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Abstract 

This thesis considers passive localization and tracking. Here, passive refers to pas­

sive observations - the type of observations for which the full position estimate of 

the target cannot be obtained using a single measurement, like those are from a 

sonar. Hence, localizing or tracking targets based on these measurements calls for 

the use of multiple sensors. This poses a different set of challenges to tracking with 

passive observations as opposed to active observations where full target position is 

available from a single measurement. 

We identify different issues that are related to passive localization and tracking 

and propose algorithmic solutions to these problems. We consider the angle of ar­

rival (AOA), which is the passive measurement that is often considered in target 

tracking and time difference of arrival (TDOA) as representative passive measure­

ments to illustrate our algorithms. Whereas, the AOA measurements from different 

sensors can be considered independent, TDOA measurements, on the other hand, 

are not independent. That is, they are correlated. We would, however, like to 

note that the proposed algorithms can be applied with straightforward, but simple, 

modifications to other types of passive measurements. 

In particular, this thesis provides solutions to the following problems. First, it 

provides efficient and improved algorithms to the data association problem when 
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tracking with multiple passive synchronous sensors. These solutions are based on 

the assignment formulation. Whereas one of the algorithms proposed, the gated 

assignment algorithm, uses the validation gates to reduce the computational cost, 

the other is a new extension to the multidimensional assignment algorithm that 

associates the measurements directly to the tracks. This is called the (S + 1)-D 

assignment-based data association, where S is the number of synchronous sensors 

available in the tracking system. An approximation to this new (S + 1)-D algorithm 

is also presented. 

In literature one finds algorithms to localize a single target using TDOA measure­

ments. None of these algorithms considered the issues that might arise in tracking 

the localized targets. This thesis provides a framework to localize and track targets 

based on TDOA measurements. The localization algorithm uses a formulation based 

on the sensor-emitter geometry. This formulation is considered as a constrained op­

timization problem and two relaxation-based algorithms are provided to solve this 

optimization problem. The assignment-based data association provides an addi­

tional challenge because the TDOA measurements are correlated. This problem is 

identified and a solution is provided by modifying the calculation of the association 

cost. 

Finally, this thesis also provides an efficient algorithm to form AOA mono tracks 

using the fast Fourier transform (FFT) and the assignment algorithm. Formation 

of the mono tracks is very useful in distributed tracking and is the well-known 

direction of arrival tracking problem in the signal processing community. 
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Chapter 1 

Introduction 

Target tracking is an old problem. The origins of it can be traced to the eigh­

teenth century. Primary interest in that period was astronomy where astronomers 

attempted to determine the orbits of the planets. Recent interest in tracking can be 

traced back to the mid twentieth century with applications such as ballistic missile 

defense and orbital vehicle tracking. These recent developments are fueled primar­

ily by military applications, especially during the cold war era. Lately, some civilian 

applications of target tracking have become relatively important. These include air 

traffic control (due to the large growth in civilian aviation and the resulting traffic 

congestion near major airports [38, 68]) and highway vehicle surveillance (moti­

vated by current interest in intelligent transportation systems [22, 56]). 

The objective of target tracking is to collect sensor data and partition them into 

sets of observations or tracks that are produced by the same targets [12]. Once the 

partition has been made and confirmed, parameters of interest, which depends on 

the application, can be estimated for each track. 
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Chapter 1. Introduction 2 

Modem target tracking systems traditionally used radars to observe the envi­

ronment. Radar development is a matured field [90]. Radars operate by emitting 

specialized signals and form measurements from the signals that return after im­

pinging targets. Since, radars use their own signal to obtain measurements they fall 

in the category of active sensors. 

Passive sensors refer to the type of sensors that do not use any signals of their 

own. They listen to the environment for emissions from the targets and form their 

measurements from the signals received. Recent advances in computer technology 

have led to sophisticated signal processing methods that have greatly improved the 

capability of passive sensors [12]. Passive sensors include infrared search and track 

sensors, passive sonar [94], and time of arrival sensors. Localizing and tracking 

targets from passive sensor measurements has several important applications in 

many fields. 

For example, electronic intelligence (ELINT), which includes all the aspects in­

volved in remote sensing and processing of data from radars and other hostile sen­

sors in order to obtain information about the capabilities of these sensors [98], uses 

passive sensors to achieve its objectives. In fact, electronic support measure (ESM) 

sensors that are a subset of ELINT provide passive measurements. Another impor­

tant application is search and rescue operations. For example, the arrival times 

from a mobile phone at different base stations can be used to localize a phone in 

an emergency (E-911 service in North America) [80]. Further, in the mobile com­

munications industry, localization of mobile terminals allows the provisioning of 

location-based services. Another potential application is the intelligent transporta­

tion systems [79]. 
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Radars usually measure the range and azimuth of the targets in the environ­

ment. It is easy to localize a target with the range and azimuth measurements of 

radars. Various algorithms can then be used to track the localized targets. The pas­

sive sensors, on the other hand, usually do not measure the position of the targets 

directly. An example is the passive sonar, which measures the angle of arrival (AOA) 

of a target. Hence, it is not possible to localize a target from a single measurement. 

As a result, in order to localize a target one is required to employ multiple sensors. 

Use of multiple sensors adds a different set of challenges to the tracking algorithms. 

1.1 Motivation 

This thesis is concerned with algorithm development for localization and tracking 

with passive measurements, i.e., the type of measurements that do not provide the 

full target position in a single measurement. As discussed in the previous section, 

tracking using passive measurements has gained attention in recent years due to 

the advancements in signal processing techniques. Passive measurements are either 

used to complement radar measurements or are used exclusively to track targets. 

Since a single passive measurement would not localize a target (as is the case with 

a single radar measurement), tracking with passive measurements brings forward 

a different set of challenges to the tracking algorithms. 

One of the important challenges is that since a single passive measurement does 

not provide the target position, in order to localize and track targets one typically 

needs to employ multiple sensors. Use of multiple sensors, as will be discussed 

later, complicates the all important data association problem. Further, it also brings 

forward challenges to the system designer in terms of the selection of an appropriate 
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tracking architecture. 

Another challenge is in localizing a target from multiple passive sensor mea­

surements. fypically, the relationship between the target position and a passive 

measurement is nonlinear. Hence, once the measurements that originated from a 

certain target are identified, estimating the position of the target (for example, max­

imum likelihood estimate (ML)) that caused these measurements usually results in 

a nonlinear optimization problem. This would result in a high computational cost. 

In addition, in order to get a close enough solution an initial estimate that is in 

the neighborhood of the actual solution is required. Such an initial solution is not 

available in practical scenarios. 

Furthermore, when multiple sensors are used in the tracking system measure­

ments from different sensors could be either correlated or uncorrelated. For exam­

ple, whereas AOA measurements from different sensors can be considered uncorre­

lated, time difference of arrival (TDOA) measurements are typically correlated. This 

is because TDOA measurements are calculated with respect to a reference sensor 

and the presence of the common reference sensor measurement noise makes these 

measurements correlated. Whether the type of passive measurement is correlated 

or not presents different sets of challenges to the tracking system. 

Due to the importance and recent interest in tracking targets with passive mea­

surements, this thesis tries to solve some important challenges related to passive 

measurement tracking. 

The single most important problem in any target tracking system is data asso­

ciation. The question of measurement origin uncertainty is answered by the data 

association step, that is, it identifies the measurements that have originated from a 

particular target. Except in the ideal case of tracking a single target with sensors 
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having unity detection probability and in an environment with no false returns, one 

always encounters the problem of data association. The complexity of the data asso­

ciation is influenced by the tracking scenario such as, whether single target or mul­

titarget tracking, whether single sensor or multiple sensors are employed, whether 

the measurements are passive or active, or a combination of these and other issues. 

It is the hardest when tracking multiple targets using multiple synchronous1 passive 

sensors [12]. 

This thesis considers the problem of data association in the multiple synchronous 

passive sensor tracking systems. It proposes two assignment-based algorithms that 

provide improved performance at a reduced computational cost compared to a pre­

vious algorithm. These improvements, both in performance and computational effi­

ciency, are due to the fact that we consider the prior information of the targets that 

are being tracked in solving the data association. Besides, an approximation of one 

of the algorithms resulted in a much faster algorithm. We tested these algorithms 

on simulated, but realistic, scenarios with multiple synchronous AOA sensors and 

the results indicate the superior performance of these algorithms. 

We also consider the problem of tracking using TDOA measurements. This study 

also serves as a representative example of tracking with correlated measurements. 

In the literature one could find several TDOA localization algorithms [17, 36, 41, 

86, 92]. These algorithms considered localizing a single target in an ideal scenario, 

i.e., with no measurement origin uncertainty. Further, they did not consider tracking 

issues. It has to be noted that even to localize a target, in real-world scenarios, one 

needs to solve the data association problem. 

1 Here, synchronous sensors means that observation times of all the sensors are synchronized. 
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This thesis provides an algorithmic framework to localize and track multiple un­

known numbers of targets using TDOAs. In this framework, we solve the problem 

of measurement origin uncertainty by using the assignment-based algorithms in­

troduced in this thesis. One challenge posed by the TDOA measurements is that 

measurements from different sensors are correlated. The data association algo­

rithms developed in this thesis are modified to account for the fact that the TDOA 

measurements are correlated. This framework is general in that it can be used with 

any type of correlated measurements (with certain simple modifications). 

Localization of an emitter is required to initialize a track from passive sensor 

measurements. Typically, in order to localize a target from passive measurements 

one will find the ML estimate from the measurements from different sensors. The 

relationship between the target position and the passive measurements are typically 

nonlinear. Hence, the resulting ML estimation involves nonlinear search techniques. 

Such search techniques usually require a starting point that is close to the actual 

solution. In some cases, it may be possible to obtain a starting point. For example, 

when localizing an emitter in the two dimensional plane using AOA measurements, 

any two AOA measurements would intersect at a point and this point can be used 

as the starting point of the search algorithm. 

With TDOA measurements, however, it is not possible to obtain such a start­

ing point. This, combined with the fact that the ML TDOA localization results in 

a highly nonlinear function, makes it very difficult to find the ML estimate of the 

target position when using TDOA measurements. It is possible, however, to come 

up with a formulation based on the sensor-target geometry for the TDOA localiza­

tion problem. We view this formulation as a nonconvex optimization problem and 

provide solutions based on semidefinite relaxation. The results are compared with 
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some of the other popular techniques found in literature. 

This thesis also provides an efficient algorithm to form mono angle only tracks. 

Mono tracks refer to the tracks that consist of angles that originated from the same 

target. This is also the problem known as direction of arrival (DOA) tracking in the 

signal processing community. Formation of mono tracks is very important in dis­

tributed tracking systems. This is because instead of sending all the measurements 

from a sensor platform, which would require very high bandwidth, only the mono 

tracks can be sent to the central fusion center for further processing. The algorithm 

presented in this thesis, uses the discrete-time Fourier transform (DTFT) to form 

angle measurements from the response of a uniform linear array. The angle mea­

surements thus obtained are associated using the multiframe association algorithm 

developed in this thesis to form mono tracks. 

1.2 Contributions of the thesis 

This thesis provides efficient and improved solutions to some of the challenging 

problems in passive localization and tracking. In the section, we summarize the 

contributions of this thesis briefly in the order of appearance. 

• Data association is an important problem in target tracking. It presents addi­

tional challenges when tracking with passive sensors. This thesis provides two 

efficient and improved assignment-based algorithms to solve the data associ­

ation problem. In addition, an approximation to one of the algorithms results 

in an extremely fast algorithm. 

• This thesis also presents a framework to track an unknown number of targets 

using TDOA measurements. The framework proposed is general in that it 
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can be used with any correlated measurements with some straightforward 

modifications. 

• The important problem of data association in the TDOA tracking framework 

provides an additional challenge because of the fact that the TDOA measure­

ments are correlated. This issue is identified and solved by modifying the 

assignment-based association algorithms proposed in this thesis to account 

for the correlation between measurements from different sensors. 

• Localizing using TDOA measurements is a difficult task due to the highly non­

linear nature of the TDOA equations. A formulation based on the sensor­

emitter geometry results in a nonconvex optimization pro bl em. This thesis 

presents two semidefinite programming techniques to solve the highly non­

linear TDOA equations. 

• This thesis also presents a new efficient algorithm to form angle only tracks 

(i.e., mono tracks) from the signals received by a uniform linear array. 

1.3 Organization of the thesis 

This thesis is organized as follows. The next chapter provides an introduction to 

multitarget tracking. It identifies various functional units of a tracking system and 

gives a brief review of these units and popular algorithms that are used. It also 

discusses different tracking architectures for tracking with passive sensors. 

Chapter 3 explains the multidimensional assignment-based algorithm that can 
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be used to solve the data association problem in synchronous passive sensor track­

ing systems. This chapter also identifies some problems with this solution, espe­

cially, computational issues. Chapter 4 proposes computationally efficient and im­

proved assignment-based algorithms for passive sensor data association. The pro­

posed algorithms can be used with any passive measurements. The effectiveness of 

these algorithms, however, is tested in simulated AOA tracking scenarios. Results 

of these simulations are provided in Chapter 5. 

Chapter 6 considers the problem of tracking with time difference of arrival 

(TDOA) measurements. Various studies in literature have focused mainly on the 

problem of localizing a single emitter using TDOA. Tracking issues have not been 

considered in these studies. This chapter proposes an algorithmic framework to 

track multiple unknown numbers of emitters in practical scenarios. Chapter 7 pro­

poses two solutions to solving the nonlinear TDOA equations. Solution to the TDOA 

equations is required in order to localize an emitter. These solutions are based on a 

geometry-based formulation of the problem. 

Chapter 8 presents a new efficient algorithm to form angle only mono tracks 

using a uniform linear array. This algorithm uses fast Fourier transform (FFT) to 

get the angle of arrivals from the array response and uses assignment-based data 

association algorithm to form mono tracks. 

Finally, Chapter 9 summarizes the thesis and provides directions for future work. 

1.4 Terminology 

We would like to clarify some of the terms that are used in various contexts in this 

thesis in order to avoid any confusion to the reader. 
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This thesis is about passive localization and tracking. Here, passive stands for 

passive measurements. This refers to the type of measurements for which the full 

position estimate of a target cannot be determined from a single measurement. For 

example, AOA and TDOA are passive measurements. Active measurements are the 

ones that allow one to determine the full target position from a single measurement 

(e.g., radar measurements). This terminology should not be confused with active 

and passive sensors. Active sensors emit signals and form measurements from the 

returns of these signals. Passive sensors, on the other hand, listens the environment 

and forms the measurements from the emission of the source. It has to be noted 

that most of the times passive sensors provide passive measurements2
• 

Since with passive measurements the target position is not available from a sin­

gle measurement, usually measurements from multiple sensors are required to get 

the position estimate of a target. We define localization as the process of obtaining 

the position estimate from multiple passive sensors. Tracking may refer to the con­

tinuous estimation of the positions of a target as it moves. Hence, tracking could 

simply be considered as localizing a target continuously. Tracking considered in 

this thesis, however, is more general than continuous localization. It could estimate 

quantities other than position (such as velocity and acceleration). As a result, it 

presents other challenges such as the measurement origin uncertainty. 

Finally, we use AOA and TDOA to explain our algorithms. These quantities are 

typically measured by passive sensors. Since passive sensors listen to the emission 

of the targets to form measurements, we use the words emitter and source inter­

changeably with target. 

2This need not be the case always. For example, active sonar could provides AOA measurements. 
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Chapter 2 

Multiple Target Tracking 

In this chapter we provide an introduction to tracking systems and elaborate on the 

issues of passive sensor tracking systems. Also we discuss various architectures for 

passive sensor tracking. 

2.1 Generic tracking system 

A generic high level block diagram of a tracking system is shown in Figure 2.1. 

It consists of sensors, signal processing unit, and tracking unit. Sensors scan the 

environment in which they operate and gather information from diverse sources. 

Traditionally, in tracking systems, the sensor is the radar. Radar development is a 

Sensors ...... Signal processing 
....... Tracking and measurement 

formation 

Figure 2 .1: Generic tracking system. 

13 
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matured field. Recent improvements, however, in sensor technology has resulted in 

a plethora of other sensors. This includes acoustic sensors such as active or passive 

sonar, infrared sensors, 1V sensors, and imaging sensors. Modern tracking systems 

typically use multiple types of sensors to improve the tracking performance. 

The output from the sensor is processed in the signal processing unit and mea­

surements are formed. The type of measurement produced differs according to the 

sensor type. For example, if the sensor is radar the range and the azimuth constitute 

a measurement. Certain radars also measure the range-rate. Radar measurements 

are delivered to the tracking unit as a measurement vector. If the sensor is passive 

sonar, the measurement is typically the angle of arrival (AOA) of the signal, which 

is reported to the tracking unit as a scalar. 

The tracking unit is the one that is responsible for estimating the parameters of 

interest of the targets in the region that is being monitored. This involves several 

important functions that are explained in the next section. A tracking unit is fol­

lowed by a presentation logic that displays the output of this unit to the system user. 

