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ABSTRACT 

 The human cerebral cortex, the outermost layer of the brain, is 

typically considered in imaging studies to consist of grey matter (GM), 

with white matter (WM) lying below it. With better imaging techniques, a 

third tissue type, found between GM and WM, can be identified. This 

layer contains myelinated axons and is found in the cortex, thus we call 

it intracortical myelin (ICM), or myelinated grey matter (GMm). We 

examined the cortical thickness measurements in female patients with 

bipolar I or II disorders (BD) versus healthy controls. Previous studies 

have only examined the thickness of the entire cortex, the GM. We 

developed a processing pipeline and a statistical tool for examining the 

ICM thickness between two groups. Results show that there are potential 

differences in GMm between BD and control groups. Further regional 

and statistical analysis is required to identify the regions of greatest 

difference, and to confirm significant differences between BD and control 

groups. 
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CHAPTER 1 – INTRODUCTION 

 The human brain is a fascinating and complex system that has 

been trying to understand itself for centuries. Only in recent decades has 

technology allowed us to study the brain in a more detailed and 

quantifiable manner. 

1.1 Cortical Myelin 

The brain contains neurons, which transmit information, and glial 

cells, which provide support to neurons. A type of glial cells known as 

oligodendrocytes form myelin sheaths around the axons of neurons in 

the central nervous system (CNS), and this helps increase transmission 

speed of electrical signals (Kandel et al., 2000). Because of its high lipid 

content, myelin appears white. The majority of the brain has myelinated 

axons, and the tissue is referred to as white matter (WM). The thin (2-

4mm) outermost layer of the brain is known as the cortex, and it is most 

commonly referred to as grey matter (GM) because the axons of its 

neurons are mostly unmyelinated (Kandel et al., 2000). 

There do exist however, myelinated fibres within the cortex 

(Nieuwenhuys, 2013). These fibres are concentrated in radially oriented 

bundles and tangentially organized layers of varying thickness and 

compactness throughout the cortex (Nieuwenhuys, 2013). These 

myelinated areas were discovered over a century ago by Oskar and Cécile 

Vogt in post-mortem animal and human brains using staining 
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techniques (Nieuwenhuys, 2013). This gives rise to a third classification 

of brain tissue we call myelinated grey matter (GMm), which refers to a 

visible layer of myelin between the WM and the GM within the cortex. We 

also refer to this as intracortical myelin (ICM). With more recent 

neuroimaging and processing approaches, we can identify ICM in living 

human brains (Bock et al., 2009). 

1.2 Cortical Thickness and Health 

 The frontal cortex is primarily associated with cognitive processing, 

such as thought, language, attention, and perception (Kandel et al., 

2000). It is therefore an important part of the brain to consider when 

examining neurological and psychiatric conditions. 

The thinning of grey matter as a whole has been associated with a 

wide variety of conditions and disorders. Thinning can indicate a number 

of phenomena: loss of neurons, loss of axons, loss of myelin, or loss of 

glial cells. Thinning of the cerebral cortex has been found in neurological 

disorders such as Huntington's disease (Rosas et al., 2002), multiple 

sclerosis (Sailer et al., 2003), Alzheimer's disease (Querbes et al., 2009), 

and Parkinson's disease (Pereira et al., 2012), as well as psychiatric 

disorders such as attention deficit hyperactivity disorder (Makris et al., 

2007), schizophrenia (Narr et al., 2005), major depressive disorder 

(Truong et al., 2013), and bipolar disorder (Lyoo et al., 2006). It is also 



 M.Sc. Thesis – N. Zaharieva; McMaster University – Neuroscience 

3 

 

important to note that the cortex tends to thin with normal aging as well 

(Hutton et al., 2009). 

 More recently, the ICM, or myelinated grey matter layers, have 

been specifically examined in schizophrenia (Bartzokis et al., 2009). It 

was found that the frontal ICM volume was lower in patients versus 

controls, and varied between medications (Bartzokis et al., 2009). 

