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Abstract  

Electric vehicles have received substantial attention in the past few years since they provide 

a more sustainable, efficient, and greener transportation alternative in comparison to 

conventional fossil-fuel powered vehicles. Lithium-Ion batteries represent the most 

important component in the electric vehicle powertrain and thus require accurate 

monitoring and control. Many challenges are still facing the mass market production of 

electric vehicles; these challenges include battery cost, range anxiety, safety, and reliability. 

These challenges can be significantly mitigated by incorporating an efficient battery 

management system. The battery management system is responsible for estimating, in real-

time, the battery state of charge, state of health, and remaining useful life in addition to 

communicating with other vehicle components and subsystems. In order for the battery 

management system to effectively perform these tasks, a high-fidelity battery model along 

with an accurate, robust estimation strategy must work collaboratively at various power 

demands, temperatures, and states of life. Lithium ion batteries are considered in this 

research. For these batteries, electrochemical models represent an attractive approach since 

they are capable of modeling lithium diffusion processes and track changes in lithium 

concentrations and potentials inside the electrodes and the electrolyte. Therefore, 

electrochemical models provide a connection to the physical reactions that occur in the 

battery thus favoured in state of charge and state of health estimation in comparison to other 

modeling techniques.  
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The research presented in this thesis focuses on advancing the development and 

implementation of battery models, state of charge, and state of health estimation strategies. 

Most electrochemical battery models have been verified using simulation data and have 

rarely been experimentally applied. This is because most electrochemical battery model 

parameters are considered proprietary information to their manufacturers. In addition, most 

battery models have not accounted for battery aging and degradation over the lifetime of 

the vehicle using real-world driving cycles. Therefore, the first major contribution of this 

research is the formulation of a new battery state of charge parameterization strategy. Using 

this strategy, a full-set of parameters for a reduced-order electrochemical model can be 

estimated using real-world driving cycles while accurately calculating the state of charge. 

The developed electrochemical model-based state of charge parameterization strategy 

depends on a number of spherical shells (model states) in conjunction with the final value 

theorem. The final value theorem is applied in order to calculate the initial values of lithium 

concentrations at various shells of the electrode. Then, this value is used in setting up 

constraints for the optimizer in order to achieve accurate state of charge estimation. 

Developed battery models at various battery states of life can be utilized in a real-time 

battery management system. Based on the developed models, estimation of the battery 

critical surface charge using a relatively new estimation strategy known as the Smooth 

Variable Structure Filter has been effectively applied. The technique has been extended to 

estimate the state of charge for aged batteries in addition to healthy ones.  

In addition, the thesis introduces a new battery aging model based on 

electrochemistry. The model is capable of capturing battery degradation by varying the 
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effective electrode volume, open circuit potential-state of charge relationship, diffusion 

coefficients, and solid-electrolyte interface resistance. Extensive experiments for a range 

of aging scenarios have been carried out over a period of 12 months to emulate the entire 

life of the battery. The applications of the proposed parameterization method combined 

with experimental aging results significantly improve the reduced-order electrochemical 

model to adapt to various battery states of life. Furthermore, online and offline battery 

model parameters identification and state of charge estimation at various states of life has 

been implemented. A technique for tracking changes in the battery OCV-R-RC model 

parameters as battery ages in addition to estimation of the battery SOC using the relatively 

new Smooth Variable Structure Filter is presented. The strategy has been validated at both 

healthy and aged battery states of life using driving scenarios of an average North-

American driver. Furthermore, online estimation of the battery model parameters using 

square-root recursive least square (SR-RLS) with forgetting factor methodology is 

conducted. Based on the estimated model parameters, estimation of the battery state of 

charge using regressed-voltage-based estimation strategy at various states of life is applied. 

The developed models provide a mechanism for combining the standalone 

estimation strategy that provide terminal voltage, state of charge, and state of health 

estimates based on one model to incorporate these different aspects at various battery states 

of life. Accordingly, a new model-based estimation strategy known as the interacting 

multiple model (IMM) method has been applied by utilizing multiple models at various 

states of life. The method is able to improve the state of charge estimation accuracy and 

stability, when compared with the most commonly used strategy. This research results in a 
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number of novel contributions, and significantly advances the development of robust 

strategies that can be effectively applied in real-time onboard of a battery management 

system. 

Keywords: Lithium-Ion Batteries, genetic Algorithm optimization, electrochemical 

battery model, parameter identification, state of charge estimation, Battery management 

systems (BMS), interacting multiple models (IMM), state of charge (SOC), state of health 

(SOH), filtration, estimation. 
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1. Chapter 1: Introduction 

This chapter provides an introduction to the research conducted; including the problem 

statement, research contributions and novelty, and organization of the thesis. 

1.1 Problem Statement  

Recently, the automotive industry is experiencing a major technology shift from 

conventional, fossil-fuel propelled vehicles to electrified hybrids (HEVs), plug-in hybrids 

(PHEVs), and battery electric vehicles (BEVs). As vehicles become more electrified, this 

brings technical challenges that must be addressed in order to accelerate the wide adoption 

of this emerging technology. Batteries represent a core component for the electric vehicle 

powertrain and therefore require accurate real-time supervisory control and monitoring. 

The battery management system (BMS) is responsible for accurate monitoring of critical 

parameters such as the battery pack state of charge (SOC), state of health (SOH), and 

remaining useful life (RUL). Furthermore, the BMS communicates with other critical 

onboard controllers and subsystems, maintains cell balancing, performs thermal 

management, and ensures safety.  

As an example to demonstrate the necessity of having a robust SOC and SOH 

estimation technique on board of an electric vehicle, consider the following: “As per 

October, 2012, there are 112 documented cases of customers complaining of capacity loss 

in their electric vehicles”, [1]. In addition, around 11.8% of the total number of Nissan Leaf 

vehicles sold in Arizona have exhibited a loss in capacity gauge bars (Note: first capacity 

bar represents 15% capacity loss and 6.25 in the subsequent bars), [1]. 
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For the SOH, BEVs and HEVs have been on the market for quite a short period of 

time thus possible malfunctions in batteries are of great concern. Therefore, adaptive 

control of batteries is necessary to account for aging and degradation in performance that 

might affect vehicle range of operation and charging efficiency, [2]. Furthermore, safety is 

of great concern, since EVs are  relatively new to the automotive market (E.g. Ford focus 

and Nissan Leaf have been on the market for only 3 years) as such new vehicles typically 

need some time for the assessment of their performance in real-world operations (until 

odometer reaches 150,000 miles), [3]. Any severe fires due to battery overcharge or short 

circuits would result in loss of market share and, to customers moving away from 

acquisition of electric vehicles. Accordingly, health monitoring and estimating the 

remaining useful life for battery systems is extremely important.  

Since electric and hybrid vehicles have been recently introduced to the market, it 

will require some time to assess their performance in real-world driving conditions. In 

particular, batteries might suffer from irreversible degradation due to cycling and that in 

turn adversely affects the SOC estimation accuracy which is of great concern to drivers. 

Accordingly, the battery management system (BMS) has to be adaptive to at least partly 

compensate for aging and degradation in performance that might affect the vehicle range 

of operation and charging efficiency.  

In order for the BMS to accurately estimate the battery SOC, SOH, and RUL, the 

BMS needs an accurate, high-fidelity battery mathematical model along with a robust 

estimation strategy to work collaboratively at various states, power demands, and 

temperatures. This is a tremendously challenging task since battery packs run under 
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dynamic charging and discharging currents based on the driving pattern (acceleration and 

regenerative braking) of the driver.  

As demonstrated in the literature, and reinforced in this thesis, most battery models 

that currently exist in the literature do not account for aging and degradation. Models have 

been developed based on single battery state of life at a fresh (healthy) state. As battery 

ages, most battery models suffer from divergence problems in terminal voltage calculation 

which in turn affects the state of charge estimation accuracy. It is therefore the goal of this 

research to further advance and develop battery aging models based on electrochemistry 

and equivalent circuit based models and track changes that occur in the battery parameters 

as battery degrades.  

Regarding electrochemical battery models, a large majority of electrochemical-

based models presented in the literature are based on computer simulations and have not 

been parameterized using experimental data. In addition, the full-set of the reduced-order 

electrochemical model parameters have not been identified using real-world driving cycles 

while calculating the state of charge. Furthermore, no state of charge parameterization 

model has been developed to adjust the spherical volume-based state of charge calculation 

accordingly. Therefore, this thesis overcomes this gap in the literature and provides a 

generic technique for parameter identification using evolutionary algorithms. The 

technique has been used to estimate the full-set of the reduced-order electrochemical model 

parameters based on a 3.3V, 2.3Ah Lithium Iron Phosphate (LiFePO4) battery at various 

states of life. Furthermore, the thesis includes a new electrochemical model-based SOC 

parameterization strategy based on the number of spherical shells (model states) and on the 
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final value theorem. The final value theorem is applied in order to calculate the initial values 

of lithium concentrations at various shells of the electrode. Then, this value has been used 

in setting up a constraint for the optimizer in order to achieve accurate SOC estimation. 

Developed battery models at various battery states of life can be utilized in a real-time 

battery management system.   

1.2 Research Contributions and Novelty  

The overview of the research conducted in this thesis is as shown below in Figure 1.1. The 

first main contribution of this research project is the development of a new state of charge 

parameterization strategy based on the number of electrode shell concentrations and the 

final value theorem. This creates new opportunities to fit current and voltage experimental 

data and identify the reduced-order electrochemical model parameters while evaluating the 

state of charge based on the electrode concentration spherical average. Extensive testing 

using real-world driving cycles such as the Urban Dynamometer driving Schedule (UDDS) 

have been conducted on fresh lithium-Iron Phosphate cells at controlled temperatures. 

Identification of the full-set of the electrochemical model parameters have been carried out. 

The model has been validated using an aggressive driving cycle such as the US06 driving 

cycle.   

In addition, the parameterized electrochemical model creates new opportunities and 

possibilities for developing aging models by varying the effective electrode volume. An 

extensive array of accelerated aging tests have been carried out at elevated temperature 

over a period of 12 months. This period was used to age the cell from 100% capacity to 

their end-of-life specified by most automotive manufacturers at 80%. The proposed 



Ph.D. Thesis   McMaster University  
Ryan Ahmed   Department of Mechanical Engineering 

 

5 

 

electrochemical model has been validated and expanded upon to enable tracking parametric 

changes that would reflect battery aging. These parameters include the open circuit voltage-

state of charge relationship, the solid particle diffusion coefficient, the solid-electrolyte-

interface resistance, and the stoichiometry ratio values. The model has been validated using 

different driving cycles that have not been previously used during the optimization phase. 

The methodology can be applied to any battery chemistry with different specifications.  
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Figure 1.1. Research Flowchart 
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A robust estimation strategy known as the Smooth Variable Structure Filter (SVSF) 

has been applied to estimate the electrode critical surface charge and the state of charge at 

various battery states of life. The strategy works in a predictor-corrector form and is 

computationally efficient to be implemented on board of a battery management system.  

In addition to the aforementioned research conducted in the electrochemical battery 

modeling, tracking of parametric changes for the equivalent-circuit-based models has been 

implemented in both online and offline settings. The offline tracking technique utilizes 

Genetic Algorithm optimization to estimate model parameters while the online tracking 

methodology uses the Square-Root Recursive Least Square estimation to track model 

parameters. An extensive array of aging tests has been conducted over the course of 12 

months simulating the entire lifetime of a battery in an all-electric vehicle. The tests 

encompass the driving habits of an average North-American driver in regular weekdays 

and weekends. A mix of benchmark driving cycles have been used in this study separated 

by a series of reference performance tests (RPTs) to assess degradation over the lifetime of 

the vehicle. Furthermore, a state of charge estimation strategy has been applied to estimate 

the state of charge based on the SVSF and the regressed voltage-based estimation strategy. 

The techniques have shown robustness to modeling uncertainties and sensor noise and work 

relatively well at all battery states of life.  

Using the developed models at various battery states of life, a technique widely used 

in radar and tracking applications have been adopted in the battery management field. The 

technique is known as the interacting multiple models based on the Smooth Variable 

Structure Filter (IMM-SVSF). Instead of relying on one single battery model in calculating 
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the terminal voltage and estimating the state of charge, the IMM-SVSF works by 

incorporating multiple models at various states of life. Results indicate the necessity of 

having an adaptive technique that accounts for battery aging and degradation.   

The results of this research represent significant contributions to the area of battery 

modeling and state of charge estimation, as well as to the body of knowledge in the battery 

management systems field. In order to provide a summary of research contributions, a list 

of original research goals presented in this thesis are listed below: 

Primary Contributions: 

1. Development of a new SOC parameterization strategy based on the number of 

spherical shells and the final value theorem. 

2. Development of an aged battery model based on electrochemistry by varying the 

effective electrode volume. 

3. Estimation of the battery state of charge and the critical surface charge at various 

states of life based on the developed model. 

4. Identification of the full set of the reduced-order model parameters at fresh 

(healthy) state. 

5. Tracking changes of the battery electrochemical model parameters such as the 

diffusion coefficient, solid-electrolyte interface resistance, open-circuit voltage-

state of charge relationship, and the cathode and anode stoichiometry ratio values.   

6. Development of an aged battery model based on equivalent-circuit-based models. 

7. Application of the Smooth Variable Structure Filter based on the developed models 

to estimate the state of charge at various states of life. 
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8. Development of an adaptive method to estimate the SOC and the terminal voltage 

based on the IMM-SVSF. 

9. Estimation of the battery parameters using the Square Root Recursive Least Square 

estimation at fresh and healthy battery states.  

10. Application of the regressed voltage-based strategy to estimate the state of charge 

at various states of life. 

Secondary contributions rely on the attained primary ones as follows: 

Secondary Contributions: 

1. Identification and quantification of the parameters that contribute to battery aging 

such as the depth of discharge and temperatures.  

2. Estimating the battery effective electrode volume which can provide an indication 

of the battery state of health.  

3. A better understanding of how the SVSF performs in comparison to the IMM-

SVSF according to its smoothing boundary layer, and the existence of modeling 

uncertainties and sensor noise. 

4. Estimating the OCV-R-RC battery model parameters provides an indication of the 

battery state of health.  

5. A better understanding of battery aging and failure mechanisms that might occur 

in traction battery packs. 

These contributions have been reported in manuscript submitted or accepted for publication 

in scientific journals as listed in the next section. 
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1.3 Organization of the thesis  

This thesis presents a combination of analytical and experimental research used to propose 

advancements in battery mathematical modeling, state of charge, and state of health 

estimation based on fresh and aged batteries. The thesis is organized as follows: 

Chapter 2 provides a literature review of battery models, state of charge, state of 

health, and aging models.  

Chapter 3 proposes a new state of charge parameterization strategy for identifying the 

full-set of parameters in a reduced-order electrochemical model for a fresh battery. The 

major contributions of the paper include the development of a new electrochemical model-

based SOC parameterization strategy based on the number of spherical shells (model states) 

and the associated application of the final value theorem. The final value theorem is applied 

in order to calculate the initial values of lithium concentrations at various shells of the 

electrode. Then, this value has been used in setting up a constraint for the optimization 

strategy used in estimating the SOC. The proposed battery models for various battery states 

of life are computationally efficient and can be utilized in a real-time battery management 

system.   

In addition, the chapter presents a detailed analysis of the proposed models in the 

context of battery usage in a mid-sized electric vehicle. The vehicle model is used to 

generate the current profile for the battery according to the velocity profile from driving 

cycles. Furthermore, the chapter describes the experimental setup that was used for data 

collection, including battery cyclers and environmental chambers. A detailed analysis of 

the battery reference performance tests including driving cycles have been presented. These 
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tests have been used for model fitting and validation. Experimental results of the terminal 

voltage and state of charge, based on the developed parameterization model have been 

presented.  

Chapter 4 includes the development of an aging battery model capable of capturing 

battery degradation by varying the effective electrode volume. Furthermore, tracking the 

electrochemical model parameters that contribute to aging as battery degrades is also 

presented. These parameters include diffusion coefficient, solid-electrolyte interface 

resistance, and the OCV-SOC relationship.  

The chapter summarizes the extensive accelerated aging test that has been conducted 

on battery cells until the battery reaches the end-of-life (80% of its capacity). In addition, a 

reference performance test using driving cycles has been conducted on aged batteries. 

Finally, a battery critical surface charge estimation strategy has been designed to estimate 

the state of charge based on the identified battery model parameters. A strategy known as 

the Smooth Variable Structure Filter (SVSF) has been used for battery critical surface 

charge estimation. 

Chapter 5 involves a detailed description of the aging study that simulates the entire 

lifetime of the electric vehicle. The chapter summarizes the proposed parameter 

identification and SOC estimation techniques based on equivalent circuit-based models. 

Two different approaches for battery SOC estimation and model parameters identification 

have been implemented and compared. Battery model parameters identification using both 

online and offline techniques at various battery states of life has been conducted. In the first 

approach, an online recursive least square method has been applied to estimate battery 
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model parameters and to estimate the open circuit voltage (OCV). A square-root version of 

the recursive least square method (SR-RLS) has been presented in this research with 

forgetting factor since it represents a robust estimation strategy. Based on the estimated 

battery OCV, a regressed-voltage method has been applied to map the OCV to the battery 

SOC thus provides an estimate of the battery SOC at various states of life. In the second 

approach, a Genetic Algorithm (GA) optimization strategy has been applied offline to 

estimate the battery model parameters at various states of life. Based on the identified 

model parameters, a battery SOC estimation strategy has been designed to estimate the 

SOC based on the identified battery model parameters. The SVSF has been presented for 

battery SOC estimation. The proposed strategy has been selected since it demonstrates 

robustness to modeling uncertainties, sensor noise, and to SOC initial conditions. The 

strategy has been applied to estimate the battery SOC at various battery states of life from 

fresh (healthy) state (100% capacity) to 80% retained capacity.  

Chapter 6 presents a new SOC estimation strategy known as the Interacting Multiple 

Models using the Smooth Variable Structure Filter (IMM-SVSF). The proposed 

methodology can adapt to various aging conditions and can provide an accurate approach 

that can be implemented in a real-time on-board battery management system (BMS). The 

proposed method presents a proof of concept for the applicability of adaptive techniques in 

battery SOC estimation. The IMM-SVSF technique is used for extracting the state of charge 

(SOC) information based on an equivalent circuit-based battery aging model. This 

technique is capable of tracking the battery SOC and terminal voltage under aging 

conditions. As battery ages, parameters such as the internal resistance and capacity change 
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overtime and thus, the battery model has to adapt to these variations and provide an accurate 

SOC estimate over various charging/discharging cycles until the end-of-life (EOL). 

Computer simulations and experimental results show the effectiveness of the proposed 

technique for real-time BMS applications.   

Chapter 7 provides a summary of the thesis, the major conclusions and the 

recommendations for future research. 
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Abstract  

Electric vehicles have received substantial attention in the past few years since they provide a more 

sustainable, efficient, and greener transportation alternative in comparison to conventional fossil-

fuel powered vehicles. Lithium-Ion battery packs are increasingly used and are an important 

component in the electric vehicle powertrain.  Use of batteries pose many challenges in the mass 

market production of electric vehicles. These include battery cost, range anxiety, safety, and 

reliability. These challenges can be significantly mitigated by incorporating an efficient battery 

management system. The battery management system is responsible for estimating, in real-time, 

the battery state of charge, state of health, and remaining useful life in addition to communicating 

these parameters with other vehicle components and subsystems. In order for the battery 

management system to effectively perform these tasks, a high-fidelity battery model along with an 

accurate, robust estimation strategy must be deployed to work collaboratively at various power 

demands, temperatures, and states of life. This is a challenging task in safety critical applications 

such as in the automotive sector. This paper provides a review of the publications related to battery 

models, aging models, and the associated state of charge, state of health, and remaining useful life 

estimation strategies.  Keywords: Battery literature review, battery modeling, state of charge 

estimation, state of health, lithium-Ion batteries. 
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2.1 Introduction 

Battery management systems (BMS) play an important role in hybrid and electric vehicles 

since the battery pack is safety critical and one of the most important and expensive parts 

of the vehicle. They therefore require accurate monitoring and control. In order to 

efficiently manage the battery, an accurate estimation of the battery state of charge (SOC), 

state of health (SOH), and remaining useful life (RUL) is needed. SOC is defined as the 

remaining battery capacity in comparison to the battery overall capacity, thus providing an 

indication of the vehicle remaining driving range, [1]. SOH is a measure of the irreversible 

degradation that occurs in the battery performance due to cycling, [1]. The SOH provides 

a comparison of the current state of the battery versus the fresh (healthy) battery before any 

cycling, [1]. SOH is a measure of the battery’s capability to respond to the required power 

demand and thus an indicator of potential need for maintenance or replacement, [1]. Two 

main critical factors affect the battery SOH, namely:  battery capacity fade and power fade. 

The battery capacity fade has a significant impact on the vehicle driving range which is 

critical since it is associated with customer range anxiety. The second factor is the power 

fade which impacts the vehicle performance and drivability. The RUL is used to predict 

the battery remaining useful time across its predetermined lifetime thus represents a 

proactive indicator for battery maintenance, [1].  

Since the aforementioned parameters cannot be directly measured with a sensor, a 

high-fidelity mathematical model along with a robust estimation algorithm is necessary. A 

trade-off between model accuracy and complexity is present in relation to real-time 

implementations; models must be accurate to capture the system dynamics while being 
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simple to be implemented in real-time embedded microprocessors, [2]. Extensive research 

has been conducted to achieve accuracy in modeling the dynamic characteristics of the 

battery while keeping the models simple enough for online implementation in a real-time 

vehicle BMS, [1]. In this paper, a literature review of the current research advancements in 

BMS is provided specifically directed to the following areas: battery cell and pack-level 

modeling and parameter identification, techniques for state of charge estimation, state 

of health estimation, remaining useful life, and aging models.   

The paper is organized as follows.  Section 2 discusses various battery models found 

in recent literature in addition to various strategies applied for model parameters 

identification. Section 3 involves various state of charge estimation techniques. Section 4 

outlines various aging models that works collaboratively with other techniques for model 

parameters identification. Section 5 reports on state of health estimation strategies used in 

BMS. The conclusion are provided in Section 6. An overview of the topics reviewed in this 

paper is shown in Figure 2.1.  
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Figure 2.1. Paper (Literature review) Overview 
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2.2 Battery Models  

Battery models are commonly classified under one of the following: (i) equivalent circuit-

based models, (ii) electrochemical battery models, (iii) behavioural models (empirical), (iv) 

hydrodynamic models, (v) tabulated data models, and (vi) black-box battery models (such 

as artificial neural network and fuzzy logic-based models), [3, 4]. These modeling strategies 

are reviewed in this section. 

2.2.1 Equivalent Circuit-Based Models 

Equivalent circuit-based models use simple elements such as resistors and capacitors to 

model the charging and discharging behavior of Li-ion batteries. Equivalent circuit models 

are simple to implement, computationally efficient and simple for implementing parameter 

and model identification. Therefore, equivalent circuit models can be easily implemented 

in real-time on-board of a vehicle microcontroller. However, model parameters have little 

or no physical meaning which makes them restrictive for state of health estimation. 

Equivalent-circuit based models are divided into 5 categories as follows, [1].  

2.2.1.1 Thevenin Electrical Model: 

The Thevenin model, is shown in  

Figure 2.2. It consists of one voltage source (���), a resistor connected in series (��), and a 

parallel combination of a resistor and a capacitor (���). The output is the battery terminal 

voltage (��), [5]. The resistance (��) is used to model the battery internal resistance and 

the RC branch is used to model the overvoltage. This model has limited capability since it 
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does not take into consideration the variation in the battery parameters as they change with 

time and according to operating conditions, [5]. 

 

Figure 2.2. Thevenin Battery Model, [5] 

2.2.1.2 Linear Electrical Model: 

These models represent an improvement over the Thevenin-based models, [5]. These 

models provide more accuracy as they are capable of modeling the battery self-discharge 

(� ) and other overvoltage using different elements as shown in Figure 2.3, [6, 7]. 

 

Figure 2.3. Linear Battery Model, [7] 
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In Figure 2.3, !" is the open circuit voltage of a fully-discharged battery cell and 

�# is the cell capacitance.  These elements add up to the open circuit voltage of the battery 

cell �$%('), [7]. �  is the self-discharge resistance; ��, ��, �) are the battery resistances; 

��, ��, �) are the battery capacitances that represent the cell dynamics; *#(') is the battery 

current; and ��(')	represents the battery terminal voltage which is calculated as follows, 

[7]: 

+�(') = +,- + +-% = ���(') + /0(') (2.1) 

Note that the battery overvoltage /0(') represents the difference between the 

battery terminal voltage and the battery open circuit voltage [7]. This model is not 

appropriate for real-time implementation as it uses various values for electrical elements to 

model the variation of the model with the battery state of charge, [5]. Furthermore, it does 

not take into account temperature dependence and has thus limited accuracy, [5].  

2.2.1.3 Non-linear electric model 

A more accurate battery model that takes into account temperature variations, self-

discharge, internal resistance, overvoltage, and internal storage capacity has been proposed 

in [5] as shown in Figure 2.4. In this model, , �  is the self-discharge resistance, �# is the 

battery capacity, ��% is the charge overvoltage resistance, ��1 is the discharge overvoltage 

resistance, �� is the overvoltage capacitance, �2� is the internal resistance for charge, �31 

is the internal resistance for discharge, and ��� is the open circuit voltage, [5].  
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Figure 2.4. Equivalent Circuit-based model with Temperature Dependence, [5] 

 

In nonlinear equivalent circuit based models, battery parameters are not constants and they 

change according to the battery voltage [5] as follows: 

45 = 6789:(;<=;>?)@::  (2.2) 

Where 45 is the model parameter, 6 is a gain multiplier, AB is a width factor, �0 

is the mean voltage, �$% is the open circuit voltage, and CC is the flatness factor. The battery 

resistance elements vary with temperature thus variation due to temperature can be modeled 

as follows, [5]: 

D� = 	 ��EFB
(�GH:=�)/�GH:

 (2.3) 

Where, D� is the temperature compensation coefficient for the resistance, � is the 

resistance at temperature	D, �EFB	is the resistance at temperature	DEFB, [5].  

2.2.1.4 First, second, and third-order RC Models 

RC models consists of an open circuit voltage source which is a function of the battery state 

of charge (SOC). �" represents the battery internal resistance while RC branches are used 

to model battery dynamics.  The third-order model is as shown below in Figure 2.5, [8]. 
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The terminal voltage relationship from the standalone first, second, and third-order models 

are as shown below in Table 2.1, [8]. In addition, any of these models can be enhanced by 

incorporating a hysteresis state to account for battery hysteresis that occurs in charging and 

discharging, [8].   

 

Figure 2.5. Third-Order RC Battery Model, [8] 

 

The parallel RC elements correspond to the dynamic order of the circuit. The 

equations for the first, second, and third-order models with and without hysteresis are 

presented in Table 2.1. Here J�, J�, J) are the voltage of the first, second, and third RC 

elements, respectively while L� = ����, L� = ����, L) = �)�) are the associated time 

constants, [8].  

Table 2.1. First, second, and third RC Models with and without hysteresis equations, 

[8] 

Model Output equations 

The first-order RC model [9, 8] 

J�,MN� = exp(−∆'/L�) J�,M + ��[1− exp	(−∆'/L�)]VM �M = W��(XM) − �"VM − J�,M 
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The first-order RC model with hysteresis 

state [10, 11] 
�M = W��(XM) − �"VM − J�,M + ℎM 

The second-order RC model �M = W��(XM) − �"VM − J�,M − J�,M 

The second-order RC model with 

hysteresis state 
�M = W��(XM) − �"VM − J�,M − J�,M + ℎM 

The third-order model RC model 
�M = W��(XM) − �"VM − J�,M − J�,M− J),M 

The third-order model RC model with 

hysteresis state 

�M = W��(XM) − �"VM − J�,M − J�,M− J),M + ℎM 

 

2.2.1.5 Randles (Impedance-based) Equivalent circuit models 

Randles equivalent circuit based models are macroscopic models that can be developed 

using data obtained from electrochemical Impedance spectroscopy laboratory experiments, 

[12]. These models, as shown in Figure 2.6, use a resistance (�$Z[) which represents the 

resistance of the electrolyte and current collector, [13, 12], �1\ represents the double layer 

capacitance at the cathode/electrolyte and lithium/electrolyte interface,  �%� is the charge 

transfer resistance, and X9 is the Warburg impedance which is the impedance due to lithium 

ion diffusion, [12].  

 

Figure 2.6. Randles Equivalent Circuit-based model, [12] 
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In general, the battery is excited at frequencies that range from 10] to 10=� Hz. The battery 

model parameters can be obtained using the output from the impedance spectroscopy, [12].  

2.2.2  Electrochemical-Based Models 

Electrochemical battery models, also known as first-principal models, use partial 

differential equations to describe lithium diffusion inside both electrodes and the 

electrolyte, [14]. Electrochemical models are generally complex and require more 

computational power compared to equivalent-circuit based models, [1]. Even though they 

are mostly complex, they are preferred since they are capable of modeling the physical 

phenomenon that occurs in the battery. Therefore, electrochemical models can provide a 

better indication of the battery state of charge and state of health. In order to implement the 

electrochemical models on board of a battery management system, model reduction has to 

be carried out to reduce their computational complexity. Another major difficulty with 

electrochemical models is that they require numerous number of parameters such as 

diffusion coefficients and electrode physical dimensions, [8]. In this section, a summary of 

the full-order electrochemical model is presented followed by a review of the most recent 

developments. 

2.2.2.1 Summary of the Electrochemical Model 

The battery model structure and an overview of the electrochemical battery model, as 

shown in Figure 2.7, is illustrated in this section. The common approach here is to consider 

the diffusion dynamics in one dimension and only along the X-axis, [15, 16].  At any 

specified time ' and at any location across the x-axis, the following state variables are 

evaluated:  
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1. Electric potential in the solid electrode	ɸ2(_, ')  
2. Electric potential in the electrolyte	ɸF(_, ')	 
3. Lithium concentration in the solid phase	`2(_, a, ')	 
4. Lithium concentration in the electrolyte	`F(_, ').  
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Figure 2.7. Lithium-Ion Battery Structure and the Reduced-Order Model 

Assumption (Adopted from [17]) 

 

The full-order electrochemical model consists mainly of 4 partial differential 

equations, [18]. The model has one input representing the cell current I and one output 

representing the terminal voltage	��. The following equations summarize the relationship 

between the input and the output, [14]. The solid and electrolyte potentials are described 

by the following two equations, [17]: 
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bb_ 6FBB bb_ ∅F + bb_ 61FBB bb_ ln `F = −f\g (2.4) 

bb_ hFBB bb_ ∅2 = f\g (2.5) 

The diffusion of lithium in the electrolyte is modeled using Fick’s law for linear 

coordinates as shown by equation (2.6), [17],  

biF`Fb' = bb_ jkFFBB b`Fb_ l + 1 − '"m f\g (2.6) 

while the solid (electrode) phase diffusion is modeled by Fick’s laws of diffusion 

for spherical coordinates as follows, [17]: 

b`2b' = bba (k2 b`2ba ) (2.7) 

The Butler-Volmer current density (n\g) is described, [17]: 

n\g = o2f�[7_p j∝r m�D /l − 7_p	(∝� m�D /)] (2.8) 

Where � and m are the universal gas constant and Faraday’s constant, D is the 

absolute temperature and / is the over potential, [17].  

/ = ∅2 − ∅F − J(`2F) (2.9) 

The model output representing the terminal voltage is related to the measured cell 

solid potential as follows, [17]: 

� = ∅2(_ = s) − ∅2(_ = 0) − �BV	 (2.10)	
In equation (2.9), J	is the open circuit voltage which is a function of the lithium 

concentration at the solid-electrolyte interface	`2F(_, ') = `2(_, �2, '). The concentration at 
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the interface between the solid and the electrolyte is related to the critical surface charge 

(CSC), which is lithium concentration at the solid-electrolyte-interface, [17]. 

�t�(') = u − u"%u�""% − u"% (2.11) 

By defining the normalized solid-electrolyte concentration  θ as follows, [17]: 

u = xyz*{ − 7z7`'ayz|'7	`y}`7}'ao'*y}	~o_*~�~	xyz*{	`y}`7}'ao'*y} 	
				= `2F	`2,0r� 

(2.12) 

where, u"% and u�""% are the normalized concentrations corresponding to 0% 

(fully discharged) and 100% (fully charged).  u�""% can be defined by obtaining the 

concentration corresponding to the maximum fully charged battery. Subsequently, the 0% 

reference value can be calculated by subtracting the battery capacity Q as, [19]:  

u"% = u�""% − �� ( 1�mi`2,0r�) (2.13) 

where �B is the electrode film resistance at the electrode surface, this resistance 

increases after charging and discharging cycles (battery aging). As mentioned earlier, the 

full-order model is relatively complex so further simplifications are necessary to make it 

useful for control and estimation purposes. The open circuit voltage is obtained from the 

cathode and anode potentials and is function of the state of charge. An empirical 

relationship is used to relate the open circuit voltage to the normalized state of charge which 

is given by [20]: 

J�(u�) = 8.0029 + 5.064u� − 12.578u�".] − 8.6322 × 10=�u�=� + 2.176
× 10=]u�)� − 0.46016 7_p[15(0.06 − u�)]
− 0.553647_p	[−2.4326(u� − 0.92)] 

(2.14) 
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For the positive electrode, the empirical equation is as follows, [21]: 

J �u � = 85.681u � − 357.7u ] + 613.89u � − 555.65u ) + 281.06u �
− 76.648u + 13.1983 − 0.309877_p	(5.657u ��]) (2.15) 

The coefficient f� depends on the solid and electrolyte concentrations according to the 

following equations, [17]: 

f� = (`F)���`2,0r� − `2F���(`2F)�? (2.16) 

 

In the following subsections the ongoing research in 4 main areas are reviewed, namely: 

full-order electrochemical model enhancements, reduced-order model enhancements, 

model parameters identification, and state of charge estimation.  

2.2.2.2  Full-Order Electrochemical Models Enhancements 

Even though equivalent circuit based models are simple and easy to implement, their 

application is limited to portable electronics. In high power and energy applications such 

as the automotive field, relying on equivalent circuit based models is questionable since 

these models do not capture the underlying physical interactions and diffusion processes in 

the cell and can compromise accuracy and safety, [22]. In order for equivalent circuit-based 

models to be implemented in high energy and power applications, battery parameters have 

to be adaptive and change at various states of charge, states of life, and temperatures which 

significantly increases the complexity of the model to a level comparable to 

electrochemical models, [22]. Since equivalent circuit-based models provide minimal 

physical insight to the battery internal states such as solid and electrolyte potentials, 
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extensive research is being conducted on electrochemical models to overcome the problem 

associated with their computational complexity. 

Electrochemical-based battery models have been widely researched in the literature. 

In 1975, Newman and Tiedemann presented a new development in the theory of flooded 

porous electrodes. In this theory the electrode was treated as a superposition of the 

electrolytic solution and the solid matrix, [15]. The solid matrix was modeled as 

microscopic spherical particles where the lithium ions diffuse and react on the spheres 

surface. Later in [23], Fuller et al. expanded this model by considering the one dimensional 

transport of lithium ions from the negative electrode composite through the separator into 

the positive electrode composite.  

The first principals of electrochemical modeling have been presented in [23]. In this 

paper, the lithium insertion in the active electrodes materials due to galvanostatic charge 

and discharging process is modeled and simulated, [23]. The main advantage of this model 

is that it has generic characteristics thus can be applied to any active electrodes and 

electrolyte materials. This model was further enhanced by Ramadass et al. in [24] by 

accounting for the cell capacity decay. In 1998, Wang et al [25] introduced a new model 

that integrates the microscopic concepts of porous electrode theory into a macroscopic 

battery model, hence reducing the effect of electrode porosity on the model complexity. 

Wang et al. model was adapted to a wide range of active materials and electrolyte solutions. 

The model was applied to lithium-ion batteries in [26].  
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Although electrochemical battery models provide an accurate prediction of lithium 

concentration across the electrode, a real-time application of full-order electrochemical 

models is difficult because of their high complexity. Accordingly, to allow real-time battery 

state of charge (SOC) estimation, approximations to the battery model were introduced in 

[27, 28]. 