It has to be noted that the tracking unit should be able to handle multiple types of 

sensors. Further, in distributed tracking systems the above system model may be 

replicated at different locations. In such systems, the tracking unit should also have 

the capabilities to provide and accept feedback to and from other tracking units to 

improve overall tracking performance. 

This thesis is concerned with issues relating to the tracking unit. We now provide 

some details of the functionalities of the tracking unit. 
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Data Track ~ 

Filtering 
~ 

association maintanence and Prediction 
'I' 

Gating --computations 

Figure 2.2: Tracking process. 

2.2 Functional units of a tracking system 

Figure 2.2 identifies the main functional units of a tracking system. It is assumed 

here that the tracks have already been initialized. The data association block takes 

the tracks from the previous scan and measurements from the current scan, and 

decides the origin of these measurements, i.e., decides from which target a given 

measurement originated. The data association problem is the most challenging task 

in target tracking. Track maintenance is responsible for making decisions such as 

initiation and deletion of the tracks. Once the observations are assigned to tracks 

the filtering process updates the tracks with the corresponding observations. It also 

predicts the tracks to the next scan, since predicted tracks are required in gating 

computations. Gating improves the efficiency and performance of data association 

algorithms. We will now describe these functional units in detail starting with fil­

tering algorithms. 
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2.3 Filtering 

Filtering is the process of estimating the state of a dynamic system. The reason 

for the use of the term "filter" is because the process amounts to obtaining the 

"best estimate" from the noisy observations amounts to "filtering out" the noise [ 6] . 

The state actually defines the parameters of interest. For example, an air-traffic 

controller would be interested in knowing the position and velocity of an airplane 

at any given time in order to provide instructions to the pilot. Hence, in this case 

position and velocity would constitute the state. 

Filtering process is a well-studied field and one can find numerous algorithms 

in literature. Conventional tracking systems use the Kalman filter (KF) [ 46, 47] 

to update the tracks. The KF is the optimal estimator (in mean squared sense) 

for linear Gaussian stochastic systems and its performance would degrade if these 

assumptions are not met. Extended Kalman filter (EKF) can be used to account 

for nonlinearity to a certain extent [ 6]. When tracking with time difference of 

arrival (TDOA) measurements we, however, found that the unscented Kalman filter 

(UKF) [ 43, 95] gave a better performance in comparison to the EKF. Sequential 

Monte Carlo filters - best known as particle filters - promise to provide a better 

solution even in the case of nonlinear non Gaussian environments [1, 82]. The 

basic idea in the particle filter is to use a number of independent random variables 

called particles, sampled directly from the state space, to represent the posterior 

probability, and update the posterior by involving the new observations [39]. The 

computational cost of a particle filter could, however, be higher compared to KF or 

its variants. 

Conventionally, from KF to particle filter, the development of the tracking filters 

assumed a single model for the target motion dynamics. When the targets start 
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to maneuver the performance of these filters invariably degrades. This is because 

characterizing the motion of a maneuvering target using a single motion model does 

not capture the actual nature of the maneuvers. In such cases, multiple model es­

timation techniques provide better performance. In the multiple model technique, 

several constituent filters (e.g., KF) tuned to different motion models are run in par­

allel. The outputs of these filters are probabilistically combined to get an estimate 

for the target state. 

Several multiple model techniques are available in literature. These include: 

generalized pseudo-Bayesian estimator of first order (GPBl), GPB2, and the inter­

acting multiple model (IMM) estimator. The IMM estimator gives the performance 

of the GPB2 at the computational cost of GPB 11 . Hence, it is the one that is always 

used in modern systems. In this thesis, we used either the KF or the UKF (depend­

ing on whether the state-space model is linear or nonlinear) as the constituent filter 

of the IMM estimator to track the targets. We will now provide a brief description 

of these algorithms. A simulation study performed in [SO] answers the question of 

when to use an IMM estimator over a KF. 

2.3.1 The Kalman filter 

The KF is the best linear minimum mean square error (LMMSE) filter, and is the 

optimal under linear Gaussian assumptions [ 6] . It assumes a single model for the 

state evolution (though it could be time-varying), and recursively updates the state 

based on the observations of current scan. Assume the following linear Gaussian 

1 Note that while the performance of the GPB2 is superior to that of GPB 1, the computational cost 
of it is comparatively higher. In fact, if the target motion can be modeled using N motion models, 
the GPBl and IMM requires N filters to run in parallel whereas the GPB2 requires N 2 filters. 



Chapter 2. Multiple Target Tracking 18 

model for the target motion 

(2.1) 

In the above, Xk denotes the target state at time k and pk-1 is the state transition 

matrix that governs the state transition from time k - 1 to k. vk is the process noise 

that is assumed to be Gaussian distributed with zero mean and known covariance. 

Measurements are assumed to be linear functions of the state and are modeled 

by 

(2.2) 

where zk is the measurement at time k and Hk is the measurement function. The 

measurement noise wk is also assumed to be Gaussian distributed with zero mean 

and known covariance. The state and measurement models given by (2.1) and 

(2.2), respectively, describe a linear Gaussian stochastic system for which KF is the 

optimal estimator. 

A single cycle of the KF starts with the state estimate xk-l and the corresponding 

covariance pk-l of the previous cycle, and updates them (using the measurement 

at time k) to the present cycle. Each cycle of the KF has two steps - prediction and 

update. 

Prediction step 

The state prediction at time k refers to applying the state function operator pk- I to 

the previous state estimate xk-l to obtain the predicted state Xklk-1 . That is 

xklk-1 = pk-1 xk-1 (2.3) 
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It is easy to show that the covariance associated with the state prediction error 

is given by 

pklk-1 = pk-1 pk-1 pk-lT + Qk (2.4) 

where Qk = E{ vk( vkf} is the process noise covariance matrix. 

The predicted measurement at time k is obtained by applying the measurement 

function operator H to the predicted state, Xklk-1, i.e., 

(2.5) 

The measurement prediction error covariance is given by 

(2.6) 

where Rk = E{ wkwkT} is the measurement noise covariance. 

Update step 

In this step, the current measurement zk is used to update the state prediction and 

the associated covariance. According to the minimum mean square error (MMSE) 

criterion, at time k, the state estimate Xk, based on measurements obtained up to 

time k, is the conditional mean. It can be shown [6] that the conditional mean can 

be calculated using 

(2.7) 
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where X is the prior (unconditional) mean, which is replaced by the state prediction 

j(klk-1, vk is the innovation at time k, which is defined as the measurement residual 

k ~ -klk-1 k "-kik-1 v=z =z-z (2.8) 

and Wk is the Kalman gain given by 

(2.9) 

Hence, the state update equation will reduce to 

(2.10) 

The covariance associated with the updated state is 

(2.11) 

This completes one cycle of the KF. 

2.3.2 The unscented Kalman filter 

The KF assumes linear Gaussian state-space model and provides the optimal recur­

sive state estimation in such a case. The performance of the KF would degrade or 

even the filter would diverge if the linear Gaussian assumption is not met. The EKF 

is an extension of the KF to handle nonlinear measurement process and/or nonlin­

ear target dynamics. In the EKF the state is approximated by a Gaussian random 
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variable, and it is propagated through a first-order linear approximation2 of the 

nonlinear state-space. This approximation may not be adequate for some nonlinear 

systems and as a result large errors could be introduced in the estimates. Or, in 

some cases the filter may diverge. 

The UKF attempts to provide a solution to the approximation issues of the EKF. 

In the UKF, the state distribution is represented by a Gaussian random variable as 

in the EKF, but it is now specified using a minimal set of carefully chosen sample 

points [95]. These points are selected using the unscented transformation. 

Consider the following nonlinear state-space model that describes the target 

dynamics and the measurement process. 

xk = fk-1 (xk-1) + vk 

zk = hk(Xk) +wk 
(2.12) 

In the above equation f(.) and h(.) are the nonlinear state and measurement 

functions. Other quantities are similar to that defined in the pervious section. One 

cycle (from time k - 1 to k) of the UKF starts with the mean Xk-1 and covariance 

pk-l of the state estimate from the previous cycle. Using the unscented transforma­

tion, a set of 2L+ 1 sigma points are calculated as follows. (L denotes the dimension 

of the state.) 

xf-1 = xk-l + yf (L + >..)Pk-1 i = 1, ... , L (2.13) 

;rik-l = .Xk-1 - yf (L + >..)Pk-1 i = L + 1, ... , 2L 

2It is also possible to use a second-order linear approximation to propagate the state. This, 
however, would increase the computational cost, and may induce numerical instability because of 
the Hessian calculations required. 
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where .A = a 2 ( L + K,) - L is a scaling parameter. The constant a determines the 

spread of the sigma points around xk-1. The secondary scaling parameter "" is 

usually set to 0 or 3 - L. 

These sigma points are now propagated through the nonlinear state function to 

get the predicted sigma points. That is 

(2.14) 

The mean and covariance of the propagated sigma points are approximated 

using a weighted sample. These are given, respectively, by 

i=O (2.15) 

where the weights are given by 

Tum A 
vvo = .X+L 

W3 = A ~ L + ( 1 - °'2 + ,B) (2.16) 

wmwc 1 L 
i - i - 2(.X + L) i = 1, ... , 2 

Based on this mean and covariance another set of sigma points are now redrawn. 

k -klk-l 
X0 =X 

xik = xklk-1 + V(L + .X)Pklk-1 i = 1, ... , L (2.17) 

xt = Xklk-l - yf (L + .X)pklk-l i = L + 1, ... , 2L 
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The newly redrawn sigma points are then propagated through the measurement 

equation. 

klk-1 _ hk( vk) . _ O 1 2L 
zi - .A..i i - ' ' · · · ' (2.18) 

The mean of the predicted measurements ziklk-l' i = 0, 1, ... , L is approximated 

using the following weighted sum. 

2L 
-k "wm klk-1 z =L i zi 

i=O 

where the weights wim are defined previously. 

The gain of the filter is defined as 

K = PxzP;/ 

where 

(2.19) 

(2.20) 

(2.21) 

The calculation of the updated state and covariance is similar to that of the KF. 

The updated state is given by 

X,.. k _ xklk-1 K( -k) - + Zk - Z (2.22) 
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and associated covariance is given by 

(2.23) 

These are carried over to the next cycle. 

2.3.3 The IMM estimator 

The IMM estimator introduced in [15] has entrenched itself as the estimator of 

choice when it comes to tracking maneuvering targets. The effectiveness of the 

IMM estimator can be attributed to the fact that it assumes multiple models for the 

possible target state evolution. It then finds an overall estimate as a probabilistic 

combination (i.e., soft decision) of the individual filter estimates without making a 

hard decision as to which model is in effect at a particular time. Another important 

aspect of the IMM estimator is that the weights (or the mode probabilities) given 

to the individual filter estimates are calculated dynamically based on the likelihood 

function from the individual filters. In the KF or its variants, the input to the filter 

at time k is the estimate xk-i at time k - 1. In the IMM estimator, however, the 

input to each filter at time k is a probabilistic combination of the (k - l)th estimate 

of all the filters, thus accounting for all possible model transitions from time k - 1 

to time k. 

One cycle of the IMM estimator and the corresponding mathematical expres­

sions are presented next. For more details see [ 6]. It is assumed that there are N 

interacting filters running in parallel and that the Markov chain transition probabil­

ity matrix is known3 • 

3The IMM estimator is not very sensitive to errors in the assumed model transition probability 
values. In real large-scale tracking problems [96], where these probabilities or the KF parameters 
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Step 1: Mixing probability calculation 

Each cycle of the IMM estimator starts with the estimates of the individual filters 

from the previous cycle. These N estimates are mixed probabilistically, giving N 

estimates that are the initial conditions for the N filters in the current cycle. The 

weights given in the mixing step are the mixing probabilities. The mixing probabil­

ity µ7i5 1lk-l is the probability that model Mi was in effect at time k - 1 (previous 

cycle) given that model Mi is in effect at time k (current cycle) and all the mea­

surements up to time k - 1 (denoted by zk- 1
). That is 

µ~j1lk-1 = p { Mik-1IMJ, zk-1} 

= ! p { MJIM:-1, zk-1} p { Mik-11zk-l} 
Cj 

(2.24) 

1 k-1 = -=-Pi) µi i, j = 1, 2, ... , N 
Cj 

where Pi) is the (i, j)th element of the Markov chain transition probability matrix. 

These mode transition probabilities are assumed to be time invariant and indepen­

dent of the base state. In addition 

(2.25) 

is the probability that the state corresponds to model Mi at time k - 1 termed mode 

probability and ci is the normalizing constant given by 

N 

Cj = LPijµ~-l j=l,2, ... ,N (2.26) 
i=l 

such as process noise variances are not known exactly, the IMM estimator has been proven to be 
very effective. 
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Step 2: Mixing 

With the mixing probabilities as weights, estimates of all the filters at time k- l are 

mixed to produce the initial estimates for each filter at time k: 

N 

XA k-1 - ~ XA k-1 k-llk-1 
Oj - L.J i µilJ j=l,2, ... ,N (2.27) 

i=l 

where x:-1 is the estimate of the filter matched to model Mi at time k - 1. The 

covariance associated with x;i-1
, j = 1, 2, ... , N is given by 

(2.28) 

Step 3: Mode probability update 

The initial conditions obtained in Step 2 and the measurement at time k are input to 

each filter. In addition to the updated state estimate and the associated covariance, 

each filter outputs its likelihood. The likelihood Aj of the filter matched to model 

Mi at time k is given by 

(2.29) 

where zk is the measurement at time k. 

The updated mode probability is defined by 

µJ ~ P { MJIZk} (2.30) 
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x1 (k - llk - 1), P 1(k - llk - 1) r------------------------------1--------------------------------, 
I I 
I 
I 
I 

I 

-------------------------------~-------------------------------
x2(k - llk - 1), P 2(k - llk - 1) 

Figure 2.3: One cycle of the IMM estimator consisting of two filters. 

It can be shown [6] that the mode probability can be updated using 

k 1 k-
µJ. = -AJ. Cj j = 1, 2' ... ' N 

c 

where Cj is defined in (2.26), and the normalization constant c is given by 

N 

c = LAJcj 
j=l 

27 

(2.31) 

(2.32) 
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Step 4: Overall estimate 

The overall state estimate of the IMM estimator is calculated as a weighted sum of 

individual filter estimates (i.e., a Gaussian mixture) 

N 

xk = LµJx; (2.33) 
j=l 

and the covariance associated with the above estimate is given by 

(2.34) 

Note that the above overall estimate is only for the purposes of the user of the 

IMM estimator. It does not affect the next cycle of the estimator. A block diagram 

of the IMM estimator consisting of two filters is given is Figure 2.3. 

2.4 Gating computations 

Gating is a technique that is used to eliminate the unlikely track-to-measurement 

pairings [12]. A gate is typically setup around the predicted measurement, and 

any observation that falls within the gate is considered for track update. How the 

observations that falls within the gate are used to update the track is dependent 

upon the data association technique used. All data association techniques, however, 

use gates to reduce the computational cost. 

Let zk denote the measurement vector at scan k. The measurement residual or 
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the innovation vk is given by 

(2.35) 

where h(.) is the nonlinear measurement function. If the measurement function is 

linear then 

(2.36) 

where His the measurement matrix. In either case, the residual covariance matrix 

Sk is defined by 

(2.37) 

There are two types of gates that are used commonly. They are the rectangular 

gate and the ellipsoidal gate. 

2.4.1 Rectangular gate 

This is probably the simplest gating technique that one could have. Let vt denote 

the lth element of the innovation vector. Then the gating requirement is said to be 

satisfied if all the elements of the innovation vector satisfy 

(2.38) 

where rJ r is the residual standard deviation as defined in terms of the measurement 

and prediction variances. That is 

(j = J (j2 + (j2 r o p (2.39) 
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Kcl above denotes the gating coefficient and details about selecting an appropriate 

value for it is discussed in [ 11]. 

2.4.2 Ellipsoidal gate 

A measurement is said to satisfy the ellipsoidal gate, if the following holds true: 

(2.40) 

The gate threshold r determines the probability with which the true measure­

ment will be within the gate. The threshold r is obtained using the chi-square 

distribution tables since the quadratic form that defines the gate is chi-squared dis­

tributed with the number of degrees of freedom equal to the dimension of the mea­

surement. 

2.5 Data association 

Usually the sensors or the signal processing step does not identify the target from 

which a certain measurement originated. These units decide whether there is a 

detection and if so what is the corresponding value (in the measurement space) 

of the event that caused the detection. In order to update a track, however, one 

needs to know the measurement that originated from the target corresponding to 

that track. This is fulfilled by the data association step. That is, data association is 

the process that solves the important problem of measurement origin uncertainty. 

Except in the ideal case of unity probability and no false alarms, which, of 

course, is not practical, one encounters the data association problem. In tracking 
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a single target in clutter with a non-unity probability of detection the data associ­

ation can be considered easy. In such a case one needs to decide whether a given 

measurement originated from the target or a false alarm. In practical multitar­

get/multisensor tracking scenarios, the data association, however, becomes more 

challenging, since now the tracks start to compete for measurements. 

