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Abstract

Computer systems are used for controlling physical processes in many safety-

critical applications. These systems are embedded into the larger system of

the application and are interfaced with their physical environment using input

hardware (sensors, analog-to-digital converters) and output hardware (digital

to analog converters, actuators). A challenging task in designing such sys-

tems is finding the right combination of input hardware, output hardware,

and software such that their integration produces systems that satisfy their

requirements.

In this thesis we propose a mathematical basis for checking, without the

need for developing and verifying a detailed implementation, if acceptable soft-

ware exists given the chosen hardware interfaces. The requirements framework

we use is the relational four-variable model proposed by Parnas and Madey.

This model helps to clarify the behaviour of, and the boundaries between, the

system’s physical environment, hardware interfaces, and software, which are

all described as input-output relations without detail about internal state.

The semantics of the four-variable model proposed by Parnas and Madey,

which may be seen in relation algebraic terms as an angelic semantics, allows

system descriptions that are not completely consistent with the natural laws

of the physical environment. To address this issue, we redefine in the demonic

calculus of relations the notion of feasibility of system requirements proposed

by Parnas and Madey such that the system requirements specify for every in-

put possible in the environment only behaviours allowed by the environment.

We also redefine in the demonic calculus of relations the system and software

acceptability criterion of Parnas and Madey to reject nonterminating or empty

implementations, and prove a necessary and sufficient existence condition for
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acceptable software. This condition has a constructive flavour and yields the

weakest (least restrictive, or least refined) specification of the software require-

ments.

A practical implication of the necessary and sufficient condition is that

in a relational four-variable model, as opposed to the functional case, the input

and output hardware interfaces are mutually dependent and changes to either

may require changes to the other. We prove two stronger conditions that allow

the decoupling of the hardware interfaces while still guaranteeing the ability

of the software to meet the system requirements.

For the cases when the system requirements are feasible, but an accept-

able implementation does not exist, a typical engineering approach is to relax

the requirements by allowing tolerances. We show how the necessary and suffi-

cient condition can be used in the derivation of tolerances on the requirements

for a pressure sensor trip in the shutdown system of a nuclear reactor such

that the requirements become implementable.
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Chapter 1

Introduction

For any system to be built it is worth asking the question whether an im-

plementation that satisfies the requirements is possible given the constraints

imposed by the environment in which the system is to operate as well as con-

straints imposed by design decisions. If such an implementation is possible,

then the requirements are said to be implementable with respect to those con-

straints. In this thesis we ask the question of implementability in the context

of safety-critical embedded systems whose requirements and high-level design

specifications are given using the four-variable model proposed in (Parnas and

Madey, 1995). Nevertheless, the approach and results described in the thesis

have broader implications and applicability.

1.1 A Question of Implementability

Many safety-critical systems in application domains such as aerospace, auto-

motive, medical devices, or nuclear power generation are required to moni-

tor and control physical processes. An example is the shutdown system of a

nuclear reactor which monitors the temperature and pressure inside the reac-

tor and commands the reactor to enter a shutdown state whenever abnormal

temperature and pressure values have been detected. Such systems are usu-

ally implemented using digital computers that are embedded into the larger

system of the application and are interfaced with the physical environment

1
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Embedded System

environment

input
devices

computer

output
devices

Monitored
Parameters

Control
Stimuli

Digital
Values

Digital
Values

Figure 1.1: A general view of an embedded system

using input devices (sensors, analog-to-digital converters) and output devices

(digital-to-analog converters, actuators), as illustrated in Figure 1.1. For rea-

sons of flexibility and cost, the functionality required of these systems is typ-

ically implemented in software (Parnas et al., 1990; Knight, 2012). Based on

the measured values of the physical parameters of interest, the software com-

mands the actuators to apply stimuli to the environment with the purpose of

maintaining certain properties in the environment.

Due to their safety-critical nature, getting these systems right is ex-

tremely important. A challenging task in designing these systems is finding

the right combination of input devices, output devices, and software such that

their integration produces a system implementation that satisfies the require-

ments. Systems engineers are responsible for this task and, in particular, for

choosing the input and output devices. Software engineers must then deter-

mine the software part of the system implementation such that the required

behaviour of the system is satisfied. Following (Parnas and Madey, 1995), we

call such software acceptable. Considering that changes in the specifications of

the system requirements and hardware interfaces often arise during the sys-

tem’s development life cycle, the process mentioned above becomes repetitive

and thus even more demanding (Miller and Tribble, 2001), (Knight, 2012, Sec-

tion 2.6.3). What if no acceptable software is possible given the constraints

imposed by the chosen hardware interfaces? Time and resources will be spent

trying to develop and verify repeatedly a system that can never satisfy the re-

quirements. Acceptable software is also not possible if the required behaviour

2
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of the system is not allowed by the physical laws of the environment.

Hence, we pose the following question that systems and software en-

gineers need to ask themselves before investing resources in developing and

verifying a detailed system implementation:

Given a physical environment and a particular choice of hardware inter-

facing between the system and that environment, is acceptable software possi-

ble?

A positive answer to this question would allow software engineers to proceed

with a software design having the confidence that their efforts are not des-

tined to fail from the start. In this case, the requirements of the system are

said to be implementable with respect to the physical environment and design

decisions regarding the input and output devices. In the case of a negative

answer, the next step would be for the systems engineers to understand why

that is the case and determine the necessary changes to the specifications of

the input and output devices, and possibly to the specification of the system

requirements, in order for acceptable software to become possible. Such a

bidirectional interaction between systems engineering and software engineer-

ing is stressed in (Knight, 2012, Section 1.2) as being essential in producing

dependable software-controlled systems.

In this thesis we propose a mathematical basis to answer the question

posed above.

1.2 The Four-Variable Model

We use the four-variable model proposed in (Parnas and Madey, 1995) and

illustrated in Figure 1.2. This model helps to clarify the behaviour of, and

the boundaries between, the environment, hardware interfaces, and control

software of an embedded system.

The four-variable model was used as early as 1978 as part of the Software

Cost Reduction (SCR) program of the Naval Research Laboratory for specify-

ing the flight software of the U.S. Navy’s A-7 aircraft (Van Schouwen, 1990).

3
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M C

I O

REQ

IN

SOF

OUT

NAT

Figure 1.2: The four-variable model

The ideas from SCR were later extended into the Consortium of Requirements

Engineering (CoRE) methodology, which was used for specifying the avionics

system of the C-130J military aircraft in the 1980s (Faulk et al., 1994). An-

other significant example of a successful use of the four-variable model is the

redesign of the software in the shutdown systems of the Darlington nuclear

power plant in Ontario, Canada in the 1990s (Lawford et al., 2000; Wassyng

and Lawford, 2003; Wassyng and Lawford, 2006). In 2009, the four-variable

model was used extensively in the Requirements Engineering Handbook (Lem-

pia and Miller, 2009) that was put together at the request of the U.S. Federal

Aviation Administration.

1.2.1 System Requirements

In the four-variable model, REQ models a specification of the system require-

ments. At the system requirements level, a system is seen as a black-box that

relates physical quantities measured by the system, called monitored variables,

to physical quantities controlled by the system, called controlled variables. For

example, monitored variables might be the pressure and temperature inside a

nuclear reactor while controlled variables might be visual and audible alarms,

as well as the trip signal that initiates a reactor shutdown; whenever the tem-

perature or pressure reach abnormal values, the alarms go off and the shutdown

procedure is initiated.

The sets of possible values for the monitored and controlled variables

are denoted by M and C, respectively. The sets M and C are not necessar-

ily disjoint. In the four-variable model, environmental quantities are usually

4
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modelled as functions of time (i.e., functions of a single real valued variable),

especially in the context of real-time systems (Parnas and Madey, 1995; Law-

ford et al., 2000; Peters, 2000). In contrast, in this thesis we do not assume

any structure on the sets M and C. All the possible values that a monitored or

controlled variable can take are members of M or, respectively, C. This allows

us to derive more general results that can be specialized to deal explicitly with

time by considering the members of M and C as functions of time.

In this thesis, we take the system requirements specification REQ to

describe the functionality required from the system. In software engineer-

ing such requirements go by the name functional requirements, while other

types of requirements such as performance and resource utilization are called

non-functional. In the sequel we will use the term “functional” with its math-

ematical, rather than with its software engineering meaning.

1.2.2 Environmental Constraints

The environmental constraints on the system are described by NAT (from

“nature”). These constraints are due to the physical laws of the environment

and are independent of the system to be built (Peters, 2000; Miller and Tribble,

2001). As such, NAT contains exactly those pairs of values of monitored and

controlled variables that are possible in the environment.

Examples of environmental constraints include: the maximum rate of

climb of an aircraft in the case of an avionics system (Miller and Tribble,

2001); environmental quantities that are related to each other in a certain way

(e.g., temperature and pressure in a closed container) (Peters, 2000); or, events

that are not physically able to occur simultaneously (Peters, 2000).

1.2.3 System Design

The possible system behaviours are modelled by a sequential composition of

IN, SOF, and OUT. Here, IN models the functionality of the input devices

and relates values of monitored variables in the environment to values of input

variables in the software. The input variables model the information about

the environment that is available to the software. For example, IN might

5
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model a sensor that converts pressure values to analog voltages, which are

then converted via an analog-to-digital converter to integer values stored in a

register accesible to the software via an input variable. The functionality of the

output devices is modelled by OUT, which relates values of output variables in

the software to values of controlled variables in the environment. An output

variable might be, for instance, a boolean variable set by the software with the

understanding that the value true indicates that a reactor shutdown should

occur and the value false indicates the opposite. Relating values of input

variables to values of output variables is SOF, which models the behaviour of

the software, including the input/output device drivers.

The sets of the possible values of the input and output variables are

denoted by I and O, respectively. As was the case with the monitored and

controlled variables, we do not assume any structure on I and O although the

input and output variables in the four-variable model are typically treated as

functions of time.

1.2.4 The Need for a Relational Framework

The four-variable model is in general relational, not functional. By this we

mean that REQ, NAT, IN, OUT, and SOF are typically mathematical rela-

tions, not functions (Parnas and Madey, 1995; Lawford et al., 2000; Peters,

2000). This is mainly due to measurement errors in sensors and quantization

errors (i.e., the difference between an analog value and its digital approxi-

mation) in analog-to-digital and digital-to-analog converters (Santina et al.,

1996a; Santina et al., 1996b; Walden, 1999; Kester, 2005). Considering that

IN and OUT describe the combined functionality of multiple devices, we use

the term accuracy to describe their combined errors. The limited accuracy

of the hardware interfacing induces uncertainty (nondeterminism) in a system

implementation. Relations are natural candidates for modelling nondetermin-

istic behaviours (Brink et al., 1997). In contrast, functions model determin-

istic behaviours. The nondeterminism of a system implementation should be

accounted for by allowing tolerances on the system requirements. With tol-

erances, the system requirements become relational and allow a number of

6
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acceptable system responses for the same value of a monitored variable.

For example, let us consider an input interface IN that models an 8-bit

resolution analog-to-digital converter (ADC) which converts monitored volt-

ages m in the range 0–5V into software input values i according to the formula

i = bm ∗ 28/5c. Figure 1.3a depicts IN and REQ for the monitored voltages

m = 2.47V, m = 2.49V, and m = 2.51V. Here, IN and REQ are functions and

model idealized behaviours. If the ADC has a ±0.02V accuracy (Figure 1.3b),

then IN effectively becomes a relation because, for example, IN can produce

any of the software input values i = 126, i = 127, and i = 128 for the moni-

tored voltage m = 2.49V. Conversely, the software input i = 127 can be the

digital representation of any of the monitored voltages m = 2.47V, m = 2.49V,

and m = 2.51V. In this example, no system implementation can satisfy the re-

quirements because no matter which system output c1, c2, or c3 is produced by

SOF together with OUT for i = 127, this output will violate the requirements

(e.g., if c2 is produced, then m = 2.47V and m = 2.51V will be connected

via SOF and OUT with c2, something not allowed by REQ). A typical engi-

neering approach in such situations is to allow tolerances on the requirements,

in which case REQ becomes a relation and multiple (deterministic) system

implementations become possible (Figure 1.3c). If hardware inaccuracies are

considered for the output interface, then OUT will be a relation as well. If we

want to capture all the possible implementations of the control software, then

SOF will typically have to be a relation too. An implementation of SOF that

runs on an actual computer will be a function (i.e., a deterministic program).

The environmental constraints on the system, represented by NAT, usu-

ally are relational as well. As extreme examples, if everything is possibile in

the physical environment, then NAT is the universal relation between M and

C; if nothing is possible, then NAT is the empty relation.

The reader should note that the relations IN, OUT, and SOF can model

specifications of intended behaviours as well as descriptions of actual be-

haviours (Parnas, 2003). The distinction between these two viewpoints is

often blurred since we use relations to model both specifications and actual

implementations. There are situations when this distinction is nevertheless

important.

7
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(a) Idealized REQ and IN
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(b) IN with ±0.02V accuracy
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(c) REQ with tolerances, IN with ±0.02V accuracy

Figure 1.3: Motivational example for a relational four-variable model
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1.2.5 Implementability in the Four-Variable Model

The relations NAT and REQ are described by application domain experts

and control engineers. The system designers allocate the system requirements

between hardware and software, and describe IN and OUT. The software

engineers must then determine SOF and verify whether it is acceptable with

respect to NAT, REQ, IN, and OUT.

In this thesis, we allow the relations of the four-variable model to be par-

tial. The rationale for allowing partial relations is that in practice, particularly

in the early stages of system development, formulating specifications that deal

with all the possible cases that can arise for complex systems is virtually an

impossible task; the specifications are iteratively refined, adding more detail

as the system becomes better understood until the specifications cover all the

possible cases that can arise (Thompson et al., 1999; Thompson et al., 2000;

Heimdahl and Thompson, 2000), (Knight, 2012, Section 2.6.3). Before getting

to that point, however, many useful analyses can be performed, such as check-

ing if an acceptable implementation really is possible. From the perspective

of validation and verification, working with partial relations is a pragmatic

approach: if we cannot satisfy a part of an specification, we will not be able

to fully meet a more complete version of that specification.

Our use of partial relations aligns well with the “lightweight formal meth-

ods” approach advocated by Daniel Jackson and Jeannette Wing, who argue

that formal methods should focus on rapid detection of faults rather than on

full proofs of correctness (Saiedian et al., 1996). In this approach, different

aspects of a system are modelled and analyzed iteratively instead of trying

to model the system all at once and prove that it is free of faults, the latter

approach being infeasible for most practical systems. A case study of applying

lightweight formal methods is presented in (Easterbrook and Callahan, 1998),

where partial specifications of critical software for the International Space Sta-

tion were analyzed formally and errors fixed before attempting to analyze more

complete specifications. The authors concluded that more errors were found

and fixed that way, and valuable insight about the system to be built was

gained in the process than if a full proof of correctness had been attempted.

9



PhD Thesis–L. M. Patcas McMaster University, Computing and Software

Thus the question of implementability of system requirements posed at

the beginning of the chapter can be rephrased in the four-variable model as

follows:

Given system requirements REQ, physical environment NAT, and hard-

ware interfaces IN and OUT, all as partial relations, does an acceptable SOF

exist?

It is precisely this question that we will address in this dissertation.

1.3 Related Work

In this section we outline research that is most closely related to the main

question of the thesis. We have hinted thus far that we will work with specifi-

cations modelled as partial relations. When composing partial relations it can

happen that the range of a relation is not completely contained in the domain

of the relation with which it is being composed. Consequently, there are in-

puts for which the resulting composition sometimes produces expected results

and some other times gets stuck in between the relations being composed.

In Section 1.3.1 we describe two approaches from the area of formal program

specification and semantics to deal with such nondeterministic behaviours. We

then present in Section 1.3.2 a requirements framework that has been proposed

in the literature as an alternative to the four-variable model. Finally, work to-

wards necessary and sufficient existence conditions for an acceptable SOF is

described in Section 1.3.3 in a functional setting of the four-variable model.

1.3.1 Angelic and Demonic Nondeterminism

The formal treatment of nondeterministic specifications and sequential pro-

grams originates with Dijkstra’s language of guarded commands and its formal

semantics, the weakest-precondition calculus (Dijkstra, 1975; Dijkstra, 1976).

In this calculus, each statement of a program has two predicates associated

with it: the postcondition predicate, which denotes the set of states that the

10
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program can be in after the execution of the statement; and the weakest pre-

condition predicate, which denotes that largest set of states that the program

can be in such that after the execution of the statement the program will be

in a state that satisfies the postcondition predicate. The weakest precondition

predicate of a program statement is obtained from the postcondition predi-

cate of that statement via a function called the weakest-precondition predicate

transformer. Since a program is a sequential composition of multiple state-

ments, the predicate transformer of a program is obtained by composing the

predicate transformers of the program’s statements. Mismatches between the

postcondition of a program statement and the weakest precondition of the next

program statement in this composition are possible and this leads to nonde-

terministic programs which, for the same input, sometimes produce expected

results and some other times do not produce any results. Various ways to deal

with such nondeterministic programs have been studied in variations of the

weakest-precondition calculus, such as, for example, those proposed in (Back,

1981), (Morris, 1987), (Morgan and Robinson, 1987), (Back and von Wright,

1992), (Maddux, 1996), (Morgan, 1998), or (Back and von Wright, 1998). The

two main approaches are:

• angelic: “in order for a computation to be successful it is enough that

there exists a possible successful execution path” (Back and von Wright,

1992); and,

• demonic: “in order for a computation to be successful, all possible ex-

ecution paths must lead to a successful result” (Back and von Wright,

1992).

The difference between the angelic and demonic approaches is, perhaps, best

explained using the following metaphor. In an angelic semantics, an angel

always makes the best possible choice such that the program terminates; thus,

if termination is possible, the angel will ensure termination. In a demonic

semantics, a demon always tries to make the worst possible choice such that

the program does not terminate; thus, if nontermination is possible, the demon

will find it. Because in a angelic semantics nontermination is allowed for an

11
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input as long as termination is also possible for that input, the angelic approach

guarantees only partial correctness of programs. In contrast, since a demonic

semantics will always reveal the possibility of nontermination, the demonic

approach can be used to ensure total correctness.

Because predicates describe subsets, predicate transformers are functions

between subsets of the state space of a program. Equivalently, predicate trans-

formers can be seen as relations on the program’s state space. Relational

methods for formal program specification and development were strongly ad-

vocated by Tony Hoare’s group at Oxford in the mid 1980’s (Hoare and He,

1985; Hoare and He, 1986; Hoare and He, 1987; Hoare et al., 1987). These

methods originate from the calculus of relations started in algebraic logic by

Augustus de Morgan, Charles S. Peirce, and Ernst Schröder in the second

half of the nineteenth century, and revived by (Tarski, 1941) in the twenti-

eth century. In a typical relational method, specifications and programs are

thought of as input-output relations over some state space. Similarly to the

approaches based on predicate transformers, the relation-algebraic approaches

have to make the same decision on how they deal with the nondeterminism

that arises when composing specifications (programs) into larger specifications

(programs). Relation-algebraic approaches to angelic and demonic nondeter-

minism are described in, for example, (Berghammer and Zierer, 1986), (Hoare

and He, 1986), (Frappier, 1995; Frappier et al., 1996), (Demri and Orlowska,

1996), (Maddux, 1996), (Desharnais et al., 1997), (Kahl, 2003b).

When developing safety-critical systems it is always wise to plan for all

possibilities, including the “worst case” scenario. As discussed in the previous

sections, nondeterministic system implementations due to hardware inaccura-

cies, as well as partial specifications, are all facts of life. Since a safety-critical

application must always produce expected results, the partial correctness guar-

antees of an angelic approach are not satisfactory. Thus, we adopt a demonic

approach. Also, we adopt a relation-algebraic approach rather than one based

on predicate transformers. The latter were developed specifically for reason-

ing about the behaviour of common imperative programming constructs such

as loops, conditionals, and sequential composition. Since in the four-variable

model we deal with sequential compositions of nondeterministic specifications

12
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W R S P M

Environment System

eh ev sv sh

Figure 1.4: The WRSPM reference model for requirements

without internal details, a relational method feels more natural. In particular,

we use the demonic calculus of relations (Frappier, 1995; Frappier et al., 1996;

Desharnais et al., 1997; Kahl, 2003b).

1.3.2 Other Requirements Frameworks

The work by (Jackson and Zave, 1993; Jackson and Zave, 1995; Zave and

Jackson, 1997) describes a requirements framework that shares many ideas

with the four-variable model, in particular the division of phenomena (i.e.,

states, events) into environmental phenomena and system phenomena, as well

as the formulation of system requirements only in terms of phenomena in the

environment. This line of work became known as the WRSPM reference model

for requirements and specifications (Gunter et al., 2000).

In this model, illustrated in Figure 1.4, W stands for “world” and models

the environment, or application domain. The system requirements are mod-

elled by R and represent what the customer needs from the system. The system

requirements are refined into a specification S which describes the intended be-

haviour of the system in order to satisfy the requirements. An implementation

of the intended behaviour is modelled by a program P that runs on a machine

M.

The artifacts W, R, S, P, and M are described in various languages, each

based on its own vocabulary. To express the relationships between the arti-

facts, however, their descriptions are modelled in a common language. In this

language, the phenomena controlled by the environment are denoted by the set

e. Some of these phenomena are visible to the system, denoted by the subset

13
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ev, while the other phenomena in e are hidden from the system and are de-

noted by the subset eh. Thus, e = eh∪ev. Similarly, the phenomena controlled

by the system are denoted by the set s and decomposed into the subsets sv

of phenomena visible to the environment and sh of phenomena hidden from

the environment. Of course, s = sh ∪ sv. Also, the sets e and s are disjoint.

The phenomena in eh, ev, and sv are visible to the environment and, therefore,

are used to describe W and R. The phenomena in ev, sv, and sh are visible to

the system and used to describe P and M. The phenomena visible to both the

environment and the system are used to describe the specification S = ev ∪ sv.
Of the papers mentioned above, (Jackson and Zave, 1995) use a complete ex-

ample to explain how to classify the phenomena into environmental, system,

or shared.

