
 

 

 

 

 MODELING THE MICROSTRUCTURE 

EVOLUTION DURING HOT DEFORMATION 

OF MICROALLOYED STEELS  
 

 

 

 

  



PhD Thesis – Kashif Rehman ‐ McMaster University, Materials Science & Engineering 2014 

i 

 

 

 

 MODELING THE MICROSTRUCTURE 

EVOLUTION DURING HOT DEFORMATION 

OF MICROALLOYED STEELS  
 

 
By 

 

MOHAMMAD KASHIF UR REHMAN, B.Tech 
 

 
 
 
 

A Thesis Submitted to the School of Graduate Studies in Partial Fulfilment of the 

Requirements for the Degree Doctor of Philosophy 
 
 
 
 
 
 
 
 
 
 
 

McMaster University 
© Copyright by Kashif Rehman, Feb 2014 

 

 

 



PhD Thesis – Kashif Rehman ‐ McMaster University, Materials Science & Engineering 2014 

ii 

 

 Doctor of Philosophy (2014)  McMaster University (Materials Science & 

Engineering), 

Hamilton, Ontario 

 

 

TITLE: Modeling the Microstructure Evolution During Hot Deformation of Microalloyed 

Steels 

 

 

AUTHOR: Mohammad Kashif Ur Rehman, B. Tech (National Institute of Technology, 

Jamshedpur) 

 

 

SUPERVISORS: Dr. Hatem S. Zurob and Dr. S.V.Subramanian  

 

NUMBER OF PAGES: xv, 174  



PhD Thesis – Kashif Rehman ‐ McMaster University, Materials Science & Engineering 2014 

iii 

 

Abstract 

A physically based model has been developed to describe static recrystallization and grain 

coarsening of recrystallized grains during hot rolling of Nb microalloyed austenite. Key 

feature of recrystallization model is detailed description of the nucleation process; the 

model predicts recrystallization incubation time as well as time evolution of 

recrystallization nucleation rate along with recrystallized grain size. In addition to this, 

effect of static recovery, solute drag of Nb and precipitation of Nb(C,N) are captured in 

both recrystallization nucleation and growth models. 

Once recrystallization is complete, fine recrystallized austenite grains tend to coarsen 

driven by its surface energy, which is captured in a physically based model. The present 

grain coarsening model takes into consideration effect of solute drag of Nb using Cahn’s 

model and precipitates using Zener drag. The model predictions are validated using the 

available experimental database in literature. 

The model is applied to analyze quantitatively grain coarsening problem encountered 

between the end of roughing and the start of finish rolling under industrial processing 

conditions. The model enabled quantitative analysis of the effect of cooling rate on key 

metallurgical parameters, which determine the coarsening kinetics. Based on these 

results, an engineering solution to overcome grain coarsening problem was identified. 

The solution lies in accelerated water cooling upstream just after roughing. This 

engineering solution is being adopted in the design of next generation rolling mills for 

processing microalloying steels.  
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1. Introduction 

No other material has as profound an effect on human civilization as iron and iron alloys. 

The progress of human civilization is closely related to the development of iron/steel 

making technologies. With the advent of Bessemer process of steel making at Sheffield 

England in 1855 mass production of cheap steels was made possible. This led to rapid 

development in infrastructure and allowed further expansion of industrial revolution and 

thus leading to modern society.  

The current world production of crude steel is to the order of 1.5 billion tons. Due to 

continued demand of steel and environmental degradation associated with steel 

production, lot of research has been focussed on improving the mechanical properties of 

steel.  

1.1.  Hot rolling of steels 

Historically steels for flat products used to be cast in blooms which were then rolled in an 

intermediate mill to create slabs for hot rolling. These slabs were then hot rolled to 

desired shape and size.  The motivation for hot rolling previously was dimensional 

control rather than microstructure and mechanical property. Although the deformation 

cycle was never intentionally controlled for grain size evolution but due to multiple phase 

transformation cycles and high deformation the steels were subjected to, as-cast grain size 

and abnormal grains were less of an issue. Coupled to this, the low strength requirements 

of as-rolled steels made microstructure control during rolling not a priority. The strength 

requirements of those steels were fairly low. For more demanding applications such as 
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boiler vessel, heat treated plates were used which gave a better control on mechanical 

properties. Historically the engineering design philosophy followed a stress based 

approach wherein the focus was to have high yield strength (stress based design). This 

was easy to achieve by small addition of carbide/nitride forming elements. Vanadium and 

molybdenum were two elements which were adopted readily by steel makers. During hot 

rolling these elements remain dissolved in austenite and precipitate later in ferrite during 

transformation. Grain refinement during phase transformation coupled with precipitation 

of microalloys (Ti, Nb and V) led to drastic increase in strength and toughness of steel 

with a very slight increase in input cost. This heralded the era of microalloyed steels. 

With increased focus starting around 1970’s on strain based engineering design 

researchers found that a two-step rolling process (roughing and finish rolling) gave better 

results. This was termed as thermo-mechanical controlled processing (TMCP) or 

recrystallized controlled rolling.  

1.2.  Microstructure control during hot rolling (TMC Process) 

The main purpose of TMP of HSLA steels is to refine the ferrite grains, which leads to 

simultaneous increase in strength, ductility and low temperature fracture toughness. In 

this process hot rolling is carried out in two steps. The first deformation phase (rough 

rolling) is carried out at elevated temperatures (1050 to 1250 oC) so as to refine the as cast 

coarse grains by static recrystallization. After this the bar is held for the temperature to 

fall below 900 oC and then second deformation step (finish rolling) is carried out. 

Throughout the hot rolling process the time-temperature-deformation window is 
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controlled in such a way that complete recrystallization is ensured in rough rolling and no 

recrystallization occurs during finish rolling.  

A series of deformation without recrystallization leads to severe defect generation in the 

matrix. Also the equiaxed austenite grains become elongated resembling the shape of a 

pancake. The pancaked elongated grains have very high grain boundary area per unit 

volume compared to the strain free equiaxed grains. Since grain boundaries are 

preferential nucleation sites for austenite to ferrite phase transformation an increase in 

grain boundary area coupled with increase in defects drastically increases the potential 

nucleation sites for phase transformation thus giving further grain refinement. As is 

evident from Figure 2, for any equiaxed grain size a strained austenite gives finer ferrite 

grains than a strain free one.  

 
Figure 1: Schematic of thermo mechanical processing of steels showing the rough rolling 

temperature window where recrystallization is complete and finish rolling window 

wherein pancaking in absence of recrystallization takes place[1]. 
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Figure 2: Variation of ferrite grain size, strain with interfacial area (Sv) in 0.03 wt % Nb 

steel [2]. 

 

Additions of alloying elements enhance mechanical properties significantly. Small 

amount of Nb, V and Ti are usually added either individually or in combination up till 

0.1%. These steels are called microalloyed because of small percentage of alloying 

additions. The presence of microalloys either as a solute or in carbides/nitrides alters 

recovery and recrystallization kinetics thus allowing modification of rolling schedule. Nb 

is widely used to stop recrystallization at high temperature so as to allow finish rolling to 

be done at elevated temperature than what was originally possible without Nb. The steel 

chemistry and rolling parameters developed to capitalize on this aspect of Nb is called as 

HTP(high temperature processing) or more recently developed OHTP (optimized high 

temperature processing) process[3].Vanadium is added to precipitate out in ferrite during 

transformation giving precipitation hardening[4]. 
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The key metallurgical processes operating during Thermo-Mechanical Controlled 

Processing (TMCP) are recovery, recrystallization, precipitation and grain coarsening[5]. 

Such processes are a function of composition, temperature, strain, strain rate, relaxation 

time. These processes are not mutually exclusive events and interact with each other in 

multiple ways. These factors influence the mechanical properties of steels in numerous 

ways and hence a good physical understanding of the process is essential to understand 

the underlying metallurgy. 

1.3.  Scope of thesis 

The present study was motivated by the desire to further enhance our understanding of 

thermo-mechanical processing and associated grain refinement process. 

Industrially this is achieved by a two stage rolling process wherein deformation is first 

applied at high temperature for grain refinement and further deformation is given at low 

temperature for strain accumulation. 

In recent years the problem of strain accumulation has received increased focus due to the 

market demand for higher strength product with high toughness and in high thickness. 

Producing higher thickness products significantly reduces the total possible deformation 

which leads to reduced austenite grain refinement during rough rolling and reduced strain 

accumulation during finish rolling. This has led to increased focus on optimization of 

rolling schedules. 

The present work focuses upon modeling of the evolution of microstructure following 

deformation of a supersaturated alloy. A quantitative physical model was developed 
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which looks into various metallurgical phenomena and interaction between them during 

rolling in austenitic phase. 

In the later part of the contribution, an attempt has been made to rationalize 

microstructure evolution of an industrial rolling schedule with the help of the developed 

model and comparison is made to an alternative hypothetical case. 

    

2. Literature Review 

The microstructure evolution during thermo-mechanical processing is manipulated using 

a combination of metallurgical processes viz. recovery recrystallization precipitation and 

grain coarsening. All of them interact with each other in numerous ways (Figure 3).  

Over the last three decades, great progress has been made toward the modeling of thermo-

mechanical processing of microalloyed steels [6-19]. The key to modeling microstructure 

evolution during the hot rolling of microalloyed steels is to capture the processes of 

recovery, recrystallization, and precipitation as well as their interactions. 

Earlier work on this topic has led to development of powerful semi-empirical 

relationships that describe the interactions between recovery, precipitation, and 

recrystallization with great accuracy [4, 9, 10, 12, 15, 16, 20, 21]. 
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Figure 3: Schematic showing the various interactions between recovery, recrystallization 

and precipitation. The blue boxes represent sub-processes, dotted red line represents the 

inverse relationship whereas solid red line represents direct relationship. 

 

 

This research project will focus on microstructure evolution during hot rolling and its 

application to steel processing. 

2.1.  Recovery 

During hot rolling of steels most of the applied deformation energy gets converted into 

heat and only a fraction of it(~1%) remains as stored energy [12]. This extra energy is 

stored inside the material in the form of increased dislocation density. 

Recovery is usually defined as a process by which deformed grains can reduce their 

stored energy by the removal or rearrangement of defects in their crystal structure. 



PhD Thesis – Kashif Rehman ‐ McMaster University, Materials Science & Engineering 2014 

8 

 

Depending on the stacking fault energy (SFE) of the system some or all of the sub process 

will operate viz. formation of cells, annihilation of dislocations within cells, formation of 

low-angle sub-grains and sub-grain growth, Figure 4. This occurs by a combination of 

dislocation glide, cross-slip and climb. In case of low alloy microalloyed steels, austenite 

is unstable at room temperatures making direct observation using TEM difficult. Due to 

this recovery is usually studied in model materials such as Al, Cu etc.[22].  

 

Figure 4: The stages of recovery where first cells are formed due to the rearrangement of 

dislocations and then subgrains are formed and grow due to annihilation of dislocations, 

from Humphreys and Hatherly[12]. 
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2.1.1. Recovery Measurements 

Since recovery progress is essentially a measure of reduction in stored energy of 

deformation, any method which can measure stored energy in principle will be able to 

measure the recovery kinetics. Due to high number density of dislocations involved 

number counting of dislocations is impossible. Direct methods such as Calorimetry and 

X-ray diffraction are used, whereas indirect method can include measuring the changes in 

some physical and mechanical property of the material such as stress, electrical 

resistivity, hardness and density. 

Although due to recovery, a lot of macroscopic properties are affected such as electrical 

resistivity, hardness, flow stress, density etc., but from engineering point of view double 

hit test and stress relaxation test are more popular as they output flow stress evolution 

which being an engineering parameter can be directly used in engineering design or for 

analysis can be easily converted to dislocation density using Forest Hardening type 

relation: 

 𝜎 = 𝜎𝑦 +  𝑀𝛼𝜇𝑏 √𝜌 Eq.  1(a) 

 𝜎𝐷 = 𝜎 − 𝜎𝑦 Eq. 1(b) 

where 𝜎 is the flow stress, 𝜎𝑦 is the yield stress,𝜎𝐷 is stress due to dislocation, μ is the 

shear modulus, b is burgers vector, ρ is dislocation density, α is a constant of the order of 

0.15 and M is the Taylor factor which is 3.1 for FCC material [23]. 

In principle, the results obtained through them can have marked interference from 

recrystallization; hence in order to avoid it, recovery studies are only done under TNR 
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(Temperature of No Recrystallization) or for short times above that temperature. A brief 

explanation of these two processes follows: 

2.1.1.1. Double deformation test 

In double deformation test, recovery kinetics can be measured by indirectly monitoring 

the degree of softening measured from an interrupted mechanical test. The basic 

procedure of this is that the sample after being given a specific heat treatment is deformed 

to a fixed strain after which the stress is removed. After holding for a definite amount of 

time the sample is deformed again to measure its new yield stress. The shape of the 

second deformation curve is strongly dependent on the softening occurring between the 

inter-pass times. A typical stress strain curve is shown in Figure 5. 

From the stress strain diagram obtained, varieties of methods are available to analyze 

them quantitatively e.g. back extrapolation method, mean flow stress and offset method 

[24, 25] (see Figure 6). 

 

Figure 5: (a) Procedure of the double deformation test and (b) resulting stress-strain 

curves from the double deformation test used to calculate the fraction of softening during 

the inter-pass time [24] 
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The main drawback of this method (double deformation) is that it’s quite tedious, because 

for every data point a new sample is required, which has to be given the same thermo-

mechanical treatment. 
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Figure 6: Overview of the commonly used method to calculate softening from double 

deformation test (Nb microalloyed steel, Tdef = 1000oC, tip= 200s)[26] 
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2.1.1.2. Stress relaxation test 

Though the double deformation method explains recovery progress quite efficiently, it 

suffers from the drawback that it needs lot of experiments to get a softening curve. The 

method of stress relaxation provides an opportunity to measure the complete softening 

kinetics with one sample. 

 

Figure 7: (a) Procedure for stress relaxation test and (b) illustration of the analysis of a 

stress relaxation test. [24] 

 

The sample after being given the necessary heat treatment cycle is deformed. After a 

definite amount of strain, at a given strain rate the displacement in the sample is fixed and 

decay in stress with time is recorded. This gives the recovery kinetics. Care has to be 

taken in both the methods, that evolution of flow-stress is affected by microstructural 

events such as recovery, recrystallization, precipitation and grain coarsening and hence 

suitable design of experiment is needed to study any one of these mechanisms. 
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2.1.2. Effect of strain, solute and temperature on recovery kinetics 

Strain: Increase in strain leads to increase in dislocation density. . Since the driving force 

for recovery is dislocation density this leads to increased recovery kinetics with increase 

in strain. In microalloyed steels, increase in recovery kinetics is manifested in terms of 

more definitive sub structure. 

2.1.2.1. Effect of Solutes on recovery 

Dislocations create strain field in the matrix and as such are potential sites for solute to 

segregate, thus relieving stress. Solutes may influence recovery by their effect on the 

stacking fault energy [27], by pinning dislocations both within cells and sub-grain 

boundaries, and by affecting the concentration and mobility of vacancies[12]. The 

migration of subgrain boundary generally occurs by climb of dislocation comprising the 

boundary at a rate controlled by the diffusion of solutes [13]. Solute pinning of 

dislocations will inhibit both dynamic and static recovery, resulting in a higher stored 

energy than for a solute-free material, [12].  

Study done by Zadeh et al.[28] on two steels with varying Nb content has revealed that 

for the same temperature the one with lower Nb exhibit higher recovery kinetics. One of 

the most comprehensive experimental work done, to investigate the effect of micro 

alloying elements on recovery was done by Yamamoto et al. [29]. They used a series of 

micro alloyed steels and decarburized it so as to eliminate the effect of precipitates and 

then evaluated softening kinetics using double-deformation test for a range of 

temperatures 
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Figure 8: (a) Effect of various solutes on softening kinetics, (b) effect of solute content 

on softening kinetics, (c) Effect of temperature on softening kinetics. The first 20% 

softening is solely due to recovery and hence can be interpreted in terms of effect on 

recovery. [29] 

 

 

Important observations coming out of Yamamoto’s work [29] (Figure 8) are as follows: 

The microalloying elements (Nb,Ti and V) significantly retard the kinetics of recovery. 

The retardation increases in the order V<Ti<Nb. This effect is clearly visible in Figure 

8(a). The initial softening about 20% is solely due to recovery and is confirmed from the 

metallographic observations[29]. As such, time for 20% softening (t20) is a convenient 

way to compare recovery kinetics. The degree of retardation depends upon the solute 

content. From Figure 8(b) increase in solute Nb leads to increase in t20. 
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The effect of solute concentration on recovery changes as a function of temperature. This 

effect is obvious in Figure 8(c) where the slope of the softening curve changes with 

respect to temperature. In case of Nb steels at higher temperature the sub-grain formation 

and growth is slowed down due to solute drag effect of Nb and at lower temperatures the 

Nb(C,N) precipitates retards recovery [28-30]. 

The above effect was also confirmed by McElroy [31] who proposed that solute elements 

interact with dislocations either by altering the SFE or by segregating to dislocation and 

pinning them. Nb and Ti significantly affect the stacking fault energy (SFE) of 

austenite[32]. They found that the addition of 1% Nb to a 15-15 stainless steel lowered 

SFE by 20mJ/m2. However in micro-alloyed steel Nb is usually less than 0.1 wt%, due to 

which effect of micro-alloys on Stacking Fault Energy is not expected to be significant. 

Nes [22] mentioned that in case of thermally activated glide, solutes alter the jog spacing 

causing the apparent activation energy for recovery dependent on both the initial 

dislocation density and solute misfit.  

 

2.1.2.2. Effect of Particles on Recovery 

Second phase particles may be present before recovery commences or they may 

precipitate during recovery. In both the cases they affect recovery kinetics prominently. 

In Figure 9 the initial 20% can be attributed to recovery. Comparing the dotted lines 

(precipitate free) with the solid ones (with precipitate), one observes more deviation at 

lower temperatures which highlight the inverse relationship between recovery and 

precipitation kinetics. 
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Figure 9: Effect of particles on recovery kinetics[29]. 

 

 

Second phase particles may affect recovery in several ways. Humphreys [12] mentions 

that during the initial stage of recovery when dislocations rearrange themselves to form 

low angle boundaries, the second phase particles can pin these individual dislocations 

thus preventing their rearrangement, hence slowing down recovery. He further states that 

if the inter-particle distance is small and comparable to the scale of dislocation network 

then they will inhibit recovery but in practical cases this rarely occurs and hence it is not 

investigated much. 

2.1.3. Recovery Models 

Modeling recovery is difficult mainly because of the large number of dislocations 

involved (~1015 /m2) and their heterogeneous distribution. In case of large deformation 

dense dislocation networks form which make direct observation of microscopic 
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mechanism difficult. This leads to modeling of strain energy distribution (associated with 

dislocations) and the individual processes viz. cross-slip, glide and climb at a scale of 

both inter-grain (50-500µm) and intra–grain (1-10µm). The correlation between the 

microstructure evolution at subgrain level, multi-granular level and the macroscopic 

mechanical properties is of paramount importance to engineers. 

There are two most commonly reported isothermal relations in literature which are often 

referred to as logarithmic or power law kinetics. Logarithmic kinetics is commonly 

observed in micro alloyed steels at intermediate annealing temperatures (Tm 2⁄ ). The 

logarithmic kinetics occurs when dislocation glide or solute drag is the rate control step. 

The decay of flow stress is generally found to follow either logarithmic or power law 

kinetics[12]  

 σD = c1 − c2ln(t) Eq. 2(a) 

 σD = c3 − c4(t)−m Eq. 2(b) 

 where, C1, C2, C3 and C4 and m are constants and vary with material and processing 

condition. Friedel et al. [33] concluded that the logarithmic decay equation is only valid 

in low temperature anneals of strongly strained fcc metals the mechanism being that of 

thermally activated cross-slip. Maruyama et al. [34] suggested that logarithmic kinetics 

could be attributed to glide control or solute drag control. Power law kinetics has been 

found to be mainly observed in polycrystals [35, 36]. 

As recovery comprises of growth of cellular structure and decay of dislocation density 

inside the cellular structure, Nes [22] came up with a two parameter model to describe 

recovery. 
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 𝜎(𝑡) = 𝜎𝑖 + 𝑀𝜇𝑏 [𝑓𝑠𝛼1√𝜌(𝑡) + 𝑓ℎ𝛼1
′

1

√𝛿(𝑡)
] 

Eq.  3 

where 𝜎𝑖 is frictional stress, 𝛿 is sub-grain size and 𝛼1, 𝛼1
′  are constants. 

The model assumes that the decay in flow stress is due to the contribution from subgrain 

boundary and the dislocation density inside those sub-grains. In case of high SFE material 

the inside of sub-grains gets cleaned quickly and the progress of recovery is controlled by 

the coarsening of sub-grains. Sellars and coworkers [37] have used a single parameter 

model (subgrain size) and have correlated it to strength in Al alloys.  The drop in flow 

stress is analogous to Hall-Petch relationship of decay in yield stress due to increase in 

grain size. In a realistic sense to apply this model for microalloyed austenite, as it has an 

intermediate SFE one need to have a separate model for both dislocation density decay in 

the cell structure and the increase in cell/sub-grain size. Also as the sub-grain grows it 

becomes more misoriented increasing the boundary mobility, which is not captured in the 

above model. The volume fraction of cell size and grain boundary thickness changes with 

the progress of recovery which is difficult to quantify.  

Verdier et al.[38] found the yield stress decay to be logarithmic for small strains 

irrespective of the cellular microstructure evolution. Hence he concluded that the strength 

decay can simply be modeled by a single internal variable (average dislocation density), 

which will be related via a Forest Hardening type relationship (Eq.  1). 

The model proposed assumes that the internal stress relaxation is due to thermally 

activated dislocation rearrangement and annihilation. The plastic relaxation rate 𝜀̇ is 

related to change in internal stress 𝜎𝑑 by: 
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𝑑𝜎𝑑

𝑑𝑡
= −𝜀̇𝐸 

Eq.  4 

where 𝐸 is Young’s modulus. The relation between 𝜀̇ and dislocation density is given by 

Orowan Law: 

 𝑀𝜀�̇� = 𝜌𝑏�̅� Eq.  5 

where M is the Taylor factor, ρ is the dislocation density and �̅� is the average dislocation 

velocity. The dislocation velocity is thermally activated and is influenced by 𝜎𝑑 as per; 

 �̅� = 𝑏𝜈𝐷𝑒𝑥𝑝 (−
𝑈𝑎

𝑘𝑏𝑇
) 𝑠𝑖𝑛ℎ (

𝜎𝑑𝑉𝑎

𝑘𝑏𝑇
) 

Eq.  6 

where 𝜈𝐷 is the Debye frequency. Finally the evolution of flow stress is given by an 

equation of the following form: 

 
𝑑𝜎𝑑

𝑑𝑡
= −

64𝜎𝑑
2

9𝑀3𝛼2𝐸
𝑒𝑥𝑝 (−

𝑈𝑎

𝑘𝑏𝑇
) 𝑠𝑖𝑛ℎ (

𝜎𝑑𝑉𝑎

𝑘𝑏𝑇
)    

Eq.  7 

In this equation Ua is activation energy and Va is activation volume. 

The value of activation energy ranges from that of pipe diffusion to bulk diffusion. As 

recovery is dislocation rearrangement hence, recovery kinetics will be affected by 

different mechanism like cross-slip, climb or solute drag, which in turn is represented by 

activation energy in the present model. 

The activation volume  Va is related to the spacing of the pinning centers. The activation 

volume corresponds to an activation length of Va b2⁄  which varies between 20-40b. This 

activation length is the average measure of the distance between two pinning centers. 

These centers may be jogs on a screw dislocation as in the case of glide, or solute atoms 

in case of solute drag. Hasegawa et al. [39] has found that with change in pre-strain levels 
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the cell walls tighten and thus changes the activation spacing. Fitting the experimental 

recovery data using Verdier model a trend can be observed for activation volume as a 

function of Nb content and relaxation temperature Figure 19. The trends follows  the 

underlying physical understanding, that is to say that as the niobium concentration 

increases the distance between pinning centre(Nb solute atoms) decreases. For the same 

niobium concentration increasing the temperature increases the mobility of Nb atoms 

making them less effective pinning centres resulting in decrease in activation volume. 

 

2.2.  Precipitation 

 

The micro-alloying elements which remain in solution at high temperatures start 

precipitating at low temperature. Nb, Ti and V are the most commonly used micro-

alloying elements and upon cooling they form carbides, nitrides and/or carbonitride. A lot 

of research have proved beyond doubt that addition of micro alloying elements (Ti, Nb 

and V) in steels significantly alters the mechanical properties[4]. These fine precipitates 

not only harden the steel but significantly delay/stop recrystallization by Zener drag 

allowing for enhanced strain accumulation in controlled rolling [2]. Beside delaying 

recrystallization these micro-alloying precipitates also prevent grain growth during heat 

treatment of the rolled product [4]. Due to all these factors precipitation has been 

examined in detail by many researchers [40-42]. From a strengthening perspective the 

size distribution and volume fraction of the precipitates are most important. To quantify 

the size distribution and volume fraction it becomes imperative to investigate the 
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composition and time temperature transformation curves of these micro-alloying 

precipitates. These two are discussed in later sections. By now a variety of techniques 

have been developed which are able to model precipitation fairly accurately. These 

models range from simple empirical equations to fairly complex MD simulations which 

are able to explain the process in quite detail [43-53]. All these models can be sub-

grouped into two categories. The first category deals with models which describe 

precipitation in much detail, with very few assumptions and are more physically based 

thereby providing better understanding of the underlying processes. In this category, the 

Kinetic Monte-Carlo [43-45] and the cluster dynamics techniques [46-48] are able to 

describe all stages of precipitation (from nucleation to coarsening) with a precise 

description of the kinetics of the processes. However these methods do have their own set 

of restriction which limits their applicability such as high CPU time. The second class of 

model are simple models which aren’t as accurate as the first class but nevertheless offers 

significant advantage in areas where the first one lacks such as computer processing time, 

scalability due to which these models are widely used in describing practical 

situations[49-52]. They evaluate nucleation and growth from differential equations of the 

classical laws in a continuous way. 

2.2.1. Composition  

Niobium forms carbides and nitrides in HSLA steel which have very low solubility in 

austenite. It is a nonstoichiometric compound and is usually represented as NbCx. Since 

microalloyed steels almost always contain other carbide and nitride formers the 

stoichiometry of NbC and NbN is not ideal and will depend upon the activity of 
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interstitials. Balasubramanian and Kirkaldy [53] have proposed a regular solution model 

to calculate the composition. Their calculation shows x in NbCx vary between 0.87-0.98. 

Other researchers have found it to vary from 0.75 to 0.98 [54, 55]  

Due to similarities in electronic configuration of nitrides and carbides (RN≈0.67Ǻ and 

RC≈0.77Ǻ), the physical properties of microalloying carbides and nitrides are quite 

similar. The carbides and nitrides form a solid solution among themselves leading to 

variation in exact compositions. Palmiere et al. [56] have summarized a number of studies 

done previously on the composition of these precipitates using atom probe spectrometer. 

The advantage of this technique over others is that it involves a direct observation and 

analysis of the precipitates and hence enables a more realistic estimate. Furthermore 

Dutta et al. [57] reported that low nitrogen steels revealed precipitates ranging from 

NbC0.8 to stoichiometric NbC, while high nitrogen steels exhibited carbonitrides of the 

compositions ranging from NbC0.67N0.33 to NbC0.8N0.07.  

Perez et al.[58] found that for low driving force niobium nitride and niobium rich 

carbonitrides form first and later carbon is absorbed into the precipitate giving the 

average composition as NbC0.59N0.38. Similar observation of distinct changes in 

composition was Perrard et al. [42] using TEM.  

To calculate the solubility product of niobium carbonitrides Gladman [4] assumed it to be 

an ideal solution of NbC and NbN and calculated C/N ratio from the solubility product 

data of niobium carbide and niobium nitride in austenite. Consequently it was later shown 

that the ratio changes with change in niobium, carbon, nitrogen and austenizing 

temperature.  
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Xu et al. [59] used a Monte-Carlo method to determine the exact composition of the 

carbides. Nb was assumed to be present randomly on one sub-lattice whereas C and N are 

randomly mixed on the other sub-lattice as suggested by other researchers [60, 61]. Xu 

[59] reported that the composition of carbides does change with deformation temperature 

and solute niobium content, which the regular solution model was quite able to predict. 

Similar behavior of varying composition was observed in vanadium microalloyed steels 

by Maugis et al. [62] wherein he argues that the ratio of C/N in V(C, N) is a function of 

alloy chemistry and thermal cycle.  

2.2.2. Solubility Product 

Solubility limit is defined as the maximum amount of solute which will remain dissolved 

in solvent (matrix) at a given temperature. Over a period of time, researchers have 

proposed a variety of equations for Nb/NbCN system, which differ slightly in their 

results. A summary of a list of solubility product equations reported in literature is given 

in Appendix 3. The differences in solubility product equations can be attributed to 

differences in measurement technique (sensitivity). Irvine’s equation [63] is one of the 

most widely used  

 log[𝑁𝑏] [𝐶 +
12

14
𝑁] = 2.26 −

6770

𝑇
 

Eq.  8 

Recently Palmiere et al. [56] have published a different solubility product equation based 

upon atom probe studies 

 log[𝑁𝑏] [𝐶] = 2.06 −
6770

𝑇
 

Eq.  9 
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Chemical driving force for precipitation is expressed as supersaturation as shown in Eq.  

10 the others being surface energy and strain. 

 𝑘𝑠 =
log [𝑁𝑏] [𝐶 +

12
14 𝑁]

2.26 −
6770

𝑇

 

Eq.  10 

Higher the supersaturation ratio higher will be the thermodynamic potential for 

precipitation.  

 

2.2.3. Effect of Other alloying element 

In microalloyed steels, apart from the microalloying elements other elements such as Mn, 

Ni, Cr, Si etc. are also present in significant amounts. These elements themselves do not 

form carbides/nitrides but nevertheless they alter the activity of other species present in 

the matrix. Although the interactions are quite weak on per atomic basis compared to Nb, 

Ti or V, but due to their high concentrations in microalloyed steels (upto 2%) their effect 

cannot be ignored. 

Koyama et al.[64] have experimentally determined the influence of other alloying 

elements on the solubility product of NbC/NbN. In their published equation only one 

alloying element is considered at a time, for solubility product calculation. Usually more 

than one alloying elements are present in microalloyed steels and hence direct application 

of Koyama’s equation is not accurate enough. 

For dilute solutions Wagner Interaction Parameters can be used to incorporate the effect 

of other alloying elements [40, 49]. For Fe-M-X-K system, where X is the interstitial, K 

is the alloying element and M is the microalloy. 
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 𝑙𝑛 𝑎𝑀
𝛾

=  [𝑙𝑛 𝑎𝑀
𝛾

]
𝐾=0

+ ∑ 𝜀𝑀
𝐾  𝑋𝐾

𝛾
 

Eq.  11(a) 

 𝑙𝑛 𝑎𝑋
𝛾

=  [𝑙𝑛 𝑎𝑋
𝛾

]
𝐾=0

+ ∑ 𝜀𝑋
𝐾 𝑋𝐾

𝛾
 

Eq. 11(b) 

where, K (K=1, 2, 3...) is the other alloying element. The first term 

([𝑙𝑛 𝑎𝑀
𝛾

]
𝐾=0

, [𝑙𝑛 𝑎𝑋
𝛾

]
𝐾=0

) represents the activity of the microalloying element in absence 

of other alloying element K,  𝑋𝐾
𝛾
 is the mole fraction of element K and 𝜀𝑀

𝐾  is the Wagner 

interaction parameter between M and K. Accordingly the solubility product equation 

when M=Nb and X=C in austenite in the presence of other alloying element will become  

log[%𝑁𝑏] [%𝐶] = {log[%𝑁𝑏] [𝐶%]}𝐾=0 − ∑ {(𝜀𝑁𝑏
𝐾 + 𝜀𝐶

𝐾)[%𝐾]
𝐴𝐹𝑒

230.3 𝐴𝐾
} 

𝑛

𝐾=1

 
 

Eq. 12 

where, 𝐴𝐹𝑒 and  𝐴𝐾 are the atomic weight of Fe and K respectively, the concentration 

[%K] is also in weight percent. Hence if the Wagner interaction parameters are known for 

each element 𝜀𝑁𝑏
𝐾 , 𝜀𝐶

𝐾 the overall solubility product can be calculated using the above 

equation. Estimates of Wagner interaction parameters are tabulated in Appendix 4. Care 

should be taken in applying the above equation as it is only valid for dilute solutions and 

proper higher order interaction parameters need to be applied when applying it to non-

dilute solutions. 

