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ABSTRACT 
Computational thermodynamics is a powerful tool for solving practically 

important problems including the design of new materials and the analysis of their 

internal and external stability. This thesis contributes to computational thermodynamics 

by proposing several practical solutions to eliminate the so-called thermodynamic 

artifacts rather frequently found in thermodynamic assessments. 

First, a method is developed to eliminate the artifacts such as inverted miscibility 

gaps in the liquid phase at high-temperatures and reappearance of the liquid phase at low-

temperatures or reappearance of a solid phase at elevated temperatures. This method is 

based on introducing a sufficiently dense mesh of knots (not related to experimental 

points utilized in the optimization) and ensuring that specific inequality conditions 

(topological constraints) governing the appearance of the phase diagram are satisfied in 

these knots. A feasibility of the approach proposed is exemplified by carrying out a re-

optimization of the Mg-Sb system. 

Generally re-optimization of a system would take months to get the optimized 

results. Hence, to minimize time needed to get rid of artifacts, two different quick 

correction methods are developed to eliminate the unrealistic inverted miscibility gap in 

the liquid phase at elevated temperatures. Both methods employ optimization under 

topological constraints via controlling the sign of the second derivative of the Gibbs 

energy. Their applicability is exemplified on the Sn-Zr system. 

Also, a theoretical study was done on undulate phase boundaries. Usually, an 

inflection point on a phase boundary is considered as an unambiguous indication that one 

lV 



of the phases participating in the equilibrium is internally unstable, i.e., that it is prone to 

phase separation. It has been generally assumed that an inflection point may occur only if 

the thermodynamic model of this phase contains an excess Gibbs energy term. It is 

shown that in contrast to this assumption, inflection points on a phase boundary may 

appear when a pure solid component or a stoichiometric binary phase is in equilibrium 

with the ideal binary solution, which is internally stable. 

Finally, in addition to the theoretical analysis on undulate phase boundaries, a 

thermodynamic optimization is done on an imaginary A-B binary system subjected to 

topological constraints. Since, Thermo-Cale does not have the necessary tools to 

implement such topological constraints as d 2T/dx2 )0 or d 2T/dx2 (0. A Fortran 90 

program was developed to make use of these constraints. 
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CHAPTER I 

Introduction 

1.1 Thermodynamic optimization 
Thermodynamic optimization is a process ofmodeling thermodynamic properties 

of each phase and simulating multicomponent multiphase behavior in complex systems. 

This process is often referred to as thermodynamic modeling, thermodynamic 

assessment, or CALPHAD (CALculation of PHase Diagrams) technique in the literature. 

By performing a thermodynamic optimization, one obtains the state functions (usually, 

Gibbs energies) of phases in a system. The state function depends on its natural variables, 

which, in the case of the Gibbs energy, are temperature, pressure, and number of moles of 

components. 

The advantage ofhaving such a state function is that it enables one to perform a 

wide range of thermodynamic calculations. In the field of materials science and 

engineering, these calculations are useful not only in research and development but also 

in solving industrial problems [1, 2]. Examples of thermodynamic optimization in many 

different applications include the reduction of the alloy development cycle time [3], the 

development of Pb-free solders [4, 5], the analysis ofhomogenization of Cu-Ni-Sn alloys 

[ 6], the interpretation of the growth of inter-metallic layers and the formation of dross 

when galvanizing in Cr-added Zn bath [7]. 

The most attractive feature of thermodynamic optimization is that the evaluated 

Gibbs energies can be used for estimation and prediction of thermodynamic properties 
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and phase boundaries beyond the regions of available experimental data. Let us recall that 

for many systems, a comprehensive experimental investigation was not performed. In 

such cases, a full-scale thermodynamic analysis is possible through thermodynamic 

optimization, which has the ability to use available fragmentary experimental results to 

build Gibbs energy functions for all phases in the system of interest. 

A vast number of examples can be found for such thermodynamic estimations and 

predictions in the literature. One selected example is [8] where the thermodynamic 

optimization was used for the estimation of confidence intervals of calculated phase 

boundaries. Another selected example is [9] where the thermodynamic optimization was 

used for the prediction of solid-liquid interface stability and dendritic growth in several 

industrial Al-Si-Mg alloys. 

The successful use of thermodynamic optimization in thermodynamic 

calculations, predictions, and estimations depends on the accuracy and reliability of the 

evaluated Gibbs energy functions during an optimization. The traditional thermodynamic 

optimization technique consists of two steps. Firstly phase models for each phase that 

may exist in a system are selected. These phase models are analytical expressions that 

describe the Gibbs energies of each phase. Depending on the depth of our knowledge of 

phase structure and physical properties, the phase models could be either physically 

feasible models or mathematically convenient formalisms. Some of these phase models 

contain adjustable coefficients that are often referred to as model parameters. Secondly a 

non-linear least squares optimization is performed in order to find the statistically optimal 

values for the model parameters that provides the best match between available 

2 
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experimental values and the calculated quantities. Different types of experiments are used 

to measure thermodynamic properties of individual phases, thermodynamic properties of 

multiphase mixtures, and to determine the conditions ofphase equilibria. 

1.2 Overview ofthe thesis 

1.2.1 Motivation and objectives of the thesis 
Essentially, the traditional thermodynamic optimization technique is accuracy 

based non-linear least square optimization where the adjustable coefficients in the phase 

models are evaluated through the minimization of the sum ofweighted squares of 

deviations between the experimental values and corresponding calculated values. Hence, 

one could expect highly accurate reproduction of experimentally measured 

thermodynamic properties and phase boundaries within the regions where experiments 

have been carried out. 

However, accurate reproduction ofexperimental data doest not guarantee that the 

evaluated phase models correctly extrapolates the thermodynamic properties and phase 

boundaries beyond the regions of available experimental data. A thermodynamic 

extrapolation is said to be correct when it is not merely numerically accurate, but also 

when it provides a topologically accurate thermodynamic properties and phase 

boundaries. 

Topology of thermodynamic properties and phase boundaries are defined by their 

characteristic shapes such as regions of convexity and concavity, and existence of saddle 

points. In a thermodynamic optimization reproduction of these characteristic features is 

very important because they may reflect the (or "may be reflected to the") stability of a 

3 
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phase in the system. For example, a flat liquidus with an inflection point indicates the 

instability of the liquid phase below liquidus. 

Since the sole criterion of the traditional thermodynamic optimization is the 

accuracy with which the experimental data are reproduced, the traditional (or "habitual") 

thermodynamic optimization may result in erroneous topology of the thermodynamic 

properties and the phase boundaries as well as in other deficiencies. These defective 

features are referred to as artifacts of thermodynamic optimization or, sometimes, as 

phantoms of approximation. Hence, there exist an area for research and development of 

new thermodynamic optimization technique that not merely detects, but eliminates 

possible thermodynamic artifacts. 

Motivated by the above facts, a new thermodynamic optimization technique that 

uses topological constraints is presented in this thesis. 

1.2.2 Thesis outline 
Chapter 1 gives an introduction to the traditional thermodynamic optimization and 

emphasizes its importance and usefulness. Further, unaddressed challenges of traditional 

thermodynamic optimization are presented, and the motivation for this research is 

discussed. 

Chapter 2 starts with a short historical note on thermodynamic optimization. Then 

it presents descriptions of four principal components of thermodynamic optimization 

such as models, minimization engines, databases and software. Finally, this chapter 

provides algorithmic details of a thermodynamic optimization. As an example, it is 

4 
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explained, how the equilibrium state ofa system is evaluated through Newton-Raphson 

method. 

Chapter 3 gives a review on possible thermodynamic artifacts. Many examples for 

different types ofartifacts from published articles are given. The existing methods in 

eliminating these artifacts are described and their limitations are pointed to. 

Chapter 4 gives background information on existing shape-preserving 

optimization techniques. It is discussed why the existing shape-preserving methods 

cannot be directly applied in thermodynamic optimization to accentuate the novelty of 

algorithms reported in this thesis. 

Chapter 5 presents the new thermodynamic approach, which employs topological 

constraints during the thermodynamic assessment in eliminating non-real inverted 

miscibility gaps. Firstly, a non-thermodynamic example is presented to illustrate why the 

topological features are to be considered during thermodynamic optimization. Then a re­

optimization of the Mg-Sb system is presented to exemplify the proposed topologically 

constrained thermodynamic optimization in eliminating non-real inverted miscibility 

gaps. 

Chapter 6 presents two quick correction methods that eliminate the non-real 

inverted miscibility gaps in much faster and easier way than a full-scale re-optimization 

under topological constraints. The proposed quick correction methods are exemplified 

through the optimization of Sn-Zr binary system. 

Chapter 7 presents a new thermodynamic finding on the existence of inflexion 

point along phase boundaries. The so-called "2R" rule is formulated in this chapter. 

5 
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Chapter 8 presents elimination of incorrect undulation on phase boundaries 

through a topologically constrained thermodynamic optimization technique. This 

technique is exemplified by optimizing an imaginary A-B system under topological 

constraints. 

Chapter 9 provides concluding remarks on the thesis and suggests possible future 

extensions to the research. 

1.2.3 Contributions 
The scientific contributions of the thesis are: 

• 	 Novel thermodynamic optimization technique: Due to the accuracy-based nature 

of the target function used in the traditional thermodynamic optimization, a 

number ofassessments resulted in thermodynamic artifacts. In order to eliminate 

these artifacts, a new topologically constrained thermodynamic optimization 

technique is proposed. The successful application of this new technique is 

exemplified via the re-optimization of the Mg-Sb system. 

• 	 Quick correction methods to eliminate non-real inverted miscibility gaps: To 

correct frequently observed non-real inverted miscibility gaps, two correction 

methods are proposed. They not only use topological constraints, but also use the 

valuable information from the previous assessment that produced the artifact. The 

workability of these quick correction methods is exemplified through the 

optimization of the Sn-Zr system. 

• 	 Theoretical analysis on the existence of inflection points on phase boundaries: 

Through the calculation of slopes and curvatures of phase boundaries, a new 
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mathematical criterion governing the presence of inflection points on the phase 

boundary is formulated. 

• 	 Elimination of erroneous undulation from phase boundaries: An example of a 

topologically constrained thermodynamic optimization performed on imaginary 

A-B system shows that a successful elimination of erroneous undulations on 

phase boundaries is in principle possible. 

1.2.4 Related publications and presentations 
Some selected contents of this thesis are published in the following journals: 

1. 	 Dmitri V. Malakhov, Thevika Balakumar "Re-optimization of the Mg-

Sb system under topological constraints" International journal of 

materials research 2006, Vol.97, No.5, P.517-525 

2. 	 Dmitri V. Malakhov, Thevika Balakumar "Post-optimization 

elimination of inverted miscibility gaps" International journal of 

materials research 2007, Vol.98, No.9, P.786-796 

3. 	 Dmitri V. Malakhov, Thevika Balakumar "Undulate phase boundaries 

on binary T-x diagrams" Calphad 2008, Vol.32, No. I, P.89-93 

Some of the results reported in this thesis have been presented in the following 

conferences and workshops: 

1. 	 Dmitri V. Malakhov, Thevika Balakumar "Thermodynamic 

optimization under topological constraints: principles and examples" 

XXXV CALPHAD Meeting, 7-12 May 2006, Haifa, Israel 
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2. 	 Dmitri V. Malakhov, Thevika Balakumar "A particular type of post­

optimization artifacts and approaches to their elimination" XXXVI 

CALPHAD Meeting, 6-11 May 2007, State College, PA, USA 
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CHAPTER2 

Thermodynamic optimization: The past and present 

2.1 Historical notes 
Calculation of phase diagrams from thermodynamic properties of phases was first 

initiated by Van Laar [10, 11] in 1908. In Van Laar's works, only binary systems were 

analyzed, and only ideal and regular solution models were employed. Almost half a 

century later, Meijering [12-16] extended the work ofVan Laar to multicomponent 

systems. In the following years, many researchers started to use phase equilibria data in 

the evaluation of the thermodynamic properties of alloys [17-22]. In later years, 

computers were being used in phase diagram calculations. At that time, researchers 

developed their own software (written almost exclusively in FORTRAN) and generated 

phase diagrams through computer calculations. Among those researchers, Larry Kaufman 

is the first person to lay the foundation for the present day thermodynamic optimization 

called CALPHAD technique. The essence ofhis approach was summarized in the 

monograph [23]. Following Kaufman's landmark work, many research groups worked on 

developing phase diagram calculating software packages. The most widely used software 

packages are listed in section 2.2.4. 
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2.2 Integral parts ofthermodynamic optimization 
The CALPHAD technique consists of four main components. They are models of 

phases, minimization engines, databases, and software packages. Each of these 

components is briefly discussed in this section. 

2.2.1 Models of phases 
In thermodynamic assessment of a system, choosing phase models for all phases 

that may exist in the system is a crucial task. Here the phase model refers to an analytical 

description of the Gibbs energy of a phase as a function oftemperature, composition, 

and, if necessary, pressure. That is, 

G=G(T,P,n) (2.1) 

The reason to model the Gibbs energy and not any other thermodynamic function is that, 

from Gibbs energy all other thermodynamic properties can be derived. For example: 

v-(aG) (2.2)
oP T,n 

S--(8G) 
 (2.3)
oT P,n 

80
H=G-r( ) (2.4)

oT P,n 

U=G-T(oG) -P(oG) (2.5)
oT P,n oP T,n 

80
F=G-P( ) (2.6)

oP Tn 
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C (2.7)=-T(a2GJ
p ar2 

P,n 

(2.8) 

(2.9) 

(2.10)K =-_!_(82GJ v aP2 
T,n 

B=~ (2.11) 

In an alloy system one could find the following two types of phases: 

(a) Phases with fixed composition (e.g. a pure element, a stoichiometric compound) 

(b) Phases with variable compositions (e.g. a solution) 

When modeling a phase, one should consider its physical and chemical properties such as 

crystallography, types of bonding, and magnetic properties. In modeling condensed 

phases (liquids and solids) the pressure-dependent properties such as volume and thermal 

expansivity are often ignored due to their insignificant contribution to the Gibbs energy. 

2.2.1.(a) Models for phases with f1Xed composition 

Even though phases are modeled via Gibbs energy functions, in practice, phases 

with fixed composition are described by their heat capacities. Generally, heat capacity of 

such a phase is described by Maier and Kelly type equation [24]: 

CP =a+bT+cT-2 +dT2 + ... (2.12) 
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To derive the Gibbs energy function from (2.12), one should use the following relations 

with Gibbs-Helmholtz equation G = H -TS : 

T 

H =H298 + JCpdT (2.13) 
298 

T 

S = s298 + JC p dT (2.14) 
298 T 

where H 298 and S298 are standard enthalpy and entropy of the substance respectively. 

Now from (2.12)-(2.14 ), one obtains the Gibbs energy of a phase with fixed composition 

as: 

G= A+BT+CTlnT+DT2 +ET-1 +FT3 + ... (2.15) 

The Gibbs energy description in (2.15) is adequate for phases with fixed composition if 

pressure dependence and magnetic ordering are not taken into account. 

Even though pressure dependence to the Gibbs energy of a condensed phase is 

negligible, its contribution is important at very high pressures. For condensed phases 

Murnaghan [25] suggested the following pressure contribution to the Gibbs energy: 

pressureG =Vo exp JT 
a(T)dT 

l[1+nK(T)P](i-!;)_1 
(2.16)

[ 298 (n-l)K(T) 

where V0 is the molar volume at room temperature, a (T) is thermal expansion, K (T) 

is the compressibility at 1 bar, and n is the pressure derivative of the bulk modulus (bulk 

modulus= inverse of compressibility). Moreover, a(T) and K(T) are expressed as: 

(2.17) 
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(2.18) 

For ferromagnetic phases, the magnetic contribution to the Gibbs energy is given 

by: 

(2.19) 

where ~ is Curie or Neel temperature, and p is the average magnetic momentum in 

Bohr magnetons. The structure dependent function, 1(~)is given based on the model 

for Cp suggested by lnden [26] and Hillert and Jarl [27]. 

2.2.J.(b) Models/or phases with variable compositions 

At constant pressure, Gibbs energy of a phase with variable composition is a 

function of temperature ( T) and the amounts of components in the phase ( n; ). When the 

number of components is equal to the number of elements, the amounts of components 

( n; ) are often expressed by the mole fractions of components ( X; ) which is defined as: 

n 
X-=-' (2.20)
' N 

where N =L n; is the total number ofcomponents. But, there are cases when one 

prefers to use components other than elements in modeling a phase. In such cases the 

amounts of components in the phase is often expressed by constituent fraction (or site 

fraction), Y; . 

Gibbs energy of a solution phase, fjJ can be divided in to three parts as: 
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GIP =Greference + Gideal +Gexcess (2.21) 

where Greference describes the solution properties relative to the properties of the pure 

constituents in the same structure, t/J : 

(2.22) 


Gideal describes the solution properties by assuming random mixing (or ideal mixing) of 

atoms. For a substitutional solution, all atoms are assumed to mix each other and Gidea1 is 

given as: 

Gideal =RT"'"' x lnx (2.23)L-i I I 

Gexcess describes the deviation of the solution properties from ideal mixing by some 

mathematical expression. Generally the excess Gibbs energy is described by polynomial 

functions. 

(1- x) A; @ temperature, T, and pressure, P, 

+ 
xB9 @ temperature, T, and pressure, P, 

(1-x)A" @temperature, TA and pressure,~ 

+ 
xB" @ temperarure, Te and pressure, Pe 

[Ideal solution] 

'----~~,,[Real solution, [ A(l-x}BXr@temperatllre, T, ans pressure, P,J 

Figure 1: Formation ofa real solution A(!-x)Bx of structure t/J at~ and~ 
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Figure 1 shows the three different Gibbs energy contribution in forming a 

substitutional solution, A(I-x)Bx in phase, t/J. When modeling the excess Gibbs energy the 

following three properties should be satisfied: 

(i) /:iGexcess {X =Q} =/:iGexcess {X =1} =Q 

(ii) Continuous (twice continuous differentiable) 


a( l:!Gexcess )] [a(l:!Gexcess )] 


(iii) [ iJx T,P,x=O is finite and ax T,P,x=I is finite 

In the simplest case one could use Margules polynomials [28]. For a binary 

system, excess Gibbs energy in the form of Margules polynomials is written as: 

Gexcess =RTx x ."""' Ak xk (2.24)
I 1L..J } 

k 

where the coefficients, Ak are calculated from activity coefficients of components: 

(2.25) 


where r; is the activity coefficient of component i . One of the limitations of Margules 

polynomials in expressing the excess Gibbs energy is that the coefficients, Ak in (2.24) 

are not trans formed directly to higher order systems [29]. 

The frequently used polynomial form to describe the excess Gibbs energy is 

called Redlich-Kister polynomial [30]. For a binary system, excess Gibbs energy in the 

form of Redlich-Kister polynomial is written as: 

(2.26) 
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In (2.26) the Redlich-Kister binary interaction parameter v Lij is frequently a linear 

function of temperature: 

(2.27) 

One of the advantages ofusing Redlich-Kister polynomials to describe the excess Gibbs 

energies is that they can be easily extended to multicomponent systems without changing 

the shape of the excess Gibbs energy of the binary system in the multicomponent system 

[31]. 

There are various geometric extrapolation methods available to calculate ternary 

excess Gibbs energy. Some of these methods are illustrated in Figure 2. The excess Gibbs 

energy at the ternary point P is estimated from the binary excess Gibbs energies evaluated 

at the binary points a, b, and c: 

Gexcess aexcess aexcess aexcess (t t )
I23(P) = X1X2 12(a) + X2X3 23(b) + X1X3 B(c) + emary erms (2.28) 

The ternary terms in (2.28) are polynomial terms that are rare used to fit the ternary 

experimental data. 
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1 1 


2"'------o-----3 
b 

(a) Kohler model [32] 

2~-------~3 
b 

(b) Toop model [33] 

1 

2.__________~3 
b 

(c) Muggianu model [34] 

Figure 2: Some ternary extrapolation methods 

When modeling a solid solution one could use models that describe its structure 

information. For example, the sub lattice model uses the crystallographic information of 

the solid solution to introduce sublattices. Let us take a simple example where the solid 

phase, </> is assumed having two sublattices and two different constituents on each one. In 

this case, the sub lattices of the phase, </> is represented by the formula, (A, B)a ( C, D)c, 

where a and c are the numbers of sites in the first and second sublattice, 

correspondingly. Usually a and c are normalized: a+ c =1. The Gibbs energy of this 

phase is: 
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G! =LLY:Y~G[ +aRTLY: lny; +cRTLY~ lny~ (2.29) 
i <j 

The above Gibbs energy equation (2.29) is called the 'compound energy' model [35]. 

