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Abstract

Kalman-type filtering methods are mostly designeddal on exact knowledge of
the system’s model with known parameters. In repplieations, there may be
considerable amount of uncertainties about the hsidecture, physical parameters, level
of noise, and initial conditions. In order to owame such difficulties, robust state
estimation techniques are recommended. This PhBistipresents a novel robust state
estimation method that is referred to as tPfeo2der smooth variable structure filtef'{2
order SVSF) and satisfies the first and secondrasliing conditions. It is an extension
to the £-order SVSF introduced in 2007. In th&-drder SVSF chattering is reduced by
using a smoothing boundary layer; however, tfeoBder SVSF alleviates chattering by
preserving the second order sliding conditionettuces the estimation error and its first
difference until the existence boundary layer echeed. Thereatfter, it is presented that the
estimation error and its difference remain normsmed given bounded noise and
modeling uncertainties. As such, thé%a@rder SVSF produces more accurate and
smoother state estimates under uncertain conditiwars the I-order version. The main

issue with the B-order SVSF is that it is not optimal in the megnare error sense.

In order to overcome this issue, the dynanfftd2der SVSF is initially presented
based on a dynamic sliding mode manifold. This fadhiintroduces a variable cut-off
frequency coefficient that adjusts the filter baidtv. An optimal derivation of the"2
order SVSF is then obtained by minimizing the tratéhe state error covariance matrix
with respect to the cut-off frequency matrix. Anpekmental setup of an electro-
hydrostatic actuator is used to compare the pedoom of the -order SVSF and its
optimal version with other estimation methods sastihe Kalman filter and thé“brder
SVSF. Experiments confirm the superior performaotethe Z%order SVSF given

modeling uncertainties.
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Chapter 1

Introduction

This chapter presents an introduction to the PHE3i#h It initially explains the state
estimation task and the two concepts of optimadityl robustness in state estimation.
Thereatfter, it discusses the main hypotheses ajedtoles of this research as well as the
main contributions. For more clarity, a flow-diagraf the research is provided in Figure

1.2.
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1.1. Problem Statement

Real-time control systems can benefit from relighdeameter and state estimates
for better performance. Estimation is the procdsxtracting information pertaining to a
state variable or a parameter from measurementgenaral, the terrparametemrefers to
a time-invariant physical quantity that may be al&G a vector, or a matrix. The term
stateusually refers to a vector that evolves over timgettie use of an equation which
describes the dynamics of a systelj [n this context, there exist two different clas®f
estimators which include the parameter estimatdrthe state estimator. The main goal
of the estimation task is to minimize the statgparameter estimation error while being
robust to uncertainties and perturbations. Noiseparturbations are inherently present in
the measurement process, and are caused by instsiraed environmental factors.
System uncertainties are usually caused by inac@sain modeling the process,

approximations, nonlinearities, and variations liygical parameters of the system.

The conventional state estimation approaches arslyraased on the well-know
Bayesian rule of statistics. In these approachs,at posteriori probability density
function (PDF) of the states is recursively caltedabased on the knowan priori PDF
and newer measurements. The calculation includesrtain steps: prediction and update.
In the prediction stage, the system model is usegrédict state values. The predicted
values of states are then refined and updated b@sedeasurements from the system.
There are three concepts that include smoothitgrifig, and prediction. Smoothing uses

the measurements beyond the desired time of integes>t ., to refine the estimates
further. Filtering uses measurements up to andidicy the time of interestyp <t ;-

Prediction only uses measurements prior to the théeterest and thus predicts the

future of the system’s state, <t.i [1]. A model-based state estimation process is
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generally constructed based on the available kriiyd®f the system summarized in four

items:
1. The state transition model;
2. The measurement model;
3. The input or its probabilistic characterization;
4. The prior knowledge of the system.

Figure 1.1 shows a block-diagram scheme of a moaséd state estimation process.

Dynamic System

Process Noise Sarsor Nolss

Input

Process Measurement ———»{+}

o .
e Tl Residual &

Filtering

|
|
I
I
I
I
|
|
|
|
|
|

[ » = Predicted
—:—D‘Proccss MOdd}—. Measurement ———T%»

Figure 1.1: Block-diagram scheme of a model-basse gstimation process

The recursive equation of an estimated posteri@i Pnay be calculated in an
optimal form with linear state transition and meaasuwent models subjected to Gaussian
white additive noise. In such cases, ghgosterioriPDF is expressed by simply using the
mean and the covariance terms. Thereafter atlposteriorimean and covariance are
predicted and updated. The most popular method tsexblve linear Gaussian state
estimation problems is the Kalman filter. For gehenonlinear and non-Gaussian

systems, several techniques using linearizatian, (fhe Extended Kalman filter) or PDF

3
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approximation (e.g., the Unscented Kalman filtarttee Cubature Kalman filter) have
been proposed. More recently and with increasingprdational power, the Particle
Filters (PF) are increasingly being used in nomm®r non-Gaussian estimation
problems. The PF technique uses a set of weigladitles which approximates the state
a posterioriPDF. The main disadvantages of particle filteramg its high computational

complexity and long running time.

The Kalman-type filtering methods are primarily ideed based on the
assumptions that noise is white and the system'deinig known. In real applications,
noise may be non-Gaussian and there may be coabldenncertainties in the model
structure, physical parameters, and initial condgi In some situations, the system
dynamic may be too complex to model; or, the syss&tructure or parameters may

change thus causing uncertainties.

Two filtering strategies for dealing with uncertié@s are referred to as the robust
state estimation and the adaptive state estimalio®.main objective of robust estimation
is designing a filter that would not be affectedn@nimized the impact of uncertainties
[2]. The prevalent forms of robust state estimatiathuds are the robust Kalman dy)
filter, the H,, filter, and the new Smooth Variable StructuredfifSVSF). Otherwise, the
adaptive estimation approach is primarily used stimreate both the states and the

unknown parameters that may change with time.

A new robust estimation strategy based on the bigristructure system’s concept
was introduced in 2007, referred to as the Smoahaldle Structure Filter (SVSFJ]
The SVSF has a predictor-corrector structure amd asdiscontinuous corrective gain to
push the state estimates towards their true valiles.discontinuous corrective action of
the SVSF method satisfies the first sliding comditand hence achieves robustness to

4
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bounded uncertainties. This filter alleviates treeadh for tuning by trial and error and
presents a mechanism for an explicit consideratiomodeling uncertainties within the
filter formulations. The main concern of this typgfilter is eliminating the unwanted
chattering effects from state estimates. The chiatfe phenomenon arises from

discontinuous corrective actions inherent in shidinode control system8§]|

A smoothing boundary layer is commonly used to seg chattering in sliding
mode control systems4p], and also applied to the SVSF's gain formulatidie
implementation of the smoothing action is througbaturation function that interpolates
the discontinuous corrective action within a smowhboundary layer around the
switching hyperplane. Outside the smoothing bountiarer the discontinuous correction
is fully applied to maintain stability. The widthf the smoothing boundary layer is
defined as a function of the upper bound of noisgertainties, and perturbatior.[
Note that by interpolating the switching functiontiin the smoothing boundary layer,

the accuracy and robustness of the sliding modeargromised§,7].

The SVSF state estimation method has been usednuander of applications
including target tracking89], control as well as in parameter estimation faulf
detection in an Electro-Hydrostatic Actuation (EH&)stem 10]. Gadsden extended the
SVSF by deriving a state error covariance termifand using that for obtaining an
optimal smoothing boundary layet1,12,10]. The SVSF with an optimal time-varying
boundary layer results in an optimal filter withine smoothing boundary layer when
applied to linear Gaussian problems. However, thethod still uses a smoothing
boundary layer that interpolates the discontinuoursective action in the vicinity of the

switching hyperplane at the expense of robustness.
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The higher order sliding mode concept is a strobgrreative to the smoothing
boundary layer for chatter avoidance. This conégfitased on forcing the higher order
time-derivatives of the sliding variable to satisfgditional constraints related to sliding
motion. Along with keeping the main advantageshef variable structure systems, this
concept is capable of reducing and in some case®wviag the chattering effect
completely. The higher order sliding mode conceqvigles better accuracy without
compromising robustness and without the need tooxppate or relax the discontinuous
corrective action. The sliding mode order impliee tlegree of dynamic smoothness in
the vicinity of the switching surfacé,[7,13]. There are many publications on the second-
order sliding mode control metho#l415,16,17]. Other research on higher order sliding
mode systems includes Sira-Ramirez’s dynamic gjidmode technique based on
augmenting the differential algebraic approach ystesm formulations. This approach
presents switching surfaces that produce chaterdfiding mode for a special class of

nonlinear systemslp,17].

In this thesis, a P-order SVSF state estimation method is firstly sgd and
formulated. It can satisfy both the first and setshding mode conditions. It is capable
of estimating state variables both for linear andlimear systems in noisy and uncertain
conditions in which the level, source and occureeat uncertainties are unknown. The
main advantage of thé®order SVSF is that it alleviates chattering withthe needs for
approximation or interpolation. This capability disato better accuracy and robustness in
uncertain conditions. The"2order SVSF derivation is based on a discrete Lyapu

function that contains the first and second-oraeivatives of the sliding variable.

Optimal derivation of the"-order SVSF, referred to as the optim¥t@rder SVSF

method, is one of the contributions of this reseaiihis method is applied to systems
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with linear state and measurement models thatujed to white additive noise. A new
formulation for the corrective gain is calculatedsed on the dynamic sliding mode
concept. A linear sliding mode manifold is definederms of the sliding variable and its
first difference. It is later proven that the slagfehis linear manifold is effectively a cut-
off frequency that filters chattering and can dyreathy be updated at each time step. In
order to formulate the optimal™@order SVSF, thea posteriori state error covariance
needs to be minimized by finding the optimal vabi¢he cut-off frequency at each step.

Literature Survey Study on Gaussian Experimentation via
Review Filters for State Estimation an EHA Setup

2nd_Qrder SVSF

. . Filtering . . )
Flow-Diagram of Developing the Simulation via

the PhD Research | SVSF Method the EHA Model
2nd_order SVSF with Optimal 2-Order
a Cut-off Frequency SVSF Filtering

Fault Detection

Experimentation via

an EHA Setup

Combining the 2™-order

SVSF withthe IMM Filter — ™ 24t Diagnosis

Figure 1.2: Flow-diagram representation of the Péd2arch

In order to verify robustness and accuracy of tffeogder SVSF and its optimal
version, they are implemented on an experimentah Betup for the fault detection and
diagnosis purpose. Fault detection is performedcbyparing the RMSE of state
estimates with ones under normal condition. Moreofault diagnosis is performed by
combining the Z-order SVSF with the Interacting Multiple ModelsviM) filter. The
mode probability estimate represents the curreetaimg regime (normal or faulty) of
the system. The IMM-based%rder SVSF successfully identified the correctrafing

regime with smaller values of RMSE and higher valid the mode probability.
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Experimentations confirm the superior performanéghe 2°-order SVSF method in
comparison to other state estimators such as thmdfafilter and the *torder SVSF.
Figure 1.2 shows a flow-diagram of the PhD resedheth represents sequence of the

main steps of the research.

1.2. Hypotheses and Objectives

The smooth variable structure filter (SVSF) forntidia stems from a stability
theorem that can result in an algorithm with arenaimt switching action that preserves
convergence of estimates to within a neighborhobdctual states. This research will
initially concentrate on designing thé“arder SVSF state estimation method that
satisfies the first and second order sliding mooleditions. A dynamic F-order SVSF
method is then formulated using a dynamic slidirmgdenmanifold. An optimal derivation
of the dynamic #-order SVSF is then presented by minimizing thedraf the error

covariance matrix. The main hypotheses of this Réd@arch are as follows:

1. Dynamic systems are described using mathematiagtiens in the state-space
form. This form uses a set of first-order differential agjons in order to provide a
mathematical model of the system as a function npiui, output and state
variables.A discrete realization of the state space modalsied in the linear
and/or nonlinear form for designing the state estoanand control rules.

2. The 2%order SVSF method provides more accurate, robugtsmoother state
estimates in comparison to the standard SVSF methodhows a superior
performance over the Kalman filter under uncertaimditions. The P-order
SVSF applies constraints to the measurement emnarita first difference such

that they approach zero in finite time.
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3. The robust F-order SVSF method may not produce accurate sttienates
under the normal operating condition. An optimaticiion of the 2“order
SVSF is hence required for minimizing the tracetltd state error covariance
matrix. In this context, a new formulation of th&-arder SVSF is sought that
introduces a variable cut-off frequency coefficient

4. The ?%order SVSF method may be used for creating a tdutt detection and
diagnosis structure. It is a combination of theefatting Multiple Models (IMM)
filter and the 2-order SVSF for robust state estimation. It appltes an

experimental EHA setup for fault detection and tderation.
The main objectives of this PhD research may bensanzed as to:

1. perform a survey study on Gaussian filters foreségtimation;

2. design and implementation of th&-®rder SVSF method for robust state estimation;
3. design and implementation of the optinfdi@rder SVSF that minimizes the error
covariance matrix by automatically adjusting anmpt cut-off frequency coefficient;

4. combine the %-order SVSF method with the IMM filter in order tmnstruct state
estimation under different operating modes; and
5. apply the 2Lorder SVSF and its optimal version to an experi@eBHA setup for

fault detection and diagnosis.
The main publications from this PhD research are:

Journal Papers:

1. H.H. Afshari, S.A. Gadsden, and S.R. Habibi, “Robust fault dasjs of an electro-
hydrostatic actuator using the optimaf-arder SVSF and the interacting multiple
model (IMM)”, International Journal of Fluid Pow&(14, (In Press).
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2. H.H. Afshari, and S.R. Habibi, “Second-order smooth variabtacstre filter for
robust state estimationASME Journal of Dynamic Systems, Measurement, and
Control, (Submitted on November 2013).

3. H.H. Afshari, S.A. Gadsden, and S.R. Habibi, “A tutorial on Gman state
estimation techniques: review and recent tren8gjnal Processing,Submitted on
October 2014).

4. H.H. Afshari, and S.R. Habibi, “Dynamid®order smooth variable structure filter
based a dynamic sliding manifoldRutomatica (Submitted on November 2014).

5. H.H. Afshari, and S.R. Habibi, “A new adaptive amhtscheme based on the
interacting multiple model (IMM) estimationJournal of Mechanical Science and

Technology(Submitted on September 2014).

Conference Papers

6. H.H. Afshari, S.A. Gadsden, and S.R. Habibi, “A robust fauligtosis scheme
based on the interacting multiple model (IMM) ahé ©-order SVSF methods”,
ASME International Mechanical Engineering Congresnd Exposition
IMECE2014-36438, Montreal, Canada, 2014.

7. H.H. Afshari, D. Al-Ani, and S.R. Habibi, “Fault prognosis afiler bearings using
the adaptive auto-step reinforcement learning tieglai, ASME Dynamic Systems
and Control ConferencddSCC2014-6108, San Antonio, Texas, USA, 2014.

8. H.H. Afshari, and S.R. Habibi, "Robustness analysis of someusblstate
estimation methods with an explicit consideratibmmcertainties”JEEE Canadian
Conference on Electrical and Computer Engineeridglifax, Canada, 2015.

9. H.H. Afshari, D. Al-Ani, and S.R. Habibi, “State estimationfafilty actuator using
the second-order smooth variable structure filtire (2%order SVSF)”, IEEE
Canadian Conference on Electrical and Computer Begring Halifax, Canada,
2015.
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1.3. Organization of the Thesis

This PhD thesis is organized in seven chaptersptéh&® presents a literature
review on Gaussian filters with applications totestastimation. It firstly describes the
Bayesian paradigm for state estimation and thenodoces filtering strategies based on
the Gaussian assumption of noise and uncertainfiess chapter also describes the
prevalent state estimation filters based on thes&aun assumption. These filters are
categorized under two subgroups optimality or rifess. They may be classified into
subgroups based on their structural characteristading ability to estimate linear or
nonlinear systems, methods used for approximatioglimearities, robustness, and
adaptation characteristics. New advances and tregldgant to each state estimation

method are discussed in detail.

Chapter 3 introduces the novél’®rder SVSF method for state estimation. This
chapter presents the main steps of this filter, fitber's corrective gain, the proof of
stability under the presented gain, and furthermadeling the Luenberger’s observer for
the case with lower measurements than states.eariced model of the EHA is used for
simulation under the normal and uncertain cases. Zfhorder SVSF is also compared
with some state estimation approaches such asahedf filter, and the former4order

SVSF in terms of accuracy, robustness and smoahnes

Chapter 4 presents the design and implementatidheobptimal 2-order SVSF
method applies to systems with linear state andsoreanent models. It shows a new
formulation of the corrective gain by defining andynic sliding mode manifold that is a
linear combination of the sliding variable andtitee difference. The stability proof of
the filter under this gain is obtained using a ditetime Lyapunov stability criterion.

This chapter also presents a procedure for predia@nd updating the error covariance

11
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matrix for the new derivation of thé'®order SVSF. In the next step, the optim&} 2
order SVSF is obtained by minimizing the error atasace matrix (trace) at each time
step. The EHA system is finally used to verify #eeuracy and robustness of the optimal

2"%order SVSF in comparison to other state estimajguroaches.

Chapter 5 contains an experimental study involheggimplementations of thé'2
order SVSF and its optimal version on an EHA pngiet The EHA setup is located in
the Center for Mechatronics and Hybrid TechnologiaMaster University. The EHA
experimental setup, its components, and possiblé ¢anditions are briefly described in
Appendix |. Chapter 5 presents applications of2Heorder SVSF for fault detection and
diagnosis of the EHA setup. Its accuracy and rotasst are then compared with the
Kalman filter and the torder SVSF under the normal and faulty EHA cowodis
Chapter 6 summarizes the major contributions ofRfhB research, concluding remarks,

and some suggestions for future research.

12
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Chapter 2

Literature Review on Gaussian State Estimation

The development of state estimation methods stameady five centuries ago and
has involved contributions from a variety of field$his chapter presents a review of the
most prevalent Gaussian filters that are used thte ssstimation of stochastic dynamic
systems. Gaussian filters are used in applicatishere the measurement noise and
modeling uncertainties can be characterized witbassian distribution. The main
concept of state estimation is firstly describeddanon the Bayesian paradigm and
Gaussian assumption of the noise. The various fasmthis type of filter are then
categorized into optimality and robustness subgsok@ach category itself includes linear
and nonlinear filtering; the nonlinear filtering theds often involve linearization or

approximations. New advances and trends are disdusgletail.

13
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2.1. Introduction

Estimation is the process of extracting the valua state or parameter from indirect,
inaccurate and uncertain measurements. In thisxgrihere exist two different classes of
estimators which include the parameter estimatdrthe state estimator. The main goals of
the estimation task are to minimize the state omipater estimation error while being
robust to uncertainties and perturbations. Noisg @erturbations are inherently present in
the measurement process, and are caused by instsiraad environmental factors.
System uncertainties are usually caused by inacgunamodeling the process, and small

variations of physical parameters due to the aglmnomenon.

Major contributions to the probability field beganthe fifteen century, and included
a large number of contributors from a variety otkgrounds. Girolamo Cardano (1564-
1642), as the first major contributor to this fieletroduced an accurate analysis of
probabilities. His book about games of chandébér de ludo aleakg published in 1663,
contains the first systematic treatment of probighilL8]. Later on, Jakob Bernoulli (1654-
1705) presented the first rigorous proof of the lafvlarge numbers for repeated
independent trials called the Bernoulli trials. Tas Bayes (1701-1761) introduced the
famous Bayesian rule for statistical inference fhvatvides the basic formula for Bayesian
estimation methods1p]. Pierre de Laplace (1749-1827) developed proligbénd
statistics and used them specifically to solve [@wmis in celestial mechanic$9). During
the nineteenth century, it became apparent thdugtibstic theory should be used to study

and even model the behavior of some natural phenaraed systems.

The pioneering study that provides an optimal estimfrom noisy data was
performed by Carl Friedrich Gauss (1777-1855). Heemnted the famous least square

estimation method in 1795 and used it to solve ineal estimation problems in

14
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mathematical astronom(]. Andrei Markov (1856-1922) introduced the Markonocess
and Markov chain theories based on probability statistical methods2D]. The Markov
theories formulate transitions in random proces$s@® one state to another, between a
finite or countable number of possible states. Hwgd that the probability distribution of
states may be calculated using its current digiohuhat contains the effects of all the past
events of the systenR]]. Andrei Kolmogorov (1903-1987) published his wetiown
book, Foundations of the Theory of Probabilitin 1933 laying the modern axiomatic
foundations of probability theory. In 1938, Kolmage published his basic theorems for
smoothing and predicting stationary stochastic ggees that would have major military
applications during the Cold War. Sydney Chapm&8811970) continued the research on
the Markov processes. Chapman and Kolmogorov intkpely presented the Chapman-

Kolmogorov equations used for solving basic equatio the estimation field2[)].

Ronald Aylmer Fisher (1890-1962) became famoushfsrmajor contribution, the
so-called Fisher information matrix. It represeatmeasure of the amount of information
extracted from a sample of values with a given pbility distribution P0O]. Norbert
Wiener (1894-1964) introduced the so-called Widitar formulation in 1949 for signal
processing applications. This filter reduces theoamh of noise present in a signal in
comparison with an estimation of the desired neslsignal 22]. Kolmogorov (1903-
1987), along with Wiener, made the foundation dinestion theories that were used later
to develop the theory of prediction, filtering, asmhoothing. His research ultimately led to
the derivation of an optimal estimator, which wasrfulated for continuous-time systems
[23]. Meanwhile, Kolmogorov independently derived aptimal linear predictor for
discrete-time systems24]. Their research would later become famous, kn@snthe

Wiener-Kolmogorov filter (WF), a predecessor to keman filter [Lg].
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In 1960, Rudolf Kalman, building on the work of eth, introduced a new approach
to linear filtering and prediction problems; lateferred to as the Kalman filte2]]. The
Kalman filter was successfully applied by NASA fie Apollo onboard guidance and
quickly became popular as the most practical mefbodtate estimationlB,21,25]. The
Kalman filter (KF) uses a linear dynamic model asehuential measurements of the
system to provide an optimal state estimate in phesence of Gaussian noise. A
continuous version of the KF was later developedalynan and Bucy which later became

known as the Kalman-Bucy filte2§].

<2n P

2009 m—— —— Cubature Kalman Filter = — — — —
2007| — — — Smooth Variable Structure Filter — — —
2003| p ———— Gaussian Particle Filter — — — — —
2000 |— ———— Gauss-Hermite Filter - — — — — —
1997|  — — — — Unscented Kalman Filter - — — — —
1993 |— — — — — — Particle Filter — — — — — — —
1984 | - — — —Interacting Multiple Model - — — — —
198] [gf—— ————— H, Filter = — = — = — ——
1965 —— —— Multiple Models Filter — — — — —
19600 — — — — — — Kalman Filter- — — — — — —
1949| = — — — Wiener Kolmogorov Filter - — — — —
1945 | — — — — — Cramer-Rao Bound - — — — — —
1930 |— — — — — Monte Carlo Method - — — — — —
1929t — — — — — — Lattice Filter — — — — — — —
1908 | |— — — — Fisher Information Theory - — — — —
1906| —m ——— —— Markov Process - — — — — — —
1795| p — — — — Least Square Estimation — — — — —
1763 [l— — — — — Bayesian Estimation- — — — — —

Figure 2.1: The 200 year history of main contribo$ to the estimation theory

Some extensions to the KF formulation, such asafimation and approximation, led

to the extended Kalman filter (EKF) and the unseerKalman filter (UKF), respectively.
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These extensions allowed the KF strategy to beeamphted on nonlinear systems for the
purpose of state and parameter estimation. Otheainggd variants of the Kalman filter
include the quadrature Kalman filter (QKR)7[28], mixture Kalman filter (MKF) 29,

and the cubature Kalman filter (CKR({]. Figure 2.1 presents the progression of a number
of main contributions to the estimation theory frtme eighteenth century to present. State
estimation methods are extensively used in modegimeering applications. These include
control systems, tracking, communications, fauligdiosis and prognosis, biomedical
engineering, and economic systems. Depending ordifferent case studies, linear or
nonlinear, full-order or reduced-order, fixed oraptive filters may be applied. During
recent years, this field has attracted a signifiGanount of attention in both theory and

applications 31,32,33,34,35,36).

2.2. State Estimation of Stochastic Dynamic Systems

The task of extracting state variables from inaatayr uncertain, and noisy
measurements is referred to as state estimatiom.nfdin objective is to minimize the
estimation error when projected to the output spddes error is referred to as the
residual or innovation vector. It is important tote that due to the presence of noise and
uncertainties (caused by the measurement procesgymentation, and environment), the
measurements cannot reflect exact values of ttie staiables. In order to construct a
framework for the state estimation of stochastioalyic systems, one may assume a

first-order Markov process that is modeled as fe$io

Xiar = F (X, U, Wy ), (2.1)

Zy 1 = h(x, vy), (2.2)
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where X , Uy , and Zx are the state, input, and measurement vectoggatgely, and,
W, and Vi, are the process uncertainty and measurement ragiséme stepk,

respectively. It is assumed thlath, and Uy are known, wherw, and v, are mutually
independent white stochastic processes. The fijerproblem is formulated by
recursively calculating an estimate of the statetareX, . This can be achieved by
constructing a Bayesian paradigm based on the sequ# measurement, up to time

k. Note that there are two main concepts in staigtiat help to computationally simplify
the process of state estimation. They are the Bayesaradigm and the Gaussian

distribution of states, which will be explainedtire subsequent subsections.

2.2.1. Bayesian Paradigm for State Estimation

The main purpose of using a Bayesian paradigmaite sistimation is to calculate
the conditionala posteriori state PDF(Xy 4 | Zy41), Wherez, ,, ={z, z, ..., z.4 is the
vector of noisy measurements. In order to formuthte state’sa posteriorPDF, a two
stage recursive algorithm can be used, when thee stapriori PDF p( % | % ) is
available. It is assumed that the initial PDF oé thtate isp(xy) = p(Xy|Z,) . The

filtering process contains two stages includingdmrgon and update. The Chapman-
Kolmogorov equation can be used for the predicstage using the system model of

(2.1) as follows 37]:
P4l Z) = [ O Kea ] %) HO% 1 %) dx (2.3)

where the state transition probabilif %1 | % ) is obtained from the state equation

(2.1). The Bayesian rule is used to provide theslfas the update stage given [377]:
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12,01y = Pt %) Bkl Z)

P( X+ : 2.4
o D Zer| Z) @4

wherep( .| Z.) is the normalizing constant, and is obtained3¥:[
P( 21l Z)= [ B &l %er) # %1l %) di, (2.5)

This value depends on the likelihood functibfiZ, .1 | Xc+1) that is obtained from

the measurement equation (2.2). FromahmosterioriPDF, a theoretically optimal state
estimate may be computed using an approach sutireaminimum mean square error

(MMSE), which is as follows37]:

Ritiers 2 [ w1 PO 1] Zi ) e, (2.6)

Alternatively, the maximuna posteriori(MAP) method may be used, as follov@sJf

e 2arg maxp (e Zie1 ) (2.7)

The above calculations are based on two assumptions

1- The state transitions follow a first order Markovrogess, i.e.,

P(Xia1 | Xy Ziar) = P(Xiar | %), whereX, ={xo ... X} ;
2- The measurements are conditionally independent ngivkee states, i.e.,

p(zk+1| Xk+1’ Zk): FX Zk+1| )$<+1) [38]

The main purpose of filtering is to construct acwaate posterior PDF of the state
based on all available information. Equations (2t8pugh (2.5) provide the basis for

recursive estimation schemes; with emphasis tlegt pnesent only a conceptual solution,
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which in some scenarios cannot be calculated acallyt It is possible to solve the
recursive equation of the estimated posteriori RD&lytically for the estimation problem
with a linear state transition and measurement inaidjected to additive noise and
uncertainties with Gaussian PDF. As a statisti@ahtpof view, in linear systems with

Gaussian uncertaintieg(x, | Z,) contains all statistical information abouf . In this

way, it is expected to convert the estimation peablto the point estimation in which the
mode, mean, or median are estimated. In such c#ses posteriori PDF can be

expressed with simply the mean and covariance tethesa posteriori mean and

covariance can be predicted and updated recursivédyever, this approach is not
applicable to nonlinear systems or systems with-@anssian uncertainties. Figure 2.2
compares the main concept of point estimation ystesns with the Gaussian and non-
Gaussian uncertainties. For systems with Gaussstnbaditions, the mode, mean and
median are the same. The most popular method wsexblve the linear estimation

problem when subjected to the white Gaussian nsidee Kalman filter (KF)37,25].

P(x|Y P(x|Y
A mode. mean. median A ,
- mode, Mcan

I median

v
v

(a) Gaussian probability distribution (b) Non-Gaaegprobability distribution
Figure 2.2: Effects of the probability distribution point state estimatio8§]
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2.2. Gaussian Assumption for the Bayesian EstimatioParadigm

In order to simplify complex equations of the Bagediltering paradigm, Gaussian
distributions for the noise and uncertainties assueed. This assumption provides a
Gaussian distribution for the staéepriori PDFp(x, ., |Z,) and the filter likelihood
density p(z, .1 | Z,) which alternatively results in a Gaussian distiitnutfor the statex
posterioriPDFp(x, .1 | Z«+1) . In this context, a class of Bayesian filtersasnulated
under the Gaussian assumption and is referred tbea&aussian filters. Following this
formulation, recursive computations of the formeayBsian filter convert to recursive
algebraic computations of the first moment (mear #the second moment (covariance)
of existing conditional PDFs. This procedure iddaled for both time and measurement

updates, which followdqQ].

A. Time Update [30]: In this step, the state’s priori mean ikﬂlk and the state

estimation error's priori covariance? .y of the Gaussian distribution are calculated

using the expectation operator as follo®8§|{

)€k+1|k =E{ f(xxu)l Z,}

- 2.8
:J-]Rnxf (XU ) X N (X5 Xygies Bgi) dXy, 28)

I:)k+1|k = E{( Xk+1_ 5\(k+11k)( Xk+1_ 3(k+ 1|I)T | ZI}

‘ ) o 2.9)
=IRan (X U) T (X U ) x NCXs X By dXe— )q¢1|k3-(kl| i Q

whereN (.,.) denotes the Gaussian density function.

B. Measurement Update[30]: Since the error in tha priori measurement is a zero-
mean white stochastic proces39J|| it is possible to approximate the error to be

Gaussian and restate the filter likelihood denagyollows BQ]:
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P(Zksr ] Zk) = N(Zsts G Bz e yids (2.10)
where thea priori measurement is given b$(]:

Zysag = IR”X h(Xe1s Uge) X N(Xir 3 X 100 B 1) I (2.11)

and thea priori covariance and cross-covariance are respectiadtylated asj0]:

Pzz,k+l|k:J.]Rnx h(X 3 Uge D) T (Xje 1, Ui 9% N( Xie 3 Xie e Pe gl OXg "% 1|’k\TZ|k it K- (2.12)

Pz ke1k = IRnX X1 T (X1 Ui D% N(Xp 5 Xi g0 Poe 10 IX X 1 24 116 (2.13)

The Gaussian filter concept then supports the tatlon of the statea posteriori

PDF based on the new measuremant; [30]:

p(Xk+1 | Zk+1) =N (Xk+1; 3(k+1|k+ 1 I:?<+ 1k+ :I)’ (2.14)

and hence, tha posterioristate and error covariance may be calculate@@ly [

Xtk = Xirtk Wi o Ziw 17 Zge 149 (2.15)
Peotisr = Pk Wi 1Poz e W e 2 (2.16)
W11 = Bz kg Poz ek (2.17)

Note that for the case with linear state and measent functions subjected to an
additive zero-mean white Gaussian noise, the abmweulation reduces to the Kalman
filter. However, the main basis of the Gaussiaterfils concentrated on how to calculate
the Gaussian weighted integrals that are all foatedl as nonlinear functions with
Gaussian densities3(]. Figure 2.3 presents a block-diagram concept ana-cycle

Gaussian filtering process.
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In the case of nonlinear systems with non-Gaussiaise

however, it is impossible to obtain an exact amedytsolution. Techniques such as
linearization or PDF approximation may be considéie solve the estimation problem.
The extended Kalman filter (EKF) technique is thesincommon Gaussian method for
solving recursive nonlinear estimation problemsotigh linearization 40,19,40]. The
unscented Kalman filter (UKF) is an extension te Kalman filter. It uses an unscented
transform to approximate the posterior distributibyncapturing its mean and covariance
accurately to the second order. The correspongpgoaimation error will be in the third
order or higher 20,19,40Q]. It is important to note that both the EKF an@ tdKF are
recursive MMSE estimators that approximate the gyast distribution as a Gaussian
distribution. In the past decade, due to increasedputational power, the Particle filter
(PF) has attracted considerable interest as a falvteol for solving nonlinear estimation

problems. The PF technique uses a random set ghteel particles that approximate

nonlinear characteristics or distributions in ttegesa posterioriPDF.
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Figure 2.3: A block-diagram scheme of a one-cyadei$sian filtering3(]
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The Kalman-type filtering methods are primarily idegd based on the assumption
that the system model is known and that noise isewin real applications, there may be
considerable uncertainties about the model stractphysical parameters, level and
distribution of noise, and initial conditions. laorse situations, the system dynamic is too
complex to be modeled exactly, @mpriori knowledge is not available about parameters
such as noise levels or distributions. In othewatibns, the system structure or
parameters may change with time unpredictably. roleioto overcome such potential
difficulties, there are two approaches in statémesdtion, when the Kalman-type filtering
methods diverge or present unacceptable performdihese two approaches are referred

to as the robust state estimation and the adagtiate estimation.

The main objective of robust estimation is desigranfixed filter that presents an
acceptable performance for a wide range of modelimggrtainties [81]. The main robust
state estimation methods found in the literatueethe robust Kalman (dt) filter, the
H. filter and the variable structure filter (VSF). Hetwise, the adaptive estimation
approach is primarily used to estimate both thenomin state and the unknown noise
parameters, when in some cases they may consigerlabhge over time. There are two
main approaches for adaptive estimation that ireltide adaptive filter with gain

adaptation approach and the multiple models (MMbreach.

In the first approach, the filter gain and paramsetee adjusted based on statistical
characteristics of noise and uncertainties. Thig@gch includes several techniques such
as the joint filtering of state and parameters,ahdine noise tuning, and batch estimation
of parameters [81]. In the MM approach, several emdf the system, each representing
a particular operating regime, are stored and tmestate estimation. The final state and

covariance estimates are then calculated througteighted summation of each filter
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output. Figure 2.4 shows a general classificatiomain Gaussian filters that are used for

state estimation of stochastic dynamic systems.

Gaussian Filtering for State Estimation

Linear Filtering Nonlinear Filtering
1
Optimal Robust Kalman Linearization- Numerical Integration- Adaptive Filtering Robust Filtering
Filtering Filtering (RKF) Based Filtering Based Filtering ¢_k_¢
¢ 1
eto e * Filter Tuning  Multiple Models  Ha Filtering  Variable Structure
£ l Extended . & np &
Wicner Kalman KF (EKF) P_rc{duct ques Nor}-{)rf)(iucll_kulcs Filtering (MM) Filtering (VSF)
Filter (WF) Filter (KF) for Sampling for éalrp ing ¢
‘ l ‘ ¢ ‘ ¢ Static  Dynamic Smoothr\/ariable
Gauss-Hermit Unscented Monte-Carlo Cubature [ attice Gaussian Particle Structure Filter (SVSF)
Filter (GHF) KF (UKF) KF (MCKF) KF (CKF) Filter  Filter (GPF) L_x_'L
‘ Fixed Variable Structure ) o
Quadrature Structure (VSMM) I%-order  2'-order
KF (QKF) | SVSF SVSF

Multiple Models Global Pseudo-  Interacting Multiple SVSF-VBL
Adaptive Estimation  Bayesian (GPB) Models (IMM)
(MMAE)

Figure 2.4: A general classification of main Gaasdilters for state estimation

2.3. Gaussian Filters for Linear Systems

Gaussian filters may be used to estimate stateystéms with linear or nonlinear
state transition models. For linear systems, tlagsetwo main approaches including
optimal filtering and robust filtering. In the liae optimal filtering, the main purpose is
minimizing the estimation error. In robust filteginthe main objective is designing a filter
that presents an acceptable performance for a weahgre of modeling uncertainties. The
optimal filtering for linear Gaussian systems let@the Wiener-Kolmogorov filter (WF)
and its extension, the well-known Kalman filter (Kf the subsequent sections, these

two approaches are reviewed in detail.
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2.3.1. Linear Optimal State Estimation

The optimal state estimation is the task of exingcistate values from system
measurements by minimizing the mean square err@dEM The Wiener-Kolmogorov
filter (WF) is the first contribution into the optal filtering field and is only applicable to
stationary signals. The Kalman filter (KF) is artemsion of the WF filter and is applied

to linear systems with non-stationary Gaussianadgn

2.3.1.1. The Wiener-Kolmogorov Filter (WF)

The Wiener-Kolmogorov filter (WF) is a statisticaktimation method that was
independently invented by Norbert Wiener and Andteimogorov in the 1940’s. The
major contribution of this filter was the use ostatistical model approach based on the
famous Bayesian inference formulation. This staatestimation method contributed to
the development of many other filters including &&man filter and particle filter for
example. The WF estimates stationary signals withwin spectral properties subjected to
white noise. The goal of the WF is to filter outetlundesirable noise from the

measurement signal by minimizing the mean squace GV1ISE) 20,22)].

