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Abstract 

In this study we have focused on the codon usage bias in E. coli, at two different 

levels, the codon usage bias among the genes in the genome and the codon usage bias 

among different sites within one gene.  

In chapter 3, we use the population genetics model and the data available on the 

protein and mRNA levels of the E. coli genes to understand the pattern of codon usage in 

different genes with different expression levels. Here, by using likelihood-based 

statistical tests, we can compare the models with different measures of expression (i.e. 

total number of proteins produced per cell cycle for each gene, number of mRNA 

molecules transcribed per cell cycle for each gene, number of proteins produced per 

mRNA & protein production rate over each mRNA) and see which one best explains the 

pattern we observe. We also provide an analytic model of protein production in order to 

further clarify the existence of codon bias in spite of translation being initiation limited 

and also why the codon bias is observed to be more correlated with total protein level of a 

gene compared to other measures of expression. Besides codon bias, we are able to test 

for the existence of context dependent mutation. Our model uses two parameter, a 

frequency in absence of selection and a selection coefficient, for each codon and by 

testing the over-parametrization of the model we can see whether only considering the 

third nucleotide position of the codons, or considering the first two positions, would be 

sufficient to fit the real data with the model or we have to consider all three nucleotide 
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positions in codons for finding the most suited frequencies. We have also fitted the model 

for the codon usage patter in the Yeast and also tested for the context dependent mutation 

in this organism.  

 

In chapter 4, we focus on the first 10-15 codons in the genes of E. coli. Motivated 

by the fact that in this region we observe two phenomena, reduction in translation 

efficiency and suppression of mRNA secondary structures, we investigate whether the 

former is a side effect of selection for the latter. For this matter we have generated a set 

of synonymous randomized sequences, and then by selecting the ones which show weak 

secondary structures in the mentioned region, we would be able to test the theory. We 

will also look at the frequencies of the amino acids in E. coli genes and see whether the 

selection for weak secondary structures in the translation initiation region could be strong 

enough to not only affect the codon usage, but also the choice of amino acids.  We would 

also provide information on the correlation between the strength of the mRNA secondary 

structure in the first 13 codons and the overall translation efficiency of the genes. 
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Chapter 1   

Introduction 

 

1.1- The Genetic Code 
 

Soon after  the structure of the DNA was discovered in 1953 by Watson & Crick, 

several attempts started in order to understand how the proteins are translated from the 

DNA sequence with the four nucleotides (adenine, A, cytosine, C, thymine, 

T, and guanine, G). George Gamow’s suggestion (Crick, 1988) that dividing the DNA 

sequence into units of three nucleotides would result in the minimum number of translation 

units, 43 = 64, in order for the cell to translate the 20 amino acids, helped the scientist to 

encrypt the genetic code and discover what amino acid each codon, the triplets of 

nucleotides in the DNA sequence, codes for.  

Nirenberg and Matthaei were the first to elucidate the nature of a codon in 1961, 

when they synthesized an mRNA sequence of only including uracil nucleotides (i.e., 

UUUUUU…) in vitro and realized the translated polypeptide contains only phenylalanine 

(Nirenberg et al., 1961). Successive works done by Severo Ochoa’s research group  

(Lengyel et al., 1961; Speyer et al., 1962; Lengyel et al., 1962), Har Gobind Khorana 

(1966) and Robert W. Holley (1965) shed more light on our understanding of the genetic 

code and the protein translation process in the cells. 

http://en.wikipedia.org/wiki/Adenine
http://en.wikipedia.org/wiki/Cytosine
http://en.wikipedia.org/wiki/Thymine
http://en.wikipedia.org/wiki/Guanine
http://en.wikipedia.org/wiki/Marshall_Nirenberg
http://en.wikipedia.org/wiki/Heinrich_J._Matthaei
http://en.wikipedia.org/wiki/Har_Gobind_Khorana
http://en.wikipedia.org/wiki/Robert_W._Holley
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Not long after E. coli’s genetic code was decrypted (Nirenberg et al., 1963), it was 

suggested that the genetic code, with minor modifications, is universal (Hinegardner & 

Engelberg, 1963; Woese et al., 1964), which gave it the name “standard code”, and also 

that the assignment of codons to amino acids is not random (Woese, 1965; Crick, 1968). 

However now with the capacity of sequencing of complete genomes of various species, 

clear evidence has been provided that there are deviations from the standard code (Knigh et 

al., 2001 a; Yokobori et al., 2001), and the standard genetic code is not as universal as 

initially thought (Sengupta et al., 2007).  

Several studies show that the position of amino acids in the genetic code is affected 

by biosynthethic parameters, and the amino acids which have similar biochemical and 

physicochemical properties tend to have similar codons (Wong, 1975; Amirnovin, 1997; 

Taylor & Coates, 1989; Giulio, 1997). Such patterns in the arrangement of the amino acids 

in the genetic code might be due to selection for the codes, in the competition between 

organisms which showed much different genetic codes in early stages of life on Earth, 

which would be more robust against potential errors in the translation of the DNA 

sequence or the single-point mutations in DNA replication (Alff-Steinberger, 1969; 

Woese, 1973; Haig & Hurst, 1991; Higgs, 2009). By considering these facts and the bias in 

the mutation rates between the four nucleotide bases, A, T, G & C, Freeland and Hurst 

(1998) have compared the natural genetic code with a sample of 1 million random genetic 

codes, by randomly assigning the amino acids to the 64 codons, and have concluded that in 

terms of robustness against mistranslation and point mutations, only 1 code in that sample 

shows higher efficiency. In the same paper Freeland and Hurst have argued that selection 
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for reducing the effects of mistranslation, rather than single-point mutations, might have 

played a more important role in shaping the current pattern in assigning the amino acids to 

codons. 

But another feature that can be easily noticed by looking at the genetic code is its 

redundancy. There are 64 triplets, codons, and only 20 amino acids to be coded for. There are also 

three codons that are coded as translation termination, UAA, UAG & UGA. This gives 41 codons 

to be distributed between the amino acids. This distribution also is not random and amino acids are 

coded by 1-6 codons. The codons which code for the same amino acid, and thus do not affect the 

sequence or function of the translated protein, are called synonymous. This phenomenon has 

puzzled scientists for a long time to understand the effect of synonymous mutations, the mutation 

which changes a codon into another one which is synonymous to it. This matter becomes more 

complicated when we observe that the frequencies of synonymous codons in different genomes or 

different genes within each genome, are far from being random. Which gives rise to the term 

“codon-usage bias”, or “codon bias” for short. 

 

1.2- Observation of the codon bias: 
 

Codon bias among different species: 

 

Since early 80’s, it was observed that despite the fact that different organisms 

generally share the same genetic code, the direction in the bias between synonymous 

codons varies between species. These observations, added to the fact that the bias in 

appearance of the synonymous codons is more or less consistent across most the genes in a 

genome (Grantham, 1980; Grantham et al., 1980; Ikemura, 1985; Chen et al., 2004), have 
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led to the “Genome Hypothesis”. Acccording to this hypothesis different organisms have 

specific codon biases distinguishable from other organisms (Grantham et al., 1980). 

Besides, by comparing the codon frequencies observed in different organisms (Andersson 

& Sharp 1996 a, Andersson & Sharp 1996 b), it can be noticed that the strength of this bias 

also varies between different organisms. One strong factor which can be used to predict the 

codon bias between different species is the genomic GC content, the fraction of the two 

nucleotides guanine and cytosine in the genome (Plotkin & Kudla, 2010). In fact, the 

codon bias variations among different bacterial genomes can be accurately predicted by 

measuring the nucleotide content of the regions outside the open reading frame (ORF) 

(Hershberg & Petrov, 2008; Chen et al., 2004; Knight et al., 2001 b). 

 

Codon bias among the genes within a genome: 

 

At the same time it was also observed that in E. coli, Salmonella typhimurium and 

Saccharomyces cerevisiae, in a subset of the genes within each genome which are highly 

expressed, the strength and, for some amino acids, the choice of the abundant codon differs 

significantly from the rest of the genes (Grantham et al., 1981; Ikemura, 1981; Bennetzen 

& Hall, 1982; Gouy & Gautier, 1982). Comparison of the results from more recent 

experiments in broader groups of species (Duret, 2002; Duret & Mouchiroud, 1999; Sharp 

& Li, 1987; Bulmer, 1991; Ran & Higgs, 2010; Eyre-Walker & Bulmer, 1995), reveals the 

same phenomenon within the genomes (Plotkin & Kudla, 2010).  
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Codon bias in different positions within a gene: 

 

Even in choosing synonymous codons for different positions in one gene some 

deviations from randomness can be observed. Studies show a strong deviation from null 

hypothesis in synonymous codon substitutions in the beginning region of the genes in 

diverse organisms such as bacteria, yeast and fruit flies (Bulmer, 1988; Qin et al., 2004; 

Bentele et al., 2013; Tuller et al., 2010). When looking at this region we observe that 

there’s a tendency for choosing the so called inefficient codons, the codons which are 

thought to be not recognized and translated at high speed.  

At the same time it has been shown that a trend of reduction in the strength of the 

mRNA secondary structure and also in the GC content of the codons in the translation 

initiation region of the genes in diverse organisms in prokaryotes and eukaryotes exists 

(Bettany et al., 1989; de Smit & Van Duin, 1990; Gu et al., 2010; Kudla et al., 2009).  

 

1.3- Measures of Codon Bias: 
 

As soon as the codon usage bias was discovered, measures for comparing the 

strength of codon bias among the species and the genes began to be proposed. Different 

approaches have been proposed using different statistical methods and different features 

associated with the patterns observed in the frequency of synonymous codons.  

One way of approaching this issue is to work out a measure to see how much the 

codon frequencies deviate from a postulated unbiased pattern of usage. The method 

proposed by McLachlan et al. (McLachlan et al., 1984), follows such procedure. 