Generally liquid phase in many metallic systems is modeled by random 

substitutional model with Redlich-Kister excess Gibbs energy. When liquids tend to 

exhibit short-range order (SRO), i.e., the local arrangement of atoms, the associate 

solution model [36] is used to describe their Gibbs energy functions. For molten salts and 

liquids contain oxygen are often modeled by partially ionic liquid model [37]. 

Models for handling SRO are associate solution model, quasi-chemical model, 

and cluster -variation method. An in-depth discussion on different models can be found 

in [31]. 

2.2.2 Optimization tools 
Once the models for the phases are selected, available experimental 

thermodynamic data and phase diagram data are collected based on their reliability and 

accuracy. Then these experimental data are used to evaluate the model parameters or 

adjustable coefficients in the analytical expressions of phases using optimization tools 

such as BINGSS [38, 39], TERGSS [39], PARROT [40] and OPTISAGE [41]. 

The least-squares method is used for assigning statistically best values to the 

adjustable coefficients in the analytical expressions of phases. The purpose of the least 

squares method is to fit the adjustable coefficients of an analytical expression to 

experimental values. To find statistically optimum values of the adjustable coefficients, 

firstly, a set of approximate values are assigned to the adjustable coefficients and using 
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the analytical expressions different types of thermodynamic and phase diagram data are 

calculated. Secondly, the error is defined as 

error =(Experimental value - Calculated value) x p (2.30) 

where pis the weighting factor. Finally, the optimum values for the adjustable 

coefficients are obtained by minimizing the squared error: 

Ln [(error);J2 

=minimum (2.31) 
i=l 

To illustrate the least squares method further, let us consider the following 

example [31 ]. Assume that there are measured quantities of M;. 

(2.32) 

where X; is a vector of experimental conditions, dim ( X;) =Q; . Error associated with 

measured quantities and experimental conditions are M; (X;) and !:U; respectively. Now 

let us assume that the measured M; are calculable through (2.33) 

(2.33) 

where c is a vector of unknown coefficients, dim ( c) =m. If n > m' generally it is not 

possible to get the vector of unknown coefficients C using (2.33). In such cases, the 

vector of unknown coefficients C can be calculated by minimizing the sum of squares of 

weighted deviations between the measured and calculated quantities. The weighted error 

between the measured and calculated quantities is given as, 

E; = [ F; (i; )-~ (x;, c)] P; (2.34) 
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and the weights P; in (2.34) are calculated as follows assuming Af'; (x;) and !J.i; are 

independent 

1 
(2.35) 

Hence, the target function to be optimized to get the best estimation of the vector of 

unknown coefficients C is, 

IE;2 =min(c) (2.36) 
i=l 

From (2.36) one gets the following m equations. 

~E oE, 0 . 1L.J ;·-= ' J = , ... ,m (2.37) 
i=l ac1 

To solve (2.37), let us employ the first order Taylor series approximation for E1 : 

(2.38) 

where CJ is the initial guess and 6.Ck are the corrections to the coefficients Ck, which 

can be calculated using (2.37), and (2.38). The substitution of (2.38) in (2.37) results in 

the following m linear equations for the m unknowns !1Ck : 
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The above set of equations (2.39) in matrix notation is called "Gaussian normal 

equations" [31 ]. The calculation in (2.39) will be repeated until the corrections are below 

a prescribed limit. 

2.2.3 Databases 
Databases mainly contain critically assessed unary, binary and ternary 

thermochemical data for the concerned elements, species, and phases in all the stable and 

many metastable states from 298.15 K up to their liquid and gaseous states. These data 

are in stored in SI units. 

One of the main motivations behind the thermodynamic assessment is the creation 

ofmulticomponent thermodynamic databases. Several binary and ternary thermodynamic 

assessments are merged to create Multicomponent databases. These databases can be 

used to calculate the equilibrium amount of phases, their compositions, and 

transformation temperatures. These calculated values have accuracy close to that ofan 

experimental measurement and hence the database is a valuable tool for planning new 

experimental work in alloy design when it is compared with the cost of experimental 

work in multi-component systems. 

Some ofmany different types of thermodynamic databases are namely pure 

element database also known as unary database, solution database, stoichiometric 

compound database, semiconductor database, steel database, solders database, etc. 

Among all these databases the pure element database is an internationally 

accepted one. SGTE database [ 42] is such an internationally accepted pure element 

database. The database [43] contains pure substances thermochemical data for 
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approximately 600 chemical species of the trace elements: As, B, Be, Cd, Co, Cr, Ga, Ge, 

Hg, Ni, P, Pb, Sb, Se, Sn, V and Zn. A semiconductor database for binary III-V systems 

is presented in [44]. Pelton [45] presented a database for molten salt solution. More 

useful information on several databases can be found in [ 46]. 

In addition to the above-mentioned databases, there are experimental databases 

used in thermodynamic optimization. These databases contain properly referenced 

experimental quantities. Each item of experimental information has certain uncertainty. 

Some of the important steps to be followed during the creation of a 

muticomponent database are: 

• 	 Collecting necessary thermodynamic assessments 

• 	 Making compatibility checks: are the pure element data same in all assessment? is 

the same phase modeled in the same way in all assessments? are the 

thermodynamic parameters of all assessments reliable? 

• 	 Unifying the phase names: e.g. [31] consider the quaternary Ca-Mg-Fe-0 system. 

Cao in Ca-0 system, MgO in Mg-0 system, and FeO in Fe-0 system are named 

lime, periclase, and wustite respectively. Since all these three phases have the 

same NaCl (Bl) structure and form a continuous solution in the quaternary Ca­

Mg-Fe-0, these three phases are stored under the name "halite" in the database. 

In creating a thermodynamic database, merging thermodynamic assessments may result: 

• 	 Un - assessed parameters: e.g. ternary interaction parameter. It is reported in [31] 

that these un - assessed parameters do not have much influence on stable 

equilibrium calculations thus one can assign estimated values for such parameters. 
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• 	 Missing parameters: e.g. phases that are ignored during the assessment of a binary 

system may appear as stable after merging thermodynamic assessments. Different 

suggestions to find missing parameters were formulated in [31]. 

Once a database is created, it should be validated by making correct extrapolations to 

higher order systems. Moreover, a database should be updated time to time with new 

experimental data and new thermodynamic assessments. 

A summary on development of thermodynamic databases can be found in [ 4 7]. 

Many examples of the use of thermodynamic databases are given in [48-50]. 

2.2.4 Software for thermodynamic optimization 
To perform a thermodynamic optimization one should be able to link the models 

of phases, the minimization engines and the databases together. This is made possible 

through many available software packages such as Thermo-Cale [51], FactSage [52], 

PANDAT [53], MTDATA [54], IVTANTHERMO [55], etc. 

Thermo-Cale is one of the widely used phase diagram calculating software. In this 

software the POLY module performs the equilibrium calculations and GES module deals 

with thermodynamic models, and data treatment. These two modules are built by Jansson 

[56] and Sundman [47] respectively. 

Another phase diagram calculating software FactSage uses the Gibbs energy 

minimizer, SOLGAXMIX developed by Eriksson [57]. SOLGAXMIX is an extended 

work of one ofEriksson's previous work SOLGAS [58]. 

Figure 3 shows how the models of phases, the minimization engines, and the 

databases are linked together in Thermo-Cale package. 
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Mole-lradion Co 

Phase Diagrams & 

Property Diagrams 


Figure 3: General structure of the Thermo-Cale package [59] 

Functions of the modules shown in Figure 3 are given below. 

• 	 TDB - for database retrieval and management 

• 	 GES - for thermodynamic model handling and data treatments for various phases 

• 	 TAB - for thermodynamic property tabulations of phases and reactions 

• 	 POLY - for multi-component heterogeneous equilibrium and stepping/mapping 

calculations 

• 	 POST - for post-processing of various phase diagrams and property diagrams 

• 	 PARROT - for parameter optimizations in data assessments 

• 	 ED_Experimental - for experimental points editing and equilibrium calculations 
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All the above-mentioned modules are necessary during thermodynamic calculations and 

predictions. 

Thermodynamic software packages are capable of performing numerous 

thermodynamic and phase diagram calculations such as 

• 	 Calculation of phase diagrams: binary, ternary, isothermal, isoplethal 

• 	 Calculation of property diagrams: fraction of phase, Gibbs energy, enthalpy, Cp, 

etc 

• 	 Metastable equilibria: Fe-Fe3C diagram 

• 	 Pourbaix diagrams and many other diagrams for aqueous-involving interaction 

systems: eh Vs pH diagrams 

• 	 Scheil-Gulliver-type solidification calculations 

• 	 Liquidus surfaces for multi-component alloys 

• 	 Thermodynamic factors, driving forces 

• 	 Establishment and modification of datasets or databases 

• 	 Several more calculations to be found in [60], [61] 

2.3 Algorithmic details ofthermodynamic optimization 
In this section, algorithmic details involved in thermodynamic optimization are 

presented in four parts. Firstly, details of finding equilibrium state of a system are 

presented. Then the condition to be set to achieve the equilibrium state is presented. Next, 

the solution method to evaluate the equilibrium state is presented. Finally, model 

parameter optimization is presented. 
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2.3.1 Gibbs energy minimization 
Finding the equilibrium state of the system is inevitable when the optimization is 

being carried out. In thermodynamics, equilibrium state of a system is described through 

state functions. In equilibrium calculations, the commonly used state function is the 

Gibbs energy, G which is given by 

G=U +PV-TS (2.40) 

Generally U in (2.40) is replaced by another state function H and given by 

H=U+P·V (2.41) 

A system at constant temperature ( T ) and pressure ( P ) with fixed amounts of 

components is said to be at equilibrium when the Gibbs energy reaches its minimum. In 

many thermodynamic calculations instead of number ofmoles, N,, the mole fraction, x, 

is used in Gibbs energy equations. 

A number of phases may exist in a thermodynamic system. Among these phases, 

only those, which are in equilibrium, may contribute to the total Gibbs energy of the 

system G through 

(2.42) 

where m¢ is the amounts of the phase ¢ and G! is the molar Gibbs energy of each 

phase. Hence, for a thermodynamic system at equilibrium one may write 

(2.43) 
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2.3.2 Conditions of equilibrium 
Now from (2.43), it is clear that to find the equilibrium state of a system the 

variables T, P, xf, m' are to be evaluated at Gmin • These variables at minimum Gibbs 

energy can be evaluated by setting the first derivatives of G with respect to its variables 

to zero. 

To find the Gmin at a known temperature and pressure, we need additional i 

equations to eliminate m' and N;. The overall mole fraction of the 

component, X; = Lm'xf ,the mole fractions, X; = N; / N and the total amount, 
; 

The i additional equations are obtained through the equilibrium chemical 

potential (partial molar Gibbs energy) equations of each component. They are, 

Gf (T,p,xf) = G{ (T,p,x[) (2.44) 

where i =l, ... ,c' ~ =1, ... ,(p-1), and r =(~ +1), ... ,p. 

If the phase ~ is to be described using a sublattice model given in (2.29), then 

instead of mole fractions xf site fractions Y!s,;) is to be used in (2.43). The site fraction 

Y!s.;) refers the fraction ofcomponent e of the phase ~ on the sublattice s. Due to the 

interrelationship between xf and Y!s,;) in the above mentioned situation it is not very 

easy to use the equations in (2.44) to find the equilibrium state. Eriksson [58] and Hillert 

[62] eased this situation via Lagrange multiplier method. In their method the following 

three conditions are subjected in the minimization of G given in (2.43). 
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1. 	 There is no change in the total amount of each component: 

"""'m;"""' a(s)"""' b(s,;) · y(s,;) -N =0 (2.45).i...J .i...J .i...J e ,1 e 1 

; s k 

Where b!~·;) - the stoichiometry of the component e in the sublattice s in rjJ phase, a(s) ­

the site fractions of sub lattice s assigned to all sites of the phase. 

2. The sum of all site fractions in each sublattice is equal to unity: 

(2.46) 
e 

3. Each phase remains neutral (uncharged): 

(2.47) 
s e 

Where r!s,;) -the charges of the components e in the sublattice s in the rjJ phase. 

Now let us write the target function to be minimized (A) in the Lagrange 

multiplier method: 

1. [A(T N (.•,;) ; 	1 s:)]-G(T (s,;)) + ( ; (s,;) N)min ,p, ;•Ye ,m 	,/l,,µ,u - ,p,ye +/1,11 m ,ye ' ; 
(2.48) 

+µJ; (Y!s,;)) +0h (Y!s,;)) 

Where A.,µ, 8 are Lagrange multipliers and J;, J;, J; are the LHS of equations (2.45), 

(2.46), (2.47) respectively. To get the Amin given in (2.48), the first derivatives of A with 

respect to the unknowns is set to zero. At the end of this process one gets a set of non 

linear equations with the unknowns T,p,N;,y~s,;) ,m; ,A.,µ, and 8. The method to solve 

these sets of equation is discussed in the section 2.3.3. 
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2.3.3 Finding the equilibrium conditions 
The equilibrium state of a system can be derived by solving the non linear 

equations derived for the Gmin in section 2.3.2. There are several root-finding algorithms 

available to find the solution from a set ofequations. Some of them are, namely, bisection 

method, Newton-Raphson method, Halley's method, false position method, and Brent's 

method. 

The research work presented in this thesis is accomplished using Thermo-Cale 

which uses the Newton-Raphson method in solving system of equations. Hence, in this 

section the Newton-Raphson method is discussed in detail. 

Newton's method is an iterative method of finding the root of a function of single 

variable through some definite procedure. The Newton-Raphson method is the extended 

version of the Newton's method in solving multiple variable functions. The Newton's 

method is reviewed with the help of Figure 4. 
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y= f(x) 

f(xo), df(x) 
dx X=Xo 

Figure 4: Newton's method 

Firstly an initial guess for the root of the function f (x) is taken as x0 • Then at x =x0 the 

functions numerical value f (x0 ) and its first derivative df (x)/ dxlx=.<o are calculated. 

Secondly another guess for the root is made as x1 , which is the intersection between the 

gradient df (x)/ dxL=xo and the x axis. Where, 

(2.49) 
X=Xo 

and 

(2.50) 
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This procedure is repeated until the value of the function f (x) becomes less than 

a pre-selected limit & . For any ( i +1}th iteration, the first derivative of the function and 

the root is given by, 

df(x) 
(2.51)

dx 

and 

(2.52) 


respectively. 

The Newton iteration will converge to the root of f (x) , if X; is in an interval 

[a, b] such that: 

• f(a)f(b)<O 

• f' is not zero in [a,b] 

• f" does not change sign in [a, b] 

• f (a}/ f '(a} < ( b - a} and f (b}/ f ' ( b} < ( b - a} 

Usually Newton's method converges very rapidly. However, there are cases when the 

method diverges. Three of such cases from [63] are illustrated in Figure 5-Figure 7. 
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Now the Newton-Raphson method in solving N functional relations to be zeroed, 

involving N variables of X; , i = 1, ... , N could be discussed. Let 

(2.53) 


Now to solve the set of equation in (2.53) we need the first derivatives of all these 

functions. To find that, let us expand each of the functions J; in Taylor series and 

truncate them to the linear terms we get 

(2.54) 


From (2.54) we get a set oflinear equations similar to the ones given in (2.52): 

N 

,Laij8x1 =/J; (2.55) 
i,j=I 

where 

(2.56) 


The matrix equations given in (2.55) is solved by LU decomposition and the consecutive 

guesses of the roots are obtained through 

(2.57) 


and this procedure is iterated until it reaches to a certain terminating condition. 
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2.3.4 Model parameter optimization 
During a thermodynamic optimization not only the equilibrium state ofa system 

is calculated but the coefficients of the phase models ofall the existing phases are also 

evaluated. As explained in section 2.2.2 the coefficients of the phase models are 

evaluated via least squares method by minimizing the weighted square error between the 

calculated and experimental thermodynamic quantities. 

In other words the target function to be minimized here is 

min - number of { measured property ) imeasurements ( }2 
_FC= W; - (2.58)c ( ) fr -(calculated property )lxiexp' c) 

In (2.58), the weighting factor w; is incorporated in the target function to compare the 

errors of the different types ofmeasurements and it is calculated as follows. Suppose a 

measured property Y is a function of s and r then, 

(2.59) 

Since the results presented in this thesis are calculated by Thermo-Cale, let us see 

how the errors are fed during Thermo-Cale calculations. There are two ways to feed the 

errors in experimental conditions (independent state variables) into the Thermo-Cale 

optimizer PARR OT. They are, 

(i) Specifying the errors in experimental conditions in the POLY module. In 

this case, equilibriums are calculated with the experimental values of 

independent state variables. 
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(ii) Optimizing the ''true" value of the experimental conditions using one of 

the defined variables as the condition. 

Both methods can be transformed into a least squares problem shown in (2.58) and the 

optimized parameters are found using the subroutine VA05A, a numerical subroutine 

from the Harwell Subroutine Library (HSL). 

It is clear from (2.58) that the traditional CALPHAD type thermodynamic 

calculations are based on experimental observations. However, there are situations where 

experimental investigations are not possible. For example it is difficult to get 

experimental information ofmetastable equilibria, or on unknown phases especially in 

developing new materials. During such situations one could evaluate thermodynamic 

quantities using first principles calculations. Some impressive results for thermodynamic 

calculations using first principle calculations can be found in [64-68]. 

From the algorithmic details presented so far, it can be said that the present day 

CALPHAD technique is based on least squares optimization, where the optimal values of 

the model parameters are evaluated by providing the best match between the calculated 

and experimental quantities. In other words, thermodynamic optimizations performed by 

the present day thermodynamic software packages guarantee only the accuracy of 

thermodynamic calculations. 

However, the fact that all experimental data have been accurately reproduced does 

not imply that the Gibbs energies are suitable for extrapolation of phase boundaries 

beyond a range of conditions within which, the experiments were carried out. In the 
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literatures we can find numerous examples of such unreliable thermodynamic 

calculations and extrapolations, which will be discussed in detail in chapter 3. 

2.4 Conclusions 
The present day thermodynamic optimization is an un-constrained non-linear least 

squares optimization. Thermodynamic calculations performed using the traditional 

Calphad technique is reliable within the regions of experimental data. However, such 

calculations out side the experimental data are not always reliable. 
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CHAPTER3 

Post-optimization artifacts 

3.1 What are artifacts? 
The traditional CALPHAD method guarantees the accuracy of the phase models 

within the region where experiments were carried out. However, this does not gurantees a 

trustworthy extrapolation in the regions ofno experimental data. Keeping this 

circumstance in mind, it is important to know how the success of a thermodynamic 

optimization is determined. 

A thermodynamic optimization is said to be successful when its phase diagram 

and thermodynamic property diagram(s) calculations result in a good agreement with 

experimental points, characteristic shapes such as concavity and convexity of phase 

boundaries and thermodynamic properties (and their continuations). 

In a number of published thermodynamic optimizations in journals such as 

Calphad, Journal ofphase equilibria and diffusion, International journal ofmaterials 

research, and Metallurgical and materials transactions A erroneous extrapolations were 

later discovered. Such erroneous extrapolations were named post optimization artifacts. 

3.2 Classifications ofartifacts 
Artifacts encountered up to date can be categorized under two major types. They 

are, 

1. Non-existing and erroneous phase equilibria 

2. Suspicious temperature and composition dependencies of properties 
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Further, non-existing and erroneous phase boundaries can be subdivided into three kinds. 

They are, 

a. 	 Non-real inverted miscibility gaps in the liquid phase at high-temperatures 

b. 	 Excessive number of inflection points on phase boundaries/ undulate 

phase boundaries 

c. Low-temperature phase becomes stable again at high-temperature 

A categorization ofpossible artifacts is given in [ 69-70]. 

3.2.1 Non-existing and erroneous phase boundaries 
3.2.1.(a) Non-real inverted miscibility gaps in the liquid phase at high-temperatures 

The first and the most frequently observed artifact of this category is the non-real 

inverted miscibility gap. It is likely that there are systems in which an inverted miscibility 

gap exists. Here, however, the term is exclusively used for specifying situations when a 

real liquid phase is not prone to separation, while its model (i.e. an expression describing 

how its molar Gibbs energy depends on temperature and composition) predicts that the 

liquid phase is internally unstable at elevated temperatures and thus decomposes into two 

solutions having different compositions. 