Examining the ICM layers is an entirely new area of study not 

previously possible due to historical lower resolution and contrast in 

brain images. It is therefore of high interest that myelinated grey matter 

be examined in other conditions. In this project, we are studying patients 

with bipolar disorder and healthy controls. 

1.3 Bipolar Disorders 

 Bipolar disorders (BD) affect 1.5-3.0% of the general population 

(Strakowski et al., 2004). The DSM-IV-TR divides bipolar spectrum 

disorders into three main categories (American Psychiatric Association, 

2000): 

1. Bipolar 1 Disorder, in which there is cycling between episodes of 

mania and depression. 

2. Bipolar 2 Disorder, in which there is cycling between episodes of 

hypomania (a milder state of mania) and depression. 
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3. Cyclothymic Disorder, in which there is cycling between episodes 

of hypomania and depression that do not reach the full diagnostic 

standard for hypomanic or depressive episodes. 

 A manic episode is characterized by "a distinct period of 

abnormally and persistently elevated, expansive, or irritable mood, 

lasting at least 1 week (or any duration if hospitalization is necessary)" 

(DSM-IV-TR, 2000). A hypomanic episode is characterized by "a milder 

state of mania in which the symptoms are not severe enough to cause 

marked impairment in social or occupational functioning or need for 

hospitalization, but are sufficient to be observable by others" (DSM-IV-

TR, 2000). A depressive episode is characterized by "depressed mood 

and/or loss of interest or pleasure in life activities for at least 2 weeks 

and […] symptoms that cause clinically significant impairment in social, 

work, or other important areas of functioning almost every day" (DSM-IV-

TR, 2000). 

 In this study, we examine patients with bipolar I or II disorder and 

healthy controls. 

1.4 Magnetic Resonance Imaging of Myelin 

 Magnetic resonance imaging (MRI) is a medical imaging technique 

which produces 3D images of the anatomy and structure of the organ 

scanned, in this case the brain. Unlike other brain imaging techniques, 

MRI does not use ionizing radiation, and is therefore safer. 
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 The principle of an MRI scanner relies on the idea that the 

hydrogen atoms within the human body are magnetically active 

(McRobbie, 2007). The MRI has three types of magnetic fields, a strong 

constant field, B0, spatially varying gradient fields, Bx , By and Bz, and an 

oscillating radio frequency (RF) field, Brf (McRobbie, 2007). The gradient 

fields vary slightly in strength along the x, y, and z axes in order to 

encode for location. With the constant field B0 on, the hydrogen nuclei 

align parallel or anti-parallel to its direction, and precess like spinning 

tops at a frequency specific to hydrogen and related to the B0 strength 

(Callaghan, 1991). When the RF field is turned on briefly, the hydrogen 

nuclei tilt away from B0, and then return when it's turned off. This return 

is called "relaxation", and the nuclei release some energy, which is then 

recorded by detectors (McRobbie, 2007). 

 The relaxation time can be divided into two components: T1, the 

longitudinal relaxation time, and T2, the transverse relaxation time. 

Because different tissues have different relaxation times, they appear 

brighter or duller in T1 or T2-weighted images (Callaghan, 1991). This 

represents the primary contrast mechanism in neuroimaging with MRI, 

because gray and white matter have different T1's and T2's. In this study, 

we used optimized T1-weighted imaging to obtain the highest contrast 

between WM and GMm (Bock et al., 2013). 

1.5 Cortical Thickness Measures 
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 The brain has previously been divided into two tissue types, GM 

and WM, according to the intensity values in MRI images (Kapur et al., 

1996). Here, we will divide the brain into three tissue types: GM, WM, 

and GMm. We define the distances between the boundaries as: GM-to-

WM, total cortical thickness; GM-to-GMm, unmyelinated cortical 

thickness; and GMm-to-WM, myelinated cortical thickness. Figure 1 

illustrates these boundaries and distances. 