Calculating the chi squared value for the deviation from random codon usage has also been 
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used for measuring the strength of codon bias (Sharp et al., 1986). Ikemura has focused on 

the relation between translation efficiency and codon bias, and has tried to identify the 

“optimal” codon among the codons coding for one specific amino acid. Then by 

calculating the frequency of this optimal codon in the genes, the strength of codon bias can 

be compared among the genes (Ikemura, 1985). This method would divide the 

synonymous codons into two groups of “optimal” and “non-optimal”. 

Gribskov et al. (1984), suggested an index which is based on the ratio of the 

likelihood of observing a particular codon in a highly expressed gene to the likelihood of 

finding that codon in a random sequence with the same base composition as that in the 

sequence under study. 

The famous measure of “Codon Adaptation Index”, or CAI for short, was 

introduced in 1987 (Sharp & Li, 1987), which has been referred to by different authors for 

comparing the extent of codon bias among species and genes. They also focus on the 

relation between synonymous substitution of the codons and translation efficiency. They 

introduce a method so that the codons are not just considered as only optimal or non-

optimal, but there would be a way of ranking the codons in terms of translation efficiency. 

Considering the fact that the strength of codon bias is fairly high in some genes, and the 

correlation between this strength and the expression level of these genes, they introduce a 

“reference set” of genes which are highly expressed and thought to be under selection to 

show a strong bias in codon usage, and the codon adaptation index of each codon is 

measured by looking at the codon frequencies in this reference set. CAI of any codon 

ranges between 0 and 1 such that for the synonymous codons coding each specific amino 
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acid the codon with CAI = 1 is the most advantageous one to use, in terms of translation 

efficiency, and the other codons with lower CAI values are less advantageous. In the first 

step a reference table of relative synonymous codon usage (RSCU) values is constructed:  

 

 


iN

j ij

i

ij

ij

n
N

n
RSCU

1

1
 

(

1) 

where the index ij indicates codon j in the amino acid i, and Ni is the number of 

synonymous codons, from 1 to 6, that the amino acid i is codded with. nij is the observed 

number of codon j coding the amino acid i  in the genes that belong to the reference set, 

and the summation is over all the codons which code for the amino acid i in the reference 

set. RSCU value for a codon is simply the observed frequency of that codon divided by the 

frequency which we would expect from an impartial codon usage in each amino acid 

(Sharp et al., 1986). The relative adaptiveness of each codon is calculated by:  

 

maxmax i

ij

i

ij

ij
n

n

RSCU

RSCU
w   (2) 

 

here the index ‘imax’ indicates the codon which codes for the amino acid i and has the 

highest number compared to other synonymous codons. And it is obvious that since RSCUij 

is proportional to Φij, frequency of codon j coding for the amino acid i, we have: 

 

maxi

ij

ijw



  (3) 

 

Finally the codon adaptation index of a specific gene can be calculated as: 
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kwCAI

1

1
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











 



 (4) 

Where lg is the number of codons, and wk is the relative adaptivenes of the kth codon in the 

gene sequence. 

Using the same reference set, Ran & Higgs (2012) suggested a method for 

quantifying the strength of codon bias which improves the CAI measure. In this method 

they calculate logarithm of the ratio of the frequency of each codon in a reference set of 

highly expressed genes, which is assumed to be under translational selection, and their 

frequency averaged over the whole genome, where mutational bias is thought to be the 

dominating factor. For each codon i, the quantity:  

 
)/ln( 0

i

H

ii    (5) 

is defined, where H

i and 0

i are the frequencies of this codon in the high-expression set 

and the whole genome, respectively, measured as a fraction of the total number of codons 

for the corresponding amino acid. Codons with positive i are preferred by translational 

selection relative to their synonymous codons. The  measure for a gene is simply the 

average of i for the codons in that gene. Genes with positive average , have codon 

frequencies that are similar to those in the high-expression reference set, and these are 

assumed to be under strong translational selection. The majority of the genes have a 

negative  value, which means that their codon frequencies are more similar to the average 

genome frequencies than to the frequencies in the reference genes. The  measure is 
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similar to the codon adaptation index (CAI), which also depends on H

i , but  specifically 

counts codons that increase in frequency in high expression genes as a result of selection, 

whereas CAI simply counts codons with high frequency in the reference set, which could 

be because of either mutation bias or selection (Ran & Higgs, 2012).  

Dos Reis et al. (dos Reis et al., 2004), have introduced an index, tRNA Adaptation 

Index (tAI), for measuring how well, on average, the whole mRNA sequence can be 

translated. Since codon-anticodon pairing is not unique due to wobble interactions, more 

than one tRNA molecule might pair with each codon with different efficiency weights. 

Absolute adaptiveness of each codon is defined as follows:  

 





in

j

ijiji tCGNSW
1

)1(  (6) 

Here ni is the number of tRNA isoacceptors which could identify codon i. tCGNij is 

the copy number of the jth tRNA molecule which could pair with the codon i. Sij is a 

parameter for considering the variation in coupling probabilities for different codon-

anticodon combinations. All the efficiency weights, Wi, is divided by the maximal of all the 

61 values to give the relative adaptiveness value, wi, for each codon. Finally the tAI value 

of the gene g is calculated by geometrically averaging the relative adaptiveness of the 

codons in the sequence:  

 
gg

kg

ll

k

ig wtAI

1

1













 



 (7) 

 

where the index ikg indicates the codon i in the kth position of the gene g. lg is the length of 
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the gene g, in terms of codons.  

The most challenging part of this index is finding the selective constraints on the 

codon-anticodon pairing, Sij. A meaningful set of these values for each codon can be 

obtained by finding the values which maximizes the tAI in the highly expressed genes, 

since it is assumed that these gene are selected to show the highest adaptiveness possible.  

 

1.4- Aims of this thesis:  

In this thesis we focus on the 2nd and 3rd type of codon bias mentioned in section 

1.2, codon bias among genes in a genome and different sites along the gene sequence, 

and try to test different scenarios for explaining the phenomena.  

In order to see the causes behind the codon bias observed in the highly expressed 

genes, we focus on the proteome and transcriptome data for E. coli measured by 

Taniguchi et al., and the method introduced by Ran & Higgs for measuring the codon 

bias strength, and try to see among different measures of expression level, which one best 

explains the codon bias pattern we observe among the genes of E. coli. The data provided 

by Taniguchi et al. enable us to look at the different measures of expression, total number 

of produced protein molecules of each gene, total number of transcribed mRNA 

molecules of each gene, number of proteins produced per mRNA molecules of each gene, 

and also the protein production rate over each mRNA molecule at the same time. With 

the model introduced we could see at what level the codon bias has the most effect. There 

has been a huge debate on whether the protein production is elongation limited or 
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initiation limited and it has been shown that substitution of rare codons with frequent 

ones affects the elongation speed significantly (Sørensen et al., 1989), here we provide an 

analytic analysis to justify selection for frequent codons in spite of translation being 

initiation limited. We also test for context dependent mutation. We treat the synonymous 

codons as if the mutation rates are only affected by the third nucleotide position in 

codons or the second and third in order to test for the presence of context dependent 

mutation. 

For the codon bias along the gene sequence, we focus on the appearance of rare 

codons in the beginning region of the genes. We specifically look at the relation between 

the folding free energy of the secondary structure in the beginning of the sequence and 

selection of the rare codons in this region. We hypothesize that the reduction in codon 

adaptation in this region is a side effect of selecting weak secondary structures in the 

translation initiation region of the genes. We have generated random synonymous 

sequences, sequences which are synonymous to the real genes but with different 

frequencies, to see how selection for weak folding in the beginning of ORF affects the 

codon usage in this region. For this matter we again focus on E. coli and by calculating 

the free energy of folding along the sequences we investigate the correlations between 

strength of secondary structure and the codon usage pattern observed in the genes.  

 

 



 

12 
 

Chapter 2 

Causes of Codon Bias 

 

2.1- Variations in codon bias strength among the genes in a genome 

(translational selection): 

The causes for the pattern we observe in the codon usage bias we observe among 

the genes within a genome can lie between two extremes, mutational bias and natural 

selection (Hershberg & Petrov, 2008; Plotkin & Kudla, 2010). Even though there have 

been studies showing that mutational bias is a significant factor in shaping the codon bias 

(Kanaya et al, 2001; Knight et al., 2001 b; Chen et al., 2004) the fact that in almost all of 

the cases the preferred (most frequent) codon is the one with most abundant matching 

tRNA molecules, indicates that natural selection might play a role as well (Ikemura, 1985; 

Yamao et al., 1991; Kanaya et al., 2001, Higgs & Ran, 2008;). In fact the explanations 

which rely on natural selection can predict most of the patterns observed within a genome 

and the one which focuses on the mutational bias fits best with the codon usage variations 

between different species. 

As an example, in E.coli by focusing on the two codon families we see that it’s 

always the codon which benefits most from the tRNA pool (the C codon) that shows the 

highest frequency in the highly expressed genes and this preference is due to the fact that 

the tRNA molecules for these amino acids have a guanine in the wobble position which 

pairs best with the codon ending in C rather than the one ending in U (Sharp et al., 2005; 



 

13 
 

Higgs & Ran, 2008). Genes that use codons that can be coded by more numbers of tRNA 

molecules can be translated faster and/or more accurately, so they have an advantage over 

the ones that use the codons which don’t have many tRNA molecules with appropriate 

anticodon to pair with. This advantage may be important for the genes coding for proteins 

whom the cell needs in large numbers in stages of rapid growth, resulting in the observed 

increase in strength of codon bias in highly expressed genes compared to the ones 

expressed in low levels, a fact also observed in other organisms such as S.cerevisiae, 

C.elegans, Arabidopsis thaliana and D.melanogaster (Ikemura, 1985; Yamao et al., 1991). 

The term “Translational Selection” refers to a process of selection on sequences for 

increasing the efficiency of their translation, rather than selection for functionality of the 

produced protein. Synonymous changes in gene sequences can affect the way a specific 

codon is translated, but does not affect the functionality of the resulted protein, and thus 

can affect the fitness of the organism in times of growth and reproduction (Higgs & Ran, 

2008).  

