10−12

Table 1: Relative difference between symbolic and AD codes for power law
fluid experiments.

4.1.2 Strain Hardening Material

Figure 3 shows the simulations results for a strain hardening material with
different values of the strain hardening parameter (n). The experimental
setup of these experiments were the same as for the power law fluid, given in
Section 4.1.1. The material constants used are listed below.

• Elastic Modulus: 3 · 104 Pa

• Poisson’s Ratio: 0.3

• A: 2× 10−4

• m: 1.00

• n: 0.95, 0.90, 0.85, 0.80

As for the power law fluid, the relative difference between the new and
old simulation results is small, as shown in Table 2.

n σ % error ε % error

0.95 2.17 · 10−5 5.58 · 10−12

0.90 7.89 · 10−10 1.04 · 10−11

0.85 1.05 · 10−9 8.36 · 10−12

0.80 1.36 · 10−9 4.35 · 10−12

Table 2: Relative difference between symbolic and AD codes for strain hard-
ening experiments.

13

Figure 3: Stress versus train for uniaxial extension of a strain hardening
material.

4.2 Benchmark Tests for Speed

MatCalc 3.0 was benchmarked against the original MatCalc 2.0 code for
comparison. Experiments were run with the following parameters.

• Experiment: Uniaxial extension in the x-direction

• Material Model: Power Law Fluid

• Numerical Integration Algorithm: Radial Return Map

• Time Step: 2× 10−3 seconds

• Time Span: 3 seconds

• Element Dimensions: 1m by 1m by 1m

• Displacement Rate: 1× 10−2 metres/second

• Material Constants:

– Elastic Modulus: 3 · 104 Pa, 3 · 103 Pa, and 3 · 102 Pa

14

– Poisson’s Ratio: 0.3

– A: 2× 10−4

– m: Ranging from 1.4 to 0.5, in intervals of 0.1.

For the strain hardening material, the material constants were:

• Elastic Modulus: 3 · 104 Pa

• Poisson’s Ratio: 0.3

• A: 2× 10−4

• m: 1

• n: Ranging from 0.55 to 0.95, in intervals of 0.05.

The relative differences between experiment execution times for the power
law fluid and the strain hardening material are respectively given in Figures 4
and 5. The three different plots in Figure 4 correspond to the different values
of E listed under the material constants above. Modifying E has the influence
of changing the relaxation time for the power law material. A positive %
difference in these plots means that the AD code is slower relative to the
symbolic code. A negative % difference means that the AD code is faster.

The data shows some unusual trends. For example, the amount of time
taken varies widely with the various material constants. This is likely re-
lated to how many times the loops within an integration step are running,
though the non-monotonic behaviour suggests that the issue may be subtle.
Unfortunately we did not have access to a proper benchmarking tool, which
would have allowed for better optimization and more detailed results. Some
differences between the AD and symbolic results are notable:

• The AD code typically runs slower for the power law fluid, but typically
runs faster for the strain hardening material.

• When AD code is faster, it’s typically faster by a large margin, while
when it’s slower it’s only by a few percent.

• The new code is less stable. For example, the old code could continue
the strain hardening material experiments to lower values of n, but the
new code could not do so, unless a smaller timestep was used.

15

Figure 4: Percentage difference in execution time between AD versus sym-
bolic code for a power law material with different relaxation times.

• The new code still had periods where it ran much faster even when AD
was implemented, but before the redundant calculations were removed
(as described in Section 3.2). Removing those calculations resulted in
a steady speed increase of roughly 3-6%. This may be cache related,
but better diagnostic tools are needed to investigate the difference.

16

Figure 5: Percentage difference in execution time between AD versus sym-
bolic code for a strain hardening material.

5 Conclusion

Automatic Differentiation is a suitable method for calculating derivatives at
runtime in Virtlab. Using FADBAD++ removes the dependency on com-
mercial software, potentially increasing Virtlab’s future userbase. Using AD
also drastically shortens the amount of code needed to define various ma-
terials, shrinking the size of the program. While the macro-based material
creation interface is not optimal, it is easy to use and shows that the new
method creates no inherent issues for the end user. Given more time, this
could be reworked into a more suitable generative approach, potentially inte-
grated into MatGen. However, this is but one of many possible approaches.
To determine the best approach for Virtlab in the future, more comparisons
need to be done:

• Using free software such as Sage [4] or SymPy [8] would allow compu-
tation of symbolic derivatives and code generation without depending
on a commercial product.

• Redundant derivative calculations are not inherently required when
using symbolic computing. The symbolic method could be rewritten
to remove these redundancies.

17

• Better diagnostic tools, such as Valgrind [9], should be used to better
understand the speed differences found and to investigate how each
method can be improved.

Acknowledgements

The financial support of the Natural Sciences and Engineering Research
Council of Canada (NSERC) through the Undergraduate Student Research
Award (USRA) program is gratefully acknowledged.

References

[1] Ian Fischer. Dual-Number Methods in Kinematics, Statics and Dynamics.
Taylor & Francis, 1998. ISBN 9780849391156. URL http://books.

google.com.tr/books?id=hfinyCUHDW0C.

[2] John McCutchan. A generative approach to a virtual material testing lab-
oratory. Master’s thesis, McMaster University, Hamilton, ON, Canada,
September 2007.

[3] P. Perzyna. Fundamental problems in viscoplasticity. Advances in Applied
Mechanics, pages 243–377, 1966.

[4] Sage Development Team. Sage computer algebra system, 2014. URL
http://sagemath.org/index.html.

[5] Gonzalo Sanchez. Virtual material testing laboratory (version 1.1). Mas-
ter’s thesis, School of Computational Science and Engineering, McMaster
University, Hamilton, ON, Canada, April 2010.

[6] W. Spencer Smith and Huanchun Gao. A virtual laboratory for material
testing. In N. Callaos, R. H. Chavez, S. Franger, R. Raut, and Z. He, ed-
itors, WMSCI 2005, The 9th World Multi-Conference on Systemics, Cy-
bernetics and Informatics, Volume VI, pages 273–278, Orlando, Florida,
2005.

[7] Ole Stauning and Claus Bendtsen. FADBAD++ flexible automatic differ-
entiation using templates and operator oveloading in ANSI C++, 2003.
URL http://www.imm.dtu.dk/~kajm/FADBAD/.

18

[8] SymPy Development Team. SymPy python symbolic mathematics li-
brary, 2013. URL http://www.sympy.org/en/index.html.

[9] Valgrind Development Team. Valgrind diagnostic tool, 2014. URL http:

//valgrind.org/.

19

