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TO MY GRANDMOTHER 




Abstract 

In this thesis, we study the group of base-point preserving homotopy classes 

of homotopy self-equivalences of a four-manifold. Based on the approach 

of Hambleton and Kreck, an explicit description of this group is obtained 

when the fundamental group of the manifold is either a free group or a 

two-dimensional Poincare duality group. As a byproduct, a classification 

of such four-manifolds up to s-cobordism is obtained by using the modified 

surgery theory of Kreck. 
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Introduction 

Let X be a connected pointed topological space which has the homotopy 

type of a CW complex. For such a space let Aut.(X) denote the group 

of base-point preserving homotopy classes of homotopy self-equivalences of 

X with the multiplication induced from the composition of maps. This 

group is a geometric version of the group of automorphisms of a group, 

and these concepts coincide when X is an Eilenberg-MacLane space, i.e. 

Aut.(K(G, n)) = Aut G. One can think of Aut.(X) as the analogue in the 

homotopy category of the homeomorphism group, Homeo.(X) of a topolog

ical space, or in the smooth category as the analogue of the diff eomorphism 

group, Diffeo.(X) of a smooth manifold. The group Aut.(X) also plays an 

important role in the homotopy type classification problem, since spaces of 

the same homotopy type have isomorphic self-homotopy equivalence groups. 

Let T. denote the category whose objects are topological spaces with 

base point and whose morphisms are based homotopy classes of based maps. 

If h: X---+ Y and r.p E Aut.(X), then we have a sequence of obstructions in 

Hi (Y, X; 7ri (Y)) to the existence of a map 'l/J: Y ---+ Y such that 

the diagram is commutative. Even if there exists such a map 'I/;, it does not 
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have to be a homotopy equivalence. Therefore Aut.(X) is not functorial. 

Let C be any category and Eq(X) denote the set of morphisms 

f: X ---+ X which are equivalences in C, i.e., there is a morphism g: X ---+ X 

with fog = idx and go f = idx. Now if T: T. ---+ C is a covariant func

tor, then T induces a homomorphism T*: Aut.(X) ---+ Eq(TX). Many of 

the results on Aut.(X) are based on this observation. For a particular T, 

one determines properties of T* and then attempts to determine Aut.(X). 

For example let Q be the category of groups and T: T. ---+ Q be defined as 

T(X) = 7rn(X) or Hn(X; G). Our main example is T: T.---+ CW where CW 

is the category of CW-complexes and T(X) = Pn(X) (n-th stage Postnikov 

tower). Postnikov decompositions are well-suited to study this group since a 

homotopy self-equivalence f does induce homotopy self-equivalences on the 

n-th stages, on the other hand f need not induce homotopy self-equivalences 

of the n-skeleta X(n). 

Let £.(X) denote the space of based maps X---+ X which are homo

topy equivalences, with base point the identity function and with the com

pact open topology. It contains the group of basepoint preserving home

omorphisms Homeo.(X), and, when X is a smooth manifold, the group 

of basepoint preserving diffeomorphisms Diffeo.(X). From knowledge of 

£.(X), one hopes to obtain information about these subspaces. Also note 

that we have Aut.(X) = 7ro(t'.(X)). See surveys [1], [60], and [61] for review 

of results on the group of self-homotopy equivalences and related topics. 

Remark. In [1], E(X) and t'(X) are used to denote the space of based 

homotopy self-equivalences of X and the group of based homotopy classes 

of based homotopy self-equivalences of X respectively. Meanwhile in [60] 
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and in [61], E*(X) and £*(X) are used for the corresponding terms. 

We are going to work with closed, connected, oriented, smooth or 

topological 4-manifolds. Let M denote such a manifold with a fixed base

point x0 E M. For technical reasons, we will restrict ourselves to homo

topy self-equivalences preserving both the given orientation on M and a 

base-point x 0 . Let Aut.(M) denote the group of homotopy classes of such 

homotopy self-equivalences. At this point let us fix some notation. The 

fundamental group 7r1(M, x0 ) will be denoted by 1r. The higher homotopy 

groups 1ri(M,x0 ) will be denoted by 7ri (where 7ri = 1ri(M,iQ) for i > 1) 

and they are naturally endowed with a 7r-module structure. We write A for 

the integral group ring of 7r. We will mean homology and cohomology with 

integral coefficients unless otherwise noted. 

We can ignore the base-point and consider the collection of homotopy 

classes of free (unbased) maps M --+ M which are homotopy equivalences. 

This forms a group under composition of homotopy classes which will be 

denoted by Aut (M). The evaluation map at x 0 gives a fibration 

£.(M)----£(M) ~M. 

We then have a long exact sequence of homotopy groups 

· · · ----7r1(£(M)) ~7r----Aut.(M)----Aut M---- l. 

Hence if Mis simply connected, then clearly Aut.(M) rv Aut (M). 

In 1990, Cochran and Habegger (20], computed Aut (M) for simply 

connected 4-manifolds: 

Theorem (Cochran and Habegger). Let M be a l-connected 4-manifold 

and Aut(H2 (X), ·) (respectively Aut(H2 (X), ±·) ) denote the group of au
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tomorphism of H 2 (M) preserving the intersection form {respectively up to 

sign). Suppose that rank H2(M) is non-zero, then 

Aut (M) '"'"'KH2 (M; 7l/2) )q Aut(H2(M), ±·) 

and if Aut+ (M) denotes those homotopy classes of self- homotopy equiva

lences which preserve the orientation 

Aut+ (M) ~ KH2(M; 7l/2) )q Aut(H2 (M), ·) , 

where K H2 (M; 7l/2) := ker(w2 : H2 (M; 7l/2) ---+ 7l/2). 

Remark. If the rank of H2(M) is zero, then M '.:::::'. 8 4 and as a self homotopy 

equivalence of a sphere is homotopic to the identity if and only if it has 

degree 1, we have Aut (M) ~ 7l/2. 

It is a well known result of Milnor [56] and Whitehead [74] that a 

simply connected 4-dimensional manifold M is classified up to homotopy 

equivalence by its intersection form, but in the non-simply connected case 

this form does not detect the homotopy type, one missing invariant is the 

first k-invariant kM E H 3 (7r; 7r2), see [33, Remark 4.5]. Hambleton and 

Kreck [33] defined the quadratic 2-type of Mas the quadruple [7r, 7f2 , kM, sM] 

where SM is the A-valued intersection form on 7f2 H2(M; A). The grouprv 

of isometries of the quadratic 2-type of M, denoted by lsom[7r, 7f2 , kM, sM], 

consists of all pairs of isomorphisms 

such that 'lj;(gx) = x(g)'lj;(x) for all g E 7f and x E 7f2 , which preserve 

the k-invariant, 'lj;*(x-1)*k = k, and the equivariant intersection form, 
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SM('lj;(x), 'lj;(y)) = x*sM(x, y). In [33] the authors showed that the quadratic 

2-type detects the homotopy type of an oriented 4-manifold M if 7r is a finite 

group with 4-periodic cohomology (this result was later extended to finite 

groups with 4-periodic 2-Sylow subgroups by Bauer [5]). 

Using Hambleton and Kreck's classification of 4-manifolds and a 

spectral sequence argument, in 1996 Hayat and Legrand [39] showed that the 

group Aut (M) fits in an exact sequence. Let us first point out a construction 

from [20, p. 425] before we state their theorem. When M is simply connected 

there exists a homomorphism 

given by <I>(a®b) =[a, b]+w2 (a)(bo~17) where [, ] is the Whitehead product 

and 17 is the Hopf map. When Mis not simply connected, the homomor

phism <I> associated to the universal cover M of M induces a homomorphism 

U: Hom(7r2,7r3r--+ (7r4 )7r, where (7r4 )7r is the group of co-invariants of 7r4 . 

Theorem (Hayat and Legrand). Let M be a compact connected ori

entable 4-dimensional manifold, having finite fundamental group with a pe

riodic cohomology of period 4. The group Aut (M) fits in the following exact 

sequence 

H 1 (7r; 7r2) - coker (U) -Aut (M) -Isom[7r, 7r2, kM, sM] -1 . 

In their 2004 paper [35], Hambleton and Kreck first defined a suitable 

thickening Aut.(M, w2) of Aut.(M): the class w2 E H2(M; Z/2) gives a 
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fibration w 2 : M --t K(Z/2, 2) and we can form the pullback 

where 'Y denotes the stable universal bundle over BSO. Now define 

Aut.(M, w2 ) as the group of equivalence classes of maps ]: M --t M(w2) 

such that (i) f := j oJis a base-point and orientation preserving homotopy 

equivalence, and (ii) ~ o J= VM. The connection between Aut.(M, w2 ) and 

Aut.(M) is given by the following short exact sequence of groups (see [35]) 

0 --t H 1 (M; Z/2) --t Aut.(M, w 2 ) --t Aut.(M) --t 1 . 

So for example if 7r is a finite group of odd order, then since H 1 (M; Z/2) = 0, 

we actually have Aut.(M, w2 ) ,...., Aut.(M). 

Let B denote the 2-type of M. We may construct B by adjoining 

cells of dimension at least 4 to kill the homotopy groups in dimensions ~ 3. 

The natural map c: M --t B is given by the inclusion of M into B and is a 

3-connected map. By a result of M0ller [58], there is an exact sequence 

In [35], the authors established a commutative braid of exact sequences, 

valid for any closed, oriented smooth or topological 4-manifold M, con

taining Aut.(M, w 2 ) and got an explicit formula when the fundamental 

group 7r is finite of odd order. Before stating their result let us point out 

that if 7r is a finite group then the intersection form sM is determined by 

c*[M] E H4 (B)(see [33, p. 90]). As a consequence of M0ller's result, we 
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have a finite extension of Isom[7r, 7r2 , kM, sM] (see [36]) 

Theorem (Hambleton and Kreck). Let M be a connected, closed, ori

ented smooth (or topological) manifold of dimension 4. If 7r1 (M, x0 ) has odd 

order, then 

In the first part of this thesis, we will extend the above result in two 

cases, namely when 7r is a free group or a PD2-group. Since H 3 (7r; 7r2 ) = 0 

for both cases we have kM = 0. For notational ease we will drop it from 

the notation and write Isom[7r, 7r2 , sM] for the group of isometries of the 

quadratic 2-type. 

In Chapter 2, we will deal with 4-manifolds with free fundamental 

group. First note that H 2 (7r; 7r2 ) = 0 if 7r is a free group, thus we have 

Aut.(B) ,....., Isom[7r, 7r2]. Hillman [42] proved that 7r2 is a free A-module and 

as a consequence he showed that c* [M] and sM uniquely determine each 

other (see [44] ). Hence we have Isom[7r, 7r2 , c*[M]],....., Isom[7r, 7r2 , sM]· 

We have an analogous bordism group Aut.(B, w2). Note that there 

is a similar pullback diagram for B 

We define Aut.(B, w2) as the set of equivalence classes of maps f: M --+ 
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B(w2 ) such that (i) f := j o J is a base-point preserving 3-equivalence, and 

(ii) eO f = llM. 

We will define an extension Isom(w2 
) [n, n2, sM] of Isom[n, n2, sM] as 

which sits in an exact sequence of groups 

We then prove the following for 4-manifolds with free fundamental group. 

Theorem A. Let M be a connected, closed, oriented, smooth or topological 

manifold of dimension 4. If 7r := n 1 (M) is a free group, then 

In Chapter 4, we work with 4-manifolds with PD2 fundamental 

group. Unfortunately, we don't know whether c*[M] and SM uniquely de

termine each other or not, so instead of lsom[n, n2 , sM], we work with the 

group lsom[n, n2 , c*[M]]. We defined 

and showed that it sits in the following short exact sequence 

We obtained the following result: 
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Theorem C. Let M be a connected, closed, oriented, smooth or topological 

manifold of dimension 4. lf 7r := 7r1(M) is a PD2 group, then 

The second part of this thesis deals with the classification of 4

manifolds up to s-cobordism. The geometric classification techniques, surgery 

and s-cobordism theorem, are not known to hold for the groups under con

sideration, the most one can hope at present is to obtain classification up to 

s-cobordism or up to stabilization by connected sum with copies of 8 2 x 8 2
. 

The classification of manifolds is one of the central problems in math

ematics. Since any finitely-presented group can be realized as the funda

mental group of a compact n-manifold if n 2: 4, a complete answer is not 

possible for manifolds of dimension 2: 4 as a result of the undecidability of 

the word problem for finitely-presented groups (there is in general no finite 

procedure for deciding in all cases whether two groups given by finite sets 

of generators and relations are isomorphic). Thus as a first invariant one 

has to fix the fundamental group. 

For 4-manifolds with prescribed fundamental group classification up 

to homeomorphism or diffeomorphism is still a hard problem even if the 

fundamental group is trivial, because there is not enough room to apply 

the fundamental Whitney trick in this dimension. In 1964 Wall [72], was 

able to get around this difficulty at the price of stabilizing. We say that 

two 4-manifolds are stably diffeomorphic (homeomorphic) if they become 

diffeomorphic (homeomorphic) after connected sum with 8 2 x 8 2 's. 

Theorem (Wall). If M 1 and M 2 are smooth, simply connected and h
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cobordant, then there is an integer k such that we have a diffeomorphism 

Definition. A cobordism wn+i between manifolds M 1 and M 2 is called 

an h-cobordism if the inclusions M1 <---+ W and M2 <---+ W are homotopy 

equivalences 

If two 4-manifolds are homotopy equivalent, then their intersection 

forms must be isomorphic. The importance of intersection forms for 4

dimensional manifolds comes from the following theorem of Whitehead [74], 

as sharpened by Milnor [56]. 

Theorem (Milnor, Whitehead). Two simply-connected 4-manifolds are 

homotopy equivalent if and only if their intersection forms are isomorphic. 

In 1964, using handlebody theory Wall [72] also proved: 

Theorem (Wall). If M 1 and M2 are smooth, simply connected, and have 

isomorphic intersection forms, then M 1 and M 2 must be h-cobordant. 

It is important to obtain an h-cobordism: if M 1 and M 2 are compact 

oriented n-manifolds that are h cobordant through the simply connected 

(n + 1)-manifold W and n 2:: 5, then the h-cobordism theorem of Smale 

[65] says that Wis diffeomorphic to the cylinder over M 1 . In particular M 1 

and M 2 are diffeomorphic. In 1981 M. Freedman [27] was able to prove the 

h-cobordism theorem in the topological category for n = 4. 

Theorem (Freedman). M 1 and M2 are compact oriented 4-manifolds that 

are h cobordant through the simply connected 5-manifold W, then we have 

a homeomorphism W ,...., M1 x [O, 1], and in particular M1 and M2 are 

homeomorphic. 
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Remark. The smooth version of the 5-dimensional h-cobordism theorem 

is false by Donaldson [24]. 

The h-cobordism theorem was generalized by Barden [4], Mazur [54] 

and Stallings [68], to the s-cobordism theorem for non-simply connected 

manifolds, using Whitehead torsion. The Whitehead torsion of a homotopy 

equivalence f: Mi--+ M2 sits in the Whitehead group, r(J) E Wh(7ri(Mi)). 

A homotopy equivalence is simple if r(J) = 0. 

Definition. A cobordism wn+i between manifolds Mi and M2 is called an 

s-cobordism if the inclusions Mi<:....--+ Wand M2 <:....--+Ware simple homotopy 

equivalences 

The s-cobordism theorem says that an h-cobordism wn+i between 

Mi and M2 with n 2:: 5 is diffeomorphic to the trivial cobordism Mi x [O, 1] 

if and only if the homotopy equivalence Mi <:....--+ W is simple. Freedman 

was able to obtain remarkable results on the topological classification of 

4-manifolds by proving a version of the Whitney trick in the 4-dimensional 

topological category where the fundamental group lies in a certain class of 

good groups, i.e., groups for which the Whitney trick is known. This in 

turn has led to an s-cobordism theorem for 4-manifolds. 

Theorem (Freedman). A compact s-cobordism of dimension 5 with good 

fundamental group has a topological product structure. 

In Chapter 3, we get the following result for 4-manifolds with free 

fundamental group. 

Theorem B. Let M 1 and M 2 be two closed, connected, oriented, topo

logical 4-manifolds with free fundamental group and have the same Kirby
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Siebenmann invariant. Then they are s-cobordant if and only if they have 

isometric quadratic 2-types. 

For manifolds with PD2 fundamental group we had to put an extra 

condition on the manifolds. A manifold Mis said to have wrtype (I) or (II) 

if M and M are spin at the same time (see [34] for the actual definition). 

We get the following result in chapter 5: 

Theorem D. Let M 1 and M 2 be two closed, connected, oriented, topological 

4-manifolds with P D2 fundamental group. Suppose that they have the same 

Kirby-Siebenmann invariant and M 1 has wrtype (I) or {II). Then M 1 and 

M 2 are s-cobordant if and only if they have isometric quadratic 2-types. 

Remark. Similar results were obtained in [17], [42] and [44], but our method 

is different. 

We finish this introduction by pointing out that our methods are 

based on the approach of Hambleton and Kreck [35] involving bordism tech

niques and the modified surgery theory of Kreck [49]. 
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Chapter 1 

Background 

1.1 	 Universal Poincare Duality and 

the Equivariant Intersection Pairing 

The groups that we are interested in are infinite groups, so it will be conve

nient to start this chapter by recalling some basic facts on Poincare duality 

and intersection pairings over the group ring of the fundamental group. The 

exposition in this section is based on [19], [22], [32], [38] and [73]. Let M be 

a closed, oriented, smooth or topological 4-manifold. We shall assume that 

M is provided with a CW-structure, up to homotopy. The covering map 

p: M--+ M induces a CW-structure for M, i.e., if M(k) and Af(k) denote the 

k-skeletons of M and M respectively, then Af(k) = p-1(M(k)). As the fun

damental group 7r acts on the right cellularly on X by covering translations, 

it acts on Af(k) by permuting the k-cells of M(k) which lie over a fixed k-cell 

of Af(k). Therefore there is an induced free right A-module structure on 

the cellular chain complex C*(M) of M with Ck(M) = Hk(M(k), Af(k-l)) = 

free right A-module generated by the k-cells of M. 
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14 CHAPTERl. BACKGROUND 

Let A be a left A-module. The tensor product C*(M) ®AA is a chain 

complex of Abelian groups. The homology of M with local coefficients in 

A is defined as 

Next, we will give the corresponding definition of cohomology. Since 

the functor Hom A ( - , - ) is defined on the category of pairs of right A

modules or of pairs of left A-modules, we need to either change C*(M) to 

a left A-module or consider coefficients in right A-modules. We opt for the 

former. The standard involution .A ---+ Xon A is induced by the formula 

for n9 E Z and g E 1r. Let A be the corresponding right A-module with 

the conjugate structure given by a . .A := Xa , for .A EA and a EA (we paid 

our attention only to the orientable case, so the first Stiefel-Whitney class 

vanishes). The cohomology of M with local coefficients in A is given by 

H*(M;A) = H*(HomA(C*(M),A)). 

For A= Z, we obtain the integral homology and cohomology of M. In fact, 

the cellular chain complex of M satisfies C*(M) ®A E*Z, where Z is regarded 

as a left A-module via augmentation map E: A---+ Z. We have 

and 

~ ~ 

H*(M) = H*(HomA(C*(M), Z)),...., H*(Hom(C*(M) ®A E*Z, Z)) 

,...., H*(Hom(C*(M),Z)) = H*(M). 
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If A= A, then 

H*(M; A)= H*(C*(M) 0A A)"' H*(C*(M)) = H*(M) . 


The same fact does not hold for cohomology without some modifications. 

The cochain complex C*(M; A) = HomA(C*(M), A) is not in general iso

morphic to Hom(C* (M), Z). It turns out that 

the compactly supported cohomology of M (the cohomology groups defined 

by integral cochains with compact support, i.e., taking non-zero values on 

a finite number of cells, with the induced A-module structure). So for finite 

K, M is compact and we have H*(M; A) "' H*(M). However, for infinite 

7r and a compact M the cover M is non-compact and it is the compactly 

supported cohomology which is relevant. 

Proposition 1.1.1 ([59]). The homology and cohomology groups of M with 

local coefficients in A are related by cap products 

(x,y)-+xny 

such that for every>. EA, we have 

x n >.y = (x n y)>. E Hi-j(M; A) . 

For any homology class x E Hi (M) the pairing 

(a, b)---+ a(x n b) 

is sesquilinear and such that 

s(b,a) = (-l)i(i-j)s(a,b) EA. 
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To have a better understanding of the above cap product, we are 

going to use the universal covering space M of M. We know that there are 

defined cap product pairings 

with H!f (M) the homology groups defined using the locally finite infinite 

chains, which are formal sums :L,,. n,,.a of singular simplices a: ~n ---+ M 

with n,,. E Z, such that each m E M has a neighborhood meeting the 

images of only finitely many a's with n,,. =I- 0 (to define the usual homology, 

we consider chains that are finite formal linear combinations of simplices of 

M). Thus for noncom pact M of M there are defined infinite transfer maps 

trf: H* (M) ---+ H!f (M) which assign to a singular simplex sum of its lifts. 

Then the cap product with an element in Hi (M) can be expressed as the 

composite 

We can now state the Poincare duality in the following way: 

Theorem 1.1.2. For any closed, oriented smooth 4-manifold M and uni

versal cover M, there is a fundamental class [M] E H4 (M) and cycle a 

representing [M] such that the cap product with a induces A-equivalence of 

A-chain complexes 

an - : Cq(M; A) ---+ C4-q(M; A) 

As a consequence we obtain the following A-module isomorphisms 

[M] n - : Hq(M; A) ---+ H4 _q(M; A) . 
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Next, we are going to recall the definition of the equivariant inter

section pairing SM on 7r2 (M), or the homology intersection pairing of M 

with respect to M, 

SM: H2 (M; A) x H2(M; A)--+ A; (a, b)--+ sM(a, b) = a*(b) . 

This is a sesquilinear pairing where a* E H2 (M; A) is the Poincare dual of a, 

such that sM(a, b) = sM(b, a) EA. We are going to give two interpretations 

of this definition: 

(I) Any element a E 7r2 ,....., H2(M; A) can be represented as an immersion 

82 ~ M which does not necessarily preserve the base-point, so first we 

specify a homotopy class of paths in M joining the base point x0 to a(l). 

Note that 7r acts on 7r2 by composing the path with a loop on x0 . For 

any pair (a, b) E H2 (M; A) x H2 (M; A), we can assume that the immersed 

spheres a and b are oriented and intersect transversely in a finite set of 

points x. Then we set 

sM(a, b) = L Ax9x 
xEanb 

where (1) 9x E 7r is the class of the loop at Xo which starts along the path 

to the base-point of b, around b (avoiding other intersection points) to x, 

around a to its base-point, and back along the given path to x 0 . (2) to 

define Ax for an intersection point, we note that the orientations of a and b 

induce an orientation of M at the intersection point x E a n b. The chosen 

orientation of Mat the base-point x0 can be transported along the path to 

a and through a to the intersection point x. If these orientations agree, we 

set Ax = 1, otherwise Ax = -1. 