To formulate the Wiener-Kolmogorov filter, considbe measurement z(t) that is a

function of the process signal x(t) that itself ons the noise signa(t) as follows:
z (1) = x(t) +v(t). (2.18)

The WF provides an estimate of the sigit) using a gairKye as follows:

X (t) = Kyye (t) Oz (1), (2.19)
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where O denotes the convolution operator. The solutiothi® equation that produces the
estimateX (t) is obtained in the frequency domain. The WF gaimdtually a transfer

function formulated by using the Fourier transforf@3]. Note that the WF estimation

process minimizes the mean squared error basdteayain given by41]:

Kye ) = F‘{SZS;S'}, (2.20)

z

where F™! denotes the inverse Fourier transfornss, and S, denote the Fourier
transforms of the measurement and noise auto-atioes, respectively4[l]. NASA

implemented the WF for estimation in its space gaton system. Figure 2.5 presents a

block-diagram scheme of the WF estimation process.

Noise, v(t)

Process, X(t) [Measurement | Measurements, Z(t) [Wiener Filter | Estimates, &(t)
—> . (-

| System Tl Gain Ky

>

Figure 2.5: Block-diagram scheme of the Wiener-Kadiorov filter R1]

2.3.1.2. The Kalman Filter (KF)

Rudolf Kalman introduced a new approach to thealinestimation and prediction
problem more than 50 years ago that later becameus as the Kalman filter (KF31E).
It is an optimal recursive Bayesian filter resgittto the class of linear Gaussian
estimation problems. The KF is a generalizatiothefWF and by using a state transition
model, adapts itself to non-stationary signalsvds successfully utilized by NASA in the
Lunar and Apollo missions. The KF requires a dyramidel of the system, known

control inputs, and measurements containing whoisen Under these strict assumptions,
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it provides optimal state estimates by recursivelgdicting the states, estimating the
uncertainty of the predicted states, computing &ghted average of the predicted and
measured values, and refining the predicted statesse has been a significant amount of

research on the KF theory as applied to engineajppdjcations.

A one cycle KF has two main stages: prediction, apdate. The prediction step
uses the state estimate from the previous timetst@poduce an estimate at the current
time step. This predicted state estimate is alsavknas thea priori state estimate. In the
update stage, the curreatpriori prediction is combined with current measurement fo
refining the state estimate into tlae posteriori state estimate. To formulate the KF,

assume the linearized form of system equation2.@) @nd (2.2) as follow=]]:

X1 = FX+ G+ W, (2.21)

1 = Hk+1xk+1+ Vit 1 (222)
The KF process for state estimation is now sumredré&s follows 21]:

1. Prediction Step:

» Calculation of the predicteé (oriori) state and covariance estimat2$|{

)Zk+1|k = Fk)’(\k|k+Gkuk’ (2.23)

Peiik = Fr Pk F' +Q. (2.24)

2. Update Step

» Calculation of the innovation (or measurement graod its covariance[l]:
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Vi1 = Ze ~ ’Z<+1|k’ (2.25)

Seek+1 = Rerat Hiog R Hk+I . (2.26)
» Calculation of the optimal Kalman gaiBl]:

K+ = Py H |<+1T5rc,k+1_1- (2.27)
» Calculation of the update (posterior) state and covariance estimat2$||

XAk +1k +1 = )2k+1|k +K k+:V k+ 1 (2.28)
— T
Py +1k+1 ~ I:)k+1|k ~ Ky See K+ 1K1 (2.29)
Note thatQ and R refer to the system and measurement noise covariaratrices,

respectively 21]. Figure 2.6 presents a block-diagram scheme ohe cycle Kalman

filtering process.
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Figure 2.6: Block-diagram scheme of a one cyclen&al filter 2Q]
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A large number of references exist that described€ftvation in detail 42,40,8].
Important to note is that the optimality of the KKBmes at the price of stability and
robustness. In the KF derivation process, it isiamsl that the system model is known
and linear, as well as the system and measurenoegsbeing white, and the states have
initial conditions with known means and varianc#821]. However, in real engineering
applications, these assumptions are not alwaysepred or true. In such situations, the
KF not only results in suboptimal state estimabes,also in some cases it may become
unstable 43,8]. The convergence of the KF is dependent on timepcer precision and

mathematical operations required for calculatingrimanversions 0,8].

The main aspects of the KF method are summarizéallaws:

1. It provides a real-time recursive estimator thanimizes the RMSE of the
estimation. It produces unbiased and minimum vagaestimates of system
states. This illustrates that the expected valuth@ferror between estimates and
real states is zero and the expected value ofabemean-squared of the error is
minimum [44].

2. It operates like an adaptive low-pass infinite itgeuresponse (IIR) filter and its
cut-off frequency is related on the ratio betweba system uncertainties and
measurement noise, as well as the estimate cocar[ad.

3. When covariance matrices are symmetric, the reseirsomputation of the
Kalman filtering may diverge which leads to numatianstability in the
estimation process. Furthermore, if both the precascertainties and
measurement noise covariance matrices are asswomee very small, then the
covariance of the estimation error will reduce glycand it may also lead to the

numerical instability 40].
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2.3.1.3. Extensions to the Kalman Filter

An important issue with the Kalman filter is itsmarical stability. In simulations
with small values of the process noise covariag@ge the round-off error equation may

have a small positive eigenvalue. This makes theemic form of the state covariance

matrix be indefinite, in spite of its true form tha positive-definite. However, positive
definite matrixes have a triangular matrix squaet® = S,..S." . Squared-form (or

the factored-form) derivation helps the estimatfiter to preserve numerical stability

[49]. The square-root formulation of the filter is alsted by using three techniques in the
linear algebra including QR decomposition, Cholefdgtor updating, and efficient least
squares4§]. In this context, the covariance matrix is decosgd into factored terms that

are propagated forward and updated at each measntrsample time.

There exist two main factored-form filters inclugithe Potter's square-root filter

and Bierman-Thornton’s U-D filter4]7]. The U-D decomposition form is obtained by
P=U.D.UT , whereU is a unit triangular matrix an® is a diagonal matrix. The

Bierman-Thornton’s U-D filter has similar accuraty Potter's filter and has less
computational cost. It is obtained by using transfation techniques that involve an
upper triangle covariance factorizatiod7]. Grewal and Andrews have presented a
number of different techniques to construct thandD matrices and the application of

theU-D decomposition(Q].

Numerical stability of filtering methods may be lieased by decomposing the
covariance matrix into Cholesky factors, specificathen dealing with finite precision
arithmetic §8]. Another way to increase the KF stability is topose boundaries on the

state estimates that are based on the prior kngelefl the systemdp)]. In this context,
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upper bounds may be defined on the level of pamdenet modeling uncertainties. This
provides a bound on the KF that increases estimagtability. Formulations of tha
priori and thea posteriorierror covariance may be also modified such they gxplicitly

contain effects of modeling uncertainties. Foranse, one may define tlaepriori error

covariance matrixB .y as follows R1J:

where it contains the modeling error explicitly. tvba X, denotes the mean square value

matrix (or a correlation matrix, name{x, x;} ), matrix Yy, denotes the cross term

between the true stateg and the erroX, , namelyE{x, X} . Thea posteriorierror

covariance matrix may also be defined 2H[

PI<+1|k+1:(I _Kk+1HA)Pk+1|kI -K k+H)T +K k+:Rk+1K k+-:|I-. +K kF:H X 3 HT KTH :

. 3 3 . (2.31)
—(I =Ky yH )Y |<+1||<HT Kk+1T ~ Ky HY I+1|k(| “ K H).

In order to update the error covariance matrix,nfaricesX, and H are also required

to be calculated recursivel21]].

Another strategy for increasing the KF stabilitgludes the addition of fictitious
process noise and consideration of a fading menwtlge KF formulation41]. Using a
fading memory in the filter formulation results meglecting measurements in the distant
past and putting more emphasis on the currentnmdtion. Although this modification
leads to a partial loss to the optimality via tlewvnformulation, it helps to improve the
robustness and stability of the filter. In this walye a priori state error covariance is

restated in the following formaf:
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Pk = aF Py F' +Qy. (2.32)

whereo denotes the forgetting factor which is a positiypjcally slightly larger than 1
(i.e.,a=1.01). Its value is chosen based on how much the paasatements are desired
[4]1]. In some applications, a time-varying value fors proposed to improve the filter

performanceZ1].

The KF performance may be improved numerically broducing the “Joseph

form” of thea posterioristate error covariance matrix as follov2§,41]:
Peotgers = (1 =KieH)Pro (1 =K o )T +K e Ry Ko 1. (2.33)

This form was firstly proposed and implemented leyelP Joseph in the 1960s [22]. This
form is proven to be more stable and robust overfttmer formulation presented in
equation (29). Using the Joseph form in ¢hposteriorierror covariance matrix ensures
that it will always be symmetric positive definitat the cost of increasing the
computational complexity20,41]. Another approach that helps to increase the migale
stability of the KF is to force the covariance mato be symmetric and to initialize it
accordingly #1]. In order to provide a symmetric covariance nxatthe a posteriori

covariance matrix may be restated as follod®g:[

Pk +1k+1 = ( I:)|<+1|<+ 1+ I:)k+ 1|<+-:rL )/2- (2-34)

Another approach to this context is to equalizediigonal entries to each other (i.e.,

Py = B ), or making the eigenvalues & .+ to be positive. Using an appropriate

initial value for the covariance improves the filjgerformance and prevents large or

abrupt changes in the covariance throughout theason process4l].
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The information filter is another variant of the K which the estimated error
covariance and the estimated state are replacdd thvet information matrix and the

information vector, respectively. They are defiedollows P1]:
Yok = Pk_llk- (2.35)
A _n-12-
Yk = Pejic Xk (2.36)
In this way, the measurement covariance and measumtevector are stated &AlJ:

I =H FRH (2.37)

i, =H | Ry 'z,. (2.38)
Now, the information is simply updated through ensuation as21]:

Yk+1|k+l:Yk+1k+ |k+]z (2.39)

yk+1|k+1: 9k+1k +i k+ 2 (2.40)
The main advantage of using the information filisr that it can easily filterN
measurements at each step by only summing theirorndtion matrices,

N
Ysk+1=Yke1k D, lkrsj. and their information vectors that are represerasd
j=1

N
Yieik+r = Y k+1k "‘Z e 1y [21]
i=1

2.3.2. Linear Robust Kalman Filter

Robust state estimation is one of the main aspédtdering in which the objective

is to design a filter that limits the effect of nadithg uncertainties or environmental noise
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on filter performance. Robust state estimation h#sacted significant amounts of
research in some specific areas such as contrtdregs target tracking, fault diagnosis
and health monitoring systems. There are sevembaphes for increasing robustness of
the discrete-time Kalman filter against norm-bouhd@arameter uncertainties
[50,51,52,53] or unknown initial conditions34]. The other main approaches include the
H,, filtering [41,5556], the robust Kalman filtering950,57], the set-valued estimation
[58], the guaranteed-cost desidid], and the smooth variable structure filter (SVESH)
Sayed has presented a general framework for rabaigt estimation of dynamic systems

with modeling uncertaintie<].

The main idea of the KF design is minimizing thact of the estimation error
covariance. However, the KF is only accurate whbard are small amounts of
uncertainties and noise in the process modelalrénditions and measurements. There
are a large number of publications that describe tbbust Kalman filter (RKF)
techniques. Xie, Soh, and Souza have proposed a te&lique for linear systems
subjected to norm-bounded parametric uncertainthénstate and measurement matrices
[50]. Masreliez and Martin have introduced a robusyddsan estimator that can operate
under two different scenario6(]. The first situation is when the states Gaussian and
the measuremeintis non-Gaussian (heavy-tailed). The second saeimamwhen the state
is non-Gaussian (heavy-tailed) and the measuremeémntGaussiangQ]. Furthermore,
Hsieh has proposed a RKF technique that is ingeadid unknown inputs54]. This

filter is an alternative to the Kitanidis’s unbidsainimum variance filterg1].

Wang and Balakrishnan introduced a RKF algorithna@glied to linear systems
with stochastic parametric uncertaintiés3]] This method is designed to minimize an

upper bound of the mean square estimation err@aeah step. Benavoli, Zaffalon, and
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Miranda designed a RKF by considering the uncdsgtagharacterizations in terms of
coherent lower prevision$2]. Bertsekas and Rhodes presented the set-valygdah

for state estimation that is based on definingpstlids around state estimates that are
consistent with the measurement d&i@.[Note that the centers of ellipsoids are assumed
to be the estimated states. In this context, taereseveral recursive algorithms to account
for uncertain models, particularly the one propobgdSavkin and Peterse63. The
Guaranteed-cost design is another important appraavhich the filter is designed by
preserving an upper bound on the variance of thienason error. This approach is
mostly applied to quadratically stable systemshia $teady-state phase of the operation
[2,50]. In this section, the Sayed’s robust Kalman fitig technique is reviewed as a

general framework for linear robust state estinmatio

Assume an uncertain dynamic model with bounded rtmio¢ies in state and

measurement models that is presented?hy [

X1 = (Fe +OF )X +(G +0Gy) Uy, (2.41)

Y = Hi Xy +vy, (2.42)

where 0F, and oG, denote small uncertainties in state transition eowtrol matrices,

when matrixH , is assumed to be known exactly. Uncertainties,inandGy, may be

modeled as]]:
[oF, &Gy ]=MAE{F} E G} (2.43)

where A is an arbitrary contraction, whef\, [<1. In order to start the estimation

process, let assume that thgriori state estimaték|k and covariancd’ are available
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along with the measureme#i .;. Then, the estimate of, may be updated frorﬁk“(
to X,k by solving the following criterionZ]:

. ~ 2
TR RN A W RET RN A A R

Sayed has presented a solut{of .. ~Uy.1x} to the above problem by solving
the corresponding set of equations. Now, in ordégollow his solution, one may assume

the dynamic model of equations (2.41) through t@3p, whereXqy, U, , andVy are

uncorrelated zero-mean white stochastic procesgbdallowing variances?]:

Xo || Xo My O 0
Elly ||y =l 0 Qg o |, (2.45)
Vi ||V 0 0 R c}'J

where M, >0,R; >0,Q >0 are given weighting matrices. Note tha; is the
Kronecker delta function that is equal to one whetj and equal to zero otherwise. The

initial conditions for the robust filtering algdnin are set to<qn = PgoH "Ry, and

Pyo=(Ng +HHRG'H ™, alternatively. The robust filtering method is suarized into

the time-update and measurement-update formulatising the following step<[:

Step 1:If H,,,M, =0, then putd =0. If not, calculate the functioB(}) as PJ:

G (1) =[x (N[ +A[Eax(A) = B[*+[| Ax(A) - .- (2.46)
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Note that the non-negative scalar parameter igméted from the optimization problem,

where functionsV (1), Q(1), x(1) are defined a<]:

W (A)2W +WHA 1- HTWH)" HT w, (2.47)
Q(1)2Q+AE] E, (2.48)
X(A)2[Q(A)+ ATW (A) A Y ATW(A) b+A E EL (2.49)

Note that X =CO{X =X U b = Yy = H i Fe Xs A=H a[FRe Gyl
Q =Pt D QLW =Riy, H=H, M, E,=[E{F} E G}] andE, = —E{F} Xy.

Note thatjk is obtained by minimizing the functia®(4) [2].

Step 2:RepIaCéQk, Rk+1, Pk|k’ Gk, Fk} ) by [2]:

(jk_leElijkEg,k['+jkEf,kPHkETf,ﬂ_l Egx (2.50)
|ik+1 = Rk+1_/]|;1 Hk+1Mk MTI; H-II-<+11 (2'51)

Pei = Pk = Pk B A1+ Ef oPuEr )1 E; (P
kik = P = Pk B idA t.kPykEr " Ef kPyx (2.52)
Fe = (Fy _/ikék(jkETg, kEr (1 -4 k'sk ETe kE g ) (2.54)

If A =0, then it will be obtained tha®, =Qy, Re,1 = Ry Ric= Ry Gc= G, andF, =F,

[46].

Step 3:Update the state estimate and state error covm{iﬁng Pq , as follows PJ:
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Xy = Ifk )2k|k1 (2.55)

Xisakr1= Riar+ Pergger 1H e 1R 184 1 (2.56)
€41 = Zke1 ~ Hiw1 Xya (2.57)

Pes1 = R I5|<|k Fi +ék Qk Gl (2.58)
PAk+1|k+1: Pes1™ Pt Hie 1 Ree 1 Hie 1Pie 1 (2.59)
Re k1= Rers+ Hies Pt Higz (2.60)

Sayed also formulated the above robust estimattihegninformation form in which the

inverse of the error covariance matiy is propagated instead &% x [2]. However,

the presented estimation algorithm needs to opéintie cost functiorN (x;0,1). An

approximation formula for the correction paramederis presented irn2].

2.4. Gaussian Filters for Nonlinear State Estimatio

As explained, the Kalman-type filtering processaispecial case of the Bayesian
filter, when the system and measurement modelsliagar. Measurement noise and
modeling uncertainties are also modeled by additiige Gaussian processes with zero
mean and known covariance matrices. In this caseKF provides an optimal solution to
the estimation problem by minimizing the RMSE. Heee for the general case of
nonlinear systems with non-Gaussian noise disiobutthe predicted distribution
P(X+11Z¢) cannot be computed exactly. Therefore, it needsige some kind of
approximations that would sacrifice optimality fmsmputability and hence, search for a

sub-optimal nonlinear filtering approach that isnputationally tractable.

39



PhD Thesis — H. Afshari; McMaster University, Menlel Engineering

In order to approximate nonlinear filtering, thare two main approaches including

the local approach and the global approach asvsl[80]:

1. Local approach: In this approach, the distributions are assumelet@aussian,
and then thea posteriori distribution is calculated using a direct numdrica
approximation in a local sense. This approach letdsseveral estimation
technigues that are based on linearization sucth@sextended Kalman filter
(EKF) [2019, and the central difference filter (CDF)6465], or PDF
approximation such as the unscented Kalman filt#KK) [20,19], quadrature
Kalman filter (QKF) R8], and the cubature Kalman filter (CKR3{]. The locality
approach for the filter design makes the filters e simple and fast for
implementation 30].

2. Global approach: In this approach, there are no assumptions pemita thea
posteriori distribution; it is calculated using an indireatnmerical approximation
in a global sense. This leads to new filtering teghes such as the point-mass
filter that uses adaptive gridé€], the Gaussian mixture filtei6}], the mixture
Kalman filter [29], and the well-known patrticle filter (PF). The pele filtering
technique uses a set of weighted particles to apaie the state posteriori
PDF that contains nonlinear and non-Gaussian cteistics. The main
disadvantage of estimation techniques categorizdtie global approach is their
large computational cost that makes them uselessofoe on-line state estimation

applications 30].

Note that based on the method of approximationntminear Gaussian filters may
be classified into different categories. These gaties include the linearization-based

filtering, numerical integration based-filteringychthe adaptive and robust filtering.
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2.4.1. Linearization-Based Filtering
In this section, main approaches for nonlinear Giansfiltering are reviewed.
2.4.1.1. The Extended Kalman Filter (EKF)

The extended Kalman filter (EKF) is used for esting states of a nonlinear
dynamic system. Local linearization is performedhis method in order to approximate
the nonlinearity of the state or measurement matitie operating point and to calculate
a corrective gain. The EKF derivation is based lo& Taylor series expansion of the
nonlinear state transition (2.1) and measuremeg) (&ith linear terms. However, these
nonlinearf andh functions cannot be applied to the covariance témectly, and their

Jacobian’s must be computed. Similar to the KFBKE has two main stages as follows:

1. The Prediction Step[41]:

» Calculation of the predicted state and covariarstienates as followsAfl):

3<k+1|k = f( 3(k|l<, Uy, Wi ), (2.61)

Ptk = FiPaFid + Qi (2.62)

2. The Update Sted41]:

» Calculation of the Jacobian of the system transiind measurement equatiofs,

and H,,,, respectively as follows[]:

_ of
= a_x S U (2.63)
:@ ) (2.64)
k+l Ax | K
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» Determination of the innovation (or measuremerarg@m@nd its covariance ad1]:

Vk+1 =441~ f'( A>1<+1|k)’ (2.65)

Ste.k+1 = Hiar Berap Hee1 + Riet (2.66)

» Calculation of the EKF's gain as follow&l]:
— T -1
K1 = PeragHie1 Sreper - (2.67)
» Updating the state and covariance estimates asisl{1]:

Xerahr1 = Xier 1kt K Vig 1 (2.68)

Pk+1|k+l =(1 =K iH ke 1)Pe 'S (2.69)

The main aspects of the EKF estimation techniqug measummarized as:

1. If the system is highly nonlinear, or a local lingation assumption does not fit
the estimation problem well, a large estimatioroemill be produced and the
EKF solution may lead to an estimate that divefga®s the true state trajectory.

2. Because of the linearization process, the EKF duomsprovide optimal state
estimates in the RMSE sense. Also, it does notagii@e unbiased state estimates
and the calculated error covariance matrix doesnegessarily equal to the real
errorcovariance matrix44).

3. EKF's parameters need to be tuned such that thgecgence improves. The
convergence of the EKF is also dependent on thecehof the initial state

estimates44].
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2.4.2. Numerical Integration-Based Filtering

As discussed, the main difficulty produced withime tEKF derivation is the local
linearization at a single point in the state proligldensities. In order to ameliorate this
difficulty, several techniques were proposed. Steacaniques use the higher-order terms
of the Taylor series expansion for approximatinglmearities and lead to the so-called
higher-order filters (e.g., second-order filtéB8[L8]). However, due to some difficulties
appearing in calculation of the Hessian matrixséhapproaches have not been used in
the recent state estimation strategies. In ordeovercome the main drawbacks of
linearization-based approaches for nonlinear gstienation, the estimation filter may be
constructed based on the transformation of stedistinformation. In regards to the
computational issues, it is understood that appmeking a probability distribution is
much easier than approximating an arbitrary noalintansformationgg]. It in turn
results in using the PDF approximation techniquessblving the integrals of equations
(3) through (7). The main basis for the integratb@sed estimation approach may be

summarized in three main ste &S]

1. Calculating the mean and covariance of a probghiiénsity via a set of selected
samples

2. Propagating the samples by means of the nonlingasformation function

3. Determining the parameters of the propagated Gausgpproximation from the

transformed samples

As explained, the Bayesian filtering paradigm isintyabased on calculating
Gaussian weighted integrals whose integrands areulated asnonlinear function x
Gaussian densityln order to make a general formulation of the eupal integration-

based filtering, one may consider a multi-dimenalareighted integral stated &&([:
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L) =]_f w(x)dx, (2.70)

wheref (X) is an arbitrary functionp O R" is the region of integration, ana (x) =0

is the known weighting function applied for al[ID. In Gaussian filteringw(x) has a
Gaussian distribution and preserves the non-negatbondition in the entire region
D OR". In some cases, it may be extremely difficult wve the integral (70)
analytically. Hence, a numerical integration tegua may be sought in which a set of
points X; and weightdV; is used to approximate the integtdl ) through a weighted

summation, as follows3[):

| (f ):iwi f(x). (2.71)
i=1

In order to calculatBX;, W;} , there are two main approaches including the mrbdu

and non-product rules that are described as fol[@@is

1- Product rules: In this approach, the quadrature rule is used toulze the
integral (70) numericallyd9. In the case of Gaussian filters, this rule istaieed
by the Gauss-Hermite quadrature rule, when the Wieig functionw (x) has a
Gaussian distribution. The integrafdX) is then approximated by a polynomial
in terms ofx, and the Gauss-Hermite quadrature rule is appbecklculate the
Gaussian-weighted integraB(Q]. Julier and Uhlmann introduced the Unscented
Kalman filter (UKF) [70] based on the unscented transform, as anotherp&arh
this approach. Furthermore, Ito and Xiodd][proposed two different techniques.
The first technique is the Gauss-Hermite filter &Hormulated based on the
Gauss-Hermite quadrature rule and the second wehns the central difference

filter (CDF) formulated based on the interpolattenhniques.
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2- Non-product rules: This approach is used to address the dimensioriafitie in
the product rules approach. In this context, thhegrals are numerically solved by
selecting sample points from the integration don@eid applying the non-product
rules. Some of the main non-product rules inclineMonte Carlo techniqu&?],
quasi-Monte Carlo techniqu&d], Lattice rules 74], and sparse grids/§]. The
randomized Monte Carlo technique calculates integhy utilizing a set of
equally weighted sample points that are selectediaaly. The quasi-Monte
Carlo technique and lattice rule use a determmiapproach to produce the
sample points from a unit hyper-cubic regi@®][ The sparse grids method is a
numerical technique used to integrate or intergolagh dimensional functions
based on the Smolyak’s rule. The sparse grids rdetkarches to find the more

important dimensions and put more grid points thaog

The simplest technique among numerical integrabased filters is the unscented
Kalman filter (UKF) invented by Julier and UhlmafirQ]. The unscented transform is
used in the UKF to transform statistical informatiof the probabilistic densities into a
predictor-corrector form. Wu and Hu described tmsaented transform as a statistical
linear regression technique that uses the systtarmation at multiple points, in spite of
the local linearization (e.g., the EKF) uses infation of only one pointd8]. More
efficient filters are obtained by developing the uGstHermite rule for numerical
integration, such as the Quadrature Kalman fil@KF) [2827]. In other research,
Norgaard, Poulsen, and RavA5] invented the Divided Difference filter (DDF) to
overcome several difficulties that appear in caltiah of the derivatives in the EKF
formulation. The DDF approximates the derivativeg( Jacobian/Hessian matrices) and
replaces them by the central divided differenceisTi® performed using the Sterling’s

polynomial interpolation criterion that makes thBPa derivative free filterdg].
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More recently, Ito and Xiong presented the mixedi€aén filter that approximates
the conditional probability density of states usiaglinear combination of multiple
Gaussian distributions/f]. In order to update estimates in the mixed Gauns§iter, a
Gaussian filter is applied to each Gaussian digiohn, when each update is independent
from the others and they operate in a parallel reafjnl]. Kotecha and Djuric 16]
invented the Gaussian Particle filter (GPF) techaigSince the GPF selects an optimal
number of random samples and also benefits fronabilgy of analytical calculation and
transformation of samples, it may be considered asar-optimal estimation technique.
The GPF is an extension to the Gaussian filter aplies the Monte Carlo integration
technique to the Bayesian update r@8][ Note the main drawback of any random-based
sampling method (e.g., the GPF) is its high companal cost that makes it useless for
on-line applications77]. In the subsequent section, some of the main Sadilters that
use the numerical integration-based approach atiewed and compared in terms of

accuracy, efficiency and computational cost.

2.4.2.1. The Unscented Kalman Filter (UKF)

The next important development to the Kalman fiitethe unscented Kalman filter
(UKF) [41]]. Its formulation is based on a weighted statatimear regression approach
that linearizes the nonlinear state model statiB}id78,8]. The UKF method produces a
certain number of points called the sigma pointsmfrthe projected probability
distribution of the system’s states. In order tovule thea posteriori estimate of the
probability distribution, the sigma points are theapped through the system’s nonlinear
model. This strategy makes any linearization uns&mg. Therefore, the calculation of
the Jacobian matrices is avoided and the accuradyeo state estimation increases

considerablyT9,8].

46



PhD Thesis H. Afshari; McMaster Universi, Mechanical Engineering

The UKF utilizes a deterministic sampling appro referred to as the unscent
transform, to select a minimal set of sample paamtsind the mean. The minimal set:
points are known as sigma poi. The sigma pointare propagated using the nonlin
functions It is possible tcapproximately determinghe mean and covariance of f
density using theMonte Carlo samplir techniqueor Taylor series approximatic[80].
The UKF can capture tha posteriorimean and covariance to the third order for
nonlinearity, and is therefore more accurate th@nBKF. Another advantage of the Ul
is that there is no need tompute the Jacobian or partial derival [8C,70]. The UKF
has a number of different forms that include theegal unscente[41,81], the simplex
unscented 41,81,82], and the spherical unscent[41,81,82]. Here, only the standa

UKF is explained and simulatt

Figure 2.7 shows a schematic representation otittiseented transfornion used

in the UKF methodTo formulate the UKF, assume n-dimensional state vector Xy ,

with a mean7k|k and covarianci By that are approximated byn®21 weighted sigm

points. The UKF process is recursive, and can bedtated intwo main steps of th

prediction and updatas follow: [80)]:

sigma points transformed sigma points
/ \}) J \O UT covariance

(@] true covariance

unscented UT mean

transformation

o o

covariance mean

true mean (@]

Figure 2.7:Schematic of the unscented transformaused in the UKF (Taken fro[83])
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1. The prediction step[80]:

« Calculation of the sigma points as follov@d]:

/Y|9|k=¥k|k, i=0
Xuk = K + (V+Puic )i i=1,..,n, (2.72)
X = X = (VfPy)in i=1...n

where the parametgr = </n + « is the associated weight of samples, determing¢8Gs

{WOZK/(I’HK), i=0

w=1/(2(n+k)), i=1,...2 (2.73)

wherek'is a scaling factor. Note tt’(qﬂn +K) P ) is thei™ row or column of the matrix
I

square root ofn + ) P .Furthermore, the normalized weights sum to one.

* Predicting the state mean and covariance by projpagsigma points as8]:

X|i<+1|k = f()(ik|k)a (2.74)
. 2n )
Xe+1k = Z Wi X;(+1|k! (2.75)
i=0
2n . . . . T
Rerak = Qx +ZWi|:)(lk|k_ Xk+uk][)('k|k_ Xje nk] - (2.76)
i=0

» Calculating the measurement predictions8&: [

f|i<+1|k = h()(ik+1|k)1 (2.77)

~ 2n .

Levak = z Wif||<+1|k- (2.78)
i=0
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2. The update sted80Q:

» Calculating the UKF gaingQ:

2n

P, = ZWi [fli«uk _Azk+ljk}|:{ik+ ik~ 2 ukJT , (2.79)

i=0
sz=2Wi|:XL+ﬂk_3(k+ﬂk:||:giI¢JJk_ Zy uk]T- (2.80)
Kk = szP;l' (2'81)

» Calculating the state mean and covariance updaggs [

Xestkr 1= Xie 1 Kid 2™ Ze 11 (2.82)

I:>k+1|k+1 =B, ik~ KszKkT' (2.83)

The main aspects of the UKF estimation technigeesammarized below:

1. The UKF is similar to Monte Carlo methods, becaitigseses a number of points to
estimate the system’s mean and covariance. Buinthie difference is that UKF
only uses a small number of points that are noeggad randomly. Hence, the
computational cost decreases. The convergenceedfitF is highly dependent on
the choice of sigma point8]].

2. The UKF is better than the EKF in terms of the aacy and computational cost.
Tuning the EKF can be problematic when the Jacolmatrix is not derived easily.
Furthermore, the EKF can only handle limited levalsonlinearities.

3. The UKF provides a trade-off between the partigherf and EKF in terms of

accuracy and computational cost.
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2.4.2.2. The Gauss-Hermite Filter (GHF)

The Gauss-Hermite quadrature rule is the main Hdasisonstructing the Gauss-
Hermit filter (GHF). The rule states the weight ¢tion is assumed to be Gaussian
density with zero mean and unit varianbgx;0,1), when the interval of interest is
(—o,0) . It is difficult to calculate quadrature poirfis and weightv; analytically for
a nonlinear system. In this context, some apprtgneints should be chosen as the
guadratic points based on the problem under stlilgreafter, the weight® may be
obtained by calculating the momens of the integral for then number of quadrature

points as followsZ8]:
b .
M, :J‘X'W(x)dx, fori0{0,1, ..., m-1}, (2.84)
a

The Vandermonde system of equations is statedllasvio[28]:

1 1 . 1Yw Mg
FE R S B (2.85)
m-1 '

a qzm_1 e O

The set(d;,W; ) may be used to approximate an integral using thedigaure rule as

follows [71]:

1 P A
IRH F(x) o e’ dx~i§w K q), (2.86)

where X, and P, are starting values for the mean and covariantkeofandom variable
X(0) . More details on the Gauss-Hermite quadrature mand its applications for
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numerical integration are provided i8g71]. The GHF process is summarized in two

main steps{1] as follows.

1- Prediction step[71]:
To begin, one must factor the covariance P@§|k_1:STS, and then set

x, =S q+ % -i-1. Following this, the values of state and its ercowariance may be

predicted 71]:
N
Xy +1k :Zf (Xi)wi, (2.87)
i=1
N
Pk =Q+Z(f(xi)_ Xy ) (FOX) = >ﬁ<+1|<)T W. (2.88)

i=1

2- Update step[71]:

The predicted state and covariance estimates mapdegted as7l]:

Xiaakrs = Xirtk + L Zk— 2, (2.89)
Restkrs= Pt~ LicPoe » (2.90)
where [71]:
N
2=y %)W, (2.91)
i=1
N
Pe =Z(Xi _Xk+l|k)(r(xi)_ Azk)T W, (2.92)
i=1
N
P, = > (h(xi) = Z) (K %)~ 3)" w, (2.93)

i=1
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L, =P,(R+P,)™ (2.94)

Note that the main advantage of using the quadratue for approximation is that there

is no need to calculate derivatives of the statedition and measurement matricé$

2.4.2.3. The Quadrature Kalman Filter (QKF)

The quadrature Kalman filter (QKF) was introducedd aimplemented by
Arasaratnam and Haykin in 2002g. The QKF was firstly formulated for nonlinear
systems with an additive Gaussian distribution leé hoise. In this formulation, the
process and measurement models are linearizedibhy thee statistical linear regression
approach that projects the Gaussian density fumdimmsed on a set of Gauss-Hermite
guadrature points2B,84]. The main concept of the new QKF was extendedawer

discrete-time nonlinear systems with an additive-@aussian distribution of the noise.

In this extension, a bank of parallel QKFs refertedas the Gaussian sum-
guadrature Kalman filter was used to approximateattpriori anda posteriori density
functions. This approximation was alternatively fpemned using a finite number of
weighted summations of Gaussian distributions, whenweights are calculated from the
residuals of the QKF<2B]. Arasaratnam, Haykin, and Elliott reported tha¢ Gaussian
sum-quadrature Kalman filter is more accurate tb#rer nonlinear filtering methods,
such as the basic particle filters. They propoderl Gaussian-sum EKF technique for

solving nonlinear non-Gaussian filtering probler28] [

In this chapter, only the general formulation o QKF for nonlinear systems with
an additive Gaussian distribution of noise is exy@d. Similar to the GHF, at first tre

priori and the a posteriori error covariance must be factored respectively as:
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Pk =+ Pk (fPq)” @nd Py =1/Peoa ( Pee )’ - The QKF may be summarized in two

steps that include the prediction and update siegsllows R§].

1. The prediction step[28]:

m

» Calculation of the quadrature poirfts, ,} " for states 28]:

Xy ki = Peidi + X (2.95)

m

» Evaluation of the predicted quadrature poi{n¢§k+lk} X for states 29]:

X[ g = F (X kg U K)- (2.96)
» Calculation of the predicted state estima@:[
~ m *
X +1k =Zaﬁxl,k+1|<- (2.97)
=1
» Evaluation of the predicted error covarian2g|{
S * * T _ ¢ S T
P :Z‘le| ke (X ) ~ X { X )+ Qe (2.98)
=1
At this stage, the predicted densRyXy. | Zix ) =N(Xcr1» Ree 1) is obtained.
» Calculation of the predicted quadrature poi[rn@ﬂk}lril for measuremen®p]:

Z gk =X g0 Yoo K)- (2.99)

» Evaluation of the predicted measureme&d [
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m
sy = Za‘l Z| k+1k- (2.100)
=1

» Evaluation of the predicted error covariance madmxl cross covariance matrix as

follows [28]:

m
Pz, ek = R|<+1"‘Z:5‘)|Z|,|<+1||<ZT Lk 1k 20k 1 21 b 1k (2.101)
=

m

Pz, keak = ZMX I,k+1|kz-ll-,k+ 1K~ X i 1k2T| P (2.102)
=1

2. The update sted28]:

» Evaluation of the QKF gain ag§):

W1 = B ek Por ek (2.103)

» Calculation of the update state and covariancenastis P8:

Xicatkr1 = Xir 1k TWie { Zis 17 Zie 10- (2.104)

- )
Pesak+1= Peetk "W 1Pz, 16 0V 1 (2.105)
Finally, thea posterioridensity P(X 1 | Zix+1) = N(Xe g+ 1 R 10 9 IS calculated.