In the literature, there are different notions for translational efficiency on gene 

expression. Number of bound ribosomes per mRNA molecule (Ingolia et al., 2009); and 

number of proteins produced per mRNA (Tuller et al., 2010), that is, the ratio of protein 

abundance to mRNA level, are two famous measures introduced for this matter. The 

second definition is more relevant to issues of protein synthesis in each gene, whereas the 

former definition may be more relevant to ribosomal availability and overall cellular 

fitness. Weak correlation between these two notions of translational efficiency for 

endogenous genes indicates that the ribosomal density on a given mRNA molecule would 
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not show the amount of proteins produced from it (Plotkin & Kudla, 2010). It has also 

been reported that the average CAI of a gene in yeast, explains less than 3% of the variance 

in protein abundance per mRNA (Ingolia et al., 2009). Both of these observations support 

this school of thought that, for most endogenous genes, the initiation is the limiting factor 

for protein production (Bergmann & Lodish, 1979; Mathews et al., 2007). It has also been 

observed that the elongation speed of amino acid chain is significantly affected by 

insertion of preferred codons (the ones coded by more abundant tRNA molecules), into the 

mRNA sequence (Curran & Yarus, 1989; Sørensen et al., 1989). But it is not completely 

clear that increasing elongation speed in translation of one specific mRNA molecule can 

affect its total production rate significantly, since translation initiation rate, rather than 

elongation speed, might be the limiting factor in the process (Hershberg & Petrov, 2008; 

Plotkin & Kudla, 2010). However increasing elongation speed can reduce the time a 

ribosome spends on one mRNA and allow it to return to the pool of available ribosomes in 

the cell. This will increase the overall initiation and production rate of the genes in the cell, 

and therefore is beneficial overall. Simulations of protein production in Yeast show that 

increasing codon bias in a transgene could result in an increase in the pool of free 

ribosomes (Shah et al., 2013). 

To see if the codon bias affects translation accuracy or speed, different studies have 

been conducted with results suggesting that the codon bias affects both parameters. The 

observation that in sites coding for more conserved amino acids, also show more bias in 

codon usage suggest that translation accuracy is affected by codon bias (Akashi, 1994; 

Stoletzki & Eyre-Walker, 2007). Akashi has found a preference for choosing the tRNA-
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adapted codons at residues that are strongly conserved. Looking at Drosophila species, it 

was suggested that the sites which are under selection for conserving one specific amino 

acid, and thus selection for reducing the chance of mistranslation, also show codons which 

are most adapted with the tRNA pool. Using a broader group of species Drumond & Wilke 

have looked at the rate of evolution of different genes and correlation between the popper 

protein folding and parameters such as codon usage, gene expression etc. They have made 

the same observation as Akashi, and suggested that selection against mistranslation-

induced misfolding is a sufficient factor for shaping the codon usage in highly expressed 

genes, in which an error in protein translation would be much more deleterious to the cell 

compared with lowly expressed ones. 

 

2.2- Codon bias across one gene:  

There are studies suggesting irregular codon usage in some specific organisms or 

special sites in the genes, but recent studies suggest other patterns of codon usage across a 

gene which is thought to be shared between diverse species (Plotkin & Kudla, 2010).  

Bulmer and Eyre-Walker, motivated by the work of Burns & Beacham, were 

among the first to derive a translation efficiency profile of the codons in the genes 

sequences (Bulmer, 1988; Eyre-Walker & Bulmer, 1993). Their findings clearly show a 

significant reduction in the CAI value of the first 20-30 codons of the genes, compared to 

the rest of the sequence, and this reduction becomes more significant as the average CAI of 

the genes increases (Figure 2.1). 
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There are two competing theories for explaining this phenomenon. One regards this 

bias as a mechanism for slowing elongation rate in the beginning of the translation of 

peptide chains in order to regulate the movement of the ribosomes along the mRNA 

(Tuller et al., 2010), and the other one treats the observed translation efficiency profile as a 

side effect of selecting for weak folding in the translation initiation region of mRNA 

sequence (Eyre-Walker & Bulmer, 1993; Bentele et al., 2013).  

Different studies have showed the importance of mRNA secondary structure in the 

ribosomal binding site on the initiation of the protein translation and generally on the 

protein production rate (Bentele et al., 2013; Kudla et al., 2009; de Smit & Van Duin, 

1990). Strong secondary structure near the initiation region of the mRNA sequence could 

affect protein production in two ways: First, strong local mRNA secondary structure would 

have a negative impact on the ribosomal binding rate. Second, if the start-codon is captured 

in the middle of the folded region, the ribosome would be unable to recognize it (Gu et al., 

2010). Gu et al., claim that the latter affects the process of translation initiation more 

significantly than the other.  

Gu et al., and more recently, Bentele et al., have measured the folding energy in 

different parts of the gene sequences in diverse species and have detected a selection for 

weak secondary structure in the translation initiation region of mRNA sequences (Figure 

2.2). The reduction in folding strength of the mRNA in the beginning of the sequence can 

be well predicted by the total GC content of the genome. As the GC content increases, the 

suppression of the secondary structure in translation initiation region increases (Gu et al., 
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2010). Besides a strong correlation between the suppression of mRNA secondary structure 

near the translation initiation region and the deviation in codon usage in the same region 

compared to the rest of the sequence has been found. There is also a pattern of reduction in 

total GC content and GC3 (GC content in the third position of the codons), in the 

beginning of the genes, which would be expected since guanine and cytosine would create 

a much stronger bond compared to adenine and uracil and therefore cause a stronger 

folding. And since in GC rich organisms, such as E. coli, the abundant codons tend to rich 

in GC and a reduction in GC content in the beginning of the ORF, in order to reduce the 

folding energy of the secondary structure, will result in using AU rich codons which are 

rare (Bentele et al., 2013). 

Tuller et al. findings on the efficiency profile of codons in different species using 

tRNA adaptation index, tAI, also show a clear selection for choosing inefficient codons for 

the first 30-50 codons, Figure 2.3. They term this region “ramp”, and the statistical tests 

clearly show that the ramp is selected for. But they provide a different explanation for the 

existence of this phenomenon. According to their argument, the ramp is a mechanism to 

control the movement of the ribosomes along the mRNA sequence. 

Both experimental measures and simulations show that insertion of a segment of 

rare codons in the middle of a gene could affect the translation efficiency of the gene 

significantly, since queuing of ribosomes behind this region can occur and thus would 

cause a bottleneck in protein translation (Shaw et al., 2004; Mitarai et al., 2008). 

Introducing a region of slow codons in the beginning of the sequence will cause spacing 
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between ribosomes along the sequence and therefore decrease the chance of jamming of 

ribosomes when encountering the bottlenecks during protein translation. This would be 

beneficial since one factor involved in the cost of translation of proteins would be the total 

time a ribosome spends on each mRNA molecule, and reducing the chance of collisions 

would save the ribosomes from wasting time on the sequence. Besides, the ramp may as 

well increase the sensitivity to the abundance of tRNA molecules loaded with amino acids 

at early stages of translation process and thus provide a simple way of terminating the 

translation process in the beginning in the case of insufficient level of raw materials. A 

negative correlations between the total number of transcribed mRNA molecules and 

number of ribosomes bound per mRNA, with the length and depth of the ramp has also 

been detected, which would support this explanation for the existence of the ramp since the 

jamming of ribosomes would be more dramatic for genes which have higher mRNA levels 

and higher number of ribosomes per mRNA. 
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2.3- Figures & Tables 

 

 

 

 

 

 

 

 

 

Figure 2.1: CAI profile of E. coli genes for each codon position, 

divided into three groups according the average CAI value of the 

sequence. (Eyre-Walker & Bulmer, 1993) 

Figure 2.2: the profile of secondary structure folding energy in 

mRNA sequence of E. coli. The average folding energy shown in 

solid line with an interquartile range in grey. (Bentele et al., 2013) 
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Figure 2.3: A region of codons with low tRNA adaptation index (tAI) 

at the beginning of E. coli gene sequences. (Tuller et al., 2010)   
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Chapter 3 

The Relationship Between the Strength of 

Codon Bias in Gene Sequences and the 

Expression Level of the Corresponding 

Proteins and mRNAs 

 

3.1- Introduction: 

Looking at the codon frequencies in different genes in E. coli we would observe a 

clear bias in choosing the synonymous codons, and this bias becomes more significant in 

the highly expressed genes. There are different theories which try to explain this 

phenomenon; some would refer to the translational selection as the dominant force shaping 

this bias and some focus on the mutational bias. Here by using the data on the proteome 

and transcriptome of E. coli and using a population genetics model we try to investigate 

the relation between codon bias in a gene and different measures of expression level. 

Taniguchi et al. 2010, have reported single-cell global profiling of both mRNAs 

and proteins using a yellow fluorescent protein (YFP) fusion library for E. coli, and their 

data has enabled us to look at the relation between different measures of expression level 

and codon usage bias in the gene in E. coli. In this we can see whether increasing the 

strength of codon bias in a gene affects parameters related to its own protein production or 

the overall protein production and fitness of the cell. 
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Several studies suggest that the protein production of each gene is initiation limited 

and substitution of rare codons with preferred ones increases the elongation speed, but may 

not necessarily increase the overall protein production of the gene itself (chapter 2, section 

2.1), therefore selection for stronger codon bias in highly expressed genes may not seem 

intuitive. Here we also try to suggest an analytic model for protein production which 

allows for selection of preferred codons in spite of translation being initiation limited. 

Our model also enables us to test for the existence of context dependent mutation. 

Signatures of context dependent mutation has been observed in many organisms (Jia & 

Higgs, 2008; Shioiri & Takahata, 2001; Fedorov et al., 2002), suggesting that mutation 

rates between the 4 nucleotides in the gene sequences are affected by the neighboring sites. 

In this model we are able to see whether the second nucleotide position in the synonymous 

codons could affect the mutation rates between the codons coding for an amino acid. 

