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Abstract

Preterm birth is the leading cause of neonatal mortality and long-term morbidity.

Neonatologists can adjust nutrition to preterm neonates to control their weight gain

so that the possibility of long-term morbidity can be minimized. This optimization of

growth trajectories of preterm infants can be achieved by studying a cohort of selected

healthy preterm infants with weights observed during day 1 to day 21. However,

missing values in such a data poses a big challenge in this case. In fact, missing data

is a common problem faced by most applied researchers. Most statistical softwares

deal with missing data by simply deleting subjects with missing items. Analyses

carried out on such incomplete data result in biased estimates of the parameters of

interest and consequently lead to misleading or invalid inference. Even though many

statistical methods may provide robust analysis, it will be better to handle missing

data by imputing them with plausible values and then carry out a suitable analysis

on the full data. In this thesis, several imputation methods are first introduced and

discussed. Once the data get completed by the use of any of these methods, the

growth trajectories for this cohort of preterm infants can be presented in the form of

percentile growth curves. These growth trajectories can now serve as references for the

population of preterm babies. To find out the explicit growth rate, we are interested

in establishing predictive models for weights at days 7, 14 and 21. I have used
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both univariate and multivariate linear models on the completed data. The resulting

predictive models can then be used to calculate the target weight at days 7, 14 and 21

for any other infant given the information at birth. Then, neonatologists can adjust

the amount of nutrition given in order to preterm infants to control their growth so

that they will not grow too fast or too slow, thus avoiding later-life complications.
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Chapter 1

Introduction

1.1 Background

Infants born at gestational age less than 37 weeks are defined as preterm infants.

Roughly, 15 million babies are born preterm every year and this number is increasing

(WHO, 2014). Preterm birth is the major cause for newborn deaths during the first

four weeks of life with a mortality rate over 10% (WHO, 2014). Luckily, great im-

provements have been made to increase survival rate of preterm infants recently Iams

et al. (2008). Survived preterm babies, however, still have subsequent complications

in later life (Saigal and Doyle, 2008; Larroque et al., 2008; Barker et al., 1993). There-

fore, current research works focus on prevention and reduction of long-term morbidity

of the survived preterm infants.

Morbidity has an inverse relationship with gestational age. That is, the shorter the

gestational age is, the higher the morbidity rate is. A follow-up study on 5-year-old

children born preterm show that about 50% of survival children born at 24-28 weeks
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of gestation have a neurodevelopmental disability, while only about 33% of survival

children born at 29-32 weeks of gestation have a neurodevelopmental disability (Lar-

roque et al., 2008). Birth weight is another factor associated with mobidity. Low

birth weight is related to an increased risk of developing the risk factors of cardio-

vascular disease in later life, including blood pressure and insulin resistance (Barker

et al., 1993). Even though interventions before and during pregnancy can lower the

possibility of occurrence of birth weight extremes and small gestational age (Iams

et al., 2008), the incidence of low birth weight preterm births can not be avoided.

Weight gain during early postnatal life, reflecting growth of preterm infants, is as-

sociated with adult-onset disease. Slow weight gain during early postnatal life may

lead to chronic lung disease, infection and poor neurodevelopment (Ho et al., 2003;

Latal Hajnal et al., 2003), while rapid growth during early postnatal life of preterm

infants may increase the risk of later-life adiposity, insulin resistance, cardiovascular

disease and metabolic syndrome (Jain and Singhal, 2012; Steward, 2012). Despite the

neonatologists control the weight gain of infants by adjusting the amount of nutrition

given to them, the optimal growth trajectory a preterm infant should adjust to after

postnatal adaptation is unknown (Fisch et al., 2014).

1.2 Aims of Growth Trajectories of Healthy Preterm

Infants (GTHPI) Study

Our project here is designed to figure out the optimal growth trajectories of preterm

infants based on a longitudinal study. This is achieved by characterizing the growth

2
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trajectories of a cohort of healthy preterm infants in terms of quantile plots and then

establishing predictive models for weight at days 7, 14 and 21. Hence, target weights

at days 7, 14 and 21 for any weak infant can be drawn, given the information at birth,

by the predictive models so that neonatologists can adjust nutrition accordingly to

control the infant’s weight gain.

1.3 Scope of the Thesis

In chapter 2, I will briefly introduce longitudinal data and then describe the GTHPI

data that will be analyzed in this thesis. The standard statistical analysis models

that can be used to study the longitudinal GTHPI data are explained in Chapter 3.

The challenge of the study based on this data set is that there is a large proportion

of missing values in the data and for this reason, various reasons for missingness and

approaches for dealing with missing data are then detailed in Chapter 4. In Chapter

5, different imputation methods are applied to the GTHPI data and compared and

the consequent results of the statistical analysis of the completed data are described

in detail in Chapter 6. Further discussion and some possible directions of work are

finally described in Chapter 7. The R-codes developed for the thesis are all presented

in the Appendix.
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Chapter 2

Longitudinal Data

In health science, longitudinal studies are frequently designed to investigate changes

over time. In contrast to cross-sectional data wherein measurements are required at

only a single time point, longitudinal data have repeated measurements of outcome

through a period of time (Fitzmaurice et al., 2012). The measurements are usually

made at a set of common time points for all subjects. There are often some single-

valued variables associated with each subjects, termed as covariates. Longitudinal

studies are not only interested in overall within-individual changes in response, but

also how the relationship between response changes with the covariates. In this

Chapter, I will describe briefly some features of longitudinal data and highlight some

main aspects of their analyses.

2.1 Structures of Longitudinal Data

Longitudinal data are usually recorded in two forms. Most longitudinal data are

structured in a format with a single row for each individual. Each row contains
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multiple covariates and a series of repeated response values. The covariate values

are fixed in these data. Another format is one in which repeated measurements of

response are recorded in a long format. That is, each individual has multiple rows

of record with one measurement of response in one row along with corresponding

covariates. In this form, covariate values are not necessarily same for each individual

at distinct time points, and they may vary with respect to response values. This form

of longitudinal data is like a cross-sectional data wherein repeated response values

are all recorded in one column and one more covariate is added to indicate the time

of measurement. The wide format of longitudinal data can be transformed into long

format easily by function “melt” in the R package “reshape”, in which the covariates

are repeated multiple rows for each subject. The structures are important when we

carry out statistical analysis. Most standard statistical analysis methods deal with

longitudinal data in the long format.

2.2 Descriptive Analysis of GTHPI Data

Our data were collected from neonatal intensive care units of five academic hospitals

in Canada and Germany (Fisch et al., 2014), namely, McMaster University Medi-

cal Centre (Hamilton, Canada), St. Joseph’s Healthcare (Hamilton, Canada), St.

Michael’s Hospital (Toronto, Canada), Greifswald University Hospital (Greifswald,

Germany), and Heidelberg University Hospital (Heidelberg, Germany).

Table 2.1 gives a listing and description of all the variables collected in the data.

Daily measurements of body weight from day of life 1 to 21 of 1202 infants with
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Table 2.1: Description of Variables in GTHPI Data
Variables Description
id anonymous identifier
centre the academic hospital where each preterm infant is admitted
yoa year of admission to hospital
gender gender
gaw completed weeks of gestational age
gawexact exact gestational age in weeks
gad exact gestational age in days
bw birth weight
defstart day of life when infants are start to be fed
dtpnstop day of life when protein stops
md mode of delivery
eth ethnic
preg number of pregnancy, i.e., singleton, twins or triplet
w1 weight at day of life 1, equivalent to birth weight
w2 weight at day of life 2
w3 weight at day of life 3
· ·
· ·
· ·
w20 weight at day of life 20
w21 weight at day of life 21

6
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Table 2.2: Summary of GTHPI Data
completed week of gestation 25 26 27 28 29 30 31 32 33 34

male 3 20 19 43 37 21 40 86 117 165
female 7 17 21 25 38 16 37 59 78 132
Total 10 37 40 68 75 37 77 145 195 297

unimpaired postnatal adaptation admitted to one of the participating hospitals be-

tween 2008 to 2012 were the subjects in our study. Briefly, unimpaired adaptation was

defined as preterm babies with no maternal diabetes/substance use, nosocomial sep-

sis, respiratory distress, feeding intolerance or major congenital malformations (Fisch

et al., 2014). Infants’ demographic characteristics such as gestational age, gender and

ethnicity were collected. Our data are recorded in a wide format.

Outliers with extreme large or small birth weight for infants grouped in gestational

age were checked by boxplot and excluded from the study. The final data set con-

sisted of 981 preterm infants and were recorded in a wide format. Table 2.2 provides

a summary of the frequency of infants with respect to completed weeks of gestation.
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Chapter 3

Linear Regression Models

Linear regression is an approach quite commonly used to investigate relationship

between certain continuous dependent variable and one or more independent variables

(called covariates). A linear model then specifies that the dependent variable can be

expressed as a linear combination of the covariates and some unknown parameters.

