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Abstract 

Kalman-type filtering methods are mostly designed based on exact knowledge of 

the system’s model with known parameters. In real applications, there may be 

considerable amount of uncertainties about the model structure, physical parameters, level 

of noise, and initial conditions. In order to overcome such difficulties, robust state 

estimation techniques are recommended. This PhD thesis presents a novel robust state 

estimation method that is referred to as the 2nd-order smooth variable structure filter (2nd-

order SVSF) and satisfies the first and second order sliding conditions. It is an extension 

to the 1st-order SVSF introduced in 2007. In the 1st-order SVSF chattering is reduced by 

using a smoothing boundary layer; however, the 2nd-order SVSF alleviates chattering by 

preserving the second order sliding condition. It reduces the estimation error and its first 

difference until the existence boundary layer is reached. Thereafter, it is presented that the 

estimation error and its difference remain norm-bounded given bounded noise and 

modeling uncertainties. As such, the 2nd-order SVSF produces more accurate and 

smoother state estimates under uncertain conditions than the 1st-order version. The main 

issue with the 2nd-order SVSF is that it is not optimal in the mean square error sense. 

In order to overcome this issue, the dynamic 2nd-order SVSF is initially presented 

based on a dynamic sliding mode manifold. This manifold introduces a variable cut-off 

frequency coefficient that adjusts the filter bandwidth. An optimal derivation of the 2nd-

order SVSF is then obtained by minimizing the trace of the state error covariance matrix 

with respect to the cut-off frequency matrix. An experimental setup of an electro-

hydrostatic actuator is used to compare the performance of the 2nd-order SVSF and its 

optimal version with other estimation methods such as the Kalman filter and the 1st-order 

SVSF. Experiments confirm the superior performance of the 2nd-order SVSF given 

modeling uncertainties.  
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Chapter 1 

Introduction 

This chapter presents an introduction to the PhD thesis. It initially explains the state 

estimation task and the two concepts of optimality and robustness in state estimation. 

Thereafter, it discusses the main hypotheses and objectives of this research as well as the 

main contributions. For more clarity, a flow-diagram of the research is provided in Figure 

1.2. 
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1.1. Problem Statement 

Real-time control systems can benefit from reliable parameter and state estimates 

for better performance. Estimation is the process of extracting information pertaining to a 

state variable or a parameter from measurements. In general, the term parameter refers to 

a time-invariant physical quantity that may be a scalar, a vector, or a matrix. The term 

state usually refers to a vector that evolves over time by the use of an equation which 

describes the dynamics of a system [1]. In this context, there exist two different classes of 

estimators which include the parameter estimator and the state estimator. The main goal 

of the estimation task is to minimize the state or parameter estimation error while being 

robust to uncertainties and perturbations. Noise and perturbations are inherently present in 

the measurement process, and are caused by instruments and environmental factors. 

System uncertainties are usually caused by inaccuracies in modeling the process, 

approximations, nonlinearities, and variations in physical parameters of the system. 

The conventional state estimation approaches are mainly based on the well-know 

Bayesian rule of statistics. In these approaches, the a posteriori probability density 

function (PDF) of the states is recursively calculated based on the known a priori PDF 

and newer measurements. The calculation includes two main steps: prediction and update. 

In the prediction stage, the system model is used to predict state values. The predicted 

values of states are then refined and updated based on measurements from the system. 

There are three concepts that include smoothing, filtering, and prediction. Smoothing uses 

the measurements beyond the desired time of interest, ,obs estt t> to refine the estimates 

further. Filtering uses measurements up to and including the time of interest, obs estt t≤ . 

Prediction only uses measurements prior to the time of interest and thus predicts the 

future of the system’s state, obs estt t<  [1]. A model-based state estimation process is 
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generally constructed based on the available knowledge of the system summarized in four 

items: 

1. The state transition model; 

2. The measurement model; 

3. The input or its probabilistic characterization; 

4. The prior knowledge of the system. 

Figure 1.1 shows a block-diagram scheme of a model-based state estimation process. 

 

Figure 1.1: Block-diagram scheme of a model-based state estimation process 

 

The recursive equation of an estimated posteriori PDF may be calculated in an 

optimal form with linear state transition and measurement models subjected to Gaussian 

white additive noise. In such cases, the a posteriori PDF is expressed by simply using the 

mean and the covariance terms. Thereafter, the a posteriori mean and covariance are 

predicted and updated. The most popular method used to solve linear Gaussian state 

estimation problems is the Kalman filter. For general nonlinear and non-Gaussian 

systems, several techniques using linearization (e.g., the Extended Kalman filter) or PDF 
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approximation (e.g., the Unscented Kalman filter, or the Cubature Kalman filter) have 

been proposed. More recently and with increasing computational power, the Particle 

Filters (PF) are increasingly being used in nonlinear or non-Gaussian estimation 

problems. The PF technique uses a set of weighted particles which approximates the state 

a posteriori PDF. The main disadvantages of particle filtering are its high computational 

complexity and long running time. 

The Kalman-type filtering methods are primarily designed based on the 

assumptions that noise is white and the system’s model is known. In real applications, 

noise may be non-Gaussian and there may be considerable uncertainties in the model 

structure, physical parameters, and initial conditions. In some situations, the system 

dynamic may be too complex to model; or, the system structure or parameters may 

change thus causing uncertainties. 

Two filtering strategies for dealing with uncertainties are referred to as the robust 

state estimation and the adaptive state estimation. The main objective of robust estimation 

is designing a filter that would not be affected or minimized the impact of uncertainties 

[2]. The prevalent forms of robust state estimation methods are the robust Kalman (or H2) 

filter, the H∞ filter, and the new Smooth Variable Structure Filter (SVSF). Otherwise, the 

adaptive estimation approach is primarily used to estimate both the states and the 

unknown parameters that may change with time. 

A new robust estimation strategy based on the variable structure system’s concept 

was introduced in 2007, referred to as the Smooth Variable Structure Filter (SVSF) [3]. 

The SVSF has a predictor-corrector structure and uses a discontinuous corrective gain to 

push the state estimates towards their true values. The discontinuous corrective action of 

the SVSF method satisfies the first sliding condition and hence achieves robustness to 
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bounded uncertainties. This filter alleviates the need for tuning by trial and error and 

presents a mechanism for an explicit consideration of modeling uncertainties within the 

filter formulations. The main concern of this type of filter is eliminating the unwanted 

chattering effects from state estimates. The chattering phenomenon arises from 

discontinuous corrective actions inherent in sliding mode control systems [3]. 

A smoothing boundary layer is commonly used to suppress chattering in sliding 

mode control systems [4,5], and also applied to the SVSF’s gain formulation. The 

implementation of the smoothing action is through a saturation function that interpolates 

the discontinuous corrective action within a smoothing boundary layer around the 

switching hyperplane. Outside the smoothing boundary layer the discontinuous correction 

is fully applied to maintain stability. The width of the smoothing boundary layer is 

defined as a function of the upper bound of noise, uncertainties, and perturbations [3]. 

Note that by interpolating the switching function within the smoothing boundary layer, 

the accuracy and robustness of the sliding mode are compromised [6,7]. 

The SVSF state estimation method has been used in a number of applications 

including target tracking [8,9], control as well as in parameter estimation for fault 

detection in an Electro-Hydrostatic Actuation (EHA) system [10]. Gadsden extended the 

SVSF by deriving a state error covariance term for it and using that for obtaining an 

optimal smoothing boundary layer [11,12,10]. The SVSF with an optimal time-varying 

boundary layer results in an optimal filter within the smoothing boundary layer when 

applied to linear Gaussian problems. However, the method still uses a smoothing 

boundary layer that interpolates the discontinuous corrective action in the vicinity of the 

switching hyperplane at the expense of robustness. 
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The higher order sliding mode concept is a strong alternative to the smoothing 

boundary layer for chatter avoidance. This concept is based on forcing the higher order 

time-derivatives of the sliding variable to satisfy additional constraints related to sliding 

motion. Along with keeping the main advantages of the variable structure systems, this 

concept is capable of reducing and in some cases removing the chattering effect 

completely. The higher order sliding mode concept provides better accuracy without 

compromising robustness and without the need to approximate or relax the discontinuous 

corrective action. The sliding mode order implies the degree of dynamic smoothness in 

the vicinity of the switching surface [6,7,13]. There are many publications on the second-

order sliding mode control method [14,15,16,17]. Other research on higher order sliding 

mode systems includes Sira-Ramirez’s dynamic sliding mode technique based on 

augmenting the differential algebraic approach to system formulations. This approach 

presents switching surfaces that produce chatter-free sliding mode for a special class of 

nonlinear systems [16,17]. 

In this thesis, a 2nd-order SVSF state estimation method is firstly proposed and 

formulated. It can satisfy both the first and second sliding mode conditions. It is capable 

of estimating state variables both for linear and nonlinear systems in noisy and uncertain 

conditions in which the level, source and occurrence of uncertainties are unknown. The 

main advantage of the 2nd-order SVSF is that it alleviates chattering without the needs for 

approximation or interpolation. This capability leads to better accuracy and robustness in 

uncertain conditions. The 2nd-order SVSF derivation is based on a discrete Lyapunov 

function that contains the first and second-order derivatives of the sliding variable. 

Optimal derivation of the 2nd-order SVSF, referred to as the optimal 2nd-order SVSF 

method, is one of the contributions of this research. This method is applied to systems 
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with linear state and measurement models that are subject to white additive noise. A new 

formulation for the corrective gain is calculated based on the dynamic sliding mode 

concept. A linear sliding mode manifold is defined in terms of the sliding variable and its 

first difference. It is later proven that the slope of this linear manifold is effectively a cut-

off frequency that filters chattering and can dynamically be updated at each time step. In 

order to formulate the optimal 2nd-order SVSF, the a posteriori state error covariance 

needs to be minimized by finding the optimal value of the cut-off frequency at each step. 

 

Figure 1.2: Flow-diagram representation of the PhD research 

 

In order to verify robustness and accuracy of the 2nd-order SVSF and its optimal 

version, they are implemented on an experimental EHA setup for the fault detection and 

diagnosis purpose. Fault detection is performed by comparing the RMSE of state 

estimates with ones under normal condition. Moreover, fault diagnosis is performed by 

combining the 2nd-order SVSF with the Interacting Multiple Models (IMM) filter. The 

mode probability estimate represents the current operating regime (normal or faulty) of 

the system. The IMM-based 2nd-order SVSF successfully identified the correct operating 

regime with smaller values of RMSE and higher values of the mode probability. 
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Experimentations confirm the superior performance of the 2nd-order SVSF method in 

comparison to other state estimators such as the Kalman filter and the 1st-order SVSF. 

Figure 1.2 shows a flow-diagram of the PhD research that represents sequence of the 

main steps of the research. 

 

1.2. Hypotheses and Objectives 

The smooth variable structure filter (SVSF) formulation stems from a stability 

theorem that can result in an algorithm with an inherent switching action that preserves 

convergence of estimates to within a neighborhood of actual states. This research will 

initially concentrate on designing the 2nd-order SVSF state estimation method that 

satisfies the first and second order sliding mode conditions. A dynamic 2nd-order SVSF 

method is then formulated using a dynamic sliding mode manifold. An optimal derivation 

of the dynamic 2nd-order SVSF is then presented by minimizing the trace of the error 

covariance matrix. The main hypotheses of this PhD research are as follows: 

1. Dynamic systems are described using mathematical equations in the state-space 

form. This form uses a set of first-order differential equations in order to provide a 

mathematical model of the system as a function of input, output and state 

variables. A discrete realization of the state space model is used in the linear 

and/or nonlinear form for designing the state estimator and control rules. 

2. The 2nd-order SVSF method provides more accurate, robust and smoother state 

estimates in comparison to the standard SVSF method. It shows a superior 

performance over the Kalman filter under uncertain conditions. The 2nd-order 

SVSF applies constraints to the measurement error and its first difference such 

that they approach zero in finite time. 
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3. The robust 2nd-order SVSF method may not produce accurate state estimates 

under the normal operating condition. An optimal derivation of the 2nd-order 

SVSF is hence required for minimizing the trace of the state error covariance 

matrix. In this context, a new formulation of the 2nd-order SVSF is sought that 

introduces a variable cut-off frequency coefficient. 

4. The 2nd-order SVSF method may be used for creating a robust fault detection and 

diagnosis structure. It is a combination of the Interacting Multiple Models (IMM) 

filter and the 2nd-order SVSF for robust state estimation. It applies to an 

experimental EHA setup for fault detection and identification. 

The main objectives of this PhD research may be summarized as to: 

1. perform a survey study on Gaussian filters for state estimation; 

2. design and implementation of the 2nd-order SVSF method for robust state estimation; 

3. design and implementation of the optimal2nd-order SVSF that minimizes the error 

covariance matrix by automatically adjusting an optimal cut-off frequency coefficient; 

4. combine the 2nd-order SVSF method with the IMM filter in order to construct state 

estimation under different operating modes; and 

5. apply the 2nd-order SVSF and its optimal version to an experimental EHA setup for 

fault detection and diagnosis. 

The main publications from this PhD research are: 

Journal Papers: 

1. H.H. Afshari , S.A. Gadsden, and S.R. Habibi, “Robust fault diagnosis of an electro-

hydrostatic actuator using the optimal 2nd-order SVSF and the interacting multiple 

model (IMM)”, International Journal of Fluid Power, 2014, (In Press). 
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2. H.H. Afshari , and S.R. Habibi, “Second-order smooth variable structure filter for 

robust state estimation”, ASME Journal of Dynamic Systems, Measurement, and 

Control, (Submitted on November 2013). 

3. H.H. Afshari , S.A. Gadsden, and S.R. Habibi, “A tutorial on Gaussian state 

estimation techniques: review and recent trends”, Signal Processing, (Submitted on 

October 2014). 

4. H.H. Afshari, and S.R. Habibi, “Dynamic 2nd-order smooth variable structure filter 

based a dynamic sliding manifold”, Automatica, (Submitted on November 2014). 

5. H.H. Afshari, and S.R. Habibi, “A new adaptive control scheme based on the 

interacting multiple model (IMM) estimation”, Journal of Mechanical Science and 

Technology, (Submitted on September 2014). 

 

Conference Papers 

6. H.H. Afshari , S.A. Gadsden, and S.R. Habibi, “A robust fault diagnosis scheme 

based on the interacting multiple model (IMM) and the 2nd-order SVSF methods”, 

ASME International Mechanical Engineering Congress and Exposition, 

IMECE2014-36438, Montreal, Canada, 2014. 

7. H.H. Afshari , D. Al-Ani, and S.R. Habibi, “Fault prognosis of roller bearings using 

the adaptive auto-step reinforcement learning technique”, ASME Dynamic Systems 

and Control Conference, DSCC2014-6108, San Antonio, Texas, USA, 2014. 

8. H.H. Afshari , and S.R. Habibi, ”Robustness analysis of some robust state 

estimation methods with an explicit consideration of uncertainties”, IEEE Canadian 

Conference on Electrical and Computer Engineering, Halifax, Canada, 2015. 

9. H.H. Afshari , D. Al-Ani, and S.R. Habibi, “State estimation of faulty actuator using 

the second-order smooth variable structure filter (the 2nd-order SVSF)”, IEEE 

Canadian Conference on Electrical and Computer Engineering, Halifax, Canada, 

2015. 
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1.3. Organization of the Thesis 

This PhD thesis is organized in seven chapters. Chapter 2 presents a literature 

review on Gaussian filters with applications to state estimation. It firstly describes the 

Bayesian paradigm for state estimation and then introduces filtering strategies based on 

the Gaussian assumption of noise and uncertainties. This chapter also describes the 

prevalent state estimation filters based on the Gaussian assumption. These filters are 

categorized under two subgroups optimality or robustness. They may be classified into 

subgroups based on their structural characteristics including ability to estimate linear or 

nonlinear systems, methods used for approximating nonlinearities, robustness, and 

adaptation characteristics. New advances and trends relevant to each state estimation 

method are discussed in detail. 

Chapter 3 introduces the novel 2nd-order SVSF method for state estimation. This 

chapter presents the main steps of this filter, the filter’s corrective gain, the proof of 

stability under the presented gain, and furthermore, adding the Luenberger’s observer for 

the case with lower measurements than states. A linearized model of the EHA is used for 

simulation under the normal and uncertain cases. The 2nd-order SVSF is also compared 

with some state estimation approaches such as the Kalman filter, and the former 1st-order 

SVSF in terms of accuracy, robustness and smoothness. 

Chapter 4 presents the design and implementation of the optimal 2nd-order SVSF 

method applies to systems with linear state and measurement models. It shows a new 

formulation of the corrective gain by defining a dynamic sliding mode manifold that is a 

linear combination of the sliding variable and its time difference. The stability proof of 

the filter under this gain is obtained using a discrete-time Lyapunov stability criterion. 

This chapter also presents a procedure for predicting and updating the error covariance 
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matrix for the new derivation of the 2nd-order SVSF. In the next step, the optimal 2nd-

order SVSF is obtained by minimizing the error covariance matrix (trace) at each time 

step. The EHA system is finally used to verify the accuracy and robustness of the optimal 

2nd-order SVSF in comparison to other state estimation approaches. 

Chapter 5 contains an experimental study involving the implementations of the 2nd-

order SVSF and its optimal version on an EHA prototype. The EHA setup is located in 

the Center for Mechatronics and Hybrid Technology at McMaster University. The EHA 

experimental setup, its components, and possible fault conditions are briefly described in 

Appendix I. Chapter 5 presents applications of the 2nd-order SVSF for fault detection and 

diagnosis of the EHA setup. Its accuracy and robustness are then compared with the 

Kalman filter and the 1st-order SVSF under the normal and faulty EHA conditions. 

Chapter 6 summarizes the major contributions of the PhD research, concluding remarks, 

and some suggestions for future research. 
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Chapter 2 

Literature Review on Gaussian State Estimation 

The development of state estimation methods started nearly five centuries ago and 

has involved contributions from a variety of fields. This chapter presents a review of the 

most prevalent Gaussian filters that are used for state estimation of stochastic dynamic 

systems. Gaussian filters are used in applications where the measurement noise and 

modeling uncertainties can be characterized with a Gaussian distribution. The main 

concept of state estimation is firstly described based on the Bayesian paradigm and 

Gaussian assumption of the noise. The various forms of this type of filter are then 

categorized into optimality and robustness subgroups. Each category itself includes linear 

and nonlinear filtering; the nonlinear filtering methods often involve linearization or 

approximations. New advances and trends are discussed in detail. 
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2.1. Introduction 

Estimation is the process of extracting the value of a state or parameter from indirect, 

inaccurate and uncertain measurements. In this context, there exist two different classes of 

estimators which include the parameter estimator and the state estimator. The main goals of 

the estimation task are to minimize the state or parameter estimation error while being 

robust to uncertainties and perturbations. Noise and perturbations are inherently present in 

the measurement process, and are caused by instruments and environmental factors. 

System uncertainties are usually caused by inaccuracy in modeling the process, and small 

variations of physical parameters due to the aging phenomenon. 

Major contributions to the probability field began in the fifteen century, and included 

a large number of contributors from a variety of backgrounds. Girolamo Cardano (1564-

1642), as the first major contributor to this field, introduced an accurate analysis of 

probabilities. His book about games of chance, “Liber de ludo aleae”, published in 1663, 

contains the first systematic treatment of probability [18]. Later on, Jakob Bernoulli (1654-

1705) presented the first rigorous proof of the law of large numbers for repeated 

independent trials called the Bernoulli trials. Thomas Bayes (1701-1761) introduced the 

famous Bayesian rule for statistical inference that provides the basic formula for Bayesian 

estimation methods [19]. Pierre de Laplace (1749-1827) developed probability and 

statistics and used them specifically to solve problems in celestial mechanics [19]. During 

the nineteenth century, it became apparent that probabilistic theory should be used to study 

and even model the behavior of some natural phenomena and systems. 

The pioneering study that provides an optimal estimate from noisy data was 

performed by Carl Friedrich Gauss (1777-1855). He invented the famous least square 

estimation method in 1795 and used it to solve nonlinear estimation problems in 
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mathematical astronomy [20]. Andrei Markov (1856-1922) introduced the Markov process 

and Markov chain theories based on probability and statistical methods [20]. The Markov 

theories formulate transitions in random processes from one state to another, between a 

finite or countable number of possible states. He proved that the probability distribution of 

states may be calculated using its current distribution that contains the effects of all the past 

events of the system [21]. Andrei Kolmogorov (1903-1987) published his well-known 

book, Foundations of the Theory of Probability, in 1933 laying the modern axiomatic 

foundations of probability theory. In 1938, Kolmogorov published his basic theorems for 

smoothing and predicting stationary stochastic processes that would have major military 

applications during the Cold War. Sydney Chapman (1888-1970) continued the research on 

the Markov processes. Chapman and Kolmogorov independently presented the Chapman-

Kolmogorov equations used for solving basic equations in the estimation field [20]. 

Ronald Aylmer Fisher (1890-1962) became famous for his major contribution, the 

so-called Fisher information matrix. It represents a measure of the amount of information 

extracted from a sample of values with a given probability distribution [20]. Norbert 

Wiener (1894-1964) introduced the so-called Wiener filter formulation in 1949 for signal 

processing applications. This filter reduces the amount of noise present in a signal in 

comparison with an estimation of the desired noiseless signal [22]. Kolmogorov (1903-

1987), along with Wiener, made the foundation of estimation theories that were used later 

to develop the theory of prediction, filtering, and smoothing. His research ultimately led to 

the derivation of an optimal estimator, which was formulated for continuous-time systems 

[23]. Meanwhile, Kolmogorov independently derived an optimal linear predictor for 

discrete-time systems [24]. Their research would later become famous, known as the 

Wiener-Kolmogorov filter (WF), a predecessor to the Kalman filter [18]. 
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In 1960, Rudolf Kalman, building on the work of others, introduced a new approach 

to linear filtering and prediction problems; later referred to as the Kalman filter [21]. The 

Kalman filter was successfully applied by NASA for the Apollo onboard guidance and 

quickly became popular as the most practical method for state estimation [18,21,25]. The 

Kalman filter (KF) uses a linear dynamic model and sequential measurements of the 

system to provide an optimal state estimate in the presence of Gaussian noise. A 

continuous version of the KF was later developed by Kalman and Bucy which later became 

known as the Kalman-Bucy filter [26]. 

 

Figure 2.1: The 200 year history of main contributions to the estimation theory 

Some extensions to the KF formulation, such as linearization and approximation, led 

to the extended Kalman filter (EKF) and the unscented Kalman filter (UKF), respectively. 
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These extensions allowed the KF strategy to be implemented on nonlinear systems for the 

purpose of state and parameter estimation. Other advanced variants of the Kalman filter 

include the quadrature Kalman filter (QKF) [27,28], mixture Kalman filter (MKF) [29], 

and the cubature Kalman filter (CKF) [30]. Figure 2.1 presents the progression of a number 

of main contributions to the estimation theory from the eighteenth century to present. State 

estimation methods are extensively used in modern engineering applications. These include 

control systems, tracking, communications, fault diagnosis and prognosis, biomedical 

engineering, and economic systems. Depending on the different case studies, linear or 

nonlinear, full-order or reduced-order, fixed or adaptive filters may be applied. During 

recent years, this field has attracted a significant amount of attention in both theory and 

applications [31,32,33,34,35,36]. 

 

2.2. State Estimation of Stochastic Dynamic Systems 

The task of extracting state variables from inaccurate, uncertain, and noisy 

measurements is referred to as state estimation. The main objective is to minimize the 

estimation error when projected to the output space. This error is referred to as the 

residual or innovation vector. It is important to note that due to the presence of noise and 

uncertainties (caused by the measurement process, instrumentation, and environment), the 

measurements cannot reflect exact values of the state variables. In order to construct a 

framework for the state estimation of stochastic dynamic systems, one may assume a 

first-order Markov process that is modeled as follows: 

1 ( , , ),k k k kx f x u w+ =  (2.1) 

1 ( , ),k k kz h x v+ =  (2.2) 
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where kx , ku , and kz  are the state, input, and measurement vectors, respectively, and,

kw and kv  are the process uncertainty and measurement noise at time step k, 

respectively. It is assumed that , ,f h  and ku  are known, when kw  and kv are mutually 

independent white stochastic processes. The filtering problem is formulated by 

recursively calculating an estimate of the state vector kx . This can be achieved by 

constructing a Bayesian paradigm based on the sequence of measurements kZ  up to time 

k. Note that there are two main concepts in statistics that help to computationally simplify 

the process of state estimation. They are the Bayesian paradigm and the Gaussian 

distribution of states, which will be explained in the subsequent subsections. 

2.2.1. Bayesian Paradigm for State Estimation  

The main purpose of using a Bayesian paradigm in state estimation is to calculate 

the conditional a posteriori state PDF 1 1( | )k kp x Z+ + , where 1 1 2 1{ , , , }k kZ z z z+ += …  is the 

vector of noisy measurements. In order to formulate the state’s a posterior PDF, a two 

stage recursive algorithm can be used, when the state a priori PDF ( | )k kp x z is 

available. It is assumed that the initial PDF of the state is 0 0 0( ) ( | )p x p x z= . The 

filtering process contains two stages including prediction and update. The Chapman-

Kolmogorov equation can be used for the prediction stage using the system model of 

(2.1) as follows [37]: 

1 1( | ) ( | ) ( | )k k k k k k kp x Z p x x p x Z dx+ += ∫  (2.3) 

where the state transition probability 1( | )k kp x x+  is obtained from the state equation 

(2.1). The Bayesian rule is used to provide the basis for the update stage given by [37]: 
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1 1 1
1 1

1

( | ) ( | )
( | ) ,

( | )
k k k k

k k
k k

p z x p x Z
p x Z

p z Z
+ + +

+ +
+

=  (2.4) 

where 1( | )k kp z Z+  is the normalizing constant, and is obtained by [37]: 

1 1 1 1( | ) ( | ) ( | ) ,k k k k k k kp z Z p z x p x Z dx+ + + += ∫  (2.5) 

This value depends on the likelihood function 1 1( | )k kp z x+ +  that is obtained from 

the measurement equation (2.2). From the a posteriori PDF, a theoretically optimal state 

estimate may be computed using an approach such as the minimum mean square error 

(MMSE), which is as follows [37]: 

1| 1 1 1 1 1ˆ ( | ) ,MMSE
k k k k k kx x p x Z dx+ + + + + +∫≜  (2.6) 

Alternatively, the maximum a posteriori (MAP) method may be used, as follows [37]: 

| 1 1ˆ arg max ( | ),
k

MAP
k k k k

x
x p x Z+ +≜  (2.7) 

The above calculations are based on two assumptions: 

1- The state transitions follow a first order Markov process, i.e., 

1 1 1( | , ) ( | ),k k k k kp x X Z p x x+ + +=  where 0{ , , }k kX x x= … ; 

2- The measurements are conditionally independent given the states, i.e., 

1 1 1 1( | , ) ( | )k k k k kp z X Z p z x+ + + +=  [38]. 

The main purpose of filtering is to construct an accurate posterior PDF of the state 

based on all available information. Equations (2.3) through (2.5) provide the basis for 

recursive estimation schemes; with emphasis that they present only a conceptual solution, 
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which in some scenarios cannot be calculated analytically. It is possible to solve the 

recursive equation of the estimated posteriori PDF analytically for the estimation problem 

with a linear state transition and measurement model, subjected to additive noise and 

uncertainties with Gaussian PDF. As a statistical point of view, in linear systems with 

Gaussian uncertainties, ( | )k kp x Z contains all statistical information about kx . In this 

way, it is expected to convert the estimation problem to the point estimation in which the 

mode, mean, or median are estimated. In such cases, the a posteriori PDF can be 

expressed with simply the mean and covariance terms; the a posteriori mean and 

covariance can be predicted and updated recursively. However, this approach is not 

applicable to nonlinear systems or systems with non-Gaussian uncertainties. Figure 2.2 

compares the main concept of point estimation for systems with the Gaussian and non-

Gaussian uncertainties. For systems with Gaussian distributions, the mode, mean and 

median are the same. The most popular method used to solve the linear estimation 

problem when subjected to the white Gaussian noise is the Kalman filter (KF) [37,25]. 

 

(a) Gaussian probability distribution (b) Non-Gaussian probability distribution 

Figure 2.2: Effects of the probability distribution on point state estimation [38] 

 



PhD Thesis – H. Afshari; McMaster University, Mechanical Engineering 

21 
 

2.2. Gaussian Assumption for the Bayesian Estimation Paradigm 

In order to simplify complex equations of the Bayesian filtering paradigm, Gaussian 

distributions for the noise and uncertainties are assumed. This assumption provides a 

Gaussian distribution for the state a priori PDF 1( | )k kp x Z+  and the filter likelihood 

density 1( | )k kp z Z+  which alternatively results in a Gaussian distribution for the state a 

posteriori PDF 1 1( | )k kp x Z+ + . In this context, a class of Bayesian filters is formulated 

under the Gaussian assumption and is referred to as the Gaussian filters. Following this 

formulation, recursive computations of the former Bayesian filter convert to recursive 

algebraic computations of the first moment (mean) and the second moment (covariance) 

of existing conditional PDFs. This procedure is followed for both time and measurement 

updates, which follow [30]. 

A. Time Update [30]: In this step, the state’s a priori mean 1|ˆk kx +  and the state 

estimation error’s a priori covariance 1|k kP +  of the Gaussian distribution are calculated 

using the expectation operator as follows [30]: 

1|

| |

ˆ { ( , ) | }

ˆ( , ) ( ; , ) ,
nx

k k k k k

k k k k k k k k

x E f x u Z

f x u N x x P dx

+ =

= ×∫ℝ
 (2.8) 

1| 1 1| 1 1|

| | 1| 1|

ˆ ˆ{ ( )( ) | }

ˆ ˆ ˆ( , ) ( , ) ( ; , ) .
nx

T
k k k k k k k k k

T T
k k k k k k k k k k k k k k k

P E x x x x Z

f x u f x u N x x P dx x x Q

+ + + + +

+ +

= − −

= × − +∫ℝ
 (2.9) 

where (. , .)N  denotes the Gaussian density function. 

B. Measurement Update [30]: Since the error in the a priori measurement is a zero-

mean white stochastic process [39], it is possible to approximate the error to be 

Gaussian and restate the filter likelihood density as follows [30]: 
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1 1 1| , 1|ˆ( | ) ( ; , ),k k k k k zz k kp z Z N z z P+ + + +=  (2.10) 

where the a priori measurement is given by [30]: 

1| 1 1 1 1| 1|ˆ ˆ( , ) ( ; , ) ,
nxk k k k k k k k k kz h x u N x x P dx+ + + + + += ×∫ℝ  (2.11) 

and the a priori covariance and cross-covariance are respectively calculated as [30]: 

, 1| 1 1 1 1 1 1| 1| 1| 1| 1ˆ ˆ ˆ( , ) ( , ) ( ; , ) .
nx

T T
zz k k k k k k k k k k k k k k k k kP h x u h x u N x x P dx z z R+ + + + + + + + + + += × − +∫ℝ  (2.12) 

, 1| 1 1 1 1 1| 1| 1| 1|ˆ ˆ ˆ( , ) ( ; , ) .
nx

T T
xz k k k k k k k k k k k k k k kP x h x u N x x P dx x z+ + + + + + + + += × −∫ℝ  (2.13) 

The Gaussian filter concept then supports the calculation of the state a posteriori 

PDF based on the new measurement 1kz +  [30]: 

1 1 1 1| 1 1| 1ˆ( | ) ( ; , ),k k k k k k kp x Z N x x P+ + + + + + +=  (2.14) 

and hence, the a posteriori state and error covariance may be calculated by [30]: 

1| 1 1| 1 1 1|ˆ ˆ ˆ( ),k k k k k k k kx x W z z+ + + + + += + −  (2.15) 

1| 1 1| 1 , 1| 1,
T

k k k k k zz k k kP P W P W+ + + + + += −  (2.16) 

1 , 1| , 1| .k xz k k zz k kW P P+ + +=  (2.17) 

Note that for the case with linear state and measurement functions subjected to an 

additive zero-mean white Gaussian noise, the above formulation reduces to the Kalman 

filter. However, the main basis of the Gaussian filter is concentrated on how to calculate 

the Gaussian weighted integrals that are all formulated as nonlinear functions with 

Gaussian densities [30]. Figure 2.3 presents a block-diagram concept of a one-cycle 

Gaussian filtering process. 
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In the case of nonlinear systems with non-Gaussian noise and disturbances, 

however, it is impossible to obtain an exact analytical solution. Techniques such as 

linearization or PDF approximation may be considered to solve the estimation problem. 

The extended Kalman filter (EKF) technique is the most common Gaussian method for 

solving recursive nonlinear estimation problems through linearization [20,19,40]. The 

unscented Kalman filter (UKF) is an extension to the Kalman filter. It uses an unscented 

transform to approximate the posterior distribution by capturing its mean and covariance 

accurately to the second order. The corresponding approximation error will be in the third 

order or higher [20,19,40]. It is important to note that both the EKF and the UKF are 

recursive MMSE estimators that approximate the posterior distribution as a Gaussian 

distribution. In the past decade, due to increased computational power, the Particle filter 

(PF) has attracted considerable interest as a powerful tool for solving nonlinear estimation 

problems. The PF technique uses a random set of weighted particles that approximate 

nonlinear characteristics or distributions in the state a posteriori PDF. 

 

Figure 2.3: A block-diagram scheme of a one-cycle Gaussian filtering [30] 
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The Kalman-type filtering methods are primarily designed based on the assumption 

that the system model is known and that noise is white. In real applications, there may be 

considerable uncertainties about the model structure, physical parameters, level and 

distribution of noise, and initial conditions. In some situations, the system dynamic is too 

complex to be modeled exactly, or a priori knowledge is not available about parameters 

such as noise levels or distributions. In other situations, the system structure or 

parameters may change with time unpredictably. In order to overcome such potential 

difficulties, there are two approaches in state estimation, when the Kalman-type filtering 

methods diverge or present unacceptable performance. These two approaches are referred 

to as the robust state estimation and the adaptive state estimation. 

The main objective of robust estimation is designing a fixed filter that presents an 

acceptable performance for a wide range of modeling uncertainties [81]. The main robust 

state estimation methods found in the literature are the robust Kalman (or H2) filter, the 

H∞ filter and the variable structure filter (VSF). Otherwise, the adaptive estimation 

approach is primarily used to estimate both the unknown state and the unknown noise 

parameters, when in some cases they may considerably change over time. There are two 

main approaches for adaptive estimation that include the adaptive filter with gain 

adaptation approach and the multiple models (MM) approach. 

In the first approach, the filter gain and parameters are adjusted based on statistical 

characteristics of noise and uncertainties. This approach includes several techniques such 

as the joint filtering of state and parameters, the on-line noise tuning, and batch estimation 

of parameters [81]. In the MM approach, several models of the system, each representing 

a particular operating regime, are stored and used for state estimation. The final state and 

covariance estimates are then calculated through a weighted summation of each filter 
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output. Figure 2.4 shows a general classification of main Gaussian filters that are used for 

state estimation of stochastic dynamic systems. 

 

Figure 2.4: A general classification of main Gaussian filters for state estimation 

 

2.3. Gaussian Filters for Linear Systems 

Gaussian filters may be used to estimate states of systems with linear or nonlinear 

state transition models. For linear systems, there are two main approaches including 

optimal filtering and robust filtering. In the linear optimal filtering, the main purpose is 

minimizing the estimation error. In robust filtering, the main objective is designing a filter 

that presents an acceptable performance for a wider range of modeling uncertainties. The 

optimal filtering for linear Gaussian systems leads to the Wiener-Kolmogorov filter (WF) 

and its extension, the well-known Kalman filter (KF). In the subsequent sections, these 

two approaches are reviewed in detail. 

 



PhD Thesis – H. Afshari; McMaster University, Mechanical Engineering 

26 
 

2.3.1. Linear Optimal State Estimation 

The optimal state estimation is the task of extracting state values from system 

measurements by minimizing the mean square error (MSE). The Wiener-Kolmogorov 

filter (WF) is the first contribution into the optimal filtering field and is only applicable to 

stationary signals. The Kalman filter (KF) is an extension of the WF filter and is applied 

to linear systems with non-stationary Gaussian signals. 

2.3.1.1. The Wiener-Kolmogorov Filter (WF) 

The Wiener-Kolmogorov filter (WF) is a statistical estimation method that was 

independently invented by Norbert Wiener and Andrei Kolmogorov in the 1940’s. The 

major contribution of this filter was the use of a statistical model approach based on the 

famous Bayesian inference formulation. This statistical estimation method contributed to 

the development of many other filters including the Kalman filter and particle filter for 

example. The WF estimates stationary signals with known spectral properties subjected to 

white noise. The goal of the WF is to filter out the undesirable noise from the 

measurement signal by minimizing the mean square error (MSE) [20,22]. 

To formulate the Wiener-Kolmogorov filter, consider the measurement z(t) that is a 

function of the process signal x(t) that itself contains the noise signal ν(t) as follows: 

( ) ( ) ( ).z t x t tν= +  (2.18) 

The WF provides an estimate of the signal ˆ ( )x t  using a gain WFK  as follows: 

ˆ ( ) ( ) ( ),WFx t K t z t= ∗  (2.19) 
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where ∗  denotes the convolution operator. The solution to this equation that produces the 

estimate ̂ ( )x t  is obtained in the frequency domain. The WF gain is actually a transfer 

function formulated by using the Fourier transforms [21]. Note that the WF estimation 

process minimizes the mean squared error based on the gain given by [41]: 

1( ) F ,z
WF

z

S S
K t

S
ν−  −=  

 
 (2.20) 

where 1F−  denotes the inverse Fourier transforms, zS and Sν  denote the Fourier 

transforms of the measurement and noise auto-correlations, respectively [41]. NASA 

implemented the WF for estimation in its space navigation system. Figure 2.5 presents a 

block-diagram scheme of the WF estimation process. 

 

Figure 2.5: Block-diagram scheme of the Wiener-Kolmogorov filter [21] 

 

2.3.1.2. The Kalman Filter (KF) 

Rudolf Kalman introduced a new approach to the linear estimation and prediction 

problem more than 50 years ago that later became famous as the Kalman filter (KF) [42]. 

It is an optimal recursive Bayesian filter restricted to the class of linear Gaussian 

estimation problems. The KF is a generalization of the WF and by using a state transition 

model, adapts itself to non-stationary signals. It was successfully utilized by NASA in the 

Lunar and Apollo missions. The KF requires a dynamic model of the system, known 

control inputs, and measurements containing white noise. Under these strict assumptions, 



PhD Thesis – H. Afshari; McMaster University, Mechanical Engineering 

28 
 

it provides optimal state estimates by recursively predicting the states, estimating the 

uncertainty of the predicted states, computing a weighted average of the predicted and 

measured values, and refining the predicted states. There has been a significant amount of 

research on the KF theory as applied to engineering applications. 

A one cycle KF has two main stages: prediction, and update. The prediction step 

uses the state estimate from the previous time step to produce an estimate at the current 

time step. This predicted state estimate is also known as the a priori state estimate. In the 

update stage, the current a priori prediction is combined with current measurement for 

refining the state estimate into the a posteriori state estimate. To formulate the KF, 

assume the linearized form of system equations of (2.1) and (2.2) as follows [21]: 

1 ,k k k k k kx F x G u w+ = + +  (2.21) 

1 1 1 1.k k k kz H x v+ + + += +  (2.22) 

The KF process for state estimation is now summarized as follows [21]: 

1. Prediction Step: 

• Calculation of the predicted (a priori) state and covariance estimates [21]: 

1| |ˆ ˆ ,+ = +k k k k k k kx F x G u  (2.23) 

1| | .+ = +T
k k k k k k kP F P F Q  (2.24) 

2. Update Step 

• Calculation of the innovation (or measurement error) and its covariance [21]: 
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1 1 1|ˆ ,k k k kV z z+ + += −  (2.25) 

, 1 1 1 1| 1 .+ + + + += + T
rc k k k k k kS R H P H  (2.26) 

• Calculation of the optimal Kalman gain [21]: 

1
1 1| 1 , 1 .−

+ + + += T
k k k k rc kK P H S  (2.27) 

• Calculation of the update (a posteriori) state and covariance estimates [21]: 

1| 1 1| 1 1ˆ ˆ ,+ + + + += +k k k k k kx x K V  (2.28) 

1| 1 1| 1 , 1 1 .+ + + + + += − T
k k k k k rc k kP P K S K  (2.29) 

Note that Q and R refer to the system and measurement noise covariance matrices, 

respectively [21]. Figure 2.6 presents a block-diagram scheme of a one cycle Kalman 

filtering process. 

 

Figure 2.6: Block-diagram scheme of a one cycle Kalman filter [20] 
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A large number of references exist that describe KF derivation in detail [42,40,8]. 

