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Abstract

A key problem in designing marketplaces is how to efficiently allocate a collection of

goods amongst multiple people. Auctions have emerged as a powerful tool with the

promise to increase market efficiency by allocating goods to those who value them

the most. Nevertheless, traditional auctions are unable to handle real-world mar-

ket complexities. Over the past decade, there has been a trend towards allowing

for package bids and other types of multidimensional bidding techniques that enable

suppliers to take advantage of their unique abilities and put forth their best offers. In

particular the application of iterative combinatorial auctions in procurement saves ne-

gotiation costs and time. Conceptually these auctions show a potential for improving

the overall market efficiency. However, in practice they host several new challenges

and difficulties.

One challenge facing the auctioneer in an iterative combinatorial auction environ-

ment is to quickly find an acceptable solution for each round of the auction. Bidders

require time to precisely evaluate, price, and communicate different possible combina-

tions based on their current information of item prices. The auctioneer requires time

to solve the underlying mathematical problem formulation based on the bids received,

report back the feedback information and initiate a new round of the auction.
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In Chapter 3, we propose a Lagrangian-based heuristic to solve the auctioneer’s winner

determination problem. After generating the Lagrange multipliers from the solution

of a linear relaxation, the heuristic applies several procedures to fix any potentially

infeasible optimal Lagrange solutions. In addition to providing an efficient way of

solving the winner determination problem, as compared with the leading commercial

solver CPLEX, our approach provides Lagrange multipliers. The latter are used as

proxies for prices in the auction feedback mechanism.

In Chapter 4 we develop a model for the bidders pricing problem, an issue that has

received much less attention in the literature. Using the auctioneer feedback, that

includes the Lagrange multipliers, the pricing model maximizes the bidders’ profit

while at the same time keeping their bids competitive. We derive several optimality

results for the underlying optimization problem. Interestingly, we analytically show

that the auction converges to a point where no bidder is able to submit a bid that

yields strictly better profit for him and is not less competitive than his previous bids

submitted. We experimentally observe that this approach converges in an early stage.

We also find that this iterative auction allows the bidders to improve their profit while

providing lower and competitive prices to the auctioneer.

In Chapter 5, we introduce a flexible auction model that allows for partial bids.

Rather than the regular all-or-nothing indivisible package bids, divisible bids provide

flexibility for the auctioneer with the possibility to accept parts of the bids and

yet allow the suppliers to capture synergies among the items and provide quantity
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discounts. We show numerically that this approach improves the overall efficiency of

the auction by increasing the suppliers’ profit while decreasing the auctioneer’s total

price of procurement. In addition, we find that computationally the flexible auction

outperforms the regular auction.
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Chapter 1

Introduction

From long ago, auctions have been used as means of trading goods and services with

unknown prices. Herodotus reports using auctions in Babylon as early as 500 B.C.

[57]. Ever since then, auctions have been used in commercial trades to liquidate

properties. Today both the range and value of objects sold by auctions has grown

significantly. Through auctions, numerous kinds of commodities ranging from fresh

flowers to gold bullion, art objects and antiques are transferred to the hands of the

people who value them the most.

As well as individuals and private organizations, the public sector also benefits im-

mensely from auctions in transferring assets to private hands. Examples include sales

of industrial enterprises, transportation systems, natural resources such as off-shore

oil leases, and electromagnetic spectrum for communication. In today’s modern era,

wide easy access to internet has intensified the implementation of auctions. By means

of various internet auction websites, individuals set up items for sale and apply com-

mon auction rules to allocate them to those who offer the best prices.
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While multi-unit auctions facilitate negotiations on large quantities of a single item,

multi-item auctions enable bidders to express interest on several heterogeneous ones.

As many organizations started adopting some sort of multi-unit multi-item auctions,

they realized a fundamental shortcoming of these mechanisms which is their inability

to allow for complex bid structures which exploit complementarities and economies

of scale. This emerged interest to extend the basic auction types to support bids with

a more complex set of preferences.

Combinatorial Auctions (CA) offered one potential solution by permitting bidders to

select subsets of items to bid upon and thus fully express their sub- or super-additive

valuations over those items. The most important reasons for the increased popularity

of combinatorial auctions in commerce include increased sellers’ revenue, elevated bid-

ders’ preference elicitation opportunities, and eventually improved market efficiency.

As opposed to single-round auction designs, multi-round or iterative CAs (ICAs)

have been selected in a number of industrial applications, since they help bidders to

express their preferences by providing feedback, such as provisional pricing and allo-

cation information, in each round. ICAs have several advantages over single-round

auctions. Whereas single-round combinatorial auctions are usually followed by after-

market negotiations to overcome the inefficiencies [32], empirical studies suggest that

in complex economic environments iterative auctions enhance the ability of the par-

ticipant to detect competition and learn when and how high to bid in order to produce

better results than single-round auctions [89].

2
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In a reverse auction, commonly referred to as procurement auction, the role of the

buyer and seller is changed in that a single buyer offers a contract out for bidding and

multiple sellers attempt to offer lower bids than their competitors in order to obtain

the business. Industrial procurement is a domain where combinatorial auctions have

emerged as a powerful mechanism. In addition to economical advantages of imple-

menting these auctions, industrial procurement benefits from significant cost savings

in complex negotiation scenarios as well as improved time efficiency in uploading large

data sets and processing them. Combinatorial auctions provide the possibility to im-

pact the market structure and involve small businesses by splitting large contracts

into small ones. As reported by Beall et al.[10], more than forty percent of the large

firms (spending over 100 million dollars) in North America were using procurement

combinatorial auction in 2003.

Alongside their attractive attributes, application of iterative combinatorial auctions

(in procurement and otherwise) is not an easy task. The goal in this dissertation is

to address some of the challenges faced by the auctioneer and/or the bidders when

implementing these auctions.

1.1 Chapter 2

As the number of items increases in an auction, the number of possible combinations

for bidders to evaluate grows exponentially. This imposes serious computational

challenges when trying to find an allocation of packages to the bidders that provides

the auctioneer with the greatest payoff value (greatest revenue in a direct and lowest

3



Ph.D. Thesis Computational Sci. & Eng.

procurement cost in a reverse auction) [95].

Chapter 2 of this thesis is devoted to reviewing most important research findings

relevant to the subject of of our research. Our primary goals in this chapter are to

• build a consistent terminology to be used throughout this thesis,

• review the theoretical principals and foundations,

• review the related literature,

• highlight how the contributions of this thesis fill in some of the gaps in the

literature.

1.2 Chapter 3

In an iterative auction environment where the NP-hard problem of the winner deter-

mination problem has to be solved repeatedly, time becomes a constraint [51]. The

focus in Chapter 3 is to design a Lagrangian-based heuristic for solving this problem.

The Lagrangian multipliers provide useful economic interpretation in the context of

combinatorial auctions and have the potential to initiate multiple rounds for auctions.

The contribution of this chapter is twofold. First, we describe a novel technique

to solve for the Lagrangian optimal solution in a single iteration. As described in

Section 2.3.4, traditional solution methodologies applied for solving the Lagrangian

relaxation problem suffer from a slow convergence rate as well as sensitivity to the

initialization of the parameters involved. Our proposed technique surpasses these

4
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difficulties by optimal initialization of the Lagrangian multipliers.

Second, we propose a heuristic to project the Lagrangian optimal solution into the

feasible region of the primal problem. On an average of 7,500 problem instances

that we generated for problems with 10, 20, 30 items and 100, 200,...,1000 bids,

our proposed algorithm is on average 219.86 times faster than CPLEX 12 to find a

solution within 10% of the optimality. Nevertheless, we found our approach is best

suited for the class of problems for which the maximum quantity of items offered in

each package is less than half of the demand (for that item). In this case, for 10,

20, and 30 items, our algorithm provides a near optimal solution respectively 5, 6,

and 7 percent off from the optimal in around 1/3, 1/227, and 1/1065 of the CPLEX

run-time.

1.3 Chapter 4

Solving for the WDP has received intensive attention in the literature. However, one

issue not discussed quite as much is devising mathematical methods for bidders to op-

timize their bid generation technique. Most auctions assume that bidders know how

to determine optimal packages and even derive fundamental theoretical equilibrium

properties for such auctions. From the bidders’ perspective though, the evaluation

and pricing process is a difficult task. They need to explicitly determine how to select

and more importantly price the best set of items to bid from an exponential number

of possible combinations so as to maximize their profit while increasing their chances

of winning the next round of the auction. In this chapter we develop an integrated

5
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iterative combinatorial auction that deals with how to integrate the auctioneers’ op-

timization problem with the bidders’ optimal bid generation. Specifically, we look

at the bidders’ pricing problem in an ICA. Pricing in ICAs is subtle. In one line of

research, prices are constructed by the auctioneer in a way that in an iterative auction

environment they converge to the market equilibrium prices. Bidders respond to these

prices with the quantities they are willing to supply at the announced prices. Con-

vergence to market equilibrium prices, incentivizes the bidders to reveal their true

valuations in the auction. As reviewed in Section 2.3.5, despite strong theoretical

foundations, Scheffel et al. [12, 101] showcase that experimentally these approaches

lack efficiency since the presumptions are too strong to implement in realistic settings.

In Chapter 4, we use Lagrangian multipliers to help bidders determine item prices so

as to keep communication complexity to a minimum. We use these prices as a guide

and proceed to formulate the bidders’ problem with the objective to maximize their

profit subject to generation of that are competitive.

There have been multiple proposals on how to design the pricing scheme in ICAs

including approximate linear, non-linear, and personalized non-linear prices as re-

viewed in Section 2.2.5.2. As of now, there is no general consensus on a single best

design. Each pricing scheme is proven useful for a certain valuation structures. In

our research, we focus on ICA designs with linear ask prices in which each item is

assigned an individual price, and the price of a package of items is the sum of the

single-item prices. Linear prices are easy to understand for bidders, and provide a

good guidance for computing the price of any bundle even if no bid was submitted
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for it.

Every time the auctioneer solves the winner determination problem, the Lagrangian

optimal multipliers are revealed to the bidders. Bidders use the announced prices to

maximize their profit while generating a more competitive bid. We show that the

auction converges to a point where no supplier is able to make a strictly better deal,

causing the auction to terminate.

1.4 Chapter 5

With indivisible package bids suppliers either win all that they offer or nothing. Thus,

suppliers would have to provide exponentially many bids (with respect to the num-

ber of items in the auction) to completely describe their valuation structure. For

10 items, this could lead to over 1,000 bids per supplier. Even if suppliers could

determine complete sets of combinatorial bids, they would probably be unwilling to

provide this information. Presence of multiple units of each item in a combinatorial

auction amplifies this complexity by providing the possibility for bidders to make

different choices of quantities for each combination of items chosen in each package.

One approach to get around this complexity is to allow for partial bid acceptance.

Rather than pricing every different desirable package of quantities of items, suppliers

prepare and submit cost or price functions with per unit prices of the items they

include in each package. Despite their wide applicability in real scenarios, auctions

with divisible bids are rare in the literature.

7
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The bidding languages currently deployed to address divisible bids suffer from defi-

ciencies. For most cases, the unit price as well as the number of quantities declared

remain the same for all assets included in a package. Moreover, some studies ignore

how bidders could take advantage of providing quantity discounts for provision of

larger quantities of items in order to make more competitive bids.

In Chapter 5 we introduce a bidding language which overcomes these shortcomings

and experimentally, illustrate the efficiency of allowing for partial bid acceptance.

Analysis of the Lagrangian relaxation properties of the WDP with divisible bid sub-

missions (DWDP) reveals that the properties observed for WDP with indivisible bids

holds for DWDP. Looking at the suppliers’ optimization problem in a divisible en-

vironment, we develop quantity-based (QPMBD) as well as risk-based (RPMBD)

profit maximization models for suppliers. QPMBD seeks the optimal price and quan-

tity values that maximize suppliers’ profit. QPMBD is modelled as a nonlinear mixed

integer programme and then transformed into a mixed integer programme. RPMBD

maximizes the profit for suppliers’ with different levels of riskiness. We investigate the

optimality conditions for the RPMBD problem formulations as well as how the riski-

ness of the suppliers’ affects their overall gain. On average, our imperial work suggests

that divisible bids improve the overall auction efficiency by increasing the suppliers’

profit while decreasing their price offerings and consequently the auctioneer’s total

cost of procurement.

8
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1.5 Chapter 6

This Chapter includes our concluding remarks. We also propose research directions

to expand on the research questions presented in this thesis.

9



Chapter 2

Literature Review

Auctions are celebrated as one of the triumphs of game theory in economy. Even so,

they have attracted several scientists from operations research and computer science

when solving for an efficient solution to the underlying resource allocation problem

with self-interested agents.

Ever since the successful application of auctions in the sales of spectrum rights, auc-

tions started to be adopted by many modern market environments in their major

trades [71]. As many organizations began to realize the efficacy of auctions, interest

has grown from basic auction types to combinatorial auctions which support nego-

tiations on subsets of items. Combinatorial auctions exploit economies of scale in

bidders’ valuation structure by allowing for complex bid structures. Whereas forward

auctions are used for selling, reverse (or procurement) auctions are deployed for pro-

curement of goods or services.

In an auction that aggregates iterative and combinatorial auctions (ICAs), bidders
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submit bundle bids iteratively and the auctioneer computes allocations and ask prices

in each round of the auction. Iterative auctions dynamically collect information about

bidders valuations and set the prices of a trade within the auction. Despite achieving

desirable economic efficiency, such auction design involves dealing with several compu-

tational, communicational complexity which make implementation of these auctions

a difficult task.

To review the literature on ICAs and the challenges it brings about, we open this

chapter by introducing auction theory and providing an overview of the game theoretic

perspective of auctions. Mechanism design is described next to define allocations

and payment rules in such a way that rational bidders would follow certain desired

strategies. We describe various mechanism designs that define different auction types

and briefly go over some primary and secondary auction types we use in our work.

Specifically, we will review the foundations of the design of combinatorial and iterative

auctions. The rest of this chapter is devoted to describing some of the major challenges

faced for the design and implementations of iterative combinatorial auctions. In each

case, we address the existing methodologies to handle these difficulties and highlight

the contribution of our work whenever applicable.

2.1 Auctions Thoery

Auction theory has been one of the most widely studied fields in economics over the

past fifty years. It concerns the design of auctions and the set of rules governing

them. Various auction designs (or sets of rules) define different types of auctions.
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Only subtle changes in auction rules can cause significant differences in their out-

come. Auction theory deals with studying the efficiency of auction designs under the

implementation of different sets of rules.

The participants of an auction include the auctioneer who runs the auction and

sets its specific rules and the bidders who compete to buy his products as he sells

them off. The competition among bidders reverts to selling products to the auctioneer

when he announces his demand on the items. The bidders’ competition is through

submission of bids . Bids are expression of the bidders willingness to pay particular

monetary amounts for various outcomes. Bidders formulate bids according to their

private preferences, bidding strategies as well as auction rules.

From the game theoretic perspective, auctions are defined as mathematical games

in which

• the auctioneer and the bidders constitute the set of players,

• the auctioneer sets the rules relative to his objective which is mostly revenue

maximization or cost minimization,

• the set of moves (or actions) available to each bidder is his bid function which

maps his value (in the case of a buyer) or cost (in the case of a seller) to the

bid price he submits,

• the payoff of each bidder is his expected utility,

• the strategy bidders follow is to maximize their utility.
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In a mathematical game, bidders are known as rational if they are capable to think

through all possible outcomes and choose the one that results in the best possible

outcome, and the game is known as non-cooperative game when rational players

are able to make decisions independently.

A strategy is defined as dominant when it gives as good or better outcome as any

other strategy, regardless of how the player’s opponents play. It is defined as strictly

dominant if it always gives a better outcome than any other strategy no matter

what the components do. Alternatively, it is called weakly dominant if there is at

least one set of opponents’ actions for which this strategy yields superior outcome (as

compared to the rest of strategies available). A weakly dominant strategy produces

similar payoff on all other strategies available to the player for any choice of the op-

ponents’ strategies.

A non-cooperative game reaches the Nash equilibrium state when rational players

have chosen a strategy and no player is better off by changing his strategy unilaterally,

given that other players keep theirs unchanged. If there exists a strictly dominant

strategy for a player, that player will play that strategy in each of the game’s Nash

equilibria. If all players have a strictly dominant strategy, the game retains a unique

Nash equilibrium. Weakly dominated strategies can also constitute Nash equilibria.

For instance, assume a non-cooperative game with two players, strategies A and B

available to each, and the payoff matrix as
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Player 1 \ Player 2 A B

A (2,2) (1,1)

B (1,1) (1,1)

For both players strategy A weakly dominates strategy B. This outcome constitutes

a Nash equilibrium, since no player is better off by unilaterally changing his strategy.

2.1.1 Bidders’ Valuation Function

Upon entrance in an auction each bidder makes an evaluation of the item(s) being set

up for bids. A valuation function is a real valued function that allocates each item i

and bidder j to a real number νij which is bidder j’s personal evaluation of item i.

We assume valuation functions to be

1. monotone, that is for sets SandT,whereS ⊆ T , we have ν(S) ≤ ν(T ),

2. normalized, that is ν(∅) = 0 .

Bidders are assumed to have quasi-linear utility (or payoff) function defined as

uij = νij − pij

with pij as the price bidder j pays on item i.

In a private value model, each bidder knows the value of the item to himself at the

time of bidding and this value does not depend on the private information of other

bidders. In many auctions, however, the object’s value is unknown to the bidder

himself at the time of the auction. He may only have an estimate or some privately
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known signals correlated with the true value. Other bidders may have additional

information that if known, would affect the value that a particular bidder attaches

to the object. This structure of item values is in general known as interdependent

values. Common value structure is a special case of this specification in which the

value of the item is the same for all bidders, however, the values remains unknown to

all of them. The private value model assumption is typical when auctioning pieces of

artwork. An example of a common value model is auctioning financial products on the

stock exchange. Auctioning wireless spectrum is a commonplace for an interdepen-

dent value model where private valuations are driven by the underlying population

demographics and technological basis.

Once the bidders participating in an auction evaluate the commodities, they attach

a price to them. This price may not necessarily reflect their real valuations and

thus result in an intense reduction of the auction revenue. William Vickrey [109],

the winner of the 1996 Nobel Prize for Economics, has shown that there exists a

particular pricing scheme for a private value model with a single item or multiple

homogeneous items in which a winning bidder can never affect the price he pays. He

demonstrates that this gives bidders no incentive to misrepresent their values and

thus achieves superior performance by making it a dominant strategy for bidders to

report their values truthfully.

2.1.2 Mechanism Design

A mechanism design is defined by a set of rules describing the

• auction protocol , including the sequence, syntax and semantics of messages

15



Ph.D. Thesis Computational Sci. & Eng.

exchanged throughout the auction,

• allocation rules , including constraints ensuring the overall objective of the

allocation as well as additional allocation constraints,

• payment rules, determining the payment from or to the winner(s).

The primary goals in the design of an auction concerns the outcome of an auction.

One goal is to achieve allocative efficiency in which the auction mechanism imple-

ments a solution that maximizes the total payoff across all agents. Another goal is the

revenue maximization in which the auction achieves a solution that maximizes

the payoff to a particular participant, usually the auctioneer.

From the game theoretic perspective, auction design studies a system of self-interested

players following different strategies. Auction design rules may restrict bidders to

certain strategies which enforce a certain outcome. One important design goal is to

encourage strategies that lead to efficient outcomes. More specifically, auction de-

signers try to construct incentive compatible mechanisms in which bidders are

self-interested in reporting truthful information about their preferences.

To ensure incentive compatibility, the monetary transfer to each bidder has to be set

so that the expected utility of bidding truthfully is always greater than or equal to the

utility when the valuation is misrepresented. This is also considered as redistribution

of the trade surplus. A dominant strategy is given if the players payoff maximizing

strategy is independent from the strategies of the other players. Mechanisms with

the dominant strategy equilibrium are called strategy-proof . In a strategy-proof
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mechanism no assumptions about the information available to the agents about each

other are made, and every bidder selects his own optimal strategy without requiring

the others to act rational.

Vickery’s auction design offers great insight into this for single-item auctions. In his

design, the players’ payoff maximizing strategy is independent from the strategies of

the other players and truthful representation of the valuation is a weakly dominant

strategy. A mechanism with these characteristics is very desirable from an economics

perspective.

2.1.3 Primary Auction Types

The word auction is derived from the Latin word augere which means to increase

or augment. Yet, not all auctions are based on increasing the price. In fact, they

may take up many different types depending on the rules governing their mechanism

design. Researchers primarily recognize auctions as either oral (a.k.a. open) or

written (a.k.a. closed sealed-bid). Oral Auctions are those auctions where all

bidders are present, they hear each other’s bids and can make offers. In written

auctions bidders submit their bids simultaneously without revealing them to the oth-

ers. Oral and written auction determine the following most widely practiced auction

types.

English Auctions (a.k.a. Ascending-Price Auctions)

English auctions are one of the oldest and most frequent auction forms. They are

considered oral auctions in which the auctioneer begins by calling out a low price and
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gradually increases it. The bidders express their interest to buy the product at the

announced price usually by raising their hand. These auctions continue until only

one bidder is left interested in the object.

Dutch Auctions (a.k.a. Descending-Price Auctions)

Dutch auctions are the counterpart to the English auction wherein the auctioneer

begins by a price high enough so that no bidder is interested to buy the object at that

price. He gradually decreases it until the first person admits to purchase the object

at the announced price. This open auction is made famous by the Amsterdam flower

auctions and was designed to rapidly terminate the auction due to the perishable

nature of the product on auction.

First-Price Sealed-bid Auctions

First-price sealed-bid auctions are a variation of written auctions in which the bidder

who submits the highest bid wins the object. The winner in this auction pays the

price he submits.

Second-Price Sealed-bid (a.k.a. Vickrey Auctions)

Second-price sealed-bid auctions are conducted in the same manner as first-price

sealed-bid auctions. The only difference is that the winner pays the amount of the

second highest bidder. The payment scheme of a second-price sealed-bid auction with

a single item or multiple homogeneous units of a single item is the result of Vickrey’s

study on the auction’s equilibrium state from the game theoretic perspective. Thus,

this auction design is mostly referred to as Vickrey auction.
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Vickrey [109] demonstrates that the bidders pay the amount of the opportunity cost

for what they win, rather than the price they bid. Thus, they are only capable of

determining whether they win or not. From the bidders’ perspective, even though the

amount they bid determines the efficient allocation of goods in the auction, it cannot

affect the amount they pay. Only by bidding true values can the bidders be sure to

win exactly when they are willing to pay the price they bid and so bidding truthfully

becomes their (weakly) dominant strategy.

2.1.4 Revenue Equivalence Theorem

The revenue equivalence theorem was shown for the first time by Vickrey in his 1961

seminal paper [109] through an example and was later proved by Myerson [78]. It

states that different auction mechanisms that result in the same allocation of goods

yield the same revenue to the seller.

Wolfstetter [111] observes that the Dutch open descending auction is strategically

equivalent to the first-price sealed-bid auction. In a first-price sealed-bid auction,

a bidder maps his private information to a bid. The useful information revealed in

Dutch auctions is that some bidder agrees to buy the item at the current price which

causes the auction to end. Bidding in a first-price sealed-bid auction is equivalent to

offering to buy it at this price in a Dutch auction.

When values are private, the English open ascending auction is equivalent to the

second-price sealed-bid auction. With private values the optimal strategy for both is

19



Ph.D. Thesis Computational Sci. & Eng.

to bid up or stay in until the value. With interdependent values, seeing some bidders

drop out in an English auction early on may bring bad news that may cause a bidder

to reduce his own estimate of the object’s value. Thus, with interdependent values,

the two auctions are not necessarily equivalent.

2.2 Secondary Auction Types

Auctions are recognized not only by the rules of the auction, but also by their envi-

ronment. Important features including the number of sellers and buyers, the number

of items being traded, the preferences of the parties, and the form of the private infor-

mation participants have about preferences determine different auction types. Some

environment-dependant secondary auction types relevant to this thesis are described

below.

2.2.1 Single-Item Auctions

Putting up a single item for bids classifies the auction as a single-item auction. In

the case of having multiple units of the same item, the auction is referred to as a

multi-unit single-item auction. Multi-unit auctions facilitate negotiations on large

homogeneous quantities of the same item.

As suggested by the equivalence of the primary auction types for a single object,

applying the classic English auction can be considered as a sealed bid second price

auction. For an auction with multiple homogeneous units of a single item, Ausubel [4]

formulated a dynamic ascending price auction format which resembles the outcome
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of the sealed-bid Vickrey auction with private values, and yet has the advantage of

simplicity and privacy reservation.

2.2.2 Multi-Item Auctions

Involving several heterogeneous items in multi-item auctions produces a multi-item

auction environment. Similarly, having multiple identical units of each item identifies

the auction as multi-unit multi-item auction. In a setting where each bidder is in-

terested in receiving at most one item, sealed-bid multi-item auctions are considered

as a generalization of Vickrey auctions [28, 65, 29]. This mechanism requires each

bidder to submit a sealed bid listing his valuation of all the items. Like the Vickrey

auction, submitting true valuations is a dominant strategy for the bidders.

Another important feature of the multi-item auctions is the possibility to achieve the

minimum equilibrium price allocation by dynamic or progressive auctions rather than

a single round. Demange, Gale, and Sotomayor [30] study dynamic auction mech-

anisms based on price increase for the minimal overdemanded sets of items. They

prove that prices converge to the minimum equilibrium price.

Economists have extended the Vickrey auction to encompass more general models.

Clarke [20] and Groves [36] considered auctions with multiple heterogeneous items.

The new mechanism is usually referred to as the Vickrey-Clarke-Grove (VCG)

mechanism . The pay price in a VCG auction is also called VCG payment . VCG

assigns goods efficiently and charges bidders the opportunity cost of the items they
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win. Truthful reporting is a dominant strategy for each bidder in the VCG mecha-

nism. Mishra and Veeramini [75] study a multi-item ascending price auction wherein

each supplier is able provide one or more of the items. They prove that their method

implements the VCG outcome.

VCG auctions exhibit several appealing theoretical properties. Nevertheless, they

suffer from serious short comings. For instance, they are vulnerable to collusion by a

coalition of losing bidders, the auctioneer revenue can be very low or zero, and that

determination of the VCG payments itself is a computationally hard problem (for

more details on this see [5]). Moreover, Ausubel and Milgrom [5] showed that the

VCG auction loses its dominant-strategy property when bidders face effective budget

constraints.

The shortcomings of the VCG auction are strong enough for it to be hardly used

in practice. This has turned some researches towards the design of alternative auc-

tion mechanisms that overcome some of the VCG auction drawbacks. For instance,

Ausubel and Milgrom [7] proposed an ascending proxy auction and proved that there

is no coalition of bidders that can trade among themselves in a way that generates

strictly more revenue for the seller and equally or more preferred outcomes for all the

bidders of the coalition. In [5] the authors show that the Vickrey auction leads to

such outcome only under special conditions. Nevertheless, VCG auctions constitute

an important theoretical structure that provides insights into fundamental properties

of auction mechanisms in general.
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2.2.3 Combinatorial Auction (CA)

One drawback of multi-item auctions is their failure to identify that a bidder’s valua-

tion for a combination of items that are for sale is more (or less) than the sum of the

individual items’ valuations when the items are complementarities (or substitutes).

Therefore, bidders need to bid upon the set of items they require individually.

This disadvantages the bidders since first, in order to increase their chances of winning

all that they require, they are frequently willing to bid above their true valuations

leading to the winners’ curse problem: the winner has to overpay for the item he

wins. Second, bidders are only interested to acquire a whole combination of items.

An incomplete package is undesirable and is not worth the money they have to pay

for the winning items. This problem is known as the exposure problem.

Combinatorial auctions allow bidders to place bids on any subset of the items known

as packages or bundles. This enables bidders to express complex valuations on the

packages of items and thus more precisely report their preferences. Combinatorial

auctions often lead to greater auction revenue as well as market economic efficiency

in that items would be allocated to those who value them the most.

Combinatorial auctions were first proposed, by Rassenti, Smith, and Bulfin [90] for

the allocation of airport landing slots. Their paper introduced principal ideas on

the design of mathematical programming formulation of the auctioneers problem, the

computational complexity of the winner determination problem, the use of testing
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techniques from experimental economics, and incentive compatibility of combinato-

rial auctions.

In procurement, combinatorial auctions have emerged as a powerful tool to auto-

mate complex negotiations on multiple items. Over the past few years, they have

been employed in a variety of industries saving millions of dollars. Logistics.com, Ac-

cesstranspota.com (Canada), Translogistica.com (Uk) are some websites which report

the use of combinatorial auctions for long term contracts [104].

2.2.3.1 Valuation and Allocation in CAs

This section generalizes the valuation on combinatorial auctions. According to the

private value model assumption, we denote the private valuation of the bidder j for

the bundle S by νj(S). The valuations of different bidders are assumed independent

and satisfying the free disposal condition, i.e., if S ⊆ T then νj(S) ≤ νj(T ). The rest

of this section is devoted to defining the terms we commonly use.

Definition 2.1 (Value Model).

A value model V = {νj(S)} is a set of the private valuations of all bidders for all

bundles.

Definition 2.2 (Bid Price).

The price bidder j attaches to bundle S is called bid price and is denoted by Pbid,j(S).

In Chapters 3- 5 of this thesis we deal with bid prices and for this reason drop this

index.

Definition 2.3 (Pay Price).
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Pay price Ppay = (Ppay,1(S), . . . , Ppay,j(S), . . . , Ppay,n(S)) defines the prices to be paid

by each bidder j, (j ∈ {1, . . . , n}) for bundle S.

Definition 2.4 (Bidder Utility or Bidder Payoff).

Bidder j’s utility πj(S, Ppay,j(S)) expresses his satisfaction of getting bundle S at

the pay prices Ppay,j(S). We assume quasi-linear bidder utilities πj(S, Ppay,j(S)) =

νj(S)− Ppay,j(S) and πj(∅, Ppay,j) = 0.

Definition 2.5 (Allocation).

An allocation X is a tuple (S1, . . . , Sn) that assigns a bundle (possibly empty) to every

bidder. Sj denotes the bundle assigned to bidder j.

In a single-unit combinatorial auction problem, the allocated bundles do not intersect,

i.e., ∀j, j′, Sj ∩ S ′j = ∅. With the auctioneer defined as a bidder, some items may

remain unallocated.

An allocation X can also be defined by a set of binary variables xj(S) such that

xj(S) ∈ {0, 1},

∀j, S xj(S) = 1⇔ Sj = S,

∀j
∑

S⊆M xj(S) ≤ 1,

∀j
∑

S⊆M xj(S) = 0⇒ Sj = ∅.

(2.1)

In other words, xj(S) = 1 means that the bidder j receives bundle S. We denote the

set of all possible allocations by χ.

Definition 2.6 (Total Bidders Utility or Total Bidders Payoff).

Total bidders utility πall(X,Ppay) is defined as
∑

j πj(Sj, Ppay,j(Sj)).
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Definition 2.7 (Auctioneer’s Revenue).

For M denoting the set of items and N the set of bidders, the auctioneer’s rev-

enue at announced pay prices Ppay and allocation X is defined as Π(X,Ppay) =∑
j∈N Ppay,j(Sj) =

∑
S⊆M,j∈N xj(S)Ppay,j(S).

The auctioneer’s revenue is usually considered to be his gain, since his costs are

assumed to be 0.

Definition 2.8 (Feasible & Efficient Allocations).

A feasible allocation is an allocation that satisfies properties (2.1). An efficient allo-

cation is the optimal feasible allocation.

Thus, an efficient allocation is an allocation that maximizes the overall gain and is

usually denoted as X∗ = (S∗1 , . . . , S
∗
n).

2.2.3.2 Combinatorial Allocation Problem (CAP) v.s. the Winner De-

termination Problem (WDP)

Obtaining an efficient allocation is a typical auction design goal. Given the private

bidder valuations for all possible bundles, an efficient allocation can be found by

solving the Combinatorial Allocation Problem (CAP)

max
X=(S1,...,Sn)

∑
j∈N

νj(X). (CAP)

CAP has a straightforward integer linear programming formulation. Using the binary

decision variables {xj(S)}, we can reformulate CAP as
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max
∑

S⊆M
∑

j∈N xj(S)νj(S)

s.t.
∑

S⊆M xj(S) ≤ 1 ∀j ∈ N∑
S3i
∑

j∈N xj(S) ≤ 1 ∀i ∈M

xj(S) ∈ {0, 1} ∀j ∈ N,S ⊆ N.

(CAP)

The objective function maximizes the overall gain. The first set of constraints guar-

antees that at most one bundle can be allocated to each bidder. The second set of

constraints ensures that each item is not sold more than once.

Usually, the auctioneer does not know the bidders’ private valuations needed for

solving CAP. Instead, he selects the optimal allocation on the basis of the submitted

bids. This problem formulation is referred to as the Winner Determination Problem

(WDP).

max
∑

S⊆M
∑

j∈N xj(S)Pbid,j(S)

s.t.
∑

S⊆M xj(S) ≤ 1 ∀j ∈ N∑
S3i
∑

j∈N xj(S) ≤ 1 ∀i ∈M

xj(S) ∈ {0, 1} ∀j ∈ N,S ⊆ N.

(WDP)

WDP is very similar to the CAP. The only difference is the use of bid prices instead

of valuations in the objective function. It is important to be aware of the difference

between the the two problems in a real auction. In WDP bidders may or may not

truly reflect their true valuations. Nonetheless, implementing a VCG mechanism gives

the bidders the incentive not to misrepresent their true valuations. Submitting bids

equaling bidders’ real valuations makes the optimal allocation found by WDP equal

to the efficient allocation in CAP. Often researchers are not concerned by the fact
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that the price offers reported may not reflect the bidders’ true valuation of bundles.

Rather, they use the announced prices and try to find an appropriate modeling and

an efficient algorithm that would find the optimal allocation in a reasonable time. Al-

locating bundles to the winning bidders and modifying the winners’ payment rules by

asking them to pay the amount that second best winner has bid, implements a VCG

mechanism that gives the bidders the incentive to bid their true valuations from the

start. Our solution methodology for handling the CAP problem in Chapter 3 follows

with this strategy.

There might exist multiple optimal solutions for the WDP with the same objective

function value, in which case multiple efficient allocations exist. Tie-breaking rules

determine which optimal solution to select. For example, allocations determined ear-

lier in time or the ones which posses maximum/minimum number of bidders can be

preferred. Alternatively, additional constraints can be added to the model to eluci-

date a unique winner.

Beyond the standard rules of the WDP, additional allocation rules called business

constraints or more generally side constraints are of practical importance. These

constraints may need to be defined or removed dynamically throughout the auction.

Below are examples of common constraints in industrial procurement.

• The number of winning suppliers should be greater than a certain number to

avoid depending too heavily on just a few suppliers, but not too large to avoid

too much administrative overhead.

• The maximum/minimum amount purchased from each supplier is bounded by
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a certain limit.

• The auctioneer’s or the bidders’ budget constraints or contractual obligations

is met.

• At least one supplier from a target group is chosen.

• Spend from a set of preferred suppliers is maximized. Preferred suppliers are

those that meet some predefined standards (e.g., consistent delivery, high qual-

ity).

