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Abstract 


In this thesis, several computationally-efficient approximate soft demodula­

tion schemes are developed for multiple-input multiple-output (MIMO) com­

munication systems. These soft demodulators are designed to be deployed 

in the conventional iterative receiver ('turbo') architecture, and they are de­

signed to provide good performance at substantially lower computational 

cost than that of the exact soft demodulator. The proposed demodulators 

are based on the principle of list demodulation and can be classified into 

two classes, according to the nature of the list-generation algorithm. One 

class is based on a tree-search algorithm and the other is based on insight 

generated from the analysis of semidefinite relaxation techniques for hard 

demodulation. 

The proposed tree-search demodulators are based on a multi-stack 

algorithm, developed herein, for efficiently traversing the tree structure that 

is inherent in the MIMO demodulation problem. The proposed scheme was 

inspired, in part, by the stack algorithm, which stores all the visited nodes 

in the tree in a single stack and chooses the next node to expand based on 

a 'best-first' selection scheme. The proposed algorithm partitions this global 

stack into a stack for each level of the tree. It examines the tree in the nat­

ural ordering of the levels and performs a best-first search in each of the 

stacks. By assigning appropriate priorities to the level at which the search 
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for the next leaf node re-starts, the proposed demodulators can achieve 

performance-complexity trade-offs that dominate several existing soft de­

modulators, including those based on the stack algorithm and those based 

on 'sphere decoding' principles, especially in the low-complexity region. 

In the second part of this thesis it is shown that the randomization 

procedure that is inherent in the semidefinite relaxation (SOR) technique for 

hard demodulation can be exploited to generate the list members required 

for list-based soft demodulation. The direct application of this observation 

yields list-based soft demodulators that only require the solution of one SOP 

per demodulation-decoding iteration. By approximating the randomization 

procedure by a set of independent Bernoulli trials, this requirement can be 

reduced to just one semidefinite program (SOP) per channel use. An ad­

vantage of these demodulators over those based on optimal tree-search al­

gorithms is that the computational cost of solving the SOP is a low-order 

polynomial in the problem size. The analysis and simulation experiments 

provided in the thesis show that the proposed SOR-based demodulators of­

fer an attractive trade-off between performance and computational cost. 

The structure of the SOP in the proposed SOR-based demodulators 

depends on the signaling scheme, and the initial development focuses on 

the case of QPSK signaling. In the last chapter of this thesis, the extension 

to MIMO 16-QAM systems is developed, and some interesting observations 

regarding some existing SOR-based hard demodulation schemes for MIMO 

16-QAM systems are derived. The simulation results reveal that the excel­

lent performance-complexity trade-off of the proposed SOR-based schemes 

is preserved under the extension to 16-QAM signaling. 
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Chapter 1 

Introduction 

'You see, wire telegraph is a kind of very, very long 

cat. You pull his tail in New York and his head is 

meowing in Los Angeles. Do you understand this? 

And radio operates in exactly the same way: you 

send signals here, they receive them there. The 

only difference is that there is no cat.' 

ALBERT EINSTEIN 

0 NE OF THE advantages of wireless communication systems is the 

freedom of untethered communication. This offers great convenience 

to the user, but creates challenging issues for the designer. One of the current 

challenges in wireless communications is to design efficient wireless systems 

that can communicate at high data rates (of the order of Gigabits per second) 

in the presence of the multipath propagation that dominates most wireless 

communication environments [1]. One way to work towards this goal is to 

use multiple antennas at the transmitter and/or the receiver. The main focus 

of this thesis is on designing effective and efficient demodulation schemes 

for multiple antenna communication systems that provide reliable (point-to­

point) communication at high data rates. In this chapter this focus will be 
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placed in context by providing an overview of some of the principles of mul­

tiple antenna communication systems, and then outlining the contributions 

of this thesis. 

1.1 Multiple antenna communication systems 

In wireless communication systems messages are communicated by mod­

ulating the properties of electromagnetic waves. In most terrestrial appli­

cations, there will be more than one path along which these waves may 

propagate from the transmitter to the receiver. In some environments there 

will be a "line-of-sight" path, while in others some or all of the paths will 

involve reflections from electromagnetic scatterers in the environment. In 

general, each of these paths will incur a different attenuation, phase change 

and propagation delay. In this thesis, the focus will be on applications in 

which the bandwidth of the transmitted signal is not wide enough for the 

delays between the paths to be resolved at the receiver. As a result, the ef­

fective (complex) gain of the base-band equivalent channel can be modeled 

as the sum of the (complex) gains along each path. Depending on the phase 

relationships between the paths, this addition may have a constructive or a 

destructive effect on the received signal power [2]. Since even small changes 

in the position of the transmitter, receiver, or scatterers can change the phase 

relationships between the paths quite dramatically, received signal power in 

many wireless applications may change quite rapidly. This phenomenon, 

which is commonly known as fading, is one of the distinguishing features 

of wireless communication systems; and the mitigation (or exploitation) of 

fading is one of the key aspects of wireless system design. 

In a communication environment with a large number of scatterers 

2 
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with a reasonably uniform distribution, a small change in the position of the 

receive antenna tends to result in a substantial change in the channel char­

acteristics, and the large number of scatterers makes this change difficult 

to predict. Indeed, the statistical dependence between the channel gains 

tends to disappear with position changes of the order of a wavelength of 

the electromagnetic wave (e.g., [3]). This observation encouraged design­

ers to install multiple antennas at the receivers with spacing of the order of 

a wavelength. As the channel gains to each of these antennas are approx­

imately independent (under the rich scattering assumption), the likelihood 

that all receive antennas experience a deep fade is substantially reduced, and 

by exploiting this diversity of the received signals, substantial performance 

improvements can be realized. 

Signal diversity can also be introduced at the transmitter, by transmit­

ting (variants of) the message signal from sufficiently well-spaced transmit 

antennas, and the use of multiple antennas at both the transmitter and re­

ceiver multiplies the potential performance gain that arises from diversity 

(e.g., [4]). Systems with multiple transmit and receive antennas, which are 

often called multiple-input multiple-output (MIMO) systems, also offer the 

potential for substantial increases in the achievable data rate (e.g., [5-8]) 

by sending independent information from each antenna. It is that aspect of 

MIMO systems that motivates much of the development in this thesis. 

The desirable diversity properties of MIMO systems, and their poten­

tial for substantial increases in the achievable data rate have meant that 

they have become a key component in the development of the future wire­

less communication standards; e.g., [1, 9, 10]. For example, MIMO systems 

are becoming the basis for the current wireless systems such as WiFi wire­

less LAN (IEEE 802.lln standard), Mobile WiMAX (IEEE 802.16e standard), 

3 
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______ ~p_a_c~:T!I!l~-J?_~c:!_~l_!1~c_>~_____ ,Interleaver ,-------------,,
' ,,d s : Space-Time ::Scalarb

Encoder n Mapper Mapper :: 
I~-.-----' o I' " 

~-----------------r------ ------~ 

;H 
I 
I 
I 

hannel 
I 

Soft in/out 
Soft MIMO--~----< 

Decoder Demodulator : 
---~ 

Iterative Demodulation and Decoding 

Figure 1.1: MIMO BICM-IDD transceiver. 

LTE (Long Term Evolution) project and UMB (Ultra Mobile Broadband) sys­

tems [10]. However, the computational effort required for optimal detec­

tion of MIMO transmission schemes that operate at such high spectral ef­

ficiencies is beyond the capabilities of the envisioned communication de­

vices [1], and hence there has been considerable interest in the develop­

ment of transceivers that balance the competing demands of rate and com­

putational efficiency at the receiver of such a MIMO communication scheme. 

One of the contributions of this thesis is the development of components for 

a MIMO receiver that achieve desirable trade offs between these two goals. 

As will be discussed in Chapter 2, a popular communication scheme 

that enables considerable flexibility in the selection of an appropriate bal­

ance between rate and computational complexity in both single antenna and 

MIMO communication systems is bit interleaved coded modulation (BICM, 

e.g., [11]); see also Fig. 1.1. In a standard form of this strategy for coherent 

MIMO systems (e.g., [12]), the message bits, d, are encoded using a conven­

tional binary encoder, interleaved, and then modulated into scalar symbols. 
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These scalar symbols are then mapped into space and time as space-time ma­

trix symbols for transmission over the MIMO channel. Given the complexity 

of optimal decoding, the standard reception strategy is to adopt a bit-wise 

iterative "soft" demodulation and decoding (IDD) approach that attempts to 

maximize the a posteriori probability of each bit in the message. This strat­

egy is often called the "Turbo principle" [13], and will be described in some 

detail in Chapter 2. Although this iterative demodulation and decoding strat­

egy offers a substantial reduction in computational cost, the demodulation 

step, which involves the extraction of a sufficiently accurate approximation 

of the likelihood of each bit from the output of the MIMO channel, remains 

a substantial computational burden. Hence, the focus of this thesis is on 

designing low-complexity soft MIMO demodulators. 

Most of the existing approaches to low-complexity soft demodulation 

are based on using the so-called "max-log" approximation of the soft infor­

mation. These approaches can be divided into two major classes. One class is 

based on solving several hard demodulation problems using low-complexity 

schemes, such as tree search algorithms (e.g., [14, 15]) or semidefinite re­

laxation (SDR; e.g, [16]) techniques [17]. The other group is based on list 

demodulation schemes (e.g., [12, 18-20]) in which a list of bit-vectors that 

generate the dominant components of the soft information is carefully se­

lected, and the max-log approximation is performed over that list. This the­

sis will focus on designing computationally efficient list-based soft demodu­

lation schemes. The proposed schemes can, themselves, be divided into two 

classes. The first class, which will be introduced in Chapter 3, is based on 

tree search algorithms and, in particular, the stack algorithm (e.g., [21]). 

The second class, which will be introduced in Chapters 4 and 5, is based on 

semidefinite relaxation techniques. In the next section the contributions of 
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the upcoming chapters of this thesis will be reviewed in more detail. 

1.2 Thesis outline 

The rest of this thesis is divided into five chapters, of which Chapters 3, 4 

and 5 contain the main technical contributions. Chapter 2 provides some 

introductory material as background for these chapters, and Chapter 6 will 

conclude the thesis and suggest some interesting avenues for future work. 

Chapter 2 will review some of the principles of single antenna and 

multiple antenna wireless communications, along with some communica­

tion transceiver architectures that can be used to achieve reliable commu­

nication at high data rates in these systems. As was pointed out in the 

previous section, this chapter will show that among these communication 

schemes a popular one that enables considerable flexibility in the selection 

of an appropriate balance between rate and computational complexity in 

both single antenna and MIMO communication systems is the use of BICM 

scheme (cf., Fig. 1.1). Several existing "space-time" transmission schemes 

mapping the scalar symbols to be transmitted in a MIMO system to symbol 

matrices that span space and time will be reviewed. The receiver of the 

MIMO-BICM scheme shown in Fig. 1.1 uses a strategy which is often called 

the "Turbo principle" [13], and this principle will also be reviewed in some 

detail. As was discussed above, list-based techniques for reduced complexity 

soft MIMO demodulation schemes are the main focus of this thesis, and some 

of the available techniques for constructing this list in a computationally ef­

ficient manner will be reviewed. One group of these techniques involves the 

application of semidefinite relaxation (SOR), and since SOR techniques play 

a key role in the work in Chapters 4 and 5, this mathematical technique will 
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be discussed in some detail. 

In Chapter 3 a multistack algorithm for soft demodulation will be in­

troduced. The algorithm is based on the principles of the stack algorithm 

(e.g., [21]) for traversing the tree structure that is inherent in the MIMO 

demodulation problem. The stack algorithm stores a single stack of visited 

nodes in the tree, and expands the stack using the 'best-first' principle, as 

quantified by the (partial) likelihoods of the tree nodes. In the proposed mul­

tistack algorithm, the single stack is partitioned into a stack for each level of 

the tree, and the algorithm proceeds by performing one best-first search step 

in each of these stacks in the natural ordering of the tree. As will be shown 

in some simulation examples in this chapter, by assigning appropriate prior­

ities to the level at which this 'best-first search per level processing re-starts 

once a leaf node has been obtained, the proposed demodulators can achieve 

trade-offs between performance and complexity that dominate those of sev­

eral existing methods, including the stack algorithm, in the low-complexity 

region. 

Although soft MIMO demodulation schemes based on tree search al­

gorithms, such as the list sphere decoder and the stack algorithm, have a 

lower computational cost than the optimal soft demodulator, their compu­

tational complexity is still exponential in the number of bits transmitted per 

channel use [22]. In contrast, the MIMO hard demodulation schemes that 

are based on semidefinite relaxation techniques have a computational com­

plexity that is a (low order) polynomial of the number of bits transmitted per 

channel use [23]. The existing soft demodulation scheme that is based on 

the SDR technique takes the approach to soft demodulation that requires the 

solution of several hard demodulation problems per channel use [17]. How­

ever, before the developments in this thesis, no list-based soft demodulation 
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scheme that uses the SDR technique has been made available. Chapter 4 

presents such a scheme for QPSK signaling. This soft demodulator has a com­

putational cost that is greatly reduced compared to the existing SDR-based 

soft demodulator [17]. The proposed scheme exploits the randomization 

procedure inherent in the SDR technique to generate the list of candidate 

bit-vectors, and hence it will be called a List-SDR scheme. By approximat­

ing the randomization procedure using Bernoulli randomization trials, the 

computational cost of this demodulator can be further reduced. Indeed, the 

resulting demodulator has a computational cost that is lower than that of 

the existing low complexity demodulators that are based on minimum mean 

squared error with soft interference cancellation (MMSE-SIC) (e.g., [24]). 

The proposed soft demodulator achieves this low computational cost with 

only a small degradation in its performance compared to the existing tree 

search and SDR-based soft demodulators, and its performance is actually 

better than that of the MMSE-SIC demodulator. Since the proposed soft 

demodulator solves only one SDP per channel use, it will be called a Single­

SDR scheme. Efficient implementations of these SDR-based algorithms with 

reduced memory requirements will also be provided in this chapter. 

In the application of SDR techniques to demodulation problems, the 

structure of the corresponding SDP will change depending on the signal con­

stellation that is transmitted. The developments in Chapter 4 are based on 

QPSK signaling and since their extension to higher order constellations is 

not straightforward, these schemes will be extended to be used for 16-QAM 

signaling in Chapter 5. It will be shown in this chapter that two of the 

existing SDR-based hard demodulation schemes for MIMO 16-QAM trans­

mission [25, 26] are equivalent. Furthermore, an efficient interior point 
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method will be developed for the approach that has the lower dimension­

ality. The List-SDR scheme proposed in Chapter 4 solves a maximum a poste­

riori probability (MAP) hard demodulation problem in each demodulation­

decoding iteration. Since the soft information component of the decision 

metric for 16-QAM signaling cannot be expressed in a polynomial format, 

the proposed List-SDR scheme cannot be applied directly. Therefore, two 

polynomial approximations for the metric will be developed in order to 

facilitate the extension of the List-SDR scheme to soft demodulation for a 

MIMO 16-QAM system. The extension of the Single-SDR scheme to 16-QAM 

signaling is performed by approximating the randomization procedure in­

herent in the SDR technique using independent random symbol generators 

with probability mass functions obtained from the SDP that is solved in the 

first demodulation-decoding iteration. This probability mass function is then 

updated in the subsequent iterations using the a priori information from 

the decoder. The simulation results in this chapter will show that the pro­

posed Single-SDR and List-SDR schemes for 16-QAM signaling will provide 

complexity-performance trade-offs that dominate those of some existing soft 

demodulation algorithms. In particular, it will be shown that the Single-SDR 

algorithm has a computational cost that is lower than that of the MMSE-SIC 

demodulator and yet its performance is better than that of this soft demod­

ulator and close to that of some more computationally costly tree search 

algorithms for soft demodulation. 

Chapter 6 will conclude the thesis and will provide some suggestions 

for future research work. 
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A preliminary version of the work in Chapter 3 of this thesis appears 

in 

• 	M. Nekuii and T. N. Davidson, "Reduced-complexity demodulation for 

MIMO-BICM-IDD using modified stack algorithms," in Proc. IEEE Int. 

Conf Acoustics, Speech, Signal Processing, Honolulu, Apr. 2007, vol. 3, 

pp. 65-68, 

and another version will appear as 

• 	M. Nekuii and T. N. Davidson, ''A multistack algorithm for soft MIMO 

demodulation'', to appear in IEEE Trans. Veh. Technol., accepted in final 

form, August 2008. 

Preliminary versions of the work in Chapter 4 of this thesis have appeared 

as 

• 	M. Nekuii and T. N. Davidson, "List Based Soft Demodulation of MIMO 

QPSK via Semidefinite Relaxation'', in Proc. IEEE Wkshp Signal Process­

ing Advances in Wireless Commun., Helsinki, Finland, Jun. 2007. 5 

pages. 

• 	M. Nekuii, M. Kisialiou, T. N. Davidson, and Z.-Q. Luo, "Efficient soft 

demodulation of MIMO QPSK via semidefinite relaxation", in Proc. 

IEEE Int. Conf Acoustics, Speech, Signal Processing, Las Vegas, Apr. 

2008, pp. 2665-2668, 

and another version has been submitted as 

• 	M. Nekuii, M. Kisialiou, T. N. Davidson, and Z.-Q. Luo, "Efficient soft 

demodulation of MIMO QPSK via semidefinite relaxation", submitted 

to IEEE Trans. Signal Processing, May 2008. 
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A version of the work in Chapter 5 has been submitted as 

• 	M. Nekuii and T. N. Davidson, "Soft demodulation of MIMO M-ary 

QAM via semidefinite relaxation", submitted to IEEE Int. Conf Com­

mun., Jun. 2009. 

and another version as 

• 	M. Nekuii and T. N. Davidson, "Soft demodulation of MIMO M-ary 

QAM: An efficient semidefinite relaxation approach'', in preparation 

for submission to IEEE Trans. Wireless Commun. 
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Chapter 2 

MIMO communication systems 

'Calling all. This is our last cry before our eternal 

silence.' 

LAST MESSAGE IN MORSE CODE BY THE FRENCH 

MARITIME SERVICE, JAN 31 1997 

THIS CHAPTER will provide some background discussion in preparation 

for Chapters 3, 4 and 5. In particular, the principles of several different 

modulation and coding schemes for single antenna and multiple antenna 

communication systems will be discussed. 

2.1 Introduction 

The provision of multiple antennas at both the transmitter and the receiver 

of a wireless communication system offers the potential for reliable commu­

nication at data rates substantially higher than those of the single antenna 

systems [ 4-6]. Several modulation, mapping and coding schemes have re­

cently been developed in order to provide good performance at these high 

spectral efficiencies. For applications in which the frequency response of 
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the channel can be deemed to be flat across the transmission bandwidth, 

the transmitted codewords span space and time, and hence they are called 

"space-time" transmission schemes. One of the core challenges in the design 

of such multiple-input multiple-output (MIMO) systems is to obtain good 

performance at high data rates without incurring unreasonable computa­

tional cost. As mentioned in Chapter 1, one pragmatic approach that bal­

ances the competing demands for spectral and computational efficiencies in 

multiple antenna design is the use of space-time techniques in conjunction 

with bit-interleaved coded modulation (BICM) (e.g., [11, 27-30]) with iter­

ative demodulation and decoding (IDD). A key computational bottleneck in 

these schemes is the demodulation step; that is, the extraction of soft infor­

mation (in the form of log likelihood-ratio or an approximation thereof) of 

each of the bits transmitted in a given block from the corresponding output 

block of the MIMO channel. In this thesis we will provide several effective 

and computationally-efficient demodulation techniques for these transmis­

sion schemes. 

In order to place the MIMO-BICM-IDD scheme in context, we will 

first discuss some coding and modulation schemes for single antenna com­

munications systems. Many of the principles of these schemes generalize 

naturally to multiple antenna systems, and hence the discussion of these 

simple schemes will form a framework upon which the rest of this chapter 

will be built. 
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2.2 	 Single input single output communications 

systems and coding 

Communication channels in which the transmitted signal is corrupted by 

additive white Gaussian noise only are often called AWGN channels. In many 

wireline applications, the gain of the AWGN channel can be assumed to be 

constant. However, in many wireless applications, the channel gain varies 

with time and this causes variations in the signal to noise ratio (SNR) at 

the receiver. These channels are usually called fading channels. In the rest 

of this section, we will review some aspects of modulation and coding for 

constant gain and fading AWGN channels. 

2.2.1 	 AWGN channels 

A simple single-input single-output communication system is the AWGN 

channel with a constant gain. Applying the conventional orthogonal basis 

representation [31], the channel output in response to the nth transmitted 

symbol can be written as 

Yn = hsn + Vn, 	 (2.1) 

where sn is the signal transmitted at the nth "channel use", h is the con­

stant (complex) channel gain which is assumed to be known at the receiver 

(coherent reception), and Vn is an independent and identically distributed 

(i.i.d.) Gaussian noise sample with variance CJ 2 per dimension. We then 

define the average signal to noise ratio (SNR) at the receiver as: 

SNR = ihl 2E{is~i} = ihi 2E{is~i} (2.2)
E{lv;I} 2CJ2 • 
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In the next section we will review different modulation and coding 

schemes for reliable communications over AWGN channels, as these pro­

vide the framework for several modulation and coding schemes for multiple 

antenna systems. However, in order to assess the performance of those sig­

naling schemes we need a fundamental benchmark. One such benchmark is 

the capacity of a channel, which is defined as the supremum possible data 

rate that can be transmitted through this channel with a vanishing small 

probability of error. Shannon proved that for an AWGN channel the capacity 

in bits per complex dimension per channel use is given by [32] 

C = log2(1 + SNR). (2.3) 

He showed that reliable transmission is not possible at rates R greater than 

C, and that for R < C there exists a coding strategy under which the average 

probability of error at the receiver can be made arbitrarily small. 

2.2.2 Fading channels 

In wireless communication systems there are typically multiple propagation 

paths between the transmitter and the receiver. Furthermore motion of the 

transmitter, receiver or the scatterers on these paths means that the paths 

gains vary in time. We will consider communication applications in which 

the bandwidth of the transmitted signal is not wide enough for the relative 

delays between these paths to be resolved. In that case, the channel can 

be assumed to be flat in the frequency domain within the transmitted sig­

nal bandwidth. This channel is usually called a frequency-nonselective or 

narrow-band channel [2] and can be represented by a time varying gain, as 
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shown in the following model 

(2.4) 


In this model the (complex) fading coefficient hn is the sum of the (complex) 

channel gains of the different paths from the transmitter to the receiver. 

One simple method to extract a statistical model for hn is to assume that 

there are a large number of statistically independent reflected and scattered 

paths. Hence, according to the Central Limit Theorem, hn can be modeled 

as a circularly symmetric complex Gaussian random variable. Because the 

squared magnitude \ hn \2 has a Rayleigh distribution, this channel is often 

called a Rayleigh fading channel. 

In the applications that one considered in this thesis, the fading coef­

ficient hn is constant during a block of N channel uses, and it is assumed to 

have independent and identically distributed (i.i.d.) values between differ­

ent blocks. That is, we consider a block fading channel model (e.g., [33]). 

If the application can tolerate the latency of using a long code-word that 

covers a large number of transmission blocks, the limit on the average rate 

that can be communicated is the ergodic channel capacity. For example, for 

applications in which the channel is not known to the transmitter but the 

receiver has perfect knowledge of the channel, the ergodic channel capac­

ity is Eh {log2 (1 + \h\ 2SNR)} [2], where the expectation is over all possible 

channel realizations. 

In some other applications like fixed point-to-point wireless telecom­

munications, the channel changes slowly. That is, the code-word length and 

the fading block length N are comparable to each other and the channel is 
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non-ergodic. In these applications there is a non-zero probability of encoun­

tering a realization of the channel for which the selected coding scheme, no 

matter how powerful it is, is incapable of reliable data transmission with 

the given data rate. In this case, the performance of the channel is typi­

cally measured by the outage probability, which is the probability that the 

maximum rate which can be transmitted over the given channel realization 

is smaller than the given transmission rate R. The outage probability pro­

vides a lower bound on the probability that the transmitted data will not be 

received correctly. 

2.2.3 	 Modulation and coding for AWGN and fading 

channels 

In this section we review some modulation and coding schemes for reliable 

communication over single-input single-output channels. These schemes can 

be divided into two regimes [34], a low SNR regime in which the limi­

tation on the transmission power dominates, and a high SNR regime in 

which the limit on the transmission bandwidth dominates. In the power­

limited regime, reasonable performance can be achieved using binary codes, 

such as block codes and convolutional codes. Furthermore, low error rates 

can be achieved within fractions of a decibel of the SNR limit for the cho­

sen rate using binary low-density parity-check (LDPC) codes [35] or turbo 

codes [36]. However, in the bandwidth limited regime, binary signaling is 

not sufficiently spectrally-efficient and we seek coded modulation schemes 

whose transmitted signal distributions better approximate the (optimal) 

Gaussian distribution. Many of the existing schemes combine binary coding 
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with bandwidth-efficient higher-order constellations, such as pulse ampli­

tude modulation (PAM), phase-shift keying (PSK) and quadrature amplitude 

modulation (QAM), although other options, such as lattice codes [37], are 

also available. 

In order to design codes with good performance an appropriate de­

sign criterion is needed. In AWGN channels, the high-SNR performance 

of a code is (strongly) dependent on the minimum Euclidean distance be­

tween pairs of the code-words [38]. One approach to increase the minimum 

distance is to combine modulation and coding. Trellis coded-modulation 

(TCM) [38] and multi-level coding [39] are two such examples. They 

use multi-level/phase constellations and simple convolutional codes with bit 

mapping rules that maximize the minimum Euclidean distance of the code. 

The design criteria for codes for fading channels are quite different. In 

a Rayleigh fading channel, the coding performance is dominated by its min­

imum Hamming distance (e.g., [2, 40]) rather than its minimum Euclidean 

distance. In the case of binary codes, codes with a large Euclidean distance 

also have a large Hamming distance. However, in the bandwidth-limited 

regime, codes that are designed for good performance over AWGN channels 

might not provide good performance over a fading channel. For example, 

it was shown in [ 40] that a large Euclidean distance for a TCM code does 

not guarantee a large Hamming distance. An alternative approach to coded 

modulation was proposed by Zehavi [ 40]. He suggested a scheme based on 

a binary encoder (outer code) with a "bit-wise" interleaver at its output, fol­

lowed by a conventional modulator. (This scheme is described in more detail 

in Section 2.2.3. l below.) Zehavi showed that by using this method, which 

was later called bit-interleaved coded modulation (BICM) [11], Hamming 

distances up to the Hamming distance of the outer code can be obtained, 
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and hence the reliability of BICM over a Rayleigh fading channel can be 

greater than that of the corresponding TCM schemes [11]. 

2.2.3.1 Bit interleaved coded modulation (BICM) 

In a BICM scheme the block of information bits d is passed through an en­

coder before being interleaved, as shown in Fig. 2.1. The interleaved en­

coded bits are then modulated using a higher-order constellation and a pre­

specified mapping strategy, such as Gray mapping. The optimum demod­

ulation procedure would be to detect the maximum likelihood transmitted 

sequenced given the channel output sequence y, 

d = argmaxP(y/d). (2.5)
d 

Unfortunately this demodulation scheme has a prohibitively high compu­

tational complexity, which increases exponentially with the length of the 

transmitted bit-sequence. 

A sub-optimum demodulation scheme [11] is shown in Fig. 2.1. In 

this scheme the demodulator detects the maximum-likelihood transmitted 

symbol in each channel use, and passes the corresponding bits to the dein­

terleaver and then on to the binary-input decoder. It was shown in [ 40] that 

the performance of this BICM scheme over a Rayleigh fading channel is bet­

ter than that of a TCM scheme, but its performance over an AWGN channel 

is not as good as that of a TCM scheme. 

While the sub-optimum detector in Fig. 2.1 is relatively simple to 

implement, the fact that it makes independent "hard" decisions on each 
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Figure 2.1: Block diagram of a BICM transmitter and a simple sub-optimal 
receiver. 
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Figure 2.2: Block diagram of BICM-IDD. The subscript "l" is associated with 
the inner code variables and the subscript "2" is associated with the outer 
code variables. 
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transmitted symbol limits its performance. As a result, other iterative sub­

optimum BICM detection strategies based on "soft" demodulation and de­

coding and the turbo principle [36] have been proposed [13, 27, 41-44]. 

While these strategies are also sub-optimal, they offer substantially better 

performance than schemes based on hard demodulation. In fact, their per­

formance can come quite close to that of the optimum sequence detector 

in (2.5), while their computational cost is still quite reasonable. In these 

iterative receivers, the modulator block is viewed as an inner code, which 

is serially concatenated with the encoder (the outer code). Hence, at the 

receiver the turbo principle can be applied to construct an iterative demodu­

lation and decoding (IDD) scheme, as shown in Fig. 2.2. (This receiver also 

has a factor-graph interpretation; e.g., [45-48].) It has been shown [43,49] 

that by using optimized constellation mappings, BICM-IDD can result in 

improved performance-complexity trade-offs over those of TCM for AWGN 

channels, while significantly outperforming TCM over fading channels. 

