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Abstract

A key problem in designing marketplaces is how to efficiently allocate a collection of
goods amongst multiple people. Auctions have emerged as a powerful tool with the
promise to increase market efficiency by allocating goods to those who value them
the most. Nevertheless, traditional auctions are unable to handle real-world mar-
ket complexities. Over the past decade, there has been a trend towards allowing
for package bids and other types of multidimensional bidding techniques that enable
suppliers to take advantage of their unique abilities and put forth their best offers. In
particular the application of iterative combinatorial auctions in procurement saves ne-
gotiation costs and time. Conceptually these auctions show a potential for improving
the overall market efficiency. However, in practice they host several new challenges

and difficulties.

One challenge facing the auctioneer in an iterative combinatorial auction environ-
ment is to quickly find an acceptable solution for each round of the auction. Bidders
require time to precisely evaluate, price, and communicate different possible combina-
tions based on their current information of item prices. The auctioneer requires time
to solve the underlying mathematical problem formulation based on the bids received,

report back the feedback information and initiate a new round of the auction.
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In Chapter 3, we propose a Lagrangian-based heuristic to solve the auctioneer’s winner
determination problem. After generating the Lagrange multipliers from the solution
of a linear relaxation, the heuristic applies several procedures to fix any potentially
infeasible optimal Lagrange solutions. In addition to providing an efficient way of
solving the winner determination problem, as compared with the leading commercial
solver CPLEX, our approach provides Lagrange multipliers. The latter are used as

proxies for prices in the auction feedback mechanism.

In Chapter 4 we develop a model for the bidders pricing problem, an issue that has
received much less attention in the literature. Using the auctioneer feedback, that
includes the Lagrange multipliers, the pricing model maximizes the bidders’ profit
while at the same time keeping their bids competitive. We derive several optimality
results for the underlying optimization problem. Interestingly, we analytically show
that the auction converges to a point where no bidder is able to submit a bid that
yields strictly better profit for him and is not less competitive than his previous bids
submitted. We experimentally observe that this approach converges in an early stage.
We also find that this iterative auction allows the bidders to improve their profit while

providing lower and competitive prices to the auctioneer.

In Chapter B, we introduce a flexible auction model that allows for partial bids.
Rather than the regular all-or-nothing indivisible package bids, divisible bids provide
flexibility for the auctioneer with the possibility to accept parts of the bids and

yet allow the suppliers to capture synergies among the items and provide quantity

vil



discounts. We show numerically that this approach improves the overall efficiency of
the auction by increasing the suppliers’ profit while decreasing the auctioneer’s total
price of procurement. In addition, we find that computationally the flexible auction

outperforms the regular auction.
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Chapter 1

Introduction

From long ago, auctions have been used as means of trading goods and services with
unknown prices. Herodotus reports using auctions in Babylon as early as 500 B.C.
[57]. Ever since then, auctions have been used in commercial trades to liquidate
properties. Today both the range and value of objects sold by auctions has grown
significantly. Through auctions, numerous kinds of commodities ranging from fresh
flowers to gold bullion, art objects and antiques are transferred to the hands of the

people who value them the most.

As well as individuals and private organizations, the public sector also benefits im-
mensely from auctions in transferring assets to private hands. Examples include sales
of industrial enterprises, transportation systems, natural resources such as off-shore
oil leases, and electromagnetic spectrum for communication. In today’s modern era,
wide easy access to internet has intensified the implementation of auctions. By means
of various internet auction websites, individuals set up items for sale and apply com-

mon auction rules to allocate them to those who offer the best prices.
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While multi-unit auctions facilitate negotiations on large quantities of a single item,
multi-item auctions enable bidders to express interest on several heterogeneous ones.
As many organizations started adopting some sort of multi-unit multi-item auctions,
they realized a fundamental shortcoming of these mechanisms which is their inability
to allow for complex bid structures which exploit complementarities and economies
of scale. This emerged interest to extend the basic auction types to support bids with

a more complex set of preferences.

Combinatorial Auctions (CA) offered one potential solution by permitting bidders to
select subsets of items to bid upon and thus fully express their sub- or super-additive
valuations over those items. The most important reasons for the increased popularity
of combinatorial auctions in commerce include increased sellers’ revenue, elevated bid-

ders’ preference elicitation opportunities, and eventually improved market efficiency.

As opposed to single-round auction designs, multi-round or iterative CAs (ICAs)
have been selected in a number of industrial applications, since they help bidders to
express their preferences by providing feedback, such as provisional pricing and allo-
cation information, in each round. ICAs have several advantages over single-round
auctions. Whereas single-round combinatorial auctions are usually followed by after-
market negotiations to overcome the inefficiencies [32], empirical studies suggest that
in complex economic environments iterative auctions enhance the ability of the par-
ticipant to detect competition and learn when and how high to bid in order to produce

better results than single-round auctions [89).
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In a reverse auction, commonly referred to as procurement auction, the role of the
buyer and seller is changed in that a single buyer offers a contract out for bidding and
multiple sellers attempt to offer lower bids than their competitors in order to obtain
the business. Industrial procurement is a domain where combinatorial auctions have
emerged as a powerful mechanism. In addition to economical advantages of imple-
menting these auctions, industrial procurement benefits from significant cost savings
in complex negotiation scenarios as well as improved time efficiency in uploading large
data sets and processing them. Combinatorial auctions provide the possibility to im-
pact the market structure and involve small businesses by splitting large contracts
into small ones. As reported by Beall et al.[10], more than forty percent of the large
firms (spending over 100 million dollars) in North America were using procurement

combinatorial auction in 2003.

Alongside their attractive attributes, application of iterative combinatorial auctions
(in procurement and otherwise) is not an easy task. The goal in this dissertation is
to address some of the challenges faced by the auctioneer and/or the bidders when

implementing these auctions.

1.1 Chapter

As the number of items increases in an auction, the number of possible combinations
for bidders to evaluate grows exponentially. This imposes serious computational
challenges when trying to find an allocation of packages to the bidders that provides

the auctioneer with the greatest payoff value (greatest revenue in a direct and lowest
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procurement cost in a reverse auction) [95].
Chapter |2 of this thesis is devoted to reviewing most important research findings

relevant to the subject of of our research. Our primary goals in this chapter are to

build a consistent terminology to be used throughout this thesis,

review the theoretical principals and foundations,

review the related literature,

highlight how the contributions of this thesis fill in some of the gaps in the

literature.

1.2 Chapter

In an iterative auction environment where the NP-hard problem of the winner deter-
mination problem has to be solved repeatedly, time becomes a constraint [51]. The
focus in Chapter [3]is to design a Lagrangian-based heuristic for solving this problem.
The Lagrangian multipliers provide useful economic interpretation in the context of

combinatorial auctions and have the potential to initiate multiple rounds for auctions.

The contribution of this chapter is twofold. First, we describe a novel technique
to solve for the Lagrangian optimal solution in a single iteration. As described in
Section [2.3.4] traditional solution methodologies applied for solving the Lagrangian
relaxation problem suffer from a slow convergence rate as well as sensitivity to the

initialization of the parameters involved. Our proposed technique surpasses these
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difficulties by optimal initialization of the Lagrangian multipliers.

Second, we propose a heuristic to project the Lagrangian optimal solution into the
feasible region of the primal problem. On an average of 7,500 problem instances
that we generated for problems with 10, 20, 30 items and 100, 200,...,1000 bids,
our proposed algorithm is on average 219.86 times faster than CPLEX 12 to find a
solution within 10% of the optimality. Nevertheless, we found our approach is best
suited for the class of problems for which the maximum quantity of items offered in
each package is less than half of the demand (for that item). In this case, for 10,
20, and 30 items, our algorithm provides a near optimal solution respectively 5, 6,
and 7 percent off from the optimal in around 1/3, 1/227, and 1/1065 of the CPLEX

run-time.

1.3 Chapter

Solving for the WDP has received intensive attention in the literature. However, one
issue not discussed quite as much is devising mathematical methods for bidders to op-
timize their bid generation technique. Most auctions assume that bidders know how
to determine optimal packages and even derive fundamental theoretical equilibrium
properties for such auctions. From the bidders’ perspective though, the evaluation
and pricing process is a difficult task. They need to explicitly determine how to select
and more importantly price the best set of items to bid from an exponential number
of possible combinations so as to maximize their profit while increasing their chances

of winning the next round of the auction. In this chapter we develop an integrated
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iterative combinatorial auction that deals with how to integrate the auctioneers’ op-
timization problem with the bidders’ optimal bid generation. Specifically, we look
at the bidders’ pricing problem in an ICA. Pricing in ICAs is subtle. In one line of
research, prices are constructed by the auctioneer in a way that in an iterative auction
environment they converge to the market equilibrium prices. Bidders respond to these
prices with the quantities they are willing to supply at the announced prices. Con-
vergence to market equilibrium prices, incentivizes the bidders to reveal their true
valuations in the auction. As reviewed in Section [2.3.5 despite strong theoretical
foundations, Scheffel et al. [12] [I01] showcase that experimentally these approaches

lack efficiency since the presumptions are too strong to implement in realistic settings.

In Chapter [}, we use Lagrangian multipliers to help bidders determine item prices so
as to keep communication complexity to a minimum. We use these prices as a guide
and proceed to formulate the bidders’ problem with the objective to maximize their

profit subject to generation of that are competitive.

There have been multiple proposals on how to design the pricing scheme in ICAs
including approximate linear, non-linear, and personalized non-linear prices as re-
viewed in Section [2.2.5.2] As of now, there is no general consensus on a single best
design. Each pricing scheme is proven useful for a certain valuation structures. In
our research, we focus on ICA designs with linear ask prices in which each item is
assigned an individual price, and the price of a package of items is the sum of the
single-item prices. Linear prices are easy to understand for bidders, and provide a

good guidance for computing the price of any bundle even if no bid was submitted
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for it.

Every time the auctioneer solves the winner determination problem, the Lagrangian
optimal multipliers are revealed to the bidders. Bidders use the announced prices to
maximize their profit while generating a more competitive bid. We show that the
auction converges to a point where no supplier is able to make a strictly better deal,

causing the auction to terminate.

1.4 Chapter

With indivisible package bids suppliers either win all that they offer or nothing. Thus,
suppliers would have to provide exponentially many bids (with respect to the num-
ber of items in the auction) to completely describe their valuation structure. For
10 items, this could lead to over 1,000 bids per supplier. Even if suppliers could
determine complete sets of combinatorial bids, they would probably be unwilling to
provide this information. Presence of multiple units of each item in a combinatorial
auction amplifies this complexity by providing the possibility for bidders to make

different choices of quantities for each combination of items chosen in each package.

One approach to get around this complexity is to allow for partial bid acceptance.
Rather than pricing every different desirable package of quantities of items, suppliers
prepare and submit cost or price functions with per unit prices of the items they
include in each package. Despite their wide applicability in real scenarios, auctions

with divisible bids are rare in the literature.
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The bidding languages currently deployed to address divisible bids suffer from defi-
ciencies. For most cases, the unit price as well as the number of quantities declared
remain the same for all assets included in a package. Moreover, some studies ignore
how bidders could take advantage of providing quantity discounts for provision of

larger quantities of items in order to make more competitive bids.

In Chapter |5 we introduce a bidding language which overcomes these shortcomings
and experimentally, illustrate the efficiency of allowing for partial bid acceptance.
Analysis of the Lagrangian relaxation properties of the WDP with divisible bid sub-
missions (DWDP) reveals that the properties observed for WDP with indivisible bids
holds for DWDP. Looking at the suppliers’ optimization problem in a divisible en-
vironment, we develop quantity-based (QPMBD) as well as risk-based (RPMBD)
profit maximization models for suppliers. QPMBD seeks the optimal price and quan-
tity values that maximize suppliers’ profit. QPMBD is modelled as a nonlinear mixed
integer programme and then transformed into a mixed integer programme. RPMBD
maximizes the profit for suppliers’ with different levels of riskiness. We investigate the
optimality conditions for the RPMBD problem formulations as well as how the riski-
ness of the suppliers’ affects their overall gain. On average, our imperial work suggests
that divisible bids improve the overall auction efficiency by increasing the suppliers’
profit while decreasing their price offerings and consequently the auctioneer’s total

cost of procurement.



Ph.D. Thesis Computational Sci. & Eng.

1.5 Chapter 6]

This Chapter includes our concluding remarks. We also propose research directions

to expand on the research questions presented in this thesis.



Chapter 2

Literature Review

Auctions are celebrated as one of the triumphs of game theory in economy. Even so,
they have attracted several scientists from operations research and computer science
when solving for an efficient solution to the underlying resource allocation problem

with self-interested agents.

Ever since the successful application of auctions in the sales of spectrum rights, auc-
tions started to be adopted by many modern market environments in their major
trades [71]. As many organizations began to realize the efficacy of auctions, interest
has grown from basic auction types to combinatorial auctions which support nego-
tiations on subsets of items. Combinatorial auctions exploit economies of scale in
bidders’ valuation structure by allowing for complex bid structures. Whereas forward
auctions are used for selling, reverse (or procurement) auctions are deployed for pro-

curement of goods or services.

In an auction that aggregates iterative and combinatorial auctions (ICAs), bidders

10
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submit bundle bids iteratively and the auctioneer computes allocations and ask prices
in each round of the auction. Iterative auctions dynamically collect information about
bidders valuations and set the prices of a trade within the auction. Despite achieving
desirable economic efficiency, such auction design involves dealing with several compu-
tational, communicational complexity which make implementation of these auctions

a difficult task.

To review the literature on ICAs and the challenges it brings about, we open this
chapter by introducing auction theory and providing an overview of the game theoretic
perspective of auctions. Mechanism design is described next to define allocations
and payment rules in such a way that rational bidders would follow certain desired
strategies. We describe various mechanism designs that define different auction types
and briefly go over some primary and secondary auction types we use in our work.
Specifically, we will review the foundations of the design of combinatorial and iterative
auctions. The rest of this chapter is devoted to describing some of the major challenges
faced for the design and implementations of iterative combinatorial auctions. In each
case, we address the existing methodologies to handle these difficulties and highlight

the contribution of our work whenever applicable.

2.1 Auctions Thoery

Auction theory has been one of the most widely studied fields in economics over the
past fifty years. It concerns the design of auctions and the set of rules governing

them. Various auction designs (or sets of rules) define different types of auctions.
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Only subtle changes in auction rules can cause significant differences in their out-
come. Auction theory deals with studying the efficiency of auction designs under the

implementation of different sets of rules.

The participants of an auction include the auctioneer who runs the auction and
sets its specific rules and the bidders who compete to buy his products as he sells
them off. The competition among bidders reverts to selling products to the auctioneer
when he announces his demand on the items. The bidders’ competition is through
submission of bids. Bids are expression of the bidders willingness to pay particular
monetary amounts for various outcomes. Bidders formulate bids according to their

private preferences, bidding strategies as well as auction rules.

From the game theoretic perspective, auctions are defined as mathematical games

in which

the auctioneer and the bidders constitute the set of players,

e the auctioneer sets the rules relative to his objective which is mostly revenue

maximization or cost minimization,

e the set of moves (or actions) available to each bidder is his bid function which
maps his value (in the case of a buyer) or cost (in the case of a seller) to the

bid price he submits,
e the payoff of each bidder is his expected utility,

e the strategy bidders follow is to maximize their utility.
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In a mathematical game, bidders are known as rational if they are capable to think
through all possible outcomes and choose the one that results in the best possible
outcome, and the game is known as non-cooperative game when rational players

are able to make decisions independently.

A strategy is defined as dominant when it gives as good or better outcome as any
other strategy, regardless of how the player’s opponents play. It is defined as strictly
dominant if it always gives a better outcome than any other strategy no matter
what the components do. Alternatively, it is called weakly dominant if there is at
least one set of opponents’ actions for which this strategy yields superior outcome (as
compared to the rest of strategies available). A weakly dominant strategy produces
similar payoff on all other strategies available to the player for any choice of the op-

ponents’ strategies.

A non-cooperative game reaches the Nash equilibrium state when rational players
have chosen a strategy and no player is better off by changing his strategy unilaterally,
given that other players keep theirs unchanged. If there exists a strictly dominant
strategy for a player, that player will play that strategy in each of the game’s Nash
equilibria. If all players have a strictly dominant strategy, the game retains a unique
Nash equilibrium. Weakly dominated strategies can also constitute Nash equilibria.
For instance, assume a non-cooperative game with two players, strategies A and B

available to each, and the payoff matriz as
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Player 1 \ Player 2 | A B

A (2,2) (1,1)

B (1,1) (1,1)

For both players strategy A weakly dominates strategy B. This outcome constitutes

a Nash equilibrium, since no player is better off by unilaterally changing his strategy.

2.1.1 Bidders’ Valuation Function

Upon entrance in an auction each bidder makes an evaluation of the item(s) being set
up for bids. A valuation function is a real valued function that allocates each item 7
and bidder j to a real number v;; which is bidder j’s personal evaluation of item 4.

We assume valuation functions to be
1. monotone, that is for sets SandT’, whereS C T, we have v(S) < v(T),

2. normalized, that is v(0)) =0 .

Bidders are assumed to have quasi-linear utility (or payoff) function defined as

Uij = Vij — Dij

with p;; as the price bidder j pays on item 1.

In a private value model, each bidder knows the value of the item to himself at the
time of bidding and this value does not depend on the private information of other
bidders. In many auctions, however, the object’s value is unknown to the bidder

himself at the time of the auction. He may only have an estimate or some privately
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known signals correlated with the true value. Other bidders may have additional
information that if known, would affect the value that a particular bidder attaches
to the object. This structure of item values is in general known as interdependent
values. Common value structure is a special case of this specification in which the
value of the item is the same for all bidders, however, the values remains unknown to
all of them. The private value model assumption is typical when auctioning pieces of
artwork. An example of a common value model is auctioning financial products on the
stock exchange. Auctioning wireless spectrum is a commonplace for an interdepen-
dent value model where private valuations are driven by the underlying population

demographics and technological basis.

Once the bidders participating in an auction evaluate the commodities, they attach
a price to them. This price may not necessarily reflect their real valuations and
thus result in an intense reduction of the auction revenue. William Vickrey [109],
the winner of the 1996 Nobel Prize for Economics, has shown that there exists a
particular pricing scheme for a private value model with a single item or multiple
homogeneous items in which a winning bidder can never affect the price he pays. He
demonstrates that this gives bidders no incentive to misrepresent their values and
thus achieves superior performance by making it a dominant strategy for bidders to

report their values truthfully.

2.1.2 Mechanism Design

A mechanism design is defined by a set of rules describing the

e auction protocol, including the sequence, syntax and semantics of messages
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exchanged throughout the auction,

e allocation rules, including constraints ensuring the overall objective of the

allocation as well as additional allocation constraints,

e payment rules, determining the payment from or to the winner(s).

The primary goals in the design of an auction concerns the outcome of an auction.
One goal is to achieve allocative efficiency in which the auction mechanism imple-
ments a solution that maximizes the total payoff across all agents. Another goal is the
revenue mazximization in which the auction achieves a solution that maximizes

the payoff to a particular participant, usually the auctioneer.

From the game theoretic perspective, auction design studies a system of self-interested
players following different strategies. Auction design rules may restrict bidders to
certain strategies which enforce a certain outcome. One important design goal is to
encourage strategies that lead to efficient outcomes. More specifically, auction de-
signers try to construct incentive compatible mechanisms in which bidders are

self-interested in reporting truthful information about their preferences.

To ensure incentive compatibility, the monetary transfer to each bidder has to be set
so that the expected utility of bidding truthfully is always greater than or equal to the
utility when the valuation is misrepresented. This is also considered as redistribution
of the trade surplus. A dominant strategy is given if the players payoff maximizing
strategy is independent from the strategies of the other players. Mechanisms with

the dominant strategy equilibrium are called strategy-proof. In a strategy-proof
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mechanism no assumptions about the information available to the agents about each
other are made, and every bidder selects his own optimal strategy without requiring

the others to act rational.

Vickery’s auction design offers great insight into this for single-item auctions. In his
design, the players’ payoff maximizing strategy is independent from the strategies of
the other players and truthful representation of the valuation is a weakly dominant
strategy. A mechanism with these characteristics is very desirable from an economics

perspective.

2.1.3 Primary Auction Types

The word auction is derived from the Latin word augere which means to increase
or augment. Yet, not all auctions are based on increasing the price. In fact, they
may take up many different types depending on the rules governing their mechanism
design. Researchers primarily recognize auctions as either oral (a.k.a. open) or
written (a.k.a. closed sealed-bid). Oral Auctions are those auctions where all
bidders are present, they hear each other’s bids and can make offers. In written
auctions bidders submit their bids simultaneously without revealing them to the oth-

ers. Oral and written auction determine the following most widely practiced auction

types.

English Auctions (a.k.a. Ascending-Price Auctions)

English auctions are one of the oldest and most frequent auction forms. They are

considered oral auctions in which the auctioneer begins by calling out a low price and
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gradually increases it. The bidders express their interest to buy the product at the
announced price usually by raising their hand. These auctions continue until only

one bidder is left interested in the object.

Dutch Auctions (a.k.a. Descending-Price Auctions)

Dutch auctions are the counterpart to the English auction wherein the auctioneer
begins by a price high enough so that no bidder is interested to buy the object at that
price. He gradually decreases it until the first person admits to purchase the object
at the announced price. This open auction is made famous by the Amsterdam flower
auctions and was designed to rapidly terminate the auction due to the perishable

nature of the product on auction.

First-Price Sealed-bid Auctions

First-price sealed-bid auctions are a variation of written auctions in which the bidder
who submits the highest bid wins the object. The winner in this auction pays the

price he submits.

Second-Price Sealed-bid (a.k.a. Vickrey Auctions)

Second-price sealed-bid auctions are conducted in the same manner as first-price
sealed-bid auctions. The only difference is that the winner pays the amount of the
second highest bidder. The payment scheme of a second-price sealed-bid auction with
a single item or multiple homogeneous units of a single item is the result of Vickrey’s
study on the auction’s equilibrium state from the game theoretic perspective. Thus,

this auction design is mostly referred to as Vickrey auction.
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Vickrey [109] demonstrates that the bidders pay the amount of the opportunity cost
for what they win, rather than the price they bid. Thus, they are only capable of
determining whether they win or not. From the bidders’ perspective, even though the
amount they bid determines the efficient allocation of goods in the auction, it cannot
affect the amount they pay. Only by bidding true values can the bidders be sure to
win exactly when they are willing to pay the price they bid and so bidding truthfully

becomes their (weakly) dominant strategy.