The problem of data association was first identified in [89], and a number of 

algorithms have been developed to solve the data association problem. Details of 

various algorithms to solve the data association problem can be found in various 

books [3, 5, 11, 12, 31] and in numerous papers including the basic works [2, 

30, 35, 81, 88, 89]. We will now briefly review some of the commonly used data 

association algorithms. 

2.5.1 Nearest neighbor 

The nearest neighbor (NN) method is the simplest data association algorithm one 

could have. It is also the one that provides worst performance. In this approach one 

selects the measurement that is closest to the predicted measurement. That is the 

innovation or the residual of all the measurements is calculated for a given track 

and the one with the smallest value is used to update that track. The performance 

of this algorithm may be acceptable in a single target tracking problem with low 

false alarm rate, or in multitarget tracking where the targets are well-separated and 

again with low false alarm rate. Due to its poor performance in realistic scenarios, 

this algorithm is not used in practice. 
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2.5.2 Global nearest neighbor 

This is the most widely used algorithm for data association. It is similar to the NN 

technique in that it just maintains the single most likely hypothesis. The global 

nearest neighbor (GNN) algorithm, however, finds the measurement-to-track pairs 

such that the global cost of all the possible associations is minimized. The GNN 

technique is usually formulated as a two-dimensional (2-D) assignment problem. 

The resulting assignment-based data association has been demonstrated on large 

scale problems with hundreds of targets [96, 100]. 

Each track-to-measurement pair is assigned a cost, which typically is a general­

ized likelihood ratio. That is, the cost of assigning a track i to a measurement j -

the assignment cost cii - is defined as 

0 if i = 0 or j = 0 

Ci1· = - ln A(i,j} if - ln(.) _< 0 
A(O,j) 

oo otherwise 

(2.41) 

where A( i, j) denotes the likelihood that measurement j came from the target cor­

responding to track i and A(O, j) is the likelihood that the measurement came from 

none of the existing tracks, or in other words, it is a false alarm. The likelihood of 

false alarms is assumed to be uniformly probable in the surveillance region. 

Track index 0 denotes a dummy track and measurement index 0 denotes a 

dummy measurement. They are used to account for the possibilities that a track 

may not have been detected in the current scan and a measurement could be a 

false alarm. 

In order to reduce the computational load the assignment cost is calculated for 

only the measurement-track pairs that satisfy the gating requirements (discussed 
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before). The goal of the GNN technique is to find the most probable measurement­

track pairs that minimize the global assignment cost such that a track is assigned 

at most to one measurement and a measurement is assigned to at most one track. 

This objective results in the following 2-D assignment problem. (It is assumed here 

that there are nt number of tracks and nm number of measurements are associated. 

Note also that nt may not necessarily equal to nm due to missed detections and false 

alarms.) 

mm 
Pij 

nt nm 

LL CijPij 

i=O j=O 

nt 

subject to: L Pij = 1 j = 1, 2, ... 'nm 
i=O 
nm 

L Pii = 1 i = 1, 2, ... , nt 
j=O 

where Pii is a binary variable such that 

if measurement-track pair ij is included in the solution 

otherwise 

(2.42) 

(2.43) 

The 2-D assignment problem can be solved optimally using various algorithms in 

(pseudo) polynomial time. Earliest assignment algorithms, such as the Hungarian 

method [53] were only applicable for square assignment problems (i.e., problems 

where nt = nm). The more advanced Munkers algorithm [58] is much faster and 

is applicable to rectangular problems. Newer, faster methods include Jonker, Vol­

genant, and Castanon (NC) algorithm [ 42] as well as the auction algorithm [9]. In 

fact, comparison results of [ 45] appear to favor NC and auction algorithms. 
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2.5.3 Multiscan data association 

The above GNN approach assigns a single scan of data to the tracks. This may result 

in inaccurate associations if the targets' maneuver increases, since in such cases 

the predicted state may not be close to the actual target state. Better association 

performance can be obtained by associating the tracks with multiple scans of data 

rather than just a single scan. 

Typically, multiscan data association is formulated as a discrete optimization 

problem. This idea was first proposed in [57], where the multiscan data association 

was considered as a 0-1 integer programming problem. Later works [25, 26, 66, 

71, 72, 73, 74, 75] have extended and generalized this approach by mapping the 

multiscan data association problem to a generalized multidimensional assignment 

problem. 

The multidimensional assignment formulation of the multiscan data association 

can be easily extended to combine a single scan, multisensor data. Combination of 

multisensor data is usually required in the passive sensor systems. These systems 

typically employ multiple sensors since passive sensors typically do not provide full 

position measurements. Hence, one needs to combine (associate the measurements 

from different sensors or measurement-to-measurement association) measurements 

from several sensors to get full position measurements. This thesis is concerned 

with passive sensor tracking and uses the multidimensional assignment formulation 

to solve the data association. Next chapter provides greater detail of how this is 

performed and identifies computational problems with this approach. Chapter 4 

details computationally efficient assignment-based algorithms to solve the passive 

sensor data association problem. 
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2.5.4 Joint probabilistic data association 

Before ending this chapter, we provide the basics of another technique that is com­

monly used to solve data association - the joint probabilistic data association 

(JPDA). The main difference of JPDA technique compared to the other data as­

sociation solutions described earlier is that the JPDA algorithm is an all-neighbors 

approach as opposed to the nearest neighbor approach of other methods. That is 

in the nearest neighbor approaches a track is updated using only the measurement 

that is closest (defined in some sense) to that track. In the all-neighbors approach 

of JPDA all the measurements that fall within the gate of a track are used to update 

that track. 

The all-neighbors approach to association was first proposed in [2] as proba­

bilistic data association (PDA) under the assumption of a single target in clutter. 

Later results showed that PDA did not perform well in the presence of multiple 

targets and a modified method called joint PDA (JPDA) was derived to include the 

presence of multiple targets [3, 35]. 

In the PDA method, assume that there are N measurements within the gate of a 

track i. Then one could form N + 1 hypotheses for that track. The first one (denoted 

'H0 ) is that all the measurements are invalid, i.e., all the N measurements did not 

come from the target corresponding to this track. It can be shown [SJ that the 

probability of this hypothesis is proportional to 

(2.44) 

where PD is the probability of detection and Pc is the probability that a correct 

return will fall within the track gate (typically Pc ~ 1.0). The extraneous return 
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is assumed to be Poisson distributed with density (3. Similarly, probability of other 

hypotheses, namely jth measurement (j = 1, 2, ... , N) is valid and the rest are 

invalid is proportional to 

, _ (3N-l p P. exp (-0.5dij) 
Pij - D a PaJ27rlSil 

(2.45) 

Therefore, the probabilities of these N + 1 hypotheses can be found using the 

normalization equation 

I 
Pij 

Pij = N I j = 0' 1) ... ' N 
l:l=OPij 

(2.46) 

Using the values for p~i the following convenient form can be obtained for these 

probabilities. 

P .. -{b+ ~lail '/,} -
aj/ 

j=O 
(2.47) 

j = 1,2, ... ,N 

where 

b = (1 - PnPa)f3J21rlSil 
(2.48) 

aij = Pn exp ( -0.5d;i) 

These probabilities are incorporated into a standard KF to update the track. The 

resulting filter is termed probabilistic data association filter. In the KF the prediction 

step would remain the same. As a result the calculation of the KF gain would remain 

the same. The measurement residual vk, for use in the update equation (2.10), is 

now calculated as a weighted sum of individual innovations weighted by the above 
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Figure 2.4: JPDA: tracks compete for observations. 

probabilities. That is 
N 

k '""" k v = L..t Pii vii (2.49) 
j=l 

where 

v~. = z~ - H x~lk-1 
ZJ J t 

(2.50) 

It is possible to show that the covariance update equation is given by [S] 

(2.51) 

where f>k is the weighted spread of innovation term given by 

(2.52) 
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The JPDA technique - the extension of PDA for multitarget scenario - is iden­

tical to the PDA except that the association probabilities are calculated over all 

observations and all tracks, and the calculation of t.hese probabilities takes into ac­

count the fact that there are multiple targets present. The state estimation and 

covariance computation remain the same. 

Consider the scenario depicted in Figure 2.4. There are two tracks whose vali­

dation gates are shown with centers at X1 and X2 . There are four observations Oi, 

0 2, 0 3, and 0 4 within the validation gates of these tracks. The JPDA will compute a 

weighted residual for track X1 based on observations 0 1, 0 2 , and 0 4 similar to the 

PDA weights. The weight given to 0 2 will, however, be reduced to account for the 

fact that it is also present within the gate of track X2 • Similarly, when calculating 

the weighted residual for track X2 (based on observations 0 2 and 0 3) the weight 

given for 0 2 is reduced. Details of these weight calculations can be found in [SJ. 

Several improvements to this basic JPDA have been proposed over the years. For 

example, to JPDA has been combined with the IMM estimator [ 4 J and the resulting 

filter is denoted by IMMPDAF. The basic JPDA does not include explicit provision 

for track initiation or deletion. While several approaches have been proposed to 

handle these issues, the widely accepted ones are the IMMPDAF with "target" and 

"no target" modes [SJ, and the integrated PDA (IPDA) [60, 61, 62J. The basic JPDA 

has a tendency toward track coalescence for closely spaced targets [32J. In [33J a 

nearest neighbor PDA has been proposed to solve the track coalescence problem. A 

technique to select the hypotheses that could lead to track coalescence has been pre­

sented in [14J. Omitting these hypotheses from the probability calculations would 

reduce the coalescence problem. 

A number of studies have addressed the implementation of the JPDA algorithm. 
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A cheap JPDA [34] has been proposed that calculates the probabilistic weighting 

factors approximately. Recently, a computationally efficient method to implement 

the exact JPDA has been proposed in [102]. Finally, JPDA logic has also been 

extended to handle multiple scan processing [28, 29, 83]. 

2.6 Multiple passive sensor system architectures 

Four types of track initiation and maintenance architectures are identified for track­

ing with multiple passive sensors in [27]. A Type 1 system just uses data from each 

sensor to form mono tracks. No stereo tracks are formed4 • Type 2 systems first form 

mono tracks from the sensor data. This step is followed by the formation of stereo 

tracks using track-to-track association of the mono tracks from different sensors. In 

distributed tracking systems, typically, mono tracks are formed at the local fusion 

nodes (called sensor level or local tracks) and the stereo tracks are formed at the 

central fusion node (called global tracks) from the mono tracks obtained from the 

various local fusion nodes. A variation of a Type 2 system could use feedback (from 

the global tracks) to aid the tracking at the local fusion nodes. 

Type 3 systems first perform single scan, multiple-sensor observation association 

to form stereo tracks. Then the position measurements that are formed are input to 

the tracking system for multiscan data association. Hence in Type 3 systems sensor­

to-sensor processing precedes scan-to-scan processing. Typically, this architecture 

is selected for centralized tracking. This architecture presents real computational 

4A mono track means tracking just the measurements from the same target. No state estimation 
is performed. Stereo track refers to the tracks for which required quantities are estimated. For 
example, when tracking with angle only data, mono track refers to tracking the angles that have 
come from the same target (referred to as direction of arrival tracking in the signal processing 
community). A stereo track refers to the tracks for which position and velocity are estimated. 
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challenges in sensor-to-sensor processing. We describe this in the next chapter. Also 

we used this architecture to propose an algorithm to track multiple targets with time 

difference of arrival measurements. 

Type 4 systems also use centralized processing. Observation-to-track processing 

is performed on each scan of data from each sensor as it becomes available. Trian­

gulation is required to form initial stereo tracks and thereafter a nonlinear filter can 

be used to perform track update. 



Chapter 3 

Assignment-Based Data Association 

for Passive Sensor Tracking 

In this chapter, we consider the data association problem in tracking systems that 

employ multiple synchronous passive sensors. This is the 'fype 3 track initiation 

and maintenance architecture as identified in [27]. We describe a solution based 

on the assignment-algorithm. This presentation is not specific to a particular type of 

passive measurement. It, however, assumes that the measurements obtained from 

various sensors are independent. 

41 
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Sensor1 

~ Static association 

(e.g., S-D assignment 

Sensor 1 

Dynamic association 

(e.g., 2-D assignment) 

Filtering 
and 

prediction 

Figure 3.1: Block diagram. 

3.1 Introduction 

Track 

maintenance 

A high level block diagram of a centralized tracking system that uses multiple syn­

chronous sensors is shown in Figure 3.1. In such systems, at every scan, one typ­

ically needs to solve two different data association problems: the measurement­

to-measurement or static association and the measurement-to-track or dynamic as­

sociation. Whereas the static association groups the measurements from different 

sensors that have originated from the same target, the dynamic association assigns 

the grouped (combined or composite) measurements to the tracks from the previ-

ous scan. 

An assignment-based solution [67] views the static association as a multidimen­

sional assignment and the dynamic association as a two dimensional assignment. 

If the tracking system has S sensors, in the measurement-to-measurement associa­

tion step each feasible S-tuple of measurement (consisting one measurement from 
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each sensor) is assigned a cost (typically, a likelihood ratio) and then the set of S­

tuples that minimize the global cost is found. This optimization is formulated as a 

multidimensional CS-dimensional or S-D) assignment as described in Section 3.2. 

Association of the S-tuple of measurements that are obtained from this step to the 

tracks from the previous scan is performed using a 2-D assignment. 

As noted in Chapter 2 it is possible to find the optimal solution to the 2-D as­

signment problem using for example the auction algorithm. On the other hand, the 

S-D assignment can be shown to be NP-hard [70] and hence finding the optimal 

solution in polynomial time is impractical. Lagrangian relaxation-based techniques 

[26, 66, 67, 71, 76] have been proposed to find suboptimal solutions for applica­

tions that require real-time performance. 

The formulation of the S-D assignment-based solution for the measurement­

to-measurement association is provided in the next section. We then describe the 

2-D assignment-based solution for the dynamic association. Note that the descrip­

tion provided here is brief and only the formulations of the data associations as 

assignment problems are provided. Interested readers are referred to [67] and the 

references therein for comprehensive treatment of these techniques. 

3.2 S-D assignment algorithm for static association 

In the measurement-to-measurement association, at each scan, S lists of measure­

ments obtained from S synchronous sensors are available. The goal is to group the 

measurements that could have originated from the same (unknown) target. The 
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number of targets in the surveillance region is not known a priori. In the S-D as­

signment technique, each possible S-tuple1 of measurement is assigned a cost and 

the set of S-tuples that minimizes the global assignment cost is found. Each S-tuple 

in the solution set signifies the measurements that originated from a single target. 

Assume that at a given scan each sensor has generated ns (s = 1, 2, ... , S) mea­

surements. It has to be noted that ns need not be equal to the actual number of 

targets in the region due to missed detections and/ or false alarms. A measurement 

in list s, i.e., from sensor s, is denoted by Zsis' is = 1, ... , n 8 • Since a single mea-

surement could have originated from a real target or a false alarm, we can write 

if target originated 

if false alarm 

where Xp is the unknown target state and hs (.) is the measurement function. 

(3.1) 

The measurement noise W 8 is assumed to have a Gaussian distribution with zero 

mean and CJ; variance, and conditionally independent across sensors. False mea­

surements zsis are assumed to be uniformly distributed in the field of view of the 

sensor. We would like to note that for notational convenience dependence of various 

quantities on time is not shown explicitly. Further, in order to incorporate possible 

missed detections a dummy measurement zso is added to each list of measurements. 

An S-tuple of measurement Ziih ... is' consisting one measurement from each list, 

is assigned a generalized log-likelihood cost ci1 i 2 ... is defined by 

(3.2) 

1An S-tuple consists of one measurement taken from each sensor. 
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where p(Zi1i2 ... is IXP) denotes the likelihood that the S-tuple has originated from 

target p having state Xp and p( Zi1i2 ... is IP = 0) is the likelihood that all the measure­

ments in the S-tuple are spurious. Since the measurements from different sensors 

are independent, the numerator in (3.2) is equal to the product of individual mea­

surement likelihoods in the S-tuple. That is 

s 
p(Zi1i2 ... is IXp) == rrr1 - Pnsll-u(is) [PnsP(Zsis IXp)t(is) (3.3) 

s=l 

where Pns is the probability of detection of sensors and u(is) is a binary indicator 

function defined as 

{ 

0 if i 8 = 0 
u(is) = 

1 otheiwise 
(3.4) 

In the above likelihood, since the state of the target Xp is not known, it is re­

placed by its ML estimate [67]. That is 

(3.5) 

Since the measurement noise is assumed to be Gaussian distributed, the condi­

tional probability density function (pdf) p(zsis IXP) of a single measurement Zsis is 

given by 

(3.6) 

where N(x; µ, .E) refers to the normal distribution of a random variable (vector) x 

having mean µ and variance (covariance matrix) .E. 

Since the false alarms are assumed uniformly distributed, the likelihood that all 
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the individual measurements in the S-tuple are from a spurious source is given by 

(3.7) 

where 'l/J8 is the volume of the field of view of sensor s. 