2.2.4. Precipitation kinetics 

A large number of researchers [15, 60, 65-70] have studied the precipitation kinetics of 

micro-alloying elements and their effect on microstructure. Results of the studies 

conclusively prove that pre-deformation significantly alters the precipitation kinetics [66, 

71]. These studies have focused on studying precipitation kinetics as a function of steel 
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composition, initial grain size, deformation temperature, amount of strain, strain rate and 

type of deformation. These studies employ different methods to measure precipitate size 

and volume fraction hence a direct comparison of them becomes difficult. 

The critical supersaturation level for the nucleation of precipitates in undeformed 

austenite is expected to be high due to reduced nucleation sites. However the introduction 

of strain provides sites for nucleation leading to precipitation at lower supersaturation 

ratios typically between 5 and 7.7 [72, 73], where supersaturation refers to the 

thermodynamic driving force available for precipitation (Eq.  10). Precipitation mostly 

occurs on dislocations, grain boundaries and other microstructural defects. The main 

reason behind this is the large misfit of the precipitates to that of the FCC lattice. The 

misfit is greatest in case of niobium precipitates and the least for vanadium precipitates. 

In deformed austenite, dislocations along with grain boundary are preferred nucleation 

sites. However in typical condition grain boundary volume fraction is usually much less 

than total dislocation volume fraction hence, initial dislocation density and their 

evolutions are essential for modeling precipitate evolution. 

In order to predict niobium carbonitride precipitation during hot working it becomes 

imperative to investigate/predict precipitation start temperatures for different deformation 

conditions. Researchers have done this by using a nucleation model coupled with 

solubility product equations. Solubility product of Nb(C, N) as a function of chemistry 

and temperature has been investigated by many groups. Notable among them are the 

works of Sharma and Koyama [54, 64]. Sharma’s work in particular is indispensible 
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because of the fact that they have investigated effect of other elements (Cr, Mo, Si) on the 

solubility product of NbC and NbN in austenite. 

2.2.4.1. Precipitate Nucleation 

The most prominent nucleation sites are dislocation and grain boundaries [70]. For the 

case of coarse grained austenite (50 µm), the amount of grain boundary precipitates is less 

than 1% of total number of precipitates [66]. Some studies [74, 75] have suggested grain 

boundary precipitation as a modified form of precipitation on extrinsic dislocations. 

Dutta and Sellars [66] were one of the pioneers in this field and  proposed a semi-

empirical model based upon data mining and classical nucleation theory to predict the 

start of precipitation in Nb microalloyed steels as a function of process variables and 

composition. 

 𝑡5% = 𝐴[𝑁𝑏]−1𝜀−1𝑍−0.5 ∗ 𝑒𝑥𝑝
270,000

𝑅𝑇
∗ 𝑒𝑥𝑝

𝐵

𝑇3(ln 𝑘𝑠)2
 

Eq.  13 

where, 𝑡5%  is the time for 5% precipitation, [Nb] is the solute Nb concentration, 𝜀 is the 

true strain Z is the Zener-Holloman parameter, T is the absolute temperature, ks is the 

super saturation ratio, A and B are empirical constants. 

Liu and Jonas [68] treatment of nucleation driving force was quite comprehensive, it was 

calculated from a thermodynamic database as a function of chemical composition. They 

assumed that a critical nucleus forms when solute clusters, during solution treatment.  

 
𝑑𝑁

𝑑𝑡
=

𝜌𝐷0𝑋𝑁𝑏

𝑎3
𝑒𝑥𝑝 (−

𝑄

𝑅𝑇
) 𝑒𝑥𝑝 (−

∆𝐺∗

𝑘𝑇
) 

Eq.  14 
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where, D0 and Q are the frequency and activation energy for the diffusion of Nb in 

austenite and R is the gas constant. The above equation gives nucleation rate which could 

be integrated to give the time evolution of nuclei. 

2.2.4.2. Growth and Coarsening  

In early precipitation kinetics models [76, 77] one of the key problems was lack of a 

reliable nucleation model which tended to give a variable growth kinetics depending upon 

the initial nucleation density. A small strain applied at high enough temperature is 

sufficient to accelerate precipitation by orders of magnitude in time with respect to 

undeformed austenite [78, 79].  

As discussed earlier, the Liu and Jonas[67] model was pioneering. It was developed for 

Ti(C, N) precipitation in austenite but they argued that the model can be extended to other 

precipitates precipitating heterogeneously. Precipitation was argued to occur in three 

distinct stages. (i) Nucleation and Growth according to parabolic law (ii) Nucleation Site 

saturation followed by only growth. (iii) Coarsening/Ostwald ripening of the precipitates. 

This model follows diffusion controlled growth law hence square of diameter is linearly 

proportional to time in the initial stages. The precipitate coarsening was explained using a 

Lifshitz-Wagner equation: 

 �̅�𝑛 − 𝑟0̅
𝑛 = 𝐾𝑡 Eq.  15 

where, n depends upon the coarsening mechanism. n=3 is for bulk diffusion, n=4 for 

grain boundary diffusion, n=5 if dislocation diffusion is the rate controlling step. Later on 

the model was further extended by Park and Jonas [69] to incorporate precipitation under 

continuous cooling using the additivity principle. This model was the first attempt on 
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predicting precipitation finish time. Essentially, it used a JMAK type equation where the 

constants were calculated from solute concentration gradient. Solute concentration 

gradient is the change in solute concentration from matrix to the precipitate core along the 

interface.  

The next generation of precipitation models which came almost a decade later tries to 

explain the underlying physics of the problem. Among these Dutta and Sellars [15] , 

Fujita and Bhadeshia [41] and Deschamp and Brechet [80] are worth mentioning. In these 

models, the concept of time evolution of precipitates was presented and covered all three 

aspect of precipitation viz. nucleation, growth and coarsening. Nucleation was modeled 

using classical nucleation theory. The roles of bulk diffusion and pipe diffusion in growth 

and coarsening were also incorporated. Dutta and Sellars [15] assumed heterogeneous 

precipitation occurring exclusively on dislocations and accelerated coarsening occurring 

because of pipe diffusion. The model takes into consideration simultaneous growth and 

coarsening. The limitation of Dutta and Sellars model is that it’s too sensitive to 

dislocation density and for a correct estimation of precipitation kinetics needs a correct 

estimation of dislocation density. Further on Fujita and Bhadeshia [41] modeled growth 

and coarsening using concentration gradient at the interface the driving force of which is 

the concentration gradient along the interface. The model by Deschamp et al. [80] is quite 

comprehensive in its approach to explain the heterogeneous precipitation kinetics 

occurring on dislocations and their further growth and coarsening. This model assumes 

nucleation and growth to occur simultaneously. Accelerated coarsening by accelerated 

diffusion of solute atoms along the dislocation network is also taken care of. The model 
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was originally made and validated for Al-Zn alloys but was later shown by Zurob et al. 

[5] to work in micro-alloyed austenite as well. 

2.3.  Recrystallization 

Recrystallization as a term is a misnomer. It was originally believed that after 

deformation the loss of ductility is due to the destruction of crystalline structure, which 

after annealing is restored due to restoration of crystalline structure, hence the process 

name re-crystallization [81]. Recrystallization has a drastic effect on the overall 

mechanical properties of a material. Humphreys [12] defines it as a process wherein 

deformed grains are replaced by a new set of strain free grains. Due to this progressive 

decrease in deformed grains there is a drastic reduction in overall dislocation density 

which leads to a decrease in yield strength of the material and increased ductility. These 

un-deformed grains first nucleate and then they grow so as to consume the entire structure 

of deformed grains. The overall recrystallization kinetics is governed by both the 

nucleation rate and growth rate of each nucleus. Doherty [82] mentions that industrially, 

recrystallization is very important because it softens the material in order to restore 

ductility thus allowing further processing. Recrystallization after deformation is the only 

metallurgical process to refine grain size, shape and texture in the case of steels. 

Compared to recovery, recrystallization leads to a more significant decrease in strength 

and increase in ductility. As per Burke et al. [83] the key parameters affecting static 

recrystallization are pre-strain, annealing temperature, starting grain size, solute content, 

precipitate volume fraction and size. This will be discussed in further detail in the 

subsequent sections. 
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2.3.1. Nucleation of recrystallization 

Unlike recovery which is a continuous process, recrystallization occurs in discontinuous 

manner i.e there is a definite incubation time after which nucleation takes place followed 

by growth of those nuclei. However in a classical thermodynamic sense nucleation of 

recrystallization doesn’t occur. The nuclei do not originate from an other phase rather 

than it forms from a pre-existing cells/sub-grains once a certain growth criterion has been 

fulfilled [82]. 

Among all the nucleation mechanisms mentioned in literature such as particle stimulated 

nucleation, nucleation due to sub-grain coarsening and strain induced boundary migration 

(SIBM) [12], in the present context of static recrystallization in low strain high 

temperature micro-alloyed steels, researchers have agreed that SIBM is the dominant 

mechanism [13, 84, 85].  

This mechanism takes into account the presence of pre-existing grain boundaries. After 

deformation the substructure developed tends to coarsen due to recovery. The sub-grains 

adjacent to the boundaries when coarsened sufficiently so as to overcome the capillarity 

drag effects bulges in the adjacent grain as shown in Figure 10. Once the sub-grains have 

coarsened substantially the bulging becomes thermodynamically favourably. The 

decrease in stored energy due to elimination of defects caused by the passage of the 

boundary is greater than the increase in total grain boundary surface due to bulging [86-

88].  
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Figure 10: Schematic of the subgrain coarsening and boundary bulging associated with 

recrystallization nucleation[85]. 

 

Another interesting aspect of SIBM nucleation is that the orientation of the new grain is 

similar to the original grain from which it deformed as there is no new creation of a high 

angle boundary. 

SIBM being the dominant mechanism was further supported by Hurley and Humphreys 

[84] who reported that SIBM is the dominant mechanism for total strains less than 0.7, 

though they did not investigate the effect of strain rate on nucleation mechanism. Later on 

Humphreys [89] further explains that the boundary migration in SIBM can be triggered 

by the presence of a stored energy gradient across the boundary. The boundary can move 

as a front (multiple sub-grain (SIBM) or as a boundary bulge adjacent to a single large 

sub-grain). 
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Figure 11: (a) SIBM of a boundary separating a grain of low stored energy (E1) from the 

higher energy one (E2), (b) dragging of the dislocation structure behind the migrating 

boundary, (c) the migrating boundary is free from the dislocation structure (d) SIBM 

originating at a single large subgrain [12]. 

 

 Bate et al. [90] and then Hurley et al. [84] stated that in case of materials, with poorly 

developed dislocation cell structures and large stored energy differences SIBM occurs by 

well recovered sub-structures. In materials where there are a significant number of 

secondary phase particles, multiple SIBM will be favored. Stressing the effect of recovery 

on strain induced boundary type migration (SIBM) Hurley  [84]  states from the 

experimental study done on measuring growth rates of SIBM in aluminum, that there is 
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an incubation time needed for nucleation to happen which proves that prior recovery is 

essential for SIBM to occur. 

Lauridsen et al. [91] using X-ray diffraction published incubation time for 

recrystallization nucleation (Figure 12). A critical nucleus size of 1 micron has been 

assumed in this and it was shown that 80% of nucleation occurs before the material has 

recrystallized 10% which is close to site saturation, but the remaining 20% of the nuclei 

form much later. Figure 12 shows, that nucleation does happen at later times possibly due 

to heterogeneous distribution of stored energy but it proves that the site saturation 

assumption is not true in all cases. 

 

Figure 12: Distribution of nucleation times determined from 244 recrystallization curves 

by 3-d X-ray diffraction [91]. 
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2.3.2. Growth Kinetics 

Recrystallization proceeds with the migration of high angle boundaries. Once nucleation 

takes place the bulged high angle boundary sweeps across the deformed grains consuming 

the deformed substructure leaving behind a clean strain free microstructure. Migration of 

high angle boundaries is common to both recrystallization and grain coarsening, the key 

difference being the driving force for each process.  Recrystallization is driven by 

dislocation density difference across the high angle boundary whereas grain coarsening is 

driven by the minimization of grain boundary surface energy. 

From the theory of thermally activated growth, the relationship between boundary 

migration rate and driving force under non-equilibrium conditions is usually expressed as  

 𝑉 = 𝑀𝐺𝐵  (𝑃 − 𝑃𝑍) Eq.  16 

where, V is the boundary velocity, 𝑀𝐺𝐵 is a proportionality constant, also referred to as 

grain boundary mobility, 𝑃 is the driving pressure and 𝑃𝑍 is the drag forces due to second 

phase particle. 

In pure materials the mobility refers to the energy spent to transfer an atom from a 

shrinking grain to the growing grain across the grain boundary. Turnbull [92] derived the 

following expression from first principles for the grain boundary mobility in pure single 

phase materials.  

 𝑀𝑝𝑢𝑟𝑒 =
𝛿𝐷𝐺𝐵𝑉𝑚

𝑏2𝑅𝑇
 

Eq.  17 
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In this equation 𝛿 is the grain boundary thickness, 𝐷𝐺𝐵 is the grain boundary self-

diffusion coefficient, 𝑉𝑚 is the molar volume. 𝑏 is the burger vector. The grain boundary 

diffusion has exponential dependence on temperature as shown below 

 𝐷𝐺𝐵 = 𝐷0exp (−
𝑄

𝑅𝑇
) 

Eq.  18 

Because of the exponential dependence of diffusion on temperature, the mobility can be 

expressed in an Arrhenius type relationship as follows: 

 𝑀𝐺𝐵 = 𝑀0𝑒𝑥𝑝 (−
𝑄

𝑅𝑇
) 

Eq.  19 

The experimental database on recrystallization Figure 13 shows it proceeds with an 

incubation time. The incubation time relates to the time taken by subgrain to overcome 

the capillary barrier. Once nucleation starts migration of high angle boundaries (growth) 

continues until mutual impingement of recrystallized grains takes place i.e till all the new 

high angle boundaries meet. Distribution of recrystallized regions around the deformed 

grain is heterogeneous and impingement of nuclei occurs even at early times of 

recrystallization [81]. 

 

2.3.2.1. Solute Drag   

It is well known by now that addition of small amount of solutes decreases 

recrystallization kinetics significantly [29, 93, 94]. The process by which solute elements 

reduce grain boundary mobility is termed as Solute Drag effect. The effect has been 

exummed in detail and modeled by a number of authors [95-97]. 
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Figure 13: Plot of recrystallized volume fraction as a function of time for a steel 

containing 0.13 V and 0.48 C [98].  

 

 

Figure 14: Effect of the initial solute content on the recrystallization stop 

temperature[94]. 
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With reference to microalloyed steels, the microalloys at higher temperatures remain in 

solution and retard recrystallization kinetics through solute drag effect and at low 

temperatures precipitate which further pins the recrystallization. To study the effect of 

solute drag and to eliminate the interference with precipitates decarburization/denitriding 

experiments are usually carried on. One of the most comprehensive studies done was by 

Yamamoto et al. [29] where it was conclusively shown that niobium has the highest 

solute drag effect and vanadium the smallest among all microalloying elements, the same 

is shown in Figure 15. 

Solute drag can be visualized in terms of dynamic segregation of solutes on a moving 

boundary so as to reduce their lattice misfit strain energy. In a stationary boundary of a 

single phase material the concentration profile of the solute ahead of the boundary and 

behind are exactly the same thus cancelling any attractive or repulsive force on the 

boundary. However as the boundary moves more solute atoms are left behind than are 

assimilated from the front due to their slow movement relative to the moving boundary 

thus creating an asymmetrical concentration profile. This leads to a drag force 

experienced by the boundary slowing down its advance. Solute drag is quite effective 

even in very small concentrations in reducing the boundary mobility thus reducing the 

growth kinetics of both recrystallization and grain coarsening.  

For precipitate free case rearranging Eq.  16 yields: 

 𝑃 =
𝑉

𝑀𝐺𝐵
 

Eq.  20 
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Or ,  

 𝑃 = 𝑓𝑖  𝑉 Eq.  21(a) 

  𝑓𝑖 =
1

𝑀𝐺𝐵,𝑖
 

Eq. 21(b) 

𝑓𝑖   is the intrinsic friction of the material and relates to the energy needed to move an 

atom from one side of the boundary to the other side. Its reciprocal is the mobility of the 

boundary 𝑀𝐺𝐵,𝑖 which is the intrinsic boundary mobility in the absence of any solute.  

Generalizing the above equation to include drag from other sources yields: 

 𝑃 = 𝑓𝑖𝑉 + 𝑃𝑠𝑜𝑙𝑢𝑡𝑒 + 𝑃𝑧𝑒𝑛𝑒𝑟 Eq.  22 

where 𝑃𝑠𝑜𝑙𝑢𝑡𝑒  is the solute drag experienced by the boundary and 𝑃𝑧𝑒𝑛𝑒𝑟 is the Zener drag 

due to second phase particles.  

𝑃𝑠𝑜𝑙𝑢𝑡𝑒 can be independently calculated using Hillert’s treatment of solute drag or can be 

expressed as 𝑉𝑓𝑠𝑜𝑙𝑢𝑡𝑒 where 𝑉 is the boundary velocity and 𝑓𝑠𝑜𝑙𝑢𝑡𝑒 is solute drag force 

which can be calculated using Cahn [99] and by Lucke and Stewart treatment [96] (CLS 

model) of solute drag. 

The migration of high angle boundaries in a single phase microstructure whether it is due 

to recrystallization or grain coarsening both approaches viz. Hillert’s model or CLS 

model will give the same result. However in the case of phase transformation wherein 

there are different phases across the boundary, the stability of solutes becomes different 
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across the two sides of the boundary due to which the solute drag formulation changes 

and only Hillert’s model is applicable. 

In the present work only Cahn’s model is being used. Cahn’s treatment of solute drag can 

easily be incorporated with the growth equations discussed in the previous section. 

Accordingly, for low velocity branch of Cahn’s model (Figure 15) the solute drag is 

proportional to solute concentration 

 𝑃𝑠𝑜𝑙𝑢𝑡𝑒 = 𝛼 𝐶0 Eq.  23 

where, C0 is the micro alloying element concentration in solution. α is a constant and is a 

function of both solute-boundary binding energy and cross-boundary solute diffusion 

coefficient. It is given by; 

 𝛼𝑚 =
𝛽 𝑁𝑉(𝑘𝑏𝑇)2

𝐸𝑏 𝐷𝑋
 (𝑠𝑖𝑛ℎ (

𝐸𝑏

𝑘𝑏𝑇
) −

𝐸𝑏

𝑘𝑏𝑇
) 

Eq.  24 

where β is the grain boundary thickness, NV is the number of atoms per unit volume, Eb 

is the solute-boundary binding energy and DX is the trans-interface boundary diffusion. 

From Eq.  21(a), Eq.  22 and Eq.  23 the overall boundary mobility (𝑀𝐺𝐵,𝑒𝑓𝑓)  is given by: 

 
1

𝑀𝐺𝐵,𝑒𝑓𝑓
=

1

𝑀𝐺𝐵,𝑖
+ 𝛼𝐶0 

Eq.  25 

 

Recently Zurob and Dunlop [85, 100] used this approach to model the solute drag effect 

on recrystallization kinetics. The maximum value of intrinsic mobility used was given by 
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Turnbull mobility[83, 92] which is the boundary mobility in absence of all possible 

attachment kinetics.  

 

Figure 15: Cahn’s solute drag plot for different values of Nb, showing the low velocity 

and high velocity branch. [101] 

 

 

2.3.2.2. Zener Pinning 

Presence of fine dispersion of hard second phase particles are known to delay or 

completely stop recrystallization [102]. This is due to the fact that when a moving 

boundary intersects a particle a small area of the boundary disappears. The potential 

energy of the system gets lowered by an amount equal to the total surface energy of the 

absent boundary as shown in Figure 16.  Therefore for the boundary to break away from 
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the particle it needs to create the surface thus raising the overall energy. This difference in 

energy level is what is termed as Zener drag.  

 

Figure 16: The interaction between a grain boundary and a spherical particle [103] 

 

The net drag force on the boundary of energy 𝛾 per unit area due to a non shearable 

particle of radius 𝑟 is given by  

 𝐹 = 2𝜋𝑟𝛾 sin 𝜃 cos 𝜃 Eq.  26 

The force is maximum when θ=45o. Substituting this value in the above equation gives 

the maximum force experienced by the boundary: 

 𝐹 = 𝜋𝑟𝛾 Eq.  27 

For a random distribution of particles of radius 𝑟  the number of particles per unit volume 

is  
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 𝑁𝑉 =
3𝐹𝑉

4𝜋𝑟3
 

Eq.  28 

where 𝐹𝑉 is the volume fraction of the particles. Number of particles intersecting unit 

area(NS) of the grain boundary is diameter of the particle times NV.  

 𝑁𝑠 =
3𝐹𝑉

2𝜋𝑟2
 

Eq.  29 

The total drag force then becomes 𝑁𝑠 times F 

 𝑃𝑍 =
3𝐹𝑉𝛾

2𝑟
 

Eq.  30 

In terms of classical thermodynamics Zener drag is not a drag force as it is discontinuous 

rather, it is a form of activation energy needed by the moving boundary to pass through 

the obstacles. 

In case of microalloyed steels since precipitation takes place after deformation, grain 

boundaries are preferential sites for precipitation thus making the grain boundary 

experience a higher Zener drag than what is calculated from the above equation assuming 

a random distribution. This is discussed in more detail in section 3.1.3.6.  

2.3.3. Modeling of Recrystallization Kinetics 

It has been demonstrated in numerous experiments that progress of recrystallization 

follows a sigmoidal curve. One of the earliest and simplest models to explain this was by 

Johnson, Mehl, Avrami and Kolmogorov (JMAK) model. The key concept of the model 

is extended volume fraction [12]. 
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 Xext = ∫ VtṄdt

t

0

 

Eq.  31 

where, Ṅ is the nucleation rate (assumed constant) and Vt is the volume of the single 

recrystallized grain. The extended volume fraction does not take into consideration the 

impingement of one growing nuclei on another and that new nuclei can’t form in areas 

which has already been recrystallized. If the nuclei are randomly distributed in the 

deformed material then the actual recrystallized fraction is given by: 

 X = 1 − exp(−Xext) Eq.  32 

Combining the above two equation and replacing volume by 4π(𝑣 t)3 3⁄  one obtains: 

 X = 1 − exp (−
4π

3
∫ Ṅ𝑣3t3dt

t

0

) 
Eq.  33 

where 𝑣 is the velocity of the interface. In the most common formulation of the above 

equation nucleation rate and growth velocity are assumed to be constant. Consequently 

the above equation simplifies to: 

 X = 1 − exp (−
π

3
Ṅv3t4) 

Eq.  34 

The above equation is the simplified JMAK equation for constant nucleation and growth 

rates.  
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Most of the empirically/quasi-physically based modeling has assumed nucleation and 

growth rates to be constant and the two values are clubbed up together in one variable. 

Consequently the above equation simplifies to:  

 X = 1 − exp (−Ktn) Eq.  35 

K and n are commonly referred to as Avrami constants. Conventionally, Avrami 

constants are not calculated separately but are obtained by fitting the JMAK equation to 

the experimentally obtained recrystallization kinetics data due to which any physical 

meaning is difficult to derive out of the values of those constants. As such, at best Avrami 

constants are quasi-physical parameters. 

The above equation can be similarly derived for the limiting case of site-saturation 

wherein all nuclei will be formed before the start of recrystallization growth. This 

assumption will lead to an exponent value of 3. JMAK exponent will lie in between 3 and 

4 when nucleation decreases at a finite rate [12]. Experimentally derived JMAK 

exponents can have values less than 3 also because of the fact that the growth rates and 

dimensionality can change during recrystallization[12].  

Figure 17 shows how Avrami exponent can change during recrystallization. In the first 

case wherein initial grain size is 15 microns even then, if nuclei are at grain boundaries 

they are still random globally. Increasing the grain size to 50 microns made the nuclei 

distribution non-random which violated the JMAK assumption thereby leading to non-

constant Avrami exponent.  
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Figure 17: Recrystallization kinetics of copper at 225oC of different initial grain sizes 

cold rolled 93%. [104] 

 

 

In industrial processing, the main objective of recrystallization is to refine coarse 

austenite grains (~1500 µm). Due to large size of the grains nucleation is non-random 

hence a constant Avrami exponent is not applicable for industrial processing. Table 1 

shows the theoretically calculated values of Avrami exponent depending on the 

nucleation mechanism and growth dimensionality. As discussed before (Figure 12) 

nucleation rate changes during recrystallization and site saturation or constant nucleation 

rate are not always true in most cases. Also the recrystallizing grain can get constrained 

due to sample geometry or microstructural constraint leading to dynamic change in 

growth dimensionality because of which, the experimentally obtained Avrami constants 

are not integral values and changes with time. 
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Growth 

Dimensionality 

Site 

Saturation 

Constant 

Nucleation Rate 

3-D 3 4 

2-D 2 3 

1-D 1 2 

Table 1: Theoretical calculated Avrami exponents[12]. 

 

JMAK model assumes a random distribution of nuclei and requires considerable 

modification to be used in cases where in the nucleation is supposed to start from some 

definite regions eg. grain boundary, twins etc. This is the most serious limitation of 

JMAK model. 

The next generation models tried to solve this problem by making  the Avrami exponent 

as a function of time to give a better fit to the experimental data, which was purely 

empirical in approach thus limiting its applicability to the domain for which it was 

defined and any physical interpretation of the model wasn’t possible from them. 

Sellars et al. [105] proposed an empirical equation for predicting time for 50% 

recrystallization. 

 t50% = 2.5 ×  10−19D0
2ε−4exp (

300,000

RT
) 

Eq.  36 

This equation is valid for carbon manganese steels. Similar equations have been proposed 

for micro-alloyed steels. This and other equations of similar type, in past two decades are 

immensely popular with researchers studying the relative effects of influential parameters 
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and have reported databases for activation energy, strain exponent etc for a variety of 

composition and processing conditions. Medina et al. [106] using torsion based 

experiments reported the values of the constants used in Sellar’s equation for a variety of 

steels of both microalloyed and C-Mn type. Sun and Hawbolt [107] used Sellars models 

to compare recrystallization kinetics between steels having different chemistries and 

processing conditions, while remarking that physically based models will give a better 

insight but are too complicated to develop.  

In 2001 Cho et al [8] used Sellars equation of t50% to compare between steels of different 

chemistries and processing conditions. They found that Nb in solution delays growth 

considerably and when it precipitate at lower temperature it further delays growth. 

Though Sellars model isn’t capable enough to predict the complete kinetics, but is quite 

good in making comparison between different chemistries and processing parameters. 

Later on more sophisticated models [108] based upon Sellars equation and coupled with 

FEM, were able to predict microstructure and flow stress evolution throughout the 

volume of the material. Coupling Sellars equation with Forest-Hardening equation (Eq.  

1) allows calculation of flow stress evolution. 

These models were able to predict recrystallization evolution in multi-pass deformation 

under continuous cooling hence were able to predict complete austenite microstructure 

evolution. 

In 2006, Zurob et al. [85] presented a model wherein they used a similar idea of 

Humphreys [109] that the rate of growth of an individual sub-grain is given by Mobility 
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times the Driving Force. The driving force in this case is the stored energy of deformation 

reduced by the amount given by Zener drag of precipitates. The growth of an individual 

grain is assumed to be isotropic and spherical. To calculate global recrystallization 

kinetics Avrami extended volume approach was used. The same model was further 

extended and applied by Dunlop et al. [100] for Zirconium Alloys. 

Later on Pereda et al. [110] developed a growth model for multi pass rolling and under 

non isothermal conditions from single pass isothermal models. They modeled the growth 

using a coupled Avrami and Sellar’s equation. 

 X = 1 − exp [− ln 2 (
t

t0.5X
)

n

] 
Eq.  37 

where t is time (s). t0.5X is the time to reach a 50% recrystallized fraction and n is the 

Avrami exponent. 

t0.5RX = 9.92 × 10−11D0ε−5.6D0
−0.15

ε̇−0.53exp (
180,000

RT
)

× exp [(
275000

T
− 185) . [Nb]] 

 

Eq.  38 

For this to be applicable for a wider range of conditions the Avrami exponent was 

modified by 

 n = 155exp (−
56485

RT
) 

Eq.  39 
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These equations were strictly valid for isothermal single pass rolling. To extend it for 

non-isothermal conditions Pereda et al [110] used the additivity principle wherein the 

temperature was discretized in small isothermal steps and the corresponding recrystallized 

fraction was calculated in each step and later on added. To calculate for multi-pass 

deformation schedules effective grain sizes were calculated at end of each pass and the 

corresponding recrystallized fraction and was used as an input for the next pass. 

A physically based model for SIBM nucleation is mostly overlooked in the literature 

mainly because most of published work has assumed a site saturated approach and the 

overall kinetics is modeled using the Avrami equation thus eliminating the need for a 

separate nucleation model. Humphreys [89] remarks that the growth of recrystallization 

occurs on a scale which can be measured microscopically unlike nucleation, due to which  

most models and simulations of recrystallization treat growth in detail and nucleation is 

often overlooked. 

A precise nucleation model is essential for any realistic and stable recrystallization model. 

It has been found [89] that, majority of nucleation occurs in a very short time compared to 

the total time for recrystallization (Figure 12) hence the number density of 

recrystallization nuclei is replaced by a constant [5] known as site-saturation approach. 

Absence of a reliable nucleation model makes it difficult to predict recrystallized grain 

size and incubation time. To solve these limitations researchers [85] have used the Bailey 

Hirsch criterion [111] to calculate the critical size of nucleation. According to the 

criterion a sub-grain of size r(t) will start to grow in an unstable manner within the 
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deformed structure when the driving force for growth G(t) overcomes the capillary forces 

2
γSE

r(t)⁄  where γSE is the surface energy. Nucleation will commence when the sub-grain 

size is greater than 2
γSE

G(t)⁄  .Only sub-grains larger than this size will act as nuclei and 

will grow.  

 rc(t) >
2γSE

G(t)
 

Eq.  40 

This allows the calculation of critical nuclei size. Coupling this with a growth kinetics 

equation of sub-grain and high angle boundary growth rate allows prediction of the 

incubation time for nucleation and then the complete recrystallization kinetics. 