 

Figure 1 – Segmented cortical boundaries. 
(Hashim et al., Second annual Whistler scientific workshop on brain 
functional organization, connectivity, and behaviour, 2014). 
 
1.6 Hypothesis 

Our big question is ultimately whether any of these three 

thicknesses are statistically different between BD patients and healthy 

controls. Specifically, we would like to investigate changes in the 

thickness of the ICM layers in the frontal lobe, as this could represent a 

loss or gain of myelin, indicating disrupted circuits in BD. While our 

study currently contains only a limited number of subjects in control and 

BD groups, the purpose of this thesis is to develop a statistical 



 M.Sc. Thesis – N. Zaharieva; McMaster University – Neuroscience 

7 

 

framework for investigating these changes in future studies with larger 

cohorts of subjects. 

We begin by taking an average of each group and comparing each 

corresponding data point, or voxel, between the average images. The 

three null hypotheses are: For every point on the surface of the brain in 

the MRI image, there is no difference in (1) myelinated, (2) unmyelinated, 

(3) total cortical thickness between BD and control brains. 
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CHAPTER 2 – METHODS 

 We worked in conjunction with St. Joseph's Healthcare in 

Hamilton to obtain and analyze MRI data of BD and control subjects. 

Data processing took place at McMaster University. 

2.1 Subject Recruitment 

 Subjects were recruited through the Mood Disorders Program & 

Women’s Health Concerns Clinic at St. Joseph's Healthcare in Hamilton, 

Ontario (Frey et al.) as part of a project on blood markers. Experiments 

were approved by the Research Ethics Board at St. Joseph's Healthcare, 

and informed consent was obtained from each subject. 10 female BD 

patients and 10 female age-matched controls were recruited. "Inclusion 

criteria for both groups was: Age 18-45, right-handed, premenopausal, 

regular menstrual cycles, and no use of hormonal agents. Inclusion 

criteria for BD subjects: Diagnosis of BD type-I or type-II according to the 

SCID-I, and being euthymic for at least 3 months. Exclusion criteria: Any 

current co-morbid Axis I psychiatric diagnosis (for BD subjects), 

alcohol/substance abuse within the past year (excluding caffeine and 

nicotine), past or current history of neurological disorders including head 

trauma and migraines, unstable general medical conditions and presence 

of any contra-indications for MRI" (Frey et al.). 

 Out of the 20 total scans, 2 BD and 2 control scans were excluded 

due to artifacts in the images, either due to motion during the scan, or 
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incorrect imaging procedure. The final dataset contains N1=8 control and 

N2=8 bipolar. Table 1 summarizes the demographics of the final 16 

subjects. 

Control Age Bipolar Age 

Subject 1 22 Subject 1 29 

Subject 2 23 Subject 2 36 

Subject 3 23 Subject 3 41 

Subject 4 45 Subject 4 32 

Subject 5 26 Subject 5 42 

Subject 6 44 Subject 6 28 

Subject 7 41 Subject 7 42 

Subject 8 47 Subject 8 42 

Mean 33.9 Mean 36.5 

Table 1 – Subject demographics. 

2.2 MRI Data Acquisition 

 The MRI scanner used was a 3.0 Tesla General Electric whole body 

short bore scanner (Software Version 22.0) with a 32-channel receive-

only coil for the head (MR Instruments) and a transmit body coil (GE). 

Subjects were scanned during the follicular phase of the menstrual cycle 

(Frey et al.). Blood samples were collected on the same day as the scan in 

order to be correlated with white matter content (Frey et al.). 