Important to note is that the optimality of the KF comes at the price of stability and 

robustness. In the KF derivation process, it is assumed that the system model is known 

and linear, as well as the system and measurement noises being white, and the states have 

initial conditions with known means and variances [18,21]. However, in real engineering 

applications, these assumptions are not always preserved or true. In such situations, the 

KF not only results in suboptimal state estimates, but also in some cases it may become 

unstable [43,8]. The convergence of the KF is dependent on the computer precision and 

mathematical operations required for calculating matrix inversions [20,8]. 

The main aspects of the KF method are summarized as follows: 

1. It provides a real-time recursive estimator that minimizes the RMSE of the 

estimation. It produces unbiased and minimum variance estimates of system 

states. This illustrates that the expected value of the error between estimates and 

real states is zero and the expected value of the root-mean-squared of the error is 

minimum [44]. 

2. It operates like an adaptive low-pass infinite impulse response (IIR) filter and its 

cut-off frequency is related on the ratio between the system uncertainties and 

measurement noise, as well as the estimate covariance [44]. 

3. When covariance matrices are symmetric, the recursive computation of the 

Kalman filtering may diverge which leads to numerical instability in the 

estimation process. Furthermore, if both the process uncertainties and 

measurement noise covariance matrices are assumed to be very small, then the 

covariance of the estimation error will reduce quickly and it may also lead to the 

numerical instability [40]. 
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2.3.1.3. Extensions to the Kalman Filter 

An important issue with the Kalman filter is its numerical stability. In simulations 

with small values of the process noise covariance kQ , the round-off error equation may 

have a small positive eigenvalue. This makes the numeric form of the state covariance 

matrix be indefinite, in spite of its true form that is positive-definite. However, positive 

definite matrixes have a triangular matrix square root .= T
rc rcP S S . Squared-form (or 

the factored-form) derivation helps the estimation filter to preserve numerical stability 

[45]. The square-root formulation of the filter is obtained by using three techniques in the 

linear algebra including QR decomposition, Cholesky factor updating, and efficient least 

squares [46]. In this context, the covariance matrix is decomposed into factored terms that 

are propagated forward and updated at each measurement sample time. 

There exist two main factored-form filters including the Potter’s square-root filter 

and Bierman-Thornton’s U-D filter [47]. The U-D decomposition form is obtained by 

. . TP U D U= , where U is a unit triangular matrix and D is a diagonal matrix. The 

Bierman-Thornton’s U-D filter has similar accuracy to Potter’s filter and has less 

computational cost. It is obtained by using transformation techniques that involve an 

upper triangle covariance factorization [47]. Grewal and Andrews have presented a 

number of different techniques to construct the U and D matrices and the application of 

the U-D decomposition [20]. 

Numerical stability of filtering methods may be increased by decomposing the 

covariance matrix into Cholesky factors, specifically when dealing with finite precision 

arithmetic [48]. Another way to increase the KF stability is to impose boundaries on the 

state estimates that are based on the prior knowledge of the system [49]. In this context, 
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upper bounds may be defined on the level of parametric or modeling uncertainties. This 

provides a bound on the KF that increases estimation stability. Formulations of the a 

priori  and the a posteriori error covariance may be also modified such that they explicitly 

contain effects of modeling uncertainties. For instance, one may define the a priori error 

covariance matrix 1|k kP +  as follows [21]: 

1| | | |
ˆ ˆ ˆ ˆ ,T T T T

k k k k k k k k k kP F P F F X F FY F FY F Q+ = + + + +ɶ ɶ ɶ ɶ  (2.30) 

where it contains the modeling error explicitly. Matrix kX  denotes the mean square value 

matrix (or a correlation matrix, namely{ }T
k kE x x ), matrix |k kY  denotes the cross term 

between the true states kx  and the error kxɶ , namely { }T
k kE x xɶ . The a posteriori error 

covariance matrix may also be defined as [21]: 

1| 1 1 1| 1 1 1 1 1 1 1

1 1| 1 1 1| 1

ˆ ˆ ˆ( ) )

ˆ ˆ( ) ( ).

T T T T
k k k k k k k k k k k k

T T T
k k k k k k k k

P I K H P I K H K R K K H X H K

I K H Y H K K H Y I K H

+ + + + + + + + + + +

+ + + + + +

= − − + +

− − − −

ɶ

ɶ ɶ
 (2.31) 

In order to update the error covariance matrix, the matrices kX  and |k kH are also required 

to be calculated recursively [21]. 

Another strategy for increasing the KF stability includes the addition of fictitious 

process noise and consideration of a fading memory to the KF formulation [41]. Using a 

fading memory in the filter formulation results in neglecting measurements in the distant 

past and putting more emphasis on the current information. Although this modification 

leads to a partial loss to the optimality via the new formulation, it helps to improve the 

robustness and stability of the filter. In this way, the a priori state error covariance is 

restated in the following form [41]: 
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1| 1| ,T
k k k k kP FP F Qα+ += +  (2.32) 

where α denotes the forgetting factor which is a positive, typically slightly larger than 1 

(i.e., 1.01α = ). Its value is chosen based on how much the past measurements are desired 

[41]. In some applications, a time-varying value for α is proposed to improve the filter 

performance [21]. 

The KF performance may be improved numerically by introducing the “Joseph 

form” of the a posteriori state error covariance matrix as follows [20,41]: 

1| 1 1 1| 1 1 1 1( ) ( ) .T T
k k k k k k k k kP I K H P I K H K R K+ + + + + + + += − − +  (2.33) 

This form was firstly proposed and implemented by Peter Joseph in the 1960s [22]. This 

form is proven to be more stable and robust over the former formulation presented in 

equation (29). Using the Joseph form in the a posteriori error covariance matrix ensures 

that it will always be symmetric positive definite at the cost of increasing the 

computational complexity [20,41]. Another approach that helps to increase the numerical 

stability of the KF is to force the covariance matrix to be symmetric and to initialize it 

accordingly [41]. In order to provide a symmetric covariance matrix, the a posteriori 

covariance matrix may be restated as follows [41]: 

1| 1 1| 1 1| 1( ) / 2.T
k k k k k kP P P+ + + + + += +  (2.34) 

Another approach to this context is to equalize off-diagonal entries to each other (i.e.,

ij jiP P= ), or making the eigenvalues of 1| 1k kP + +  
to be positive. Using an appropriate 

initial value for the covariance improves the filter performance and prevents large or 

abrupt changes in the covariance throughout the estimation process [41]. 
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The information filter is another variant of the KF in which the estimated error 

covariance and the estimated state are replaced with the information matrix and the 

information vector, respectively. They are defined as follows [21]: 

1
| | ,k k k kY P −=  (2.35) 

1
| | |ˆ ˆ .k k k k k ky P x−=  (2.36) 

In this way, the measurement covariance and measurement vector are stated as [21]: 

1 ,T
k k k kI H R H−=  (2.37) 

1 .T
k k k ki H R z−=  (2.38) 

Now, the information is simply updated through a summation as [21]: 

1| 1 1| 1,k k k k kY Y I+ + + += +  (2.39) 

1| 1 1| 1ˆ ˆ .k k k k ky y i+ + + += +  (2.40) 

The main advantage of using the information filter is that it can easily filter N 

measurements at each step by only summing their Information matrices, 

1| 1 1| 1,
1

,
N

k k k k k j
j

Y Y I+ + + +
=

= + ∑  and their information vectors that are represented as: 

1| 1 1| 1,
1

ˆ ˆ
N

k k k k k j
j

y y i+ + + +
=

= + ∑  [21]. 

2.3.2. Linear Robust Kalman Filter 

Robust state estimation is one of the main aspects of filtering in which the objective 

is to design a filter that limits the effect of modeling uncertainties or environmental noise 
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on filter performance. Robust state estimation has attracted significant amounts of 

research in some specific areas such as control systems, target tracking, fault diagnosis 

and health monitoring systems. There are several approaches for increasing robustness of 

the discrete-time Kalman filter against norm-bounded parameter uncertainties 

[50,51,52,53] or unknown initial conditions [54]. The other main approaches include the 

H∞ filtering [41,55,56], the robust Kalman filtering [50,57], the set-valued estimation 

[58], the guaranteed-cost design [59], and the smooth variable structure filter (SVSF) [3]. 

Sayed has presented a general framework for robust state estimation of dynamic systems 

with modeling uncertainties [2]. 

The main idea of the KF design is minimizing the trace of the estimation error 

covariance. However, the KF is only accurate when there are small amounts of 

uncertainties and noise in the process model, initial conditions and measurements. There 

are a large number of publications that describe the robust Kalman filter (RKF) 

techniques. Xie, Soh, and Souza have proposed a RKF technique for linear systems 

subjected to norm-bounded parametric uncertainty in the state and measurement matrices 

[50]. Masreliez and Martin have introduced a robust Bayesian estimator that can operate 

under two different scenarios [60]. The first situation is when the state x is Gaussian and 

the measurement z is non-Gaussian (heavy-tailed). The second scenario is when the state 

is non-Gaussian (heavy-tailed) and the measurement z is Gaussian [60]. Furthermore, 

Hsieh has proposed a RKF technique that is insensitive to unknown inputs [54]. This 

filter is an alternative to the Kitanidis’s unbiased minimum variance filter [61]. 

Wang and Balakrishnan introduced a RKF algorithm as applied to linear systems 

with stochastic parametric uncertainties [53]. This method is designed to minimize an 

upper bound of the mean square estimation error at each step. Benavoli, Zaffalon, and 
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Miranda designed a RKF by considering the uncertainty characterizations in terms of 

coherent lower previsions [62]. Bertsekas and Rhodes presented the set-valued approach 

for state estimation that is based on defining ellipsoids around state estimates that are 

consistent with the measurement data [58]. Note that the centers of ellipsoids are assumed 

to be the estimated states. In this context, there are several recursive algorithms to account 

for uncertain models, particularly the one proposed by Savkin and Petersen [63]. The 

Guaranteed-cost design is another important approach in which the filter is designed by 

preserving an upper bound on the variance of the estimation error. This approach is 

mostly applied to quadratically stable systems in the steady-state phase of the operation 

[2,50]. In this section, the Sayed’s robust Kalman filtering technique is reviewed as a 

general framework for linear robust state estimation. 

Assume an uncertain dynamic model with bounded uncertainties in state and 

measurement models that is presented by [2]: 

1 ( ) ( ) ,k k k k k k kx F F x G G uδ δ+ = + + +  (2.41) 

,k k k ky H x v= +  (2.42) 

where kFδ  and kGδ  denote small uncertainties in state transition and control matrices, 

when matrix kH is assumed to be known exactly. Uncertainties in kF  and kG may be 

modeled as [2]: 

[ ] [ ]{ } { } ,k k k k k kF G M E F E Gδ δ = ∆  (2.43) 

where k∆ is an arbitrary contraction, when 1k∆ ≤ . In order to start the estimation 

process, let assume that the a priori state estimate |ˆk kx  and covariance |k kP  are available 
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along with the measurement 1kz + . Then, the estimate of kx may be updated from |ˆk kx  

to 1|ˆk kx +  by solving the following criterion [2]: 

1 11
1|

2 2 2
| 1 1 1

{ , } ,
ˆmin max .

k kk kk k k k
k k k k k k kQ RPx u F G

x x u y H x
δ δ

− −−
+

+ + +
 − + + − 
 

 (2.44) 

Sayed has presented a solution { }1| 1|ˆ ˆk k k kx u+ +−  to the above problem by solving 

the corresponding set of equations. Now, in order to follow his solution, one may assume 

the dynamic model of equations (2.41) through to (2.43), where 0,x
 ,ku and kv are 

uncorrelated zero-mean white stochastic processes with following variances [2]: 

0 0 0 0 0

0 0 ,

0 0

T

i j i ij

i j i ij

x x

E u u Q

v v R

δ
δ

    Π        =                

 (2.45) 

where 0 0, 0, 0i iR QΠ > > > are given weighting matrices. Note that ijδ  is the 

Kronecker delta function that is equal to one when i j=  and equal to zero otherwise. The 

initial conditions for the robust filtering algorithm are set to 1
0|0 0|0 0 0 0ˆ ,Tx P H R y−=  and 

1 1 1
0|0 0 0 0 0( )TP H R H− − −= Π + , alternatively. The robust filtering method is summarized into 

the time-update and measurement-update formulations using the following steps [2]: 

Step 1: If 1 0i iH M+ = , then put ̂ 0iλ = . If not, calculate the function ( )G λ  as [2]: 

2 2 2

( )
( ) ( ) ( ) ( ) .a bQ W

G x E x E A x b λλ λ λ λ λ= + − + −  (2.46) 
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Note that the non-negative scalar parameter is determined from the optimization problem, 

where functions ( ), ( ), ( )W Q xλ λ λ  are defined as [2]: 

( ) ( ) ,T TW W W H I H W H H Wλ λ ++ −≜  (2.47) 

( ) ,T
a aQ Q E Eλ λ+≜  (2.48) 

1( ) [ ( ) ( ) ] [ ( ) ].T T T
a ax Q A W A A W b E Eλ λ λ λ λ−+ +≜  (2.49) 

Note that |ˆ{ , },k k k kx col x x u= − 1 1 |ˆ ,k k k k kb y H F x+ += − [ ]1 ,k k kA H F G+=

1 1
| ,k k kQ P Q− −= ⊕ 1

1,kW R−
+= 1 ,k kH H M+= [ ]{ } { } ,a k kE E F E G=  and |ˆ{ }b k k kE E F x= − . 

Note that ˆkλ  is obtained by minimizing the function ( )G λ  [2]. 

Step 2: Replace 1 |{ , , , , }k k k k k kQ R P G F+ , by [2]: 

1 1 1
, , | , ,

ˆ ˆˆ [ ] ,T T
k k k g k k f k k k f k g kQ Q E I E P E Eλ λ− − −= + +  (2.50) 

1
1 1 1 1

ˆˆ ,T T
k k k k k k kR R H M M Hλ−

+ + + += −  (2.51) 

1 1
| | | , , | , , |

ˆˆ ( ) ,T T
k k k k k k f k k f k k k f k f k k kP P P E I E P E E Pλ− −= − +  (2.52) 

| , ,
ˆˆ ˆ ,T

k k k k k k f k g kG G F P E Eλ= −  (2.53) 

, , | , ,
ˆ ˆˆ ˆˆ ˆ( )( ),T T

k k k k k g k f k k k k f k f kF F G Q E E I P E Eλ λ= − −  (2.54) 

If ˆ 0kλ = , then it will be obtained that 1 1 | |
ˆ ˆˆ ˆ, , ,k k k k k k k k k kQ Q R R P P G G+ += = = = , and k̂ kF F=

[46]. 

Step 3: Update the state estimate and state error covariance | |ˆ{ , }k k k kx P , as follows [2]: 
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1 |
ˆˆ ˆ ,k k k kx F x+ =  (2.55) 

1
1| 1 1 1| 1 1 1 1

ˆˆ ˆ ,T
k k k k k k k kx x P H R e−

+ + + + + + + += +  (2.56) 

1 1 1 1ˆ ,k k k ke z H x+ + + += −  (2.57) 

1 |
ˆ ˆ ˆˆ ,T T

k k k k k k k kP F P F G Q G+ = +  (2.58) 

1
1| 1 1 1 1 , 1 1 1

ˆ ,T
k k k k k e k k kP P P H R H P−

+ + + + + + + += −  (2.59) 

, 1 1 1 1 1
ˆ .T

e k k k k kR R H P H+ + + + += +  (2.60) 

Sayed also formulated the above robust estimator in the information form in which the 

inverse of the error covariance matrix |k kP  is propagated instead of |k kP  [2]. However, 

the presented estimation algorithm needs to optimize the cost function ( ;0,1)N x . An 

approximation formula for the correction parameter ˆ
iλ  is presented in [2]. 

 

2.4. Gaussian Filters for Nonlinear State Estimation 

As explained, the Kalman-type filtering process is a special case of the Bayesian 

filter, when the system and measurement models are linear. Measurement noise and 

modeling uncertainties are also modeled by additive white Gaussian processes with zero 

mean and known covariance matrices. In this case, the KF provides an optimal solution to 

the estimation problem by minimizing the RMSE. However, for the general case of 

nonlinear systems with non-Gaussian noise distribution, the predicted distribution 

1( | )k kp x Z+  cannot be computed exactly. Therefore, it needs to use some kind of 

approximations that would sacrifice optimality for computability and hence, search for a 

sub-optimal nonlinear filtering approach that is computationally tractable. 
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In order to approximate nonlinear filtering, there are two main approaches including 

the local approach and the global approach as follows [30]: 

1. Local approach: In this approach, the distributions are assumed to be Gaussian, 

and then the a posteriori distribution is calculated using a direct numerical 

approximation in a local sense. This approach leads to several estimation 

techniques that are based on linearization such as the extended Kalman filter 

(EKF) [20,19], and the central difference filter (CDF) [64,65], or PDF 

approximation such as the unscented Kalman filter (UKF) [20,19], quadrature 

Kalman filter (QKF) [28], and the cubature Kalman filter (CKF) [30]. The locality 

approach for the filter design makes the filters to be simple and fast for 

implementation [30]. 

2. Global approach: In this approach, there are no assumptions pertaining to the a 

posteriori distribution; it is calculated using an indirect numerical approximation 

in a global sense. This leads to new filtering techniques such as the point-mass 

filter that uses adaptive grids [66], the Gaussian mixture filter [67], the mixture 

Kalman filter [29], and the well-known particle filter (PF). The particle filtering 

technique uses a set of weighted particles to approximate the state a posteriori 

PDF that contains nonlinear and non-Gaussian characteristics. The main 

disadvantage of estimation techniques categorized in the global approach is their 

large computational cost that makes them useless for some on-line state estimation 

applications [30]. 

Note that based on the method of approximation, the nonlinear Gaussian filters may 

be classified into different categories. These categories include the linearization-based 

filtering, numerical integration based-filtering, and the adaptive and robust filtering. 
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2.4.1. Linearization-Based Filtering 

In this section, main approaches for nonlinear Gaussian filtering are reviewed. 

2.4.1.1. The Extended Kalman Filter (EKF) 

The extended Kalman filter (EKF) is used for estimating states of a nonlinear 

dynamic system. Local linearization is performed in this method in order to approximate 

the nonlinearity of the state or measurement model at the operating point and to calculate 

a corrective gain. The EKF derivation is based on the Taylor series expansion of the 

nonlinear state transition (2.1) and measurement (2.2) with linear terms. However, these 

nonlinear f and h functions cannot be applied to the covariance term directly, and their 

Jacobian’s must be computed. Similar to the KF, the EKF has two main stages as follows: 

1. The Prediction Step [41]: 

• Calculation of the predicted state and covariance estimates as follows [41]: 

1| |ˆ ˆ( , , ),k k k k k kx f x u w+ =  (2.61) 

1| | .T
k k k k k k kP F P F Q+ = +  (2.62) 

2. The Update Step [41]: 

• Calculation of the Jacobian of the system transition and measurement equations,kF

and 1kH + , respectively as follows [41]: 

|ˆ , ,
k k kk x u

f
F

x

∂=
∂

 (2.63) 

1|ˆ1 .
k kk x

h
H

x ++
∂=
∂

 
(2.64) 
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• Determination of the innovation (or measurement error) and its covariance as [41]: 

1 1 1|ˆ( ),k k k kV z h x+ + += −  (2.65) 

, 1 1 1| 1 1.+ + + + += +T
rc k k k k k kS H P H R  (2.66) 

• Calculation of the EKF's gain as follows [41]: 

1
1 1| 1 , 1 .−

+ + + += T
k k k k rc kK P H S  (2.67) 

• Updating the state and covariance estimates as follows [41]: 

1| 1 1| 1 1ˆ ˆ ,k k k k k kx x K V+ + + + += +  (2.68) 

1| 1 1 1 1|( ) .k k k k k kP I K H P+ + + + += −  (2.69) 

The main aspects of the EKF estimation technique may be summarized as: 

1. If the system is highly nonlinear, or a local linearization assumption does not fit 

the estimation problem well, a large estimation error will be produced and the 

EKF solution may lead to an estimate that diverges from the true state trajectory. 

2. Because of the linearization process, the EKF does not provide optimal state 

estimates in the RMSE sense. Also, it does not guarantee unbiased state estimates 

and the calculated error covariance matrix does not necessarily equal to the real 

error covariance matrix [44]. 

3. EKF’s parameters need to be tuned such that the convergence improves. The 

convergence of the EKF is also dependent on the choice of the initial state 

estimates [44]. 
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2.4.2. Numerical Integration-Based Filtering 

As discussed, the main difficulty produced within the EKF derivation is the local 

linearization at a single point in the state probability densities. In order to ameliorate this 

difficulty, several techniques were proposed. Some techniques use the higher-order terms 

of the Taylor series expansion for approximating nonlinearities and lead to the so-called 

higher-order filters (e.g., second-order filter [68,18]). However, due to some difficulties 

appearing in calculation of the Hessian matrix, these approaches have not been used in 

the recent state estimation strategies. In order to overcome the main drawbacks of 

linearization-based approaches for nonlinear state estimation, the estimation filter may be 

constructed based on the transformation of statistical information. In regards to the 

computational issues, it is understood that approximating a probability distribution is 

much easier than approximating an arbitrary nonlinear transformation [68]. It in turn 

results in using the PDF approximation techniques for solving the integrals of equations 

(3) through (7). The main basis for the integration-based estimation approach may be 

summarized in three main steps [68]: 

1. Calculating the mean and covariance of a probability density via a set of selected 

samples 

2. Propagating the samples by means of the nonlinear transformation function 

3. Determining the parameters of the propagated Gaussian approximation from the 

transformed samples 

As explained, the Bayesian filtering paradigm is mainly based on calculating 

Gaussian weighted integrals whose integrands are formulated as: nonlinear function × 

Gaussian density. In order to make a general formulation of the numerical integration-

based filtering, one may consider a multi-dimensional weighted integral stated as [30]: 
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( ) ( ) ( ) ,
D

I f f x w x dx= ∫  (2.70) 

where ( )f x  is an arbitrary function, nD ⊆ ℝ  is the region of integration, and ( ) 0w x ≥  

is the known weighting function applied for all x D∈ . In Gaussian filtering, ( )w x  has a 

Gaussian distribution and preserves the non-negativity condition in the entire region

nD ⊆ ℝ . In some cases, it may be extremely difficult to solve the integral (70) 

analytically. Hence, a numerical integration technique may be sought in which a set of 

points ix  and weights iw  is used to approximate the integral ( )I f  through a weighted 

summation, as follows [30]: 

1

( ) ( ).
m

i i
i

I f w f x
=

≈∑  (2.71) 

In order to calculate{ , }i ix w , there are two main approaches including the product 

and non-product rules that are described as follows [30]: 

1- Product rules: In this approach, the quadrature rule is used to calculate the 

integral (70) numerically [69]. In the case of Gaussian filters, this rule is restated 

by the Gauss-Hermite quadrature rule, when the weighting function ( )w x  has a 

Gaussian distribution. The integrand ( )f x  is then approximated by a polynomial 

in terms of x, and the Gauss-Hermite quadrature rule is applied to calculate the 

Gaussian-weighted integral [30]. Julier and Uhlmann introduced the Unscented 

Kalman filter (UKF) [70] based on the unscented transform, as another example of 

this approach. Furthermore, Ito and Xiong [71] proposed two different techniques. 

The first technique is the Gauss-Hermite filter (GHF) formulated based on the 

Gauss-Hermite quadrature rule and the second technique is the central difference 

filter (CDF) formulated based on the interpolation techniques. 
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2- Non-product rules: This approach is used to address the dimensionality issue in 

the product rules approach. In this context, the integrals are numerically solved by 

selecting sample points from the integration domain and applying the non-product 

rules. Some of the main non-product rules include the Monte Carlo technique [72], 

quasi-Monte Carlo technique [73], Lattice rules [74], and sparse grids [75]. The 

randomized Monte Carlo technique calculates integrals by utilizing a set of 

equally weighted sample points that are selected randomly. The quasi-Monte 

Carlo technique and lattice rule use a deterministic approach to produce the 

sample points from a unit hyper-cubic region [30]. The sparse grids method is a 

numerical technique used to integrate or interpolate high dimensional functions 

based on the Smolyak’s rule. The sparse grids method searches to find the more 

important dimensions and put more grid points there [30]. 

The simplest technique among numerical integration-based filters is the unscented 

Kalman filter (UKF) invented by Julier and Uhlmann [70]. The unscented transform is 

used in the UKF to transform statistical information of the probabilistic densities into a 

predictor-corrector form. Wu and Hu described the unscented transform as a statistical 

linear regression technique that uses the system information at multiple points, in spite of 

the local linearization (e.g., the EKF) uses information of only one point [68]. More 

efficient filters are obtained by developing the Gauss-Hermite rule for numerical 

integration, such as the Quadrature Kalman filter (QKF) [28,27]. In other research, 

Norgaard, Poulsen, and Ravn [65] invented the Divided Difference filter (DDF) to 

overcome several difficulties that appear in calculation of the derivatives in the EKF 

formulation. The DDF approximates the derivatives (e.g., Jacobian/Hessian matrices) and 

replaces them by the central divided difference. This is performed using the Sterling’s 

polynomial interpolation criterion that makes the DDF a derivative free filter [68]. 
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More recently, Ito and Xiong presented the mixed Gaussian filter that approximates 

the conditional probability density of states using a linear combination of multiple 

Gaussian distributions [71]. In order to update estimates in the mixed Gaussian filter, a 

Gaussian filter is applied to each Gaussian distribution, when each update is independent 

from the others and they operate in a parallel manner [71]. Kotecha and Djuric [76] 

invented the Gaussian Particle filter (GPF) technique. Since the GPF selects an optimal 

number of random samples and also benefits from the ability of analytical calculation and 

transformation of samples, it may be considered as a near-optimal estimation technique. 

The GPF is an extension to the Gaussian filter and applies the Monte Carlo integration 

technique to the Bayesian update rule [68]. Note the main drawback of any random-based 

sampling method (e.g., the GPF) is its high computational cost that makes it useless for 

on-line applications [77]. In the subsequent section, some of the main Gaussian filters that 

use the numerical integration-based approach are reviewed and compared in terms of 

accuracy, efficiency and computational cost. 

2.4.2.1. The Unscented Kalman Filter (UKF) 

The next important development to the Kalman filter is the unscented Kalman filter 

(UKF) [41]. Its formulation is based on a weighted statistical linear regression approach 

that linearizes the nonlinear state model statistically [78,8]. The UKF method produces a 

certain number of points called the sigma points from the projected probability 

distribution of the system’s states. In order to provide the a posteriori estimate of the 

probability distribution, the sigma points are then mapped through the system’s nonlinear 

model. This strategy makes any linearization unnecessary. Therefore, the calculation of 

the Jacobian matrices is avoided and the accuracy of the state estimation increases 

considerably [79,8]. 
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The UKF utilizes a deterministic sampling approach,

transform, to select a minimal set of sample points around the mean. The minimal sets of 

points are known as sigma points

functions. It is possible to 

density using the Monte Carlo sampling

The UKF can capture the 

nonlinearity, and is therefore more accurate than the EKF. Another advantage of the UKF 

is that there is no need to compute the Jacobian or partial derivatives

has a number of different forms that include the general unscented 

unscented [41,81,82], and the spherical unscented 

UKF is explained and simulated.

Figure 2.7 shows a schematic representation of the unscented transformat

in the UKF method. To formulate the UKF, assume an 

with a mean |k kx  and covariance 

points. The UKF process is recursive, and can be formulated in 

prediction and update as follows

Figure 2.7: Schematic of the unscented transformation 
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The UKF utilizes a deterministic sampling approach, referred to as the unscented 

transform, to select a minimal set of sample points around the mean. The minimal sets of 

s are known as sigma points. The sigma points are propagated using the nonlinear 

. It is possible to approximately determine the mean and covariance of the 

Monte Carlo sampling technique or Taylor series approximation 

The UKF can capture the a posteriori mean and covariance to the third order for any 

nonlinearity, and is therefore more accurate than the EKF. Another advantage of the UKF 

o compute the Jacobian or partial derivatives [80

has a number of different forms that include the general unscented [41

, and the spherical unscented [41,81,82]. Here, only the standard 

UKF is explained and simulated. 

Figure 2.7 shows a schematic representation of the unscented transformat

To formulate the UKF, assume an n-dimensional state vector of 

and covariance |k kP  that are approximated by 2n+1 weighted sigma 

points. The UKF process is recursive, and can be formulated in two main steps of the 

as follows [80]: 

Schematic of the unscented transformation used in the UKF (Taken from 

referred to as the unscented 

transform, to select a minimal set of sample points around the mean. The minimal sets of 

are propagated using the nonlinear 

the mean and covariance of the 

or Taylor series approximation [80]. 

mean and covariance to the third order for any 

nonlinearity, and is therefore more accurate than the EKF. Another advantage of the UKF 

80,70]. The UKF 

41,81], the simplex 

. Here, only the standard 

Figure 2.7 shows a schematic representation of the unscented transformation used 

dimensional state vector of kx , 

+1 weighted sigma 

two main steps of the 

 

used in the UKF (Taken from [83]) 
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1. The prediction step [80]: 

• Calculation of the sigma points as follows [80]: 

0
| |

| | |

| | |

, 0

( ) , 1, , ,

( ) , 1, ,

k k k k

i
k k k k k k i

i n
k k k k k k i

x i

x P i n

x P i n

χ

χ γ

χ γ+

 = =

 = + =


= − =

…

…

 (2.72) 

where the parameter nγ κ= + is the associated weight of samples, determined as [80]: 

0 /( ), 0
,

1 /( 2( )), 1, ,2i

w n i

w n i n

κ κ
κ

= + =
 = + = …

 (2.73) 

whereκ is a scaling factor. Note that( )|( ) k k
i

n Pκ+  is the i th row or column of the matrix 

square root of |( ) k kn Pκ+ .Furthermore, the normalized weights sum to one. 

• Predicting the state mean and covariance by propagating sigma points as [80]: 

1| |( ),i i
k k k kfχ χ+ =  (2.74) 

2

1| 1|
0

ˆ ,
n

i
k k i k k

i

x w χ+ +
=

= ∑  (2.75) 

2

1| | 1| | 1|
0

ˆ ˆ .
n Ti i

k k k i k k k k k k k k
i

P Q w x xχ χ+ + +
=

  = + − −
  ∑  (2.76) 

• Calculating the measurement predictions as [80]: 

1| 1|( ),i i
k k k khξ χ+ +=  (2.77) 

2

1| 1|
0

ˆ .
n

i
k k i k k

i

z wξ+ +
=

= ∑  (2.78) 



PhD Thesis – H. Afshari; McMaster University, Mechanical Engineering 

49 
 

2. The update step [80]: 

• Calculating the UKF gain [80]: 

2

1| 1| 1| 1|
0

ˆ ˆ ,
n Ti i

z i k k k k k k k k
i

P w z zξ ξ+ + + +
=

  = − −
  ∑  (2.79) 

2

1| 1| 1| 1|
0

ˆ ,
n Ti i

xz i k k k k k k k k
i

P w x zχ ξ+ + + +
=

  = − −
  ∑  (2.80) 

1.k xz zK P P−=  (2.81) 

• Calculating the state mean and covariance updates [80]: 

1| 1 1| 1|ˆ ˆ ˆ( ),k k k k k k k kx x K z z+ + + += + −  (2.82) 

1| 1 1| .T
k k k k k z kP P K P K+ + += −  (2.83) 

The main aspects of the UKF estimation technique are summarized below: 

1. The UKF is similar to Monte Carlo methods, because it uses a number of points to 

estimate the system’s mean and covariance. But the main difference is that UKF 

only uses a small number of points that are not generated randomly. Hence, the 

computational cost decreases. The convergence of the UKF is highly dependent on 

the choice of sigma points [81]. 

2. The UKF is better than the EKF in terms of the accuracy and computational cost. 

Tuning the EKF can be problematic when the Jacobian matrix is not derived easily. 

Furthermore, the EKF can only handle limited levels of nonlinearities. 

3. The UKF provides a trade-off between the particle filter and EKF in terms of 

accuracy and computational cost. 
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2.4.2.2. The Gauss-Hermite Filter (GHF) 

The Gauss-Hermite quadrature rule is the main basis for constructing the Gauss-

Hermit filter (GHF). The rule states the weight function is assumed to be Gaussian 

density with zero mean and unit variance ( ;0,1)N x , when the interval of interest is 

( , )−∞ ∞ . It is difficult to calculate quadrature points iq  and weights iw  analytically for 

a nonlinear system. In this context, some appropriate points should be chosen as the 

quadratic points based on the problem under study. Thereafter, the weights iw  may be 

obtained by calculating the moments iM  of the integral for the m number of quadrature 

points as follows [28]: 

( ) , for i {0, 1, ..., m-1},
b

i
i

a

M x W x dx= ∈∫  (2.84) 

The Vandermonde system of equations is stated as follows [28]: 

1 0

1 2 2 1

1 1 1
11 2

1 1 ... 1

...
.

...

m

m m m
m mm

w M

q q q w M

w Mq q q− − −
−

    
    
    =
    
     

    

⋮ ⋮ ⋮ ⋮ ⋮
 (2.85) 

The set ( , )i iq w  may be used to approximate an integral using the quadrature rule as 

follows [71]: 

2| |
/ 2

1

1
( ) ( ),

(2 )n

N
x

i in
i

F x e dx w F q
π

−

=
∑∫

ℝ

∼  (2.86) 

where 0x̂  and 0P  are starting values for the mean and covariance of the random variable 

(0)x . More details on the Gauss-Hermite quadrature rule and its applications for 
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numerical integration are provided in [28,71]. The GHF process is summarized in two 

main steps [71] as follows. 

1- Prediction step [71]: 

To begin, one must factor the covariance as1| 1
T

k kP S S− − = , and then set 

1| 1
T

i i k kx S q x − −= + . Following this, the values of state and its error covariance may be 

predicted [71]: 

1|
1

( ) ,
N

k k i i
i

x f x w+
=

=∑  (2.87) 

1| 1| 1|
1

( ( ) )( ( ) ) .
N

T
k k i k k i k k i

i

P Q f x x f x x w+ + +
=

= + − −∑  (2.88) 

2- Update step [71]: 

The predicted state and covariance estimates may be updated as [71]: 

1| 1 1| ˆ( ),k k k k k k kx x L z z+ + += + −  (2.89) 

1| 1 1| ,T
k k k k k xzP P L P+ + += −  (2.90) 

where [71]: 

1

ˆ ( ) ,
N

k i i
i

z h x w
=

=∑  (2.91) 

1|
1

ˆ( ) ( ( ) ) ,
N

T
xz i k k i k i

i

P x x h x z w+
=

= − −∑  (2.92) 

1

ˆ ˆ( ( ) )( ( ) ) ,
N

T
zz i k i k i

i

P h x z h x z w
=

= − −∑  (2.93) 
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1( ) .k xz zzL P R P −= +  (2.94) 

Note that the main advantage of using the quadrature rule for approximation is that there 

is no need to calculate derivatives of the state transition and measurement matrices [71]. 

 

2.4.2.3. The Quadrature Kalman Filter (QKF) 

The quadrature Kalman filter (QKF) was introduced and implemented by 

Arasaratnam and Haykin in 2007 [28]. The QKF was firstly formulated for nonlinear 

systems with an additive Gaussian distribution of the noise. In this formulation, the 

process and measurement models are linearized by using the statistical linear regression 

approach that projects the Gaussian density function based on a set of Gauss-Hermite 

quadrature points [28,84]. The main concept of the new QKF was extended to cover 

discrete-time nonlinear systems with an additive non-Gaussian distribution of the noise. 

In this extension, a bank of parallel QKFs referred to as the Gaussian sum-

quadrature Kalman filter was used to approximate the a priori and a posteriori density 

functions. This approximation was alternatively performed using a finite number of 

weighted summations of Gaussian distributions, when the weights are calculated from the 

residuals of the QKFs [28]. Arasaratnam, Haykin, and Elliott reported that the Gaussian 

sum-quadrature Kalman filter is more accurate than other nonlinear filtering methods, 

such as the basic particle filters. They proposed the Gaussian-sum EKF technique for 

solving nonlinear non-Gaussian filtering problems [28]. 

In this chapter, only the general formulation of the QKF for nonlinear systems with 

an additive Gaussian distribution of noise is explained. Similar to the GHF, at first the a 

priori  and the a posteriori error covariance must be factored respectively as: 
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| | |( )Tk k k k k kP P P= and 1| 1| 1|( )Tk k k k k kP P P+ + += . The QKF may be summarized in two 

steps that include the prediction and update steps as follows [28]. 

1. The prediction step [28]: 

• Calculation of the quadrature points { }, | 1

m

l k k l
X

=  
for states [28]: 

, | | |ˆ .l k k k k l k kX P xξ= +  (2.95) 

• Evaluation of the predicted quadrature points { }*
, 1| 1

m

l k k
l

X + =  
for states [28]: 

*
, 1| , |( , , ).l k k l k k kX f X u k+ =  (2.96) 

• Calculation of the predicted state estimate [28]: 

*
1| , 1|

1

ˆ .
m

k k l l k k
l

x Xω+ +
=

=∑  (2.97) 

• Evaluation of the predicted error covariance [28]: 

* *
1| , 1| , 1| | 1 | 1

1

ˆ ˆ( ) ( ) .
m

T T
k k l l k k l k k k k k k k

l

P X X x x Qω+ + + − −
=

= − +∑  (2.98) 

At this stage, the predicted density 1 1: 1| 1|ˆ( | ) ( , )k k k k k kP x z x P+ + += Ν  is obtained. 

• Calculation of the predicted quadrature points { }, 1| 1

m

l k k l
Z + =  

for measurement [28]: 

, 1| , 1|( , , ).l k k l k k kZ h X u k+ +=  (2.99) 

• Evaluation of the predicted measurement [28]: 
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1| , 1|
1

ˆ .
m

k k l l k k
l

z Zω+ +
=

=∑  (2.100) 

• Evaluation of the predicted error covariance matrix and cross covariance matrix as 

follows [28]: 

, 1| 1 , 1| , 1| , 1| , 1|
1

ˆ ˆ .
m

T T
zz k k k l l k k l k k l k k l k k

l

P R Z Z z zω+ + + + + +
=

= + −∑  (2.101) 

, 1| , 1| , 1| 1| , 1|
1

ˆ ˆ .
m

T T
xz k k l l k k l k k k k l k k

l

P X Z x zω+ + + + +
=

= −∑  (2.102) 

2. The update step [28]: 

• Evaluation of the QKF gain as [28]: 

1
1 , 1| , 1| .k xz k k zz k kW P P−

+ + +=  (2.103) 

• Calculation of the update state and covariance estimates [28]: 

1| 1 1| 1 1 1|ˆ ˆ ˆ( ).k k k k k k k kx x W z z+ + + + + += + −  (2.104) 

1| 1 1| 1 , 1| 1.
T

k k k k k zz k k kP P W P W+ + + + + += −  (2.105) 

Finally, the a posteriori density 1 1: 1 1| 1 1| 1ˆ( | ) ( , )k k k k k kP x z x P+ + + + + += Ν  is calculated. 

The main aspects of the QKF estimation technique may be summarized as: 

1. If the a priori mean is far from the a posteriori mean, the EKF will fail to make 

accurate estimates. Since the QKF needs only to calculate some functions and not 
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the derivatives of (.)f  and (.)h , it may be applied to non-smooth and non-

analytical systems [28]. 

2. The QKF is able to estimate systems with correlated or non-additive Gaussian 

process and measurement noise, by adding terms to the state vector and relevant 

covariance [28]. 

3. The main disadvantage of the QKF is evident when applied to high dimensional 

systems, especially when the state vector size is greater than six. In high 

dimensional systems, the QKF’s error covariance matrix may diverge from its 

nominal value [28]. 

4. Another disadvantage of the QKF is evident when applied to estimate systems. 

When applied to estimate systems with a limited word length for a long period of 

time, the round-off errors will accumulate and the QKF’s accuracy may decrease. 

This may even cause numerical instability for the QKF in some cases [28]. 

 

2.4.2.4. The Cubature Kalman Filter (CKF) 

The Cubature Kalman filter (CKF) is a nonlinear state estimation technique for 

large-dimensional systems. It was invented and implemented by Arasaratnam and Haykin 

in 2009 [30]. The CKF formulation is based on a cubature transformation [85] that makes 

it possible to numerically calculate the Gaussian-weighted integrals for nonlinear 

Bayesian filtering. In order to produce a set of cubature points that will be later mapped 

through the state transition model, a third-degree spherical-radial cubature rule is used 

[30]. The cubature transformation overcomes the divergence and dimensionality issues 

that are the main issues with running the EKF, UKF or QKF estimation techniques. 

Furthermore, the CKF provides more accurate state estimates for nonlinear systems 

subjected to white Gaussian noise [86]. The cubature transformation helps the CKF to 
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reduce the computational difficulties of calculating conditional density for some solvable 

multi-dimensional integrals. 