2.2.2.3 Reduced-Order Electrochemical Model  

Full-order models are usually used during the battery design phase since they are capable 

of predicting the physical interactions inside the cell such as potential distribution and 

electrochemical species diffusion. In order to implement the electrochemical model for 

real-time applications on a battery management system for SOC and SOH estimation, a 

reduced-order form has to be realized. In the literature, two common forms of reduced-

order electrochemical models are: the electrode average model [19], and the states value 

model [29]. In the electrode average model, several assumptions have been made for real-

time applications, including: (1) high electrolyte lithium concentration (`F) thus can be 

assumed constant, and (2) utilizing one representative particle for each electrode instead of 

having several particles in the spatial x-direction (full-order model). These assumptions 

result in a computationally efficient model that can be used for real-time estimation and 

control. This reduction results in some loss of information. However, the model still 

maintains a connection with the cell physics that cannot be attained using empirical or 

equivalent circuit-based models, [30]. 

Regarding the states value model, the full-order model has to be transformed into 

linear  functions that relate the model input current V(x) to model outputs, solid lithium 
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concentration (`2(_, x)), electrolyte concentration (`F(_, x)), solid phase potential 

(∅2(_, x)), and electrolyte phase potential (∅F(_, x)). Afterwards, by combining the output 

of sub-models, the battery terminal voltage can be calculated.  The key assumptions that 

have to be made are as follows: (1) Butler-Volmer current n\g(x) is assumed to be 

decoupled from the electrolyte concentration	`F(_, x), and (2) the model has a linear 

behaviour. 

In [30], a comparison between the electrode average model and the linear states 

value model is presented. Experiments were conducted on a 37 V 10 Ah lithium-Ion battery 

cells using multiple driving cycles and pulse tests, [30]. The electrode average model 

provides various advantages compared to the states value model as follows [30]: (1) The 

electrode average model provides a better estimate of the state of charge, (2) it requires 

fewer parameters in comparison to the states value model, (3) it is easier to tune since it 

requires setting one initial parameter only representing the initial state of charge, [30]. 

However, its main disadvantages include: (1) high nonlinearity in parameters compared to 

the linear state value model, and (2) the model parameters are hard to identify, [30]. 

Reduced order models are mainly used for estimation and control purposes such as state of 

charge and state of health estimation.  

2.2.3 Behavioural Battery Models  

Behavioural battery models use various empirical functions and formulas to describe the 

behaviour of the battery cells. Similar to equivalent circuit-based models, these are simple 

to implement with less parameters to tune and, therefore can readily be used in real-time 

applications on a BMS. These models are considered below. 
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2.2.3.1 Shepherd/Unnewehr/Nernest Equations  

The shepherd equation represents a simple approach for battery modeling; it is represented 

in the following form, [31]: 

!(') = !� + ��*(') + ���2(') (2.17) 

where, !� is the initial cell voltage, �� is the cell internal resistance, �2(') is the 

instantaneous stored charge, and �� is a constant, [31]. Another further approximation is 

represented in the Unnewehr model, [31] 

!(') = !� + ��*(') + ���2(') (2.18) 

Another similar form is known as the Nernest Model as follows, [31]: 

!(') = !� + ��*(') + �) z} ��2(')� � − ��z}	(� − �2(')� ) (2.19) 

where, � is the total charge capacity of the cell and the constants	��, ��, �), and �� can be 

obtained by fitting experiential data, [32]. 

In [33], Plett introduced a series of behavioural models based on the previously 

mentioned models, namely: the combined model, the simple model, the zero-state 

hysteresis model, one state hysteresis model, and the enhanced-self-correcting model. 

These models can account for hysteresis effect, polarization time constants, and ohmic loss 

effects, [33]. A summary of the abovementioned models is as follows, [33]: 
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2.2.3.2 The Combined Model 

By combining the three above mentioned behavioral models and discretizing them in time, 

[34], the combined model is obtained as shown below: 

|M = �" − �*M − ��XM − ��XM + �) ln(XM) + �� ln(1 − XM) (2.20) 

XMN� = XM − j/g∆'� l *M	 (2.21) 

In this model, |M is the cell terminal voltage, � is the cell internal resistance, 

representing both charge and discharge resistances. ��, ��, �), ��	are tunable constants that 

can be used to fit experimental data to the model, [34]. The main advantage of this model 

is that parameters can be easily identified from the current/voltage data using least square 

optimization. 

2.2.3.3 The Simple Model 

The simple model is derived from the combined model by grouping all terms that are 

functions of the state of charge XM in one group as follows, [34]: 

C(XM) = �" − ��XM − ��XM + �) ln(XM) + �� ln(1 − XM) (2.22) 

And, by grouping all terms that are functions of the current:  

C(*M) = �*M 

Equation (2.22) represents the open circuit potential which is a function of the battery state 

of charge. Thus the simple model can be formulated as follows, [34]: 

XMN� = XM − j/g∆'� l *M (2.23) 

|M = W��(XM) − �*M (2.24) 
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Where W�� refers to the open circuit voltage. 

2.2.3.4 The Zero-State Hysteresis Model 

Even though the previous models can capture the terminal voltage dynamics with 

acceptable accuracy, they do not account for hysteresis effect, [34]. The zero-state 

hysteresis model is capable of modeling hysteresis by the addition of the following term 

xM4(XM) to the simple model, [34]: 

|M = W��(XM) − xM4(XM) − �*M (2.23) 

where xM represents the sign of the current and 4(XM) is half the difference between 

the charge and discharge values (i.e., some value of hysteresis), [34]. For a small and 

positive value	i, xM can be defined as follows: 

xM = � +1 *M > i−1 *M < −ixM=� |*M| ≤ i  

The zero-state hysteresis model provides a better voltage estimate compared to the simple 

model, [34]. 

2.2.3.5 The One-State Hysteresis Model 

The hysteresis voltage can be modeled using a separate state ℎ(X, ') which is function of 

the battery state of charge. The hysteresis voltage can be modeled as follows, [34]:  

{ℎ(X, '){X = �x�}(X�)[4(X, X�) − ℎ(X, ')] (2.24) 

4(X, X�)	is the maximum polarization due to hysteresis, it is a function of the state 

of charge and also its rate-of-change. The	x�}(X�)	is used to model both battery charging 

and discharging operations, [34]. � is a positive constant that describes the rate of voltage 
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decay, [34]. 4(X, X�) − ℎ	indicates that the rate-of-change of hysteresis voltage which is 

proportional to the distance away from the main hysteresis loop; leading to a kind of voltage 

decay in the major loop, [34]. The model can be represented in a state space form as follows, 

[34]: 

 ℎMN�XMN�¡ = ¢m(*M) 00 1£  ℎMXM¡ + ¤ 0 1 − m(*M)−/g∆'� 0 ¥   *M4(X, X�)¡ (2.25) 

|M = W��(XM) − �*M + ℎM (2.26) 

Where	m(*M) = exp(−|/g*(')�/��|). 
2.2.3.6 The Enhanced Self-Correcting Model 

A further enhancement over the one state hysteresis is the enhanced self-correcting model, 

[34]. The model is capable of capturing the battery dynamics and accommodates for ohmic 

losses, hysteresis, and polarization time constants, [34]. The model has two inputs, namely: 

the battery input current	*M, and the maximum polarization due to hysteresis	4(X, X�), [34]. 

The model has one output	|M, which is the terminal voltage. The ESC model in the state 

space form is as follows, [34]:  

¦CMN�ℎMN�XMN�§ = ¦{*o�(∝) 0 00 m(*M) 00 0 1§ ¦
CMℎMXM§ + ©̈©

ª 1 00 �1 − m(*M)�
− Lg∆t�� 0 «¬

¬   *M4(X, X�)¡ (2.27) 

|M = W��(XM) − �*M + ℎM + ®CM (2.28) 

where XM is the state of charge, CM 	is the states of the low pass filter on *M which is 

used to characterize the polarization time constants, ℎM is the state representing charging or 

discharging hysteresis effect, W�� is the open circuit voltage, �� is the battery nominal 
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capacity, � is the battery internal resistance, ® is the output matrix of the low pass filter, 

and ¯ are the poles of the low pass filter. 

2.2.3.7  Hydrodynamic (Kinetic) Battery Models 

In this model, filling and draining of fluid in a two-tank reservoir are assumed to be 

analogous to the process of charging and discharging of the battery, [35, 36, 37]. As shown 

in Figure 2.8, the fluid pressure, flow, volume, and pipe area in the two-tank reservoir are 

analogous to the voltage, current, capacity, and resistance, respectively, [35].  

 
Figure 2.8. Schematic Diagram of Battery Model, [35, 38] 

 

This model has two main advantages: it is capable of modeling two phenomena that 

occur in most battery chemistries, namely: rate capacity effect and recovery effect, [38]. 

The rate capacity effect is the phenomenon of having less battery capacity represented in 

Ampere-hours that can be drawn from the battery at high C-rates, [38]. This indirectly 

incorporates the Peukert phenomenon stated earlier in section 1. The recovery effect is that 
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the unattained capacity at high C-rates will be available after a short period of time (after 

allowing the battery to relax), [38, 39].  

The Kinetic battery model is relatively simple, as shown in Figure 8, the overall 

battery charge is divided into two tanks, namely: the bound charge and the available 

charge tanks, [38]. The two tanks are connected via a pipe and a valve. The charge in the 

two tanks are divided according to the capacity ratio ̀  (0 < ` < 1), [38]. The bound charge 

is not accessible under high discharge rate thus the model is able to model the rate capacity 

effect. However, after allowing for some time, fluid from the bound charge tank starts to 

flow across the valve 6 to the available charge tank until the height difference ℎ� and ℎ� 

are at the same level. Accordingly, the model is able to model the recovery effect. 

The rate of charge flow from the bound tank to the available charge tank is 

controlled by the difference in heights of the two tanks ℎ� and ℎ� and on the value of the 

valve	6. The change in the charge in both tanks are expressed by the following equations, 

[40] where	|� and |� are the available and bound charges, respectively:  

{|�('){' = 	−*(') + 6[ℎ�(') − ℎ�(')] (2.29) 

{|�('){' = 	−6[ℎ�(') − ℎ�(')] (2.30) 

Assuming the initial conditions of |�," = |�('") = ` ∗ � and |�," = |�('") =
(1 − `) ∗ �. Where � is the total battery capacity defined in Ampere-hours. The differential 

equations can be solved as follows, [38] and these equations can be solved for every 

piecewise constant discharge current	V: 
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|�(') = |�,"7=M±(²³²´) + (|"6µ` − V)[1 − 7=M±(¶=¶´)]6µ
− V`(6µ(' − '") − 1 + 7=M±(¶=¶´)]6µ  

(2.31) 

|�(') = |�,"7=M±(²³²´) + |"(1 − `)[1 − 7=M±(¶=¶´)]
− V(1 − `)[6µ(' − '") − 1 + 7=M±(¶=¶´)]6µ  

(2.32) 

�(') = ℎ�(') − ℎ�(') = |�(')1 − ` − |�(')` , '" ≤ ' ≤ '� (2.33) 

�(') = (1 − `)�(') (2.34) 

Where,  6µ = M[�(�=�)] describes the charge flow diffusion rate, �(') represents the 

height difference between the two tanks, and �(') represents the battery unavailable charge. 

The hydrodynamic battery model has been scarcely researched, it has been applied and 

expanded in few published papers as follows. In [38], a novel hybrid battery model that 

combines both the electrical equivalent circuit based models and the hydrodynamic model 

has been presented. The model has been validated by simulation and experimental data 

from lithium polymer cells, [38]. The proposed model is computationally effective and can 

be applied for real-time applications on a battery management systems. In [35], a 

hydrodynamic battery model has been used as a part of a hybrid vehicle simulation model 

of a turbo generator-based powertrain. The model has been validated using experimental 

data from a 14.4 V battery module, [35].  
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2.2.3.8  Black-Box Models 

Artificial neural networks (ANNs) are black box models that are capable of modeling any 

nonlinear, complex, input-output relationship. ANNs can be used in modeling the 

behaviour of various battery parameters such as the terminal voltage, state of charge, and 

to various inputs such as the current, temperatures, and C-rates. Even though ANNs 

represent an attractive approach in battery modeling and SOC estimation, they require 

extensive input-output experimental training data which is time consuming to generate. In 

addition, ANNs generally require high computational power for real-time applications. 

In [41], a one-layer ANN has been trained using voltage data from a real-world 

driving cycles on 60 x 100 Ah lithium polymer battery pack. The ANN is trained using 

back-propagation technique with a 700 input-output dataset that covers the entire range of 

battery operating currents and voltages, [41]. Furthermore, a multilayer neural network is 

trained and the accuracy of the model was significantly enhanced by increasing the number 

of neurons in the hidden layer. Simulation and experimental results show the accuracy and 

effectiveness of the proposed model, [41].   

In [42], a recurrent ANN has been used to predict the battery state of charge using 

values of the input current, temperature, and SOC from previous time steps. With this 

network, a parameter estimation strategy has been developed using the Recursive Least 

Squares (RLS) algorithm with time-dependant forgetting factor, [42].  This strategy allows 

for more accurate estimation of the cell terminal voltage. In that research, experimental 

data from a 4.2 V, 100 Ah lithium polymer cell was used for ANN training, [42]. Currents, 
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voltages, and state of charge data from a European urban driving test has been used for 

testing, [42]. 

2.2.3.9  Tabulated Data Models  

Across the entire battery range of operation, values of various battery parameters such as 

internal resistance and open circuit voltage (OCV) can be recorded and tabulated at various 

states of charge and temperatures, [13]. In [43], the battery pack has been modeled using 

look-up tables that relates the OCV to the SOC and another column that relates the battery 

charging and discharging resistance to the SOC, [43, 13]. Tabulated data models can be 

used onboard of a battery management system. 

2.3 Model Parameters Identification 

This section reviews the methods that are used for parameter identification for 

electrochemical (ECM), equivalent circuit, and behavioural models. 

2.3.1 ECM Parameters Identification 

A challenging task in electrochemical modeling is how to tune model parameters, most 

manufacturers treat the parameters as being confidential. Accordingly several attempts at 

obtaining the model parameters for lithium ion batteries have been reported in the literature. 

Battery parameters were obtained either by conducting a destructive test (i.e.: measuring 

all parameters by opening the cell) or by non-destructive test using optimization techniques 

to fit models to experimental data. 

In [44], experimental identification of the reduced-order electrochemical model 

parameters of a lithium-polymer cell is proposed. Using continuous and pulse 
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charging/discharging Experimental data on a 6.8 Ah, 9 model parameters are identified, 

[44]. The identified model parameters considered included: solid particle diffusion 

coefficients, electrode surface area, and maximum solid electrode potentials, [44].   

In [45], a genetic algorithm has been applied for identifying the full set of 

parameters of the full-order electrochemical model using experimental data consisting of 

the input current and the measured terminal voltage. Furthermore, the fisher information 

technique has been applied to identify the accuracy of the resulting parameters, [45]. The 

test has been conducted using Lithium Iron Phosphate (LiFePO�) cells from A123. The 

cells are used in high power applications such as in an automotive traction battery pack, 

[45].  

2.3.2 Behavioural models parameter identification  

In [46], the parameters of behavioural models were estimated by using the extended 

Kalman filter (EKF). The behavioural models considered included: the combined model, 

the simple model, the zero-state hysteresis model, one state hysteresis model, and the 

enhanced-self-correcting model. A state space representation of these models is 

formulated as required by the EKF, [46].  Experimental data using a benchmark Urban 

Dynamometer Driving Schedule (UDDS) cycle in addition to data from a pulsed 

charge/discharge test have been used for identification.  

In [47], a dual estimation strategy was applied to estimate the battery model 

parameters and SOC for behavioural models. Furthermore, a comparative study of Li-Ion 

battery models showed that the enhanced self-correcting model is the most accurate model 
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since it is capable of modeling ohmic losses, polarization time constants, and hysteresis 

effects. Two estimation strategies have been applied for estimation. A new estimation 

strategy known as the Smooth Variable Structure Filter (SVSF) has been compared to the 

well-known Kalman filter, [47].  

2.3.3 Equivalent circuit-based models Parameter identification  

In [48], a multi-objective optimization strategy using genetic algorithms is applied to 

identify the parameters of a simple RC model. Model parameters such as the resistance and 

the open circuit potential are assumed to be a polynomial function of the C-rate and the 

battery cell state of charge, [48]. The multi-objective optimization algorithm is then applied 

to obtain the polynomial coefficients. The technique has been verified on a 2.5 V, 8 Ah 

capacity cell and the models show good fit to experimental data at various charge/discharge 

rates, [48]. 

In [49], a parameter identification strategy using least squares has been applied to 

an equivalent circuit-based model. Since the main source of a battery model’s nonlinearity 

arises from the SOC-OCV relationship, this relationship has been divided into 8 piece-wise 

linear regions and model identification has been applied to each of these regions, [49]. 

Further to the resulting linear models, an observer has been applied to estimate the state of 

charge. This technique has been experimentally applied to Lithium polymer cells, [49]. 

In [50], an identification procedure for an electro-thermal model is presented. The 

model parameters have been estimated at various states of charge (15% to 90%) and 

temperature conditions (−15℃ to	45℃). Model parameters are evaluated using a multi-
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step genetic algorithm, [50]. This procedure has been applied to a 2.3Ah, 3.2V lithium-Iron 

Phosphate cells from A123, [50]. 

Particle swarm optimization has been used for parameter tuning for 12 different 

battery models in [11] over  several driving cycles including Dynamic Stress Test (DST), 

Hybrid Pulse Power Characterization test (HPPC), and Federal Urban Dynamic Schedule 

(FUDS). The technique has been applied and verified on two different battery chemistries 

including lithium-Iron Phosphate (LiFePO�) and Lithium Nickel-Manganese-Cobalt oxide 

(LiNMC), [11]. One of the main conclusions of this research project is that the first-order 

RC model is the preferred choice for LiNMC, while the one-state hysteresis and the first-

order RC model are the best for	LiFePO�, [11]. 

2.4 State of Charge Estimation  

In battery management systems (BMS), three main measurements are readily available, 

namely: current, voltage, and temperature. The BMS has to utilize these measurements to 

obtain a robust estimate of the battery pack state of charge, [51]. Estimating battery SOC 

with high accuracy is a challenging task since various key elements contribute to the change 

of the SOC including charging and discharging C-rates, temperature, self-discharge, and 

battery aging, [1]. SOC is extremely important as it helps in optimizing energy consumption 

in HEVs and BEVs, and avoiding undesirable incidents such as overheating due to 

overcharging,  accelerated aging due to undercharging, or running out of energy due to 

false estimation (in case of battery electric vehicles), [52]. Several SOC estimation 

techniques have been presented in the literature, these techniques are classified under one 
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of the following: conventional coulomb counting, direct method, Electromotive force 

(EMF), and adaptive techniques. 

2.4.1 Conventional Coulomb Counting 

In this simple method, which is also known as book keeping, current integration is 

performed and is compared to the nominal battery capacity thus SOC can be calculated. 

The equation used is as follows: 

tW� = 1 − ¿ *{'��  (2.35) 

where �� is the battery nominal capacity for a fresh battery, * is the measured 

current, and ' is the time. The main advantage of coulomb counting is that it is simple to 

be implemented and it can be applied to all battery chemistries, [1]. Its major disadvantages 

include the need for regular calibration since error accumulation occurs (due to sensor noise 

and inaccuracies) over time due to integration, [53]. Another disadvantage is that this 

method requires an accurate initial SOC in order to provide an acceptable accuracy, [52]. 

By incorporating further information to the coulomb counting technique such as the cell 

temperature, charge/discharge efficiency, and capacity degradation due to cycling, the 

technique can provide an acceptable estimate. However, in order to perform regular 

calibration, a complete charge and discharge has to be conducted which limits its practical 

applications.  

In the literature, various enhancements to coulomb counting have been proposed. 

In [54], an enhanced technique that takes into consideration the charging and discharging 

efficiencies is proposed for compensating for coulomb losses, [54]. Since the initial SOC 



Ph.D. Thesis   McMaster University  
Ryan Ahmed   Department of Mechanical Engineering 
 

45 

 

can significantly affect the accuracy of the coulomb counting technique, the paper presents 

a strategy to calculate the initial state of charge from the terminal voltage evaluated from 

the constant current constant voltage (CCCV) charging curve, [54]. Furthermore a state of 

health estimation technique is presented by evaluating the maximum releasable capacity 

during the calibration process, [54].  

2.4.2  Direct Methods 

In these methods, direct measurements of voltages, impedances, and relaxation time are 

carried out; the SOC is then inferred out of these measurements, [52].  These methods are 

classified as follows.  

2.4.2.1 Peukert Method 

Peukert introduced an empirical method to estimate the battery’s remaining capacity, [55]. 

In the literature, many researchers have introduced variants of Peukert’s equation in 

estimating the battery state of charge, [56].  Peukert conducted different experiments using 

constant discharge test on a battery and proposed the following equation to relate the 

discharge rate to the remaining capacity (or the remaining discharge time) as follows, [55]:  

VÀ%' = �y}x'o}' (2.36) 

Where, I is the discharge current, t is the maximum discharge time and PC is the 

Peukert Coefficient which ranges from 1 to 2, [56]. The battery capacity can be calculated 

as follows, [56]: 

��� = �� j V�V��l
À%=�

 (2.37) 
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��� is the battery remaining capacity at the discharge current of V��, [56]. One of 

the main drawbacks of using Peukert equation for state of charge estimation is that it can 

only be used for constant current discharge profiles and at constant temperatures only, [56]. 

Therefore, this technique is not suitable for applications such as in hybrid an all-electric 

vehicles which have aggressive, fast changing current profiles associated with acceleration 

and deceleration demands.  

2.4.2.2 Terminal Voltage-based SOC Calculation 

Based on the terminal voltage measurement, SOC can be inferred using look-up tables. 

This method is extremely simple but it suffers from inaccuracies since SOC varies 

significantly with temperature, aging, and C-rates, [52]. In addition, this method is 

inaccurate for a flat voltage curve, in cases where multiple states of charge can have the 

same terminal voltage. 

2.4.2.3 Impedance Measurement-based SOC Calculation 

This method needs an electrochemical impedance spectroscopy (EIS) device which is hard 

to be equipped in-vehicle and is thus limited to laboratory settings. In this method, 

impedance characterization is carried out by exciting the battery at a range of frequencies. 

The SOC can then be estimated based on the measured impedance.  

A review of various SOC and SOH estimation strategies based on impedance 

measurements has been presented in [57].  One of the main conclusions presented in this 

research survey is that the ambient temperature will greatly influence the battery impedance 

and accordingly its SOC estimate especially at low frequencies. Therefore, in order to 
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estimate the battery SOC and SOH based on impedance measurements in an un-controlled 

environment, high frequencies (10 Hz to 100 Hz) must be used, [57]. At these high 

frequencies, the temperature effects are minimized (less than 10%), [57].    

The main disadvantages of relying on impedance to estimate the battery SOC is that 

the changes in the impedance from half charge to fully charge is negligible especially for 

lithium-Ion batteries, [58]. Therefore, relying on impedance measurement to estimate the 

battery SOC will induce large errors, [58]. In addition, as battery ages, battery impedance 

significantly changes therefore expressing the SOC as a function of the impedance will 

result in SOC errors and misleading estimates, [58]. Furthermore, at high C-rates, the 

impedance varies in a nonlinear fashion with SOC which results in further errors, [59]. To 

overcome this problem, current values along with the impedance have to be considered to 

provide an accurate SOC estimate, [58].     

2.4.2.4 OCV Measurement-based SOC Calculation  

In this method, SOC can be calculated by measuring the battery open circuit voltage (OCV) 

since a good agreement exists between SOC and OCV. This relationship is assumed to 

remain fixed at different C-rates and at various temperatures, [53]. This relationship can be 

derived by allowing the battery to relax to the OCV after a certain current excitation. This 

can be done by cycling the battery using full charge/discharge cycles at a very low C-rates 

and calculating the average of the two curves, [60]. Alternative method is calculating the 

OCV (or EMF) using Nernest equation (Equation (2.19)). It is a simple method to estimate 

the SOC by measuring the OCV. However, it requires zero current measurements thus 
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cannot be implemented during vehicle runtime as it requires the battery to rest completely 

after the relaxation effect. 

Even though the OCV-based SOC estimation is extremely simple to implement, it 

sometimes lead to misleading SOC estimates.  This is due to the existence of flat voltage 

regions where multiple values of SOC can have the same OCV. In order to demonstrate 

this phenomenon, an experiment has been conducted on a 2.3 Ah lithium Iron Phosphate 

(LiFePO4) cell as follows. The test has been conducted at a very low C-rate of C/15 in 

order to obtain the OCV-SOC relationship. The OCV versus time for both charging and 

discharging is plotted in Figure 2.9. The OCV curves for both charging and discharging are 

plotted versus SOC as shown in Figure 2.10. 

 
Figure 2.9. Charging/Discharging OCV vs. Time (~C/15) 
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 The very low C-rate (C/20 or C/15) here minimizes the battery dynamics. It is clear 

from Figure 2.10 that the battery’s behaviours during charging and discharging are not 

identical due to the hysteresis effect. In order to obtain one curve to represent the OCV-

SOC relationship, data has been resampled to 50 points for each of the charging/discharging 

curves and then averaged as shown in Figure 2.11. 

 
Figure 2.10. SOC-OCV relationship for both charging and discharging  
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Figure 2.11. Charging and Discharging Averaged SOC-OCV Curve 
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estimation techniques are classified as one of the following: Fuzzy Logic, Artificial Neural 

Networks, and filter/observer-based techniques.  

2.4.3.1 Fuzzy Logic-based SOC Estimation   

Fuzzy logic techniques rely on approximate functions rather than exact values thus provide 

the flexibility of estimating the SOC given ambiguities or uncertainties in the collected 

data, [52]. Fuzzy logic techniques use heuristics that relate factors such as the 

discharge/charge C-rate, temperatures, and resistances to the battery SOC and SOH. 

Extensive experimental data, also called qualitative (symbolic) information, is expressed 

in a form of Boolean or fuzzy if-then rules. The a-priori knowledge is presented in the form 

of causal relationships between inputs and SOC/SOH. 

Fuzzy logic-based SOC estimation techniques have the ability to process data and 

generate a SOC estimate without having a full understanding of the underlying battery 

chemical reactions and without the need for a battery model. Furthermore, they may be 

used in real-time applications and are applicable to all battery chemistries. Their limitation 

is that membership function characterizations are extremely subjective, [1].  

A series of papers have been published to estimate the SOC and SOH using fuzzy 

logic. A patented methodology has been presented in [61, 62, 63]. In [64, 65], a fuzzy logic-

based strategy for SOC and SOH is presented. Training data of measured impedance 

collected using EIS has been used. These include three inputs representing impedance at 

three specific frequencies and one output representing the SOC. Furthermore, three 

frequencies are selected in order to relate impedance to specific values of the SOC. The 
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strategy provides a robust SOC/SOH estimate. Its limitation is that it requires an AC signal 

generator to excite the battery at various frequencies.  

2.4.3.2 Artificial Neural Networks 

Artificial Neural Networks (ANNs) are mathematical models inspired by the human brain 

that are able to learn and recognize patterns.  ANNs are capable of mapping input to output 

datasets using a set of neurons that are interconnected with weights. ANNs can be applied 

to battery modeling and for state of charge estimation applications. This is an online 

technique that is appropriate for all battery chemistries but requires training data specific 

to the battery and is computationally expensive. In [66], an improved ANN model based 

on Thevenin model presented, capable of predicting the SOC in real-time. The proposed 

technique is verified by simulation and experimental data, [66]. 

An ANN-based SOC estimation technique has been presented in [67]. The strategy 

works by incorporating a series of ANNs. The first network predicts when a specified 

voltage limit has been reached and then estimating the remaining run time. The other 

networks work in an adaptive way to modify the first network’s weights based on number 

of cycles, [67].  The technique requires extensive data for network training.  

In [42], an ANN has been used to provide a SOC estimate using measurements such 

as temperature, current, and previous SOC values from a 4.2 V, 100 Ah lithium polymer 

cell. The technique has been verified using currents, voltages, and state of charge data from 

a European urban driving test. In this research, a recurrent ANN has been used since it takes 
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into consideration previous input values in addition to current ones in providing an output 

estimate which is suitable in most battery applications, [42].  

In [68], an ANN-based SOC estimation strategy for pulsed input currents has been 

proposed. The battery SOC is related to the battery chemistry, temperature, load current, 

and history.  The method utilizes a three layered feed forward artificial neural networks to 

map the inputs to the outputs, [68]. The new method investigates pulse current loads instead 

of fixed discharge rates, [68]. Experimental data has been used to train the network using 

the back propagation algorithm. The number of hidden neurons have been optimized to 

generate the best SOC estimate.  

In [69], a three layered ANN has been trained using an evolutionary algorithm. Five 

inputs have been used as follows: battery terminal voltage, voltage derivative, voltage 

second derivative, discharge current, and battery temperature. The parallel chaos immune 

evolutionary algorithm has been selected in order to overcome the local minima problem 

associated with the back propagation algorithm, [69]. The estimated SOC is compared 

against the actual battery SOC and the results indicate the effectiveness of the proposed 

technique, [69].  
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2.4.3.3 Filters/Observers-based SOC Estimation 

State and parameter estimation theories are used to extract information by finding a real-

time value of a particular parameter of interest given uncertain observations.  States are 

descriptive of the system dynamics; for example, in battery systems, the battery state of 

charge and hysteresis represent system states. A filter can be used to estimate one or more 

of the system states based on a dynamic model and using sensor measurements. The filter 

can be applied to both linear and nonlinear systems in the presence of uncertain 

observations and noisy signals.   

In order to estimate the battery SOC using filters and observers, an accurate battery 

model along with a robust estimation strategy is necessary. It is an online technique that 

can be applied to all battery chemistries, [1]. In this section, a summary of advanced 

estimators such as the Linear Kalman Filter, the Extended Kalman Filter, the Sigma-point 

Kalman filter, the Particle Filter, the Smooth Variable Structure Filter, as well as state 

observers is presented. The above filters are model-based and can estimated the battery 

SOC using any of the above mentioned models, namely: electrochemical, equivalent 

circuit, or empirical based models.  

Electrochemical model-based SOC Estimation 

As previously mentioned, electrochemical models provide a connection with the physical 

reactions inside the cell and are thus favoured in comparison to equivalent circuit-based 

models where minimal or no physical significance is present.  
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In [70], an estimation strategy for state of charge, potentials, and concentration 

gradients is presented that uses the Kalman filter in conjunction with a reduced-order 

electrochemical battery model. Estimates are compared against experimental data from a 6 

Ah electric vehicle battery cell, [70]. The filter provides accurate and stable estimates for 

low current input values. However, at very high C-rates, the estimates exhibit large errors, 

[70]. The proposed technique is computationally efficient and suitable for real-time 

applications on board a battery management system, [70]. 

In [22], a state estimation based on an output error injection observer using a reduced 

set of partial differential algebraic equations that describe the solid and electrolyte 

concentrations and potentials is presented. Simulation and experimental results using real-

world driving cycles such as the Urban Dynamometer Driving Schedule (UDDS) 

demonstrate the effectiveness of the proposed technique, [22].  

Empirical Model-based SOC Estimation  

In [71], an Extended Kalman filter has been applied to estimate model parameters and SOC 

using 6 behavioural models. A dual state and parameter estimation technique based on the 

Kalman filter is applied. Quantities that change quickly such as the SOC are considered as 

a system state while quantities that slowly change such as battery capacity are considered 

as system parameters, [71]. Two filters were used to estimate both the parameters and the 

states in a dual form, [71].  

In [49], a state of charge estimation technique based on a linearized battery model is 

presented. In order to overcome the nonlinear behaviour of the battery, the OCV-SOC 
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relationship has been divided into piece-wise linear sections and model parameters are 

estimated for each section, observers are then applied to estimate the state of charge using 

this linear model. This technique has been verified using 1.5 Ah lithium-polymer cells, 

[49].  

In [72], Plett proposed a method for SOC estimation using the Sigma-point Kalman 

filter. The Sigma-point Kalman filter provides more accurate results compared to the 

standard extended Kalman filter while preserves the computational efficiency which makes 

it effective for SOC estimation, [72].  

Equivalent circuit-based SOC Estimation  

A SOC estimation strategy based on equivalent circuit models and using the Extended 

Kalman filter has been presented in [73]. An added RC element is used to improve the 

accuracy of the equivalent circuit models. The extra RC element models the concentration 

polarization and the electrochemical polarization, [73]. A genetic algorithm is used to 

obtain the model parameters followed by the Extended Kalman Filter for SOC estimation. 

Five equivalent circuit models have been applied and verified using the Dynamic Stress 

Test, and the Federal Urban Driving Schedules (FUDS).  In addition, the sensitivity of the 

technique to the initial values of the SOC has been investigated and the initial error in the 

SOC has been significantly mitigated using the proposed strategy, [73]. 

In [74], a SOC estimation strategy is proposed using an observer in conjunction with 

an equivalent circuit-based R-RC-RC model. An adaptive battery parameters/SOC co-

estimation strategy is presented where the battery parameters are fed to an optimized 
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observer for estimating the SOC, [74]. A piecewise linear approximation of the OCV-SOC 

relationship with varying coefficients has been conducted and a moving window least-

square parameter identification has been used to obtain model parameters, [74]. The 

technique was verified using experimental and simulation data sets. Furthermore, the SOC 

co-estimation algorithm has been compared to a Sliding Mode Observer and the Extended 

Kalman filter. Results indicate the necessity of updating the parameters while estimating 

the SOC in order to increase the estimation accuracy and robustness, [74].   

2.5 Battery Aging Models 

Two important research areas found in literature that relate to battery safety include health 

condition monitoring and prognostic health monitoring. The former enables tracking of 

the aging and degradation effects that occur in the battery due to cycling, [75] Prognostic 

helps in predicting the remaining battery life time (run-to-failure) and thus provides an 

alarm to avoid degradation of performance below a minimum acceptable level, [75]. This 

section is divided into 2 parts, namely: the description of the aging phenomenon, and the 

aging models currently present in the literature.  

2.5.1 Aging Phenomenon  

The aging phenomenon is considered in relation to contributing factors, aging 

mechanisms, and recent aging studies.  
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2.5.1.1 Aging Contributing Factors 

Battery aging is a very complex process that depends on multiple factors that interact 

together and cause degradation. The main factors that contribute to aging are discussed 

below: 

Temperature 

At higher temperatures, aging is accelerated due to rapid chemical reactions which 

exponentially increase with temperature according to the Arrhenius equation, [76]. For 

every 10℃ rise in temperature, the rate of reactions that contribute to aging are doubled, 

[76]. Accordingly, the battery capacity is greatly affected by elevated temperatures. For 

instance, for every temperature increase of 6.85 degC, the capacity loss is doubled 

assuming 66% loss is due to cycling and the remaining 34% is due to calendar, [77]. 

Therefore, most electric vehicle manufacturers such as Ford, Tesla, and General Motors 

(GM) are currently implementing a circulating liquid-based active thermal management 

system to maintain the battery at an acceptable range of temperatures and thus avoiding 

accelerated aging due to cycling and temperature. 

Overcharging and Excessive Discharging 

When a battery is overcharged, irreversible reactions force ions to intercalate after all active 

solid particles are saturated, [76]. Furthermore, exceeding the allowable maximum battery 

voltage leads to significant increase in temperature and pressure which might cause cell 

damage, fires, and short circuits. For Ni-MH batteries, a 0.2 V overcharging results in 40% 

cycle life capacity loss while 0.3V lead to 66% capacity loss, [78, 76]. Over-discharging 

also leads to a shortened battery life and even to reversed electrodes.   
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Depth of Discharge (DOD) 

Depth of discharge has a major impact on the battery cycle life, the relationship between 

the DOD and the cycle life is exponential, [76]. For example, if the DOD for a given cell 

is 90%, the cell will last for 500 cycles. However, if the same cell is cycled to a 10% DOD, 

the battery can be cycled up to 5000 cycles, [76]. In order to slow down the battery 

degradation rate, which is affected mainly by the DOD, most car manufacturers limit the 

usable range of the battery. For example, General Motors (GM) utilizes about 65% of the 

Volt’s battery capacity, [77]. This is achieved by maintaining the SOC variations between 

22% and 87%. The new BMW ActiveE has a 32kWh battery pack, however, the usable 

capacity is only set at 28kWh in order to prolong the battery life, [79].  