3.2- Expression Measures in E. coli: 

In this study we have aimed to analyze dependence of different features of codon 

bias in E.coli on gene expression. We have used the results given by Taniguchi et al., in 

which they have measured average protein production rate for 1018 genes, and for 585 

genes out of the 1018 genes they have measured average mRNA levels and also mRNA 

lifetimes in a cell cycle.  

Taniguchi et al., used the following mathematical model to describe the 

concentrations of proteins and mRNAs in the cell. Here we use this model to generate four 
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different hypotheses as to how the strength of selection of codon bias might vary among 

genes. 

Let p and m be the mean number of copies per cell of a specific protein and its 

mRNA. These satisfy the differential equations 

mk
dt

dm
11  , pmk

dt

dp
22  , 

where k1 is the transcription rate, k2 is the translation rate over each mRNA, and 1 and 2  

are the breakdown/dilution rates of the mRNA and protein. It is assumed that the major 

factor leading to dilution of proteins is the growth and division of the cell, so that 2 = 

1/Tcell for all proteins, where Tcell  is the cell division time. The mRNA breakdown rate is 1 

= 1/T, where T, the mRNA lifetime, is different for each mRNA and can be substantially 

shorter than Tcell. In steady state, we have  

Tk
k

m 1

1

1 


,  
cellTmk

mk
p 2

2

2 


. 

It is also useful to define M and P, the mean number of mRNAs and proteins 

produced per cell cycle. It follows that 

T

mT
TkM cell

cell  1 ,  pTmkP cell  2 . 

Taniguchi et al. fit the distribution of fluorescence intensity between cells using 

two parameters a and b, where a is the number of mRNAs produced per cell cycle (which 
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iscalled M), and b is the mean number of proteins produced from one mRNA. It follows 

that 

Tkb 2 ,  MbP  . 

In the experiment, P, M, b and T are all measured for many different genes in E. 

coli. Here, we test four hypotheses about the way the strength of translational selection 

should depend on these quantities.  

I. S ~ P.  

II. S ~ M.  

III. S ~ b = P/M  

IV. S ~ k2 = P/(MT)  

 

In these hypotheses, S is the strength of selection that appears in the 

mutation/selection/drift theory of codon usage bias. As the total effort expended on 

synthesizing a protein is P, it seems clear that S should depend on P (Hypothesis I). As P 

and M are correlated [ (Taniguchi et al., 2010) & Figure 3.1], it also seems reasonable that 

S should depend on M (Hypothesis II). If codon usage bias arises as a result of selection for 

translational efficiency, then it also seems reasonable that genes with a higher proportion 

of fast codons should produce more proteins per mRNA; hence, S should depend on b 

(Hypothesis III). Finally, we would expect that codon bias should influence translational 

rate per mRNA, k2 (Hypothesis IV). We note that all four quantities are correlated, so we 

should not be surprised if all four hypotheses are true to some extent. Therefore, we 
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consider quantitative predictions of codon frequency data using models based on the four 

hypotheses in order to determine which factors are most relevant in determining codon 

bias.  

There is an important caveat regarding Hypothesis IV. In the simple dynamical 

theory above, translation is treated as a single process with a rate k2. This is a gross 

oversimplification. Translation involves both initiation and elongation. Initiation (i.e. the 

binding of a ribosome to the 5’ end of a mRNA and moving to the first codon) is likely to 

vary in rate between different mRNAs in ways that are not directly related to codon bias. 

Codon bias should be directly related to the elongation rate; however, the data that we use 

from Taniguchi et al. do not measure elongation rate, so we cannot use these data to test a 

hypothesis that S is dependent on elongation rate. Later in this chapter, we consider a more 

detailed theory which distinguishes between initiation and elongation. We wish to 

emphasize that selection should still occur on codon usage even when translation is 

initiation-limited. At this point we proceed to the data analysis using the hypotheses that 

are testable from the data of Taniguchi et al. 

 

3.3- Correlation of Expression Level with Codon Bias 

 We have downloaded the genome of E.coli from NCBI database and calculated 

codon frequencies of each gene for further analysis of dependence of codon bias on gene 

expression. As a measure of the strength of codon bias, the average  was measured for 

each gene, as suggested by Ran & Higgs (2012), and discussed in Chapter 1. 
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3.4- Correlation between different measures of expression level 

The data extracted from Taniguchi et al. show clear positive correlation between 

mean protein level and mean mRNA level, mean protein per mRNA and also mean protein 

per mRNA per unit time, Figure 3.1. This fact could indicate that in order to increase the 

mean protein level, the cell tries to both increase transcription and translation speed. As it 

can be extracted from Figure 3.1, since P/M depends on T itself, dependence of the protein level in 

each gene can be traced back to three independent parameters: number of transcribed mRNA 

molecules (M), protein translate rate over each mRNA molecule ( P/(M×T) ) and the lifetime of 

mRNA molecules (T).  

3.5- Codon bias is correlated with P, M and other expression level 

measures 

Plotting the measure of δ for strength of codon bias, averaged over each gene 

against protein level shows the strong correlation of codon bias and protein production 

level, Figure 3.2. This plot shows that even for the genes with very low production level 

there is a selection for choosing codons with high δ which are preferred in the highly 

expressed genes. We also observe that strength of codon bias and other expression factors 

show less correlation; this may support the idea that increase in protein production rate 

over each mRNA and increasing elongation rate of proteins, something that increasing 

strength of codon bias could result to, are not strongly correlated (Hershberg & Petrov, 

2008; Plotkin & Kudla, 2010). 
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3.6- Population genetics theory for codon frequencies 

The population genetics theory for the way codon frequencies should depend on 

mutation, selection and drift goes back to Bulmer (Bulmer, 1991) and has been used by 

several authors (Ran & Higgs, 2012; Shah & Gilchrist, 2011; Trotta, 2013). The expected 

frequency of codon i in gene sequence g can be written as 
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where i is the mutation rate to codon i from its synonymous codons (which is assumed to 

be independent of the gene), and Sig is the scaled selection strength acting on codon i in 

gene g (which depends on g because different genes have different expression levels). The 

sum in equation 8 is over all the codons j that are synonymous with i.  

 The scaled selection strength can be written as igeig sNS 2 , where Ne is the 

effective population size, and sig is the selection coefficient in the fitness. However, Ne 

cannot be determined from codon frequency data, so we deal directly with Sig. If Sig<< 1 

for all codons in a family, then the codon frequencies depend on mutation rates only: 
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If selection is strong, then the codon frequency ig tends to 1, for the codon that has 

the highest Sig in the codon family. 
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3.7- Testing hypotheses for mutation and selection 

The aim of this paper is to compare several alternative hypotheses for the way the 

mutation and selection parameters in this theory should depend on codons and sequences. 

If nig is the observed number of occurrences of codon i in gene g, then the log likelihood, 

L, of the set of genes is 

 


g i

igignL )ln()ln(   
(

10) 

The free parameters in the theoretical frequencies, ig , are chosen to maximize the 

likelihood. To select between models with different numbers of parameters, we use 

Akaike's information criterion, AIC = 2(-ln L + K), where K is the number of free 

parameters to be estimated from the data. The model with the minimum AIC is to be 

preferred (Akaike, 1998). AIC selects models with high likelihood but penalizes models 

with unnecessarily large numbers of parameters. 

If no assumptions are made about the mutation rates, then there is a different i 

parameter for each codon. However, the codon frequencies depend only on the relative 

rates of forward and reverse mutations, not on the absolute mutation rates. Therefore it is 

possible to set 
j

j  = 1 for every codon family. For a family of n synonymous codons, 

there are n-1 independent i parameters. In the standard genetic code, there are 3 families 

with 6 codons, 5 families with 4 codons, 1 family with 3 codons, and 9 families with 2 
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codons. This gives 41  parameters. We exclude stop codons and codons for single-codon 

amino acids, Met and Trp. We call this the general- assumption.  

A first hypothesis for selection is that it should be linearly proportional to protein 

level, giig PkS  , where Pg is the measured protein level, and there is a selection parameter 

ki for each codon that is to be estimated from the codon data. Codon frequencies depend on 

relative selection values; hence we chose to set ki= 0 for the most preferred codon for each 

amino acid in the high expression genes. There are n-1 independent k parameters in a 

family of n codons, and 41 independent k parameters in total. We call this the general-k 

assumption. Our initial model, with general- and general-k assumptions and selection 

linear in P, has K=82 free parameters. We compared alternative models with fewer  or k 

parameters relative to this model using AIC. The alternatives are defined in the results 

section. 

As there is considerable fluctuation in codon numbers, it is sometimes useful to 

smooth the data by binning genes according to protein level, and averaging over genes in 

each bin. Genes were ranked by Pg and divided into 14 bins with equal numbers of genes 

in each bin (the choice of number of bins does not affect the final results qualitatively, and 

14 was picked so that the difference between last bin and the rest, in terms of number of 

genes included in each bin, would be minimized). Pm is the mean value of Pg for genes in 

bin m and nim is the number of occurrences of codon i in genes in bin m. If selection is 

linear in Pm, then Sim = kiPm. The formulae for the codon frequencies im and ln L are 

equivalent to equations 1 and 3 with the bin index m replacing the gene index g.  
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By binning the genes and treating the parameters such that the theoretical 

frequencies would initially go through the observed codon frequencies in two of bins, one 

picked from high expression regime and one from low expression regime, we were able to 

make an initial guess for the parameters involved in each model. The parameters were then 

varied such that the likelihood of the model reaches its maximum.  

We also considered models where selection depends on the mRNA level, M, 

instead of the protein level P, or on some combination of P and M. As these quantities are 

experimentally measured, changing these assumptions about selection does not change the 

number of parameters. 

3.8- The variation of individual codon frequencies with protein level

  

As Figure 3.2 indicates, codon bias depends more strongly on P than other 

measures of expression level, we first tested evolutionary models that assume translational 

selection strength is dependent on P. Genes were binned according to their total protein 

level, and we supposed that the selection strength Sim is linearly dependent on Pm, the 

standard model. The standard model has general  and general k parameters, and selection 

is linear in protein concentration, - Sim = kiPm. The calculated values extracted from the 

model shows very good agreement with what we actually observe in the real genes.  