As a result of these favorable properties of BICM-IDD in single an­

tenna communication systems (and, as we will see in the next section, in 

multiple antenna communication systems), we will choose BICM-IDD as the 

framework within which the performance of the MIMO soft demodulation 

schemes proposed in this thesis will be evaluated. Therefore, we will now 

discuss the iterative demodulation and decoding procedure in more detail. 

While we will consider a single antenna system at this stage, the principles 

extend directly to the multiple antenna case; cf. Section 2.4.2.2 and Chap­

ters 3, 4 and 5. 
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Let us consider the transmission of the nth symbol, sn, by the mod­

ulator in Fig. 2.2. Let bn 6 [bn, 1, ... ,bn,M]T E {±l}M denote1 the M bits 

selected from the encoded and interleaved bit-sequence b to be modulated 

to sn, and let M(-) denote the mapping strategy, so that sn = M(bn). Let N 

denote the number of channel uses required to transmit the whole encoded 

code-word b. At the receiver, the demodulator takes two inputs, the channel 

measurement Yn and the (extrinsic) information from the previous iteration 

of the outer encoder regarding the likelihood of each encoded bit in bn; i.e., 

the a priori information. In a BICM-IDD scheme, the role of the (soft) de­

modulator is to compute (or approximate) the posterior probability of each 

bit bn,k· Since bn,k is binary, that information can be conveniently captured 

in the log likelihood-ratio (LLR) 

P(bn,k = +1) 
k=l, ... ,M. (2.6)An,k = log P(bn,k = -1) ' 

Let AAI,n denote the vector of a priori information for each bit in bn, in LLR 

format. The demodulator in Fig. 2.2 takes this a priori information and the 

channel observation Yn and extracts the updated soft information Am,n 

[>.D1,n,1, ... , AD1,n,M]T, where 

sn = M(bn), and the summations are over all possible bit-vectors bn for 

which bn,k is fixed to the specified value. Assuming that the interleaver is 

1In this thesis we will represent the two possible values for each bit by -1 and +1 rather 
than 0 and 1, as this will simplify some of our derivations. 
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designed well enough for the assumption of independence between the in­

terleaved encoded bits to be valid, P(sn) in (2. 7) can be computed from AAi,n 

using P(sn) '.::: n~l P(bn,k), where Sn= M(bn), P(bn,k = -1) = I+exp(~Al,n,k) 
and P(bnk = +1) = :xp(~1i,n,k) )' [13]. In order to prevent positive feedback 

' 1 exp Al,n,k 

in the iterative receiver, only the extrinsic component of the demodulator's 

output should be sent to the decoder. In log likelihood-ratio form, that ex­

trinsic information can be written as 

(2.8) 


After computing AEI,n for the N channel uses that are required to transmit 

the whole codeword b, the extrinsic information is collected in a vector AEi 

and is deinterleaved to generate the a priori information AA2 to be used in 

the soft-input soft-output outer decoder to extract AD2· For example, if we 

use a convolutional code at the transmitter, this decoder can use the Bahl­

Cocke-Jelinek-Raviv (BCJR) algorithm [SO, 51] to extract AD2. After com­

puting AD2 the extrinsic information regarding the encoded bits is extracted 

as AE2 = AD2 - AA2, and is then passed thorough the interleaver and onto 

the demodulator, where it is used as the a priori information A Ai for the next 

iteration of the soft demodulator. This completes one iteration between the 

demodulator and the decoder. In the first demodulation-decoding iteration, 

no a priori information is available from decoder, and we will set AAi = 0. 

Typically, the bit-error rate (BER) decreases after each iteration, and hence 

a trade-off between performance and complexity can be set by constraining 

the number of iterations. 
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Figure 2.3: A typical multiple-input multiple-output system. 

2.3 	 Multiple input multiple output 

communication systems 

The use of multiple antennas at the transmitter and/or the receiver provides 

the potential for reliable (wireless) communications at significantly larger 

data rates than the corresponding single antenna system. In this section we 

will describe some theoretical and implementation aspects of MIMO commu­

nication systems, including some measures of the capacity of these systems, 

some space-time transmission and coding schemes, and the corresponding 

receiver structures that are designed to provide good performance at spectral 

efficiencies that approach the capacity limits of the MIMO channel. 

2.3.1 	 Narrow-band MIMO system model 

A diagram of a narrow-band multiple antenna communication system with 

Nt transmit antennas and Nr receive antennas is shown in Fig. 2.3. The 

discrete time model for the signal received by the ith antenna at the nth 
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channel use can be written as 

Nt 

Yn,i = L hn,ijSn,j + Vn,i' n = 1, ... , N, i = 1, ... , Nn (2.9) 
j=l 

where sn,j is the transmitted signal from the jth antenna, vn,i is an indepen­

dent and identically distributed (i.i.d.) zero-mean Gaussian noise sample 

with variance a 2 per dimension at the ith receive antenna and hn,ij repre­

sents the complex gain (fading coefficient) from the transmit antenna i to 

the receive antenna j. By collecting the observations at each antenna at the 

nth channel use into a vector y n, the discrete time model of this system can 

be written as 

(2.10) 

where 

Yn,I hn,11 hn,lNt Sn,l Vn,l 

Yn = ' 
Hn= ' Sn= 

' 
Vn = 

Yn,Nr hn,Nrl hn,NrNt Sn,Nt Vn,Nr 

We will impose the condition that the (average) transmit signal power is P; 

that is 

(2.11) 


The signal to noise ratio (SNR) at each receive antenna is p = P/2a2 
• 

Several other communication systems can be modeled using this gen­

eral MIMO framework (e.g., [1, 52, 53]). For example, single or multiple­

antenna systems that transmit over a (finite impulse response) dispersive 

channel using a block-based transmission scheme with guard sequences to 
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prevent inter-block interference (e.g., [1, 54]) can also be represented by 

this model. In that case, the matrix Hn has a (block) Toeplitz structure 

when the zero padding guard sequence is used, and it has a (block) circu­

lant structure when the cyclic prefix guard sequence is used. In this thesis, 

the focus will be on communication systems that can be represented using 

this general framework without assuming any special structure for the chan­

nel matrix Hn. Indeed, in much of our performance analysis we will focus on 

the rich scattering scenario in which the elements of Hn are modeled as i.i.d. 

zero-mean circularly symmetric complex Gaussian random variables. 2 This 

channel model is often referenced to as the i.i.d. Rayleigh channel model. 

2.3.2 Performance measures for MIMO channels 

As we discussed in Section 2.2.1, one of the benchmarks that can be used 

to assess the performance of a designed modulation and coding scheme for 

a particular communication system is the notion of capacity. In this section, 

we will discuss the ergodic capacity of a MIMO channel. We will also dis­

cuss one of the measures for characterizing the error performance on MIMO 

channels (the diversity gain), a measure of the rate of growth of the max­

imum achievable rate on these channels with SNR (the multiplexing gain) 

and the trade-off between these two gains. 

2.3.2.1 MIMO channel capacity 

In this thesis, the focus will be on systems with delay constraints that are 

substantially longer than the coherence time of the channel, and hence the 

2Measurements validating this model for rich scattering environments can be found 
in [55]. 
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most relevant notion of capacity for these systems is the ergodic capacity. 3 

The ergodic capacity of such a MIMO channel is the maximum achievable 

average rate that can be communicated over the channel realizations. It is 

shown that [6] in order to maximize the ergodic capacity for MIMO systems 

with Gaussian noise, the transmit signals should have a Gaussian distribu­

tion, and for systems where the channel is known to the receiver and un­

known at the transmitter, the transmit power should be divided equally over 

all the transmit antennas. Hence, for these systems, the ergodic capacity in 

bits per transmit antenna per complex dimension can be obtained as [6, 57] 

(2.12) 


2.3.2.2 Multiplexing gain 

For a general coded transmission, the slope at which the data rate R(p) of 

this system increases with log2 p is measured as 

r t::. lim R(p) , (2.13) 
p->+oo log2p 

and is called the "multiplexing gain" [7] of the transmission scheme. In 

the asymptotic limit of high SNRs, the ergodic capacity of an i.i.d. Rayleigh 

model for the MIMO channel in (2.12) can be written as [S] 

IV 

c = Nlog2 ~ +LEH {log2-AD, (2.14) 
t i=l 

3For many practical communications applications, such as mobile communications in 
which the channel changes fast due to mobility, an encoded data block can experience 
many channel realizations, hence, the channel can be assumed ergodic [56]. In this thesis 
we will focus on these applications. 
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where N A min(Nn Nt) and >.1 ;:::: >.2 ;:::: • • · ;:::: >.& are the singular values 

of (the random matrix) H. At high SNRs the ergodic capacity grows lin­

early with log2 (-/!i;) with a slope of N, and as a result, the capacity is roughly 

N times that of the equivalent single antenna communication channel. In­

deed, from the perspective of the growth of the capacity at high SNRs, this 

MIMO channel behaves like N parallel independent spatial communication 

channels that carry independent messages. Hence, a MIMO communication 

channel has a maximum multiplexing gain of N, which corresponds to the 

total number of degrees of freedom to communicate over this channel [7]. 

2.3.2.3 Diversity gain 

Another measure of performance in communication channels is to measure 

the probability of error at the receiver. If a transmission scheme at SNR p has 

an average error probability of Pe(p), a notion that characterizes this error 

probability at high SNRs is the "diversity gain" d which is defined as 

d A _ lim log Pe(P). (2.15) 
p-++oo log p 

Hence, in systems with higher diversity gains, the error rate curve has a 

steeper slope with SNR. In a MIMO channel the diversity gain corresponds 

to the number of independently faded replicas of the transmitted signal at 

the receiver. Since a general Nt x Nr MIMO communication system can have 

at most NtNr independent random fading paths, the maximum diversity gain 

provided by this MIMO channel is NtNr (e.g., [58]). 
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2.3.2.4 Diversity-multiplexing trade-off 

MIMO transmission schemes can be designed to exploit both the diversity 

gain and the multiplexing gain of a MIMO channel. That is, the SNR gain can 

be used to increase the achievable data rate, or the diversity gain, or both of 

them. A fundamental trade-off between the reliability and the transmission 

rate exist [7, 8]. Zheng and Tse [7] derived this trade-off at high-SNRs, 

and they showed that in a rich scattering environment in order to have a 

multiplexing gain r, the optimum diversity gain dopt(r) that can be achieved 

is 

dopt(r) = (Nt - r)(N, - r), 0:::; r:::; min(Nt, N,). (2.16) 

Hence, both diversity gain and multiplexing gain can be achieved in a MIMO 

communication system, but the above fundamental trade-off exists between 

these two gains. Based on the definition of the multiplexing gain, the ap­

plication of this trade-off is limited to those scenarios in which the channel 

throughput scales linearly with the logarithm of the SNR. Azarian and El 

Gamal [8] relaxed this constraint and derived a related trade-off between 

reliability and throughput that allows more general scenarios to be consid­

ered. 

2.4 Space-time modulation and coding 

Having studied some of the fundamental limits of MIMO communication 

systems in the previous section, in this section we will review some mod­

ulation and coding schemes that are designed to approach these limits. In 

these schemes the symbols are designed to span space and time and hence 

they are called "space-time" transmission schemes. For example, consider a 
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block of T symbol vectors to be transmitted in T channel uses over a MIMO 

channel in which the channel is fixed and equal to H over a block-length 

of at least T channel uses. (Such channels are often called block-fading 

channels.) By defining S = [s1, ... , sT] as the Nt x T matrix of transmit­

ted signals, Y = [y1 , ... , YT] as the Nr x T matrix of received signals and 

V = [v1 , ... , VT] as the Nr x T matrix of noise samples, the received signals 

over these T channel uses can be written as 

Y=HS+V. (2.17) 

The space-time transmission schemes that we will present in this sec­

tion differ in the way that they encode and map the data bits to the symbol 

matrix S. In order to design good space-time codes some design criteria must 

be defined. One potential design criterion is to evaluate the pairwise proba­

bility of error at the receiver. If we assume the channel matrix is known to 

the receiver, then at high SNRs the pairwise error probability of the receiver 

mistaking a signal matrix S for the transmitted signal matrix S is bounded 

by [56, 59, 60] 

p(S --+ S) :::; (2.18) 

where pis, as in Section 2.3.1, the SNRper receive antenna, A= (S-S)(S­

S)H, Mt:. is the rank of~ and ,\k(A) is the kth non-zero eigenvalue of A. 

Referring to the definition of the diversity gain in (2.15) we can conclude 

that the diversity gain of this pair of code-words is Mt:.Nr. If we make sure 

that every pair of code-words satisfies this diversity order, the average error 

probability also satisfies it and this space-time transmission scheme is said 
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to have a diversity order of Mt:;.Nr. Hence, in order to reach to the maxi­

mum diversity gain of a MIMO communication channel (NtNr) the space­

time transmission matrix S should be designed in a way that the difference 

matrix A between any two of its codewords has full rank equal to Nt. This 

design criterion is called the rank criterion [59, 60] . 

A second design criterion is to maximize the coefficient of the signal 

to noise ratio in Equation (2.18), (I1~~ ,,\k(A)r/M6.' which is called the 

"coding gain". In order to get a high coding gain we should maximize the 

minimum of the determinant of A over all possible pair of codewords S. 

This design criterion is called the determinant criterion [59, 60]. 

Given their impact on the error performance of MIMO systems, these 

two design criteria have been used widely to design several space-time trans­

mission schemes; e.g., [56].4 We will review some of these schemes in Sec­

tion 2.4.1, below. In order to exploit the temporal diversity of the chan­

nel (in addition to its spatial diversity) several other space-time transmis­

sion schemes have been developed to combine channel coding schemes with 

space-time mapping schemes. We will review some of those schemes in Sec­

tion 2.4.2. 

2.4.1 Space-time mappings 

In this section we will review some space-time mapping strategies that have 

been designed to achieve the potential multiplexing and diversity gains pro­

vided by a MIMO channel. We divide these mappings into two groups. The 

first group have short frame lengths T ~ Nt (space-time constellations or 

space-time block codes); e.g., [58], and they provide a simple and effective 

4A general binary rank design criteria was later developed in [61] providing better 
construction methods for some other space-time transmission schemes. 
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way of achieving the diversity gains of the channel. The second group have 

larger frame lengths T » Nt (space-time trellis codes) with the advantage 

of better coding gains compared to the space-time block codes, but with the 

disadvantage of receivers with substantially higher computational complex­

ities. 

2.4.1.1 Space-time constellations 

One of the simplest space-time block codes was designed by Alamouti [ 62] 

for a MIMO communication system with two transmit antennas and one 

(or two) receive antenna. This scheme can provide full diversity gain, and 

for systems with one receive antenna it also achieves the full multiplexing 

gain of the system. In this scheme, two symbols are transmitted in every 

two channel uses and the receiver can optimally detect each transmitted 

symbol using only linear processing. Given the exponential cost of optimal 

vector detection for general transmission schemes (see Section 2.5.2), this 

motivated the search for similar schemes for higher numbers of transmit 

and receive antennas using the theory of orthogonal designs (e.g., [63]). 

In these schemes, the columns of the space-time code are designed to be 

orthogonal to each other in order for optimal detection to be achievable 

using linear processing. Some space-time block codes were developed based 

on this framework in [58, 64, 65]. They provide full spatial diversity, and 

have simple detection algorithms. 

The orthogonality constraint on space-time block codes means that 

their maximum achievable data rate is less than the channel capacity (if 

the number of receive antennas is greater than one). To address this is­

sue, Jafarkhani [66] proposed the quasi-orthogonal space-time block codes. 
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These codes are constructed using smaller orthogonal designs as their build­

ing blocks. The optimal detection procedure for these codes must be per­

formed on pairs of symbols rather than on individual symbols. Hence, the 

receiver complexity is higher than that of orthogonal space-time block codes. 

A broad design framework for space-time block codes was introduced 

by Hassibi and Hochwald in [67], where the orthogonality constraint was 

relaxed in order to enable higher achievable rates. In this coding scheme, 

the input symbol block is dispersed over space and time in a (widely) linear 

fashion and hence it is called a linear dispersion (LD) code. More specifi­

cally, linear dispersion codes transmit L symbols using Nt transmit antennas 

over T channel uses, using a space-time transmission matrix S that has the 

following format: 
L 

S = L(aeAe + jf3eBe), (2.19) 
e=I 

where the L symbols are, respectively, se = ae + j f3e, and Ae, Be, e= 1, ... , L 

are Nt x T complex matrices. These matrices can be designed in a number 

of ways depending on the desired design criterion. In [67] the maximization 

of the ergodic capacity of the LD-coded transmission scheme was chosen 

as the design criterion. Other schemes like [68] used asymptotic guide­

lines to design the LD matrices. Full symbol-rate, full-diversity LD codes for 

2 x 2 systems were developed in [69] and later they were generalized to 

higher numbers of antennas in [70]. Information theoretic and detection er­

ror view points were used in [71] to design trace-orthonormal full diversity 

space-time codes using this framework. LD framework can also subsumes 

several other existing space time transmission schemes including orthogonal 

space-time block codes (e.g., [58, 64, 65]) and some of the layered space­

time transmission schemes that we will describe in Section 2.4.2.1. 
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In order to write the received signal of an LD-coded transmission 

scheme in a compact and convenient form, we consider the channel model 

(2.17), the LD code in (2.19), and we define the column vectors s 
[a1 , f31, ... , aL, f3LV and v 6 vec(V), and the NrT x 2£ complex matrix 

H 6 [vec(HA1), vec(jHB1), ... , vec(HAL), vec(jHBL)]. We can then write 

the received signal y 6 vec(Y) in the following format 

y- = :Hs+v. (2.20) 

Hence, in the coherent detection perspective, linear dispersion codes can be 

applied to any combination of transmit and receive antennas to reshape the 

MIMO channel matrix into a new equivalent channel matrix H that results 

in a model that is analogous to the general MIMO model of (2.10). 

2.4.1.2 Space-time trellis codes 

The rank and determinant criteria (obtained from equation (2.18)) were 

originally applied to the design of space-time trellis codes (STTC) [56] over 

large code frame lengths T » Nt in order to improve their diversity and 

coding gains. In the process of designing these codes, it is assumed that the 

channel is fixed for this long frame length T (quasi static fading channel) 

[56] and hence these codes may not necessary be optimal for ergodic block 

fading channels (e.g., [59]). Space-time trellis codes are the extension of the 

conventional trellis coded modulation (TCM; e.g., [38]) schemes to MIMO 

channels. That is, they are defined on a trellis by combining modulation and 

coding with space-time mapping, and they can be decoded using a multi­

dimensional version of the Viterbi algorithm [56]. These codes can have 

excellent diversity and coding gains, but the computational complexity of 
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their receiver increases exponentially with the transmission rate of the code 

[72]. 

2.4.2 Concatenated space-time codes 

While the space-time transmission schemes described in Section 2.4.1.1 ex­

ploit the spatial diversity-multiplexing gains of MIMO channels, they are not 

designed to exploit the temporal diversity of the channel. However, chan­

nel coding can be combined with these space-time transmission schemes in 

order to exploit the temporal diversity. We will briefly review two popular 

schemes in this group: layered space-time codes, and space-time bit inter­

leaved codes, which are the extension of the conventional bit-interleaved 

coded modulation (BICM) schemes to multiple antenna systems. 

2.4.2.1 Layered space-time transmission 

Layered space-time codes are rate-oriented codes that perform space-time 

mapping by grouping, encoding and modulating the data bits in layers of the 

space-time symbol matrix S (cf. (2.17)). These schemes were first developed 

in [SJ in which they were called Bell Labs Layered Space Time (BLAST) ar­

chitectures. BLAST architectures have the feature that the two-dimensional 

(space-time) processing of modulating the data bits is performed in one­

dimensional processing slots and that enables effective demodulation and 

decoding using conventional scalar approaches [73]. Several BLAST archi­

tectures exist, including Horizontal BLAST CH-BLAST), Vertical BLAST (V­

BLAST) and Diagonal BLAST CD-BLAST). They have the common feature 

that they simultaneously transmit Nt independent substreams of data bits 
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from the available Nt transmit antennas, but they use the different layering 

schemes depicted in Fig 2.4 to send them. 

At the receiver, different demodulation schemes can be used to detect 

the transmitted signal (e.g., [74]), including the sub-optimum methods of 

interference suppression and cancellation (e.g., [73]), maximum likelihood 

(ML) demodulation methods (e.g, [75]) and iterative demodulation and de­

coding methods for coded BLAST schemes (e.g., [76, 77]). We will briefly 

review some of these methods in Section 2.5. 

The BLAST architectures were conceived with ergodic rate objectives 

in mind and hence the focus is on exploiting the temporal diversity using 

channel coding. As will be described in the next section, one approach to 

doing so is to adopt a bit interleaved coded modulation architecture in which 

a space-time block code plays the role of the constellation and is chosen to 

exploit the available spatial diversity. 
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Figure 2.4: Some available BLAST space-time mapping schemes. (These 
diagrams are inspired by [9] .) 
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Figure 2.5: MIMO BICM-IDD transceiver. 

2.4.2.2 Space-time bit-interleaved codes 

In order to achieve both spatial and temporal diversity gains, channel codes 

can be used in conjunction with space-time transmission schemes in a variety 

of ways [12,28-30, 76-78]. One of these is the space-time BICM (ST-BICM) 

scheme illustrated in Fig. 2.5. The structure of this scheme resembles the 

BICM structure [11, 40] that was described in Section 2.2.3.1 for single an­

tenna communication systems. However, the scalar constellation has been 

replaced by a space-time constellation. In the ST-BICM scheme, the bit se­

quenced is binary encoded and interleaved to form the sequence b, blocks 

of which are mapped to elements of the symbol sequence s. The space-time 

transmitter maps blocks of this symbol sequence in space and time using a 

linear dispersion code [67]. Hence, the channel can be reshaped in the man­

ner described by the equation (2.20) to form the equivalent channel matrix 

H, as shown in Fig. 2.5. 

It was shown in [79] that at low to intermediate SNRs the perfor­

mance of space-time codes depends on the minimum Euclidean distance be­

tween any pair of the space-time codewords, in addition to the rank and 
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the determinant criteria. Hence, by choosing appropriate binary codes de­

signed for AWGN single antenna communication systems, good performance 

can be achieved using ST-BICM transmission schemes [79, 80]. Using the it­

erative demodulation and decoding strategies presented in Section 2.2.3.1, 

ST-BICM schemes can effectively balance the computational costs and per­

formance gains of the receiver, and can achieve good performance at SNRs 

quite close to the ergodic capacity limit of the channel [12, 28-30, 76-78]. 

Tonello [28] showed that in order to optimize the coding gain and 

fully exploit the temporal and spatial diversity gains offered by the ST-BICM 

architecture one should maximize the Hamming distance and the Euclidean 

distance of the codewords at the bit level rather than at the symbol level. 

Another important advantage of the ST-BICM schemes is that by choosing a 

full diversity space-time transmission scheme, these schemes can provide a 

robust performance over a variety of fading channels, including quasi-static 

and fast fading channels; cf. [30, 81]. 

While the optimal joint demodulation and decoding of ST-BICM 

schemes is computationally prohibitive, several suboptimal schemes have 

been developed based on the iterative soft MIMO demodulation and decod­

ing structure illustrated in the receiver side of Fig. 2.5, [28-30,78,82-84]. As 

was discussed in Section 2.2.3.1, this receiver is not optimal, but it provides 

good performance at a substantially lower cost than the optimal receiver. 

Comparing the single antenna BICM iterative receiver structure of Fig. 2.2 

with this iterative receiver structure reveals the fact that these two iterative 

schemes are similar in nature, with the soft scalar demodulator in Fig. 2.2 

being replaced by a soft MIMO demodulator (e.g., [12]). Several ST-BICM 

schemes that use an optimal soft MIMO demodulator in this iterative receiver 
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structure have been proposed (e.g., [28-30, 78, 82-84]). However, the com­

putational complexity of the optimal soft MIMO demodulator increases ex­

ponentially with the number of antennas and the data rate (e.g., [12]), and 

hence it is not a practical choice for applications that require high spectral 

efficiencies. 

The core contribution of this thesis is to develop alternative soft 

MIMO demodulators that provide high performance while maintaining low 

computational cost. Since the emphasis in this thesis is on designing low 

complexity soft MIMO demodulators, we will adopt a conventional (and 

simple) transmission scheme, namely the V-BLAST space-time transmission 

scheme with Gray mapping. That is, we simply encode and interleave the 

data bits, modulate them to scalar symbols and then multiplex these symbols 

to the transmit antennas, see Fig. 2.6. (This MIMO transmission scheme is 

immediately applicable to the general linear dispersion code framework, as 

is evidenced by (2.20) .) In order to make distinction between this simple 

structure and the general ST-BICM framework, we simply call this archi­

tecture a MIMO-BICM transceiver (e.g., [12]). We then use an iterative 

soft MIMO demodulation and decoding scheme at the receiver to detect 

the transmitted data bits. We will review some existing low complexity soft 

MIMO demodulation schemes for the MIMO-BICM transceiver of Fig. 2.6 in 

the following section. 

2.5 Soft MIMO demodulation 

We have seen in the previous section that among space-time transmission 

schemes that provide coding gain, ST-BICM schemes have some favorable 

properties. As a result, they have been widely proposed as pragmatic coded 
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Figure 2.6: MIMO BICM-IDD transceiver. 

transmission schemes for multiple antenna communication channels (e.g., 

[12, 14, 15, 17-20, 85-88]). The main detraction of these schemes is the 

computational complexity of the receiver, and in particular, the complexity of 

the soft MIMO demodulator, which increases exponentially with the spectral 

efficiency of the system. In this section we will first present the optimum 

demodulator for the MIMO-BICM transceiver with iterative demodulation 

and decoding (IDD). Then we will focus on existing approaches to efficiently 

approximating the output of the optimal demodulator. 
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2.5.1 	 Optimum soft MIMO demodulation for a 

MIMO-BICM-IDD scheme 

We will consider the particular coherent narrow-band MIMO-BICM-IDD 

transceiver structure illustrated in Fig. 2.6. In this structure the space-time 

modulator is the concatenation of a scalar constellation mapper and a V­

BLAST space-time transmission scheme; e.g., [12, 85], but extensions to 

the general linear dispersion code framework can be easily obtained, as de­

scribed in Section 2.4.1.1. Since the emphasis of this thesis is on the de­

modulation step, we will allow any binary encoder as the outer encoder in 

Fig. 2.6, and we will adopt its corresponding soft-input soft-output decoder 

at the receiver. We will consider scalar constellations of size 2M and will 

transmit Nt such symbols per channel use, i.e., one symbol per antenna. We 

will let bn E { ±1 }MNt denote the vector of M Nt bits from the interleaved 

encoded bit stream that are mapped to the vector of transmitted symbols 

sn = M(bn) at the nth channel use, where M(-) is the corresponding map­

ping strategy (e.g., independent Gray mapping of each symbol). Hence, the 

vector of received samples at the nth channel use can be written as 

n= 1, ... ,N, (2.21) 

where, as it was defined in Section 2.3.1, Hn is the matrix of channel gains 

at the nth channel use, which is assumed to be known at the receiver, v n is 

a vector of zero-mean additive white circularly symmetric complex Gaussian 

noise samples with variance a 2 per real scalar dimension, and N is the num­

ber of channel uses required to send the whole interleaved codeword at the 

transmitter. 
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The soft MIMO demodulator in Fig. 2.6 computes the soft information 

of each of the NMNt interleaved encoded bits, based on the channel mea­

surements and the extrinsic information from previous decoder iterations. 

The extrinsic component of this soft information is then passed to the outer 

soft decoder. The rest of the iterative demodulation and decoding process 

is the same as that for the single antenna BICM-IDD scheme described in 

Section 2.2.3.1. 

As in Section 2.2.3.1, if the interleaver is designed well enough, it 

can be assumed that the interleaved encoded bits are locally independent. 

In that case, since the channel model in (2.21) is memoryless, the soft de­

modulator in an IDD scheme can operate on a block-by-block basis. Hence, 

for notational simplicity we will drop the subscript n in (2.21) and we con­

sider a generic block channel use. As in Section 2.2.3.1, since the outer code 

is binary, the soft output from the demodulator can be in the form of the log 

likelihood-ratio (LLR) and the soft demodulator computes the (conditioned) 

LLR for each element bi of b as (e.g., [12]): 

,\ ~ l p(bi = +lly, H) _ l EL'.;,+1P(Ylb, H)p(b) 
Dl,i - og p(bi = -lly, H) - og EL'.i,-1P(Ylb, H)p(b)' i = 1, ... 'MNt, 

(2.22) 

where£ is the list of all 2MNt binary vectors b, £i,b 
6 {b E £lbi = b}, and 

under the assumed AWGN noise model we have that: 

1 ( llY - Hsll 
2

) I (2.23)p(ylb, H) = (2 )N1/2 exp - 2 2 . 
7r O" s=M(b) 

Since we have assumed local independence of the interleaved encoded bits, 

the conventional approximation p(b) ~ fI~~t p(bi) holds and the LLR in 
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(2.22) can be written as (e.g., [85]) 

l:.c exp(-D(b)/(2a2)) 
i = 1, ... ,MNt, (2.24)

>.vl,i ~log l:.c:::: exp(-D(b)/(2a2))' 

where 
MNt 

6D(b) l!Y - HM(b)ll~ - 2a2L logp(bi)· (2.25) 
i=l 

Since each list £i b in (2.24) contains 2MNt-1 terms, as the number 
' 

of bits per channel use increases the computational cost of (2.22) increases 

exponentially. Hence, there has been considerable interest in schemes that 

enable the approximation of (2.22) with a reduction in complexity. Several 

popular approaches involve the use of one of the following approximations: 

~.C exp(-D(b) /(2a2)) 
(2.26)

>.m,i ~log~ _"+ 
1 

exp(-D(b)/(2a2))
.Ci,-1 

~~(~in D(b)- ~in D(b)), i=l, .. .,MNt, (2.27)
20' bE.C;,-1 bE.C;,+1 

where f, ~ £. Each of these equations reveals a general class of approximate 

soft MIMO demodulation as follows: 

• List-based schemes, which are based on efficiently selecting a list l of 

bit-vectors that generate small values for D(b) and then approximating 

the LLR using either marginalization over li,±l in (2.26) (e.g., [85]), 

or by performing an exhaustive search over li,±l to solve the minimiza­

tion problems in (2.27), (e.g., [12, 18-20, 86-88]). 