The occurrence of this kind remains un-noticed during the optimization due to 

their appearance at very high-temperatures in most cases. However, there are cases where 

inverted miscibility gaps predicted at fairly low-temperatures compared to the liquidus of 

the system optimized. 

A decade ago, this problem was not paid much attention to mainly because at that 

time dedicated efforts were needed for catching a defective thermodynamics of the liquid 
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phase. The development and a subsequent widespread usage of PANDAT [71-73] 

drastically changed the situation, because in contrast to other competing programs, it had 

a built-in ability to detect faulty thermodynamic models. A rapidly growing number of 

assessed systems in which inverted miscibility gaps (as well as other types of post-

assessment phantoms) were revealed by PANDAT. 

The non-real inverted miscibility gaps are usually observed when the excess 

Gibbs energy of the liquid phase is modeled using a linear temperature dependent 

Redlich-Kister interaction parameters L;. For example, let us consider the excess Gibbs 

energy of a binary liquid A-B, 

n . 

ti EGL= xAXsLL; (xA -x8 )' (3.1) 
i=O 

where L; is the ith interaction parameter of the components A and B which is given by, 

(3.2) 

Moreover, the excess Gibbs energy is related to the enthalpy of mixing ( AffL ), 

excess entropy of mixing (ti ESL), and the excess heat capacity ofmixing (ti EC!) 

through the following expressions. 

(3.3) 

Af{L =Af{; + JT 

ti EC! (T)dT (3.4) 
T=O 

where Afl; is the enthalpy of mixing at T =OK 

(3.5) 
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where AEs[; is the excess enthalpy ofmixing at T =OK. From (3.3)-(3.5) AEGL can be 

written as, 

(3.6) 

Now by comparing (3.1) and (3.6) L; can be written as, 

(3.7) 

where ho;, s0;, and c; (T) are coefficients to be evaluated during optimization. From 

(3.1) and (3.7), for a regular solution phase, the excess Gibbs energy AEGL is written as, 

(3.8) 

According to Kaptay [7 4] hoo and s00 should have the same sign. Hence, when both hoo 

and s00 are negative, at high temperatures, A EGL reaches positive value. Due to this 

positive value of AEGL inverted miscibility gap appears at high temperature. This 

situation is illustrated in Figure 8. 
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Figure 8: A plot of Gibbs energy of mixing Vs Mole fraction for parameters ho; =-10000 and 

s0; =-22 at different temperatures 

To find the lower critical temperature of this inverted miscibility gap, let us 

consider the Darken's stability condition, that is, 

82 (LlMGL)
--'----"'- =0 (3.9)

8(xB)2 

where Ll MGL is the Gibbs energy of mixing of the liquid phase. The expression (3.9) can 

be further expanded as, 

82 ( LlidGL + Ll EGL) 
----~=0 (3.10)

8(xB)2 
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where 

(3.11) 

From (3.8), (3.10), and (3.11) we get the critical temperature of the inverted miscibility 

gap~' 

(3.12) 

Further, ~,min is obtained when xA = Xa = 0.5. That is, 

T . = hoo (3.13)
c,mm 2R 

+soo 

From the above analysis it can be seen that the inverted miscibility gap is 

predicted with the lower critical temperature given in (3.13) when the excess Gibbs 

energy of the liquid phase is described by a linear temperature dependent interaction 

parameter. 

Chen et al. [75] looked for the above-described thermodynamic artifact in 

previous thermodynamic assessments using PANDAT [53], which is able to detect the 

inverted miscibility gap without using any information about its location in the phase 

diagram. They presented seven such thermodynamic assessments. They are Co-Mo [76], 

Si-M [77], Al-Mo [78], Al-W, Al-Nd, Fe-Si, and Sn-Zr [79]. 

Kaptay [74] pointed to another thermodynamic assessment [80] on Cd-X [X=Y, 

Ce, La, Pr, Nd, Gd, U, Np, Pu] binary systems, which predicts inverted miscibility gaps 

in all six binary assessments. Kevorkov et al. [81] re-assessed the Mg-Si system whose 

previous assessments [82, 83] predicted the inverted miscibility gap. Another 
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thermodynamic re-assessment by Grolier and Schmid-Fetzer [84] revealed the prediction 

of inverted miscibility gap in the Pt-Sn system using the description of Su et al. [85]. 

In addition to the above pointed examples, the following example is from the 

author's own thermodynamic assessment. In the author's first publication [86], the Mg-

Sb system was assessed using the interaction parameters in the form of (3.2). Later, it was 

discovered that the evaluated thermodynamic description for the liquid Mg-Sb phase 

predicts two inverted miscibility gaps at high temperatures. 

Since looking for this type of artifact is a time consuming task not all 

thermodynamic assessments that predict high temperature inverted miscibility gap are 

reported here. Some calculated phase diagrams from those assessments reported in this 

section that predict high temperature inverted miscibility gap are ilulustrated in Figure 9­

Figure 14. 
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Figure 9: Calculated Si-Ta binary phase diagram using the parameters of [77) by Chen et al (75] 
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Figure 11: Calculated Mg-Si phase diagram using the parameters of [82] by Kevorkov et al. [81] 
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Figure 12: Calculated Mg-Si phase diagram using the parameters of [83) by Kevorkov et al [81) 

u 
~ 
I­

-Suet al. 

1600 

1400 
Liq Liq'+ Uq" 

1200 

1000 

800 
c: c: 

"' ~ 
(/) c:a:: (/)

0.. 0: r!' c" 

~ ~ 

600 

400 

200 

0 10 20 30 40 50 60 70 80 90 100 

~ ~%~ ~ 

Figure 13: Calculated phase diagram of the Pt-Sn system using the parameters of [85] by Grolier and 
Schmid-Fetzer [84] 
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Figure 14: Calculated Mg-Sb phase diagram using the parameters of (86) 

3.2.1.(b) Excessive number ofinflection points on phase boundaries/undulate phase 

boundaries 

The second most frequent artifact is the excessive number of inflection points on 

phase boundaries (also referred as undulate phase boundaries). When dealing with this 

kind of artifact one has to be very cautious about real inflection points which reflect the 

existence of meta-stable equilibrium of a phase. For example, in Figure 15 the inflection 

point on the liquidus between 40 - 80 atomic percent ofNa corresponds to the metastable 

equilibrium of the liquid phase shown in dashed line below the liquid phase boundary. 
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Figure 15: Calculated Cd-Na phase diagram using the thermodynamic descriptions of (87) (extracted 

from (88)) 


This example shows the real existence ofundulate phase boundary. Similar 


liquidus topology is observed in Sn - Zn and In - Zn systems. The phase diagrams for 

these two binary systems are given in Figure 16 and Figure 17 respectively. 
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Figure 16: Calculated phase diagram of the Sn-Zn system by [89] 
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Figure 17: Calculated phase diagram of the In-Zn system by (89] 

The topological feature of flat liquidus, which exhibit inflection point on it, can be 

explained through Figure 18. 
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Figure 18: Topological changes in the phase diagram for a system A-B with regular solid and liquid 
phases [90) 

Figure 18 shows phase diagrams of an imaginary A-B system. The 

thermodynamic data used in [90] to construct the above set of phase diagrams are: 

melting point of A is 800 K, melting point ofB is 1200 K, entropy of fusion of A is 10 

J/mol K, entropy of fusion of B is 10 J/mol K, excess Gibbs energy of solid solution 

explaining the flat liquidus only the first row of phase diagrams in Figure 18 are 

discussed below. 

In Figure 18(c), the A-B liquid is ideal, but the solid solution is a regular solution 

with positive excess Gibbs energy. This positive excess Gibbs energy gives the solid-

solid miscibility gap. When the excess Gibbs energy of the liquid becomes more and 

more negative from a/= -10 ~ -20 the liquid becomes more stable and the eutectic 

lines moves down wards. This feature is shown through Figure 18(b) ~ Figure 18(a). 
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When the Gibbs energy of the liquid becomes more and more positive from 

o/ =+ 10 ~ +20 the liquid becomes less stable and gives rise to a liquid-liquid 

miscibility gap. This feature is shown through Figure 18( d) ~ Figure 18( e ). When the 

positive deviation of the /!l EG1 is not large enough to produce a liquid-liquid miscibility 

gap, it flattens the liquidus as shown in Figure 18( d). This flattening indicates a meta­

stable equilibrium of the liquid phase at lower temperatures, which is shown in broken 

lines in Figure 18(d). To observe this meta-stable equilibrium one has to suppress the 

solid phases by sufficiently rapid cooling. 

Now let us see an example where the thermodynamic assessment wrongly 

calculates the liquidus with undulation. For example, in Figure 19 the undulated phase 

boundaries are observed on the Se rich and on the As rich liquid phase boundaries. These 

liquidus segments are considered as artifact because of two reasons: 

(i) 	 These calculated liquidus segments do not conform to the locations of 

experimental points. 

(ii) 	 The assessment used too many (as many as eight) coefficients to 

model the Se-As liquid. 
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Figure 19: Calculated Se-As phase diagram by Degterov et al (91) 

The above-described undulated phase boundaries are generated because in 

thermodynamic optimization the model parameters are evaluated in such a way that the 

model calculates thermodynamic values closer to the experimental measurements. 

Moreover when finding close fitting to discrete experimental data sometimes the 

characteristic shapes of the phase boundaries such as convexity and concavity would not 

be achieved. Thermodynamic description of a system should be able to calculate not only 
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accurate phase diagrams but it also should be able to generate correct topological features 

of the phase diagram. 

We can find many examples for the artifact - undulate phase boundaries in the 

literature. Some selected examples are given below in Figure 20 - Figure 22. In these 

figures the undulated phase boundaries are identified by ovals. 
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Figure 20: Gd-Mg phase diagram calculated by [92) 

Some observations on the selected region in the Figure 20 are as follows: 

• 	 The calculated phase boundaries do not show the trend of the experimental points 

• 	 Possibly an overfitted phase diagram. The liquid and the bee phases were 


modeled using five and six Redlich-Kister coefficients respectively. 


52 




PhD Thesis - T. Balakumar McMaster University- Materials Sci. and Eng. 

2500 

0 2000 
·i c 
C.: bee 
e 1500a· 
E 
& 

Liquid 

~ 1000 C15 

500--~-----~----~~---~~.._..~~.......... 

0 0.2 0.4 0.8 0.3 1.0 

Atomic fra£1fon Hf 

Figure 21: Calculated phase diagram of the V-Hfbinary system by [93) 

Some comments on the selected region in the Figure 21 are as follows: 

• 	 The calculated phase boundaries do not show the trend of the experimental points 

• 	 Possibly an overfitted diagram. A huge number ofRedlich-Kister coefficients 

were used to model both the liquid and the bee phases 

• 	 Different models were used to describe a phase in different regions of the phase 

diagram 

53 




PhD Thesis - T. Balakumar McMaster University - Materials Sci. and Eng. 

1600 

~ 
! 1400 
:::3 
'S ... It1200 ;,. 
t- I 

I 
1000 I 

' 

A"-n~[16J 

~-"1.[111) 

l'!l.........,_POI 

f)l!ftOlhUl.1)21) 

..............lffl 


.......1,21it 


*"*-* 

0.2 0.4 0.6 0.8 1.0 
Co Mole fraction Si Si 

Figure 22: Co-Si phase diagram calculated by (94) 

Comments on the selected region in the Figure 22: The calculated phase boundaries do 

not show the trend of the experimental points. 

3.2.1.(c) Low-temperature phase becomes stable again at high-temperature 

The third type of erroneous features, which is frequently overlooked during 

thermodynamic optimization, is the stabilization of low-temperature phase(s) again at 

high temperatures. Chen et al. [75] listed the following assessments for such unrealistic 

thermodynamic predictions at high temperatures. They are Sn-Ti [79], Nb-C [95], Mo-C 

[96], Ni-Ti [97], Fe-C [98], Ni-C [99], Al-Co [100], Cr-Ta [101] and, Co-Si [102]. Figure 

23 shows the stabilization of the low-temperature phase, Ni3Ti above the liquidus. The 
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Ni-Ti phase diagram in Figure 23 calculated using the parameters of [97] is reported in 

[75]. 
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Figure 23: Calculated Ni-Ti phase diagram using the parameters of (97) by Chen et al (75) 
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Figure 24: Calculated Co-Si phase diagram using the parameters of [102) by Chen et al [75) 
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Figure 24 is the calculated Co-Si phase diagram by Chen et al. [75] using 

description of [102], which shows the unrealistic stabilization of the solid phases aCo 

and &Co above liquidus. 

It is reported in [74] that the solid phase may become stable again above the 

liquidus when the r -value of the solid solution is significantly higher than that of the 

liquid solution. Where r is the temperature at which the interaction parameter L; in (3.2) 

would change its sign when extrapolated from T =OK . 

3.2.2 Suspicious temperature and composition dependencies of properties 
Figure 25 and Figure 26 demonstrates examples of suspicious temperature and 

composition dependencies of properties. 
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Figure 25: Partial and integral molar Gibbs free energies of liquid Bi-Sn solution as a function of 
composition at 400°C calculated by Cho and Ochoa [103] 
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In Figure 25, the thermodynamic description of the liquid Bi-Sn solution by Cho 

and Ochoa [103] predicts highly wavy partial molar Gibbs energies. Probably this wavy 

feature resulted from overfittings to experimental data. For example, in a binary system 

A-B, let us assume that µ 8 has multiple extrema within the whole composition range, 

[0,1]. From this assumption we can say that, the function, a(µ8 )/0x = 0, has multiple 

roots within [ 0, 1]. As we know, 

aG 
µ8 =G+(l-x)­

Ox 
(3.14) 

We can write, 

a(µa) =(1- x) a2G =0 
ax ax2 

(3.15) 

where (3.15) has multiple roots. Since (1-x) is always positive, we can write, 

(3.16) 


where (3.16) has multiple roots. Now if we expand (3.16) for ideal and excess Gibbs 

energy terms, we get 

(3.17) 

As we know that Gid = RT[xlnx+{l-x)ln{l-x)J, from (3.17) we get, 

(3.18) 
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where (3 .18) has multiple roots. From (3 .18) we can deduce that for an n number of 

extrema to appear in the partial chemical potential, the excess Gibbs energy should be 

modeled with at least ( n - 2) coefficients. In the example illustrated in Figure 25, the 

partial excess Gibbs energies have at least five extrema on each curve. It means that the 

excess Gibbs energy of the liquid phase should be expressed with at least three 

parameters. Hence, there is a possibility for over fitted excess properties. 

Another example of suspicious calculation of thermodynamic properties is 

demonstrated in Figure 26 where, Fe content of the liquid phase in the liq/fee/bee three-

phase equilibrium in the Fe-Cr-Ni system is plotted against temperature. 
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Figure 26: The calculated Fe content of the liquid phase in the liq/fee/bee three-phase equilibrium in 
the Fe-Cr-Ni system by Lee [104] 
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It can be seen from Figure 26 that the calculation line for the Fe content by [104] does not 

agree with the trend of the many experimental data points by different researchers shown 

in the figure. Hence, it can be concluded that the above shown calculation of [ 104] is 

suspicious and should be considered as an artifact. 

3.3 How to eliminate artifacts? 
There are three possible ways to eliminate the artifacts known to the author. Post-

optimization phantoms can be avoided: 

(i) By using physically feasible models 

(ii) By Kaptay's method 

(iii) By enforcing the correctness of formalisms and models by using 

special type ofconstraints - topological constraints. 

3.3.1 Eliminating artifacts by using physically feasible models 
By far the best way to eliminate thermodynamic artifacts is by using physically 

feasible models that describe physical or chemical feature of phases. Some of the widely 

used models that describe the physical feature of phases are associate solution model 

[36], quasi-chemical model [105], and cluster variation method-based models [106]. 

For example the associate solution model would be a good choice to describe a 

solution phase, which exhibits short range ordering (SRO). A solution with SRO will 

result a typical "V" shaped enthalpy of mixing Vs composition diagram. For instance let 

us consider an imaginary A-B liquid solution with a pronounced SRO at the equimolar 

composition. In associate solution modeling, this physical feature of the liquid is reflected 
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by introducing the AB associate as a constituent of the liquid. In this case, the Gibbs 

energy of the liquid is given by: 

G; =yAG~ +y8G~ +yABG~ 
+RT[yA ln(yA)+ Ys ln(Ys)+ YAB ln(yAB)] (3.19) 

+ YAYBLA,B +YABYALAB,A + YABYBLAB,B 

where yA, y8 and yAB are the site fractions of the constituents A, B, and AB 

respective!y. 

The major disadvantage ofusing the associate solution model in thermodynamic 

optimizations is that when the interactions between the constituents are large, the random 

overestimate the Gibbs energy of the phase. Even though this overestimation of the Gibbs 

energy could be adjusted through the excess contribution 

might yield a bad extrapolation to higher order systems [31]. Hence, associate solution 

model cannot be applied to all thermodynamic systems in eliminating thermodynamic 

artifacts. 

The Gibbs energy description by quasi-chemical model gives a better description 

for the ideal entropy of mixing than does the associate solution model. To describe an 

imaginary A-B liquid solution with a strong SRO at the 1:1 composition, the quasi-

chemical model assumes that bonding between A and B atoms gives molecules of AA, 

BB, AB, and BA. These molecules are assumed to be randomly distributed in the 
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solution. The creation of bonds is given by the chemical reaction for the molecules AA, 

BB, AB, and BA: 

AA+BB p AB+BA (3.20) 

For a solution with z number of bonds per atom, the Gibbs energy of the solution by the 

quasi-chemical model is given by, 

G; = Y AAG1 + YssG~ + Y ABG1s + YsA G~A 

+ ~RT[yAA 1n(:r)+ Yss 1n(:Sr )+ yAB 1n(2:} YsA ln ( ~:J] (3.21) 

+ RT [ XAln(XA) + Xs ln ( Xs)J 
+Gex 

m 

where y AA, Yss, yAB, and YsA are the site fractions of the constituents AA, BB, AB, and 

BA respectively; xA, andxs are the mole fractions of A and B. Moreover one can relate 

the site and mole fractions using the mass balance constraints. That is, 

(3.22) 

(3.23) 

Even though the quasi-chemical model gives better Gibbs energy estimation than 

does the associate solution model it is again reported in [31] that the ideal entropy of 

mixing in (3.21), 

S~ =~RT[yAA ln(y~ )+ Yss ln(Ys~ )+ YAB ln(~)+ YsA tn(lTuL)] . . 
2 XA XB XAXB XAXB IS only vahd 

+RT[xA ln(xA)+xB ln(xs)] 

for small degree of SRO. Moreover it is shown in [31] that when the SRO is strong and 
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for z > 2 then S~ may becomes negative. Hence, quasi-chemical model too cannot be 

applied to all thermodynamic systems in eliminating thermodynamic artifacts. 

In the case of cluster variation method (CVM) the quasi-chemical entropy is 

improved by considering clusters with three, four, and more atoms. These clusters are 

treated as independent constituents of the solutions. However, in deriving the ideal 

entropy of mixing of these clusters, they are assumed to share their comers, edges, 

surfaces, etc with each other. This consideration is the basic difference between the 

quasi-chemical and the CVM. For a short range ordered liquid solution with the clusters 

A, A0_ B0_ B0_ A0_ B0_ and B the Gibbs energy is given by: 75 25 , A05 5 , 25 75 , 

+ RT [YA ln (YA}+ YAo 75B025 ln ( YA075B025 ) + YAosBos ln ( YAo5B0
2

s )l 
+YA025Bo.1s ln { YAo2sBo.1s ) + Ys ln ( Ys} 

+ 2RT[(YAo.1sBo.2s + YA02sB01s )ln(4}+ YA05B05 ln(6}] (3.24) 

-6RT[pAA ln(pAA)+ PAB ln(pAB)+ PsA ln(PsA)+ Pss ln(Pss)] 

+5RT[xA ln(xA)+x8 ln(x8 )] 

where the clusters are assumed to share the edges and comers with each other; 

YA, yA 8 , yA 8 , yA 8 , and Ys are cluster fractions; pAA, pAB, PsA, and Pss are pair 
0.75 0.25 o.s 0.5 0.25 0.75 

probabilities; xA, and x8 are the mole fractions of A and B respectively. 

The Gibbs energy description in (3.24) is superior to the description of associate 

solution model and quasi-chemical model. However when it comes to multi-component 

system the number of clusters increases exponentially with the number of components 
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and thermodynamic calculations become extremely difficult. Hence, the applicability of 

CVM in suppressing artifacts is not always possible. 