Next we tested for different functions for the relation between fitness and protein 

level: 𝑆𝑖𝑚 =  𝑘𝑖 𝑙𝑛(𝑃𝑚), 𝑆𝑖𝑚 = 𝑘𝑖(𝑃𝑚)𝛼 (with α being a free parameter) &
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sati
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/1
  (with Psat as a free parameter) . Among all these functions, the latter 

shows the least AIC value (when
averagesat PP  9.1 ). This shows that the linear dependence 

of selection strength on protein level is only valid in lowly expressed genes, and as the 

gene expression is comparable with the average protein level, the dependence of fitness on 

protein level starts to deviate from the linear function and reaches a final limit for large 

protein levels. The table of AIC values is given in Table 3.1. 

One thing that could affect the codon frequency significantly is the context-

dependent mutation, which indicates that the mutation between one nucleotide and any 

other nucleotide is partly controlled by the neighboring sites. This model allows us to test 

context-dependent mutation as well. We observe that in Tyr, His, Asn & Asp the frequency 

of codons having the same nucleotide in the second and third position (AU and AC), in the 

genes with low expression level, which is assumed to be mainly governed by mutation, 

differ significantly.  

For testing the existence of context dependent mutation we have treated mutation 

of codons in two ways. First we tested whether by only considering the third position as 

the main parameter determining mutation rates, we can regenerate the bias in codon 

frequencies we observe. We looked at codon frequencies in the very lowly expressed 

genes, which are assumed to be governed mainly by mutational bias, and treated all the 

codons with same nucleotide in the third position alike. All the codons ending with the 

same nucleotide, would show the same mutation rate. In this manner the 41 independent 

parameters for µ, would decrease to 3. By doing this we observe that the likelihood 
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decreases by a significant amount and this method shows a much higher AIC value, 

indicating that the reduction of the number of parameters destroys significant amount of 

information. Next we tried a different approach. We tried to see if considering the second 

and third position as the two main sites controlling the mutation rate would give an 

acceptable result. This time we treated all the codons in each column of the genetic code, 

which share same nucleotides in the second and third positions, alike. In this way the 

number of independent µ parameters would be 12, 3 independent parameters in each 

column, instead of 41. This time as well the final likelihood is much less than the most 

general case and a higher AIC value. This shows that for each codon the mutation rate is 

context dependent and synonymous mutation rates observed in the genes cannot be 

explained by just considering the third position or second and third position. The values for 

µ parameters of the codons in E. coli are presented in Figure 3. 4, for two and four codon 

families separately. 

We also tested whether in the U+C codon families (Phe, Tyr, His, Asn, Asp & 

Cys), the preferred codons could all have the same selection coefficient or the ones which 

have the same number of tRNA genes, UAC/GAC and CAC/UGC, with perfect codon-

anticodon pairing can have the same value as their selection coefficient. But we also 

observe that these two models would again result in an increase in AIC (Table 3.1). 

Next we tried to see how does considering other measures of expression for the 

translation selection strength affects the results. We tested different functions for the 

translation selection and compared the AIC value of each model with the model where the 
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selection has a linear dependence on P. The AIC values are given in Table 3.2. As it can be 

extracted from the data, the translational selection in mainly dependent on the total protein 

level of the gene, however considering the number of transcribed mRNA molecules of 

each gene could result in an improvement to the fit.  

The result of fitting the data on E.coli with the model with lowest AIC is shown in 

Figure 3.3, for Phenylalanine and Valine. As it can be seen the model can fit through the 

data points pretty well and can produce the pattern we observe in E.coli genome.  

 

3.9- Testing the model for Yeast: 

In order to see whether the proposed model works in other organisms as well we 

have looked at the genome of yeast (downloaded from NCBI) and by using the data 

measured by Ghaemmaghami et.al, protein level of more than 3800 genes, we could 

extract the relation between codon bias and gene protein level in yeast, Figure 3. 5. The 

genes used were binned into 14 bins and for each bin the frequency of each codon and the 

average protein level was calculated and finally was fitted by the model, the results for 

Phenylalanine and Valine are provided in Figure 3.6 as an example. Furthermore as it can 

be seen in Table 3.3, putting restriction on mutation rate causes a significant increase in 

AIC, an indication for existence of context dependent mutation in yeast. Again we see that 

the function with a saturating function of protein level fits best with the data. 
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3.10- Effects of initiation and elongation on protein production rate 

 

There has been some debate about whether translation is limited by initiation or 

elongation. The term ‘initiation-limited’ has been used rather imprecisely in the literature, 

which has contributed to some confusion. A useful way to define what is meant by 

‘initiation-limited’ is to consider the TASEP model (totally asymmetric simple exclusion 

process), which is often used as a model of translation of a single mRNA by multiple 

ribosomes simultaneously. In models of this type, it is assumed that ribosomes bind at the 

5’ end of the sequence at a rate α, provided the initial region of the sequence is not already 

occupied by a previous ribosome. A ribosome moves forward one codon at a rate v, 

provided its progress is not blocked by another ribosome immediately in front of it. In the 

simplest versions of the model, this rate is the same for every codon, but in more realistic 

versions, different rates can be assigned to codons of different type (Zia et al., 2011; Chou 

& Lakatos, 2004; Shaw et al., 2004). 

The rate of protein production from one mRNA is equal to the current, J, of 

ribosomes moving along the mRNA. In a state of steady translation, J is the same at all 

points along the mRNA. For every ribosome that initiates, another one terminates at the 

end of the sequence. Thus the protein production rate is equal to α times the probability 

that the initiation region is not blocked by a previous ribosome. If α is small compared to v, 

the ribosomes are well separated along the mRNA and the initiation region is always free 

of previous ribosomes. This means that J = α in this limit, which we will refer to as strictly 

initiation-limited. For somewhat larger α, the ribosomes are fairly well separated, but there 
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is a chance that a previous ribosome blocks the initiation region, so that the successful 

initiation rate is reduced, and J is slightly less than α. J is a function of both α and v in this 

regime, which is known as the low density phase. If α is increased further, there is a high 

probability that the initiation region is blocked. In this case there is a maximum current 

that is proportional to v and independent of α (Shaw et al., 2004). In this maximum current 

phase, protein production is strictly elongation-limited and is independent of the attempted 

initiation rate. The situation is more complex if there is significant variation in rates 

between fast and slow codons within a sequence. In some cases, the current can be 

controlled by bottlenecks of a few particularly slow codons, rather than by the average 

elongation rate v. 

The regimes limited by elongation and by bottlenecks are interesting as dynamical 

phenomena and have been widely studied in simulations (Greulich & Schadschneider, 

2008; Dong et al., 2007; Shaw et al., 2003). However, it is the elongation limited regime 

that seems most relevant to understanding the evolution of codon usage bias in highly 

expressed genes. Rapidly multiplying microorganisms are under selection for increasing 

overall protein production rate (Ran & Higgs, 2012). This depends on translating lots of 

different mRNAs simultaneously with a finite number of ribosomes. Here we wish to give 

a simple analytical theory that applies to simultaneous translation of many different 

mRNAs in the limited translation is strictly initiation-limited. 

We suppose that the total number of ribosomes in a cell at a given time is Ntot, and 

that Nfree of these ribosomes are free to initiate translation. The number of ribosomes 

already bound to mRNAs and engaged in translation is Nbound = Ntot – Nfree. The mean 
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number of mRNAs for gene g in the cell is mg and the total number of mRNAs is mtot = 


g

gm . We suppose that ribosomes are well separated along mRNAs. The rate of initiation 

of ribosome on an mRNA for gene g is αg = rgNfree, where rg is an initiation rate constant 

that depends on the gene, and it is assumed that initiation increases linearly with the 

number of free ribosomes. The time taken for one ribosome to translate an mRNA is tg. For 

widely spaced ribosomes, this is just the sum of the times taken for each codon. The mean 

time per codon is tg/Lg, where Lgis the length (in codons) of the gene. The mean elongation 

rate is vg = Lg/tg.  

The mean time between initiation events on the same mRNA is 1/αg, and the time 

spent by one ribosome on the mRNA is tg; therefore the mean number of ribosomes bound 

to the mRNA is 

 

ggfreeggg trNtn   
(

11) 

and the mean separation, dg, between ribosomes is the number of codons moved by one 

ribosome in a time 1/αg: 
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Each ribosome covers a length of l codons, and it is estimated that l is approximate 

11 in E. coli. Hence, the condition that the ribosomes are widely separated, and do not 

interfere with each other is that dg>>l, or equivalently, αg<< vg/l. This is what is meant by 
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saying that the process is initiation-limited. It does not imply that the time between 

initiations is short compared to the time spent on the mRNA. In fact, if ng> 1, tg>1/αg. 

If we are in the initiation-limited regime, the number of free ribosomes can be 

obtained in the following way. 
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We use g’ as an index summing over all genes. For any one particular gene, g, we 

can obtain the number of ribosomes per mRNA, ng, and the rate of protein production per 

mRNA, Jg: 
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The number of copies of the protein produced per cell cycle is: 
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and the total number of proteins produced per cell cycle is 

 








'

'''

'

''

1
g

ggg

g

ggcelltot

tot
trm

rmTN

P  
(

18) 

Consider a synonymous mutation that reduces the time spent by the ribosome on 

this codon by an amount t. If the mutation occurs in a specific gene g, the time for 

translation of this gene is reduced from tg to tg-t. The denominator in equations 7-11 

depend on the times tg’ for all the genes. When the mutation occurs, it will increase the 

production rate Pg of the gene g and it will also increase the rate of production Pg’ of all the 

other proteins by the same factor. Let g

totP  be the amount by which the total protein 

production rate is increased due to a mutation occurring in gene g. 
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Assuming that t is small, and expanding to first order in t, we obtain 
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The key point is that if the same mutation with the same t occurs in any gene, its 

effect on the protein production rate is proportional to Pg. Thus, if selection is acting to 

increase the overall growth rate of the cell, and if the time spent on protein production is a 

significant proportion of the total time required for cell division (which seems likely), then 

the fitness change due to the mutation should be proportional to the protein production rate 

Pg of the gene in which it occurs. This motivates Hypothesis I: S ~ P. It also explains why 

selection acts on codon usage even when translation is initiation-limited.  