As discussed previously, by assuming the conditional densities to be Gaussian, the 

Bayesian solution to the filtering problem leads to solving multi-dimensional integrals 

whose integrands are generally represented as ( ) ( ) ( ; , ) ,
n

xxh f f x N x x P dx= ∫ℝ  
where ( )f x

is an arbitrary nonlinear function in n-dimensional space n
ℝ , and ( ; , )xxN x x P  is a 

normalized Gaussian function with the mean x  and covariance matrix xxP . The CKF 

uses the cubature rule to numerically approximate these Gaussian-weighted integrals. The 

cubature rule used for approximating such n-dimensional integral is given by [30]: 

1
( ) ( ; , ) ( ),

2n

xx xx
if x N x x P dx f x P

n
ξ≈ +∫ℝ  (2.106) 

where the covariance is factorized as 
T

xx xx xxP P P= and a set of 2n cubature points that 

are calculated by: 

, 1,2, ,
,

, 1, 2, ,2

i
i

i n

n e i n

n e i n n n
ξ

−

 == 
− = + +

…

…

 (2.107) 

where n
ie ∈ ℝ represents the i th elementary column vector. Arasaratnam and Haykin 

proposed the third degree cubature rule to approximate polynomial integrands [30]. 

The main structure of the CKF is similar to the UKF, but they are based on a 

thoroughly different set of deterministic points that provide weights for Gaussian 

integrals. The UKF utilizes the unscented transform to weight the selected sigma point 

set, whereas the CKF utilizes the cubature rule to provide weights for cubature point set. 
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Figure 2.8 presents a comparison of the point set distributions for the UKF and CKF 

estimation techniques. As illustrated, the location and the height of each point represent 

the sample point and its weights respectively. The main advantage of using the cubature-

point set made by the CKF over the sigma-point set made by UKF is to increase the filter 

stability as well as its numerical accuracy. It is also possible to derive the square-root 

version of the CKF in spite of the UKF [30]. 

  

(a) Sigma point set for the UKF (b) Third degree spherical-radial cubature 
point set for CKF 

Figure 2.8: Comparison of the 2-D point set distribution in UKF and CKF (Taken from [30]) 

 
The CKF process is recursive and can be summarized in two main steps of 

prediction and update (like other Kalman filtering techniques) which are summarized 

below. It is important to note that similar to the GHF, at first the a priori and the a 

posteriori error covariance should be factorized respectively: | | |( )Tk k k k k kP P P= and 

1| 1| 1|( )Tk k k k k kP P P+ + +=  [30]. 

1. The prediction step [30]: 

• Evaluation of the cubature points { }, | 1

m

i k k i
X

=
 for states as [30]: 
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, | | |ˆ .i k k k k i k kX S xξ= +  (2.108) 

• Calculation of the predicted cubature points { }*
, 1|

1

m

i k k
i

X + =
 for states as [30]: 

*
, 1| , |( , , ).i k k i k k kX f X u k+ =  (2.109) 

• Prediction of the state values [30]: 

*
1| , 1|

1

1
ˆ .

m

k k i k k
i

x X
m+ +

=
= ∑  (2.110) 

• Estimation of the predicted error covariance [30]: 

* *
1| , 1| , 1| | 1 | 1

1

1
ˆ ˆ( ) ( ) .

m
T T

k k i k k i k k k k k k k
i

P X X x x Q
m+ + + − −

=
= − +∑  (2.111) 

• Calculation of the predicted cubature points { }, 1| 1

m

i k k i
Z + =

 for measurement [30]: 

, 1| , 1|( , , ).i k k i k k kZ h X u k+ +=  (2.112) 

• Evaluation of the predicted measurement [30]: 

1| , 1|
1

1
ˆ .

m

k k i k k
i

z Z
m+ +

=
= ∑  (2.113) 

• Evaluation of the predicted error covariance matrix and cross covariance matrix as 

follows [30]: 
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, 1| 1 , 1| , 1| , 1| , 1|
1

1
ˆ ˆ .

m
T T

zz k k k i k k i k k l k k l k k
i

P R Z Z z z
m+ + + + + +

=
= + −∑  (2.114) 

, 1| , 1| , 1| 1| , 1|
1

ˆ ˆ .
m

T T
xz k k i i k k i k k k k l k k

i

P X Z x zω+ + + + +
=

= −∑  (2.115) 

2. The update step [30]: 

• Evaluation of the CKF gain as [30]: 

1
1 , 1| , 1| .k xz k k zz k kW P P−

+ + +=  (2.116) 

• Calculation of the update state and covariance estimates as [30]: 

1| 1 1| 1 1 1|ˆ ˆ ˆ( ).k k k k k k k kx x W z z+ + + + + += + −  (2.117) 

1| 1 1| 1 , 1| 1.
T

k k k k k zz k k kP P W P W+ + + + + += −  (2.118) 

The main advantages of the CKF over other estimation methods are as follows [30]: 

1. Note that the cubature rule is a derivative-free transformation and hence, it 

removes the difficulties that may appear in the calculation of the Jacobian and 

Hessian of systems with complicated nonlinearities. This derivative-free 

characteristic allows writing the pre-packaged computer programs [30]. 

2. The cubature rule involves 2n cubature points, where n is the number of state 

variables. Hence, 2n functional computations are required at each iteration cycle. 

The computational complexity is linearly changing with the state vector 

dimension n and this makes the CKF effective for estimating high dimensional 

systems [30]. 
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3. Presence of the negative weight in the CKF formulation prevents the 

factorization of the covariance matrix in a squared form. The CKF formulation 

of the filter guarantees that the sample weights are positive definite and hence 

the squared form of the CKF is always available [30]. 

In order to increase the accuracy of the CKF, Jia, Xin, and Cheng have introduced a 

new family of CKFs with arbitrary degrees of accuracy that calculate the spherical and 

radial integrals [87]. The described third-degree CKF is a special example of this family. 

The accuracy and performance of the high-order CKFs is similar to the Gauss-Hermite 

filter (GHF). To achieve (2m+1)th degree of accuracy, the number of points that are 

required for the cubature transform increases by the dimension n polynomially. Since the 

computational cost of CKF is a polynomial function of the point’s dimension, it is 

computationally more efficient than the GHF [87]. 

 

2.4.2.5. The Monte Carlo Kalman Filter (MCKF) 

In the Monte Carlo Kalman filter (MCKF), the Monte Carlo numerical integration 

technique is used for approximating the expected values in the integral forms. In this 

approach, sN  samples are drawn from the state Gaussian distribution ( ; , )xxN x x P , 

where { }( ), 1,...,i
sx i N= is a set of particles (random samples) with weights 

{ }( ) 1/ , 1,...,i
s sw N i N= = . The state distribution may be approximated using the Monte 

Carlo technique as [88]: 

( ) ( )

1

( ; , ) ( ),
sN

xx i i

i

N x x P w x xδ
=

−∑≃  (2.119) 
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where sN  is the number of samples and δ  is the Dirac function. Note that the 

probability density near the sample ( )ix  is obtained by the density of points in a region 

around ( )ix . If sN → ∞ , the approximation of the integral will converge to its true value. 

The MCKF estimation process is constructed based on approximating the predicted 

values of state, measurement, and their covariance through the Monte Carlo numerical 

integration technique [88]. 

The MCKF process is recursive and is summarized in two steps, similar to other 

Gaussian filters.  The summary describes the two steps that address prediction and update 

as follows [88,89]. 

1- Prediction Step [88,89]: 

• Generating prior samples based on Gaussian assumption and starting from 

0|0 0|0ˆ , xxx P as: 

( )
| || ( , , ).i xx

k k k k kk kx N x x P≈  (2.120) 

• Prediction of the state and error covariance using the state transition model as: 

( )
1| |

1

1
ˆ ( ),

sN
i

k k k k
s i

x f x
N+

=
= ∑  (2.121) 

( ) ( ) ( ) ( )
1| | | | |

1 1 1

1 1 1
( ) ( ) ( ) ( ) .

s s sN N N
xx i T i i i

k k k k k k k k k k
s s si i i

P f x f x f x f x Q
N N N+

= = =

   
= − +   

      
∑ ∑ ∑  (2.122) 

• Generating predictive samples: 

( )
1 1| 1|1| ( , , ).i xx

k k k k kk kx N x x P+ + ++ ≈  (2.123) 
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• Prediction of the measurement and its covariance and cross-covariance with the 

state as follows: 

( )
1| 1|

1

1
ˆ ( ),

sN
i

k k k k
s i

z h x
N+ +

=
= ∑  (2.124) 

( ) ( ) ( ) ( )
1| 1| 1| 1| 1|

1 1 1

1 1 1
( ) ( ) ( ) ( ) .

s s s
TN N N

zz i i i i
k k k k k k k k k k

s s si i i

P h x h x h x h x R
N N N+ + + + +

= = =

   
= − +   

      
∑ ∑ ∑  (2.125) 

( ) ( ) ( ) ( )
1| 1| 1| 1| 1|

1 1 1

1 1 1
( ) ( ) .

s s s
TN N N

xz i i i i
k k k k k k k k k k

s s si i i

P x h x x h x
N N N+ + + + +

= = =

   
= −    

      
∑ ∑ ∑  (2.126) 

2- Update Step [88,89]: 

• Calculating the MCKF gain as: 

1
1 1| 1|( ) .xz zz

k k k k kK P P −
+ + +=  (2.127) 

• Updating the state and the error covariance as: 

1| 1 1| 1 1 1|ˆ ˆ ˆ( ),k k k k k k k kx x K z z+ + + + + += + −  (2.128) 

1| 1 1| 1 1| 1 .xx xx zz T
k k k k k k k kP P K P K+ + + + + += −  (2.129) 

The main issues of the MCKF are summarized below: 

1. The Monte Carlo integration rule is similar to the quadrature integration rule 

presented previously. The two rules are similar, however, a difference between the 

two rules exist. In the quadrature rule, the sample points are selected at fixed 

intervals, while in the Monte Carlo rule they are selected randomly [88]. 
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2. In the Monte Carlo integration process, the variance of state estimation is 

proportional to 1/ sN  which means for a simulation study with 104 samples, the 

error in variance is equal to 1%. Since the numeric integration of the Monte Carlo 

process is recursive, it may result in increased error and the filter’s divergence 

[90,89]. 

3. The computational cost of the MCKF is independent of the number of dimensions 

of the integrands. The GHF computational cost is proportional to nM and 

therefore, by increasing the system dimension, growth occurs rapidly. Hence, for 

such cases with a large dimension, the MCKF is more popular than the GHF 

[88,90]. 

 

2.4.2.6. The Gaussian Particle Filter (GPF) 

The Gaussian particle filter (GPF) was invented by Kotecha and Djuric in 2003 

[76]. It uses the important sampling technique to approximate the a posteriori mean and 

covariance of Gaussian distributions. The approximation procedure of the GPF is similar 

to the particle filter. The only difference is that in spite of the particle filter, the GPF does 

not require resampling that increases filter complexity. Under the Gaussian assumptions, 

the GPF is optimal in the number of particles, which improves the filter performance 

against large nonlinearities. Alspach and Sorenson [91] introduced the Gaussian sum 

filter (GSF) method that approximates the posterior densities using the finite Gaussian 

mixtures. The approximation is performed using the Gaussian mixture and provides more 

accurate estimates over the techniques that are based on calculating probability densities 

of the grids [92]. 
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The GPF approximates updated distribution by using a Gaussian distribution such 

that 0:( | ) ( ; , )xx
k k k k kp x z N x x P≈ . Note that there are no general solutions for the mean 

ˆkx  and covariance x x
kP of distribution 0:( | )k kp x z . The GPF technique is able to 

estimate the mean and covariance from the samples ( )i
kx  and their weights using the 

Monte Carlo numerical integration. The GPF’s samples are produced using an importance 

sampling function 0:( | )k kx zπ . The GPF estimation process is recursive and has two 

main steps [76]: 

1- Measurement update [76]: 

• Produce samples from the importance function 0:( | )k kx zπ  and present them as 

( )
1{ }j M

jkx = . 

• Calculate the corresponding weights as follows [76]: 

( ) ( )
( )

( )
0:

( | ) ( , , )
.

( | )

j j xx
j k k k kk k

k j
kk

p z x N x x x P
w

x zπ
=

=  (2.130) 

• Normalize the weights as: 

( ) ( ) ( )

1

/ .
M

j j j
k k k

j

w w w
=

= ∑  (2.131) 

• Estimate the mean and covariance respectively as follows [76]: 

( ) ( )

1

( ) ( ) ( )

1

,

.

M
j j

k k k
j

M Hxx j j j
k k kk k k

j

x w x

P w x x x x

=

=

=

   =
   

∑

∑
 (2.132) 
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2- Time update [76]: 

• Produce samples from ( , , )xx
k k kN x x P  and present them as 

( )
1{ }j M

jkx = . 

• For 1, ,j M= … produce samples from ( )
1( | )j

k k kp x x x+ =  to calculate
( )

11{ }j M
jkx =+ . 

• Update the mean and covariance respectively as follows [76]: 

( )
1 1

1

( ) ( )
1 1 11 1

1

1
,

1
.

M
j

k k
j

M Hxx j j
k k kk k

j

x x
M

P x x x x
M

+ +
=

+ + ++ +
=

=

   =    

∑

∑
 (2.133) 

Figure 2.9 presents a block-diagram scheme of the Gaussian particle filter (GPF). 

 

Figure 2.9: Block-diagram scheme of a one-cycle GPF estimation process 

 

Some of the advantages and disadvantages of the Gaussian Particle Filter (GPF) 

may be summarized as follows [76]: 
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• The GPF provides more accurate state estimates than the EKF, and UKF. The 

additive Gaussian noise assumption may be easily alleviated without any needs to 

modify the filter algorithm. 

• Since the GPF does not perform resampling, it has a lower computational cost in 

comparison to the particle filter. This makes the GPF be more suitable for real-

time state estimation. 

• In the GSF, the model is approximated using a weighted bank of Gaussian noise 

models. Alternatively, the GPF filtering and predictive distributions are only 

approximated based on a single Gaussian distribution. As a result, there is a 

decrease in the amount of complexity in GPF. 

 

2.4.3. Adaptive Filtering 

The previous state estimation techniques are all formulated under the assumption 

that statistics of the input and measurement noise and system parameters are known. 

However, in real applications, there is often some degree of uncertainty or inaccuracy in 

the values of physical parameters, initial conditions, or noise characteristics. Applying the 

filter without any modification to such cases degrades the optimality of the estimation 

method and increases the state estimation error. In order to alleviate such effects, one 

solution is to estimate the uncertain parameters and noise statistics during the filtering 

process and then augment an adaptation mechanism to the filter. This mechanism is 

referred to as an adaptive filter, which tunes the filter gain based on the parametric 

variations or noise statistics. Note that adaptation is considered into the filtering process 

such that robustness against statistical variation of parameters increases. Adaptation does 

not affect optimality of the filter with respect to a specific statistical model [93]. 
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There are two main approaches for adaptive state estimation including the Multiple 

Models (MM) approach and the adaptive filter design based on gain adaptation. In the 

MM approach, several state-space models are used to cover all operating regimes of the 

system. Each model presents a particular operating regime of the system under certain 

conditions. The state and covariance estimates are calculated as a weighted summation of 

each filter output. In contrast, in the adaptive filter with gain adaptation approach, there is 

only one model of the system and some techniques are augmented to estimate the state 

and known parameters recursively based on statistic properties of noise and uncertainties. 

2.4.3.1. Adaptive Filtering with Gain Adaptation 

There are three main approaches for adapting the filter gain that include [94,95]: 

1- Joint filtering of state and parameters: In this approach, the system’s unknown 

parameters are considered as new states. Hence, the new state vector contains the 

former states and unknown parameters and used to estimate both the states and 

unknown parameters. There are several techniques that may combine with 

estimation filters (e.g. the EKF or the particle filter) and tune their gain to jointly 

estimate the unknown states and unknown parameters. However, this approach is 

not efficient in some situations and may cause numerical instability [94]. 

2- Online noise tuning: In this approach, when the filter starts to diverge, some 

techniques are applied for tuning the levels of measurement noise and or modeling 

uncertainties. The main symptom of the filter divergence is the characteristics of 

the error vector. By starting divergence, the error vector is not white and its 

covariance does not match with the predicted error covariance [94]. 

3- Batch estimation of parameters: In this approach, some off-line techniques are 

used to estimate the system and noise parameters based on a batch of 
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measurements. For instance, the expectation-maximization technique may be 

directly used to calculate the Maximum Likelihood Estimates (MLE). Meanwhile, 

the noise covariance may be estimated using heuristic procedures [94]. In the next 

section, the Kalman filtering process with adaptive (batch) estimation of the noise 

parameters is presented. 

2.4.3.2. Kalman Filtering with Adaptive Noise Estimation 

One may begin by considering a Kalman filtering process that is applied to a linear 

stationary system and estimates ˆkx , and kP at each time step 1, , .k N= … In this 

context, the KF innovation and its corresponding covariance are respectively calculated as

1 1 1|k k k kv z H x+ + += − and 1 1| 1
T

k k k kP H P H R+ + += + . The measurement covariance R may 

be estimated using the following off-line adaptive estimation procedure [94,95]: 

• Estimate the innovation bias and its corresponding covariance as [94]: 

1

1

1
,

1ˆ ( ) ( ) .
1

N

k
k

N
T

k k
j

N

P
N

ν ν

ν ν ν ν

=

=

=

= − −
−

∑

∑
 (2.134) 

• Estimate R based on the above relations as [94]: 

1|
1

1ˆ ˆ ( ) .
N

T
k k

k

R P H P H
N +

=
= − ∑  (2.135) 

In order to estimate Q, calculate 1|ˆk kx +  as: 1| 1 1| |ˆ ˆ( )k k k k k k k k kx x x F x x w+ + +− = − +ɶ ≜ , 

and then Q is obtained by: | 1|cov( ) cov( )T
k k k kQ F x F x += −ɶ ɶ . Now, the parameter |cov( )k kxɶ  
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may be approximated using |k kP , but it is impossible to approximate 1|cov( )k kx +ɶ  by 

1|k kP + through the filter. The reason is because if the filter approximates 1|k kP +  as:

1| |
T

k k k k kP F P F Q+ = + , then it leads to kQ  with the wrong covariance. The solution to this 

problem requires one to approximate 1kx +  by 1| 1ˆk kx + +  
in the following form [94]: 

1| 1| 1 1| 1ˆ ˆ .k k k k k k kx x x d+ + + + +≈ − =ɶ  (2.136) 

The estimation process continues as [94]: 

• Estimate 1|cov( )k kx +ɶ  as the empirical covariance of kd , as follows [94]: 

1

1|
1

1
,

1ˆ ( ) ( ) .
1

N

k
k

N
T

k k k k
k

X d
N

P d X d X
N

=

+
=

=

= − −
−

∑

∑

 (2.137) 

• Estimate Q using the following relation [94]: 

1| 1| 1
1

1ˆ ˆ ( ) .
N

T
k k k k

k

Q P F P F
N+ + +

=
= − ∑  (2.138) 

It is important to note that other variants of adaptive noise filtering may be used to 

improve the accuracy of estimation. There are also other techniques that modify the 

Kalman gain directly [95]. Figure 2.10 presents a block-diagram scheme of adaptive noise 

filtering via the KF process. 
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Figure 2.10: Schematic of adaptive noise filtering applied to the KF process [95] 

 

2.4.3.3. The Multiple Models (MM) Filtering 

An interesting approach for the modeling and estimation of complex nonlinear 

systems is to describe the system by a finite number of possible operating regimes. Such 

systems are generally classified as hybrid dynamical systems. A hybrid dynamical system 

is defined as a system that contains two types of time-varying elements [21]. The first 

type referred to as state variables, includes elements that vary with time. The second type 

includes elements that only transit from one operational mode to another. This is referred 

to as the mode or modal state. Note that the state variables only describe the systems 

dynamic behavior, while the mode states represent a possible system’s regime among a 

finite number of possible operating regimes. These formulations are often referred to as 

the Markovian jump or hybrid estimation phenomenon [21]. Further studies regarding the 

above phenomena are found in [21,96,97,98,99]. 

The multiple models (MM) approach is the most well-known approach used to 

describe a hybrid dynamic system in which a set of models is considered that covers all of 

the possible operating regimes. The estimated state or parameter is then obtained by a 

weighted summation of each individual estimate corresponding to a particular model.  

The first generation of the MM algorithms were produced by Magill [98] and Lainiotis 

[100,101], and were widely implemented and promoted by several researchers. These 
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researchers included Maybeck [102,103,104,105,106], Bar-Shalom [21,107,108,109], 

Rong Li [110,109,111,112], and a number of other prominent researches. The MM has 

attracted a significant amount of attention among other estimation techniques, especially 

in the areas of target tracking systems [113,108,114], health monitoring systems 

[115,116,117,118] and adaptive multiple model control systems [119,102,120]. 

In the MM approach, it is assumed that the dynamic system operates according to 

one of a finite number of models, each corresponding to a particular operating regime. 

These models may differ in their mathematical structure or in their noise and uncertainty 

characteristics. The structural differences include dimensions of state variables, system 

inputs, and outputs. Noise and uncertainties may differ in the level or their probability 

distributions and can be represented as an additive or multiplicative term [19,21]. MM 

filters are generally classified into two categories: static and dynamic. Static MM 

estimation algorithms were introduced in the 1960s. In the static MM method, the system 

follows a fixed operating mode and no switching occurred from one mode to another 

during the estimation process. 

In contrast, the dynamic MM estimator switches from one mode to another 

automatically in order to provide the most accurate estimate of the operating situation 

[21]. Tugnait presented a survey on suboptimal MM methods for discrete dynamic 

systems with abruptly changing structures [97]. Since the performance of the MM 

estimation strategy is directly related to the model sets selection, the primary difficulty in 

the implementation of MM methods lies in the correct identification of the model set. It 

has been proven that the use of too many models (i.e., over-designing the solution) may 

have as bad an effect on the solution as the use of too few models (i.e., under-designing) 

[112]. 
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2.4.3.3.1. Static versus Dynamic MM Filters 

In the static MM filter, it is assumed that the operating mode is constant and 

unknown. Thus, as the system follows one of the possible modes, the number of 

components in the mixture combination is fixed. The main problem is to identify which 

model should be in effect during the estimation process. However, in the dynamic MM 

method, the dynamic system can switch different operating modes to locate the most 

accurate regime, based on the overall estimated mean and covariance. The design process 

of MM filters has four main stages: model set design, filter selection, estimation fusion, 

and filter re-initialization [21]. In the model set design stage, several mathematical 

models, each describe a particular operating regime, are defined. Along with each 

mathematical model an estimation filter (e.g. Kalman filter) is set [21]. 

In the filter selection stage of the MM filtering, the best model-based filter that fits 

with the input-output data is selected among the bank of filters. Thereafter, in the 

estimation fusion stage, the final values of the estimated state and covariance are 

calculated through a weighted summation of the calculated mode condition properties. In 

this way, three kinds of decisions are proposed: soft, hard, and random decisions [99]. 

Filter re-initialization is an important stage, and reinitializes each single model-based 

filter at the beginning of each time step. Essentially, each filter uses its previous state and 

covariance estimate at the current cycle [21]. It provides a non-interacting MM estimator 

such as the multiple model adaptive estimation (MMAE), while some filters work in 

parallel without any direct interactions. The most efficient and popular way to reinitialize 

the state and covariance estimates is based on the IMM filter method [99]. 

In order to formulate a MM dynamic filter, assume a general form of system state 

transition and measurement models, respectively [21]: 
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( 1 ) ( , ) ( ) ( , ) ( , ) ( , ) ( , ),k k k k kx k F k m x k G k m u k m k m w k m+ = + + Γ  (2.139) 

( ) ( , ) ( ) ( , ),k kz k H k m x k v k m= +  (2.140) 

where km and M denote the current model and the set of all possible modes respectively. 

In this context, the event that model mi is operating at time k is presented as: 

( ) { ( ) }i iM k m k m= = . It is assumed that the system model sequence is a homogenous 

Markov chain with transition probabilities calculated as follows [21]: 

{ }( 1)| ( ) ( ), ,j i ijP m k m k k i j Mπ+ = ∀ ∈  (2.141) 

where ijπ  is the Markovian transition probability from mode i to mode j, where [21]: 

1

( ) 1.
r

ij
j

kπ
=

=∑  (2.142) 

The mode probabilities are updated at each new measurement and the resulting weights 

are used for estimating state variables. Figure 2.11 presents a block-diagram scheme of 

one cycle of a static MM filter. 

As long as each mode sequence is matched to a filter, the number of filters required 

for the state estimation process will grow exponentially. In order to avoid this numerical 

problem, suboptimal techniques should be considered. A simple technique for obtaining a 

suboptimal solution is to keep the N samples of histories with the largest probabilities, 

ignore the rest, and renormalize the selected N probabilities in a way their summation will 

equal to unity. Within this approach, there are three methods: the 1st-order Generalized 

Pseudo Bayesian (GPB1), the 2nd-order version (GPB2), and the Interacting Multiple 

Model (IMM) strategy. 
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Figure 2.11: Block-diagram scheme of one cycle of a static MM filter 

 

In the GPB1 method, only the possible models in the last sampling period are taken 

into account. The algorithm will only need to run r parallel filters to formulate the best 

estimate. The GPB2 method uses the last two sampling periods, and hence r2 filters are 

required. The IMM algorithm is computationally more efficient than the GPB1 and GPB2 

algorithms [21]. For the IMM strategy, with r hypotheses, each filter utilizes a different 

weighted combination of the previous model conditioned estimates. This model condition 

is referred to as the mixed initial condition. Based on this, there is an interaction between 

different possible modes of the system at each period of time. In addition to the reduction 

of the computational cost of the IMM filter, the accuracy of the overall estimate and the 

convergence rate is increased significantly [21]. 

 

2.4.3.3.2. The Interacting Multiple Model (IMM) Strategy 

The interacting multiple model (IMM) algorithm is the most popular type of MM 

filter, and is capable of estimating the system state variables among several switching 
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modes. Bloom is among the first researchers to propose the IMM algorithm with a 

suitable compromise between the performance and complexity in MM systems [121]. Its 

computational cost is close to other methods such as those with small quadratic 

components, while its performance is similar to GPB2 [108]. The main feature of the 

IMM algorithm is the ability to estimate the state of a dynamic system with several 

operating modes, which can ‘switch’ from one mode to another. In this form, multiple 

state equations are used to describe each of the operating regimes. These regimes are 

typically referred to as linear models, where each model captures a particular operating 

point of a general nonlinear time-varying model. A Markov transition matrix is then used 

to determine the probability that the system is in one of the operating regimes [4]. 

Bar-Shalom et al. have conducted a significant amount of research to further 

develop the IMM estimator and its implementation in target tracking applications 

[21,107,122,110]. Mazoret et al. also presented an excellent survey on IMM approaches 

employed in the target tracking applications [108]. This survey contains new 

developments of the IMM method including the mode set adaptation, correlated 

measurement noise, square root algorithms [123], and probability data association filters 

(PDAF) [108]. The main advantage of the IMM over other MM approaches is due to the 

interacting action which mixes different modes that re-initialize each filter at the start of 

each cycle [118]. There has been a significant amount of research on target tracking 

algorithms while combining IMM with other filters, such as: the EKF [124], PF [125], 

and SVSF [126]. Other research has been conducted to study performance evaluation 

[110], model set adaptation [127] and the model group switching algorithm [21]. 

In order to formulate the IMM filter, assume a hybrid linear system described by 

equations (2-139) and (2-140). The IMM filter consists of three steps as follows [110]: 
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1. Interaction Step: The mixing probabilities are calculated, which refer to the 

probability of an event when mode mi was in effect at time k-1, given that the mode mj is 

in effect at time k conditioned on 1kZ − . The mixing probability is outlined as [110]: 

{ }1
|

1
( 1| 1 ) ( 1 )| ( ), ( 1 ),k

i j i j ij i
j

k k P m k m k Z kµ π µ
µ

−− − − = −≜  (2.143) 

where jµ is the predicted mode probability for r different modes and is given by [110]: 

{ }1

1

( ) | ( 1 ).
r

k
j j ij i

i

P m k Z kµ π µ−

=
= −∑≜  (2.144) 

The mixed initial condition is then calculated using the previous state and covariance 

estimates, namelŷ ( 1 | 1 )ix k k− − and ( 1 | 1 )iP k k− −  respectively. These parameters 

are filter outputs computed from r different Kalman (or other) filters corresponding to the 

r different operation modes. The mixed initial state and covariance are given for the filter 

mj at time k, as [110]: 

{ }1
0 |

1

ˆ ˆ( 1| 1) ( 1)| ( ), ( 1| 1) ,
r

k
j j i i j

i

x k k E x k m k Z x k k µ−

=
− − − = − −∑≜  (2.145) 

0 | |
1 , 1

ˆ ( 1 | 1 ) ( 1 | 1 ) ,
r r

j i i j il j
i i l

P k k P k k Xµ
= =

− − = − − +∑ ∑  (2.146) 

where |il jX  is the weighted squared difference, given by [110]: 

[ ][ ]| | |ˆ ˆ ˆ ˆ( 1| 1) ( 1| 1) ( 1| 1) ( 1| 1) ( 1| 1) .
T

il j l i l i i j l jX x k k x k k x k k x k k k k µ µ− − − − − − − − − − − −≜ ≜  (2.147) 

2. Filtering Step: In this step, mode-matched filtering is performed. The likelihood 

function associated to each of the r filters is also computed. Any estimation method or 
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filter may be used during this step; however, the most commonly implemented method is 

the KF. The mixed initial state and covariances are used as inputs to the Kalman (or 

other) filter matched to mode ( )jm k . The filtering step starts by predicting the state and 

covariance of each mode as [110]: 

0ˆ ˆ( | 1) ( 1) ( 1| 1) ( 1) ( 1) ( 1) ( 1),j j j j j j jx k k F k x k k G k u k k w k− = − − − + − − + Γ − −  (2.148) 

0
ˆ ˆ( | 1 ) ( 1 ) ( 1 | 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) .T T

j j j j j j jP k k F k P k k F k k Q k k− = − − − − + Γ − − Γ −  (2.149) 

The residual and its corresponding covariance for each mode are also given [110]: 

ˆ( ) ( ) ( ) ( | 1 ),j j jv k z k H k x k k= − −  (2.150) 

,
ˆ( ) ( ) ( | 1) ( ) ( ).= − +T

rc j j j j jS k H k P k k H k R k  (2.151) 

The filter gain is computed, based on the residual and its covariance as follows [110]: 

1
,

ˆ( ) ( | 1) ( ) ( ).−= − T
j j j rc jW k P k k H k S k  (2.152) 

It is now possible to update the state and corresponding covariance as follows [110]: 

ˆ ˆ( | ) ( | 1 ) ( ) ( ),j j j jx k k x k k W k v k= − +  (2.153) 

,
ˆ ˆ( | ) ( | 1) ( ) ( ) ( ) .= − − T
j j j rc j jP k k P k k W k S k W k  (2.154) 

For updating the mode probability, the likelihood functions for the j th mode are given by: 

11
( ) ( ) ( )

2
( ) [ ,0, ] ,

2 ( )

T
j j jv k S k v k

j j j
j

e
k N v S

S kπ

−−

Λ =≜  (2.155) 

where the updated mode probability or weight is outlined [110]: 
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1

( )
( ) .

( )

j j
j r

i i
i

k
k

k

µ
µ

µ
=

Λ
=

Λ∑
 

(2.156) 

3. Combination Step: In order to determine the overall estimates of state mean and 

covariance, the model conditioned estimates and covariance are respectively combined as 

follows [110]: 

1

ˆ ˆ( | ) ( ) | ( | ) ,
r

k
i j

i

x k k E x k Z x k kµ
=

  =
  ∑≜  (2.157) 

[ ][ ]
1 , 1

ˆ ˆ ˆ( | ) ( ) ( | ) ( ) ( | ) | ( | ) ,
r r

T k
j j ij

j i j

P k k E x k x k k x k x k k Z P k k Xµ
= =

 − − = +
  ∑ ∑≜  (2.158) 

where the weighted square difference is given by [110]: 

ˆ ˆ ˆ( ) ( | ) ( | ) ( ) ( | ) .
T

ij i j i j i jX k x k k x k k x k x k k µ µ   − −   ≜  (2.159) 

Figure 2.12 shows a block diagram representation of one cycle of an IMM 

estimation filter. The aforementioned IMM strategy has a fixed structure that means the 

selected models will not change over time. From the IMM filter, a newer filter, known as 

the variable structure multiple model (VSMM) has been developed. The VSMM strategy 

is one which uses variable model sets instead of fixed model sets [122]. The motivation 

for proposing this strategy is because of consideration given to the computation cost of 

the IMM filter. The cost of the IMM filter increases drastically with the number of local 

models. Therefore, it is desirable to neglect some of the inactive models from model sets 

to decrease the overall computational cost and time. 
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Figure 2.12: Block-diagram scheme of the interacting multiple model(IMM) strategy 

 

Using this same approach, the VSMM filter was proposed to decrease the 

computational cost, while the estimation accuracy remains intact. All of the possible 

model sets from the starting point of the filtering process are stored; such that one could 

search automatically to find the best model set at each recursion step. The VSMM and the 

IMM filter share similar steps; the main difference being that the model set may be 

different at each time step. In order to adapt the model sets automatically, an adaptive 

algorithm referred to as the recursive adaptive model set method is required 

[122,127,128,111,129]. 

 

2.4.3.3.3. The Multiple Models Adaptive Estimation (MMAE) 

The multiple model adaptive estimation (MMAE) strategy is based on employing a 

bank of steady-state filters working in parallel, similar to other MM approaches. Each of 
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the filters operates based on a reduced order, linearized model derived from a general 

nonlinear uncertain system for each operational mode. A number of studies have been 

conducted, looking at implementing a number of different filters including the extended 

Kalman filter (EKF) [19,113], the unscented Kalman filter (UKF) [19], and the particle 

filter (PF) [130,90,131]. Unlike the IMM method, there is no model interaction in the 

MMAE method; therefore the re-initialization action is not necessary. However, the 

MMAE uses a conditional hypothesis probability evaluator engine to select the closet 

hypothesis that matches reality. Similar to other MM approaches, there is a bank of 

elemental filters, which use the control and measurement vector as inputs, as well as 

provides a state estimate and a residual. 

In order to formulate the MMAE, assume the parameter a  denotes the vector of 

uncertain parameters in a given stochastic system model. The hypothesis conditional 

probability ( )k ip t  is the output, and is defined as the probability that it has the value of

ka at time step k, conditioned on the measurement at time it , as follows [116]: 

( ) Pr[ | ( ) ].k i k i ip t a a Z t Z= = =  (2.160) 

Note, ( )k ip t  may be computed using the following recursive equation [132]: 

( )| , ( 1 ) 1 1

( )| , ( 1 ) 1 11

( | , ) ( )
( ) ,

( | , ) ( )
i i

i i

z t a Z t i k i k i
k i K

z t a Z t i j i j ij

f z a Z p t
p t

f z a Z p t

− − −

− − −=

=
∑

 (2.161) 

Where [132]: 

( )| , ( 1) 1 11
( )| , ( 1) 1 1/ 2/ 2

( )| , ( 1) 1 11

( | , ) ( )1 1
( | , ) exp ( ) ( ) ( ) .

2(2 ) ( ) ( | , ) ( )
i i

i i

i i

z t a Z t i k i k iT
z t a Z t i k i k i k i k i Km

k i z t a Z t i j i j ij

f z a Z p t
f z a Z r t A t r t

A t f z a Z p tπ
− − −−

− −
− − −=

 = − 
 ∑

 (2.162) 
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Where ( ) | , ( 1) 1( | , )
i iz t a Z t i k if z a Z− −  

is the probability density of the current measurement

( )iz t  conditioned on the hypothesized failure status( )ka a= , and the previously 

observed measurement 1( ),iZ t −  based on the residuals kr  and the predetermined 

residual covariance kA . Additionally, m denotes the dimension of the measurement 

vector. The equation: ( )| , ( 1) 1( | , )
i iz t a Z t i k if z a Z− − has a normal distribution function in a 

number of applications. A block-diagram scheme of the MMAE strategy is presented in 

Figure 2.13. As shown, instead of producing a control vector ku , a weighted state 

estimate is produced probabilistically. When the control and measurement vectors are 

applied to the bank of estimators, it is possible to determine the state estimate vector and 

subsequently the residual vector [115,116,119]. 

 

Figure 2.13: Block-diagram scheme of the multiple model adaptive estimation (MMAE) [115] 
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Research conducted by Maybeck and Hanlon employed the time correlation of the 

KF residuals instead of its scaled magnitude [133]. The conditional probabilities were 

assigned to the various hypotheses that were augmented in the KF bank within the 

MMAE. In this approach, a hypothesis testing algorithm (HTA) was designed that uses 

the residuals to calculate conditional probabilities kp of the various hypotheses, 

conditioned on the measurement history. The HTA simultaneously tests the residuals of 

the KF bank under multiple hypotheses. The conditional probability was used to provide 

the best estimate of the fault condition and weight the individual state estimates, and 

calculate the probability weighted average of the state estimates ̂MMAEx  [133]. 

The spectral estimator outputs are essentially estimates of the power spectral 

density of each residual from the KFs. When the system is working without a fault, the 

residual is a white sequence with zero mean [133]. Kay introduced two methods for the 

spectral estimation techniques that include the periodogram and modified hypothesis 

testing algorithm (MHTA) [134]. In the periodogram method, the autocorrelation of the 

residual is estimated and then the Fourier transform of it is computed in order to estimate 

the power spectral density [133]. In the MHTA, the HTA is modified by filtering the 

generated residuals with a band-pass filter, sampling the output, and determining the 

squared magnitude. The primary advantage of this combined method over the standard 

MMAE is that it can identify faults at small input levels, where the standard MMAE does 

not operate. A disadvantage of the combined method is the increased amount of time 

required to collect sufficient samples and calculate the relevant spectral estimates [133]. 

A block diagram scheme of the MMAE algorithm using the residual correlation KF bank 

is shown in Figure 2.14. 
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Figure 2.14: Combination of MMAE with residual correlation KF bank [133] 
 

2.4.4. The Nonlinear Robust Filtering 

In this section, the two main approaches used for robust state estimation of 

nonlinear stochastic systems are reviewed. The first approach, referred to as the variable 

structure filtering (VSF), was introduced by Habibi and Burton [135]. The VSF is a 

model-based filter and benefits from the robustness characteristic of the variable structure 

systems. The VSF-type filters provide robust state estimates against a large amount of 

structural and parametric uncertainties. The second approach is referred to as H∞ filtering. 

It is based on the robust H∞ control concept that has been introduced by Zames in 1980 

[136]. The H∞ filtering approach focuses on the worst-case energy gain design that 

produces estimation error with small energies for all small disturbance energies. 

 

2.4.4.1. The Variable Structure-Type Filtering 

The variable structure filter (VSF) is a model-based state estimation strategy that 

was introduced and implemented by Habibi and Burton in 2003 [135]. The VSF-type 

filters use the variable structure system’s concept to preserve stability given bounded 

parametric uncertainties. Thus, the main objective is to increase stability and convergence 
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of the filter for situations with higher degrees of modeling or parametric uncertainties. In 

such situations the performance of common estimators such as Kalman-type filters may 

degrade considerably. The degradation occurs as a result of filter instability, modeling 

uncertainties, measurement noise, and inappropriate definition of initial conditions. 

It is essential to note that in the Kalman-type filtering, the modeling uncertainties 

and measurement noise are characterized through the covariance matrices. These have a 

significant effect on the stability and convergence of the filter. Furthermore, even though 

characterization of the measurement noise is relatively simple, it is very difficult to 

characterize the process uncertainties. In order to improve the performance of such filters, 

the covariance matrices need to be tuned by trial and error which requires a lot of time 

and experiments. The VSF is a unique tool for explicitly defining modeling uncertainties 

in the filter’s model. It alleviates the difficulties of tuning by trial and error.  This is an 

advantage of using the VSF [135]. 

The VSF-type filtering and its newer extension (e.g., the Smooth Variable Structure 

Filter (SVSF) [3] utilizes the robustness property of the variable structure concept that 

results in stability within an upper bound for uncertainties and noise levels. In variable 

structure systems, the control input often contains a discontinuous term, called the sliding 

variable s, that is defined as a function of the state variable in the following form [3]: 

( , ) ( ) 0
( , ) ,

( , ) ( ) 0

u x t if s x
u x t

u x t if s x

+

−

 >= 
<

 (2.163) 

where ( , )u x t+  and ( , )u x t−  are continuous functions. Following the variable structure 

theory, the VSF’s gain contains a discontinuous corrective term that preserves stability 

given bounded noise and uncertainties. It refines the a priori state estimates into the a 
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posteriori state estimates. In order to formulate the VSF method, the sliding variable is 

defined as: 
|k kzS e= Λ , where 

|
ˆ

k kz k ke z z= −
 
is the estimation error and n n×Λ ∈ℝ  is a 

diagonal matrix with constant positive elements. Here, the objective is to cancel the 

sliding variable S and satisfy the sliding condition given by 0S= . This condition 

decreases the estimation error even in uncertain noisy situations. In this approach, Slotine, 

Hedrick, and Misawa [137] designed a nonlinear observer using the sliding mode theory 

that is robust to modeling errors and sensor noise. Walcott and Zak [138] also introduced 

a combined observer-controller structure for a class of uncertain nonlinear systems based 

on the variable structure concept. Edwards and Spurgeon [139] used the variable structure 

concept to develop a robust discontinuous observer for uncertain systems. They proved 

that their method is numerically tractable based on some examples. 