Although they have many commonalities, the correspondence between

the WRSPM model and the four-variable model is not completely determined.

The monitored variables in M in the four-variable model correspond to phe-

nomena ev in the WRSPM model, while controlled variables in C correspond

to phenomena sv. Thus REQ corresponds to S and NAT corresponds to W,

but are more restricted than S and, respectively, W since they are expressed

only in terms of those environmental phenomena that are visible to the system.

The input variables in I and output variables in O correspond to hidden sys-

tem phenomena eh. Consequently, SOF corresponds to P, and IN and OUT

belong to M. However, IN and OUT are more restricted than M, being limited

to sensing and actuating.

The WRSPM model is more flexible at describing the environment and

system requirements since in the four-variable model there are no environ-

mental phenomena that are not visible to the system. Hidden environmental

phenomena are useful though. For example, the system requirements may in-

clude additional functionality planned for future versions of the system. Such

functionality will not be part of the requirements specification for the current

release, but knowing about it will allow system designers to plan upfront. In

the four-variable model there is no clear distinction between requirements and

a specification of the requirements. The WRSPM model makes this distinction

explicit.

14
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On the other hand, the four-variable model clarifies the boundaries be-

tween software and other system components more cleanly than the WRSPM

model. In the four-variable model, the software is decoupled from the rest of

the system by using the input and output variables. In the WRSPM model,

the software and the hardware interfaces are all described in terms of hidden

system phenomena. Since the question of implementability we ask in this the-

sis has direct implications on the interaction between software engineering and

systems engineering (see Section 1.1), we believe that the four-variable model

is more suitable in this regard.

1.3.3 Existence of SOF

Methods for assessing the existence of SOF in the four-variable model have

not received much attention in the literature. Of the few examples, (Lawford

et al., 2000) give, without proof, a necessary condition for the existence of

SOF in a functional variant of the four-variable model. In support of their

claim, an example is presented where a pressure sensor is read by software

and a reactor shutdown is initiated whenever the pressure value rises above

a setpoint. It is shown with the interactive proof assistant PVS that in the

particular conditions of the example no discrete implementation can meet the

requirement. The result suggests that functional equality between require-

ments and implementations is too restrictive and tolerances must be allowed

on the requirements, thus a case for using relations to model tolerances is

made.

In the context of real-time systems, (Hu, 2008; Hu et al., 2009) address

in a functional four-variable model the ability of software to meet continuous-

time requirements, such as the detection of physical events that have been

enabled for a predefined amount of time; necessary and sufficient existence

conditions for SOF are given for different assumptions made about the access

of the software to the time of the environment. Although in our approach we

do not consider time explicitly, timing details can be dealt with by considering

the members of the sets M, C, I, and O as functions of time (Parnas and

Madey, 1995; Lawford et al., 2000; Peters, 2000).
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In contrast with the works mentioned above, we address the need for ex-

istence conditions for SOF in the general, relational case of the four-variable

model. The relational setting is more realistic as it can model the nonde-

terministic behaviours induced by hardware inaccuracies and tolerances on

requirements. The results presented in the functional setting of these works

can be obtained as particular cases of our relational results.

1.4 Thesis Approach and Contributions

To answer the question of implementability of system requirements in the four-

variable model, we propose a mathematical basis for checking if an acceptable

software specification SOF exists given the constraints imposed by the physical

environment NAT and hardware interfaces IN and OUT. Our formalization of

what it means for a software specification to be “acceptable” is based on the

demonic calculus of relations, described in (Frappier, 1995), (Frappier et al.,

1996), (Desharnais et al., 1997), and (Kahl, 2003b).

In Chapter 2 we introduce the mathematical concepts needed in the

subsequent chapters. In particular, we introduce in the context of an algebra

of concrete relations the demonic relational operators needed in the thesis.

In Chapter 3 we present the first theoretical contributions of the thesis.

We use a diagram isomorphic to the four-variable model diagram to reduce

notational verbosity. In this diagram, the relation that corresponds to REQ

and NAT is factored through the relations that correspond to IN, SOF, and

OUT. Since we adopt a demonic approach, the commutativity condition of

the diagram is demonic refinement and composition of relations is demonic

composition. Demonic refinement is thus our satisfaction relation between im-

plementations and specifications. We prove a necessary and sufficient existence

condition for the relation that corresponds to SOF, which we call a demonic

mid factor, such that the diagram commutes. The existence condition for a

demonic mid factor is a new result in relation algebra. Along the way, we also

prove necessary and sufficient conditions for the existence of demonic left and,

respectively, right factors. The results of this chapter will be applied to the

four-variable model in the subsequent chapters, in order to answer the ques-
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tion of implementability of system requirements. The demonic factorization

results presented in this chapter are broader than safety-critical embedded

systems; they are applicable wherever a diagram similar to the four-variable

model diagram makes sense.

From an engineering perspective, a necessary condition for a specification

REQ of the system requirements to be implementable is for REQ to specify

only physically meaningful behaviours. To this end, (Parnas and Madey, 1995)

defined the concept of feasibility of REQ with respect to the physical environ-

ment specified by NAT. Their formalization requires REQ to agree with NAT

on at least one output for every input of NAT. This is problematic, however,

as system designers may try to implement parts of REQ whose outputs do not

obey the physical laws described by NAT. Clearly, such requirements specifi-

cations REQ are not fully implementable. To address this issue, in Chapter 4

we strengthen in the demonic calculus of relations the notion of feasibility of

system requirements proposed by Parnas and Madey such that REQ specifies

for every input possible in the environment only behaviours allowed by the

environment.

Also in Chapter 4, we uncover a problem with the acceptability condition

proposed by Parnas and Madey. In their formalization, a software specification

SOF is acceptable although mismatches between the relations IN, SOF, and

OUT are allowed that result in nondeterministic system behaviours which,

for some inputs, sometimes produce expected outputs and some other times

do not produce any results at all. Therefore, the acceptability condition pro-

posed by Parnas and Madey may be seen as angelic, thus ensuring only partial

correctness. To address these shortcomings, we give a new acceptability condi-

tion for system design and software specifications using the demonic calculus of

relations, whose total correctness guarantees are more appropriate for safety-

critical systems.

Assuming that the system requirements are feasible with respect to the

physical environment, the existence of an acceptable software specification is

conditioned only by the choice of input and output hardware devices. To this

end, in Chapter 4 we also give a necessary and sufficient existence condition

for an acceptable SOF. This condition has a constructive flavour and yields the
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weakest (i.e., least restrictive, or least refined) software specification, which we

regard as the software requirements.

A practical implication of the necessary and sufficient condition of Chap-

ter 4 is that the input and output hardware interfaces are, in general, mutually

dependent and changes to one may require changes to the other in order for an

acceptable SOF to exist. In Chapter 5 we investigate a result analogous to the

separation principle from control systems, which allows one to decompose the

design of an optimal feedback control system into two independent tasks, an

observer and a controller (Kalman, 1960). Similarly to this principle, we define

the notions of observability (controllability) of the system requirements with

respect to the input (output) interface and show that for a system that can be

modelled by a functional four-variable model, observability and controllability

allow for the separation of the design of the input and output interfaces. We

also show that in the general, relational four-variable model we can obtain

a similar effect by strengthening either observability or controllability. The

two resulting implementability conditions are stronger than the necessary and

sufficient condition of Chapter 4 and restrict the choice of input or output

devices, but at the same time ensure their separability while still guaranteeing

the existence of an acceptable SOF.

For the cases when a specification REQ of the system requirements is

feasible with respect to a physical environment (i.e., only physically meaning-

ful behaviours are specified), but an acceptable SOF does not exist, a typi-

cal engineering approach is to relax REQ by allowing tolerances. We show

in Chapter 6 how the necessary and sufficient implementability condition of

Chapter 4 can be used in the derivation of tolerances on the requirements for

the shutdown system of a nuclear reactor such that the requirements become

implementable.

The mathematical results of the thesis as well as the implementability

analysis and tolerances for the example presented in Chapter 6 have been for-

malized and verified in the interactive proof assistant Coq. To not restrict

the potential audience of the dissertation only to readers familiar with inter-

active theorem proving, in the body of the dissertation we adopt a traditional

presentation style giving informal, but rigorous proofs. The formalization in
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Coq is briefly presented in Appendix B, and a literate programming version

with detailed explanations is available electronically at www.cas.mcmaster.

ca/~patcaslm/thesis/coq.

Note: Parts of the dissertation have been published. The demonic fac-

torization results of Chapter 3, as well as the demonic software acceptability

definition and the necessary and sufficient existence condition for acceptable

software of Chapter 4 have been presented in (Patcas et al., 2014b). An ex-

tended version of (Patcas et al., 2014b) which also includes parts from Chap-

ters 2 and 6 is the object of (Patcas et al., 2014a), currently under review. The

separability conditions for the input and output hardware interfaces given in

Chapter 5 have been published in (Patcas et al., 2014c).
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Chapter 2

Mathematical Preliminaries

In this chapter we introduce the mathematical concepts needed in the thesis.

As seen in Section 1.2.4, there is a practical need for a relational four-variable

model, thus the formal framework we adopt is that of relation algebra (Brink

et al., 1997). Relation algebras usually treat relations at an abstract level. In

this thesis we prefer concrete relations, that is, subsets of cartesian products,

since the five relations in the four-variable model describe behaviours as input-

output pairs. Moreover, being able to refer to elements in the domain or

range of a relation gives a better engineering insight into the meaning of,

and constraints on, the relations in the four-variable model. Although not

impossible, this can become quite awkward in a language of abstract relations.

However, since we would like to benefit from the large body of knowledge

that is available in the realm of abstract relation algebras, we treat concrete

relations as a particular case of abstract relations.

Another distinction that needs to be made is between homogeneous and

heterogeneous relations. Homogeneous relations have their domains and ranges

defined on the same universe; in contrast, heterogeneous relations are defined

between two distinct universes, hence have a direction associated to them. For

most applications related to software, the heterogeneous approach is preferable

because its two-sorted language offers benefits similar to those of static typing

in programming languages (Kahl, 2003b).

In particular, we will use the demonic calculus of relations (Frappier,
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1995; Desharnais et al., 1997; Kahl, 2003b). For the reasons mentioned above,

we will introduce the demonic calculus in the context of an algebra of concrete

heterogeneous relations. To define this algebra, we first need to introduce

posets, lattices and Boolean algebras.

2.1 Posets, Lattices, and Boolean Algebras

Let A be a nonempty set and v a binary relation on A. We say that v is

respectively reflexive, transitive, symmetric, and antisymmetric if

x v x , (v reflexive)

x v y ∧ y v z ⇒ x v z , (v transitive)

x v y ⇒ y v x , (v symmetric)

x v y ∧ y v x⇒ x = y , (v antisymmetric)

for any x, y, z ∈ A.

A relation v that is reflexive and transitive is called a preorder. If v is

also symmetric, then it is called an equivalence relation. If v is an antisym-

metric preorder, then v is a partial order.

Definition 2.1. A partially ordered set, or poset, is a structure (A,v) where

A is a nonempty set and v is a partial order on A.

Let X be a set. The least element of X is an element x ∈ X such that

x v y for any y ∈ X. Similarly, x ∈ X is the greatest element of X if y v x for

any y ∈ X. If they exist, the least and greatest elements of a set are unique.

The least element of the poset (A,v) is called the bottom element and

is denoted by D. The greatest element of A is called the top element and is

denoted by C. A poset is bounded if it has both a top and a bottom, that is,

D v a v C for any a ∈ A.

In a poset (A,v), an element a ∈ A is a lower bound of a subset X of

A if a v x for any x ∈ X. The greatest lower bound (or infimum, or meet)

of X, denoted uX, is the greatest element of the set of lower bounds of X.

Dually, an element a ∈ A is an upper bound of a subset X of A if x v a for any
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x ∈ X. The least upper bound (or supremum, or join) of X, denotedtX, is

the least element of the set of upper bounds of X. If they exist, the greatest

lower bound and least upper bound of a subset X of A are unique.

Definition 2.2. A poset (A,v) is called a lattice if and only if every subset

{x, y} of A has a join x t y =t{x, y} and a meet x u y =u{x, y}.
A direct consequence of this definition is that a poset (A,v) is a lattice

if and only iftX anduX exist for every finite nonempty subset X of A.

Since the meet and join in a lattice (A,v) are defined for any pair of

elements of A, they can be seen as binary operations on A and thus form an

algebra on A. The join and meet operations on a lattice (A,v) then have the

following properties:

(x t y) t z = x t (y t z) and (x u y) u z = x u (y u z) , (associativity)

x t y = y t x and x u y = y u x , (commutativity)

x t x = x and x u x = x , (idempotence)

(x t y) u x = x and (x u y) t x = x , (absorption)

for any x, y, z ∈ A.

The connection between the algebraic meet and join operations on a

lattice (A,v) and the partial order v is given by the following relationships:

x t y = y ⇐⇒ x v y

x u y = x⇐⇒ x v y

for any x, y ∈ A. Hence a lattice can be seen a poset (A,v) as well as an

algebraic structure (A,t,u).

A lattice (A,v) is said to be:

• bounded if it has a bottom element D (i.e., D =t∅ =uA) and a top

element C (i.e., C =tA =u∅);

• complete if tX and uX exist in A for every X ⊆ A. In particular,

the join and meet must exist for an empty X as well as for an infinite
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X. Every complete lattice has a bottom D and a top C that satisfy the

following properties:

D =uA and D =t∅ ,

C =uA and C =u∅ ;

• complemented if it is bounded and for every element x ∈ A there exists

an element x, called the complement of x, such that

x t x = C and x u x = D ;

• distributive if for every x, y, z ∈ A the following two properties hold:

x t (y u z) = (x t y) u (x t z) , (t distributivity)

x u (y t z) = (x u y) t (x u z) . (u distributivity)

In a distributive lattice, the complement of an element is unique, if it

exists.

Definition 2.3. A poset (A,v) is called a meet semilattice if x u y exists in

A for any x and y in A. A join semilattice is defined similarly.

Definition 2.4. A Boolean algebra, or a Boolean lattice, is a complemented

distributive lattice.

In a Boolean algebra, the complement is an involution:

x = x .

Boolean algebras satisfy the following laws:

x t y = x u y and x u y = x t y . (de Morgan)

An important concept that we will use to compare our theoretical results

with results from relation algebra literature is that of a dual lattice.
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Definition 2.5. The dual of a lattice (A,v) is the lattice (A,w).

The dual lattice (A,w) is complete, distributive, or Boolean if and only

if the lattice (A,v) is complete, distributive, or Boolean. In general, the fol-

lowing duality principle holds (Back and von Wright, 1998): if φ is a statement

about a lattice (A,v), then the dual statement about the dual lattice (A,w) is

obtained from φ by interchanging v and w, t and u, C and D, while leaving

the complement unchanged.

2.2 Abstract Heterogeneous Relation Algebra

In defining an algebra of abstract heterogeneous relations, we use the definition

proposed by (Kahl, 2003b). This definition is a variation of the definition based

on category theory initially proposed in (Schmidt et al., 1997).

Definition 2.6. An abstract heterogeneous relation algebra is formed of ob-

jects A,B, . . . and relations P,Q,R, . . . , with the following operations and

properties:

• Every relation R has a source object, denoted source(R), and a target

object, denoted target(R). For any two objects A and B, A ↔ B denotes

the set of all relations with source(R) = A and target(R) = B. The

notation R : A ↔ B denotes a relation R that has A as source and B as

target;

• The set A ↔ B between two objects A and B forms a Boolean algebra

(A ↔ B,t,u, ,DA,B,CA,B), where the join t is called union, the meet

u is called intersection, every relation R : A ↔ B has a complement

R : A ↔ B, the bottom element DA,B is the empty relation between A
and B, and the top element CA,B is the universal relation between A and

B. The indices for the empty and universal relations can be omitted if

they can be inferred from the context. The partial order v on A ↔ B is

called inclusion. The operations t and u, and partial order v between

relations P and Q are defined if and only if source(P ) = source(Q) and

target(P ) = target(Q);
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• The composition of two relations P and Q is the operation P .,Q defined

if and only if target(P ) = source(Q) and is an element of source(P ) ↔
target(Q);

• For every object A there is an identity element BA such that for every

relation R it is the case that Bsource(R)
., R = R and R ., Btarget(R) = R;

• The converse of a relation P : A ↔ B is the relation P` : B ↔ A. For

all objects A, B, C, and relations P : A ↔ B, Q : B ↔ C and R : A ↔ C,
the Dedekind rule holds:

R u P ., Q v
(
P uR ., Q

`) .,
(
Q u P` ., R

)
.

Many properties of relations can be proven from the above definition. In

the thesis we will use some of the properties given in (Schmidt et al., 1997):

• composition is associative:

P ., (Q ., R) = (P ., Q) ., R ;

• composition distributes over intersection:

Q ., (R u P ) = Q ., R uQ ., P ;

• composition distributes over union:

Q ., (R t P ) = Q ., R tQ ., P ;

• conversion distributes over intersection:

(P uQ)
`

= P
`uQ`

;

• conversion distributes over union:

(P tQ)
`

= P
`tQ`

;
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• conversion antidistributes over composition:

(P ., Q)
`

= Q
` ., P

`
;

• conversion is an involution:

(R
`
)
`

= R ;

• the complement and converse commute:

R` =
(
R
)`
.

2.3 Concrete Heterogeneous Relation Algebra

Concrete relation algebras are standard models of abstract relation algebras.

In a concrete relation algebra, objects are sets and relations are subsets of

cartesian products between sets. Such relations are called concrete relations

and are the same as the usual relations used in discrete mathematics. As such,

an abstract relation R : A ↔ B becomes the concrete relation R ⊆ A × B,

where A and B are sets.

For describing concrete relations we will use the usual set comprehension,

or set builder, notation. In this notation, a relation R ⊆ A × B is given

as R = {(a, b) ∈ A×B |Rpred(a, b)}, where Rpred, called the characteristic

predicate of relation R, is a predicate that describes the constraints that a pair

(a, b) has to satisfy to be part of R.

Some elementary operations involving a relation R ⊆ A×B are:

• domain of R: dom (R) = {a ∈ A | ∃b ∈ B. (a, b) ∈ R};

• range of R: ran (R) = {b ∈ B | ∃a ∈ A. (a, b) ∈ R};

• converse of R: R` = {(b, a) ∈ B × A | (a, b) ∈ R};

• complement of R: R = {(a, b) ∈ A×B | (a, b) /∈ R};
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• image set of a ∈ A under R: R(a) = {b ∈ B | (a, b) ∈ R};

• preimage set of b ∈ B under R: R`(b) = {a ∈ A | (a, b) ∈ R}.

A relation R ⊆ A × B is univalent if every element in its domain is

mapped to exactly one element in its range. Univalent relations also go by the

name functional relations or partial functions. Relation R is total if and only

if dom (R) = A. The relations that are both univalent and total are called

mappings or total functions.

As seen in Section 1.2.4, the inaccuracy of the input and output hard-

ware interfaces introduces uncertainty in a system implementation. Likewise,

tolerances on system requirements give potential implementations a number of

equally acceptable choices for producing a result. Uncertainty and choice are

forms of nondeterminism. Non-univalent relations are natural candidates for

modelling nondeterminism: the image set of an element in the domain of a non-

univalent relation denotes all the possible results for that input. Functional

relations model deterministic behaviours since the image sets of the elements

in their domains are all singletons. Because we treat functions as a particular

case of relations, determinism becomes a special case of nondeterminism.

In addition to the nondeterminism caused by input/output hardware

inaccuracies and tolerances on requirements, there is another form of nonde-

terminism caused by the composition of partial specifications. As discussed

in Section 1.3.1, the main approaches to deal with such nondeterministic be-

haviours are angelic and demonic. In the angelic approach, specifications (im-

plementations) that allow “bad” behaviours for some inputs are permitted as

long as they also allow “good” behaviours for those inputs. In contrast, in

the demonic approach, specifications (implementations) that allow “bad” be-

haviours are not permitted at all. When developing safety-critical systems

it is always wise to plan for the worst, therefore we argue that the demonic

approach is more suitable and use the demonic calculus of relations (Frappier,

1995; Desharnais et al., 1997; Kahl, 2003b). Because the operations in the

demonic calculus are usually defined in terms of their angelic counterparts, we

first present the angelic operations and then the demonic ones.
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2.3.1 Angelic Calculus

The angelic operations are the usual relational operations.

Intersection and Union

The intersection of two relations P ⊆ A×B and Q ⊆ A×B is the relation

P ∩Q = {(a, b) ∈ A×B | (a, b) ∈ P ∧ (a, b) ∈ Q} .

Their union is

P ∪Q = {(a, b) ∈ A×B | (a, b) ∈ P ∨ (a, b) ∈ Q} .

Inclusion

Definition 2.7. A relation P ⊆ A×B is contained, or included, in a relation

Q ⊆ A × B, written P ⊆ Q, if and only if for every (a, b) ∈ P it is also the

case that (a, b) ∈ Q.

Relational inclusion ⊆ is a partial order that induces a complete lattice

structure on the set of relations between A and B. The join operation on this

lattice is ∪ and the meet operation is ∩. The top element is the universal rela-

tion between A and B, CA,B = {(a, b) ∈ A×B | true}, and the bottom element

is the empty relation between A and B, DA,B = {(a, b) ∈ A×B | false}.
Relational inclusion is used as a refinement ordering between specifica-

tions and/or implementations in, for example, (Hoare and He, 1986; Hoare

and He, 1987; Hoare et al., 1987). Relational inclusion is also known as partial

correctness in (Kahl, 2003b), where an elegant mathematical explanation is

given as to why the satisfaction and refinement relations between implemen-

tations and specifcations are equivalent concepts when relations are used for

describing both specifications and implementations. Therefore, we will use

“satisfies”, “refines”, and “implements” interchangeably when describing the

relationship between implementations and specifications.