Hence, the log-likelihood cost of assigning an S-tuple (ii, i 2 , ... , is) to a target 

is given by 

The objective now is to find the most likely set of S-tuples such that each mea­

surement is assigned to at most one target or declared false, and each target is 

assigned to at most one measurement from each sensor. This is formulated as the 

following generalized S-D assignment problem: 

mm 
Pi1i2 ... i3 

ni n2 ns 

LL· · · L Ci1i2 ... isPi1i2 ... is 

n2 n3 ns 

subject to: LL ... L Pi1 i 2 ... is = 1, 

n3 n3 ns 

LL··· L Pi1i2 ... is = 1, 

ni ni ns-1 

LL... L Pi1i2 ... i3 = 1, 
il=Oi2=0 is-1=0 

i 1 =1,2, ... ,n1 

i 2 = 1, 2, ... , n 2 
(3.9) 

is= l,2, ... ,ns 
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where Piiiz ... is is a binary variable such that 

if S-tuple Piiiz ... is is included in the solution set 

otherwise 
(3.10) 

It has to be noted that there are no constraints on the dummy measurements and 

the use of them allows the association to be performed over the sets of all possible 

S-tuples. Note that an S-tuple in the association needs to have a certain number of 

measurements from a target in order for the state of the target to be observable. 

The above generalized S-D assignment problem is NP-hard for S ~ 3 even under 

the assumptions of unity detection probability and no spurious measurements [ 66]. 

Hence, it is not possible to find the optimal solution in polynomial time. Therefore, 

it is necessary to seek suboptimal solutions for applications, such as target tracking, 

that require real-time performance. 

Several Lagrangian relaxation-based solutions exist to find suboptimal solutions 

to the above assignment problem. For example, in [26] a suboptimal solution is 

obtained by using the fact that the 2-D assignment problem can be optimally solved 

in polynomial time. This algorithm uses Lagrangian multipliers and relaxes (S - 2) 

constraints simultaneously. The resulting 2-D assignment problem is then solved, 

for example, using the auction algorithm. Then, the Lagrangian multipliers are 

updated, which reimposes the constraints relaxed earlier. For more details see the 

references [26, 67]. 
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3.3 2-D assignment for dynamic association 

After performing the measurement-to-measurement association at a particular scan, 

one has a set of S-tuples of passive measurements. From each S-tuple in the solu­

tion set, we can obtain a set of full position estimates by finding the ML estimate 

of every S-tuple. The goal now is to use these full position estimates to update the 

tracks from the previous scan. Assuming that the tracks have been initialized, one 

is again faced with another data association problem - one needs to decide which 

track gets a given position estimate. In fact, there are three possibilities for the 

origin of the full position estimates. They are: 

1. it could be the new position of an existing track 

2. it could be a new target detected for the first time 

3. it could be a clutter return 

One could decide the (full position) measurement-to-track association by per­

forming a 2-D assignment. In order to formulate the dynamic association as a 2-D 

assignment, assuming that the targets evolve according to known dynamic models, 

first the tracks from the previous scan are predicted to the current scan. The associ­

ation between the elements of the two lists, namely, the predicted track information 

and the full position estimates can now be formulated as a 2-D assignment prob­

lem. (See Section 2.5.2 for details on 2-D assignment.) The assignment cost is now 

defined as 

0 if i1 = 0 or i2 = 0 

if - ln(.) :::; 0 (3.11) 

oo otherwise 
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where A(i1 , i2 ) denotes the likelihood that the full position estimate i2 (the ML 

estimate of an S-tuple) came from the track i 1, and A(O, i 2 ) is the likelihood that it 

came from none of the existing tracks, or in other words, it is a false alarm. The 

likelihood of false alarms is assumed to be uniformly probable in the surveillance 

region. 

Once the solution to the 2-D assignment problem is obtained, the position esti­

mate assigned to a track can be used to update that track2 • Any of the tracks that 

are assigned to the dummy measurement means that the corresponding target is not 

detected in the current scan, or the target has moved out of the surveillance region. 

The position estimates that are assigned to the dummy track either correspond to 

a false alarm or suggest the birth of new tracks. It is up to the track maintenance 

phase to decide on how to handle these various cases. 

3.4 Some issues 

One of the important problems in using the S-D followed by 2-D assignment al­

gorithm to solve the data association is passive synchronous multisensor tracking 

systems is that the resulting computational cost could be very high. One of the rea­

sons is that the Lagrangian relaxation-based solution, being an iterative technique, 

requires considerable amount of computation to get a good solution. The primary 

bottleneck, however, is the cost associated with the construction of the assignment 

tree, that is, the calculation of the assignment cost of all the possible candidate as­

sociations. As noted earlier, the calculation of the assignment cost of a candidate 

association requires the ML estimate of the unknown target state, which in tum, 
2If the target dynamics are linear then a Kalman filter [6] is sufficient to update the tracks, since 

the measurements are the positions of the target. 
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with passive measurements, requires nonlinear optimization. This results in huge 

computational requirement even in moderate scenarios. 

There could be other factors, specific to the sensor type, that could also increase 

the computational burden further. For example, when tracking with angle only sen­

sors in the two-dimensional plane, any two angle of arrival (AOA) measurements 

would intersect at a point. This implies that a target at that point is responsible for 

these two measurements. This is the well-known ghosting problem [S]. This means 

that with S AOA sensors any S-tuple that has two nondummy measurements is a 

candidate solution for the S-D assignment. This complicates the assignment tree 

building. 

In fact, it has been proposed in [76] to consider only the candidates that are 

detected by the majority of the sensors to reduce the number of candidate asso­

ciations. This technique, however, will only remove S-tuples whose dummy mea­

surement count exceeding a given minimum. All the S-tuples that are made up 

of nondummy measurements alone are not affected. Hence, the resulting reduc­

tion in the number of branches that need to be built may not result in significant 

computational savings. It can be readily seen that when each sensor has reported 

n 8 , s = 1, 2, ... , S, measurements at a given scan, without considering any of the 

branches that involve dummy measurements, one still needs to build 

(3.12) 
s=l 

number of branches, all of which require the costly MLE. This means that the num­

ber of candidate associations grows exponentially with the number of returns in 

each list. 
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Another related issue is the effects of MLE in the cost calculation. Most of the 

passive measurements are related to the target position through nonlinear func­

tions. Hence, MLE problem often results in nonlinear optimization. Except in some 

special cases, obtaining the ML estimate requires gradient search over these nonlin­

ear functions. Typically, nonlinear search techniques require good starting points in 

order to converge to the exact solution [10]. If such starting points are unavailable 

these search algorithms may converge to a local optimum, or worse they could di­

verge. Further, having a good starting point does not guarantee that the resulting 

solution will be accurate. 

The error in the MLE of the target state could result in inaccurate assignment 

cost, which could lead to poor association performance. With some types of passive 

measurements it may be possible to get a good starting point. For example, as noted 

earlier, with AOA measurements any two angle measurements would intersect at a 

point, whose location can be found easily. This serves as a good starting point. For 

other types of passive measurements such a starting point may not be easily found. 

In the next chapter, we present assignment-based data association algorithms 

that do not rely heavily on ML estimation. As a result, these algorithms give im­

proved association results at substantially reduced computational cost. 



Chapter 4 

Efficient and Improved Data 

Association Algorithms 

In this chapter we present two new efficient and improved assignment-based algo­

rithms that solve the data association problem in passive synchronous multisensor 

tracking systems. As the simulation results (reported elsewhere in this thesis) sug­

gests, the performance of these algorithms are better than that of the traditional 

S-D followed by 2-D technique described in the previous chapter, while providing 

significant computational savings. 

The objective of the measurement-to-measurement association, as stated earlier, 

is to group the measurements that could have originated from the same target. 

In the solution based on the S-D assignment formulation only the measurement 

information from the current scan is used to achieve this objective. As such there 

is no way to reject a given S-tuple as not originated from a single target, unless 

the cost of the association is calculated and is found to be inconsistent [24]. As 

noted earlier, calculation of the assignment cost requires the costly ML estimation. 

52 
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A clustering-based algorithm was proposed in [19] to reject improbable candidates. 

This algorithm, however, only uses the measurement information from the current 

scan, and one of the challenges, as noted in that paper, is to decide on the cluster 

size. 

4.1 Gated S-D assignment-based algorithm 

The gated S-D algorithm uses prior information and rejects improbable candidates 

without calculating the assignment cost. In particular, validation gates are setup 

based on the predicted track information for each track from the previous scan. 

Measurements from different sensors that fall within the validation gates of differ­

ent tracks are identified. When calculating the cost of possible candidate associa­

tions, the S-tuples whose indices do not fall within the validation gate of a single 

track are not considered. This considerably reduces the number of candidate asso­

ciations, especially, in high clutter environment. Once the association tree is formed 

we use the Lagrangian relaxation-based algorithm to solve the S-D assignment, and 

use the 2-D assignment, as described in the previous section, to associate the com­

posite measurements to the tracks. 

Let the state of target p at scan k is defined by x; = [xP, xp, yP, yP]T1, where 

(xp, yp) denotes the position of the target and (xp, fJp) denotes the velocity compo­

nents. Further, assume that target p evolves according to a known dynamic model 

xk = fk-l(xk-l) + vk-1 p p p p (4.1) 

1 Note that in order to differentiate between predicted and updated tracks we use time indices for 
target states and their estimates. 
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where 1;-1 is the state transition function which could be different for different 

targets and possibly time dependent, and v;-1 is the process noise, which is assumed 

to be Gaussian distributed with zero mean and associated covariance matrix Q;-1
• 

It is assumed that each track is characterized by the mean and covariance of the 

estimate of that track. Let the mean and covariance of track p at scan k are denoted 

by x; and P;, respectively. Then the predicted state x;lk-l and the associated 

covariance p;lk- l are given, respectively, by [ 6] 

(4.2) 

and 

pklk-1 = pk pk-l pkT + Qk 
p p p p p (4.3) 

where F; is the Jacobian of the state transition function evaluated at the predicted 

state X = x;lk-l. That is 

8Jk-1(X) pk=_P __ _ 
p ax (4.4) 

For each track p and sensor s it is now possible to setup the validation gate 

defined by [6] 

v;s = { z; ( z - Zps) T ( s; )-1 ( z - Zps) ~ T} (4.5) 

In the above, T is the threshold that decides the probability mass within the 
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validation gate. zps and s; are the predicted measurement and the associated co­

variance, respectively. They are given by 

zps = hs(x;lk-l) 
(4.6) 

sk =ii pklk-1'1,r + 0-2 p s p s s 

where 

h = Bhs(X) 
s ax (4.7) 

It is now straightforward to identify all the measurements z from sensor s that 

falls within the validation region of track p. Let the indices of these measurements 

be grouped in a set fps· To all the index sets fps the dummy measurement index 

is added. When building the assignment tree an S-tuple is checked against the 

measurement index sets of all the tracks and the S-tuple is considered a candidate 

solution only if all the indices in the S-tuple satisfy the validation gate requirement. 

This means that all the indices of an S-tuple need to be within the validation gate 

of at least one of the tracks. 

To illustrate this gated assignment consider the simple scenario depicted in 

Fig. 4.1. There are two tracks T1 and T2 with their validation gates shown and there 

are two sensors. One of the sensors reports two measurements (1 1 and 12) and the 

other reports three measurements (2i, 22, and 23). One can construct the follow­

ing four index sets (since there are two tracks and two sensors): 111 = {10 , 11}, 

112 = {20}, 121 = {lo, b}, and 122 = {20, 21, 22}. Note that dummy measurement (10 

and 20) is part of all the index sets, and the third measurement of second sensor 23 

is not part of any of the sets since it does not fall within the validation gates of any 

of the two tracks. During the construction of the assignment tree only the branches 



Chapter 4. Efficient and Improved Data Association Algorithms 56 

Figure 4.1: Illustration of gated assignment. 

connecting (11,21), (h,21), and (b,22) are built. In the standard S-D assignment 

one needs to build six branches. The savings increases substantially as the number 

of sensors and tracks increases. 

It has to be noted that it is difficult to characterize how many candidate solutions 

that this approach will eliminate, since it depends on how many measurements end 

up in the validation gate of a given track. This is dependent purely on the scenario 

such as target spacing and clutter, and sensor parameters such as detection proba­

bility and measurement noise variance. Further, it is hard to predict analytically the 

performance of this algorithm in comparison to the S-D followed by 2-D approach. 

We performed extensive Monte Carlo simulations to study various issues and the 

results are presented in the next chapter. 
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Figure 4.2: (S + 1)-D data association. 

4.2 (S + 1)-D assignment-based algorithm 

57 

The S-D followed by 2-D technique or the gated assignment of the previous section, 

as discussed earlier, are two step algorithms. In this section, we present an algo­

rithm that performs the data association with multiple passive sensors in a single 

step. We consider this single step algorithm as an (S + 1)-D assignment, where the 

first dimension is the predicted track information and the rest of the S dimensions 

are the lists of measurements from the sensors as shown in Figure 4.2. It has to be 

noted that there are no dummy tracks in the track list, i.e., this algorithm assigns 

the measurements to tracks that have already been established. 

We define the cost of assigning an S-tuple of measurement (ii, i 2 , •.. , is) to a 

track p, i.e., the cost of an (S + 1)-tuple (p, ii, i 2 , ... , is) as 

(4.8) 

The only difference between the cost defined above and the cost of an S-tuple in 
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the assignment-based measurement-to-measurement association (defined in (3.2)) 

is that since we are trying to assign the S-tuple of measurements to already es­

tablished tracks, instead of assuming the target state is unknown we use the track 

information that we have. The advantage of the (S + 1)-D assignment for data as­

sociation is that it eliminates the need for the costly ML estimation of the unknown 

target state altogether. The resulting algorithm is computationally efficient. 

Since the measurement noises are assumed to be independent, one could think 

of calculating the measurement likelihood p(Zi1 i 2 ... is IXp) as in (3.3) with Xp re­

placed appropriately by the track information. Usually the track information that 

one would have is the predicted state x;lk-l. The assignment cost calculated using 

(3.8) with Xp replaced by x;lk-1
, however, would only be an approximation. This 

is because the measurements in the S-tuple are conditionally independent only 

if the track information is known exactly. We, however, are using the predicted 

state, and due to the effect of common process noise in the predicted track informa­

tion, the S-tuple of measurements are no longer conditionally independent. Hence, 

p(Zi1i 2 ···is 1x;lk-t) cannot be calculated as a product of the likelihoods of the indi­

vidual measurements (similar to (3.3)). We will now explain how this cost can be 

calculated. 

The measurements in the (S + 1)-tuple (zi1 , zi2 , ••• , zi8 ) are used to form an S­

dimensional vector of measurements2 • With the individual measurement equation 

given in (3.1), and since we are assuming that all the measurements originated 

from a single target, we can write the vector of measurements as 

(4.9) 

2When there are dummy measurements in the S-tuple, they are not included in the vector of 
measurements formed. As a result, the dimension of the vector could be less than S. 
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where 

Zi1 h1(Xp) Vii 

zh 
H(Xp)= 

h2(Xp) Vi2 
(4.10) z= V= 

Zis hs(Xp) Vis 

Typically, with passive measurements, H(Xp) is nonlinear and hence, we approx­

imate ( 4. 9) using the Taylor series expansion around Xp (actually, around x;lk-l' 
the predicted state). We will then have 

where 
H _ 8H(Xp) 
x- ax 

p 

is the Jacobian of H(Xp) evaluated at XP = XP. 

(4.11) 

(4.12) 

Since the measurement noises are assumed to be Gaussian distributed, the vec­

tor of measurements z forms a joint Gaussian process, and the conditional mean 

and covariance can be approximated using the linearized equation ( 4.11). The 

mean z and the covariance S are given by 

(4.13) 

and 

S = HxP;\k-l HI+ R (4.14) 



Chapter 4. Efficient and Improved Data Association Algorithms 60 

respectively, where R = diag(a1 , a2 , ... , as) is the covariance matrix of measure­

ment noise vector v. We can now write the measurement likelihood in C 4.8) as 

s 
p(zi1i2 ... i

8 
IXp) = p(zlXp) IT P~:is) [1 - PnsJ(l-u(is)) C4.15) 

s=l 

where 

C4.16) 

Hence, the (S + 1)-D assignment cost cpiii2 ... is is given by 

s 
Cpi1 i 2 ... i 8 = - lnp(zlXp) + I)u(is) - 1] ln (1 - PnJ - u(is) ln (Pns 'l/Js) (4.17) 

s=l 

With the cost defined as above we can now formulate the (S + 1)-D association 

as an CS+ 1)-D assignment problem. This will be similar to the formulation given in 

(3.9) with CS+ 1) dimensions. The Lagrangian relaxation-based algorithm can now 

be used to find the best set of CS+ 1)-tuples that minimizes the global assignment 

cost. Once a solution to the CS+ 1)-D assignment problem is obtained, the tracks 

(the first element in an (S + 1)-tuple) can be updated with the measurements (rest 

of the elements in that CS+ 1)-tuple) to which they are assigned using a nonlinear 

filter such as the extended Kalman filter [6] or the unscented Kalman filter [95]. 