2.1.4 Revenue Equivalence Theorem

The revenue equivalence theorem was shown for the first time by Vickrey in his 1961
seminal paper [109] through an example and was later proved by Myerson [78]. It
states that different auction mechanisms that result in the same allocation of goods

yield the same revenue to the seller.

Wolfstetter [IT1] observes that the Dutch open descending auction is strategically
equivalent to the first-price sealed-bid auction. In a first-price sealed-bid auction,
a bidder maps his private information to a bid. The useful information revealed in
Dutch auctions is that some bidder agrees to buy the item at the current price which
causes the auction to end. Bidding in a first-price sealed-bid auction is equivalent to

offering to buy it at this price in a Dutch auction.

When values are private, the English open ascending auction is equivalent to the

second-price sealed-bid auction. With private values the optimal strategy for both is

19



Ph.D. Thesis Computational Sci. & Eng.

to bid up or stay in until the value. With interdependent values, seeing some bidders
drop out in an English auction early on may bring bad news that may cause a bidder
to reduce his own estimate of the object’s value. Thus, with interdependent values,

the two auctions are not necessarily equivalent.

2.2 Secondary Auction Types

Auctions are recognized not only by the rules of the auction, but also by their envi-
ronment. Important features including the number of sellers and buyers, the number
of items being traded, the preferences of the parties, and the form of the private infor-
mation participants have about preferences determine different auction types. Some
environment-dependant secondary auction types relevant to this thesis are described

below.

2.2.1 Single-Item Auctions

Putting up a single item for bids classifies the auction as a single-item auction. In
the case of having multiple units of the same item, the auction is referred to as a
multi-unit single-item auction. Multi-unit auctions facilitate negotiations on large

homogeneous quantities of the same item.

As suggested by the equivalence of the primary auction types for a single object,
applying the classic English auction can be considered as a sealed bid second price
auction. For an auction with multiple homogeneous units of a single item, Ausubel [4]

formulated a dynamic ascending price auction format which resembles the outcome
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of the sealed-bid Vickrey auction with private values, and yet has the advantage of

simplicity and privacy reservation.

2.2.2 Multi-Item Awuctions

Involving several heterogeneous items in multi-item auctions produces a multi-item
auction environment. Similarly, having multiple identical units of each item identifies
the auction as multi-unit multi-item auction. In a setting where each bidder is in-
terested in receiving at most one item, sealed-bid multi-item auctions are considered
as a generalization of Vickrey auctions [28 65, 29]. This mechanism requires each
bidder to submit a sealed bid listing his valuation of all the items. Like the Vickrey

auction, submitting true valuations is a dominant strategy for the bidders.

Another important feature of the multi-item auctions is the possibility to achieve the
minimum equilibrium price allocation by dynamic or progressive auctions rather than
a single round. Demange, Gale, and Sotomayor [30] study dynamic auction mech-
anisms based on price increase for the minimal overdemanded sets of items. They

prove that prices converge to the minimum equilibrium price.

Economists have extended the Vickrey auction to encompass more general models.
Clarke [20] and Groves [36] considered auctions with multiple heterogeneous items.
The new mechanism is usually referred to as the Vickrey-Clarke-Grove (VCG)
mechanism. The pay price in a VCG auction is also called VCG payment. VCG

assigns goods efficiently and charges bidders the opportunity cost of the items they
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win. Truthful reporting is a dominant strategy for each bidder in the VCG mecha-
nism. Mishra and Veeramini [75] study a multi-item ascending price auction wherein
each supplier is able provide one or more of the items. They prove that their method

implements the VCG outcome.

VCG auctions exhibit several appealing theoretical properties. Nevertheless, they
suffer from serious short comings. For instance, they are vulnerable to collusion by a
coalition of losing bidders, the auctioneer revenue can be very low or zero, and that
determination of the VCG payments itself is a computationally hard problem (for
more details on this see [5]). Moreover, Ausubel and Milgrom [5] showed that the
VCG auction loses its dominant-strategy property when bidders face effective budget

constraints.

The shortcomings of the VCG auction are strong enough for it to be hardly used
in practice. This has turned some researches towards the design of alternative auc-
tion mechanisms that overcome some of the VCG auction drawbacks. For instance,
Ausubel and Milgrom [7] proposed an ascending proxy auction and proved that there
is no coalition of bidders that can trade among themselves in a way that generates
strictly more revenue for the seller and equally or more preferred outcomes for all the
bidders of the coalition. In [5] the authors show that the Vickrey auction leads to
such outcome only under special conditions. Nevertheless, VCG auctions constitute
an important theoretical structure that provides insights into fundamental properties

of auction mechanisms in general.
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2.2.3 Combinatorial Auction (CA)

One drawback of multi-item auctions is their failure to identify that a bidder’s valua-
tion for a combination of items that are for sale is more (or less) than the sum of the
individual items’ valuations when the items are complementarities (or substitutes).

Therefore, bidders need to bid upon the set of items they require individually.

This disadvantages the bidders since first, in order to increase their chances of winning
all that they require, they are frequently willing to bid above their true valuations
leading to the winners’ curse problem: the winner has to overpay for the item he
wins. Second, bidders are only interested to acquire a whole combination of items.
An incomplete package is undesirable and is not worth the money they have to pay

for the winning items. This problem is known as the exposure problem.

Combinatorial auctions allow bidders to place bids on any subset of the items known
as packages or bundles. This enables bidders to express complex valuations on the
packages of items and thus more precisely report their preferences. Combinatorial
auctions often lead to greater auction revenue as well as market economic efficiency

in that items would be allocated to those who value them the most.

Combinatorial auctions were first proposed, by Rassenti, Smith, and Bulfin [90] for
the allocation of airport landing slots. Their paper introduced principal ideas on
the design of mathematical programming formulation of the auctioneers problem, the

computational complexity of the winner determination problem, the use of testing
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techniques from experimental economics, and incentive compatibility of combinato-

rial auctions.

In procurement, combinatorial auctions have emerged as a powerful tool to auto-
mate complex negotiations on multiple items. Over the past few years, they have
been employed in a variety of industries saving millions of dollars. Logistics.com, Ac-
cesstranspota.com (Canada), Translogistica.com (Uk) are some websites which report

the use of combinatorial auctions for long term contracts [104].

2.2.3.1 Valuation and Allocation in CAs

This section generalizes the valuation on combinatorial auctions. According to the
private value model assumption, we denote the private valuation of the bidder j for
the bundle S by v;(S). The valuations of different bidders are assumed independent
and satisfying the free disposal condition, i.e., if S C T then v;(S) < v;(T"). The rest

of this section is devoted to defining the terms we commonly use.

Definition 2.1 (Value Model).
A wvalue model V = {v;(S)} is a set of the private valuations of all bidders for all

bundles.

Definition 2.2 (Bid Price).

The price bidder j attaches to bundle S is called bid price and is denoted by Py ;(.S).

In Chapters of this thesis we deal with bid prices and for this reason drop this

index.
Definition 2.3 (Pay Price).
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Pay price Ppoy = (Ppay1(S), - Ppay i (9), -« Ppayn(S)) defines the prices to be paid
by each bidder j,(j € {1,...,n}) for bundle S.

Definition 2.4 (Bidder Utility or Bidder Payoff).

Bidder j’s utility m;(S, Ppay,;(S)) expresses his satisfaction of getting bundle S at
the pay prices P,y ;(S). We assume quasi-linear bidder utilities m;(S, Ppay ;(5)) =
V;i(S) = Bpay,i(5) and m5(0, Ppay,;) = 0.

Definition 2.5 (Allocation).

An allocation X is a tuple (S, ..., Sy) that assigns a bundle (possibly empty) to every

bidder. S; denotes the bundle assigned to bidder j.

In a single-unit combinatorial auction problem, the allocated bundles do not intersect,
ie., Vj, 5, S;N SJ’- = (). With the auctioneer defined as a bidder, some items may

remain unallocated.

An allocation X can also be defined by a set of binary variables z;(.S) such that

z;(S) € {0,1},

Vi, S z;(S)=1&8;,=5,

Vi s ®i(S) <1,

Vi Yoscu i(S) =0=5;=10.

(2.1)

In other words, z;(S) = 1 means that the bidder j receives bundle S. We denote the

set of all possible allocations by x.

Definition 2.6 (Total Bidders Utility or Total Bidders Payoff).
Total bidders utility mau(X, Ppay) is defined as 3, 7;(Sj, Ppay,;(S;))-
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Definition 2.7 (Auctioneer’s Revenue).
For M denoting the set of items and N the set of bidders, the auctioneer’s rev-

enue at announced pay prices Ppq, and allocation X is defined as II(X, Ppyy) =

ZjeN Pray,i(S;) = ZSgM,jeN 25 (S) Ppay,;(S)-

The auctioneer’s revenue is usually considered to be his gain, since his costs are

assumed to be 0.

Definition 2.8 (Feasible & Efficient Allocations).
A feasible allocation is an allocation that satisfies properties (2.1)). An efficient allo-

cation is the optimal feasible allocation.

Thus, an efficient allocation is an allocation that maximizes the overall gain and is

usually denoted as X* = (S},...,S}).

2.2.3.2 Combinatorial Allocation Problem (CAP) v.s. the Winner De-

termination Problem (WDP)

Obtaining an efficient allocation is a typical auction design goal. Given the private
bidder valuations for all possible bundles, an efficient allocation can be found by

solving the Combinatorial Allocation Problem (CAP)

(X). CAP
xla ) 2 ) (CAP)
JEN
CAP has a straightforward integer linear programming formulation. Using the binary

decision variables {z;(S)}, we can reformulate CAP as
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max ZSQM ZjeN z;(S)v;(S)

s.t. z:(S) <1 Vie N
ZSQM 5(5) < j (CAP)
ZSBi ng]v z;j(S) <1 Vie M
z;(S) € {0,1} VjEeN,SCN.

The objective function maximizes the overall gain. The first set of constraints guar-
antees that at most one bundle can be allocated to each bidder. The second set of

constraints ensures that each item is not sold more than once.

Usually, the auctioneer does not know the bidders’ private valuations needed for
solving CAP. Instead, he selects the optimal allocation on the basis of the submitted
bids. This problem formulation is referred to as the Winner Determination Problem

(WDP).

max ngM ZjeN 2(S) Pria,;(S)

> scar i (S) < j AWDP)
> s5i 2jen Ti(S) <1 Vie M
z;(5) € {0,1} Vj e N,SCN.

WDP is very similar to the CAP. The only difference is the use of bid prices instead
of valuations in the objective function. It is important to be aware of the difference
between the the two problems in a real auction. In WDP bidders may or may not
truly reflect their true valuations. Nonetheless, implementing a VCG mechanism gives
the bidders the incentive not to misrepresent their true valuations. Submitting bids
equaling bidders’ real valuations makes the optimal allocation found by WDP equal

to the efficient allocation in CAP. Often researchers are not concerned by the fact
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that the price offers reported may not reflect the bidders’ true valuation of bundles.
Rather, they use the announced prices and try to find an appropriate modeling and
an efficient algorithm that would find the optimal allocation in a reasonable time. Al-
locating bundles to the winning bidders and modifying the winners’ payment rules by
asking them to pay the amount that second best winner has bid, implements a VCG
mechanism that gives the bidders the incentive to bid their true valuations from the
start. Our solution methodology for handling the CAP problem in Chapter [3] follows

with this strategy.

There might exist multiple optimal solutions for the WDP with the same objective
function value, in which case multiple efficient allocations exist. Tie-breaking rules
determine which optimal solution to select. For example, allocations determined ear-
lier in time or the ones which posses maximum/minimum number of bidders can be
preferred. Alternatively, additional constraints can be added to the model to eluci-

date a unique winner.

Beyond the standard rules of the WDP, additional allocation rules called business
constraints or more generally side constraints are of practical importance. These
constraints may need to be defined or removed dynamically throughout the auction.

Below are examples of common constraints in industrial procurement.

e The number of winning suppliers should be greater than a certain number to
avoid depending too heavily on just a few suppliers, but not too large to avoid
too much administrative overhead.

e The maximum/minimum amount purchased from each supplier is bounded by
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a certain limit.

e The auctioneer’s or the bidders’ budget constraints or contractual obligations

is met.
e At least one supplier from a target group is chosen.

e Spend from a set of preferred suppliers is maximized. Preferred suppliers are

those that meet some predefined standards (e.g., consistent delivery, high qual-
ity).

e A maximum a % of suppliers account for at least 3 % of spend. These con-
straints are usually referred to as spend constraints. A practical configuration

is to set a and [ respectively to 10 and 90.

2.2.3.3 Bidding Languages

A bidding language defines the format of the communicated messages and the in-
terpretation rules by which bidders are allowed to formulate their bids. Here we
introduce a few of the most widely used languages. All prices in this section cor-
respond to bid prices, and are all submitted by the same bidder. For the sake of

simplicity, we drop the corresponding indices.

Definition 2.9 (Atomic or Single-Minded Bids).
An atomic bid is a pair (S, P(S)) that a bidder submits with S as the subset he is
willing to bid on for the price P(S). Atomic bids cannot be used to represent the

simple additive valuation on two items.

Definition 2.10 (Additive-OR or OR Bids).

Additive-OR bids are a collection of an arbitrary number of atomic bid pairs (Sk, P(Sk)),
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where Sy is a subset of the items a bidder bids on, and P(Sy) is the mazximum price

he is willing to pay for it.

The bidder will be willing to obtain any number of atomic bids for the sum of their
prices. A set of OR bids is represented as v = (51, P(S1))OR...OR(Sk, P(Sk)).
Define a valid collection W as W = {t|[)S: = ¢}. The value of v is defined as
MazwSiew P(St). It can be concluded from the above definition that it is not pos-
sible to express substitutabilities via OR bidding language. OR can only be used to
represent those valuations where VSNT = 0, v(SUT) > v(S) + v(T) and only them
[8T]. Thus, it is sufficient if no subadditive valuations exist. Unfortunately, this is
often not the case, e.g., in the presence of budget restrictions (if the bidder can not

afford every combination of bundles he bid for) or when auctioning substitute goods.

Definition 2.11 (Exclusive-OR or XOR Bids).

Exclusive-OR bids are the submission of an arbitrary number of atomic bids, or pairs
(Si, P(S;)), where each S; is a subset of items and P(S;) is the maximum price the
bidder is willing to pay for it. Unlike OR bids, bidders would only be willing to obtain

at most one of the bids they submit.

For the valuation v = (S, P(S1))XOR..XOR(Sk, P(Sk)), the value v would be
Max;s,crP(S;). An XOR bid is capable of representing substitutabilities as well as
complementarities among items. However, it suffers from the communicative com-

plexity caused by the exponential number of bundles to be evaluated and monitored.

Definition 2.12 (OR of XORs & XOR of ORs).
OR of XORs is the language that represents OR of a set of XOR bids. Similarly,
XOR of ORs represents XOR of a set of OR bids.
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The combination of the two languages in the form of OR of XORs and XOR of ORs

deploys the power of both languages to make more expressive, yet concise bids.

Definition 2.13 (OR* Bids).

OR* represents XOR bids as a variant of OR bids by introducing dummy items.

This language is first introduced by Fujishima, Layton-Brown, and Shoham [35] and
later explored extensively by Nisan [80]. As an example, (S1, P(S1))XOR(Ss, P(S3))
can be represented as (S;U{d}, P(S1))OR(S2U{d}, P(S2)) where d is a dummy item.

2.2.4 Procurement Auctions

The process of procurement via competitive bidding is an auction in which bidders
compete for the right to sell their products. In this case, it is the person bidding
the lowest who wins the contract. Defining P,y j(s) as the price that the auctioneer
pays to bidder j for providing bundle .S, Definition is adjusted to represent the

auctioneer’s total cost of procurement(TCP).

Chen et al. [I9] discuss sealed-bid auctions in procurement settings. Their auctions
are incentive compatible and incorporate transportation costs and other variables in-

volved in production.
Demange et al. [30] designed an iterative ascending price auction for the single-seller

model which translates to a descending price reverse auction for the single-buyer

model. The authors showed that such a descending price auction converges to the
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maximum competitive equilibrium price in the single-buyer model and thus each sup-

plier gets his VCG payoft.

Ausubel and Milgrom [7], de Vries et al. [27] and Parkes et al. [88] have proposed
ascending price auctions implementing the VCG outcome for a single-seller model
when buyers demand multiple items. A proper transpose of these auctions will give

descending price reverse auctions.

One major common application of reverse auctions is for E-procurement (electronic
procurement). The electronic auction (e-Auction) is an auction between the auc-
tioneer and the bidders which takes place in an electronic marketplace. In this elec-
tronic commerce, the auctioneer offers his goods, commodities or services in an auction

and interested parties can submit their bids for the product being auctioned.

Using the internet in the so-called online auctions has propelled the outreach of
auctions. The application of the internet surpasses the complications of having (a
large number of) participants’ physical attendance at a certain place and for a cer-
tain period of time. The influx in reachability of (online) procurement auctions makes
them appealing for various application domains. Some first applications of these auc-
tions are in industrial procurements. Interesting examples include the procurement
auctions for school meals in Chile [33], and the one for packing materials (raw and
otherwise) for different manufacturing locations at Mars, Incorporated (chocolate

manufacturer) [40] developed with IBM T.J. Watson Research Lab.
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Another major application of procurement auctions is in truckload transportation
(TL). In this auction, the auctioneer and the bidders are respectively the shipper and
the carriers. The shipper needs to outsource a number of transportation services to
some external carriers. His request is a transportation contract which specifies the
pick-up and delivery location pair (also known as a lane), a volume to be shipped on
this lane, and some other information on shipping conditions, specific equipments,
etc. Several carriers are invited to participate in the auction. They compete by
submitting bids on the shippers’ requests. Carriers are permitted to submit bids on
packages of lanes to express their preferences for any combination of lanes they want
to acquire. For instance, to reduce empty repositioning costs, a carrier may prefer

to move shipments to a destination and back rather than serving each lane separately.

Ledyard [61] reports the experience of iterative combinatorial auction at Sears Lo-
gistics Services for procurement of TL services. The authors report a 13% saving on

Sears service costs.

Elmagherabi and Keskinocak [32] document the experience of Home Depot in using
single-round combinatorial auctions for outsourcing TL when moving freight between
Home Depot stores and design centres. The authors report that not only did the auc-
tion provide Home Depot with better rates, many bidders also expressed increased
satisfaction with the results. Yet, the single-round auction caused inefficiency which

led to aftermarket negotiations.

Sheffi [I02] reports the use of procurement combinatorial auctions by many leading
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companies beyond Sears and Home Depot with the goal to lower transportation costs.
These companies include the Colgate-Palmolive Company, Compaq Computers Inc.

Wal-mart Stores Inc., Nestle S.A., and Ford Motor Company.

Caplice [18], Caplice and Sheffi [16], [17], Song [103], Song and Regan [105], (106}, 105,
91], Crainic and Gendreau [23, 22], Crainic et al. [24], Rekik et al. [92], Remli and
Rekik [93], and [62] are among the researchers who have studied combinatorial auc-

tions in transportation procurement.

2.2.5 Iterative Combinatorial Auctions (ICAs)

Single-round combinatorial auctions often lead to aftermarket to remove possible in-
efficiencies [59]. Iterative (or Progressive) Combinatorial Auctions (ICAs)
are those auctions that unlike one-shot (or single-round) auctions proceed in
several rounds (or iterations) providing the bidders with informative feedback.

The classical English auction is one example of progressive auctions.

ICAs have many advantages over their one-shot counterpart, especially in procure-

ment:

e Bidders do not have to evaluate, price, and communicate all possible bundles
in one shot. The information in ICAs is decentralized and only required infor-
mation is exchanged on a need-to-know basis. In many auction scenarios, the

bid preparation can be very costly and complex when carried in a single round.

e Bidders can revise and modify their bids based on the information revealed in

the auction. The bidders witness the progress of the auction and get feedback
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through the information from the auctioneer at the end of each bidding round.
They have the chance to reassess their bidding strategy several times before the

auction closes at the final round.

e Only prospective winners need to work on bid preparation. If a bidder finds
himself non-competitive, he can save the costly bid preparation process. For
a bidder, who finds himself to be a prospective winner, the feedback from the

auction will help prepare the bids for the subsequent bidding rounds.

After the auctioneer receives the bids, he solves the winner determination problem to
identify the winners at the current round known as the provisional winners. He
then provides some kind of feedback to support the bidders in improving their bids
in the next round. Based on the kind of information he reveals to coordinate the

bidding process, ICAs are further divided into prices-based or non-price-based.

Price-based iterative auctions are centralized auctions in which the auctioneer pro-
vides the bidders’ current winning bids and ask prices as feedback information.
Ask prices specify either a minimum bid price allowable for a bundle, or a minimum
percentage improvement over the highest current bid on a bundle. We denote the ask

price for bidder j and bundle S as Py ;(5).

Alternatively, non-price-based iterative protocols are decentralized auctions which ask
for bidders’ cooperation in finding a better allocation in each round. Two well known
members of this family are the Adaptive User Selection Mechanism (AUSM) [9] and
the Progressive Adaptive User Selection Environment (PAUSE) [55]. Though these

auctions avoid the exposure problem, they require full information revelation and
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introduce high complexity at the bidders’ side.

Having bidders cooperate on bid allocation makes the auction vulnerable to the so-
called threshold problem which raises when two small bidders bidding on separate
packages (implicitly) collaborate to overcome a third bidder bidding on a package
that contains both of their packages. The small bidders are interested in determining
what price each of them should pay to ascertain that the sum of both bids exceeds

the third bidder’s package price.

Despite the benefits of decentralized auctions, centralization is currently considered
more promising in the literature. Vagstad [108] claims that decentralization leads
to biased decisions (a discriminatory auction). Maurer and Barroso [70] discuss the
higher efficiency of centralized auctions for fostering competition in the market. For

this reason the concentration of this thesis is on centralized auction designs.

2.2.5.1 State of an ICA

The state of an ICA clarifies the specifications of the auction dynamics. This section

describes some main ingredients of the state of an auction.