The meaning of the statement “P implements R” in the relational inclu-

sion sense is as follows:
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• if R is not defined for some inputs (i.e, R is a partial relation), then

those inputs are considered illegal and P must not produce any results

for them;

• for the inputs for which R is defined, P may or may not produce a re-

sult, but if P produces a result, then that result must be allowed by R

(i.e., relational inclusion is angelic). A degenerate case is the empty rela-

tion, which satisfies any specification (the empty relation is the bottom

element in the lattice induced by ⊆).

Allowing implementations that are not required to deal with all the inputs

in the domain of their specifications is problematic for safety-critical systems.

Moreover, allowing the empty relation to be an acceptable implementation for

any specification means that implementations that do not produce any results

are always acceptable. This is also not something desirable for a safety-critical

system.

Composition

Definition 2.8. The composition of two relations P ⊆ A×B and Q ⊆ B×C
is the relation:

P ., Q = {(a, c) ∈ A× C | ∃b ∈ B. (a, b) ∈ P ∧ (b, c) ∈ Q} .

The precedence of the relational operators introduced so far is as follows:

the unary operators ` and are evaluated first; the binary operator ., is

evaluated next; the binary operators ∩ and ∪ are evaluated last.

Residuals

Relational composition and inclusion induce two residuation operations, the

left and right residuals (Hoare and He, 1985; Hoare and He, 1986; Hoare and

He, 1987; Hoare et al., 1987; Schmidt and Ströhlein, 1993; Frappier, 1995;

Brink et al., 1997; Kahl, 2003b).
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Definition 2.9. Given two relations R ⊆ A × C and Q ⊆ B × C, the left

residual of R by Q, denoted R/Q, is the largest solution of the inequality

Y ., Q ⊆ R, where Y ⊆ A×B is the unknown:

Y ., Q ⊆ R⇔ Y ⊆ R/Q .

The value of R/Q is:

R/Q = R ., Q` = {(a, b) ∈ A×B | ∀c ∈ C. (b, c) ∈ Q⇒ (a, c) ∈ R}

= {(a, b) ∈ A×B |Q(b) ⊆ R(a)} . (2.1)

Definition 2.10. Given two relations R ⊆ A × C and P ⊆ A × B, the right

residual of R by P, denoted P\R, is the largest solution of the inequality

P ., X ⊆ R, where X ⊆ B × C is the unknown:

P ., X ⊆ R⇔ X ⊆ P\R .

The value of P\R is:

P\R = P` ., R = {(b, c) ∈ B × C | ∀a ∈ A. (a, b) ∈ P ⇒ (a, c) ∈ R}

=
{

(b, c) ∈ B × C
∣∣P`

(b) ⊆ R
`
(c)
}
. (2.2)

The precedence of / and \ is the same as the precedence of relational

composition. The residuation operations are loosely analogous to division of

natural numbers and the values of the residuals are a form of quotient. The

left residual R/Q can be understood as what remains on the left of R after R is

“divided” by Q on the right. Dually, the right residual P\R is what remains

on the right of R after “dividing” R by P on the left. The left and right

residuals are different because relational composition is not commutative.

C. A. R. Hoare and his group at Oxford were among the first to advocate

the importance of the relational residuals to software development1 (Hoare and

1Hoare and He use a different notation than ours; we follow the conventions standardized
in RelMiCS (Brink et al., 1997).
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He, 1985; Hoare and He, 1986; Hoare and He, 1987; Hoare et al., 1987). The

residuals are useful when a specification is refined by a composition of two

specifications of which one is unknown. Hoare and He called the left residual

R/Q the weakest prespecification of program Q to achieve specification R, and

the right residual P\R the weakest postspecification of program P to achieve

specification R.

Examples of relational residuals will be given in the next section when

they are compared with their demonic counterparts.

2.3.2 Demonic Calculus

We now present the demonic relational operations that we will use in the sub-

sequent chapters of the thesis and motivate their suitability for safety-critical

systems compared to their angelic counterparts. We introduce the demonic

operators similarly to (Frappier, 1995),(Desharnais et al., 1997), and (Kahl,

2003b), however, instead of the abstract algebraic style we favour concrete

relations, which we believe are more suited for an engineering audience. The

demonic operators have the same precedence as their angelic counterparts.

Domain and Range Restrictions

Before presenting the demonic operations, we introduce notational abbrevia-

tions that will allow us to work with partial relations and also to make the

transition from the abstract relation-algebraic presentation typical in the lit-

erature to concrete relations.

Definition 2.11. The domain restriction of a relation P ⊆ A × B to a set

A′ ⊆ A is the relation P
∣∣
A′ = {(a, b) ∈ P | a ∈ A′}.

Definition 2.12. The range restriction of a relation P ⊆ A × B to a set

B′ ⊆ B is the relation P
∣∣B′

= {(a, b) ∈ P | b ∈ B′}.

The domain and range restrictions are also known as the prerestriction

and, respectively, postrestriction constructs in (Mili et al., 1987).

We will use particular cases of domain and range restrictions, where the

domain or range of a relation is restricted to the domain or range of another
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relation. Before introducing these restrictions, we need to introduce relational

vectors (Schmidt et al., 1997; Schmidt, 2011), which will allow us to make the

connection between the abstract and concrete formulations of these particular

domain and range restrictions.

Definition 2.13. A relation v satisfying v = v ., C is called a vector.

Vectors are useful for describing the domain and range of a relation in a

purely relation-algebraic way. Clearly, the domain of a vector v .,C is equal to

the domain of v, while the range of v .,C is equal to the target of v. Thus, the

vector v ., C “describes” the domain of v. Dually, the range of v is described

by the vector v` ., C. The same effect can be obtained by using the converse

vectors. The converse of v ., C is C ., v` and describes the domain of v. The

converse of v` ., C is C ., v, which describes the range of v.

The domain and range restrictions we will use are:

• the domain restriction of P ⊆ A×B to the domain of R ⊆ A× C:

P
∣∣
dom(R)

= P ∩R ., CC,B = {(a, b) ∈ P | a ∈ dom (R)};

• the domain restriction of P ⊆ A×B to the range of R ⊆ C × A:

P
∣∣
ran(R)

= P ∩R` ., CC,B = {(a, b) ∈ P | a ∈ ran (R)};

• the range restriction of P ⊆ A×B to the domain of R ⊆ B × C:

P
∣∣dom(R)

= P ∩CA,C
., R

`
= {(a, b) ∈ P | b ∈ dom (R)};

• the range restriction of P ⊆ A×B to the range of R ⊆ C ×B is:

P
∣∣ran(R)

= P ∩CA,C
., R = {(a, b) ∈ P | b ∈ ran (R)}.

Demonic refinement

Definition 2.14. A relation P ⊆ A×B is a demonic refinement of a relation

R ⊆ A×B, written P E R, if and only if R .,CB,B ⊆ P .,CB,B and R .,CB,B∩P ⊆
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Figure 2.1: Examples of demonic refinement

R. Using the domain vectors and domain restrictions, these conditions become:

(i) dom (R) ⊆ dom (P );

(ii) and, respectively, P
∣∣
dom(R)

⊆ R.

Consider the relations P and R in Figure 2.1: in Figure 2.1a, P refines

R; in Figure 2.1b, P does not refine R because (a2, b1) ∈ P but (a2, b1) /∈ R;

and, in Figure 2.1c, P does not refine R because dom (R) * dom (P ).

(Maddux, 1996) made the connection between the approaches to non-

determinism and refinement in variations of Dijkstra’s weakest precondition

calculus such as those in (Back, 1981), (Morgan and Robinson, 1987), (Mor-

ris, 1987), or (Back and von Wright, 1992), and those in relation-algebraic

formalisms such as (Mili, 1983; Mili et al., 1987), (Boudriga et al., 1992),

and (Desharnais et al., 1995; Frappier, 1995; Frappier et al., 1996; Desharnais

et al., 1997; Kahl, 2003b). This connection reveals that demonic refinement

and the refinement orderings in the works just mentioned are the same. As

such, demonic refinement appears under various guises in the literature:

• “more defined than” in (Mili et al., 1987; Boudriga et al., 1992);

• total correctness in (Mili, 1983; Desharnais et al., 1997; Kahl, 2003b);

• demonic refinement in (Desharnais et al., 1995; Frappier, 1995; Frappier

et al., 1996; Desharnais et al., 1997; Kahl, 2003b).

Demonic refinement is a partial order and induces a complete join semi-

lattice, usually referred to as the demonic lattice (Boudriga et al., 1992; De-

sharnais et al., 1995; Frappier, 1995; Frappier et al., 1996; Desharnais et al.,
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1997; Kahl, 2003b)2. The top element of the demonic lattice is the empty re-

lation D, which does not impose any constraints whatsoever on its implemen-

tations. As such, any relation is a refinement of D. The sub-lattice between

D and the universal relation C is the set of partial relations, which specify

termination only for the inputs in their domain. Below C, inclusively, is the

set of total relations which specify termination everywhere; the minima of this

set are the ideal implementations (i.e., total functions). Demonic union H is

the join operation of the demonic lattice and will not be used in this thesis.

The meet operation is the demonic intersection G, which is not always defined

because the demonic lattice is a join semilattice.

The meaning of the statement “P implements R” in the demonic refine-

ment sense is as follows:

• for every input for which R is defined, P must produce only outputs

allowed by R (i.e., an implementation is at least as deterministic as its

specification);

• for the inputs for which R is not defined, P is allowed to do anything

(i.e., P produces incorrect results or no results at all).

Compared to the angelic refinement (i.e., relational inclusion⊆), demonic

refinement does not allow empty implementations for non-empty specifications.

Moreover, demonic refinement forces an implementation to deal with all the

inputs in the domain of its specification. These differences make the demonic

refinement better suited for a safety-critical setting. It is debatable, however,

in the case of demonic refinement if allowing arbitrary behaviour outside the

domain of a specification is the best thing to do. When we give a demonic

semantics to the four-variable model in Chapter 4, we will explain how this

can be dealt with in practice. As particular cases, if P and R are total or if

dom (P ) = dom (R), then P E R and P ⊆ R are equivalent.

2The reader should note that the demonic refinement ordering used in (Boudriga et al.,
1992) and (Frappier, 1995) is the converse of the usual demonic refinement ordering, thus
the dual of the demonic lattice is used in these works.
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Figure 2.2: Example of demonic intersection

Demonic intersection

Definition 2.15. Two relations P ⊆ A × B and Q ⊆ A × B are compatible

if and only if

dom (P ) ∩ dom (Q) ⊆ dom (P ∩Q) . (2.3)

The meaning of (2.3) is that for every input in common, P and Q should

have at least one output in common.

Definition 2.16. The demonic intersection (demonic meet) of P and Q, de-

noted as P GQ, is defined if and only if P and Q are compatible. If the demonic

intersection of P and Q is defined, then its value is:

P GQ S (P ∩Q) ∪ (P ∩Q ., C) ∪ (P ., C ∩Q)

S (P ∩Q) ∪ P
∣∣
dom(Q)

∪ Q
∣∣
dom(R)

. (2.4)

The symbol S, called the “venturi tube” (Kahl, 2003b), has the following

meaning: for any two expressions φ and ψ, φ S ψ means that if φ is defined,

then ψ is defined and equal to φ.

The intuition for (2.4) is that P G Q captures the behaviour that is

common to both P and Q ; outside the domain of Q, P GQ does exactly what

P does; and, outside the domain of P, P G Q does exactly what Q does. For

example, let P = {(a1, b1), (a2, b1), (a2, b3)} and Q = {(a2, b2), (a2, b3), (a3, b3)}.
In this case, P GQ = {(a2, b3), (a1, b1), (a3, b3)} (Figure 2.2).
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P
Q

(b) Demonic composition

Figure 2.3: Demonic vs. angelic composition

Demonic composition

Definition 2.17. The demonic composition of two relations P ⊆ A× B and

Q ⊆ B × C is the relation

P 2Q = P ., Q ∩ P ., Q ., CC,C = {(a, c) ∈ P ., Q |P (a) ⊆ dom (Q)} .

Demonic composition is the same as the angelic composition when P

is univalent or when Q is total. The difference between these two notions

of relational composition explains, perhaps the best, the difference between

angelic and demonic semantics. As an example, let us consider the following

two relations P = {(a1, b1), (a1, b2)} and Q = {(b1, c1)}, depicted in Figure 2.3.

Here, P ., Q allows the dead end (a1, b2) because there is a chance that a1

will reach c1 via b1. On the other hand, P 2Q is empty because there is the

possibility that an implementation will get stuck at b2 and will not reach c1. In

practice, this means that an implementation of P ., Q will sometimes produce

a result and sometimes it will not.

Demonic composition is a fully associative operation (Backhouse and

van der Woude, 1993): any three relations P,Q,R satisfy P 2(Q2R) = (P 2Q)2R.

Demonic residuals

As was the case with angelic composition and angelic inclusion, demonic com-

position and demonic refinement induce two residuation operations, the de-

monic left and right residuals.
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Definition 2.18. The demonic left residual3 of a relation R ⊆ A × C by a

relation Q ⊆ B × C, denoted R IQ, is the largest solution with respect to E

of the inequation Y 2Q E R, where Y ⊆ A×B is the unknown:

Y 2Q E R⇔ Y E R IQ .

A solution Y, called a demonic left factor of R through Q, does not

always exist. As such, the demonic left residual R I Q is not always defined.

In fact, a consequence of Definition 2.18 is that R IQ is defined if and only if

a demonic left factor Y exists.

Several necessary and sufficient conditions for the definedness of R I Q

can be found in the literature, such as, if converted to our notation:

dom (R) ⊆ dom
(

(R/Q)
∣∣dom(Q)

)
(2.5)

in (Desharnais et al., 1995) and (Frappier, 1995); or,

dom (R) ⊆ dom ((R/Q) ., Q) (2.6)

in (Desharnais et al., 1997) and (Kahl, 2003b). In Section 3.1 we will prove

a new necessary and sufficient condition for the existence of a demonic left

factor expressed in predicate logic that offers better engineering insight than

the aforementioned conditions.

If the demonic left residual RIQ is defined, then its value is obtained by

restricting the range of the angelic left residual R/Q to the domain of Q, that

is, R IQ S R/Q ∩C .,Q` (Desharnais et al., 1993; Frappier, 1995; Desharnais

et al., 1995; Desharnais et al., 1997; Kahl, 2003b). An equivalent formulation

in our notation is:

R IQ S (R/Q)
∣∣dom(Q)

S {(a, b) ∈ A×B | b ∈ dom (Q) ∧Q(b) ⊆ R(a)} . (2.7)

The demonic residuals are partial operations whose results are not always

3The demonic left residual is called the conjugate kernel in (Desharnais et al., 1993).
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Figure 2.4: Definedness of the demonic left residual

well defined. Non-definedness of the demonic residuals does not necessarily

mean emptiness. This important point is made explicit in Figure 2.4a. Here,

the demonic left residual of a relation R by a relation Q calculated using (2.7)

is

R I Q = {(a2, b3)}. Although not empty, this demonic left residual is not

well defined because it does not satisfy Definition 2.18. The reason for this is

that (R I Q)2Q = {(a2, c2), (a2, c3)} is not a demonic refinement of R since

dom (R) * dom ((R IQ)2Q). Another way to check the definedness of R IQ

would be to use either of the conditions (2.5) and (2.6), or the condition we

will give in Section 3.1. Figure 2.4b illustrates an example where the demonic

left residual is well defined.

Definition 2.19. The demonic right residual of a relation R ⊆ A × C by a

relation P ⊆ A× B, denoted P J R, is the largest solution with respect to E

of the inequation P 2X E R, where X ⊆ B × C is the unknown:

P 2X E R⇔ X E P JR .

A solution X, called a demonic right factor of R through P, does not

always exist. By Definition 2.19, the demonic right residual P J R is defined

if and only if a demonic right factor X exists.

The definedness conditions for P J R given in (Frappier, 1995), (De-

sharnais et al., 1995) and (Kahl, 2003b) can all be converted to the following
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common form in our notation (see Appendix A for details):

dom (R) ⊆ dom (P ) ∧CB,C ⊆
(
P
∣∣
dom(R)

∖
R
)

., CC,C . (2.8)

In the works mentioned above, this condition is stated only as sufficient. In

Section 3.2 we will prove a necessary and sufficient condition formulated in

predicate logic that offers a better engineering insight than (2.8). Our condi-

tion turns out to be equivalent to (2.8). Consequently, (2.8) is necessary and

sufficient as well.

If the demonic right residual is defined, then its value is:

P JR S

(
P
∣∣
dom(R)

∖
R
) ∣∣∣

ran

(
P

∣∣∣∣
dom(R)

)

S

{
(b, c) ∈ B × C

∣∣∣∣ b ∈ ran
(
P
∣∣
dom(R)

)
∧
(
P
∣∣
dom(R)

)`

(b) ⊆ R
`
(c)

}
.

(2.9)

Several alternative definitions for the value of P J R are given in (Frappier,

1995),(Desharnais et al., 1995), and (Kahl, 2003b). In Appendix A we show

that these definitions are equivalent to our definition (2.9).

Similarly to the demonic left residual, the demonic right residual does

not have to be empty to be undefined. Figure 2.5a illustrates such a case. In

this example, the value of the demonic right residual calculated using (2.9) is

P J R = {(b2, c3)}. Nevertheless, P J R is undefined because P 2(P J R) = D

does not demonically refine R. Of course, (2.8) is also not satisfied in this case.

In Figure 2.5b, the demonic right residual is well defined.

It is worth explaining why the demonic residuals are more suitable for

safety-critical applications. Let us consider the relations depicted in Figure 2.6.

In this example, if seen as specifications, the angelic residual R/Q allows the

dead end (a1, b2) where an implementation could get stuck, whereas the de-

monic residual R IQ does not allow any dead ends. Moreover, both demonic

residuals in the figure are less restrictive than their angelic counterparts with-

out breaking refinement: R/Q, but not R I Q, asks its implementations to

deal with a2, which is not an input of interest for R; similarly, P\R, but not
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(b) P JR is well defined

Figure 2.5: Definedness of the demonic right residual
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Figure 2.6: Demonic vs. angelic residuals

P JR, asks its implementations to deal with b2.

2.4 Covers and Equivalence Kernels

To answer the question of implementability, we need to a way to tell how much

information about the monitored variables an implementation loses and also

how accurate are the outputs produced by an implementation compared to

what is required of the system. To this end, in this section we introduce the

notion of a cover induced by a relation and that of the kernel of a function,

along with some of their properties. In subsequent chapters, we will study

implementability in both the general, relational four-variable model as well as

in the particular case of a functional four-variable model. Covers are needed

in the relational setting, while kernels are their counterparts in the functional

setting.

A cover of a set A is a family C = {Cα ⊆ A | α ∈ I} where α is an index

in some index set I, A =
⋃
α∈I Cα, and the subsets Cα of A, called the cells
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of C, are not necessarily pairwise disjoint. We denote the set of all covers of a

set A by Cov (A).

Definition 2.20. A cover C ∈ Cov (A) refines a cover D ∈ Cov (A) if and only

if every cell of C is contained in a cell of D:

C ≤ D def
= ∀A′ ∈ C. ∃A′′ ∈ D.A′ ⊆ A′′ .

If C ≤ D, we say that C is “finer” than D, or D is “coarser” than C. Refinement

of covers is a preorder (i.e., a reflexive and transitive ordering relation).

Any relation induces a cover on its domain, defined as follows.

Definition 2.21. (Wonham, 2013) A relation R ⊆ A× B induces a cover on

dom (R) whose cells, indexed by ran (R), are the image sets of the elements in

ran (R) under the converse of R:

cov (R) =
{
A′ ⊆ A

∣∣ ∃b ∈ ran (R) .A′ = R
`
(b)
}
.

A partition is a cover whose cells are pairwise disjoint. The set of all par-

titions of a set A is denoted by Par (A). Refinement of covers becomes a partial

order in the particular case of partitions. Moreover, Par (A) is a complete lat-

tice with refinement of covers as the partial order. The set of all equivalence

relations on a set A, denoted by Eq (A), is a complete lattice with set inclusion

as the partial order. The following bijective mapping θ : Par (A)→ Eq (A) can

be defined between the partitions and equivalence relations on A:

θ(π) = {(a1, a2) ∈ A× A | ∃A′ ∈ π. {a1, a2} ⊆ A′} .

As such, the lattices (Par (A) ,≤) and (Eq (A) ,⊆) are isomorphic and we can

talk about partitions and equivalence relations interchangeably (Burris and

Sankappanavar, 1981). In particular, an equivalence relation on a set partitions

that set into equivalence classes. Also, refinement of covers can be used to

order equivalence relations since partitions are a particular case of covers.

Consequently, by Definition 2.20, an equivalence relation θ1 ∈ Eq (A) refines

another equivalence relation θ2 ∈ Eq (A) if and only if every equivalence class
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of θ1 is contained in an equivalence class of θ2.

A particular equivalence relation in Eq (A) is the equivalence relation

induced by a function on its domain.

Definition 2.22. Let f : A → B. The equivalence relation induced by f on

its domain is called the equivalence kernel of f and is defined as follows:

ker (f) = f ., f
`

= {(a1, a2) ∈ A× A | ∃b ∈ B. (a1, b) ∈ f ∧ (a2, b) ∈ f}

= {(a1, a2) ∈ A× A | f(a1) = f(a2)} .

The equivalence kernel of a function f partitions the domain of f into

equivalence classes (i.e., pairwise disjoint cells) such that every equivalence

class contains all the elements in dom (f) that have the same image in ran (f).

Consequently, kernels are similar to covers. In fact, in the functional case, the

partition that corresponds to ker (f) is exactly the same as cov (f). In the

relational case disjointness of the cells is lost.
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Chapter 3

Demonic Factorization of

Relations

In this chapter we present the first theoretical results of the thesis. In order to

answer the question we posed about the implementability of system require-

ments, we are interested in existence conditions for the dotted arrows in the

commutative diagram depicted in Figure 3.1, which is isomorphic to the four-

variable model diagram. We use this diagram to reduce notational verbosity.