 Three types of images were collected: an Anatomical Reference 

image, the T1-weighted image, and a Ratio image. Each of these images 



 M.Sc. Thesis – N. Zaharieva; McMaster University – Neuroscience 

10 

 

were 3D and had a 1mm isotropic resolution. A description of the 

sequences used is found below: 

 Anatomical Reference image: A reference image, made using a 3D 

inversion-recovery gradient echo sequence (GE 3D BRAVO) with the 

parameters: Inversion time = 450 ms, TE = 3.2 ms, TR in acquisition 

block = 8.4 ms, flip angle in acquisition block = 12°, FOV = 25.6 x 25.6 x 

25.6 cm, matrix = 256 x 256 x 256, linear phase encoding, 

Autocalibrating Reconstruction for Cartesian imaging (ARC) parallel 

imaging factor of 2 in the second phase encode direction, Number of 

averages = 1, time = 5 min 32 s. 

 T1-weighted image: An image with increased intracortical contrast, 

made using four separate images collected with an inversion-recovery 

gradient echo sequence (GE 3D BRAVO) with the parameters: Inversion 

time = 1100 ms, Time between end of acquisition block and next 180° 

pulse (TD) = 1000 ms TE = 3.2 ms, TR in acquisition block = 8.4 ms,  flip 

angle in acquisition block = 12°, FOV = 24.0 x 10 (selective slab in 

left/right direction)  x 24.0 cm, matrix = 240 x 100 x 240, centric phase 

encoding, ARC factor 2 in second phase-encoding direction, Number of 

averages = 1, time = 5 min 53 s. To increase intracortical contrast, each 

hemisphere was imaged separately. To increase SNR, each hemisphere 

was imaged twice. Each of the four separate images were registered to 

the anatomical reference image using a 6-parameter affine 
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transformation (FLIRT Tool in FSL Version 5.0 (fsl.fmrib.ox.ac.uk/fsl/)) 

(Jenkinson et al., 2012). The images were then summed to create the 

final image of the whole head. 

 Ratio image: An image that corrects B1 inhomogeneity artifacts in 

the T1-weighted image, made with a 3D gradient-echo sequence (GE 3D 

SPGR) with the parameters: TE = 3.1 ms, TR = 7.9 ms, flip angle = 4°, 

FOV = 24.0 x 17.4 x 24.0 cm, matrix = 240 x 174 x 240, Number of 

averages = 1, time = 5 min 29 s. The proton-density weighted image was 

registered to the T1-weighted image using a 6-parameter affine transform 

(FSL). It was then filtered with a 3D median filter with a 5 x 5 x 5 kernel 

size.  Finally, the T1-weighted image was then divided by the filtered 

proton-density weighted image to create the ratio image. 

2.3 Data Processing 

 Image processing was performed predominantly in MIPAV v7.0.1 

software (mipav.cit.nih.gov) using the CBS High-Res Brain Processing 

Tools Version 3.0 plug-ins (www.nitrc.org/projects/cbs-tools/). The 

following procedure was performed: 

1. Generate labels identifying the cerebrum. Use the SPECTRE 2010 

algorithm (Carass et al., 2011) on the T1-weighted image to remove 

the skull. 

2. Use the Multiple Object Geometric Deformable Model (MGDM) 

Multi-contrast Brain Segmentation algorithm (Bogovic et al., 2013) 
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on the Ratio image to generate probabilistic labels for tissue 

classes in the brain. 

3. Use the CRUISE algorithm (Landman et al., 2013) on the 

probability labels to generate smoothed, topologically correct labels 

for the cerebrum. 

4. Manually inspect and correct the labels. 

5. Remove subcortical structures (as identified by the MGDM 

algorithm) from the labels and mask the Ratio image. 

6. Use the Fantasm algorithm (Pham, 2001) to segment the masked 

Ratio image into the three tissue classes (GM, GMm, WM) based on 

a fuzzy c-means clustering algorithm. Binary labels for GM and 

GMm are taken at a fuzzy threshold of 1. The labels for WM are 

taken at a fuzzy threshold of 0.1 and then morphologically 

processed. 

7. Smooth the GMm labels in Amira 5.2.2 (www.vsg3d.com/amira/) 

using 3D morphological smoothing with a kernel size of 2. 