The main aspects of the QKF estimation techniqug Ibeasummarized as:

1. If the a priori mean is far from tha posteriorimean, the EKF will fail to make

accurate estimates. Since the QKF needs only twleé¢ some functions and not
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the derivatives off (.) and h(.), it may be applied to non-smooth and non-

analytical systems2p].

2. The QKF is able to estimate systems with correlatedon-additive Gaussian
process and measurement noise, by adding terntetetate vector and relevant
covariance 28].

3. The main disadvantage of the QKF is evident whaulieg to high dimensional
systems, especially when the state vector sizeréatgr than six. In high
dimensional systems, the QKF’s error covariancerimahay diverge from its
nominal value 28§].

4. Another disadvantage of the QKF is evident whenliagpo estimate systems.
When applied to estimate systems with a limiteddidength for a long period of
time, the round-off errors will accumulate and QKF’'s accuracy may decrease.

This may even cause numerical instability for tHeFQn some case2§.

2.4.2.4. The Cubature Kalman Filter (CKF)

The Cubature Kalman filter (CKF) is a nonlineartstastimation technique for
large-dimensional systems. It was invented andempgited by Arasaratnam and Haykin
in 2009 BQ]. The CKF formulation is based on a cubature fiansation B5] that makes
it possible to numerically calculate the Gaussiaighted integrals for nonlinear
Bayesian filtering. In order to produce a set dbature points that will be later mapped
through the state transition model, a third-degpkerical-radial cubature rule is used
[30]. The cubature transformation overcomes the detecg and dimensionality issues
that are the main issues with running the EKF, UKFQKF estimation techniques.
Furthermore, the CKF provides more accurate statenates for nonlinear systems

subjected to white Gaussian noi€$|[ The cubature transformation helps the CKF to
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reduce the computational difficulties of calculgticonditional density for some solvable

multi-dimensional integrals.

As discussed previously, by assuming the conditideasities to be Gaussian, the

Bayesian solution to the filtering problem leadsstiving multi-dimensional integrals

whose integrands are generally representellfas IRnf (X) N(x %, P*) dx wheref (x)

is an arbitrary nonlinear function in n-dimensiorsplaceR", and N (x; X, P*) is a

normalized Gaussian function with the meénand covariance matrif* . The CKF
uses the cubature rule to numerically approximatsd Gaussian-weighted integrals. The

cubature rule used for approximating such n-dinmraiintegral is given by3[]:

jRnf (x)N (x; X, P*) dx:% f(x+ PXE), (2.106)

T
where the covariance is factorized RS =V PV P and a set of 2 cubature points that

are calculated by:

: :{\/ﬁei , i=12,...,n (2.107)

—\/ﬁei_n, i=n+1,n+2,... ,2n,

wheree; OR" represents thé" elementary column vector. Arasaratham and Haykin

proposed the third degree cubature rule to appratémolynomial integrandS(].

The main structure of the CKF is similar to the UKdut they are based on a
thoroughly different set of deterministic pointsathprovide weights for Gaussian
integrals. The UKF utilizes the unscented transfoonweight the selected sigma point

set, whereas the CKF utilizes the cubature ruleréwide weights for cubature point set.
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Figure 2.8 presents a comparison of the point sgtilsltions for the UKF and CKF

estimation techniques. As illustrated, the locatma the height of each point represent
the sample point and its weights respectively. iffan advantage of using the cubature-
point set made by the CKF over the sigma-pointssde by UKF is to increase the filter
stability as well as its numerical accuracy. Italso possible to derive the square-root

version of the CKF in spite of the UKB().

0.4 0.25 -

0.2

0.3

0.15

0.7

0.05

[NE=}

e 1 :
2 -2

(a) Sigma point set for the UKF (b) Third degrekesjral-radial cubature
point set for CKF

Figure 2.8: Comparison of the 2-D point set disttiin in UKF and CKF (Taken fronB()])

The CKF process is recursive and can be summaiizetivo main steps of
prediction and update (like other Kalman filteritechniques) which are summarized

below. It is important to note that similar to tHF, at first thea priori and thea

posteriori error covariance should be factorized respectivély :JPklk( /Pklk)T and
Pesak =4/ Perak (§ Pk+uk)T [301.

1. The prediction step[30]:

»  Evaluation of the cubature poirfis, ,k|k}m_l for states as30);
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Xi kk = Scéi + X (2.108)
« Calculation of the predicted cubature poi{vt(s*,kﬂlk}im:l for states as30):

Xi gk = F (Xi g U K. (2.109)

» Prediction of the state value3(:
- 1S«
X 41K :_in,k+lk' (2.110)
miz
» Estimation of the predicted error covarian86|{

1 dL * * ~ A
AT =szi,k+1k(xi ,k+1|<)T = Xp e { Xk e )+ Q (2.111)
i=1

» Calculation of the predicted cubature poi{ﬂgkﬂk}ll for measuremen8[):

Z ik = (X ke Uy K). (2.112)

» Evaluation of the predicted measurem&ti
A 1
Zy 1k =HZ Zi k+1k: (2.113)
i=1

» Evaluation of the predicted error covariance madarxl cross covariance matrix as

follows [30]:
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1o . .
P2 keak = Rk+1+EZ Zi ikl i1k ik 1|<{| K 1k
i=1

m
_ T _3 T
Pz, k1K _Zwix TSN TR SRS AR
i=1

2. The update sted30:

» Evaluation of the CKF gain a8(:

— —1
Wk+1 - I:;<z, k+1|szz, k1| k

» Calculation of the update state and covariancenastis asj0]:

Xs1k+1= Xkr 1k TWie d Zig 1 Zie 1p9-

— m
I:)k+1|k+1_ I:)k+1|< ~Wy 1Pzz, k- 1|kVV k1

(2.114)

(2.115)

(2.116)

(2.117)

(2.118)

The main advantages of the CKF over other estimatiethods are as follow3():

1. Note that the cubature rule is a derivative-freengformation and hence, it

removes the difficulties that may appear in thewation of the Jacobian and

Hessian of systems with complicated nonlinearitidhis derivative-free

characteristic allows writing the pre-packaged catepprogramsd(].

2. The cubature rule involvesnZubature points, whene is the number of state

variables. Hence,r2functional computations are required at eachtitamecycle.

The computational complexity is linearly changingthwthe state vector

dimensionn and this makes the CKF effective for estimatinghhdimensional

systems 30].
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3. Presence of the negative weight in the CKF fornmotatprevents the
factorization of the covariance matrix in a squat@un. The CKF formulation
of the filter guarantees that the sample weighésparsitive definite and hence

the squared form of the CKF is always availa3g.[

In order to increase the accuracy of the CKF,Xia, and Cheng have introduced a
new family of CKFs with arbitrary degrees of acayrahat calculate the spherical and
radial integrals §7]. The described third-degree CKF is a special gtarof this family.
The accuracy and performance of the high-order CiKFSmilar to the Gauss-Hermite
filter (GHF). To achieve2m+1)" degree of accuracy, the number of points that are
required for the cubature transform increases bydimensiom polynomially. Since the
computational cost of CKF is a polynomial functiof the point's dimension, it is

computationally more efficient than the GHE].

2.4.2.5. The Monte Carlo Kalman Filter (MCKF)

In the Monte Carlo Kalman filter (MCKF), the Mon€@arlo numerical integration

technique is used for approximating the expectddegain the integral forms. In this

approach,Ng samples are drawn from the state Gaussian distib\N (x; X, P*),

where {x(”,i=L...,Ns} is a set of particles (random samples) with weights

{W(i)zlle,i =L...,Ns}. The state distribution may be approximated ugimg Monte

Carlo technique as3f]:

NS . .
N (x; X, P)=> wl o(x= ®), (2.119)
i=1
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where Ng is the number of samples andl is the Dirac function. Note that the

probability density near the samp*éi) is obtained by the density of points in a region
aroundx ) . If N, - o, the approximation of the integral will convergsits true value.

The MCKF estimation process is constructed basedamproximating the predicted
values of state, measurement, and their covaritmoeigh the Monte Carlo numerical

integration techniquesp].

The MCKF process is recursive and is summarizetivin steps, similar to other
Gaussian filters. The summary describes the tepssthat address prediction and update

as follows B8,89].

1- Prediction Step[88,89]:
* Generating prior samples based on Gaussian assumptid starting from

~ XX .
X opo» Pojo as:

Xk = N (X Sigier Rl (2.120)

» Prediction of the state and error covariance ugiegstate transition model as:

. 1 &,
Xk = —— 2 F (X{h), (2.121)
s i=l
1 Ns . . 1 Ns . 1 Ns .
Py = N Zf (XIEIH)()fT (X(k||l)<) _{N_Z f (X(kl|)k):||: N Z f(X(;'q)k)]" Q (2.122)
s i=1 s i=1 si=1
* Generating predictive samples:
X = N s Ko RS- (2.123)
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* Prediction of the measurement and its covariancecaoss-covariance with the

state as follows:

Zgsk =

1@,
2 O y), (2.124)
S i=1

S

1N _ _ 1 N _ 1 N T
Pk = —— . h(x{ ) h(x&'ﬁl.k){ > r(x&'zllk)}{ > %k'znk)} + R (2.125)
i=1

N s i=1 N s i=1 N Si
1 Ns . . 1 NS . 1 NS . i
By = Sl xﬁ'zl.o—[N— x<k'31|k"N—z A ”k)} e
S i=1 si=1 Si=1
2- Update Step[88,89:
» Calculating the MCKF gain as:
Ky = Pea (P& ™ (2.127)

» Updating the state and the error covariance as:

>2|<+14k+1:)2k+1|<+ K dZie 1= Zie 1) (2.128)

Pk = Pk — K 1Py Ko - (2.129)
The main issues of the MCKF are summarized below:

1. The Monte Carlo integration rule is similar to thhgadrature integration rule
presented previously. The two rules are similawdwxer, a difference between the
two rules exist. In the quadrature rule, the sanputs are selected at fixed

intervals, while in the Monte Carlo rule they aedested randomlydg].
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2. In the Monte Carlo integration process, the vamaraf state estimation is

proportional tol/N which means for a simulation study with*1€amples, the

error in variance is equal to 1%. Since the numietiegration of the Monte Carlo
process is recursive, it may result in increasedreand the filter's divergence
[90,89].

3. The computational cost of the MCKF is independdrihe number of dimensions

of the integrands. The GHF computational cost ispprtional to M" and
therefore, by increasing the system dimension, gra»ecurs rapidly. Hence, for
such cases with a large dimension, the MCKF is npmeular than the GHF
[88,90].

2.4.2.6. The Gaussian Particle Filter (GPF)

The Gaussian particle filter (GPF) was inventedKmgecha and Djuric in 2003
[76]. It uses the important sampling technique to eppnate thea posteriorimean and
covariance of Gaussian distributions. The approkongorocedure of the GPF is similar
to the particle filter. The only difference is thatspite of the particle filter, the GPF does
not require resampling that increases filter comipfe Under the Gaussian assumptions,
the GPF is optimal in the number of particles, whimproves the filter performance
against large nonlinearities. Alspach and Sorer€dh introduced the Gaussian sum
filler (GSF) method that approximates the postedensities using the finite Gaussian
mixtures. The approximation is performed using®@aissian mixture and provides more
accurate estimates over the techniques that aexl lmas calculating probability densities

of the grids 92].
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The GPF approximates updated distribution by usir@aussian distribution such

that p(X | Zok )= N( % %, ). Note that there are no general solutions forntegn
X, and covarianceP,** of distribution P(X, | Zsx) . The GPF technique is able to

estimate the mean and covariance from the samp{es and their weights using the
Monte Carlo numerical integration. The GPF's samglee produced using an importance
sampling function77(Xy |z, ). The GPF estimation process is recursive and Wwas t

main steps{6:

1- Measurement updatg 76]:
« Produce samples from the importance functidi, |zy, ) and present them as
A M
X IEJ )} ] =1.

» Calculate the corresponding weights as follow&:[

Pz XY N(% = ¥, %, B)

—(j) —
w, = (2.130)
(x| 2y )
* Normalize the weights as:
M
) =w) Z : (2.131)
» Estimate the mean and covariance respectivelylasvio[76]:
M
X, :ZW'(‘J) X(kl)
= (2.132)
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2- Time update[76]:

« Produce samples froM¥ (x, , X, , B:*) and present them 4z '}"zl.

« For j=1...,M produce samples from (x,.: | x, = x{) to calculatéx {3 |1 .

» Update the mean and covariance respectively asafsl[76]:
(2.133)

Figure 2.9 presents a block-diagram scheme of thes§an particle filter (GPF).

/Tnitialize

| |
| |
I Draw I
: Particle 1 ‘ ‘ Particle 2 ‘ Particles |Particle M :

Weight Computation I

\ 4 v _ |
Weight 1 ‘ Weight M Weight M ||
|

v ¥ v oo
L i ____________ |

Normalize Weights J

Mean and Covariance
Estimates

Figure 2.9: Block-diagram scheme of a one-cycle @§tknation process

Some of the advantages and disadvantages of thesi@auParticle Filter (GPF)

may be summarized as follow&q:
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 The GPF provides more accurate state estimatesthieaiEKF, and UKF. The
additive Gaussian noise assumption may be easdyiated without any needs to
modify the filter algorithm.

» Since the GPF does not perform resampling, it hiasvar computational cost in
comparison to the particle filter. This makes theFGbe more suitable for real-
time state estimation.

* In the GSF, the model is approximated using a wetyhank of Gaussian noise
models. Alternatively, the GPF filtering and predie distributions are only
approximated based on a single Gaussian distribuds a result, there is a

decrease in the amount of complexity in GPF.

2.4.3. Adaptive Filtering

The previous state estimation techniques are athditated under the assumption
that statistics of the input and measurement nars# system parameters are known.
However, in real applications, there is often salegree of uncertainty or inaccuracy in
the values of physical parameters, initial condisioor noise characteristics. Applying the
filter without any modification to such cases degs the optimality of the estimation
method and increases the state estimation erroordar to alleviate such effects, one
solution is to estimate the uncertain parametets ravise statistics during the filtering
process and then augment an adaptation mechanidime téilter. This mechanism is
referred to as an adaptive filter, which tunes fitter gain based on the parametric
variations or noise statistics. Note that adaptatsoconsidered into the filtering process
such that robustness against statistical variaifgparameters increases. Adaptation does

not affect optimality of the filter with respect éospecific statistical modedJ].
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There are two main approaches for adaptive staitmatton including the Multiple

Models (MM) approach and the adaptive filter desoigsed on gain adaptation. In the

MM approach, several state-space models are useovtr all operating regimes of the

system. Each model presents a particular operatiggne of the system under certain

conditions. The state and covariance estimatesacelated as a weighted summation of

each filter output. In contrast, in the adaptivefiwith gain adaptation approach, there is

only one model of the system and some techniquesiagmented to estimate the state

and known parameters recursively based on stapistigerties of noise and uncertainties.

2.4.3.1. Adaptive Filtering with Gain Adaptation

1-

There are three main approaches for adapting ltee dain that included4,95]:

Joint filtering of state and parameters:In this approach, the system’s unknown
parameters are considered as new states. Henaeguwhstate vector contains the
former states and unknown parameters and usedtitoaés both the states and
unknown parameters. There are several techniquas rttay combine with
estimation filters (e.g. the EKF or the particlieefi) and tune their gain to jointly
estimate the unknown states and unknown paramétergever, this approach is
not efficient in some situations and may cause migalenstability P4].

Online noise tuning: In this approach, when the filter starts to divergeme
techniques are applied for tuning the levels of sneament noise and or modeling
uncertainties. The main symptom of the filter dgeace is the characteristics of
the error vector. By starting divergence, the ewector is not white and its
covariance does not match with the predicted ewuariance 94].

Batch estimation of parameters:In this approach, some off-line techniques are

used to estimate the system and noise parametessd ban a batch of
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measurements. For instance, the expectation-maxiioiez technique may be
directly used to calculate the Maximum LikelihoostiBhates (MLE). Meanwhile,
the noise covariance may be estimated using heupisiceduresd4)]. In the next
section, the Kalman filtering process with adap{ivatch) estimation of the noise

parameters is presented.

2.4.3.2. Kalman Filtering with Adaptive Noise Estination

One may begin by considering a Kalman filteringgarss that is applied to a linear
stationary system and estimatg , and P, at each time stefk =1,...,N.In this
context, the KF innovation and its correspondingac@nce are respectively calculated as
Vi = Zgaa ™ H Xeqeand Py = H By HT + R.,;. The measurement covarianBemay

be estimated using the following off-line adaptestimation proceduré®f,95]:

» Estimate the innovation bias and its correspondmgriance asoy):

Nl
1

1 N
N LV

k=1
Y ) - (2.134)
P :mé(vk -7 (v —P).
» EstimateR based on the above relations @4
A A 1N
R=P- H(WZ Ry H' . (2.135)

k=1

In order to estimat®, calculateX.y as: Xk = X1~ Xiagp = F(X= Xypd + Wy,

and therQ is obtained byQ = F cov(X, F - COV(Xy+q ). Now, the parametegov(X, )
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may be approximated usinldy , but it is impossible to approxima@®V(Xy .y ) by
Pc+1 through the filter. The reason is because if therfiapproximatesPy .,y as:

Peak =F PklkFT +Q,, then it leads t®), with the wrong covariance. The solution to this

problem requires one to approximatg., by Xy.k+1 in the following form p4):

Xk = )zk+1|k+ 1™ X k=i 1 (2.136)

The estimation process continues 24:[

« EstimateCov(Xy .y ) as the empirical covariance df, , as follows 94

_oo1 N
X :Wde,
K= (2.137)

- 1 N _ —
T :mZ(dk - X)(d = X)T.
k=1
» EstimateQ using the following relationd4]:
A 1y -
Q=R ~ F(WZ Reraged) F - (2.138)
k=1
It is important to note that other variants of adagp noise filtering may be used to

improve the accuracy of estimation. There are adeer techniques that modify the

Kalman gain directly95]. Figure 2.10 presents a block-diagram schemelaptve noise

filtering via the KF process.
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Figure 2.10: Schematic of adaptive noise filteripplied to the KF proce$95]

2.4.3.3. The Multiple Models (MM) Filtering

An interesting approach for the modeling and edimnaof complex nonlinear
systems is to describe the system by a finite nurabpossible operating regimes. Such
systems are generally classified as hybrid dyndmsigstems. A hybrid dynamical system
is defined as a system that contains two typesnoé-varying elements2fl]. The first
type referred to as state variables, includes atsribat vary with time. The second type
includes elements that only transit from one opanat mode to another. This is referred
to as the mode or modal state. Note that the st@iables only describe the systems
dynamic behavior, while the mode states represqruisaible system’s regime among a
finite number of possible operating regimes. Thiesmulations are often referred to as
the Markovian jump or hybrid estimation phenomefi@. Further studies regarding the

above phenomena are found 21,6,97,98,99].

The multiple models (MM) approach is the most walbwn approach used to
describe a hybrid dynamic system in which a sehofiels is considered that covers all of
the possible operating regimes. The estimated stafgmrameter is then obtained by a
weighted summation of each individual estimate esponding to a particular model.
The first generation of the MM algorithms were prodd by Magill P8 and Lainiotis

[100101], and were widely implemented and promoted by sHveesearchers. These
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researchers included Maybeck0p103104,105106, Bar-Shalom 21,107,108109,
Rong Li [110109111112, and a number of other prominent researches. Mkehas
attracted a significant amount of attention amotigeoestimation techniques, especially
in the areas of target tracking systenisl108114], health monitoring systems
[115116117,118 and adaptive multiple model control systerh$910212Q.

In the MM approach, it is assumed that the dynasggtem operates according to
one of a finite number of models, each correspandina particular operating regime.
These models may differ in their mathematical stecor in their noise and uncertainty
characteristics. The structural differences incldi®ensions of state variables, system
inputs, and outputs. Noise and uncertainties mégrdin the level or their probability
distributions and can be represented as an addtivaultiplicative term 19,21]. MM
filters are generally classified into two categsriestatic and dynamic. Static MM
estimation algorithms were introduced in the 1960she static MM method, the system
follows a fixed operating mode and no switchingweed from one mode to another

during the estimation process.

In contrast, the dynamic MM estimator switches frame mode to another
automatically in order to provide the most accurdémate of the operating situation
[21]. Tugnait presented a survey on suboptimal MM reéshfor discrete dynamic
systems with abruptly changing structur&¥][ Since the performance of the MM
estimation strategy is directly related to the ma#gs selection, the primary difficulty in
the implementation of MM methods lies in the cotrelentification of the model set. It
has been proven that the use of too many models dver-designing the solution) may

have as bad an effect on the solution as the ussdew models (i.e., under-designing)

[117.
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2.4.3.3.1. Static versus Dynamic MM Filters

In the static MM filter, it is assumed that the mgeng mode is constant and
unknown. Thus, as the system follows one of thesiptess modes, the number of
components in the mixture combination is fixed. Thain problem is to identify which
model should be in effect during the estimationcpss. However, in the dynamic MM
method, the dynamic system can switch differentrajpegy modes to locate the most
accurate regime, based on the overall estimated e covariance. The design process
of MM filters has four main stages: model set desifiter selection, estimation fusion,
and filter re-initialization 21]. In the model set design stage, several matheaiati
models, each describe a particular operating regiane defined. Along with each

mathematical model an estimation filter (e.g. Kabnfiter) is set R1].

In the filter selection stage of the MM filterinthe best model-based filter that fits
with the input-output data is selected among thekbaf filters. Thereafter, in the
estimation fusion stage, the final values of théinested state and covariance are
calculated through a weighted summation of theutaled mode condition properties. In
this way, three kinds of decisions are proposett, bard, and random decision39.
Filter re-initialization is an important stage, argnitializes each single model-based
filter at the beginning of each time step. Essdgti@ach filter uses its previous state and
covariance estimate at the current cy@#.[It provides a non-interacting MM estimator
such as the multiple model adaptive estimation (MBAwhile some filters work in
parallel without any direct interactions. The meficient and popular way to reinitialize

the state and covariance estimates is based dMMdilter method [99].

In order to formulate a MM dynamic filter, assumegeneral form of system state

transition and measurement models, respectivdly [
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X(k+1)=F(km )X K+ G k) 0 kp)+T( kg Wk, (2.139)
(k)= H(km) X K+ ¢ k m), (2.140)

where m, andM denote the current model and the set of all ptessitodes respectively.
In this context, the event that modei is operating at timek is presented as:
M;(k)={m(K =m} . It is assumed that the system model sequencehsmagenous

Markov chain with transition probabilities calciddtas follows 21]:
P{m(k+1)m(K}=7 (K, 0P M (2.141)

whererr; is the Markovian transition probability from moo® modgj, where P1]:
r
> (k) =1. (2.142)
j=1

The mode probabilities are updated at each new ungagnt and the resulting weights
are used for estimating state variables. Figurd presents a block-diagram scheme of

one cycle of a static MM filter.

As long as each mode sequence is matched to r fileenumber of filters required
for the state estimation process will grow expoiadigt In order to avoid this numerical
problem, suboptimal techniques should be considéesimple technique for obtaining a
suboptimal solution is to keep ti samples of histories with the largest probabsitie
ignore the rest, and renormalize the selebtguobabilities in a way their summation will
equal to unity. Within this approach, there aree¢hmethods: the®lorder Generalized
Pseudo Bayesian (GPB1), th&%-arder version (GPB2), and the Interacting Multiple
Model (IMM) strategy.
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Figure 2.11: Block-diagram scheme of one cycle staéic MM filter

In the GPB1 method, only the possible models inldsesampling period are taken
into account. The algorithm will only need to rumparallel filters to formulate the best
estimate. The GPB2 method uses the last two sagpkniods, and hendé filters are
required. The IMM algorithm is computationally maicient than the GPB1 and GPB2
algorithms R1]. For the IMM strategy, withr hypotheses, each filter utilizes a different
weighted combination of the previous model condigid estimates. This model condition
is referred to as the mixed initial condition. B this, there is an interaction between
different possible modes of the system at eactoderi time. In addition to the reduction
of the computational cost of the IMM filter, thecaicacy of the overall estimate and the

convergence rate is increased significar2lij.[

2.4.3.3.2. The Interacting Multiple Model (IMM) Strategy

The interacting multiple model (IMM) algorithm isg most popular type of MM
filter, and is capable of estimating the systentestariables among several switching
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modes. Bloom is among the first researchers to gg@epghe IMM algorithm with a
suitable compromise between the performance anglexity in MM systems 121]. Its
computational cost is close to other methods sughth@se with small quadratic
components, while its performance is similar to GHBOg. The main feature of the
IMM algorithm is the ability to estimate the staté a dynamic system with several
operating modes, which can ‘switch’ from one modeanother. In this form, multiple
state equations are used to describe each of teetoy regimes. These regimes are
typically referred to as linear models, where eaudel captures a particular operating
point of a general nonlinear time-varying modelMarkov transition matrix is then used

to determine the probability that the system isne of the operating regimes [4].

Bar-Shalom et al. have conducted a significant arthaf research to further
develop the IMM estimator and its implementation target tracking applications
[21,107,12211(. Mazoret et al. also presented an excellent suoreIMM approaches
employed in the target tracking applicationd0§. This survey contains new
developments of the IMM method including the modst sdaptation, correlated
measurement noise, square root algorithi@3[ and probability data association filters
(PDAF) [108. The main advantage of the IMM over other MM aggmhes is due to the
interacting action which mixes different modes treinitialize each filter at the start of
each cycle 118. There has been a significant amount of researcharget tracking
algorithms while combining IMM with other filtersuch as: the EKF1R4, PF [125,
and SVSF 12¢. Other research has been conducted to study rpeaftce evaluation

[11Q, model set adaptatioi27] and the model group switching algorith21].

In order to formulate the IMM filter, assume a hygblinear system described by

equations (2-139) and (2-140). The IMM filter catsiof three steps as followkl[(:
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1. Interaction Step: The mixing probabilities are calculated, which refi® the
probability of an event when moae was in effect at tim&-1, given that the modey is

in effect at timek conditioned orz ¥, The mixing probability is outlined a8 10:
A - 1
(k== D2 P{m (ke 1)1 (K, 27} = e a (ke 1) (2.143)
J

wherez, is the predicted mode probability fodifferent modes and is given by1Q:

g2 P{m (k)| 2 = mu (k-1). (2.144)
i=1

The mixed initial condition is then calculated wgsithe previous state and covariance
estimates, namel¥(k-1|k-1)and P(k-1| k- 1) respectively. These parameters
are filter outputs computed fromdifferent Kalman (or other) filters corresponditogthe

r different operation modes. The mixed initial statel covariance are given for the filter

m at timek, as [L1Q:

%oy (k=11k=1)2 [ X(k-1)Im (K), 2} =3 "x( ke 1] k 1), (2.145)
i=1
Poj(k=11k=1)=>" P (k- 1|k- 1) + > X%, (2.146)
i=1 il=1

whereX;; is the weighted squared difference, given iqJ:

Xip 2[% (k=11 k=1)=% (k= 1] k= 1)[x(k 1|k 137x(k 1|k J]S (k 1k Buyu; (2.147)

2. Filtering Step: In this step, mode-matched filtering is performddhe likelihood

function associated to each of thdilters is also computed. Any estimation method or
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filter may be used during this step; however, tlesntommonly implemented method is
the KF. The mixed initial state and covariances @ed as inputs to the Kalman (or

other) filter matched to mode, (k). The filtering step starts by predicting the statel

covariance of each mode d4():
Xj(Klk=1)=F (k=1)%; (k- 1| k= 1} G (k L)u(k 1¥I; (k Ljw(k 1 (2.148)

Pi(klk-1)= F (k- 1)B; (k- 1| k- 1)F (k- 1] +T; (k= 1)@ (k 1, (k 1)  (2.149)

The residual and its corresponding covariancedchenode are also givebl[J:
vi(k)= 2 K- H(RX(KH k1), (2.150)
Se,j (K) = Hj (k) Al?( k| k=1) HT (W+ R(B. (2.151)
The filter gain is computed, based on the residudlits covariance as follow$10:
W, (k)= P (k| k-1 HT (K$; (K (2.152)
It is now possible to update the state and cormedipg covariance as follow410:

Xj(KIk)="2% (Kl k=1)+ W (k) y( K, (2.153)

Pi(k1k)=PR (k| k=1)-W (K S; (BRW(F. (2.154)
For updating the mode probability, the likelihoamétions for thé™ mode are given by:

(KT 8 R YR

Ni(k)2 N[Vj,0,§]=e \/2ns-(k) , (2.155)
J

where the updated mode probability or weight idioed [110:

77



PhD Thesis — H. Afshari; McMaster University, Menlel Engineering

N (k
(= LA

_ 2.156

> AA(K) (2.156)

i=1

3. Combination Step:In order to determine the overall estimates ofestaean and
covariance, the model conditioned estimates andrévwe are respectively combined as

follows [110Q:

X(k| k)2 E[ X K Z‘]=§‘x< K Ky | (2.157)

P(KI1)2 E[[10-X K k][ % K="k k ' | 2}; ROk, +”2:1 X (2.158)
where the weighted square difference is givenldyj

Xy (K)2 [kl k)= % (K K[ % R-"%C & B] 4y - (2.159)

Figure 2.12 shows a block diagram representatiorord cycle of an IMM
estimation filter. The aforementioned IMM stratelggs a fixed structure that means the
selected models will not change over time. Fromikikl filter, a newer filter, known as
the variable structure multiple model (VSMM) hagbealeveloped. The VSMM strategy
is one which uses variable model sets insteadxefifmodel setslPZ. The motivation
for proposing this strategy is because of constaeragiven to the computation cost of
the IMM filter. The cost of the IMM filter increasedrastically with the number of local
models. Therefore, it is desirable to neglect sofmibe inactive models from model sets

to decrease the overall computational cost and. time
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Figure 2.12: Block-diagram scheme of the interactinultiple model(IMM) strategy

Using this same approach, the VSMM filter was pssimb to decrease the

computational cost, while the estimation accuraemains intact. All of the possible

model sets from the starting point of the filteripgpcess are stored; such that one could

search automatically to find the best model selah recursion step. The VSMM and the

IMM filter share similar steps; the main differenbeing that the model set may be

different at each time step. In order to adaptriwel sets automatically, an adaptive

algorithm referred to as the recursive adaptive ehodet method is required

[122127,128111,129.

2.4.3.3.3. The Multiple Models Adaptive EstimatiolMMAE)

The multiple model adaptive estimation (MMAE) sé@gy is based on employing a

bank of steady-state filters working in paralléingar to other MM approaches. Each of
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the filters operates based on a reduced orderarizesd model derived from a general
nonlinear uncertain system for each operationalen@dnumber of studies have been
conducted, looking at implementing a number ofedéht filters including the extended
Kalman filter (EKF) 19,113, the unscented Kalman filter (UKFL9], and the particle

filter (PF) [13090,131]. Unlike the IMM method, there is no model interan in the

MMAE method; therefore the re-initialization actios not necessary. However, the
MMAE uses a conditional hypothesis probability esxdbr engine to select the closet
hypothesis that matches reality. Similar to othe Mpproaches, there is a bank of
elemental filters, which use the control and meas@nt vector as inputs, as well as

provides a state estimate and a residual.

In order to formulate the MMAE, assume the paramateenotes the vector of
uncertain parameters in a given stochastic systamdem The hypothesis conditional

probability p, (t;) is the output, and is defined as the probabiligt ih has the value of

a, at time stefk, conditioned on the measurement at timeas follows L14:

p(t)=Prla=g|Z(1)= Z]. (2.160)
Note, p, (t;) may be computed using the following recursive eigudtL32:

fz(q)|a,2(1—1)( zila,Zg) p(ty)

p(t)= ’ (2.161)
Z }j(=l foyazi-1(Zil @, Zio) B (1)
Where [L32:
_ 1 1 -1 f, a,Z(;-l)(Zi | & Ziq) R(t0)
foaza-0(Zil & Zi—l)_ﬁ exp{— L@ y AT )) . ()l |
e A G T\ 2 > oz la. 20 p (k) 4162
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Wheref, )z -1(Zila, Zi-;) is the probability density of the current measureime

Z(t) conditioned on the hypothesized failure stdtas a ) , and the previously
observed measuremers(t_;), based on the residuals, and the predetermined
residual covariancé, . Additionally, m denotes the dimension of the measurement
vector. The equationf, . z-1(Zi |, Zi-1) has a normal distribution function in a
number of applications. A block-diagram schemehef MMAE strategy is presented in
Figure 2.13. As shown, instead of producing a @nvectoru, , a weighted state

estimate is produced probabilistically. When thetod and measurement vectors are
applied to the bank of estimators, it is possiblelétermine the state estimate vector and

subsequently the residual vectdd§116119.

X: state variable

Z: measurement
A u: control variable
! ) r: residual

Estimation

Filter | [— - o l p: probability
. 1
— . Y X z u X
Z Estimation |__ ™2 P X ;—NX»—b(i’—b{ Control % System 9
Filter 2 _—v A
1
L - . .
Estimation i P x )
Filter 3 A
i
v
n )

Conditional Hypothesis
Probability Evaluator

N

2

Pk

Figure 2.13: Block-diagram scheme of the multipledel adaptive estimation (MMAELLE]
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Research conducted by Maybeck and Hanlon empldyedirne correlation of the
KF residuals instead of its scaled magnitui83. The conditional probabilities were
assigned to the various hypotheses that were augohen the KF bank within the

MMAE. In this approach, a hypothesis testing aldon (HTA) was designed that uses
the residuals to calculate conditional probabditip, of the various hypotheses,

conditioned on the measurement history. The HTAuftemeously tests the residuals of
the KF bank under multiple hypotheses. The conddtigprobability was used to provide

the best estimate of the fault condition and weitjie individual state estimates, and

calculate the probability weighted average of tiagesestimateXyyag [133.

The spectral estimator outputs are essentiallynaséis of the power spectral
density of each residual from the KFs. When thdaesysis working without a fault, the
residual is a white sequence with zero meE3§| Kay introduced two methods for the
spectral estimation techniques that include thaodegram and modified hypothesis
testing algorithm (MHTA) 134. In the periodogram method, the autocorrelatibthe
residual is estimated and then the Fourier transfofrit is computed in order to estimate
the power spectral densityt33. In the MHTA, the HTA is modified by filtering #n
generated residuals with a band-pass filter, samgpihe output, and determining the
squared magnitude. The primary advantage of thisbazed method over the standard
MMAE is that it can identify faults at small inplevels, where the standard MMAE does
not operate. A disadvantage of the combined methdtie increased amount of time
required to collect sufficient samples and cal®ikie relevant spectral estimaté83.

A block diagram scheme of the MMAE algorithm usthg residual correlation KF bank

is shown in Figure 2.14.
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Figure 2.14: Combination of MMAE with residual ocslation KF bank 137

2.4.4. The Nonlinear Robust Filtering

In this section, the two main approaches used &doust state estimation of
nonlinear stochastic systems are reviewed. Thedpproach, referred to as the variable
structure filtering (VSF), was introduced by Hab#md Burton 135. The VSF is a
model-based filter and benefits from the robustméssacteristic of the variable structure
systems. The VSF-type filters provide robust segBmates against a large amount of
structural and parametric uncertainties. The seapmmioach is referred to bk, filtering.

It is based on the robubt, control concept that has been introduced by Zaméd®80
[136§. The H,, filtering approach focuses on the worst-case gneg@@n design that

produces estimation error with small energies fiosraall disturbance energies.

2.4.4.1. The Variable Structure-Type Filtering

The variable structure filter (VSF) is a model-dhstate estimation strategy that
was introduced and implemented by Habibi and Buito2003 [L35. The VSF-type
filters use the variable structure system’s condeppreserve stability given bounded
parametric uncertainties. Thus, the main objedsue increase stability and convergence
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of the filter for situations with higher degreesmbdeling or parametric uncertainties. In
such situations the performance of common estirmatoch as Kalman-type filters may
degrade considerably. The degradation occurs &sdt rof filter instability, modeling

uncertainties, measurement noise, and inapproptedtsition of initial conditions.