Current Severity (C-rates) 

Higher C-rates adversely contribute to battery aging. As shown in [80], higher C-rates cause 

loss of electrode conductivity which in turn result in an uneven charge distribution leading 

to added stresses and a lowering of cycle life.   

2.5.1.2 Battery Aging Mechanisms 

A range of studies have been conducted for studying the changes that occur inside a battery 

as it ages. As reported in many publications, capacity fade and degradation effects are 

mainly due to two main factors, namely: film growth and carbon retreat, [81]. These two 

phenomenon are found to be changing in a sigmoidal fashion (with sudden changes after a 

number of cycles), [81]. In [81], the authors suggest that a reaction between the cathode 

active materials and the electrolyte resulted in the formation of a SEI which in turn changes 
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the particle surface composition leading to the breaking down of the carbon conductive 

paths. This causes carbon retreat and sudden acceleration of capacity fade.   

According to [82], battery aging occurs due to the formation of an insulating layer 

on the surface of the electrodes (mainly the cathode electrode) which in turn leads to an 

increase in the impedance of the positive electrode, [82]. In this paper, standard tests 

conducted at high temperatures ranging from	40	'y	70	℃ are used for verifying that the 

charge-transfer resistance increases on the cathode and is the main contributor to aging and 

degradation in performance, [82]. X-ray absorption spectroscopy and high-resolution 

electron microscope (HREM) have been used to identify significant changes in the features 

of the electrode surface structures and compositions in comparison to the bulk, [82].   

Another factor to consider is the loss of electron conductivity in the cathode [83]. 

This phenomenon is also related to the (carbon retreat) phenomenon which is the 

disconnection of carbon within the cathode particles due to the formation of a SEI layer. 

Using images from current-sensing atomic electron microscopy, the cathode surface 

electronic conductance of nine s*Â*".Ã�y".�W� cells have been significantly decreased, thus 

contributing to aging. In addition, it has been shown that the rate of decrease in the cell 

conductance is directly proportional to temperature, [83]. Cells that are cycled at elevated 

temperatures exhibit a dramatic increase in the surface resistance. In addition, discharging 

the cells at higher C-rates will lead to a larger loss in conductivity between particles in the 

active material matrix, [84]. This results in an irregular current distribution which generally 

imposes more stresses that lead to shorter battery life and to performance degradations, 

[84]. 
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2.5.1.3 Battery Aging Studies 

In [85] and under the MARS Rover program, s*Â*y� batteries with 9.2 Ah capacity were 

subjected to a 100% DOD at −20℃ and at	25℃. In this research, the cycle life performance 

was fairly good. At	−20℃, the batteries lost 8% of the capacity after 500 cycles and 

at	25℃, the batteries lost about	13%, [85]. Reference tests such as the capacity and DC 

impedance tests were conducted every 500 cycles, [85]. Regarding calendar life, the 

batteries exhibited a 9.65% loss in 8 years and 15.87%	loss in 15 years, [85]. This study 

demonstrates a better life performance for batteries at low temperatures and improved 

robustness to cycling and storage, [85]. 

In [81], an aging study using a well-defined Dynamic Stress Test (DST) has been 

conducted on 900 mAh s*�Â*".Ã�y".�]�z"."]W� cells. Reference performance tests have 

been conducted every 60 DST cycles to evaluate the degradation of performance such as 

the peak power capability, capacity fade, and impedance measurement. It has been shown 

that capacity fade is mainly affected by the cell polarization resistance increase, [81]. 

During testing, a sigmoid change in the capacity were found at two distinct stages of life, 

namely: capacity loss from 810 to 730 mAh occurred between cycles 225 and 250; and, 

another one from 730 to 600 mAh between 280 and 320 cycles, [81].  

2.5.2 Battery Aging Models 

Two approaches are commonly implemented for modeling aging and lifetime prediction, 

namely: performance-based models and weighted ampere-hour throughput models, [86]. 

Regarding performance models, they can account for the rate of change of model 

parameters as the battery ages, [86]. For instance, in equivalent circuit-based models, the 
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values of capacitors and resistors can adapt as battery slowly ages and information 

regarding the end of life (EOL) can be inferred from these values. In the other method of 

the weighted ampere-hour throughput, the aging model works by tracking the number of 

cycles (ampere-hour throughput) that the battery exhibits. These techniques have to 

consider the conditions where the battery is cycled, such as charging-discharging rates, 

temperatures, and extreme out-of tolerance aggressive conditions, [1]. 

In [87], a novel model-based algorithm for battery prognosis bas been developed. 

The aging model can predict the battery life and keep track of the changing model 

parameters as battery ages while taking into consideration various factors that contribute to 

aging such as the DOD, current severity, and temperature, [87]. The model is based on 

additive damage accumulation law that is similar to the Palmgren-Miner rule used for 

mechanical fatigue modeling, [87]. 

In [76], an aging model for HEVs has been developed. Batteries are limited to a 

DOD of above 50%, [76]. Laboratory experiments from fatigue tests have been transferred 

to the battery testing field. The developed model relates battery aging to factors such as 

operating temperature and current history, [76]. The major advantage of this study is the 

use of real-world test data rather than pre-defined charging and discharging cycles at fixed 

C-rates. The residual life after a specific amount of discharging events is defined as follows, 

[76]: 

�7x*{�oz	z*C7	 = 1 −Äsg/s¶�¶(*)Å
gÆ�  (2.38) 



Ph.D. Thesis   McMaster University  
Ryan Ahmed   Department of Mechanical Engineering 
 

63 

 

The s¶�¶is defined as the total amount of charge that can be drawn from the battery. The 

charge life (s,Ç) is defined as the life expressed in �ℎ which is defined as follows, [76]: 

s,Ç = s�È� ∗ kWk ∗ �ℎ" (2.39) 

For example, the charge life at 10% DOD can be calculated as follows: 

s,Ç(kWk = 10%) = 5400	`|`z7x ∗ 10100 ∗ 6.5�ℎ = 3510	�ℎ	
Since aging is affected by the shape of the current profile as well as the DOD, the RMS of 

the profile must be taken into consideration as a weighting factor to calculate the effective 

DOD from the actual DOD. Thus the kWkFBB can be derived from the measured DOD 

(kWk0Fr2) as follows, [76]: 

kWkFBB = C j �4t�4t��0 , DD��0l ∗ kWk0Fr2 (2.40) 

Where the cycle is defined as the time between successive points when the current is zero, 

the	kWk0Fr2 is calculated as follows, [76]: 

kWk0Fr2 = tW�2¶rE¶ − ¿ V{'���0 (2.41) 

In [84], a life prediction method was developed to determine the effect of two main 

parameters on battery aging, namely: depth of discharge and rate of discharge. The effect 

of the depth of discharge for a given event is described by the following equation, [84]: 

�ℎFBB = jk,kÉl
Ê> 7ÊË(1Ì1Í=�)�ℎr�¶ÊrÎ (2.42) 

Where, kÉ is the percent depth of discharge at which the rated cycle life was determined, 

k is the actual discharge as a percentage of rated capacity, �ℎFBB is defined as the effective 
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ampere-hour discharge after depth of discharge and rate of discharge adjustments, 

�ℎr�¶ÊrÎ 	is the actual ampere-hour throughput. For the rate of discharge, the effective 

discharge for a certain event is calculated as follows, [84]: 

�ℎFBB = j�É�,l
Ï> 7ÏË(%Í%Ì=�)�ℎr�¶ÊrÎ (2.43) 

Where, �, is defined as the capacity of the cell defined at a given discharge rate, and �É is 

defined as the capacity defined at rated discharge rate. By combining both effects through 

multiplication, [84]:  

�ℎFBB = jk,kÉl
Ê> 7ÊË(1Ì1Í=�) j�É�,l

Ï> 7ÏË(%Í%Ì=�)�ℎr�¶ÊrÎ (2.44) 

This equation can be used to calculate the effective Ah throughput for a given discharging 

event. By summing the effective discharges from a series of } discharge events, a battery 

lifetime prediction can be calculated as follows, [84]: 

s¶g0F = �ℎÉÐ>²�Ñ�ℎ,Ð>²�Ñ/D = 	 sÉkÉ�É	∑ �ℎFBB�gÆ� D (2.45) 

Where, �ℎÉÐ>²�Ñ is the life of the cell (in Ah) under known, well-defined charging and 

discharging cycles at a specified depth of discharge and rated discharge current.  �ℎ,Ð>²�Ñ  
is defined as the life of the cell under actual operating conditions and T is the operating 

time, [84].  

2.6 SOH Literature Review  

SOH is defined as the ability of the battery to store and retrieve electric charge in addition 

to the ability to keep this charge for long periods in comparison to a fresh, nominal battery 

[88, 75]. SOH is important in BEVs as they will lead to maximizing the utilized energy 
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from a given battery. Since SOH cannot be physically measured, it must be inferred from 

other readily available measurements. Two main parameters are generally used to quantify 

SOH namely; internal resistance and capacity fade, [75]. The main characteristic of the 

SOH estimation in comparison to the SOC estimation is that SOH dynamics are relatively 

slow compared to those of the SOC, [75]. SOH dynamics vary after many complete 

charging/discharging cycles which might take weeks to exhibit in performance. 

Conversely, SOC varies rapidly within the charging/discharging cycle. Nonetheless the 

same techniques can be used for both SOC and SOH estimation as shown in this section, 

[75].   

SOH is crucial as it reflects the state of the battery in comparison to a healthy one. 

A combination of several parameters can be used to conclude the SOH such as: cell 

conductance, cell impedance, capacity, internal resistance, self-discharge, charge 

acceptance, cycle counting, mobility of electrolyte, and discharge capabilities, [1]. In 

order to come up with a collective decision out of all these parameters, a weighting factor 

has to be assigned to each parameter depending on its importance and based on prior 

knowledge and experience, [1]. The battery might exhibit a high rate of self-discharge or 

high internal resistance thus indicating an aged battery. A number based on all these factors 

is generated and compared to the one based on a healthy fresh battery, [1]. The following 

subsections summarize the techniques used for SOH estimation. 

2.6.1 Discharge test 

The discharge test is used for capacity calculation by completely discharging the battery 

from a fully charged state (after a constant current-constant voltage (CCCV) charge). The 
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test is widely known as the static capacity test. Even though the test is accurate for 

calculating the available discharge capacity, it cannot be conducted online on board a 

battery management system. This is due to the fact that the test alters the battery state and 

in addition, it is a time consuming and results in loss of energy, [1].  

2.6.2 Fuzzy Logic SOH Estimation 

Fuzzy logic is a powerful tool in battery health monitoring as they are able to map complex 

input-output data without the need of an explicit mathematical model, [89]. Singh et al. 

presented a SOC and SOH estimation strategy based on fuzzy logic in [90] using data from 

impedance spectroscopy at different battery states of charge (from SOC = 0% to 100%) 

over 100 cycles.  Three frequencies were used to excite the battery. Features from this data 

set (real and imaginary parts) were used to develop fuzzy logic models, [90]. Experimental 

results demonstrated the effectiveness of the proposed technique for SOC estimation to 

within ±5% accuracy, [90].  

Salkind et al. also developed a practical method for SOC and SOH estimation based 

on fuzzy logic, [89]. The technique has been verified on two different battery chemistries, 

namely Lithium/sulfur dioxide and Nickel Metal Hydride, [89]. One of the main drawbacks 

of this technique is that an external source is necessary to excite the battery at specific 

frequencies, thus limiting its applicability when considering real-time, practical, in-vehicle 

implementations, [75]. 
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2.6.3 Artificial Neural Networks (ANNs)-based SOH Estimation: 

As previously mentioned, ANNs have been widely used in battery SOC estimation since 

they are capable of mapping any inputs to outputs with potentially high accuracy. This 

mapping can be attained given a reasonable number of neurons and a sufficient number of 

training datasets. 

Besides their applicability in SOC estimation, ANNs can also be used for SOH 

estimation. In [91], a method for SOH estimation based on ANNs by deducing the battery 

available capacity has been presented. In this research, a three layered ANN has been used 

with the discharge current as the input to the network and the available capacity as the 

network output, [91]. Thus the network was able to map the discharge current to the 

available battery capacity, [91]. The performance of the proposed methodology has been 

compared to the conventional Peukert equation which relates the available capacity to the 

discharge current as follows, [92]:  

�r = �/VÔ(�=�) 
Where K and n are constants that depend on the temperature and the concentration of the 

electrolyte, [91].  

In [93], artificial neural Networks were trained on fuzzified data and the outputs 

were then correspondingly defuzzified, [93]. The SOH estimation of the battery using this 

method were obtained under 3 minutes as documented in [93]. One of the main advantages 

of neural networks is the ability to adapt and self-learn through experience. The accuracy 

of the technique can be significantly enhanced by incorporating more experimental data, 
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[93].  The technique has been commercially available in the Cadex QuickTest C700 battery 

analyzer platform, [93]. The system can read the battery configuration code and adapt to 

different battery chemistries, [93].  

2.6.4 Filters/Observer-based SOH Estimation 

For practical applications and real-time implementation on board of a vehicle controller, 

Kalman filters are applied for both SOC and SOH estimation, [75]. As previously 

mentioned, an extended Kalman filter-based state estimation strategy has been applied to 

estimate model parameters and SOC based on 6 behavioural models in [71]. Furthermore, 

estimating battery parameters that provide an indication of the battery state of health and 

state of power have been presented in the same paper, [71]. The method works by 

estimating the battery capacity and the internal resistance thus provide an indication of both 

capacity and power fade [71]. Experimental results indicate the effectiveness of the 

proposed strategy.  

In [94], SOC and capacity estimation based on equivalent circuit models in 

conjunction with the EKF are presented. This paper reports a comparatively improved 

accuracy for capacity estimation. The presented technique incorporates a state projection 

methodology for stable and increased capacity estimation accuracy, [94].  Furthermore, 

since capacity is a slowly varying parameter, a time-scale separation has been implemented 

thus producing an SOC estimate at a faster rate compared to the SOH thus resulting in 

reduced computational complexity, [94]. In general, one of the major drawbacks of the 

EKF is that the algorithm’s stability and convergence are not guaranteed, [52].   
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A SOH technique based on the Extended Kalman filter (EKF) has been presented 

in [95]. In this research, EKF has been used to estimate the bulk capacitance thus providing 

an indication of the battery SOH. Experimental results demonstrate the better accuracy 

(2%) of the proposed technique compared to other techniques in estimating the SOC and 

SOH, [95].  

A real-time, impedance-based parameter identification method for SOC and SOH 

estimation has been proposed in [96]. The EKF can estimate the battery model parameters 

based on Randles’ model, [96]. More RC blocks are used to model the Warburg impedance 

but this modification has led to over-parameterization, thus causing divergence problems 

for the EKF. The technique has been verified using the UDDS Cycle, [96].  

Saha et al. [97] proposed an estimation of battery SOC, SOH, and RUL using 

Bayesian frameworks based on Relevance Vector Machines (RVMs) and particle filters. A 

combination between equivalent-circuit based models and statistical models of state-

transitions and aging processes has been applied to experimental batteries, [97]. 

Experimental results indicate the effectiveness of the proposed strategy, [97]. 

2.7 Conclusion  

This paper provides a summary of published literature on battery modeling, model 

parameters identification and extraction, and state of charge and state of health estimation. 

It is specifically intended for batteries used for energy storage in electric and hybrid 

vehicles. The following models are considered: equivalent circuit-based models, 
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electrochemical battery models, behavioural models (empirical), hydrodynamic models, 

tabulated data models, and black-box battery models. 

Equivalent circuit and behavioural models are easy to implement and require less 

parameters to tune. However, they have little or no physical significance. On the other hand, 

electrochemical models relate to physical reactions in cells and are capable of modeling 

lithium intercalation dynamics inside the electrodes and the electrolyte. They are thus 

favoured in state of health estimation. Full-order electrochemical models are complex and 

require reduction before online implementations in battery management systems. Even 

though the reduction process results in loss of information, the reduced order models are 

still able to provide an accurate measure of physical effects inside the cell. 

For model and parameter identification, optimization and estimation strategies can 

be effectively applied on any of the above mentioned battery models. However, it has been 

shown that identifying model parameters offline using optimization techniques provide 

more robust estimates and greater stability in comparison to online strategies.  

For the battery SOC and SOH, these can be estimated using conventional coulomb 

counting, Artificial Neural Networks, Fuzzy logic techniques, and filters/observers. The 

conventional coulomb counting is accurate provided that a known initial SOC is provided 

and while maintaining a periodic calibration, these are difficult to realize on board of a 

BMS. Filters and observers for SOC and SOH estimation are the most favoured techniques 

since they can be effectively utilized on any of the above-mentioned models and can 

provide a relatively high degree of accuracy. 
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Abstract 

Our mode of transportation is undergoing a paradigm shift from conventional, fossil-fuel-

based vehicles to a second generation electric and hybrid vehicles. Electric vehicles have 

many benefits and are in general more efficient, sustainable, greener, and cleaner. The 

commercial market penetration and success of electric vehicles are tied to the efficiency, 

safety, cost, and lifetime of the traction battery pack. One of the current key electrification 

challenges is to accurately estimate the battery pack state of charge and state of health and 

therefore provide an estimate of the remaining driving range at various battery states of life. 

In order to estimate the battery state of charge, a high-fidelity battery model along with a 

robust, accurate estimation strategy are necessary. This paper provides three main 

contributions: (1) introduction of a new state of charge parameterization strategy, (2) 

identification of the full-set of reduced-order electrochemical battery model parameters 

using non-invasive genetic algorithm and its implementation on a fresh battery, (3) model 

validation using real-world driving cycles. Extensive tests have been conducted on Lithium 

Iron Phosphate-based cells widely utilized in high power automotive applications. Models 

can be effectively utilized onboard of battery management system. 

Keywords: Lithium-Ion Batteries, electric vehicles, genetic Algorithm optimization, electrochemical 

battery model, parameters identification.  
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3.1 Introduction 

In a series of two papers, the authors propose a complete solution for electrochemical 

battery modeling, parameter identification, and state of charge estimation at all battery 

states of life. The technique has been effectively applied to Lithium Iron Phosphate 

(LiFePO4) cells and is applicable to any other lithium ion battery chemistry.  

This paper (Part I) considers the derivation of reduced-order electrochemical models 

and investigates parameter identification by using a genetic optimization algorithm. The 

paper includes a new parameterization strategy for state of charge calculation. The 

proposed methods have been applied and validated on lithium ion battery cells. A detailed 

description of the experimental setup and data are provided. The paper also includes 

description of an electric vehicle simulation model developed to generate current profiles 

from vehicle driving profile and velocity. Part II of this set of papers presents the 

development of an aging and degradation model based on electrochemistry. This latter 

model accommodates for battery aging and provides an accurate estimate of the battery 

state of charge even at the end-of-life. The model works by changing the electrode effective 

volume along with tracking changes in the model parameters such as the diffusion 

coefficients and solid-electrolyte interface resistance. The model has been validated using 

real-world driving cycles for both fresh and aged battery cells. Furthermore, a state of 

charge and critical surface charge estimation strategy based on the reduced-order 

electrochemical model has been implemented and described.   
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3.1.1  Motivation and Technical Challenges 

Electric Vehicles (EVs) have received substantial attention in the last decade since they 

promise a more sustainable transportation system compared to their petroleum-based 

counterparts. EVs have advantages as electricity can be obtained from numerous energy 

sources such as nuclear, renewables (e.g.: solar, wind, and tidal), and fossil-fuels. 

Furthermore, EVs can recapture a portion of the energy lost during regenerative braking 

for later re-use thus increasing their overall efficiency. Electrified vehicle do not need to 

have an engine idling when they stop and can have simpler mechanical structures, [1]. 

Electric vehicles are increasingly driven by an on-board lithium-Ion battery pack 

which is one of the most important elements of the powertrain and requires precise 

monitoring and control. A battery management system (BMS) is used and made responsible 

for their real-time monitoring and control, including their State of Charge (SOC), State of 

Health (SOH), and Remaining Useful Life (RUL). The main limitations of EV penetration 

in the automotive market are: cost, range anxiety, safety concerns, and resale value. 

Regarding cost, the battery represents the most expensive component in the entire electric 

vehicle powertrain thus the price of an electric vehicle can be significantly reduced by 

economies of scale; for example, the cost of 1kWh is estimated to be approximately $1000 

for a lithium-Ion battery pack and the objective is to bring it down to $250, [2]. Price can 

also be reduced by implementing an accurate SOC estimation strategy which could help 

reduce any extra overdesign in battery power. As for range anxiety, application of an 

accurate onboard SOC estimation strategy is extremely important; this will facilitate 

commercialization and wide-acceptance of electric vehicles which will eventually bring 
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down their cost. In terms of safety and resale value concerns, these can be mitigated by 

incorporating a SOC estimation strategy to avoid battery over charge and under discharge, 

as these significantly reduce the life time of battery packs. Furthermore, accurate SOH 

estimation techniques and battery lifetime prediction (prognosis) approaches are necessary 

to assess battery degradation. SOH provides the driver with information regarding the 

remaining useful life (RUL) which increases reliability and customer satisfaction. 

In order to monitor the battery SOC and SOH, an accurate, high-fidelity 

mathematical model has to work collaboratively with an accurate and robust estimation 

strategy. However, SOC and SOH monitoring are challenging tasks as degradation is 

reflected in changes in numerous parameters of the battery model. Batteries run under a 

dynamic environment involving acceleration and deceleration depending on the driving 

cycle; These and many factors also affect battery models and monitoring accuracy such as 

imbalance between cells, self-discharge, aging effects, capacity fade, and temperature 

effects, [3].  

3.1.2  Literature Review 

Electrochemical battery models (ECMs) have been widely researched in recent literature 

since they are capable of modeling the diffusion of lithium inside the electrolyte and the 

electrodes. In contrast to equivalent circuit-based models and lumped-parameters models, 

ECMs represent a more attractive approach since they can provide an insight into the 

internal physical states and limitations of the battery; these are important in automotive 

applications since batteries are exposed to high transient current loads under various driving 

cycles, [4]. 
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Various attempts have been reported in the literature for estimating the 

electrochemical model parameters for both reduced and full-order models. In general, 

electrochemical battery model parameters such as diffusion coefficient and maximum solid 

lithium concentration are proprietary information and are not generally provided by 

manufacturers. ECM parameters can be experimentally measured by examining the cells. 

This approach is however costly, time consuming, and cannot obtain all parameters. 

Another approach as proposed in this paper, is to use non-destructive tests and using 

optimization to tune model parameters to experimental data. 

In [4], a parameter identification strategy for reduced-order electrochemical models 

for lithium-polymer cells is proposed. Using continuous and pulse charging/discharging 

experimental data on a 6.8 Ah cell, 9 model parameters are identified, [4]. These include: 

solid particle diffusion coefficients, electrode surface area, and maximum solid electrode 

potentials, [4]. In [5], a genetic algorithm has been applied to identify the parameters of the 

full-order electrochemical model using non-invasive experimental data from the input 

current and measured voltage, [5]. Furthermore, fisher information technique has been 

applied to identify the accuracy of the resulting parameters, [5]. The test has been conducted 

using LiFePO4 cells from A123, [5]. The cells are used for high power applications which 

is the case in electric vehicles, [5].  

3.1.3 Contributions  

This paper presents a generic technique that can be used to estimate the electrochemical 

battery model parameters using a non-invasive optimization strategy for any battery state 

of life. Based on the current literature and up to the authors’ best knowledge, the full-set of 
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the reduced-order electrochemical model parameters have not been identified using a real-

world driving cycle while calculating the state of charge. Furthermore, no state of charge 

parameterization model has been developed to adjust the spherical volume-based state of 

charge calculation accordingly. The technique has been used to estimate the full-set of the 

reduced-order electrochemical model parameters for 3.3 V, 2.3 Ah Lithium Iron Phosphate 

(LiFePO4) batteries at various states of life. The technique can be applied to other battery 

chemistries provided that parameters upper and lower bounds are provided by the 

manufacturer. Furthermore, the paper introduces a new electrochemical model-based SOC 

parameterization strategy based on the number of spherical shells (model states) and on the 

final value theorem. The final value theorem is applied in order to calculate the initial values 

of lithium concentrations at various shells of the electrode. Then, this value is used for 

setting up a constraint for the optimizer in order to achieve an accurate SOC estimation.   

In order to fit ECM parameters, electric current input from an Urban Dynamometer 

Driving Schedule (UDDS) has been used. This current has been selected since it includes 

fast changing and therefore a demand signal that is rich in its frequency content and thus 

favorable to information extraction. Battery models have been validated using a variety of 

aggressive driving cycles such as the light duty drive cycle for high speed and high load 

(US06) and the highway fuel economy test (HWFET). In order to generate the current 

profile from driving cycles, an electric vehicle model (based on SimScape) has been used 

in a modified form, [6]. 
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3.1.4 Paper Outline 

Section 3.2 of this paper describes the reduced-order electrochemical battery model. 

Section 3.3 illustrates the demand-current generation process from the velocity. Section 3.4 

describes the performance tests conducted on fresh and aged battery cells. Section 3.5 

details the proposed model parameterization and optimization strategies. Section 3.6 

describes the parameter identification technique using genetic algorithm. Finally, section 

3.7 presents conclusions, limitations, and future work.  

3.2 Reduced-Order Electrochemical Model  

The derivation of the reduced-order electrochemical battery model is summarized in this 

section, [7]. This reduced-order model is an approximation of the full-order Doyle-Fuller 

Newman Model that is briefly summarised in APPENDIX A, [8, 5]. The reduced-order 

form of the model is generally preferred in estimation and control applications, since full-

order models are computationally expensive, making them impractical for online 

applications in BMS, [8]. 

As shown in Figure 3.1, a typical lithium-Ion battery comprises of two electrodes 

and a separator immersed in an electrolyte solution. The negative electrode (anode) is made 

of carbon and the positive electrode (cathode) consists of a metal oxide. Battery charging 

and discharging processes occur by transferring lithium ions between the anode and the 

cathode across the solution and, electrons through the current collectors, [9]. The negative 

electrode half reaction is, [8]: 

LiÖC� ⇆ C� + xLiN + xe= 

The half reaction for the positive electrode is as follows, [8]: 
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LiØ=ÖMn�O� + xLiN + xe= ⇆ LiØMn�O� 

The overall battery reaction is described by the flowing equation, [8]: 

LiØ=ÖMn�O� + LiÖC� ⇆ LiØMn�O� + C� 

The battery discharging reaction is represented by the right arrow direction and the charging 

process is presented by the left arrow, [8]. Modeling the entire battery diffusion dynamics 

across both electrodes and the electrolyte, which is known as the Full-order model, is a 

computationally expensive task. Therefore, in order to implement the model onboard of a 

BMS, model reduction has to be conducted. As shown in Figure 3.1, a single particle is 

selected to represent each electrode and spherical diffusion inside this particular particle is 

considered. 
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Figure 3.1. Lithium-Ion Battery Structure and the Reduced-Order Model 

Assumption (Adopted from [8]) 

The reduced-order model used in this paper is known as the average model, [8]. 

Several assumptions are made which results in a reduction in model accuracy. However, 
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the model is still applicable to control and monitoring, such as for state of charge and state 

of health control and estimation. The following assumptions have been made, [8]:  

• Each lithium-ion electrode is assumed to be a single sphere whose surface area is 

scaled to that of the porous electrode as shown in Figure 3.1.  

• Lithium concentration in the electrolyte and all model parameters are assumed to 

be constant. 

• No aging or capacity fade has been accounted for and all thermal effects are ignored.  

Any of the above assumptions can be accommodated for at the expense of an increase in 

model complexity and computational requirements. The algorithm of the simplified 

averaged electrochemical model can be divided into 3 sub-models, namely: spherical 

diffusion sub-model, solid electrolyte interface concentration to terminal voltage sub-

model, and solid concentration to SOC sub-model. These sub-models are discussed in 

details below: 

3.2.1 Spherical diffusion sub-model 

A single particle of radius �2 representing the entire electrode is chosen as shown in Figure 

3.2. Accordingly, the spatial dimension _ across the electrode is ignored. A summary of 

the model parameters are summarized in Table 3.1, [8]. The reduced-order model utilizes 

only one representative particle for each of the anode and the cathode. The sphere is divided 

into a number of equal thickness shells. The single spherical particle is divided into 4E − 1 

shells each of size ∆a with * = 1,… ,4E − 1 and	ag = *∆a, where: 

∆a = �24E (3.1) 
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As shown in Figure 3.2, the outer shell (4E) is exposed to the input current on the solid-

electrolyte interface. The diffusion inside the particle is described using Fick’s law of 

spherical diffusion as follows, [9]: 

Table 3.1. Electrochemical Battery Model Parameters Nomenclature and Units, 

[8] 

Symbol Name Unit ÚÛ Electrolyte current density �	`~=� ÚÛ Solid current density �	`~=� ∅Û Electrolyte potential � ∅� Solid potential � �Û Electrolyte concentration ~yz	`~=) �� Solid concentration ~yz	`~=) ��Û Concentration at the solid electrolyte interface ~yz	`~=) ÜÝÚ Butler-Volmer current �	`~=) Þß Anode Normalized solid concentration - Þà Cathode Normalized solid concentration - á Open circuit potential � áß Anode open circuit voltage � áà Cathode open circuit voltage � â Overpotential � ã Faraday’s constant �	~yz=� ä Applied battery cell current � å Universal Gas constant n	�=�	~yz=� æ Temperature � 

 

b`2b' = bba (k2 b`2ba ) (3.2) 

Where, `2 is the solid concentration at time	', and k2 is the diffusion coefficient. In 

order to discretize the above equation, consider the spherical particle as shown in Figure 

3.2 and shell * that is of interest. In order to define the net flux diffusing from and into the 

shell, let the mole number Â� from shell * to shell	* + 1 be defined as, [8]: 

�Â� = k2�'�g8`2gN� − `2g@/�a (3.3) 

Similarly, the mole number Â� from shell * − 1 to * can be expressed as follows, [8]: 
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�Â� = k2�'�g=�8`2g − `2g=�@/�a (3.4) 

The net mole flux (per volume) into shell * can be obtained by subtracting equations (3.3) 

and (3.4) and dividing by the sphere volume	�g, [8]: 

`2g = k2�'�a ç�g8`2gN� − `2g@ − �g=�8`2g − `2g=�@è/�g (3.5) 

Substituting	�g = 	4éag�,	�g=� = 4éag=�� , and �g = 4é�a ¢EêëËNEê� £�into equation (3.5) 

results in, [8]: 

`g = 4k2�'�a�(ag=� + ag)� çag�8`2gN� − `2g@ − ag=�� 8`2g − `2g=�@è (3.6) 

 

 

Figure 3.2. Spherical Particle of Radius å� discretized into ì� shells, [8] 

By using the approximations ag� ≅ ag=�agN� and (ag=� + ag)� ≅ 4ag=�ag and substituting in 

equation (3.6), the following is obtained, [8]: 

�`2g = k2�'�a� ç`2g=� − 2`2g + `2gN� + (�a/ag)	(`2gN� − `2g=�)è (3.7) 

Thus the rate of change of lithium concentration (�`2g/�') in shell * can be described by 

the following equation, [8]: 
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�`2g�' = k2�a� ç`2g=� − 2`2g + `2gN� + (�a/ag)	(`2gN� − `2g=�)è (3.8) 

Substituting ag = *�a into equation (3.8) and re-arranging terms gives:  

�̀2ê = k2�a� îj* − 1* l `2ê³Ë − 2`2ê + j* + 1* l `2êëËï (3.9) 

Equation (3.9) describes the rate of change of lithium concentration in any shell	*, 
and can be used to specify the concentrations at various shells in addition to application of 

boundary conditions. By setting * = 1, 2, . . , 4E=�, 4E=� and defining ¯� = k2/�a� results 

in, [8]: 

�̀� = ¯�8−2`2Ë + 2`2ð@ (3.10) 

�̀2ð = ¯�  12 `2Ë − 2`2ð + 3/2`2ñ¡ (3.11) 

�̀2òG³ð = ¯�  j4E − 34E − 2l `2òG³ñ − 2`2òG³ð + j4E − 14E − 2l `2òG³Ë¡ (3.12) 

�̀2òG³Ë = ¯�  j4E − 24E − 1l `2òG³ð − 2`2òG³Ë + j 4E4E − 1l `2òG¡ (3.13) 

Two boundary conditions are set for the problem, one on the surface of the sphere as 

follows, [8]: 

k2 b`2ba óEÆÉô = −n\go2m  

And the other at the center of the sphere: 

k2 b`2ba óEÆ" = 0 

The two boundary conditions at the sphere surface and the core, respectively can be re-

written as follows, [8]: 
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k2 ¢(`2òG=`2òG³Ë)/�a£ = −n\go2m  (3.14) 

k2 ¢(`2Ë=`2´)/�a£ = 0 (3.15) 

Re-arranging the previous equations results in, [8]: 

`2òG = `2ôH = `2òG³Ë − �a n\gmo2k2 (3.16) 

`2´ = `2Ë  (3.17) 

Where `2òG is the solid concentration at the sphere outermost shell in contact with 

the electrolyte, and is thus referred to as the solid electrolyte interface concentration (`2F). 

Substituting with the solid concentration at the core and at the surface in equations (3.10) 

and (3.13) and defining ¯� = 1/(mo2�a) and re-arranging, [8]: 

�̀2òG=� = ¯�  j4E − 24E − 1l `2òG³ð − j4E − 24E − 1l `2òG³Ë − ¯�¯� j 4E4E − 1l n\g¡ (3.18) 

Equations (3.10-3.12) along with equation (3.18) represent the single particle model and 

can be written in a state-space representation form as follows, [8]: 

 System equation:  

�̀2 = �`2 + õ� (3.19) 

Output equation:  

`2F = `2òG = `2òG³Ë − ¯�¯� n\g  (3.20) 

Where, matrices A and B can be written as follows, [8]: 
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� = ¯� 	
©̈©
©©
©©
©ª
−2 2 01/2 −2 3/20 2/3 −2 ⋯ 000⋮ ⋱ ⋮

0 0 0 ⋯
−2 [G=�[G=) 0
[G=)[G=� −2 [G=�[G=�0 [G=�[G=� �=[G[G=�«¬

¬¬
¬¬
¬¬

,     õ = ¯� 	 ©̈©

ª 00⋮− ù [G[G=�ú«¬
¬ 

This sub-model has one input, one output, and 4E=� states representing the shells 

surface concentrations. The model input � is the butler-Volmer current (n\g) which is a 

function of the solid electrolyte surface concentration (cûü) and the total current	(I). The 

output of this sub-model is the solid concentration at the solid-electrolyte interface (cûü). 

This output is fed into another sub-model that calculates the terminal voltage. 

