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Abstract

Model-based development (MBD) is an increasingly used approach for the de-
velopment of embedded control software, with Matlab Simulink/Stateflow as
the widely accepted language. The adoption of this development paradigm is
prevalent in many safety-critical domains, including the automotive industry.
With an increasing reliance on software for controlling vehicle functionality
and the yearly advent of new vehicle features, automotive models have been
growing in size and complexity, causing them to become increasingly difficult
to maintain, refactor, and test. Given the centrality of models in MBD, it is a
requisite that they be maintained under well-defined and principled software
development processes that use precise notation to document system require-
ments and behavioural design description.

Tabular methods have long been used for defining decision-making logic in
software, due to their concise and precise manner of communicating complex
behaviour, so it is not surprising that they are finding increased use in automo-
tive software models. Thus their presence in Simulink models is increasingly
prominent in the implementation of complex behaviour in production code.
As a result of the safety-critical nature of the automotive industry, as well
as the increasing size and complexity of its models, reliable refactoring and
simplification techniques for tabular expressions are becoming an important
need for automotive companies. To address this need, this thesis presents
a methodology for refactoring complex tabular designs to improve require-
ments traceability with a focus on Matlab Simulink/Stateflow and the MBD
approach.

A case study of industrial examples from an automotive partner are used to
motivate the work and demonstrate the proposed methodology’s effectiveness
in reducing design size and complexity, while also increasing testability and
requirements traceability.
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Chapter 1

Introduction

In this chapter, we introduce the main motivating factors driving the body of

this work. These are explored in the general context of software engineering in

Section 1.1.1, as well as with a narrowed focus on the the automotive industry

in Section 1.1.2. Each perspective presents arguments for the justification and

necessity of this work, and at times are complementary in nature. Contribu-

tions of this thesis are described concisely in Section 1.2, while Section 1.3 goes

on to give the remaining structure of the thesis.

1.1 Motivation

The majority of today’s complex systems, from medical devices to nuclear

power generating stations, rely heavily on software to implement complex and

safety-critical functionality. The ease of modifying software, in comparison to

hardware, lends itself to its constantly changing and evolving nature. As a

consequence, significant effort is devoted to defining well-principled and scal-

able processes for the design, development, and maintenance of these systems.

1
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In keeping with this sentiment, the following work strives to address several

deficiencies of said processes.

1.1.1 General Context

In the subsequent sections, we investigate the challenges of engineering embed-

ded software systems through the use of Model-Based Development (MBD),

and further strive to understand the unique challenges found in the automotive

industry, specifically through the collaboration with an industry OEM partner.

1.1.1.1 Model-Based Development

Model-Based Development has become an increasingly prevalent paradigm,

dominating such domains as nuclear, aerospace, and automotive. A dataflow

programming approach, MBD employs the use of software models to describe

the behaviour of embedded software systems. Models are used for simulation,

code generation, test generation, formal verification, and numerous other pur-

poses. Initially, the intent behind the use of models was to facilitate rapid

prototyping, and code generation of small systems. However, today’s software

systems are substantially large and complex, shifting the use of the models

to be long-term implementations, maintained and evolved over the span of

years and multiple product lines. Therefore, the overarching intent of MBD

has migrated to the production of reusable software models with a high degree

of component flexibility, while still accommodating rapid time-to-market de-

mands. Given the centrality of models in MBD, it is a requisite that they be

developed under well-defined and principled software development processes.

An ever-present problem which permeates the applications of MBD is the

2
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prodigious size and complexity of models. With the continual, long-term evo-

lution of software models, the inevitable augmentation and modification of

designs brings about steady growth in model size and complexity. For this

reason, strategies for addressing overly-complex components is a necessity.

In the embedded software domain, instead of developing systems in the clas-

sical sense of writing code, models are instead used as the basis for code gener-

ation. Some of these models are implemented using domain-specific dataflow

languages, and unlike textual programming languages, make use of control

block diagrams for specification. For programming languages in general, guide-

lines exist which define methods of properly managing software throughout the

development process, however considerable less direction is available for MBD

approaches. Therefore, there is a gap in terms of processes dedicated for these

domain specific tools. MBD employs the use of domain-specific languages

and environments, necessitating their own individual consideration and study.

The most widely used language is the data flow graphical language Matlab

Simulink, along with Stateflow, its supplementary state chart notation (Weeks

and Moskwa 1995).

1.1.1.2 Software Requirements

Requirements specification is a critical component of the development of soft-

ware systems. The majority of software failures can be traced to poor software

requirements (Leveson 2004). Although the importance of software require-

ments is widely acknowledged, rigourous requirements engineering is an area

that has largely been neglected by software developers in general.

Requirements specification and maintenance are often neglected and not

given the importance they deserve. As a result, it is commonly the case that

3
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requirements solicitation occurs during other stages of the software develop-

ment process. Retroactively extracting requirements from existing, already

developed software generally proves to be an arduous process, and specifying

them precisely yet effectively is also an objective of substantial importance.

Software requirements are a crucial component to ensure the longevity of

the system that contains that software. Within the automotive domain, entire

systems are seldom constructed from the ground up. They are the result of

years of work. It is also common for software to be purchased and acquired

from other Original Equipment Manufacturers (OEMs). At times, models or

some small subsets of the entire system are developed and added. In both

cases, the software has had, and will continue to have, a long lifespan. Thus,

software requirements need to be maintained and updated continuously.

Furthermore, models are increasingly complex, but the development life-

cycle does not reflect this and is actually becoming faster in reaction to market

pressures. Hence maintaining software requirements represents a considerable

problem. Additionally, requirements must be specified in a precise format,

while remaining readable for domain experts. Although mathematical for-

mulae capture the precision required for a software implementation, they are

seldom practical for domain experts to parse and easily understand.

Requirements traceability is the ability to correlate a software implemen-

tation to its origin in the requirements documentation. Traceability is now

widely recognized as a crucial property of complex software systems, and is

important to the maintainability of the software. Owing to the non-textual

specification of MBD languages, traceability to and from requirements is more

difficult. In general, it has become extremely difficult to visually follow require-

ments traces in the MBD world. The importance of traceability is stressed in

4
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safety-critical domains, especially when it comes to software verification and

validation. For safety-critical applications we must be cognizant of the added

obligation to make software safe. With respect to models specifically, this

means traceability and thorough testing. Furthermore, current automotive

safety-critical applications are highly complex in order to accommodate the

complex control of critical functions, while also mandating traceability. This

complexity is also reflected in the model size.

Therefore, exploring new methods of extracting and requirements from ex-

isting designs is necessary, while also taking into consideration the traceability

of refactored designs.

1.1.1.3 Tabular Representations of Logic for Software

Multi-dimensional tabular notations have long been used as a structure for

organizing and representing data in a simple and readable format. Dating

back to the early years of the computer science field, decision tables emerged

as successor formalism for other notations, namely flowcharts and narratives.

Decision tables boasted many advantages over these approaches, firstly, as an

aid in software documentation. An effective means of standardizing communi-

cation in general, they reduced ambiguity in interpretation and extricated su-

perfluous information. Additionally, their superior organization and concision

in expressing complex decision-making logic made them an effective approach

for initial system description and design. Companies actively using decision

tables observed a decrease in time required to formulate software solutions

(Pollack, Hicks, and Harrison 1971; Hurley 1983).

Able to effectively convey the logic and instructions required of a computer

program, their use was naturally extended to the implementation of decision

5
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logic directly in software (Kirk 1965). Processors for converting decision tables

to source code, as well as dedicated decision table languages, were swiftly de-

veloped by various organizations (Pollack, Hicks, and Harrison 1971; Hedayah

1974).

Decision tables remain a prominent structure in both software documen-

tation as well as implementation in computer programs. However, software

systems have experienced an exponential growth in both complexity and size

since the inception of decision tables. In these situations, decision tables are

no longer the best suited notation for representing exceptionally complex for-

mulae. A real-world industrial example of this problem is demonstrated in

Table 1.1.

In examining Table 1.1, it is no surprise that the maintenance of similar

tables is prohibitively difficult and requires extra time on the part of the devel-

oper. Moreover, due to the excessive size of decision tables, it is all the more

cumbersome to check crucial properties such as completeness and disjointness.

The introduction of human error when performing changes is likely a event.

Further exploration of decision tables and their inherent issues is presented in

Section 2.3.1. It is evident that an alternative tabular formalism is needed for

cases where decision tables are not scalable.

Overcoming these obstacles, tabular expressions (Jin and Parnas 2010)

have presented a viable alternative for large and complex formulae. They

are of particular use in formalizing long mathematical expressions describing

system functionality, and remain humanly readably as they scale up. With

this respect, as well as several others, tabular expressions have been shown

to be beneficial in numerous software engineering domains. The semantics

and advantages of tabular expressions are further expounded in Section 2.3.2.
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The next evolution in tabular structures, the transition from decision tables

to tabular expressions is a beneficial and needed process.

1.1.2 Automotive Domain

The automotive domain has evolved to a point where road vehicles rely heav-

ily on software. Currently, embedded Electrical Control Units in automotive

systems run software controlling everything from the engine to the ignition

systems. Next generation drive-by-wire automotive systems will continue to

introduce architectures relying solely on electronic systems, while the depen-

dence on software will further grow by orders of magnitude for the Hybrid

Electric Vehicles (HEVs) and Battery Electric Vehicles (BEVs). With this con-

tinual advent of newer and more sophisticated vehicle functions, the number

of Electrical Control Unit (ECU) present in vehicles is constantly growing. As

a result, modern automobiles contain numerous software systems, potentially

comprising tens of millions of lines of code (Charette 2009). Consequently,

today’s vehicular control software is amongst the largest and most complex

software systems in existence today.

The automotive sector presents its own unique and formidable challenges

that must be overcome during the software development process. Most signifi-

cant is the safety-critical nature of vehicles. Humans rely on passenger vehicles

to perform safely and reliably, while also providing a high level of comfort. In

turn, passenger vehicles are dependent on software components implementing

features which deal directly with safety-critical functions. Ensuring human and

environmental safety is an integral concern in the development and deployment

processes of any vehicle design. To standardize safety-critical software develop-
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ment and its practices in a systematic and regulated manner, the International

Standards Association (ISO) 26262 standard was created with the objective of

mitigating potential risks, increasing confidence in vehicle performance, and

ultimately elevating the quality of software in vehicles.

1.1.2.1 ISO 26262

Passenger safety is a crucial aspect of vehicular design. Modern vehicles must

be highly dependable and safe for both those who operate (i.e., drivers/passengers)

as well as non-operators (e.g., pedestrians). Therefore, an international func-

tional safety standard defined by the International Standards Association, ISO

26262 entitled, “Road Vehicles – Functional Safety” was developed to specifi-

cally address the methods and practices of safety-related electronic, electrical,

and software components in series production passenger vehicles.

ISO 26262 applies to software that implements safety-related features. For

these features, potential hazards, severity, and controllability, components are

assessed, and these components are classified based on their level of criticality

in Automotive Safety Integrity Levels (ASILs). A component is identified as

level, A, B, C, or D, where D demands the highest intensity of rigour dur-

ing development in terms of application of ISO 26262 requirements. Given

some ASIL level, ISO 26262 prescribes requirements which must be accom-

plished in order to achieve compliance with the standard. Specifically, Part

6 of ISO 26262 focuses on development at the software level, providing guid-

ance to avoid risks by specifying requirements and processes throughout the

automotive software development lifecycle.

The culmination of several years’ work, ISO 26262 represents the state-

of-the-art when it comes to system and software safety in the automotive

9
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sphere. Most automotive OEMs and suppliers are currently making the move

to adopt this standard, and have begun to adapt their processes in a move

towards attaining ISO 26262 compliance. In the future, adherence will become

expected, and automotive companies are currently exploring the necessary

steps required in order to migrate to this standard. To claim compliance with

this standard, ISO 26262 defines requirements and methods which must be

met, where applicable, while recommendations are strongly suggested but not

necessary. Requirements and methods particularly relevant to the scope of this

work are delineated in the following sections. They provide further motivation

for the refactoring of complex and large vehicular designs, such that compliance

may be achieved. These requirements serve as a good guide for making the

systems that depend on this software, safer and more reliable.

Software Requirements Recommendations Software requirements are

integral for the overall compliance of ISO 26262. Requirements are used

throughout the various phases of product development. They are required

prerequisites for the initiation of product development at the software level,

ensuring that further objectives and subphases comply with the functional

safety requirements. Specifically, they go on to serve as the basis for sys-

tem design, system integration and testing, safety validation, functional safety

requirement assessment, and many others (ISO 26262-6:2011 2011). There-

fore, the existence of requirements and design specifications are of the utmost

importance.

Software Design and Implementation Recommendations The increas-

ing complexity of computerized vehicle systems is one of the motivating factors

10
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behind the development of ISO 26262. As a result, the means by which soft-

ware is designed and implemented is addressed.

General guidelines for modelling and programming languages are addressed

in Clause 5 of ISO 26262-6:2011 (2011). Entitled “Initiation of product de-

velopment at the software level”, this chapter presents criteria for selecting

quality software tools and languages for software development. Requirement

5.4.6 lists criteria for assessing suitable modelling languages. These guidelines

mandate the evaluation of languages in terms of ambiguity, specifically, with

the intention of avoiding ambiguous syntax and semantics. If this criteria is

not met, guidelines must be in place to address this deficiency and comply

with this requirement.

Additionally, Requirement 5.4.7 Method 1a stresses that accompanying

coding guidelines for languages, modelling and programming alike, must ad-

dress methods of enforcing low complexity of design. Ensuring the correctness

of implemented designs is integral to safety-critical systems, and thus this re-

quirement is a highly recommended item for all ASILs. Method 1b again deals

with the topic of ambiguity in language subsets. If a language construct is

identified as being ambiguous in nature, it is to be excluded from use within

the design and implementation. A construct is flagged as being ambiguous if

its syntax and semantics are inherently unclear, potentially leaving it to the

interpretation of the developer. Additionally, its susceptibility to inconsistent

and divergent interpretation by developers, testers, and inspectors also justifies

its exclusion from use. This recommendation is prescribed for all ASILs.

Much is said describing an ideal software language. However, the fact re-

mains that Matlab Simulink is the widely accepted environment and notation

in industry when it comes to embedded software. Due to its richness in fea-
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tures and tools, this is unlikely to change. As a result, allocating efforts to

further cultivate its abilities of software specification, will aid in meeting the

requirements of ISO 26262, specifically mitigating complexity and ambiguity.

Therefore, we seek to apply these guidelines to Matlab Simulink designs by

being cognizant of constructs which are ambiguous, as well as the need to

minimize complexity.

Clause 8 concentrates on “Software unit design and implementation”. Here,

requirements concerning model and code specification are described. In the

context of MBD, the model is the primary artifact specifying the software. As

a result, the prescribed properties apply to the model and not its generated

code. Specifically, Requirement 8.4.4 outlines several design principles models

should manifest. Included are: simplicity; readability and comprehensibility;

modifiability; and testability (ISO 26262-6:2011 2011). These software qual-

ities are largely related, and are properties of any good software specification

which seeks to mitigate software errors, and therefore risk. Simplicity and

conciseness lends itself to ease of readability. As a result, models are easy

to understand by developers, and thus all the more modifiable. Testing is

elaborated on in the next section.

In summation, minimizing complexity of code, avoiding ambiguous lan-

guage constructs, and the integration of simplicity, readability, comprehensi-

bility, and modifiability as implementation design principles is demanded by

ISO 26262 over several requirements. In general, these are principles that are

beneficial for all software, however large safety-related software such as the

embedded software found throughout vehicles especially needs to be designed

with these requirements as objectives.
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Software Testing Recommendations For safety-critical systems like vehi-

cles, unintended functionality that deviates from the safety requirements is not

acceptable. Testing can help to reveal these cases. ISO 26262 imparts require-

ments for the testing and verification stages of the software lifecycle, which are

applicable to model-in-the-loop environments (discussed in Section 2.4).

Structural testing in particular is required to measure the degree of code

coverage. In Requirement 9.4.5 of ISO 26262, structural metrics to be maxi-

mized are given as statement, branch, and MC/DC. The use of these metrics

is recommended for ASILs A,B, and C, while MC/DC and branch are highly

recommended for ASIL D specifically. The extent to which these metrics are

exercised is left up to the software tools which are used.

Furthermore, as touched upon in the previous section, Requirement 8.4.4

outlines design principles to be achieved. The testability of software is amongst

these principles, and must be considered throughout the software development

process.

Calibration Recommendations Different automobile product lines require

divergent software implementations to accommodate their variability. Depart-

ing from the traditional definition, in the automotive industry, calibration also

refers to software which is instrumented with data after the build has taken

place. Calibration enables a single software infrastructure to be used across

product lines, while still permitting customization of parameters for specific

products. In order to achieve this, models must be designed such that the core

software structure remains constant, while other components are dynamic,

and permuted between product implementations. Figure 1.1 shows how this

is generally accomplished.
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Model
Calibration

Data

Calibrated
Model

Figure 1.1: Software calibration process

ISO 26262 concerns itself with making controlled changes to software, while

still facilitating the its calibration. Therefore, calibration is a property which

must be considered during refactoring efforts, such that it is still supported.

1.1.2.2 Collaboration with an Automotive Partner

The undertaking of this thesis has been done under the scope of a multidisci-

plinary project, in collaboration with a prominent automotive OEM industrial

partner. The goal of the project is to improve software development prac-

tices for innovative and leading edge vehicles, while enabling transition to

industry’s emerging standards. The automotive industry, in its increasing re-

liance on software, has experienced all of the aforementioned issues discussed

in Section 1.1.1. Large and complex software systems give rise to difficul-

ties in understandability, modifiability, testability and maintainability. One

of the primary tasks of our collaboration with an automotive OEM is to im-

prove vehicle designs in Simulink/Stateflow such that they better facilitate

these properties, as well as enable the calibration of software. Additionally,

the recommendations given by ISO 26262 fall in line with the priorities our

automotive partner has outlined for their software initiatives. The include:

14



M.A.Sc. Thesis – Monika Bialy McMaster University – Computing and Software

• Complexity Table 1.1 is a design taken from actual vehicle control

software. It is overly complex to understand, and requires refactoring

in order to reduce its size and complexity. The work within this thesis

is demonstrated on industrial examples such as these. They are the

basis for Chapter 5. Complexity of design is an issue which affects other

aspects of a system.

• Testability A substantial amount of effort is allocated to testing. Max-

imizing coverage while also minimizing time and effort in creating and

simulating tests is hindered by the large and complex nature of automo-

tive software designs. Reducing the efforts in achieving good coverage

and test cases is a priority.

• Traceability to Requirements Designs which are maintained and

evolved over a long period of time are often so altered that they no longer

correspond to existing software requirements. Complexity of the design

exacerbates this problem by obfuscating requirement visibility even fur-

ther. Simplifying and restructuring designs such that requirements are

more evident is a beneficial step in refactoring.

• Calibration Our OEM partner does not wish to develop and maintain

numerous software variants for their various vehicles, but rather employ

the use of calibration data to outfit the same software with different

behaviour according to the vehicle variant. This calibration data con-

sists of some data values that change between vehicle implementations,

and rather than being implemented directly in a Simulink model as a

block, they are instead stored in a separate calibration file for ease of

modification. Calibration data is loaded into the model according to the

15
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vehicle design at hand, and allows for the software structure to be the

same across all vehicle variants, while also facilitating customization of

software behaviour in a manner that is consistent yet panoptic. Where

necessary, refactored designs should facilitate ease of modification across

multiple product lines. Therefore, during any refactoring of automotive

designs, this property must also be taken under consideration.

1.2 Contributions

This thesis contributes to the area of formal methods and software engineering.

Using basic computer science and mathematical principles, we strive to build

a methods for rigorous, dependable software, which serve as an effective means

of refactoring tabular designs in both industry and academia. With a focus on

facilitating testing, increasing understandability, and leading to conformity to

ISO 26262, the key contributions of the thesis are are follows:

• A new proposed software requirements reverse-engineering method to

make use of formal property-proving in lieu of inexhaustive testing ef-

forts.

• The creation of a methodology which transforms and simplifies con-

ventional decision tables. Within this methodology, five simplification

strategies for tabular expressions have been defined such that tabular

expressions themselves can be simplified in terms of logic, resulting in

smaller tables. Furthermore, this methodology permits the replication

of the techniques by other researches and practitioners, both in industry

and academia.
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• Real industrial case studies on current vehicle production code, on which

the aforementioned methodologies were applied and investigated. These

case studies give testament to the practicality of the methodologies cre-

ated on industrial-sized applications which are in use today, as well as

demonstrate the effect of the methodology in reducing complexity and

size of tables, while increasing readability and testing. The refactored

designs created using the methodology have been incorporated by our

automotive industry partner into production vehicular code and the

methodology is being added to the company’s development processes.

This successful technology transfer clearly demonstrates the practicality

and industrial relevance of the work.

• Another argument for the use of tabular expressions as a means for spec-

ifying software requirements with a detailed investigation as to the dif-

ferences between decision tables and tabular expressions.

1.3 Outline

This thesis is structured as follows. The following section offers background in-

formation of tabular constructs and gives an analysis of their differences, with

emphasis on Simulink/Stateflow implementations. It goes on to provide details

of the metrics used for the analysis of the proposed methodology, as well as

previous related work. Chapter 3 describes and demonstrates the application

of a requirements reverse-engineering methodology. Subsequently, Chapter 4 is

devoted to the introduction of a new table transformation methodology. Con-

crete applications on real-world automotive designs are provided in Chapter

5, along with an analysis of its impact with respect to the metrics described
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earlier. The final section contains conclusions and directions for future work.

18



M.A.Sc. Thesis – Monika Bialy McMaster University – Computing and Software

Chapter 2

Preliminaries

In this chapter, we lay the foundations for the work presented in this thesis.

Here, concepts required for the comprehension of the remaining chapters are

explained, while further elaborating on several ideas presented as motivation

in Section 1.1.

2.1 Notation

The notation and terminology used throughout this thesis corresponds to the

notation and terminology used by Matlab Simulink. We adhere to it in the

interest of being consistent with respect to the accepted conventions within

the scope of the MBD domain. At times the notation may not the considered

the most widely accepted means of expressing concepts. For example, the

assignment operator is represented as =, although := is generally favoured.

Hence, == is used as the relational equality operator. Conversely, Matlab

uses ∼= to denote inequality.

Another notable divergence from the norm is in the terminology used by
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Simulink/Stateflow. Contrary to what the name suggests, Stateflow truth

tables are not truth tables in the classical sense. In reality, Stateflow truth

tables are decision tables. Thus, when we refer to Stateflow truth tables, what

is actually meant is a decision table. In this work these two terms are used

interchangeably, however we recognize that outside the scope of Simulink, this

is not the case.

The naming convention for variables, enumerators, etc. are adopted from

our industrial partner. Variable names are prefixed with their data type before

the signal name, in order to help identify its role and behaviour. Enumeration

types are delineated as eName, Boolean as bName, constants (e.g. enumera-

tion tokens) as cName, and functions as fName.

2.2 Reverse-Engineering Software Requirements

Methodology

Requirements specification is a critical component of the development of soft-

ware systems. The majority of software failures can be traced to poor software

requirements (Leveson 2004). Although there is a wide consensus and acknowl-

edgment of the importance of software requirements, rigorous requirements

engineering is an area that has largely been neglected by software developers

in general. The automotive industry is no exception.

It is often the case that legacy models suffer from a lack of accompanying

requirements, and even if such documentation does exist, it is rarely up-to-date

and adequately maintained. As a result of this absence or neglect, the under-

standing of design decisions and the underlying rationale of the system are
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obscured, leading to difficulties in testing, maintenance, and evolution efforts.

Possessing well-specified and maintained requirements is integral to refactoring

and improving software. Prior to making modifications, developers must have

a notion of what the requirements of the system are, in order to ensure that

any software alterations will continue to satisfy the requirements at the com-

pletion of the refactoring process. This is especially important for functional

safety requirements, which specify safety-related software attributes. Conse-

quently, reverse-engineering a requirements specification typically represents a

necessary step in the refactoring process.

Retroactively extracting requirements from existing, already developed soft-

ware generally proves to be an arduous process. The seemingly most intuitive

and straightforward method of doing so is through the consultation of develop-

ers, that is, those experts with the greatest depth of knowledge of the system.

This method, however, is time consuming on the part of developers, does

not guarantee exhaustive discovery (completeness) of requirements, nor does

it provide any assurance that the discovered requirements are indeed correct

(accurate), i.e. implemented in the current system. Therefore, the application

of an automated methodology for requirement extraction from software speci-

fication would aid in these efforts. Such a methodology for Simulink/Stateflow

models was proposed by Ackermann et al. (2010). Experimental results were

provided, indicating high completeness and validity of inferred requirements,

as well as proving the fruitfulness of this methodology on Simulink/Stateflow

automotive designs.

The primary focus of this methodology is the extraction of invariants.

A popular concept in software verification, invariants represent statements

about a system that hold true on all the possible executions of the system.
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With respect to the methodology of Ackermann et al. (2010), invariants are

inferred via association rule mining on a set of test cases. This produces rules

representing relationships, (i.e. invariants), between attributes of the system

(i.e. itemsets), which hold for the system and provide insight into system

behaviour. The Apriori algorithm generates these rules to satisfy two quality

measurements, minimum support and confidence. Support of an itemset is

the proportion of entries in the test suite which contain that specific set of

items/attributes. For a rule X⇒ Y where X and Y are non-empty itemsets,

support(X ⇒ Y ) = support(X ∪ Y )

Confidence, sometimes called the accuracy ratio, is defined at the proportion of

the instances covered by the premise that are also covered by the consequent.

confidence(X ⇒ Y ) =
support(X ∪ Y )

support(Y )

That is, the confidence is the ratio of the number of instances containing both

X and Y to the number of those containing Y . We use these two metrics to

generate strong association rules which meet or exceed the minimum thresholds

defining quality measurements.

2.3 Tables in Software Development

Tabular formats provide a means of describing complex information, while

presenting it in a concise, well-organized manner. This also holds true for

the representation of logical decision-making behaviour in embedded software

systems. The de facto embedded software development platform, Matlab and
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its Simulink and Stateflow diagramming notations, provide two formalisms for

implementing complex decision logic within a model:

1. Stateflow chart. Represents sequential decision logic in a finite state

machine, using states and transitions with corresponding conditions.

Used particularly for event-driven systems, they are also commonly used

as a more visual means of specifying decision logic, similar to that of flow

charts.

2. Stateflow truth table. Facilitates precisely stated logic, with a greater

emphasis on the relationships between conditions, and in general sim-

pler to design. Out of the numerous structures and blocks provided by

Simulink and Stateflow, they are the only component which facilitates

static analysis of complexness (Aberg 2004).

Both these formalisms can be used to specify control flow, procedural, and

combinational logic in systems. Although regarded as particularly useful for

stateless logic, truth tables are increasingly being adopted as an alternative to

Stateflow charts. A frequently encountered problem that charts suffer from is

that they do not scale well in terms of size and complexity. As they are modi-

fied, additional decision-making logic is added in the form of more states and

transitions, while the conditions also become long and elaborate. This increase

in complexity quickly diminishes a chart’s understandability and maintainabil-

ity, while obscuring its function. Therefore, developers are turning to Stateflow

truth tables as an alternative implementation, one which is capable of captur-

ing the same logic, but in a more manageable and clear format. The semantics

and properties of Stateflow truth tables are presented in detail in Section 2.3.1.