It is essential to note that in the Kalman-typéefihg, the modeling uncertainties
and measurement noise are characterized througtottsgiance matrices. These have a
significant effect on the stability and convergen€e¢he filter. Furthermore, even though
characterization of the measurement noise is velgtisimple, it is very difficult to
characterize the process uncertainties. In ordenpoove the performance of such filters,
the covariance matrices need to be tuned by tndlexror which requires a lot of time
and experiments. The VSF is a unique tool for e&xp)i defining modeling uncertainties
in the filter's model. It alleviates the difficudts of tuning by trial and error. This is an

advantage of using the VSEJY.

The VSF-type filtering and its newer extension (etlge Smooth Variable Structure
Filter (SVSF) B] utilizes the robustness property of the variadti@icture concept that
results in stability within an upper bound for urtaeties and noise levels. In variable
structure systems, the control input often containsscontinuous term, called the sliding

variables, that is defined as a function of the state vaeiabthe following form 8J:

“KUZ{IUJ)if s(x)>0 (2.163)

u(x,t) if s(x)<0

where u*(x,t) and u"(x,t) are continuous functions. Following the variableusture

theory, the VSF’s gain contains a discontinuousemtive term that preserves stability

given bounded noise and uncertainties. It refitnesat priori state estimates into tre
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posteriori state estimates. In order to formulate the VSFhoukt the sliding variable is

defined as:S=/\qka , Wheree, =z,-7 is the estimation error and OR™" is a

diagonal matrix with constant positive elementsre;leéhe objective is to cancel the
sliding variable S and satisfy the sliding condition given 8<0. This condition
decreases the estimation error even in uncertagy sduations. In this approach, Slotine,
Hedrick, and Misawal[37] designed a nonlinear observer using the slidinglentheory
that is robust to modeling errors and sensor nd&dcott and Zak13§ also introduced

a combined observer-controller structure for alafsuncertain nonlinear systems based
on the variable structure concept. Edwards andd&our [L39 used the variable structure
concept to develop a robust discontinuous obsdoreuncertain systems. They proved

that their method is numerically tractable based@ame examples.

In this section, the first generation of the valgabtructure filter family, namely
VSF [135, is described. Following this, a more efficierrsion of the VSF, referred to
as the smooth variable structure filter (SVSB) Will be described in detail. Newer
versions of this filter such as the SVSF with caaace derivation1408], SVSF with a

variable boundary layer (SVSF-VBL3,[12], will be presented and compared.

2.4.4.1.1. The Variable Structure Filtering (VSF)

Habibi and Burton introduced the simplest genematibthe VSF in 2003135. In
order to implement the VSF for state estimatiore #ystem must be completely
observable. One may assume the state-space modedjuaitions (2-21) and (2-22)
represents the linearized system and measuremetdlsnoespectively. One cycle of the

VSF method contains following stepk3H:
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1. Prediction Step:

» Calculation ofa priori state and measurement estimal&S

Xer1k = FrXige + Gyl (2.164)

Zin = Hisa X Vien (2.165)

2. Update Step:

» Calculation of the VSF's corrective gain that iatetl as135:
Ky =FH k+{|[|H Fil(VIH (e 0+ Fi" DH & Vinaxt Fic' Winax JH SO, , }) (2.166)

» Refine thea priori state estimate into tleeposterioristate estimatel B5:

Xicrgirr = Xirap + Kirz (2.167)

Note thatsgn is the signum functiony is the Schur product, and is the pseudo-

inverse transfornv ., andw,also denote the upper bound for measurement nase a

modeling uncertainties, respectively. Furthermdtes a diagonal matrix with positive

elements that contain the convergence patefor each measuremedt [135.

The discontinuous formulation o, produces high frequency chattering that

degrades the estimation performance. In order tmoe these unwanted effects, the

smoothing boundary layer concept may be consideésalizing the smoothing boundary

layer concept, outside the smoothing layérthe signum function may be applied to

satisfy stability, when inside the layer a satamatiunction is applied to approximate the

signum function and suppress high frequency chatj¢t35:
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e, /¥ i e, /W<1
s.at(azk‘k_1 W)= (2.168)

sang,,, , W) if e, WP 1

The width of the boundary layer indicates the lewEluncertainties in the estimation
process. However, in order to alleviate chatterthg, width of the smoothing boundary
layer should be sufficiently large. However, ingieg the smoothing layer’'s width
decreases the average level of accuracy in sttteagss and hence, there needs to be a
compromise between the level of uncertainties amel YSF's performancelBg.
Stability of the VSF is proven based on the Lyaptm@econd law of stability1[35.
Habibi has also presented the derivation of the W®Fective gain with explicit
consideration of modeling uncertaintie$3§. In subsequent research, Habibi also
introduced an extension to the VSF that is use@$timating state variables of nonlinear
systems. This is referred to as the extended \aristibucture filter (EVSF)141]. The
EVSF formulation is similar to the extended Kalmidter method. It is applied to a

nonlinear system of a robotic arm successfuli/].

2.4.4.1.2. The Smooth Variable Structure Filter (S8F)

The smooth variable structure filter (SVSF) is arenadvanced generation of the
variable structure filters, introduced and impleteenby Habibi in 20073]. Similar to
the VSF concept, the SVSF is a model-based robats estimation method that can be
used to estimate state variables of smooth nonlidgaamic systems. It has an inherent
switching action that ensures convergence of thte sistimates to within a region of the
real values. The switching characteristic of theS&MVis due to the variable structure
formulation of the discontinuous gain, which prasd robustness to bounded

uncertainties. Most filters only provide the estiioa error (filter innovation) and its
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covariance as measures of performance. The SV8mpaisides another indicator that is

linked to modeling uncertaintie8][

A schematic representation of the SVSF estimatiomcept is shown in Figure
2.15. The system state trajectory, estimated si@tectory, and existence subspace versus
time are also presented in this representationrdeer to start the estimation process, an
initial value is selected for the state estimagoocess based on a prior knowledge of the
systems. Thereafter, the estimated state is pusinatds a neighborhood of the system'’s
true value referred to as the existence subspavtee e value enters into the existence
subspace, the estimated state is forced into swgdaiong the system state trajectory via
the SVSF’s gain. The estimated state trajectoryaresnwithin the existing subspace that
has a width proportional to modeling uncertaintragasurement noise, and disturbances.
There have been lots of research to improve theFSM&l prepare it as a useful tool for

FDI applications 3,135141,8].

.
— gy
System

Amplitude 7 SN State Trajectory

A \
Estimated State
\ Trajectory
Existence
: Subspace
/ ’
Initial Value of the
Estimated States
. Time

Figure 2.15: Representation of the SVSF estimatantept (Taken frong])
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The SVSF method differs with the VSF method in dieeivation approach and the
corrective gain formulation. The derivation of tR&F’s gain is based on the explicit
consideration of the upper bounds for modeling taggies and measurement noise. The

derivation of the SVSF's gain is based on introdgca positive definite Lyapanov

candidate that contains squared value of the estimarror asV :ezk|k2- Stability is then

achieved by proving that the negative definiter@fsthe Lyapunov time-derivative. It is

proven that the SVSF estimation process is statdlecanvergent if3]:
& 1< 1&gz |- (2.169)

The SVSF estimation process has the same stepsea¥S3F process, but its
corrective gain formulation is different. For a dar system with one measurement

corresponding to each of the state variables, YH&F3 gain is stated aS8]f

)o sat(z//+ € e 1] k), (2.170)

— +
Kksar =H (‘ez,k+1|k‘+y‘ez,k|k

whereo denotes the Schur product (element-by-elementipticiition) and¢ ™ is the

pseudo-inverse of the smoothing boundary layerhsidhatrix with constant entrie8]]

The saturation function is defined 8]

L & ke W21
5"’“(41’_1 szl) =9 G T1< g e <L (2.171)
-1, & kW= -1

It is proven that the corrective gain of (2.170)slpes the estimated states across the

switching hyper plane and preserves stability. Bgping the Luenberger observer into
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the SVSF method, the SVSF method may be applisgitizms with fewer measurements
than statesd).

Note that there are two different boundary layarthe SVSF concept including the
existence layer, and the smoothing layer. The emxc#t layer is referred to as the
neighborhood of the estimated state trajectory mchv the stability of the estimation
process is preserved. The width of the existenger laaries in time as a function of the
modeling uncertainties. Although the width of theiseence layer is unknown, it is
possible to obtain an upper boundArpr it. The smoothing boundary layer is defined to
approximate the sign function in the correctivenglarmulation and filter out chattering.

Its width is known ags and outside this layer the sign function is apptedchieve the
stability, while inside the smoothing layer theddistinuity of K, is interpolated by the

saturation function to provide smooth state eswmafs presented in Figure 2.16 (a),

when the smoothing layer width is larger than tkistence layer widthy > 3, chattering

is filtered out. Otherwise as presented in FiguéZb), if the smoothing layer width is

smaller than the existence layer wid#tx S, then the smoothing layer will be ineffective

and chattering will appea8].

Generally speaking, the filter gain constructiorthe main difference between the
KF and SVSF. The KF gain depends on #hpriori and thea posteriorimeasurements
error values, whereas the SVSF gain depends osntim®thing boundary layer widths,
convergence ratg and the measurement matkx|[3]. A significant amount of research
has been conducted to improve the SVSF's performa@adsden et al. combined the
SVSF with other filters such as the PR, the cubature Kalman filter (CKF1L43, and
the IMM filter [144). New research concentrated on the derivation cftedie error

covariance term for the SVSHE4(Q, formulating a continuous-time form of the SVSF
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[149, and defining an optimal smoothing boundary lay#?]. Further details and
developments on the SVSF may be foun®indnd [L4§.

The main features of the SVSF that make it a un@pue attractive tool for state

estimation may be summarized as follows:

a) It provides robustness and preserves stabilityiwighpredefined boundary layer
for bounded uncertainties and noise leva]s [

b) Other estimation techniques such as the KF, UKFFC&nhd PF provide the
innovation and the error covariance as measurgseidbrmance. However, the
SVSF also provides a secondary indicator of peréme based on the chattering

function [14€], which explicitly relates to uncertainties andaebng errors 3].

System System
CQtate Traiectary Ctata Traiostams
" State Trajectory State Trajectory
1"“‘- / H) ."A' 1
Amplitude . - Estimated State Amplitude ; A Estimated State
T - _\._’/ ——’ Trajectory : Trajectory
Existence Existence
Smooth Subspace Smoothi Subspace
moothing idth Mmoo ]I'lg '
N Subspace (width 3 ) . Subspace (width 3)
Initial Value (width ¥ ) Initial Value (width ¥ )
> Time » Time
(a) SVSF for case witly > 8 (b) SVSF for case witly < 8

Figure 2.16: Effect of the smoothing layer wigtlon the SVSF performance (Taken frosh) [

2.4.4.1.3. The SVSF with Variable Boundary Layer (8SF-VBL)

The former version of the SVSF is introduced whiea width of the smoothing

boundary layer remains constant. As discussedwidéh of the smoothing boundary
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layer is selected based on available knowledge hef wpper bound of modeling
uncertainties and maximum levels of measuremersienand parametric errors. However,
considering a constant width for this layer is ansgyvative choice that decreases the
accuracy of state estimations. A more efficient sthimg boundary layer may be
obtained when its width is changing as a functidnuncertainty and noise levels.
Gadsden introduced the state error covariance xngtrithe SVSF and then used it to

derive an optimal time-varying width for the smadathboundary layer1[1].

The calculation process of the error covarianceima similar to that of Kalman
filtering [140. The key idea for specifying the boundary layedt y is to take the
partial derivative of tha posteriorierror covariance matrix with respectyoThis idea is
similar to calculating an optimal gain for the Kamfilter. This leads to an optimal
formulation of the SVSF that optimizing the diagbredements of the state error

covariance matrix. Hence, a time-varying smoothiagndary layer is given by ]]:

a(trace[Pk +1k +1 ]) —
oy

0. (2.172)

It is proven that the optimal time-varying smoothiayer for the SVSF leads to the well-
known Kalman filter solution for linear systems.llBwing this, Gadsden proposed a
method entitled the SVSF-VBL. It is a combinatidrtlte SVSF and KF. In this method,
the SVSF preserves stability for estimates thatoaitside the smoothing boundary layer
and provides optimality for estimates inside theurmtary layer 11]. Figure 2.17 (a)

presents the SVSF-VBL concept.
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_.Lower optimal boundary layer

(a) SVSF-VBL for a system in normal condition  (ByS--VBL for a system with a fault condition
Figure 2.17: Main concept of SVSF-VBL for a systenmormal and faulty conditiond {]

In the SVSF method, the smoothing boundary layeittwis equal to the limit. It
results in the loss of optimality demonstratedhes difference between the limit and the
optimal boundary layer. However, the SVSF-VBL (Kjain should be applied to provide
efficient estimates. Figure 2.17 (b) presents thSISVBL concept for estimating
systems with high amount of uncertainties such sggsstem with a fault condition. In this
case, the optimal smoothing boundary layer is latigen the limit enforced by the SVSF
method. Hence, the SVSF-VBL gain is made equah& 3VSF gain to use its robust
characteristic and preserve stability in uncerteamditions [L1]. Inside the limit, the

SVSF-VBL optimal boundary layer is used.
One cycle of the SVSF-VBL state estimation contalvesfollowing steps1]:

1. Prediction Step[11]:

» Calculation of the predictea (priori) state and covariance estimates respectively as:

X1k = FiXigk + Gy (2.173)
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Peak = ARRA” + Q. (2.174)

» Derivation of the predicteda(priori) measurement and errdr]]:
2k+1|k = Cs\(k+1|k’ (2175)

€y = 2k ™ Dl (2.176)

2. Update Ste11]:

» Calculation of the innovation covariance and coretierror vector respectively as:

Scks1=CRu C + Ruy (2.177)

Eca=le,,, Fvie, | (2.178)
» Derivation of the smoothing boundary layer matriveq by [L1]:
W = (Egsr CRuaC' Seper ) ™ (2.179)
» Calculation of the SVSF-VBL gain given b¥]]:
K+ :Ck_l E_k+1wEJ];1' (2.180)

» Refinement of thea priori state and covariance estimates into ¢heosteriori

estimates that are respectively obtained1dy: [

X1t = Xirak + K €7 (2.181)

I:)k+:uk+1:(| _Kk+p)Pk+1k(| _Kk+ ?)T + Kk+ 1Rk K_k]f- i (2.182)
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2.4.4.2. TheH,, Filtering

The first systematic approach into the robustnessept was firstly introduced by
Zames in 198013€. He presented thél, theory for design and implementation of
robust controllers that are insensitive to modelimgertainties, and lack of statistical
knowledge of inputs. Thél,, theory may be considered as an extension to treadi
guadratic Gaussian (LQG) theory introduced in 186Q47. The LQG design was
performed based on a perfect model of the systetncamplete knowledge of input
statistics. In contrast to the LQG concept, BHhemethod was proposed to negate the
necessity of a perfect model or complete knowleafgdhe input statistics. Thid,, theory
is designed based on tracking the energy of sifpralthe worst possible values of

modeling uncertainties and measurement noig¢147.

In order to clarify theH,, concept, one may define a measure of how good the
estimator is asmin; max, ,J , wherew andv are the noise terms that try to degrade the
state estimates. The main objective of Hhefiltering is to provide state estimates by

minimizing the worst possible effect afandv on the estimation error. The cost function

Jmay be defined adf7):

o avefx %o
ave| wi | + avef wy

(2.183)

where Q, W, andV, each denotes the weighting matrix correspondin@ fparameter,
when the averages are calculated on the weightadsnoverall time stepk. Note that

minimizing the cost function (2.183) means that khefilter tries to calculate the state
estimatesX to be as close t&y as possible, when noise terms make funclitarge. It

is too difficult to mathematically find a solutidor the described problem. It is possible

95



PhD Thesis — H. Afshari; McMaster University, Menlel Engineering

to solve the problem fod<1/8, when 6 is a constant parameter, and called the
performance bound. It is chosen by the designeritangalue depends on the case under
study. However, by satisfying the conditiah<1/8 through theH,, filter, it is not
important how large the magnitudes of noise ten@dv are. TheH,, filter ensures that

the ratio of the estimation error to noise will alyg remain less thal/ 8 [147.

In order to formulate theél,, filter recursively, based on the game theory apgtoa

[148, let us assume a linear stochastic system iesepted asifl]:

X1 = FeX +wy, (2.184)
Yi = Hi Xy vy, (2.185)
Zk = kak’ (2.186)

whereW, andV are noise terms. They may be random with possibkpown statistics

or non-zero mean, or they may be deterministic. ®hgective is to estimatéy as a
linear combination of the state. Note thatis a full rank weighting matrix, and in the

case of directly estimating the states, it islsgt | .
Similar to (2-183), the cost functiahis defined as41]:

N -1 . )
Z k2 ‘Zk”sk
k=0

J = o N , ) :
o= %ollct 3 (Iwill -+ il

(2.187)

where Py, Q,, R, andS, are symmetric and positive definite matrices chobg the

designer based on the case under study. As disbusse cost function) should be
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enforced to be less thdid 8. The gain for théd., estimation process may be calculated as

[4]]:

S, = LS, L, (2.188)

— -1
Ki =Pe[1 =0 R+ HL RO HR| HY R (2.189)

Now, the state and covariance may be predicted s [
),(\k+1:Fk)2k+FkKk(yk_Hk)A(k)a (2.190)

& T ol 1o
Pk+1:FkPk[|—askPk+ HT R} Hkpk] Fl+ Q, (2.191)
The following condition needs to be satisfied dgrihe state estimation proced4]f
P t-0S,+ Hi R*H,>0. (2.192)

The following issues are addressed by comparingithfdter with the KF @1]:

e In the H, filter, Py, Q,, and R, are design parameters chosen by the engineer
based on the prior knowledge of noise, uncertantad the initial error. The
noise and uncertainties may be nonzero mean. InKihenan filter, noise,
uncertainties and the error must be zero mean, herR,, and P, are their
corresponding covariances]].

e One may assume thhi =S, = | in the H,, filter formulation. If now the
performance bound is set &0 for the estimation process, then tHg filter
reduces to the Kalman filter. It means that thenkal filter is a minmax filter,

when the performance bound is $&to . Therefore, theH,, filter may be
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considered as a robust version of the Kalman filbbert it is not optimal in the

sense of MMSEA41].
 The Kalman filter may become more robust by indrep®, artificially, which

enlarges the covariandg ,; and gairk, , alternatively. In the same way, by

subtracting the tern¥S, P, from theH,, filter's gain, it makesP,,; and gain

K larger. It intuitively results in increasing th@bustness of the.,. filter [41].

2.5. Summary

In this chapter, an exhaustive survey of Gaussltard for the state estimation task
was provided and recent trends and developmente discussed in detail. The state
estimation task is firstly described based on tlkedé-tnown Bayesian paradigm. Then, in
order to obtain a general framework for the soechlGaussian filter, the estimation
paradigm was regenerated under the Gaussian assungptprocess and measurement
noise. The main Gaussian filters, presented inliteeature, were then classified into
several groups. Classification was based on cedaamacteristics that included linearity
or nonlinearity of the process model, numericaggnation techniques used for the state’s
PDF propagation, and methods for providing robusgra adaptive characteristics. The
considered state estimation approaches were alsgpared in terms of accuracy,
robustness, and computational cost. The main pmliemmon to all of the filters

discussed, centered on how to properly extracstages from uncertain, inaccurate and

noisy measurements.
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Chapter 3

The Novel 2°-Order SVSF for State Estimation

In this chapter, a new robust state estimation atetkferred to as the second-order
Smooth Variable Structure Filter(order SVSF) is proposed and designed to satisfy
both the first and second sliding conditions. Iaisnodel-based state estimation method
and benefits from the robustness and chatteringregpion characteristics of second
order sliding mode systems. Even though adding @o#inng boundary layer to the1
order SVSF method can decrease chattering, it oaatheless compromise accuracy and
robustness. This is because the smoothing bourdgey interpolates the discontinuous
corrective action within a small vicinity of the gehing surface and hence alleviates
chattering at the expense of robustness. In therder SVSF formulation, chattering is
prevented by satisfying the second sliding conditihat results in decreasing the
estimation error as well as smoothing state estimafhe ¥-order SVSF is applied to

the EHA system and its performance is then comparttdother estimation methods.
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3.1. Introduction

As discussed, the Smooth Variable Structure Fili8kéSF) is a new robust strategy
for state estimation that is based on the variatlecture system’s concefd]| The SVSF
has a predictor-corrector structure and uses aiigious corrective gain to push state
estimates towards their true values. The SVSF'sodignuous corrective action satisfies
the first sliding condition and hence achieves stbess to bounded uncertainties. This
filter alleviates the need for tuning by trial aador and presents a mechanism for an
explicit consideration of modeling uncertaintieghin the filter formulations. The main
concern of this type of filter is eliminating thewwanted chattering effects from state
estimates. The chattering phenomenon arises frasoodiinuous corrective actions

inherence in sliding mode and variable structumgrd systems.

A smoothing boundary layer is commonly used in oitdesuppress chattering in
sliding mode control system$,§#,149, and is integral to the SVSF’s gain formulation.
The implementation of the smoothing action is tigloua saturation function that
interpolates the discontinuous corrective actiothvai smoothing boundary layer around
the switching hyperplane. Outside the smoothingnidany layer the discontinuous
correction is fully applied to maintain stabilitfhe width of the smoothing boundary
layer is defined as a function of the upper bouhdaise, uncertainties and perturbations
[3]. Note that by interpolating the switching functiwith the smoothing boundary layer,

the accuracy and robustness of the sliding modeargromisedq,7].

The Smooth Variable Structure Filter (SVSF) is atineation method that uses the
sliding mode concept. It has been used in a nurmobapplications including target
tracking B,126, control as well as in parameter estimation faulf detection in an

Electro-Hydrostatic Actuation (EHA) systeml§(. Gadsden extended the SVSF by
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deriving a state error covariance term for it argihg that for obtaining an optimal
smoothing boundary layerd2,11]. The SVSF with an optimal time-varying boundary
layer results in an optimal filter within the smbioty boundary layer when applied to
linear Gaussian problemdd]. However, the method still uses a smoothing baumyd
layer that interpolates the discontinuous correctietion in the vicinity of the switching

surface at the expense of robustness.

The higher order sliding mode concept is a strolgrraative to the smoothing
boundary layer for chatter avoidance. This conigefitased on forcing the higher order
time-derivatives of the sliding variable to satisfgditional constraints related to sliding
motion. Along with keeping the main advantageshaf variable structure systems, this
concept is capable of reducing and in some casewwviag the chattering effect
completely. The higher order sliding mode conceqivigles better accuracy without
compromising robustness and without the need tooxppate or relax the discontinuous
corrective action. The sliding mode order impliee tlegree of dynamic smoothness in
the vicinity of the switching surface5,[L3,14]. There are many publications on the

second-order sliding mode control methad,15,16,17].

Other research on higher order sliding mode systamkides Sira-Ramirez’s
dynamic sliding mode technique based on augmetii@glifferential algebraic approach
to system formulations. This approach presentschimg surfaces that produce chatter-
free sliding mode for a special class of nonlinegstems 16,17]. Olgac and Elmali
employed the second-order sliding mode techniqueetelop a robust output tracking
algorithm for nonlinear multi-input multi-output stgms 151]. Its robustness against
parameter uncertainties and unknown disturbanceshgeved by considering the error
dynamics in the controller formulation that opesaléke a frequency domain filter
[151,152. There has been considerable research in theasidecades in the use of
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sliding mode concepts in discrete-time systemspt8ek, Istefanopulos, and Kaynak
investigated the stability of discrete-time slidimgpde control strategies and alternatively
proposed a sliding condition for statically givepper and lower bounds on uncertainties
[153. Of particular interest to SVSF is research om derivation and implementation of

the discrete form of the second-order sliding megstems 15,154,155156].

In this chapter, a "-order SVSF state estimation method is proposed and
formulated. It can satisfy both the first and setshding mode conditions. It is capable
of estimating state variables both for linear andlmear systems in uncertain and noisy
conditions in which the level, source and occureent uncertainties are unknown. The
main advantage of thé®order SVSF is that it alleviates chattering withthe needs for
approximation or interpolation. This capability disato better accuracy and robustness in
uncertain conditions. The"2order SVSF derivation is based on a discrete Lyapu
function that contains the first and second-ordeivatives of the sliding variable. The
proposed stability condition also presents a géneiterion for the reachability and
existence of the second order sliding motion fascrite-time systems. Thé%drder
SVSF’s gain is designed such that it satisfies fire# and second sliding conditions
during the state estimation process. Simulationltesnd the performance of th&%2
order SVSF are then compared to the Kalman filberthe £-order SVSF in terms of the
root-mean-squared-error (RMSE), bias and the stdndkeviations (STD) of the

estimation error.

3.2.Sliding Mode Control Theory

Variable structure control was first proposed amglemented in the Soviet Union
in the 1940’s. The variable structure control atsdspecial subset of the sliding mode

control (SMC) have become a useful technique favide range of control systems,
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including: nonlinear systems, discrete-time modetwyltivariable, large-scale, and
stochastic systems. An important feature of SMQesys is their robust stability and
insensitivity to modeling uncertainties and extémaise. In an SMC, the control input
forces the system states to slide along a hypegpl@he system as it slides along the
hyperplane is referred to as be in a sliding méagure 3.1 presents the main concept of
a system under a SMC. The sliding hyperplane (sajfas defined a& =0 and the

sliding mode along this surface is achieved whestesy trajectories have reached the
surface in a finite time and remain alongd}. [Note thatS OR** represents the vector of

sliding variables, whereas 1R shows the sliding variable.

\\‘\l\\ -7 T‘,‘sfizlﬂl:g—surthce

A

State trajectory

Figure 3.1: Main concept of system trajectoriesaunradSMC

In order to design a standard SMC, there are twio staps 4]:

1- Design a switching surfac®(x, t) =0 to represent the desired dynamics. Note that

it should be of lower order than the system.

2- Design a control law(t, x) to force the state vectarto reach the switching surface

in a finite period of time. To follow the desiregssem dynamics, the sliding mode

will occur on the switching surface. The controt@nmonly defined as:
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u(x 1) = {u (x1) when ¢ x>0 (3.1)

B u (xt) when ¢ X< 0

It has been shown that a properly designed SMCbheamsymptotically stable. One
of the main difficulties observed in the mathemaltidefinition of SMC systems is the
discontinuous nature of the control law. To overeothis drawback, several methods
have been proposed. They mostly redefine the difteal equation for the SMC system
at points of discontinuous dynamics. The equivatanttrol technique is the most well-
known approach. In this approach, it is assumed ttha initial state vector is in the

intersection of all discontinuous surfaces whicls{x) =0. Thereafter, the sliding mode
occurs with the state trajectories confined to sudace. Since the sliding motion results
in S(x)=0 fort >0, it may be also assumed th&(tx) =0. Hence, the first step of the
equivalent control approach is to construct antinpy(X) such that the state trajectory in

the absence of modeling uncertainties would idesdiyain on the switching surface

S(x) =0 without the need for the discontinuous controiterf the SMC. The equivalent

control is derived by considering the system’s dyita and the condition af(x)=0. It
alternatively leads t&(x) = G.f(x, U =0, whereG =g—§ IS anpxn matrix and represents

gradients of the sliding functio8(x) [4].

Theoretically with SMC, system states stay confitethe switching surface, and
the system trajectories slide along the switchindase. However, in real applications,
SMC methods only approximate this theoretical baravith a high frequency switching
motion occurring in close vicinity of the switchisgrface. This high frequency switching
of the system which is generally non-determinisiitd unwanted is referred to as

chattering. Although, the system is still stabled ansensitive to various internal and
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external disturbances, chattering is undesirableé mwmich research was performed to

eliminate or decrease its effecigl[15157,158159.

A commonly used strategy to suppress chatterinig change the sliding dynamics
in a small vicinity of the discontinuity surfacehike the main characteristics of the SMC
system are preservef][ This results in partial loss in the accuracy aplustness of the
SMC. More recently, higher order sliding mode tlyeloas been proposed which helps to
reduce the chattering effects. This approach nét oraintains the main advantages of
the standard sliding mode control, but also redticeshattering amplitude and results in
a higher trajectory following accuracy. A signifidaamount of research has been
performed which shows the effect of using higheteosliding mode systems in reducing

chattering 14,15,157,158159.
In this context, assume a nonlinear dynamic syssemhefined as follows:

X = F(x(t),u(t),t), (3.2)

wherex OR™ is the state vectoy O R *** is the input vector an& : R"*P _ R"
is a locally bounded and sufficiently smooth fuanti Under the ideal sliding mode
condition, the sliding vecto®, that is a measure of the distance of the states the

sliding hyperplane, would be zero such that:
s(x, ) ={0t0[4, 4],0x0R™: s=0}, (3.3)

and its total time-derivative§*?, k =0,1,...r — 1, along the system trajectories

exist. This assumption indicates that there aredisoontinuities in the first -1 time-

derivatives of the sliding vect&
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The sliding order presents the dynamic ‘smoothudeggee’ in the neighborhood of

the sliding surface. Ar™order sliding mode regime exists if a SMC pressfils]:
s=5=%=..= § V=0, (3.4)

wheres represents the sliding variable. The standardngjidhode is based on the first
order sliding motion, which mearss is discontinuous. The r-sliding mode realization
preserves the™-order of sliding precision with respect to the sil@@ment interval. The
two main drawbacks for implementing higher ordédisy mode controllers include the
undesirable effect of the differentiation noisetba SMC and an increase in the amount

of information required. For example, an r-slidimpde controller preserving=0 also

requiress, $, ..., "™ to be available. Note that based on the relatagree of the SMC

system, different conditions need to be satisf@&d [

0 .
1) For relative degreé =1: ESi 0,

d . 0
2) For relative degre¢=2: as(') =0(=12,..r- 1)%3(” # 0

The first case defined above is the standarddier SMC, which keeps=0. The
second order sliding mode is a particular caseheftyper=2 and is used to avoid
chattering effects. To achieve this condition, toatrol vectoru is defined as an output
of some first order dynamic system. In this apphpdbe time-derivative of the control
vector U is regarded as the actual control variable. Thedtitinuous contrall keeps the
sliding variables equal to zero and hence, the plant control remeamsinuous and the
chattering will be suppressed. In fact, the secmaér SMC preserves the sliding motion

on the sliding manifold by means of a continuouaristed inputu(t) . This input is the

continuous output of a suitable first order dynasystem controlled by a discontinuous
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function. Figure 3.2 depicts a schematic of theosdcorder sliding mode concept. The

following relations are derived by differentiatitige sliding variable twice [6]:

s:%s(xo+%$x)f(xul, (3.5)
5=y g xuy Cxupr 6 xuto) (3.6)
ot oX ou '

Figure 3.2: A scheme of thé&%@rder sliding mode regimé]

Definition 3.1:Let a sliding mode system depend on a paramefeR " , and the
sliding condition occurs i€ - 0, such that the constraif=0is satisfied. The sliding

algorithm onS=0is said to be of order (r >0), if for any bounded set of initial
conditions, the following equalities are satisfied]f
s"(x, ) ={0t0[t, 4], DxOR™: 5= 5=..= §V=4, (3.7)

where the first successive time derivatives 8fare smooth functions and th&-order

sliding set is not empty and is locally an integget in the Filippov sensé&,[L6d. m
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Remark 3.1The first order sliding mode exists for the dynasystem (3-2) if and
only if the conditions(X, t) = 0 is satisfied. The necessary condition for theterise of

the first sliding mode condition in the continudume domain may be stated &§: [
s(x,t)s(x, t)<O0. (3.8)

The sliding order is defined as the number of continuous time-déxea of the
sliding variable. In this context, the size of #astence boundary layer would be up to
r-order with respect to plant imperfections. Thelislj order presents the dynamic
‘smoothness degree’ in the neighborhood of thangigurface T]. This smoothness is
due to the higher order of constraints appliedr@ntigher order time-derivatives of the
sliding variable. At the same time, the system’grde of robustness against modeling

uncertainties, parameter variations and exterrslihances is increased.

The above mentioned sliding conditions only presethe sliding motion in
continuous systems and are not directly applicabléiscrete-time systems. Sarpturk,
Istefanopulos and Kaynak have investigated theilgyalof sliding mode systems in
discrete-time domainlp3. They proposed to replace the derivative in cbodi(3.8)
with the difference operator based on the firsteor@aylor expansion. This leads to:

s(k)[s( k+1)- k)] < 0. Hence, the necessary condition for the existexicie first-

order sliding mode in the discrete-time domain loees [L53:

s(k)s(k+1)< £ K ¢ B, (3.9)

where o represents the Schur product arakenotes the sliding variable. This condition is
necessary but not sufficient to ensure the exist@fiche sliding motion. If the sampling

time is not small enough, condition (3-9) may léadhcreased chattering that may result
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in instability. Furthermore, Sarpturk, Istefanomyleand Kaynak have proposed the
following condition as a necessary and sufficieomdition that preserves the reaching

condition as well as the existence for the firsdlisg motion in discrete-time domain

[153:
|s(k +1)| <[ s(K)|. (3.10)
Spurgeon also introduced another approach for ibgfithhe reaching law stated d<[]:
S(k+1)=® S(K), (3.11)

whereS O R is the vector of sliding variable® ORP*P is a diagonal matrix with all

elements0<®; <1, [0 =1..p [16]. This condition is consistent with the reachiagyl
given by Sarpturk in equation (3-10). Sira-Ramppezsented a similar reaching condition

stated asts(k+1)s(k)|<| £ ¥ ¢ B [17).

However, there is not any generalized rule to Batte reaching condition far™
order sliding systems. There has been only a febligations on the discrete-time
second-order sliding mode system. Bartolini, Pisamod Usai have presented new
advances in the variable structure control of mwdr sampled data systems via second-
order sliding modeslp2. Furthermore, they have introduced the digitaldigack sliding
mode control for uncertain sampled data systemgdas the Dead-Beat approach
[162163. Acary, Brogliato, and Orlov also introduced amgplemented a chattering free
digital sliding mode control technique that compas small effects of disturbances and
perturbations. Mihoub, and Abdennour presentedsarelie second-order sliding mode
control for regulating the temperature of a cheinieactor [L56. They have employed

the dynamic sliding mode approach to discretizesgeond-order sliding mode.

109



PhD Thesis — H. Afshari; McMaster University, Menlel Engineering

3.3. The 2°-Order SVSF Estimation Process

The 2%order SVSF method has a predictor-corrector fosame as the Kalman

filter and the f-order SVSF §]) that involves prediction and update. In the prtidn

step, thea priori state estimate),?kﬂ"< , is calculated using knowledge of the system prior

to stepk. In the update step, the calculagedgbriori estimate is refined to produce an

posteriori state estimateikmkﬂ. In this approach, a corrective gain is used ttfine the

estimated states and their first time-derivativesamthin a neighborhood of a sliding
hyperplane. This neighborhood is referred to asetistence subspace. To formulate the
2"order SVSF process, assume a class of nonlinséersg represented by the discrete-

time state transition model:
X1 = F (X, U, wy ), (3.12)

where F :R™P _, R" is the nonlinear state transition function[JR"is the state

vector,u O R ”**is the control vector, and OR" is the process uncertainty vector.

The measurement equation is assumed to be lingaece-wise linear:

Zyn = H Xi+1F Vi1 (3.13)

wherez OR™? is the measurement vector, JR™is the measurement noise, and

H OR™" is a known positive diagonal or pseudo-diagonasneement matrix.

Assumption 3.1The control vectou DR P** is known and norm-bounded such that:

k]| = Umax: (3.14)
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Assumption 3.2VectorsW, andV, are mutually independent white processes and are

norm-bounded bW .., andV ., as their upper limits such that:

(3.15)

{”W || S Wmax;

Vicll= V-

Assumption 3.3lt is assumed that the system with equations (Zab#)(3.13) is smooth
and with continuous partial derivatives of any erdeurthermore, this system is

completely observable and completely controllaBle [

The 2%order SVSF estimation process as applied to teeesydescribed by (3.12)

and (3.13) is summarized by the following five step

|. Prediction of thea priori state estimate vector is obtained based on the sta

transition model of the system described by (3d2)

)Z\k+1|k+1: F (X, U, W), (3.16)

where F is an estimate of the exact state mddetferred to in (3.12). Thia priori

estimate is produced by using the previaysosterioristate estimaté,, . As such,

an initial value for the state estimatgdR™ is required to initialize the process. The
a priori estimate of the measurement vechrmk is obtained using the estimated

state vector and the linear measurement modeluatem (3.13) as:

Zaap = H X (3.17)
where H is an estimate of the exact measurement middel
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Il. Thea posteriorianda priori measurement error vectoks, OR™ ande, OR™

K +1jk
are respectively calculated as:

=7, - l:l ’)\(k|k! (318)

Zk |k

=2,,- H K1 (3.19)

e
Zy 1k

The 2%order SVSF corrective gain vectd, , JR™, is obtained as a function of the

and thea posteriorimeasurement erro;, and

k+1lk Kk

a priori measurement erre,

€ s @S follows:

K.,=f(H"e ), (3.20)

e e
Zaak T Zkgk T Zk-1pk-1

whereH * is the pseudo-inverse of the measurement matrixNote thatH and
H are initially assumed to be square matrices intligahat all states are measured,

m = n The 2%order SVSF without full state measurementz n is described later.