(II) For our second interpretation of the equivariant intersection form, we 
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start with the usual Z valued intersection form, 

s: H2(M; A)® H2(M; A)"' H 2(M; A)® H 2(M; A) 


!u n[M] 

H 4(M;A)-------H0 (M;A) ~ Z 

~ ~ 

where [M] is the fundamental class of M, with possibly infinite chains. This 

form is 7r-equivariant. Now, we define the equivariant intersection form by 

sM(a, b) = L s(a, g-1b)g E Z[7r] =A. 
gE7r 

The cohomology intersection pairing 

s · H2 (M· A) x H2 (M· A) -+A· (a, b) -+ a([M] n b)
M· ' ' ' 

coincides with the homology intersection pairing via Poincare duality iso

morphism 

The intersection form sM induces the A-homomorphism 

defined by 8M(x)(y) = sM(x, y) [73, p. 47]. The relation between sM and 

Poincare duality can be stated as follows 

Lemma 1.1.3. If ev: H 2(M; A) -+ HomA(H2(M; A), A) is the evaluation 

homomorphism, given by ev(c)(x) = c n x = c(x), then the diagram 

H 2(M; A) __ev-HomA(H2(M; A), A) 

[M]n-! ISM 
H2(M; A) H2 (M; A) 

commutes, i.e., 8M o ([M] n -) = ev. 
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1.2 Whitehead's r Functor 

Next we define Whitehead's quadratic functor r, which we use in our ho

mology calculations. This functor is defined for any Abelian group G. We 

define r ( G), by means of symbolic generators and relations . The elements 

of f(G) are equivalence classes of words written on G. Let w(9) denote the 

word 9. The relations for r(G) are 

(i) w(-9) _ w(9) 

for all elements 9, 91, 92, 93 E G. 

The group r(G) is determined by the generators G and the relations 

given by (i) and (ii). It follows from (ii), with 91 = 92 = 93 = 0, that w(O) 

0. Hence, with 92 = 0 and 91+93 = 94, we have w(94)w(93)-1w(94)-1w(93) 

0. Therefore f ( G) is Abelian. 

Definition 1.2.1. A function f: G--+ H between Abelian groups is quadratic 

if f(9) = f(-9) and if the function G x G --+ H which is given by 

(91, 92) --+ !(91 + 92) - f(91) - J(92) is bilinear in 91 and 92· 

Since a quadratic map is consistent with the relations defining f(G), 

for each Abelian group G there is a universal quadratic map I: G --+ r(G) 

with the property that for all H and quadratic maps f: G --+ H there is a 

unique homomorphism J: r(G) --+ H with f 1 = f. 

We can construct the group r(G) as follows: Consider the map 

i: G --+ F(G) where F(G) is the free Abelian group generated by the 

underlying set of G. The map i is the inclusion of generators. We set 
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r(G) = F(G)/R where R denotes the relations (i) and (ii) for f(G). Now 

'"'!is the composite G---+ F(G)---+ F(G)/R of i and of the quotient map. 

Now, r is a functor, which carries Abelian groups to Abelian groups 

since a homomorphism r.p: G ---+ H yields the quadratic map '"'(r.p which 

induces a unique homomorphism r( r.p) = '"'(r.p such that the diagram 

r(G)~r(H) 

71 ~ 17 

G H 

commutes. We consider the function ~: G ---+ G@G given by ~(g) = g@g. 

Clearly, ~ is quadratic and yields the canonical homomorphism 

~: r(G) ---+ G 0 G with ~'"'/ = ~ . 

Next we obtain by the quadratic map '"'( the bilinear pairing 

We write [f,g] = [1, l](f@g): X@Y-+ G@G-+ f(G) where f: X-+ G, 

g: Y ---+ G are homomorphisms. We have 

Moreover, the homomorphism ~ is injective in case G is free Abelian [7, 

p. 14]. For a direct sum G E9 H we have the isomorphism 

r(G E9 H) = r(G) E9 r(H) E9 G@ H' 

which is given by r(i1), r(i2) and [i1, i2], where i1 and i2 are the inclusions 

of G and H into G E9 H respectively. A similar result is true for an arbitrary 

direct sum where I is an ordered set: 

r(EB Gi) =EB r(Gi) E9 EB ci ® Gj . 
I I i>j 
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Moreover, r commutes with direct limits of Abelian groups. If G = Z then 

r(G) = Z generated by 1(1). This shows that for a free Abelian group G, 

r(G) is also free Abelian. 

We will give two expressions for r(G) when G is a free Abelian group 

(see [75, pages 62, 63]). Let {gi} be a set of free generators of G, indexed 

in ( 1-1) fashion to a set { i} with a total ordering. 

Proposition 1.2.2 ([75]). r(G) is free Abelian and is freely generated by 

the set of elements 1(gi), [g1,9k], for every i E { i} and every pair j, k E { i} 

such that j < k. 

Let G* = {¢: G--+ Z I ~N,¢(gi) = 0 for i > N}. Then G* is a 

free Abelian group, which is freely generated by {g;}, where g;g1 = 1 or 0 

according as j = i or j =J. i. We describe a homomorphism f: G* --+ G as 

locally finite if and only if for almost all values of i we have f (gi*) = 0 and 

f is symmetric if and only if g* f (h*) = h* f (g*) for every pair g*, h* E G*. 

Let 

f(g/) = 'L fij9j = °'L(g/ fgi*)g1 , 
j j 

then being symmetric is equivalent to the condition fij = fji· Let S be the 

additive group of all locally finite, symmetric homomorphisms, f: G* --+ G. 

Proposition 1.2.3 ([75]). S"" f(G) 

Finally, with G still free Abelian, if a group 7r acts from right on G 

by linear maps (i.e., G is a right Z[7r]-module) this induces an action of 7r 

on f(G). If we consider r(G) as a subgroup of G ® G ~ Hom(G*, G) this 

Jr-action on r(G) is given by the diagonal action on G ® G. In terms of 

homomorphisms p E 7r maps f E S to p o f op*. With this convention r(G) 

is a A-submodule of G ® G. 
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See [75] or for a recent exposition [6] and [7] for further reading on 

this subject. 

1.3 Manifolds with structure 

When we deal with non-spin manifolds we are going to use the language 

of manifolds with structure. Let ~r: Er ---+ B SO( r) be a fibration. If fJ 

is an r-dimensional vector bundle over the space X classified by the map 

fJ: X ---+ BSO(r), then an (Eri ~r) structure on fJ is a homotopy class of 

liftings to Er of the map ry; i.e., an equivalence class of maps fJ: X ---+ Er 

with ~r o fJ = fJ 

where fJ and if are equivalent if they are homotopic by a homotopy H: X x 

I---+ Er such that ~r o H(x, t) = ry(x) for all (x, t) EX x I. 

We will be interested in the stable normal bundles of manifolds. 

Since the classifying map VM: M---+ BSO depends on an embedding of M 

into JRn+r for r large, we will define an equivalence relation on the sequences 

of (Er, ~r) structures on the normal bundle of M. Let Mn be a compact, 

oriented manifold (with or without boundary) and let i: M ---+ JRn+r be 

an embedding. The normal bundle of i is the quotient of the pullback of 

the tangent bundle of ]Rn+r, i*T(JRn+r), by the subbundle T(M). Giving 

T(JRn+r) = ]Rn+r x ]Rn+r the Riemannian metric obtained from the usual 

inner product in Euclidean space, the total space N of the normal bundle 

may be identified with the orthogonal complement of T(M) in i*T(JRn+r), 
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or the fiber of N at m may be identified with the subspace of JRn+r x JRn+r 

consisting of vectors (m, x) with x orthogonal to is(M)m· The normal map 

of i is given by sending m into Nm E Gr(JRn+r), covered by the bundle map 

n: N-+ f (JRn+r); (m, x) -+ (Nm, x). Composing with the inclusion into 

,Y provides a map v(i): M -+ BSO(r) which classifies the normal bundle 

of the embedding i. 

Suppose one is given a sequence (E, ~)of fibrations ~r: Er -+ BSO(r) 

and maps 9r : Er -+ Er+l such that the diagram 

Er----~ Er+l 

€r! . 
Yr 

!€r+l 

BSO(r) ~ BSO(r + 1) 

commutes, ir being the usual inclusion. An (En ~r) structure on the normal 

bundle of Mn in JRn+r defines a unique (Er+l, ~r+I) structure via inclusion 

JRn+r c JRn+r+1. A normal (E, ~) structure on Mn is an equivalence class of 

sequences of (Er, ~r) structures on the normal bundle v(i) of M, two such 

sequences being equivalent if they become equivalent for sufficiently large 

r. An (E, ~) manifold is a pair consisting of a manifold Mn and a normal 

(E, ~) structure on Mn. 

Now the bordism group On(E) can be defined as the group of bor

dism classes of (E, ~) manifolds i.e., it consists of triangles 

E 

~!€ 

M~BSO 

where Mis a closed, oriented, n-manifold and v classifies the stable normal 

bundle of M given by some embedding into Euclidean space (for construe

tion of the classifying map v: M-+ BSTOP see for example [62, p.207]). 
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The map D is called a normal (E, ~) structure on M (for more details on 

manifolds with structures see [69, Chapter 2]). 

Definition 1.3.1. Let ~: E---+ BSO be a fibration. 

(i) A normal (E, ~)structure D: M---+ E of an oriented manifold Min E 

is a normal k-smoothing, if it is a ( k + 1 )-equivalence. 

(ii) 	 We say that E is k-universal if the fibre of the map E ---+ BSO is 

connected and its homotopy groups vanish in dimension 2: k + 1. 

For each oriented manifold M, up to fibre homotopy equivalence, there is a 

unique k-universal fibration E over BSO admitting a normal k-smoothing 

of M. Thus the fibre homotopy type of the fibration E over BSO is an 

invariant of the manifold Mand we call it the normal k-type of M (see [49, 

p. 711] 	). 

1.4 	 Minimal Models and 

Generalized Eilenberg-MacLane Spaces 

Minimal models are introduced by Jonathan A. Hillman in [43] and [44]. 

Before proceeding with the definition, let us introduce another notation 

here. Throughout this thesis, for any map f: X ---+ Y, the map induced on 

the homotopy groups will be denoted by 7rn(J), i.e., 7rn(J): 7rn(X) ---+ 7rn(Y). 

Definition 1.4.1. A P D4-complex Z is a model for a P D4-complex X 

if there is a 2-connected degree-1 map gx: X ---+ Z. The surgery kernel 

K2(9x) := ker(7r2(gx)) is a finitely generated projective Z[7r1 (X)]-module, 
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and is an orthogonal direct summand of 7r2 (X) with respect to the intersec

tion pairing by [73, theorem 5. 2]. The PD4-complex Xis minimal if every 

such map is a homotopy equivalence, i.e., Xis minimal with respect to the 

partial order on PD4-complexes determined by setting X 2:: Y if there is a 

2-connected degree 1-map f: X ~ Y. This is so if the intersection pairing 

is trivial, by [73, Lemma 2.2] and [53, Theorem 5.5]. We shall then say that 

X is strongly minimal. 

Remark 1.4.2. If we assume that cd(7r1(X)) :S 2, then we may drop the 

qualification strongly for the two notions of minimality are equivalent by 

[44, Theorem 13]. 

Next, we are going to state the criterion for the existence of a strongly 

minimal model. But first recall the evaluation exact sequence: the evalua

tion homomorphism sits in an exact sequence 

The cohomology intersection pairing s x is defined by s x (u, v) = ev(v) (PD(u)) 

for all u, v E H 2 (X; A) where PD stands for Poincare dual. Since sx(u, v) = 

0 for all u E H 2 (X; A) and v E H2 (7r; A), the pairing sx induces a pairing 

Theorem 1.4.3. ([44, Theorem2]) Let X be a PD4-complex and K a 

finitely generated projective summand of 7r2 (X) such that s'x restricts to 

a nonsingular pairing on K x K, then there is a 2-connected degree-l map 

to a PD4-complex Z, gx: X ~ Z with K 2 (gx) = K. 
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Corollary 1.4.4. ((44, p. 2416]) The P D4 -complex X has a strongly mini

mal model if and only if H 2 ( X; A)/H 2 (7r; A) is a finitely generated projective 

A-module and s'x is nonsingular. 

The above conditions hold if cd( 7r1 (X)) ~ 2. We are going to use 

the notion of strongly minimal models when we deal with 4-manifolds with 

PD2 fundamental group 7r (then we have cd(7r) = 2). If cd(7r) = 2, a group 

7r is a PDrgroup if H 2 (7r;A) is infinite cyclic [11]. The strongly minimal 

PD4-complexes with fundamental group a PDrgroup are the total spaces 

of S 2-bundles over aspherical closed surfaces by (41, Theorem 5.10] and (44, 

Theorem 13]. 

Next we are going to give the definitions of algebraic 2-type and gen

eralized Eilenberg-Mac Lane spaces : If X is a CW-complex, let ux: X --+ 

K (7r1 (X), 1) denote the classifying map for the universal covering X of X 

and let cx: X --+ B(X) denote the second stage of the Postnikov tower for 

X. We have 

that is, ux = UB(X) ocx. A map f: X--+ K(7r1 (X), 1) lifts to a map from X 

to B(X) if and only if J*(k1(X)) = 0, where k1(X) E H 3 (7r1 (X);7r2 (X)) is 

the first k-invariant of X. In particular, if k1(X) = 0 then UB(X) has a cross

section. The algebraic two type of Xis the triple [7r1 (X), 7r2 (X), k1(X)]. 

Two such triples [7r1 (X), 7r2 (X), k1(X)] and [7r1 (X'), 7r2 (X'), k1(X')] 

are equivalent if there are isomorphisms 
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such that f3(gm) = a(g)f3(m) for all g E 7r1(X), m E 7r2 (X) and /3*(k1(X)) = 

a*(k1(X')) E H 3 (7r1(X); a*7r2 (X')) (where a*7r2(X') denotes the induced 

7r1(X)-module structure on 7r2 (X') by a). Such an equivalence can be real

ized by a homotopy equivalence of B(X) and B(X'), i.e., the algebraic 2

type [7r1(X), 7r2 (X), k1(X)] and the Postnikov 2-stage determine each other, 

and k1(X) = 0 if and only if u 8 (x) has a section. 

If Pis a Z[7r1(X)]-module, then let L := L7r1 (x)(P, 2) be the space 

with algebraic 2-type [7r1(X), P, OJ and universal covering space L~ K(P, 2). 

Such objects L always exist and they are unique up to homotopy equiva

lence ([6, p. 214]). Note that if P = 7r2 (X), then k1(X) = 0 if and only 

if B(X) ~ L. The space L is a generalized Eilenberg- Mac Lane space: if 

f: X--+ K(7r1(X), 1) is a map, then there is a natural bijection from the 

set of homotopy classes of maps g: X--+ L lifting f to H 2 (X; J* P) (see [6], 

[41] and [52] for more details). 



Chapter 2 

Free Fundamental Group 

2.1 The structures of n2 and r(n2) 

Let M be a closed, oriented, smooth or topological 4-manifold with funda

mental group n, a free group of rank r. Let A = Z [n] denote the integral 

group ring of n. The standard involution ,\ --+ ,\ on A is induced by the 

formula 

L ngg--+ L ngg-1 

for n9 E Z and g E n. All modules considered in this thesis will be right 

A-modules, unless otherwise noted. However if L is any left A-module, let 

L be the corresponding right A-module with the conjugate structure given 

by l..\ = "X.l , for ,\ E A and l E L. In particular, if R is a right A-module, 

following [42] we will denote the conjugate dual module HomA(R, A) by Rt. 

Lemma 2.1.1 ([42]). If R is a finitely presentable right A-module then Rt 

is a free A-module. 

Proof. Let 

28 




29 CHAPTER 2. FREE FUNDAMENTAL GROUP 

be a presentation for R. Dualizing gives an exact sequence 

Now consider the factor module coker(it) = FI/im(it). Since 7r is a free 

group, vcd 7r = cd 7r = 1 and the only finite subgroup of 7r is 1, and 

ff*({1}, -) = 0. So, every A-module M is cohomologically trivial which 

implies projdimA M ::; 2 (see (13, p. 287]). Hence, projdimA coker(it) ::; 2 

and 

implies Rt is projective ([13, p.184]). But projective modules over free group 

rings are free ([2]), so Rt is free. D 

We may assume that M has the homotopy type of a finite complex 

because Wall's finiteness obstruction vanishes. Let C* = C*(M; A) be the 

cellular chain complex of M, with respect to the natural 7r-equivariant cell 

structure. This is a complex of free right A-modules. Let Bq ~ Zq de

note the q-dimensional boundaries and q-cycles in Cq respectively, and let 

Hq = Hq(C*) = Zq/ Bq, for q 2: 0. Then Hq = Hq(M; A) is isomorphic to 

Hq(M; Z) with the right A-module structure given by the action of 7r by 

deck transformations on M. In particular H 2 c::: 7r2 (M) = 7r2 . We have the 

following exact sequences : 

o-Bo-Co-z-o 

Since 7r is a free group, the augmentation ideal is a free A-module, so Z has 

a short free resolution. By Schanuel's Lemma Bo is stably free hence free 

([2]). Note that Z1 = B1, since H1(X) = 0. We have a split exact sequence 

o-B1 -c1 -Bo-o. 
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So B 1 is also stably free, hence free. 

This sequence also splits, so Z2 is free. In particular, B0 , B 1 and Z2 are 

finitely generated free A-modules. Hence 

is a finite presentation for 7r2 (this presentation will later be used in the 

proof of Theorem 2.1.4). 

Since some of our techniques are homotopy theoretic, we will some

times work in the category of Poincare duality complexes. So let us briefly 

outline the definition of Poincare duality complexes. 

Definition 2.1.2. A finite connected CW-complex X is called a Poincare 

duality complex of dimension n (PDn-complex for short) if there exits a 

class [X] E Hn(X) such that the cap product with [X] gives isomorphisms 

Hi(X; A)---+ Hn-i(X; A) for any left A-module A. 

Every n-dimensional manifold is homotopy equivalent to a CW

complex and hence determines a PDn-complex ([48]). But there are PDn

complexes which do not have the homotopy type of an n-dimensional mani

fold ( Gitler and Stasheff [30] constructed an example of a simply connected 

finite complex which satisfies 5-dimensional Poincare duality, but which is 

not the homotopy type of a closed topological manifold). 

Lemma 2.1.3. Let M be a PD4 -complex with fundamental group 7r. Then 

there is an exact sequence 
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Proof. Use the Serre spectral sequence of the fibration M---+ M---+ K(?T, 1), 

whose E2-term is given by E~,q = HP(?T; Hq(M; A)) :::::} HP+q(M; A). The 

non-zero terms on the p + q = 2 line are 

and 

E~·2 = H0 
(1T; H2(M; A)),..., H2(M; A)7r,..., Hom(H2(M; Z), At 

,..., HomA(H2(M; Z), A) ~ HomA(7r2, A) . 

There is a differential d3 : E~'
2 ,..., E~'2 ---+ Ei·0 

,..., H 3 (7r; A). This d3 must be 

onto, since H3(M; A) ,..., H1(M; Z) = 0. Now, when we write the filtration 

for H2 ( M; A), we get the above exact sequence. D 

So for 1T a free group we have ?T2 ,..., H2(M; A) ,..., HomA(7r2, A). Thus, 

1T2 ,..., HomA(7r2, A) = 1T~. Recall that C3 ---+ Z2---+ 1T2---+ 0 gives a 

finite presentation for ?T2, then by Lemma 2.1.1, ?T2 ,..., ?T~ is a free A-module. 

Also we have 7r2 ®AZ ,..., H2(C* ®AZ) ,..., H2(M; Z) ,..., z!h(M) and hence 

?T2 ,..., Af32 (M). Summarizing we have proved: 

Theorem 2.1.4. Let M be a closed, oriented, smooth or topological 4

manifold with free fundamental group. Then 1T2 (M) is a free A-module. 

Next, we are going to show that r(7r2) is a free A-module whenever 

1T is a free group. Let us start with putting a simple ordering :::; on 1T, 

i.e., elements gi of 1T are indexed (1 - 1) fashion to a set {i} with a simple 

ordering. Now, for a given gi E ?T, we define a homomorphism 

A---+ r(A) ~ A® A by 1---+ 1®9i + gi ® 1 . 
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Let D = 7r - 1. On D we have a free involution mapping 9i ---+ gj1
. If 

we fix for each orbit {gi, g:;1
} of D /'ll2 a representative, say 9i, we obtain a 

A-homomorphism 

AID/z21= II A---+ r(A) ~A® A 

\D/Z2\ 

by mapping the component corresponding to {gi, gj1
} via the map 1 ---+ 

1@ 9i + 9i@ 1. We have also a A-homomorphism 

A---+ f(A) mapping 1 ---+ 1 ® 1 . 

Lemma 2.1.5. The maps above give a A-isomorphism 

Proof As a 'll module A has basis 7r. Thus f(A) has a 'll basis 

by Proposition 1.2.2 and the injectivity of ~: r(G) ---+ G ® G. All these 

basis elements are contained in the image of the homomorphism above. The 

intersection of the image of two different components in the direct sum is 

{O}. Thus it is enough to check that the maps on the components are 

injective. It is easy to check that the 'll-basis of A is mapped to pairwise 

different basis elements of f(A). We have to show that this'll-basis of f(A) 

is linearly independent in A. Let 

LL nk; (9k;+i@ 9k;+i)+ LL nkij (9k;j+i@ 9kij+j + 9k;j+j@ 9k;j+i) = 0. 
iEZ ki EZ (i,j) kij 

But {gi ® 9i Ii E 'll} U {gi @ 91 + 91 @ 9i I i, j E 'll, i < j} forms a 'll-basis. D 
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We showed that f(A) is free as a A-module. Recall that 7r2 ,..._, Af32 (M) 

and f(K E9 L) ~ r(K) E9 r(L) E9 K ® L. So, to show that f(7r2 ) is free it is 

enough to show that (A E9 A E9 ... E9 A) ®A is a free A-module. 

f32(M)-l 

We will show that {1®1 ® ... ® giJ i E Z} is a A-basis. 

I:I: njigjJ1 ® 1 ® ... ® gi) 
iEZ jiEZ 

But since tensor product of free modules is free, nj; = 0. Therefore, 

Remark 2.1.6. For the last step, it is enough to show that A® A is a free 

A-module and there are two alternative ways to see this: first we can use 

the following theorem 

Theorem 2.1.7. ([13, p. 69]) Let M be a G-module and let M0 be its under

lying Abelian group. Then ZG ® M (with the diagonal G-action) is canon

ically isomorphic to the induced module ZG ® M0 . In particular, ZG ® M 

is a free ZG-module if M is free as a Z-module. 