Whereas charts implement logic by way of finite state machines, truth tables
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are able to represent the equivalent behaviour in a tabular format, in most

situations. Employing truth tables in lieu of the other more complex diagram

constructs within Simulink simplifies designs (Aberg 2004). This shift towards

a heavier reliance on tabular designs is also observed in industry. Our auto-

motive partner is actively transforming Stateflow chart designs to Stateflow

truth tables.

Nevertheless, it has long been acknowledged that in complex situations,

truth tables also have the possibility to become extremely large (Pooch 1974).

With this increase in size, there is a further need to document and implement

tables with the intention of minimizing design complexity and increasing un-

derstandably for developers. Decision tables are often used in documentation,

however they fail to convincingly convey requirements when they describe tens

or hundreds of cases. They quickly become difficult to parse and understand

by developers. Moreover, checking for problematic situations such as redun-

dancies and contradictions becomes a strenuous task, one which is not always

supported by tools.

Tabular expressions have emerged as a superior tabular method for rep-

resenting complex mathematical formula, including decision logic. They have

proven themselves in documenting both software requirements and software

design, and have been successfully used in the software development process

in industry (e.g., Naval Research Laboratory (Heninger 1980), OPG (Heit-

meyer et al. 1998; Archinoff et al. 1990; Wassyng, Lawford, and Maibaum

2011), just to name a few). Tabular expressions are particularly suitable for

specifying embedded, real-time systems. They are presented in Section 2.3.2.

The following sections provide an an investigation into both formalisms.
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Conditions Condition Entries
Actions Action Entries

(a) Classical Decision Table Notation

Conditions Condition Entries
Action Entries

Actions

(b) Stateflow Truth Table Notation

Table 2.1: Organizational differences between table notations

2.3.1 Decision Tables

Over the course of their history, decision tables have taken on a variety of

formats and different semantics (Pooch 1974). Diverging representations have

evolved with their own idiosyncrasies. For our purposes, we adhere to the

widely used, classical definition, that of Limited Entry Tables (Hughes, Shank,

and Stein 1968). These tables are considered to be the most precise convention

of all the decision table variants, and because of their binary logic patterns,

they are well suited for software implementations. It is possible to convert de-

cision table variants to this notation, and there exist tools which facilitate this

process (Fu 1999). This is also the notation used by Stateflow truth tables,

however there do exist minor differences in the organization of that data, as

illustrated in Table 2.1. These minor variations do not affect the logic, but

rather the visual organization. As a result, we adapt/augment some of the

terminology to better correlate with the Stateflow truth table representation.

Furthermore, we will use the terms decision table and truth table interchange-

ably, as they are essentially the same within this context. Stateflow truth

tables are in fact decision tables.

Decision tables are comprised of two major sections: a condition section

that decides which actions are to be taken as a result of certain conditions
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being met, and secondly, an action section which defines the operations that

can be performed as a consequence of these decisions being satisfied. The basic

structure of a decision table is shown in Table 2.2, where these two sections

appear as separate tables in and of themselves, together forming a decision

table.

Decisions

# Conditions D1 D2 . . . D2n

1 Condition1 T T . . . F

2 Condition2 T T . . . F
...

...
...

...
...

...

n− 1 Conditionn−1 T T . . . F

n Conditionn T F . . . F

Actions 1 2 . . . m

# Actions

1 Action1

2 Action2

...
...

m− 1 Actionm−1

m Actionm

Table 2.2: Generic decision table

Decision tables consist of three core elements used for the specification

and evaluation of the actual design-making behaviour: conditions, actions,

and decision rules (simply called decisions). Each row of the condition table

specifies a condition, and includes entries indicating the values it is evaluated

to. The possible outcomes for a condition are limited to true, false or don’t

care, represented as T, F, or - respectively. A don’t care represents all possible
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values of the condition.

In the broadest definition, actions describe some operation which takes

place as a consequence of combinations of conditions being satisfied. For State-

flow truth tables, they are specified using statements, function calls, and even

complicated control logic (i.e. for loops). Most commonly, decision tables are

used to implement the logic for the computation of some value, and thus actions

are typically in the form of a C assignment statement, i.e. eOutput = value1;

representing an output to be returned.

Decision rules are represented in the vertical columns, and are a combina-

tion of conditions and actions. They define relationships between the condi-

tions, and are interpreted as being “and”-ed together. When the conjunction

of the conditions in a column is satisfied, the corresponding action at the bot-

tom of the table is executed and any remaining decisions are not evaluated.

The decision rules for a generic function, given Table 2.2, are as follows:

Decision1 = Condition1 ∧ Condition2 ∧ . . . ∧ Conditionn

Decision2 = Condition1 ∧ Condition2 ∧ . . . ∧ ¬Conditionn

...

Decision2n−1 = ¬Condition1 ∧ ¬Condition2 ∧ . . . ∧ Conditionn

Decision2n = ¬Condition1 ∧ ¬Condition2 ∧ . . . ∧ ¬Conditionn

If the decision table employs a sequential left-to-right order of evaluation

of decisions, as is generally the case, the table can further be interpreted as an
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if-then-else statement. For example, Table 2.2 can be interpreted as:

if Decision1 then

Action1

else if Decision2 then

Action2
...

else if Decision2n−1 then

Actionm−1

else

Actionm

end if

Additionally, when implementing these tables in Stateflow, one is able to

examine the resulting code generated by Matlab. Upon simulation, Stateflow

truth tables are converted into Matlab code, which takes on the structure of

the above pseudocode.

2.3.2 Tabular Expressions

Like decision tables, tabular expressions strive to express complex logic in a

precise, yet concise, manner. Originating out of efforts towards describing

large and complex mathematical formulae in a humanly readable, very precise

format, tabular expressions are an alternative and effective tabular construct

for the documentation and specification of software.

Several types of tabular expressions have been introduced (Jin and Parnas

2010). For the purposes of this paper, horizontal tabular expressions will be

the notation under consideration, as shown in Table 2.3. Horizontal tabular ex-

pressions, or minor variations thereof, are especially conducive to requirements
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specification (Wassyng and Janicki 2003), and have proven to be invaluable in

industrial applications (Wassyng and Lawford 2003).

An extensive introduction to the fundamentals of tabular expressions is

given by Janicki and Wassyng (2005). Here we introduce their basic semantics.

Each row represents a subexpression of the function. If a condition is evaluated

to be true, the corresponding Result cell value is the returned output. Results

are distinguished with a double-lined border.

Result

Conditions Name

Condition1 Result1

Condition2 Result2
...

...

Conditionn Resultn

Table 2.3: Generic tabular expression

An invaluable merit of tabular expressions is their properties of disjointness

and completeness. A tabular expressions can be visually inspect for disjoint-

ness and completeness with ease. For any table to properly define a (total)

function, two conditions must be satisfied:

1. Disjointness Each distinct pair of conditions, Conditioni, Conditionj

is disjoint, i.e. i 6= j ⇒ ¬(Conditioni ∧ Conditionj)

2. Completeness The disjunction of all Conditioni’s is true, i.e. (Condition1∨

Condition2 ∨ . . . ∨ Conditionn)⇔ >

In short, disjointness means that no two rows can be simultaneously true

in a single table, and for completeness there must always be one row which is
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true for the given inputs. Therefore, completeness asks that all the possible

inputs are considered, while disjointness ensures determinism. If both these

properties are satisfied, a tabular expressions is considered to be proper (Jin

and Parnas 2010). In practice, the facilitation of checking for completeness on

the input domain of the system is a beneficial property embodied by tabular

expressions, and is invaluable for safety-critical systems (Wassyng, Lawford,

and Maibaum 2011). Preserving these properties raises the overall confidence

in correct system performance for all conditions, and is also beneficial in the

detection of gaps for the inputs considered. In terms of coverage and testing

this is particularly important, and tabular expressions have been show to be

useful for testing and validation (Wassyng and Lawford 2003; Wassyng and

Janicki 2003).

Furthermore, conditions are typically complex, compound expressions with

compound subconditions. An extension of these tables which better empha-

sizes the logical relationships of conditions for each subexpression is shown in

Table 2.4. Conditions which do not appear in a certain row indicate that they

are a don’t care condition for that subexpression.

Result

Conditions Name

Condition1a

Condition2a Result1a

Condition2b Result1b

Condition1b Result2
...

...

Condition1n Resultn

Table 2.4: Generic horizontal tabular expression

Informal semantics for interpreting Table 2.3 have been described in the
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following pseudocode:

if Condition1 ∧ Condition2a then

Result = Result1a

else if Condition1 ∧ Condition2b then

Result = Result1b

else if Condition2 then

Result = Result2
...

else if Conditionn then

Result = Resultn

end if

However, it is important to note that in fact this is not necessarily true, as

tabular expressions do not have a prescribed order of interpretation, lending

to their ease of comprehension due to the explicitness of semantics. In their

implementation in software tools however, this is indeed the means by which

they are internally interpreted, as is the case with SRI’s Prototype Verification

System (PVS) (Owre, Rushby, and Shankar 1992).

In general, the success of tabular expressions as a practical formalism, as

is the case for formal methods in general, hinges on appropriate automated

tool support. The Tabular Expression Toolbox (TET), a Simulink toolbox,

was developed at the McMaster Centre for Software Certification, to integrate

tabular expressions into model-based development with Simulink (Eles and

Lawford 2011). The toolbox:
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- Provides Simulink blocks for creating and editing tabular expressions

- Checks tables for disjointness and completeness (using the CVC3 SMT

solver and the PVS theorem prover)

- Can be translated into m-functions and then used for code generation

and simulation.

Therefore, tabular expressions serve as a practical decision logic structure

for both software documentation and implementation purposes.

2.3.3 Comparison

There are several key problems that have been widely acknowledged as existing

with decision tables. They are explained in detail in this section.

Disjointness When decision tables were first introduced, the accepted method

of interpretation was that decision rules were independent (i.e. disjoint) and

could be tested in any order (Pooch 1974). Eventually, the else rule was in-

troduced as a means of capturing situations which were deemed impossible or

errors. This rule was located at the end of the decision rule section, and was

considered as the only rule which was allowed to disobey the disjointness prop-

erty. Following suit, Harrison (1971) introduced a variant of decision tables in

which left-to-right execution semantics were employed, departing completely

from the notion of disjointness.

An example of non-disjointness demonstrated in the context of a valid

Stateflow truth table is depicted in Table 2.5. Here, overlaps are present be-

tween the following pairs of decision rules: (D1, D2) and (D2, D3). Addition-

ally, the else case D4 overlaps with all of the previous decisions. In examining
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Decisions
# Conditions D1 D2 D3 D4

1 Condition1 T T T -
2 Condition2 T - F -
3 Condition3 T T - -

Actions 1 2 3 4

# Actions
1 Action1

2 Action2

3 Action3

4 Action4

Table 2.5: Non-disjoint and ambiguous decision table

the first pair (D1, D2), we see that both cover the case when all the condi-

tions are true, thus they partially overlap for the case when Condition1 = T

∧ Condition2 = T ∧ Condition3 = T. Without knowledge of the left-to-right

semantic, these cases produce non-deterministic behaviour in the logic, as both

would be true given all true inputs. As a direct consequence of not enforcing

disjointness on the decisions, ambiguity arises. Moreover, both D1 and D2

prescribe different actions. From a functional specification perspective, this

is a contradiction, that is, the prescription of different actions for identical

inputs. In this situation, unwanted behaviour can be unknowingly introduced.

Redundancy is also a product of non-deterministic behaviour, however in this

case the same actions are prescribed. Although this situation does not in-

troduce unwanted behaviour, later software changes could easily introduce a

contradiction.

The left-to-right semantic directly contributes to the issue of ambiguity.

It is a consequence of this convention that decisions can be implemented to

rely on preceding decisions evaluation, hence meaning that they are not imple-
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mented disjointly. It is often the case that the left-to-right semantic is used to

implicitly filter out cases prior to evaluating some decision later on. Permitting

these overlaps in decisions, i.e. multiple decisions satisfied for the same input,

exacerbates the problem of ambiguity and can potentially introduce contra-

dictions in the logic, which are not readily apparent, nor do diagnostic tools

flag this as a source of error.

Simulink provides diagnostic tools for identifying certain types of table

defects, specifically, the underspecification and overspecification of decisions.

Underspecification of a decision table occurs when there exist input cases which

are not considered in the decisions of a table. In this case, the table is lacking

completeness as it does not account for all possible inputs. Conversely, over-

specification occurs when there are too many decisions defined in the table,

such that some are never evaluated. Simulink detects these errors by ensuring

that each decision is executed at some point during simulation. Overspecifi-

cation implies that there must be some overlap between decisions, resulting

in decisions which are not deterministic. Simulink however does not check for

exclusivity between decisions, that is, disjointness. It fails to detect the case

where there is ambiguity between decisions, but both decisions are still exe-

cuted for different inputs. That is, it does not identify partial overlaps of the

decisions. Thus, it is possible to introduce contradictory actions for overlap-

ping decisions without detection from Simulink, or the developer’s knowledge.

Correct interpretation and understanding of the logic expressed by deci-

sion tables is contingent on the use of left-to-right semantics. Although these

semantics are not ambiguous per se, their perceived interpretation often is.

Logic relying on this additional implicit semantic for correct evaluation is of-

ten ambiguously interpreted by reviewers and developers, as they often do not

34



M.A.Sc. Thesis – Monika Bialy McMaster University – Computing and Software

account for the left-to-right evaluation order. In practice these tables are used

to implement logic on a case-by-case basis, however, errors can arise during

maintenance when new decision rules need to be inserted, deleted or rear-

ranged due to the fact that they rely on previous decisions. Performing any

of the aforementioned actions will alter the logic of the table in ways that

are not readily apparent, as a result of the underlying relationships between

decision rules. A simple switch of two columns can completely alter the logic

of the decision table, and behaviour of the system. This is a serious concern

for safety-critical systems.

Therefore, not ensuring the presence of the disjointness property can lead

to a contradiction or redundancy, and because decision tables do not facili-

tate disjointness, they are not well-suited for applications which require clear,

unambiguous specifications.

Understandability and Readability Over the course of their history, de-

cision tables have taken on a variety of formats and different semantics. Formal

and universal semantics were defined by the Standards Association (Decision

Tables 1970). Nevertheless, decision tables diverge widely in their represen-

tation, semantics and algorithms. It is no surprise then, that Simulink also

uses its own implementation, semantics and definitions of what constitutes a

correct implementation of a decision table. Therefore, decision table semantics

are often not well understood upon immediate inspection. In comparison, tab-

ular expressions have consistent, and well-defined semantics. Their semantics

are intuitive to the reader and are simple to read.

In terms of visual inspection of disjointness and completeness, decision

tables may be less explicit than tabular expressions, and also less readable.
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For tabular expressions, one must simply scan the table from left to right.

Decision tables, however, require constant referral to the condition section in

order to understand what the decision rules signify. This plays a significant

role in the ease and correctness of table maintenance and modification.

Further exacerbating the problem of decision table interpretations and

readability is that their underlying semantics are implicit. This can lead to

inconsistent understanding of the knowledge being defined, and this is espe-

cially true from the perspective of an outside reviewer with no prior knowledge

of a decision table’s use. As a result, an ambiguous understanding of a table

can occur in the order of evaluation of decision cases. When first introduced,

decision table semantics were such that decisions could be tested in any order.

However, with Stateflow truth tables they are implemented with a left-to-right

order of evaluation. Although the use of the left-to-right semantics is common,

it is not a mandatory property of decision tables in general. Moreover, it is a

property that is not readily apparent simply through visual examination, nor

is it intuitive in many cases. We found this especially true for larger tables

with complex decisions. It is not always the natural response of the reader

when quickly searching a complex table for a decision that corresponds to a

specific case.

Our OEM partner’s developers expressed that tabular expressions provide

superior readability due to the fact that conditions are explicit in this formal-

ism. That is, decision tables use T/F/- constants to describe the value of a

condition. This requires the reader to reference the condition section of the

table in order to ascertain the meaning of these values. In tabular expressions,

conditions are directly placed in the decision rules, making it much simpler

to parse. This ease of inspection also lends itself well to the checking of com-
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pleteness and disjointness. These properties are easily visually checked with

tabular expressions. Moreover, tabular expressions have been shown to be a

particularly well-suited format for requirements documentation. In general,

tabular expressions are indeed a superior format in terms of readability.

Completeness and the Else Case As detailed in Section 2.3.2, complete-

ness ensures that all logically possible states/decisions are included. According

to Aberg (2004), Stateflow truth tables are the only Stateflow construct which

support the analysis of completeness. This is indeed the case for verifying that

the decision rules are complete in terms of handling all possible combinations

of conditions.

The diagnostics tools provided by Stateflow detect any departure from this

property. However, the completeness detection diagnostic is weakened by the

fact that Stateflow truth tables also allow for the inclusion of an else case as

part of the table. The completeness property can be simply satisfied with an

else case, that indiscriminately accommodates the remainder of the unspecified

cases, thus forcing completeness. The else decision rule is a convenient but

indirect means of enforcing completeness (Pooch 1974). Although an else

case presents a good solution for catching errors and impossible situations,

it introduces uncertainty as to whether or not one has indeed assessed and

explicitly addressed all cases of interest. It can potentially hide errors in true

completeness and logic, although the table is syntactically correct.

In comparison, tabular expressions do not have else functionality built into

their definition. This promotes avoidance of mindlessly grouping together

of all unconsidered decision rules as a single else. When implemented in a

Stateflow decision table, else conditions are a sequence of don’t cares for the
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decision rules. By their nature, these else conditions inherently introduce over-

laps with all other conditions present in the decision table, thus making any

decision table with an else decision rule not satisfy the disjointness property

once transformed into a tabular expression. Else conditions in a tabular ex-

pression must be explicitly defined, as one or more negations of conditions.

This is not to say that every case, or possible combination of inputs, must be

implemented individually in the table, but rather that all are represented in

an explicit manner, including the else case.

Non-Boolean Conditions Decision tables boast an adeptness in expressing

complex logical relationships between conditions while making relationships

between variables more apparent. This is certainly true for Boolean condi-

tions, which only every occupy a single condition entry and are implemented

as conjunctions of T/F/- values. This binary convention does lend itself to

Boolean conditions well, however, with increasingly complex conditions and

logic, this is not sufficient to fully express relationships between conditions.

Enumeration types are prevalent in mode-driven decision systems, where it

is common practice to denote each mode with an enumerated value. When im-

plemented in a decision table, enumerated variables are implemented with each

value as a separate condition in the condition column. Although they appear

and are treated as distinct conditions, there is an inherent mutual exclusivity

relationship between the enumerators, i.e. a single variable cannot hold the

value of multiple enumerators at any one time. However, due to their imple-

mentation as separate, unrelated conditions in decision tables, this is exactly

what is implied. In order to implement this inherent relationship, diagonal

patterns of T in the decision rules with F otherwise are required. This imple-

38



M.A.Sc. Thesis – Monika Bialy McMaster University – Computing and Software

mentation is comparable to that of an identity matrix, and is demonstrated in

Table 2.6.

Decisions

# Conditions D1 D2 D3 D4

1 eV ar == cEnum1 T F F -

2 eV ar == cEnum2 F T F -

3 eV ar == cEnum3 F F T -

Actions Result1 Result2 Result3 Result4

Table 2.6: Example of enumeration type representation in decision tables

For tabular expressions, this overly verbose implementation of enumerator

checking conditions is not necessary due to the disjointness property which

presides over conditions. The same checking logic of Table 2.6 can be more

compactly expressed in the tabular expression shown in Table 2.7.

Result

Conditions Name

eV ar == cEnum1 Result1

eV ar == cEnum2 Result2

eV ar == cEnum3 Result3

eV ar ∼= cEnum1 ∨ eV ar ∼= cEnum2 ∨ eV ar ∼= cEnum3 Result3

Table 2.7: Example of enumeration type representation in tabular expressions

Under closer inspection, when expressing an enumeration checking decision

rule in standard mathematical notation, we see how differently enumerated

types are implemented. For example, a decision rule to check if eV ar ==

cEnum1 in a decision table must be in the form,

eV ar == cEnum1 ∧ ¬(eV ar == cEnum2) ∧ . . . ∧ ¬(eV ar == cEnumn)
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whereas in a tabular expression the equivalent rule is simply,

eV ar == cEnum1.

Furthermore, because decision tables fail to accommodate for the implicit

exclusivity relationship between enumerators, an else decision rule is required

to catch cases that are not covered, and potentially another action. In reality,

these cases are impossible input combinations due to the nature of enumeration

types, however one is forced in include them, because Simulink otherwise flags

these “missing” cases as an underspecification error. For tabular expressions,

this extra else case is not required, however they are included in order to

accommodate for hardware errors.

This same problem exists with other types of conditions, including ranges.

An example of a range checking condition in a decision tables is given in

Table 2.8, while its equivalent tabular expression implementation is given in

Table 2.9. Again, there is a considerable difference in table size and readability.

Decisions

# Conditions D1 D2 D3 D4

1 x < 0 T F F -

2 x == 0 F T F -

3 x > 0 F F T -

Actions Result1 Result2 Result3 Result4

Table 2.8: Example of range implementation in decision tables
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Result

Conditions Name

x < 0 Result1

x == 0 Result2

x > 0 Result3

Table 2.9: Example of range implementation in tabular expressions

Clearly, tabular expressions offer superior support for non-Boolean condi-

tions, both because they can be implemented in a more intuitive manner, as

well as their ability to implement the same logic with a smaller table size.

Scalability Although the appeal of decision tables is that they provide rea-

soning in a compact form, in practise decision tables capturing complex logic

become difficult to manage in terms of comprehensibility, maintainability, and

testability as they grow in size. Large real-world applications frequently cause

decision tables to become too complex for reviewers to easily and intuitively

parse. As a consequence of this complexity, the implemented logic is difficult

to understand and maintain, while the underlying requirements are not evident

and hence can not be easily traced to requirements. Decision tables do pro-

vide a precise notation for complex systems, however, such documentation is

of little value if it cannot be easily reviewed and maintained. Creating a large

decision table with a considerable number of conditions inevitably becomes a

time consuming and difficult task.

The popularity and prevalent use of decision tables is primarily attributed

to their ability to represent complicated logic in a concise manner as compared

to narratives, flowcharts and other representations. Likewise, in the case of

our automotive partner, this was the rationale behind using decision tables
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in designs. What was actually encountered were large and overly complex

tables which captured logic that in theory were easy to understand, however

the number of conditions exacerbated the complexity of its implementation.

Large decision tables pose a problem for all involved: developers, testing, and

inspectors alike. Considerable effort is required in order to first understand

the logic that is captured. Even then, the decision table is a web of conditions

that is difficult to unravel.

As previously mentioned, decision tables do not readily implement non-

Boolean conditions in an intuitive manner. The result of this is an increase

in conditions, and thus table size, in order to accommodate these types of

conditions.

2.4 Model-in-the-Loop Metrics

In this section, we review existing software metrics for Simulink models. Model

refactoring techniques seek to improve model quality by reducing some model

complexity measure or by ensuring certain model properties are satisfied.

Means of measuring software are defined as metrics. Testing metrics are used

for dynamic verification (i.e. testing, simulation), while software metrics are

a static type of verification. Both these types of metrics are beneficial when

evaluating the quality of software designs during refactoring processes. Met-

rics enable an early estimation of the complexity of design, further predicting

understandability, testability, and maintainability of software. With a focus

on the simplification of designs, refactoring techniques should be applied with

guidance from metrics. Our aim is to minimize these metrics on models with

Stateflow truth tables specifically.

42



M.A.Sc. Thesis – Monika Bialy McMaster University – Computing and Software

2.4.1 Test Metrics

Given a model in an open loop, that is, a system design with unconnected in-

puts and outputs, testing tools seek to generate inputs with which the model is

then simulated rigourously. The extent to which the model and its numerous

subsystems and blocks are executed is largely contingent on the type of cov-

erage metrics used during test generation. Test generation simulates a model

with inputs, while recording the outputs. Both these values are stored in test

suites. Each simulation step during this process is a test step. Successive test

steps are called test cases. Different coverage metrics exist for various purposes

and languages.

Boundary Coverage This coverage metrics simply exercises inputs based

on the boundary values of their type.

Condition Coverage A condition is an atomic Boolean expression. To

achieve condition coverage, every condition must be evaluated to every one of

its possible outcomes, at least once.

Decision Coverage A decision is a Boolean expression composed of several

conditions separated by Boolean operators. To achieve decision coverage, every

decision must be evaluated to every one of its possible outcomes, at least once.

Furthermore, every entry and exit point must be taken, at least once. Decision

coverage is also known as Branch coverage, as every branch must be taken to

satisfy this metric.

Modified Condition/Decision Coverage MC/DC coverage necessitates

Condition and Decision coverage, with the addition of the requirement that
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each condition within a decision must be shown to independently incidence the

outcome of the decision. In other words, from one test to another, changing the

value of a single condition will also change the overall outcome of the decision,

while the remaining conditions are held at a fixed value.

For structural testing of high integrity systems, MC/DC was developed in

the avionics safety standard RTCA DO-178B (1992), specifically for use in

safety-critical applications where extensive testing of complex Boolean expres-

sions is required. This metric has also become expected in other safety-critical

domains, including nuclear and automotive. Consequently, tools which sup-

port the MC/DC metric as a criterion during test generation is recommended

to fully exercise the model and achieve maximal coverage.

To achieve MC/DC during testing, the following objectives must be ac-

complished:

1. Every condition must be evaluated to all possible outcomes (Condition

Coverage)

2. Every decision must be evaluated to all possible outcomes (Decision Cov-

erage)

3. Every entry and exit point must be taken (Decision Coverage)

4. Every condition within a decision must be shown to independently in-

fluence the outcome of the decision

The motivation for MC/DC was to make precise software with traceability

to each test. Although a very thorough criterion for testing, it poses problems

and difficulties in that it is time consuming and arduous to satisfy. Neverthe-

less, MC/DC is the best metric for testing safety-critical systems, particularly

those with complex boolean expressions (Kandl and Kirner 2011). Avenues for
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achieving MC/DC are of priority to OEMs striving to satisfy safety standards.

Many investigate avenues for refactoring code and creating test cases which

meet the demands of this metric.

2.4.2 Software Metrics

Metrics for Simulink/Stateflow models are typically general code metrics which

have been adapted. Similarity, cyclomatic complexity McCabe 1976,the most

widely used software complexity metric, has been adapted in a similar fashion,

and is supported in the Simulink/Stateflow environment.

Cyclomatic Complexity Cyclomatic complexity is a popular software met-

ric for static verification, and is the most widely used metric for quantifying

software complexity. Software metrics (unlike testing metrics) are methods of

measuring some property of the code. Cyclomatic complexity measures the

amount of decision logic in a program, or more specifically, the number of

linearly independent execution paths through a program (McCabe 1976). It

is directly related to the number of decision points within the code. Mat-

lab Simulink had adapted this metric for use in Simulink models. An integer

representing the amount of complexity is computed on a model or subsystem

using the definition, cc =
∑N

n=1(on − 1) where N is the number of decision

points contained in the model or subsystem, and on is the number of outcomes

for the n-th decision point.