• A maximum α % of suppliers account for at least β % of spend. These con-

straints are usually referred to as spend constraints. A practical configuration

is to set α and β respectively to 10 and 90.

2.2.3.3 Bidding Languages

A bidding language defines the format of the communicated messages and the in-

terpretation rules by which bidders are allowed to formulate their bids. Here we

introduce a few of the most widely used languages. All prices in this section cor-

respond to bid prices, and are all submitted by the same bidder. For the sake of

simplicity, we drop the corresponding indices.

Definition 2.9 (Atomic or Single-Minded Bids).

An atomic bid is a pair (S, P (S)) that a bidder submits with S as the subset he is

willing to bid on for the price P (S). Atomic bids cannot be used to represent the

simple additive valuation on two items.

Definition 2.10 (Additive-OR or OR Bids).

Additive-OR bids are a collection of an arbitrary number of atomic bid pairs (Sk, P (Sk)),
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where Sk is a subset of the items a bidder bids on, and P (Sk) is the maximum price

he is willing to pay for it.

The bidder will be willing to obtain any number of atomic bids for the sum of their

prices. A set of OR bids is represented as ν = (S1, P (S1))OR...OR(Sk, P (Sk)).

Define a valid collection W as W = {t|
⋂
St = φ}. The value of ν is defined as

MaxWΣt∈WP (St). It can be concluded from the above definition that it is not pos-

sible to express substitutabilities via OR bidding language. OR can only be used to

represent those valuations where ∀S ∩ T = ∅, ν(S ∪ T ) ≥ ν(S) + ν(T ) and only them

[81]. Thus, it is sufficient if no subadditive valuations exist. Unfortunately, this is

often not the case, e.g., in the presence of budget restrictions (if the bidder can not

afford every combination of bundles he bid for) or when auctioning substitute goods.

Definition 2.11 (Exclusive-OR or XOR Bids).

Exclusive-OR bids are the submission of an arbitrary number of atomic bids, or pairs

(Si, P (Si)), where each Si is a subset of items and P (Si) is the maximum price the

bidder is willing to pay for it. Unlike OR bids, bidders would only be willing to obtain

at most one of the bids they submit.

For the valuation ν = (S1, P (S1))XOR...XOR(Sk, P (Sk)), the value ν would be

Maxi|Si⊆MP (Si). An XOR bid is capable of representing substitutabilities as well as

complementarities among items. However, it suffers from the communicative com-

plexity caused by the exponential number of bundles to be evaluated and monitored.

Definition 2.12 (OR of XORs & XOR of ORs).

OR of XORs is the language that represents OR of a set of XOR bids. Similarly,

XOR of ORs represents XOR of a set of OR bids.
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The combination of the two languages in the form of OR of XORs and XOR of ORs

deploys the power of both languages to make more expressive, yet concise bids.

Definition 2.13 (OR∗ Bids).

OR∗ represents XOR bids as a variant of OR bids by introducing dummy items.

This language is first introduced by Fujishima, Layton-Brown, and Shoham [35] and

later explored extensively by Nisan [80]. As an example, (S1, P (S1))XOR(S2, P (S2))

can be represented as (S1∪{d}, P (S1))OR(S2∪{d}, P (S2)) where d is a dummy item.

2.2.4 Procurement Auctions

The process of procurement via competitive bidding is an auction in which bidders

compete for the right to sell their products. In this case, it is the person bidding

the lowest who wins the contract. Defining Ppay,j(S) as the price that the auctioneer

pays to bidder j for providing bundle S, Definition 2.7 is adjusted to represent the

auctioneer’s total cost of procurement(TCP).

Chen et al. [19] discuss sealed-bid auctions in procurement settings. Their auctions

are incentive compatible and incorporate transportation costs and other variables in-

volved in production.

Demange et al. [30] designed an iterative ascending price auction for the single-seller

model which translates to a descending price reverse auction for the single-buyer

model. The authors showed that such a descending price auction converges to the
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maximum competitive equilibrium price in the single-buyer model and thus each sup-

plier gets his VCG payoff.

Ausubel and Milgrom [7], de Vries et al. [27] and Parkes et al. [88] have proposed

ascending price auctions implementing the VCG outcome for a single-seller model

when buyers demand multiple items. A proper transpose of these auctions will give

descending price reverse auctions.

One major common application of reverse auctions is for E-procurement (electronic

procurement). The electronic auction (e-Auction) is an auction between the auc-

tioneer and the bidders which takes place in an electronic marketplace. In this elec-

tronic commerce, the auctioneer offers his goods, commodities or services in an auction

and interested parties can submit their bids for the product being auctioned.

Using the internet in the so-called online auctions has propelled the outreach of

auctions. The application of the internet surpasses the complications of having (a

large number of) participants’ physical attendance at a certain place and for a cer-

tain period of time. The influx in reachability of (online) procurement auctions makes

them appealing for various application domains. Some first applications of these auc-

tions are in industrial procurements. Interesting examples include the procurement

auctions for school meals in Chile [33], and the one for packing materials (raw and

otherwise) for different manufacturing locations at Mars, Incorporated (chocolate

manufacturer) [40] developed with IBM T.J. Watson Research Lab.
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Another major application of procurement auctions is in truckload transportation

(TL). In this auction, the auctioneer and the bidders are respectively the shipper and

the carriers. The shipper needs to outsource a number of transportation services to

some external carriers. His request is a transportation contract which specifies the

pick-up and delivery location pair (also known as a lane), a volume to be shipped on

this lane, and some other information on shipping conditions, specific equipments,

etc. Several carriers are invited to participate in the auction. They compete by

submitting bids on the shippers’ requests. Carriers are permitted to submit bids on

packages of lanes to express their preferences for any combination of lanes they want

to acquire. For instance, to reduce empty repositioning costs, a carrier may prefer

to move shipments to a destination and back rather than serving each lane separately.

Ledyard [61] reports the experience of iterative combinatorial auction at Sears Lo-

gistics Services for procurement of TL services. The authors report a 13% saving on

Sears service costs.

Elmagherabi and Keskinocak [32] document the experience of Home Depot in using

single-round combinatorial auctions for outsourcing TL when moving freight between

Home Depot stores and design centres. The authors report that not only did the auc-

tion provide Home Depot with better rates, many bidders also expressed increased

satisfaction with the results. Yet, the single-round auction caused inefficiency which

led to aftermarket negotiations.

Sheffi [102] reports the use of procurement combinatorial auctions by many leading

33



Ph.D. Thesis Computational Sci. & Eng.

companies beyond Sears and Home Depot with the goal to lower transportation costs.

These companies include the Colgate-Palmolive Company, Compaq Computers Inc.

Wal-mart Stores Inc., Nestle S.A., and Ford Motor Company.

Caplice [18], Caplice and Sheffi [16, 17], Song [103], Song and Regan [105, 106, 105,

91], Crainic and Gendreau [23, 22], Crainic et al. [24], Rekik et al. [92], Remli and

Rekik [93], and [62] are among the researchers who have studied combinatorial auc-

tions in transportation procurement.

2.2.5 Iterative Combinatorial Auctions (ICAs)

Single-round combinatorial auctions often lead to aftermarket to remove possible in-

efficiencies [59]. Iterative (or Progressive) Combinatorial Auctions (ICAs)

are those auctions that unlike one-shot (or single-round) auctions proceed in

several rounds (or iterations) providing the bidders with informative feedback.

The classical English auction is one example of progressive auctions.

ICAs have many advantages over their one-shot counterpart, especially in procure-

ment:

• Bidders do not have to evaluate, price, and communicate all possible bundles

in one shot. The information in ICAs is decentralized and only required infor-

mation is exchanged on a need-to-know basis. In many auction scenarios, the

bid preparation can be very costly and complex when carried in a single round.

• Bidders can revise and modify their bids based on the information revealed in

the auction. The bidders witness the progress of the auction and get feedback
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through the information from the auctioneer at the end of each bidding round.

They have the chance to reassess their bidding strategy several times before the

auction closes at the final round.

• Only prospective winners need to work on bid preparation. If a bidder finds

himself non-competitive, he can save the costly bid preparation process. For

a bidder, who finds himself to be a prospective winner, the feedback from the

auction will help prepare the bids for the subsequent bidding rounds.

After the auctioneer receives the bids, he solves the winner determination problem to

identify the winners at the current round known as the provisional winners. He

then provides some kind of feedback to support the bidders in improving their bids

in the next round. Based on the kind of information he reveals to coordinate the

bidding process, ICAs are further divided into prices-based or non-price-based .

Price-based iterative auctions are centralized auctions in which the auctioneer pro-

vides the bidders’ current winning bids and ask prices as feedback information.

Ask prices specify either a minimum bid price allowable for a bundle, or a minimum

percentage improvement over the highest current bid on a bundle. We denote the ask

price for bidder j and bundle S as Pask,j(S).

Alternatively, non-price-based iterative protocols are decentralized auctions which ask

for bidders’ cooperation in finding a better allocation in each round. Two well known

members of this family are the Adaptive User Selection Mechanism (AUSM) [9] and

the Progressive Adaptive User Selection Environment (PAUSE) [55]. Though these

auctions avoid the exposure problem, they require full information revelation and
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introduce high complexity at the bidders’ side.

Having bidders cooperate on bid allocation makes the auction vulnerable to the so-

called threshold problem which raises when two small bidders bidding on separate

packages (implicitly) collaborate to overcome a third bidder bidding on a package

that contains both of their packages. The small bidders are interested in determining

what price each of them should pay to ascertain that the sum of both bids exceeds

the third bidder’s package price.

Despite the benefits of decentralized auctions, centralization is currently considered

more promising in the literature. Vagstad [108] claims that decentralization leads

to biased decisions (a discriminatory auction). Maurer and Barroso [70] discuss the

higher efficiency of centralized auctions for fostering competition in the market. For

this reason the concentration of this thesis is on centralized auction designs.

2.2.5.1 State of an ICA

The state of an ICA clarifies the specifications of the auction dynamics. This section

describes some main ingredients of the state of an auction.

Timing Issues

In consideration of the bidders’ bid submission timing, ICAs are regarded as either

continuous auctions or multi-round auctions( a.k.a. round-based auctions

or discrete auctions). In continuous auctions, bids are evaluated on arrival of

every new bid with continual updates to the current provisional winners and prices.

Continuous auctions contribute to a more dynamic environment, since the feedback
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information is kept up to date at every point in time throughout the auction. However,

continuous combinatorial auctions are usually considered impractical, since they lead

to high computational costs for the auctioneer (the winner determination must be

done whenever a new bid is submitted) and to high monitoring and participation

costs for bidders. Alternatively, in multi-round auctions bids are collected over a

period of a round before the bid evaluation is performed. All iterative auction designs

discussed in this thesis are round-based.

Information Feedback

The key challenge in the design of ICAs is providing information feedback to the

bidders after each auction iteration to guide bidding towards an efficient solution.

Information feedback about the state of the auction can contain pricing information,

the provisional allocation (if any), the list of bids submitted by other bidders, etc.

Information hiding can also be used to limit the possibilities of signaling between

bidders. While the purpose of providing this feedback is to help make the bidding

process more effective, it should be noted that the information released should not

facilitate bidders manipulation through signalling or formation of coalition.

Bidding Rules

Bidding rules define, what bids can be submitted or revoked in the current auction

state and how the auction state evolves throughout the auction. Ask prices are a

common form of bid improvement rules.

Activity Rules (a.k.a. Eligibility Rules)
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Activity rules enforce active bidding throughout the auction as opposed to the wait-

until-auction-end-and-snipe strategy often used by online auctions. Activity rules

were introduced in the early Federal Communications Commission (FCC) wireless

spectrum auctions and proved important. Decisions about appropriate activity rules

are often guided by a tradeoff between allowing for straightforward bidding strategies

and encouraging early bidding [87].

Allocation Rules

Allocation rules regulate the selection of the winning bids from the set of submit-

ted ones. Specifically, they determine the formulation of the winner determination

problem where the auctioneer’s procurement cost is usually minimized subject to the

bidding language rules and the inability to sell the same item more than once. In

spite of their practical importance, there is a gap in the theory of ICAs in regard to

business constraints. Kalagnanam et al. [44], Sandholm and Suri [99], and Collins et

al. [21] analyzed the impact of business constraints on the solution and complexity

of the WDP.

Termination Condition (a.k.a. Closing Condition)

For a round-based auction design two termination conditions are of importance: con-

ditions to terminate each round known as round closing rules , and conditions to

terminate the whole auction known as auction closing rules . With round closing

we denote the point in time at which a specific auction round is declared closed, and

no more bids are accepted until the start of the next round. We call the time period

between the round start and the round closing round duration . After the round is

closed, the bid evaluation process, called round clearing , starts.
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Setting the round closing rules to control the duration of a round is not an easy task.

While giving time is necessary for the bidders to reveal preference elicitation in every

round, too much time harms the auctions by reducing the bidders’ interest and con-

centration on the bid preparation process. This problem magnifies towards the final

rounds of the auction when preference elicitation is expected to take less time. The

round duration is usually set to a fixed-time round period . A Ready-in-round

strategy mitigates the problem by letting bidders communicate their state to the auc-

tioneer when they are ready. The round is then closed as soon as all participating

bidders have indicated their readiness.

After a round is closed and cleared, the auction either moves to the next round or

terminates according to the auction closing rules. In the latter case, the auction is

first closed (the bidders are informed that no more bids can be submitted) and the

final bid evaluation, called auction clearing , starts. The time period between the

auction start and the auction closing is called auction duration . Some common

auction termination rules include closure

• at a fixed deadline,

• in a limited time duration,

• after a maximal number of rounds,

• when no competitive bid is submitted,

• when the allocation does not change for a certain number of rounds.
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The first three conditions are examples of fixed deadlines and the last two items

demonstrate a rolling closure in which the auction remains open for as long as

competitive bids are submitted. Roth and Ockenfels [94] have studied the use of

deadlines versus rolling closures, as respectively practiced on eBay and Amazon In-

ternet auctions. Bidders on Amazon (with rolling closer) bid earlier than on eBay

(with fixed deadline). In fact, many bidders on eBay wait until the last seconds of

the auction to bid while Amazon auctions encourage earlier bidding.

Thus, fixed deadlines are useful in settings where bidders are impatient and unwilling

to wait a long time for an auction to terminate. However, they require stronger

activity rules to prevent the auction from reducing to a sealed-bid auction with all

bids delayed until the final round. In comparison, auctions with a rolling closure

encourage earlier bidding since they remain open for just as long as competitive bids

are submitted. In this thesis we use a rolling closure with the auction open for as

long as competitive bids are submitted.

Proxy Agents

With proxy agents bidders can provide direct value information to an automated bid-

ding agent that bids on their behalf. Usually bidders enter the maximum amount they

are willing to pay for a package to a proxy machine. This value is kept confidential.

The proxy agent places bids on behalf of the bidder using a specified automatic bid

increment amount. The proxy agent bids only as much as necessary to make sure that

the bidder remains the winner up to his maximum amount. If another bidder places

the same maximum bid or higher, the proxy sends out notification to the bidder to

either raise his price or that he will lose. In order to realize the elicitation and price
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discovery benefits of an iterative auction, the bidder-to-proxy language should allow

bidders to express partial and incomplete information to guarantee refining during

the auction.

Proxy auctions facilitate faster convergence with rapid automated proxy rounds, re-

stricting the strategy space available to bidders. In particular, proxy auctions usually

have better control to prevent shill bidding . Shill bidding happens when a person

publicly helps another person or organization without disclosing that they have a

close relationship. Shill bidders seek to provoke the bidding war among other par-

ticipants by submitting fake bids. eBay runs proxy auctions as a type of an English

second-price auction with the difference that the current highest bid is not sealed and

is always displayed. eBay forbids shilling; its rules do not allow friends or employ-

ees of a person selling an item to bid on the item. Ausubel and Milgrom [7] study

ascending price proxy auctions with package bids. They show that compared to the

Vickrey auction, the proxy auctions generate higher equilibrium revenues and are less

vulnerable to shill bidding and collusion.

Forthcoming concerns with the design of proxy auctions include when to allow proxy

information to be revised, what increment to use when increasing the prices, and

how to ensure trust and transparency since the bidding activity is transferred to

automated agents. Studying the effects of proxy bidding is out of the scope of this

thesis. For more information on the topic see Parkes and Ungar [85] and Ausubel

and Milgrom [7].
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2.2.5.2 Pricing Equilibria

As discussed in Section 2.2.5 a crucial ingredient of an iterative auction design is the

definition of bidding rules. The literature on ICAs mostly focuses on designing these

rules to lead the auction to an efficient, rather than optimal, outcome. To coordinate

the bidding process toward an efficient outcome, price-based ICA implement various

price-update methods which characterize the rules by which prices are computed in

each round. Some major price update rules include:

• Greedy update. The price is increased on some arbitrary set (perhaps all) of

the over-demanded items or bundles.

• Minimal update. The price is increased on a minimal set of over-demanded

items, or based on the bids from a set of minimally under-supplied bidders.

• LP-based update. Given current bids, a linear program is formulated to find

prices that are good approximations for the equilibrium prices.

Based on the characterization of the ask prices, the hierarchical structure of the

pricing schemes is:

1. linear anonymous ask prices,

2. non-linear anonymous ask prices,

3. non-linear non-anonymous ask prices.

Below we define the linearity and anonymity of prices.
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Definition 2.14 (Linear (Additive) Ask Prices).

A set of ask prices are called linear if the price of a bundle is always equal to the sum

of the prices of its items, i.e., for a set of ask prices Pask,j(S),

Pask,j(S) =
∑
k∈S

Pask,j(k) ∀j, S.

Non-linear ask prices are also called bundle ask prices .

Definition 2.15 (Anonymous Ask Prices).

A set of ask prices are called anonymous if the prices of the same bundle are equal

for every bidder, i.e., for bidders j, j′ and bundle S,

Pask,j(S) = Pask,j′(S).

Non-anonymous ask prices are referred to as discriminatory or personalized

ask prices.

The linear anonymous pricing scheme is the simplest, easily understandable, and

usually considered fair by the bidders. The communication costs are also minimized,

since the amount of information to be transferred is linear in the number of items.

Non-linearity is essential to allow bidders to express super- or subadditivity in their

valuations. Yet, it is often perceived as too complex by the bidders. Also, it increases

the communication costs, i.e., in the worst case, an exponential number of prices need

to be exchanged. Sometimes, non-linear anonymous prices are not sufficient to lead

the auction to competitive equilibrium. In this case non-linear non-anonymous prices

are introduced.
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Definition 2.16 (Competitive Equilibrium (CE) Prices).

The prices Ppay and allocation X∗ = (S∗1 , . . . , S
∗
n) are in a competitive equilibrium

(CE) if:

πj(S
∗
j ,Ppay) = max

S⊆M
[πj(S,Ppay), 0] ∀j ∈ N

Π(X∗,Ppay) = max
X∈χ

Π(X,Ppay)

where bidder j ∈ N = {1, . . . , n}, set S is a subset of the set of items M = {1, . . . ,m},

and S∗j denotes the bundle allocated to j.

Theorem 2.1 (Bikhchandani and Ostroy [13]). Allocation X∗ is in the competitive

equilibrium if and only if S∗ is an efficient allocation.

The idea of competitive equilibrium prices is to determine prices that characterize an

efficient allocation. In CE the utility of every bidder and the auctioneer revenue are

maximized at the given prices and the auction will effectively end since the bidders

will not be willing to change the allocation by submitting any further bids.

Non-linear discriminatory competitive equilibrium prices always do exist for CAP [87],

however, these prices can result in additional non-linearity complexity and are often

considered unfair by bidders [14]. This motivates the auctioneer to construction ICAs

that update ask prices in the direction of possibly linear, or non-linear but anonymous

CE prices. Ideally, such prices converge not just to CE prices, but minimal CE prices

defined as follows.

Definition 2.17 (Minimal CE Prices).

Minimal CE prices minimize the auctioneer’s revenue Π(X∗,Ppay) on an efficient

allocation X∗ across all CE prices.
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Minimal CE prices construct an upper bound on the VCG payments. On a restricted

class of valuations, minimal CE prices are equivalent to VCG payments which is a

desirable property, since it imposes the incentive compatibility of the auction design

[87]. But, as suggested experimentally, implementation of the required bidders’ valu-

ation condition that implies equivalence of minimal CE prices and VCG prices often

fails in realistic ICA settings, making the minimal CE prices incapable of supporting

the VCG payments.

Parkes and Ungar [84] and Mishra and Parkes [73] designed a price-based ICAs by

characterizing universal CE (UCE) prices. UCEs imply stronger restriction on CE

and reveal enough information to determine VCG payments from these prices.

Definition 2.18 (Universal CE (UCE) Prices).

Prices Ppay are universal competitive prices if:

a) Prices Ppay are CE prices.

b) Prices P−j,pay are CE prices for CAP (N\j), meaning that they support some effi-

cient allocation in CAP (N\j).

In words, UCE prices are CE prices in the main economy and in every marginal

economy. Note that UCE prices must support some efficient, not necessarily the

same, allocation in every marginal economy.

Theorem 2.2 (Parkes and Ungar [84]; Lahaie and Parkes [60])).

A combinatorial auction realizes the VCG outcome if and only if the auction also

realizes a set of UCE prices and an allocation in the price equilibrium of the main as

well as all marginal economies.
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In general, UCE prices are greater than the minimal CE prices because they must

consider competition in the marginal economies in addition to the main economy.

Mishra [73] note that minimal CE prices are universal for a restricted set of valuations.

2.3 Major Challenges in the Implementation of It-

erative Combinatorial Auctions

Alongside their advantages, ICAs bring in a host of new challenges and questions.

This section is devoted to exploiting some major challenges faced by the bidders and

the auctioneer.

On the bidders’ side, the complexity is more of an issue in practice. Bidders must

elicit their valuation for an exponential number of items. Next, they need to com-

municate their preferences with the auctioneer in an efficient and yet concise way.

Above all, bidders should adopt an appropriate bidding strategy to pick and price

new bundles that increase their chances of winning.

Determining the optimal bid prices in various auction designs has been a concern in

classic game-theoretic auction research, but it is even more challenging in ICAs. For

example, it is possible that a losing bid becomes winning in a subsequent round with-

out changing the bid. The bidders face the problem of choosing appropriate bundles

and bid prices.

Once the bidders evaluate and report their desired bundles in CAP, the auctioneer’s
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job starts to find out the efficient allocation of bundles to the bidders, including the

possibility that he retains some items that maximize his revenue. As discussed in

Section 2.2.3, this reduces to solving WDP to decide what bundles to allocate to

which bidders based on their reported bid prices.

Intuitively, solving WDP seems hard because one would need to check for each subset

of the bids whether the subset is feasible (no bids within the subset share items)

and how much revenue that subset of bids provides. A feasible subset that yields

the highest revenue is an optimal solution. With K being the number of bids all

bidders submit, there are 2K subsets of bids, so enumerating them is infeasible. This

problem is even more critical in an iterative auction setting when WDP has to be

solved several times during the auction. This highlights the need for the auctioneer to

adopt appropriate solution methodology that takes reasonable time to investigate the

solution space. Decreasing the execution time required at each round of an ICA, re-

duces the total auction duration and thus improves upon the overall auction efficiency.

In order to computationally evaluate various solution algorithms for WDP, it is nec-

essary for the auctioneer to be aware of how the performance of algorithms compare

in a laboratory environment. Accessing records of the bidders’ previous bidding be-

havior is inapplicable first due to the limited access to the actual records of bidders’

previous behavior, and second due to the scaling problem that arises when acquiring

this data for various problem sizes. This brings up the need for the auctioneer to

simulate bidders’ bidding behavior, as realistically as possible, to better evaluate and

compare various solution methodologies.
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The auctioneer’s next bottleneck is determining the prices of items and/or bundles

in ICAs for accounting and costing purposes. Since in combinatorial auctions not all

items may show up individually in singleton bundles, the auctioneer is interested in

determining the price of individual items after the winner determination problem is

solved.

2.3.1 The Preference Elicitation Problem (PEP)

In an auction environment, bidders are usually unwilling to reveal their valuations

on all bundles. First, due to their privacy settings, agents may prefer not to reveal

their valuation information [96]. Second, solving the bidders’ valuation problem

requires selection and valuation of the bundles to bid for from an exponentially large

set of possible bundles. Determining the value for a single bundle can be computa-

tionally demanding for the bidders in many environments. For instance, in the airport

landing slot scenario, airlines would need to solve local scheduling, marketing, and

revenue management problems to determine their values for different combination of

slots [8]. Requiring this computation for exponentially many bundles is in many cases

impractical.

Iterative auctions are a promising platform to mitigate this hurdle by providing the

bidders with enough time to put together their valuations on the most interesting

bundles.
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2.3.2 Strategic Bidding

Once the valuations are determined, bidders need to strategically formulate their new

packages. This problem is also termed as the Bid Generation Problem (BGP).

BGP has attracted little attention in the auction literature. If bidders do not know

which bundles are most beneficial and how much they should bid for them, the re-

sulting allocation cannot be efficient. Hence, the BGP has to be addressed before a

combinatorial auction can be claimed to achieve efficiency.

Wang [110] stresses the need for research on the bid generation problem. He in-

vestigates the problem that bidders face for providing services in a transportation

combinatorial auction with OR bidding language and developed necessary conditions

for bid generation, but did not address the pricing problem. Lee et al. [62] consider the

carrier’s optimal bid generation problem in combinatorial auctions for transportation

procurement and design a carrier optimization model that integrates the generation

and selection of routes. Their model has not been validated in a multi-round setting.

Lorentziadis [69] considers the bidder pricing problem in the presence of a fixed cost

as a function of the unit costs, auction fixed cost, order quantities and the minimum

profit margin. Hsieh [41] proposes a model for finding both bundle prices and quanti-

ties for the bidder. The prices are the Lagrange multipliers derived from a Lagrangian

relaxation of the winner determination problem. He formulates a profit maximization

model for the bidders based on these prices. This model is studied in more detail in

Chapter 4.
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2.3.3 Communication Complexity

Having prepared all the bids to be submitted, bidders need to communicate (in the

worst case an exponential number of) their bids to the auctioneer. This adds a

comminution cost on the bidders to report their bids to the auctioneer. Nisan [80]

addresses this problem through the design of bidding languages . Careful design

of bidding languages allows for compact representation of the bidders preferences to

ease the communication process. More details on the bidding languages is provided

in Section 2.2.3.3.

2.3.4 Solving the Winner Determination Problem (WDP)

Considering bids as subsets of a set of items and their weights as the prices attached

to them reduces WDP to an integer linear programming model of a weighted set

packing problem which seeks the largest total weight corresponding to pairwise disjoint

weighted subsets of a set of items. NP-hardness of WDP can be deduced from that

of the weighted set packing problem [95]. There has been various methodologies

proposed for solving the winner determination problem in combinatorial auctions.

We classify and describe some major approaches below.

2.3.4.1 Implementation of Economical Limitations

One approach to solve WDP optimally and provably fast is restricting bundles upon

which bids can be submitted [95, 107, 76, 63, 14]. For instance, Bikhchandani and

Ostroy [14] represent the problem of assigning a set of items to some bidders with

the condition that each bidder receives at most one subset as a linear programming
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formulation with integer optimal solution. The significance of their model is the ex-

istence of dual variables that reflect items’ prices and the bidders’ marginal product.

Necessary and sufficient condition for this link to exist is that the bidders are substi-

tutes meaning that the marginal product of a group of bidders is more than the sum of

the contributions of individual members of the group. The decentralized primal dual

procedure for solving the LP approaches to the pricing equilibrium corresponding to

social opportunity cost and yields an incentive compatible auction.

Despite the computational attractiveness due to the bidders’ limited preference elic-

itation opportunity, this approach suffers from economic inefficiencies, the same as

non-combinatorial auctions.

2.3.4.2 Application of Exact Solution Algorithms

Because WDP is NP-hard, an optimal algorithm for the problem will be slow on

some problem instances (unless P = NP). Exact algorithms solve the problem to the

optimal solution. Much of the research on solving WDP to optimality has been car-

ried out by applying artificial intelligence (AI) techniques such as intelligent search.

Direct application of commercial integer linear programming solvers also belongs to

this class of approaches.

Leyton-Brown et al. [67] work on multi-unit combinatorial auctions and introduce

CAMUS (Combinatorial Auction Multi-Unit Search), an algorithm for determining

the optimal set of winning bids in multi-unit combinatorial auctions. The method they
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propose is based on a branch and bound technique. Sandholm [100] proposes a Depth-

First Branch and Bound algorithm (DFBnB) that branches on bids. Their algorithm,

also called CABOB (Combinatorial Auction Branch On Bids), beats CPLEX 8.0

execution time on some test sets, but there are several cases where it is drastically

slower.

2.3.4.3 Application of Approximation Algorithms

An approximation algorithm strives to solve an NP-hard problem in polynomial time

to an almost optimal solution with provable performance guarantee. Sandholm [98]

and Lehman at al. [64] derive several approximation impossibility results for the

winner determination problem. In fact, application of approximation algorithms on

WDP can sometimes produce solutions which are quite far from the optimal [63,

Chapter 12] and can lead to reducing the total revenue in a direct auction or increasing

the total cost in a reverse auction.

2.3.4.4 Application of Heuristic Algorithms

Heuristic algorithms trade off the expected cost of the additional computation (cost

of the computational resources and the cost associated with delaying the result) for

finding an exact optimal solution against finding a reasonably good near-optimal one.

Although heuristics do not generally provide a guarantee on the solution quality or

runtime, experimentally they prove useful.

One stream of research in this category concentrates on applying the Lagrangian
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relaxation (LR) followed by heuristic solution algorithms that maps the optimal La-

grangian solution on to the feasible region of WDP. Guo et al. [39] models the com-

binatorial auction problem as a set packing and applies the Lagrangian relaxation

method. Song et al. [104] show application of Lagrangian relaxation on business-to-

business (B2B) procurement combinatorial auctions. Kameshwaran et al. [47] demon-

strate the design of progressive auctions using Lagrangian relaxation. They consider

procurement of multiple units of a single item with linear and piecewise linear supply

curves.

Hsieh [41] adopts a subgradient method to solve the Lagrangian relaxation problem

in a multi-unit multi-item reverse WDP. Based on the revelation of Lagrange multi-

pliers, the author presents a scheme to help bidders generate potential winning bids

in a multi-round auction format and proceeds to propose a heuristic algorithm to fix

possible infeasibilities resulting from the Lagrangian optimal solution. In Chapter 4

we comment on several inconsistencies within the author’s proposed problem formu-

lation, heuristic algorithm, numerical example, and empirical experiments.

A major advantage of implementing Lagrangian relaxation on ICAs is that the La-

grange multipliers act as approximates of the item prices. Once revealed to the

bidders as feedback in an iterative auction, they can help bidders modify their bids

accordingly. However, a considerable drawback of applying this methodology is that

classical methodologies such as the Lagrangian decomposition method and subgra-

dient method for solving the Lagrangian relaxation problem, usually consume too

much execution time. This time is further added to the time required by a heuristic
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algorithm which runs to fix infeasibilities from the Lagrangian solution, in case they

exist. In addition to the slow convergence rate, the convergence of these algorithms

is highly sensitive to the initialization of the parameters involved, i.e., an improper

initialization can cause the algorithm to diverge.

As much as the optimal Lagrangian values are valuable to us, solving the direct

relaxation problem is unappealing. Our proposed solution algorithm presented in

Chapter 3 provides a technique for solving the Lagrangian dual problem associated

with the WDP in a single iteration. Consequently, this method quickly provides

the desired information about the optimal Lagrangian objective value, multipliers,

and solution. This is followed by introducing an aggregate heuristic algorithm for

adjusting the solution to a near optimal one. Our extensive numerical experiments

illustrate the class of problems on which application of this technique provides near

optimal solutions in much less time as compared to the CPLEX solver.

2.3.4.5 Auction Simulation

It is necessary to generate artificial data that is representative of the sort of scenarios

the auctioneer is likely to encounter. Sandholm [97, 98, 100], Fujishima et al [35],

Boutilier et al. [15], deVries and Vohra [27] have suggested bid generation techniques

based on the number of bids and goods. These methods have drawbacks according

to [67].

• Which goods to request?

Most data generation techniques assume equal likelihood for items to appear in

bundles of the same size.
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• How many goods to request in a bundle?

These methods determine how many goods to include in a bundle independent

of which goods have already been selected for the bundle.

• What price to offer for each generated bundle?

These procedures suggest drawing prices randomly from

1. interval [0,1] [98],

2. interval [0,g] for g being the number of goods requested [98],

3. normal distribution with mean 16 and standard deviation 3 [15],

4. interval [g(1-d),g(1+d)] with d=0.5 [35],

5. a quadratic function of the prices of items included in the bundle [27].

Techniques 1 and 3 suffer from the fact that the price is independent of the

number of goods. In 2, mean and range are parameterized by the same variable.

Methods 1 to 4 do not consider which goods have been considered in the bundle

when pricing them. In technique 5, bundle prices are expressed as a function of

the length of the bundle which is hard to control as the number of the items in

the bundle increases.

Leyton-Brown et al. [67] provide a Combinatorial Auctions Test Suite (CATS) which

attempts to model realistic bidding behavior via a set of distributions. This facilitates

the study of algorithmic performances and their comparison against the previously

published results. The suite includes distributions based on real-world applications.

In most of the distributions, bids are generated from a graph that depicts the eco-

nomical relationships between items. In each bid, ceratin goods are more likely to

appear together when there exists complementarities between them. In addition, the
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number of goods to be included in each bundle relates to which goods it contains.

Once the bids are generated, price offers are related to goods included in the bundle.

CATS has the flexibility to constitute subadditive, additive, or superadditive price

offer values in the number of goods requested.

The empirical study of CATS reveals that several CATS instances are quite easy for

ILOG CPLEX. Since CATS tries to simulate realistic bidding behavior, this implies

that practical problems are usually easy to solve. Also, the hardness level can vary

significantly from instance to instance despite fixing the problem size and the distri-

bution [66].

We use CATS throughout the experimental study of our proposed algorithm to gen-

erate combinations of items with various cardinalities of the bids submitted, and a

real-valued number associated to each bid to describe the price asked for it. We are

not concerned with the hardness level of the data generated by CATS since our algo-

rithm is compared against CPLEX on the same data set. We consider a subadditive

environment to simulate the objects’ complementarities in a reverse combinatorial

auction environment.

2.3.5 The Pricing Problem

After an auction terminates, it is valuable to determine the value of the good and/or

bundles for clarification of auction results. These prices can also help as guidelines for

future auctions. Based on the preliminaries discussed in Section 2.2.5.2, we categorize

the literature on pricing ICAs into two major categories: bundle pricing and item
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pricing approaches.

2.3.5.1 Bundle-Pricing Approaches

With bundle bids, setting ask prices for individual items is not obvious and often even

impossible [14]. Additionally, ask prices may need to be personalized, i.e., different

bidders get different prices for the same items or bundles, as opposed to the traditional

anonymous prices. Bundle pricing, as its name suggests, is used to compute a final

price for each bundle. Due to the overlap of some bundles, bundle-pricing approaches

require additional assumptions that:

• every bidder must bid on every bundle,

• each bidder gets, at most, one bundle in the resulting allocation.