It is easy to see that R stands for REQ and NAT (the relationship between

these two relations will be clarified in Chapter 4), P for IN, Q for OUT, and

Z for SOF.

The existence conditions of the dotted arrows are obtained in a demonic

semantics. The diagonal AC in the diagram is a demonic left factor of R

through Q. The diagonal BD is a demonic right factor of R through P. In

Sections 3.1 and 3.2 we prove necessary and sufficient existence conditions for

A D

B C

R

P

ZEPJRIQ

Q

Y ERIQ

XEPJR

Figure 3.1: Demonic factorization
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demonic left and, respectively, right factors. Using these conditions we will

then prove in Section 3.3 a necessary and sufficient condition for the existence

of a relation Z such that the diagram commutes. These results will be applied

to the four-variable model in the subsequent chapters of the thesis.

3.1 Existence of a Demonic Left Factor

We now state and prove a necessary and sufficient condition for the existence

of a demonic left factor and, therefore, for the definedness of the demonic left

residual.

Lemma 3.1. Given two relations R ⊆ A× C and Q ⊆ B × C, there exists a

demonic left factor Y ⊆ A×B such that Y 2Q E R if and only if

∀a ∈ dom (R) .∃b ∈ dom (Q) .Q(b) ⊆ R(a) .

A

B

C
R

Y ERIQ Q

Proof .

If direction:

∃Y .Y 2Q E R

⇒〈by Definition 2.18, R IQ is a solution of Y 2Q E R〉

(R IQ) 2Q E R

⇒〈by Definition 2.14(i) of E〉

dom (R) ⊆ dom ((R IQ) 2Q)

⇒ dom (R) ⊆ dom (R IQ)

⇒∀a ∈ dom (R) . ∃b ∈ B. (a, b) ∈ R IQ

⇒〈by (2.7)〉
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∀a ∈ dom (R) . ∃b ∈ dom (Q) .Q(b) ⊆ R(a) .

Only if direction:

∀a ∈ dom (R) . ∃b ∈ dom (Q) .Q(b) ⊆ R(a)

⇔〈by (2.7)〉

∀a ∈ dom (R) . ∃b ∈ dom (Q) . (a, b) ∈ R IQ

⇔∀a ∈ dom (R) . ∃b ∈ B. (a, b) ∈ R IQ ∧ b ∈ dom (Q)

⇔〈by Definition 2.17 of 2〉

∀a ∈ dom (R) . ∃c ∈ C. (a, c) ∈ (R IQ) 2Q

⇒ dom (R) ⊆ dom ((R IQ) 2Q) . (3.1)

((R IQ) 2Q)
∣∣
dom(R)

⊆ R

⇔∀a ∈ dom (R) . ((R IQ) 2Q) (a) ⊆ R(a)

⇔〈by unfolding ⊆〉

∀a ∈ dom (R) . ∀c ∈ C. (a, c) ∈ ((R IQ) 2Q)⇒ (a, c) ∈ R

⇔〈by Definition 2.17 of 2〉

∀a ∈ dom (R) . ∀c ∈ C. (∃b ∈ dom (Q) . (a, b) ∈ R IQ ∧ (b, c) ∈ Q)

⇒ (a, c) ∈ R

⇔〈by (2.7)〉

∀a ∈ dom (R) . ∀c ∈ C. (a, c) ∈ R⇒ (a, c) ∈ R

⇔ true . (3.2)

∀a ∈ dom (R) . ∃b ∈ dom (Q) .Q(b) ⊆ R(a)

⇒〈by (3.1) & (3.2) & Definition 2.14 of E〉
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b3
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Q
R IQ

not well defined

(a) Lemma 3.1 not satisfied

a1
a2

b1
b2
b3

c1 c2 c3

R

Q
R IQ

well defined

(b) Lemma 3.1 satisfied

Figure 3.2: Examples for the existence of a demonic left factor

(R IQ) 2Q E R

⇒〈by taking X = R IQ〉

∃X.X 2Q E R .

�

The intuition for the necessary and sufficient condition given in Lemma 3.1

is that a demonic left factor of R through Q exists if and only if Q is at least

as deterministic as R is, where the degree of (non)determinism of R and Q

is given by the image sets of their inputs. The larger the image set of an

input, the less deterministic the relation is for that input. This is illustrated

in Figure 3.2, where we revisit an example from Section 2.3.2 regarding the

definedness of the demonic left residual. There, we used the definition of the

demonic left residual to verify its definedness. Here, we use the necessary and

sufficient condition of Lemma 3.1. In Figure 3.2a the residual R I Q is not

well defined and a demonic left factor does not exist because for every input

of R there is no input of Q whose image set in contained in the image set of

that input of R. Thus, Q does not have the proper degree of determinism. In

contrast, in Figure 3.2b the relation Q has the same degree of determinism at

the output as R, hence a demonic left factor exists.
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3.1.1 Comparison with Existence Conditions in the Lit-

erature

We now show that our necessary and sufficient condition for the existence of a

demonic left factor given in Lemma 3.1 is indeed equivalent to the necessary

and sufficient conditions (2.5) and (2.6) given in the literature.

Proposition 3.2. Given two relations R ⊆ A× C and Q ⊆ B × C,

∀a ∈ dom (R) .∃b ∈ dom (Q) .Q(b) ⊆ R(a)

and

dom (R) ⊆ dom ((R/Q) .,Q)

are equivalent.

Proof .

∀a ∈ dom (R) . ∃b ∈ dom (Q) .Q(b) ⊆ R(a)

⇔〈by (2.1)〉

∀a ∈ dom (R) . ∃b ∈ dom (Q) . (a, b) ∈ R/Q

⇔∀a ∈ dom (R) . ∃b ∈ B. (a, b) ∈ R/Q ∧ b ∈ dom (Q)

⇔∀a ∈ dom (R) . ∃b ∈ B. (a, b) ∈ R/Q ∧ ∃c ∈ C. (b, c) ∈ Q

⇔∀a ∈ dom (R) . ∃c ∈ C. ∃b ∈ B. (a, b) ∈ R/Q ∧ (b, c) ∈ Q

⇔〈by Definition 2.8 of .,〉

∀a ∈ dom (R) . ∃c ∈ C. (a, c) ∈ (R/Q) ., Q

⇔∀a ∈ dom (R) . a ∈ dom ((R/Q) ., Q)

⇔ dom (R) ⊆ dom ((R/Q) ., Q) .

�
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Proposition 3.3. Given two relations R ⊆ A× C and Q ⊆ B × C,

∀a ∈ dom (R) .∃b ∈ dom (Q) .Q(b) ⊆ R(a)

and

dom (R) ⊆ dom
(

(R/Q)
∣∣dom(Q)

)
are equivalent.

Proof . It suffices to show that dom
(

(R/Q)
∣∣dom(Q)

)
= dom ((R/Q) ., Q). Then,

by Proposition 3.3, we will have a proof for the current statement.

From (2.7) we get:

(R/Q)
∣∣dom(Q)

= {(a, b) ∈ A×B | b ∈ dom (Q) ∧Q(b) ⊆ R(a)}

= {(a, b) ∈ A×B | (∃c ∈ C. (b, c) ∈ Q) ∧Q(b) ⊆ R(a)} .

Thus

dom
(

(R/Q)
∣∣dom(Q)

)
= {a ∈ A | ∃b ∈ B. ∃c ∈ C. (b, c) ∈ Q ∧Q(b) ⊆ R(a)} .

We also have that

(R/Q) ., Q = {(a, c) ∈ A× C | ∃b ∈ B. (a, b) ∈ R/Q ∧ (b, c) ∈ Q}

= {(a, c) ∈ A× C | ∃b ∈ B.Q(b) ⊆ R(a) ∧ (b, c) ∈ Q} .

Therefore

dom ((R/Q) ., Q) = {a ∈ A | ∃c ∈ C. ∃b ∈ B.Q(b) ⊆ R(a) ∧ (b, c) ∈ Q} .

Consequently, dom
(

(R/Q)
∣∣dom(Q)

)
= dom ((R/Q) ., Q), which completes

the proof. �

The advantage of our necessary and sufficient condition given in Lemma 3.1

compared to the abstract relation algebraic conditions in the literature is a bet-

ter insight into the constraints that the relations R and Q must satisfy in order
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for a demonic left factor of R through Q to exist. Also, our condition is con-

structive in nature and suggests a procedure for “calculating” the demonic left

residual R I Q: verifying the satisfiability of Lemma 3.1 by two relations R

and Q requires the enumeration of all the pairs that satisfy the characteristic

predicate of R IQ as given in (2.7).

3.2 Existence of a Demonic Right Factor

We now give a necessary and sufficient condition for the existence of a demonic

right factor and, thus, for the definedness of the demonic right residual.

Lemma 3.4. Given two relations R ⊆ A × C and P ⊆ A × B, there exists

a demonic right factor X ⊆ B × C such that P 2X E R if and only if the

following conditions are both satisfied:

(i) dom (R) ⊆ dom (P );

(ii) ∀b ∈ ran
(
P
∣∣
dom(R)

)
.∃c ∈ C.

(
P
∣∣∣
dom(R)

)`

(b) ⊆ R
`
(c).

A

B

C
R

P XEPJR

Proof .

If direction:

∃X.P 2X E R

⇒〈by Definition 2.19, P JR is a solution of P 2X E R〉

P 2 (P JR) E R

⇒〈by Definition 2.14(i) of E〉

dom (R) ⊆ dom (P 2(P JR))

⇒〈by Definition 2.17 of 2〉
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dom (R) ⊆ dom (P ) ∧ ran
(
P
∣∣
dom(R)

)
⊆ dom (P JR)

⇒ dom (R) ⊆ dom (P ) ∧ ∀b ∈ ran
(
P
∣∣
dom(R)

)
. ∃c ∈ C. (b, c) ∈ P JR

⇒〈by (2.9)〉

dom (R) ⊆ dom (P )

∧ ∀b ∈ ran
(
P
∣∣
dom(R)

)
. ∃c ∈ C.

(
P
∣∣∣
dom(R)

)`

(b) ⊆ R
`
(c) .

Only if direction:

dom (R) ⊆ dom (P )

∧ ∀b ∈ ran
(
P
∣∣
dom(R)

)
. ∃c ∈ C.

(
P
∣∣∣
dom(R)

)`

(b) ⊆ R
`
(c)

⇒〈by (2.9)〉

dom (R) ⊆ dom (P ) ∧ ∀b ∈ ran
(
P
∣∣
dom(R)

)
. ∃c ∈ C. (b, c) ∈ P JR

⇒∀a ∈ dom (R) . ∀b ∈ P (a). ∃c ∈ C. (b, c) ∈ P JR

⇒〈by Definition 2.17 of 2〉

∀a ∈ dom (R) . ∃c ∈ C. (a, c) ∈ P 2(P JR)

⇒ dom (R) ⊆ dom (P 2(P JR)) . (3.3)

(P 2(P JR))
∣∣
dom(R)

⊆ R

⇔∀a ∈ dom (R) . (P 2(P JR)) (a) ⊆ R(a)

⇔〈by unfolding ⊆〉

∀a ∈ dom (R) . ∀c ∈ C. (a, c) ∈ P 2(P JR)⇒ (a, c) ∈ R

⇔〈by Definition 2.17 of 2〉

∀a ∈ dom (R) . ∀c ∈ C. (∃b ∈ dom (P JR) . (a, b) ∈ P ∧ (b, c) ∈ P JR)

⇒ (a, c) ∈ R

⇔〈by (2.9)〉
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∀a ∈ dom (R) . ∀c ∈ C. (a, c) ∈ R⇒ (a, c) ∈ R

⇔ true . (3.4)

dom (R) ⊆ dom (P )

∧ ∀b ∈ ran
(
P
∣∣
dom(R)

)
. ∃c ∈ C.

(
P
∣∣∣
dom(R)

)`

(b) ⊆ R
`
(c)

⇒〈by (3.3) & (3.4) & Definition 2.14 of E〉

⇒P 2 (P JR) E R

⇒〈by taking X = P JR〉

∃X.P 2X E R .

�

The intuition for the necessary and sufficient condition of Lemma 3.4

is that a demonic right factor of R through P exists if and only if P retains

at least as much information about the inputs as R. The level of information

that a relation preserves about its inputs is given by the reverse image sets

of its outputs: the larger the reverse image set of an output, the higher the

uncertainty of which inputs the output originates from. In Figure 3.3a, the

reverse image set
(
P
∣∣
dom(R)

)`

(b1) = {a1, a2, a3} is not contained in any reverse

image set of an element in the range of R. This means that P is not able to

distinguish between a1, a2, and a3 when producing b1, while R can make a

distinction when producing c1, c2, or c3. Therefore, in this example Lemma 3.4

is not satisfied; as such, a demonic right factor of R through P does not exist

and P J R is not defined. In Figure 3.3b on the other hand, Lemma 3.4 is

satisfied because
(
P
∣∣
dom(R)

)`

(b1) = {a1, a3} ⊆ R`(c2) = {a1, a3}, hence a

demonic right factor of R through P exists and P J R is defined. The same

examples were used in Section 2.3.2 to illustrate the definedness of P JR, but

there the definition of the demonic right residual was used for checking the

definedness of P JR.
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P JR

not well defined

(a) Lemma 3.4 not satisfied

a1
a2

a3

b1

b2

c1
c2
c3

R

P
P JR

well defined

(b) Lemma 3.4 satisfied

Figure 3.3: Examples for the existence of a demonic right factor

3.2.1 Comparison with Existence Conditions in the Lit-

erature

Our necessary and sufficient condition for the existence of a demonic right

factor in Lemma 3.4 is in fact equivalent to the conditions given in (Frap-

pier, 1995), (Desharnais et al., 1995), and (Kahl, 2003b). In Section 2.3.2 we

showed that these conditions are equivalent to (2.8); to show the equivalence

between our condition in Lemma 3.4 and (2.8), it suffices to prove the following

statement.

Proposition 3.5. Given two relations R ⊆ A× C and P ⊆ A×B,

∀b ∈ ran
(
P
∣∣
dom(R)

)
.∃c ∈ C.

(
P
∣∣∣
dom(R)

)`

(b) ⊆ R
`
(c) (3.5)

and

CB,C ⊆
(
P
∣∣
dom(R)

∖
R
)
.,CC,C (3.6)

are equivalent.

Proof . We start by noting that the set B can be written as the following

union:

B = ran
(
P
∣∣
dom(R)

)
∪ ran

(
P
∣∣
dom(R)

)
. (3.7)
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Specializing (2.2) to the context of this proof, we get

P
∣∣
dom(R)

∖
R =

{
(b, c) ∈ B × C

∣∣∣∣ (P ∣∣dom(R)

)`

(b) ⊆ R
`
(c)

}
. (3.8)

Also, (3.6) is equivalent to P
∣∣
dom(R)

∖
R being total.

If direction ((3.5) ⇒ (3.6)):

This is a proof by cases. First case, for any b ∈ ran
(
P
∣∣
dom(R)

)
we have

by (3.5) that there exists a c′ ∈ C such that
(
P
∣∣
dom(R)

)`

(b) ⊆ R`(c′), which

by (2.9) means that (b, c′) ∈ P
∣∣
dom(R)

∖
R. Second case, for any b in the

complement of ran
(
P
∣∣
dom(R)

)
the set

(
P
∣∣
dom(R)

)`

(b) = ∅, thus the charac-

teristic predicate of P
∣∣
dom(R)

∖
R in (3.8) is trivially satisfied. Consequently,

(b, c′′) ∈ P
∣∣
dom(R)

∖
R for any c′′ ∈ C. Considering these two cases and (3.7),

we have that P
∣∣
dom(R)

∖
R is total.

Only if direction ((3.6) ⇒ (3.5)):

From (3.6) it follows that for any b ∈ B there is a c ∈ C such that

(b, c) ∈ P
∣∣
dom(R)

∖
R. Then by (3.7) and (3.8) it follows that (3.5) holds. �

Similarly to the case of demonic left factors, our condition for the exis-

tence of a demonic right factor given in Lemma 3.4 offers better insight into

the constraints that the relations P and R must satisfy in order for a de-

monic right factor of R through P to exist. Moreover, our condition suggests

a method to construct the demonic right residual P JR: by checking that for

each element in the range of P
∣∣
dom(R)

there exists an element in the range of R

that satisfies Lemma 3.4(ii), we essentially enumerate all the pairs that satisfy

the characteristic predicate of P JR as given in (2.9).
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3.3 Existence of a Demonic Mid Factor

Ultimately, we are interested in a necessary and sufficient condition for the

existence of a relation Z in Figure 3.1 such that P 2Z2Q E R.

Definition 3.6. A demonic mid factor of R ⊆ A×D through P ⊆ A×B and

Q ⊆ C ×D is a relation Z ⊆ B × C such that P 2Z2Q E R.

Demonic composition is an associative operation (Backhouse and van der

Woude, 1993), that is, P 2 (Z2Q) = (P 2Z) 2Q. The associativity of 2 implies

that both diagonals X and Y in Figure 3.1 are necessary for Z to be a demonic

mid factor of R through P and Q since we can take X = Z2Q and Y = P 2Z.

The diagonals X and Y are demonic right and, respectively, left factors of

R. A necessary and sufficient condition for X to exist is given by applying

Lemma 3.4 in triangle A,B,D:

dom (R) ⊆ dom (P )

∧ ∀b ∈ ran
(
P
∣∣
dom(R)

)
. ∃d ∈ D.

(
P
∣∣∣
dom(R)

)`

(b) ⊆ R
`
(d) . (3.9)

By Definition 2.19, the largest X with respect to E is the demonic right residual

P J R. Similarly, a necessary and sufficient condition for Y to exist is given

by Lemma 3.1 applied in triangle A,C,D:

∀a ∈ dom (R) . ∃c ∈ dom (Q) .Q(c) ⊆ R(a) . (3.10)

By Definition 2.18, the largest Y with respect to E is the demonic left residual

R IQ.

The existence of the diagonals X and Y, however, is not sufficient for a

demonic mid factor Z to exist. A counterexample to the sufficiency of their

conjunction is provided in Figure 3.4. In this example, (3.9) is satisfied because

dom (R) ⊆ dom (P ) and
(
P
∣∣
dom(R)

)`

(b1) = {a1, a2} ⊆ R`(d2) = {a1, a2}.
Condition (3.10) is also satisfied because Q(c1) = {d1} ⊆ R(a1) = {d1, d2}
and Q(c3) = {d3} ⊆ R(a2) = {d2, d3}. However, if (b1, c1) ∈ Z, then a2 can

be connected to d1 via P 2Z2Q although (a2, d1) /∈ R; similarly, if (b1, c3) ∈ Z,
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a1

a2

b1
c1

c2
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d1
d2

d3

R

P

Q

Z

Figure 3.4: The diagonals are not sufficient for a demonic mid factor

then a1 can reach d3 via P 2Z2Q although (a1, d3) /∈ R. Consequently, there

is no relation Z such that P 2Z2Q E R, although both (3.9) and (3.10) are

satisfied. It is only when (c2, d2) ∈ Q that there is a Z = {(b1, c2)} such

that P 2Z2Q E R. It can be seen in Figure 3.4 that d2 enjoys a special

property: the amount of “confusion” at the input of R to produce d2 is at

least the same as the amount of “confusion” at the input of P to produce

b1, that is,
(
P
∣∣
dom(R)

)`

(b1) = {a1, a2} ⊆ R`(d2) = {a1, a2}. This suggests

that Q reaching points similar to d2 must be part of a necessary and sufficient

condition for Z to exist.

Hence, we give the following necessary and sufficient condition for the

existence of a demonic mid factor Z.

Lemma 3.7. Given three relations R ⊆ A×D, P ⊆ A×B, and Q ⊆ C ×D,

there exists a demonic mid factor Z ⊆ B × C such that P 2Z2Q E R if and

only if the following conditions are both satisfied:

(i) dom (R) ⊆ dom (P );

(ii) ∀b ∈ ran
(
P
∣∣
dom(R)

)
.

∃c ∈ dom (Q) .Q(c) ⊆

{
d ∈ D

∣∣∣∣ (P ∣∣∣
dom(R)

)`

(b) ⊆ R
`
(d)

}
.

Proof . The geometrical interpretation in Figure 3.4 of the associativity of 2

is that it does not matter if we use the diagonal BD or the diagonal AC to

arrive to the condition for the existence of Z. As such, it suffices to use the
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diagonal BD and show that the conditions in Lemma 3.7 are necessary and

sufficient for Z such that P 2 (Z2Q) E R.

∃Z.P 2(Z 2Q) E R

⇔〈by Definition 2.19 of J & Lemma 3.4 applied in 4 A,B,D〉

(∃Z.Z 2Q E P JR) ∧ (3.9)

⇔〈by Lemma 3.1 applied in 4B,C,D〉

(∀b ∈ dom (P JR) .∃c ∈ dom (Q) .Q(c) ⊆ (P JR)(b)) ∧ (3.9)

⇔
〈
dom (P JR) = ran

(
P
∣∣
dom(R)

)
& (P JR)(b) =

{
d ∈ D

∣∣∣∣ (P ∣∣dom(R)

)`

(b) ⊆ R
`
(d)

}〉
dom (R) ⊆ dom (P )

∧ ∀b ∈ ran
(
P
∣∣
dom(R)

)
.

∃c ∈ dom (Q) .Q(c) ⊆

{
d ∈ D

∣∣∣∣ (P ∣∣∣
dom(R)

)`

(b) ⊆ R
`
(d)

}
.

�

An alternative formulation of the necessary and sufficient condition for

the existence of a demonic mid factor is given in the following theorem. This

form is preferred in the sequel since it is notationally more convenient than

Lemma 3.7.

Theorem 3.8. Given three relations R ⊆ A×D, P ⊆ A×B, and Q ⊆ C×D,

there exists a demonic mid factor Z ⊆ B × C such that P 2Z2Q E R if and

only if the following conditions are both satisfied:

(i) dom (R) ⊆ dom (P );

(ii) ∀b ∈ ran
(
P
∣∣
dom(R)

)
.∃c ∈ dom (Q) .Q(c) ⊆

⋂
a∈A′ R(a), where A′ =(

P
∣∣
dom(R)

)`

(b).
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Proof . LetD′ =

{
d ∈ D

∣∣∣∣ (P ∣∣dom(R)

)`

(b) ⊆ R`(d)

}
andA′ =

(
P
∣∣
dom(R)

)`

(b),

for any b ∈ ran
(
P
∣∣
dom(R)

)
.