The linear regression is not only useful in modelling relationships between response

variable and covariates, but also useful in predicting missing response values given

the values of corresponding covariates.

3.1 Multiple Linear Regression

Suppose a data set of m subjects with observed response values and covariates is

given, and that the response is denoted by yi and the p covariates are denoted by

x1, x2, . . . , xp for the ith subject. Then, a set of equations can be written as

yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip + εi, i = 1, . . . ,m. (3.1)

8
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3.1.1 Assumptions

There are three assumptions made in the analysis of linear regression models. First

of all, it is assumed that the response variable can be expressed as a linear combi-

nation of covariates and some unknown parameters as written in (3.1). Implicit in

this assumption is that all the covariates, which can potentially affect the response

variable, have been included in the model. But, this may generally be not true. Yet,

the model can still hold because the unobserved covariates can be considered as part

of the error term inserted into the model.

The next assumption made is that the covariates are linearly independent, mean-

ing that any one of the covariates can not be written as a linear combination of the

other covariates. If this assumption does not hold, then there will be some problems

encountered when estimating the unknown parameters.

The final assumption is that the error terms are identically and independently nor-

mally distributed with mean 0 and variance σ2. That is, the variance of the error

terms is constant at σ2 regardless of the values of the covariates.

To state these formally, we have the response variable Yi as follows:

• E(Yi) = β0 + β1xi1 + · · ·+ βpxip ;

• Var(Yi) = σ2 ;

• Yi follow a normal distribution, for all i and are independent.

9
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3.1.2 Least-Squares Estimates

If we know the value of the parameters, the expected value of Yi is β0 + β1xi1 + · · ·+

βpxip. The error between the observed value and the expected value is given by

εi = yi − β0 − β1xi1 − · · · − βpxip, i = 1, . . . ,m. (3.2)

Intuitively, we would like to make these error terms as small as possible. Since

negative error terms can offset positive error terms if we sum up all the error terms,

we would like to use the sum of squared errors (SSE) to be an overall measure of the

fit of models, and it is given by

S(β0, β1, · · · , βp) =
m∑
i=1

[
yi − (β0 + β1xi1 + · · ·+ βpxip)

]2
. (3.3)

The linear regression model can be equivalently written in a matrix form as

Y = Xβ + ε, (3.4)

where Y is the m× 1 response vector, X is the m× (p+ 1) design matrix, β is the

(p+ 1)× 1 parameter vector, and ε is the m× 1 error vector, written as follows:

Y =



y1

y2
...

ym


,X =



1 x11 x12 · · · x1p

1 x21 x22 · · · x2p
...

...
...

. . .
...

1 xm1 xm2 · · · xmp


,β =



β0

β1
...

βp


, ε =



ε1

ε2
...

εm


.

10
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Thus, the expectation and variance of Y are given by

E(Y ) = Xβ, Var(Y ) = σ2I, (3.5)

and the sum of squared errors can be written as

S(β) = (Y −Xβ)′(Y −Xβ). (3.6)

Taking derivatives of S(β) with respect to β and setting them to be 0, we obtain the

least-squares estimator of β as

β̂ = (X ′X)−1X ′Y . (3.7)

3.1.3 Fitted Values, Residuals and Estimation of σ2

The fitted values or expected values of response variable can be expressed as

Ŷ = Xβ̂ = X(X ′X)−1X ′Y . (3.8)

Let P = X(X ′X)−1X ′. Then P is a n×n matrix called the hat matrix. The reason

why P is called the hat matrix is that when Y is multiplied by P , we obtain Ŷ ; that

is, (3.8) can be expressed in terms of P as

Ŷ = PY . (3.9)

11
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After getting the fitted values, the residuals, which give the difference between the

observed response and the fitted response are then calculated as

e = Y − Ŷ = Y − PY = (I − P )Y . (3.10)

Then, the variance of the residuals can be obtained as

Var(e) = Var((I − P )Y )

= (I − P )′Var(Y )(I − P )

= (I − P )′σ2I(I − P )

= σ2(I − P − P ′ + P ′P )

= σ2(I −X(X ′X)−1X ′− (X(X ′X)−1X ′)′

+ (X(X ′X)−1X ′)′(X(X ′X)−1X ′))

= σ2(I −X(X ′X)−1X ′−X(X ′X)−1X ′

+X(X ′X)−1X ′X(X ′X)−1X ′)

= σ2(I − 2X(X ′X)−1X ′ +X(X ′X)−1X ′)

= σ2(I −X(X ′X)−1X ′)

= σ2(I − P ).

(3.11)

The estimated variance of the residuals is then given by

V̂ar(e) = σ̂2(I − P ), (3.12)

12



M.Sc. Thesis - Kai Liu McMaster - Mathematics and Statistics

and consequently the residuals can be standardized as

ri =
ei

σ̂
√

1− pii
, (3.13)

where pii is the ith diagonal element of the matrix P and σ̂ is the estimator of standard

deviation. The unbiased estimator of σ2 can be found readily from sum of squared

residuals as

σ̂2 =
SSE

m− (p+ 1)
=

e′e

m− (p+ 1)
. (3.14)

3.1.4 Sampling Distribution and Confidence Intervals for Re-

gression Parameters

The mean and variance-covariance matrix of the parameter estimators can be easily

derived as follows:

E(β̂|X) = E((X ′X)−1X ′Y |X)

= (X ′X)−1X ′E(Y |X)

= (X ′X)−1X ′(Xβ)

= β,

(3.15)

Var(β̂|X) = Var((X ′X)−1X ′Y |X)

= (X ′X)−1X ′((X ′X)−1X ′)′σ2I

= (X ′X)−1X ′X(X ′X)−1σ2

= σ2(X ′X)−1.

(3.16)
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Then, the estimated variance-covariance matrix for β̂ is simply given by

V̂ar(β̂) = σ̂2(X ′X)−1, (3.17)

in which the diagonal elements are the estimated variances of the estimates of βj’s,

denoted by Var(β̂j). The standard deviations are then denoted by se(β̂j), called the

standard errors. The sampling distribution of β̂j’s are given by

β̂j − βj
se(β̂j)

∼ tm−(p+1), j = 0, 1, . . . , p, (3.18)

where tv denotes a central t-distribution with v degrees of freedom. So, confidence

interval for βj can be obtained as

β̂j ± t(m−p−1;α/2)se(β̂j), (3.19)

where t(m−p−1;α/2) denotes the upper α/2 percentage point of tm−p−1.

3.1.5 Diagnostics for Regression Models

As mentioned earlier, linear models are established with several assumptions. It is

important to check if all these assumptions are satisfied before developing inference,

otherwise the developed inference will be invalid. Checking of model assumptions can

be numerical or graphical. We prefer graphical diagnostics as they provide visual and

clear results.

Residuals play a key role in checking these assumptions because patterns in residual

14
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plots can reflect situations such as non-linearity, non-normality or non-independence

for linear models as detailed below:

• Residual vs. fitted plot is a plot of residuals against the fitted values. We seek

a random scatter along the horizontal line y = 0 with a constant variance. Any

pattern in this plot indicates that at least the linearity assumption is violated. If

linearity assumption is violated, one may consider using some transformation.

Transformation can linearize at least approximately a non-linear relationship

between the response variable and the covariates.

• Normal Q-Q plot is a plot of quantiles of ordered standardized residuals against

the standard normal quantiles. We expect a pattern of y = x if normality

assumption holds. If there are curvatures in the tail, it means violation of

normality assumption.

The above plots also show outliers, which are points that deviate considerably from

the model. Outliers will generally have large absolute values of residuals and stan-

dardized residuals. However, outliers in response or in covariates may or may not

affect the parameter estimation in linear models. The points that do affect are in-

fluential points. Influential points can significantly change regression models and so

may lead to misleading inference. Cook (2000) proposed a measure of influence of

points. It measures the difference between the fitted value with and without the ith

observation, and is given by

Ci =

∑n
j=1(ŷj − ŷj(i))2

σ̂2(p+ 1)
, i = 1, . . . , n,

15
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where ŷj is the jth fitted value with the full data and ŷj(i) is the jth fitted value

without the ith observation.

• Plot of Ci against i shows influential Influent points with large Cook’s distance

standing out and in this case further action needs to be taken such as transfor-

mation or addition of interaction terms. Usually the cut-off value to examine

influential points is Ci > 1.

3.1.6 Weakness of Classical Linear Regression

As mentioned earlier, when dealing with longitudinal data, one will convert wide

format data structure into long format. In this way, the repeated responses will be

treated as a single variable along with a time covariate and then standard statistical

analytic methods will be applied. The classical linear models described above, how-

ever, assume that the observations are independent of one another. This assumption

is not reasonable in these case of longitudinal data since the response of an individual

at a time point will be dependent on the response of the same individual at a future

time, so that there will exist correlation between responses of the same individual at

different time points.