 

3.11- Discussion and Conclusion:  

The dependence of codon bias strength and the expression level of the genes have 

been suggested by several scientists (Ikemura, 1985; Bulmer, 1991; Shah & Gilchrist, 

2011; Ran & Higgs, 2012), here we try to further investigate this phenomenon and see 

what measure of expression level would explain the differences in codon bias strength 

among different genes in a genome.  

Using the data measured by Taniguchi et al., and the population genetics model we 

could be able to compare different models considering different expression measures as the 

dominant force in translational selection. The results indicate that total protein level of the 

genes explains the codon bias pattern observed in the real genes better than other 

parameters, M, P/M & P/ (MT). We first proposed a linear dependence of translational 

selection strength on the total protein level, S ~ P. But it was realized that this is true only 

for lowly expressed genes and as the protein level grows, the translational selection 

saturates and reaches a final limit. Considering the number of transcribed mRNA 
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molecules in each gene, beside the total protein level improved the model by a small 

amount. We have introduced a model for protein production which assumes that the 

protein translation is limited by initiation rate, and not the elongation speed. The analytic 

analysis show that the effect of a synonymous substitution in the codons of the gene 

sequences, which would cause a faster elongation speed, would increase the total number 

of proteins produced in the cell by a factor which is proportional to the total protein level 

of that specific gene. This would justify the higher correlation observed between codon 

bias strength and the total protein production of the genes compared to other measures of 

expression.  

As Table 3.1 shows, in highly expressed genes the dependence of strength of 

selection on the protein level saturates, it reaches a final value of Psat for very large protein 

levels. One reason for this phenomenon could be that reaching the highest possible level of 

frequent codons would not be optimal, but rather a specific fraction of frequent/rare codon 

frequencies would result in the highest fitness of the cell. It has been reported (Kolmsee & 

Hengge, 2011), rpoS sigma factors of E. coli contain large numbers of rare codons and 

substitution of these rare codons with the frequent codons results in a reduction of level of 

mRNA transcription and protein production. By reducing the speed of the ribosomes, rare 

codons can regulated spacing of the ribosomes on mRNA molecules and thus prevent the 

transcript from the ribonucleolytic attacks. 

By checking whether the model is over parametrized, we were also able to test the 

existence of context dependent mutation. The results show that the mutation rates 
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calculated can only be explained if we consider all three nucleotide positions of the 

codons, which suggests the existence of context dependent mutation. This phenomenon is 

also observed in yeast. We could also see whether reducing the number of selection 

coefficients, ki, would affect the model. We see that even setting selection coefficients of 

the codons with the same number of tRNA genes with proper anit-codon pair, in U+C two 

codon families, would cause a significant loss in the information suggesting that the 

translation of each codon depends on the details of the codon-anticodon interactions or the 

number of tRNA molecules is not perfectly proportional to the number tRNA genes and 

thus is not sufficient to explain the translation efficiency of each codon.  

The mutation rates and selection coefficients of each codon, along with other 

frequencies and number of tRNA genes are given in Table 3.4.  
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3.6- Figures & Tables:  

 

 

Figure 3.1: Correlation between different expression measures level, M, P/M, P/(M×T) 

[where T is the mRNA lifetime], and total protein level (top); and the correlation between 

P, M, P/M, P/(M×T) and mRNA lifetime, bottom. (data from Taniguchi et al., 2010) 
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Figure 3.2: Correlation between the codon bias strength (δ) and protein level of the genes, 

top, and other expression measures, bottom. For the plot in the bottom, in order to be able 

to compare the different expression measures, the parameters (X) were divided by their 

average (�̅�) values so that they would have the same scale.  
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Figure 3.3: Codon frequency pattern for Phenylalanine, top, and Valine, bottom. Markers 

show the observed frequencies in the genome, whereas the solid lines show the values 

from the model. The error bars shows one standard deviation in frequency of each codon 

in each bin. 
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Figure 3. 4: Comparison of the µ parameters (y axis) in U+C two codon families, top, and 

the four codon families, bottom. In the x axis each letter shows the nucleotide in the third 

position of the codons in each amino acid. 

 



 

46 
 

 

 

Figure 3. 5: This plot shows the relation between codon bias strength and protein level in 

yeast. Top - individual proteins; Bottom - binned into 40 bins. 
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Figure 3.6: Codon frequency vs protein level for Phenylalanine, top, and Valine, bottom. 

The error bars shows one standard deviation in frequency in each bin. 
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Model Selection function Parameters Ln L AIC 

Standard Sim = kiPm 41  + 41 k -354592 0 

Single point 

mutation 

Sim = kiPm 3  + 41 k -385849 +62438 

Mutation 

dependent on 2nd 

position 

Sim = kiPm 12  + 41 k -368108 +26974 

Restricted k (1) Sim = kiPm 41  + 36 k -354640 +86 

Restricted k (2) Sim = kiPm 41  + 39 k -354608 +28 

Logarithmic miim PkS ln  41  + 41 k -355031 +878 

Power law 


miim PkS   41  + 41 k +α -353893 -1390 

Saturating 
sati

ii
im

PP

Pk
S

/1
  41  + 41 k + Psat -353746 -1692 

Table 3.1: For this table we have binned 1018 genes in E.coli (for which the protein level is 

measured). Putting restrictions on mutation rates and selection coefficients would cause a 

significant loss in the information. 
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Model Selection function Ln L ΔAIC 

Standard Sig = kiPg -224380 0.0 

 Sig = kiMg -225139 +1518 

 Sig = kiPg/Mg -225458 +2156 

 Sig = kiPg/(MgTg) -225682 +2604 

 )( ggiig aMPkS 

 
-224273 -214 

Saturating 
satg

gi

ig
PP

Pk
S

/1
  -223649 -1462 

 

satg

gi

ig
MM

Mk
S

/1
  -224694 +628 
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iig
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M
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/1
 -223602 -1556 

Table 3.2: Comparison between different selection strength functions. The values for 

saturating functions which result in the highest likelihood are: averagesat PP 9.1 , 

averagesat MM 1.4 , 5.0a  & 2.0'a . 
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Model Selection function Parameters Ln L AIC 

Standard Sim = kiPm 41  + 41 k -2051334 0.0 

Single point 

mutation 

Sim = kiPm 3  + 41 k -2103951 +105158 

Mutation 

dependent on 

2nd position 

Sim = kiPm 12  + 41 k -2092733 +82740 

Saturating 
sati

ii
im

PP

Pk
S

/1
  41  + 41 k -2048949 -4770 

Table 3.3: Comparison of different models for yeast. 
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Codon Am.Acid ΦH Φ0 δ 
tRNA 

Genes 
µ 100 × k 

UUU Phe 0.228 0.574 -0.922 0 0.606 -0.992 

UUC Phe 0.772 0.426 0.594 2 0.394 0 

UUA Leu 0.024 0.131 -1.688 1 0.137 -1.453 

UUG Leu 0.04 0.128 -1.158 1 0.139 -1.097 

CUU Leu 0.048 0.104 -0.764 0 0.105 -0.742 

CUC Leu 0.038 0.104 -1.004 1 0.105 -0.586 

CUA Leu 0.002 0.037 -2.901 1 0.04 -1.536 

CUG Leu 0.847 0.497 0.534 4 0.474 0 

AUU Ile 0.249 0.508 -0.713 0 0.538 -0.747 

AUC Ile 0.749 0.42 0.578 3 0.395 0 

AUA Ile 0.002 0.072 -3.446 0 0.067 -2.195 

AUG Met 1 1 0 8 1 0 

GUU Val 0.52 0.259 0.697 0 0.237 0 

GUC Val 0.078 0.216 -1.02 2 0.223 -0.755 

GUA Val 0.278 0.154 0.593 5 0.148 -0.19 

GUG Val 0.124 0.371 -1.098 0 0.393 -0.627 

UCU Ser 0.408 0.145 1.031 0 0.127 0 

UCC Ser 0.257 0.149 0.546 2 0.137 -0.179 

UCA Ser 0.031 0.123 -1.37 1 0.112 -1.263 

UCG Ser 0.013 0.154 -2.508 1 0.166 -1.389 

CCU Pro 0.142 0.158 -0.111 0 0.158 -0.566 

CCC Pro 0.011 0.124 -2.376 1 0.126 -1.516 

CCA Pro 0.126 0.191 -0.413 1 0.195 -0.579 

CCG Pro 0.72 0.527 0.313 1 0.521 0 

ACU Thr 0.468 0.166 1.037 0 0.143 0 

ACC Thr 0.442 0.435 0.016 2 0.431 -0.271 

ACA Thr 0.049 0.131 -0.981 1 0.128 -1.268 

ACG Thr 0.041 0.268 -1.87 2 0.297 -1.118 

GCU Ala 0.462 0.161 1.053 0 0.143 0 

GCC Ala 0.082 0.27 -1.196 2 0.284 -0.823 

GCA Ala 0.269 0.214 0.229 3 0.201 -0.353 

GCG Ala 0.188 0.356 -0.637 0 0.371 -0.533 

UAU Tyr 0.238 0.569 -0.873 0 0.574 -0.574 

UAC Tyr 0.762 0.431 0.571 3 0.426 0 

CAU His 0.299 0.572 -0.649 0 0.603 -0.921 

CAC His 0.701 0.428 0.493 1 0.397 0 

CAA Gln 0.197 0.347 -0.568 2 0.36 -0.669 

CAG Gln 0.803 0.653 0.207 2 0.64 0 
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AAU Asn 0.123 0.451 -1.303 0 0.466 -0.96 