3.2.2 Solid electrolyte interface-Terminal voltage sub-model: 

Detailed description of the derivation of the following equations is discussed in [8]. A 

summary of the equations that use the solid concentration at the solid-electrolyte interface 

to generate the terminal voltage is provided in this subsection. The battery terminal voltage 

(from the full-order model) is calculated using equation (A18) in APPENDIX A and 

repeated here, [8]: 

� = ∅2(_ = s) − ∅2(_ = 0) − �3ýþV (3.21) 

The over-potential for the positive and negative electrodes	/ , and /� is described by the 

following equations, [8]: 

/ = ∅2, − ∅F. − J (`2F, )     (3.22) 

/� = ∅2,� − ∅F.� − J�(`2F,�)     (3.23) 

Substituting equations (3.22) and (3.23) into equation (3.21) results in [8]:  
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�(') = (/ + ∅F. + J �`2F, �) − (/� + ∅F.� + J��`2F,��) (3.24) 

Grouping similar elements together results in [8]: 

�(') = �/̅ − /̅�� + (∅�F. − ∅�F.�) +	ùJÀ�`2F, � − J��`2F,��ú − �BV (3.25) 

The four terms in equation (3.25) are obtained separately as follows: 

3.2.2.1 Open circuit Potential ùá����Û,à� − áß���Û,ß�ú 

The	`2F,  for the positive electrode is used to calculate the solid concentration at the solid-

electrolyte interface for the negative electrode `2F,�	using the following equation, [8]: 

`2̅F,� = `2,0r�,� �u�"% + `2̅F, − u "%`2,0r�, (u �""% − u "%)`2,0r�, (u��""% − u�"%)� (3.26) 

Where	u�"%, u��""%, u "%, u �""% are the stoichiometry points for the negative 

and positive electrodes respectively, [10]. The solid concentrations at the electrode-

electrolyte interface for the positive and negative particles are normalized as follows, [8]: 

u = xyz*{ − 7z7`'ayz|'7	*}'7aCo`7	`y}`7}'ao'*y}	(pyx*'*+7	)	~o_*~�~	xyz*{	`y}`7}'ao'*y} = `2F, 	`2,0r�,  (3.27) 

u� = xyz*{ − 7z7`'ayz|'7	*}'7aCo`7	`y}`7}'ao'*y}	(}7�o'*+7)	~o_*~�~	xyz*{	`y}`7}'ao'*y} = `2F,�	`2,0r�,� (3.28) 

Normalized concentration values in equations (3.27) and (3.28) range from 0 to 1 

and are further used to obtain the open circuit potential equations for the cathode (Jp) and 

for the anode (J�). The experimental derivation of J  and J� is described in details in 

section 3.4.  
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3.2.2.2 The Overpotential �â�à − â�ß� 
The difference between the anode and cathode overpotentials can be calculated using the 

following equations (details of the equations derivations can be found in [8]):  

/̅� = �D¯rm ln	(�� + ���� + 1) (3.29) 

/̅ = �D¯rm ln	(� + �� � + 1) (3.30) 

where,  

�� = ��̅\g2o2f� (3.31) 

� = � ̅\g2o2f� (3.32) 

Where ��̅\g and ��̅\g are the Butler-Volmer currents defined as follows: 

��̅\g = V��� = o2f�[7_p j∝r m�D /̅�l − 7_p	(∝� m�D /̅�)] (3.33) 

� ̅\g = V�� = o2f�[7_p j∝r m�D /̅ l − 7_p	(∝� m�D /̅ )] (3.34) 

 f� can be calculated as: 

f� = (`F)���`2,0r� − `2F���(`2F)�? (3.35) 
 

 

3.2.2.3 The electrolyte potential (∅�Û.à − ∅�Û.ß) 
An approximate of the difference can be calculated using the following equation, [8]: 

(∅�F. − ∅�F.�) = − V2� ( ��6FBB + ��6FBB + ��6FBB) (3.36) 

3.2.3  Solid Particle Concentration - SOC sub-model 

The critical surface charge (CSC) for the positive electrode is calculated from the solid-

electrolyte interface (`2F, ). Normalized solid-electrolyte concentration u is obtained first 

using equation (3.27); the critical surface charge is calculated based on the positive 

electrode lithium concentration only using the following equation, [8]: 
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�t� = u − u "%u �""% − u "% (3.37) 

The battery state of charge (SOC) is calculated based on the spherical average 

concentration (`2, ��	) inside the positive electrode. The SOC is calculated as, [8]: 

u ��	 = o+7ao�7	pyx*'*+7	xpℎ7a7	`y}`7}'ao'*y}	~o_*~�~	xyz*{	`y}`7}'ao'*y} = `2, ��		`2,0r�,  (3.38) 

Where, the average solid particle concentration for the positive electrode (`2, ��	) 

is calculated by integrating the concentrations of electrode shells and dividing by the sphere 

volume as, [8]: 

`2, ��	 = `�� = 'y'oz	z*'ℎ*�~	`y}`7'ao'*y}	poa'*`z7	+yz�~7 = ∑ ag�4é∆a`g[G=�gÆ�43é(�2 − ∆a))  (3.39) 

Then the SOC is calculated as, [8]: 

tW� = 100 ∗ ( u ��	 − u "%u �""% − u "%) (3.40) 

Note that the critical surface charge (i.e.: the charge at the solid-electrolyte 

interface) is not used in the calculation of the total battery state of charge. Alternatively, 

the solid electrolyte interface concentration is used for terminal voltage calculation. This 

explains the fact that when a zero current is applied to the battery, battery voltage exhibits 

relaxation effect, since lithium ions on the outer surface diffuse to lower concentration 

shells inside the particle thus voltage decreases until lithium concentration in all shells are 

equalized and no further diffusion takes place. On the other hand, the battery state of charge 

does not change upon applying a zero current input. Since the same lithium concentration 

is contained inside the sphere and averaged to obtain the overall battery SOC as given in 
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equation (3.40). The overall ECM Models can be simulated using the collection of 

equations (3.1) to (3.40). The coefficient values for a LiFePO4 battery cell can be obtained 

from manufacturers and through experimental parameter identification using drive cycles 

as explained in the following sections. 

3.3 Current Generation and Experimental Setup 

This section summarizes the process of current generation from the velocity profiles of 

various driving cycles. Then a summary of the experimental setup including cyclers, 

environmental chambers, data acquisition systems, and battery cells is provided. The 

experimental data is then used for extracting parametric values for a reduced order ECM 

for a LiFePO4 battery cell. 

3.3.1 Current Generation  

In order to generate the current profiles needed for experimentation, an electric vehicle 

battery model has been modified from an existing hybrid vehicle model, [6]. The model 

has been simulated using SimScape in Matlab environment in order to obtain the current 

profile from the velocity profile. Loading conditions such as heating and air conditioning 

have been ignored in this study. A model of a mid-size sedan (Battery Electric Vehicle Ford 

Focus) has been used with an approximate driving range of 200 kilometers per full charge. 

The simulation model, as shown in Figure 3.3, consists of a vehicle dynamic model, DC 

electric motor, DC-DC convertor, lithium-Ion battery pack, and vehicle speed controller.  
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Figure 3.3. All-Electric Mid-size Sedan Simulation Model in SimScape 

(Adopted from [6]) 

Three benchmark driving schedules have been used in the simulation; namely, an 

Urban Dynamometer Driving Schedule (UDDS), a light duty drive cycle for high speed 

and high load (US06), and a High fuel Economy Test (HWFET), [11]. Even though the 

driving behaviour of an average driver may likely vary, these driving cycles have been 

widely used in both industrial and academic settings to simulate various driving patterns.  

Table 3.2. Characteristics of UDDS, US06, and HWFET Driving Schedules, 

[11] 

 Length Distance Avg Speed (mph) 

UDDS 1,369 7.45 19.59 

US06 596 8.01 48.37 

HWFET 765 10.26 48.30 

 

The UDDS driving cycle represents a city driving condition, the UDDS cycle 

(commonly known as “LA4” or “the city test” or Federal Test Procedure “FTP-72”) was 

originally used for light duty fossil-fueled vehicle testing, [11]. It has been developed to 

imitate average speed, idle time, and number of stops that the average driver performs in 

practice, [12].  
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Figure 3.4. Velocity Profiles for the UDDS (upper figure), US06 (middle), and 

HWFET (lower) Cycles [11] 

The test profile is recommended by the U.S. Environmental Protection Agency to 

estimate the fuel economy in city driving conditions, [11]. For electric vehicles, the profile 

has been extensively used to estimate the driving range in miles per full charge, [13, 14]. 

The US06 cycle is a high acceleration, aggressive driving cycle, and the HWFET represents 

a highway driving conditions with speeds below 60 miles/hours, [15]. The three 

aforementioned driving cycles are as shown in Figure 3.4 below. An exclusive summary of 

these driving cycle characteristics such as distance, time, and average speeds is as shown 

in Table 3.2, [16].  

   The pack current profiles from these driving cycles are as shown in Figure 3.5. 

Since the US06 driving cycle is an aggressive driving cycle, the current demand by the 

motor is quite high compared to current profiles from the HWFET and the UDDS cycles. 
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Current profiles have been scaled down to the cell level and used for model parameters 

fitting. The pack consists of 100 cells connected in series for voltage buildup and 15 cells 

connected in parallel. Cell balancing has been ignored in this study.  

 

Figure 3.5. Pack Current Profiles for the UDDS (Upper figure), US06 (middle 

figure), and HWFET (lower figure) Cycles 
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The experimental setup is as shown in Figure 3.6, the setup includes 3 channel Arbin 

BT2000 tester, 3 lithium Iron Phosphate cells, 3 environmental chambers, AVL Lynx data 
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chambers in order perform the test at controlled temperature conditions. Two different 

environmental chambers provided by two different companies are used for testing namely, 

Thermotron and Espec. 

 
Figure 3.6. Experimental Setup including Cyclers, Environmental Chambers, 

and Data Acquisition Systems   

Figure 3.7. Arbin BT2000 Cycler with Espec/Thermotron Environmental Chambers 
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These units can change the temperature from -70 to 180 ℃ and are able to change the 

temperatures at a rate of 3.5 ℃/~*}. This kind of heating and cooling capability is 

necessary for stressing samples and accelerating battery aging and therefore saving total 

test time. 

Each battery is independently tested using separate tester channel. The Arbin tester, 

as shown in Figure 3.7 and Figure 3.8, has 3 independent channels. The cycler can operate 

in two voltage ranges namely, low: 0-5 V and high: 0-20 V, and 3 different current ranges, 

high: 0 - ±400 Amps, medium: 0 - ±40 Amps, and low: 0 - ±5 Amps. 

 

 

 

 

Figure 3.8. Arbin Cycler channels: channels equipped with voltage sensor and 

status indicator light 

 

 

Voltage sensor 
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3.4 Reference Performance Tests and Experimental Data Analysis 

A summary of the reference performance tests (RPT) conducted on fresh battery cells is 

presented in subsection 3.4.1. In subsection 3.4.2, an illustration of the data analysis 

conducted to generate the cathode and anode equilibrium potentials (J  and	J�) is 

provided. 

3.4.1 Characterization/RPT tests  

Extensive characterization tests have been conducted on a fresh and aged batteries at 

controlled room temperature of 25℃, 4 main experiments include: A static capacity test at 

1C rate, SOC-OCV characterization test, pulse charge/Discharge test,  and Driving Cycle 

tests (e.g.: Urban Dynamometer Driving schedule) test. Characterization tests are 

conducted to specify battery cell baseline performance characteristics such as cell power 

capability, internal resistance, capacity, and time constants. The following tests were 

selected for this study. 

3.4.1.1 Static Capacity Test – PNGV, 2001 

This test is used to measure the battery cell capacity in Ampere-hours at a constant current 

(CC) discharge rate. This test is conducted in order to provide a baseline for a fresh battery 

cell capacity. The test procedure follows the constant current constant voltage (CCCV) 

protocol and is summarized in the following steps, [17]:  

A. Charge the battery at 1C rate (2.3 A) to fully charged state in a constant current 

constant voltage (CCCV) mode. The battery is fully charged at 3.6 V and when 

the current end point is at 0.02 C (0.046 A). 

B. Leave the battery to rest for one hour in order to allow for voltage and current 

stabilization, [17].  
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C. Discharge sequence at a constant current 1C rate until the voltage reaches the 

battery minimum voltage limit (2 V) recommended by the manufacturer, [17].  

D. Battery is left at rest with no load for one hour.  

3.4.1.2 OCV-SOC Relationship:  

This test is used to characterize the open-circuit voltage (OCV) - state of charge (SOC) 

relationship. Very small C-rates (C/20, C/15) are used for OCV-SOC characterization in 

order to minimize cell dynamics and to minimize ohmic loss effects due to battery internal 

resistances, [18]. Accordingly, by conducting this experiment, the measured terminal 

voltage is assumed to be the open circuit voltage. This test is important since the cathode 

and anode electrode potentials (J  and J�), which are used in the electrochemical model, 

are being derived from this test as discussed in subsection 3.4.3.  The OCV-SOC 

relationship is obtained as follows (this test is similar to the capacity test but is conducted 

at a very low C-rate): 

A. Fully charge the battery in a CCCV mode until maximum voltage (3.6V). 

B. Fully discharge the battery at constant current (CC) mode with 1C-rate until 

the voltage hits the minimum voltage (2V).  

C. All cycler current accumulators are reset to zero. At this moment, the battery is 

at zero state of charge (SOC).  

D. Charge the battery at a very small C-rate of C/15 (0.06*2.3=0.15A) in a CCCV 

mode until it hits the maximum voltage of 3.6V. The cell is left to rest for one 

hour to relax.  

E. Discharge the cell at the same rate of C/15 until and the battery hits the 

minimum voltage of 2 V. 

The charging and discharging curves are averaged to obtain a single fixed relationship 

between OCV and SOC. 
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3.4.1.3 Driving cycles 

Current profiles generated from the electric vehicle model as illustrated in section 3.3 are 

used to excite the cells. The pack current profile is scaled down to the cell level and is fed 

to the cycler. These driving cycles are very rich in their frequency content, since they 

include fast variations and will be used for model parameters fitting. The cell current is 

generated from the pack current by assuming no cell balancing (i.e.: all cells are held at the 

same state of charge) and by assuming equal current distributions among parallel cell 

branches.  

3.4.2 Fresh Battery - Cathode/Anode Electrode Potential Derivation  

The separate cathode and anode electrodes potential can be estimated from the SOC-OCV 

relationship. The OCV vs. time for both charging and discharging of a fresh battery is as 

shown in Figure 3.9. The test has been conducted at C/15 rate. In order to obtain the OCV-

SOC relationship, the OCV curves for both charging and discharging are plotted vs. SOC 

as shown in Figure 3.10. This relationship, as previously mentioned, is obtained by cycling 

the battery at a very low C-rate (C/20 or C/15) to minimize battery dynamics and use the 

measured terminal voltage as the open circuit voltage (i.e.: assuming negligible voltage 

drop on the internal resistance due to very low current), [18]. 
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Figure 3.9. Charging/Discharging OCV vs. Time (~C/15) 

 

 
Figure 3.10. SOC-OCV relationship for both charging and discharging  
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Figure 3.11. Hysteresis Effect - Obtained by subtracting Charging and 

Discharging Curves 

   

 
Figure 3.12. Charging and Discharging Averaged SOC-OCV Curve 
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It is clear that the battery behaviour during charging and discharging are not identical due 

to hysteresis effects which is obtained by subtracting both curves is shown in Figure 3.11.  

In order to obtain one curve to represent the OCV-SOC relationship, data has been 

resampled to 50 points for each of the charging/discharging curves then they have been 

averaged as shown in Figure 3.12.  

 

Figure 3.13. Anode Equilibrium Potential Vs. Normalized Concentration [5] 
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lithium concentration is as shown in Figure 3.13, [5].  The empirical relationship is as 

follows, [19]: 

J�(_) = �� + ��_ + �)_�/� − ��_=� + �]_)� + �� exp[	15(0.06 − _)] − �
exp	[�Ã(_ − 0.92)] 
Where, _ is defined as the lithium concentration in the solid active material divided by the 

maximum permissible solid concentration, [19]. The constants �� to �Ã values are as 

follows: 

�� = 8.002296379, �� = 5.064722977, �) = 	−12.57808059, �� = 8.6322087557 − 4, �] =2.1794982817 − 5, �� = −0.4601573522, �
 = 0.5536351675, �Ã = −2.432630003  

 

The cathode potential (J ) is obtained from the anode potential by subtracting J� from the 

OCV-SOC curve as shown in Figure 3.14 below, [5]. In each electrode, curves have been 

discretized to 50 control points and a Piecewise Cubic Hermite Interpolating Polynomial 

(PCHIP) is used perform interpolation between control points, [5]. 

 

Figure 3.14. Cathode Equilibrium Potential as function of Normalized 

concentration  
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3.5 Parameterization Model Development  

In order to identify the electrochemical battery model parameters, an objective function has 

to be set in order to fit the model output voltage to experimental data. In order to optimize 

the battery voltage while maintaining an accurate SOC estimate, model parameterization 

has to be conducted in order to scale the input current to the Butler-Volmer current values. 

This value is further applied as an input to the spherical particle for each electrode. This 

section provides a new parameterization model which is a function of the number of 

spherical shells (4E). The model is further used as a constraint during parameters 

optimization. The following subsections illustrate the parameterization procedure by 

considering the reversed process of obtaining the initial lithium concentration from the 

initial SOC followed by deriving the parameterization equation. 

3.5.1 Total sphere concentration from initial SOC 

In order to start simulating the model, the initial lithium concentration values have to be 

calculated from the initial SOC. First, assuming a known battery SOC, an inverse SOC 

calculation has to be conducted as follows. Recall that the battery SOC is calculated based 

on the spherical average concentration (`2, ��	) inside the positive electrode (equations 

3.39-3.40). Equations are repeated here for readability, the SOC is calculated as follows, 

[8]: 

tW� = 100 ∗ (
`2, ��		`2,0r�, − u "%u �""% − u "% ) (3.39) 
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Where, the average solid particle concentration for the positive electrode (`2, ��	) 

is calculated by integrating the concentrations of electrode shells and dividing by the sphere 

volume as follows, [8]: 

`2, ��	 = `�� = 'y'oz	z*'ℎ*�~	`y}`7'ao'*y}	poa'*`z7	+yz�~7 = ∑ ag�4é∆a`g[G=�gÆ�43é(�2 − ∆a))  (3.40) 

Thus assuming a known initial state of charge, the total solid concentration in the 

particle can be calculated by re-arranging the previous equations as follows: 

`� = 	`2, ��	 ∗ 43 é(�2 − ∆a)) = jtW�100 ∗ �u �""% − u "%� + u "%l ∗ `2,0r�, ∗ 43 é(�2 − ∆a)) (3.41) 

The next step is to evaluate lithium concentration values at various shells at steady 

state conditions (i.e.: assuming no diffusion). The total lithium concentration is divided 

equally among all shells as follows: 

`� = Ä ag�4é∆a`g
[G=�
gÆ�

= a�� ∗ 4é∆a`� + a�� ∗ 4é∆a`� + a)� ∗ 4é∆a`)…a[G³Ë� ∗ 4é∆a`[G=� (3.42) 

In order to evaluate the values of lithium concentrations at various 

shells	[`�	`�	`)…`[E=�], we use the final value theorem to evaluate the steady state 

concentration values. The technique is described in details in the following subsections. 

3.5.2 Initial concentration using Final Value Theorem  

Given a dynamic system representing the lithium diffusion in the solid particle defined in 

state-space which is previously defined in equations (3.19-3.20), matrices A and B can be 

written as follows: 
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� = ¯� 	
©̈©
©©
©©
©ª
−2 2 01/2 −2 3/20 2/3 −2 ⋯ 000⋮ ⋱ ⋮

0 0 0 ⋯
−2 [G=�[G=) 0
[G=)[G=� −2 [G=�[G=�0 [G=�[G=� �=[G[G=�«¬

¬¬
¬¬
¬¬

,     õ = ¯� 	 ©̈©

ª 00⋮− ù [G[G=�ú«¬
¬ 

Assuming a zero input	�(') = 0, the zero-input solution can be formulated as: 

{`{' = �`(') (3.43) 

Taking unilateral Laplace transform,  

x`(x) − `(0) = �`(x) (3.44) 

Where `(0) = `(') at ' = 0. Thus, 

(xV − �)`(x) = `(0) (3.45) 

By applying the inverse, the states `(x) can be evaluated as follows: 

`(x) = (xV − �)=�`(0) (3.46) 

By applying the Final Value theorem for a unilateral transfer function m(x) as follows: 

m*}oz	�oz�7 = 	 lim¶→ C(') = lim2→" xm(x) (3.47) 

Thus substituting equation (3.46) into equation (3.47), get: 

m*}oz	�oz�7 = 	 lim¶→ C(') = lim2→" x((xV − �)=�`(0)) (3.48) 

The final value calculated above is a function of the matrix A. It is clear that the 

matrix depends solely on the number of spherical shells 4E thus the final value depends on 

the number of shells. The final value achieved using the final value theorem represents the 
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fraction by which the concentration will be equally divided amongst all shells. In this paper, 

this value is referred to as the	`2Br�¶�E. Accordingly, in order to evaluate the solid 

concentration in each spherical shell, assume that all lithium contained in the sphere is 

concentrated at the outermost shell. Then the following equation can be used: 

`g = `�/(a[G³Ë� ∗ 4é∆a) ∗ 	`2Br�¶�E = Ä ag�4é∆a`g
[G=�
gÆ�

/(a[G³Ë� ∗ 4é∆a) ∗ 	`2Br�¶�E
= (a�� ∗ 4é∆a`� + a�� ∗ 4é∆a`� + a)� ∗ 4é∆a`)…+ a[G³Ë�
∗ 4é∆a`[G=�)/(a[G³Ë� ∗ 4é∆a) ∗ 	`2Br�¶�E  

(3.49) 

Where `g represents the steady state initial concentration at every shell, for a given 

state of charge and the number of shells in the spherical particle.  

3.5.3 Number of shells, SOC slope, and ��������  relationship 

By examining the state transition matrix A, a relationship between the number of electrode 

spherical shells (4E) and the `2:�?²>G  can be derived. Assume that the number of spherical 

shells is	4E = 3, the state transition matrix can be formulated as function of  4E as follows: 

�|[GÆ) =   −2 (4E − 1)/(4E − 2)(4E − 2)/(4E − 1) −(4E − 2)/(4E − 1)¡ (3.50) 

By converting from the state space to the transfer function representation and assuming 

zero input current, the transfer function (Dm) for the outermost shell that relates the input 

butler-Volmer current to the subsequent inner shell can be written as follows: 

Dm|[GÆ) = (4E − 1)(x + 2)(4E−1)x� + (34E − 4)x + 4E − 3 (3.51) 

By applying the final value theorem (equation (3.47)) and simplify: 
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m*}oz	�oz�7|[GÆ) = `2Br�¶�E|[GÆ) = 1 − 4E − 234E − 4 (3.52) 

Similarly, by repeating the same procedure for the number of spherical shells	4E = 4, the 

state transition matrix can be formulated as a function of  4E as follows: 

�|[GÆ� =
©̈©
©©
©ª −2 (4E − 2)(4E − 3) 0
(4E − 3)(4E − 2) −2 (4E − 1)(4E − 2)

0 (4E − 2)(4E − 1) − (4E − 2)(4E − 1)«¬
¬¬
¬¬

 (3.53) 

The transfer function (Dm) for the outermost shell that relates the input current to the 

subsequent inner shell is as follows: 

Dm|[GÆ� = (4E − 1)(x� + 4x + 3)(4E − 1)x) + (54E−6)x� + (64E − 10)x +4E − 4 (3.54) 

By applying the final value theorem and simplifying: 

m*}oz	�oz�7|[GÆ� = `2Br�¶�E|[GÆ� = 1 − 34E − 764E − 10 (3.55) 

Finally, for the number of spherical shells	4E = 5, the state transition matrix is: 

�|[GÆ] =
©̈©
©©
©©
©ª −2 (4E − 3)(4E − 4)(4E − 4)(4E − 3) −2

0 0(4E − 2)(4E − 3) 0
0 (4E − 3)(4E − 2)0 0

−2 (4E − 1)(4E − 2)(4E − 2)(4E − 1) − (4E − 2)(4E − 1)«¬
¬¬
¬¬
¬¬

 (3.56) 

And the transfer function (Dm) for is as follows: 
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Dm|[GÆ] = (4E − 1)(x) + 6x� + 10x + 4)(4E − 1)x� + (74E − 8)x) + (154E−21)x� + (104E − 20)x + 4E − 5 (3.57) 

By applying the final value theorem and simplify: 

m*}oz	�oz�7|[GÆ] = `2Br�¶�E|[GÆ) = 1 − 64E − 16104E − 20 (3.58) 

By further examining the `2Br�¶�E values for various number of shells, the following relationship 

can be formulated: 

`2Br�¶�E = (4E� − 34E + 22 )(4E) − (4E) − 74E + 66 )
j4E� −4E2 l (4E) − (4E) −4E6 )  (3.59) 

Therefore the closed form of the relationship can be simplified to: 

`2Br�¶�E = 1 − 24E) − 94E� + 134E − 624E) − 34E� +4E  (3.60) 
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Figure 3.15. Relationship between the	��������	and the number of electrode 

spherical shells 

The relationship between the	`xCo`'ya and the number of spherical shells (4E) is as shown 

in Figure 3.15. By simulating the model using various number of shells, we can derive a 

relationship between the number of shells (4E), the `2:�?²>G , and the slope of the SOC 

(∆tW�/∆') curve as summarized in the following table:  

Table 3.3. Model Simulation parameters using various number of shells 

	�������� ì� ∆���/∆� (∆���/∆�) 	��������� 		 
0.26 11 2.72 10.5 

0.13 21 2.85 20.5 

0.12 25 2.88 24.5 

0.09 31 2.90 30.5 

 

As shown in Table 3.3, by dividing	`2:�?²>G  by the SOC slope	(∆tW�/∆'), a 

relationship which depends solely on the number of shells can be derived as follows: 
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(∆tW�/∆') 	`2Br�¶�E� 	= (24E − 1)/2 (3.61) 

The previous relationship is of critical importance to scale the battery input current 

(I) to the Butler -Volmer current (n ). This relationship is expanded upon to include 

dependence on the battery capacity (�0r�) in Ampere-second, normalized concentrations 

(u ´% , u Ë´´%), particle radius (�2), maximum positive solid concentration (`2<��), and	¯�.  

(∆tW�/∆') 	`2Br�¶�E� 	= (24E − 1
2 ∗ ¯� ∗ ∆a)/(`2<�� ∗ �2 ∗ �0r� ∗ (u Ë´´% − u ´%) (3.62) 

Where,  

¯� = k2/�a� and ¯� = 1/(mo2∆a) 

The relation is further expanded to involve volumetric average used for SOC calculation: 

ù∆tW�∆' ú 	`2Br�¶�E� 	
= ((24E − 1

2 ) ∗ j 4E
4E − 1l

)
∗ ¯� ∗ ∆a)/(`2<�� ∗ �2 ∗ �0r� ∗ (u Ë´´%

− u ´%) 

(3.63) 

The aforementioned relationship is used as an optimization constraint. The optimizer is 

used to identify the electrode area (A) and then using the previous constraint to calculate 

the electrode thickness � as follows: 

� = j1�l ∗ �j24E − 1
2 l ∗ j 4E

4E − 1l
)
∗ ¯� ∗ ∆a ∗ 	 	`2Br�¶�E� /(`2<�� ∗ �2 ∗ �0r� ∗ (u Ë´´%

− u ´%) 
(3.64) 

This relationship indicates that capacity degradation due to battery aging is attributed to a 

decreased sphere effective volume. 
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3.6  Parameters Optimization  

A benchmark Urban Dynamometer Driving Schedule has been used for data fitting. 

Experimental data from LiFePO4 cells have been collected and fitted to the reduced-order 

model. Even though the reduced-order model has fewer parameters compared to the full-

order model, model parameters are still difficult to identify. Accordingly, in this work, the 

full-set of the reduced-order model parameters are being attained using genetic algorithm 

optimization.  

3.6.1 Parameters to be identified 

The full-set of the reduced-order electrochemical battery model parameters have been 

identified. The 18 parameters are as follows: the solid maximum particle concentration in 

the anode and cathode (`2,0r�, , `2,0r�,�), positive and negative diffusion coefficients 

(k2, , k2,�), positive and negative active surface area per electrode (o2, , o2,�), positive and 

negative electrode area (A), electrode film resistance (�3ýþ) (also known as the solid 

electrolyte interface resistance), maximum positive and negative solid normalized 

concentrations (stoichiometry values) (u �"", u��""), minimum positive and negative 

normalized solid concentration (u ", u�"), anode and cathode particle radiuses (�2�, �2�), 

active material volume fraction (72, , 72,�), average electrolyte concentration (`F̅), and 

positive and negative current coefficient or reaction rate (6"). Some parameters are held 

constant as shown in Table 3.4. 
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Table 3.4. Fixed Model Parameters (held constant during optimization) 

Parameter name  (unit) Parameter value 

Change transfers coefficient ��, �� 0.5,0.5 

Universal gas constant (Ü	�=�	���=�) 8.3144 e+4 

Temperature (°�) 298.15 

Faraday’s constant (�	���=�) 96485 

 

3.6.2 Genetic Algorithm optimization Technique  

Genetic algorithms are search techniques based on the evolutionary model.  They are best 

suited for complex problems in which obtaining a gradient is rather difficult. In addition, 

GA is a global optimization search algorithm for complex, non-unimodal objective 

functions. A detailed description of genetic algorithms can be found in references, [21, 22]. 

A brief summary of the method used in this paper is summarized below, [23]. 

A. Creation of random initial population  

In this work, 1000 individuals have been used for every population. The initial range is 

set as illustrated in Table 5. An initial guess based on literature for parametric values 

and according to the authors’ best knowledge has been adopted in this work.  

B. Generating a sequence of new populations as follows: 

 

• The fitness value of each population member is valuated and the raw fitness values 

are scaled to generate an operational range of values.  

• Individuals are selected based on their fitness function, these individuals are called 

parents. 

• Off springs are generated from the population by crossover or mutation.  
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• Low fitness individuals are replaced from current population by new off-springs to 

for the next generation. 

C. The steps are repeated until the stopping criteria is reached. This include a 

maximum number of iterations of 10 or a minimum RMSE of 1e-5.  

 

3.6.3 Results and Discussions 

During optimization, bounds have been set on all 18 parameters, as given in Table 5. In 

order to identify the electrochemical model parameters using the Genetic Algorithm (GA), 

an objective function has to be selected. The parameter identification objective function 

used in this research is targeted at minimizing the error between the model output terminal 

voltage ��(') and the experimentally measured terminal voltage	�('). The objective 

function is a cumulative sum of the squared voltage error as follows:  

~*} ù�(') − ��(')ú� {'�
"  (3.65) 

The Urban Dynamometer Driving Schedule (UDDS) has been used for parameter 

fitting. The UDDS driving cycle has been selected since it entails fast changing signal, rich 

in its frequency content thus favoured when optimization strategies are applied. The driving 

cycle includes resting periods thus captures the battery relaxation effects. In addition, the 

cycle includes charging current that represents regenerative braking in addition to 

discharging currents representing vehicle acceleration. The driving cycle has been 

previously used to get the electrochemical battery model parameters for the full-order 

electrochemical model in previous publication, [5]. As shown in the paper, the model will 

be validated using other driving cycles (HWFET, US06) that has never been used during 

parameter extraction process and the model exhibits good accuracy. The Genetic Algorithm 
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(GA) starts varying the 18 model parameters to be identified. The GA is best suited in this 

application since gradient information is hard to evaluate for the electrochemical model.  

 

Figure 3.16. Battery Voltage (Upper Figure), SOC and Current (Bottom Figure) 

for one UDDS Cycle 

The scaled current input from an Urban Dynamometer Driving cycle has been used 

as an input to the model along with the parameter guess generated by the GA.  

Table 3.5. Electrochemical Battery Model Optimizer Bounds 

Parameter name (electrode) (symbol) (unit) Lower Bound Upper Bound 

Maximum solid-phase concentration (Positive) 

(��,��!,à)	(��� ��")⁄  
1e-4 0.1 

Maximum solid-phase concentration (Negative) 

(��,��!,ß)	(��� ��")⁄  
1e-4 0.1 

Solid phase diffusion coefficient (Positive) ($�,à) 

(��% �Û�⁄ ) 
1e-15 1e-8 

Solid phase diffusion coefficient (Negative) ($�,ß) 

(��% �Û�⁄ ) 
1e-15 1e-8 

Active surface area per electrode unit volume (Positive) 

(��,à) 
10000 180000 
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Active surface area per electrode unit volume (Negative) 

(��,ß) 
10000 130000 

Maximum solid concentration (Positive) (Þà�&&%) 0 1 

Minimum solid concentration (Positive) (Þà&%) 0 1 

Maximum solid concentration (Negative) (Þß�&&%) 0 1 

Minimum solid concentration (Negative) (Þß&%) 0 1 

Particle radius (Positive) (å�,à) (��) 1e-7 1e-1 

Particle radius (Negative) (å�,ß) (��) 1e-7 1e-1 

Active material volume fraction (Positive) (Û�,à) 0 1 

Active material volume fraction (Negative) (Û�,à) 0 1 

Reaction rate ('&) 1000 12000 

Solid Electrolyte interface Resistance (å�(ä) ()) 0 1 

Average electrolyte concentration (�*Û) (��� ��")⁄  1e-5 1e-1 

Electrode plate area (Positive, Negative) (A) (��%) 100 20000 

 

The current is scaled down by a factor of 15 assuming 15 cells are connected in 

parallel, also, cell balancing is ignored in this context. Current, voltage, and SOC data from 

a UDDS cycle are shown in Figure 3.16 (assuming positive current for discharge and 

negative current for charge). The model is simulated once for every member of the 

population and the terminal voltage is further compared with the experimental terminal 

voltage. Since over-potential equations (3.29) and (3.30) used for terminal voltage 

calculation involve square root calculation, it might generate complex numbers. Therefore, 

when setting up the cost function, if any population generates complex terminal voltage, it 

is penalized by setting the terminal voltage to a very large number.     
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The GA optimization has been set to 10 runs and to 1000 population size due to 

extensive computational complexity required by the algorithm. The algorithm has been 

conducted on a mobile workstation with 3.0 GHz, quad Core i7-3940XM Extreme Edition 

processor.  

 

Figure 3.17. Electrochemical Battery Model vs. Experimental Data from a 

UDDS Driving Cycle 

The estimated value of the �3ýþ inherently includes current collectors and 

electrolyte resistance. The algorithm requires approximately 6 hours to generate the 

optimized parameters.  
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Table 3.6. Electrochemical Battery Model Optimized Parameters 

Parameter name (electrode) (symbol) (unit) 
Optimized 

Parameters 

Maximum solid-phase concentration (Positive) 

(��,��!,à)	(��� ��")⁄  
0.04782 

Maximum solid-phase concentration (Negative) 

(��,��!,ß)	(��� ��")⁄  
0.08147 

Solid phase diffusion coefficient (Positive) ($�,à) 

(��% �Û�⁄ ) 
7.432474 e-09 

Solid phase diffusion coefficient (Negative) ($�,ß) 

(��% �Û�⁄ ) 
1.139458 e-09 

Active surface area per electrode unit volume (Positive) 

(��,à) 
164083.82 

Active surface area per electrode unit volume (Negative) 

(��,ß) 
65588.80 

Maximum solid concentration (Positive) (Þà�&&%) 0.9149 

Minimum solid concentration (Positive) (Þà&%) 0.6976 

Maximum solid concentration (Negative) (Þß�&&%) 0.3101 

Minimum solid concentration (Negative) (Þß&%) 0.1535 

Particle radius (Positive) (å�,à) (��) 0.0015 

Particle radius (Negative) (å�,ß) (��) 0.0264 

Active material volume fraction (Positive) (Û�,à) 0.1646 

Active material volume fraction (Negative) (Û�,ß) 0.7970 

Reaction rate ('&) 10016.583 

Solid Electrolyte interface Resistance (å�(ä) ()) 0.0104 

Average electrolyte concentration (�*Û) (��� ��")⁄  0.0851 

Electrode plate area (Positive, Negative) (A) (��%) 16524.27 

 

The identified values generated by the GA are summarized in Table 3.6. As shown 

in Figure 3.17, the optimized electrochemical battery model output fits the experimental 
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data quite well. The slight shift is due to the averaging of the OCV and SOC relationship 

and due to the approximations from the full-order to the reduced-order form. Recall that 

the model assumes constant electrolyte concentration and only one representative particle 

for each electrode. The root mean square error (RMSE) between the measured terminal 

voltage (�(')) and the electrochemical model output (+,(�)) for n number of samples can 

be calculated as follows: 

åì�( = 	-∑ +(�) − +,(�)ß�Æ� ß  (3.66) 

 

Figure 3.18. Voltage Error between experimental and ECM Output 

The error between experimental and the ECM model output is shown in Figure 3.18. 

Using the optimized battery model parameters, the RMSE for a UDDS cycle is 0.22057 

mV. The actual battery SOC Vs. electrochemical battery model output SOC based on 
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spherical average are shown in Figure 3.19.  The actual SOC is calculated using coulomb 

counting provided by the Arbin cycler. 