IV. Thea priori estimate is refined into thaeposterioriestimateikmm such that:

Xk+1|k+1: Xk+1|k + Kk+I (321)

V. Steps 1 to 4 are iteratively repeated for each satimpe.

Remark 3.2The 2%order SVSF method can be used to estimate sthtawar or

nonlinear systems that have a linear (or piecelingar) measurement model. Further to

Definition 3.10f Ref. [10], both the state and measurementittansnodels of equations

(3.12) and (3.13) should be consecutive bijectireganing that in the absence of

modeling uncertainties and measurement noise,pgbssible to find an inverse mapping
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that generatex, by consecutive time iterations of the output vedto the form of

Xn, = Foi(H 2z, H 2, y) [10].

The corrective gairK,,;is a second-order Markov process that is formulatadg
the measurement error vector at different time sstemmelyezkﬂlk,ezklk,eZHH. This

formulation alleviates the chattering effects withéhe need for a smoothing boundary

layer. In this context, the vector of sliding véies S OR™ is defined as:

Sk =&, (3.22)

WhereeZka is thea posteriorimeasurement error vector at the time stephe 2%order
SVSF is formulated to satisfy both the first and second sliding conditions. As such the
a posteriorierror and its first time-derivative must be forédednove towards a switching
hyperplane such thay, = E =0 (first sliding condition) andAS, = €~ gk_l‘k_lzo
(second sliding condition) are satisfied at the esdime. It is shown in Section 3.3 that
the first and the second order sliding conditiores satisfied for the ®-order SVSF with

a full diagonal measurement mattik JR™"(m = ny, if:

2 2
_Criy \/ez,ik“( +Aez‘i"|k , (3.23)

Ki,k+l=hii_l € ik T_yii 4 5

A

Whereezlik‘k denotes an element of the error veepr , by denotes an element of the

k
inverted measurement matrid , and y=Diag(y; )OR™™ is a diagonal matrix with

positive entries such th@< y, <1. Section 3.6 presents the corrective gain for s£ase

with fewer measurements than states< n.
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3.4. A New Stability Rule for Second-Order Slidinglode Systems

In order to prove stability of the"®order SVSF, the first and second sliding
conditions must be met. In this sectidiimeorem 3.1s presented for the proof of stability
based on the Lyapunov’s second law. It introducpesative definite Lyapunov function
that preserves the first and second sliding comiti Further to the conceptual

description of the P-order SVSF, it is important to note that the measent error and

its difference(s x,ASx = Sk~ Q,ik_ﬂk_l) decrease in time until a 2-dimensional existence

boundary layer is reached. Thereafter, the estun&tgectory is confined within the

existence subspace, where it moves back and fortissthe true state trajectory.

The width of the existence subspa2e may be expressed in terms of two

orthogonal directions 08, and AS, by Z, (& ,€55 ) in each time sequence. Note that

&, is however unknown and may be calculated as aiimof noise and uncertainties. If
the noise and uncertainties are norm-bounded, asioned byAssumption 3.2hen &,

is also norm-bounded. Note that the state estirlnlae!s'rmoreXklk generated from the"2

order SVSF contains two elements that are the sigmal and noise. The width of the

existence subspacg, cannot be decreased below a function of the rancltomponents
of &, such as nois€d]. It is assumed that the noise random contgntis norm-bounded
such that|n, | < &, . However, it is possible to calculate an upperriabfor the width of
the existence subspace in termsspf. For discrete time SMC systems, the sampling time

and switching imperfections will also affect andlad the value o€, [3].
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Assumption 3.4Let A, =Sk — $x-1 be the backward difference of the sliding

variable S; x at time k. It is assumed thadS, :R™ - R™is a smooth differentiable

function.

Definition 3.2: The ideal first-order sliding mode occurs for acdéde-time system
if there exists a time sequenée after which the state trajectory that belongshe t

sliding manifoldS( x, , k) satisfies 4:

Si ={0XOR", 0k k: g %, B=0}. (3.24)

Remark 3.3Due to uncertainties, noise, and switching impeides, however, the
ideal sliding mode does not occur and the abovaliton needs to be met for a real

sliding condition. The real first order sliding nodccurs if there is a time instankg

after which the state trajectory that belongs todfiding hyperplan&(x,) preserves:

S ={OXOR", k= k,&,>0: | S x) <] (3.25)

Further toRemark 3.3if the first sliding condition is satisfied, thehe sliding
variables vectoS, will be bounded after the time sequerite Note that&, is the width

of the existence subspace and is a function of imgencertainties, disturbances, and

switching imperfections.

Definition 3.3: The ideal ¥-order sliding mode occurs for a system if theristexa

finite time k, = k, after which the state trajectory converges to tlding manifold

S(X%,, K) such that:
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Sona ={OXOR", Ok2 k: g %, B=4 $ % )=0. (3.26)

Remark 3.4Note thatDefinition 3.3only describes the ideal®order sliding motion, but
due to uncertainties and switching imperfectiors teal »order sliding mode is
produced. The real second-order sliding mode ocduedter a finite time sequence

k, = k, the state trajectory that belongs to the slidingdmglaneS(x, , k) preserves:

Sona ={OXOR",Ok2 k. £5,805> 0| (%, Kl<eo|d & % f<an).  @27)

Based on the above discussion, satisfaction offitls¢ sliding condition is a
necessary step for preserving the second slidingliton. Hence, the second order
sliding motion occurs after the first order slidimgption, namelyk, = k;, and the second
order sliding motion must satisfy all conditionsrresponding to the first order sliding
motion. Theorem 3.Jpresents a Lyapunov function that preserves thls &ind second

sliding conditions based dpefinitions 3.2and3.3, and undeAssumptions 3.tb 3.4.

Theorem 3.1The second order sliding condition is preservedafaliscrete-time
system with the state and measurement models ddtiegs (3.12) and (3.13), if it

satisfies:

1
Si k(S k+1_$k)<§A $k2' (3.28)

whereAS; =S ~ $x-1.

Proof: Assume the following positive definite Lyapunov @ion that explicitly

contains the first and second sliding conditions as

116



PhD Thesis — H. Afshari; McMaster University, Menlel Engineering

Vi :Si,k2+A$,k21 (3.29)

where s, DSkDRm is the vector of sliding variables, af$, JAS :R™ - R™is the
backward difference operator generates the vedtsliding variable’s difference. Based
on the Lyapunov’s second law, the system will beblst if: AV, ,, =V,,,—V,<0. The

incremental difference of the proposed Lyapunowdadate (3.29) is now calculated as:

AV .1 =(S ,k+12+A$,k+12)‘($k2+A P . (3.30)

Simplifying the equality (3.30) leads to:

AVt = joad + (S xer™ $50° 7 S8~ 8-2°) (3.31)
The above equality may be simplified as:

AV :Z(Si,k+12_ Sk+1$k)—(Bx isk—:l)z' (3.32)

Note that the right side of equation (3.32) cordaiwo terms and it is clear that the

second term=(S , —Sx—)’ representing=As . is negative. Hence, if the first term

2(§,k2—$,k $x-1) is kept negative, stability and convergence of sieeond sliding

motion is preserved. In this context, the suffitieondition for reaching the second

. o L . 1 2
sliding motion in discrete time is simply given By +1(S x+1~ $k)<E(A $, ) that

results in:

AV, <0; Os,0S,08s,0A $. (3.33)
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It is easy to show that the proposed Lyapunov foncof Vy =Sq,k2+AS,k2
preserves the first and second sliding conditiemsifscrete-time systems as follows. The
Lyapunov functior’/, contains two terms nameEy,kzand ASq,kz that represent squared
values of the sliding variable and its differenasspectively. Negative definiteness of the

Lyapunov function’s difference indicates that abselvalues ofS |k2 and Aﬁykz are
decreasing over time such that after a finite tiseguenceK,q,, all trajectories that

belong to the sliding hyperplarig = &, meet:

[SO4. K <& A%, Bl<&ps O ke KD ggy 200 0 S8 sOA § (3.34)

The above condition implies stability of a discrétee sliding mode system under the

second order sliding motion. i

Corollary 3.1: An intuitive result ofTheorem 3.1is that if the condition (3.34) is
preserved, then the measurement e@gplkrand its differencdkeZka are decreasing over
time. However, due to modeling uncertainties, noaal switching imperfections, this

only occurs until they reach the existence subspacaded by g and & .

3.5. Derivation of the 2°-Order SVSF Corrective Gain

An important step in the"2order SVSF estimation process is the update stage

(3.21). Here, the corrective galf,, is applied to the priori state estimate to obtain the
a posterioristate estimate. The corrective g#p, must satisfy the Lyapunov function

and the stability criterion presented in equatid829) and (3.28), respectively. It
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contains some terms that restrict ¢hposterioristate estimate to within a close proximity
of the actual state trajectory. In order to fornbelldne corrective gain, an explicit relation
for refining thea priori measurement error into igsposterioriform is required. Later on,

Theorem 3.2resents a corrective gain for th&-arder SVSF and shows its stability

under the first and second sliding conditions.

Theorem 3.2Consider a dynamic system with the state and meammnt models
of equations (3.12) and (3.13). Th¥&-Brder SVSF with the following corrective gain is

stable and satisfies the first and second slidorglitions:

2 2
~ ez,i ez,i Aez,i
Ki ke = ' & e~ g _y"\/ :k * 2ka

. , (3.35)

A

Whereezlik‘k denotes an element of the error vedgr , h; denotes an element of the

klk
inverted measurement matrid OR™"(m=n) | D8, ik =€ ~ Gy » and
y =Diag(y; ) OR™™ is a diagonal matrix with positive entries suchttba y; <1.

Proof: Consider a positive definite Lyapunov function sticht it contains the first

and second sliding mode conditions as follows:
Vi =5, 2 +08,7% (3.36)
wheres; , R denotes an entry of the sliding variable vectarifel...m, wherei

denotes the row number of entries. Furthermés, UR represents the backward

difference operator that generates the differeridbe sliding variable vector. Based on

the Lyapunov's second law of stability, the systemill be stable if:
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AV, =V,,; -V, <0. In this context, let multiply both sides of thaimg in equation

(3.35) by ﬁ” and consider the simplified result in terms of ghements as follows:

2 2
- €. € i Ae
ez,ik+1|k - hi KI k+1~ 2k|k Vi \/ :k + 2k|k . (337)

Following equation (3.21), SinC&.ux+1= Xk+1k * Kk 3, ONE can restate the gain as:

Ky =Xkatpe1™ Xie e SUbstituting this relation into equality (3.37kMs:

2 2

(% 5 €. i, D

ez,ik+1k - hi (XI k+1k+1" X k+2llk) = 2k + Vi fklk + 'Kk . (338)
! > 2 >

Thea priori and thea posteriorimeasurement errors at time skegre given by equations

(3.18) and (3.19) a%,, = I:]i (% K+lk+1" X k+x) and € g — Lik+1 T h % k+1k+1.

Subtracting the priori error from thea posteriorierror results in:

€ s~ oo =~ (K ke X e ). (3.39)

Using equation (3.39), equality (3.38) may be testas follows:

2 2
_ez,iklk ‘. \/eZ,ik“( +Aezvik|k ' (3.40)
4 2

e, . =
Zylrak+1 2 I

Transferringez,iklk/Z in equality (3.40) to the left side and squaringthb sides, it

becomes:
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2 2 2
€ € i Aez,-

Since A = Diag (y; ) is defined such thai< y; <1, the above equality is simply restated

as follows:

2 2 2
{ez - ‘ez’ik'kj <(ez’i” +Aez’ika ] (3.42)
sle+k+1 2 4 2

Expanding the above inequality leads to:
e, 2-e. e, <Ae. 2/2 3.43
Z, g +1k+1 lkrak+1 Zolkk ek ! ( )

SinceS k =&, , inequality (3.43) may be restated in terms ofsheing variable

entriesS k as follows:
Sk ~SkaSk <A g7/2. (3.44)

Adding and subtracting; ’kz into the left hand side of the above inequality and

rearranging the resulting terms, it becomes:

25 ks =29 kK T Bk &~ i <. (3.45)
Equality (3.45) may be restated such that:

5i,k+12+(§k+1_$k)2‘ $k2‘(§k2+Ai§<2)<0- (3.46)
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Based on the Lyapunov function candidate, giveNlbysyk2+A$Yk2, inequality (3.46)

may be restated such that:

Vk+l _Vk < 0, (3.47)
where it leads to:
AV, <0; Os 05,008, 0AF. (3.48)

Since the Lyapunov function candiddg is a function ofS; x and As;  , it is deduced

from equation (3.48) that the corrective gain (3 @%serves stability and convergence of

the 2%order SVSF for both the first and second ordefirslj mode regimes. o

Corollary 3.2: Proper selection of the convergence rate matrsuch thato< y, <1
preserves the stability and convergence of t@ler SVSF. Note that smaller values of
¥i result in accelerating the Lyapunov decrement ambsequently increasing the

convergence rate.

The 2%order SVSF gain is actually representing a seamdés Markov process

which is a function of the priori measurement error vectéy,, ., , the difference of the

measurement errohe

T Zyk

=6 2, " 8zeye.» @Nd the measurement matrix inverge'.

The term(g _Q,zk_uk_l)zlz in equation (3.35) arises by preserving the secmnadr

T
sliding condition. A block-diagram representatioh the 2% order SVSF estimation

process is presented in Figure 3.3. In thto2der SVSF estimation process, an initial
estimate of state variables is made albeit uncertdhe corrective gain pushes the

estimated state trajectory towards the true stafjectory until it reaches the existence

122



PhD Thesis — H. Afshari; McMaster University, Menlel Engineering

boundary layer. By reaching the existence subspideeestimated trajectory starts to

slide with the sliding manifold at decreasing distas determined by the sliding variables

Sk and AS, that denote the measurement err€; ~ and its difference

De, =€ . ~§ ., respectively.

T == 2
<+— hy! 3=
iktl A+ I A "
Filter Gain Crink Gain | Crink ~ Czik ikl
Function | Error
Measurement Error: Difference
ez_ik‘ : z)
Coipi 1k e
Zik-1ik-1
y ) a+ Yix i
1.kt1 +l_zi Zﬂ— “21_‘_'
A- B A_
Vik Yi_mI Yikaka Yikl
{ H State Estimate: H H |

ﬁi\kﬂk :/? il.kik-:
State —
. Plant .
Kikilk X =F (X U k) e XKk
Measurement — Yir=Hx, et
oz Yik __} 71 | Yika ..

Figure 3.3: Block diagram representation of tffed2der SVSF estimation process

Based onTheorem 3.1the estimated trajectory will remain within theistence
boundary layer. Since thé%order SVSF is applied to stochastic systems ardtduhe
presence of modeling uncertainties and measurenwse, the ideal sliding motion does
not occur. Therefore, even though the sliding mois present, it is in the form of the
real sliding condition for state estimation. Fig@.d demonstrates the concept of tA 2
order SVSF and decreasing the measurement erroitardifference over time. The
existence boundary layer is a subspace aroundubestate trajectory. At each time step
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k, the width of the existence boundary layer is wigtd by calculating the two quantities
Sx andAs, that are a measure of the distance from the swigchiyperplane. Under
the second sliding condition, these two variablesiverge to within an existence

subspace with two upper bounds and &, .

True State Trajectory
’’’’’’’ Estimated State
Existence Boundary Layer

AS

4 initial estimate

Figure 3.4: Main concept of thé&’rder SVSF method for state estimation

Satisfaction of the second sliding condition by #i&order SVSF will result in
higher degrees of robustness in the estimated tségéetories. It is because the corrective

gain of the ¥-order SVSF applies separate constraints to thesumement error

<& and its differenc#AeZka H < &) at the same time. It forces both the measurement

e
Zk |k

error and its difference to remain in a close \tgiof the origin,eZka :AeZklk =0, during

the estimation process. In addition, regardingedbeaality (3.35), the corrective gain at

k +1 computationally depends on the values of the nreasent error at timé and

k-1, namelyeZka ande This means that thé'®order SVSF updates theepriori

Zy k-1 "
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state estimates & +1 based on information available from two time stepfore. The
corrective gain of the"-order SVSF uses more information from the pastimparison

to other first order filters.

Having access to more information of the sliding dmosystem alleviates
undesirable effects of the chattering signal, urterspikes and other high frequency
dynamics. It improves the performance of tHé-ctder SVSF in terms of accuracy,
robustness, and smoothness. These are the maintages of the ¥-order SVSF over
the Kalman filter and the formerbrder SVSF. Figure 3.5 shows why preserving the
second sliding condition helps th&-2rder SVSF to increase accuracy. Accordingly, in

the 2%order SVSF estimation process, the constraintepptied in two directions. The

first sliding condition constrains the measurememor €, 1o within an upper bound
£, and the second sliding condition constraints 'l’mereﬂifferenceAeZklk =€, T8 .,

to within an upper bound,.. In contrast in the *torder SVSF, there exists only one

constraint that applies an upper boufig to only the measurement erey, .

A
Ae, Aeg.
—> -«
s -« - _’. “— 4 .
— -« C: e s *Eh e:
N pa it
—> S )
e

a)Error by I¥-order SVSF =0(e;) b)Error by 2M-order SVSF =O(e,xe4,)

Figure 3.5: Main concept of increasing accuracyth@? -order SVSF (upgraded frori])
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Remark 3.5The 2%order SVSF can be applied to nonlinear systembouwit the
need for linearization or approximation. This capgbis one of the main advantages of
the SVSF techniques over other estimation methbds dre using the linearization or
some form of approximation of nonlinear terms. BMSF-type filtering does however

require a linear or piecewise linear measuremertaino

Remark 3.6Pursuing the™-order sliding mode theory, it is possible to exte¢he

2"%order SVSF concept to the-order SVSF in which the""-order sliding mode
condition is satisfied by, =AS, =...=A""$ =0. In order to preserve the stability of

then™-order SVSF, the Lyapunov function may be defingd a
Vi =8 2 +A5, 2+ +A" s, % (3.49)

where A" s, :R™ _, R ™ is the(n-1)" order difference of the sliding variable vector

and is a smooth function. The resulting sliding iotwill be in an n-dimensional
existence boundary layer. Alternatively, the caiikecgain of then™order SVSF is an

n"-order Markov process and formulated as a funatibthe measurement error vectors,

from e,,up toe, ., Note that by increasing the order of the slidmgde

condition, the amount of information that is regaliwill increase.

3.6. The 2%-Order SVSF for Linear Systems with Fewer Measuremets than States

The 2% order SVSF can be applied to systems with fewessueements than state
variables. In this case, the corrective gain of#feorder SVSF may be derived using the
Luenberger's approach as presented3in |n this context, the nonlinear model of the

system must be linearized. Now, consider a lingsurete state-space system as:
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X1 = A+ BY + W, (3.50)

Z1 = CXr t Man (3.51)

where AOR™ is the state transition matri OR"? is the control matrixC OR™" is

the measurement matrixy, OR™ and v, OR™ are the process uncertainties and

measurement noise, respectively. Note that in otdeapply the Z-order SVSF to

systems with fewer measurements than stétesyumption 3.3ieeds to be satisfied. The

state variables may be decomposed into two parts[X, x|k]T , Where the upper part

Xy, OR'™ js directly measured and whereas the lower pgrﬂR(”_')xl is not .

Using the Luenberger’s transformation (refer 8)),[ a revised state vector is

obtained in terms of measurements such Yhailz, 1", wherez, OR™ denotes the

direct measurement vector ayg, OR™ D4 genotes an artificial measurement vector.

The problem is to obtain values for entriesypf based on the partitioned mod8].[The

measurement model is presented as:

e Py (Dlz} % + |:Gl:| W,
= U+ _ | 3.52
{ylm} [(Dn D, [Mk} G, Wo, ( )

where® =T™AT, G = T'B, andW =T w-[®, ®,] v [3]. Further to (3.52), tha

priori state estimate may be obtained3s |

Zys o, o, z G
foa] o s JEL
y|k+l|k CD21 CDZZ y|k|k GZ
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As presented in3], the a priori and a posteriori measurement error vectors for the

hidden measurement vectd are calculated as:

— b1 -1
& = P28, ~PW, (3.54)

A

= CDZZCDI;eZMk -P 22CD_112V_V|k +w (3.55)

Yl +1i

where €, OR™Y is the artificial measurement error vector a@dJR'"™ is the

measurement error vector corresponding to measusadiles. Equations (3.54) and (3.55)
present a mapping of the measurement error vduabig used according to Luenberger’'s

method for deriving a switching hyperplane andaicualating the filter gain.

In order to derive the "2-order SVSF gain for the lower partition of statése
switching hyperplane for the lower partition relies a projection using measurement

errors such thagy]:

A A

S :(Dzzq)ﬁ%'k’ (3.56)

whereS, OR™ " Further to equation (3.35), th&%rder SVSF corrective gain for the

lower partition of states is derived as:

A AL &’Izljjezj (&’ﬁijezi, )? (‘i’_ﬁq,A?i, )?
Ki,k+l=q)22ijq)112jez e ™ Ky . K ; Klk

5 f , forij =l +1,..m (3.57)

By combining the gains of each partition of thetesteector, the %-order SVSF gain is

restated for linear systems with fewer measurentéats states as:
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2 2

- &, e’ Ae, -

Kikn=h 7 &, ‘%‘V"J 0 fori j =1,..d

Kikw= (3.58)

D3, J %), @hoe,)’
2

Po2j q’i%j € i > % 2

Jori,j =1 +1,..m

whereh*OH%is the pseudo-inverse of the measurement matfix™"that is not square.
~ ~ T
Hence, the vector of sliding variables may be dsfias:S, = [ezklk D,,D75 ezmk} .

Note that the squared terms in equation (3.58al@ilated using the Schur product. The

gain formulation that can be used for nonlineatesys is provided inJ).

3.7. Comparative Analysis of the #-Order SVSF

The 2%order SVSF method is compared with other estimatitethods by its
application to an electro-hydrostatic actuation AHystem with a model described in
[3]. This comparison is made between the Kalmanrfiltee f-order SVSF and the
proposed Z-order SVSF. These methods are applied to the Erbdlemunder two
different scenarios that include: 1) the safe ctiowliwith no modeling uncertainties; and
2) the faulty condition with a higher level of mdidg uncertainties. The EHA model has

three state variables including the positiqrF x, velocity x, = dx / dt, and acceleration

x; = d®x / df, where position is the only measurable st8le The linear discrete-time

state and measurement models of the EHA are giyergbations (3.50) and (3.51),
respectively. Numerical values of the state, cdnémed measurement matrices of the

EHA model are presented &:[

1 0.001 0 0
A=l 0 1 0.001|, B=| 0 |,C=[1 0D (3.59)
-557.02 -28.616 0.9418 557.02
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Note thatw, and V, are multivariate white normal random vectors with mean of zero

and standard deviation vectors equal3o [

We =[0.05 0.1 Of ,vg=[ 0.5 (3.60)

The EHA system is third order with a single measaet that is the position. To
produce the augmented measurement vector, the Spaiee is partitioned based on
equation (3.53) as3[:

T T ~ [ o0 . [ 1 0001
Py =[l], ®,=[0.001 }, @py= -877.02 P = -32.616 0.841¢ (3.61)

For simulation purpose, the"%order SVSF's gain is derived for the case with the

convergence rate equal $0=[0.1]. Hence, the gain is obtained for the EHA system

using equation (3.35) for the measurable stateegudtion (3.57) for the rest as:

2 2
eZkﬂlk _ezzkk _y\/ eZZk + Ae;kk ,
2 2
K..=1000%, - 00008, - b- o 2%
k+1 — . Zy 41k - Zys1k 4 2 (362)
ezwk2 AeZm'k2
0.80922k+1k - O.@Zkﬂk - + .
| | 4 2

To check the robustness of th&-@rder SVSF, a large degree of unknown uncertaintie

is injected into the model by changing the statérimafter 0.5 sec of simulation t&]f
1 0.001 0
A,=| O 1 0.001 (3.63)
-240 -28 0.941

Note that elemerds; of matrixA; is multiplied by 0.5 in order to simulate uncentaas.
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The inputu to the EHA system is a random signal with the atwgdé in the range
of -1 to 1, superimposed on a step input that acat0.5 sec. The initial values of states
are assumed to be zero and the sampling time &mratization is 0.001 sec. For the

Kalman filter, the process noise, measurement narg# initial error covariance are
respectively obtained aQ =diag({1 10 5 ), and P, = 20Q . Additionally,R=0.1cnf

is obtained by calculating variance of the innomatsignal for a time period. For th&-1

order SVSF and theé"®order SVSF methods, the convergence yase0.5. Furthermore,
for the f-order SVSF, the smoothing boundary layer is set#5 5 ' xv,, where

VqiS the standard deviation of the measurement n8iseulations are performed using

the MATLAB and after 1 Monte-Carlo runs. Note that using a larger nuntiévionte-

Carlo runs only increases the running time, wharutation results do not change.

Tables 3.1 to 3.3 compare some numerical perforenamticators calculated by the
three estimation methods (Kalman filtef-drder SVSF, and the"®order SVSF) for a
normal and an uncertain EHA model. For the normadieh, it is assumed that the EHA
model is known when there exist bounded process raadsurement noise. For the
uncertain EHA model, high amount of modeling uraieties are injected after 0.5 sec.
The uncertainties are applied to examine the paidoce and the robustness of the three
estimation techniques given added uncertainties. aldtual trajectories are also provided
by solving state trajectories of the EHA systemhvatate matriced, B, andC. The state

estimation error is the difference between valdab® actual and estimated state.

In order to compare these state estimators, sodieators such as the root mean
squared error (RMSE), bias and standard deviat{8n®) of the state estimation error

are used. The RMSE of a state estimator is an amalicof the difference between state

estimate value¥; and the actual values; that are only available through simulation.
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Note that the individual difference is referreda® the state estimation er®y, but the

RMSE serves to summarize these differences intinglesindicator of the estimator

performance. In simulations, measurements of tlae svariablesx; are artificially

produced by using the state and measurement madelsinjecting measurement noise

Vi and process uncertaintiag . The RMSE value for an estimator is calculated as:

n Ry
RMSE:,/Zﬂ(X—iX'), (3.64)
n

where n denotes the number of time steps. Furthermore sthe estimation error is

defined as the difference between the actual stabeesX; and the estimated state

valuesX; . Mean of the state estimation error (Bias) of siingator is obtained ag]

Bias= E[x]- [ X k Z)]. (3.65)

where E[ | represents the expected value operator. For aetiscealization, Bias of a
state estimator is calculated by:
. 1 <
Blas=HZ(xi - %) (3.66)

i=1

The standard deviation (STD) is an indicator tlegresents how much variation or
dispersion from the average exists in a data sedtatistical population. A low STD
shows that the data points tend to be very clogskeanean value (or the expected value),

and a high STD represents that the data pointspaead out over a large range of values
[1]. STD of the state estimation error of an estimadagiven by €, denotes the mean

value of the state estimation error):

sTD=E[(&-2)]= B ¢*|-( £ (3.67)
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For a discrete realization, the STD of the statenegion error is calculated as:

STD=\/%2(&;(J —2.) (3.68)

Tables 3.1 through 3.3 respectively present numetliges of the RMSE, Bias, and

STD of the state estimation error generated byaibeve mentioned state estimators.

Table 3.1 presents the RMSE value of the statenattin error€,  for both normal and

ik
uncertain conditions. Further to Table 3.1, thenka filter produces the most accurate
state estimates in terms of the RMSE for the knavadel of the EHA system subject to
white noise, followed by the"2order SVSF and the®dorder SVSF. It is because for
normal conditions, the Kalman filter is optimal i@erms of the RMSE. In spite of the
normal case, it is observed that for the uncertaise, the P-order SVSF produces the
most accurate state estimates in terms of the RMBH&s accuracy is due to the
robustness of the "2order SVSF to uncertainties. Using the second rosiigling

condition instead of the smoothing boundary lagethe main reason why th&%drder

SVSF is more accurate over thédrder SVSF for both normal and uncertain cases.

Table 3.2 compares state estimates in terms dfitse(mean of the state estimation

errorexklk) for both normal and uncertain conditions. Tabl@ Gompares state estimates

in terms of the standard deviation (STD) of thees&stimation errof,, . For the normal

case, the Kalman filter produces the smallest H@kwed by the ¥-order SVSF and
the F-order SVSF. But for the uncertain case, thta2der SVSF generates the smallest
bias, followed by the Storder SVSF and the Kalman filter. Furthermore, #€order

SVSF has the smallest values pertaining to thedatrandeviation of the state estimation

error g, . Having the smallest value of the standard demmafor both normal and
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uncertain models indicates the smoothness chaistiteof the 2%order SVSF in

comparison to other methods that reduces the anwfudispersion in the error signal.

The 2%order SVSF produces state estimates with minimames of bias and dispersion

in the errore7ka for uncertain conditions.

Table 3.1: Comparison between RMSE of three esomamethods applied to the EHA model

Kalman Filter 1%-order SVSF 2"%order SVSF
Normal | Uncertain | Normal | Uncertain | Normal | Uncertain
RMSE of Position (cm) | 1.01x10° 0.31 1.10x106 | 1.13x10° | 1.05x10° | 1.08x10°
RMSE of Velocity (cm/s) 1.046 21.66 1.060 15.50 1.05 14.49
RMSE of Accel. (cm/§) 167.24 2206.06 170.31 1341.58 168.91 133518

Table 3.2: Comparison between Biases of the trsgation methods applied to the EHA model

Kalman Filter 1%-order SVSF 2"%order SVSF
Normal | Uncertain | Normal | Uncertain | Normal | Uncertain
Bias in Position (m) | -2.53x10° | -9.94x10° | -2.58x10" | -3.15x10" | -1.57x10" | -2.12x10’
Bias in Velocity (m/s) | -1.95x10? 5.63 -2.77x18 3.78 -4.70x18 3.78
Bias in Accel. (m/§) 9.84 27.32 10.04 20.86 9.98 20.76

Table 3.3: Comparison between STD of the estimatiethods applied on the EHA model

Kalman Filter 1°-order SVSF 2"%order SVSF
Normal | Uncertain | Normal | Uncertain | Normal | Uncertain
STD of Position Error (m) | 9.63x10° 0.30 1.05x10° | 2.09x10° | 7.51x10° | 9.86x1C°
STD of Velocity Error (m/s) 1.09 22.29 1.12 17.95 1.11 11.63
STD of Accel. Error (m/sz) 183.55 2867.9 186.16 1823.9 185.37 1674.60

Figure 3.6 presents the actual profile and themed&d state profile using the

Kalman filter and the ®-order SVSF for the EHA in normal condition. FiguBe7

compares the actual and the estimated state wagstusing the Kalman filter and the

134



PhD

Thesis — H. Afshari; McMaster University, Menlaal Engineering

Position (cm)
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Position (cm)
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2"%order SVSF for the EHA system with modeling unaities. Comparing Figures 3.6
and 3.7 confirm the better performance of tH&dder SVSF in estimating state

variables of the EHA system in the uncertain caodit

Actual x;
0 — — Estimated X by Kalman filter
———————— Estimated X by 2-order SVSF

~o 100 200 300 400 500 600 700 800 900 1000

Actual x,
— — -Estimated x, by Kalman filter
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x10t
Actual x;
— — Estimated X, by Kalman filter
rrrrrrrr Estimated Xy by 2-order SVSF
2 | | | | | | | | |
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Figure 3.6: State estimations by the Kalman fitted 2°-order SVSF for the normal EHA system

Actual x;
o | — — -Estimated X by Kalman filter
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— — Estimated Xy by Kalman filter
,,,,,,,, Estimated x, by 2-order SVSF
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Time (s)

Figure 3.7: State estimations by the Kalman fitied 2°-order SVSF for the faulty EHA system
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The position’s estimation error signal obtainednirdhese three methods is
presented in Figure 3.8. It is clear that ti&dder SVSF produces the smoothest state
estimates with the smallest variation for both narend uncertain cases. These profiles
with numeric values of Table 3.3 demonstrate traisfaction of the second sliding
condition provides higher degrees of smoothnesgsitimates over other approaches

based on approximation.

Normal Case
0.3

Kalman filter error
1-order SVSF error
2-order SVSF error

0.2

0.1

-0.1

Position error (cm)
o

-0.2

=Y
[N}
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Uncertain Case
0.4 :
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Time (sec)

— Kalman filter error
— l-order SVSF error
——2-order SVSF error

Position error (cm)
O

0.2

Figure 3.8: Profiles of measurement errors by tiffie€ estimators for normal and faulty EHA

Figure 3.9 presents the phase portrait of the mmeamnt error and its first
difference obtained by the®brder SVSF under the normal and faulty scenarios.
Moreover, Figure 3.10 presents the same phaseajiabtained by the"®-order SVSF.

It is observed that for the"®order SVSF in both normal and uncertain scenatios,
measurement error and its difference are decreasitime until the estimates reach the
existence subspace. This is due to the stabilityoofective gain formulation for thé'®

order SVSF and its ability to satisfy both the tfiesd second sliding mode conditions.
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For the f-order SVSF, it is observed that the measurement and its difference are
larger than ones obtained by tHE-@rder SVSF, but they still remain norm-bounded. As

expected, stability of the"2order SVSF results in finding an upper bound for the

measurement erra@, and another bound,s for its differenceeZka -g

k-1k-1"
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Figure 3.9: Phase portrait of the measurement andrits difference obtained by thedrder SVSF
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Figure 3.10: Phase portrait of the measurement anw its difference obtained by th&-8rder SVSF
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The main advantages of th&®@rder SVSF over the Kalman filter and-drder
SVSF are its greater accuracy and robustness iertant conditions. These are directly
due to preserving the second order sliding conditibiich forces not only the estimated
state trajectories to slide along the switchingdrptane, but also their derivatives to slide
along a tangential hyperplane. Note that the ctimegain of the ¥_order SVSF in each
step updates the priori state estimates based on available informationthef
measurement error from two steps back. This hélpgt-order SVSF to create smoother

state estimates with smaller bias and dispersiotise estimation error.

3.8. Summary

A new state estimation strategy referred to asseeond-order smooth variable
structure filter (2“order SVSF) is introduced and implemented in tthspter. It is
formulated in a predictor-corrector form and usesm@ective gain to satisfy both the first
and second sliding conditions during the estimapoocess. The filter uses a corrective
gain that is derived to satisfy Lyapunov’s seccmad bf stability. The Z-order SVSF can
be applied to linear as well as nonlinear systemith@ut a need for linearization for the
latter). Satisfaction of the second sliding comuditresults in higher degrees of robustness
and smoothness in the estimated trajectory. Thigliseved because the corrective gain
of the 2%order SVSF has access to more information fron pa@ssurements that in this

case are two previous time steps.

The 2% order SVSF formulation not only helps to produs®sther state estimates,
but also improves performance compared Yeottler SVSF in terms of accuracy and
robustness. Simulation results indicate that whesret are modeling uncertainties, the

2"%order SVSF produces the most accurate state d@etnend provides the smallest
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RMSE, bias and standard deviations in the staiemmaSbn error compared to the other
two filters. Satisfying the first and second sliglirtonditions, the -order SVSF

alleviates chattering without the need for a smimgtivoundary layer.

Main advantages of the"Rorder SVSF with respect to other state estimation

methods may be summarized as follows:

» the filter is robust and produces accurate statenates in uncertain situations
where the level, source and occurrence of uncei¢giare unknown;

» the filter can be applied to systems with a no@ingtate model without any need
for linearization or approximation;

» there is no need to use saturation or any type ppraximation to alleviate
discontinuities and prevent chattering;

» the filter produces smoother state estimates (aitialler STD of the error) when
higher amount of information is available for thedate stage; and

« the 2%order SVSF may be used for analysis of chattesimg secondary measure

of the filter performance
The disadvantages of th&drder SVSF are:

e itis not optimal in the mean square error sensd; a

* more information in the form of past measuremerdsn@eded at each time step.