Then take G = 7f and M = A and now the result follows. Alterna

tively we can first turn A= Z[7r] into a Hopf algebra by defining 

(i) ~:A-'; A® A by ~(g) = g ® g, 

(ii) E : A -'; z by E(g) = 1, 

(iii) 1J: A -'; A by rJ(g) = g-1 

for all g E 7f. Then, thinking A both as a projective A-module and a free 

Z-module, we can use the following proposition 
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Proposition 2.1.8 ([9]). Suppose P is a projective module and M is an 

R-free module for a Hopf algebra A over R. Then P ®RM is projective. 

Take P = M = A and R = Z also recall that the projective modules 

over free group rings are free by [2]. 

Remark 2.1.9. Actually we have showed that if Fis a free A-module, then 

f(F) is also a free A-module. 

2.2 Spin Case 

The purpose of this section is to state and prove a theorem calculating 

the group Aut.(M), when M is a spin 4-manifold with free fundamental 

group. Our main result is Theorem 2.2.14. Throughout the section we mean 

smooth (or topological) bordism and homology with integral coefficients 

unless otherwise noted. 

Hambleton and Kreck [35] constructed a braid 

7r1(£.(B)) O~pin(B, M) O~pin(M) 

~~ 

of exact sequences that is sign commutative, the sub-diagrams are all strictly 

commutative except for the two composites ending in Aut.(M), and valid 

for any closed, oriented, smooth or topological spin 4-manifold M. We will 
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use this braid to obtain an explicit formula for Aut.(M). While we calculate 

the terms on the braid we will give the necessary definitions (for the details 

we always refer to [35]). 

We will fix a lift VM : M ---+ B Spin of the classifying map for the 

stable normal bundle of M. The Abelian group n~pin(M), with disjoint 

union as the group operation, denotes the singular bordism group of spin 

manifolds with a reference map to M, i.e. an element (N, !) of n~pin(M) is 

represented by an n manifold Nn endowed with a spin structure and a con

tinuous map f: N ---+ M. We consider (N1, Ji) and (N2 , h) as equivalent 

provided that they make up the boundary of an (n + 1 )-dimensional spin 

manifold W with a reference map F: W ---+ M such that the spin structures 

on N1 and N2 induced from the one on W and F restricted to the bound

aries give Ji and f2. By imposing the requirement that the reference maps 

to M must have degree zero, we will obtain the modified bordism groups 

fifpin(M). 

Proposition 2.2.1. The relevant spin bordism groups of M are given as 

follows: 

nfpin(M) "'Z E9 H2 (M; Z/2) E9 H3(M; Z/2) E9 Z , 

n~pin(M) "'H1(M) E9 H3(M; Z/2) E9 Z/2 . 

Proof. This follows from the Atiyah - Hirzebruch spectral sequence, whose 

E 2-term is Hp (M; n~pin (*)). The first differential d2 : E;,q ---+ E;_2,q+l is 

given by the dual of Sq2 (if q = 1) or this composed with reduction mod 2 

(if q = 0), see [70, p.751]. We substitute the values 
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Remark 2.2.2. Defining spin structures for 1- and 2-manifolds requires 

first stabilization. We have 8 1 as the generator of nfpin(*) and 8 1 x 8 1 as 

s·the generator of n 2pin(*),...., Z/2, see [62, pp.521, 523]. 

The differential for (p, q) = (4, 1) is dual to 8q2 
: H2(M; Z/2) --+ 

H4 (M; Z/2) which is zero, since Mis spin (see [57, p.132]). The differential 

for (p, q) = (3, 1) is zero for 8qi(x) = 0 if i > deg(x). We obtain a filtration 

nspin(*) EB H (M· nspin(*)) C F C nspin(M)
4 2 ' 2 ~ 3,1~ 4 

Z/2 Z 

we have 

and 

1 fopr1 Fv x 8 3,1 

gives the splitting of the above short exact sequence, where we consider an 

embedding f: V --+ M of a closed spin 3-manifold representing a gener

ator of H3 (M; Z/2) '.:::: (Z/2t, by Thom Realizability Theorem [12, Theo

rem 11.16], where 8 1 is equipped with the non-trivial spin structure. Finally, 

since Ext(Z, -) = 0, the line p + q = 4 gives nfpin(M) ,...., ZEB H2 (M; Z/2) EB 

H3 (M; Z/2) EB Z. 

For the line p + q = 5 on the E 2-page, we have H1(M) in the (1, 4) 

position, H3 (M; Z/2) in the (3, 2) position, and H4 (M; Z/2) in the (4, 1) 

position and all these terms survive to E 00 We have a filtration • 

and a short exact sequence 

o-H1(M)-F3,2-H3(M;n~pin(*))-o 
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again 
/opr1N x (SI x SI) --F3,2 

gives the splitting, where N is a closed spin 3-manifold and for 

MxSI~M 

gives the splitting. Therefore, n:pin(M) "'HI(M) tIJH3 (M; Z/2) ffiZ/2. D 

Corollary 2.2.3. The modified bordism group is given as 

Proof. By the above proposition, we have 

The first summand is generated by*: K3---+ M (see e.g. [62, p. 229]) where 

* is the constant map to the base point x0 E M. Note that we have 

Hence any element of H2 (M; Z/2) can be represented by a map a: 8 2 ---+ M. 

As a result the second summand in the above direct sum decomposition 

is generated by (Ti 0 PI: 8 2 x (SI x SI) ---+ M where (Ti: 8 2 ---+ M rep

resents a generator of H2 (M; Z/2). The third summand is generated by 

Ji 0 PI: V 3 x SI ---+ M where Ji: V 3 
---+ M represents a generator of 

H 3 (M; Z/2). The last summand is generated by id: M ---+ M. Since by 

definition for fifpin(M) reference maps to M must have degree zero, we 

have to drop the last summand. D 
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The CW-complex B := B(M) is the 2-type of M(second stage of 

the Postnikov tower for M), i.e., there is a commutative diagram 

M~B 

UM t tUB 
B7r=B1f 

Here UM is unique up to homotopy and a classifying map for the universal 

covering M of M. Let us briefly explain the construction of the above 

diagram: We can attach cells of dimension 2: 4 to obtain a CW-complex 

structure for B with the following properties 

(i) 	 The inclusion map M -+ B induces isomorphisms 7rk(M) -+ 7rk(B) 

fork:::; 2, and 

(ii) 	7rk(B) = 0 for k 2: 3. 

Note that the universal covering space B of B is the Eilenberg-MacLane 
~ -

space K(7r2 , 2), and the inclusion M-+ B induces isomorphism on 7f2 . 

Consider the universal 7f-fibration E7r -+ B7r and its associated fi

bration p: E7r x7r B -+ B7r with typical fiber B. Since 7f acts freely on B, 

there is also a fibration q: E7r x 7r B -+ B with fiber E7r. The same argument 

also gives a fibration r: E7r x 7r M -+ M. The fiber E7r is contractible, so 

the maps q and r must be homotopy equivalences. The inclusion M C B 

induces an inclusion i: E7r x7r M -+ E7r x7r B. The classifying map of 

M is defined as c := q o i o r- 1 : M -+ B which induces isomorphisms 

7rk(c): 7rk(M) -+ 7rk(B) for any k :::; 2; in other words, c is a 3-equivalence. 

Observe that the map c is homotopic to the inclusion of M into B. 

In order to calculate the bordism groups of B, we need to find Hi(B). 

Note that B is a fibration over K(7r, 1) = B7r, bouquet of circles, with 
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fibre K(7r2 , 2), universal covering space B. We will use the Serre spectral 

sequence of the fibration B ---+ B ---+ K(7r, 1) whose E 2-term is given by 

E;,q = Hp(K(7r, 1); Hq(B)), the homology of K(7r, 1) with local coefficients 

in the homology of B. So we will need homologies of B. First recall a 

theorem of Whitehead: 

Theorem 2.2.4 ((75]). Let X be a CW complex and r denote the White-

head's quadratic functor, then there is a functorial Whitehead exact sequence 

of right A-modules, where h is the Hurewicz homomorphism in degree 3 and 

4 and b is the secondary boundary homomorphism (see Chapter I of {7] for 

a recent exposition). 

We have H4(B) ~ f(7r2), since 7ri(B) = 0 for i > 3. A finitely 

generated free group is countable, so 7r is countable, therefore A and hence 

7r2 is countable. Let 

Xo = *,X1 = K(Z,2),··· ,XN = K(Z x Z x ··· x Z,2),··· 
N 

Consider the sequence of maps 

io X ii i2Xo- 1-X2-··· 

where ik's are inclusions. The mapping telescope is the union of the map

. l' d M - XixIUXi+I 'th th · f X · M d Mpmg cy m ers ik - (xi,I)~f(xi) w1 e copies o k m ik an ik+i 

identified for all k. Let Tk be the union of the first k mapping cylinders. 

This deformation retracts onto Xk by deformation retracting each mapping 

cylinder onto its right end in turn. Since the inclusion maps ik are cellular, 
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each mapping cylinder is a CW complex and the telescope is the increasing 

union of the subcomplexes Tk ~ Xk. 

Observe that B is homotopy equivalent to the mapping telescope of 

the above sequence and we have, see [38, p. 312] 

Hn(B) '""lim Hn(Xk) 
--> 

Hn(B; Z/2) '""lim Hn(Xk; Z/2) 
+

Proposition 2.2.5. Let B denote the 2-type of a spin 4-manifold with free 

fundamental group. The homology groups of B are given by 

Hi(M) if i = 0, 1 OT 2 

Hi(B) :: o if i = 3 OT 5 

Proof. We are going to use the Serre spectral sequence of the fibration 

B ----+ B ----+ K(7r, 1) whose Erterm is given by E~,q = Hp(7r; Hq(B)). First 

note that since the natural map c: M ----+ B is 3-connected, obviously we 

have Hi(M) '""Hi(B) for i::; 2. If we substitute the values 

0 if i = 1, 3, or 5 

then we get the following isomorphisms: 


H3(B) '""H1(7r; H2 (B)) '""H1(7r, 7r2) = 0, since 7r2 is a free A-module, 


H4(B) rv Ho(7r; H4(B)) ~ Ho(7r, f(7r2)) f(7r2) {i!)A z,
rv 

H5(B) '""H1(7r; H4 (B) '""H1(7r; f(7r2)) = 0, since f(7r2) is a free A-module. 

D 
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Proposition 2.2.6. Let D.~pin(B) denote the singular bordism group of spin 

manifolds with a reference map to B. We then have the following: 

where the first inclusion is given by [N, J]--+ (J*[N], a(N)). 


Proof. We use the same spectral sequence, whose E 2-term is Hp(B; D.~pin(*) ). 


For the line p+q = 4, the non-zero terms on the E 2-page are H0(B; nfpin(*)) 


in the (0, 4) position, H2 (B; nipin(*))in the (2, 2) position and H4 (B; n.gpin(*)) 


in the (4, 0) position. The differential d2 : El 1 --+ E~ 2 is the dual of 
, , 

Sq2 : H2 (B; Z/2) --+ H4 (B; Z/2). By using the Serre spectral sequence of 

. the fibration B --+ B --+ K (7r, 1), we can see that 

and this isomorphism is given by p*. Consider the following commutative 

diagram 

H 2 (B; Z/2) _3L H 4 (B; Z/2) 

p* l p* I 
H2(B; Z/2) _3L H4 (B; Z/2) 

which implies that Sq2
: H2 (B; Z/2) --+ H4 (B; Z/2) is injective, since the 

homomorphism Sq2 : H 2(B; Z/2) --+ H 4 (B; Z/2) is injective (to see this 

notice that Sq2
: H 2 (Xk; Z/2) --+ H 4 (Xk; Z/2) is injective and that lim is 

+-

left exact [51, p.164]). Hence d2 : H4 (B; Z/2) --+ H2(B; Z/2) is surjective. 

Therefore, on the line p + q = 4, the only groups which survive to E 00 are 

Zin the (0, 4) position, and a subgroup of H4 (B) in the (4, 0) position. 

On the line p + q = 5, the non-zero terms are H4 (B; nfpin(*)) in the 

(4, 1) position and H1(B; n.fpin(*)) in the (1, 4) position. The differential 
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is reduction mod 2 composed with the dual of Sq2
• Consider the diagram 

A direct calculation shows that the top row is exact. We have 

and again this isomorphism is given by p*. Let a E H4 (B; 'll/2) such 

that Sq2 (a) = 0 and p*(a) = (3. There exists A E H 2 (B; 'll/2) such that 

Sq2 (.\) = (3, since the above row is exact. But (3 E H 4 (B; 'll/2yrr implies 

.\ E H 2 (B; 'll/2yrr. Therefore the sequence 

is exact. With the surjectivity of H6 (B; 'll) ---+ H6 (B; 'll/2), we can conclude 

that d2 : H6 (B; 'll) ---+ H4 (B; 'll/2) is surjective onto the kernel of the differ

ential d2 : H4 (B; 'll/2) ---+ H2(B; 'll/2). Thus the only group which survive 

to E00 is H1(B) = H1(M) in the (1, 4) position. D 

Next, we are going to give definitions of the maps a and"( and the 

modified bordism group fi~pin(B, M). The map a: Aut.(M)---+ fifpin(M) 

is defined by a(!) := [M, f] - [M, id]. This map is not a homomorphism 

since a(f o g) = a(f) + f*(a(g)). An element (W, F) of fi~pin(B, M) is 

a 5-dimensional spin manifold with boundary (W, aw), equipped with a 

reference map F: W ---+ B such that Flaw factors through the classifying 

map c: M---+ Band Flaw: aw---+ M has degree zero. 

By taking the boundary connected sum with the zero bordant el

ement ( M x I, p1) along aw and M x { 1}, we may assume that W has 
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two boundary components 81W = -M and 82W = N. Since (W, F) is a 

modified bordism element g :=FIN is a degree-1 map from N - M. The 

obstructions to lifting the map F: W - B to M, relative to g lie in the 

groups Hi+ 1(W, N; ?Ti(X)) ~ H4_i(W, M; ?Ti(X)), where X denotes the fibre 

of the map c: M - B. These obstructions vanish because Xis 2-connected. 

Let r: W - M be a lift of F and f := ria1 w: M - M. Observe that f is a 

degree-1 map and a 3-equivalence, so it is a homotopy equivalence. Define 

-y(W, F) := [f: M - M] E Aut.(M) . 

The map ')' is well defined. The crucial point is, if (W', F') is another 

representative for the same bordism class and (T, r.p) is a bordism between 
,....s.

(W, F) and (W', F') over O.lin(B, M), then we may assume that r.p: T - B 

is a 3-equivalence by surgery on the interior of T. 

Corollary 2.2.7. There is an isomorphism 

and the group fi~pin(B, M) injects into Aut.(M). The image of a is equal 

Proof. Recall that we have O.~pin(M) ""'H1(M)tIJH3 (M; 'll/2)tIJH4 (M; 'll/2) 

and O.~pin(B) ~ H1 (B). Let H1(M) ""'zr be generated by ai: 8 1 - M for 

i = 1, ... ,r, then co ai: 8 1 
- B generate H 1 (B). The generators of the 

H1(M) summand in O,~pin(M) are represented by ai x { *}: 8 1 x K3 - M 

where { *} denotes the constant map and the generator of O,~pin (*) is the 

K3 surface. Note that we are using the non-trivial spin structure on 8 1 . 

Similarly (co ai) x { *}: 8 1 x K3 - B generates O.~pin(B). Therefore, 
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the map O~pin(M) --+ O~pin(B), which is composing with our reference 

map c: M--+ B, maps the summand H1(M) isomorphically to H 1(B) and 

H3(M; 'll/2) EB H4 (M; 'll/2) to zero. Hence, the map O~pin(M) --+ O~pin(B) 

is onto, so by the exactness of the braid the map O~pin(B)--+ fi~pin(B, M) 

must be zero. Therefore 

~s·

By Corollary 2.2.3, we have 0/2n(M) ,...., 'll EB H2 (M; 'll/2) EB H3(M; 'll/2) 

and by Proposition 2.2.6, Ofpin(B) c 'll EB H4(B). The map between these 

groups is composing with c, hence the kernel is H2 (M; 'll/2) EB H3(M; 'll/2). 

By the exactness of the braid O~pin(B) --+ fi~pin(B, M) is the zero 

map [35, Lemma 2.2]. Also by the commutativity of the braid the map 

7r1 (£.(B))--+ fi~pin(B, M) is zero. Now again by the exactness of the braid 

T fi~pin(B, M) --+ Aut.(M) is an injective map [35, Corollary 2.13]. 

If f: M --+ M represents an element of Aut.(M), then we have 

a(!) = [M, f] - [M, id]. The natural map Ofpin(M) --+ H0 (M) sends a 

spin 4-manifold to its signature. It follows that a(!) E H2 (M; 'll/2) EB 

H3(M; 'll/2) since the signature is preserved by a homotopy equivalence. 

Since, by the exactness of the braid the map fi~pin(B, M) --+ fifpin(M) and 

"I is injective H2 (M; 'll/2) EB H3(M; 'll/2) ~ im a by the commutativity of 

the braid. Therefore im a= H2 (M; 'll/2) EB H3(M; 'll/2). D 

Before proceeding any further, let us look at Aut.(B) more closely. 

First of all, we can consider Aut.(B) as the group of based fibre homotopy 

classes of based fibre homotopy equivalences of B (see [58, Section 2]). Let 

lsom[7r, 7r2] be the subgroup of Aut(7r) x Aut(7r2) consisting of all those pairs 

(x,'l/J) for which 'lfJ(rya) = x(rJ)'lfJ(a) for all ry E 7r, a E 7r2 . 
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For any</> E Aut.(B), the homomorphism 7r2(</>) is 7r1 (</>)-equivariant 

by [58, Lemma 2.1]. Now consider the following homomorphism 

We are going to find a sections for (7r1 , 7r2). Note that B ~ E7r x1[B and for 
~ ~ ~ 

any (x,'l/J) E Isom[7r,7r2], let Ex: E7r - E7r and 'lj;: B - B be the induced 

maps. We can define 

s: Isom[7r,7r2] - Aut.(B) by s(x,'l/J)([e,u]) = [Ex(e),~(u)], 

where [e, u] denotes the equivalence class of ( e, u) E E7r x B. We have 

s(x, '!j;) E Aut.(B) (by Whitehead's theorem) and (7ri, 7r2)(s(x, '!j;)) = (x, '!j;). 

The kernel K of (7r1 , 7r2) consists of</> E Aut.(B) with 7ri(</>) =id for i = 1, 2. 

For </> E K, we have the following diagram 

where the lower triangle is commutative. Associate to any such </>, a coho

mology class 8(¢,id) E H 2(B;7r2), the primary obstruction to the existence 

of a homotopy between </> and id, see [58, p.25] and [12, Theorem 13.11]. 

By the Serre spectral sequence of the fibration B - B - K(7r, 1), we have 

the following diagram with an exact row, 

o- H 2(7r; 7r2)- H2(B; 7r2) ~ Horn.rr(7r2, 7r2) -o 
8(-,id)1 

K 
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The vertical arrow is an injective map which takes K into H 2 (7r; 7r2 ), since 

ev(<5(¢, id))= 7r2 (</>) - id= 0. 

Next we are going to construct a self-equivalence <Px of B for each 

x E H 2 (7r; 7r2). Remember that B is a K(7r2 , 2) fibration over B7r with a 

section a: B7r -t B (existence of such a section comes from the fact that 

kM = 0). Since K(7r2 , 2) = O.K(7r2 , 3), we may view Bas the union of loop 

spaces joined together in an appropriate way. Let 

and 

µ: B x B1r B -t B 

be the fibrewise loop multiplication, i.e. the restriction of µ to u:B1 
(x) is 

multiplication of loops in u:B1 (x) c:::: O.K(7r2 , 3) for all x E B7r. 

Let [B7r, B]B1r be the set of homotopy classes of (over B7r maps) 

f: B7r -t B such that uB of= idB7r, in other words elements of [B7r, B]B1r 

are homotopy classes of sections of UB· By Lemma 2.1.3 we have an exact 

sequence 

Let i E H 2 (B; 7r2 ) be such that ev(i) = id7r2 • The function 

given by B(f) = f* (i) is an isomorphism with respect to the addition on 

[B7r, B]B1r determined by µ, i.e., B(a) = 0, since f*(i) is the primary ob

struction to the existence of a homotopy between f and a (see [8, Theorem 

5.2.4] or [45]), and O(µ(f, /')) = B(f) + B(f'). 
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i.e. </>x(b) = fxuB(b).b where multiplication is multiplication of loops in 

the fiber over uB(b). Then UB o <f>x = uB and so </>x E [B, B]Bn where 

[B, B]Bn denotes the set of homotopy classes of over Brr maps. We have 

<Po= µ(auB, idB) = idB and ¢;(l) = l + u'B(x) E H2(B; rr2). Note also that 

by homotopy associativity of µ we have 

Hence we see that 

Therefore </>x is a homotopy equivalence for all x E H 2 (rr; rr2 ) and x --+ <Px 

defines a homomorphism from H 2 (rr; rr2) to Aut.(B). The lift of </>x to 

the universal cover B is homotopic to the identity, since the lift of UB is 

homotopic to the constant map. Hence <Px acts as identity on rr2 . Therefore 

the homomorphism x -+ <f>x is an isomorphism onto the kernel of the map 

(rr1 , rr2 ). As a result we have an exact sequence 

In particular we have 

where the action oflsom[rr, rr2] on H 2 (rr; rr2 ) is given by (x, 'lj;).x = 'lj;*((x- 1 )*(x)). 
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Remark 2.2.8. In [71], it is proved that H 2 (7r; 7r2 ) is isomorphic to the 

group of all based homotopy classes of self-homotopy equivalences of B 

inducing the identity automorphisms of all homotopy groups. 

If 7r is a free group, then H2 (7r; 7r2 ) = 0. Hence for this section we 

have Aut.(B) ,....., Isom[7r1, 7r2). 

Next, we look for a relation between c*[M] and the cohomology in

tersection pairing sM on M. Recall that we have defined the homomorphism 

.6.: r(7r2) -. 7r2 ® 7r2 via the universal property .6.1(a) = a® a and .6.(r(7r2)) 

is the subgroup of 7r2 ® 7r2 generated by {a® a : a E 7r2}. Also f ( 7r2 ) inherits 

a A-module structure given by the diagonal action on 7r2 ® 7r2 . Therefore 

f(7r2 ) is a A-submodule of 7r2 ® 7r2 inducing an inclusion 

where the bar denotes the left A-module structure provided by the canonical 

anti-automorphism on A. For 7r a free group we have 

The secondary boundary homomorphism b: H4(B) _. f(7r2 ) on the White

head's exact sequence is an isomorphism, since 7r3 (B) = 7r4 (B) = 0. Hence 

H4(B) S:E f(7r2 ) ®AZ which is inside the diagonal of 7r2 ®A 7r2 . For any 

x E H4(B), let us denote by L:i X2i ® X2i, the image of x in 7r2 ®A 7r2 . On 

the other hand we can define 

for all x2 E 7r2 and u, v E H2(B; A) (note that H2(B; A) S:E 7r~ = HomA(7r2 , A) 

by Lemma 2.1.3). It is easy to see that ev7r2 (x2)(u, v) is quadratic in x2 and 
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Hermitian in u and v: for any g, h En, 

Let Her(H2 (B; A)) be the group of Hermitian pairings on H2 (B; A), then 

ev7r2 determines a homomorphism B7r2 : H4 (B)----+ Her(H2 (B; A)) and in (44, 

Lemma 10], it is shown that 

B11"2 (x)(u, v) = v(x nu)= (u U v)(x) . 