In this section, the first generation of the variable structure filter family, namely 

VSF [135], is described. Following this, a more efficient version of the VSF, referred to 

as the smooth variable structure filter (SVSF) [3] will be described in detail. Newer 

versions of this filter such as the SVSF with covariance derivation [140,8], SVSF with a 

variable boundary layer (SVSF-VBL) [8,12], will be presented and compared. 

 

2.4.4.1.1. The Variable Structure Filtering (VSF) 

Habibi and Burton introduced the simplest generation of the VSF in 2003 [135]. In 

order to implement the VSF for state estimation, the system must be completely 

observable. One may assume the state-space model of equations (2-21) and (2-22) 

represents the linearized system and measurement models, respectively. One cycle of the 

VSF method contains following steps [135]: 
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1. Prediction Step:  

• Calculation of a priori state and measurement estimates [135]: 

1| |ˆ ˆ ,k k k k k k kx F x G u+ = +  (2.164) 

1 1 1 1ˆ ˆ .k k k kz H x v+ + + += +  (2.165) 

2. Update Step: 

• Calculation of the VSF’s corrective gain that is stated as [135]: 

{ }| 1 | 1

1 1 1
max max| [| | ( | | ( | |) | | | | )] | sgn( ) .

k k k kk k k k k k z k k k zK F H H F H e I F H V F W e
− −

− + + − + −= ϒ + + + � (2.166) 

• Refine the a priori state estimate into the a posteriori state estimate [135]: 

1| 1 1| 1ˆ ˆ .k k k k kx x K+ + + += +  (2.167) 

Note that sgn is the signum function, �  is the Schur product, and +  is the pseudo-

inverse transform. maxV and maxW also denote the upper bound for measurement noise and 

modeling uncertainties, respectively. Furthermore, ϒ is a diagonal matrix with positive 

elements that contain the convergence rate iiγ  for each measurement iz
 [135]. 

The discontinuous formulation of kK produces high frequency chattering that 

degrades the estimation performance. In order to reduce these unwanted effects, the 

smoothing boundary layer concept may be considered. Utilizing the smoothing boundary 

layer concept, outside the smoothing layer Ψ  the signum function may be applied to 

satisfy stability, when inside the layer a saturation function is applied to approximate the 

signum function and suppress high frequency chattering [135]: 
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| 1 | 1

| 1

| 1 | 1

/ if | / | 1
sat( , ) .

sgn( / ) if | / | 1
k k k k

k k

k k k k

z z

z
z z

e e
e

e e
− −

−
− −

Ψ Ψ ≤Ψ =  Ψ Ψ >
 (2.168) 

The width of the boundary layer indicates the level of uncertainties in the estimation 

process. However, in order to alleviate chattering, the width of the smoothing boundary 

layer should be sufficiently large. However, increasing the smoothing layer’s width 

decreases the average level of accuracy in state estimates and hence, there needs to be a 

compromise between the level of uncertainties and the VSF’s performance [135]. 

Stability of the VSF is proven based on the Lyapunov’s second law of stability [135]. 

Habibi has also presented the derivation of the VSF corrective gain with explicit 

consideration of modeling uncertainties [135]. In subsequent research, Habibi also 

introduced an extension to the VSF that is used for estimating state variables of nonlinear 

systems. This is referred to as the extended variable structure filter (EVSF) [141]. The 

EVSF formulation is similar to the extended Kalman filter method. It is applied to a 

nonlinear system of a robotic arm successfully [141]. 

 

2.4.4.1.2. The Smooth Variable Structure Filter (SVSF) 

The smooth variable structure filter (SVSF) is a more advanced generation of the 

variable structure filters, introduced and implemented by Habibi in 2007 [3]. Similar to 

the VSF concept, the SVSF is a model-based robust state estimation method that can be 

used to estimate state variables of smooth nonlinear dynamic systems. It has an inherent 

switching action that ensures convergence of the state estimates to within a region of the 

real values. The switching characteristic of the SVSF is due to the variable structure 

formulation of the discontinuous gain, which provides robustness to bounded 

uncertainties. Most filters only provide the estimation error (filter innovation) and its 
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covariance as measures of performance. The SVSF also provides another indicator that is 

linked to modeling uncertainties [3]. 

A schematic representation of the SVSF estimation concept is shown in Figure 

2.15. The system state trajectory, estimated state trajectory, and existence subspace versus 

time are also presented in this representation. In order to start the estimation process, an 

initial value is selected for the state estimation process based on a prior knowledge of the 

systems. Thereafter, the estimated state is pushed towards a neighborhood of the system’s 

true value referred to as the existence subspace. Once the value enters into the existence 

subspace, the estimated state is forced into switching along the system state trajectory via 

the SVSF’s gain. The estimated state trajectory remains within the existing subspace that 

has a width proportional to modeling uncertainties, measurement noise, and disturbances. 

There have been lots of research to improve the SVSF and prepare it as a useful tool for 

FDI applications [3,135,141,8]. 

 
Figure 2.15: Representation of the SVSF estimation concept (Taken from [3]) 
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The SVSF method differs with the VSF method in the derivation approach and the 

corrective gain formulation. The derivation of the VSF’s gain is based on the explicit 

consideration of the upper bounds for modeling uncertainties and measurement noise. The 

derivation of the SVSF’s gain is based on introducing a positive definite Lyapanov 

candidate that contains squared value of the estimation error as: 
|

2
k kzV e= . Stability is then 

achieved by proving that the negative definiteness of the Lyapunov time-derivative. It is 

proven that the SVSF estimation process is stable and convergent if [3]: 

| 1| 1| | | | .k k k ke e − −<  (2.169) 

The SVSF estimation process has the same steps as the VSF process, but its 

corrective gain formulation is different. For a linear system with one measurement 

corresponding to each of the state variables, the SVSF’s gain is stated as [3]: 

( ) ( )1 , 1| , | , 1| ,k z k k z k k z k kK H e e sat eγ ψ+ +
+ + += + �  (2.170) 

where�  denotes the Schur product (element-by-element multiplication) and ψ +  is the 

pseudo-inverse of the smoothing boundary layer widths matrix with constant entries [3]. 

The saturation function is defined by [3]: 

( )1|

, 1|

1
, 1| , 1|

, 1|

1, / 1

/ 1 / 1.

1, / 1

i

k k i i

i

z k k i

z z k k i z k k i

z k k i

e

sat e e e

e

ψ
ψ ψ ψ

ψ
+

+
−

+ +

+

 ≥
= − < <
− ≤ −

 (2.171) 

It is proven that the corrective gain of (2.170) pushes the estimated states across the 

switching hyper plane and preserves stability. By adopting the Luenberger observer into 
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the SVSF method, the SVSF method may be applied to systems with fewer measurements 

than states [3]. 

Note that there are two different boundary layers in the SVSF concept including the 

existence layer, and the smoothing layer. The existence layer is referred to as the 

neighborhood of the estimated state trajectory in which the stability of the estimation 

process is preserved. The width of the existence layer varies in time as a function of the 

modeling uncertainties. Although the width of the existence layer is unknown, it is 

possible to obtain an upper boundary β for it. The smoothing boundary layer is defined to 

approximate the sign function in the corrective gain formulation and filter out chattering. 

Its width is known as ψ and outside this layer the sign function is applied to achieve the 

stability, while inside the smoothing layer the discontinuity of kK  is interpolated by the 

saturation function to provide smooth state estimates. As presented in Figure 2.16 (a), 

when the smoothing layer width is larger than the existence layer width ψ β> , chattering 

is filtered out. Otherwise as presented in Figure 2.16 (b), if the smoothing layer width is 

smaller than the existence layer width ψ β< , then the smoothing layer will be ineffective 

and chattering will appear [3]. 

Generally speaking, the filter gain construction is the main difference between the 

KF and SVSF. The KF gain depends on the a priori and the a posteriori measurements 

error values, whereas the SVSF gain depends on the smoothing boundary layer widths, 

convergence rate γ, and the measurement matrix H [3]. A significant amount of research 

has been conducted to improve the SVSF’s performance. Gadsden et al. combined the 

SVSF with other filters such as the PF [142], the cubature Kalman filter (CKF) [143], and 

the IMM filter [144]. New research concentrated on the derivation of a state error 

covariance term for the SVSF [140], formulating a continuous-time form of the SVSF 
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[145], and defining an optimal smoothing boundary layer [12]. Further details and 

developments on the SVSF may be found in [8], and [146]. 

The main features of the SVSF that make it a unique and attractive tool for state 

estimation may be summarized as follows: 

a) It provides robustness and preserves stability within a predefined boundary layer 

for bounded uncertainties and noise levels [3]. 

b) Other estimation techniques such as the KF, UKF, CKF, and PF provide the 

innovation and the error covariance as measures of performance. However, the 

SVSF also provides a secondary indicator of performance based on the chattering 

function [146], which explicitly relates to uncertainties and modeling errors [3]. 

 

  

(a) SVSF for case with ψ β>  (b) SVSF for case with ψ β<  

Figure 2.16: Effect of the smoothing layer width ψ on the SVSF performance (Taken from [3]) 
 

2.4.4.1.3. The SVSF with Variable Boundary Layer (SVSF-VBL) 

The former version of the SVSF is introduced when the width of the smoothing 

boundary layer remains constant. As discussed, the width of the smoothing boundary 
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layer is selected based on available knowledge of the upper bound of modeling 

uncertainties and maximum levels of measurement noise and parametric errors. However, 

considering a constant width for this layer is a conservative choice that decreases the 

accuracy of state estimations. A more efficient smoothing boundary layer may be 

obtained when its width is changing as a function of uncertainty and noise levels. 

Gadsden introduced the state error covariance matrix for the SVSF and then used it to 

derive an optimal time-varying width for the smoothing boundary layer [11]. 

The calculation process of the error covariance matrix is similar to that of Kalman 

filtering [140]. The key idea for specifying the boundary layer width ψ is to take the 

partial derivative of the a posteriori error covariance matrix with respect to ψ. This idea is 

similar to calculating an optimal gain for the Kalman filter. This leads to an optimal 

formulation of the SVSF that optimizing the diagonal elements of the state error 

covariance matrix. Hence, a time-varying smoothing boundary layer is given by [11]: 

1| 1( trace[ ])
0.k kP

ψ
+ +∂

=
∂

 (2.172) 

It is proven that the optimal time-varying smoothing layer for the SVSF leads to the well-

known Kalman filter solution for linear systems. Following this, Gadsden proposed a 

method entitled the SVSF-VBL. It is a combination of the SVSF and KF. In this method, 

the SVSF preserves stability for estimates that are outside the smoothing boundary layer 

and provides optimality for estimates inside the boundary layer [11]. Figure 2.17 (a) 

presents the SVSF-VBL concept. 

 



PhD Thesis – H. Afshari; McMaster University, Mechanical Engineering 

93 
 

  

(a) SVSF-VBL for a system in normal condition (b) SVSF-VBL for a system with a fault condition 

Figure 2.17: Main concept of SVSF-VBL for a system in normal and faulty conditions [11] 

 

In the SVSF method, the smoothing boundary layer width is equal to the limit. It 

results in the loss of optimality demonstrated as the difference between the limit and the 

optimal boundary layer. However, the SVSF-VBL (KF) gain should be applied to provide 

efficient estimates. Figure 2.17 (b) presents the SVSF-VBL concept for estimating 

systems with high amount of uncertainties such as a system with a fault condition. In this 

case, the optimal smoothing boundary layer is larger than the limit enforced by the SVSF 

method. Hence, the SVSF-VBL gain is made equal to the SVSF gain to use its robust 

characteristic and preserve stability in uncertain conditions [11]. Inside the limit, the 

SVSF-VBL optimal boundary layer is used. 

One cycle of the SVSF-VBL state estimation contains the following steps [11]: 

1. Prediction Step [11]: 

• Calculation of the predicted (a priori) state and covariance estimates respectively as: 

1| |ˆ ˆ ,k k k k k k kx F x G u+ = +  (2.173) 
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1| | .T
k k k k kP AP A Q+ = +  (2.174) 

• Derivation of the predicted (a priori) measurement and error [11]: 

1| 1|ˆ ˆ ,k k k kz Cx+ +=  (2.175) 

1| 1 1|ˆ .
k kz k k ke z z

+ + += −  (2.176) 

2. Update Step [11]: 

• Calculation of the innovation covariance and combined error vector respectively as: 

, 1 1| 1,+ + += +T
rc k k k kS CP C R  (2.177) 

1| |1 | | | |.
k k k kk z zE e eγ

++ = +  (2.178) 

• Derivation of the smoothing boundary layer matrix given by [11]: 

1 1 1
1 1 1| , 1( ) .− − −

+ + + += T
k k k k rc kE CP C Sψ  (2.179) 

• Calculation of the SVSF-VBL gain given by [11]: 

1 1
1 1 1.k k k kK C E ψ− −

+ + +=  (2.180) 

• Refinement of the a priori state and covariance estimates into the a posteriori 

estimates that are respectively obtained by [11]: 

1|1| 1 1| 1ˆ ˆ ,
k kk k k k k zx x K e

++ + + += +  (2.181) 

1
1| 1 1 1| 1 1 1( ) ( ) .T

k k k k k k k k kP I K C P I K C K R K−
+ + + + + + += − − +  (2.182) 
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2.4.4.2. The H∞ Filtering 

The first systematic approach into the robustness concept was firstly introduced by 

Zames in 1980 [136]. He presented the H∞ theory for design and implementation of 

robust controllers that are insensitive to modeling uncertainties, and lack of statistical 

knowledge of inputs. The H∞ theory may be considered as an extension to the linear 

quadratic Gaussian (LQG) theory introduced in 1960’s [147]. The LQG design was 

performed based on a perfect model of the system and complete knowledge of input 

statistics. In contrast to the LQG concept, the H∞ method was proposed to negate the 

necessity of a perfect model or complete knowledge of the input statistics. The H∞ theory 

is designed based on tracking the energy of signal for the worst possible values of 

modeling uncertainties w and measurement noise v [147]. 

In order to clarify the H∞ concept, one may define a measure of how good the 

estimator is as: ˆ ,min max ,x w v J  where w and v are the noise terms that try to degrade the 

state estimates. The main objective of the H∞ filtering is to provide state estimates by 

minimizing the worst possible effect of w and v on the estimation error. The cost function 

J may be defined as [147]: 

ˆ
,k k Q

k W k V

ave x x
J

ave w ave v
=

+  (2.183) 

where Q, W, and V, each denotes the weighting matrix corresponding to a parameter, 

when the averages are calculated on the weighted norms overall time steps k. Note that 

minimizing the cost function (2.183) means that the H∞ filter tries to calculate the state 

estimates ̂ kx to be as close to kx  as possible, when noise terms make function J large. It 

is too difficult to mathematically find a solution for the described problem. It is possible 
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to solve the problem for 1/J θ< , when θ is a constant parameter, and called the 

performance bound. It is chosen by the designer and its value depends on the case under 

study. However, by satisfying the condition 1/J θ<  through the H∞ filter, it is not 

important how large the magnitudes of noise terms w and v are. The H∞ filter ensures that 

the ratio of the estimation error to noise will always remain less than 1/θ  [147]. 

In order to formulate the H∞ filter recursively, based on the game theory approach 

[148], let us assume a linear stochastic system is represented as [41]: 

1 ,k k k kx F x w+ = +  (2.184) 

,k k k ky H x v= +  (2.185) 

,k k kz L x=  (2.186) 

where kw  and kv are noise terms. They may be random with possibly unknown statistics 

or non-zero mean, or they may be deterministic. The objective is to estimate kz as a 

linear combination of the state. Note that kL is a full rank weighting matrix, and in the 

case of directly estimating the states, it is set .kL I=  

Similar to (2-183), the cost function J is defined as [41]: 

( )1 1 1
0

1
2

0
1

2 2 2
0 0

0

ˆ

,

ˆ

k

k k

N

k k S
k

N

k kP Q R
k

z z

J

x x w v− − −

−

=
−

=

−
=

− + +

∑

∑
 (2.187) 

where 0, , ,k kP Q R  and kS  are symmetric and positive definite matrices chosen by the 

designer based on the case under study. As discussed, the cost function J should be 
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enforced to be less than 1/θ . The gain for the H∞ estimation process may be calculated as 

[41]: 

,T
k k k kS L S L=  (2.188) 

11 1.T T
k k k k k k k k k kK P I S P H R H P H Rθ

−− − = − +   (2.189) 

Now, the state and covariance may be predicted as [41]: 

( )1ˆ ˆ ˆ ,k k k k k k k kx F x F K y H x+ = + −  (2.190) 

11 1
1 .T

k k k k k k k k k k kP F P I S P H R H P F Qθ
−− −

+  = − + +   (2.191) 

The following condition needs to be satisfied during the state estimation process [41]: 

1 1 0.T
k k k k kP S H R Hθ− −− + >  (2.192) 

The following issues are addressed by comparing the H∞ filter with the KF [41]: 

• In the H∞ filter, 0 , ,kP Q  and kR are design parameters chosen by the engineer 

based on the prior knowledge of noise, uncertainties, and the initial error. The 

noise and uncertainties may be nonzero mean. In the Kalman filter, noise, 

uncertainties and the error must be zero mean, when , ,k kQ R  and 0P  are their 

corresponding covariances [41]. 

• One may assume thatk kL S I= = in the H∞ filter formulation. If now the 

performance bound is set as 0θ =  for the estimation process, then the H∞ filter 

reduces to the Kalman filter. It means that the Kalman filter is a minmax filter, 

when the performance bound is set θ = ∞ . Therefore, the H∞ filter may be 
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considered as a robust version of the Kalman filter, but it is not optimal in the 

sense of MMSE [41]. 

• The Kalman filter may become more robust by increasing kQ artificially, which 

enlarges the covariance 1kP + and gain kK , alternatively. In the same way, by 

subtracting the term k kS Pθ  from the H∞ filter’s gain, it makes 1kP +  and gain 

kK  larger. It intuitively results in increasing the robustness of the H∞ filter [41]. 

2.5. Summary 

In this chapter, an exhaustive survey of Gaussian filters for the state estimation task 

was provided and recent trends and developments were discussed in detail. The state 

estimation task is firstly described based on the well-known Bayesian paradigm. Then, in 

order to obtain a general framework for the so-called Gaussian filter, the estimation 

paradigm was regenerated under the Gaussian assumption of process and measurement 

noise. The main Gaussian filters, presented in the literature, were then classified into 

several groups. Classification was based on certain characteristics that included linearity 

or nonlinearity of the process model, numerical integration techniques used for the state’s 

PDF propagation, and methods for providing robustness or adaptive characteristics. The 

considered state estimation approaches were also compared in terms of accuracy, 

robustness, and computational cost. The main problem common to all of the filters 

discussed, centered on how to properly extract the states from uncertain, inaccurate and 

noisy measurements. 
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Chapter 3 

The Novel 2nd-Order SVSF for State Estimation 

In this chapter, a new robust state estimation method referred to as the second-order 

Smooth Variable Structure Filter (2nd-order SVSF) is proposed and designed to satisfy 

both the first and second sliding conditions. It is a model-based state estimation method 

and benefits from the robustness and chattering suppression characteristics of second 

order sliding mode systems. Even though adding a smoothing boundary layer to the 1st-

order SVSF method can decrease chattering, it can nonetheless compromise accuracy and 

robustness. This is because the smoothing boundary layer interpolates the discontinuous 

corrective action within a small vicinity of the switching surface and hence alleviates 

chattering at the expense of robustness. In the 2nd-order SVSF formulation, chattering is 

prevented by satisfying the second sliding condition that results in decreasing the 

estimation error as well as smoothing state estimates. The 2nd-order SVSF is applied to 

the EHA system and its performance is then compared with other estimation methods. 
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3.1. Introduction 

As discussed, the Smooth Variable Structure Filters (SVSF) is a new robust strategy 

for state estimation that is based on the variable structure system’s concept [3]. The SVSF 

has a predictor-corrector structure and uses a discontinuous corrective gain to push state 

estimates towards their true values. The SVSF’s discontinuous corrective action satisfies 

the first sliding condition and hence achieves robustness to bounded uncertainties. This 

filter alleviates the need for tuning by trial and error and presents a mechanism for an 

explicit consideration of modeling uncertainties within the filter formulations. The main 

concern of this type of filter is eliminating the unwanted chattering effects from state 

estimates. The chattering phenomenon arises from discontinuous corrective actions 

inherence in sliding mode and variable structure control systems. 

A smoothing boundary layer is commonly used in order to suppress chattering in 

sliding mode control systems [5,4,149], and is integral to the SVSF’s gain formulation. 

The implementation of the smoothing action is through a saturation function that 

interpolates the discontinuous corrective action with a smoothing boundary layer around 

the switching hyperplane. Outside the smoothing boundary layer the discontinuous 

correction is fully applied to maintain stability. The width of the smoothing boundary 

layer is defined as a function of the upper bound of noise, uncertainties and perturbations 

[3]. Note that by interpolating the switching function with the smoothing boundary layer, 

the accuracy and robustness of the sliding mode are compromised [6,7]. 

The Smooth Variable Structure Filter (SVSF) is an estimation method that uses the 

sliding mode concept. It has been used in a number of applications including target 

tracking [8,126], control as well as in parameter estimation for fault detection in an 

Electro-Hydrostatic Actuation (EHA) system [150]. Gadsden extended the SVSF by 
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deriving a state error covariance term for it and using that for obtaining an optimal 

smoothing boundary layer [12,11]. The SVSF with an optimal time-varying boundary 

layer results in an optimal filter within the smoothing boundary layer when applied to 

linear Gaussian problems [12]. However, the method still uses a smoothing boundary 

layer that interpolates the discontinuous corrective action in the vicinity of the switching 

surface at the expense of robustness. 

The higher order sliding mode concept is a strong alternative to the smoothing 

boundary layer for chatter avoidance. This concept is based on forcing the higher order 

time-derivatives of the sliding variable to satisfy additional constraints related to sliding 

motion. Along with keeping the main advantages of the variable structure systems, this 

concept is capable of reducing and in some cases removing the chattering effect 

completely. The higher order sliding mode concept provides better accuracy without 

compromising robustness and without the need to approximate or relax the discontinuous 

corrective action. The sliding mode order implies the degree of dynamic smoothness in 

the vicinity of the switching surface [6,13,14]. There are many publications on the 

second-order sliding mode control method [14,15,16,17]. 

Other research on higher order sliding mode systems includes Sira-Ramirez’s 

dynamic sliding mode technique based on augmenting the differential algebraic approach 

to system formulations. This approach presents switching surfaces that produce chatter-

free sliding mode for a special class of nonlinear systems [16,17]. Olgac and Elmali 

employed the second-order sliding mode technique to develop a robust output tracking 

algorithm for nonlinear multi-input multi-output systems [151]. Its robustness against 

parameter uncertainties and unknown disturbances is achieved by considering the error 

dynamics in the controller formulation that operates like a frequency domain filter 

[151,152]. There has been considerable research in the last two decades in the use of 
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sliding mode concepts in discrete-time systems. Sarpturk, Istefanopulos, and Kaynak 

investigated the stability of discrete-time sliding mode control strategies and alternatively 

proposed a sliding condition for statically given upper and lower bounds on uncertainties 

[153]. Of particular interest to SVSF is research on the derivation and implementation of 

the discrete form of the second-order sliding mode systems [15,154,155,156]. 

In this chapter, a 2nd-order SVSF state estimation method is proposed and 

formulated. It can satisfy both the first and second sliding mode conditions. It is capable 

of estimating state variables both for linear and nonlinear systems in uncertain and noisy 

conditions in which the level, source and occurrence of uncertainties are unknown. The 

main advantage of the 2nd-order SVSF is that it alleviates chattering without the needs for 

approximation or interpolation. This capability leads to better accuracy and robustness in 

uncertain conditions. The 2nd-order SVSF derivation is based on a discrete Lyapunov 

function that contains the first and second-order derivatives of the sliding variable. The 

proposed stability condition also presents a general criterion for the reachability and 

existence of the second order sliding motion for discrete-time systems. The 2nd-order 

SVSF’s gain is designed such that it satisfies the first and second sliding conditions 

during the state estimation process. Simulation results and the performance of the 2nd-

order SVSF are then compared to the Kalman filter and the 1st-order SVSF in terms of the 

root-mean-squared-error (RMSE), bias and the standard deviations (STD) of the 

estimation error. 

 

3.2. Sliding Mode Control Theory 

Variable structure control was first proposed and implemented in the Soviet Union 

in the 1940’s. The variable structure control and its special subset of the sliding mode 

control (SMC) have become a useful technique for a wide range of control systems, 
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including: nonlinear systems, discrete-time models, multivariable, large-scale, and 

stochastic systems. An important feature of SMC systems is their robust stability and 

insensitivity to modeling uncertainties and external noise. In an SMC, the control input 

forces the system states to slide along a hyperplane. The system as it slides along the 

hyperplane is referred to as be in a sliding mode. Figure 3.1 presents the main concept of 

a system under a SMC. The sliding hyperplane (surface) is defined as 0S =  and the 

sliding mode along this surface is achieved when system trajectories have reached the 

surface in a finite time and remain along it [4]. Note that 1×∈ℝ
pS  represents the vector of 

sliding variables, whereas ∈ℝs  shows the sliding variable. 

 
Figure 3.1: Main concept of system trajectories under a SMC 

 

In order to design a standard SMC, there are two main steps [4]: 

1- Design a switching surface ( , ) 0=S x t  to represent the desired dynamics. Note that 

it should be of lower order than the system. 

2- Design a control law ( , )u t x  to force the state vector x to reach the switching surface 

in a finite period of time. To follow the desired system dynamics, the sliding mode 

will occur on the switching surface. The control is commonly defined as: 
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( , ) ( ) 0
( , ) .

( , ) ( ) 0

u x t when s x
u x t

u x t when s x

+

−

 >= 
<

 (3.1) 

It has been shown that a properly designed SMC can be asymptotically stable. One 

of the main difficulties observed in the mathematical definition of SMC systems is the 

discontinuous nature of the control law. To overcome this drawback, several methods 

have been proposed. They mostly redefine the differential equation for the SMC system 

at points of discontinuous dynamics. The equivalent control technique is the most well-

known approach. In this approach, it is assumed that the initial state vector is in the 

intersection of all discontinuous surfaces which is ( ) 0=S x . Thereafter, the sliding mode 

occurs with the state trajectories confined to this surface. Since the sliding motion results 

in ( ) 0=S x  for 0t > , it may be also assumed that ( ) 0=ɺS x . Hence, the first step of the 

equivalent control approach is to construct an input ( )equ x  such that the state trajectory in 

the absence of modeling uncertainties would ideally remain on the switching surface 

( ) 0=S x  without the need for the discontinuous control term of the SMC. The equivalent 

control is derived by considering the system’s dynamics and the condition of ( ) 0=ɺS x . It 

alternatively leads to ( ) . ( , ) 0= =ɺS x G f x u , where 
∂=
∂
S

G
x

 is an p×n matrix and represents 

gradients of the sliding function ( )S x  [4]. 

Theoretically with SMC, system states stay confined to the switching surface, and 

the system trajectories slide along the switching surface. However, in real applications, 

SMC methods only approximate this theoretical behavior with a high frequency switching 

motion occurring in close vicinity of the switching surface. This high frequency switching 

of the system which is generally non-deterministic and unwanted is referred to as 

chattering. Although, the system is still stable and insensitive to various internal and 
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external disturbances, chattering is undesirable and much research was performed to 

eliminate or decrease its effects [14,15,157,158,159]. 

A commonly used strategy to suppress chattering is to change the sliding dynamics 

in a small vicinity of the discontinuity surface, while the main characteristics of the SMC 

system are preserved [5]. This results in partial loss in the accuracy and robustness of the 

SMC. More recently, higher order sliding mode theory has been proposed which helps to 

reduce the chattering effects. This approach not only maintains the main advantages of 

the standard sliding mode control, but also reduces the chattering amplitude and results in 

a higher trajectory following accuracy. A significant amount of research has been 

performed which shows the effect of using higher order sliding mode systems in reducing 

chattering [14,15,157,158,159]. 

In this context, assume a nonlinear dynamic system is defined as follows: 

( ( ), ( ), ),x F x t u t t=ɺ  (3.2) 

where 1nx ×∈ ℝ  is the state vector, 
1pu ×∈ ℝ  is the input vector and : n p nF + →ℝ ℝ

is a locally bounded and sufficiently smooth function. Under the ideal sliding mode 

condition, the sliding vector S, that is a measure of the distance of the states from the 

sliding hyperplane, would be zero such that: 

{ }1
1 2( , ) [ , ], : 0 ,nS x t t t t x S×= ∀ ∈ ∀ ∈ =ℝ  (3.3) 

and its total time-derivatives ( ) ,kS 0,1,..., 1k r= − , along the system trajectories 

exist. This assumption indicates that there are no discontinuities in the first 1r −  time-

derivatives of the sliding vector S. 
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The sliding order presents the dynamic ‘smoothness degree’ in the neighborhood of 

the sliding surface. An r th-order sliding mode regime exists if a SMC preserves [18]: 

( 1)... 0,rs s s s −= = = = =ɺ ɺɺ  (3.4) 

where s represents the sliding variable. The standard sliding mode is based on the first 

order sliding motion, which means sɺ  is discontinuous. The r-sliding mode realization 

preserves the r th-order of sliding precision with respect to the measurement interval. The 

two main drawbacks for implementing higher order sliding mode controllers include the 

undesirable effect of the differentiation noise on the SMC and an increase in the amount 

of information required. For example, an r-sliding mode controller preserving 0s=  also 

requires s, sɺ , …, ( 1)rs −  to be available. Note that based on the relative degree of the SMC 

system, different conditions need to be satisfied [6]: 

1) For relative degree
 

1: 0,r s
u

∂= ≠
∂

ɺ  

2) For relative degree 
( ) ( )2 : 0 ( 1,2, , 1), 0.i rr s i r s

u u

∂ ∂≥ = = − ≠
∂ ∂

…  

The first case defined above is the standard first order SMC, which keeps 0s= . The 

second order sliding mode is a particular case of the type 2r ≥  and is used to avoid 

chattering effects. To achieve this condition, the control vector u is defined as an output 

of some first order dynamic system. In this approach, the time-derivative of the control 

vector uɺ is regarded as the actual control variable. The discontinuous control uɺ keeps the 

sliding variable s equal to zero and hence, the plant control remains continuous and the 

chattering will be suppressed. In fact, the second order SMC preserves the sliding motion 

on the sliding manifold by means of a continuous bounded input ( )u t . This input is the 

continuous output of a suitable first order dynamic system controlled by a discontinuous 
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function. Figure 3.2 depicts a schematic of the second order sliding mode concept. The 

following relations are derived by differentiating the sliding variable s twice [6]: 

( , ) ( , ) ( , , ),s s x t s x t f x u t
t x

∂ ∂= +
∂ ∂

ɺ  (3.5) 

( , , ) ( , , ) ( , , ) ( , , ) ( )s s x u t s x u t f x u t s x u t u t
t x u

∂ ∂ ∂= + +
∂ ∂ ∂

ɺɺ ɺ ɺ ɺ ɺ  (3.6) 

 

 

Figure 3.2: A scheme of the 2nd-order sliding mode regime [6] 

 

Definition 3.1: Let a sliding mode system depend on a parameter mε ∈ ℝ , and the 

sliding condition occurs if 0ε → , such that the constraint 0S=  is satisfied. The sliding 

algorithm on 0S=  is said to be of order ( 0)r r > , if for any bounded set of initial 

conditions, the following r equalities are satisfied [7]: 

{ }1 ( 1)
1 2( , ) [ , ], : ... 0 ,r n rS x t t t t x S S S× −= ∀ ∈ ∀ ∈ = = = =ɺℝ  (3.7) 

where the first r successive time derivatives of S are smooth functions and the r th-order 

sliding set is not empty and is locally an integral set in the Filippov sense [7,160].           □ 
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Remark 3.1: The first order sliding mode exists for the dynamic system (3-2) if and 

only if the condition ( , ) 0s x t =  is satisfied. The necessary condition for the existence of 

the first sliding mode condition in the continuous time domain may be stated as [4]: 

( , ) ( , ) 0.s x t s x t <ɺ  (3.8) 

The sliding order r is defined as the number of continuous time-derivatives of the 

sliding variable. In this context, the size of the existence boundary layer would be up to 

r th-order with respect to plant imperfections. The sliding order presents the dynamic 

‘smoothness degree’ in the neighborhood of the sliding surface [7]. This smoothness is 

due to the higher order of constraints applied on the higher order time-derivatives of the 

sliding variable. At the same time, the system’s degree of robustness against modeling 

uncertainties, parameter variations and external disturbances is increased. 

The above mentioned sliding conditions only preserve the sliding motion in 

continuous systems and are not directly applicable to discrete-time systems. Sarpturk, 

Istefanopulos and Kaynak have investigated the stability of sliding mode systems in 

discrete-time domain [153]. They proposed to replace the derivative in condition (3.8) 

with the difference operator based on the first-order Taylor expansion. This leads to: 

[ ]( ) ( 1) ( ) 0s k s k s k+ − < . Hence, the necessary condition for the existence of the first-

order sliding mode in the discrete-time domain becomes [153]: 

( ) ( 1) ( ) ( ),s k s k s k s k+ <  (3.9) 

where �  represents the Schur product and s denotes the sliding variable. This condition is 

necessary but not sufficient to ensure the existence of the sliding motion. If the sampling 

time is not small enough, condition (3-9) may lead to increased chattering that may result 
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in instability. Furthermore, Sarpturk, Istefanopulos, and Kaynak have proposed the 

following condition as a necessary and sufficient condition that preserves the reaching 

condition as well as the existence for the first sliding motion in discrete-time domain 

[153]: 

( 1) ( ) .s k s k+ <  (3.10) 

Spurgeon also introduced another approach for defining the reaching law stated as [161]: 

( 1) ( ),+ = ΦS k S k  (3.11) 

where 1pS R ×∈  is the vector of sliding variables, p p×Φ ∈ℝ  is a diagonal matrix with all 

elements 0 1; 1,...,≤ Φ ≤ ∀ =ii i p  [161]. This condition is consistent with the reaching law 

given by Sarpturk in equation (3-10). Sira-Ramirez presented a similar reaching condition 

stated as: ( 1) ( ) ( ) ( )s k s k s k s k+ <  [17]. 

However, there is not any generalized rule to satisfy the reaching condition for r th-

order sliding systems. There has been only a few publications on the discrete-time 

second-order sliding mode system. Bartolini, Pisano, and Usai have presented new 

advances in the variable structure control of nonlinear sampled data systems via second-

order sliding modes [162]. Furthermore, they have introduced the digital feedback sliding 

mode control for uncertain sampled data systems based on the Dead-Beat approach 

[162,163]. Acary, Brogliato, and Orlov also introduced and implemented a chattering free 

digital sliding mode control technique that compensates small effects of disturbances and 

perturbations. Mihoub, and Abdennour presented a discrete second-order sliding mode 

control for regulating the temperature of a chemical reactor [156]. They have employed 

the dynamic sliding mode approach to discretize the second-order sliding mode. 
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3.3. The 2nd-Order SVSF Estimation Process 

The 2nd-order SVSF method has a predictor-corrector form (same as the Kalman 

filter and the 1st-order SVSF [3]) that involves prediction and update. In the prediction 

step, the a priori state estimate, 1|ˆk kx + , is calculated using knowledge of the system prior 

to step k. In the update step, the calculated a priori estimate is refined to produce an a 

posteriori state estimate 1| 1ˆk kx + + . In this approach, a corrective gain is used to confine the 

estimated states and their first time-derivatives to within a neighborhood of a sliding 

hyperplane. This neighborhood is referred to as the existence subspace. To formulate the 

2nd-order SVSF process, assume a class of nonlinear systems represented by the discrete-

time state transition model: 

1
ˆ ( , , ),k k k kx F x u w+ =  (3.12) 

where ˆ : n p nF + →ℝ ℝ  is the nonlinear state transition function, 1nx ×∈ℝ is the state 

vector, 1pu ×∈ ℝ is the control vector, and 1nw ×∈ ℝ  is the process uncertainty vector. 

The measurement equation is assumed to be linear or piece-wise linear: 

1 1 1
ˆ ,k k kz H x v+ + += +  (3.13) 

where 1mz ×∈ℝ  is the measurement vector, 1mv ×∈ ℝ is the measurement noise, and 

ˆ m nH ×∈ℝ  is a known positive diagonal or pseudo-diagonal measurement matrix. 

Assumption 3.1: The control vector 1pu ×∈ℝ  is known and norm-bounded such that: 

max.ku u≤  (3.14) 
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Assumption 3.2: Vectors kw  and kv are mutually independent white processes and are 

norm-bounded by maxw  and maxv  as their upper limits such that: 

max

max

;

.

k

k

w w

v v

 ≤


≤
 (3.15) 

Assumption 3.3: It is assumed that the system with equations (3.12) and (3.13) is smooth 

and with continuous partial derivatives of any order. Furthermore, this system is 

completely observable and completely controllable [3]. 

The 2nd-order SVSF estimation process as applied to the system described by (3.12) 

and (3.13) is summarized by the following five steps: 

I. Prediction of the a priori state estimate vector is obtained based on the state 

transition model of the system described by (3.12) as: 

1| 1
ˆˆ ˆ( , , ),k k k k kx F x u w+ + =  (3.16) 

where F̂  is an estimate of the exact state model F referred to in (3.12). This a priori 

estimate is produced by using the previous a posteriori state estimate |ˆk kx . As such, 

an initial value for the state estimate 1
0ˆ

nx ×∈ℝ  is required to initialize the process. The 

a priori estimate of the measurement vector 1|ˆk kz + is obtained using the estimated 

state vector and the linear measurement model of equation (3.13) as: 

1| 1|
ˆˆ ˆ ,k k k kz H x+ +=  (3.17) 

where Ĥ is an estimate of the exact measurement model H. 
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II.  The a posteriori and a priori measurement error vectors, 
|

1
k k

m
ze ×∈ℝ  and 

1|

1
k k

m
ze

+

×∈ℝ  

are respectively calculated as: 

| |
ˆ ˆ ,

k kz k k ke z H x= −  (3.18) 

1| 1 1|
ˆ ˆ .

k kz k k ke z H x
+ + += −  (3.19) 

III.  The 2nd-order SVSF corrective gain vector, 1
1

n
kK ×

+ ∈ℝ , is obtained as a function of the 

a priori measurement error 
1|k kze

+
 and the a posteriori measurement errors 

|k kze and  

1| 1k kze
− −

 as follows: 

1| | 1| 11
ˆ( , , , ),

k k k k k kk z z zK f H e e e
+ − −

+
+ =  (3.20) 

where Ĥ +  is the pseudo-inverse of the measurement matrix Ĥ . Note that Ĥ and 

H  are initially assumed to be square matrices indicating that all states are measured, 

.=m n  The 2nd-order SVSF without full state measurement ≠m n  is described later. 

IV.  The a priori estimate is refined into the a posteriori estimate 1| 1ˆk kx + +  such that: 

1| 1 1| 1ˆ ˆ .k k k k kx x K+ + + += +  (3.21) 

V. Steps 1 to 4 are iteratively repeated for each sample time. 

Remark 3.2: The 2nd-order SVSF method can be used to estimate states of linear or 

nonlinear systems that have a linear (or piecewise linear) measurement model. Further to 

Definition 3.1 of Ref. [10], both the state and measurement transition models of equations 

(3.12) and (3.13) should be consecutive bijective, meaning that in the absence of 

modeling uncertainties and measurement noise, it is possible to find an inverse mapping 
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that generates kx  by consecutive time iterations of the output vector in the form of 

1
1( , , )

kn n k k kx F H z H z u− + +
+=

 
[10]. 