AAC Asn 0.877 0.549 0.469 4 0.534 0 

AAA Lys 0.715 0.766 -0.069 6 0.765 0 

AAG Lys 0.285 0.234 0.197 0 0.235 -0.201 

GAU Asp 0.359 0.627 -0.559 0 0.655 -0.664 

GAC Asp 0.641 0.373 0.543 3 0.345 0 

GAA Glu 0.763 0.69 0.101 4 0.684 0 

GAG Glu 0.237 0.31 -0.27 0 0.316 -0.302 

UGU Cys 0.316 0.445 -0.342 0 0.447 -0.418 

UGC Cys 0.684 0.555 0.209 1 0.553 0 

UGG Trp 1 1 0 1 1 0 

CGU Arg 0.683 0.38 0.586 4 0.353 0 

CGC Arg 0.302 0.4 -0.28 0 0.413 -0.584 

CGA Arg 0.003 0.064 -2.951 0 0.071 -2.304 

CGG Arg 0.005 0.098 -2.97 1 0.115 -2.524 

AGU Ser 0.047 0.151 -1.169 0 0.164 -1.646 

AGC Ser 0.245 0.277 -0.125 1 0.293 -0.896 

AGA Arg 0.007 0.037 -1.711 1 0.028 -2.267 

AGG Arg 0 0.021 -3.446 1 0.02 -3.244 

GGU Gly 0.621 0.338 0.61 0 0.31 0 

GGC Gly 0.359 0.404 -0.117 4 0.405 -0.338 

GGA Gly 0.006 0.108 -2.813 1 0.116 -1.678 

GGG Gly 0.013 0.151 -2.454 1 0.169 -1.366 
 

Table 3.4: Table for the frequencies, δ values, number of tRNA genes, µ and the selection 

coefficients from the best fitted model for the codons, excluding the stop codons.  
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Chapter 4 

Effect of mRNA secondary structure on 

codon usage in the beginning region of the 

gene sequences 

 

4.1- Introduction:  
 

Deviation in codon usage in the beginning region of the gene sequences has been 

reported in several studies (Bentele et al., 2013; Eyre-Walker & Bulmer, 1993; Gu et al., 

2010; Tuller et al., 2010), but there’s a lack of clear explanation for the phenomenon. In 

this study we try to investigate the relation between suppression of mRNA secondary 

structure and the reduction in codon adaptation in the first 10-15 codon positions of the 

gene sequences.  

 

4.2- Materials and Method: 
 

For this section we downloaded the E. coli genome sequence, 4141 protein genes, 

from the NCBI data base. Each gene was split into segments of 39 nucleotides (13 codons), 

using a sliding window where each window would be moved by two codons to produce the 

successive one. Mean free energy of the secondary structure in each segment was 

calculated using the program RNAfold [from ViennaRNA package (Lorenz et al., 2011)] 
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which reads in the sequence and finds the most stable structure that can be made and 

reports its mean free energy. 

RNA secondary structure prediction through energy minimization is the most used 

function in the package. In this package three kinds of dynamic programming algorithms 

for structure prediction is provided: the minimum free energy algorithm of Zuker & 

Stiegler (1981), which yields a single optimal structure, the partition function algorithm of 

McCaskill (1990) which calculates base pair probabilities in the thermodynamic ensemble, 

and the suboptimal folding algorithm of Wuchty et al. (1999), which generates all 

suboptimal structures within a given energy range of the optimal energy. 

The choice of 39 nucleotides is motivated by two facts, first that it is about the 

same number of codons in the beginning of the gene sequences which show a significant 

reduction in the δ value as compared to the rest of sequence, and folding in mRNA 

molecules is mainly short range and does not involve a long portion of the sequence, and 

also this is approximately the same size as the ribosome and if we want to argue about the 

effects of mRNA secondary structure in the translation initiation region of the mRNA 

molecules on the binding rate of the ribosomes to the mRNAs and translation initiation, it 

would reasonable to consider windows of such size. The data for gene expression level has 

been taken from Taniguchi et al., as described in chapter 3.  

In order to look at the folding patter of the genes in E. coli. we split the gene 

sequences into segments of 39 nucleotides using a sliding window. Each window is made 

by moving the previous one by 6 nucleotides, the choice of fewer number of nucleotides 

does not change the pattern we observe. In this case the window covering the first 13 
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codons (starting from ATG) would be called the 1st codon window, and the window 

covering the range of 3rd-15th codon is called the 3rd codon window, and so on. This 

method, with different sliding intervals, has been used by others (Bentele et al., 2013; 

Tuller et al., 2010) as well.  

 

4.3- A “Reduced Adaptation Region” in the beginning of the genes 

 
As a measure of codon bias strength, we use , as described in chapter 1.When 

plotting the average δ for each codon position in E. coli, we can observe a significant 

decrease in δ value of the codons in the first 10-15 codons, Figure 4.1. This shows the 

existence of inefficiently translated codons in the beginning of the open reading frame. The 

same pattern was previously observed by (Tuller et al., 2010; Eyre-Walker & Bulmer, 

1993). We will call this region the “reduced adaptation region (RAR)” for reference in 

future. To further explore the behavior of this phenomenon, we tried to see whether there is 

a relation between the severity of the RAR and the expression level of the genes. Since 

there’s a positive correlation between the average δ value of each gene and its expression 

level, as explained in Chapter 3, we have plotted the average δ value in the beginning 

region of the genes vs the average codon bias strength of the whole gene sequence, Figure 

4.2. It can be seen that the  of the RAR increases roughly linearly with the  for the rest of 

the gene, but   of the RAR is lower than the  for the rest of the gene at all  values. This 

suggests that some factor that competes with selection for translational efficiency is acting 

in the RAR. The reduction in  of the RAR relative to the rest of the gene becomes larger 
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as  increases, which suggests that the competing factor is more in conflict with selection 

for translational efficiency in the genes with high  and high expression level. This finding 

may imply the importance of the reduced adaptation region for protein production.  

4.4- mRNA secondary structure and RAR 

Folding pattern in E. coli genes 

 

As it can be seen in Figure 4.3, there’s a clear reduction in the folding free energy 

of the mRNA sequences up to the 5th codon window. Tuller et al., have shown that the 

reduction in folding in the 1st codon window compared to the folding energies in the rest of 

the gene sequence is selected for (Tuller et al., 2010). One interesting feature that can be 

detected in this plot is the significant increase in the strength of folding (i.e more negative 

values of folding free energy) in the 7th-11th codon windows, which covers structure in the 

interval of 7th-24th codon,. This strong folding might exist in order to prevent formation of 

strong secondary structures in the translation initiation region of the genes (Tuller et al., 

2010).It is interesting to notice that the windows where the folding energies are 

significantly different from the middle region (i.e. windows beyond codon 15) covers the 

same codons as the region showing low translation efficiency, when plotting codon bias 

strength of codons versus their position in the gene sequence. 

Generation of synonymous random genes and selection for weak folding 

 

In order to see whether the secondary structure of the mRNA molecules in the 

beginning of ORF plays a role in shaping the codon bias in the RAR, we generated 

synonymous random sequences having the same resultant amino acid chains and codon 
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frequencies equal to φ0, frequency of codons when averaged over the whole genome. And 

also randomized sequences with frequencies equal to that of highly expressed genes, φH. 

For each gene, a set of 1000 such sequences were produced. In each set of randomized 

sequences the folding energy profile, as discussed in the method section, was measured 

and in the set with frequencies equal to φ0, the ones with the weakest secondary structure, 

least 1% and 0.1%, were chosen. Figure 4.4 shows these values for the real and randomized 

sequences and the ones with least 0.1% folding energy in the first codon window. For the selected 

sequences, which show weak secondary structure in the beginning region, the translation 

efficiency profile of the codons, codon bias strength of codons vs their position in the 

sequence, was plotted and compared with the translation efficiency profile observed in the 

real genes,  

As it is evident from Figure 4.4, selecting for weak folding in the beginning region 

of the randomly generated genes also leads to a reduction in  in the same region, as is 

observed for real genes. This might strengthen the idea that appearance of the RAR in the 

translation efficiency profile of the codons in the first 10-15 codons is a side effect of 

suppressing the secondary structure in this region.  

But looking at the folding energy pattern of the randomized sequences with φ0 

frequencies, we see that for these sequences before any selection for weak folding in the 

first codon window, even though there is no bias in codon usage in different positions of 

the genes, the blue curve in Figure 4.4, the folding free energy in the first 13 codons is 

more or less the same as what we observe in real genes, the blue curve in Figure 4.3. When 

we select for the sequences with weak secondary structures in the first codon window, the 
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chosen sequences show folding free energies which are much less negative than what we 

observe in real genes in the beginning region, -2.0 kcal/mol compared to -5.2 kcal/mol. We 

have also generated synonymous sequences having codon frequencies equal to that of 

highly expressed genes, φH, and measured the folding energy pattern of these sequences as 

well. As it can be seen, the brown curve in Figure 4.3, even substituting the inefficient 

codons in real sequences with efficient ones, while keeping the coding sequence the same, 

would not result in a much different folding free energy of the first codon window 

although it would change the  profile a lot. In other words it is possible to use the efficient 

codons, in terms of translation efficiency, in all of the positions in the gene sequence 

without appreciably changing the strength of secondary structure in the beginning of the 

ORF. The secondary structure seems to be mostly governed by the first two codon 

positions, the positions which (except for the six codon families) don’t change when 

codons are synonymously substituted, not the third position.  