Timing Issues

In consideration of the bidders’ bid submission timing, ICAs are regarded as either
continuous auctions or multi-round auctions( a.k.a. round-based auctions
or discrete auctions). In continuous auctions, bids are evaluated on arrival of
every new bid with continual updates to the current provisional winners and prices.

Continuous auctions contribute to a more dynamic environment, since the feedback
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information is kept up to date at every point in time throughout the auction. However,
continuous combinatorial auctions are usually considered impractical, since they lead
to high computational costs for the auctioneer (the winner determination must be
done whenever a new bid is submitted) and to high monitoring and participation
costs for bidders. Alternatively, in multi-round auctions bids are collected over a
period of a round before the bid evaluation is performed. All iterative auction designs

discussed in this thesis are round-based.

Information Feedback

The key challenge in the design of ICAs is providing information feedback to the
bidders after each auction iteration to guide bidding towards an efficient solution.
Information feedback about the state of the auction can contain pricing information,
the provisional allocation (if any), the list of bids submitted by other bidders, etc.
Information hiding can also be used to limit the possibilities of signaling between
bidders. While the purpose of providing this feedback is to help make the bidding
process more effective, it should be noted that the information released should not

facilitate bidders manipulation through signalling or formation of coalition.

Bidding Rules
Bidding rules define, what bids can be submitted or revoked in the current auction
state and how the auction state evolves throughout the auction. Ask prices are a

common form of bid improvement rules.

Activity Rules (a.k.a. Eligibility Rules)
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Activity rules enforce active bidding throughout the auction as opposed to the wait-
until-auction-end-and-snipe strategy often used by online auctions. Activity rules
were introduced in the early Federal Communications Commission (FCC) wireless
spectrum auctions and proved important. Decisions about appropriate activity rules
are often guided by a tradeoff between allowing for straightforward bidding strategies

and encouraging early bidding [87].

Allocation Rules

Allocation rules regulate the selection of the winning bids from the set of submit-
ted ones. Specifically, they determine the formulation of the winner determination
problem where the auctioneer’s procurement cost is usually minimized subject to the
bidding language rules and the inability to sell the same item more than once. In
spite of their practical importance, there is a gap in the theory of ICAs in regard to
business constraints. Kalagnanam et al. [44], Sandholm and Suri [99], and Collins et

al. [2I] analyzed the impact of business constraints on the solution and complexity

of the WDP.

Termination Condition (a.k.a. Closing Condition)

For a round-based auction design two termination conditions are of importance: con-
ditions to terminate each round known as round closing rules, and conditions to
terminate the whole auction known as auction closing rules. With round closing
we denote the point in time at which a specific auction round is declared closed, and
no more bids are accepted until the start of the next round. We call the time period
between the round start and the round closing round duration. After the round is

closed, the bid evaluation process, called round clearing, starts.
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Setting the round closing rules to control the duration of a round is not an easy task.
While giving time is necessary for the bidders to reveal preference elicitation in every
round, too much time harms the auctions by reducing the bidders’ interest and con-
centration on the bid preparation process. This problem magnifies towards the final
rounds of the auction when preference elicitation is expected to take less time. The
round duration is usually set to a fized-time round period. A Ready-in-round
strategy mitigates the problem by letting bidders communicate their state to the auc-
tioneer when they are ready. The round is then closed as soon as all participating

bidders have indicated their readiness.

After a round is closed and cleared, the auction either moves to the next round or
terminates according to the auction closing rules. In the latter case, the auction is
first closed (the bidders are informed that no more bids can be submitted) and the
final bid evaluation, called auction clearing, starts. The time period between the
auction start and the auction closing is called auction duration. Some common

auction termination rules include closure

e at a fixed deadline,

e in a limited time duration,

e after a maximal number of rounds,

e when no competitive bid is submitted,

e when the allocation does not change for a certain number of rounds.
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The first three conditions are examples of fixed deadlines and the last two items
demonstrate a rolling closure in which the auction remains open for as long as
competitive bids are submitted. Roth and Ockenfels [04] have studied the use of
deadlines versus rolling closures, as respectively practiced on eBay and Amazon In-
ternet auctions. Bidders on Amazon (with rolling closer) bid earlier than on eBay
(with fixed deadline). In fact, many bidders on eBay wait until the last seconds of

the auction to bid while Amazon auctions encourage earlier bidding.

Thus, fixed deadlines are useful in settings where bidders are impatient and unwilling
to wait a long time for an auction to terminate. However, they require stronger
activity rules to prevent the auction from reducing to a sealed-bid auction with all
bids delayed until the final round. In comparison, auctions with a rolling closure
encourage earlier bidding since they remain open for just as long as competitive bids
are submitted. In this thesis we use a rolling closure with the auction open for as

long as competitive bids are submitted.

Proxy Agents

With proxy agents bidders can provide direct value information to an automated bid-
ding agent that bids on their behalf. Usually bidders enter the maximum amount they
are willing to pay for a package to a proxy machine. This value is kept confidential.
The proxy agent places bids on behalf of the bidder using a specified automatic bid
increment amount. The proxy agent bids only as much as necessary to make sure that
the bidder remains the winner up to his maximum amount. If another bidder places
the same maximum bid or higher, the proxy sends out notification to the bidder to

either raise his price or that he will lose. In order to realize the elicitation and price
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discovery benefits of an iterative auction, the bidder-to-proxy language should allow
bidders to express partial and incomplete information to guarantee refining during

the auction.

Proxy auctions facilitate faster convergence with rapid automated proxy rounds, re-
stricting the strategy space available to bidders. In particular, proxy auctions usually
have better control to prevent shill bidding. Shill bidding happens when a person
publicly helps another person or organization without disclosing that they have a
close relationship. Shill bidders seek to provoke the bidding war among other par-
ticipants by submitting fake bids. eBay runs proxy auctions as a type of an English
second-price auction with the difference that the current highest bid is not sealed and
is always displayed. eBay forbids shilling; its rules do not allow friends or employ-
ees of a person selling an item to bid on the item. Ausubel and Milgrom [7] study
ascending price proxy auctions with package bids. They show that compared to the
Vickrey auction, the proxy auctions generate higher equilibrium revenues and are less

vulnerable to shill bidding and collusion.

Forthcoming concerns with the design of proxy auctions include when to allow proxy
information to be revised, what increment to use when increasing the prices, and
how to ensure trust and transparency since the bidding activity is transferred to
automated agents. Studying the effects of proxy bidding is out of the scope of this
thesis. For more information on the topic see Parkes and Ungar [85] and Ausubel

and Milgrom [7].
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2.2.5.2 Pricing Equilibria

As discussed in Section a crucial ingredient of an iterative auction design is the
definition of bidding rules. The literature on ICAs mostly focuses on designing these
rules to lead the auction to an efficient, rather than optimal, outcome. To coordinate
the bidding process toward an efficient outcome, price-based ICA implement various
price-update methods which characterize the rules by which prices are computed in

each round. Some major price update rules include:

e Greedy update. The price is increased on some arbitrary set (perhaps all) of

the over-demanded items or bundles.

e Minimal update. The price is increased on a minimal set of over-demanded

items, or based on the bids from a set of minimally under-supplied bidders.

e LP-based update. Given current bids, a linear program is formulated to find

prices that are good approximations for the equilibrium prices.

Based on the characterization of the ask prices, the hierarchical structure of the

pricing schemes is:

1. linear anonymous ask prices,
2. non-linear anonymous ask prices,

3. non-linear non-anonymous ask prices.

Below we define the linearity and anonymity of prices.
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Definition 2.14 (Linear (Additive) Ask Prices).
A set of ask prices are called linear if the price of a bundle is always equal to the sum

of the prices of its items, i.e., for a set of ask prices Py ;(S),

Pask,j(S) = Z Pask,j(k) v]a S.
keS

Non-linear ask prices are also called bundle ask prices.

Definition 2.15 (Anonymous Ask Prices).
A set of ask prices are called anonymous if the prices of the same bundle are equal

for every bidder, i.e., for bidders j,j and bundle S,
Pask:,j(s> = Pask,j’(s)-

Non-anonymous ask prices are referred to as discriminatory or personalized

ask prices.

The linear anonymous pricing scheme is the simplest, easily understandable, and
usually considered fair by the bidders. The communication costs are also minimized,
since the amount of information to be transferred is linear in the number of items.
Non-linearity is essential to allow bidders to express super- or subadditivity in their
valuations. Yet, it is often perceived as too complex by the bidders. Also, it increases
the communication costs, i.e., in the worst case, an exponential number of prices need
to be exchanged. Sometimes, non-linear anonymous prices are not sufficient to lead
the auction to competitive equilibrium. In this case non-linear non-anonymous prices

are introduced.
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Definition 2.16 (Competitive Equilibrium (CE) Prices).
The prices Py, and allocation X* = (ST,...,S%) are in a competitive equilibrium
(CE) if:

Wj(S;, Py,) = g%%([ﬁj(sa Py), 0] VjeN

II(X*, Ppoy) = maxIl(X, Ppyy)

Xex
where bidder j € N = {1,...,n}, set S is a subset of the set of items M = {1,...,m},

and S% denotes the bundle allocated to j.

Theorem 2.1 (Bikhchandani and Ostroy [13]). Allocation X* is in the competitive

equilibrium if and only if S* us an efficient allocation.

The idea of competitive equilibrium prices is to determine prices that characterize an
efficient allocation. In CE the utility of every bidder and the auctioneer revenue are
maximized at the given prices and the auction will effectively end since the bidders

will not be willing to change the allocation by submitting any further bids.

Non-linear discriminatory competitive equilibrium prices always do exist for CAP [87],
however, these prices can result in additional non-linearity complexity and are often
considered unfair by bidders [I4]. This motivates the auctioneer to construction ICAs
that update ask prices in the direction of possibly linear, or non-linear but anonymous
CE prices. Ideally, such prices converge not just to CE prices, but minimal CE prices

defined as follows.

Definition 2.17 (Minimal CE Prices).
Minimal CE prices minimize the auctioneer’s revenue I1(X*, Pp,,) on an efficient

allocation X* across all CE prices.
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Minimal CE prices construct an upper bound on the VCG payments. On a restricted
class of valuations, minimal CE prices are equivalent to VCG payments which is a
desirable property, since it imposes the incentive compatibility of the auction design
[87]. But, as suggested experimentally, implementation of the required bidders’ valu-
ation condition that implies equivalence of minimal CE prices and VCG prices often
fails in realistic ICA settings, making the minimal CE prices incapable of supporting

the VCG payments.

Parkes and Ungar [84] and Mishra and Parkes [73] designed a price-based ICAs by
characterizing universal CE (UCE) prices. UCEs imply stronger restriction on CE

and reveal enough information to determine VCG payments from these prices.

Definition 2.18 (Universal CE (UCE) Prices).

Prices P, are universal competitive prices if:

a) Prices Py, are CE prices.

b) Prices P_; 0y are CE prices for CAP(N\j), meaning that they support some effi-
cient allocation in CAP(N\j).

In words, UCE prices are CE prices in the main economy and in every marginal
economy. Note that UCE prices must support some efficient, not necessarily the

same, allocation in every marginal economy.

Theorem 2.2 (Parkes and Ungar [84]; Lahaie and Parkes [60])).
A combinatorial auction realizes the VCG outcome if and only if the auction also
realizes a set of UCFE prices and an allocation in the price equilibrium of the main as

well as all marginal economies.
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In general, UCE prices are greater than the minimal CE prices because they must
consider competition in the marginal economies in addition to the main economy.

Mishra [73] note that minimal CE prices are universal for a restricted set of valuations.

2.3 Major Challenges in the Implementation of It-
erative Combinatorial Auctions

Alongside their advantages, ICAs bring in a host of new challenges and questions.
This section is devoted to exploiting some major challenges faced by the bidders and

the auctioneer.

On the bidders’ side, the complexity is more of an issue in practice. Bidders must
elicit their valuation for an exponential number of items. Next, they need to com-
municate their preferences with the auctioneer in an efficient and yet concise way.
Above all, bidders should adopt an appropriate bidding strategy to pick and price

new bundles that increase their chances of winning.

Determining the optimal bid prices in various auction designs has been a concern in
classic game-theoretic auction research, but it is even more challenging in ICAs. For
example, it is possible that a losing bid becomes winning in a subsequent round with-
out changing the bid. The bidders face the problem of choosing appropriate bundles

and bid prices.

Once the bidders evaluate and report their desired bundles in CAP, the auctioneer’s
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job starts to find out the efficient allocation of bundles to the bidders, including the
possibility that he retains some items that maximize his revenue. As discussed in
Section [2.2.3] this reduces to solving WDP to decide what bundles to allocate to

which bidders based on their reported bid prices.

Intuitively, solving WDP seems hard because one would need to check for each subset
of the bids whether the subset is feasible (no bids within the subset share items)
and how much revenue that subset of bids provides. A feasible subset that yields
the highest revenue is an optimal solution. With K being the number of bids all
bidders submit, there are 2% subsets of bids, so enumerating them is infeasible. This
problem is even more critical in an iterative auction setting when WDP has to be
solved several times during the auction. This highlights the need for the auctioneer to
adopt appropriate solution methodology that takes reasonable time to investigate the
solution space. Decreasing the execution time required at each round of an ICA, re-

duces the total auction duration and thus improves upon the overall auction efficiency.

In order to computationally evaluate various solution algorithms for WDP, it is nec-
essary for the auctioneer to be aware of how the performance of algorithms compare
in a laboratory environment. Accessing records of the bidders’ previous bidding be-
havior is inapplicable first due to the limited access to the actual records of bidders’
previous behavior, and second due to the scaling problem that arises when acquiring
this data for various problem sizes. This brings up the need for the auctioneer to
simulate bidders’ bidding behavior, as realistically as possible, to better evaluate and

compare various solution methodologies.

47



Ph.D. Thesis Computational Sci. & Eng.

The auctioneer’s next bottleneck is determining the prices of items and/or bundles
in ICAs for accounting and costing purposes. Since in combinatorial auctions not all
items may show up individually in singleton bundles, the auctioneer is interested in
determining the price of individual items after the winner determination problem is

solved.

2.3.1 The Preference Elicitation Problem (PEP)

In an auction environment, bidders are usually unwilling to reveal their valuations
on all bundles. First, due to their privacy settings, agents may prefer not to reveal
their valuation information [96]. Second, solving the bidders’ valuation problem
requires selection and valuation of the bundles to bid for from an exponentially large
set of possible bundles. Determining the value for a single bundle can be computa-
tionally demanding for the bidders in many environments. For instance, in the airport
landing slot scenario, airlines would need to solve local scheduling, marketing, and
revenue management problems to determine their values for different combination of
slots [8]. Requiring this computation for exponentially many bundles is in many cases

impractical.
Iterative auctions are a promising platform to mitigate this hurdle by providing the

bidders with enough time to put together their valuations on the most interesting

bundles.
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2.3.2 Strategic Bidding

Once the valuations are determined, bidders need to strategically formulate their new
packages. This problem is also termed as the Bid Generation Problem (BGP).
BGP has attracted little attention in the auction literature. If bidders do not know
which bundles are most beneficial and how much they should bid for them, the re-
sulting allocation cannot be efficient. Hence, the BGP has to be addressed before a

combinatorial auction can be claimed to achieve efficiency.

Wang [110] stresses the need for research on the bid generation problem. He in-
vestigates the problem that bidders face for providing services in a transportation
combinatorial auction with OR bidding language and developed necessary conditions
for bid generation, but did not address the pricing problem. Lee et al. [62] consider the
carrier’s optimal bid generation problem in combinatorial auctions for transportation
procurement and design a carrier optimization model that integrates the generation
and selection of routes. Their model has not been validated in a multi-round setting.
Lorentziadis [69] considers the bidder pricing problem in the presence of a fixed cost
as a function of the unit costs, auction fixed cost, order quantities and the minimum
profit margin. Hsieh [41] proposes a model for finding both bundle prices and quanti-
ties for the bidder. The prices are the Lagrange multipliers derived from a Lagrangian
relaxation of the winner determination problem. He formulates a profit maximization

model for the bidders based on these prices. This model is studied in more detail in

Chapter
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2.3.3 Communication Complexity

Having prepared all the bids to be submitted, bidders need to communicate (in the
worst case an exponential number of) their bids to the auctioneer. This adds a
comminution cost on the bidders to report their bids to the auctioneer. Nisan [80]
addresses this problem through the design of bidding languages. Careful design
of bidding languages allows for compact representation of the bidders preferences to

ease the communication process. More details on the bidding languages is provided

in Section 2.2.3.3

2.3.4 Solving the Winner Determination Problem (WDP)

Considering bids as subsets of a set of items and their weights as the prices attached
to them reduces WDP to an integer linear programming model of a weighted set
packing problem which seeks the largest total weight corresponding to pairwise disjoint
weighted subsets of a set of items. NP-hardness of WDP can be deduced from that
of the weighted set packing problem [95]. There has been various methodologies
proposed for solving the winner determination problem in combinatorial auctions.

We classify and describe some major approaches below.

2.3.4.1 Implementation of Economical Limitations

One approach to solve WDP optimally and provably fast is restricting bundles upon
which bids can be submitted [95], 107, [76], 63, 14]. For instance, Bikhchandani and
Ostroy [I4] represent the problem of assigning a set of items to some bidders with

the condition that each bidder receives at most one subset as a linear programming
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formulation with integer optimal solution. The significance of their model is the ex-
istence of dual variables that reflect items’ prices and the bidders’ marginal product.
Necessary and sufficient condition for this link to exist is that the bidders are substi-
tutes meaning that the marginal product of a group of bidders is more than the sum of
the contributions of individual members of the group. The decentralized primal dual
procedure for solving the LP approaches to the pricing equilibrium corresponding to

social opportunity cost and yields an incentive compatible auction.

Despite the computational attractiveness due to the bidders’ limited preference elic-
itation opportunity, this approach suffers from economic inefficiencies, the same as

non-combinatorial auctions.

2.3.4.2 Application of Exact Solution Algorithms

Because WDP is NP-hard, an optimal algorithm for the problem will be slow on
some problem instances (unless P = NP). Exact algorithms solve the problem to the
optimal solution. Much of the research on solving WDP to optimality has been car-
ried out by applying artificial intelligence (AI) techniques such as intelligent search.
Direct application of commercial integer linear programming solvers also belongs to

this class of approaches.
Leyton-Brown et al. [67] work on multi-unit combinatorial auctions and introduce

CAMUS (Combinatorial Auction Multi-Unit Search), an algorithm for determining

the optimal set of winning bids in multi-unit combinatorial auctions. The method they
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propose is based on a branch and bound technique. Sandholm [I00] proposes a Depth-
First Branch and Bound algorithm (DFBnB) that branches on bids. Their algorithm,
also called CABOB (Combinatorial Auction Branch On Bids), beats CPLEX 8.0
execution time on some test sets, but there are several cases where it is drastically

slower.

2.3.4.3 Application of Approximation Algorithms

An approximation algorithm strives to solve an NP-hard problem in polynomial time
to an almost optimal solution with provable performance guarantee. Sandholm [9§]
and Lehman at al. [64] derive several approximation impossibility results for the
winner determination problem. In fact, application of approximation algorithms on
WDP can sometimes produce solutions which are quite far from the optimal [63)],
Chapter 12] and can lead to reducing the total revenue in a direct auction or increasing

the total cost in a reverse auction.

2.3.4.4 Application of Heuristic Algorithms

Heuristic algorithms trade off the expected cost of the additional computation (cost
of the computational resources and the cost associated with delaying the result) for
finding an exact optimal solution against finding a reasonably good near-optimal one.
Although heuristics do not generally provide a guarantee on the solution quality or

runtime, experimentally they prove useful.

One stream of research in this category concentrates on applying the Lagrangian
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relaxation (LR) followed by heuristic solution algorithms that maps the optimal La-
grangian solution on to the feasible region of WDP. Guo et al. [39] models the com-
binatorial auction problem as a set packing and applies the Lagrangian relaxation
method. Song et al. [T104] show application of Lagrangian relaxation on business-to-
business (B2B) procurement combinatorial auctions. Kameshwaran et al. [47] demon-
strate the design of progressive auctions using Lagrangian relaxation. They consider
procurement of multiple units of a single item with linear and piecewise linear supply

curves.

Hsieh [41] adopts a subgradient method to solve the Lagrangian relaxation problem
in a multi-unit multi-item reverse WDP. Based on the revelation of Lagrange multi-
pliers, the author presents a scheme to help bidders generate potential winning bids
in a multi-round auction format and proceeds to propose a heuristic algorithm to fix
possible infeasibilities resulting from the Lagrangian optimal solution. In Chapter
we comment on several inconsistencies within the author’s proposed problem formu-

lation, heuristic algorithm, numerical example, and empirical experiments.

A major advantage of implementing Lagrangian relaxation on ICAs is that the La-
grange multipliers act as approximates of the item prices. Once revealed to the
bidders as feedback in an iterative auction, they can help bidders modify their bids
accordingly. However, a considerable drawback of applying this methodology is that
classical methodologies such as the Lagrangian decomposition method and subgra-
dient method for solving the Lagrangian relaxation problem, usually consume too

much execution time. This time is further added to the time required by a heuristic
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algorithm which runs to fix infeasibilities from the Lagrangian solution, in case they
exist. In addition to the slow convergence rate, the convergence of these algorithms
is highly sensitive to the initialization of the parameters involved, i.e., an improper

initialization can cause the algorithm to diverge.

As much as the optimal Lagrangian values are valuable to us, solving the direct
relaxation problem is unappealing. Our proposed solution algorithm presented in
Chapter [3| provides a technique for solving the Lagrangian dual problem associated
with the WDP in a single iteration. Consequently, this method quickly provides
the desired information about the optimal Lagrangian objective value, multipliers,
and solution. This is followed by introducing an aggregate heuristic algorithm for
adjusting the solution to a near optimal one. Our extensive numerical experiments
illustrate the class of problems on which application of this technique provides near

optimal solutions in much less time as compared to the CPLEX solver.

2.3.4.5 Auction Simulation

It is necessary to generate artificial data that is representative of the sort of scenarios
the auctioneer is likely to encounter. Sandholm [97, 98, 100], Fujishima et al [35],
Boutilier et al. [15], deVries and Vohra [27] have suggested bid generation techniques
based on the number of bids and goods. These methods have drawbacks according

to [67].

e Which goods to request?
Most data generation techniques assume equal likelihood for items to appear in

bundles of the same size.
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e How many goods to request in a bundle?
These methods determine how many goods to include in a bundle independent

of which goods have already been selected for the bundle.

e What price to offer for each generated bundle?