The corrective gain 1kK + is a second-order Markov process that is formulated using 

the measurement error vector at different time steps, namely 
1| | 1| 1

, ,
k k k k k kz z ze e e

+ − −
. This 

formulation alleviates the chattering effects without the need for a smoothing boundary 

layer. In this context, the vector of sliding variables 1mS ×∈ℝ  is defined as: 

|
,

k kk zS e=  (3.22) 

where 
|k kze  is the a posteriori measurement error vector at the time step k. The 2nd-order 

SVSF is formulated to satisfy both the first and the second sliding conditions. As such the 

a posteriori error and its first time-derivative must be forced to move towards a switching 

hyperplane such that 
|

0
k kk zS e= = (first sliding condition) and 

| 1| 1
0

k k k kk z zS e e
− −

∆ = − =  

(second sliding condition) are satisfied at the same time. It is shown in Section 3.3 that 

the first and the second order sliding conditions are satisfied for the 2nd-order SVSF with 

a full diagonal measurement matrix ˆ m nH ×∈ℝ ( =m n ), if: 

| | |

1|

2 2
, , ,1

, 1 ,
ˆ ,

2 4 2
k k k k k k

k k

z i z i z i
i k ii z i ii

e e e
K h e γ

+

−
+

 ∆
 = − − +
 
  

 (3.23) 

where 
|, k kz ie  denotes an element of the error vector 

|k kze , ˆ
iih  denotes an element of the 

inverted measurement matrix ̂H , and ( ) m m
iiDiagγ γ ×= ∈ℝ  is a diagonal matrix with 

positive entries such that 0 1iiγ< < . Section 3.6 presents the corrective gain for cases 

with fewer measurements than states, <m n . 
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3.4. A New Stability Rule for Second-Order Sliding Mode Systems 

In order to prove stability of the 2nd-order SVSF, the first and second sliding 

conditions must be met. In this section, Theorem 3.1 is presented for the proof of stability 

based on the Lyapunov’s second law. It introduces a positive definite Lyapunov function 

that preserves the first and second sliding conditions. Further to the conceptual 

description of the 2nd-order SVSF, it is important to note that the measurement error and 

its difference 
| 1| 1, , , ,( , )

k k k ki k i k z i z is s e e
− −

∆ = −
 
decrease in time until a 2-dimensional existence 

boundary layer is reached. Thereafter, the estimated trajectory is confined within the 

existence subspace, where it moves back and forth across the true state trajectory. 

The width of the existence subspace Σe  may be expressed in terms of two 

orthogonal directions of kS and kS∆ by ( , )∆Σ
k ke s sε ε  in each time sequence. Note that 

kε is however unknown and may be calculated as a function of noise and uncertainties. If 

the noise and uncertainties are norm-bounded, as mentioned by Assumption 3.2, then kε  

is also norm-bounded. Note that the state estimation error 
|k kxe generated from the 2nd-

order SVSF contains two elements that are the error signal and noise. The width of the 

existence subspace kε  cannot be decreased below a function of the random components 

of kε such as noise [3]. It is assumed that the noise random content kη  is norm-bounded 

such that <k kη ε . However, it is possible to calculate an upper bound for the width of 

the existence subspace in terms of kε . For discrete time SMC systems, the sampling time 

and switching imperfections will also affect and add to the value of kε  [3]. 
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Assumption 3.4: Let , , , 1i k i k i ks s s −∆ = −  be the backward difference of the sliding 

variable ,i ks at time k. It is assumed that : m m
kS∆ →ℝ ℝ is a smooth differentiable 

function. 

Definition 3.2: The ideal first-order sliding mode occurs for a discrete-time system 

if there exists a time sequence 1k  after which the state trajectory that belongs to the 

sliding manifold ( , )kS x k  satisfies [4]: 

{ }1 1, : ( , ) 0 .n
st kS x k k S x k= ∀ ∈ ∃ ≥ =ℝ  (3.24) 

Remark 3.3: Due to uncertainties, noise, and switching imperfections, however, the 

ideal sliding mode does not occur and the above condition needs to be met for a real 

sliding condition. The real first order sliding mode occurs if there is a time instance 1k

after which the state trajectory that belongs to the sliding hyperplane ( )kS x  preserves: 

{ }1 1, , 0 : ( ) .n
st s k sS x k k S xε ε= ∀ ∈ ∃ ≥ > <ℝ  (3.25) 

Further to Remark 3.3, if the first sliding condition is satisfied, then the sliding 

variables vector kS will be bounded after the time sequence 1k . Note that sε is the width 

of the existence subspace and is a function of modeling uncertainties, disturbances, and 

switching imperfections. 

Definition 3.3: The ideal 2nd-order sliding mode occurs for a system if there exists a 

finite time 2 1k k≥ after which the state trajectory converges to the sliding manifold 

( , )kS x k  such that: 
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{ }2 2, : ( , ) ( , ) 0 .n
nd k kS x k k S x k S x k= ∀ ∈ ∃ ≥ = ∆ =ℝ  (3.26) 

Remark 3.4: Note that Definition 3.3 only describes the ideal 2nd-order sliding motion, but 

due to uncertainties and switching imperfections, the real 2nd-order sliding mode is 

produced. The real second-order sliding mode occurs if after a finite time sequence

2 1k k≥  the state trajectory that belongs to the sliding hyperplane ( , )kS x k  preserves: 

{ }2 2, , , 0 : ( , ) , ( , ) .n
nd s s k s k sS x k k S x k S x kε ε ε ε∆ ∆= ∀ ∈ ∃ ≥ > < ∆ <ℝ  (3.27) 

Based on the above discussion, satisfaction of the first sliding condition is a 

necessary step for preserving the second sliding condition. Hence, the second order 

sliding motion occurs after the first order sliding motion, namely 2 1k k≥ , and the second 

order sliding motion must satisfy all conditions corresponding to the first order sliding 

motion. Theorem 3.1 presents a Lyapunov function that preserves the first and second 

sliding conditions based on Definitions 3.2 and 3.3, and under Assumptions 3.1 to 3.4. 

Theorem 3.1: The second order sliding condition is preserved for a discrete-time 

system with the state and measurement models of equations (3.12) and (3.13), if it 

satisfies: 

2
, 1 , 1 , ,

1
( ) ,

2i k i k i k i ks s s s+ + − < ∆  (3.28) 

where , , , 1i k i k i ks s s −∆ = − . 

Proof: Assume the following positive definite Lyapunov function that explicitly 

contains the first and second sliding conditions as: 
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2 2
, , ,k i k i kV s s= + ∆  (3.29) 

where 1m
k ks S ×⊂ ∈ℝ  is the vector of sliding variables, and : m m

k ks S∆ ⊂∆ →ℝ ℝ is the 

backward difference operator generates the vector of sliding variable’s difference. Based 

on the Lyapunov’s second law, the system will be stable if: 1 1 0k k kV V V+ +∆ = − < . The 

incremental difference of the proposed Lyapunov candidate (3.29) is now calculated as: 

2 2 2 2
1 , 1 , 1 , ,( ) ( ).k i k i k i k i kV s s s s+ + +∆ = + ∆ − + ∆  (3.30) 

Simplifying the equality (3.30) leads to: 

2 2 2 2
1 , 1 , 1 , , , , 1( ) ( ) .k i k i k i k i k i k i kV s s s s s s+ + + − ∆ = + − − + −   (3.31) 

The above equality may be simplified as: 

2 2
1 , 1 , 1 , , , 12( ) ( ) .k i k i k i k i k i kV s s s s s+ + + −∆ = − − −  (3.32) 

Note that the right side of equation (3.32) contains two terms and it is clear that the 

second term 
2

, , 1( )i k i ks s −− −  representing 
2

,i ks−∆  is negative. Hence, if the first term 

2
, , , 12( )i k i k i ks s s −−  is kept negative, stability and convergence of the second sliding 

motion is preserved. In this context, the sufficient condition for reaching the second 

sliding motion in discrete time is simply given by 
2

, 1 , 1 , ,
1

( ) ( )
2i k i k i k i ks s s s+ + − < ∆  that 

results in: 

, ,0; , .k i k k i k kV s S s S∆ < ∀ ∈ ∀∆ ∈ ∆  (3.33) 
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It is easy to show that the proposed Lyapunov function of 
2 2

, ,k i k i kV s s= + ∆  

preserves the first and second sliding conditions for discrete-time systems as follows. The 

Lyapunov function kV  contains two terms namely 
2

,i ks and 
2

,i ks∆  that represent squared 

values of the sliding variable and its difference, respectively. Negative definiteness of the 

Lyapunov function’s difference indicates that absolute values of 
2

,i ks  and 
2

,i ks∆  are 

decreasing over time such that after a finite time sequence 2,smk , all trajectories that 

belong to the sliding hyperplane 
|k kk zS e= meet: 

2, , ,( , ) , ( , ) ; , , 0, , .k s k s sm s s i k k i k kS x k S x k k k s S s Sε ε ε ε∆ ∆< ∆ < ∀ ≥ ∀ > ∀ ∈ ∀∆ ∈∆  (3.34) 

The above condition implies stability of a discrete-time sliding mode system under the 

second order sliding motion.                                                                                                □ 

Corollary 3.1: An intuitive result of Theorem 3.1 is that if the condition (3.34) is 

preserved, then the measurement error 
|k kze and its difference 

|k kze∆ are decreasing over 

time. However, due to modeling uncertainties, noise, and switching imperfections, this 

only occurs until they reach the existence subspace bounded by sε and sε∆ . 

 

3.5. Derivation of the 2nd-Order SVSF Corrective Gain 

An important step in the 2nd-order SVSF estimation process is the update stage 

(3.21). Here, the corrective gain 1kK +  is applied to the a priori state estimate to obtain the 

a posteriori state estimate. The corrective gain 1kK +  must satisfy the Lyapunov function 

and the stability criterion presented in equations (3.29) and (3.28), respectively. It 
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contains some terms that restrict the a posteriori state estimate to within a close proximity 

of the actual state trajectory. In order to formulate the corrective gain, an explicit relation 

for refining the a priori measurement error into its a posteriori form is required. Later on, 

Theorem 3.2 presents a corrective gain for the 2nd-order SVSF and shows its stability 

under the first and second sliding conditions. 

Theorem 3.2: Consider a dynamic system with the state and measurement models 

of equations (3.12) and (3.13). The 2nd-order SVSF with the following corrective gain is 

stable and satisfies the first and second sliding conditions: 

| | |

1|

2 2
, , ,1

, 1 ,
ˆ ,

2 4 2
k k k k k k

k k

z i z i z i
i k ii z i ii

e e e
K h e γ

+

−
+

 ∆
 = − − +
 
  

 (3.35) 

where 
|, k kz ie  denotes an element of the error vector 

|k kze , ˆ
iih  denotes an element of the 

inverted measurement matrix ̂ ( )m nH m n×∈ =ℝ , 
| | 1| 1, , ,k k k k k kz i z i z ie e e

− −
∆ = − , and 

( ) m m
iiDiagγ γ ×= ∈ℝ  is a diagonal matrix with positive entries such that 0 1iiγ< < . 

Proof: Consider a positive definite Lyapunov function such that it contains the first 

and second sliding mode conditions as follows: 

2 2
, , ,k i k i kV s s= + ∆  (3.36) 

where , ∈ℝi ks  denotes an entry of the sliding variable vector for 1, ,i m= … , where i 

denotes the row number of entries. Furthermore, ,∆ ∈ℝi ks  represents the backward 

difference operator that generates the difference of the sliding variable vector. Based on 

the Lyapunov’s second law of stability, the system will be stable if: 
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1 1 0k k kV V V+ +∆ = − < . In this context, let multiply both sides of the gain in equation 

(3.35) by ˆiih and consider the simplified result in terms of the elements as follows: 

| | |

1|

2 2
, , ,

, , 1
ˆ .

2 4 2
k k k k k k

k k

z i z i z i
z i ii i k ii

e e e
e h K γ

+ +

∆
− = + +  (3.37) 

Following equation (3.21), since 1| 1 1| 1ˆ ˆk k k k kx x K+ + + += + , one can restate the gain as: 

1 1| 1 1|ˆ ˆ .k k k k kK x x+ + + += −  Substituting this relation into equality (3.37) yields: 

| | |

1|

2 2
, , ,

, , 1| 1 , 1|
ˆ ˆ ˆ( ) .

2 4 2
k k k k k k

k k

z i z i z i
z i ii i k k i k k ii

e e e
e h x x γ

+ + + +

∆
− − = + +  (3.38) 

The a priori and the a posteriori measurement errors at time step k are given by equations 

(3.18) and (3.19) as: 
1|, , 1| 1 , 1|

ˆ ˆ ˆ( )
k kz i ii i k k i k ke h x x

+ + + += − and 
1| 1, , 1 , 1| 1

ˆ ˆ
k kz i i k ii i k ke z h x

+ + + + += − . 

Subtracting the a priori error from the a posteriori error results in: 

1| 1 1|, , , 1| 1 , 1|
ˆ ˆ ˆ( ).

k k k kz i z i ii i k k i k ke e h x x
+ + + + + +− = − −  (3.39) 

Using equation (3.39), equality (3.38) may be restated as follows: 

| | |

1| 1

2 2
, , ,

, .
2 4 2

k k k k k k

k k

z i z i z i
z i ii

e e e
e γ

+ +

∆
= + +  

(3.40) 

Transferring 
|, / 2

k kz ie  in equality (3.40) to the left side and squaring both sides, it 

becomes: 
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| | |

1| 1

2 2 2
, , ,2

, .
2 4 2

k k k k k k

k k

z i z i z i
z i ii

e e e
e γ

+ +

 ∆ 
 − = + 

      
 (3.41) 

Since ( )iiDiagλ γ=  is defined such that 0 1iiγ< < , the above equality is simply restated 

as follows: 

| | |

1| 1

2 2 2
, , ,

, .
2 4 2

k k k k k k

k k

z i z i z i
z i

e e e
e

+ +

 ∆ 
 − < + 

      
 (3.42) 

Expanding the above inequality leads to: 

1| 1 1| 1 | |

2 2
, , , , / 2.

k k k k k k k kz i z i z i z ie e e e
+ + + +

− < ∆  (3.43) 

Since 
|, , k ki k z is e= , inequality (3.43) may be restated in terms of the sliding variable 

entries ,i ks
 as follows: 

2 2
, 1 , 1 , , / 2.i k i k i k i ks s s s+ +− < ∆  (3.44) 

Adding and subtracting
2

,i ks into the left hand side of the above inequality and 

rearranging the resulting terms, it becomes: 

2 2 2 2
, 1 , 1 , , , ,2 2 0.i k i k i k i k i k i ks s s s s s+ +− + − − ∆ <  (3.45) 

Equality (3.45) may be restated such that: 

2 2 2 2 2
, 1 , 1 , , , ,( ) ( ) 0.i k i k i k i k i k i ks s s s s s+ ++ − − − + ∆ <  (3.46) 
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Based on the Lyapunov function candidate, given by 2 2
, ,k i k i kV s s= +∆ , inequality (3.46) 

may be restated such that: 

1 0,k kV V+ − <  (3.47) 

where it leads to: 

, ,0; , .k i k k i k kV s S s S∆ < ∀ ∈ ∀∆ ∈ ∆  (3.48) 

Since the Lyapunov function candidate kV  is a function of ,i ks and ,i ks∆ , it is deduced 

from equation (3.48) that the corrective gain (3.35) preserves stability and convergence of 

the 2nd-order SVSF for both the first and second order sliding mode regimes.                   □ 

Corollary 3.2: Proper selection of the convergence rate matrix γ  such that 0 1iiγ< <  

preserves the stability and convergence of the 2nd-order SVSF. Note that smaller values of 

iiγ result in accelerating the Lyapunov decrement and subsequently increasing the 

convergence rate. 

The 2nd-order SVSF gain is actually representing a second-order Markov process 

which is a function of the a priori measurement error vector 
1|, k ki ze

+
, the difference of the 

measurement error 
| | 1| 1, , ,k k k k k ki z i z i ze e e

− −
∆ = − , and the measurement matrix inverse 1ˆ

iih − . 

The term 
| 1| 1

2
, ,( ) / 2

k k k ki z i ze e
− −

−  in equation (3.35) arises by preserving the second order 

sliding condition. A block-diagram representation of the 2nd-order SVSF estimation 

process is presented in Figure 3.3. In the 2nd-order SVSF estimation process, an initial 

estimate of state variables is made albeit uncertain. The corrective gain pushes the 

estimated state trajectory towards the true state trajectory until it reaches the existence 
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boundary layer. By reaching the existence subspace, the estimated trajectory starts to 

slide with the sliding manifold at decreasing distances determined by the sliding variables 

,i ks and ,i ks∆  that denote the measurement error 
, |i k kze and its difference 

, , | , 1| 1i k i k k i k kz z ze e e
− −

∆ = − , respectively. 

 

Figure 3.3: Block diagram representation of the 2nd-order SVSF estimation process 

 

Based on Theorem 3.1, the estimated trajectory will remain within the existence 

boundary layer. Since the 2nd-order SVSF is applied to stochastic systems and due to the 

presence of modeling uncertainties and measurement noise, the ideal sliding motion does 

not occur. Therefore, even though the sliding motion is present, it is in the form of the 

real sliding condition for state estimation. Figure 3.4 demonstrates the concept of the 2nd-

order SVSF and decreasing the measurement error and its difference over time. The 

existence boundary layer is a subspace around the true state trajectory. At each time step 
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k, the width of the existence boundary layer is obtained by calculating the two quantities 

,i ks
 
and ,i ks∆

 
that are a measure of the distance from the switching hyperplane. Under 

the second sliding condition, these two variables converge to within an existence 

subspace with two upper bounds sε  and sε∆ . 

 
Figure 3.4: Main concept of the 2nd-order SVSF method for state estimation 

 

Satisfaction of the second sliding condition by the 2nd-order SVSF will result in 

higher degrees of robustness in the estimated state trajectories. It is because the corrective 

gain of the 2nd-order SVSF applies separate constraints to the measurement error 

|k kz se ε<  and its difference 
|k kz se ε∆∆ <  at the same time. It forces both the measurement 

error and its difference to remain in a close vicinity of the origin, 
| |

0
k k k kz ze e= ∆ = , during 

the estimation process. In addition, regarding the equality (3.35), the corrective gain at 

1k +  computationally depends on the values of the measurement error at time k  and 

1k − , namely 
|k kze  and 

1| 1k kze
− −

. This means that the 2nd-order SVSF updates the a priori 
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state estimates at 1k +  based on information available from two time steps before. The 

corrective gain of the 2nd-order SVSF uses more information from the past in comparison 

to other first order filters. 

Having access to more information of the sliding mode system alleviates 

undesirable effects of the chattering signal, unwanted spikes and other high frequency 

dynamics. It improves the performance of the 2nd-order SVSF in terms of accuracy, 

robustness, and smoothness. These are the main advantages of the 2nd-order SVSF over 

the Kalman filter and the former 1st-order SVSF. Figure 3.5 shows why preserving the 

second sliding condition helps the 2nd-order SVSF to increase accuracy. Accordingly, in 

the 2nd-order SVSF estimation process, the constraints are applied in two directions. The 

first sliding condition constrains the measurement error 
|k kze  to within an upper bound 

sε  and the second sliding condition constraints the error difference 
| | 1| 1k k k k k kz z ze e e

− −
∆ = −  

to within an upper bound sε∆ . In contrast in the 1st-order SVSF, there exists only one 

constraint that applies an upper bound sε  to only the measurement error 
|k kze . 

 

Figure 3.5: Main concept of increasing accuracy via the 2nd-order SVSF (upgraded from [7]) 
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Remark 3.5: The 2nd-order SVSF can be applied to nonlinear systems without the 

need for linearization or approximation. This capability is one of the main advantages of 

the SVSF techniques over other estimation methods that are using the linearization or 

some form of approximation of nonlinear terms. The SVSF-type filtering does however 

require a linear or piecewise linear measurement model. 

Remark 3.6: Pursuing the r th-order sliding mode theory, it is possible to extend the 

2nd-order SVSF concept to the nth-order SVSF in which the nth-order sliding mode 

condition is satisfied by 1 0n
k k kS S S−= ∆ = = ∆ =… . In order to preserve the stability of 

the nth-order SVSF, the Lyapunov function may be defined as: 

2 2 1 2
, , ,... ,n

k i k i k i kV s s s−= + ∆ + + ∆  (3.49) 

where 1 1 1
, :n m m

i ks− × ×∆ →ℝ ℝ  is the (n-1)th order difference of the sliding variable vector 

and is a smooth function. The resulting sliding motion will be in an n-dimensional 

existence boundary layer. Alternatively, the corrective gain of the nth-order SVSF is an 

nth-order Markov process and formulated as a function of the measurement error vectors, 

from 
|k kze up to 

( 1)| ( 1)k n k nze
− − − −

. Note that by increasing the order of the sliding mode 

condition, the amount of information that is required will increase. 

 

3.6. The 2nd-Order SVSF for Linear Systems with Fewer Measurements than States 

The 2nd-order SVSF can be applied to systems with fewer measurements than state 

variables. In this case, the corrective gain of the 2nd-order SVSF may be derived using the 

Luenberger’s approach as presented in [3]. In this context, the nonlinear model of the 

system must be linearized. Now, consider a linear discrete state-space system as: 



PhD Thesis – H. Afshari; McMaster University, Mechanical Engineering 

127 
 

1 ,k k k kx Ax Bu w+ = + +  (3.50) 

1 1 1,k k kz C x v+ + += +  (3.51) 

where n nA ×∈ℝ  is the state transition matrix, 1pB ×∈ℝ  is the control matrix, ×∈ℝ
m nC  is 

the measurement matrix, 1n
kw ×∈ℝ and 1m

kv ×∈ℝ are the process uncertainties and 

measurement noise, respectively. Note that in order to apply the 2nd-order SVSF to 

systems with fewer measurements than states, Assumption 3.3 needs to be satisfied. The 

state variables may be decomposed into two parts [ ]
k k

T
k u lx x x= , where the upper part 

1
k

l
ux ×∈ℝ

 
is directly measured and whereas the lower part ( ) 1

k

n l
lx − ×∈ℝ  is not [3]. 

Using the Luenberger’s transformation (refer to [3]), a revised state vector is 

obtained in terms of measurements such that [ ]
k

T
k k ly z y= , where 1l

kz ×∈ℝ  denotes the 

direct measurement vector and ( ) 1
k

m l
ly − ×∈ℝ  denotes an artificial measurement vector. 

The problem is to obtain values for entries of 
kl

y
 
based on the partitioned model [3]. The 

measurement model is presented as: 

1

11 11 12 1

21 22 2 2

,k

k k k

k k
k

l l

wz z G
u

y y G w
+

+    Φ Φ     
= + +        Φ Φ          

 (3.52) 

where 1T AT−Φ = , 1G T B−= , and [ ]1
11 21

T
k k kw T w v−= − Φ Φ  [3]. Further to (3.52), the a 

priori  state estimate may be obtained as [3]: 

1| |

1| 11 12 1

21 22 2

ˆˆ ˆˆ
.

ˆ ˆˆ ˆ ˆ
k k k k

k k k
k

l l

z z G
u

y y G+

+      Φ Φ
= +      

Φ Φ            
 (3.53) 
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As presented in [3], the a priori and a posteriori measurement error vectors for the 

hidden measurement vector 
kl

y
 
are calculated as: 

| 1|

1 1
12 12

ˆ ˆ ,
k k k k kyl z le e w

+

− −= Φ − Φ  (3.54) 

1| 1|

1 1
22 12 22 12 2

ˆ ˆ ˆ ˆ ,
k k k k k kyl z le e w w

+ +

− −= Φ Φ − Φ Φ +  (3.55) 

where ( ) 1
l

m l
ye − ×∈ℝ  is the artificial measurement error vector and 1l

ze ×∈ℝ  is the 

measurement error vector corresponding to measurable states. Equations (3.54) and (3.55) 

present a mapping of the measurement error vector that is used according to Luenberger’s 

method for deriving a switching hyperplane and in calculating the filter gain. 

In order to derive the 2nd-order SVSF gain for the lower partition of states, the 

switching hyperplane for the lower partition relies on a projection using measurement 

errors such that [3]: 

|

1
22 12

ˆ ˆ ,
k kl zS e−= Φ Φ  (3.56) 

where ( ) 1m l
lS − ×∈ℝ . Further to equation (3.35), the 2nd-order SVSF corrective gain for the 

lower partition of states is derived as: 

| | |

1|

1 1 2 1 2
12, , 12, , 12, ,1

, 1 22, 12, ,

ˆ ˆ ˆ( ) ( )
ˆ ˆ ,   for , 1,..., .

2 4 2
k k k k k k

k k

ij z i ij z i ij z i
i k ij ij z i ii

e e e
K e i j l mγ

+

− − −
−

+

Φ Φ Φ ∆
= Φ Φ − − + = +

 

(3.57) 

By combining the gains of each partition of the state vector, the 2nd-order SVSF gain is 

restated for linear systems with fewer measurements than states as: 
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| | |

1|

| | |

1|

2 2
, , ,1

, 1 ,

, 1
1 1 2 1 2

12, , 12, , 12, ,1
22, 12, ,

ˆ ,for , 1,...,
2 4 2

ˆ ˆ ˆ( ) ( )
ˆ ˆ ,for , 1,..., .

2 4 2

k k k k k k

k k

k k k k k k

k k

z i z i z i
i k ii z i ii

i k

ij z i ij z i ij z i
ij ij z i ii

e e e
K h e i j l

K

e e e
e i j l m

γ

γ

+

+

−
+

+
− − −

−

  ∆  = − − + =
  

  = 

Φ Φ Φ ∆
Φ Φ − − + = +







 (3.58) 

where 1ˆ ˆh H− +⊂ is the pseudo-inverse of the measurement matrix ˆ m nH ×∈ℝ that is not square. 

Hence, the vector of sliding variables may be defined as: 
| 1|

1
22 12

ˆ ˆ
k k k k

T

k z zS e e
+

− = Φ Φ
  . 

Note that the squared terms in equation (3.58) are calculated using the Schur product. The 

gain formulation that can be used for nonlinear systems is provided in [3]. 

 

3.7. Comparative Analysis of the 2nd-Order SVSF 

The 2nd-order SVSF method is compared with other estimation methods by its 

application to an electro-hydrostatic actuation (EHA) system with a model described in 

[3]. This comparison is made between the Kalman filter, the 1st-order SVSF and the 

proposed 2nd-order SVSF. These methods are applied to the EHA model under two 

different scenarios that include: 1) the safe condition with no modeling uncertainties; and 

2) the faulty condition with a higher level of modeling uncertainties. The EHA model has 

three state variables including the position 1x x= , velocity 2 1 /x dx dt= , and acceleration

2 2
3 1 /x d x dt= , where position is the only measurable state [3]. The linear discrete-time 

state and measurement models of the EHA are given by equations (3.50) and (3.51), 

respectively. Numerical values of the state, control and measurement matrices of the 

EHA model are presented as [3]: 

[ ]
1 0.001 0 0

0 1 0.001 , 0 , 1 0 0 .

557.02 28.616 0.9418 557.02

A B C

   
   = = =
   
   − −   

 (3.59) 
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Note that kw and kv are multivariate white normal random vectors with the mean of zero 

and standard deviation vectors equal to [3]: 

[ ] [ ]0.05 0.1 0.1 , 0.05 .
T

std stdw v= =  (3.60) 

The EHA system is third order with a single measurement that is the position. To 

produce the augmented measurement vector, the state space is partitioned based on 

equation (3.53) as [3]: 

[ ] [ ]11 12 21 21

0 1 0.001ˆ ˆ ˆ ˆ1 , 0.001 1 , , .
877.02 32.616 0.8418

   Φ = Φ = Φ = Φ =   − −   
 (3.61) 

For simulation purpose, the 2nd-order SVSF’s gain is derived for the case with the 

convergence rate equal to [0.1]γ = . Hence, the gain is obtained for the EHA system 

using equation (3.35) for the measurable state and equation (3.57) for the rest as: 

| | |

1|

1| 1|

1| 1|

1| 1|

1| 1|

2 2

2 2

1

2 2

,
2 4 2

0.002 0.0005 1 4 ,
4 2

0.809 0.5 .
4 2

k k k k k k

k k

k k k k

k k k k

k k k k

k k k k

z z z

z

z z

k z z

z z

z z

e e e
e

e e
K e e e

e e
e e

γ
+

+ +

+ +

+ +

+ +

+

 ∆
 − − +



∆
= − − − +

 ∆
 − − +



 (3.62) 

To check the robustness of the 2nd-order SVSF, a large degree of unknown uncertainties 

is injected into the model by changing the state matrix after 0.5 sec of simulation to [3]: 

2

1 0.001 0

0 1 0.001 .

240 28 0.9418

A

 
 =
 
 − − 

 (3.63) 

Note that element a31 of matrix A1 is multiplied by 0.5 in order to simulate uncertainties. 
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The input u to the EHA system is a random signal with the amplitude in the range 

of -1 to 1, superimposed on a step input that occurs at 0.5 sec. The initial values of states 

are assumed to be zero and the sampling time for discretization is 0.001 sec. For the 

Kalman filter, the process noise, measurement noise and initial error covariance are 

respectively obtained as: [ ]( 1 10 50 )Q diag= , and 0 20P Q= . Additionally, 20.1R cm=  

is obtained by calculating variance of the innovation signal for a time period. For the 1st-

order SVSF and the 2nd-order SVSF methods, the convergence rate γ is 0.5. Furthermore, 

for the 1st-order SVSF, the smoothing boundary layer is set to [ ]5 5 5
T

stdvψ = × , where 

stdv is the standard deviation of the measurement noise. Simulations are performed using 

the MATLAB and after 103 Monte-Carlo runs. Note that using a larger number of Monte-

Carlo runs only increases the running time, when simulation results do not change. 

Tables 3.1 to 3.3 compare some numerical performance indicators calculated by the 

three estimation methods (Kalman filter, 1st-order SVSF, and the 2nd-order SVSF) for a 

normal and an uncertain EHA model. For the normal model, it is assumed that the EHA 

model is known when there exist bounded process and measurement noise. For the 

uncertain EHA model, high amount of modeling uncertainties are injected after 0.5 sec. 

The uncertainties are applied to examine the performance and the robustness of the three 

estimation techniques given added uncertainties. The actual trajectories are also provided 

by solving state trajectories of the EHA system with state matrices A, B, and C. The state 

estimation error is the difference between values of the actual and estimated state. 

In order to compare these state estimators, some indicators such as the root mean 

squared error (RMSE), bias and standard deviations (STD) of the state estimation error 

are used. The RMSE of a state estimator is an indicator of the difference between state 

estimate values ̂ix  and the actual values ix  that are only available through simulation. 
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Note that the individual difference is referred to as the state estimation error xe , but the 

RMSE serves to summarize these differences into a single indicator of the estimator 

performance. In simulations, measurements of the state variables ix are artificially 

produced by using the state and measurement models, and injecting measurement noise 

kv  and process uncertainties kw . The RMSE value for an estimator is calculated as: 

2
1

ˆ( )
,

n
i ii

x x
RMSE

n
=

−
= ∑

 (3.64) 

where n denotes the number of time steps. Furthermore, the state estimation error is 

defined as the difference between the actual state values ix  and the estimated state 

values ˆix . Mean of the state estimation error (Bias) of an estimator is obtained as [1]: 

[ ] [ ]ˆ ( , ) ,kBias E x E x k Z= −  (3.65) 

where [ ]E  represents the expected value operator. For a discrete realization, Bias of a 

state estimator is calculated by: 

( )
1

1
ˆ .

n

i i
i

Bias x x
n =

= −∑  (3.66) 

The standard deviation (STD) is an indicator that represents how much variation or 

dispersion from the average exists in a data set or statistical population. A low STD 

shows that the data points tend to be very close to the mean value (or the expected value), 

and a high STD represents that the data points are spread out over a large range of values 

[1]. STD of the state estimation error of an estimator is given by ( xe  denotes the mean 

value of the state estimation error): 

[ ]2 2 2( ) ( ) ,x x x xSTD E e e E e E e   = − = −
     (3.67) 
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For a discrete realization, the STD of the state estimation error is calculated as: 

2
, ,

1

1
( ) .

n

x i x i
i

STD e e
n =

= −∑  (3.68) 

Tables 3.1 through 3.3 respectively present numeric values of the RMSE, Bias, and 

STD of the state estimation error generated by the above mentioned state estimators. 

Table 3.1 presents the RMSE value of the state estimation error 
|k kxe for both normal and 

uncertain conditions. Further to Table 3.1, the Kalman filter produces the most accurate 

state estimates in terms of the RMSE for the known model of the EHA system subject to 

white noise, followed by the 2nd-order SVSF and the 1st-order SVSF. It is because for 

normal conditions, the Kalman filter is optimal in terms of the RMSE. In spite of the 

normal case, it is observed that for the uncertain case, the 2nd-order SVSF produces the 

most accurate state estimates in terms of the RMSE. This accuracy is due to the 

robustness of the 2nd-order SVSF to uncertainties. Using the second order sliding 

condition instead of the smoothing boundary layer is the main reason why the 2nd-order 

SVSF is more accurate over the 1st-order SVSF for both normal and uncertain cases. 

Table 3.2 compares state estimates in terms of the bias (mean of the state estimation 

error 
|k kxe ) for both normal and uncertain conditions. Table 3.3 compares state estimates 

in terms of the standard deviation (STD) of the state estimation error 
|k kxe . For the normal 

case, the Kalman filter produces the smallest bias, followed by the 2nd-order SVSF and 

the 1st-order SVSF. But for the uncertain case, the 2nd-order SVSF generates the smallest 

bias, followed by the 1st-order SVSF and the Kalman filter. Furthermore, the 2nd-order 

SVSF has the smallest values pertaining to the standard deviation of the state estimation 

error 
|k kxe . Having the smallest value of the standard deviation for both normal and 
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uncertain models indicates the smoothness characteristic of the 2nd-order SVSF in 

comparison to other methods that reduces the amount of dispersion in the error signal. 

The 2nd-order SVSF produces state estimates with minimum values of bias and dispersion 

in the error 
|k kze for uncertain conditions. 

Table 3.1: Comparison between RMSE of three estimation methods applied to the EHA model 

 Kalman Filter 1st-order SVSF 2nd-order SVSF 

 Normal Uncertain Normal Uncertain Normal Uncertain 

RMSE of Position (cm) 1.01×10-2 0.31 1.10×10-2 1.13×10-2 1.05×10-2 1.08×10-2 

RMSE of Velocity (cm/s) 1.046 21.66 1.060 15.50 1.05 14.49 

RMSE of Accel. (cm/s2) 167.24 2206.06 170.31 1341.53 168.91 1335.18 

 

Table 3.2: Comparison between Biases of the three estimation methods applied to the EHA model 

 Kalman Filter 1st-order SVSF 2nd-order SVSF 

 Normal Uncertain Normal Uncertain Normal Uncertain 

Bias in Position (m) -2.53×10-5 -9.94×10-3 -2.58×10-4 -3.15×10-4 -1.57×10-4 -2.12×10-4 

Bias in Velocity (m/s) -1.95×10-3 5.63 -2.77×10-3 3.78 -4.70×10-3 3.78 

Bias in Accel. (m/s2) 9.84 27.32 10.04 20.86 9.98 20.76 

 

Table 3.3: Comparison between STD of the estimation methods applied on the EHA model 

 Kalman Filter 1st-order SVSF 2nd-order SVSF 

 Normal Uncertain Normal Uncertain Normal Uncertain 

STD of Position Error (m) 9.63×10-2 0.30 1.05×10-2 2.09×10-2 7.51×10-3 9.86×10-3 

STD of Velocity Error (m/s) 1.09 22.29 1.12 17.95 1.11 11.63 

STD of Accel. Error (m/s2) 183.55 2867.9 186.16 1823.9 185.37 1674.60 

 

Figure 3.6 presents the actual profile and the estimated state profile using the 

Kalman filter and the 2nd-order SVSF for the EHA in normal condition. Figure 3.7 

compares the actual and the estimated state trajectories using the Kalman filter and the 
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2nd-order SVSF for the EHA system with modeling uncertainties. Comparing Figures 3.6 

and 3.7 confirm the better performance of the 2nd-order SVSF in estimating state 

variables of the EHA system in the uncertain condition. 

 

Figure 3.6: State estimations by the Kalman filter and 2nd-order SVSF for the normal EHA system 

 

 

Figure 3.7: State estimations by the Kalman filter and 2nd-order SVSF for the faulty EHA system 
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The position’s estimation error signal obtained from these three methods is 

presented in Figure 3.8. It is clear that the 2nd-order SVSF produces the smoothest state 

estimates with the smallest variation for both normal and uncertain cases. These profiles 

with numeric values of Table 3.3 demonstrate that satisfaction of the second sliding 

condition provides higher degrees of smoothness in estimates over other approaches 

based on approximation. 

Figure 3.8: Profiles of measurement errors by different estimators for normal and faulty EHA 

 

Figure 3.9 presents the phase portrait of the measurement error and its first 

difference obtained by the 1st-order SVSF under the normal and faulty scenarios. 

Moreover, Figure 3.10 presents the same phase portrait obtained by the 2nd-order SVSF. 

It is observed that for the 2nd-order SVSF in both normal and uncertain scenarios, the 

measurement error and its difference are decreasing in time until the estimates reach the 

existence subspace. This is due to the stability of corrective gain formulation for the 2nd-

order SVSF and its ability to satisfy both the first and second sliding mode conditions. 
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For the 1st-order SVSF, it is observed that the measurement error and its difference are 

larger than ones obtained by the 2nd-order SVSF, but they still remain norm-bounded. As 

expected, stability of the 2nd-order SVSF results in finding an upper bound sε  for the 

measurement error 
|k kze  and another bound sε∆  for its difference 

| 1| 1k k k kz ze e
− −

− . 

  
a) Normal EHA system b) Uncertain EHA system 

Figure 3.9: Phase portrait of the measurement error and its difference obtained by the 1st-order SVSF 

 

  

a) Normal EHA system b) Uncertain EHA system 

Figure 3.10: Phase portrait of the measurement error and its difference obtained by the 2nd-order SVSF 
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The main advantages of the 2nd-order SVSF over the Kalman filter and 1st-order 

SVSF are its greater accuracy and robustness in uncertain conditions. These are directly 

due to preserving the second order sliding condition which forces not only the estimated 

state trajectories to slide along the switching hyperplane, but also their derivatives to slide 

along a tangential hyperplane. Note that the corrective gain of the 2nd-order SVSF in each 

step updates the a priori state estimates based on available information of the 

measurement error from two steps back. This helps the 2nd-order SVSF to create smoother 

state estimates with smaller bias and dispersions in the estimation error. 

 

3.8. Summary 

A new state estimation strategy referred to as the second-order smooth variable 

structure filter (2nd-order SVSF) is introduced and implemented in this chapter. It is 

formulated in a predictor-corrector form and uses a corrective gain to satisfy both the first 

and second sliding conditions during the estimation process. The filter uses a corrective 

gain that is derived to satisfy Lyapunov’s second law of stability. The 2nd-order SVSF can 

be applied to linear as well as nonlinear systems (without a need for linearization for the 

latter). Satisfaction of the second sliding condition results in higher degrees of robustness 

and smoothness in the estimated trajectory. This is achieved because the corrective gain 

of the 2nd-order SVSF has access to more information from past measurements that in this 

case are two previous time steps. 

The 2nd-order SVSF formulation not only helps to produce smoother state estimates, 

but also improves performance compared to 1st-order SVSF in terms of accuracy and 

robustness. Simulation results indicate that when there are modeling uncertainties, the 

2nd-order SVSF produces the most accurate state estimates and provides the smallest 
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RMSE, bias and standard deviations in the state estimation error compared to the other 

two filters. Satisfying the first and second sliding conditions, the 2nd-order SVSF 

alleviates chattering without the need for a smoothing boundary layer.  