 Bentele et al., (Bentele et al., 2013), have reported the reduction in the GC content, 

in all three nucleotide positions of the codons, at the beginning of the genes in E. coli. This 

observation along with our results would imply that the selection for weak folding in the 

beginning region of the mRNA sequences is strong enough to not only select for 

synonymous codons that have low GC levels but would also result in sequences that code 

for amino acids with low GC content averaged over their synonymous codons in the first 

10-15 codon positions. In order to test this argument, and since the effect of reduction in 

adaptation of  codons is more significant in highly expressed genes, we focused on the 

highly expressed genes and calculated the amount by which each amino acid goes up or 
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down in the positions 2nd-13th, since the start codon is almost always the same. We then 

calculated the GC content of each amino acid averaged over its codons. We both calculated 

the GC content in the first two nucleotide positions and all three nucleotide positions of the 

codons separately to see which one is more correlated with the change in frequency of each 

amino acid. As it can be clearly seen from the Figure 4.5, a negative correlation exists 

between the usage of an amino acid in the beginning region of the genes and the GC 

content in the first two nucleotide positions or the total GC content of its codons, R2=0.30 

& R2=0.34 respectively. This means that higher the GC content of the synonymous codons 

coding for a specific amino acid is, the more its usage is suppressed in the beginning of the 

sequence. Then we tried to see whether using the amino acids that increase in frequency in 

the beginning region of the sequence, would automatically result in a reduction in 

adaptation. We define the average adaptation of an amino acid: 

 




aai

iijj   (21) 

where the indices j and i indicate the amino acid j and the codon i coding for that amino 

acid respectively, and the summation is over the synonymous codons which code for the 

amino acid j. By putting the frequencies equal to that of highly expressed genes we would 

get the average adaptation of each amino acid in the highly expressed genes. These values 

are plotted against the amount by which each amino acid increases or decreases in 

frequency in the reduced adaptation region compared to the rest of the gene sequence, 

Figure 4.6, and no strong correlation could be observed, R2=0.003. In other words, the 
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amino acids which increase in frequency in the reduced adaptation region, would not 

automatically result in a reduction in the translation efficiency profile of the genome.  

But one difference between the generated sequences and the real ones is the 

reduction of the strength of folding in the 7th-11th codon windows in random sequences 

when compared to the real sequences. In the real sequences the average folding free energy 

in these windows is -8.07 kcal/mol when the average folding in the windows after the 15th 

codon one is -7.43 kcal/mol, whereas in the random sequences generated with 

φ0frequencies, the values are -7.51 and -6.97 kcal/mol respectively, and for the ones 

generated with φH frequencies the values are -7.32 and -6.95 kcal/mol respectively. This 

fact would motivate further investigation in the relation between folding energy and the 

codon bias in the beginning region of the gene sequences and also translation initiation. 

 

4.5- mRNA secondary structure and the gene expression level: 

 
In the analysis of the data of Taniguchi et al. in Chapter 3 we showed that the ratio 

P/(MT) for a gene is equal to the rate of protein production per mRNA. We also showed 

that the rate of protein production per mRNA is equal to the binding rate of ribosomes at 

the beginning of the gene. In this chapter we have supposed that reduction in secondary 

structure is important to allow efficient ribosome binding, and this is what is responsible 

for the observed changes in folding free energy and codon usage at the beginnings of 

genes. To further test this idea, we investigated the relationship between P/MT in the data 

of Taniguchi et al and the folding of the mRNAs for these genes. For this task we binned 
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the genes for which the protein production rate is measured by Taniguchi et al. according 

to the folding energy in the translation initiation region. The result show a weak correlation 

(R2=0.007) between the folding energy in the first codon window and the protein 

production rate over each mRNA, Figure 4.7. Number of protein molecules produced per 

mRNA and the total protein level show even less correlation, R2 = 0.006 & R2 = 0.005 

respectively, with the folding free energy of the first codon window.  

As it can be seen from the plots, no strong correlation between the folding energy 

in the beginning region of mRNA and different expression measures can be seen. Over a 

wide range of change in folding energy, all gene expression measures almost stay the 

same. The weak correlation between folding in the first 13 codons and expression level, 

P/M, in E. coli has also been reported by Tuller et al., (Tuller et al., 2010). 

One last thing to investigate is whether the difference in average folding energies of 

the 7th-11th codon windows, and the folding energy in the first codon window has any 

effect on or correlation with the production level. The motivation would be that in the 

genes where the sequence is capable of producing strong secondary structure in the 

mentioned region, the chance of strong folding in the ribosomal binding cite would 

decrease. In other words the actual value of folding free energy in the initiation region may 

not be important, as long as there is a segment ahead with higher chance of forming a 

strong secondary structure. For this matter we selected the genes which are long enough to 

at least include one window in the interval of 7th-11th codon windows, and calculated the 

difference in folding energy of the first window and the average folding energy of the 7th-

11th codon windows. Protein production rates of 575 genes, for which the information is 
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provided by Taniguchi et al. (Taniguchi et al., Quantifying E. coli proteome and 

transcriptome with single-molecule sensitivity in single cells, 2010), was plotted against 

this value, Figure 4.8. As it can be seen there is still no strong correlation (R2 = 0.003) 

between the expression level of each individual gene and the difference in the folding in 

the first window and the average folding energy of the 7th-11th codon windows. But if we 

look at the folding energy values in the genes, we see that only 23% of the genes have 

stronger folding in the first codon window compared to the average folding in the 7th-11th 

codon windows. The average of this difference, the difference between the folding free 

energy in the first codon window and the average folding free energy in the 7th-11th 

windows, over all the genes is 2.60 kcal/mol, with standard deviation equal to 3.82 

kcal/mol.  

 

4.6- Conclusion and Discussion:  
 

Existence of a secondary structure in mRNA could interfere with protein 

production in many ways, but the translation initiation could still occur if the detection of 

the start codon is not altered, Figure 4.9. Here we have focus on the secondary structures 

within the ORF. By providing synonymous random sequences, sequences with the same 

amino acid chain but frequencies equal to φ0, and selecting for the ones with weak folding 

in the beginning region we observe that a translation efficiency profile much similar to that 

of real genes would appear, but the selected sequences show folding free energies much 

different from that of real sequences, Figure 4.3 & Figure 4.4. The other feature observed 
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is that in the randomized sequences even thou the reduced adaptation region disappears, 

there is still a clear reduction in the folding free energy in the first 13 codons compared to 

the rest of the gene. To see whether the selection for weak secondary structures in the 

beginning of the gene sequences is strong enough to select for sequences that code for 

amino acids with overall low GC content, we calculated the amount of change in the 

frequency of each amino acid in the first 13 codon position of the gene sequences and the 

rest of the gene in highly expressed genes, since they are assumed to be under strong 

selection for proper translation. These values were plotted against the GC content of the 

synonymous codons coding for each amino acid and a clear tendency for choosing amino 

acids with overall low GC content among their synonymous codons in the first 13 codon 

positions of the genes was observed. One explanation for the existence of the reduced 

adaptation region would be that the amino acids that are increased in frequency in the 

beginning of the gene sequences, are the ones that, on average, show a low codon 

adaptation. We plotted the amount of change of each amino acid against its average codon 

adaptation, equation 1, but no strong correlation could be observed, Figure 4.6. We further 

observe that the protein production rate over each mRNA sequence in E. coli does not 

show any strong correlation between the folding free energy in the beginning of the ORF, 

Figure 4.7 & Figure 4.8.  

In conclusion, our results clearly indicate that there is a selection for suppression 

of mRNA secondary structure in the beginning of the gene sequences and also there’s a 

significant reduction in the translation efficiency in the codons used in the first 10-15 

codon positions of the sequences, and as the expression level of the genes increase, even 
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thou the whole sequence is under selection for using frequent codons, the difference 

between the average adaptation of the codons in the beginning and the rest of the gene 

increases. But our method for calculating the strength of secondary structure in this region 

does not show any significant relation between the suppression of mRNA secondary 

structure in the first 13 codons and the translation efficiency profile observed in the genes. 

This observation could be due to the fact that we have not considered the Shine–Dalgarno 

(SD) sequence upstream the start codon and have only focused on the ORF. For further 

investigation on this matter one could look at broader window lengths including both the 

ORF and SD region, and see whether the translation efficiency profile could be resulted by 

selection of the sequences which reduce the strength of secondary structures in this region, 

or the ones that form structures which does not include the start codon.  
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4.7- Figures and Tables 

 

 

Figure 4.1: Translation efficiency profile, δ vs codon position, of E.coli protein genes. 

There’s a region of reduced adaptiveness in the beginning of the genes, first 10-15 

codons.  

 

Figure 4.2: Plot of average δ value of the beginning region, first 13 codons, vs the 

average δ of the whole gene for 4141 E. coli protein genes.  
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Figure 4.3: Folding free energy profile for the protein genes of E. coli. Codon position 

indicates the position of the codon by which the window starts, starting from 1, for the 

start codon, for the first window. 

 

 

Figure 4.4: δ vs codon position for real genes and the randomized sequences. 

Sequences randomized by φ0 frequencies, blue solid line, show no bias in codon usage 

in the beginning region compared to the rest of the sequence, and as we increase the 

selection for weak folding in the first 13 codons among the randomized sequences, 

black and green solid lines, we observe the appearance of a region of reduced 

adaptation.  
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Figure 4.5: GC content of the amino acids vs the amount by which they increase or 

decrease in the beginning region compared to the rest of the gene, in highly expressed 

genes. Blue markers show the GC content of each amino acid average over all three 

positions of its codons, and the red markers indicate the GC content averaged over only 

the first two nucleotide positions of the codons coding for one specific amino acid.  

 

Figure 4.6: The average adaptation of each amino acid vs the amount by which it increases 

or decreases in the first 13 codons, in highly expressed genes. 
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Figure 4.7: Protein production rate per mRNA molecule vs folding free energy in the 

beginning region of the genes. There is a very weak correlation, R2=0.007, observed 

between these two parameters. 

 

Figure 4.8: Protein production rate per mRNA molecule vs the difference between 

average folding free energy in the 7th-11th codon windows and the first 13 codons. No 

significant correlation can be observed between the two parameters.  
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Figure 4.9: Formation of mRNA secondary structure in the ribosome binding site (RBS) 

could usually inhibit translation initiation. However, initiation can occur when the 

structured element is positioned between the Shine–Dalgarno sequence (SD) and the start 

codon (AUG) (Nivinskas et al., 1999). [Photo taken from (Plotkin & Kudla, 2010)] 
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