Consider the image of c*[M] E H4 (B), B11"2 (c*[M])(u,v) = (u U v)(c*x) = 

c*(u U v)[M] = (c*(u) U c*(v))(M] = sM(c*(u), c*(v)) where SM is the co

homology intersection pairing on M. Moreover, by [44, Theorem 7] B7r2 is 

an isomorphism whenever 7f is a free group. Therefore in this section c*[M] 

and sM will uniquely determine each other. 

The map /3: Aut.(B)----+ nfpin(B) is defined by 

/3(</>) = [M,<f>oc]- [M,c]. 

But this map is not a homomorphism, for /3(</> o cp) = /3(</>) + <f>*(f3(cp)). 

Lemma 2.2.9. 

Proof. Although j3 is not a homomorphism, we can still define ker(/3) = 

13-1(0). The natural map nfpin(B) ----+ H4 (B) sends a bordism element to 

the image of its fundamental class. If</> E Aut.(B), and c: M ----+ B is its 

classifying map, then /3(</>) := [M, </> o c] - [M, c). The image of this element 
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is contained in the group of the isometries of the quadratic 2-type. 

Since Aut.(B) Isom[7r1, 7r2] an element in Isom[7r, 7r2, SM] will be rv 

¢ E Aut.(B) such that ¢*(c*[M]) = c*[M]. Clearly /3(¢) = 0. D 

Lemma 2.2.10. For each¢ E Aut.(B) such that c/J*(c*[M]) = c*[M], there 

is an f E Aut.(M) such that co f ~ ¢ o c. 

Proof. First, let us assume that H2(M; Q) # 0. Since ¢*(c*[M]) = c*[M], 

there exists an f E Aut.(M), such that the diagram 

M__!_M 

c! lc 

B_LB 

commutes up to homotopy, by [33, Lemma 1.3]. 

For the case H2(M; Q) = 0 our construction off depends on the 

proof of [15, Proposition 9]. First of all the assumption H2(M; Q) = 0 

implies that H2 (M; A) ,...., H2 (M) ,...., 7r2 = 0 and hence B ~ K(*rZ, 1). We 

also have H3(M; A) ,...., H3(M) ,...., 7r3 (M) ,...., 7r3 (M) hence H3(M; A) ®AZ,...., 

H3 (M) ,...., H 1 (M) ,...., Hom(H1(M), Z) ,...., EBrZ. Therefore any element of 

H3 (M) can be represented by a map S 3 ----+ M. 

Choosing an isomorphism of 7r with *rZ yields a basis of H1(M). 

Let E = { e1, e2, ... , er} be a basis of H1(M) according to an isomor

phism 7r *rZ and u = { U1, U2, ... 'Ur} be the dual basis of H 1(M).rv 

Let {Ji, h, ... , fr} and {v1, V2, ... ,Vr} be the basis of H3(M) and H3(M) 

corresponding to U and E respectively, via the Poincare duality. 

We choose maps 
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and 

where ai and /Ji represent generators of H1(M) and H3 (M). The wedge 

map a V /3: Vr(81 V 83 ) -+ Af(3) induces isomorphism on 'lri for any i = 

1, 2, 3 hence it is a homotopy equivalence by the Whitehead theorem. We 

have H 1 (M) ~ [M, K('ll, 1)] "" [M, 8 1], and H 3 (M) '.::::'. [M, K('ll, 3)] "" 

[M, K('ll, 3)(4)] "" [M, 8 3], since K('ll, 3) is obtained from 8 3 by attaching 

cells of dimension ~ 5. Therefore the cartesian product of the elements ui 

and vi defines a map u xv= n:=l(ui x Vi): M - TI~(81 x 83). We can 

assume by construction that u xv restricts to a map'"'(: Af(3) -+ Vr(81 V 

8 3 
) such that "Io (a V /3) is homotopic to the identity. The composition 

Af(3) ~ Vr(81 V 8 3
) C Vr(81 

X 83
) extends to a map <p: M-+ Vr(81 x 

83 
) [16, Lemma 4.2]. Now we consider the wedge Vr(81 x 83 ) as the 

connected sum with (r-1) 4-dimensional discs adjoined along the 3-spheres 

which serve to define the connected sums. In other words, Ur(81 x 83 ) 

embeds into Vr(81 x 83 ), up to homotopy. The map <p can be deformed 

into a degree 1 map h: M-+ Ur(81 x83 
) [15, Lemma 13]. The map h induces 

a surjective homomorphism on 7r, see [14, Proposition 1.2], but since 7r is 

free it must be an isomorphism. Hence h is a homotopy equivalence. 

Remark 2.2.11. This method is used in [15], to prove that an oriented 

4-dimensional Poincare space M with 7r1 (M) "" *r'll and H2 (M; Q) = 0 is 

homotopy equivalent to the connected sum Ur(81 x 83 ). 

Note that 7r1 (¢) induces an automorphism of 7r. Composing 7r1(¢) 

with the previous isomorphism on 7r "" *r'll, we get a new basis E' = 

{e~, e~, ... , e~} of H1 ( M). The same construction gives us another homo
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topy equivalence h': M ---+ ~r(S1 x S3 ). Since h and h' are degree 1 maps, 

we can construct an orientation preserving homotopy self equivalence of M 

by 

f :=ho h'-1 : M---+ M. 

Now, it is easy to see that by construction co f ~ </> o c. D 

Finally, we are going to find the images of Aut.(M) and H(M) in 

Aut. (B). Let us start by going briefly through the definitions of the bordism 

groups H(M) and H(B). The group H(M) is defined as the bordism group 

of objects (W, F) where W is a compact 5-dimensional spin manifold with 

81W = - M and 82W = M, and F: W ---+ M is a continuous map such 

that Fla1w = idM and Fla2w = f is a base-point and orientation-preserving 

homotopy equivalence. We have an analogous bordism group H(B). It is 

defined as the bordism group of objects (W, F) where W is a compact 5

dimensional spin manifold with 81W = - M and 82W = M, and F: W ---+ B 

is a continuous map such that Fla1w = c and Fla2w = f is a base-point 

preserving 3-equivalence. 

Lemma 2.2.12. ([35, Lemma2.6]) H(M) rv H(B). 

Corollary 2.2.13. The images of Aut.(M) and H(M) in Aut.(B) are 

precisely equal to Isom[7r, 7r2 , sM]. 

Proof. For each [!] E Aut.(M), we have a base-point preserving homotopy 

equivalence <Pt: B ---+ B such that co f = <Pt o c, since the obstructions to 

extending f to B lie in the groups Hi+ 1(B, M; Ki(B))=O for all i. Note that 

Aut.(B) c:: Isom[7r, 7r2] and by the naturality of ev1T2 all we have to show is 

( </>t)* ( c* [M]) = c* [M], since ev7T2(c* [M]) is just the intersection form. We 
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have 

since the fundamental class in H4 ( M) is preserved by an orientation pre

serving homotopy equivalence. We see that im(Aut.(M) ---+ Aut.(B)) is 

contained in Isom[7r, 1f2 , sM]· The other inclusion follows from the lemma 

above. 

The result for the image of H(M) follows by the exactness of the 

braid and the fact that ker(,B) = Isom[7r, 1f2 , sM] D 

We can now put the pieces together to establish our main result. 

Here are the relevant terms of our braid diagram: 

Before we state the main result, let us point out that there is an 

action of Isom[7r, 1f2 , sM] on the normal subgroup 

Ki:= ker(Aut.(M)---+ Aut.(B)) 

Let [!] E Ki and </> E Isom[7r, 1f2 , sM]· We have co f c:::: c and there is a 

homotopy equivalence h: M ---+ M, such that c o h c:::: </> o c (see Lemma 

2.2.10). Now define 

<f>.f:=hofoh-i. 
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Since co (ho f o h-i) ~ ¢ o co f o h-i ~ ¢ o co h-i ~coho h-i ~ c, this 

action is well defined. Now we can state the main theorem of this section: 

Theorem 2.2.14. Let M be a connected, closed, oriented smooth or topo

logical spin manifold of dimension 4. If the fundamental group 7r := 7ri(M) 

is a free group, then 

Proof. From the braid diagram, we have 

ker(H(M) -t Isom[7r, 7r2, sM]) ~ Hi(M) , 

so lsom[7r, 7r2, sM] ,....., H(M)/Hi. This gives the splitting of the short exact 

sequence 

It follows that 

Aut.(M) ,....., Ki ~ lsom[7r, 7r2, sM] 

with the conjugation action of Isom[7r, 7r2, sM] on the normal subgroup Ki 

defining the semi-direct product structure. 

We already know that / is injective, see Corollary 4.2. 7. By the 

commutativity of the braid, to show that it is actually an injective homo

morphism, it is enough to show that a is a homomorphism on the image of 

/. Let 1(W, F) = f and 1(W', F') = g. Recall that 

a(J o g) = a(J) + f*(a(g)) . 

We have to show that f*(a(g)) = a(g). By Corollary 4.2.7, 
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Any element f, in the image of / is trivial in Aut.(B), i.e., the image 

¢1 = idB and co f = c. Since H3 (M; Z/2) '.:::'. H 1 (M; Z/2) and c induces 

isomorphisms on H2 (M; Z/2) and H 1 (M; Z/2), f acts as the identity on 

H2 (M; Z/2) EB H3 (M; Z/2). Now a diagram chase shows that / is a ho

momorphism. Therefore we have a short exact sequence of groups and 

homomorphisms 

Moreover, K 1 = im / (by the exactness of the braid) and K1 is mapped 

isomorphically onto H2 (M; Z/2) EB H3 (M; Z/2) by the map a. Finally, we 

apply the above formula to obtain the relations 

for any [g] E Aut.(M), and 

for any [!] E K. Therefore the conjugation action of lsom[7r, 7r2 , sM] on 

K 1 agrees with the induced action on homology under the identification 

K 1 '"'"'H2 (M; Z/2) EB H3 (M; Z/2) via a. It follows that 

as required, with the action of Isom[7r, 7r2, sM] on the normal subgroup 

H2 (M; Z/2) EB H3 (M; Z/2) given by the induced action of homotopy self

equivalences on homology. D 

Remark 2.2.15. If we take M = 8 1 x 8 3 , then from the above theo

rem we get Aut.(M) '"'"' Z/2 EB Z/2. Recall that these are orientation 
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S 3 S 1 S 3preserving homotopy self-equivalences. Let cp: S 1 x - x be 

defined by cp(x,y) = (-x,y). Now if we compose orientation preserving 

self-equivalences with cp we get also the orientation reversing homotopy self-

equivalences. Therefore the based homotopy classes of based self homotopy 

equivalences of S 1 x S3 is isomorphic to (Z/2)3, which is consistent with 

the results of [10, p. 25) and [60, p. 58]. 

2.3 Non-spin Case 

The purpose of this section is to state and prove a theorem calculating the 

group Aut.(M, w2). Our main result is Theorem A on page 74. For the non-

spin case of our braid we will use the language of manifolds with structure. 

The class w2 E H 2(B; Z/2) gives a fibration w2: B - K(Z/2, 2) and we 

can form the pullback 

where '"'tis the universal oriented vector bundle over BSO(n). Now we can 

form a sequence of fibrations ~r: B(w2)r - BSO(r) and maps such that 

the diagram 

B(w2)r Yr B(w2)r+l ----.;... 

€r ! . !€r+l 

BSO(r) ~ BSO(r + 1) ~ · · · 

commutes, ir being the usual inclusion. We know that 

BSO = cr~i~BSO(r) = LJBSO(r), 
r 
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and define 

B(w2) := colimB(w2)r . 
T-->00 

We have the following pullback diagram 

j
BSpin-----B(w2)-----B 

II !E !w2 
BSpin BSO w K('ll/2, 2) 

The map w = w2('Y) pulls back the second Stiefel-Whitney class for the 

universal oriented vector bundle 'Y over BSO. The fibration B(w2) over 

BSO is called the normal 2-type of M. The "James" spectral sequence 

used to compute O*(B(w2)) = 7r*(M~) has the same Erterm as the one 

used above for w2 = 0, but the differentials are twisted by w2. In particular, 

d2 is the dual of Sq;, where Sq;(x) := Sq2 (x)+xUw2 (see [70, Section 2]). 

There is a corresponding non-spin version of O~pin (M), namely the 

bordism groups O*(M(w2)) := 7r*(M~) of the Thom space associated to the 

fibration: 

BSpin M(w2) 
j 

M 

!w2!EII 
wBSpin BSO K('ll/2, 2) 

Again the Erterm of the James spectral sequence is unchanged from the 

spin case, but the differentials are twisted by w2 with the above formula for 

Sq;. As in the spin case, we choose a particular representative for the map 

w2 such that w2 = w o llM· Next we will define a suitable "thickening" of 

Aut.(M) for the non-spin case: 

Definition 2.3.1. Let Aut.(M, w2) denote the set of equivalence classes of 

maps[: M-+ M(w2) such that (i) f := joJis a base-point and orientation 
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preserving homotopy equivalence, and (ii) ~of= VM. Two such maps f 
and g are equivalent if there exists a homotopy h: M x I -+ M( w2) such 

that h := j o h is a base-point preserving homotopy between f and g, and 
/'. 

~oh = VM o p1, where p1 : M x I -+ M denotes projection on the first factor. 

Given two maps f, g: M-+ M(w2) as above, we define 

as the unique map from M into the pull-back M(w2) defined by the pair 

fog: M-+ Mand VM: M-+ BSO. Since w2of og = w2og = w2 , this pair 

of maps is compatible with the pull-back. The following lemma is proved 

in [35, Lemma 3.3] for which we give a more detailed proof. 

Lemma 2.3.2. Aut.(M, w2 ) is a group under this operation. 

Proof. To check that the operation just defined passes to equivalence classes, 

suppose that his a homotopy as above between g and 9' representing the 

same element of Aut. (M, w2 ). Let h := j oh, g := jog and g' := j o9', then 

his a base-point preserving homotopy between g and g' and ~oh= vMop1. 

Notice that f o h is a homotopy between f o g and f o g'. Also we have 

W2 o (f oh)= w2 oh= w2 o p1 . Therefore (f oh, VM o p1): M x I-+ M(w2) 

gives a homotopy between f •g and f • 9'. A similar argument in the case 

when f is varied by a homotopy to f shows that J•g~ f •g. 

Let hlM: M-+ M(w2) denote the map defined by the pair of maps 

(idM: M -+ M, VM: M -+ BSO). This map will represent the identity 

element in our group structure. 

Given f representing an element of Aut.(M, w2), let 1-1 denote the 

homotopy inverse off := j of. By the Dold-Whitney theorem [23], there 
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is an isomorphism u- 1 )*(vM) rv VM. We have a base-point preserving 

-
homotopy h: M x I -t BSO between vM o 1-1 ~ VM· Define J-1 : M -t 

M(w2) lifting lJM 01-1 by ?(x) := u-1(x), lJM 01-1(x)) for all x E M, 

this makes sense because w2 = w o VM. We apply the homotopy lifting 

property to get h: M x I -t M(w2) lifting h, such that~ o (h!Mx{l}) = VM· 

Let g: M -t M be defined by g := j o (h!Mx{l})· Then g ~ 1-1 by 

the homotopy h' := j oh, and we have w2(g(x)) = w2(j(h!Mx{l}(x))) = 

w(~(h IMx{l}(x))) = w(vM(x)) = w2(x) for all x E M. Hence g: M -t 

M(w2) defined by g(x) = (g(x), vM(x)) is an element of Aut.(M, w2). Let 

H := f oh' and note that His a homotopy between fog and id (H(m, 0) = 

(! o g)(m) and H(m, 1) = m). We want to be able to say that f •g ~id. 

Consider the following diagram 

By the covering homotopy theorem we get ii: M x I -t M(w2) lifting H, 

with the property that joii!Mx{l}(m) = H(m, 1) = m and ~oii = VMOP1· 

We therefore have a homotopy ii between f •g~ id. 

Next comes the connection between Aut.(M, w2) and Aut.(M). 

Lemma 2.3.3. There is a short exact sequence of groups 

o--- H 1(M; Z/2)--. Aut.(M, w2)--. Aut.(M) --.1 

Proof Let f E Aut.(M), then J*(vM) rv VM by the Dold-Whitney Theorem 

[23]. Choose a base-point preserving homotopy h: M x I -t BSO between 

VM of ~ VM· Define f: M -t M(w2) by J(x) = (J(x), VM(j(x))) lifting 

0 
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vM of, this makes sense because w2(f(x)) = (w o vM)(f(x)) (recall that 

we choose w2 = w o VM ). Apply the homotopy lifting property to get 

h: Mxl-+ M(w2) lifting h such that ~o(hiMx1) = vM. Let f' := jo(hiMx1), 

then f' ~ f by the homotopy j oh, and we have w 2 (f'(x)) = w2 (x) for all 

x E M. As a consequence, f(x) = (f'(x), vM(x)) E Aut.(M, w2). Therefore 

the natural map Aut.(M, w2)-+ Aut.(M) defined by sending gto g :=jog 

induces a surjective homomorphism. 

Next, let f, g E Aut.(M, w2) and f := j of, g := jog. Suppose 

there exists a homotopy h between f and g. If we can lift h to a homotopy 

h: M x I-+ M(w2) such that j oh= hand~ oh= vM o p1, then f and g 

are equivalent in Aut.(M, w2). We have the following lifting problem: 

K(Z/2, 1) 

l 

The obstructions to lifting ( h, VM o p1 ) lie in the groups 

,..._ 

So the only non-zero obstructions are in H1(M; Z/2). Let f E 

Aut.(M, w2), for any a E H 1(M; Z/2), we are going to construct a g E 

Aut.(M, w2) with the property that f ~ g and the obstruction to f and g 

being equivalent is a. Note that different maps M x I-+ K(Z/2, 2) relative 

to the given maps on the boundary are also classified by H1 (M; Z/2). So 

we may think a: M x I-+ K(Z/2, 2) such that aiMx{o} and a!Mx{l} is the 

constant map to the base point { *} of K(Z/2, 2). Consider the following 
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diagram 

M(w2)

!(j,~) 
M x {O} (f,vM) M x BSO 

r ---3- - - ~ !p 
M x I ° K(Z/2, 2) 

where the fibration p: M x BSO ---+ K(Z/2, 2) = OK(Z/2, 3) is given 

by (x, y) ---+ w2(x) - w(y), for which the fiber over the base point is by 

definition M(w2). By the homotopy lifting property we have a: M x I ---+ 

M x BSO making the diagram commutative. Let g := &IMx{l}i then since 

w2(p1og(x)) = w(p2 og(x)), where p1 and p2 are projections to the first and 

second components respectively, g actually gives us a map M ---+ M(w2). 

Observe that p1 o a: M x I ---+ M is a homotopy between f and g. In 

order to lift this homotopy to M(w2) so that J and g are equivalent we 

should have w2((P1 o a)(x, t)) = w((p2 o a)(x, t)) for all x E Mandt E J, 

which is possible if and only if a represents the trivial map. Hence a is the 

obstruction to lifting this homotopy to M( w2). D 

Remark 2.3.4. We start with the fibration M(w2) <----+ M x BSO £..,, 

K(Z/2, 2). Let F be the homotopy fiber of M(w2) <----+ M x BSO, so 

F ---+ M(w2) ---+ M x BSO is a fibration (up to homotopy). Then F is 

homotopy equivalent to the loop space OK(Z/2, 2) = K(Z/2, 1). That is 

how we get the first fibration K(Z/2, 1) ---+ M(w2) ---+ M x BSO (see, for 

example, [22, p. 38]). 

To define an analogous group Aut.(B, w2) of self-equivalences, we 

will first state a lemma from [35, Lemma 3.8]. 



62 CHAPTER2. FREEFUNDAMENTALGROUP 

Lemma 2.3.5. Given a base-point preserving map f: M --+ B, there is a 

unique extension {up to base-point preserving homotopy) <Pt: B --+ B such 

that <Pt o c = f. If f is a 3-equivalence then <Pt is a homotopy equivalence. 

Moreover, if W2 of= w2, then W2 o <Pt= W2. 

Definition 2.3.6. Let Aut.(B, w2 ) denote the set of equivalence classes of 

maps f: M --+ B(w2) such that (i) f := j of is a base-point preserving 

3-equivalence, and (ii) ~of= VM. 

Two such maps f and g are equivalent if there exists a homotopy 

h: M x I --+ B (w2 ) such that h := j oh is a base-point preserving homotopy 
,,.... 

between f and g, and ~oh = VM o p1 , where p1 : M x I --+ M denotes 

projection onto the first factor. Given two maps f, g: M --+ B(w2) as 

above, J•g: M --+ B (w2 ) is defined as the pair (<Pt o </>9 o c, VM). 

Lemma 2.3.7. ([35, Lemma3.10]) Aut.(B, w2 ) is a group under this aper

ation. 

When w2 := w2 (M) =J 0, Hambleton and Kreck modified the bor

dism groups in the braid in order to carry out the arguments used to es

tablish commutativity. As before we will first give the braid and while we 

calculate the terms, we will give the necessary definitions. 

Theorem 2.3.8. ([35, Theorem3.15]) Let M be a closed, oriented smooth 

or topological 4-manifold. Then there is a sign-commutative diagram of 

exact sequences. 

http:Theorem3.15
http:Lemma3.10
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such that the two composites ending in Aut.(M, w2) agree up to inversion, 

and the other sub-diagrams are strictly commutative. 

Proposition 2.3.9. Let B(w2) denote the normal 2-type of a 4-manifold 

M with free fundamental group. Then we have 

04(M(w2)) rv z EB H2(M; Z/2) EB H3(M; Z/2) EB z 

0 5(M(w2)) '"'-' H1(M) EB H3(M; Z/2) EB Z/2 

04(B(w2)) C ZEB Z/2 EB H4(B) 

05(B(w2)) '"'-' H1(M). 

Proof. As before, we only need to compute the d2 differentials. Since M 

is orientable, w2 is also the second Wu class of M. So we have Sq~(x) := 

S q2 ( x) + x U w2 = 0. Now, everything works exactly the same as in the spin 

case. 

For the bordism groups of B(w2), first consider the following com

mutative diagram 

H 2 (B; Z/2Y ~ H4 (B; Z/2Y 

p* I~ 2 p* I~ 
H2 (B; Z/2) ~ H4 (B; Z/2) 
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Let x E H 2 (B; Z/2) such that Sq~(x) = 0. By the commutativity of the 

diagram, we have 

0 = Sq~(p*(x)) = Sq2 (p*(x)) +p*(x) U w2 (B) 

where w 2 (B) = p*(w2 (B)). But since Sq2 : H 2 (B; Z/2) ---+ H 4 (B; Z/2) is 

injective, p*(x) = p*(w2 (B)). Hence x = w2 (B) which we can be further 

identified with w2 via our reference map c. Therefore 

Since all the other differentials are zero, this gives the Z/2 in the Ef2 , 

position. 