 

Figure 3.19. Actual SOC (using Coulomb Counting) Vs. Model SOC 

The SOC has been reset before conducting the test to minimize accumulated error 

due to integration. The histogram of the voltage error is shown in Figure 3.20.  
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Figure 3.20. Probability density plot of voltage error for UDDS cycle 

As shown, the maximum absolute error is within 0.02 V which indicates that the 

model is very accurate using the optimized parameter values at this specific state of life. 

As battery ages, model parameters will significantly change and will result in model 

deviation. One of the major advantages of electrochemical modeling in comparison to the 

equivalent circuit-based models is that a further insight into lithium concentrations in both 

electrodes can be monitored. As shown in Figure 3.21, the solid-electrolyte interface 

concentration in the cathode and the anode for a UDDS cycle is presented. 
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Figure 3.21. Anode and Cathode Lithium Concentrations at the Solid-

Electrolyte Interface 

Furthermore, Figure 3.22 shows the variations of lithium concentrations across 

various shells (10 shells) in the cathode for the UDDS cycle. It is clear that the solid-

electrolyte interface concentration is rapidly varying since it is directly related to the 

terminal voltage concentrations, while the other inner shells are slowly varying since they 

are not directly exposed to the Butler-Volmer current. This describes the fact that the 

battery exhibits relaxation effects for zero current input which is related to the variation of 

lithium concentration at the surface, as it decays to the inner shells over time. The total 

sphere concentration is held constant for zero input current and accordingly the battery state 

of charge is fixed.   
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Figure 3.22. Lithium Concentration in the Cathode across Various Shells 

 

3.6.4 Model validation  

The optimized model along with the developed SOC parameterization strategy has been 

validated using other real-world driving cycles that have never been seen by the model. 

Current profiles from highway fuel economy test (HWFET) and a light duty drive cycle for 

high speed and high load (US06) driving cycles have been used. As shown in Figure 3.23 

and 3.24, the identified model parameters using UDDS cycle still generates good results. 

The RMSE for terminal voltage and SOC using the US06 driving cycle are 0.0041531 V 

and 0.2932 % respectively.  
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Figure 3.23. Electrochemical Battery Model vs. Experimental Data from a 

US06 Driving Cycle 

As shown in Figure 3.25, the model has also been validated using a HWFET driving 

cycle, since this driving cycle has never been seen during model fitting, a slight offset 

between the model and the measured voltage has been exhibited. This is also due to the 

approximation done during model reduction process from a full-order to a reduced-order 

form. The offset is due to the averaging process of both charging/discharging SOC-OCV 

curves. The maximum voltage offset is approximately 0.03 V and the RMSE across the 

entire driving cycle is 0.0154 V which is relatively small. The ECM model SOC Vs. actual 

SOC (from the Arbin cycler) are as shown in Figure 3.26, The RMSE for the SOC using 

the HWFET driving cycle is 0.161 %. 
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Figure 3.24. Actual SOC (using Coulomb Counting) Vs. Model SOC for US06 

Driving Cycle

 

Figure 3.25. Electrochemical Battery Model vs. Experimental Data from a 

HWFET Driving Cycle 
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Since these driving cycles have never been utilized during optimization, the RMSE 

is slightly higher compared to the UDDS cycle. However, the results for terminal voltage 

and SOC are within the acceptable range of operation. A summary of the terminal voltage 

and SOC RMSE for all driving cycles used are shown in Figure 3.27. It is clear that since 

the UDDS cycle has been used for parameter fitting, it generates the least error for both the 

voltage and the SOC. The HWFET exhibits the highest voltage error while the US06 

demonstrates the highest error on SOC. 

 

Figure 3.26. Actual SOC (using Coulomb Counting) Vs. Model SOC for 

HWFET Driving Cycle 
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Figure 3.27. Terminal voltage (upper) and SOC RMSE (lower) for all driving 

cycles 

3.7 Conclusions  

In this paper, identification of 18 model parameters of the reduced-order electrochemical 

model using genetic algorithms has been conducted. The technique can be used for a non-

invasive determination of the electrochemical model parameters for any battery chemistry. 

Furthermore, a SOC parameterization model has been developed and effectively utilized as 

a constraint during the parameter optimization process. The electrochemical model with 

optimized parameters fits voltage experimental data very well with an RMSE of 

approximately 0.2 mV over one UDDS cycle. Moreover, spherical average concentration 

can be effectively used for SOC calculation provided that the initial SOC is known.  

The reduced-order model results in heavy loss of information from the full-order 

model. However, it still maintains a strong connection to the internal battery potential and 
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diffusion dynamics which are beneficial for the state of health estimation. Future research 

involves extension of the proposed methodology to incorporate changes of aging 

parameters using correlation with ampere-hour throughput and other aging parameters such 

as battery discharge rate, temperatures, and depth of discharge. 
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APPENDIX 

Full-Order Electrochemical Battery Model 

The full order electrochemical battery model is described in this section. Diffusion dynamics in one 
dimensional (1-D), single axis (X-axis) is only considered while diffusion dynamics in both 
dimensions (Y-axis and Z-axis) are ignored, [24, 25]. The state variables required to describe the 
1D-spatial model at any	_, '	are the electric potential in the solid electrode	ɸ2(_, '), the electric 
potential in the electrolyte	ɸF(_, ')	, the lithium concentration in the solid phase	`2(_, a, ')	and the 
lithium concentration in the electrolyte	`F(_, '). Mathematical equations to model the 
electrochemical behavior of a Li-ion battery is presented below, the input to the model is the 
external current	V	applied to the battery, and the output of the model is the corresponding output 
voltage 	�	 [26]. The 1D-spatial electrochemical model consists of four PDEs [27], the solid and 
electrolyte potentials are described by the following two equations [24, 25]: 

bb_ 6FBB bb_ ∅F + bb_ 61FBB bb_ ln `F = −f\g (A1) 

bb_ hFBB bb_ ∅2 = f\g (A2) 

The diffusion of lithium in the electrolyte is modeled using Fick’s law for linear coordinates as 
shown by equation (A3) [24, 25],  

biF`Fb' = bb_ jkFFBB b`Fb_ l + 1 − '"m f\g  (A3) 

While the solid (electrode) phase diffusion is modeled by Fick’s laws of diffusion for spherical 
coordinates as shown in equation (A4), [24, 25]: 

b`2b' = bba (k2 b`2ba ) (A4) 

In order to simplify the model, the electrolyte concentration (`F) is assumed to be constant. This 
approximation will greatly simplify the model while preserving accuracy of <5% compared to the 
detailed model [9]. After simplification, equation (A3) is removed, equations (A2) and (A4) remain 
unchanged, and equation (A1) is being simplified as follows, [24, 25]: 

∂∂x kü00 ∂∂x ∅ü = −j23 (A5) 

Equations (A6) and (A7) introduce the solid current density (*2) (A/cm�) and the electrolyte current 

density (*F) (A/cm�), [24, 25]:  

*F(_) = −6FBB bb_ ∅F 
(A6) 

*2(_) = −hFBB bb_ ∅2 (A7) 

Thus, the solid and electrolyte potential equations (A1) and (A2) can be re-written as follows, [24, 
25]: 

bb_ *F(_) = f\g (A8) 
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bb_ *2(_) = −f\g (A9) 

The Butler-Volmer current density is described [24, 25]: 

n\g = o2f�[7_p j∝r m�D /l − 7_p	(∝� m�D /)] (A10) 

Where � and m are the universal gas constant and Faraday’s constant, D is the absolute temperature 
and / is the over potential [24, 25].  

/ = ∅2 − ∅F − J(`2F) (A11) 

In equation (A11), J	is the open circuit voltage which is a function of the lithium concentration at 
the solid-electrolyte interface	`2F(_, ') = `2(_, �2, '). The concentration at the interface between 
the solid and the electrolyte is related to the critical surface charge (CSC), [24, 25]: 

�t�(') = u − u"%u�""% − u"% 
(A12) 

By defining the normalized solid-electrolyte concentration  θ as follows, [24, 25]: 

u = xyz*{ − 7z7`'ayz|'7	`y}`7}'ao'*y}	~o_*~�~	xyz*{	`y}`7}'ao'*y} 	
				= `2F 	`2,0r�  

(A13) 

Where, u"% and u�""% are the normalized concentrations corresponding to 0% (fully discharged) 

and 100% (fully charged).  θ�""% can be defined by obtaining the concentration corresponding to 
the maximum fully charged battery. Subsequently, the  0% reference value can be calculated by 
subtracting the battery capacity Q as, [10]:  

u"% = u�""% − �� ( 1�mi`2,0r�) (A14) 

The open circuit voltage varies from the cathode and the anode. An empirical relationship is used 
to relate the open circuit voltage to the normalized state of charge which is given by, [28]: 

J�(u�) = 8.0029 + 5.064u� − 12.578u�".] − 8.6322 × 10=�u�=� + 2.176 × 10=]u�)�− 0.46016 7_p[15(0.06 − u�)] − 0.553647_p	[−2.4326(u� − 0.92)] 
(A15) 

For the positive electrode, the empirical equation is as follows [9]: 

J �u � = 85.681u � − 357.7u ] + 613.89u � − 555.65u ) + 281.06u � − 76.648u + 13.1983− 0.309877_p	(5.657u ��]) (A16) 

The coefficient f� depends on the solid and electrolyte concentrations according to the following 
equations, [24, 25]: 

f� = (`F)���`2,0r� − `2F���(`2F)�? (A17) 

The solid potential is related to the measured cell potential as follows, [24, 25]: 

� = ∅2(_ = s) − ∅2(_ = 0) − �3ýþV (A18) 

where �3ýþ is the solid electrolyte interface (film) resistance at the electrode surface, this resistance 
increases after charging and discharging cycles (battery aging). As mentioned earlier, the full order 
model is relatively complex so further simplification is necessary for its real-time applications such 
as in control and condition monitoring.  
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Abstract 

Recently, extensive research has been conducted in the field of battery management 

systems due to increased interest in vehicles electrification. Parameters such as battery state 

of charge and state of health are of critical importance to ensure safety, reliability, and 

prolong battery life. This paper includes the following contributions: (1) tracking reduced-

order electrochemical battery model parameter variations as battery ages, using genetic 

algorithm optimization technique, (2) the development of an aged battery model capable of 

capturing battery degradation by varying the electrode effective volume, (3) estimation of 

the battery critical surface state of charge using a new estimation strategy known as the 

Smooth Variable Structure Filter. The proposed filter is used for state of charge estimation, 

and demonstrates strong robustness to modeling uncertainties which is relatively high in 

case of reduced-order electrochemical models. Batteries used in this research are lithium-

Iron Phosphate cells widely used in automotive applications. Extensive testing using real-

world driving cycles are used for State of Health and State of Charge estimation and for 

conducting aging tests.  

Keywords: Lithium-Ion Batteries, state of charge estimation, state of health estimation, 

electrochemical battery model, smooth variable structure filter.  
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4.1 Introduction 

This paper considers strategies pertaining to battery state of charge (SOC) estimation and 

parameter identification for reduced-order electrochemical models in relation to aging. The 

paper presents an extension to previous research reported in [1], in which battery model 

parameters for fresh batteries were obtained by using genetic algorithms. In this paper, an 

aging model for lithium-Ion batteries that are increasingly used in electrified vehicles is 

developed. Here, battery aging is captured by changing the effective volume of the 

electrode.  

4.1.1 Motivation and Technical Challenges 

Battery State of Charge (SOC) and State of Health (SOH) estimation are challenging tasks, 

given that automotive batteries are designed to meet fast transient demands resulting from 

vehicle acceleration and deceleration according to driving profiles. In order to ensure a 

reliable electric vehicle performance, precise estimation of lithium-Ion battery SOC and 

SOH is necessary, [2]. SOC is defined as the remaining pack capacity thus provides an 

indication of the vehicle remaining driving range, [3]. SOH is a measure of the irreversible 

degradation that occurs in the battery performance due to cycling, [3]. SOH provides an 

indication of the current state of the battery compared to its new or fresh state before 

cycling, [3]. SOH is a measure of the battery capability to respond to the required power 

demand and is an indicator for triggering maintenance or replacement. In general, two main 

critical factors are considered when addressing the battery SOH, namely: capacity fade and 

power capability. The battery capacity fade has a large impact on the vehicle range and 

relates to range anxiety. The second factor is the power capability which impact the vehicle 
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performance and drivability. The remaining useful life (RUL) is used to predict the battery 

remaining useful time during its life time thus it represents a predictive measure for battery 

maintenance, [3].  

Battery SOC and SOH are highly correlated, and a trade-off exists between extending 

the life-time of the battery and extending the range of the vehicle, [2]. Discharging the 

battery to a high level of Depth of Discharge (DOD) (i.e.: low SOC) is generally not 

recommended as it will significantly shorten the lifetime of the battery. However, this will 

lead to shorter driving range as only partial charge is being utilized from the entire stored 

charge. In contrast, charging the battery beyond the acceptable range of operation results 

in high temperatures and shortens the battery life, [2]. Consequently, an accurate SOC 

estimate is extremely important in electric vehicles; any deviation in SOC estimation might 

result in an irreversible loss of capacity or even premature and permanent damage to the 

battery, [2].   

Since electric and hybrid vehicles are relatively new to the market, it will require some 

time to assess their performance in real-world operation. In particular, the battery might 

suffer from irreversible degradation due to cycling; a matter that will adversely affect the 

SOC estimation accuracy.  Battery Management Systems (BMS) are used to control energy 

management in electric vehicles. A BMS has to be adaptive in order to account for aging 

and degradation in performance that might affect the vehicle range of operation and 

charging efficiency. For instance, as per October, 2012, there are 112 documented cases of 

customers complaining of capacity loss in their electric vehicles, [4]. In addition, around 
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11.8% of the total number of Nissan Leaf vehicles sold in Arizona have exhibited a loss in 

capacity gauge bars, [4].  

4.1.2 Literature Review  

Adaptive techniques for SOC estimation are important especially for automotive 

applications where having an accurate, reliable, and robust estimate is necessary to mitigate 

the driver range anxiety concerns and ensure safety. In the literature, adaptive SOC 

estimation techniques are classified under one of the following: Fuzzy Logic, Artificial 

Neural Networks, and filter/observer-based techniques (such as Kalman Filters). The 

work in this paper will focus on filter/observer based methods. 

In [5], an estimation strategy based on reduced-order electrochemical battery model 

is presented. It uses a Kalman filter to estimate the SOC, terminal potentials, and 

concentration gradients. Estimates are compared against experimental data from a 6 Ah 

electric vehicle battery cell, [5]. The filter provides accurate and stable estimates for low 

currents. However, at very high discharge rates (C-rates) large errors are exhibited due to 

the methods inability to account for large changes in electrolyte concentration near 

electrodes, [5]. The filter model is of low order and complexity (7 states) that is comparable 

to equivalent circuit-based models, [5]. The technique is computationally efficient and 

suitable for real-time applications such as in on-board battery management system, [5].     

In [6], a state estimation strategy based on an output error injection observer is 

proposed. This strategy uses a reduced set of partial differential algebraic equations 

describing the solid and electrolyte concentrations and potentials. Simulation and 

experimental results using real-world driving cycles such as the urban dynamometer 
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driving schedule (UDDS) demonstrate the effectiveness of the proposed technique. In [7], 

a state of charge estimation technique based on a linearized battery model is presented. In 

order to overcome the nonlinear behaviour of battery models, the Open Circuit Voltage-

State of Charge (OCV-SOC) relationship has been divided into linear sections and model 

parameters are estimated for each section individually, [7]. Then, based on the resultant 

linear model, an observer is used to estimate the SOC. The technique has been verified on 

1.5 Ah lithium-polymer cells, [7].  

4.1.3 Contributions  

 The electrochemical models reported in literature do not commonly account for aging and 

degradation effects; they have been applied to fresh, healthy batteries only. As batteries age 

with time, these models become inaccurate and the SOC estimator could diverge or become 

unstable. Accordingly, developing an adaptive model that can account for cycling effects 

is therefore important.  Such an adaptive model can significantly enhance the existing SOH 

estimation techniques and can provide an estimate for the battery RUL. Furthermore, 

published reduced-order electrochemical models are not generally tuned or verified by 

using SOC and aging experimental data.  

This paper presents an aging model that can account for battery degradation at various 

battery states of life. The model works by varying the effective electrode volume, OCV-

SOC relationship, solid-electrolyte interface resistance, and the solid diffusion coefficient 

to account for aging. The model can be practically implemented in a real-time 

microprocessor for terminal voltage and state of charge estimation. A strategy for the tuning 

of model parameters is presented for aged batteries. This strategy is supported and verified 
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by using experimental data from extensive accelerated aging tests conducted on lithium ion 

battery cells at high depth of discharge and elevated temperatures. The aging tests were 

continued until the battery cells reached end-of-life (80% of capacity). The method used 

for SOC estimation is known as the Smooth Variable Structure Filter (SVSF). The SVSF 

was selected as it demonstrates robustness to modeling uncertainties, sensor noise, and to 

state of charge initial conditions, [8, 9]. 

4.1.4 Paper Outline 

This paper is organized as follows. Section 4.2 provides a summary of aging tests 

conducted for experimental data generation. Section 4.3 presents a battery aging model and 

a strategy for model parameter identification for aged batteries. Section 4.4 describes the 

SOC estimation using the Smooth Variable Structure Filter (SVSF). Section 4.5 contains 

the conclusions. 

4.2 Aging/Reference Performance Test Experiments  

Battery testing procedures vary depending on the country and the application, i.e.: for 

HEVs, PHEV, or BEVs, [10]. In U.S., battery test procedures are generally classified into 

3 main categories: characterization, life, and reference tests, [11].  

• Characterization tests are conducted to specify battery cell/pack baseline 

performance characteristics, [11]. Examples of these tests include: static capacity, 

hybrid pulse power characterization (HPPC), self-discharge, cold cranking, thermal 

performance, and efficiency tests, [11].  
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• Life tests are conducted to determine battery degradation (aging) effects that take 

place in both cycle life and calendar life, [11]. Calendar life (shelf life) means the 

life of the battery during storage (with no cycling involved) while cycle life is the 

life of the battery after multiple charging/discharging cycles, [10]. The main 

purpose of these tests is to perform accelerated battery aging for acquiring data in a 

relatively short time in order to predict the performance of the battery. In addition, 

these tests can be used for battery warranty estimates.    

• Reference performance tests (RPT): are conducted periodically to track changes 

that might occur in the battery baseline characteristics. Reference tests are 

performed after conducting a certain number of life tests to measure the capacity 

fade and degradation in performance throughout the entire battery life cycle, [12].  

These tests are performed at the beginning (fresh battery) and at the end of life. 

This paper reports on a range of experiments that have been conducted on three Lithium 

Iron Phosphate (LiFePO4) battery cells. Characterization/RPT tests have been conducted 

at two different states of life, namely: fresh battery (at 100% capacity) and at 80% capacity. 

A summary of these tests are as follows. 

4.2.1 Characterization/RPT tests  

Extensive characterization tests have been conducted on fresh and aged batteries at the 

controlled room temperature of	25℃. Three RPT experiments were conducted as follows: 

A static capacity test at 1C rate, SOC-OCV characterization test, and a driving scenario. 

The scenario includes a mix of driving schedules for an average North American driver. 
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The data is used for validating the SOC estimation strategy and the associated aging model. 

A detailed description of the reference performance tests (OCV-SOC, static capacity test) 

in addition to the experimental setup used in data generation can be found in part I of this 

paper, [1].  

4.2.2 Fast Charge/Discharge Aging (Life) Tests  

Aging test using well-defined charging/discharging cycles at elevated temperature (55℃) 

and high C-rates have been conducted. This accelerated test was conducted to track changes 

in battery electrochemical model parameters. These tests were conducted 24 hours a day 

and 7 days a week over a period of 6 months. The test procedure is as follows: 

A. Fully charge the battery in a Constant Current Constant Voltage (CCCV) mode 

until maximum voltage (3.6V). 

B. Fully discharge the battery at constant current (CC) mode with 1C-rate until 

the voltage hits the minimum voltage (2V).  

C. All cycler current accumulators are reset to zero. At this moment, the battery is 

at zero state of charge (SOC).  

D. Charge the battery to 90% SOC. 

E. Discharge the battery at 10 C-rate until the battery hits the minimum voltage 

(2V) 

F. Allow for voltage relaxation for 5 minutes. 

G. Charge the battery at 4C-rate for 20 minutes. If the battery hits the maximum 

voltage, CCCV charge mode is maintained. 

H. Repeat the procedure from D to G for approximately 200 cycles (till capacity 

hits 80%).  

A summary of one fast charge aging cycle is illustrated in Figure 4.1.  
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Figure 4.1. Voltage, Current and SOC for One Fast Charge/Discharge Aging 

Test 

 

4.3 Battery Aging Model Development and Parameters Fitting 

In this section, an electrochemical aging model is developed and model parameters for aged 

batteries at 80% capacity are estimated. Subsection 4.3.1 provides a brief summary of the 

reduced-order electrochemical battery model. Subsection 4.3.2 illustrates the necessity of 

having updated model parameters as battery ages. This is done by assessing the 

performance of a model developed from a fresh battery vs. data from aged battery. 

Subsection 4.3.3 demonstrates the process of aging model development and model 

parameter evaluation as battery ages.  

4.3.1 Reduced-Order Electrochemical Battery Model  

A detailed description of the reduced-order electrochemical battery model and its 

parameterization can be found in [1]. A summary of the reduced-order model equations is 
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provided here for improving the readability and the completeness of this paper. Recall that 

each electrode can be modeled as a sphere with a particle radius	�2. The single spherical 

particle is divided into 4E − 1 shells each of size ∆a with * = 1,… ,4E − 1 and	ag = *∆a, 

where: 

∆a = �24E (4.1) 

 

The particle outer shell (4E) is exposed to the input current on the solid-electrolyte 

interface. The system, which has one input, one output, and 4E=� states representing the 

shells surface concentrations, can be summarized in the following state-space 

representation form, [13]: 

 System equation:  

�̀2 = ¯� 	
©̈©
©©
©©
©©
©ª
−2 2 01/2 −2 3/20 2/3 −2 ⋯ 000⋮ ⋱ ⋮

0 0 0 ⋯
−2 4E − 24E − 3 0

4E − 34E − 2 −2 4E − 14E − 2
0 4E − 24E − 1 2 −4E4E − 1«¬

¬¬
¬¬
¬¬
¬¬


`2 + ¯� 	 ©̈©©
ª 00⋮− j 4E4E − 1l«¬

¬¬
 � (4.2) 

 

Output equation:  

`2F = `2òG = `2òG³Ë − ¯�¯� n\g  (4.3) 

The model input � is the butler-Volmer current (n\g) which is a function of the 

solid-electrolyte surface concentration (cûü) and the total current	(V). The output of this 
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sub-model is the solid concentration at the solid-electrolyte interface (cûü). This output is 

fed into another sub-model that calculates the terminal voltage and the SOC. The solid-

electrolyte interface concentration from the negative electrode (`2F,�) is calculated from the 

positive one (`2F, ) using the following equation, [13]: 

`2̅F,� = `2,0r�,� �u�"% + `2̅F, − u "%`2,0r�, (u �""% − u "%)`2,0r�, (u��""% − u�"%)� (4.4) 

Where	u�"%, u��""%, u "%, u �""% are the stoichiometry points for the negative 

and positive electrodes, respectively, [14]. The terminal voltage can be calculated based on 

the solid-electrolyte-interface concentrations (`2F) from the anode and the cathode as 

follows, [13]: 

�(') = �/̅ − /̅�� + (∅�F. − ∅�F.�) + 	ùJÀ�`2F, � − J��`2F,��ú − �BV (4.5) 

Note that the state of charge can be calculated as, [13]: 

tW� = 100 ∗ (
`2, ��		`2,0r�, − u "%u �""% − u "% ) (4.6) 

Where the average concentrations can be calculated as, [13]: 

`2, ��	 = `�� = 'y'oz	z*'ℎ*�~	`y}`7'ao'*y}	poa'*`z7	+yz�~7 = ∑ ag�4é∆a`g[G=�gÆ�43é(�2 − ∆a))  (4.7) 

4.3.2 Aged Battery vs. Optimized ECM Model (Fresh) 

In order to demonstrate the importance of having multiple battery models at various battery 

states of life, a current profile from a UDDS driving cycle is applied to an aged battery (at 

80% capacity fade).  
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Figure 4.2.  Electrochemical Battery Model vs. Experimental Data from a 

UDDS Driving Cycle (Aged Battery) 

The measured experimental voltage is compared against the voltage from an 

electrochemical battery model for a fresh battery [1]. The actual SOC in Figure 4.1 is 

obtained experimentally by using coulomb counting with an Arbin cycler. The estimated 

battery SOC is calculated based on the battery discharge capacity test conducted as a 

reference performance test at the beginning of the experiment. The battery discharge 

capacity for the battery after the aging test is 1.74 Ah. As shown in Figure 4.2 and 4.3, it is 

clear that the ECM at 100% capacity (fresh battery) will significantly deviated in both 

terminal voltage and SOC from what is exhibited by an aged battery.  

As shown in Figure 4.3, it is important to update model parameters as battery ages 

since the ECM estimate of the SOC for a fresh battery is higher than the actual SOC of an 

aged battery, thus giving a false SOC estimate. For example, at the end of the UDDS driving 
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cycle, the model SOC is at approximately 44% while the actual SOC is at 41.5%; this is a 

relatively significant error. It is also important to highlight that other factors such as 

temperature and cell-balancing have not been accounted for in the scope of this paper. 

These factors will further contribute to modeling errors and worsen the terminal voltage 

and SOC estimate.  

 

Figure 4.3. Actual SOC for Aged Battery (using Coulomb Counting) vs. Model 

SOC 

The root mean square error (RMSE) between the measured terminal voltage (�(')) and the 

electrochemical model output (+,(�)) for n number of samples can be calculated as follows: 

åì�( =	-∑ +(�) − +,(�)ß�Æ� ß  (4.8) 

The RMSE associated with using an ECM developed for fresh battery cells for 

estimating the terminal voltage and the SOC for an aged battery cell are 0.0087 V and 
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1.4694 %, respectively. However, the model performs really well with data from fresh 

(healthy) batteries; the associated RMSE for the terminal voltage and the SOC are 0.22057 

mV and 0.1%. It is important to highlight that this error is over a single driving cycle which 

depletes the battery from 50% to approximately 40%. This error will worsen for extended 

driving cycles that might deplete the battery from 90% to 10%. A summary of the RMSE 

for the UDDS driving cycle for ECM on fresh and aged batteries is shown in Figure 4.4. In 

the following section, the ECM is modified and a strategy is applied to effectively 

overcome this problem and account for battery aging and degradation.   

 

Figure 4.4. Terminal Voltage RMSE for Fresh vs. Aged Battery (Upper), SOC 

RMSE for Fresh vs. Aged (Lower) 

4.3.3 Battery Aging Model Development 

Battery aging and performance degradation occur due to two main effects, namely: film 

growth and carbon retreat, [15]. These two phenomena are found to be changing in a 
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sigmoidal fashion (with sudden changes after a number of cycles), [15]. Aging occurs due 

to the reaction between the cathode active materials and the electrolyte, resulting in the 

formation of a solid-electrolyte interface (SEI) layer. This in turn changes the particle 

surface composition leading to breaking down of the carbon conductive paths which cause 

carbon retreat and sudden acceleration of capacity fade, [15]. Furthermore, battery aging 

occurs due to the formation of an insulating layer on the surface of the electrode particles 

(mainly the cathode electrode) which in turn leads to an increase in the impedance of the 

positive electrode, [16].  

 

Figure 4.5. Battery Reduced-order Electrochemical Model at 3 States of Life; 

(a) Fresh (healthy state), (b) Mid-life, and (c) End-of-life. Aging is modeled by 

increase in the SEI layer and decrease in the Effective Electrode Volume. 



Ph.D. Thesis   McMaster University  
Ryan Ahmed   Department of Mechanical Engineering 

 

154 

 

The other factor is likely due to loss of electron conductivity of the cathode 

particles, [17]. This phenomenon is also related to the (carbon retreat) phenomenon which 

is the disconnection of carbon within the particles due to the formation of a SEI layer. The 

reduced-order Electrochemical Model (ECM) needs to be modified and augmented in order 

to account for aging. Figure 4.5 depicts a representation of the battery as it related to the 

reduced-order electrochemical model at 3 distinct states of life, namely: fresh (healthy 

state), mid-life, and end-of-life. The proposed battery aging model works by modeling the 

increase in the SEI layer and the decrease in the electrode volume due to side reactions. As 

battery ages, the electrode resistance to accept further lithium ions increases and this results 

in capacity degradation and aging.  

In ECM, it is assumed that at steady state, no lithium diffusion occurs inside the 

spherical particle representing the electrode, [1] . All lithium concentrations in every shell 

reaches a steady state condition according to the following equation, [1]: 

`g = `�/(a[G³Ë� ∗ 4é∆a) ∗ 	`2Br�¶�E = Ä ag�4é∆a`g
[G=�
gÆ�

/(a[G³Ë� ∗ 4é∆a) ∗ 	`2Br�¶�E
= (a�� ∗ 4é∆a`� + a�� ∗ 4é∆a`� + a)� ∗ 4é∆a`)…+ a[G³Ë� ∗ 4é∆a`[G=�)/(a[G³Ë�
∗ 4é∆a) ∗ 	`2Br�¶�E  

(4.9) 

where `g represents the steady state initial concentration at every shell of the spherical 

particle for a given state of charge and number of shells in the particle. 

In order to demonstrate the previous equation, consider a spherical particle of radius 

0.0015 `~ with 11 spherical discretization segments (spherical shells) and assume that the 

total lithium concentration is concentrated at the outermost shell. Further, assume that the 
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maximum lithium concentration is 0.04782	~yz/`~), and the initial SOC is 50%. The 

stoichiometry values of 0.6976 and 0.9149 have been selected. By substituting with the 

SOC in the following equation, average lithium concentration at the specified state of 

charge is calculated as follows, [1]:    

`2, ��	 = jtW�100 ∗ �u �""% − u "%� + u "%l ∗ `2,0r�, = 0.0386	~yz/`~) (4.10) 

Assuming the total lithium concentration is concentrated at the outermost shell, lithium 

concentration at the outermost shell `2 òG³Ëcan be calculated as follows: 

`2 òG³Ë = `2, ��	 ∗ 43 é(�2 − ∆a))/(a[G³Ë� ∗ 4é∆a) = 0.1285	~yz/`~) 

As shown in Figure 4.6, assuming no input current is applied at the solid-electrolyte 

interface layer, lithium at the outermost shell (starting from 0.1285	~yz/`~)) will diffuse 

inside the sphere according to Fick’s second law of diffusion until all lithium concentrations 

are equalized. Then on, no further lithium diffusion would occur inside the sphere. The 

final concentration value in which all shells settle is related to the	`2Br�¶�Eaccording to 

equation (4.11).  
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Figure 4.6. Lithium concentrations across shells assuming total lithium 

concentration is concentrated at the outermost shell 

Lithium concentrations in every shell can be calculated by applying the final value 

theorem below: 

	`2Br�¶�E = C*}oz	+oz�7 = 	 z*~¶→ C(') = z*~2→" x((xV − �)=�`(0)) = 0.2597 (4.11) 

The final value, which is dependent on the state transition matrix A is 0.259. It is 

important to highlight that this value solely depends on the number of discretization 

segments	4E which is 11 in this example. The steady state value of lithium concentrations, 

as shown in Figure 4.6, can be calculated as follows: 

`g = `2 òG³Ë ∗ 	 	`2Br�¶�E = `�/(a[G³Ë� ∗ 4é∆a) ∗ 	`2Br�¶�E = 0.1285 ∗ 0.2597 = 0.033~yz/`~)	 (4.12) 

Recall that an optimizer is used to optimize the electrode area (A) and then further to 

constraints, to calculate the electrode thickness � as follows, [1]: 
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� = j1�l ∗ �j24E − 12 l ∗ j 4E4E − 1l
) ∗ ¯� ∗ ∆a ∗ 	 	`2Br�¶�E� /(`2<�� ∗ �2 ∗ �0r� ∗ (u Ë´´% − u ´%) (4.13) 

This relationship is important since as battery ages, the effective volume of the 

sphere representing the electrode is decreased. This results in capacity degradation and 

battery aging. In this paper, the definition	"!z7`'ay{7	��*}�	mo`'ya	(L)” is introduced as 

follows:  

!z7`'ay{7	��*}�	mo`'ya	(L) = Vn ∗ � ∗ � =
= (V)/ �n ∗ j24E − 12 l ∗ j 4E4E − 1l

) ∗ ¯� ∗ ∆a ∗ 	 	`2Br�¶�E� /(`2<�� ∗ �2 ∗ �0r�
∗ (u Ë´´% − u ´%) 

(4.14) 

In other words, the battery input current is scaled down to the Butler-Volmer current 

by dividing the input current by the effective electrode volume (�FBB). As battery ages, the 

effective electrode volume is reduced and thus lithium ions are prevented from further 

diffusion inside the particle representing the electrode. The effective electrode volume can 

be calculated as follows: 

�FBB = � ∗ � ∗ L (4.15) 

In order to demonstrate the accuracy of this model, assume that an input discharge 

current of 1C (-2.3 A) is applied for 15 minutes on the outermost shell of the sphere with 

the same parameters as previously discussed. Then a resting period of 15 minutes, followed 

by a charging current of +2.3A, and then a 15 minutes resting period is applied as shown 

in Figure 4.7. 
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Assume that the electrode plate area is 16524.27 `~�, the battery capacity �0r� is 

2.3 Ah and ¯� = 1/(mo2∆a) is 4.632e-7. Lithium ion concentrations across the particle 

spherical shells due to the input current are as shown in Figure 4.8. It is clear that during 

the first 15 minutes when a discharging current is applied to the battery, lithium ion 

concentration across shells decrease uniformly until a steady state condition occurs. During 

the resting period, when no current is applied to the battery, lithium concentration equalizes 

across spherical shells. Lithium values is approximately 0.0356 ~yz/`~).  

 

Figure 4.7. Cathode Input Current and State of Charge for healthy battery 

(100% capacity) 

During the charging period, lithium ion concentration across shells increases 

uniformly as shown in Figure 4.8 followed. For the fresh battery, the SOC changes from 

100% to 75% using the specified charging/discharging input current.     
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Figure 4.8. Lithium Concentration variations vs. time for healthy battery (100% 

capacity) 

As battery degrades, the battery effective volume is decreased which in turn changes 

the electrode aging factor	(L). Battery aging is attributed to cycling and calendar aging 

effects. Calendar aging is not considered within the scope of this paper. Assume that the 

aging factor decreased from 1 for a fresh (healthy) battery state to 0.7 at its end of life. 

Other parameters such as the solid diffusion coefficient (k2�) changes as battery degrades. 

Changes in these parameters reflect the increased electrode resistance to accept further 

charges. In this example, the diffusion coefficient decreases from 7.4324e −
9	to	5.34479e − 9 `~� x7`⁄ . Battery state of charge, as shown below in Figure 4.9, varies 

from 100% to 64% using the same input current. This indicates that the electrode no longer 

accepts further charges due to the change in its effective volume and decreased diffusion 

coefficient.  
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Figure 4.9. Battery input current and SOC for aged battery (6 = &.7) 

 

As shown in Figure 4.10, lithium concentrations for aged batteries are generally 

below those of a fresh battery. The steady state values of lithium concentration for a fresh 

battery is 0.03563 ~yz/`~), however for the aged battery, lithium concentrations at steady 

state is approximately 0.0346 ~yz/`~). This describes the lower state of charge values for 

the same current input. Regarding the battery terminal voltage, the OCV-SOC relationship 

changes as battery ages in addition to other parameters such as the solid-electrolyte 

interface resistance and the stoichiometry values for both the cathode and the anode. 
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Figure 4.10. Lithium Concentration variations vs. time for aged battery (6 =&.7) 

Variations in these parameters will be tracked using genetic algorithm optimization 

technique as discussed next in subsection 4.3.4.  
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LiFePO4 batteries at 20% capacity fade. As shown in Figure 4.11, it is clear that the OCV-

SOC relationship changes at various battery states of life. Since the SOC for aged batteries 

is now revised and defined based on the updated capacity, a shift in the SOC-OCV curve 

is exhibited as shown below. In order to fit the electrochemical model to aged batteries, the 
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test. The genetic algorithm procedure discussed is conducted again to update model 

parameters for aged batteries, [1]. 