Backe [112] recently published a recrystallization model wherein it was assumed that the 

size of sub-grain is proportional to the mean free distance of the dislocation slip. Low 

angle boundary energy and sub-grain misorientation both depend upon the dislocation 

density. The progress of recovery causes dislocation density to decrease and at a certain 

critical value of the ratio of recovered dislocation density to the original deformed 

dislocation density nucleation was assumed to start. She proposed that the growth rate of 

sub-grains will be proportional to subgrain boundary mobility, driving force and the sum 

of vacancy concentration in the deformed and recrystallized zone. The driving force used 

by her is the stored energy of deformation reduced by the Zener pinning force and Solute 

drag forces. 
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2.4.  Grain Coarsening in austenite 

Once recrystallization is complete the fine recrystallized grains tend to coarsen driven by 

the curvature/surface energy. Since austenite is not stable at room temperature in HSLA 

steels there is not exhaustive experimental database published in literature for the case of 

microalloyed steels. The problem of grain coarsening has been theoretically and 

experimentally addressed over the past by many researchers [19, 21, 83, 113-121]. 

However most of the databases reported on literature for steels are based either on ferrite 

or on temperature stabilized austenite. Given the difficulty in etching of low alloy 

microalloyed austenite few experimental databases has been developed [11, 115, 122, 

123]. Laser Ultrasonic has been also used to monitor in-situ grain size evolution during 

both recrystallization and grain coarsening [119, 124, 125]. 

Grain coarsening is driven by the curvature surface energy. The grains coarsen so as to 

minimize their boundary surface area. 

In the mean field modeling technique, the driving force is approximated as inverse of the 

mean grain radius times the boundary surface energy approximated by a proper factor. 

 𝑃 =
𝛼𝛾𝑔𝑏

�̅�
 

Eq. 41 

where 𝛼 is a geometric constant and 𝛾𝑔𝑏 is the grain boundary energy. Substituting this in 

rate equation (𝑑�̅�/𝑑𝑡 = 𝑀𝑃) and integrating gives the overall growth equation. 

 �̅�2 = 𝑅0
̅̅ ̅2

+ 2𝛼𝑀𝛾𝑔𝑏 ∆𝑡 Eq.  42 

where �̅� is the final average grain size, 𝑅0
̅̅ ̅ is the starting average grain size. 
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Figure 18: Grain coarsening kinetics of a 0.1 wt% Nb API X80 steel at 1000 oC, (a) 

recrystallized austenite grains at time t=0. (b) Coarsened grains after time t= 60 sec. (c) 

Coarsened grains at time t=240 sec[122]. 

 

The above equation in a more generic form is represented as  

 �̅�𝑛 = 𝑅0
̅̅ ̅𝑛

+ 𝑐 ∆𝑡 Eq.  43 

where n and c are constants. Analysing the equations published in literature one finds that 

the constant c shows an Arrhenius type relationship with temperature. In other words; 
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 �̅�𝑛 = 𝑅0
̅̅ ̅𝑛

+ [𝐴 𝑒𝑥𝑝 (−
𝑄𝑔𝑐

𝑅𝑇
)] ∆𝑡 

Eq.  44 

Where 𝑄𝑔𝑐 is the activation energy associated with grain coarsening and 𝑇 is the 

temperature. A list of reported values in literature of 𝑛, 𝐴 𝑎𝑛𝑑 𝑄𝑔𝑐 as compiled by 

Manohar et al. is shown in  

Table 2. 

2.4.1. Effect of Particles 

The above derivation doesn’t consider the effect of particle pinning on the moving 

boundary. The effect of rigid particle on a moving boundary is usually calculated using a 

Zener-Smith formulation[103]. 

For non-coherent randomly distributed particles, Zener Pressure is usually represented as: 

 𝑃𝑍 =
3𝐹𝑉𝛾𝑔𝑏

2𝑟
 

Eq.  45 

where FV is the volume fraction of the second phase particles, r is the mean particle 

radius.  

The Zener drag can be subtracted from the driving force for boundary movement Eq. 41, 

giving the net available driving force. Modifying rate equation to incorporate Zener drag 

the equation becomes:    

 
𝑑𝑅

𝑑𝑡
= 𝑀 (

𝛼𝛾𝑔𝑏

�̅�
−

3𝐹𝑉𝛾

2𝑟
) 

Eq.  46 
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Since the above equation is not explicit in terms of 𝑅 it can only be numerically 

integrated. 

From the above equation it is clear that upon integration the exponent of grain size (R) 

will be 2 if normal grain growth behaviour is assumed. However using the above equation 

to fit the experimental data the results are not always encouraging. Accurate knowledge 

of precipitate volume fraction and size distribution along with boundary mobility is 

essential. Accurate knowledge of solute content evolution is important to calculate the 

solute drag so as to calculate the boundary mobility for prediction of grain size evolution. 

Experimentally this is difficult, which has led the researchers to fit the experimental data 

with different exponent values as shown in  

Table 2.  

 Steel type n A 𝑄𝑔𝑐 Temp, K Units Ref 

C-Mn 10 
3.87E+32 400,000 >1273 Gs in µm, 𝑄𝑔𝑐 in J/mol,  

R in J/mol-K,  t in sec    

  

 [19] 5.02E+53 914,000 <1273 

Low C-Mn 2 4.27E+12 66,600   

Gs in µm,𝑄𝑔𝑐 in 

Kcal/mol, R in Kcal /mol-

K, t in sec    

[126]  

0.22C-

0.9Mn 
2 1.44E+12 63,780   

 Gs in µm, 𝑄𝑔𝑐 in 

Kcal/mol, R in Kcal /mol-

K, t in sec 

[127]  

C-Mn  

C-Mn-V 
7 1.45E+27 400,000   

Gs in µm,𝑄𝑔𝑐 in J/mol,  

R in J/mol-K,  t in sec    
 [10] 

C-Mn-Ti 10 2.60E+38 437,000   
Gs in µm, 𝑄𝑔𝑐 in J/mol,  

R in J/mol-K,  t in sec   
[10]  

C-Mn-Nb 4.5 4.10E+23 435,000   
Gs in µm, 𝑄𝑔𝑐 in J/mol,  

R in J/mol-K, t in sec    

 [10, 

128] 
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Table 2: Summary of various grain coarsening equations reported in literature as 

compiled by Manohar et al. [120]. 

 

3. Modeling framework 

In the first part of this chapter individual process models will be discussed along with the 

various interdependencies observed between them. Recovery is discussed in section 3.1.1, 

precipitation is discussed in section 1 and recrystallization is discussed in section 3.1.3. 

The rest of the chapter focuses towards the individual specific sub processes operating. 

3.1.  Individual Process Modules 

3.1.1. Recovery Module 

Following the analysis of Verdier et al. [38], the decay in internal stress can be 

represented by a single parameter. Recovery is modeled using a modified version of 

Friedel’s model [33] which is due to Verdier et al. [38] : 

 
𝑑𝜎𝐷

𝑑𝑡
= −

64𝜎𝐷
2𝜐𝑑

9𝑀3𝛼𝐸
𝑒𝑥𝑝 (−

𝑈𝑎

𝑘𝑏𝑇
) 𝑠𝑖𝑛ℎ (

𝜎𝐷𝑉𝑎

𝑘𝑏𝑇
) Eq. 47 

where, 𝑈𝑎 and 𝑉𝑎 are the activation energy and activation volume respectively. In the 

domain of microalloyed steels activation energy is assumed to be constant, value of which 

will be between activation energy for pipe diffusion and bulk diffusion [22]. In the 

present analysis the value of activation energy does not discriminate between cross-slip, 

climb or solute drag. A value equal to 285 kJ/mol equal to austenite self-diffusion[22] has 
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been used which satisfactorily explains the experimental data set. 𝑉𝑎 was initially used as 

a fitting parameter for recovery model. Figure 19 shows the value of 𝑉𝑎 as a function of 

Nb content and temperature obtained after fitting the experimental softening data.  

  

Figure 19: (a) Plot of activation volume as a function of solute Nb content. (b) Plot of 

activation volume as a function of annealing temperature for the same steel 

composition.The steel contains 0.03 Nb, 0.076C and 0.097 Nb, 0.002 C rolled to a strain 

of 0.3 at a strain rate of 10 s-1 at 900 oC [29, 129]  

 

The effect of solute content on recovery kinetics enters into the model through this 

parameter. However from the data fit it was realised that 𝑉𝑎 shows a strong relationship 

with solute content and temperature. This motivated us to develop a relationship between 

activation volume, solute Nb and temperature. Activation volume in Verdier’s model 

refers to activation distance (𝑉𝑎/𝑏2 ) which is the distance between pinning centres of a 

subgrain boundary. In present argument we have assumed that pinning centres can be 

either extrinsic dislocations, the spacing of which is proportional to 1 √𝜌⁄  , or it could be 

solute clusters the spacing of which will be proportional to 1 √𝐶
3

⁄   as calculated through 

y = -92.24x + 26.829
R² = 0.9998
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dimensional analysis. For simplicity, both of them are treated as equivalent. The total 

spacing between pinning centres 𝜆 can now be expressed as: 

 
1

𝜆
= 𝐾1√𝜌 + 𝐾2 √𝐶𝑁𝑏

3
 

 

Eq.  48 

where 𝐾1 and 𝐾2 are proportionality constants, the knowledge of which is essentially for 

modeling sub-grain growth. Instead of calculating it from first principles we have back 

calculated it from experimental results [130]: 

 
1

𝜆
= 6.3√𝜌 +

0.042

𝑏
√𝐶𝑁𝑏
3

 
 

Eq. 49 

Finally the activation volume (𝜆𝑏2) is given by; 

 
𝑉𝑎 = 𝑏2

(6.3√𝜌 +
0.042

𝑏 √𝐶𝑁𝑏
3 )

⁄  Eq. 50 

This equation leads to unrealistically large activation volumes when the dislocation 

density is low and the amount of solute Nb is small. For example for a case of 0.03 wt % 

Nb and dislocation density of 4x1014/m3 the activation volume was calculated to be 23𝑏3, 

where 𝑏 is the magnitude of burgers vector. When solute Nb has been reduced to 0.001 

wt% and dislocation density was reduced to 4x1014/m3 activation volume was calculated 

to be 84𝑏3. In reality, other pinning points including pinning due to other solutes such as 

Mn should be included in the above equation. To capture this, we have used the minimum 

of 𝑉𝑎 as given by Eq. 50 and 35𝑏3 as the activation volume for sub-boundary motion. 
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3.1.1.1. Effect of second phase particles on recovery 

Strain induced precipitation of Nb occurs with an incubation time and preferentially 

nucleates on dislocation nodes and grain boundaries. Concurrent strain induced 

precipitation with recovery can lead to arrest of recovery kinetics by pinning of 

dislocations nodes until the time when the precipitates coarsen and unpin the dislocation 

nodes.  

Previous treatment by Zurob et al. [5] has tried addressing this problem by removing the 

number of dislocations pinned by the precipitates from participating in recovery. In 

simplified terms: 

 
𝑑𝜎𝐷

𝑝𝑝𝑡

𝑑𝑡
=

𝑑 𝜎𝐷

𝑑𝑡
 (1 −

𝑛𝑝𝑝𝑡

𝑛𝑐
)    Eq.  51 

Here 𝑛𝑐 is the number of dislocation nodes, 𝑛𝑝𝑝𝑡 is the number of precipitates, 
𝑑𝜎𝐷

𝑝𝑝𝑡

𝑑𝑡
 is the 

recovery rate in presence of strain induced precipitation and 
𝑑 𝜎𝐷

𝑑𝑡
 is the recovery rate in 

absence of precipitation Eq. 47. The model predicts a complete halt in recovery kinetics 

when  
𝑛𝑝𝑝𝑡

𝑛𝑐
 approaches unity that is when the number of particles is equal to the number of 

dislocation nodes. 

Therefore the overall recovery equation becomes: 

𝑑𝜎𝐷

𝑑𝑡
= −

64𝜎𝐷
2𝜐𝑑

9𝑀3𝛼𝐸
𝑒𝑥𝑝 (−

𝑈𝑎

𝑘𝑏𝑇
) 𝑠𝑖𝑛ℎ (

𝜎𝐷𝑉𝑎

𝑘𝑏𝑇
) (1 −

𝑛𝑝𝑝𝑡

𝑛𝑐
)   𝑛𝑝𝑝𝑡 < 𝑛𝑐 Eq. 52(a) 

𝑑𝜎𝐷

𝑑𝑡
= 0 

 𝑛𝑝𝑝𝑡  ≥ 𝑛𝑐  Eq. 52(b) 
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For a typical case of Nb microalloyed steel the prediction of Eq. 52 and precipitate 

number density are plotted in Figure 20 for 0.03 Nb, 0.076 C deformed to a strain of 0.3 

at 950oC. Precipitate number density is calculated by Eq.  58 which will be discussed in a 

later section. In this case the microstructure exhibits concurrent recovery and precipitation 

which is shown in Figure 20. During the initial time, recovery proceeds with the kinetics 

as explained by Eq. 47 with little or no interference with precipitation. However as the 

number of precipitate particle increases the rate of recovery is reduced as described by 

Eq. 52(a) till the time when precipitate number density is less than dislocation node 

density. Once precipitate number density exceeds dislocation number density recovery 

kinetics is explained by Eq. 52(b). Once dislocation entangles start becoming unpinned 

recovery kinetics again is explained by Eq. 52(a).  
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Figure 20: Plot showing the decay in stress due to recovery. Precipitate number density is 

superimposed on to the plot highlighting that at sufficient number density recovery is 

arrested halted till coarsening of precipitates starts. The composition of the steel is 0.03 

wt % Nb, 0.076 wt % C deformed to strain of 0.3 at 950 oC. 

3.1.2. Precipitation Module 

In what follows, the precipitation model of Deschamps and Brechet [80] modified by 

Zurob et al. [5]is used to describe the nucleation, growth and coarsening of Nb(C,N). 

Precipitation is assumed to occur in two steps. The first step involves nucleation and 

growth of precipitates as concurrent processes and the second step deals with growth and 

coarsening of the existing precipitates. The same approach has also been used by Dutta et 

al. [15] to model Nb(C,N) precipitates in microalloyed austenite. Their results are in 

excellent agreement with the experimental data [65]. 
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3.1.2.1. Nucleation and Growth 

The nucleation model used is a modified form of classical nucleation theory. Nucleation 

is assumed to occur extensively on dislocations. Although the shape of the nucleus 

changes with the potential nucleation sites, coherency, crystallography etc. for the present 

analysis spherical nuclei are assumed. Consequently the driving force for precipitation 

(∆𝑮) is given by:  

 ∆𝐺 = ∆𝐺𝑐ℎ𝑒𝑚 + ∆𝐺𝑖𝑛𝑡 + ∆𝐺𝑑𝑖𝑠𝑙 Eq.  53 

Where ∆𝐺𝑐ℎ𝑒𝑚 is the chemical driving force,  

 ∆𝐺𝑐ℎ𝑒𝑚 = −
4

3
𝜋𝑟3∆𝐺𝑣 

Eq.  54 

where 𝑟 is the nucleus radius, ∆𝐺𝑣 is the volumetric driving force and is calculated using 

solubility product of Koyama et al.[64] using the method described by Dutta and Sellars 

[15]. ∆𝐺𝑖𝑛𝑡 is the interfacial free energy and is given by: 

 ∆𝐺𝑖𝑛𝑡 = 4𝜋𝑟2𝛾 Eq.  55 

where, 𝛾 is the NbCN/Austenite interphase energy in (J/m2) and is given by [5]  

 𝛾 = 0.375 + (0.000025(𝑇𝑠𝑜𝑙 − 𝑇)1.5) Eq.  56 

where, 𝑇𝑠𝑜𝑙 is the dissolution temperature of the precipitates and 𝑇 is the operating 

temperature. ∆𝐺𝑑𝑖𝑠𝑙 is the relaxation of dislocation core energy over the precipitate radius 

and also contains the relaxation of elastic energy around dislocations; 
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 ∆𝐺𝑑𝑖𝑠𝑙 = −𝜇𝑏2𝑟 (
1

5
+

ln (𝑟 𝑏⁄ )

2𝜋
) 

Eq.  57 

where 𝜇 and 𝑏 are the shear modulus and Burgers vector respectively. Finally the 

nucleation rate (steady state) is given by: 

 
𝑑𝑛

𝑑𝑡
= (𝑛𝑡𝑜𝑡𝑎𝑙 − 𝑛)𝑍𝛽′𝑒𝑥𝑝 (−

∆𝐺

𝑘𝑇
) Eq.  58 

where 𝑍 is the Zeldovich non-equilibrium factor, 𝛽′ is the rate at which atoms are added 

to the critical nucleus, 𝑛𝑡𝑜𝑡𝑎𝑙 is the total number of nucleation sites. The second term (𝑛) 

in the equation relates to the progressive decrease in the available nucleation sites. 

Following Zurob et al.[5] and Russell [131] 𝑍𝛽′ is approximated as 
𝐷𝑝𝑖𝑝𝑒𝐶𝑁𝑏

𝑎2  , where 

𝐷𝑝𝑖𝑝𝑒 is the pipe diffusion coefficient and 𝑎 is the lattice parameter of the precipitate. The 

density of the available nucleation sites, 𝑛𝑡𝑜𝑡𝑎𝑙 has been approximated as(𝐹𝑁 (
𝜌

𝑏
)), where 

𝐹𝑁 is a parameter smaller than unity which relates to a minimum distance between 

precipitates on a dislocation line. During the nucleation and growth stage, the evolution of 

average particle radius is given by [15, 130]: 

 
𝑑𝑟

𝑑𝑡
=

𝐷𝑒𝑓𝑓

𝑟
 
𝐶𝑁𝑏 − 𝐶𝑁𝑏

𝑟

𝐶𝑁𝑏
𝑃 − 𝐶𝑁𝑏

𝐸𝑞 +
1

𝑛

𝑑𝑛

𝑑𝑡
(𝛼𝑁𝑟𝑁 − 𝑟) 

Eq.  59 

where 𝐶𝑁𝑏
𝑟  is the concentration of Nb in equilibrium with a precipitate of radius 𝑟. The 

first term of the equation refers to the parabolic growth equation of the existing particles 

and the second term refers to the change in particle size due to nucleation of 𝑛 new 

particles of size 𝛼𝑛𝑟𝑁. 𝛼𝑁 is a constant of value 1.05 [15] and refers to the fact that a 
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nucleated particle will only grow when its radius is greater than the critical radius. The 

diffusion coefficient used in the equation is a weighted average of bulk and pipe diffusion 

coefficients as the niobium in solution can migrate to join precipitates either by bulk 

diffusion or through the high diffusivity dislocation channel.  

 𝐷𝑒𝑓𝑓 = 𝐷𝑝𝑖𝑝𝑒  𝜋 𝑅𝑐𝑜𝑟𝑒
2 𝜌 + 𝐷𝑏𝑢𝑙𝑘(1 − 𝜋𝑅𝑐𝑜𝑟𝑒

2 𝜌) Eq.  60 

Where 𝑅𝑐𝑜𝑟𝑒 refers to the radius of dislocation core which is assumed to be equal to 

Burgers vector 𝑏. 

3.1.2.2. Growth and Coarsening 

As soon as critical radius for nucleation and mean precipitate radius become equal 

coarsening of the particles begins. Using the approach of Lifshitz-Slyozov-Wagner 

(LSW), in the case of pure coarsening the evolution of radius is given by; 

 
𝑑𝑟𝑖

𝑑𝑡
|

𝑐𝑜𝑎𝑟𝑠𝑒𝑛𝑖𝑛𝑔 
=

𝐷𝑒𝑓𝑓

𝑟
 
𝐶𝑁𝑏

𝑅 − 𝐶𝑁𝑏
𝑅𝑖

𝐶𝑁𝑏
𝑃 − 𝐶𝑁𝑏

𝐸𝑞 
Eq. 61 

 

𝒓 is the average precipitate radius. The variable 𝒓𝒊 refers to the radius of a specific 

precipitate. Precipitates having a radius greater than the average radius 𝑟 will grow and 

others will tend to shrink and finally will dissolve. Integrating Eq. 61 over the entire size 

distribution gives the time evolution of precipitate radius. However, given the limitation 

of the present modeling approach (mean field approximation) and based on the work of 
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Deschamp and Brechet [80]  𝒓𝒊 has been replaced by(
27

23
) 𝑟, the inherent assumption 

being that large particles contribute more towards the average value [15, 80].  

During the simultaneous growth and coarsening regime the overall precipitate size 

evolution is given by a weighted average of growth and coarsening contribution. 

 
𝑑𝑟

𝑑𝑡
= (1 − 𝑓𝑐𝑜𝑎𝑟𝑠𝑒)

𝑑𝑟

𝑑𝑡
|
𝑔𝑟𝑜𝑤𝑡ℎ

+ 𝑓𝑐𝑜𝑎𝑟𝑠𝑒

𝑑𝑟

𝑑𝑡
|

𝑐𝑜𝑎𝑟𝑠𝑒𝑛𝑖𝑛𝑔
 

Eq.  62 

 𝑓𝑐𝑜𝑎𝑟𝑠𝑒 = 1 − 𝑒𝑟𝑓 (4 (
𝑟

𝑟𝑛
− 1)) Eq.  63 

In Eq.  62,  
𝒅𝒓

𝒅𝒕
|

𝒈𝒓𝒐𝒘𝒕𝒉
 refers to the radius evolution kinetics under pure growth conditions. 

It is given by the first part of Eq.  58. Similarly, 
𝒅𝒓

𝒅𝒕
|

𝒄𝒐𝒂𝒓𝒔𝒆𝒏𝒊𝒏𝒈
 refers to the increase in 

particle radius under pure coarsening regime given by Eq. 61. The coarsening function 

varies between 0 to 1; 0 under pure growth condition (𝒓 ≫ 𝒓𝒏) and 1 under pure 

coarsening condition(𝒓 = 𝒓𝒏). Similar equation to Eq.  62 and Eq.  63 is used to calculate 

the precipitate number density During pure growth 
𝒅𝒏

𝒅𝒕
|

𝒈𝒓𝒐𝒘𝒕𝒉
= 𝟎 . Eq.  64 is a solute 

balance equation the differentiation of which with respect to time gives the rate of 

variation of precipitate number density under pure coarsening [80]. 

 𝐶 (1 −
4

3
𝜋𝑛𝑟3) = 𝐶0 −

4

3
𝜋𝑛𝑟3 

Eq.  64 
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3.1.3. Recrystallization Module 

The present model developed is largely based upon the recrystallization model developed 

by Dunlop et al. [100] for Zircalloy-4. The model is able to predict incubation time, 

nucleation rate and recrystallized grain size. In what follows the model has been modified 

and adapted for microalloyed steels. 

In present approach, nucleation is assumed to be SIBM, which is a reasonable assumption 

for small strains as discussed in section 2.3.1. It is also supported by metallographic 

observation of Hansen et al. [65] where he found that for low strains (0.1 to 0.4) SIBM is 

a reasonable assumption and at high strain recrystallization does nucleate at twin 

boundaries and deformation bands. During rough rolling of microalloyed steels the 

starting austenite grain size is of the order of the order of 1500 µm which makes the 

assumption of random nucleation in the classical JMAK equation invalid. As discussed in 

the literature review, researchers have tried to solve this problem by making use of 

modified JMAK equation i.e by making the JMAK exponent a function of processing 

parameters. However specific events such as impingement of new grains that have 

nucleated in proximity of one another along the grain boundary have not been taken into 

account. A better description of nucleation and growth of recrystallization is illustrated in 

Figure 21. Nucleation has been restricted to only occur at grain boundaries. These nuclei 

grow within a shell so as to consume the original deformed shell volume. Once the entire 

shell has been consumed we switch over to pure growth scenario in which a recrystallized 
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surface shell progressively grows towards the center consuming the deformed volume. At 

any instant the ratio of shell volume to the original deformed grain volume gives the 

recrystallized volume fraction. These two stages are described in detail in the subsequent 

section. For simplicity of the math we have assumed the deformed grains to be spheres 

and the nuclei to be hemispheres, although in reality the deformed grains are ellipsoid and 

nuclei have irregular surface. This has partially been compensated by changing the 

volume of the initial grain so as to have the same surface to volume ratio (potential 

nucleation sites) as that of deformed/pancaked grains. 

 

Figure 21: (a) Start of nucleation. Hemispherical nuclei form at the grain boundary by 

SIBM. The dotted line shows the equivalent recrystallizing film position. (b) Site 

saturation achieved. New hemispherical nuclei consume the original deformed HAGB. 

The dotted line shows the equivalent recrystallizing film position. (c) Schematic of the 

growth of recrystallization front[132] 
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3.1.3.1. Sub-grain growth 

Deformation of austenite leads to the formation of a statistical distribution of 

subgrains/cells which is assumed to remain self-similar during sub-grain growth. During 

annealing of the microstructure the average sub-grain size evolves so as to reduce the 

total stress of the system as discussed in section 3.1.1 and in Figure 4 at a rate 

proportional to the sub-grain mobility times the driving force for sub-grain growth.   

Recent investigation by Winning et al. [133] has tried to address sub-grain boundary 

migration. The study essentially concluded that the boundary movement involves bowing 

out of intrinsic dislocations (structural dislocations) between extrinsic dislocations 

(structurally necessary dislocations), these extrinsic dislocations act as pinning centres. 

 The original analysis done by Winning et al. [133] was restricted to pure material and 

with low driving forces. In the subsequent section, we kept the original methodology and 

modified several of its parameters so as it can be extended to microalloyed steels. With 

reference to Figure 22, the force experienced by each dislocation is 𝑛𝜏, where 𝑛 is the 

number of intrinsic dislocations between two extrinsic dislocations and  𝜏 is the resolved 

shear stress. The shear force along with the chemical potential difference ∆𝜇 will cause 

pinning points to climb. In general movement of extrinsic dislocation can be expressed in 

terms of diffusion flux: 

 𝐽 = −
2𝐷

Ωλ
 𝑆𝑖𝑛ℎ (

∆𝜇

2𝑘𝑇
) 

Eq.  65 
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where Ω is the atomic volume, 𝜆 is the spacing between pinning centres (ref Figure 22), 

𝐷 is the bulk self-diffusion coefficient. 

 

Figure 22: Schematic of the plot of subgrain boundary bowing out while being pinned by 

extrinsic dislocations[134]. 

 

Substituting 2𝑛𝜏Ω for the chemical potential difference ∆𝜇 leading to; 

 𝐽 = −
2𝐷

𝛺𝜆
 𝑆𝑖𝑛ℎ (

𝑛𝜏𝛺

𝑘𝑇
) =  −

2𝐷

𝛺𝜆
 𝑆𝑖𝑛ℎ (

𝜆𝜃𝜏𝛺

𝑏 𝑘𝑇
) 

Eq.  66 

where, the number of dislocations between pinning points 𝑛 was estimated as 𝜆 (
𝜃

𝑏
), 

where 𝜃 is the misorientation of the low angle boundary. 𝜆 is calculated as per Eq. 49. 

The present approach unifies the two modules for recovery and recrystallization giving 

further confidence in our modeling approach. 
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Finally the sub-grain boundary velocity is given by;  

 𝑉 = −𝐽𝑏3 = 2 
𝐷𝑏3

Ω𝜆
𝑆𝑖𝑛ℎ (

𝜆𝜃𝜏𝛺

𝑏 𝑘𝑇
) ~ 2 

𝐷

𝜆
𝑆𝑖𝑛ℎ (

𝜆𝜃𝜏𝛺

𝑏 𝑘𝑇
) 

Eq.  67 

We assume that 𝜏𝜃 is proportional to the stress increment due to dislocations, 𝜎𝐷. 

Consequently the sub-grain velocity is given by: 

 𝑉 = 2
𝐷

𝜆
𝑆𝑖𝑛ℎ (

𝐾𝑎𝑑  𝜎𝐷 𝜆𝛺

𝑏 𝑘𝑇
) 

Eq.  68 

Where 𝐾𝑎𝑑 is an adjustable parameter calculated by fitting experimental data. The above 

equation is very similar to the one developed by Friedel et al. [33] for dislocation motion 

in the presence of solute clusters. 

Since the velocity of the sub-grain boundary is 〈𝑟𝑡〉/𝑑𝑡 , the sub-grain growth is finally 

given by 

 〈𝑟𝑡〉 = 〈𝑟0〉 + ∫ 2
𝐷

𝜆
𝑆𝑖𝑛ℎ (𝐾𝑎𝑑𝜎𝐷𝑏2

𝜆

𝑘𝑇
)

𝑡

0

 𝑑𝑡 

Eq.  69 

 

3.1.3.2. Recrystallization Nucleation 

According to the Bailey-Hirsch nucleation criterion a nucleus is formed when the driving 

force for growth is enough to overcome the capillary forces (2γSE 𝑅𝑆𝐺⁄ ), where γSE is the 

grain-boundary energy and 𝑅𝑆𝐺  is subgrain radius. At the beginning of annealing the sub-

grains are very small and the driving force will not be able to overcome the capillary 
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forces so as to bulge in the neighbouring grains. The critical size for bulging of the 

subgrains is given by: 

 𝑟𝑐 =
2𝛾𝑆𝐸

∆𝐺𝑡
 

Eq.  70 

Where ∆𝐺𝑡 is the driving force for subgrain growth given by: 

 ∆𝐺𝑡 =
1

2
∆𝜌′ 𝜇𝑏2 

Eq.  71 

where ∆𝜌′  is the dislocation density difference between the two sides of grain boundary. 

If the dislocation density difference is the same on both sides of the boundary, then 𝑟𝑐 →

∞. If one is to assume that the recovered substructure is dislocation free then ∆𝜌′ = 𝜌, 

where 𝜌 is the global dislocation density. Due to lack of availability of exact numbers on 

the dislocation density difference in the present work we have used an intermediate value 

of ∆𝜌′ = 𝜌/2 unless stated otherwise. 

Due to static recovery taking place continuously, ∆𝐺𝑡 in Eq.  70 is a decreasing function 

of time leading to critical radius for subgrain bulging as an increasing function of time. If 

the applied strain is less than the critical strain the increase in subgrain size is not able to 

overcome the capillary drag forces as shown in Figure 23, however if the strain is higher 

than a critical amount the subgrain will be able to overcome the critical conditions leading 

to nucleation of recrystallization. The time taken by largest subgrain to overcome the 

capillary drag force is known as incubation time. The largest subgrain in the distribution 
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is the one which first bulges out. Knowledge of sub-grain size distribution is essential to 

predict incubation time. 

 

Figure 23:  Time evolution of sub-grain size and critical radius of nucleation when 

applied strain is (a) less than the critical strain of nucleation (b) more than the critical 

strain of nucleation 

 

 

Hansen and coworkers [135, 136] measured sub-grain distribution of variety of metals 

and found that they follow a Rayleigh distribution. 

 𝑃(𝜒) =
𝜋

2
𝜒 𝑒𝑥𝑝 (−

𝜋𝜒2

4
) 

Eq.  72 

where, 𝜒 is the sub-grain size normalized by the average sub-grain size 〈𝑟𝑡〉, 

 𝜒 =
𝑟

〈𝑟𝑡〉
 

Eq.  73 

And the normalized critical sub-grain size is given by: 
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 𝜒𝑐,𝑡 =
𝑅𝑐,𝑡

〈𝑟𝑡〉
     

Eq.  74 

 

The fraction of the sub-grains 𝑓(𝑡), which are larger than the critical size 𝜒𝑐, is then given 

by: 

 𝑓(𝑡) = ∫ 𝑃(𝜒)𝑑𝜒
∞

𝜒𝑐,𝑡

 
Eq.  75 

 

which has an analytical value of :  

 𝑓(𝑡) = 𝑒𝑥𝑝 (−
𝜋

4
𝜒𝑐,𝑡

2 ) 

Eq.  76 

 

Assuming recrystallization occurs solely due to SIBM, only subgrains which are at the 

grain boundary can develop into recrystallization nuclei. This is obtained by dividing the 

grain boundary area by the subgrain cross sectional area. Coupling this concept with Eq.  