To see that H 1 (B) ,...._, H 1 (M) is the only group on the line p + q = 5 

which survives to E 00 , we use the following commutative diagram 

We are going to show that the top row is exact by first considering the 

sequence 

where Xk = K(Z x Z x · · · x Z, 2) and then taking the inverse limit (re
k 

member that lim is left exact). Let x E H 2(Xk; Z/2), then we have 
<--

Sq~(x2 + x U w2 ) = Sq2 (x) U x + Sq1 (x) U Sq1 (x) + x U Sq2 (x)+ 

Sq2 (x) U w2 + Sq1 (x) U Sq1 (w2 ) + x U Sq2 (w2 ) + x2 U w2 + x U w~ 
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where Sq1 is the Bockstein homomorphism. Since H3 (Xk; Z/2) = 0, Sq1 is 

the zero map. Therefore the image of Sq!: H2(Xk; Z/2) --7 H4 (Xk; Z/2) is 

contained in the kernel of Sq!: H4 (Xk; Z/2) --7 H6 (Xk; Z/2). To see the 

other inclusion let y E H 4(Xk; Z/2) be such that 

By the cohomology Kiinneth formula we have 

H2 (Xk; Z/2) "'L
k 

H2(CPt°; Z/2) ' 
i=l 

H4 (Xk; Z/2) "'L
k 

H4(CPti; Z/2) EB L H2(CP{'0
; Z/2) ® H2 (CPy:'; Z/2) , 

i=l 

H6(Xk; Z/2) "'L
k 

H6(CPt); Z/2) EB L H2(C~00 ; Z/2) ® H4 (CPy:'; Z/2) 
i=l 

EB L H2 (CPi00 
; Z/2) ® H2 (CPy:'; Z/2) ® H 2(C?z00 

; Z/2) . 
iofa#l 

So y must be in one of the following forms: 

(i) y = z2 for some z E H 2 (Xk; Z/2). If this is the case then 

a contradiction. 

(ii) y = Ei,j Zi U z1 for some zi, z1 E H2(Xk; Z/2). If this is the case then 

0 = Sq!(y) = Sq!(Ei,j ziUz1) = Ei,j z[Uz1+ziUzJ+ziUz1Uw2 =I= 0, 

a contradiction. 
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(iii) y = z2 + Ei,j zi U Zj· If this is the case then 

0 = Sq~(y) = Sq~(z2 + L zi Uzi) 

i,j 


2 = Sq2 (z2 
) + z U w 2 + L(zf U Zj + Zi U z] + zi U Zj U w2) 

i,j 

2 
= z U w 2 + L(zf U Zj + Zi U z] + Zi U Zj U w2) . 

i,j 

So we should have 

2 z U w 2 = L(zf U Zj + zi U z] + zi U Zj U w2) 

i,j 

= a2 U b + a U b2 + a U b U W2 , 

where a = E7=i xi and b = E;=i· For this to be the case, z is equal 

to either a and b is equal to w2 or z is equal to b and a is equal to 

w2 or a = b = z (otherwise each of the terms in the summation above 

will live in different direct summand of H 6 (Xk; 7l/2)). But in all of 

these cases y = Sq?n(z). 

inverse system of modules, where ik: Xk-l ~ Xk is the inclusion map. Con

sider the commutative diagram with exact rows 

Then the sequence 
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is exact. Let a E H 2 (B; Z/2), then 

since reduction mod 2, H3 (B) -+ H3 (B; Z/2) is onto, Sq1 = 0. Hence 

the image of Sq'?'v: H2(B; Z/2) -+ H4(B; Z/2) is contained in the kernel 

of Sq'?'v: H4 (B; Z/2) -+ H6 (B; Z/2). Now, let b E H4 (B; Z/2) such that 

Sq'?'v(b) = Sq2 (b) +bUw2 = 0 and let p*(b) = y. Then by the commutativity 

of the above diagram Sq'fv(y) = 0. There exists a z E H2 (B; Z/2) such that 

Sq'fv(z) = y. Then we also have a c E H2(B; Z/2) such that p*(c) = z and 

Sq'?'v(c) = b. Therefore the sequence 

is exact. Also, since H5 (B) = 0, we have H6 (B) -+ H6 (B; Z/2) is surjec

tive. Hence d2 : H6 (B) -+ H4 (B; Z/2) is onto the kernel of the differential 

Let 2: M -+ B(w2) denote the map defined by the following pair 

(c: M-+ B, VM: M-+ BSO). Consider the diagram 

we have ( w2 o c) o j = w2 o j and since the pullback satisfies the universal 

property, there exists a map c: M(w2) -+ B(w2). 

Next we are going to give definitions of the maps a and '"'/ (by pay

ing special attention to the definition of 1) and describe the elements of 

0 
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05 (B(w2),M(w2)). Let id: M-+ M(w2) denote the map defined by the 

pair (idM: M -+ M, VM: M -+ BSO). Given [.{1 E Aut.(M, w2), we de

fine a: Aut.(M, w2) -+ 04 (M(w2)) by a(f) := [M, Jl - [M, idM] where the 

modified bordism groups are defined by letting the degree of a reference 

map g: N 4 -+ M(w2) to be the ordinary degree of g :=jog. 

An element (W, F) of ~(B(w2), M(w2)) is a 5-dimensional manifold 

with boundary (W, aw), equipped with a reference map F: w -+ B(w2) 

such that Flaw factors through c. The definition of/ in the non-spin case 

is similar to the one in the spin case: Let (W, F) E 0 5 (B(w2), M(w2) ), by 

taking the boundary connected sum with (M x I, id o p1), we may assume 

that W has two boundary components 81W = - M and 82W = N. The 

obstructions to lifting F to M(w2) relative to FIN vanishes, the lifting 

arguments take place over the fixed map VM: M-+ BSO. We haver: w-+ 

M(w2), lift of F and f:= fl81W: M-+ M(w2). Define 

1(W, F) := f: M-+ M(w2) . 

To see that the map / is well-defined, suppose that (W', P) is another 

representative for the same relative bordism class and that we have already 

found liftings rand ? of the maps F and Fi respectively. Let (T, rp) denote 

a bordism over 0 5 (B(w2), M(w2)) between (W, F) and (W', P). Since any 

element in the kernel of n2(rp): n2(T)-+ n2(B(w2)) can be represented by 

an embedded 2-sphere with trivial normal bundle, we may assume that the 

reference map rp: T-+ B(w2) is a 3-equivalence by surgeries on the interior 

of T, see [49, Proposition 4]. 

Corollary 2.3.10. There is an isomorphism 
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and the group 0 5 (B(w2), M(w2)) injects into Aut.(M, w2). The image of a, 

. x; x { *} .1Proof. Consider the maps 8 1 x K3 -- M where xi: 8 -+ M 1s a gen

erator of H1(M) ,...., 'll/ for each i = {1, 2, ... , r} and 81 is equipped with a 

non-trivial spin structure. Since 8 1 x K3 is a spin manifold the maps 

are well-defined and [81 x K3, (xix { *}, v8 1xK3 )] generate the H1(M) sum

mand in 0 5 (M(w2)). Similarly, the generators of 0 5 (B(w2)) are of the form 

[81 x K3, (co Xi x { *}, VsixK3 )] . The homomorphism 

is defined by composing with the reference map c. Note that 

Hence 0 5 (M(w2)) -+ 0 5 (B(w2)) is onto and by the exactness of the braid 

the map 0 5 (B(w2)) -+ 05 (B(w2), M(w2)) must be zero. Thus 

Os(B(w2), M(w2)),...., ker(04(M(w2))-+ 0 4(B(w2))) 

,...., K H2 (M; Z/2) EB H3 (M; 'll/2) 

where KH2 (M; 'll/2) := ker(w2: H2 (M; Z/2)-+ Z/2). 

The map Os(B(w2), M(w2)) -+ 0 4(M(w2)) is injective, by the ex

actness of the braid again, so the map 7f1(£.(B, w2)) -+ 0 5 (B(w2), M(w2)) 

must be zero, by the commutativity of the braid. Therefore 
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is injective. 

If f: M-+ M(w2) represents an element of Aut.(M, w2), then 

a(f) = [M, Jl - [M, id] . 

We have 

The natural map 0 4 (M(w2)) -+ H0 (M) sends a 4-manifold to its signature. 

Since the class w 2 E H2(M; Z/2) is a characteristic element for the cup 

product form (mod 2), it is preserved by the induced map of a self-homotopy 

equivalence of M. Therefore, the image of Aut.(M, w 2 ) in 0 4 (M(w2)) lies 

in the subgroup K H2 (M; Z/2) EB H3 (M; Z/2). Since, the map I is injective 

we should have K H2(M; Z/2) EB H3 (M; Z/2) ~ ima by the commutativity 

of the braid. Therefore ima = KH2 (M; Z/2) EB H3 (M; Z/2). 

Next, we are going to define a homomorphism 

): Aut.(B, w2 ) -+ Aut.(B) . 

For any f E Aut.(B, w 2 ), f := j of: M -+ B is a 3-equivalence. There 

is a unique homotopy equivalence (up to base point preserving homotopy) 

¢1: B -+ B such that ¢1 o c '.::::: f (see [35, Lemma 3.8]). We define 

](f) := ¢1. 

Let g be another element of Aut.(B, w2 ), then f •g is defined by the pair 

(¢1 o¢9 oc, vM)· Therefore ](f• g) = ¢1 o¢9. Let 

0 
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Lemma 2.3.11. There is a short exact sequence of groups 

Proof. For any </> E Isom[7r, 7r2, sM], we have an f E Aut.(M) such that 

co f c::: </> o c (by Lemma 2.2.10). We may assume that the pair (!, llM) 

determines an element of Aut.(M, w2 ) (by Lemma 2.3.11). Then the pair 

(co f, llM) determines an element f of Aut.(B, w2) and by definition )(J) = 

</>. Suppose now that f, g E Isom(w2 )[7r, 7r2, sM] such that h: ¢1 c::: ¢9 • We 

have the following diagram 

K(Z/2, 1) 

! 

The obstructions to lifting (hoc x id, llM o p1) lie in the groups 

So the only non-zero obstructions are in H 1(M; Z/2). The rest of the proof 

follows exactly the same as the proof of Lemma 2.3.3. D 

Corollary 2.3.12. The image of Aut.(M, w2 ) in Aut.(B, w 2 ) is precisely 

equal to Isom(w2 )[7r, 7r2, sM]· 

Proof. Let f E Aut.(M, w2) and </>j denote the image off in Aut.(B, w 2). 

Then ) (</> f) = </>I satisfies </>1 o c = c o f. So </>1 preserves c* [ M] and hence 

</>1 E Isom[7r, 7r2, sM]. Now suppose that¢: B---+ Bis an element of Aut.(B) 

contained in Isom[7r, 7r2, sM]· Then there exists f E Aut.(M) such that 
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¢> o f ~ c o f [33, Lemma 1.3]. There exists f': M ---* M such that f ~ f' 

with w o vM = w2 of' [35, Lemma 3.1]. As a consequence we have f' 
;.. 

= 
;.. 

(!', vM) E Aut.(M, w2). If <l>r E Aut.(B, w2) denotes the image off', then 

since ¢> o c ~ c o f' = j o <l>r we have )(<l>r) = ¢>. Hence the image of 

D 


Let us briefly outline the definitions of the bordism groups H(M, w2) 

and H(B, w2 ). The elements of the group H(M, w2) are pairs (W, F), where 

Wis a compact, oriented 5-manifold with 81W = -M and 82W = M. 

The map F: W ---* M(w2) restricts to hlM on 81W, and on 82W to a 

map f E Aut.(M, w2). Similarly H(B, w2) is the bordism group of pairs 

(W, F), where W is a compact, oriented 5-manifold with 81W = - M and 

82W = M. The map F: w --t B(w2) restricts to con 81W, and on 82W 

to a map f E Aut.(B, w2). 

Lemma 2.3.13. ([35, Lemma3.13]) 'H(M, w2) ~ 'H(B, w2 ). 

In the non-spin case, the map {3: Aut.(B,w2)---* 0 4 (B(w2)) is de

fined by fJ(J) := [M, f] - [M, 2]. 

Lemma 2.3.14. ker({J: Aut.(B, w2) ---* 0 4(B(w2) )) = Isom<w2 >[7r, 7r2, sM] 

and the image ofH(M,w2 ) in Aut.(B,w2) is equal to Isom<w2 >[7r,7r2,sM]. 

Proof. Let f E Aut.(B, w2 ) and suppose first that f E ker {3. Note that the 

map 0 4 (B(w2)) ---* H4 (B) sends a bordism element [N, g] to g*[N] where 

g :=jog. Therefore the image off in H4 (B) is zero when (j o J)*[M] = 

c*[M]. But since (j o J) is a 3-equivalence, by [35, Lemma 3.8] there exists 

</> E Aut.(B) with </> o c = j o f So, c/>*(c*[M]) = c*[M] which means 

)(J) = </> E Isom[7r,7r2,sM]· Therefore ker(fJ) ~ Isom<w2 >[7r,7r2,sM]. 

http:Lemma3.13
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To see the other inclusion let g E Isom(wz)[7r, 7r2 , sM] and remember 

that 

where Z/2 summand is coming from 

Clearly the image of g in 0 4 ( *) is zero and by the above argument the 

image of gin H4 (B) is also zero. Since by Corollary 2.3.12 the image of 

Aut.(M, w2 ) in Aut.(B, w2) is precisely equal to Isom(wz)[7r, 7r2 , sM], there 

is an f E Aut.(M, w2 ) whose image in Aut.(B, w 2) is g. But since the 

class w2 is preserved by a self-homotopy equivalence of M, the image off 
~ 

under the map co a: Aut.(M, w2 ) --+ 0 4 (B(w2}) in coker(d2 ) is zero. By 

the commutativity of the braid, we have the image of (3(g) in coker( d2 ) = 0. 

Hence g E ker((3). 

The result about the image of 'H(M, w2 ) follows from the exactness 

of the braid ([35, Lemma 2. 7)) and the fact that ker(f3) = Isom(wz) (7r, 7r2, sM]. 

D 

The relevant terms of our braid are now: 
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There is an action of Isom(w2 )[7r, 7r2, sM] on the normal subgroup 

...... ,...
which is defined as follows: Let f E Ki, then co f c:::: c. Also let </> E 

Isom(w2 )[7r, 7r2, sM] and </> = J(J;), then </> E Isom[7r, 7r2, sM]· There is a 

homotopy equivalence h: M ---+ M such that c o h = </> o c. Then since 

ho f o h-1 preserves w2 , we can define $.f := (ho f o h-1, VM ). 

We can now state the main theorem of this chapter. It is a general

ization of Theorem 2.2.14. 

Theorem A. Let M be a connected, closed, oriented topological manifold 

of dimension 4. If 7r := 7r1 (M) is a free group, then 

Proof. We have a split short exact sequence 

Any element f will act as identity on im(a) = KH2(M; Z/2) EBH3 (M; Z/2), 

so ,\ is a homomorphism. Also K;. "' K H2 (M; Z/2) EB H3(M; Z/2) and the 

rest of the proof follows as in the spin case. D 

Remark 2.3.15. We have 

Therefore any element of H2(M; Z/2) can be represented by a map 8 2 ---+ M. 

Let 0 =J x E K H2 (M; Z/2) and a: 8 2 ---+ M corresponds to x via the above 

isomorphism. Choose an embedding D4 <-+ M. Shrink 8D4 to a point 
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S2to give a map M -+ M V S 4 . Now let rJ: S3 -+ be the Hopf map, 

S4Sr]: S4 -+ S3 its suspension and rJ2
: -+ S 2 the composition rJ2 = rJ o Sr]. 

Let f be the composite map 

idv,,,2 id Va
M----M V S4 ----M V S2 ----M 

f induces identities on 7r1 and on Hi(M), so f is homologous to the idM 

(but it is not homotopic to the identity, for 'Y is injective). Hence it is a 

homotopy equivalence, by (53, Theorem 5.5]. 

To realize H3 (M; Z/2) as homotopy equivalences, first observe that 

H3 (M) "'Z0AH3 (M) and reduction mod 2 is onto, so by Hurewicz theorem 

for any element of H3 (M; Z/2) there exists a map /3: S3 -+ M. Now the 

following composite map 

id VST/ id V,6
M---- M V S4 ----M V S3 ----M 

is again a homotopy-equivalence. 



Chapter 3 

s-cobordism theorem in the 

free case 

3.1 Preliminaries 

In this chapter we are going to show that the quadratic 2-type with the 

Kirby-Siebenmann invariant determines a classification of topological 4

manifolds with free fundamental group, up to s-cobordism. 

Before we state our theorem, let us first point out that the signature 

of a closed, oriented 4-manifold M, a(M) is given by the signature of the 

usual intersection form 

Note that, when 7r is a free group H2 (M) ~ H2 (M; A) ®1i. Z. Also we have 

Hom1i.(n2 , A) ®A '!l,""' Homz(n2 ®1i. Z, Z). Therefore 

is the integral intersection form st, since H2(M; A) ®1i. '!l, is the largest 

76 




77 CHAPTER 3. S-COBORDISM THEOREM IN THE FREE CASE 

quotient of H2(M; A) on which 7r acts trivially. Therefore the signature of 

M is determined by the formula 

The next lemma will tell us that for M with free fundamental group 

n, there are basically two cases : w2(M) #- 0 and w2 (M) = 0. Following 

[34), we will call them as type (I) case and type (II) case respectively. 

Lemma 3.1.1. M is spin if and only if M is spin. 

Proof. Let u: M --7 K(n, 1) be a classifying map for the fundamental group 

7r. Consider the homotopy fibration 

M~M~K(n,l) 

which induces a short exact sequence 

When n is a free group, we have H 2 (K(n, 1); 'll/2) = 0 moreover since 
~ ~ 

w2 (M) = p*(w2 (M)), Mis spin if and only if M1 is spin. D 

Finally, note that the Whitehead group Wh(n) is trivial for 7r ~ *r'll 

(see [29) or [67]), hence in this case being s-cobordant is equivalent to being 

h-cobordant. Here is our main result for this chapter: 

3.2 Main Result 

Theorem B. Let M 1 and M 2 be two closed, connected, oriented, topo

logical 4-manifolds with free fundamental group and have the same Kirby-

Siebenmann invariant. Then they are s-cobordant if and only if they have 

isometric quadratic 2-types. 
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The proof of Theorem B. If M1 and M2 are s-cobordant, then the inclusion 

of M1 into an s-cobordism between M1 and M2 and the homotopy inverse 

of the inclusion from M2 is an orientation preserving homotopy equivalence 

and thus induces an isometry between the intersection forms. So, M1 and 

M2 have isometric quadratic 2-types. 

Suppose now that M1 and M2 have isometric quadratic 2-types. For 

the type (I) case, let us recall that 

where 7r "' *rZ· The isomorphism can be given by associating the pair 

(a(M), KS(M)) to M, where KS(M) is the Kirby-Siebenmann invariant of 

M, and it is a characteristic class that vanishes exactly when the topological 

tangent bundle of M reduces to a vector bundle bundle, in particular, it 

vanishes if M admits a smooth structure. The latter invariant a(M) is 

the signature of the 4-manifold M. Since M1 and M2 have isomorphic 

intersection forms, we have a(M1 ) = a(M2 ). The hypotheses imply that we 

have a cobordism W between M1 and M2 over K (7r, 1). For the type (II) 

case, note that 

The isomorphism can be given by uf). So two spin 4-manifolds with the 

same signature will be spin cobordant over K(7r, 1) without the assumption 

on the Kirby-Siebenmann invariant. In both cases we may assume that W 

is connected. 

Choose a handle decomposition of W [28]. Since Wis connected, we 

can cancel all 0- and 5-handles. Further, we may assume by low-dimensional 
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surgery that M1 <--+Wis a 2 equivalence. So we can trade all 1-handles for 

3-handles, and upside-down, all 4-handles for 2-handles. We end up with a 

handle decomposition of W that only contains 2- and 3-handles, and view 

Was 

W = M1 x (0, 1] U {2 - handles} U{3 - handles} U M2 x [-1, O] 

which we split into two halves : on one side, M1 and the 2-handles, on the 

other, M 2 and the 3-handles. Looking upside-down at the upper half of W, 

instead of seeing the 3-handles as glued to the lower half, we can view them 

as 2-handles glued upwards to M2 x [-1, O]. Let 3/2 be the level in W that 

appears immediately after all 2-handles have been attached, but before any 

3-handle is attached. Thus the ascending cobordism W3; 2 contains just M1 

and all 2-handles. In its 4-dimensional upper boundary M3; 2, are located 

both the belt spheres of the 2-handles and the attaching spheres of the 

3-handles. 

The strategy for the remainder of the proof is the following: We will 

cut W into two halves, then glue them back after sticking in an h-cobordism 

of M3; 2 • This cut and reglue procedure will create a new cobordism from 

M1 to M2 . If we choose the right h-cobordism, then the 3-handles from the 

upper half will cancel algebraically the 2-handles from the lower half. This 

means that the newly created cobordism between M1 and M2 will have no 

homology relative to its boundaries, and so it will indeed be an s-cobordism 

from M1 to M 2 (see (49, p. 722]) . 

Let us first clarify the shape of M3; 2: a 5-dimensional 2-handle is 

a copy of D 2 x D3
, to be attached by gluing S1 x D3 to M1 . To attach 

such a 2-handle to M, we need to specify where the attaching circle S1 x 0 
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is being sent, but a null-homotopic circle in a 4-manifold is isotopic to any 

other embedded circle. We also need to specify how the thickening of the 

attaching circle is to be glued to M1. Since ?T150(3) = Z/2, there are only 

two ways of doing that, depending on whether the 3-disk D3 in M1 twists 

an even or an odd number of times around the attaching circle. Therefore 

to fully describe M3; 2 all we need is to specify how many odd and how many 

even 2-handles are to be attached. Since the cobordism is over K(?T, 1) the 

attaching map 5 1 x D 3 M1 is null-homotopic, so attaching an even 2--t 

handle is the same as connect summing with 5 2 x 5 2 and if the 2-handle is 

odd then attaching it is the same as connect summing with 5 2 x52 (see [62, 

p.157]). In conclusion, we have 

We may assume that no 5 2 x 5 2-terms are present. We will argue 

that there are no 5 2 x52-summands again in two cases; 

Type (I) Case: First suppose that M1 is not spin, so M1 is not spin. M1 

is simply connected, so every element of H2 (M1; Z/2) is represented by an 

immersed sphere. Since w2(M1) =I= 0, it has nonzero value on some 2-sphere 

I:, whose normal bundle is twisted. Since the normal bundle is preserved 

when we push down into Mi, we may conclude w2(M1) has nonzero value 

on some immersed 2-sphere in M. Note that M1U52 x 5 2 is obtained from 

M1 by surgery on a circle C bounding some 2-disk D C M1, with framing 

determined by the unique normal framing of D, and M1U52 x52 is obtained 

by surgery on C with the other framing. If we take D to be the north polar 

cap of I:, then isotoping C over I: to the south polar cap will interchange 

the framings, since the normal bundle of I: is twisted (see [31, Proposition 
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5.2.4.]). It follows that in this case we have Mitt82 x 8 2 ~ Mitt82 x82 
. 