 

Figure 4.11. SOC-OCV Hysteresis Curve for Healthy and Aged Batteries 

 

Results for optimized battery parameters are summarized in Table 4.1. The terminal 

voltage and SOC for the updated model vs. experimental data from aged batteries are shown 

in Figure 4.12 and 4.13. At the start of the optimization process, the model parameters are 

initially set to those of fresh batteries with the same range. Some parameters are held 

constant as follows: the solid maximum particle concentration in the anode and cathode 
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surface area per electrode (o2, , o2,�),  positive and negative current coefficient or reaction 

rate (6"), and average electrolyte concentration (`F̅). 

Table 4.1. Electrochemical Battery Model Optimized Parameters for Aged Batteries 

Parameter name (electrode) (symbol) (unit) 
Optimized 

Parameters 

Electrode aging factor (6) 0.69 

Solid phase diffusion coefficient (Positive) ($�,à) 

(��% �Û�⁄ ) 
5.34479 e-09 

Solid phase diffusion coefficient (Negative) ($�,ß) 

(��% �Û�⁄ ) 
1.139458 e-09 

Maximum solid concentration (Positive) (Þà�&&%) 0.91496 

Minimum solid concentration (Positive) (Þà&%) 0.685320 

Maximum solid concentration (Negative) (Þß�&&%) 0.499761 

Minimum solid concentration (Negative) (Þß&%) 0.153574 

Solid Electrolyte interface Resistance (å�(ä) ()) 0.011 

 

The following parameters are adjusted by the optimizer for aged batteries: electrode 

aging factor	(L), positive and negative diffusion coefficients (k2, , k2,�), electrode film 

resistance (�3ýþ) (also known as the solid electrolyte interface resistance), maximum 

positive and negative solid normalized concentrations (stoichiometry values) 

(u �"",	u��""), minimum positive and negative normalized solid concentration (u ",	u�").  
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Figure 4.12. Electrochemical Battery Aging Model vs. Experimental Data from 

a UDDS Driving Cycle (Aged Battery) 

The overall RMSE using UDDS driving cycle is 0.166 mV and the SOC RMSE is 

0.2029 %. As shown in Table 4.1, the optimized electrode aging factor is less than one 

indicating a reduced effective electrode volume. The solid-electrolyte interface resistance 

increases as battery ages which indicates more resistance to lithium diffusion inside the 

representative particle. Stoichiometry values for both the cathode and the anode change 

since the OCV-SOC relationship changes with aging. The positive solid particle diffusion 

coefficient decreases indicating decreased rate of lithium diffusion inside the particle.  
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Figure 4.13. Electrochemical Battery Aging Model SOC vs. Experimental Data 

from a UDDS Driving Cycle (Aged Battery)  

4.4 Battery Critical Surface Charge Estimation  

In this section, an estimation strategy known as the Smooth Variable Structure Filter 

(SVSF) which was introduced in 2007 is used for estimating the battery critical surface 

charge based on the reduced-order electrochemical battery model. A brief overview of the 

SVSF is first provided, followed by its application for critical surface charge estimation.  

4.4.1 The Smooth Variable Structure Filter  

Similarly to the Kalman filter, the SVSF works in a predictor-corrector fashion, [18]. The 

filter is based on the sliding mode concept and has demonstrated robustness to modeling 

uncertainties and sensor noise, [18, 8]. The SVSF can be applied to both linear and non-

linear systems. It works by using an SVSF gain that forces the states to converge to a 
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forth across the state trajectory within a region referred to as the existence subspace which 

is function of modeling uncertainties. The width of the existence space 8 is a function of 

the uncertain dynamics associated with the inaccuracy of the internal model of the filter as 

well as the measurement model, and varies with time, [18]. The SVSF can be applied to 

systems that are differentiable and observable, [18, 19]. The original form of the SVSF as 

presented in [18] did not include covariance derivations. An augmented form of the SVSF 

that includes the derivation of an error covariance matrix has been presented in, [20]. Here, 

the latter is summarized. 

 

 

Figure 4.14. The SVSF estimation strategy starting from some initial value, the 

state estimate is forced by a switching gain to within a region referred to as the 

existence subspace, [18]. 
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Consider a nonlinear system with a linear output (measurement) equation. The filter 

runs by generating a prediction of the state estimate (which represents the solid-electrolyte 

interface concentration) as follows: 

_9MN�|M = C:�_9M|M , �M� (4.16) 

The predicted estimates are then used to generate a predicted measurements X̂MN�|M as 

follows [18]: 

X̂MN�|M = �M|Îg�FrEg<FÔ_9MN�|M (4.17) 

Where �M|Îg�FrEg<FÔ is the measurement matrix. Then the measurement error 7<,MN�|M can 

be calculated as follows, [18]: 

7<,MN�|M = XMN� − X̂MN�|M	 (4.18)	
The SVSF has predictor-corrector form. Its gain is a function of the a-priori and the 

a-posteriori measurement errors 7<=ëË|= and 7<=|= . It has a smoothing boundary layer widths 

>, a memory or convergence rate �, as well as the linear measurement matrix �M|Îg�FrEg<FÔ. 

For the derivation of the SVSF gain	�MN�, refer to [18, 20]. The SVSF gain is defined as 

follows, [18]: 

 �MN� = �M|Îg�FrEg<FÔN{*o�  ù?7<=ëË|=? + � ?7<=|=?ú ∘ xo' j7<=ëË|=> l¡ {*o� ù7<=ëË|=ú=� (4.19) 

The updated states _9MN�|MN� are calculated as follows, [18]: 

 _9MN�|MN� = _9MN�|M + �MN�7<=ëË|= (4.20) 
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The output estimates and the a posteriori measurement errors are then calculated 

respectively as follows, [18]: 

 X̂MN�|MN� = �M|Îg�FrEg<FÔAAMN�|MN� (4.21) 

 7<=ëË|=ëË = XMN� − X̂MN�|MN� (4.22) 

 Equations 4.17 to 4.22 are iteratively repeated until a certain threshold is attained. 

As per [18], the estimation process is stable and convergent if the following lemma is 

satisfied: 

 B7M|MB > B7MN�|MN�B (4.23) 

The proof, as defined in [18], yields the derivation of the SVSF gain. The standard 

SVSF gain yields the following: 

 7<,MN�|MN� = 7<,MN�|M − C�MN� (4.24) 

Substitution of (4.24) into (4.23) yields: 

 B7<,M|MB > B7<,MN�|M − C�MN�B (4.25) 

Simplifying and rearranging (4.28): 

 |C�MN�| > B7<,MN�|MB + �B7<,M|MB (4.26) 

Based on the fact that	|C�MN�| = C�MN� ∘ x*�}(C�MN�), the standard SVSF gain can be 

derived as follows, [18]: 

 �MN� = C=��B7<,MN�|MB + �B7<,M|MB� ∘ x*�}(C�MN�) (4.27) 
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Equation (4.27) may be further expanded based on the fact that	x*�}(C�MN�) =
x*�}�7<,MN�|M�, as per [18], such that: 

 �MN� = C=��B7<,MN�|MB + �B7<,M|MB� ∘ x*�}�7<,MN�|M� (4.28) 

The SVSF switching may be smoothed out by the use of a saturation function, accordingly, 

equation (4.28) becomes, [18]: 

 �MN� = C=��B7<,MN�|MB + �B7<,M|MB� ∘ xo'�7<,MN�|M� (4.29) 

where the saturation function is defined by, [18]: 

 xo'�7<,MN�|M� = D 1, 7<,MN�|M ≥ 17<,MN�|M , −1 < 7<,MN�|M < 1−1, 7<,MN�|M ≤ −1  (4.30) 

Finally, a smoothing boundary layer > may be added to further reduce the magnitude of 

chattering, leading to, [18]: 

 �MN� = C=��B7<,MN�|MB + �B7<,M|MB� ∘ xo'�7<,MN�|M >⁄ � (4.31) 

Note that the gain described in equation (4.31) is slightly different than that presented 

earlier in (4.19). A diagonalized form was created, as described in [20, 21], to formulate an 

SVSF derivation that included a covariance function. The form shown as (4.31) was 

presented as the original or ‘standard’ SVSF in [18]. 

4.4.2 SVSF-based Critical Surface Charge Estimation-fresh battery  

The SVSF has been used to estimate the critical surface charge based on the reduced-order 

model. The state space representation indicating the diffusion of lithium into the solid 

particle consists of a linear system equation (4.3) and a nonlinear measurement (output) 
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equation (4.5). The terminal voltage is function of the solid-electrolyte interface 

concentrations `2F,  and	`2F,�. The model has one input current (V), 4E − 1 states and, one 

output representing the terminal voltage (��). The measured voltage is compared to the 

model output to calculate the error signal that is fed back to the SVSF estimator to calculate 

the gain and update the states. The output equation is linearized with respect to the current 

state as follows: 

�M|Îg�FrEg<FÔ = b�b_ = ∂V∂c*û,G(HI=�) (4.32) 

Due to the complexity of the output equation, complex differentiation has been 

conducted to linearize the output equation then to generate the �M|Îg�FrEg<FÔ matrix. The 

�M|Îg�FrEg<FÔ matrix consists of zero elements except for the last element thus when used to 

update the states, only the solid electrolyte interface concentration is updated. 

The filter can estimate the solid-electrolyte interface concentration `2F,  and since 

at steady state conditions, all lithium concentrations are equalized (no further diffusion 

occurs), the filter can estimate all the spherical shell concentrations and thus provides an 

estimate of the initial SOC. Accordingly, the filter can be used to estimate the SOC at steady 

state conditions to correct the initial SOC; then after the model takes over as shown below. 

It is important to discuss computational issues that may occur when calculating the 

pseudoinverse of the linearized measurement matrix in (4.19). Numerous authors have 

experienced abrupt and unexpected instabilities with the pseudoinverse, [22, 23]. A sudden 

growth of the Jacobian matrix elements when calculating the pseudoinverse during the 

SVSF gain calculation occurs at each iteration. Consequently, the estimator outputs and 
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thus the mean square error between the measured terminal voltage and model output 

increases significantly. A stabilizing adjustment is performed to avoid this problem. The 

problem has been extensively analyzed in [22], and occurs due to the presence of 

singularities. Singularities occur when the Jacobian matrix loses rank. Small singular values 

of C might arise in the vicinity of these singularities. Consequently, larger values occur 

when obtaining the pseudoinverse of the Jacobian CN thus creating larger error values 

which leads to instability. According to [24], it is rather difficult to detect these 

singularities. A traditional method of solving this instability problem is by replacing the 

pseudoinverse CN with the following equation, [24]: 

 �ÔN = ��(��� + J�V)=� (4.36) 

where, ρ is called the damping parameter. The effect of the added damping is that 

it mitigates the effect of small singular values when computing the inverse, [24]. On the 

other hand, a slightly small error is introduced when calculating the inverse. In this paper, 

ρ is set to 0.4, and is shown to have a negligible effect on the accuracy. As shown in Figure 

4.15, 4.16 and 4.17, the SVSF has been applied to estimate the critical surface 

concentration, the battery state of charge, and the battery terminal voltage for zero input 

current. The battery actual state of charge is held at 34% and the estimator is initialized at 

50% SOC which is a relatively large deviation. Since all battery states are held at steady 

state conditions, the battery SOC and terminal voltage can be estimated accordingly with 

high accuracy.  
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Figure 4.15. SVSF Voltage Estimation at steady state conditions - equal lithium 

concentrations across shells

 

Figure 4.16. SVSF SOC Estimation at steady state conditions - equal lithium 

concentrations 
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The estimation error for both the terminal voltage and the SOC are as shown in 

Figure 4.17. It is clear that the SOC estimator converges to the actual SOC value within a 

relatively short period of time assuming the initial SOC is at 47% error from the actual 

SOC which is a significantly large error. The estimator converges much faster if the initial 

SOC is close to the actual SOC values. 

 

Figure 4.17. Terminal Voltage Estimation Error (Upper) and the SOC 

Estimation Error (Lower) 
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Figure 4.18. SVSF Estimated Voltage Vs. Experimental Data 

 

Figure 4.19. ECM Model SOC vs. Experimental (Coulomb Counting) SOC 
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The electrochemical model SOC vs. experimental SOC (using coulomb counting from 

Arbin Cycler) is as shown below in Figure 4.19. The terminal voltage and SOC estimation 

error for US06 driving cycle are as shown below in Figure 4.20. The maximum error in the 

SOC is within 0.2 % and within 0.05V for the terminal voltage.  The RMSE for the SOC is 

0.0989% and 0.0207V for the terminal voltage, respectively. 

 

Figure 4.20. US06 Voltage (Upper) and SOC (Lower) Error 
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electrolyte interface resistance (�3ýþ), the solid diffusion coefficient (k2), the electrode 

effective volume (L), and the minimum and maximum stoichiometry values (u ´%) and 

(u Ë´´%). The battery loss of capacity due to aging is attributed to the increase in the battery 

solid electrolyte interface resistance, the decrease in diffusion coefficient, and the decrease 

in the battery electrode effective volume, those changes reflect the electrode tendency to 

resist further lithium diffusion as battery degrades.  

Extensive accelerated aging and reference performance tests have been conducted 

on lithium-iron phosphate cells. Reference tests have been conducted at two distinct states 

of life, namely: 100% and 80% capacity. Furthermore, a critical state of charge estimation 

strategy has been implemented using the SVSF methodology. Results indicate that the 

SVSF is robust, and can be used for real-time applications on board of an electric vehicle 

battery management system. The SVSF can be used to estimate the critical surface charge 

and the battery overall state of charge at steady state conditions. An open circuit voltage 

measurement can also be used along with the estimator for more accurate SOC estimation.  
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Table 4.2. Electrochemical Battery Model Parameters Nomenclature and Units 

Symbol Name Unit ÚÛ Electrolyte current density �	`~=� ÚÛ Solid current density �	`~=� ∅Û Electrolyte potential � ∅� Solid potential � 

�Û Electrolyte concentration ~yz	`~=) 

�� Solid concentration ~yz	`~=) 

��Û Concentration at the solid electrolyte interface ~yz	`~=) ÜÝÚ Butler-Volmer current �	`~=) Þß Anode Normalized solid concentration - Þà Cathode Normalized solid concentration - á Open circuit potential � áß Anode open circuit voltage � áà Cathode open circuit voltage � â Overpotential � ã Faraday’s constant �	~yz=� ä Applied battery cell current � å Universal Gas constant n	�=�	~yz=� æ Temperature � 
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Abstract 

Recently, extensive research has been conducted in the field of hybrid (HEVs) and battery 
electric vehicles (BEVs) since they represent a more sustainable alternative compared to 
conventional, fossil fuel-based vehicles. The battery pack is one the most expensive and 
important elements of the EV powertrain. It requires accurate, real-time monitoring and 
control. Parameters such as battery state of charge (SOC) and state of health (SOH) have 
to be accurately monitored in real-time to ensure battery safety and reliability and avoid 
overcharge or under-discharge conditions. These conditions can cause irreversible capacity 
degradation and power fade. For battery condition monitoring, an accurate battery model 
is needed in conjunction with a robust estimation strategy for extracting battery health 
information from a limited set of measurements. In this paper, online and offline battery 
model parameters identification and state of charge estimation at various states of life have 
been implemented. An extensive aging test has been conducted over a period of 12 months 
using real-world driving scenarios. This paper provides the following contributions: (1) 
tracking changes in the battery OCV-R-RC model parameters as battery ages using genetic 
algorithm optimization, (2) estimation of the battery SOC using a relatively new estimation 
strategy known as the Smooth Variable Structure Filter, (3) online estimation of the battery 
model parameters using square-root recursive least square (SR-RLS) with forgetting factor 
methodology, (4) estimation of the battery state of charge using regressed-voltage-based 
estimation strategy at various states of life, (5) model validation using a series of real-world 
driving cycles. The limitations and benefits of the proposed strategies are discussed. 

Keywords: Lithium-Ion Batteries, genetic algorithm optimization, recursive least square, 

equivalent circuit-based battery model, parameter identification, smooth variable 

structure filter, state of charge estimation.  
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5.1 Introduction 

Recently, HEVs and EVs have received considerable attention due to increased price of 

non-renewable resources and the impact of fossil fuels on climate, [1]. Batteries are one of 

the most important and expensive components of the electric vehicle powertrain. Therefore, 

their accurate monitoring and control is critically important in order to avoid battery 

overcharge or under-discharge that might lead to battery degradation and impact safety. 

Electric vehicles have been on the market for quite a short period of time thus 

possible malfunction of batteries is of great concern. Therefore, adaptive control of 

batteries is necessary to account for aging and degradation in performance that might affect 

vehicle range of operation and charging efficiency, [2]. Furthermore, safety is of great 

concern; since EVs are relatively new, more time is needed to assess their performance in 

real-world operations (until odometer reaches 150,000 miles), [3]. Any severe fires due to 

battery overcharge or short circuits would result in loss of market share and in a move away 

from electric vehicles. Accordingly, health monitoring in battery systems is extremely 

important.  

The battery management system (BMS) is responsible for several tasks, monitoring 

the battery state-of-charge (SOC), state-of-health (SOH), state-of-power (SOP), and 

remaining useful life. In addition, the BMS ensures cell balancing and performs thermal 

management in order to avoid battery overcharge or under discharge which might affect 

the driver safety and shorten the battery life. SOC, SOH, and SOP are three key variables 

used in battery control and energy management. The SOC is defined as a ratio of the 

remaining capacity to the nominal capacity. The performance and safety of hybrid and pure 
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electric vehicles is highly dependent on the accurate and immediate assessment of the 

amount of charge available for use by the vehicle at any time. The range, fuel economy and 

other critical, calculated performance criteria rely greatly on the SOC. Consequently, 

estimating the SOC accurately will ultimately improve both vehicle safety and customer 

satisfaction. The SOH is often related to the loss of battery’s rated capacity. When the 

capacity reduces to 80% of the beginning of life capacity, the battery is considered to have 

reached its end of life. Cycling and calendar aging cause the battery to lose its capacity.  

Recently, several incidents of battery degradation have been reported. For instance, 

as per October, 2012, there were 112 documented cases of customers complaining of 

capacity loss in electric vehicles, [4]. In addition, around 11.8% of the total number of 

Nissan Leaf vehicles sold in Arizona have exhibited a loss in capacity gauge bars (Note: 

first capacity bar represents 15% capacity loss and 6.25 in the subsequent bars), [4]. 

Manufacturers generally have lifetime data on batteries, but these are generated using 

predefined charging/discharging cycles at fixed temperatures and fixed 

charging/discharging rates referred to as C-rate. Relying on this data in model development 

will result in inaccuracies and errors in SOC and SOH estimations. This because in EV 

applications, the battery is exposed to various driving cycles with fast transients and 

aggressive current demands. Accordingly, these transients have to be captured in the model 

and the model degradation with aging tracked accordingly.  

In this paper, extensive aging test results using real-world driving cycles for an 

average North American driving profile are reported. These tests were conducted over 12 

months period and involved accelerated testing of battery lifetime. Model parameters such 
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as the capacity and internal resistance have been tracked in both online and offline modes. 

A relatively new estimation strategy has been applied to estimate the battery SOC at various 

states of life.  

5.1.1 Battery Models Literature Review 

In the literature, battery models are classified to one of the following: equivalent circuit-

based models, behavioral models, and electrochemical models. Equivalent circuit-based 

models use RC circuit elements such as resistors and capacitors to model the charge and 

discharge behavior of Li-ion batteries. Due to their simplicity, equivalent circuit-based 

models require less computational power and thus can be easily implemented onboard of a 

battery management system. Behavioural models are empirical and utilize various 

functions to model battery dynamics. In [5], Plett has introduced a series of behavioural 

models, namely: the combined model, the simple model, the zero-state hysteresis model, 

one state hysteresis model, and the enhanced-self-correcting model. These models can 

account for hysteresis effect, polarization time constants, and ohmic loss effects. 

Electrochemical battery models utilize partial differential equations to model lithium 

intercalation inside the electrolyte and both electrodes. Since electrochemical models 

provide a physical insight of the battery chemistry, they are favoured in state of health 

estimation and in tracking battery degradation. However, in general, electrochemical 

models are complex and require more computational power. Therefore for their application 

in real-time battery management systems, these models need to be simplified and reduced 

to their correct level of dynamic significance, [6]. Various strategies for battery modeling 
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are summarised in the following sections, starting with equivalent circuit-based and lumped 

parameters models. 

5.1.1.1 Equivalent Circuit-based models  

All published RC models include an open circuit voltage source which is a function of the 

battery SOC. �" represents the battery internal resistance while RC branches are used to 

model battery dynamics. The third-order model is as shown below in Figure 5.1. The 

terminal voltage relationship from the standalone first, second, and third-order models are 

listed in Table 5.1, [7, 8].  

 

Figure 5.1. Third-order RC battery model [7, 8] 

In addition, any of these models can be enhanced by incorporating hysteresis to 

account for the battery’s hysteresis that occurs during charging/discharging cycles.  
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Table 5.1. First, second, and third RC models with and without hysteresis equations, [7, 

8] 

Model Output equations 

The first-order RC model [9, 10] 

J�,MN� = exp(−∆'/L�)J�,M + ��[1− exp	(−∆'/L�)]VM �M = W��(XM) − �"VM − J�,M 

The first-order RC model with hysteresis state 

[7, 8] 
�M = W��(XM) − �"VM − J�,M + ℎM 

The second-order RC model �M = W��(XM) − �"VM −J�,M −J�,M 

The second-order RC model with a hysteresis 

state 
�M = W��(XM) − �"VM −J�,M −J�,M + ℎM 

The third-order model RC model 
�M = W��(XM) − �"VM −J�,M −J�,M−J),M 

The third-order model RC model with hysteresis 

state 

�M = W��(XM) − �"VM −J�,M −J�,M−J),M + ℎM 	
 

Equations for the first, second, and third-order models with and without hysteresis 

are presented in Table 5.1. Where J�, J�, J) are the voltage of the first, second, and third 

order RC network, respectively and while L� = ����, L� = ����, L) = �)�) are their 

corresponding time constants.  

5.1.1.2 Behavioural Battery Models 

Behavioural battery models use various empirical functions and formulas to describe the 

behaviour of the battery cells. Similar to equivalent circuit-based models, these models are 
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simple to implement with less parameters to tune and are therefore easy to be implemented 

in real-time applications on a BMS. Examples are as follows. 

Shepherd/Unnewehr/Nernest Equations  

The shepherd equation represents a simple approach for battery modeling; it is represented 

in the following form, [11]: 

!(') = !� + ��*(') + ���2(') (5.1) 

where, !� is the initial cell voltage, �� is the cell internal resistance, �2(') is the 

instantaneous stored charge, and �� is a constant, [11]. Another further approximation is 

represented in the Unnewehr model: 

!(') = !� + ��*(') + ���2(') (5.2) 

Another model which has a similar form is known as the Nernest Model as follows, [11]: 

!(') = !� + ��*(') + �) z} ��2(')� � − ��z}	(� − �2(')� ) (5.3) 

where, � is the total charge capacity of the cell and the constants	��, ��, �), and �� can be 

obtained by fitting experiential data, [12]. 

In [5], Plett has introduced a series of behavioural models based on the previously 

mentioned models, namely: the combined model, the simple model, the zero-state 

hysteresis model, one state hysteresis model, and the enhanced-self-correcting model. 

These models can account for hysteresis effect, polarization time constants, and ohmic loss 

effects. A summary of these models is provided below. 
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The Combined Model 

By combining the three abovementioned models and discretizing them in time [13], the 

combined model is obtained, [13]: 

|M = �" − �*M − ��XM − ��XM +�) ln(XM) + �� ln(1 − XM) (5.4) 

XMN� = XM − j/g∆'� l *M 	 (5.5) 

In this model, |M is the cell terminal voltage, � is the cell internal resistance, 

representing both charge and discharge resistances. ��, ��, �), ��	are tunable constants that 

can be used to fit experimental data to the model, [13]. Model parameters can be easily 

identified from the current/voltage data by using least square optimization. 

The Simple Model 

The simple model is derived from the combined model by grouping all terms that are 

functions of SOC (XM) in one group as follows, [13]: 

C(XM) = �" − ��XM − ��XM + �) ln(XM) + �� ln(1 − XM) (5.6) 

And by grouping all terms that are function of the current:  

C(*M) = �*M 

Equation (5.6) represents the open circuit potential which is a function of the battery SOC. 

The simple model can thus be formulated as follows, [13]: 

XMN� = XM − j/g∆'� l *M (5.7) 

|M = W��(XM) − �*M (5.8) 

Where W�� refers to the open circuit voltage. 

 



Ph.D. Thesis   McMaster University  
Ryan Ahmed   Department of Mechanical Engineering 

 

189 

 

The Zero-State Hysteresis Model 

Even though the previous models can model the terminal voltage dynamics with acceptable 

accuracy, they do not account for the hysteresis effect. The zero-state hysteresis model is 

capable of modeling hysteresis by adding the following term xM4(XM) to the simple model, 

[13]: 

|M = W��(XM) − xM4(XM) − �*M (5.9) 

where xM represents the sign of the current and 4(XM) is half the difference between 

the charge and discharge values, [13]. For a small and positive value	i, xM can be defined 

as follows: 

xM = � +1 *M > i−1 *M < −ixM=� |*M| ≤ i  

The zero-state hysteresis model provides a better voltage estimate compared to the simple 

model, [13]. 

The One-State Hysteresis Model 

The hysteresis voltage can be modeled using a separate state ℎ(X, ') which is function of 

the battery SOC. The hysteresis voltage can be modeled as follows, [13]:  

{ℎ(X, '){X = �x�}(X�)[4(X, X�) − ℎ(X, ')] (5.10) 

4(X, X�)	is the maximum polarization due to hysteresis. It is a function of the SOC 

and also its rate-of-change. The	x�}(X�)	is used to model both battery charging and 

discharging operations, [13]. � is a positive constant that describes the rate of voltage decay, 

[13]. 4(X, X�) − ℎ	indicates that the rate-of-change of hysteresis voltage is proportional to 
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the distance away from the main hysteresis loop; leading to a kind of voltage decay in the 

major loop, [13]. The model can be represented in a state space form as follows [13]: 

 ℎMN�XMN�¡ = ¢m(*M) 00 1£  ℎMXM ¡ + ¤ 0 1 − m(*M)− /g∆'� 0 ¥   *M4(X, X�)¡ (5.11) 

|M = W��(XM) − �*M + ℎM (5.12) 

Where	m(*M) = exp(−|/g*(')�/��|). 
The Enhanced Self-Correcting Model 

A further enhancement over the one state hysteresis is the enhanced self-correcting model. 

The model is capable of capturing the battery dynamics and accommodates for ohmic 

losses, hysteresis, and polarization time constants, [13]. The model has two inputs, namely: 

the battery input current	*M, and the maximum polarization due to hysteresis	4(X, X�). The 

model has one output	|M, which is the terminal voltage. The ESC model in the state space 

form is as follows, [13]:  

¦CMN�ℎMN�XMN�§ = ¦{*o�(∝) 0 00 m(*M) 00 0 1§ ¦
CMℎMXM § + ©̈©

ª 1 00 �1 − m(*M)�
− Lg∆t�� 0 «

¬
¬

  *M
4(X, X�)¡ (5.13) 

|M = W��(XM) − �*M + ℎM + ®CM (5.14) 

where XM is the state of charge, CM 	is the states of the low pass filter on *M which is 

used to characterize the polarization time constants, ℎM is the state representing charging or 

discharging hysteresis effect, W�� is the open circuit voltage, �� is the battery nominal 

capacity, � is the battery internal resistance, ® is the output matrix of the low pass filter, 

and ¯’s are the poles of the low pass filter. 
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5.1.2 Model Parameters Identification and SOC Estimation 

Several papers have been published on parameter identification for the abovementioned 

model categories. In [14], parameter estimation using the extended Kalman filter (EKF) 

has been reported for behavioural models. Experimental data using a benchmark Urban 

Dynamometer Driving Schedule (UDDS) cycle in addition to data from a pulsed 

charge/discharge test have been used.  

In [15], a dual strategy was applied for estimating the battery parameters and SOC 

for behavioural models. Furthermore, a comparative study of Li-Ion battery models showed 

the enhanced self-correcting model is the most accurate since it is capable of modeling 

ohmic losses, polarization time constants, and hysteresis effects. Two estimation strategies 

were used, namely the well-known Kalman filter and the more recent Smooth Variable 

Structure Filter (SVSF), [15].  

In [16], a multi-objective optimization using genetic algorithms is applied for 

identifying the parameters of a simple RRC model. Model parameters such as the resistance 

and the open circuit potential are assumed to be a polynomial function of the C-rate and the 

SOC. The multi-objective optimization is then applied to obtain the polynomial 

coefficients. The technique has been verified on a 2.5 V, 8 Ah capacity cell and the models 

show good fit to experimental data at various charge/discharge rates. 

In [17], a parameter identification strategy using least squares has been applied to 

an equivalent circuit-based model. Since the main source of nonlinearity for battery models 

arises from the SOC-OCV relationship, this relationship has been divided into 8 piece wise 
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linear regions and the technique has been applied to estimate the parameters of each 

individual region. Then based on the resultant linear model, an observer has been applied 

to estimate the state of charge. The technique has been experimentally verified on Lithium 

polymer cells.    

A parameter identification procedure using multi-swarm particle optimization on 

12 different battery models has been presented in [8]. Several driving cycles including the 

Dynamic Stress Test (DST), the Hybrid Pulse Power Characterization test (HPPC), and the 

Federal Urban Dynamic Schedule (FUDS). The technique has been verified on two 

different battery chemistries including the lithium-Iron Phosphate (LiFePO�) and the 

Lithium Nickel-Manganese-Cobalt oxide (LiNMC). One of the main conclusions of this 

research project is that the first order RC model is preferred for	LiNMC, while the one-state 

hysteresis and the first-order RC model are the best for	LiFePO�. In most of the existing 

literature, model parameters have been obtained based on fresh, healthy batteries at 100% 

capacity. However, as battery ages, model parameters will change and thus this will affect 

the accuracy of the terminal voltage prediction and the SOC estimation accuracy.  

5.1.3  Paper Outline and Contributions 

From the literature, most battery aging studies conducted to date use charging/discharging 

profiles at fixed C-rates to age the battery which is not what happens in real-world driving 

conditions. Automotive batteries are subjected to high transients resulting from vehicle 

acceleration and regenerative braking. Accordingly, this research addresses this issue by 

conducting various aging scenarios assuming an average North-American driver. Current 

profiles from real-world driving cycles such as the Urban Dynamometer Driving Schedule 
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(UDDS) have been used. Various parameters that contribute to battery aging such as the 

discharge rate, temperatures, and depth of discharge have been considered. A first-order 

OCV-R-RC battery model widely used in the literature has been considered in this research 

since it provides a good compromise between model accuracy and simplicity for real-time 

implementation on-board of a BMS.  

In this paper, two different approaches for battery SOC estimation and model 

parameter identification have been implemented and compared. Battery model parameters 

identification using both online and offline techniques at various battery states of life have 

been conducted. In the first approach, an online recursive least square method has been 

applied to estimate battery model parameters and to estimate the open circuit voltage 

(OCV). A square-root version of the recursive least square method (SR-RLS) has been 

presented in this research with a forgetting factor since it represents a robust estimation 

strategy. Based on the estimated battery OCV, a regressed-voltage method has been applied 

to map the OCV to the battery SOC and provides an estimate of the battery SOC at various 

states of life. 

In the second approach, a Genetic Algorithm (GA) optimization strategy has been 

applied offline to estimate the battery model parameters at various states of life. Based on 

the optimized model parameters, a battery SOC estimation strategy has been designed to 

estimate the SOC based on the identified battery model parameters. A relatively new 

strategy known as the Smooth Variable Structure Filter (SVSF) has been presented for 

battery SOC estimation. The proposed strategy has been selected since it demonstrates 

robustness to modeling uncertainties, sensor noise, and to SOC initial conditions, [18, 19]. 
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The strategy has been applied for estimating the battery SOC at various battery states of 

life from fresh (healthy) state (100% capacity) to 80% retained capacity. 

This paper is organized as follows: section 5.2 describes the electric vehicle model 

development to generate the current profile required for experimentation. Section 5.3 of 

this paper provides a summary of the aging experiments. Section 5.4 describes the 

experimental setup used for data gathering. Section 5.5 contains illustrations of battery 

performance under various aging conditions. Section 5.6 provides illustration of parameters 

and SOC estimation strategies using RLS and Regressed-voltage based methods. Section 

5.7 contains offline parameter identification and SOC estimation based on the SVSF. The 

conclusions and limitations of the above strategy are presented in Section 5.8. 

5.2 Electric Vehicle Model and Current Generation 

This section summarizes the process of current generation from the velocity profiles of 

various driving cycles. In order to conduct the aging study, a cell-level current profile from 

the velocity profile of various benchmark driving cycles is required. Therefore, a mid-size 

all-electric vehicle (EV) model as shown in Figure 5.2 has been modified from an existing 

hybrid vehicle model, [20].  The model has been simulated in Matlab/SimScape 

environment. The driving range of the simulated EV is approximately 200 Kms when the 

battery is fully charged. As shown in Figure 5.2, the EV model consists of a lithium-Ion 

battery pack, vehicle dynamic model, DC electric motor, DC-DC convertor, and vehicle 

speed controller.  
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Figure 5.2. All-Electric Mid-size Sedan Simulation Model in SimScape 

(Adopted from [20]) 

Three benchmark driving schedules have been considered in this study; namely, an Urban 

Dynamometer Driving Schedule (UDDS), a light duty drive cycle for high speed and high 

load (US06), and a High fuel Economy Test (HWFET), [21].  

These driving cycles have been used during the aging study in addition to model 

fitting and validation. While driving behaviours of drivers might vary, these driving cycles 

are generally adopted to conduct powertrain durability testing and to provide an estimate 

of fuel economy.  The UDDS driving cycle is used to characterise a city driving condition. 

It has been established to replicate average speed, idle time, and number of stops that the 

average driver performs in practice, [22]. The test profile is recommended by the U.S. 

Environmental Protection Agency for estimating the fuel economy in city driving 

conditions, [21]. For electric vehicles, the profile has been extensively used to estimate the 

driving range in miles per full charge, [23, 24]. 
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Figure 5.3. Velocity Profiles for the UDDS (upper figure), US06 (middle), and 

HWFET (lower) Cycles [11] 

The US06 cycle is a high acceleration, aggressive driving cycle, and the HWFET 

embodies a highway driving conditions with speeds below 60 miles/hours, [25]. The three 

abovementioned driving cycles are shown in Figure 5.3. A summary of these driving cycle 

characteristics such as distance, time, and average speed is provided in Table 5.2, [26]. 

Table 5.2. Characteristics of UDDS, US06, and HWFET Driving Schedules, 

[11] 

 Length (sec) Distance (miles) Avg Speed (mph) 

UDDS 1,369 7.45 19.59 

US06 596 8.01 48.37 

HWFET 765 10.26 48.30 

 

The pack current profiles from these driving cycles are as shown in Figure 5.4. As 

shown below, the US06 driving cycle current demand by the motor is relatively high 

compared to other driving cycles since it is an aggressive driving cycle. The pack-level 
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current profiles have been scaled down to the cell-level and used for model parameters 

identification in the aging study.  

 

Figure 5.4. Pack current profiles for the UDDS (Upper figure), US06 (middle 

figure), and HWFET (lower figure) cycles 

5.3 Aging Study Overview 

Battery cells, modules, and packs have to undergo laboratory testing in order to assess their 

performance under various load and temperature conditions, [27]. In addition, data 

collected during these tests can be used to train and validate various battery models which 

are essential for State of Charge (SOC) and State of Health (SOH) estimation. In order to 

standardize these tests and to set a common basis for OEMs and battery manufactures, the 

test procedures have been documented in numerous reports, [27], such as the “USABC EV 

battery Test Procedures Manual” produced by the U.S. DOE/Argonne National Laboratory 

in 1996, [28, 27], the “PNGV Battery Test Manual” published by the U.S. DOE/INEEL in 
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2000, [29, 27], and the “Battery Test Manual For Plug-In HEVs” published in 2008 by the 

U.S. DOE/Idaho National Laboratory, [30, 27].    