Multivariate linear models extend linear models by assuming the multivariate re-

sponse variable in the longitudinal data to have a multivariate normal distribution,

so that appropriate models for the analysis of longitudinal data can be developed

in this manner by a combination of methods for linear models and the multivariate

normal distribution.

16
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3.2 Multivariate Linear Models

Let Yi = (Yi1, . . . , Yin)T denote the response vector for the ith individual, Xi denote

the design matrix for the same individual given by

Xi =



1 Xi11 · · · Xi1p

1 Xi12 · · · Xi2p

...
...

. . .
...

1 Xin1 · · · Xinp


,

and β = (β0, β1, . . . , βp)
T denote the parameter vector, for i = 1, 2, . . . , N . Then, the

multivariate linear model is given by

Yi = Xiβ + εi, i = 1, . . . ,m, (3.20)

where the response vector Yi is assumed to have a multivariate normal distribution

with

E(Yi) = Xiβ, Var(Yi) = Σi, (3.21)

3.2.1 Parameter Estimation

Assuming that the distribution of the multivariate response variable Yi is multivariate

normal, we have the probability density function (p.d.f.) as

fYi
(yi) = (2π)−

n
2 |Σi|−

1
2 exp

{
−1

2
(yi −Xiβ)′Σ−1i (yi −Xiβ)

}
. (3.22)

17
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So, the log-likelihood function is given by

l = −mn
2

log(2π)−
m∑
i=1

log(|Σi|)−
1

2

m∑
i=1

(yi −Xiβ)′Σ−1i (yi −Xiβ). (3.23)

To get the maximum likelihood estimate of β, we take the derivative of log-likelihood

function with respect to β and set it equal to 0. Solution of the resulting equation

gives the estimator of β as

β̂ =

(
m∑
i=1

X ′iΣ
−1
i Xi

)−1 m∑
i=1

X ′iΣ
−1
i yi. (3.24)

Usually Σi are unknown, and so by replacing Σi by its estimator Σ̂i, we obtain the

estimator of β as

β̂ =

(
m∑
i=1

X ′iΣ̂
−1
i Xi

)−1 m∑
i=1

X ′iΣ̂
−1
i yi. (3.25)

This is an unbiased estimator of β since

E(β̂) =

(
m∑
i=1

X ′iΣ
−1
i Xi

)−1 m∑
i=1

X ′iΣ
−1
i E(Yi)

=

(
m∑
i=1

X ′iΣ
−1
i Xi

)−1 m∑
i=1

X ′iΣ
−1
i Xiβ

=

(
m∑
i=1

X ′iΣ
−1
i Xi

)−1( m∑
i=1

X ′iΣ
−1
i Xi

)
β

= β.

(3.26)
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3.2.2 Sampling Distribution of β’s

The variance-covariance matrix of β̂ is given by

Cov(β̂) =

(
m∑
i=1

X ′iΣ
−1
i Xi

)−1 m∑
i=1

X ′iΣ
−1
i Var(Yi)(X

′
iΣ
−1
i )′

( m∑
i=1

X ′iΣ
−1
i Xi

)−1′

=

(
m∑
i=1

X ′iΣ
−1
i Xi

)−1 m∑
i=1

X ′iΣ
−1
i Σi(Σ

−1
i )′Xi

(
m∑
i=1

X ′i(Σ
−1
i )′Xi

)−1

=

(
m∑
i=1

X ′iΣ
−1
i Xi

)−1 m∑
i=1

X ′i(Σ
−1
i )′Xi

(
m∑
i=1

X ′i(Σ
−1
i )′Xi

)−1

=

(
m∑
i=1

X ′iΣ
−1
i Xi

)−1
.

(3.27)

So, the estimated variance-covariance matrix of β̂ is given by

V̂ar(β̂) =

(
m∑
i=1

X ′iΣ̂
−1
i Xi

)−1
, (3.28)

where the diagonal elements are the estimated variance of β̂j’s. The sampling distri-

bution of β̂j is given by

β̂j − βj√
V̂ar(β̂j)

∼ N(0, 1), j = 0, 1, . . . , p,

using which the confidence intervals for βj’s can be readily obtained.
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3.3 Generalized Linear Models and Generalized

Estimating Equations

Generalized linear models (GLMs) are generalizations of multiple linear models. Mul-

tiple linear models assume the response variable to have a normal distribution with

its expectation being a linear combination of a set of independent variables. How-

ever, many response variables are not necessarily continuous and may not even be

normally distributed, and GLMs enable the analysis of such diverse types of univari-

ate responses. Also, as in the case of linear models, a GLM links the expectation

of response to a linear combination of covariates through some function, and can be

described as follows:

• ηi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip, where ηi is called a linear predictor;

• Yi follows a certain distribution from the exponential family, for i = 1, · · · ,m,

and are independent;

• g(E(Yi)) = ηi, or equivalently, E(Yi) = g−1(ηi), where g(.) is called the link

function;

• Var(Yi) = V (E(Yi)), where V (.) is the variance function depending on the

distribution and is a diagonal matrix.

In general, when repeated response variables in longitudinal studies do not necessarily

have a multivariate normal distribution, but the correlation of the responses are

considered, one can make use of generalized estimating equations (GEEs), proposed

by Liang and Zeger (1986), for the estimation of parameters, which is generalization

of multivariate linear models.
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Let Yi = (Yi1, . . . , Yin)T denote the response vector for the ith individual, Xi

denote the design matrix for the same individual given by

Xi =



1 Xi11 · · · Xi1p

1 Xi12 · · · Xi2p

...
...

. . .
...

1 Xin1 · · · Xinp


,

and β = (β0, β1, . . . , βp)
T denote the parameter vector, for i = 1, 2, . . . ,m. Assume

that the expectation of the response E(Yij) = µij depends on the covariates through

a known link function g(.)

g(µij) = ηij = XT
ijβ. (3.29)

The variance of Yij depends on the mean by

Var(Yij) = φv(µij), (3.30)

where v(µij) is a known variance function and φ is a scale parameter. Then, the

covariance matrix can be decomposed into the standard deviations and correlations

as

Vi = A
1
2
i Corr(Yi)A

1
2
i , (3.31)

where Ai is a diagonal matrix with Var(Yij) along the diagonal and Corr(Yi) is the

correlation matrix as a function of the set of within-subject association parameters
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α. The GEE estimator of β can be derived by minimizing the function

m∑
i=1

(Yi − µi(β))TV −1i (Yi − µi(β)) , (3.32)

It is equivalent to solve the following generalized estimating equations:

m∑
i=1

DT
i V

−1
i (Yi − µi) = 0, (3.33)

where Vi is the working covariance matrix and Di = ∂µi/∂β is the derivative matrix.

R provides a package “multgee” for solving such GEEs. For more details, one may

refer to Liang and Zeger (1986) on GEEs.
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Chapter 4

Missing Values and Imputation

It is desirable to have complete data for longitudinal analysis, but missing values is

a common problem in longitudinal data. The existence of missing data causes some

problems in statistical inference. First, the data set will be unbalanced when data are

missing and so some statistical analytic methods that require balanced data can not

be used, like those described in the last chapter. Secondly, when missing values occur

in a data set, there will be some loss of information that may result in a reduction of

precision and will make the consequent analysis less effective. Finally, missing values

can also result in an increase in bias for inference (Fitzmaurice et al., 2012).

Many methods of handling missing data have been discussed in the literature. The

easiest way is the so-called listwise deletion, which simply deletes the subjects with

missing variables and is applied in most of the statistical softwares when missing data

occur. This method is effective when there are only a few missing values in a large

data and the deleted cases do not have any special characteristics other than what

the remaining individuals have. But, the deletion method will lead usually to biased
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estimates of parameters of interest. It can also be problematic when the proportion

of missing values is large as it reduces the sample size, resulting in a reduction in the

statistical power of the analysis. Furthermore, the listwise deletion wastes available

information of individuals who have observed values for some of the variables.

Another similar approach for dealing with missing values is the so-called pairwise

deletion. It excludes the subjects where missing values occur in variables included in

the analysis. Even though this approach has the same drawbacks as listwise deletion

that it results in bias and reduction of statistical power of analysis, it is more effi-

cient than listwise deletion because it makes as much use of available information as

possible. However, when pairwise deletion is applied, the sample sizes for analyzing

different aspects of a study would be different and so might result in inconsistency.

For example, if we are interested in the predictive models of body weight of preterm

babies at day 7 and day 21, the models probably can not be representative for the

same populations because of the distinct sample sizes.