Main advantages of the 2nd-order SVSF with respect to other state estimation 

methods may be summarized as follows: 

• the filter is robust and produces accurate state estimates in uncertain situations 

where the level, source and occurrence of uncertainties are unknown; 

• the filter can be applied to systems with a nonlinear state model without any need 

for linearization or approximation; 

• there is no need to use saturation or any type of approximation to alleviate 

discontinuities and  prevent chattering; 

• the filter produces smoother state estimates (with smaller STD of the error) when 

higher amount of information is available for the update stage; and 

• the 2nd-order SVSF may be used for analysis of chattering as a secondary measure 

of the filter performance 

The disadvantages of the 2nd-order SVSF are: 

• it is not optimal in the mean square error sense; and 

• more information in the form of past measurements are needed at each time step. 
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Chapter 4 

The Optimal 2nd-Order SVSF based on a Dynamic 

Sliding Manifold  

This chapter introduces the dynamic 2nd-order SVSF state estimation method that is 

designed based on the dynamic sliding mode concept. The dynamic 2nd-order SVSF 

produces state estimates by satisfying the first and second order sliding conditions that 

result in preserving the stability of the filter. Later on, the optimal version of this filter, 

referred to as the optimal 2nd-order SVSF, is calculated by minimizing the trace of the 

error covariance matrix. The corrective gain of the optimal 2nd-order SVSF is based on a 

dynamic sliding manifold that introduces a cut-off frequency coefficient into the filter 

formulation. The optimal value of the cut-off frequency coefficient is then calculated at 

each sample time such that the state’s a posteriori error covariance is minimized. It is 

shown that the corrective gain of the optimal 2nd-order SVSF collapses to the Kalman 

filter gain. Hence, a combined strategy is introduced that includes the optimal 2nd-order 

SVSF for systems with a perfect model and the dynamic 2nd-order SVSF for systems with 

huge uncertainties. Simulation results demonstrate the performance benefits of the 

combined strategy over other methods such as the Kalman filter, the 1st-order SVSF, and 

the former 2nd-order SVSF.  
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4.1. Introduction 

As discussed in the previous chapters, the main goals of state estimation are to 

minimize the estimation error as well as achieving robustness against modeling 

uncertainties, measurement noise and bounded disturbances. Optimality in estimation has 

usually been obtained by adjusting a filter’s corrective gain to minimize the state error 

covariance matrix (trace). The Wiener-Kolmogorov filter was one of the first major 

contributions in optimal estimation that was proposed for stationary signals [20]. It 

assumes estimates with known spectral properties subject to white noise. The Kalman filter 

is a generalization of the Wiener-Kolmogorov filter and is applied to linear systems with 

non-stationary Gaussian signals [20]. The Kalman filter requires a dynamic model of the 

system, known control inputs, and measurements containing white Gaussian noise. Under 

these strict assumptions, it provides optimal estimates by recursively predicting the states, 

estimating the uncertainty of the predicted states, computing a weighted average of the 

predicted and measured values, and refining the predicted states. 

Another important consideration in estimation is robustness to uncertainties and 

bounded disturbances. Common strategies found in the literature include the robust 

Kalman filter [50,57,53,2], the H∞ filter [41,55,56], and the variable structure filtering 

(VSF) [3,135,141]. The robust Kalman filter may be designed for systems with bounded 

modeling uncertainties such that an upper bound of the mean square estimation error is 

minimized at each step [53]. Sayed [2] presented a general framework for robust state 

estimation of dynamic systems with modeling uncertainties. Zames [136] proposed the H∞ 

method in 1980 that removes the necessity of a perfect model or complete knowledge of 

the input statistics. The H∞ theory is designed based on tracking the energy of a signal for 

the worst possible values of modeling uncertainties and measurement noise [147]. 
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More recently, the Smooth Variable Structure Filter (SVSF) was proposed as a 

model-based robust state estimation strategy [3]. It is based on the concept of variable 

structure systems that results in stability given an upper bound for uncertainties and noise 

levels. Its gain contains a discontinuous corrective term that refines the a priori state 

estimates into the a posteriori form. A smoothing boundary layer using the signum 

function was added to the gain formulation to alleviate high-frequency chattering. In this 

context, the signum function operates outside the smoothing layer to preserve robustness 

against uncertainties, while inside the smoothing layer it interpolates the gain to suppress 

unwanted chattering. The smoothing layer presents a compromise between accuracy versus 

smoothness [3]. 

Chapter 3 introduced the 2nd-order SVSF method as a new extension to the VSF-type 

filtering that satisfies the first and second order sliding conditions during the estimation 

process. It alleviates the unwanted chattering effects by decreasing the measurement error 

and its difference until reaching the existence subspace. Thereafter, it is proven that the 

measurement error and its difference remain bounded for situations with bounded noise 

and modeling uncertainties. By not using a smoothing boundary layer, the 2nd-order SVSF 

increases the accuracy of the standard SVSF [3] as well as its smoothness and robustness. 

The main issue with the 2nd-order SVSF method is that it is not however optimal in terms 

of the mean square error (MSE). This makes the 2nd-order SVSF to be conservative under 

the normal operating conditions in which the amount of uncertainties is small. 

Furthermore, the corrective gain of the 2nd-order SVSF is highly nonlinear and this yields 

to computational difficulties in the optimization process. In order to present the optimal 

version of the 2nd-order SVSF, a similar approach to the Kalman filter may be used. In this 

context, a linear formulation of the corrective gain that would satisfy the first and second 

order sliding conditions is required. 
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In this chapter, the dynamic 2nd-order SVSF method is firstly introduced based on a 

dynamic sliding mode manifold. The dynamic 2nd-order SVSF is applied to systems with 

linear state and measurement models that are subject to white additive noises. In this 

context, a linear sliding mode manifold is designed in terms of the sliding variable and its 

first difference. It is later proven that the slope of this linear manifold is effectively a cut-

off frequency that filters chattering and can dynamically be updated at each time step. 

The Lyapunov’s second law is used to provide the stability proof for the presented 

dynamic 2nd-order SVSF. In order to obtain the optimal derivation of the dynamic 2nd-

order SVSF, the trace of the a posteriori state error covariance is minimized by finding 

the optimal value of the cut-off frequency at each step. It provides the cut-off frequency 

as a square matrix with time-varying entries. It is shown that the corrective gain of the 

optimal 2nd-order SVSF represents the Kalman filter gain. Therefore, a combined strategy 

is introduced by considering the optimal 2nd-order SVSF for systems with a known model 

and the dynamic 2nd-order SVSF for systems with huge uncertainties. This strategy is 

demonstrated by its application to an electro-hydrostatic actuator (EHA). Simulation 

results from the combined strategy are compared with results from the Kalman filter, 1st-

order SVSF [3], and the former 2nd-order SVSF in terms of the root-mean-squared-error 

(RMSE), error’s mean (Bias) and standard deviations (STD). 

 

4.2. The Dynamic 2nd-Order SVSF Estimation Process 

Consider a stochastic dynamic system defined by linear state and measurement 

models in discrete time as follows: 

1
ˆˆ ,k k k kx F x Gu w+ = + +  (4.1) 

1 1
ˆ ,k k kz H x v+ += +  (4.2) 
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where 1n
kx ×∈ℝ  is the state vector, 1p

ku ×∈ ℝ  is the control vector, and 1m
kz ×∈ℝ  is 

the measurement vector. Furthermore, ˆ n nF ×∈ℝ is the estimated state matrix, ˆ n pG ×∈ℝ is 

the estimated control matrix, ̂ m nH ×∈ℝ is the estimated measurement matrix (diagonal or 

pseudo-diagonal matrix), 1n
kw ×∈ ℝ and 1m

kv ×∈ ℝ are the process uncertainties and 

measurement noise, respectively. The following assumptions are made in the derivation 

of the dynamic SVSF.
 

Assumption 4.1: The control vector 1pu ×∈ℝ  is known and norm-bounded such that: 

max.ku u≤  (4.3) 

Assumption 4.2: Vectors kw and kv  are mutually independent white processes. They are 

norm-bounded by maxw  and maxv  as their upper limits such that: 

max

max

;

.

k

k

w w

v v

 ≤


≤
 (4.4) 

It is assumed that they are statistically independent with respect to the state vector. 

The main benefit of higher order sliding mode condition is a reduction in the 

unwanted chattering effects. More specifically, the second order sliding mode condition 

not only retains the main advantages of the first order sliding mode systems such as 

robustness, but also reduces the chattering amplitude and results in a higher trajectory 

following accuracy. However, due to uncertainties, noise, and switching imperfections, 

the ideal conditions cannot be achieved and a real sliding regime needs to be considered. 

The real first and second order sliding mode conditions are described by the following 

definitions in discrete time. 
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Definition 4.1: The real first order sliding mode occurs if there is a time instance1k

after which the state trajectory that belongs to the sliding hyperplane ( )kS x  preserves: 

{ }1 1, , 0 : ( ) .n
st s k sS x k k S xε ε= ∀ ∈ ∃ ≥ > <ℝ  (4.5) 

Definition 4.2: The real second-order sliding mode occurs if after a finite time 

sequence 2 1k k> , the state trajectory that belongs to the sliding hyperplane ( )kS x  

preserves: 

{ }2 2, , , 0 : ( ) , ( ) .n
nd s s k s k sS x k k S x S xε ε ε ε∆ ∆= ∀ ∈ ∃ ≥ > < ∆ <ℝ  (4.6) 

In the dynamic 2nd-order SVSF, the corrective gain is a linear function of the a 

priori  and the a posteriori measurement error multiplied by the cut-off frequency 

coefficient. The stability proof of the filter under this gain is then proven using the 

Lyapunov’s second law of stability. The gain satisfies the first and second order sliding 

mode conditions that result in robust, smooth, and convergent state estimates. In order to 

optimize the dynamic 2nd-order SVSF in the mean squared error sense, the state and 

measurement models must be linearized. Hence, the optimal 2nd-order SVSF method is 

restricted to systems with linear state and measurement models. In order to apply the filter 

to systems with nonlinear state models, the state’s a posteriori PDF may be predicted 

using techniques involving linearization or approximation, similarly to the EKF or UKF 

methods. 

In this context, it is necessary to introduce the state error covariance matrix into the 

filter formulation. The error covariance matrix provides additional information about the 

state estimate’s dispersion for the filter that in turns results in more accurate estimates. 

The error covariance matrix may also be interpreted as an indicator of the performance 
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that presents dispersions of the noise and outliers from the measurement data. 

Furthermore, derivation of the covariance matrix helps the optimal 2nd-order SVSF 

method to be combined with other estimation methods such as the interacting multiple 

models (IMM) filter. The combination of the IMM filter with the optimal 2nd-order SVSF 

will be used in Chapter 5 for fault detection and identification (FDI). 

The calculation process of the a priori and a posteriori state error covariance for the 

new derivation is similar to what was presented by Gadsden and Habibi [140] for the 1st-

order SVSF that followed a similar approach as the Kalman filter, [1,20]. In this context, 

the a priori state error covariance matrix is defined as the statistical expectation of the 

squared a priori state estimation error as follows [1]: 

{ }1| 1 1| 1 1|ˆ ˆ( )( ) ,T
k k k k k k k kP E x x x x+ + + + += − −  (4.7) 

Since 1
ˆˆ

k k k kx Fx Gu w+ = + + , and 1| |
ˆˆˆk k k k kx Fx Gu+ = + , it leads to [1]: 

{ }1| | | | |
ˆ ˆ ˆ ˆ ,T T T T T T

k k k k k k k k k k k k k kP E Fx x F Fx w w x F w w+ = + + +ɶ ɶ ɶ ɶ  (4.8) 

where | |ˆk k k k kx x x= −ɶ  is the state estimation error. Further to Assumption 4.2 [1]: 

{ } { } 0,T
k kE w E w= =  (4.9) 

{ } { }| | 0,T T
k k k k k kE x w E w x= =ɶ ɶ  (4.10) 

{ } ,T
k k kE w w Q=  (4.11) 

where kQ  is the process noise covariance matrix. Finally, the a priori state covariance 

matrix is formulated as [1]: 
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1| |
ˆ ˆ .T

k k k k kP FP F Q+ = +  (4.12) 

Similarly, the a posteriori state error covariance matrix is obtained as [1]: 

1| 1 1 1| 1 1 1 1( ) ( ) .T T
k k k k k k k k kP I K H P I K H K R K+ + + + + + + += − − +  (4.13) 

The dynamic 2nd-order SVSF estimation process is performed in a predictor-

corrector form recursively. It applies to systems with linear state and measurement 

models (4.1-4.2). The estimation process may be summarized in six steps as follows: 

I. Prediction of the a priori state estimate is obtained using initial conditions 

1
0ˆ nx ×∈ ℝ or the previous a posteriori state estimate |ˆk kx as: 

1| |
ˆˆˆ ˆ .k k k k kx Fx Gu+ = +  (4.14) 

Then, the a priori estimate of the measurement vector is calculated using the a priori 

state estimate and the linear measurement model of equation (4.2) as: 

1| 1|
ˆˆ ˆ .k k k kz H x+ +=  (4.15) 

II.  The a priori state error covariance matrix is predicted using the linear state 

transition model and the previous a posteriori state error covariance matrix |k kP as: 

1| |
ˆ ˆ .T

k k k k kP F P F Q+ = +  (4.16) 

III.  The a priori and the a posteriori measurement error vectors,
1|

1
k k

m
ze

+

×∈ℝ  and 

|

1
k k

m
ze ×∈ℝ  are calculated as follows: 
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1| 1 1|
ˆ ˆ ,

k kz k k ke z H x
+ + += −  (4.17) 

| |
ˆ ˆ .

k kz k k ke z H x= −  (4.18) 

IV.  The corrective gain 1
1

n
kK ×

+ ∈ℝ is obtained as a function of the a priori 
1|k kze

+  and 

the a posteriori 
|k kze and 

1| 1k kze
− − measurement errors, and the cut-off frequency 

matrix m m
k

×Λ ∈ℝ as follows: 

1| 1 1|1 ( , , ).
k k k kk k z zK f e e

− − ++ = Λ  (4.19) 

The cut-off frequency matrix m m
k

×Λ ∈ℝ  is automatically calculated during the 

estimation process and represents the filter’s bandwidth at each time step. 

V. The a priori state estimate is updated into the a posteriori estimate as: 

1|1| 1 1| 1ˆ ˆ .
k kk k k k k zx x K e

++ + + += +  (4.20) 

VI.  The a posteriori state estimation is updated such that: 

1| 1 1 1| 1 1 1 1
ˆ ˆ( ) ( ) .T T

k k k k k k k k kP I K H P I K H K R K+ + + + + + + += − − +  (4.21) 

One of the main advantages of the dynamic 2nd-order SVSF over other approaches 

is the use of a switching hyperplane by introducing an internal filtering strategy with its 

own cut-off frequency coefficient. In this context, a cut-off frequency coefficient is 

assigned to each measurement that filters out the unwanted chattering and any other high 

frequency dynamics. This coefficient is formulated into the filter by defining the sliding 

manifold as k k kS CSσ = ∆ + , where m mC ×∈ ℝ . The coefficient C referred to as the 

manifold cut-off frequency represents the slope of the sliding manifold in a phase plane 
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coordinated by S and S∆ . Its value affects the amount of chattering that needs to be 

filtered out from the state estimates. 

For the optimal derivation of the dynamic 2nd-order SVSF, the entries of the cut-off 

frequency matrix ,ij kc
 
should be calculated such that the trace of the state error 

covariance matrix 1| 1k kP + + is minimized at each time step. In order to introduce the cut-

off frequency term into the dynamic 2nd-order SVSF formulation, a linear sliding 

manifold is designed based on the concept of dynamic sliding mode systems. This 

concept was introduced and implemented by Sira-Ramirez [16,17]. 

Definition 4.3: Consider a polynomial P defined as following [17]: 

( ) ( )( , , , , , , , , ) 0,r kP s s s x u u u =ɺ ɺ… …  (4.22) 

where the sliding function s may depend on the input u. A stable dynamic sliding 

manifold σ that preserves the rth-order sliding condition may be formulated as [17]: 

( ) ( 1)
1 1... 0,r r

rs a s a sσ −
−= + + + =  (4.23) 

where the coefficients 1 2 1{ , , , }ra a a −… are defined such that the polynomial (4.22) is 

Hurwitz. The controller u may be a discontinuous function of σ such that it satisfies the 

polynomial P. 

Regarding the dynamic sliding mode concept, a linear sliding manifold kσ  may be 

defined as a linear combination of kS and kS∆ in the following form: 

,k k kS CSσ = ∆ +  (4.24) 
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where 1 1: m m
kσ × ×→ℝ ℝ  is the new sliding mode manifold, 1m

kS ×∈ ℝ is the vector of 

sliding variables, and 1 1: m m
kS × ×∆ →ℝ ℝ  is the backward difference operator. Matrix 

( ) m m
iiC Diag c ×= ∈ℝ  is a diagonal matrix with entries iic representing the cut-off 

frequency associated to a particular measurement error 
, |i k kze . 

Similar to the 1st-order SVSF [3] and the 2nd-order SVSF methods, the sliding 

variable is equal to the a posteriori measurement error 
|k kk zS e= and the difference of the 

sliding variable is also equal to the difference of the measurement error
| 1| 1k k k kk z zS e e

− −
∆ = − . 

Therefore, by defining the sliding manifold as k k kS CSσ = ∆ + and proving the stability 

of state estimates about it, it is ensured that the estimation error and its difference are 

vanishing in finite time. A corrective gain 1
n m

kK ×
+ ∈ℝ  for the dynamic 2nd-order SVSF 

given a square measurement matrix ˆ m nH ×∈ℝ  is presented as follows: 

1| | 1| 1 1|

1
1 1 1

ˆ ( ) .
k k k k k k k kk z k z k z zK H e e e eγ γ

+ − − +

+−
+ + +

   = − + Λ + Λ
     (4.25) 

Where 1
m m

k
×

+Λ ∈ ℝ is the cut-off frequency matrix, and ( ) m m
iiDiagγ γ ×= ∈ℝ is a 

diagonal matrix with positive entries such that 0 1iiγ< <  represents the convergence rate. 

Note that 
1|k kze

+

+
 
  represents the pseudo-inverse of the a priori measurement error 

1|k kze
+

and inserted in the gain formulation in order to cancel the term 
1|k kze

+
 in the update 

equation (4.20). It is shown later in Section 4.3 that the corrective gain (4.25) will satisfy 

the stability requirement. Furthermore, Section 4.6 presents a corrective gain for cases 

with fewer measurements than states. Figure 4.1 presents the main concept of the 

dynamic 2nd-order SVSF under the linear sliding mode manifold. 
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Figure 4.1: Main concept of the dynamic 2nd-order SVSF under the linear sliding manifold 

 

Remark 4.1: The new sliding manifold k k kS CSσ = ∆ +  presents a first-order low-

pass filter, where C is referred to as the manifold cut-off frequency matrix. The entry iic

is the cut-off frequency corresponding to the i th element of the measurement error 
ize . 

Taking the Z-transform of the manifold, the sliding variable s can be expressed as: 

1

( )
( ) .

1
i

i
ii

z
s z

c z

σ
−=

+ −  (4.26) 

It is simply restated as: 
( )

( )
(1 ) 1

i
i

ii

z z
s z

c z

σ=
+ − . Hence, the sliding variable ( )is z may be 

synthesized as the output of a first-order low-pass filter with a variable bandwidth that is 

a function of the manifold slope iic . Hence, by proper selection of the cut-off frequency 

matrix C, it is possible to establish a filtering strategy for the sliding variable. It is 

important to note that C determines the amount of chattering that needs to be filtered out. 
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4.3. Corrective Gain for the Dynamic 2nd-Order SVSF Method 

This section presents the derivation of the corrective gain of equation (4.25) for the 

dynamic 2nd-order SVSF that is a linear function of the a priori and the a posteriori 

measurement errors. The corrective gain is calculated such that the dynamic 2nd-order 

SVSF under the linear sliding manifold k k kS CSσ = ∆ +  remains stable. The manifold 

introduces the cut-off frequency coefficient m mC ×∈ℝ into the formulation of the filter 

gain. In the following, Theorem 4.1 shows that the dynamic 2nd-order SVSF under the 

corrective gain (4.25) is stable based on the Lyapunov’s second law. 

Theorem 4.1: Assume a linear discrete system with the state and measurement 

models of equations (4.1) and (4.2). The dynamic 2nd-order SVSF with the following 

corrective gain is stable and produces convergent state estimates into the first and second 

order sliding mode hyperplanes (given a full measurement matrix ˆ ,m nH m n×∈ =ℝ ):
 

1| | 1| 1 1|

1
1 1 1

ˆ ( ) .
k k k k k k k kk z k z k z zK H e e e eγ γ

+ − − +

+−
+ + +

   = − + Λ + Λ
     

Proof: Consider the following positive-definite Lyapunov function: 

2
, ,k i kV σ=  (4.27) 

where ,i kσ ∈ℝ is an element of the linear sliding manifold and defined as:

, , ,i k i k ii i ks c sσ = ∆ + . Furthermore, ,i ks ∈ℝ
 denotes an element of the sliding variable 

vector, and ,i ks∆ ∈ℝ  denotes the difference of the sliding variable ,i ks calculated using 

the backward difference operator as: , , , 1i k i k i ks s s −∆ = − . The 2nd-order SVSF under the 

proposed gain (4.25) will be stable if 1 1 0k k kV V V+ +∆ = − < . Substituting the Lyapunov 
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function in the last inequality yields: 2 2
1 , 1 , 1 , ,( ) ( )k i k ii i k i k ii i kV s c s s c s+ + +∆ = ∆ + − ∆ + , 

where , 1 , 1 ,i k i k i ks s s+ +∆ = − and , , , 1i k i k i ks s s −∆ = − . Substituting the above values and 

rearranging, 1kV +∆  is obtained as: 

2 2 2 2
1 , 1 , 1 , , , , 1 , 1(1 ) 2(1 ) 2 (1 ) 2(1 ) .k ii i k ii i k i k ii ii i k ii i k i k i kV c s c s s c c s c s s s+ + + − −∆ = + − + − + + + −

 
(4.28) 

For simplicity let elements of the manifold’s cut-off frequency matrix be defined as: 

1
,

1ii
iic

λ =
+  (4.29) 

where ( ) m m
iiDiag λ ×Λ = ∈ℝ  is a diagonal matrix. This definition simplifies the calculation 

of the derivative of the error covariance with respect to the manifold cut-off frequency. 

Multiplying the gain equation (4.25) from the left by Ĥ , and then from the right by

1|k kze
+

, and rearranging: 

1| 1| | 1| 11 1 1
ˆ ( ) .

k k k k k k k kz k z k z k ze H K e e eγ γ
+ + − −+ + +− = + Λ − Λ  (4.30) 

Since the estimated states are updated using equation (4.20), namely 

1|1| 1 1| 1ˆ ˆ
k kk k k k k zx x K e

++ + + += + , it simply leads to: 
1|1 1| 1 1|ˆ ˆ

k kk z k k k kK e x x
++ + + += − . Substituting 

this relation into (4.30) leads to: 

1| | 1| 11| 1 1| 1 1
ˆ ˆ ˆ( ) ( ) .

k k k k k kz k k k k k z k ze H x x e eγ γ
+ − −+ + + + +− − = + Λ − Λ  (4.31) 
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The a priori and the a posteriori measurement errors at time step k are obtained from 

equations (4.17) and (4.18) as: 
1| 1 1|

ˆ ˆ
k kz k k ke z H x

+ + += − and 
1| 1 1 1| 1

ˆ ˆ
k kz k k ke z H x

+ + + + += − . 

Subtracting the a priori error from the a posteriori error leads to: 

1| 1 1| 1| 1 1|
ˆ ˆ ˆ( ).

k k k kz z k k k ke e H x x
+ + + + + +− = − −  (4.32) 

From equation (4.32), it is possible to restate equality (4.31) as follows: 

1| 1 | 1| 11 1( ) .
k k k k k kz k z k ze e eγ γ

+ + − −+ += + Λ − Λ  (4.33) 

Since 
|k kk zs e= , equality (4.33) can be restated in terms of sliding variable entries ,i ks as: 

, 1 , , 1( ) .i k ii ii i k ii ii i ks s sγ λ γ λ+ −= + −  (4.34) 

In order to show negative definiteness of the Lyapunov function candidate (4.27), 

equality (4.34) is substituted into the first difference of the Lyapunov function (4.28). 

Expanding the result: 

2 2 2 2 2 2
1 , , , 1 , 1( 1)(1 ) 2( 1)(1 ) ( 1) .k ii ii i k ii ii i k i k ii i kV s s s sγ λ γ λ γ+ − −∆ = − + − − + + −  (4.35) 

Rearranging equality (4.35) results in: 

22
1 , , 1( 1) (1 ) .k ii ii i k i kV s sγ λ+ − ∆ = − + −   (4.36) 

Since the convergence rate matrix ( ) m m
iiDiagγ γ ×= ∈ℝ is defined such that 0 1iiγ< < , it 

leads to 1 0kV +∆ < that indicates the stability of the 2nd-order SVSF under the corrective 

gain (4.25). Given that the Lyapunov function kV  is a function of kS  as well as kS∆ , it 
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can be concluded from equation (4.36) with 1 0kV +∆ <  that convergence is attained for both 

the first and second order sliding mode conditions.                                                            □ 

Remark 4.2: Note that due to modeling uncertainties, noise, and switching 

imperfections, however the ideal second order sliding motion does not occur, and real 

second order sliding regime is obtained. 

Corollary 4.1: If the Lyapunov function (4.27) is satisfied, then 1| | | |k kσ σ+ < . Since 

k k kS CSσ = ∆ + , where 
|k kk zS e=  and 

|k kk zS e∆ = ∆ , it means that the measurement error 

and its corresponding rate of change are decreasing over time while k σσ ε> . Due to 

measurement noise and modeling uncertainties, kσ only decreases until it reaches the 

existence subspace bounded σε . However, under ideal sliding mode condition: 0kσ = . 

Remark 4.3: The corrective gain (4.25) actually represents a second-order Markov 

process that is formulated in terms of the a priori measurement error terms at time step k: 

|k kze , and time step k-1: 
1| 1k kze

− −
, and the a posteriori measurement error 

1|k kze
+

. Using a 

second-order corrective gain in the update step results in updating the state estimates 

based on information available from the last two steps. Having access to higher amounts 

of information however increases the smoothness and the robustness of the dynamic 2nd-

order SVSF in comparison to first-order filters like the Kalman filter, or the 1st-order 

SVSF. 

Remark 4.4: Proper selection of the convergence rate matrix m mγ ×∈ ℝ  such that 

0 1iiγ< <  preserves the stability and convergence of the dynamic 2nd-order SVSF. Note 

that the main reason for calling the coefficient γ  as the convergence rate is because of 
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the Lyapunov stability criterion that leads to: 1k kV Vγ+ = . This alternatively results in 

1 ( 1) ,k kV Vγ+∆ = − and hence, smaller values of iiγ leads to a faster convergence rate 

for the dynamic 2nd-order SVSF method. 

4.4. Derivation of an Optimal Cut-Off Frequency Matrix  

In order to minimize the mean squared error and extract the optimal state estimates 

using the dynamic 2nd-order SVSF, the optimal value of the cut-off frequency coefficient 

must be found at each time step. The proposed strategy for finding the optimal cut-off 

frequency matrix is to calculate the partial derivative of the state’s a posteriori error 

covariance matrix (trace) 1| 1k kP + +  with respect to the cut-off frequency kΛ . It results in 

determining the optimal value of the cut-off frequency at each time step and calculates the 

filter’s bandwidth as a function of uncertainties in an optimal sense. In a geometrical 

sense, this strategy leads to finding the optimal value of the sliding manifold’s slope for 

filtering out chattering at each time step (Refer to Figure 4.1). 

In the Kalman filtering process, the gain is calculated to directly minimize the 

state’s a posteriori error covariance matrix (trace). In the dynamic 2nd-order SVSF, the 

filter’s corrective gain is firstly derived to within a range that preserves the Lyapunov’s 

second law, nonetheless the cut-off frequency matrix is assumed to be unknown and time-

varying. In the next step, the optimal value of the cut-off frequency matrix (filter’s 

bandwidth) is calculated by using optimization. The process is iterative and similar in 

steps to the Kalman filter. The optimization process is directly applicable to systems with 

a square measurement matrix Ĥ . For the case involving fewer measurements than states, 

the Luenberger’s observer [3,164] or any other reduced-order observer is used. 
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In the stability-oriented design of the dynamic 2nd-order SVSF, the cut-off 

frequency matrix is set to be diagonal. Each diagonal entry iiλ represents the cut-off 

frequency corresponding to a measurement error and this makes the cut-off frequency 

coefficients become independent of each other. The consequence is that the measurement 

error of each state 
|k kze is directly filtered out with a pre-determined bandwidth. The 

filtered data are used later to calculate the corrective gain. Note that however due to the 

diagonal consideration of the cut-off frequency matrix, coupling effects were neglected in 

the derivation of the dynamic 2nd-order SVSF. Hence, only diagonal entries of the state 

error covariance matrix are minimized and the off-diagonal entries are neglected 

[11,165]. Diagonal consideration of the cut-off frequency matrix on their own does not 

lead to an optimal solution. 

As such, for optimizing the dynamic 2nd-order SVSF, the cut-off frequency matrix 

m m
k

×Λ ∈ℝ  needs to be full with diagonal and off-diagonal entries as follows: 

11, 12, 1 ,

21, 22, 2 ,

1, 2, ,

,

k k m k

k k m k
k

m k m k mm k

λ λ λ
λ λ λ

λ λ λ

 
 
 Λ =
 
 
  

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 (4.37) 

where ,ii kλ is a diagonal entry and represents the cut-off frequency applied on 
|k kze . 

Otherwise, ,ij kλ is an off-diagonal entry that represents a geometrical relation between 

two independent cut-off frequencies ,ii kλ and ,jj kλ
 
corresponding to measurement errors 

|, k ki ze and 
|, k kj ze . Theorem 4.2 is presented to introduce the optimal value of the cut-off 

frequency matrix at each time step. 
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Theorem 4.2: Assume a linear discrete-time system described by the state and 

measurement models of equations (4.1) and (4.2). The optimal 2nd-order SVSF minimizes 

the trace of the state’s error covariance matrix 1| 1k kP + +  for this system, if the cut-off 

frequency matrix is given by: 

1| | | 1| 1 1|

1

1 , 1 1| , 1
ˆ ˆ( ) ( ) ( ).

+ − − +

−
+ + + +

   Λ = − − −
   k k k k k k k k k k

T
k z z rc k k k z z rc k zdiag e e S H P H diag e e S diag eγ γ  (4.38) 

Proof: In order to minimize 1| 1k kP + + with optimal selection of the cut-off frequency

1k +Λ , its partial derivative (trace) with respect to 1k +Λ is needed such that: 

1| 1

1

( )
0.

k k

k

trace P + +

+

 ∂   =
∂Λ  (4.39) 

The error covariance matrix 1| 1k kP + + is presented by equation (4.13) as follows: 

1| 1 1 1| 1 1 1 1
ˆ ˆ( ) ( ) .T T

k k k k k k k k kP I K H P I K H K R K+ + + + + + + += − − +  (4.40) 

It contains the corrective gain 1kK +  given by equation (4.25). For calculating the partial 

derivative of equation (4.39), some relations from the gradient matrix rules are required, 

including [166]: 

[ ]( )
,T Ttrace A X B

A B
X

∂
=

∂
 (4.41) 

( )
,

Ttrace AX B
BA

X

 ∂
  =

∂
 (4.42) 

( )
.

T
T T T

trace AXBX C
A C XB CAXB

X

 ∂
  = +

∂
 (4.43) 
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Note that some matrices like 1|k kP + are symmetric and this simplifies calculations. 

Substituting the corrective gain (4.25) into the error covariance equation (4.40) and 

expanding the resulting terms lead to the following four parts: 

1|Part 1: ,k kP +  (4.44) 

1| | | 1| 1 1|

1 1
1 1|

ˆ ˆPart 2: - [ ( ) ( )][ ( )] ,
k k k k k k k k k kz z k z z z k kH diag e e diag e e diag e H Pγ γ

+ − − +

− −
+ +− − Λ −  (4.45) 

1| | | 1| 1 1|

1
1| 1

ˆ ˆPart 3: - [ ( ) ( ) ][ ( )] ,
k k k k k k k k k k

T T T T T
k k z z z z k zP H diag e e diag e e diag e Hγ γ

+ − − +

− −
+ +− − − Λ  (4.46) 

1| | | 1| 1 1|

1| 1| | | 1| 1

1 1
1 , 1

1
1

ˆPart 4: [ ( ) ( ) ][ ( )]

ˆ[ ( )] [ ( ) ( ) ] .

+ − − +

+ + − −

− −
+ +

− −
+

− − Λ −

− − − Λ
k k k k k k k k k k

k k k k k k k k k k

T T
z z k z z z rc k

T T T T
z z z z z k

H diag e e diag e e diag e S

diag e diag e e diag e e H

γ γ

γ γ
 (4.47) 

The partial derivative in equation (4.39) may be calculated as a summation of the partial 

derivative of the four parts presented by (4.44-4.47). These derivatives are separately 

calculated as follows: 

{ }
k+1

(Part 1)
0,

trace∂
=

∂Λ  (4.48) 

{ }
1| | 1| 1

1
1|

k+1

(Part 2) ˆ ˆ [ ( )] ( ) ,
k k k k k k

T T T
k k z z z

trace
H P H diag e diag e eγ

+ − −

− −
+

∂
= −

∂Λ
 (4.49) 

{ }
1| | 1| 11|

k+1

(Part 3) ˆ ˆ [ ( )] ( ) ,
k k k k k k

T T T T
k k z z z

trace
H P H diag e diag e eγ

+ − −

− −
+

∂
= −

∂Λ  (4.50) 

| 1| 1 1| | 1| 1

1| | 1| | 1| 1

1 1
1 , 1

k+1

1
, 1

{trace(Part 4)} ˆ=2 [ ( ) [ ( )] ( )

( ) [ ( )] ( ) ].

− − + − −

+ + − −

− −
+ +

−
+

∂ Λ − −
∂Λ

− − −

k k k k k k k k k k

k k k k k k k k k k

T T
k z z rc k z z z

T T
z z rc k z z z

H diag e e S diag e diag e e

diag e e S diag e diag e e

γ γ

γ γ
 (4.51) 

where , 1
×

+ ∈ℝ
m m

rc kS is a symmetric matrix, called the innovation covariance matrix, and 

given by (similar to the Kalman filtering): 
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, 1 1|
ˆ ˆ .+ += +T

rc k k k kS H P H R  (4.52) 

Adding equations (4.48-4.51) and rearranging them, the partial derivative of 1| 1k kP + + is 

obtained as: 

1| |

1| | 1| 1

1
1| , 1

1 1
1 , 1

ˆ ˆ [ ( )]

ˆ [ ( )] [( )] 0.

+

+ − −

−
+ +

− −
+ +

− − =

− Λ − =
k k k k

k k k k k k

T
k k z z rc k

k z z z rc k

P H H diag e e S

H diag e diag e e S

γ

γ
 (4.53) 

Solving equality (4.53) in terms of 1k+Λ  results in the optimal cut-off frequency matrix as:

1| | | 1| 1 1|

1

1 , 1 1| , 1
ˆ ˆ( ) ( ) ( )

+ − − +

−
+ + + +

   Λ = − − −
   k k k k k k k k k k

T
k z z rc k k k z z rc k zdiag e e S H P H diag e e S diag eγ γ  that 

is equal to equation (4.38).                                                                                                   □ 

Corollary 4.2: Following Theorem 4.2, the value of the cut-off frequency matrix is 

directly affected by the level of modeling uncertainties. Each entry is calculated as a 

function of the measurement error 
|k kze , its covariance 1|k kP + , and the state error 

covariance , 1+rc kS . Hence, 1k +Λ  needs to be calculated at each step and then used for 

evaluating the filter’s corrective gain. 

The optimal 2nd-order SVSF method is summarized in three main steps as follows: 

I. Prediction of the a priori state, measurement and state error covariance as: 

1| |

1| 1|

1| |

ˆˆˆ ˆ ,

ˆˆ ˆ ,

ˆ ˆ .

k k k k k

k k k k

T
k k k k k

x F x G u

z H x

P F P F Q

+

+ +

+

= +

=

= +
 (4.54) 

II.  Calculation of the innovation covariance, cut-off frequency and corrective gain as:  
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1| | | 1| 1 1|

1| | 1| 1 1|

, 1 1|

1

1 , 1 1| , 1

1
1

1 1 1

ˆ ˆ ,

ˆ ˆ( ) ( ) ( ),

ˆ [ ( ) ] ( ) ( )

+ − − +

+ − − +

+ +

−
+ + + +

−−
+ + +

= +

   Λ = − − −
   

   = − + Λ + Λ
   

k k k k k k k k k k

k k k k k k k k

T
rc k k k k

T
k z z rc k k k z z rc k z

k z k z k z z

S H P H R

diag e e S H P H diag e e S diag e

K H diag e e diag e diag e

γ γ

γ γ .

 (4.55) 

III.  Update of the a priori state and covariance into the a posteriori estimates as: 

1|1| 1 1| 1

1| 1 1 1| 1 1 1 1

ˆ ˆ ,

ˆ ˆ( ) ( ) .

k kk k k k k z

T T
k k k k k k k k k

x x K e

P I K H P I K H K R K

++ + + +

+ + + + + + + +

= +

= − − +
 (4.56) 

Figure 4.2 presents a block-diagram of the optimal 2nd-order SVSF estimation process. 

 

 

Figure 4.2: A block-diagram scheme of the optimal 2nd-order SVSF estimation process 

 

Remark 4.5: In order to apply the optimal 2nd-order SVSF to systems with nonlinear 

state models, the state’s a posteriori PDF needs to be predicted using techniques 

involving linearization or approximation, similarly to the extended Kalman or unscented 

Kalman filters. 
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Remark 4.6: A potential difficulty with the optimal 2nd-order SVSF method for state 

estimation is related to the term 
| 1| 1

1

, 1( )
k k k kz z rc kdiag e e Sγ

− −

−
+

 −
 

that is appearing in the 

denominator of the cut-off frequency formulation. This term may cause numerical taken 

in implementing matrix inversion. 

It is interesting to note that the corrective gain of the optimal 2nd-order SVSF with 

the introduced cut-off frequency coefficient represents the Kalman filter gain. In order to 

show that, let substitute the cut-off frequency coefficient (4.38) into the corrective gain of 

the optimal 2nd-order SVSF (4.25) such that: 

{ 1| | 1| |

| 1| 1 | 1| 1 1| 1|

1
1 , 1 1|

1 1

, 1

ˆ ˆ ˆ( ) ( )

( ) ( ) ( ) ( ) .

+ +

− − − − + +

−
+ + +

− −
+

 = − − − −
 

   − −    

k k k k k k k k

k k k k k k k k k k k k

T
k z z z z rc k k k

z z rc k z z z z

K H diag e e diag e e S H P H

diag e e S diag e e diag e diag e

γ γ

γ γ
 (4.57) 

Rearranging (4.57), it becomes: 

{ 1| | 1| |

| 1| 1 | 1| 1

1
1 , 1 1|

1
1

, 1

ˆ ˆ ˆ( ) ( )

( ) ( ) ,

+ +

− − − −

−
+ + +

−−
+

 = − − − −
 

 − −   

k k k k k k k k

k k k k k k k k

T
k z z z z rc k k k

rc k z z z z

K H diag e e diag e e S H P H

S diag e e diag e e

γ γ

γ γ
 (4.58) 

where equality (4.58) may be restated as follows: 

1| | 1| |

1 1
1 1| , 1

ˆ ˆ ˆ( ) ( ) .
+ +

− −
+ + +

 = − − − +
 k k k k k k k k

T
k z z z z k k rc kK H diag e e diag e e H P H Sγ γ  (4.59) 

Simplifying equality (4.59), the corrective gain of the optimal 2nd-order SVSF becomes: 

1
1 1| , 1

ˆ ,−
+ + += T

k k k rc kK P H S  (4.60) 
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where it is equal to the Kalman filter gain. Hence, the optimal 2nd-order SVSF produces 

an optimal solution for well-defined linear systems while its gain formulation represents 

the Kalman filter gain. 

As presented, the corrective gain of the optimal 2nd-order SVSF collapses to the 

Kalman filter’s gain and hence, its robustness to modeling uncertainties is lost. In order to 

overcome this issue and preserving robustness as well as optimality, a combined strategy 

is proposed that is similar to the Gadsden’s combined approach introduced in [8]. In this 

combined strategy, the dynamic 2nd-order SVSF with the corrective gain of (4.25) applies 

to systems with huge uncertainties. Besides, the optimal 2nd-order SVSF (Kalman filter) 

applies to systems with a known model. This strategy preserves optimality for systems 

with a known model and at the same time preserves robustness for systems with huge 

uncertainties. The decision on the level of uncertainties is made by comparing the current 

amplitude of the measurement noise with the noise amplitude of the system in the normal 

condition. Following Gadsden’s approach [8], a limit for the measurement noise may be 

set equal to 5 times the maximum system noise, or approximately equal to the 

measurement noise. Figure 4.3 presents the main concept of the combined strategy that 

selects one of the dynamic or optimal 2nd-order SVSF methods based on current level of 

uncertainties. 

 

Figure 4.3: Main concept of combined strategy based on the dynamic and optimal 2nd-order SVSF  

 



PhD Thesis – H. Afshari; McMaster University, Mechanical Engineering 

164 
 

4.5. Geometrical Interpretation of the Cut-Off Frequency Matrix 

An important feature of the optimal 2nd-order SVSF is its time-varying manifold 

cut-off frequency matrix kΛ and its use in the gain formulation. This effectively results in 

an adaptive bandwidth that filters out chattering such that the state error covariance 

(trace) is minimized. At the same time, it preserves the first and second sliding conditions 

that yields the linear sliding manifold , , ,i k i k ii i ks c sσ = ∆ +  converges to zero under the 

ideal sliding motion, such that 0kσ = . This equality shows that each diagonal entry ,ii kc

represents the slope of a corresponding sliding manifold ,i kσ . Note that the cut-off 

frequency iic is simply obtained from equality (4.29) such that (1 ) /ii ii iic λ λ= − . Figure 

4.4 presents a geometrical depiction of the cut-off frequency matrix C with its entries. 