Battery test procedures might vary depending on the country and the application, i.e.: for 

HEVs, PHEV, or BEVs, [31]. This research focuses on test procedures used for PHEVs 

and BEVs. In U.S., battery test procedures are generally classified into 3 main categories: 

characterization, life, and reference tests, [30].  

• Characterization tests are conducted to specify battery cell (or pack) baseline 

performance characteristics. Examples of these tests include: static capacity, hybrid 

pulse power characterization (HPPC), self-discharge, cold cranking, thermal 

performance, and efficiency tests, [30].  

• Life tests are conducted to determine battery degradation (aging) effects that take 

place in both cycle life and calendar life, [30]. Calendar life means the life of the 

battery during storage (with no cycling involved) while cycle life is the life of the 

battery after multiple charging/discharging cycles, [31]. The main purpose of these 

tests is to perform an accelerated battery aging by acquiring data in a relatively short 

time therefore be able to predict the performance of the battery cell in practice. In 

addition, these tests can be used for battery warranty estimates.    

• Reference performance tests (RPT): are conducted periodically to track changes 

that might occur in the battery baseline characteristics. Reference tests are 

performed after conducting a certain number of life tests to measure the capacity 

fade and degradation in performance through the entire progress of battery life 
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cycle, [27].  In addition, these tests are performed at the beginning (fresh battery) 

and at the end of life state. 

In this paper, two test schedules are considered. Schedule A which represents the reference 

performance tests (RPTs) and Schedule B which represents the aging test. Regarding 

Schedule A, reference performance tests are selected, namely:  

• Static capacity test at 1C, 2C, 3C, and 4C;  

• Open circuit voltage-state of charge (OCV-SOC) relationship test;  

• A series of UDDS, US06, and HWFET driving cycles (that scans the entire SOC   

range from 90% to approximately 20%);  

These tests are selected since they can provide information regarding aging effects and the 

test results are expected to significantly vary as battery ages. All aging tests are conducted 

at elevated temperatures (ranging from	35	'y	40℃) to simulate electric vehicle driving in 

hot weather conditions such as in Arizona and to obtain the experimental data in a realistic 

period of time. Regarding Schedule B cycling (aging) tests, 3 driving scenarios are 

considered. The first test schedule,  

• Schedule B1 - Real driving conditions at low C-rates/high DOD: is used to 

perform battery aging which simulates the real driving cycle for an all-electric 

vehicle (EV) at high depth of discharges of approximately 20% to 25% and low C 

rates of approximately 2C.  

• Schedule B2 - Fixed Current Demand: is used to apply a well-defined charging 

and discharging cycles at 1C rate to age the battery. According to the manufacturer 
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datasheet, the battery will last for approximately 500 charging and discharging 

cycles at room temperature. Schedule B3 is used to perform battery aging using the 

same well defined cycles but at elevated temperature, the test is conducted at 

elevated temperatures in the range of	35 − 45℃. 

• Schedule B3 - Real driving conditions at high C-rates/high DOD:  is used to age 

the battery using high C-rate currents up to 10C assuming fewer parallel cells in the 

entire pack which leads to higher C-rate values. Batteries are subject to high depth 

of discharge of approximately 20%.  

A reference performance test is conducted after a specific number of aging tests depending 

on the schedule. For Schedule B1 and Schedule B3, a reference performance test is 

conducted every 5 aging cycles. For Schedule B2, a reference performance is conducted 

every 50 full charging/discharging aging cycles.  In the following subsections, a detailed 

description of the reference performance tests (Schedule A) and aging tests (Schedule B) 

is presented. 

5.3.1 Schedule A – Characterization/RPT tests  

Characterization tests are conducted to capture battery cell baseline performance 

characteristics such as cell power capability, internal resistance, capacity, and time 

constants. Tests selected for the study include the following.  

5.3.1.1 Static Capacity Test  

This test is used to measure the battery cell capacity in Ampere-hours at a constant current 

(CC) discharge rate. This test is conducted in order to provide a baseline for a fresh battery 
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cell capacity. The test procedure follows the Constant Current-Constant Voltage (CCCV) 

protocol and is summarized in the following steps, [30]:  

A. Charge the battery at 1C rate (5.4 A) to the fully charged state in a CCCV mode. 

The battery is fully charged to 4.2 V and when the current end point is at 0.02 

C (0.108 A). 

B. Leave the battery to rest for one hour in order to allow for voltage and current 

stabilization, [30].  

C. Discharge sequence at a constant current 1C rate until the voltage reaches the 

battery minimum voltage limit (2.8 V) as recommended by the manufacturer, 

[30].  

D. Battery is left at rest with no load for one hour.  

The test has been repeated at various C-rates of 2C, 3C and 4C. These tests are important 

since the battery capacity is inversely proportional to the current C-rate. 

5.3.1.2 OCV-SOC Relationship:  

This test is used to characterize the Open-Circuit Voltage (OCV)-State of Charge (SOC) 

relationship, [32]. Very small C-rates (C/20, C/15) are used for OCV-SOC characterization 

in order to minimize cell dynamics and to minimize ohmic loss effects due to battery 

internal resistances. Accordingly, by conducting this experiment, the measured terminal 

voltage is assumed to be the open circuit voltage. This test is important since the cathode 

and anode electrode potentials (J  and J�), which are used in the electrochemical model, 

are being derived from this test as discussed in subsection 5.4.2. The OCV-SOC 

relationship is obtained as follows (this test is similar to the capacity test but conducted at 

very low C-rates), [32]: 

A. Fully charge the battery in a CCCV mode until maximum voltage (4.2). 
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B. Fully discharge the battery at constant current (CC) mode with 1C-rate until 

the voltage hits the minimum voltage (2.8V).  

C. All cycler current accumulators are reset to zero. At this moment, the battery is 

at zero SOC.  

D. Charge the battery at a very small C-rate of C/15 (0.06*5.4=0.324A) in a CCCV 

mode until it hits the maximum voltage of 4.2V. The cell is left to rest for one 

hour to relax.  

E. Discharge the cell at the same rate of C/15 until and the battery hits the 

minimum voltage of 2.8 V. 

The charging and discharging curves are averaged to obtain a single fixed relationship 

between OCV and SOC. 

5.3.1.3 Model Fitting and Validation Driving Cycles 

Current profiles generated from the electric vehicle model as illustrated in section 5.3 are 

used to excite the cells. The pack-level current profile is scaled down to the cell-level and 

fed to the cycler. These driving cycles are used for model parameter fitting since they 

include fast variations thus rich in their frequency content. The cell current is generated 

from the pack current by assuming no cell balancing (i.e. all cells are held at the same SOC) 

and by assuming equal current distributions among parallel cell branches. Two driving 

schedules for model validation and fitting have been conducted in this study; namely: 

Schedule A1 and Schedule A2. 

The first driving cycle (Driving Schedule A1) consists of current ranges from −2� 

to 2� and lasts for approximately 290 minutes of driving. The driving schedule consists of 

a mix of UDDS, US06, and HWFET test schedules. The first validation driving cycle is as 

shown below in Figure 5.5.  
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Figure 5.5. Voltage (Upper), current, and SOC (lower) for driving Schedule A1 

 

Regarding Driving Schedule A2, it is similar to driving Schedule A1 since it scans 

the entire state of charge range from 90% to approximately 20% and contains a mix of 

UDDS, US06, and HWFET driving cycles. However, as shown in Figure 5.6, driving 

Schedule A2 consists of higher C-rate currents of up to 10� compared to schedule 1 which 

represents a more challenging driving cycle for the OCV-R-RC model to capture. Driving 

Schedule 2 lasts for approximately 65 minutes before the battery SOC reaches 

approximately 20%.  
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Figure 5.6. Voltage (Upper), Current, and SOC (lower) for driving Schedule A2 

5.3.2 Schedule B – Aging (Cycle life) test 

Two aging factors are generally involved, namely: calendar life and cycle life. Calendar 

life means the life of the battery during storage (with no cycling involved) while cycle life 

is the life of the battery after multiple charging/discharging cycles, [31]. This study focuses 

only on aging due to cycling. Aging tests have been iteratively conducted to study the effect 

of battery degradation (aging) due to multiple charging/discharging cycles, [30]. Two types 

of aging tests are considered (3 cells each):  

• Aging due to normal driving operating conditions which consists of a mix of 

highway, urban, and aggressive high acceleration driving conditions. Schedule B1 

and B3 belongs to this test category.  
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• Aging due to well-defined charging/discharging (square-shaped) cycle - 500 

Cycles. Schedule B2 fits in to this category.  

These two types of aging conditions are implemented in this research study in order 

to characterize degradation in performance as a function of life and to detect pertinent 

failure mechanisms, [28]. A mix of driving schedules that are commonly used has been 

implemented, these test schedules have been adopted from [33] and are as follows.  

5.3.2.1 Schedule B1: Aging due to real driving conditions (low C-rates/high DOD): 

This aging test is used to simulate battery aging due to an average driver in real-world 

driving conditions. A mix of UDDS, US06, and HWFET driving schedules previously 

mentioned has been selected in this study.  

Table 5.3. Aging Schedule B1 Scenario, [33] 

 
Trip 

 

 
Drive Cycles 
Combination 

 

 
Frequency 

 

 
Description 

 

Work 
JkktÎ+Jt06Î+	JkktÎ+Jt06Î 

Twice 
Daily, 5 

days/week, 
48 

weeks/year 

Starting from a fully charged 
state, a commute from home to 

work and back with no charge at 
work 

Weekend/ 
Vacation 

JkktÎ+CLm!DÎ 
+	CLm!DÎ+	CLm!DÎ+	CLm!DÎ+	JkktÎ+JkktÎ+CLm!DÎ 
+	CLm!DÎ+	CLm!DÎ+	CLm!DÎ+	JkktÎ 

2 days/week 
124 

days/year 

Starting from a fully charged 
state, assuming no charging 

station at the weekend 
destination 
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These tests are defined based on a velocity profile and used for deriving the current 

profile from the velocity for an all-electric, mid-size sedan vehicle simulated in a 

Matlab/SimScape environment.  

Schedule B1 consists of a mix of driving cycles but used to age the battery at lower 

depth of discharges of approximately 25%. This will age the battery at a much accelerated 

rate compared to cycling at 50 DOD. The assumption is that the driver will be driving to 

farther destinations with no available charger thus driving to a lower DOD. No evening 

errand has been considered in this scenario. The test is conducted at elevated temperatures 

in the range of	35	'y	40℃ to accelerate aging and to simulate driving in hot weather 

conditions such as occurring in Arizona. The description of schedule B2 for both weekday 

and weekend is as shown in Table 5.3 and in Figure 5.7 and Figure 5.8, respectively, [26].  

Current profile, voltage, and SOC from one aging week is as shown in Figure 5.9. 

The SOC varies from 25% to 90% every day. The battery is then is fully charged at the end 

of every day. Currents range from -2C to 2C and voltages from 3.6V to a maximum of 

4.2V. Current, SOC, and voltage from one weekday of driving are shown in Figure 5.10, 

and for one weekend of driving are shown in Figure 5.11.  
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Figure 5.7. Schedule B1: One week day of driving with Errand 

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

T
im

e
 (M

in
s
)

Velocity (Kph)

V
e
lo

c
ity

 P
ro

file
 fo

r O
n

e
 W

e
e

k
 D

a
y
 w

ith
 E

rra
n

d
s

 

 

U
D

D
S

+
U

S
0
6 - H

o
m

e
 to W

o
rk

U
D

D
S

+
U

S
0
6 - W

ork
 to

 H
o
m

e

U
D

D
S

 - H
o
m

e to
 C

ity
 (E

ve
n
ing

 E
rra

n
d
)

U
D

D
S

 - C
ity

 to
 H

om
e
 (E

ve
n
ing

 E
rra

n
d
)

F
u
lly

 C
h

a
rg

e
d

 B
a

tte
ry

 - 1
0

0
%

S
O

C
 R

e
c

h
a
rg

e
 B

a
tte

ry
 to

 1
0

0
%

S
O

C

W
o

rk
 T

o
 H

o
m

e
H

o
m

e
 T

o
 W

o
rk

H
o

m
e

 T
o

 C
ity

 (E
v
e

n
in

g
 E

rra
n

d
)

C
ity

 T
o

 H
o

m
e
 (E

v
e

n
in

g
 E

rra
n

d
)



Ph.D. Thesis   McMaster University  
Ryan Ahmed   Department of Mechanical Engineering 

 

208 

 

 

Figure 5.8. Schedule B1: One Weekend driving 
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Figure 5.9. Voltage (Upper), Current, and SOC (lower) for one aging week - 

Schedule B1

 

Figure 5.10. Voltage (Upper), Current, and SOC (lower) for one weekday - 

Schedule B1 
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Figure 5.11. Voltage (Upper), Current, and SOC (lower) for one weekend - 

Schedule B1 
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Figure 5.12. Voltage (Upper), current, and SOC (lower) for one aging cycle - 

Schedule B2 
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Table 5.4. Aging Schedule B3 Scenario, [33]  

 
Trip 

 

 
Drive Cycles 
Combination 

 

 
Frequency 

 

 
Description 

 

Work JkktÇ+CLm!DÇ 

Twice Daily, 
5 days/week, 

48 
weeks/year 

Starting from a full charge, a 
commute from home to work and 
back with no charge at work, at 

high C-rates  

Weekend/ 
Vacation 

JkktÇ+CLm!DÇ+	CLm!DÇ+	CLm!DÇ+	CLm!DÇ+JkktÇ 

2 days/week 
124 

days/year 

Starting from a fully charged 
state, assuming no charging 

station at the weekend 
destination, at high C-rates 

  

 

Figure 5.13. Voltage (Upper), Current, and SOC (lower) for one aging week - 

Schedule B3 
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Data for one weekend and one weekday of driving are shown in Figure 5.14 and 

Figure 5.15, respectively.  

 

Figure 5.14. Voltage (Upper), Current, and SOC (lower) for one weekday - 

Schedule B3 
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Figure 5.15. Voltage (Upper), Current, and SOC (lower) for one weekend - 

Schedule B3 

5.4 Experimental Setup  
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Figure 5.16. Arbin BT2000 Cycler along with Espec and Thermotron 

Environmental Chambers 

 

Battery test cells are placed in environmental chambers in order perform the test at 

controlled temperature conditions. Two different environmental chambers provided by two 

different companies are used for testing namely, Thermotron and Espec. These units can 

change the temperature from -70 to 180 ℃ and are able to change the temperatures at a rate 

of 3.5 ℃/~*}. This kind of heating and cooling capability is necessary for stressing 

samples and accelerating battery aging and therefore saving total test time.  
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Figure 5.17. Experimental Setup including Cyclers, Environmental Chambers, 

and Data Acquisition Systems   

Each battery is independently tested using separate tester channel. A close up look to the 

Arbin tester is as shown in Figure 5.18.  

 

 

 

 

Figure 5.18. Arbin Cycler channels: channels equipped with voltage sensor and 

status indicator light 

Voltage sensor 

Channel # 1 Channel # 2 Channel # 3 
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The tester has 3 independent channels. The cycler can operate in two voltage 

operations ranges namely, High operation voltage: 0-5 V and low operation voltage: 0-20 

V and 3 different current ranges: High operation range: 0 - ±400 Amps, Medium operation 

range: 0 - ±40 Amps, and Low operation range: 0 - ±5 Amps. 

5.5 Experimental Results – Aging Schedules  

In this section, a summary of degradation mechanisms observed using the 3 aging scenarios 

is represented. As mentioned earlier, a series of reference performance test is conducted 

every certain number of charging and discharging cycles. This section explores different 

battery aging behaviours according to the aforementioned aging schedules; namely: 

Schedule B1, Schedule B2, and Schedule B3. In addition, a comparison between current, 

voltage, and SOC behaviour under the model fitting driving schedules – Schedule A1 and 

A2 at various battery states of life is presented. 

5.5.1 Capacity Degradation 

As shown below in Figure 5.19, the battery discharge capacity for aging schedule B2 is 

plotted versus number of aging charging/discharging cycles at fixed C-rate. As per the 

manufacturer data sheet, the expected number of charging/discharging cycles is 

approximately 500 cycles if the test is conducted at room temperature. As previously 

mentioned, all aging schedules in this study have been conducted at elevated temperatures 

of	35℃	'y	40℃. Test results are in support with the battery manufacturer data sheet. Since 

at higher temperatures, aging is accelerated due to rapid chemical reactions which 

exponentially increase with temperature according to the Arrhenius equation, [34]. For 
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every 10℃ rise in temperature, the rate of reactions that contribute to aging are doubled, 

[34].  

 

Figure 5.19. Discharge capacity vs. number of cycles for aging Schedule B2 

Capacity degradation vs. number of aging weeks for aging schedules B1 and B3 are 

as shown in Figure 5.20. Since aging schedule B3 includes higher current C-rates compared 

to Schedule B1, aging is significantly accelerated. Both aging schedules scan the SOC 

range from 90% to 20% and are conducted at elevated temperatures.  
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Figure 5.20. Discharge Capacity Vs. number of aging weeks for aging 

Schedules B1 and B3 

5.5.2 Healthy and Aged Driving Schedules  

In order to show the difference in terminal voltage and SOC using the same driving 

schedule at different states of life, both voltage and SOC data for fresh (healthy) and aged 

battery at approximately 80% capacity for driving Schedule A1 are plotted as shown in 

Figure 5.21 and Figure 5.22, respectively. Experimental data from aging schedule B3 is 

considered in this section.  
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Figure 5.21. Terminal Voltage for fresh (Healthy) cell and aged cell at 80% 

capacity – Driving Schedule A1 

Similarly, voltage and SOC data for both fresh and aged cell for driving schedule 

A2 are as shown in Figure 5.24 and Figure 5.23, respectively. As shown, it is important to 

update model parameters as battery ages since the model estimate of the SOC for a fresh 

battery is higher than the actual SOC of an aged battery, thus giving a false SOC estimate. 

For example, at the end of the driving cycle, model SOC is at approximately 19% while the 

SOC for fresh cell is at 32%; this is a relatively significant error. 
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Figure 5.22. SOC for fresh (Healthy) cell and aged cell at 80% capacity – 

Driving Schedule A1 

It is also important to highlight that other factors such as temperature and cell-

balancing have not been accounted for in the scope of this paper. These factors will further 

contribute to modeling errors and worsen the terminal voltage and SOC estimate. 

Furthermore, this paper focuses mainly on cell level modeling and SOC estimation. In case 

of pack-level SOC estimation, the error will significantly increase.  
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Figure 5.23. Terminal Voltage for fresh (Healthy) cell and aged cell at 80% 

capacity – Driving Schedule A2

 

Figure 5.24. SOC for fresh (Healthy) cell and aged cell at 80% capacity – 

Driving Schedule A2 
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5.6 Online RLS Parameters Identification and Regressed-Voltage SOC 

Estimation 

This section presents an estimation strategy to estimate the battery model parameters and 

SOC under a unified framework at various battery states of life. A linear regression model 

is constructed based on an OCV-R-RC (OCV: Open Circuit Voltage, R: Resistance, C: 

Capacitance) equivalent circuit-based model that correlates the behavior of a battery and 

the values of its circuit elements. For online parameter identification, a square-root version 

of the recursive least-squares (SR-RLS) algorithm with forgetting factor is deployed, [35]. 

The outputs of this algorithm are the battery electrical parameters and the OCV. 

Subsequently, the SOC is inferred from the estimated OCV using a SOC-OCV map.  

5.6.1 Online Recursive Least Squares Estimation  

The first step in the construction of an optimal battery state estimator is to develop a suitable 

model of the battery that can describe the salient features of both steady-state and transient 

responses. It has been found that the OCV-R-RC model provides a reasonable compromise 

between model accuracy and simplicity. For this reason, we develop a state estimator based 

on this model in the following sections. 

Deriving a Linear Regression Model for Parameter Estimation 

The governing equations of the circuit depicted in Figure 5.25 can be expressed as, [7, 8]: 

� ,M = o� ,M=� + MV\,M=� (5.15) 

��,M = � ,M + `V\,M + ��� (5.16) 
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Where the parameters	o = 7=�ô/N, M = � (1 − 7=�ô/N) and	` = �". Hence the transfer 

function from the load current (V\) to the battery terminal voltage (��) in the Z-domain can 

be written as follows: 

��(X) = j MX − ol V\(X) + `V\(X) + �$% (5.17) 

(X − o)	��(X) = (M + `(X − o))	V\(X) + (X − o)	�$% (5.18) 

Because the open circuit voltage (�$%) is treated as a constant, taking the inverse z-

transform of (5.18) yields the following difference equation, [7, 8]: 

	��,M = (M − o`)	V\,M=� + `	V\,M + o��,M=� + (1 − o)	�$% (5.19) 

The linear regression model can be compactly written as the inner product as follows, [7, 

8]: 

��,M = u�OM (5.20) 

Where	u is the parameter vector and ΦM is a regressor consisting of known signals, [7, 8]: 

u = [(M − o`)							`							o							(1 − o)���]� (5.21) 

OM = 8	V\,M=�									V\,M 							��,M=�							1@� (5.22) 
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Figure 5.25. OCV-R-RC battery equivalent circuit model, [7, 8] 

The most pragmatic solution to estimate u from the ARX model is to apply the 

Recursive Least Squares (RLS) algorithm. A square-root version of the RLS method is used 

in this paper for its computational efficiency and stability, [35]. Since the square-root RLS 

algorithm guarantees a positive-definite and symmetric covariance matrix, it is highly 

numerically stable and achieves high estimation accuracy and robustness, [35]. In order to 

closely track slowly varying parameters, a forgetting factor is included in the RLS. The 

battery electrical parameters	�",	� , � , and �$% 	can be recursively estimated upon 

estimating u as follows, [7, 8]: 

��" = u(2) (5.23) 

 �� = Q(�)NQ(�)Q())�=Q())  (5.24) 

�: = D2z}(u(3)) u(3) − 1u(1) − u(2)u(3)	 (5.25) 
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��$% = u(4)1 − u(3)	 (5.26) 

5.6.2 Regressed-Voltage-based SOC Estimation 

In the Regressed Voltage Method (RV Method), in which the open-circuit voltage (�$%) 

estimated from the RLS algorithm is used to calculate the SOC according to a SOC-OCV 

map or a look-up table. Due to the fact that the SOC is coupled with a current integration 

technique and therefore it is a slowly time-varying signal, the noisy (spiky) SOC estimate 

obtained from the RV method, which we denote	tW���É;,M , is filtered by an exponentially-

weighted moving average filter to get a clean and smooth SOC signal: 

tW��É;,M = (1 − ¯)	tW��É;,M=� + ¯	tW���É;,M (5.27) 

where ¯ is the filter gain and takes a small positive value, typically in the range of10=� to 

10=�. 

5.6.3 Experimental Results – Fresh Battery State 

In order to test the SR-RLS and Regressed-voltage-based SOC estimation strategies [35], 

the two previously mentioned driving schedules; Schedule A1 and Schedule A2 datasets 

have been used. Schedule A1 has been used for obtaining the regressed SOC from the 

estimated OCV and the second one is used for validation. Driving cycles scan the entire 

state of charge range from 90% to approximately 20%.  

As shown in Figure 5.26, the strategy provides a good estimate of the battery SOC 

compared to the actual SOC obtained using Coulomb Counting technique from the Arbin 

Cycler. The battery SOC estimation error is as shown below in Figure 5.27. The maximum 
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error is approximately 6%. The maximum error occurs at the flat region of the SOC-OCV 

around 45% to 65%.  

 

Figure 5.26. Estimated Vs. actual battery SOC for driving Schedule A1 

 

This error is acceptable provided that the standalone RLS Regressed-Voltage 

method is applied. One of the main advantages of the Recursive Least Square (RLS) 

methodology and the regressed-Voltage based strategy is that no initial state of charge 

estimate is required. Moreover, no filter initialization or model parameter values is 

required.   
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Figure 5.27. Estimated and actual SOC error obtained using Coulomb 

Counting (Arbin cycler) for Schedule A1 

 

Estimated terminal voltage vs. actual (measured) voltage is as shown below in 

Figure 5.28. The error is relatively high during the first 2-3 minutes of the driving cycle 

since the parameters are not yet optimized. However, the error decreases drastically 

afterwards and the strategy provides a good estimate of the battery terminal voltage. 
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Figure 5.28. Estimated Vs. actual terminal voltage - Schedule A1 

 

The estimated battery model RC branch parameters at fresh (healthy) battery state 

are as shown below in Figure 5.29. Model parameters change over the entire driving cycle 

at various battery states of charge.  The RC branch resistance (��) changes between 0 to 

0.1	Ω while the capacitance (��) changes between 1500 and 5000 F. The static resistance 

(��) and the estimated open circuit voltage values are as shown below in Figure 5.30. �� 

values remains constant over the entire SOC range while the OCV changes from 

approximately 4.14 to 3.6 V indicating cell discharge due to applied current.  
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Figure 5.29. Estimated battery parameters for RC branch at fresh (healthy) 

state - Schedule A1 

 

Figure 5.30. Estimated battery parameters: static resistance (å&) and OCV at 

fresh (healthy) state - Schedule A1 
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The technique has been validated using driving Schedule A2. As shown in Figure 

5.31, the strategy provides a good estimate of the battery SOC compared to the actual SOC 

obtained using Coulomb Counting technique from the Arbin Cycler. The estimation 

accuracy decreased in case of driving schedule A2 since this driving cycle entails a high C-

rate current values. The maximum SOC error is approximately 10% at the same flat SOC-

OCV region at 50% SOC. The accuracy is still acceptable provided that both model 

parameters and the battery SOC estimation is carried out online.  

 

Figure 5.31. Estimated Vs. actual battery SOC for validation driving cycle - 

Schedule A2 
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Figure 5.32. Error between estimated and actual SOC obtained from using 

Coulomb Counting (Arbin cycler) for Schedule A2 

 

The estimated terminal voltage vs. actual (measured) voltage for driving Schedule 

A2 is as shown below in Figure 5.33. It is clear that the voltage dynamics is much faster 

compared to schedule A1 since schedule A2 current demand is much higher compared to 

schedule A1 over the entire SOC range. Similar to schedule A1, the error is relatively high 

during the first couple of minutes of the driving cycle since the parameters are not yet 

optimized. Afterwards, the strategy converges and the error considerably decreases. Results 

can be further enhanced using a combination of RLS-Regressed Voltage based strategy and 

the conventional coulomb counting. 
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Figure 5.33. Estimated Vs. actual terminal voltage - Schedule A2 

 

Figure 5.34. Estimated battery parameters for the RC branch at healthy state - 

Schedule A2 
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The estimated parameter values for driving Schedule A2 are as shown in Figure 5.34 and 

5.35. 

 

Figure 5.35. Estimated battery parameters: static resistance (å&) and OCV at 

fresh (healthy) state - Schedule A2 
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terminal voltage prediction for schedule 1 for aged cell are as shown below in Figure 5.36 

and Figure 5.37, respectively.  

 

Figure 5.36. Estimated Vs. actual battery SOC for driving Schedule 1 for aged 

battery [Capacity = 80%] 
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Figure 5.37. Estimated Vs. actual battery terminal voltage for driving Schedule 

1 for aged battery [Capacity = 80%] 

 

The strategy provides a good estimate even at aged battery state. The error has 

slightly increased as shown in Figure 5.38. The maximum error for driving schedule A1 at 

aged battery state is approximately 9% up from 6% at fresh state. 
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Figure 5.38. SOC error for fresh vs. aged cell - Driving Schedule A1 

 

As shown in Figure 5.39, �� model parameter at aged battery state follows the same 

trend for the fresh one. However, slightly larger values are observed in the range from 
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track of the battery internal resistance estimate and compare it to nominal values for a fresh 

battery. The battery resistance �" remains unchanged, the algorithm take approximately 

0.5 minute to converge to the actual value. The estimated OCV values are slightly less for 

an aged cell compared to the fresh one. Therefore, by applying the regressed-voltage-based 

method, the estimated SOC for aged cell is lower than the fresh state. In order to validate 

the proposed strategy, the same procedure has been repeated using schedule A2 which is 

characterized by high current C-rates as shown in Figure 5.41 and Figure 5.42. 
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Figure 5.39. RC branch parameters for fresh vs. aged - Driving Schedule A1 

 

Figure 5.40. Static resistance and open circuit voltage estimate for fresh vs. 

aged cell - Driving Schedule A1 
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Figure 5.41. Estimated Vs. actual battery SOC for driving Schedule A2 for aged 

battery [Capacity = 80%] 

 

Figure 5.42. Estimated Vs. actual battery terminal voltage for driving Schedule 

A2 for aged battery [Capacity = 80%] 
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The strategy provides a good estimate even at the battery end-of-life state. The error 

has slightly increased as shown in Figure 5.43. The maximum absolute error for driving 

schedule A2 at aged battery state is approximately 11% up from 8% at fresh state. 

 

 

Figure 5.43. SOC error for fresh vs. aged cell - Driving Schedule A2 
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applying the regressed-voltage-based method, the estimated SOC for aged cell is lower than 

the fresh state.  

 

Figure 5.44. RC branch parameters for fresh vs. aged cell - Driving Schedule 

A2 
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Figure 5.45. Static resistance and open circuit voltage estimate for fresh vs. 

aged cell - Driving Schedule A2 

In the following section, a completely different approach has been implemented for 

parameters identification and battery SOC estimation. Offline parameters estimation has 

been applied and a relatively new estimation strategy has been implemented given that the 

model initial SOC is slightly far from the actual one. 

5.7 Offline Parameters Identification and SVSF-based SOC Estimation 
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optimization strategy is presented. The GA has been used to obtain model parameters at 

various battery states of life. Based on the optimized battery model, an estimation strategy 
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strategy is known as the Smooth Variable Structure Filter (SVSF). The filter works in a 
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5.7.1 Offline Genetic Algorithm Optimization  

Genetic algorithms are search techniques based on the evolutionary model. GA algorithm 

has been extensively applied in the literature since the algorithm does not require gradient 

calculation which is rather difficult to obtain in some complex optimization problems. The 

algorithm has been described in details in references, [36, 37]. A summary of the algorithm 

is illustrated below, [38]:  

5.7.1.1 Creation of random initial population  

An initial guess based on literature for parametric values and according to the authors’ best 

knowledge has been adopted in this work. The initial range is set as illustrated in Table 5.5.  

5.7.1.2 Generating a sequence of new populations as follows: 

• The fitness value of each population member is valuated and the raw fitness values 

are scaled to generate an operational range of values.  

• Individuals are selected based on their fitness function, these individuals are called 

parents. 

• Off springs are generated from the population by crossover or mutation.  

• Low fitness individuals are replaced from current population by new off-springs to 

for the next generation. 

5.7.1.3 The steps are repeated until the stopping criteria is reached. This include a 

maximum number of iterations of 10.  
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Table 5.5. OCV-R-RC battery model optimizer bounds 

Parameter name (symbol) (unit) Lower Bound Upper Bound 

Static Resistance Charging (å&N) ()) 0 0.09 

Static Resistance Discharging (å&=) ()) 0 0.09 

RC Branch Resistance (å�) ()) 0 0.09 

RC Branch Capacitance (��) (ã) 150 10000 

 

5.7.2 SVSF-based State of Charge Estimation  

Similarly to the Kalman filter, the SVSF works in a predictor-corrector fashion, [39]. The 

filter is based on the sliding mode concept and has demonstrated robustness to modeling 

uncertainties and sensor noise, [39, 18]. The SVSF can be applied to both linear and non-

linear systems. It works by using an SVSF gain that forces the states to converge to a 

neighborhood of the actual (or true) value, [39]. The gain forces the states to switch back 

and forth across the state trajectory within a region referred to as the existence subspace 

which is function of modeling uncertainties. The width of the existence space 8 is a 

function of the uncertain dynamics associated with the inaccuracy of the internal model of 

the filter as well as the measurement model, and varies with time, [39]. The SVSF can be 

applied to systems that are differentiable and observable, [39, 40]. The original form of the 

SVSF as presented in [39] did not include covariance derivations. An augmented form of 

the SVSF that includes the derivation of an error covariance matrix has been presented in 

[41]. Here, the latter is summarized. 
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Figure 5.46. The SVSF estimation strategy starting from some initial value, the 

state estimate is forced by a switching gain to within a region referred to as the 

existence subspace, [39]. 

Consider a nonlinear system with a linear output (measurement) equation. The filter 

runs by generating a prediction of the state estimate (which represents the solid-electrolyte 

interface concentration) as follows: 

_9MN�|M = C:�_9M|M , �M� (5.28) 

The predicted estimates are then used to generate a predicted measurements X̂MN�|M as 

follows, [39]: 

X̂MN�|M = �M|Îg�FrEg<FÔ_9MN�|M (5.29) 

Where �M|Îg�FrEg<FÔ is the measurement matrix. Then the measurement error 7<,MN�|M can 

be calculated as follows, [39]: 

7<,MN�|M = XMN� − X̂MN�|M 	 (5.30)	
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The SVSF has predictor-corrector form. Its gain is a function of the a-priori and the 

a-posteriori measurement errors 7<=ëË|= and	7<=|= . It has a smoothing boundary layer 

widths	>, a memory or convergence rate	�, as well as the linear measurement 

matrix	�M|Îg�FrEg<FÔ. For the derivation of the SVSF gain	�MN�, refer to [39, 41]. The SVSF 

gain is defined as follows, [39]: 

 �MN� = �M|Îg�FrEg<FÔN{*o�  ù?7<=ëË|=?+ � ?7<=|=?ú ∘ xo' j7<=ëË|=> l¡ {*o� ù7<=ëË|=ú=� (5.31) 

The updated states _9MN�|MN� are calculated as follows, [39]: 

_9MN�|MN� = _9MN�|M + �MN�7<=ëË|= (5.32) 

The output estimates and the a posteriori measurement errors are then calculated 

respectively as follows, [39]: 

X̂MN�|MN� = �M|Îg�FrEg<FÔAAMN�|MN� (5.33) 

7<=ëË|=ëË = XMN� − X̂MN�|MN� (5.34)  

Equations 5.28 to 5.34 are iteratively repeated for every sampling time. 

5.7.3 Experimental Results – Fresh Battery State 

In this section, offline parameter identification using Genetic Algorithm optimization and 

SOC estimation using the SVSF are presented. Two states of life are considered; namely: 

fresh (healthy) battery state and aged (80% capacity). The GA algorithm has been applied 

to estimate battery parameters using current and voltage data from Schedule A1 driving 
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cycle. A static capacity discharge test has been conducted to obtain the SOC-OCV 

relationship utilized by the OCV-R-RC model.  