First, we prove that D′ ⊆
⋂
a∈A′ R(a). For this, we show that for any

d ∈ D′ it is also the case that d ∈
⋂
a∈A′ R(a):

∀d ∈ D. d ∈ D′ ⇒ A′ ⊆ R
`
(d)

⇒∀d ∈ D. d ∈ D′ ⇒ ∀a ∈ A′. a ∈ R`
(d)

⇒∀d ∈ D. d ∈ D′ ⇒ ∀a ∈ A′. (a, d) ∈ R

⇒∀d ∈ D. d ∈ D′ ⇒ d ∈
⋂
a∈A′

R(a) .

Second, we prove that
⋂
a∈A′ R(a) ⊆ D′. For this, we show that for any

d ∈
⋂
a∈A′ R(a) it is also the case that d ∈ D′:

∀d ∈ D. d ∈
⋂
a∈A′

R(a)⇒ ∀a ∈ A′. (a, d) ∈ R

⇒∀d ∈ D. d ∈
⋂
a∈A′

R(a)⇒ ∀a ∈ A′. a ∈ R`
(d)

⇒∀d ∈ D. d ∈
⋂
a∈A′

R(a)⇒ A′ ⊆ R
`
(d)

⇒∀d ∈ D. d ∈
⋂
a∈A′

R(a)⇒ d ∈ D′ .

Consequently, D′ =
⋂
a∈A′ R(a), and, by Lemma 3.7, we have a proof for

Theorem 3.8. �

Similarly to the demonic left and right residuals, our demonic mid resid-

ual is the largest demonic mid factor.

Theorem 3.9. Given relations R ⊆ A × D, P ⊆ A × B, Z ⊆ B × C, and

Q ⊆ C ×D, if Z is a demonic mid factor of R through P and Q, then Z is a

demonic refinement of the residual P JR IQ:

P 2Z2Q E R⇒ Z E P JR IQ .
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Proof . For any Z such that P 2 (Z2Q) E R we have that P 2 (Z2Q) E R ⇔
Z2Q E P J R ⇔ Z E (P JR) I Q by using the definitions of J and I,

respectively. It is also the case that for any Z such that (P 2Z)2Q E R we

have that (P 2Z)2Q E R ⇔ P 2Z E R I Q ⇔ Z E P J (R I Q). Considering

that the demonic composition is associative, we drop the parentheses and say

that any solution Z of the inequality P 2Z2Q E R, if it exists, is a demonic

refinement of the residual P JR IQ. �

An implication of Theorem 3.9 is that the residual P J R I Q is the

largest solution, with respect to E, of the inequation P 2Z2Q E R. We call

this residual the demonic mid residual of R by P and Q. By Theorem 3.8 and

Theorem 3.9, the demonic mid residual is defined only when a demonic mid

factor exists. Theorem 3.8 also gives us the value of the demonic mid residual:

P JR IQ S

{
(b, c) ∈ B × C

∣∣∣∣ b ∈ ran
(
P
∣∣
dom(R)

)
∧ c ∈ dom (Q)

∧Q(c) ⊆
⋂
a∈A′

R(a)

}
,

where A′ =
(
P
∣∣
dom(R)

)`

(b) . (3.11)

As was the case with the demonic left and right factors, the condition for

the existence of a demonic mid factor given in Theorem 3.8 has a constructive

flavour. Checking the existence of a demonic mid factor of R through P and

Q requires checking that for each element in the range of P
∣∣
dom(R)

there exists

an element in the domain of Q that satisfies Theorem 3.8(ii). This essentially

reduces to enumerating all the pairs in the demonic mid residual P JR IQ.

3.4 Summary

In this chapter we have used a diagram isomorphic to the diagram of the

four-variable model to reduce notational verbosity, but also to allow a more

straightforward comparison with the results from the relation algebra litera-

ture. To answer the question of implementability of system requirements, we
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are interested in existence conditions for the diagonals of the diagram as well

as for the relation that corresponds to SOF, such that the diagram commutes.

The condition for the diagram to commute is demonic refinement, while the

sequential composition of the relations in the diagram is demonic composition.

The rationale for choosing demonic refinement and composition will be further

explained in Chapter 4.

Two contributions presented in this chapter are the necessary and suffi-

cient conditions for the existence of demonic left and, respectively, right factors.

These conditions were used to derive existence conditions for the diagonals and

for the relation corresponding to SOF. Although the conditions turned out to

be equivalent to the abstract algebraic conditions presented in the literature,

we believe that they are more accesible for an engineering audience since they

are given in predicate logic. The conditions also offer a better insight into

what is required for demonic left and right factors to exist. This insight will

be explored further in Chapter 5 where the existence of the diagonals will be

used to define the notions of observability and controllability of the system

requirements with respect to the input and, respectively, output hardware

interfaces.

The main contribution of the chapter is a necessary and sufficient con-

dition for the existence of the relation that corresponds to SOF. We call this

relation a demonic mid factor of the relation that corresponds to REQ and

NAT (the relationship between these two relations will be clarified in Chap-

ter 4) through the relations that correspond to IN and OUT. This result is to

the best of our knowledge new in relation algebra.

The necessary and sufficient existence conditions for the demonic left,

right, and mid factors presented in this chapter are constructive because check-

ing for the existence of the factors requires finding all the pairs that satisfy the

characteristic predicates of the corresponding demonic residuals. A method

to “calculate” the demonic residuals is useful since they are the weakest (i.e.,

least restrictive) specifications or implementation descriptions that are still ac-

ceptable without placing unnecessary constraints on actual implementations.
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Chapter 4

Implementability of System

Requirements

In this chapter we answer the main question of the thesis and give a necessary

and sufficient existence condition for an acceptable software specification, given

the constraints imposed on the software by the environment, system require-

ments, and input/output devices. In Section 4.1 we describe the shortcomings

of the angelic acceptability criterion proposed by (Parnas and Madey, 1995).

In particular, this criterion allows system specifications that are not completely

consistent with the natural laws of the environment. As a first step to address

these issues, in Section 4.2 we redefine in the demonic calculus of relations the

notion of feasibility of system requirements proposed by Parnas and Madey so

as the system requirements specify for every input possible in the environment

only outputs allowed by the environment. As a second step, in Section 4.3 we

redefine system and software acceptability in a demonic setting such that it

does not allow nonterminating or empty implementations. Then in Section 4.4

we give a necessary and sufficient condition for the existence of an acceptable

software specification. Our approach also yields a formal characterization of

the software requirements, which is the subject of Section 4.5.
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4.1 The Angelic Acceptability Notion of Par-

nas and Madey

From an engineering perspective, an implementation is not possible if a be-

haviour specified in the requirements is not physically meaningful. For exam-

ple, there is no point for the requirements of an autopilot system in an airplane

to specify rates of climb higher than what the plane is capable of; such require-

ments can never be satisfied and may even be dangerous as they can overstress

the engines and airframe. The requirements should also specify the response

expected from the system for all values allowed by the physical environment

for the monitored variables. If, given a physical environment NAT, system

requirements REQ satisfy the two properties mentioned above, then REQ is

said to be feasible with respect to NAT. The feasibility property is formalized

in (Parnas and Madey, 1995) using the following conditions:

dom (NAT ) ⊆ dom (REQ) (4.1)

and

dom (REQ ∩NAT ) = dom (REQ) ∩ dom (NAT ) . (4.2)

Condition (4.1) asks REQ to specify system response for all the values

of monitored variables that can arise in the environment. It can be assumed

that the values not contained in the domain of NAT will never occur under

normal environmental circumstances. Condition (4.2) says that for each input

they have in common, REQ and NAT should agree on at least one output.

Together, conditions (4.1) and (4.2) ensure that, for every input allowed by

the environment, the system requirements ask the system to produce at least

one output that is physically meaningful.

Acceptability of software is defined in (Parnas and Madey, 1995) as fol-

lows:

NAT ∩ (IN ., SOF ., OUT ) ⊆ REQ . (4.3)

A system implementation SY S = IN ., SOF ., OUT is then acceptable if and
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dom (NAT )

dom (REQ)

m1

m2

c1

c2

c3

NAT
REQ

SY S

Figure 4.1: The acceptability conditions of Parnas and Madey are too weak

only if it satisfies the following condition:

NAT ∩ SY S ⊆ REQ . (4.4)

These acceptability conditions are, however, not strong enough. Let us

consider the relations NAT, REQ, and SYS in Figure 4.1, where m1,m2 are

values of monitored variables and c1, c2, c3 are values of controlled variables.

These relations satisfy the conditions (4.1), (4.2) and (4.4). Therefore, accord-

ing to (Parnas and Madey, 1995), the system requirements REQ are feasible

with respect to NAT and the system implementation SYS and software SOF

are acceptable although:

• (m2, c3) ∈ NAT , (m2, c3) ∈ REQ, and (m2, c3) /∈ SY S. That is, a

system implementation SYS that does not deal with all the inputs in

dom (NAT ) and dom (REQ) is deemed acceptable. It is mentioned else-

where in (Parnas and Madey, 1995) that dom (NAT ) ⊆ dom (IN); this,

however, does not ensure that dom (NAT ) ⊆ dom (IN ., SOF ., OUT ).

• (m1, c2) ∈ SY S and (m1, c2) /∈ NAT . That is, a system specification

SYS that asks its implementations to produce outputs not physically

possible is deemed acceptable. From an engineering perspective, such

implementations are not realizable and it is important to reject early

specifications that allow them. A similar problem with the acceptability

condition in (Parnas and Madey, 1995) was pointed out by (Gunter et al.,

2000). In Section 4.6 we will use the example from (Gunter et al., 2000)

to show how our demonic approach remedies this problem.

The reason why the acceptability conditions (4.3) and (4.4) of (Parnas
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and Madey, 1995) allow implementation specifications (descriptions) such as

the one in Figure 4.1 despite the problems described above is due to the rela-

tional intersection and inclusion in these conditions. If an implementation is

not completely consistent with NAT (i.e., it has inputs not in the domain of

NAT, or outputs not in the range of NAT, or both), then its intersection with

NAT is still contained in REQ if the part of the implementation that obeys

NAT does not violate REQ. Two extreme cases are when an implementation

is completely inconsistent with NAT or when an implementation is empty, in

both cases the intersection with NAT being empty and the inclusion in REQ

being trivially satisfied.

Another problem with the acceptability conditions (4.3) and (4.4) of

(Parnas and Madey, 1995) is that they allow nonterminating implementations.

This happens when dom (IN) ⊇ dom (SOF ) or dom (SOF ) ⊇ dom (OUT ),

and an implementation IN .,SOF .,OUT gets stuck in between IN and SOF or

in between SOF and OUT, resulting in a nondeterministic behaviour which,

for some inputs, sometimes produces expected outputs and some other times

does not produce any results at all. As discussed in Section 1.3.1, such non-

determinism is angelic and ensures partial correctness only.

We will address the issues described in this section in the remainder of

the chapter using the demonic calculus of relations.

4.2 Feasibility of System Requirements

The first step in our attempt to remedy the aforementioned shortcomings of

the formalization by (Parnas and Madey, 1995) is to redefine feasibility of

system requirements.

Revisiting Figure 4.1, we can see that REQGNAT = {(m1, c1), (m2, c3)}
drops (m1, c2) from REQ because this pair does not belong to NAT. As such,

for the inputs in the domain of NAT, the demonic intersection of REQ with

NAT retains only that part of the system requirements that is physically mean-

ingful. This suggests that we should ask a system to implement REQ GNAT

instead of REQ. If we want the system requirements to specify only physically

meaningful behaviours for the inputs allowed by NAT, then the following new
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definition should be used for the feasibility of system requirements.

Definition 4.1. System requirements REQ are feasible with respect to a phys-

ical environment NAT if and only if REQ = REQ GNAT .

This notion of feasibility is stronger than the feasibility notion proposed

by (Parnas and Madey, 1995). The latter requires REQ to specify at least

one output allowed by NAT for every input in the domain of NAT (conditions

(4.1) and (4.2)). The feasibility in Definition 4.1, on the other hand, requires

REQ to specify only outputs allowed by NAT for every input in the domain of

NAT. This is a consequence of the following theorem, which also ensures that

the demonic intersection of REQ with NAT in Definition 4.1 is well defined.

Theorem 4.2. System requirements REQ are feasible with respect to a physical

environment NAT if and only if REQ is a demonic refinement of NAT:

REQ = REQ GNAT ⇔ REQ E NAT .

Proof . The statement of this theorem holds in a lattice. However, because

the demonic lattice is a join semilattice, the demonic meet G does not always

exist. Thus, we need to make sure that G is well defined in either direction of

⇔.

For any two relations REQ and NAT, we can write REQ as

REQ = REQ
∣∣
dom(NAT )

∪REQ
∣∣
dom(NAT )

. (4.5)

By (2.4) we also have that

REQ GNAT = (REQ ∩NAT ) ∪ REQ
∣∣
dom(NAT )

∪ NAT
∣∣
dom(REQ)

. (4.6)

“⇒” direction:

Assuming REQ = REQ GNAT , it follows by (4.6) that

REQ = (REQ ∩NAT ) ∪ REQ
∣∣
dom(NAT )

∪ NAT
∣∣
dom(REQ)

. (4.7)

67



PhD Thesis–L. M. Patcas McMaster University, Computing and Software

By combining (4.5) and (4.7), and cancelling REQ
∣∣
dom(NAT )

on both sides, we

get

REQ
∣∣
dom(NAT )

= (REQ ∩NAT ) ∪ NAT
∣∣
dom(REQ)

. (4.8)

For this equality to hold, NAT
∣∣
dom(REQ)

has to be empty, which implies that

dom (NAT ) ⊆ dom (REQ) . (4.9)

With NAT
∣∣
dom(REQ)

empty, (4.8) becomes

REQ
∣∣
dom(NAT )

= REQ ∩NAT . (4.10)

Equation (4.10) implies that REQ
∣∣
dom(NAT )

⊆ NAT .

Starting from REQ = REQ GNAT , we have shown that dom (NAT ) ⊆
dom (REQ) and REQ

∣∣
dom(NAT )

⊆ NAT . By Definition 2.14 of demonic re-

finement, this means that REQ E NAT .

We still need to make sure that the demonic intersection of REQ and

NAT in REQ = REQ GNAT is well defined. Because (4.9), we have that

dom (REQ) ∩ dom (NAT ) = dom (NAT ) . (4.11)

By (4.10), dom
(
REQ

∣∣
dom(NAT )

)
= dom (REQ ∩NAT ). Because (4.9), we

also have that dom
(
REQ

∣∣
dom(NAT )

)
= dom (NAT ). Consequently:

dom (REQ ∩NAT ) = dom (NAT ) . (4.12)

By (4.11) and (4.12), the following equality holds:

dom (REQ ∩NAT ) = dom (REQ) ∩ dom (NAT ) . (4.13)

This equality is exactly the same as the second condition of the feasibility no-

tion proposed by Parnas and Madey (4.2), which is in fact equivalent to the

compatibility condition (2.3) of REQ and NAT because dom (REQ ∩NAT ) ⊆
dom (REQ) ∩ dom (NAT ) is satisfied by any REQ and NAT (i.e., it is a tau-

tology). As such, REQ GNAT is well defined if REQ = REQ GNAT .

68



PhD Thesis–L. M. Patcas McMaster University, Computing and Software

“⇐” direction:

Assuming REQ E NAT , we have by Definition 2.14 of demonic refinement

that dom (NAT ) is contained in dom (REQ). This implies that

NAT
∣∣
dom(REQ)

= D . (4.14)

Demonic refinement also implies that REQ
∣∣
dom(NAT )

⊆ NAT . Because

REQ
∣∣
dom(NAT )

⊆ REQ holds for any REQ and NAT, we also have that

REQ
∣∣
dom(NAT )

⊆ REQ ∩ NAT . Moreover, the converse inclusion REQ ∩
NAT ⊆ REQ

∣∣
dom(NAT )

is trivially satisfied by any REQ and NAT. There-

fore (4.10) holds. From (4.5), (4.6), (4.10) and (4.14), it follows that REQ =

REQ GNAT .

The definedness of the demonic intersection is proved the same way as

in the “⇒” direction. �

The check for feasibility of system requirements can be done as part

of the requirements validation process. If the system requirements are not

feasible with respect to the environment to be controlled by the system, then

no implementation will fully satisfy them. As such, feasibility is a necessary

implementability condition for system requirements.

4.3 System and Software Acceptability

We now redefine the angelic acceptability notion of (Parnas and Madey, 1995)

in the demonic calculus of relations.

Definition 4.3. Given feasible system requirements REQ, a system imple-

mentation SYS is acceptable with respect to REQ and physical environment

NAT if SY S E REQ GNAT .

For an acceptable system implementation SYS, Theorem 4.2 ensures that

REQ G NAT is well defined and also that the following refinement ordering

holds:

SY S E REQ E NAT .
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Consequently, by Definition 2.14 of demonic refinement, an acceptable system

implementation will sense all the inputs that are possible from the environ-

ment and, for these inputs, will produce only outputs allowed by the physical

environment. The inputs outside the domain of NAT, but in the domain of

REQ, can be assumed to never happen under normal environmental circum-

stances; these inputs can be used for specifying fault-tolerant behaviour for

abnormal circumstances when the environment is perturbed by phenomena

that are independent of the system. Allowing arbitrary behaviour outside the

domain of REQ should present no danger as it is assumed that, for a final

product, hazard analyses have been conducted and all the inputs that could

lead to hazardous system behaviours have been added to the domain of REQ

as additional safety requirements.

In (Parnas and Madey, 1995), a system implementation is given as SY S =

IN ., SOF ., OUT . As seen in Section 2.3.2, angelic composition allows dead

ends between the composed relations. Let us now consider a more concrete

example that shows how an angelic semantics can lead to undesirable system

behaviours. For example, let us consider a relation IN that models an 8-bit

resolution ADC which converts monitored voltages m in the range 0–5V into

software input values i according to the formula i = bm ∗ 28/5c. The re-

quirements ask the system to produce at the output the double of the input

with a tolerance of ±0.04V. Because the relation NAT says that the moni-

tored voltages will be in the range 0–2.49V, it is decided that 8-bit unsigned

integers will be used to represent the values of the output variable o = 2 ∗ i
set by the software. If the converter has an accuracy of ±0.02V, the fol-

lowing situation depicted in Figure 4.2 can occur: for m = 2.49V , which is

a voltage allowed by NAT, the input hardware IN may produce any of the

software inputs i = 126, i = 127 and i = 128; for i = 126 and i = 127

the system returns outputs allowed by REQ, but for i = 128 the correspond-

ing software output does not fit in the 8-bit unsigned integer variable and

an overflow occurs resulting in a runtime error or in an incorrect value (in

either case, a result not allowed by REQ is produced). The angelic accept-

ability condition (4.3) of Parnas and Madey is trivially satisfied although an

implementation IN ., SOF ., OUT can produce an overflow: for example, for
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2.51V
2.49V

2.47V

128
127

126

2 ∗ 2.51V
2 ∗ 2.49V

2 ∗ 2.47V

overflow
2 ∗ 127

2 ∗ 126

REQ

IN

SOF

OUT

Figure 4.2: Angelic semantics allows undesirable implementations

m = 2.49V , NAT ∩ (IN ., SOF ., OUT ) = {(2.49V, 2 ∗ 2.47V ), (2.49V, 2 ∗
2.49V )} ⊆ REQ = {(2.49V, 2 ∗ 2.47V ), (2.49V, 2 ∗ 2.49V ), (2.49V, 2 ∗ 2.51V )}.
If we redefine the system implementation using demonic composition, then

SY S = IN 2SOF 2OUT = D for m = 2.49V ; this system implementation will

not demonically refine a non-empty REQGNAT and, by Definition 4.3, it will

not be acceptable.

Considering that an acceptable software has to be part of an acceptable

system implementation, we give the following definition for acceptability of

software.

Definition 4.4. Given feasible system requirements REQ, a software imple-

mentation SOF is acceptable with respect to REQ, input interface IN, output

interface OUT, and physical environment NAT if SOF is a demonic mid factor

of REQ GNAT through IN and OUT :

IN 2SOF 2OUT E REQ GNAT .

4.4 Existence of Acceptable Software

When designing a system, a difficult task is to find the right triple IN, OUT,

and SOF such that their integration produces an acceptable system design.

Usually, the system designers specify IN and OUT and the software engineers

need to figure out an acceptable SOF. In such cases and assuming that the

71



PhD Thesis–L. M. Patcas McMaster University, Computing and Software

system requirements are feasible, implementability of requirements reduces to

the existence of an acceptable software specification.

The mathematical question we ask is, given relations NAT, REQ, IN, and

OUT, does a relation SOF exist such that IN 2SOF 2OUT E REQ G NAT?

The following theorem answers this question.

Theorem 4.5. Given feasible system requirements REQ, input interface IN,

output interface OUT, and environment NAT , there exists an acceptable soft-

ware specification SOF if and only if the following conditions are both satisfied:

(i) dom (REQ GNAT ) ⊆ dom (IN);

(ii) for any software input i ∈ ran
(
IN
∣∣
dom(REQGNAT )

)
there exists a software

output o ∈ dom (OUT ) such that

OUT (o) ⊆
⋂

m∈M ′

(REQ GNAT ) (m) ,

where M ′ =
(
IN
∣∣
dom(REQGNAT )

)`

(i).