• Hard demodulation based schemes, which are based on selecting l = 

£ and solving the problems in (2.27) using the direct application of 

"hard" demodulation techniques. This requires the solution of each 
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of the two binary optimization problems in (2.27) for each of the M Nt 

bits, bi in b. Each of these solutions can be obtained (or approximated) 

using a tree search algorithm (e.g., [14, 15]), or can be approximated 

by other methods, such as semidefinite relaxation (e.g., [17]). 

Given the importance of hard demodulation schemes, and the fact that most 

of the list-based schemes for soft demodulation use ideas from hard MIMO 

demodulation methods, we will first review some of the existing hard MIMO 

demodulation schemes before reviewing some of the existing soft MIMO de­

modulation methods. 

2.5.2 Hard MIMO demodulation 

For the MIMO communication system in (2.21), the maximum likelihood 

transmitted bit-vector bML can be obtained by solving the following discrete 

optimization problem 

bML = argmin llY - HM(b)ll~, (2.28)
bE.C 

where .C is the list of all possible 2MNt transmitted bit-vectors b. The compu­

tational complexity of solving this problem increases exponentially with the 

size of the transmitted bit-vector b and hence there has been considerable 

effort to design demodulation schemes with ML or near ML performance 

with lower computational complexities (e.g., [21, 25, 26, 89-96]). Although 

demodulation schemes like (unordered) nulling and canceling using zero­

forcing (ZF) or minimum mean squared error (MMSE) decision feedback 
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equalization (e.g., [S, 73]) have cubic computational complexity in the prob­

lem size, they may incur considerable error performance degradation com­

pared to maximum likelihood demodulation schemes (e.g., [90]). Hence, in 

this section we will focus on ML or near ML demodulation schemes for ap­

plications in which the channel matrix H has full column rank, and we will 

review two groups of these schemes: tree search algorithms and semidefi­

nite relaxation algorithms. (Extensions to the case of a "fat" channel matrix 

H can be based on the principles outlined in [94].) 

2.5.2.1 Tree search algorithms 

In [89], Viterbo and Boutros presented a hard demodulation technique based 

on the algorithm of Fincke and Pohst [97] for binary quadratic optimization. 

This demodulator and the family of demodulators that it spanned, have be­

come known as "sphere decoders". These algorithms provide the ML solution 

to the hard demodulation problem (2.28). They aim to do so with a reduced 

computational complexity (in an average sense) and hence they have re­

ceived quite a lot of attention in the design of hard demodulation algorithms 

(e.g., [89, 91-94, 98]). 

Let us describe a general sphere decoding algorithm for solving the 

ML demodulation problem in (2.28) for a channel matrix H that has full 

column rank. For simplicity we assume a mapping scheme M (·) that maps 

the bit-vectors b to the symbol-vectors s using V-BLAST transmission scheme 

with elements selected from a finite sub-set of Z, the set of integer numbers. 

We call this finite sub-set, Z. The channel matrix H generates a finite lattice 

A(H) = {x = Hsls E Z,Nt}, hence, the ML demodulation problem in (2.28) 

is equivalent to finding a bit-vector b for which its equivalent lattice point 
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A(H) 

Figure 2. 7: A pictorial representation of the received signal vector y, the 
receiver lattice A(H) and the projection of the decoding sphere to the hyper­
plane of the lattice. 

HM(b) has the minimum Euclidean distance from y. As shown in Fig. 2.7, 

the sphere decoding algorithm finds the ML solution to this problem by ex­

amining those lattice points which are inside a hyper-sphere centered at y 

with a radius R. In order to do so, the sphere decoding algorithm should first 

find a proper radius R and then search the lattice points inside the hyper­

sphere in an efficient manner; e.g, [89, 97]. 

Proper radius selection has a significant impact on the search com­

plexity inside the sphere, as it will determine the number of lattice points 

inside the sphere. Some schemes select the radius based on the channel 

noise variance (e.g., [12, 99]), while others set the radius based on lattice 

properties defined by the channel matrix (e.g., [19, 91, 99]), or as the dis­

tance between the received signal y and the approximate solution to (2.28) 

based on a low-complexity linear or decision feedback demodulator [100]. 

In some cases, the selected radius may be so small that the sphere does not 

contain any of the lattice points. In that case, a trial and error scheme must 

be used to increase the size of the radius in order for the sphere to cover 
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some of the lattice points (e.g., [12]). 

After selecting the radius of the sphere, the next step is to search for 

the lattice points inside the sphere. Most of the existing algorithms for doing 

so are based on branch and bound tree search algorithms (e.g., [95]) for 

searching the tree interpretation (e.g., [21]) of the cost function Dh(s) = 

llY - Hsi!~ in (2.28). This tree structure can be obtained by writing Dh(s) as 

Nt 

Dh(s) = L wi(sl:i), (2.29) 
i=l 

in which, wi(sl:i) is a non-negative factor that depends only on the the first i 

elements of s, sl:i. A sample tree structure that includes some visited nodes 

is shown in Fig. 2.8. The tree search algorithm, which we will discuss later in 

this section, provides the ordering in which the branches of this tree are ex­

tended. After selecting a node for expansion, its branch metric is compared 

against the sphere radius (branch metric upper bound) and if it is larger than 

this upper bound, this branch and all its sub-branches are excluded from the 

search, reducing the search complexity. After finding a leaf node (which cor­

responds to a whole symbol-vectors) the sphere radius can be updated to 

tighten the search space. At the end of the search, the leaf node with the 

smallest branch metric is the ML solution to (2.28). 

Tree search algorithms can be divided into different categories de­

pending on the direction and order that they search the tree. Breadth-first 

search algorithms, extend the tree by extending the branches of all selected 

nodes in the current level of the tree before moving to the next level for 

further expansions (e.g., [97, 101, 102]). Depth-first search algorithms ex­

tend the branches of the currently selected node in the tree and move to the 

next level of the tree to extend the branches of the selected node in the next 
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--~~y~}_ :"!.~ -. ---------- --- -----. ----. -- -----. ---------. -. -----------..----- ------------- -----. -----­
Leaf nodes 

Figure 2.8: Branch and bound tree search method. 

level of the tree (e.g., [90, 91]). Best-first search algorithms select the best 

extended branch of the tree (the branch with the smallest path metric) for 

expansion; e.g., [101, 103, 104]. A unified framework that encompasses all 

these tree search algorithms as special cases was recently presented in [21]. 

This unified framework subsumes the sequential decoding algorithms (in­

cluding the stack algorithm [103, 104] and the Fano algorithm [105]) as 

special cases. These algorithms are shown to have excellent performance­

complexity trade-offs compared to other tree search algorithms (e.g., [21]). 

In Chapter 3, soft demodulators based on a multi-stack algorithm will be 

proposed. We will also review the stack algorithm in more detail in that 

chapter. 

Although the sphere decoding algorithms are computationally effi­

cient for many practical scenarios, both the expected and worst-case com­

putational complexities remain exponential in the problem size (the number 

of symbols to be detected) for a fixed SNR [22]. The rate of this exponen­

tial growth is dependent on the SNR, and can be a serious impediment to 
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implementation at low SNRs (i.e., near the Shannon capacity limit of the 

channel) and for large problem sizes [22]. Hence, other detection meth­

ods with polynomial complexities (such as semidefinite relaxation schemes) 

may need to be considered for systems that operate in these regimes. Several 

such schemes based on semidefinite relaxation will be developed in Chapters 

4 and 5. The semidefinite relaxation approach to hard demodulation will be 

reviewed in Section 2.5.2.3, but first we will review a somewhat different 

search-based hard demodulation scheme. 

2.5.2.2 Greedy algorithm 

The algorithm in [106, 107] is an ordered search algorithm in which ele­

ments of the symbol-vector s are evaluated both individually and pairwise, 

and at each stage of the algorithm the symbol or pair that optimizes the (par­

tial) decision metric is chosen. (Hence the moniker "greedy".) The order in 

which the evaluation is performed is in increasing order of the contribution 

to the metric. More precisely, let Dh(s) = llY - Hsi!~ denote the maximum 

likelihood metric. This metric can be written as 

(2.30) 


where a= ffHy and B = HHH. Now let Ai = J2ail + IBiil for i = 1, ... , Nt, 

and let Bii = l2Biil for i = 1, ... , Nt - 1 and j = i + 1, ... , Nt. These 

coefficients quantify the impact of each symbol and each pair of symbols, 

respectively, on the decision metric. The order of evaluation is based on 

arranging the set {Ai, Bii} in descending order, and the partial metric is 

updated as decisions on the elements of s are made. If the next element in 

the ordered set is Ai0 , then the symbol sio is evaluated, and the value that 
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produces the smallest increment in the metric is chosen. If the next element 

is Biojo, then the pair of symbols ( sio, s jo) is evaluated, and the pair that 

results in the smallest partial metric is selected. In this basic formulation 

of the algorithm, only one vector of partial decisions is propagated to the 

next step. However, the performance of the algorithm can be significantly 

improved, at some computational cost, by propagating the L > 1 best vectors 

of partial decisions to the next stage [106, 107]. If the greedy algorithm were 

only to consider the single symbol decisions corresponding to the elements 

of {Ai}, then [107] when L = 1 it becomes equivalent to certain successive 

interference cancellation (decision feedback) detectors, and when L > 1 it 

becomes equivalent to certain constrained tree-search detectors. 

2.5.2.3 Semidefinite relaxation 

For many conventional constellation mappings, such as QPSK (e.g., [17, 

96]), M-ary PSK (e.g., [108]), and for more general constellations in [109], 

the NP-hard optimization problem in (2.28) can be converted to a boolean 

quadratic programming (BQP) problem. For example, as we will show in 

Chapter 4 of this thesis, for QPSK or BPSK signaling, (2.28) can be converted 

to the following BQP (e.g., [96]) 

min xTQx, (2.31) 
xE{+l,-l}K 

where K is the problem size and Q contains the channel information and 

the a priori information. By substituting X = xxT in (2.31), this problem 
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can be reformulated as 

min 	 Trace(XQ) (2.32a)
x 

s.t. 	 X ?::: 0, rank(X) = 1, (2.32b) 

[X]ii = 1, i = 1, ... , K, (2.32c) 

where the computational complexity of the problem arises from the rank-1 

constraint. The semidefinite relaxation approach (e.g., [96]) to approximate 

the solution to (2.31) is to relax the rank-1 constraint on X and solve the 

following semidefinite program (SDP): 

min 	 Trace(XQ) (2.33a)
x 

s.t. 	 X?::: 0, (2.33b) 

[X]ii = 1, i = 1, ... , K. (2.33c) 

This problem can be solved in polynomial time using interior point methods 

(e.g., [16]). The solution to this semidefinite program is a matrix, whereas 

the solution to (2.31) is a vector. As will be described in Chapter 4, an 

efficient scheme to extract the approximate solution to the BQP in (2.31) 

solving (2.33) is to use the randomization procedure described in [110, 111]. 

In this method the Cholesky factor of the solution to (2.33) is multiplied 

by random vectors selected from uniformly distributed vectors on the unit 

sphere. A candidate bit-vector x can be obtained by quantizing the product. 

After a limited number of randomization iterations the best vector among 

these vectors is selected as the approximate solution to (2.31). 

It has been shown (e.g., [96]) that the semidefinite relaxation scheme 
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is an efficient and accurate method for approximately solving optimization 

problems of the form in (2.31) and it has been used to develop several hard 

demodulators, including a near-ML multiuser demodulator with application 

to synchronous CDMA systems [96], a blind near-ML demodulator for or­

thogonal space-time block codes [112], a multiuser demodulator for CDMA 

systems with M-ary PSK signaling [108], near-ML demodulators for MIMO 

systems with 16-QAM signaling [25] and higher-order QAM signaling [26], 

and a near-ML demodulator for MIMO systems with any general constel­

lation mapping [109]. In this thesis we will use the randomization proce­

dure inherent in solving these problems to propose some low complexity soft 

MIMO demodulation schemes; cf. Chapters 4 and 5. 

2.5.3 	 Approximate soft MIMO demodulation based on 

hard demodulation 

In the previous section, several hard demodulation schemes were described, 

but the focus of the thesis will be on reduced complexity soft demodula­

tion schemes. In this section and the next we will describe how these hard 

demodulation schemes can be exploited for soft demodulation. 

As mentioned in Section 2.5.1, one of the standard approaches to 

reducing the computational cost of extracting the LLR (2.22) involves the 

use of the following approximation: 

Am,i'::'.~( min D(b)- min D(b)), i=l, ... ,MNt. (2.34)
20" bEL:i,-1 bEL:i,+1 
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Hence, for each transmitted bit bi the following two hard demodulation prob­

lems should be solved in each iteration for each channel use 

bi,b = arg min D(b), i = 1, ... , M Nt, b = +1, -1. (2.35) 
bE.Ci,b 

The hard demodulation schemes discussed in the previous section can be 

used to solve or approximate these hard demodulation problems. For exam­

ple: variations of the hard sphere decoding algorithm were used in [14, 15]; 

a generalization of the Twin-stack tree-search algorithm [113] was used 

in [114] (for the case of a frequency-selective MIMO channel); the greedy 

algorithm was used in [ 106]; and the semidefinite relaxation technique was 

used in [17]. (The scheme in [17] is called the Multi-SDR scheme in this 

thesis.) 

Since several hard demodulation problems need to be solved in each 

channel use, the computational complexity of this approach can be pro­

hibitive for practical applications. Hence, in this thesis we will focus on 

list-based soft demodulation schemes (described in the next section) which 

can have lower computational complexities. 
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2.5.4 	 Approximate soft MIMO demodulation based on list 

approximations 

The second approach to reduced complexity approximate soft demodulation 

schemes in Section 2.5.1 was based on approximating the LLR using 

~.C exp(-D(b)/(20'2)) 
(2.36)Am,i '.:::'.log~ .',+1 exp(-D(b)/(20'2))

L'.i,-1 

'.:::'. ~ ( 	~in D(b) - ~in D(b)), i = 1, ... , M Nt, (2.37)
20' bEL'.;,-1 bEL'.;,+1 

where .C is the list of carefully selected bit-vectors with dominant values for 

D(b) which replaces .C in (2.22). 

In some applications, a suitable set of bit-vectors for the list is the set 

of vectors with metrics below a given threshold; i.e., .C = {blD(b) ::; R}. 

Such a list can be constructed using sphere decoding algorithms by fixing 

the sphere radius to an appropriate value (or equivalently by fixing an up­

per bound in branch and bound methods) and collecting all the generated 

leaf nodes into .C. Hochwald and ten Brink [12] used a sphere decoding 

algorithm to construct this list. In the first step of the method in [12], the 

sphere radius is determined. Then, all the bit-vectors which have metric val­

ues inside the defined sphere are generated via the implicit tree search in the 

sphere decoding algorithm. If the list size is constrained, the bit-vectors with 

the smallest metric values are selected for list membership. In the scheme 

in [12] the list is constructed only in the first demodulation-decoding it­

eration, and hence it is not adapted to the updated a priori information in 

subsequent iterations. That is, the list generated in the first iteration is stored 

in the memory to be used for soft information extraction in the subsequent 
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demodulation-decoding iterations. Since the cost function D(b) changes in 

each iteration, the desired sphere position changes and the list of bit-vectors 

constructed in the first demodulation-decoding iterations may not necessar­

ily contain all the bit-vectors inside the sphere associated with the new cost 

function. This issue was addressed by Vikalo, et. al. [85], who modified 

the sphere decoding scheme of Hochwald and ten Brink [12] by updating 

the bit-vector candidates list in the second and subsequent iterations using a 

new sphere that is based on the updated cost function. 

Some other list-based soft demodulation schemes, such as the LISS 

algorithm proposed in [18, 86], use the stack algorithm [103, 104], which 

is a best-first tree search algorithm, to generate the list. The schemes that 

will be proposed in Chapter 3 of this thesis, are based on a "multi-stack" 

algorithm, which generates the list of bit-vectors in an arguably more ef­

ficient way. Hence, the proposed algorithm can offer an improved trade­

off between performance and computational complexity than some existing 

methods. 

In Chapters 4 and 5 some alternative list-based soft demodulation al­

gorithms based on semidefinite relaxation will be proposed. It will be shown 

that the proposed algorithms provide reduced computational costs compared 

to demodulators based on sphere decoding (e.g., [12]), demodulators based 

on minimum mean squared error with soft interference cancellation (MMSE­

SIC) (e.g., [24]) and the method in [17], in which semidefinite relaxation is 

used in the context of the hard demodulation approach to soft demodulation 

in Section 2.5.3. It will also be shown that this reduction in computational 

cost is achieved without a significant degradation in performance. 
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2.5.5 Other soft MIMO demodulation approaches 

There are several other approaches to soft MIMO demodulation that cannot 

be grouped in the hard demodulation based or list based approaches for soft 

demodulation, including the scheme based on minimum mean square error 

(spatial) equalization with soft interference cancellation (MMSE-SIC) (e.g., 

[24]), and a scheme in which the channel modeled as a graph and a low 

complexity message passing scheme is used to approximate the likelihoods 

[ 48]. These schemes are briefly reviewed below. 

The MMSE-SIC scheme is a low-complexity soft MIMO demodulator 

that has been shown to have good performance (e.g., [24, 76, 115]). In 

this scheme the unbiased MMSE estimate of each symbol is obtained con­

ditioned on the soft information about the other symbols provided by the 

decoder. By approximating the residual interference on each symbol as a 

Gaussian random variable, the soft information of each symbol is extracted 

as if the symbol were transmitted thorough a single-input single-output 

AWGN channel. The resulting computational cost is O(Nl) + O(NtM2M) 

per demodulation-decoding iteration (e.g., [24, 76, 115]), where M is the 

number of bits transmitted per antenna per channel use. 5 Given the popu­

larity of the MMSE-SIC scheme as a low complexity approach to soft MIMO 

demodulation that provides good performance, this scheme is described in 

more detail in Appendix A and the performance-complexity trade-offs of the 

demodulators proposed in Chapters 4 and 5 will be compared against that 

of the MMSE-SIC scheme. 
5This can be compared to the cost using the Greedy detection algorithm described 

in Section 2.5.2.2 in the hard demodulation approach to soft demodulation, which is 
O(LM22M Nf ), where L ~ 1 is a parameter of the Greedy algorithm. 
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A substantially different soft MIMO demodulation scheme was re­

cently proposed in [ 48]. That scheme is based on a factor-graph repre­

sentation of the channel and the application of the belief propagation (BP) 

algorithm [116] (see also [ 45, 117]) to that factor graph. As such, it is es­

pecially useful for systems with a large number of antennas and a channel 

matrix with a large fraction of relatively small gains. In its raw form, the 

BP algorithm remains computationally expensive, due to the cost of the op­

erations at the nodes that represent the signal received by each antenna. 

However, a variety of schemes by which this cost can be reduced were pro­

posed. These schemes involve the assessment of the impact of each edge in 

the graph. Edges that are deemed to have a minor impact are deleted and 

the interference represented by the edge is replaced by that of an indepen­

dent Gaussian noise source of the same variance. In the simplest of these 

complexity reduction schemes, d1 edges are retained at each 'receiver' node, 

and the computational cost of the resulting BP algorithm is O(d1Nr2Md1). 

2.6 Summary 

In this chapter we have reviewed some of the principles of single antenna 

and multiple antenna wireless communication systems. We have discussed 

transmission and reception schemes for single antenna communication sys­

tems, including the trellis coded modulation (TCM) and the bit-interleaved 

coded modulation (BICM) schemes. We have argued that in fading channels 

BICM, when used in conjunction with iterative demodulation and decoding 

(IDD) schemes, provides good performance at SNRs quite close to capacity 

limits of the channel, and provides a means to balance the performance­

complexity trade-off for these systems. 
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We have also reviewed some basic space-time transmission schemes, 

including the linear-dispersion codes and the BLAST architectures. These 

space-time schemes can exploit the diversity and multiplexing gains of mul­

tiple antenna systems, and when used within a BICM-IDD framework, they 

can provide good performance-complexity trade-offs. A key bottleneck in 

the implementation of such schemes is the complexity of soft demodulator, 

which increases exponentially with the number of bits transmitted per chan­

nel use. We reviewed some reduced complexity schemes for soft demodula­

tion based on tree search algorithms and semidefinite relaxation. In the next 

chapter we will propose a multi-stack algorithm that can provide reduced 

computational complexities compared to some existing soft demodulation 

schemes with reasonable performance results. 
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Chapter 3 

A multi-stack algorithm for soft 

MIMO demodulation 

'There's an old story about the person who wished 

his computer were as easy to use as his telephone. 

That wish has come true, since I no longer know 

how to use my telephone.' 

BJARNE STROUSTRUP 

I N THE previous chapter we provided a broad review of some fundamen­

tal principles of single antenna and multiple antenna communication sys­

tems. We reviewed several available transmission schemes that exploit the 

diversity-multiplexing gains of the communication channel. One pragmatic 

approach that balances the computational complexity and performance is 

the MIMO-BICM-IDD scheme. These schemes require the design of a com­

putationally feasible soft MIMO demodulator. In this chapter we propose 

a family of list-based soft demodulators for MIMO communication systems 

based on a multistack algorithm, proposed herein, for traversing the tree 

structure that is inherent in the MIMO demodulation problem. The existing 
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stack algorithm for MIMO soft demodulation stores a single stack of visited 

nodes in the tree, and expands the stack using the 'best-first' principle, as 

quantified by the (partial) likelihoods of the nodes. In the proposed mul­

tistack algorithm, the single stack is partitioned into a stack for each level 

of the tree, and the algorithm proceeds by performing one best-first search 

step in each of these stacks in the natural ordering of the tree. By assigning 

appropriate priorities to the level at which this 'best-first search per level' 

processing re-starts once a leaf node has been obtained, the proposed de­

modulators can achieve trade-offs between performance and complexity that 

dominate those of several existing methods, including the stack algorithm, 

in the low-complexity region. 

3.1 Introduction 

In Chapter 2 we mentioned that MIMO wireless communication systems are 

attractive because they provide the potential for reliable communication at 

substantially higher data rates than the corresponding single antenna sys­

tem [6, 57]. However, the computational effort required to achieve these 

high spectral efficiencies is often beyond the capabilities of the envisioned 

communication devices, and hence there has been considerable interest in 

the development of transceivers that balance the competing demands of 

spectral and computational efficiency. As mentioned in Chapter 2 a popu­

lar transceiver architecture for balancing these demands is a MIMO version 

of bit interleaved coded modulation (BICM, e.g., [11]) with block-by-block 

transmission and (bit-wise) iterative 'soft' demodulation and decoding (IDD) 

at the receiver; e.g., [12]. In such MIMO-BICM-IDD schemes, a key compu­

tational bottleneck is the demodulation step; that is, the extraction of an 
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approximation of the log likelihood ratio (or an approximation thereof) of 

each of the bits transmitted in a given block from the corresponding output 

block of the MIMO channel. As explained in Chapter 2, the design of list­

based techniques to manage this computational burden is the core topic of 

this thesis. 

The goal of list-based soft demodulation for block-based MIMO trans­

mission is to (efficiently) obtain a list of candidate bit-vectors1 that gen­

erate the dominant components of the likelihoods for a given block, and 

then to approximate the log likelihood ratio of each bit transmitted in that 

block using the members of the list; e.g., [12, 18-20, 85-88]. A popular 

class of approaches to efficient list generation (e.g., [12, 18, 19, 85-88]) is 

based on the tree-search representation of the MIMO demodulation prob­

lem; e.g., [21, 95]. In that representation, the metric that is used to assess 

the significance of each bit-vector corresponds to an additive path metric in a 

tree, with non-negative branch metrics. The leaf nodes in the tree represent 

the complete bit-vectors, and the dominant bit-vectors correspond to leaf 

nodes with small path metrics. A feature of the tree-search representation is 

that in an 100 receiver, the extrinsic information provided by the previous 

iteration of the decoder can be easily incorporated into the branch metric; 

e.g., [18,19,85-88]. 

Once the list generation problem has been associated with the search 

for leaf nodes with small path metrics, a number of conventional tree search 

algorithms can be applied. Of particular interest is the extension of the stack 

algorithm for 'hard' demodulation (e.g., [21]) to the process of list genera­

tion; e.g., [18, 86, 88]. The stack algorithm adopts a 'best-first' search strat­

egy in which the exposed nodes of the tree are stored in a global stack, and 

1That is, candidates for the vector of bits transmitted in the given block. 
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the algorithm proceeds by expanding the node in the stack with the smallest 

path metric, until a leaf node is selected for expansion. (That leaf node is 

the best leaf node in the tree.) The natural extension of the stack algorithm 

to list generation simply involves continuing the search for the next best leaf 

node; e.g., [18, 86, 88]. Hence, the stack algorithm generates bit-vectors in 

order of their path metrics. 

While the stack algorithm generates an ordered list, the rapid growth 

of the stack size and the consequent complexity of finding the next best list 

member are significant impediments to its implementation in list-based soft 

demodulation [88]. The goal of this chapter is to propose demodulators 

that provide greater control over the complexity-performance trade-off by 

constructing a tree-search algorithm that generates a sizeable collection of 

'good' list members in the early stages (though not necessarily in order), so 

that good performance can be obtained even if the algorithm is terminated 

for reasons of complexity. The key aspect of the proposed multistack algo­

rithm is that the (global) stack is partitioned into one stack per level in the 

tree. The algorithm then proceeds by performing one best-first search step 

per level of the tree in the natural ordering of the tree. We will show that by 

assigning appropriate priorities to the level at which this 'best-first search per 

level' processing re-starts, and by incorporating natural termination criteria, 

the proposed demodulators can achieve trade-offs between performance and 

complexity that dominate those of several existing methods in the low com­

plexity region. 
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Figure 3.1: MIMO BICM-IDD transceiver. 

3.2 System model 

We will consider the coherent narrowband MIMO-BICM-IDD transceiver 

structure illustrated in Fig. 3.1 (e.g., [12]) which is the same as Fig. 2.2 

in Chapter 2, where the space-time modulator is the concatenation of a 

scalar constellation mapper and any (widely) linear space-time block code; 

e.g., [67]. We will consider scalar constellations of size 2M and the space 

time block code will transmit K such symbols per block channel use. We will 

let bn denote the vector of MK bits from the interleaved encoded bit stream 

that are mapped to the K symbols at the nth channel use, sn = M(bn), 

where M (·) is the corresponding mapping. Hence, the vector of received 

samples at the nth channel use can be written as 

(3.1) 


where Hn is the equivalent channel matrix (e.g., [67]) at the nth channel 

use, (and is assumed to be known at the receiver), and v n is a vector of noise 
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samples, which will be assumed to be from a zero mean, additive white cir­

cular Gaussian noise (AWGN) model with variance a 2 per real scalar dimen­

sion. We will focus on cases in which the space time block code is configured 

so that Hn is square or tall. 

As described in Chapter 2, since the emphasis of this thesis is on the 

demodulation step, the outer encoder in Fig. 3.1 can be any binary encoder, 

and we will adopt its corresponding soft-input soft-output decoder at the re­

ceiver. The role of the soft MIMO demodulator in Fig. 3.1 is to compute the 

log likelihood ratios of each of the NMK interleaved encoded bits, based 

on the channel measurements and the extrinsic information from previous 

decoder iterations. This 'soft information' is then passed to the outer soft de­

coder. Since the channel model in (3.1) is memoryless, the soft demodulator 

can operate on a block-by-block basis. For notational simplicity we will drop 

the subscript n in (3.1) and consider a generic block channel use. In that 

case, the soft demodulator computes (or approximates) the (conditioned) 

log likelihood ratio (LLR) for each element bi of b (e.g., [12]): 

.A E._ l p(bi = +lly,H) -l ~L;,+ 1 P(Ylh,H)p(b) ( ) 
i - og p(bi = -lly, H) - og ~,ei _ p(ylb, H)p(b)' 3'2 

1

where £ is the list of all 2MK binary vectors b, £i,b 
6 {b E £lbi = b}. 