In order to avoid wasting information caused by deletion, one may not be willing

to delete the missing subjects, but rather be willing to substitute reasonable values

for missing values. This procedure of dealing with missing values is called imputa-

tion. Imputation results in complete and balanced data so that standard statistical

analytic methods can then be used. Further, it maintains the sample size so that

the the statistical power of analysis can be preserved and also in improving the bias

possibly.
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4.1 Missingness in GTHPI data

In longitudinal data, there exists two missingness patterns. Response variables of

some subjects may not be measured at some time point, but measured at later time

points, creating intermittent missingness pattern. On the other hand, some sub-

jects may drop out of a study and never return to participate in the study, leading

to monotone missingness pattern. The GTHPI data set assesses both intermittent

missingness and monotone missingness patterns in the response variable. The inter-

mittent missingness may occur when preterm infants are unstable and not suitable

for measurements when they are kept under care in neonatal intensive care units,

while monotone missingness will happen when preterm infants are discharged from

the hospital and never come back for further observation. Figure 4.1 shows the miss-

ing pattern of measurements of body weight of healthy preterm infants with observed

values in black and missing values in white. In this case, about 9% of the measure-

ments are missing intermittently while 6% are missing monotonically. Note that the

explanatory variables are all observed for each infant in this data set.

4.2 Missingness Mechanisms

Before we deal with missing values, we need to figure out why the data are missing.

It is unrealistic to record accurately all potential causes for missingness in a data

set, but missingness may be intrinsically related to the data (Schafer and Graham,

2002). One can use a binary indicator variable I to describe the missingness of a

response variable Y , that is, I takes the value 1 when Y is observed and 0 when Y

is missing. Missingness mechanisms can then be considered as a joint distribution
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Figure 4.1: Missing pattern of postnatal growth for healthy preterm infants: white
are missing while black are observed
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of the set of response indicator variables, and it is best to describe the relationship

between the missingness and the missing values (Schafer and Graham, 2002). The

reason that a value is missing can be summarized into three types - missing completely

at random (MCAR), missing at random (MAR) (Rubin, 1976), and not missing at

random (NMAR) (Little and Rubin, 2002). Missingness mechanisms is important

because it determines whether we need to complete the incomplete data by imputation

or we can ignore the missing values, and which statistical method is appropriate for

the analysis. Inappropriate method of analysis would increase bias and result in

invalid inference.

4.2.1 Notation

Let I be a m× n indicator matrix corresponding to Y given by

I =



I11 · · · I1j · · · I1n
...

...
...

Ii1 · · · Iij · · · Iin
...

...
...

Im1 · · · Imj · · · Imn


=



I1
...

Ii
...

Im


,

where Iij takes the value 1 when Yij is observed and 0 otherwise. The individual

response variables Yi can be partitioned into observed components and missing com-

ponents, denoted by Y o
i and Y m

i , respectively.
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4.2.2 Missing Completely At Random (MCAR)

Data are MCAR when the probabilities that a response will be missing are all equal,

independent of both the observed variables and the missing value itself. That is, the

data is MCAR when Ii is independent of Y o
i , Y m

i and Xi, i.e.,

P (Ii|Yi,Xi) = P (Ii).

MCAR is as if we determine whether to measure a response or not from the toss of a

fair die. For example, if a 6 turns up, we do not measure the response value. The com-

plete observed data can then be thought of as a random sample from the whole data.

As a result, the distribution of the complete observed data Yi given Xi is same as the

distribution of the complete data. If the complete data are representative of the tar-

get population, the reduced complete observed data are sufficient enough to represent

the target population. Analysis restricted on the completers will not increase the bias

and any method of analysis yielding valid inference based on complete data can there-

fore yield valid inference on the complete observed data if the data are indeed MCAR.

On the other hand, the observed components for individuals with missing values

have similar results under the assumption that data are MCAR. That is, the dis-

tribution of the observed components of incompleters Y o
i given Xi have the same

distribution as the corresponding components of completers. Moreover, the distribu-

tion of the missing components of an individual also have the same distribution as

the corresponding components of completers. That is, Y m
i given Xi is identically

distributed as the same components of subjects with no missing responses. Hence,

28



M.Sc. Thesis - Kai Liu McMaster - Mathematics and Statistics

the distribution of the observed components Y o
i coincides with the distribution of the

same components in the target population. Method of analysis using all the available

data can also give valid inference in this case and do not increase the bias under this

assumption.

4.2.3 Missing At Random (MAR)

Data are MAR when the probability that the missingness of response variables occur

depends on observed values, but unrelated to the missing values themselves. That is,

data are MAR when Ii is conditionally dependent of Y o
i and covariates Xi, i.e.,

P (Ii|Yi,Xi) = P (Ii|Y o
i ,Xi).

As in MAR, all the factors that affect the missingness of response variables should be

included as covariates; otherwise, the assumption of MAR would not hold.

Since the missingness of response variables depends on the observed values, the distri-

bution of Yi given Xi of the completers is not the same as the distribution of Y given

X in the target population. Analysis on the data of completers is not appropriate

and may lead to biased estimates of parameters in this case.

The distribution of the observed components Y o
i of Yi is not the same as the dis-

tribution of the same components of completers. However, the distribution of the

missing components Y m
i conditioned on the observed components Y o

i is the same as

the distribution of the corresponding components conditioned on the same values as

Y o
i of the completers. Consequently, missing values can be predicted by using the
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observed data and a model derived from the complete cases with the same observed

components.

Under MAR, the joint distribution of Ii|(Yi,Xi) is not needed to develop likelihood-

based analysis, only the joint distribution of Yi|Xi is needed. MCAR is a special case

of MAR and so it also has this property. These missingness mechanisms are said to

be ignorable since they do not depend on P (Ii|Yi,Xi).

4.2.4 Not Missing At Random (NMAR)

If the probabilities that response variables are missing depend on the missing values

themselves, the missing values are said to be MNAR. That is, the distribution of Ii

is related to Y m
i and depends on at least one of the elements of Y m

i , i.e.,

P (Ii|Yi,Xi) = P (Ii|Y m
i ,Y o

i ,Xi).

This missing mechanism is said to be non-ignorable since the distribution of Ii|(Yi,Xi)

gives information about the distribution of the missing observations. The distribution

of Y m
i depends on Y o

i and P (Ii|Yi,Xi).

4.2.5 General Rule

It is hard to identify the missingness mechanism for a data unless analysts know the

data collection procedure, especially in the case of NMAR data. In most analysis,

data are assumed to be MAR since some analytic methods under this assumption

are also suitable for MNAR data. Due to the special nature of a longitudinal data in

30



M.Sc. Thesis - Kai Liu McMaster - Mathematics and Statistics

that they possess correlation between response variables at different time points, the

missing data are assumed to be MCAR.

4.3 Single Imputation

4.3.1 Last Observation Carried Forward (LOCF)

Last observation carried forward is specific for longitudinal data, imputing missing

values with the last observed values for each individual. It is unrealistic as this

method assumes that the measurements of outcome variable remain unchanged for

the period when measurements are missing, especially when the missingness is caused

by dropouts in clinical trials.

4.3.2 Regression Imputation

The procedure of regression imputation in longitudinal data is that a series of regres-

sion models are established by taking a response variable at a time to be dependent

variable and all the previous responses and covariates to be independent variables.

The regression model is fitted with individuals containing fully observed values for

those variables required in the models. The fitted model is then used to predict ex-

pected values where the response is missing and the predicted values are substituted

for the missing values. This approach takes the relationship between variables into

account and so the estimation of parameters of interest are less biased than under

LOCF.
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Specifically, suppose Y = (Y o,Y m) is a m × 1 vector, partitioned into two sub-

vectors containing observed components and missing components, respectively. Let

X be a m×(p+1) design matrix whose entries are all observed. X can be partitioned

into Xo and Xm corresponding to Y o,Y m, respectively. The procedure can then be

summarized in three steps:

• Step 1: Models are established as

Y o = Xoβ + ε, ε|Xo ∼ N(0, σ2I);

• Step 2: Use of least-squares method gives the estimates of the coefficients as

β̂ = (XoTXo)−1XoTY o;

• Step 3: Then, the missing values can be imputed as

Ŷ m = Xmβ̂.

4.3.3 Stochastic Regression Imputation

Regression imputation, which simply replaces missing values with expected values

by linear regression models, underestimates the variability of imputation models as

imputed values are exactly along the regression line without deviation. To correct

the lack of error term, stochastic regression adds error terms to the predicted values

by linear models. The choice of error terms is that they are randomly selected from a

normal distribution with mean 0 and standard deviation σ̂, where σ̂ is the estimated

deviation of the observed residuals.
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The procedure is similar to the above regression imputation except that in the third

step the missing values are imputed as

Ŷ m = Xmβ̂ + ε̂, ε̂ ∼ N(0, σ̂2I).

4.3.4 Advantages and Disadvantages of Single Imputation

Single imputation retains the statistical power without a reduction in sample size and

is also easy to implement. However, it generates only a complete data set and treat

the imputed values as the real observed values and do not account for uncertainty

caused by missing values.