Furthermore, the cyclomatic complexity metric can be used to impose up-

per limits on the complexity of software modules that will be permitted in a

design. While the original suggested upper bound of cyclomatic complexity of

a module was 10 (McCabe 1976), the limit of 15 was also successfully used.
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The suggestion is that limits over 10 may be used in cases where a rigorous

software engineering process is applied (Watson, McCabe, and Wallace 1996).

These strict limits are typically not adhered to in MBD due to the size and

complexity of the application domain.

Nevertheless, cyclomatic complexity metric is used to gauge refactoring

effectiveness with respect to the simplification of designs implementing decision

logic.

2.5 Related Works

Refactoring is a well-established restructuring process for software developed

using conventional textual programming languages. However, mechanisms for

refactoring Simulink designs is a relatively unexplored area. Simulink itself

does not provide refactoring support in any capacity.

Refactoring strategies which are available are focused on model-wide refac-

toring efforts, and must consider effects on dataflow. Tran, Wilmes, and

Dziobek (2013) introduce composite applications of transformation steps for

implementing refactoring strategies. Specifically, the refactoring operations

employed deal with replacing Goto/From blocks with explicit signals as well

as the merging subsystems. At the time of writing, and to the best of our

knowledge, other refactoring strategies for Simulink models are not readily

available.

However, the scope of this thesis focuses is on small subset of the Simulink

language, specifically the Stateflow truth table blocks. General table trans-

formations are most relevant to this work. In terms of tabular expressions

specifically, Shen, Zucker, and Parnas (1996) outline several transformations

46



M.A.Sc. Thesis – Monika Bialy McMaster University – Computing and Software

for going back and forth between inverted and normal tables by changing di-

mensionality, inverting and normalising. Zucker (1996) goes on to define them

mathematically using signatures and Boolean algebra, while discussing the re-

lationship between them. These approaches strive to simplify tables through

reorganization, not applying transformations to minimize the actual logic they

specify. Likewise, Fu (1999) gave a tool for going between structured decision

tables, semi-generalized decision tables, and generalized decision tables, while

Shen (1995) implemented algorithms for inverting tables. These transforma-

tions do not simplify the logic, but rather strive to express them in an optimal

table format.

Rastogi (1998) defines a simplification on normal, inverted, vector, predi-

cate and inverted predicate expression tables. The simplification of the logic

is done restricting the domain of a table through constraints on inputs, i.e.

specialization. Cases that will never occur during normal operation due to

these constraints are removed either at the cell level, or by removing rows or

columns. However, this results in a loss of generality as the domain under

consideration is reduced from its actual form.

For decision tables, refactoring techniques have been explored. Optimiza-

tions in terms of row ordering and execution time were addressed by Van-

thienen and Wets (1994), as well as some notions of table contraction by way

of column combination. These refactoring approaches were part of the process

of formalizing decision tables as expert shells. Similarly, Pollack, Hicks, and

Harrison (1971); Hughes, Shank, and Stein (1968) also discuss simplification

by way of removing repetitive decisions, or conditions which are not required,

i.e. don’t care conditions. Although these simplifications were done on decision

tables, they correlate to some of the simplifications defined within this thesis.
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Similar simplifications on tabular expressions have not been explored as of yet.

Furthermore, although it is acknowledged that several equivalent representa-

tions of a table are possible, none address this by taking into consideration

the requirements of the table. Additionally, the effect that the simplifications

have on tables in terms of testing or complexity is not evaluated.

Therefore, although techniques exist which can transform tables such that

they are simplified in their representation, none adequately simplify the logic

within the tabular expressions, nor are the effects adequately studied.
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Chapter 3

Application of a

Reverse-Engineering Software

Requirements Methodology

Requirements specification is a critical component of the development of soft-

ware systems. The majority of software failures can be traced to poor software

requirements (Leveson 2004). Although there is wide acknowledgment of the

importance of software requirements, requirements engineering is an area that

has largely been neglected by software developers. The automotive industry

is no exception.

It is often the case that legacy models suffer from a lack of accompanying

requirements, and even if such documentation does exist, it is rarely up-to-date

and adequately maintained. As a result of this absence or neglect, the under-

standing of design decisions and the underlying rationale of the system are

obscured, leading to difficulties in testing, maintenance, and evolution efforts.

Possessing well-specified and maintained requirements is integral to refactor-
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ing and improving software. Prior to making modifications, developers must

have a notion of what the requirements of the system are, in order to ensure

that any software alterations will continue to satisfy the requirements at the

terminus of the refactoring process. This is especially important for functional

safety requirements, which specify safety-related software attributes. Conse-

quently, reverse-engineering requirements specification represents a necessary

step in the refactoring process.

Retroactively extracting requirements from existing, already developed soft-

ware generally proves to be an arduous process. The seemingly most intuitive

and straightforward method of doing so is through the consultation of develop-

ers, that is, those experts with the greatest depth of knowledge of the system.

This method, however, is time consuming on the part of developers, does

not guarantee exhaustive discovery (completeness) of requirements, nor does

it provide any assurance that the discovered requirements are indeed correct

(accurate), i.e. implemented in the current system. Therefore, the application

of an automated methodology for requirement extraction from software speci-

fication would aid in these efforts. Such a methodology for Simulink/Stateflow

models was proposed by Ackermann et al. (2010). Experimental results were

provided, indicating high completeness and validity of inferred requirements,

as well as proving the fruitfulness of this methodology on Simulink/Stateflow

automotive designs. We go on to apply this methodology to a industrial project

in partnership with an automotive OEM, and the findings are described in Sec-

tion 3.1. Scripts were also created to automate the processes described in this

methodology.

Additionally, we alter this methodology to maximize coverage for tabular

designs, as well as produce higher quality candidate software requirements.
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A new methodology is presented which makes use of formal property proving

techniques as an alternative means of verifying the validity of potential re-

quirements, whereby software properties are formally proven to hold over all

behaviour of the system. Furthermore, a different tool is used as the basis

for this methodology, one which provides MC/DC support for Stateflow truth

tables, as well as an alternative testing approach. The proposed methodology

provides more extensive test coverage, which in turn produces higher quality

candidate software requirements. Additionally, this methodology can serve as

a complimentary technique to that of Ackermann et al. (2010). This proposed

methodology is presented in Section 3.2.

3.1 Reverse-Engineering Methodology

Here, an overview of the process of reverse-engineering requirements is de-

scribed, as presented by Ackermann et al. (2010). This process is depicted in

Figure 3.1.

1. Generate Test Cases. A test suite, i.e. collection of test cases, is au-

tomatically generated from a Simulink/Stateflow model such that model

coverage is maximized according to several testing metrics.

2. Data Mining. Relationships between the input and output variables

which remain constant over the entire test suite are identified by applying

an association rule mining tool on the test data. These relationships

represent invariants of the system. Since the relationships are inferred

based on a test suite that exercises only a part of a model’s behaviour, the

identified invariants are only potential invariants, and therefore, potential
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1Figure 3.1: Methodology for reverse-engineering requirements from Simulink/
Stateflow models

requirements.

3. Instrumentation-Based Verification. Potential invariants, i.e. re-

quirements deduced, are formalized as monitor models. For each po-

tential invariant, the original Simulink design is instrumented with a

corresponding monitor model, and automatic test generation is again

performed to check if there are any executions of the Simulink design
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that violate the monitor model. If no such execution is found, the in-

variant can be inferred to be a valid requirement with a high level of

confidence.

3.1.1 Tools

As stated in Section 1.1.1, software models in safety-critical domains are typ-

ically large and complex. Therefore, tools are required to complement the

aforementioned methodology with an effective but efficient means of automat-

ically generating test cases for systems, and performing data mining tasks.

Reactis by Reactive Systems, Inc. is an automated testing and valida-

tion environment for Simulink/Stateflow models, and is used widely in the

aerospace and automotive industries, including our automotive partner. It is

integrated into their development process for other testing purposes, and so,

to minimize the efforts of purchasing and acquiring new software, we extend

the use of Reactis to this methodology’s test generation step. Furthermore, it

is the tool which is used by Ackermann et al. (2010).

Reactis’ testing algorithm is a three-step process, consisting of both random

and targeted phases (Cleaveland, Hansel, and Sims 2010). Reactis analyzes

models and creates optimized tests that extensively exercise designs over sev-

eral types of coverage metrics. These include, decision, condition, and MC/DC

coverages, as well as several other structural metrics.

Additionally, Reactis provides support for Instrumentation-Based Verifica-

tion (IBV). More precisely, it provides Assertion instrumentation, allowing for

a requirement to be formalized as a monitor model, called an Assertion, in the

system. Reactis can then perform targeted testing in an attempt to violate
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the requirement, endeavouring to falsify any which do not hold true for all

executions.

A beneficial feature of Reactis is its complete segregation from the original

model. Any auxiliary information required for testing or other activities, for

example augmenting the model with objectives or constraining inputs, never

alters the model. This additional data is stored in separate files created by

Reactis, thus helping to prevent accidental model modifications.

Weka, a data mining toolkit, contains a collection of data mining algo-

rithms. Included is the well-known Apriori algorithm developed by Agrawal

and Srikant (1994), which performs association rule mining on test cases. Sev-

eral data mining tools do exist, implementing various algorithms, however we

are interested in Apriori as it is extensively studied, and choose a simple, easy

to use, open source tool to perform the data mining tasks required. Further-

more, Weka supports the comma-separated values (CSV) test data produced

by Reactis, thus making for a more seamless workflow.

The most recent, stable versions of these software tools are used in our

application. At the time of writing, this refers to Reactis V2014 and Weka 3.6.

3.1.2 Application and Results

The methodology outlined in Section 3.1 was applied to models provided by an

automotive OEM. As a result of our collaboration with an industry partner, we

have at our disposal large industrial models of vehicular control software, and

have the opportunity to apply the methodology on industry code. However,

due to the fact that the industry models we are working with are proprietary
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information that we are unable to disclose, the following example’s details

have been anonymized. In general, from the numerous Simulink models and

systems which compose the functionality of a vehicle, we choose one subsys-

tem implementing some vehicle function, for which we endeavoured to extract

requirements.

Figure 3.2 shows the system of interest, on which we will apply the require-

ments extraction methodology. This system was extracted from the rest of its

model, as we wish to focus on this subsystem specifically. Models typically

contain various other related systems, such as input processing, diagnostics,

and output processing, which are not part of the control algorithm implemen-

tation. Thus we use Reactis to extract the subsystem for which requirements

are to be reverse-engineered. At a high-level, the model presented performs

arbitration of driver requests while considering the current status of the sys-

tem, i.e. the previous arbitrated status, as well as other vehicle conditions. It

does so through the use of four Stateflow truth tables at the core of its design.

What follows is a step-by-step account of the application of the requirements

extraction methodology on this system.

1. Test Case Generation Reactis is used to automatically generate test

cases with the goal of maximizing a variety of coverage metrics. We

discuss test coverage maximization strategies in greater detail in Sec-

tion 3.1.4. Automatic test generation on the model in Figure 3.2 was

performed using testing parameters allocating 500 tests to the random

phase, 5000 execution steps per random test, and 19500 steps for the tar-

geted phase. This test run produced 2 test cases, with a total number of

22 steps. The resulting coverages achieved are given in Table 3.1. Some
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Figure 3.2: System undergoing requirements extraction
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Coverage Metric Covered Unreachable Uncovered Targets Covered
Subsystem 10 0 0 100%
Branch 21 0 4 84%
Lookup Table 0 0 0 –
State 0 0 0 –
Condition Action 0 0 0 –
Transition Action 0 0 0 –
CESPT 0 0 0 –
Decision 14 0 4 78%
Condition 16 0 4 80%
MC/DC 6 0 4 60%
Boundary Value 30 0 0 100%
User-Defined Target 0 0 0 –
Assertion Violation 0 0 0 –
TOTAL 97 0 16 86%

Table 3.1: Testing coverage results for an automotive subsystem containing
Stateflow truth tables

metrics were not applicable to the design, i.e. zero targets generated,

and therefore appear with “–” coverage. For example, the design does

not employ Lookup Table blocks, and therefore no tests were generated

to exercise that metric.

It is important to note that Reactis relies on a random testing engine

(further discussed in Section 3.2), meaning that performing test genera-

tion on the exact same model under the same conditions will result in a

different test suite each time.

2. Data Mining After test generation, the test suite is exported and pre-

processed for use with Weka. Preprocessing takes place within Weka

using its various data filters. The unsupervised NumericToNominal filter

is used to designate seemingly numeric attributes as nominal, so that the

Apriori algorithm can then be applied to this data.
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Section 3.1.4 discusses the Apriori algorithm’s lack of support for

numerical types in invariants. This necessitates additional data prepa-

ration through the removal of incompatible signal data recorded in the

test suite. This can be accomplished through Weka’s preprocessing util-

ity or any other available .csv editor. Moreover, the inference of timing

requirements is an area of research necessitating further study and is not

explored at this time, so test simulation time t is also removed.

Using Weka, data mining on the test data generated in the previous

step was performed. Default parameters for the Apriori algorithm were

used. However, a high upper bound for the number of rules to generate

was given, so that all possible invariants were generated, whereas the

default is set to ten. The confidence parameter was also augmented to

100% instead of the default 90%, so that only invariants which hold over

all tests are inferred. Additionally, to assist Weka in producing invariants

of a specific format, specifically those with outputs as the consequent,

we use classification rule mining to infer their class. These measures

for producing more meaningful invariants are addressed in Section 3.1.4.

Invariants are rules in the form of an implication, where the premise is a

conjunction of variable equalities, and the consequent is a single variable

equality that follows from the antecedent. In total, 496 invariants were

generated during this step. A sample of the derived invariants is given

in Figure 3.3, with the remaining invariants given in Appendix A.2.

3. Instrumentation Based Verification (IBV) The potential invariants

inferred by Weka are validated using Reactis. The model is instrumented

with invariants acting as monitor models, observing the model for erro-
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(a) eCurrState == cState1∧eDrvrRequest == cState2 =⇒ eArbRequest == cState2

(b) bCmpntUnlocked ∧ bOvrdToState1 ∧ eFaultyState == Stage2 ∧ bSysActive ∧
bFaulty =⇒ eArbRequest == cState1

(c) eCurrState == cState3 ∧ ¬bSysActive =⇒ eArbRequest == cState3

(d) eCurrState == cState1 ∧ eDrvrRequest == cState2 ∧ bCmpntUnlocked =⇒
eArbRequest == State2

Figure 3.3: Sample of generated invariants from Figure 3.2

neous values during test generation. It is through a directed testing

effort that Reactis strives to violate the invariants, while also maximiz-

ing structural coverage of the design. These invariants were formalized

as Reactis Assertions using a simple expression language. While this

formalization and instrumentation is supported by Reactis in a manual

fashion through its GUI, this process was automated through the use of

Reactis’ API. Custom scripts were created for the automatic processing

of Weka output and subsequent addition of each potential invariant into

the model’s information file (.rsi).

After instrumenting the Simulink model with the generated asser-

tions, assertion checking is performed. This is essentially targeted testing

for the purpose of exercising assertions and monitoring their validity. In-

variants which are falsified during this process are discarded, as they are

do not hold over the test suite generated. This process is repeated until

no further assertions are discarded. Those remaining after several itera-

tions can be accepted as specification requirements with a high degree of

confidence. Even so, these assertions, although true for some execution

of the model, cannot be determined with absolute certainty that they

are invariant over all behaviours of the system. Testing is rarely exhaus-
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tive, and in the case of large, complex systems, exhaustivity is unattain-

able. Thus, drawing conclusions about whether an invariant holds for

the whole system using testing is not possible. This issue is touched

upon in Section 3.1.4, and an alternative verification approach is put

forward. Regardless, the remaining invariants after several iterations are

candidate requirements, and should be discussed with domain experts in

order to ascertain their usefulness in capturing system behaviour, as not

all invariants may be meaningful, and thus useful.

Returning to the example, after formalization and instrumentation,

subsequent automatic test generation on the instrumented model dis-

proved many invariants. Out of the 496 potential invariants, 481 were

disproved during simulation. Upon iterating a second time, no further

invariants were disproved, and so the methodology is terminated. In the

end, only 15 invariants passed the IBV phase, and these can be consid-

ered as potential requirements.

Therefore, approximately 97% of initially generated candidate invariants

were erroneous. With an overall test coverage of 86%, this is a substantial

amount, and if it were not for the automation scripts created as a supplement

to Reactis’ capabilities, instrumenting the model by hand would be unrealistic.

This however begs the question: Why were so many falsified?

3.1.3 Deficiencies

The primary reason for the large amount of inaccurate invariants is due to the

testing capabilities provided by Reactis. This affects both the testing and IBV

phases of the methodology.
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Testing Tables Matlab Simulink and Statefow provide extensive block li-

braries, with several hundred unique blocks for the representation of a wide

array of modelling concepts and equations. As a result, it is often the case that

third-party software tools may only support a subset of the blocks available, or

may provide superior support for some blocks over others. In particular, when

it comes to Reactis, support for thorough testing of Stateflow truth tables

is not provided. Although tool documentation for Reactis V2014 states that

Stateflow truth tables are currently “supported”, and have been since V2012

(Reactive Systems 2014), our experience has found that this simply means

that Reactis is able to execute Stateflow truth table blocks and compute cor-

rect output values. However, truth tables are treated as black-boxes, with no

testing of the internal logic they implement in terms of condition, decision, or

MC/DC metrics.

Further investigating this deficiency, tests conducted with Reactis show

that the only metric exercised on a truth table is the Boundary Value Cover-

age of its inports. This ensures that the input domains are exercised based on

their associated type. For example, if a Stateflow truth table has two Boolean

inports, Reactis will produce tests to cover the limits of these inports’ domains,

namely the inputs being both true, or both false. However, condition, deci-

sion, and MC/DC of the internal logic is not maximized. Thus the decisions

within the table will not be tested such that the tables are thoroughly exer-

cised, and therefore coverage of the model is ineffectively measured. Table 3.2

is taken from Reactis’ test coverage report, and is the summary of local cov-

erage for one of the tables out of the four in the system in Figure 3.2. The

remaining three had identical coverages. Note the non-existent targets for de-

cision, condition, and MC/DC coverage. In reality these three metrics are not
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Coverage Metric Covered Unreachable Uncovered Targets Covered
Subsystem 1 0 0 100%
Branch 0 0 0 –
Lookup Table 0 0 0 –
State 0 0 0 –
Condition Action 0 0 0 –
Transition Action 0 0 0 –
CESPT 0 0 0 –
Decision 0 0 0 –
Condition 0 0 0 –
MC/DC 0 0 0 –
Boundary Value 0 0 0 –
User-Defined Target 0 0 0 –
Assertion Violation 0 0 0 –
TOTAL 1 0 0 100%

Table 3.2: Testing coverage results for a Stateflow truth table

applied to the internal logic that the Stateflow truth table implements. Reactis

only seeks to execute the table subsystem, and thus, this is the only metric

targeted.

Some literature suggests that decision tables should be tested with black-

box techniques (Hass 2008). Perhaps it is for this reason that white-box testing

metrics on truth tables have been neglected. Another explanation may be that

due to the large library of blocks in Simulink, truth tables were simply not

tested thoroughly. For safety-critical software, this is certainly not acceptable.

As stated in Section 1.1.2.1, ISO 26262 requires the use of structural metrics

such as MC/DC for ASIL D and also recommends MC/DC for ASILs A, B,

and C. Additionally, this lack of adequate truth table testing support means a

possible deficiency in test cases produced, and consequently invariants inferred.

The less a test suite exercises the mode, the more likely it will be that the

generated invariants will be of poorer quality. This issue was discussed with
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a Reactis engineer, however there are currently no plans to expand coverage

metrics to tables.

Instrumentation Based Verification The use of testing as an iterative

verification step also presents deficiencies in the methodology. Testing, whether

employing targeted or random testing strategies, is rarely exhaustive for non-

trivial software programs. Therefore, IBV deals with an incomplete state space

when it comes to validating invariants. When performing IBV using Reactis,

falsified assertions can be considered as false with 100%certainty, since there

exists a test case which provides a counterexample. On the other hand, it

is not possible to judge with certainty the validity of an invariant should it

hold for a test suite. An inexhaustive test suite encompasses a subset of a

model’s entire state space, and thus there is the potential for the existence of

a simulation instance which proves the invariant false. However, because this

simulation run was not covered during testing, the invariant was not falsified.

Thus, in employing testing as a verification step, we consequently cannot draw

a definitive conclusion as to the validity of an invariant for the system. Never-

theless, in iteratively verifying invariants, a high degree of invariant confidence

can still be attained, although not proven formally.

These two issues are rectified in a new methodology presented in Sec-

tion 3.2.

3.1.4 Issues Encountered

Several, interrelated issues were encountered in the application of this method-

ology on Simulink/Stateflow models, however, most were resolved when it came
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to our application. This section elaborates on the additional considerations re-

quired when applying the methodology given in Section 3.1.

The most significant obstacles in applying the methodology are as follows:

• Lack of support for numerical types. In exploring this issue, we also

found that enumeration types were not being handled correctly either

• Increasing test coverage of models under test for generating invariants

which represent valid system behaviour

• The substantial number of invariants are generated, not necessarily in

an appropriate format

Numerical Types Association rule mining is a learning scheme originally

created in the context of transactional databases, for example, point-of-sale

systems of a store. As a result, the Apriori algorithm works on data in the form

of records where attributes are either present or not. The Apriori algorithm

addresses the “Boolean Association Rules problem” where all attributes can

be thought of as Boolean values that are either true or false (Agrawal and

Srikant 1994). Therefore, association rule mining on numerical data is not

supported (Webb 2004). If any numerical data is included, application of the

algorithm cannot take place. This poses a problem because databases in most

domains include both quantitative (numerical) and categorical (Boolean and

enumeration) data.

In order for the Apriori algorithm to run on the test data, unsupported

data must be discarded. Clearly, the disadvantage of removal is that data

is lost, possibly impacting the invariants produced. If a large portion of the

data is numerical, and a fair amount of attributes need to be removed, then
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their absence from the data affects the results, in that removed attributes

will not be present in the invariants. Although this temporary solution is

not optimal, in a system where there are only a few numerical attributes

removed, the results will not be altered in as significant a manner. Thus, until

numerical data can be handled, these types of systems prove to be better for

invariant inference. Using Weka’s NumericToNominal filter on a numerical

attribute is possible, however this wrongfully treats each individual numeric

value as a valid nominal value of that attribute, discarding potentially valuable

ordering information needed to handle ranges. Future work needs to be done

on extending the methodology in order to accommodate numerical data, such

that the learning scheme is able to create inequalities involving ranges, rather

than simple equality tests.

In our presented example, no system attributes were discarded, as they

were non-numerical types. On the other hand, the test suite simulation time

was removed from the test suite, so timing information was lost.

Model Coverage In order to achieve better invariants which express valid

system behaviour, it is necessary to extend the generated test suite in terms

of coverage. Examination of the model’s coverage can be done using Reactis’

Coverage-Report Browser, which enables users to track which parts of a model

have been executed and which have not. In the initial efforts of test suite

generation, a lower cumulative test coverage was achieved. As a result of this

poor coverage, resulting inferred invariants suggested that an input was equal

to an output. It was evident that such a relationship between ports could

not be valid, because it would suggest that a significant design flaw existed

in the system. As anticipated, an increase of model coverage eliminated these
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erroneous invariants, thus improving the quality of the invariants produced.

Test suite coverage can be maximized in a number of different ways. The

most straightforward approach is adjusting the test generation parameters that

are available prior to testing. Reactis performs testing by applying a three-

phase algorithm on the data (Cleaveland, Hansel, and Sims 2010). These three

phases of the algorithm can be adjusted to provide testing behaviour which

better covers the model. The preload phase allows the user to specify one or

more existing test suites, which the testing algorithm strives to extend. After

these initial test suites are loaded, additional tests are generated to augment

their tests cases, enhancing coverage. Reactis Tester also performs random

testing of the model. This random phase of test generation can be directed by

adjusting the number of different tests to generate and the upper bound on

the number of steps in each of these tests. Lastly, the targeted phase of the

algorithm aims to maximize the coverage metrics specified by the user.

An increase in coverage was also achieved through model decomposition

into smaller, independently testable subsystems. In a large system with a

low test coverage, subsystem extraction increased the coverage. The size of a

system also effects the number of invariants which can potentially be produced.

A system with many ports can potentially yield a larger set of invariants. At

the completion of the reverse-engineering methodology, the inferred invariants

must be manually inspected by domain experts, i.e. developers, to determine

whether or not they capture valid and meaningful system properties. This

becomes prohibitively difficult when the number of generated invariants is

large. Decomposing the model into smaller subsystems addresses this problem

since the invariants are inferred on a smaller subsystem, between a smaller

set of ports, and thus produces a smaller set of system properties, which are
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feasible for developers to examine.

Furthermore, increasing coverage by interactively tuning testing is also sup-

ported by Reactis, however domain expertise and knowledge of the system is

required in order to provide the necessary insight for using this method. Condi-

tions which are deemed difficult to satisfy can be identified, and the simulation

steps which would cause the condition to be covered must be determined and

added to the test suite. In the case that no requirements documentation de-

tailing the behaviour of the system is available, this is not possible without

intimate knowledge of the software.

For our application, parameters for testing were chosen after a couple test

generation attempts, and were selected when increasing testing time or steps

did not yield any gains to coverage.

Constraining Inputs In order to reduce the number of possible values a test

generation tool must consider, the type of an input should be constrained to the

set of its possible values. In general, when the values of ports of the top-level

model are specified in Simulink, Reactis is able to infer typing information,

however there are potential issues when it comes to custom types or subsystem

extraction, resulting in a loss of this data.

With respect to enumeration types, it was observed that several ports were

inferred to be numerical int16 type, although they were enumeration types in

reality. Upon tracing the issue, it was discovered that the cause of this was due

to custom handling of enumeration types in separate script files which were

not picked up by Reactis. Therefore, it is imperative that inport types are

inspected and constrained. During test generation Reactis will feed in ranges of

integers into these enumeration types which are outside their expected scope,
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resulting in two problems. Firstly, when the test suite is then opened with

Weka, some attributes appear to take the set of all integers Z as inputs, and

are classified as a numerical type, when in actuality they are enumeration

types. This poses a problem in the application of the Apriori algorithm on

the data, as numeric attributes are not supported, and thus must be either

converted into a nominal, i.e. Boolean or enumerated, attribute or discarded.

Secondly, treatment of a data type with a small set of possible values as

a larger data type encompassing a larger range of values leads to poorer test

coverage. Reactis feeds in a range of integers as inputs which are beyond the

expected scope of the port, and so testing unnecessarily explores state space

which is unreachable. To prevent this from occurring, it is necessary to reduce

the values fed into inports to a range of valid values. This is accomplished

by constraining the values generated for inports during test generation, sim-

ulation, and validation through the specification of ranges and subsets within

a base type. Reactis facilitates the constraining of inport ranges through its

Type Editor utility.