These procedures suggest drawing prices randomly from

1. interval [0,1] [98],

2. interval [0,g] for g being the number of goods requested [9§],

3. normal distribution with mean 16 and standard deviation 3 [15],
4. interval [g(1-d),g(14d)] with d=0.5 [35],

5. a quadratic function of the prices of items included in the bundle [27].

Techniques 1 and 3 suffer from the fact that the price is independent of the
number of goods. In 2, mean and range are parameterized by the same variable.
Methods 1 to 4 do not consider which goods have been considered in the bundle
when pricing them. In technique 5, bundle prices are expressed as a function of
the length of the bundle which is hard to control as the number of the items in

the bundle increases.

Leyton-Brown et al. [67] provide a Combinatorial Auctions Test Suite (CATS) which
attempts to model realistic bidding behavior via a set of distributions. This facilitates
the study of algorithmic performances and their comparison against the previously
published results. The suite includes distributions based on real-world applications.
In most of the distributions, bids are generated from a graph that depicts the eco-
nomical relationships between items. In each bid, ceratin goods are more likely to

appear together when there exists complementarities between them. In addition, the

95



Ph.D. Thesis Computational Sci. & Eng.

number of goods to be included in each bundle relates to which goods it contains.
Once the bids are generated, price offers are related to goods included in the bundle.
CATS has the flexibility to constitute subadditive, additive, or superadditive price

offer values in the number of goods requested.

The empirical study of CATS reveals that several CATS instances are quite easy for
ILOG CPLEX. Since CATS tries to simulate realistic bidding behavior, this implies
that practical problems are usually easy to solve. Also, the hardness level can vary
significantly from instance to instance despite fixing the problem size and the distri-

bution [66].

We use CATS throughout the experimental study of our proposed algorithm to gen-
erate combinations of items with various cardinalities of the bids submitted, and a
real-valued number associated to each bid to describe the price asked for it. We are
not concerned with the hardness level of the data generated by CATS since our algo-
rithm is compared against CPLEX on the same data set. We consider a subadditive
environment to simulate the objects’ complementarities in a reverse combinatorial

auction environment.

2.3.5 The Pricing Problem

After an auction terminates, it is valuable to determine the value of the good and/or
bundles for clarification of auction results. These prices can also help as guidelines for
future auctions. Based on the preliminaries discussed in Section [2.2.5.2 we categorize

the literature on pricing ICAs into two major categories: bundle pricing and item
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pricing approaches.

2.3.5.1 Bundle-Pricing Approaches

With bundle bids, setting ask prices for individual items is not obvious and often even
impossible [I4]. Additionally, ask prices may need to be personalized, i.e., different
bidders get different prices for the same items or bundles, as opposed to the traditional
anonymous prices. Bundle pricing, as its name suggests, is used to compute a final
price for each bundle. Due to the overlap of some bundles, bundle-pricing approaches

require additional assumptions that:

e every bidder must bid on every bundle,

e cach bidder gets, at most, one bundle in the resulting allocation.

In order to avoid evaluating all bundles, a bidder can report only valuations for
interesting bundles and have a computerized agent fill in valuations for the remaining
bundles according to some rule. Condition two implements XOR condition to ensure
that the bidders are able to receive multiple items only when they have paid for the
complementarities among them. The ideal goals for determining bundle prices for

combinatorial auctions are to reach

e market clearing prices at which the price of a winning package is not less than
the sum of all prices of the goods it includes, and the price of a losing package

is less than this sum.

e incentive compatibility prices that allows straightforward bidding with truthful

valuation revelation.
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Leonard [65] investigates incentive compatible prices of the well-studied assignment
problem in operations research. The assignment problem is an integer programming
problem that is totally unimodular and hence can be solved as a linear programming
problem. Leonard’s paper identifies a set of shadow prices which maximize the sum of
the dual variables. The author shows that not only do these prices clear the market,

but also provide incentive compatibility.

Wurman and Wellman [I12] discuss the bundle pricing problem for WDP with XOR
bidding Language. They implement an LP-based method to update non-linear but
anonymous price approximations. Prices converge to market clearing prices, but they
are not incentive compatible. After the procedure, every winning or losing bundle is
assigned a price. This method prices winning as well as losing bundles. The prices for
winning bundles are the result of the dual of an assignment problem. For the losing
bundles, they can be infinitely large so that no bidder is interested to buy them. As
a result, prices for the losing bundles are considered less informative of the true value
of the bundles than those for the winning ones. Without the information about which
bundles are won and which ones are not, these prices have little value for helping the

potential bidders valuate different bundles.

Bikhchandani and Ostroy [14] discuss the package assignment problem with the XOR
bidding Language. They reserve packages, rather than bundle, for a specific bidder
instead of everyone. The authors add auxiliary variables to the original integer pro-
gramming (IP) problem. Using the linear programming (LP) duality they provide the

sufficient and necessary condition on the buyers’ valuation for the packages to have
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a market-clearing and incentive compatible property. This valuations requirement is
known as buyers are substitutes and means that the marginal product of any buyer

subset is greater than the sum of its individual buyer’s.

The authors prove that under the condition that buyers are substitutes, the LP re-
laxation gives integer solutions and the optimal value of the dual variables give the
Vickrey discount for each bidder. Another paper by Bikhchandani et al. [I3] proposes
a model that also has an integral optimal solution. Under the condition that buyers
are substitutes, the dual variable are exactly the Vickrey discount of the bidder. The
prices for the winning bundles are derived by subtracting the Vickrey discount from
the winners bid. Despite the economical attractiveness, since both models introduce
a variable for every feasible integer solution, the number of variables needed for the

WDP is exponential in the number of bids.

Parkes [86] proposes a bundle pricing scheme as part of an iterative ascending auction
model which approximates the VCG outcome. Parkes argues that while the proce-
dure in Wurman and Wellman provides the VCG outcome that incentivizes truthful
bidding, it needs complete information of bidder evaluation on every bundle. Bidders

may be unable and/or unwilling to reveal their full valuation.
In this approach, Parkes imposes the same set of assumptions as Wurman and Well-

man to propose a two-stage procedure with iterative ascending combinatorial auc-

tions. An iterative combinatorial auction runs in the first stage which terminates
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with an outcome close to the optimal allocation. In the second stage Vickrey dis-
count is computed for the winning bidders whose absence from the auction causes
some other winning bidders to lose. While the process terminates with an approxi-
mation of the VCG prices, bidders do not need to reveal complete information of their
valuation at the beginning of the auction. VCG approximation is only perfect when

the bid increment goes to zero in which case the iterative bidding process gets too long.

Mishra and Parkes [74] design an ascending price auction which seeks for non-anonymous
universal competitive prices (UCE). Their auction design calculates payments of buy-
ers from the final UCE price and allocation and implements the VCG outcome under
any valuation profile of buyers. This work assumes XOR bidding language with no as-
sumption on bidders’ valuations. The proposed approach is particularly useful when
no CE price supporting VCG payments is observed, i.e., substitutes condition on val-
uations does not hold. The authors relate this work to the work of de Vries et al. [31]

and show that when buyers are substitutes, their auction converges to a UCE price.

deVries, Schummer and Vohra [27] construct non-anonymous prices for an ascend-
ing auction for heterogeneous objects. The auction assigns prices to bundles and
asks bidders to report their preferred bundles in each round. Bidders’ prices follow
a minimal update pattern on a set of minimally undersupplied bidders. All bidders
in a minimally undersupplied set face higher prices on the bundles for which they
submitted a bid. The auction realizes VCG outcome for a limited class of problems.
The authors also show in [26] that a stronger condition on the submodularity of the

coalition values needs to be satisfied to achieve the VCG outcomes with an ascending
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price auction.

Bichler et al. [I2] experimentally compare three selected linear price ICA formats
based on allocative efficiency and revenue distribution using different bidding strate-
gies and bidder valuations. The authors discuss the efficiency of computational sci-
ences and methods as strong alternatives to complement the theory and experiment
in combinatorial auctions, and understand phenomena that have been shown to be
difficult to analyze. Specifically, using computational methods, they show that ICA
designs with linear prices perform very well for different valuation models even in
cases of high synergies among the valuations. They observe, however, significant dif-

ferences in efficiency and the revenue distributions of the three ICA formats they use.

Scheffel et al. [12, 10T] propose an interesting discussion on the comparison of the
auction designs imposing linear versus non-linear package prices. They analyze ag-
gregate metrics such as efficiency and auctioneer revenue for small- and medium-sized
value models. As already seen, based on strong theoretical foundations, auction for-
mats such as ascending proxy auction and iBundle result in Vickrey payoffs when the
coalitional value function satisfies buyer submodularity conditions and bidders bid
their best responses. These auction formats are based on nonlinear and personalized
ask prices. The authors show that experimentally these approaches lack efficiency as
compared to some other linear price auctions. In a lab environment, iBundle requires
a large number of auction rounds and fails to meet the buyer submodularity condi-
tions in most realistic settings. The bidders’ also fail to strictly follow best-response

strategies in difficult decision situations. In fact, the bidder find it difficult to choose
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one or more bundles from a set that is exponential in the number of items and attach
a bid price to each bundle). To remove this extra complexity, we also follow a linear

price structure in this thesis.

2.3.5.2 Item-Pricing Approaches

The bundle pricing approach gives prices only for bundles. So, if no winning bundle
contains only a single component of interest, bundle pricing is unable to provide a
way to determine an individual component price. Several researchers have worked on

pricing individual items in a non-combinatorial environment.

Kelso and Crawford [56] study the labor markets with heterogeneous firms and work-
ers and perfect information. They show that equilibrium in such markets exists and
is stable provided that all workers are gross substitutes from each firm’s standpoint.
They use a greedy update method to provide non-anonymous prices for individual

items.

Demange, Gale and Sotomayor [30] define a minimal price update, increasing the
prices on a minimal overdemanded set of items for the assignment model. Minimal

price updates are adopted to drive individual item prices towards minimal CE prices.
Gul and Stacchetti [38] study the problem of efficient production and allocation of

indivisible objects among a set of consumers. They propose conditions which are

equivalent to the gross substitute (GS) condition of Kelso and Crawford with the
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assumption of quasilinearity. Under the GS condition, the auction converges to the

smallest Walrasian prices which in turn corresponds to the VCG payments.

Milgrom [72] reviews the uses of economic theory in the design and improvement of
the Simultaneous Ascending Auction (SAA) which was developed initially for the sale
of radio spectrum licenses in the United States. At each round bidders simultaneously

make sealed bids for any items in which they are interested.

Ausubel [5] proposes a dynamic design for auctioning multiple heterogeneous com-
modities. An auctioneer wishes to allocate one or more units of each of K hetero-
geneous commodities to n bidders. The auctioneer announces a vector of current
prices, bidders report back quantities demanded at these prices, and the auctioneer
adjusts the prices. Nevertheless, with pure private values, the proposed auction yields

Walrasian equilibrium prices.

Ausubel et al. [6] propose a two stage combinatorial auction called Clock-Prozy Auc-
tion. At the clock stage only single-item bids are allowed and at the proxy stage a
round of sealed-bid second-price auction takes place. This auction also reveals price

information on individual items.

Cramton [25] designs Simultaneous Multi-Round Design (SMR) which allows only
single-item bids, is iterative, and has an eligibility-based stopping rule (i.e., a use-it-
or-lose-it feature) driven by a minimum increment requirement for new bids. This

auction runs multiple single-item auctions simultaneously and was extensively used
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by the FCC to run early bandwidth auctions. SMR auctions can take a very long

time to complete.

Determining the individual prices in a combinatorial environment is not a trivial task.
Kwasnica et al. [58] adopts an LP-based price update method and adjusts prices to
find good approximations to CE prices given current bids and the current provisional
allocation in a multi-object auctions. The authors merge the better features of the
Simultaneous Multiple Round (SMR) [25] and the Adaptive User Selection Mecha-
nism (AUSM) of Banks et al. [9] and add one additional feature. The new design is
called the Resource Allocation Design (RAD) auction process. For substitutes val-
uations, this auction reduces to a simultaneous ascending price auction. Like SMR
design, RAD is iterative, has an eligibility-based stopping rule, forces a minimum
bid increment, and computes prices for each item for sale and like AUSM design, it
allows package bidding. To approximate the item prices, this approach attempts to
compute a set of prices such that for any winning bundle the sum of the prices of its
comprising individual items is equal to the bid and for losing bundles the difference is
minimized. The authors show that RAD performs better than both SMR and AUSM
achieving higher efficiencies, lower bidder losses, higher net revenues, and faster times
for completion without increasing the complexity of a bidders problem. However,

formal convergence properties have not been proved for RAD.

O’Neill et al. [83] discusses pricing a more general resource allocation problem with

a non-convex objective function. The main idea is to associate a cost with each

64



Ph.D. Thesis Computational Sci. & Eng.

positively valued integer variable. They show that the optimal solution to a lin-
ear program that solves the mixed integer program has dual variables that have the
traditional economic interpretation as prices and clear the market in the presence
of non-convexities. After solving the resource allocation problem, a new equality
constraint is added for each positively valued, optimal integer variable that sets the
variable to its optimal value. Next, they solve the dual for the new LP which has the
same optimal solution as the original IP. The price is the sum of all composing items

plus the additional dual variable corresponding to the integer variable.

Xia et al. [I13] show that ONeill [83] prices are not unique, and the prices corre-
sponding to the unallocated items are always zero. The authors also prove that
under special circumstances the ONeill [83] and DeMartini prices in [58] are in fact
equal. This includes when all the goods are sold in the optimal allocation as well as

when some goods remain unallocated with zero DeMartini prices.

Jones and Andrews [43] use the maximum likelihood to estimate the distribution of
item prices based on final winning bundle prices. Aparicio et al. [3] present an al-
gorithm for solving an iterative multi-unit combinatorial auction. At each round of
the auction, the auctioneer computes a linear anonymous price for each item using a

DEA model and pushes bidders to express bids according to them.
Most auction designs providing item-price feedbacks concentrate on combinatorial

auctions with a single unit of multiple heterogeneous items. Iftekhar et al. [42] ad-

dress this gap by evaluating several feedback schemes or algorithms in the context
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of multi-unit auctions. They numerically evaluate the algorithms corresponding to
different scenarios that vary in bidder package selection strategies and in the degree

of competition.

Despite the research on item/bundel pricing methodologies as described in Section[2.3.5]
and the Section suppliers’ bidding strategy techniques, there is a lack of stud-
ies that look at the integration of the two methodologies: develop an appropriate
pricing scheme for the auctioneer based on which the bidders package and submit
new more competitive bids. In Chapter |4 we simultaneously look at the auctioneer’s
and the bidders’ utility maximization optimization problems and propose a provably

convergent iterative auction.

2.4 Divisible-Bid Auctions

When auctioning off multiple items, it is crucial to understand the intrinsic physical
nature of the item(s) that are up for bids. When a seller offers some amount of a good
for sale, the auction is called divisible or continuous since the feasible volumes of
offers are continuous. Auctions of divisible goods are commonplace in markets for
financial securities, energy products, and environmental permits. In such auctions,
the bids specify quantities of the divisible goods: The shares of stock, the megawatt-

hours of electricity, or the tons of emissions.

When all the goods are divisible, the WDP is a linear programming problem. The
value of LP dual variables also gives individual prices, and the bundle prices from the

dual problem are asymptotically incentive compatible. When goods are #ndivisible

66



Ph.D. Thesis Computational Sci. & Eng.

or discrete, the duality gap of integer programming (IP) assures that equilibrium

prices exist only in special cases [79)].

Abrache et al. [I] pointed out that the languages previously considered in the lit-
erature (as described in Section were formalized for combinatorial auctions
with indivisible items. In this work, the authors propose a two-level bidding language
appropriate for intrinsically divisible items (e.g., electricity power, telecommunication
capacity, assets in financial markets). The authors claim that the new language raises
theoretical and practical challenging issues; for instance, the solutions times for large
problems is huge which is inefficient. Kaleta [45] introduce three families of bidding
languages for divisible goods based on the concepts derived from combinatorial auc-

tions.

It is noteworthy to mention that ¢tem divisibility should be clearly distinguished
from bid divisibility where the latter refers to partial acceptance of the bids sub-
mitted. In fact, for most of the literature on combinatorial auctions, researchers have
concentrated on the design of bidding languages for indivisible assets and only very

few have considered divisible goods.

While auctions for divisible goods allow for partial acceptance of a continuous asset,
auctions with divisible bids permit partial acceptance of a package of items. Partial
acceptance of bids mitigates the burden on suppliers to provide exponentially many
indivisible bids (with respect to the number of items in the auction) to completely

describe their cost structure.
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For multiple units of the same item, suppliers are able to express a volume discount
property that is buy more and pay less in a so-called Discount Volume Awuctions.
Several discount volume auction studies have assumed the suppliers use piecewise
linear cost functions to express their bids [47, 54, B3, B2]. In [47] Kameshwaran
and Narahari propose a Lagrangian-based heuristic algorithm to solve the winner
determination in a procurement discount volume auction. Kameshwaran et al. [54]
design multi-attribute procurement auction allowing the bidders to bid on multiple at-
tributes. In [53, [52] Kameshwaran and Narahari consider several solution algorithms
for the underlying NP-hard winner determination problem. Proposed procedures in

[47, 54, (53], 52] do not allow inclusion of more than one item in the auction.

As opposed to discount volume auctions, Discount Auctions are proposed to facil-
itate submission of bids which consists of individual costs of heterogeneous items and
a discount function specifying the discount over the number of items. Some studies
focused on the case of discount auctions for procurement of a single unit of multiple
heterogeneous items [48], [49] 50, 46]. The discount function is solely dependent on the
number of items included in a package, i.e., the auction facilitates paying less for buy-
ing more. This bidding language disregard the complementarities of items. Suppliers
are no longer able to convey their desire to receive a package of items simultaneously,
and so this is a non-combinatorial auction. Moreover, the discount rate is equivalent
among all items. The suppliers’ offer a discount rate for procurement of a ceratin

number of items, irrespective of which items.
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Extending partial bid acceptance on auctions with multiple units of multiple items,
Bichler et al. [11] introduce an expressive bidding language which allows for quantity
discount. Based on the introduced bidding language, they design and analyse a sup-
plier quantity selection problem (SQS) which allows the buying managers to decide
which suppliers should provide how many units of what items. Despite consideration
of multiple units of heterogeneous items, this work does not address package bidding.
Suppliers are unable to communicate their interest in receiving packages of items and

thus suffers from the exposure problem inherent to non-combinatorial auctions.

An important marketplace that considers divisible bids on packages of multiple units
of multiple items is in truckload transportation (TL) auctions where the carriers
express preferences for serving transportation lanes. Remli and Rekik [93] consider
the winner determination problem in the context of TL. They assume carrier ¢ submits
a set of bids B;. With a flexible type of bidding language, a bid b € B, is defined
by a tuple ({y, [LBy, UBy), ciy) where £y, is the set of lanes that carrier t offers to
serve in bid b, LBy, is the minimum volume that the shipper guarantees to the carrier
if bid b wins, U By, is the maximum volume that the carrier can ship if bid b wins,
and ¢y, is the price asked by carrier ¢ in bid b for transporting one unit volume on
each lane [ € {. As an example, the first bid submitted by carrier ¢t; may look like
by = ({4,5},[2,4], 10) which indicates that ¢; offers to ship a volume varying between
2 and 4 units on each of lanes 4 and 5 with a price of 10 for a unit volume of shipment.

With the proposed bidding language,

e the carrier is assigned to serve equivalent volumes on all lanes he acquires in

the bid he submits. In the above example for instance, the volume he will have
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to serve is either 2, 3, or 4 for both lanes 4, and 5. It is not possible for him to

express greater/lower capacity to serve some of the lanes in the package.

e the carrier has to serve all the lanes which are complimentary to him at an equal
price. For instance, he will have to serve lane 4 and 5 both at the fixed cost of

$10 per unit. It is possible that serving a lane costs the bidder more/less.

e the bidding language does not allow for a precise declaration of quantity dis-
counts. For instance, a bidder is not able to express a bid that lets him cover
lane 4, with a quantity interval of [6,8] and lane 5 with [6,10], charging $8 per
unit of shipment. In other words, the quantity discount comes with serving
lanes (that are complimentary) with the exact same lower and upper bounds.
It does not allow for expressing non-identical lower and upper shipment bounds

when providing quantity discounts on lanes in the same package.

Lim et al. [68] design a shipper’s transportation procurement model. The auctioneer
announces the requirements for freight services for a planning duration. The carriers
who are assumed to serve different groups of lanes respond to the auctioneer with
quotes of freight rates that best suit their bidding strategy. This work preserves the
complementarity of serving groups of lanes, however, it does not account for the ex-

plicit representation of quantity discounts.

In the study of Chilean auction for school meals, Olivares et al. [82] state that package
bidding should be flexible enough so that firms can express their cost synergies due
to economies of scale, and take advantage of this flexibility by discounting package

bids for strategic reasons. The authors perform analytical studies on the submitted
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bids to better understand the bidding behaviour of the bidders. However, the study

is performed on single-unit first bid auction and is valid only on this type of auction.

The Mars-IBM team [40] created a procurement auction Web site that enables buy-
ers to incorporate complex bid structures (such as bundled all-or-nothing bids and
quantity-discounted bids) and business constraints into strategic-sourcing auctions.
The Mars procurement auction does consider divisible bids with quantity discount.
However, the designed model is geared for multi-units single-item auctions. Even
though suppliers benefit from the opportunity to give a discount for the provision of
larger units of items, they are deprived from taking advantage of complementarities

among different products.

Caplice and Sheffi [17] classify the bidding languages for TL auctions as either static
or flexible. Static bids reflect the indivisibility of bids, i.e., it is the carriers who de-
termine the specific volume level awarded on each lane, not the shipper. With flexible
package bids, by contrast, the shipper determines the volume level awarded to each
bidder taking into account the carriers minimum/maximum shipment volume as well

as per load rates.