4.4 Multiple Imputation

Rubin (2004) proposed multiple imputation to preserve the uncertainty in missing

values. The procedure of statistical analysis based on multiple imputation can be

summarized in three steps as follows:

• First, each missing value is imputed with k plausible values to create k complete

data sets. k may be taken to be any value between 2 to 5;

• Second, each complete data is analyzed by using standard statistical methods

to obtain k set of parameters or statistics of interest;

• Third, the multiple results are appropriately combined to draw a single final

result, together with standard errors that reflect the inherent uncertainty in

missing data. For example, suppose we are interested in the coefficient β of
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the model, with the k sets of the estimated regression parameter obtained from

the k completed data sets, denoted by β̂(i) for i = 1, 2, . . . , k, the multiple

imputation estimate of β is given by

β̂ =
1

k

k∑
i=1

β̂(i),

and its estimated variance is

V̂ar(β̂) = W +

(
1 +

1

k

)
B,

where W = 1
k

∑k
i=1 V̂ar

(
β̂(i)
)

and B = 1
k−1
∑k

i=1

(
β̂(i) − β̂

)(
β̂(i) − β̂

)T
. Multiple

imputation is a flexible technique for handling missing data and many software pack-

ages are available in statistical softwares such as in SAS, R and SPSS. Each multiple

imputation package may, however, have different methods inside it. One may have to

understand the imputation procedure used in different software packages. Here, I only

focus on the “mi” package in R to impute missing data (Su et al., 2011). “mi” uses

an algorithm known as a chained equation approach (Van Buuren and Oudshoorn,

2000; Raghunathan et al., 2001) which requires a series of regression models to be

specified for each response variable with missing data. The models for imputation

are not necessarily same as models used for the statistical analysis. Missing data in

each variable are then imputed sequentially by using the specified model. We now

describe the procedure of multiple imputation in “mi” package in R in detail.
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4.4.1 Methodology

Let X = (X1, . . . , Xp) be a random covariate vector, Y = (Y1, . . . , Yn) be a random

response vector, and Y−j = (Y1, . . . , Yj−1, Yj+1, . . . , Yn) be the vector containing all the

response variables except Yj. It is assumed that missing data occur only in response

variables and that covariates are fully observed. A series of regression models for Yj

are established, given by

Yj = β0 +

j−1∑
k=1

βkYk +
n∑

k=j+1

βkYk +

p∑
r=1

αrXr + εj, εj ∼ N(0, σ2
j ).

Then, the mean and variance of the conditional distribution of Yj, given X,Y−j, are

given by

E(Yj|X,Y−j) = β0+β1Y1+· · ·+βj−1Yj−1+βj+1Yj+1+· · ·+βnYn, Var(Yj|X,Y−j) = σ2
j .

That is, the conditional distribution of Yj, given X,Y−j, is then assumed to be nor-

mal with mean β0 + β1Y1 + · · · + βj−1Yj−1 + βj+1Yj+1 + · · · + βnYn and variance σ2
j ,

denoted by Yj|(X,Y−j) ∼ N(β0 + β1Y1 + · · ·+ βj−1Yj−1 + βj+1Yj+1 + · · ·+ βnYn, σ
2
j ).

Note that the sets of regression parameters for each regression model are different.

Imputation by chained equations is actually a Gibbs sampler process. It starts with

a completed data in which missing values are imputed with randomly selected values

from the observed data in the same response variable. The regression model for the

conditional mean of the response at jth occasion are then fitted by using the com-

pleted data of subjects who do not have missing values at that occasion iteratively
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and sequentially and missing values in predictors are replaced by their imputed val-

ues from the previous imputation. Each missing value is imputed with a random

selection from its conditional distribution. Specifically, for t = 2, . . . , T , where T is a

predetermined value,

Select Y
(t)
1 from N(β̂0 + β̂2Y

(t−1)
2 + · · ·+ β̂nY

(t−1)
n + α̂1X1 + · · ·+ α̂pXp, σ̂

2
1),

Select Y
(t)
2 from N(β̂0 + β̂1Y

(t)
1 + β̂3Y

(t−1)
3 + · · ·+ β̂nY

(t−1)
n + α̂1X1 + · · ·+ α̂pXp, σ̂

2
2),

...

Select Y
(t)
j from N(β̂0 + β̂1Y

(t)
1 + · · ·+ β̂j−1Y

(t)
j−1 + β̂j+1Y

(t−1)
j+1 + · · ·+ β̂nY

(t−1)
n

+ α̂1X1 + · · ·+ α̂pXp, σ̂
2
j ),

...

Select Y
(t)
n−1 from N(β̂0 + β̂1Y

(t)
1 + · · · β̂n−2Y (t)

n−2 + β̂nY
(t−1)
n + α̂1X1 + · · ·+ α̂pXp, σ̂

2
n−1),

Select Y (t)
n from N(β̂0 + β̂1Y

(t)
1 + · · ·+ β̂n−1Y

(t)
n−1 + α̂1X1 + · · ·+ α̂pXp, σ̂

2
n)

for the missing data. Each time, the imputed missing data are overwritten by subse-

quent imputing values and the set of imputation in the last iteration is used to form

a completed data set. The same procedure is then repeated multiple times to obtain

the k completed data sets.

4.4.2 Diagnostics

Diagnostics is an important part of any statistical procedure. Imputation procedure

using regression models is in fact the same as statistical analysis procedure and so the

fit of models used for imputation should be checked. “mi” provides three diagnostic

plots to check the fit of imputation models (Su et al., 2011). The first plot is a
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histogram of the observed, the imputed and the completed values of a variable to be

imputed. If the imputed values are all within reasonable range of the observed values,

then the imputed values are acceptable. The second plot is the binned residual plot

(Gelman et al., 2000). It is a modification of the usual residual plot by partitioning the

scatter plot into several bins with respect to expected values. There are approximately

equal numbers of points in each bin. The average of residuals and the average of

expected values for each bin are calculated and plotted. The binned residual plot plays

a similar role as the usual residual plot. The average residual points are preferred to

fall within the 95% error bounds. If there are a lot of points falling outside the error

bounds, improvement for imputation is needed. The improvement can be achieved by

transformation to response variable. The third plot is the scatterplot of the observed

against the predicted values of the observed and imputed values. The scatterplot

demonstrates the similarity of the imputed data to the observed data.

4.4.3 Advantages and Disadvantages of Multiple Imputation

Multiple imputation shares the advantages of single imputation. It completes the

incomplete data set so that one can use standard methods of statistical analysis that

require balanced data set. It retains the sample size so that the statistical power is

not reduced.

Multiple imputation is advantageous than single imputation to some extent. With

multiple imputation, each missing value is replaced with multiple plausible values to

generate multiple completed data sets, ensuring that the uncertainty related to the
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imputed values can be taken into account. Besides, multiple imputation is advanta-

geous when covariates which are predictive of either the probability of missingness

or the responses are excluded from the model for analysis. These covariates can be

introduced in the imputation process to improve the imputation of missing values. In-

deed, inclusion of any variates that are highly related to the response would increase

precision of imputation and so would increase the accuracy of statistical analysis.

It implies that the imputation model and the model for analysis are necessarily the

same, and usually the model for analysis is simpler than the imputation model. More-

over, multiple imputation can reflect the distribution of each missing value if a large

number of completed data sets are generated.

However, there are obvious disadvantages of multiple imputation. First, it requires

more computation than single imputation as it needs to create multiple completed

data sets. Second, more work is needed to analyze the multiple data sets individually

to draw results for each data set. This disadvantage should not be of great concern

when k is modest. Generally, it is adequate to choose k between 2 to 5. But, when

the proportion of missing data is large, a large k is required, which would result in a

burdensome computational task.

4.5 Evaluation Methods

After imputation, we still do not know how accurate the imputed values are since

we do not know the real values of the missing ones. Cross-validation is a technique

that can be used to test the accuracy of imputation. It treats the completed data to

be the real data and assumes that some of the observed values are missing, then the
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imputation methods are applied to these “artificial” data and the imputed values are

compared with the observed values.

4.5.1 Cross-validation

The detailed procedure of cross-validation technique can be summarized as follows:

• First, we randomly select 10% of measurements that are observed to be “miss-

ing”. This chosen data are called the validation data set. The remaining data,

including imputed values, are called the training data;

• Second, we reapply the imputation method to the training data set to obtain

imputed values for the “missing” data;

• Third, compare them with the observed values to see how well the models

performed. If the predicted values of the validation data are very close to

the observed values, it means that the imputation method resulted in accurate

estimates of the missing values.

4.5.2 Measure of Evaluation

The sum of squared errors of the observed and imputed values of the validation data

can serve as an overall measure to compare different imputation models. The smaller

the sum of squared errors is, the better the imputation model is.
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Results of Imputation

Several single imputation methods and multiple imputation methods have been de-

scribed earlier. Imputation is widely used in practice since standard analytic methods

can be applied to the completed data set. Any imputation method, replacing missing

data with plausible values to complete the incomplete data set, can retain statistical

power by retaining the sample size. Both single imputation and multiple imputation

have their own advantages and disadvantages, as pointed out earlier. Single imputa-

tions which generate only one completed data set need less work and can therefore

save time. However, they do not take the uncertainty of imputed values into account.