139



PhD Thesis — H. Afshari; McMaster University, Menlel Engineering

Chapter 4

The Optimal 2"-Order SVSF based on a Dynamic
Sliding Manifold

This chapter introduces the dynami€-arder SVSF state estimation method that is
designed based on the dynamic sliding mode condém. dynamic Z-order SVSF
produces state estimates by satisfying the first second order sliding conditions that
result in preserving the stability of the filterater on, the optimal version of this filter,
referred to as the optimal®order SVSF, is calculated by minimizing the tradethe
error covariance matrix. The corrective gain of tpgimal 2%order SVSF is based on a
dynamic sliding manifold that introduces a cut-&fquency coefficient into the filter
formulation. The optimal value of the cut-off freancy coefficient is then calculated at
each sample time such that the state’gosteriorierror covariance is minimized. It is
shown that the corrective gain of the optim&l-@der SVSF collapses to the Kalman
filter gain. Hence, a combined strategy is intragtlithat includes the optimal“rder
SVSF for systems with a perfect model and the dyo&fl-order SVSF for systems with
huge uncertainties. Simulation results demonstthte performance benefits of the
combined strategy over other methods such as theatefilter, the f-order SVSF, and
the former 2*-order SVSF.
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4.1. Introduction

As discussed in the previous chapters, the maildsgofastate estimation are to
minimize the estimation error as well as achievingoustness against modeling
uncertainties, measurement noise and bounded histoes. Optimality in estimation has
usually been obtained by adjusting a filter's cotikee gain to minimize the state error
covariance matrix (trace). The Wiener-Kolmogoroitefi was one of the first major
contributions in optimal estimation that was progbsfor stationary signals2()]. It
assumes estimates with known spectral propertigiesuto white noise. The Kalman filter
is a generalization of the Wiener-Kolmogorov filind is applied to linear systems with
non-stationary Gaussian signa|[ The Kalman filter requires a dynamic model oé th
system, known control inputs, and measurementsasony white Gaussian noise. Under
these strict assumptions, it provides optimal esti® by recursively predicting the states,
estimating the uncertainty of the predicted statesnputing a weighted average of the

predicted and measured values, and refining theigiesl states.

Another important consideration in estimation isvustness to uncertainties and
bounded disturbances. Common strategies found én literature include the robust
Kalman filter 0,57,532], the H,, filter [41,5556], and the variable structure filtering
(VSF) [3,135141]. The robust Kalman filter may be designed fortegss with bounded
modeling uncertainties such that an upper bounthefmean square estimation error is
minimized at each steby]. Sayed P] presented a general framework for robust state
estimation of dynamic systems with modeling unéeties. Zames136 proposed thé,,
method in 1980 that removes the necessity of aeperfiodel or complete knowledge of
the input statistics. The,, theory is designed based on tracking the energy gfnal for

the worst possible values of modeling uncertairdied measurement noise4[/].
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More recently, the Smooth Variable Structure Fil{8VSF) was proposed as a
model-based robust state estimation strat&jyIf is based on the concept of variable
structure systems that results in stability givanugper bound for uncertainties and noise
levels. Its gain contains a discontinuous correctigrm that refines tha priori state
estimates into thex posteriori form. A smoothing boundary layer using the signum
function was added to the gain formulation to allex high-frequency chattering. In this
context, the signum function operates outside theathing layer to preserve robustness
against uncertainties, while inside the smoothayget it interpolates the gain to suppress
unwanted chattering. The smoothing layer presestsygromise between accuracy versus

smoothnessy.

Chapter 3 introduced thé%order SVSF method as a new extension to the VBE-ty
filtering that satisfies the first and second ordiding conditions during the estimation
process. It alleviates the unwanted chatteringceffey decreasing the measurement error
and its difference until reaching the existencespabe. Thereafter, it is proven that the
measurement error and its difference remain bouridedituations with bounded noise
and modeling uncertainties. By not using a smogttiaundary layer, the"2order SVSF
increases the accuracy of the standard S\BpR{ well as its smoothness and robustness.
The main issue with the"2order SVSF method is that it is not however optimaerms
of the mean square error (MSE). This makes tHeler SVSF to be conservative under
the normal operating conditions in which the amouwfit uncertainties is small.
Furthermore, the corrective gain of th¥-arder SVSF is highly nonlinear and this yields
to computational difficulties in the optimizatiomgezess. In order to present the optimal
version of the Z-order SVSF, a similar approach to the Kalmanffittey be used. In this
context, a linear formulation of the correctiverg#at would satisfy the first and second

order sliding conditions is required.
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In this chapter, the dynamié%order SVSF method is firstly introduced based on a
dynamic sliding mode manifold. The dynamit-8rder SVSF is applied to systems with
linear state and measurement models that are $ubjeghite additive noises. In this
context, a linear sliding mode manifold is desigiveterms of the sliding variable and its
first difference. It is later proven that the slagfethis linear manifold is effectively a cut-
off frequency that filters chattering and can dyieatly be updated at each time step.
The Lyapunov’'s second law is used to provide trabibty proof for the presented
dynamic 3%order SVSF. In order to obtain the optimal defivatof the dynamic -
order SVSF, the trace of tleeposterioristate error covariance is minimized by finding
the optimal value of the cut-off frequency at eatdp. It provides the cut-off frequency
as a square matrix with time-varying entries. Isi®mwn that the corrective gain of the
optimal 2%order SVSF represents the Kalman filter gain. &fwe, a combined strategy
is introduced by considering the optim&f-rder SVSF for systems with a known model
and the dynamic "-order SVSF for systems with huge uncertaintiess Etrategy is
demonstrated by its application to an electro-hgthtic actuator (EHA). Simulation
results from the combined strategy are comparel reiults from the Kalman filter®4
order SVSF 3], and the former P-order SVSF in terms of the root-mean-squared-error

(RMSE), error's mean (Bias) and standard deviat{@¥D).

4.2. The Dynamic 2°-Order SVSF Estimation Process

Consider a stochastic dynamic system defined byalirstate and measurement

models in discrete time as follows:

Xy = F X +GUy +W,, (4.1)

Ly = l:| Xy+1F Vi (4-2)
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wherex, OR™" is the state vectory, ORP** is the control vector, and, JR™ is

the measurement vector. Furthermdfe;] R™"is the estimated state matri®,0R"™ P is
the estimated control matrixi OR™"is the estimated measurement matrix (diagonal or
pseudo-diagonal matrix)y , DR andv, OR™ are the process uncertainties and

measurement noise, respectively. The following mgdions are made in the derivation

of the dynamic SVSF.

Assumption 4.1The control vectou ORP** is known and norm-bounded such that:
| < U (4.3)

Assumption 4.2VectorsW, andVy are mutually independent white processes. They are

norm-bounded by ,ax andV o as their upper limits such that:

(4.4)

{”W k ” S W maxs

Vi £V max:

It is assumed that they are statistically indepahdadth respect to the state vector.

The main benefit of higher order sliding mode ctindi is a reduction in the
unwanted chattering effects. More specifically, §eeond order sliding mode condition
not only retains the main advantages of the firskeo sliding mode systems such as
robustness, but also reduces the chattering ardplitind results in a higher trajectory
following accuracy. However, due to uncertaintiesise, and switching imperfections,
the ideal conditions cannot be achieved and astehhg regime needs to be considered.
The real first and second order sliding mode camwtt are described by the following

definitions in discrete time.
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Definition 4.1:The real first order sliding mode occurs if thesaitime instancle;

after which the state trajectory that belongs ®dliding hyperplan&(x, ) preserves:

Slst:{DxD]R”,Dkz I<1,£S>O:||S(>g<)||<£s}. (4.5)

Definition 4.2: The real second-order sliding mode occurs if a#tefinite time
sequencek, >k, , the state trajectory that belongs to the slidimgperplaneS(x,)

preserves:

Sana ={OXOR", Ok by, £5,605> 0: [ (X <£4]D & %<& ). (4.6)

In the dynamic P-order SVSF, the corrective gain is a linear fumtdf thea
priori and thea posteriori measurement error multiplied by the cut-off fregee
coefficient. The stability proof of the filter undé¢his gain is then proven using the
Lyapunov’s second law of stability. The gain satisfthe first and second order sliding
mode conditions that result in robust, smooth, @emavergent state estimates. In order to
optimize the dynamic "%-order SVSF in the mean squared error sense, #ie and
measurement models must be linearized. Hence, gtima 2"®order SVSF method is
restricted to systems with linear state and measeiné models. In order to apply the filter
to systems with nonlinear state models, the stagsterioriPDF may be predicted
using techniques involving linearization or approation, similarly to the EKF or UKF

methods.

In this context, it is necessary to introduce ttaeserror covariance matrix into the
filter formulation. The error covariance matrix gides additional information about the
state estimate’s dispersion for the filter thatums results in more accurate estimates.

The error covariance matrix may also be interpretedn indicator of the performance
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that presents dispersions of the noise and outlfessn the measurement data.
Furthermore, derivation of the covariance matrixphethe optimal Yorder SVSF
method to be combined with other estimation meth&gsh as the interacting multiple
models (IMM) filter. The combination of the IMM fér with the optimal Z-order SVSF

will be used in Chapter 5 for fault detection addritification (FDI).

The calculation process of thepriori anda posterioristate error covariance for the
new derivation is similar to what was presented3aylsden and Habibi4( for the £-
order SVSF that followed a similar approach asKhbnan filter, [1,20]. In this context,
the a priori state error covariance matrix is defined as thassitzal expectation of the

squaredh priori state estimation error as followH |
— s 3 T
Pesak = E{(Xk+1‘ Xicr 1) (Xper 17 X 1) }, 4.7)
Since Xy, = Ika +éuk +w,, and )Zk+1|k = lka“( +Guy, it leads to ]:

—effo o TET ., Bo T ~ TAT T
Py 11 _E{ka|kxk|k F'+ FXwigt WXy F + WkW»}1 (4.8)

where ik“( =Xk~ >?k|k is the state estimation error. FurtheAgsumption 4.21]:

E{w,}=E{w}} =0, (4.9)
E{xawk}= E{w, %} =0, (4.10)
£ fw,w] }= Q. (4.11)

whereQ, is the process noise covariance matrix. Finallg & priori state covariance

matrix is formulated asl]:
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Pk = 'Eplqk F' +Qy. (4.12)
Similarly, thea posterioristate error covariance matrix is obtainedds [
Peagger1= (1 =K ieH)Preggel =K e ) +K e Ry K 4 (4.13)

The dynamic P-order SVSF estimation process is performed in ediptor-
corrector form recursively. It applies to systemghwlinear state and measurement

models (4.1-4.2). The estimation process may bevsnmuaed in six steps as follows:
I. Prediction of thea priori state estimate is obtained using initial condgion
X, DR ™ or the previous posterioristate estimate?k“( as:

Rtk = F Ry + Gl (4.14)

Then, thea priori estimate of the measurement vector is calculasetyuhea priori

state estimate and the linear measurement modegjuzition (4.2) as:
ZA|<+u|< =H )A(k+u|<- (4.15)

II. The a priori state error covariance matrix is predicted usihg linear state

transition model and the previoagosterioristate error covariance matrb  as:
Pesak = F P FT +Qy. (4.16)

lll. The a priori and thea posteriori measurement error vectoes, OR™ and

Rmx.l.

€, U are calculated as follows:

147



PhD Thesis — H. Afshari; McMaster University, Menlel Engineering

eZk+1|k = Zk+1_ H S<k+l|k’ (417)

Zk |k

IV. The corrective gairk, ., JR™is obtained as a function of tleepriori €&, , and

k-+Lk

the a posteriori €, and €&, , A measurement errors, and the cut-off frequency

klk

matrix A, DR™ ™as follows:

Kiaa=F (A8, 18, ) (4.19)

Rmxm

The cut-off frequency matrid, O Is automatically calculated during the

estimation process and represents the filter’s waitt at each time step.

V. Thea priori state estimate is updated into thposterioriestimate as:
Xi+1k+1 = Xkr1k T K kt £z (4.20)
VI. Thea posterioristate estimation is updated such that:
Pestierr= (1 =Kt P gl =Ko H)T +K 6 Rig K e 1 (4.22)

One of the main advantages of the dynanifeo?der SVSF over other approaches
is the use of a switching hyperplane by introducamginternal filtering strategy with its
own cut-off frequency coefficient. In this contex, cut-off frequency coefficient is
assigned to each measurement that filters outriv@anted chattering and any other high
frequency dynamics. This coefficient is formulaiatb the filter by defining the sliding

manifold aso, =AS, +CS,, whereC OR™™ | The coefficientC referred to as the

manifold cut-off frequency represents the slopéhef sliding manifold in a phase plane
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coordinated bys and AS. Its value affects the amount of chattering thaéds to be

filtered out from the state estimates.

For the optimal derivation of the dynami®-®rder SVSF, the entries of the cut-off
frequency matrixCjx should be calculated such that the trace of thée staror
covariance matrixP 1 +1iS minimized at each time step. In order to intelthe cut-

off frequency term into the dynamic"rder SVSF formulation, a linear sliding
manifold is designed based on the concept of dymashding mode systems. This

concept was introduced and implemented by Sira-Renfii6,17).
Definition 4.3:Consider a polynomid defined as following17]:

Pis",....55 x &) ..., uu=0, (4.22)

where the sliding functiors may depend on the input A stable dynamic sliding

manifold s that preserves th&-order sliding condition may be formulated 43]]
o=s"+ad M+ . +a,s0, (4.23)

where the coefficient§a,, a,, ..., & _;} are defined such that the polynomial (4.22) is

Hurwitz. The controlleu may be a discontinuous function @Buch that it satisfies the

polynomialP.

Regarding the dynamic sliding mode concept, a fiséding manifold g, may be

defined as a linear combination 8f and AS, in the following form:

o =4S, +CS, (4.24)
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whereo, :R™ . R™? is the new sliding mode manifol&, OR™is the vector of
sliding variables, and\S, :R™* . R™ is the backward difference operator. Matrix
C =Diag(g )OR™™ is a diagonal matrix with entries; representing the cut-off

frequency associated to a particular measuremest @y, , .

Similar to the -order SVSF 3] and the X-order SVSF methods, the sliding

variable is equal to the posteriorimeasurement errd = ¢, and the difference of the
sliding variable is also equal to the differencela measurement ermd®, = Sk~ Ger
Therefore, by defining the sliding manifold ag = AS, + CS, and proving the stability

of state estimates about it, it is ensured thatetamation error and its difference are

vanishing in finite time. A corrective gaik ., JR™™ for the dynamic Z-order SVSF

given a square measurement matixJR™" is presented as follows:

Kis1 = HA h |:ezk+1|k (A k+1)ezk|k YA k+1ezk—1|k— 1:||: e2k+ 1|k:| ’ (425)

Where A, ,; OR™ ™M is the cut-off frequency matrix, ang=Diag(y;,)0R™™is a

diagonal matrix with positive entries such ti@at y;, <1 represents the convergence rate.

.
Note that[ezkﬂlk} represents the pseudo-inverse ofdahgiori measurement erré, ,

and inserted in the gain formulation in order tmae the terme, in the update

equation (4.20). It is shown later in Section A8ttthe corrective gain (4.25) will satisfy
the stability requirement. Furthermore, Section grésents a corrective gain for cases
with fewer measurements than states. Figure 4.%epte the main concept of the

dynamic 2%order SVSF under the linear sliding mode manifold.

150



PhD Thesis — H. Afshari; McMaster University, Menleal Engineering

Existence laver: —
Estimation trajectory: —»

New shiding manifold: —— —

AS=0

o >
O':AS+CS e S=0

-~

Figure 4.1: Main concept of the dynamid¢“order SVSF under the linear sliding manifold

Remark 4.1:The new sliding manifolds, =AS, +CS, presents a first-order low-
pass filter, where€ is referred to as the manifold cut-off frequencytmxa The entryC;
is the cut-off frequency corresponding to iffeelement of the measurement erepr

Taking the Z-transform of the manifold, the slidvayiables can be expressed as:

o (z
S (Z):ﬁ(_)z_l- (4.26)
20;(2)

It is simply restated asy (2) = Hence, the sliding variablg (Z) may be

(+c;)z-1
synthesized as the output of a first-order low-gddss with a variable bandwidth that is
a function of the manifold slop@; . Hence, by proper selection of the cut-off frequen

matrix C, it is possible to establish a filtering stratefgy the sliding variable. It is

important to note that determines the amount of chattering that neede tiitered out.
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4.3. Corrective Gain for the Dynamic 2%-Order SVSF Method

This section presents the derivation of the coweajain of equation (4.25) for the
dynamic 2%order SVSF that is a linear function of thepriori and thea posteriori
measurement errors. The corrective gain is caledlauch that the dynamid%rder

SVSF under the linear sliding manifolg, =AS, + CS, remains stable. The manifold

introduces the cut-off frequency coeffici€@tJR™ ™into the formulation of the filter
gain. In the following,Theorem 4.Ishows that the dynamid'®order SVSF under the

corrective gain (4.25) is stable based on the Lyapis second law.

Theorem 4.1:Assume a linear discrete system with the state rapdsurement
models of equations (4.1) and (4.2). The dynanifeogder SVSF with the following

corrective gain is stable and produces converdgeis gstimates into the first and second

order sliding mode hyperplanes (given a full measwent matrid OR™",m = n):

~ 1 +
K k+1 = H |:ezk+1|k B (y+ A k+1)ezk|k YA k+1ezk—1|k— 1:||: ezk+ 1|k:| )
Proof: Consider the following positive-definite Lyapunawttion:

Vi =Ui,k2’ (4.27)

where g, UR is an element of the linear sliding manifold andfikd as:
Ok =Ds y +G $ . Furthermores;, IR denotes an element of the sliding variable
vector, andAs , LJR denotes the difference of the sliding variaBlg calculated using

the backward difference operator &8, « =Sk — $x-1. The ?%order SVSF under the

proposed gain (4.25) will be stable4dV, ,; =V, ., -V, <0. Substituting the Lyapunov
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function in the last inequality yieldSAV,.;=(AS x.1+ G $k+])2—(A skt S )2,
where 8S .1 =S k+1~ $k and A5, =Sk — $x-1. Substituting the above values and

rearranging AV, ., is obtained as:
AV =(1+g; )2$k+12_2(1+ G )8 +1% ~ 2ic (2 c) §,2+ 2015 C)iSikS-1mi k,Sf (4.28)

For simplicity let elements of the manifold’s cuf-requency matrix be defined as:

1
l+c;

(4.29)

where A =Diag(4; ) DR™™ is a diagonal matrix. This definition simplifieseticalculation

of the derivative of the error covariance with @spto the manifold cut-off frequency.

Multiplying the gain equation (4.25) from the |éfy H , and then from the right by

and rearranging:

e
Zg+1k !

-HK, e =W+ A ey, VN iy (4.30)

Zg +1k Zy+1k Zy k

Since the estimated states are updated using equati4.20), namely

Xisaper = Xk T Ky £ it simply leads toK,.,€, = =Xq1~ Xy Substituting

Zy 41k

this relation into (4.30) leads to:

= H(Xisger ™ Xiegpd = (VA 169 € YN 18, (4.31)

e
Zy 41k
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The a priori and thea posteriorimeasurement errors at time steare obtained from

equations (4.17) and (4.18) as;, ., = Zku "~ H X and € pens = Zk#1 ™ H 5<k+1|k+1 .

Subtracting the priori error from thea posteriorierror leads to:

ezk+1|k+1 a eZk+1|k - H( ’)\(k+l| kb1 3(k+1|k)' (432)
From equation (4.32), it is possible to restateaditju(4.31) as follows:
ezk+1|k+1 =+ N ) ezk|k —yA k+1ezk—1|k— 7 (4.33)

SinceS¢ =€, , equality (4.33) can be restated in terms of stjdiariable entrie§  as:

Kk ?

Siker =i YA )Sk K A Sk -1 (4.34)

In order to show negative definiteness of the Lyapwfunction candidate (4.27),
equality (4.34) is substituted into the first drface of the Lyapunov function (4.28).

Expanding the result:

— (1,2 2. 2 2 2 2
AV =" - DA+A )8 =206 - D@ A ) & 1t & - D -° (4.35)
Rearranging equality (4.35) results in:

AV = (v ‘1)[(1+/‘ii Sk~ Sk —1]2 : (4.36)

Since the convergence rate matyix Diag(y; )OR™™is defined such thad<y; <1, it
leads toAV, ,, <Othat indicates the stability of thé%drder SVSF under the corrective

gain (4.25). Given that the Lyapunov functidp is a function ofS, as well asAS, , it
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can be concluded from equation (4.36) witf ,, <0 that convergence is attained for both

the first and second order sliding mode conditions. m

Remark 4.2:Note that due to modeling uncertainties, noise, amdtching
imperfections, however the ideal second order refidinotion does not occur, and real

second order sliding regime is obtained.

Corollary 4.1:1f the Lyapunov function (4.27) is satisfied, theR ., [<|oy |. Since

o, =AS, +CS, whereS, =g, andAS, =Ae, , it means that the measurement error

and its corresponding rate of change are decreasiag time whileo, > ¢, . Due to

measurement noise and modeling uncertaintigonly decreases until it reaches the

existence subspace boundég . However, under ideal sliding mode conditian; =0 .

Remark 4.3The corrective gain (4.25) actually representscisé-order Markov

process that is formulated in terms of ghpriori measurement error terms at time sep

e and time stej-1: e

Zkk !

and thea posteriorimeasurement err®@, . Using a

Zy-qk-1" K +1lk
second-order corrective gain in the update steplteeén updating the state estimates
based on information available from the last twepst Having access to higher amounts
of information however increases the smoothnesstlamdobustness of the dynami¥-2
order SVSF in comparison to first-order filtersdikhe Kalman filter, or the*lorder

SVSF.

Remark 4.4Proper selection of the convergence rate mgnixR ™™ such that
0<y, <1 preserves the stability and convergence of theaayn 2%order SVSF. Note

that the main reason for calling the coefficightas the convergence rate is because of
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the Lyapunov stability criterion that leads Y¥o;,; = W . This alternatively results in
AV .1 = (¥ -1V, and hence, smaller values gf leads to a faster convergence rate

for the dynamic Z-order SVSF method.

4.4. Derivation of an Optimal Cut-Off Frequency Matrix

In order to minimize the mean squared error andaekthe optimal state estimates
using the dynamicrﬁ-order SVSF, the optimal value of the cut-off freqay coefficient
must be found at each time step. The proposedegirdbr finding the optimal cut-off
frequency matrix is to calculate the partial detiwa of the state’sa posteriori error

covariance matrix (tracefjy .1+1 With respect to the cut-off frequendy, . It results in

determining the optimal value of the cut-off frequg at each time step and calculates the
filter's bandwidth as a function of uncertainties an optimal sense. In a geometrical
sense, this strategy leads to finding the optinadlie of the sliding manifold’s slope for

filtering out chattering at each time step (ReteFigure 4.1).

In the Kalman filtering process, the gain is cadet to directly minimize the
state’sa posteriorierror covariance matrix (trace). In the dynami@der SVSF, the
filter's corrective gain is firstly derived to with a range that preserves the Lyapunov’s
second law, nonetheless the cut-off frequency marassumed to be unknown and time-
varying. In the next step, the optimal value of thé-off frequency matrix (filter's
bandwidth) is calculated by using optimization. Tgr@cess is iterative and similar in

steps to the Kalman filter. The optimization pracesdirectly applicable to systems with

a square measurement matkix. For the case involving fewer measurements thate st

the Luenberger’s observe3,164] or any other reduced-order observer is used.
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In the stability-oriented design of the dynamié®@rder SVSF, the cut-off
frequency matrix is set to be diagonal. Each diayamntry A; represents the cut-off
frequency corresponding to a measurement errortlisdmakes the cut-off frequency
coefficients become independent of each other.cbmsequence is that the measurement

error of each state,, is directly filtered out with a pre-determined bandth. The

filtered data are used later to calculate the ctisre gain. Note that however due to the
diagonal consideration of the cut-off frequency mxatoupling effects were neglected in
the derivation of the dynamicd™®order SVSF. Hence, only diagonal entries of tiaest
error covariance matrix are minimized and the offigdnal entries are neglected
[11,165. Diagonal consideration of the cut-off frequenowtrix on their own does not

lead to an optimal solution.

As such, for optimizing the dynamid®brder SVSF, the cut-off frequency matrix

N OR™™ needs to be full with diagonal and off-diagonalriesstas follows:

/]ll,k /112k /]:Im k
N =| EH TR T (4.37)
/]ml,k /]m2,k A mm, k

where 4; ¢ is a diagonal entry and represents the cut-off ueegy applied ore,
Otherwise, 4« is an off-diagonal entry that represents a geocstrielation between

two independent cut-off frequencidgsy and 4;x corresponding to measurement errors

e ande;, . Theorem 4.2s presented to introduce the optimal value ofdheoff

I,Zklk |

frequency matrix at each time step.
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Theorem 4.2:Assume a linear discrete-time system describedhey state and
measurement models of equations (4.1) and (4.2).0ptimal 2°order SVSF minimizes

the trace of the state’s error covariance malixy., for this system, if the cut-off

frequency matrix is given by:
. ~ ~ . _1 .
Ao =|diag(e, , ~¥€,,) S~ HRuy H || disg g, - ¢, ) S| didag,) (4.38)

Proof: In order to minimizeP, .4y +1 With optimal selection of the cut-off frequency
Ny 41, its partial derivative (trace) with respectAQ ,;is needed such that:

o[ trace( Ry |

=0. 4.39
a/\k+1 ( )

The error covariance matrii, ., .1 iS presented by equation (4.13) as follows:
Pestiern= (1 =Ko HPugg (1 =K H)T K o Rig Ko 1 (4.40)

It contains the corrective gaif,,; given by equation (4.25). For calculating the iprt
derivative of equation (4.39), some relations fritra gradient matrix rules are required,

including [L69:

d[trace( AXB)|

=ATBT, (4.41)
aX
d|trace( AX" B
[trace(AX" B)| _BA. (4.42)
oX
| trace( AXBX
[ ( Q] =ATCT XB" + CAXB (4.43)

oX
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Note that some matrices likE.,x are symmetric and this simplifies calculations.

Substituting the corrective gain (4.25) into theoercovariance equation (4.40) and

expanding the resulting terms lead to the followfiogy parts:

Part 1:P i (4.44)
Part2: H ™ fliag €, , ~¥e,, N diag(e, -y e, Nl dage " HRyw (4.45)
Part 3: Pk+1|kﬁT Hiag (ezk+1|k _y%qk j- — diag( Qk|k_y %—1|k—lj-/\-rk'l Il diag 2»1|k)]_1 AHT’ (4.46)

Part4H ~* fliag €,,,, ~r&,, ] ~Awadiag(e, -y e, . T diag g T $ e

. o . - (4.47)
[diag(e,, ) diad e -ye ) - diage -y g )ALl A

The partial derivative in equation (4.39) may biuglated as a summation of the partial
derivative of the four parts presented by (4.44f%.AFhese derivatives are separately
calculated as follows:

o{trace(Part 1} _
oN k+1 B

0, (4.48)

o{trace(Part 2}
oA k+1

=H TP H  [diag(e, )] diad ¢, -y g, )T, (4.49)

o{trace(Part 3} _

;
. )T, (4.50)

k- 1]k- 7

H Py H [diag(e,,, )] 7" diad g, -y &

oftrace(Part 4)} , ~- . . a4
o X ‘Nadiag(e,, - v, , ) Scwer [diag g )7 didge -y g ) sy

~dieg(e,, , ~¥€,, ) Sewal didg g N didgg -y £,)']

where S, .1 OR™™is a symmetric matrix, called the innovation comade matrix, and

given by (similar to the Kalman filtering):
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Src,k+1 = l:l I:I)<+1|k l:IT + R( (4-52)

Adding equations (4.48-4.51) and rearranging thdre, partial derivative 0Py .1y+1iS

obtained as:

Peag H' —H '[diag(e,, . —ye, )] Sque =

~ g _ 1 (4.53)
-H /\k,,l[d|ag(ezk+]Jk )]~ diad( & Y Qk—1|k—1)] Sc ke1 =0.

Solving equality (4.53) in terms &%, results in the optimal cut-off frequency matrix as

~ A -1
A =|diag(e, , ~¥€, ) Sowi= HRayp H || diag g -y ¢, ) S| ditgg,) that
is equal to equation (4.38). O
Corollary 4.2: Following Theorem 4.2the value of the cut-off frequency matrix is

directly affected by the level of modeling uncemnt@s. Each entry is calculated as a

function of the measurement errey

kk ?

its covarianceP. , and the state error

covarianceS,, .1 . Hence,\,; needs to be calculated at each step and thenfased

evaluating the filter’s corrective gain.
The optimal #*-order SVSF method is summarized in three mainssasgfollows:

l. Prediction of the priori state, measurement and state error covariance as:

Xk = FXgi + Guy,
ik+1|k =H )zk+1|k’ (4.54)
Peax = F P F' +Q,.

[I. Calculation of the innovation covariance, cut-eéduency and corrective gain as:
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Sck™ H R+1i HT + R,
~ ~ -1
Ao =|diag(e, , ~v&,) S MRy W | didg e -y e, ) S| ditgg) (4.55)
Kia=H [diagle, , ~(r+A) e, 14y dad e, ) [ dagg )]

[ll. Update of the priori state and covariance into thgosterioriestimates as:

Xisagr1 = Xpa1k T K Bz

- o . (4.56)
I:)k+1|k+1=(| _Kk+1H )Pk+1|<(| -K k+i_|) +K k+BI<|— :K k- 1-

Figure 4.2 presents a block-diagram of the optiéfiabrder SVSF estimation process.

2- Calculation of
the Optimal Gain

1- Prediction of the
State and Covariance

3- Update of the
State and Covariance

\ \
| I
| I
\ \
y’ K : } fkﬂ
Xkl state | Xtk || state estimate | X ¢y
prediction ; | update
. . \ \
State Estimation: | | Kia
| I
,,,,,,,,,,,,,, OSSOV SOOI | SNSRI S —
| [ 1
Covariance Estimation: P i |
i optimal cut-off Ax 1| 2M-SVSF gain|, K.
0 | frequency calculation |
k
\ \ K,
| | v k+
Prp covariance | Py || covariance |Fiiga
prediction [ I update
\ \ K
| I

Ry

Figure 4.2: A block-diagram scheme of the optinf&la2der SVSF estimation process

Remark 4.51n order to apply the optimal2order SVSF to systems with nonlinear
state models, the states posteriori PDF needs to be predicted using techniques
involving linearization or approximation, similartp the extended Kalman or unscented

Kalman filters.
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Remark 4.6A potential difficulty with the optimal -order SVSF method for state
-1
estimation is related to the ter[riiag(eZklk AT, Sc‘kﬂ} that is appearing in the

denominator of the cut-off frequency formulatiorhi§ term may cause numerical taken

in implementing matrix inversion.

It is interesting to note that the corrective gafrthe optimal 2-order SVSF with
the introduced cut-off frequency coefficient renets the Kalman filter gain. In order to
show that, let substitute the cut-off frequencyfficient (4.38) into the corrective gain of

the optimal ®-order SVSF (4.25) such that:

Ky =H Ydiag(e,, , ~ye,,)-[ diad e, -ye) Se= HBRyw M|

_ 4 _ o a o (as7)
[deg(e,, ye,, ) S| dede, -ve, )| dg,)| dege,)]
Rearranging (4.57), it becomes:
Ky =H *diag(e,, , -ve,,)- diad e  -ve) Se~ HBy H]
Al -1 (4.58)
Src,k+1 |:d|ag( sz|k _y%k—1|k—1)i| diag §k|k_y %«J.llel) '
where equality (4.58) may be restated as follows:
K = H _1|:diag(ezk+uk _yezk|k)_ diag gk+14k R4 Q¢<|k)+ H I:>k"5|-| kA[_rI % k'1_1:|' (4.59)

Simplifying equality (4.59), the corrective gaintbe optimal 2-order SVSF becomes:

K1 = Perag HTSrc,k+l_l’ (4.60)
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where it is equal to the Kalman filter gain. Henttee optimal 2-order SVSF produces
an optimal solution for well-defined linear systemiile its gain formulation represents

the Kalman filter gain.

As presented, the corrective gain of the optimfdia2der SVSF collapses to the
Kalman filter’'s gain and hence, its robustness taleling uncertainties is lost. In order to
overcome this issue and preserving robustness lhasveptimality, a combined strategy
is proposed that is similar to the Gadsden’s coetbiapproach introduced i8][ In this
combined strategy, the dynami&-®rder SVSF with the corrective gain of (4.25) apl
to systems with huge uncertainties. Besides, thienap 2'%order SVSF (Kalman filter)
applies to systems with a known model. This styateigserves optimality for systems
with a known model and at the same time presergbastness for systems with huge
uncertainties. The decision on the level of undetitzs is made by comparing the current
amplitude of the measurement noise with the naisglitude of the system in the normal
condition. Following Gadsden’s approad, [a limit for the measurement noise may be
set equal to 5 times the maximum system noise, pproximately equal to the
measurement noise. Figure 4.3 presents the maicepoiof the combined strategy that
selects one of the dynamic or optim&f-arder SVSF methods based on current level of
uncertainties.

Optimal 2"-Order

Perfiet Model —— ~ o op Bitering

Evaluation of

Prediction St
rediction Stage —p Modeling Accuracy

Update Stage

Huge Dynamic 2"-order
Uncertainties SVSF Filtering

Figure 4.3: Main concept of combined strategy basethe dynamic and optimal’®rder SVSF
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4.5. Geometrical Interpretation of the Cut-Off Frequency Matrix

An important feature of the optimal®rder SVSF is its time-varying manifold
cut-off frequency matrix)\, and its use in the gain formulation. This effediyvesults in

an adaptive bandwidth that filters out chatteringts that the state error covariance

(trace) is minimized. At the same time, it preserthee first and second sliding conditions

that yields the linear sliding manifold; x =4s; x +G $x converges to zero under the
ideal sliding motion, such that =0. This equality shows that each diagonal ewfry

represents the slope of a corresponding slidingifoldno; , . Note that the cut-off

frequencyC; is simply obtained from equality (4.29) such that=(1-4 )/4 . Figure

4.4 presents a geometrical depiction of the cufretjuency matrixC with its entries.

AS=0 c,=—tang,
o, By == 1ang,

- Cy —Cjy

ij - I

l+c,.c,

i jj

O-i =Asr +Cii Si

v

S=0
0, =As;tc s,

Figure 4.4: A geometrical depiction of the cutfvéfquency matrix with its entries

In this figure, &, x is the angle between the linear manifolg Do, and the

horizontal axis. The cut-off frequency mat®OR™™is a square matrix with time-

varying diagonal and off-diagonal entries as fokow
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Ciik  Ciok ° Cmk
Cork  Coox v Comk

C,=| 2" e me. (4.61)
le,k Cm2,k Cmm k

The diagonal entrg; x represents the slope of the linear manifalg defined for the

measuremen; . Its numeric value is simply calculated &g =—tang, , . However,

the off-diagonal entrg;, does not imply any physical meaning and only cates two
entriesGijx andCjjx . These entries are respectively pertaining totwe independent
measurements vect@ and Z; at the time steg. Hence, the off-diagonal entf§; may
be used to mathematically correlate diagonal entfeeg.C; and Cj ) of the cut-off

frequency matrix. In this contex§jx may be interpreted as the angle between the two

linear manifoldsc; x and oj , and obtained by; x =@;x —¢ « as follows:

Cik ~Cjx

=1 ~1
Cij =tan(tan-g; k — tantc; F———
1+C; , Cj

(4.62)
4.6. The Optimal 29-SVSF for Systems with Fewer Measurements than Ses

Similar to the 2order SVSF method, its optimal version may be i@dpko
systems with fewer measurements than state vasialoieéhis case, the corrective gain of
the optimal 2*order SVSF may be derived using the Luenbergesisaach 8]. It is
furthermore assumed that the linear dynamic systétim equations (4-1) and (4-2) is

completely observable. Similar to section 3.5,4tate variables may be decomposed into

two parts xk:[qu xlk]T, where the upper park, OR*is directly measured and

whereas the lower pax; OR™ s not B]. Using the Luenberger’s transformation, a
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revised state vector is obtained in terms of measants such that, =[z, y,k]T , where

z, OR"™ denotes the direct measurement vector gndR™ """ denotes an artificial

projected measurement vector. The problem is toutate values for entries ¢f based

on the partitioned modeB]. The measurement model is presented as:

W
Bt z[% q’l?} % +[Gl}uk+ e, (4.63)
Yieo Dy Dy | U, G, Wa,
where ®=T7AT, G=T"B, and W =T w—-[®, ®,]" v [3]. Now, thea priori state

estimate is given byg]:

Zow|_| ®u @i oGy (4.64)
y|k+1|k &321 &3 ylklk éz “ .