Proof . An acceptable SOF is a demonic mid factor of REQ GNAT through

IN and OUT. As such, the current theorem is a direct consequence of the

necessary and sufficient existence condition for a demonic mid factor given in

Theorem 3.8. �

4.5 Software Requirements

The four-variable model does not explicitly specify the software requirements,

but rather bounds them by specifying the system requirements and the in-

put and output hardware interfaces of the system. The software engineers

are left with the problem of how to construct software that satisfies the sys-

tem requirements and input/output interfacing constraints. Extracting the

software requirements from these specifications is “often an exercise in frus-

tration” (Miller and Tribble, 2001), hence an automated method would be a

significant advantage. In this section we give a mathematical characterization
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of the software requirements that offers a sound starting point for devising

such a method.

Following from Definition 4.4 and Theorem 3.9, we have that any accept-

able software, if it exists, is a demonic refinement of the demonic mid residual

IN J (REQ GNAT ) I OUT . As a result, this residual is the least restric-

tive software specification, or the weakest software specification, as it leaves

open most software design options. The weakest software specification de-

scribes all the possible acceptable software implementations and, in this sense,

it describes the software requirements.

Definition 4.6. Given feasible system requirements REQ, input interface

IN, output interface OUT, and environment NAT, the software requirements

SOFreq are given by the demonic mid residual of REQ G NAT through IN

and OUT :

SOFreq
def
= IN J (REQ GNAT ) IOUT .

The software requirements are well defined only when an acceptable SOF

exists. A program that satisfies the software requirements is a functional

(i.e., deterministic) demonic refinement of SOFreq. This suggests a possible

software development process based on stepwise refinement, where SOFreq is

a sound starting point for the software design process. In such a process, a

software design and, eventually, a program are guaranteed to be acceptable by

construction if demonic refinement is preserved.

If the software requirements are well defined, then they can, in principle,

be derived by “calculating” the value of the residual IN J (REQ GNAT ) I

OUT . One way to calculate this demonic residual is to use its abstract relation-

algebraic value. In general, the demonic operations are defined in terms of

angelic operations, which can be calculated as operations on the adjacency

matrices of the graphs associated with the relations: composition is matrix

multiplication, converse is matrix transposition, etc. (Schmidt and Ströhlein,

1993; Schmidt, 2011). RelView1, with its library Kure22, is a tool that sup-

ports the manipulation of relations represented as Boolean matrices using an

1http://www.informatik.uni-kiel.de/~progsys/relview/
2http://www.informatik.uni-kiel.de/~progsys/kure2/

73

http://www.informatik.uni-kiel.de/~progsys/relview/
http://www.informatik.uni-kiel.de/~progsys/kure2/


PhD Thesis–L. M. Patcas McMaster University, Computing and Software

optimized implementation based on binary decision diagrams. Another way to

calculate the residual IN J (REQ GNAT ) IOUT is to use its concrete value

given by formula (3.11):

SOFreq S

{
(i, o) ∈ I×O

∣∣∣∣ i ∈ ran
(
IN
∣∣
dom(REQGNAT )

)
∧ o ∈ dom (OUT )

∧OUT (o) ⊆
⋂

m∈M ′

(REQ GNAT ) (m)

}
,

where M ′ =
(
IN
∣∣
dom(REQGNAT )

)`

(i) . (4.15)

When calculating the software requirements is not feasible for very large

relations, or in the case of infinite relations, reasoning about relational specifi-

cations is still possible in an interactive proof assistant such as Coq, Isabelle,

or PVS.

Techniques for deriving the software requirements from the specifica-

tions of system requirements and input/output hardware interfaces in the

four-variable model are mentioned in (Thompson et al., 1999), (Thompson

et al., 2000), (Bharadwaj and Heitmeyer, 2000), (Heimdahl and Thompson,

2000), (Lawford et al., 2000), (Miller and Tribble, 2001), (Wassyng and Law-

ford, 2003) and (Wassyng and Lawford, 2006). These techniques are variations

of the same idea of manually decomposing SOF into three subrelations, as il-

lustrated in Figure 4.3. The relations SOFin and SOFout model the input and,

respectively, output device drivers and create the software approximations of

the monitored and, respectively, controlled variables. The relation REQ’ from

the set M’ of software approximations of monitored variables to the set C’ of

software approximations of controlled variables, closely resembles REQ and is

regarded as the software requirements for the control software 3. The idea is

based on Parnas’ information hiding principle (Parnas, 1972) to prevent lo-

cal changes from propagating elsewhere in the system: REQ’ is isolated from

changes in the input and output devices, which will affect only the drivers

3The relation REQ’ is called “pseudo requirements”, while M’ and C’ are called the
sets of “pseudo” monitored and, respectively, controlled variables in (Lawford et al., 2000;
Wassyng and Lawford, 2003; Wassyng and Lawford, 2006).
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M C
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SOFin REQ′ SOFout
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Figure 4.3: Isolation of input/output hardware drivers

SOFin and SOFout. Moreover, if the system requirements REQ change, REQ’

will, in principle, be straightforward to derive. We do not decompose SOF in

this dissertation, however, the results presented readily apply if we choose to

do so.

4.6 Examples

In this section we revisit the abstract example we gave in Figure 4.1 and show

how our demonic approach solves the shortcomings of the angelic acceptability

notion proposed by (Parnas and Madey, 1995). In the same vein, we show how

our approach works on the example given in (Gunter et al., 2000).

Example 1

Our abstract example in Figure 4.1 highlights two main problems with the

acceptability proposed in (Parnas and Madey, 1995).

The first problem is that (m2, c3) belongs to both NAT and REQ, but

not to SYS. Therefore, implementations that do not deal with all the inputs

possible from the environment NAT are considered acceptable. We tackle

this issue with our definition of feasibility of REQ with respect to NAT and

our definitions of acceptability (Definitions 4.3 and 4.4). Together, feasibility

of REQ and acceptability of an implementation SYS ensure the following

refinement ordering: SY S E REQ E NAT , which requires dom (NAT ) ⊆
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dom (REQ) ⊆ dom (SY S). This does not allow pairs (m2, c3) that belongs to

NAT and REQ, but not to SYS.

The second problem concerns system specifications (descriptions) that

are allowed to have outputs not physically possible. In Figure 4.1 this case was

depicted by the pair (m1, c2) that belongs to SYS, but no to NAT. Again, our

definitions for feasibility and acceptability imply that SY S E REQ E NAT ,

which ensures that SY S
∣∣
dom(NAT )

⊆ NAT . Clearly, this does not allow pairs

(m1, c2) that belong to SYS, but no to NAT.

Example 2

In Section 4.1 we mentioned that (Gunter et al., 2000) have an example that

highlights the second problem we described about the system and software

acceptability proposed by (Parnas and Madey, 1995), wich allows system spec-

ifications (descriptions) with outputs not physically possible. In what follows

we use this example to show how our demonic approach remedies the afore-

mentioned deficiency. In this example, the five relations of the four-variable

model are

NAT = {(m, c) ∈M×C | ∀t.m(t) < 0) ∧ (∀t. c(t) > 0)} ,

REQ = {(m, c) ∈M×C | ∀t. c(t+ 3) = −m(t)} ,

IN = {(m, i) ∈M× I | ∀t. i(t+ 1) = m(t)} ,

SOF = {(i, o) ∈ I×O | ∀t. o(t+ 1) = i(t)} ,

OUT = {(o, c) ∈ O×C | ∀t. c(t+ 1) = o(t)} ,

where t ∈ R is a variable that models the time and m, c, i, and o are real-

valued functions of time. The relation NAT is partial, while REQ, IN, SOF,

and OUT are total functions. All five relations are internally consistent, and

REQ, IN, SOF, and OUT satisfy causality, that is, their outputs do not occur

before the inputs that cause them. Therefore, in principle, REQ, IN, SOF, and

OUT describe implementable behaviours. However, a system implementation

IN .,SOF .,OUT = {(m, c) ∈M×C | ∀t. c(t+ 3) = m(t)} produces an output
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of the opposite sign than required by REQ and NAT. Such an implementation

is not possible since its outputs are not allowed by the physical environment.

Nevertheless, this implementation specification (description) satisfies the ac-

ceptability condition (4.3) of Parnas and Madey. The reason for this state of

affairs is that the intersection between NAT and IN ., SOF ., OUT is empty

and thus (4.3) is trivially satisfied.

We now show how our demonic approach rejects implementations such

as the one in the above example. The first step is to check if REQ is feasible

with respect to NAT. We have two options, either to use Definition 4.1 or

Theorem 4.2. We choose the second and show that REQ E NAT . Since REQ

is total and NAT partial, we have that dom (NAT ) ⊆ dom (REQ). Also,

because REQ flips the sign of its inputs, for m(t) < 0 REQ will produce a

c(t) > 0, thus REQ
∣∣
dom(NAT )

⊆ NAT . Consequently, REQ E NAT and by

Theorem 4.2 the system requirements REQ are feasible with respect NAT.

The second step is to check if IN, SOF, and OUT satisfy our demonic

acceptability condition in Definition 4.4. Because REQ, IN, SOF, and OUT

are total functions, demonic composition is the same as angelic composi-

tion and demonic refinement is the same as inclusion. Also, feasibility of

REQ means that REQ = REQ G NAT . Thus we have that IN ., SOF .,

OUT = {(m, c) ∈M×C | ∀t. c(t+ 3) = m(t)} * REQ and, accordingly, Def-

inition 4.4 is not satisfied.

We have showed why SOF in the example by (Gunter et al., 2000) is

not acceptable. A question worth asking is whether an acceptable SOF re-

ally exists. To answer this question, we use Theorem 4.5. Since REQ =

REQ G NAT and considering that REQ and IN are total, it is the case

that dom (REQ GNAT ) ⊆ dom (IN), hence Theorem 4.5(i) holds. For The-

orem 4.5(ii) to be satisfied, for i(t + 1) = m(t) there has to be an o(t + 2) =

c(t + 3) = −m(t) for any t ∈ R. This is the case when o(t + 1) = −i(t)
for any t ∈ R. Consequently, an acceptable SOF is possible and the weak-

est specification of such SOF is well defined and given by Definition 4.6 and

(4.15):

SOFreq = {(i, o) ∈ I×O | ∀t. o(t+ 1) = −i(t)}
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4.7 Summary

The semantics of the four-variable model proposed by Parnas and Madey,

which may be seen in relation algebraic terms as angelic, allows system speci-

fications (descriptions) that are not completely consistent with the natural laws

of the physical environment. To address this issue, we have redefined in the

demonic calculus of relations the notion of feasibility of system requirements

proposed by Parnas and Madey such that the system requirements specify

for every input possible from the environment only behaviours allowed by the

environment. We have also redefined in the demonic calculus of relations the

system and software acceptability criterion of Parnas and Madey to not allow

nonterminating or empty implementations.

In this chapter we also answered the main question of the thesis and gave

a necessary and sufficient existence condition for acceptable software (Theo-

rem 4.5). Because an acceptable SOF is a demonic mid factor of a feasible

REQ through IN and OUT, the necessary and sufficient condition yields the

weakest (i.e., least restrictive, most general) specification of the software re-

quirements as the demonic mid residual of REQ G NAT by IN and OUT.

This constructive nature of the necessary and sufficient condition means that

spending the effort for checking whether acceptable software exists is also an

effort spent to derive the software requirements.

In the necessary and sufficient condition for acceptable SOF, IN and

OUT are coupled. If changes are made to IN, then OUT may need to be

modified as well to ensure the existence of an acceptable SOF, and vice versa.

In Chapter 5 we will prove two stronger existence conditions for acceptable

software that decouple IN and OUT.
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Chapter 5

Separability of the Input and

Output Interfaces

In this chapter we explore a practical implication of the necessary and sufficient

implementability condition given in Chapter 4, Theorem 4.5. Because in this

condition IN and OUT are coupled, the input and output hardware interfaces

of a system that needs a relational four-variable model cannot, in general, be

designed independently.

From a systems engineering perspective, we would like to be able to

choose IN and OUT independently of each other, while still guaranteeing

that an acceptable SOF exists. This separation of concerns would prevent

changes to one interface from propagating to the other interface, an idea simi-

lar to Parnas’ information hiding principle (Parnas, 1972). Then independent

teams could design IN and OUT. A classic example of this is a conjecture by

(Kalman, 1960) that became known as the “separation principle” or “separa-

tion theorem” for linear control systems which states that one can decompose

the physical realization of a state feedback controller into two stages: an ob-

server that computes a “best approximation” of the physical plant’s state

based upon the observations of the physical plant’s outputs (i.e., monitored

variables), and a controller that computes the control signals to the plant’s

inputs (i.e., controlled variables) assuming access to perfect state information

from the plant. When the actual state of the plant is replaced in the controller
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with the approximation computed by the observer, an optimal control results

(Joseph and Tou, 1961).

In this chapter we describe an analogous result for embedded system

interfacing that will allow the decoupling of the input and output hardware

interfaces while still guaranteeing the ability of the software to meet the system

requirements. We define the notions of observability (controllability) of the

system requirements with respect to the input (output) interface and show

that for a system that can be modelled by a functional four-variable model,

observability and controllability allow for the separation of IN and OUT. We

also show that in the general, relational four-variable model we can obtain a

similar effect by strengthening either observability or controllability.

We assume that the system requirements are feasible with respect to

the physical environment, that is, REQ = REQ G NAT . Moreover, covers

are used for the observability, controllability, and implementability conditions

given in this chapter. Covers are more convenient when specializing the results

from the relational setting to the functional setting. Using covers also results

in more compact formulas.

5.1 Observability and Controllability

The software must be able to observe specific changes in the monitored vari-

ables via the input interface and react to these changes by modifying the values

of the controlled variables via the output interface, as specified in the require-

ments. We introduce the notions of observability and controllability of system

requirements with respect to the input and, respectively, output hardware

interfaces.

Definition 5.1. System requirements REQ are observable with respect to an

input interface IN if there exists a demonic right factor of REQ through IN.

For system requirements REQ to be observable, Definition 5.1 requires

that there exists a relation X ⊆ I×C such that IN 2X E REQ, as illustrated

in Figure 5.1). Observability is a necessary condition for implementability

since if IN 2SOF 2OUT E REQ we can take X = SOF 2OUT . Intuitively,
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Figure 5.1: Observability in the four-variable model

observability says that in the worst case IN always retains at least as much

information about the monitored variables as REQ. This point is made explicit

by the following necessary and sufficient condition for observability.

Proposition 5.2. System requirements REQ are observable with respect to an

input interface IN if and only if the following conditions are both satisfied:

(i) dom (REQ) ⊆ dom (IN);

(ii) cov
(
IN
∣∣
dom(REQ)

)
≤ cov (REQ).

Proof . Substitute R for REQ and P for IN in Lemma 3.4. Then Proposi-

tion 5.2(i) follows trivially from Lemma 3.4(i). Also, Lemma 3.4(ii) can be

rewritten as

∀i ∈ ran
(
IN
∣∣
dom(REQ)

)
.∃c ∈ C.

(
IN
∣∣∣
dom(REQ)

)`

(i) ⊆ REQ
`
(c) . (5.1)

If we take M ′ =
(
IN
∣∣
dom(REQ)

)`

(i), then, by Definition 2.21 of covers, M ′ is a

cell of cov
(
IN
∣∣
dom(REQ)

)
and is indexed by i ∈ ran

(
IN
∣∣
dom(REQ)

)
. Similarly,

M ′′ = REQ`(c) is a cell of cov (REQ) indexed by c ∈ C. Consequently, (5.1)

can be rewritten to

∀M ′ ∈ cov
(
IN
∣∣
dom(REQ)

)
. ∃M ′′ ∈ cov (REQ) .M ′ ⊆M ′′ , (5.2)

which, by Definition 2.20 of refinement of covers is exactly Proposition 5.2(ii).

�
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Figure 5.2: Examples of observability

Proposition 5.2(i) requires an input interface to “see” all the changes

in monitored variables for which the requirements specify system response.

Proposition 5.2(ii) requires the accuracy of the input interface to be the same

or of finer granularity than what the requirements imply. For example, in Fig-

ure 5.2a, cov
(
IN
∣∣
dom(REQ)

)
= {{m1,m2,m3}} and cov (REQ) = {{m1,m2},

{m3}}. The cell IN`(i1) = {m1,m2,m3} in cov
(
IN
∣∣
dom(REQ)

)
represents

the accuracy with which IN produces i1; in other words, the software is

not able to distinguish between m1, m2, or m3 when it receives the input

i1. The requirements in this example, on the other hand, require the system

to make a distinction in how it treats m3 compared to m1 and m2, reflected

by the two distinct cells REQ`(c2) = {m3} and, respectively, REQ`(c1) =

{m1,m2} in cov (REQ). The software will not be able to make this distinc-

tion because the cell {m1,m2,m3} in cov
(
IN
∣∣
dom(REQ)

)
is not contained in

any of the cells of cov (REQ). Consequently, the accuracy of IN is coarser

than required and REQ is not observable with respect to IN. In the ex-

ample depicted in Figure 5.2b, cov
(
IN
∣∣
dom(REQ)

)
= {{m1,m2}, {m2}} and

cov (REQ) = {{m1}, {m1,m2}, {m2}} satisfy Proposition 5.2(ii). Because

dom (REQ) = dom (IN), Proposition 5.2(i) is also satisfied, hence REQ is

observable with respect to IN, ensuring that there is a way to relate the soft-

ware inputs to values of controlled variables via a demonic right factor of REQ

through IN. The residual IN J REQ is the largest, with respect to E, such

factor (i.e., the least restrictive specification of SOF 2OUT ).

Corollary 5.3. If system requirements REQ and input interface IN are total
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Figure 5.3: Controllability in the four-variable model

functions, then REQ is observable with respect to IN if and only if

ker (IN) ≤ ker (REQ) .

Proof . Specialize Proposition 5.2 to total functions. If REQ and IN are to-

tal functions, then dom (REQ) = dom (IN) and Proposition 5.2(i) is trivially

satisfied. Also, IN
∣∣
dom(REQ)

= IN . As explained in Section 2.4, the cover

induced by a function is the same as the partition induced by the equivalence

kernel of that function. As such, refinement of covers becomes refinement of

kernels in the functional case and ker (IN) ≤ ker (REQ) follows from Propo-

sition 5.2(ii). �

Definition 5.4. System requirements REQ are controllable with respect to

an output interface OUT if there exists a demonic left factor of REQ through

OUT.

For system requirements REQ to be controllable, Definition 5.4 requires

that there exists a relation Y ⊆M×O such that Y 2OUT E REQ (Figure 5.3).

Similarly to observability, controllability is necessary for implementability since

if IN 2SOF 2OUT E REQ we can always take Y = IN 2SOF . The intuition

for controllability is that in the worst case OUT must be at least as precise

at the output (i.e., at least as deterministic) as REQ. This is made explicit by

the following necessary and sufficient condition for controllability.

Proposition 5.5. System requirements REQ are controllable with respect to

an output interface OUT if and only if

∀C ′ ∈ cov
(
REQ

`) .∃C ′′ ∈ cov
(
OUT

)̀
.C ′′ ⊆ C ′ .
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Figure 5.4: Examples of controllability

Proof . If we substitute R for REQ and Q for OUT in the necessary and

sufficient existence condition for a demonic left factor of Lemma 3.1 we get

∀m ∈ dom (REQ) . ∃o ∈ dom (OUT ) .OUT (o) ⊆ REQ(m) . (5.3)

Proposition 5.5 is proved by taking C ′ = REQ(m) as a cell of cov
(
REQ`

)
indexed by m ∈ dom (REQ) and C ′′ = OUT (o) a cell of cov

(
OUT`

)
indexed

by o ∈ dom (OUT ). �

For the system requirements to be controllable, Proposition 5.5 requires

the output hardware to allow for the same or finer control over the controlled

variables than what is implied by the requirements. The cells in the covers of

REQ` or OUT` are measures of the amount of control: the smaller the cell,

the more precise the control. For example, in Figure 5.4a the cell REQ(m1) =

{c1, c2} in cov
(
REQ`

)
does not contain any of the cells of cov

(
OUT`

)
. As

such, OUT does not have sufficient control over the controlled variables and

REQ is not controllable with respect to OUT. Figure 5.4b depicts an example

where there is a way to relate the monitored variables to software outputs

via a demonic left factor of REQ through OUT and, consequently, REQ is

controllable. The residual REQIOUT is the largest such factor, with respect

to E (i.e., the least restrictive specification of IN 2SOF ).

Corollary 5.6. If system requirements REQ and output interface OUT are

functions, then REQ is controllable with respect to OUT if and only if

ran (REQ) ⊆ ran (OUT ) .
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Proof . By specializing the necessary and sufficient controllability condition

(5.3) to functions. Because m and c are in dom (REQ) and dom (OUT ), re-

spectively, then REQ(m) and OUT (o) are nonempty singleton sets. Therefore

(5.3) becomes

∀m ∈ dom (REQ) . ∃o ∈ dom (OUT ) .OUT (o) = REQ(m) . (5.4)

The range of REQ satisfies the following equality:

ran (REQ) =
⋃

m∈dom(REQ)

REQ(m) .

Similarly,

ran (OUT ) =
⋃

o∈dom(OUT )

OUT (o) .

Consequently, (5.4) implies that ran (REQ) ⊆ ran (OUT ). �

Observability and controllability are dual concepts. This is apparent es-

pecially when comparing the necessary and sufficient conditions for observabil-

ity as formulated in (5.2), and controllability as formulated in Proposition 5.5.

5.2 Implementability Condition Revisited

In this section we discuss how observability and controllability affect imple-

mentability of system requirements in both the relational and functional cases

of the four-variable model.

We first revisit the necessary and sufficient implementability condition

given in Theorem 4.5 and give an equivalent condition using covers, which will

be more convenient when specializing to the functional case.

Proposition 5.7. System requirements REQ are implementable with respect to

an input interface IN and an output interface OUT if and only if the following

two conditions are both satisfied:

(i) dom (REQ) ⊆ dom (IN);
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(ii) ∀M ′ ∈ cov
(
IN
∣∣
dom(REQ)

)
.∃C ′ ∈ cov

(
OUT

)̀
.C ′ ⊆

⋂
m∈M ′ REQ(m).