As described in Chapter 2, under the assumed AWGN noise model and as­

suming that the interleaver is good enough for the conventional approxima­

tion p(b) ~ rr~~ p(bi) to hold, the summands in (3.2) can be written as 

e-D(b)/(2a 
2

) (e.g., [85]), where 

MK 

D(b) 6 llY - HM(b)ll~ - 2a2 L Iogp(bi)· (3.3) 
i=l 
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Since each list £i,b contains 2MK-1 terms, there has been considerable inter­

est in schemes that enable the approximation of (3.2) by replacing £ with a 

carefully selected reduced size list, .C, that contains the dominant summands 

in (3.2), [12, 18-20, 85-88]. 

The dominant summands in (3.2) correspond to binary vectors b 

that yield small values for D(b). The search for such vectors is signifi­

cantly simplified when the QR decomposition is used to make the inher­

ent M-ary tree structure of the MIMO demodulation problem explicit; e.g., 

[12, 18, 21, 85-87, 95]. In particular, if we let HE = QR denote the QR 

decomposition2 of HE, where Eis a column permutation matrix that deter­

mines the arrangement of the symbols in the tree, and if we define y 6 Qty, 

v 6 Qtv, s 6 Ets, and RJ to be the jth row ofR, then (3.3) can be rewritten 

as: 

K-1 

D(b) = LIYK-J -RK-Jsj
2 
-2a2 logp(sK-J)· (3.4) 

j=O 

Here, p(si) = rr~~(i-l)M+l p(be), where the product is over those bits that 

index the symbol si. In (3.4), the jth summand depends only on symbols 

K - j to K, and hence the inherent tree structure is exposed; e.g., [21]. 

In particular, we can assign the possible values for the j'th summand to be 

the metrics of the branches emanating from the nodes at the jth level of the 

tree (with level 0 being the root). Since each sK-J comes from an M-ary 

constellation, there will be M branches emanating from each node. For later 

convenience, we observe that the path metric for a node at level L in the 

2We consider the conventional QR decomposition in which QtQ =I, where (-)t denotes 
the (conjugate) transpose, and R is an upper-triangular matrix with non-negative diagonal 
elements [118]. 
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Figure 3.2: A snapshot of an instance of the stack algorithm for a system in 
which K symbols from a 4-ary constellation are transmitted in each (block) 
channel use. 

tree is the sum of the first L terms in (3.4) and this path metric is additive, 

with non-negative branch metrics. 

One approach to searching a tree for the leaf node with the smallest 

path metric is to employ the stack algorithm (e.g., [21]), in which all the 

exposed nodes of the tree are stored in a stack S. This algorithm proceeds 

in a 'best-first' manner by selecting the node in the stack with the smallest 

metric and replacing it by its child nodes. The first leaf node that the algo­

rithm selects for expansion corresponds to the bit-vector with the smallest 

value for D (b). A snapshot of an instance of the stack algorithm is provided 

in Fig. 3.2, where the exposed nodes, shown with empty circles, have been 

labeled in increasing order of their path metrics. All these nodes are stored 

in the global stack S, which is illustrated by the dashed closed curve. The 

next step in the algorithm would be to expand the node marked D1 • 

If the stack algorithm is continued to search for the 'next best' leaf 
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nodes, it will produce leaf nodes in increasing order of D(b), and the corre­

sponding bit-vectors constitute a candidate list for demodulation purposes; 

e.g., [18, 86, 88]. However, such a scheme may explore many internal nodes 

in the tree before it reaches the leaf node with the next smallest value for 

D(b), and hence may expend significant computational effort and memory 

resources to find only a few dominant leaf nodes. The multistack algorithm 

proposed in the following section provides greater control over the trade-off 

between performance and complexity, so that a large subset of the dominant 

leaf nodes can be obtained for lower computational cost. 

3.3 Multi-stack algorithm 

While the conventional stack algorithm (e.g., [21]) employs a single ordered 

stack of nodes, S, for the whole tree, we propose to partition the stack into 

separate stacks, Sk, for each level in the tree. In the conventional stack 

algorithm, the best node in the (global) stack is removed and is replaced 

by its child nodes. In the proposed multistack algorithm, when a stack is 

processed the node with the smallest path metric in the stack is removed 

and its child nodes are placed in the stack at the next lower level of the tree. 

A snapshot of an instance of the multistack algorithm is provided in Fig. 3.3, 

where the nodes in each stack are grouped together by a dashed closed curve 

and are labeled in increasing order of their path metrics within their stack. 

If the stack at level 3 is selected for processing, the node to be expanded will 

be that labeled D~. 

The partitioning of the (global) stack into a stack for each level nat­

urally generates an additional degree of freedom: the order in which the 

69 




Ph.D. Thesis - Mehran Nekuii McMaster University- Electrical & Computer Engineering Department 

Level 1 ,,­
-Sy~b~lK-- --.­ - - --­

Level 2 
-------------­

Symbol!( ­ I D'6 D'2 D
, 
5 

Stacks, 

D, \ 
1 

Stack Sf( (empty) 

• 

--~~-".~l-~---------------------------------(_ __________~·:J-------------------------------------------
Symbol l ' 

Figure 3.3: A snapshot of an instance of the proposed multistack algorithm 
for a system in which K symbols from a 4-ary constellation are transmitted 
in each (block) channel use. 

stacks are processed. In an attempt to obtain 'good' leaf nodes without ex­

cessive processing, we will focus on orderings in which the next stack to be 

processed is the stack at the next lower level of the tree. As there are K 

levels in the tree, this guarantees that the next leaf node will be found in at 

most K steps.3 Once a leaf node has been obtained, there is a degree of free­

dom in the level at which the search is re-started, and this choice provides 

some control over the way in which the tree is explored; see Section 3.3.1. 

Although this degree of design freedom is a distinct advantage of the 

proposed algorithm, leaf nodes are no longer produced in increasing order 

of D(b), and hence we need to ensure that the algorithm does not expend 

computational effort exploring paths with large metrics. To do so, we con­

sider only those nodes with path metrics below a certain threshold, B, that 

3Note that, by themselves, these K steps do not necessarily create a contiguous path to 
a leaf node. They merely expose the child nodes of the best node in the stack at each level 
of the tree. 
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is computed using a preliminary greedy depth first search of the tree; see 

Section 3.3.2. 

A key feature of the proposed algorithm is that it generates a sizeable 

collection of good leaf nodes in the early stages of the algorithm, and we 

will exploit this feature by providing explicit termination criteria based on 

the size of the list, and/or the number of nodes visited in the tree. These 

termination criteria enable the algorithm to be tailored to the computational 

resources at hand; see Section 3.3.3. 

A formal statement of the proposed algorithm is provided in 

Table 3.1, and in the following subsections we will discuss some of the fea­

tures of the algorithm in more detail. 

3.3.1 Symbol and re-start orderings 

The conventional stack algorithm has a single degree of freedom, the or­

dering of the symbols in the tree. In our notation, this is controlled by the 

permutation matrix E that is implicit in (3.4). The multistack algorithm in­

troduces an additional degree of freedom: the order in which we search for 

a non-empty stack (at which we re-start the core algorithm) after having ob­

tained a leaf node.4 That ordering will be denoted by t, and the best-first 

search per level processing is re-started from the first non-empty stack that t 

suggests. The variables E and t are set prior to each demodulation iteration, 

and enable the designer to exert some control over the way in which the tree 

is explored. Some candidate orderings are described below: 

4or after having encountered a stack whose nodes all have path metrics greater than B. 
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3.3.1.1 V-BLAST symbol and re-start orderings 

In the first iteration, no a priori information is available and, since the chan­

nel is known at the receiver, a natural choice for the symbol ordering, E, is 

the V-BLAST ordering [73], in which the symbol to be expanded at the next 

level of the tree is the one with the largest SINR. In the generation of the list, 

it may be fruitful to examine those symbols with low SINR in the greatest 

detail. This suggests a choice oft = [K, K - 1, ... , 1]. In subsequent demod­

ulation iterations we will retain the same orderings, which means that in 

this case the ordering of the search is determined by the channel and noise 

realization, and that the decoder exerts no influence over the ordering. 

3.3.1.2 Symbol and re-start orderings based on a priori information 

The principle of the V-BLAST ordering is to place the symbols about which 

we are most confident at the top of the tree. When we have a priori informa­

tion (i.e., after the first demodulation iteration), we can choose to use the 

likelihoods provided by the decoder as the measure of confidence, instead of 

the SINR. In particular, if we let P(sj) denote the largest of the prior prob­

abilities for symbols at level j, we can arrange the symbols in descending 

order of P(sj). (We will use the V-BLAST ordering for the first iteration.) As 

the deep nodes in the tree represent the symbols about which we are least 

confident, we will use the re-start ordering t = [K, K - 1, ... , 1]. 

3.3.1.3 Re-start ordering based on a priori information 

A weakness of the previous ordering is that at each demodulation-decoding 

iteration the a priori information is updated and hence E may change. If E 

does change, then the QR decomposition of HE implicit in (3.4) will have 
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to be repeated, and this adds to the computational cost of the algorithm. An 

alternative is to sort the stacks, instead of the symbols. That is, we retain 

the V-BLAST symbol ordering, and, upon re-start, we examine the stacks in 

increasing order of P(sj). 

3.3.1.4 Natural re-start order 

In this approach, we order the symbols according to the V-BLAST ordering 

and, upon re-start, we examine the stacks in their natural order. That is, 

t = [1, 2, ... , K], and we examine the stacks starting from the top of the tree. 

The motivation for doing so is to provide a diverse collection of candidate 

paths in the stacks at each level of the tree. 

3.3.2 Bounding the path metrics 

One of the difficulties encountered in the direct application of best-first 

search strategies to MIMO soft demodulation is the breadth of the nodes 

that are visited, and the consequent computational cost and memory re­

quirement. We address this issue by allowing the algorithm to cut from the 

tree, the sub-trees below nodes with a path metric greater than a prespec­

ified bound, B. To ensure that this bound is adapted to the channel real­

ization and the a priori information, it is determined by first performing a 

preliminary greedy depth-first search5 that generates a single leaf node and 

then selecting that node's path metric as the threshold, B. (This preliminary 

search also populates the stacks at each level of the tree.) In the first demod­

ulation iteration, when there is no a priori information, the resulting leaf 

5In a greedy depth first search, the levels of the tree are expanded sequentially and the 
child node with the smallest branch metric is selected at each step. 
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node corresponds to the output of a zero-forcing decision feedback detector 

with the ordering prescribed by E, [95]; the Babai point, e.g., [21]. 

3.3.3 Bounding the complexity 

If we were to run the proposed algorithm until all leaf nodes with a path 

metric less than B were found, then our approach would be reminiscent of 

some adaptations of the Sphere Decoding (SD) algorithm to list-based soft 

demodulation; e.g., [12, 19, 85].6 However, the goal of the proposed al­

gorithm is to generate a sizeable collection of good leaf nodes in the early 

stages, so that good performance can be obtained even if the algorithm is ter­

minated, before all leaf nodes with metrics less than Bare found. Since the 

dominant operations in the tree search are those that are repeated at each 

node, and since the size of the list determines the complexity of computing 

the list approximation of the LLRs, the key factors in the computational cost 

of the algorithm are the number of nodes visited in the tree search and the 

size of the list. The proposed algorithm provides explicit control over both 

these terms, and we will show in Section 3.5 that these controls provide a 

convenient way to explore the performance-complexity trade-off. 

3.4 Likelihood computation 

The goal of the multistack algorithm in Section 3.3 (and that of the related 

algorithms [12, 18, 19, 85-88]) is to efficiently construct a reduced-sized list 

f, with which the LLRs in (3.2) can be approximated. However, after gener­

ating f, using the algorithm in Table 3.1 (or the other algorithms), there may 

6That said, our simple choice for the threshold B avoids the "trial and error" methods 
in some approaches to list sphere decoding; e.g. [12]. 
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Table 3.1: Proposed List Construction Algorithm 

Input data: y; H; p(bk); K; a bound on the list size, L; a bound on the 

number of nodes visited, N. 

Variables: E; one stack per level, Sk; the search order of the stacks, t; a 

bound on the path metric, B. 

Output: the list, l. 

Preparatory computations: 


1) Using y, H, and p(bk), select E and t. Perform the QR decomposition of 
HE. 

Preliminary step: Greedy depth first search 

2) 	 Generate the child nodes of the root node and place them in S1• Set k = 1. 

3) While k :::; K - 1, remove from Sk the node with the smallest metric. 
Generate all that node's child nodes and place them in Sk+l· Increment k. 

4) 	 (k = K) Select the node from SK with the smallest metric, and place it in 
the list l. Set B to the path metric of this node. Clear SK. 

Bounded best first search per level 

5) Examine the stacks in the order imposed by t and select the first non-empty 
stack. If all stacks are empty, terminate. Otherwise, set k to the index of 
the first non-empty stack. 

6) 	 Select the node in Sk with the smallest path metric. If that metric is greater 
than B, clear Sk> and return to 5. Otherwise, remove this node from Sk, 
and generate all its child nodes. 

a. 	 If k < K, place the child nodes into Sk+l· If the number of nodes 
visited is< N, increment k and return to 6, otherwise, terminate. 

b. 	 If k = K, put those child nodes with metrics :::; B into l. If the number 
of nodes visited is < N and ICI < L, return to 5, otherwise, terminate. 
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be bit-positions for which Ci,+l or Ci,-l is empty, and such cases make the 

list approximation of the LLRs problematic. Therefore, we will generate an 

'enriched' list C' by adding all those bit vectors that are within a Hamming 

distance of one of at least one member of £; e.g., [20]. This enriched list 

can be generated by simply flipping one bit at a time of each list member. 7 

Once the enriched list has been constructed, the LLR in (3.2) can be 

approximated by performing the 'max-log' approximation (e.g., [12]) over 

the sub-lists £~,+ 1 and £~,- 1 , respectively. That is, we will approximate the 

LLR using only the dominant vector in each sublist. To guard against severe 

over or under estimation of soft information caused by the list and max­

log approximations (e.g., [87]), we will employ the common practice of 

clipping the approximated LLRs to a certain range (e.g., [87]); in our case, 

to the interval [-5, 5]. 

7If the original list £ has L members, then this enriched list has at most L(MK + 1) 
members, but simulation results indicate that many of the bit-flipped vectors are already 
members of .C, and hence L' = J.C'J is typically much smaller than L(MK + 1). 
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3.5 Simulation results 


In order to evaluate the performance and computational cost of various soft 

demodulation strategies, we consider MIMO systems with a narrowband 

Rayleigh block-fading channel with channel gains that are i.i.d. zero-mean 

circular complex Gaussian random variables of unit variance. To facilitate 

comparisons of our results with those in [12, 18], we employ the same trans­

mitter and receiver components and parameters. That is, at the transmitter 

we use a rate-1/2 punctured parallel concatenated turbo code with block 

length 8,192 and (5, 7) recursive systematic convolutional codes as the com­

ponent codes, and the V-BLAST transmission scheme [73]. 8 At the receiver, 

we use the conventional BCJR algorithm to decode the constituent codes of 

the turbo code. We perform 8 turbo decoding iterations before we pass the 

soft information back to the demodulator, and 4 demodulation-decoding it­

erations. We will consider two MIMO systems; a system with 4 transmit and 

4 receive antennas with Gray-mapped 16-QAM symbols, and an 8 x 8 MIMO 

system with Gray-mapped QPSK symbols. The size of the complete list for 

both of these systems is 1£1 = 65,536. 

In Figs. 3.4, 3.5, 3.6 and 3.7 we have provided performance­

versus-complexity trade-off curves for a variety of soft MIMO demodula­

tors for these two MIMO systems.9 Performance is measured in terms 

of the SNR required to achieve a bit error rate (BER) of 10-4 after four 

8The (different) interleavers in the turbo code and in the BICM transmitter are selected 
from randomly generated candidates in each Monte-Carlo iteration. 

9Using these trade-off curves, one can develop a notion of an 'efficient frontier' for 
soft MIMO demodulation that is similar in spirit to the efficient frontier for hard MIMO 
demodulation in [119]. 
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Figure 3.4: The trade-off between the SNR required for a BER of 10-4 and 
the average FLOPs per channel use for different algorithms for a 4 x 4 MIMO­
BICM transmission scheme with 16-QAM symbols. 
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the worst-case FLOPs per channel use for different algorithms for a 4 x 4 
MIMO-BICM transmission scheme with 16QAM symbols. 

demodulation-decoding iterations, and complexity is measured by explic­

itly counting the number of floating point operations (FLOPs) 10 required to 

generate the (enriched) list £1 and to compute the approximate LLRs. In 

Figs. 3.4 and 3.6 we measure the average number of FLOPS per channel use 

and in Figs. 3.5 and 3.7 we measure the peak FLOPs per channel use. In 

10Although the demodulators compared here are all based on tree-search methods, there 
are significant differences in the computational effort required to process a given node, and 
counting the FLOPs enables us to take these differences into account. Counting the FLOPs 
also enables us to incorporate the computational cost of the QR decompositions that are 
performed, and the impact of the different list sizes on the cost of the list approximation of 
the LLRs. 
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Figure 3.6: The trade-off between the SNR required for a BER of 10-4 and 
the average FLOPs per channel use for different algorithms for a 8 x 8 MIMO­
BICM transmission scheme with QPSK symbols. 

order to gauge the significance of the SNR gains in these figures, we used 

the method in [12] to compute the SNR threshold for the system under con­

sideration. It is 6.9 dB for the 4 x 4 system with 16-QAM symbols, and 1.6 dB 

for the 8 x 8 system with QPSK symbols. 

In Figs. 3.4-3. 7 we consider the multistack algorithm with the four 

different symbol and re-start orderings mentioned in Section 3.3.1, and lim­

its placed on either the list size (using L), or on the number of nodes visited 

(using N). We also consider performance-complexity trade-off of the stack 
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Figure 3.7: The trade-off between the SNR required for a BER of 10-4 and 
the worst-case FLOPs per channel use for different algorithms for a 8 x 8 
MIMO-BICM transmission scheme with QPSK symbols. 

algorithm and the sphere decoding algorithm. For the stack algorithm, we 

chose the LISS method in [18]. In that method, once an initial list of size 

L has been found, the LLRs are approximated using an augmented list that 

incorporates information from the incomplete paths of the tree. Following 

guidance from [18], in the first iteration we augmented the list using zero­

forcing decision feedback detection of the incomplete paths, and in the sub­

sequent iterations we used the a'priori information. In our implementation 

of the LISS algorithm, we used a stack of size 500, different initial list sizes 
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L (mentioned on the figures), and we augmented the list to a size of 100. 

For the sphere decoding algorithm, we used the method in [12], in which 

the list is generated only once. While that removes the computational load 

of list generation for the subsequent demodulation iterations, the list does 

not adapt to the updated a priori information from the decoder, and hence 

rather long lists are required for good performance. In order to obtain a tar­

get list size, the list sphere decoder in [12] employs a trial and error method 

to determine the appropriate search radius. However, we have excluded the 

FLOPs allocated to this task in the curves in Figs. 3.4, 3.5, 3.6 and 3. 7. 

Let us first make some observations regarding the performance of the 

different instances of the proposed algorithm. By comparing the dashed and 

solid curves with the same symbol, it is apparent that for a given computa­

tional cost, limiting the number of nodes visited provides better performance 

than limiting the size of the preliminary list, at least in the low computa­

tional cost region that we have examined. Also, by comparing the curves 

with different symbols, it is apparent that the natural re-start ordering pro­

vides better performance for a given computational cost. To provide insight 

into these comparisons, we selected four instances of the proposed algo­

rithm that result in about the same average computational cost in Figs. 3.4 

and 3.6; two that employ the natural re-start ordering, and two that employ 

the VBLAST ordering. For these demodulators, Tables 3.2 and 3.3 provide 

the average number of nodes visited, the average size of the preliminary list, 

and the average size of the enriched list, for the first, second and fourth 

demodulation-decoding iterations. For each ordering, the scheme with the 

limit on the number of nodes visited provides, on average, a larger enriched 

list in the first two iterations than the scheme with the bound on the size of 

the preliminary list, and it visits fewer nodes in generating these lists. The 
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Table 3.2: Average size of the preliminary list, .C and the enriched list, .C1
, 

and the average number of nodes visited, N', for the multistack algorithm 
with natural or VBLAST re-start orderings, and a limit L on the preliminary 
list size, or a limit N on the number of nodes visited. The scenario considered 
is that in Fig. 3.4. 

System\ Iteration 1st 2nd 4th 

\i\ \C'\ N' \C\ \C'\ N' \.Ci \i'\ N' 

Natural, N = 500 27.2 264 498 18.1 187 461 1.6 23 60 

Natural, L = 20 14.3 191 987 11.6 152 705 2.4 34 122 

VBLAST, N = 1000 38.3 237 959 25 191 792 1.5 22 58 


VBLAST, L = 20 13.8 180 1132 12.2 158 836 4.1 56 235 


Table 3.3: Average size of the preliminary list, .C and the enriched list, .C1
, 

and the average number of nodes visited, N', for the multistack algorithm 
with natural or VBLAST re-start orderings, and a limit L on the preliminary 
list size, or a limit N on the number of nodes visited. The scenario considered 
is that in Fig. 3.6. 

System \ Iteration 1st 2nd 4th 

\.Ci \C'\ N' \.Ci \i'\ N' \.C\ \C'\ N' 

Natural, N = 500 12.2 124 497 12.1 121 452 3.5 52 220 

Natural, L = 10 5.6 80 886 5.1 75 571 7.5 78 310 

VBLAST, N = 500 10.3 100 491 6.1 71 460 2.9 43 192 


VBLAST, L = 10 5.2 74 844 4.8 69 560 5 60 254 


richness of these lists enables the demodulator to leverage the power of the 

outer decoder more effectively. As shown in Tables 3.2 and 3.3, this results in 

a significant reduction in the number of nodes visited in the fourth iteration 

(and hence a reduction in the computational cost of that iteration) especially 

in the 8 x 8 MIMO QPSK example, and, as shown in Figs. 3.4 and 3.6, it also 

results in a reduction of the SNR required to achieve the desired target error 

rate. 

83 




Ph.D. Thesis - Mehran Nekuii McMaster University - Electrical & Computer Engineering Department 

The trade-off curves in Figs. 3.4-3.7 for the stack (LISS) algorithm 

in [18] demonstrate the improved performance that can be obtained by 

searching for the best leaf nodes in sequence. However, these figures also 

demonstrate the significant computational cost of that search. In particu­

lar, by employing the proposed multistack algorithm with the natural re­

start ordering and a bound on the number of nodes visited, we obtain a 

performance-complexity trade-off that dominates that of the stack algorithm 

in the low-complexity region. Figs. 3.4-3. 7 also show that the proposed 

method offers similar performance to the list sphere decoder [12] at a sig­

nificantly lower computational cost. 

The computational advantage of using the multistack algorithm over 

sphere decoding and stack algorithms tend to be greater when measuring 

the peak FLOPs required per channel use as shown in Figs. 3.5 and 3.7. This 

is particularly important in an implementational point of view. Since, the 

computational resources must accommodate the maximum FLOPs per chan­

nel use, algorithms with lower values for the maximum possible FLOPs are 

more favorable to be implemented. An alternative way in which the advan­

tage of using the multistack algorithm can be visualized is by comparing its 

empirical computational cost distribution with those of the sphere decoding 

algorithm and the stack algorithm. For this purpose we picked three points 

in Figs. 3.4 and 3.6 at which each algorithm requires about the same SNR 

to reach a BER of 10-4 • Figs. 3.8 and 3.9 show the corresponding computa­

tional cost distribution for the 4 x 4 MIMO 16-QAM and the 8 x 8 MIMO QPSK 

scenarios, respectively, where the stack algorithm has a stack size of 500 and 

a preliminary list size of 5 which is augmented to a list of size 100, and the 

sphere decoder has a list size of 128. We have compared these schemes to a 

multistack algorithm with natural stack ordering and a limit on the number 
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Figure 3.8: Empirical probability density of FLOPS per channel use for dif­
ferent demodulation schemes for 4 x 4 MIMO 16-QAM transmission. 

of nodes visited of 2000 in Fig 3.8 and 500 in Fig 3.9. Although all of these 

schemes have similar performance, the tail of the empirical computational 

cost distribution of the stack algorithm and the sphere decoding algorithm 

are extended more than that of the multistack algorithm in the high com­

plexity region. 
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3.6 Conclusion 

In this chapter we have proposed a tree-search algorithm for list-based 

MIMO soft demodulation that is based on the 'best-first' search principle 

used in the stack algorithm, but the search is performed on multiple stacks 

instead of a single (global) stack. In the proposed algorithm, the global stack 

is partitioned into a stack for each level of the tree, and the algorithm pro­

ceeds sequentially by performing one best-first search step in each of these 

stacks in the natural ordering of the tree. By assigning appropriate priori­

ties to the level at which this best-first search per level processing re-starts 

once a leaf node has been obtained, we showed that the proposed approach 

can achieve a performance-complexity trade-off that dominates those of the 

stack (LISS) algorithm in [18] and the list sphere decoder [12] in the low­

complexity region. 
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Chapter 4 

Efficient Soft Demodulation of 

MIMO QPSK via Semidefinite 

Relaxation 

'Well, if I called the wrong number, why did you 

answer the phone?' 

JAMES THURBER 

I N THIS chapter two efficient list-based 'soft' demodulators are developed 

for iterative receivers in multiple-input multiple-output (MIMO) commu­

nication systems with QPSK signaling. The proposed demodulators are 

based on the semidefinite relaxation (SOR) technique, and hence their com­

putational costs are bounded by a low-order polynomial of the number of 

bits transmitted per channel use. The first demodulator applies the SOR tech­

nique once per demodulation-decoding iteration, and generates list mem­

bers via the randomization procedure that is inherent in the SOR technique. 
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The second demodulator is based on an approximation of that randomiza­

tion procedure by a set of independent Bernoulli trials, and this approxima­

tion reduces the number of semidefinite programs that need to be solved to 

just one per channel use. List-free implementations of the proposed demod­

ulators are also developed, and these implementations reduce the memory 

requirements of the demodulators. Analysis and simulation results show 

that the proposed demodulators offer an attractive trade-off between per­

formance and computational cost. In particular, in the scenarios that we 

consider, the second of the proposed demodulators provides error rates that 

are lower than those of the minimum mean square error soft interference 

canceler (MMSE-SIC) and close to those of the list sphere decoder, and does 

so at a significantly lower computational cost. 

4.1 Introduction 

As was mentioned in the previous chapters, the provision of multiple anten­

nas at both the transmitter and receiver of a wireless communication system 

offers the potential for reliable communication at data rates that are substan­

tially higher than those of single antenna systems [6]. One of the core chal­

lenges in the design of such multiple-input multiple-output (MIMO) systems 

is to obtain good performance at high data rates without incurring unrea­

sonable computational cost. A popular transceiver architecture for moving 

toward that goal is that of MIMO bit-interleaved coded modulation (BICM) 

with iterative "soft" demodulation and decoding (IDD), e.g., [12]; see also 

Fig. 4.1. As in the previous chapter, we will focus on narrowband multiple 

antenna systems, and when configured for such systems, the MIMO-BICM 
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transmitter encodes the information bits using an outer binary code, inter­

leaves the encoder output and then maps blocks of the interleaved code­

word to points on a (space-time) matrix constellation for transmission over 

the channel. At the receiver, the demodulator and outer decoder iteratively 

exchange the extrinsic components of their estimates of the posterior log 

likelihood-ratio (LLR) of each encoded bit, until a hard decision is taken. 

Although this IDD scheme has many desirable features, the computational 

cost of the (exact) soft demodulator increases exponentially with the num­

ber of (encoded) bits transmitted per channel use, and hence there has been 

considerable interest in the development of approximate soft demodulation 

schemes with lower complexity; e.g., [12, 14, 15, 17, 18, 20, 85-87]. 

As described in Section 2.5.3, one approach to lower-complexity soft 

demodulation is to apply the so-called "max-log" approximation [51], under 

which the LLR of each bit is approximated by the difference between the op­

timal values of a pair of "hard" demodulation problems; e.g., [14, 15, 17]. 

However, each of these hard demodulation problems is also hard in the 

NP sense. Tree search methods (e.g., [21]), such as sphere decoding 

(e.g., [90, 91]), can be used to find optimal solutions to these problems 

(e.g., [14, 15]), but both the average and worst-case computational costs 

remain exponential in the problem size [22], and the "tail" of the distribu­

tion of the computational cost can be quite significant at low SNRs or for 

large problem sizes; e.g., [112]. As an alternative, semidefinite relaxation 

methods (e.g., [110, 111]) can be used to efficiently generate approximate 

solutions to the hard demodulation problems [17], and these methods have 

the advantage that the growth of the computational cost is bounded by a 

low-order polynomial in the problem size. However, the number of semidef­

inite programs that must be solved in each demodulation-decoding iteration 
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grows linearly in the number of (encoded) bits transmitted per channel use. 