There may also be potential issues with Reactis, as identified by their

developers. Subsystem extraction should correctly set data types for inports

and outports of the extracted subsystem, however, problems may still arise

as a result of data type conversion blocks when they attempt to convert an

‘auto’ type, automatically inherited from a top level port, to an enumeration

type. This, however, is not an issue which we are currently experiencing as

these conversion blocks are not present in the industrial models used with this

methodology.

68



M.A.Sc. Thesis – Monika Bialy McMaster University – Computing and Software

Invariant Quality Although increasing coverage and model decomposition

decreased the number of invariants inferred, a substantial amount are gener-

ated nonetheless. This is largely due to the nature of association rule mining.

Association rule learning generates rules between two or more attributes, and

unlike classification, does not seek to predict a certain set of attributes. Conse-

quently, numerous rules are typically generated from even a very small dataset.

Therefore, endeavouring to restrict rules generated to only those present in the

most number of steps of the test suite, the Apriori algorithm should be ap-

plied using strict parameters with regards to rule confidence and support, as

described in Section 2.2.

The Apriori algorithm was applied with the highest threshold for confidence

to the test suite produced by Reactis. Only those invariants with 100% con-

fidence were generated. Invariants not satisfying these criteria are discarded,

leaving only those with the highest support of test generation data. IBV was

applied iteratively to remove any which are not properties of the entire system.

Furthermore, invariants need to be examined manually to determine whether

they can be considered requirements. Not all observed invariants are relevant

or describe meaningful system behaviours. Thus, a manageable amount of

invariants must be inferred such that the quantity is feasible enough to be

reviewed by domain experts. Only those rules which are deemed the strongest

should be presented. Once the validity or relevance of these invariants is as-

sessed by developers, other system invariants which may capture important

but less supported behaviour may also be inferred.

Invariant Structure The Apriori algorithm’s primarily purpose is for min-

ing lists of items/attributes, typically from large databases. As such, it does
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not consider how the itemsets are formed in terms of grouping. Itemsets can

contain any combination of one of more attributes. For the application of

Apriori on systems with data represented as signals of inputs and outputs, we

wish to infer how inputs impact outputs. Naturally, attributes representing the

inputs of the system should appear as the antecedents of the association rule,

while outputs the consequent. Weka is unable to distinguish between inputs

and outputs automatically from the test suite loaded, and there is no direct

mechanism in Weka to facilitate the grouping of attributes through manual in-

tervention. Opus Magnum, a similar tool used by Ackermann et al. (2010) has

support for limiting attributes to the left-hand-side (LHS) or the right-hand-

side (RHS) of an association rule, however, it is unclear if this functionality

was utilized in their study.

An alternative solution is to make use of Classification Rule Mining. This

type of data mining seeks to predict a specified class, and as such, will attempt

to achieve it as a consequent of the rule. Therefore it is possible to force the

attribute to be on the RHS of mined rules by selecting it as the attribute class

to be predicted. Weka allows for this to be set by enabling the user to choose

a single attribute as the consequent of rules.

Should the classification rule mining approach be unsatisfactory, logical

transformations can be applied on the rules to move inputs to the antecedent,

and outputs to the consequent, thereby, enabling invariants to be structured

in a more telling form. This avenue is not explored here.
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3.2 Proposed Methodology

During the analysis and use of the software requirements reverse-engineering

methodology described in Section 3.1 deficiencies inherent in the methodology

were encountered. From these findings, a revised methodology was created

to address inadequacies in table support, as well as invariant confidence. To

resolve these shortcomings in the methodology’s tool-chain, we modify it to

include an alternative model testing tool which seeks to properly maximize

code coverage of truth tables. Furthermore, property proving instead of IBV

is used as a means of proving that the invariants do in fact hold over all of the

system’s behaviours. In this new process, Simulink Design Verifier (SDV) is

used to remedy Reactis’ deficiencies in terms of testing Stateflow truth tables,

and provideing an alternative means of verifying invariants.

For safety-critical systems, the use of separate and diverse approaches to

verify data is common practice. To ensure that inferred requirements rep-

resent valid system properties, a parallel means of verification is beneficial.

The use of this new methodology is complementary to the methodology given

by Ackermann et al. (2010), and can be used to corroborate results using an

alternative approach to IBV. The new methodology is given in Figure 3.4.
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Figure 3.4: An adapted methodology for reverse-engineering requirements from
Simulink/Stateflow models using property proving
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3.2.1 Tools

Simulink Design Verifier by Mathworks, performs automatic test gen-

eration on Simulink/Stateflow models using a formal methods engine1 (The

MathWorks Inc. 2014). Simulink Design Verifier (SDV) uses Prover Plug-In

(Andersson et al. 2002) by Prover Technology for test generation and property

proving, as stated by The MathWorks Inc. (2014). The Prover Plug-in per-

forms model-checking using symbolic manipulations of propositional logic, as

developed by Sheeran and St̊almarck (1998). SDV also statically analyzes the

model and creates optimized tests which exercise the design over the condition,

decision, and MC/DC metrics.

The primary motivation for using SDV is largely due to the fact that other

tools do not achieve satisfactory coverage in cases where designs involve State-

flow truth table blocks. SDV is superior in that it is able to perform white-

box testing on truth tables using condition, decision, and MC/DC metrics

on the internal logic. According to automotive standard ISO 26262, MC/DC

is necessary for the testing of safety-critical software. This was discussed in

Section 1.1.2.1. Thus, we select SDV over other testing tools for embedded

systems.

SDV is also capable of performing the Instrumentation-Based Verification

task of the original methodology, but in a different manner. It too provides

mechanisms by which monitor models can be defined in the the system under

test, and they are referred to as Test Objectives. Test generation, through

the use of these Test Objectives, can take place in a similar fashion as the

reverse-engineering methodology of Section 3.1, however there is a significant

1However, Simulink’s language semantics are not formally defined
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difference in the testing strategies utilized. This has repercussions on the

methodology. For IBV, the original reverse-engineering methodology relies

on a random testing strategy, allowing for the explored state space to be ex-

tended in each iteration. On the other hand, SDV relies on a formal methods

verification engine, thus deterministically producing test cases.

As a result, iterating in the IBV phase does not explore additional state

space of the model when using such an engine. In the original methodology,

the state space was extended as a consequence of the random test generation

portion of the algorithm. Therefore, it is necessary to instead use SDV’s

property proving capabilities for verifying that invariants hold over the system.

Although deviating from the spirit of the original methodology, this alteration

is advantageous in its own rite. It provides a formal check of the validity

of invariants, whereas this was not previously possible. A higher degree of

confidence as to the invariants’ validity is ultimately attained. There is added

confidence that the invariants are indeed requirements which hold over the

entire system, rather than merely over a non-exhaustive test suite.

The version of SDV in use for the application of the proposed methodology

is version 7.8, such that it is compatible with our automotive partner’s use of

Matlab 7.13 (2011b). It is fully integrated into Matlab Simulink.

Weka is used in the same capacity as outlined in Section 3.1.1. Its applica-

tion in the methodology remains the same.

3.2.2 Application and Results

Application of this methodology is shown on the same system used in the

demonstration of Ackermann et al.’s methodology in Section 3.1.
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1. Test Case Generation This step differs from the original methodology

due to the difference in the testing engine. With SDV’s engine, testing is

deterministic, and so multiple test runs on the same model will yield the

same test cases and coverages each time. Before simulating the model,

SDV does a static analysis and generates targets which must be satisfied

in order to satisfy the coverage metric objective. The testing objectives

can be set to focus on either of the three testing targets provided: decision

coverage, condition coverage, and MC/DC. Maximization of the MC/DC

metric is the strongest of the three, as discussed in Section 2.4, and so

it is selected as the objective of the testing engine. Test conditions

can also be added to constrain inputs, and are encouraged to increase

model coverage. To achieve MC/DC, 1032 targets were computed and

consequently attempted to be exercised. Out of these targets, 752 were

satisfied, while 279 were falsified. Again, the distinction between these

results and those of Reactis is that SDV can formally prove that it is

impossible to satisfy these targets, whereas Reactis they may simply

classify them as not covered. In total testing produced 7 test cases with

approximately 73% MC/DC coverage.

2. Data Mining This step remains the same, however preprocessing must

be done on the test data. SDV does not easily export its test data to

a suitable format conducive for Weka’s data mining. A manual process

was used to create a compatible test suite, however this could be easily

automated. 192 candidate invariants were inferred during this step.

3. Property Proving We use SDV to check the validity of invariants. The

invariants can be formalized in SDV using monitor models in Simulink
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and then model checked. SDV uses a verification engine based on for-

mal methods. SDV can prove validity of a potential invariant in the

case when the size of the state space of a model’s behaviour is not pro-

hibitively large. Invariants are implemented using the standard Matlab

function blocks, and then their outputs are connected to SDV Proof

Objective blocks. These are housed within a verification subsystem, as

shown in Figure 3.5. SDV attempts to formally prove or disprove each

of these specified requirements by exhaustively exploring the state space

for counterexamples. If the requirement is falsified, a counterexample is

provided which gives the particular simulation scenario when this tran-

spires. The results which pass this phase are given in Appendix A.1 due

to space considerations. Out of a total of 192 candidate invariants, 112

were validated, and 80 falsified.

3.2.3 Issues Encountered

Many of the points highlighted in Section 3.1.4 hold for this methodology

as well. such as the Apriori algorithms lack of support for numerical data

and invariant quality and structure. Test coverage is also increased when

the inputs are constraining using SDV’s Test Condition blocks. However,

model coverage is evaluated differently in the context of SDV and cannot be

maximized through the adjustment of test parameters in the same way. More

time can be allocated to testing if the model is large, and the user is able

choose between decision, condition, and MC/DC metrics as the targets for

testing. If these targets for these metrics are unattainable, SDV can prove as

much, and will terminate. The following are additional issues encountered in
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Figure 3.5: Model instrumented with a SDV Validation System

the application.

Subsystem Extraction In comparing the support of both tools’ extraction

capabilities, Reactis’ is more robust. Reactis actually creates a new model with

the extracted subsystem, while also allowing the user to specify if triggers and

other artifacts should be retained. In contrast, SDV allows for the designation

of certain blocks as atomic, and then these can be tested and proved inde-

pendently from the remainder of the system. However there are limitations

as to which block types this can be applied to. Issues were encountered when

making if conditional subsystems atomic, and this is not possible for these
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types of blocks. For these situations Reactis was used as a supplementary tool,

providing the system extraction required.

Test Suite A drawback of using SDV in this methodology is its absence

of test suite creation. While it does generate test harnesses and a custom

data structure containing important test data, this information is not easily

transferred as input to Weka. Extra effort was required to construct a .csv

test suite compatible with Weka. This was a manual process, however this

would be easily automated.

3.3 Comparison

Here, a comparison is done of the two reverse-engineering methodologies pre-

sented thus far: a) Ackermann et al.’s methodology using random structural

testing (given in Section 3.1); and b) the property proving methodology de-

scribed in Section 3.2. Analysis as to the running time, human effort, etc.

are not studied here. This comparison is done simply from the perspective of

producing better tests and invariants from Stateflow truth tables. Graphs are

used to summarize the findings from Sections 3.1 and 3.2. These results are

generated by applying the two different reverse-engineering methodologies to

the same model. As the scope of this work focuses on tabular design, a model

which contains Stateflow truth tables was used.

Firstly, with regards to testing systems which contain Stateflow truth ta-

bles, Figure 3.6 illustrates the amount of test data generated for each approach.

In general, test cases are a means on grouping some number of test steps. Each

test step records the input/output for a single simulation time step. Thus more
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focus is given to the number of time steps within a test cases. The graph de-

picts the data produced in their respective test suites. SDV facilitates testing

on Stateflow truth tables, therefore it is no surprise that its generated test

suite contains more test cases and test steps than what Reactis is capable

of producing. The reason for the undersized amount of test cases and steps

generated by Reactis is demonstrated in Figure 5.1. Namely, Reactis fails to

target the MC/DC testing metric.
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Figure 3.6: Comparison of Test Suites

In comparing the MC/DC testing capabilities, the results are stark. The

total number of test objectives produced by the tools is given, as well as

those which were covered and not covered during simulation. In general, test

objectives represent the cases identified by the tool as necessary goals to be

achieved during testing. They strive to fully exercise the model in terms of

various metrics, endeavouring to explore a model’s state space extensively.
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In this context, attention is given in assessing MC/DC objectives generated.

As evidenced in Figure 5.1, Reactis does not consider maximizing MC/DC

coverage when it comes to Stateflow truth tables. In Figure 3.2, we see other

blocks present within the system, which perform various decision functions.

In this case, MC/DC was applied to them, and as a result a small amount

of MC/DC coverage was acquired during testing with Reactis. However, the

model was not fully exercised. The treatment of Stateflow truth tables as black-

boxes has a significant impact as to the quality of the test suite, and is directly

reflected in the number of test cases and steps. On the other hand, SDV

does fully support MC/DC on Stateflow truth tables. Therefore the amount

of objectives produced and achieved far outnumber that of Reactis, and we

see the magnitude of Reactis’ limitation in Figure 5.1. In comparison, SDV

identified and achieved significantly more objectives, leaving several hundred

unidentified by Reactis.

The proficiency at which a tool performs testing directly affects the qual-

ity and quantity of generated test suites. This in turn impacts the quality

and quantity of inferred invariants of the system. Figure 3.8 compares the

invariants which were produced by both methodologies. Poor test coverage

leads to numerous invariants generated, as relationships are inferred across all

possible combinations of inputs. With more data in a test suite describing

the actual relationships present between system variables, fewer combinations

are possible. This is exactly the case when performing invariant generation

on Reactis versus SDV, and is shown in Figure 3.8. Due to poor coverage of

a Reactis generated test suite, the resultant invariants are numerous, and are

subsequently falsified during IBV. Much effort is wasted in formalizing and

testing hundreds of invariants which are not useful in the end, and is mini-
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Figure 3.7: Comparison of MC/DC Testing

mally fruitful in acquiring true invariants. Out of Reactis’ potential invariants

initially produced, 3% were not disproven during IBV. With SDV’s superior

test suite, fewer potential invariants are initially produced, and the majority

of these are valid over the system. SDV was 58% successful in producing valid

invariants.

In conclusion, it is evident that for the success of reverse-engineering re-

quirements from software artifacts, model testing must be done extensively

and with a high degree of coverage. Capturing more test cases produces fewer,

more accurate invariants. This is crucial for scaling these approaches to larger

systems. Reactis does not adequately test for MC/DC for Stateflow truth ta-

bles. This directly impacts the amount the model exercised during testing, as

well as the quality of the invariants inferred.
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Figure 3.8: Comparison of invariant extraction

i.e. Formally proven in SDV. In the context of Reactis, not disproven through testing.

3.4 Summary

In summation, this chapter presented two methodologies for the reverse-engineering

of software requirements. The first, by Ackermann et al. (2010) made use of

Reactis and its random and structural testing for generating and validating

invariants. Our experience in using this methodology was detailed and scripts

were created to facilitate its application. However, it was significantly lacking

in its support for Stateflow truth tables, and also could not formally prove that

candidate invariants do in fact hold over the behaviour of the system. This

methodology ultimately yielded too many initial invariants, which there largely

disproved through IBV. This approach proved to be inadequate for reverse-

engineering software requirements from design containing the Stateflow truth
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table construct.

A new methodology was created to supplement the drawbacks of the method-

ology given by Ackermann et al. This new approach used SDV and property

proving for both test generation as well as formally verifying invariants over

the behaviour of the system. SDV also provided proper testing of Stateflow

truth tables, namely with MC/DC. This is particularly important as tabular

constructs are increasingly being used to implement complex decision logic, in-

cluding within safety-critical systems. Furthermore, the number of invariants

and their quality are affected by the extensiveness of a test suite. Hence, ex-

ercising the model thoroughly is necessary to produce useful invariants, which

may be used a software requirements. This methodology also provides better

confidence as to the invariant nature of these requirements as they are formally

proven to hold.

In comparing both approaches on an industrial model relying on State-

flow truth tables, SDV and the property proving approach was found to be

superior in the number of requirements recovered from the system. However,

both methodologies provide different testing approaches, each with their own

benefits. Random testing provided by Reactis explores new state spaces of the

model upon each test generation, whereas SDV will deterministically gener-

ates the same tests. Therefore, as future work, these two methodologies can be

used in combination to maximize the amount of code exercised during testing.

Given a system with non-existent, insufficient, or out-of-date requirements

documentation, software invariants can provide developers with guidance in

design decisions or by providing a system overview in terms of its current

functionality. Therefore, invariants extracted from Stateflow truth tables are

useful for subsequent refactoring efforts. Chapter 4 presents a methodology
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for the guided simplification of Stateflow truth tables, and so the invariants

produced from the reverse-engineering methodologies serve as a guide during

this refactoring, such that they are maintained or highlighted.
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Chapter 4

Stateflow Truth Table

Transformation Methodology

In this chapter, we propose a method for the refactoring of Simulink truth

tables through the use of tabular expressions. Heuristics are presented, which

guide refactoring in order to make tables more readable and traceable to re-

quirements. The basic strategy of the methodology requires the transformation

of the decision table into a tabular expression. The translation of decision ta-

bles to tabular expressions is employed in order to introduce disjointness into

the logic, while also providing a more readable format that is conducive to

software documentation. Using tabular expressions as the basis for refactor-

ing, a set of simplifications can be applied iteratively, which reduce the size

and complexity of the logic, and transform the table into a smaller, simplified

format. Simplification by way of minimizing the logic of the table is achieved

by the removal of decision points. The purpose of this chapter is to introduce

the stepwise methodology, depicted in Figure 4.1, which can be used in the

software development process.
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1Figure 4.1: Methodology for Stateflow truth table simplification

Although this methodology uses Stateflow truth tables as the basis of its

application, in general traditional decision tables can also be supported. This

process is demonstrated on a generic example shown in Table 4.1. Addition-

ally, to clearly and simply illustrate each simplification step, several discrete

examples are included. The application of the methodology on real-world au-

tomotive examples is given in Chapter 5.
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fComputeFooBar(bCond1, bCond2 : bool, eFoo : enum) : enum, bool =

Decisions
# Conditions D1 D2 D3 D4 D5

1 eFoo == cEnuma T F F F -
2 eFoo == cEunmb F T T F -
3 eFoo == cEnumc F F F T -
4 bCond1 - T - F -
5 bCond2 - - F F -

Actions 1 1 2 3 1

# Actions
1 eFoo = cEnuma; bBar = true;
2 eFoo = cEnumb; bBar = false;
3 eFoo = cEnumc; bBar = true;

Table 4.1: Example Stateflow truth table for methodology application

Figure 4.2 shows the overview of the signal flow for the table given as

Table 4.1. This includes two Boolean inputs, as well as a feedback signal

eFoo, which is both an output as well as an input for the next computation.

For a given simulation time, the value of eFoo used within the table is the

preceding time step’s value.

4.1 Decomposition

Owing to their origins as a tool for software requirements specification, by

convention, tabular expressions typically describe a single mathematical ex-

pression (Jin and Parnas 2010). When evaluated, they typically compute one

output for some function. This particular form of tabular expressions has been

shown to be especially valuable for software documentation, as well as for the

specification of software functions in general (Wassyng and Janicki 2003). For

simplicity, these types of tables are used as the basis of the examples provided.
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fComputeFooBar

z−1

bCond1

bCond2

bBar

eFoo

fComputeFooBar(bCond1, bCond2 : bool, eFoo : enum) : bool, enum =

Figure 4.2: System signal flow overview of Table 4.1

Furthermore, decomposing tables to compute only a single output enforces

modularization of software components and separates concerns in terms of ac-

tions. It is also often the case that separate tables yield larger reductions.

We have found that when two or more actions are assigned for single deci-

sions, there is often repetition amongst the actions. Various combinations

of the output values are returned from the table, thus the same outputs are

included across multiple actions. In this situation, if a well-founded enough

argument can be made for the avoidance of decomposition, then this method-

ology can still be applied by performing the simplifications herein on the action

numbers themselves, as an abstraction of the action. Notwithstanding, it is

recommended to decompose a table which computes several ouputs in order to

uncouple them, facilitate modularity, and provide better requirements trace-

ability. This process necessitates the decomposition of the table in terms of

its output values, and implementing the logic in multiple tables. An example
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of this is demonstrated in Tables 4.2a and 4.2b, where these two tables now

implement the computation of each output of Table 4.1 separately.

Nevertheless, there may exist some situations where a decomposition on

the actions is more involved, or not possible. This may be the case when

multiple actions are assigned per decision rule, or when the actions themselves

are complex code. Structures such as for loops, if statements, and persistent

variables are permissible for action specification, as Matlab code in general is

supported in an action definition. This is a slight departure from traditional

decision tables, where it was primarily the case that an action was simply im-

plemented as a Boolean value indicating the presence of an action. In spite of

this, complex action code can be moved to a separate function, and then re-

placed with a call to that function in the action table, thus avoiding operations

using actions later in the methodology. Handling actions in this manner does

not modify the original functionality of the design, as Matlab code generated

from Stateflow truth table implements each action as a separate function re-

gardless. Furthermore, if the Matlab code embedded in an action or condition

performs supplementary decision logic, it may also be the case that it should

in fact, be implemented outside of the table, and fed in as an additional input.

In summation, the solutions to such cases are largely relative to the problem,

thus we direct the reader to handle them according to their discretion. Al-

though complex actions are indeed supported by Stateflow truth tables, their

simplification, however cosmetic, will facilitate the processes prescribed later

in the methodology.

The remainder of the steps in the methodology are shown using fFoo,

implemented in Table 4.2a, as the basis for demonstration. These steps could

equally have been performed on fBar in Tables 4.2b.
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fFoo(bCond1, bCond2 : bool, eFoo : enum) : enum =

Decisions
# Conditions D1 D2 D3 D4 D5

1 eFoo == cEnuma T F F F -
2 eFoo == cEnumb F T T F -
3 eFoo == cEnumc F F F T -
4 bCond1 - T - F -
5 bCond2 - - F F -

Actions 1 1 2 3 1

# Actions
1 eFoo = cEnuma;
2 eFoo = cEnumb;
3 eFoo = cEnumc;

(a) Truth table resulting from decomposition w.r.t. output eFoo

fBar(bCond1, bCond2 : bool, eFoo : enum) : bool =

Decisions
# Conditions D1 D2 D3 D4 D5

1 eFoo == cEnuma T F F F -
2 eFoo == cEnumb F T T F -
3 eFoo == cEnumc F F F T -
4 bCond1 - T - F -
5 bCond2 - - F F -

Actions 1 1 2 3 1

# Actions
1 eBar = true;
2 eBar = false;
3 eBar = true;

(b) Truth table resulting from decomposition w.r.t. output bBar

Table 4.2: Decomposition of a truth table into multiple tables
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4.2 Transformation Into Tabular Expression

As part of the methodology, we define a technique for transforming Stateflow

truth tables into their equivalent tabular expressions. As a result of the dif-

ferences between these two formalisms, namely disjointness, unique challenges

arise which prevent this from being a straightforward process. The follow-

ing steps must be taken in order to convert from the truth table notation to

tabular expression notation:

1. Insert Conditions and Actions A visually significant difference be-

tween the two notations is their representation of conditions. As intro-

duced in Section 2.3.1, classical decision tables (as well as Stateflow truth

tables) place conditions in a separate section of the table with the values

that they take on delineated by T, F and - within the decision rules. On

the other hand, in tabular expressions conditions are referred to by name

without the use of Boolean constants. Therefore, we substitute condi-

tions directly into the decision rules. For each decision rule, T values are

replaced straightforwardly by the condition they denote as being true.

As for F values, the condition logic is negated. When conditions are

don’t cares, this signifies that their evaluation is not necessary in that

circumstance, thus, no replacement is necessary. The same treatment is

given to actions. Instead of referring to them using indices, actual values

are introduced into the table.

Due to spacing constraints, let us define labels l cEnuma, l cEnumb,

and l cEnumc where,

l cEnuma =⇒ eFoo == cEnuma
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Decisions
# Conditions D1 D2 D3 D4 D5

1 eFoo == cEnuma l cEnuma ¬l cEnuma ¬l cEnuma ¬l cEnuma -
2 eFoo == cEnumb ¬l cEnumb l cEnumb l cEnumb ¬l cEnumb -
3 eFoo == cEnumc ¬l cEnumc ¬l cEnumc ¬l cEnumc l cEnumc -
4 bCond1 - bCond1 - ¬bCond1 -
5 bCond2 - - ¬bCond2 ¬bCond2 -

Actions cEnuma cEnuma cEnumb cEnumc cEnuma

# Actions
1 eFoo = enuma;
2 eFoo = enumb;
3 eFoo = enumc;

Table 4.3: After substitution of conditions and actions

l cEnumb =⇒ eFoo == cEnumb

l cEnumc =⇒ eFoo == cEnumc

For any label l cEnumi, negation is applied as ¬l cEnumi =⇒ eV ar ∼=

cEnumi.

All pertinent information is condensed into the decision rule section of

the decision table. Therefore, the action table and condition section are

no longer required for interpreting the logic, and are stripped away for

ease of manipulation in upcoming steps. Similarly, headers as well as

all other formatting are also removed, as tabular expressions have their

individual visual organization and conventions. This results in Table 4.4

2. Transpose Making use of the simplistic, intermediary table implemen-

tation given in Table 4.4, we straightforwardly transpose the entire table,

as one would with a matrix, i.e., rows are changed into columns. This

orients the data such that decision rules are now positioned horizontally,

as in tabular expression notation. The result of this step is shown in
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l cEnuma ¬l cEnuma ¬l cEnuma ¬l cEnuma -
¬l cEnumb l cEnumb l cEnumb ¬l cEnumb -
¬l cEnumc ¬l cEnumc ¬l cEnumc l cEnumc -

- bCond1 - ¬bCond1 -
- - ¬bCond2 ¬bCond2 -

cEnuma cEnuma cEnumb cEnumc cEnuma

Table 4.4: After removal of action table, condition section, and formatting
details

l cEnuma ¬l cEnumb l cEnumc - - cEnuma

¬l cEnuma l cEnumb ¬l cEnumc bCond1 - cEnuma

¬l cEnuma l cEnumb ¬l cEnumc - ¬bCond2 cEnumb

¬l cEnuma ¬l cEnumb l cEnumc ¬bCond1 ¬bCond2 cEnumc

- - - - - cEnuma

Table 4.5: Transposing to re-orient decision rules

Table 4.5.

3. Group Related Conditions As explained in Section 2.3.3, decision ta-

bles are not well suited for expressing relationships between conditions.

Certain types of non-Boolean conditions are implemented through the

use of several conditions. As a result, transforming a decision table to

a tabular expression requires that these related conditions are grouped

together in a single column. Negated conditions can be omitted entily

because they are implied due to the nature of the relationship. Table 4.6

shows the result of grouping together condition checks for a single enu-

meration type. These conditions are placed under a single column as

they are in fact related, and are mutually exclusive.

4. Ensure Disjointness and Completeness The table derived from the

previous step cannot yet be considered as a tabular expression due to no-
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l cEnuma - - cEnuma

l cEnumb bCond1 - cEnuma

l cEnumb - ¬bCond2 cEnumb

l cEnumc ¬bCond1 ¬bCond2 cEnumc

- - - cEnuma

Table 4.6: Grouping of enumeration type conditions in a single column

ticeable shortcomings. Tabular expressions satisfy two properties: com-

pleteness and disjointness, as described in Section 2.3.2. It is necessary

to adjust and augment conditions in order to fulfill these requirements.