In Chapter [5| we extend this language to allow suppliers to express quantity discounts
for provision of large quantities of items. We consider suppliers’ bids as piecewise
linear price functions that specifies, for each item in the package, the per-unit price
for the proposed range of supply. Based on this bid submission rule, this chapter

compares the computational efficiency of WDP with divisible as opposed to indivisible
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bid submission. We observe that a much greater CPU time is required by CPLEX
12 to solve the indivisible formulation. For two suppliers, each submitting two sets
of bids for two items, the time ratio is 1.1. This ratio increases to 856.05 for five
suppliers, each submitting five sets of bids on five items. Next, we generate multiple
profit maximization formulations for the suppliers based on their risk-taking attitude
and proceed to compare the suppliers’ profit maximization problem in a divisible
versus an indivisible auction environment. Empirically, we observed that a divisible-
bid auction provides suppliers with a higher average profit value and lower bundle

prices.
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Chapter 3

A Lagrangian Heuristic for the
Winner Determination in
Procurement Combinatorial

Auctions

Reverse combinatorial auctions have been widely used in various real world applica-
tions. In companies which run combinatorial auctions in procurement of goods or
services, the procurement manager serves as the auctioneer. He usually preserves a
reservation cost which is the maximum amount he is willing to pay for one unit of an
item. The organizations that compete to provide the items needed by the auctioneer
are the suppliers. Through the bid submission, suppliers clearly specify which bundles
of items they are willing to provide, how many units of each item they would include,

and how much they charge in order to provide what they offer. The price each bidder
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attaches to his package is known as the price offer.

We start this chapter by introducing the winner determination problem in procure-
ment. As discussed in Chapter [2] the problem of finding the winners in a combinato-
rial auction is computationally NP-hard and inapproximable in polynomial time. We
highlight the virtue of implementing Lagrangian relaxation on WDP and compare

the optimal solution it provides against that of linear relaxation.

In order to solve the Lagrangian relaxation problem, we propose an efficient initializa-
tion of the Lagrangian multipliers. Unlike traditional methodologies for solving the
Lagrangian relaxation problem that involve several iterations to attain the optimal
Lagrangian multipliers, our techniques solves the Lagrangian relaxation problem in a
single iteration. The optimal Lagrangian solution attained is further deployed as the
start point of a heuristic algorithm framework. The heuristic algorithm systemati-
cally adjusts this solution until feasibility of all primal constraints is attained. The

results of this approach are compared against CPLEX 12.

3.1 Problem Formulation

Assume M = {1,2,..,m} is the set of items and N = {1,...,n} is the set of bid-
ders who compete to purchase them. Each bidder j € N submits a set of package
bids S € M each of which contains a subset of items selected by bidder j and a
corresponding price value Pjg, also known as price offer or simply price. The bid-
ders’ prices on bundles are non-linear. Thus, for an arbitrary bidder j and sets

S, S1,52(8, 51,52 € M), with S = S1 U S,, we have p;s # pjs, + pjs,, where pjg is
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the price for bundle S offered by bidder j. The prices are non-anonymous meaning
that they allow discriminatory pricing so that p;s # pys for bidder j # j'. Let g;js
be a non-negative integer that represents the quantity of item ¢ that bidder j offers

in bundle S and d; be the auctioneer’s demands of item 7 with 0 < g;;5 < d;.

The auctioneer’s problem of deciding which bidders should supply how many units
of what items and at what price with the objective to minimize the total cost of
procurement while satisfying the auctioneer’s demand is known as the reverse (or
procurement) winner determination problem (WDP). When bidders are allowed to
win any number of the packages they bid on, the winner determination problem
is referred to as W DPpg. In a procurement setting WD Pyg is formulated as the

following integer programme.

min  YjenXscm PjsTis
s.t. EjEstai qijSTjs Z dl Vie M (31)
;5 € {0,1} Vj € N,VS C M.

The set of constraints (known as demand constraints) state that at least d; units of
each item has to be provided at the optimal solution. We note that we are assuming

free disposal, i.e., an optimal allocation may over satisfy demand.
In some applications of combinatorial auctions it is preferred to implement an XOR

bidding language to allow each bidder to win at most one bundle. To take into account

this requirement, we need to add one more constraint in (3.1)) to formulate WD Pxor
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as follows.

min EjeNZSQM ijIjS

s.t. Ejestgi qi;ST;s >d; VieM (1) (3 2)
ZSQM Tjs <1 Vj e N (2)
25 € {0,1} Vj e N,¥S C M.

Constraints (1) and (2) in are respectively referred to as the demand and supply
constraints. The XOR bidding language in a procurement W DP setting has the
potential to increase the bidders’ precision since at most one of their submitted bids
gets accepted. Moreover, it does not allow bidders to obtain a set of items as singleton

bids without having paid for the complementarities.

3.2 Application of Lagrangian Relaxation on Pro-

curement WDP

Lagrangian relaxation is a technique which approximates a difficult problem by re-
laxing it to a simpler one. The method removes some of the problem constraints and
penalizes their violations by adding them to the objective with weight parameters
known as the Lagrangian multipliers. The Lagrangian multipliers impose a cost on
the relaxed constraints’ violations. Thus, each time a solution does not satisfy a re-
moved constraint, a penalty is added to the objective. The choice of the constraints
to relax is made such that the relaxed problem is simpler to solve. In other words, the
Lagrangian relaxation aims to relax some hard constraints, so that the optimization

over the remaining set of constraints is easy.
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Applying the Lagrangian relaxation on reverse combinatorial auctions provides us
with an approximate solution to the problem and a lower bound on the total cost of
procurement. The Lagrangian multipliers corresponding to the first set of constraints
determine how much it costs to have one more unit of an item and thus can be in-
terpreted as the item prices. We make use of this information in an iterative auction
framework, to give feedback to the bidders about the item prices so that they will
have a better sense about each other’s valuations. This information is economically
valuable since it can initiate an iterative auction wherein the bidders are provided
with the opportunity to modify their bids several times throughout the auction before

finalizing them.

As mentioned, Lagrangian relaxation finds an approximation to the problem but does
not guarantee providing an optimal one. In fact, it may not even produce a feasible
solution. In case the solution provided by the Lagrangian relaxation is not feasible, we
apply a heuristic algorithm to fix the infeasibilities and find a feasible (near) optimal

solution.

3.2.1 Formulating the Lagrangian Relaxation Problem

Consider the winner determination problem as modeled in (3.1)). Let X = [z;5]jen.5cm
be the vector of assignments and A be the non-negative Lagrange multipliers assigned
to the first set of constraints. This results in the formulation of the Lagrangian re-

laxation function as

LX) =D piszis+ D Nildi = Y > qijsags),

JEN SCM iEN JEN S3i

7



Ph.D. Thesis Computational Sci. & Eng.

and the Lagrange dual function or simply the dual function as

g(A) = min E;enEscm pjstjs + DienAi(di — XjenXssi ¢ijsTis)
st. x5 €{0,1} Vj e N,VS C M.

(3.3)

The Lagrangian dual function is also referred to as the subproblem. For each value
of the Lagrange multiplier, we obtain a lower bound on the problem’s optimal value.
The optimization problem that seeks to find this value is the Lagrangian dual problem.

For the Lagrange function (3.3)) the dual problem is formulated as

max  g(A) (3.4

st. A>0.
Relaxation of the demand constraint in an XOR bid setting can be done in a similar
way with the exception that the subproblem ({3.3) is solved in the existence of the

additional supply constraints.

3.2.2 Solving the Lagrangian Relaxation Problem

One approach for solving the Lagrange dual problem is applying the Lagrangian
Decomposition Method [37]. This method starts with arbitrary values of Lagrange
multipliers A to achieve an optimal solution to subproblem ([3.3)) which can be refor-

mulated as

g(A) = min ZJGNESQM(PJS - ZieN)\in‘jS)xjs + Yiendi;
st. wx;5€{0,1}  VjeN,VSC M.

(3.5)
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Define 6 as

0 = minx (XjenSscm(Pis — Liemijshi)Tjs).

Once the subproblem is solved, Lagrangian decomposition proceeds to reformulate

the Lagrangian dual problem as the following linear programming

max 6 + EzeNdzAz
st. 0+ XiemAiXjenXs3iGijsTis < XjenSscM PisTjs (3.6)

A >0 1€ N.

Let X* be the optimal solution from the subproblem . This solution is inserted
into the dual problem to find out the multipliers that would maximize the
objective value at that point. The optimal multipliers derived are inserted back
in the subproblem to find the optimal solution. The procedure continues iterating
between solving and , changing the objective value of the first and adding
one more constraint to the second, until the objective values of the two problems

converge. The bound achieved is the Lagrangian dual bound.

3.2.3 Analysis of the Lagrangian Relaxation Bound

This section compares the Lagrangian and linear relaxations of a multi-unit multi-
item reverse WDP with and without free disposal in an OR and an XOR bidding
environment. Let us define problem (3.2)) as
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min PX

st. X >d
RX <1
Xbinary,

where, the quantity matrix Q and the supply matrix R are defined as

Q=1[Q1,...,Qn Q;=lagsliemscn Vji=1{1,...,n},

R = Rj:[TjS]SgM Vj:{l,,n}

0 R,

With K being the total number of subsets, matrix Q is m x Kn and R is n x Kn.
Each quantity value ¢;;5 identifies the quantity of item ¢ that bidder j supplies in

bundle S. Also, ;5 = 1 if supplier j submits a bid on bundle S and is 0 otherwise.

Also, let q;¢ and rjg respectively define the columns of () and R corresponding to
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bidder j’s bids on subsets S, S C M, i.e.,

0
q1js 0
qu = yTjs = Tjs
qmjs 0
1xm
0
o - 1xn

The following propositions provide some properties of relaxing demand constrains in
an OR, demand only and both supply and demand constraints in an XOR setting.
Note that the Lagrangian multipliers associated with the demand constraints are
interpreted as item prices for an auction environment. Thus, we are not interested in

solely relaxing the supply constraints in XOR.

Proposition 3.1. Let A* and v* be the optimal values of the Lagrangian multipliers
respectively associated with demand and supply constraints. We can find closed form

optimal solution for the Lagrangian relazation problem of

1. WDPpr with relaxed demand constraints as:

*t
0 otherwise,
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2. WDPxor with relaxed demand and supply constraints as:

*t *t
. 1 ij—A qjs—l-’y Tj5<0
0 otherwise,

8. WDPxor with relazed demand constraints as

B 1 pjs— A Qs = ming{p;s — A" st} <0

x;s =
0 otherwise.
Proof. First, let us assume a free disposal state where the Lagrangian multipliers

corresponding to demand constraints take on non-negative values. To prove part 1

we consider the Lagrangian optimization problem

g(A) = infx L(X, )

= infx{PX + A'(d — QX)}

=d'A +infx(P — A'Q)X (3.7)
>is(pis — Nda;s) pjs —A'qs <0

=d'\+
0 0.10.

maxy g(A) = g(A") provides the optimal solution for (3.7]). Therefore, g(\) is maxi-

mized when 27 is set to one for negative values of pjs — q;gA™ and zero otherwise.

To prove part 2, consider the WDPxor as formulated in (3.2.3). Assigning non-

negative Lagrangian multipliers A and = respectively to the demand and supply
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constraints in W D Pxog leads to the Lagrangian subproblem

g(A,y) =infx L(X, A7)
= infx {PX + A'(d — QX) +~v/(RX — 1)}

> is(Pis — Najs +'rjs) pis — A + ' <0

=d'A— 1y +
0 0.W.
(3.8)
g(A*,~v*) optimally solves the Lagrangian relaxation problem.
Finally, for part 3 the Lagrangian subproblem is
g(A) =infx{PX +X(d - QX)|RX < 1,X binary} 39)

=d'A +infx{(P — XNQ)X|RX <1,X binary}.

In order to maximize g(\) it suffices to consider the minimum value of p;g — )\*tqj S
for each bidder j € N. If this values is negative, we set the corresponding variable to
1 and otherwise to 0. This associates at most one bundle to each bidder 7 and thus

g(X") provides us with the optimal solution. O

Proposition 3.2. The Lagrangian and linear relaxations of reverse WDP yield equiv-

alent bounds.

Proof. According to Theorem 16.10 in [2], the linear and Lagrangian relaxation
bounds equal if the Lagrangian subproblem satisfies the integrality property, i.e.,
LP relaxation finds integral solution for the Lagrangian subproblem for any choice of

objective function coefficients.
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The linear relaxation of subproblems and minimize the objective function
subject to the constraint that each variable is less than or equal to 1. This forms a
totally unimodular matrix of coefficients and so the subproblems satisfy the integrality
property. Also, from the definition of matrix R, each of its columns have at most one
+1 and they are 0 elsewhere. Thus the integrality of subproblem can be deduced

from the totally unimodularity of matrix R. ]

Theorem 3.1. For the reverse WDP, the dual variables associated with the demand
(or supply) constraints of the linear relaxation problem correspond to the Lagrangian
multipliers associated with the demand (or supply) constraints of the Lagrangian re-

laxation problem.

Proof. We can reformulate the Lagrangian subproblem ({3.8]) corresponding to the

relaxation of all constraints in an XOR bid setting as
g(A, ) =A'd — 41 + ;s min{0, p;s — A'q,g + ¥'r;s}-

Based on definition of matrix R, v'r;s = 7;. The corresponding Lagrangian dual

problem maximizes g(A,«) for nonnegative values of A and ~ as

sup g<A7 7) - HAlaX{th - 1t7 + Zj,S min{07pjs - At(ljs + 7]}7 A Z 07 Y Z 0}7
)\,")’ Y

or equivalently
max  d'A — 1%y + 2 s min{0, pjs — A'q;s + 75}

st. A>0,v>0.
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Linearizing min{0, p;s — A'q,g + 7;} with variable [;5, we obtain

max d'A — 1t7 + Ejgljg

s.t. ljS + )\tqjs — < Djs VJ, S

ljS <0 vja S
A>0,v2>0.
Let l;s = —t;5. The corresponding dual problem is formulated as

min  X; spjstjs
st XjsqsTis > d
Ysris <1 Vi
0<z;9<1 v, S.
Multipliers A and « which were initially defined as Lagrangian multipliers associated
with demand and supply constraints also serve as dual variables to the corresponding
constraints in the linear relaxation problem. The equivalence in the OR setting can

be concluded similarly. O

Corollary 3.1. Initializing Lagrangian multipliers at optimal dual values obtained

from the linear relaxation solves the Lagrangian function to optimality.

We note that based on Theorem initializing the Lagrangian multipliers at the
optimal dual values is in fact equivalent to initializing them at their optimal values.
As stated in Proposition this initialization solves the Lagrangian subproblem, as

formulated in (3.5 to optimality without recourse to the dual problem ({3.6]).
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3.3 Solution Algorithms

This section consists of our proposed solution algorithms for solving the procurement
WDP to (near-) optimality. Based on the analysis proposed in Section [3.2.3] we
generate an algorithm to efficiently solve the Lagrangian relaxation problem to opti-
mality. Based on the solution derived we propose a heuristic method in section

for solving the underlying primal problem.

3.3.1 Lagrangian Relaxation Solution Algorithm

In Theorem we provide optimal values of Lagrange multipliers. As stated in
Corollary [3.1 by initializing the Lagrange multipliers at their optimal values, we
can solve the Lagrangian relaxation problem by solving its subproblem and using
Proposition [3.1 Algorithm [I] summarizes our methodology for efficiently solving the

Lagrangian relaxation problem.

Algorithm 1 Lagrangian relaxation solution algorithm

Stepl. Solve the corresponding LP relaxation.
Step2. Initialize Lagrange multipliers at the LP’s optimal dual values.
Step3. Solve Lagrangian subproblem using the closed form solution in Proposi-

tion B.11.

Table [1] illustrates the amount of execution time saved when solving the Lagrangian
relaxation problem using this methodology as compared to the implementation of a
traditional decomposition method. Each pair of (item, bid) is averaged on 13 runs
of different problem instances. The average ratio of 88.9 on a total of 520 problems
indicates that our proposed methodology solves the Lagrangian relaxation problem
to optimality in about %1 of the time required by the Lagrangian decomposition

method.
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Table 1: Execution time comparison of Algorithm (1| and the Lagrangian decomposi-
tion method

Average ratio of execution time of

(Fitems, #bids) Lagrangian decomposition to Algorithm 1

(4,20) 31.02
(4,30) 61.88
(5,20) 51.46
(5,30) 65.81
(5,40) 80.35
(5,50) 68.02
(5,100) 59.35
(6,20) 33.87
(6,30) 61.42
(6,40) 83.34
(6,50) 46.17
(6,60) 74.30
(6,70) 85.35
(6,100) 68.56
(6,150) 72.72
(6,200) 81.17
(6,250) 98.92
(7,100) 69.07
(7,150) 99.51
(7,200) 93.15
(7,250) 104.09
(7,300) 123.88
(7,350) 135.70
(8,100) 88.80
(8,200) 59.53
(8,300) 159.96
(8,400) 87.28
(8,500) 98.67
(9,50) 122.55
(9,70) 112.96
(9,100) 93.83
(9,150) 86.98
(9,200) 90.24
(9,250) 108.43
(9,300) 106.14
(9,350) 134.22
(9,400) 112.55
(9,450) 165.41
Average 88.86
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3.3.2 Aggregate Heuristic Solution Algorithm

The Lagrangian relaxation provides an integer solution in step 3 of Algorithm [I|which
may not be feasible in the primal problem. In order to fix it, we developed a heuristic
algorithm, named as the Aggregate heuristic, which consists of several subheuris-
tics and improvement procedures. Starting from the Lagrangian optimal, we observe
satisfiability of demand constraints at the current solution. Violation of a demand
constraint at the current solution indicates insufficient assignment of quantities of
the corresponding item. Each subheuristic initially fixes its current solution X at the
Lagrangian optimal solution X *“ and then systematically selects a constraint and a
variable to set to 1. Setting additional variables to 1 continues until the feasibility
of all constraints is achieved. Algorithm [2| describes the generic structure of how
each subheuristic procedure functions for a multi-unit multi-item auction with XOR

bidding language and the free disposal condition as formulated in model (3.2)).

More specifically, in this Algorithm parameter Sh; identifies possible shortages cor-
responding to each item (constraint). Set [ is defined as the set of all unsatisfied
constraints and set J as the set of all bidders who are not currently winning any
of their packages. With the existence of an unsatisfied demand, Aggregate heuristic
proceeds to run sub-heuristics each consisting of a constraint selection rule and a
variable selection rule (as described below) to set a new variable to 1. The shortage
is calculated again only for those constraints which were previously recognized as

having a positive shortage.

Note that firstly the algorithm continues the search for as long as there exists bidders
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who are eligible to win packages. If all bidders are assigned an item and the shortage
is not yet fully satisfied, then the algorithm exits the loop and returns infeasibility.
At this point either the auctioneer decides to supply the remaining shortage from

spot market or he induces another auction inviting more participants.

Secondly, with a non empty set of suppliers we do not necessarily rule out the previ-
ously chosen constraint ¢ from the set I since the shortage may not be fully resolved.
After setting a variable to 1, we may satisfy none, some, or all of the unsatisfied con-
straints. For this reason, we update the set I every time a new variable is selected.
Set J is also updated to remove the new winner. This guarantees the feasibility of
supply constraints in the optimal solution. As soon as a bidder receives a package he

is prevented from winning anymore.

Algorithm 2 Subheuristics’ Procedure Structure

X « X"

1:

2: Sh; + d; — Ejestgi qijsfjs for Vie M

3: [+ {i € M|Sh; > 0}

4 J<+{j€eN|Tj;s=0 VS}

5. while I # () do

6: if J =0 then

7: exit loop ‘Infeasible problem Instance’

8: else

9: Select constraint ¢ € I based on the Constraint Selection Rules
10: Select variables j € J, S C M based on the Variable Selection Rules
11: Tjs <1
12: update Sh; for Viel
13: I =1\{i|Sh; <0}
14: J = J\{jl|j selected in line 7}

15: end if
16: end while
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3.3.2.1 Constraint Selection Rules

The constraint selection rules include selecting constraint ¢ € I with

Rule 1. the largest shortage

i = argmaz;er{Shi|Sh; = d; — XjenYssi GijsX js}

Rule 2. the minimum slackness value

e a’r‘gmimel{—szNZjBi Qijs}7

Rule 3. the maximum slackness value
7 = argmaxiel{—szNZjSi qijsh

Rule 4. the costliest shortage

1= argma:zcig{)\i.Shi]Shi = dz — ZjGNESSi QijSYjS}-

Rule 1 looks for the item which has the largest shortage. Rules 2 and 3 search for
the items with maximum or minimum slackness values where slackness values refer
to the ratio of total quantity offers of an item to its demand. In other words, we are
interested to identify the items which receive the largest or the smallest total quantity
offers with respect to their demand. Finally, rule 4 searches to supply the items whose
shortage is the costliest for the auctioneer with respect to the Lagrangian multipliers.

Note that these rules are applied only on the set of violated constraints.
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3.3.2.2 Variable Selection Rules

For each constraint selection rule we perform the following 4 variable selection rules
to form a sub-heuristic procedure. Note that each constraint corresponds to an item
and each variable of this constraint indicates a package containing this item. Once an
item is selected, from all the unallocated packages containing this item we choose the
one that provides the largest value according to one of the following variable selection

rules.

Z min(qijs, Shl)
Rule 1. &L

Dbjs

Rule 2. &L

bjs

Z min(gijs, Sh;)
Sh;

icl
Rule 3. Dis

Sh;

icl
Rule 4. Dis

The above ratios are used to provide us with a proxy for the value of an option
based on the shortage and pricing information. For each rule we calculate its value
for all items with unsatisfied demand and pick the variable that corresponds to the
largest value. We use min(g;;s, Sh;) so that we do not value bundles with quantities

exceeding the shortage.
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3.3.2.3 Improvement Procedure

Each subheuristic is followed by an improvement procedure to systematically swap a
selected variable with a non-selected one. Since the combination of constraint selec-
tion rule 1 and variable selection rule 1 provides the best results in our experiments
we use this combination to switch variables.

To eliminate a variable already selected, the improvement procedure selects a con-
straint based on the constraint selection rule 1, and a variable with the lowest value
of variable selection rule 1. To set a new variable to 1, constraint selection rule 1 and

variable selection rule 1 are used once again.

3.3.2.4 Aggregate Heuristic Algorithm

Let c,v be alternatively the indices on the constraint and variable selection rules.
We define each sub-heuristic as H,., and the improvement procedure applied on it
as IH,.,. Considering all combinations of our constraint and variable selection rules
each followed by an improvement procedure, provides 32 computationally efficient
subroutines. The Aggregate heuristic algorithm executes all subroutines and extracts
the solution corresponding to the minimum objective value as the solution from the

heuristic.