3.3.2 Kaptay's method of artifact elimination 
As explained in section 3 .2.1, artificial inverted miscibility gaps are observed 

when the interaction parameter L; in the excess Gibbs energy term is linear dependent of 

temperature as given in (3.2). To suppress this artifact Kaptay [74] developed a 

formalism by considering the following boundary conditions: 

Condition 1: When T ~ 0 , l'l.GE reaches a finite value M/0 • Hence, the condition to be 

satisfied is, 

Jim L i. 
T40 i (3.25)= ''Oi 

Condition 2: When T ~ 0, the slope of the l'l.GE with respect to T reaches -M;. 

Hence, the condition to be satisfied is, 

um dL 
-'=-So- (3.26) 

T40 dT I 

He derives the third boundary condition by considering the interaction of atoms at 

very high temperatures. When temperature becomes infinitely high, the interaction 

between the atoms vanishes and the atoms distribution becomes random. That is, when 

T ~ oo the solution becomes ideal. In other words, when temperature is very high, the 

excess Gibbs energy should reach zero. 

Condition 3: When T ~ oo, the l'l.GE reaches zero. Hence, the condition to be satisfied 

lS, 
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Jim 
T-->ooLi =Q (3.27) 

In calculating a stable phase diagram, the selected excess Gibbs energy model 

should satisfy the above three conditions in (3.25)-(3.27). To analyze the satisfying 

boundary conditions during thermodynamic optimization, Kaptay [74] considers the 

following three different possibilities for the excess heat capacities. 

Case 1: The most complex form, 

(3.28) 

(3.29) 

Case 2: The rarely used form of excess heat capacity in thermodynamic optimizations, 

(3.30) 

(3.31) 

Case 3: The frequently used form, 

(3.32) 

(3.33) 

where (3.29), (3.31 ), and (3.33) are the interaction parameter terms derived for the case 1, 

2, and 3 respectively. 

When the interaction parameter in (3.29) is used in the excess Gibbs energy none 

of the three conditions are satisfied. When the interaction parameters in (3.31) or (3.33), 

the first two boundary conditions in (3.25) and (3.26) are satisfied but they fail to satisfy 

the third condition (3.27). Due to the above contradictory results in the boundary 
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conditions, the widely used linear interaction parameters in (3.33) tend to generate 

artifacts at high temperatures. 

To calculate a stable phase diagram without generating any artifacts Kaptay 

proposed the following formalism for L; : 

(3.34) 

According to Lupis and Elliott [107], "ho; =r0; which is the temperature at which the 
So; 

system becomes ideal when the experimental results at temperature T are extrapolated 

linearly. Moreover Lupis and Elliott [107] found that for the majority of the metallic 

solutions the heat of mixing and excess entropy ofmixing have the same sign. Hence, 

(3.35) 

The expression for L; in (3.34) satisfies all three boundary conditions given in 

(3.25)-(3.27). In addition to the three boundary conditions, the condition in (3.35) is to be 

satisfied during the evaluation of the parameters "ho; and s0; • 

Arroyave and Liu [108] tried the Kapatay's formalism to model the liquid phase 

during the thermodynamic optimization of the Zn-Zr system. It was reported in [108] that 

the agreement between the experimental data and the calculations by Kaptay' s formalism 

were not satisfactory and a more complicated temperature dependencies were needed to 

get a passable agreement with experimental data and the calculations. 
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More adverse effect was observed when Schmid-Fetzer et al. [109] re-assessed 

the Mg-Si system using the Kaptay's formalism to eliminate the inverted miscibility gap 

in the system from its previous assessment. In this re-assessment, the Kaptay's formalism 

successfully eliminated the inverted miscibility gap. However, Schmid-Fetzer et al. [109] 

detected the re-stabilization of the liquid phase at low temperature. Schmid-Fetzer et al. 

[109] pointed out that when the parameter ho; becomes negative, the exponential function 

exaggerate the Gibbs energy at very low temperature, resulting in the re-stabilization of 

the liquid phase at low temperature. 

The Figure 27 given below shows the re-stabilization of the liquid phase during 

the reassessment of the Mg-Sb system by Schmid-Fetzer et al. [109] using the Kaptay's 

Figure 27: The calculated Mg-Si phase diagram by Schmid-Fetzer et aL [109] using the Kaptay's 
formalism in (3.34) 
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From the above example we can conclude that the Kaptay's method is not a 

universal solution in eliminating thermodynamic artifacts. 

3.4 Conclusions 
The above-discussed methods to struggle against thermodynamic artifacts give 

problem-specific solutions. Hence this thesis proposes a new approach to find a general 

solution to eliminate thermodynamic artifacts by employing topological constraints in 

thermodynamic optimization. The essence of employing topological constraints in 

thermodynamic optimization will be revealed in chapter 5. 
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CHAPTER4 

Shape-preserving approximation 

4.1 Introduction 
The objective of this chapter is to explore the existing shape preserving 

approximation techniques in order to make sure that the algorithm proposed in this thesis 

has no parallels or overlaps to any already existing approaches. 

The importance of preserving the correct shape of a function describing 

experimental data was realized in different research areas such as cartography, 

engineering design, meteorology, statistics, computer graphics and animation. For 

example, consider the derivation ofnonparametric probability density function f from 

random sample ofresponses under the assumptions that the function is unimodal. 

However, since the responses are affected by random noise, the function estimated is not 

guaranteed to have the single maximum if the traditional likelihood method is employed. 

In order to eliminate possible extrema, it was suggested to use a penalized likelihood 

method [110], i.e. 

maximize IJJ(x;)exp{-pJ[/' (t)J2 dt}, p > 0 (4.1) 
I 

Physically unacceptable oscillations in f are eliminated by increasing the smoothing 

parameter p. In other words, the inclusion of the parameter pin (4.1) helps to eliminate 

wiggles in functions interpolating experimental data. 
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A topologically constrained interpolation (also known as isogeometric 

interpolation) problem is solved through procedure known as polynomial fitting. The 

basic idea behind this procedure is to find a polynomial function that goes through all the 

given (experimental) points. The main attraction for this class of functions in 

interpolations is due to their easy computations in addition, multiplication, differentiation 

and integration. It is always possible to find a polynomial function that fits through all the 

given data points. However, when the number of points increases the order of the 

polynomial function as well as the wiggles and oscillations of the fitted curve also found 

to increase. This oscillation problem in polynomial interpolation is overcome by using 

sufficient number of low order polynomial segments (also known as splines) between 

pair of interpolating points and joining them in a smooth way [ 111, 112]. 

4.2 Existing methods ofisogeometric curve and surface fitting 
One of the existing procedures to find approximations while preserving 

topological features is found in Akima [113, 114] where the resulting curve is found to be 

in agreement with the global shape implied by data points. However the fitted curve does 

not have a continuous second derivative. Another approach reported for similar objective 

in [ 115, 116] guarantees that if experimental data had convex and concave regions, then 

convexity and concavity of the interpolating spline will be consistent with these intervals. 

Again, the resulting spline did not have a continuous second derivative. 

A traditional way of smoothing an approximant with false extrema and inflection 

points is to add the energy functional to the target function as follows: 
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When the smoothing parameter p is zero, the problem is the usual polynomial fitting 

problem since the second term in the left hand side of ( 4.2) becomes zero. This results in 

an excellent fitting, however, the unwanted wavy shapes or wiggles are prone to present 

in this case. On the other hand, when p tends to one, the leftmost term in ( 4.2) vanishes 

and the resulting minimization will yield a straight line that is obviously not useful. It is 

sensible to find a balance between these extreme cases and to find a value of p that gives 

enough weight for accuracy of fitting while maintaining the shape of the function 

approximate enough to the topological shape. Sometimes such an approach works [117], 

but in general, it does not guarantee that a topologically correct solution can be obtained. 

Moreover, the only one class of functions whose utilization in (4.2) is computationally 

feasible is splines. The next sub-section gives a brief introduction to spline curves. 

4.3 Isogeometric interpolations by splines 
Splines are advanced types of isogeometric-interpolated curves that have many 

applications in computer graphics and animation. A common idea behind the techniques 

is to partition the data range into smaller segments and to find a local fitting curve that 

seamlessly joints with the adjacent local curves. The analysis ofspline curves is often 

preceded by a similar curve called Bezier curves from which the idea of splines has 

evolved. Bezier curves were first used by a French engineer named Pierre Bezier in 

automobile body design. 
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In isogeometric Bezier curve and spline curve interpolations, the data range is 

portioned into smaller segments and a local fitting is found. When each segment has three 

data points (notice that each segments having two points is a rather obvious case in which 

the best fit through polynomial, Bezier, or spline curves is the straight line between these 

two points) they are called quadratic Bezier curves and quadratic spline curves 

respectively. When each segment has four data points they are called cubic Bezier curves 

and cubic spline curves respectively. Cubic Bezier/spline curves have wider applications 

in shape preserving approximations. 

The main advantage of using Bezier curve interpolation over polynomial 

interpolation is that the adjacent interpolated curves have a smooth joint. However, this 

type of interpolations suffer from a feature that is known as lack of local control, i.e., 

even though they avoid wiggles compared to polynomial curves, Bezier curves are found 

far apart to some of the data points. To avoid this problem spline curve interpolations use 

weighted control through data points. In calculating a certain value of the curve, nearest 

data points are given higher weights. Usually the weight distribution is arranged to reflect 

a Gaussian shape. The spline curves assure the existence of first derivative and second 

derivative for some cases. However, it is impossible to impose any conditions to be 

satisfied on the second derivatives. 

The most popular choice to get smoother approximations in isogeometric 

interpolations is the cubic splines. The reason for smoother approximation by cubic 

splines is that these functions possess at least a continuous first derivative and in some 
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cases, even a continuous second derivative [111]. APPENDIX I gives more details on 

Bezier curves and spline curves. 

4.4 Spline approximation in thermodynamic optimizations 
The publication by Voronin, and Degtyarev [118] shows possible application of 

spline approximation in thermodynamic calculations. In [118], the authors performed 

different thermodynamic calculations on binary systems and showed that the spline 

approximation is useful in thermodynamic calculations. It can be seen from Figure 28 and 

Figure 29 that the spline approximation gives higher accuracy than that of the 

conventional linear least squares approximation. Moreover Voronin, and Degtyarev 

showed the possible application of spline approximation in phase diagram calculations by 

calculating liquidus lines in the binary system In-Sb. However, spline approximation is 

hardly applicable in multi-component thermodynamic calculations. By far, [118] is the 

only published work, which uses the spline approximation in thermodynamic 

calculations. 
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Figure 28: Activity calculations of Cd in Cd-Au system at 777K by [118) shows the comparison of 
spline approximation (line 1) with the conventional linear least squares approximation (line 2) 

Figure 29: Calculation of integral molar enthalpy of formation of Al-Te alloys at l 188K by (118] 
shows the comparison of spline approximation (line 1) with the conventional linear least squares 

approximation (line 2) 
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4.5 Conclusions 
Shape preserving approximation techniques have applications in many other 

research areas other than thermodynamic optimization. Different shape preserving 

approximation techniques developed to fulfill some specific objectives are available in 

the literature. However, none of the available techniques are found to satisfy the 

requirements arisen in thermodynamic optimization. 
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CHAPTERS 

Topological constraint in eliminating inverted miscibility gaps 
during re-assessment of the Mg-Sb system 

5.1 Introduction 
In this chapter a novel method to eliminate artificial inverted miscibility gap 

during thermodynamic optimization is proposed. Unlike traditional CALPHAD 

technique, which is an unconstrained non-linear least squares optimization technique, the 

proposed method in this chapter performs a topologically constrained non-linear least 

squares optimization. 

In order to achieve the correct shape of the phase diagram, topological constraints 

that govern the appearance of the phase diagram are set to be satisfied on a sufficiently 

dense mesh ofknots during thermodynamic optimization. These knots are not related to 

the experimental points used in the optimization and are introduced within the region 

where inverted miscibility gap is observed. 

Moreover, it is shown that syntax of the language describing conditions and 

experiments in the PARR OT module of Thermo-Cale is suitable for performing such 

kind of optimization. A workability of the method proposed is exemplified by carrying 

out a re-optimization of the Mg-Sb system. 

5.2 Problem formulation 
In [86], the thermodynamic properties of the Mg-Al-Sb system were assessed 

using the CALPHAD method. As a part of that assessment, the thermodynamic properties 
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of the Mg-Sb system were optimized. The optimization was based on experimental data 

on activities ofMg in the liquid phase [ 119-121] and conditions of phase equilibria [ 122, 

123]. A passable agreement between the experimental and calculated quantities was 

obtained. The phase diagram shown in Figure 30 is unquestionably reasonable being a 

"computed twin" of the Mg-Sb diagrams evaluated by experts [20, 124]. According to 

[41], lattice stabilities ofMg are defined from 298.15 to 3000 K, while these for Sb are 

determined within the 298.15-2000 K range. This, in particular, means that the calculated 

properties of the liquid phase should not be trusted above 2000 K, but nothing dramatic is 

expected to happen if the upper limit of the temperature axis in Figure 30 is extended 

from 1600 to 2000 K. 
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Figure 30: The calculated phase diagram of the Mg-Sb system by Balakumar and Med raj [86) 
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An inspection ofFigure 31, however, reveals an unexpected phenomenon: the liquid 

phase has two inverted miscibility gaps. It is very unlikely that the actual Mg-Sb melt is 

prone to separation; it is the description of the Gibbs energy of the melt proposed in [86] 

that incorrectly predicts such a behavior! 

1800 

1600 

~ 
i--: 1400 

1200 

1000 

aoo----..----~--___,----~----......----~-----

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Sb, mole fraction 

Figure 31: Inverted miscibility gaps resulted from the thermodynamic model for the liquid phase 
proposed in [86) 

The one possible way to analyze the predictions of the Mg-Sb liquid phase model 

proposed in [86] is by checking the stability of the liquid phase through Darken's stability 
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function. In Thermo-Cale syntax, QF (phase) refers to the Darkens stability function. For 

a binary system QF(phase) is defined as: 

xphase (l - xphase) fJ2Gphase 
QF(phase) = ( ) 2 (5.1)

RT a(xphase) 

In (5.1), the term xphase (1-xphase )/(RT) is always positive. Hence the sign of the 

2 
term 82GphaseIa(xphase ) is equal to the sign of the function QF (phase). Moreover 

2 
8 2GphaseIa(xphase ) can be related to the curvature of Gphase in the following manner. By 

definition, 

curvature of Gphase with respect to the composition xphase = { [ BGphase ]2}3/2 (5.2) 

1+ a(xphase) 

In (5.2) the denominator is always positive. Hence, the sign of the curvature of Gphase is 

2
same as the sign of 82GphaseIa(xphase ) • 

For a phase to be stable the stability function should possess a positive value. In 

other words QF (phase) > 0 in the stable phase region. Further, one can say that the 

curvature of Gphase with respect to the composition is positive in the stable phase region. 

Hence, by checking the sign of the function QF (phase) one can detect the topology of 

the Gphase such as regions of convexity ( QF (phase) > 0) and concavity ( QF (phase) < 0 ). 
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The above-mentioned analysis using the function QF (phase) is carried on the 

Mg-Sb liquid for the description given in [86]. The values of the function QF (L) are 

calculated for the whole composition range at temperatures 500 K, 1000 K, 1500 K, and 

2000 K. 
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Figure 32: A plot of QF (L) Vs mole fraction of Sb at different temperatures for the Mg-Sb liquid 

description in [86) 

By looking at the sign of the function QF (L) in Figure 32, the regions of 

convexity and concavity of the concentration dependencies of the Gibbs energy of the 
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liquid phase can be detected. The composition ranges at 2000 K for the negative QF (L) 

in Figure 32 correspond to the composition ranges where inverted miscibility gaps are 

observed at 2000 K in Figure 31. 

For grasping the gravity of the problem encountered, let us recall that one of the 

most acclaimed features of the CALPHAD method is that the Gibbs energies of phases 

evaluated with its aid can then be used for estimating properties that were not measured 

experimentally. They can also be employed for calculating the phase boundaries beyond 

a range of conditions within which the experiments were performed. The latter case 

includes the computation ofmetastable continuations of phase boundaries, which are 

utilized for specifying boundary conditions when certain types of diffusion-controlled 

transformations is modeled. The example given for the Mg-Sb system suggests that 

accurately reproducing all experimental data cannot guarantee by itself that the Gibbs 

energies would automatically be suitable for such kind ofextrapolation. 

5.3 Possible approaches to the problem 
Before going into details about topologically constrained thermodynamic 

optimization in eliminating the inverted miscibility gap in the Mg-Sb system, let us 

investigate possible other approaches to eliminate the inverted miscibility gap, 

particularly for the Mg-Sb system. As explained in section 3.3.1 the best way ofaction is 

finding a better, physically feasible model. With respect to the Mg-Sb melt, it can be 

speculated that the Redlich-Kister formalism used in [86] is not particularly good because 

magnesium and antimony are chemically different. For melts formed by a typical metal 

(such as Mg) and an element demonstrating pronounced non-metallic characteristics 
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(such as Sb) it might be advantageous to use the partially ionic liquid model [37], which 

reflect a strong affinity between such components. The model (Mg2 
+ )P (Sb,Sb3

-, Va2-)Q 

used by Jonsson and Agren [125,126] did not lead to an inverted miscibility gap in the 

magnesium-antimony melt at elevated temperatures. 

Ifa better model is difficult to find, then various empirical or heuristic approaches 

can be tried. An interesting and very elegant semi-empirical method for getting rid of the 

inverted miscibility gap proposed by Kaptay [74] was explained in section 3.3.2. That 

method, however, is not capable ofhandling the situations when a phase becomes stable 

in a region, within which it should not exist. Besides, a utilization ofKaptay' s formalism 

in practice is hampered by a necessity to re-write source codes upon which Gibbs energy 

minimizers and procedures for optimization are based. 

An example of a heuristic approach can be found in [127], in which the results of 

optimization of the Bi-Zn system were presented. After it had been realized that the 

miscibility gap in the liquid phase should be convex, actual experimental points related to 

L1/L1 +L2 and L1 +L2 /L2 phase boundaries were substituted with specially constructed 

values, for which convexity was guaranteed. Those artificial values were used in the 

course of assessment. The trick, which helped to make the miscibility gap flat and 

convex, had an unexpected favorable side effect: as Figure 33 shows, the description of 

the liquid phase did not suffer from the existence ofan inverted miscibility gap at high­

temperatures. This circumstance is quite surprising since the liquid phase was modeled 

by using the Redlich-Kister formalism with as many as six A;+ Bl terms, i.e. with 

totally twelve coefficients. Usually, it is sagaciously believed that the expression 
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x (l - x)L (1-2xr (A; +B;T) with numerous coefficients is very prone to demonstrating 
i=O 

post-optimization artifacts, but it seems that the constraint imposed ("the miscibility gap 

must be convex") was an efficient remedy against an awkward behavior of the liquid 

phase at high-temperatures. 

0.9 1.0 

Figure 33: A plot of QF (L) Vs mole fraction of Zn at different temperatures for the Bi-Zn liquid 

description in [127] 

5.4 A non-thermodynamic example 
Let us use a non-thermodynamic example for clarifying the essence of the 

optimization under topological constraints and introducing a specific terminology. The 
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kinetic example was chosen deliberately for emphasizing that the problem under 

consideration is rather general and not related exclusively to the CALPHAD method. 

Let us consider an irreversible transformation of A to B . Assuming that this is a 

first-order reaction A-;. B, one can write the following equation for the rate of 

transformation w1 : 

(5.3) 


where CA is a concentration of A , t is time and k1 is the kinetic constant. Integration of 

(5.3) gives the expression relating a current concentration of A to time: 

(5.4) 


where C~ is the initial concentration of A. If the transformation is thought to be a 

second-order reaction 2A ---;. B , the rate of transformation w2 is described by the 

following equation: 

(5.5) 


where k2 is the kinetic constant. Integration of (5.5) results in the following expression 

showing how a concentration of A varies with time: 

(5.6) 


Now let us consider an imaginary experiment, in which concentrations of A were 

measured at various times. Even though a detailed mechanism of the reaction may be 

unknown, it is very tempting to describe kinetics of transformation by using physically 

feasible models, i.e. by employing (5.4) or (5.6). Figure 34 shows that none of these 
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equations provides an acceptable accuracy of fitting of "experimental data", which 

indicates that transformation of A to B is likely a multi-stage process. 

• "Experimental" data 

-- CA(t) = C~exp(-k/)
4 

0 0 ------- CA(t) =CA/(1 + 2k2CAt) 

' 'I.. ... I ~ 11 
I............... I 


O+-~~~___:==-,..~~---.~~~.-~~....---__J 

0 1 2 3 4 5 

Time, arbitrary units 

Figure 34: Fitting of kinetic data with physically feasible models 

If the mechanism of the transformation is revealed, then its rate can be described by an 

expression, which would not be as simple as (5.4) and (5.6), but which will be physically 

justified. What is one supposed to do if the mechanism is not comprehended yet? 