Type (II) Case: If Mi is spin, two manifolds Mi~82 x 8 2 and Mitt82 x82 

are different, since the latter one has no spin structure. But in this case W 

can be chosen to be spin, so we can assume that W does not contain any 

odd handles. 

From the lower half of W we have M3; 2 ~ Mi~mi(82 x 82 
), while 

from the upper half we have M3; 2 ~ M2ttm2(82 x 8 2), since M3; 2 can 

also be obtained by attaching even 2-handles upwards to M 2 . We have 

• ( ) (C2); l O ( C1) * ( ) .rank( H2( Mi ) ) = rank( H2( M2) ) , smce H2 Mi ~ H2 M2 , so it 

follows that m =mi= m2 . Hence we have a homeomorphism 

Remark 3.2.1. We can conclude that Mi and M 2 are stably homeomorphic 

by using the notion of normal 1-type of a compact manifold (to remember 

the definition see Definition 1.3.1). Kreck (49, Corollary 3] by using a new 

operation, he called subtraction of tori, proved that two closed 4-dimensional 

manifolds with the same Euler characteristic and the same normal 1-type, 

are stably homeomorphic, by adding the same number of 8 2 x 8 2
, if they 

are bordant over the normal 1-type. In the spin case the normal 1-type is 

given by E := B8pin x K(7r, 1) ___i_ BTOP and hence 

On the other hand, in the non-spin case the normal 1-type is given by 

E := B80 x K(7r, 1) _i_. BTOP and 
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Therefore M1 and M2 are bordant over the normal 1-type and so they must 

be stably homeomorphic. 

Let B(Mi) denote the 2-types of Mi and <;: Mi ----+ B(Mi) corre

sponding 3-equivalences for i = 1, 2. We are going to construct a homotopy 

equivalence between B(M1) and B(M2 ). Note that, we have isomorphisms 

7r2(Ci): 7r2(Mi) ~ 7r2(B(Mi)) for i = 1, 2. Since M1 and M2 have isomet

ric quadratic 2-types, we also have the following isomorphisms 

such that 

Start with the composition 

We can think of any Abelian group G as a topological group with discrete 

topology. Then we can define K(G, 1) = BG, which is also an Abelian 

topological group, and K(G, 2) = BK(G, 1) = B 2G. This construction is 

functorial. Hence we have a homotopy equivalence 

which is 7r1-equivariant, since 'ljJ is 7ri-equivariant. We also have another 

7r1-equivariant homotopy equivalence, namely Ex: E7r1 (M1) ----+ E7r1 (M2), 

where the contractible space E7r1(Mi) is the total space of the universal 

bundle over B7r1(Mi) for i = 1, 2. Let 
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Also since B(Mi) is a fibration over B7r1(Mi) with fiber K(n2(B(Mi)), 2) by 

five lemma, we can see that (} is a homotopy equivalence. Summarizing we 

have a homotopy equivalence (} with the following commutative diagram: 

with the following quadratic 2-types, 

and 

where H(Am) is the hyperbolic form on Am EB (Am)*. Next, observe that 

gives us an element in Isom[7r, 7r2, sM] since it is the composition of isome

tries. Let B := B(M) denote the 2-type of M. Remember that we have an 

exact sequence of the form 
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Therefore we can find a¢ E Aut.(B) such that 

Also recall that we have the following short exact sequence by Lemma 2.3.11 

Choose 

i.e. f: M--+ B(w2 ) and j of~¢ o c. Recall that the image of H(M, w 2 ) 

in Aut.(B,w2) is precisely equal to Isom(w2}['rr,7r2,sM]· So from the braid 

diagram for M we know that there exists (W, F) E H(M, w 2 ) which maps 

to f, i.e., F: W --+ B(w2 ) and Fl<'hw = f. We are using the fact that 

H(M, w 2 ) H(B, w 2 ). We will use a comparison of C.T.C. Wall's surgery r:::!. 

program for studying homotopy equivalences with M. Kreck's modified 

surgery program for studying stable homeomorphisms. We have a com

mutative diagram of exact sequences (see [35, Lemma 4.1]) 

where the left-hand vertical sequence is from Wall's surgery exact sequence 

[73, Chap.10]. To obtain the right-hand vertical sequence we use the modi

fied surgery theory of Kreck [49]. 
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The group H(M) consists of oriented h-cobordisms W 5 from M to 

M, under the equivalence relation induced by h-cobordism relative to the 

boundary. The tangential structures T(M x I, 8), is the set of degree 1 nor

mal maps F: (W, 8W) ~ (M x I, 8), inducing the identity on the boundary 

[73, Prop.10.2]. The group structure on this set is defined as for 1-l(M, w2). 

The map 

T(M x I, 8) ~ H(M, W2) 

takes such an element to (W, F) E H(M, w2 ), where F =Pio F. This map 

factors through 0 5 ( M(w2)) by sending such an element to the bordism class 

of (WuM x I,Fufii.). 

Let a 5 E L5 (Z[7r1]) be the image of (W, F). The map 

is onto, see for example [17, Theorem 8] or [41, Lemma 6.9]. Let (W', F') E 

T(M x I, 8) maps to a5 and let (W', P) E H(M, w2 ) be the image of 

(W', F'). Since Pla2 (W') = id E Aut.(M, w2) it will be mapped to c E 

lsom<w2)[7r, 7r2, sM] and remember that )(C) = id8 . Consider the difference 

of these elements in H(M, w2), 

(W", Pt) := (W', P) • (-W, J-1 
• F) E H(M, w2 ) . 

At this point let us quickly review how the group operation is defined in 

H(M, w2): The group structure on H(M, w2 ) is given by the formula 

(W, F) • (W', F') := (W U~w=oiW' W', FU J• F') . 

The inverse of (W, F) is represented by ( -W, P •F) where P represents 

the inverse for f = Fla2 w in Aut.(M, w2). 
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Remark 3.2.2. Let us point out the fact that the map 

T(M x I, 8) ---+ H(M, w2) 

factors through 0 5 (M(w2)) by sending (W', F') E T(M x I, 8) to the bor

dism class of (W' UM x I, PU Pi), see [35, Lemma 4.1]. If (W', P) maps 

exactly to (W, F), exactness of the braid tells us that J '.::::::'. cwhich in turn 

implies </>induces identity homomorphisms on 7r1 and 7r2 . In particular we 

would have, 7r2 ((-1) = i/YEBid, which means in W 3-handles cancel 2-handles. 

But then W would be an h-cobordism between M1 and M2. 

The element (W", F") E H(M, w2) maps to 0 E L5 (Z[7r1]). By the 

exactness of the right-hand vertical sequence there exists an h-cobordism 

T of M which maps to (W", F"). Let f denote the induced homotopy 

self equivalence of M. By construction we have a homotopy commutative 

diagram 

where c o f = j o f 

Remark 3.2.3. Before we found an f E Aut.(M) we made a choice, we 

chose an JE Isom<w2
) [7r, 7r2 , sM]· If we had chosen a different representative, 

say g, then we would end up with a g E Aut.(M) such that co f '.:::::::'.cog • 

But then 7ri(f) = 1ri(g) for i = 1, 2 and this is what is important for us. 

1Note that 7r2 ((- o !) = ijJ EB id and also (-1 of gives us a self-

equivalence of M3; 2 which we will denote by <P. Now, we put the s-cobordism 

Tin between two halves of Wand see what happens to 2- and 3-handles. 
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To translate everything into algebra, we proceed as follows: We view 

M3; 2 as M3; 2 ~ M1~m(82 x 8 2 ) and we denote by Xk the class of 8 2 x 1 

and by xk the class of 1 x 8 2 in the kth 8 2 x 8 2-summand. The classes xk 

are the classes of the belt spheres of the lower 2-handles, and they bound 

in the lower cobordism. We write 

Now look at M3; 2 from upwards as M3; 2 ~ M2~m(82 x 8 2). This decompo

sition is obtained by adding upside-down 2-handles to M2 in the upper half 

of W. Respective summands in the decomposition do not correspond by a 

homeomorphism unless M1 ~ M2 . Denote by Yk the class of 8 2 x 0 and by 

Yk the class of 0 x 8 2 in the kth 8 2 x 8 2-summand of this latter splitting. The 

classes Yk are the classes of the attaching spheres of the upper 3-handles, 

and they bound in the upper cobordism. We write 

A good self-equivalence of M3; 2 will be the one that sends the class 

Yk onto Xk, thus guaranteeing that the attaching sphere Yk of each 3-handle 

has algebraic intersection 1 with the belt sphere Xk of the corresponding 

2-handle. But since 7r2 ((-1 of) = 'ljJ EB id, we have 

D 




Chapter 4 

P D2 Fundamental Group 

4.1 The structures of 7r2 and f(7r2) 

We start this section by giving the definition of Poincare duality groups. 

Definition 4.1.1. A group G is said to be of type F P if the augmen

tation Z[G]-module Z admits a finite projective resolution over Z[G]. G 

is said to be an n-dimensional Poincare duality (PDn) group if it is F P, 

Hi(G, Z[G]) = 0 for i # n and the dualizing module D = Hn(G; Z[G]) '""Z, 

where n = cdG. 

There are natural isomorphisms Hi(G, -) C::! Hn-i(G, D ® -) [13, 

TheoremlO.l, p.220]. If G acts trivially on D, then G is said to be orientable 

(i.e., if D is isomorphic to the augmentation module Z). Note that if G is 

an orientable PDn group then we have 

as in Poincare duality for closed, orientable manifolds. 


Remark 4.1.2. If G is a group such that there exists a closed K(G, 1)

88 
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manifold Y, then G is a Poincare duality group and is orientable if and only 

if Y is orientable. 

Let us further recall that a Poincare duality complex of dimension n 

(or P Dn-complex for short) is a finitely dominated CW-complex exhibiting 

n-dimensional equivariant Poincare duality. One has the following rela

tion between Poincare duality groups and Poincare duality complexes: the 

classifying space K(G, 1) is a Poincare duality complex if and only if G 

is a Poincare duality group (46]. The only P Di-group is Z, hence every 

P Di-complex is homotopy equivalent to si. Eckmann, Linnell and Muller 

showed that every P Drgroup is the fundamental group of a closed aspher

ical surface (see [25]), hence every P D2-complex is homotopy equivalent to 

a closed surface. 

Let M be a closed, connected, oriented, smooth or topological 4

manifold with fundamental group a P D2 group, 7r ""' 7ri (F), where F is a 

closed, oriented aspherical surface, i.e., F = K (7r, 1) = B7r. 

Let C* = C*(M; A) be the cellular chain complex of M, and let 

Bi c Zi denote the i-dimensional boundaries and i-cycles in Ci respectively. 

of the augmentation module 

Since the cd 7r = 2, Bi is a projective A-module (13, p.184]. Also since 

M is simply connected Hi = 0. In particular, Zi = Bi is projective, so 

C2 ""' Zi EB Z2 and hence Z2 is also a projective A-module. Dualizing the 

following partial projective resolution of 7r2 
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gives us the exact sequence 

0-7r~ - z~ -cJ -coker(ot) -o 

Now 7r is a P D2 group, so vcd 7r = cd 7r = 2. The only finite subgroup of 

7r is 1 and if* ( { 1} , - ) = 0. So, coker( at) is cohomologically trivial which 

implies projdimA coker(ot)::; 2 [13, p. 287]. Therefore 7r~ := HomA(7r2, A) is 

a projective A-module, by [13, Lemma 2.1, p.184]. We have another short 

exact sequence 

O-H2(7r;A)-H2(M;A)-7r~-o 

arising from the Serre spectral sequence of the fibration M --+ M --+ K (7r, 1) 

(recall Lemma 2.1.3). Since 7r is a PD2 group H 2(7r; A) '.:::::'. Z. Let P denote 

the projective module 7rt then by Poincare duality we have 

By [44], there exists a 2-connected degree-1 map 9M: M --+ Z such that 

ker(gM) = P (see also section 2.4). Then by [73, Lemma 2.3], Pis actually 

stably free. Summarizing, we have proved: 

Proposition 4.1.3. Let M be a closed, connected, oriented, smooth or topo

logical 4-manifold with fundamental group a P D 2 group and let 7r2 denote 

7r2 (M). Then we have 

where P is a stably free A-module. 

We now turn our attention to r(7r2) where r is the Whitehead's 

quadratic functor. 
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Proposition 4.1.4. f(7r2) "'Q EB Z, where Q is a projective A module. 

Proof. Recall that r(G) is the Whitehead's quadratic functor defined on 

Abelian groups. If G is a A-module, then r(G) inherits from G a A-module 

structure. We have f(PEBZ) "'f(P) EBZEBP so we need to show that r(P) 

is a projective A-module. Let P EB P' ~ F where F is a free A- module. We 

have the isomorphism f(F) "'f(P) EB r(P') EB P 0 P'. We know that f(F) 

is a free A-module (see Remark 2.1.9) and by Proposition 2.1.8 P 0 P' is a 

projective A-module. Hence Q := r(P) is a projective A-module. D 

4.2 Spin Case 

The purpose of this section is to state and prove a theorem calculating the 

group Aut.(M), when Mis a spin 4-manifold with P D 2 fundamental group 

7r. Our main result is Theorem 4.2.11. 

Proposition 4.2.1. The relevant spin bordism groups of M are given as 

follows: 

nfpin(M) "'Ofpin(*) EB H2(M; Z/2) EB H3(M; Z/2) EB Z, 

O~pin(M) "'H1(M) EB H3(M; Z/2) EB Z/2 . 

Proof. For the line p + q = 4 in the Erterm, we have nfpin(*) "' Z in 

the (0, 4) position, H2(M; Z/2) in the (2, 2) position, H3 (M; Z/2) in the 

(3, 1) position, and H4(M) "' Zin the (4, 0) position. The differential for 

(p, q) = (3, 1) is zero for Sqi(x) = 0 if i > deg(x) and since Mis spin the 

differential for (p, q) = (4, 1) is also zero. So all these terms survive to E 00 • 

For the line p + q = 5, we have 3 non-zero terms : H1(M) in the 
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(1, 4) position, H3 (M; Z/2) in the (3, 2) position and H4 (M; Z/2) ~ Z/2, 

in the (4, 1) position. Again all these terms survive to E 00 • D 

Since a finitely generated group is necessarily countable, 7r is count

able. Then any finitely generated projective A-module is countable. Hence 

we have that 7r2 is countable. Let 

Xo = *,X1 = K(Z,2),··· ,XN = K(ZN,2),··· 

where zN is the N-fold product of Z. Consider the sequence of maps 

where ik 's are inclusions. We can take B to be homotopy equivalent to the 

mapping telescope of the above sequence and we have, 

Hn(B) '""'limHn(Xk) 
--+ 

Hn(B; Z/2) rv lim Hn(Xk; Z/2) 
+-

Proposition 4.2.2. Let B denote the 2-type of a spin 4-manifold M with 

P D2 fundamental group. Then 

if i = 0 

if i = 2 

Proof. Using the Serre spectral sequence of the fibration 

M---+ M---+ K(7r, 1) 
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we have the following isomorphisms: 

H3(B) ~ H1(7r1, 7r2) "'H1(7r1) , 


H4(B) ~ Ho(7r1, f(7r2)) EB H2(7r1, 7r2) "'Z ®1i. f(7r2) EB Z, 


Hs(B) "'H1(7r1, f(7r2)) ~ H1(7r1) . 


D 

In the calculations of O~pin(B), we will have to understand the Steen

rod operation Sq2
: H 3 (B; Z/2) -+ H 5 (B; Z/2). Hence before we start cal

culating the bordism groups, we will first find H 3 (B) and H 5 (B). Recall 

that we have a 2-connected degree-1 map f: M -+ Z where Z is an 8 2 bun

dle over F (Z is the minimal model of M and in the spin case by (55] Z is 

trivial, i.e. Z '.:::'. F x 8 2). Also since T: T. -+CW defined by T(X) = B(X) 

(second stage in the Postnikov tower) is a covariant functor, we have a 

2-connected map g : B -+ B (Z), that is 

go cM = Cz of. The map g is a fibration with fibre K(P, 2). We will use 

the cohomology Serre spectral sequence associated to g. 

The non-zero terms on the p+q = 3 line are H 1 (B(Z); H 2 (K(P, 2))) 

and H 3 (B(Z)). We have 

H 1 (B(Z); H 2 (K(P, 2))) "'H1(7r; Hom(H2 (K(P, 2)), Z)) 

~ H 1 (7r; Hom(P, Z)) "'Ext;(P, Z) = 0 
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by [13, Proposition 2.2, p.61] and since Pis a projective module. Hence we 

have, 

H 3 (B) rv H 3 (B(Z)) ~ H 1 (F; H 2 (B(i))) 

rv .H 1 (7r; H2 (K(Z, 2)) '.:::::'. H 1 (7r) 

Next, we consider the line p+q = 5: non-zero terms are H 1(B(Z); H 4 (K(P, 2))), 

H 3 (B(Z); H 2 (K(P, 2))) and H 5 (B(Z)). By Whitehead exact sequence we 

have H4 (K(P, 2)) rv f(P) which is a projective A-module since Pis projec

tive. As a consequence 

H 1 (B(Z); H 4 (K(P, 2))) rv H 1(7r; H 4 (K(P, 2))) 

rv H 1 (7r; Hom(H4 (K(P, 2)))) rv H 1(7r; f(P)) = 0 

by [13, Proposition 2.2, p.61]. Also 

Hence we have, 

Summarizing we have proved: 

Lemma 4.2.3. The third and fifth cohomology groups of B are given as 

Remark 4.2.4. We can get the above result by simply considering the 

fibration B ---+ B ---+ K(7r, 1). Actually this is the reason why we didn't 

check any differentials in our calculations above, because for example, we 

know that H 3 (B) rv H 1(7r; H 2(B)) rv H 1 (7r; Hom(P EB Z, Z)) '.:::::'. H 1 (7r). But 

to see the cohomology ring structure we used the fibration g. 
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Next, we are going to calculate the spin bordism groups of B. 

Proposition 4.2.5. Let B denote the 2-type of a spin 4-manifold with P D 2 

fundamental group. We have 

Proof. For the line p+q = 4, the non-zero terms on the E 2-page are H4(B) 

in the (4, 0) position, H3 (B; Z/2) in the (3, 1) position, H2(B; Z/2) in the 

(2, 2) position, and Zin the (0, 4) position. The differential d2: El,1 -t E~'2 

becomes the homomorphism d2 : H4 (B; Z/2) -t H2 (B; Z/2), which is the 

dual of Sq2 : H2(B; Z/2) -t H4 (B; Z/2). Now consider the following short 

exact sequence: 

arising from the filtration for H 2 (B; Z/2), where H 2 (B; Z/2yrr is the largest 

submodule of H 2 (B; Z/2) on which 7r acts trivially. Then we have the 

following commutative diagram: 

O--- H 2 (F; H 0 (B; Z/2)) --- H 2 (B; Z/2) ~ H 2 (B; Z/2)7r --- 0 

2 2 2! ! !Sq =0 Sq • Sq 

o--- H 2 (F; H 2 (B; Z/2)) ---H4(B; Z/2) __!!._. H 4(B; z;2yrr---o 

The leftmost Sq2 is given by the Sq2
: H0 (B; Z/2) -t H2 (B; Z/2) (see [63] 

and [64]), which is zero. Also note that Sq2
: H 2 (B; Z/2) -t H4 (B; Z/2) is 

injective. Let a E H2 (B; Z/2), if a E ker(Sq2 ) then 

0 = Sq2(a) =?- p*(Sq2 (a)) = 0 =?- Sq2 (p*(a)) = 0 =?- p*(a) = 0 

Together with the naturality of Sq2 
, we have 
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Note that H 2 (B; 'll/2) ,..., Homz;2 (H2 (B; 'll/2), 'll/2), by the universal coef

ficient theorem, so for 0 =J a E ker(8q2
) ,..., H 2(F; 'll/2) c H2(B; 'll/2) we 

have a unique x E H2 (B; 'll/2) such that a(x) = 1 and a(y) = 0 for any 

y =J x. Consider the following equation 0 = 8q2(a)(z) = a(d2(z)) which 

implies x can not be equal to d2 (z) for any z E H4 (B; 'll/2). Sox represents 

a non-zero class in coker(d2 : H4 (B;'ll/2)--+ H2 (B;'ll/2)). Conversely let x 

represent a non-zero class in coker(d2 ) and a be the dual cohomology class, 

then 8q2 (a)(z) = a(d2 (z)) = 0 for all z E H4 (B; 'll/2), hence a E ker(8q2
). 

Also note that H2 (B; 'll/2),..., 'll &h H2 (B; 'll/2) EB H2 (7r; 'll/2) and we have 

Hence E~,2 rv 'll/2. Let UB: B --+ F be the classifying map. Consider the 

following lifting problem 

/ / .( B!UB 

F~F 
The lifting obstructions lie in Hi+l(F; 1Ti(B)). However, since cd 7r = 2, 

note that Hi+l(F;7ri(B)) = 0 for all i. Lets: F--+ B be a lift of id, i.e. 

uBos =id. Consider sopr1: F x (81 x81) --+ B where we use the non-trivial 

spin structure on the (81 x 8 1 ) factor. Therefore E2;i C::! 'll/2. 

For the (3, 1) position, we know that d2 : H5 (B; 'll) --+ H3 (B; 'll/2) is 

reduction mod 2 composed with the dual of 8q2 , where by Lemma 4.2.3 we 

have 

which is an isomorphism by [63] and [64], so its dual is also an isomorphism 

and reduction mod 2, H5 (B; 'll) --+ H5 (B; 'll/2), is also surjective. Hence 
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d2 is surjective in this case. Therefore, on the line p + q = 4, the groups 

which survive to E 00 are Z in (0, 4) position, Z/2 in (2, 2) position, and a 

subgroup of H4 (B) in the (4, 0) position. 

The non-zero terms on the line p + q = 5 are: H5(B), H4(B; Z/2), 

H3(B; Z/2) and H1(B). We know that Sq2 
: H3 (B; Z/2) ~ H5 (B; Z/2) 

is injective, hence its dual d2 : H5 (B; Z/2) ~ H3 (B; Z/2) is surjective, i.e. 