3.4 Computational Experiments of Multi-unit Com-
binatorial Auction

In this section we describe the computational steps taken to simulate a multi-unit

auction environment. All our computational experiments are performed on an Intel
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Xeon E5440 @2.83 Ghz 2.83 Ghz (2 processors) machine with memory (RAM) 12.0

Gb running on a 64-bit operating system on a standard windows 2008 server.

3.4.1 Using CATS for Data Generation

To imitate actual bidding behaviour in combinatorial auctions we used CATS (Com-
binatorial Auction Test Suite) [67]. Given the number of goods, bids and required
distribution type, CATS determines how many items to include in a bid, what items
to include, and what price to attach to the whole package. Once all the items are
enumerated, CATS starts counting dummy bids. Dummy bids are used to determine
what packages are received from which bidders, i.e., packages sharing similar dummy

goods are received from a single bidder.

3.4.2 Algorithm Coding

We used General Algebraic Modeling System (GAMS) platform for coding the multi-
unit reverse combinatorial auction problem. All required information regarding the
bidders submitting bids, the items included in each package, and the price associated
with it are extracted from CATS output file within our GAMS code, after several
necessary preprocessing of input data as explained in the next section.

We use CPLEX 12 for solving our problem instances directly. The execution time
and optimal solution is compared against application of linear relaxation, Lagrangian
decomposition method, and our proposed solution methodology for solving the La-
grangian relaxation problem and eventually our heuristic algorithm for fixing the

infeasibility of the Lagrangian optimal solution, if needed.
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3.4.3 Automating Transformation of CATS Produced Data

to GAMS-Compatible Input Files

Despite the benefits of using CATS for generating realistic data, there is no con-
venient interface between CATS and GAMS. To incorporate this test suite in our
methodology, changes need to be applied on the text file generated by CATS before
introducing it as an input file for GAMS. In a large scale set of data, it is impractical
to apply these changes manually. For this reason, we generated VBA codes in Excel
and produced several macros to automate implementing all the required modifications

on the text file produced by CATS.

3.4.4 Adjusting CATS Single-Unit Data to Represent Multi-

Unit Environments

Data generated by CATS represents a single-unit bidding environment wherein the
auctioneer requires a single unit of each item. Consequently, suppliers submit bids on
single units of items. In other words, suppliers only choose the items they are willing
to include in bundles and assign prices to them. Due to the auctioneer’s multi-unit
demand requirement in a multi-unit combinatorial auction, suppliers are concerned
about the additional task of deciding how many units of each item to include in each
package they submit. Although the creators of CATS provide a source file to represent
a multi-unit bidding behaviour in their first release of CATS (CATS 1.0), it was not
carried in their newer version (CATS 2.0). CATS 1.0 does not consistently generate
feasible data for multi-unit auctions [98]. Thus, based on the single-unit packages

created by CATS we use a random data generator to define the suppliers’ number of
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units and the auctioneers’ demand with a normal distribution. We define the new

price corresponding to each package P as

Pcars price X Total number of quantities included in P

PNew price —

Total number of items included in P

3.4.5 Size of Problem Instances

We explore generation of 10,20, and 30 items each with 100, 200, ..., 1000 number of
bids. We fixed the upper bound for demand generation at 50, and varied the upper
bound for quantities of items included in the packages at 5,10, 15, ..., 50 to represent
a supply capacity of 10%,20%,...,100% of demand. In order to get more reliable
results, for each combination of number of items, bids, and the specified value of the
quantities’ upper-bound, we averaged results over 25 problem instances. This adds
up to a generation of 7500 problem instances. For more clarification, let m represent
the number of items, n the number of bids, qUB the upper-bound considered for
the random quantity generation and iter the number of iterations a new instance is

generated. Figure 1 illustrates the size of our data generated.
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Figure 1: Data Size Diagram

iter =1
qUB =5
iter =25
n = 100
qUB =10
m =10
qUB = 50
n = 200
n = 1000
m = 20
m = 30

3.4.6 Adjusting Lagrangian Constraint Satisfaction Ratio

To have a better understanding of the quality of the objective value that the heuristic
produces, we record the heuristic optimality gap as (Zg — Zrp)/Z1p and the La-
grangian duality Gap as (Z;p — Zrpr)/Zrr- Table [2| displays these gaps as LR Gap

and H Gap respectively.

In our next set of experiments, we investigate how the quality of the Aggregate heuris-
tic optimality gap relates to the Lagrangian Satisfiability Ratio (LSR). We define LSR
as the ratio of the primal constraints that are satisfied at the Lagrangian optimal so-

lution to the total number of constraints.
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We implemented our experiments on 2,500 problem instances generated for 10 items
and bids ranging from 100 to 1000 in increments of 100. For each combination
of item and bids, we generated random supply quantities covering a maximum of
10%,20%,. ..,100% of demand. Finally, for each problem combination we generated

25 different data instances so as to have more significant statistics.

We observed that an increase in the LSR value increases the optimality gap obtained
from the Lagrangian relaxation as well as the Aggregate heuristic. In other words, as
illustrated in Figure[2] the more constraints the Lagrangian optimal solution satisfies,
the larger the optimal Lagrangian and heuristic gaps become. A possible explanation
of this observation is that when LSR is close to 1 the heuristic spends less effort in

improving the Lagrangian solution and we end up with a relatively large gap.

Figure 2: Lagrangian and Aggregate heuristic optimality gaps when reducing satisfi-
ability ratios below the threshold
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For this reason, in our next set of experiments whenever the Lagrangian optimal
solution satisfies a% or more of the primal constraints, we systematically select and
zero out positive variables (from the Lagrangian optimal solution) until the LSR value
drops down below our threshold value. Algorithm [3| describes this procedure for the

Lagrangian optimal solution X*.

Algorithm 3 Satisfiability Violation

X+ X*
Sh; < d; — ZjENESBi Qijsfjs for Vie M
I+ {ie M|Sh; >0}
J<+{jeN|zjs=0 VS}
Ratio + card(i\(/llggc[(;rd(l)
while Ratio > tfweshold do
Select constraint ¢ € M — I such that i = argmax;{Sh;}
Select j € J,§ C M such that ;S5 = argmaxjs{Ziefmlgj(qijs,sm)}
EjS ~0
update Sh;
I =1\{i|Sh; < 0}
J = J\{j|j selected in line 8}
update Ratio
: end while

e e e e
oy 29

As illustrated in Figure [2| we observe an improvement in the average heuristic opti-
mality gap for LSR > o = 0.7. The overall average optimality gap drops down from

11% with no violation to 7% with the implementation of this violation.

Tightening « to 0.6 decreases the optimality gap to 6% while increasing the heuristic
execution time. In fact, the average execution time ratio of CPLEX to the Aggre-
gate heuristic decreases from 19.45, for a« = 0.7, to 6.32 when o = 0.6. Thus, while
decreasing « to 0.6 slightly improves the optimality gap, it yields much larger exe-

cution time. For this reason we keep the threshold value o at 0.7 for the rest of our
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experiments.

3.4.7 Efficiency of the Proposed Algorithm

Define Z;p, Z1r,and Zy respectively as the optimal value of the CPLEX solver, the
optimal Lagrangian relaxation, and the solution from the Lagrangian heuristic and
Trp, Trr and Ty as their execution times. Let w be the ratio of the number of positive
variables (corresponding to distinct winners) in the CPLEX optimal solution to that
of Aggregate heuristic. In this section, we compare the efficiency of the Aggregate
heuristic algorithm against CLPEX 12 on the data set explained in Section [3.4.5

Table 2] summarizes our results.

For more clarification on this Table, we illustrate the diagram of the 250 problem
instances generated for its first row in Figure [3] This row demonstrates average re-
sults for instances with 10 items, total number of bids ranging from 100 to 1000
in increments of 100 and a supply of maximum of 10% of demand for each item in
the bundles generated. For each class of items, we include the total average, the
standard deviation, and the coefficient of variation values in order to provide better
understanding of our original data. These values are respectively denoted as Ave,
STDev, and CV in Table 2 The following subsections are devoted to explaining our

computational results in more details.
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Figure 3: Data size diagram of the first row of Table
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3.4.7.1 Optimality Gap

Our experiments show that the quality of the heuristic optimality gap improves with
the decrease in the maximum percentage of the demand supplied in the submitted
bids. To show this pattern more clearly we designed Table [2| to classify problem
instances based on the maximum percentage of the demand satisfied by submitted
bids. Figure (a) shows the growth of average optimality gap (along side the average
standard deviation) with the increase in the bids’ supplied quantity for 10, 20, and 30
items. The plot also compares the average optimality gap with its overall expected
value when fixing the number of items. For 10, 20, and 30 items the average optimality
gap derived is respectively 8,10, and 12 percent.

As observed in Figure [4, the heuristic provides lower gaps on the class of problems in
which each bidder offers a low percentage of demand. Specifically, when the bidder
offer to supply at most 50% of demand, as shown in Table [3| the average heuristic

gap for 10,20, 30 items and submission of 100 to 1000 bids (in increments of 100)
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Table 2: Efficiency comparison of Aggregate heuristic versus CPLEX 12

Demand % LR Gap H Gap TP (sec) TH (sec) TIp/TH w
10 item
10 0.02 0.03 0.89 0.4 2.54 0.93
20 0.05 0.05 2.03 0.44 4.29 0.9
30 0.1 0.06 1.03 0.44 2.3 0.87
40 0.15 0.07 0.86 0.43 1.86 0.87
50 0.19 0.08 0.54 0.43 1.25 0.85
60 0.24 0.08 0.5 0.44 1.11 0.88
70 0.24 0.08 0.5 0.44 1.11 0.88
80 0.34 0.09 0.36 0.42 0.93 0.89
90 0.41 0.1 0.29 0.42 0.77 0.88
100 0.44 0.11 0.25 0.41 0.71 0.86
Ave 0.22 0.08 0.73 0.43 1.69 0.88
STDev 0.07 0.05 1.3 0.22 2.26 0.18
CcV 0.32 0.62 1.8 0.51 1.34 0.21
20 items
10 0.02 0.05 137.02 0.56 321.59 0.9
20 0.07 0.06 189.79 0.57 370.28 0.89
30 0.12 0.08 76.75 0.55 138.72 0.86
40 0.17 0.08 37.79 0.56 77.18 0.87
50 0.22 0.09 18.7 0.53 35.25 0.87
60 0.27 0.1 8.29 0.52 18.03 0.85
70 0.27 0.1 8.29 0.52 18.03 0.85
80 0.38 0.11 3.5 0.52 7.29 0.85
90 0.43 0.13 2.27 0.5 4.84 0.83
100 0.49 0.15 1.04 0.5 2.37 0.84
Ave 0.24 0.1 48.34 0.53 99.36 0.86
STDev 0.053 0.06 90.15 0.28 203.1 0.15
CcV 0.22 0.66 1.86 0.52 2.04 0.18
30 items
10 0.03 0.06 783.43 0.66 1425.32 0.9
20 0.07 0.08 758.21 0.73 1151.58 0.87
30 0.12 0.08 672.66 0.72 1027.39 0.86
40 0.17 0.09 421.74 0.68 655.54 0.86
50 0.22 0.11 307.56 0.64 490.61 0.85
60 0.27 0.13 223.21 0.65 353.49 0.86
70 0.27 0.14 223.21 0.65 353.49 0.86
80 0.41 0.14 39.12 0.56 68.65 0.86
90 0.44 0.16 24.01 0.6 39.89 0.89
100 0.51 0.16 11.44 0.59 19.38 0.87
Ave 0.25 0.12 346.46 0.65 558.53 0.87
STDev 0.08 0.07 264.64 0.34 490.21 0.22
CcV 0.31 0.63 0.76 0.52 0.88 0.26
Overall Ave 0.24 0.1 131.84 0.54 219.86 0.87
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Figure 4: Comparison of Lagrangian and Aggregate heuristic when reducing satisfia-
bility ratios beyond the threshold

(a) Optimality gap comparison (b) Execution time comparison
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drops down to respectively 6,7, and 8 percent.

3.4.7.2 Execution Time

In order to observe how fast Aggregate heuristic solves a problem instance to a solu-
tion, we plot the execution time ratio of CPLEX to Aggregate heuristic in Figure[4(b).

This figure illustrates that when bidders supply low percentages of demand, CPLEX
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Table 3: Comparison of Aggregate heuristic and CPLEX 12 with supplied quantity
of less than half of demand

Demand % LR Gap H Gap TP (sec) T H (sec) TIP/TH w
10 item
10 0.02 0.03 0.89 0.4 2.54 0.93
20 0.05 0.05 2.03 0.44 4.29 0.9
30 0.1 0.06 1.03 0.44 2.3 0.87
40 0.15 0.07 0.86 0.43 1.86 0.87
50 0.19 0.08 0.54 0.43 1.25 0.85
Ave 0.1 0.06 1.07 0.43 2.45 0.88
cv 0.7 0.32 0.53 0.04 0.47 0.04
20 items
10 0.02 0.05 137.02 0.56 321.59 0.9
20 0.07 0.06 189.79 0.57 370.28 0.89
30 0.12 0.08 76.75 0.55 138.72 0.86
40 0.17 0.08 37.79 0.56 77.18 0.87
50 0.22 0.09 18.7 0.53 35.25 0.87
Ave 0.1 0.07 92.01 0.55 188.6 0.88
cv 0.79 0.23 0.77 0.03 0.79 0.02
30 items
10 0.03 0.06 783.43 0.66 1425.32 0.9
20 0.07 0.08 758.21 0.73 1151.58 0.87
30 0.12 0.08 672.66 0.72 1027.39 0.86
40 0.17 0.09 421.74 0.68 655.54 0.86
50 0.22 0.11 307.56 0.64 490.61 0.85
Ave 0.12 0.08 588.72 0.69 950.09 0.87
cv 0.63 0.23 0.36 0.06 0.4 0.02
Overall Ave 0.11 0.07 227.27 0.56 380.38 0.88

12 takes much more time as compared to Aggregate heuristic. In Figure [5, we have
a closer look at this ratio for the class of problems in which each bidder offers to
supply at most 50% of the demand. In this figure, the x axis shows the number of

bids submitted and the y axis shows the time ratio).

It can be seen that this ratio exceeds 2500 for 30 items and 400 bids and when no
bid contains more than 10% of the demand (note that we use the term exceed, since
each problem instance is characterized by a specific combination of the number of
items, the number of bids and the percentage of the demand offered in the package, is

averaged over 25 generations of random problem instances). As observed in Table ,
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averaging over all number of bid submissions, this ratio exceeds 950 for 30 items.

Figure 5: CPU Time Ratio of CPLEX to the Aggregate heuristic for quantity offers
less than half of the demand
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3.4.7.3 Robustness

To show the extent of variability in relation to the mean of our data, we use the
coefficient of variation (CV) defined as the ratio of the standard deviation o to the

mean, i.e., CV =a/pu.

CV combines information about the mean and standard deviation of the system. A
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system associated with large values of CV is considered weakly robust, due to the
large variation of standard deviation as compared to the mean. Conversely, low values
of CV indicate strong robustness of the system. Comparison of the CV values for
the CPLEX and the Aggregate heuristic execution times shows that the time-wise
performance of the Aggregate heuristic is more stable and thus robust compared to

CPLEX.

3.4.7.4 Aggregate Heuristic Solution

Since the heuristic algorithms for solving procurement WDP provide a feasible solu-
tion which is not necessarily optimal, the heuristic value is greater than (or equal to)
the objective value of CPLEX. Thus, it is likely that we get more positive solution
variables in the heuristic solution. In other words, the heuristic algorithms introduce
more winners in the auction than CPLEX. Thus it is important for auctioneers to
know how many more winners they should expect, and whether this additional num-
ber of winners is dependent on the problem size or the percentage of demand supplied

in each bid.

Figure [0] and Figure [7]illustrate this correspondence respectively with the increase in
the maximum percentage of demand offered in the packages and the increase in the

number of bids received in the auction.
As observed from the figures, ratio w lacks any particular increasing or decreasing

pattern. Thus, our first conclusion is that w may increase or decrease irrespective

of the increase in the problem size, the number of bids, and the percentage of the
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Figure 6: Comparison of the number of winners in Aggregate heuristic versus CPLEX
12 with respect to the increase in maximum demand percentage supplied in the bids
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Figure 7: Comparison of the number of winners in Aggregate heuristic versus CPLEX
12 with respect to the increase the number of bids received
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demand supplied in each bid.

Secondly, w is always below 1, indicating a larger number of positive variables in the
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solution obtained from the Aggregate heuristic. For the Aggregate heuristic this aver-
age ratio remains above 83%. Thus, the auctioneers knows he could expect obtaining
a maximum of 17% extra suppliers in the auction. This helps the auctioneers involve
more suppliers in the auction. For auctioneers who do not want a large number of
suppliers, it is possible to imply further restricting constraints in advance in order to

limit the total number of winning suppliers in the auction.

3.4.7.5 Efficiency of sub-heuristics

In order to determine which combination of constraints and variable selection rule
performs best, we record the total number of times a sub-heuristic provides the best
solution. Note that multiple sub-heuristic can provide equal minimum values at the
same time. Therefore, we also recorded the number of times a sub-heuristic is the
sole minimum, meaning that it is performing strictly better than all other procedures.

Table (] summarizes our results.

Table 4] shows that variable selection rule 1 provides the highest percentages with all
different constraint selection rules. However, while Hyo provides the best solution in
over 10% of times, it never produces a strict minimum value. Therefore, it is possible
to remove this procedure and reduce execution time. Figure [§| visualizes the efficiency

comparison of sub-heuristic procedures.
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Table 4: Efficiency comparison of sub-heuristics

H Number H Name % H is min % H is the sole min
1 Hiq 13.65 4.24
2 IH4 7.69 2.49
3 Hi, 9.08 2.35
4 IHq, 5.53 2.21
5 His 10 2.39
6 IHy3 6.53 1.77
7 Hig 6.64 1.2
8 IH14 4.71 1.32
9 Hyq 11.13 2.99
10 1H,, 7.77 2.43
11 H,, 6.51 1.56
12 IH,, 4.55 141
13 Hys 8.27 2.11
14 IHy3 5.77 1.55
15 2P 5.79 1.19
16 IH,4 3.73 0.99
17 Hasq 10.51 3.19
18 IH3; 7.32 3
19 Hs, 9.24 3.04
20 IH3, 6.03 1.68
21 Hss 6.64 2.49
22 IH33 5.21 2.55
23 2B 6.95 1.73
24 IH34 5.11 1.69
25 Ha1 11.29 0.23
26 1H41 7.23 0.39
27 Ha, 10.31 0
28 IH4, 6.47 0.03
29 Has 9.19 1.48
30 IHg3 6.48 1.44
31 Has 5.63 0.73
32 IHa4 3.24 0.65
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Figure 8: Efficiency comparison of subheuristics
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Chapter 4

Models for Bidders Pricing
Problem

The literature on combinatorial auction optimization has mostly focused on the prob-
lem of maximizing the revenue for the auctioneer (see for instance [27]) which in a
procurement setting translates to minimizing the total price of procurement. Yet,
given the suppliers’ wide range of bundling and pricing options, there is a lack of
focus on the problem facing them: how to determine and price the optimal quantities
to offer. Particularly, in an iterative auction framework, suppliers need to take into
account how to make use of the feedback information disclosed by the auctioneer in
order to understand the bidding behaviour of their competitors. This helps them de-
velop an insight on their competitiveness level as compared to the rest of the bidders

and thus make more tangible decisions in each round of the auction.

To understand this problem, we start by defining relevant terms and notations and

introduce a generic profit maximization model (GPMB) for the suppliers. For an
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iterative auction framework, we use the Lagrangian multipliers to help the bidders
find the optimal price and lot sizes. In this chapter our focus is on indivisible bundles
where the auctioneer selects from predetermined fixed bidders bundles. The case of
divisible bundles, where the auctioneer can choose from a defined continuum of bun-
dles and prices, will be discussed in Chapter |5l We describe the work of Hsieh [41] in
this area. Even though this work is amongst the first to highlight the importance of
this field of research, it suffers from several inconsistencies within the problem formu-
lation, solution algorithm and the numerical implementation. The deficiencies of this
model motivated us to proceed by generating more practical problem formulations
which consider suppliers with fixed or variable per-unit costs. Using the integrality

property we show that we can find closed form solutions for some of our models.

Comparing prices corresponding to two consecutive rounds of auctions, we provide
the suppliers with the knowledge on whether to withdraw from the auction or bid
more aggressively. Investigation of suppliers’ optimal pricing problem and the auc-
tioneer’s optimal allocation problem leads us to the design of an iterative auction
which determines the rules of how the auctioneer and suppliers interact as well as the

level of information that they communicate. We show that our auction is convergent.
Our next phase of work consists of conducting numerical experiments first to empir-

ically observe our proposed analytical results, and second to study the dynamics of

the suppliers’ and auctioneer’s profits.
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4.1 Notations

We use the following notation:

) Index on suppliers, i € I = {1,...,m}

j Index on the suppliers’ bids j € J = {1,...,m;}

j Index on the suppliers’ new bid in Hsieh’s model

7" Index on the suppliers’ best previous bid

k Index on items, k € {1,..., K}

dy, Number of units demanded for item k

Ap Optimal Lagrange multipliers for product k

;\k Auctioneer’s reservation price on product k

Py The price that bidder ¢ requests to provide bundle j

PI Profitability index

Cijk The unit cost that bidder 7 affords to provide item k in bundle j
II; The net profit that bidder ¢ expects to get from the auction

ijk The quantity of product k offered in the jth bid of supplier ¢

L Supplier i’s minimum capacity to produce item k

U; Supplier ’s upper bound on production of item k

Vi The difference between the Lagrangian price and cost of product k
Og Binary variable that is 1 if product k& is selected and 0 otherwise
w Index on the suppliers’ cost scenario, w =1,..., W

(n) Iteration n of the auction

R1,R2 Round 1 and 2 of an iterative auction

RS Stabilization Round
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4.2 Generic Profit Maximization Model

With the information about the Lagrangian multipliers from the previous round of
the auction, the suppliers seek to attain appropriate bundle prices that will meet their
internal production constraints, maximize sales profits, as well as increase chances of

winning in the auction.

max  Profit

s.t.  satisfaction of minimum profitability condition (1)
satisfaction of competitiveness condition (2)
satisfaction of pricing consistency condition (3) (GPMB)
satisfaction of production upper bound constraint (4)

price variables > 0

integer quantity variables € NU {0}.