The model is simulated once for every member of the population and the terminal 

voltage is further compared with the experimental terminal voltage. The GA optimization 

has been set to 5 runs and to 500 population size. The algorithm has been conducted on a 

mobile workstation with 3.0 GHz, quad Core i7-3940XM Extreme Edition processor. The 

parameter identification objective function used in this research is targeted at minimizing 

the error between the model output terminal voltage ��(') and the experimentally measured 

terminal voltage	�('). The objective function is a cumulative sum of the squared voltage 

error as follows:  

~*} ù�(') − ��(')ú� {'�
"  (5.35) 

Values of the optimized parameters for fresh battery state are as follows:	�"N = 0.0094	Ω, 

�"= = 0.0096	Ω, �� = 0.0049	Ω, and �� = 3860.146	F. The optimized terminal voltage 

vs. the actual (measured) voltage is as shown below in Figure 5.47. It is important to note 

that in this method, one set of parameters are used over the entire SOC range.  
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Figure 5.47. Estimated vs. actual (measured) voltage - GA optimization for 

driving Schedule A1 

 

Based on the optimized model parameters, the SVSF has been applied to estimate 

the battery SOC. The SVSF parameters are tuned using GA optimization with population 

size of 20 and using 10 numbers of iterations. For the SVSF, four parameters required to 

be tuned, namely: the SVSF convergence or ‘memory’ is set to	γ = 0.8, the boundary layer 

thickness	> = 4, the initial a-priori estimate	7<,MN�|M = 4.505, and the damping 

element	T = 0.1. The initial model SOC is set to 80%. The battery SOC vs. Actual SOC is 

as shown below in Figure 5.48.  
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Figure 5.48. Estimated vs. actual SOC – SVSF estimation for driving Schedule 

A1 

5.7.4 Experimental Results – Aged Battery State 

Similar to the fresh battery state, current profile from the same driving cycle – Schedule 1 

has been applied to the aged battery at 80% capacity. GA algorithm optimization has been 

applied to estimate the battery model parameters. In the GA optimization, population size 

of 1000 data sets have been used for 5 generations. Values of the optimized parameters for 

aged cell at the end-of-life are as follows: �"N = 0.016, �"= = 0.017, �� = 0.01, �� =
3212.71 

The optimized terminal voltage vs. actual (measured) voltage for aged cell is as 

shown below in Figure 5.49. Similar to fresh cell, only one set of parameters have been 

used over the entire range of SOC. The SVSF has been applied to estimate the battery 

SOC based on the optimized battery model parameters of the aged cell as shown in Figure 
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5.50. The initial battery SOC has been initialized to 50% and the actual SOC to 

approximately 98%. The SVSF provides fast convergence even though the error between 

the initial SOC and the actual SOC is quite significant. The largest error is noticed at the 

flat SOC-OCV region at approximately 35% to 55%. The estimated terminal voltage vs. 

measured voltage is as shown below in Figure 5.51. 

 

Figure 5.49. Estimated vs. actual (measured) voltage - GA optimization for 

driving Schedule A1 – Aged cell at 80% capacity 

 

The SVSF provides a good SOC estimation accuracy if the estimator parameters 

are properly tuned. The initial SOC estimate affects the estimation accuracy and 

convergence. Therefore, keeping track of the SOC is beneficial to ensure filter 

convergence. 
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Figure 5.50. Estimated vs. measured SOC using SVSF for driving Schedule A1 

– Aged cell at 80% capacity

 

Figure 5.51. Estimated vs. actual (measured) voltage using SVSF for driving 

Schedule A1 – Aged cell at 80% capacity 
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5.8 Conclusion 

In this paper, first-order equivalent circuit-based model parameters identification and state 

of charge estimation has been implemented in both online and offline settings. A recursive 

least square optimization strategy has been implemented for online parameters 

identification and a regressed-voltage based methodology has been implemented to map 

the estimated open circuit voltage to the battery state of charge. The technique provides 

robustness at various battery states of charge and states of life. The technique has been 

validated using two driving cycles at low and high C-rates. The technique accuracy is 

compromised at the flat region of the SOC-OCV curve but still provides an acceptable 

estimate. 

Regarding offline-based parameters identification, a Genetic Algorithm 

optimization has been applied to identify battery model parameters for both fresh and aged 

battery cells. The technique identifies one set of parameters that can be utilized over the 

entire state of charge range at a specific temperature conditions.  A relatively new state of 

charge estimation strategy known as the Smooth Variable Structure Filter (SVSF) has been 

applied to estimate the battery state of charge. The technique is robust to modeling 

uncertainties and sensor noise provided that filter parameters are properly tuned. Future 

research involves combining both strategies to improve the state of charge estimation 

accuracy and to estimate the battery state of health based on identified parameters.  
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Abstract 

Lithium-Ion batteries are increasingly being used and are one of the most important 

components in hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), and battery 

electric vehicles (BEVs). Therefore, real-time and accurate monitoring of the State of 

Charge (SOC) and terminal voltage is essential for avoiding any failure or degradation in 

performance of the battery overtime due to over or under discharging. High-fidelity battery 

models in conjunction with robust estimation strategies are used to estimate the SOC and 

State of Health (SOH). However, as battery ages due to multiple charging and discharging 

cycles, model parameters such as internal resistance and capacity will significantly change 

and this can lead to inaccurate estimation of SOC or even numerical instability of 

monitoring strategies. This paper presents a SOC estimation strategy known as the 

interacting multiple models based on the Smooth variable structure filter (IMM-SVSF). 

The proposed methodology can adapt to various aging conditions and can provide an 

accurate approach that can be implemented in a real-time on-board Battery Management 

System (BMS).  
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6.1 Introduction 

Recently, Hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs) and battery electric 

vehicles (BEVs) have received significant attention in both industrial and academic settings 

due to their sustainability, reliability, high efficiency, and their potential to ultimately 

reduce harmful gas emissions. Lithium-Ion-based battery chemistry provides numerous 

advantages compared to other battery chemistries such as high energy density, slow loss of 

charge when left unused, and no memory effect, [1]. Therefore, Lithium-Ion batteries are 

increasingly being considered as the most promising energy storage devices for the next 

generation HEVs, PHEVs, and BEVs, [1]. In order to ensure Lithium-Ion battery safety, a 

real-time tracking of the battery SOC is critical to ensure that the battery operates within 

the tolerable, safe range of operation and to circumvent over-charge or under-charge 

conditions, [2].  

This paper presents a relatively new estimation strategy known as the Interacting 

Multiple Models based on the Smooth Variable Structure filter (IMM-SVSF) as applied to 

battery management systems, [3]. This paper presents a proof of concept to the applicability 

of adaptive techniques in battery SOC and SOH estimation. The IMM-SVSF technique is 

applied to extract the State of Charge (SOC) information based on an equivalent circuit-

based battery aging model. The SVSF is a predictor-corrector estimator based on sliding 

mode concepts, and can be applied to both linear and nonlinear systems, [4]. This technique 

is capable of tracking the battery SOC and terminal voltage under aging conditions. As 

battery ages, parameters such as the internal resistance and capacity change overtime and 

thus the battery model has to adapt to these variations in order to provide accurate estimates 
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associated with various charging/discharging cycles until the end-of-life (EOL). Computer 

simulations show the effectiveness of the proposed technique for its implementation in real-

time BMS applications. 

State and parameter estimation techniques such as the Kalman filter are essential 

for information processing in model-based condition monitoring systems. Estimation 

theory comprises real-time information extraction by tracking change in systems and 

physical parameters. The Extended Kalman Filter (EKF) is one of the most widely used 

techniques for state and parameter estimation. It can be used for battery SOC estimation 

and can provide high accuracy in real-time applications, [5, 6]. In the literature, various 

techniques have been implemented for SOC and SOH estimation. Saha et al. [7] proposed 

an estimation of battery SOC, SOH, and RUL using Bayesian framework, Relevance vector 

machines (RVMs), and particle filters. A combination of equivalent-circuit based models 

and statistical models of state-transitions and aging processes have been applied to 

experimental batteries, [7].  

A dual estimation strategy has been applied for estimating battery model parameters 

and SOC using lumped parameters in [8, 9]. One filter is used to estimate battery model 

parameters and the second filter is used for SOC estimation. A SOH estimation of the 

battery can be conducted in 3 minutes as documented in [10]. In [10], Artificial Neural 

Networks have been trained on fuzzified data and the outputs are then defuzzified. One of 

the main advantages of neural networks is its ability to adapt and self-learn through 

experience. The more batteries are tested using this technique, the more accuracy is 

achieved later on, [10].  A real-time, impedance-based parameter identification method for 
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SOC and SOH estimation has been proposed in, [11]. The EKF can estimate the battery 

model parameters based on the Randles model, [11]. More RC blocks are used to model 

the Warburg impedance but this modification has led to over-parameterization thus causes 

EKF divergence problems. The technique has been verified using the UDDS Cycle, [11].  

A SOH technique based on the Extended Kalman filter (EKF) has been presented in [12]. 

In this research, EKF has been used to estimate the bulk capacitance thus provides an 

indication of the battery SOH. Experimental results demonstrate the accuracy of the 

proposed technique compared to other techniques in estimating the SOC (with 2% 

accuracy) and SOH, [12]. 

Multiple model strategies can provide accurate estimates for both linear and non-

linear systems. Using a finite number of models, these techniques can utilize information 

from all models to provide robustness and adaptability to model uncertainties, [13].  

One of the most widely adopted adaptive estimation strategy is known as the 

‘multiple model’ (MM), [14]. Numerous forms exist, namely: static MM [15], dynamic 

MM [13], generalized pseudo-Bayesian (GPB) [16, 17, 18, 19], and the interacting multiple 

model (IMM) [13, 20, 21]. The IMM strategy is generally preferred in challenging 

estimation problems, therefore, it has been widely implemented in the literature, [3]. 

Numerous fault detection and isolation problems have been tackled using the IMM in 

conjunction with the KF strategy. Most recently, the IMM was combined with the SVSF 

for fault detection and diagnosis, [3, 22]. In [23], the IMM-SVSF demonstrated improved 

estimation accuracy as well as more confident fault detection results. 
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The rest of the paper is organized as follows. Section 6.2 provides a description of 

the model implemented in this paper. Section 6.3 provides an overview of the IMM-SVSF 

technique. Section 6.4 provides the simulation results of the proposed methodology and 

Section 6.5 contains the conclusion. 

6.2 Battery Model Selected 

The model selected for the IMM-SVSF technique is known as the simple model and has 

been presented by Plett in [8]. Plett has developed a series of nonlinear battery models 

based on empirical observations. These models can accurately track cell voltage variations 

at various SOCs even at highly nonlinear regions (extreme cases when the battery is fully 

charged or depleted), [24]. The following section describes the model that is selected to 

characterize battery aging. The model is an evolution of the combined model as follows. 

6.2.1 Combined Model 

Various battery models have been presented in the literature. A number of simplified 

models have been formulated and are adopted in [8] and [25]. The following three are 

amongst the most popular combined models, [8]: 

• Shepherd: |M = !" − �*M − �g/XM 

• Unnewehr universal model: |M = !" − �*M − �gXM 

• Nernst: |M = !" − �*M + �� ln(XM) + �) ln(1 − XM) 
In these models, |M is the cell terminal voltage, � is the cell internal resistance 

(different values may be used for charge/discharge at different SOC levels), �g is the 
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polarization resistance, and �# are constants chosen to make the model fit the data, [8]. A 

combined model based on the three aforementioned models is shown below, [8]: 

XMN� = XM − j/g∆'� l *M (6.1) 

|M = �" − �*M − ��XM −��XM + �) ln(XM) + �� ln(1 − XM) (6.2) 

6.2.2 Simple Model 

As presented in [8], the output equation is divided into two parts; the first part is a function 

of the battery SOC and the second part depends on the input current.  

C(XM) = �" −��XM − ��XM + �) ln(XM) + �� ln(1 − XM) (6.3) 

C(*M) = �*M (6.4) 

As explained in [8], by combining all the model parameters that are functions of the SOC 

in one combined term yields: 

XMN� = XM − j/g∆'� l *M (6.5) 

|M = W��(XM) − �*M (6.6) 

Where OCV represents the open circuit voltage which is function of the state of 

charge	XM. As battery ages, model parameters will significantly change. In order to simulate 

the battery aging phenomenon, the internal resistance is increased and capacity fade occurs 

until it reaches end-of-life (80% remaining capacity). Then the IMM-SVSF technique is 

used to estimate the SOC and terminal voltage using various battery models at different 

states of life. 
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6.3  SVSF-based Interacting Multiple Models  

The Interacting Multiple Models based on the SVSF (IMM-SVSF) is an adaptive strategy 

for battery state of charge estimation. Instead of relying on a single battery model at one 

state of life during the entire lifetime of the battery, multiple models can interact 

collaboratively to achieve a more accurate and robust voltage prediction and state of charge 

estimate. This is beneficial in all electric and hybrid vehicles to ensure that the battery 

operates within the acceptable range of operation. The proposed model-based estimation 

strategy is applicable to all types and sizes of electrochemical battery cells. The proposed 

strategy is computationally efficient for simulation, design, and real-time management of 

battery-powered systems. This technique is able to adapt to changes in model parameters 

such as internal resistance and capacity fade as battery ages. If the same model is used for 

all battery states of health, the model will progressively lose its accuracy in determining 

terminal voltages and SOC estimation. Accordingly, adaptive techniques such as the IMM 

are best-suited for these applications.  

In order to compare the effectiveness of the proposed strategy, the technique has 

been compared to the standalone filter based on one battery model at one state of life. 

Subsection 6.3.1 describes the Smooth Variable Structure Filter and section 6.3.2 describes 

the IMM-SVSF strategy. 

6.3.1 Smooth Variable Structure Filter 

Similarly to the Kalman filter, the SVSF works in a predictor-corrector fashion, [4]. The 

filter is based on the sliding mode concept and has demonstrated robustness to modeling 

uncertainties and sensor noise, [4, 26]. The SVSF can be applied to both linear and non-
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linear systems. It works by using an SVSF gain that forces the states to converge to a 

neighborhood the actual or true value, [4]. The gain forces the states to switch back and 

forth across the state trajectory within a region referred to as the existence subspace which 

is function of modeling uncertainties. The width of the existence space 8 is a function of 

the uncertain dynamics associated with the inaccuracy of the internal model of the filter as 

well as the measurement model, and varies with time, [4]. The SVSF can be applied to 

systems that are differentiable and observable [4, 27]. The original form of the SVSF as 

presented in [4] did not include covariance derivations. An augmented form of the SVSF 

that includes the derivation of an error covariance matrix has been presented in [28]. Here, 

the latter is summarized. 

 

Figure 6.1. The SVSF estimation strategy starting from some initial value, the 

state estimate is forced by a switching gain to within a region referred to as the 

existence subspace, [4]. 
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Consider a nonlinear system with a linear output (measurement) equation. The filter 

runs by generating a prediction of the state estimate (which represents the solid-electrolyte 

interface concentration) as follows, [4]: 

_9MN�|M = C:�_9M|M , �M� (6.7) 

The predicted estimates are then used to generate a predicted measurements X̂MN�|M as 

follows, [4]: 

X̂MN�|M = �M|Îg�FrEg<FÔ_9MN�|M (6.8) 

Where �M|Îg�FrEg<FÔ is the measurement matrix, then the measurement error 7<,MN�|M 

can be calculated as follows, [4]: 

7<,MN�|M = XMN� − X̂MN�|M	 (6.9)	
The SVSF has predictor-corrector form. Its gain is a function of the a-priori and the 

a-posteriori measurement errors 7<=ëË|= and	7<=|= . It has a smoothing boundary layer 

widths	>, a memory or convergence rate	�, as well as the linear measurement 

matrix	�M|Îg�FrEg<FÔ. For the derivation of the SVSF gain	�MN�, refer to [4, 28]. The SVSF 

gain is defined as follows, [4]: 

 

�MN� = �M|Îg�FrEg<FÔN{*o�  ù?7<=ëË|=?+ � ?7<=|=?ú
∘ xo' j7<=ëË|=> l¡{*o� ù7<=ëË|=ú=� 

(6.10) 

The updated states _9MN�|MN� are calculated as follows, [4]: 
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 _9MN�|MN� = _9MN�|M +�MN�7<=ëË|= (6.11) 

The output estimates and the a posteriori measurement errors are then calculated 

respectively as follows, [4]: 

X̂MN�|MN� = �M|Îg�FrEg<FÔAAMN�|MN� (6.12) 

7<=ëË|=ëË = XMN� − X̂MN�|MN� (6.13) 

Equations 6.7 to 6.13 are iteratively repeated for every sample time. 

6.3.2 The IMM-SVSF Technique 

The interacting multiple model (IMM) strategy relies on a finite number of models and 

state estimators that run in a parallel fashion, [3]. Each filter provides a state estimate, a 

covariance, and a likelihood calculation (which is a function of the measurement error and 

innovation covariance). These outputs are utilized to calculate mode probabilities. Mode 

probability indicates how close the filter model operates in comparison to the actual (true) 

system model, [3].   

The IMM has been shown to work significantly better than single model methods, 

since it is able to make use of more information, [13]. Therefore, the IMM strategy has 

been used for multiple applications in radar and target tracking, where there more than one 

model that describes the target trajectory, [13]. The IMM-SVSF methodology has been 

reported in [3] and is briefly described here for completeness and readability. 

The IMM is implemented as per [13]. The strategy involves SVSF estimation as 

applied on a finite number of models. As an example, Figure 6.2 shows two models. The 
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IMM-SVSF estimator consists of five main steps: (1) calculation of the mixing 

probabilities, (2) mixing stage, (3) mode-matched filtering via the SVSF, (4) mode 

probability update, and (5) state estimate and covariance combination.  

First, the strategy calculates the mixing probabilities Vg|W,M|M (i.e., the probability of 

the system currently in mode	*, and switching to mode f in the next step). The mixing 

probabilities are calculated as follows, [13]: 

Vg|W,M|M = 1̅̀
W pgWVg,M (6.14) 

`W̅ =ÄpgWE
gÆ� Vg,M (6.15) 

Where	pgW is defined as the mode transition probability, and is a design parameter.  

Vg,M	values can range from 0 to 1, it denotes the probability of the mode * being truthful, 

and differs from the mixing probabilities Vg|W,M|M, [13].  

The calculated mixing probabilities Vg|W,M|M are further used during the mixing stage. 

In addition to the mixing probabilities, the previous mode-matched states _9g,M|M and 

covariance’s 5g,M|M are also used to calculate the mixed initial states and covariances for the 

filter matched to 4W (which is model j consisting of associated �W and õW matrices). The 

mixed initial conditions are calculated as follows, [13]: 
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Figure 6.2. IMM-SVSF Strategy (Adapted from [13] and [3]) 

_9"W,M|M =Ä_9g,M|MVg|W,M|ME
gÆ�  (6.16) 

5"W,M|M =Ä Vg|W,M|ME
gÆ� X5g,M|M + �_9g,M|M − _9"W,M|M��_9g,M|M − _9"W,M|M��Y (6.17) 

The SVSF is applied to perform mode-match filtering by utilizing equations (6.16) 

and (6.17). In addition, the SVSF utilizes the measurement XMN� and the system input	�M to 

calculate an updated state estimates (6.23) and covariance matrix (6.24). The modified 

prediction stage (for linear systems) is as follows. The state estimates _9"W,M|M (6.16) and 

corresponding covariance 5"W,M|M (6.17) for each model f are used to predict the state 

estimate _9W,MN�|M (6.18) and calculate the a priori state error covariance matrix 5W,MN�|M 

(6.19), [4]. 

_9W,MN�|M = �W_9"W,M|M + õW�M (6.18) 
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5W,MN�|M = �W5M|M"W �W� + �M (6.19) 

From (6.18) and (6.19), the mode-matched innovation covariance tW,MN�|M (6.20) 

and mode-matched a-priori measurement error 7W,<,MN�|M (6.21) are calculated as follows, 

[3]: 

tW,MN�|M = �W5W,MN�|M�W� + �MN� (6.20) 

7W,<,MN�|M = XMN� − �W_9W,MN�|M (6.21) 

The mode-matched SVSF gain �W,MN� is calculated (6.22) and then utilized to update 

the state estimates _9W,MN�|MN� (6.23), [3]. 

�W,MN� = �WN{*o� ¢ùB7W,<,MN�|MB,#2 + �WB7W,<,M|MB,#2ú∘ xo'�>*W=�7W,<,MN�|M�£ {*o��7W,<,MN�|M�=� 
(6.22) 

_9W,MN�|MN� = _9W,MN�|M + �W,MN�7W,<,MN�|M (6.23) 

 

The state error covariance matrix 5W,MN�|MN� is then calculated (6.24) and the a-

posteriori measurement error 7W,<,MN�|MN� can be calculated (6.25), [3]. 

5W,MN�|MN� = �V − �W,MN��W�5W,MN�|M�V − �W,MN��W�� + �W,MN��MN��W,MN��  (6.24) 

7W,<,MN�|MN� = XMN� − �W_9W,MN�|MN� (6.25) 

Based on the mode-matched innovation matrix tW,MN�|M (6.20) and the mode-

matched a-priori measurement error 7W,<,MN�|M (6.21), mode-matched likelihood function 

ΛW,MN� based on the SVSF estimation strategy is formulated as follows, [13]: 

ΛW,MN� =[�XMN�; X̂W,MN�|M, tW,MN�� (6.26) 
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Equation (6.26) may be solved as follows, [13, 29]: 

ΛW,MN� = 1
�B2étW,MN�B,#2 7_p�

−12 7W,<,MN�|M� 7W,<,MN�|MtW,MN� � (6.27) 

By applying the mode-matched likelihood functions	ΛW,MN�, the mode probability 

VW,M can be updated by, [13]: 

VW,M = 1̀ΛW,MN�ÄpgWE
gÆ� Vg,M (6.28) 

Where the normalizing constant is defined as, [13]: 

` =ÄΛW,MN�ÄpgWE
gÆ� Vg,ME

WÆ�  (6.29) 

Finally, the overall IMM-SVSF state estimates _9MN�|MN� (6.30) and corresponding 

covariance 5MN�|MN� (6.31) are calculated, [3]. 

_9MN�|MN� =Ä VW,MN�_9W,MN�|MN�E
WÆ�  (6.30) 

5MN�|MN� =Ä VW,MN� X5W,MN�|MN�E
WÆ�

+ �_9W,MN�|MN� − _9MN�|MN���_9W,MN�|MN� − _9MN�|MN���Y 
(6.31) 

The IMM-SVSF strategy can be iteratively repeated and may be summarized by 

equations (6.14) through (6.31), where there are *, f = 1,… , a models, [13].  

 

6.4 Simulation Results  

In this paper, three different models with various parameters have been used for simulation. 

The charging, discharging resistances, and the battery capacity for a fresh battery (Life 
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Fraction (LF) = 0) are as follows:	0.05	Ω, 0.1	Ω, 3.2	Ah. The battery parameters at its End-

of-life (EOL) (20% capacity fade) (LF = 1), assuming linear resistance variations are as 

follows:	0.07	Ω, 0.14	Ω, 2.56	Ah.  

In order to generate the current profile from the velocity profile of a driving cycle, 

an electric vehicle battery model has been modified from an existing hybrid vehicle model, 

[30]. The model has been simulated using SimScape in Matlab environment. A model of a 

mid-size sedan has been used with an approximate driving range of 200 kilometers per full 

charge. The simulation model, as shown in Figure 6.3, consists of a DC electric motor, 

vehicle dynamic model, lithium-Ion battery pack, DC-DC convertor, and vehicle speed 

controller.  

 

Figure 6.3. All-Electric Mid-size Sedan Simulation Model in SimScape 

(Adopted from [30]) 

A benchmark driving schedule known as the Urban Dynamometer Driving 

Schedule (UDDS) has been used in the simulation, [31]. The UDDS driving cycle 

represents a city driving condition, the UDDS cycle (commonly known as “LA4” or “the 

city test” or Federal Test Procedure “FTP-72”) was originally used for light duty fossil-

fueled vehicle testing, [31].  
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Figure 6.4. UDDS Velocity Profile 

It has been developed to imitate average speed, idle time, and number of stops that 

the average driver performs in real-world conditions, [32]. Even though the driving 

behavior of an average driver may likely vary, this driving cycle has been extensively 

utilized to verify and validate algorithms. The UDDS cycle is characterized by 

approximately 1369 seconds, 7.45 kms, and an average speed of 19.59 mph. The cell used 

in this study has a nominal capacity of	3.2	Ah. The vehicle velocity profile for the UDDS 

cycle is shown in Figure 6.4. The corresponding profile for battery current, state of charge, 

and terminal voltage are as shown in Figure 6.5.  
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Figure 6.5. Battery Voltage (Upper Figure), SOC and Current (Bottom Figure) 

for one UDDS Cycle 

In this paper, negative current values indicate battery discharging and positive 

values for charging. The UDDS driving cycle depletes the battery from 90% SOC to 

approximately 85% with regenerative braking. For each model, the terminal voltage as a 

function of time was captured, as well as the state of charge as shown in Figure 6.6 and 

Figure 6.7, respectively. 
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Figure 6.6. Terminal Voltage for Battery Aging Models at 3 Distinct States of 

Life; Fresh, Mid-life, and Aged State 

 

Figure 6.7. Battery State of Charge for Various Aging Battery Models at Three 

Distinct States of Life; Fresh, Mid-life, and Aged State 
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Figure 6.7 shows the battery state of charge at various states of life starting from a 

fresh (healthy) state till the end of life specified at 80% remaining capacity for a UDDS 

cycle. In order to demonstrate the effectiveness of the disclosed strategy to battery state of 

charge estimation, the standalone SVSF is compared to the IMM-SVSF. The model initial 

state of charge is initialized at 85% while the actual battery initial state of charge is at 90%. 

The SVSF convergence well when the model is accurate. However, as battery ages, model 

parameters such as internal resistance and capacity significantly change, therefore if the 

same parameters are used, the estimator will suffer from divergence problems and provide 

misleading state of charge estimate. Therefore, an adaptive method such as the IMM-SVSF 

will circumvent this problem by incorporating different battery models obtained across the 

life time of the battery. In order to demonstrate the ability of the proposed technique to 

extract battery cell SOC information, the technique has been compared to the standalone 

SVSF and data for a battery with 0.5 life fraction (mid-life) has been used for testing. The 

IMM-SVSF considers more battery models to provide a more accurate SOC estimate.  

The SVSF parameters are tuned using Genetic Algorithm (GA) optimization with 

population size of 100 and using 10 numbers of iterations. For the standalone SVSF, four 

parameters required to be tuned, namely: the SVSF convergence or ‘memory’ is set to	γ =
0.13, the boundary layer thickness	> = 352.39, the initial a-priori estimate	7<,MN�|M =
7.28, and the damping element	T = 0.15. Regarding the IMM-SVSF, the 12 optimized 

parameters are as follows: the initial noise covariance matrix  � = 79320.9, the initial 

system error covariance matrix for model 1 (fresh) � = 207765.82, the initial system error 

covariance matrix for model 2 (aged) � = 226602.34, the initial value of the state error 
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covariance matrix is set to 5 = 236.07, the mode transition probabilities p��, p��, p��, p�� 

are 0.13, 0.929, 0.898, 0.9767, the SVSF convergence or ‘memory’ for model 1 is set to	γ =
0.763, the boundary layer thickness	> = 3.929, the SVSF convergence or ‘memory’ for 

model 2 is set to	γ = 0.5, and the boundary layer thickness	> = 5.27. 

As shown in Figure 6.8, voltage data from a battery at mid-life state is used for 

testing the standalone SVSF and the IMM-SVSF. The IMM-SVSF technique provides good 

estimation accuracy and stability compared to the standalone SVSF. The SVSF, when used 

with the fresh battery or with an aged battery, will chatter due to model uncertainties. 

Conversely, the IMM-SVSF technique adapts to these variations as it takes into account 

the combined results of all the models across the battery lifetime thus provides a smoother 

and more accurate estimate. 
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Figure 6.8. Battery Estimated State of Charge for Standalone SVSF Vs. IMM-

SVSF Tested at Mid-life Battery State of Life 

6.5 Conclusion 

In this paper, a proof of concept to the applicability of adaptive techniques such as 

interacting multiple models for the estimation of the SOC and terminal voltages based on 

aged battery models. This is beneficial in BEVs and HEVs to ensure that the battery 

operates within the acceptable range of operation. The proposed model/estimation strategy 

is applicable to other types and sizes of electrochemical battery cells. The proposed strategy 

is computationally effective for simulation, design, and real-time management of battery-

powered systems. This technique is able to adapt to changes in model parameters such as 

internal resistance and capacity fade as battery ages. Simulation results show the 

effectiveness of the proposed technique. One of the limitations of the proposed strategy is 

the extensive effort required to tune filter parameters. In addition, the initial SOC estimate 
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has to be close enough to the actual SOC in order to guarantee convergence. Future research 

will include changing the battery model structure as battery ages which in turn would 

improve accuracy and stability. 
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7. Chapter 7: Summary, Conclusions, and Recommendations for Future 

Research 

 
This short chapter provides a summary of the research conducted and illustrated through 

the entire thesis. The chapter also includes recommendations for future research.  

7.1  Research Summary 

The research presented in this thesis concentrated on advancing the development and 

implementation of electrochemical and equivalent-circuit-based battery models. Most 

battery models did not account for aging and degradation over the entire vehicle lifetime. 

In addition, electrochemical battery model studies are mainly based on simulation studies 

and therefore the full-set of the reduced-order electrochemical model parameters have not 

been identified using a real-world driving cycle while calculating the state of charge.  

Hence, Chapter 3 of this thesis introduces a new electrochemical model-based state 

of charge parameterization strategy based on the number of spherical shells (model states) 

and on the final value theorem. The final value theorem is applied in order to calculate the 

initial values of lithium concentrations at various shells of the electrode. Then, this value 

is used for setting up a constraint for the optimizer in order to achieve an accurate state of 

charge estimation. The state of charge parameterization model has been developed to adjust 

the spherical volume-based state of charge calculation. The technique has been used to 

estimate the full-set of the reduced-order electrochemical model parameters for 3.3V, 

2.3Ah Lithium Iron Phosphate (LiFePO4) batteries at various states of life.  

In order to fit the electrochemical battery model parameters, electric current input 

from an Urban Dynamometer Driving Schedule (UDDS) has been used. Battery models 
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have been validated using a variety of aggressive driving cycles such as the light duty drive 

cycle for high speed and high load (US06) and the highway fuel economy test (HWFET). 

In order to generate the current profile from driving cycles, an electric vehicle model (based 

on SimScape) has been utilized. The electrochemical model with identified parameters fits 

voltage experimental data very well with a RMSE of approximately 0.2 mV over a UDDS 

cycle. Moreover, spherical average concentration can be effectively used for state of charge 

calculation provided that the initial State of charge is provided. The reduced-order model 

results in heavy loss of information from the full-order model. However, it still maintains 

a strong connection to the internal battery potential and diffusion dynamics which are 

beneficial for state of health estimation. 

The second major contribution of this thesis is presented in Chapter 4. In this 

Chapter, development of a battery aging and degradation model has been conducted. The 

thesis extends on existing electrochemical battery models to accommodate for aging and 

degradation that happens overtime. An aging battery model is developed by changing the 

effective electrode volume to model capacity degradation. A non-invasive genetic 

algorithm has been applied to estimate model parameters for aged batteries. Main 

parameters that contribute to battery aging are: the OCV-SOC relationship, the solid-

electrolyte interface resistance (`2F�), the solid diffusion coefficient (k2), the electrode 

effective volume (L), and the minimum and maximum stoichiometry values (u ´%) and 

(u Ë´´%). The battery loss of capacity due to aging is attributed to the increase in the battery 

solid electrolyte interface resistance, the decrease in diffusion coefficient, and the decrease 

in the battery electrode effective volume, those changes reflect the electrode tendency to 
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resist further lithium diffusion as battery degrades. Extensive accelerated aging and 

reference performance tests have been conducted on lithium-iron phosphate cells. 

Reference tests have been conducted at two distinct states of life, namely: 100% and 80% 

capacity. 

Furthermore, a critical state of charge estimation strategy has been implemented 

using the SVSF methodology. The SVSF can be used to estimate the critical surface charge 

and the battery overall state of charge at steady state conditions.  

In Chapter 5, based on equivalent circuit-based battery models, a technique for 

parameters identification in both online and offline settings at various battery states of life 

has been conducted. In the online technique, a recursive least square method has been 

applied to estimate battery model parameters and to estimate the open circuit voltage 

(OCV). Based on the estimated battery OCV, a regressed-voltage method has been applied 

to map the OCV to the battery state of charge thus provides an estimate of the battery state 

of charge at various states of life. 

In the offline technique, a Genetic Algorithm (GA) optimization strategy has been 

applied to estimate the battery model parameters at various states of life. Based on the 

optimized model parameters, a battery state of charge estimation strategy has been designed 

to estimate the state of charge based on the identified battery model parameters. A strategy 

based on the SVSF has been presented for battery state of charge estimation. The proposed 

strategy has been selected since it demonstrated robustness to modeling uncertainties and 

sensor noise in previous publications.  The strategy has been applied to estimate the battery 
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state of charge at various states of life from fresh state (100% capacity) to 80% retained 

capacity. 

An adaptive state of charge estimation strategy that can accommodate for battery 

aging has been presented in Chapter 6. The chapter presents a relatively new estimation 

strategy known as the Interacting Multiple Models based on the Smooth Variable Structure 

filter (IMM-SVSF) as applied to battery management systems. A proof of concept to the 

applicability of adaptive techniques in battery state of charge estimation is presented. The 

IMM-SVSF technique is applied to extract state of charge information based on an 

equivalent circuit-based battery aging model. 

Therefore, instead of relying on one battery model at single state of life, the IMM-

SVSF strategy can incorporate different battery models obtained across the life time of the 

battery. In order to demonstrate the ability of the proposed technique to extract battery cell 

state of charge information, the technique has been compared to the standalone SVSF and 

data for a battery with 0.5 life fraction (mid-life) has been used for testing. The IMM-SVSF 

technique provides good estimation accuracy and stability compared to the standalone 

SVSF. The SVSF, when used with the fresh battery or with an aged battery, will exhibit 

chattering in the state of charge estimate due to model uncertainties. Conversely, the IMM-

SVSF technique adapts to these variations as it takes into account the combined results of 

all the models across the battery lifetime thus provides a smoother and more accurate 

estimate. 
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7.2 Recommendation for future work 

This thesis includes a number of improvements to battery electrochemical and equivalent 

circuit-based models and state of charge estimation strategies. Since vehicle electrification 

is a relatively new research area, a significant amount of research areas are still unexplored. 

The first recommendation for the work presented in this thesis is to expand the developed 

models and strategies from the cell-level to the module and pack-level. This will introduce 

a new challenge for the strategies since they must account for cell-to-cell balancing and 

thermal effects. Future studies should involve looking at this extension. 

Regarding the accelerated-life aging test, instead of relying on battery data from an 

accelerated-life aging test using cyclers in controlled environment (i.e.: thermal chambers), 

data logged from on road electric vehicles in real-world operation (acquisition of load 

cycles using data logger with GPS capability connected to the CAN bus of the vehicle) can 

be used to assess the degradation models and state of charge estimation strategies especially 

at the end-of-life state. However, this test will require a very long period of time until the 

odometer of on road electric vehicles reaches 150,000 miles. In addition, besides the 

driving cycles, considering loading cycles such as air conditioning and heating loads would 

enhance the accuracy and prediction of aging models.  

Another substantial recommendation for future work involves coupling the 

reduced-order electrochemical model with a battery thermal model. This will enhance the 

battery model accuracy and in turn will improve the state of charge estimation 

trustworthiness at various operating temperature conditions. This is beneficial since electric 

vehicle driving range reduces significantly at lower temperatures conditions. 
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Battery electrochemical models accuracy can be significantly enhanced by allowing 

models to account for recovery and rate-capacity effects. Therefore, a hybrid model can be 

developed by combining electrochemical battery models with battery hydrodynamic 

models. Future research can look into the development of the combined model and into the 

application of the state of charge estimation strategies based on the developed hybrid 

model. Finally, a sensitivity analysis on reduced-order electrochemical model parameters 

should also be conducted. 

Although the field of vehicles electrification and in particular; battery modeling, 

and state of charge estimation is a relatively new field, the developed strategies 

demonstrated a number of improvements compared to existing methodologies. The 

contributions of this thesis should provide a strong starting point for future improvements 

to battery modeling, State of charge, and State of health estimation. 
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8. APPENDIX: Electric Vehicle Model 

This section summarizes the electric vehicle sub-models used to generate the current profile 

from the velocity profile.  

A. Vehicle speed Controller 

A Proportional Integral (PI) controller is used to generate the accelerator command. This is 

conducted by comparing the vehicle actual speed with the reference (desired) speed which 

varies based on the driving cycle selected.  The block output is fed to the motor controller 

(next block)  

 

B. Motor Controller 

The accelerator commanded output is linearly converted to motor speed command which 

is sent to the motor controller block as shown in the figure below: 
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The motor controller block contains a PI controller that controls the motor speed by 

comparing the reference (desired) speed to the actual motor speed (after a low pass filter). 

The motor RPM Control signal is sent to enable torque demand block which in turn is sent 

to the electric motor driver. 

 

 

9.  