8. Remove GMm identified in the outermost layers of the cortex. 

9. Calculate the levelsets, φ, using the Distance Field algorithm 

(Sethian, 1999). 

10. Calculate the distances between boundaries. The distances for 

individual subjects are visualized on the pial surface in Amira. 
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11. Register the images for each individual to the ICBM 152 atlas 

space (Fonov et al., 2011; Fonov et al., 2009) using FSL Version 

5.0 (Jenkinson et al., 2012) using the parameters in the 

T1_2_MNI152_2mm.cnf file. 

12. Apply the warp to each distance file. 

13. Visualize the distance images in Amira using a surface mesh 

created from the pial surface of the ICBM 152 atlas. 

Because each brain has a unique size, shape, and folding, they are 

mapped – or registered – to the same space (ICBM 152), so we may 

compare each voxel location meaningfully. 

 Each image is 182 × 218 × 182 voxels = 7 221 032 total. When 

mapped onto the brain surface, the relevant data falls onto 578 194 

points on the pial surface (286 246 right hemisphere, 291 948 left 

hemisphere). It can thus be said that we have 578 194 thickness 

measurements in each thickness map of the brain. 

2.4 Statistical Analysis 

 The statistical analysis of MRI data is not a trivial matter. One of 

the most common types of statistical test used is the Student's t-test. T-

tests assume normally distributed data. This assumption may not always 

hold true for measures in the human brain such as cortical thickness, 

but is a reasonably good approximation. 
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 When comparing two groups, as we are here with BD and control, 

a two-sample t-test is used, as opposed to a one-sample test. Because 

our groups are comparing different individuals (as opposed to, for 

example, the same group before and after a treatment), an unpaired t-

test is used. In this parametric test, we assume that the variance within 

the control population is equal to the variance within the BD population. 

We also assume that both datasets are normally distributed. 

The result of the t-test is proportional to the difference between the 

two sample means, and inversely proportional to their variances. The t-

statistic can be converted to a p-value between 0 and 1, with a value 

closer to 0 being more significant. This value can be conceptually 

thought of as a probability of the difference being significant. For 

example, if we obtain p = 0.001, the probability of there being a 

statistically significant difference is (1–p)×100% = (1–0.001)×100% = 

99.9%. 

 This would normally be straight forward, except that we are not 

comparing only one voxel in the brain. The number of voxels on the 

surface of the cortex that we are interested in is 578 194, and in our 

analysis we are comparing all 7 221 032 voxels because it is not trivial to 

separate those which contain our data of interest from those which do 

not. In any case, we are doing hundreds of thousands of t-tests, or 

comparisons. With each comparison, we increase our chance of a false 
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positive, or Type I error, which means we may fail to reject the null 

hypothesis when we should be (Lindquist, 2008). Another way of looking 

at it, is if we choose a confidence level, 1–α, of 0.05 for example, then we 

can only be confident about (1–α)×100% or 95% of our results, and 5% of 

them could be false positives but we would not know it. 

 There are numerous ways of taking into account multiple 

comparisons such as the ones made in MRI analysis (Genovese et al., 

2002). A common solution is to use a multiple comparisons correction, 

such as the Bonferroni correction. Here, the significance α is simply 

divided by the number of comparisons being made (Genovese et al., 

2002). In our case, if we want to use α=0.05, in other words, we want to 

be 95% confident, we would divide α by 578 194 to yield α= 8.65×10-8. 

This means that our p-value has to be below 8.65×10-8 in order to be 

95% certain it is significant. Clearly, the Bonferroni correction is much 

too conservative in protecting from false positives, and we end up with 

many false negatives, or Type II errors (Genovese et al., 2002). 