76 one may obtain the nucleation rate as  

 
𝑑𝑁

𝑑𝑡
=

𝑑𝑓

𝑑𝑡
 

𝑆𝑉

𝐴𝑛𝑢𝑐𝑙
 𝐹𝑛(𝑡) 

 

Eq.  77 

where 𝐴𝑛𝑢𝑐𝑙 is the average area of a viable nucleus, 𝑆𝑉 is the deformed grain boundary 

area per unit volume and 𝐹𝑛(𝑡) is a function introduced to take into consideration the 

progressive consumption of nucleation sites. 

 𝐹𝑛(𝑡) = 1 −
𝑉𝑟𝑒𝑥

4𝜋𝑅𝑖
2𝛿

 
Eq.  78 
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𝑉𝑟𝑒𝑥 is the total volume of recrystallized grains within the outer shell of the deformed 

grain, 𝑅𝑖 is the initial radius of the deformed grain and 𝛿 is the thickness of grain 

boundary shell as shown by Figure 21. At the start of annealing 𝐹𝑛(𝑡) is one and as 

nucleation proceeds, site saturation eventually occurs leading to nucleation rate dropping 

down to zero which occurs when 𝐹𝑛(𝑡) equals zero. 

𝑆𝑣 in Eq.  77 refers to the grain boundary area per unit volume which is calculated using 

an empirical model of Yoshie et al[137]. 

 𝑆𝑣 = (
24

𝜋𝐷𝑖
) (0.491𝑒𝜀 + 0.155𝑒−𝜀 + 0.143𝑒−3𝜀) 

Eq.  79 

It is assumed that the nuclei are hemi-spherical in shape and they originate from the 

boundary and grow inwards. Consequently the volume of the recrystallizing nucleus is 

given by 

 𝑉 =
1

2
[
4

3
𝜋 〈𝑅𝑡〉3] 

Eq.  80 

where 〈𝑅𝑡〉 is the radius of the spherical cap. The radius of the spherical cap evolves as: 

 〈𝑅𝑡〉 = 〈𝑅0〉 + ∫ 𝑀𝐺𝐵 𝐺𝑡  𝑑𝑡

𝑡

0

 

Eq.  81 

where 𝑀𝐺𝐵 refers to the mobility of high angle grain boundary and 𝐺𝑡 refers to the stored 

energy of deformation. Finally the recrystallized volume fraction is given by: 
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 𝑋𝑡 =
𝑁𝑡 𝑉

𝑉0
 

Eq.  82 

 

3.1.3.3. Effect of precipitates on sub-grain growth and nucleation  

As a first approximation, one may be inclined to use the standard Zener pinning argument 

to capture the effect of precipitation on the nucleation of recrystallization.  This approach, 

however, is not suitable for two reasons.  The first is that the nucleation step of 

recrystallization involves the rearrangement/annihilation of dislocations in order to create 

a viable recrystallization nucleus. In our model we capture this in terms of sub-grain 

growth. The interaction of particles with dislocations and sub-grain (low angle boundary) 

is fundamentally different from particle-boundary interaction described by Zener and as 

such a Zener description is not appropriate [13, 118, 138].  The second is that, the time 

evolution of the Zener pinning shows that the pinning force is not significant at early 

times of annealing and as such Zener pinning could not be responsible for the delay in the 

onset of recrystallization.   

An alternative approach for describing the effect of particles on the nucleation of 

recrystallization is to incorporate their effect on the sub-grain growth step. It is expected 

that the sub-grain velocity will be inversely proportional to the number of precipitates. At 

the same time, the effectiveness of the precipitates as barriers to boundary motion will 

depend on temperature; as temperature increases, climbs becomes an increasingly more 

viable option for overcoming precipitate pinning. Based on these considerations, the sub-

grain growth velocity is expressed as:  
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 𝜈 = 2
𝐷𝑏2

𝑉𝐴
𝑠𝑖𝑛ℎ (

𝐾𝑎𝑑𝜎𝐷𝑉𝐴

𝑘𝑏𝑇
) 𝜓    

Eq. 83(a) 

 𝜓 = (
𝜌

𝑁
)

1

𝜆0
(

𝐷𝑠𝑒𝑙𝑓

𝐷0
)     

Eq. 83(b) 

The first term in Eq. 83(a) represents the velocity of the sub-grain boundary in the 

absence of precipitation. This term was employed by Rehman et al [132] for the 

precipitate-free case with 𝐾𝑎𝑑 =2.35. The effect of precipitation enters through the term 

𝜓, which has two components, the first represents the spacing of precipitates along the 

dislocation network, 𝜌 𝑁⁄ , normalized by a characteristic distance, 𝜆0. The second term 

reflects the potential for climb and is expressed as the self-diffusion coefficient, 𝐷𝑠𝑒𝑙𝑓 , 

normalized by a characteristic diffusion coefficient 𝐷0. The values of 𝜆0 and 𝐷0were 

identified by fitting the experimental data [130]; 𝜆0. 𝐷0 = 1 x 10-22 m3/s.  

The proposed description for the effect of particles on the nucleation of recrystallization 

is very similar to that used to describe the effect of particles on recovery. This is not 

surprising given that both processes are essentially controlled by particle-dislocation 

interactions and both processes could be described in terms of the growth of dislocation 

cells or sub-boundaries. The new expression predicts that effect of particle pinning on the 

nucleation of recrystallization evolves with the number density of precipitates (as 

opposed to the volume fraction of precipitates in the case of Zener pinning). As a result, a 

significant pinning force can develop rapidly and retard recrystallization at early times 
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leading to the experimentally observed incubation times. Under most circumstances the 

dislocation network will not be completely pinned and therefore the condition for grain 

boundary bulging will eventually be reached. Even in the case, in which precipitate 

number density is very large the delay of recrystallization nucleation will not necessarily 

be permanent because the onset of particle coarsening could eventually allow sub-grain 

growth to resume and nucleation to take place. 

A subtle point concerning the effect of precipitation on the nucleation of recrystallization 

concerns the effect of particles on the nucleation criterion. In the precipitate free case, 

nucleation takes place as per Eq.  70. It is tempting to reduce ∆𝐺𝑡  by an amount equal to 

the Zener drag in order to reflect the effect of particle pinning. This was not done in this 

contribution because the particles formed on the boundary coarsen rapidly due to 

enhanced boundary diffusion and using the classical Zener expression would overestimate 

the contribution of particle pinning. We have therefore retained the above equation for 

nucleation criterion. 

3.1.3.4. Pure Growth Kinetics 

When the shell volume is completely consumed by the recrystallizing nuclei pure growth 

starts Figure 21. In this stage growth kinetics is modeled in terms of a uniform spherical 

shell of recrystallized material shrinking. Consequently the increase in shell thickness in 

time step 𝑑𝑡 is given by ∫ 𝑀𝐺𝐵  𝐺𝑡𝑑𝑡
𝑑𝑡

0
. The increase in recrystallized volume is given by; 

 𝑑𝑉 = 4𝜋𝑅𝑡
2 𝑀𝐺𝑏𝐺𝑡  𝑑𝑡 Eq.  84 
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where 𝑅𝑡 is the radius of the non-recrystallized core. Finally, the overall recrystallization 

kinetics (𝑋𝑡) during pure growth is given by  

 𝑋𝑡 = 1 −

4
3 𝜋𝑅𝑡

3

𝑉0
 

Eq.  85 

where, 𝑉0 is the initial deformed grain volume.  

3.1.3.5. High angle boundary mobility 

The recrystallization growth kinetics model employs a term 𝑀𝐺𝐵 which is the high angle 

grain boundary mobility. It is proportionality constant between boundary velocity and 

driving force with the units 𝑚4 𝐽 𝑠⁄ .  

For pure material, the high angle boundary mobility is the highest, a reasonable estimate 

of which can be calculated from the Turnbull estimate as calculated in Eq.  17. However 

in the present case of microalloyed austenite, we have taken mobility of HAGB in C-Mn 

steel as pure. Although significant boundary retardation is expected from Mn, yet it is 

excluded from the present analysis as Mn is almost always present in all steel grades 

except in some special cases such as interstitial free steel etc. Consequently mobility as 

calculated from experimental study of grain coarsening by Zhou et al. [115] on C-Mn 

steel is used in the present case; 

 𝑀𝐶−𝑀𝑛 =
0.1920

𝑇
exp (−

20837.14

𝑇
) 

Eq.  86 
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The retardation of the boundary due to solute Nb is captured using Cahn’s solute drag 

model as expressed below; 

 
1

𝑀𝐺𝐵,𝑒𝑓𝑓
=

1

𝑀𝑝𝑢𝑟𝑒
+ 𝛼𝑚𝐶𝑁𝑏 

Eq.  87 

where, 

 𝛼𝑚 =
𝛽 𝑁𝑉(𝑘𝑇)2

𝐸𝑏 𝐷𝑋
 (𝑠𝑖𝑛ℎ (

𝐸𝑏

𝑘𝑇
) −

𝐸𝑏

𝑘𝑇
) 

Eq.  88 

β is the grain boundary thickness (~1 nm), NV is the number of atoms per unit volume, Eb 

is the solute-boundary binding energy (20 kJ/mol) and DX is the trans-interface boundary 

diffusion which is equal to twice the bulk diffusion coefficient of Nb in austenite [132].  

Originally in Cahn’s model 𝑀𝑝𝑢𝑟𝑒 refers to mobility of pure material. As is explained in 

the previous paragraph mobility of C-Mn steel is used here. 

The effect of solute Nb enters into the model through 𝐸𝑏 (binding energy) and 𝐷𝑋 (cross 

boundary diffusion coefficient). Compared to 𝐷𝑋 , 𝐸𝑏 is well known with estimates 

varying between 20-38 kJ/mol. For cross boundary diffusion coefficient a value twice the 

bulk diffusion value produced the best fit of experimental results as discussed in section 

4. This is in agreement with other published literature [5, 139]. 

3.1.3.6. Driving force for Recrystallization growth 

Driving force for recrystallization is the stored energy of deformation between 

recrystallization and non-recrystallization region and is often expressed as: 
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 𝐺𝑡 =
1

2
𝜌𝜇𝑏2 

Eq.  89 

Reproducing the recovery model as described in section 3.1.1 gives us; 

 
𝑑𝜎𝐷

𝑑𝑡
= −

64𝜎𝐷
2𝜐𝑑

9𝑀3𝛼𝐸
𝑒𝑥𝑝 (−

𝑈𝑎

𝑘𝑏𝑇
) 𝑠𝑖𝑛ℎ (

𝜎𝐷𝑉𝑎

𝑘𝑏𝑇
) (1 −

𝑛𝑝𝑝𝑡

𝑛𝑐
)   

Eq.  90 

In the above equation 𝑉𝑎 is activation volume, which relates to activation distance which 

is the pinning distance or the length of the intrinsic dislocation pileup.  

Using Eq.  90 and Eq. 50 stress evolution 𝜎𝐷 can be evaluated which in turn can be used 

to calculate dislocation density evolution using Forest-Hardening relationship. 

 𝜎 = 𝛼 𝑀 𝜇 𝑏 √𝜌 Eq.  91(a) 

 𝜌 = (
𝜎

𝛼 𝑀 𝜇 𝑏
)

2

  
Eq. 91(b) 

 

The effect of precipitates on growth of recrystallizing grains is captured in terms of the 

classical treatment of Zener [103] as modified by Gladman [4]. A planar boundary will 

intersect particles within a distance 𝑟 of it, where 𝑟 is the particle diameter. Hence the 

number of particle intersecting the unit area of the boundary is  

 𝑁𝑠 = 2𝑟𝑁𝑣    Eq.  92 

where, Nv is the number of particles per unit volume. For a randomly distributed particles 

of radius r and volume fraction of Fv , the number of particles per unit volume is:  
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 𝑁𝑣 =
3𝐹𝑣

4𝜋𝑟3
 

Eq.  93 

Maximum drag force experienced by the boundary by a single particle is πrγ . Hence the 

total drag force experienced by the boundary by a distribution of particles is:  

 𝑃𝑧 = 𝑁𝑠𝐹𝑠 =
3𝐹𝑣𝛾

2𝑟
        

Eq.  94 

Zener’s pinning equation is very important as it highlights that for a constant volume 

fraction of second phase particles; smaller size particles are more effective in retarding 

HAGB motion than a coarser one. The Zener approach sometimes gives a pinning value 

different from what is observed experimentally. The discrepancy is attributed to the fact 

that the basic assumptions made related to geometry of the second phase particles, 

interaction zone between the particles and grain boundary, the particle distribution related 

to spatial and size, and the relationship between the boundary curvature and the grain 

radius may not be the same for every rolling condition [102]. In the present work we have 

used Zener force four times the classical value given by Eq.  94. This gave us a better fit 

to the experimental data. However to get a more accurate Zener calculation one can 

measure the precipitate size through TEM and feed it back into the model. Once 

recrystallization has nucleated the high angle boundary created continues to grow with a 

velocity given by Eq.  95 [12]; 

 𝑉 = 𝑀𝐺𝐵(𝑃 − 𝑃𝑧)        Eq.  95 
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where, MGB is the HAGB mobility, P is the stored energy of deformation and Pz is the 

Zener drag. 

 

Figure 24: Austenite recrystallization kinetics in steel containing 0.05% Nb at 899oC at a 

strain of 50% with strain rate  of 10.2 s-1[93]. Note the increase in incubation time with 

an increase in precipitation. 

 

Special consideration needs to be given to the case in which the pinning force in Eq.  95 

is greater than the driving force for recrystallization.  This is often the case at long times 

due to the depletion of the driving force by recovery and simultaneous increase of the 

Zener term due to the increase in volume fraction of precipitates. Experimentally it has 

been observed that at long annealing times the sample recrystallizes at a very slow rate 

(see Figure 24). According to Eq.  95, the growth rate should go to zero when the net 

driving force (P − Pz) goes to zero.  This stoppage, however, is not permanent because 

particle coarsening will lead to the dissolution of some particles and this would permit the 
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boundary to migrate locally even when the global pinning force is greater than the global 

driving force.  

 

Figure 25: Schematic of the sequence of events that would lead to the advance of the 

recrystallization boundary (a) At time 𝑡 = 0  when the grain boundary is completely 

pinned, (b) At time 𝑡 = 𝑡′ when the boundary is unpinned as particles coarsens (c) at time 

𝑡 = 𝑡𝑢𝑝 when the boundary advances one step further and gets pinned. 

 

In Figure 25(a) the HAGB movement is completely pinned by the precipitates. 

Accelerated coarsening of the particles located on the grain boundary will lead to a local 

reduction in the pinning force and the boundary is able to advance (locally), until it 

encounters a sufficient number of fresh particles which will ensure that the boundary is 

pinned again.   The process repeats leading to a progressive growth of the recrystallizing 

grains at a very slow rate. At this moment this is a hypothesis but the sequence of events 

seems to be quite plausible in explaining the experimental database shown in Figure 24. 

The coarsening of particles located on a high angle boundary was described by Kirchner 

[140] and Doherty et al.[141]: 

 �̅�𝑡
4 − �̅�0

4 = 𝑐 𝑡       Eq.  96(a) 
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 𝑐 =
9

32
𝑤𝐷𝑔𝑏𝜎𝑁𝛼(𝑔𝑏)𝑉𝑚 (

1

𝐴𝐵𝑅𝑇
)    

Eq. 96 (b) 

 𝐴 = (2 3⁄ ) + (𝜎𝑏 2𝜎⁄ ) + (1 3⁄ )(𝜎𝑏 2𝜎⁄ )3   Eq.  96(c) 

 𝐵 =
1

2
𝑙𝑛 (

1

𝑓𝑏
)      

Eq.  96(d) 

where Nα(gb), is the solute content at a grain boundary in equilibrium with an infinitely 

large precipitate, w is the grain boundary thickness, Vm is the molar volume, Dgbis the 

grain boundary diffusion coefficient. σb is the grain boundary energy and fb is the 

fraction of grain boundary covered by the precipitates.  Using the Kirchner model [140] 

to calculate the coarsening rate along the HAGB and the inter particle spacing, time 

evolution of the local Zener drag along with the velocity of the HAGB can be calculated. 

This is further explained below. 

When the global precipitate volume fraction of a given particle size exceeds a certain 

critical value the total Zener drag given by those is larger than the total available driving 

force for recrystallization. Consequently recrystallization is pinned down. At time t=0.  

 𝑃𝑍 ≥ 𝐺𝑅   Eq.  97 

Due to the accelerated coarsening taking place along the HAGB, the boundary becomes 

locally unpinned. The radius of particle at the point of unpinning can be calculated by 

equating Zener force and recrystallization driving force: 

 
𝑟 =

6𝛾𝐹𝑣

𝜌𝜇𝑏2
 

Eq.  98 
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The time taken for this unpinning to happen t′ can be calculated from Eq.  96(a) to Eq.  

98. 

 𝑡′ =
𝑟4 − 𝑟0

4

𝑐
    

Eq.  99 

At time  t ≥ t′ , wherein the HAGB has been unpinned, the boundary travels a distance 

“λ′ ” which is the inter-particle spacing, where it becomes pinned again. 

 𝜆′ =
1

∛𝑁
    

Eq.  100 

where, N is the precipitate number density per unit volume and is calculated as per Dutta 

and Sellars model [15]. tup is the time taken for the boundary to move the distance λ 

where the HAGB becomes pinned again. From conservation principles the following 

equation can be solved to obtain tup 

 𝜆 = ∫ 𝑀𝐻𝐴𝐺𝐵(0)𝑑𝑡 + ∫ 𝑀𝐻𝐴𝐺𝐵(𝐺 − 𝑍′)𝑑𝑡

𝑡𝑢𝑝

𝑡′

𝑡′

0

   

Eq.  101 

The first integral in the above equation becomes zero. 

 𝑍′ =
3𝛾𝐹𝑣

(𝑟0
4 + 𝑐𝑡)

1
4

    
Eq.  102 

The high angle boundary velocity can now be calculated in order to obtain the 

recrystallization kinetics. 



PhD Thesis – Kashif Rehman ‐ McMaster University, Materials Science & Engineering 2014 

87 

 

 𝑉 =
𝜆

𝑡′ + 𝑡𝑢𝑝
   

Eq.  103 

 

 

Figure 26: A range of possible recrystallization growth kinetics, based on the use of 

various values of the fitting parameters of the precipitation growth and coarsening model.  
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3.1.4. Grain Coarsening 

In section 2.4, a review of grain coarsening models has been presented. Once 

recrystallization is complete, coarsening of fine grains starts, to minimize energy 

associated with grain boundary. In what follows we have used a simple model assuming 

that the coarsening behaviour remains self-similar. Reproducing Eq.  46, grain coarsening 

is given by 

 
𝑑𝑅

𝑑𝑡
= 𝑀𝐺𝐵 (

𝛼𝛾𝑔𝑏

�̅�
−

3𝐹𝑉𝛾

2𝑟
) 

Eq.  104  

 

The key problem in using the above equation is to have a correct estimation of grain 

boundary mobility (𝑀𝐺𝐵) and Zener drag (
3𝐹𝑉𝛾

2𝑟
). Correct estimation of Zener drag using 

microscopy is difficult due to magnitude of the number density of precipitates (1020 /m3) 

and the size resolution of TEM. Hence, 𝑀𝐺𝐵 is usually used as a fitting parameter, leading 

to non-reproducibility of grain coarsening models among various studies. In what follows 

we have argued that 𝑀𝐺𝐵 is a grain boundary parameter and should be independent of 

operating process viz. either recrystallization and grain coarsening hence effective 

mobility 𝑀𝐺𝐵,𝑒𝑓𝑓 as calculated from Cahn`s model in recrystallization module, which 

contains intrinsic mobility calculated from grain coarsening experiments on C-Mn steels 

by Zhou et al. [115]has been used here in grain coarsening model. Similarly Zener drag 

(𝑃𝑧), is calculated from the precipitation module. This allows the current grain coarsening 

module to be predictive. 
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3.1.5. Calculation of fitting parameters 

As with all the modeling work, there are varieties of parameters whose values are not 

reliably known in the domain of strain, solute content and operating temperature. These 

parameters such as activation volume of the recovery model, cross boundary diffusion 

coefficient, subgrain boundary mobility necessitate the use of experimental data to back 

calculate the constants in the model. Towards this goal we have used a step by step 

approach to first calculate the simple parameters and then increase the complexity. The 

experimental database published using torsion based stress relaxation studies were 

discarded from consideration due to the presence of strain and strain rate gradient in the 

radial direction which will introduce additional effects.  

For the calculation of parameter 𝐾1 in the subgrain growth model and in activation 

volume for recovery calculation Eq. 49, experimental database of Kwon and DeArdo 

[130] at 1000oC and 900oC was used. For the case of 900oC dynamic recrystallization was 

not reported and hence the database could be used to calculate 𝐾𝑎𝑑 in the subgrain growth 

equation (Eq.  69). To calculate 𝐾2 in Eq. 49, again Kwon and DeArdo [130] database for 

a 0.042 wt % Nb steel deformed at 1000oC was used. Under these conditions precipitation 

is possible but its kinetics at this temperature will be far slower than that of 

recrystallization. Fitting this data allowed calculation of parameter 𝐾2. The fit is 

reproduced in Figure 27. These values of 𝐾1, 𝐾2 and 𝐾𝑎𝑑 were further refined by 

simultaneously fitting all of the available experimental data.  
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3.2.  Model Validation 

The experimental literature on recrystallization of micro-alloyed steels is very vast. In 

what follows we have only used experimental data wherein optical metallography was 

used to measure the recrystallization kinetics or at least used in conjunction with the 

mechanical tests to determine recrystallization kinetics. We have intentionally discarded 

experimental database generated solely from torsional studies as the presence of strain 

gradient within the specimen is unavoidable and hence does not reveal the true picture. 

The model predictions are shown in Figure 27-Figure 33 for temperatures ranging 

between 900oC to 1050oC. In addition results from other researchers have been used, 

notably those of Yamamoto et al. [29] and Kang et al.[129] as they have also used optical 

metallography along with double-hit compression tests. The softening data were fitted 

using the 2% offset method [84] which is defined as:  

 𝑆 =
𝜎1 − 𝜎3

𝜎1 − 𝜎2

 
Eq.  105 

 

σ1 is the flow stress which is obtained by extrapolating the stress–strain curve during the 

first deformation by 2%. It represents the flow stress of the as-deformed material. σ2 is 

the stress obtained corresponding to strain of 2% in the original stress strain plot. This 

represents flow stress of the completely recrystallized material. And, σ3 is the stress 

obtained from the second deformation at 2% strain and represents the flow stress of the 

partially softened material. 
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The flow stress for the as-deformed material as a function of processing parameters, grain 

size and solute content is calculated using Yoshie’s equation. 

 𝜎 = 22.7 𝜀0.223𝜀̇0.048𝐷𝛾
−0.07𝑒𝑥𝑝 (

2880

𝑇
) 𝑒𝑥𝑝(3.01 𝐶𝑁𝑏) 

Eq.  106 

The calculation of 𝜎3 from the microstructure model is done using the method described 

by Zurob et al[5]. The chemistries of the alloys tested are given in Table 3. Figure 27 to 

Figure 42 shows the model prediction for recrystallization/softening kinetics and Figure 

31 to Figure 33 shows the model prediction for austenite grain coarsening kinetics. 

Alloy [Ref] C Si Mn P S Nb Al N Ti Mo 

N1[130] 0.1 0.46 1.6 0.004 0.006 0 0.01 0.008   

N2 [130] 0.1 0.46 1.6 0.004 0.006 0.042 0.01 0.008   

N3 [29] 0.002 0.29 1.54 0.005 0.006 0.05 0.033 0.0023   

N4 [29] 0.002 0.25 1.5 0.005 0.006 0.097 0.033 0.0027   

N5 [129] 0.076 0.06 1.34 0.005 0.002 0.03  0.0061   

N6 [122] 0.04 0.22 1.75   0.1 0.03 0.004 0.015  

N7 [119] 0.05 0.04 1.88 0.005 0.007 0.048 0.05 0.004  0.49 

Table 3: Alloy compositions (weight percent) used to validate the model. 

 

 

Remarkably all the predicted curves are in good agreement with the experimental values, 

which strongly supports the model. 
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Figure 27: Predicted and experimentally measured recrystallized fraction for steel N1 

and N2 [130] at 1000oC (strain = 0.3, strain rate = 0.1 s-1). Note the effect of solute 

niobium on recrystallization kinetics. 

 

 

Figure 28: Predicted and experimentally measured softening fraction for alloy N3 and N4 

(strain = 0.69, strain rate = 10 s-1)[29]. 
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Figure 29: Predicted and experimentally measured softening fraction for alloy N5 [129] 

(strain = 0.3, strain rate = 10 s-1). 

 

 

Figure 30: Predicted and experimentally measured softening fraction for alloy N5 [129]. 
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Figure 31: Predicted and experimentally measured coarsening kinetics of austenite grains 

for alloy N6 at 1000oC coarsening[122]. 

 

Figure 32: Predicted and experimentally measured coarsening kinetics of austenite grains 

for alloy N7[119] at 1150oC, 1100oC, 1050oC and 1000oC. The deviation from predicted 

to actual is shown by arrows. Its clear that deviation at lower temperatures are more 

pronounced,which can be attributed to the solute drag effect of 0.49 wt % Mo which the 

present model does not take into consideration. 
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Figure 33: Comparison of model prediction of coarsening kinetics of austenite grains for 

a 0.05 Nb alloy at various temperatures with the database reported by Hodgson et al.[9, 

10]. 
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3.3. Multi Pass Modeling 

 
The model described in the previous section calculates microstructure evolution after 

single pass deformation. However, all commercial steel rolling operation involves a series 

of deformation given in successive passes which are separated by some time intervals. 

Due to the difficulty and in some cases the impossible nature of sampling from industrial 

rolling mill, researchers use lab scale knowledge to extract various trends and 

dependencies which can then be exploited in actual operation.  

In what follows we have attempted to extend the single pass deformation model to multi 

pass and have analyzed a typical hot strip mill rolling schedule in this light. 

3.3.1. Average method  

In this method the entire microstructural parameters are treated as having an average 

value. At the start of each deformation pass an average value of the microstructure is 

calculated which is then used as an input to the single pass deformation model [10, 142-

144]. Sellars [19] argued that this is a valid approach as it is self-reinforcing. That is to 

say that the region which remains non-recrystallized at the beginning of second pass 

deformation will have increased local strain after deformation leading to increased 

recrystallization kinetics compared to the region which was completely recrystallized 

before second pass deformation. Sellars further argued that the microstructure evolves in 

such a way so as to minimize the total inhomogeneity at any given instant.   
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In literature, this approach as well as minor variations of it, remains the most widely used 

methodology to extend a single pass model to a multi-pass one. Sellars et al [19]used a 

law of mixture approach wherein it is assumed that recrystallized fraction X, after first 

pass deformation, will recrystallize independently with a strain of 𝜀2 (second pass 

deformation strain) after second pass deformation, whereas the non-recrystallized fraction 

(1-X) after first pass  will recrystallize with a strain of 𝜀1 + 𝜀2. Militzer[145] in his review 

paper of multi pass modeling argues that in the context of industrial processing this 

approach is quite pragmatic given the statistical noise in data collection. The overall 

kinetics is then obtained by calculating the weighted average of the volume fraction by its 

fractional softening. This strategy works well, when either the interpass time is less or the 

rolling temperatures are low as the recovery kinetics is inherently assumed to be 

negligible when adding the two strains together in the non-recrystallized region. The next 

improvement in this approach was due to Hodgson, Gibbs, Ibabe, Jonas et al. [10, 142, 

143, 146]by taking into consideration the effect of recovery by introducing a factor before 

𝜀1 . 

 𝜀𝑒𝑓𝑓 = 𝜀2 + 𝜑(1 − 𝑋)𝜀1 
Eq.  107 

 

They demonstrated in their experiments that for short interpass time, low temperature and 

high Nb content 𝜆 approaches unity. For C-Mn steels they found 𝜙 to be close to 0.5 

under typical processing conditions [10, 142, 143, 146].  
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For the effective grain size calculation Pereda et al. [110] proposed to use the 

recrystallized grain size as the effective grain size. The assumption is quite reasonable as 

in commercial rolling during intermediate deformation passes the average grain size is 

quite small and the number density of recrystallized grains are much higher than that of 

non-recrystallized ones, due to which the number-averaged grain size is closer to the 

recrystallized grain size[110]. On the other hand, Sellars et al. [19] treated the two regions 

(recrystallized and non-recrystallized) as separate microstructure, the grain size of which 

evolves independently. Fulvio and Jonas [142]used a geometrical consistent approach and 

used the following relationship. 

 𝑑𝑜,𝑖+1 = 𝑑𝑟𝑒𝑥,𝑖 𝑋𝑖

4
3 + 𝑑𝑜,𝑖(1 − 𝑋𝑖)

2 
Eq.  108 

where, 𝑑𝑟𝑒𝑥,𝑖 is the recrystallized grain size after rolling pass 𝑖, 𝑑𝑜,𝑖 is average grain size 

entering pass deformation 𝑖 and 𝑑𝑜,𝑖+1 is the effective average grain size entering 

deformation pass 𝑖 + 1 . 

3.3.1.1. Modeling Framework 

Flow Stress: The approach we have taken to model multi-pass slightly defers from what 

is discussed in the previous section. The decay in flow-stress due to various softening 

mechanisms is calculated using the approach mentioned in section 3.2 [132]. The flow 

stress before second pass deformation has been used to calculate the retained strain in the 

microstructure. To this retained strain the second pass strain is added. This total strain 

gives the initial stored energy after second pass deformation which is used for softening 

kinetics calculation after second pass. 
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Equivalent grain size is calculated using the above uniform softening equation Eq.  108. 

The equations developed here are for isothermal conditions. However, discretizing 

temperature with respect to time one can extend the model for non-isothermal conditions. 

Using this approach we have modeled the microstructure evolution in multi pass rolling 

and have analyzed typical rolling schedules for conventional strip rolling as discussed in 

section 5.1.  

The key complication in extending the single pass model to multi-pass is the treatment of 

partial recrystallization regime. In partial recrystallization, the microstructure is 

composed of non-homogeneous mixture of soft (recrystallized) and hard (work hardened) 

grains. When deformation is applied to this composite microstructure, the challenge is to 

partition applied strain in the hard and soft regions. Conventionally either iso-stress or  

iso-strain conditions are used but they are not strictly applicable, as the softer grains 

deform more compared to work hardened grains. We tried to address this by using a 

fractional softening based approach as detailed in section 3.2. Another pertinent issue in 

treatment of partial recrystallization with mean field based approach is lack of detail of 

spatial distribution of strain across the microstructure. In other words, consider a case of 

partial recrystallized microstructure wherein the stored energy (strain) in work hardened 

grains is just below the critical strain for recrystallization. A small deformation in next 

pass rolling will be sufficient to trigger recrystallization in these work hardened grains, as 

they will easily overcome the critical strain required. However the effective stored energy 

(effective strain) calculated by averaging it over the entire microstructure will be lower 

than what is present in the work hardened grains. A case may arise that a second pass 
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deformation when applied, the work hardened grains would have recrystallized whereas 

the calculations would show no recrystallization as the effective stored energy (strain) is 

lower than the critical value needed for recrystallization. This will lead to erroneous 

results. We have tried to analyze this situation by using a similar modeling framework as 

reported by Sellers and Whiteman [19], wherein the recrystallized and non-recrystallized 

regions are treated separately for next pass deformation.  