In order to avoid evaluating all bundles, a bidder can report only valuations for

interesting bundles and have a computerized agent fill in valuations for the remaining

bundles according to some rule. Condition two implements XOR condition to ensure

that the bidders are able to receive multiple items only when they have paid for the

complementarities among them. The ideal goals for determining bundle prices for

combinatorial auctions are to reach

• market clearing prices at which the price of a winning package is not less than

the sum of all prices of the goods it includes, and the price of a losing package

is less than this sum.

• incentive compatibility prices that allows straightforward bidding with truthful

valuation revelation.
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Leonard [65] investigates incentive compatible prices of the well-studied assignment

problem in operations research. The assignment problem is an integer programming

problem that is totally unimodular and hence can be solved as a linear programming

problem. Leonard’s paper identifies a set of shadow prices which maximize the sum of

the dual variables. The author shows that not only do these prices clear the market,

but also provide incentive compatibility.

Wurman and Wellman [112] discuss the bundle pricing problem for WDP with XOR

bidding Language. They implement an LP-based method to update non-linear but

anonymous price approximations. Prices converge to market clearing prices, but they

are not incentive compatible. After the procedure, every winning or losing bundle is

assigned a price. This method prices winning as well as losing bundles. The prices for

winning bundles are the result of the dual of an assignment problem. For the losing

bundles, they can be infinitely large so that no bidder is interested to buy them. As

a result, prices for the losing bundles are considered less informative of the true value

of the bundles than those for the winning ones. Without the information about which

bundles are won and which ones are not, these prices have little value for helping the

potential bidders valuate different bundles.

Bikhchandani and Ostroy [14] discuss the package assignment problem with the XOR

bidding Language. They reserve packages, rather than bundle, for a specific bidder

instead of everyone. The authors add auxiliary variables to the original integer pro-

gramming (IP) problem. Using the linear programming (LP) duality they provide the

sufficient and necessary condition on the buyers’ valuation for the packages to have
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a market-clearing and incentive compatible property. This valuations requirement is

known as buyers are substitutes and means that the marginal product of any buyer

subset is greater than the sum of its individual buyer’s.

The authors prove that under the condition that buyers are substitutes, the LP re-

laxation gives integer solutions and the optimal value of the dual variables give the

Vickrey discount for each bidder. Another paper by Bikhchandani et al. [13] proposes

a model that also has an integral optimal solution. Under the condition that buyers

are substitutes, the dual variable are exactly the Vickrey discount of the bidder. The

prices for the winning bundles are derived by subtracting the Vickrey discount from

the winners bid. Despite the economical attractiveness, since both models introduce

a variable for every feasible integer solution, the number of variables needed for the

WDP is exponential in the number of bids.

Parkes [86] proposes a bundle pricing scheme as part of an iterative ascending auction

model which approximates the VCG outcome. Parkes argues that while the proce-

dure in Wurman and Wellman provides the VCG outcome that incentivizes truthful

bidding, it needs complete information of bidder evaluation on every bundle. Bidders

may be unable and/or unwilling to reveal their full valuation.

In this approach, Parkes imposes the same set of assumptions as Wurman and Well-

man to propose a two-stage procedure with iterative ascending combinatorial auc-

tions. An iterative combinatorial auction runs in the first stage which terminates
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with an outcome close to the optimal allocation. In the second stage Vickrey dis-

count is computed for the winning bidders whose absence from the auction causes

some other winning bidders to lose. While the process terminates with an approxi-

mation of the VCG prices, bidders do not need to reveal complete information of their

valuation at the beginning of the auction. VCG approximation is only perfect when

the bid increment goes to zero in which case the iterative bidding process gets too long.

Mishra and Parkes [74] design an ascending price auction which seeks for non-anonymous

universal competitive prices (UCE). Their auction design calculates payments of buy-

ers from the final UCE price and allocation and implements the VCG outcome under

any valuation profile of buyers. This work assumes XOR bidding language with no as-

sumption on bidders’ valuations. The proposed approach is particularly useful when

no CE price supporting VCG payments is observed, i.e., substitutes condition on val-

uations does not hold. The authors relate this work to the work of de Vries et al. [31]

and show that when buyers are substitutes, their auction converges to a UCE price.

deVries, Schummer and Vohra [27] construct non-anonymous prices for an ascend-

ing auction for heterogeneous objects. The auction assigns prices to bundles and

asks bidders to report their preferred bundles in each round. Bidders’ prices follow

a minimal update pattern on a set of minimally undersupplied bidders. All bidders

in a minimally undersupplied set face higher prices on the bundles for which they

submitted a bid. The auction realizes VCG outcome for a limited class of problems.

The authors also show in [26] that a stronger condition on the submodularity of the

coalition values needs to be satisfied to achieve the VCG outcomes with an ascending

60



Ph.D. Thesis Computational Sci. & Eng.

price auction.

Bichler et al. [12] experimentally compare three selected linear price ICA formats

based on allocative efficiency and revenue distribution using different bidding strate-

gies and bidder valuations. The authors discuss the efficiency of computational sci-

ences and methods as strong alternatives to complement the theory and experiment

in combinatorial auctions, and understand phenomena that have been shown to be

difficult to analyze. Specifically, using computational methods, they show that ICA

designs with linear prices perform very well for different valuation models even in

cases of high synergies among the valuations. They observe, however, significant dif-

ferences in efficiency and the revenue distributions of the three ICA formats they use.

Scheffel et al. [12, 101] propose an interesting discussion on the comparison of the

auction designs imposing linear versus non-linear package prices. They analyze ag-

gregate metrics such as efficiency and auctioneer revenue for small- and medium-sized

value models. As already seen, based on strong theoretical foundations, auction for-

mats such as ascending proxy auction and iBundle result in Vickrey payoffs when the

coalitional value function satisfies buyer submodularity conditions and bidders bid

their best responses. These auction formats are based on nonlinear and personalized

ask prices. The authors show that experimentally these approaches lack efficiency as

compared to some other linear price auctions. In a lab environment, iBundle requires

a large number of auction rounds and fails to meet the buyer submodularity condi-

tions in most realistic settings. The bidders’ also fail to strictly follow best-response

strategies in difficult decision situations. In fact, the bidder find it difficult to choose
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one or more bundles from a set that is exponential in the number of items and attach

a bid price to each bundle). To remove this extra complexity, we also follow a linear

price structure in this thesis.

2.3.5.2 Item-Pricing Approaches

The bundle pricing approach gives prices only for bundles. So, if no winning bundle

contains only a single component of interest, bundle pricing is unable to provide a

way to determine an individual component price. Several researchers have worked on

pricing individual items in a non-combinatorial environment.

Kelso and Crawford [56] study the labor markets with heterogeneous firms and work-

ers and perfect information. They show that equilibrium in such markets exists and

is stable provided that all workers are gross substitutes from each firm’s standpoint.

They use a greedy update method to provide non-anonymous prices for individual

items.

Demange, Gale and Sotomayor [30] define a minimal price update, increasing the

prices on a minimal overdemanded set of items for the assignment model. Minimal

price updates are adopted to drive individual item prices towards minimal CE prices.

Gul and Stacchetti [38] study the problem of efficient production and allocation of

indivisible objects among a set of consumers. They propose conditions which are

equivalent to the gross substitute (GS) condition of Kelso and Crawford with the

62



Ph.D. Thesis Computational Sci. & Eng.

assumption of quasilinearity. Under the GS condition, the auction converges to the

smallest Walrasian prices which in turn corresponds to the VCG payments.

Milgrom [72] reviews the uses of economic theory in the design and improvement of

the Simultaneous Ascending Auction (SAA) which was developed initially for the sale

of radio spectrum licenses in the United States. At each round bidders simultaneously

make sealed bids for any items in which they are interested.

Ausubel [5] proposes a dynamic design for auctioning multiple heterogeneous com-

modities. An auctioneer wishes to allocate one or more units of each of K hetero-

geneous commodities to n bidders. The auctioneer announces a vector of current

prices, bidders report back quantities demanded at these prices, and the auctioneer

adjusts the prices. Nevertheless, with pure private values, the proposed auction yields

Walrasian equilibrium prices.

Ausubel et al. [6] propose a two stage combinatorial auction called Clock-Proxy Auc-

tion. At the clock stage only single-item bids are allowed and at the proxy stage a

round of sealed-bid second-price auction takes place. This auction also reveals price

information on individual items.

Cramton [25] designs Simultaneous Multi-Round Design (SMR) which allows only

single-item bids, is iterative, and has an eligibility-based stopping rule (i.e., a use-it-

or-lose-it feature) driven by a minimum increment requirement for new bids. This

auction runs multiple single-item auctions simultaneously and was extensively used
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by the FCC to run early bandwidth auctions. SMR auctions can take a very long

time to complete.

Determining the individual prices in a combinatorial environment is not a trivial task.

Kwasnica et al. [58] adopts an LP-based price update method and adjusts prices to

find good approximations to CE prices given current bids and the current provisional

allocation in a multi-object auctions. The authors merge the better features of the

Simultaneous Multiple Round (SMR) [25] and the Adaptive User Selection Mecha-

nism (AUSM) of Banks et al. [9] and add one additional feature. The new design is

called the Resource Allocation Design (RAD) auction process. For substitutes val-

uations, this auction reduces to a simultaneous ascending price auction. Like SMR

design, RAD is iterative, has an eligibility-based stopping rule, forces a minimum

bid increment, and computes prices for each item for sale and like AUSM design, it

allows package bidding. To approximate the item prices, this approach attempts to

compute a set of prices such that for any winning bundle the sum of the prices of its

comprising individual items is equal to the bid and for losing bundles the difference is

minimized. The authors show that RAD performs better than both SMR and AUSM

achieving higher efficiencies, lower bidder losses, higher net revenues, and faster times

for completion without increasing the complexity of a bidders problem. However,

formal convergence properties have not been proved for RAD.

O’Neill et al. [83] discusses pricing a more general resource allocation problem with

a non-convex objective function. The main idea is to associate a cost with each
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positively valued integer variable. They show that the optimal solution to a lin-

ear program that solves the mixed integer program has dual variables that have the

traditional economic interpretation as prices and clear the market in the presence

of non-convexities. After solving the resource allocation problem, a new equality

constraint is added for each positively valued, optimal integer variable that sets the

variable to its optimal value. Next, they solve the dual for the new LP which has the

same optimal solution as the original IP. The price is the sum of all composing items

plus the additional dual variable corresponding to the integer variable.

Xia et al. [113] show that ONeill [83] prices are not unique, and the prices corre-

sponding to the unallocated items are always zero. The authors also prove that

under special circumstances the ONeill [83] and DeMartini prices in [58] are in fact

equal. This includes when all the goods are sold in the optimal allocation as well as

when some goods remain unallocated with zero DeMartini prices.

Jones and Andrews [43] use the maximum likelihood to estimate the distribution of

item prices based on final winning bundle prices. Aparicio et al. [3] present an al-

gorithm for solving an iterative multi-unit combinatorial auction. At each round of

the auction, the auctioneer computes a linear anonymous price for each item using a

DEA model and pushes bidders to express bids according to them.

Most auction designs providing item-price feedbacks concentrate on combinatorial

auctions with a single unit of multiple heterogeneous items. Iftekhar et al. [42] ad-

dress this gap by evaluating several feedback schemes or algorithms in the context
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of multi-unit auctions. They numerically evaluate the algorithms corresponding to

different scenarios that vary in bidder package selection strategies and in the degree

of competition.

Despite the research on item/bundel pricing methodologies as described in Section 2.3.5

and the Section 2.3.2 suppliers’ bidding strategy techniques, there is a lack of stud-

ies that look at the integration of the two methodologies: develop an appropriate

pricing scheme for the auctioneer based on which the bidders package and submit

new more competitive bids. In Chapter 4, we simultaneously look at the auctioneer’s

and the bidders’ utility maximization optimization problems and propose a provably

convergent iterative auction.

2.4 Divisible-Bid Auctions

When auctioning off multiple items, it is crucial to understand the intrinsic physical

nature of the item(s) that are up for bids. When a seller offers some amount of a good

for sale, the auction is called divisible or continuous since the feasible volumes of

offers are continuous. Auctions of divisible goods are commonplace in markets for

financial securities, energy products, and environmental permits. In such auctions,

the bids specify quantities of the divisible goods: The shares of stock, the megawatt-

hours of electricity, or the tons of emissions.

When all the goods are divisible, the WDP is a linear programming problem. The

value of LP dual variables also gives individual prices, and the bundle prices from the

dual problem are asymptotically incentive compatible. When goods are indivisible
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or discrete , the duality gap of integer programming (IP) assures that equilibrium

prices exist only in special cases [79].

Abrache et al. [1] pointed out that the languages previously considered in the lit-

erature (as described in Section 2.2.3.3) were formalized for combinatorial auctions

with indivisible items. In this work, the authors propose a two-level bidding language

appropriate for intrinsically divisible items (e.g., electricity power, telecommunication

capacity, assets in financial markets). The authors claim that the new language raises

theoretical and practical challenging issues; for instance, the solutions times for large

problems is huge which is inefficient. Kaleta [45] introduce three families of bidding

languages for divisible goods based on the concepts derived from combinatorial auc-

tions.

It is noteworthy to mention that item divisibility should be clearly distinguished

from bid divisibility where the latter refers to partial acceptance of the bids sub-

mitted. In fact, for most of the literature on combinatorial auctions, researchers have

concentrated on the design of bidding languages for indivisible assets and only very

few have considered divisible goods.

While auctions for divisible goods allow for partial acceptance of a continuous asset,

auctions with divisible bids permit partial acceptance of a package of items. Partial

acceptance of bids mitigates the burden on suppliers to provide exponentially many

indivisible bids (with respect to the number of items in the auction) to completely

describe their cost structure.
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For multiple units of the same item, suppliers are able to express a volume discount

property that is buy more and pay less in a so-called Discount Volume Auctions.

Several discount volume auction studies have assumed the suppliers use piecewise

linear cost functions to express their bids [47, 54, 53, 52]. In [47] Kameshwaran

and Narahari propose a Lagrangian-based heuristic algorithm to solve the winner

determination in a procurement discount volume auction. Kameshwaran et al. [54]

design multi-attribute procurement auction allowing the bidders to bid on multiple at-

tributes. In [53, 52] Kameshwaran and Narahari consider several solution algorithms

for the underlying NP-hard winner determination problem. Proposed procedures in

[47, 54, 53, 52] do not allow inclusion of more than one item in the auction.

As opposed to discount volume auctions, Discount Auctions are proposed to facil-

itate submission of bids which consists of individual costs of heterogeneous items and

a discount function specifying the discount over the number of items. Some studies

focused on the case of discount auctions for procurement of a single unit of multiple

heterogeneous items [48, 49, 50, 46]. The discount function is solely dependent on the

number of items included in a package, i.e., the auction facilitates paying less for buy-

ing more. This bidding language disregard the complementarities of items. Suppliers

are no longer able to convey their desire to receive a package of items simultaneously,

and so this is a non-combinatorial auction. Moreover, the discount rate is equivalent

among all items. The suppliers’ offer a discount rate for procurement of a ceratin

number of items, irrespective of which items.
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Extending partial bid acceptance on auctions with multiple units of multiple items,

Bichler et al. [11] introduce an expressive bidding language which allows for quantity

discount. Based on the introduced bidding language, they design and analyse a sup-

plier quantity selection problem (SQS) which allows the buying managers to decide

which suppliers should provide how many units of what items. Despite consideration

of multiple units of heterogeneous items, this work does not address package bidding.

Suppliers are unable to communicate their interest in receiving packages of items and

thus suffers from the exposure problem inherent to non-combinatorial auctions.

An important marketplace that considers divisible bids on packages of multiple units

of multiple items is in truckload transportation (TL) auctions where the carriers

express preferences for serving transportation lanes. Remli and Rekik [93] consider

the winner determination problem in the context of TL. They assume carrier t submits

a set of bids Bt. With a flexible type of bidding language, a bid b ∈ Bt is defined

by a tuple (`tb, [LBtb, UBtb], ctb) where `tb is the set of lanes that carrier t offers to

serve in bid b, LBtb is the minimum volume that the shipper guarantees to the carrier

if bid b wins, UBtb is the maximum volume that the carrier can ship if bid b wins,

and ctb is the price asked by carrier t in bid b for transporting one unit volume on

each lane l ∈ `tb. As an example, the first bid submitted by carrier t1 may look like

b1 = ({4, 5}, [2, 4], 10) which indicates that t1 offers to ship a volume varying between

2 and 4 units on each of lanes 4 and 5 with a price of 10 for a unit volume of shipment.

With the proposed bidding language,

• the carrier is assigned to serve equivalent volumes on all lanes he acquires in

the bid he submits. In the above example for instance, the volume he will have
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to serve is either 2, 3, or 4 for both lanes 4, and 5. It is not possible for him to

express greater/lower capacity to serve some of the lanes in the package.

• the carrier has to serve all the lanes which are complimentary to him at an equal

price. For instance, he will have to serve lane 4 and 5 both at the fixed cost of

$10 per unit. It is possible that serving a lane costs the bidder more/less.

• the bidding language does not allow for a precise declaration of quantity dis-

counts. For instance, a bidder is not able to express a bid that lets him cover

lane 4, with a quantity interval of [6,8] and lane 5 with [6,10], charging $8 per

unit of shipment. In other words, the quantity discount comes with serving

lanes (that are complimentary) with the exact same lower and upper bounds.

It does not allow for expressing non-identical lower and upper shipment bounds

when providing quantity discounts on lanes in the same package.

Lim et al. [68] design a shipper’s transportation procurement model. The auctioneer

announces the requirements for freight services for a planning duration. The carriers

who are assumed to serve different groups of lanes respond to the auctioneer with

quotes of freight rates that best suit their bidding strategy. This work preserves the

complementarity of serving groups of lanes, however, it does not account for the ex-

plicit representation of quantity discounts.

In the study of Chilean auction for school meals, Olivares et al. [82] state that package

bidding should be flexible enough so that firms can express their cost synergies due

to economies of scale, and take advantage of this flexibility by discounting package

bids for strategic reasons. The authors perform analytical studies on the submitted
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bids to better understand the bidding behaviour of the bidders. However, the study

is performed on single-unit first bid auction and is valid only on this type of auction.

The Mars-IBM team [40] created a procurement auction Web site that enables buy-

ers to incorporate complex bid structures (such as bundled all-or-nothing bids and

quantity-discounted bids) and business constraints into strategic-sourcing auctions.

The Mars procurement auction does consider divisible bids with quantity discount.

However, the designed model is geared for multi-units single-item auctions. Even

though suppliers benefit from the opportunity to give a discount for the provision of

larger units of items, they are deprived from taking advantage of complementarities

among different products.

Caplice and Sheffi [17] classify the bidding languages for TL auctions as either static

or flexible. Static bids reflect the indivisibility of bids, i.e., it is the carriers who de-

termine the specific volume level awarded on each lane, not the shipper. With flexible

package bids, by contrast, the shipper determines the volume level awarded to each

bidder taking into account the carriers minimum/maximum shipment volume as well

as per load rates.

In Chapter 5 we extend this language to allow suppliers to express quantity discounts

for provision of large quantities of items. We consider suppliers’ bids as piecewise

linear price functions that specifies, for each item in the package, the per-unit price

for the proposed range of supply. Based on this bid submission rule, this chapter

compares the computational efficiency of WDP with divisible as opposed to indivisible
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bid submission. We observe that a much greater CPU time is required by CPLEX

12 to solve the indivisible formulation. For two suppliers, each submitting two sets

of bids for two items, the time ratio is 1.1. This ratio increases to 856.05 for five

suppliers, each submitting five sets of bids on five items. Next, we generate multiple

profit maximization formulations for the suppliers based on their risk-taking attitude

and proceed to compare the suppliers’ profit maximization problem in a divisible

versus an indivisible auction environment. Empirically, we observed that a divisible-

bid auction provides suppliers with a higher average profit value and lower bundle

prices.
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Chapter 3

A Lagrangian Heuristic for the

Winner Determination in

Procurement Combinatorial

Auctions

Reverse combinatorial auctions have been widely used in various real world applica-

tions. In companies which run combinatorial auctions in procurement of goods or

services, the procurement manager serves as the auctioneer. He usually preserves a

reservation cost which is the maximum amount he is willing to pay for one unit of an

item. The organizations that compete to provide the items needed by the auctioneer

are the suppliers. Through the bid submission, suppliers clearly specify which bundles

of items they are willing to provide, how many units of each item they would include,

and how much they charge in order to provide what they offer. The price each bidder
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attaches to his package is known as the price offer.

We start this chapter by introducing the winner determination problem in procure-

ment. As discussed in Chapter 2, the problem of finding the winners in a combinato-

rial auction is computationally NP-hard and inapproximable in polynomial time. We

highlight the virtue of implementing Lagrangian relaxation on WDP and compare

the optimal solution it provides against that of linear relaxation.

In order to solve the Lagrangian relaxation problem, we propose an efficient initializa-

tion of the Lagrangian multipliers. Unlike traditional methodologies for solving the

Lagrangian relaxation problem that involve several iterations to attain the optimal

Lagrangian multipliers, our techniques solves the Lagrangian relaxation problem in a

single iteration. The optimal Lagrangian solution attained is further deployed as the

start point of a heuristic algorithm framework. The heuristic algorithm systemati-

cally adjusts this solution until feasibility of all primal constraints is attained. The

results of this approach are compared against CPLEX 12.

3.1 Problem Formulation

Assume M = {1, 2, ..,m} is the set of items and N = {1, ..., n} is the set of bid-

ders who compete to purchase them. Each bidder j ∈ N submits a set of package

bids S ⊆ M each of which contains a subset of items selected by bidder j and a

corresponding price value PjS, also known as price offer or simply price. The bid-

ders’ prices on bundles are non-linear. Thus, for an arbitrary bidder j and sets

S, S1, S2(S, S1, S2 ⊆ M), with S = S1 ∪ S2, we have pjS 6= pjS1 + pjS2 , where pjS is
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the price for bundle S offered by bidder j. The prices are non-anonymous meaning

that they allow discriminatory pricing so that pjS 6= pj′S for bidder j 6= j′. Let qijS

be a non-negative integer that represents the quantity of item i that bidder j offers

in bundle S and di be the auctioneer’s demands of item i with 0 ≤ qijS ≤ di.

The auctioneer’s problem of deciding which bidders should supply how many units

of what items and at what price with the objective to minimize the total cost of

procurement while satisfying the auctioneer’s demand is known as the reverse (or

procurement) winner determination problem (WDP). When bidders are allowed to

win any number of the packages they bid on, the winner determination problem

is referred to as WDPOR. In a procurement setting WDPOR is formulated as the

following integer programme.

min Σj∈NΣS⊆M pjSxjS

s.t. Σj∈NΣS3i qijSxjS ≥ di ∀i ∈M

xjS ∈ {0, 1} ∀j ∈ N, ∀S ⊆M.

(3.1)

The set of constraints (known as demand constraints) state that at least di units of

each item has to be provided at the optimal solution. We note that we are assuming

free disposal, i.e., an optimal allocation may over satisfy demand.

In some applications of combinatorial auctions it is preferred to implement an XOR

bidding language to allow each bidder to win at most one bundle. To take into account

this requirement, we need to add one more constraint in (3.1) to formulate WDPXOR
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as follows.

min Σj∈NΣS⊆M pjSxjS

s.t. Σj∈NΣS3i qijSxjS ≥ di ∀i ∈M (1)

ΣS⊆M xjS ≤ 1 ∀j ∈ N (2)

xjS ∈ {0, 1} ∀j ∈ N,∀S ⊆M.

(3.2)

Constraints (1) and (2) in (3.2) are respectively referred to as the demand and supply

constraints. The XOR bidding language in a procurement WDP setting has the

potential to increase the bidders’ precision since at most one of their submitted bids

gets accepted. Moreover, it does not allow bidders to obtain a set of items as singleton

bids without having paid for the complementarities.

3.2 Application of Lagrangian Relaxation on Pro-

curement WDP

Lagrangian relaxation is a technique which approximates a difficult problem by re-

laxing it to a simpler one. The method removes some of the problem constraints and

penalizes their violations by adding them to the objective with weight parameters

known as the Lagrangian multipliers. The Lagrangian multipliers impose a cost on

the relaxed constraints’ violations. Thus, each time a solution does not satisfy a re-

moved constraint, a penalty is added to the objective. The choice of the constraints

to relax is made such that the relaxed problem is simpler to solve. In other words, the

Lagrangian relaxation aims to relax some hard constraints, so that the optimization

over the remaining set of constraints is easy.
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Applying the Lagrangian relaxation on reverse combinatorial auctions provides us

with an approximate solution to the problem and a lower bound on the total cost of

procurement. The Lagrangian multipliers corresponding to the first set of constraints

determine how much it costs to have one more unit of an item and thus can be in-

terpreted as the item prices. We make use of this information in an iterative auction

framework, to give feedback to the bidders about the item prices so that they will

have a better sense about each other’s valuations. This information is economically

valuable since it can initiate an iterative auction wherein the bidders are provided

with the opportunity to modify their bids several times throughout the auction before

finalizing them.

As mentioned, Lagrangian relaxation finds an approximation to the problem but does

not guarantee providing an optimal one. In fact, it may not even produce a feasible

solution. In case the solution provided by the Lagrangian relaxation is not feasible, we

apply a heuristic algorithm to fix the infeasibilities and find a feasible (near) optimal

solution.

3.2.1 Formulating the Lagrangian Relaxation Problem

Consider the winner determination problem as modeled in (3.1). Let X = [xjS]j∈N,S⊆M

be the vector of assignments and λ be the non-negative Lagrange multipliers assigned

to the first set of constraints. This results in the formulation of the Lagrangian re-

laxation function as

L(X,λ) =
∑
j∈N

∑
S⊆M

pjSxjS +
∑
i∈N

λi(di −
∑
j∈N

∑
S3i

qijSxjS),
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and the Lagrange dual function or simply the dual function as

g(λ) = min Σj∈NΣS⊆M pjSxjS + Σi∈Nλi(di − Σj∈NΣS3i qijSxjS)

s.t. xjS ∈ {0, 1} ∀j ∈ N,∀S ⊆M.
(3.3)

The Lagrangian dual function is also referred to as the subproblem. For each value

of the Lagrange multiplier, we obtain a lower bound on the problem’s optimal value.

The optimization problem that seeks to find this value is the Lagrangian dual problem.

For the Lagrange function (3.3) the dual problem is formulated as

max g(λ)

s.t. λ ≥ 0.
(3.4)

Relaxation of the demand constraint in an XOR bid setting can be done in a similar

way with the exception that the subproblem (3.3) is solved in the existence of the

additional supply constraints.

3.2.2 Solving the Lagrangian Relaxation Problem

One approach for solving the Lagrange dual problem is applying the Lagrangian

Decomposition Method [37]. This method starts with arbitrary values of Lagrange

multipliers λ to achieve an optimal solution to subproblem (3.3) which can be refor-

mulated as

g(λ) = min Σj∈NΣS⊆M(pjS − Σi∈NλiqijS)xjS + Σi∈Ndiλi

s.t. xjS ∈ {0, 1} ∀j ∈ N,∀S ⊆M.
(3.5)
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Define θ as

θ = minX(Σj∈NΣS⊆M(pjS − Σi∈MqijSλi)xjS).

Once the subproblem is solved, Lagrangian decomposition proceeds to reformulate

the Lagrangian dual problem as the following linear programming

max θ + Σi∈Ndiλi

s.t. θ + Σi∈MλiΣj∈NΣS3iqijSxjS ≤ Σj∈NΣS⊆M pjSxjS

λi ≥ 0 i ∈ N.

(3.6)

Let X∗ be the optimal solution from the subproblem (3.2). This solution is inserted

into the dual problem (3.2) to find out the multipliers that would maximize the

objective value at that point. The optimal multipliers derived are inserted back

in the subproblem to find the optimal solution. The procedure continues iterating

between solving (3.2) and (3.6), changing the objective value of the first and adding

one more constraint to the second, until the objective values of the two problems

converge. The bound achieved is the Lagrangian dual bound.

3.2.3 Analysis of the Lagrangian Relaxation Bound

This section compares the Lagrangian and linear relaxations of a multi-unit multi-

item reverse WDP with and without free disposal in an OR and an XOR bidding

environment. Let us define problem (3.2) as
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min PX

s.t. QX ≥ d

RX ≤ 1

Xbinary,

where, the quantity matrix Q and the supply matrix R are defined as

Q = [Q̃1, . . . , Q̃n] Q̃j = [qijS]i∈M,S⊆M ∀j = {1, . . . , n},

R =


R̃1 0

. . .

0 R̃n

 R̃j = [rjS]S⊆M ∀j = {1, . . . , n}.

With K being the total number of subsets, matrix Q is m ×Kn and R is n ×Kn.

Each quantity value qijS identifies the quantity of item i that bidder j supplies in

bundle S. Also, rjS = 1 if supplier j submits a bid on bundle S and is 0 otherwise.

Also, let qjS and rjS respectively define the columns of Q and R corresponding to
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bidder j’s bids on subsets S, S ⊆M , i.e.,

qjS =


q1jS

...

qmjS


1×m

, rjS =



0

...

0

rjS

0

...

0


1×n

.

The following propositions provide some properties of relaxing demand constrains in

an OR, demand only and both supply and demand constraints in an XOR setting.

Note that the Lagrangian multipliers associated with the demand constraints are

interpreted as item prices for an auction environment. Thus, we are not interested in

solely relaxing the supply constraints in XOR.

Proposition 3.1. Let λ∗ and γ∗ be the optimal values of the Lagrangian multipliers

respectively associated with demand and supply constraints. We can find closed form

optimal solution for the Lagrangian relaxation problem of

1. WDPOR with relaxed demand constraints as:

x∗jS =

 1 pjS − λ∗
t

qjS < 0

0 otherwise,
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2. WDPXOR with relaxed demand and supply constraints as:

x∗jS =

 1 pjS − λ∗
t

qjS + γ∗
t
rjS < 0

0 otherwise,

3. WDPXOR with relaxed demand constraints as

x∗jS =

 1 pjS − λ∗
t

qjS = minS{pjS − λ∗
t

qjS} < 0

0 otherwise.

Proof. First, let us assume a free disposal state where the Lagrangian multipliers

corresponding to demand constraints take on non-negative values. To prove part 1

we consider the Lagrangian optimization problem

g(λ) = infX L(X,λ)

= infX{PX + λt(d−QX)}

= dtλ + infX(P− λtQ)X

= dtλ +


∑

j,S(pjS − λtqjS) pjS − λtqjS < 0

0 o.w.

(3.7)

maxλ g(λ) = g(λ∗) provides the optimal solution for (3.7). Therefore, g(λ) is maxi-

mized when x∗jS is set to one for negative values of pjS − qjSλ
∗ and zero otherwise.

To prove part 2, consider the WDPXOR as formulated in (3.2.3). Assigning non-

negative Lagrangian multipliers λ and γ respectively to the demand and supply
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constraints in WDPXOR leads to the Lagrangian subproblem

g(λ,γ) = infX L(X,λ,γ)

= infX{PX + λt(d−QX) + γt(RX− 1)}

= dtλ− 1tγ +


∑

j,S(pjS − λtqjS + γtrjS) pjS − λtqjS + γtrjS < 0

0 o.w.

(3.8)

g(λ∗,γ∗) optimally solves the Lagrangian relaxation problem.

Finally, for part 3 the Lagrangian subproblem is

g(λ) = infX{PX + λt(d−QX)|RX ≤ 1,X binary}

= dtλ + infX{(P− λtQ)X|RX ≤ 1,X binary}.
(3.9)

In order to maximize g(λ) it suffices to consider the minimum value of pjS − λ∗
t

qjS

for each bidder j ∈ N . If this values is negative, we set the corresponding variable to

1 and otherwise to 0. This associates at most one bundle to each bidder j and thus

g(λ∗) provides us with the optimal solution.

Proposition 3.2. The Lagrangian and linear relaxations of reverse WDP yield equiv-

alent bounds.

Proof. According to Theorem 16.10 in [2], the linear and Lagrangian relaxation

bounds equal if the Lagrangian subproblem satisfies the integrality property, i.e.,

LP relaxation finds integral solution for the Lagrangian subproblem for any choice of

objective function coefficients.
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The linear relaxation of subproblems (3.7) and (3.8) minimize the objective function

subject to the constraint that each variable is less than or equal to 1. This forms a

totally unimodular matrix of coefficients and so the subproblems satisfy the integrality

property. Also, from the definition of matrix R, each of its columns have at most one

+1 and they are 0 elsewhere. Thus the integrality of subproblem (3.9) can be deduced

from the totally unimodularity of matrix R.

Theorem 3.1. For the reverse WDP, the dual variables associated with the demand

(or supply) constraints of the linear relaxation problem correspond to the Lagrangian

multipliers associated with the demand (or supply) constraints of the Lagrangian re-

laxation problem.

Proof. We can reformulate the Lagrangian subproblem (3.8) corresponding to the

relaxation of all constraints in an XOR bid setting as

g(λ,γ) = λtd− γt1 + Σj,S min{0, pjS − λtqjS + γtrjS}.

Based on definition of matrix R, γtrjS = γj. The corresponding Lagrangian dual

problem maximizes g(λ,γ) for nonnegative values of λ and γ as

sup
λ,γ

g(λ,γ) = max
λ,γ
{dtλ− 1tγ + Σj,S min{0, pjS − λtqjS + γj},λ ≥ 0,γ ≥ 0},

or equivalently

max dtλ− 1tγ + Σj,S min{0, pjS − λtqjS + γj}

s.t. λ ≥ 0,γ ≥ 0.
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Linearizing min{0, pjS − λtqjS + γj} with variable ljS, we obtain

max dtλ− 1tγ + ΣjSljS

s.t. ljS + λtqjS − γj ≤ pjS ∀j, S

ljS ≤ 0 ∀j, S

λ ≥ 0,γ ≥ 0.

Let ljS = −tjS. The corresponding dual problem is formulated as

min Σj,SpjSxjS

s.t. Σj,SqjSxjS ≥ d

ΣSxjS ≤ 1 ∀j

0 ≤ xjS ≤ 1 ∀j, S.

Multipliers λ and γ which were initially defined as Lagrangian multipliers associated

with demand and supply constraints also serve as dual variables to the corresponding

constraints in the linear relaxation problem. The equivalence in the OR setting can

be concluded similarly.

Corollary 3.1. Initializing Lagrangian multipliers at optimal dual values obtained

from the linear relaxation solves the Lagrangian function to optimality.

We note that based on Theorem 3.1 initializing the Lagrangian multipliers at the

optimal dual values is in fact equivalent to initializing them at their optimal values.

As stated in Proposition 3.1 this initialization solves the Lagrangian subproblem, as

formulated in (3.5) to optimality without recourse to the dual problem (3.6).
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3.3 Solution Algorithms

This section consists of our proposed solution algorithms for solving the procurement

WDP to (near-) optimality. Based on the analysis proposed in Section 3.2.3, we

generate an algorithm to efficiently solve the Lagrangian relaxation problem to opti-

mality. Based on the solution derived we propose a heuristic method in section 3.3.2

for solving the underlying primal problem.