The difference between decision tables and tabular expressions is the

support of overlapping conditions is the decision tables, as well as their

method of implementing non-Boolean types. This is a consequence of

the following situations:

(a) Else Condition In tabular expressions, conditions must be dis-

joint, and the implementation of an else condition must also con-

form to this behaviour.

(b) Left-to-Right Semantics This method of interpretation allows

for overlapping conditions between two or more decision rules. This

occurs as a result of one or more don’t care conditions being included

in the original decision table.

Therefore, making use of the definition of the disjointness property given

in Section 2.3.2, these situations must be identified and made to be dis-

joint. In tabular expressions, there is no mechanism for the implemen-

tation of catch-all else conditions. Conditions which take the place of

an else case must be the negation of another condition. Thus, removal
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of this rule is required, and the remaining cases which would have been

covered by the else must be added as new conditions, otherwise, the ta-

ble is no longer complete. These new conditions maintain the else action

as their output, thereby maintaining equivalent logic, but with a more

precise specification. A similar treatment is given to other overlapping

rules. Those rules which overlap are expanded in terms of the don’t care

condition which transgresses the disjointness property. The resulting ex-

panded rules will either describe new rules not implemented as of yet

by any other rule, or will implement the overlapping portion of the rule,

meaning that they are already implemented and do not require addition

into the table. These are therefore discarded, while the remaining are

kept and given the else condition’s output.

In Table 4.6, row 2 and 3 are non-disjoint. Inspecting the original Ta-

ble 4.1, we see this overlap also occurs in (D2, D3). In considering the

left-to-right semantics, row 3 is deemed the overlapping row as it the

the right-most decision rule in Table 4.1. Thus, to remedy this situation

it is expanded with respect to its overlapping don’t care condition. Ta-

ble 4.7 gives the updated table with the addition of new, explicit rows

to augment the table for fulfilment of the disjointness and completeness

properties.

At the conclusion of this step, the table will satisfy both the disjointness

and completeness properties, making them proper tabular expressions.

5. Formatting What remains of the conversion to tabular expression is

the visual formatting of the data such that it complies with the standard

notation set out for tabular expressions. This step does not affect the
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eFoo == cEnuma - - cEnuma

eFoo == cEnumb bCond1 - cEnuma

eFoo == cEnumb ¬bCond1 bCond2 cEnuma

eFoo == cEnumb ¬bCond1 ¬bCond2 cEnumb

eFoo == cEnumc bCond1 - cEnuma

eFoo == cEnumc ¬bCond1 bCond2 cEnuma

eFoo == cEnumc ¬bCond1 ¬bCond2 cEnumc

Table 4.7: Addition of rules to satisfy completeness and disjointness

fFoo(bCond1, bCond2 : bool, eFoo : enum) : enum =

Result
Conditions eFoo

eFoo == cEnuma cEnuma

eFoo == cEnumb

bCond1 cEnuma

¬bCond1
bCond2 cEnuma

¬bCond2 cEnumb

eFoo == cEnumc

bCond1 cEnuma

¬bCond1
bCond2 cEnuma

¬bCond2 cEnumc

Table 4.8: Formatted tabular expression

logic of the table, but rather presents it in a more readable manner. As

shown in Table 2.4, cells which perform the same condition checks, are

grouped together across rows. Likewise, with don’t care conditions, cells

are amalgamated across columns. For clarity, result values are placed un-

der a heading containing the output name. The final, formatted tabular

expression is shown in Table 4.8.

As a result, the original decision table has been transformed into an alter-

native representation, that of a tabular expression.
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4.3 Simplification

Equipped with a proper tabular expression, avenues to simplify the logic which

they implement are investigated. Given any tabular expression, not necessarily

as a result of the previous steps, these techniques can be utilized to simplify

the tabular expression in terms of reducing its size and logical complexity.

Depending on the function, each of the following simplifications may not

always be applicable. Those dealing with enumeration types are useful specifi-

cally with functions describing some mode-driven system behaviour. Moreover,

there is no prescribed order in which to perform these simplifications, as it is

largely dependant on the type of function at hand, and as such will be dif-

ferent for each. When multiple simplifications are present for a table, their

application can be done in various orders, resulting in functionally equivalent,

but different tables. Depending on the requirements one wishes to bring out in

the tables, one tabular representation may be of more use than another. This

is demonstrated in Table 4.13. It is exactly for this purpose that the software

requirements extracted from the model through reverse-engineering, as shown

in Section 3, are required. Requirements are to be used as a guide for the

application of simplification techniques, as well as refactoring in general.

We go on to discuss the various simplification techniques used in our expe-

rience refactoring Stateflow truth tables. Separate examples are first given to

clearly illustrate each type of simplification. An application of the simplifica-

tion techniques on the example is demonstrated afterwards.
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4.3.1 Removal of Don’t Care Conditions

This simplification reduces the table in terms of conditions required for the

computation of the output. If a condition does not have an affect in the

outcome of a decision, it can be removed entirely from its computation, that

is, be treated as a don’t care. The simplification minimizes the table both

visually and logically.

The method of identifying instances where this simplification could apply

is through the inspection of distinct paths through the table which lead to

the same output. It is most efficient to start by finding multiple instances of

the same output in the Results column, and then moving backwards through

the conditions that were required to reach these outputs. If these paths are

the same, save for one condition, they can potentially be combined. This one

difference between rows must take the form of same condition being checked for

different values, yet still ultimately yielding the same output regardless. This

is considered to be a don’t care condition, as it does not affect the output.

For example, Table 4.9 contains two rows that encompass the same conditions

aside from Conditionj. Regardless of whether Conditionj is true or false, the

outcome is Action1. Therefore, Conditionj does not influence the decision

result, and can be considered as a don’t care condition. The two rows are

merged into one, as shown in Table 4.10, and the don’t care condition is

removed from the row.

For example, Table 4.9 illustrated a case where the first two rows are iden-

tical, aside from Conditionj. Although this condition check is different for the

two rows, we see that it does not affect the output, as it is evaluated to Action1

in both cases. Therefore these rows can be combined to form Table 4.10.
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Result
Conditions Output

Condition1 . . . Conditioni
Conditionj Action1

¬Conditionj Action1

...
...

Table 4.9: Candidate don’t care simplification on a Boolean condition

Result

Conditions Output

Condition1 . . . Conditioni Action1

...
...

Table 4.10: Application of don’t care simplification on a Boolean condition

Table 4.9 provides a simple example where a Boolean condition with a

cardinality of 2 is combined. This simplification is also applicable to conditions

which have a greater number of potential values. For example, enumeration

types with a cardinality of 4 can also be combined, so long as 4 rows are merged

to together, such that they cover the complete range of that condition’s type.

That is to say, for any given condition Conditioni, |Conditioni| rows must

be combined, where each row contains a distinct value of the condition and

jointly they cover the range of the condition.

Depending on whether or not the condition is nested, this simplification will

require a horizontal rearrangement of conditions. Tables 4.9 and 4.10 displayed

a removal of a don’t care condition in a trivial manner where the candidate

condition for removal was situated at the end of the row. Table 4.11 presents

an example where the don’t care condition Conditionj is nested between other

conditions, and is also used in the computation of other rows. Upon removal

of the don’t care condition in a subset of rows, the horizontal ordering of the
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conditions is rearranged to reflect the dominance of the remaining conditions

that actually affect evaluation. This is shown in Tables 4.11 and 4.12.

Result
Conditions Output

Condition1 . . . Conditioni

Conditionj
Conditionk Action1

¬Conditionk Action2

¬Conditionj
Conditionk Action1

¬Conditionk Action3

...
...

...

Table 4.11: Candidate for nested Boolean don’t care simplification

In Table 4.11 there are two paths by which one can arrive at the output

Action1. Inspection ascertains that the paths are indeed the same, expect for

Conditionj, taking on true and false values in these cases. It is evident that

Conditionj’s evaluation does not affect the outcome, and therefore it can be

treated as a don’t care condition. To do this, Conditionj is removed from rows

1 and 3 (but not 2 and 4). At this point the two rows no longer have any dis-

tinct conditions, and can be merged into one row containing only Conditionk.

Afterwards, Conditionk is shifted one column to the left, reflecting that it is

a condition which is more a dominant, in the sense that it must be evaluated

in more decisions than Conditionj, thus serving as a more prominent decision

point. More details on horizontal ordering are given in Section 4.3.4. The

resulting simplified and ordered table is given in Table 4.12.

Result
Conditions Output

Condition1 . . . Conditioni

Conditionk Action1

¬Conditionk
Conditionj Action2

¬Conditionj Action3

...
...

...
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Table 4.12: Application of don’t care simplification on a nested Boolean con-
dition

At times, it will be possible to perform multiple simplifications on the

current form of the tabular expression. An example is show in Table 4.13.

Result
Conditions Output

Condition1
Condition2 Action1

¬Condition2 Action1

¬Condition1
Condition2 Action1

¬Condition2 Action2

(a) Multiple simplifications present

Result
Conditions Output

Condition1 Action1

¬Condition1
Condition2 Action1

¬Condition2 Action2

(b) Simplification of Condition1

Result
Conditions Output

Condition2 Action1

¬Condition2
Condition1 Action1

¬Condition1 Action2

(c) Simplification of Condition2

Table 4.13: Example of a situation where multiple simplifications can take
place

Two diverging refactorings for the same original table are demonstrated.

Table 4.13b is refactored in order to convey the dominance of Condition1

through the preservation of its horizontal ordering in the row, whereas Ta-

ble 4.13c communicates that Condition2 is the dominate condition on which

the decision logic should more heavily rely.
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4.3.2 Partitioning

The constraint on merging the complete range of a condition, given in Sec-

tion 4.3.1 can be relaxed when |Conditioni| > 2 and when grouping a subset of

the rows is desired. This is particularly useful for enumerated types employed

for the representation of modes where it is the case that removing these mode-

centric conditions in their entirety is not achievable, nor necessary. Instead,

the combination of rows with regards to some partition may be beneficial, and

will still result in a minimization. Actions are still required to be the same

across the conditions to be partitioned. Choosing how to partition should be

done with consideration of the requirements, in order to determine which sub-

set of values are to be grouped. The condition partitioning is demonstrated

on Table 4.14 and reflected in Table 4.15.

Result
Conditions Output

eV ar == cEnum1

Condition1 Action1

¬Condition1
Condition2 Action2

¬Condition2 Action3

...
...

...

eV ar == cEnumi

Condition1 Action1

¬Condition1
Condition2 Action2

¬Condition2 Action3

...
...

...
eV ar == cEnumn . . . Actionn

Table 4.14: Candidate for partitioning simplification

In Table 4.14 we can see that the evaluations of Condition1 and Condition2

are the same for both cEnum1 and cEnumi, and thus we can merge these two

rows, albeit not with the entirety of the enumerators.
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Result
Conditions Output

eV ar == cEnum1 ∨ eV ar == cEnumi

Condition1 Action1

¬Condition1
Condition2 Action2

¬Condition2 Action3

...
...

...
eV ar == cEnumn . . . Actionn

Table 4.15: Application of partitioning simplification

4.3.3 Generalization of States for No Change

This simplification is also particularly useful for systems where modes are im-

plemented using enumeration types, and are fed back into the system. As

with the removal of don’t cares, discussed in Section 4.3.1, cells are combined

when containing conditions that check enumeration variables where the same

conditions must be checked for each. However, in this case, instead of the

actions being the same across the rows which are to be merged, they correlate

to the mode-checking condition. The actions indicate that the system is to

remain in the current state/mode, and so it is possible to eliminate the condi-

tion checking of the mode. The enumeration variable name takes the place of

the multiple conditions used for checking the mode.
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Result
Conditions eV ar

eV ar == cEnum1
Condition1 cEnum1

¬Condition1 cEnum2

eV ar == cEnum2
Condition1 cEnum2

¬Condition1 cEnum4

eV ar == cEnum3
Condition1 cEnum3

¬Condition1 cEnum4

...
...

...

eV ar == cEnumn
Condition1 cEnumn

¬Condition1 cEnum3

Table 4.16: Candidate for no change generalization simplification

Result
Conditions eV ar

eV ar == cEnum1
Condition1 NC
¬Condition1 cEnum2

eV ar == cEnum2
Condition1 NC
¬Condition1 cEnum4

eV ar == cEnum3
Condition1 NC
¬Condition1 cEnum4

...
...

...

eV ar == cEnumn
Condition1 NC
¬Condition1 cEnum3

Table 4.17: Highlighting no change (NC) cases in Table 4.16

As seen in Table 4.16, rows 1, 3, 5, . . . , n− 1 make use of the enumeration

checking condition for the output of the same enumerator. As highlighted in

Table 4.17, this implements a no change (NC) in output when Condition1 is

true. Additionally, other conditions to check are the same between the rows.

Thus we can eliminate the check on the variable eV ar when Condition1 is true

because it does not factor into the decision process, and then the no change

action is implemented by moving the variable name into the results column.
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This is done for those rows which were using enumeration checking for a simple

pass-through to implement the no change action. The remaining rows which

prescribe some action other than the no change, remain the same, however

a horizontal reordering of conditions may be necessary, as is the case in this

example. The resulting table of this simplification is given as Table 4.18.

Result
Conditions eV ar

Condition1 eV ar

¬Condition1

eV ar == cEnum1 cEnum2

eV ar == cEnum2 cEnum4

eV ar == cEnum3 cEnum4
...

...
eV ar == cEnumn cEnum3

Table 4.18: Application of no change generalization simplification

4.3.4 Condition Ordering

Manipulation of the condition orderings, both vertical and horizontally can be

employed to influence the organizational and visual appearance of the tabular

expression, as well as to manipulate the implementation of the tabular expres-

sion in software. Although no order is implied by tabular expressions, their

implementation in the Tabular Expression Toolbox (TET) does enforce an or-

dering when it comes to code generation. Moreover, in Section 4.4 a method of

translating tabular expressions back into Stateflow truth tables is described.

Condition ordering of the decisions can be also use to manipulate the gen-

erated code of these tables. For this we can take advantage of Stateflow’s

capability of allowing for a preview of generated content of a given decision

table. Additionally, when performing simplifications, altering these orderings
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proves beneficial in the identification of repetitive conditions. Conditions can

be rearranged in order to better distinguish patterns amongst rows.

Vertical Evaluation speed of the expression can be increased by forcing spe-

cific conditions to be evaluated as early as possible (Jin and Parnas 2010). The

vertical arrangement of conditions can be adjusted to increase efficiency in the

evaluation of cases. Moving decisions with the most don’t cares, or fewest

amount of condition evaluations, to the upper rows allows these cases to be

evaluated earlier on. This allows for a gradual evaluation of conditions, such

that the smallest subset of conditions required to be evaluated are checked

first. This method of ordering the conditions is perhaps easier to understand

in terms of the conditions of if-statements.

Horizontal Similarly, the horizontal ordering of conditions can be arranged

to take advantage of the nested evaluation of conditions. If it is advantageous

to evaluate certain conditions infrequently, nesting them is a good course of

action such that they are only checked after other conditions are evaluated,

thus minimizing the cases said conditions are evaluated. Additionally, enforc-

ing a horizontal ordering as a visual means of representing the dominance of

conditions with respect to the decision aids in understanding the relationship

between variables of the system. This will prove especially beneficial in the

case where these tables are used for requirements and documentation purposes.

4.3.5 Compound Simplification

A compound simplification strategy is applied whereby an already simplified

row is expanded, followed by some other simplification which makes use of
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the newly introduced rows. An example of this is given in Tables 4.19, where

it is already simplified with respect to Condition1 in the first row. Further

simplifying the table such that the remaining rows are also simplified with

respect to Condition1 is hindered due to the simplification already present in

the table. As a result, the simplified row is expanded to Table 4.20 in order

to facilitate a simplification to reduce the table further. Don’t care conditions

are straightforwardly expanded into all values of their type, with the resulting

action being the same across all newly added rows. The final simplified table

is shown in Table 4.21 as is a result of applying the simplification outlined in

Section 4.3.1. The conditions pertaining to the checking of eV ar are identified

as a don’t care for the computation of Action1, and thus is it removed and a

reordering of the conditions is performed.

Result
Conditions Output

eV ar == cEnum1 Action1

eV ar == cEnum2
Condition1 Action1

¬Condition1 Action2

eV ar == cEnum3
Condition1 Action1

¬Condition1 Action3

Table 4.19: Candidate for compound refactoring

Result
Conditions Output

eV ar == cEnum1
Condition1 Action1

¬Condition1 Action1

eV ar == cEnum2
Condition1 Action1

¬Condition1 Action2

eV ar == cEnum2
Condition1 Action1

¬Condition1 Action3

Table 4.20: Expanded table during compound refactoring

107



M.A.Sc. Thesis – Monika Bialy McMaster University – Computing and Software

Result
Conditions Output

Condition1 Action1

¬Condition1

eV ar == cEnum1 Action1

eV ar == cEnum2 Action2

eV ar == cEnum3 Action3

Table 4.21: Simplfied table as a result of compound refactoring

This strategy also proves useful for the general restructuring of already

simplified tables, and is beneficial when altering an existing table to display a

requirement in a more evident manner. Therefore, it is not necessary to use

table expansion as solely a means for further simplification.

As shown in Figure 4.1, the simplification step is an iterative process.

The application of multiple instances of the aforementioned simplifications can

take place until the table is no longer reducible, and even then, a compound

simplification strategy can take place to facilitate alternative simplifications.

It is left to the reader’s discretion and intuition to determine the ideal form

of a table with respect to the requirements, and thus the stopping criteria is

relative.

Finally, returning to the example, simplifications are performed on Ta-

ble 4.8. The table’s results column is examined for repetitions of actions in

order to identify possibilities for simplification. Firstly, cEnumb and cEnumc

are not integral to the computation of cEnuma as the output of rows 2 and 5.

Both rows yield the same result, and the rows are identical save for checking

of the enumeration conditions. However, |eV ar| = 3, and so combining rows

can only be accomplished by joining all 3 conditions: cEnuma, cEnumb, and

cEnumc. The first row containing cEnuma is already simplified, and does not
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conform to the form required in order for it to be amalgamated with the two

rows we wish to simplify. As a result, a compound refactoring technique is

employed to expand the first row into the desired format. This is shown in

Table 4.22. Afterwards, the simplification is able to take place, and is shown

in Table 4.23.

fComputeFoo(bCond1, bCond2 : bool, eFoo : enum) : enum =

Result
Conditions eFoo

eFoo == cEnuma

bCond1 cEnuma

¬bCond1
bCond2 cEnuma

¬bCond2 cEnuma

eFoo == cEnumb

bCond1 cEnuma

¬bCond1
bCond2 cEnuma

¬bCond2 cEnumb

eFoo == cEnumc

bCond1 cEnuma

¬bCond1
bCond2 cEnuma

¬bCond2 cEnumc

Table 4.22: Expanded cEnuma for a compound refactoring approach

fComputeFoo(bCond1, bCond2 : bool, eFoo : enum) : enum =

Result
Conditions eFoo

bCond1 cEnuma

¬bCond1

eFoo == cEnuma
bCond2 cEnuma

¬bCond2 cEnuma

eFoo == cEnumb
bCond2 cEnuma

¬bCond2 cEnumb

eFoo == cEnumc
bCond2 cEnuma

¬bCond2 cEnumc

Table 4.23: Removal of enumeration type don’t care condition
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Examining the results column of Table 4.23, it is evident that there still

exists several distinct paths through the table, leading to the same output.

Namely, cEnuma is computed multiple times, and has the potential to the

simplified. Again, the simplification process has reached a point where two

possible simplifications can take place. Most obvious is that bCond2 in row 2

and 3 does not affect the logic of the computation, and can be treated as a

don’t care condition. Secondly, the use of cEnuma, cEnumb, and cEnumc in

its computation is also unnecessary. Therefore, striving to refactor the table

as compactly as possible, the latter simplification is applied, as it affects the

greatest amount of rows. This is the second application of this technique, and

displays the iterative nature of the simplification step of the methodology. The

tabular expression becomes further simplified with the repetitive application

of simplification strategies. This simplification is shown in Table 4.24.

fComputeFoo(bCond1, bCond2 : bool, eFoo : enum) : enum =

Result
Conditions eFoo

bCond1 cEnuma

¬bCond1

bCond2 cEnuma

¬bCond2

eFoo == cEnuma cEnuma

eFoo == cEnumb cEnumb

eFoo == cEnumc cEnumc

Table 4.24: Removal of enumeration type don’t care condition during a second
iteration

Incrementally, the previous simplifications have moved the enumeration

conditions to the rightmost position in the tabular expression, expressing that

they are less prominent conditions. Consequently, it is straightforward to

recognize the simplification defined in Section 4.3.3. The enumeration values
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are used as simple means of designating a no change situation. Therefore, the

variable name can be used to directly implement this functionality, as shown

in Table 4.25.

fComputeFoo(bCond1, bCond2 : bool, eFoo : enum) : enum =

Result
Conditions eFoo

bCond1 cEnuma

¬bCond1
bCond2 cEnuma

¬bCond2 eFoo

Table 4.25: Generalization of conditions to implement a no change situation

Upon completion on these steps, a refactored tabular expression is attained

that is logically equivalent to the original decision table, yet simplified. No fur-

ther simplifications are applicable to further reduce the tabular expression in

terms of logic or size. This form can now be implemented directly into a

Simulink model using the TET. Additionally, a significant benefit of tabular

expressions is their effectiveness as software documentation structures. Thus,

inclusion of the simplified tabular expression into requirements documents is

another use for the tabular expression in its current form. Nevertheless, our

intentions are to simplify Stateflow truth tables, and so Section 4.4 goes on to

construct the corresponding Stateflow truth table, such that it can be imple-

mented in the original model.
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4.4 Transformation Into Stateflow Truth Ta-

ble

This section describes how a tabular expression is transformed into an equiva-

lent Stateflow truth table, that is, a decision table. These steps serve to revert

the tabular expression attained in the previous steps, back into the form in

which it was originally implemented. If applied to the resultant table at the

end of Section 4.2, it will reproduce the original Stateflow truth table, pre-

sented as Table 4.1. In general, this portion of the methodology can be used

as a stand-alone method of converting any horizontal tabular expression into

a decision table. The following are the necessary steps for the transformation:

1. Remove Tabular Expression Formatting Prior to performing struc-

tural transformation of decision tables to tabular expressions, tabular

expression-specific formatting conventions are stripped from the table.

This includes headers. Other formatting techniques such as the grouping

of conditions vertically across cells are expanded. Don’t care conditions

grouped horizontally are made explicit for each column in which they

appear.

bCond1 - cEnuma

¬bCond1 bCond2 cEnuma

¬bCond1 ¬bCond2 eFoo

Table 4.26: Generalization of conditions to implement a no change situation

2. Transpose Transposing the table once more, we utilize the mathemati-

cal property (AT )T = A, where A is a table, to arrive back to a form that
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is readily implementable in a Stateflow truth table. Shown in Table 4.27.

This step re-orients the decision rules such that they are compatible with

decision table form, in that they are parsed in a top-down fashion.

bCond1 ¬bCond1 ¬bCond1
- bCond2 ¬bCond2

cEnuma cEnuma eFoo

Table 4.27: Transposing a tabular expression for Stateflow truth table
notation

3. Construct Condition and Action Sections Condition and action

sections are populated with data from the current table. This is a sim-

ple rearrangement of data into its respective section, as is required for

decision table format. This information will be required to interpret

the logic once the next step is performed, where the decision rules are

converted into Boolean constants. Create and populate the condition

section with the condition tables. Reconstruct the action table, such

that it encompasses the actions used within the table. In doing so, in-

dices for actions are assigned. Therefore, replace the action values in

the action entry section with these indices. In comparison to the origi-

nal Stateflow truth table, the number of actions may have experienced a

reduction, specifically because of the no change generalization simplifi-

cation defined in Section 4.3.3. This simplification also results in a new

action being defined, which implements a no change action. Visual for-

matting conventions are also included at this stage of the transformation

process. This step is illustrated in Table 4.28.

113



M.A.Sc. Thesis – Monika Bialy McMaster University – Computing and Software

Decisions
# Conditions D1 D2 D3

1 bCond1 bCond1 ¬bCond1 ¬bCond1
2 bCond2 - bCond2 ¬bCond2

Actions 1 1 2

# Actions
1 eFoo = cEnuma;
2 eFoo = eFoo;

Table 4.28: Moving conditions and actions to their respective locations

fComputeFoo(bCond1, bCond2 : bool, eFoo : enum) : enum =

Decisions
# Conditions D1 D2 D3

1 bCond1 T F F
2 bCond2 - T F

Actions 1 1 2

# Actions
1 eFoo = cEnuma;
2 eFoo = eFoo;

Table 4.29: Condition replacement with Boolean values

4. Replace conditions with Boolean constants Decision rules are con-

verted into Boolean form. Where a condition is true, it is replaced with

a T. Where a condition is false, include F. Otherwise, where there is a

don’t care condition, insert the - don’t care symbol. This is demonstrated

in Table 4.29.

At the conclusion of transforming a tabular expression to a decision table,

completeness and disjointness are preserved. Transforming back to Stateflow

truth table allows for the comparison of the original versus refactored versions

in order to observe the effects of the methodology. This final Stateflow truth
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table can also now be implemented directly into Simulink, using the same

Stateflow truth table construct. In comparison to the original, the final table

depicted in Table 4.29 is visibly reduced in size as well as logical complexity.

Proving the equivalence between the original and refactored decision table, or

its equivalent tabular expression, can be accomplished using third party tools

such as Prototype Verification System (PVS) by SRI. Nevertheless, the heuris-

tics defined in this chapter were designed to provide and easy to follow process

of performing guided refactoring, and the equivalence between intermediary

steps is easy to see.
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Chapter 5

Application of the Truth Table

Transformation Methodology in

the Automotive Industry

In this chapter, the Stateflow truth table transformation methodology defined

in Chapter 4 is applied to real, industrial models. In our collaboration with

an industrial partner, one of our primary objectives is refactoring models with

the intention of increasing design maintainability, reusability and testability.

Focusing specifically on tabular implementations of decision logic found in

Matlab Simulink, this largely entails redesign of large, complex tables by way

of simplification and the introduction of modularity. We have found through

its application on production-level designs, that it effectively transforms tables

to a readable format more favourable for software documentation, while also

reducing the size and complexity of decision logic.

The effectiveness of this methodology is demonstrated, and its success is

gauged through testing and comparison of metrics on the original and refac-
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tored designs. SDV provides cyclomatic complexity, condition, decision, and

MC/DC metrics for truth table analysis, while also producing detailed reports

outlining coverage of the table’s cells. Due to its superior Stateflow truth table

support, as explored in Section 3.1.3, we employ the use of SDV to perform

a comparison between original and refactored tables with respect to their test

suites and model coverage achieved.

As previously mentioned, the models are proprietary information and as a

result cannot be disclosed in their original form. The signal names have been

obfuscated to enforce anonymity.