In spite of the various modeling approaches taken tracking the microstructure evolution 

and its modelling in case of partial recrystallization is difficult which is further 

exacerbated due to stochastic nature of the problem. Consequently, the trend in 

commercial rolling of microalloyed steels is to completely avoid this scenario by not 

rolling in that temperature window, as partial recrystallization has been associated with 

poor fracture properties by creating non-homogeneous microstructure. The new concept 

of O-HTP (optimized high temperature processing) of Nb microalloyed steels[3] and 

HOP process for seismic grade line pipes[147, 148], demonstrates that rolling should not 

be done in partial recrystallization window for enhanced mechanical properties hence 

evolution of microstructure during deformation in partially recrystallized condition 

becomes ineffective from industrial processing scenario. 

Since the model predicts the flow stress evolution[149] we have used this to predict 

rolling forces using Sim’s model[150], the details of which are given in Chapter 9. 
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3.3.2. Quasi-Mean field approach 

As a means of incorporating the distribution of physical parameters (strain, grain size etc) 

a modified version of a mean field model has been employed: 

This approach is largely based upon the work of Cram et al. [134]. In this approach, a 

polycrystalline microstructure is represented by a set of grains embedded in a medium 

with average properties same as that of the bulk material state properties  such as grain 

size, dislocation density etc are assigned to each of the grains.  

 

Figure 34 : Schematic diagram of grains immersed within an average matrix. Di is the 

grain size and 𝜌𝑖 is the dislocation density[134]. 

 

In the present case we have created a distribution of grains and assigned an initial value to 

them. Once deformation is applied to the grain ensemble, the macroscopic strain applied 

is partitioned into each grain using the Iso-Work principles developed by Bouaziz et 
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al.[151]. The idea behind this is that each grain deforms to a strain 𝜺𝒊 such that the total 

work done by all the grains remains the same. In other words 

 𝑑𝜀𝑖 =
𝐾

𝜎𝑖
 

 

Eq.  109 

where K is the work done by each grain and the subscript 𝑖 represents the grain index. In 

this description the softer grains deform more compared to the harder grains. The 

partitioning occurs in such a way that the total macroscopic strain remains conserved. 

 𝜀𝑚𝑎𝑐 =
∑ 𝑉𝑖𝑑𝜀𝑖

∑ 𝑉𝑖
 

 

Eq.  110 

where 𝑉𝑖 is the volume of grain 𝑖.  

 

Figure 35: Plot of grain size distribution entered into the model. The mean grain size is 

600µm having a standard deviation of 99.52 µm with the maximum and minimum size 

being 925 µm and 275 µm. 
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Figure 36: Strain and plastic stress (stress due to dislocation) of the grains when the 

ensemble was deformed to a macroscopic strain of 0.3 at a rate of 10/sec at 1100 oC 

having 0.05 Nb. The starting grain size distribution is shown in Figure 35. 

 

 

Figure 37: Strain rate experienced by each grain when the ensemble was deformed to a 

macroscopic strain of 0.3 at a rate of 10/sec at 1100 oC having 0.05 wt % Nb. 

0.285

0.29

0.295

0.3

0.305

0.31

82

83

84

85

86

87

88

200 400 600 800 1000

St
ra

in

σ
-σ

0
 , 

M
P

a

Grain size, µm

σ-σo

strain

9.5

9.6

9.7

9.8

9.9

10

10.1

10.2

10.3

200 400 600 800 1000

St
ra

in
 r

at
e,

 1
/s

e
c

Grain size, µm

strain rate



PhD Thesis – Kashif Rehman ‐ McMaster University, Materials Science & Engineering 2014 

104 

 

A grain ensemble of 998 grains having 0.05 Nb was created having a mean grain size of 

600 µm with a standard deviation of 99.52 µm. The maximum and minimum grain sizes 

in the distribution are 925 µm and 275 µm Figure 35. The grain ensemble was subjected 

to a strain of 0.3 at a strain rate of 10s-1. Using Iso-Work principles the macroscopic strain 

applied partitions in such a manner that the total work done remains the same. Figure 36 

shows the microscopic plastic stress and the corresponding strain of each grain. The 

microscopic strain and macroscopic strain rate applied determines the microscopic strain 

rate experienced by each of the grain as shown in Figure 37.  

During first pass deformation, the larger grains are softer (as yield stress is low, hall-petch 

relationship) and hence deform more. This decides the microscopic stress for each grain 

at the end of deformation which is then used to calculate the recovery kinetics for each 

grain separately using Eq.  111.  

 
𝑑𝜎𝐷,𝑖

𝑑𝑡
= −

64𝜎𝐷
2𝜐𝑑

9𝑀3𝛼𝐸
𝑒𝑥𝑝 (−

𝑈𝑎

𝑘𝑏𝑇
) 𝑠𝑖𝑛ℎ (

𝜎𝐷𝑉𝑎

𝑘𝑏𝑇
) (1 −

𝑛𝑝𝑝𝑡

𝑛𝑐
)   

Eq.  111 

Figure 38 shows the recovery kinetics for the smallest and largest grain. The plot for rest 

of the grains lies between the two curves. The difference between the plastic stress as a 

function of grain size after deformation is shown in Figure 36 . This initial difference in 

stress leads to the difference in recovery kinetics at earlier times as is shown in Figure 

38. Since recovery kinetics is proportional to the initial stress, it causes accelerated decay 

in higher stressed ones, leading to similar value of stress among all the grains at later 
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times. This observation is in line with Sellars [19] statement that microstructure evolves 

in such a way so as to cancel the inhomogeneity between them.      

 

 

Figure 38: Stress relaxation due to recovery for the largest and smallest grains in the 

distribution. The plot for intermediate sizes lies between the two curves.  

 

Recrystallization is modeled using the same approach as described in Section 3.1.3. 

Nucleation is calculated using Bailey Hirsch criterion for all the grains. 

 𝒓𝒄,𝒊 =
𝟐𝜸

𝑮𝒊
 

 

Eq.  112 
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Similarly the recrystallization kinetics is calculated for the entire ensemble of grains. 

Figure 39 shows the evolution of microscopic recrystallization volume fraction evolution 

for the smallest and the largest grain. Similarly to Figure 38 the recrystallization kinetics 

for other grains lies between the two. The macroscopic volume fraction of 

recrystallization will be the volume average for each grain. The distribution of 

recrystallized grains is shown in Figure 41. Comparing Figure 41 and Figure 35  one 

would observe that due to recrystallization the mean grain size and its standard deviation 

both have reduced considerably.  

In Figure 40, one would observe significant difference in recrystallization kinetics for the 

largest and the smallest grains. However upon close scrutiny this doesn't appear to be the 

case. Recrystallization progress depends upon driving force and boundary mobility. The 

plot of stress (driving force) evolution for the two grains is shown in Figure 38. As 

recovery rate is proportional to the initial stress, hence the initial difference in stress is 

eliminated with the progress of recovery. Mobility of the boundary is only dependent 

upon temperature and solute content due to which it remains same for all the grain 

boundaries. As driving force is similar across all grains hence nucleation of 

recrystallization occurs at similar times. In case of larger grains, total nucleation volume 

is small compared to initial grain volume, hence in recrystallization volume fraction plot 

it is barely visible (X (925 µm), Figure 39), whereas for smaller grains it becomes visible 

at early times (X (275 µm), Figure 39). Similar is the case for recrystallization growth. 

The rate of advancement of recrystallization front is given by boundary mobility times 

driving force which remains almost same across all grains. The apparent difference 
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observed in Figure 39 is due to the fact that in case of larger grains (925µm) the 

recrystallization front needs to cover more distance (925/2 µm) whereas for smaller grains 

(275 µm) the front needs to cover much smaller distance (275/2 µm). Due to this even 

when recrystallization is over in smaller grains it is still going on in larger grains. Figure 

40 shows the rate of advancement of recrystallization front for the largest and smallest 

grains and as expected the plot for the two grains (925 and 275 µm) are almost identical. 

 

Figure 39: Recrystallized volume fraction evolution for the largest and smallest grains in 

the distribution. The plot for intermediate sizes lies between the two curves. 

 

 

0

0.2

0.4

0.6

0.8

1

0.001 0.01 0.1 1 10 100 1000

R
e

cr
ys

ta
lli

ze
d

 V
o

lu
m

e
 F

ra
ct

io
n

Time,sec

X(275 µm)

X(925 µm)



PhD Thesis – Kashif Rehman ‐ McMaster University, Materials Science & Engineering 2014 

108 

 

 
Figure 40: Plot of rate of advancement of recrystallization front for the largest and 

smallest grains in the distribution. 

 

 
Figure 41: Recrystallized grain size distribution. Comparing with starting size 

distribution (Figure 35), both the mean and standard deviation has reduced considerably. 
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The key advantage of this approach is the ease with which the next pass deformation can 

be incorporated into it. The next pass deformation only updates the state parameters 

(dislocation density, strain, strain rate etc) to the existing values of the ensemble. The key 

disadvantage of this method is high computation time. The mean field approach described 

earlier takes only 1-2 seconds to run on a desktop computer whereas the current quasi-

mean field model could take anywhere from 1 min to 15 minutes depending on the 

number of grains and annealing time used in the calculation. Further improvement to this 

approach can be done using a cellular automaton method. The drawback of the present 

method is its inability to address spatial in-homogeinity and tracking the neighbours. 

Spatial in-homogeinity refers to the effect of triple junctions, concave/convex grain 

boundary, dislocation density difference on two sides of grain boundary, local orientation 

gradient etc. 

4. Discussion/Validation 

In the previous chapter a coupled model of recrystallization, recovery, precipitation and 

grain coarsening was presented. As with any physically based modeling a number of 

unknown/fitting parameters have been used. Care has been taken to fix all the parameters 

by fitting the model onto various experimental databases reported in literature. A single 

set of these parameters could fit all the experimental data is very reassuring.   

To further showcase the subtle features of the recrystallization model we have taken a 

specific case of C-Mn steel at 900 oC, the overall kinetics of is shown in Figure 42(a), and 

analyzed the various aspects of the model. 
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Figure 42: (a) Predicted and experimentally measured recrystallized fraction for steel 

N1[130] at 1000 oC and 900 oC (strain = 0.3, strain rate = 0.1 1/s). Note the effect of 

temperature on recrystallization kinetics. (b) Plot showing the evolution of sub-grain sizes 

(largest, mean) and the critical radius for recrystallization nucleation. (c) Plot showing the 

evolution of nucleation rate. Note that site saturation is quickly achieved leading to 

nucleation rate dropping down to zero. (d) Plot showing the evolution of Avrami 

exponent. Note the Avrami exponent changes with the progress of recrystallization. 

 

 

4.1.  Nucleation Module 

Figure 42(b), shows the kinetics of subgrain growth. The plot shows the evolution of 

mean grain size, the maximum grain size and the critical condition for nucleation. The 

maximum subgrain size is calculated to be three times that of mean at any given time 

instant as shown in the plot. Nucleation starts when the largest subgrain overcomes the 
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critical condition which in the present case is 3 sec. Figure 42(c) shows the nucleation 

rate (calculated) as a function of time. The initial increase in nucleation rate is due to the 

fact that with time more and more subgrains overcome the criticality condition barrier due 

to subgrain growth.  

Once nucleation rate reaches to a maximum, it starts decreasing rapidly due to the 

competition between increased number of sub-grain having the size advantage and the 

decrease in the available recrystallization nucleation sites at the grain boundary. 

Another very important deduction from the modeling is that in the case of static 

recrystallization the total time for nucleation, i.e total time taken for site saturation 

condition to achieve is a small fraction of time it takes for recrystallization to be 

complete. In other words, it means that in the case of static recrystallization nucleation 

rate is very high and site-saturation occurs quickly. Because of this reason and despite of 

the assumption of site-saturation taken by lot of researchers they are able to predict 

recrystallization kinetics with reasonable accuracy. In the present example, total of 25 

new grains are formed from one deformed grain. The mean grain size decreased from 

200µm to approximately 70µm at the end of recrystallization. 

4.2.  Avrami plot 

For recrystallization growth analysis JMAK plot for this case has been plotted in Figure 

42(d). From the figure it is evident that the growth exponent continuously changes 

throughout the recrystallization evolution; the value of which depends upon the 

nucleation rate, driving force and growth dimensionality. An effective Avrami exponent 
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of 1.3 has been extracted from the plot. Ideally the Avrami exponent should be 2 when 

site-saturation assumption and recrystallization growth is assumed to originate from the 

outer shell and grows inwards. The actual exponent is however lower due to the fact that 

nucleation is non-random, site-saturation assumption has not been made and the driving 

force is non-constant and decreases continuously due to recovery. Experimentally for the 

case of low carbon steels Avrami exponent has been found to be between 1 and 2. The 

reproduction of established trends by the model has developed our confidence in it. 

Subsequently we compared the effect of chemistry and processing parameters in 

recrystallization kinetics. 

4.3.  The effects of Solute Nb 

Figure 8 shows the effect of solute Nb on the recrystallization kinetics. As is evident 

from the experimental results, Nb delays both the growth kinetics as well as nucleation 

kinetics. In our modelling both of these effects has been captured.  

The effect of solute Nb on increase in incubation time for recrystallization is due to 

slower subgrain growth (section 3.1.3.1). The solute Nb atoms pins the extrinsic 

dislocations, thereby slowing the subgrain growth. 

The effect of solute Nb on recrystallization growth is due to reduced grain boundary 

mobility from solute drag effect[29]. This is captured using Cahn's model of solute drag 

through Eq.  87.  
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If one looks into activation volume equation (Eq. 50) in recovery module (Eq.  90), one 

will notice that addition of solute Nb slows down recovery kinetics which will lead to 

increase in recrystallization driving force and consequently increased recrystallization 

kinetics. However this effect is weaker compared to solute drag effect due to which the 

net result is slower recrystallization kinetics in presence of solute Nb. 

From the experimental data base (Figure 27), it is worth pointing out that addition of 0.04 

wt% Nb lead to decrease in t50% recrystallization by an order of magnitude. 

4.4.  Effect of grain size 

In steel processing recrystallization is the only mechanism to refine grain size in single 

phase which has led to lot of effort in the past to understand the kinetics. Effect of starting 

grain size for complete recrystallization (t95%) was investigated by lot of researchers. 

Sellars et al. [19] reported that t95% is proportional to square of initial grain size, as it 

reflects the available area for recrystallization nucleation [152]. To compare with Sellars 

model we have generated a similar plot under the same conditions as used by Sellars as 

shown in Figure 43 .  
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Figure 43: Plot showing the dependence of time for 95 pct recrystallization on initial 

grain size. 

 

From the plot (Figure 43), the initial grain size exponent (2.09) matches well with the 

validated semi-empirical model of Sellars and other researchers [10, 19]. 

4.5.  Effect of strain 

Figure 27 to Figure 42 shows the effect of strain on static recrystallization kinetics.  The 

figures are plotted for strain varying from 0.3 to 0.8. From a preliminary analysis of the 

experimental database, one may observe that increasing strain leads to increase in 

recrystallization kinetics. However attempting to make a comparison between the current 

model with semi-empirical model published in literature does not provide a unique 

correlation. Applied total strain being not a state variable is the key reason behind this. 

The relevant parameters which effect microstructure evolution are dislocation density and 
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surface to volume ratio of the deformed grain (Sv factor). The relationship between 

applied strain and dislocation density is not unique as it is affected by strain rate, strain, 

grain size, solute content and evolves with time due to recovery. As such it is not possible 

to develop a unique relationship between the two.  

This is also reflected in the fact that different researchers have reported different 

expressions for recrystallization time (t95%, t50%, t5%,) on strain; including some cases 

where the exponent were a function of Nb and grain size. Reproducing t5%  as reported by 

Hodgson et al. [10], wherein the strain exponent is a function of Nb; 

 𝑡5% = (−5.24 + 550[𝑁𝑏])10−18 𝐷0
2 𝜀(−4+77[𝑁𝑏]) exp (

330,000

𝑅𝑇
) 

Eq.  113 

Similarly, Fernandez et al. [11]reported strain exponent to be a function of starting grain 

size. 

𝑡5% = 9.92 ∗ 10−11 𝐷0 𝜀−5.6𝐷0
−0.15

𝜀̇−0.53𝑒𝑥𝑝 (
180,000

𝑅𝑇
) 𝑒𝑥𝑝 ((

2.75 ∗ 105

𝑇

− 185) ([𝑁𝑏] + 0.374[𝑇𝑖])) 

 

Eq.  114 

 

We have attempted to make a limited comparison for C-Mn steels for grain size of 200 

µm and subjected to strain rate of 10/s. The obtained strain exponent for t95% 

recrystallization is -1.6. Using the expressions mentioned above (Eq.  113, Eq.  114) the 

strain exponent is found to be -1.69 and -2.5 for the case of 0.03 wt % Nb and 200µm 
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grain diameter. The model obtained strain exponent is in reasonable agreement with the 

values reported in literature.  

4.6.  Nucleation Parameter (𝑭𝑵) 

The parameter 𝐹𝑁 in Eq.  58 in the precipitate nucleation module relates to the total 

number of precipitates. In the classical nucleation model an Avrami term(1 − 𝑛
𝑛𝑡𝑜𝑡𝑎𝑙⁄ ) 

was used by Zurob et al. [5] to take into account the progressive decay in available 

nucleation sites. 𝑛𝑡𝑜𝑡𝑎𝑙 is the total number of nucleation sites which is approximated by 

the following relationship. 

 𝑛𝑡𝑜𝑡𝑎𝑙 = 𝐹𝑁  
𝜌

𝑏
 

 

Eq.  115 

Where 
𝜌

𝑏⁄  relates to the maximum possible number density of precipitates 

accommodated in the current strain, 𝐹𝑁 is a parameter smaller than unity which relates to 

minimum distance between precipitates on a dislocation line. The parameter is estimated 

by fitting the precipitate diameter and number density concurrently. The adjustable 

parameter 𝐹𝑁 varied from 0.0018 at 850 oC to 0.009 at 1050 oC. From the values of 𝐹𝑁 

obtained by fitting the data, it is clear that the recrystallization kinetics is not very 

sensitive to the 𝐹𝑁 values. 
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4.7.  Recrystallized grain size 

Nucleation module is an important feature of the present recrystallization model. 

Knowing the total number of nuclei per deformed grain one could predict the 

recrystallized grain size. 

For the experimental studies to which the model has been validated against i.e. Figure 27 

to Figure 42, the recrystallized grain size was not reported. However looking at the 

softening curve one would notice that softening is never 100% complete as grain 

refinement leads to hardening of the microstructure. The current model is able to 

reproduce these trends accurately.  

By comparing the prediction from the current model to the semi-empirical relationship 

reported in literature additional validation of the present model can be done keeping in 

consideration the effect of recovery in recrystallization driving force and hence 

recrystallized grain size. The effect of recovery has not been captured in the semi-

empirical work. In widely cited work of Sellars et al. the recrystallized grain size is 

expressed as a function of initial grain size and total strain;  

 𝑑𝑟𝑒𝑥 =
1

2

𝑑0
𝑛

𝜀𝑝
 

Eq.  116 

Where, 𝑛 = 0.67 and 𝑝 = 1 for the case of C-Mn steel, and 𝑛, 𝑝 = 0.67 for the case of 

microalloyed steel.  

 



PhD Thesis – Kashif Rehman ‐ McMaster University, Materials Science & Engineering 2014 

118 

 

 

Figure 44: Plot showing the dependence of recrystallized grain size on the initial grain 

size for (a) C–Mn steel. (b) 0.03 Nb microalloyed steel. 

 

Figure 44 shows the plot of recrystallized grain size as a function of initial grain size for 

both C-Mn and Nb microalloyed steels. From the plot, the exponent 𝑛 of Eq.  116 is 

calculated to be 0.68 for C-Mn steel and 0.64 for Nb microalloyed steels. This is in 

excellent agreement with Sellars semi-empirical validated model. 

Similarly a unique value for 𝑝 cannot be established, as the number of nuclei formed is 

also dependent upon recovery kinetics. This leads to 𝑝 being a function of temperature, 

strain, Nb as well as Sv factor rather than a unique number. In the work of Perdrix et 

al.[153] p is expressed as a function of Sv and temperature. 

5. Technological Application: Thermo mechanical Processing  

The schematic of thermo-mechanical processing is shown in Figure 1. The first set of 

deformations is applied at high temperature, followed by second set of deformation 

performed at relatively lower temperature. In between the bar is held for certain period of 

time to drop the temperature below the no recrystallization temperature or 
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recrystallization stop temperature. After the second set of deformation also known as 

finish rolling the bar is cooled at an accelerated rate. The deformation below RST leads to 

accumulation of stored energy in the form of dislocation tangles and micro-bands. This 

increased strain followed by accelerated cooling leads to refinement of transformed 

microstructure. This refinement of transformed microstructure without the need of 

separate heat treatment schedule is known as thermo-mechanical processing of steels. In 

this processing scenario a small amount of alloying leads to large increase in strength by 

precipitation strengthening. Further increase in strength is due to the effect of ultra-fine 

precipitate in providing grain size control.  

The two important variables in thermo mechanical processing are the amount of 

deformation in rough rolling and finish rolling. Since the initial slab thickness is fixed 

from the caster mould thickness and final strip thickness is fixed by the customer, one 

cannot independently partition the percentage deformation in rough and finish rolling. 

Generally speaking a maximum of 75% deformation in roughing and finishing is 

preferred, however if the above is not achievable one need to optimize the schedule based 

on the amount of grain refinement and pancaking achieved, the details of each aspect is 

discussed in detail subsequently. 

Rough Rolling: The metallurgical objective of rough rolling in TMCP is to refine the 

austenite grain size. In time it became clear that low temperature fracture toughness, HAZ 

toughness, and other mechanical properties [154-157] relate to austenite grain size 

control. Since recrystallization is the only mechanism for grain refinement, hence for 

complete recrystallization rough rolling should be done at high enough temperature where 
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there is no thermodynamic potential for strain induced precipitation of Nb, and where the 

recrystallization is fast enough to completely refine the coarse as-cast grain size (~1500 

µm). 

Delay Table: The objective of introducing a delay is to drop the temperature below RST. 

However this leads to significant coarsening of recrystallized austenite grains, which in 

the case of C-Mn steels occurs without any hindrance from precipitates. It has been 

reported [158] that in commercial processing of C-Mn steels, AlN doesn’t precipitate 

during hot rolling. The same is true for V microalloyed steels [144]. In the case of Ti 

microalloyed steels it has been suggested that either due to their low volume fraction used 

in commercial alloys or due to their coarse size they have limited effectiveness in pinning 

grain boundaries [144, 159] as the driving force for grain coarsening is higher for smaller 

grains than that of larger grains as given by Eq. 41 (see Figure 45). For a commercial Nb 

microalloyed steel, significant precipitation is not expected in the given temperature 

window (1100 oC-1000 oC) [160, 161]. Due to this significant grain coarsening takes 

place the rate of which is proportional to mobility times driving force. Boundary mobility 

for grain coarsening is same as that for recrystallization and the driving force is due to 

curvature. 
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Figure 45: Plot of driving force for grain coarsening as a function of recrystallized grain 

size. 

 

The grain coarsening rate is given by;  

 𝐷𝑓 = √𝐷𝑖
2 + 16 𝛾𝑔𝑏𝑀𝑔𝑏(𝑡𝑓 − 𝑡𝑖) 

Eq.  117 

This gives isothermal grain coarsening. The effect of temperature enters the above 

equation through 𝑀𝑔𝑏 and  𝛾𝑔𝑏. Writing temperature as a function of time one could 

extend the above equation to non-isothermal cooling as well.  

The effect of varying solute Nb, cooling temperature window and cooling rate on non-

isothermal grain coarsening kinetics is shown in Figure 46 using Eq. 117. A starting 
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grain size of 15µm has been considered for the calculation. From the figure one could 

observe that the effect of lowering the temperature window on grain coarsening is same 

as that of an increase in solute Nb. Also it is evident from the figure that high solute Nb 

coupled with low temperature window and high cooling rate gives maximum reduction in 

coarsening kinetics.  

 

Figure 46: Effect of cooling rate, temperature window and solute Nb on grain coarsening 

kinetics. 

 

 

In a typical rolling mill setup one cannot independently decrease the finishing mill entry 

temperature or increase cooling rate, without increasing delay time, as only ambient air 

cooling is used in most of the rolling mill.  
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We are proposing use of a water based accelerated cooling system on delay table at the 

exit of roughing mill. The schematic of this system is shown in Figure 47. To keep the 

engineering design simple, slight modification of existing laminar headers which are used 

after finish rolling will be sufficient for this purpose.  

 
 

Figure 47: Schematic of proposed accelerated cooling system between rough and finish 

rolling to minimize grain coarsening and independently target finishing mill entry 

temperature.  

 

 

Finish Rolling: From TMCP (Figure 1) the objective of finish rolling is to accumulate 

strain. This is achieved by rolling below RST (recrystallization stop temperature). RST 

can be achieved by allowing carbo-nitride precipitation to come out at higher 

temperatures by increasing the interstitial level. This leads to an increase in precipitate 

volume fraction which prevents recrystallization. This is not a preferred route as the 
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precipitate which comes out at higher temperature exhibits enhanced coarsening due to 

increased diffusion rates leading to a reduced number density of large size particles. 

These hard and large particles act as crack nucleation sites during deformation leading to 

poor fracture toughness, hence should be completely avoided.  

The other mechanism to stop recrystallization is to slow down boundary mobility by 

reducing the bar temperature as it is temperature dependent (Eq.  86). By preventing 

precipitation to take place in austenite at higher temperature one can conserve the solute 

to precipitate out during transformation. This can be achieved by lowering the interstitial 

content. The advantage of this methodology is that Nb being in solution will be able to (i) 

further slow boundary mobility by its solute drag effect, (ii) promote transformation 

hardening by promoting diffusionless products such as acicular/banitic ferrite, (iii) 

enhanced strengthening by inter-phase precipitation leading to nano-scale precipitates. 

Advanced line-pipe steels based upon high Nb low interstitial design wherein low 

temperature fracture properties are essential exploit these concepts. Stress relaxation 

studies have shown that the precipitation is not significant enough to arrest softening (see 

Figure 48). However older alloy designs based upon high interstitial content can arrest 

the softening kinetics. A RPTT plot for 0.066 Nb steel containing 0.29 C and 62 ppm N is 

shown in Figure 49. Another important feature to observe is the incubation time for 

precipitation. In Figure 49 precipitation starts around 10 sec and finishes at close to 50 

sec. In modern high productivity tandem strip mills the total time for finish rolling is 10-

15 sec in 5-7 passes with per pass deformation 15-20% and inter-pass time decreasing 



PhD Thesis – Kashif Rehman ‐ McMaster University, Materials Science & Engineering 2014 

125 

 

from 4 to 0.5 seconds in finish rolling hence significant volume fraction of static 

precipitation is not expected.   

 

Figure 48: Stress relaxation plot of 0.1 Nb steel containing 0.04C and N≤40ppm 

deformed to 18% at 900oC [122] 

 

 

Figure 49: RPTT plot for 0.066 Nb steel containing 0.29C and 62ppm N deformed to 

26.5% [161] 
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Rolling below RST during finish rolling leads to marked changes in microstructure viz. 

(i) Geometric effect and (ii) Strain accumulation.  

(i) Geometric effect: Rolling below RST leads to elongation of equiaxed grain. 

Since transformation nucleates from boundary these elongated grains provide increased 

nucleation sites, leading to finer transformed products. This is quantified by the parameter 

(SV) surface to volume ratio. It can be expressed by the equation of Yoshie et al. [162]. 

 𝑆𝑉 = (
24

𝜋𝐷𝑖
) (0.491 𝑒𝜀 + 0.155 𝑒−𝜀 + 0.143 𝑒−3𝜀) 

 

Eq.  118 

 

(ii) Strain accumulation: This relates to the increase in dislocation density due to 

deformation below RST which is analogous to cold rolling. This is carried out mostly 

during finish rolling of hot rolling process. Here the temperature is relatively lower 

compared to rough rolling along with presence of strain induced precipitation recovery 

kinetics is minimized. This leads to rapid build-up of dislocations. The increased 

accumulated strain increases driving force for austenite to ferrite transformation at a 

higher rate leading to finer ferrite grain size. Sellers and Banyon[128], Gladman[4], 

Kozazu[2] and others have demonstrated that for any given SV, increase in accumulated 

strain is accompanied by increase grain refinement (Figure 50).  
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Figure 50: Dependence of ferrite grain size on austenitic grain size and retained strain in 

Nb-steel plate [2]. 

 

 

5.1.  Comparison 

In this section with the help of microstructure modeling developed earlier. We will try to 

analyze microstructure evolution of a typical case (S1) and compare it with a proposed 

schedule with reduced alloying content (S2). Chemistry of S1 and S2 are mentioned in 

Table 4 and their rolling schedules are tabulated in Table 5. 

Steel C, wt% Mn,wt % Nb, wt% N, ppm 

S1 0.06 1.57 0.06 60 

S2 0.05 1.57 0.03 60 

Table 4: Alloy chemistries for the two steel samples S1 and S2. For steel S2 interstitial 

control is preferred. 
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Sample-S1 

 

Sample-S2 

           Stand Thk,mm %redn Temp,C Time,s 

 

Stand Thk,mm %redn Temp,C Time,s 

RME 210       

 

RME 210       

R1 188.8 10.1 1180 0 

 

R1 157 25 1180 0 

R2 158.6 16.0 1165 16.4 

 

R2 117 25 1140 16.4 

R3 126.6 20.2 1140 31.1 

 

R3 93 21 1110 31.1 

R4 98.5 22.2 1125 46.4 

 

R4 75 19 1090 46.4 

R5 77.4 21.4 1110 60 

 

R5 58 23 1060 60 

R6 57.7 25.5 1095 78.3 

 

R6 43 26 1030 78.3 

R7 41.8 27.6 1080 97.7 

 

R7 30 30 1000 97.7 

F1 23.4 44.0 1014 177.7 

 

F1 21 30 910 177 

F2 17.1 27.1 994 182.1 

 

F2 17 19 895 182 

F3 13.5 20.7 965 185.4 

 

F3 14 16 870 185 

F4 11.8 12.8 941 187.8 

 

F4 12 16 860 188 

F5 10.2 13.4 922 189.9 

 

F5 11 8 850 190 

F6 9.3 8.7 902 191.8 

 

F6 10 9 840 192 

Table 5: Hypothetical rolling schedule for the two cases of S1 and S2. The rolling 

schedule is of conventional hot strip mill. 

 

Figure 51 shows the austenite grain size evolution during rough rolling due to static 

recrystallization. The temperature window of rough rolling is selected so as not to have 

any strain induced precipitation of Nb(C,N) which otherwise will interfere with the 

recrystallization process. The grain size evolution is dependent on strain as temperature is 

sufficiently high. The rough rolling schedule of S2 has higher strain leading to more grain 

size refinement as shown in Figure 51(b). The high strain is also expected to improve 

strain penetration. 

Once recrystallization is over, fine recrystallized grains tend to coarsen. For low C 

systems in the temperature window (900-1100 oC) and the absence of strain, strain 

induced precipitation is not able to pin the grains which leads to grain coarsening. 
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Figure 51: Grain refinement by static recrystallization during rough rolling. (a) For steel 

S1 and (b) for steel S2. 

 

Due to high temperature and sufficient long time (~60s) at the delay table significant 

grain coarsening takes place. 

 

Figure 52: Plot showing the grain coarsening for steel S1 and S2. S2 is cooled initially at 

an accelerated rate of 4K/sec.  
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To minimize grain coarsening, lowering the temperature window at delay table is 

preferred. However care has to be taken that RM exit temperature should not be such to 

cause incomplete grain refinement. Accelerate cooling using water, air mist or 

compressed air is preferable as it will rapidly cool through the high mobility temperature 

window. As shown in Figure 52 a combination of accelerated cooling less total time has 

drastically reduced the grain coarsening of sample s2. Increasing solute Nb is beneficial 

due to its solute drag effect, but it necessarily imposes an upper limit on allowable C and 

N content which usually is a challenge.  