 Many MRI studies use the Bonferroni correction or other multiple 

comparison corrections, but most divide the brain up into regions of 

interest, or ROI's (Thompson et al., 2001; Makris et al., 2007; Sailer et 

al., 2003; Sowell et al., 2003). When taking into account an ROI, one 

only has to divide the significance α by the number of voxels in that ROI, 

yielding slightly less conservative p-values. In the extreme, all thickness 
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values in the ROI can be summed into a single measure, which will also 

greatly increase statistical power. The ability to localize changes at a fine 

resolution in the brain is lost, however. 

 Another solution to the Bonferroni problem is to use an expected 

false discovery rate (FDR) in order to choose a better p-value threshold 

(Genovese et al., 2002). Some studies choose to use this method 

(Schwartzman et al., 2009; Shaw et al., 2006; Rimol et al., 2010). This 

also requires using only the relevant data points, which we have not 

separated from the entire brain as of yet. 

 Other methods for working around the multiple comparisons 

problem include using principal component analysis (PCA) (Narr et al., 

2005), random field theory (RFT) (Truong et al., 2013), and resampling, 

which includes jackknifing, bootstrapping, and permutation tests 

(Thompson et al., 2005; Foland-Ross et al., 2011). It is very common in 

neuroimaging to simply use a lower α threshold such as 0.001 to 

approximate a multiple comparison correction (Lyoo et al., 2006; Rosas 

et al., 2002; Pereira et al., 2012; Querbes et al., 2009), often in 

combination with ROI analysis. 

 We chose to use an uncorrected α=0.05 and α=0.001, and a 

Bonferroni corrected α=0.05 in our analysis. 0.05 is a common threshold 

in preliminary analysis, and 0.001 is used as a less strict approximation 

of the Bonferroni correction (Lyoo et al., 2006). All calculations were 
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preformed in MATLAB R2013a (8.1) 

(http://www.mathworks.com/downloads/web_downloads/), using the 

Statistics ToolboxTM (8.2) and the Image Processing Toolbox (8.2). Table 2 

outlines the statistical tests we included in our analysis. 

Quantity Explanation MATLAB Function 

Means - mean 

Standard deviations - std 

Coefficients of variation standard deviation/mean - 

Difference of the means mean1 – mean2 - 

Percent difference 
(mean1 – mean2)/mean1 

× 100% 
- 

T-statistics - ttest2 

P-values - ttest2 

Significance 
1 (significant) or 0 (not 

significant) 
ttest2 

Table 2 – Statistics included in analysis. 

The code outputs results into Analyze 7.5 format images (*.img 

extension with *.hdr header file), which can then be viewed and analyzed 

with most imaging software such as Amira. 
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CHAPTER 3 – Results 

 Results of our calculations were displayed in Amira imaging 

software, and screenshots were obtained. Results are summarized 

visually in Figures 2-28. 

 Some minor errors in the processing stages remain uncorrected. A 

comparison of one correct and one incorrect brain image is provided in 

Figures 2, 11, and 20. The difference won't significantly affect statistical 

analysis. 

 In the rainbow legend, the bluer areas are thinner and the redder 

areas are thicker. In the blue/grey/red legend, the blue areas represent 

thicker areas in BD and the red areas represent thicker areas in controls. 

In the hypothesis tests, blue represents "statistically insignificant" and 

red represents "statistically significant". 

3.1 Myelinated Cortical Thickness 

 This is the thickness measure of most interest to this study. 

Figures 3 and 4 show the individual brains of control and bipolar 

subjects after registration, respectively. Figures 5-7 show the means, 

standard deviations, and coefficients of variation, respectively. Figure 8 

shows the difference of the means and the percent difference. Figure 9 

shows the results of the t-test and the p-values. Figure 10 shows the 

areas of statistical significance. 
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Our mean Corrected mean 

Figure 2 – GMm-to-WM mean versus correct mean of controls. 
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Control Subject 7 Control Subject 8 

Figure 3 – GMm-to-WM of individuals in control group. 
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Bipolar Subject 7 Bipolar Subject 8 

Figure 4 – GMm-to-WM of individuals in bipolar group. 