As in Section 2.5.4, another approach to approximate soft demod­

ulation is to apply the principles of list decoding, in which one seeks 

to efficiently identify a list of bit-vectors that dominate the LLRs; e.g., 

[12, 18, 85-87]. The LLRs can then be approximated by marginalizing over 

the list. Most of the existing techniques are based on the use of tree search 

algorithms to identify members of the list (e.g., [12, 18, 85-87]), and hence 

can be rather computationally expensive, especially at SNRs close to the (er­

godic capacity) threshold for the chosen rate. In some list demodulation 

schemes (e.g., [12]) the list for each channel use is generated once, in the 

first demodulation-decoding iteration, and is stored for use in the subse­

quent iterations. This may require substantial memory resources. In other 

schemes (e.g., [18, 85-87]), the list for each channel use is regenerated in 

each demodulation-decoding iteration, but the memory requirements can 

still be significant. 

In this chapter we develop a semidefinite relaxation (SOR) approach 

to list-based soft demodulation, and propose two new demodulators, both 

of which regenerate the list in each demodulation-decoding iteration. The 

first demodulator applies the semidefinite relaxation technique once per 

demodulation-decoding iteration, and generates list members via the ran­

domization procedure that is inherent in SOR techniques [110, 111]. The 

second demodulator is based on an approximation of this randomization 

procedure by a set of independent Bernoulli trials. This approximation al­

lows us to reduce the number of semidefinite programs to be solved to just 

one per channel use. Furthermore, we develop a list-free implementation 
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of both demodulators that reduces the memory resources required for im­

plementation. Our simulation results will show that the resulting computa­

tional and memory efficiencies are obtained without incurring a significant 

degradation in performance. 

This chapter is organized as follows. In Section 4.2 we provide an 

overview of the MIMO-BICM-IDD system, and in Section 4.3 we review the 

SDR approach to hard demodulation of MIMO QPSK. Although the material 

in those sections does reiterate some of the concepts introduced in Chap­

ter 2, this material is included here to provide a timely review of the context 

in which the proposed demodulators will be developed. In Sections 4.4 and 

4.5 we develop the proposed demodulators, which we will call the List-SDR 

and Single-SDR demodulators, respectively. In Section 4.6 we describe the 

list-free implementation of the proposed methods, and in Section 4.7 the 

computational cost of implementing the demodulators is analyzed. The re­

sults of simulation experiments that compare the performance and compu­

tational cost of the proposed demodulators against those of several existing 

demodulators will be presented in Section 4.8. 

4.2 System model and iterative receiver 

We consider a narrowband multiple antenna system with Nt transmit anten­

nas and Nr receive antennas. If we let sn denote the signal vector transmit­

ted at the nth channel use, the corresponding received signal vector can be 

written as 

(4.1) 
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Figure 4.1: MIMO BICM-IDD transceiver. 

where Hn is the Nr x Nt matrix of channel coefficients and is assumed to be 

known at the receiver, and v n is a vector of additive white circular complex 

Gaussian noise samples with variance CJ 2 per real dimension. We will con­

sider a MIMO-BICM-IDD transceiver for this system, e.g., [12]; see Fig. 4.1. 

For simplicity, we will focus on V-Bl.AST transmission [73], but by using the 

equivalent channel concept in [67], the proposed demodulators extend di­

rectly to signaling schemes based on general linear dispersion codes. We 

will let bn denote the sub-block of the interleaved outer codeword that is 

to be transmitted in the nth channel use, and we will let M (b) denote the 

mapping used by the MIMO modulator; i.e., Sn = M(bn). We will consider 

systems in which this mapping is to QPSK symbols, and we will let N denote 

the number of channel uses required to transmit one codeword of the outer 
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code. 

At the receiver, the soft MIMO demodulator and the soft-input soft­

output outer decoder iteratively exchange (extrinsic) information regarding 

the bit probabilities, using the log likelihood-ratio (LLR) format; see Fig. 4.1. 

This iterative process is based on the turbo principle [13], and since the 

channel in (4.1) is memoryless, the role of the soft demodulator is to com­

pute (or approximate) the posterior LLR of each element of the block of the 

interleaved outer codeword that is transmitted in a given channel use, under 

the assumption that these blocks are independent from each other. That is, 

for the ith element of the bit-vector transmitted in the nth channel use, bn,i, 

the soft demodulator computes (e.g., [12]) 

P{bn,i = +llYn} (4.2)
Am,n,i =log P{bn,i = -llYn}' 

where, for notational simplicity, we have not explicitly stated the condition­

ing on Hn that is inherent in coherent demodulation. Once these LLRs have 

been computed for each of the N channel uses required to transmit a code­

word of the outer code, they are passed through the de-interleaver to the 

outer decoder. 

Since the focus of this chapter is on the soft demodulator, we will 

drop the subscript n in ( 4.1) and ( 4.2) and will consider a generic channel 

use. Applying Bayes' Rule enables us to rewrite ( 4.2) as 

L:ci,+l p(ylb )p(b) 
(4.3)-Am,i=logL (lb) (b)'

L'.;,-1 p y p 

where £ = {b E { -1, +1}2Nt} denotes the (complete) list of possible trans­

mitted bit-vectors and £i,±I = {b E £lbi = ±1}. Given the model in (4.1) 
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and the fact that we are employing coherent demodulation, the likelihood 

function p(y lb) in ( 4.3) satisfies 

p(ylb) ex exp (-lly - HM(b)ll 2/(2o-2)) . 

Furthermore, an estimate of the prior probability p(b) can be obtained 

from the output of the previous iteration of the decoder, by assuming that 

the elements of b are independent; i.e., p(b) ~ nip(bi)· If we define 

>.A1,i = log (:~~:=~~D, so that AA1 denotes the vector that represents these 

probabilities in LLR form, then flip(bi) ex exp(.X~1 b/2). Using these expres­

sions, the LLR in ( 4.3) can be written as (e.g., [12]) 

Le exp ( -D(b) / (20-2))
>. . rv log --'-'--''+_1_______ (4.4) 

Dl,i - Le; -1 exp(-D(b)/(2o-2))' 

where 

(4.5) 


The number of elements in the lists £i,±l in ( 4.4) grows exponen­

tially as the number of (encoded) bits transmitted per channel use increases, 

and hence so does the computational cost of the demodulator. Many of the 

existing approaches to reducing this computational cost employ one of the 

following approximations: 

\ LL\+
1 

exp(-D(b)/(2o-2)) 
ADli~ 1og---------- (4.6) 

, L.C;_ exp(-D(b)/(2o-2))
1 

~~(~in D(b) - ~in D(b)), (4.7)
217 bEei,-1 bEei,+l 

where f, ~ £. Each of these equations reveals a class of approximate soft 
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MIMO demodulators. 

The first class is based on selecting l = [, and solving the two binary 

quadratic optimization problems in ( 4.7) for each encoded bit. Solutions 

to these "hard" demodulation problems can be obtained using tree-search 

algorithms, as they are in [14, 15], but, as mentioned in the Introduction, 

these algorithms can be rather computationally expensive. Alternatively, ap­

proximate solutions can be found in polynomial time using the semidefinite 

relaxation technique [17]. 

The second class of soft demodulators is based on efficiently select­

ing a list l of bit-vectors that generate small values for D(b) and then ap­

proximating the LLR either by marginalizing over li,±l in (4.6), e.g., [85], 

or by performing an exhaustive search over li,±l to solve the minimization 

problems in (4.7); e.g., [12]. The key challenge in this class of methods is 

the efficient selection of the members of l. Most approaches are based on 

tree-search ideas, and hence are potentially rather computationally expen­

sive; e.g., [12, 18, 85-87]. In addition, as we will explain in Section 4.6, 

these methods may require significant memory resources in order to store 

the generated list members. 

One important approximate soft demodulator that does not fall into 

one of these two classes is that based on the minimum mean square er­

ror soft interference canceler (MMSE-SIC) in [24]; see also [46, 120, 121]. 

For each transmitted symbol, this demodulator first forms the unbiased con­

ditional MMSE estimate of the symbol, where the conditioning is on the 

probabilities of the other symbols transmitted in the channel use of interest. 

The demodulator then approximates the residual interference by a Gaussian 

random variable, and computes the LLR of each bit in the symbol as if the 

channel was a scalar additive white Gaussian noise channel. The conditional 
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MMSE estimate has a canonical decomposition into two steps: subtraction 

of the mean of the interfering symbols, followed by (unbiased) linear MMSE 

estimation of the relevant symbol, and hence the moniker MMSE-SIC. The 

reader may refer to Appendix A for a more detailed overview of this approx­

imate soft demodulation scheme. 

The two demodulators proposed in this chapter fall into the second 

class of approximate soft demodulators, but they are based on semidefinite 

relaxation rather than a tree search, and hence their computational cost is 

bounded by a low-order polynomial of the problem size. Furthermore, the 

second of these demodulators requires the solution of only one semidefi­

nite program per channel use, and both demodulators can be implemented 

without explicitly storing the list of candidate bit-vectors. Both the proposed 

demodulators exploit the properties of the randomization step that is in­

herent in the approximation of the solution of a binary quadratic problem 

by semidefinite relaxation, and before we introduce those demodulators we 

will provide a brief overview of the application of the semidefinite relaxation 

technique [110, 111] to hard demodulation [96, 122]. 

4.3 Hard demodulation using SDR 

Consider the real-valued equivalent representation for ( 4.1) with QPSK sig­

naling, 

y= :Hb+v, (4.8) 

where y and v are the concatenations of the real and imaginary parts of y 
and v, respectively, and we have considered an arbitrary channel use. Given 

prior information on the bit probabilities in the form of AAi in (4.5), the 

98 




Ph.D. Thesis - Mehran Nekuii McMaster University - Electrical & Computer Engineering Department 

bit-vector b that maximizes the a posteriori probability is the solution to the 

following binary optimization problem: 

min D(b) = min llY'- Hbll~ - a2 .X~1 b. (4.9)
bE{+l,-1}2Nt bE{+l,-1}2Nt 

Using the definitions [17, 96] 

u 6 6 -T- 2b=cb, a= -H y - 0.5a AA1 , (4.10) 

in which c E {+1,-1}, the problem in (4.9) can be stated as the following 

(NP-hard) binary quadratic programming (BQP) problem: 

min i)TQb. 	 (4.11) 
bE{+l,-1}2Nt+l 

Using the substitution X = i)i)r, the problem in (4.11) can be reformulated 

as 

min 	 Trace(XQ) (4.12a)
x 

s.t. 	 X ~ 0, rank(X) = 1, (4.12b) 

[X]ii = 1, i = 1, ... , 2Nt + 1, (4.12c) 

in which the computational difficulties manifest themselves in the rank-1 

constraint. The semidefinite relaxation approach to approximating the so­

lution to ( 4.11) is to relax the rank-1 constraint and solve the following 
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semidefinite program (SDP): 

min 	 Trace(XQ) (4.13a)
x 

s.t. 	 X t 0, (4.13b) 

[X]ii = 1, i = 1, ... , 2Nt + 1. (4.13c) 

This problem is convex and can be efficiently solved using the interior point 

method in [23]; see Section 4.7. (See also [123] for some recent develop­

ments.) When Xopt, the optimal solution to (4.13), is rank 1, its factorization 

generates an optimum solution to ( 4.11). In the more common event that 

the solution to ( 4.13) is not rank 1, a randomization procedure [110, 111] 

can be used to extract an approximation of the solution to ( 4.11) from Xopt· 

That procedure involves the construction of a (Cholesky) factor V of Xopt, 

(i.e., Xopt = vrv), and the generation of a sequence of random vectors u 

from the uniform distribution on the unit hypersphere. For each vector u we 

compute :X = sign(Vru), construct the vector x = i2N1+1 x [x1, ... , x2Nt]r, 

and compute D(x) using (4.5). If this value of D(x) is smaller than the small­

est encountered in the previous steps, then x is retained as hsar, the current 

approximation of the solution to (4.11). A key feature of the SDR approach 

is that even for the worst-case channel, the expected value of D(x) over the 

randomizations is guaranteed to be within a (reasonably small) constant fac­

tor of the optimal value of (4.11), independent of the number of bits to be 

detected [111]. Furthermore, since each choice of the random vector u is 

made independently, the probability that D(bsar) is higher than the expected 

value of D(x) decreases exponentially with the number of randomization 

iterations [111]. 
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In [17], Steingrimsson et al developed a soft MIMO demodulator from 

the first class in Section 4.2 that was based on the semidefinite relaxation 

technique described above. For each channel use, that demodulator solves 

2Nt + 1 SDPs per demodulation-decoding iteration, and hence we will call 

that scheme the "multi-SDR'' method. In the next section, we will propose 

a list-based soft demodulation scheme that requires the solution to just one 

SDP in each demodulation-decoding iteration for each channel use, and in 

Section 4.5 we will propose a scheme that requires the solution of only one 

SDP per channel use. 

4.4 List-SDR method for soft demodulation 

One of the properties of the SDR approach to hard demodulation is that, 

on average, the bit-vectors generated by the randomization procedure yield 

small values for the objective in (4.9). This suggests that, on average, those 

bit-vectors are good candidates for membership of the list in a list-based 

approach to soft MIMO demodulation, and this is the essence of the pro­

posed approach. We will construct a preliminary list £1 by simply storing 

each (unique) bit-vector generated by the randomization procedure. Since 

it is possible that there may be bit positions for which £~,+ 1 or £~,-I is empty, 

once the randomizations have been completed we will construct an enriched 

list f, consisting of £1 plus all those bit-vectors with Hamming distance of 1 

of the bit-vectors in £1 (This enrichment is based on ideas in [20] and can • 

be implemented by "flipping" individual bits of each element of £1
.) Once 

this enriched list has been constructed, we adopt the standard list-based ap­

proach to approximate the soft information using ( 4.6) or ( 4.7) over the 

constructed list £. Since the computational cost of this enumeration grows 
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Table 4.1: List generation component of the List-SDR algorithm. 

• 	 Data: Xopr, the solution to (4.13), or an approximation thereof. 

• 	 Parameters: M, the number of randomization iterations; K, the maximum 
size of the preliminary list. 

• 	 Output: £, the enriched list. 

1. 	Initialize £1 and £ empty, m = 0, and k = 0. 

2. 	 Compute a (Cholesky) factor V of Xopt such that Xopt = vrv. 
3. 	Choose a random vector u from the uniform distribution on the unit sphere. 

4. 	 Compute x = sign(VTu) and increment m. 

5. 	Construct x = :i:2N1+1 x [:i:1, ... ,:i:2Ntf. If xis not in £1
, add it to £1 and 

increment k. 

6. 	 If k < Kand m < M, return to 3. 

7. 	 Construct£ as the union of £1 and all the single bit-flippings of the bit-vectors 
in £1 

• 

linearly with the cardinality of .C, one may wish to bound the cardinality 

of £1
, and to use this bound to enable early termination of the randomiza­

tion procedure should £1 be sufficiently rich. The resulting list generation 

algorithm is presented in Table 4.1. Since the a priori information AAi is 

updated in each demodulation-decoding iteration the cost function D(b) in 

(4.5) changes, and hence so does Xopt· Therefore, for each iteration we 

regenerate the list using the procedure in Table 4.1. 

4.5 Soft demodulation using single SDR 

An interesting property of the SDR approach to approximating the solution 

to a binary quadratic problem is that an analytic expression can be obtained 

for the mean value of each element of the candidate bit-vectors x that are 
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generated by the randomization procedure described in Section 4.3. The 

mean value of the ith element can be computed by using the fact that if 

the inner products of the random vector u with columns vi and v 2N1+1 of 

the Cholesky factor V have the same sign then xi= +1, otherwise xi= -1; 

cf. [110, 111]. Since the random vector u is uniformly distributed on the unit 

sphere, the mean value for xi over the randomization iterations depends on 

the angle, 8i,2Ni+i. between vi and v2Ni+i and can be written as 

(4.14) 


Using the fact that vfv2N1 +1 = llvillllv2N1+1ll cos(8i,2N1+1), and that the con­

straint [X]ii = 1 in (4.13) ensures that all llvill = 1, the mean value can be 

expressed directly in terms of the columns of V, 

(4.15) 


The first observation in the development of the proposed demodu­

lator is that the expression in (4.15) suggests that for the purposes of soft 

demodulation, one could consider generating a sequence of bit vectors with 

properties similar to those generated by the formal randomization process 

by making the approximation that the elements of x are independent, and 

generating each element of x via a scalar (antipodal) Bernoulli trial. Such 

an approach would avoid the cost of computing yru in each instance of the 

formal randomization procedure. 

The second observation is that this Bernoulli trial approach provides 

an opportunity to separate the processing of the information provided by 

the channel output from the processing of the extrinsic information fed back 
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from the previous iteration of the decoder. At each iteration, the decoder 

updates the extrinsic information that it provides to the demodulator (which 

we have denoted by AA1). The expression for D(b) in (4.5) suggests that 

the demodulation procedure needs to be repeated at each iteration (as it is 

in [18,85,86] and in the List-SDR algorithm proposed in Section 4.4). How­

ever, as we will show below, the Bernoulli trial approach to randomization 

allows us to extract the SDP from the iterative demodulation and decoding 

loop so that we need only solve one SDP per channel use. 

The architecture of the proposed list generation technique is illus­

trated in Fig. 4.2. It consists of an SDR demodulator (which is invoked only 

in the first iteration), and a randomized list generator. The randomized list 

generator takes two inputs: (i) the vector ..\ = [,\1 , ... , A2Nt JI' containing the 

mean values in ( 4.15) in LLR form, i.e., 

(4.16) 


and (ii) the vector AAi containing the extrinsic information (in LLR form) 

from the previous iteration of the decoder. The randomized demodulator 

then computes Bernoulli distributions that reflect these inputs (see ( 4.18) 

below), and generates a sequence of random binary vectors according to 

those distributions. 

By construction, the extrinsic information provided by the decoder is 

independent of the soft information from the channel [13]. Therefore, if the 

randomized demodulator is to generate candidate bit-vectors via Bernoulli 

trials that reflect both the information from the channel and the extrinsic 

information from the decoder, the LLR representation of the mean of that 
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y,H,a2 

Repeat randomization iteration 

Solve SDP in (4.13) >..8 Generate candidate x Add (unique) x and 
in first iteration f--'---i-1­ via Bernoulli trials 1-----i bit-flippings to f, 

Randomized list generator 

Figure 4.2: List generation scheme using the Single-SOR algorithm. 

Bernoulli distribution should be 

(4.17) 

The i-th entry of the corresponding mean vector µ B is 

µB,i = 1- 2/(1 + exp(AB,i)). (4.18) 

Having computed µB, the demodulator randomly generates the bit-vectors 

that will form the preliminary list, C'. The ith bit of each of these vectors is 

generated by running an independent (antipodal) Bernoulli trial with mean 

µB,i· An enriched list f, is then constructed by adding to f,' all the single 

bit-flippings of the bit vectors in £'. A formal statement of list generation 

using this algorithm is presented in Table 4.2. After construction of the list 

f, the soft information from demodulator can be approximated using ( 4.6) 

or (4.7). 
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Table 4.2: List generation component of the Single-SDR algorithm 

• 	 Data: A in (4.16); AA1, the vector of extrinsic LLRs from the previous iteration 
of the decoder. 

• 	 Parameters: M, the number of randomization iterations; K, the maximum 
size of the preliminary list. 

• 	Output: £, the enriched list. 

1. 	 Initialize £1 and f, empty, m = 0, and k = 0. 

2. 	 Compute AB in (4.17) and subsequently µ 3 . 

3. 	 Generate each element of x, Xi, independently according to the (antipodal) 
Bernoulli distribution with mean µ3 ,i and increment m. 

4. 	 If xis not in £1
, add it to £1 and increment k. 

5. 	If k < K and m < M, return to 3. 

6. Construct f, as the union of £1 and all the single bit-flippings of the bit-vectors 
in £1 

• 

4.6 List-free implementation 

One of the bottlenecks in the implementation of list-based soft demodulators 

is the requirement of a significant amount of memory. This is an especially 

important issue in list demodulation schemes in which the list is generated 

in the first demodulation-decoding iteration and stored for use in the sub­

sequent iterations. In those schemes (e.g., [12]), the system must provide 

enough memory to save the list associated with each of the N channel uses 

required to send a complete codeword. (Since these lists are based on infor­

mation from the channel only, they need to be quite long.) In schemes that 

regenerate the list at each iteration, the receiver has only one list to store, 

but the resulting memory requirement can still be quite significant. 

Another issue that arises in list-based demodulation schemes in which 
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y,H,a2 

Repeat randomization iteration 

Bit flip, hash Solve SOP in (4.13) : >. >.8 Generate candidate x 
in first iteration i----'__.,"1-1--r---i via Bernoulli trials>----- and update llRs 

Randomized soft demodulator 

Figure 4.3: The proposed list-free soft demodulator. 

the list members are generated via a randomization procedure, such as those 

proposed in Sections 4.4 and 4.5, is that candidate list members may be 

duplicated. In order to avoid redundant computation of the metric D ( ·), and 

in order to avoid storage of repeated list members, this duplication ought to 

be avoided; see Step 5 in Table 4.1 and Step 4 in Table 4.2. However, it is 

important that the computational cost of any scheme that is used to avoid 

this duplication is small. 

In this section we will show that for list demodulators that regenerate 

the list at each iteration and use the max-log approximation on the list to 

approximate the LLR (cf. (4.7)), only two real vectors of size Nt need to be 

stored. We will also show that repeated generation of candidate list mem­

bers can be efficiently detected via a hashing strategy. A block diagram of 

the proposed list-free implementation is provided in Fig. 4.3, and a formal 

statement of the algorithm is provided in Table 4.3. We point out that unlike 

the algorithms in the previous sections in which the output was the enriched 

list£, from which the soft information can be extracted using (4.6) or (4.7), 

in the list-free implementation the soft information is generated directly. 

One of the features of many list demodulators, including the List-SOR 

and Single-SOR demodulators presented in the previous sections, is that the 
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candidate list members are generated one at a time. In such schemes we can 

update the optimal values of the 2Nt optimization problems in ( 4. 7) as each 

list member is generated, rather than waiting for the whole list to be con­

structed. We can then discard that list member and simply store the 2Nt real 

values that are the current optimal values for the problems in ( 4.7). Doing 

so leads to a list-free implementation. In our demodulators, the list f, is gen­

erated in two phases, the randomization phase and the enrichment phase 

(which is based on bit-flipping). The enrichment phase can be incorporated 

into the list-free implementation by simply evaluating the neighboring vec­

tors at Hamming distance 1 of each randomized candidate just after it is 

generated. 

This list-free implementation highlights the potential for redundant 

computation of D ( ·). One efficient way in which that can be avoided is via 

a hashing scheme [124]. The hashing scheme computes an integer 'signa­

ture' for each generated bit vector via a deterministic injective function, and 

then stores this signature in an ordered array. Before processing the next 

candidate bit-vector, x, the demodulator computes its signature and checks 

if that value is in the signature array. The candidate is discarded if its sig­

nature is present, and if that value is not found, its signature is added to 

the array, and the candidate bit-vector is processed. In the simulations in 

Section 4.8 we chose the signature to be the decimal equivalent of the bi­

nary number (xr + 1)/2, where 1 is a conformally-sized vector of ones. As 

we will quantify in the next two sections, the computational costs of com­

puting the signatures and searching the (ordered) signature array are small 

with respect to the overall computational cost of the demodulator. Imple­

menting the hashing scheme does require additional memory. Although the 

maximum required memory, min{M, K}, is, quite naturally, the same as that 
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Table 4.3: List-free implementation of Single-SOR algorithm for randomized 
soft demodulator 

• 	 Data: A in (4.16); AA1, the vector of extrinsic LLRs from the previous iteration 
of the decoder. 

• 	 Parameters: M, the number of randomization iterations; K, the maximum 
size of the signature list. 

• 	 Output: Am, the vector of log likelihood-ratios 

1. 	Compute AB in (4.17) and subsequently µB. 

2. 	 Initialize f+l = { +oo}2Nt, L 1 = { +oo}2Nt, m = 0, k = O 

3. Generate each xi independently according to the (antipodal) Bernoulli distri­
bution with mean µB,i· 

4. Compute the signature of x. 	If that value is not in the signature array, insert 
the value into the array and increment k, compute D(x), and for each i = 
1, 2, ... , 2Nt, if Xi = +1 then set [f+i]i = min{[f+i]i, D(x) }, else set [L1]i = 
min{[L1]i, D(x) }. 

5. For each i = 1, 2, ... , 2Nt, set xCi) = x and then x~i) = -xi. Repeat Step 4 for 
j{(i). 

6. Increment m. 	 If m < Mand k < K return to 3. Otherwise, return Am = 

(f+1 - L1)/(2a2
). 

required to store the list, in practice the average length of the signature array 

will be significantly shorter, and the memory requirement will often be out­

weighed by the computational cost reduction that is obtained by (efficiently) 

avoiding redundant computation. 

An additional advantage of the list-free implementation described 

above is that the parameters of the algorithm can be adapted dynamically. 

This offers the potential for the demodulator to dynamically adjust its oper­

ating point on its performance-complexity trade-off in response to changes 

in the characteristics of the channel or in the requirements of the application. 
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4.7 Computational cost 

As mentioned in the Introduction, an advantage of SDR methods over tree 

search methods, such as sphere decoding, is their polynomial (worst-case) 

computational cost. An advantage of the particular (list-free) SDR-based 

soft demodulators that we have proposed herein is that their computational 

costs are lower than those of some existing soft demodulators. In this section 

we quantify that claim by evaluating the computational costs of these SDR­

based algorithms. For convenience, we have summarized the outcomes of 

this analysis in Table 4.4. We will begin our analysis by stating the computa­

tional cost of each of the components of the algorithms, in terms of floating 

point operations. 

If we let E denote the accuracy to which the SDP is solved, the worst­

case computational cost of solving the SDP in ( 4.13) using the interior point 

method in [23] is 0 ( (2Nt + 1 )3·5 log c 1). The computational cost of generat­

ing each bit-vector in the conventional randomization procedure used in the 

Multi-SDR [17] and List-SDR (cf. Section 4.4) methods is 0 ( (2Nt +1) 2). The 

computational cost of the simplified randomization step in the Single-SDR 

method (cf. Section 4.5) is 0(2Nt)· Finally, since bis binary, computing the 

metric D(b) requires 2Nt(2Nt + 1) (signed) real additions. 

The Multi-SDR method of [17] solves one SDP of size 2Nt +1 and 2Nt 

SDPs of size 2Nt per demodulation-decoding iteration, and after solving each 

SDP it performs M randomization iterations and computes D(b) for all the 

generated bit-vectors. If we perform T demodulation-decoding iterations, 
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then the computational cost per channel use of the multi-SDR scheme is: 

T x [0((2Nt + 1)3
·
5 logE-1

) + M x 0((2Nt + 1)2
) + M x 0((2Nt)2

)] 

+ 2NtT x [O( (2Nt)3
·
5 log E-1

) + M x 0((2Nt)2
) + M x 0((2Nt)2

)] 

"'O(TNt4·
5 logE-1

) +O(TMNt3 
) +O(TMNl), (4.19) 

where the first term corresponds to the cost of solving the SDPs, the second 

term corresponds to the cost of the randomization steps that follow each of 

these SDPs, and the last term denotes the cost of the metric computations. 

The List-SDR approach proposed in Section 4.4 requires the solution 

of only one SDP of size 2Nt + 1 per demodulation-decoding iteration. If we 

perform M randomization steps (i.e., if K =Min Table 4.1), then the cardi­

nality of the enriched list £ is at most ( 2Nt+1)M, and hence the enumeration 

approach to optimizing the terms on the right hand side of (4.7) requires at 

most (2Nt + l)M evaluations of D(b) in each demodulation-decoding itera­

tion. Therefore, the worst-case complexity of the proposed approach is 

T x [0((2Nt + 1)3
·
5 logE-1

) + M x 0((2Nt + 1)2
) + M(2Nt + 1) x 0((2Nt)2 

)] 

"'O(TN?°5 logE-1
) + O(TMNn + O(TMN?), (4.20) 

where these terms correspond to the cost of solving the SDP, the cost of con­

structing the list£ (via randomization), and the cost of the enumerations in 

(4. 7) over £i,±i. respectively. This expression shows that the computational 

cost of the SDP component of the proposed list-based SDR scheme is one 

order lower than that of the multi-SDR scheme. 

The computational cost per channel use of the Single-SDR approach 
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Table 4.4: Dominant computational cost per channel use of various 
MIMO soft demodulators for a system with Nt transmit antennas and T 
demodulation-decoding iterations. 

Demodulator Dominant Computational Cost 

Multi-SDR O(TNt4.5) 

List-SDR O(TN:j,·5) 

Single-SDR O(N?°5

) 


MMSE-SIC O(TNt4) 


can be obtained in a similar way to those above, and is 

(4.21) 

where the first term represents the complexity of solving the SDP, the second 

term represent the cost of the Bernoulli-based randomizations, and the third 

term represents the cost of computing D(b) for each bit-vector generated in 

the randomization step. (As in (4.20), we have assumed that K = M in 

Tables 4.2 and 4.3.) These expressions reveal the computational advantage 

of only having to solve one SDP per channel use, and the advantage of the 

Bernoulli-based randomizations. The list-free implementation of this algo­

rithm requires a small amount of additional computation; at most O(TM Nt) 

integer additions per channel use to compute the signatures, and at most 

O(M log M) operations to search for existing signatures in the (sorted) sig­

nature array. 