Although there is no unambiguous answer to this question, various mathematical 
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expressions can be tried for describing the CA (t) dependence. Let us take a polynomial 

fractional function as such expression: 

(5.7) 

Unknown coefficients a and b in (5.7) can be found by solving the following non-linear 

least squares problem: 

(5.8) 

where N is a total number ofmeasurements, c~xpk s the concentration of A measured at 

time tk, and mk = ( dC~xpkr2 
is the statistical weight of the k- th measurement. Before 

proceeding with the optimization, it is worth pointing to certain relationships existing 

between the adjustable coefficients. 

Since CA (t =0) =c1' it can be concluded that ao/bo =c1. However, such a 

conclusion is wrong since the value of C1 is known only approximately; the condition 

a0 / b0 =C1 should be replaced with requirement that a0 and b0 have the same sign. 

When time tends to infinity, the concentration of A should approach zero and remain 

positive. It can easily be shown that this requirement is satisfied if n > m , and am and bn 

have the same sign. 

Now let us recall that the transformation of A to B is deemed an irreversible 

one. If so, the following two conditions must be fulfilled: ( dCA/dtto < 0 and 
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lim ( dCA/dt) =o- .While the latter condition does not impose new constraints on ii and 
1-+oo 

b, the former one demands that a1b0 < a0b1• Since the constraints imposed by the 

physical nature of the transformation of A to B are related not to positions of individual 

experimental points but to such basic properties of the CA (t) function as its sign and 

shape, they can be named topological or geometrical constraints. An optimization under 

such constraints can be named isogeometrical or isotopological optimization. 

Now let us try to fit the "experimental" kinetic data by using the function 

Pm (t)/ P,, (t) defined by ( 5.7). Ifdue to some reasons it is intended to describe the 

"experimental results" very accurately, then it seems justified to use a polynomial 

fractional function with a great number of coefficients. Let us, for instance, try the 

function with n = 4 and m = 5. Although Figure 35 demonstrates that the experimental 

quantities were reproduced with superb accuracy, the mathematical "model" used is 

incorrect and should be rejected. This verdict is based on the fact that the reaction is 

irreversible and that, therefore, the concentration of A can only decrease in time. 
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• 	 "Experimental" data 
CA(t) =P4(t)/P5(t)

4 
------- CA(f) : p ( f)/p ( f)

1 2 

0-t-~~--.-~~---.~~~..--~~--.--~~--.-~ 

0 1 2 3 4 5 

Time, arbitrary units 

Figure 35: Fitting of kinetic data with formal mathematical expressions 

Figure 35 suggests that an acceptable description of experiment can be obtained if a 

function with a lesser number ofparameters is utilized. However, the approach "let us use 

different m and n and see what will happen" is not very attractive. Is it possible to arrive 

at a physically sound expression without being overly concerned with the number of 

adjustable coefficients in the polynomial fractional function? For answering this question, 

let us realize that an expression used for describing CA (t) can be declared physically 

feasible if at least the following conditions are satisfied 

CA (t) > 0, 0 :::; ( < 00 	 (5.9) 

dCA (t)Idt < 0, 0 :::; t < 00 	 (5.10) 
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The three conditions derived above ( a0 and b0 have the same sign, am and bn have the 

same sign and a1 < a0b1 ) were related to two limiting cases: t =0 and t ~ oo . Even ifb0 

the above conditions are fulfilled, it is not guaranteed that the conditions (5.9) and (5.10) 

are satisfied for an arbitrarily taken time. Moreover, even the following 2N conditions 

Pm (t;)/ P,, (t;) > 0, i =l, ... ,N 

{d ( l',, (t)/Pm (t)) jdtL,; < 0, i =1, ... , N 

do not ensure that (5.9) and (5.10) would be valid since the polynomial fractional 

function may still demonstrate an extremum or have a negative value between the 

experimental points or beyond the region where the experiment was conducted. For 

making an analytical expression describing the rate of transformation of A to B 

physically reasonable, a sufficiently dense mesh ofknots, r1 , j =1, .. .,M has to be 

introduced. Positions of the knots r 1 are not necessarily related to times t;, at which the 

concentrations of A were measured. It is quite possible that there will be several knots 

between t; and t;+i , and that the mesh will stretch well beyond tN • Once the mesh is 

generated, the following conditions can be imposed on the solution of the least-squares 

problem (5.8): 

Pm (r1)/P,, (r1 ) > 0, j =1, .. .,M 

{d { l',, (T) /Pm (T))jdT)r=r. < 0, j =1, ... ,M 
J 

The curvature of the Pm (t)/ P,, (t) function can be controlled in the same fashion. 

If, for instance, due to some physical reasons it is believed that the dependence CA (t) is 
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concave, additional topological constraints ( d 2 
( P,, (r)/Pm (r)) jdr2

) T;T. > 0, j =1, ... ,M 
J 

should be imposed. The essence of the method, which will be used in the following 

section for a re-optimization of the Mg-Sb system, is straightforward: introduce a 

sufficiently dense mesh ofknots, define topological constraints in the knots, and solve an 

optimization problem (in particular, a non-linear least squares problem) under these 

constraints. It is worth reiterating that the topological constraints are not related to the 

coordinated of discrete experimental points. They reflect such basic properties of an 

expression used for fitting as its sign, and signs of its first and second derivatives. 

5.5 Re-optimization ofthe Mg-Sb system 

5.5.1 Aim 
The assessment of the Mg-Sb system proposed in [86] is not completely 

satisfactory. Firstly, not all experimental data available were taken into account. For 

instance, an important paper by Zabdyr and Moser [128], in which activities of Mg were 

measured in antimony-rich melts in a wide temperature range by means of the EMF 

method, was cited in [86], but was not actually taken into account. As another example, it 

can be mentioned that only electromotive force measurements at 850°C reported in [121] 

were utilized, although Eckert et al. presented the dE/dT values at various compositions 

as well. 

Secondly, instead of dealing with raw experimental data, the authors of [86] made 

use of "processed data". For clarifying this point, let us recall that Rao and Patil [120] 

employed the EMF technique for measuring activities of Mg in the liquid phase at 

different temperatures. Those quantities were used for calculating the enthalpy of mixing 
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of the liquid phase through the integration of the Gibbs-Duhem equation. Instead ofusing 

the values of activities directly, Balakumar and Medraj utilized the enthalpies of mixing, 

i.e. "processed data". A list of such examples can be continued. 

From this angle, it is not surprising that it was decided to re-assess the 

thermodynamic properties of the liquid phase in the Mg-Sb system by taking into account 

all literature data available. It should be highlighted that in this work, a complete full-

fledged re-evaluation of the magnesium-antimony system was not endeavored. In 

particular, the thermodynamic models proposed in [86] for a.-Mg3Sb2 and J3-Mg3Sb2 

remained intact. The reason is that this system was chosen as example, on which 

principles of optimization under topological constraints can be explained and 

exemplified. 

Moreover, the liquid phase was described by the Redlich-Kister formalism with 

the same number of terms as used in [86]. This was done deliberately for illustrating that 

the model for the liquid phase could be drastically improved without changing a number 

of adjustable parameters. 

5.5.2 Experimental data 
Table 1 specifies experimental observations utilized in the present assessment. In 

almost all works, activities of Mg in the melt were studied by using the EMF technique, 

except the examination [119], in which tensimetric measurements were carried out. 

Characteristics of invariant equilibria were taken from [20, 124]. 
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Table 1: Experimental data used in the present re-optimization of the magnesium-antimony system 

No. of points Data source Investigated region Experimental errors 

Activity of magnesium in the liquid phase 

1073 ::;; T ::;; 1173 8.T=2, Ax=0.01 
105 [121] 

0.03 ::;; XMg ::;; 0.9 M=3mV 

8.T = 2, Ax= 0.005 

T = 1133, 1193 
Af>~ = 0.0 lP~g [119]16 

0.34::;; XMg ::;; 0.9 

Af>Mg = 0.03PMg 

T=1123 8.T = 2, Ax= 0.005 
[129]8 

0.1::;; XMg::;; 0.9 M=2mV 

8.T = 2, Ax== 0.0005 

991::;; T::;; 1250 
XMg :;t: 0.511: M == 1.5 mV 65 [120] 

0.0582 ::;; XMg ::;; 0.511 

xMg == 0.511: M == 10 mV 

911::;;T::;;l016 8.T = 2, Ax== 0.001 
[128]155 

0.01::;; XMg::;; 0.14 M=2mV 

Enthalpy of mixing of the liquid phase 

T:::::925 8.T = 2, Ax= 0.015 
[130]2 

0.8::;; Xsb ::;; 0.85 8.(MI) = 500 J/mol 
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Investigated region No. of pointsExperimental errors Data source 

T = 1133 !l.T = 3 , ~ = 0.005 
[20]6 

0.1~Xsb~0.9 !l.(Ml)=0.065Ml J/mol 

Phase diagram 

T ~1273: !l.T = 2 

1273<T~1473: !l.T = 3 
0.05 ~ Xsb ~ 0.95 [123]28 

T > 1473 : !l.T = 4 

~=0.0025 

2.2·10-4 ~ Xsb ~ 0.01 [131]15!l.T=3, ~=0.001 

5.5.3 Unconstrained thermodynamic optimization 
In [86] the excess Gibbs energy of the liquid Mg-Sb was described as: 

(5.11) 


(5.12) 

One of the aims of the Mg-Sb re-assessment is to show that a wrong model description 

can be improved without changing the number ofadjustable parameters. Hence, initially, 

an unconstrained optimization was performed using the same number ofmodel 

parameters used in the assessment [86] for the Mg-Sb system. 
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The phase diagram presented in Figure 36 demonstrates a thermodynamically 

impossible shape of the liquidus line HCP+ L/L originating from the Mg melting point. 

Such a behavior is a clear indication that there is a miscibility gap in the liquid phase. 

1500 

1400 

1300 

~ ...= 1200 

1100 

1000 

soo-----......------.-----.-------.-----.-.----__,--__,­
o 0.1 0.2 0.3 0.4 0.5 0.6 0. 7 0.8 0.9 1.0 

Sb, mole fraction 

Figure 36: Phase diagram of the Mg-Sb system resulted from an unconstrained optimization 

After Thermo-Cale had explained that the miscibility gap should be taken into account 

(this can be done by eitherthe AMEND_PHASE_DESCRIPTION command in the 

GIBBS ENERGY SYSTEM module or the SPECIAL OPTIONS command in the 

POLY _3 module), the phase diagram presented in Figure 37 was calculated. 
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1500 

1000 

500-+-~.....-~--~--~-+-~.....-~...-~-.--~.....-~....-~~ 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Sb, mole fraction 

Figure 37: Phase diagram of the Mg-Sb system resulted (by the use of the Thermo-Cale command, 
AMEND_PHASE_DESCRIPTION) from an unconstrained optimization 

Moreover, a plot of QF (L) Vs mole fraction of Sb is drawn to find the possible 

temperature and composition regions of inverted misibility gap(s). An inspection of 

Figure 38 leads to a conclusion that another miscibility gap in the antimony-rich region 

will inevitably be observed at high-temperatures if additional composition sets are 

introduced. 
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Figure 38: A plot of QF \L) Vs mole fraction of Sb at elevated temperatures: for the unconstrained 

optimization 

From this angle, the unconstrained optimization undertaken in this work is not better than 

that reported in [86]. 

5.5.4 Topologically constrained thermodynamic optimization 
Let us try to make the optimization results more reasonable. Firstly, let us focus 

attention on the HCP+ L/L liquidus. What is known about this phase boundary? It is 

known that temperature decreases when the fraction of antimony increases, i.e. that the 

derivative taken along this boundary is negative 
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dTliquidus 

L <0 (5.13) 
dxsb 

Let us introduce a reasonably dense mesh ofknots x~b = 0.005, 0.010, ... ,0.100 and 

demand that the condition in (5.13) is satisfied in these knots. Syntax adopted for POP 

files allows one to do this easily: 

CREATE_NEW _EQUILIBRIUM 970 1 

ENTER_ SYMBOL FUNCTION DTDX=T.X(SB); 

CHANGE STATUS PHASE LIQUID= FIXED 1 

CHANGE STATUS PHASE HCP A3 =FIXED 0 

SET_CONDITION P=1E5 X(SB)=0.005 

LABEL ADER 

EXPERIMENT DTDX <O: lE-6 

TABLE HEAD 971 

CREATE_NEW _EQUILIBRIUM@@ 1 

CHANGE STATUS PHASE LIQUID= FIXED 1 

CHANGE STATUS PHASE HCP A3 =FIXED 0 

SET_ CONDITION P=1E5 X(SB)=@l 

EXPERIMENT DTDX <O: 1 E-6 

LABEL ADER 

TABLE VALUES 

0.010 
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TABLE END 

It is worth mentioning that the mesh introduced is not related to the positions of 

experimental points along the HCP+ L/L liquidus. This, in particular, means that the 

density of the mesh can be increased if necessary. Figure 39 shows the phase diagram 

resulted from the optimization when the condition (5.13) was employed. 

1500 

1400 

1300 

~ 
i-: 1200 

1100 

1000 

aoo-----..--------------------------------­
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 .0 

Sb, mole fraction 

Figure 39: Phase diagram of the Mg-Sb system resulted from an optimization in the course of which 
topological constraints were imposed on the HCP+L/L liquidus 
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Figure 39 evinces that the miscibility gap in the Mg-rich region has been suppressed. 

Moreover, as can be seen from Figure 40, the tendency for separation in the liquid phase 

in the Sb-rich region is now noticeably weaker compared to the situation shown in Figure 

38. Although the tendency for separation in the liquid phase was diminished, a non-

existing miscibility gap still presents in the Sb-rich region at elevated temperatures. This 

situation is indicated by the negative QF (L) values in the Sb region at 2000 K in Figure 

40. 

---­.... 

-

Temperature, K 
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----­ 1000 
········ 1500 
-·-·-·-· 2000 

....J 

Lr::" -5-+-~-r-~r----.r---"T~----r~---.--~-.-~-r-~r---i 
0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

L 
XSb 

Figure 40: A plot of QF (L) Vs mole fraction of Sb at elevated temperatures: topological constraints 

were imposed on the HCP+L/L liquidus 
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It is worth emphasizing that exactly the same array of experimental observations was 

used in the optimization, and that statistical weights ofdata points were not altered. The 

only thing brought into the optimization was the knowledge about the behavior of the 

liquidus line originating from the melting point of Mg. 

In order to eliminate the miscibility gap in the liquid phase in the Sb-rich region at 

high-temperatures, let us introduce two meshes. There are no rules regulating how dense 

these meshes should be. In this work, the following knots were used: 

Xsb = 0.02, 0.04, ... ,0.98 (49 x-knots), T = 800, 1100, ... ,2000 (5 T-knots). Here one 

could wonder why the T-mesh is limited to 2000 K? The reason for the 2000 K maximum 

limit for the T-mesh is that the lattice stabilities for both Mg-Sb are defined only up to 

2000 K. 

Now let us imagine 49 vertical lines passing through the x-knots and 5 horizontal 

lines passing through the T-knots. These lines intersect in 245 points. Let us require that 

the second derivative of the Gibbs energy of the liquid phase is positive in all these 

intersections. This condition can be formulated by using the syntax adopted for POP files: 

TABLE HEAD 500 

CREATE_NEW _EQUILIBRIUM@@ 1 

CHANGE STATUS PHASE LIQUID= FIXED 1 

SET_CONDITION P=1E5 X(SB)=@l T=@2 

EXPERIMENT QF(LIQUID) > O:lE-6 

LABEL ATOP 

TABLE VALUES 
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0.020000 800.00 

0.040000 800.00 

0.960000 2000.00 

0.980000 2000.00 

TABLE END 

By introducing such constraints, the optimization procedure was in fact explained 

in explicit and unambiguous terms how the Gibbs energy of the liquid phase was 

supposed to behave at high-temperatures. The phase diagram resulting from this "assisted 

assessment" and shown in Figure 41 is as good as that in Figure 39. 
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Figure 41: Phase diagram of the Mg-Sb system resulted from an optimization in the course of which 
2 

topological constraints were imposed OD the HCP+L/L liquidus and OD the sign of 82
GLIa(XL ) 

Figure 42 evidences that high-temperature miscibility gaps do not spoil any longer the 

analytical expression for the Gibbs energy of the liquid phase, which is still the habitual 

Redlich-Kister expression with the interaction parameters given in the last column of 

Table 2. 
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Figure 42: A plot of QF (L) Vs mole fraction of Sb at elevated temperatures: topological constraints 

were imposed on the HCP+L/L liquidus and on the sign of 82GLIa(XL )2 

At 2000 K, the positive QF (L) values, which can be seen from the above Figure 42 

shows that the optimization under topological constraints suppressed all inverted 

miscibility gaps. 
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Table 2: Numerical values of the interaction parameters resulted from unconstrained and 
constrained optimizations of the Mg-Sb system (a reference to a figure showing a phase diagram 

calculated with the given set of coefficients is given in the parentheses) 
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Ao -172660 .521 -204268.913 -190531.145 -196161.385 

Bo 44.865 77.7094660 61.6683793 68.1905674 

IL 
A1 -157139.842 -20740.8120 -100388.175 -72628.8468 

B1 123 -33.5415735 59.5786533 27.0279537 

2L 
A2 29500 642.281385 36066.3661 37618.5447 

B2 10.637 49.3656803 9.69794077 7.18917507 

3L 
A3 127386.016 -42532.6243 89854.6138 53838.3015 

B3 -98.78 93.3910054 -59.9231317 -19.3458399 
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5.5.5 Discussion 
Figure 43 shows that the calculated molar Gibbs energies at T =1000 K are quite 

similar for various assessments, which is not surprising since all assessments took into 

account numerous experimental observations in the vicinity of this temperature. The 

Gibbs energies, however, become very different at T = 2000 K . 
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Figure 43: Comparison of the molar Gibbs energies of the liquid phase at 1000 K resulted from 
unconstrained and topologically constrained optimizations 

Figure 44 depicts a beneficial effect the topological constraints have upon the behavior of 

G;, at elevated temperatures. 
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Figure 44: Comparison of the molar Gibbs energies of the liquid phase at 2000 K resulted from 
unconstrained and topologically constrained optimizations 

The example considered means that one already has useful tools within the 

PARROT module for struggling against the "phantoms ofoptimization." If, for instance, 

a solid phase a becomes stable again at high-temperatures, i.e. at temperatures when only 

the liquid phase should exist, one can introduce x- and T-meshes and require that in 

corresponding points the molar Gibbs energy of the solid phase must be greater than that 

of the liquid phase. In the example above, both the x-mesh and the T-mesh were 

equidistant ones, but a more sophisticated choice ofpoints, in which the condition 
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G~ (x,T)-G; (x,T) < 0 is to be enforced, can be made. If the liquid phase becomes 

unnaturally stable at low-temperatures, then by using the same approach, its molar Gibbs 

energy can be forced to be greater than the molar Gibbs energy of any solid phase. 

However, there are cases, for which Thermo-Cale in general and its PARROT module in 

particular are not equipped with necessary tools. If, for instance, a phase boundary is 

burdened with an excessive number of inflexion points, then one might want to control 

the curvature sign in knots introduced. Regretfully, second derivatives cannot be directly 

computed by Thermo-Cale, which means that the sign of d 2T/ dx2 cannot be forced to be 

positive or negative in certain knots. 

5.6 Conclusions 
A classical CALPHAD-style assessment is essentially a solution of an 

unconstrained non-linear least squares problem. The optimality criterion requires that the 

sum ofweighted residuals should be minimal, which means that nothing can be used in 

the optimization procedure but discrete results of experimental observations and 

statistical weights assigned to them. In this chapter, it is proposed to take into account not 

only quantitative data but also qualitative knowledge about the behavior of the Gibbs 

energies of phases and phase boundaries. 

By using a re-optimization of the Mg-Sb system as an example, it was shown that 

topological constraints defined on a specially constructed mesh of knots could 

dramatically improve the reliability of the CALPHAD method. 
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A reasonable temperature range to introduce topological constraints could be a 

temperature range within which the lattice stabilities are defined for both components of 

the system. 