Multiple imputation can reveal this inherent uncertainty by generating multiple dif-

ferent completed data sets. But, it would take more time and effort to implement

multiple imputation and the corresponding analysis. In practice, when imputations

are applied to data, some problem may arise according to the particular data set that

is being analyzed. To better understand each of the imputation methods described

earlier, imputations are applied to GTHPI data.
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LOCF imputes the missing responses individual-by-individual to preserve the charac-

teristics of body weight for each infant. The missing responses are imputed sequen-

tially with a series of regression models for each response variable by the regression-

based imputation. LOCF method only generates fixed values for missing values and

so does the regression imputation once the regression models are determined. Mean-

while, stochastic imputation and multiple imputation can generate different results

each time we implement them due to the randomness involved in these two methods.

This randomness can not be avoided, but one can set seed while doing the computa-

tion to keep different imputation methods consistent.

Before we impute the missing values, we need to check the validation of the models

for regression imputation and multiple imputation. Let us consider the imputation

for day 21, for example. Figure 5.2 provides the diagnostics check of the model for

regression imputation/stochastic imputation of missing weights on day 21. We can

see from the plots that all the assumptions are satisfied well since the residuals are

randomly scattered along the horizontal line y = 0 and the QQ plot is approximately

linear. However, it is noticed that there are some outliers. Several influential points

are seen from the Cook’s distance and so the inclusion and exclusion of those points

can lead to deviation of the regression line, but they should remain in the sample be-

cause those weights are not strange values and that we would rather keep the sample

size as large as possible. Similarly, Figure 5.3 shows the diagnostics for the multiple

imputation for day 21. The blue ones are for the observed values and red are for

imputed values. These show that the imputation models are quite reasonable. The

diagnostic results for imputation of the other days are all similar.
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5.1 Illustration for One Particular Infant

Completed data set should follow the nature of the exact values observed. That is to

say, the imputed values must be positive and the growth of any infant must follow a

trend that an initial weight loss is permitted and weight must increase as time goes

by. Table 5.3 gives the imputed values of weight from day of life 1 to 21 for the

infant with most missing values by each of the imputation method. The LOCF have

constant body weight when successive missingness occur, which is unrealistic and

will certainly underestimate the weight gain. Regression imputation and stochastic

imputation gives reasonable imputed values, consistent with the expected growth of

decreasing weight during the first week and increasing weight afterward. But, the

multiple imputation is observed not to yield imputed values as we would have ex-

pected.

Figure 5.4 visualizes the growth of this infant. It can be seen from this plot that

growth trajectory of this infant greatly fluctuates with multiple imputation. Regres-

sion imputation and stochastic imputation have a slight fluctuant growth during the

first week of life. Even the growth trajectory of data completed by LOCF depicts a

gradient increase in weight after an initial weight loss during the first week, but the

constant weight from day 10 to day 17 is unrealistic.
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5.2 Illustration of Imputation for the Complete

Data

Since we do not know the exact values of the missing data, it is not easy to assess

how well different imputation methods are performed by studying the imputed data.

Cross-validation is an efficient approach to assess how precise the imputed data ob-

tained by different imputation methods are. For this purpose, we can choose a certain

proportion of observed data to be “missing” and apply imputation to the thus-created

incomplete data set. The difference between the imputed and observed values of the

“missing” data can then be used to assess the precision of imputation.

I chose 98 observed values (10% of the subjects) for each response variable to be

“missing” and then re-completed the data set with each of the imputation meth-

ods. The sum of squared errors obtained from each of the imputation methods are

summarized in Table 5.4. As we would expect, LOCF is worse than the regression-

based imputations. It is consistent with the cross-validation result since they have

very large sum of squared errors. Regression imputation, stochastic imputation and

multiple imputation, which are regression-based methods, all relate the missing data

to other covariates. These methods have better prediction of missing values. The

stochastic imputation is not necessarily better off as it adds randomly selected error

terms to the predicted values of missing data which results in pushing the imputed

values farther from the actual values. Even though multiple imputation is advanta-

geous in that it account for the uncertainty, it has the same problem as stochastic

imputation since missing data are imputed with randomly selected values from its
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conditional distribution.
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Figure 5.2: Diagnostics for model W21 = β0+β1W1+ · · ·+β20W20+α1GA+α2BW+ε
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Figure 5.3: Multiple Imputation Diagnostics: Red are imputed and blue are observed
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Table 5.3: Imputation results for the infant with most missing values

day Original LOCF
Regression
Imputation

Stochastic
Imputation

Multiple Imputation

data1 data2 data3

1 1210 1210 1210 1210 1210 1210 1210
2 NA 1210 1190.8 1192.4 1088.9 1179.7 1101.6
3 870 870 870 870 870 870 870
4 NA 870 917.3 899.3 872.3 889.0 844.7
5 850 850 850 850 850 850 850
6 NA 850 878.8 858.0 837.2 874.7 838.5
7 860 860 860 860 860 860 860
8 852 852 852 852 852 852 852
9 NA 852 886.4 884.2 952.5 1015.0 1057.4
10 907 907 907 907 907 907 907
11 NA 907 929.1 934.8 1151.3 1230.2 1104.4
12 NA 907 946.4 940.5 942.3 943.5 870.5
13 NA 907 960.6 949.6 1439.1 1368.6 1202.2
14 NA 907 982.0 960.4 923.6 1020.7 893.1
15 NA 907 1000.8 988.1 1489.8 1439.7 1199.4
16 NA 907 1021.4 985.3 1017.5 1019.8 900.5
17 NA 907 1041.6 1001.1 1637.6 1433.8 1281.9
18 1001 1001 1001 1001 1001 1001 1001
19 NA 1001 1039.2 1025.0 1348.7 1220.8 1233.1
20 1057 1057 1057 1057 1057 1057 1057
21 NA 1057 1083.8 1037.7 1082.5 1036.7 1077.3

Table 5.4: SSE by Cross-Validation for the Complete Data

LOCF
Regression
Imputation

Stochastic
Imputation

Multiple Im-
putation

243,852,939 2,819,639 5,226,838 9,028,473
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Figure 5.4: Individual Growth Trajectory for the Infant with Most Missing Values
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Chapter 6

Subsequent Analysis

So far, we have introduced and examined several imputation methods and observed

that the regression-based imputation results in good estimates of the missing values

in the GTHPI data. The aim of imputation is not just to find the missing values, but

rather to complete the missing data so that standard analysis approaches can then

be used. Even though the regression imputation does not take the uncertainty into

account as compared to the multiple imputation, it is robust enough for our GTHPI

study. As mentioned before, the aim of this study is to characterize the feature of the

preterm infants specific for gestational age to find which percentile a preterm infant

will adjust to after 21 days of self-adjustment and also to develop predictive models

for estimating the weight at days 7, 14 and 21.

6.1 Characterization of GTHPI data

Statistically speaking, the data are characterized in terms of summary of quantiles

of weights specific for completed gestational age. Figure 6.5 summarizes percentiles
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of weights in groups of completed gestational age visually in which the solid coloured

curves are the medians, the shaded areas are corresponding to the 10th and 90th

percentiles, and the vertical bars are the 3rd and 97th percentiles. The starting time

point for each group is the median of exact gestational ages. The black curves are

the Fenton reference curves (Fenton and Kim, 2013), in which the solid curve is the

Fenton median curve, the long dash curves are the 10th and 90th percentiles, while the

dashed curves are the 3rd and 97th percentiles of weight. It can be seen from Figure

6.5 that the preterm birth results in a gap between the growth trajectories of preterm

infants and the reference growth trajectories. The quantile growth trajectories of

preterm infants are lower than their corresponding reference quantile curves. Let us

consider the growth curves for preterm infants with 34 weeks of completed gestation,

as an example. Approximately, the third quantile curve adjusts to the third quantile

reference curve, the 10th quantile curve adjusts to the 8th quantile reference curve,

the median growth curve adjusts to 20th quantile reference curve, the 90th quantile

curve adjusts to 38th quantile reference curve while the 97th quantile curve adjusts

to 48th quantile reference curve. The other groups follow similar adjustment. This

characterization gives us an overall growth pattern of preterm infants with specific

completed gestational age.

6.2 Predictive Models

6.2.1 Univariate Response

We will first treat the response at day 7 or 14 or 21 to be a univariate response,and

not care about the correlation between repeated measurements. The responses are
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independent among individuals so that linear regression models can be considered.

The data is in wide format when it is analyzed with this method.