3.3.1 Lagrangian Relaxation Solution Algorithm

In Theorem 3.1 we provide optimal values of Lagrange multipliers. As stated in

Corollary 3.1, by initializing the Lagrange multipliers at their optimal values, we

can solve the Lagrangian relaxation problem by solving its subproblem and using

Proposition 3.1. Algorithm 1 summarizes our methodology for efficiently solving the

Lagrangian relaxation problem.

Algorithm 1 Lagrangian relaxation solution algorithm

Step1. Solve the corresponding LP relaxation.
Step2. Initialize Lagrange multipliers at the LP’s optimal dual values.
Step3. Solve Lagrangian subproblem using the closed form solution in Proposi-
tion 3.1.

Table 1 illustrates the amount of execution time saved when solving the Lagrangian

relaxation problem using this methodology as compared to the implementation of a

traditional decomposition method. Each pair of (item, bid) is averaged on 13 runs

of different problem instances. The average ratio of 88.9 on a total of 520 problems

indicates that our proposed methodology solves the Lagrangian relaxation problem

to optimality in about %1 of the time required by the Lagrangian decomposition

method.
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Table 1: Execution time comparison of Algorithm 1 and the Lagrangian decomposi-
tion method

(#items, #bids) 
Average ratio of execution time of 

Lagrangian decomposition to Algorithm 1 

(4,20) 31.02 

(4,30) 61.88 

(5,20) 51.46 

(5,30) 65.81 

(5,40) 80.35 

(5,50) 68.02 

(5,100) 59.35 

(6,20) 33.87 

(6,30) 61.42 

(6,40) 83.34 

(6,50) 46.17 

(6,60) 74.30 

(6,70) 85.35 

(6,100) 68.56 

(6,150) 72.72 

(6,200) 81.17 

(6,250) 98.92 

(7,100) 69.07 

(7,150) 99.51 

(7,200) 93.15 

(7,250) 104.09 

(7,300) 123.88 

(7,350) 135.70 

(8,100) 88.80 

(8,200) 59.53 

(8,300) 159.96 

(8,400) 87.28 

(8,500) 98.67 

(9,50) 122.55 

(9,70) 112.96 

(9,100) 93.83 

(9,150) 86.98 

(9,200) 90.24 

(9,250) 108.43 

(9,300) 106.14 

(9,350) 134.22 

(9,400) 112.55 

(9,450) 165.41 

Average 88.86 
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3.3.2 Aggregate Heuristic Solution Algorithm

The Lagrangian relaxation provides an integer solution in step 3 of Algorithm 1 which

may not be feasible in the primal problem. In order to fix it, we developed a heuristic

algorithm, named as the Aggregate heuristic, which consists of several subheuris-

tics and improvement procedures. Starting from the Lagrangian optimal, we observe

satisfiability of demand constraints at the current solution. Violation of a demand

constraint at the current solution indicates insufficient assignment of quantities of

the corresponding item. Each subheuristic initially fixes its current solution X at the

Lagrangian optimal solution X∗
LR

and then systematically selects a constraint and a

variable to set to 1. Setting additional variables to 1 continues until the feasibility

of all constraints is achieved. Algorithm 2 describes the generic structure of how

each subheuristic procedure functions for a multi-unit multi-item auction with XOR

bidding language and the free disposal condition as formulated in model (3.2).

More specifically, in this Algorithm parameter Shi identifies possible shortages cor-

responding to each item (constraint). Set I is defined as the set of all unsatisfied

constraints and set J as the set of all bidders who are not currently winning any

of their packages. With the existence of an unsatisfied demand, Aggregate heuristic

proceeds to run sub-heuristics each consisting of a constraint selection rule and a

variable selection rule (as described below) to set a new variable to 1. The shortage

is calculated again only for those constraints which were previously recognized as

having a positive shortage.

Note that firstly the algorithm continues the search for as long as there exists bidders
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who are eligible to win packages. If all bidders are assigned an item and the shortage

is not yet fully satisfied, then the algorithm exits the loop and returns infeasibility.

At this point either the auctioneer decides to supply the remaining shortage from

spot market or he induces another auction inviting more participants.

Secondly, with a non empty set of suppliers we do not necessarily rule out the previ-

ously chosen constraint i from the set I since the shortage may not be fully resolved.

After setting a variable to 1, we may satisfy none, some, or all of the unsatisfied con-

straints. For this reason, we update the set I every time a new variable is selected.

Set J is also updated to remove the new winner. This guarantees the feasibility of

supply constraints in the optimal solution. As soon as a bidder receives a package he

is prevented from winning anymore.

Algorithm 2 Subheuristics’ Procedure Structure

1: X ← X∗
LR

2: Shi ← di − Σj∈NΣS3i qijSxjS for ∀i ∈M
3: I ← {i ∈M |Shi ≥ 0}
4: J ← {j ∈ N |xjS = 0 ∀S}
5: while I 6= ∅ do
6: if J = ∅ then
7: exit loop ‘Infeasible problem Instance’
8: else
9: Select constraint i ∈ I based on the Constraint Selection Rules

10: Select variables j ∈ J, S ⊆M based on the Variable Selection Rules
11: xjS ← 1
12: update Shi for ∀i ∈ I
13: I = I\{i|Shi < 0}
14: J = J\{j|j selected in line 7}
15: end if
16: end while
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3.3.2.1 Constraint Selection Rules

The constraint selection rules include selecting constraint i ∈ I with

Rule 1. the largest shortage

i = argmaxi∈I{Shi|Shi = di − Σj∈NΣS3i qijSXjS},

Rule 2. the minimum slackness value

i = argmini∈I{
Σj∈NΣS3i qijS

di
},

Rule 3. the maximum slackness value

i = argmaxi∈I{
Σj∈NΣS3i qijS

di
},

Rule 4. the costliest shortage

i = argmaxi∈I{λi.Shi|Shi = di − Σj∈NΣS3i qijSXjS}.

Rule 1 looks for the item which has the largest shortage. Rules 2 and 3 search for

the items with maximum or minimum slackness values where slackness values refer

to the ratio of total quantity offers of an item to its demand. In other words, we are

interested to identify the items which receive the largest or the smallest total quantity

offers with respect to their demand. Finally, rule 4 searches to supply the items whose

shortage is the costliest for the auctioneer with respect to the Lagrangian multipliers.

Note that these rules are applied only on the set of violated constraints.
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3.3.2.2 Variable Selection Rules

For each constraint selection rule we perform the following 4 variable selection rules

to form a sub-heuristic procedure. Note that each constraint corresponds to an item

and each variable of this constraint indicates a package containing this item. Once an

item is selected, from all the unallocated packages containing this item we choose the

one that provides the largest value according to one of the following variable selection

rules.

Rule 1.

∑
i∈I

min(qijS, Shi)

pjS

Rule 2.

∑
i∈I

λ∗i .min(qijS, Shi)

pjS

Rule 3.

∑
i∈I

min(qijS, Shi)

Shi
pjS

Rule 4.

∑
i∈I

λ∗i .min(qijS, Shi)

Shi
pjS .

The above ratios are used to provide us with a proxy for the value of an option

based on the shortage and pricing information. For each rule we calculate its value

for all items with unsatisfied demand and pick the variable that corresponds to the

largest value. We use min(qijS, Shi) so that we do not value bundles with quantities

exceeding the shortage.

91



Ph.D. Thesis Computational Sci. & Eng.

3.3.2.3 Improvement Procedure

Each subheuristic is followed by an improvement procedure to systematically swap a

selected variable with a non-selected one. Since the combination of constraint selec-

tion rule 1 and variable selection rule 1 provides the best results in our experiments

we use this combination to switch variables.

To eliminate a variable already selected, the improvement procedure selects a con-

straint based on the constraint selection rule 1, and a variable with the lowest value

of variable selection rule 1. To set a new variable to 1, constraint selection rule 1 and

variable selection rule 1 are used once again.

3.3.2.4 Aggregate Heuristic Algorithm

Let c, v be alternatively the indices on the constraint and variable selection rules.

We define each sub-heuristic as Hc,v and the improvement procedure applied on it

as IHc,v. Considering all combinations of our constraint and variable selection rules

each followed by an improvement procedure, provides 32 computationally efficient

subroutines. The Aggregate heuristic algorithm executes all subroutines and extracts

the solution corresponding to the minimum objective value as the solution from the

heuristic.

3.4 Computational Experiments of Multi-unit Com-

binatorial Auction

In this section we describe the computational steps taken to simulate a multi-unit

auction environment. All our computational experiments are performed on an Intel
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Xeon E5440 @2.83 Ghz 2.83 Ghz (2 processors) machine with memory (RAM) 12.0

Gb running on a 64-bit operating system on a standard windows 2008 server.

3.4.1 Using CATS for Data Generation

To imitate actual bidding behaviour in combinatorial auctions we used CATS (Com-

binatorial Auction Test Suite) [67]. Given the number of goods, bids and required

distribution type, CATS determines how many items to include in a bid, what items

to include, and what price to attach to the whole package. Once all the items are

enumerated, CATS starts counting dummy bids. Dummy bids are used to determine

what packages are received from which bidders, i.e., packages sharing similar dummy

goods are received from a single bidder.

3.4.2 Algorithm Coding

We used General Algebraic Modeling System (GAMS) platform for coding the multi-

unit reverse combinatorial auction problem. All required information regarding the

bidders submitting bids, the items included in each package, and the price associated

with it are extracted from CATS output file within our GAMS code, after several

necessary preprocessing of input data as explained in the next section.

We use CPLEX 12 for solving our problem instances directly. The execution time

and optimal solution is compared against application of linear relaxation, Lagrangian

decomposition method, and our proposed solution methodology for solving the La-

grangian relaxation problem and eventually our heuristic algorithm for fixing the

infeasibility of the Lagrangian optimal solution, if needed.
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3.4.3 Automating Transformation of CATS Produced Data

to GAMS-Compatible Input Files

Despite the benefits of using CATS for generating realistic data, there is no con-

venient interface between CATS and GAMS. To incorporate this test suite in our

methodology, changes need to be applied on the text file generated by CATS before

introducing it as an input file for GAMS. In a large scale set of data, it is impractical

to apply these changes manually. For this reason, we generated VBA codes in Excel

and produced several macros to automate implementing all the required modifications

on the text file produced by CATS.

3.4.4 Adjusting CATS Single-Unit Data to Represent Multi-

Unit Environments

Data generated by CATS represents a single-unit bidding environment wherein the

auctioneer requires a single unit of each item. Consequently, suppliers submit bids on

single units of items. In other words, suppliers only choose the items they are willing

to include in bundles and assign prices to them. Due to the auctioneer’s multi-unit

demand requirement in a multi-unit combinatorial auction, suppliers are concerned

about the additional task of deciding how many units of each item to include in each

package they submit. Although the creators of CATS provide a source file to represent

a multi-unit bidding behaviour in their first release of CATS (CATS 1.0), it was not

carried in their newer version (CATS 2.0). CATS 1.0 does not consistently generate

feasible data for multi-unit auctions [98]. Thus, based on the single-unit packages

created by CATS we use a random data generator to define the suppliers’ number of
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units and the auctioneers’ demand with a normal distribution. We define the new

price corresponding to each package P as

PNew price =
PCATS price × Total number of quantities included in P

Total number of items included in P
.

3.4.5 Size of Problem Instances

We explore generation of 10, 20, and 30 items each with 100, 200, . . . , 1000 number of

bids. We fixed the upper bound for demand generation at 50, and varied the upper

bound for quantities of items included in the packages at 5, 10, 15, . . . , 50 to represent

a supply capacity of 10%, 20%, . . . , 100% of demand. In order to get more reliable

results, for each combination of number of items, bids, and the specified value of the

quantities’ upper-bound, we averaged results over 25 problem instances. This adds

up to a generation of 7500 problem instances. For more clarification, let m represent

the number of items, n the number of bids, qUB the upper-bound considered for

the random quantity generation and iter the number of iterations a new instance is

generated. Figure 1 illustrates the size of our data generated.
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Figure 1: Data Size Diagram
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3.4.6 Adjusting Lagrangian Constraint Satisfaction Ratio

To have a better understanding of the quality of the objective value that the heuristic

produces, we record the heuristic optimality gap as (ZH − ZIP )/ZIP and the La-

grangian duality Gap as (ZIP − ZLR)/ZLR. Table 2 displays these gaps as LR Gap

and H Gap respectively.

In our next set of experiments, we investigate how the quality of the Aggregate heuris-

tic optimality gap relates to the Lagrangian Satisfiability Ratio (LSR). We define LSR

as the ratio of the primal constraints that are satisfied at the Lagrangian optimal so-

lution to the total number of constraints.
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We implemented our experiments on 2,500 problem instances generated for 10 items

and bids ranging from 100 to 1000 in increments of 100. For each combination

of item and bids, we generated random supply quantities covering a maximum of

10%,20%,. . . ,100% of demand. Finally, for each problem combination we generated

25 different data instances so as to have more significant statistics.

We observed that an increase in the LSR value increases the optimality gap obtained

from the Lagrangian relaxation as well as the Aggregate heuristic. In other words, as

illustrated in Figure 2, the more constraints the Lagrangian optimal solution satisfies,

the larger the optimal Lagrangian and heuristic gaps become. A possible explanation

of this observation is that when LSR is close to 1 the heuristic spends less effort in

improving the Lagrangian solution and we end up with a relatively large gap.

Figure 2: Lagrangian and Aggregate heuristic optimality gaps when reducing satisfi-
ability ratios below the threshold
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For this reason, in our next set of experiments whenever the Lagrangian optimal

solution satisfies α% or more of the primal constraints, we systematically select and

zero out positive variables (from the Lagrangian optimal solution) until the LSR value

drops down below our threshold value. Algorithm 3 describes this procedure for the

Lagrangian optimal solution X∗.

Algorithm 3 Satisfiability Violation

1: X ← X∗

2: Shi ← di − Σj∈NΣS3i qijSxjS for ∀i ∈M
3: I ← {i ∈M |Shi ≥ 0}
4: J ← {j ∈ N |xjS = 0 ∀S}
5: Ratio← card(M)−card(I)

card(I)

6: while Ratio ≥ threshold do
7: Select constraint i ∈M − I such that i = argmaxi{Shi}
8: Select j ∈ J, S ⊆M such that jS = argmaxjS{

∑
i∈I min(qijS ,Shi)

PjS
}

9: xjS ← 0
10: update Shi
11: I = I\{̃i|Shĩ < 0}
12: J = J\{j̃ |̃j selected in line 8}
13: update Ratio
14: end while

As illustrated in Figure 2, we observe an improvement in the average heuristic opti-

mality gap for LSR ≥ α = 0.7. The overall average optimality gap drops down from

11% with no violation to 7% with the implementation of this violation.

Tightening α to 0.6 decreases the optimality gap to 6% while increasing the heuristic

execution time. In fact, the average execution time ratio of CPLEX to the Aggre-

gate heuristic decreases from 19.45, for α = 0.7, to 6.32 when α = 0.6. Thus, while

decreasing α to 0.6 slightly improves the optimality gap, it yields much larger exe-

cution time. For this reason we keep the threshold value α at 0.7 for the rest of our
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experiments.

3.4.7 Efficiency of the Proposed Algorithm

Define ZIP , ZLR, and ZH respectively as the optimal value of the CPLEX solver, the

optimal Lagrangian relaxation, and the solution from the Lagrangian heuristic and

TIP , TLR and TH as their execution times. Let w be the ratio of the number of positive

variables (corresponding to distinct winners) in the CPLEX optimal solution to that

of Aggregate heuristic. In this section, we compare the efficiency of the Aggregate

heuristic algorithm against CLPEX 12 on the data set explained in Section 3.4.5.

Table 2 summarizes our results.

For more clarification on this Table, we illustrate the diagram of the 250 problem

instances generated for its first row in Figure 3. This row demonstrates average re-

sults for instances with 10 items, total number of bids ranging from 100 to 1000

in increments of 100 and a supply of maximum of 10% of demand for each item in

the bundles generated. For each class of items, we include the total average, the

standard deviation, and the coefficient of variation values in order to provide better

understanding of our original data. These values are respectively denoted as Ave,

STDev, and CV in Table 2. The following subsections are devoted to explaining our

computational results in more details.
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Figure 3: Data size diagram of the first row of Table 2
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3.4.7.1 Optimality Gap

Our experiments show that the quality of the heuristic optimality gap improves with

the decrease in the maximum percentage of the demand supplied in the submitted

bids. To show this pattern more clearly we designed Table 2 to classify problem

instances based on the maximum percentage of the demand satisfied by submitted

bids. Figure 4(a) shows the growth of average optimality gap (along side the average

standard deviation) with the increase in the bids’ supplied quantity for 10, 20, and 30

items. The plot also compares the average optimality gap with its overall expected

value when fixing the number of items. For 10, 20, and 30 items the average optimality

gap derived is respectively 8, 10, and 12 percent.

As observed in Figure 4, the heuristic provides lower gaps on the class of problems in

which each bidder offers a low percentage of demand. Specifically, when the bidder

offer to supply at most 50% of demand, as shown in Table 3, the average heuristic

gap for 10, 20, 30 items and submission of 100 to 1000 bids (in increments of 100)
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Table 2: Efficiency comparison of Aggregate heuristic versus CPLEX 12

Demand % LR Gap H Gap T IP (sec) T H (sec) T IP/T H w

10 0.02 0.03 0.89 0.4 2.54 0.93
20 0.05 0.05 2.03 0.44 4.29 0.9
30 0.1 0.06 1.03 0.44 2.3 0.87
40 0.15 0.07 0.86 0.43 1.86 0.87
50 0.19 0.08 0.54 0.43 1.25 0.85
60 0.24 0.08 0.5 0.44 1.11 0.88
70 0.24 0.08 0.5 0.44 1.11 0.88
80 0.34 0.09 0.36 0.42 0.93 0.89
90 0.41 0.1 0.29 0.42 0.77 0.88

100 0.44 0.11 0.25 0.41 0.71 0.86
Ave 0.22 0.08 0.73 0.43 1.69 0.88

STDev 0.07 0.05 1.3 0.22 2.26 0.18
CV 0.32 0.62 1.8 0.51 1.34 0.21

10 0.02 0.05 137.02 0.56 321.59 0.9
20 0.07 0.06 189.79 0.57 370.28 0.89
30 0.12 0.08 76.75 0.55 138.72 0.86
40 0.17 0.08 37.79 0.56 77.18 0.87
50 0.22 0.09 18.7 0.53 35.25 0.87
60 0.27 0.1 8.29 0.52 18.03 0.85
70 0.27 0.1 8.29 0.52 18.03 0.85
80 0.38 0.11 3.5 0.52 7.29 0.85
90 0.43 0.13 2.27 0.5 4.84 0.83

100 0.49 0.15 1.04 0.5 2.37 0.84
Ave 0.24 0.1 48.34 0.53 99.36 0.86

STDev 0.053 0.06 90.15 0.28 203.1 0.15
CV 0.22 0.66 1.86 0.52 2.04 0.18

10 0.03 0.06 783.43 0.66 1425.32 0.9
20 0.07 0.08 758.21 0.73 1151.58 0.87
30 0.12 0.08 672.66 0.72 1027.39 0.86
40 0.17 0.09 421.74 0.68 655.54 0.86
50 0.22 0.11 307.56 0.64 490.61 0.85
60 0.27 0.13 223.21 0.65 353.49 0.86
70 0.27 0.14 223.21 0.65 353.49 0.86
80 0.41 0.14 39.12 0.56 68.65 0.86
90 0.44 0.16 24.01 0.6 39.89 0.89

100 0.51 0.16 11.44 0.59 19.38 0.87
Ave 0.25 0.12 346.46 0.65 558.53 0.87

STDev 0.08 0.07 264.64 0.34 490.21 0.22
CV 0.31 0.63 0.76 0.52 0.88 0.26

Overall Ave 0.24 0.1 131.84 0.54 219.86 0.87

10 item

20 items

30 items
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Figure 4: Comparison of Lagrangian and Aggregate heuristic when reducing satisfia-
bility ratios beyond the threshold
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(b) Execution time comparison
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drops down to respectively 6, 7, and 8 percent.

3.4.7.2 Execution Time

In order to observe how fast Aggregate heuristic solves a problem instance to a solu-

tion, we plot the execution time ratio of CPLEX to Aggregate heuristic in Figure 4(b).

This figure illustrates that when bidders supply low percentages of demand, CPLEX
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Table 3: Comparison of Aggregate heuristic and CPLEX 12 with supplied quantity
of less than half of demand

Demand % LR Gap H Gap T IP (sec) T H (sec) T IP/T H w

10 0.02 0.03 0.89 0.4 2.54 0.93
20 0.05 0.05 2.03 0.44 4.29 0.9
30 0.1 0.06 1.03 0.44 2.3 0.87
40 0.15 0.07 0.86 0.43 1.86 0.87
50 0.19 0.08 0.54 0.43 1.25 0.85

Ave 0.1 0.06 1.07 0.43 2.45 0.88
CV 0.7 0.32 0.53 0.04 0.47 0.04

10 0.02 0.05 137.02 0.56 321.59 0.9
20 0.07 0.06 189.79 0.57 370.28 0.89
30 0.12 0.08 76.75 0.55 138.72 0.86
40 0.17 0.08 37.79 0.56 77.18 0.87
50 0.22 0.09 18.7 0.53 35.25 0.87

Ave 0.1 0.07 92.01 0.55 188.6 0.88
CV 0.79 0.23 0.77 0.03 0.79 0.02

10 0.03 0.06 783.43 0.66 1425.32 0.9
20 0.07 0.08 758.21 0.73 1151.58 0.87
30 0.12 0.08 672.66 0.72 1027.39 0.86
40 0.17 0.09 421.74 0.68 655.54 0.86
50 0.22 0.11 307.56 0.64 490.61 0.85

Ave 0.12 0.08 588.72 0.69 950.09 0.87
CV 0.63 0.23 0.36 0.06 0.4 0.02

Overall Ave 0.11 0.07 227.27 0.56 380.38 0.88

10 item

20 items

30 items

12 takes much more time as compared to Aggregate heuristic. In Figure 5, we have

a closer look at this ratio for the class of problems in which each bidder offers to

supply at most 50% of the demand. In this figure, the x axis shows the number of

bids submitted and the y axis shows the time ratio).

It can be seen that this ratio exceeds 2500 for 30 items and 400 bids and when no

bid contains more than 10% of the demand (note that we use the term exceed, since

each problem instance is characterized by a specific combination of the number of

items, the number of bids and the percentage of the demand offered in the package, is

averaged over 25 generations of random problem instances). As observed in Table 3,
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averaging over all number of bid submissions, this ratio exceeds 950 for 30 items.

Figure 5: CPU Time Ratio of CPLEX to the Aggregate heuristic for quantity offers
less than half of the demand
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3.4.7.3 Robustness

To show the extent of variability in relation to the mean of our data, we use the

coefficient of variation (CV) defined as the ratio of the standard deviation σ to the

mean, i.e., CV = σ/µ.

CV combines information about the mean and standard deviation of the system. A

104



Ph.D. Thesis Computational Sci. & Eng.

system associated with large values of CV is considered weakly robust, due to the

large variation of standard deviation as compared to the mean. Conversely, low values

of CV indicate strong robustness of the system. Comparison of the CV values for

the CPLEX and the Aggregate heuristic execution times shows that the time-wise

performance of the Aggregate heuristic is more stable and thus robust compared to

CPLEX.

3.4.7.4 Aggregate Heuristic Solution

Since the heuristic algorithms for solving procurement WDP provide a feasible solu-

tion which is not necessarily optimal, the heuristic value is greater than (or equal to)

the objective value of CPLEX. Thus, it is likely that we get more positive solution

variables in the heuristic solution. In other words, the heuristic algorithms introduce

more winners in the auction than CPLEX. Thus it is important for auctioneers to

know how many more winners they should expect, and whether this additional num-

ber of winners is dependent on the problem size or the percentage of demand supplied

in each bid.

Figure 6 and Figure 7 illustrate this correspondence respectively with the increase in

the maximum percentage of demand offered in the packages and the increase in the

number of bids received in the auction.

As observed from the figures, ratio w lacks any particular increasing or decreasing

pattern. Thus, our first conclusion is that w may increase or decrease irrespective

of the increase in the problem size, the number of bids, and the percentage of the
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Figure 6: Comparison of the number of winners in Aggregate heuristic versus CPLEX
12 with respect to the increase in maximum demand percentage supplied in the bids
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Figure 7: Comparison of the number of winners in Aggregate heuristic versus CPLEX
12 with respect to the increase the number of bids received
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demand supplied in each bid.

Secondly, w is always below 1, indicating a larger number of positive variables in the

106



Ph.D. Thesis Computational Sci. & Eng.

solution obtained from the Aggregate heuristic. For the Aggregate heuristic this aver-

age ratio remains above 83%. Thus, the auctioneers knows he could expect obtaining

a maximum of 17% extra suppliers in the auction. This helps the auctioneers involve

more suppliers in the auction. For auctioneers who do not want a large number of

suppliers, it is possible to imply further restricting constraints in advance in order to

limit the total number of winning suppliers in the auction.

3.4.7.5 Efficiency of sub-heuristics

In order to determine which combination of constraints and variable selection rule

performs best, we record the total number of times a sub-heuristic provides the best

solution. Note that multiple sub-heuristic can provide equal minimum values at the

same time. Therefore, we also recorded the number of times a sub-heuristic is the

sole minimum, meaning that it is performing strictly better than all other procedures.

Table 4 summarizes our results.

Table 4 shows that variable selection rule 1 provides the highest percentages with all

different constraint selection rules. However, while H42 provides the best solution in

over 10% of times, it never produces a strict minimum value. Therefore, it is possible

to remove this procedure and reduce execution time. Figure 8 visualizes the efficiency

comparison of sub-heuristic procedures.
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Table 4: Efficiency comparison of sub-heuristics

H Number H Name %  H is min % H is the sole min 
1 H11 13.65 4.24 
2 IH11 7.69 2.49 
3 H12 9.08 2.35 
4 IH12 5.53 2.21 
5 H13 10 2.39 
6 IH13 6.53 1.77 
7 H14 6.64 1.2 
8 IH14 4.71 1.32 
9 H21 11.13 2.99 

10 IH21 7.77 2.43 
11 H22 6.51 1.56 
12 IH22 4.55 1.41 
13 H23 8.27 2.11 
14 IH23 5.77 1.55 
15 H24 5.79 1.19 
16 IH24 3.73 0.99 
17 H31 10.51 3.19 
18 IH31 7.32 3 
19 H32 9.24 3.04 
20 IH32 6.03 1.68 
21 H33 6.64 2.49 
22 IH33 5.21 2.55 
23 H34 6.95 1.73 
24 IH34 5.11 1.69 
25 H41 11.29 0.23 
26 IH41 7.23 0.39 
27 H42 10.31 0 
28 IH42 6.47 0.03 
29 H43 9.19 1.48 
30 IH43 6.48 1.44 
31 H44 5.63 0.73 
32 IH44 3.24 0.65 
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Figure 8: Efficiency comparison of subheuristics
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Chapter 4

Models for Bidders Pricing

Problem

The literature on combinatorial auction optimization has mostly focused on the prob-

lem of maximizing the revenue for the auctioneer (see for instance [27]) which in a

procurement setting translates to minimizing the total price of procurement. Yet,

given the suppliers’ wide range of bundling and pricing options, there is a lack of

focus on the problem facing them: how to determine and price the optimal quantities

to offer. Particularly, in an iterative auction framework, suppliers need to take into

account how to make use of the feedback information disclosed by the auctioneer in

order to understand the bidding behaviour of their competitors. This helps them de-

velop an insight on their competitiveness level as compared to the rest of the bidders

and thus make more tangible decisions in each round of the auction.

To understand this problem, we start by defining relevant terms and notations and

introduce a generic profit maximization model (GPMB) for the suppliers. For an
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iterative auction framework, we use the Lagrangian multipliers to help the bidders

find the optimal price and lot sizes. In this chapter our focus is on indivisible bundles

where the auctioneer selects from predetermined fixed bidders bundles. The case of

d ivisible bundles, where the auctioneer can choose from a defined continuum of bun-

dles and prices, will be discussed in Chapter 5. We describe the work of Hsieh [41] in

this area. Even though this work is amongst the first to highlight the importance of

this field of research, it suffers from several inconsistencies within the problem formu-

lation, solution algorithm and the numerical implementation. The deficiencies of this

model motivated us to proceed by generating more practical problem formulations

which consider suppliers with fixed or variable per-unit costs. Using the integrality

property we show that we can find closed form solutions for some of our models.

Comparing prices corresponding to two consecutive rounds of auctions, we provide

the suppliers with the knowledge on whether to withdraw from the auction or bid

more aggressively. Investigation of suppliers’ optimal pricing problem and the auc-

tioneer’s optimal allocation problem leads us to the design of an iterative auction

which determines the rules of how the auctioneer and suppliers interact as well as the

level of information that they communicate. We show that our auction is convergent.

Our next phase of work consists of conducting numerical experiments first to empir-

ically observe our proposed analytical results, and second to study the dynamics of

the suppliers’ and auctioneer’s profits.
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4.1 Notations

We use the following notation:

i Index on suppliers, i ∈ I = {1, . . . ,m}

j Index on the suppliers’ bids j ∈ J = {1, . . . ,mi}

j′ Index on the suppliers’ new bid in Hsieh’s model

j∗ Index on the suppliers’ best previous bid

k Index on items, k ∈ {1, . . . , K}

dk Number of units demanded for item k

λ∗k Optimal Lagrange multipliers for product k

λ̂k Auctioneer’s reservation price on product k

Pij The price that bidder i requests to provide bundle j

PI Profitability index

cijk The unit cost that bidder i affords to provide item k in bundle j

Πi The net profit that bidder i expects to get from the auction

qijk The quantity of product k offered in the jth bid of supplier i

Lik Supplier i’s minimum capacity to produce item k

Uik Supplier i’s upper bound on production of item k

γk The difference between the Lagrangian price and cost of product k

δk Binary variable that is 1 if product k is selected and 0 otherwise

w Index on the suppliers’ cost scenario, w = 1, . . . ,W

(n) Iteration n of the auction

R1, R2 Round 1 and 2 of an iterative auction

RS Stabilization Round
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4.2 Generic Profit Maximization Model

With the information about the Lagrangian multipliers from the previous round of

the auction, the suppliers seek to attain appropriate bundle prices that will meet their

internal production constraints, maximize sales profits, as well as increase chances of

winning in the auction.

max Profit

s.t. satisfaction of minimum profitability condition (1)

satisfaction of competitiveness condition (2)

satisfaction of pricing consistency condition (3)

satisfaction of production upper bound constraint (4)

price variables ≥ 0

integer quantity variables ∈ N ∪ {0}.

(GPMB)

In this model, constraint (1) guarantees that a minimum profitability is attained

with the generation of a new bundle. The most commonly used profitability indexes

(denoted as PI ) deployed in industries include

1. Net Profit = Revenue− Cost,

2. Net Profit Margin = Net Profit
Revenue

,

3. Profit Percentage = Net Profit
Cost

.

These measures are financial metrics that are used to assess the business ability to

generate earnings despite the expenses and other relevant costs incurred during a
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specific period of time. For most of these ratios, having a higher ratio than a com-

petitor’s is indicative that the company is doing better.

Net profit, also referred to as the bottom line, net income, or net earnings is the rev-

enues less the costs. Profit margin is an indicator of a company’s pricing strategies

and how well it controls costs. It is mostly used for internal comparisons. A low profit

margin indicates a low margin of safety and a higher risk that a decline in sales erases

profits and results in a net loss, or a negative margin. Profit percentage defines profit

as the percentage of cost and ensures that a company receives the proper amount of

gross profit when spending a certain cost. In a survey of nearly 200 senior marketing

managers, 91% reported on the efficaciousness of the Net Profit metric [34], and for

this reason we take up this index for the rest of our study.

Constraint (2) in GPMB absorbs information about submitted bundles and prices

by all other suppliers into each suppliers’ profit maximization model via deploying

the Lagrangian multipliers. This constraint aims to device a more competitive bid

than the best previous bid based on the announced price proxies. In constraint (3),

we require the model to produce reasonable consistent prices. Specifically, with this

constraint we prevent the model from adopting positive prices for a 0 quantity offer.

Constraint (4) takes into account the suppliers’ production capacity limit. We adopt

the generic problem formulation (GPMB) and customize it to formulate the suppliers’

profit maximization problems in Chapters 4 and 5.
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4.3 Comments on Hsieh’s [41] Proposed Solution

Methodology

When competing to supply multiple units of items required by the auctioneer via

competing bids, suppliers are faced with several challenges to determine appropriate

optimal quantities and prices for each round of the auction that keeps them competi-

tive in the auction while at the same time guaranteeing the maximum possible profit

should they win the auction.

Perhaps because of the tilt of the power towards the auctioneer, the bidders’ problem

has received little attention in the literature. Hsieh [41] proposes a heuristic algorithm

for solving the auctioneer’s winner determination problem as well as a mathematical

programming to maximize the suppliers’ profit. This study has motivated our models

in this Chapter. However, before we outline our results we would like to highlight

some issues that we find with the model and results reported in Hsieh [41].

4.3.1 Algorithmic Issues

Hsieh implements a heuristic algorithm to fix possible infeasibilities of the Lagrangian

optimal solution. In Algorithm 4 we summarize the steps of the proposed procedure.

This heuristic algorithm starts with the optimal Lagrange solution X∗ and defines

the set of all constraints violated at this point as Ko. The algorithm proceeds to

select first the violated constraint corresponding to the item with the lowest shortage

and second the variable corresponding to the bundle that contains this item and is

offered at the lowest price. The value of the corresponding variable is set to one and
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Algorithm 4 Hsieh’s Heuristic Algorithm for solving the WDP

1: Initialize X∗ at X.
2: Define the set of violated demand constraints as Ko.
3: Define the set of losing bidders as Io.
4: while Ko 6= ∅ do
5: Select a violated constraint k ∈ K with the minimum value of shortage.
6: Choose bundle xij which contains item k, is submitted by a currently losing

bidder, and attains the lowest bundle price.
7: Set xij = 1.
8: Remove bidder i from Io.
9: end while

the winner of this bundle is removed from the set of losing bidders.

Remark 1: Choosing the constraint based on the minimum violation can substan-

tially prolong the execution time, as the problem size increases. For instance,

assume a demand shortage of {2, 3, 4, 5, 7, 50}. The Hsieh’s algorithm starts

with the satisfaction of the least critical shortages (2) and so can take long to

satisfy all the constraints.

Remark 2: The algorithm is silent on how to update K0. Thus, there is the lack

of clarification on how to update K0. An obvious way to update this set is to

remove the selected constraint. In Chapter 3 we reevaluate satisfaction of all

previously violated constraints every time a new variable is set to 1 to account

for cases when setting one variable to 1 satisfies more than one constraint.