The computational requirement of the CS+ 1)-D assignment can further be re­

duced by a gating procedure similar to that described in the previous section. As 

described in the previous section validation gates of all the tracks are first formed. 

And an (S + 1)-tuple is considered a candidate solution if and only if all the S mea­

surements of the (S + 1)-tuple falls within the validation gates of the track in that 

CS + 1)-tuple. 
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4.3 An approximation to (S + 1)-D assignment algo­

rithm 

We will now show that when measurements from various sensors are independent 

and when the predicted target states are accurate (for example in scenarios where 

target maneuver is low), the (S + 1)-D algorithm can be approximated by a set of S 

two-dimensional assignment algorithms. The resulting data association algorithm 

is much faster than the other algorithms described. 

Before describing the approximation, we would like to note the following re­

garding the assignment cost calculation of the S-D assignment technique. The as­

signment cost defined in (3.2), can be calculated using (3.8) for angle of arrival 

sensors if and only if the (unknown) target state Xv is known exactly. Since the tar­

get state is not known, the ML estimate of the S-tuple of measurement was found 

and used in the cost calculation [66]. The conditional likelihood of the S-tuple 

given the ML estimate of the target state, however, cannot be calculated as the 

product of the individual likelihoods (similar to (3.3)). This is because the ML es­

timate will be erroneous (due to measurement noise) and the common error in the 

ML estimate will make the individual conditional densities dependent. Hence, the 

cost calculated using (3.8) with an ML estimate of the target state is, at best, an 

approximation of the true likelihood ratio cost. 

We will make a similar approximation to the (S + 1)-D assignment cost, which 

results in an extremely fast algorithm. Consider the (S + 1)-D assignment cost 

defined in (4.8). Since the track information one has is typically the predicted 

state, we used that to calculate the cost using ( 4.17). We now assume that the track 

predictions are accurate (i.e., p;lk-l is small). In such a case, if we neglect the 
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cross correlation introduced by the predicted state (i.e., we neglect the off-diagonal 

elements of S), we can approximate the numerator of the assignment cost (4.15) 

as 
s 

p(zi1i2 .. ·is IXP.) ~ II p(zis IXp) (4.18) 
s=l 

where p(zis IXP) = 1 - Pns, if the index is corresponds to a dummy measurement, 

or 

(4.19) 

if the index is refers to a nondummy measurement Zis. Hence, the assignment cost 

is now given by 

(4.20) 

The above means that the cost of the (S + 1)-tuple decomposes as the sum of 

the costs of assigning individual measurements to the track. It can easily be shown 

(see Appendix) that when the assignment cost decomposes as above, the solution 

to the (S + 1)-D problem is equivalent to solving S individual 2-D assignments. This 

means that we can assign the measurements from different sensors to the track list 

separately. All the measurements from different sensors that are assigned to a given 

track can then be used to update that track using a nonlinear filter. 

4.4 Improving the data association accuracy 

The data association accuracy of all the algorithms presented in this chapter and the 

previous chapter, can be improved albeit at a higher computational cost by ranked 

m-best solutions as opposed to considering the best solution. With an appropri­

ate modification to the assignment tree, a series of modified copies of the initial 
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problem are solved to obtain solutions ranked based on the global cost. 

The utility of calculating the ranked solutions was first recognized for 2-D as­

signment problem and various other classical optimization problems in [59]. This 

algorithm has been later improved by various researchers. For applications to target 

tracking please see [20, 21, 23, 76, 77]. We, however, did not consider the ranked 

solution in our simulations. 



Chapter 5 

Performance Evaluation: Angle Only 

Tracking 

This chapter provides the results of the simulations that are conducted to evaluate 

the performance of the assignment algorithms presented in the pervious chapters. 

We consider the angle of arrival (AOA) measurements as the representative passive 

measurements. This is because it is the one that has received much attention in 

tracking literature. 

We would like to note that even though the solution to the data association, 

i.e., performing the S-D assignment for static association and a 2-D assignment for 

dynamic association, is mentioned in the literature as a possible solution to the 

passive multiple synchronous sensor data association, to our knowledge, no study 

has been done to evaluate the tracking performance of this solution. Hence, our 

study also serves as a base line for this solution. 

64 
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5.1 Scenario description 

Simulation results are presented for two different scenarios. The ground truth of the 

first scenario consists of three targets flying in a parallel formation. In the second 

scenario there are two crossing targets. The ground truth of these two scenarios 

during a sample run is shown in Figure 5.1. 

5.1.1 Target motion 

True target motion is generated using the nearly constant velocity motion model. 

This type of motion is described by a constant white noise accelaration model as 

[6] 

Xk = FcvXk-l + I'cvvk-l (5.1) 

where Xk is the state of the target at time k, F is the state transition matrix and 

r cv is the process noise gain matrix. They are given by 

1 T 0 0 1T2 
2 0 

0 1 0 0 T 0 
Fcv= I'cv= (5.2) 

0 0 1 T 0 1T2 
2 

0 0 0 1 0 T 

vk-l is a two dimensional, independent joint zero mean Gaussian process noise. 

That is v is distributed as N(O, Q), where Q = diag(qx, qy)· In the simulations, qx 

and qy are assumed equal. The process noise covariance matrix Q is given by 

Q = rQr' (5.3) 
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Figure 5.1: Ground truth in the simulations. 
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In the first scenario the three targets start at (-1500,-200)m, (-1400,-200)m, and 

(-1300,-200)m, and maintain a constant speed of 30m/s throughout the simulation 

at 105° from the vertical axis1. In the second scenario, one target starts at (-1000,-

1200)m and the other at (1000,-1200)m. Both targets maintain a constant speed 

of 60km/hr. Whereas the course of the first target was 75° from the vertical axis, 

that for the second target was - 75°. 

5.1.2 Measurements 

In both scenarios, targets are tracked using three fixed AOA sensors located at the 

circumference of a circle with a radius of 2000m. Since the sensors measure AOAs, 

the measurements are generated using the following model 

(
Yt - Ys) z = arctan + w 
Xt - Xs 

(S.4) 

where (xt, Yt) denotes the true target positions at a given time and (x 8 , Ys) denotes 

that of the sensors. It is assumed that there is no uncertainty in the sensor positions. 

w denotes the measurement noise, which is assumed to be Gaussian distributed. 

The following parameters are assumed the same for all the sensors. 

• The field of view (FOV) of all the sensors is assumed to be 180°. 

• Measurement noise of all the sensors have a zero mean and a standard devia-

tion of a9. 

• The probability of detection PDs for each sensor is assumed to be 0.9. 

1 Positive angles are measured clockwise. 
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• The number of false alarms is assumed to be Poisson distributed with a rate 

of 0.8/radian, and the false alarms are assumed to be uniformly distributed 

in the surveillance region. 

Since the false alarm rate is 0.8/radian and the FOV is 7r radians, on average, 

there will be 2.5 false measurements for each sensor at a given scan. False alarms 

are generated such that their spatial distribution is uniform, i.e., false alarm posi­

tion (x,y) has the following distribution: U[x; -2000, 2000] and U[y; -2000, O]. Here 

U[a; a, b] means variable a is uniformly distributed between a and b. 

5.1.3 Tracker 

Since the target dynamics are linear, in both the S-D 2-D and gated S-D 2-D assign­

ment techniques, the Kalman filter is used to update the tracks using the composite 

position measurements. Further, since the covariance of the composite measure-

ments is not known, following [67], we used the Cramer-Rao lower bound [93] as 

the measurement noise covariance in the KF. 

For the (S + 1)-D association algorithm and its approximation, all the measure­

ments associated to a track are formed into a measurement vector. This measure-

ment vector is used to update the tracks. It has to be noted that even though the 

motion model is linear, since the vector of AOA measurement are nonlinear, a UKF 

[95] is used to update the track in both these algorithms. 

It also has to be noted that since the algorithms proposed in this thesis do not 

handle track initiation2 , in the simulations we did not consider track initialization. 

Hence, if an algorithm loses a track it is considered lost track for the remaining 

2 As discussed perviously, track initialization can be performed in these algorithms by pooling the 
measurements that are not associated with any of the tracks and by performing an S-D assignment 
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scans. We do not try to reinitialize it. 

The simulations were written in MATIAB, and since the CPU times are compared 

to measure efficiency, care was taken to make sure that all the algorithms use the 

same code as much as possible. For example, multidimensional assignment code 

was the same for all algorithms. The assignment tree building code was also the 

same except the assignment cost calculation part, which is dependent on the algo­

rithm. Also, the gated assignment has a separate function before the tree building 

to perform gating. 

5.2 Performance metrics 

Before presenting the results of the simulations, we would like to define the perfor­

mance metrics that are used to compare these algorithms. For a detailed description 

of these metrics the reader is referred to [84]. 

Completeness history 

This refers to the ratio between the real objects that should be tracked (i.e., the 

number of targets in the ground truth) and the number of declared tracks that are 

held as declared tracks. In order to calculate the completeness history, at each time 

step, a unique gated assignment is carried out between the targets at that time step 

(obtained from the ground truth) and the tracks as reported by the tracker in that 

time step. This will yield three quantities: 

1. Number of valid tracks: if a target is assigned to a track then the number of 

valid tracks is increased by one. 
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2. Number of missed tracks: if a target is not assigned to a track then this number 

is increased by one. 

3. Number of extra tracks: all the tracks that are not assigned to a target are 

considered extra tracks. 

The completeness history is the ratio between the number of valid tracks and 

the true number of targets. This is averaged over all Monte Carlo runs at each 

time step. Note also that the fraction of missed targets is equal to one minus the 

completeness history. 

Mean cumulative swap of tracks 

This metric and the one described next (the mean cumulative broken tracks) de­

termines the performance of the trackers in terms of track continuity, that is, how 

capable a tracker is in maintaining the initialized tracks. 

Mean cumulative swap of tracks (MCST) refers to the number of track swaps 

that has happened at each time step. If a certain target is assigned to a certain track 

in the last N scans and if that target is assigned to another track in the current scan 

then the number of swaps of that track is increased by one. For each real object the 

number of swaps is computed at each time step and averaged over all Monte Carlo 

runs. It is also possible to average the MCST over all the real targets. 

Mean cumulative broken tracks 

Mean cumulative broken tracks (MCBT) refers to the average number of track 

breaks during the simulations. After performing the gated assignment between the 

real objects and the declared tracks at a given scan, if a target is assigned to a track 
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during the last N scans, and if that target is not assigned to any of the declared 

tracks in the current scan then the MCBT of that target at the corresponding scan 

in incremented by one. The results are averaged over all the Monte Carlo runs and 

over all the real object at each scan. 

Tracking accuracy 

How accurate the tracker tracks the targets is measured by means of the root mean 

squared error (RMSE) in position and velocity estimates. At each scan of each 

Monte Carlo run, after performing the unique gated assignment, if a target is as­

signed to a declared track then it is considered in the mean square error calcula­

tions. The RMSE is calculated at each time step and is averaged over all the Monte 

Carlo runs and over all the targets. Note that if a target is not assigned to a declared 

track at a given time scan in a given Monte Carlo run then it is not considered in 

the calculation of the RMSE. Note that in the simulations we did not perform ini­

tialization after a track is lost. Hence, if a track is lost at a given scan, the target 

corresponding to that track may not get any assignments in the remainder of the 

scans and hence it will not be considered in the RMSE calculations any further. 

5.3 Results 

In this section we provide the results of the simulations conducted for the two 

scenarios described above. 
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Table 5.1: Association accuracy in the first scenario 

Method 

S-D 2-D 
Gated S-D 2-D 

(S + 1)-D 
Approx. (S + 1)-D 

5 .3 .1 First scenario 

Association accuracy (%) 
a8 = 0.5° a8 = 1° a8 = 2° 

57.46 47.80 43.22 
90.99 71.96 56.87 
92.23 79.68 70.48 
92.65 85.78 75.69 
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First we compare the association accuracy of various algorithms described in this 

paper. The association accuracy is calculated as follows. The 3-tuple of measure­

ments that are assigned to different tracks at each time step are identified. Since 

there are three targets and three sensors, there will be nine true measurement-to­

track pairs (or three true 3-tuples). The maximal set of assignments between the 

true 3-tuples and the assigned 3-tuples are found. The number of correct associa­

tions is summed in each time step and over all Monte Carlo runs. Table 5.1 gives 

association accuracy as the measurement noise standard deviation is varied. 

As can be seen the S-D 2-D assignment gives the worst performance in terms of 

association accuracy. This is largely because of the huge number of false candidate 

associations it has to process and that it relies on the ML estimate to calculate the 

association cost without using any prior information. 

Next we compare the efficiency of these algorithms in terms of average processor 

times. The results are presented in Table 5.2. As can be seen from the table, the 

proposed algorithms not only provided improved association accuracy, but also at a 

reduced computational cost. It has to be noted that although the (S + 1)-D algorithm 

eliminates all the costly ML estimation, its computational load is slightly higher 

than that of the gated assignment. This is because the (S + 1)-D assignment has an 
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Table 5.2: Average processor time for single data association step 
Method CPU time (s) 
S-D 2-D 1.4545 

Gated S-D 2-D 0.2608 
(S + 1)-D 0.3860 

Approx. (S + 1)-D 0.0091 

additional dimension and hence the assignment tree will be larger than that of the 

gated assignment. 

The RMSE performance of the tracking algorithms that use the various data 

associations is shown in Figure 5.2. The proposed algorithms are outperforming the 

standard S-D 2-D algorithm. This is due to the fact that the proposed algorithms 

use prior information to eliminate several unnecessary association hypotheses. The 

performance of the gated assignment algorithm did suffer due to the fact that it 

uses the ML estimation to get the measurements. 

The completeness history is compared in Figure 5.3. Note that both the CS+ 1)-D 

algorithm and its approximation has a completeness history of unity in this scenario. 

This means that these algorithms had no missed tracks throughout the simulations. 

The gated assignment also has better completeness history ratio compared with the 

S-D 2-D algorithm. Further, the CS+ 1)-D and its approximation do not have any 

broken tracks as seen from the MCBT metric shown in Figure S.S. For the S-D 2-D 

algorithm, towards the end of the simulation, only half of the targets that should be 

tracked are held as declared tracks. All the algorithms exhibit track swaps as one 

would expect since targets are flying in a parallel formation throughout the simula­

tion duration. The performance of the CS + 1)-D algorithm and its approximation 

again give better performance. 
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Table 5.3: Association accuracy in the second scenario 

Method 

S-D 2-D 
Gated S-D 2-D 

(S + 1)-D 
Approx. (S + 1)-D 

5.3.2 Second scenario 

Association accuracy(%) 
a e = 0. 5 ° a e = 1° a 0 = 2° 

59.19 46.73 45.46 
91.02 88.05 80. 99 
92.18 89.04 82.23 
93.6 87 .15 82.65 
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The same performance metrics are computed for the crossing target scenario de­

picted in 5.1. Table 5.3 compares the association accuracy for various algorithms. 

Again the (S + 1)-D assignment algorithm and its approximation gives better data 

association accuracy. Note also that the association accuracy of all the algorithms 

are improved considered to the first scenario. This is due to the fact that in this 

scenario data association is relatively easy, because the targets are well separated 

before and after the changeover point. 

The computation times are compared in Table 5.4. Figure 5.6 shows the RMSE 

performance of the algorithms considered. Notice that all the algorithms show 

a spike in the velocity RMSE plot around the point where targets cross. This is 

because of the potential track swaps that occur near the target crossing point. 

Figures 5.7, 5.8, and 5.9 presents the completeness history, MCST and MCBT. 

All the algorithms show track swaps near the crossing points. The gated assignment 

algorithm, the (S + 1)-D algorithm and its approximation, were all able to recover 

from these track swaps and maintained the tracks continuously. This is evident from 

Figure 5. 9. The S-D 2-D algorithm, on the other hand, loses the tracks more than 

253 of the time after the crossing point. 
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Table 5.4: Average processor time for single data association step 
Method CPU time (s) 
S-D 2-D 1.0297 

Gated S-D 2-D 0.0630 
(S + 1)-D 0.0893 

Approx. (S + 1)-D 0.0065 
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Chapter 6 

Multitarget Tracking using TDOA 

Measurements 

In this and the next chapters we consider the problem of localizing and tracking 

multiple targets using time difference of arrival (TDOA) measurements. In the 

TDOA technique, in order to localize an emitter, a set of nonlinear equations that 

relate the TDOA measurements with the unknown source and known receiver loca­

tions is solved. Solving the set of TDOA equations, however, in view of the nonlin­

earity, is a non-trivial task. Various researchers have considered this problem and 

have proposed iterative [36, 92] or closed form solutions [17, 41, 86, 91]. These 

solution techniques have been proposed under idealistic assumptions, i.e., all the 

detections are from a single emitter and all the sensors detected the emitter. 