5.1 Example 1: Request Arbitration From cState1

The first example we apply the methodology on, is the four Stateflow truth

tables shown in Figure 3.2. Each of these tables is responsible for performing

arbitration of driver requests from four different states. The tables consider

the current status of the system, i.e. the previous arbitrated status, as well

as other vehicle conditions, all of which are inputs into each table. We apply

the methodology on the first of these tables, shown in Table 5.1. This table

performs request arbitration from cState1.

5.1.1 Application

Decomposition The two tables resulting from the decomposition are shown

as Table 5.2 and Table 5.3. The remaining steps of the methodology are

demonstrated on Table 5.2.
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f ArbRequestFromState1(eDrvrRequest:enum, bFaulty, eArbRequest:bool): enum
=

# Condition 1 2 3 4 5 6 7 8 9 10 11

1 eDrvrRequest == cState1 T F F F F F F F F F -

2 eDrvrRequest == cState2 F T F F T F F T F F -

3 eDrvrRequest == cState3 F F T F F T F F T F -

4 eDrvrRequest == cState4 F F F T F F T F F T -

5 bCmpntUnlocked - T T T - - - - - - -

6 bFaulty - F F F T T T - - - -

Actions 1 2 3 4 5 5 5 5 5 5 1

# Action

1 eArbRequest=cState1; bActionRequired=false

2 eArbRequest=cState2; bActionRequired=false

3 eArbRequest=cState3; bActionRequired=false

4 eArbRequest=cState4; bActionRequired=false

5 eArbRequest=cState1; bActionRequired=true

Table 5.1: Request Arbitration Example - Original Stateflow truth table for
request arbitration from State1

f ArbRequestFromState1(eDrvrRequest:enum, bFaulty, eArbRequest:bool): enum
=

# Condition 1 2 3 4 5 6 7 8 9 10 11

1 eDrvrRequest == cState1 T F F F F F F F F F -

2 eDrvrRequest == cState2 F T F F T F F T F F -

3 eDrvrRequest == cState3 F F T F F T F F T F -

4 eDrvrRequest == cState4 F F F T F F T F F T -

5 bCmpntUnlocked - T T T - - - - - - -

6 bFaulty - F F F T T T - - - -

Actions 1 2 3 4 5 5 5 5 5 5 1

# Action

1 eArbRequest=cState1
2 eArbRequest=cState2
3 eArbRequest=cState3
4 eArbRequest=cState4
5 eArbRequest=cState1

Table 5.2: Request Arbitration Example - Truth table resulting from decom-
position w.r.t. eArbRequest
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f ActionRequiredFromState1(eDrvrRequest:enum, bFaulty, eArbRequest:bool):
enum =

# Condition 1 2 3 4 5 6 7 8 9 10 11

1 eDrvrRequest == cState1 T F F F F F F F F F -

2 eDrvrRequest == cState2 F T F F T F F T F F -

3 eDrvrRequest == cState3 F F T F F T F F T F -

4 eDrvrRequest == cState4 F F F T F F T F F T -

5 bCmpntUnlocked - T T T - - - - - - -

6 bFaulty - F F F T T T - - - -

Actions 1 2 3 4 5 5 5 5 5 5 1

# Action

1 bActionRequired=false

2 bActionRequired=false

3 bActionRequired=false

4 bActionRequired=false

5 bActionRequired=true

Table 5.3: Request Arbitration Example - Truth table resulting from decom-
position w.r.t. bActionRequired

Transformation Into Tabular Expression Next, conditions are inserted

into decision rules, and the formatting is stripped. Additionally, due to spacing

constraints, we define labels l cState1, l cState2, l cState3, and l cState4 where,

l cState1 =⇒ eDrvrRequest == cState1

l cState2 =⇒ eDrvrRequest == cState2

l cState3 =⇒ eDrvrRequest == cState3

l cState4 =⇒ eDrvrRequest == cState4.

These labels simply denote the conditions with brevity. Also, for any label

l cEnumi, negation is applied as ¬l cEnumi =⇒ eV ar ∼= cEnumi. The

resulting table is given in Table 5.4.

Transposing is then done straightforwardly by changing rows into columns.

This is shown in Table 5.5. Table 5.6 shows how to related enumeration con-
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ditions are grouped, and then Table 5.7 shows the table once disjointness and

completeness are introduced.

f ArbRequestFromState1(eDrvrRequest:enum, bFaulty, eArbRequest:bool): enum

=
l cState1 ¬l cState2 ¬l cState3 ¬l cState4 - - cState1

¬l cState1 l cState2 ¬l cState3 ¬l cState4 bCmpntUnlocked ¬bFaulty cState2

¬l cState1 ¬l cState2 l cState3 ¬l cState4 bCmpntUnlocked ¬bFaulty cState3

¬l cState1 ¬l cState2 ¬l cState3 l cState4 bCmpntUnlocked ¬bFaulty cState4

¬l cState1 l cState2 ¬l cState3 ¬l cState4 - bFaulty cState1

¬l cState1 ¬l cState2 l cState3 ¬l cState4 - bFaulty cState1

¬l cState1 ¬l cState2 ¬l cState3 l cState4 - bFaulty cState1

¬l cState1 l cState2 ¬l cState3 ¬l cState4 - - cState1

¬l cState1 ¬l cState2 l cState3 ¬l cState4 - - cState1

¬l cState1 ¬l cState2 ¬l cState3 l cState4 - - cState1

- - - - - - cState1

Table 5.5: Request Arbitration Example - Transposed table

f ArbRequestFromState1(eDrvrRequest:enum, bFaulty, eArbRequest:bool): enum

=
l cState1 - - cState1

l cState2 bCmpntUnlocked ¬bFaulty cState2

l cState3 bCmpntUnlocked ¬bFaulty cState3

l cState4 bCmpntUnlocked ¬bFaulty cState4

l cState2 - bFaulty cState1

l cState3 - bFaulty cState1

l cState4 - bFaulty cState1

l cState2 - - cState1

l cState3 - - cState1

l cState4 - - cState1

- - - cState1

Table 5.6: Request Arbitration Example - Enumerations grouped

f ArbRequestFromState1(eDrvrRequest:enum, bFaulty, eArbRequest:bool): enum

=
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l cState1 - - cState1

l cState2 bCmpntUnlocked ¬bFaulty cState2

l cState2 bCmpntUnlocked bFaulty cState1

l cState2 ¬bCmpntUnlocked - cState1

l cState3 bCmpntUnlocked ¬bFaulty cState3

l cState3 bCmpntUnlocked bFaulty cState1

l cState3 ¬bCmpntUnlocked - cState1

l cState4 bCmpntUnlocked ¬bFaulty cState4

l cState4 bCmpntUnlocked bFaulty cState1

l cState4 ¬bCmpntUnlocked - cState1

Table 5.7: Request Arbitration Example - Disjoint and Complete

f ArbRequestFromState1(eDrvrRequest:enum, bFaulty, eArbRequest:bool): enum

=
Result

Conditions eArbRequest

l cState1 cState1

l cState2
bCmpntUnlocked

¬bFaulty cState2

bFaulty cState1

¬bCmpntUnlocked - cState1

l cState3
bCmpntUnlocked

¬bFaulty cState3

bFaulty cState1

¬bCmpntUnlocked - cState1

l cState4
bCmpntUnlocked

¬bFaulty cState4

bFaulty cState1

¬bCmpntUnlocked - cState1

Table 5.8: Request Arbitration Example - Formatting

After formatting, the table is considered to be a valid tabular expression.

Table 5.9 shows the equivalent horizontal tabular expression of Table 5.2. La-

bels are also removed.

f ArbRequestFromState1(eDrvrRequest:enum, bFaulty, eArbRequest:bool): enum

=
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Result

Conditions eArbRequest

eDrvrRequest == cState1 cState1

eDrvrRequest == cState2
bCmpntUnlocked

¬bFaulty cState2

bFaulty cState1

¬bCmpntUnlocked cState1

eDrvrRequest == cState3
bCmpntUnlocked

¬bFaulty cState3

bFaulty cState1

¬bCmpntUnlocked cState1

eDrvrRequest == cState4
bCmpntUnlocked

¬bFaulty cState4

bFaulty cState1

¬bCmpntUnlocked cState1

Table 5.9: Request Arbitration Example - Horizontal table defining request
arbitration from State1

Simplification Simplifications are now performed on Table 5.9. Firstly,

State1 is always the output when bFaulty is true, no matter if the value

of bCmpntUnlocked or eDrvrRequest. Therefore, in Table 5.10 bFaulty is

rearranged horizontally such that it checked before bCmpntUnlocked, delin-

eating its dominance as a condition. This is done again for eDrvrRequest,

however a compound simplification approach is taken such that the first row,

eDrvrRequest == cState1, is expanded to be the same form as the other

rows. This allows for another application of the reordering, and is shown in

Table 5.11. Then bFaulty is rearranged again, so that it is checked before

eDrvrRequest, making it the most dominant condition. This is illustrated in

Table 5.12

f ArbRequestFromState1(eDrvrRequest:enum, bFaulty, bCmpntUnlocked: bool):

enum =

123



M.A.Sc. Thesis – Monika Bialy McMaster University – Computing and Software

Result

Conditions eArbRequest

eDrvrRequest= cState1 cState1

eDrvrRequest == cState2

bFaulty cState1

¬bFaulty
¬bCmpntUnlocked cState1

bCmpntUnlocked cState2

eDrvrRequest == cState3

bFaulty cState1

¬bFaulty
¬bCmpntUnlocked cState1

bCmpntUnlocked cState3

eDrvrRequest == cState4

bFaulty cState1

¬bFaulty
¬bCmpntUnlocked cState1

bCmpntUnlocked cState4

Table 5.10: Request Arbitration Example - Reordering bFaulty horizontally

fArbRequestFromState1(eDrvrRequest:enum, bFaulty, bCmpntUnlocked:bool):

enum =
Result

Conditions eArbRequest

eDrvrRequest == cState1

bFaulty cState1

¬bFaulty
¬bCmpntUnlocked cState1

bCmpntUnlocked cState1

eDrvrRequest == cState2

bFaulty cState1

¬bFaulty
¬bCmpntUnlocked cState1

bCmpntUnlocked cState2

eDrvrRequest == cState3

bFaulty cState1

¬bFaulty
¬bCmpntUnlocked cState1

bCmpntUnlocked cState3

eDrvrRequest == cState4

bFaulty cState1

¬bFaulty
¬bCmpntUnlocked cState1

bCmpntUnlocked cState4

Table 5.11: Request Arbitration Example - Row expansion to facilitate further
simplification

fArbRequestFromState1(eDrvrRequest:enum, bFaulty, bCmpntUnlocked:bool):

enum =
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Result

Conditions eArbRequest

bFaulty cState1

¬bFaulty

eDrvrRequest == cState1
¬bCmpntUnlocked cState1

bCmpntUnlocked cState1

eDrvrRequest == cState2
¬bCmpntUnlocked cState1

bCmpntUnlocked cState2

eDrvrRequest == cState3
¬bCmpntUnlocked cState1

bCmpntUnlocked cState3

eDrvrRequest == cState4
¬bCmpntUnlocked cState1

bCmpntUnlocked cState4

Table 5.12: Request Arbitration Example - Reordering bFaulty horizontally a
second time

It is evident from Table 5.12 that checking ¬bCmpntUnlocked always

results in cState1 regardless of eDrvrRequest. We apply a similar treat-

ment and move the bCmpntUnlocked condition such that it comes before

eDrvrRequest, as seen in Table 5.13. Doing so clearly show that in fact,

eDrvrRequest is not necessary at all in rows 2-5. In all four of these cases,

the output is cState1, therefore it can be considered as a don’t care condi-

tion. Table 5.14 demonstrates its removal, resulting in the elimination of 3

superfluous rows.

fArbRequestFromState1(eDrvrRequest:enum, bFaulty, bCmpntUnlocked:bool): enum =
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Result

Conditions eArbRequest

bFaulty cState1

¬bFaulty

¬bCmpntUnlocked

eDrvrRequest == cState1 cState1

eDrvrRequest == cState2 cState1

eDrvrRequest == cState3 cState1

eDrvrRequest == cState4 cState1

bCmpntUnlocked

eDrvrRequest == cState1 cState1

eDrvrRequest == cState2 cState2

eDrvrRequest == cState3 cState3

eDrvrRequest == cState4 cState4

Table 5.13: Request Arbitration Example - Reordering bCmpntUnlocked hor-
izontally

fArbRequestFromState1(eDrvrRequest:enum, bFaulty, bCmpntUnlocked:bool):

enum =
Result

Conditions eArbRequest

bFaulty cState1

¬bFaulty

¬bCmpntUnlocked cState1

bCmpntUnlocked

eDrvrRequest == cState1 cState1

eDrvrRequest == cState2 cState2

eDrvrRequest == cState3 cState3

eDrvrRequest == cState4 cState4

Table 5.14: Request Arbitration Example - Don’t care condition removal of
eDrvrRequest

Afterwards, there is a no change condition evident in the table’s last four

rows. Here, the state values are essentially passed through, and so their condi-

tion checks can be eliminated, and simply used in the output cell, as shown in

Table 5.15. Additionally, the vertical ordering of the bCmpntUnlocked condi-

tion is manipulated such that the non-negated condition is placed first. This is

simply done so that it is consistent with the notation of bFaulty, and is given

in Table 5.16.
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fArbRequestFromState1(eDrvrRequest:enum, bFaulty, bCmpntUnlocked:bool):

enum =
Result

Conditions eArbRequest

bFaulty cState1

¬bFaulty
¬bCmpntUnlocked cState1

bCmpntUnlocked eDrvrRequest

Table 5.15: Request Arbitration Example - eDrvrRequest no change general-
ization

fArbRequestFromState1(eDrvrRequest:enum, bFaulty, bCmpntUnlocked:bool):

enum =
Result

Conditions eArbRequest

bFaulty cState1

¬bFaulty
bCmpntUnlocked eDrvrRequest

¬bCmpntUnlocked cState1

Table 5.16: Request Arbitration Example - Reordering bCmpntUnlocked hor-
izontally

Transformation into Truth Table As a result of the simplifications re-

ducing the size of the table, this step is straightforward in comparison to

Transforming the original Stateflow truth table into a tabular expression. The

cells are once again transposed, and the formatting is changed to match that

of Stateflow truth tables. This is illustrated in Table 5.17.

The same process was applied to the remaining three tables of the sub-

system. Their steps are not outlined in detail, however the final results are

included in Appendix B. Upon refactoring each table, they were implemented

in the design. The resulting simplified Stateflow truth tables were shown to

be equivalent to the original through the use of PVS.
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fArbRequestFromState1(eDrvrRequest:enum, bFaulty, bCmpntUnlocked:bool):
enum =

# Condition 1 2 3
1 bFaulty T F F
2 bCmpntUnlocked - T F

Actions 1 2 1

# Action
1 eArbRequest=cState1
2 eArbRequest=eDrvrRequest

Table 5.17: Request Arbitration Example - Equivalent Stateflow truth table

5.1.2 Results

The impact that the refactoring has had on the tables is discussed here. We

investigate how refactoring and simplification affects software designs in terms

of testability, complexity and requirements traceability.

Testing To compare the original and refactored tables, testing is performed

using SDV, due to its superior Stateflow truth table support. All four original

tables are reimplemented using the refactored tables. During testing, SDV

formally analyzes the model and provides this information in coverage and

analysis reports. In order to compare the two different tabular implementations

with respect to their effects on testing, test case generation was performed and

the coverage and analysis information were compared. Table 5.18 compares the

formal analysis results of the original and refactored tables’ tests, while Table

5.19 compares the achieved model coverage. SDV testing strives to maximize

three types of coverage objectives: condition, decision, and MC/DC.
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Original Refactored

Tests 7 9

Test Steps 97 48

Number of Objectives 1016 371

Objectives Satisfied 797 311

Objectives Proven Unsatisfiable 219 60

Cyclomatic Complexity 274 107

Table 5.18: Analysis of tests

Original Refactored

Satisfied Total Percentage Satisfied Total Percentage

Condition 368 452 81% 110 140 79%

Decision 112 112 100% 95 95 100%

MCDC 141 226 62% 44 70 63%

Table 5.19: Comparison of test metrics

In examining this data, it is evident that the number of test objectives is

significantly reduced by more than half. Additionally, the testing time also

decreased. Although not as evident because of the overall reduction of ob-

jectives, it is also the case that the number of satisfied objectives increase

from approximately 78% to 84%. The reason for this improvement is due to

the simplification of the decision logic, which is confirmed by the cyclomatic

complexity metric. Cyclomatic complexity decreased considerably by a factor

of 2.5. In examining the Table 5.16 specifically, SDV reported a cyclomatic

complexity of 10. Its accompanying table, Table ?? has a complexity of 9.
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The original, Table 5.1 had a complexity of 60. Therefore, these two tables

together yield a complexity of 19, which is significant lower.

No significant improvements were achieved in terms of coverages metrics,

however improvements were made to testing efforts required on the part of

SDV. We are primarily concerned with reducing the efforts in testing with

regards to number of tests required. In Table 5.18 it appears as though the

number of tests increases, and thus the refactored model is more difficult to

test, however it is more important to take notice of the number of test steps

required within each of these tests. Tests are a means of grouping some number

of steps, and thus do not necessarily reflect more or less effort required to test

a particular model. It is evident that the refactored tables require less test

steps than the original. Detailed testing results describing each test are also

made available in the coverage report. This data is presented in Table 5.20

and Table 5.21 respectively.

Test # Length (s) Test Steps Objectives Satisfied

1 1.0 6 74

2 3.4 18 205

3 0.8 5 67

4 3.2 17 196

5 5.4 28 148

6 3.0 16 98

7 1.2 7 9

Total 18 97 797

Table 5.20: Detailed test information for subsystem with original tables

130



M.A.Sc. Thesis – Monika Bialy McMaster University – Computing and Software

Test # Length (s) Test Steps Objectives Satisfied

1 2.4 13 128

2 0.6 4 41

3 1.2 7 86

4 1.6 9 15

5 2.0 11 14

6 0.0 1 9

7 0.0 1 7

8 0.0 1 7

9 0.0 1 4

Total 7.8 48 311

Table 5.21: Detailed test information for subsystem with refactored tables

Furthermore, Table 5.19 also shows how many objectives are required of

the design in order to satisfy condition, decision, and MC/DC. In all three

cases, the refactored table requires less objectives.

Requirements Tracablilty Tabular expressions are more readable tabular

constructs than decision tables. Additionally, they allow requirement to be

more evident. Therefore they are more conducive to making requirements

more traceable. This is demonstrated in Table 5.22.

fArbRequestFromState1(eDrvrRequest:enum, bFaulty, bCmpntUnlocked:bool):

enum =
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Figure 5.1: Summary of SDV analysis

Result

Conditions eArbRequest

bFaulty cState1

¬bFaulty bCmpntUnlocked eDrvrRequest

¬bCmpntUnlocked cState1

Table 5.22: Visible requirement

Calibration Flexibility These tables are not in use as calibratable data.

Therefore this is not considered for this system.

In summary, this methodology proves to be indeed successful at reducing

cyclomatic complexity of tabular designs as well as testing efforts.
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5.2 Example 2: System Status

We illustrate the aforementioned refactoring approach on another vehicle sys-

tem, illustrated in Figure 5.2. This example is of considerable size,and flagged

as a subsystem that is particularity odious to maintain my developers from

our OEM partner. Although the logic to be simplified in this subsystem is in

Stateflow truth table form, application of the proposed simplification method-

ology cannot be applied directly. We first describe its functionality, outline

the approach by which it is to be refactored, and then demonstrate refactoring

for a single table.

At a high level, the functionality of this subsystem is concerned with the

computation of the state of a major vehicular system. Using several these

input signals, the subsystem arbitrates the enabling of various operations and

other subsystems. The overall system “state” is a combination of system and

operation statuses which are either enabled or disabled. The statuses of these

systems are the outputs of this subsystem, shown in Figure 5.23. In total, there

are eight system/operation statuses that are computed in this subsystem.

At the core of this implementation are two tables capturing the decision

logic for determining the system state. The effective purpose of these tables

is to select which outputs are enabled/disabled, i.e. true/false, based on the

given input. The following is a brief explanation of the process of determining

the system state as it was implemented. We take interest in this computation

in particular due to its heavy use of tables.

1. Two truth tables return an integer value each. The first table returns

nIndex1 in the range of [1,73] and the second returns an integer value

nIndex2 in the range [1,21]. Each output corresponds to the x and y
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(row and column respectively) values of the cEncodedState matrix. The

matrix issues system states.

2. The x and y values are fed into a 2D-selector, which returns the element

of the matrix at the indices provided. This value is the system state in

decimal form. Possible state values returned are {0, 128, 132, 140, 196,

204, 228, 236, 244}.

3. Allow for any overrides to take place. If there is an override, system state

is 0.

4. Decode the system state value from decimal to binary. Each bit of

the binary number corresponds to a output value describing the en-

abling/disabling of the systems/operations for that system state.

The motivations behind refactoring this system, as well as the problem

formulation are as follows:

• Design is unintuitive. Implementation does not correlate well with the

desired functionality. We see the use of three large tables: two Simulink

truth tables and a 2D Matlab matrix. This approach essentially uses two

tables to look up entries in a third table. From the description above, it

is apparent that implementation of the functionality we desire to achieve

is done so through an indirect means. Furthermore, the system states

are represented numerically in an inexplicit manner, which necessitates

the use of a decoder subsystem.

• Tables are too large and complex. The matrix is sparse, that is,

largely empty. In total there are 80 non-zeros vs. 1453 zeros. Further-

more, the method of lookup is inefficient. Only rows 1, 10, 37, 46 have
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non-zero values. When the first table points to an all-zero row, it is

not necessary to check the second table. In this case, determining the

y index is inconsequential because all columns will contain zero values

regardless. Additionally, storing this large matrix as a calibration also

requires a sizeable amount of memory, specifically 3000K.

• Modifiability. In addition to the implementation being prohibitively

complex to easily facilitate changes in functionality, future changes to

the system may be difficult due in part to the current implementation’s

reliance on the binary representation of the system state. At present,

the system currently works for 8 bits, because there are 8 outputs. But

in the case when another system/operation needs to be included in the

arbitration logic, to accommodate the increase, more bits are required,

necessitating a more intensive refactoring of the system.

• Obfuscates vehicular requirements. It is not readily evident from

this implementation how the various vehicle systems operate. Added

time and effort are required to inspect and understand how the system

functions. Representing states as decimal numbers provides no infor-

mation to developers in terms of what they actually represent. Lack of

requirements documentation further exacerbates this problem, especially

so for new developers.

All of these points lend themselves to the problems which developers have

encountered: poor readability, understandability, maintainability, and testa-

bility.
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5.2.1 Application

With eight systems/operations to consider as outputs, eight tables will be

required. We show the refactoring of the simplest example, namely the Drive

Allowed bit. This output is essentially a flag indicating whether the system is

allowed to go into certain states. The remaining refactored tables are included

in Appendix C.

Decomposition We start with three separate tables capturing the logic we

wish to simplify, instead of a single truth table. Consequently, some additional

work is required in order to apply the methodology and create tables for each

output. We take a bitwise refactoring approach to decompose the system into

non-coupled elements. Firstly, one of the objectives is to implement the com-

putation of the system state in a more intuitive manner. Therefore, instead of

using two tables to compute the index of a third, we represent each computa-

tion as a function which computes the status of each of the systems/operations.

In the current design implementation, each system/operation status is a bit of

the binary number that represents a system state. As such, we decompose the

tables by isolating the logic behind each bit, and compute it separately as the

output of its own table. For each output, only those inputs which affect the

status of that system/operation are included, eliminating the need to include

checking of conditions which are irrelevant for that system/operation. Devel-

opers will be able to calibrate functionality on a bit-by-bit basis, affording more

flexibility when it comes to modifiability in the future. Furthermore, remov-

ing repetitions of conditions within tables is fundamental to the simplification

methodology. Upon inspection of the two tables, we see that the outputs are

unique integers and there is no repetition. Application of the methodology on
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the tables as they are currently implemented will be ineffectual. Moreover, no

requirements can be derived from this implementation, as the integers have no

other meaning than to point to matrix entries. Therefore, a bitwise refactoring

approach is employed.

Output System/Operation Status

bSystemA bSystemB bSystemC bOprA bSystemD bSystemE bOprB bOprC

S
ta
te

0 0 0 0 0 0 0 0 0

128 1 0 0 0 0 0 0 0

132 1 0 0 0 1 1 0 0

196 1 1 0 0 0 1 0 0

204 1 1 0 0 1 1 0 0

228 1 1 1 0 0 1 0 0

236 1 1 1 0 1 1 0 0

244 1 1 1 1 0 1 0 0

Table 5.23: System states and their system/operation statuses

Firstly, we isolate the logic which computes this specific output. This

is done by inspecting the states, and identifying those in which the sys-

tem/operation is enabled (i.e. true). Table 5.23 presents the eight system

states and the status of the various systems within those states.

We can see that the bOprAbit is only enabled in state 244. Consulting

the matrix, we target any entries where state 244 is the prescribed output,

and work backwards to the two truth tables to discover which conditions were

required to arrive at these matrix entries. At this stage, it may be is possible

to simplify the resulting expressions intuitively, through visual inspection. We

however leave simplification to the application of the methodology. Avoiding

any simplifications at this time may allow for a different set of simplification

to take place during the next steps.
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Derivation of Function Definition The logic derived from the matrix and

tables provides the expression for each cell that is contained in the definition

of the output we are examining. The following expression formalizes the logic

required for the bOprAbit to be true:

bOprA =

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond∧

¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos5∧

eSystemD == cNotPlgdIn)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond∧

¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos5∧

eSystemD == cNotPlgdIn)

With the bit now extracted and defined separately from the other logic

concerning the remaining outputs, we now possess the function definition for

bOprA.

Express as Tabular Expression The function definition is transformed

into a tabular expression, as presented in Figure 5.24.

f OprAState(eOprAStat, eOprBStat, eSystemD, eKState:enum, bEnblCond,

bProcessRun, bDrvCondMet:bool): bool =
Result

Conditions bOprA

eOprAStat == cNotPlgIn
eOprBStat == cNoTools

¬bEnblCond
¬bProcessRun

bDrvCondMet
eSystemD == cNotPlgdIn

eKState == cPos5 true
eKState ∼= cPos5 false

eSystemD ∼= cNotPlgdIn false

bDrvCondMet
eSystemD == cNotPlgdIn

eKState == cPos5 true
eKState ∼= cPos5 false

eSystemD ∼= cNotPlgdIn false
bProcessRun false

bEnblCond false
eOprBStat ∼= cNoTools false

eOprAStat ∼= cNotPlgIn false

Table 5.24: System Status Example - Extracted and isolated bOprAbit prior
to simplification
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Simplify Simplifications are then carried out on the table. In this simple

example, there is a single simplification resulting from the identification of

DrvDoorCondMet as a “don’t care” condition. Therefore, it is removed from

the table, and is no longer considered as a useful input for the computation

of this output. The resulting table after simplification and completion of the

methodology is shown in Table 5.25.

f OprAState(eOprAStat, eOprBStat, eSystemD, eKState:enum, bEnblCond,

bProcessRun:bool): bool =
Result

Conditions bOprA

eOprAStat == cNotPlgIn
eOprBStat == cNoTools

¬bEnblCond
¬bProcessRun

eSystemD == cNotPlgdIn
eKState == cPos5 true
eKState ∼= cPos5 false

eSystemD ∼= cNotPlgdIn false
bProcessRun false

bEnblCond false
eOprBStat ∼= cNoTools false

eOprAStat ∼= cNotPlgIn false

Table 5.25: System Status Example - bOprA bit simplified

Upon closer inspection of the Result column, it is evident that bOprAis only

ever true under one specific set of conditions. This emerging property of the

system can potentially be considered as a requirement. Table 5.26 provides

a good demonstration of how requirements become more evident through the

use of tabular expressions and our methodology for simplifying them. We

amalgamate those columns which are false into a single row/cell, and similarly

represent the path of conditions which lead to the true output in a single cell.