We have many variables other than weights recorded in the data, and not all the

variables need to be covariates in the first place. We interested in predictive mod-

els which can be used to predict the weight of preterm infants at certain day of life

given the information at birth. That is, the covariates are centre, yoa, gender, gas,

gad/gawexact, bw, md, eth and preg. Intuitively, yoa, md, eth and preg may not

be significant since later-on weights would not differ much among different levels of

these categorical variables. Table 6.5 shows the parameter estimates for the model for

weight at day 7. It is evident that md, eth, preg and yoa are not significant covariates

as our intuition is suggested. We can also use backward selection method to check

that these variables are not significant. The backward selection proceeds as follows,

• Step 1: fit the model with all possible covariates;

• Step 2: Look at the p-values of the coefficients, and find the variable whose

coefficient has largest p-values; if it is larger than 0.05, then it is not significant

and can be removed from the model. If it is not, then the variable should remain

in the model and the model is determined and the selection is stopped;

• Step 3: If there is a removal of a variable in Step 2, then the model is refitted

with the remaining covariates and Steps 2 and 3 are repeated until the final

model is fitted.

Table 6.6 shows the estimates of the backward selected model for weight at day 7,

with the remaining covariates being all significant now. The results are similar for
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predictive models for weights at days 14 and 21. There are some weak points in

these models since significance of medical centres constrains the prediction of weight

of preterm infants in the five participating medical centres. Since our target popu-

lation of prediction is all preterm infants born during 25 and 34 completed weeks of

gestation, this means that these models are not desirable for this reason.

To determine whether centre and gender can be excluded from the model compared

to the four-covariates model, we can look at their relative AIC (Akaike Information

Criterion) which is the ratio of AIC between the reduced models and the full model.

AIC is a measure of relative quality of statistical models when models have different

amount of covariates, and is given by

AIC = 2k − 2 ln(L),

where k is the number of parameters in the model, and L is the maximized value

of the likelihood function for the model. Hence, AIC not only rewards goodness of

fit, but also penalizes the decreased residual deviation resulted by increased number

of covariates among models. Reduced models with gestational age, birth weight and

with or without gender are then compared with the full model with all four variables,

gestational age, birth weight, medical centre and gender in terms of relative efficiency.

It can be seen from Table 6.7 that the relative AIC between reduced models and full

models are near 1 showing that the reduced models have close relative AIC values,

and so the simpler model are as good as the full model including all four variables.
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Table 6.5: Parameter Estimates for the Full Model to Predict Weight at Day 7
Estimate Std. Error t value Pr(> |t|)

Intercept 8.902e+ 03 4.301e+ 03 2.070 0.038816∗
bw 8.541e− 01 8.795e− 03 97.114 < 2e− 16 ∗ ∗∗
gaw −1.559e+ 01 8.570e+ 00 −1.819 0.069234.

genderM 1.958e+ 01 5.145e+ 00 3.807 0.000152 ∗ ∗∗
centre 3.595e+ 00 2.182e+ 00 1.647 0.099857.

yoa −4.669e+ 00 2.141e+ 00 −2.181 0.029457∗
gad 5.045e+ 00 1.231e+ 00 4.098 4.6e− 05 ∗ ∗∗

mdC 1.009e+ 02 5.607e+ 01 1.799 0.072374.
mdCS −1.885e+ 01 2.332e+ 01 −0.808 0.419150
mdV −1.287e+ 01 2.336e+ 01 −0.551 0.581755

mdVS −2.705e+ 01 5.578e+ 01 −0.485 0.627899
ethA −1.616e+ 01 3.406e+ 01 −0.474 0.635341
ethAf 5.232e+ 01 4.047e+ 01 1.293 0.196480
ethC 5.218e+ 00 3.176e+ 01 0.164 0.869551
ethM −3.495e+ 01 3.605e+ 01 −0.970 0.332486
ethMe −1.411e+ 01 4.196e+ 01 −0.336 0.736650
ethN −6.327e+ 00 3.125e+ 01 −0.202 0.839604
ethNa 1.495e+ 01 7.827e+ 01 0.191 0.848615
ethSA 8.389e+ 00 5.970e+ 01 0.141 0.888280

pregMG 7.828e+ 00 2.229e+ 01 0.351 0.725576
pregS 2.063e+ 01 2.210e+ 01 0.933 0.350853

The final models for the prediction of weights at days 7, 14, 21 are given by

W7 = −533.4 + 0.8624bw + 21.75gaw,

W14 = −747.899 + 0.87bw + 33.566gaw,

W21 = −973.5 + 0.896bw + 46.28gaw.
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Table 6.6: Parameter Estimates for the Reduced Model to Predict Weight at Day 7
Estimate Std. Error t value Pr(> |t|)

Intercept −5.303e+ 02 4.162e+ 01 −12.742 < 2e− 16 ∗ ∗∗
bw 8.617e− 01 8.008e− 03 107.609 < 2e− 16 ∗ ∗∗
gaw 2.079e+ 01 1.678e+ 00 12.391 < 2e− 16 ∗ ∗∗

genderM 1.476e+ 01 4.632e+ 00 3.187 0.001483 ∗ ∗
centre 6.660e+ 00 1.726e+ 00 3.859 0.000121 ∗ ∗∗

Table 6.7: Relative AIC of Models
Covariates gaw, bw, centre, gender gaw, bw, gender gaw, bw

AIC at day 7 8291.94 8382.32 8389.48
Relative AIC 1.001557 1.002412

AIC at day 14 8891.062 8907.092 8910.557
Relative AIC 1.001803 1.002193

AIC at day 21 9680.453 9704.204 9708.467
Relative AIC 1.002453 1.002894

6.2.2 Multivariate Response

Now let us consider the multivariate model by taking into consideration the correlation

between the repeated responses. First, we need to transform the data into a long

format and add a time variable. The covariates considered here are gas, bw, gender,

centre as well as day of life. The well-known AIC cannot be directly applied since

AIC is based on maximum likelihood estimation, while GEE is nonlikelihood based.

Pan (2001) proposed Quasi-likelihood Information criterion (QIC) based on AIC by

replacing the likelihood with quasi-likelihood given by

QIC = −2Q+ 2trace(Ω̂V̂ ),

where Q is the quasi-likelihood, Ω̂ = − ∂2Q
∂β∂β′ |β=β̂ and V̂ is the estimator of the

variance-covariance matrix of β. Table 6.8 shows the QIC and the relative QIC of
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Table 6.8: QIC of Multivariate Linear Models
Covariates gaw, bw, centre, gender, day gaw, bw, gender, day gaw, bw, day

QIC 191,822 192044 192,109
Relative QIC 1.0012 1.0015

the reduced models compared to the full model. As in the case of linear models above,

these results reveal that the QIC ratio of reduced models to the full model are once

again very close to 1. Thus, the model with gaw, bw, day as covariates is sufficient.

The predictive model fitted by MLM is given by

W = −823.703 + 0.888bw + 26.962gaw + 19.645day

Therefore, the simpler predictive models for weight at days 7, 14 and 21 are as

follows:

W7 = −686 + 0.888bw + 26.962gaw

W14 = −549 + 0.888bw + 26.962gaw

W21 = −411 + 0.888bw + 26.962gaw
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Figure 6.5: Median growth curves
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Discussion and Further Work

In many studies in health science, missing data are inevitable and should be treated

carefully when conducting data analysis since improper treatment of missing data

would yield misleading results. In fact, the challenge of statistical analysis in applied

fields is not the data analysis but the treatment of missing data. Much effort is spent

in dealing with missing data.

I have described three missingness mechanisms, namely, MCAR, MAR and NMAR,

in terms of the probability distribution of a binary indicator variable used to indi-

cate the missingness of data. The missingness mechanisms are important when we

analyze an incomplete data set. Most statistical softwares deal with incomplete data

by deleting all the cases having missing values or by deleting cases having missing

values in variables included in the analysis. Missing data are ignorable when they

are MCAR so that general statistical analysis can be applied to the incomplete data

set without any concerns. Deletion methods will decrease the statistical power of the

procedure by decreasing the sample size. In practice, most incomplete data are either
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MAR or NMAR. These data can not be analyzed directly since the incompleteness

can produce biased estimates of parameters of interest and can lead to invalid or

misleading inference. Imputation can avoid these problems to some extent.

Several widely used imputation procedures for imputing missing data are described

and illustrated. Each method has its own merits and demerits. In general, LOCF

replacing missing data with the last observed value for any subject is commonly used

in longitudinal data. It yields conservative estimates of parameters of interest. It

preserves independence of subjects by dealing with missing data on an individual-

by-individual basis. In contrast, regression-based imputations are more reliable when

imputation models are properly specified. They are flexible in handling each response

variable with missing values by specifying one regression model for the variable. Here,

only imputation for continuous variables are discussed. Other type of variables can

also be easily imputed by regression-based imputations using generalized linear mod-

els. For example, missing data in a binary variable can be imputed by using logistic

models. The flexibility of regression-based imputations is also displayed by covariates

selection. For example, all the main effect terms and effective interactions among

main factors can be included in the imputation models. However, more restrictions

are required to preserve the nature of the growth of weights in our study. In other

words, the imputed values of missing data should be bounded between previous and

latter observed values to preserve the monotonicity in growth.