 

Figure 4.4: A geometrical depiction of the cut-off frequency matrix with its entries 

 

In this figure, ,i kϕ is the angle between the linear manifold,i k kσ σ∈ and the 

horizontal axis. The cut-off frequency matrix m mC ×∈ℝ is a square matrix with time-

varying diagonal and off-diagonal entries as follows: 
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11, 12, 1 ,

21, 22, 2 ,

1, 2, ,

.

k k m k

k k m k
k

m k m k mm k

c c c

c c c
C

c c c

 
 
 =
 
 
  

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 (4.61) 

The diagonal entry ,ii kc
 represents the slope of the linear manifold ,i kσ  defined for the 

measurement ,i kz . Its numeric value is simply calculated as: , ,tanii k i kc ϕ= − . However, 

the off-diagonal entry ,ij kc
 
does not imply any physical meaning and only correlates two 

entries ,ii kc  and ,jj kc . These entries are respectively pertaining to the two independent 

measurements vector iz  and jz  at the time step k. Hence, the off-diagonal entry ijc  may 

be used to mathematically correlate diagonal entries (e.g. iic and jjc ) of the cut-off 

frequency matrix. In this context, ,ij kc  may be interpreted as the angle between the two 

linear manifolds ,i kσ  and ,j kσ , and obtained by , , ,ij k j k i kϕ ϕ ϕ= − as follows: 

, ,1 1
, , ,

, ,

tan(tan tan ) .
1

ii k jj k
ij k ii k jj k

ii k jj k

c c
c c c

c c
− − −

= − =
+  (4.62) 

4.6. The Optimal 2nd-SVSF for Systems with Fewer Measurements than States 

Similar to the 2nd-order SVSF method, its optimal version may be applied to 

systems with fewer measurements than state variables. In this case, the corrective gain of 

the optimal 2nd-order SVSF may be derived using the Luenberger’s approach [3]. It is 

furthermore assumed that the linear dynamic system with equations (4-1) and (4-2) is 

completely observable. Similar to section 3.5, the state variables may be decomposed into 

two parts [ ]
k k

T
k u lx x x= , where the upper part 1

k

l
ux R×∈ is directly measured and 

whereas the lower part ( ) 1
k

n l
lx − ×∈ℝ  is not [3]. Using the Luenberger’s transformation, a 
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revised state vector is obtained in terms of measurements such that [ ]
k

T
k k ly z y= , where 

1l
kz ×∈ℝ  denotes the direct measurement vector and ( ) 1

k

m l
ly − ×∈ℝ  denotes an artificial 

projected measurement vector. The problem is to calculate values for entries of 
kl

y based 

on the partitioned model [3]. The measurement model is presented as: 

1

11 11 12 1

21 22 2 2

,k

k k k

k k
k

l l

wz z G
u

y y G w
+

+    Φ Φ     
= + +        Φ Φ          

 (4.63) 

where 1T AT−Φ = , 1G T B−= , and [ ]1
11 21

T
k k kw T w v−= − Φ Φ  [3]. Now, the a priori state 

estimate is given by [3]: 

1| |

1| 11 12 1

21 22 2

ˆˆ ˆˆ
.

ˆ ˆˆ ˆ ˆ
k k k k

k k k
k

l l

z z G
u

y y G+

+      Φ Φ
= +      

Φ Φ            
 (4.64) 

As presented in [3], the a priori and a posteriori measurement error vectors for the 

projected measurement vector
kl

y are calculated as: 

| 1|

1 1
12 12

ˆ ˆ ,
k k k k kyl z le e w

+

− −= Φ − Φ  (4.65) 

1| 1|

1 1
22 12 22 12 2

ˆ ˆ ˆ ˆ ,
k k k k k kyl z le e w w

+ +

− −= Φ Φ − Φ Φ +  (4.66) 

where ( ) 1
l

m l
ye − ×∈ℝ  is the projected measurement error vector and 1l

ze ×∈ℝ  is the 

measurement error vector corresponding to measurable states. Equations (4.65) and (4.66) 

present a mapping of the measurement error vector that is used according to Luenberger’s 

method for deriving a switching hyperplane and in calculating the filter gain. 
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In order to calculate a corrective gain for the lower partition of states, the switching 

hyperplane for the lower partition may be formulated by projecting the measurement 

error as follows [3]: 

|

1
22 12

ˆ ˆ ,
k kl zS e−= Φ Φ  (4.67) 

where ( ) 1m l
lS − ×∈ℝ . Further to equation (4.25), the corrective gain of the optimal 2nd-order 

SVSF for the lower partition of states is derived as: 

1 1| 1| | 1 1|

1 1 1 1
22 12 1 12 1 12 22 12

ˆ ˆ ˆ ˆ ˆ ˆ( ) .
k k k k k k k k kl z k z k z zK e e e eγ γ

+ + + − +

+− − − −
+ +

   = Φ Φ − + Λ Φ + Λ Φ Φ Φ
   

 (4.68) 

By combining the gains of each partition of the state vector, the optimal 2nd-order SVSF 

gain is obtained for linear systems with fewer measurements than states as follows: 

1| | 1| 1 1|

1| 1| | 1 1|

1 1

1
1 1 1 1

22 12 1 12 1 12 22 12

ˆ ( ) ,

ˆ ˆ ˆ ˆ ˆ ˆ( ) .

k k k k k k k k

k k k k k k k k

z k z k z z

k

z k z k z z

H e e e e
K

e e e e

γ γ

γ γ

+ − − +

+ + − +

++
+ +

+ +− − − −
+ +

    − + Λ + Λ    = 
   Φ Φ − + Λ Φ + Λ Φ Φ Φ
   

 (4.69) 

where Ĥ+
 is the pseudo-inverse of the measurement matrix H where it is not squared. 

Hence, the vector of sliding variables may be defined as: 
| 1|

1
22 12

ˆ ˆ
k k k k

T

k z zS e e
+

− = Φ Φ
 

. The 

formulation that can be applied for estimation of nonlinear systems is presented in [3]. 

 

4.7. Comparative Analysis of the Combined Method (Dynamic & Optimal 2nd-SVSF) 

In order to study the performance of the combined strategy (including the dynamic 

and optimal 2nd-order SVSF) for state estimation, it is applied to the EHA model 

introduced in section 3.6. Later on, its performance is compared to other estimation 

methods such as the well-known Kalman filter, 1st-order SVSF [3], and the former 2nd-

order SVSF. Two main scenarios are considered for comparisons that are the normal 
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condition with a known model but including white noise, and a faulty condition with a 

large degree of modeling uncertainties. The EHA system is described by a discrete third-

order model. The three state variables include the actuator position 1x x= , velocity 

2 1/x dx dt= , and acceleration 2 2
3 1 /x d x dt= , with position being the only measurable 

state [3]. The linear state and measurement model of the EHA are restated here from 

Section 3.7 and are given by equations (4.1) and (4.2), respectively. Numeric values of 

the state, control and measurement matrixes of the EHA model are as follows [3]: 

[ ]
1 0.001 0 0

ˆˆ ˆ0 1 0.001 , 0 , 1 0 0 .

557.02 28.616 0.9418 557.02

F G H

   
   = = =   
   − −   

 (3.59) 

Furthermore, kw  and kv are the process uncertainties and measurement noise. They are 

multivariate white normal random vectors with the mean of zero and standard deviation 

vectors equal to (same as equation (3.60) from Section 3.7) [3]: 

[ ] [ ]0.05 0.1 0.1 , 0.05 .
T

std stdw v= =  (3.60) 

In order to apply the optimal 2nd-order SVSF to states that are not measured 

directly, it is combined with the Luenberger’s observer [164]. In this context, the state 

space is partitioned based on equation (3.61) from Section 3.7 as follows [3]: 

[ ] [ ]11 12 21 21

0 1 0.001ˆ ˆ ˆ ˆ1 , 0.001 1 , , .
877.02 32.616 0.8418

   Φ = Φ = Φ = Φ =   − −   
 (3.61) 

In simulation, the corrective gain is calculated for the case with the convergence rate 

equal to [0.5]γ = . Hence, the gain is obtained for the EHA system using equation (4.25) 

for the measurable state and equation (4.68) for the rest as following: 
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1| | 1| 1 1|

1| 1| | 1 1|

1| 1| | 1 1|

1 1

1 1 1

1 1

(0.5 ) 0.5 ,

0.25(0.5 ) 0.125 ,

0.4(0.5 ) 0.2 .

k k k k k k k k

k k k k k k k k

k k k k k k k k

z k z k z z

k z k z k z z

z k z k z z

e e e e

K e e e e

e e e e

+ − − +

+ + − +

+ + − +

+

+ +

+

+ + +

+

+ +

   − + Λ + Λ   
   = − + Λ + Λ   

   − + Λ + Λ
   

 (4.70) 

In simulation, it is assumed that the initial state error covariance for the Kalman 

filter and the combined strategy (dynamic and optimal 2nd-order SVSF) are equal. For 

both the Kalman filter and the combined strategy, the process noise, measurement noise 

and the initial error covariance are respectively obtained as: ([1 10 100])Q diag= , and 

0 20P Q= . Furthermore, 20.1R cm=  is obtained by calculating variance of the innovation 

signal for a time period. For the 1st-order SVSF [3], the width of the smoothing boundary 

layer is set to [ ]5 5 5
T

stdvψ = × , where stdv  is the standard deviation of the measurement 

noise. For all the 1st-order SVSF, the 2nd-order SVSF and the combined strategy, the 

convergence rate used in the corrective gain is set to [0.5]γ = . To compare the robustness 

characteristic of these three methods, a large degree of uncertainties is injected into the 

model by changing the state matrix after 0.5 sec of simulation to [3]: 

2

1 0.001 0
ˆ 0 1 0.001 .

240 28 0.9418

F

 
 =  
 − − 

 (4.71) 

 The input to the EHA system is a random signal with the amplitude in the range of 

-1 to 1, superimposed on a step input that occurs at 0.5 sec. The initial values of states are 

assumed to be zero and the sampling time for discretization is 0.001 sec. All the other 

inputs are considered the same for the four estimation methods. Simulations are 

performed using the MATLAB and under the 103 Monte-Carlo runs. Tables 1 to 3 

compare a select number of numerical performance indicators generated from the four 

estimation methods for the above mentioned normal and uncertain EHA models. For the 
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normal model, it is assumed that the EHA model is known but is subject to white noise. 

For the uncertain EHA model case, large modeling uncertainties are injected after 0.5 sec 

of simulation. This amount of uncertainties is applied in order to examine the 

performance of the estimation techniques. 

In order to compare these estimators, their RMSE, as well as the bias and STD of 

their state estimation error are calculated and compared. The RMSE indicator is 

calculated based on equation (3.64) from section 3.7 as follows: 

2
1

ˆ( )
,

n
i ii

x x
RMSE

n
=

−
= ∑

 (3.64) 

where ix  denotes the actual state value, îx  denotes the estimated state value, and n is the 

number of time steps. Note that the actual state values are obtained by solving state 

trajectories of the EHA system with state matrices. Furthermore, the bias index is 

obtained based on equation (3.66) as: 

( )
1

1
ˆ .

n

i i
i

Bias x x
n =

= −∑  (3.66) 

The STD of the state estimation error for a discrete realization is given by: 

2
, ,

1

1
( ) .

n

x i x i
i

STD e e
n =

= −∑  (3.68) 

Table 4.1 presents the root mean squared error (RMSE) value of the state estimation 

error 
|k kxe for both normal and uncertain conditions. Further to Table 4.1, the Kalman 

filter, as well as the optimal 2nd-order SVSF, produces the most accurate state estimates in 

terms of the RMSE for the normal model of the EHA system subject to white noise, 

followed by the 2nd-order SVSF and the 1st-order SVSF. This is because for a known 
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model the Kalman filter and the optimal 2nd-order SVSF are optimal in terms of the 

RMSE. Since these two methods minimize the state’s error covariance matrix (trace), 

their RMSEs are smaller than the 2nd-order SVSF and the 1st-order SVSF. In the uncertain 

case, the dynamic 2nd-order SVSF and the 2nd-order SVSF produce more accurate state 

estimates in terms of the RMSE. This accuracy is due to preserving the first and second 

order sliding conditions that increases their robustness to uncertainties. 

 
Table 4.1: Comparison between RMSE values of the four estimation methods applied to the EHA model 

 Kalman Filter 1st-order SVSF 2nd-order SVSF Combined Dynamic and 
Optimal 2nd SVSF 

 Normal Uncertain Normal Uncertain Normal Uncertain Normal Uncertain 

RMSE of Position (cm) 1.01×10-2 0.31 1.10×10-2 1.13×10-2 1.05×10-2 1.08×10-2 1.01×10-2 1.06×10-2 

RMSE of Velocity (cm/s) 1.045 21.66 1.060 15.50 1.05 14.49 1.045 12.66 

RMSE of Accel. (cm/s2) 167.24 2206.06 170.31 1341.53 168.91 1335.18 167.24 1328.02 
 

 

Note that satisfying the second order sliding condition instead of using the 

smoothing boundary layer is the main reason why the dynamic 2nd-order SVSF and the 

2nd-order SVSF are more accurate than the 1st-order SVSF for both normal and uncertain 

cases. In the 1st-order SVSF chattering is alleviated by defining a smoothing boundary 

layer in a vicinity of the sliding hyperplane. In this context, the signum function is 

replaced with a smoother function such as saturation function [3]. This however 

approximates the sliding motion in a close vicinity of the sliding hyperplane and reduces 

the ultimate accuracy and robustness of the SVSF-type filtering. The second order sliding 

condition not only removes the need for approximation, but also alleviates higher degrees 

of chattering. 

Table 4.2 compares state estimates in terms of the bias (mean of the state estimation 

error 
|k kxe ) for both the normal and uncertain conditions. Table 4.3 compares the state 
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estimates in terms of the standard deviation (STD) of the state estimation error 
|k kxe . For 

the normal case, the Kalman filter and the optimal 2nd-order SVSF produce the smallest 

bias, followed by the 2nd-order SVSF and the 1st-order SVSF. But for the uncertain case, 

the dynamic 2nd-order SVSF and the 2nd-order SVSF generate the smallest bias, followed 

by the 1st-order SVSF and the Kalman filter. Following Table 4.3, the dynamic 2nd-order 

SVSF and the 2nd-order SVSF have the smallest values pertaining to the standard 

deviation (STD) of the state estimation error 
|k kxe . 

 

Table 4.2: Comparison between bias values of the four estimation methods applied to the EHA model 

 Kalman Filter 1st-order SVSF 2nd-order SVSF Combined Dynamic and 
Optimal 2nd SVSF 

 Normal Uncertain Normal Uncertain Normal Uncertain Normal Uncertain 

Bias in Position (cm) 2.53×10-5 -9.94×10-3 -2.58×10-4 -3.15×10-4 -1.57×10-4 -2.12×10-4 2.53×10-5 -2.08×10-4 

Bias in Velocity (cm/s) -1.95×10-3 6.83 -2.77×10-3 3.78 -4.70×10-3 3.44 -1.95×10-3 2.85 

Bias in Accel. (cm/s2) 9.84 27.32 10.04 20.86 9.98 20.76 9.84 18.71 
  

 

Table 4.3: Comparison between STD of the four estimation methods applied to the EHA model 

 
Kalman Filter 1st-order SVSF 2nd-order SVSF 

Combined Dynamic and 
Optimal 2nd SVSF 

 Normal Uncertain Normal Uncertain Normal Uncertain Normal Uncertain 

STD of Position (cm) 9.63×10-2 0.30 1.05×10-2 2.09×10-2 7.51×10-3 9.86×10-3 9.63×10-2 7.41×10-3 

STD of Velocity (cm/s) 1.09 22.29 1.12 17.95 1.11 11.63 1.09 11.14 

STD of Accel. (cm/s2) 183.55 2867.9 186.16 1823.9 185.37 1674.60 183.55 1654.37 
 

 

Having smaller values of the standard deviation (STD) for uncertain models implies 

a higher degree of smoothness for the dynamic 2nd-order SVSF and the 2nd-order SVSF. 

These two methods produce state estimates with the lowest values of bias and dispersion 

in the error 
|k kze for uncertain conditions. The performance of the Kalman filter, as well as 
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the optimal 2nd-order SVSF, is the best in the normal case with no uncertainties and 

Gaussian noise, followed by the 2nd-order SVSF. For the second case that includes 

modeling uncertainties, the performance of the dynamic 2nd-order SVSF is best, closely 

followed by the 2nd-order SVSF, as both methods achieve stability through the second 

order sliding condition. 

Figure 4.5 presents the actual and estimated state trajectories using the Kalman 

filter and the optimal 2nd-order SVSF for the EHA under the normal condition. Figure 4.6 

compares the actual and estimated state trajectories using the Kalman filter and the 

dynamic 2nd-order SVSF for the EHA system with modeling uncertainties. Comparing 

Figures 4.4 and 4.5 confirms the better performance of the combined strategy in 

estimating the state variables of the EHA in the uncertain condition. 

 

 

Figure 4.5: State estimations by the Kalman filter and optimal 2nd-order SVSF for the normal EHA 
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Figure 4.6: State estimations by the Kalman filter and dynamic 2nd-SVSF for the uncertain EHA system 

 

The position’s estimation error signals obtained from the combined strategy 

(dynamic and optimal 2nd-order SVSF) and the Kalman filter are presented in Figure 4.7. 

It is deduced from Figure 4.7 that the combined strategy produces the smoothest state 

estimates with the smallest variation for both normal and uncertain cases. Figure 4.8 

presents the phase portrait of the measurement error and its first difference for the normal 

and faulty EHA systems using the optimal and dynamic 2nd-order SVSF method, 

respectively. As demonstrated, in both cases the measurement error and its difference are 

decreasing in time until they reach the existence subspace. Figure 4.9 also presents 

profiles of the sliding variable s and the dynamic sliding manifold σ for both the normal 

and uncertain cases using the optimal and dynamic 2nd-order SVSF method, respectively. 

In both cases, σ is decreasing in time until it reaches the existence subspace such that 

| | σσ ε≤ . Figures 4.8 and 4.9 illustrate convergence of the dynamic and optimal 2nd-order 

SVSF under the dynamic sliding manifold given bounded noise and uncertainties. Figure 

4.10 also presents profiles of the cut-off frequency coefficients for these scenarios. 
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Figure 4.7: Measurement errors by the Kalman filter and the combined strategy (optimal 2nd-order SVSF 
for the normal condition and dynamic 2nd-order SVSF for the uncertain condition) 

 

 

Figure 4.8: Phase portrait of the measurement error and its difference produced by the combined strategy 
(optimal 2nd-order SVSF for the normal condition and dynamic 2nd-order SVSF for the uncertain condition) 
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Figure 4.9: Sliding variable and dynamic sliding variable produced by the combined strategy (optimal 2nd-
order SVSF for the normal condition and dynamic 2nd-order SVSF for the uncertain condition) 

 

  

Figure 4.10: Profiles of the cut-off frequency coefficients produced by the combined strategy (optimal 2nd-
order SVSF for the normal condition and dynamic 2nd-order SVSF for the uncertain condition) 

 

4.8. Robustness Analysis with an Explicit Consideration of Uncertainties 

In this section, the robustness characteristic of the dynamic 2nd-order SVSF is 

numerically evaluated and compared with the Kalman filter, and the 1st-order SVSF 

methods. The analysis is based on a research performed by Yan and Wang for comparing 

robustness of some deterministic state observers [167]. Their approach is developed here 
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in order to estimate state variables of stochastic dynamic systems with an explicit 

consideration of the source of uncertainties. In this context, modeling uncertainties are 

considered as an additive perturbation to the nominal state matrix. The nominal model is 

the known model of the system that is represented by: 

ˆ ( )m nH m n×∈ =ℝ  (4.72) 

1 1
ˆ ,k k kz H x v+ += +  (4.73) 

where the system’s actual state matrix F̂  is represented to 0̂F  by: 

0
ˆ ˆ ˆ.F F F= + ∆  (4.74) 

The perturbed system is subjected to the following assumption. 

Assumption 4.3: It is assumed that the perturbation in the state model ˆ n nF ×∆ ∈ℝ  is 

bounded by n nδ ×∈ℝ  such that: 

ˆ| | , where 0.ij ij ijF δ δ∆ < >  (4.75) 

Remark 4.7: Note that kx  represents the Euclidean norm of vector kx  given by [167]: 

.T
k k kx x x=  (4.76) 

Also, kx ∞  represents the supremum norm of a discrete sequence kx  given by [167]: 

0sup .k k kx x>∞ =  (4.77) 

Wang and Yan introduced an index for evaluating robustness properties of model-

based state observers, whereas they remain stable given bounded noise and modeling 
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uncertainties [167]. Following their approach, when ˆ| |ij ijF δ∆ < , the state estimation error 

, ˆx k k ke x x= −  may be stated as follows [167]: 

, 1 ,
ˆˆ ˆ ˆ( , , , ) ( , , ),x k k x ke K F H k e F G kζ υ+ = + ∆ ∆  (4.78) 

where kK  is the filter’s corrective gain. Note that kζ  and kυ  are unknown functions and 

need to be calculated for each state estimation method. Furthermore, it is presented by 

Wang and Yan [167] that for a stable state observer, there exist a function β and a positive 

quantity α such that the state estimation error , ˆx k k ke x x= −  is bounded as follows [167]: 

( ), ,0 , ,x k x ke e k kβ α υ ∞≤ + ∀  (4.79) 

where α is an index of the robustness property and calculated by [164]: 

1/(1 ),cα = −  (4.80) 

with ( )maxsup ( )k kc λ ζ∀=  and max( )kλ ζ  is the maximum eigenvalue of the matrix kζ . 

Note that a smaller α represents a better robustness property of the filter. The proof of this 

theorem is presented and discussed in [167]. This approach may be developed and applied 

for the robustness analysis of the Kalman filter, the 1st-order SVSF, and the dynamic 2nd-

order SVSF. For each filter, the matrix kζ  should be initially calculated as a function of 

the filter’s gain and the state model. 

For the dynamic 2nd-order SVSF, the a posteriori state estimation error , 1| 1x k ke + +  may 

be calculated as follows: 

, 1| 1 1 1| 1ˆ ,x k k k k ke x x+ + + + += −  (4.81) 
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where 1
ˆˆ

k k k kx Fx Gu w+ = + + , 
1|1| 1 1|ˆ ˆ

k kk k k k k zx x K e
++ + += + , and 

1|1| 1 |
ˆˆˆ ˆ

k kk k k k k k zx Fx Gu K e
++ + = + + . 

Note that in the case of systems with modeling uncertainties: ˆ ˆF F F= + ∆ . Substituting 

these terms in equality (4.81), the a posteriori estimation error , 1| 1x k ke + +  is obtained by: 

, 1| 1 , | 1 , 1|
ˆ ˆ .x k k x k k k k z k k ke F e F x K e w+ + + += + ∆ − +  (4.82) 

For the dynamic 2nd-order SVSF method, the corrective gain is given by: 

1
1 , 1| 1 , | 1 , 1| 1 , 1|

ˆ ( ) .k z k k k z k k k z k k z k kK H e e e eγ γ
+−

+ + + + − − +   = − + Λ + Λ     (4.83) 

Since , | , |
ˆ

z k k x k k ke He v= + , equality (4.83) may be simply restated in terms of , |x k ke . 

Substituting the corrective gain term in equality (4.82) and simplifying the resulting terms, 

it leads to: 

1 1
, 1| 1 1 , | , 1| 1 , 1| 1

1 1 1
1 1 1 1

ˆ ˆ ˆ ˆ ˆ( )

ˆ ˆ ˆ ˆ( ) .

x k k k x k k x k k k z k k

k k k k k k k

e F H H e e H H e

F x w H v H v H v

γ γ

γ γ

− −
+ + + + + − −

− − −
+ + + −

 = + + Λ − − Λ
 

+∆ + − + + Λ − Λ
 (4.84) 

Comparing equality (4.84) to equality (4.78), the matrix ζ is obtained for the dynamic 2nd-

order SVSF method as follows: 

1
2 1

ˆ ˆ ˆ( ) .nd S V SF kF H Hζ γ−
− += + + Λ  (4.85) 

The process of calculation ζ for the 1st-order SVSF and the Kalman filter is similar to the 

above calculations. For the 1st-order SVSF method, the matrix ζ is calculated by: 

1
1 , |

ˆ ˆ ˆ sgn( ).st SV SF x k kF H H eζ γ−
− = −  (4.86) 

Similarly, for the Kalman filter method, the matrix ζ is obtained by: 
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1
ˆ ˆ .Kalman kF K Hζ += −  (4.87) 

where the Kalman filter’s gain is given by: 

1

1 1| 1 1| 1
ˆ ˆ ˆ .T T

k k k k k kK P H H P H R
−

+ + + + + = +
   (4.88) 

In order to numerically evaluate robustness properties of each filter, the uncertain 

model of the EHA system is used for simulation and comparison. Following equality 

(4.80) and calculating the maximum eigenvalue of the kζ matrix for each filter, the 

numeric value of α is obtained for each filter (see Table 4.4). As can be seen, the smallest 

value of the robustness index α is obtained for the dynamic 2nd-order SVSF, followed by 

the 1st-order SVSF and the Kalman filter. Following the Yan’s approach [167], it is 

deduced that the dynamic 2nd-order SVSF shows the best robustness property, followed by 

the 1st-order SVSF, and the Kalman filter. 

Table 4.4: Numeric values of the robustness index α for each filter 

 Kalman Filter 1st-Order SVSF Dynamic 2nd-Order SVSF 

α 1.971 1.334 1.135 
 

 

4.9. Summary 

In this chapter, the dynamic 2nd-order SVSF estimation method is firstly introduced 

based on the dynamic sliding mode concept. Its corrective gain is obtained using a linear 

sliding manifold defined in terms of the sliding variable and its first difference, where the 

sliding variable represents the a posteriori measurement error. The stability and 

convergence of the dynamic 2nd-order SVSF method is then proven using the Lyapunov’s 

second law of stability. The linear dynamic manifold introduces a cut-off frequency 

coefficient matrix into the filter formulation that alleviates the unwanted chattering effect. 



PhD Thesis – H. Afshari; McMaster University, Mechanical Engineering 

181 
 

It operates like a first-order low-pass filter with a cut-off frequency that is equal to the 

slope of the linear sliding manifold. Furthermore, the corrective gain of the dynamic 2nd-

order SVSF in each step updates the a priori state estimates based on available 

information of the measurement error from two steps back. This yields to smoother state 

estimates with smaller bias and dispersions in comparison to the Kalman filter. In order to 

optimize the dynamic 2nd-order SVSF method, the optimal value of the cut-off frequency 

matrix is calculated at each time step such that the trace of the error covariance matrix is 

minimized. 

It was shown that the corrective gain of the optimal 2nd-order SVSF represents the 

Kalman filter gain. Hence, a combined strategy is used that includes both the dynamic 

and optimal 2nd-order SVSF methods. This strategy applies the optimal 2nd-order SVSF to 

systems with a known model and applies the dynamic 2nd-order SVSF to systems with 

huge uncertainties when the level, source and occurrence of uncertainties are unknown. 

The combined strategy is implemented on an electro-hydrostatic actuator (EHA) model 

for estimation in normal and uncertain conditions. Its performance is then compared with 

other estimation methods, including the Kalman filter, the 1st and the 2nd-order SVSF. 

The main advantages of the combined strategy over the Kalman filter and 1st-order 

SVSF are its greater accuracy, and robustness in uncertain conditions with a higher level 

of smoothness in state estimation. These are directly due to preserving the first and 

second order sliding conditions which push not only the estimated state trajectories to 

slide along the switching hyperplane, but also their derivatives to slide along a tangential 

hyperplane. Yan’s robustness analysis shows the superior robustness performance of the 

dynamic 2nd-order SVSF in comparison to the Kalman filter and the 1st-order SVSF. 
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Chapter 5 

Application to Fault Detection and Diagnosis 

This chapter presents applications of the combined strategy (including the dynamic 

and optimal 2nd-order SVSF methods) for model-based fault detection and identification 

(FDI). For fault identification, the dynamic 2nd-order SVSF is combined with the 

interacting multiple models (IMM) filter such that the mode probability estimate 

represents the current operating regime (normal or faulty) of the system. An experimental 

setup of an electro-hydrostatic actuator (EHA) is used for experimentations. The 

performance of the combined strategy is then compared with the extended Kalman filter 

(EKF) and the 1st-order SVSF in terms of robustness, and accuracy. 
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5.1. Introduction 

Due to the growing desire for higher performance as well as for increasing safety 

and reliability, fault diagnosis systems are being increasingly used in the last decade. 

Fault Detection and Identification (FDI) is in general a subfield of Control 

engineering which concerns itself with monitoring a system’s health condition, 

identifying the time of fault occurrence, and pinpointing the type of fault and its location. 

A fault is an abnormal condition or defect at the component, equipment, or sub-system 

level which leads to deviation of the system from its normal mode of operation. 

FDI tasks can be performed using both hardware redundancy and/or analytical 

redundancy methods. In hardware redundancy, hardware instrumentations are replicated 

and repeated such as computers, sensors, actuators and other instruments, and their 

outputs compared for consistency. Analytical redundancy is performed using analytical or 

functional information of the process being monitored. Analytical or functional models 

are obtained and various measured signals are used to estimate unmeasured quantities 

[168]. Two main approaches are commonly used in analytical redundancy-based FDI, 

namely signal-based and model-based approaches. Both approaches require a priori 

knowledge of the dynamic process. In signal-based approaches, the a priori knowledge is 

includes a large quantity of historical process data, observations, and measurements 

[168]. 

Signal-based techniques usually require signal processing tools (e.g., fast Fourier 

transform (FFT) and wavelet analysis), statistical techniques (e.g., statistical classifiers, 

partial least squares (PLS), and principle component analysis (PCA), and intelligent 

decision making techniques (e.g., artificial neural networks) [168]. In the model-based 

approaches, the a priori knowledge is in the form of a model of the system that describes 
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its dynamic behavior. Model-based FDI approaches usually involve the use of observer, 

state estimation, and system identification techniques [168]. In this chapter, the state 

estimation-based FDI is considered for fault detection and diagnosis of an EHA setup. 

 

5.2. State Estimation-Based FDI 

State estimation-based FDI is based on evaluating the residual or innovation that is 

the difference between measurements and estimated outputs at each sample time. In order 

to estimate the system states or outputs, it is necessary to select an estimation filter such 

as the KF, EKF, PF, etc, in conjunction with a mathematical model. Figure 5.1 presents a 

block-diagram of the state estimation-based FDI strategy. It involves two main stages as 

[168]: 

1. Residual generation stage in which the system inputs and outputs are used to 

produce a mathematical model of the process, when the difference between the 

model process output and the measurement is referred to as the estimation residual 

or innovation. 

2. Decision making stage in which the generated residuals are checked for the 

likelihood of faults, and a decision rule is then made to recognize if any fault has 

occurred. The knowledge of process normal operation is required in this stage. 

It is important to note that the residual is just a quantity that represents the 

inconsistency between the actual process measurement and the mathematical model 

output and thus it may include both system noise as well as the fault signature. Hence, in 

order to perform a more accurate FDI task, it is necessary to filter out the noise from the 

residual signal. 
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Figure 5.1: A block-diagram scheme of the state estimation-based FDI task 
 

 

State estimation has become increasingly popular in model-based FDI systems in 

the last two decades. Note that the Kalman-type filtering methods assume a known 

system model with known parameters. In real applications however there may be 

considerable uncertainties about the model structure, the physical parameters, the level of 

noise, and the initial conditions. In some situations, the system dynamic is too complex to 

be modeled exactly, or there is no a priori knowledge about parameters as well as noise 

levels or distributions. In other situations, the system structure or parameters may change 

with time or due to fault conditions unpredictably. Hence, Kalman-type filtering methods 

may diverge or present an unacceptable performance. To overcome such potential 

difficulties, a robust state estimation approach is recommended. Examples of the robust 

state estimation are the robust Kalman (H2) filter [53], the H∞ filter [137], and the Smooth 

Variable Structure Filter (SVSF) [3]. 



PhD Thesis – H. Afshari; McMaster University, Mechanical Engineering 

186 
 

In this chapter, an experimental setup of an Electro-Hydrostatic Actuator (EHA) 

prototype is used to demonstrate an SVSF based FDI. Several experiments are performed 

in order to examine the accuracy and robustness of the 2nd-order SVSF and its dynamic 

version under the normal and uncertain faulty conditions. Results are then compared with 

other state-of-the-art methods such as the Kalman Filter (KF) and the 1st-order SVSF in 

terms of the root-mean-squared-error (RMSE), the error’s mean (Bias), and the standard 

deviations (STD). There are two sets of experiments that are respectively performed for 

fault detection and fault identification purposes. In the fault detection experiments, the 

objective is to figure out whether the system is operating under the normal condition or 

faulty condition. In the fault identification experiments, the objective is to determine the 

type of fault conditions. There are two types of faults that can be physically simulated on 

the EHA setup. These include friction and internal leakage faults with various degrees of 

severity. The next section describes the experimental setup of the EHA prototype with the 

two types of faults. 

 

5.3. The Experimental Electro-Hydrostatic Actuator (EHA) Setup [165,10] 

The experimental setup of the electro-hydrostatic actuator (EHA) has been designed 

and manufactured in the Center for Mechatronics and Hybrid Technology (CMHT) at 

McMaster University. This setup is used for doing experimentations on control, state 

estimation, and fault detection and diagnosis applications. Figure 5.2 presents the EHA 

experimental setup. Furthermore, the circuit diagram of the EHA setup with numbered 

elements is shown in Figure 5.3. The EHA uses pumping action (10) to create pressure 

and move piston A (3) and piston B (4). The EHA system is currently being used in 

aerospace applications and therefore its reliability and performance are highly important. 

Hence, health monitoring is an important element in designing EHA systems. 



PhD Thesis – H. Afshari; McMaster University, Mechanical Engineering 

187 
 

 

Figure 5.2: Experimental setup of the electro-hydrostatic actuator (EHA): The piston 

on the right is referred to as piston A (3) and the piston connected to it on the left is 

referred to as piston B (4). An optical linear encoder (12) attached to piston A is used to 

provide position measurements (which are differentiated to obtain velocity 

measurements). The gear pump (10) and electric motor (13) are located in the rear 

(middle) of the table. 

 

The EHA is composed of several components including a symmetric linear actuator 

(8), a variable-speed electric motor (13), a bi-directional gear pump (10), a pressure relief 

valve (7), an accumulator (2), connecting tubes, and safety circuits for fault simulations. 

The EHA set up includes complementary circuits that allow a physical simulation of 

friction and leakage faults. The variable-speed servomotor, which is a SIEMENS 

1FK7080-5AF71-1AG2 electric motor, drives the bi-directional gear pump (10) and 

forces oil into the cylinder (8). Thereby, the gear pump (10) can adjust the actuation 

performance by changing the fluid flow rate. An accumulator (12) is used to avoid 

cavitation and to collect the case drain leakage from the gear pump (10). The pressure 

relief valve (7) is used to limit the maximum system pressure to 500 psi in this case study 

[165,10]. 
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The hydraulic circuit of the EHA setup has two main parts. The first part is the inner 

low-pressure circuit that filters the oil and preserves the minimum system pressure at 40 

psi, by using an accumulator (2) as well as filters and check valves (6). The inner circuit 

prevents cavitation and supplies fluid for compensating leakage. The second part of the 

hydraulic circuit is the outer high-pressure circuit that performs actuation. EHA’s input is 

the voltage to the electric motor (13) that regulates the direction and the speed of the 

pump (10). This results in controlling the value of the fluid flow rate in the outer circuit 

and correspondingly adjusts the piston’s position, velocity, and acceleration [10]. 

 
Figure 5.3: The circuit diagram of the EHA experimental setup (Taken from [165,10]) 

 

The piston at the top is referred to as piston A (3) and the below piston connected to 

it is referred to as piston B (4). An optical linear encoder (12) attached to piston A is used 

to obtain position measurements. The state resolution of this encoder is 1 nm. Two types 

of fault conditions can be physically induced: internal leakage and friction. To implement 

a friction fault in the system, piston A in Figure 5.3 was used as the driving mechanism 

while piston B acted as a load. To simulate internal leakage faults across the circuit, the 

piston A throttling valve is used (where the piston A throttle blocking valve is open). The 
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piston A throttling valve produces cross-port leakage between both chambers of the 

corresponding cylinder. Based on this fault condition, the output response of the cylinder 

(8) is affected [10,169]. 

Table 5.1: Numeric values of the EHA parameters [10] 

Parameter Physical Meaning Parameter Values 

EA  Piston Area 1.52×10-3 m2 

pD  Pump Displacement 5.57×10-7 m3/rad 

L Leakage Coefficient 4.78×10-12 m3/(sec×Pa) 

M Load Mass 7.376 Kg 

0LQ  Flow Rate Offset 2.41×10-6 m3/sec 

0V  Initial Cylinder Volume 1.08×10-3 m3 

eβ  Effective Bulk Modulus 2.07×108 Pa 

 

The EHA dynamics may be described using three state variables including the 

actuator position 1x x= , velocity 2x x= ɺ , and acceleration 3x x= ɺɺ . Gadsden, Song, and 

Habibi [10] investigated the dynamic model of the EHA using the physical modeling 

approach. They presented a nonlinear state-space model of the EHA system as follows: 

1, 1 1, 2, ,k k kx x T x+ = +  (5.1) 

2, 1 2, 3, ,k k kx x T x+ = +  (5.2) 
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 (5.3) 

where AE denotes the piston cross-sectional area, βe denotes the effective bulk modulus, L 

denotes the leakage coefficient, M denotes the load mass, and V0 denotes the initial 
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cylinder volume. Moreover, T is the sample time and is set at T=1 ms. Table 5.1 presents 

numeric values of the aforementioned parameters. The differential pressure of the EHA 

may be calculated based on the actuator friction that is modeled as a second order 

quadratic function related to the actuator velocity [10]: 

( )2
1 2 2 1 3( ) sgn( ).EP P A a x a x a x− = + +ɺ ɺ ɺ  (5.4) 

In this context, the differential pressureP∆  may be calculated based on the actuator 

friction that is modeled as a second-order quadratic function as follows [10]: 

2
1 2, 32

1 2, 2, 3,

( )
sgn( ) ,k

k k k k
E E E

a x aa M
P x x x

A A A+
+

∆ = + +  (5.5) 

The input to the EHA system relates to flow and in a simplified form as given by 

[10]: 

1 2 0sgn( ) ,p p Lu D P P Qω= − −  (5.6) 

where pD
 
is the pump displacement, lQ is the leakage flow rate, and 

0l
Q is the parameter 

used to adjust offsets (see Ref. [10] for detailed information). It is important to notice that 

there are two types of parameters that are affected by the fault condition: the leakage 

coefficient L and the friction coefficients 1a , 2a , and 3 .a  Hence, for accurately modeling 

the EHA system, numeric values of these parameters are required under different operating 

conditions. Table 5.2 lists numerical values of the friction coefficients for different 

operating conditions measured by experimentation as reported on [10]. Table 5.3 also 

presents numerical values of the leakage coefficients and flow rate offsets for these 

conditions [10]. In this research, three scenarios of the EHA setup are used for 

experimentation and comparison. They include the normal EHA, the EHA with major 

friction and the EHA with major internal leakage. 
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Table 5.2: Numeric values of the friction coefficients [10] 

Condition a1 a2 a3 

Normal 6.589×104 2.144×103 436 

Major Friction 1.162×106 -7.440×103 500 

Minor Friction 4.462×106 1.863×104 551 

 

Table 5.3: Numeric values of the leakage coefficients and flow rate offsets [10] 

Condition Leakage (L) Flow Rate (QL0) 

Normal 4.78×10-12m3/(sec×Pa) 2.41×10-6m3/s 

Major Leakage 2.52×10-11m3/(sec×Pa) 1.38×10-5m3/s 

Minor Leakage 6.01×10-11m3/(sec×Pa) 1.47×10-5m3/s 

 

5.4. State Estimation under the Normal and Faulty Conditions 

This section presents state estimation of the EHA experimental setup under the 

normal and faulty conditions. The nonlinear model of equations (5.1) through (5.3) is 

used for modeling the EHA system. In order to compare the robust performance of the 

dynamic 2nd-order SVSF with the 1st-order SVSF and the extended Kalman filter (EKF), 

the EHA normal model is used for state estimation under the normal and faulty 

conditions. Comparisons are made in terms of accuracy, robustness and smoothness of the 

generated state estimates. Initial values of states are assumed zero and the sample time for 

discretization is set to T=1 ms. Furthermore, in order to update the state error covariance 

matrix of the 1st-order SVSF and the dynamic 2nd-order SVSF, the linearized model of the 

EHA is used (An approach similar to the covariance update in the EKF). 