As presented inJ], the a priori and a posteriori measurement error vectors for the

projected measurement vecyqr are calculated as:

ey, =Pne,  ~PLW,, (4.65)

y|k|k

A

= q)zz 1zezk+1|k - 22q)_112V_V|k +W,, (4.66)

eY' k +1)k

where e, OR™ " is the projected measurement error vector apdR™ is the

measurement error vector corresponding to measusééles. Equations (4.65) and (4.66)
present a mapping of the measurement error vduabig used according to Luenberger’'s

method for deriving a switching hyperplane andaicualating the filter gain.
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In order to calculate a corrective gain for the doypartition of states, the switching
hyperplane for the lower partition may be formutatey projecting the measurement

error as follows 3]:

A A

S =0,%558, (4.67)

whereS OR™"? Further to equation (4.25), the corrective gdithe optimal 2%-order

SVSF for the lower partition of states is derivad a

~ ~ ~ ™ ™ ~ +
Kiy = [‘Dzzq’léezkﬂlk ~(V+ N )® 112"3‘zk+1|k +tyN . P 1lzezk|k_l}[q’ 2P 1lzezM|J : (4.68)

By combining the gains of each partition of thetesteector, the optimal™®-order SVSF

gain is obtained for linear systems with fewer nueasents than states as follows:

H |:ezk+1|k —(y+A k+1)ezk\k +yA k+1ezk71|k71][ ezwkT )
Ky =

o A A o (4.69)
[chzq:’I%(':‘zmlk —(y+ /\|<+J)CD_1lzezk+1|k +yN . fD_llzezklk_l][cD 29)_112%”"(}

+

whereH" is the pseudo-inverse of the measurement métriwhere it is not squared.
- - 0 - ~ o~ T
Hence, the vector of sliding variables may be d#fims:s, =[elk‘k D,,P7; QMJ . The

formulation that can be applied for estimation oflinear systems is presented 3h [

4.7. Comparative Analysis of the Combined Method (fnamic & Optimal 2"-SVSF)

In order to study the performance of the combinteategy (including the dynamic
and optimal ¥-order SVSF) for state estimation, it is applied tte EHA model
introduced in section 3.6. Later on, its performeans compared to other estimation
methods such as the well-known Kalman filtesotder SVSF 3], and the former -

order SVSF. Two main scenarios are considered donparisons that are the normal
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condition with a known model but including whiteis®, and a faulty condition with a
large degree of modeling uncertainties. The EHAesysis described by a discrete third-

order model. The three state variables include atiator positionx; =X, velocity

X, =dx/dt, and accelerations;=d?x,;/dt*, with position being the only measurable

state B]. The linear state and measurement model of thé& Bke restated here from
Section 3.7 and are given by equations (4.1) ar®),(despectively. Numeric values of

the state, control and measurement matrixes dEH® model are as follows3]:

1 0001 0O 0
F=| 0 1 0001,G= 0 |,H=[100D (3.59)
-557.02 - 28.616 0.9418 557.p2

Furthermorew, andv, are the process uncertainties and measurement ridisg are

multivariate white normal random vectors with thean of zero and standard deviation

vectors equal to (same as equation (3.60) fromi@est7) B]:

Weq =[0.05 0.1 OF ,v.,=[ 005 (3.60)

In order to apply the optimal™@order SVSF to states that are not measured
directly, it is combined with the Luenberger’'s ohv&s [164. In this context, the state

space is partitioned based on equation (3.61) Bection 3.7 as follows3[:

by=[l], b,=[0001 1, by=| O | b= OO (3.61)
=4, P=[0. ¢ g77.02 " *t |-32.616 0.8418 '

In simulation, the corrective gain is calculated fbe case with the convergence rate

equal toy =[0.5] . Hence, the gain is obtained for the EHA systemgusquation (4.25)

for the measurable state and equation (4.68) ®rdhkt as following:
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[ezmk -(0.5+ A4 )eZka + 0.5\ k+1ezk_nk-1][ eZMKT ,
K oy = [ezwk -0.25(0.5¢ A,y B, + 0.128 kﬂezklkfl}[ eMT (4.70)

(€0, 0405+ A o, *+ 0D e, [l e |

In simulation, it is assumed that the initial stateor covariance for the Kalman
filter and the combined strategy (dynamic and opti#®order SVSF) are equal. For
both the Kalman filter and the combined stratebg, process noise, measurement noise

and the initial error covariance are respectivditfamed asQ =diag([l 10 100]), and

P,=20Q. FurthermoreR=0.1cnf is obtained by calculating variance of the innarat
signal for a time period. For thé“brder SVSF §], the width of the smoothing boundary
layer is set tay=[5 5 g xv,, wherevg, is the standard deviation of the measurement

noise. For all the Storder SVSF, the W-order SVSF and the combined strategy, the

convergence rate used in the corrective gain isosgtE[0.5]. To compare the robustness

characteristic of these three methods, a largeegegf uncertainties is injected into the

model by changing the state matrix after 0.5 sexirafilation to 8J:

1 0.001 0
F,=| 0 1 0.001 (4.71)
-240 -28 0.941

The input to the EHA system is a random signahlie amplitude in the range of
-1 to 1, superimposed on a step input that ocdudsbasec. The initial values of states are
assumed to be zero and the sampling time for dizaten is 0.001 sec. All the other
inputs are considered the same for the four estmamethods. Simulations are
performed using the MATLAB and under the>1Blonte-Carlo runs. Tables 1 to 3
compare a select number of numerical performandeators generated from the four

estimation methods for the above mentioned normdlumcertain EHA models. For the
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normal model, it is assumed that the EHA modelnsvkn but is subject to white noise.
For the uncertain EHA model case, large modelingetinties are injected after 0.5 sec
of simulation. This amount of uncertainties is &gl in order to examine the

performance of the estimation techniques.

In order to compare these estimators, their RMSEyell as the bias and STD of
their state estimation error are calculated and payed. The RMSE indicator is

calculated based on equation (3.64) from secti@ra8.follows:

N g2
RMSEz\/z‘iﬂ(x—ix'), (3.64)
n

whereX; denotes the actual state valie,denotes the estimated state value, mislthe

number of time steps. Note that the actual stateegaare obtained by solving state
trajectories of the EHA system with state matricBsrthermore, the bias index is

obtained based on equation (3.66) as:

Bias=%2(xi - %). (3.66)

The STD of the state estimation error for a discrealization is given by:

STD=J%2( &~ &) (3.68)

Table 4.1 presents the root mean squared error EM&8ue of the state estimation

error g, for both normal and uncertain conditions. FurtherTable 4.1, the Kalman

filter, as well as the optimal2order SVSF, produces the most accurate state &stnm
terms of the RMSE for the normal model of the EHystem subject to white noise,
followed by the ®-order SVSF and theSorder SVSF. This is because for a known
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model the Kalman filter and the optimal®drder SVSF are optimal in terms of the

RMSE. Since these two methods minimize the state’sr covariance matrix (trace),

their RMSEs are smaller than th&-drder SVSF and the’dorder SVSF. In the uncertain

case, the dynamic"2order SVSF and the"2order SVSF produce more accurate state

estimates in terms of the RMSE. This accuracy & tdupreserving the first and second

order sliding conditions that increases their robess to uncertainties.

Table 4.1: Comparison between RMSE values of the éstimation methods applied to the EHA model

Kalman Filter 1% order SVSF 2"-order SVSF Combined Dynamic and
Optimal 2™ SVSF
Normal | Uncertain | Normal | Uncertain | Normal Uncertain | Normal Uncertain
RMSE of Position (cm) | 1.01x10° 0.31 1.10x16 | 1.13x10° | 1.05x1¢ | 1.08x1C¢° | 1.01x1¢ | 1.06x1C
RMSE of Velocity (cm/s) 1.045 21.66 1.060 15.50 1.05 14.49 1.044 12.66
RMSE of Accel. (cm/9) 167.24 2206.06 170.31 1341.53 168.91 1335.18 167.24 1328.02

Note that satisfying the second order sliding ctodi instead of using the

smoothing boundary layer is the main reason whydyreamic 2%order SVSF and the

2"order SVSF are more accurate than th@rer SVSF for both normal and uncertain

cases. In the*torder SVSF chattering is alleviated by definingraoothing boundary

layer in a vicinity of the sliding hyperplane. lhig context, the signum function is

replaced with a smoother function such as saturafimction B]. This however

approximates the sliding motion in a close vicirofythe sliding hyperplane and reduces

the ultimate accuracy and robustness of the SV$e&-ijtering. The second order sliding

condition not only removes the need for approxiorgtbut also alleviates higher degrees

of chattering.

Table 4.2 compares state estimates in terms dfitse(mean of the state estimation

errore,, ) for both the normal and uncertain conditions. [€ah3 compares the state
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estimates in terms of the standard deviation (SdfQhe state estimation errey, . For

the normal case, the Kalman filter and the optidi&order SVSF produce the smallest

bias, followed by the P-order SVSF and the™order SVSF. But for the uncertain case,

the dynamic P-order SVSF and the"2order SVSF generate the smallest bias, followed

by the f-order SVSF and the Kalman filter. Following Ta#l8, the dynamic "W-order

SVSF and the ®-order SVSF have the smallest values pertainingh® standard

deviation (STD) of the state estimation erepr .

Table 4.2: Comparison between bias values of thedstimation methods applied to the EHA model

Kalman Filter 1% order SVSF 2"%-order SVSF Combined Dynamic and
Optimal 2™ SVSF
Normal | Uncertain | Normal | Uncertain | Normal | Uncertain Normal Uncertain
Bias in Position (cm) | 2.53x10° | -9.94x10° [-2.58x10' | -3.15x10" | -1.57x10" | -2.12x10° | 2.53x10° | -2.08x10’
Bias in Velocity (cm/s)| -1.95x10° |  6.83 -2.77x16 3.78 -4.70x18 3.44 -1.95x18 2.85
Bias in Accel. (cm/$) 9.84 27.32 10.04 20.86 9.98 20.76 9.84 18.71]

Table 4.3: Comparison between STD of the four estitn methods applied to the EHA model

Kalman Filter

1%t order SVSF

2"%order SVSF

Combined Dynamic and

Optimal 2™ SVSF

Normal | Uncertain| Normal |Uncertain| Normal |Uncertain| Normal Uncertain
STD of Position (cm) 9.63x10° 0.30 1.05x18 | 2.09x1¢ | 7.51x10° | 9.86x10° | 9.63x1F | 7.41x10°
STD of Velocity (cm/s) 1.09 22.29 1.12 17.95 1.11 11.63 1.09 11.14
STD of Accel. (cm/§) 183.55 2867.9 186.16 1823.9 185.37 1674.60 183.65 654.87

Having smaller values of the standard deviation{Bfbr uncertain models implies

a higher degree of smoothness for the dynaffloier SVSF and the"2order SVSF.

These two methods produce state estimates witlotirest values of bias and dispersion

in the error&, for uncertain conditions. The performance of thénkan filter, as well as
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the optimal 2%order SVSF, is the best in the normal case withunoertainties and
Gaussian noise, followed by thé®arder SVSF. For the second case that includes
modeling uncertainties, the performance of the dyina2®-order SVSF is best, closely

followed by the 2-order SVSF, as both methods achieve stabilityutnothe second

order sliding condition.

Figure 4.5 presents the actual and estimated #st@ectories using the Kalman
filter and the optimal ¥-order SVSF for the EHA under the normal conditibigure 4.6
compares the actual and estimated state trajestaiseng the Kalman filter and the
dynamic 2%order SVSF for the EHA system with modeling unaities. Comparing
Figures 4.4 and 4.5 confirms the better performantethe combined strategy in

estimating the state variables of the EHA in theautain condition.

—Actual X

Position (¢m)
S

- Estimated X, by KF
— — Estimated X by optimal 2nd-SVSF

| —— Actual X,
rrrrrrrr Estimated x, by KF
— — Estimated x,, by optimal 2nd-SVSF

Velocity (cm/s)

— Actual X
,,,,,,,, Estimated X by KF
) — — Estimated S by optimal 2nd-SVSF

Acceleration (cm/e,l)
o

2 | | | | |
0 1 2 3 4 5 6
Time (sec)

Figure 4.5: State estimations by the Kalman fitted optimal Z-order SVSF for the normal EHA
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Figure 4.6: State estimations by the Kalman fitted dynamic %?-SVSF for the uncertain EHA system

The position’s estimation error signals obtainednfr the combined strategy
(dynamic and optimal™-order SVSF) and the Kalman filter are presenteBigure 4.7.
It is deduced from Figure 4.7 that the combinedtstgy produces the smoothest state
estimates with the smallest variation for both nalrrand uncertain cases. Figure 4.8
presents the phase portrait of the measurementaamndits first difference for the normal
and faulty EHA systems using the optimal and dyma®@¥-order SVSF method,
respectively. As demonstrated, in both cases thesarement error and its difference are
decreasing in time until they reach the existenglesgace. Figure 4.9 also presents
profiles of the sliding variabls and the dynamic sliding manifoldfor both the normal
and uncertain cases using the optimal and dynafflior@ler SVSF method, respectively.
In both casesg is decreasing in time until it reaches the existeaubspace such that
|o |< &, . Figures 4.8 and 4.9 illustrate convergence ofdyreamic and optimal"®-order
SVSF under the dynamic sliding manifold given boeshahoise and uncertainties. Figure

4.10 also presents profiles of the cut-off frequecmefficients for these scenarios.
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Figure 4.7: Measurement errors by the Kalman fiied the combined strategy (optim&l-arder SVSF
for the normal condition and dynami®-®rder SVSF for the uncertain condition)
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Figure 4.8: Phase portrait of the measurement andiits difference produced by the combined gisate
(optimal 2%order SVSF for the normal condition and dynanffedtder SVSF for the uncertain condition)
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Figure 4.9: Sliding variable and dynamic slidingiahle produced by the combined strategy (optiri&l 2

order SVSF for the normal condition and dynamfedtder SVSF for the uncertain condition)
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Figure 4.10: Profiles of the cut-off frequency dménts produced by the combined strategy (optigil
order SVSF for the normal condition and dynamifedtder SVSF for the uncertain condition)

4.8. Robustness Analysis with an Explicit Consideteon of Uncertainties

In this section, the robustness characteristic hef dynamic %-order SVSF is

numerically evaluated and compared with the Kalrfiter, and the f-order SVSF

methods. The analysis is based on a research pexdoby Yan and Wang for comparing

robustness of some deterministic state obseni&d.[Their approach is developed here
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in order to estimate state variables of stochadtinamic systems with an explicit
consideration of the source of uncertainties. lis ttontext, modeling uncertainties are
considered as an additive perturbation to the nahstate matrix. The nominal model is

the known model of the system that is represenyed b

H OR™"(m = ) (4.72)

Zya = H Xy Vi, (4.73)
where the system’s actual state maffixis represented téo by:
F =F,+AF. (4.74)
The perturbed system is subjected to the folloveisgumption.

Assumption 4.3It is assumed that the perturbation in the statdehaF OR™" is

bounded bydOR™" such that:
|AF, |<g , where § > C (4.75)
Remark 4.7Note that||xk|| represents the Euclidean norm of vectgrgiven by [L67:
FPAENCAES (4.76)
Also, ||x, |, represents the supremum norm of a discrete seeugngiven by [L67):

[xicl., =suRcoxi - (4.77)

Wang and Yan introduced an index for evaluatingusthess properties of model-

based state observers, whereas they remain stalde gounded noise and modeling
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uncertainties 167]. Following their approach, thmlfij |<g , the state estimation error

€ x = X, — X, may be stated as follow&g7]:

e ka1 = (K, F,H K)e, (+U(AF,AG, k), (4.78)

whereK, is the filter's corrective gain. Note th&; andv, are unknown functions and

need to be calculated for each state estimatiomadetFurthermore, it is presented by

Wang and Yanl67] that for a stable state observer, there exisination$ and a positive

quantitya such that the state estimation erpy, = X, — X, is bounded as followd $7:

e, s ,3( I k)+0/||uk||m 0k, (4.79)

ex,O

whereq is an index of the robustness property and caiedlay [164]:
a=1/(1-c), (4.80)

with ¢ = sup, (|/lmax (@ j) and A (¢,) is the maximum eigenvalue of the mateix.

Note that a smallaex represents a better robustness property of ttee. flfhe proof of this
theorem is presented and discussed @7]] This approach may be developed and applied
for the robustness analysis of the Kalman filtee f-order SVSF, and the dynamit®2

order SVSF. For each filter, the matgx should be initially calculated as a function of

the filter’s gain and the state model.

For the dynamic ®-order SVSF, tha posterioristate estimation EIT@, | ,yy.1 MAy

be calculated as follows:

€y kiik+1 ™ Xir1™ Xir 1)t 2 (4.81)
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where Xy g = FX +GU+ Wy, Xiaprn = Xt Kieg o and Xyape = FX tGUH Kyey

Note that in the case of systems with modeling dacties: F = F +AF . Substituting

these terms in equality (4.81), theposterioriestimation erroe, \ .., is obtained by:

€ k+ik+1= Fe kT AF X = Ky 187 16 1t W (4.82)

For the dynamic "W-order SVSF method, the corrective gain is given by
Ky =H _1|:ez,k+1|k LV AN PP Z WS P 1][ €z« 1@ : (4.83)

Since €, ik = |:|ex,|q|<+V|<, equality (4.83) may be simply restated in ternfise,q .

Substituting the corrective gain term in equal#y8@) and simplifying the resulting terms,

it leads to:

e h-t A 01 -
ex,k+1|k+1_|:F+H (y+/\k+1)H:|ex,k|k_ex,k+1|k_ HYA o He, gk

) - o - (4.84)
+AFX Wy = H Vg + H Y+ A ) V= HTYA v o

Comparing equality (4.84) to equality (4.78), thatrix ( is obtained for the dynamid¢®

order SVSF method as follows:

{ond-svse=F +H (Y + A o)H. (4.85)
The process of calculatiahfor the f-order SVSF and the Kalman filter is similar to the
above calculations. For th&-brder SVSF method, the mattpis calculated by:
{1st-svsF= F -H 7yH sgne X K K)- (4.86)
Similarly, for the Kalman filter method, the mattixs obtained by:
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Cwaman = F = K uqH . (4.87)

where the Kalman filter’s gain is given by:
_ TG AT -1
K1 = PeaggertH T [ HPgHT + Ryt (4.88)

In order to numerically evaluate robustness progerdf each filter, the uncertain

model of the EHA system is used for simulation aatnhparison. Following equality
(4.80) and calculating the maximum eigenvalue a& §h matrix for each filter, the

numeric value of: is obtained for each filter (see Table 4.4). As ba seen, the smallest
value of the robustness indexs obtained for the dynamid®order SVSF, followed by
the Florder SVSF and the Kalman filter. Following the n¥& approach 167, it is
deduced that the dynamif®drder SVSF shows the best robustness propertgyfet! by

the f-order SVSF, and the Kalman filter.

Table 4.4: Numeric values of the robustness indéot each filter
Kalman Filter | 15-Order SVSF | Dynamic 2"-Order SVSF

a 1.971 1.334 1.135

4.9. Summary

In this chapter, the dynami€®rder SVSF estimation method is firstly introduced
based on the dynamic sliding mode concept. Itsective gain is obtained using a linear
sliding manifold defined in terms of the slidingriadble and its first difference, where the
sliding variable represents tha posteriori measurement error. The stability and
convergence of the dynamit®rder SVSF method is then proven using the Lyapisno
second law of stability. The linear dynamic mardfohtroduces a cut-off frequency

coefficient matrix into the filter formulation thatleviates the unwanted chattering effect.
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It operates like a first-order low-pass filter wighcut-off frequency that is equal to the
slope of the linear sliding manifold. Furthermattee corrective gain of the dynami’2
order SVSF in each step updates thepriori state estimates based on available
information of the measurement error from two steask. This yields to smoother state
estimates with smaller bias and dispersions in @epn to the Kalman filter. In order to
optimize the dynamic™-order SVSF method, the optimal value of the ctifrefqjuency
matrix is calculated at each time step such thatrdce of the error covariance matrix is

minimized.

It was shown that the corrective gain of the optigf&order SVSF represents the
Kalman filter gain. Hence, a combined strategy ssduthat includes both the dynamic
and optimal #-order SVSF methods. This strategy applies thevat?"-order SVSF to
systems with a known model and applies the dyn&ifiorder SVSF to systems with
huge uncertaintiesvhen the level, source and occurrence of uncersirgre unknown.
The combined strategy is implemented on an eldgidyostatic actuator (EHA) model
for estimation in normal and uncertain conditioits . performance is then compared with

other estimation methods, including the Kalmarefilthe £ and the ¥-order SVSF.

The main advantages of the combined strategy teeKalman filter and *torder
SVSF are its greater accuracy, and robustnessderiain conditions with a higher level
of smoothness in state estimation. These are birélcte to preserving the first and
second order sliding conditions which push not ahly estimated state trajectories to
slide along the switching hyperplane, but alsortberivatives to slide along a tangential
hyperplane. Yan’s robustness analysis shows thersupobustness performance of the

dynamic ?Lorder SVSF in comparison to the Kalman filter &inel £-order SVSF.
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Chapter 5

Application to Fault Detection and Diagnosis

This chapter presents applications of the combgieategy (including the dynamic
and optimal ¥-order SVSF methods) for model-based fault detactiod identification
(FDI). For fault identification, the dynamic"2order SVSF is combined with the
interacting multiple models (IMM) filter such thahe mode probability estimate
represents the current operating regime (norméuty) of the system. An experimental
setup of an electro-hydrostatic actuator (EHA) sedi for experimentations. The
performance of the combined strategy is then coatpaith the extended Kalman filter

(EKF) and the T-order SVSF in terms of robustness, and accuracy.
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5.1. Introduction

Due to the growing desire for higher performancevaf as for increasing safety
and reliability, fault diagnosis systems are beingreasingly used in the last decade.
Fault Detection and Identification (FDI) is in geake a subfield of Control
engineering which concerns itself with monitoring system’s health condition,
identifying the time of fault occurrence, and piiing the type of fault and its location.
A fault is an abnormal condition or defect at tlemponent, equipment, or sub-system

level which leads to deviation of the system frasnniormal mode of operation.

FDI tasks can be performed using both hardware néahcy and/or analytical
redundancy methods. In hardware redundancy, haedimatrumentations are replicated
and repeated such as computers, sensors, actwatdr®ther instruments, and their
outputs compared for consistency. Analytical recdunay is performed using analytical or
functional information of the process being morethr Analytical or functional models
are obtained and various measured signals are tosedtimate unmeasured quantities
[168. Two main approaches are commonly used in amralytiedundancy-based FDI,
namely signal-based and model-based approaches. &iroaches requira priori
knowledge of the dynamic process. In signal-bagguicaches, tha priori knowledge is

includes a large quantity of historical processadatbservations, and measurements

[169.

Signal-based techniques usually require signalgasiag tools (e.g., fast Fourier
transform (FFT) and wavelet analysis), statistteghniques (e.g., statistical classifiers,
partial least squares (PLS), and principle compbraralysis (PCA), and intelligent
decision making techniques (e.g., artificial neuratworks) L6§. In the model-based

approaches, tha priori knowledge is in the form of a model of the systéiat describes
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its dynamic behavior. Model-based FDI approachesliysinvolve the use of observer,
state estimation, and system identification techesqfL68g. In this chapter, the state

estimation-based FDI is considered for fault dédecand diagnosis of an EHA setup.

5.2. State Estimation-Based FDI

State estimation-based FDI is based on evaluati@gesidual or innovation that is
the difference between measurements and estimatpdte at each sample time. In order
to estimate the system states or outputs, it iessary to select an estimation filter such
as the KF, EKF, PF, etc, in conjunction with a neatlatical model. Figure 5.1 presents a

block-diagram of the state estimation-based F[Atsgy. It involves two main stages as

[169:

1. Residual generation stage in which the system spaumid outputs are used to
produce a mathematical model of the process, wherdifference between the
model process output and the measurement is referras the estimation residual
or innovation.

2. Decision making stage in which the generated redsdare checked for the
likelihood of faults, and a decision rule is theadwa to recognize if any fault has

occurred. The knowledge of process normal operasioaquired in this stage.

It is important to note that the residual is justgaantity that represents the
inconsistency between the actual process measuteameh the mathematical model
output and thus it may include both system noiseelkas the fault signature. Hence, in
order to perform a more accurate FDI task, it isessary to filter out the noise from the

residual signal.
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Figure 5.1: A block-diagram scheme of the stat@negton-based FDI task

State estimation has become increasingly populanaodel-based FDI systems in
the last two decades. Note that the Kalman-typeriilg methods assume a known
system model with known parameters. In real aptina however there may be
considerable uncertainties about the model stracthe physical parameters, the level of
noise, and the initial conditions. In some situagiothe system dynamic is too complex to
be modeled exactly, or there is a@riori knowledge about parameters as well as noise
levels or distributions. In other situations, tlystem structure or parameters may change
with time or due to fault conditions unpredictabence, Kalman-type filtering methods
may diverge or present an unacceptable performahoeovercome such potential
difficulties, a robust state estimation approacheisommended. Examples of the robust
state estimation are the robust Kalmb) (filter [53], the H,, filter [137], and the Smooth
Variable Structure Filter (SVSFJ].
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In this chapter, an experimental setup of an Ebeletydrostatic Actuator (EHA)
prototype is used to demonstrate an SVSF basedS&veral experiments are performed
in order to examine the accuracy and robustneskeof®-order SVSF and its dynamic
version under the normal and uncertain faulty comas. Results are then compared with
other state-of-the-art methods such as the Kalniléer FKF) and the T-order SVSF in
terms of the root-mean-squared-error (RMSE), ther'srmean (Bias), and the standard
deviations (STD). There are two sets of experimémas are respectively performed for
fault detection and fault identification purposés.the fault detection experiments, the
objective is to figure out whether the system igrafing under the normal condition or
faulty condition. In the fault identification experents, the objective is to determine the
type of fault conditions. There are two types aflfe that can be physically simulated on
the EHA setup. These include friction and intefdeakage faults with various degrees of
severity. The next section describes the experiahsetup of the EHA prototype with the

two types of faults.

5.3. The Experimental Electro-Hydrostatic Actuator(EHA) Setup [16510]

The experimental setup of the electro-hydrostatiaator(EHA) has been designed
and manufactured in the Center for Mechatronics lglrid Technology (CMHT) at
McMaster University. This setup is used for doingp&rimentations on control, state
estimation, and fault detection and diagnosis appbns. Figure 5.2 presents the EHA
experimental setup. Furthermore, the circuit diagief the EHA setup with numbered
elements is shown in Figure 5.3. The EHA uses pogpiction (10) to create pressure
and move pistorA (3) and pistorB (4). The EHA system is currently being used in
aerospace applications and therefore its relighalitd performance are highly important.

Hence, health monitoring is an important elememdsigning EHA systems.
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Figure 5.2: Experimental setup of the electro-hgthtic actuator (EHA): The piston
on the right is referred to as pistdn(3) and the piston connected to it on the left is
referred to as pistoB (4). An optical linear encoder (12) attached t&tqmA is used to
provide position measurements (which are diffeegatl to obtain velocity
measurements). The gear pump (10) and electric m{@®) are located in the rear
(middle) of the table.

The EHA is composed of several components includisgmmetric linear actuator
(8), a variable-speed electric motor (13), a bediional gear pump (10), a pressure relief
valve (7), an accumulator (2), connecting tubes, safety circuits for fault simulations.
The EHA set up includes complementary circuits thikdw a physical simulation of
friction and leakage faults. The variable-speedvaaotor, which is a SIEMENS
1FK7080-5AF71-1AG2 electric motor, drives the hiedtional gear pump (10) and
forces oil into the cylinder (8). Thereby, the geamp (10) can adjust the actuation
performance by changing the fluid flow rate. An woelator (12) is used to avoid
cavitation and to collect the case drain leakagenfthe gear pump (10). The pressure
relief valve (7) is used to limit the maximum systeressure to 500 psi in this case study

[165,10.
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The hydraulic circuit of the EHA setup has two mparts. The first part is the inner
low-pressure circuit that filters the oil and press the minimum system pressure at 40
psi, by using an accumulator (2) as well as filterd aheck valves (6). The inner circuit
prevents cavitation and supplies fluid for compéngaleakage. The second part of the
hydraulic circuit is the outer high-pressure citdhat performs actuation. EHA's input is
the voltage to the electric motor (13) that regedathe direction and the speed of the
pump (10). This results in controlling the valuetioé fluid flow rate in the outer circuit

and correspondingly adjusts the piston’s positi@hocity, and acceleratiori()].

(1) Components Number
e (12 T i | Absolute Pressure Sensor (1)
[i i [ Accumulator (2)
| L i | Piston A (3)
j Yo - Y(5) i | Piston B (4)
a0 g I 7 T | |Ball valve (5)
(M et ! *MJ ) e e i | Check Valve (6)
P i g e [‘J\«“\(H)E Differential Pressure Relief Valve (7)
(19) ; L e Ll M ! | Double Rod Cylinder (8)
o | 1| Friction Control Throttling Valve (9)
B e B | i |GearPump (10)
| i | Leackage Control Throttling Valve (11)
52 — \ ‘ : Linear Encoder (12)
! = i Electric Motor (13)
Cp) (4) : 25 |
(8)\ J | :

Figure 5.3: The circuit diagram of the EHA expenttad setup (Taken fronlpE,1(])

The piston at the top is referred to as piskq3) and the below piston connected to
it is referred to as pistoB (4). An optical linear encoder (12) attached tstqnA is used
to obtain position measurements. The state resoluti this encoder is 1 nm. Two types
of fault conditions can be physically induced: mtd leakage and friction. To implement
a friction fault in the system, pistohin Figure 5.3 was used as the driving mechanism
while pistonB acted as a load. To simulate internal leakagedadross the circuit, the

pistonA throttling valve is used (where the pistarthrottle blocking valve is open). The
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piston A throttling valve produces cross-port leakage betwboth chambers of the
corresponding cylinder. Based on this fault conditithe output response of the cylinder

(8) is affected 10,169.

Table 5.1: Numeric values of the EHA paramefé

Parameter Physical Meaning Parameter Values

A Piston Area 1.52x10° m?

D, Pump Displacement 5.57x10" m*rad

L Leakage Coefficient  4.78x10"?m%(secxPa)
M Load Mass 7.376 Kg

Qo Flow Rate Offset 2.41x10°m*sec

\A Initial Cylinder Volume 1.08x10°m®

B Effective Bulk Modulus 2.07x16Pa

The EHA dynamics may be described using three stat@bles including the
actuator positiork; =X, velocity X, =X , and acceleratioX; = X . Gadsden, Song, and

Habibi [10] investigated the dynamic model of the EHA usihg physical modeling

approach. They presented a nonlinear state-spadel mbthe EHA system as follows:

Xipa1 = Xy +T X, (5.1)
Xoke1 = Xox +T Xz, (5.2)
o [y raNerMBL] _T(AE2+a2L):BeX L 1 ABe
3k+1~ 3,k 2 .k
' MV, ’ MV, ' MV, 53)

2aV o X5y X3 + Be I—(aixz,k2 + as)
MV,

sgniX,y ),

whereAge denotes the piston cross-sectional gfeagenotes the effective bulk modulus,

denotes the leakage coefficieM, denotes the load mass, ak@ denotes the initial
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cylinder volume. MoreovelT is the sample time and is seflatl ms Table 5.1 presents
numeric values of the aforementioned parameters. differential pressure of the EHA
may be calculated based on the actuator frictiaat th modeled as a second order

guadratic function related to the actuator velofity:

(R-P) A = ax+(a*+ a)son(y. (5.4)

In this context, the differential pressuk® may be calculated based on the actuator

friction that is modeled as a second-order quadfatiction as follows10]:

2
a (aX,, ~ + ay) M
AP = 2 X,y +L39n(xz,k )"‘A— X3k s (5.5)

E E E

The input to the EHA system relates to flow andisimplified form as given by
[10]:

u=D,w,-sgn(P, - P, Q.o (5.6)

where D, is the pump displacemern, is the leakage flow rate, afl is the parameter

used to adjust offsets (see Rdf0|[for detailed information). It is important to moe that
there are two types of parameters that are affelojethe fault condition: the leakage

coefficient L and the friction coefficients, ,a, , anda,. Hence, for accurately modeling

the EHA system, numeric values of these paramatersequired under different operating
conditions. Table 5.2 lists numerical values of finetion coefficients for different
operating conditions measured by experimentatiomepsrted on 10]. Table 5.3 also
presents numerical values of the leakage coeftciemd flow rate offsets for these
conditions Q. In this research, three scenarios of the EHAupseare used for
experimentation and comparison. They include themab EHA, the EHA with major

friction and the EHA with major internal leakage.
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Table 5.2: Numeric values of the friction coeffitig[10]

Condition a a ag
Normal 6.589x10  2.144x10 436
Major Friction 1.162x10  -7.440x18 500
Minor Friction ~ 4.462x16  1.863x10 551

Table 5.3: Numeric values of the leakage coeffiiemd flow rate offsefsl Q]

Condition Leakage (L) Flow Rate (Qy)
Normal 4.78x10”m/(secxPa)  2.41x10°m’/s
Major Leakage 2.52x10"m’/(secxPa)  1.38x10°m’/s
Minor Leakage 6.01x10"m/(secxPa)  1.47x10°m’/s

5.4. State Estimation under the Normal and Faulty Gnditions

This section presents state estimation of the EXpeemental setup under the
normal and faulty conditions. The nonlinear modtlequations (5.1) through (5.3) is
used for modeling the EHA system. In order to coraphae robust performance of the
dynamic 2%order SVSF with the Storder SVSF and the extended Kalman filter (EKF),
the EHA normal model is used for state estimatiorden the normal and faulty
conditions. Comparisons are made in terms of acgurabustness and smoothness of the
generated state estimates. Initial values of seEesissumed zero and the sample time for
discretization is set td=1 ms Furthermore, in order to update the state emwagance
matrix of the f-order SVSF and the dynamit’rder SVSF, the linearized model of the

EHA is used (An approach similar to the covarianpdate in the EKF).

There are two different scenarios for the EHA ekpent; the EHA in the normal
situation and the faulty EHA with friction or inteal leakage. Accuracy, robustness, and
smoothness of state estimates provided by the cwdlstrategy (dynamic and optimal

2"%order SVSF) are compared with those obtained byetttended Kalman Filter (EKF)
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and the T~order SVSF method. Note that the EHA model iscthirder, and position is
the only measurable state. In order to estimatercattates, the*torder and the dynamic
2"%0lrder SVSF need to be combined with the Luenbenfeserver. Simulations are

performed using the MATLAB and all the inputs amdtial conditions are assumed the

same for the three estimators. The initial stat'mned;esiop and error covariance matrix

Pop for the EKF and the dynamitE'dZorder SVSF are the same and defined as follows:

Xoo=[0 0 0, Pyo=10xeye(4) (5.7)

The convergence rate factor for th&dkder SVSF, and the dynamid%drder
SVSF are set tg/=0.5. For the -order SVSF, the smoothing boundary layer is aéto s
tog=[5 5 E]T XVyq, WhereVgy is the standard deviation of the measurement ndlse

system uncertainty matri® for the EKF and the dynamid®order SVSF are obtained

by tuning and they are respectively equal to:

102 0 0 102 o 0
Qexr =| O 10 o |, Qong-svse=| O 10° 0 (5.8)
0 0 10° 0 0 5 10°

For the EKF and the dynami@®rder SVSF, the measurement noisés obtained by

calculating variance of the innovation signal fdimae period that is equal R=10"m?,

In order to compare these state estimation metrsmiage indicators including the
root mean square error (RMSE), and standard dewiati the state estimation errgy,
are used. Note that the state estimation erroesemnts the difference between the state
estimate valueX, and the measured valu#g (for only the measurable sta¥g that is

position). Note that however for an intuitive compan of state estimation profiles, the
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values of the actuator veloci®y, and acceleratioXs may be obtained by taking the

first and the second time-derivatives of the positmeasurement signal respectively.
Since differentiation results in added noise, at®wutorth filter is used to filter out the
velocity and acceleration signals that are obtaimedifferentiation and filteringRemark
5.1 presents more details about design and implementat the Butterworth filter on the

EHA data (refer to the McCullougtthesis 169).