It also was demonstrated that at least one of the existing programs tailored for 

carrying out the thermodynamic assessment, namely PARROT, already has features 

allowing the optimization under topological constraints. 
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CHAPTER6 

Topological constraints in quick corrections to eliminate 
inverted miscibility gaps 

6.1 Introduction 
The successful application of topological constraints in eliminating inverted 

miscibility gap during thermodynamic optimization was presented in CHAPTER 5. 

Generally, correcting a phase description from such a full-scale thermodynamic 

optimization is a time consuming process. To make this correction process faster, two 

quick correction methods are proposed in this chapter. 

The quick correction methods proposed in this chapter eliminate inverted 

miscibility gaps in the liquid phase at elevated temperatures via a computationally 

straightforward correction of the excess Gibbs energy of the melt are proposed. Both 

methods employ optimization under topological constraints controlling the sign of the 

second derivative of the Gibbs energy ofmixing with respect to concentration. Their 

applicability is exemplified on the Sn-Zr system whose thermodynamic description 

incorporated in the COST 507 database leads to an unintended inverted miscibility gap. 

6.2 The Sn-Zr system 
The selected Sn-Zr system to show the workability of the quick correction 

methods proposed in this chapter, has been assessed three times. As Table 3 shows, in all 

n 

cases, the Redlich-Kister formalism /!J,.exG =x(I-x) LL; (I-2xr with either constant or 
i=O 
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linearly depending on temperature interaction parameters, Li =Ai + BiT, was employed 

for representing the properties of the melt. 

Table 3: Interaction parameters used in previous assessments to describe the excess Gibbs energy of 
the liquid phase in the Sn-Zr system 

OL IL 2L Data source 

-45520-95.46T -80000 +82.11 ST -120000 +80.0273T [79] 

-172073-48.377T Not used Not used [132] 

-172881 -1108 Not used [133] 

2500 

2000 

-~ 
i=' 1500 

1000 

Liquid 

500 -11-------t 

B II' 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Zr (mole fraction) 

Figure 45: Phase diagram of the Sn-Zr system as presented in [79] 
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A calculated phase diagram of the Sn-Zr system shown in Figure 45 is identical to 

that in [79]. This is a normal looking diagram, but its normality stems from the fact that 

neither in 1996, when the system was optimized by Korb and Hack, nor in 1998, when 

the COST-507 database was made public, unintended equilibria were being hunted for. 

After a hunting season had been opened by an availability of the next-generation 

phase diagram calculation software, an inverted miscibility gap in the liquid phase was 

discovered (see Figure 46). 
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Figure 46: Phase diagram of the Sn-Zr system with an inverted miscibility gap discovered 
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It should be admitted that the analytical expressions for the excess Gibbs energy of the 

liquid phase proposed in two subsequent re-assessments of this system [132] and [133] 

do not result in the aforementioned artifact. 

6.3 Quick correction method (I): Using a system's fingerprint during 
optimization 

6.3.1 Aim 
Instead of discarding the thermodynamic description of the tin-zirconium system 

proposed in [79] and forgetting it ever existed, let us try to correct it by retaining the 

thermodynamic properties ofBCT, HCP and BCC substitutional solutions as well as the 

properties of all three intermediate stoichiometric phases, but changing the description of 

the liquid phase. An alteration of the old model should be performed in such a manner 

that both the phase diagram and thermodynamics of the liquid in x - T regions distant 

from the region of immiscibility remain virtually indistinguishable from those reported in 

[79]. It should be accentuated that this goal can in principle be achieved by a full-fledged 

re-optimization of the Sn-Zr system under topological constraints similar to how it was 

done in chapter 5. However, neither TCM nor POP file is likely available. Collecting all 

publications on thermodynamic properties and conditions of phase equilibria and 

meticulously analyzing them for building a new experimental data file is a lengthy and 

boring process. 

6.3.2 Fingerprinting the system 
The idea pursued in quick correction method (I) is a combination ofa constrained 

optimization and a fingerprint of the system. By analogy with a real fingerprint 
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differentiating one individual from others, let us adopt that particularities of invariant 

equilibria distinguishes one binary system from another. The liquid phase participates in 

four invariant reactions in the Sn-Zr system whose characteristics are given in Table 4 

( xc, is the mole fraction ofZr in phase l;, all temperatures are in Kelvin). 

Table 4: Characteristics of invariant equilibria in the Sn-Zr system 

Invariant equilibrium Its characteristics 

Eutectic L p BCT + Sn2 Zr XL = 0.0056 ' T = 502.01 

Peritectic L + Sn3 Zr5 p Sn2 Zr XL= 0.1894' T = 1433.15 

Distectic L p Sn3 Zr5 

XL= XSn3 hs = 0.625, Tm= 2244.99, 

tJ!SniZrs~L (Tm)= 89604 

Eutectic L p Sn3 Zr5 + BCC XL = 0.8292' XBCC = 0.8444' T = 1868.52 

In a majority ofcases, a table similar to Table 4 is an inevitable part of a 

publication devoted to the optimization of a certain system. This implies that a fingerprint 

of the system is readily available, and that it can directly be used for creating a POP file. 

While a canonical POP file contains genuine experimental data, a POP file built in our 

case will be composed of processed data. 

It is worth emphasizing that one is not prohibited from putting up an extended 

fingerprint through carrying out simple calculations based on the model published. For 

instance, it can be speculated that not only the compositions of three phases participating 

in an invariant reaction are important, but a heat effect of this reaction as well. It is quite 
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natural to see the enthalpy of a congruent melting of Sn3 Zr5 in Table 4, but it would not 

be bizarre to have this table furnished with such quantities as 

!il!L--+Sn3 Zrs+Bcc =31454 J/mol (mol in J/mol means one mole of phase in the left-hand 

side of a corresponding reaction equation), and to use these enthalpies of invariant 

transformations in the course of assessment. Also, it will not be very challenging, for 

instance, to calculate liquidus temperatures for a series ofmole fractions and then to them 

during optimization. In other words, the term fingerprint is not strictly defined. One can 

add more and more dermal papillae by calculating more and more thermodynamic 

properties and fragments of phase diagram for a system of interest by using a published 

model of this system. All these computations are to be performed far from an inverted 

miscibility gap that has to be suppressed because near it the model is not trusted. 

6.3.3 Procedure 
Let us recall that the old model of the liquid phase, i.e. the model to be improved, 

contains six coefficients given in Table 3. Ifa number ofnew interaction parameters to be 

found for the liquid phase is the same (three), and if each of them still linearly depends on 

temperature, then an optimization procedure fed with data from Table 4 will likely result 

in new coefficients virtually indistinguishable from the old ones. Clearly, something else 

is to be used in the course ofoptimization. This "something" must reflect the intention to 

suppress the inverted miscibility gap seen in Figure 46. More specifically, the condition 

a2G/8x2 > 0 must be satisfied in a certain region Q. Technically, this can be achieved 
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by requesting that QF(L) > 0 in this region (the relationship between 82G/ax2 and 

QF(L) has already been explained in CHAPTER 5). 

~ 

..... 

0 0.1 

Figure 47: Location of knots at which the topological constraint 82G/ax2 was used 

Although the aforementioned region Q within which the topological constraint 

a2G/ax2 > 0 must be fulfilled can hardly be chosen in a rigorous and unambiguous 

manner, a reasonable choice can usually be made quite easily. A selection of the region 
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for the Sn-Zr system is illustrated in Figure 47. It is worth accentuating that a continuous 

topological constraint 

(6.1) 


cannot be directly employed. Instead, its discrete modification 

(82G/0x2 )rlx=x; > 0, (x;,1;) C Q, i =l, ... ,N (6.2) 
T=T, 

should be utilized. By increasing a number ofknots, N , and by arranging them in such a 

manner that the maximum Euclidian distance between two knots is getting smaller when 

N is increasing, one can always ensure that ( 6.2) will work quite similar to ( 6.1 ). There 

is no rigorous and unambiguous fashion in choosing the knots within n . In a simple case 

when n is a rectangle in the x - T space, one can introduce Nx equidistant x - knots 

and Nr equidistant T - knots , and then use N = Nx x Nr pairs of (X;, i;) needed in ( 6.2). 

As Figure 47 illustrates, in the case under consideration, n is comprised of two 

rectangles 0 1 and02 .Intotal, N=N(n1)+N(n2 )=19x11+19x7=342 (x;,1;) pairs 

are used in (6.2). Despite this large number, only a fraction of topological constraints is 

likely active. In particular, they are inactive when x ~ 0 or x ~ 1 since the liquid phase 

is stable in dilute solution regions (the term RT/(x(l-x)) in 82G/8x2 dominates). 

What will happen ifthe Redlich-Kister formalism with three interaction 

parameters linearly depending on temperature is used? It can be anticipated that since the 

topological constraints are imposed, the phase diagram of the Sn-Zr system as well as 

low-temperature thermodynamic characteristics of the liquid phase may differ from those 

115 




PhD Thesis - T. Balakumar McMaster University- Materials Sci. and Eng. 

resulting from [79], i.e. that they may not be in a good agreement with the experimental 

data the optimization [79] was based upon. If such a "spoiling effect" of constrained 

optimization is observed, a greater number of adjustable coefficients can be tried. At first 

glance, this contradicts the recommendation "Never increase the number of model 

parameters without an ultimate necessity" adopted by the CALPHAD community. This 

advice is reasonable in the case ofunconstrained optimization, indeed. However, it 

should not be blindly followed in the case when topological constraints imposed on the 

Gibbs energy do not allow it to behave weirdly. 

The following expression was employed for building a new excess Gibbs energy 

of the liquid phase: 

n . 

L\exG =x(l-x)~ ;L(l-2x)', ;L =A; +B;T +C;TlnT (6.3) 
i=O 

In addition to the basic fingerprint itemized by Table 4, an extended fingerprint 

was also made use of. The only difference between them is that in the latter case, 8 points 

belonging to the L/L +Sn2 Zr liquidus were taken into consideration during the 

optimization (see Figure 47). The thermodynamic assessment was carried out by using 

the PARR OT module of Thermo-Cale. 

6.3.4 Results 
Optimal numerical values ofmodel coefficients resulting from the optimization 

are presented in Table 5. FP means that the basic FingerPrint was utilized; EFP delineates 

that the Extended FingerPrint was in use. 
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Table 5: Statistically optimum values of adjustable parameters in (6.3) for describing the excess 

Gibbs energy of the liquid phase by two alternative models 


i A; B; C; 

FP 

0 -49989.3 -72.3831 -2.80083 

1 -90254.1 209.444 -16.5085 

2 -165574 515.420 -55.1953 

3 55.6598 -0.350371 -0.342975 

EFP 

0 -56658.0 -0.668241 -11.9166 

1 172907 644.961 -73.2846 

2 -89001.6 56.6216 Not used 

At first glance, for both FP and EFP models, a number of coefficients is 

dramatically greater than in the original model [79]. However, a direct comparison of 

these numbers is not justified since constraints employed do not allow one to treat the 

coefficient as truly independent. 
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Figure 48: Phase diagrams constructed with the old and new models 

Phase diagrams computed with various models are compared in Figure 48. A 

usage of the basic fingerprint led to the phase diagram, which is in a good agreement with 

the original one except the position of L/L + Sn2 Zr. By employing the extended 

fingerprint, this defect was fully eliminated. Concentration dependencies of the Gibbs 

energy of mixing, the enthalpy ofmixing and activities of Sn and Zr resulting from 
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various models were compared at three different temperatures: at 1250 K (far from the 

inverted miscibility gap), at 1750 K (approaching the gap) and at 2750 K (the original 

model is invalid). As seen from Figure 49-Figure 51, low-temperature thermodynamic 

properties predicted by two new models closely resemble those coming from the old one. 
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Figure 49: Molar Gibbs energies of mixing at 1250 K resulting from the old and new models 
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Figure 50: Molar enthalpies of mixing at 1250 K computed with the old and new models 
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Figure 51: Activities of Sn and Zr in the liquid phase at 1250 K calculated with the old and new 
models 
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According to Figure 52-Figure 54, even when the inverted miscibility gap is being 

approached, i.e. at T =1750 K, one still has a fairly good agreement between the old and 

new models, which is hardly surprising since a necessity to reproduce the characteristics 

of invariant equilibrium firmly holds new models in place. 
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Figure 52: Molar Gibbs energies of mixing at 1750 K resulting from the old and new models 
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Figure 53: Molar enthalpies of mixing at 1750 K computed with the old and new models 
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Figure 54: Activities of Sn and Zr in the liquid phase at 1750 K calculated with the old and new 
models 
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As Figure 55-Figure 57 suggest the new models deviate significantly from the old model 

at T = 2750 K. This departure is exactly what is needed, because without such a 

divergence the artifact could not be suppressed. 
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Figure 55: Molar Gibbs energies of mixing at 2750 K resulting from the old and new models 
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Figure 56: Molar enthalpies of mixing at 2750 K computed with the old and new models 
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Figure 57: Activities of Sn and Zr in the liquid phase at 2750 K calculated with the old and new 
models 
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6.3.5 Discussion 
It can be asked why only two particular new models are presented and discussed 

in this work, why a specific number of interaction parameters was utilized, etc. Before 

answering these questions explicitly, let us realize that the situation is not different from 

that encountered when the classical CALPHAD-type optimization is proceeded. In both 

cases, if a convenient mathematical formalism rather than a physically sound model is 

used, there is no guidance in choosing the best expression for the excess Gibbs energy a 

priori. Most of the time, a great deal of expressions is tried, and the best one as often as 

not results from trials and errors as well as from experience and sheer luck. The two 

particular models (see Table 5) are presented here because they work. Their existence per 

se stipulates that if a published assessment of a system is not perfect in the sense that it 

leads to a high-temperature inverted miscibility gap, then this blemish can be gotten rid 

of by performing an optimization under topological constraints on data easily extractable 

from the same publications. From the practical angle, this method is not computationally 

cumbersome and time-consuming. 

6.4 Quick correction method (II): Retaining a correct description ofthe 
molar Gibbs energy at lower temperatures while suppressing inverted 
miscibility gaps at elevated temperatures 

6.4.1 Aim 

Let G(x,T) be a function describing the Gibbs energy of the liquid phase in a 

binary system. This function resulted from a thermodynamic optimization of the system. 

It provides a good match between calculated and experimental phase diagrams as well as 
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between calculated thermodynamic properties and their observed counterparts. The only 

misfortune is that G(x,T) leads to an inverted miscibility gap at elevated temperatures. 

Our goal is to construct a new function G ( x, T) , which will be similar to G at 

relatively low-temperatures (e.g. inside a temperature region within which quantities used 

in assessment were acquired) but which will not lead to the unwanted artifact. 

6.4.2 Defining the similarity 
First and foremost, it is necessary to define the exact meaning of the term 

"similar". When a phase diagram is calculated, both G and iJG/iJ:x are used. 

Thermodynamic characteristics one is normally interested in include chemical potentials 

(or activities), enthalpy, entropy, heat capacity along with corresponding partial molar 

A 

properties. It can be concluded that if one declared G and G as similar, then in addition 

to their proximity per se, propinquities of at least the following derivatives should be 

ensured: iJG/iJx (chemical potentials, phase diagram), iJG/iJT (enthalpy and entropy), 

o2G/iJxiJT (partial enthalpies and entropies), o2G/iJT2 (heat capacity) and iJ3G/iJxBT2 

(partial heat capacities). In general, if G and G are to be made similar, minimization of 

the following objective function is to be considered: 

0p+qGex 0p+q(;ex 

iJxPiJTq iJxPiJTq 
<I>= LLapq ~---~ (6.4)

p;Qq;Q ppq 

where apq is a dimensionless weight (a relative importance) allocated to a corresponding 

derivative, and ppq is a scalar whose value is equal to unity and whose dimensionality 
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coincides with the dimensionality of ap+qGex . It is natural to normalize the weight, 
fJ:xPfJTq 

LLa pq =1 , and to demand that a 00 * 0 since a function cannot be restored from its 
p q 

partial derivatives. lltp, If II is a norm chosen for quantifying the difference between 

functions tp and If/. If the Euclidian norm is habitually chosen, then ll'P,lf/11 = ( tp-lf/ ) 
2 

• If 

.... " n " 
G is a linear combination of certain basis functions, i.e. if Gex =Lg; (x,T)xC;, then 

i=l 

the minimization problem (6.4) can be written as <1>(C,ii) ~min. The presence of 

weights increases a dimension of the minimization space thus making the problem not 

easy to solve. 

Instead of dealing with (6.4), let us consider a much simpler minimization 

problem in which only functions and their first derivatives with respect to the mole 

fraction are taken into account: 

(6.5) 


where 0~a<1. / 0 and / 1 in (6.5) are defined by the following expressions: 

Tzl ~ ~ 2 

/ 0 = JJ(Gex(x,T,C)-Gex(x,T,C)) dxdT (6.6) 
r; 0 

2 

2
T I (fJGex (x T C) a(;ex (x,T,c)J 

11 =J J ' ' dxdT (6.7) 
T. 0 ox ax 

I 
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T; and I; are the lower and upper limits of a temperature interval within which a new 

excess Gibbs energy is to be similar to the old excess Gibbs energy. Integration limits in 

the second integral mean that G should be made similar to G within the whole range of 

mole fractions from 0 to 1. 

6.4.3 Procedure 
Let us define T1 and T2 as the lower and upper limits of a temperature region 

within which the new function [;ex should be correct in the sense that it does not lead to 

an inverted miscibility gap. Such a requirement can be formulated as the following 

constraint: 

(6.8) 

where RT/(x(1-x)) is the second derivative of the ideal Gibbs energy ofmixing. 

In general, (6.5) and (6.8) represent a non-linear least squares problem with non­

linear constraints whose solution may involve a numerical integration. If, however, both 

Gex and [;ex are linear with respect to corresponding parameters C and C, i.e. if 

m n 

Gex = Lh(x,T)xCi, (;ex= Lg; (x,T)xC; 
i=I i=I 

and if the basis functions f; and g; are integrable, then the problem can be reduced to a 

linear least squares problem with linear constraints. This problem becomes especially 

undemanding for the case when the Redlich-Kister formalism with interaction parameters 

linearly depending on temperature is utilized for describing both Gex and [;ex , i.e. when 
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m . 

Gex = x(l-x)~)l-2x)' ( C2;+1 + C2;+2T) (6.9) 
i=O 

n 

(;ex =x(l-x)~)l-2x)'(c2;+i +C2;+2T) (6.10) 
i=O 

For finding the minimum of the objective function <I> in (6.5), one has to solve 

the following system composed of 2 ( n +1) equations: 

a<I>/BC2k+2= (1-a)x 8!0 / BC2k+2+ax a1JBC2k+2 = 0, k= 0, .. .,n (6.11) 

fJ<l>/8C2k+I = (1-a)x8J0 / 8C2k+I +ax BJJ8C2k+I = 0, k = 0, .. .,n (6.12) 

By using the expressions (6.6), (6.7), (6.9) and (6.10) in (6.11) and by carrying out 

tedious but straightforward rearrangements and simplifications, one arrives at a 

2 ( n - l) x 2 ( n - l) system of linear equations with respect to C.For revealing the 

structure of this system, it is convenient to handle it as a combination of two systems of 

equations with one corresponding to partial derivatives with respect to / 0 , and another 

related to partial derivatives with respect to / 1 • 

The first system is composed of the following 2 ( n - l) equations: 

(6.13) 

n n m m

L c2i+1~2'1'2 <; + k) L c2i+2~3'1'2 (; + k) L c2i+l~2'1'2 (; + k) I c2i+2~3'1'2 (i + k)
i=O + i=O _ i=O +-i=_O______ 

2 3 2 3 

(6.14) 
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where k varies from 0 to n, /:i =T2 - I; , /:i2 =7;2 - 7;2 , and /:i3=T} - 7;3 . A function 

lf/2(!) defined for an integer non-negative argument is: 

1+ 1)'I 2 I ( ­
I = x2 1-x 1-2x dx = 

lf/2() f0 ( ) ( ) 4(1+/)(3+/)(5+/) 


The second system looks even scarier, but it is still a simple system of linear 


A 

equations with respect to unknown coefficients C : 

i=O i=l 

m n 

=.Lc2i+11:i(lf/0(i + k + 2)-2klf/1 (i +k))+ _L2c2i+l1:i(-ilf/1 (i +k)+ 2iklf/2 (i + k-2)) 
i=O i=l 

(6.15) 
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n ,... n "' 

:Lc2i+1'1.2(l//o (i + k+ 2)-2kl/f1(i +k)) :L2c2i+1'1.2(-il//1(i + k)+ 2ikl/f2(i + k-2)) 
i=O +-'-i=""-1------------­

2 2 
n n 

:Lc 2i+28 3 (l//o (i +k + 2>-2kl//1(i +k>) :L2c2i+28
3 (-il//0 (i +k>+2ikl/f2(i + k-2>) 

+ i=O +-'-i=~l------------­
3 3 

m m 

:L c2i+28
3 

(l//o (i +k+ 2>-2kl//1 (i + k>) :L2c2;+283 (-il//o (i +k>+ 2ikl/f2 (i + k-2>)
+i=O +"""""i=~l_____________ 

3 3 

(6.16) 

where functions l//o {I} and l//i {I} defined for an integer non-negative argument are: 

I I 1+ ( -1)' 

l//o {I}= J(1-2x} dx = { }
0 2 1+/ 

1 
_ JI ) I _ 1+ ( -1)

1//1 (I) = x{1- x {1- 2x) dx - ( ){ ) 
0 4 1+/ 3+/ 

When (6.13) and (6.14) multiplied by 1-a are added to (6.15) and (6.16) multiplied by 

a , one ends up with a system ofequations from which all unknown 2 ( n+1) component 

of the vector C can be calculated. However, so far the constraint "No inverted miscibility 

gaps, please!" has not been taken into account. 