The problem of multitarget localization using TDOA has been considered in [63] 

and [97]. The approach of [63] is to perform the multitarget localization in two 

separate steps: first obtaining the TDOA measurements of different targets and then 

solving them to localize the emitters. In particular, [63] obtained the optimum (in 
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the maximum likelihood (ML) sense) time delay vector in a multitarget scenario. 

Since the computational complexity of the optimum processor is prohibitively high, 

a suboptimal post correlation processor (PCP) has also been proposed. The multi­

target ML position estimator proposed in [97] combines the two steps into a single 

step. These two methods assumed that the number of targets is known a priori 

and that the emissions from all the targets are zero-mean Gaussian processes with 

known spectral densities. These assumptions restrict their applicability consider­

ably in most practical scenarios. In addition, these two techniques did not consider 

the tracking issues. 

The objective of this work is to develop a localization and tracking framework 

that could be used in realistic scenarios (consisting of multiple emitters, with missed 

detections and false measurements). The important challenge in real-world scenar­

ios is the data association problem. We modify the assignment-based algorithms de­

veloped in this thesis to solve the data association problem. A technique to localize 

the emitter (i.e., to solve the nonlinear TDOA equations) has also been developed. 

This is described in Chapter 7. 

6.1 Overview of the proposed algorithm 

The block diagram of the proposed localization and tracking framework is given in 

Figure 6.1. This framework is suitable for a centralized architecture. The first step in 

the proposed algorithm is to obtain the TDOA measurements. Typically, the TDOA 

measurement of an emitter between two sensors is obtained by the generalized 

cross-correlation (GCC) process [51]. The GCC process, however, was formulated 

under a single target assumption and in the presence of multiple targets there exists 
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multiple peaks in the cross-correlation function, resulting in performance degrada­

tion [63]. Further, the bandwidth requirement of the GCC technique is high since 

during each observation interval signals from different sensors are to be transmit­

ted to a central location for processing. Compression of the signals while reducing 

the bandwidth requirement may result in the distortion of the signals. This may, 

however, lead to erroneous TDOA measurements. 

In this work, we assume that the observations are in the form of time of arrival 

(TOA) measurements1, from which TDOA estimates are obtained. This reduces the 

bandwidth requirement considerably, because at each time step only the TOA values 

are transmitted to the central location instead of the whole received signal. 

Once the TOAs from all the sensors corresponding to a given scan are received 

at the central location, they are associated with the track list using the (S + 1)­

D association algorithm. Any track that receives an S-tuple of TOA measurement 

is updated with that set of measurements. The tracks that did not receive any 

measurements are just predicted to the next time scan. The tracks that did not 

receive any measurements for a given maximum number of scans are deleted. All 

the measurements that are not assigned to any of the tracks are identified and an 

S-D assignment is performed to identify any new targets. If the S-D algorithm 

has resulted in S-tuple of measurements then they are solved to obtain position 

estimates of the potential new targets. 

In order to reduce the bandwidth requirements we assumed that the TDOAs are 

obtained by measuring the TOAs. The TOA measurement typically contains the 

unknown time of emission and hence the S-D or (S + 1)-D algorithms, as described 

1 Note that this assumption is not restrictive. It will become clear later that the proposed frame­
work can be used if the TDOA measurements are available directly (through GCC procedure or any 
other techniques). 
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in the previous chapters, cannot be directly applied to solve the data association. 

We will now explain how the assignment-based techniques can be used to solve the 

data association problem in tracking with TDOA measurements. 

6.2 S-D assignment for correlated measurements 

Assume that there are S TOA sensors and in a given scan each sensor has generated 

n 8 , s = 1, 2, ... , S, measurements. We denote a single measurement in the lists by 

Zsis' is = 0, 1, ... , n 8 • This single TDOA measurement is given by 

(6.1) 

In the above Xp as defined previously is the target state and X s is the known 

sensor state. tem is the time of emission, c is speed of propagation of the emission, 

and H is matrix that selects the position components from the state. In the two 

dimensional case it is given by 

(6.2) 

We also assume that the TOA measurement noise Vsis is Gaussian distributed 

with zero mean and variance a;, and independent from other sensors. Since these 

assumptions are similar to that was made in Chapter 3, one might think that in 

order to calculate the log-likelihood assignment cost defined in (3.2) one can use 

(3.3) with 

(6.3) 
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It, however, is not possible to evaluate the pdf in (6.3) since typically the time 

of emission tem is unknown (at least in uncooperative environments). Hence, the 

S-D assignment algorithm cannot be used directly to perform the data association. 

To overcome this problem, for each S-tuple of TOA measurement we define a cost 

based on TDOA, which is independent of tem· 

We can write the following measurement equation for a TDOA measurement 

zisii obtained from two TOA measurements Zis and Zi1 

(6.4) 

where visii = vis - Vi1 is the TDOA measurement noise. It is easy to show that visii 

will have a Gaussian distribution with zero mean and variance a; + af. Therefore, 

the conditional pdf of a single TDOA measurement zisii is given by 

( .. jX ) _ N ( ... !!H(Xp - Xs)\\ _ llH(Xp - Xi)ll 2 ) 
p Zisi1 p - Zisi1' 1 asl 

c c 
(6.5) 

Note that this pdf is not dependent on the unknown emission time tem and 

hence, can be evaluated even in uncooperative environments. Therefore, we define 

the assignment cost of an S-tuple of TOA using the TDOA likelihood as follows. One 

sensor with a non-dummy measurement from the S-tuple of TOA is considered as 

the reference sensor (let it be denoted by 1). By subtracting the TOA measurement 

of the reference sensor from all the other non-dummy TOA measurements in the 

S-tuple, at most (S - 1)2 TDOA values (i.e., zisii, s = 2, 3, ... , S) can be obtained. 

Even with the TDOA likelihood defined in (6.5) the assignment cost cannot be 

2Due to miss detections the number of TDOAs could be less than CS - 1). 
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evaluated using (3.3). This is because the (S - 1) TDOA measurements obtained 

from the S-tuple of TOA are all affected by the common measurement noise of the 

reference sensor (i.e., vi1 ) and hence are not independent. Therefore, it is required 

to account for the correlation in the calculation of the cost. In order to account for 

correlation, we follow an approach that is similar to the one used in the (S + 1)-D 

assignment cost definition. 

The (S -1) TDOA measurements thus obtained from an S-tuple of TOA consti­

tute a correlated joint-Gaussian process. We can stack all the TDOA measurements 

into a vector and obtain the following. 

(6.6) 

'where 

Zi2i1 h2(Xp) Vi2i1 

Zi3i1 
H(X) = 

h3(Xp) Vi3i1 
z= V= (6.7) 

Zisi1 hs(Xp) Visi1 

From this the conditional pdf of the joint-Gaussian process can be obtained as 

(6.8) 

where for an ( S - 1 )-dimensional z it is easy to show that 
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CT~+ cri CT2 
1 err 

cr2 CT2 + CT2 CT2 

R = E[vv'] = 1 3 1 1 
(6.9) 

(Tl 
1 

CT2 
1 CT2 + CT2 s 1 

When z has fewer than (S - 1) TDOAs due to missed detection by one or more 

sensors, rows and columns corresponding to those sensors are removed from R. 

The likelihood of the (S - 1)-tuple TDOA obtained from the S-tuple of TOA 

measurement can now be expressed as 

s 
p(Zi1i2 ... i3 IXp) = p(zlXp) IJ[l - PDJl-u(is) P~~is) (6.10) 

s=l 

where u(is) is the indicator function defined in (3.4). 

With the assumption that the false alarms are uniformly probable in the surveil­

lance region, we can define the following assignment cost for the S-tuple of TOA 

measurement. 

p(D..tlX ) TI~ [1 _ p ]l-u(i8 ) pu(is) . . . = _ ln P i=l Ds D 8 

£;1i2 ... is S [...L] u(is) 

I1s=l ,P8 (6.11) 
s 

= - lnp(D..tlXp) + L {(u(is) - 1) ln (1 - PnJ + u(is) ln (Pns 1/Js)} 
i=l 

We would like to note that the above assignment cost even though is specifically 

obtained for TDOA measurements is valid for any type of correlated measurements 

for which assignment-based data association is sought. 
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6.3 (S+l)-D assignment for correlated measurements 

We would like to note here that the (S + 1)-D assignment-based algorithm to solve 

the data association problem, described in Section 4.2, would not require any 

changes. This is because there was no assumption made as to the independence of 

the measurements in developing that algorithm. It, however, has to be noted that 

the approximation of the (S + 1)-D assignment algorithm will not be good choice 

with correlated measurements. This is because the measurement noise covariance 

matrix R is no longer diagonal. Hence, neglecting the off-diagonal elements of 

( 4.14) could result in incorrect approximation. 

6.4 Simulations 

Simulations are performed to demonstrate the performance of the proposed frame­

work. A local North-East-Up (NEU) coordinate framework is chosen, with the xy 

plane as the earth surface where the emitters lie. TOA sensors are assumed to be 

mounted on unmanned aerial vehicles (UAVs) flying in a parallel formation at a 

fixed altitude with constant velocity. 

6.4.1 Scenario Description 

Two different scenarios are used in the simulations: the first scenario considered 

fixed number of targets throughout the simulation duration, while in the second 

scenario the number of targets is varied. 

In both the scenarios UAVs, used as sensor platforms, fly at a constant altitude 

of 6000m. The UAVs move at a constant speed of lOOm/s, and then make a 180° 
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coordinated turn with a turn rate of 2rad/ s. They then proceed with constant speed 

for the reminder of the simulation period. It is assumed that the UAV positions 

are known exactly at each time step, i.e., there is no process noise in their motion. 

Further, it is assumed that the footprint of each UAV covers the entire surveillance 

region. 

True motions of the sources in the first scenario are illustrated in Figure 6.2(a). 

There are five emitters - a stationary emitter, three constant velocity emitters, and 

an emitter that performs a coordinated turn. The constant velocity target motion 

is generated using (5.1). The coordinated motion is generated using the following 

model. 

Xk = FcrXk-l + rvk-l (6.12) 

where 

1 
sinnL1r 0 

1-cosn{_1r 0 
0 L1 OL1 

0 cosn{_1T 0 - sinn{_1T 0 

Fer= 0 
1-cosn{_1r 1 

sinOL1T 
0 

0 L1 0 1-1 
(6.13) 

0 sinnl_1T 0 cos0l_1T 0 

0 0 0 0 1 

and 
r 3 li r 2h 0 0 0 3 2 

T 2 li Tl1 0 0 0 2 

fer= 0 0 T 3 li T 2li 0 3 2 
(6.14) 

0 0 T 2 l1 Tli 0 2 

0 0 0 0 Tl2 

Note now that the state is augmented with the tum rate. In the second sce­

nario the same sources are considered and to vary the number of sources they are 
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assumed to emit at different time intervals. Figure 6.2(b) shows the number of 

sources in the surveillance region at each time step. 

Some other parameters used in the simulations include: 

• Probability of detection Pns of 0.9 is assumed for all the sensors. 

• The number of false measurements is assumed to be Poisson distributed with 

an average of two false measurements per sensor per scan. And the false 

measurements are assumed to be uniformly distributed over the surveillance 

region. 

• For the targets, process noise variance in velocity is O.Olm2/s4 • For tum rate it 

is 0.0001rad2 /s2
• 

An IMM estimator consisting of two fixed models, namely, a constant velocity 

model and a coordinated turn model, is used to track the targets. A fixed Markov 

chain state transition probability matrix [ 6] of 

[ 
0.95 0.05 ] 

[pij] = 
0.05 0.95 

is used in the IMM estimator to model the state transitions. 

6.4.2 Simulation Results 

(6.15) 

The position and velocity root mean square errors (RMSE) are calculated at each 

time step and averaged over 50 Monte Carlo runs. Figure 6.3 and Figure 6.4 show 

the RMSE variation for different targets in the first and second scenarios. In both 

cases the measurement noise standard deviation is lns. The RMS errors in both 
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Table 6.1: Comparison of execution times 

Algorithm Execution Time (s) 
Scenario 1 Scenario 2 

Algorithm 1 10119.8 2669.5 
Algorithm 2 3503.1 801.7 

scenarios are higher when targets perform maneuvers. The fixed target gives the 

smallest RMS errors. The spikes in the velocity RMSE for the second scenario corre­

sponds to the times at which new targets appeared in the surveillance region. This 

is because targets are initialized with the velocity components of the state set to 

zero. 

Figure 6.5 gives the effect of measurement noise on the performance of the 

proposed method. In this figure, the RMS errors at each time step averaged over 

all the targets and over 50 Monte Carlo runs are plotted. As one would expect, the 

RMS errors in position and velocity decrease with improved measurement accuracy. 

Table 6.1 presents the average execution times for the two scenarios considered. 

The execution times are based on a MATLAB 7 implementation on an Intel Pentium 

3.0GHz personal computer with 512MB memory. Algorithm 1 refers to the TDOA 

tracking algorithm that uses the S-D followed by 20 for data association and Algo­

rithm 2 refers to the TDOA tracking algorithm that uses the (S + 1)-D algorithm for 

data association. As it can be seen from the table, the proposed method, on average, 

executes nearly three times faster - a significant reduction in computation. 

Figure 6.6 compares the performance of the two algorithms in terms of RMS 

errors. One can conclude from this figure that the (S + 1)-D algorithm is not only 

efficient but also results in better tracking accuracy in comparison to the S-D fol­

lowed by 2-D technique. 
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Figure 6. 5: Position and velocity RMS Es averaged over all the targets in the first 
scenario for different measurement noise standard deviations. 
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nario for the S-D + 2-D and (S + 1)-D data association algorithms. 



Chapter 7 

TDOA Localization 

In this chapter we consider the problem of localizing an emitter from the TDOA 

measurements. As described earlier, by localization we mean estimating the emit­

ter location using a set of TDOA measurements obtained from various sensors. The 

assumption here is that there is no measurement origin uncertainty in the set of 

measurements. That is, all the measurements one have came from the same emit­

ter. As explained in the previous chapter, localization is only required for track 

initialization in the TDOA tracking framework developed. Once a track has been 

initialized it can be updated using a nonlinear filter. 

In the localization problem, we again assume that several spatially separated 

sensors measure the TOAs. These TOA measurements are relative to the time of 

emission, which is not known in an uncooperative environment. Thus, TDOAs are 

formed from these TOA measurements, which eliminates the unknown emission 

time. A TDOA measurement relates the unknown emitter position and the known 

sensor positions. A set of TDOA measurements could then be used to localize the 

emitter. 

100 
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Figure 7 .1: Localization scenario. 

We first discuss the maximum likelihood estimation (MLE) of the target local­

ization using TDOA measurements and the problems associated with using the MLE 

technique in practical scenarios. We then describe a formulation based on the 

sensor-target geometry that will result in another set of equations that can then 

be solved to localize the emitter. 

The geometry-based formulation has been considered perviously in [17, 41, 91]. 

The solution techniques presented in these papers solved the problem by invoking 

least squares principles. We view the problem of solving this set of equations as a 

minimization of a quadratically constrained quadratic program (QCQP). Unfortu­

nately, even though the objective function of this problem is convex, the constraint 

set is nonconvex. As a result, the QCQP is not easily solvable. We propose two 

relaxation based techniques to obtain an approximate solution to this formulation. 
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7 .1 Background 

Consider the localization problem of an emitter at an unknown location ( x, y, z) by 

a set of S TOA sensors whose known locations are (xs, Ys, zs), s = 1, ... , S. This 

scenario is illustrated in Figure 7.1. The time ts at which sensor s receives the 

emission is given by 

(7.1) 

This equation is the same as that defined in (6.1) and hence, the definitions 

and assumptions about various quantities remain the same. Note, however, that 

we now have omitted the index indicating the emitter, since the consideration here 

is the localization of a single emitter only. Further, since we will only be dealing 

with the position components of the state of the emitter and sensors to simplify 

the notation we denote it by Y. That is for the emitter Y = H X and for sensor s, 

Ys = HXs. 

The unknown emission time can be eliminated by considering the TDOA be­

tween two sensors. We consider one of the S sensors as the reference sensor (de-

noted by 1) and form (S -1) TDOA measurements. They are then given by 

s = 2, ... ,S (7.2) 

where the measurement function hs (Y) is actually 

hs(Y) = llY - Ysll _ llY - Yill 
c c 

(7.3) 

To localize an emitter, once the TDOA measurements from the same emitter are 

identified (say after the data-association step), one can use the set of equations 
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given in (7 .2). We next consider different techniques to localize the emitter. 

7 .2 Maximum likelihood TDOA localization 

In this section, we describe the ML localization of an emitter and the problems 

associated with it. To obtain the ML estimate first all the (S - 1) TDOA equations 

of (7.2) are stacked to form an (S - 1)-dimensional vector of TDOAs. This can be 

written as 

r=H(Y)+v (7.4) 

where 

721 h2(Y) V21 

731 
H(X) = 

h3(Y) V31 
T= v= (7.5) 

751 hs(Y) Vs1 

Since vector v forms an (S-1)-dimensionaljointly-Gaussian correlated process, 

we can write the likelihood function as 

p(rlX) = ~exp {-o.5 (r - H(Y)f R- 1 (r - H(Y))} (7.6) 
l2xRI 

where R is the TDOA noise covariance matrix defined in (6.9). 