Remark 3: The author calculates the optimal duality gap as f(x)−L(λ∗)
f(x)

where f(x)

is the objective value at the feasible solution obtained from the heuristic and

L(λ∗) is the optimal lower bound that the Lagrangian relaxation provides. This

way of calculating the gap leads to an underestimated gap and is uncommon in

the optimization literature. The standard for calculating a gap is f(x)−L(λ∗)
L(λ∗)

.
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4.3.2 Experimental Issues

We reproduce Example 2 from [41] below to pinpoint some deficiencies in the numer-

ical analysis provided in that paper.

Example 4.1 ([41]). Let I = 3; J = 2;K = 4; d1 = 2; d2 = 1; d3 = 2; d4 = 1. The six

bids submitted by the three bidders, two each, are as follows:

q111 = 1; q112 = 0; q113 = 1; q114 = 0;P11 = 70;

q121 = 1; q122 = 1; q123 = 0; q124 = 0;P12 = 75;

q211 = 0; q212 = 0; q213 = 1; q214 = 0;P21 = 40;

q221 = 0; q222 = 1; q223 = 0; q224 = 1;P22 = 80;

q311 = 0; q312 = 0; q313 = 1; q314 = 0;P31 = 45;

q321 = 0; q322 = 0; q323 = 0; q324 = 1;P32 = 50;

The optimal Lagrangian solution is derived as x∗12 = 1, x∗22 = 1, x∗32 = 1, and the

optimal solution from the heuristic as x̄11 = 1, x̄21 = 1, x̄22 = 1, x̄32 = 1.

Remark 1: For this example the WDP is infeasible since product 1’s demand can

not be satisfied in an XOR formulation. This is true since d1 = 2 and the only

seller that provides that product is seller 1. Giving the author the benefit of

the doubt, we have looked at the possibility that there might have been a typo

in the data or solution. However, any ‘fixing’ of the data of the solution would

be significant and involves more than one change.

Remark 2: Comparing the Lagrange optimal solution and the feasible solution from

the heuristic, we realize that variable x12 that is set to one in the Lagrange
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optimal solution is missing in the heuristic feasible solution. This contradicts

the fact that the heuristic does not have a dropping procedure, i.e., once a

variable is set to 1, it should stay in the optimal solution.

Remark 3: The heuristic feasible solution proposed by the author is in fact infeasible

since x̄21 + x̄22 = 2 > 1.

4.3.3 Modelling Issues

Hsieh [41] formulates supplier i’s profit maximization problem for the generation of

a new bid indexed as j′ as follows.

max Pij′ −
∑K

k=1 cij′kqij′k

s.t. Pij′ −
∑K

k=1 cij′kqij′k ≥ Πi (1)

Pij′ −
∑K

k=1 λ
∗
kqij′k ≤ Pij −

∑K
k=1 λ

∗
kqijk ∀j (2)

Pij′ ≥ 0, qij′k ∈ N+ ∪ {0} ∀k ∈ K.

(PMB)

where λ∗k stands for the optimal Lagrangian multiplier associated with product k in

the previous round. We drop the index j′ by assuming the problem at round (n) and

define

j∗ = argminj{P
(n−1)
ij −

∑K
k=1 λ

∗(n−1)

k q
(n−1)
ijk },

P ∗
(n−1)

i = P
(n−1)
ij∗ ,

q∗
(n−1)

ik = q
(n−1)
ij∗k ,

g∗i = P ∗
(n−1)

i −
∑K

k=1 λ
∗(n−1)

k q∗
(n−1)

ik .

Since (PMB) is formulated for each supplier i, we also drop the index i for simplicity

(we adopt this index as needed). In addition, consideration of g∗ for representing the

optimal values from the previous rounds leaves all variables and parameters involved
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in the formulation of (PMB) at the current round (n). This allows us to drop index (n)

as well (we will adopt this index whenever clarification on auction round is needed).

Hence, (PMB) simplifies as

max P −
∑K

k=1 ckqk

s.t. P −
∑K

k=1 ckqk ≥ Π (1)

P −
∑K

k=1 λ
∗
kqk ≤ g∗ (2)

P ≥ 0, qk ∈ Z ∪ {0} ∀k ∈ K.

(PMB2)

Defining γk = λ∗k− ck, in Proposition 4.1 we identify the closed-form optimal solution

for (PMB2).

Proposition 4.1. The optimal solution to (PMB2) is as follows:

1. If γk ≤ 0 ∀k ∈ K then,

(a) If g∗ < Π, (PMB2) is infeasible.

(b) If g∗ ≥ Π, (PMB2) yields trivial solution q∗k = 0 ∀k ∈ K, and P ∗ = g∗.

2. If ∃k ∈ K s.t. γk > 0, then (PMB2) is unbounded.

Proof. Note that constraints (1) and (2) in (PMB2) can be rewritten as

Π +
∑K

k=1 ckqk ≤ P ≤ g∗ +
∑K

k=1 λkqk, (4.1)

or equivalently,

Π ≤ P −
∑K

k=1 ckqk ≤ g∗ +
∑K

k=1 λ
∗
kqk

≤ g∗ +
∑K

k=1 γkqk. (4.2)
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Assume that for all k, γk ≤ 0. When g∗ < Π it is easy to see that no values of q can

satisfy condition (4.2) and thus (PMB2) is infeasible. With g∗ ≥ Π the optimal value

is obtained when all quantity values are set to zero, since assigning positive values to

any of the quantity values would decrease the objective function. Thus, P ∗ = g∗.

If there exists k ∈ K that satisfies γk > 0 then it is possible to increase the associated

quantity q and price P infinitely large. This satisfies the constraints and maximizes

the objective function. In this case (PMB2) is unbounded with the optimal solution

P ∗ = +∞

q∗k =


+∞ γk > 0

0 γk ≤ 0.

Proposition 4.1 implies that for Model (PMB2) we have either an infeasible, an un-

bounded, or a trivial solution which is not practical for suppliers. To make this for-

mulation more constructive, we consider the following refinements in the generation

of the profit maximization model.

1. For the trivial solution q∗k = 0 for ∀k, (PMB) yields a positive price value, which

translates to asking for a positive price for the supply of nothing. We fix this

by making prices consistent with quantity offers.

2. (PMB2) considers neither the suppliers’ production capacities nor the auction-

eer’s demand. Realistically, suppliers production capacity for different products
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is bounded. We deploy the term upper bound Uk as the minimum of the actual

production capacity and the auctioneer’s demand.

3. In addition to the production capacity, due to the costs associated with starting

production lines, suppliers usually require an order to supply at least a minimum

amount which we will consider in our model as Lk.

4. We facilitate either the production of item k on the suppliers’ capacity range,

or not producing this item at all. This gives the suppliers the opportunity to

withdraw some items in the new package they submit if their production is not

profitable.

5. As often is the case, the suppliers’ cost function is not a linear function of

quantity. In other words, the unit production cost can vary with respect to the

quantity produced. Suppliers’ cost function is usually considered piecewise lin-

ear with lower costs corresponding to larger production units. We will consider

both scenarios in Sections 4.4 and 4.5.

4.4 Fixed-cost Profit Maximization Model (FPMB)

With fixed per-quantity cost, ck, corresponding to the production of item k, we for-

mulate the bidder’s pricing problem as follows:
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max P −
∑K

k=1 ckqk

s.t. P −
∑K

k=1 ckqk ≥ Π (1)

P −
∑K

k=1 λ
∗
kqk ≤ g∗ (2)

δkLk ≤ qk ≤ δkUk ∀k ∈ K (3)

P ≤M
∑

k qk (4)

P ≥ 0, qk ∈ N ∪ {0}, δk ∈ {0, 1} ∀k ∈ K.

(FPMB)

The binary variable δk ensures that either product k is supplied with an optimal

quantity on the range [Lk, UK ] or the supplier will not supply this product at all. δ∗k

attains 1 in the former and 0 in the latter. For a sufficiently large parameter M ,

constraint (4) ensures the consistency of price and quantity offers. For zero quantity

values, the constraint enforces a zero optimal price while it becomes redundant for

positive ones. Next we study some properties of (FPMB).

4.4.1 Optimality

(FPMB) defines a mixed integer programming problem (MIP). In proposition 4.2 we

identify the closed-form optimal solution to this problem.

Proposition 4.2. The optimal solution to the suppliers’ capacitated profit maximiza-

tion problem (FPMB) with fixed unit production cost ck is as follows:

1. If γk ≤ 0 ∀k ∈ K then,

(a) If g∗ < Π, (FPMB) is infeasible.

(b) If g∗ ≥ Π, (FPMB) yields the trivial solutions

P ∗ = 0, δ∗k = q∗k = 0 ∀k ∈ K
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2. If ∃k ∈ K s.t. γk > 0, then (FPMB) is feasible and the optimal solution is


δ∗k = 1, q∗k = Uk, P ∗ = g∗ +

∑
k λ
∗
kUk γk > 0

δ∗k = 0, q∗k = 0, P ∗ = 0 γk ≤ 0

Proof. 1.a and 1.b can be shown similarly to Proposition 4.1, except constraint (4)

enforces zero optimal price values in 1.b. In part 2, the optimal solution q∗ is obtained

by increasing all quantity variables associated with positive γk(= λ∗k − ck) values to

the upper bound Uk and setting the rest of the variables to zero. With the increase

of the right-hand-side of equation

P −
K∑
k=1

ckqk ≤ g∗ +
K∑
k=1

γkqk

P gets large enough to satisfy the inequality and yet maximize the objective function.

Proposition 4.2 offers several interpretations:

1. Suppliers’ bidding withdrawal condition: When the announced Lagrangian prices

on each item is at most as large as its production cost, then (FPMB) is either

infeasible or yields a trivial solution. This makes submission of a new bid un-

profitable for the supplier.

2. Suppliers’ bidding condition: If the cost of production for at least one item is

strictly less than its Lagrangian price, then the supplier is able to submit a

package by supplying this product. It is important to note here that a supplier

is able to supply all its capacity because the auctioneer is willing to accept extra
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items. This situation is not uncommon in practice as suppliers often impose

minimum shipping quantities due to costly production setup costs. A minimum

quantity can also be viewed as part of a quantity discount contract where the

price of the undiscounted quantity is infinity [77].

3. Lower bound independency of the optimal solution: Sellers will either choose

not to offer a certain product or they will offer it at capacity. This conclusion

reduces (FPMB) to

max P −
∑K

k=1 ckqk

s.t. P −
∑K

k=1 ckqk ≥ Π

P −
∑K

k=1 λ
∗
kqk ≤ g∗

qk ∈ {0, Uk} ∀k ∈ K

P ≤M
∑

k qk

P ≥ 0.

(BFPMB)

Proposition 4.3. The linear relaxation of (BFPMB) yields an integral optimal

solution equivalent to the mixed integer programming (FPMB).

Proof. Considering the linear relaxation of (BFPMB) formulated as

max P −
∑K

k=1 ckqk

s.t. P −
∑K

k=1 ckqk ≥ Π (1)

P −
∑K

k=1 λ
∗
kqk ≤ g∗ (2)

qk ≤ Uk ∀k ∈ K (3)

P ≤M
∑

k qk (4)

P ≥ 0, qk ≥ 0 ∀k ∈ K.

(FPMB2)
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the result is obvious from Proposition 4.2. Having optimal values of q∗k as either

0 or the upper bound Uk, is equivalent to having the binary variable δk either

set to 0 or 1.

Therefore, even though consideration of the production lower bound is crucial

for companies, from Proposition 4.2 we see that in this auction setting it is not

necessary for the suppliers to enforce minimum quantities.

4. Profitability of allowing bid submission on strict subsets of products: Imposing

δk = 1 for ∀k ∈ K in (FPMB) allows the supplier to bid on quantities in the

range [Lk, Uk]. Mathematically this is defined as

max P −
∑K

k=1 ckqk

s.t. P −
∑K

k=1 ckqk ≥ Π (1)

P −
∑K

k=1 λ
∗
kqk ≤ g∗ (2)

Lk ≤ qk ≤ Uk ∀k ∈ K (3)

P ≤M
∑

k qk (4)

P ≥ 0, qk ∈ N ∪ {0} ∀k ∈ K.

(FPMB3)

Intuitively, the feasible solution to (FPMB3) is a subset of that of (FPMB). We

formally state this result in Proposition 4.4 and provide an exact form for the

optimal solution. The proof for this proposition is omitted as we have already

outlined the arguments above and in the proof of Proposition 4.2.

Proposition 4.4. The optimal value of (FPMB3) is at most as good as (FPMB).

Furthermore the optimal solution is

(a) If γk ≤ 0 ∀k ∈ K then,
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i. If g∗ +
∑

k γkLk < Π, (FPMB3) is infeasible.

ii. If g∗ +
∑

k γkLk ≥ Π, q∗k = Lk for ∀k.

(b) If ∃k ∈ K s.t. γk > 0,

q∗k =


Uk γk > 0

Lk γk ≤ 0.

In fact, (FPMB3) enforces a minimum production of the items for which the

cost of production is more than the announced Lagrangian prices which shrinks

the suppliers’ total optimal profit. This situation may arise from requirement

from the auctioneer to have a minimum shipment from each supplier to justify

the necessary order processing and unloading costs.

4.4.2 Comparison of the Bidder’s Prices in Successive Auc-

tion Rounds

A question that both the auctioneer and the bidders will be interested in looking

at is how the price of the new bundle would compare with the optimal price of the

prior round. To answer this question, in Proposition 4.5 we study the optimal price

obtained from the suppliers’ capacitated profit maximization model (FPMB).

As defined in Section 4.3, for an arbitrary supplier P ∗
(n−1)

, q∗
(n−1)

k represent the price

and quantity values corresponding to his most competitive previous bid. Thus, in

case the supplier submits a single bid in the previous round P ∗
(n−1)

, q∗
(n−1)

k are the

actual values of the bid he submits. For the suppliers with multiple previous bid
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submissions, P ∗
(n−1)

, q∗
(n−1)

k correspond to the price and quantity values associated

with bid j∗ where

j∗ = argminj{P
(n−1)
j −

K∑
k=1

λ∗
(n−1)

k q
(n−1)
jk }.

With γ
(n)
k = λ∗

(n−1)

k − ck, let K1(n)
and K2(n)

be the sets for which γ
(n)
k is respectively

positive and non-positive. So, K1(n)
= {k|γ(n)

k > 0} and K2(n)
= {k|γ(n)

k ≤ 0} and

K(n) = K1(n) ∪K2(n)
.

Proposition 4.5. Under the (FPMB) model, the suppliers’ optimal price obtained

at round (n) compares with the optimal price obtained at round (n-1) as follows:

(a) P ∗
(n)

= P ∗
(n−1)

if
∀k γ

(n)
k > 0 & q

∗(n−1)
k = Uk,

or∑
k∈K1(n) λ∗

(n−1)

k (Uk − q∗
(n−1)

k )−
∑

k∈K2(n) λ∗
(n−1)

k q
∗(n−1)

k = 0&(K1(n)
, K2(n) 6= ∅).

(b) P ∗
(n)
> P ∗

(n−1)
if

∀k γ
(n)
k > 0 & ∃k ∈ K1(n)

s.t. q∗
(n−1)

k < Uk,

or∑
k∈K1(n) λ∗

(n−1)

k (Uk − q∗
(n−1)

k )−
∑

k∈K2(n) λ∗
(n−1)

q∗
(n−1)

k > 0&(K1(n)
, K2(n) 6= ∅).

(c) P ∗
(n)
< P ∗

(n−1)
if∑

k∈K1(n) λ∗
(n−1)

(Uk − q∗
(n−1)

k )−
∑

k∈K2(n) λ∗
(n−1)

k q∗
(n−1)

< 0&(K1(n)
, K2(n) 6= ∅).
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Proof. In Proposition 4.2 we describe optimal price values for the capacitated profit

maximization problem at round (n) as P ∗
(n)

= g∗
(n)

+
∑

k λ
∗(n−1)

k q∗
(n)

k where g∗
(n)

=

minj{P (n−1)
j −

∑K
k=1 λ

∗(n−1)

k q
(n−1)
jk }. Thus,

P ∗
(n)

= P ∗
(n−1) −

∑
k λ
∗(n−1)

k q∗
(n−1)

k +
∑

k λ
∗(n−1)

k q∗
(n)

k

= P ∗
(n−1) −

∑
k λ
∗(n−1)

k q∗
(n−1)

k +


∑

k λ
∗(n−1)

k Uk γ
(n)
k > 0

0 γ
(n)
k ≤ 0

= P ∗
(n−1)

+


∑

k λ
∗(n−1)

k (Uk − q∗
(n−1)

k ) γ
(n)
k > 0

−
∑

k λ
∗(n−1)

k q∗
(n−1)

k γ
(n)
k ≤ 0.

= P ∗
(n−1)

+
∑

k∈K1(n) λ∗
(n−1)

k (Uk − q∗
(n−1)

k )−
∑

k∈K2(n) λ∗
(n−1)

k q∗
(n)

k .

(4.3)

To compare P ∗
(n)

and P ∗
(n−1)

, we consider the following cases.

1. γ
(n)
k ≤ 0 ∀k ∈ K(n), (K1(n)

= ∅).

When γ
(n)
k ≤ 0 for all k ∈ K(n), then (FPMB) is infeasible if g∗

(n)
< Π, or it

yields the trivial solution q∗
(n)

k = 0 if otherwise. Thus, P ∗
(n)

= 0.

2. γ
(n)
k > 0 ∀k ∈ K(n), (K2(n)

= ∅).

If the quantities submitted in the best previous package are all at the production

capacity level, then q∗
(n−1)

k = Uk and so P ∗
(n)

= P ∗
(n−1)

. However, if for at least

one of the items, the previously submitted quantity is strictly less than the

capacity Uk then P ∗
(n)
> P ∗

(n−1)
.

3. ∃k1 ∈ K1(n)
, k2 ∈ K2(n)

s.t. γ
(n)
k1

> 0 and γ
(n)
k2
≤ 0, (K1(n)

, K2(n) 6= ∅).
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Based on the equality (4.3), when

∑
k∈K1(n) λ∗

(n−1)

k (Uk − q∗
(n−1)

k ) >
∑

k∈K2(n) λ∗
(n−1)

k q∗
(n−1)

k ,

the total value of extra production of items whose quantity offers are below pro-

duction capacity and production cost is lower than the announced item prices,

is greater than the total value of the quantities of items whose costs are above

the announced item prices. Thus, the optimal price P ∗
(n)

should be strictly

greater than P ∗
(n−1)

.

If
∑

k∈K1(n) λ∗
(n−1)

k (Uk−q∗
(n−1)

k ) <
∑

k∈K2(n) λ∗
(n−1)

k q∗
(n−1)

k , the optimal price P ∗
(n)

is strictly less than the previous best price P ∗
(n−1)

. This can be seen considering

that the model suggests zero optimal quantities for items whose production

costs are greater than the announced prices.

Proposition 4.5 is useful for the auctioneer and bidders as it shows the value of

the information being shared between the auction rounds. This proposition shows

dependence of bundle prices on several factors such as: how other bidders value

different units of products (λk), the suppliers’ costs (ck), minimum profit expectations

(Π), price and quantities corresponding to the most competitive previous bid (g∗),

internal production capacity as well as the auctioneer’s demand (considering that the

minimum of the two is Uk).
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4.5 Variable-cost Profit Maximization Model

(VPMB)

For suppliers with variable production cost, the expenses for the supply of products

depends on the quantity delivered to the auctioneer. To meet suppliers’ variable per-

quantity cost, let us define ckw as the per-quantity cost for provision of qkw units of

product k for the supplier’s wth cost scenario w = 1, . . . ,W . For each cost scenario,

the supplier considers production of qkw units of items where akw ≤ qkw ≤ bkw. We

can formulate the suppliers’ profit maximization model as

max P −
∑

k,w ckwqkw

s.t. P −
∑

k ckwqkw ≥ Π ∀w (1)

P −
∑

k λ
∗
kqkw ≤ g∗ ∀w (2)

akwδw ≤ qkw ≤ bkwδw ∀k, w (3)

P ≤M
∑

k qk (4)∑
w δw = 1 (5)

P ≥ 0

qkw ∈ N ∪ {0}, δw ∈ {0, 1} ∀k, w

(VPMB)

Note that for simplicity we drop (n) for all values, since they either correspond to the

current round or constant throughput the auction. VPMB is formulated for future

comparison against proposed models in Chapter 5.
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4.6 Lagrangian-based Iterative Auction Design

(LIAD)

Suppliers’ pricing corrections based on the auctioneer’s feedback on the Lagrangian

multipliers motivates the design of a discrete (as opposed to continuous) auction.

With the assumption that the first round prices and bids are initiated using CATS,

the winner determination problem (WDP) and its Lagrangian relaxation (WDPLR)

are solved to provide the auctioneer with the optimal allocation and Lagrangian

multipliers. As discussed in Chapter 3, rather than directly solving the Lagrangian

relaxation problem, the auctioneer is able to solve the linear relaxation problem (WD-

PLP) to access the Lagrangian optimal multipliers, objective value, and solution.

The Lagrangian multipliers provide proxies for the products’ prices at the current

round and hence providing them to the suppliers helps them in revaluating their

bid prices in the subsequent auction round. Moreover, solving the WDP problem to

(near) optimality will further help the auctioneer keep track of his profit dynamics

throughout the auction.

Based on the announced products’ price proxies, at the start of all following rounds,

suppliers solve their profit maximization model to generate their optimal bids. As

described before, the competitiveness of the new bid is seen in the design of the sup-

pliers’ PMB model. Once all suppliers pass their new bids to the auctioneer, he solves

the winner determination problem WDP and the linear relaxation WDPLP to access

the local winners and the Lagrangian multipliers. The bidding language considered
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is XOR. In Figure 9 we summarize the main steps of the auction procedure.

Figure 9: Iterative auction LIAD flowchart

Auction initializa-
tion (ask for bids)

Formulation of new
bids (solving FPMB)

Reception
of at least

1 bid?

Processing bids
(solving WDPLP)

Auction termination

yes

no

Provision of La-
grangian multipliers

Auction
termina-

tion?
no

yes

In Proposition 4.8 we show that the auction iterates as long as at least one supplier

submits a new bid incrementing his profit. Thus, at termination

∑
k∈K1

λ∗
(n−1)

k (Uk − q∗
(n−1)

k ) =
∑
k∈K2

λ∗
(n−1)

k q∗
(n−1)

k . (4.4)

and so P ∗
(n)

= P ∗
(n−1)

.
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This proposition provides the auctioneer with a tool to check whether all suppliers

have reached their maximum profitability. Equality (4.4) holds when for each sup-

plier and product k, if γ∗k > 0, the product is supplied at its upper bound in the

previous round, and if γ∗k < 0, it is not supplied at all. Consequently, the Lagrangian

multipliers of the current and previous rounds yield the same sign for γk.

This gives rise to the question of whether the auction converges. In other words, is

it affirmative that the auction reaches a point where all suppliers become unable to

submit a more competitive bid. To answer this question consider the dual variables

(λk, δi) respectively assigned to the first and second set of constraints in WDPLP.

The dual problem of WDPLP at iteration (n) of the auction is

max
∑

k λ
(n)
k dk +

∑
i δ

(n)
i

s.t. P
(n)
i −

∑
k λ

(n)
k q

(n)
ik − δ

(n)
i ≥ 0 ∀i (1)

λ
(n)
k ≥ 0, δ

(n)
i ≤ 0 ∀i, k.

(4.5)

Define Γ(n) as a sequence whose nth term specifies the optimal objective of the dual

problem at round (n).

Γ(n) = {
∑
k

λ∗
(n)

k dk +
∑
i

δ∗
(n)

i , for n = 1, 2, 3, . . .}. (4.6)

Proposition 4.6. For an auctioneer with predetermined reservation prices, sequence

Γ(n) as defined in (4.6) is convergent.

Proof. In order to see the convergence of Γ(n), we show that this sequence is bounded

and monotonically increasing.
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Let λ̂k determine the reservation price on product k, (k = 1, 2, . . . , K), i.e., λ̂k is the

highest price that the auctioneer is willing to pay for product k. It is easy to see

that sequence Γ(n) is bounded from above by
∑

k λ̂kdk. To see the monotonicity of

the sequence, recall that supplier i’s competitiveness condition at iteration n of the

auction ensures that

P
(n)
i −

∑
k

λ∗
(n−1)

k q
(n)
ik ≤ P

(n−1)
i −

∑
k

λ∗
(n−1)

k q
(n−1)
ik .

Let LHS and RHS respectively denote the left- and right-hand-side values of this

condition. As discussed in the results of Proposition 4.2, at iteration (n) of the

auction, PMB provides the suppliers with (P ∗
(n)

i , q∗
(n)

ik ) in such a way that the LHS of

the competitiveness equation grows as large as the RHS value. Hence,

P ∗
(n)

i −
∑
k

λ∗
(n−1)

k q∗
(n)

ik = P ∗
(n−1)

i −
∑
k

λ∗
(n−1)

k q∗
(n−1)

ik . (4.7)

Let (λ∗
(n−1)

, δ∗(n−1)) correspond to the optimal solutions of the dual problem at the

previous round. At the previous optimal values, constraint(1) in (4.5) equals

P
(n)
i −

∑
k

λ∗
(n−1)

k q
(n)
ik − δ

∗(n−1)

i ≥ 0,

which based on the equality (4.7) reformulates as

P
(n−1)
i −

∑
k

λ∗
(n−1)

k q
(n−1)
ik − δ∗(n−1)

i ≥ 0.
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The left-hand-side of the above inequality is equivalent to the reduced cost associ-

ated to supplier i in the primal LP relaxation problem at round (n-1). Since the

primal problem is a minimization problem, all the reduced costs at optimality are

non-negative. Therefore, the optimal solution of the dual LP relaxation problem at

round (n-1) satisfies the constraints of this problem at round (n) and thus belongs to

its feasible region.

Consequently at round (n), (4.5) is only able to improve upon the previous optimal

value with an optimal objective value either greater than or equivalent to that of

the previous round. In other words, the optimal value of the WDPLP at iteration

(n) is at least as good as that of iteration (n-1). This implies that sequence Γ(n) is

monotonically increasing.

Note that in Proposition 4.6 we discuss the non-decreasing change pattern of the

linear (or equivalently Lagrangian) relaxation lower bound as the auction proceeds in

rounds. This result is inconclusive of the change pattern of the optimal MIP objective

value, referred to as ZIP∗. In fact, as we discuss in Section 4.7, we experimentally

observe a non-monotone change pattern for ZIP∗. In the next two propositions we

characterise the suppliers profits.

Proposition 4.7. The suppliers’ profit is a nondecreasing function of the auction

rounds.

Proof. Considering the equality (4.7), the set of optimal solution (P ∗
(n−1)

i , q∗
(n−1)

ik )

obtained at round (n-1) is a trivial feasible solution at round (n). Therefore, the

optimal objective value at round (n) is at least as good as round (n−1). Consequently,
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at every round of the auction suppliers either maintain or improve upon the profit

they made at the previous round.

Proposition 4.8. For an auction terminating at round (n), δ
∗(n)
i = 0 for each sup-

plier i.

Proof. For an auction problem terminating at round (n) assume on the contrary

that there exists supplier î for whom δ
∗(n)

î
6= 0, thus δ

∗(n)

î
< 0. The complementary

slackness condition δ
∗(n)

î
(x∗

î
− 1) = 0 necessitates x∗

î
= 1. Thus, supplier î is among

the winners of the primal LP relaxation problem with a zero value of the associated

reduced cost P ∗
(n)

î
−
∑

k λ
∗(n)

k q∗
(n)

îk
− δ∗(n)

î
. Hence,

δ∗
(n)

î
= P ∗

(n)

î
−
∑
k

λ∗
(n)

k q∗
(n)

îk
< 0,

and

g∗
(n)

= P ∗
(n)

î
−
∑
k

λ∗
(n)

k q∗
(n)

îk
< 0.

Moreover, since P (n) −
∑

k ckq
∗(n)
k > 0,

P
(n)

î
−
∑

k cîkq
∗(n)

îk
> P

(n)

î
−
∑

k λ
∗(n)

k q
∗(n)

îk∑
k λ
∗(n)

k q
∗(n)

îk
>
∑

k cîkq
∗(n)

îk∑
k(λ
∗(n)

k − cîk)q
∗(n)

îk
> 0,

which implies that

∃k̂ s.t. (λ∗
(n)

k − cîk) > 0. (4.8)
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Considering the competitiveness condition as

Π ≤ P
(n)

î
−
∑K

k=1 cîkq
∗(n)

îk
≤ g∗

(n)
+
∑K

k=1(λ∗
(n)

k − cîk)q
∗(n)

îk
,

supplier î can improve his profit by increasing its offering q
∗(n)

îk
(and the corresponding

price) which contradicts the fact that the auction terminated at round (n).

In conclusion, the auction terminates if no supplier is able to formulate a new bid

that will strictly improve his profit. Proposition 4.8 aids the auctioneer in verifying if

all suppliers have achieved maximum profitability at the current round. Specifically,

the auctioneer is able to detect whether all suppliers have reached their maximum

profitability at the current round by checking on their corresponding dual variables

δ∗i . The fact that the auction runs so long as the suppliers are able to improve upon

their optimal profit incentivizes the suppliers’ participation in the auction. At each

iteration, suppliers take the marginal prices obtained from the Lagrange multipliers

to formulate their new package offer.

4.7 Numerical Experiments

To gain more insights from the models developed in the previous sections we con-

ducted numerical experiments. Based on the bundles generated via CATS, we formu-

late and solve the corresponding LP relaxation problem to access the optimal dual

variables associated with the demand constraints. With Π = 0, we conduct our ex-

periments for an auction of 3 products and 15 bids received from the suppliers. We

use CATS to simulate the items included in each bid and the corresponding bundle
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prices. CATS bids are illustrated in Table 5. As explained in Section 3.4, any quan-

tity value above the maximum number of items (here fixed at 3) corresponds to a

dummy bid. Bids with identical dummies are received from identical bidders.

Table 5: CATS bids generated for 3 items and 15 bids

Bids Prices

1 329.632 1 2 3

2 86.3849 1

3 218.796 1 2

4 196.905 1 3

5 236.71 2 3

6 135.677 2

7 115.175 3

8 145.904 1 3 364

9 242.745 2 3 364

10 168.918 1 2 364

11 245.51 2 3 393

12 118.07 1 3 393

13 241.602 2 3 515

14 179.878 1 2 515

15 168.828 1 2 514

Quantities of items in the Package

Since CATS generates a single unit of each item in the package, we use a uniform

distribution to generate multi-unit packages. The quantity of each item offered by

suppliers and the auctioneer’s item demand are respectively generated uniformly from

[1,15] and [20,40]. CATS prices for the bundles with single unit items are adjusted as

explained in Section 3.4 to reflect the prices on the bundles containing multiple units.

Note that in the generation of the bids’ prices we rely on CATS to generate the price

for the whole bundle and later scale it. The initial prices reflect bidders valuation
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of the packages without information on their competitors valuations. As the auction

progresses they would adjust their prices to take that information into account as it

becomes available to them. Furthermore, we do not explicitly include the items costs

information in the initial prices. The item costs are uniformly generated from [0.5,1.5]

and then scaled by their corresponding Lagrange multipliers. To remain consistent

with the quantities included in each bid, for each supplier i we generate the upper

and lower bounds for item k as

Lk ∼ bU [1,min(5, q∗k)]c

Uk ∼ bU [max{6, q∗k}, 15]c

where U [a, b] denotes a uniform distribution on the interval [a.b]. Thus,

q∗k ≤ 5⇒


Lk ∼ bU [1, q∗k]c

Uk ∼ bU [6, 15]c
, q∗k > 5⇒


Lk ∼ bU [1, 5]c

Uk ∼ bU [q∗k, 15]c.

Table 6 records the optimal values attained from solving different suppliers’ profit

maximization models as well as the auctioneer’s winner determination problem at

the first and second rounds of the auction.

At the first round of the auction wherein suppliers’ bids are generated using CATS

data generator, suppliers’ optimal price and quantity (P ∗
(1)
, q∗

(1)

k ) are associated with

the corresponding values derived for the suppliers’ most competitive bid. At the sec-

ond round, (P ∗
(2)
, q∗

(2)

k ) are the optimal values obtained from the PMB model. We

record the suppliers’ profit from their most competitive bid at round (1) or from

solving the profit maximization problem in round (2) respectively as PP ∗
(1)

, PP ∗
(2)

.
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At the end of each round, the winner determination problem is solved based on the

bids received. The profit suppliers make when winning in the auction is referred to as

WP ∗
(1)

, WP ∗
(2)

. We denote the auctioneer’s total cost of procurement at each round

as TCP ∗
(1)

, TCP ∗
(2)

. When a supplier is a winner in either of the auction rounds,

he will actually make the profit as calculated by the profit maximization models.

Otherwise, the actual profit gained from the winner determination problem is 0. For

each supplier, we calculate γ
(n)
k for product k as λ∗

(n−1)

k − ck. Finally, we define

θ(n) = sign(
∑
k∈K1

λ∗
(n−1)

k (Uk − q∗
(n−1)

k )−
∑
k∈K2

λ∗
(n−1)

k q∗
(n−1)

k )

in order to compare the price from the supplier’s best previous bid and the optimal

price derived from PMB models.

4.7.1 Further Insights on Proposition 4.1-Proposition 4.5

From the results of Table 6, we can make the following observations on the proposed

models:

1. Even thought the model (PMB2) introduced by Hsieh [41] (PBM2 rows in

Table 6) does provide a new package at the price P ∗
(2)

much higher than the

previous best price P ∗
(1)

, the model suggests impractical quantities that are as

many as almost 10 times the supplier’s capacity for products with positive γ
(2)
k .

The optimal quantity of items with negative γ
(2)
k is 0.