Let us take the second derivative of the right hand side of (6.10) and substitute it 

in (6.8): 
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RT n · ( A ) n . ( A A 


x(l-x) -2t;(i+1}(1-2x)' C2;+i +C
A 

2i+2T -2fri(1-2x)' C2;+i +C2;+ 2T
) 


(6.17) 
n 

+4x(1-x)~)(i-l){l-2xr2 
(c2i+l +C2;+2T) > 0, \ix E [0,1], VT E [r1, r2]


i=2 


The condition ( 6.1 7) can easily be rearranged to accentuate the fact that it is a 

A 

linear inequality constraint with respect to C : 

n n n )
C2;+i ( -~(i+l}(l-2x)'- ~i(l-2x)' +2x{l-x)~i(i-l}(l-2xr

2 

+C2;+2 (-~(i+ 1}(1-2x}i T- ~i(1-2x)'T+2x(l-x)~i(i-l}(t-2xr2 T) > 
RT 

2x{I-x} 

(6.18) 

The condition ( 6.18) is supposed to be valid at any point belonging to the 

0::::; x::::; 1 and r 1 ::::; T::::; r 2 rectangle. To make this condition suitable for applying in 

practice, "discrete constraints" should be introduced instead of the "continuous 

constraint" (6.18). This can be achieved in a fashion identical to that described in 

CHAPTER 5 as well as in the preceding section of this chapter: 

C,;., (-t,(i+1)(1-2x, )' - t,;(1-2x,)' +2x, (1-x,)t,i(i-1)(1-2x,y-') 

+Ci;.i (-t(i+1)(1-2x, )' T, -t.i(1-2x, )' T,, 


+2xp (t-xp )i>(i-t)(1-2xp f 2~J > r )' p =l,. ..,N,. q = t, ...,N, 

~ 2~1-~ 

(6.19) 
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If Nx and Nr are made sufficiently large, then an effect ofapplying constraints 

(6.19) will be quite similar to that ofemploying ( 6.18). All mole fractions and 

temperatures seen in (6.19) are confined: 0<xP<1, \Ip and r 1 ~ Tq ~ r 2 , Vq. 

From the computational viewpoint, the problem in hand is a linear least-squares 

problem with linear constraints. Finding a solution of such a problem is challenging 

neither algorithmically [134] nor computationally. 

For illustrative purposes, it was decided to use the following expression for the 

excess Gibbs energy of the liquid phase: 

2 

(;ex= x(l-x)L(1-2xr (C2;+i +C2;+2T) 
i=O 

It has the same number of interaction parameters as the model in [79], and all 

parameters linearly depend on temperature. Figure 58 shows the similarity region used in 

computations along with knots used in (6.19). 
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2400 •••••••••••••••••••••••••••••••••••••••••••••••• 
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Figure 58: Hatched area is a "similarity region" within which a new model is made similar to the old 

model.• are knots at which the topological constraint 82G/& 2 was employed 

It may seem surprising that some knots are situated within the hatched region, but this is 

not an internal contradiction: similarity between the old and new models is formulated in 

terms of their Gibbs energies and first derivatives with respect to mole fraction, while 

constraints are imposed on a new model only in terms of the second derivative. A Fortran 

program was written for solving the system (6.13)-(6.16) with constraints (6.19). 
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6.4.4 Results 
The optimum values of the interaction parameters found are: 

0L = -58256.9-86.4477T, 1L =-77303.0+80.2067T, 2L =-33005.8+18.4726T 

(6.20) 

The phase diagram of the Sn-Zr system calculated with (6.20) is matched against the 

diagram from [79] in Figure 59. 

2100 

1800 
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1­
1200 

900 
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~ 

300-+----.~--~-----~....----..__----~-.---+-

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
Zr (mole fraction) 

Figure 59: Phase diagrams constructed with the old and new models 
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An accord between two diagrams is not very impressive, which is hardly surprising since 

exactly the same number of coefficients was used in both expressions for the excess 

Gibbs energy. It can be said that this discrepancy is the price one has to pay for 

eliminating the post-optimization phantom without changing a mathematical essence of 

the old model. Temperature-independent enthalpies ofmixing are compared in Figure 60. 

0-.--~~~~~~~~~~~~~~~--. 

-2 
/ 

/--COST507 
-------corrected model / 

/ 

/ 
/Q) -4 / 

/ 

~ -6 

:::::; -8 

~ 

I 
I 

-C> -10 

-~ -12 
.~ 
E -14 

'+­
0 -16 
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-24-+-----,.---.-~.....-----,.---.-~.....-----,.---.-~-.---1 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Zr (mole fraction) 

Figure 60: Temperature-independent molar enthalpies of mixing computed with the old and new 
models 

A less wavy character of 8mix H (x) demonstrated by the new model can likely be 

attributed to the constraints employed. Concentration dependencies of the Gibbs energy 

of mixing and activities of Sn and Zr are compared at 1250 K (the old model can be 

trusted), 1750 K (a vicinity of the inverted miscibility gap is being approached), and 

136 




PhD Thesis - T. Balakumar McMaster University-Materials Sci. and Eng. 

2750 K (the old model is not reliable). As Figure 61-Figure 64 suggest, an agreement 

between the thermodynamic properties resulting from two models is quite satisfactory at 

low and intermediate temperatures. 
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0E -10-
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Figure 61: Molar Gibbs energies of mixing at 1250 K resulting from the old and new models 
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Figure 62: Activities of Sn and Zr in the liquid phase at 1750 K calculated with the old and new 
models 
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Figure 63: Molar Gibbs energies of mixing at 1750 K predicted by the old and new models 
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Figure 64: Activities of Sn and Zr in the liquid phase at 1750 K computed with the old and new 
models 
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Figure 65: Molar Gibbs energies of mixing at 2750 K predicted by the old and new models 
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A difference between absolute values of the Gibbs energies of mixing shown in Figure 65 

is not huge, but it is not a magnitude of the divergence that is important. 
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Figure 66: Activities of Sn and Zr in the liquid phase at 2750 K according to the old and new models 

It is significant that the new ~mixG ( x) is always convex downward while the old one is 

not. A beneficial effect of the topological constraints is clearly seen in Figure 66. Since 

oai IOx; > 0, i =Sn, Zr ' the liquid phase is internally stable. 

6.5 Conclusions 
Two approaches proposed in this chapter are intended for a computationally not 

challenging elimination of an inverted miscibility gap in the liquid phase unexpectedly 

discovered in a published assessment of a system. Both methods utilize the same idea. A 

new expression for the excess Gibbs energy of liquid was constructed in such a manner 

that it closely resembles the old model within a lower temperature region where no 
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questionable features are observed (usually it is related to the region where experimental 

observations used for optimization were acquired) but differs from the old formula at 

higher temperatures being free from the unwanted artifact. 

When the first tactic is applied, the similarity between the old and new models is 

provided by utilizing the old formula to calculate characteristics of invariant equilibria 

involving the liquid phase (and, if time allows, other quantities) and then by using this 

information to perform a topologically constrained optimization leading to the new 

expression. When the second scheme is implemented, the similarity is provided by 

minimizing the differences between the old and new models and their partial derivatives 

with respect to the mole fraction within a certain x - T rectangle. 

In both cases, the absence of inverted miscibility gaps is guaranteed by making 

the Hessian of the Gibbs energy positive definite. While the first method has a fair chance 

to be tried by the CALPHAD community, the second method seems to be too extravagant 

to have a similar fate. 
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CHAPTER7 

Undulated phase boundaries 

7.1 Introduction 
Usually, an inflection point on a phase boundary is considered as an unambiguous 

indication that one of phases participating in the equilibrium is internally unstable, i.e. 

that it is prone to separation. 

/ 
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Figure 67: A metastable miscibility gap in the liquid phase (dashed curve) superimposed on the 
equilibrium Sn-Zn phase diagram 

For example, the phase diagram resulting from thermodynamic assessment of the 

Sn-Zn system by Fries and Lukas [79] is shown in Figure 67 (solid lines). Let us notice 
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an inflection point on liquidus. A traditional way of explaining such a shape (known as an 

"S-shape") is to assume that the liquid phase is prone to separation at temperatures below 

the liquidus. A dashed line representing a metastable miscibility gap in the liquid 

suggests that in this particular case, the rationalization is valid. 

In this chapter, it is shown that such an explanation is not universal. This is done 

by deriving general expressions for the slope and curvature of a phase boundary for the 

case when a binary solution is in equilibrium with a stoichiometric binary phase. Then 

these expressions are simplified by assuming that the solution is ideal. Finally, through a 

straightforward mathematical analysis, a condition resulting in the appearance of an 

inflection point is formulated. 

7.2 Calculation ofslope and curvature ofthe phase boundary 
Let us consider the equilibrium between a binary solution phase L and a binary 

stoichiometric phase a as shown in Figure 68. 

Tem erature 

T -{--­
. 

a-phase 

.....______________...,.Composition 

A B 

Figure 68: A schematic diagram shows the phase equilibrium boundary between a solution phase L 
and a stoichiometric phase a in an imaginary A-B binary system 
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For the sake of determinacy, let us assume that L is a simple single lattice substitutional 

solution. The Gibbs energies of L and a. are given by (7.1) and (7.2), correspondingly: 

(7.2) 


8.G;0 Y is the Gibbs energy of transformation of the i-th component from the structure 

associated with its reference state to the structure of the y phase. A general expression 

The condition of equilibrium between L and a. can be written as: 

(7.3) 


. am+n<p
In (7.3) and below, the notation <pLL. .. Lrr... r = L m is used for making expressions 

~~ a(x) arn 

shorter and easier to handle. 

7.2.1 Slope of the phase boundary 
A great deal of attention has been paid in literature to calculating slopes of phase 

boundaries [135, 136]. Despite of this circumstance, it seems justified to start derivations 

from scratch for ensuring a cohesiveness of the present work as well as for enforcing its 

internal logic. 

Let us denote the LHS of (7.3) as F . Since F remains equal to zero along the 

phase boundary, one can use implicit differentiation and write: 

(7.4) 
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The expression for the slope of the phase boundary immediately follows from (7.4): 

(7.5) 

where 

(7.6) 

(7.7) 

Having expressions (7 .1) and (7 .2), one can write partial derivatives of the Gibbs energies 

in (7.6) and (7.7) as: 

(7.8) 

(7.10) 

(7.11) 

Substitution of (7.8) in (7.6) gives: 

( a L )( RT exGL J (7.12)FL= x -x (1-xL)xL +L\ LL 

Substitution of (7.9)-(7 .11) in (7. 7) yields: 

FT= R({1-xa )In{l-xL )+xa lnxL )-(1-xa )AS1°a~L -xaAS~a~L 
(7.13) 

-L\exSL -(xa -XL )L\exst +L\rSa 
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By inserting (7.12) and (7.13) in (7.5), the slope can be computed. It is worth mentioning 

that since there are no fundamental restrictions preventing Fr in (7.13) from being equal 

to zero, infinite slopes are not prohibited by thermodynamics. Slopes tending to +oo or 

-oo are inevitable if T ~ 0 , because all entropies of formations and transformations 

become infinitesimally small. It may happen than both the numerator and denominator in 

(7.5) are equal to zero. An analysis of this exotic situation is beyond the scope of the 

present work. 

In a particular case when xa =0 and xL ~ o+, it can easily be shown (a 

finiteness of IiexatL should be recalled) that ::;, = M10~3 (7;) < 0' where I; is the 

melting point of the first component when it is in the a. structure. If xa =1 and xL ~ 1- , 

then ::;, = M~~~ (I;} > 0 . These two expressions for limiting slopes are well known, 

indeed. 

If xL ~ xa and if 0 < xa < 1, then FL tends to zero. Since Fr becomes equal to 

entropy of melting of a. taken with the opposite sign, i.e. since it is always negative, an 

indeterminacy .2. is never encountered in (7.5). Subsequently, it can be concluded that 
0 

7.2.2 Curvature of the phase boundary 
In contrast to slopes, the calculation of curvatures ofphase boundaries did not 

acquire much attention in the literature. An excellent work by Goodman et al. [137] is the 
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only publication available in which this problem was deeply and extensively discussed. 

Despite ofan unquestionable relevance of that paper, the derivations below have a 

different mathematical and conceptual flavor, which is not surprising since the objective 

of this contribution differs quite significantly from that of [137]. 

Let us start with a terminological clarification. The curvature of the function 

2 2 

lf/ (z), which is d lf/ / dz , cannot be identified with its second derivative. In this 
3122 J[ 1 + ( dlf//dz) 

chapter, however, for the sake of brevity, d 2Tj d (xL )2 is named curvature. A 

justification of such a terminological frivolity is that the curvature and the second 

derivative either have the same sign or both are equal to zero. 

Let us denote the LHS of (7.4) as <l> and recall that similar to F it remains equal 

to zero along the phase boundary. By using an implicit differentiation again, one obtains: 

(7.14) 


where 

(7.15) 

8( dT) dT<l>T =- FL +FT-L =FLT+FTT-L (7.16)
BT dx dx 

By inserting (7 .15) and (7 .16) in (7 .14 ), the following expression for the second 

derivative can be arrived at: 
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(7.17) 

By employing the definition of F and by making use of (7.1) and (7.2), the following 

formulae can be derived: 

(7.18) 

(7.19) 

!iC 	Oa-+L /iC Oa-+L 
2F 	 =-(1- xa) pl - xa P IiexSL -(xa - XL) IiexSL +Ii sa (7.20)

TT T T T 	 LT f T 

Substitution of (7 .18)-(7 .20) along with FT given by (7 .13) and already calculated 

slope in (7.17) finalizes the computation of the curvature of the phase boundary. 

7.3 Simplifications 
Although one can write an explicit expression for the curvature, this formula will 

be monstrously long. Besides, it will not be very helpful unless IiexGL (XL' T) in (7 .1) 

and !irGa (T) in (7.2) are defined. Instead of analyzing the general expression for the 

curvature (algebraic complexities make such an analysis virtually impossible), let us 

consider a trouble-free case by assuming that: 

1. 	 The solution phase is the ideal solution ( !iexGL and its partial derivatives 

disappear in corresponding expressions): This assumption is made with an 
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intension to show that inflexion points could appear even in the case of an ideal 

solution; 

2. llcSa. =0, i.e. llcGa. = llcHa. (the last term in the RHS of (7.20) is equal to zero): 

Since we are considering a stoichiometric solid phase in our analysis, this 

assumption is valid at this point; 

3. /l.G1°L, /l.G~L, /l.G1°a. and /l.G~a. are linear functions of temperature (this entails 

that /l.CP1°a.->L and /l.CP2°a.->L in the RHS of (7.20) vanish): For the mathematical 

simplicity the curvature of the G VS. T is ignored. That is, 

G G 

Approximated to 

T T 

Figure 69: The relationship between Gibbs energy and temperature for stable phases 

Instead of (7.12) and (7.13), one now has: 

(7.21) 
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It is worth accentuating that the simplifications introduced make Fr always negative! 

The slope is now given by: 

RT(xa -XL}dT 
- =-----~--------'------'------------= 
dxL {1-xL }xL [ R((1-xa }In{l-xL )+xa lnxL )-(1-xa }M~a-+L -xaMga-+L J 

(7.22) 

The expressions (7 .18)-(7 .20) undergo a drastic simplification as well: 

(7.23) 

(7.24) 

The last equality eliminates the term Frr (::: )' in the nwnerator of (7 .17) thus yielding 

the following much simpler expression for the curvature: 

dT 
FLL +2FLT-L

dx (7.25) 

Although the formula (7 .25) is valid regardless of whether the solution is in 

equilibrium with a pure component ( xa =0 or xa =1 ) or a binary compound 

( 0 < xa < 1 ), it is instructive to consider these cases separately. 
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Firstly, let us consider the situation when xa =0. If XL ~ o+' then instead of 

(7.23), (7.24) and (7.21) one has: FLL = -RI'i, FLT= -R, FT =-M°a~L. Keeping in1

. d h dT RI'i . h ~ 11 . . mm t at dxL =- Moa~L, one arnves at t e 10 owmg expression: 
I 

(7.26) 

It is clearly seen from (7 .26) that the sign of curvature in the vicinity of pure first 

component is determined by the magnitude of M°a~L (I'i): if entropy of fusion is less 1

than 2R, then the curvature is positive (the phase boundary is convex downward); if 

M 1°a~L (I'i) > 2R , then d 
2 

T 
2 

< 0 (the phase boundary is convex upward). Will the 
d(xL) 

curvature of the phase boundary retain the sign it possesses in the vicinity of the pure first 

component if xL departs from zero? 

The second case when xa =1 and xL ~ r can be analyzed in the same manner. 

Instead of (7.23), (7.24) and (7.21) one has: FLL =-RT;, FLT= R, FT =-M~a~L. Since 

the limiting slope is now equal to M~~'!;, (T;), the curvature is given by: 
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The conclusion is exactly the same as before: if M~a-+L < 2R , then d 
2 

T > O; 
2d(xL) 

if M~a-+L exceeds 2R, the curvature is negative. The question we would like to answer 

is virtually identical to the previously asked: Will the curvature of the phase boundary 

keep the sign it has in the proximity of the pure second component when xL goes away 

from unity? 

Finally, if 0<xa<1 and XL= xa' then d~ = 0' and the curvature becomes equal 
dx 

to: 

d 2T RT 
=----­2d ( xL ) Xa ( 1 - Xa ) FT 

2 

Since FT< 0 (see (7.21)), d T 2 < 0. Does this inequality hold if XL# xa? Does, in 
d(xL) 

other words, the phase boundary always remain convex upward as it is near the 

stoichiometric compound a ? 

7.4 Analysis 
For answering the question whether the curvature can change its sign or not, the 

numerator of (7.25) has to be analyzed. If it is always negative, the curvature will hold its 

sign. 

Let us start with the case when xa =0. The expressions (7.23), (7.21) and (7.22) 

are reduced to: 
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F: =- RT 
LL ( L)2 ' I-x 

dT RT 

dxL = (1-xL )[Rln(l-xL )-M10cHL J. 
For the numerator of (7.25) one has: 

dT 
FLL + 2FLT -L = 

dx 

(7.27) 

Moa_,.L1 ( d 
2
T )

It has been already demonstrated that if > R, 2 < 0 . Now 
2 d(xL) 

XL _,.Q+ 

MOa-'>L 21let us show that if > R, 1+ oa_,.L is always positive, i.e. that the 
2 1n (1-XL)- Mk 

numerator remains negative. 

(7.28) 
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MOa4L ? 

I +2<0 
R 

(7.29) 

Since the inequality (7.29) it undoubtedly true, the inequality (7.28) is also true. It 

can thus be concluded that if in the vicinity of the first component the phase boundary is 

convex upward, its curvature always remains negative. 

4 2 

It has been already shown that if Moa1 L < R , ( d T 
2 
J > 0 . But if 

2 d(xL) 
XL40+ 

M0a4L 2 

1 < R, the term 1 + 0 L in (7.27) will inevitably change its sign 

2 tn(l-xL )- M:4 


from positive to negative, and an inflection point will appear at 

xL ~ I - exp( M~~L - 2). It can thus be concluded that if in the vicinity of the first 

component the phase boundary is convex downward, its curvature will inevitably change 

its sign when xL is increasing. 
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Figure 70: A family of phase boundaries corresponding to the equilibrium between the ideal solution 

and the pure solid first component constructed for various entropies of fusion 

This is clearly demonstrated by Figure 70. It is worth repeating that whether phase 

/:lSOa->L 

boundary is undulate or not is completely determined by the 1 ratio. 
R 

RT 

Subsequently, the numerator of (7 .25) becomes: 
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(7.30) 

A remarkable similarity between (7.30) and (7.27) allows one to omit boring and 

trivial rearrangements and merely state that if in the vicinity of the first component the 

phase boundary is convex upward, its curvature always remains negative, but if it is 

convex downward, the curvature will inevitably changes its sign when xL is decreasing. 