Single imputations considering imputed data as real data do not account for un-

certainty in imputed data. Multiple imputation overcomes this shortcoming of single
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imputation by providing multiple plausible values for each missing value. Each com-

pleted data is then analyzed separately and results from each data set are then av-

eraged to draw final conclusions. Multiple imputation is computationally a lot more

intensive than single imputation as it requires repeat statistical analysis. However,

completed data sets resulting from multiple imputation are not necessarily better

than single imputation. The reason for this is that multiple imputation is a much

more complicated procedure. First of all, the initial values of the missing data, ran-

domly selected from the observed data, can make the imputed values be considerably

away from the real values. Constraints for the initial selection of imputed values may

be considered when applying multiple imputation. That is, in longitudinal data, the

initial values of missing response variables for each infant can be randomly selected

from its observed measurements. Second, constraint should also be placed during it-

eration to follow the monotone growth among observed and imputed weight for each

infant.

Once the data are suitably completed, the statistical analysis can be readily car-

ried out. Linear models that assume the repeated responses for each infant to be

independent or dependent are used to analyze the GTHPI data. It is observed that

the gestational age, birth weight, centre and gender are significantly related to the

later-on weight of preterm infants. The AIC or QIC suggests that the simpler models

with gestational age and birth weight as covariates are quite adequate for the predic-

tion of weights. However, the coefficients from the two models are quite different.

It can be seen from our analysis that the imputation models and models for analysis
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need not necessarily be the same since the primary aim of imputation is only to fill

in the missing data with plausible values as close as possible to the real data and not

for the ensuing statistical analysis.
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Appendix

# calculate quantiles of preterm infants for each day

# in different gestational age

cal<-function(dat2)

{

require("plyr")

t<-ddply(dat2,.(gaw,day),summarize,

mean=mean(weight),

sd=sd(weight),

median=quantile(weight,prob=0.5),

Q1=quantile(weight,prob=0.25),

Q3=quantile(weight,prob=0.75),

one=quantile(weight,prob=0.01),

ninenine=quantile(weight,prob=0.99),

tenth=quantile(weight,prob=0.1),
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nintyth=quantile(weight,prob=0.9))

t$start<-NA

start<-ddply(dat2,.(gaw),summarize,gawexact.median=quantile(gawexact,prob=0.5))

for (i in 1:nrow(t))

for (j in 1:nrow(start))

{

if (t$gaw[i]==start$gaw[j])

{t$start[i]=start$gawexact.median[j]}

}

t$x<-t$start+(as.numeric(t$day)-1)/7

return(t)

}

# Indentify last observed value

ob_last<-function(dat,i,j)

{

m<-j-1

while (m>=1)

{

if (!is.na(dat[i,m])) {return(m)}

else {m<-m-1}

}

}

# LOCF Imputation
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LOCF<-function(dat)

{source("ob_last.R")

for (i in 1:nrow(dat))

{m<-NULL; n<-NULL;

for (j in 15:ncol(dat))

{

if (is.na(dat[i,j]))

{m<-ob_last(dat,i,j);dat[i,j]<-dat[i,m]}

}

}

return(dat)

}

# Regression Imputation

# W_t = W_1 + ... + W_{t-1} + GA + BW

RegImp_2<-function(dat2)

{

for (j in 16:35)

{

dat2.lm<-cbind(dat2[,c("gaw","bw")],dat2[,15:(j-1)],y=dat2[,j])

m2<-lm(y~.,!is.na(y),data=dat2.lm)

summary(m2)

#png(file=paste("RI2_day", j-14, ".png", sep = ""),

# width=10, height=6, units=’in’,res=300)
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#par(mfrow = c(3, 1), oma = c(0, 0, 2, 0))

#plot(m2,which=c(1,2,4))

#dev.off()

dat2[is.na(dat2[,j]),j]<-predict(m2,newdata=dat2.lm[is.na(dat2[,j]),])

}

return(dat2)

}

# Stochastic Imputation

# # W_t = W_1 + ... + W_{t-1} + GA + BW + epsilon

StoImp_2<-function(dat)

{

set.seed(2000)

for (j in 16:35)

{

dat.lm<-cbind(dat[,c("gaw","bw")],dat[,15:(j-1)],y=dat[,j])

m<-lm(y~.,data=dat.lm)

sigma<-summary(m)$sigma

summary(m)

dat[is.na(dat[,j]),j]<-predict(m,newdata=dat.lm[is.na(dat[,j]),])+

rnorm(sum(is.na(dat[,j])),0,sigma)

}

return(dat)

}
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# Multiple Imputation

require(ggplot2)

data<-read.csv("data.csv",head=T)

#data<-data[,c(5:8,15:35)]

#data$gaw<-as.factor(data$gaw)

head(data)

# Multiple imputation

install.packages("mi")

library("mi")

info<-mi.info(data)

info

info<-update(info,"include",

list("id"=F,"yoa"=F,"defstart"=F,"dfef"=F,

"dtpnstop"=F,"md"=F, "eth"=F,"preg"=F,"centre"=F))

#mp.plot(data,gray.scale=T)

#mp.plot(data,y.order=T,gray.scale=T)

imp<-mi(data,info,n.imp=3,n.iter=10,max.minutes=10,seed=1250)

png(file="multipleImputation"),width=10, height=6, units=’in’,res=300)

plot(imp)

dev.off()
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mi.scatterplot()

d1<-mi.data.frame(imp,m=1)

d2<-mi.data.frame(imp,m=2)

d3<-mi.data.frame(imp,m=3)

write.csv(d3,"MI3.csv",row.names=F)

# Cross-Validation

dat<-read.csv("data.csv",head=T)

n<-round(0.1*nrow(dat),0)

indix<-data.frame(matrix(nrow=n,ncol=20))

set.seed(1000)

for (j in 16:35)

{indix[,j-15]<-sample(which(!is.na(dat[,j])),n,replace=F)}

artificial<-function(d,indix)

{

for (j in 16:35)

{d[indix[,j-15],j]<-NA}

return(d)

}

sse<-function(old,new,indix)

{

sse<-0

for (j in 16:35)
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{temp<-sum(old[indix[,j-15],j]-new[indix[,j-15],j])^2

sse<-sse+temp}

return(sse)

}

source("RegImp_2.R")

dat2<-RegImp_2(dat)

source("artificial.R")

temp2<-artificial(dat2,indix)

DAT2<-RegImp_2(temp2)

source("sse.R")

REG2<-sse(dat2,DAT2,indix)

source("StoImp_2.R")

sto2<-StoImp_2(dat)

TEMP2<-artificial(sto2,indix)

STO2<-StoImp_2(TEMP2)

STOsse2<-sse(sto2,STO2,indix)

source("LOCF.R")

locf<-LOCF(dat)

TEMPlocf<-artificial(locf,indix)
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LOCF<-LOCF(TEMPlocf)

SSElocf<-sse(locf,LOCF,indix)

SSEmi<-function(data,complete,indix)

{

library("mi")

info<-mi.info(data)

imp<-mi(data,info,n.imp=3,n.iter=10,max.minutes=10,seed=1250)

d1<-mi.data.frame(imp,m=1)

d2<-mi.data.frame(imp,m=2)

d3<-mi.data.frame(imp,m=3)

sse1<-sse(complete,d1,indix)

sse2<-sse(complete,d2,indix)

sse3<-sse(complete,d3,indix)

sum<-sse1+sse2+sse3

return(sum)

}

D1<-artificial(d1,indix)

source("SSEmi.R")

SSEmi1<-SSEmi(D1,d1,indix)

SSEmi1

# 31751160

D2<-artificial(d2,indix)
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SSEmi2<-SSEmi(D2,d2,indix);SSEmi2 #25117922

D3<-artificial(d3,indix)

SSEmi3<-SSEmi(D3,d3,indix);SSEmi3 # 24387176

(SSEmi1+SSEmi2+SSEmi3)/9

write.csv(d3,"MI3,csv",row.names=F)

# Linear Models

dat<-read.csv("data_complete_final.csv",head=T) # weights

M.full<-lm(X7~bw+gaw+gender+centre,data=dat)

summary(M.full)

M.rd<-lm(X7~bw+gaw+gender,data=dat)

summary(M.rd)

M<-lm(X7~bw+gaw,data=dat)

summary(M)

# Multivariate Linear Models / GEE

dat<-read.csv("data_complete_final.csv",head=T)

require(reshape)

names(dat)[15:35]<-1:21
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d<-melt(dat,id=names(dat)[1:14])

names(d)[15:16]<-c("day","weight")

install.packages("geepack")

require(geepack)

install.packages("MuMIn")

require(MuMIn)

m1<-geeglm(weight~centre+gender+gaw+bw+day,data=d,family=gaussian("identity"),

id=id,corstr="ar1")

summary(m1)

m2<-geeglm(weight~gender+gaw+bw+day,

data=d,family=gaussian("identity"),id=id,corstr="ar1")

summary(m2)

m3<-geeglm(weight~gaw+bw+day,data=d,

family=gaussian("log"),id=id,corstr="ar1")

summary(m3)

c(QIC(m1),QIC(m2),QIC(m3))
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