Er2 = 0. We will show that the differential d2 : HB(B) ~ H4(B; Z/2) is 

onto the kernel of d2 : H4 (B; Z/2) ~ H2 (B; Z/2). This will follow from the 

exactness of the sequence 

by considering the following commutative diagram associated to the fibra

tion B ..!!.+ B ~ F 

0 0 0 

We want to show that the middle row is exact: 

since Sq1 = 0 (H2 (B) ~ H2(B; Z/2) is onto), hence im c ker. Let 

x E H4 (B; Z/2) such that Sq2 (x) = 0 and p*(x) = x. There exists 



CHAPTER4. PD2 FUNDAMENTALGROUP 98 

y E H 2 (B; Z/2) such that Sq2 (Y) = x, since the top row is exact. But x E 

H4 (B; Z/2Y implies y E H2 (B; Z/2Y. From the filtration for H 2(B; Z/2) 

we know that p*: H2 (B; Z/2) --+ H2 (B; Z/2Y is onto. Hence there exists 

a y E H2 (B; Z/2) with p*(y) = y. If the difference y2 - x is not 0, then 

there is a non-zero z E H 2 (F; H 2 (B; Z/2)) such that y2 
- x = u*(z). Then 

O= Sq2 (y2 
- x) = u*(Sq2 (z)). But since both Sq2 at the bottom row and 

u* are injective, u*(Sq2 (z)) can't be zero. Hence y 2 = Sq2 (y) = x. As a 

result the following sequence is also exact 

where the first map is the dual of Sq2
: H 4 (B; Z/2) --+ H 6 (B; Z/2). With 

the surjectivity of reduction mod 2, H6 (B; Z) --+ H6 (B; Z/2), we can con

clude that d2 : H6 (B; Z) --+ H4 (B; Z/2) is surjective onto the kernel of 

the differential d2 : H4 (B; Z/2) --+ H2(B; Z/2). Finally note that we have 

ker(d2 : H5 (B)--+ H3(B; Z/2)) = ker(H5 (B)--+ H5 (B; Z/2)) reduction mod 

2. Therefore, on the line p + q = 5, the only groups which survive to E 00 

are H1(B) in the (1, 4) position, and a subgroup of H5 (B) in the (5, 0) 

position. D 

Let A denote the remaining subgroup of H5 (B) in O.~pin(B). We are 

going to show that Ac im('rr1 (£.(B))--+ O.~pin(B)). Let us review the basic 

information that will be used. Recall that the fundamental group, 7r, of F 

has a one-relator presentation 

where [xi, Yi] denotes XiYiXi 1Yi 1. Let Xi: s;. --+ B and Yi: st. --+ B for 

i = 1, ... , g, also denote generators of H1 (B),....., H1 (F),....., Z2Y, here g denotes 
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the genus of F. By Serre spectral sequence H5 (B) ,...., H 1 (n) ,...., H 1(F), and 

then by the Poincare duality and universal coefficient theorem H 1 (n) ,...., 

H1(n) ~ Hom(H1(F), Z). A basis for H 1(F) determines a dual basis for 

Hom(H1 (F), Z), so dual to xi is the cohomology class x; assigning the value 

1 to xi and 0 to the other basis elements, and similarly we have a cohomology 

classy; dual to Yi· We are going to construct a map !.fJxi: B x 8 1 
- B cell 

by cell and skeleton by skeleton. Note that, since we want !.fJxi to be an 

adjoint map for an element in n1(£.(B) ), on B V 8 1 = Bx {s0 } U {b0 } x 8 1
, 

!.fJxi should be defined as 

!.fJxi (b, so) = b and !.{)xi (bo, s) = bo . 

The 1-skeleton of B is B<1
) ~ V~=l (8;k V 8~k). To construct B x 8 1 from 

B V 8 1 , first we have to attach 2-cells of the form D;k x D 1 and D~k x D 1 
. So, 

we are going to define !.fJxi first on 8;k x 8 1 and 8~k x 8 1 
. Since on {b0 } x 8 1 the 

map should be constant, it factors through 3;k x 8 1/{bo} x 8 1 3;k v3;k.rv 

Also we know that our map should be identity on 8;k x { s0}. So the 

only freedom we have is on the part 8;k. Recall that n 2 ,...., Z EB P and let 

a: 8 2 
- B be the generator of Z c n2 . Define !.fJxi on {b} x 8;k as 

O" ifk=i 
!.fJxi ( { b} x 8;k) = 

{ * ifk#i 

i.e. we have a commutative diagram 

8; x 81 ~B 

·1 ~ 

3;i v 3;i 

and on 8~k x 8 1 we define !.{)xi as 
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By Serre spectral sequence, H2 (B) rv H2(7r) EB H0 (7r, H2 (B)) rv H2(7r) EB 

ZEB H0 (7r, P), where H 2 (B) rv 7r2 ~ Z EB P. We remark that a*[S2] E 

H2 (B), which for notational ease we will again denote by a, generates the Z 

summand and we have (rpxJ*: H2(B x S1
) ---+ H2 (B) with (rpxJ*(xi@z) =a, 

where z denotes the generator of H1 (S1 ). Now, we have defined our map on 

B VS1 UBC1) x S1 . Next, we are going to attach 3-cells of the form Dz x D 1
, 

where Dz represents a 2-cell of B with attaching map '!/Jt: st ---+ B(l). Note 

that S 2 = 8(Dz x D 1) =St x D 1 U Dz x {O, 1 }. If a 2-cell of Bis attached 

nullhomotopically, then Cr?xi o 'l/Jtla(DlxDI) = 0 E 7r2(B). There should be 

only one 2-cell Dz 
0 

of B which is not attached nullhomotopically. We need 

to consider only Dz x D 1 where Dz is attached along the loop given by 
0 0 

the product of the commutators of the generators, [x1 , y1] ... [x9 , y9 ] . We 

are going to show that [Cr?xi o '!/Jt0 ] = 0 E 7r2(B). To start with we have 

• 1• (S2
) = ((S1 v S

YI 
1 )v(-S1 

YI 
v S

Yg 
1 )v(-S1 

Yg 
)) x S1 U

XI 
V-S1 )V·. ·V(S

Xg 
1 v-S1

'f/to XI Xg 

cf.>t(Dl), where (-) denotes the opposite orientation and cf.>t: Di ---+Bis the 

characteristic map. Then Cr?xi o 'l/Jto (S 2
) = Cr?xi ( ( s;i V -s;i)) x S 1 U cf.>t (Di) = 

s;i Va - s;i Va a - a = 0 E 7r2(B). So Cr?x; extends over 3-cells. Since 

7ri (B) = 0 for i 2:: 3, there are no more obstructions to extend Cr?x; to B x S1
. 

To use cup products we will pass to cohomology. We will first consider the 

map 

which is given by rp;; (a) = a for any a E H 1 (B), i.e., Cr?x; is projection to 

the first component in this dimension. Also we will consider 
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Z E8 Hom7r(P, Z). We have a* dual to a which generates the Z summand 

in H 2 (B). Also let z* denote the dual cohomology class in H 1 (S1
). Then 

H 1we have cp;; (a*) = a* + x; ® z*. Now, take YI E ( B) and consider 

YIU (a*) 2 E H5(B) '.:::::'. H 1 (7r; H4 (B)). We have cp;JyI U (a*) 2
) =YIU (a*+ 

x; ® z*) 2 =YIU ((a*)2 + 2xI U a*® z*) =YIU (a*) 2 + 2xI U YIU a*® z*. 

Observe that YIU (a*) 2 E H 1 (7r; H4 (B)) ~ H5 (B) and 2x; UYIU a*® z* E 

H 2 (7r; H2 (B)) ® H 1(S1) c H4 (B) ® H 1 (S1
). Note that x; u YI generates 

H 2 (7r) and c*(x; U YIU a*)= M*, where M* denotes the dual cohomology 

class of the fundamental class [M] of M. In summary we have 

YIU (a*) 2 
- (2x; U YIU a*)® z* --~ M* ® z* 

Now if we dualize back to homology 

Remark 4.2.6. To consider 7r1 (£.(B)), we have to choose a base point 

f E £.(B). Then 7r1(£.(B)) = 7r1(£.(B)f, !) where by £.(B)f we mean all 

homotopy self-equivalences of B homotopic to f. This is because £.(B) is 

not path connected, in fact 7ro(£.(B)) = Aut.(B) is the group of homotopy 

classes of homotopy equivalences of B. We have chosen our base point to 

be the identity map of B. 

By the exactness of the braid A is mapped injectively into fi~pin (B, M) 

and we are going to identify A with its image in fi~pin (B, M). By the com

mutativity of the braid, im(7r1(£.(B)) ~ fi~pin(B, M)) =A. Furthermore, 
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again by the exactness of the braid we have 1(A) = id E Aut.(M) and 

ker(O~pin(B, M)-+ nfpin(M)) =A. 

Corollary 4.2.7. The quotient group O~pin(B, M)/A is isomorphic to the 

direct sum Z &h H2 (M; Z/2) E9 H3 (M; Z/2) and it injects into Aut.(M). 

The image of o: is equal to Z &h H2(M; Z/2) E9 H3(M; Z/2). 

Proof. The map O~pin(M) ~ n;pin(B) sends H1(M) isomorphically and 

H3 (M; Z/2) E9 H4 (M; Z/2) to zero. Therefore 

Recall that nfpin(M) '"" Z E9 H2 (M; Z/2) E9 H3 (M; Z/2) and nfpin(B) c 

Z E9 Z/2 E9 H4 (B) where the Z/2 summand in nfpin(B) is isomorphic to 

H2(n; Z/2). Note that H2 (M; Z/2) '""Z0AH2(M; Z/2)E9H2(n; Z/2). Hence 

The map n1(E.(B)) -+ O~pin(B, M)/A is zero by the commutativity and 

the exactness of the braid, since the map n~pin (B' M) IA -+ nfpin (M) is 

injective. Therefore T O~pin(B, M)/A-+ Aut.(M) is injective. 

For the last part of the corollary, let f : M -+ M represent an element 

of Aut.(M). The natural map nfpin(M)-+ H0 (M) sends a spin 4-manifold 

to its signature. The signature is preserved by a homotopy equivalence, it 

follows that o:(f) E H2 (M; Z/2)E9H3 (M; Z/2). Moreover f induces identity 

on H2(n;Z/2) '""Z/2, so we have imo: ~ Z 0A H2(M;Z/2) E9 H3 (M;Z/2). 

On the other hand since, the map n;pin (B' M) IA -+ nfpin (M) and 1' is 

injective Z 0A H2 (M; Z/2) E9 H3 (M; Z/2) ~ imo:, by the commutativity of 

the braid. Therefore imo: = Z 0A H2(M; Z/2) E9 H3(M; Z/2). D 
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Once again, we look for a relation between c* [M] and the equivariant 

cohomology intersection pairing BM. We first remark that the map Brr2 , 

defined for free fundamental groups, gives us a map Z ®A f(7r2 ) -+ Her(7r~) 

which does not have to be injective for PD2 groups. We are going to use 

a different map F: H4(B)-+ Her(H2(B; A)) which is defined in [19], to get 

sM. Recall that the equivariant cohomology intersection pairing is defined 

by 

BM: H 2(M; A) x H 2(M; A)-+ A; (u, v)-+ v([M] nu)= (u U v)[M] . 

Let Her(H2 (B; A)) be the group of Hermitian pairings on H2 (B; A). The 

right action of 7r1(B) on the chains of the universal cover B induces a left 

A-module structure on H2(B; A). We are going to define a natural map 

F: H4 (B) -+ Her(H2 (B;A)). To define F we need an equivariant chain 

approximation to the diagonal. We will use the Alexander-Whitney diagonal 

chain approximation map (any two diagonal approximations are naturally 

chain homotopic [12, p.327]), which is a A-module chain map 

defined as E(O") = L:p+q=* O"JP ® PLO" where O" JP and PLO" denote the front 

p-face and back q-face of a respectively, with A acting by 

C*(B) ® C*(B) x Z[7r] -+ C*(B) ® C*(B) 

( cr®cr',Ln9g)-+ 2:n9 (crg®cr'g). 
gEn gEn 

Apply - ®AZ to obtain a Z-module chain map 
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where C*(B) denotes the left A-module cellular chain complex with the 

same additive structure and 

Given a 4-chain x E C4 (B; Z), we have 

~(x) = L:x~ ® x~ E (C*(B) ®A C*(B))4 = L (Cp(B) ®A Cq(B)). 
i p+q=4 

The cap product of x and a 2-cochain v E C2 (B) is the 2-chain 

x n v = L x~'v(xD E C2(B) 
i 

with v(xD = 0 E Z[7r] if the dimension of x~ is not 2. Now, define F by 

F(x)(u, v) = u(x n v) = (u U v)(x) . 

Recall that c: M ---+ B is a 3-equivalence. The construction of F applied to 

M yields SM, the usual cup product form. Thus the naturality implies that 

F(c*[M]) =SM· In other words we have a commutative diagram 

H2 (B; A) x H2 (B; A) F(c.[M]) A 

c*xc*!~ rBM 

H 2
( M; A) x H 2 

( M; A) = H 2 (M; A) x H 2 ( M; A) . 

Therefore for any u, v E H2 (B; A), we have 

F(c*[M])(u, v) = sM(c*(u), c*(v)) = sM(u, v) = (u U v)([M]) 

where we identify H 2 ( B; A) with H 2 ( M; A) via c*. Following [7], we use the 

notation P2 (7r) for the class of all oriented 4-dimensional Poincare complexes 

X for which there is an isomorphism 7r "'7r1 (X). 
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Theorem 4.2.8 ([19]). Let Mi E P 2 (n), i = 1, 2, and let ci: Mi---+ B are 3

equivalences over a 2-stage Postnikov system B. Then M 1 and M2 have the 

Therefore any cf> E Aut.(B) which preserves c*[M], also preserves 

the intersection form sM. Let us define 

Lemma 4.2.9. 

Proof. If cf> E Aut.(B) and c: M ---+ B is the classifying map, then we 

have {3(¢) = [M, cf> o c] - [M, c]. The natural map n:pin(B) ---+ H4 (B) 

sends a bordism element to the image of its fundamental class. The image 

of this element in H4(B) is zero when c/>*(c*[M]) = c*[M], so ker({J) ~ 

Isom[n, n2 , c*[M]]. To see the other inclusion, first recall that by Proposition 

4.2.5 we have 

it is easy to see that the projection of f3(4>) to the first and third compo

nents of the direct sum above are zero. Since cf> is a homotopy equivalence 

it will induce the identity map on the Z/2 summand, so the projection of 

{3( cf>) to the middle component is also zero. Hence we have cf> E ker({J) and 

D 


Corollary 4.2.10. The images of Aut.(M) or H(M) in Aut.(B) are pre

cisely equal to Isom[n, n2 , c*[M]]. 
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Proof. For each[!] E Aut.(M), we have a base-point preserving self-equivalence 

¢1 : B-+ B such that co f = ¢1 o c. Hence ¢1 will satisfy the following 

since the fundamental class in H4 (M) is preserved by an orientation pre

serving homotopy equivalence. We see that im(Aut.(M) -+ Aut.(B)) is 

contained in lsom[7r, 7r2 , c*[M]]. 

To see the other inclusion, first observe that H2 (M; Q) =I- 0. Let 

¢: B-+ B be an element of Aut.(B) such that ¢*(c*[M]) = c*[M]. By [33, 

1.3], there exists a lifting f : M -+ M such that c o f ~ </> o c. It follows (as 

in [33, p. 88]) that f is a homotopy equivalence and the image of f is ¢. 

The result for the image of H(M) follows by the exactness of the 

braid ([35, Lemma 2. 7]) and the fact that ker(,B) = lsom[7r, 7r2 , c*[M]]. D 

Recall that A denotes the remaining subgroup of H5 (B) in n~pin(B) 

and A c im(7r1 (£.(B)) -+ n~pin(B)). Before we put the pieces of braid 

together, we will divide both n~pin(B) and fi~pin(B, M) by A, which we 

can do by the commutativity and the exactness of the braid. Here are the 

relevant terms of our braid diagram: 
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There is an action of Isom[7r, 7r2 , c*[M]] on the normal subgroup 

Ki := ker(Aut.(M) --+ Aut.(B)). Let [f] E Ki, then co f ~ c also let 

¢ E Isom[7r, 7r2 , c*[M]], then by [33, Lemma 1.3] there is h: M--+ M, a ho

motopy equivalence , such that co h ~ ¢ o c. Now define ¢.f :=ho f o h-i. 

Since c o ( h o f o h-i) ~ ¢ o c o f o h-i ~ ¢ o c o h-i ~ c o h o h-i ~ c, this 

action is well defined. 

Now we can state the main theorem of this section: 

Theorem 4. 2.11. Let M be a connected, closed, oriented smooth or topo

logical spin manifold of dimension 4. lf 7r := 7ri(M) is a PD2 group, then 

where SM: H2 (M; A) x H2 (M; A) --+A is the intersection form on 7r2 . 

Proof Let K 2 := ker(H(M) --+ Isom[7r, 7r2 , c*[M]]), then 

Isom[7r, 7r2 , c*[M]] "-' H(M)/ K2 . 

By the exactness and the commutativity of the braid we have 

and it maps to 1 E Aut.(M) by the commutativity of the braid. This gives 

the splitting of the short exact sequence 

0--+ Ki --+ Aut.(M) --+ Isom[7r, 7r2 , c*[M]] --+ 1 . 

It follows that 

Aut.(M) "-'Ki ~ Isom[7r, 7r2 , c*[M]] 

with the conjugation action of Isom[7r, 7r2, c*[M]] on the normal subgroup 

Ki defining the semi-direct product structure. 
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The braid diagram shows that the map "'( is an injective homo

morphism. To see this, it is enough to show that a is a homomorphism 

on the image of "'f· Let 1(W, F) = f and 1(W', F') = g. Recall that 

a(Jog) =a(!)+f*(a(g)). We have to show that f*(a(g)) = a(g). By Corol

lary 4.2.7, a(g) E Z ®A H2(M; Z/2) EB H3 (M; Z/2). Any element f in the 

image of"'( is trivial in Aut.(B), i.e., the image ¢J = id3 and co f = c. Since 

c*: H2(M; Z/2) --+ H2 (B; Z/2) is an isomorphism, facts as the identity on 

H2 (M; Z/2), so it also acts as identity on Z ®A H2 (M; Z/2) C H2 (B; Z/2). 

Moreover since H3 (M; Z/2) '"" Hi(M; Z/2) and c induces isomorphism on 

Hi(M; Z/2, so f also acts as identity on H3 (M; Z/2). Now a diagram chase 

shows that "'( is a homomorphism. 

Therefore we have a short exact sequence of groups and homomor

phisms 

Moreover, Ki = im "'( ([35, Corollary 2.13]) and Ki is mapped isomorphically 

onto Z ®A H2(M; Z/2) EB H3(M; Z/2) by the map a. 

The conjugation action on Ki agrees with the induced action on 

homology under the identification Ki '"" Z ®A H2 (M; Z/2) EB H3 (M; Z/2) 

via a (see the proof of Theorem A). It follows that 

as required, with the action of Isom[7r, 7r2 , c*[M]] on the normal subgroup 

Z ®A H2(M; Z/2) EB H3 (M; Z/2) is given by the induced action of homotopy 

self-equivalences on homology. D 
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Remark 4.2.12. By Serre spectral sequence we have 

hence 

Therefore for any x E 7r2 0A Z/2 there exists a map a: 8 2 ---+ M. As in the 

8 2free fundamental group case, let T/: 8 3 
---+ be the Hopf map, then the 

following composition is a homotopy self-equivalence of M. 

pinch id V772 id Va
M----MVS4 ----Mvs2 ----M. 

To realize H3 (M; Z/2) as homotopy equivalences, first observe that 

since 7r is a P D2 group and F is an aspherical surface. So the Hurewicz 

homomorphism is trivial this time. We are going to construct the homotopy 

self-equivalences by using the minimal model for M. The strongly minimal 

PD4-complexes with fundamental group a PDrgroup are the total spaces 

of 8 2-bundles over aspherical closed surfaces. When M is a spin manifold, 

the minimal model Z will be trivial, i.e., Z '.:::::'. F x 8 2 (see [55, Theorem 2]). 

We have 

H3(M; Z/2) ,...., H 1(M; Z/2) ~ H 1(F; Z/2) 

~ [F, ~P00],...., [F, ~P3]"' [F, 80(3)] . 

Hence we can represent any a E H3(M; Z/2) as a: F ---+ 80(3). Define a 

self-equivalence cp of Z as cp: F x 8 2 ---+ Fx 8 2 such that cp(x, y) = (x, a(x)y). 

This is clearly a homotopy self-equivalence of Z. Now, by [44, Theorem 11] 

we have a homotopy self-equivalence f of M such that 9M of= cp o 9M· 
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4.3 Non-spin Case 

The purpose of this section is to state and prove a theorem calculating the 

group Aut.(M, w2 ). Our main result is Theorem Con page 118. Through 

out this section M denotes a 4-manifold with P D2 fundamental group. 

Proposition 4.3.1. The relevant bordism groups of M(w2) and B(w2 ) are 

given as follows: 

04(M(w2)) "'"'ZEB H2(M; Z/2) EB H3(M; Z/2) EB Z , 


05(M(w2)) "'"' H1 (M) EB H3(M; Z/2) EB Z/2 , 


04(B(w2)) c ZEB Z/2 EB H4(B) , 


05(B(w2)) c H1(B) EB H5(B) . 


Proof. Recall that if M is not a spin manifold, then the differential d2 is the 

dual of Sq;(x) = Sq2 (x) + x U w 2 . Once again orientability of M implies 

that Sq;= 0 (w2 = v2, the second Wu class). Hence, for M(w2) everything 

works exactly the same as in the spin case. 

For the bordism group 0 4(B(w2)), non-zero terms on the E 2-page 

are H0(B;O~pin(*)) "'"'Zin the (0,4) position, H2(B;Z/2) in the (2,2) 

position, H3 (B; Z/2) in the (3, 1) position and H4 (B) in the (4, 0) position. 

To see the Z/2 summand consider the fibration B .!!..+ B ~ F and the 

following commutative diagram: 

u* * 
o-----. H2(F; H0 (B; Z/2)) ~ H2(B; Z/2) ~ H2(B; Z/2)7r -o 

!Sq~ !Sq~ * !Sq~u* 

o------ H2(F; H2(B; Z/2)) ~ H4 (B; Z/2) ~ H4(B; z;2r------o . 

Let w2 = p*(w2), where w2 = w2(B). We have to consider two cases: 
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(i) w2 = 0 and 

(ii) W2 =I- 0. 

If w2 = 0, then the leftmost Sq! = 0 and the rightmost Sq! is injective. 

Note that w2 E ker(Sq!): to see this first observe that there exists a y E 

H2 (F; H 0 (B; Z/2)) rv H2(F; Z/2) with u:B(y) = W2, since p*(w2) = 0. 