As we will illustrate in Section 4.8, in most practical implementations, 

the cost of solving the SDPs will be the dominant component of the computa­

tional cost of the SDR-based demodulators. We have summarized those costs 

in Table 4.4, and to help place those costs in context, we have included the 

computational cost per channel use of the MMSE-SIC demodulator in [24], 
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which is T0((2Nt) 4 
),...., O(TN(). 

4.8 Simulations 

In this section we will compare the performance and computational cost of 

the proposed demodulators with those of the Multi-SDR demodulator [17], 

the list sphere decoder in [12], and the MMSE-SIC demodulator in [24]. We 

consider MIMO BICM systems that employ V-BLAST transmission of QPSK 

symbols over an i.i.d. Rayleigh fading channel. The transceiver parameters, 

including those of the outer codes and the iterative demodulation and de­

coding algorithm, are chosen from those used in [12,24]. For the proposed 

demodulators we will evaluate the performance of the list-free implementa­

tion described in Section 4.6, using the hashing strategy to avoid redundant 

computation. For all demodulation schemes based on list-decoding ideas, 

an insufficiently rich list can result in under or over estimation of the soft 

information. In our simulations of the proposed demodulators and the list 

sphere decoder in [12], we will take a common approach to mitigating this 

effect [87], and will clip the estimated log likelihood-ratios to the interval 

[-5,+5]. 

We will consider two types of outer code: a turbo code with area­

sonably long block length, and a convolutional code with a rather short 

block length. For the (scalar) binary-input additive white Gaussian noise 

channel, the turbo code provides good performance at SNRs close to the 

capacity threshold for the given rate. The convolutional code is a weaker 

code, but it can be implemented with significantly lower latency. Follow­

ing [12], the turbo code was chosen to be a rate 1/2 punctured parallel 

concatenated turbo code with the (5, 7) recursive systematic convolutional 
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code as the component codes and an (input) block length of 8192. The 

(different) interleavers in the turbo code and in the BICM transmitter were 

selected from randomly generated candidates in each Monte-Carlo iteration. 

We used the conventional BCJR algorithm [SO] to decode the constituent 

convolutional codes of the turbo code, and 8 turbo decoding iterations were 

performed before we passed extrinsic information back to the demodulator. 

Following [24], the convolutional code was chosen to be the rate 1/2 (23, 35) 

recursive systematic convolutional code with block length 256, and BCJR de­

coding was used. We have performed simulation experiments for 8 x 8 and 

4 x 4 MIMO systems, and we will report some results from those experiments 

in the following sections, respectively. 

4.8.1 8 x 8 system 

In our first set of simulation experiments, we will consider a MIMO system 

with Nt = 8 antennas at the transmitter and Nr = 8 antennas at the re­

ceiver. In Figs. 4.4 and 4.5 we consider systems with the turbo outer code 

and the convolutional outer code, respectively, and we compare the BER 

performance of i) the Single-SDR demodulator, ii) the List-SDR demodula­

tor of Section 4.4, iii) the Multi-SDR demodulator in [17], iv) the list sphere 

decoder in [12] (with a list size of L = 512), and v) the MMSE-SIC demod­

ulator in [24]. In this comparison we specify the Single-SDR demodulator 

with the SDP accuracy of E = 10-2 and M = 50 randomizations. Later in this 

section, we will examine the impact of these parameters on the complexity 

and performance of the Single-SDR demodulator and will justify this choice. 

For fair comparison, the value of E in the List-SDR and Multi-SDR demodula­

tors was also chosen to be 10-2 • For reference, we have indicated the SNR at 
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which the mutual information for QPSK signals is equal to 8 bits per channel 

use (the data rate of the chosen scheme). That SNR is about 1.6 dB. From 

Fig. 4.4 it is apparent that the BER of the Single-SDR demodulator is better 

than that of the MMSE-SIC demodulator and is close to that of the other 

demodulators. The performance advantage of the Single-SDR demodulator 

over the MMSE-SIC demodulator is somewhat larger in the early iterations 

in the case of the convolutional outer code (see Fig. 4.5), but the relative 

weakness of this short code means that after four demodulation-decoding it­

erations the performance of all the considered demodulators is quite similar. 

In order to show that the Single-SDR demodulator achieves the per­

formance described above at low computational cost, we explicitly counted 

the number of floating point operations (FLOPs) required by each demod­

ulator to perform each component of its algorithm at each demodulation 

iteration in each channel use. For the SDR-based demodulators we include 

the FLOPs required to solve the SDPs, to perform the randomization steps, 

and to compute the metrics and the hash functions. For the list sphere de­

coder we have included the FLOPs required to construct the list (which is 

only performed once per channel use), and those required to compute the 

metrics in each demodulation iteration. (For the list sphere decoder, we have 

excluded the computational cost of the trial and error scheme used to com­

pute an appropriate radius for the sphere (cf. [12]), and hence the depicted 

results may be a little optimistic.) For the MMSE-SIC demodulator, for each 

bit we count the FLOPs required to compute and subtract the mean of the 

interfering symbols, and those required to compute and implement the unbi­

ased linear MMSE estimator of the resulting zero-mean signal. Our explicit 

counting of the number of required operations revealed that, as stated in 
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Figure 4.4: Comparison of the BER performance of various demodulators for 
the 8 x 8 MIMO system with the turbo outer code. 

Section 4. 7, the dominant component of the computational cost of the SDR­

based demodulators is the cost of solving the SDP or SDPs. This observation 

is quantified in Fig. 4.6, where we have plotted the average computational 

cost per channel use of each algorithm against the SNR, for the case of the 

turbo outer code, and we have included results for several values of M, the 

number of randomizations. 

Fig. 4.6 also quantifies the computational advantages of the Single­

SDR demodulator over the List-SDR and Multi-SDR demodulators, and its 
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Figure 4.5: Comparison of the BER performance of various demodulators for 
the 8 x 8 MIMO system with the convolutional outer code. 

computational advantages over the MMSE-SIC demodulator and the list 

sphere decoder. In particular, in the 'waterfall' region of the BER curves in 

Fig. 4.4, the average computational cost per channel use of the Single-SDR 

demodulator is about half that of the MMSE-SIC demodulator and about a 

third of that of the list sphere decoder. Furthermore, unlike the list sphere 

decoder, the distribution of the computational cost of the SDR demodulation 

methods is concentrated around the mean. To illustrate that fact, we have 

plotted in Fig. 4. 7 the empirical probability density of the computational 
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Figure 4.6: Comparison of the average computational cost per channel use of 
the proposed demodulators and that of the Multi-SOR, list sphere decoding, 
and MMSE-SIC demodulators for the 8 x 8 system with the turbo outer code. 
For the SDR based methods results for several values for M, the number of 
randomizations, are provided. 
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Figure 4. 7: Empirical probability density of the number of FLOPs per channel 
use in the 8 x 8 system with the turbo outer code at an SNR of 2.75 dB. 

cost per channel use of several demodulators at an SNR of 2. 75 dB. In this 

scenario, the whole empirical distribution of the computational cost of the 

Single-SOR demodulator lies below the computational cost of the MMSE-SIC 

demodulator. Fig. 4. 7 also illustrates the rather 'fat' tail of the distribution 

of the computational cost of the list sphere decoder. This fat tail can make 

it rather awkward to provision an appropriate amount of computational re­

sources for a list sphere decoder. The concentrated complexity distributions 
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of the SDR-based methods make that provisioning much more straightfor­

ward. 

In order to justify the choices of an SDP accuracy of E = 10-2 and 

M = 50 randomizations for the Single-SDR demodulator in Figs. 4.4 and 

4.5, we now evaluate the impact of these parameters on the BER perfor­

mance of the receiver. In Fig. 4.8 we plot the average BER of the Single-SDR 

demodulator with M = 50 (and K = M) and different values for E. Fig. 4.8 

suggests that in order to extract the benefits of the Single-SDR demodula­

tor, it is sufficient to solve the SDP to two digits of accuracy. This is an 

important observation because solving the SDP is the dominant computa­

tional task in the Single-SDR demodulator, and the cost of solving this SDR 

grows as O(Nl-5 log c 1). Fig. 4.8 also suggests that solving the SDP more 

accurately does not necessarily lead to improved performance. This is a con­

sequence of the fact that accurate list demodulation requires a rather rich set 

of list members. In the case that the SDP is solved accurately, the resulting 

randomization procedure may generate a rather narrowly-focused list, and 

hence the slightly degraded performance in the case of E = 10-4 in Fig. 4.8. 

In order to promote the generation of rich lists, and in order to reduce the 

computational cost, it is natural to consider demodulators in which the SDP 

is only coarsely solved. 

In Fig. 4.9 we examine the BER performance of the Single-SDR de­

modulator for an SDP accuracy of E = 10-2 and various numbers of random­

izations. Even though each randomization in the Single-SDR demodulator is 

rather cheap to implement (see Fig. 4.6), Fig. 4.9 suggests that the choice of 

M = 50 is sufficient to demonstrate the potential performance of the Single­

SDR demodulator. 
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Figure 4.8: BER performance of the 8 x 8 MIMO system with the turbo outer 
code and the Single-SDR demodulator with M = 50 randomizations and 
different accuracies to which the SDP is solved. 
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Figure 4. 9: BER performance of the 8 x 8 MIMO system with the turbo 
outer code and the Single-SDR demodulator with an SDP solution accuracy 
of e: = 10- 2

, and different numbers of randomizations, M . 
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4.8.2 4 x 4 system 

In the second set of simulation experiments, we repeated the above analysis 

for a MIMO system with Nt = Nr = 4. In this case, the full demodulation 

list has only 256 elements, and hence full-list demodulation is chosen as the 

performance benchmark. (A list sphere decoder with a list size of 128 is also 

considered.) 

Following experiments analogous to those discussed in the previous 

section, we chose to solve the SDPs to an accuracy of E = 10-2 and to employ 

M = 25 randomizations. The average BERs of the various demodulators in 

the system with the turbo outer code are plotted in Fig. 4.10. (The SNR 

threshold of this system is 1.6 dB.) As in the 8 x 8 case, the performance of 

the proposed demodulators is close to that of the benchmark demodulator. 

However, in this 4 x 4 case, the performance of the proposed demodulators is 

also substantially better than that of the MMSE-SIC demodulator. The rela­

tive degradation in the performance of the MMSE-SIC is due to the fact that 

there are fewer interfering symbols in the 4 x 4 case, and hence the inherent 

approximation that the residual interference is Gaussian is less accurate in 

this case. 

The average BERs of these demodulators in the case of the convo­

lutional outer code are provided in Fig. 4.11. In the early iterations, the 

Single-SOR demodulator has a significant performance advantage over the 

MMSE-SIC demodulator, but as was the case for the 8 x 8 system, after four 

iterations the performance of all demodulators is quite similar. 

In Fig. 4.12 we plot the average computational cost per channel 

use of each demodulator in the system with the turbo outer code, and in 

Fig. 4.13 we plot the empirical density of the computational costs at an 
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Figure 4.10: Comparison of the BER performance of various demodulators 
for the 4 x 4 MIMO system with the turbo outer code. 

SNR of 2. 75 dB. These figures quantify the computational advantages of 

the Single-SDR demodulator. In particular, its average computational cost is 

just over two-thirds of that of the MMSE-SIC demodulator, and just over half 

of that of the full list demodulator. In this 4 x 4 scenario, the computational 

advantages of the single-SDR demodulator over the MMSE-SIC demodula­

tor are smaller than those in the 8 x 8 case, but its performance advantage is 

significantly larger. 
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Figure 4.11: Comparison of the BER performance of various demodulators 
for the 4 x 4 MIMO system with the convolutional outer code. 
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Figure 4.12: Comparison of average computational cost per channel use 
of the proposed demodulators and that of the Multi-SDR, full-list, sphere 
decoding and MMSE-SIC demodulators for the 4 x 4 system with the turbo 
outer code. 
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Figure 4.13: Empirical probability density of the number of FLOPs per chan­
nel use in the 4 x 4 system with the turbo outer code at an SNR of 2. 75 dB. 

5 
. 1: 

::­ • I"
"iii 
c I 
u 4 
Q) 

: 
~ I 
:0 1: 
.0 "' e 
a. 

.:.1:13 3 
·;:: 

r·a. 
E Iw 

1. 
r 

2 1' 

I· 
r 
I: 
I 

I: 

~
i!J 

I~Qlljl: 

6 :; ,. ?o 
ljl I: . : :­
6 

Iii •I 
0 :~ J f 

· ~ t : :1 
qi .. t * I 

: : . :1 '\' 

127 




Ph.D. Thesis - Mehran Nekuii McMaster University - Electrical & Computer Engineering Department 

4.9 Conclusion 

In this chapter, we have proposed two computationally-efficient soft MIMO 

demodulators based on an adaptation of the semidefinite relaxation (SDR) 

method for hard demodulation to list-based soft demodulation. We have 

also presented a list -free implementation of the proposed methods that can 

be implemented with a substantially smaller memory 'footprint' than conven­

tional list demodulation algorithms. In contrast to list demodulators based 

on the principles of sphere decoding, the (worst-case) computational cost 

of the proposed demodulators is bounded by a (low-order) polynomial of 

the number of bits to be demodulated, and in contrast to the SDR-based de­

modulator in [17], one of the proposed demodulators requires the solution 

of one semidefinite program (SDP) per demodulation-decoding iteration for 

each channel use and the other requires the solution of only one SDP per 

channel use. Our simulation results suggest that these computational ad­

vantages are obtained without incurring a significant degradation in perfor­

mance. In particular, the proposed Single-SDR demodulator provides better 

performance than the MMSE-SIC demodulator and performance that is close 

to that of the list sphere decoder, and it does so at a substantially lower com­

putational cost. In this chapter we have focussed on soft demodulators for 

MIMO-BICM systems that employ QPSK signalling. Extensions to systems 

that employ higher order QAM constellations are developed in Chapter 5, 

using the corresponding SDR approaches to hard demodulation in [25,26]. 
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Chapter 5 

Efficient soft MIMO 16-QAM 

demodulation using SDR 

'Transmission of documents via telephone wires is 

possible in principle, but the apparatus required is 

so expensive that it will never become a practical 

proposition.' 

DENNIS GABOR, "INVENTING THE FUTURE", 1962 

I N THE previous chapter some list-based soft demodulation schemes for 

MIMO QPSK demodulation were presented. Since the generalization of 

the methods presented in Chapter 4 to MIMO demodulation of higher-order 

QAM symbols is not straightforward, in this chapter we will present efficient 

soft demodulation schemes based on SOR for systems that transmit 16-QAM 

symbols. As in Chapter 4, we will first review some available schemes for 

hard demodulation of MIMO 16-QAM transmission. In particular we will re­

view two existing SOR techniques for hard demodulation of 16-QAM. One of 

the SOR techniques requires the solution of an SOP that has a higher dimen­

sion than that for the QPSK case considered in Chapter 4, while the other 
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involves the solution of an SDP of the same size as that in the QPSK case. 

In the later technique, the SDP has a structure that resembles that for the 

QPSK case, and we will provide an efficient interior point algorithm for the 

solution of that SDP. We will then prove that these two existing SDR tech­

niques for 16-QAM are equivalent, and hence the emphasis of this chapter 

will be on the technique for which we provided the efficient interior point 

algorithm. 

The goal of this chapter is to apply the principles outlined in the pre­

vious chapter to develop soft MIMO demodulators for 16-QAM, based on 

the existing SDR-based hard demodulators. A feature of QPSK signals that 

enabled the development in the previous chapter is that the a priori infor­

mation enters linearly into the metric D(b). This is not the case for 16-QAM 

signaling, and one of the key steps in designing the proposed soft demod­

ulators is the development of a representation of the a priori information, 

or an approximation thereof, that conforms to the SDR framework for 16­

QAM. After providing such a representation and an approximation that of­

fers lower computational cost, we then propose a List-SDR scheme for soft 

demodulation that generates list members via conventional randomization. 

Another key step in the developments of this chapter is the approximation 

of the conventional randomization step in the SDR framework for 16-QAM 

by independent scalar randomization. As in Chapter 4, this will enable us to 

develop a Single-SDR scheme that needs only to solve one SDP per channel 

use. As we will show in the simulations section, the proposed Single-SDR 

demodulator provides performance close to that of the list sphere decoding 

schemes and better performance than the MMSE-SIC scheme, and that it 

does so with significantly lower computational cost. 1 

1Since the computational cost of the Multi-SDR approach to soft demodulation is much 
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5.1 Maximum likelihood demodulation of 

MIMO 16-QAM using SDR 

In this section we consider the maximum likelihood ('hard') demodulation 

problem for MIMO systems with 16-QAM signaling. As in Chapter 4, we 

consider a narrow-band MIMO system with Nt transmit antennas and Nr re­

ceive antennas, channel matrix Hn, and V-BLAST transmission of 16-QAM 

symbols. (Again, the extension to more general space-time transmission 

schemes such as linear dispersion codes [67], is straightforward.) The re­

ceived signal Yn can be written as: 

(5.1) 

where v n is the vector of i.i.d. additive Gaussian noise samples with vari­

ance CJ
2 per real dimension. In this section we will consider the case of un­

coded transmission, in which the symbol-vector sn is obtained by mapping 

a vector bn of uncoded (i.i.d. and equally-likely) bits to 16-QAM symbols 

using the (one-to-one) mapping sn = M(bn)· We will consider the standard 

representation of 16-QAM symbols so that the real and imaginary parts of 

each element of sn can take on one of the values {±1, ±3}. The real valued 

representation of (5.1) can be constructed by concatenating the real and 

imaginary parts ofyn, Sn and Vn in (5.1) as 

y = Hs+v, (5.2) 

higher than that of the List-SDR and Single-SDR approaches (cf. Chapter 4), in this chapter 
we will not provide performance nor complexity results for the Multi-SDR approach. 
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where, for simplicity, we have considered a general channel use and have 

dropped the subscript n. If we define 

D(s) = llY - Hsll~, (5.3) 

the maximum likelihood symbol-vector s can be obtained by solving the fol­

lowing optimization problem 

min D(s). (5.4)
sE{±l,±3}2Nt 

Using the following definitions [96] 

[fITfI 
v /::; - 6 (5.5)s =cs, Q 

_ 

= ­
-TH-y 

in which c E {+1, -1}, problem (5.4) can be stated as the following discrete 

optimization problem 

min xTQx (5.6a) 
x 

(5.6b) 

Xi EA= {±1, ±3}, i = 1, ... '2Nt, (5.6c) 

X2Nt+l E {-1, +1 }, (5.6d) 

which is similar to the binary quadratic programming problem of ( 4.11) 

in Chapter 4, but the binary constraints for bits 1 to 2Nt are replaced by 

the constraints in (5.6c). This problem is an NP-hard problem due to the 

constraints in (5.6c) and (5.6d). Denoting X = xxT and defining B = { L, U} 
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where L = +1, U = +9, we can rewrite (5.6) as 

min Trace(XQ) 	 (5.7a)
x 

s.t. 	 XtO, rank(X) = 1 (5.7b) 

[X]ii EB, i = 1, ... , 2Nt (5.7c) 

[X]ii = 1, i = 2Nt + 1, (5.7d) 

which is still an NP-hard problem because of the rank-1 constraint and the 

constraints in ( 5.7 c). There are several semidefinite relaxation techniques 

available in the literature (e.g., [25, 26, 109, 125-127]) to obtain approxi­

mate solutions to this ML detection problem by solving a semidefinite pro­

gram. The approach used in most of these techniques is to formulate the 

problem in a higher dimension (e.g., [25, 109, 126, 127]) by adding slack 

variables and then relaxing the non-convex constraints to convert the prob­

lem to a semidefinite program. Interior point methods can be used to solve 

these SDPs but for most of them an interior point method with a computa­

tional cost analogous to that of the method of [23] that was used in Chapter 

4 for MIMO QPSK demodulation does not exist. In addition, the increase in 

the dimensionality of these problems increases their computational complex­

ity: In the technique proposed by Sidiropoulos and Luo [26], the non-convex 

constraints are relaxed directly, keeping the dimensionality of the problem 

unchanged. We will call this technique the "fixed dimension relaxation" 

technique, and in Section 5.1.3 we will provide an interior point method 

based on the method in [23] to solve the resulting SDP efficiently. Among 

other existing relaxation techniques, an interesting property of the method 

of Wiesel et al. [25] is that the resulting SDP is the Lagrangian bi-dual of 
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(5.6). Hence, the difference between the optimal value of this problem and 

the ML problem in (5.6) is exactly the duality gap. We will call this tech­

nique the "increased dimension relaxation" technique and we will review it 

in more detail in Section 5.1.1. In Section 5.1.4 we will prove the somewhat 

unexpected result that the optimal values of the fixed dimension [26] and 

the increased dimension [25] relaxation techniques are actually the same. 

We will also prove that the component of the solution to the increased di­

mension SDP that is used to generate the solution to (5.4) is equal to the 

solution of the SDP in the fixed dimension technique. 

5.1.1 Increased dimension relaxation 

In addition to relaxing the rank-1 constraint in both of the increased dimen­

sion and fixed dimension schemes, we also need to deal with the non-convex 

constraints in (5.7c). Wiesel et al. [25] proposed the increased dimension 

relaxation technique in which they used extra slack variables to increase the 

dimensionality of the problem in order convert these non-convex constraints 

into equivalent linear equality constraints. This can be performed by defin­

ing a vector of slack variables tr /),. [t1 , ... , t2N
1

] and observing that 

8
2 

- ti = O and }
¢==? i ' , i = 1, ... , 2Nt. 

{ t; - lOti + 9 = 0 
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If we define wT 6 [sT 1 iT] and W 6 wwT then 

SST 	 s stT Wn 	 W12 W13 
~ST tTW= 1 W21 	 W22 W23 

tsT 	 t ttT W31 	 W32 W33 

Therefore, the optimization problem in (5.6) can be rewritten as [25] 

min Trace(WQ) (5.8a)
w 

s.t. 	 diag(W11) - W32 = 0, (5.8b) 

diag(W33) - (U + L)diag(Wn) + ULl = 0, (5.8c) 

(5.8d) 

W ~ 0, rank(W) = 1, 	 (5.8e) 

where 

Q 6 [Q(2Nt+l)x(2Nt+l) 0(2Nt+l)x2Nt] ' 

02Ntx(2Nt+l) 02Ntx2Nt 

(5.9) 

the operator diag( ·) constructs a vector of the diagonal elements of its ma­

trix argument, and 1 is a vector with all its elements equal to 1. In this 

optimization problem diag(W 11 ) - w 32 = O is equivalent to :s; - ti = 0 for 

i = 1, ... , 2Nt, and diag(W 33) - (U + L)diag(W11 ) + ULl = 0 is equivalent 

to t;-10ti +9 = 0 for i = 1, ... , 2Nt. By relaxing the rank(W) = 1 constraint 
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the following semidefinite relaxation of (5.8) is obtained [25] 

min Trace(WQ) (5.lOa)
w 

s.t. diag(Wn) - W32 = 0, (5.lOb) 

diag(W33) - (U + L)diag(Wu) + ULl = 0, (5.lOc) 

(5.lOd) 

w~o. (5.lOe) 

The computational cost of solving this SOP using general purpose interior 

point methods (e.g., using packages like SeOuMi [128]) is polynomial in the 

problem size and of order 0((4Nt + 1)6·5 logc1) [16], where Eis the accu­

racy of solving the SOP. Hence, in addition to the increase in the problem 

dimension, the computational cost is a factor of O(Nl) larger than the in­

terior point methods that are available to solve the SOPs in Chapter 4 for 

MIMO QPSK demodulation. 

As in Chapter 4, an approximate solution to (5.6) can be obtained by 

performing a randomization procedure on the solution of (5.10), Wopt· For 

this purpose, we partition W opt using the following structure 

Wopt,u Wopt,12 Wopt,13 

Wopt = (S.11)Wopt,21 Wopt,22 Wopt,23 


Wopt,31 Wopt,32 Wopt,33 


2where Wopt,u, Wopt,33 E JR2Ntx Nt, and we define the matrix 

- ~ [Wopt,ll Wopt,12]W opt - · (5.12) 
Wopt,21 Wopt,22 
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We then compute its factorization Wopt = yry, and choose a random vector 

u from the uniform distribution on the unit sphere and compute 

v/ - Q ( vru ) (5.13)S - T ' 
V2Nt+l U 

where Q(·) is a quantizer to the values in A = {±1, ±3}. We then repeat 

the randomization procedure and among all generated symbol-vectors, we 

pick S1 ~ [s~, ... , S~NJT with the Smallest Value for the Optimization problem 

in (5.4), and we call it s~dr· In contrast to the randomization procedure for 

MIMO QPSK in Chapter 4, we are not aware of any analysis available in the 

literature with which to evaluate the quality of this randomization proce­

dure, but the simulation results in [25] show that this procedure provides 

good bit error rate performance. 

5.1.2 Fixed dimension relaxation 

Adding the slack variables in the previous relaxation technique results in an 

increase in the problem dimension, and hence an increase in the computa­

tional cost of the SOP. An alternative technique was proposed by Sidiropou­

los and Luo [26], where, in addition to relaxing the rank-1 constraint, they 

also relax the constraints in (5. 7c) by replacing them with several inequality 

constraints. This is performed by defining 
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and relaxing the constraints [X]ii E B, i = 1, ... , 2Nt to 

L :::; diag(Xn) :::; U. (5.14) 

As a result, in contrast to (5. 7) the problem dimension will not increase. 

Another advantage of this method is that it can be used for generic M-ary 

QAM constellations by adjusting L and U appropriately. By relaxing the 

rank-1 constraint the following semidefinite program is obtained [26] 

min Trace(XQ)
x 

(5.15a) 

s.t. L :::; diag(Xn) :::; U, (5.15b) 

X22 = 1, (5.15c) 

XtO. (5.15d) 

A fast interior point algorithm for a general class of SOPs which includes 

the SOP in (5.15) was proposed in [23]. In Section 5.1.3, we will specialize 

that algorithm to the problem in (5.15) in a way that exploits the specific 

structure of that SOP. Hence, (5.15) can be solved with a computational cost 

of the same order as that of the SOPs for the QPSK case in Chapter 4. As in 

Section 5.1.1, a randomization procedure can be applied to the factorization 

of the optimum solution to (5.15), Xopt = vrv, to obtain an approximate 

solution to (5.6); cf. (5.13) and the subsequent discussion. 

5.1.3 A fast interior point SDP solver for (5.15) 

Several fast interior point algorithms based on the principles outlined in [23] 

have been developed for multiuser and MIMO demodulation using SOR 
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(e.g., [96, 108, 112]). The work in [23] considered the rather large class of 

semidefinite programs with linear equality and inequality constraints. These 

specialized algorithms have been shown to be efficient and reliable for de­

modulation of BPSK and QPSK symbols (e.g., [96, 112]) and also for M-ary 

PSK symbols (e.g., [108]). In this section, following the standard primal­

dual interior point methods in linear programming (e.g., [16]) and the prin­

ciples developed in [23] we provide a fast reliable interior point algorithm 

specialized for solving the SOP in (5.15). 2 That is, using the specific struc­

ture of (5.15) we derive explicit expression for the search directions of the 

generic interior point method of [23]. 

By defining the dual variables Pu E JR2Nt, p 1 E JR2Nt, v E JR, Z E 

§ 2N
1
+1, where §n is the set of symmetric n x n matrices, the dual problem 

associated to the primal semidefinite program in (5.15) can be written as 

max UlTPu - LlTPl+ v (5.16a) 
Pu,p1,v,Z 

- · T T Ts.t. Q - Diag([P1 - Pu, -v] ) = Z, (5.16b) 

Pu 2: 0, Pl 2: 0, Z ~ 0. (5.16c) 

where the operator Diag( ·) constructs a diagonal matrix with its argument 

on the diagonal, and the first two inequalities in (5.16c) are defined elemen­

twise. The primal-dual interior point method for jointly solving the primal 

and dual optimization problems in (5.15) and (5.16) involves solving the 

2A concurrent and similar derivation of this interior point method to solve the SDP in 
(S.15) was provided in [129]. 
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following KKT equations for a sequence of values of complementarity pa­

rameter µ > 0 that decays to zero, 

Z - Q+ Diag{[pf - p~, -vf} = 0, (5.17a) 

1 - X22 = 0, (5.17b) 

Ul - µp~ 1 
- diag(Xu) = 0, (5. l 7c) 

diag(Xu) - LI - µp[ 1 = 0, (5.17d) 

ZX-µI = 0. (5.17e) 

Since some of these equations are nonlinear we use the Newton method 

(e.g., [130]) to find directions 6pu, 6p1, 6v, 6Z and 6X toward the so­

lution to ( 5 .17), as given in step 2 of the algorithm given in Tab. 5 .1. The 

key feature of this algorithm lies in the fact that we use the special struc­

ture of the optimization problem (5.15) to derive explicit expressions for the 

interior point search directions. As described in the algorithm provided in 

Tab. 5.1, in order to maintain the feasibility of the solution, we perform a 

line search to update Pu, pz, v, Zand X. After completing one Newton step, 

we update the complementarity parameter µ and we take the next Newton 

step with this new complementarity parameter in order to reduce the dual­

ity gap to a prespecified value E. As was pointed out in [23], this algorithm 

requires at most 0( ./]\I;, log c 1) iterations to reach to this duality gap and 

since in each iteration it performs operations of order O(Nl), the total com­

putational complexity of the algorithm is O(N?°5 log c 1
). 
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Table 5.1: Interior point algorithm for solving (5.15) 

• 	 Data: Q, L, U, duality gap E > 0, feasible initial points for primal and dual variables X, p1, 
p,,, v and Z. 