Proof . Assume that system requirements are feasible with respect to the en-

vironment NAT, that is, REQ = REQ G NAT . Then Proposition 5.7(i) fol-

lows trivially from Theorem 4.5(i). If we take M ′ =
(
IN
∣∣
dom(REQ)

)`

(i) for

an i ∈ ran
(
IN
∣∣
dom(REQ)

)
and C ′ = OUT (o) for an o ∈ dom (OUT ), then

M ′ ∈ cov
(
IN
∣∣
dom(REQ)

)
and C ′ ∈ cov

(
OUT`

)
. Thus Proposition 5.7(ii) is

exactly Theorem 4.5(ii). �

Implementability implies both observability and controllability. How-

ever, observability and controllability are not sufficient for implementabil-

ity. An implication of Proposition 5.7 is that system requirements are im-

plementable if and only if a certain balance exists between observability and

controllability. A counterexample to the sufficiency of their conjunction is

given in Figure 5.5a, which combines the examples from Figures 5.2b and 5.4b.

In this example, REQ is both observable and controllable even though there

is no acceptable software. As discussed in Section 4.5, any acceptable software

implementation is a demonic refinement of the residual IN J REQ I OUT ,

which is not well defined here. The reason for this is that i1 cannot be con-

nected with either o1 or o2 without breaking demonic refinement. For example,

if we connect i1 with o1, then m2 will be connected with c1 via IN 2SOF 2OUT ,

something not allowed by REQ. If we extend OUT with the pair (o2, c2) as

in Figure 5.5b, then IN J REQ I OUT becomes well defined because if we

consider the cell IN`(i1) = {m1,m2} in cov
(
IN
∣∣
dom(REQ)

)
, then there is the

cell OUT`(o2) = {c2} = REQ(m1) ∩ REQ(m2) in cov
(
OUT`

)
; similarly,

for IN`(i2) = {m2} in cov
(
IN
∣∣
dom(REQ)

)
, there is OUT`(o3) = {c2, c3} =

REQ(m2) in cov
(
OUT`

)
, hence Proposition 5.7(ii) is satisfied and an accept-

able SOF exists.

Corollary 5.8. If system requirements REQ, input interface IN and output

interface OUT are total functions, then REQ is implementable with respect to

IN and OUT if and only if:
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m1

m2

i1

i2
o1
o2
o3

c1 c2 c3

REQ

IN OUT

IN JREQ IOUT
not well defined

(a) REQ is not implementable

m1

m2

i1

i2
o1
o2
o3

c1 c2 c3

REQ

IN OUT

SOF E IN JREQ IOUT

(b) REQ is implementable

Figure 5.5: Implementability

(i) REQ is observable with respect to IN:

ker (IN) ≤ ker (REQ) ;

(ii) and, REQ is controllable with respect to OUT:

ran (REQ) ⊆ ran (OUT ) .

Proof . By specializing Proposition 5.7 to total functions.

�

In contrast to the relational case, in the functional case observability

and controllability, together, are necessary and sufficient for implementability.

Because observability is defined only in terms of REQ and IN, and controlla-

bility only in terms of REQ and OUT, IN and OUT are not coupled in Corol-

lary 5.8. Thus, a practical implication of Corollary 5.8 is that the input and

output interfaces of a system whose four-variable is functional can always be

designed independently of each other and an acceptable software implemen-

tation is guaranteed to exist as long as REQ is observable and controllable

with respect to IN and, respectively, OUT. This separation of concerns is not

always possible for a system that needs the general, relational four-variable

model. As can be seen in Proposition 5.7(ii), in the relational setting IN and

OUT are coupled. The practical implications is that for the requirements to be
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implementable, the input and output hardware cannot, in general, be designed

independently of each other.

5.3 Separability Conditions

In this section, we present two stronger implementability conditions for the

general, relational four-variable model that allow the separation of the de-

sign of the input and output hardware interfaces while still guaranteeing the

implementability of the system requirements.

5.3.1 Strong Controllability

The first stronger implementability condition is obtained by strengthening

controllability as follows.

Theorem 5.9. System requirements REQ are implementable with respect to an

input interface IN and an output interface OUT if the following two conditions

are both satisfied:

(i) REQ is observable with respect to IN;

(ii) ∀M ′ ∈ cov (REQ) .∃C ′ ∈ cov
(
OUT

)̀
.C ′ ⊆

⋂
m∈M ′ REQ(m).

Proof . To prove the implementability of REQ we have to show that Propo-

sition 5.7 is satisfied. Proposition 5.7(i) follows easily from Theorem 5.9(i).

Also from Theorem 5.9(i), we have that for any M ′ ∈ cov
(
IN
∣∣
dom(REQ)

)
there is a M ′′ ∈ cov (REQ) such that M ′ ⊆ M ′′. If we substitute M ′′ for

M ′ in Theorem 5.9(ii), we get that there exists a C ′ ∈ cov
(
OUT`

)
such

that C ′ ⊆
⋂
m∈M ′′ REQ(m). Because M ′ ⊆ M ′′, we also have that C ′ ⊆⋂

m∈M ′ REQ(m). Thus, we have proved that for any M ′ ∈ cov
(
IN
∣∣
dom(REQ)

)
there is a C ′ ∈ cov

(
OUT`

)
such that C ′ ⊆

⋂
m∈M ′ REQ(m), which is exactly

Proposition 5.7(ii). �

We call a relation REQ that satisfies Theorem 5.9(ii) strongly control-

lable with respect to OUT. An example of strongly controllable requirements is
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m1
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REQ

IN OUT

SOF

(a) REQ is implementable, but not
strongly controllable

m1

m2

i1

i2
o1
o2
o3

c1 c2 c3

REQ

IN OUT

SOF

(b) REQ is implementable, but not
strongly observable

Figure 5.6: Strong observability and strong controllability are not necessary
for implementability

in Figure 5.5b. Strong controllability is not necessary for implementability, as

shown in Figure 5.6a. Here, the requirements are implementable and, conse-

quently, controllable with respect to OUT, although they are not strongly con-

trollable. As such, strong controllability reduces the choices of output devices

when compared with controllability. On the other hand, strong controllability

ensures that IN and OUT can be chosen independently of each other as long

as they satisfy their respective constraints in Theorem 5.9.

5.3.2 Strong Observability

In the second stronger implementability condition, we strengthen observability

as follows.

Theorem 5.10. System requirements REQ are implementable with respect to

an input interface IN and an output interface OUT if the following conditions

are all satisfied:

(i) dom (REQ) ⊆ dom (IN);

(ii) ∀M ′ ∈ cov
(
IN
∣∣
dom(REQ)

)
.∃C ′ ∈ cov

(
REQ

)̀
.M ′ ⊆

⋂
c∈C′ REQ

`
(c);

(iii) REQ is controllable with respect to OUT.

Proof . To prove the implementability of REQ we have to show that Propo-

sition 5.7 is satisfied. Proposition 5.7(i) is exactly Theorem 5.10(i). From
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Theorem 5.10(ii), we have that for any M ′ ∈ cov
(
IN
∣∣
dom(REQ)

)
there is a

C ′ ∈ cov
(
REQ`

)
such that M ′ ⊆

⋂
c∈C′ REQ

`(c). If we plug C ′ in The-

orem 5.10(iii), we obtain that there exists a C ′′ ∈ cov
(
OUT`

)
such that

C ′′ ⊆ C ′, which implies that M ′ ⊆
⋂
c∈C′ REQ

`(c) ⊆ M ′ ⊆
⋂
c∈C′′ REQ

`(c).

Consequently, M ′ ⊆
⋂
c∈C′′ REQ

`(c). Since it can be shown that M ′ ⊆⋂
c∈C′′ REQ

`(c) if and only if C ′′ ⊆
⋂
m∈M ′ REQ(m), we have that for any

M ′ ∈ cov
(
IN
∣∣
dom(REQ)

)
there exists a C ′′ ∈ cov

(
OUT`

)
such that C ′′ ⊆⋂

m∈M ′ REQ(m), thus Proposition 5.7(ii) holds. �

We call REQ strongly observable with respect to IN if REQ and IN

satisfy Theorems 5.10(i) and 5.10(ii). An example of strongly observable re-

quirements is in Figure 5.6a. Strong observability is not necessary for im-

plementability (Figure 5.6b). In this example, the requirements are imple-

mentable without Theorem 5.10(ii) being satisfied. As such, strong observ-

ability restricts the acceptable choices of input hardware compared with ob-

servability, but at the same time it allows the separation of the design of IN

and OUT as long as they satisfy the constraints of Theorem 5.10.

5.4 Discussion

From a system development perspective, an important question is which of the

given implementability conditions to use and when. If separating IN and OUT

at design time is important, then one of the two stronger implementability

conditions could be used as follows:

• if the input interface is more difficult to design than the output interface,

then it is desirable to have as many options as possible for the input

devices. In such cases, Theorem 5.9 is more suitable because the implied

strong controllability limits only the choices of output devices without

overly restricting the input devices. If for Theorem 5.9(i) the necessary

and sufficient observability condition of Proposition 5.2 is used, then

Theorem 5.9 will allow the widest possible range of acceptable input

hardware;
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• likewise, Theorem 5.10 could be used if the output interface is more diffi-

cult to design than the input interface because the implied strong observ-

ability limits only the choices of input devices. If in Theorem 5.10(iii)

the necessary and sufficient controllability condition of Proposition 5.5

is used, then Theorem 5.10 will allow the widest possible range of ac-

ceptable output devices.

If the system designers need as many acceptable options as possible for

both the input and output interfaces, and separability of IN and OUT is not

as important, then the necessary and sufficient implementability conditions in

Proposition 5.7 should be used.

The stronger implementability conditions in Theorems 5.9 and 5.10 can

be viewed as a “separation principle” for embedded systems interfacing sim-

ilar to the well known separation principle for linear control systems design

(Kalman, 1960). The analogy is not perfect, however. An observer in the

control engineering sense would be constructed in the four-variable model as

a simulation of a linear system inside SOF. The relation IN represents the

input hardware that obtains the samples that would be used as input to the

observer simulation. Similarly, a state feedback controller in the control en-

gineering sense would be computed as a matrix multiplication inside SOF,

the results of which would then be sent to the physical plant via the out-

put hardware represented by OUT. Also, in control engineering observability

and controllability of a plant are sufficient for separability of observers and

controllers, while in the relational four-variable model either observability or

controllability of REQ needs to be strengthened in order for the designs of the

input and output interfaces to be separable.

5.5 Summary

In this chapter we have given two sufficient implementability conditions for

the general, relational setting, that allow the design of the input and output

hardware interfaces to be decoupled while still guaranteeing that an acceptable

software implementation is possible.
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Although the analogy is not perfect, this result is similar to the separa-

tion principle for the design of linear control systems which allows the sepa-

ration of the part of the system that estimates the state of the plant based

on observations of the plant’s outputs, called an observer, from the part of

the system that computes and sends control signals to the plant, called a con-

troller. Likewise, we defined the concepts of observability and controllability

of system requirements with respect to the input and, respectively, output

interfaces. Observability of system requirements captures the capability of

a system implementation to deal with every change in monitored variables

for which the requirements specify system response, given a particular input

interface and assuming perfect implementation for the software and output

interface (diagonal IC in the four-variable model diagram). Controllability

of system requirements denotes the capability of a system implementation to

update the controlled variables only with values allowed by the requirements,

given a particular output interface and assuming perfect implementation for

the software and input interface (diagonal MO in the four-variable model dia-

gram). In a functional four-variable model observability and controllability of

system requirements are sufficient for separating the design of the input and

output interfaces. In a relational four-variable model, either observability or

controllability need to be strengthened to achieve such separability.
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Chapter 6

Tolerances on System

Requirements

For the cases when the system requirements are feasible, but an acceptable

implementation does not exist, a typical engineering approach is to relax the

system requirements by allowing tolerances. In this chapter we show how the

necessary and sufficient implementability condition given in Chapter 4, The-

orem 4.5 can be used in the derivation of tolerances on system requirements.

To this end, we use an example described in (Lawford et al., 2000). In this

example, the requirements of a pressure sensor trip in the shutdown system

of a nuclear reactor are found to be unimplementable with respect to the cho-

sen input and output devices. Guided by the necessary and sufficient imple-

mentability condition, we derive tolerances on the system requirements of the

pressure sensor trip so that an acceptable software implementation becomes

possible.

6.1 Tabular Specifications

For their readability, we will use tabular specifications (Parnas, 1992; Parnas,

2003), or tables for short, to describe the relations involved in the four-variable

model of the pressure sensor trip system. Depending on the kind of specifi-

cations they describe, tables with different structures as well as semantics-
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preserving transformations between the various types of tables have been pro-

posed in the literature (Parnas et al., 1994; Janicki et al., 1997), (Janicki, 1995;

Janicki and Khedri, 2001), (Shen et al., 1996; Zucker, 1996), (Kahl, 2003a).

For the pressure sensor trip, we will use a particular type of tables, in which

a relation R = {(a, b) ∈ A×B |Rpred(a, b)} is described by a table with the

following structure and semantics:

cond1,1(a) cond1,2(b)
...

...

condn,1(a) condn,2(b)

Rpred(a, b) = IF cond1,1(a) THEN cond1,2(b)

ELSEIF . . .

ELSEIF condn,1(a) THEN condn,2(b)

Tables in fact describe characteristic predicates of relations. A characteristic

predicate Rpred of a relation R = {(a, b) ∈ A×B |Rpred(a, b)} can be seen as

a function Rpred : A→ B → bool.

A well defined tabular specification satisfies two properties: disjointness

(i.e., the conditions in the first column do not overlap) and completeness (i.e.,

together, the conditions in the first column cover all the possible cases so that

the resulting relation is total). For implementability checks we only insist

on disjointness. However, the specifications of a final product must also be

complete. The disjointness property ensures that the tabular specifications

are internally consistent in order to avoid logical inconsistencies in the four-

variable model of a system.
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6.2 Example: The Pressure Sensor Trip (PST)

System

In this section we study the implementability of the requirements for a pres-

sure sensor trip (PST) subsystem of a nuclear reactor shutdown system that

was described in (Lawford et al., 2000). This example highlights many of the

challenges in developing such safety-critical systems, as well as the usefulness

of the necessary and sufficient implementability condition that we proved in

Chapter 4, Theorem 4.5 in determining the tolerances needed on the require-

ments of the PST in order to be implementable given the chosen input and

output devices.

6.2.1 The Four-Variable Model of the PST

We now describe the relations in the four-variable model of the pressure sensor

trip system.

System requirements

The computer that runs the pressure sensor trip software is connected to a

pressure sensor in the plant. The software in the PST is required to make

decisions as to whether a reactor shutdown procedure should be initiated or

not.

Whenever the sensor value exceeds the normal operating setpoint of 2450

units, the trip computer sets its output to a “tripped” state that commands

an actuator to initiate a reactor shutdown. The requirements make use of

a deadband region of 50 units between 2400 and 2450. For inputs in the

deadband region the system is required to keep its output unchanged to prevent

“tripping” and “untripping” the reactor repeatedly in a short amount of time

due to sensor chatter. When the pressure is less than or equal to 2400 units,

the reactor must not be tripped.

The above requirements for the PST are described formally by the fol-
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lowing tabular specification:

REQ ((pressure, PressTrip′) : R× Trip, PressTrip : Trip) : bool =

pressure ≤ 2400 PressTrip = NotTripped

2400 < pressure < 2450 PressTrip = PressTrip′

2450 ≤ pressure PressTrip = Tripped

Here, REQ is actually a function and specifies the ideal behaviour ex-

pected from the system. Monitored variables are the analog voltage produced

by the pressure sensor and the previous trip state set by the software. The

value of the sensor voltage is modelled by the mathematical variable pressure

that ranges over the real numbers. The value of the previous trip state is

modelled by the mathematical variable PressTrip’ that ranges over the set

Trip = {Tripped,NotTripped}. Therefore, the set M (Figure 1.2) of values

of monitored variables is the cartesian product R × Trip. As such, the sys-

tem inputs are ordered pairs of the form (pressure, PressTrip′) ∈ R × Trip.
The current state of the system output is modelled by the controlled variable

PressTrip, which, just as PressTrip’, is a member of the set Trip. Therefore,

the set Trip of system outputs plays the role of the set C (Figure 1.2) of values

of controlled variables in the four-variable model of the PST.

The requirements REQ of the PST are assumed to be feasible with re-

spect to the physical environment in which the PST system is to operate.

Input interface

The input hardware interface of the pressure sensor trip computer consists of

an analog-to-digital converter (ADC) for reading the monitored analog voltage

produced by the sensor. The abstraction relation R2Z models the functionality

96



PhD Thesis–L. M. Patcas McMaster University, Computing and Software
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Figure 6.1: Nondeterminism introduced by the ADC

of the ADC:

R2Z (pressure : R, PRES : Z) : bool =

pressure ≤ 0 PRES = 0

0 < pressure < 5000 max(0, bpressurec − 5) ≤ PRES ≤ bpressurec+ 5

5000 ≤ pressure PRES = 5000

The variable PRES is a digital approximation of the actual pressure

that is available to the software. The effective output range of the ADC is the

open integer interval (0..5000); anywhere outside this interval the output of

the ADC becomes saturated. We take into account ADC inaccuracies, which

are inevitable in practice. Even an ideal ADC introduces inaccuracy in the

form of quantization errors (i.e., loss of accuracy due to constructing a discrete

representation of a continuous quantity) (Santina et al., 1996b; Walden, 1999;

Kester, 2005). In our example, the quantization errors are modelled by the

floor function b c, which takes a real number and truncates it to its integer

part. There also are inaccuracies due to hardware manufacturing tolerances,

noise, etc., which manifest themselves as deviations from the actual value of

the monitored pressure. For the ADC in our example, this deviation is within

±5 units of the actual value and causes R2Z to be a relation, not a function.

Because of these inaccuracies, the ADC introduces uncertainty (nondetermin-

ism) in a system implementation. For example, any pressure in the real interval

[2395..2406) can be mapped to the same software input PRES = 2400, as il-

lustrated in Figure 6.1. As we will show later, this nondeterminism causes

implementability issues.
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The monitored previous trip state, PressTrip’, is mapped to the input

variable PREV in the software via the abstraction function Trip2Bool :

Trip2Bool (PressTrip′ : Trip, PREV : bool) : bool =

PressTrip′ = Tripped PREV = true

PressTrip′ = NotTripped PREV = false

The relation IN in the four-variable model of the pressure sensor trip

system uses the two abstractions R2Z and Trip2Bool to project the system

inputs (i.e, values of monitored quantities in M), modelled as pairs of the form

(pressure, PressTrip′) ∈ R×Trip, to software inputs (i.e., values of software

input variables in I), modelled as pairs of the form (PRES, PREV ) ∈ Z×bool:

IN ((pressure, PressTrip′) : R× Trip, (PRES, PREV ) : Z× bool) : bool =

R2Z (pressure, PRES) ∧ Trip2Bool (PressTrip′, PREV )

Output interface

The output interface of the pressure sensor trip system is described by the

following table:

OUT (PTRIP : bool, PressTrip : Trip) : bool =

PTRIP = true PressTrip = Tripped

PTRIP = false PressTrip = NotTripped

The software sets the boolean output variable PTRIP to true to indicate

that a sensor trip has occurred and to false otherwise. The controlled variable

PressTrip is then actuated accordingly by the output devices to Tripped or

NotTripped. If the trip state is Tripped, a reactor shutdown is initiated.

The four-variable model of the PST is depicted in Figure 6.2.
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M = R× Trip C = Trip

I = Z× bool O = bool

REQ

IN

SOF

OUT

Figure 6.2: The four-variable model of the PST

6.2.2 Implementability Analysis and Tolerances for the

PST

Having described formally the system requirements REQ, input interface IN,

and output interface OUT for the pressure sensor trip system, the question now

is whether the system requirements are implementable or not, and, if not, what

tolerances are needed on the requirements so they become implementable. We

will use the implementability condition presented in Chapter 4, Theorem 4.5

to answer these two questions.

We assume that REQ is feasible with respect to the physical environ-

ment. Because REQ and IN are total, it is the case that dom (REQ) =

dom (IN) and IN
∣∣
dom(REQ)

= IN . Hence, by specializing Theorem 4.5 to this

setting, we get the following necessary and sufficient implementability condi-

tion for the pressure sensor trip system:

∀(PRES, PREV ) ∈ ran (IN) . ∃PTRIP ∈ dom (OUT ) .

OUT (PTRIP ) ⊆
⋂

m∈IN`(PRES,PREV )

REQ(m) (6.1)

There are three steps in the implementability analysis we carry out for

the pressure sensor trip system. First, we find all counterexamples to (6.1);

this will give us the largest system input region in M where some, if not all,

system inputs need tolerances in C. Second, we find which of the system inputs

found in the first step really need tolerances and figure out the right tolerances.

Formally, this means enlarging the image sets for those system inputs such that

the requirements become implementable. Usually, many options are possible,

but a most desirable solution is one that minimally changes the requirements.
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Third, we derive a relaxed version of the system requirements that has the

tolerances from the second step.

Step 1: Find the system input regions where tolerances are needed

The universal quantifier in (6.1) requires checking all the software inputs, which

is an infinite state space. Intuition dictates to start looking for counterexam-

ples in the vicinities of the two setpoints specified in the system requirements.

We choose to describe the analysis around the setpoint 2400 and only give the

results for the analysis around the setpoint 2450.

A counterexample to (6.1) is found by taking (PRES, PREV ) = (2395,

true). As seen in Figure 6.1, when the software receives from the ADC

the pressure approximation PRES = 2395, the actual pressure could have

had any value in the real interval [2390..2401). Thus, IN`((2395, true)) =

([2390..2401),

T ripped), with the understanding that ([2390..2401), T ripped) denotes all the

pairs (pressure, PressTrip′) ∈ R × Trip such that 2390 ≤ pressure < 2401

and PressTrip′ = Tripped. A problem arises because the system requirements

prescribe different system responses for the pressure values in the interval

[2390..2401), situation depicted in Figure 6.3: on the subinterval [2390..2400],

the system is asked to produce a NotTripped output regardless of the previous

trip state, whereas on the subinterval (2400..2401) the system is asked to keep

its previous trip state. For (PRES, PREV ) = (2395, true), the previous trip

state is PressTrip′ = Tripped. As a consequence,
⋂
m∈IN`(2395,true)REQ(m) =

∅. This constitutes a counterexample to (6.1).