 

Figure 53: Plot showing the accumulation of plastic stress as a function of time for steel 

S1 and S2. Zero time corresponds to start of finish rolling. 

 

 

Figure 54: Plot showing the evolution of stress as a function of strain for steel S1 and S2. 

The plot is for finish rolling. 
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From thermo-mechanical rolling perspective, the objective of finish rolling is to 

accumulate strain and increase SV factor.  

Figure 53 and  

Figure 54 show the accumulation of stress as a function of time and strain for both steel 

S1 and S2. The plot shows considerable inter-pass softening in case of S1. This is due to 

increased recovery kinetics because of high temperature.    

 

Figure 55: Solute Nb evolution as a function of finish rolling time for alloy S1 and S2. 

Irrespective of the initial solute Nb content maximum precipitation occurs between F6 

exit and laminar cooling. 
  

 

Figure 55 shows the amount of Nb remaining in solution in finished rolling. Due to low 

inter-pass time static precipitation of Nb during rolling is very low. However during the 

time when the bar leaves the last rolling stand and hits accelerated cooling, maximum 

strain induced precipitation takes place. This is due to the fact that during this time, the 

accumulated strain is maximum and temperature is minimum resulting in enhanced 

driving force for precipitation. For steel S2 the amount of Nb precipitated out is less 
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because of low supersaturation. Increased solute Nb in finished rolling is preferred as it 

leads to transformation hardening and interface precipitation contributing to the strength 

and ductility. 

Sv factor relates to the geometric measure of pancaking and has been related to the 

transformed ferrite grain size (see Figure 50). As shown previously that Sv depends both 

on starting austenite grain size and percentage reduction below RST, the implication of 

which is shown in Figure 56. The prior austenite grain size of S2 being smaller leads to a 

higher final Sv than S1 although the total deformation given in finish rolling is higher in 

S2 than in S1. 

 

Figure 56: Evolution of SV as a funtion of applied strain in finish rolling using Eq.  118. 

Smaller  austenite grains in S2 leads to increase in SV even with low total strain. 

 

Summary: Room temperature mechanical properties have been correlated with 

transformed grain size and inter-phase precipitation volume fraction and low temperature 

fracture properties have been correlated with austenite grain size[4].  

Figure 53 and  



PhD Thesis – Kashif Rehman ‐ McMaster University, Materials Science & Engineering 2014 

133 

 

Figure 54 show increased amount of accumulated strain, solute Nb for S2 which will 

give increased strength after transformation for the same cooling rate. Whereas Figure 52 

and Figure 56 shows that final prior austenite grain size for S2 is much smaller compared 

to S1. This will give better resistance to ductile fracture and increased low temperature 

brittle fracture resistance. Hence the rolling schedule of S2 is better than S1. 

5.2.  Strategies for TMC processing of thicker gauges 

Processing of thicker gauges of steel presents an additional challenge for microstructure 

control. Due to the market focus on thicker gauge, higher strength steels, metallurgists are 

presented with an additional challenge. Slab thickness being fixed limits the total 

reduction possible when compared to thinner gauge. The deterioration in mechanical 

properties is due to insufficient grain refinement in rough rolling and low strain 

accumulation, along with inadequate pancaking in finish rolling, as a rule of thumb, a 

minimum of 75% reduction in roughing and finishing is necessary.  In what follows we 

have tried to come up with various strategies to overcome the above mentioned 

constraints.  

Geometrical Effects of Pancaking: Rolling below RST leads to elongation of austentite 

grains, thereby increasing the grain boundary area and flattening of the austenite grains, 

Sv as a function of starting grain size and rolling reduction is shown in Figure 57. It can 

be expressed by Eq.  118. Control of upstream grain size is one possible way to substitute 

for deformation. Point A corresponds to SV of 80 obtained by rolling 60% below RST on 

a grain size of 45µm. The same SV can be obtained by rolling 30% on a grain size of 30 
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µm. This means if one is able to enter Finishing Mill with smaller grain size one can 

achieve the same SV with less total reduction.  

 

Figure 57: Plot of SV as a function of initial austenite grain size and percentage 

reduction below RST. After Kozasu et al. [2] 

 

Strain Accumulation: As explained earlier rolling below RST leads to increase in 

dislocation density. Lowering the temperature window for finish rolling leads to increase 

in strain accumulation due to suppression of recovery. However the rolling schedule 

designers are not comfortable in rolling at low temperatures, due to expected increase in 

work hardening and hence mill forces. From Eq.  A119 (Appendix 1) it is clear that for 

thicker gauges where total reduction in finishing mill is low, reducing finishing mill entry 
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temperature to below 850 oC will not cause any substantial increase in mill forces. This is 

due to the effect of thickness reduction in total reduction is more dominant on mill forces 

than the increase in flow stress. Keeping all other parameters constant, increasing strain 

accumulation by rolling at lower temperature window is expected to improve the low 

temperature fracture properties. 

Recrystallized assisted Rolling (RAR):  

 

Figure 58: Dependence of ferrite grain size on austenitic grain size and retained strain in 

Nb-steel plate [2] 

 

For design of rolling schedule in case of industrial processing, an additional constraint of 

high rolling loads are usually encountered. This has prevented underpowered mills to 

produce grades based upon severe thermo-mechanical controlled processing [163]. In 

what follows, we tried to come up with an alternative rolling design to reduce high rolling 

load associated with severe TMCP practice and thinner gages of steel.   
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In the case of industrial rolling of steels the starting slab thickness is usually fixed and the 

final strip thickness is variable. The usual rolling practice suffers from high rolling load in 

case of low strip thickness as the total deformation given becomes high and low strain 

accumulation while rolling thicker gages as the total deformation is low. In the traditional 

practice, finish rolling is done below RST so as to accumulate strain. In RaR, instead of 

rolling below RST it is proposed to roll above RLT at a substantial higher temperature 

preferably greater than 1050 oC. This will lead to grain refinement of austenite instead of 

strain accumulation. For a given transformation cooling rate the transformed ferrite grain 

size depends upon accumulated strain and austenite grain size [128]. From Figure 58, to 

produce 12 µm ferrite grains, either a 60% reduction on a 200 µm grain, 45% reduction 

on a 130 µm grain, a 25% reduction on 60 µm grain or a 0% reduction on a 20 µm grain 

is needed. This allows one to obtain similar mechanical properties by promoting grain 

refinement. In thicker gage steel where due to current thickness restrictions insufficient 

strain accumulation occurs one could aim for grain refinement instead. To promote grain 

refinement one could aim for higher finishing temperatures. This has a beneficial effect 

on reducing rolling loads while rolling thinner gages, as the decrease in flow stress due to 

increase in temperature is much more prominent than the increase in yield stress due to 

grain refinement. Keeping the flow stress low allows for low rolling load[164]. This 

strategy could be exploited in cases when either high rolling load or insufficient 

pancaking of the microstructure is the main problem.  
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6. Conclusion 

In the present contribution, a physically based model of static recrystallization of 

microalloyed austenite has been developed. The model predictions are in agreement with 

semi-empirical models for the recrystallization time and grain size and experimentally 

reported recrystallization kinetics as a function of processing parameters. The key 

features of the model are as follows: 

1. Detailed description of the nucleation process is available, thereby eliminating the 

need to employ the assumptions of site saturation or constant nucleation rate 

which is present in most of the recrystallization models. 

2. Model captures the effect of recovery and precipitation on both nucleation and 

growth of recrystallization.  

3. Model incorporates the effect of solute Nb on recovery as well as the nucleation 

and growth stages of recrystallization. This makes it quite suitable for describing 

the roughing operation of hot strip and plate mill as repeated recrystallization 

without significant precipitation happens there.  

4. Coarsening of recrystallized grains has also been modeled and has been found to 

be in agreement with experimental database reported in literature. This model can 

be used to predict coarsening kinetics at delay table of hot strip mill. 

5. A special case wherein recrystallization takes place at an extremely slow rate 

when global zener drag force is higher than the driving force for recrystallization 

has been described. This is found to be when particle coarsening at grain boundary 

is controlling the recrystallization growth.  
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6. Since the effect of precipitation on both recrystallization and recovery kinetics has 

been considered, it allows calculation of strain accumulation during finish rolling 

operation of Hot Strip and Plate Mill.   

7. The model takes into account recovery, recrystallization and precipitation, thereby 

allowing accurate calculation of the softening fraction. This has been used to 

predict Rolling Mill Forces. 

8. The model has been used to analyze industrial rolling schedules and using the 

modeling output a hypothetical rolling schedule has been proposed as well. 

9. Based upon various influential parameters of specific metallurgical process as 

identified by the model, new rolling strategy has been proposed as well to promote 

grain refinement, when high deformation is not possible in thicker gages of steels. 
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7. Future Work 

Current version of the developed model has been able to predict experimental 

observations in a wide range of chemistry and processing conditions making them quite 

suitable to investigate industrial rolling schedule, there still exists some 

limitations/unknowns which are worth to be addressed in future versions. Some of the 

possible areas in which the model can be further refined are listed below: 

1. A correct expression of mobility of high angle boundary is essential to have a good 

predictive capability for recrystallization and grain coarsening. In present case we have 

incorporated the role of Nb. However commercial alloys also contain Mn and Mo which 

are expected to give significant solute drag to boundary mobility. This should be 

addressed in future version of the model. 

2. The present model considers strain induced precipitation of Nb. In commercial alloys 

Nb is usually used in conjunction with Ti. It has been shown that Nb can precipitate 

epitaxially on pre-existing TiN particles [165]. This will give incorrect calculation for 

microstructure evolution as epitaxial nucleation and growth will raise RST. This is not 

considered in present model. 

3. Recrystallized grain size depends upon the nucleation kinetics. Since nucleation 

kinetics is difficult to observe directly one may back calculate it from recrystallized grain 

size. There is no complete experimental database reported in the studies which has been 

referred to, wherein the researchers have looked at recrystallization kinetics along with 

recrystallized grain size and its coarsening, thereby not allowing the complete validation 



PhD Thesis – Kashif Rehman ‐ McMaster University, Materials Science & Engineering 2014 

140 

 

of the model. This fundamental database generation is essential to further enhance the 

model. 

4. In the current recrystallization model nucleation is assumed to be SIBM. As explained 

in text, boundary bulges due to dislocation density difference across the two sides of the 

boundary. Tracking of dislocation density evolution in neighbouring grains becomes 

important for a better prediction of recrystallization incubation time. Similarly triple 

junctions are also potential nucleation sites from recrystallization. Quasi-mean field 

model takes into consideration the effect of grain size distribution but to incorporate the 

effect of neighbour either a cellular automaton or phase field based modeling is needed. 

5. Our understanding of precipitation evolution in multi-pass deformation is still not 

complete. The effect of deformation on growth/coarsening of pre-existing precipitates 

warrant further investigation. It has been remarked that each deformation pass leads to 

formation of new dislocation network, due to which the solute diffusivity can vary 

between that of bulk diffusion to pipe diffusion. This will lead to significant difference in 

time evolution of precipitate number density and its size. Proper design of experiments 

along with fundamental database generation is required. 

6. Our understanding of effect of alloy chemistry and thermo-mechanical processing 

schedule on mechanical properties such as yield to tensile ratio, DBTT, anisotropy 

(longitudinal, transverse and 15-50o) is still not complete which warrants further 

investigation[166, 167]. 
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9. Appendix 1 

Prediction of Rolling Mill Forces: 

High rolling Mill forces are a major concern for commercial rolling operation. This 

problem is more severe for finish rolling stands in tandem hot strip mill.  

Since, rolling forces are reactionary forces to deformation, hence knowing the 

metallurgical state of the rolling stock can allow us to predict rolling forces. Knowledge 

of expected rolling forces is advantageous to both product development/process 

optimization teams to optimize/check feasibility of a rolling schedule.  

The softening mechanism operating (recovery, recrystallization and precipitation) decides 

the flow stress evolution of the rolling stock. The metallurgical state of the rolled stock 

can be represented by the instantaneous flow stress. Since the objective of the rolling 

force is to overcome the flow stress, hence higher the flow stress, higher will be the 

rolling load. The multi pass modeling explained in Section 3.3 can predict flow stress of 

the material. This flow stress includes the effect of grain size refinement, precipitate 

hardening, temperature, recovery etc. The parameter 𝜎𝐹𝑆 is responsible for the difference 

observed in rollability of IF steel vis-a-vis high Nb steel. 

The effect of geometrical parameters/mechanical parameters affecting the rolling force 

can also be incorporated in the Sim’s model. 

 𝐹 = 𝜎𝐹𝑆 𝑊 𝑄𝑝 √𝑅′ ∆ℎ    Eq.  A119 
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where, 𝐹 is rolling force, 𝜎𝐹𝑆 is mean flow stress, 𝑊 is strip width,  𝑄𝑝 is a shape factor, 

𝑅′is effective roll radius and ∆ℎ is total reduction.  

 𝑅′ = 𝑅 [1 + 0.0225
𝐹

𝑊∆ℎ
] Eq.  A120 

And 

 𝑄 =
1

2
√

1

𝑟
− 1 (𝑇1 − 𝑇2) −

1

1.27
 Eq.  A121 

where 

 𝑇1 = 3.14 tan−1 √
𝑟

1 − 𝑟
 Eq. A122(a) 

 𝑇2 = √
𝑅′

ℎ
  𝑙𝑛 ((1 − 𝑟) (

𝜙

ℎ
)

2

) Eq. A122(b) 

 

𝜙 = ℎ + 2𝑅′ [1 − cos (√
ℎ

4𝑅′
 tan (

1

2.55
√

ℎ

4𝑅′
𝑙𝑛(1 − 𝑟)

+
1

2
tan−1 (√

𝑟

1 − 𝑟
)))] 

Eq. A122(c) 

 𝑟 =
∆ℎ

𝐻
 Eq. A122(d) 

 ∆ℎ = 𝐻 − ℎ Eq. A122(e) 

 

 



PhD Thesis – Kashif Rehman ‐ McMaster University, Materials Science & Engineering 2014 

150 

 

 

Figure 59: Plot of measured force in finish rolling vs model predicted forces for C-Mn 

steels. 

 

Figure 60: Histogram of residuals (predicted force – actual force) in finish rolling for C-

Mn steels  

 



PhD Thesis – Kashif Rehman ‐ McMaster University, Materials Science & Engineering 2014 

151 

 

 

Figure 61: Plot of measured force in finish rolling vs model predicted forces for 

Nb(<0.07 wt%) microalloyed steels. 

 

 

Figure 62: Histogram of residuals (predicted force – actual force) in finish rolling for 

Nb(<0.07 wt%) microalloyed steels.  
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10. Appendix 2 

The model has been coded in Microsoft Visual Basic 2010. The graphical user interface 

for single pass deformation is shown below along with the codes. 

 

Figure 63: Screenshot of the model interface highlighting the input and output. 

 
Imports System 
Imports Microsoft.VisualBasic 
Imports System.IO 
Imports System.Collections 
Imports System.Drawing 
Imports System.Drawing.Imaging 
Imports System.Drawing.Image 
Imports System.Drawing.Text 
Imports System.Drawing.Drawing2D 
Imports System.Windows.Forms.DataVisualization.Charting 
 
Public Class Form1 
    Dim Tsol, NbT, CT, NT, NBT0, NT_temporary, MnT, Di, strainrate, astrain, 
fraction_Nb_dis, Uo, Vo, QS, FZ, b, Rg, Dv, Db, Dp, Deff, alpha, SE, GB, mu, Y_mod, 
rhot, a, ab, Vm, density, MW, k, M_Taylor, alpha_Taylor, Debye, M_NbT, AR, dSdt, inc As 
Double 
    Dim cells As Integer = 1000000 
    Dim pi As Double = Math.PI 
    Dim sqrt_half_pi = Math.Sqrt(pi / 2) 
    Dim sqrt_pi = Math.Sqrt(pi) 
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    Dim R, Nc(cells), time(cells), Radius(cells), N(cells), dRdt(cells), dNdt(cells), 
Nbl(cells), FN, Temp, dNdt2(cells), Zener(cells), Force(cells), X(cells), SIGMA(cells), 
rho(cells), Rzero(cells), dNdtC(cells), Rstar(cells), coarsef(cells), Vf(cells), 
Vfc(cells), S3T(cells) , K1, K2, K3, K4, Nbo, Nb0, Nb1, Nb2, Nb3, Nb4, w, ke, dNb, 
ks_general, ks_bulk As Double 
    Dim R0t, Rt, FvEq, Ntot, NbEqR, fcoarse, dNtdt, Avrami, dNtdt2, dRtdtc, R0, NbR, 
dNtdtC, dRtdt, dRtdtg, dRtdt2, NbEqRbar, radius_temp, x1, x2, x_intermediate, counter, 
f1, f_intermediate, C, Nb, Ns, NbEq, f, ks, Gv, Vol, Area, RC, dGt, dGtdr, r_nt, G_nt, 
dGtdr_for_R0, r_nt0, flow, FC, this2, PR, PR2, Nbtemp, this, Pnet, VV, kf, V1, V2, P1, 
P2, sflimit, Sv, Dcrt, Num_rex, Eb, beta, Mi, GR(cells), G_Z(cells), S1, S2, samplingF, 
j, kshear, strainT, RcH, STDEV, STDEVR, Kd, intI, intII, Spptn(cells) , DRf, c1_AR, c2, 
nbx(6000, 6000), table(500000, 1), F_left, F_right, l1, l2, l3, l4, Rtemp, Ntemp, 
GNoutB, GRoutB, CNoutB, CRoutB, NoutB, RoutB, incs, Nst, Rst, NbsT, h As Double 
    Dim Niterations, time2simulate, Nbtime_coarsening_flag As Integer 
    Dim temporary4, temporary5, temporary1, temporary2, temporary3, temporary0, 
rec_contribution(cells), rex_contribution, k1x, k1y, k2x, k2y, k3x, k3y, k4x, k4y, 
S3_with_rex As Double 
    Dim interval As Double = 0.0000000000000001 
    Dim dC1, dC2, dC2a, dC3, dC4, dC5, Ca, Cb, Ns_a, Ns_b, c_equv, Ns_equv, C_Ns_Eq, 
d2GtdrdNb_c1, radius_sb(cells), Non_Rex_R(cells), ppt_VF(cells), 
radius_critical(cells), R_subgrain_avg(cells), Rex_subgrain_mob_fit1, 
Mobility_LowAngle(cells), rho_integral, N_nuclei(cells), chi_critical(cells), 
Act_Rex_Vol_frac(cells),M_HAG(cells), appld_stress, softening_fraction(cells), 
A_coarsening(cells), B_coarsening(cells), kC_Maple(cells), rho_zero As Double 
    Dim phase2_growth(cells), film_nucleation(cells), flow_softening(cells), 
Nucleation_Volume(cells), rc1, c1, l(cells), R0_plus_MGdt(cells),ppt_spacing, 
SG_Driving_force(cells), Growth_Driving_Force(cells),nuclei_fraction_cumu(cells), 
nuclei_fraction_const, R_Eqv, zener_new(cells),Act_L(cells), N_nuclei_cumu(cells), 
growth_rate(cells) As Decimal 
    Dim N_available_per_grain(cells), Nucleation_V_cumu(cells), Growth_velocity, 
RrexN(cells), Growth_Vol(cells) As Double 
    Dim pi_sp As Double = (4 / 3) * pi 
 
    Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As 
System.EventArgs) Handles Button1.Click 'Run button 
        Process.GetCurrentProcess().PriorityClass = ProcessPriorityClass.High 
        Button1.Visible = False : btn_Exit.Visible = False : Label1.Visible = False : 
Label2.Visible = False : Label17.Text = Date.Now : Label17.Visible = False : 
Label18.Visible = False 
        Call initialise_variables() 
        Call data_reader_and_initialize_constants()  
        M_NbT = (NbT * 55.85) / (100 * 92.9) 'weight percent Nb is converted to atomic 
fraction to be used in Cahn's eq 
        K1 = 10 ^ ((-7900 / Temp) + 3.42) 'solubility product of NbC. 
        K2 = 10 ^ ((-8500 / Temp) + 2.8) 'solubility product of NbN. 
        'Solving for dNb('Equilibrium Nb in solution) using bisection method 
        x1 = 0 : x2 = NbT 
        While (Math.Abs(x2 - x1) > 2 * 0.00000001) 
            Dim kk As Decimal = dNb_func(x2) 
            x_intermediate = (x1 + x2) / 2 
            If ((dNb_func(x1) * dNb_func(x_intermediate)) < 0) Then 
                x2 = x_intermediate 
            ElseIf ((dNb_func(x2) * dNb_func(x_intermediate) < 0)) Then 
                x1 = x_intermediate 
            End If 
        End While 
        dNb = (x1 + x2) / 2 'Equilibrium Nb in solution 
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        w = CT / (K1 / dNb + 12 * (NbT - dNb) / 93) 'mole fraction calculation 
NbC(w)N(1-w)  
        ke = (K1 ^ w) * (K2 ^ (1 - w)) * (w ^ w) * (1 - w) ^ (1 - w)    'Equilibrium 
value of solubility constant for carbonitride 
        d2GtdrdNb_c1 = (-4 * Rg * Temp * pi) / (3 * Vm) 
        NbEq = dNb ';Equilibrium Nb in solution. 
        r_nt0 = r_nt_func(NbT) ' initial critical radius r_nt0 calculated when Nb=NbT 
        Radius(0) = r_nt0 'Initial value of critical radius (Nb=NbT) 
        R0 = R0t_func(Radius(0), NbT) 
        Nb = NbT 
        Call NbEqR_sub(0) 'solving dGtdr_for_R0_func for Nb when the critical radius is 
fixed 
        Call NbEqRbar_sub(0) 
        N(0) = 1.0E+15  'number of precipitates per m3, an initial guess. 
        Call flowstress_calculation() 'sets the initial condition 
        rho(0) = (flow / (M_Taylor * alpha_Taylor * mu * b)) ^ 2 'initial dislocation 
density 
        rho_zero = rho(0) 'Initializing 
        Nc(0) = 1 * rho(0) ^ (1.5) ''Number of dislocation nodes. 
        dNdt(0) = dNtdt_func(rho(0), N(0), NbT) ' Ppt dN/dt during nucleation and 
growth. 
        dNdt2(0) = dNtdt2_func(rho(0), Radius(0), N(0), NbT) ' Ppt dN/dt during growth 
and coarsening. 
        dNdtC(0) = dNtdtC_func(rho(0), Radius(0), N(0), NbT) 'Ppt number density 
disappearance during coarsening. 
        dRdt(0) = dRtdt_func(rho(0), Radius(0), N(0), NbT)   'dR/dt during nucleation 
and growth. 
        Vf(0) = N(0) * (4 / 3) * pi * ((Radius(0)) ^ 3) 'Volume fraction of the 
precipitates 
        SIGMA(0) = rho(0) ^ (1 / 2) * b * mu * alpha_Taylor * M_Taylor 'dislocation 
stress at a given time t 
        Nbl(0) = NbT 
        time(0) = 0 'array for keeping time  
        inc = 0.000000000001 'time increment 
        FC = 0 'variable to identify the completion of precipitation. 
        this2 = 0 
        PR = 0 : PR2 = 0 '(introduced to help with programming). 
        ab = 0 '(introduced to help with programming, ab=1 means nucleation+growth). 
        Nbtemp = NbR 
        appld_stress = nippon_func(NbT, astrain) 'empirical equation of Yoshie 
describing stress-strain. 
        Sv = ((24 / (pi * Di)) * (0.491 * Math.Exp(astrain) + 0.155 * Math.Exp(-1 * 
astrain) + 0.143 * Math.Exp(-3 * astrain))) 'surface to volume ratio of the deformed 
grains.  
        Eb = (QS / 6.023E+23) 'Nb binding energy in J/atom.                                            
        'Start of big step in Rouge-Kutta method __________growth first:  
        For i As Integer = 1 To cells 
            If (-1 < (CDbl(dNdt(i - 1) + dNdt2(i - 1)))) Then 
                '============= GROWTH COARSENING MODE========================= 
                ab = 1 
                Nb = Nbl(i - 1) 
                Ntemp = N(i - 1) 
                Rtemp = Radius(i - 1) 
                l1 = inc * CDbl(dNtdt_func(rho(i - 1), N(i - 1), Nb)) 
                K1 = inc * CDbl(dRtdt_func(rho(i - 1), Radius(i - 1), N(i - 1), Nb)) 
                Ntemp = N(i - 1) + l1 / 2 
                Rtemp = Radius(i - 1) + K1 / 2 
                Nb = CDbl(Nbtime_func(Ntemp, Rtemp, i)) 
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                l2 = inc * CDbl(dNtdt_func(rho(i - 1), Ntemp, Nb)) 
                K2 = inc * CDbl(dRtdt_func(rho(i - 1), Rtemp, Ntemp, Nb)) 
                Ntemp = N(i - 1) + l2 / 2 
                Rtemp = Radius(i - 1) + K2 / 2 
                Nb = CDbl(Nbtime_func(Ntemp, Rtemp, i)) 
                l3 = inc * CDbl(dNtdt_func(rho(i - 1), Ntemp, Nb)) 
                K3 = inc * CDbl(dRtdt_func(rho(i - 1), Rtemp, Ntemp, Nb)) 
                Ntemp = N(i - 1) + l3 
                Rtemp = Radius(i - 1) + K3 
                Nb = CDbl(Nbtime_func(Ntemp, Rtemp, i)) 
                l4 = inc * CDbl(dNtdt_func(rho(i - 1), Ntemp, Nb)) 
                K4 = inc * CDbl(dRtdt_func(rho(i - 1), Rtemp, Ntemp, Nb)) 
                GNoutB = N(i - 1) + l1 / 6.0 + l2 / 3.0 + l3 / 3.0 + l4 / 6.0 
                GRoutB = Radius(i - 1) + K1 / 6.0 + K2 / 3.0 + K3 / 3.0 + K4 / 6.0 
                NoutB = GNoutB : RoutB = GRoutB 
                incs = inc / 2.0 
                Nb = Nbl(i - 1) 
                l1 = incs * CDbl(dNtdt_func(rho(i - 1), N(i - 1), Nb)) 
                K1 = incs * CDbl(dRtdt_func(rho(i - 1), Radius(i - 1), N(i - 1), Nb)) 
                Rtemp = Radius(i - 1) + K1 / 2.0 
                Ntemp = N(i - 1) + l1 / 2.0 
                Nb = CDbl(Nbtime_func(Ntemp, Rtemp, i)) 
                l2 = incs * CDbl(dNtdt_func(rho(i - 1), Ntemp, Nb)) 
                K2 = incs * CDbl(dRtdt_func(rho(i - 1), Rtemp, Ntemp, Nb)) 
                Rtemp = Radius(i - 1) + K2 / 2.0 
                Ntemp = N(i - 1) + l2 / 2.0 
                Nb = CDbl(Nbtime_func(Ntemp, Rtemp, i)) 
                l3 = incs * CDbl(dNtdt_func(rho(i - 1), Ntemp, Nb)) 
                K3 = incs * CDbl(dRtdt_func(rho(i - 1), Rtemp, Ntemp, Nb)) 
                Rtemp = Radius(i - 1) + K3 
                Ntemp = N(i - 1) + l3 
                Nb = Nbtime_func(Ntemp, Rtemp, i) 
                l4 = incs * CDbl(dNtdt_func(rho(i - 1), Ntemp, Nb)) 
                K4 = incs * CDbl(dRtdt_func(rho(i - 1), Rtemp, Ntemp, Nb)) 
                Nst = N(i - 1) + l1 / 6.0 + l2 / 3.0 + l3 / 3.0 + l4 / 6.0 
                Rst = Radius(i - 1) + K1 / 6.0 + K2 / 3.0 + K3 / 3.0 + K4 / 6.0 
                NbsT = Nbtime_func(Nst, Rst, i) 
                Nb = NbsT 
                l1 = incs * CDbl(dNtdt_func(rho(i - 1), Nst, Nb)) 
                K1 = incs * CDbl(dRtdt_func(rho(i - 1), Rst, Nst, Nb)) 
                Rtemp = Rst + K1 / 2.0 
                Ntemp = Nst + l1 / 2.0 
                Nb = Nbtime_func(Ntemp, Rtemp, i) 
                l2 = incs * CDbl(dNtdt_func(rho(i - 1), Ntemp, Nb)) 
                K2 = incs * CDbl(dRtdt_func(rho(i - 1), Rtemp, Ntemp, Nb)) 
                Rtemp = Rst + K2 / 2.0 
                Ntemp = Nst + l2 / 2.0 
                Nb = CDbl(Nbtime_func(Ntemp, Rtemp, i)) 
                l3 = incs * CDbl(dNtdt_func(rho(i - 1), Ntemp, Nb)) 
                K3 = incs * CDbl(dRtdt_func(rho(i - 1), Rtemp, Ntemp, Nb)) 
                Rtemp = Rst + K3 
                Ntemp = Nst + l3 
                Nb = CDbl(Nbtime_func(Ntemp, Rtemp, i)) 
                l4 = incs * CDbl(dNtdt_func(rho(i - 1), Ntemp, Nb)) 
                K4 = incs * CDbl(dRtdt_func(rho(i - 1), Rtemp, Ntemp, Nb)) 
                N(i) = Nst + l1 / 6.0 + l2 / 3.0 + l3 / 3.0 + l4 / 6.0 
                Radius(i) = Rst + K1 / 6.0 + K2 / 3.0 + K3 / 3.0 + K4 / 6.0 
                Nbl(i) = Nbtime_func(N(i - 1), Radius(i - 1), i) 
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                Nb = Nbl(i) 
            Else 
                '======================= COARSENING MODE===================== 
                ab = 0    'change done here 
                PR = PR + 1 
                Nb = Nbl(i - 1) 
                l1 = inc * CDbl(dNtdt2_func(rho(i - 1), Radius(i - 1), N(i - 1), Nb)) 
                K1 = inc * CDbl(dRtdt2_func(rho(i - 1), N(i - 1), Radius(i - 1), Nb)) 
                Rtemp = Radius(i - 1) + K1 / 2.0 
                Ntemp = N(i - 1) + l1 / 2.0 
                l2 = inc * CDbl(dNtdt2_func(rho(i - 1), Rtemp, Ntemp, Nb)) 
                K2 = inc * CDbl(dRtdt2_func(rho(i - 1), Ntemp, Rtemp, Nb)) 
                Rtemp = Radius(i - 1) + K2 / 2.0 
                Ntemp = N(i - 1) + l2 / 2.0 
                l3 = inc * CDbl(dNtdt2_func(rho(i - 1), Rtemp, Ntemp, Nb)) 
                K3 = inc * CDbl(dRtdt2_func(rho(i - 1), Ntemp, Rtemp, Nb)) 
                Rtemp = Radius(i - 1) + K3 
                Ntemp = N(i - 1) + l3 
                l4 = inc * CDbl(dNtdt2_func(rho(i - 1), Rtemp, Ntemp, Nb)) 
                K4 = inc * CDbl(dRtdt2_func(rho(i - 1), Ntemp, Rtemp, Nb)) 
                CNoutB = N(i - 1) + l1 / 6.0 + l2 / 3.0 + l3 / 3.0 + l4 / 6.0 
                CRoutB = Radius(i - 1) + K1 / 6.0 + K2 / 3.0 + K3 / 3.0 + K4 / 6.0 
                NoutB = CNoutB : RoutB = CRoutB 
                N(i) = CNoutB 
                Radius(i) = CRoutB 
                incs = inc / 2.0 
                Nbl(i) = Nbtime_func(N(i), Radius(i), i) 
                Nb = Nbl(i) 
            End If 
            If (Nc(i - 1) > N(i)) Then  'Nc is dislocation node density and N is ppt no 
density 
                Call Recovery_Module(i) 
            Else 
                SIGMA(i) = SIGMA(i - 1) ' Recovery is completely pinned 
            End If 
            rho(i) = (SIGMA(i - 1) / (M_Taylor * alpha_Taylor * mu * b)) ^ 2 
            time(i) = time(i - 1) + inc ''Time and increment are determined here! 
            If (Math.Abs((Radius(i) - RoutB) / Radius(i)) > 0.0002) Then 
                inc = 1.5 * incs : ElseIf (time(i) < 0.0001) Then : inc = 4 * incs : 
ElseIf (PR2 > 1) Then 
                inc = 2.2 * incs : Else : inc = time(i) / 100 
            End If 
            inc = Math.Min(2, inc) 'Adaptive time increment steps used 
            'Note that once we enter into the coarsening regime dNdt will be set to 
zero. 
            If (N(i) < Ntot_func(rho(i))) Then 
                Avrami = CDbl(1 - (N(i) / Ntot_func(rho(i)))) 
            Else 
                Avrami = 0 
            End If 
            If (dNdt(i - 1) > 1.0E-100) Then 
                dNdt(i) = dNtdt_func(rho(i), N(i), Nb) 
            Else 
                dNdt(i) = 0 
            End If 
            dNdt2(i) = CDbl(dNtdt2_func(rho(i), Radius(i), N(i), Nb)) 
            Nc(i) = 0.5 * (rho(i) ^ (1.5)) 
            Vfc(i) = CDbl(Nc(i) * (4 / 3) * pi * 1.0E-27) 
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            ab = 0 
            Call NbEqR_sub(i)     'Nb interface concentration in equilibrium with a 
particle of size R 
            Call NbEqRbar_sub(i)  'Nb matrix concentration when the average particle 
size is R 
            NT = N(i) 
            coarsef(i) = CDbl(fcoarse_func(Radius(i), Nbl(i))) 'Coarsening function 
used for switch from nucleation+growth to growth+coarsening 
            If (coarsef(i) > 0.998 And FC = 0 And PR > 1) Then 
                Nbtime_coarsening_flag = 1 : FC = 1 
                PR2 = PR : Nbtemp = 0 
                Rt = r_nt_func(Nb) 
                R0 = CDbl(R0t_func(Radius(i), Nbl(i))) 
                dNdt2(i) = CDbl(dNtdt2_func(rho(i), Radius(i), N(i), Nb)) 
                dNdtC(i) = dNdt2(i) 'reassign the whole funtion 
            End If 
            R0 = CDbl(R0t_func(Radius(i), Nb)) 
            Rzero(i) = R0 
            r_nt = r_nt_func(Nb) 'radius of the critical nucleus. 
            Rstar(i) = CDbl(r_nt) 
            dNdtC(i) = CDbl(dNtdtC_func(rho(i), Radius(i), N(i), Nb)) 
            If (time(i) > time2simulate) Then   'Time at which we stop and exit the 
loop 
                this = i : i = cells : cells = this  '# of loops actually used. 
            End If 
        Next i 
        Call recrystalization_model() 
        Call Hardening_model() 
        Label18.Text = Date.Now : Label1.Visible = True : Label2.Visible = True : 
Button1.Visible = True : btn_Exit.Visible = True : Label17.Visible = True : 
Label18.Visible = True : Process.GetCurrentProcess().PriorityClass = 
ProcessPriorityClass.Normal 
    End Sub 
    Private Function C_func(ByVal Nb As Decimal) As Double 'C left in solution. 
        NbT = NBT0 
        C = CT - w * (NbT - Nb) * 12 / 93 
        Return (C) 
    End Function 
    Private Function dsolve_dSdt_RK(ByVal i As Integer, ByVal y As Decimal) As Double 
'recovery model 
        Act_L(i) = Math.Min((35 * b), (b / (6.3 * b * Math.Sqrt(rho(i - 1)) + 0.042 * 
(Nbl(1) ^ 0.3333))))   'Activation length 
        If Act_L(i) = 0 Then Act_L(i) = Act_L(i - 1) 
        Vo = Act_L(i) * b ^ 2 
        c2 = Vo / (k * Temp) 
        dSdt = ((N(i) * sizefactor_func(i) / Nc(i - 1)) - 1) * c1_AR * (y ^ 2) * 
Math.Sinh(c2 * y) 
        Return (dSdt) 
    End Function 
    Private Function dNb_func(ByVal x As Decimal) As Double  'Method described by 
Gladman to calculate the solubility and composition of Nb carbonitrides 
        Nbo = x 
        Nb4 = -12 * 14 * Nbo ^ 4 
        Nb3 = (2 * NbT * 12 * 14 - CT * 14 * 93 - NT * 12 * 93) * Nbo ^ 3 
        Nb2 = (12 * 93 * K2 + NT * NbT * 12 * 93 - NbT ^ 2 * 12 * 14 + 93 * 14 * K1 + 
CT * NbT * 14 * 93) * Nbo ^ 2 
        Nb1 = (NT * K1 * 93 * 93 - NbT * K2 * 93 * 12 - NbT * K1 * 93 * 14 + CT * K2 * 
93 * 93) * Nbo 
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        Nb0 = -(K1 * K2 * 93 * 93) 
        Return (Nb4 + Nb3 + Nb2 + Nb1 + Nb0) 
    End Function 
    Private Function dGt_func(ByVal Nb As Decimal, ByVal r As Decimal) As Double 
'energy balance for nucleation.  
        Vol = (4 / 3 * pi * r ^ 3) ';volume of nucleus. 
        Area = (4 * pi * r ^ 2) ';surface area of nucleus. 
        ks = (Nb * (C_func(Nb) ^ w) * (Ns_func(Nb) ^ (1 - w)) / ke) ';solubility 
constant of carbonitride. 
        Gv = (Rg * Temp * Math.Log(ks)) / Vm 'Chemical driving force for precipitation. 
        dGt = (-Vol * Gv) + (Area * SE) - ((r * mu * b ^ 2) * (0.2 + ((0.7142857143 / 
pi) * (Math.Log(r / RC)))))  'energy balance for nucleation 
        Return (dGt) 
    End Function 
    Private Function dGtdr_func(ByVal r As Decimal, ByVal Nb As Decimal) As Double 
'Derivative of dGt wrt r 
        ks = (Nb * (C_func(Nb) ^ w) * (Ns_func(Nb) ^ (1 - w)) / ke) ';solubility 
constant of carbonitride. 
        dC2 = dC2a * Math.Log(ks) 
        dGtdr = (dC1 * r) - (dC2 * r ^ 2) - (dC3 * (dC4 + Math.Log(r))) - dC5  
'deribative of dGt with respect to time. 
        Return dGtdr 
    End Function 
    Private Function dGtdr_for_R0_func(ByVal Nb As Decimal, ByVal R As Decimal) As 
Double 
        Return (dGtdr_func(R, Nb)) 'derivative of dGt with respect to time 
    End Function 
    Private Function dgtdr_solver_Nb_func(ByVal x1 As Double, ByVal x2 As Double, ByVal 
tol As Double, ByVal rad As Double) As Double 
        'Solving dGtdr funtion 
        Dim tolerance As Double = 0 
        Dim stepsize = 0.00001 
        Dim func As Double = 0 
        Dim dfunc As Double = 0 
        tolerance = Math.Abs(x2 - x1) 
        While (tolerance > 2 * tol) 
            func = dGtdr_func(rad, x1) 
            dfunc = (dGtdr_func(rad, x1 + stepsize) - dGtdr_func(rad, x1 - stepsize)) / 
(2 * stepsize) 
            x2 = x1 - func / dfunc 
            tolerance = Math.Abs(x2 - x1) 
            x1 = x2 
        End While 
        Return (x2) 
    End Function 
    Private Function d2Gtdr2_func(ByVal x As Decimal, ByVal Nb As Decimal) As Double 
        Return (dC1 - (2 * dC2 * x) - (dC3 / x)) 'double differential of dGt 
    End Function 
    Private Function Deff_func(ByVal rho As Decimal) As Double 
        Dim constant As Double = pi * b ^ 2 * rho_zero 
        Deff = (Dp * constant) + (Dv * (1 - constant)) 
        Return (Deff) 'effective diffusion const 
    End Function 
    Private Function dNtdt_func(ByVal rhot As Decimal, ByVal N As Decimal, ByVal Nb As 
Decimal) As Double 
        dNtdt = (0.01 * Avrami * FN * rhot * Nb * 55.85 * Dp * Math.Exp((-1 * 
G_nt_func(Nb)) / (k * Temp))) / (b * a * a * 92.9) 
        Return (dNtdt) 'dN/dt during nucleation and growth. 
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    End Function 
    Private Function dNtdt2_func(ByVal rho As Decimal, ByVal r As Decimal, ByVal N As 
Decimal, ByVal Nb As Decimal) As Double 
        dNtdt2 = fcoarse_func(r, Nb) * dNtdtC_func(rho, r, N, Nb) 
        Return (dNtdt2) 'dN/dt during growth and coarsening. 
    End Function 
    Private Function dNtdtC_func(ByVal rho As Double, ByVal r As Double, ByVal N As 
Double, ByVal Nb As Double) As Double 
        Dim temp_var1 As Double = (4 * pi * (r ^ 3) / 3) 
        dNtdtC = (dRtdtc_func(rho, r) / r) * ((R0 * Nb / (r * (88 - NBT0))) * 
(temp_var1 * N * N - (2 * N) + (1 / temp_var1)) - (3 * N)) 'NBT0 is amount of Nb in 
solution for a givrn temperature. T represnts temp and t is time  
        Return (dNtdtC) 'Rate at which nuclei disappear due to coarsening. 
    End Function 
    Private Function dRtdt_func(ByVal rho As Double, ByVal Rt As Double, ByVal NT As 
Double, ByVal Nb As Double) As Double 
        dRtdt = dRtdtg_func(rho, Rt) + ((dNtdt_func(rho, NT, Nb) * ((alpha * 
r_nt_func(Nb)) - Rt) / NT)) 'dR/dt during nucleation & growth. 
        Return (Math.Abs(dRtdt)) 
    End Function 
    Private Function dRtdtg_func(ByVal rho As Double, ByVal Rt As Double) As Double 
        dRtdtg = Deff_func(rho) * (Nb - NbEqR) / (Rt * (88 - NbEqR)) 
        Return (Math.Abs(dRtdtg)) 
    End Function 
    Private Function dRtdtc_func(ByVal rho As Double, ByVal r As Double) As Double 
        dRtdtc = (Deff_func(rho) * (NbEqR - NbEqRbar)) / (r * (88 - NbEq)) ':coarsening 
contribution to dR/dt during growth & coarsening. 
        Return (Math.Abs(dRtdtc)) 
    End Function 
    Private Function dRtdt2_func(ByVal rho As Double, ByVal Nt As Double, ByVal Rt As 
Double, ByVal niobium As Double) As Double 
        dRtdt2 = ((1 - fcoarse_func(Rt, niobium)) * dRtdtg_func(rho, Rt)) + 
(fcoarse_func(Rt, niobium) * dRtdtc_func(rho, Rt)) 
        Return (Math.Abs(dRtdt2)) 
    End Function 
    Private Sub NbEqR_sub(ByVal i As Integer) 
        x1 = 0.99 * NbEq : x2 = 2.01 * Nb 
        While (Math.Abs(x2 - x1) > 2 * 0.00001) 
            x_intermediate = (x1 + x2) / 2 
            F_left = dGtdr_for_R0_func(x1, Radius(i)) 
            F_right = (dGtdr_for_R0_func(x2, Radius(i))) 
            f_intermediate = dGtdr_for_R0_func(x_intermediate, Radius(i)) 
            If (F_left * f_intermediate < 0) Then 
                x2 = x_intermediate 
            ElseIf (F_right * f_intermediate < 0) Then 
                x1 = x_intermediate 
            End If 
        End While 
        NbEqR = (x1 + x2) / 2 
    End Sub 
    Private Sub NbEqRbar_sub(ByVal i As Integer) 
        x1 = 0.8 * NbEq 
        x2 = 1.1 * Nb 
        x1 = 0 
        x2 = 0.171 
        While (Math.Abs(x2 - x1) > 2 * 0.00001) 
            x_intermediate = (x1 + x2) / 2 
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            If ((dGtdr_for_R0_func(x1, Radius(i) * 27 / 23) * 
dGtdr_for_R0_func(x_intermediate, Radius(i) * 27 / 23)) < 0) Then 
                x2 = x_intermediate 
            ElseIf ((dGtdr_for_R0_func(x2, Radius(i) * 27 / 23) * 
dGtdr_for_R0_func(x_intermediate, Radius(i) * 27 / 23)) < 0) Then 
                x1 = x_intermediate 
            End If 
        End While 
        NbEqRbar = (x1 + x2) / 2 
    End Sub 
    Private Function erf_func(ByVal z As Decimal) As Double 
        If z < 0 Then 
            Return ((2 * gauss(z * Math.Sqrt(2))) - 1) 
        Else 
            Return (1 - (2 * gauss(-1 * z * Math.Sqrt(2)))) 
        End If 
    End Function 
    Private Function norm(ByVal z As Double) As Double 
        Dim Q As Double = 0 
        Q = z ^ 2 
        If Math.Abs(z) > 7 Then 
            Return ((1 - (1 / Q) + (3 / (Q ^ 2))) * (Math.Exp(-Q / 2)) / (sqrt_half_pi 
* Math.Abs(z))) 
        Else 
            Return (chisq(Q, 1)) 
        End If 
    End Function 
    Private Function chisq(ByVal x As Double, ByVal n As Integer) As Double 
        Dim alpha, q, t As Double 
        Dim remainder, quotient, k, a As Integer 
        alpha = 0 : q = 0 : t = 0 : remainder = 1 : quotient = 1 : k = 1 : a = 1 
        If (x > 1000 Or n > 1000) Then 
            alpha = ((2 / (9 * n)) - 1 + ((x / n) ^ (1 / 3))) / (Math.Sqrt(2 / (9 * 
n))) 
            q = 0.5 * norm(alpha) 
            If (x > n) Then 
                Return (q) 
            Else 
                Return (1 - q) 
            End If 
        Else 
            Dim p As Double = 1 / (Math.Exp(0.5 * x)) 
            quotient = Math.DivRem(n, 2, remainder) 
 
            If remainder = 1 Then 
                p = p * Math.Sqrt(2 * x / pi) 
            End If 
            k = n 
            While (k >= 2) 
                p = p * x / k 
                k = k - 2 
            End While 
            t = p 
            a = n 
            While (t > p * 0.000000000000001) 
                a = a + 2 
                t = t * x / a 
                p = p + t 
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            End While 
            Return (1 - p) 
        End If 
    End Function 
    Private Function gauss(ByVal Z As Double) As Double 
        If Z < 0 Then 
            If Z < -10 Then 
                Return (0) 
            Else 
                Return ((chisq(Z ^ 2, 1)) / 2) 
            End If 
        ElseIf Z > 10 Then 
            Return (1) 
        Else 
            Return (1 - ((chisq(Z ^ 2, 1)) / 2)) 
 
        End If 
 
    End Function 
    Private Function fcoarse_func(ByVal Rt As Double, ByVal niobium As Double) As 
Double 
        Dim value As Decimal = 0 
        If Nbtime_coarsening_flag = 1 Then 
            Return (1) 
        Else 
            value = 4 * ((Rt / r_nt_func(niobium)) - 1) 
            fcoarse = (1 - erf_func(value)) 
            Return (fcoarse) 
        End If 
    End Function 
    Private Function G_nt_func(ByVal Nb As Decimal) As Double 'Activation energy for 
nucleation 
        radius_temp = r_nt_func(Nb) 
        G_nt = dGt_func(Nb, radius_temp) 
        Return (G_nt) 
    End Function 
    Private Function Nbtime_func(ByVal Nt As Double, ByVal Rt As Double, ByVal j As 
Integer) As Double 
        If Nbtime_coarsening_flag = 0 Then 
            Return ((NBT0 - (88 * pi * Nt * (Rt ^ 3) * 4 / 3)) / (1 - (pi * Nt * (Rt ^ 
3) * (4 / 3)))) 
        Else 
            Return (dgtdr_solver_Nb_func(0.001, 0.1, 0.00000001, Rt)) 
        End If 
    End Function 
    Private Function nippon_func(ByVal Nb As Decimal, ByVal strain As Decimal) As 
Double 
        Return ((8.630299296 * (strain ^ 0.223) * (strainrate ^ 0.048) * (Math.Exp(3.01 
* Nb)) * (Math.Exp(2880 / Temp))) / (Di ^ 0.07)) 
    End Function 
    Private Function Ns_func(ByVal Nb As Decimal) As Double 
        NbT = NBT0 
        NT = NT_temporary 
        Ns = NT - (1 - w) * (NbT - Nb) * 14 / 93 ';Nitrogen left in solution. 
        Return (Ns) 
    End Function 
    Private Function Ntot_func(ByVal rhot As Decimal) As Double 'Total nucleation sites 
        Ntot = FN * rhot / b 
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        Return (Ntot) 
    End Function 
    Private Function R0t_func(ByVal Rt As Decimal, ByVal Nb As Decimal) As Double 
        R0t = Rt * Math.Log(Nb / NbEq) 
        Return (R0t) 
    End Function 
    Private Function r_nt_func(ByVal Nb As Decimal) As Double 'radius of the critical 
nucleus, depends upon Nb concentration. 
        Dim tol As Double = 0 
        x1 = 0.000001 ' the initial value 
        x2 = 0.000000000001 ' the initial value 
        tol = Math.Abs(x2 - x1) 
        While (tol > 2 * 0.0000000000001) 
            x2 = x1 - (dGtdr_func(x1, Nb) / d2Gtdr2_func(x1, Nb)) 
            tol = Math.Abs(x2 - x1) 
            x1 = x2 
        End While 
        Return (x2) 
    End Function 
    Private Function sizefactor_func(ByVal i As Integer) As Double 'Size factor takes 
into account that fact that tiny precipitates (<2nm) can't completely pin dislocations. 
It increase linearly with R becomes 1 at R>=1 nm.  
        Dim SF As Decimal = 0 
        SF = Math.Min(1, (1000000000.0 * Radius(i))) 
        Return (SF) 
    End Function 
    Private Function strainT_func(ByVal i As Integer) As Double 
        'newton raphson method with finite difference used 
        Dim func, dfunc, h, tolerance, constant, tol As Double 
        func = 0 : dfunc = 0 : h = 0 : tolerance = 0 : constant = 0 : tol = 0 
        Dim flow_stress_offset As Decimal = CDec(TextBox16.Text) 
        h = 0.0000001 
        x1 = 0.000001 
        x2 = 1 
        tol = 0.00001 
        constant = nippon_func(NBT0, flow_stress_offset) + (SIGMA(i) / 1000000.0) 
        tolerance = Math.Abs(x2 - x1) 
        While (tolerance > 2 * tol) 
            func = nippon_func(NBT0, x1) - constant 
            dfunc = (nippon_func(NBT0, x1 + h) - nippon_func(NBT0, x1 - h)) / (2 * h) 
            x2 = x1 - func / dfunc 
            tolerance = Math.Abs(x2 - x1) 
            x1 = x2 
        End While 
        Return (x2) 
    End Function 
    Private Function Nb0_func(ByVal t1 As Decimal, ByVal Nb As Decimal) As Double 
        Nb0 = -(93 * 93 * K1_func(t1) * K2_func(t1)) 
        Return (Nb0) 
    End Function 
    Private Function Nb1_func(ByVal t1 As Decimal, ByVal Nb As Decimal) As Double 
        Nb1 = ((NT * 93 * 93 * K1_func(t1)) - (93 * 12 * Nb * K2_func(t1)) - (93 * 14 * 
Nb * K1_func(t1)) + (93 * 93 * CT * K2_func(t1))) * Nb 
        Return (Nb1) 
    End Function 
    Private Function Nb2_func(ByVal t1 As Decimal, ByVal Nb As Decimal, ByVal CT As 
Decimal, ByVal NT As Decimal) As Double 
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        Nb2 = ((12 * 93 * K2_func(t1)) + (NT * Nb * 12 * 93) - (12 * 14 * Nb ^ 2) + 93 
* 14 * K1_func(t1) + (CT * Nb * 14 * 93)) * Nb ^ 2 
        Return (Nb2) 
    End Function 
    Private Function Nb3_func(ByVal t1 As Decimal, ByVal Nb As Decimal, ByVal CT As 
Decimal, ByVal NT As Decimal) As Double 
        Nb3 = ((2 * 12 * 14 * Nb) - (CT * 14 * 93) - (NT * 12 * 93)) * Nb ^ 3 
        Return (Nb3) 
    End Function 
    Private Function Nb4_func(ByVal Nb As Decimal) As Double 
        Return (-168 * Nb ^ 4) 
    End Function 
    Private Function K1_func(ByVal t1 As Decimal) As Double 
        K1 = 10 ^ (3.42 - (7900 / t1)) 
        Return (K1) 
    End Function 
    Private Function K2_func(ByVal t1 As Decimal) As Double 
        K2 = 10 ^ (2.8 - (8500 / t1)) 
        Return (K2) 
    End Function 
    Private Function Tsolution_func(ByVal t1 As Decimal, ByVal NbT As Decimal, ByVal CT 
As Decimal, ByVal NT As Decimal) As Double 
        Return (Nb0_func(t1, NbT) + Nb1_func(t1, NbT) + Nb2_func(t1, NbT, CT, NT) + 
Nb3_func(t1, NbT, CT, NT) + Nb4_func(NbT)) 
    End Function 
    Private Sub Tsol_calculation()  'Solutionizing temperature calculation 
        NbT = CType(TextBox2.Text, Decimal) 
        NT = CType(TextBox4.Text, Decimal) 
        CT = CType(TextBox3.Text, Decimal) 
        x1 = 600 : x2 = 1500 
        While (Math.Abs(x2 - x1) > 2 * 0.000000001) 
            x_intermediate = (x1 + x2) / 2 
            If ((Tsolution_func(x1, NbT, CT, NT) * Tsolution_func(x_intermediate, NbT, 
CT, NT)) < 0) Then 
                x2 = x_intermediate 
            ElseIf ((Tsolution_func(x2, NbT, CT, NT) * Tsolution_func(x_intermediate, 
NbT, CT, NT)) < 0) Then 
                x1 = x_intermediate 
            End If 
        End While 
        Tsol = (x1 + x2) / 2 
    End Sub 
    Private Function Grt_func(ByVal Rho As Decimal) As Double ''driving force for 
recrsytallization. 
        Return CDec(0.5 * Rho * mu * b ^ 2) 
    End Function 
    Private Function SE_SG_func(ByVal temp As Decimal) As Double '' Surface Energy of 
Subgrains 
        Return (0.75 - (0.0005 * (temp - (850 + 273)))) 'Grain boundary energy (J/m2). 
    End Function 
    Private Sub recrystalization_model() 
        cells = this 'number of loops actually used. 
        Dim alpha_D_factor As Decimal = 2 'the pipe diffusion is this factor multiplied 
with bulk diffusion 
        Dim Dself As Decimal = 0.00007 * Math.Exp(-285000 / (Rg * Temp)) 
        Dim frac, Nucleation_V(cells), D_Eqv, Shell_V, Rex_V(cells), V_DG_Eqv, V_DG, 
surface_area As Decimal 
        Dim initiation_flag As Integer 
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        Dim shell_width As Decimal = 0.0000025 
        Dim surface_vol_available(cells) As Double 
        'local coarsening declarations  
        Dim local_coarse_Flag, R0 As Decimal : Zener(cells) = 0 : local_coarse_Flag = 0 
: R0 = 0 
        Dim delta_nuclei_fraction(cells) As Decimal 
        Dim delta_growth_vol As Double = 0 
        N_nuclei(0) = 0 : chi_critical(0) = 100 : Rex_V(cells) = 0 : 
N_nuclei_cumu(cells) = 0 : Non_Rex_R(cells) = 0 : delta_nuclei_fraction(cells) = 0 : 
frac = 110 : initiation_flag = 1 : local_coarse_Flag = 0 
        D_Eqv = 3 / Sv 
        R_Eqv = (D_Eqv / 2) : V_DG_Eqv = pi_sp * (R_Eqv ^ 3) 
        V_DG = pi_sp * ((Di / 2) ^ 3) 
        surface_area = 4 * pi * (R_Eqv ^ 2) : nuclei_fraction_const = (Math.Exp(-pi * 9 
/ 4)) 
        Shell_V = surface_area * shell_width 
        alpha = 0.000000004 * (k ^ 2) * (Temp ^ 2) * (Math.Sinh(Eb / (k * Temp)) - (Eb 
/ (k * Temp))) / ((b * Math.Sqrt(2)) ^ 3 * Eb * alpha_D_factor * Dv)  'alpha in Cahn's 
equation.                         
        Mi = CDbl(((0.192 / Temp) * Math.Exp(-20837.14 / Temp)))    'Tom's C-Mn 
Mobility.      
        Zener(0) = 6.283185308 * FZ * (Radius(0) ^ 2) * N(0) * GB   'Zener                     
        M_HAG(0) = (1 / (alpha * 0.006011840689 * Nbl(1) + (1 / Mi))) 
        R_subgrain_avg(0) = 0 
        chi_critical(0) = 100 
        Growth_Vol(0) = Shell_V 
        radius_critical(0) = 2 * GB / (0.5 * Grt_func(rho(0))) ' 0.5 factor signifies 
that each buldge has only half the effective dislocation density for a particular grain 
        RrexN(0) = radius_critical(0) 
        Dim V_temp As Double = 0 
        For i = 1 To cells 
            Growth_velocity = 0 : delta_growth_vol = 0 'initializing it in every loop 
 
            ppt_VF(i) = pi_sp * (Radius(i) ^ 3) * N(i) 
            ' Zener(i) = FZ * CDbl((2 * pi * (Radius(i) ^ 2) * N(i) * gamma)) 'Zener 
pressure  FZ is the no of times of classical value. FZ is the no of times of classical 
value.  
            Zener(i) = FZ * (3 / 2) * ppt_VF(i) * GB / Radius(i) 
            GR(i) = CDbl(Grt_func(rho(i))) 
            G_Z(i) = (GR(i) - Zener(i) + Math.Abs(GR(i) - Zener(i))) / 2               
'driving force - Zener drag    
            M_HAG(i) = (1 / (alpha * 0.006011840689 * Nbl(i) + (1 / Mi)))              
' high angle grain boundary mobility. 
 
            '========================= 1. Rex Nucleation Model 
            radius_critical(i) = 2 * GB / (0.5 * GR(i)) ' 0.5 tells that each buldge 
has only half the effective dislocation density for a particular grain 
            If Act_L(i) = 0 Then Act_L(i) = Act_L(i - 1) 'sometimes the act length 
suddenly becomes 0. To counteract that problem. 
            R_subgrain_avg(i) = R_subgrain_avg(i - 1) + _ 
                (((2 * (Dself / Act_L(i)) * (time(i) - time(i - 1)) * _ 
                  Math.Sinh(frac * 0.054 * SIGMA(i) * b ^ 2 * Act_L(i) / (M_Taylor * k 
* Temp)))) * (rho(i) * Dself * 1.0E+22 * 1.85 / N(i)))  'New subgrain growth model 
            chi_critical(i) = Math.Min((radius_critical(i) / R_subgrain_avg(i)), 3) : 
chi_critical(i) = Math.Min(chi_critical(i - 1), chi_critical(i)) 
            N_available_per_grain(i) = (V_DG * Sv / (pi * radius_critical(i) ^ 2)) * 
Math.Max(0, (1 - (Nucleation_V_cumu(i - 1) / Shell_V))) 
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            nuclei_fraction_cumu(i) = (Math.Exp(-pi * ((chi_critical(i)) ^ 2) / 4)) - 
nuclei_fraction_const 
            delta_nuclei_fraction(i) = nuclei_fraction_cumu(i) - nuclei_fraction_cumu(i 
- 1) 
            N_nuclei(i) = delta_nuclei_fraction(i) * N_available_per_grain(i)    
'N_nuclei is the no of new grains nucleated in that time step(t(i)-t(i-1). 
            N_nuclei_cumu(i) = N_nuclei_cumu(i - 1) + N_nuclei(i) 
            If G_Z(i) > 0 Then 
                '+ve driving force 
                If chi_critical(i) < 3 Then 
                    RrexN(i) = RrexN(i - 1) + M_HAG(i) * G_Z(i) * (time(i) - time(i - 
1)) 
                Else 
                    RrexN(i) = RrexN(i - 1) + 0 
                End If 
                Nucleation_V_cumu(i) = N_nuclei_cumu(i) * 0.5 * pi_sp * (RrexN(i) ^ 3) 
                If Nucleation_V_cumu(i) > Shell_V Then 
                    'Site Saturation- Pure Growth 
                    Growth_Vol(i) = Growth_Vol(i - 1) + 4 * pi * (Non_Rex_R(i - 1) ^ 2) 
* M_HAG(i) * G_Z(i) * (time(i) - time(i - 1)) 
                Else 
                    Growth_Vol(i) = Shell_V 
                End If 
            Else 
                'Over pinned Microstructure. 
                If chi_critical(i) < 3 Then 
                    RrexN(i) = RrexN(i - 1) + rex_local_growth(i) * (time(i) - time(i - 
1)) 
                Else 
                    RrexN(i) = RrexN(i - 1) + 0 
                End If 
                Nucleation_V_cumu(i) = N_nuclei_cumu(i) * 0.5 * pi_sp * (RrexN(i) ^ 3) 
                If Nucleation_V_cumu(i) > Shell_V Then 
                    'Site Saturation- Pure Growth 
                    Growth_Vol(i) = Growth_Vol(i - 1) + 4 * pi * (Non_Rex_R(i - 1) ^ 2) 
* rex_local_growth(i) * (time(i) - time(i - 1)) 
                Else 
                    Growth_Vol(i) = Shell_V 
                End If 
            End If 
            If Nucleation_V_cumu(i) < Shell_V Then 
                V_temp = Nucleation_V_cumu(i) 
            Else 
                V_temp = Growth_Vol(i) 
            End If 
            If V_temp < V_DG_Eqv Then 
                Non_Rex_R(i) = ((V_DG_Eqv - V_temp) / pi_sp) ^ 0.3333 
 