• Output: Primal and dual optimal solutions X, p1, Pu, v and Z. 

1. Computeµ= (LIT p1- UlTPu - v -Trace(QX))/2(6Nt + 1). 

2. Find the search directions t.p.,, t.p1and t.v by solving the linear equations 

Y11 +Du -Yu 	 1 

y l [t.p"] [-Ul + µp;;-1 + µ_Z 11]-Y11 Y11 +D1 -y t.p1 = Ll + µp 1- - µZn , (5.18)
[ YT -yT Y22 t.v -x22 + µz22 

where 

y] = z- 1 oX, 	 (5.19a) 
Y22 

z~ [zz_}1 z J = z-1 	 (5.19b)
222 ' 

D., ~ Diag(p;;- 1 o (diag(X11) + Ul)), (5.19c) 

D1 ~ Diag(pj 1 o (diag(X11) - Ll)), (5.19d) 

and a is the element-wise matrix multiplication. Then compute the search directions t.Z and 
t.Xas 

t.Z = Diag{[t.pf - t.p~, -t.v]T}, 	 (5.20) 

t.X. = -X + µz-l - z-l t.ZX. 	 (5.21) 

t.X = (t.X + t.XT)/2. 	 (5.22) 

3. 	 Perform line search to find a primal step size 0 < ap $ 1 such that X + apt.X >- 0 and 
L $ diag(X11 +apt.Xu)$ U. 

4. 	 Perform line search to find a dual step size 0 < ad $ 1 such that Z +adt.Z >- 0, Pu +adAPu 2". 
0 and p1 + adt.p1 2". 0. 

5. 	 Update X = X + apt.X, Z = Z + adt.z, Pu = Pu + adAPu, p1 = Pl + adAP1 and 
v = v + adt.v. 

6. 	 If the duality gap is less than f, that is if (LlTPl - u1TPu - v -Trace(QX)) < E, terminate 
the algorithm, otherwise go to 1. 
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5.1.4 	 Equality of increased dimension and fixed 

dimension relaxation techniques 

In this section we will show that for the quadratic optimization problem in 

(5.6) the increased dimension SOR technique in (5.10) and the fixed dimen­

sion SOR technique in (5.15) are equivalent in the sense that they have the 

same optimal value and that the matrix that is factorized in the randomiza­

tion procedure for generating approximate solution to (5.6) is also the same. 

We will begin with the following proposition. 

Proposition 5.1. The optimal values of the semidefinite programs in (5.10) 

and (5.15) are equal. 

Proof: 3 Let Rm denote the optimum value of (5.10) and let RFD de­

note the optimum value of (5.15). The proof has two parts. In the first part 

we show that RFD ::;; Rm and in the second part we show that Rm ::;; RFD· 

Hence RFD = Rm. 

In order to show that RFD ::;; Rm, we need to show that if a matrix 

W11 "'12 W13 

wt::. (5.23) 

is in the feasible region of (5.10), then the matrix 

(5.24) 


3A different derivation of this proof was concurrently proposed in [129]. 
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is in the feasible region of (5.15). In order to show this, we use the following 

lemma, in which Mm denotes the set of m x m matrices and the contraction 

C E Mm+n is a matrix with a maximum singular value less than or equal to 

1. 

Lemma 5.2. [131, Lemma 3.5.12] Given LE Mm and ME Mn, the matrix 

L X] E Mm+n is positive semidefinite if and only if L and Mare positive 
[xr M 

semidefinite and there is a contraction C E Mm+n such that X = L112CM112• 

Since we know that w22 = 1 (cf. (5.lOd)), we define 

(5.25) 


According to Lemma 5.2, since W ~ 0 we have W2 ~ 0. Multiplying W2 by 

permutation matrices to interchange its ith row and column (2 :S i :S 2Nt+1) 

with the second row and column, respectively, the 2 x 2 matrix in the north­

west corner of this permuted matrix is 

(5.26) 


2Applying Lemma 5.2 to that matrix, we can write [W33]i-1,i-1 ~ ([w32]i_1) . 

By defining [ · ]2 as the element-wise square operator on a vector, we can 

write: 

(5.27) 


143 




Ph.D. Thesis - Mehran Nekuii McMaster University - Electrical & Computer Engineering Department 

Using (5.lOb), (5.lOc) and (5.27) we have: 

(U + L)diag(W11 ) - ULl 2: [diag(W11 )] 
2 (5.28) 

::::? (diag(W11) - U)(diag(W11) - L) ~ 0 (5.29) 

::::? L ~ diag(W11) ~ U. (5.30) 

Applying Lemma 5.2 to a different partition of W we also have W 11 t 0. 

Hence, W 1 is in the feasible region of problem (5.15), and therefore RFD ~ 

Rm. 

In order to prove Rm ~ RFD, we need to find a matrix W of the form 

in (5.23) that lies in the feasible region of the problem in (5.10) and is such 

that the matrix [W;i w 
12

] lies in the feasible region of the problem in 
W12 1 

(5.15). In order to find such a matrix, let X ~ [X;i x 
12

] denote a generic 
X12 1 

matrix in the feasible region of (5.15) and define the following matrices and 

vectors 

z 6diag(X11 ), (5.31a) 

- 6[ T
X = X12 1 01x2Nt]T, (5.31b) 

6[ TY = X12 1 zTf, (5.31c) 

X11 X12 02N1x2Nt 

:XL!. T (5.31d)X12 1 01x2Nt 


02N1x2Nt 02N1xl 02N1x2N1· 
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Using the constraints of problem (5.15) we can write 

This implies that there exits a ci ~ 0 such that 

ci + z? - (U + L)zi +UL= 0, i = 1, ... , 2Nt. 

Hence, if we construct a matrix W as 

(5.32) 

and if we show that W t 0, W will satisfy all the constraints of problem 

(5.10). Since yyT and Diag([01x(2Nt+l)' ci, ... , c2Nt]) are positive semidefinite 

(PSD), it remains to prove that X - xxr t 0. For this purpose, we use the 

following theorem from [118]. 

Theorem 5.3. ( [118, Theorem 7. 7. 7]) Let A E Mn and C E Mm be positive 

definite and let B E Mm+n· The following are equivalent: 

c) p(BTA- 1Bc-1 ) :::; 1, 


d) 
 [A BJ t 0,
BT c 

in which p( A) is the maximum eigenvalue of matrix A. 
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According to parts a) and d) of this theorem we can write 

\;/a E JR2Nt+l 

So, W t 0 and the proof of Proposition 5.1 is complete. D 

Now we provide a proof of the following proposition. 

PropositionA 5.4. IfAthe optimum solutio~s to ~roblems (5A.10) a[~'.~.1~12a]re 
denoted by W and X, respectively, then X = W 1, where W 1 D. A •A 

W21 W22 

Proof: The proof is by contradiction. If the matrix W 1 is not an op­

timum solution to (5.15) and Trace(XQ) is smaller than Trace(W1Q), we 

can construct a matrix W' in the feasible region of (5.10) using X and the 

method described in the proof of Proposition 5.1. However, since the opti­

mal values of (5.10) and (5.15) are the same, such a matrix would result in 

Trace(W'Q) < Trace(WQ), which is a contradiction, and hence the proof. D 

As an aside, we would like to point out that although the equiva­

lence of the optimal solutions to (5.10) and (5.15) has been shown, these 

problems have different dimensions and the structure of the constraints are 

quite different. Therefore, the trajectory of the interior point iterations in the 

solution of these problems may be different, and hence if we terminate the 

interior point iterations early for reasons of computational cost, the resulting 

solutions may only be approximately equivalent. 
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In this section we have shown that for the quadratic objective func­

tion in (5.6) the increased dimension relaxation in (5.10) and the fixed di­

mension relaxation in (5.15) are equivalent. However, an advantage of the 

increased dimension relaxation is that it naturally accommodates a broader 

class of quadratic objective functions. We will exploit that advantage in the 

next section. 

5.2 	 Maximum a posteriori probability MIMO 

16-QAM demodulation using SDR 

In Section 5.1 we considered the problem of maximum likelihood detection 

of i.i.d. symbols. In this section we assume the availability of a priori in­

formation p(s) for each transmitted symbol-vectors = [s1 , ... , s2Nt]T in the 

channel use of interest. In that case, the maximum a posteriori (MAP) esti­

mate of the transmitted symbol-vector can be expressed as 

sMAP = 	arg max p(yjs)p(s). (5.33)
iiEA2Nt 

Since the transmission is over a Gaussian MIMO channel, this MAP (hard) 

decision can be performed by solving the following optimization problem 

(e.g., [85]) 

sMAP = arg min D(s),
iiEA2Nt 

(5.34) 

where, in place of (5.3) we have 

D(s) = ll:Y - Hsll~ - 2a2 logp(s). 	 (5.35) 
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If we were to use tree search algorithms to solve this optimization problem, 

the tree structure of the cost function (5.35) can be exploited in a straight 

forward manner, as was described in Chapter 3. However, since logp(s) in 

(5.35) is a non-polynomial expression, we can not use the semidefinite re­

laxation approaches reviewed in Sections 5.1.1 and 5.1.2 to approximate the 

solution to (5.34) in its current format. If the semidefinite relaxation tech­

nique in (5.10) is to be used to find the approximate solution to (5.34), cost 

functions with polynomial expressions of up to a degree of 4 of the elements 

in s can be accommodated. In contrast, the application of the semidefinite 

relaxation technique in (5.15) is limited to cost functions D(s) with second­

order polynomial expressions in the elements of s. In the following subsec­

tion we will provide two methods to obtain polynomial approximations of 

logp(s). To construct these approximations, we first make the assumption 

that the elements of s, si, are independent (e.g., [12]). We then provide 

an exact express for logp(si) as a polynomial of up to degree 3 and an ap­

proximation for logp(si) in the form of a second order polynomial. Then we 

will provide two SDPs to approximate the solution to (5.34) based on these 

polynomial expressions for the a priori information component of the cost 

function. 

5.2.1 Polynomial approximations of the cost function 

In this section we will derive polynomial approximations for the a priori in­

formation expression log p(s) in the cost function of the MAP demodulation 
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problem (5.34). The first step is to make the approximation that the ele­

ments of s are independent, and hence to approximate logp(s) as4 

2Nt 

logp(s) ~ f(s) = L Iogpi(si)· (5.36) 
i=l 

The second step is to determine a polynomial expression for an approxima­

tion of each of the summands in (5.36), logpi(si), i = 1, ... , 2Nt, for the case 

of 16-QAM signaling. We will first derive an exact third-order expression for 

logpi(si) and subsequently a second-order approximation. 

We will derive the third-order expression by showing that for A = 

{ ± 1, ±3} there exists a quadruple ( ai, bi, ci, di) such that 

(5.37) 

The values for ai, bi, ci, di can be found simply by enforcing the equality in 

(5.37) for each si E A. If we define 81 = -3, 82 = -1, 83 = + 1 and 84 = +3, 

the values for ai, bi, ci, di can be found by solving the following set of linear 

equations 
-3 
81 

-2 
81 81 1 

-3 
82 

-2 
82 82 1 

-3 
83 

-2 
83 83 1 

-3 
84 

-2 
84 84 1 

~C3n1 

ai 

bi 

Ci 

di 

-


logpi(si = 81) 

logpi(si = 82) 
(5.38) 

logpi(si = 83) 

logpi(si = 84) 

By solving (5.38) for each i E {1, ... , 2Nt} and collecting the solutions ai, 

4Note that in iterative demodulation and decoding schemes, the prior information that 
is provided to the demodulator by the previous iteration of the decoder is based on an 
assumption of independence, and hence can be interpreted as an approximation of logp(s) 
in (5.36). 
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bi, ci and di in the vectors a,b,c and d, respectively; we obtain the following 

third-order polynomial expression for (5.36) 

(5.39) 

where the only approximation here is due to the independence assumption 

that lead to (5.36). 

Now we will derive a second-order approximation for logp(s), based 

on the independence assumption and a second-order approximation of 

logpi(si)· Since si takes four possible values, it is not possible to exactly in­

terpolate log Pi(si) with the second-order polynomial bis;+ cisi +di. Instead, 

we will choose bi, ci and di to minimize the mean squared error between 

logpi(si) and bis;+ cisi +di over si EA. That is, bi, ci and di will be chosen 

as the solution of the following set of linear equations 

I: I: I:-4 -3 -2.SEAS .SEAS .SEAS 

I: I:-3 -2.SEAS .SEAS LsEAs 

I: 4-2
sEA S LsEAs 

~C2nd 

bi 

Ci 

di 

LsEAs
2 logpi(si = s) 

(5.40)LsEA s logpi(Si = s) 

LsEA logpi(si = s) 

By solving this set of equations for each i E {I, ... , 2Nt} and collecting the 

solutions bi, ci and di in the vectors b,c and d, respectively; the second-order 

approximation of (5.36) can be written as 

(5.41) 

We should note that since C 2nct and C3rct are not dependent on the 

channel information nor the a priori information, the factorizations of these 
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matrices can be computed and stored in memory in order to reduce the com­

putational cost of solving the linear equations in (5.38) and (5.40) for each 

i E {1, ... , 2Nt} in each demodulation-decoding iteration for each channel 

use. 

5.2.2 SDR formulation of MAP demodulation 

By using the polynomial approximations developed in the previous section, 

the a priori component of the cost function of the MAP demodulation prob­

lem in (5.34) can be approximated using a third-order polynomial that is 

compatible with the increased dimension SOR approach in (5.10), or a 

second-order polynomial that is compatible with both the increased and the 

fixed dimension SOR approaches in (5.10) and (5.15). 

Using the third-order approximation in (5.39), the cost function can 

be written as 

(5.42) 

If we define wT t> [sT 1 tr] where t contains the slack variables ti ­

s7, i = 1, ... , 2Nt, (5.42) can be rewritten as wrQw, where 

(5.43) 


and 

(5.44) 
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Hence, using the increased order relaxation approach, the MAP decision in 

(5.34) can be approximated by solving the following semidefinite program 

min Trace(WQ) 
w 

(5.45a) 

s.t. diag(Wu) - w32 = 0, (5.45b) 

diag(W33) - (U + L)diag(Wu) + UL1 = 0, (5.45c) 

(5.45d) 

WtO, (5.45e) 

and performing the randomization procedure described in Section 5.1.1. 

(The SDP in (5.45) is analogous to that in (5.10), but with the matrix Q 

in (5.43) replacing the matrix Qin (5.9).) 

As explained in Section 5.1.2, the fixed dimension relaxation (5.15) 

of the ML demodulation problem (5.6) has the advantages that its dimen­

sionality is less than that in (5.10) and that it can be solved with the efficient 

interior point method developed in Section 5.1.2. In order to exploit these 

advantages we need to approximate the cost function of the MAP optimiza­

tion problem by a second-order polynomial in the elements of s. For this 

purpose, we use the second-order approximation (5.41) and we approxi­

mate the metric in (5.35) as 

(5.46) 

Defining a vector xr 6 [sr l], this cost function can be written as xrQx, 

where 

(5.47) 
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Since this cost function is a second-order polynomial in the elements of x, 

the following fixed dimension semidefinite program 

min Trace(XQ) 
x 

(5.48a) 

s.t. L:::; diag(X11 ) :::; U, (5.48b) 

X22 = 1, (5.48c) 

x~o. (5.48d) 

can be used in conjunction with a randomization procedure to extract an 

approximate solution to this optimization problem in an efficient way, using 

the interior point method developed in Section 5.1.3. (This SDP is analogous 

to that in (5.15), but with the matrix Qin (5.47) replacing the matrix Qin 

(5.9).) 

5.3 	 Soft MIMO 16-QAM demodulation using 

List-SDR method 

In this section we implement the principles of the List-SDR method pro­

posed in Section 4.4 for soft demodulation of MIMO 16-QAM. That is, at 

each demodulation iteration we use the randomization step inherent in the 

extraction of an approximate solution to (5.34) from the solution to the 

semidefinite programs (5.45) or (5.48), to extract a list of candidate bit­

vectors to approximate the soft information of each transmitted bit. Similar 

to the equations ( 4.6) and ( 4. 7) in Chapter 4, the soft information for each 
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transmitted bit can be approximated as 

LL exp(-D(M(b))/(2o-2
)) 

(5.49)Am,i:::: log L .''+i exp(-D(M(b))/(2o-2)) 
.Ci,-1 

:::: ~ ( m_in D(M(b)) - m_in D(M(b))), (5.50)
2o- bE.Ci,-1 bE.C;,+1 

where f, is the enriched list. In each demodulation-decoding iteration the ex­

trinsic information provided by the decoder is updated and hence we need to 

solve a new SDP to update the list of candidate bit-vectors. This new SDP is 

obtained by updating the matrix Qin (5.43) or Qin (5.47) in order to solve 

(5.45) or (5.48), respectively. Since a third-order approximation of soft in­

formation can be used in conjunction with (5.45) and this approximation is 

more accurate than the second order approximation of soft information used 

in conjunction with (5.48), the approach based on the increased dimension 

relaxation has a better performance. However, good performance can also 

be obtained using the second-order approach in (5.48), and that approach 

has the advantage that (5.48) can be solved using the computationally ef­

ficient interior point method presented in Section 5.1.2. Hence, the choice 

between (5.45) or (5.48) is made depending on the available computational 

resources and the required soft demodulation performance. After obtaining 

the matrix solution to (5.45) or (5.48) in each demodulation-decoding iter­

ation, the randomization procedure is used to extract a preliminary list of 

candidate bit-vectors £1 The list£ that is used in soft demodulation approx­• 

imations (5.49) or (5.50), is then constructed by adding to £1 all the single 

bit-flippings of its elements. As in Section 4.6, a list-free implementation 

is possible for the List-SDR schemes for soft MIMO 16-QAM demodulation 

described in this section. For convenience, this list-free implementation is 
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Table 5.2: List-free implementation of List-SDR algorithm for randomized 
soft MIMO 16-QAM demodulation 

• 	 Data: Xopt the solution to (5.48) (or Wopt if using (5.45)) 

• 	 Parameters: M, the number of randomization iterations; K, the maximum size of the prelim­
inary list. 

• 	 Output: ADI, the vector of log likelihood-ratios 

1. 	 Initialize f+1 = {+oo }4N•, L1 = { +oo}4Nt, m = 0, k = 0. 

2. 	 Compute a (Cholesky) factor V of Xopt such that Xopt = vrv. 
3. 	 Choose a random vector u from the uniform distribution on the unit sphere. 

4. 	 Constructs= Q (~). s = [s1, ... ,82N.]r and increment m. 
V2Nt+lu 

5. 	 Find the bit-vector b corresponding to s. 

6. 	 Compute the signature of b. If that value is not in the signature array, insert the value 
into the array and increment k, compute D(s) = llY - Hsi!~ - 2cr2 logp(s), and for each 
i = l,2, ... ,4Ni, if b; = +1 then set f+1(b;) = min{f+i(b;),D(s)}, else set f-1(b;) = 
min{!-i(b;), D(s)}. 

7. 	 For each i = 1, 2, ... , 4Ni, set f,Cil =band then wi = -b;. Repeat Step 6 for s = M(b(il). 

8. 	 Increment m. If m <Mand k < K return to 3. Otherwise, return ADI= (f+1 - L1)/(2cr2). 

presented in Tab. 5.2. 

The worst-case computational complexity of the above List-SDR de­

modulators can be computed by slightly modifying the approach used in 

Section 4.7. The computational complexity of List-SDR demodulator using 

the increased dimension SDR in (5.45) can be written as 

(5.51) 

where Tis the number of demodulation-decoding iterations, O(Nt6·5 log c 1
) 

is the computational cost of solving each SDP (using a general purpose in­

terior point method, e.g., (16]), O(T M Ni2) is the computational cost of the 
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randomization iterations, and O(TMN?) is the computational cost of com­

puting the metrics. Using the fixed dimension SDR in (5.48) in conjunction 

with the efficient interior point solver described in Section 5.1.2, the compu­

tational cost of List-SDR method can be reduced to 

(5.52) 

As in Section 4.7 

5.4 	 Soft MIMO 16-QAM demodulation using 

Single-SDR method 

In this section we develop a Single-SDR demodulator for MIMO 16-QAM by 

extending the principles used for QPSK in Section 4.5 to the 16-QAM case. 

As in the Single-SDR demodulator for QPSK in Chapter 4, we will derive an 

analytic expression for the probability that each element of the candidate 

symbol-vector s at the output of the randomization procedure (5.13) takes 

each of the symbol values in the set A = { -3, -1, + 1, +3}. For each symbol 

element si, i = 1, ... , 2Nt. of a candidate symbol-vector s, the randomiza­

tion procedure generates 

Q (-;_r_u_) ,si = 	 (5.53) 
V2N1+1U 

where Q(·) is a quantizer to the values in A = {±1, ±3} and vi is the ith 

column of the Cholesky factor V in the factorizations Xopt = yry to the 

solutions of (5.48) or Wopt = vrv using (5.12) from the solution of (5.45). 

We define pr (si), i = 1, ... ,2Nt, to be the probability that si takes one of the 
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values in A = {-3, -1, +1, +3} at the output of the randomization proce­

dure. (We have added the superscript r to Pi(si) to distinguish between the 

randomization probability and the a priori probability Pi(si) provided by the 

decoder.) Since u is uniformly distributed on the unit sphere, we can com-
T 

pute pi(si), i = 1, ... , 2Nt by evaluating the probability of 1':i u being in 
v2Nt+lu 

the corresponding interval for the set { (-oo, -2], [-2, O], [O, +2], [+2, +oo)}. 

Since llv2Nt+i ll2 = 1 and 1iui12 = 1, for each i E {1, ... , 2Nt} these proba­

bilities depend on the norm of the ith column of V, llvill 2, and the angle 

between vi and v2Nt+1, ()i· For example, in order to obtain pi(si = +3) we 

need to obtain the range of values for 1, the angle between u and v 2Nt+l• for 
T 

which 7':i u > 2. To do so, we observe that 
V2Nt+lU ­

vTu 
i >2 

T
V2Nt+l U 

cos(Bi - 1)

{::} II Vi II 2 ( ) ~ 2 
cos I 

{::} llvi 112 cos(Bi - 1) ~ 2 cos('Y) 

{::} llvi 112 cos(Bi) cos('Y) + llvi 1'2 sin(Bi) sin('Y) ~ 2 cos('Y) 

2 - llvill2 cos Bi
( ) > ,{::} tan I . 

- llvi 1'2 sm ()i 

for 1 E [-7r/2, +7r/2]. In the same way, it can be shown that the angles 1 for 

which si = -3, or equivalently Tvi 
T 

u ::::; -2, are those for which 
v2Nt+1° 
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Similarly, the values for "! for which rv 
T 

· u ;:::: 0 are those for which 
V2Nt+1U 

Therefore, if we define 

(5.54a) 

(5.54b) 

the probabilities that a given symbol will be generated by the conventional 

randomization procedure can be written as 

(5.55a) 

(5.55b) 

(5.55c) 

(5.55d) 

Combining these expressions with the principles of Section 4.5 sug­

gests that we can approximate the randomization procedure by assuming 

independence between each element of s, and generating the candidate 

symbol-vectors using independent discrete random number generators with 

the probabilities computed in (5.55). As stated in Chapter 4, one advantage 

of this approach is that it avoids the computation of yru in each random­

ization iteration. More importantly, it provides the opportunity to separate 

the processing of the a priori information and the channel information in the 

second and subsequent demodulation-decoding iterations. This results in a 
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substantial reduction in the computational complexity, as we need to solve 

only one SDP per channel use. 

The architecture of this list generation scheme is shown in Fig. 5.1, 

which is analogous to the Single-SDR list generator structure of Fig. 4.2 for 

MIMO QPSK. The difference between these two schemes is that the soft in­

formation from the channel and the extrinsic information from the decoder 

are represented using symbol probabilities instead of the LLR representation. 

Since the extrinsic information from the decoder and the channel informa­

tion are independent by construction [13], if the randomized demodulator 

is to generate candidate bit-vectors via random symbol generations that re­

flect both of these sources of soft information, the symbol distribution prob­

abilities of the ith symbol at the output of the randomized symbol-vector 

generator can be approximated as 

(5.56) 

wheres E A = {±1, ±3}, PAI,i(si) are the symbol probabilities computed 

using their corresponding bit probabilities obtained from AAi (the vector of 

a priori information for each bit in LLR format), and Ki are computed in such 

a way that L::sEAPB,i(si = s) = 1. We should note that (5.56) corresponds to 

(4.17) in Chapter 4, which represents the Bernoulli distribution of random­

ization procedure for binary symbols using the LLR representation of the soft 

information. In that representation the LLRs from the decoder and the soft 

information from the channel are added together to compute the mean of 

the Bernoulli distribution for the randomization iterations in LLR format. 

At each demodulation-decoding iteration, the Single-SDR demodula­

tor generates a sequence of M symbol-vectors using scalar random number 
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y, H, (}"2 

Repeat randomization iteration 

ISolve SDP in (5.15) Bit flip, Hash PB(s Candidate generato 
I A 1b 

via Bernoulli trials 1------;- and update ll..Rs in first iteration f--"'_,__ 

I 

!~-----------------------------------------------------~ 

Randomized soft demodulator 
PAI (s) 

Figure 5.1: The proposed list-free Single-SDR demodulator for MIMO 
16-QAM transmission. 

generator with probability mass function as given in (5.56). The bit-vector 

representation of the uniquely generated symbol-vectors are then (notion­

ally) stored in a preliminary list L'. As in Chapter 4, this list is then enriched 

by adding all the single bit-flippings of the bit-vectors in L' to form .C. The 

soft information for each transmitted bit is then approximated using (5.49) 

or (5.50). 

An implementational advantage of using the Single-SDR scheme is 

that instead of storing large lists of candidate bit-vectors generated in 

the first demodulation-decoding iterations, it requires the storage of vec­

tors of randomization probability distributions computed in (5.55). These 

probability vectors in conjunction with the updated extrinsic information 

from the decoder are then used to generate a new list of bit-vectors in 

each demodulation-decoding iteration. The list-free implementation of this 

Single-SDR algorithm is presented in Tab. 5.3. 

In the Single-SDR scheme, the SDP is solved only in the first 

demodulation-decoding iteration where no a priori information is avail­

able. Therefore, the objective is quadratic and hence we can use the fixed­

dimension SDR approach in (5.15) directly. The computational cost per 
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Table 5.3: List-free implementation of Single-SDR algorithm for randomized 
soft MIMO 16-QAM demodulation 

• 	 Data: pi(s;), i = 1, ... , 2Nt computed in (5.55), PA1,;(8;), i = 1, ... , 2Nt computed using 
the a priori infonnation AA1. 

• 	 M, number of randomization iterations; K, the maximum size of the signature list. 

• 	 Output: ADl, the vector of log likelihood-ratios. 

1. 	 Initialize f+1 = {+oo}4
Nt, L 1 = {+oo}4

Nt, m = O 

2. 	 Compute PB,;(s;), i = 1 ... , 2Nt as in (5.56). 

3. 	 Generate each s; independently according to the probability distributions with probabilities 
computed in step 2. 

4. 	 Find the bit-vector b corresponding to s. 

5. 	 Compute the signature of s. If that value is not in the signature array, insert the value 
into the array and increment k, compute D(s) = llY - Hsi!~ - 2a2 logp(s) and for each 
i = 1, 2, ... , 4Nt, if b; = +1 then set f +1 (b;) = min{/+1 (b;), D(s)}, else set f-1 (b;) = 
min{l- 1 (b;), D(s)}. 

. _ -(i)_ •(i)_ . 	 -- -(i)6. 	 For each i - 1, 2, ... , 4Nt, set b - band then bi - -b.. Repeat Step 5 for s - M(b ). 

7. 	 Increment m. If m <Mand k < K return to 3. Otherwise, return ADl = (f+1 - L1)/(2a2 
). 

channel use of the resulting Single-SDR soft demodulation algorithm is, 

therefore, 

O(Nf·5 log t:-1
) + O(T M Nt) + O(T M Nf), (5.57) 

where T is the number of demodulation-decoding iterations. In this expres­

sion the first term represents the complexity of solving the SDP, the second 

term represents the complexity of the randomization step, and the third term 

represents the computational cost of computing the metrics. 

As in Section 4. 7 we have summarized the dominant computational 

cost of different SDR based schemes presented in this chapter in Tab. 5.4, 

and we also included the computational cost per channel use of the MMSE­

SIC demodulator in [24], which is TO(T(4Nt) 4 ),...., O(TNt). 
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Table 5.4: Dominant computational costs of various MIMO soft demodula­
tors. 