This step simply emphasizes the presence of the single true case, and groups

the false cases as an “else” type of condition. This form may be beneficial for

use in requirements documentation.

Matlab Simulink/Stateflow currently does not have built-in support for

tables in the style of tabular expressions. Nevertheless, we can simply translate

back into truth table form for the purpose of implementing the refactored table.
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f OprAState(eOprAStat, eOprBStat, eSystemD, eKState:enum, bEnblCond,

bProcessRun:bool): bool =
Result

Conditions bOprA

eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ eSystemD == cNotPlgdIn ∧ eKState == cPos5 true
eOprAStat ∼= cNotPlgIn ∧ eOprBStat ∼= cNoTools ∧ bEnblCond ∧ bProcessRun ∧ eSystemD ∼= cNotPlgdIn ∧ eKState ∼= cPos5 false

Table 5.26: System Status Example - bOprA further simplified

f OprAState(eOprAStat, eOprBStat, eSystemD, eKState:enum, bEnblCond,
bProcessRun:bool): bool =

Decisions

# Conditions D1 D2

1 eOprAStat == cNotPlgIn T -

2 eOprBStat == cNoTools T -

3 bEnblCond F -

4 bProcessRun F -

5 eSystemD == cNotPlgdIn T -

6 eKState == cPos5 T -

Actions 1 2

# Action

1 bOprA = true

2 bOprA = false

Table 5.27: System Status Example - bOprA as a Stateflow truth table

Table 5.27 gives Table 5.26 as it would be represented in Simulink/Stateflow.

5.2.2 Results

The remaining tables were simplified and implemented in Simulink/Stateflow.

The refactored subsystem is shown in Figure 5.3

A comparison between this refactored version and the original design is

presented here. Table 5.28 compares the tests generated for each of these

implementations.
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Original Refactored

Tests 23 6

Test Steps 1214 24

Number of Objectives 1954 498

Objectives Satisfied 1951 445

Objectives Proven Unsatisfiable 202 53

Objectives Undecided 161 0

Cyclomatic Complexity 935 248

Table 5.28: Analysis of tests

Table 5.29 illustrates the differences in testing metrics. A higher MC/DC

was achieved in the refactored tables. This is also the case for Condition and

Decision coverages. Additionally, the number of objectives to satisfy each was

reduced significantly.

Original Refactored

Satisfied Total Percentage Satisfied Total Percentage

Condition 1309 1672 78% 363 418 87%

Decision 297 300 99% 84 84 100%

MCDC 473 836 57% 154 209 74%

Table 5.29: Comparison of test metrics

In Tables 5.30 and 5.31, detailed information for each test step is given.

Again, the refactored subsystem yields fewer tests and objectives, while also

requiring less time.
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Test # Length (s) Test Steps Objectives Satisfied

1 43 44 1135

2 9 10 54

3 18 19 173

4 9 10 81

5 2 3 36

6 2 3 28

7 2 3 20

8 1 2 5

9 1 2 5

10 1 2 5

11 1 2 5

12 1 2 5

13 1 2 4

14 1 2 4

15 1 2 4

16 1 2 7

17 1 2 4

18 1 2 3

19 1 2 3

20 1 2 3

21 1 2 3

22 1 2 3

23 0 1 1

Total 100 1214 1591

Table 5.30: Detailed test information for subsystem with original table
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Test # Length (s) Test Steps Objectives Satisfied

1 2.2 12 373

2 0.8 5 62

3 0.2 2 2

4 0.2 2 2

5 0.2 2 2

6 0 1 4

Total 3.6 24 445

Table 5.31: Detailed test information for subsystem with refactored tables

Performing these analyses on the original took considerable more time to

complete. First attempts timed out. Only after the analysis was allocated more

time in SDV did it complete after approximately 15 minutes. Furthermore,

undecided objectives were produced for the original subsystem, but not the

refactored.

Calibration Flexibility In this application, the matrix we are refactoring is

different for each vehicle. To accommodate flexility across all possible vehicle

variants, all input combinations are allowed. However, all of these may not be

relevant that for particular vehicles. Simplifying the logic so as to remove any

unused inputs or impossible input combinations, although produces simpler

code for that model, does not facilitate calibration across multiple vehicles.

Even if this particular implementation does not use some input of the system,

other vehicular software versions may require it. Moreover, implementing ta-

bles directly as Simulink truth tables negates the benefits of having separate

calibration files which change depending on the vehicle design. Simulink truth
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tables are in a sense, hard-coded into the implementation. Any changes must

be done directly in the model, instead of a separate calibration environment.

No analysis has been done as to how much flexibility is actually needed.

For this, multiple vehicular variations are needed for examination. If it was

the case that all the vehicle variants were known as well as which features each

enabled, then we could analyze what is really going on, such as, for example,

that a vehicles charging operation is never enabled when the vehicle is not in

park. On the other hand, vehicle calibrations are not always known in advance,

nor can one predict what calibrations will be required for future vehicle designs

as they evolve. Nevertheless, some configurations will just not be possible, and

these should be identified and stripped from the implementation.

With regards to the OEM’s calibration tables, they are implemented such

that all inputs and all of their possible combinations are included. Naturally,

this outfits the implementation with complete flexibility, allowing for the im-

plementation of arbitrary behaviour, however, in doing so the implementation

becomes completely opaque.

5.3 Summary

In this chapter we demonstrated how the methodology proposed in Chapter 4

assists in reducing design size and complexity, while also increasing testability

and requirements traceability.

We have demonstrated the effectiveness of the methodology by performing

an industrial case study. This refactoring methodology was applied to real, in-

dustrial designs from an automotive OEM, which demonstrated its application

step-by-step. Although the methodology is not a formally defined algorithmic
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approach, it is easy to follow for developers without a heavy formal methods

background. This knowledge was transferred to developers from our automo-

tive partner, who were able to understand and make of of this methodology

without assistance.

Furthermore, the refactored designs created using our methodology in Sec-

tion 5.1have been incorporated by our automotive industry partner into pro-

duction vehicular code. This successful technology transfer clearly demon-

strates the practicality and industrial relevance of this thesis.
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Figure 5.2: System Status Example - Subsystem undergoing requirements ex-
traction
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Figure 5.3: System Status Example - Refactored subsystem implementation
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Chapter 6

Conclusions and Future Work

In this thesis, a novel methodology for the guided refactoring of tabular designs

within the context of MBD was developed. Models are especially susceptible

to becoming excessively large and complex, consequently decreasing testabil-

ity and requirements traceability. Existing techniques for model refactoring

techniques to address these issues are few. We examined the literature with re-

gards to this, as well as to survey techniques for simplifying tabular constructs.

Specifically, decision tables, such as those found in Simulink/Stateflow, suffer

from similar problems, with the addition of non-disjointness. We then endeav-

oured to construct heuristics which can perform refactoring of these tabular

designs, while also considering requirements. Lack of up-to-date requirements

is an area of concern in the software context in general. This is especially true

in MBD, and so first a methodology for reverse-engineering software require-

ments was applied. This resulted in a second, new methodology being created

to address the deficiencies of the first. Equipped with software requirements as

the guide for refactoring efforts, a methodology for simplifying tabular designs

was created. Within this methodology, five transformations were proposed for
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the logical simplification of tables. Furthermore, this methodology does not

solely rely on Simulink/Stateflow as the basis for refactoring, and can be ap-

plied to decision tables of any origin. Likewise, the proposed simplifications

can be applied to simplify tabular expressions in general. Lastly, this method-

ology was the basis for an industrial case study, which saw the application

of this methodology and resulted in significant gains in terms of reduction of

testing efforts, minimization of complexity, and requirements traceability.

6.1 Future Work

This section identifies future areas of work that are required to further the

work described in this thesis. We look at the possibility for extending the

work thus far presented in terms of tools, applications, and theory.

Firstly, the need for a robust toolchain is required in order to facilitate the

application of this methodology, as well as create a seamless workflow for inte-

gration in the software development processes. Commercial tools and custom

scripts were used throughout this work, however a seamless process is required.

The methodology presented in Chapter 4 is a guided process, and so further

research is needed in order to determine how much can be feasibly automated.

The simplification phase of the methodology yields different, equivalent refac-

torings for the same table. Thus, it would be beneficial to support the viewing

of multiple table forms simultaneously in order allow the user to determine

the best final form. Moreover, the integration of simplification techniques in

existing tools must be explored. Currently, the Matlab Simulink environments

does not support any refactoring or simplification tools for models. Integrating

simplification transformations in tools such as the TET would be beneficial.
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Different applications of this methodology need to be pursued to further

asses its robustness on industrial applications. We approached the design of

this methodology with respect to the needs of the automotive domain, however

MBD is an interdisciplinary approach. Other sectors such as aerospace, defence

and consumer electronics also rely on models as the basis for their development

process. This methodology must be applied on more models from different

contexts in order to explore the robustness of this methodology, as well as

accommodate the specific needs of different domains.

Refactoring Simulink models is a relatively new pursuit. Much room exists

for extending the theory used as the basis for this work. Safety-critical sys-

tems are often hard real-time applications, and so more research much be done

into refactoring designs which deal with such constraints. With respect to the

reverse-engineering of requirements, there is a need for extending this portion

of the methodology to infer timing requirements, and numerical ranges in gen-

eral. Tables which implement timing behaviour also warrant further study.

Furthermore, this work tackled the refactoring of Stateflow truth table blocks,

as they are the major construct for capturing complex decision logic. Neverthe-

less, there exist other tabular constructs within Simulink/Stateflow notation

which may also require a similar treatment. A survey of other constructs is

required.

6.2 Closing Remarks

There is need for industrially relevant software engineering and formal meth-

ods techniques which stand the test of industry. The need for such techniques

guided the work of this thesis. It was in understanding the needs of our auto-
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motive OEM partner that the methodology was developed. The successful ap-

plication of this methodology to their designs resulted in the refactored designs

being put to use in production level vehicle control software. This technology

transfer clearly demonstrates the practicality and industrial relevance of this

work.
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Appendices
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Appendix A

Reverse-Engineered Invariants

A.1 Methodology of Ackermann et al.

1. eCurrState==cState1 ∧ eDrvrRequest==cState2 ∧ bCmpntUnlocked ∧ eFaultState==cStage4 ∧

¬bFaulty =⇒ eArbRequest==cState2

2. eCurrState==cState1 ∧ eDrvrRequest==cState2 ∧ bCmpntUnlocked ∧ bOvrdToState1 ∧

eFaultState==cStage4 ∧ ¬bFaulty =⇒ eArbRequest==cState2

3. eCurrState==cState1 ∧ eDrvrRequest==cState2 ∧ bCmpntUnlocked ∧ eFaultState==cStage4 ∧

¬bOvrdToState3 ∧ ¬bFaulty =⇒ eArbRequest==cState2

4. eCurrState==cState1 ∧ eDrvrRequest==cState2 ∧ bCmpntUnlocked ∧ eFaultState==cStage4 ∧

bSysActive ∧ ¬bFaulty =⇒ eArbRequest==cState2

5. eCurrState==cState1 ∧ eDrvrRequest==cState2 ∧ bCmpntUnlocked ∧ bOvrdToState1 ∧

eFaultState==cStage4 ∧ ¬bOvrdToState3 ∧ ¬bFaulty =⇒ eArbRequest==cState2

6. eCurrState==cState1 ∧ eDrvrRequest==cState2 ∧ bCmpntUnlocked ∧ bOvrdToState1 ∧

eFaultState==cStage4 ∧ bSysActive ∧ ¬bFaulty =⇒ eArbRequest==cState2

7. eCurrState==cState1 ∧ eDrvrRequest==cState2 ∧ bCmpntUnlocked ∧ bOvrdToState1 ∧

eFaultState==cStage4 ∧ ¬bFaulty ∧ ¬bActionRequired =⇒ eArbRequest==cState2

8. eCurrState==cState1 ∧ eDrvrRequest==cState2 ∧ bCmpntUnlocked ∧ eFaultState==cStage4 ∧

¬bOvrdToState3 ∧ bSysActive ∧ ¬bFaulty =⇒ eArbRequest==cState2

9. eCurrState==cState1 ∧ eDrvrRequest==cState2 ∧ bCmpntUnlocked ∧ eFaultState==cStage4 ∧

¬bOvrdToState3 ∧ ¬bFaulty ∧ ¬bActionRequired =⇒ eArbRequest==cState2
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10. eCurrState==cState1 ∧ eDrvrRequest==cState2 ∧ bCmpntUnlocked ∧ eFaultState==cStage4 ∧

bSysActive ∧ ¬bFaulty ∧ ¬bActionRequired =⇒ eArbRequest==cState2

11. eCurrState==cState1 ∧ eDrvrRequest==cState2 ∧ bCmpntUnlocked ∧ bOvrdToState1 ∧

eFaultState==cStage4 ∧ ¬bOvrdToState3 ∧ bSysActive ∧ ¬bFaulty =⇒ eArbRequest==cState2

12. eCurrState==cState1 ∧ eDrvrRequest==cState2 ∧ bCmpntUnlocked ∧ bOvrdToState1 ∧

eFaultState==cStage4 ∧ ¬bOvrdToState3 ∧ ¬bFaulty ∧ ¬bActionRequired =⇒

eArbRequest==cState2

13. eCurrState==cState1 ∧ eDrvrRequest==cState2 ∧ bCmpntUnlocked ∧ bOvrdToState1 ∧

eFaultState==cStage4 ∧ bSysActive ∧ ¬bFaulty ∧ ¬bActionRequired =⇒ eArbRequest==cState2

14. eCurrState==cState1 ∧ eDrvrRequest==cState2 ∧ bCmpntUnlocked ∧ eFaultState==cStage4 ∧

¬bOvrdToState3 ∧ bSysActive ∧ ¬bFaulty ∧ ¬bActionRequired =⇒ eArbRequest==cState2

15. eCurrState==cState1 ∧ eDrvrRequest==cState2 ∧ bCmpntUnlocked ∧ bOvrdToState1 ∧

eFaultState==cStage4 ∧ ¬bOvrdToState3 ∧ bSysActive ∧ ¬bFaulty ∧ ¬bActionRequired =⇒

eArbRequest==cState2

A.2 Proposed Methodology

1. ¬bOvrdToState1 ∧ bOvrdToState3 ∧ ¬bActionRequired =⇒ eArbRequest==cState3

2. eCurrState==cState1 ∧ ¬bCmpntUnlocked ∧ ¬bOvrdToState1 ∧ ¬bOvrdToState3 =⇒

eArbRequest==cState1

3. eCurrState==cState1 ∧ ¬bCmpntUnlocked ∧ ¬bOvrdToState3 ∧ ¬bSysActive =⇒

eArbRequest==cState1

4. eCurrState==cState1 ∧ ¬bCmpntUnlocked ∧ bOvrdToState3 ∧ ¬bSysActive ∧

¬bActionRequired =⇒ eArbRequest==cState1

5. eCurrState==cState1 ∧ ¬bCmpntUnlocked ∧ ¬bOvrdToState1 ∧ ¬bOvrdToState3 ∧

¬bSysActive ∧ ¬bActionRequired =⇒ eArbRequest==cState1

6. ¬bOvrdToState1 ∧ bOvrdToState3 ∧ ¬bSysActive =⇒ eArbRequest==cState3

7. ¬bOvrdToState1 ∧ bOvrdToState3 ∧ ¬bSysActive ∧ ¬bFaulty =⇒ eArbRequest==cState3

8. ¬bOvrdToState1 ∧ bOvrdToState3 ∧ ¬bSysActive ∧ ¬bActionRequired =⇒ eArbRequest==cState3

9. ¬bOvrdToState1 ∧ bOvrdToState3 ∧ ¬bSysActive ∧ ¬bFaulty ∧ ¬bActionRequired =⇒

eArbRequest==cState3
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10. ¬bOvrdToState1 ∧ eFaultState==cStage1 ∧ bOvrdToState3 ∧ ¬bFaulty =⇒

eArbRequest==cState3

11. ¬bOvrdToState1 ∧ eFaultState==cStage1 ∧ bOvrdToState3 ∧ ¬bActionRequired =⇒

eArbRequest==cState3

12. ¬bOvrdToState1 ∧ eFaultState==cStage1 ∧ bOvrdToState3 ∧ ¬bFaulty ∧ ¬bActionRequired =⇒

eArbRequest==cState3

13. ¬bCmpntUnlocked ∧ ¬bOvrdToState1 ∧ bOvrdToState3 ∧ ¬bSysActive =⇒ eArbRequest==cState3

14. ¬bCmpntUnlocked ∧ ¬bOvrdToState1 ∧ bOvrdToState3 ∧ ¬bSysActive ∧ ¬bFaulty ∧

¬bActionRequired =⇒ eArbRequest==cState3

15. ¬bCmpntUnlocked ∧ ¬bOvrdToState1 ∧ eFaultState==cStage1 ∧ bOvrdToState3 ∧

¬bActionRequired =⇒ eArbRequest==cState3

16. ¬bCmpntUnlocked ∧ ¬bOvrdToState1 ∧ eFaultState==cStage1 ∧ bOvrdToState3 ∧

¬bFaulty ∧ ¬bActionRequired =⇒ eArbRequest==cState3

17. eCurrState==cState1 ∧ ¬bCmpntUnlocked ∧ eFaultState==cStage1 =⇒ eArbRequest==cState1

18. eCurrState==cState1 ∧ ¬bCmpntUnlocked ∧ eFaultState==cStage1 ∧ ¬bOvrdToState3 =⇒

eArbRequest==cState1

19. eCurrState==cState1 ∧ ¬bCmpntUnlocked ∧ eFaultState==cStage1 ∧ ¬bSysActive =⇒

eArbRequest==cState1

20. eCurrState==cState1 ∧ ¬bCmpntUnlocked ∧ eFaultState==cStage1 ∧ ¬bOvrdToState3 ∧

¬bActionRequired =⇒ eArbRequest==cState1

21. eCurrState==cState1 ∧ ¬bCmpntUnlocked ∧ eFaultState==cStage1 ∧ ¬bOvrdToState3 ∧

¬bSysActive ∧ ¬bActionRequired =⇒ eArbRequest==cState1

22. eCurrState==cState1 ∧ ¬bCmpntUnlocked ∧ ¬bOvrdToState1 ∧ eFaultState==cStage1 ∧

¬bOvrdToState3 ∧ ¬bSysActive ∧ ¬bActionRequired =⇒ eArbRequest==cState1

23. eCurrState==cState1 ∧ eDrvrRequest==cState4 ∧ ¬bCmpntUnlocked =⇒ eArbRequest==cState1

24. eCurrState==cState1 ∧ eDrvrRequest==cState4 ∧ ¬bCmpntUnlocked ∧ ¬bOvrdToState1 =⇒

eArbRequest==cState1

25. eCurrState==cState1 ∧ eDrvrRequest==cState4 ∧ ¬bCmpntUnlocked ∧ ¬bOvrdToState3 =⇒

eArbRequest==cState1

26. eCurrState==cState1 ∧ eDrvrRequest==cState4 ∧ ¬bCmpntUnlocked ∧ ¬bSysActive =⇒

eArbRequest==cState1
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27. eCurrState==cState1 ∧ eDrvrRequest==cState4 ∧ ¬bCmpntUnlocked ∧ ¬bActionRequired =⇒

eArbRequest==cState1

28. ¬bOvrdToState1 ∧ eFaultState==cStage1 ∧ bOvrdToState3 ∧ ¬bSysActive =⇒

eArbRequest==cState3

29. eCurrState==cState1 ∧ eDrvrRequest==cState4 ∧ ¬bCmpntUnlocked ∧ ¬bOvrdToState1 ∧

¬bOvrdToState3 =⇒ eArbRequest==cState1

30. eCurrState==cState1 ∧ eDrvrRequest==cState4 ∧ ¬bCmpntUnlocked ∧ ¬bOvrdToState1 ∧

¬bSysActive =⇒ eArbRequest==cState1

31. eCurrState==cState1 ∧ eDrvrRequest==cState4 ∧ ¬bCmpntUnlocked ∧ ¬bOvrdToState1 ∧

¬bActionRequired =⇒ eArbRequest==cState1

32. eCurrState==cState1 ∧ eDrvrRequest==cState4 ∧ ¬bCmpntUnlocked ∧ ¬bOvrdToState1 ∧

¬bOvrdToState3 ∧ ¬bActionRequired =⇒ eArbRequest==cState1

33. eCurrState==cState1 ∧ eDrvrRequest==cState4 ∧ ¬bCmpntUnlocked ∧ ¬bOvrdToState1 ∧

¬bOvrdToState3 ∧ ¬bSysActive ∧ ¬bActionRequired =⇒ eArbRequest==cState1

34. eCurrState==cState1 ∧ ¬bCmpntUnlocked ∧ ¬bFaulty =⇒ eArbRequest==cState1

35. eCurrState==cState1 ∧ ¬bCmpntUnlocked ∧ ¬bOvrdToState1 ∧ ¬bFaulty =⇒

eArbRequest==cState1

36. eCurrState==cState1 ∧ ¬bCmpntUnlocked ∧ ¬bOvrdToState3 ∧ ¬bFaulty =⇒

eArbRequest==cState1

37. eCurrState==cState1 ∧ ¬bCmpntUnlocked ∧ ¬bSysActive ∧ ¬bFaulty =⇒ eArbRequest==cState1

38. eCurrState==cState1 ∧ ¬bCmpntUnlocked ∧ ¬bFaulty ∧ ¬bActionRequired =⇒

eArbRequest==cState1

39. eCurrState==cState1 ∧ ¬bCmpntUnlocked ∧ ¬bOvrdToState1 ∧ ¬bOvrdToState3 ∧

¬bFaulty =⇒ eArbRequest==cState1

40. eCurrState==cState1 ∧ ¬bCmpntUnlocked ∧ ¬bOvrdToState1 ∧ ¬bSysActive ∧

¬bFaulty =⇒ eArbRequest==cState1

41. eCurrState==cState1 ∧ ¬bCmpntUnlocked ∧ ¬bOvrdToState1 ∧ ¬bFaulty ∧ ¬bActionRequired =⇒

eArbRequest==cState1

42. eCurrState==cState1 ∧ ¬bCmpntUnlocked ∧ ¬bOvrdToState3 ∧ ¬bSysActive ∧

¬bFaulty =⇒ eArbRequest==cState1

43. eCurrState==cState1 ∧ ¬bCmpntUnlocked ∧ ¬bOvrdToState3 ∧ ¬bFaulty ∧ ¬bActionRequired =⇒

eArbRequest==cState1
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44. eCurrState==cState1 ∧ ¬bCmpntUnlocked ∧ ¬bOvrdToState1 ∧ ¬bSysActive ∧

¬bFaulty ∧ ¬bActionRequired =⇒ eArbRequest==cState1

45. eCurrState==cState1 ∧ ¬bCmpntUnlocked ∧ ¬bOvrdToState3 ∧ ¬bSysActive ∧

¬bFaulty ∧ ¬bActionRequired =⇒ eArbRequest==cState1

46. eCurrState==cState1 ∧ ¬bCmpntUnlocked ∧ ¬bOvrdToState1 ∧ ¬bOvrdToState3 ∧

¬bSysActive ∧ ¬bFaulty ∧ ¬bActionRequired =⇒ eArbRequest==cState1

47. ¬bCmpntUnlocked ∧ ¬bOvrdToState1 ∧ eFaultState==cStage1 ∧ bOvrdToState3 ∧

¬bSysActive =⇒ eArbRequest==cState3

48. ¬bCmpntUnlocked ∧ ¬bOvrdToState1 ∧ eFaultState==cStage1 ∧ bOvrdToState3 ∧

¬bSysActive ∧ ¬bFaulty =⇒ eArbRequest==cState3

49. ¬bCmpntUnlocked ∧ ¬bOvrdToState1 ∧ eFaultState==cStage1 ∧ bOvrdToState3 ∧

¬bSysActive ∧ ¬bActionRequired =⇒ eArbRequest==cState3

50. ¬bCmpntUnlocked ∧ ¬bOvrdToState1 ∧ eFaultState==cStage1 ∧ bOvrdToState3 ∧

¬bSysActive ∧ ¬bFaulty ∧ ¬bActionRequired =⇒ eArbRequest==cState3

51. eDrvrRequest==cState1 ∧ bOvrdToState3 =⇒ eArbRequest==cState3

52. eCurrState==cState3 ∧ eFaultState==cStage1 ∧ bOvrdToState3 =⇒ eArbRequest==cState3

53. eCurrState==cState3 ∧ bOvrdToState3 ∧ ¬bFaulty =⇒ eArbRequest==cState3

54. eCurrState==cState3 ∧ bOvrdToState3 ∧ ¬bActionRequired =⇒ eArbRequest==cState3

55. eCurrState==cState3 ∧ eFaultState==cStage1 ∧ bOvrdToState3 ∧ ¬bFaulty ∧

¬bActionRequired =⇒ eArbRequest==cState3

56. eDrvrRequest==cState1 ∧ bOvrdToState3 ∧ ¬bSysActive ∧ ¬bFaulty ∧ ¬bActionRequired =⇒

eArbRequest==cState3

57. eCurrState==cState3 ∧ ¬bCmpntUnlocked ∧ ¬bOvrdToState1 ∧ eFaultState==cStage1 ∧

¬bSysActive ∧ ¬bFaulty =⇒ eArbRequest==cState3

58. eCurrState==cState3 ∧ ¬bCmpntUnlocked ∧ ¬bOvrdToState1 ∧ eFaultState==cStage1 ∧

¬bSysActive ∧ ¬bActionRequired =⇒ eArbRequest==cState3

59. eCurrState==cState3 ∧ ¬bCmpntUnlocked ∧ ¬bOvrdToState1 ∧ eFaultState==cStage1 ∧

¬bSysActive ∧ ¬bFaulty ∧ ¬bActionRequired =⇒ eArbRequest==cState3

60. bOvrdToState1 ∧ ¬bOvrdToState3 =⇒ eArbRequest==cState1

61. bOvrdToState1 ∧ eFaultState==cStage1 ∧ ¬bOvrdToState3 =⇒ eArbRequest==cState1

62. bOvrdToState1 ∧ ¬bOvrdToState3 ∧ ¬bFaulty =⇒ eArbRequest==cState1
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63. bOvrdToState1 ∧ eFaultState==cStage1 ∧ ¬bOvrdToState3 ∧ ¬bFaulty ∧ ¬bActionRequired =⇒

eArbRequest==cState1

64. eCurrState==cState3 ∧ ¬bOvrdToState1 ∧ bOvrdToState3 =⇒ eArbRequest==cState3

65. eDrvrRequest==cState1 ∧ ¬bOvrdToState1 ∧ bOvrdToState3 =⇒ eArbRequest==cState3