In this model, constraint (1) guarantees that a minimum profitability is attained
with the generation of a new bundle. The most commonly used profitability indexes

(denoted as PI ) deployed in industries include

1. Net Profit = Revenue — Cost,

2. Net Profit Margin = Net Profit

Revenue ’

Net Profit

3. Profit Percentage = Cost

These measures are financial metrics that are used to assess the business ability to

generate earnings despite the expenses and other relevant costs incurred during a
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specific period of time. For most of these ratios, having a higher ratio than a com-

petitor’s is indicative that the company is doing better.

Net profit, also referred to as the bottom line, net income, or net earnings is the rev-
enues less the costs. Profit margin is an indicator of a company’s pricing strategies
and how well it controls costs. It is mostly used for internal comparisons. A low profit
margin indicates a low margin of safety and a higher risk that a decline in sales erases
profits and results in a net loss, or a negative margin. Profit percentage defines profit
as the percentage of cost and ensures that a company receives the proper amount of
gross profit when spending a certain cost. In a survey of nearly 200 senior marketing
managers, 91% reported on the efficaciousness of the Net Profit metric [34], and for

this reason we take up this index for the rest of our study.

Constraint (2) in absorbs information about submitted bundles and prices
by all other suppliers into each suppliers’ profit maximization model via deploying
the Lagrangian multipliers. This constraint aims to device a more competitive bid
than the best previous bid based on the announced price proxies. In constraint (3),
we require the model to produce reasonable consistent prices. Specifically, with this
constraint we prevent the model from adopting positive prices for a 0 quantity offer.
Constraint (4) takes into account the suppliers’ production capacity limit. We adopt
the generic problem formulation (GPMBJ) and customize it to formulate the suppliers’

profit maximization problems in Chapters [ and [
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4.3 Comments on Hsieh’s [41] Proposed Solution

Methodology

When competing to supply multiple units of items required by the auctioneer via
competing bids, suppliers are faced with several challenges to determine appropriate
optimal quantities and prices for each round of the auction that keeps them competi-
tive in the auction while at the same time guaranteeing the maximum possible profit

should they win the auction.

Perhaps because of the tilt of the power towards the auctioneer, the bidders’ problem
has received little attention in the literature. Hsieh [41] proposes a heuristic algorithm
for solving the auctioneer’s winner determination problem as well as a mathematical
programming to maximize the suppliers’ profit. This study has motivated our models
in this Chapter. However, before we outline our results we would like to highlight

some issues that we find with the model and results reported in Hsieh [41].

4.3.1 Algorithmic Issues

Hsieh implements a heuristic algorithm to fix possible infeasibilities of the Lagrangian
optimal solution. In Algorithm 4] we summarize the steps of the proposed procedure.
This heuristic algorithm starts with the optimal Lagrange solution X* and defines
the set of all constraints violated at this point as K°. The algorithm proceeds to
select first the violated constraint corresponding to the item with the lowest shortage
and second the variable corresponding to the bundle that contains this item and is

offered at the lowest price. The value of the corresponding variable is set to one and
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Algorithm 4 Hsieh’s Heuristic Algorithm for solving the WDP

Initialize X* at X.

Define the set of violated demand constraints as K°.

Define the set of losing bidders as I°.

while K° # () do
Select a violated constraint £ € K with the minimum value of shortage.
Choose bundle z;; which contains item k, is submitted by a currently losing

bidder, and attains the lowest bundle price.

7 Set Eij =1.
8 Remove bidder i1 from I°.
9: end while

the winner of this bundle is removed from the set of losing bidders.

Remark 1: Choosing the constraint based on the minimum violation can substan-
tially prolong the execution time, as the problem size increases. For instance,
assume a demand shortage of {2, 3, 4, 5, 7, 50}. The Hsieh’s algorithm starts
with the satisfaction of the least critical shortages (2) and so can take long to

satisfy all the constraints.

Remark 2: The algorithm is silent on how to update K°. Thus, there is the lack
of clarification on how to update K°. An obvious way to update this set is to
remove the selected constraint. In Chapter |3 we reevaluate satisfaction of all
previously violated constraints every time a new variable is set to 1 to account

for cases when setting one variable to 1 satisfies more than one constraint.

Remark 3: The author calculates the optimal duality gap as % where f(Z)

is the objective value at the feasible solution obtained from the heuristic and
L(\*) is the optimal lower bound that the Lagrangian relaxation provides. This

way of calculating the gap leads to an underestimated gap and is uncommon in

f@-LO)

the optimization literature. The standard for calculating a gap is 76
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4.3.2 Experimental Issues

We reproduce Example 2 from [41] below to pinpoint some deficiencies in the numer-

ical analysis provided in that paper.

Example 4.1 ([41]). Let [ =3;J =2; K =4;d, = 2;dy = 1;d3 = 2;dy = 1. The siz

bids submitted by the three bidders, two each, are as follows:

g1 = 15qu12 = 05.q113 = 15, ¢11a = 0; Py = 70;
Q121 = 15 qu22 = 15 qaa3 = 05 q124 = 0; Pra = 75;
@211 = 05212 = 05 g213 = 15 g214 = 0; Py = 40;
q221 = 05222 = 15 q223 = 0; g24 = 1; Pap = 80;
g311 = 0;g312 = 05 ¢313 = 1; g314 = 0; P31 = 45;

@321 = 0;q322 = 0;g323 = 0; @324 = 1; P3p = 50;

The optimal Lagrangian solution is derived as x7y = 1,25, = 1,25, = 1, and the

optimal solution from the heuristic as T11 = 1,T9; = 1,799 = 1,735 = 1.

Remark 1: For this example the WDP is infeasible since product 1’s demand can
not be satisfied in an XOR formulation. This is true since d; = 2 and the only
seller that provides that product is seller 1. Giving the author the benefit of
the doubt, we have looked at the possibility that there might have been a typo
in the data or solution. However, any ‘fixing’ of the data of the solution would

be significant and involves more than one change.

Remark 2: Comparing the Lagrange optimal solution and the feasible solution from

the heuristic, we realize that variable x5 that is set to one in the Lagrange
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optimal solution is missing in the heuristic feasible solution. This contradicts
the fact that the heuristic does not have a dropping procedure, i.e., once a

variable is set to 1, it should stay in the optimal solution.
Remark 3: The heuristic feasible solution proposed by the author is in fact infeasible

since To1 + Tog = 2 > 1.

4.3.3 Modelling Issues

Hsieh [41] formulates supplier i’s profit maximization problem for the generation of

a new bid indexed as j" as follows.

K
max  Pij — Y 1 CijinGijik

S.t. Pi" — K_ Cii' ki’ 2 Hz 1
J Zl;(_l J'kij'k ) ( ) (PMB)
Pijr = 3 1 Melige < Pij — 320 ArGigr VI (2)
Bj/ > 0, gij'x € Nt U {O} vk € K.

where A} stands for the optimal Lagrangian multiplier associated with product £ in

the previous round. We drop the index j’ by assuming the problem at round (n) and

define
P R T
P:(’n—l) _ Pi(jyifl)’
w =y,
g;“ — Pi*(nfl) . Zf ) /\*(n qu‘,i" 1>‘

Since (PMB)) is formulated for each supplier i, we also drop the index 7 for simplicity
(we adopt this index as needed). In addition, consideration of ¢g* for representing the

optimal values from the previous rounds leaves all variables and parameters involved
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in the formulation of (PMBJ) at the current round (n). This allows us to drop index (n)

as well (we will adopt this index whenever clarification on auction round is needed).

Hence, (PMB]) simplifies as

max P — Zszl CrLQ:
st. P— Zle ceqr > 11 (1)
P=Y i Na< g (2)

P>0, q. € ZU{0} Vk € K.

(PMB2)

Defining vy, = A}, — ¢, in Proposition we identify the closed-form optimal solution
for (PMB2)).

Proposition 4.1. The optimal solution to (PMB2|) is as follows:

1. If <0 Vk € K then,

(a) If g* <11, (PMB2) is infeasible.

(b) If g* > 11, (PMB2)) yields trivial solution q; =0 Vk € K, and P* = g*.

2. If dk € K s.t. v > 0, then (PMB2)) is unbounded.

Proof. Note that constraints (1) and (2) in (PMB2) can be rewritten as

O+ aa <P <g + 3 Nty (4.1)

or equivalently,

I <P-Y0 aqg <g +S0 N

<g+ Zszl VG- (4.2)
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Assume that for all k, v, < 0. When ¢g* < II it is easy to see that no values of ¢ can
satisfy condition (4.2)) and thus (PMB2) is infeasible. With ¢g* > II the optimal value
is obtained when all quantity values are set to zero, since assigning positive values to

any of the quantity values would decrease the objective function. Thus, P* = g*.

If there exists k € K that satisfies v, > 0 then it is possible to increase the associated
quantity ¢ and price P infinitely large. This satisfies the constraints and maximizes

the objective function. In this case (PMB2)) is unbounded with the optimal solution

P*=+00
400 v >0
QG =

]

Proposition implies that for Model (PMB2]) we have either an infeasible, an un-
bounded, or a trivial solution which is not practical for suppliers. To make this for-
mulation more constructive, we consider the following refinements in the generation

of the profit maximization model.

1. For the trivial solution ¢; = 0 for Vk, (PMB]) yields a positive price value, which
translates to asking for a positive price for the supply of nothing. We fix this

by making prices consistent with quantity offers.

2. ((PMB2)) considers neither the suppliers’ production capacities nor the auction-

eer’s demand. Realistically, suppliers production capacity for different products
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is bounded. We deploy the term upper bound U}, as the minimum of the actual

production capacity and the auctioneer’s demand.

3. In addition to the production capacity, due to the costs associated with starting
production lines, suppliers usually require an order to supply at least a minimum

amount which we will consider in our model as L.

4. We facilitate either the production of item k on the suppliers’ capacity range,
or not producing this item at all. This gives the suppliers the opportunity to
withdraw some items in the new package they submit if their production is not

profitable.

5. As often is the case, the suppliers’ cost function is not a linear function of
quantity. In other words, the unit production cost can vary with respect to the
quantity produced. Suppliers’ cost function is usually considered piecewise lin-
ear with lower costs corresponding to larger production units. We will consider

both scenarios in Sections 4.4l and .5

4.4 Fixed-cost Profit Maximization Model (FPMB)

With fixed per-quantity cost, ¢, corresponding to the production of item k, we for-

mulate the bidder’s pricing problem as follows:
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K
max P —), |

st P =Y g > 11 (1)
P— K_ )\* < g* 2
D k=1 Aklk < 9 2) (FPMB)
Opli < qr < 61U Vke K (3)
P S Mzk gk (4)

P >0, g ¢ NU{0}, 6, €{0,1} Vke K.

The binary variable d, ensures that either product k is supplied with an optimal
quantity on the range [Lg, Ux] or the supplier will not supply this product at all. o;
attains 1 in the former and 0 in the latter. For a sufficiently large parameter M,
constraint (4) ensures the consistency of price and quantity offers. For zero quantity
values, the constraint enforces a zero optimal price while it becomes redundant for

positive ones. Next we study some properties of (FPMB]).

4.4.1 Optimality

(FPMBY|) defines a mixed integer programming problem (MIP). In proposition we

identify the closed-form optimal solution to this problem.

Proposition 4.2. The optimal solution to the suppliers’ capacitated profit maximiza-

tion problem (FPMB)|) with fixed unit production cost ¢y, is as follows:

1. If v <0 Vk € K then,
(a) If g* <11, (FPMB) is infeasible.

(b) If g* > 11, (FPMB|) yields the trivial solutions

P*=0, 6i=q=0VkeK
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2. If dk € K s.t. v >0, then (FPMB)|) us feasible and the optimal solution is

op =1, G=U,, P'=¢g+>,NU %>0

§i=0, q =0 P =0 e < 0

Proof. 1.a and 1.b can be shown similarly to Proposition except constraint (4)
enforces zero optimal price values in 1.b. In part 2, the optimal solution ¢* is obtained
by increasing all quantity variables associated with positive v,(= A\; — ¢x) values to
the upper bound U} and setting the rest of the variables to zero. With the increase

of the right-hand-side of equation

K K
P — ZCka <g+ Z%Qk
k=1 k=1

P gets large enough to satisfy the inequality and yet maximize the objective function.

]

Proposition offers several interpretations:

1. Suppliers’ bidding withdrawal condition: When the announced Lagrangian prices
on each item is at most as large as its production cost, then (FPMB)) is either
infeasible or yields a trivial solution. This makes submission of a new bid un-

profitable for the supplier.

2. Suppliers’ bidding condition: If the cost of production for at least one item is
strictly less than its Lagrangian price, then the supplier is able to submit a
package by supplying this product. It is important to note here that a supplier

is able to supply all its capacity because the auctioneer is willing to accept extra
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items. This situation is not uncommon in practice as suppliers often impose
minimum shipping quantities due to costly production setup costs. A minimum
quantity can also be viewed as part of a quantity discount contract where the

price of the undiscounted quantity is infinity [77].

3. Lower bound independency of the optimal solution: Sellers will either choose

not to offer a certain product or they will offer it at capacity. This conclusion

reduces (FPMB]J) to

max P — Zszl Crqk
s.t. P— Zszl crqe > 11
P =3 Nk < 9"
g € {0,U,) Vke K
P<MY, q
P >0.

(BFPMB)

Proposition 4.3. The linear relaxation of (BFPMBY) yields an integral optimal
solution equivalent to the mixed integer programming (FPMB)).

Proof. Considering the linear relaxation of (BFPMB|) formulated as

K
max P — 3700 G

s.t. P— Zszl Crqk Z 1I (1)
P—SEK Ng. <g* 2
i Nk < 9 e ——
a < Uy Vke K (3)
P < M3, (4)
P >0, ¢ =0 Vk € K.
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the result is obvious from Proposition 4.2l Having optimal values of gj as either
0 or the upper bound Uy, is equivalent to having the binary variable ¢ either

set to 0 or 1. ]

Therefore, even though consideration of the production lower bound is crucial
for companies, from Proposition 4.2 we see that in this auction setting it is not

necessary for the suppliers to enforce minimum quantities.

4. Profitability of allowing bid submission on strict subsets of products: Imposing
0 = 1 for Vk € K in (FPMB]J) allows the supplier to bid on quantities in the

range [Ly, Ug]. Mathematically this is defined as

K
max P —) ;. ¢k

st. P-— Zszl ceqre > 11 (1)

P-K Na<g 2
Zk71 Kk = 3 (2) (FPMBB)

L < q. < U VEe K (3)

pP< MZk dk (4)

P>0, ¢ e NU{0} VkeK.

Intuitively, the feasible solution to (FPMB3J) is a subset of that of (FPMB]|). We

formally state this result in Proposition and provide an exact form for the
optimal solution. The proof for this proposition is omitted as we have already

outlined the arguments above and in the proof of Proposition |4.2|

Proposition 4.4. The optimal value of (FPMB3)) is at most as good as (FPMB]J).

Furthermore the optimal solution s

(a) If vi <0 Vk € K then,
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i If g + > Ly <11, (FPMB3)) is infeasible.

ii. If g + > wli > 11, qf = Ly, for Vk.

(b) If Ik € K st. ~, >0,

U m>0

Ly v <0.

In fact, enforces a minimum production of the items for which the
cost of production is more than the announced Lagrangian prices which shrinks
the suppliers’ total optimal profit. This situation may arise from requirement
from the auctioneer to have a minimum shipment from each supplier to justify

the necessary order processing and unloading costs.

4.4.2 Comparison of the Bidder’s Prices in Successive Auc-

tion Rounds

A question that both the auctioneer and the bidders will be interested in looking
at is how the price of the new bundle would compare with the optimal price of the
prior round. To answer this question, in Proposition we study the optimal price
obtained from the suppliers’ capacitated profit maximization model .

As defined in Section , for an arbitrary supplier P*("fl), q,’;("fl) represent the price
and quantity values corresponding to his most competitive previous bid. Thus, in
*(nfl)

case the supplier submits a single bid in the previous round P*("fl), q; are the

actual values of the bid he submits. For the suppliers with multiple previous bid
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. . (n—1) (n—1) . . .
submissions, P* . a5 correspond to the price and quantity values associated

with bid j* where
j = argminj{Pj(" Zx\*(" Y (n 1

With 7k = X" — ¢, let K1 and K2 be the sets for which 7,53”) is respectively
positive and non-positive. So, K™ = {k|\" > 0} and K2" = {k|7{” < 0} and

K — 1™ g g2

Proposition 4.5. Under the (FPMB)|) model, the suppliers’ optimal price obtained

at round (n) compares with the optimal price obtained at round (n-1) as follows:

(@) P =P gf

(

VE A" >0 & ¢V =1,

<O7”

| Dero M U= ") = Dy Mg = 08 (KL KT £0).

(b) P> Py

(

Ve AW >0 & ke K" st ¢V < U,

or

*(n— ) *(n— ) *(n— ) *(’n—l) (n) (n)
\ZkGKl(n) AU =g ) = D peratm A Var > 0&(KY" K2 £ 0).

(c) P <PV g
ZkEKl(n) )\*(n—l) (Uk . q;:_<n71>> . ZkEKQ(n) Az(nfl) q*(’ﬂfl) < 0&(K1(n)7 K2(n) # @)
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Proof. In Proposition we describe optimal price values for the capacitated profit
maximization problem at round (n) as P*"” = ¢ + >k A ™ where gt =

man{PJ(’nfl) . Zf . )\*(n 1) (n 1 } Thus

PR PO S st s et
_ prny S AT g 2ok MO /y]in) >0
0 W <0
_ pen )BT W) =0
Ek XM 1 *(n 1 %E:n) <.

o x(n—1) x(n—1) x(n—1) x(n—=1) 4(n)
=P + Zk€K1<") )‘k: (Uk — gy ) - ZkGKQ(") )‘k 4 -

(n) (n—1) . .
To compare P* "~ and P* , we consider the following cases.

1.4\ <0 Veke K™, (K™ =0).
When fyk )< 0forall ke K , then (FPMB)) is infeasible if g*(n) < II, or it

yields the trivial solution q,’;(n) = 0 if otherwise. Thus, P = .

2.4 >0 Vke K™, (K* =)
If the quantities submitted in the best previous package are all at the production
capacity level, then q,f/,("fl) = U, and so P*™ = PV However, if for at least
one of the items, the previously submitted quantity is strictly less than the

capacity Uy then P*" > p*"7".

3. 3k € KM ky € K27 st 7,2?) >0 and 7,&7;) <0, (K™ K2 £0).
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Based on the equality (4.3)), when

>|<(n—l) >k(n—l) (n—1) >|<(n—l)
ZkeKl(n> >‘k (Uk — 4 ) > ZkeKQ(") )‘Z q )

the total value of extra production of items whose quantity offers are below pro-
duction capacity and production cost is lower than the announced item prices,
is greater than the total value of the quantities of items whose costs are above
the announced item prices. Thus, the optimal price P should be strictly

greater than P*"™".

*("7 ) *("7 ) *(77'7 ) *(n7 ) . . *(")
If EkeKl"” by ' (Ur—q; ' ) < ZkeK2(”) by ' a " the optimal price P
is strictly less than the previous best price PV This can be seen considering
that the model suggests zero optimal quantities for items whose production

costs are greater than the announced prices.
O

Proposition [4.5] is useful for the auctioneer and bidders as it shows the value of
the information being shared between the auction rounds. This proposition shows
dependence of bundle prices on several factors such as: how other bidders value
different units of products (\z), the suppliers’ costs (¢x), minimum profit expectations
(IT), price and quantities corresponding to the most competitive previous bid (g*),
internal production capacity as well as the auctioneer’s demand (considering that the

minimum of the two is Uy).
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4.5 Variable-cost Profit Maximization Model

(VPMB)

For suppliers with variable production cost, the expenses for the supply of products
depends on the quantity delivered to the auctioneer. To meet suppliers’ variable per-
quantity cost, let us define ¢y, as the per-quantity cost for provision of ¢, units of
product k for the supplier’s wth cost scenario w = 1,...,W. For each cost scenario,
the supplier considers production of ¢, units of items where ar, < Qrw < brw. We

can formulate the suppliers’ profit maximization model as

max P — Zk,w ChuwThw

st P =) Chuwlrw > 11 Yw (1)
P =3 Mkw < g° Vw - (2)
Cww < Grw < DkwOuw VE,w (3) (VPMB)
P<M3>, ar (4)
D Ow =1 ()
P>0

g € NU{0}, 8, € {0,1} Vi, w

Note that for simplicity we drop (n) for all values, since they either correspond to the
current round or constant throughput the auction. [VPMB]is formulated for future

comparison against proposed models in Chapter [5
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4.6 Lagrangian-based Iterative Auction Design

(LIAD)

Suppliers’ pricing corrections based on the auctioneer’s feedback on the Lagrangian
multipliers motivates the design of a discrete (as opposed to continuous) auction.
With the assumption that the first round prices and bids are initiated using CATS,
the winner determination problem (WDP) and its Lagrangian relaxation (WDPLR)
are solved to provide the auctioneer with the optimal allocation and Lagrangian
multipliers. As discussed in Chapter 3, rather than directly solving the Lagrangian
relaxation problem, the auctioneer is able to solve the linear relaxation problem (WD-

PLP) to access the Lagrangian optimal multipliers, objective value, and solution.

The Lagrangian multipliers provide proxies for the products’ prices at the current
round and hence providing them to the suppliers helps them in revaluating their
bid prices in the subsequent auction round. Moreover, solving the WDP problem to
(near) optimality will further help the auctioneer keep track of his profit dynamics

throughout the auction.

Based on the announced products’ price proxies, at the start of all following rounds,
suppliers solve their profit maximization model to generate their optimal bids. As
described before, the competitiveness of the new bid is seen in the design of the sup-
pliers’ PMB model. Once all suppliers pass their new bids to the auctioneer, he solves
the winner determination problem WDP and the linear relaxation WDPLP to access

the local winners and the Lagrangian multipliers. The bidding language considered
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is XOR. In Figure [9] we summarize the main steps of the auction procedure.