Remark 5.11n order to design a filter for real-time contegplications, the filter’s
order must be low such that it removes as muchenbise as possible without adding a
significant phase shiftlp9. In this context, McCullough169 used a second-order
Butterworth filter with a cut-off frequency of 35@d/sec (55.7 Hz). A second-order
Butterworth filter provides sufficient filtering ahe signal without producing too much
phase shift that however degrades the filterindoperance. The cut-off frequency for the
Butterworth filter should be five to ten times thalues of the system’s bandwidth. The
best value for the filter's cut-off frequency, whiwas obtained by trial and error, is equal

to 350 rad/sec. The resultant Butterworth filtediscrete time is represented H%§:

5.26E -2 '+ 43FE- %2

J(z) =
(2) 1-1514 1+ 0.6%72

(5.9)

The RMSE index for estimated values of a measursthle is calculated by:

n _A' 2
RMSE:\/zizl(X‘ Xi) (5.10)

n H

K. McCullough, "Design and characterization of aldelectro-hydrostatic actuator,” M.Sc. Thesis,
Department of Mechanical Engineering, McMaster @nsity, Hamilton, Ontario, Canada, 2011.
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where X; denotes the measuredate values (for measurable state§),denotes the

estimated state values generated by each stateatstj andn denotes the number of
time steps. The state estimation error of a mebkurstate (actuator position) is the

difference between the measured state valyesid the estimated ongs. The STD of

the state estimation error for a measurable staiable is obtained by:

STD=J%2(% -8 (5.11)

whereg, ; denotes the mean value of the state estimation err

Table 5.4 presents the RMSE and the STD indicajererated by the EKF 1
order SVSF, and the combined strategy (dynamicagtignal 2%order SVSF methods).
Experiments are performed for the normal setupthedaulty EHA setup with two types
of faults including the major friction and the miaieakage separately. As observed earlier
from simulation results, for the normal setup, tptimal Z%order SVSF and the EKF
produce the most accurate state estimates in tefithe RMSE, followed by the*lorder
SVSF. The reason is that under normal conditiams,dptimal 2-order SVSF and the
EKF estimates are optimal in the mean squared sewse. In the faulty EHA setups, the
dynamic 2%order SVSF provided the most accurate state etmi terms of the
RMSE. Due to preserving higher orders of robustrésthe dynamic -order SVSF, its
RMSE under the faulty condition is smaller compavéth the f-order SVSF and the

EKF estimation methods.

Preserving the second order sliding mode condit@tead of approximating the
sliding motion via the smoothing boundary layervides the dynamic™-order SVSF

with more accurate state estimates in comparisdhed-order SVSF under the normal
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and faulty EHA operations. As shown in Table 5at, the normal and faulty scenarios,
the combined strategy produced the smallest STinwed by the f-order SVSF, and
the KF. This confirms that the dynamif®®rder SVSF can achieve higher degrees of
smoothness in state estimates with respect to @stmation methods. However, the
RMSE values of state estimates for major leakagelanger than those for the major

friction and the normal condition.

Table 5.4: Indicator values of different estimatonsler the normal and faulty scenarios

Indicator Normal  Friction Leakage
Extended Kalman Filter RMSE of Position (m)  1.76x10 2.39x10' 3.74x10'
(EKF) Position Error STD (m) 2.03x10 6.88x10" 8.54x10°

RMSE of Position (m)  1.89x10 2.89x10° 3.65x10°
Position Error STD (m) 2.03x10 7.50x10° 8.79x10°
Combined Strategy (Dynamic | RMSE of Position (m) ~ 1.76x10 2.03x10° 2.93x10°
& Optimal 2"- SVSF Position Error STD (m) 2.03x10 6.53x10" 8.74x10

1*order SVSF

Figure 5.4 compares the state estimation profilserpted by the EKF, and the
optimal 2%order SVSF with the state trajectories under toemal EHA condition.
Furthermore, Figures 5.5 and 5.6 present the sfgtimation profiles generated by the
EKF, and the dynamic"2order SVSF but under the faulty EHA setups with thajor
friction and internal leakage, respectively. Expemntal results demonstrate that under
the normal condition, the optimal®rder SVSF and the EKF provide the most accurate
results, followed by the *torder SVSF. However, for the EHA under the frintior
leakage fault condition, the dynami€®®rder SVSF produces the most accurate state
estimates, followed by the®®brder SVSF and then the EKF. Furthermore, it is
demonstrated that the dynamif®®rder SVSF also generates state estimates with a
smaller STDAs discussed, in order to intuitively compare ttegesestimation trajectories
with measurement, the measured values for the iglacd acceleration are respectively
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obtained by taking the first and second order tdegvatives of the position
(measurement) trajectory. As discussedRemark 5.1they are also filtered by using a

Butterworth filter in order to alleviate the difartiation noise and other unwanted spikes.

Estimation under the normal condition
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Figure 5.4: State estimate profiles generated tigrént estimators for the normal EHA setup

Estimation under the friction fault condition
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Figure 5.5: State estimate profiles generated figréint estimators for the EHA setup under friction
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Figure 5.6: State estimate profiles generated tigrént estimators for the EHA setup under leakage
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Figure 5.7: Phase portrait of the sliding variadntel its difference for the normal EHA setup

Figure 5.7 depicts the phase portrait of the sfjdinariable (measurement error)
versus its time difference generated by the optiZibrder SVSF for the normal EHA
setup. Furthermore, Figures 5.8 and 5.9 presenfpkiase portraits generated by the

dynamic 2%order SVSF for the EHA setup under the frictiond aleakage fault
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conditions. According to these phase portraits leésé three scenarios, both the
measurement error and its difference are decreasitly time until the existence
subspace is reached. However, due to noise, uimd@ta and discretization errors, the

ideal sliding mode does not occur and real slidiogdition is achieved.

Phase portrait under the friction fault condition
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Figure 5.8: Phase portrait of the sliding variadohel its difference for the EHA under friction
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Figure 5.9: Phase portrait of the sliding variadnhel its difference for the EHA under leakage
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State estimation results demonstrate the superdiogmance of the combined
strategy (dynamic and optimal®rder SVSF) over the extended Kalman Filter (EKF)
and the T-order SVSF in terms of accuracy and smoothnessruthe faulty EHA setup.

In order to find the type, location or severity tbk fault, a fault identification task is
implemented. The next section introduces a fauted®n and identification (FDI)
structure that is based on combining the dynarfflo&ler SVSF with the IMM filter. In
order to select one of the optimal or dynami&&der SVSF methods by the combined
strategy, the measurement noise is studied. Figur@ shows the measurement noise
profiles for the normal EHA and EHA with major fiicn. As presented, for the EHA
with major friction, the measurement noise hasdargmplitude in comparison to the

measurement noise of the normal EHA setup.

0.01

0.005—

Measurement Noise (cm)
o

-0.005— -

0.01 \ \ | \ I \ \ \ \
0 100 200 300 400 500 600 700 800 9200 1000

Time

a) Measurement noise for the normal EHA setup

0.04

0.03— —

)

0.02 5 —

0.01 ‘] -
0 ,n‘
-0.01

-0.02—

Measurement Noise (m

-0.03— —

| | | | | | | | |
-0.04
0 100 200 300 400 500 600 700 800 900 1000

Time

b) Measurement noise for the EHA with friction getu

Figure 5.10: Measurement noise profiles for themadrand faulty EHA setups
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5.5. FDI of the EHA Setup Using the State Estimatio Approach

This section presents fault detection and idemtiftsn (FDI) of the experimental
EHA setup using different state estimators (Kalnfdrer, 1°-order SVSF and the
dynamic 2%order SVSF) combined with the interacting multipi@del (IMM) filter. A
typical FDI structure formulated by combining thendmic 2%order SVSF and the IMM
filter is initially described. Thereafter, a comative analysis is performed based on
experimental data and different state estimatorsrder to evaluate and compare the

robust performance of each estimation method undeertain faulty scenarios.

5.5.1. FDI Structure Using the Dynamic #-Order SVSF and the IMM Filter

The Interacting Multiple Model (IMM) estimator issuboptimal hybrid filter that
can be combined with other state estimators. Thim figature of this algorithm is the
ability to estimate the states of a dynamic systewler several operating modes that can
transition from one mode to another. In this stygtenultiple models are used to describe
the different operational modes of the system.n&dr or nonlinear state model is used to
describe each operating mode. The combination edethmodels is used to describe the
dynamics of the nonlinear time-varying system. Arkéa transition matrix is used to
calculate the probability of the system being ire @f the operational modes. In this

section, the combination of the dynamié-@rder SVSF with the IMM filter is described.

The IMM filter can be used for modeling and estilmatof complex nonlinear
systems using a finite number of possible operategimes. In this context, assume a
hybrid linear system with different operating madasing the state and measurement

equations such that]
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Xisp = Fem Xt Gy U p T W (5.12)

Z, = Hy o XtV (5.13)

whererk is the time index andh, denotes the current system mode. Furthermore, the
operating mode in which thE" model operates is represented My, ; ={m, =m},

where M denotes the set of all modes in the multiple moftalmework.

It is assumed that the system model sequence anadenous Markov chain with

transition probabilities represented as follodjs |
Pr{mj,k+1|mi,k}=”ijk' 0i,j0M (5.14)

whererr; is the Markov transition probability from modéo modej, Whenzr: Ty, =1
j=1

Mode probabilities are updated at each new measmngrand weighting factors are used
to calculate the state variables. Figure 5.11 ptss® block-diagram scheme of the IMM-
based dynamic "®order SVSF structure. As demonstrated, this atrecapplies to a
hybrid system withm different operating modes. The framework of theMMilter

combined with the dynamid®order SVSF consists of three main steps as follows

l. Interaction Step [1]:

In this step, the mixing probability that is theopability of the system currently in

modei, and switching to modg at the next step is calculated. The mixing proldgpi

B x-1-1=PAM  _IM | ,.Z*™} | is obtained as follows]:

A 1
Hiji .k-lk-lzﬁ__”ij Hig - v (5.15)
J
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where 7 is the mode transition probability that is setthg designer. Furthermorg{;

is the predicted mode probability fodifferent modes and calculated Wy:[

g 2 pM g, 1z = 2 M (5.16)

The mixed initial condition is calculated using yimeis state and covariance estimates
Xi k -1k-1and B, -1, respectively. They are outputs oflifferent dynamic Forder

SVSF filters that are based ordifferent models. The mixed initial state and aisace

matrix are calculated for the filtevl; at timek as follows []:

r
Xoj k-1k-1= E{Xk—ll M k1zk_l} = Ki-x- i (5.17)
=1

PO]k —1k-1— Zﬂ.]k %- [ i k- K- +(X|k, B 1 r X Dk- I{I_—|—)(’)\(i ks Ky 5 X k- k—1|)T1]' (5.18)
. Filtering Step [1]:

Mode-matched filtering is applied in this step atite likelihood function
corresponding to each filter is determined. Thecuwated mixed initial state and

covariance are set as inputs to the dynafifeo@er SVSF which is matched to mode

M; (k). The filtering step starts by predicting the statel the error covariance matrix of

each mode are provided as follovig [

~

Xjkk-1= Fj k-0 k-%- 1+ Gj k- ¥y k-t Wy - g (5.19)

~

Pikk-1= Fjk-1Poj k- %- F; k—Tl +Qj k-1 (5.20)
The residual and its covariance for each modeemectively calculated as followH |
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A

ik =2~ Hjk X k-1 (5.21)

D

A

- oT
Se;, = Hik B Hix + R (5.22)

Later on, the corrective gain of the dynanfi&@der SVSF is applied such that:

K« =H,"[diag(e ;- = (¥ +A;)diag( € _y_)

_ . (5.23)
+y N\ diag(e; —zk—z)][ diag( g | k—l)]’

whereH,* is the pseudo-inverse of the measurement mafjixandA; is the constant

cut-off frequency matrix. State and covariance tgslare respectively given by:
Xjkk =X kk-1F K k€ k-2 (5.24)

Pikk = Pjxk-17KjxSk  K; ,kT . (5.25)

j ok

Based on the innovation matrix (residual covariz)trﬁ,‘gk , and thea priori measurement
error €; k-1, a corresponding likelihood functiofy; , may be calculated as follows]{
1 _
T 5C K Ste x l% K

e
Njx =Nlej k.08, 1= ——r0 (5.26)
rc

ik

The likelihood function is used to calculate thedmgrobability update given b]f

Zﬁmk' (5.27)

[ll. Combination Step [1]:

The a posterioristate and covariance matrix are estimated by aumdpithe mode

conditioned estimates and covariance as folldjs [
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r
Xk = E|:Xk | Zk]zz Xi kM j»
i1

r hay ~ ~ ~ ~
Pk :Z:Ui,k [F)i,klk +(Xi kK = Xipd (X kg = Xk|k)T }
i1

(5.28)

(5.29)

It is important to note that using the dynami¥-@der SVSF within the IMM

structure does not affect the stability and coneecg of the IMM filter. It is because,

similar to the IMM-Kalman filter structure, at tiséep timek the dynamic %-order SVSF

only applies to one particular model of the systHrthe operating regime changes at time

k+q, then the dynamic"2order SVSF method will apply to another particutaodel of

the system that describes it more accurately.
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Figure 5.11: Block-diagram of the IMM-based dyna@iitorder SVSF structure
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5.5.2. Comparative Analysis Using the ExperimentdEHA Setup

In this section, the FDI task is performed by camrig some of the extended
Kalman filter, as well as the®brder SVSF and the dynami&®@rder SVSF, within an
Interacting Multiple Models (IMM) structure. The marimental EHA setup is used to
study and compare the IMM strategies. The softwaed to communicate with the EHA
setup is MATLAB’s Real-Time Windows Target enviroent. Two types of fault
conditions were physically induced to the EHA setaternal leakage and friction. Hence,
there are three main scenarios for experimentatimisding the EHA under the normal
condition, the EHA with major friction and the EH#ith internal leakage. Each scenario

applies within 2 sec separately.

The normal, leakage, and friction operating coodgi of the EHA have been
extensively studied and modeled ih0]. As demonstrated, Tables 5.2 lists numerical
values of the friction coefficients for the EHA wgpt under different friction fault
conditions. Furthermore, Table 5.3 presents nurkvialues of the leakage coefficients
and flow rate offsets for the EHA setup under défe leakage fault conditions. These
numeric values are obtained by experimentations rapdrted in 10]. The actuator

position is the only measurable state, such tleabthasurement matrix is given by:
c=[104. (5.30)

In order to apply thetorder SVSF, as well as the dynaml€-@rder SVSF method, to
the EHA setup with one measurement available (&mtuaosition), the Luenberger’s
observer is used (refer to section 33)) Note that this however increases the amount of
noise experienced by the SVSF estimation stratefies all strategies, the initial state

estimate and state error covariance matrix areeefas follows:
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Xoo=[0 0 q , (5.31)
1 0 0

Poo=[{0 10 O0]. (5.32)
0 0 50

The process noise covarianQeand the measurement noise covariaRder the

EKF, the f-order SVSF and the dynamitarder SVSF methods are given by:

Q =diag([10™* 10* 10°]) (5.33)
R=10". (5.34)

In an effort to minimize the estimation error, tt@nvergence rate for thé-brder SVSF

and the dynamic™-order SVSF are set tp=0.5. For the $-order SVSF, the smoothing

boundary layer vector is set to:
w=[35x10° 18 ¥ 16]. (5.35)

For the IMM settings, the initial mode probabilityas defined as follows:
to=[0.90 0.05 0.0p (5.36)
The mode transition matri is defined as a 3-by-3 diagonal matrix with 0.96ngl the
diagonal and 0.05 on the off-diagonal, as follows:

0.90 0.05 0.0
p, =|0.05 0.90 0.0 (5.37)
0.05 0.05 0.9

It states, for example, that there is a 90% prdipalthat the EHA will stay in mode 1

(normal operation) if it was in mode 1 at the cotréme step (i.eP;;=0.90). The
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scenario that was studied involved the EHA opegatiormally for two seconds, a leakage
fault for two seconds, followed by a friction fafttr the last two seconds. Profiles of the
input into the EHA setup (motor velocity) and thetput (position measurement) are
shown in Figures 5.12, and 5.13, respectively. ifipait to the EHA system is a square
wave signal fluctuates between +5 and -5 rad/sdmear encoder is used to measure the

only measurable state that is the actuator position

Normal _ Leakage P Friction

Motor Velocity (Rad/Sec)

Time (Sec)

Figure 5.12: Profile of the input into the EHA sefimotor velocity)

0.015

Position (m)

0.01

0.005

Time (Sec)

Figure 5.13: Measurement profile of the EHA setagtifator position)
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In this section, the extended Kalman filter (EKEhe T-order SVSF and the
dynamic 2%order SVSF were combined with the IMM method apgliad to the EHA
setup for fault detection and diagnosis. Tablest&.6ugh 5.7 summarize the probability
results for each method. These are referred tooafusion matrices, and provide an
indication of how accurate the models were in detgcthe correct operating mode.
Following confusion matrices, it is deduced thatoélthe methods successfully detected
the correct operating mode (a diagonal probabdity50% or greater); however, with
varying degrees of confidence. The IMM-based dymcari“order SVSF strategy
correctly identified the EHA operating normally titthe highest probability level
(93.33%), followed by the IMM-Lorder SVSF, and the IMM-EKF.

The IMM-based dynamic"®order SVSF also detected the leakage fault wiéh th
highest level (90.05%), followed by the IMM!lorder SVSF, and the IMM-EKF.
Furthermore, the IMM-based EKF strategy corredatlignitified the friction fault with the
highest confidence level (93.29%), followed by th&M-1% order SVSF, and the IMM-
dynamic 3%order SVSF. It is interesting to note that anotineportant factor to study
includes cross-detection errors or misclassificetioFor example, when the EHA was
operating normally, the IMM-EKF strategy detectedlemkage fault with 40.51%
probability. This is a high cross-detection erams,the IMM-EKF method detected normal
operation with only 59.31% probability. If thesdwes were closer, it would be difficult to
properly diagnose the fault with a high level ofnfidence. Note that a comparative
analysis of some other state estimation methodsidimg the unscented Kalman filter
(UKF), the cubature Kalman filter (CKF), and thertiide filter (PF), when combined

within an Interacting Multiple Models (IMM) struate, is presented in Appendix.
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Table 5.5: Confusion matrix for the IMM-based EKF

Actual Condition

Normal Leakage  Friction

Predicted | Normal 59.31% 27.65% 3.18%
Condition | Leakage 40.51% 66.94% 3.53%
Friction 0.18% 5.41% 93.29%

Table 5.6: Confusion matrix for the IMM-basetdrder SVSF

Actual Condition

Normal Leakage  Friction

Predicted | Normal 91.93% 7.16% 4.07%
Condition | Leakage 7.73% 86.41% 3.66%
Friction 0.34% 6.43% 92.27%

Table 5.7: Confusion matrix for the IMM-based dyna@i®-order SVSF

Actual Condition

Normal Leakage  Friction

Predicted | Normal 93.33% 4.14% 3.06%
Condition | Leakage 6.53% 90.05% 4.75%
Friction 0.14% 5.81% 92.19%

Another interesting factor to study is the ovecaltrect detection probability. This
can be studied by referring to the confusion magsriand Figure 5.14. Note that the
summation of the diagonal elements in the matigegjual to the total mode probability.
Ideally, the perfect detection strategy would octiyeidentify the operating modes and
thus, the total mode probability would be 3 or 30@#erall, the IMM-dynamic ¥-order
SVSF vyielded the best results in terms of maxingzihe correct mode detection and

minimizing the misclassifications. The IMM-dynan@t*-order SVSF had a total mode
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probability of 281.53%, followed by the IMM¥lorder SVSF with a total mode
probability of 270.61%, followed by the IMM-EKF wita total mode probability of
219.54%. Hence, it appears that the IMM-dynanifea?der SVSF method provides the
best method for fault detection and diagnosis. Ty be due to its unique gain

calculation, which preserves robustness duringthte estimation process.

Total Mode Probability (0-3)

IMM-EKF IMM-SVSF IMM-Dynamic 2nd-SVSF

Figure 5.14: Total mode probability detections iffedent methods

For more clarity in comparison, the mode probapjitofiles of the IMM-dynamic
2"%order SVSF, the IMM-T order SVSF and the IMM-EKF strategies are respelsti
presented in Figures 5.15 through 5.17. It is olexkifrom these figures that the IMM-
based dynamic"®order SVSF produces the largest mode probabititye; followed by
the IMM-based -order SVSF, and the IMM-based EKF structures. Mpdzbability
profiles demonstrate the superior performance & tlynamic 2-order SVSF in

identifying the operating mode of the EHA under tieemal and uncertain conditions.
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T T T
Normal Conditions r
0.9 — Leakage Fault

dl — Friction Fault
0.8 YA gy gy g —

Time (sec)

Figure 5.15: Mode probability estimate generatedhgylMM-based EKF

Mode Probability (0-1)

— Normal Conditions
—— Leakage Fault
— Friction Fault 1

Mode Probability (0-1)

Time (sec)

Figure 5.16: Mode probability estimate generatedheyiIMM-based -order SVSF

Figure 5.18 furthermore presents profiles of theasneed (obtained by the
measurement or differentiation) and estimated statectories using the IMM-based
dynamic 3%order SVSF structure. Note that the differentiated filtered data for the
velocity and acceleration are respectively obtaibhgdaking the first and second order

time-derivatives of the position (measurement)ettgry. As discussed iRemark 5.1
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these signals are later filtered out through a éwtbrth filter in order to filter out the
differentiation noise and other spikes. Fig. 5.1@mdnstrates that state estimation
trajectories successfully follow measured (obtaibgdmeasurement or differentiation)

state trajectories in the normal and faulty scesari

T
1 | -
o -
0.9 B
0.8 —— Normal Conditions ’
= —— Leakage Fault
= 0.7H AR i
2 — Friction Fault
= 0.6[] .
:_',_.;
ES 0.5+ -
e
&
5 04f .
=
o
= 0.3H e
0.2 H -
0.1 B
0
I I
0 1 2 3 6
Time (sec)

Figure 5.17: Mode probability estimate given by ti-based dynamic ¥-order SVSF
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Figure 5.18: Actual and estimated state trajecsanging the IMM-dynamic"@-order SVSF method
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Table 5.8 presents the RMSE values of the foue #tatimators (the EKF, thé“1
order SVSF, and the dynami€®drder SVSF) combined with the IMM filter for the
described scenario. It is deduced from Table 5a8 the IMM-based dynamic"®order
SVSF strategy provide the more accurate state attgnfollowed by the IMM-based“l
order SVSF. This however confirms the superior grembince of the combined strategy
(including the dynamic and optimal®order SVSF) for state estimation under the normal
condition and its robust performance under the date faulty conditions. Numeric
values of Tables 5.7 and 5.8 present the supeedoimance of the combined strategy

over other estimation approaches for fault detactiod diagnosis.

Table 5.8: RMSE values of different state estinmtmmbined with the IMM filter

States EKF florder SVSF  Dynamic 2%order SVSF
Xy (M) 6.59x10" 4.10x10° 1.85x10°

5.6. Summary

This chapter presents applications of the combsteategy (dynamic and optimal
2"%order SVSF methods) for fault detection and diaimaising an experimental EHA
setup. Fault detection is performed by comparirgRIMSE of state estimates with their
values under normal condition. Moreover, fault diagjs is performed by combining the
dynamic ?Lorder SVSF with the IMM filter. The mode probabjliestimate represents
the current operating regime (normal or faulty)tieé EHA. This structure successfully
identified the correct operating regime with smallalues of RMSE and higher values of

the mode probability.
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Chapter 6

Summary and Concluding Remarks

This chapter presents the main contributions of BhD research and the relevant

conclusions. It also provides recommendationsdture research.
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6.1. Summary of the PhD Research

Kalman-type filtering methods assume a known maoaigh uncertainties being
represented as white noise. In real applicatiohsret are considerable amount of
uncertainties about the model structure, physieabimpeters, level of noise, and initial
conditions that make white noise representatioralidv In order to overcome such
difficulties, robust state estimation techniques ardely used. The SVSF filter is a new
robust state estimation approached introduced 0¥ 20he SVSF-type filtering benefits
from the robust stability of variable structure teyss and results in a robust state
estimation algorithm with an inherent switchingiaet This PhD research presents three
main contributions that are mainly based on usiheydecond order sliding mode theory
for control and state estimation of uncertain dyragystems. The higher accuracy and
robustness of these methods over other conventime#hods are proven in computer
simulation and experimentation. An experimentalugebf an Electro-Hydrostatic

Actuator (EHA) is used in order to verify compusémulations.

The first contribution of this PhD thesis is thesidgn and implementation of th&%
order SVSF in which the chattering effects are segged by satisfying the second order
sliding condition. The ¥-order SVSF applies to systems with nonlinear statelel and
linear or at least piece-wise measurement modedatisfies both the first and second
order sliding mode conditions using the Lyapunaesond law of stability. Furthermore,
in order apply the P-order SVSF, there is no need to linearize or emaproximate the
nonlinear state model. In thé%brder SVSF method, the estimation error and &t fir
difference are decreasing over time until reachireg existence subspace. Hence, along
with keeping the main advantages of the form&orer SVSF ], it alleviates the
unwanted chattering effect considerably. It alsodpces more accurate state estimates
without compromising its robustness and even witliba need to approximate or relax
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the discontinuous corrective action. Simulatioruhsspresent the superior performance
of the 2%order SVSF over other methods such as the Kalritem &nd the $-order

SVSF method given uncertainties.

The second contribution of this research is thénmadt2'®-order SVSF method for
state estimation. The corrective gain formulatioh tie 2%order SVSF is highly
nonlinear, making optimization difficult. In ordeto avoid such computational
difficulties, the dynamic ¥-order SVSF is firstly designed based on a linearaehic
sliding mode manifold. It is defined as a lineamtmnation of the sliding variable and its
first derivative. The new sliding manifold introdegca cut-off frequency matrix into the
filter formulation. The cut-off frequency coefficie operates like a first-order low-pass
filter with an adjustable bandwidth. Stability acdnvergence of this new derivation for
the first and second order sliding motions are pnousing a discrete-time Lyapunov

function candidate.

In order to formulate the optima®@order SVSF, the error covariance matrix at
each iteration needs to be obtained. The optintmaprocess is then performed to
calculate the optimal value of the cut-off frequeddy minimizing the error covariance
matrix (trace). It is shown that the correctivergef the optimal #-order SVSF restates
the Kalman filter gain and hence, a combined sfsaiecludes the dynamic"@order
SVSF for uncertain systems and the optim¥d2der SVSF for normal systems is
introduced. The main advantages of the combineategty over other state estimation
methods include robustness to noise and modelingrtainties, low computational cost,
and ease of implementation. In order to comparepéréormance of the"®order SVSF
and its dynamic version with other estimation mdtsuch as the well-known Kalman
filter and the T-order SVSF, they are simulated using a model oélantro-hydrostatic
actuator (EHA). Simulations are performed for tleenmal and uncertain scenarios when
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in the uncertain scenario the level, source andimence of uncertainties are unknown.
These methods are then compared in terms of rodssstaccuracy and smoothness of the

state estimates.

An experimental setup of an electro-hydrostaticuaittr (EHA) is used for
verifying the robust performance of th&-®rder SVSF and its dynamic version. These
methods are implemented in a FDI strategy. Faukalien is performed by comparing
the RMSE of state estimates with ones under nocaradition. Moreover, fault diagnosis
is performed by combining the dynami®-®rder SVSF with the IMM filter. The mode
probability estimate represents the current opsgategime (normal or faulty) of the
system. The IMM-based dynamid“drder SVSF successfully identified the correct
regime with smaller values of RMSE and higher valugf mode probabilities.
Experimentations confirm the superior performande tlie combined strategy in

comparison with other state estimators such a&éman filter, and thetorder SVSF.

6.2. Concluding Remarks

Concluding remarks on the"2order SVSF and its optimal version for state

estimation may be summarized as follows.

« Simulation and experimentation results demonsttatethe 2*order SVSF and its
dynamic version produce more accurate, robust amoother state estimates in
uncertain situations in comparison to the Kalméterfiand the -order SVSF.

« The 2%order SVSF applies to systems that have a nomlistate model but with a
measurement model without the need to linearizatroapproximation. It is one of
the main advantage of thd“drder SVSF over conventional state estimation

methods that are mainly based on linearizatiorppr@aimation of the state model.
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« Due to the low computational cost of th&-arder SVSF and its dynamic version,
they may be simply applied for the real-time stdemation task.

« Stability of the 2%order SVSF and its dynamic version are proven ingithe
discrete-time Lyapunov stability criteria.

« In spite of the P-order SVSF, its optimal version only applies tsteyns with a
linear state model. For implementing the optim&l-&der SVSF to nonlinear
systems, the state’s posteriori PDF can be predicted using approximation or
linearization techniques, similarly to the extendedman filter.

« In the 2%order SVSF and its dynamic version, there is rexdrte use the saturation
function or any type of approximation to alleviatéscontinuities and prevent
chattering. They use thé%brder sliding mode concept such that the measureme
error and its difference decrease in time untilgkistence subspace is reached.

« The corrective gain of the dynamit®@rder SVSF is designed based on a dynamic
sliding mode manifold which preserves the first asdcond sliding mode
conditions. This dynamic manifold formulation inditeces a first-order low-pass
filter with an adjustable cut-off frequency coeiiot. The cut-off frequency
coefficient determines the filter's bandwidth. Thetimization process is then
performed to find the optimal value for the cut-séquency at each time step.

« The 2%order SVSF and its dynamic version are primarigigned for estimating
state variables of systems with a square measutemadnx. In order to apply them
to systems with fewer measurements than statesi\blenger’s observer needs to be
applied as was done ][

« The 2%order SVSF alleviates the need for tuning by taiadl error that saves time
and efforts. However for the optimal version, thgstesm and measurement

covariance matrices need to be tuned similarhjéokalman filter.
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The corrective gain of the"®order SVSF and its optimal version represent a
second order Markov process. They refine dhpriori state estimates into the
posterioriones based on the available values of the measntemer from the last
two steps. Updating estimates based on this highesunt of information will
improve their performance with smoother state estas.

The main concern with the"®order SVSF state estimation method is that it is
however not optimal in the mean square error sdnsarder to overcome this, the
optimal 2%-order SVSF is introduced that minimizes the cawaze of the state
estimation error at each stdpis shown that the corrective gain of the optir?4}
order SVSF collapses to the Kalman filter gain &edice robustness is lost. To
preserve robustness, a combined strategy is uaebtehefits from optimality of the

optimal 2%order SVSF as well as robustness of the dynafffior2ler SVSF.

6.3. Recommendations for Future Research

This PhD research introduced and discussed a nuibepntributions on the

SVSF-type filtering with applications to an eleetrgdrostatic actuator setup. Since the

SVSF-type filtering is still new, a considerable amt of research still remains.

Additionally, the 2*order SVSF presented a new field of research agleto robust state

estimation based on preserving the first and se@sddr sliding conditions. The main

recommendations for future studies include theofwilhg.

1. Chattering analysis: In the sliding mode context, the second order sfjdiegime

has been frequently used for the numerical analysishattering 157,15914].
Moreover, in the SVSF-type filtering, frequency aawhplitude of chattering are
related to the level of modeling uncertainties. iBgrthe fault condition, the

amount of uncertainties in system states and pdesméncreases significantly.

219



PhD Thesis — H. Afshari; McMaster University, Menlel Engineering

Hence, the energy of the corresponding chatterigigas starts to increase as long
as the uncertainty continues to grow. This propeftthe SVSF-type filtering can
be considered as a strong tool for analyzing dyonsiwi faulty components, when it
is difficult to analyze the residual (innovationgsence) signal. Chattering signal
can then be used to diagnose fault conditions.elrhas been a lot of research on
chattering in SMC systems [57, 58]. The most walhkn methods are the
averaging approach [56], describing function [58&fate dependent gain method
[59], singular perturbation theorem [60] and theineare map technique [59].
Numerical analysis of chattering as well as evahgathe innovation sequence
(measurement error) will improve health monitoring.

2. Design a discrete-time Z-order sliding mode controller: An interesting topic
for the future research is to design and implenaediscrete-time P-order sliding
mode controller (SMC) that is robust against modgluncertainties. Note that
conventional digital ?-order SMCs are mainly designed based on direct
digitization of continuous-time controllers thatlpmpproximates formulations of
the continuous SMCs using the Taylor series integraln contrast, the mentioned
discrete -order SMC would belesigned for discrete-time linear systems based on
a discrete-time Lyapunov stability criterion. Thentroller has two main elements
that include an equivalent control part and a dvifitg control part. The equivalent
control is a model-based feed-forward compensatiothe plant’'s dynamics and
can be formulated based on the second order ditiat®n of the sliding variable.
Meanwhile, a switching control term is added forbustness to modeling
uncertainties and disturbances. The total conaal heeds to satisfy the first and
second sliding conditions and in turns the Lyapusmatability condition defined in

discrete-time.
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Appendix

In this section, some of the state estimation nuthiacluding the unscented Kalman
filter (UKF), the cubature Kalman filter (CKF), arnide particle filter (PF) are combined
within an Interacting Multiple Models (IMM) struater for fault detection and
identification. Experimentations are performed gsithe EHA setup with the same
properties and inputs presented in Chapter 5. Matefor the PF, the effective threshold

(Neff) is set to 0.8, and 350 patrticles are usetbial. Furthermore, the UKF parameter

K is defined as1x1073.

The EHA dynamics are described by equations 5dutiir 5.3. For all strategies, the

initial state estimate and state error covarianagirare defined as follows:

Xop=[0 0 0 , (A.1)
1 0 O

Poo=[0 10 0]. (A.2)
0O 0 50

The system and measurement noise covariafzaisdR are also given by:

Q = Diag (10 10° 1)), (A3)

R =101 (A.4)

For the IMM settings, the initial mode probabilitas defined as follows:

ti,=[0.90 0.05 0.0p (A.5)
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The mode transition matri®jj is defined as a 3-by-3 diagonal matrix with 0.96ngl the

diagonal and 0.05 on the off-diagonal. Similar teximentations of Chapter 5, the
experimental scenario involves the EHA operatingmadly for two seconds, a leakage
fault for two seconds, followed by a friction fadtir the last two seconds. Tables A.1
through A.3 present the mode probability resulfasion matrices) for the IMM-based
UKF, IMM-based CKF, and the IMM-based PF strategigsey provide an indication of

how accurate the models are in detecting the doopsrating mode.

Table A.1: Mode probability results for the IMM-UKF

Actual Condition

Predicted

Condition

Normal Leakage  Friction
Normal 70.28 % 16.67 % 2.72%
Leakage 29.63 % 80.33 % 3.60 %
Friction 0.09 % 3.00 % 93.68 %

Table A.2: Mode probability results for the IMM-CKF

Actual Condition

Predicted

Condition

Normal Leakage Friction
Normal 96.82 % 27.19 % 13.63 %
Leakage 2.98 % 65.66 % 1.02%
Friction 0.21 % 7.14 % 85.35%

Table A.3: Mode probability results for the IMM-PF

Actual Condition

Predicted

Condition

Normal Leakage  Friction
Normal 59.31 % 1.59 % 9.07 %
Leakage 21.94 % 97.77 % 9.05 %
Friction 18.75% 0.63 % 81.88 %
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All of the methods successfully detected the cormaerating mode (a diagonal
probability of 50% or greater); however, with varyidegrees of confidence. The IMM-
CKF strategy correctly identified the EHA operatimgrmally with the highest probability
level (96.82%). The IMM-PF detected the leakagdt faith the highest level (97.77%),
and the IMM-UKF correctly identified the frictioradilt with the highest confidence level
(93.68%). Another interesting factor to study is thwerall correct detection probability.
This can be studied by referring to the confusicatrives and Figure A.1. The overall
correct detection probability for these three eation methods and some other methods of
Chapter 5 are compared in Figure A.1. It is obskrvat the IMM-based dynamid®
order SVSF has the largest probability, followedty IMM-based $-order SVSF.

Total Mode Probability (0-3)

IMM-EKF  IMM-UKF  IMM-CKF  IMM-PF  IMM-SVSF IMM-Dynamic
2nd SVSF

Figure A.1: Total mode probability detections bffetient estimation methods

Note that the summation of the diagonal elementsemmatrices is equal to the total

mode probability. Ideally, the perfect detectiomatggy would correctly identify the
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operating modes and thus, the total mode probakilituld be 3 or 300%. The IMM-CKF

provides the best results in terms of maximizing ttorrect mode detection and
minimizing the misclassifications. The IMM-CKF has total mode probability of

247.83%, followed by the IMM-UKF with a total mogeobability of 247.83%, and the
IMM-PF with a total mode probability of 238.96%.gkres A.2 through A.4 present the
mode probability profiles for the EHA setup undee hormal condition, internal leakage
and friction fault conditions, respectivelyompared with other popular IMM methods, it
appears that the IMM-based SVSF method providebdise method for FDI, followed by

the IMM-based CKF.

1p— _— |
09f W NM \
08 ‘ |
2 o7l Molll 1 arhwA
et 0.7 f{W ’[JHM
§ O.GWleNWWM
o
& 05 |
[0} s
3 |
S04
203 [
5 True 1
< 02 IMM-EKF |
IMM-UKF ey
0.1 IMM-CKF | |
—— IMM-PF ‘ et ———
of IMM-SVSF =
0 1 2 3 4 5 6
Time (sec)

Figure A.2: Normal mode probability results by difnt estimation methods
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