66. eDrvrRequest==cState1 ∧ eFaultState==cStage1 ∧ bOvrdToState3 =⇒ eArbRequest==cState3

67. eCurrState==cState1 ∧ eDrvrRequest==cState4 ∧ ¬bCmpntUnlocked ∧ eFaultState==cStage1 =⇒

eArbRequest==cState1

68. eCurrState==cState3 ∧ ¬bCmpntUnlocked ∧ ¬bOvrdToState1 ∧ ¬bOvrdToState3 =⇒

eArbRequest==cState3

69. eCurrState==cState3 ∧ ¬bOvrdToState1 ∧ eFaultState==cStage1 ∧ bOvrdToState3 =⇒

eArbRequest==cState3

70. eCurrState==cState3 ∧ ¬bOvrdToState1 ∧ bOvrdToState3 ∧ ¬bFaulty =⇒ eArbRequest==cState3

71. eCurrState==cState3 ∧ ¬bOvrdToState1 ∧ bOvrdToState3 ∧ ¬bActionRequired =⇒

eArbRequest==cState3

72. eDrvrRequest==cState1 ∧ ¬bCmpntUnlocked ∧ bOvrdToState3 ∧ ¬bSysActive =⇒

eArbRequest==cState3

73. eDrvrRequest==cState1 ∧ ¬bCmpntUnlocked ∧ bOvrdToState3 ∧ ¬bFaulty =⇒

eArbRequest==cState3

74. eDrvrRequest==cState1 ∧ ¬bCmpntUnlocked ∧ bOvrdToState3 ∧ ¬bActionRequired =⇒

eArbRequest==cState3

75. eDrvrRequest==cState1 ∧ ¬bOvrdToState1 ∧ bOvrdToState3 ∧ ¬bFaulty =⇒

eArbRequest==cState3

76. eDrvrRequest==cState1 ∧ ¬bOvrdToState1 ∧ bOvrdToState3 ∧ ¬bActionRequired =⇒

eArbRequest==cState3

77. eDrvrRequest==cState1 ∧ eFaultState==cStage1 ∧ bOvrdToState3 ∧ ¬bSysActive =⇒

eArbRequest==cState3

78. eDrvrRequest==cState1 ∧ eFaultState==cStage1 ∧ bOvrdToState3 ∧ ¬bFaulty =⇒

eArbRequest==cState3

79. eDrvrRequest==cState1 ∧ eFaultState==cStage1 ∧ bOvrdToState3 ∧ ¬bActionRequired =⇒

eArbRequest==cState3

80. eCurrState==cState1 ∧ eDrvrRequest==cState4 ∧ ¬bCmpntUnlocked ∧ eFaultState==cStage1 ∧

¬bOvrdToState3 =⇒ eArbRequest==cState1
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81. eCurrState==cState1 ∧ eDrvrRequest==cState4 ∧ ¬bCmpntUnlocked ∧ eFaultState==cStage1 ∧

¬bSysActive =⇒ eArbRequest==cState1

82. eCurrState==cState1 ∧ eDrvrRequest==cState4 ∧ ¬bCmpntUnlocked ∧ eFaultState==cStage1 ∧

¬bActionRequired =⇒ eArbRequest==cState1

83. eCurrState==cState3 ∧ ¬bCmpntUnlocked ∧ ¬bOvrdToState1 ∧ eFaultState==cStage1 ∧

¬bOvrdToState3 =⇒ eArbRequest==cState3

84. eCurrState==cState3 ∧ ¬bOvrdToState1 ∧ eFaultState==cStage1 ∧ ∧ bOvrdToState3 ∧

¬bActionRequired =⇒ eArbRequest==cState3

85. eCurrState==cState3 ∧ ¬bOvrdToState1 ∧ bOvrdToState3 ∧ ¬bFaulty ∧ ¬bActionRequired =⇒

eArbRequest==cState3

86. eDrvrRequest==cState1 ∧ ¬bCmpntUnlocked ∧ bOvrdToState3 ∧ ¬bSysActive ∧

¬bFaulty =⇒ eArbRequest==cState3

87. eDrvrRequest==cState1 ∧ ¬bCmpntUnlocked ∧ bOvrdToState3 ∧ ¬bSysActive ∧

¬bActionRequired =⇒ eArbRequest==cState3

88. eDrvrRequest==cState1 ∧ ¬bCmpntUnlocked ∧ bOvrdToState3 ∧ ¬bFaulty ∧

¬bActionRequired =⇒ eArbRequest==cState3

89. eDrvrRequest==cState1 ∧ ¬bOvrdToState1 ∧ bOvrdToState3 ∧ ¬bSysActive ∧

¬bFaulty =⇒ eArbRequest==cState3

90. eDrvrRequest==cState1 ∧ ¬bOvrdToState1 ∧ bOvrdToState3 ∧ ¬bFaulty ∧ ¬bActionRequired =⇒

eArbRequest==cState3

91. eDrvrRequest==cState1 ∧ eFaultState==cStage1 ∧ bOvrdToState3 ∧ ¬bSysActive ∧

¬bFaulty =⇒ eArbRequest==cState3

92. eDrvrRequest==cState1 ∧ eFaultState==cStage1 ∧ bOvrdToState3 ∧ ¬bSysActive ∧

¬bActionRequired =⇒ eArbRequest==cState3

93. eDrvrRequest==cState1 ∧ eFaultState==cStage1 ∧ bOvrdToState3 ∧ ¬bFaulty ∧

¬bActionRequired =⇒ eArbRequest==cState3

94. eCurrState==cState1 ∧ eDrvrRequest==cState4 ∧ ¬bCmpntUnlocked ∧ ¬bOvrdToState1 ∧

eFaultState==cStage1 ∧ ¬bOvrdToState3 =⇒ eArbRequest==cState1

95. eCurrState==cState1 ∧ eDrvrRequest==cState4 ∧ ¬bCmpntUnlocked ∧ ¬bOvrdToState1 ∧

eFaultState==cStage1 ∧ ¬bSysActive =⇒ eArbRequest==cState1

96. eCurrState==cState1 ∧ eDrvrRequest==cState4 ∧ ¬bCmpntUnlocked ∧ ¬bOvrdToState1 ∧

eFaultState==cStage1 ∧ ¬bActionRequired =⇒ eArbRequest==cState1
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97. eCurrState==cState1 ∧ eDrvrRequest==cState4 ∧ ¬bCmpntUnlocked ∧ eFaultState==cStage1 ∧

¬bOvrdToState3 ∧ ¬bSysActive =⇒ eArbRequest==cState1

98. eCurrState==cState1 ∧ eDrvrRequest==cState4 ∧ ¬bCmpntUnlocked ∧ eFaultState==cStage1 ∧

¬bOvrdToState3 ∧ ¬bActionRequired =⇒ eArbRequest==cState1

99. eCurrState==cState1 ∧ eDrvrRequest==cState4 ∧ ¬bCmpntUnlocked ∧ eFaultState==cStage1 ∧

¬bSysActive ∧ ¬bActionRequired =⇒ eArbRequest==cState1

100. eCurrState==cState3 ∧ ¬bCmpntUnlocked ∧ ¬bOvrdToState1 ∧ eFaultState==cStage1 ∧

¬bOvrdToState3 ∧ ¬bFaulty =⇒ eArbRequest==cState3

101. eCurrState==cState3 ∧ ¬bCmpntUnlocked ∧ ¬bOvrdToState1 ∧ eFaultState==cStage1 ∧

¬bOvrdToState3 ∧ ¬bActionRequired =⇒ eArbRequest==cState3

102. eCurrState==cState3 ∧ ¬bCmpntUnlocked ∧ ¬bOvrdToState1 ∧ ¬bOvrdToState3 ∧

¬bFaulty ∧ ¬bActionRequired =⇒ eArbRequest==cState3

103. eCurrState==cState3 ∧ ¬bOvrdToState1 ∧ eFaultState==cStage1 ∧ bOvrdToState3 ∧

¬bFaulty ∧ ¬bActionRequired =⇒ eArbRequest==cState3

104. eDrvrRequest==cState1 ∧ ¬bCmpntUnlocked ∧ bOvrdToState3 ∧ ¬bSysActive ∧

¬bFaulty ∧ ¬bActionRequired =⇒ eArbRequest==cState3

105. eDrvrRequest==cState1 ∧ ¬bOvrdToState1 ∧ bOvrdToState3 ∧ ¬bSysActive ∧

¬bFaulty ∧ ¬bActionRequired =⇒ eArbRequest==cState3

106. eDrvrRequest==cState1 ∧ eFaultState==cStage1 ∧ bOvrdToState3 ∧ ¬bSysActive ∧

¬bFaulty ∧ ¬bActionRequired =⇒ eArbRequest==cState3

107. eCurrState==cState1 ∧ eDrvrRequest==cState4 ∧ ¬bCmpntUnlocked ∧ ¬bOvrdToState1 ∧

eFaultState==cStage1 ∧ ¬bOvrdToState3 ∧ ¬bSysActive =⇒ eArbRequest==cState1

108. eCurrState==cState1 ∧ eDrvrRequest==cState4 ∧ ¬bCmpntUnlocked ∧ ¬bOvrdToState1 ∧

eFaultState==cStage1 ∧ ¬bOvrdToState3 ∧ ¬bActionRequired =⇒ eArbRequest==cState1

109. eCurrState==cState1 ∧ eDrvrRequest==cState4 ∧ ¬bCmpntUnlocked ∧ ¬bOvrdToState1 ∧

eFaultState==cStage1 ∧ ¬bSysActive ∧ ¬bActionRequired =⇒ eArbRequest==cState1

110. eCurrState==cState1 ∧ eDrvrRequest==cState4 ∧ ¬bCmpntUnlocked ∧ eFaultState==cStage1 ∧

¬bOvrdToState3 ∧ ¬bSysActive ∧ ¬bActionRequired =⇒ eArbRequest==cState1

111. eCurrState==cState3 ∧ ¬bCmpntUnlocked ∧ ¬bOvrdToState1 ∧ eFaultState==cStage1 ∧

¬bOvrdToState3 ∧ ¬bFaulty ∧ ¬bActionRequired =⇒ eArbRequest==cState3
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112. eCurrState==cState1 ∧ eDrvrRequest==cState4 ∧ ¬bCmpntUnlocked ∧ ¬bOvrdToState1 ∧

eFaultState==cStage1 ∧ ¬bOvrdToState3 ∧ ¬bSysActive ∧ ¬bActionRequired =⇒

eArbRequest==cState1
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Appendix B

Driver Request Arbitration

Example

B.1 Request Arbitration From cState2

The original Stateflow truth table is shown in Table B.1 with its equivalent and

simplified tabular expression in Table B.2. Table B.3 is the implementation of

the simplified tabular expression in Stateflow truth table form.

B.2 Request Arbitration From cState3

The original Stateflow truth table is shown in Table B.4 with its equivalent and

simplified tabular expression in Table B.5. Table B.6 is the implementation of

the simplified tabular expression in Stateflow truth table form.
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fArbRequestFromState2(eDrvrRequest:enum, bOvrdToState1, bFaulty:bool):

enum =

Decisions
# Conditions D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11

1 eDrvrRequest == cState1 T F F F T F F F F F -
2 eDrvrRequest == cState2 F T F F F T F T F F -
3 eDrvrRequest == cState3 F F T F F F F F T F -
4 eDrvrRequest == cState4 F F F T F F T F F T -
5 bOvrdToState1 F F - F T T T F F F -
6 bFaulty - F F F F F F T T T -

Actions 1 2 3 4 3 3 3 5 5 5 2

# Action
1 eArbRequest=cState1; bActionRequired=false
2 eArbRequest=cState2; bActionRequired=false
3 eArbRequest=cState3; bActionRequired=false
4 eArbRequest=cState4; bActionRequired=false
5 eArbRequest=cState1; bActionRequired=true

Table B.1: Original Stateflow truth table for request arbitration from cState2

fArbRequestFromState2(eDrvrRequest:enum, bOvrdToState1,
bOvrdToState3:bool): enum =

Result
Conditions eArbRequest

bOvrdToState3
bOvrdToState1 cState2
¬bOvrdToState1 cState3

¬bOvrdToState3
bOvrdToState1 cState1
¬bOvrdToState1 eDrvrRequest

Table B.2: Simplified tabular expression for request arbitration from cState2

B.3 Request Arbitration From cState4

The original Stateflow truth table is shown in Table B.7 with its equivalent and

simplified tabular expression in Table B.8. Table B.9 is the implementation of

the simplified tabular expression in Stateflow truth table form.
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fArbRequestFromState2(eDrvrRequest:enum, bOvrdToState1,
bOvrdToState3:bool): enum =

Decisions

# Conditions D1 D2 D3 D4

1 bOvrdToState3 T T F F

2 bOvrdToState1 T F T F

Actions 2 3 1 4

# Action

1 eArbRequest=cState1
2 eArbRequest=cState2
3 eArbRequest=cState3
4 eArbRequest=eDrvrRequest

Table B.3: Equivalent Stateflow truth table for request arbitration from
cState2

fArbRequestFromState3(eDrvrRequest:enum, bSysActive, bOvrdToState3,

bOvrdToState1, bCmpntUnlocked:bool): enum =

Decisions
# Conditions D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11

1 eDrvrRequest == cState1 T F F F F F F T F F -
2 eDrvrRequest == cState2 F T F F T F F F T F -
3 eDrvrRequest == cState3 F F T F F T F F F F -
4 eDrvrRequest == cState4 F F F T F F T F F T -
5 bSysActive - T - T - - - - - - -
6 bOvrdToState3 F F - F - - - T T T -
7 bOvrdToState1 - F F F T T T F F F -
8 bCmpntUnlocked T T - T - - - - - - -

Actions 1 2 3 4 5 5 5 5 3 3 3

# Action
1 eArbRequest=cState1; bActionRequired=false
2 eArbRequest=cState2; bActionRequired=false
3 eArbRequest=cState3; bActionRequired=false
4 eArbRequest=cState4; bActionRequired=false
5 eArbRequest=cState1; bActionRequired=true

Table B.4: Original Stateflow truth table for request arbitration from cState3
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fArbRequestFromState3(eDrvrRequest:enum, bOvrdToState1, bOvrdToState3,

bCmpntUnlocked, bSysActive:bool): enum =

eArbRequest

eDrvrRequest == cState1

bOvrdToState3 cState3

¬bOvrdToState3
bCmpntUnlocked eDrvrRequest
¬bCmpntUnlocked cState3

eDrvrRequest ∼= cState1

bOvrdToState1 cState1

¬bOvrdToState1

bOvrdToState3 cState3

¬bOvrdToState3
¬bCmpntUnlocked cState3

bCmpntUnlocked
bSysActive eDrvrRequest
¬bSysActive cState3

Table B.5: Simplified tabular expression for request arbitration from cState3

fArbRequestFromState3(eDrvrRequest:enum, bOvrdToState1, bOvrdToState3,

bCmpntUnlocked, bSysActive:bool): enum =

Decisions
# Conditions D1 D2 D3 D4 D5 D6 D7 D8

1 eDrvrRequest == cState1 T T T F F F F -
2 bOvrdToState3 T F F - T F F -
3 bOvrdToState1 - - - T F F F -
4 bCmpntUnlocked - T F - - F T -
5 bSysActive - - - - - - T -

Actions 2 3 2 1 2 2 3 2

# Action
1 eArbRequest=cState1
2 eArbRequest=cState3
3 eArbRequest=eDrvrRequest

Table B.6: Equivalent Stateflow truth table for request arbitration from
cState3
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fArbRequestFromState4(eDrvrRequest:enum, bOvrdToState1,

bOvrdToState3:bool): enum =

Decisions
# Conditions D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11

1 eDrvrRequest == cState1 T F F F T F F F F F -
2 eDrvrRequest == cState2 F T F F F T F T F F -
3 eDrvrRequest == cState3 F F T F F T F F T F -
4 eDrvrRequest == cState4 F F F T F F T F F T -
5 bOvrdToState3 F F - F T T T F F F -
6 bOvrdToState1 - F F F - F F T T T -

Actions 1 2 3 4 3 3 3 5 5 5 4

# Action
1 eArbRequest=cState1; bActionRequired=false
2 eArbRequest=cState2; bActionRequired=false
3 eArbRequest=cState3; bActionRequired=false
4 eArbRequest=cState4; bActionRequired=false
5 eArbRequest=cState1; bActionRequired=true

Table B.7: Original Stateflow truth table for request arbitration from cState4

fArbRequestFromState4(eDrvrRequest:enum, bOvrdToState1,

bOvrdToState3:bool): enum =

Result
Conditions eArbRequest

bOvrdToState3
eDrvrRequest == cState1 cState3

eDrvrRequest ∼= cState1
bOvrdToState1 cState4
¬bOvrdToState1 cState3

¬bOvrdToState3
bOvrdToState1 cState1
¬bOvrdToState1 eDrvrRequest

Table B.8: Simplified tabular expressions for request arbitration from cState4
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fArbRequestFromState4(eDrvrRequest:enum, bOvrdToState1,

bOvrdToState3:bool): enum =

Decisions
# Conditions D1 D2 D3 D4 D5

1 bOvrdToState3 T T T F -
2 eDrvrRequest == cState1 T F F - -
3 bOvrdToState1 - T F T -

Actions 2 3 2 1 4

# Action
1 eArbRequest=cState1
2 eArbRequest=cState3
3 eArbRequest=cState4
4 eArbRequest=eDrvrRequest

Table B.9: Equivalent Stateflow truth table for request arbitration from
cState4
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Appendix C

System Status Example

C.1 bSystemA

Decision logic enables bSystemAin states 128, 132, 140, 196, 204, 228, 236,

and 244. Due to the excessively large nature of the logical expression, it is not

included here.

C.2 bSystemB

The original decision logic of the matrix enables the bSystemB in states 196,

204, 228, 236, and 244. The function definition for this behaviour is given

in Figure C.1. It has been simplified to the Stateflow truth table shown as
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Table C.1.

bSystemB =

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos3 ∧ eSystemD == cNotPlgdIn)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos3 ∧ eSystemD == cPlgInNOOP∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos3 ∧ eSystemD == cNotPlgdIn)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos3 ∧ eSystemD == cPlgInNOOP)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos3 ∧ eSystemD == cNotPlgdIn)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos3 ∧ eSystemD == cNotReq)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos3 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos3 ∧ eSystemD == cNotReq)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos3 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos5 ∧ eSystemD == cNotPlgdIn)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos5 ∧ eSystemD == cNotPlgdIn)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos4 ∧ eSystemD == cNotPlgdIn)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos4 ∧ eSystemD == cPlgInNOOP)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos5 ∧ eSystemD == cPlgInNOOP)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos4 ∧ eSystemD == cNotPlgdIn)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos4 ∧ eSystemD == cPlgInNOOP)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos5 ∧ eSystemD == cPlgInNOOP)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos4 ∧ eSystemD == cNotPlgdIn)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos5 ∧ eSystemD == cNotPlgdIn)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos1 ∧ eSystemD == cPlgInNOOP)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos2 ∧ eSystemD == cPlgInNOOP)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos3 ∧ eSystemD == cPlgInNOOP)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos4 ∧ eSystemD == cPlgInNOOP)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos5 ∧ eSystemD == cPlgInNOOP)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos1 ∧ eSystemD == cNotReq)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos2 ∧ eSystemD == cNotReq)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos1 ∧ eSystemD == cNotPlgdIn)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos2 ∧ eSystemD == cNotPlgdIn)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos3 ∧ eSystemD == cNotPlgdIn)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos4 ∧ eSystemD == cNotPlgdIn)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos5 ∧ eSystemD == cNotPlgdIn)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos1 ∧ eSystemD == cPlgInNOOP)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos2 ∧ eSystemD == cPlgInNOOP)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos3 ∧ eSystemD == cPlgInNOOP)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos4 ∧ eSystemD == cPlgInNOOP)∨

(C.1)
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(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos5 ∧ eSystemD == cPlgInNOOP)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos1 ∧ eSystemD == cNotReq)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos2 ∧ eSystemD == cNotReq)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos4 ∧ eSystemD == cNotReq)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos5 ∧ eSystemD == cNotReq)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos4 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos5 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos4 ∧ eSystemD == cNotReq)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos5 ∧ eSystemD == cNotReq)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos4 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos5 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos3 ∧ eSystemD == cNotReq)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos4 ∧ eSystemD == cNotReq)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos5 ∧ eSystemD == cNotReq)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos1 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos2 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos3 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos4 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos5 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos3 ∧ eSystemD == cNotReq)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos4 ∧ eSystemD == cNotReq)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos5 ∧ eSystemD == cNotReq)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos1 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos2 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos3 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos4 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos5 ∧ eSystemD == cRun)

(C.2)

Figure C.1: bSystemB function definition

C.3 bSystemC

The original decision logic of the matrix enables the bSystemC in states 140,

204, and 236. The function definition for this behaviour is given in Figure C.2.
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Decisions
# Conditions D1 D2 D3 D4 D5 D6 D7

1 eOprAStat == cNotPlgIn T T T T T T -
2 eOprBStat == cNoTools T T T T T T -
3 bProcessRun F F F F F F -
4 bEnblCond F F T T T T -
5 bDrvCondMet - - T F F F -
6 eKState == cPos1 ∨ eKState == cPos2 T F - T T F -
7 eSystemD == cNotPlgdIn - - - T F - -

Actions 2 1 1 2 1 1 2

# Action
1 bSystemB = true
2 bSystemB = false

Table C.1: bSystemB simplified Stateflow truth table

It has been simplified to the Stateflow truth table shown as Table C.2.

bSystemC =

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos5 ∧ eSystemD == cNotPlgdIn)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos5 ∧ eSystemD == cNotPlgdIn)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos4 ∧ eSystemD == cNotPlgdIn)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos4 ∧ eSystemD == cPlgInNOOP)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos5 ∧ eSystemD == cPlgInNOOP)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos4 ∧ eSystemD == cNotPlgdIn)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos4 ∧ eSystemD == cPlgInNOOP)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos5 ∧ eSystemD == cPlgInNOOP)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos4 ∧ eSystemD == cNotPlgdIn)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos5 ∧ eSystemD == cNotPlgdIn)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos1 ∧ eSystemD == cPlgInNOOP)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos2 ∧ eSystemD == cPlgInNOOP)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos3 ∧ eSystemD == cPlgInNOOP)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos4 ∧ eSystemD == cPlgInNOOP)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos5 ∧ eSystemD == cPlgInNOOP)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos1 ∧ eSystemD == cNotReq)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos2 ∧ eSystemD == cNotReq)∨

(C.3)
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(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos1 ∧ eSystemD == cNotPlgdIn)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos2 ∧ eSystemD == cNotPlgdIn)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos3 ∧ eSystemD == cNotPlgdIn)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos4 ∧ eSystemD == cNotPlgdIn)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos5 ∧ eSystemD == cNotPlgdIn)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos1 ∧ eSystemD == cPlgInNOOP)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos2 ∧ eSystemD == cPlgInNOOP)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos3 ∧ eSystemD == cPlgInNOOP)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos4 ∧ eSystemD == cPlgInNOOP)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos5 ∧ eSystemD == cPlgInNOOP)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos1 ∧ eSystemD == cNotReq)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos2 ∧ eSystemD == cNotReq)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos4 ∧ eSystemD == cNotReq)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos5 ∧ eSystemD == cNotReq)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos4 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos5 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos4 ∧ eSystemD == cNotReq)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos5 ∧ eSystemD == cNotReq)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos4 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos5 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos3 ∧ eSystemD == cNotReq)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos4 ∧ eSystemD == cNotReq)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos5 ∧ eSystemD == cNotReq)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos1 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos2 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos3 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos4 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos5 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos3 ∧ eSystemD == cNotReq)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos4 ∧ eSystemD == cNotReq)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos5 ∧ eSystemD == cNotReq)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos1 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos2 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos3 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos4 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos5 ∧ eSystemD == cRun)

(C.4)

Figure C.2: bSystemC function definition
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Decisions
# Conditions D1 D2 D3 D4 D5 D6 D7

1 eOprAStat == cNotPlgIn T T T T T T -
2 eOprBStat == cNoTools T T T T T T -
3 bProcessRun F F F F F F -
4 bEnblCond F F T F T T -
5 bDrvCondMet - - T F F F -
6 eKState == cPos4 ∨ eKState == cPos5 F T - T T F -
7 eSystemD == cNotPlgdIn - - - - T F -

Actions 2 1 1 1 1 1 2

# Action
1 bSystemC = true
2 bSystemC = false

Table C.2: bSystemC simplified Stateflow truth table

C.4 bSystemD

The original decision logic of the matrix enables the bSystemD in states 140,

204, and 236. The function definition for this behaviour is given in Figure C.3.

It has been simplified to the Stateflow truth table as Table C.3.
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bSystemD =

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos1 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos2 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos1 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos2 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos3 ∧ eSystemD == cNotReq)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos3 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos3 ∧ eSystemD == cNotReq)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos3 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos4 ∧ eSystemD == cNotReq)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos5 ∧ eSystemD == cNotReq)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos4 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos5 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos4 ∧ eSystemD == cNotReq)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos5 ∧ eSystemD == cNotReq)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos4 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ ¬bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos5 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos3 ∧ eSystemD == cNotReq)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos4 ∧ eSystemD == cNotReq)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos5 ∧ eSystemD == cNotReq)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos1 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos2 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos3 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos4 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ ¬bDrvCondMet ∧ eKState == cPos5 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos3 ∧ eSystemD == cNotReq)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos4 ∧ eSystemD == cNotReq)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos5 ∧ eSystemD == cNotReq)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos1 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos2 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos3 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos4 ∧ eSystemD == cRun)∨

(eOprAStat == cNotPlgIn ∧ eOprBStat == cNoTools ∧ bEnblCond ∧ ¬bProcessRun ∧ bDrvCondMet ∧ eKState == cPos5 ∧ eSystemD == cRun)

Figure C.3: bSystemD function definition
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Decisions
# Conditions D1 D2 D3 D4 D5 D6

1 eOprAStat == cNotPlgIn T T T T T -
2 eOprBStat == cNoTools T T T T T -
3 bProcessRun F F F F F -
4 eSystemD == cNotPlgdIn T F F F T -
5 eSystemD == cPlgInNOOP - T F F F -
6 eSystemD == cNotReq - - T T F -
7 eSystemD == cRun - - - - T -
8 eKState == cPos3 ∨ eKState == cPos4 ∨ eKState == cPos5 - - F T - -

Actions 2 2 2 1 1 2

# Action
1 bSystemD = true
2 bSystemD = false

Table C.3: bSystemD simplified Stateflow truth table

C.5 bSystemE

Decision logic enables bSystemE in states 132, 140, 196, 204, 228, 236, and

244. Due to the excessively large nature of the logical expression, it is not

included here.

C.6 bOprB

bOprB is not enabled in any state, thus always disabled for this calibration.

bOprB = false
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C.7 bOprC

bOprC is not enabled in any state, thus always disabled for this calibration.

bOprC = false
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