 

 

Control Bipolar 

Figure 5 – Mean of GMm-to-WM. 
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Control Bipolar 

Figure 6 – Standard deviation of GMm-to-WM. 

 

 

Control Bipolar 

Figure 7 – Coefficient of variation of GMm-to-WM. 
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Mean difference Percent difference 

Figure 8 – Mean difference and percent difference of GMm-to-WM. 

 

 

 
 

 

T-statistics P-values 

Figure 9 – T-statistics and p-values of GMm-to-WM. 
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p<0.05 p<0.001 

Figure 10 – Significances of GMm-to-WM. 

3.2 Unmyelinated Cortical Thickness 

 Figures 12 and 13 show the individual brains of control and 

bipolar subjects after registration, respectively. Figures 14, 15, and 16 

show the means, standard deviations, and coefficients of variation, 

respectively. Figure 17 shows the difference of the means and the percent 

difference. Figure 18 shows the results of the t-test and the p-values. 

Figure 19 shows the areas of statistical significance. 
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Our mean Corrected mean 

Figure 11 – GM-to-GMm mean versus correct mean of controls. 
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Control Subject 7 Control Subject 8 

Figure 12 – GM-to-GMm of individuals in control group. 
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Bipolar Subject 7 Bipolar Subject 8 

Figure 13 – GM-to-GMm of individuals in bipolar group. 

 

 

Control Bipolar 

Figure 14 – Mean of GM-to-GMm. 
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Control Bipolar 

Figure 15 – Standard deviation of GM-to-GMm. 

 

 

Control Bipolar 

Figure 16 – Coefficient of variation of GM-to-GMm. 
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Mean difference Percent difference 

Figure 17 – Mean difference and percent difference of GM-to-GMm. 

 

 

 
 

 

T-statistics P-values 

Figure 18 – T-statistics and p-values of GM-to-GMm. 

(mm) % 
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p<0.05 p<0.001 

Figure 19 – Significances of GM-to-GMm. 

3.3 Total Cortical Thickness 

 Figures 21 and 22 show the individual brains of control and 

bipolar subjects after registration, respectively. Figures 23, 24, and 25 

show the means, standard deviations, and coefficients of variation, 

respectively. Figure 26 shows the difference of the means and the percent 

difference. Figure 27 shows the results of the t-test and the p-values. 

Figure 28 shows the areas of statistical significance. 
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Our mean Corrected mean 

Figure 20 – GM-to-WM mean versus correct mean of controls. 

 

 

Control Subject 1 Control Subject 2 

 

(mm) 

(mm) 



 M.Sc. Thesis – N. Zaharieva; McMaster University – Neuroscience 

36 

 

 

 

Control Subject 3 Control Subject 4 

 

 

Control Subject 5 Control Subject 6 

 

(mm) 

(mm) 



 M.Sc. Thesis – N. Zaharieva; McMaster University – Neuroscience 

37 

 

 

 

Control Subject 7 Control Subject 8 

Figure 21 – GM-to-WM of individuals in control group. 
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Bipolar Subject 7 Bipolar Subject 8 

Figure 22 – GM-to-WM of individuals in bipolar group. 

 

 

Control Bipolar 

Figure 23 – Mean of GM-to-WM.  
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Control Bipolar 

Figure 24 – Standard deviation of GM-to-WM. 

 

 

Control Bipolar 

Figure 25 – Coefficient of variation of GM-to-WM. 
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Mean difference Percent difference 

Figure 26 – Mean difference and percent difference of GM-to-WM. 

 

 

 
 

 

T-statistics P-values 

Figure 27 – T-statistics and p-values of GM-to-WM. 

(mm) % 
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p<0.05 p<0.001 

Figure 28 – Significances of GM-to-WM. 

3.4 Results Summary 

 We observed notable differences between BP and control averages. 