2. Model (FPMB) provides a lower price (compared to (PMB2)). Quantities with

positive γ
(2)
k are offered at the capacity level. Quantities with non positive γ

(2)
k
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Table 6: Comparison of bidders’ pricing models for indivisible auctions

i Uk  Feasibility 

Model k=1 k=2 k=3 k=1 k=2 k=3 P*(1) PP(1) WP(1) TTP(1)
Θ(2) k=1 k=2 k=3 Code k=1 k=2 k=3 P*(2) PP(2) WP(2) TTP(2)

1 PMB2 13 13 6 13 13 1 296.67 - 0.51 -4.33 -1 1 100 0 0 389.96

FPMB 13 13 6 13 13 1 296.67 36.35 0 1 13 0 0 126.35 93.62 0

FPMB2 13 13 6 13 13 1 296.67 1 13 0 0 126.35

FPMB3 13 13 6 13 13 1 296.67 1 13 4 4 221.77

2 PMB2 12 6 7 12 0 0 103.66 + 1.05 -5.53 5.4 1 100 0 100 1535.36

FPMB 12 6 7 12 0 0 103.66 79.9 0 1 12 0 7 185.22 117.7 0

FPMB2 12 6 7 12 0 0 103.66 1 12 0 7 185.22

FPMB3 12 6 7 12 0 0 103.66 1 12 3 7 221.83

3 PMB2 14 9 8 14 4 0 196.92 + -0.96 -0.23 3.52 1 0 0 100 1270.73

FPMB 14 9 8 14 4 0 196.92 91.4 0 1 0 0 8 198.88 133.87 0

FPMB2 14 9 8 14 4 0 196.92 1 0 0 8 198.88

FPMB3 14 9 8 14 4 0 196.92 1 1 4 8 250.73

4 PMB2 12 10 11 12 0 11 226.44 + 0.5 3.93 0.82 1 100 100 100 2750.52

FPMB 12 10 11 12 0 11 226.44 77.01 0 1 12 10 11 348.49 116.33 0

FPMB2 12 10 11 12 0 11 226.44 1 12 10 11 348.49

FPMB3 12 10 11 12 0 11 226.44 1 12 10 11 348.49

5 PMB2 9 7 7 0 2 4 71.01 - -1.42 -3.19 -2.04 1 0 0 0 0

FPMB 9 7 7 0 2 4 71.01 -14.55 0 1 0 0 0 0 0 0

FPMB2 9 7 7 0 2 4 71.01 1 0 0 0 0

FPMB3 9 7 7 0 2 4 71.01 10 0 0 0 0

6 PMB2 9 7 9 0 5 0 67.84 + -0.63 1.67 1.79 1 0 100 100 2392.41

FPMB 9 7 9 0 5 0 67.84 15.16 0 1 0 7 9 197.1 34.58 34.58

FPMB2 9 7 9 0 5 0 67.84 1 0 7 9 197.1

FPMB3 9 7 9 0 5 0 67.84 1 1 7 9 200.13

7 PMB2 6 6 9 0 0 9 103.66 - 1.02 1.34 -3.68 1 100 100 0 1522.34

FPMB 6 6 9 0 0 9 103.66 -34.36 -34.36 1 6 6 0 90.21 13.02 13.02

FPMB2 6 6 9 0 0 9 103.66 1 6 6 0 90.21

FPMB3 6 6 9 0 0 9 103.66 1 6 6 3 125.17

8 PMB2 9 10 8 2 10 0 101.35 - 1.09 -1.96 4.55 1 100 0 100 1441.29

FPMB 9 10 8 2 10 0 101.35 -44.14 -44.14 1 9 0 8 93.71 19.46 0

FPMB2 9 10 8 2 10 0 101.35 1 9 0 8 93.71

FPMB3 9 10 8 2 10 0 101.35 1 9 3 8 130.33

9 PMB2 12 8 7 12 0 6 106.26 - -0.8 -2.36 3.03 1 0 0 100 1165.06

FPMB 12 8 7 12 0 6 106.26 8.55 8.55 1 0 0 7 81.55 21.21 0

FPMB2 12 8 7 12 0 6 106.26 1 0 0 7 81.55

FPMB3 12 8 7 12 0 6 106.26 1 5 5 7 157.73

10 PMB2 9 8 7 1 5 0 53.96 + -0.18 2.54 4.43 1 0 100 100 2375.5

FPMB 9 8 7 1 5 0 53.96 2.44 2.44 1 0 8 7 169.1 41.28 41.28

FPMB2 9 8 7 1 5 0 53.96 1 0 8 7 169.1

FPMB3 9 8 7 1 5 0 53.96 1 5 8 7 184.25

11 PMB2 12 10 8 12 10 0 185.71 - 0.01 -5.06 -3.06 1 100 0 0 330.29

FPMB 12 10 8 12 10 0 185.71 -23.25 0 1 12 0 0 63.66 27.36 27.36

FPMB2 12 10 8 12 10 0 185.71 1 12 0 0 63.66

FPMB3 12 10 8 12 10 0 185.71 1 12 2 1 99.72

365.2 520.1

qk
*(2)qk

*(1) ϒk
(2)
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are not included in the new package.

3. In model (FPMB3), inclusion of all quantities in the new package enforces

a minimum quantity for the items with negative γ
(2)
k values which decreases

the optimal profit for the suppliers. Moreover, while all other models result

in feasible prices for all supplies, (FPMB3) is infeasible for supplier 5. An

infeasible supplier pricing problem suggests that the supplier is no longer able

to offer better prices and would drop from the auction.

4. In comparison of new and old prices, we observe that for supplier 4 whose

γ
(2)
k > 0 for all k, P ∗

(1)
< P ∗

(2)
. For supplier 5 whose γ

(2)
k < 0 for all k,

P ∗
(1)

> P ∗
(2)

. For suppliers 2, 3, 6, 10 with θ(2) > 0, P ∗
(1)

< P ∗
(2)

and

eventually for suppliers 1, 7, 8, 9, 11 with θ(2) < 0, P ∗
(1)
> P ∗

(2)
.

4.7.2 The Auctioneer’s and Suppliers’ Profit Dynamics at

the Second Round of the Auction

This section studies the auctioneer’s and the suppliers’ profit changes as the auction

proceeds to the second round. Define GG as the gross growth and GP as the growth

percentage. Based on the results from Table 6, in Figure 10(a) we plot the winning

suppliers in the first and second rounds. Figure 10(b) and 10(c) illustrate the gross

growth of suppliers’ WDP and FPMB profits.

As can be seen in Figure 10(c), the suppliers’ FPMB profit increases as they go from

the first to the second round of the auction. From Figure 10(a) we see that suppliers 1,

2, 3, 4, and 5 are winning in neither of the auction rounds. Suppliers 6 and 11 who are
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Figure 10: Two-round auction
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(c) The gross growth in FPMB Profit
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losing in the first round are able to win in the second round despite the gross growth of

respectively 47.3 and 50.6 in their FPMB profit. Suppliers 7 and 10 win both rounds

of the auction. They both increase their FPMB gross profit. Changing his profit from

2.4 to 41.2, supplier 10 gains 1591.8 % WDP profit increase. Suppliers 8 and 9 who

win the first round, lose in the second round of the auction. However, since supplier

8 gains a negative profit in the first round, not winning the auction in the second

round implies a positive WDP profit growth in Figure 10(b). Supplier 9 who wins

in round 1, fails to win in round 2 and gains negative WDP profit in the second round.
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As Table 6 suggests, half of the winning suppliers (suppliers 7 and 8) in round 1

gain negative profit with the supply of the proposed qualities of items. As explained

before, this is due to the fact that suppliers do not price the bundles based on the pro-

duction costs, rather costs are initially generated via CATS as multipliers of average

product prices submitted by all suppliers. Nonetheless, suppliers are able to adjust

their bids according to the feedback from the auctioneer and maintain positive profit

in the future rounds of the auction. In practice, this happens when suppliers are not

completely confident how to price products and can therefore face negative profit on

the first round. Based on the information revealed by the auction they are able to

decide whether to continue bidding while maintaining a minimum desired profit or to

drop out of the auction.

It is not unusual then to expect an increase in the auctioneer’s total price of procure-

ment on the second round as the suppliers with negative profit correct their pricing

to guarantee their minimum expected profit. Terminating the auction at the first

stage can result in assigning packages to suppliers with negative profit and increase

the suppliers’ delivery failure risk.

4.7.3 The Auctioneer’s and Suppliers’ Profit Dynamics at

the Stabilization Round (RS) of the Auction

Results in the previous sections suggest that the auctioneer’s total cost of procure-

ment increases at the second round of the auction when suppliers get the opportunity

to correct their bid submissions. This raises the question of whether the auctioneer’s
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total cost of procurement keeps increasing until the end of the auction?

To answer this question, we run the auction for a maximum of 10 rounds. Table 7

illustrates the results of the first 5 rounds of the auction and Figures 11(a), 11(b),

and 11(c) respectively show the winning suppliers, the auctioneer’s total cost of pro-

curement, and the suppliers’ cumulative WDP profit (denoted as SCWP).

Results from Table 7 imply that the auctioneer’s total cost of procurement does not

necessarily increase at every round of the auction. Indeed, it can decrease from round

to round (Table 7 demonstrates a decrease in TCP from 476.31 in round 2 to 439.62

in round 3) and eventually remain constant from a relatively early round (round 4 in

Table 7). At the start of round 4 all suppliers derive θ = 0. Thus, as discussed in

Proposition 4.5 no supplier is able to submit a more competitive bid and the auction

terminates. We will refer to this round as the stabilization round, and denote it as

RS. Note that RS is the round preceded by the round in which we first observe the

identical results. In other words, RS is the first round at which repeated results ap-

pear.

To go beyond this example, we repeat the iterative auction on 20 different problem

instances. The results as shown in Table 8, confirm the convergence of the auction-

eer’s total cost of procurement, the Lagrangian multipliers as well as the suppliers’

profit at a relatively early stage.

The first column of this table shows the problem instance and the second column
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Table 7: Iterative auction

round i θ P* PP WP TPP

k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3

1 1 14 4 5 252.72 42.02 417.19 8.36 9.13 6.63

2 6 0 0 51.83 7.85

3 5 12 0 185.98 25.17

4 8 0 12 196.91 45.45

5 0 6 7 153.86 90.75

6 0 7 0 94.97 61.97 90.75

7 0 0 1 11.52 3.83

8 8 1 0 76.01 19.95

9 4 0 12 94.46 -21.98 19.95

10 2 9 0 98.93 13.14 -21.98

11 3 8 0 92.86 -35.55

SCWP 88.72

2 1 - -0.8 -4.4 0.96 0 0 10 14 7 10 132.29 75.59 476.31 8.36 8.86 6.91

2 + 1.03 -1.46 0.66 10 0 6 10 10 6 125.05 15.95

3 - -2.71 0.35 -2.86 0 12 0 7 12 7 144.18 38.74

4 - -2.8 -4.53 1.45 0 0 12 9 8 12 130.03 67.87

5 + -2.76 4.51 1.58 0 8 8 8 8 8 178.76 101.35

6 + 0.97 4.42 3.07 8 7 6 8 7 6 201.63 88.16 88.16

7 + 3.39 4.26 -1.05 7 9 0 7 9 9 145.62 66.96

8 - 2.63 -1.07 -0.19 8 0 0 8 10 7 66.88 21.02

9 - 0.84 -1.29 -0.57 8 0 0 8 7 12 66.88 6.7 6.7

10 + 2.38 0.93 2.25 6 10 10 6 10 10 207.81 46.07 46.07

11 - -0.5 -3.59 0.77 6 10 10 10 10 6 207.81 -31.26

SCWP 140.93

3 1 0 -0.8 -4.68 1.24 0 0 10 14 7 10 132.29 75.59 439.62 8.36 9.68 6.91

2 0 1.03 -1.74 0.94 10 0 6 10 10 6 125.05 15.95

3 0 -2.71 0.07 -2.58 0 12 0 7 12 7 144.18 38.74

4 0 -2.8 -4.81 1.73 0 0 12 9 8 12 130.03 67.87

5 0 -2.76 4.23 1.86 0 8 8 8 8 8 178.76 101.35 101.35

6 0 0.97 4.14 3.35 8 7 6 8 7 6 201.63 88.16

7 0 3.39 3.98 -0.78 7 9 0 7 9 9 145.62 66.96 66.96

8 + 2.63 -1.35 0.09 8 0 7 8 10 7 115.24 21.65 21.65

9 0 0.84 -1.57 -0.29 8 0 0 8 7 12 66.88 6.7

10 0 2.38 0.65 2.53 6 10 10 6 10 10 207.81 46.07

11 - -0.5 -3.87 1.05 0 0 6 10 10 6 41.45 6.27

SCWP 189.96

4 1 0 -0.8 -3.86 1.24 0 0 10 14 7 10 132.29 75.59 439.62 8.36 9.68 6.91

2 0 1.03 -0.91 0.94 10 0 6 10 10 6 125.05 15.95

3 0 -2.71 0.89 -2.58 0 12 0 7 12 7 144.18 38.74

4 0 -2.8 -3.98 1.73 0 0 12 9 8 12 130.03 67.87

5 0 -2.76 5.05 1.86 0 8 8 8 8 8 178.76 101.35 101.35

6 0 0.97 4.96 3.35 8 7 6 8 7 6 201.63 88.16

7 0 3.39 4.8 -0.78 7 9 0 7 9 9 145.62 66.96 66.96

8 0 2.63 -0.52 0.09 8 0 7 8 10 7 115.24 21.65 21.65

9 0 0.84 -0.75 -0.29 8 0 0 8 7 12 66.88 6.7

10 0 2.38 1.47 2.53 6 10 10 6 10 10 207.81 46.07

11 0 -0.5 -3.05 1.05 0 0 6 10 10 6 41.45 6.27

SCWP 189.96

5 1 0 -0.8 -3.86 1.24 0 0 10 14 7 10 132.29 75.59 439.62 8.36 9.68 6.91

2 0 1.03 -0.91 0.94 10 0 6 10 10 6 125.05 15.95

3 0 -2.71 0.89 -2.58 0 12 0 7 12 7 144.18 38.74

4 0 -2.8 -3.98 1.73 0 0 12 9 8 12 130.03 67.87

5 0 -2.76 5.05 1.86 0 8 8 8 8 8 178.76 101.35 101.35

6 0 0.97 4.96 3.35 8 7 6 8 7 6 201.63 88.16

7 0 3.39 4.8 -0.78 7 9 0 7 9 9 145.62 66.96 66.96

8 0 2.63 -0.52 0.09 8 0 7 8 10 7 115.24 21.65 21.65

9 0 0.84 -0.75 -0.29 8 0 0 8 7 12 66.88 6.7

10 0 2.38 1.47 2.53 6 10 10 6 10 10 207.81 46.07

11 0 -0.5 -3.05 1.05 0 0 6 10 10 6 41.45 6.27
SCWP 189.96

qk
*ϒk Uk λk
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Figure 11: The auctioneer’s and suppliers’ payoff in an iterative auction
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(b) Total Cost of Procurement
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(c) Suppliers’ cumulative WDP Profit
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determines the stabilization round RS. We capture the GP of the auctioneer’s TCP,

and Lagrangian multipliers, as well as the GG of suppliers’ cumulative profit at round

RS with respect to round 1 and round 2 (denoted as R1 and R2). The growth

percentage GP or the gross growth GG for an index X (which could be either the
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Table 8: 20 Instances of iterative auction implementation-comparison results

Instance RS (RS,R1) (RS,R2) (RS,R1) (RS,R2) (RS,R1) (RS,R2) (RS,R1) (RS,R2) (RS,R1) (RS,R2) 

1 4 5.4 -7.7 0 0 6 9.3 4.2 0 136.8 49

2 3 9.3 0 8.5 0 9.4 0 -13.2 0 146.4 0

3 6 20.3 12.6 19 19 5.5 1.1 -4.7 -1 169.9 25.6

4 4 3.2 -2.1 -8.1 0 6.2 0 -2.8 0 172.6 -12.2

5 3 35.1 0 1.7 0 47.4 0 -27.8 0 283.1 0

6 4 34 20.5 0 0 0 0 5 0 187 1.6

7 8 19.2 8.5 -8.6 22.9 34 16.5 0 -0.9 146.8 26.2

8 4 5.6 5 -1 0 -13.1 0 0.5 0 61.3 56.6

9 4 14.4 -2.1 0 0 4.2 0 0.2 0 148.1 29

10 3 -0.8 0 -8.1 0 -18.8 0 19.7 0 195.1 0

11 3 2.6 5.9 8.4 0 -4.4 0 0 0 61.2 0

12 3 9.4 -4.5 28.2 0 3.9 0 0 0 111.1 27.5

13 6 15.9 5.4 0 8.3 14 -0.1 -4.7 12.4 49 0.2

14 4 32.7 1.3 0 10.5 -15.7 4.3 8.8 -7.5 93.7 26.1

15 3 -2.3 -8.3 7.2 0 -0.9 0 12.5 0 205.3 75.2

16 4 33.9 6.4 -25.3 0 11.8 0 6.1 0 56.8 -46.8

17 4 33.9 6.4 12.9 0 -6.4 0 19.4 0 269.4 35.5

18 5 14.9 -2.3 1.6 -9.4 4.3 1.7 9.7 2.8 293 -3.6

19 4 15.3 -3.5 -9.1 0 7.8 0 5.4 0 305.2 -34.4

20 4 5.6 0 23 0 4.3 0 -16.7 0 278.6 0

Average 4 15.4 2.1 2.5 2.6 5 1.6 1.1 0.3 168.5 12.8

GP_TCP  GP_λ1  GP_λ2 GP_λ3 GG_SCWP

TCP, λ1, λ2, λ3, or SCWP ) at round Rn as compared to round Rm is defined as

GG X(Rm,Rn) = XRn −XRm, GP X(Rm,Rn) =
XRn −XRm

XRm

.

Compared to the first round, the auctioneer’s TCP growth percentage is positive

among most problem instances (except for instances 10 and 15) with an average of

15.4%. This is excepted due to some suppliers’ inaccurate valuations at the initial

round of the auction resulting in their negative profit. However, comparing the fi-

nal round to the second round in which suppliers are able to maintain a reasonable

minimum profit shows a much less growth percentage with an average of 2.1% which

suggests that even though the growth percentage of TCP is positive, the auctioneer

can appreciate the little growth of TCP at the final round (around 2%) as compared
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to the second round.

Table 9: 20 Instances of iterative auction implementation-comparison results

GP+
GP- GP0 GP+

GP- GP0

% Ave stdev % Ave stdev % % Ave stdev % Ave stdev %

1 45 12.3 9.3 30 -10 8.1 25 20 15.2 6.9 5 -9.4 - 75

2 65 12.2 13.3 30 -9.9 7 5 25 3.3 3.7 5 -0.1 - 60

3 55 8.3 6.6 30 -11.7 9.6 15 10 7.6 6.8 15 -3.1 3.8 75

Average 55 10.9 9.7 30 -10.5 8.2 15 18.3 8.7 5.8 8.3 -4.2 3.8 70

RS vs. R1 RS vs. R2

Items

In Table 8 we observed the growth percentage of items’ prices over 20 problem in-

stances. We extend this analysis in Table 9 to understand what percentage of this

population possesses a positive, negative, or zero price growth (respectively repre-

sented as GP+, GP−, GP 0). We also look for the amount of average price growth

percentage in each class. Define

λ̄ Average price over λ1, λ2, λ3

PGP+
λ̄
, PGP−

λ̄
, PGP 0

λ̄
The percentage of instances with respectively positive

negative, and zero GP of λ̄

GP+
λ̄
, GP−

λ̄
Positive and negative GP of λ̄.

Studying the results we observe that,

• Going from R1 to RS we realize a positive average price growth percentage for

the majority of problem instances (55%). There is a negative price growth on
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nearly half of this population (30%). This analogy holds as we compare RS to

R2 (18.3 % of the instances have positive growth and 8.3% have negative), i.e.,

PGP+
λ̄

(RS,R1) ∼ 2PGP−
λ̄

(RS,R1)

PGP+
λ̄

(RS,R2) ∼ 2PGP−
λ̄

(RS,R2).

Thus, at rounds R1 and R2 it is more likely that the prices increase than to

decrease as compared to RS.

• The percentage of the instances with positive price growth is much larger at

R1 as compared to R2. Comparing R1 to RS, 55% of the instances have a

positive price growth. This percentage shrinks down to 18.3 when comparing

the prices at R2 against RS. Similar analogy holds for instances with a negative

price growth, i.e.,

PGP+
λ̄

(RS,R1) ∼ 3PGP+
λ̄

(RS,R2)

PGP−
λ̄

(RS,R1) ∼ 4PGP−
λ̄

(RS,R2).

Thus, the likelihood that the prices change (increase or decrease) is less at R2

as compared to R1.

• The prices on the majority of problem instances in R2 (around 70%) remain

unchanged compared to RS, i.e.,

PGP 0
λ̄
(RS,R2) >> PGP+

λ̄
(RS,R2) > PGP−

λ̄
(RS,R2).

Thus, at the second round of the auction when bidders prepare their bids based
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on the feedback from the auction, it is likely that the item prices do not change

too much till the end of the auction.

• The growth rate of the average prices for the population with either positive

or negative price growth is below 10%. Thus, the final prices have a growth

percentage ranging from -10% to +10%. Also, the absolute growth percentage

is larger when comparing RS to R1 than to R2, i.e.,

0 ≤ GP+
λ̄

(RS,R1) ≤ 10%

−10% ≤ GP−
λ̄

(RS,R1) 0%,

and

GP+
λ̄

(RS,R2) ≤ GP+
λ̄

(RS,R1)

|GP−
λ̄

(RS,R2)| ≤ |GP−
λ̄

(RS,R1)|.

For more clarification, Figure 12 illustrates PGP+
λ̄
, PGP−

λ̄
, PGP 0

λ̄
when comparing

RS to R1 and R2.

In comparison of the suppliers cumulative profit from the auction, referred to as

SCWP profit in Table 8, we detect a large growth of RS compared to R1. This

is expected considering the fact that in round 1 suppliers can make small or even

negative profit. Compared to R2, suppliers’ cumulative WDP profit makes an average

gross growth of around 13% implying the limited increase in suppliers’ WDP profit

as the auction proceeds from R2.
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Figure 12: Percentage of problem instances with positive, negative, or 0 growth
percentage

(a) Comparison of RS to R1
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Chapter 5

Divisible-Bid Auctions

When the demand on each item on auction is relatively large, suppliers can find it

challenging to carefully combine and price different units of items in a package con-

sidering their internal capacity and production costs. In such auctions it would help

to provide the bidders with more flexibility in constructing their bundles. In this

chapter we consider the case when the bidder can reveal their price functions to the

auctioneer allowing the auctioneer a continuum of order options. We refer to this

type of bidding as divisible bidding.

Suppliers’ consent for revealing price functions eases out their bundle evaluation and

bid submission processes by enabling them to more efficiently communicate innu-

merous variations of pricing multiple units of items via concise bids. Once bids are

reported, the auctioneer formulates his winner determination problem, represented

as a mixed integer programming (MIP) formulation, to decide whom to assign how

many units of what items.
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In this chapter we differentiate the combinatorial auctions with divisible bids from

the ones with indivisible bids. The former is referred to as divisible-bid auctions and

the latter as indivisible-bid auctions hereafter. We study the auctioneers’ winner de-

termination problem for divisible bid auctions, namely WDPD, and how it helps both

the suppliers and the auctioneer to mitigate combinatorial auctions’ computational

bottlenecks. We investigate the application of Lagrangian relaxation and analyse the

optimal Lagrangian bound, solution, and multipliers derived.

The rest of this chapter is devoted to formulating appropriate profit maximization

problems for suppliers to help them identify how many units of what products and

at what price to offer in the next round of the auction in order to remain competitive

with the rest of the suppliers. In the formulation of profit maximization problems we

take into account various levels of suppliers risk-taking attitudes.

As part of our empirical experiments, we simulate a divisible auction environment

and computationally implement and compare our presented models. The results are

further compared against the optimal prices and quantities obtained from an auction

with indivisible bids.

5.1 Notations and Definitions

The definition of i, k, dk, λ
∗(k) is consistent with Chapter 4. Other notations fre-

quently used throughout this chapter are as follows.
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j Index on the suppliers’ price functions j ∈ J = {1, . . . , ni}

pijk Supplier i’s price for item k in price function j

p′ijk pijk from the previous round

cijk Supplier i’s unit cost of item k in price function j

qijk Supplier i’s quantity of item k in price function j

q′ijk qijk from the previous round

fij The jth price function submitted by supplier i

bi The bid submitted by supplier i

aijk The minimum amount of item k supplier i offers in price function j,

(aijk ∈ N+ ∪ {0})

bijk The maximum amount of item k supplier i offers in price function j,

(bijk ∈ N+ ∪ {0})

Lik Supplier i’s minimum capacity to produce item k, (Lik ∈ Z+)

Uijk Supplier i’s maximum capacity to produce item k, (Uik ∈ Z+)

Πi The minimum net profit that supplier i expects to take from the auction

αi The minimum net profit margin that supplier i expects to take from the auction

βi The minimum profit percentage that supplier i expects to take from the auction

δij The binary variable which equals 1 if the jth price function submitted by supplier

i is selected and 0 otherwise

5.2 The Winner Determination Problem for Divisible-

Bid Auctions (WDPD)

Assume each supplier submits bids containing several linear price functions which

explicitly define distinct ranges of quantities and their corresponding per unit prices.
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Rather than deciding whether or not to select a bid as in conventional WDP problems,

in a WDPD, the auctioneer solves for the optimal quantities from suppliers. In this

section we introduce the bids as well as the problem formulation in a divisible-bid

auction. We discuss how this auction is beneficial for both parties in an auction supply

chain framework. Finally, we look at the problem’s optimal Lagrangian relaxation

values.

5.2.1 Bid Formulation

Let bi define the bid submitted by supplier i as

bi = {fij|fij =
∑

k pijkqijk for qijk ∈ [aijk, bijk],

aijk ≥ Lik, bijk ≤ Uik,

[aijk, bijk] ∩ [aij′k, bij′k] = ∅ ∀i, j 6= j′, k}.

(5.1)

In bid representation bi, we assume that suppliers determine prices with respect to

an all-units cost function. Meaning that the cost per unit drops when the order size

is greater than or equal to the discount break points. For supplier i and product k

the cost function is defined as

c = T +



c1q1 a1 ≤ q1 ≤ b1

c2q2 a2 ≤ q2 ≤ b2

. . .

cni
qni

ani
≤ qni

≤ bni

where K denotes the fixed production cost. Note that for simplicity we drop the
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indices i, k to formulate the cost with respect to the supplier i’s jth cost function.

Selection of all-units cost function for suppliers in a divisible-bid auction allows sup-

pliers to provide appropriate production costs on an arbitrary range of quantities

without supplying the product in quantities lower than the lower bound of that range.

Proposition 5.1. Bid formulation (5.1) preserves

• synergies among products,

• discounts on provision of larger quantity units,

• the XOR bidding Language.

Proof. Each price function included in bid bi is in fact representative of a bundle with

the additional flexibility on the number of units included in the package from each item

and the associated price. Suppliers are able to indicate complementarity among items

by grouping them in a function and assigning low per-quantity prices. Discount on

provision of large quantities is represented by assigning low per-unit price coefficients.

The suppliers’ all-units cost function allows for the supplier to have only one of the

cost functions selected. Once the price function j is selected, the supplier is required

to supply certain quantities of the items included in this function. Needless to say,

the quantities assigned need to satisfy the ranges defined in the function. This is in

line with the XOR bidding environment wherein at most 1 bid is accepted from each

bidder.
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5.2.2 WDPD Problem Formulation

With the bid representation (5.1), the winner determination problem for a divisible-

bid auctions is formulated as

min
∑

i

∑
j

∑
k pijkqijk

s.t.
∑

i,j qijk ≥ dk ∀k (1)

aijkδij ≤ qijk ≤ bijkδij ∀i, j, k (2)∑
j δij ≤ 1 ∀i (3)

δij ∈ {0, 1} ∀i, j

qijk ∈ N+ ∪ {0} ∀i, j, k.

(WDPD)

The objective function minimizes the total price of procurement, constraint (1) en-

sures the demand on each product is satisfied. Constraint (2) determines whether

bidder i’s function j is selected or not. With the selection of this function positive

quantities of the items contained in this function are selected on the ranges intro-

duced. Otherwise, all quantities from this function remain at level 0. Constraint (3)

makes sure that at most one function is selected for each supplier (XOR condition).

5.2.3 The Virtue of Implementing WDPD

As discussed in Section 2.2.3 there are several complexities inherent in the application

of combinatorial auctions. With the condition that suppliers reveal their price func-

tions, implementing divisible-bid auctions helps reduce these complexities. Below, we

discuss this in more details.
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5.2.3.1 Suppliers’ Complexity on Bundle Evaluation

In a combinatorial auction environment determining the value of each bundle necessi-

tates solving pricing, marketing, and revenue management problems. Requiring this

computation to be done for exponentially many combinations of multiple units of

multiple products is almost impractical. In a problem formulation with K items and

demand dk, each supplier will have
∑K

i=1

(
K
i

)
.dik different options. With 5 items and

10 units of demand for each item this yields 161,050 combinations.

Specifically, in an iterative auction framework, due to the short bid-submission time,

the bundle evaluation process becomes challenging. Suppliers will only have a limited

time to carefully evaluate and price the combinations they are willing to compete

on. Divisible-bid auctions help reduce this complexity by providing the opportunity

for suppliers to determine prices for ranges of quantities rather than explicit quantity

values. As stated in Proposition 5.1, they will still be able to express synergies among

different products as well as quantity discounts when providing more units of the same

product.

5.2.3.2 Suppliers’ Complexity on Bundles’ Communication

Once the valuations are determined, bidders need to communicate exponentially many

bids to the auctioneer. Assuming the pricing stage is done, the suppliers’ next bottle-

neck is to communicate an exponentially large number of bundles to the auctioneer

(161,050 bids for a relatively small auction with 5 items and 10 units of each). Sub-

mission of price functions based on the intervals of quantities provides a more concise

bid representation format which reduces suppliers’ communication complexity.
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5.2.3.3 Auctioneers’ Complexity on Solving WDPD

In order to investigate the computational efficiency of divisible-bid auction formula-

tion, we conduct numerical experiments to: generate divisible-bid auction problem,

convert it to the equivalent indivisible-bid counterpart, and record the CPU time that

CPLEX 12 solver consumes to solve each formulation.

To simulate a divisible-bid auction, we use a uniform distribution to generate cost

values on the interval [50,100]. To represent the interval of quantities, we generate a

random number mijk ∈ [5, 15] and derive the lower and upper bounds aijk and bijk of

the quantity qijk as

aijk ∈ [0,mijk], bijk ∈ [mijk + 1, 20].

Each generated instance is next converted to distinct packages in an indivisible-bid

auction. For instance, bid b1 submitted by supplier 1, consisting of two functions and

3 products is represented as

b1 = { f11 =
∑3

k p11kq11k q11k ∈ [a11k, b11k] for k = 1, 2, 3,

f12 =
∑3

k p12kq12k q12k ∈ [a12k, b12k] for k = 1, 2, 3}.

b1 is equivalent to the submission of the following indivisible bid:

{{a111, a112, a113}, p = a111q111 + a112q112 + a113q113}

{{a111, a112, a113 + 1}, p = a111q111 + a112q112 + (a113 + 1)q113}
...

{{b121, b122, b123}, p = b121q121 + b122q122 + b123q123}.
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Table 10 summarizes our results for i suppliers, each submitting j price functions on

k products. Column 2 illustrates the number of bundles equivalent to each instance

of the divisible-bid auction problem generated. Columns 3 and 4 record the CPLEX

CPU time for solving the two equivalent problem instances in seconds, and column 5

is the time ratio of the divisible-bid to the indivisible-bid problems CPU time.

Table 10: Comparison of CPU time for problems with divisible and indivisible bids

(i,j,k) number of packages Divisible CPU time Indivisible CPU time Ratio
(2,2,3) 632 0.102 0.113 1.11
(2,3,3) 1248 0.1 0.107 1.07
(3,2,3) 1072 0.099 0.237 2.39
(3,3,3) 1184 0.101 0.126 1.25

(2,2,5) 5052 0.101 0.452 4.48
(3,2,5) 6498 0.105 0.703 6.7
(4,2,5) 39358 0.101 17.889 177.12
(5,2,5) 28954 0.153 20.857 136.32

(2,3,5) 6320 0.105 0.496 4.72
(2,4,5) 27272 0.107 4.19 39.16
(2,5,5) 37892 0.119 7.651 64.29

(3,3,5) 26379 0.104 6.024 57.92
(3,4,5) 33333 0.118 12.604 106.81
(3,5,5) 40773 0.122 15.262 125.1

(4,4,5) 61408 0.213 28.825 135.33
(4,5,5) 76912 0.208 105.402 506.74
(5,5,5) 81876 0.207 177.202 856.05

As observed, CPLEX takes much more time to solve the indivisible-bid problem

formulations. In addition, the CPU time for the indivisible-bid problem instances

grows quickly with the increase in the size of the problem. Comparison of the smallest

and largest problem instances shows that while the CPU time in the largest divisible-

bid problem instance takes almost twice as much as the smallest problem instance,
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this ratio increases to as large as 1737.3 on the equivalent indivisible-bid problem.

5.2.4 Analysis of the Lagrangian Relaxation Bound

Assigning the nonnegative Lagrangian multiplier vector λ = (λ1, . . . , λK) to the de-

mand constraint and relaxing it produces the following dual function and optimization

problem.

L(λ) = min
∑

i

∑
j

∑
k pijkqijk +

∑
k λk(dk −

∑
i

∑
j qijk)

s.t aijkδij ≤ qijk ≤ bijkδij ∀i, j, k∑
j δij ≤ 1 ∀i

δij ∈ {0, 1} ∀i, j

qijk ∈ N ∪ {0} ∀i, j, k.

(5.2)

The Lagrangian subproblem can be rewritten as L(λ) =
∑

i Li(λ) +
∑

k λkdk where

Li(λ) = min
∑

j

∑
k qijk(pijk − λk)

s.t aijkδij ≤ qijk ≤ bijkδij ∀j, k∑
j δij ≤ 1

δij ∈ {0, 1} ∀j

qijk ∈ N ∪ {0} ∀j, k.

(5.3)

The dual problem seeks optimal values of λ ≥ 0 that maximize L(λ). As observed

in Proposition 3.1, the Lagrangian subproblem for an indivisible-bid WDP satisfies

the integrality property, i.e. given any choice of coefficients in the objective func-

tion, it has an integer optimal solution even if the integrality constraints are relaxed.

We study this property for WDPD in Proposition 5.2, Corollary 5.1, and Theorem 5.1.
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Proposition 5.2. The Lagrangian subproblem corresponding to the relaxation of the

demand constraints for a divisible-bid auction environment as formulated in (5.2)

satisfies the integrality property.

Proof. To see the integrality property of (5.2), it suffices to find the closed form

optimal integral solution. The objective function of (5.2) is minimized if for each

supplier i at most one function corresponding to the most negative value of
∑

k(pijk−

λk)qijk is chosen. The least value of
∑

k(pijk − λk)qijk is attained by fixing quantities

qijk at respectively their upper and lower bounds for negative and positive values of

pijk − λk. Let us define these bounds by parameter τijk as

τijk =


bijk if pijk − λ∗k ≤ 0,

aijk if pijk − λ∗k > 0.

Let gi = minj{
∑

k(pijk − λk)τijk} obtain the lowest value derived from the functions,

and j∗ = argminj{
∑

k(pijk − λk)τijk}. Then for each supplier i,

δ∗ij =


1 if gi ≤ 0, j = j∗,

0 o.w.

The optimal quantity values are equivalent to τijk for the chosen function, and they

are defined zero elsewhere.

q∗ijk =


τijk if δ∗ij = 1,

0 o.w.
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Corollary 5.1. The Lagrangian and linear relaxations WDPD yield equivalent bounds.

Proof. According to Theorem 16.10 in [2], the linear and Lagrangian relaxation

bounds equal if the Lagrangian subproblem satisfies the integrality property which is

the case according to Proposition 5.2.

Theorem 5.1. For WDPD, the dual variables associated with the demand constraints

of the linear relaxation problem correspond to the Lagrangian multipliers associated

with relaxation of demand constraints of the Lagrangian relaxation problem.

Proof. The Lagrangian dual function L(λ) as formulated in (5.2) is equivalent to

g(λ) =
∑
k

λkdk +
∑
i

min{0,min
j
{
∑
k

(min(pijk−λk, 0)bijk + max(pijk−λk, 0)aijk)}}.