If we look again at Figure 6.1, it is clear that 2395 is the smallest PRES

that can originate from actual pressures higher than the setpoint 2400. The

greatest PRES that can originate from actual pressures less than or equal to

the setpoint 2400 is 2405. The situation at (PRES, PREV ) = (2405, true) is

illustrated in Figure 6.4, where
⋂
m∈IN`(2395,true)REQ(m) = ∅. Consequently,

(PRES, PREV ) = (2405, true) violates (6.1).

The cases when the previous trip state is PressTrip′ = NotTripped

and PREV = false are not problematic. The reason for this is that for
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IN`((2395, true))
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Figure 6.3: Implementability issues when (PRES, PREV ) = (2395, true)

(2405, true)
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Figure 6.4: Implementability issues when (PRES, PREV ) = (2405, true)
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Figure 6.5: Implementability issues when (PRES, PREV ) = (2445, false)

pressure values less than or equal to 2400 the system requirements specify

that a NotTripped output should be produced and that above 2400 the system

output should not change. Therefore, the software inputs around the setpoint

2400 that do not satisfy (6.1) are the pairs (PRES, PREV ) such that PRES

is in the integer interval [2395..2405] and PREV = true. Consequently, the

largest system input region around the setpoint 2400 where tolerances are

needed is given by the pairs (pressure, PressTrip′) ∈ R × Trip such that

2390 ≤ pressure < 2411 and PressTrip′ = Tripped.

A similar analysis around the setpoint 2450 reveals that the software

inputs that do not satisfy (6.1) are the pairs (PRES, PREV ) such that PRES

is in the integer interval [2445..2454] and PREV = false. The situation at

the extremes of this interval is depicted in Figures 6.5 and 6.6. Consequently,

the largest system input region around the setpoint 2450 where tolerances are

needed is given by the pairs (pressure, PressTrip′) ∈ R × Trip such that

2440 ≤ pressure < 2460 and PressTrip′ = NotTripped.

This gives us the system input regions where there definitely are sys-

tem inputs that need tolerances. Allowing tolerances outside these regions is

completely unnecessary.
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Figure 6.6: Implementability issues when (PRES, PREV ) = (2454, false)

Step 2: Find the tolerances

The second step is to figure out which system inputs in the regions found at

Step 1 really need tolerances and what these tolerances are.

Usually, many solutions are possible. For the pressure sensor trip system,

as can be seen in Figures 6.3 and 6.4, we have three options for relaxing REQ

around the setpoint 2400 such that the software inputs (PRES, PREV ) =

([2395..2405], true) will satisfy the necessary and sufficient implementability

condition (6.1):

1. for (pressure, PressTrip′) = ([2390..2400], T ripped), the system require-

ments give an implementation the choice to set the controlled variable

PressTrip to either Tripped or NotTripped ;

2. for (pressure, PressTrip′) = ((2400..2411), T ripped), the system re-

quirements give an implementation the choice to set the controlled vari-

able PressTrip to either Tripped or NotTripped ;

3. both previous options combined.

Around the setpoint 2450 we also have three options for relaxing REQ so

that the software inputs (PRES, PREV ) = ([2445..2454], false) will satisfy

the necessary and sufficient implementability condition (6.1) (see Figures 6.5

and 6.6):

103



PhD Thesis–L. M. Patcas McMaster University, Computing and Software

1. for (pressure, PressTrip′) = ([2440..2450), NotTripped), the system re-

quirements give an implementation the choice to set the controlled vari-

able PressTrip to either Tripped or NotTripped ;

2. for (pressure, PressTrip′) = ([2450..2460), NotTripped), the system re-

quirements give an implementation the choice to set the controlled vari-

able PressTrip to either Tripped or NotTripped ;

3. both previous options combined.

Choosing one of the three tolerance options for each of the two setpoints

produces a relaxed, implementable version of the initial system requirements.

There are nine such possibilities. The first two tolerance options around the

two setpoints are minimal changes to the system requirements. The third

options would relax the requirements unnecessarily.

Step 3: Derive relaxed requirements

We now present the effect of choosing the first tolerance option for the setpoint

2400, combined with the second tolerance option for the setpoint 2450 that

were described at Step 2. The other eight possibilities to relax REQ are not

explored here, but a similar process can be used to obtain them.

Figure 6.7 depicts how the tolerances we chose to present here make an

acceptable software implementation possible. For brevity, the figure illustrates

only for (PRES, PREV ) = (2395, true) how the diagram of the four-variable

model commutes.
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(2395, true)

([2390..2400], T ripped)

((2400..2401), T ripped)

IN`((2395, true))

IN

Tripped

NotTripped

Trip
REQ

SOF true
false

bool

OUT

Figure 6.7: The 4-variable diagram commutes when proper tolerances are al-
lowed on system requirements

The resulting system requirements with these tolerances are given by the

following relation REQ′:

REQ′ ((pressure, PressTrip′) : R× Trip, PressTrip : Trip) : bool =

pressure < 2390 PressTrip = NotTripped

2390 ≤ pressure ≤ 2400
PressTrip = NotTripped

∨PressTrip = PressTrip′

2400 < pressure < 2450 PressTrip = PressTrip′

2450 ≤ pressure < 2460
PressTrip = PressTrip′

∨PressTrip = Tripped

2460 ≤ pressure PressTrip = Tripped

The necessary and sufficient implementability condition (6.1) has helped

us to find the relaxed, implementable version REQ’ of the original, unimple-

mentable system requirements REQ. Because REQ′ satisfies (6.1), the toler-

ances it allows are sufficient for implementability. These tolerances are also

necessary because if we reduced the system input regions for which tolerances

are allowed, then REQ′ would no longer satisfy (6.1). In this sense, the toler-

ances allowed in REQ′ are minimal changes to the initial requirements REQ

that are needed for REQ to become implementable. In practice, REQ’ would

need to be revalidated by the domain experts to ensure that the tolerances are
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acceptable. We verified in Coq that REQ’ indeed satisfies the necessary and

sufficient implementability condition.

Because REQ’ satisfies the necessary and sufficient implementability con-

dition, the demonic mid residual IN J REQ I OUT is defined and its value

(4.15) gives us the corresponding software requirements:

SOFreq ((PRES, PREV ) : Z× bool, PTRIP : bool) : bool =

PRES < 2395 PTRIP = false

2395 ≤ PRES < 2455 PTRIP = PREV

2455 ≤ PRES PTRIP = true

6.3 Summary

In this chapter we have described how the necessary and sufficient imple-

mentability condition of Theorem 4.5 can be used in determining the toler-

ances needed on the requirements of a pressure sensor trip in the shutdown

system of a nuclear reactor. The results of this analysis were checked with

the proof assistant Coq (see Appendix B), however the analysis itself was a

manual effort guided by the insight gained from the necessary and sufficient

implementability condition.

The PST example was originally described in (Lawford et al., 2000), but

it was incorrectly stated there that the requirements are implementable when

the ADC introduces an inaccuracy of ±5 units.

It is important to notice that usually there are many ways to relax the

requirements. However, minimal changes to the requirements are desirable

since it is assumed that the application domain experts had a very good reason

for specifying the requirements the way they did initially. Also, once the

requirements are relaxed, they will need to be revalidated.
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Chapter 7

Conclusions and Future Work

We started from the belief that having a method for assessing the imple-

mentability of system requirements early in the development of a safety-critical

embedded system may save development time and resources. A similar belief

is shared by adepts of “lightweight formal methods”, who argue that formal

methods should focus on the rapid detection of faults and on providing feed-

back to the system designers rather than on attempting full proofs of correct-

ness (e.g., Jackson and Wing in (Saiedian et al., 1996), or (Easterbrook and

Callahan, 1998)).

Following this belief, we have developed a mathematical basis to answer

the question of implementability of requirements for safety-critical embedded

systems. The requirements framework that we used is the four-variable model

of (Parnas and Madey, 1995). In this model, the possible behaviours of an

embedded system are given by the sequential composition of the behaviours

of the input devices, software, and output devices.

To be implementable, the system requirements must obey the natural

laws of the physical environment in which the system is to operate, a property

called feasibility of system requirements. Another condition for implementabil-

ity is the existence of a software implementation that satisfies the constraints

imposed by the system requirements and chosen hardware interfaces. Such a

software implementation is called acceptable. We formalized the feasibility of

system requirements and acceptability of software in the demonic calculus of re-
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lations, strengthening the angelic definitions proposed by (Parnas and Madey,

1995). This allowed us to prove a necessary and sufficient implementability

condition in the general, relational variant of the four-variable model in which

inaccuracies of the input and output hardware as well as tolerances on system

requirements can be modelled. The demonic setting offers guarantees of total

correctness, which are more suitable for safety-critical systems than the partial

correctness guarantees of an angelic setting. The demonic setting also allowed

us to deal with partial specifications, which are rather the norm in early stages

of system development.

Implementability is rather a theoretical property of system requirements.

Implementability ensures that an acceptable software implementation exists,

but does not guarantee that such software is practical to implement. If imple-

mentability is not satisfied, then no acceptable implementation is possible.

The implementability results presented in the thesis are very general.

The relations REQ, IN, OUT, and SOF model input-output behaviours with-

out internal states. Also, we did not assume any structure on the sets M, C,

I, and O. On one hand, this generality facilitates foundational principles for

implementability in the four-variable model. On the other hand, our imple-

mentability condition does not explicitly consider constraints that a practical

implementation has to deal with, such as, for example, timing. In our current

formalization, the sets M, C, I, and O contain all the possible values for ev-

ery, respectively, monitored, controlled, input, and output variable. Time can

be added explicitly to the four-variable model by treating the elements of M,

C, I, and O as functions of time (Parnas and Madey, 1995; Lawford et al.,

2000; Peters, 2000). A useful research direction would be to specialize our

implementability condition to include timing constraints.

To be useful in practice, our implementability check needs to be sup-

ported by tools. The necessary and sufficient condition suggests a general

algorithm for checking the implementability of system requirements. We have

not investigated the complexity of such an algorithm, however, developing

heuristics that exploit the particularities of a specific system will very likely

improve its performance. Satisfiability Modulo Theories (SMT) solving may

be another direction for an automated check. However, many SMT solvers do
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not cope well with formulas that have existential quantifiers within the scope of

universal quantifiers, as is the case with our necessary and sufficient existence

condition for acceptable software. When SMT solving and heuristics do not

work, or in the case of very large or infinite relations, verifying implementabil-

ity will still be possible in an interactive proof assistant such as Coq, Isabelle,

or PVS, paying the price of having to do tedious and, more than often, not

trivial proofs.

An acceptable software implementation SOF was defined as a demonic

mid factor of a feasible REQ through IN and OUT. Because the necessary

and sufficient implementability condition ensures the existence of such a de-

monic factor, whenever an acceptable SOF is possible, the software require-

ments, which are given given by the corresponding demonic mid residual

IN J (REQ GNAT ) I OUT , are also well defined. Thus, the software re-

quirements are obtained as a byproduct of an implementability check. This

constructive nature of the implementability condition means that spending

the effort for checking whether acceptable software is possible is also an effort

spent to describe the software requirements.

A consequence of the necessary and sufficient implementability condition

is that the input and output hardware interfaces of a system whose four-

variable model is relational cannot be, in general, designed independently.

From a systems engineering perspective, we would like this separation to be

possible because it would prevent changes to one interface from propagating

to the other interface. This would also allow IN and OUT to be designed

by independent teams. We proved two stronger implementability conditions

that allow such a separation while still guaranteeing that acceptable software

is possible. This separation of concerns may increase the resilience of a system

design to changes in input and output devices, but at the same time it limits

the design choices for the hardware interfaces. It is an open question if the

two separability conditions are too restrictive or this is the best the relational

setting allows. We are more inclined towards the latter.

We also addressed the need for formal methods that better reflect typical

engineering practices. It is often the case in practice that requirements are not

implementable without appealing to tolerances. We described how our neces-
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sary and sufficient implementability condition can be used in determining the

tolerances needed on the requirements of a pressure sensor trip used in the

shutdown system of a nuclear reactor. Although the results of this analysis

were checked with the proof assistant Coq, the analysis itself was rather a man-

ual effort guided by the insights gained from the implementability condition.

An automated method for calculating the minimal tolerances so that a set of

unimplementable requirements becomes implementable would be very useful

in practice. Since, in general, this may very well prove to be a hard problem,

a formal characterization of common types of tolerances that are used in prac-

tice would be helpful. An example of such typical tolerances are the uniform

tolerances, which allow the same deviation from the ideal behaviour for every

input to the system.

The demonic factorization results presented in the thesis have appli-

cability beyond embedded systems. They can be applied to essentially any

system that can be modelled using a commutative diagram similar to the

one of the four-variable model. For example, such commutative diagrams ap-

pear frequently in stepwise refinement techniques where mappings between

behaviours at different levels of abstraction are rather frequent. If the direc-

tion of a relation (or function) is reversed compared to the four-variable model,

the necessary and sufficient existence condition for a demonic mid factor can

still be used provided that the converse of that relation is used instead.

For increased confidence in our results, we formalized and verified the

mathematical development presented in the dissertation, as well as the im-

plementability analysis of the pressure sensor trip system from Chapter 6, in

the proof assistant Coq1. This may also serve as a starting point for a for-

mal framework that offers machine support for verified system development of

safety-critical systems.

1Coq formalization and proofs with detailed explanations are available at www.cas.

mcmaster.ca/~patcaslm/thesis/coq
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Appendix A

Demonic Left and Right

Residuals in the Literature

The demonic left and right residuals appear under various names and forms

in the literature. All are equivalent, but this fact is not always obvious. Some

authors define the demonic residuals using their values and then prove that

they are the largest solutions, with respect to demonic refinement, of their

respective inequalities. Other authors take the opposite approach and obtain

the values of these residuals as theorems. In Section 2.3.2, we presented the

demonic left and right residuals using the latter approach. To give the values

and existence conditions for the residuals, we used notational abbreviations for

the domain and range restrictions of relations, which we believe are more intu-

itive for use by engineers. This notation also allowed us to make the transition

from abstract relations to concrete relations. In this appendix we show that

the relation-algebraic expressions used in the literature for the demonic left

and right residuals can be reduced to the forms we used in this dissertation.

A.1 Demonic Left Residual

The demonic left residual appears under the name of conjugate kernel in (De-

sharnais et al., 1993), where the following definition is given.
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Definition A.1. The conjugate kernel of relations R and Q is k (R,Q) =

R ., Q`∩C ., Q`.

In (Desharnais et al., 1995) the conjugate kernel is called demonic left

residual. Using the value of the angelic left residual as given in (2.1), the

conjugate kernel can be written as

k (R,Q) = R/Q ∩C ., Q
`
, (A.1)

which is the form used in (Frappier, 1995) and (Kahl, 2003b). In this form, it

is easy to see that the demonic left residual is the range restriction of R/Q to

the domain of Q, or R/Q
∣∣dom(Q)

in the notation that we used in (2.7).

(Desharnais et al., 1993) and (Desharnais et al., 1995) proved that the

domain of R being contained in the domain of k (R,Q) is a necessary and

sufficient condition for the definedness of the demonic left residual. In our

notation, this condition is (2.5). (Desharnais et al., 1997) and give without

proof another necessary and sufficient condition:

R ., C ⊆ (R/Q) ., Q ., C .

(Kahl, 2003b) gives the same condition, but states it only as a sufficient condi-

tion. Using Definition 2.13 of relational vectors, this condition can be rewritten

as dom (R) ⊆ dom ((R/Q) ., Q), which is (2.6).

A.2 Demonic Right Residual

We now show that the relation-algebraic formulations given in (Frappier, 1995),

(Desharnais et al., 1995), and (Kahl, 2003b) for the value of the demonic right

residual are equivalent to our (2.9).

(Frappier, 1995) gives the following value for the demonic right residual:

P JR =
(
k
(
R

`
, (R ., C ∩ P )

`
))`

= 〈by (A.1) & conversion is an involution〉
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((
R

`
/ (R ., C ∩ P )

`
)
∩C ., (R ., C ∩ P )

)`

= 〈conversion distributes over intersection〉(
R

`
/ (R ., C ∩ P )

`
)`

∩ (C ., (R ., C ∩ P ))
`

=
〈

(Frappier, 1995, p. 25, (20h)): in general, (P\R)
`

= R
`
/P

`

& conversion antidistributes over composition
〉

(R ., C ∩ P ) \R ∩ (R ., C ∩ P )
` ., C

=
(
P
∣∣
dom(R)

∖
R
)
∩
(
P
∣∣
dom(R)

)`
., C

=
(
P
∣∣
dom(R)

∖
R
) ∣∣∣

ran

(
P

∣∣∣∣
dom(R)

) ,

which is exactly (2.9).

(Kahl, 2003b) uses the totalisation operator in defining the value of the

demonic right residual.

Definition A.2. The totalisation of a relation R : A ↔ B is the relation

R• : A ↔ B such that R• = R ∪R ., C.

Then the value of the demonic right residual in (Kahl, 2003b) is:

P JR S (P\R•) ∩ P` ., R ., C

S (P\R•)
∣∣
ran

(
P

∣∣∣∣
dom(R)

)

In (Desharnais et al., 1995) the value of the demonic right residual is:

P JR = P` .,
(
R ∩R ., C

)
∩ P` ., R

= 〈double complementation & de Morgan’s law〉

P` ., R ∩R ., C ∩ P` ., R

= 〈by (2.2)〉(
P
∖(
R ∪R ., C

))
∩ P` ., R

= 〈by Definition A.2〉

(P\R•) ∩ P` ., R
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= (P\R•)
∣∣
ran

(
P

∣∣∣∣
dom(R)

)

Proposition A.3. For any two relations R ⊆ A× C and P ⊆ A×B,

P
∣∣
dom(R)

∖
R = P\R•

Proof . We first show that P
∣∣
dom(R)

∖
R ⊆ P\R•. Let (b′, c′) ∈ P

∣∣
dom(R)

∖
R.

Because P
∣∣
dom(R)

⊆ and R ⊆ R•, by monotonicity of \ it is also the case that

(b′, c′) ∈ P\R•.
We now show that P\R• ⊆ P

∣∣
dom(R)

∖
R. Let (b′, c′) ∈ P\R•. There are

two cases to consider. In the first case b′ ∈ ran
(
P
∣∣
dom(R)

)
; because (b′, c′) ∈

P\R•, c′ must be in the range of R, thus (b′, c′) ∈ P
∣∣
dom(R)

∖
R. In the second

case, b′ /∈ ran
(
P
∣∣
dom(R)

)
and the implication in the characteristic predicate of

P
∣∣
dom(R)

∖
R is trivially satisfied. �

By Proposition A.3, the values for the demonic right residual given in

(Frappier, 1995), (Desharnais et al., 1995), and (Kahl, 2003b) are the same as

(2.9).
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Appendix B

Formalization in Coq

The mathematical development presented in the thesis has been formalized

and verified in the proof assistant Coq. Here we present the organization of

the source files of the formalization in Coq, as well as the connection with the

material presented in the main body of the dissertation. A literate version of

the complete formalization and proofs is available electronically at www.cas.

mcmaster.ca/~patcaslm/thesis/coq.

The reader should note that some of the formal proofs in Coq do not

follow the same strategy as their informal counterparts in the dissertation.

This is mostly due to the peculiarities of the sequent calculus employed by

Coq, which favours backwards reasoning. Presenting the proofs in this style

to an audience not familiar with interactive theorem proving, and Coq in

particular, would have been cumbersome.

Figure B.1 depicts the hierarchy of the Coq source files. In the sequel

we present briefly that main purpose of each Coq file and how it relates to the

dissertation.

Case.v Coq does not have an explicit command from moving from one brach

of a proof by cases to the next. This file contains the implementation of the

Case tactic, which was developed by the Software Foundations project1 led by

Benjamin Pierce at the University of Pennsylvania.

1http://www.cis.upenn.edu/~bcpierce/sf
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Case.v FOL.v Sets.v

Rel_Angelic.v

Rel_Properties.v

Rel_Cov.v

Rel_Ker.v

Rel_Demonic.v

Rel_DemLeftFactor.vRel_DemRightFactor.v

Rel_DemMidFactor.v

Rel_DemFactorization.v

FourVarModel.v PST.v

Figure B.1: Hierachy of the Coq files
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FOL.v This file contains some useful theorems about First Order Logic that

are not offered by the Coq Standard Library.

Sets.v A formalization of sets as predicates over a universe along with some

operations on sets.

Rel Angelic.v A formalization of the angelic calculus of concrete heteroge-

neous relations presented in Section 2.3.1.

Rel Properties.v Many properties of relations, such as reflexivity, transi-

tivity, totality, univalence etc.

Rel Cov.v A formalization of covers induced by relations on their domains.

In particular, refinement of covers is proved to be a preorder (Section 2.4).

Rel Ker.v A formalization of equivalence kernels of functions as particular

cases of covers. In particular, equivalence kernels are proved to be equivalence

relations and refinement of equivalence kernels is proved to be a partial order

(Section 2.4).

Rel Demonic.v Formalizes the demonic calculus of concrete heterogeneous

relations presented in Section 2.3.2.

Rel DemLeftFactor.v The main result proved in this file is the necessary

and sufficient existence condition for a demonic left factor given in Lemma 3.1,

Chapter 3.

Rel DemRightFactor.v The main result proved in this file is the neces-

sary and sufficient existence condition for a demonic right factor given in

Lemma 3.4, Chapter 3.

Rel DemMidFactor.v The main result proved in this file is the necessary

and sufficient existence condition for a demonic mid factor given in Lemma 3.7,

Chapter 3.
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FourVarModel.v A formalization of the demonic semantics we proposed in

Chapter 4 for the four-variable model.

PST.v Verification of the implementability analysis and tolerances for the

pressure sensor trip system that was presented in Chapter 6.
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