Statistically, there were some significant differences for an uncorrected α 

of 0.05, but almost no difference for an α of 0.001, and no difference at 

all for a Bonferroni corrected α of 0.05. Although there are differences 

scattered all throughout the cortex, we see fairly consistent thinning in 

the left and right prefrontal areas, and less consistently noticeable 

differences in others parts of the cortex. It remains unclear whether 

either of the null hypotheses can be rejected, and further analysis is 

necessary. 
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CHAPTER 4 – DISCUSSION 

 This preliminary study shows promising results in the examination 

of intracortical myelin. 

 One downfall of our study is the low number of subjects (N=8 for 

each group). Less strict exclusion criteria may have allowed for a much 

higher number of subjects, which could then be filtered according to 

various cofactors for further study, such as age, IQ, or bipolar subtype. 

An analysis of covariance (ANCOVA) could be performed. 

 It may be interesting to study the effects of age on cortical 

thickness in BD versus control (Salat et al., 2004). It would also be 

worthwhile to examine if different medications have different effects on 

ICM, as suggested in schizophrenia studies (Bartzokis et al., 2009). 

Finally, it would be particularly meaningful to see if ICM differences are 

more prominent in bipolar I versus bipolar II, as sometimes appears to be 

the case with grey matter (Rimol et al., 2010). This could give some hints 

as to whether the severity of manic episodes plays a role in cortical 

thinning. It would also be of great interest to see if the duration of the 

illness or the number of manic/hypomanic episodes play a role, as 

suggested (Strakowski et al., 2004). 

 The analysis depends heavily on the assumption that the data in 

both groups is normally distributed. The t-test relies on this assumption 

and is no longer useful when it doesn't hold true. We also assumed that 
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the variances of both groups were equal, when they very well may not be. 

It is entirely possible that the data follows a different type of distribution. 

For example, perhaps there is a notable difference between bipolar I and 

II brains, causing a bimodal distribution. Perhaps there is a difference 

depending on the medication(s) used, the age, IQ, or other factors. With 

an N of 8, normality tests may not give meaningful results, but it is a 

good idea to apply them once the sample sizes increase. 

 Another good idea would be to apply a non-parametric test; one 

that does not make assumptions about the probability distributions of 

the data; or a test that models the distribution of the data, such as 

statistical bootstrapping using a Monte Carlo simulation (Adèr et al., 

2008). Bootstrapping is highly recommended in situations where the 

theoretical distribution is unknown and the sample size is small (Adèr et 

al., 2008). 

 One thing that may improve the analysis is performing a surface-

based spatial normalization instead of a volume normalization in the 

processing. Better results may also be obtained by spatially smoothing 

the data using a Gaussian kernel, but at the expense of the high 

resolution needed to identify the tissue boundaries. Finally, clustering 

the p-value results spatially would decrease the possibility of noise in the 

significance images, avoiding single voxels that indicate significance, for 

example. 
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 In order to make the statistical analysis more robust, it's clear that 

the next step would be to divide the brain up into ROI's. It has also 

become clear that the data points of interest – the voxels on the pial 

surface of the brain – need to be separated from the rest of the data. This 

is not trivial and depends on the type of surface mapping used. Once 

these two steps are completed, the Bonferroni correction can be applied 

with fewer problems. Additionally, averages can be taken within each ROI 

and compared across ROI's. If desired, some of the more advanced 

techniques described earlier such as PCA, resampling, RFT, or FDR, can 

be applied. A power analysis can be performed to determine the 

minimum sample size needed for similar results to be significant. 

 Although the sample size is currently too small to be conclusive, 

the results obtained seem very promising. The concept of dividing the 

brain into three tissue types can be tested in any neuroimaging study 

where previously only two tissue types, GM and WM, have been 

examined. This gives rise to an enormous potential for new research. 

These new methods of obtaining, processing, and analyzing 

anatomical brain data bring us one step closer to understanding the 

complex system that is the brain. 
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