Demodulator Dominant Computational Cost 

List-SDR (increased dimension) O(TNt5 
) 


List-SDR (fixed dimension) O(TNl5
) 


Single-SDR (fixed dimension) O(Nl5
) 


MMSE-SIC O(TNt4) 
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5.5 Simulation results 

In this section we will explore the performance and complexity of the pro­

posed List-SOR and Single-SOR demodulators. In particular we will com­

pare the performance and complexity of these demodulators with those 

of some of the existing demodulators, such as the MMSE-SIC demodula­

tor (e.g., [24, 115]), the list sphere decoder [12], and the LISS demodula­

tor [86]. As in the previous chapters, we consider a MIMO BICM system 

that employs V-BIAST transmission over an i.i.d. Rayleigh fading channel, 

and will consider the transmission of 16-QAM symbols. We will consider a 

MIMO channel with Nt = 4 transmit antennas and Nr = 4 receive anten­

nas. In order to prevent over or under estimation of the soft information 

we clip the log-likelihood ratios provided by the soft demodulators to the 

interval [-5, +5]. As in Chapter 4, in the first set of simulations we explore 

the performance of the proposed schemes using a turbo outer code, and in 

the second set we use a simple convolutional code as the outer code. In the 

following subsections we will consider two sets of simulations and in each 

set we will use a different type of outer code. In the first set we use a turbo 

code with a reasonably long block length and in the second set we use a 

weaker low latency convolutional code. In the Single-SOR scheme, and in 

the List-SOR scheme with the quadratic approximation of the prior infor­

mation, the interior point algorithm developed in Section 5.1.3 was used to 

solve the SDPs. In the List-SOR scheme with the cubic approximation of the 

prior information, SeDuMi [128] was used to solve the SDPs. 
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5.5.1 Simulations with turbo outer code 

As in Chapters 3 and 4 the outer code in our first set of simulations was cho­

sen to be a turbo code with the (5, 7) recursive systematic convolutional code 

as the component codes and an (input) block length of 8192. The (different) 

interleavers in the turbo code and in the BICM transmitter are chosen from 

randomly generated candidates in each Monte-Carlo iteration. The conven­

tional BCJR algorithm [SO] is then used to decode the constituent convolu­

tional codes of the turbo code and 8 turbo decoding iterations are performed 

before we pass the extrinsic information back to the demodulator. 

First we compare the BER performance of the proposed schemes with 

those of the LISS demodulator [86], the list sphere decoder [12] and the 

MMSE-SIC demodulator (e.g., [24, 115]). For the LISS demodulator we con­

sidered a stack size of S = 500 and a list size of L = 80. The list size of 

the sphere decoding scheme was set to L = 512. In this comparison we 

specify the Single-SDR and List-SDR demodulators with the SDP accuracy 

E = 10-1 and we performed M = 50 randomization iterations before adding 

the bit-flippings of all the generated bit-vectors to the final list (i.e., we chose 

K = M). Later in this section, we will justify this choice by examining the 

impact of these parameters on the complexity and performance of the Single­

SDR and List-SDR demodulators 

Fig. 5.2 compares the BER performance of the considered demodu­

lators after 4 demodulation-decoding iterations. For reference, the SNR at 

which the mutual information for 16-QAM signals is 8 bits per channel use 

is approximately 6.9 dB. From Fig. 5.2 it is apparent that the performance 

of the List-SDR demodulator with cubic approximation of the soft informa­

tion (the increased dimension relaxation scheme) is better than that of the 
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List-SDR scheme with the quadratic approximation of the soft information 

(the fixed dimension relaxation scheme). This figure also illustrates that 

the performance of both of these two methods is better than that of the list 

sphere decoder and the MMSE-SIC demodulator and is close to that of the 

LISS demodulator. In order to better illustrate the performance of the Single­

SDR scheme, in addition to the case of M = 50 randomization iterations we 

have added simulation results with M = 100 and M = 200 randomization 

iterations to Fig. 5.2. From this figure it is apparent that the BER perfor­

mance of the Single-SDR demodulator with M = 50 is better than that of the 

MMSE-SIC demodulator, and that by increasing the number of randomiza­

tion iterations the Single-SDR demodulator can achieve performance close 

to that of the other schemes. 

In order to show that the proposed demodulators achieve this per­

formance at a low computational cost, in Fig. 5.3 we compare the average 

FLOPs of these schemes with those of some other existing schemes. As in 

Chapter 4, for the list sphere decoder we counted the FLOPs required to 

construct the list (which is performed once per channel use) and the FLOPs 

required to compute the metrics. We should note that in this graph we didn't 

provide the computational cost of the List-SDR scheme with cubic approxi­

mation of the soft information. The reason for this is that our FLOP measure 

involves explicit measurements of each operation, and the fact that this List­

SDR scheme uses SeDuMi to solve the SDPs means that such an explicit 

count is not readily available. Nevertheless, it is apparent from Tab. 5.4 that 

the computational cost of the List-SDR scheme with the cubic approximation 

will be significantly higher than that of the List-SDR scheme with quadratic 

approximation of the soft information and that of the Single-SDR scheme, 
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since we use the developed low complexity interior point scheme in Sec­

tion 5.1.3 to solve the SDPs of those schemes. For the LISS demodulator the 

list generation is repeated in each channel use and we included the required 

FLOPs for all these iterations. For the MMSE-SIC demodulator we counted, 

for each symbol, the FLOPs required to compute and subtract the mean of the 

interfering symbols, and those of the unbiased linear MMSE estimator of the 

resulted zero-mean signal. Fig. 5.3 quantifies the computational advantage 

of the List-SDR and Single-SDR demodulators over the list sphere decoder 

and the LISS demodulator. It also quantifies the computational advantage 

of the Single-SDR scheme over MMSE-SIC demodulator where the number 

of randomization iterations is less than M = 100. In particular, in the 'wa­

terfall' region of the BER curves of Fig. 5.2, the average computational cost 

of the Single-SDR scheme with M = 50 randomization iterations is about 

5/8 of that of the MMSE-SIC demodulator and about 1/8 and 1/10 of the 

computational complexity of the list sphere decoder and the LISS demodu­

lators, respectively. Furthermore, the computational cost distribution of the 

List-SDR and Single-SDR schemes is concentrated around the mean whereas 

the distributions of the list sphere decoder and the LISS demodulator have 

quite long tails. To illustrate that fact, we have plotted in Fig. 5.4 the empir­

ical probability density of the computational cost per channel use of several 

demodulators at an SNR of 9.75 dB in a logarithmic scale. Fig. 5.4 also il­

lustrates that most of the empirical computational cost distribution of the 

Single-SDR demodulator lies below the cost of the MMSE-SIC demodulator. 
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Figure 5.2: Comparison of the BER performance of various demodulators for 
the 4 x 4 MIMO 16-QAM system with the turbo outer code. 
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Figure 5.3: Comparison of the average computational cost per channel use 
of the proposed demodulators and that of list sphere decoder, the LISS and 
MMSE-SIC demodulators for the 4 x 4 MIMO 16-QAM system with the turbo 
outer code. For the SOR based methods results for several values for M, the 
number of randomizations, are provided. Here, the List-SOR method is the 
one with the quadratic approximation of the prior information. 
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In order to justify the choices of an SOP accuracy of E = 10-1 and 

M = 50 randomizations for the Single-SOR and List-SOR demodulators in 

Fig 5.2, we now evaluate the impact of these parameters on the BER per­

formance and complexity of the receiver. In Figs. 5.5 and 5.6 we plot the 

average BER at the end of the 4th demodulation-decoding iteration for the 

List-SOR and Single-SOR schemes, respectively, with M = 50 randomization 

iterations (M = K) and different accuracy requirements for solving the SOP 

involved in list generation for these schemes. Figs. 5.5 and 5.6 show that 

increasing the accuracy of solving the SOPs will decrease the performance 

of the proposed demodulators. This can be explained using the fact that by 

solving the SOPs more accurately, a narrowly focused list of bit-vectors will 

be generated in the randomization iterations. Hence, with higher accuracies 

in solving the SOP, the generated list may not be rich enough to extract an 

accurate soft information from the channel. 

Since solving the SOP is one of the dominant computational tasks in 

the Single-SOR and List-SOR schemes this will also have an impact on the 

total complexity of the soft demodulator. We explore the effect of differ­

ent accuracies for the solution of the SOP on the average soft demodulator 

complexity in Fig. 5.7. As in Chapter 4, in order to measure the complexity, 

we explicitly counted the number of floating point operations (FLOPs) re­

quired for solving the SOPs, generating the list, and computing the metrics 

for all demodulation-decoding iterations per channel use. As demonstrated 

in Fig. 5.7, since the List-SOR scheme requires the solution of one SOP in 

each demodulation-decoding iteration, solving the SOP is the main compu­

tational task in this scheme and increasing the required accuracy of its solu­

tion will increase the average computational cost of the receiver over a wide 

range of SNR values. 
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The Single-SOR scheme requires the solution of only one SOP per 

channel use, and hence depending on the size of the generated list, solving 

the SOP might not be the main computational task in this scheme. However, 

since the reliability of the extrinsic information from the decoder is higher 

at high SNRs, the number of unique bit-vectors generated by the randomiza­

tion procedure is smaller. Hence, at high SNR the SOP computational cost 

remains the dominant computational task and increasing its solution accu­

racy will increase the overall computational cost of the receiver. This is not 

the case at low SNRs. Since the size of the generated list is larger at low 

SNRs, computing the metrics becomes the dominant computational task. In­

creasing the accuracy of the SOP will reduce the list size, and hence will . 

reduce the total receiver computational cost at low SNRs. 

Based on the performance and complexity comparisons in Figs. 5.5, 

5.6 and 5.7, it appears that an accuracy E = 10-1 for the solution of the SOPs 

seems to be a reasonable choice for the rest of our simulations. It provides 

better BER performance for the List-SOR and Single-SOR schemes compared 

to higher accuracies, and also the computational cost of the List-SOR scheme 

is lower with this choice, as is the cost of the Single-SOR scheme at higher 

SNRs. Furthermore, the increase in computational cost of the Single-SOR 

scheme at low SNRs for this choice of accuracy is negligible for most practical 

implementations. 

We examine the effect of choosing different numbers of randomiza­

tion iterations M on the performance of the List-SOR and Single-SOR de­

modulators in Figs. 5.8 and 5.9, respectively, where the SOPs are solved 

with an accuracy of E = 10-1 • These figures show the BER performance of 

the proposed schemes at the end of the 4th demodulation-decoding iteration 

and it is apparent that increasing M will improve the BER performance of 
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these schemes. Although each randomization iteration is a relatively cheap 

operation to implement (cf. Fig. 5.3), we chose M = 50 in the simula­

tions of Fig 5.2. This is a reasonable choice for the List-SOR scheme, be­

cause increasing the number of randomization iterations above M = 50 has 

a very small effect on the performance of the soft demodulator. In the case of 

the Single-SOR scheme, increasing the number of randomization iterations 

above M = 50 can significantly improve the BER performance. Therefore, 

depending on the computational cost that the implementations allow, one 

can get better performance by increasing the number of randomization iter­

ations, even up to a value of M = 200. 
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approximation of the prior information, M = 50 randomizations, and differ­
ent accuracies to which the SDP is solved. 
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Figure 5.6: BER performance of a 4 x 4 MIMO 16-QAM system with the 

turbo outer code that employs the Single-SOR demodulator with M = 50 

randomizations and different accuracies to which the SOP is solved. 
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Figure 5.7: Comparison of the average computational cost per channel use 
of the proposed demodulators and that of list sphere decoder, the LISS and 
MMSE-SIC demodulators for the 4 x 4 MIMO 16-QAM system with the turbo 
outer code. For the SDR based methods results for different accuracies of 
solving the SDPs ,E, are provided. Here, the List-SDR method is the one with 
the quadratic approximation of the prior information. 
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Figure 5.8: BER performance of a 4 x 4 MIMO 16-QAM system with the 
turbo outer code that employs the List-SDR demodulator with the quadratic 
approximation of the prior information, an SDP solution accuracy of E 

10-1, and different numbers of randomizations, M. 
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Figure 5.9: BER performance of a 4 x4 MIMO 16-QAM system with the turbo 
outer code that employs the Single-SDR demodulator with an SDP solution 
accuracy of E = 10-1, and different numbers of randomizations, M. 
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5.5.2 Simulations with outer convolutional code 

Now we consider a rather short convolutional code which incurs a signifi­

cantly lower latency than the turbo code used for the previous simulations. 

Following [24], we use a rate 1/2 (23, 35) recursive systematic convolutional 

code with block length 256 and a BCJR decoder at the receiver. This outer 

code is rather weak when compared to the turbo code that was used in the 

previous simulations. 

As in the previous simulations we will solve the SOPs to an accuracy of 

E = 10-1
• Fig. 5.10 compares the performance of the proposed schemes with 

that of other soft demodulation schemes such as the LISS demodulator, the 

list sphere decoder and the MMSE-SIC demodulator, for the case of M = 100 

randomization iterations (K = M) and we will justify this choice of M later. 

From this figure it is apparent that the BER performance of the Single-SOR 

scheme is better than that of the MMSE-SIC demodulator and close to that 

of the LISS and list sphere decoder. It is also apparent that the performance 

of the List-SOR algorithm is very close to the performance of the LISS and 

list sphere decoder in all demodulation-decoding iterations. 

In Figs. 5 .11 and 5 .12 we examined the effect of the number of ran­

domization iterations on the performance of the proposed schemes. Fig. 5.11 

presents this performance comparison for the List-SOR scheme and Fig. 5.12 

presents it for the Single-SOR scheme. (Here, as earlier, we have chosen 

K = M). These simulations suggest that increasing M above 50 has a small 

effect on the performance of the List-SOR and Single-SOR schemes. 
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Figure 5.10: Comparison of the BER performance of various demodulators 
for the 4 x 4 MIMO 16-QAM system with the convolutional outer code. Here, 
the List-SOR method is the one with the quadratic approximation of the prior 
information. 
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Figure 5.11: BER performance of a 4 x 4 MIMO 16-QAM system with the 
convolutional outer code that employs the List-SDR demodulator with the 
quadratic approximation of the prior information, an SDP solution accuracy 
of i: = 10-1, and different numbers of randomizations, M. 
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Figure 5.12: BER performance of a 4 x 4 MIMO 16-QAM system with the 
convolutional outer code that employs the Single-SOR demodulator with an 
SOP solution accuracy of t: = 10- 1

, and different numbers of randomizations, 
M. 
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5.6 Conclusion 

In this chapter we presented the extension of the two computationally­

efficient soft demodulation schemes proposed in the previous chapter, 

namely the List-SDR and Single-SDR schemes, to MIMO systems with 16­

QAM signaling. In contrast to the existing soft demodulators based on tree 

search principles, the proposed schemes have a (low-order) polynomial com­

plexity in the number of bits to be transmitted. The extension to 16-QAM of 

the schemes in Chapter 4 was based on using semidefinite relaxation (SDR) 

techniques to approximate the solution to the hard demodulation problem 

for a MIMO 16-QAM system. There are several SDR-base hard demodula­

tion algorithms in the literature. In this chapter we proved that two of these 

existing schemes that result in substantially different semidefinite programs 

(of different dimensions) are actually equivalent. We then developed a low 

complexity interior point algorithm for extracting the solution to the SDP 

corresponding to the existing SDR technique with the lower dimension. 

The List-SDR schemes that was proposed for QPSK modulation in 

Chapter 4 requires the solution of one SDP in each demodulation-decoding 

iteration, and the objective of that SDP had a polynomial expression. How­

ever, in the case of a system with 16-QAM modulation, the logarithm of 

the a posteriori probability (Log-APP) has a non-polynomial expression and 

hence the List-SDR technique is not directly applicable. In order to develop a 

List-SDR scheme for 16-QAM systems we employed interpolation and curve 

fitting techniques to obtain cubic and quadratic approximations of the Log­

APP, respectively. The extension of the Single-SDR scheme to the case of 

16-QAM did not require these approximations, but did require the develop­

ment of expressions for the probability mass function for each symbol under 
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the conventional randomization procedure. 

Simulation results illustrated that the computational advantage of the 

proposed demodulators is obtained without incurring a substantial degrada­

tion in their performance. In particular, the BER performance of the Single­

SDR scheme is better than that of the MMSE-SIC demodulator and close to 

that of the list sphere decoder and LISS demodulator, and this performance 

is achieved at a lower computational cost. The List-SDR scheme provides 

better performance than the Single-SDR scheme, and, in the case of a turbo 

outer code, provided better performance than the list sphere decoder. The 

List-SDR scheme achieves this performance at a computational cost that is 

lower than that of the list sphere decoder and the LISS demodulator and is 

close to that of the MMSE-SIC demodulator. 

183 

73)0 34 



Chapter 6 

Summary and future work 

6.1 Summary 

This thesis considered the design of efficient soft MIMO demodulators for 

communication systems that deploy iterative MIMO demodulation and de­

coding schemes. Since the main computational bottleneck in these schemes 

is the MIMO soft demodulator, the proposed demodulators have the poten­

tial to have a significant impact in practical applications. Most of the existing 

soft demodulators are based on the max-log approximation of the soft infor­

mation, and those demodulators can be divided into two classes. One class is 

based on (approximately) solving several hard demodulation problems using 

reduced complexity schemes like tree search methods or semidefinite relax­

ation (SDR) techniques. The other class is based on list soft demodulation 

techniques, in which a list of candidate bit-vectors is efficiently selected and 

the max-log approximation is performed over the generated list. This the­

sis was focused on design of several computationally-efficient list-based soft 

MIMO demodulators. The proposed demodulators can be classified into two 
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classes, one based on tree search ideas, and in particular the stack algorithm, 

and the other based on semidefinite relaxation techniques. 

The scheme based on the tree search interpretation was called the 

multi-stack algorithm, because it assigns a unique stack to each level of tree 

structure. The exposed nodes of each level of the tree are stored in their 

corresponding stacks and when each stack is examined the best node in the 

stack (i.e., the one with the smallest metric) is chosen for expansion. By 

assigning appropriate priorities to the stack from which the search re-starts 

once it finds a leaf node or an empty stack, the proposed algorithm is able to 

extract a collection of good bit-vectors in the early stages of the algorithm. 

Hence, if the algorithm is terminated early for reasons of computational cost, 

it is likely able to maintain good performance. In particular, it was shown 

that the performance-complexity trade-offs achieved by instances of the pro­

posed algorithm can dominate those of several existing list based algorithms, 

especially in the low complexity region. 

In contrast to tree search algorithms for hard demodulation, such as 

the stack algorithm and the sphere decoding algorithm, which have com­

putational costs that are exponential in the number of bits transmitted per 

channel use, the computational cost of semidefinite relaxation techniques for 

hard demodulation is a (low-order) polynomial of that number of bits. The 

existing soft demodulation scheme based on the SDR techniques (the Multi­

SDR scheme) approximates the soft information by solving several hard de­

modulation problems per demodulation-decoding iteration in each channel 

use. However, before the research reported in the second part of the thesis, 

there was no SDR-based technique for list demodulation. In the second part 

of the thesis, it was first shown that the randomization procedure that is in­

herent in the SDR technique can be exploited to construct a list of bit-vectors 
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for a list-based demodulator. This List-SDR demodulator has a substantial 

computational advantage over the existing SDR-based hard demodulation 

approach to soft demodulation, in that it only requires one SDP to be solved 

per demodulation-decoding iteration in each channel use. By approximating 

the randomization procedure by independent Bernoulli trials, and by exploit­

ing the presumption of independence between the likelihoods obtained from 

the channel and the prior information from the previous decoding iteration, 

the single-SDR demodulator was developed. The computational cost of this 

demodulator is significantly smaller than that of the List-SDR demodulator, 

as it only requires the solution of one SDP per channel use (the SDP that 

arises in the first demodulation-decoding iteration). 

Since the structure of the corresponding SDP changes depending 

on the signal constellation that is transmitted, QPSK signaling was first 

considered in the development of the proposed SDR-based list demodula­

tors. Then, in Chapter 5, the development of the List-SDR and Single-SDR 

schemes for 16-QAM signaling was considered. In this development, it was 

shown that two existing hard demodulation schemes for MIMO 16-QAM 

(one with a higher dimensionality and the other with a conformal dimen­

sionality) are equivalent. Furthermore, an efficient interior point algorithm 

for solving the lower dimension SDP was developed. Since the metric func­

tion corresponding to the MIMO hard (MAP) demodulation for this system 

does not have a polynomial structure, the List-SDR scheme was extended for 

use with 16-QAM signaling by approximating the a priori information part 

of the metric function using second order and third order polynomials. The 

extension of the Single-SDR scheme to 16-QAM signaling was performed 

by approximating the randomization procedure using independent random 
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symbol generators with probability mass functions obtained from the solu­

tion of the SDP that is solved in the first demodulation-decoding iteration. 

These probabilities are then updated in the subsequent iterations using the 

available updated a priori information from the decoder. 

Simulation results confirm that the proposed Single-SDR and List­

SDR schemes provide performance-complexity trade-offs that are superior 

to those of some existing soft demodulation algorithms. In particular, the 

Single-SDR algorithm is a favorable choice for practical implementations 

since it requires fewer operations than one of the widely known low com­

plexity soft demodulation algorithms, the minimum mean square error with 

soft interference cancellation (MMSE-SIC) scheme, and yet it provides better 

performance than that scheme. 

6.2 Directions for future work 

The studies conducted in this thesis revealed the potential of multi-stack 

algorithm and semidefinite relaxation techniques in the design of low­

complexity high-performance soft demodulation schemes, and hence they 

have opened several interesting directions for future work. In particular, 

one may consider the following directions and questions as possible future 

research. 

• The List-SDR and Single-SDR schemes can be easily extended to other 

higher dimension M-ary QAM constellations using the guidelines pro­

vided in Chapter 5. One possible direction for future work is to extend 

the List-SDR and Single-SDR schemes for use in those systems, and 

to evaluate the performance and computational cost of the resulting 
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schemes. In particular, the extension of the fixed dimension relaxation 

approach to 16-QAM signaling to higher order (M-ary QAM) constel­

lations simply involves changing the upper and lower bounds of the 

linear inequality constraints in the semidefinite program, and hence 

the extension should be quite straightforward in the case of the Single­

SDR approach. However, the List-SDR approach will require the de­

velopment of an appropriate approximation of the prior information 

provided by the previous iteration of the decoder. 

• Some constellations like M-ary PSK (with M > 4) do not fit in the gen­

eral SDR framework for M-ary QAM signaling that was provided in 

Chapters 4 and 5. However, there are some available SDR techniques 

in the literature for hard demodulation using these signaling schemes 

(such as hard demodulation of M-ary PSK multiuser systems in [108]). 

It would be interesting to develop the List-SDR and Single-SDR ap­

proaches to be used in these systems, using (or developing) a low­

complexity interior point method to solve the corresponding SDP and 

also developing the corresponding approximate randomization tech­

niques for a Single-SDR approach to soft demodulation. 

• Geomans and Williamson [110] and Nesterov [111] provided bounds 

to measure the performance of the conventional randomization proce­

dure for extracting the vector solution of the original binary quadratic 

program from the matrix solution of the corresponding semidefinite 

relaxation. In the communications context, those results are restricted 

to the case of BPSK and QPSK constellations. It would be interesting 

to see whether a performance bound can be derived for applications of 

SDR techniques to higher dimensional constellations, such as 16-QAM. 
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• In the Single-SDR approach, the conventional randomization proce­

dure was approximated by a set of independent Bernoulli trials. It 

would be interesting to see whether a performance bound can be de­

rived for this approximate randomization procedure. 

• In this thesis it was shown that two existing semidefinite relaxation 

techniques to approximate the solution to a hard MIMO 16-QAM de­

modulation problem are equivalent. These schemes are the increased 

dimension relaxation technique of [25] and the fixed dimension relax­

ation technique of [26]. There are several other relaxation techniques 

in the literature (e.g., [109,125-127]), and some of them claim to have 

a smaller feasible region due to the constraints selected, and hence 

claim to have a better performance. They prove their claims by sim­

ply referring to the extra constraints added to the corresponding SDP. 

It would be interesting to take a closer look at the feasibility regions 

of these problems, using the ideas that were used to prove the equal­

ity of the techniques in [25] and [26] in Chapter 5, and to attempt to 

quantify the extent to which the feasibility region is reduced. 

• The structure of the received signal in a MIMO system, y = Hs + n, 

is quite similar to that of (synchronous) multiuser CDMA systems and 

that of (imperfectly synchronized) OFDM systems, and hence the pro­

posed demodulators can be used in such schemes. However, in such 

cases, the matrix H has some structure that can be exploited to reduce 

the computational cost of demodulation. The extent to which SDR­

based techniques can also exploit that structure is an interesting topic 

for future work. 
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• In order to enrich the final list to be used in list-based soft demodula­

tion schemes the bit-vectors with a Hamming distance 1 of the origi­

nally generated bit-vectors were added to the list in both the SDR based 

schemes and the multi-stack schemes. That approach seems to be well 

matched to the case of Gray mapped constellations, but it would be 

interesting to investigate its performance under other mapping strate­

gies, and to determine whether a simple bit-flipping provides sufficient 

enrichment of the list. 

• The simple 	V-BLAST transmission scheme was used throughout the 

simulations of this thesis to map the encoded data bits in space and 

time. As it was noted in Chapter 2, the proposed soft demodulators 

can also be used in conjunction with any general linear dispersion (LD) 

code [67]. As the LD code family includes codes that have desirable 

diversity properties, the simulations ought to be extended to measure 

the performance of the proposed soft demodulation schemes for LD 

coded transmission over spatially and temporally correlated channels. 
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Appendix A 

MIMO-IDD using MMSE-SIC 

MMSE demodulation with soft interference cancellation (MMSE-SIC, e.g., 

[24, 76, 115]) is a popular low-complexity soft demodulator for MIMO sys­

tems. The MMSE-SIC first forms the unbiased conditional MMSE estimate 

of each transmitted symbol, where the conditioning is on the soft informa­

tion of the other symbols that is provided by the decoder. The LLR of each 

transmitted bit is then obtained by approximating the residual interference 

of each symbol as a Gaussian random variable and computing the soft infor­

mation as if the channel was a single-input single-output AWGN channel. 

In order to review this scheme we consider the following channel 

model 

y = Hs+v, (A.1) 

where, as in Chapters 3, 4 and 5, y is the vector of received signal, His the 

Nr x Nt matrix of channel coefficients known to the receiver, s is the vector 

of transmitted signal with power a; per dimension and v is the vector of 

additive white circular Gaussian noise samples with variance a~ per dimen­

sion. For convenience, we will use the real-valued equivalent representation 
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of this channel model (e.g., [85]), 

y = Hs+v, (A.2) 

where y, s and v are the concatenations of the real and imaginary parts of y, 
sand v, respectively and His the real-valued decomposition of the channel 

matrix Hand has a size of 2Nt x 2Nr. In each channel use 2NtMc bits are 

transmitted using this channel model and the 2Mc possible (real-valued) sym­

bols that can be transmitted from the k'th transmit antenna can be obtained 

using the mapping s1 = M(b1), £ = 1, ... , 2Mc, k = 1, ... , 2Nt, where b1 6 

[btk-I)Mc+l' ... , b1MJT is the vector of transmitted bits from the k'th antenna. 

In the second and subsequent iterations an estimate of the a priori probabil­

ity of each transmitted bit p(bi = +1) and p(bi = -1), i = 1, ... , 2NtMc, is 

available from the decoder. Using the assumption of independence between 

the transmitted bits, the a priori probability of transmitting each symbol can 

be approximated by p(sk = 81) ~ n7~k-l)Mc+l p(bi =bf). Hence the a priori 

expected value of each transmitted symbol from each transmit antenna can 

be written as 

2Mc 

sk = 2:= sip(sk = si), k = 1, ... , 2Nt. (A.3) 
l=l 

Let us define Hk = [h1, ... , hk-1, hk+l• ... , h2Nt], where hi is the i'th column 

of the channel matrix H, and sk = [si, ... , sk-1' sk+i, ... ,s2Nt]T. For each 

value of k, 1 ::; k ::; 2Nt, the MMSE-SIC demodulator performs soft inter­

ference cancellation with respect to sk on the received signal. That is, it 

computes the 2Nt vectors 

(A.4) 
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The MMSE-SIC then applies a linear MMSE filter to each of these signal 

vectors. The filtered output can be written as 

(A.5) 


where, for each value of k, the weight vector of the linear MMSE filter can 

be computed as [24, 115] 

(A.6) 


The linear MMSE filtered output is then approximated by a Gaussian dis­

tributed random variable [24, 115]. That is, zk can be approximated using 

the following AWGN channel model 

(A.7) 


where 

(A.8) 


and 7Jk is an additive Gaussian noise with variance 

(A.9) 

Using this approximate model, the soft information for each transmitted bit 

at the output of the MMSE-SIC demodulator can be approximated as [24, 
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115] 


where 

(A.11) 


sb;=±l is the list of all symbols s1 = M(b1), £ = 1, ... '2Mc with the ith bit 

of h1 fixed to ±1, and AAk is the (extrinsic) soft information in LLR form, 

corresponding to the bit-vector h1 that indexes the symbol s1 transmitted 

from the kth transmit antenna. The extrinsic component of the extracted soft 

information is then fed back to the decoder for another round of iteration 

between the demodulator and the decoder. 
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