There are two different scenarios for the EHA experiment; the EHA in the normal 

situation and the faulty EHA with friction or internal leakage. Accuracy, robustness, and 

smoothness of state estimates provided by the combined strategy (dynamic and optimal 

2nd-order SVSF) are compared with those obtained by the extended Kalman Filter (EKF) 
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and the 1st-order SVSF method. Note that the EHA model is third order, and position is 

the only measurable state. In order to estimate other states, the 1st-order and the dynamic 

2nd-olrder SVSF need to be combined with the Luenberger observer. Simulations are 

performed using the MATLAB and all the inputs and initial conditions are assumed the 

same for the three estimators. The initial state estimates 0|0x̂  and error covariance matrix 

0|0P  for the EKF and the dynamic 2nd-order SVSF are the same and defined as follows: 

[ ]0|0 0|0ˆ 0 0 0 , 10 (4).x P eye= = ×  (5.7) 

The convergence rate factor for the 1st-order SVSF, and the dynamic 2nd-order 

SVSF are set to 0.5γ = . For the 1st-order SVSF, the smoothing boundary layer is also set 

to [ ]5 5 5
T

stdvϕ = × , where stdv  is the standard deviation of the measurement noise. The 

system uncertainty matrix Q for the EKF and the dynamic 2nd-order SVSF are obtained 

by tuning and they are respectively equal to: 

12 12
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= =   
   

×      

 (5.8) 

For the EKF and the dynamic 2nd-order SVSF, the measurement noise R is obtained by 

calculating variance of the innovation signal for a time period that is equal to 12 210 .R m−=  

In order to compare these state estimation methods, some indicators including the 

root mean square error (RMSE), and standard deviation of the state estimation error 
|k kxe  

are used. Note that the state estimation error represents the difference between the state 

estimate values ̂kx  and the measured values kx
 (for only the measurable state 1x  that is 

position). Note that however for an intuitive comparison of state estimation profiles, the 
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values of the actuator velocity 2x  and acceleration 3x  may be obtained by taking the 

first and the second time-derivatives of the position measurement signal respectively. 

Since differentiation results in added noise, a Butterworth filter is used to filter out the 

velocity and acceleration signals that are obtained by differentiation and filtering. Remark 

5.1 presents more details about design and implementation of the Butterworth filter on the 

EHA data (refer to the McCullough1 thesis [169]). 

Remark 5.1: In order to design a filter for real-time control applications, the filter’s 

order must be low such that it removes as much of the noise as possible without adding a 

significant phase shift [169]. In this context, McCullough [169] used a second-order 

Butterworth filter with a cut-off frequency of 350 rad/sec (55.7 Hz). A second-order 

Butterworth filter provides sufficient filtering of the signal without producing too much 

phase shift that however degrades the filtering performance. The cut-off frequency for the 

Butterworth filter should be five to ten times the values of the system’s bandwidth. The 

best value for the filter's cut-off frequency, which was obtained by trial and error, is equal 

to 350 rad/sec. The resultant Butterworth filter in discrete time is represented by [169]: 

1 2

1 2

5.28 2 4.39 2
( ) .

1 1.514 0.61

E z E z
J z

z z

− −

− −
− + −=

− +
 (5.9) 

The RMSE index for estimated values of a measurable state is calculated by: 

2
1

ˆ( )
,

n
i ii

x x
RMSE

n
=

−
= ∑

 (5.10) 

                                                
1K. McCullough, "Design and characterization of a dual electro-hydrostatic actuator," M.Sc. Thesis, 
Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada, 2011. 
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where ix  denotes the measured state values (for measurable states), ˆix  denotes the 

estimated state values generated by each state estimator, and n denotes the number of 

time steps. The state estimation error of a measurable state (actuator position) is the 

difference between the measured state values ix  and the estimated ones îx . The STD of 

the state estimation error for a measurable state variable is obtained by: 

2
, ,

1

1
( ) ,

n

x i x i
i

STD e e
n =

= −∑  (5.11) 

where ,x ie  denotes the mean value of the state estimation error. 

Table 5.4 presents the RMSE and the STD indicators generated by the EKF, 1st-

order SVSF, and the combined strategy (dynamic and optimal 2nd-order SVSF methods). 

Experiments are performed for the normal setup and the faulty EHA setup with two types 

of faults including the major friction and the major leakage separately. As observed earlier 

from simulation results, for the normal setup, the optimal 2nd-order SVSF and the EKF 

produce the most accurate state estimates in terms of the RMSE, followed by the 1st-order 

SVSF. The reason is that under normal conditions, the optimal 2nd-order SVSF and the 

EKF estimates are optimal in the mean squared error sense. In the faulty EHA setups, the 

dynamic 2nd-order SVSF provided the most accurate state estimates in terms of the 

RMSE. Due to preserving higher orders of robustness via the dynamic 2nd-order SVSF, its 

RMSE under the faulty condition is smaller compared with the 1st-order SVSF and the 

EKF estimation methods. 

Preserving the second order sliding mode condition instead of approximating the 

sliding motion via the smoothing boundary layer provides the dynamic 2nd-order SVSF 

with more accurate state estimates in comparison to the 1st-order SVSF under the normal 
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and faulty EHA operations. As shown in Table 5.4, for the normal and faulty scenarios, 

the combined strategy produced the smallest STD, followed by the 1st-order SVSF, and 

the KF. This confirms that the dynamic 2nd-order SVSF can achieve higher degrees of 

smoothness in state estimates with respect to other estimation methods. However, the 

RMSE values of state estimates for major leakage are larger than those for the major 

friction and the normal condition. 

Table 5.4: Indicator values of different estimators under the normal and faulty scenarios 

 Indicator  Normal Friction Leakage 

Extended Kalman Filter 

(EKF) 

RMSE of Position (m) 1.76×10-5 2.39×10-4 3.74×10-4 

Position Error STD (m) 2.03×10-5 6.88×10-4 8.54×10-4 

1st-order SVSF 
RMSE of Position (m) 1.89×10-5 2.89×10-5 3.65×10-5 

Position Error STD (m) 2.03×10-5 7.50×10-5 8.79×10-5 

Combined Strategy (Dynamic 

& Optimal 2 nd- SVSF 

RMSE of Position (m) 1.76×10-5 2.03×10-5 2.93×10-5 

Position Error STD (m) 2.03×10-5 6.53×10-7 8.74×10-7 

 

Figure 5.4 compares the state estimation profiles generated by the EKF, and the 

optimal 2nd-order SVSF with the state trajectories under the normal EHA condition. 

Furthermore, Figures 5.5 and 5.6 present the state estimation profiles generated by the 

EKF, and the dynamic 2nd-order SVSF but under the faulty EHA setups with the major 

friction and internal leakage, respectively. Experimental results demonstrate that under 

the normal condition, the optimal 2nd-order SVSF and the EKF provide the most accurate 

results, followed by the 1st-order SVSF. However, for the EHA under the friction or 

leakage fault condition, the dynamic 2nd-order SVSF produces the most accurate state 

estimates, followed by the 1st-order SVSF and then the EKF. Furthermore, it is 

demonstrated that the dynamic 2nd-order SVSF also generates state estimates with a 

smaller STD. As discussed, in order to intuitively compare the state estimation trajectories 

with measurement, the measured values for the velocity and acceleration are respectively 
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obtained by taking the first and second order time-derivatives of the position 

(measurement) trajectory. As discussed in Remark 5.1, they are also filtered by using a 

Butterworth filter in order to alleviate the differentiation noise and other unwanted spikes. 

 

Figure 5.4: State estimate profiles generated by different estimators for the normal EHA setup 

 

 

Figure 5.5: State estimate profiles generated by different estimators for the EHA setup under friction  
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Figure 5.6: State estimate profiles generated by different estimators for the EHA setup under leakage 

 

 

Figure 5.7: Phase portrait of the sliding variable and its difference for the normal EHA setup 

 

Figure 5.7 depicts the phase portrait of the sliding variable (measurement error) 

versus its time difference generated by the optimal 2nd-order SVSF for the normal EHA 

setup. Furthermore, Figures 5.8 and 5.9 present the phase portraits generated by the 

dynamic 2nd-order SVSF for the EHA setup under the friction and leakage fault 



PhD Thesis – H. Afshari; McMaster University, Mechanical Engineering 

198 
 

conditions. According to these phase portraits of these three scenarios, both the 

measurement error and its difference are decreasing with time until the existence 

subspace is reached. However, due to noise, uncertainties, and discretization errors, the 

ideal sliding mode does not occur and real sliding condition is achieved. 

 

Figure 5.8: Phase portrait of the sliding variable and its difference for the EHA under friction  

 

 

Figure 5.9: Phase portrait of the sliding variable and its difference for the EHA under leakage 
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State estimation results demonstrate the superior performance of the combined 

strategy (dynamic and optimal 2nd-order SVSF) over the extended Kalman Filter (EKF) 

and the 1st-order SVSF in terms of accuracy and smoothness under the faulty EHA setup. 

In order to find the type, location or severity of the fault, a fault identification task is 

implemented. The next section introduces a fault detection and identification (FDI) 

structure that is based on combining the dynamic 2nd-order SVSF with the IMM filter. In 

order to select one of the optimal or dynamic 2nd-order SVSF methods by the combined 

strategy, the measurement noise is studied. Figure 5.10 shows the measurement noise 

profiles for the normal EHA and EHA with major friction. As presented, for the EHA 

with major friction, the measurement noise has larger amplitude in comparison to the 

measurement noise of the normal EHA setup. 

 
a) Measurement noise for the normal EHA setup 

 

 
b) Measurement noise for the EHA with friction setup 

Figure 5.10: Measurement noise profiles for the normal and faulty EHA setups 
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5.5. FDI of the EHA Setup Using the State Estimation Approach 

This section presents fault detection and identification (FDI) of the experimental 

EHA setup using different state estimators (Kalman filter, 1st-order SVSF and the 

dynamic 2nd-order SVSF) combined with the interacting multiple model (IMM) filter. A 

typical FDI structure formulated by combining the dynamic 2nd-order SVSF and the IMM 

filter is initially described. Thereafter, a comparative analysis is performed based on 

experimental data and different state estimators in order to evaluate and compare the 

robust performance of each estimation method under uncertain faulty scenarios. 

 

5.5.1. FDI Structure Using the Dynamic 2nd-Order SVSF and the IMM Filter 

The Interacting Multiple Model (IMM) estimator is a suboptimal hybrid filter that 

can be combined with other state estimators. The main feature of this algorithm is the 

ability to estimate the states of a dynamic system under several operating modes that can 

transition from one mode to another. In this strategy, multiple models are used to describe 

the different operational modes of the system. A linear or nonlinear state model is used to 

describe each operating mode. The combination of these models is used to describe the 

dynamics of the nonlinear time-varying system. A Markov transition matrix is used to 

calculate the probability of the system being in one of the operational modes. In this 

section, the combination of the dynamic 2nd-order SVSF with the IMM filter is described. 

The IMM filter can be used for modeling and estimation of complex nonlinear 

systems using a finite number of possible operating regimes. In this context, assume a 

hybrid linear system with different operating modes, using the state and measurement 

equations such that [1]: 
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1 , , , ,
ˆˆ ,

k k k kk k m k k m k m k mx F x G u w+ = + +  (5.12) 

, ,
ˆ .

k kk k m k k mz H x v= +  (5.13) 

wherer k is the time index and km denotes the current system mode. Furthermore, the 

operating mode in which the i th model operates is represented by { },k i k iM m m= = , 

where M denotes the set of all modes in the multiple models framework. 

It is assumed that the system model sequence is a homogenous Markov chain with 

transition probabilities represented as follows [1]: 

{ }, 1 , ,Pr | , ,j k i k ij km m i j Mπ+ = ∀ ∈  (5.14) 

where ijπ is the Markov transition probability from mode i to mode j, when
,

1

1
r

i j k
j

π
=

=∑ . 

Mode probabilities are updated at each new measurement, and weighting factors are used 

to calculate the state variables. Figure 5.11 presents a block-diagram scheme of the IMM-

based dynamic 2nd-order SVSF structure. As demonstrated, this structure applies to a 

hybrid system with m different operating modes. The framework of the IMM filter 

combined with the dynamic 2nd-order SVSF consists of three main steps as follows: 

I. Interaction Step [1]: 

In this step, the mixing probability that is the probability of the system currently in 

mode i, and switching to mode j at the next step is calculated. The mixing probability,

1
| , 1| 1 , 1 ,Pr{ | , }k

i j k k i k j kM M Zµ −
− − −= , is obtained as follows [1]: 

| , 1| 1 , 1
1

,i j k k ij i k
j

µ π µ
µ− − −≜  (5.15) 
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where ijπ  is the mode transition probability that is set by the designer. Furthermore, jµ

is the predicted mode probability for r different modes and calculated by [1]: 

{ }1
, , 1

1

Pr | .
r

k
j j k ij i k

i

M Zµ π µ−
−

=
= ∑≜  (5.16) 

The mixed initial condition is calculated using previous state and covariance estimates

, 1| 1ˆ i k kx − −  
and , 1| 1i k kP − − , respectively. They are outputs of r different dynamic 2nd-order 

SVSF filters that are based on r different models. The mixed initial state and covariance 

matrix are calculated for the filter jM  at time k as follows [1]: 

{ }1
0 , 1| 1 1 , , 1| 1 |

1

ˆ ˆ| , ,
r

k
j k k k j k i k k i j

i

x E x M Z x µ−
− − − − −

=
= ∑≜  (5.17) 

0 , 1| 1 | , 1| 1 , 1| 1 , 1| 1 0 , 1| 1 , 1| 1 0 , 1| 1
1

ˆ ˆ ˆ ˆ ˆ ˆ[ ( )( ) ].
r

T
j k k i j k k i k k i k k j k k i k k j k k

i

P P x x x xµ− − − − − − − − − − − − − −
=

= + − −∑  (5.18) 

II. Filtering Step [1]: 

Mode-matched filtering is applied in this step and the likelihood function 

corresponding to each filter is determined. The calculated mixed initial state and 

covariance are set as inputs to the dynamic 2nd-order SVSF which is matched to mode 

( )jM k . The filtering step starts by predicting the state and the error covariance matrix of 

each mode are provided as follows [1]: 

, | 1 , 1 0 , 1| 1 , 1 , 1 , 1
ˆˆˆ ˆ ,j k k j k j k k j k j k j lx F x G u w− − − − − − −= + +  (5.19) 

, | 1 , 1 0 , 1| 1 , 1 , 1
ˆ ˆ ˆ ˆ .T
j k k j k j k k j k j kP F P F Q− − − − − −= +  (5.20) 

The residual and its covariance for each mode are respectively calculated as follows [1]: 
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, , , | 1
ˆ ˆ ,j k k j k j k ke z H x −= −  (5.21) 

, , , 1| , ,
ˆ ˆ ˆ .−= +

j k

T
rc j k j k k j k j kS H P H R  (5.22) 

Later on, the corrective gain of the dynamic 2nd-order SVSF is applied such that: 

, , | 1 , 1| 1
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  + Λ   
 (5.23) 

where ˆ
jH +  is the pseudo-inverse of the measurement matrix ˆ

jH , and jΛ  is the constant 

cut-off frequency matrix. State and covariance updates are respectively given by: 

, | , | 1 , , | 1ˆ ˆ ,j k k j k k j k j k kx x K e− −= +  (5.24) 

,, | , | 1 , ,
ˆ ˆ .−= −

j k

T
j k k j k k j k rc j kP P K S K  (5.25) 

Based on the innovation matrix (residual covariance) 
,j krcS , and the a priori measurement 

error , | 1j k ke − , a corresponding likelihood function ,j kΛ  may be calculated as follows [1]: 

1
, ,,

,

,

1

2

, ,[ , 0, ]
2

−−

Λ = =

T
j k rc j kj k

j k

j k

e S e

j k j k rc
rc

e
N e S

Sπ  (5.26) 

The likelihood function is used to calculate the mode probability update given by [1]: 

,
,

,
1

.j j k
j k r

i i k
i

µ
µ

µ
=

Λ
=

Λ∑
 

(5.27) 

III. Combination Step [1]: 

The a posteriori state and covariance matrix are estimated by combining the mode 

conditioned estimates and covariance as follows [1]: 
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i
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=
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  ∑≜  (5.28) 
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1

ˆ ˆ ˆ ˆ ˆ( )( ) .
r

T
k k i k i k k i k k k k i k k k k

i

P P x x x xµ
=

 = + − − ∑  (5.29) 

It is important to note that using the dynamic 2nd-order SVSF within the IMM 

structure does not affect the stability and convergence of the IMM filter. It is because, 

similar to the IMM-Kalman filter structure, at the step time k the dynamic 2nd-order SVSF 

only applies to one particular model of the system. If the operating regime changes at time 

k+q, then the dynamic 2nd-order SVSF method will apply to another particular model of 

the system that describes it more accurately. 

 

Figure 5.11: Block-diagram of the IMM-based dynamic 2nd-order SVSF structure 
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5.5.2. Comparative Analysis Using the Experimental EHA Setup 

In this section, the FDI task is performed by combining some of the extended 

Kalman filter, as well as the 1st-order SVSF and the dynamic 2nd-order SVSF, within an 

Interacting Multiple Models (IMM) structure. The experimental EHA setup is used to 

study and compare the IMM strategies. The software used to communicate with the EHA 

setup is MATLAB’s Real-Time Windows Target environment. Two types of fault 

conditions were physically induced to the EHA setup: internal leakage and friction. Hence, 

there are three main scenarios for experimentations including the EHA under the normal 

condition, the EHA with major friction and the EHA with internal leakage. Each scenario 

applies within 2 sec separately. 

The normal, leakage, and friction operating conditions of the EHA have been 

extensively studied and modeled in [10]. As demonstrated, Tables 5.2 lists numerical 

values of the friction coefficients for the EHA setup under different friction fault 

conditions. Furthermore, Table 5.3 presents numerical values of the leakage coefficients 

and flow rate offsets for the EHA setup under different leakage fault conditions. These 

numeric values are obtained by experimentations and reported in [10]. The actuator 

position is the only measurable state, such that the measurement matrix is given by: 

[ ]1 0 0 .C =  (5.30) 

In order to apply the 1st-order SVSF, as well as the dynamic 2nd-order SVSF method, to 

the EHA setup with one measurement available (actuator position), the Luenberger’s 

observer is used (refer to section 3.5) [3]. Note that this however increases the amount of 

noise experienced by the SVSF estimation strategies. For all strategies, the initial state 

estimate and state error covariance matrix are defined as follows: 
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[ ]0|0ˆ 0 0 0 ,
T

x =  (5.31) 

0|0

1 0 0

0 10 0 .

0 0 50

P

 
 =
 
  

 (5.32) 

The process noise covariance Q and the measurement noise covariance R for the 

EKF, the 1st-order SVSF and the dynamic 2nd-order SVSF methods are given by: 

( )12 10 910 10 10 ,Q diag − − − =    (5.33) 

1210 .R −=  (5.34) 

In an effort to minimize the estimation error, the convergence rate for the 1st-order SVSF 

and the dynamic 2nd-order SVSF are set to 0.5γ = . For the 1st-order SVSF, the smoothing 

boundary layer vector is set to: 

3 4 63.5 10 1 10 1 10ψ − = × × ×
  . (5.35) 

For the IMM settings, the initial mode probability was defined as follows: 

[ ],0 0.90 0.05 0.05 .
T

iµ =  (5.36) 

The mode transition matrix ijp
 
is defined as a 3-by-3 diagonal matrix with 0.90 along the 

diagonal and 0.05 on the off-diagonal, as follows: 

0.90 0.05 0.05

0.05 0.90 0.05 .

0.05 0.05 0.90
ijp

 
 =
 
  

 (5.37) 

It states, for example, that there is a 90% probability that the EHA will stay in mode 1 

(normal operation) if it was in mode 1 at the current time step (i.e.,1,1 0.90P = ). The 
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scenario that was studied involved the EHA operating normally for two seconds, a leakage 

fault for two seconds, followed by a friction fault for the last two seconds. Profiles of the 

input into the EHA setup (motor velocity) and the output (position measurement) are 

shown in Figures 5.12, and 5.13, respectively. The input to the EHA system is a square 

wave signal fluctuates between +5 and -5 rad/sec. A linear encoder is used to measure the 

only measurable state that is the actuator position. 

 

Figure 5.12: Profile of the input into the EHA setup (motor velocity) 
 

 

Figure 5.13: Measurement profile of the EHA setup (actuator position) 
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In this section, the extended Kalman filter (EKF), the 1st-order SVSF and the 

dynamic 2nd-order SVSF were combined with the IMM method and applied to the EHA 

setup for fault detection and diagnosis. Tables 5.5 through 5.7 summarize the probability 

results for each method. These are referred to as confusion matrices, and provide an 

indication of how accurate the models were in detecting the correct operating mode. 

Following confusion matrices, it is deduced that all of the methods successfully detected 

the correct operating mode (a diagonal probability of 50% or greater); however, with 

varying degrees of confidence. The IMM-based dynamic 2nd-order SVSF strategy 

correctly identified the EHA operating normally with the highest probability level 

(93.33%), followed by the IMM-1st order SVSF, and the IMM-EKF.  

The IMM-based dynamic 2nd-order SVSF also detected the leakage fault with the 

highest level (90.05%), followed by the IMM-1st order SVSF, and the IMM-EKF. 

Furthermore, the IMM-based EKF strategy correctly identified the friction fault with the 

highest confidence level (93.29%), followed by the IMM-1 st order SVSF, and the IMM-

dynamic 2nd-order SVSF. It is interesting to note that another important factor to study 

includes cross-detection errors or misclassifications. For example, when the EHA was 

operating normally, the IMM-EKF strategy detected a leakage fault with 40.51% 

probability. This is a high cross-detection error, as the IMM-EKF method detected normal 

operation with only 59.31% probability. If these values were closer, it would be difficult to 

properly diagnose the fault with a high level of confidence. Note that a comparative 

analysis of some other state estimation methods including the unscented Kalman filter 

(UKF), the cubature Kalman filter (CKF), and the particle filter (PF), when combined 

within an Interacting Multiple Models (IMM) structure, is presented in Appendix. 
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Table 5.5: Confusion matrix for the IMM-based EKF 

 Actual Condition 

Predicted 

Condition 

 Normal Leakage Friction 

Normal 59.31% 27.65% 3.18% 

Leakage 40.51% 66.94% 3.53% 

Friction 0.18% 5.41% 93.29% 

 

Table 5.6: Confusion matrix for the IMM-based 1st-order SVSF 

 Actual Condition 

Predicted 

Condition 

 Normal Leakage Friction 

Normal 91.93% 7.16% 4.07% 

Leakage 7.73% 86.41% 3.66% 

Friction 0.34% 6.43% 92.27% 

 

Table 5.7: Confusion matrix for the IMM-based dynamic 2nd-order SVSF 

 Actual Condition 

Predicted 

Condition 

 Normal Leakage Friction 

Normal 93.33% 4.14% 3.06% 

Leakage 6.53% 90.05% 4.75% 

Friction 0.14% 5.81% 92.19% 

 

Another interesting factor to study is the overall correct detection probability. This 

can be studied by referring to the confusion matrices and Figure 5.14. Note that the 

summation of the diagonal elements in the matrices is equal to the total mode probability. 

Ideally, the perfect detection strategy would correctly identify the operating modes and 

thus, the total mode probability would be 3 or 300%. Overall, the IMM-dynamic 2nd-order 

SVSF yielded the best results in terms of maximizing the correct mode detection and 

minimizing the misclassifications. The IMM-dynamic 2nd-order SVSF had a total mode 
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probability of 281.53%, followed by the IMM-1st order SVSF with a total mode 

probability of 270.61%, followed by the IMM-EKF with a total mode probability of 

219.54%. Hence, it appears that the IMM-dynamic 2nd-order SVSF method provides the 

best method for fault detection and diagnosis. This may be due to its unique gain 

calculation, which preserves robustness during the state estimation process. 

 

Figure 5.14: Total mode probability detections by different methods 

 

For more clarity in comparison, the mode probability profiles of the IMM-dynamic 

2nd-order SVSF, the IMM-1st order SVSF and the IMM-EKF strategies are respectively 

presented in Figures 5.15 through 5.17. It is observed from these figures that the IMM-

based dynamic 2nd-order SVSF produces the largest mode probability value, followed by 

the IMM-based 1st-order SVSF, and the IMM-based EKF structures. Mode probability 

profiles demonstrate the superior performance of the dynamic 2nd-order SVSF in 

identifying the operating mode of the EHA under the normal and uncertain conditions. 
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Figure 5.15: Mode probability estimate generated by the IMM-based EKF  

 

 

Figure 5.16: Mode probability estimate generated by the IMM-based 1st-order SVSF  

 

Figure 5.18 furthermore presents profiles of the measured (obtained by the 

measurement or differentiation) and estimated state trajectories using the IMM-based 

dynamic 2nd-order SVSF structure. Note that the differentiated and filtered data for the 

velocity and acceleration are respectively obtained by taking the first and second order 

time-derivatives of the position (measurement) trajectory. As discussed in Remark 5.1, 
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these signals are later filtered out through a Butterworth filter in order to filter out the 

differentiation noise and other spikes. Fig. 5.18 demonstrates that state estimation 

trajectories successfully follow measured (obtained by measurement or differentiation) 

state trajectories in the normal and faulty scenarios. 

 
Figure 5.17: Mode probability estimate given by the IMM-based dynamic 2nd-order SVSF  

 

 
Figure 5.18: Actual and estimated state trajectories using the IMM-dynamic 2nd-order SVSF method 
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Table 5.8 presents the RMSE values of the four state estimators (the EKF, the 1st-

order SVSF, and the dynamic 2nd-order SVSF) combined with the IMM filter for the 

described scenario. It is deduced from Table 5.8 that the IMM-based dynamic 2nd-order 

SVSF strategy provide the more accurate state estimates, followed by the IMM-based 1st-

order SVSF. This however confirms the superior performance of the combined strategy 

(including the dynamic and optimal 2nd-order SVSF) for state estimation under the normal 

condition and its robust performance under the uncertain faulty conditions. Numeric 

values of Tables 5.7 and 5.8 present the superior performance of the combined strategy 

over other estimation approaches for fault detection and diagnosis. 

 
Table 5.8: RMSE values of different state estimators combined with the IMM filter 

States EKF 1st-order SVSF Dynamic 2nd-order SVSF 

x1 (m) 6.59×10-4 4.10×10-5 1.85×10-5 

 

5.6. Summary 

This chapter presents applications of the combined strategy (dynamic and optimal 

2nd-order SVSF methods) for fault detection and diagnosis using an experimental EHA 

setup. Fault detection is performed by comparing the RMSE of state estimates with their 

values under normal condition. Moreover, fault diagnosis is performed by combining the 

dynamic 2nd-order SVSF with the IMM filter. The mode probability estimate represents 

the current operating regime (normal or faulty) of the EHA. This structure successfully 

identified the correct operating regime with smaller values of RMSE and higher values of 

the mode probability. 
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Chapter 6 

Summary and Concluding Remarks 

This chapter presents the main contributions of this PhD research and the relevant 

conclusions. It also provides recommendations for future research. 
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6.1. Summary of the PhD Research 

Kalman-type filtering methods assume a known model with uncertainties being 

represented as white noise. In real applications, there are considerable amount of 

uncertainties about the model structure, physical parameters, level of noise, and initial 

conditions that make white noise representation invalid. In order to overcome such 

difficulties, robust state estimation techniques are widely used. The SVSF filter is a new 

robust state estimation approached introduced in 2007. The SVSF-type filtering benefits 

from the robust stability of variable structure systems and results in a robust state 

estimation algorithm with an inherent switching action. This PhD research presents three 

main contributions that are mainly based on using the second order sliding mode theory 

for control and state estimation of uncertain dynamic systems. The higher accuracy and 

robustness of these methods over other conventional methods are proven in computer 

simulation and experimentation. An experimental setup of an Electro-Hydrostatic 

Actuator (EHA) is used in order to verify computer simulations. 

The first contribution of this PhD thesis is the design and implementation of the 2nd-

order SVSF in which the chattering effects are suppressed by satisfying the second order 

sliding condition. The 2nd-order SVSF applies to systems with nonlinear state model and 

linear or at least piece-wise measurement model. It satisfies both the first and second 

order sliding mode conditions using the Lyapunov’s second law of stability. Furthermore, 

in order apply the 2nd-order SVSF, there is no need to linearize or even approximate the 

nonlinear state model. In the 2nd-order SVSF method, the estimation error and it first 

difference are decreasing over time until reaching the existence subspace. Hence, along 

with keeping the main advantages of the former 1st-order SVSF [3], it alleviates the 

unwanted chattering effect considerably. It also produces more accurate state estimates 

without compromising its robustness and even without the need to approximate or relax 
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the discontinuous corrective action. Simulation results present the superior performance 

of the 2nd-order SVSF over other methods such as the Kalman filter and the 1st-order 

SVSF method given uncertainties. 

The second contribution of this research is the optimal 2nd-order SVSF method for 

state estimation. The corrective gain formulation of the 2nd-order SVSF is highly 

nonlinear, making optimization difficult. In order to avoid such computational 

difficulties, the dynamic 2nd-order SVSF is firstly designed based on a linear dynamic 

sliding mode manifold. It is defined as a linear combination of the sliding variable and its 

first derivative. The new sliding manifold introduces a cut-off frequency matrix into the 

filter formulation. The cut-off frequency coefficient operates like a first-order low-pass 

filter with an adjustable bandwidth. Stability and convergence of this new derivation for 

the first and second order sliding motions are proven using a discrete-time Lyapunov 

function candidate. 

In order to formulate the optimal 2nd-order SVSF, the error covariance matrix at 

each iteration needs to be obtained. The optimization process is then performed to 

calculate the optimal value of the cut-off frequency by minimizing the error covariance 

matrix (trace). It is shown that the corrective gain of the optimal 2nd-order SVSF restates 

the Kalman filter gain and hence, a combined strategy includes the dynamic 2nd-order 

SVSF for uncertain systems and the optimal 2nd-order SVSF for normal systems is 

introduced. The main advantages of the combined strategy over other state estimation 

methods include robustness to noise and modeling uncertainties, low computational cost, 

and ease of implementation. In order to compare the performance of the 2nd-order SVSF 

and its dynamic version with other estimation methods such as the well-known Kalman 

filter and the 1st-order SVSF, they are simulated using a model of an electro-hydrostatic 

actuator (EHA). Simulations are performed for the normal and uncertain scenarios when 
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in the uncertain scenario the level, source and occurrence of uncertainties are unknown. 

These methods are then compared in terms of robustness, accuracy and smoothness of the 

state estimates. 

An experimental setup of an electro-hydrostatic actuator (EHA) is used for 

verifying the robust performance of the 2nd-order SVSF and its dynamic version. These 

methods are implemented in a FDI strategy. Fault detection is performed by comparing 

the RMSE of state estimates with ones under normal condition. Moreover, fault diagnosis 

is performed by combining the dynamic 2nd-order SVSF with the IMM filter. The mode 

probability estimate represents the current operating regime (normal or faulty) of the 

system. The IMM-based dynamic 2nd-order SVSF successfully identified the correct 

regime with smaller values of RMSE and higher values of mode probabilities. 

Experimentations confirm the superior performance of the combined strategy in 

comparison with other state estimators such as the Kalman filter, and the 1st-order SVSF. 

 

6.2. Concluding Remarks 

Concluding remarks on the 2nd-order SVSF and its optimal version for state 

estimation may be summarized as follows. 

• Simulation and experimentation results demonstrate that the 2nd-order SVSF and its 

dynamic version produce more accurate, robust and smoother state estimates in 

uncertain situations in comparison to the Kalman filter, and the 1st-order SVSF.  

• The 2nd-order SVSF applies to systems that have a nonlinear state model but with a 

measurement model without the need to linearization or approximation. It is one of 

the main advantage of the 2nd-order SVSF over conventional state estimation 

methods that are mainly based on linearization or approximation of the state model. 
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• Due to the low computational cost of the 2nd-order SVSF and its dynamic version, 

they may be simply applied for the real-time state estimation task. 

• Stability of the 2nd-order SVSF and its dynamic version are proven by using the 

discrete-time Lyapunov stability criteria. 

• In spite of the 2nd-order SVSF, its optimal version only applies to systems with a 

linear state model. For implementing the optimal 2nd-order SVSF to nonlinear 

systems, the state’s a posteriori PDF can be predicted using approximation or 

linearization techniques, similarly to the extended Kalman filter. 

• In the 2nd-order SVSF and its dynamic version, there is no need to use the saturation 

function or any type of approximation to alleviate discontinuities and prevent 

chattering. They use the 2nd-order sliding mode concept such that the measurement 

error and its difference decrease in time until the existence subspace is reached. 

• The corrective gain of the dynamic 2nd-order SVSF is designed based on a dynamic 

sliding mode manifold which preserves the first and second sliding mode 

conditions. This dynamic manifold formulation introduces a first-order low-pass 

filter with an adjustable cut-off frequency coefficient. The cut-off frequency 

coefficient determines the filter’s bandwidth. The optimization process is then 

performed to find the optimal value for the cut-off frequency at each time step. 

• The 2nd-order SVSF and its dynamic version are primarily designed for estimating 

state variables of systems with a square measurement matrix. In order to apply them 

to systems with fewer measurements than states, Luenberger’s observer needs to be 

applied as was done in [3]. 

• The 2nd-order SVSF alleviates the need for tuning by trial and error that saves time 

and efforts. However for the optimal version, the system and measurement 

covariance matrices need to be tuned similarly to the Kalman filter. 
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• The corrective gain of the 2nd-order SVSF and its optimal version represent a 

second order Markov process. They refine the a priori state estimates into the a 

posteriori ones based on the available values of the measurement error from the last 

two steps. Updating estimates based on this higher amount of information will 

improve their performance with smoother state estimates. 

• The main concern with the 2nd-order SVSF state estimation method is that it is 

however not optimal in the mean square error sense. In order to overcome this, the 

optimal 2nd-order SVSF is introduced that minimizes the covariance of the state 

estimation error at each step. It is shown that the corrective gain of the optimal 2nd-

order SVSF collapses to the Kalman filter gain and hence robustness is lost. To 

preserve robustness, a combined strategy is used that benefits from optimality of the 

optimal 2nd-order SVSF as well as robustness of the dynamic 2nd-order SVSF. 

6.3. Recommendations for Future Research 

This PhD research introduced and discussed a number of contributions on the 

SVSF-type filtering with applications to an electro-hydrostatic actuator setup. Since the 

SVSF-type filtering is still new, a considerable amount of research still remains. 

Additionally, the 2nd-order SVSF presented a new field of research relevant to robust state 

estimation based on preserving the first and second order sliding conditions. The main 

recommendations for future studies include the following. 

1. Chattering analysis: In the sliding mode context, the second order sliding regime 

has been frequently used for the numerical analysis of chattering [157,159,14]. 

Moreover, in the SVSF-type filtering, frequency and amplitude of chattering are 

related to the level of modeling uncertainties. During the fault condition, the 

amount of uncertainties in system states and parameters increases significantly. 
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Hence, the energy of the corresponding chattering signal starts to increase as long 

as the uncertainty continues to grow. This property of the SVSF-type filtering can 

be considered as a strong tool for analyzing dynamics of faulty components, when it 

is difficult to analyze the residual (innovation sequence) signal. Chattering signal 

can then be used to diagnose fault conditions. There has been a lot of research on 

chattering in SMC systems [57, 58]. The most well-known methods are the 

averaging approach [56], describing function [59], state dependent gain method 

[59], singular perturbation theorem [60] and the Poincare map technique [59]. 

Numerical analysis of chattering as well as evaluating the innovation sequence 

(measurement error) will improve health monitoring. 

2. Design a discrete-time 2nd-order sliding mode controller: An interesting topic 

for the future research is to design and implement a discrete-time 2nd-order sliding 

mode controller (SMC) that is robust against modeling uncertainties. Note that 

conventional digital 2nd-order SMCs are mainly designed based on direct 

digitization of continuous-time controllers that only approximates formulations of 

the continuous SMCs using the Taylor series integration. In contrast, the mentioned 

discrete 2nd-order SMC would be designed for discrete-time linear systems based on 

a discrete-time Lyapunov stability criterion. The controller has two main elements 

that include an equivalent control part and a switching control part. The equivalent 

control is a model-based feed-forward compensation of the plant’s dynamics and 

can be formulated based on the second order differentiation of the sliding variable. 

Meanwhile, a switching control term is added for robustness to modeling 

uncertainties and disturbances. The total control law needs to satisfy the first and 

second sliding conditions and in turns the Lyapunov’s stability condition defined in 

discrete-time.  
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Appendix 

In this section, some of the state estimation methods including the unscented Kalman 

filter (UKF), the cubature Kalman filter (CKF), and the particle filter (PF) are combined 

within an Interacting Multiple Models (IMM) structure for fault detection and 

identification. Experimentations are performed using the EHA setup with the same 

properties and inputs presented in Chapter 5. Note that for the PF, the effective threshold 

(Neff) is set to 0.8, and 350 particles are used in total. Furthermore, the UKF parameter 

κ  is defined as:
 

31 10−× . 

The EHA dynamics are described by equations 5.1 through 5.3. For all strategies, the 

initial state estimate and state error covariance matrix are defined as follows: 

[ ]0|0ˆ 0 0 0 ,
T

x =  (A.1) 

0|0

1 0 0

0 10 0 .

0 0 50

P

 
 =  
  

 (A.2) 

The system and measurement noise covariance’s Q and R are also given by: 

( )2 3 510 10 10 ,Q Diag  =
   (A.3) 

110 .R −=  (A.4) 

For the IMM settings, the initial mode probability was defined as follows: 

[ ],0 0.90 0.05 0.05 .
T

iµ =  (A.5) 
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The mode transition matrix ijp is defined as a 3-by-3 diagonal matrix with 0.90 along the 

diagonal and 0.05 on the off-diagonal. Similar to experimentations of Chapter 5, the 

experimental scenario involves the EHA operating normally for two seconds, a leakage 

fault for two seconds, followed by a friction fault for the last two seconds. Tables A.1 

through A.3 present the mode probability results (confusion matrices) for the IMM-based 

UKF, IMM-based CKF, and the IMM-based PF strategies. They provide an indication of 

how accurate the models are in detecting the correct operating mode. 

Table A.1: Mode probability results for the IMM-UKF 

 Actual Condition 

Predicted 

Condition 

 Normal Leakage Friction 

Normal 70.28 % 16.67 % 2.72 % 

Leakage 29.63 % 80.33 % 3.60 % 

Friction 0.09 % 3.00 % 93.68 % 

 

Table A.2: Mode probability results for the IMM-CKF 

 Actual Condition 

Predicted 

Condition 

 Normal Leakage Friction 

Normal 96.82 % 27.19 % 13.63 % 

Leakage 2.98 % 65.66 % 1.02 % 

Friction 0.21 % 7.14 % 85.35 % 

 

Table A.3: Mode probability results for the IMM-PF 

 Actual Condition 

Predicted 

Condition 

 Normal Leakage Friction 

Normal 59.31 % 1.59 % 9.07 % 

Leakage 21.94 % 97.77 % 9.05 % 

Friction 18.75 % 0.63 % 81.88 % 
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All of the methods successfully detected the correct operating mode (a diagonal 

probability of 50% or greater); however, with varying degrees of confidence. The IMM-

CKF strategy correctly identified the EHA operating normally with the highest probability 

level (96.82%). The IMM-PF detected the leakage fault with the highest level (97.77%), 

and the IMM-UKF correctly identified the friction fault with the highest confidence level 

(93.68%). Another interesting factor to study is the overall correct detection probability. 

This can be studied by referring to the confusion matrices and Figure A.1. The overall 

correct detection probability for these three estimation methods and some other methods of 

Chapter 5 are compared in Figure A.1. It is observed that the IMM-based dynamic 2nd-

order SVSF has the largest probability, followed by the IMM-based 1st-order SVSF. 

 

 
Figure A.1: Total mode probability detections by different estimation methods 

 

Note that the summation of the diagonal elements in the matrices is equal to the total 

mode probability. Ideally, the perfect detection strategy would correctly identify the 
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operating modes and thus, the total mode probability would be 3 or 300%. The IMM-CKF 

provides the best results in terms of maximizing the correct mode detection and 

minimizing the misclassifications. The IMM-CKF has a total mode probability of 

247.83%, followed by the IMM-UKF with a total mode probability of 247.83%, and the 

IMM-PF with a total mode probability of 238.96%. Figures A.2 through A.4 present the 

mode probability profiles for the EHA setup under the normal condition, internal leakage 

and friction fault conditions, respectively. Compared with other popular IMM methods, it 

appears that the IMM-based SVSF method provides the best method for FDI, followed by 

the IMM-based CKF. 

 

 

Figure A.2: Normal mode probability results by different estimation methods 
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Figure A.3: Leakage fault mode probability results by different estimation methods 

 

 

Figure A.4: Friction fault mode probability results by different estimation methods  