Therefore, the ML estimate of the position vector Y is given by solving the fol­

lowing minimization problem 

argmin (r - H(Y)f R-1(T- H(Y)) 
y 

(7.7) 

The above is a nonlinear and nonconvex minimization problem and there exists 



Chapter 7. TDOA Localization 104 

no algorithm to always find the global minimum. The only option one has is to use 

a global decent algorithm. Any such algorithm, however, would require an initial 

point close enough to the solution to avoid local minima or divergence. Such an 

initial point is not obtainable in practical scenarios. Further, the computational cost 

of the global search algorithms may also be high. Hence, the ML localization of an 

emitter from TDOA measurements is typically not practical. In the next section we 

consider a TDOA localization formulation that uses the sensor-emitter geometry. 

7 .3 Formulation based on the sensor-emitter geome-

try 

Consider the scenario depicted in Figure 7 .1. There are S TOA sensors and without 

loss of generality, we assume that the sensor located at the origin (denoted by 1) as 

the reference sensor. 

If we denote the distance between the emitter and the reference sensor by D 1, 

then we have 

Further, denote the distance between the emitter and the sth (s 

sensor by D s· Then 

(7.8) 

2, ... ,S) 

(7.9) 

Using these definitions, the difference in the distances between the reference 

sensor and the sth sensor, and the reference sensor and the emitter (or, the range 
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difference) is given by 

s = 2, ... ,s (7.10) 

Note that the range difference d81 is proportional to both the TDOA measure­

ment between sensors and the reference sensor (i.e., 7 81 ) and the speed of propa­

gation c, that is 

dsl = CTsI (7.11) 

Eliminating Ds from (7.9) and (7.10), we will get 

(7.12) 

Expanding both sides of the above equation and making the substitution Di = 

yry (from (7.8)) and rearranging the terms results in 

(7.13) 

Since the TDOAs are not measured precisely (and hence, the range difference 

dsi is imprecise), an equation error is introduced to the above equation [91]. That 

is 

(7.14) 

where es is the equation error of the sth sensor. We stack all the (S - 1) equation 

errors and write it in the following matrix form. 

e=A8-b (7.15) 
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In the above error equation 

e2 x X2 Y2 Z2 d2i YlY2 - d~i 

e3 
() = 

y 
A= 

X3 Y3 Z3 d3i 
b= ~ Y{Y3 - d~i 

e= 
z 2 

es Di Xs Ys Zs dsi YfYs-d~i 
(7.16) 

It would be tempting to think that in order to localize the emitter one needs 

find the least squares solution - that is the () that minimizes the sum of the square 

of the equation errors (i.e., llell 2
) - of (7.15). It is important to note that such 

a solution assumes that the elements of the unknown () are independent. In the 

above formulation this is not the case since Y = [x, y, z]T and Di are related by 

(7 .8). We need to explicitly incorporate this relationship between the elements of() 

while minimizing II e 11
2

• That is we can localize the emitter by solving the following 

constrained optimization problem. 

argmin llel\ 2 

e (7.17) 
subject to ()TB()= 0 

where 

1 0 0 0 

0 1 0 0 
B= (7.18) 

0 0 1 0 

0 0 0 -1 
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By substituting fore from (7.15), we will get the following. 

argmm eT AT Ae - wr ATb + bTb 
(} 

subject to er Be = 0 

107 

(7.19) 

This is clearly a QCQP [16]. The objective function is quadratic and convex (pro­

vided that AT A is positive semidefinite). The feasible set defined by the constraint 

is, however, not a convex set. Therefore, the QCQP in (7.19) is not a convex QCQP. 

In the following we describe two relaxation-based methods to solve the above QCQP 

and comment on their solution accuracy. 

7 .4 Solutions to the TDOA QCQP 

In this section we explain in detail two techniques to solve the localization formula­

tion in (7.19). Both these techniques relax the original QCQP and solve the relaxed 

problems. From the solutions of these relaxed problems a solution to the original 

problem are found. 

7 .4.1 Relaxation based on the equivalent rank one problem 

In this method we perform a direct relaxation of (7.19). The relaxation thus ob­

tained is a semidefinite program (SOP) and hence is convex. There are several 

algorithms and software implementations that exist to obtain the optimal solution 

to the SDP [16]. Once the optimal solution to the relaxed SDP is found, we obtain 

a solution to the localization problem using a randomization technique. 
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In particular, we can rewrite (7.19) as 

argmin [FEB 
() 

subject to rF A e = o 

where 

B = [:] B=[::] 

108 

(7.20) 

(7.21) 

By defining a new variable '11 = eer and noting that for any square matrix Y 

(7.22) 

where tr(.) denotes the trace of a matrix, we can transform the above problem to 

the following: 

arg mm tr( A '11) 
\JI 

subject to tr( BW') = 0 

w = eer 
'1'[4,4] = 1 

This problem is difficult to solve due to the rank one constraint, namely 

(7.23) 

(7.24) 
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If, however, this constraint is relaxed, we will end up with the following prob­

lem: 

argmin 
w 

tr( Aw) 

subject to tr(Bw) = o 
(7.25) 

W[4,4J = 1 

\]! ?== 0 

This clearly is an SDP [16] and can be solved using off-the-shelf software. If 

the optimal solution to this relaxed problem (let it be '1!*) satisfies the rank one 

constraint, that is, if 

w* = B*(e*f (7.26) 

then O* - consisting of the first three elements of O* - is the optimal solution to 

the localization problem given in (7 .19). If the optimal solution does not satisfy the 

rank one constraint then randomization techniques can be used to obtain a solution 

to (7 .19). We used the following randomization algorithm to get a solution when 

the rank one constraint was not satisfied by the optimal solution to the relaxed 

problem. 

1. The size of '1!* is 4 x 4. From this the 3 x 3 matrix corresponding to the first two 

rows and columns is extracted and a new matrix is formed. Let this matrix be 

2. The Cholesky factor of the matrix w; is computed. That is 

(7.27) 
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3. A number of candidate solutions 0 to the localization problem are generated 

using 

(7.28) 

where u is a unit normal random vector. 

4. Out of all these candidate solutions the one that minimizes 

(7.29) 

is selected as the estimate to the localization problem. 

It has to be noted that there is, however, no guarantee that the solution thus ob­

tained using randomization will be closer to the optimal solution. In our extensive 

simulation study we found that the solution obtained using the above randomiza­

tion was closer to the true emitter location. 

7 .4.2 Lagrangian dual-based solution 

The Lagrangian function of the constraint optimization problem posed in (7 .19) is 

given by 

L(8, v) = (A8 - bf (AB - b) + ver BB (7.30) 

where v - a scalar - is the Lagrange multiplier. We can simplify the Lagrangian 

function to 

(7.31) 

The Lagrangian dual function is infimum of the Lagrangian function with respect 
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to the primal variable (). That is 

g ( v) = inf L ( B, v) 
() 

A necessary condition for the minimization of the Lagrangian is 

8L(8, v) = O 
88 

For the above Lagrangian function applying this condition yields 

111 

(7.32) 

(7.33) 

(7.34) 

Therefore, the primal variable that minimizes the Lagrangian function is given 

by 

(7.35) 

The Lagrangian dual function of QCQP in (7 .19) can then be shown to be 

{ 

brb - br A(AT A+ vB)tATb 
g(v) = 

-oo 

(7.36) 

otherwise 

The Lagrangian dual problem is the maximization of the dual function over the 

Lagrangian multiplier. That is 

maxg(v) (7.37) 
v 
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Hence, using (7.36) we can write the dual problem of (7.19) as 

max bTb- bT A(AT A+ vB)tATb 
1/ 

subject to AT A+ vB >,::: 0 

This dual problem can be easily transformed to the following problem. 

max t 
v,t 

subject to t:::; bTb - bT A(Ar A+ vB)t Arb 

AT A+vB >,::: 0 
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(7.38) 

(7.39) 

After rearranging the terms in the above form of the dual problem, we will get 

max t 
v,t 

(7.40) 

AT A+vB >,::: 0 

Applying the Schur complement [101] to the above formulation we will get the 

following. 

max t 
v,t 

(7.41) 

Hence, the problem in (7.41) is equivalent to the dual problem and also it clearly 

is an SDP. Once an optimal solution to the dual problem is obtained (let it be v*), 
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we can find the e that minimizes the Lagrangian function (let it be B*) by 

(7.42) 

This B* is a solution for the primal problem if it is primal feasible. Further, this 

would be the optimal solution to the primal problem if strong duality - i.e., the 

optimum values of the primal and dual are the same - holds. If B* is not primal 

feasible then we need to resort to some heuristics to generate approximate primal 

solutions to the primal problem. 

It has to be noted, however, that in our simulations, for all the scenarios con­

sidered, the B* thus obtained was primal feasible (or, within acceptable numerical 

tolerances). We think that this is because for the problem in (7.19) strong duality 

holds. We, however, still have not proved it analytically. 

7 .5 Simulations 

This section presents simulation results on the performance of the proposed solu­

tions to the localization problem. Further, comparison with the techniques pre­

sented in [ 40] and [91] are also made. We, however, did not compare with the ML 

estimator; since as discussed earlier, ML estimation requires an initial solution that 

is close enough to the emitter position and such an initial solution is not available 

in practical scenarios. 

The two scenarios for which the results are presented are shown in Figure 7. 2. 

The 2-D scenario is from [ 40] and the 3-D scenario is from [91]. In the 2-D scenario 

there were ten sensors located at (0,0), (-5,8), (4,6), (-2,4), (7,3), (-7,5), (2,5), (-

4,2), (3,3), and (1,8), respectively. The emitter was located at (8,22). All the units 
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Figure 7.2: Simulation scenarios. 
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are in meters. 

The simulations were implemented in MATLAB. To solve the SDPs in both the 

proposed relaxation algorithms, a MATLAB-based software SeDuMi (self-dual min­

imization) [87] was used. In the randomization step of the technique presented in 

Section 7.4.1, 100 candidate solutions were generated. 

For different range difference standard deviations the root mean square error 

(RMSE) was calculated in 1000 Monte Carlo runs and the results are shown in 

Table 7.1. In this table, Relax-A refers to the solution proposed in Section 7.4.1, 

Relax-B refers to the one described in Section 7.4.2, SI (spherical interpolation) 

refers to the method proposed in [91], and EEHL refers to the efficient estimator 

for hyperbolic location discussed in [17] . It can be seen from this table that both 

the methods proposed in this paper perform comparable to the previously proposed 

methods. In fact, in the low noise Relax-A outperforms all the other three solution 

techniques. 

Table 7 .2 tabulates the localization results for a source far from the sensor array. 

It was located at (-S0,2SO)m. In this case except in low noise case the RMSEs for 

all the methods were very high. This is because in (7.14) just the introduction of 

equation error does not characterize the true nature of the error due to noisy TDOA 

measurements. 

In the 3-D example there were 9 sensors located at (0,0,0), (0,0,100), (0,0,200), 

(100,0,0), (100,0,100), (100,0,200), (0,100,0), (0,100,100), and (0,100,200)m, 

respectively. The emitter was located at (-390,160,170)m. Again, the range differ­

ence standard deviation was varied and the RMSE results are compared in Table 7.3. 

The proposed techniques give comparable performance. 
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The advantage of the proposed techniques, in comparison to the hyperbolic esti­

mator of [17], is that the hyperbolic estimator always produces two solutions to the 

localization problem. In order to select the correct solution one needs to know the 

quadrant in which the emitter lies. This requirement will become difficult to satisfy 

in realistic multitarget scenarios. 

The spherical interpolation technique of [91] does not require any prior knowl­

edge as do the proposed techniques. The spherical interpolation technique, how­

ever, requires at least four TDOA measurements to localize an emitter1
• If the spher­

ical interpolation technique were used in the TDOA tracking framework of the pre­

vious chapter, it may delay the initialization of a target, since it is not possible to 

localize an emitter using an S-tuple with three TDOA measurements (or four TOA 

measurements). 

Figure 7.3 gives the reason why we believe that for the QCQP of (7.19) strong 

duality holds. This figure gives the average duality gap and on average how far 

the solution, obtained using the technique detailed in Section 7.4.1, violated the 

constraint. From this figure, it is clear, at least for the scenarios considered, that the 

duality gap is nearly zero and the equality constraint is nearly satisfied (except, of 

course, for some numerical errors). We, however, would like to reiterate again that 

we still do not have analytical proof for strong duality. We would, however, like 

to note that there are proofs for the strong duality in nonconvex QCQP with two 

quadratic constraints [7]. 

1 Note that three TDOA measurements are adequate to localize an emitter in the three dimen­
sional plane. 
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Table 7.1: RMSE for different range difference standard deviation for the 2-D case 
for near source 

Method 
RMSE (m) 

a= 0.01 a= 0.05 a= 0.1 

Relax-A 0.1213 0.5675 1.1443 
Relax-B 0.1249 0.6257 1.2662 

SI 0.1249 0.6257 1.2662 
EEHL 0.1330 0.6707 1.3918 

7.6 Conclusions 

Two solution techniques have been presented in this chapter to the localization 

problem of an emitter using the TDOA measurements. These solutions were based 

on the sensor-emitter geometry formulation. Extensive simulations were carried out 

to test the validity of the solutions. The simulation results show that the proposed 

methods have performed comparable and in some cases better than the methods 

compared with, namely, the SI and EEHL methods. Unlike the EEHL technique, 

which requires the quadrant in which the emitter lies to give an unambiguous lo­

cation estimate (and like SI) both the proposed solutions do not require any prior 

knowledge. 

It has to be noted that the dual-based solution in all the simulations carried out 

produced a primal feasible solution. Unless strong duality holds, it could possibly 

produce solutions that are not primal feasible. It would be interesting to determine 

analytically whether strong duality actually holds. 
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Table 7.2: RMSE for different range difference standard deviation for the 2-D case 
for far source 

Method 

Relax-A 
Relax-B 

SI 
EEHL 

RMSE (m) 
(J = 0.001 (J = 0.01 (J = 0.1 

2.0028 
2.3351 
2.3351 
2.4003 

18.6162 230.5973 
23.6290 214.8745 
23.6290 214.8745 
26.4740 219.0923 

Table 7.3: RMSE for different range difference standard deviation for the 3-D case 

Method 
RMSE (m) 

(J = 0.1 (J = 0.5 a= 1 

Relax-A 9.2231 14.0695 25.7781 
Relax-B 2.4402 12.6725 24.9360 

SI 2.4400 12.6725 24.9361 
EEHL 2.4228 12.5692 24.9652 
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Chapter 8 

A New Algorithm to Form Mono 

Angle Only Tracks 

The passive tracking algorithms described in the previous chapters are suitable for 

centralized tracking. In a centralized tracking system measurements from various 

sensor platforms are transmitted to a central fusion center where these measure­

ments are processed to perform state estimation. One of the problems with central­

ized tracking is that when the false alarm rate is high, which typically is the case 

with passive observations, one needs to transmit a lot of measurements unnecessar­

ily. This will also result in bandwidth requirement. 

One approach considered in distributed tracking systems to reduce the bandi­

width requirement is to perform sensor-level processing to form local tracks and 

transmit the information about these tracks. In the central node, track-to-track as­

sociation [ 49] is performed and the associated tracks are fused [18] to form global 

tracks. 

When angle only sensors are deployed at different locations, a stereo track (i.e., 

120 
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a track that includes target position) cannot be formed from the measurements of 

a single sensor. In such cases, one could form mono tracks. Then, only the mono 

tracks can be sent to the central fusion node for further processing. This reduces the 

unnecessary measurement transmission and hence, improves bandwidth efficiency. 

In this chapter, we present an algorithm for the formation of angle only mono tracks 

from the observations of a uniform linear array (ULA). 

We would like to point out an analogy between the formation of the mono tracks 

and a well-known problem in the signal processing community - the direction of 

arrival (DOA) estimation/tracking problem [52]. Traditionally, in signal processing 

the direction from which a signal impinges on an array of sensors is considered as 

a parameter estimation problem. That is, the DOA is assumed to be fixed. This 

assumption allowed for high-resolution DOA estimation techniques, such as the 

maximum likelihood (ML) [69] and MUSIC [85] that used temporal averaging of 

samples taken over several snapshots. 

In practice, however, stationarity assumption of the DOA is questionable since 

the targets of interest are often moving objects. Further, the number of targets 

could change dynamically. In such cases, DOA estimation techniques may provide 

inaccurate estimates. Therefore, recently there has been a great deal of interest in 

developing DOA tracking algorithms. The algorithms proposed in [37, 48] assumed 

piece-wise stationarity of the DOAs and also assumed fixed numbers of sources. A 

particle filtering approach, which did not make such assumptions, for DOA tracking 

has been proposed in [54, 64]. Particle filtering techniques are generally computa­

tionally expensive. 