It can be seen that function g produces equivalent optimal solution as (5.2). Let,

g1(j) = min(pijk − λk, 0)bijk + max(pijk − λk, 0)aijk.

g1(j) sets products corresponding to negative values of pijk−λk to their upper bounds.

More clearly,

pijk − λk < 0 ⇒


min(pijk − λk, 0) = pijk − λk

max(pijk − λk, 0) = 0.

⇒ g1(j) = (pijk − λk)bijk.

Alternatively,

pijk − λk > 0 ⇒ g1(j) = (pijk − λk)aijk.
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If for supplier i, minj g1(j) is nonnegative, the optimal quantity values are set to zero.

This defines the optimal solution for g(λ) that is equivalent to the optimal solution

for L(λ) as stated in Proposition 5.2. Now, let

vijk = min(pijk − λk, 0), wijk = max(pijk − λk, 0).

Obviously vijk ≤ pijk − λk, vijk ≤ 0, and wijk ≥ pijk − λk, wijk ≥ 0. This transforms

the Lagrangian dual function as

g(λ) =
∑
k

λkdk +
∑
i

min{0,min
j
{
∑
k

(vijkbijk + wijkaijk)}}.

With the definition of si = min{0,minj{
∑

k(vijkbijk + wijkaijk)}}, the Lagrangian

dual problem can be formulated as

max
∑

k λkdk +
∑

i si

s.t. si −
∑

k(vijkbijk + wijkaijk) ≤ 0 ∀i, j

λk + vijk + wijk = pijk ∀i, j, k

vijk ≤ 0, wijk ≥ 0, λk ≥ 0, si ≤ 0 ∀i, j, k.

Assigning positive dual variables δij and qijk to the first and second constraints of the

above linear programme leads to the dual problem
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min
∑

i,j,k pijkqijk

s.t.
∑

ij qijk ≥ dk ∀k

qijk ≤ bijkδij ∀i, j, k

qijk ≥ aijkδij ∀i, j, k∑
j δij ≤ 1 ∀i

qijk free variable, δij ≥ 0 ∀i, j, k.

(5.4)

Note that,
∑

j δij ≤ 1 implies that δij ≤ 1 and aijkδij ≤ qijk ≤ bijkδij, implies that the

free variable qijk ≥ 0. This makes formulation (5.4) equivalent to the linear relaxation

(WDPD) and the dual variables of the linear relaxation problem equivalent to the

Lagrangian multipliers λk.

5.3 Suppliers’ Profit Maximization Model (PMBD)

In order to package a new bundle in a divisible-bid auction setting we assume that

each supplier fixes the bounds of the quantities he offers at the beginning of the first

round of the auction based on his production capacity and costs. Throughout dif-

ferent versions of the PMBD model, each supplier seeks an optimal pricing scheme

on the corresponding intervals considering internal conditions. The new bundle is

formulated in such a way that supply of the new bid is profitable for the supplier and

yet remains competitive in the auction.

Since the PMBD models are designed for each supplier i, we drop this index from all

variables and constants we use in this section. Also, index j previously assigned to

suppliers’ bids now associates with the functions included in each bid. This slightly
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changes our notations. p′jk, q
′
jk are the price and quantity from the previous round of

the auction and we define

µjk = (ajk + bjk)/2

rjk, tjk ∈ T = {ajk, µjk, bjk}

mjk = min(λ∗k, p
′
jk)

Mjk = max(λ∗k, p
′
jk).

We study quantity- and risk- based profit maximization formulations for the suppliers

pricing problems.

5.3.1 Quantity-based Profit Maximization Model

We keep our first problem formulation (QPMBD) consistent with the formulation

(VPMB) defined in Section 4.5 for the indivisible-bid problems with variable price

functions as

max
∑
j

∑
k

qjk(pjk − cjk) (QPMBD)

s.t.
∑
k

qjk(pjk − cjk) ≥ Π ∀j (5.5a)

∑
k

qjk(pjk − λ∗k) ≤
∑
k

ajk(p
′
jk − λ∗k) ∀j (5.5b)

ajkδjk ≤ qjk ≤ bjkδjk ∀j, k (5.5c)

mjkδjk ≤ pjk ≤Mjkδjk ∀j, k (5.5d)

pjk ≥ 0, qjk ∈ N+ ∪ {0}, δjk ∈ {0, 1} ∀j, k.
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Constraint (5.5a) defines the minimum profitability condition as described in Equa-

tion GPMB. It ensures that with the selection of each of the suppliers’ cost functions,

he will earn the minimum net profit of Π. Constraints (5.5b) enforces the competi-

tiveness condition, and constraint (5.5c) ensures the production capacity for each item

at the corresponding prices. The use of binary variable δjk ensures the possibility for

the supplier to withdraw some products in his new bid. Therefore, he will choose

either not to supply a quantity, or supply it on a certain range with predetermined

cost values.

Constraint (5.5d) guarantees pricing consistency condition. For positive quantity val-

ues with δjk = 1 we enforce each new price to be greater than the minimum of the

previous price and the Lagrangian multiplier and lower than the maximum of the

two. Thus, if the previous prices are already competitive with values lower than the

Lagrangian multipliers, the supplier is able to slightly increase prices as long as they

do not exceed the Lagrangian multipliers. On the contrary, if previous prices are

not competitive in the previous round of the auction, meaning that they are greater

than the announced Lagrangian prices, the supplier needs to cut down on his price

submission as long as they are not less than the Lagrangian multipliers. Without this

condition, we experimentally observe that prices can get very large on a few products

and 0 on the rest. δjk = 0 ensures that the new item price is zero if the bid is not

including the corresponding item. Note that an optimal quantity of an item q∗jk can

be zero despite positive optimal value of δjk when the corresponding lower bound ajk

is set to zero.
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(QPMBD) is a mixed nonlinear integer programming problem. In the following we

discuss solution techniques that can be used to solve the problem.

5.3.1.1 Technique 1: Linearization by the Change of variables

One solution approach is to linearize (QPMBD) by the change of variables as sjk =

qjkpjk. This problem can then be formulated as follows:

max
∑
j

∑
k

sjk − qjkcjk

s.t.
∑
k

sjk − qjkcjk ≥ Π ∀j (5.6a)

∑
k

sjk − qjkλ∗k ≤
∑
k

ajk(p
′
jk − λ∗k) ∀j (5.6b)

ajkδjk ≤ qjk ≤ bjkδjk ∀j, k (5.6c)

mjkqjk ≤ sjk ≤Mjkqjk ∀j, k (5.6d)

sjk ≥ 0, qjk ∈ N+ ∪ {0}, δjk ∈ {0, 1} ∀j, k.

Once the model is solved, optimal prices are derived as

p∗jk =


s∗jk/q

∗
jk if q∗jk > 0,

0 if q∗jk = 0.

Note that sjk replaces qjkpjk in the objective function and constraints (5.6a) and

(5.6b). To formulate (5.6d) we multiply all sides of (5.5d) by qjk. The new constraint

169



Ph.D. Thesis Computational Sci. & Eng.

is linear and equivalent to (5.5d):

1. For δjk = 0 in (5.6c)⇒ qjk = 0⇒ sjk = 0 and pjk = 0.

2. For δjk = 1 in (5.6c)⇒ qjk > 0⇒ mjkqjk ≤ sjk ≤Mjkqjk and mjk ≤ pjk ≤Mjk.

This technique transforms (QPMBD) into a linear mixed integer programming prob-

lem with binary, nonnegative integer and nonnegative real variables: δjk, qjk, and sjk.

5.3.1.2 Technique 2: Defining closed-form solution

Let a rational bidder submit bids which satisfy pjk ≥ cjk. Proposition 5.3 provides

the solution for (QPMBD).

Proposition 5.3. For all j, k, the profit maximization problem (QPMBD) for a

rational bidder

1. yields integer optimal solution:

δ∗jk = 1, q∗jk =


bjk if γk ≥ 0,

ajk if γk < 0.

, p∗jk = (1− ajk
q∗jk

)λ∗k + (
ajk
q∗jk

)p′jk.

2. is feasible for Π ≤ minj{
∑

k ajk(mjk − cjk)} and infeasible if there exists j for

which Π >
∑

k ajk(p
′
jk − λ∗k) +

∑
k bjk(λ

∗
k − cjk).

Proof. Combining constraints (5.5a), (5.5b), we have:

Π ≤
∑

k qjk(pjk − cjk) ≤
∑

k ajk(p
′
jk − λ∗k) +

∑
k qjk(λ

∗
k − cjk) ∀j. (5.7)
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For an arbitrary k define

OBjk(qjk, pjk) = qjk(pjk − cjk)

UBjk(qjk) = ajk(p
′
jk − λ∗k) + qjk(λ

∗
k − cjk).

This defines the objective function as
∑

j

∑
k OBjk(qjk, pjk). Also, from constraint

(5.7)
∑

k OBjk(qjk, pjk) ≤
∑

k UBjk(qjk) for all j. To see part (1) of the proposition

consider the following cases:

(i) λ∗k ≥ cjk.

With this condition the upper bound UBjk(qjk) attains its maximum when qjk = bjk.

Also, defining 0 ≤ ηjk ≤ 1 as ηjk =
ajk
bjk

, pjk = (1− ηjk)λ∗k + ηjkp
′
jk provides a convex

combination of {p′j,k, λ∗k}. Clearly, λ∗k ≤ pjk ≤ p′jk if λ∗k ≤ p′jk, and p′jk ≤ pjk ≤ λ∗k if

otherwise. In either case,

OBjk(bjk, pjk) = bjk((1− ajk
bjk

)λ∗k + (
ajk
bjk

)p′jk − cjk)

= (bjk − ajk)λ∗k + ajkp
′
jk − cjkbjk

= ajk(p
′
jk − λ∗k) + bjk(λ

∗
k − cjk)

= UBjk(bjk).

Thus, for the defined pjk and qjk, OBjk(bjk, pjk) realizes the upper bound UBjk(bjk).

Clearly, the objective function can not improve any further beyond the upper bound

without violating the feasibility of the constraints.

(ii) p′jk ≤ pjk ≤ λ∗k and λ∗k < cjk.

In this case p′jk ≤ pjk ≤ λ∗k < cjk, and thus pjk < cjk. This contradicts the rationality
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of the bidders. With the assumption of non-rationality, the optimal price, quantity

and thus the objective function is 0.

(iii) λ∗k ≤ pjk ≤ p′jk and λ∗k < cjk.

Condition (iii) implies that λ∗k < cjk ≤ pjk ≤ p′jk. While setting qjk to 0 makes

OBjk = 0, qjk = ajk improves OBjk to a strictly positive value:

UBjk(ajk) = ajk(p
′
jk − λ∗k) + ajk(λ

∗
k − cjk)

= ajk(p
′
jk − cjk).

With pjk = p′jk, OBjk attains the upper bound UBjk(ajk), i.e., OBjk(ajk, p
′
jk) =

UBjk(ajk). Due to the negativity of λ∗k − cjk, increasing qjk beyond this point deteri-

orates UBjk(qjk). To see this define ajk < ζjk ≤ bjk.

UBjk(ζjk) = ajk(p
′
jk − λ∗k) + ζjk(λ

∗
k − cjk)

< ajk(p
′
jk − λ∗k) + ajk(λ

∗
k − cjk)

< UBjk(ajk).

For ηjk =
ajk
ζjk

and pjk = (1− ηjk)λ∗k + ηjkp
′
jk, OBjk(ζjk, pjk) realizes the upper bound

UBjk(ζjk):

OBjk(ζjk, pjk) = ζjk((1− ajk
ζjk

)λ∗k + (
ajk
ζjk

)p′jk − cjk)

= (ζjk − ajk)λ∗k + ajkp
′
jk − cjkζjk

= ajk(p
′
jk − λ∗k) + ζjk(λ

∗
k − cjk)

= UBjk(ζjk).

Since UBjk(ζjk) < UBjk(ajk), q
∗
jk = ajk and p∗jk = p′jk.
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To see part (2) note that qjk = ajk and pjk = p′jk always satisfy Constraint 5.5b.

Thus, for the model to be feasible it suffices that parametrization of Π is appropriate.

Based on part (1) of this proposition for rational bidders pjk > 0 for all j, k. So, the

minimum value that it attains is mj,k. Thus,

Π ≤
∑

k ajk(pjk − cjk) ∀j

≤ minj{
∑

k ajk(pjk − cjk)}.

Since for all j, k, pjk ∈ [mjk,Mjk], Π =
∑

k ajk(mjk− cjk) guarantees the feasibility of

the problem. Any lower value of Π maintains the feasibility of constraint 5.5a. More-

over, based on constraint (5.7) if there exists j for which the minimum required prof-

itability exceeds the maximum that the supplier can get, then the problem becomes

infeasible. Mathematically this happens when Π >
∑

k ajk(p
′
jk − λ∗k) +

∑
k bjk(λ

∗
k −

cjk).

Note that part (2) in Proposition 5.3 defines the interval that guarantees feasibility.

While (QPMBD) can be feasible for values greater than the upper end of this interval,

having a maximum value that ensures feasibility is helpful for the suppliers to know

for what values of the minimum expected profit the model promises feasible solutions.

Solving for a closed form solution is relatively easy and is preferred over the lin-

earization derived by the change of variables. Moreover, the closed-form solution

guarantees that the supplier will price all different supply scenarios with/without

quantity discount. If the supplier is unwilling to include a product, he is able to do

so by adjusting the production bounds (for instance, setting the lower bound of an

item to zero, considers the possibility of excluding the item from the package).
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5.3.2 Risk-based Profit Maximization Model (RPMBD)

In our next set of formulations, we determine optimal pricing scheme irrespective of

the optimal quantity orders qjk ∈ [ajk, bjk]. Instead, items are priced based on a mini-

mum, average, or maximum quantity offerings for suppliers with different risk-taking

level. To do so, we customize the objective function of (GPMB) to maximization

of profit with respect to reception of either minimum, average, or maximum order.

The profitability condition is adjusted to guarantee minimum net profit, minimum

net profit margin, and minimum profit percentage. The competitiveness condition is

reflected for the suppliers when they receive minimum, average or maximum order

of quantities in constraint (5.8b) and constraint (5.8c) maintains pricing consistency,

i.e., the item is either supplied in the corresponding interval or not at all when the

price is zero. The profit maximization problem is formulated as

max
∑
j

∑
k

rjk(pjk − cjk) (RPMBD)

s.t.
∑
k

ajk(pjk − cjk) ≥ PI ∀j (5.8a)

∑
k

tjk(pjk − λ∗k) ≤
∑
k

ajk(p
′
jk − λ∗k) ∀j (5.8b)

mjkδjk ≤ pjk ≤Mjkδjk ∀j, k (5.8c)

pjk ≥ 0, δjk ∈ {0, 1} ∀j, k.

Depending on the values that rjk and tjk take up from the set T, the profit maxi-

mization model can be customized to reflect suppliers’ levels of risk-taking attitudes.
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Figure 13: Risk-taking levels in the profit maximization model

Risk Averse, rjk = ajk


level 1, R11 : tjk = ajk

level 2, R12 : tjk = µjk

level 3, R13 : tjk = bjk

Risk Neutral, rjk = µjk


level 1, R21 : tjk = ajk

level 2, R22 : tjk = µjk

level 3, R23 : tjk = bjk

Risk Seeking, rjk = bjk


level 1, R31 : tjk = ajk

level 2, R32 : tjk = µjk

level 3, R33 : tjk = bjk.

As illustrated in Figure 13, we define the profit maximization models for risk averse,

risk neutral, and risk seeking suppliers based on the quantity order they adopt in the

maximization of their profit. In the risk averse scenario, the model seeks the optimal

pricing scheme to maximize the minimum profit. In the risk neutral and risk seeking

scenarios the model adjusts to respectively maximize average or maximum profit.

Each risk-based model is defined as Rrt where r, t ∈ {1, 2, 3}. The values 1, 2, and 3

respectively indicates initialization of rjk or tjk at ajk, µjk, and bjk (for instance R23

defines the model wherein rjk = µjk and tjk = bjk).
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5.3.2.1 Optimality of RPMBD

To analyse (RPMBD) at optimality, we first investigate how suppliers risk-taking at-

titude affects their expected profit. First we observe that increase of the suppliers’

risk-taking level produces more profit for the problems when tjk is fixed. This means

that defining the objective function in (RPMBD) as Z(rjk, tjk), for an arbitrary tjk,

Z∗(rjk = ajk, tjk) ≤ Z∗(rjk = µjk, tjk) ≤ Z∗(rjk = bjk, tjk). However, on the same

risk-taking level, increase of tjk does not constitute an increasing or decreasing pat-

tern for suppliers’ profit. The optimal profit from each subclassification depends on

the suppliers’ previous price values and the Lagrangian prices from the auction. In

Proposition 5.4, we show the scenarios where a monotonic change of function Z is

detected.

Proposition 5.4. With the increase of tjk for an arbitrary risk-taking attitude rjk,

the optimal profit gained follows

1. a decreasing pattern if supplier’s initial prices are no less than the Lagrangian

multipliers, i.e.,

λ∗k ≤ p′jk ∀j, k ⇒ Z∗(rjk, tjk = ajk) ≥ Z∗(rjk, tjk = µjk) ≥ Z∗(rjk, tjk = bjk).

2. an increasing pattern if supplier’s initial prices are no greater than the La-

grangian multipliers, i.e.,

p′jk ≤ λ∗k ∀j, k ⇒ Z∗(rjk, tjk = ajk) ≤ Z∗(rjk, tjk = µjk) ≤ Z∗(rjk, tjk = bjk).

Proof. Let γjk = p′jk − λ∗k. We examine the following cases:

1. γk > 0 for all j, k.

p′jk > λ∗k produces a positive value on the right hand side of constraint (5.8b).
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This condition implies that new prices are selected to satisfy λ∗k ≤ pjk ≤ p′jk

and thus the left hand side of this constraint is also positive. Increase of tjk

values tightens this constraint and thus restricts the optimal price values and

consequently the objective function.

2. γk < 0 for all j, k.

Similarly, p′jk < λ∗k produces a negative value on the right hand side of constraint

(5.8b). This condition implies that new prices are selected to satisfy λ∗k ≥ pjk ≥

p′jk and so the left hand side of this constraint is also negative. Increase of tjk

values loosens this constraint and thus increases the optimal price values and

consequently the objective function.

Therefore, if all the previous prices a supplier submits are greater than the Lagrange

multipliers, maximizing the profit for the minimum quantity orders maximizes the

supplier’s profit. Nonetheless, if all the previous prices are lower than the Lagrange

multipliers, maximizing the profit for the maximum quantity orders maximizes the

supplier’s profit.

Note that, other than the cases studied in Proposition 5.4, the increase or decrease in

the objective function among the risk subclassification models depends on how much

the increase or decrease of products improves the total profit, and does not neces-

sarily follow a monotonic pattern. Figure 14 illustrates a counter example where the

optimal profit for supplier 1 is non-monotonic.
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Figure 14: Suppliers’ non-monotonicity example on the risk-taking sub-levels
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Once the suppliers determine the risk taking level that best suits them, they have

the additional option to have their minimum profit at least as much as their desired

net profit Π, net profit margin α, and profit percentage β as defined in Section 4.2.

Defining

α∗ = α
∑

k ajkpjk ∀j

β∗ = β
∑

k ajkcjk ∀j,

adjusts constraint (5.8a) in (RPMBD) as

∑
k ajk(pjk − cjk) ≥ Π ∀j∑
k ajk(pjk − cjk) ≥ α∗ ∀j∑
k ajk(pjk − cjk) ≥ β∗ ∀j.

(5.9)

Proposition 5.5. For ∀j, k, the profit maximization problem (RPMBD),

1. yields integer optimal solution δ∗jk = 1.

2. is feasible for
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(a) Π =
∑

k ajk(mjk − cjk)

(b) α =
∑

k ajk(mjk−cjk)∑
kMjk

(c) β =
∑

k ajk(mjk−cjk)∑
k cjk

.

Proof. To see part (1) recall that constraint (5.8a) defines a lower bound on the prob-

lem. In order to show that for all j, k, δ∗j,k = 1, it suffices to show that constraint (5.8b)

always holds when initializing price variables at their minimum positive values. To

see this, consider the following cases for arbitrary values of j, k.

(i) λ∗k ≤ pjk ≤ p′jk.

Setting pjk = λ∗k transforms constraint (5.8b) to tjk(λ
∗
k − λ∗k) ≤ ajk(p

′
jk − λ∗k). By

assumption p′jk − λ∗k ≥ 0 and so the equation holds.

(ii) p′jk ≤ pjk ≤ λ∗k.

Setting pjk = p′jk, we obtain tjk(p
′
jk−λ∗k) ≤ ajk(p

′
jk−λ∗k). By assumption p′jk−λ∗k ≤ 0

and so the equation holds.

Therefore, one feasible solution is attained when setting the price variables to their

minimum values. Clearly, further increase of the price variables, so long as it does

not violate feasibility of constraint (5.8b), improves the optimal objective value.

In part (2), we use the results from part (1). Since δ∗jk = 1 for all j, k, optimal price
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values are nonzero. From constraint (5.8a), we have

Π ≤
∑

k ajk(pjk − cjk) ∀j

≤ minj{
∑

k ajk(pjk − cjk)}.

Since, Pjk ∈ [mjk,Mjk], π =
∑

k ajk(mjk − cjk) is the minimum value that ensures

feasibility of the (RPMBD) for PI = Π. Similarly, with PI = α∗ in constraint (5.8a),

we have

α ≤
∑

k ajk(pjk−cjk)∑
k ajkpjk

∀j

≤ minj{
∑

k ajk(pjk−cjk)∑
k ajkpjk

}.

Considering the minimum value of pjk, mjk, in the nominator and the maximum value

of pjk, Mjk, in the denominator produces the minimum value of α that guarantees

feasibility of the problem. Similar analogy proves (c).

5.4 Empirical Experiments

In order to simulate a divisible-bid auction environment we randomly generate data,

using uniform distributions for an auction with 2 suppliers, each submitting 2 price

functions to supply 5 products. We generate cost values for suppliers’ cost function

on the interval [50,100]. To demonstrate price discount on provision of larger quanti-

ties in the second function, we fix constant dr (standing for discount rate) at 0.1 and

multiply the costs of the second function by (1-dr). To generate corresponding prices,

we set constant mp (standing for marginal profit) to 0.2. Price values are defined as

the product of (1+mp) by corresponding costs.
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To generate the lower and upper bounds of quantity offers for each supplier and each

item, we produce intervals of data on [0,20]. To do so, a middle point υjk is first

randomly chosen on [5,15]. The interval is next created with a lower bound generated

on [0,υjk] and an upper bound on [υjk + 1,20]. The linear relaxation of the (WDPD)

is solved for a demand of 20 units for each product. The dual variables are extracted

as equivalents of the Lagrangian multipliers.

With the initialization explained above we solved the profit maximization problems

for each supplier. Below we describe our computational results.

5.4.1 Comparison of QPMBD models

Our first set of experiments is for the numerical observation derived for the quantity-

based PMBD models. Define Q0 as (QPMBD), Q1 as the problem (5.6), and Q2 as

the problem solved by the direct solution. The results are summarized in Table 11.

As observed all 3 models yield equivalent results. The optimal value for q∗ is either

the lower bound a (when γ∗ < 0), or the upper bound b (when γ∗ > 0). Also, although

the optimal prices often take up their lower/upper bound values, there exists cases

when they are set to a middle value (for instance supplier 1, function 2, product 1).

5.4.2 Comparison of RPMBD models

With initial values of Lagrangian multipliers and suppliers’ prices as presented in

Table 12, we illustrate (RPMBD) results in Table 13.
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Table 11: Comparison of optimal prices and profit from Q0, Q1, Q2

i model j k m p* M a q* b ϒ
1 Q0 1 1 0 72.6 72.6 6 6 10 -66

2 80.3 96.03 96.03 8 9 9 23.03
3 71.28 71.28 79.2 1 1 5 -0.72
4 75.9 75.9 170.94 4 5 5 101.94
5 55.44 85.62 90.2 5 5 7 -26.56

2 1 0 62.46 65.34 11 11 13 -59.4
2 72.27 96.03 96.03 10 13 13 30.33
3 71.28 71.28 71.28 6 16 16 6.48
4 68.31 68.31 170.94 6 6 6 108.84
5 55.44 55.44 81.18 8 8 18 -18.36

Q1 1 1 0 72.6 72.6 6 6 10 -66
2 80.3 96.03 96.03 8 9 9 23.03
3 71.28 71.28 79.2 1 1 5 -0.72
4 75.9 75.9 170.94 4 5 5 101.94
5 55.44 85.62 90.2 5 5 7 -26.56

2 1 0 62.46 65.34 11 11 13 -59.4
2 72.27 96.03 96.03 10 13 13 30.33
3 71.28 71.28 71.28 6 16 16 6.48
4 68.31 68.31 170.94 6 6 6 108.84
5 55.44 55.44 81.18 8 8 18 -18.36

Q2 1 1 0 72.6 72.6 6 6 10 -66
2 80.3 96.03 96.03 8 9 9 23.03
3 71.28 71.28 79.2 1 1 5 -0.72
4 75.9 75.9 170.94 4 5 5 101.94
5 55.44 85.62 90.2 5 5 7 -26.56

2 1 0 62.46 65.34 11 11 13 -59.4
2 72.27 96.03 96.03 10 13 13 30.33
3 71.28 71.28 71.28 6 16 16 6.48
4 68.31 68.31 170.94 6 6 6 108.84
5 55.44 55.44 81.18 8 8 18 -18.36

2 Q0 1 1 0 0 62.7 0 0 10 -57
2 96.03 96.03 106.7 5 5 6 -0.97
3 71.28 71.28 108.9 3 3 6 -27.72
4 69.3 149.36 170.94 3 5 5 107.94
5 55.44 55.44 61.6 5 5 9 -0.56

2 1 0 56.43 56.43 11 11 20 -51.3
2 96.03 96.03 96.03 7 20 20 8.73
3 71.28 71.28 98.01 7 7 18 -17.82
4 62.37 139.99 170.94 6 15 15 114.24
5 55.44 55.44 55.44 10 17 17 5.04

Q1 1 1 0 0 62.7 0 0 10 -57
2 96.03 96.03 106.7 5 5 6 -0.97
3 71.28 71.28 108.9 3 3 6 -27.72
4 69.3 149.36 170.94 3 5 5 107.94
5 55.44 55.44 61.6 5 5 9 -0.56

2 1 0 56.43 56.43 11 11 20 -51.3
2 96.03 96.03 96.03 7 20 20 8.73
3 71.28 71.28 98.01 7 7 18 -17.82
4 62.37 139.99 170.94 6 15 15 114.24
5 55.44 55.44 55.44 10 17 17 5.04

Q2 1 1 0 0 62.7 0 0 10 -57
2 96.03 96.03 106.7 5 5 6 -0.97
3 71.28 71.28 108.9 3 3 6 -27.72
4 69.3 149.36 170.94 3 5 5 107.94
5 55.44 55.44 61.6 5 5 9 -0.56

2 1 0 56.43 56.43 11 11 20 -51.3
2 96.03 96.03 96.03 7 20 20 8.73
3 71.28 71.28 98.01 7 7 18 -17.82
4 62.37 139.99 170.94 6 15 15 114.24
5 55.44 55.44 55.44 10 17 17 5.04
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Table 12: RPMBD Initializations

j=1 j=2

Supplier k=1 k=2 k=3 k=4 k=5 k=1 k=2 k=3 k=4 k=5

λ 118.12 79.8 83.22 59.28 74.1 118.12 79.8 83.22 59.28 74.1

P' 1 111.6 80.4 87.6 80.4 79.2 106.02 76.38 83.22 76.38 75.24

2 87.6 84 87.6 62.4 78 83.22 79.8 83.22 59.28 74.1

Table 13: Comparison of RPMBD Models

Supplier i Model Profit Pi11 Pi12 Pi13 Pi14 Pi15 Pi21 Pi22 Pi23 Pi24 Pi25

1 R11 912.65 99.28 79.8 83.22 59.28 74.1 83.22 79.8 83.22 59.28 74.1

R12 976.93 99.65 79.8 87.6 59.28 74.1 86.39 79.8 83.22 59.28 74.1

R13 1021.46 103.27 79.8 87.6 59.28 74.1 89.04 79.8 83.22 59.28 74.1

R21 1262.41 93.73 84 83.22 62.4 78 83.22 79.8 83.22 59.28 74.1

R22 1307.51 104.66 79.8 83.22 59.28 74.1 86.39 79.8 83.22 59.28 74.1

R23 1361.92 103.27 79.8 87.6 59.28 74.1 89.04 79.8 83.22 59.28 74.1

R31 1612.18 93.73 84 83.22 62.4 78 83.22 79.8 83.22 59.28 74.1

R32 1663.37 95.19 84 83.22 62.4 78 86.39 79.8 83.22 59.28 74.1

R33 1702.38 107.65 79.8 83.22 59.28 74.1 89.04 79.8 83.22 59.28 74.1

2 R11 900.04 118.12 80.4 87.6 71.27 74.1 118.12 79.8 83.22 65.24 74.1

R12 861.88 118.12 80.4 87.6 66.94 74.1 118.12 76.38 83.22 64.98 75.24

R13 841.49 118.12 80.4 87.6 64.78 74.1 118.12 76.38 83.22 64.11 75.24

R21 1155.11 111.6 80.4 87.6 80.4 79.2 106.02 79.8 83.22 75.14 74.1

R22 1051.1 111.6 79.8 83.22 77.62 74.1 106.02 76.38 83.22 74.46 74.1

R23 1021.83 118.12 80.4 87.6 64.78 74.1 118.12 76.38 83.22 64.11 75.24

R31 1410.17 111.6 80.4 87.6 80.4 79.2 106.02 79.8 83.22 75.14 74.1

R32 1282.02 111.6 79.8 83.22 75.92 79.2 106.02 79.8 83.22 72.52 74.1

R33 1202.17 111.6 79.8 83.22 73.36 74.1 106.02 76.38 83.22 72.99 74.1

Based on the results in Table 13, in Figure 15 and Figure 16, we compare the optimal

prices and profit obtained for each (RPMBD) models. To represent the prices on the

5 products from the 2 functions on the x axis, we index the products as 5(j − 1) + k.

Thus, unit 6 on the x axis refers to the first item of the second function. Definition of

the Rrt models (with r, t = 1, 2, 3) is compatible with the description in Section 5.3.2.

For each supplier i, P ∗rt identifies the optimal prices corresponding to a model with

r, t. Specifically, each figure fixes the value of r and attains the results for models

with t = 1, 2, 3.
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Figure 15: Price/Profit Comparison-Supplier 1
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(b) Optimal Profit Comparison
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Also, we recorded the right hand side values of constraint (5.8b) in (RPMBD) as

j=1 j=2

supplier 1 -94 -349

supplier 2 88 65
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Figure 16: Price/Profit Comparison-Supplier 2

(a) Optimal Price Comparison
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(b) Optimal Profit Comparison
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As observed from the figures, supplier 1’s optimal profit maintains an increasing pat-

tern as we increase the r value. The supplier’s initial prices on product 1 both in

his first and second function are mostly lower than the Lagrangian multipliers. This

produces a negative term on the right hand side of constraint (5.8b) in (RPMBD).
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Thus, increasing the tjk values loosens this constraints letting the optimal prices and

profit increase.

Supplier 2’s initial prices are not as low as supplier 1’s. In fact, in many cases they

are larger than the Lagrangian multipliers producing a positive term on the right

hand side of constraint (5.8b) in (RPMBD). Thus, constraint (5.8b) tightens with

the increase of tjk, producing lower optimal prices and profit.

Figure 17 shows the percentage by which each supplier needs to adjust his prices in

order to submit a competitive bid. We defined the change percentage as

Initial price− New price

Initial price
∗ 100

.

J = 1 and J = 2 define the price functions and Rirt defines the problem formulation

corresponding to supplier i, and parameters r, t. As observed, supplier 1 mostly

decreased prices to enter the second round as for supplier 2, prices are often increased.

Figure 17: Price change percentage for each supplier
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5.4.3 Comparison of RPMBD and VPMB Models

Implementation of divisible-bid auctions, if possible, is advantageous for both the

suppliers and the auctioneer. In studying the suppliers’ pricing scheme, one plausible

question that raises is how prices compare in a divisible-bid versus an indivisible-bid

auction.

To answer this question we generated divisible-bid problem instances and converted

them to equivalent indivisible-bid problems. For the sake of consistency, we com-

pared the quantity-based profit maximization problem (QPMBD) from divisible-bid

auctions against the variable-cost profit maximization problem for indivisible-bid auc-

tions problem (VPMB). Table 14 summarizes our results on 25 feasible problem in-

stances.

WDPD Z∗ and WDPD T represent the optimal objective value and the correspond-

ing CPU time for solving an instance of the (WDPD). QPMBD Z∗, and QPMBD T

show the optimal objective and CPU time for (QPMBD). We solve this problem

using the second linearization technique based on initialization of qjk, δjk and pjk at

their optimal closed-form values.

Similarly, WDPID Z∗ and WDPID T represent the optimal objective value and the

corresponding CPU time for solving an instance of problem (3.2), and VPMB Z∗,

VPMB P∗, and VPMB T show the optimal objective, price and CPU time for (VPMB).

Based on the prices derived from the (QPMBD), we find the equivalent value of
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the bundle that VPMB formulates for submission in the next round of the auction,

and denote it by QPMBD P∗. Table 14 confirms the equivalence of WDPD Z∗ and

WDPID Z∗, and the shorter amount of execution time required by WDPD Z∗ to find

the optimal solution.

Moreover, the results indicate that on average, divisible-bid auctions provide more

profit for the suppliers and yet produce lower bundle prices. While the higher profit

expected from divisible-bid auctions make them appealing for suppliers, production

of lower bundle prices reduces the total price of procurement and therefore attracts

auctioneers’ interest to implement this type of auctions.