By naturality we have Sq!(w2) = Sq!(u:B(y)) = 0. Conversely if x E 

H 2 (B;Z/2) such that Sq!(x) = 0, then 0 = p*(Sq!(x)) = Sq!(p*(x)), 

hence p*(x) = 0. Observe that if x =I- 0, then x = W2, for ker(p*) rv 

H2 (F; Z/2) ~ Z/2. Hence in this case, 

If W2 =I- 0, then the leftmost Sq! is injective, it is just the cup product with 

W2, and ker(Sq!: H2 (B; z;2r ---+ H4 (B; z;2yrr) '.::::'. (W2). If x E H 2 (B; Z/2) 

such that Sq;(x) = 0, then p*(x) = 0 or p*(x) = w2 . If p*(x) = 0, then 

there exists a 0 =I- y E H 2 (F; Z/2) with u:B(y) = .7:. But 0 = Sq;(x) = 

Sq;(u:B(y)) = u:B(Sq;(y)) =I- 0. Thus p*(x) = w;, so x must be of the 

form x = W2 + u:B(y) for some y E H 2 (F; Z/2). We have 0 = sq;(x) = 

Sq;(w2) + Sq;(u:B(y)) = 0 + uB(Sq;(y)). But then y = 0, since both 

Sq;: H2 (F; H 0 (B; Z/2)) ---+ H 2 (F; H 2(B; Z/2)) and u:B are injective x = 

w2 • Hence also in this case we have 

Since Sq; and d2 are dual to each other, we have 
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For (3, 1) position, we consider d2 : H5(B) ----+ H3(B; Z/2), which is reduction 

mod 2 composed with the dual of Sq'?'v: H3 (B; Z/2) ----+ H5 (B; Z/2). By 

Serre spectral sequence we have 

We should understand the Sq'?'v on the coefficients, which is Sq'?'v(x) = 

Sq2 (x) + x U w2 for x E H2 (B; Z/2). By the universal coefficient theorem, 

H 2 (B; Z/2) ~ Hom(H2 (B), Z/2) "'Hom(Z, Z/2) EB Hom(P, Z/2) . 

We are going to show that w2 can not come from 

Hom(Z, Z/2) ~ Hom(H2 ('rr; A); Z/2) ~ H2 (K(Z, 2); Z/2) . 

If we can show this, then the above Sq'?'v becomes Sq2 and since by Lemma 

4.2.3, we have 

and 

we can conclude that Sq'?'v is an isomorphism. Let us start by recalling the 

evaluation exact sequence (see Lemma 2.1.3). There is an exact sequence 

where ev is the evaluation homomorphism given by ev(v)(x) = v(x) and 

uM: M ----+ K(7r, 1) is the classifying map. So we have, ev(v)(x) = 0 

for any v E H 2 (7r; A) and x E 7r2 "' H2 (B) "' H2(M). Now suppose 

w2 comes from Hom(H2 (7r; A); Z/2). This implies w2 (M) also comes from 
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Hom(H2 (7r; A); Z/2), since c: M---+ Bis 3-connected. Also remember that 

w 2 (M) E H2 (M; Z/2) ~ Hom(H2 (M), Z/2). Then there exists 0 =J u E 

H 2 (7r; A) and x E H 2(M)such that u(x) =J 0 which contradicts the above 

exact sequence. Therefore Sq'! = Sq2 which is an isomorphism, so it is 

dual is also an isomorphism and reduction mod 2, H5 (B) ---+ H5 (B; Z/2) is 

surjective. Hence d2 : H5 (B) ---+ H3 (B; Z/2) is surjective. 

For the calculations of 0 5(B(w2) ), first observe that the following 

sequence 

is exact, which can be shown by the same technique as in the free funda

mental group case, and then by taking the inverse limit we can see that 

is also exact. Consider the following diagram 

0 0 0 

We want to show that the middle row is exact. Let x E H2(B; Z/2), then 

we have 
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where Sq1 is the Bockstein homomorphism. Since H2 (B) ---+ H 2 (B; 'll/2) is 

onto, Sq1 is the zero map. We therefore have 

im(Sq!: H2 (B; 'll/2) ---+ H4 (B; 'll/2)) 

~ ker(Sq!: H4 (B; 'll/2) ---+ H6(B; 'll/2)) . 

To see the other inclusion let y E H4 (B; 'll/2) such that Sq;(y) = Sq2 (y) + 

y Uw2 = 0. Let p* (y) = y, then by the commutativity of the above diagram 

Sq;(ff) = 0. By the exactness of the top row, there exists a zE H 2 (B; 'll/2) 

such that Sq;(Z) = y. By the exactness of the leftmost sequence, we have 

an x E H2 (B; 'll/2) with p*(x) = x. Suppose that Sq;(x) = y' =f y, then 

there exists a 0 =f b E H2(F; H2 (B; 'll/2)) such that u*(b) = y - y' and 

Sq;(b) = 0. Then there exists an a E H 2 (F; H0 (B; Z/2)) with Sq;(a) = b 

and let x' = u*(a). Now consider 

Sq!(x + x') = Sq!(x) + Sq!(x') = y' + Sq!(u*(a)) 

= y' + u*(Sq!(b)) = y' + y - y' = y . 

Hence y E im(Sq;) and we have 

im(Sq!: H 2(B; 'll/2) ---+ H4(B; 'll/2)) 

= ker(Sq~: H4 (B; 'll/2) ---+ H6 (B; 'll/2)) . 

Since H5(B) is torsion free, H6 (B) ---+ H6 (B; 'll/2) is surjective. There

fore d2 : H6 (B) ---+ H4 (B; 'll/2) is onto the kernel of d2 : H4 (B; 'll/2) ---+ 

H2(B; 'll/2). 
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The differential d2: Eg 1 - E5 2 is the dual of Sq;: H3 (B; Z/2) 
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' ' 

H5 (B; Z/2) and by the above argument Sq~= Sq2 which is an isomorphism 

and so its dual d2 is also an isomorphism in this case. Hence the kernel of the 

differential d2: H5 (B) - H3 (B; Z/2) is equal to the kernel of the reduction 

mod2. D 

Let A denote the remaining subgroup of H5 (B). Recall the maps 

'Pxi : B x S1 
- B that we constructed in the spin case. Since 'Pxi ( - , s) is 

homotopic to the identity for each s E S1 , 'Pxi will preserve w 2 • We also 

have w2 = w o vM and hence 

gives an element of 0 5 (B(w2)). Therefore 

As in the spin case, we are going to identify A with its image in 05 (B(w2), M(w2) ). 

Corollary 4.3.2. We have the following isomorphism, 

where KH2 (M; Z/2) := ker(w2: H2 (M; Z/2) - Z/2). Moreover, the group 

05 ( B (w2), M(w2)) /A injects into Aut. (M, w2) and the image of a, 

• XiX{ *} 1 •
Proof. Consider the maps S1 x K3 - M where Xi: S - M is a gen

erator of H1 ( M) ,...., zr for each i = { 1, 2, ... , r} and S1 is equipped with 

a non-trivial spin structure. Since S1 x K3 is a spin manifold the maps 
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generate the H1(M) summand in 0 5 (M(w2)). Similarly, elements of the 

form 

generate the H 1 ( B) summand of 0 5 ( B (w2)). The homomorphism 

is defined by composing with the reference map c. Note that 

c([S1 x K3, (xi x { *}, ZJslxK3)]) = [51 x K3, (c 0 Xi x { *}, l/slxK3)] . 

Hence 0 5 (M(w2))--+ H1(B) C 0 5 (B(w2)) is onto and by the exactness of 

the braid we have 

Recall that 04 (B(w2)) C H0 (B) EB Z/2 EB H4 (B) where Z/2 "'"' (w2) Also 

recall that we have, 04 (M(w2)) ~ H0 (M) EB H2 (M; Z/2) EB H3(M; Z/2). 

Hence we get, 

By the commutativity of the braid, 

Moreover, by the exactness of the braid 'Y(A) = id E Aut.(M, w2 ). There

fore the map 05 (B(w2), M(w2))/A--+ 04 (M(w2)) is injective, by the exact

ness of the braid again, so the map 7r1 (£.(B,w2))--+ 05 (B(w2),M(w2))/A 

must be zero, by the commutativity of the braid. Therefore 



CHAPTER4. PD2 FUNDAMENTALGROUP 117 

is injective. 

If f: M---+ M(w2) represents an element of Aut.(M, w2 ), then f := 

j of is a homotopy equivalence and o:(J) = [M, Jl - [M, id]. We have 

The natural map 04 (M(w2)) ---+ H0 (M) sends a 4-manifold to its signa

ture which is preserved by a homotopy equivalence. Also since the class 

w 2 E H2 (M; Z/2) is a characteristic element for the cup product form (mod 

2), it is preserved by the induced map of a self-homotopy equivalence of 

M. Therefore, the image of Aut.(M) in 0 4 (M(w2)) lies in the subgroup 

KH2 (M; Z/2) EB H3 (M; Z/2). The other inclusion follows as in the proof of 

Corollary 4.2. 7. D 

Recall that in chapter 3, we defined a homomorphism 

j: Aut.(B, w 2 ) ---+ Aut.(B) by )(J) = ¢1 

where ¢1: B ---+ B is the unique homotopy equivalence with ¢1 o c ~ f. 

We will use the same map again. Let 

Lemma 4.3.3. There is a short exact sequence of groups 

Proof. This follows exactly the same as the proof of Lemma 2.3.11. D 

Proof. The proof of Lemma 2.3.14 works also in this case. D 
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Corollary 4.3.5. The images of Aut.(M, w2) or H(M, w2) in Aut.(B, w2) 

are precisely equal to Isom[7r, 7r2, c*[M], w2]. 

Proof. This also follows from the proof of Corollary 2.3.12. D 

Before we put the pieces together on our braid, we will divide out 

0 5 (B(w2)) and 05 (B(w2), M(w2)) by A. The relevant terms on our braid 

are now: 

There is an action of lsom(w2)[7r, 7r2, c*[M]] on the normal subgroup 

Ki_ := ker(Aut.(M, w2) --+ Aut.(B, w2)), which is defined as follows: Let 

f E Ki_, then co f '.:::: c. Also let '¢ E Isom(w2 )[7r, 7r2, c*[M]] and <P = J(J;), 

then <P E Isom[7r, 7r2, c*[M]] with <P*(c*[M]) = c*[M]. There is a homotopy 

equivalence h: M --+ M such that co h = <Po c ([33, Lemma 1.3]). Then 

since ho f o h-1 preserves w2, we can define '¢.f := (ho f o h-1 , VM ). 

We can now state the main theorem of this chapter: 

Theorem C. Let M be a connected, closed, oriented topological manifold 

of dimension 4. If 7r := 7r1(M) is a P D2 group, then 
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The proof of Theorem C. We have a split short exact sequence 

Any element f will act as identity on im(a) = KH2 (M; 7l/2)tBH3 (M; 7l/2), 

so,\ is a homomorphism. Also £ K H2(M; 7l/2) E9 H3 (M; 7l/2) and therv 

rest of the proof follows as in the spin case. D 



Chapter 5 

s-cobordism theorem in the 

PD2 case 

5 .1 Preliminaries 

Let M be a closed, connected, oriented, topological 4-manifold with P D 2 

fundamental group 1r. As in Chapter 3, we start by pointing out the relation 

between equivariant sM and the integral s~ intersection forms. We have 

H2 (M; A) "' H 2 (7r; A) EB H2 (M; Ar such that H 2 (7r; A) is totally isotropic 

under the cup product pairing (see Lemma 2.1.3). Therefore SM induces a 

nonsingular pairing on H 2 ( M; A) 1T "' P. On the other hand we have 

H2(M) "' (ZEB P) ®AZ EB H2(F) 

"' (ZEB Z) EB (P ®AZ) . 

120 
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Now, recall that we have a 2-connected degree-1 map 9M: M ---+ Z. This 

induces the splitting of the integral intersection form as 

z - [ 0 1 ] SM

1 0 

when M is a spin manifold, and 

z - [ 1 1 ] SM

1 0 

if M is not spin, see for example [18]. Therefore, also when 7r is a P D2 

group, the signature of Mis determined by the formula 

a(M) = a(st-) = a(sM ®AZ) . 

Remember that in the free case, we have a cobordism W over K(7r, 1), 

which does not contain any odd handles. This basically follows from Lemma 

3.1.1. Let us consider the following homotopy fibration, M .!!.._,, M ~ K(7r, 1) 

which induces a short exact sequence 

o- H2 (K(7r, 1); Z/2) ~ H2 (M; Z/2) _I_ H2 (M; Z/2) 

This short exact sequence tells us that when M is spin M is also spin, but 

if M is not spin M may or may not admit a spin structure. But we want 

them to be spin at the same time. As a consequence we will impose an 

extra condition on our manifolds in this case. 

Definition 5.1.1 ([34]). We say that a manifold A1 has wrtype (I), (II), 

or (III) if one of the following holds: 
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(II) w2 (M) = 0, or 

(III) w2(M) =I- 0 and w2(M) = 0. 

Finally, note that the Whitehead group Wh(rr) is trivial whenever 

rr "'rr1(F), where Fis a closed, oriented aspherical surface [26], hence also 

in this chapter being s-cobordant is equivalent to being h-cobordant. Now, 

let us state our main result: 

5.2 Main Result 

Theorem D. Let M 1 and M 2 be two closed, connected, oriented, topological 

4-manifolds with P D2 fundamental group. Suppose that they have the same 

Kirby-Siebenmann invariant and M 1 has wrtype (I} or (II). Then M 1 and 

M 2 are s-cobordant if and only if they have isometric quadratic 2-types. 

Proof. If M1 and M 2 are s-cobordant, then they are homotopy equivalent 

and hence they have isometric quadratic 2-types. 

The strategy for the rest of the proof is the same as in the free 

fundamental group case. We know that oriented topological bordism group 

over K (rr, 1) is 

via the signature and the ks-invariant. Therefore in the type (I) case, there 

is an oriented cobordism W between M1 and M 2 . On the other hand, in 

the type (II) case we have 

nroPSPIN (K(7r, 1)) '.:::::'. z E9 H2(7r; Z/2) . 
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The invariants are the signature and an invariant in H2 (7r; Z/2). We have 

M1 and M2 with the same signature, so to be bordant over K (7r, 1) they 

should also have the same invariant in H2 (7r; Z/2). Let us investigate this 

bordism invariant. First, we define a degree-1 normal map 

1.p': F x (81 x 8 1
) --+ F x 8 2 

by collapsing 8 1 V 8 1 C 8 1 x 8 1 . This is a degree-I normal map, since the 

normal bundle of a sphere is trivial. By low dimensional surgery we replace 

1.p' by a 2-connected map <p: N --+ F x 8 2 . Then by [21, Theorem 3.10], 

[N, 1.p] - [F x 8 2 , id] maps to 

where kervaire2 (<p) E H2 (F x 8 2 ; Z/2) is the codimension-2 Kervaire invari

ant. The bordism class [N, p1 01.p] - [F x 8 2 , p1] maps to 

which is the the generator of E2;i = H2(F; n~pin(*)) ,...., H2 (7r; Z/2). Now if 

M1 and M2 do not map to the same element in H2 (7r; Z/2), then we would 

have 

over K(7r, 1) (we take connected sum with r copies of E8 to make the sig

natures equal). Next we consider the restriction of the surgery assembly 

map 

which is injective (see [21, Corollary 1.5]). By the characteristic class for

mula [21, Proposition 3.6] 1'\d<;) is the surgery obstruction of <p, and the 
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kernel form is just the reduced intersection form s'rv of N which is non

trivial. On the other hand the equivariant intersection form of F x 5 2 is 

trivial. Therefore [NttrEs] and [F x 52 ttrEs] map to different elements of 

L4 (A). This is a contradiction since Mi and M 2 have isomorphic equiv

ariant intersection forms and hence have isomorphic reduced intersection 

forms. Therefore they also represent the same class in H2 (7r; 7l/2). As a 

result we have a cobordism W between Mi and M2 over K(7r, 1), which is 

a spin cobordism in the type (II) case. We may view W as 

W =Mi x [O, 1] U {2 - handles} U {3 - handles} U M 2 x [-1, O] . 

We will split W into two halves : on one side, Mi and the 2-handles, on 

the other, M 2 and the 3-handles. As in the free fundamental group case, let 

W3; 2 be the ascending cobordism that contains just Mi and the 2-handles 

and M3; 2 be its 4-dimensional upper boundary. Since Mi and Mi are spin at 

the same time, we can assume that there are no 5 2 xS2-terms are present 

in M3; 2 • From the lower half of W we have M3; 2 ~ MiUmi (S2 x 5 2 ), 

while from the upper half we have M3; 2 ~ M2Um2 (52 x 5 2), since M 3; 2 

can also be obtained by attaching even 2-handles upwards to M 2 • Since 

rank(H2 (Mi)) = rank(H2 (M2))), it follows that m =mi = m2 . Hence we 

have a homeomorphism 

Since Mi and M 2 have isometric quadratic 2-types, we have 

a pair of isomorphisms such that '!j;(gx) = x(g )'!j;(x) for all g E 7r, x E 7r2 (Mi) 
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and preserving the intersection form i.e., 

As in the free fundamental group case, we can construct a homotopy equiv-

lowing commutative diagram 

Now let 

with the following quadratic 2-types, 

and 

where H(Am) is the hyperbolic form on Am E9 (Am)*. Next, observe that as 

in the free fundamental group case 

gives us an element in Isom[7r, 7r2 , sM]· Let B = B(J\,1) denote the 2-type of 

M. Remember that we have an exact sequence of the form 
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Therefore we can find a</> E Aut.(B) such that 

Note that the homotopy self-equivalence </>preserves the intersection form 

sM, so </> E Isom[7r, 7r2 , sM]· For 7r a P D2 group, on the braid we see 

Isom<w2}[7r, 7r2 , c*[M]], not Isom<w2}[7r, 7r2 , sM]· Therefore to be able to use 

the braid, we need to construct a self homotopy equivalence of B which 

preserves c* [M]. 

First of all, by a result of Hillman [44, Theorem2], we know that there 

is a 2-connected degree-1 map gM: M ~ Z with ker(7r2(gM)) = P where 

7r2 ,.__, P EB Z and 7r2(Z) ,.__, Z. We may assume that 7r2(gM) corresponds 

projection to the second factor and Cz o 9M = go c for some 2-connected 

map g: B ~ B(Z). The map g is a fibration with fibre K(P, 2), and the 

inclusion of Z into 7r2 (M2 ) determines a section s for g. After composing 

</> with a self homotopy equivalence of B if necessary we may assume that 

g 0 </> = g. 

Let L := L'Tr(P, 2) be the space with algebraic 2-type [7r, P, O] and 

universal covering space L ~ K(P, 2). We may construct L by adjoining 

3-cells to M to kill the kernel of the projection from 7r2 to P and then 

adjoining higher dimensional cells to kill the higher homotopy groups. The 

splitting 7r2 ':::::::. P EB Z also determines a projection q: B ~ L. Summarizing 

we have the diagram below with a commutative square 
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To begin with we have the following isomorphisms 

H4(B) 	'""r(7r2) ®AZ EB H2(7r; 7r2) ~ f(Z EB P) ®AZ EB H2(7r) 

~ (f(Z) EB f(P) EB Z ® P) ®AZ EB H2(7r) 

'""f(P) ®AZ EB f(Z) ®AZ EB H2(7r) EB (Z ® P) ®AZ 

~ H4(L) EB H4(B(Z)) EB P ®AZ. 

Let us start with projecting the homology classes ¢*(c*[M]) and 

c*[M] to H4 (L) '"" r(P) ®AZ. Recall that by Lemma 2.1.3, we have an 

exact sequence 

The cohomology intersection pairing is defined by sM (u, v) = ev (v) (PD (u)) 

for all u, v E H 2 (M; A) where PD is the Poincare duality isomorphism. 

Since sM(u, v) = 0 for all u E H2(M; A) and v E H 2(7r; A), the pairing SM 

induces a nonsingular pairing 

Note that HomA(7r2, A) '"" H2(M; A)/H 2(7r; A). If we further restrict s~ 

to HomA(P, A) '"" H2 (L; A)/H 2(7r; A), we get a Hermitian pairing s'f.t. We 

want to work with right modules, so we can take s'f.t E Her(Pt). Therefore, 

we have the following commutative diagram, 

Hillman [44], showed that Bp is an isomorphism whenever P is a finitely 

generated A-module. By the commutativity of the above diagram we have 



-------

CHAPTER 5. S-COBORDISM THEOREM IN THE P D2 CASE 128 

Before we continue, let us review a lemma which was proved in [44, 

Lemma 8]. Let P and Q be right A-modules such that P is finitely generated 

and projective. Let 

d: P---+ ptt and t: pt ®A Q---+ HomA(P, Q) 

be given by 

d(p)(µ) = µ(p) and t(µ ® q)(p) = µ(p).q = qµ(p) , 

for all p E P, µ E pt and q E Q. Since Pis finitely generated and projective 

these functions are isomorphisms of right A-modules and Abelian groups 

respectively. Let Bp(!(p) ® 1) be the adjoint of Bp(!(p) ® 1), for all p E P. 

Lemma 5. 2 .1 ( [ 44]). Let P be a finitely generated A-module and a: P ---+ Q 

be a A-module homomorphism. Let 'l/J<7(p, q) = (p, q + a(p)) for all (p, q) E 

7r2 = P EB Q, and let d and t be the isomorphisms defined above. Then 'l/J<7 

is an automorphism of 7r2 and 

f( '!/Ja )(l(p)) - 1(p) - (d ® 1)-1[(Bp(l(p)) ® l)(C1 (a))] mod r(Q) 

for all p E P. 

Back to our proof. Note that B(Z) is a retract of B. Comparison 

of the spectral sequences for the classifying maps uB and UB(Z) shows that 

coker ( H 4 ( s)) is isomorphic to 

Since Bp is injective and </> preserves the intersection form the images of 

</J*(c*[M]) and c*[M] in (f(7r2 )/f(Z)) ®AZ differ by an element of the sub

group (P ® Z) ®A Z. Let p represent this difference and let rJ E f(P) 
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represent (b ® l)[q*(c*[M])], where b: H4 (L; A) ~ r(P) is the secondary 

boundary homomorphism (see Theorem 2.2.4). Since Bp(TJ 0 1) = s'Jvi is 

nonsingular Bp ( 17 ® 1) : pt ~ ptt is surjective. We have 

Bp(17®l)
pt ®AZ------- ptt ®AZ 

c 1 l~ ~rd®id 

HomA(P, Z) P ®AZ~ (P 0 Z) ®AZ 

so we may choose a homomorphism a: P ~ Z such that 

(Bp(17 ® l) ® l)(r1 (a)) = (d ® l)(p) 

and f('!/Ju)(TJ) - 17 p mod f(Z), by the above lemma. Let <Pu be the 

corresponding self homotopy equivalence of B. Then g o <Pu = g and 

Note that <Pu preserves the intersection form and 7r2 ( <Pu) = 'I/Ju is the identity 

map, when we see it as a map on the free direct summand, i.e. A 2m ~ A2m. 

Since 

we have 

The self homotopy equivalence <Pu o ¢ of B satisfies the properties we want. 

By abuse of notation we will denote this homotopy equivalence also by ¢. 

Note that ¢ E lsom[7r, 7r2 , c*[M]]. Also recall that we have the following 

short exact sequence by Lemma 4.3.3 
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C. T. C. Wall's surgery program with M. Kreck's modified surgery program 

gives a commutative diagram of exact sequences (see [35], Lemma 4. 1) 

Now the rest of the proof follows exactly the same as in the free fundamental 

group case. D 
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