                Non_Rex_R(i) = Math.Min(R_Eqv, Non_Rex_R(i)) 
                Non_Rex_R(i) = Math.Max(0, Non_Rex_R(i)) 
                Act_Rex_Vol_frac(i) = 1 - (Non_Rex_R(i) / R_Eqv) ^ 3 
            Else 
                Act_Rex_Vol_frac(i) = 1 
            End If 
        Next i 
        Dim Rex_GS As Decimal 
        Rex_GS = 2000000.0 * (Di / 2) / (N_nuclei_cumu(cells - 1) ^ 0.333333) 
    End Sub                                                  'Recrystallization Model 
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    Private Function rex_local_growth(ByVal i As Integer) 
        Dim Rnew, t_1, t_2, temp1, Db_sellars, FvEq As Double 
        Rnew = 0 : t_2 = 0 : temp1 = 0 : Db_sellars = 0 
        Dim fgb As Decimal = 0.6 
        Dim Diffusivity As Double 
        Diffusivity = 0.00041 * Math.Exp(-172500 / (Rg * Temp)) 
        Call NbEqR_sub(i) 
        FvEq = (NbT - NbEqR) / (88 - NbEqR) 
        If FvEq = 0 Then FvEq = 2.71828 ' when Fveq =0 it makes subsequent calculation 
diverge, hence done to fix it. 
        ppt_spacing = (1 / N(i)) ^ 0.3333 
        temp1 = GB / (2 * SE) 
        A_coarsening(i) = (2 / 3) + (temp1) + ((temp1 ^ 3) / 3) 
        B_coarsening(i) = -0.5 * Math.Log(FvEq) 
        kC_Maple(i) = fgb * (0.000000009 * Diffusivity * SE * Nbl(cells - 2) * (55 / 
9300) * Math.Exp(Eb / (k * Temp)) * 0.00000685) / (32 * A_coarsening(i) * 
B_coarsening(i) * Rg * Temp) 
        Rnew = FZ * (3 / 2) * GB * ppt_VF(i) / GR(i) 
        t_1 = (Rnew ^ 4 - Radius(i) ^ 4) / (kC_Maple(i)) 
        t_2 = t_up_bisection_method(i, ppt_spacing, t_1) ' Analogous to t1+t2 in maple 
        growth_rate(i) = ppt_spacing / (t_2)  'velocity m/sec 
        Growth_velocity = 0.5 * (growth_rate(i - 1) + growth_rate(i)) 
        Return (Growth_velocity) 
    End Function 
    Private Function t_up_bisection_method(ByVal i As Integer, ByVal ppt_spacing As 
Decimal, ByVal t_dash As Decimal) As Decimal 
        x1 = t_dash 
        x2 = x1 + 300 
        While (Math.Abs(x2 - x1) > 2 * 0.0001) 
            x_intermediate = (x1 + x2) / 2 
            If ((local_coarse_func(x1, i, t_dash) * local_coarse_func(x_intermediate, 
i, t_dash)) < 0) Then 
                x2 = x_intermediate 
            ElseIf ((local_coarse_func(x2, i, t_dash) * 
local_coarse_func(x_intermediate, i, t_dash)) < 0) Then 
                x1 = x_intermediate 
            End If 
        End While 
        Return ((x1 + x2) / 2) 
    End Function 
    Private Function local_coarse_func(ByVal t_up As Decimal, ByVal i As Integer, ByVal 
t_dash As Decimal) As Decimal 
        Dim func As Double 
        func = (M_HAG(i) * GR(i) * (t_up - t_dash) - M_HAG(i) * 2 * FZ * GB * ((4 / 3) 
* pi * Radius(i) ^ 3 * N(i)) * (1 / kC_Maple(i)) * ((Radius(i) ^ 4 + kC_Maple(i) * 
t_up) ^ (3 / 4) - (Radius(i) ^ 4 + kC_Maple(i) * t_dash) ^ (3 / 4))) _ 
         - (ppt_spacing) 
        Return (func) 
    End Function 
    Private Sub Button3_Click(ByVal sender As System.Object, ByVal e As 
System.EventArgs) Handles Button3.Click 
        Call flowstress_calculation() 
        TextBox9.Text = CStr(CType(Math.Round(flow / 1000000.0, 2), String) + "  " + 
CStr("MPa")) 
    End Sub 'flow stress button 
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    Private Sub Button4_Click(ByVal sender As System.Object, ByVal e As 
System.EventArgs) Handles Button4.Click 
        Call Tsol_calculation() 
        TextBox12.Text = CStr(Math.Round((Tsol - 273), 2)) + "  " + CStr("Deg C") 
    End Sub 'Tsol button 
    Private Sub data_reader_and_initialize_constants() 
        NbT = CDec(TextBox2.Text) 
        NBT0 = NbT 
        CT = CDec(TextBox3.Text) 
        NT = CDec(TextBox4.Text) 
        NT_temporary = NT 
        MnT = CDec(TextBox5.Text) 
        Call Tsol_calculation() 
        Temp = (CDec(TextBox1.Text)) + 273 'temperature in Kelvin 
        Di = CDec(TextBox6.Text) * 0.000001 
        strainrate = CDec(TextBox7.Text) 
        astrain = CDec(TextBox8.Text) 
        time2simulate = CInt(TextBox19.Text) 
        a = 0.000000000358 'Lattice Parameter. 
        b = (a / Math.Sqrt(2)) 'Burger vector (m). 
        fraction_Nb_dis = 1 
        Uo = 285000 
        FN = 0.0 
        FZ = 4 
        QS = 20000 
        Rg = 8.314 
        Nbtime_coarsening_flag = 0 
        Dv = 0.000083 * Math.Exp(-266500 / (Rg * Temp)) ' bulk diffusion 
        Db = 0.00041 * Math.Exp(-172500 / (Rg * Temp))  ' boundary diffusion 
        Dp = 0.00041 * Math.Exp(-172500 / (Rg * Temp))  ' pipe diffusion. 
 
        alpha = 1.05 'Constant in the Deschamps-Brechet Model. Appears in the growth 
rate equation during nucleation and growth stage. 
        SE = 0.000025 * ((Tsol - Temp) ^ 1.5) + 0.375 ' Expression for NbCN/Austenite 
interphase energy as a function of T and composition (J/m2) 
        GB = -0.0005 * (Temp - (850 + 273)) + 0.75    'Grain boundary energy (J/m2). 
        mu = 81000000000.0 * (1 - (0.91 * (Temp - 300) / 1810)) 'Shear modulus of 
austenite (Pa). 
        Y_mod = (mu * 8) / 3 'Y_mod is the same variable what E was in maple 
originally(youngs modulus). 
        RC = b ';Cut of radius for dislocation stress field. 
        Vm = 0.0000128 
        density = 7900 
        MW = 0.093 'Molecular Weight of Niobium (kg/mole) 
        k = 1.38E-23 'boltzman const 
        M_Taylor = 3.1 
        alpha_Taylor = 0.15 
        Debye = 1500 / (2 * a) 
        c1_AR = (64 * Debye * Math.Exp(-Uo / (Rg * Temp)) / (9 * (M_Taylor ^ 3) * 
(alpha_Taylor ^ 2) * Y_mod)) 
        c2 = Vo / (k * Temp) 
        Avrami = 1 
        dC1 = 8 * pi * SE 
        dC2a = 4 * pi * Rg * Temp / Vm 
        dC3 = 0.714285 * mu * b * b / pi 
        dC4 = 1 - Math.Log(b) 
        dC5 = mu * b * b / 5 
        rc1 = Di / 2 
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    End Sub 
    Private Sub Recovery_Module(ByVal i As Integer) 
        table(0, 0) = time(i - 1)                         'initial condition for the 
table, 
        table(0, 1) = SIGMA(i - 1)                        'initial condition for the 
table 
        h = inc / 2 
        Niterations = 3 
        For loop_runge_kutta As Integer = 1 To Niterations 
            k1x = table(loop_runge_kutta - 1, 0) 
            k1y = table(loop_runge_kutta - 1, 1) 
            K1 = dsolve_dSdt_RK(i, k1y)        'K1 is the const calculated in 
Runge.Kutta method 
            k2x = k1x + h / 2 
            k2y = k1y + h * K1 / 2 
            K2 = dsolve_dSdt_RK(i, k2y)        'K2 is the const calculated in 
Runge.Kutta method 
            k3x = k1x + h / 2 
            k3y = k1y + h * K2 / 2 
            K3 = dsolve_dSdt_RK(i, k3y)        'K3 is the const calculated in 
Runge.Kutta method 
            k4x = k1x + h 
            k4y = k1y + h * K3 
            K4 = dsolve_dSdt_RK(i, k4y)        'K4 is the const calculated in 
Runge.Kutta method 
            table(loop_runge_kutta, 0) = table(loop_runge_kutta - 1, 0) + h 
            table(loop_runge_kutta, 1) = table(loop_runge_kutta - 1, 1) + (h * (K1 + K4 
+ 2 * (K2 + K3)) / 6) 
        Next loop_runge_kutta 
        SIGMA(i) = table(2, 1) 
    End Sub 
    Private Sub flowstress_calculation() 'Stress due to dislocations calculated as 
total stress - yield stress 
        NbT = CType(TextBox2.Text, Double) 
        astrain = CType(TextBox8.Text, Double) 
        strainrate = CType(TextBox7.Text, Double) 
        Di = CType(TextBox6.Text, Double) * 0.000001 
        Temp = (CType(TextBox1.Text, Double)) + 273 
        Dim carbon As Decimal = CDec(TextBox3.Text) 
        Dim flow_stress_offset As Decimal = CDec(TextBox16.Text) 
        flow = (nippon_func(NbT, astrain) - nippon_func(NbT, flow_stress_offset)) * 
1000000.0 
    End Sub 
    Private Sub Hardening_model() 
        Dim offset As Decimal = 0.01 
        S1 = CDbl(nippon_func(NbT, astrain + offset)) 
        S2 = CDbl(nippon_func(NbT, offset)) 
        j = 1 
        beta = 0.5 
        kshear = 0.07 'Constants that enter into the Deschamps-Brechet hardening 
model.'changes done in kshear from 0.06 to 0.08 
        RcH = 0.8 * 2 * beta * b / kshear 'Transition radius from particle shear to by 
pass.            
        STDEVR = 2                        'Ratio of STDEV/R[1,i] = 2 in this case. 
        For i = 1 To cells 
            strainT = strainT_func(i)                    'Effective strain remaining 
after a given amount of recovery. 
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            S3T(i) = nippon_func(Nbl(1), strainT_func(i) + offset) 'S3 calculated for 
the recovered material with no precipitates. 
            STDEV = Radius(i) / 2               'Standard deviation of the particle 
size distribution.   
            Kd = 2 / (STDEV * Math.Sqrt(pi) * (1 + erf_func(STDEVR))) 
            intI = ((Kd * (STDEV) ^ 2 / 2) * (Math.Exp(-STDEVR ^ 2) - Math.Exp(-((RcH - 
Radius(i)) / STDEV) ^ 2))) + _ 
                    Kd * (STDEV) * Radius(i) * (Math.Sqrt(pi) / 2) * (erf_func(STDEVR) 
+ erf_func((RcH - Radius(i)) / (STDEV))) 
            intII = Kd * STDEV * (Math.Sqrt(pi) / 2) * (1 - erf_func((RcH - Radius(i)) 
/ (STDEV))) 
            Spptn(i) = M_Taylor * Math.Sqrt(2 * N(i) * (Radius(i) ^ 3)) * ((kshear * mu 
* b * intI + kshear * mu * b * RcH * intII) ^ 1.5) / _ 
                        (1000000.0 * b * Radius(i) * Math.Sqrt(2 * beta * mu * b * b)) 
'This is the precipitation hardening in MPa   
            ''''calculation of softening fraction 
            rec_contribution(i) = Math.Sqrt(Spptn(i) ^ 2 + S3T(i) ^ 2) 'hardness of 
recrysallized material taking account of precipitation. 
            rex_contribution = Math.Sqrt(Spptn(i) ^ 2 + (nippon_func(Nbl(1), offset)) ^ 
2) 'hardness of recovered material taking account of precipitation. 
            S3_with_rex = rec_contribution(i) * (1 - Act_Rex_Vol_frac(i)) + 
rex_contribution * Act_Rex_Vol_frac(i) 'Final value of S3. 
            softening_fraction(i) = ((S1 - S3_with_rex) / (S1 - S2)) 'Sofening 
fraction. 
            flow_softening(i) = Math.Sqrt(Spptn(i) ^ 2 + SIGMA(i) ^ 2) 
        Next i 
    End Sub 
    Private Sub initialise_variables() 
table(500000, 1) = 0 : nbx(6000, 6000) = 0 : interval = 0.0000000000000001 : cells = 
1000000 : Tsol = 0 : NbT = 0 : CT = 0 : NT = 0 : NBT0 = 0 : NT_temporary = 0 : MnT = 0 
: Di = 0 : strainrate = 0 : astrain = 0 : fraction_Nb_dis = 0 : Uo = 0 : Vo = 0 : QS = 
0 : FZ = 0 : b = 0 : Rg = 0 : Dv = 0 : Db = 0 : Dp = 0 : Nbtime_coarsening_flag = 1 : 
Deff = 0 : alpha = 0 : SE = 0 : GB = 0 : mu = 0 : Y_mod = 0 : rhot = 0 : a = 0 : ab = 0 
: Vm = 0 : density = 0 : MW = 0 : k = 0 :        M_Taylor = 0 : alpha_Taylor = 0 : 
Debye = 0 : M_NbT = 0 : AR = 0 : dSdt = 0 : inc = 0 : R = 0 : Nc(cells) = 0 : 
time(cells) = 0 : Radius(cells) = 0 : N(cells) = 0 : dRdt(cells) = 0 : dNdt(cells) = 0 
: Nbl(cells) = 0 : dNdt2(cells) = 0 : Zener(cells) = 0 : Force(cells) = 0 : X(cells) = 
0 : SIGMA(cells) = 0 : rho(cells) = 0 : Rzero(cells) = 0 : dNdtC(cells) = 0 : 
Rstar(cells) = 0 :        coarsef(cells) = 0 : Vf(cells) = 0 : Vfc(cells) = 0 : 
S3T(cells) = 0 : K1 = 0 : K2 = 0 : K3 = 0 : K4 = 0 : Nbo = 0 : Nb0 = 0 : Nb1 = 0 : Nb2 
= 0 : Nb3 = 0 : Nb4 = 0 : w = 0 : ke = 0 : dNb = 0 : ks_general = 0 : ks_bulk = 0 = 0 : 
R0t = 0 : Rt = 0 : FvEq = 0 : Ntot = 0 : NbEqR = 0 : fcoarse = 0 : dNtdt = 0 : Avrami = 
0 : dNtdt2 = 0 : dRtdtc = 0 : R0 = 0 : NbR = 0 = 0 : dNtdtC = 0 : dRtdt = 0 : dRtdtg = 
0 : dRtdt2 = 0 : NbEqRbar = 0 : radius_temp = 0 = 0 : x1 = 0 : x2 = 0 : x_intermediate 
= 0 : counter = 0 :f1 = 0 : f_intermediate = 0 : C = 0 : Nb = 0 : Ns = 0 : NbEq = 0 : f 
= 0 : ks = 0 : Gv = 0 : Vol = 0 : Area = 0 : RC = 0 : dGt = 0 : dGtdr = 0 : r_nt = 0 : 
G_nt = 0 : dGtdr_for_R0 = 0 : r_nt0 = 0 : flow = 0 : FC = 0 : this2 = 0 : PR = 0 : PR2 
= 0 : Nbtemp = 0 : this = 0 : Pnet = 0 : VV = 0 : kf = 0 : V1 = 0 : V2 = 0 : P1 = 0 : 
P2 = 0 : sflimit = 0 : Sv = 0 : Dcrt = 0 : Num_rex = 0 : Eb = 0 : beta = 0 : Mi = 0 : 
GR(cells) = 0 : G_Z(cells) = 0 : S1 = 0 : S2 = 0 : samplingF = 0 : j = 0 : kshear = 0 : 
strainT = 0 : RcH = 0 : STDEV = 0 : STDEVR = 0 : Kd = 0 : intI = 0 : intII = 0 : 
Spptn(cells) = 0 : DRf = 0 : c1_AR = 0 : c2 = 0 : l1 = 0 : l2 = 0 : l3 = 0 : l4 = 0 : 
Rtemp = 0 : Ntemp = 0 : GNoutB = 0 : GRoutB = 0 : CNoutB = 0 : CRoutB = 0 : NoutB = 0 : 
RoutB = 0 : incs = 0 : Nst = 0 : Rst = 0 : NbsT = 0 : table(500000, 1) = 0 : F_left = 0 
: F_right = 0 : k1x = 0 : k1y = 0 : k2x = 0 : k2y = 0 : k3x = 0 : k3y = 0 : k4x = 0 : 
k4y = 0 : S3_with_rex = 0 : temporary4 = 0 : temporary5 = 0 : temporary1 = 0 : 
temporary2 = 0 : temporary3 = 0 
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temporary0 = 0 : rec_contribution(cells) = 0 : rex_contribution = 0 : nbx(6000, 6000) = 
0 : dC1 = 0 : dC2 = 0 : dC2a = 0 : dC3 = 0 : dC4 = 0 : dC5 = 0 : Ca = 0 : Cb = 0 : Ns_a 
= 0 : Ns_b = 0 : c_equv = 0 : Ns_equv = 0 : C_Ns_Eq = 0 : d2GtdrdNb_c1 = 0 : 
radius_sb(cells) = 0 : radius_critical(cells) = 0 :        R_subgrain_avg(cells) = 0 : 
Rex_subgrain_mob_fit1 = 0 : Mobility_LowAngle(cells) = 0 : rho_integral = 0 : 
N_nuclei(cells) = 0 : chi_critical(cells) = 0 : Act_Rex_Vol_frac(cells) = 0 : 
softening_fraction(cells) = 0 : M_HAG(cells) = 0 : appld_stress = 0 : 
flow_softening(cells) = 0 : N_nuclei_cumu(cells) = 0 : Nucleation_Volume(cells) = 0 : 
c1 = 0 : ppt_spacing = 0 : time2simulate = 1 :        SG_Driving_force(cells) = 0 : 
Growth_Driving_Force(cells) = 0 : Zener(cells) = 0 : phase2_growth(cells) = 0 : 
film_nucleation(cells) = 0 :        nuclei_fraction_cumu(cells) = 0 : 
growth_rate(cells) = 0 : h = 0 : FN = 0 : Temp = 0 : Niterations = 1 : interval = 
0.0000000000000001 
    End Sub 
 
    'Display Modeling Output 
    Private Sub btn_print_form_Click(ByVal sender As System.Object, ByVal e As 
System.EventArgs) 
        Dim pf As New Microsoft.VisualBasic.PowerPacks.Printing.PrintForm 
        pf.Form = Me 
        pf.PrintAction = Printing.PrintAction.PrintToFile 
        Dim path As String = "c:\users" 
        pf.Print(Me, PowerPacks.Printing.PrintForm.PrintOption.FullWindow) 
    End Sub 
    Private Sub btn_get_data_Click(ByVal sender As System.Object, ByVal e As 
System.EventArgs) Handles btn_get_data.Click 
        btn_get_data.Visible = False 
        If CheckBox11.Checked = True Then 
            Call Excel_writer()   
        End If 
        If CheckBox12.Checked = True Then 
            Call Text_writer() 
        End If 
        btn_get_data.Visible = True 
    End Sub 
    Private Sub Excel_writer() 
        'Storing the final data into a 2D array results to b printed in excel 
        Dim results(cells, 16) As Object 
        For j As Integer = 0 To cells 
            results(j, 0) = time(j) 
            results(j, 1) = N(j) 
            results(j, 2) = Radius(j) * 1000000000.0 
            results(j, 3) = Nbl(j) 
            results(j, 4) = SIGMA(j) / 1000000.0 
            results(j, 5) = rho(j) 
            results(j, 6) = GR(j) 
            results(j, 7) = G_Z(j) 
            results(j, 8) = M_HAG(j) 
            results(j, 9) = radius_critical(j) 
            results(j, 10) = R_subgrain_avg(j) 
            results(j, 11) = chi_critical(j) 
            results(j, 12) = N_nuclei(j) 
            results(j, 13) = N_nuclei_cumu(j) 
            results(j, 14) = Act_Rex_Vol_frac(j) 
            results(j, 15) = softening_fraction(j) 
            results(j, 16) = Act_L(j) 
        Next j 
        Dim oExcel As Object 
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        Dim oBook As Object 
        Dim oSheet As Object 
        'Start a new workbook in Excel 
        oExcel = CreateObject("Excel.Application") 
        oBook = oExcel.Workbooks.Add 
        'Add headers to the worksheet on row 1 
        oSheet = oBook.Worksheets(1) 
        oSheet.Range("A1").Value = "Time (s)" 
        oSheet.Range("B1").Value = "No of Ppt" 
        oSheet.Range("C1").Value = "Ppt Rad, nm" 
        oSheet.Range("D1").Value = "Nb (wt%)" 
        oSheet.Range("E1").Value = "Stress_Discl,MPa" 
        oSheet.Range("F1").Value = "Dislocation Density (rho)" 
        oSheet.Range("G1").Value = "G" 
        oSheet.Range("H1").Value = "G-Z" 
        oSheet.Range("I1").Value = "M_HAGB" 
        oSheet.Range("J1").Value = "Radius_Critical" 
        oSheet.Range("K1").Value = "Subgrain radius" 
        oSheet.Range("L1").Value = "Chi_Critical" 
        oSheet.Range("M1").Value = "No of Rex Nuclei" 
        oSheet.Range("N1").Value = "N_Rex_Nuclei_cumu" 
        oSheet.Range("O1").Value = "Àct_Rex_frac" 
        oSheet.Range("P1").Value = "Softening_frac" 
        oSheet.Range("Q1").Value = "Act Length" 
        'Transfer the array to the worksheet starting at cell A2 
        oSheet.Range("A2").Resize(cells, 17).Value = results 
        'Save the Workbook and Quit Excel 
        oBook.SaveAs("TMP.Model.Results.xlsx") 
        oExcel.Quit() 
        System.Diagnostics.Process.Start("C:\users\kash\my 
documents\TMP.Model.Results.xlsx") 
    End Sub 
    Private Sub Text_writer() 
        Dim textWriter As New System.IO.StreamWriter("results.txt") 
        Dim line As String 
        line = CStr("time    ") 
        textWriter.WriteLine(line) 
        For cc As Integer = 1 To cells 
            line = CStr(time(cc)) + "  " + CStr(Radius(cc)) + "  " + CStr(N(cc)) + "  " 
+ CStr(Act_Rex_Vol_frac(cc)) 
            textWriter.WriteLine(line) 
        Next cc 
        textWriter.Flush() 
        textWriter.Close() 
        System.Diagnostics.Process.Start("results.txt") 
    End Sub 
    Private Sub btn_Draw_Graph_Click(ByVal sender As System.Object, ByVal e As 
System.EventArgs) Handles btn_Draw_Graph.Click 
        Dim graph_array(cells, 1) As Double 
        graph_array(cells, 1) = 0 
        If CheckBox9.Checked = True Then 
            Chart1.Series.Clear() 
            ' create a line chart series 
            Dim newSeries As New Series(0) 
            newSeries.ChartType = SeriesChartType.Line 
            newSeries.BorderWidth = 2 
            Chart1.Series.Add(newSeries) 
        End If 



PhD Thesis – Kashif Rehman ‐ McMaster University, Materials Science & Engineering 2014 

172 

 

        Chart1.ChartAreas(0).AxisX.Title = "Time (sec)" 
        Chart1.ChartAreas(0).AxisX.Minimum = 0.0001 
        If CheckBox1.Checked = True Then 
            For i As Integer = 1 To cells 
                graph_array(i, 0) = time(i) 
                graph_array(i, 1) = N(i) 
                Chart1.ChartAreas(0).AxisY.Title = "No of Ppt" 
            Next i 
        ElseIf CheckBox2.Checked = True Then 
            For i As Integer = 1 To cells 
                graph_array(i, 0) = time(i) 
                graph_array(i, 1) = (2000000000.0 * Radius(i)) 
                Chart1.ChartAreas(0).AxisY.Title = "Dia (nm)" 
            Next i 
        ElseIf CheckBox3.Checked = True Then 
            For i As Integer = 1 To cells 
                graph_array(i, 0) = time(i) 
                graph_array(i, 1) = Nbl(i) 
                Chart1.ChartAreas(0).AxisY.Title = "% Nb" 
            Next i 
        ElseIf CheckBox4.Checked = True Then 
            For i As Integer = 1 To cells 
                graph_array(i, 0) = time(i) 
                graph_array(i, 1) = (SIGMA(i)) / 1000000.0 
                Chart1.ChartAreas(0).AxisY.Title = "SIGMA MPa" 
            Next i 
        ElseIf CheckBox5.Checked = True Then 
            For i As Integer = 1 To cells 
                graph_array(i, 0) = time(i) 
                graph_array(i, 1) = rho(i) 
                Chart1.ChartAreas(0).AxisY.Title = "rho" 
            Next i 
        ElseIf CheckBox6.Checked = True Then 
            For i As Integer = 1 To cells 
                graph_array(i, 0) = time(i) 
                graph_array(i, 1) = N_nuclei(i) 
                Chart1.ChartAreas(0).AxisY.Title = " No of Nuclei" 
            Next i 
            graph_array(cells, 1) = N_nuclei(cells - 1) 
        ElseIf CheckBox7.Checked = True Then 
            For i As Integer = 1 To cells 
                graph_array(i, 0) = time(i) 
                graph_array(i, 1) = (radius_critical(i)) * 1000000.0 
                Chart1.ChartAreas(0).AxisY.Title = "critical_radius_um" 
            Next i 
            graph_array(cells, 1) = radius_critical(cells - 1) * 1000000.0 
        ElseIf CheckBox8.Checked = True Then 
            For i As Integer = 1 To cells 
                graph_array(i, 0) = time(i) 
                graph_array(i, 1) = 1000000.0 * R_subgrain_avg(i) 
                Chart1.ChartAreas(0).AxisY.Title = "Avg_SG_rad_um" 
            Next i 
            graph_array(cells, 1) = 1000000.0 * R_subgrain_avg(cells - 1) 
        ElseIf CheckBox10.Checked = True Then 
            For i As Integer = 1 To cells 
                graph_array(i, 0) = time(i) 
                graph_array(i, 1) = 100 * Act_Rex_Vol_frac(i) 
                Chart1.ChartAreas(0).AxisY.Title = "Act_Rex_Vol_frac" 
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            Next i 
            graph_array(cells, 1) = 100 * Act_Rex_Vol_frac(cells - 1) 
        ElseIf CheckBox13.Checked = True Then 
            For i As Integer = 1 To cells 
                graph_array(i, 0) = time(i) 
                graph_array(i, 1) = (softening_fraction(i)) * 100 
                Chart1.ChartAreas(0).AxisY.Title = "Softening Frac" 
            Next i 
            graph_array(cells, 1) = (softening_fraction(cells - 1)) * 100 
        ElseIf CheckBox14.Checked = True Then 
            For i As Integer = 1 To cells 
                graph_array(i, 0) = time(i) 
                graph_array(i, 1) = GR(i) / 1000000.0 
            Next i 
            Chart1.ChartAreas(0).AxisY.Title = "G(MPa)" 
            graph_array(cells, 1) = GR(cells - 1) / 1000000.0 
        ElseIf CheckBox15.Checked = True Then 
            For i As Integer = 1 To cells 
                graph_array(i, 0) = time(i) 
                graph_array(i, 1) = G_Z(i) / 1000000.0 
            Next i 
            Chart1.ChartAreas(0).AxisY.Title = "G-Z(MPa)" 
            graph_array(cells, 1) = G_Z(cells - 1) / 1000000.0 
        ElseIf CheckBox18.Checked = True Then 
            For i As Integer = 1 To cells 
                graph_array(i, 0) = time(i) 
                graph_array(i, 1) = (flow_softening(i)) / 1000000.0 
            Next i 
            Chart1.ChartAreas(0).AxisY.Title = "Flow Stress (MPa)" 
            graph_array(cells, 1) = (flow_softening(cells - 1)) / 1000000.0 
        ElseIf CheckBox19.Checked = True Then 
            For i As Integer = 1 To cells 
                graph_array(i, 0) = time(i) 
                graph_array(i, 1) = N_nuclei_cumu(i) 
            Next i 
            Chart1.ChartAreas(0).AxisY.Title = "Num.Rex.Nuclei" 
            graph_array(cells, 1) = N_nuclei_cumu(cells - 1) 
        End If 
        For c As Integer = 1 To cells 
            Chart1.Series(0).Points.AddXY(graph_array(c, 0), graph_array(c, 1)) 
        Next c 
        Chart1.Series(0).IsValueShownAsLabel = True 
        Chart1.ChartAreas(0).AxisX.IsMarginVisible = False 
        ' Set Logarithmic scale & base 
        Chart1.ChartAreas(0).AxisX.IsLogarithmic = True 
        Chart1.ChartAreas(0).AxisX.LogarithmBase = 10 
        Chart1.Series(0).ChartType = SeriesChartType.FastLine 
        Chart1.Series(0).Color = Color.GreenYellow 
        Chart1.BorderSkin.BorderColor = Color.Transparent 
        Chart1.BorderSkin.BorderDashStyle = ChartDashStyle.Solid 
        Chart1.BorderSkin.BorderWidth = 1 
        Chart1.ChartAreas(0).AxisY.LineWidth = 2 
        'gridlines 
        Chart1.ChartAreas(0).AxisX.MajorGrid.Enabled = True 
        Chart1.ChartAreas(0).AxisX.MajorGrid.Interval = 0.5 
        Chart1.ChartAreas(0).AxisX.MajorGrid.LineColor = Color.Green 
        Chart1.ChartAreas(0).AxisY.MajorGrid.Enabled = True 
        Chart1.ChartAreas(0).AxisY.MajorGrid.LineColor = Color.Green 
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        Chart1.ChartAreas(0).AxisY.MinorGrid.Enabled = True 
        Chart1.ChartAreas(0).AxisY.MinorGrid.LineColor = Color.Green 
        ' Set Title font 
        Chart1.ChartAreas(0).AxisX.TitleFont = New Font("Times New Roman", 16, 
FontStyle.Underline) 
        Chart1.ChartAreas(0).AxisY.TitleFont = New Font("Times New Roman", 16, 
FontStyle.Underline) 
        ' Set Title color 
        Chart1.ChartAreas(0).AxisX.TitleForeColor = Color.Red 
        Chart1.ChartAreas(0).AxisY.TitleForeColor = Color.Red 
        'zoom 
        Chart1.ChartAreas(0).CursorX.IsUserEnabled = True 
        Chart1.ChartAreas(0).CursorX.IsUserSelectionEnabled = True 
        Chart1.ChartAreas(0).AxisX.ScaleView.Zoomable = True 
        Chart1.ChartAreas(0).AxisX.ScrollBar.IsPositionedInside = True 
        Chart1.ChartAreas(0).AxisX.ScaleView.MinSize = 1 
        Chart1.ChartAreas(0).AxisX.ScaleView.MinSizeType = DateTimeIntervalType.Number 
        Chart1.ChartAreas(0).AxisX.ScrollBar.BackColor = Color.Olive 
        Chart1.ChartAreas(0).AxisX.ScrollBar.ButtonColor = Color.Green 
        Chart1.ChartAreas(0).AxisX.ScrollBar.LineColor = Color.OldLace 
        'zoom Y axis 
        Chart1.ChartAreas(0).CursorY.IsUserEnabled = True 
        Chart1.ChartAreas(0).CursorY.IsUserSelectionEnabled = True 
        Chart1.ChartAreas(0).AxisY.ScaleView.Zoomable = True 
        Chart1.ChartAreas(0).AxisY.ScrollBar.IsPositionedInside = True 
        Chart1.ChartAreas(0).AxisY.ScaleView.MinSize = 1 
        Chart1.ChartAreas(0).AxisY.ScaleView.MinSizeType = DateTimeIntervalType.Number 
        Chart1.ChartAreas(0).AxisY.ScrollBar.BackColor = Color.Olive 
        Chart1.ChartAreas(0).AxisY.ScrollBar.ButtonColor = Color.Green 
        Chart1.ChartAreas(0).AxisY.ScrollBar.LineColor = Color.OldLace 
    End Sub 
    Private Sub Button6_Click(ByVal sender As System.Object, ByVal e As 
System.EventArgs) Handles Button6.Click 
        Chart1.ChartAreas(0).AxisX.ScaleView.ZoomReset(0) 
        Chart1.ChartAreas(0).AxisY.ScaleView.ZoomReset(0) 
    End Sub 'Reset Zoom 
    Private Sub btn_Exit_Click(sender As System.Object, e As System.EventArgs) Handles 
btn_Exit.Click 
        Me.Close() 
    End Sub 
End Class 