It can be seen that solving QPMBD is slightly more expensive on the suppliers than

VPMBD. However, this difference, around 0.06 seconds on an average of 25 problem

instances, is a good trade-off for suppliers’ with the less complexity they face for

evaluating and communicating an exponential number of bundles with the auctioneer.
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Table 14: Comparison of QPMBD and VPMB Models

Instance Supplier i WDPD_Z* WDPD_T QPMBD_Z* QPMBD_P* QPMBD_T WDPID_Z* WDPIS_T VPMB_Z* VPMB_P* VPMB_T

1 1 1024.8 0.19 1160.61 5290.38 0.22 1024.8 31.65 1024.8 6277.38 0.23

2 1024.8 0.19 1424.82 2830.08 0.22 1024.8 31.65 1024.8 5202.49 0.23

2 1 1155.6 0.19 1190.32 2979.6 0.24 1155.6 31.84 1155.6 5662.6 0.22

2 1155.6 0.19 1362.89 1491 0.44 1155.6 31.84 1155.6 5604.95 0.27

3 1 980.4 0.2 1294.58 6002.34 0.49 980.4 32.72 980.4 7634.28 0.23

2 980.4 0.2 1118.31 6815.64 0.22 980.4 32.72 980.4 7007.68 0.23

4 1 1548 0.19 1590.34 10644.36 0.26 1548 33.53 1548 10460.64 0.23

2 1548 0.19 1197.77 5485.14 0.23 1548 33.53 1548 5856.84 0.23

5 1 949.2 0.2 1551.61 9231.24 0.48 949.2 32.53 949.2 9262.39 0.23

2 949.2 0.2 1325.88 6618.78 0.23 949.2 32.53 949.2 7032.43 0.23

6 1 1942.8 0.19 1412.14 5511.24 0.5 1942.8 32.64 1942.8 6505.81 0.22

2 1942.8 0.19 1316.65 6836.94 0.22 1942.8 32.64 1942.8 7441.32 0.23

7 1 777.6 0.36 1289.98 6723.66 0.51 777.6 32.45 777.6 7532.29 0.23

2 777.6 0.36 1412.97 6192.9 0.22 777.6 32.45 777.6 7389.41 0.23

8 1 1303.2 0.2 1027.65 4742.22 0.22 1303.2 32.81 1303.2 5584.76 0.24

2 1303.2 0.2 1232.66 4404.36 0.22 1303.2 32.81 1303.2 5025.02 0.23

8 1 542.4 0.2 896.02 6881.16 0.31 542.4 33.37 542.4 6872.51 0.25

2 542.4 0.2 1322.91 6907.44 0.25 542.4 33.37 542.4 7396.8 0.23

10 1 1191.6 0.19 1028.59 4119.9 0.24 1191.6 32.7 1191.6 4478.22 0.22

2 1191.6 0.19 1297.65 8668.62 0.22 1191.6 32.7 1191.6 8521.5 0.31

11 1 898.8 0.2 1192.88 3424.38 0.24 898.8 33.24 898.8 4914.76 0.23

2 898.8 0.2 1124.76 5733.36 0.23 898.8 33.24 898.8 6690.19 0.23

12 1 1441.2 0.2 1347.6 4590.18 0.23 1441.2 31.83 1441.2 6776.16 0.23

2 1441.2 0.2 1029.02 4081.44 0.23 1441.2 31.83 1441.2 6505.92 0.23

13 1 1082.4 0.36 1238.6 5116.98 0.23 1082.4 32.73 1082.4 5780.91 0.23

2 1082.4 0.36 1262.78 8673.12 0.24 1082.4 32.73 1082.4 8498.24 0.22

14 1 1143.6 0.2 1319.78 2304.72 0.23 1143.6 31.55 1143.6 5009.17 0.23

2 1143.6 0.2 1036.74 2360.88 0.43 1143.6 31.55 1143.6 4951.19 0.23

15 1 968.4 0.2 1116.38 3503.88 0.32 968.4 31.83 968.4 4604.45 0.23

2 968.4 0.2 1078.2 6301.32 0.22 968.4 31.83 968.4 6290.73 0.22

16 1 1786.8 0.19 1413.76 6700.5 0.23 1786.8 32.76 1786.8 7950 0.22

2 1786.8 0.19 1679.5 7383.36 0.48 1786.8 32.76 1786.8 9186.34 0.23

17 1 1484.4 0.12 856.67 5248.32 0.36 1484.4 31.82 1484.4 5399.16 0.23

2 1484.4 0.12 1275.78 8677.08 0.23 1484.4 31.82 1484.4 8506.68 0.23

18 1 1402.8 0.19 1327.79 8442.54 0.23 1402.8 33.26 1402.8 8367.72 0.23

2 1402.8 0.19 1431.51 9468.6 0.22 1402.8 33.26 1402.8 9310.16 0.23

19 1 618 0.2 510.44 4542.12 0.24 618 33.2 618 5491.93 0.23

2 618 0.2 1147.51 5921.94 0.25 618 33.2 618 7265.2 0.23

20 1 1212 0.2 1356.09 9010.26 0.45 1212 32.73 1212 8864.64 0.22

2 1212 0.2 849.4 6931.26 0.23 1212 32.73 1212 6538.56 0.26

21 1 1155.6 0.2 1390.56 9273.96 0.23 1155.6 32.95 1155.6 9118.86 0.23

2 1155.6 0.2 1374 8041.32 0.22 1155.6 32.95 1155.6 8097.9 0.23

22 1 1234.8 0.2 1369.01 6231.78 0.22 1234.8 32.73 1234.8 7183.27 0.23

2 1234.8 0.2 1422.91 5493.12 0.23 1234.8 32.73 1234.8 6635.85 0.23

23 1 1117.2 0.19 908.61 6411.72 0.23 1117.2 31.56 1117.2 6323.58 0.23

2 1117.2 0.19 1010.48 6909.24 0.47 1117.2 31.56 1117.2 6768.18 0.23

24 1 2016 0.19 1513.28 7045.86 0.56 2016 33.21 2016 8175.51 0.23

2 2016 0.19 1707.3 9576.78 0.22 2016 33.21 2016 10149.06 0.28

25 1 777.6 0.22 1289.98 6723.66 0.47 777.6 32.04 777.6 7532.29 0.23

2 777.6 0.22 1412.97 6192.9 0.22 777.6 32.04 777.6 7389.41 0.23

Average 1190.21 0.21 1248.97 6173.87 0.29 1190.21 32.55 1190.21 7020.51 0.23
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Chapter 6

Conclusions and Future Extensions

6.1 Conclusion

This section summarizes our concluding remark classified by the chapters.

6.1.1 Chapter 3

A combinatorial auction allows several bidders to submit bids on different selections

of items based on their personal preferences. From a computational point of view this

problem is difficult to solve due to the exponential growth of the number of combi-

nations.

An interesting design for determining the winners and the item prices involves appli-

cation of the Lagrangian relaxation on the winner determination problem. Studies

based on the Lagrangian relaxation initially solve the Lagrangian relaxation and then

focus on development of a heuristic that improves the solution to (ideally) an optimal
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one. Revelation of the Lagrangian multipliers guides sellers to adjust their prices on

the bundles they require and eventually improves auction results.

In this chapter we analytically established the equivalence of Lagrangian and linear

relaxations for a multi-item multi-unit winner determination problem with OR and

XOR bidding languages, with and without the free disposal condition. The results

also indicate equivalence of the Lagrangian multipliers and the dual variables of the

LP relaxation. Therefore, solving the linear relaxation of WDP provides fast access

to the Lagrangian multipliers as approximates for item prices and a lower bound on

the total price of procurement.

Based on this equivalence, we propose a solution method which determines the La-

grangian solution by solving a single subproblem. This method saves significant

amount of time in finding the optimal solution as compared to traditional Lagrangian

relaxation solution methods. In order to adjust infeasibility of the Lagrangian optimal

solution, we design an Aggregate heuristic consisting of 32 computationally efficient

heuristic procedures. The best solution obtained from the heuristics is extracted as

the optimal value obtained from the Aggregate heuristic.

Our extensive numerical experiments indicate that on the class of problems whose

maximum quantity of items included in each package is less than or equal to half

of demand, the Aggregate heuristic provides a near optimal solution for respectively

10, 20, and 30 items which is on average 6, 7, and 8 percent off from the optimal in

around 1/3, 1/189, and 1/950 of CPLEX time.
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This solution scheme is most efficient for iterative combinatorial auctions in large

marketplaces with capacitated suppliers. While application of iterative combinatorial

auctions increases the auctioneers’ overall payoff, it raises the urge for them to quickly

attain a (near) optimal solution in each round of the auction. CPLEX 12 behaves

poorly in terms of the amount of time it requires to provide the optimal solution with

suppliers who are able to supply the manufacturers demand partially (specifically

around 50% and below). Application of the Aggregate heuristic scheme can provide

a good quality of the solution in relatively much less time.

6.1.2 Chapter 4

In this chapter we stressed the importance of investigating the problem of pricing

and bundling for a bidder in a combinatorial auction setting. We use the Lagrangian

multipliers as a means to inform the bidders about their valuations and those of

the competition. In case suppliers find themselves competitive, the formulated profit

maximization problem (PMB) helps them understand how to optimally bundle and

price their new package. The bidders goal is to maximize their profit while maintain-

ing their competitive advantage and respecting their capacity and/or the auctioneer

minimum order requirements.

The closed-form solution results enable us to compare prices of the two consecutive

rounds, discussing the conditions of when to expect prices to grow or shrink or stay

the same. Based on the interaction between the suppliers and the auctioneer, we

propose an iterative auction which we analytically show that is convergent.
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We performed several empirical experiments to study the dynamics of the prices and

profits in the auction. On the suppliers’ side, we show that the suppliers profit in-

creases as the auction proceeds. For the auctioneer, we observe an increase in cost as

the auction goes from the first to the second round. This is not unusual due to sup-

pliers’ imprecise first round pricing scheme. The auctioneer cost ultimately reaches a

steady state after a practical number of auction rounds.

This auction mechanism brings about a win-win environment in which the auction-

eer benefits from the intense competition among the suppliers who try to meet his

required demand. The suppliers also take advantage of supplying products that not

only preserve their desired minimum profit, but also maximize it throughout their

bidding process.

6.1.3 Chapter 5

In a traditional auction problem, suppliers submit bids which are either accepted as

a whole package or rejected by the auctioneer. Given the wide range of variations

suppliers face in pricing units of the items, in this chapter we investigate whether

accepting partial bids increases the auctioneer’s and/or the suppliers’ efficiency in

maximizing their payoff from the auction.

To this end, we define a new auction environment wherein suppliers submit bids as

price functions defined on disjoint intervals of quantities. Formulating the winner
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determination problem, we explore the Lagrangian relaxation properties of the de-

fined mixed integer programming at optimality. The computational efficiency of the

derived mathematical programming is numerically compared against the equivalent

binary integer programming with indivisible bids. With equivalent optimal objective

values, we found that CPLEX 12 solves the divisible-bid problem more efficiently.

We also studied the correspondence of the suppliers’ risk-taking attitude with the

profit they gain from the auction. Our numerical work on random problem instances

showed higher average profit value for the suppliers from the divisible-bid auction

while producing lower bundle prices. While the suppliers are able to expect higher

profit from the divisible-bid auctions, the lower prices along with lower execution

times makes them an appealing alternative for auctioneers as well.

It is worth mentioning that the application of divisible-bid auctions requires the con-

sent from the suppliers for revealing their price functions on intervals of quantities.

Moreover, on a low-demand per-product basis where suppliers are willing to sub-

mit a limited number of each product, restricting the submitted bids on intervals of

quantities is not as practical.

6.2 Extension Opportunities

This section proposes natural extensions of this thesis classified by the chapters. In

the final section, we propose interesting research directions beyond the ideas discussed

in this thesis.
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6.2.1 Chapter 3

• Studying the solutions to the linear and Lagrangian relaxations, we noticed that

in most cases both relaxations share similar solution elements with the exact

solution. Recognizing some of these elements and elevating their values to 1 can

produce the exact solution. This property motivates us to study the solution

space of the LP relaxation more carefully to recognize variables which are more

likely to appear in the IP solution. In a branch and bound-based bid ordering

heuristic scheme, this helps us find a (good quality) feasible solution quite early

on, and further improve it via more branching. In other words, the objective is

to use the linear relaxation to extract valuable information about the IP model

which within a branch and bound tree that would help us make smart choices

of branching variables.

• A Lagrangian-based heuristic algorithm for solving the winner determination

problem starts with solving the Lagrangian relaxation problem. As seen earlier,

this solution is integer, however, not necessarily primal feasible. One possible

algorithm design is to remove all variables with positive optimal Lagrangian

values and solve the relaxation for the reduced problem. One research line is to

test the execution time and the optimality gap of this algorithm.

• In Chapter 3 we established the equivalence of the Lagrangian and linear relax-

ation optimal bounds. One interesting extension is to investigate the correlation

of the linear and Lagrangian optimal solutions when the linear relaxation pro-

vides integer optimal solution.
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6.2.2 Chapter 4

Possible extensions for this chapter include the following:

• It is often not easy to measure the complexity of a mechanism or the costs

of the length of time to complete the auction term. Analytical results on the

convergence rate of the auction will help us further establish the practicality of

our proposed pricing scheme.

• The mechanism proposed uses Lagrangian multipliers to compel more com-

petitiveness in future auction rounds. Factors that diminish or enhance their

predictive value could be investigated.

• The inability of individual pricing models to capture complementarities is an-

other restriction. Non-convex programming methods for working with duality

gaps might prove useful for providing estimates and/or bounds on complemen-

tarities.

• Even though the incentive behind the auction mechanism design as proposed

in Chapter 4 is to provide an interaction between the auctioneer and suppliers

while both maximize their utilities, thinking of the economical properties at

convergence is valuable.

• Studying the effect of parameters involved in suppliers’ optimization problem,

i.e., the suppliers’ minimum profitability or internal costs, on the final prices

and equilibrium is important. Conceptually, different settings can affect the

convergence rate as well as the final procurement price.
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6.2.3 Chapter 5

In extension of Chapter 5 of this thesis one might consider investigating the following

issues:

• Elaborating on devising more expressive bidding Languages for auctions with

divisible bids. The truckload transportation literature has some good initiatives

in this area, however, as described in section 2.4 suppliers are not yet fully able

to communicate their complete preferences through these languages.

• Observing the optimal solution to the winner determination problem for divis-

ible bids (WDPD) reveals that in many cases CPLEX 12 fixes the quantity

variables at either of their lower and upper bounds and there are very few cases

when an interior point (between the minimum and maximum) is detected for

the optimal quantity value. This feature can be investigated further to develop

more efficient solution procedures.

• In this chapter we observed that the equivalence of Lagrangian and linear relax-

ation bounds previously proved for indivisible bids holds for the divisible bids

as well. It is worthwhile investigating whether this result holds for a wider class

of problems.

6.2.4 General Extension Venues

Considering the concerns of industries and firms these days to reduce costs, one in-

teresting research plan is to look at jointly optimizing sourcing and making inventory

decisions using combinatorial auctions. Accepting bids in the phase of ordering ma-

terials or components allows suppliers to specify clearly during which periods they
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are willing to deliver, how many units they are willing to supply, and how much they

would charge for providing them.

In most real world environments, the holding cost of an item depends on the price of

the item and can vary from period to period. One option to determine the price of

an item in a certain period is using the associated Lagrangian multiplier. Multiply-

ing this variable by the surplus develops nonlinearity in the objective function of the

problem which adds complexity.

The focus of most lot sizing problems is to assist decision makers with short-term

production plans. In medium- to long-term decision plans, it is interesting to take

into account the cost of setting up auctions and including suppliers to determine the

optimal number of auctions to hold in a long time horizon and the number of suppliers

to invite in each.

The manufacturers’s poor estimates of demand values, and the suppliers uncertain ca-

pacity of supply quantities can result in considerable losses in a deterministic model.

This can lead to thinking of a stochastic counterpart model with uncertainty in sup-

ply and/or demand.

Finally, another research ground is to consider the possibility of delivery delays and

quantity defects in a multi-attribute procurement auction context.
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[29] Demange, G., and Gale, D. The strategy structure of two-sided matching

markets. Econometrica: Journal of the Econometric Society (1985), 873–888.

[30] Demange, G., Gale, D., and Sotomayor, M. Multi-item auctions. The

Journal of Political Economy 94, 4 (1986), 863–872.

202



Ph.D. Thesis Computational Sci. & Eng.

[31] Devries, S., Schummer, J., and Vohra, R. On ascending Vickrey auctions

for heterogeneous objects. Journal of Economic Theory 132, 1 (2007), 95–118.

[32] Elmaghraby, W., and Keskinocak, P. Dynamic pricing in the presence

of inventory considerations: Research overview, current practices, and future

directions. Management Science 49, 10 (2003), 1287–1309.

[33] Epstein, R., Henriquez, L., Catalán, J., Weintraub, G. Y., Mar-

tinez, C., and Espejo, F. A combinatorial auction improves school meals

in chile: A case of or in developing countries. International Transactions in

Operational Research 11, 6 (2004), 593–612.

[34] Farris, P. W., Bendle, N. T., Pfeifer, P. E., and Reibstein, D. J.

Marketing Metrics: The Definitive Guide to Measuring Marketing Performance.

Pearson Education, 2010.

[35] Fujishima, Y., Leyton-Brown, K., and Shoham, Y. Taming the com-

putational complexity of combinatorial auctions: Optimal and approximate

approaches. In International Joint Conference on Artificial Intelligence (1999),

vol. 16, pp. 548–553.

[36] Groves, T. Incentives in teams. Econometrica: Journal of the Econometric

Society 41, 4 (1973), 617–631.

[37] Guignard, M., and Kim, S. Lagrangean decomposition: A model yielding

stronger lagrangean bounds. Mathematical Programming 39, 2 (1987), 215–228.

[38] Gul, F. Walrasian equilibrium with gross substitutes. Journal of Economic

Theory 87, 1 (1999), 95–124.

203



Ph.D. Thesis Computational Sci. & Eng.

[39] Guo, Y., Lim, A., Rodrigues, B., and Tang, J. Using a Lagrangian

heuristic for a combinatorial auction problem. In 17th IEEE International Con-

ference on Tools with Artificial Intelligence (ICTAI’05) (2005), pp. 5–103.

[40] Hohner, G., Rich, J., Ng, E., and Reid, G. Combinatorial and quantity-

discount procurement auctions benefit Mars, Incorporated and its suppliers.

Interfaces 33, 1 (2003), 23–35.

[41] Hsieh, F.-S. Combinatorial reverse auction based on revelation of Lagrangian

multipliers. Decision Support Systems 48, 2 (2010), 323–330.

[42] Iftekhar, M., Hailu, A., and Lindner, R. Item price information feed-

back in multiple unit combinatorial auctions: Design issues. IMA Journal of

Management Mathematics 22, 3 (2011), 271–289.

[43] Jones, J. L., and Andrews, R. W. Price discovery in combinatorial auc-

tions using Gibbs sampling. Decision Support Systems 42, 2 (2006), 958–974.

[44] Kalagnanam, J. R., Davenport, A. J., and Lee, H. S. Computational

aspects of clearing continuous call double auctions with assignment constraints

and indivisible demand. Electronic Commerce Research 1, 3 (2001), 221–238.

[45] Kaleta, M. Bidding languages for continuous auctions. In New Trends in

Databases and Information Systems. Springer, 2013, pp. 211–220.

[46] Kameshwaran, S., and Benyoucef, L. Branch on price: A fast winner

determination algorithm for discount auctions. In Algorithmic Aspects in In-

formation and Management. 2006, pp. 375–386.

204



Ph.D. Thesis Computational Sci. & Eng.

[47] Kameshwaran, S., Benyoucef, L., and Xie, X. Design of progressive

auctions for procurement based on Lagrangian relaxation. In Seventh IEEE

International Conference on E-Commerce Technology (CEC’05) (2005), pp. 9–

16.

[48] Kameshwaran, S., Benyoucef, L., and Xie, X. Discount auctions for

procuring heterogeneous items. In Proceedings of the 7th International Confer-

ence on Electronic Commerce (2005), ACM, pp. 244–249.

[49] Kameshwaran, S., Benyoucef, L., and Xie, X. Winner determination in

discount auctions. In Internet and Network Economics. Springer, 2005, pp. 868–

877.

[50] Kameshwaran, S., Benyoucef, L., and Xie, X. Branch-and-cut algo-

rithms for winner determination in discount auctions. Algorithmic Operations

Research 2, 2 (2007), 112.

[51] Kameshwaran, S., and Narahari, Y. A Lagrangian heuristic for bid eval-

uation in e-procurement auctions. In IEEE International Conference on Au-

tomation Science and Engineering (CASE 2005) (2005), IEEE, pp. 220–225.

[52] Kameshwaran, S., and Narahari, Y. Benders-based winner determination

algorithm for volume discount procurement auctions. International Journal of

Logistics Systems and Management 5, 1 (2009), 21–40.

[53] Kameshwaran, S., and Narahari, Y. Nonconvex piecewise linear knapsack

problems. European Journal of Operational Research 192, 1 (2009), 56–68.

205



Ph.D. Thesis Computational Sci. & Eng.

[54] Kameshwaran, S., Narahari, Y., Rosa, C., Kulkarni, D., and Tew,

J. Multiattribute electronic procurement using goal programming. European

Journal of Operational Research 179, 2 (2007), 518–536.

[55] Kelly, F., and Steinberg, R. A combinatorial auction with multiple win-

ners for universal service. Management Science 46, 4 (2000), 586–596.

[56] Kelso, A. S., and Crawford, V. P. Job matching, coalition formation,

and gross substitutes. Econometrica: Journal of the Econometric Society 50, 6

(1982), 1483.

[57] Krishna, V. Auction Theory. Academic Press, 2002.

[58] Kwasnica, A. M., Ledyard, J. O., Porter, D., and DeMartini, C.

A new and improved design for multiobject iterative auctions. Management

Science 51, 3 (2005), 419–434.

[59] Kwon, R., Anandalingam, G., and Ungar, L. Iterative combinato-

rial auctions with bidder-determined combinations. Management Science 51, 3

(2005), 407–418.

[60] Lahaie, S. M., and Parkes, D. C. Applying learning algorithms to pref-

erence elicitation. In Proceedings of the 5th ACM Conference on Electronic

Commerce (2004), ACM, pp. 180–188.

[61] Ledyard, J. O., Olson, M., Porter, D., Swanson, J. A., and Torma,

D. P. The first use of a combined-value auction for transportation services.

Interfaces 32, 5 (2002), 4–12.

206



Ph.D. Thesis Computational Sci. & Eng.

[62] Lee, C.-G., Kwon, R. H., and Ma, Z. A carriers optimal bid genera-

tion problem in combinatorial auctions for transportation procurement. Trans-

portation Research Part E: Logistics and Transportation Review 43, 2 (2007),

173–191.

[63] Lehmann, D., Müller, R., and Sandholm, T. The winner determination

problem. In Combinatorial Auctions, Y. S. Peter Cramton and R. Steinberg,

Eds. The MIT Press, 2006, pp. 297–317.

[64] Lehmann, D., O’Callaghan, L. I., and Shoham, Y. Truth revelation

in approximately efficient combinatorial auctions. Journal of the ACM 49, 5

(2002), 577.

[65] Leonard, H. B. Elicitation of honest preferences for the assignment of indi-

viduals to positions. Journal of Political Economy 91, 3 (1983), 461.

[66] Leyton-Brown, K., Nudelman, E., and Shoham, Y. Learning the empir-

ical hardness of optimization problems: The case of combinatorial auctions. In

Principles and Practice of Constraint Programming-CP 2002 (2002), Springer,

pp. 91–100.

[67] Leyton-Brown, K., Pearson, M., and Shoham, Y. Towards a universal

test suite for combinatorial auction algorithms. In Proceedings of the 2nd ACM

conference on Electronic Commerce (2000), ACM, pp. 66–76.

[68] Lim, A., Rodrigues, B., and Xu, Z. Transportation procurement with

seasonally varying shipper demand and volume guarantees. Operations Research

56, 3 (2008), 758–771.

207



Ph.D. Thesis Computational Sci. & Eng.

[69] Lorentziadis, P. L. Pricing in multiple-item procurement auctions with a

common to all items fixed cost. European Journal of Operational Research 190,

3 (2008), 790–797.

[70] Maurer, L., and Barroso, L. A. Electricity auctions: An overview of

efficient practices. World Bank Publications, 2011.

[71] McMillan, J. Selling spectrum rights. The Journal of Economic Perspectives

8, 3 (1994), 145–162.

[72] Milgrom, P. Putting auction theory to work: The simultaneous ascending

auction. Journal of Political Economy 108, 2 (2000), 245–272.

[73] Mishra, D. Simple primal-dual auctions are not possible. Proceedings of the

5th ACM conference on Electronic Commerce (2004), 250–251.

[74] Mishra, D., and Parkes, D. Ascending price Vickrey auctions for general

valuations. Journal of Economic Theory 132, 1 (2007), 335–366.

[75] Mishra, D., and Veeramani, D. Vickrey-Dutch procurement auction for

multiple items. European Journal of Operational Research 180, 2 (2007), 617–

629.

[76] Müller, R. Tractable cases of the winner determination problem. In Com-

binatorial Auctions, P. Cramton, Y. Shoham, and R. Steinberg, Eds. The MIT

Press, 2006, pp. 319–336.

[77] Munson, C. L., and Rosenblatt, M. J. Theories and realities of quantity

discounts: An exploratory study. Production and Operations Management 7, 4

(1998), 352–369.

208



Ph.D. Thesis Computational Sci. & Eng.

[78] Myerson, R. B. Optimal auction design. Mathematics of Operations Research

6, 1 (1981), 58–73.

[79] Nemhauser, G. L., and Wolsey, L. A. Integer and Combinatorial Opti-

mization. Wiley New York, 1988.

[80] Nisan, N. Bidding and allocation in combinatorial auctions. In 2nd ACM

Conference on Electronic Commerce (2000), ACM, pp. 1–12.

[81] Nisan, N., and Segal, I. The communication requirements of efficient al-

locations and supporting prices. Journal of Economic Theory 129, 1 (2006),

192–224.

[82] Olivares, M., Weintraub, G. Y., Epstein, R., and Yung, D. Com-

binatorial auctions for procurement: An empirical study of the chilean school

meals auction. Management Science 58, 8 (2012), 1458–1481.

[83] O’Neill, R. P., Sotkiewicz, P. M., Hobbs, B. F., Rothkopf, M. H.,

and Stewart Jr, W. R. Efficient market-clearing prices in markets with

nonconvexities. European Journal of Operational Research 164, 1 (2005), 269–

285.

[84] Parkes, D. Price-based information certificates for minimal-revelation com-

binatorial auctions. In Agent-Mediated Electronic Commerce IV. Designing

Mechanisms and Systems. Springer, 2002, pp. 103–122.

[85] Parkes, D., and Ungar, L. Iterative combinatorial auctions: Theory and

practice. In Proceedings of the National Conference on Artificial Intelligence

(2000), The MIT Press, pp. 74–81.

209



Ph.D. Thesis Computational Sci. & Eng.

[86] Parkes, D. C. An iterative generalized vickrey auction: Strategy-proofness

without complete revelation. In AAAI Spring Symposium on Game Theoretic

and Decision Theoretic Agents (2001), pp. 78–87.

[87] Parkes, D. C. Iterative combinatorial auctions. In Combinatorial Auctions,

P. Cramton, Y. Shoham, and R. Steinberg, Eds. The MIT Press, Cambridge,

MA, USA, 2006.

[88] Parkes, D. C., Mishra, D., and Ungar, L. H. A simple ascending gen-

eralized vickrey auction, 2004. Working paper.

[89] Porter, D., Rassenti, S., Roopnarine, A., and Smith, V. Combina-

torial auction design. Proceedings of the National Academy of Sciences of the

United States of America 100, 19 (2003), 11153–11157.

[90] Rassenti, S. J., Smith, V. L., and Bulfin, R. L. A combinatorial auction

mechanism for airport time slot allocation. The Bell Journal of Economics 13,

2 (1982), 402.

[91] Regan, A., and Song, J. An auction based collaborative carrier network.

Tech. rep., Institute of Transportation Studies, UC Irvine, 2003.

[92] Rekik, M., and Mellouli, S. Reputation-based winner determination prob-

lem for combinatorial transportation procurement auctions. Journal of the Op-

erational Research Society 63, 10 (2012), 1400–1409.

[93] Remli, N., and Rekik, M. A robust winner determination problem for com-

binatorial transportation auctions under uncertain shipment volumes. Trans-

portation Research Part C: Emerging Technologies 35 (2013), 204–217.

210



Ph.D. Thesis Computational Sci. & Eng.

[94] Roth, A. E., and Ockenfels, A. Last minute bidding and the rules for

ending second-price auctions: Theory and evidence from a natural experiment

on the internet. Tech. rep., National Bureau of Economic Research, 2000.

[95] Rothkopf, M. H., Pekec, A., and Harstad, R. M. Computationally

manageable combinational auctions. Management Science 44, 8 (1998), 1131–

1147.

[96] Rothkopf, M. H., Teisberg, T. J., and Kahn, E. P. Why are vickrey

auctions rare? Journal of Political Economy 98, 1 (1990), 94–109.

[97] Sandholm, T. An implementation of the contract net protocol based on

marginal cost calculation. Eleventh National Conference on Artificial Intelli-

gence (1993), 256–262.

[98] Sandholm, T. Algorithm for optimal winner determination in combinatorial

auctions. Artificial Intelligence 135, 1-2 (2002), 1–54.

[99] Sandholm, T., and Suri, S. Side constraints and non-price attributes in

markets. Games and Economic Behavior 55, 2 (2006), 321–330.

[100] Sandholm, T., Suri, S., Gilpin, A., and Levine, D. CABOB: A fast

optimal algorithm for winner determination in combinatorial auctions. Man-

agement Science 51, 3 (2005), 374–390.

[101] Scheffel, T., Pikovsky, A., Bichler, M., and Guler, K. An ex-

perimental comparison of linear and nonlinear price combinatorial auctions.

Information Systems Research 22, 2 (2011), 346–368.

211



Ph.D. Thesis Computational Sci. & Eng.

[102] Sheffi, Y. Combinatorial auctions in the procurement of transportation ser-

vices. Interfaces 34, 4 (Aug. 2004), 245–252.

[103] Song, J. Combinatorial auctions: Applications in freight transportatiuon con-

tract procurement. PhD thesis, UC Irvine, 2003.

[104] Song, J., Nandiraju, S., and Regan, A. C. Optimization models for

auctions for transportation service contract procurement. Tech. rep., Institute

of Transportation Studies, UC Irvine, 2004.

[105] Song, J., and Regan, A. Combinatorial auctions for transportation service

procurement: The carrier perspective. Transportation Research Record: Journal

of the Transportation Research Board 1833, 1 (2003), 40–46.

[106] Song, J., and Regan, A. Approximation algorithms for the bid construction

problem in combinatorial auctions for the procurement of freight transportation

contracts. Transportation Research Part B: Methodological 39, 10 (2005), 914–

933.

[107] Tennenholtz, M. Some tractable combinatorial auctions. In Association for

the Advancement of Artificial Intelligence/Innovative Applications of Artificial

Intelligence (AAAI/IAAI) (2000), pp. 98–103.

[108] Vagstad, S. Centralized vs. decentralized procurement: Does dispersed infor-

mation call for decentralized decision-making? International Journal of Indus-

trial Organization 18, 6 (2000), 949–963.

[109] Vickrey, W. Counterspeculation, auctions, and competitive sealed tenders.

The Journal of Finance 16, 1 (1961), 8–37.

212



Ph.D. Thesis Computational Sci. & Eng.

[110] Wang, X., and Xia, M. Combinatorial bid generation problem for trans-

portation service procurement. Transportation Research Record: Journal of the

Transportation Research Board 1923, 1 (2005), 189–198.

[111] Wolfstetter, E. Auctions: An introduction. Journal of Economic Surveys

10, 4 (1996), 367–420.

[112] Wurman, P. R., and Wellman, M. P. Equilibrium prices in bundle auc-

tions. In Association for the Advancement of Artificial Intelligence(AAAI),

Workshop on Artificial Intelligence for Electronic Commerce (1999), pp. 56–61.

[113] Xia, M., Koehler, G. J., and Whinston, A. B. Pricing combinatorial

auctions. European Journal of Operational Research 154, 1 (2004), 251–270.

213


	Acknowledgements
	Abstract
	Introduction
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6

	Literature Review
	Auctions Thoery
	Bidders' Valuation Function
	Mechanism Design
	Primary Auction Types
	Revenue Equivalence Theorem

	Secondary Auction Types
	Single-Item Auctions
	Multi-Item Auctions
	Combinatorial Auction (CA)
	Valuation and Allocation in CAs
	Combinatorial Allocation Problem (CAP) v.s. the Winner Determination Problem (WDP)
	Bidding Languages

	Procurement Auctions
	Iterative Combinatorial Auctions (ICAs)
	State of an ICA
	Pricing Equilibria


	Major Challenges in the Implementation of Iterative Combinatorial Auctions
	The Preference Elicitation Problem (PEP)
	Strategic Bidding
	Communication Complexity
	Solving the Winner Determination Problem (WDP)
	Implementation of Economical Limitations
	Application of Exact Solution Algorithms
	Application of Approximation Algorithms
	Application of Heuristic Algorithms
	Auction Simulation

	The Pricing Problem
	Bundle-Pricing Approaches
	Item-Pricing Approaches


	Divisible-Bid Auctions

	A Lagrangian Heuristic for the Winner Determination in Procurement Combinatorial Auctions
	Problem Formulation
	Application of Lagrangian Relaxation on Procurement WDP
	Formulating the Lagrangian Relaxation Problem
	Solving the Lagrangian Relaxation Problem
	Analysis of the Lagrangian Relaxation Bound

	Solution Algorithms
	Lagrangian Relaxation Solution Algorithm
	Aggregate Heuristic Solution Algorithm
	Constraint Selection Rules
	Variable Selection Rules
	Improvement Procedure
	Aggregate Heuristic Algorithm


	Computational Experiments of Multi-unit Combinatorial Auction
	Using CATS for Data Generation
	Algorithm Coding
	Automating Transformation of CATS Produced Data to GAMS-Compatible Input Files
	Adjusting CATS Single-Unit Data to Represent Multi-Unit Environments
	Size of Problem Instances
	Adjusting Lagrangian Constraint Satisfaction Ratio
	Efficiency of the Proposed Algorithm
	Optimality Gap
	Execution Time
	Robustness
	Aggregate Heuristic Solution
	Efficiency of sub-heuristics



	Models for Bidders Pricing Problem
	Notations
	Generic Profit Maximization Model
	Comments on Hsieh's Hsieh2010 Proposed Solution Methodology
	Algorithmic Issues
	Experimental Issues
	Modelling Issues

	Fixed-cost Profit Maximization Model (FPMB)
	Optimality
	Comparison of the Bidder's Prices in Successive Auction Rounds

	Variable-cost Profit Maximization Model (VPMB)
	Lagrangian-based Iterative Auction Design (LIAD)
	Numerical Experiments
	Further Insights on Proposition 4.1-Proposition 4.5
	The Auctioneer's and Suppliers' Profit Dynamics at the Second Round of the Auction
	The Auctioneer's and Suppliers' Profit Dynamics at the Stabilization Round (RS) of the Auction


	Divisible-Bid Auctions
	Notations and Definitions
	The Winner Determination Problem for Divisible-Bid Auctions (WDPD)
	Bid Formulation
	WDPD Problem Formulation
	The Virtue of Implementing WDPD
	Suppliers' Complexity on Bundle Evaluation
	Suppliers' Complexity on Bundles' Communication
	Auctioneers' Complexity on Solving WDPD

	Analysis of the Lagrangian Relaxation Bound

	Suppliers' Profit Maximization Model (PMBD)
	Quantity-based Profit Maximization Model
	Technique 1: Linearization by the Change of variables
	Technique 2: Defining closed-form solution

	Risk-based Profit Maximization Model (RPMBD)
	Optimality of RPMBD


	Empirical Experiments
	Comparison of QPMBD models
	Comparison of RPMBD models
	Comparison of RPMBD and VPMB Models


	Conclusions and Future Extensions
	Conclusion
	Chapter 3
	Chapter 4
	Chapter 5

	Extension Opportunities
	Chapter 3
	Chapter 4
	Chapter 5
	General Extension Venues