. • f h . fl • • . L ( M~a~L 2)The pos1tlon o t e m ectlon pomt is x =exp R - . 

Now let us write the numerator of (7 .25) for the case when 0 < xa < 1. 

The curvature will remain negative if 

The first two summands in (7.31) are positive, but the last one is negative. Let us notice 

that if xL ~ 0 or xL ~ 1 , the logarithmic term tends to -oo , which translates into a 
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negative curvature. Instead of carrying out a general algebraic analysis of the inequality 

(7.31), let us visualize its LHS for various xa, M 1°a--+L and Mga--+L. 

0.9 
--X' =0.5, &~=&~ = R

0.8 
----- X' =0.1, A~= A~= R/2 

0.7 ········ X1 = 0.1, A~= A~= R/10 

0.6 

,-... 


0.5--i 

~ 

r-
. 

0.4.._ 
0 0.3 

----------------I ;en ,' ...0.2 , ::I: 
"

I 

: 
•...J 

0.1 ," : , 
,,,' ...0.0 .. -....... ___ ........- :
.· 

-0.1 .· 
........ ..• .. 

-0.2 -t--..----...--...--......----,,....---.--...,.--.----.---1 
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XL 

Figure 71: An example of concentration dependencies of the LHS of (7.31) for different entropies of 
fusion and compositions of the stoichiometric phase 

Figure 71 clearly demonstrates that small entropies of fusion favor the undulation. It also 

is clear that since the term xa (1- xa) in (7.31) is maximized by xa =0.5' the undulation 

is favored by a composition departing from the equimolar ratio. 

Although Figure 71 is convincing, it might be instructive to actually construct a phase 

diagram with a wavy boundary. For the sake of determinacy, let us accept that: 
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1. 	 The reference states are pure components having the structure of L phase, i.e. 

~G°L and ~G~L used in (7.1) are both equal to zero; 1

2. Lattice stabilities ~G°a and ~G~a employed in (7.2) are described by the same 1

linear function of temperature: ~G°a = ~G~a = -1000+0.831451T J/mol;1

3. The Gibbs energy of formation of the a phase is ~rGa =-5000 J/mol. 

The phase diagram resulting from these thermodynamic quantities is shown in Figure 

72. It is not surprising that the inflection points are seen at the right boundary for which 

( Xa - XL r in (7.31) undergoes a much greater Variation in comparison with the left 

boundary. 
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Figure 72: A phase diagram unambiguously demonstrating the presence of inflection points at the 
phase boundary for the case when the ideal solution is in equilibrium with a stoichiometric phase 
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7.5 Conclusion 
It is not uncommon to see inflection points at phase boundaries. Usually, their 

existence is attributed to an internal instability of one of the phases coexisting along the 

boundary. It has been shown that this explanation is not universal. It has been proven that 

if a binary ideal solution is in equilibrium with a pure component, an inflection point at a 

corresponding phase boundary inevitably appears if the entropy of fusion is less than 2R . 

If the solution is in equilibrium with a stoichiometric phase, inflection points are favored 

by small entropies of fusion as well as by a composition of the stoichiometric phase 

deviating from the equimolar ratio. 
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CHAPTERS 

Topological constraints in eliminating suspicious inflexion 
points on phase boundaries 

8.1 Introduction 
There are two thermodynamic reasons presented in CHAPTER 7 for the real 

existence of inflexion points on phase boundaries. They are, 

(i) when one of the phases participating in the equilibrium is internally 

unstable. 

(ii) when the entropy of fusion ofcomponent(s) have values less than 2 R (a 

new finding presented in this thesis). 

Ifexistence of an inflexion point on a phase boundary of a calculated phase diagram 

cannot be justified by one of the above-mentioned reasons, then such an inflexion point 

should be considered as artifact, which resulted from an incorrect phase model of a phase 

participating in the equilibrium. Many examples for this type of artifact have already 

been shown in section 3.2.1.(b) 

Generally non-real inflection points are observed on phase boundaries when the 

phases participating in the equilibrium are modeled with excess Gibbs energy terms. In 

many cases, modeling a system without excess Gibbs energy is unavoidable. Keeping this 

situation in mind, this chapter proposes topologically constrained thermodynamic 

optimization to avoid calculating phase boundaries with non real inflexion points. 
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8.2Aim 
Applicability of topological constraints in eliminating suspicious inflexion points 

on phase boundaries could be exemplified through re-optimization of any system shown 

in section 3.2.1.(b). However, such re-optimization is not covered in this chapter and the 

reason for not performing a real-reoptimization is explained below. 

For instance let us consider a liquidus ofa system with a suspicious inflexion 

point on it. In this case to eliminate the inflexion point, one might using either constraint 

d2Tliquidus d2Tliquidus 

either 
2 

> 0 or 2 < 0 within a certain composition range. The current 
d(xL) d(xL) 

Thermo-Cale version-R does not have the necessary tools to implement these constrains 

during thermodynamic optimizations. Hence, to implement the above-mentioned 

topological constraints in thermodynamic optimization, we have to develop our own 

Fortran program to calculate the second derivative of temperature with respect to 

composition. 

d2Ta/P 
Developing a general program to calculate the 2 *, which can be used for 

d(xPbase) 

any thermodynamic system is not focused in this thesis due to thermodynamic and 

programming complexities. Hence, we decided to develop a relatively simple program 

for a simple imaginary system with just two solutions such as liquid and solid. From this 

point we aimed two tasks to be accomplished. They are: 

•a/p refers the phase boundary between the phases a and P , xphase could be xa or xP 
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(i) 	 Generating a binary phase diagram for an imaginary isomorphous system (complete 

solubility of the two components in the liquid and solid phases) A-B with undulated 

liquidus and solidus. It is fair to argue that the generated phase diagram will have 

artifacts similar to the ones observed in the figures in section 3.2.1.(b). 

(ii) 	Optimizing the A-B system under topological constraints to eliminate the inflexion 

points on both liquidus and solidus. This task is equivalent to the elimination of 

suspicious inflexion points from a real system by re-optimization under topological 

constraints. 

8.3 An imaginary A-B binary system with undulated liquidus and solidus 

8.3.1 Generating the A-B phase diagram 
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Figure 73: An imaginary A-B phase diagram 
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Figure 73 shows the imaginary A-B binary phase diagram with undulated liquidus 

and solidus. The excess Gibbs energies used to generate phase boundaries with inflexion 

points are, 

L'.'.\exG(xs,T) =xs (1-xs )(10000+2.802T-0.0135T2 
) (8.2) 

for the liquid and solid phases respectively. To illustrate the way to reach the excess 

Gibbs energy descriptions in (8.1) and (8.2), let us consider the following Gibbs energies 

GL = ( 1-xL) L'.'.\1rG(T)~S(A>-+L + xL~1rG(T):RS(B)-+L 
(8.3) 

+ RT [ ( 1-XL) In (1-XL)+ XL In XL J+ ~exG(XL, T) 

Gs = ( 1-Xs )~trG(T)~S<A>-+s + Xs~trG(T):RS(B>-+s 
(8.4) 

+RT [ ( 1-Xs) In (1-Xs) + Xs In Xs J+ ~exG ( Xs, T) 

for the liquid and solid phases respectively. In the above equations (8.1) and (8.2), 

RS (A) and RS ( B) refers the reference states of components A and B respectively. 

When calculating phase diagrams, the phase boundaries are detected via 

constructing common tangents to the G Vs x curves ofphases that exist in the system at 

different temperatures. 

Since the first derivative of the Gibbs energy with respect to the composition 

participates in finding the phase boundaries, let us take the first derivative of (8.3) and 

(8.4) with respect to composition. 

(8.5) 
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(8.6) 

Generally by choosing the proper reference state for the constituent components the 

contribution of Gibbs energy of transformation to the derivative 8Gphase/&phase can be 

minimized. Hence, we can conclude that aGphase/&Phase is mainly determined by the 

contribution from the a(~ex Gphase )/&phase . From this point we can deduce that the erratic 

behavior of ~exGphase with temperature might lead to undulations in phase boundaries. 

Moreover the enthalpic and excess entropic contribution to the excess Gibbs 

energy are related through, 

(8.7) 

In (8. 7) generally ti ex Hphase is independent of temperature. Now if we think of an 

expression for the ti ex Sphase with some unrealistic temperature dependence such as an 

expression with Tn terms then tiexGphase will be unpredictable with temperature. From 

this analysis we decided to use the expression for the ti ex Gphase as, 

(8.8) 

The parameters a,b, and c in (8.8) for the liquid and solid phases of the A-B system in 

Figure 73 were obtained through several trials. 

The liquidus and the solidus in Figure 73 shows two inflexion points on each 

boundary. In order to make the liquidus convex upward and to make the solidus convex 

downwards the constraints to be used are, 
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d2Tliquidus 

---2-<0 (8.9)
d(xL) 

d2Tsolidus 

---2->0 (8.10)
d(xs) 

Now let us see the intermediate steps involved in imposing the constraints (8.9) and 

(8.1 O)during the thermodynamic optimization. 

8.3.2 Calculation of slopes and curvatures 
The very first conditions to be considered in calculating the slopes and curvatures 

ofequilibrium phase boundaries of the system shown in Figure 73 are, 

(8.11) 

(8.12) 

The A-B binary system the above conditions (8.11) and (8.12) are satisfied along the 

liquidus and solidus. Now we can write the following equations similar to the one in (7.4) 

by taking xs as a function of xL and T as a function of xL . 

(8.13) 

(8.14) 
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For selected descriptions of GL and Gs the unknowns dx: and d~ can be calculated 
dx dx 

by solving equations (8.13) and (8.14). Now the similarities of (8.13) and (8.14), allows 

one to write the following equation. 

(8.15) 

Similar to (7.14) the following two equations can be written by taking LHS of 

(8.13) and (8.14) as <1>1 and <1>2 respectively. 

(8.16) 

(8.17) 

Here again the similarities of (8.16) and (8.17) allows one to write the following 

equation. 

(8.18) 

and 

(8.19) 

Now when substituting (8.19) in (8.18) we get 
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_j_ ( BF; + BF; dxs + BF; dT J 
axL axL axs dxL BT dxL 

+~( BF; + BF; dxs + BF; dT Jdxs (8.20)
axs axL axs dxL BT dxL dxL 

+~( BF; + BF; dxs + BF; dT JdT =O i =l 2
BT axL axs dxL BT dxL dxL ' ' 

The differentiations in (8.20) give the following equation 

(8.21) 

2 

From (8.21) we can calculate the curvature of the liquidus d T and the second order 
d(xL)2 

d2XS 
derivative • Moreover from (8.21) one can deduce that the curvature of the

d(xL)2 

liquidus is non-linear with respect to the coefficients associated with the excess Gibbs 

energy terms. 

In the case of solidus, slope and curvature can be calculated using similar 

equations of (8.13)-(8.21) by taking xL as a function of xs and T as a function of xs. 

8.3.3 Derivatives to calculate dxs / dxL , dT/ dxL , d 2xs/ d (xL )2 and d 2T/ d (xL )2 
All the necessary derivatives to calculate slope and curvature of phase boundaries 

are given in APPENDIX II. 
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From APPENDIX II we can find that to calculate slopes and curvatures of phase 

~ 11 . "gh d . . h BG BG B
2
G B

2
G B

2
G B

3
Gboundaries t e J.O owmg et t envatlves sue as - ,-,--,--,--

2 
,-- ,h 

2 3ax BT ax axBT BT ax 

B3G B3G
and are necessary for the Gibbs energies of all phases that exist in the 

ax1BT' axBT2 

system. 

8.4 Thermodynamic optimization ofthe A-B system under topological 
constraints 

To exemplify the application of topological constraints in eliminating suspicious 

inflexion points from phase boundaries, a topologically constrained thermodynamic 

optimization is performed on the imaginary A-B system described in the section 8.3. This 

thermodynamic optimization is performed using a "home grown" optimizer, which is 

capable of calculating the derivative d2T/ dx2 
• The necessity to use the "home grown" 

optimizer has already explained in the section 8.2. 

8.4.1 Model selection 
The topologically constrained thermodynamic optimization was performed twice 

on the A-B system. The first optimization used a regular solution model named "New but 

similar" for both the liquid and solid phases. The excess Gibbs energies of both of these 

phases were modeled using the following excess Gibbs energy equations: 

(8.22) 

(8.23) 
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The temperature dependencies in (8.22) and (8.23) are similar to the ones in (8.1) and 

(8.2). 

The second optimization used a sub-regular solution model named "New" for 

both the liquid and solid phases. The excess Gibbs energies of both of these phases were 

modeled using the following excess Gibbs energy equations: 

8.4.2 Optimization 
Unlike other thermodynamic optimizations presented in the CHAPTER 5 and 

CHAPTER 6, the thermodynamic optimization on the A-B system was performed using 

own thermodynamic optimizer developed for the following non-linear least squares 

problem under non-linear constraints: 

+~ {l)i ( J;liquidus _ ~liquidus (CL, CS))2 

2 

+~ {l)i ( i;solidus - ~solidus (CL'cs) ) ~ min (CL' cs) (8.26) 

d2Tliquidus 

Subject to 
2 
~O,VxL e(0,1)

d(xL) 
d2Tsolidus 

--
2
-;;:::o, Vxs e(0,1)

d(xs) 

where P; and fa; are the experimental and calculated properties respectively. 
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In building a Fortran program for the optimization problem in (8.26) we utilized 

the subroutine NCONF [138] with other necessary subroutines and functions. The 

subroutine NCONF is written for solving, constrained non-linear programming problems. 

The total programming package contains 1601 lines of Fortran 90 codes in one main 

program, 4 modules, 12 functions, 21 subroutines, and a "grey box". We used this "home 

grown" optimizer in eliminating the inflexion points on the liquidus and solidus of the A­

B system illustrated in the Figure 73 through the Thermo-Cale user interface called the 

TQ interface. 

8.4.3 Results 
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Figure 74: A comparison of different models in the calculation of the A-B imaginary binary phase 
diagram 
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It can be see from Figure 74 that the topologically constrained thermodynamic 

optimization successfully eliminated the inflection points from the phase boundaries. 

Moreover it can be seen that the ''New" model with five coefficients calculates phase 

boundaries closer to the original one than does the "New, but similar" model with three 

coefficients. The similar difference is observed in the calculated properties illustrated in 

Figure 75-Figure 78 as well. 
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Figure 75: A comparison of different models in the calculation of Limix Gs in A-B binary system at 

823.15K 
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Figure 77: A comparison of different models in the calculation of ~mixGL in A-B binary system at 

1473.15 K 
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Figure 78: A comparison of different models in the calculation of µex liquid in A-B binary system at 

1473.15 K 

8.5 Conclusions 
• 	 The present day version of Thermo-Cale is incapable of calculating second 

derivatives. 

• 	 Additional Fortran programming is necessary to perform a topologically 

constrained thermodynamic optimization in eliminating suspicious inflexion 

points from phase boundaries. 

• 	 Topological constraints in thermodynamic optimization are successful in 


eliminating phase boundary undulations. 


174 




PhD Thesis - T. Balakumar McMaster University - Materials Sci. and Eng. 

CHAPTER9 

Concluding remarks and future directions 

9.1 Concluding remarks 
A new approach in thermodynamic optimization has been proposed in this thesis. 

In the new approach unlike traditional CALPHAD techniques (which is an unconstrained, 

non-linear least squares optimization technique), topological constraints have been 

imposed during thermodynamic optimization. 

It has been shown that the topologically constrained thermodynamic optimization 

successfully eliminates the artifacts that resulted from traditional CALPHAD technique 

in the Mg-Sb (non real inverted miscibility gap at high temperatures), Sn-Zr (non real 

inverted miscibility gap at high temperatures), and A-B imaginary (wavy phase 

boundary) systems. 

Moreover it has been shown that topological constraints in thermodynamic 

optimization could also be used for a simple refining of phase models. An 

exemplification of phase model refinement has been demonstrated in the Sn-Zr system. 

Further it is shown that a suspicious feature is not necessarily an artifact. Instead, 

it might be an inherent feature of the system. A novel "2R rule" has been derived to show 

that the existence of wavy phase boundary in the equilibrium between an ideal liquid 

solution and a stoichiometric solid a . 

Finally the algorithmic details have been formulated for a multi-component 

thermodynamic optimization under topological constraints. 
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9.2 Future directions 
One of the extensions of this thesis work could be employing investigated and 

quantified topological properties of thermodynamic functions and phase boundaries for 

optimizing sophisticated multi-component systems. One of the system that could be 

investigated is the Zn-Fe-Al system in which an actually non-existing inverted miscibility 

gap in the liquid phase at high temperatures is predicted by the model of the liquid phase 

proposed by Nakano, Malakhov, Yamaguchi and Purdy [140]. Moreover, a topologically 

suspicious continuation of the calculated LIQUID/LIQUID+BCC phase boundary is seen 

in this system. 

Another future extension of the research presented in this thesis could be the re-

optimization of the Se-As system under topological constraints to eliminate the phase 

boundary undulations illustrated in Figure 19. 

Further it will be interesting to investigate why while some models/formalisms 

are prone to produce artifacts, others are free of such a shortcoming. In other words, can 

it be said a priori that a usage of a particular model/formalism will likely be associated 

with unwanted features? Can corresponding criteria be formulated? For instance the 

following two cases could be analyzed in this regard: 

(i) Redlich-Kister [l] Vs partially ionic liquid [141] 

(ii) Cell model [142] Vs modified quasi-chemical formalism [143-145] 
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APPENDIX I 

Bezier curves and spline curves 
The following Table Al specifies the Bezier and spline functions [146] of 

linear, quadratic and cubic orders. The measurements are assumed to be in a two 

The arbitrary numbers 12,13, ... ,17 and l lie on the x axis and satisfy the condition 

The linear Bezier/spline curve is essentially the line connecting the points c2 

and c3 • The quadrature curve is fitted through three points and the cubic one is through 

four. Higher order Bezier/spline curves can be derived in similar fashion. 

Table Al: Bezier and spline functions of different order 

Bezier curve Spline curve 

Linear p(l)= p(llc1,c2) 

= ( 1- l) C1 + 1C2 

p(l) = p(l Ic1,c2;12,13) le[12,13] 

(' -t J c-t J= _3_ C1 + __2 C1 

13 -12 13 -12 

Quadratic P1,1 ( l) = p(l IC1' C2) 

P2,1 (l) = p(l IC2' C3) 

P2,2 ( l) = p(l IC1' C2' C3) 

=(l-l)P1,1 (1)+tp2,1(1) 

=(l-1) 
2 

c1 

+2(1-l)c2+t2 c3 

p(l)= p(llc1,C2,C3;l2,l3,l4,l5) 

c-t J= - 4- p(l Ic1,c2;12,14) 
14 -t3 

c-t J+ -­3 p(l IC2,C3;l3,l5) 
14 -t3 
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Cubic P3,3 (t) = (1-t) P2,2 (t) + tp3,2 (t) 

=(1-t)
3 
C1+3t(l-t)

2 
C2 

+ 3t2 (1-t )c3 + t3C4 

p(t) = p(t IC1,C2,C3,C4;t2,t3,f4,f5,t6,t7) 

= ( 
1
' -t ) p(t I<;,c,.c,;t,.t,, t,,t6 )

f5 -t4 


( t-t )
+ __4 p(t IC2,C3,C4;f3,f4,t6,t1)
f5 -t4 
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APPENDIX II 

dx5 dT d 2x5 d 2TDerivatives to calculate -L , -L , , and 
dx dx d(xL)

2 
d(xL)

2 

In order to calculate dx5/dxL and dT/dxL from (8.13) and (8.14) the following 

derivatives (10.1)-(10.6) should be calculated. 

(10.l) 

(10.2) 

(10.3) 

(10.4) 

(10.5) 

(10.6) 

Similarly the derivatives associated with the calculation of d 2x5 jd (xL )2 ,and 

d2Tjd( xL )2 are given below in (10.7)-(10.18). 
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(10.7) 

(10.8) 

(10.9) 

(10.10) 

(10.11) 

(10.12) 

(10.13) 

(10.14) 

(10.15) 

(10.16) 
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(10.17) 


(10.18) 
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