The algorithm presented in this chapter to form angle only mono tracks (or the 
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DOA tracking) uses the fast Fourier transform (FFT) to generate the angle measure­

ments from the observations of the sensor array at each scan. Angle measurements 

from different scans are associated by using the efficient (S + 1)-D assignment al­

gorithm to form the mono tracks. Once the association step is over one could send 

all the associated measurements to the central fusion node. We will now describe 

this algorithm in detail. 

8.1 Uniform linear array - Signal model 

A UIA refers to an array of sensors that have equal spacing between different array 

elements. A ULA, consisting of M array elements, is shown in Figure 8.1. lnterele­

ment spacing is denoted by d. The incoming signal arrives at the array at an angle of 

¢i. For clarity, only one signal is shown in the figure. In the following, however, we 

assume that there could be an unknown number of signals arriving from different 
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angles. 

We assume that the signals impinging on the array are narrowband. This means 

that the signal bandwidth is small compared to the carrier frequency. This assump­

tion allows one to approximate the propagation delay of a particular signal between 

sensor elements with a phase shift [SS]. Further, we assume that there are N signals 

impinging on the array. Note that N could be time varying and we do not assume 

specific knowledge of it in the algorithm. 

The time delay T between any two successive array elements for a signal arriving 

from the direction ¢i is 
dsin ¢i 

T=--- (8.1) 
c 

where c is the speed of propagation of the signal. Hence, the delay between the 

first element and the mth element is given by 

_ ( _ 1) d sin ¢i 
Tm- m 

c 
(8.2) 

The response of the mth sensor of a ULA at time k is [SS] 

N 

Ym = L ans(¢n) +Wm m = 1,2, ... ,M (8.3) 
n=l 

In the above an is the amplitude of the nth signal, Wm is the additive noise at the 

mth sensor, and s(¢n) is the steering vector corresponding to emitter n. Note that 

for notational clarity we have omitted the time index k from all the quantities. The 
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steering vector is given by 

1 

s( </>n) = 
exp ( - j 2):d sin </>n) 

(8.4) 

exp ( - j 2):d sin <f>n ( M - 1)) 

where A. is the wavelength of the narrowband signal. 

8.2 DOA generation 

It is possible to draw a direct correspondence between the spatial samples from 

a UlA (8.3) and regular temporal sampling [SS]. This is because UlA samples a 

signal uniformly in space on a linear axis. Hence, Ym, m = 1, 2, ... , M, can be 

considered equivalent to M discrete-time samples. It is also not difficult to see from 

(8.3) that the samples Ym consists of N complex exponential signals withfrequencies 

d . ,.;.. 
Wn = ): Sln 'f'n (8.5) 

Note that this frequency may become negative since the unambiguous range for <f>n 

is 

-'ff /2 ::;; </>n ::;; 7r /2 (8.6) 

With the above definition of frequency it is now possible to define the discrete-time 

Fourier transform (DTFT) for the discrete sequence Ym (m = 0, 1, ... , M - 1). It is 
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given by [ 65] 
l M-1 . 

Y(w) = M LYmexp(-Jwm) 
m=O 

(8.7) 

where Y(w) are the DTFT coefficients. Note that the frequency range now is 

d d -- < w < -.A - - .A (8.8) 

Since the sequence Ym are samples of a signal consisting of N complex exponen­

tial signals, the DTFT spectrum ideally will consists of N spectral peaks correspond­

ing to the frequencies of these complex exponentials. Hence, if a peak in the DTFT 

spectrum occurs at w*, then the corresponding DOA can be obtained from this peak 

as 

(8.9) 

In practice, however, due to the measurement noise and spectral leakage, the 

number of peaks that appear in the DTFT spectrum may not be equal to the actual 

number of signals that impinge on the UIA. To eliminate smaller peaks that are 

primarily due to spectral leakage, we can set a threshold and select only the peaks 

whose values exceed that threshold as potential measurements. 

8.3 Tracking 

As discussed before, at each time step by performing DTFT operation on the UIA 

response one could obtain a set of angle measurements. These measurements can 

be sent to the central fusion node. Angle measurements from different UIAs can 

then be used to track the emitter. This, however, would result in high bandwidth 

requirement, especially, when the false alarm rates are high. 
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One approach to reduce the bandwidth requirement is to identify the measure­

ments that have originated from targets of interest at the local fusion center and 

send only those measurements to the central fusion center. Deciding whether a 

measurement has originated from a particular target or not cannot be performed 

based on the DOAs obtained from the above step alone. If, however, one forms the 

angle only mono tracks, i.e., if one tracks the angles that are originated from the 

same target, then these mono tracks can be transmitted to the central fusion node. 

The mono tracks received from different ULAs at the central node can then be used 

to form stereo tracks. 

The formation of mono tracks can be achieved through the CS+ 1)-D assignment 

algorithm developed in Chapter 4 with a simple modification. In the CS + 1)-D 

algorithm, the first dimension was the predicted track state and the rest of the S 

dimensions were measurement lists of various sensors at the same scan. Now, if we 

assume that the first dimension is the predicted angles from one scan and the rest 

of the S dimensions are the DOA measurements obtained at successive scans, then 

we can apply the CS+ 1)-D assignment algorithm to form angle only mono tracks. 

Assume that the DOA from a target varies according to the following dynamic 

model 

C8.10) 

where f is a mapping between the DOA at time k-1 and that at time k, i.e., the state 

transition function. v is the additive measurement noise. Here, the state is actually 

the DOA. Further, assume that the mono track at time k is characterized by the 

mean /jyk and its covariance pk. And also assume that S lists of angle measurements 

from scan k + 1 to k + S are available. 

It is now required to find the measurements from each scan that could have 
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originated from the same target. This data association problem can be solved by 

considering an (S + 1)-D assignment as illustrated in Figure 8.2. 

This figure is similar to that was shown in Figure 4.2 except that we now have 

explicitly added the dummy track. The cost of the assignment, i.e., assigning an 

S-tuple of DOA measurements (¢i, ¢2, ... , ¢8 ) to a mono track p, is now defined as 

(8.11) 

where 'lj;(p, ¢1 , ¢2 , ... , ¢s) is the joint likelihood that the S-tuple of measurements 

originated from the same target represented by track p and 'lj;(O, ¢1 , ¢2 , ... , ¢s) is 

likelihood that the S-tuple of measurement originated from an extraneous source. 

The multiframe assignment would then be similar to the one given in (3.9) 

with S + 1 dimensions. Once a solution to the (S + 1)-D assignment is obtained 

one could update the tracks with the corresponding S-tuple of DOA measurements 

those tracks received. Then with tracks updated up to scan k + S, next set of 
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measurements can be considered for association in a similar manner. 

A better approach, however, is to implement the association as a sliding win­

dow. This means that after the assignment between the tracks from scan k and 

measurements from scan k + 1 to k + S, instead of updating the tracks with the 

S-tuple of measurements they got assigned to, the tracks are updated only with the 

measurements from scan k + 1. With the tracks updated to scan k + 1, an (S + 1)-D 

assignment can be performed between these updated tracks and S lists of measure­

ments from scan k + 2 to k + S + 1. That is, the algorithm progresses in a sliding 

window fashion. When implemented in such a sliding window fashion, the multi­

frame assignment mimics the optimal multiple hypothesis tracking algorithm [81] 

within the window. 

8.4 Simulations 

We apply the proposed algorithm to the DOA tracking scenario similar to the one 

presented in [54]. There are two targets in the region of interest and their DOA is 

assumed to obey a random-walk model. That is 

,.;..,k = ,.;..,k-1 + vk-1 
"Pn V"n n (8.12) 

where the process noise is assumed to be zero-mean Gaussian process with variance 

of a; for both targets. This creates a nonstationary DOA environment. Further, one 

of the sources is assumed to leave the scenario at time k = 25. 

The received signal, i.e., the array response, is the same as (8.3). We assume 

that the process noise is zero-mean Gaussian distributed with variance a~. The 

amplitude an varies according to a random-walk model (similar to (8.12)). The 
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Parameter 
Value 

Table 8.1: Simulation parameters 

a2 
v 

50 
a~ a~ ¢(0) 

0.15 0.0707 (-20°,70°] 
a(l) 

(2 - 2j, 4 + j] 
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amplitude variation is driven by a zero-mean Gaussian process having variance a~. 

It is also assumed that the ULA consists of M = 8 array elements. Values of various 

parameters used in the simulation are given in Table 8.1. 

In the tracking algorithm we used the (S + 1)-D data association algorithm with 

a time depth of three, i.e., S = 3. The DOA measurements from the DTFT spectrum 

will not be exact due to measurement noise and numerical approximations involved 

in estimating the peaks. We model the error in the DOAs as a zero-mean Gaussian 

random variable. We used a Kalman filter [ 6] to track the DOAs since the state­

space model is linear. 

Figure 8.3 shows the tracking results obtained in a single Monte Carlo run. In 

this figure, the variation of the DOAs and their estimates are shown. Note that dur­

ing the entire simulation period the estimates follow the true DOAs closely. Further, 

the change in the number of targets is detected correctly by the algorithm. The de­

lay in deleting the track corresponding to the target that left the surveillance region 

is due to the track deletion logic used - a track is considered lost only if it did not 

receive any measurements for three consecutive scans. 

The root mean square error (RMSE) performance of the algorithm is shown in 

Figure 8.4. Note that there seems to be an improvement in the RMSE after 25th 

time step. This is because, once the second target has left, the data association 

problem becomes simpler, and as a result miss association possibilities are reduced. 
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Figure 8.3: True DOA variation and their estimates. 

Consequently, the tracking performance improves. 
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Chapter 9 

Summary 

This final chapter presents some concluding remarks and provides possible direc­

tions for future research. 

9.1 Conclusions 

This thesis identified several challenging problems in passive localization and track­

ing and attempted to provide some solutions to these problems. The primary sce­

nario considered is tracking with multiple synchronous passive sensors (i.e., Type 

3 initialization and maintenance systems). This typically calls for a centralized 

tracking architecture and, as a result, presents real computational challenges to 

any tracking algorithm, since the data association becomes an increasingly complex 

task. 

Two efficient algorithms that are based on a multidimensional assignment for­

mulation were proposed in this thesis to solve the data association in Type 3 sys­

tems. The simulation study performed on realistic scenarios (whose results are 

132 
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presented) showed that the performance of these algorithms is better than the tra­

ditional solution, and this performance improvement comes at a significantly re­

duced computational cost. Also, an approximation to the (S + 1)-D algorithm, which 

directly assigns the measurements to the tracks (when sensors are uncorrelated), 

resulted in a much faster algorithm. 

In target tracking, when tracking with passive measurements, most of the stud­

ies have only considered uncorrelated measurements. In fact, these studies were 

restricted to AOA measurements. We presented a framework for tracking with 

correlated passive measurements with TDOA measurements as the representative 

example. The data association solution based on assignment algorithm has been 

modified to account for the correlated TDOA measurements. 

The maximum likelihood localization of an emitter using TDOA measurements 

results in an optimization problem that is highly nonlinear. Hence, obtaining the 

ML estimate may not be feasible in practical scenarios. Another formulation based 

on sensor-emitter geometry results in a set of nonlinear equations and the solution 

of this set of equations localizes the emitter. Our approach to solving this set of 

equations is to view it as a quadratically controlled quadratic program (QCQP). 

We proposed two relaxation-based solutions to solve this QCQP. One of them uses 

direct relaxation of the constrained optimization problem, while the other uses the 

Lagrangian relaxation. The performances of these algorithms are tested against 

other well-known solutions. These results suggest that the proposed algorithms 

perform comparable to those solutions. The advantages and disadvantages of these 

solutions have also been discussed. 

Finally, we also provided an efficient algorithm to form angle only mono tracks 

when a uniform linear array is used to receive the emissions from the targets. This 
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algorithm used the DTFT on the received emission to obtain the angle measure­

ments and used assignment based data association to track the angles from the 

same targets, hence, forming the mono tracks. Formation of the mono tracks usu­

ally results in reduced communication load in distributed tracking systems. 

9 .2 Future work 

In this section we identify some extensions to the work that was performed in this 

thesis to extend the applicability and capability of the proposed algorithms. 

As noted earlier, modem tracking systems typically use multiple types of sensors 

to improve the tracking performance because of the improvements made in sensor 

technologies and computational capabilities. Hence, it would be worthwhile to 

study what modifications are needed to these data association algorithms to be used 

in conjunction with different types of measurements. Also it would be useful to see 

whether it is efficient to perform the association of these measurements together or 

to perform the association of the similar types of measurements first to form tracks 

and then follow this with a track-to-track association. 

Also, with regards to the efficient data association algorithms, the simulation 

study was based on a MATLAB implementation. MATLAB, being a high level lan­

guage, is not suitable for real-time implementations. Consequently, simulations 

results presented on computational efficiency of these algorithms are only indica­

tive of the comparative efficiency of these algorithms. These results do not provide 

any conclusive proof regarding the real-time performance of these algorithms. It 

would be interesting to see how the computational efficiency of these algorithms 

would be when implemented in a programming language such as C. 
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Further, the tracking performance of these algorithms has also been tested on 

simulated data. Although the data used in the simulations tried to model the real 

world scenarios (with missed detections and false alarms), it would be an interest­

ing and different exercise to test these algorithms on actual real-world data. The 

performance of these algorithms may degrade when applied to real-world data since 

various assumptions, such as Gaussian noise model and Poisson false alarm model 

that are made may not be met. We, however, believe that the relative performances 

would remain the same. It has to be noted that the testing of these algorithms with 

real-world data requires a low level implementation of these algorithms, since such 

data would have hundreds of targets, and thousands of measurements. 

With regards to the optimization solution to the TDOA equations, it would be 

a challenging proposition to prove or disprove the strong duality of the problem. 

While proving strong duality will give the optimal localization solution for the 

TDOA case, disproving it would be helpful in entertaining caution when interpret­

ing the results of this algorithm. In addition, a related problem is the approximation 

introduced in the TDOA equation through the introduction of the equation error. As 

seen in the simulation results this equation error did not capture the true nature of 

the error in some scenarios. One could think about other ways to better approxi­

mate the effects of TDOA noise into the error free sensor-emitter equation. 

The direction of arrival tracking problem considered only the case where the 

sensor was a uniform linear array. An interesting problem arises if the array el­

ements are not uniformly placed. It is not clear whether the same steps can be 

followed to form mono tracks in such a case. Further, it was assumed that the emis­

sions are narrowband signals. An interesting extension would be to consider the 

case of wideband emissions, with or without uniform linear arrays. 



APPENDIX 

Here we prove that when the cost of S-D assignment ci1 i 2 ... is decomposes, that is, if 

s 
C· · · - '"'""C· · ii i2 ... is - ~ ii is (9.1) 

s=2 

then performing the S-D assignment is equivalent to performing a set of 2-D assign­

ments. Consider now the objective function of the S-D assignment defined in (3.9). 

With the decomposed cost the objective function can be written as 

It is possible to define the binary indicator variable Piii2 ... is as 

s 

Piii2 ... is =II "Yi1is 

s=2 

(9.2) 

(9.3) 

where "Yiiis is equal to one if an S-tuple containing (i1, is) is added to the solu­

tion set, otherwise it is zero. Hence with redefined binary indicator the objective 

function becomes 

(9.4) 
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By rearranging the terms the objective function simplifies to 

(9.5) 

Or, the above is equivalent to 

ni n2 ni ns 

LL Ciii2"Yiii2 +···+LL Ciiis"Yiiis (9.6) 
ii =0 i2=0 ii =0 is =0 

This means that the when the cost decomposes the objective function of the S-D 

association also decomposes. 

Consider the first set of constraints of the S-D assignment. With the binary 

indicator variable redefined we can rewrite this constraint as 

n2 n3 ns S 

LL ... L II fiiis = 1 i 1 =1,2, ... ,n1 (9.7) 
i2=0 ia=O is=O s=2 

This is equivalent to 

ii = 1, 2, ... , ni (9.8) 

Since 1 is a binary variable that can only assume zero or one, the above equality 

can happen if and only if the individual sums are equal to one. That is 

n2 

L "Yiii2 = 1 
i2=0 

na 

L "Yiii3 = 1 
ia=O 

ns 

L {iiis = 1 
is=O 

ii = 1, 2, ... , ni (9.9) 

By considering the other constrains of the S-D assignment it is easy to show that 
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an equivalent set of constraints to (3.9) is 

wheres= 2, ... ,S. 

ni 

L Ti1is = 1 is = 1, 2, ... 'ns 

ns 

L Tit is = 1 ii = 1, 2, ... 'ni 
is=O 
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(9.10) 

Therefore, with the objective function decomposing as in (9.6) and the con­

straints defined in terms of the new binai:y variable r it is easy to see that the 

solution of the S-D is equivalent to the solution of the following (S - 1) separate 

2-D assignments. 

ni 

subject to L Ti1is = 1 is= 1, 2, ... 'ns 

where again s = 2, ... , S. 

ns 

L "Yiiis = 1 ii = 1, 2, ... , ni 
is=O 

(9.11) 
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