Figure 9: Iterative auction LIAD flowchart

Auction initializa-
tion (ask for bids)

Formulation of new
bids (solving FPMB)

|

Receptio
of at least
1 bid?

Auction termination

yes

Processing bids Provision of La-
(solving WDPLP) grangian multipliers

Auction
yes termina-
tion?

no

In Proposition we show that the auction iterates as long as at least one supplier

submits a new bid incrementing his profit. Thus, at termination

x(n—1) £(n—1) x(n=1) 4(n-1)
Z Ak (Ur — gy, )= Z Ak dy : (4.4)

keK!? ke K2

() (n—1)
and so P*" = p*" .
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This proposition provides the auctioneer with a tool to check whether all suppliers
have reached their maximum profitability. Equality holds when for each sup-
plier and product k, if 75 > 0, the product is supplied at its upper bound in the
previous round, and if 7} < 0, it is not supplied at all. Consequently, the Lagrangian

multipliers of the current and previous rounds yield the same sign for ~.

This gives rise to the question of whether the auction converges. In other words, is
it affirmative that the auction reaches a point where all suppliers become unable to
submit a more competitive bid. To answer this question consider the dual variables
(A, d;) respectively assigned to the first and second set of constraints in WDPLP.

The dual problem of WDPLP at iteration (n) of the auction is

max 35 Ny + 326"

st. PM S A 5 >0 vi (1) (4.5)
MY >0,6M <0 Vi, k.

Define I'™ as a sequence whose nth term specifies the optimal objective of the dual

problem at round (n).

I = 3" N"d+ > 6", for n=1,2,3,...}. (4.6)
k )

Proposition 4.6. For an auctioneer with predetermined reservation prices, sequence

'™ as defined in (4.6)) is convergent.

Proof. In order to see the convergence of I'™ | we show that this sequence is bounded

and monotonically increasing.
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Let Az determine the reservation price on product k, (k=1,2,...,K), ie., Ay is the
highest price that the auctioneer is willing to pay for product k. It is easy to see
that sequence I'™ is bounded from above by >k Midi. To see the monotonicity of
the sequence, recall that supplier i’s competitiveness condition at iteration n of the

auction ensures that
P™ ZA*“ Vgl < P SN AT,
k

Let LHS and RHS respectively denote the left- and right-hand-side values of this
condition. As discussed in the results of Proposition .2 at iteration (n) of the
auction, PMB provides the suppliers with (PZ-*W , q;k,i")) in such a way that the LHS of

the competitiveness equation grows as large as the RHS value. Hence,

k

Let ()\*(n_l),é*("fl)) correspond to the optimal solutions of the dual problem at the

previous round. At the previous optimal values, constraint(1) in (4.5)) equals

p _ Z A %Z) 5 >,

which based on the equality (4.7)) reformulates as

pinh _ Z)\*m Vgl gt 5 g,
k

134



Ph.D. Thesis Computational Sci. & Eng.

The left-hand-side of the above inequality is equivalent to the reduced cost associ-
ated to supplier ¢ in the primal LP relaxation problem at round (n-1). Since the
primal problem is a minimization problem, all the reduced costs at optimality are
non-negative. Therefore, the optimal solution of the dual LP relaxation problem at
round (n-1) satisfies the constraints of this problem at round (n) and thus belongs to

its feasible region.

Consequently at round (n), is only able to improve upon the previous optimal
value with an optimal objective value either greater than or equivalent to that of
the previous round. In other words, the optimal value of the WDPLP at iteration
(n) is at least as good as that of iteration (n-1). This implies that sequence I'™ is
monotonically increasing.

]

Note that in Proposition we discuss the non-decreasing change pattern of the
linear (or equivalently Lagrangian) relaxation lower bound as the auction proceeds in
rounds. This result is inconclusive of the change pattern of the optimal MIP objective
value, referred to as ZIP*. In fact, as we discuss in Section [4.7, we experimentally
observe a non-monotone change pattern for ZIP*. In the next two propositions we

characterise the suppliers profits.

Proposition 4.7. The suppliers’ profit is a nondecreasing function of the auction

rounds.

Proof. Considering the equality (4.7), the set of optimal solution (PZ-*(n_l), qf,in_l))
obtained at round (n-1) is a trivial feasible solution at round (n). Therefore, the

optimal objective value at round (n) is at least as good as round (n—1). Consequently,
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at every round of the auction suppliers either maintain or improve upon the profit

they made at the previous round. O]

Proposition 4.8. For an auction terminating at round (n), 5:(n) = 0 for each sup-

plier 1.

Proof. For an auction problem terminating at round (n) assume on the contrary
that there exists supplier ¢ for whom 5;(11) # 0, thus 5;(71) < 0. The complementary
slackness condition 5;(") (x: — 1) = 0 necessitates z =1 Thus, supplier 7 is among
the winners of the primal LP relaxation problem with a zero value of the associated

reduced cost P*( " > X‘,;(n) qg‘]in) — 5g‘(n). Hence,
607 =P g )\

and

«(n) x(n) >k(n) *(n)
k

Moreover, since P > cqu ) > 0,
*(n) *(n) *(n)
=D kG, > P 2N G

’L
PR a4, > c qu*

%(n) *(n
d(AL ey, " >0,

which implies that
I st (A =) >0 (4.8)

(2

136



Ph.D. Thesis Computational Sci. & Eng.

Considering the competitiveness condition as

n #(n, (1) x(m) +n
I <P cq™ <g + 28 00 —ed”,

supplier 7 can improve his profit by increasing its offering q;k(n) (and the corresponding
price) which contradicts the fact that the auction terminated at round (n).

]

In conclusion, the auction terminates if no supplier is able to formulate a new bid
that will strictly improve his profit. Proposition aids the auctioneer in verifying if
all suppliers have achieved maximum profitability at the current round. Specifically,
the auctioneer is able to detect whether all suppliers have reached their maximum
profitability at the current round by checking on their corresponding dual variables
07. The fact that the auction runs so long as the suppliers are able to improve upon
their optimal profit incentivizes the suppliers’ participation in the auction. At each
iteration, suppliers take the marginal prices obtained from the Lagrange multipliers

to formulate their new package offer.

4.7 Numerical Experiments

To gain more insights from the models developed in the previous sections we con-
ducted numerical experiments. Based on the bundles generated via CATS, we formu-
late and solve the corresponding LP relaxation problem to access the optimal dual
variables associated with the demand constraints. With II = 0, we conduct our ex-
periments for an auction of 3 products and 15 bids received from the suppliers. We

use CATS to simulate the items included in each bid and the corresponding bundle
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prices. CATS bids are illustrated in Table [ As explained in Section [3.4] any quan-
tity value above the maximum number of items (here fixed at 3) corresponds to a

dummy bid. Bids with identical dummies are received from identical bidders.

Table 5: CATS bids generated for 3 items and 15 bids

Bids Prices Quantities of items in the Package
1 329.632 1 2 3
2 86.3849 1
3 218.796 1 2
4  196.905 1 3
5 236.71 2
6 135.677 2
7 115.175 3
8 145.904 1 3 364
9 242.745 2 3 364

10 168.918 1 2 364
11 245.51 2 3 393
12 118.07 1 3 393
13 241.602 2 3 515
14 179.878 1 2 515
15 168.828 1 2 514

Since CATS generates a single unit of each item in the package, we use a uniform
distribution to generate multi-unit packages. The quantity of each item offered by
suppliers and the auctioneer’s item demand are respectively generated uniformly from
[1,15] and [20,40]. CATS prices for the bundles with single unit items are adjusted as

explained in Section [3.4] to reflect the prices on the bundles containing multiple units.

Note that in the generation of the bids’ prices we rely on CATS to generate the price

for the whole bundle and later scale it. The initial prices reflect bidders valuation
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of the packages without information on their competitors valuations. As the auction
progresses they would adjust their prices to take that information into account as it
becomes available to them. Furthermore, we do not explicitly include the items costs
information in the initial prices. The item costs are uniformly generated from [0.5,1.5]
and then scaled by their corresponding Lagrange multipliers. To remain consistent
with the quantities included in each bid, for each supplier ¢ we generate the upper

and lower bounds for item k as

Ly ~ [U[1, min(5, ;)] |
Uk ~ |Umax{6, g}, 15]]

where Ula, b] denotes a uniform distribution on the interval [a.b]. Thus,

Ly ~ U1, g;]] Ly ~ |U[1,5]]
G <5= qr > 5=

Uy ~ [U[6,15]} Uy ~ [Ulgi, 15]].

Table [0] records the optimal values attained from solving different suppliers’ profit
maximization models as well as the auctioneer’s winner determination problem at

the first and second rounds of the auction.

At the first round of the auction wherein suppliers’ bids are generated using CATS
data generator, suppliers’ optimal price and quantity (P*(l) , q,’;(l)) are associated with
the corresponding values derived for the suppliers’ most competitive bid. At the sec-
ond round, (P*(Q), qzm) are the optimal values obtained from the PMB model. We

record the suppliers’ profit from their most competitive bid at round (1) or from

solving the profit maximization problem in round (2) respectively as PP*(D, pp®.
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At the end of each round, the winner determination problem is solved based on the
bids received. The profit suppliers make when winning in the auction is referred to as
WP*(I), WP*® . We denote the auctioneer’s total cost of procurement at each round
as TC’P*m, TCP*”. When a supplier is a winner in either of the auction rounds,
he will actually make the profit as calculated by the profit maximization models.
Otherwise, the actual profit gained from the winner determination problem is 0. For

each supplier, we calculate ’yk ) for product k as A " Finally, we define

(n 1) (n 1) (n 1) (n 1)

keKl keK?

in order to compare the price from the supplier’s best previous bid and the optimal

price derived from PMB models.

4.7.1 Further Insights on Proposition 4.1-Proposition

From the results of Table [6] we can make the following observations on the proposed

models:

1. Even thought the model (PMB2)) introduced by Hsieh [41] (PBM2 rows in
Table @) does provide a new package at the price P*® much higher than the
previous best price P*(l), the model suggests impractical quantities that are as

(2)

many as almost 10 times the supplier’s capacity for products with positive ;™.

The optimal quantity of items with negative 7k is 0.

2. Model (FPMB)) provides a lower price (compared to (PMB2)). Quantities with

positive 'y,(f) are offered at the capacity level. Quantities with non positive ’y,(f)
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Table 6: Comparison of bidders’ pricing models for indivisible auctions

i U ' o Feasibility a?
Model k=1 k=2 k=3 k=1 k=2 k=3 p™ pp”  wp®  TTPY @ k=1 k=2 k=3 Code k=1 k=2 k=3 p'@ pp?  wp®  TTP?
1 PMB2 13 13 6 13 13 1 296.67 - 051 -433 -1 1 100 0 0 389.96
FPMB 13 13 6 13 13 1 296.67 36.35 0 1 13 0 0 126.35 93.62 0
FPMB2 13 13 6 13 13 1 296.67 1 13 0 0 126.35
FPMB3 13 13 6 13 13 1 296.67 1 13 4 4 221.77
2 PMB2 12 6 7 12 0 0 103.66 + 1.05 -553 54 1 100 0 100 1535.36
FPMB 12 6 7 12 0 0 103.66 79.9 0 1 12 0 7 185.22 117.7 0
FPMB2 12 6 7 12 0 0 10366 1 12 0 7 185.22
FPMB3 12 6 7 12 0 0 10366 1 12 3 7 221.83
3 PMB2 14 9 8 14 4 0 196.92 + -096 -0.23 3.52 1 0 0 100 1270.73
FPMB 14 9 8 14 4 0 196.92 91.4 0 1 0 0 8 198.88 133.87 0
FPMB2 14 9 8 14 4 0 1992 1 0 0 8 198.88
FPMB3 14 9 8 14 4 0 196.92 1 1 4 8 250.73
4 PMB2 12 10 11 12 0 11 226.44 + 05 393 0.82 1 100 100 100 2750.52
FPMB 12 10 11 12 0 11 226.44 77.01 0 1 12 10 11 348.49 116.33 0
FPMB2 12 10 1 12 0 11 22644 1 12 10 11 34849
FPMB3 12 10 11 12 0 11 226.44 1 12 10 11 348.49
5 PMB2 9 7 7 0 2 4 71.01 - -1.42 -3.19 -2.04 1 0 0 0 0
FPMB 9 7 7 0 2 4 71.01 -14.55 0 1 0 0 0 0 0 0
FPMB2 9 7 7 0 2 4 7101 1 0 0 0 0
FPMB3 9 7 7 0 2 4 71.01 10 0 0 0 0
6 PMB2 9 7 9 0 5 0 67.84 + -063 167 179 1 0 100 100 2392.41
FPMB 9 7 9 0 5 0 67.84 15.16 0 1 0 7 9 197.1 3458 34.58
FPMB2 9 7 9 0 5 0 67.84 1 0 7 9 197.1
FPMB3 9 7 9 0 5 0 67.84 1 1 7 9 200.13
7 PMB2 6 6 9 0 0 9 103.66 - 1.02 134 -3.68 1 100 100 0 1522.34
FPMB 6 6 9 0 0 9 103.66 -3436 -34.36 1 6 6 0 9021  13.02 13.02
FPMB2 6 6 9 0 0 9 103.66 1 6 6 0 90.21
FPMB3 6 6 9 0 0 9 103.66 1 6 6 3 125.17
8 PMB2 9 10 8 2 10 0 101.35 - 1.09 -1.96 4.55 1 100 0 100 1441.29
FPMB 9 10 8 2 10 0 10135 -4414 -44.14 1 9 0 8 9371 1946 0
FPMB2 9 10 8 2 10 0 10135 1 9 0 8 93.71
FPMB3 9 10 8 2 10 0 101.35 1 9 3 8 130.33
9 PMB2 12 8 7 12 0 6 10626 - .08 -236 3.3 1 0 0 100  1165.06
FPMB 12 8 7 12 0 6 10626 855 855 1 0 0 7 8155 2121 0
FPMB2 12 8 7 12 0 6 106.26 1 0 0 7 81.55
FPMB3 12 8 7 12 0 6 106.26 1 5 5 7 157.73
10 PMB2 9 8 7 1 5 0 53.96 + -0.18 254 443 1 0 100 100 2375.5
FPMB 9 8 7 1 5 0 5396 244 244 1 0 8 7 169.1  41.28 41.28
FPMB2 9 8 7 1 5 0 53.96 1 0 8 7 169.1
FPMB3 9 8 7 1 5 0 53.96 1 5 8 7 184.25
11 PMB2 12 10 8 12 10 0 185.71 - 0.01 -5.06 -3.06 1 100 0 0 330.29
FPMB 12 10 8 12 10 0 18571 -2325 O 1 12 0 0 63.66  27.36 27.36
FPMB2 12 10 8 12 10 0 185.71 1 12 0 0 63.66
FPMB3 12 10 8 12 10 0 185.71 1 12 2 1 99.72
365.2 520.1
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are not included in the new package.

3. In model (FPMB3)), inclusion of all quantities in the new package enforces
a minimum quantity for the items with negative 7,({2) values which decreases
the optimal profit for the suppliers. Moreover, while all other models result
in feasible prices for all supplies, (FPMB3) is infeasible for supplier 5. An

infeasible supplier pricing problem suggests that the supplier is no longer able

to offer better prices and would drop from the auction.

4. In comparison of new and old prices, we observe that for supplier 4 whose
71(3) > 0 for all &k, P < P For supplier 5 whose 'yl?) < 0 for all k,
P > P*® For suppliers 2, 3, 6, 10 with 6(2) > 0, P*" < P** and

eventually for suppliers 1, 7, 8, 9, 11 with 6® < 0, PV s p?

4.7.2 The Auctioneer’s and Suppliers’ Profit Dynamics at

the Second Round of the Auction

This section studies the auctioneer’s and the suppliers’ profit changes as the auction
proceeds to the second round. Define GG as the gross growth and GP as the growth
percentage. Based on the results from Table @, in Figure (a) we plot the winning
suppliers in the first and second rounds. Figure [I0[(b) and [10|c) illustrate the gross
growth of suppliers’ WDP and FPMB profits.

As can be seen in Figure (c), the suppliers” FPMB profit increases as they go from
the first to the second round of the auction. From Figure (a) we see that suppliers 1,

2,3, 4, and 5 are winning in neither of the auction rounds. Suppliers 6 and 11 who are

142



Ph.D. Thesis Computational Sci. & Eng.

Figure 10: Two-round auction
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losing in the first round are able to win in the second round despite the gross growth of
respectively 47.3 and 50.6 in their FPMB profit. Suppliers 7 and 10 win both rounds
of the auction. They both increase their FPMB gross profit. Changing his profit from
2.4 to 41.2, supplier 10 gains 1591.8 % WDP profit increase. Suppliers 8 and 9 who
win the first round, lose in the second round of the auction. However, since supplier
8 gains a negative profit in the first round, not winning the auction in the second
round implies a positive WDP profit growth in Figure (b) Supplier 9 who wins

in round 1, fails to win in round 2 and gains negative WDP profit in the second round.
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As Table @ suggests, half of the winning suppliers (suppliers 7 and 8) in round 1
gain negative profit with the supply of the proposed qualities of items. As explained
before, this is due to the fact that suppliers do not price the bundles based on the pro-
duction costs, rather costs are initially generated via CATS as multipliers of average
product prices submitted by all suppliers. Nonetheless, suppliers are able to adjust
their bids according to the feedback from the auctioneer and maintain positive profit
in the future rounds of the auction. In practice, this happens when suppliers are not
completely confident how to price products and can therefore face negative profit on
the first round. Based on the information revealed by the auction they are able to
decide whether to continue bidding while maintaining a minimum desired profit or to

drop out of the auction.

It is not unusual then to expect an increase in the auctioneer’s total price of procure-
ment on the second round as the suppliers with negative profit correct their pricing
to guarantee their minimum expected profit. Terminating the auction at the first
stage can result in assigning packages to suppliers with negative profit and increase

the suppliers’ delivery failure risk.

4.7.3 The Auctioneer’s and Suppliers’ Profit Dynamics at

the Stabilization Round (RS) of the Auction

Results in the previous sections suggest that the auctioneer’s total cost of procure-
ment increases at the second round of the auction when suppliers get the opportunity

to correct their bid submissions. This raises the question of whether the auctioneer’s
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total cost of procurement keeps increasing until the end of the auction?

To answer this question, we run the auction for a maximum of 10 rounds. Table
illustrates the results of the first 5 rounds of the auction and Figures [L1j(a), [L1|(b),
and (c) respectively show the winning suppliers, the auctioneer’s total cost of pro-

curement, and the suppliers’ cumulative WDP profit (denoted as SCWP).

Results from Table [7] imply that the auctioneer’s total cost of procurement does not
necessarily increase at every round of the auction. Indeed, it can decrease from round
to round (Table [7| demonstrates a decrease in TCP from 476.31 in round 2 to 439.62
in round 3) and eventually remain constant from a relatively early round (round 4 in
Table . At the start of round 4 all suppliers derive § = 0. Thus, as discussed in
Proposition 4.5 no supplier is able to submit a more competitive bid and the auction
terminates. We will refer to this round as the stabilization round, and denote it as
RS. Note that RS is the round preceded by the round in which we first observe the
identical results. In other words, RS is the first round at which repeated results ap-

pear.
To go beyond this example, we repeat the iterative auction on 20 different problem
instances. The results as shown in Table |8 confirm the convergence of the auction-
eer’s total cost of procurement, the Lagrangian multipliers as well as the suppliers’

profit at a relatively early stage.

The first column of this table shows the problem instance and the second column
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Table 7: Iterative auction

round i 2] Yk ax Uk p* PP wp TPP A
k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3
1 1 14 4 5 252.72 42.02 417.19 836 9.13 6.63
2 6 0 0 51.83 7.85
3 5 12 0 185.98 25.17
4 8 0 12 196.91 45.45
5 0 6 7 153.86 90.75
6 0 7 0 94.97 61.97 90.75
7 0 0 1 11.52 3.83
8 8 1 0 76.01 19.95
9 4 0 12 94.46 -21.98 19.95
10 2 9 0 98.93 13.14 -21.98
11 3 8 0 92.86 -35.55
SCWP 88.72
2 1 - -0.8 -44 0.6 0 0 10 14 7 10 132.29 75.59 476.31 836 8.86 6.91
2 + 1.03 -1.46 0.66 10 0 6 10 10 6 125.05 15.95
3 -2.71 035 -2.86 0 12 0 7 12 7 144.18 38.74
4 - -2.8 -453 1.45 0 0 12 9 8 12 130.03 67.87
5 + -2.76 451 158 0 8 8 8 8 8 178.76 101.35
6 + 0.97 4.42 3.07 8 7 6 8 7 6 201.63 88.16 88.16
7 + 3.39 4.26 -1.05 7 9 0 7 9 9 145.62 66.96
8 - 2.63 -1.07 -0.19 8 0 0 8 10 7 66.88 21.02
9 0.84 -1.29 -0.57 8 0 0 8 7 12 66.88 6.7 6.7
10 + 238 093 2.25 6 10 10 6 10 10 207.81 46.07 46.07
11 - -0.5 -3.59 0.77 6 10 10 10 10 6 207.81 -31.26
SCWP 140.93
3 1 0 -0.8 -468 1.24 0 0 10 14 7 10 132.29 75.59 439.62 836 9.68 6.91
2 0 1.03 -1.74 0.94 10 0 6 10 10 6 125.05 15.95
3 0 -2.71 0.07 -2.58 0 12 0 7 12 7 144.18 38.74
4 0 -28 -4.81 173 0 0 12 9 8 12 130.03 67.87
5 0 -2.76 423 186 0 8 8 8 8 8 178.76 101.35 101.35
6 0 0.97 4.14 3.35 8 7 6 8 7 6 201.63 88.16
7 0 3.39 398 -0.78 7 9 0 7 9 9 145.62 66.96 66.96
8 + 2.63 -1.35 0.09 8 0 7 8 10 7 115.24 21.65 21.65
9 0 0.84 -1.57 -0.29 8 0 0 8 7 12 66.88 6.7
10 0 2.38 0.65 2.53 6 10 10 6 10 10 207.81 46.07
11 - -0.5 -3.87 1.05 0 0 6 10 10 6 41.45 6.27
SCWP 189.96
4 1 0 -0.8 -3.86 1.24 0 0 10 14 7 10 132.29 75.59 439.62 8.36 9.68 6.91
2 0 1.03 -0.91 0.94 10 0 6 10 10 6 125.05 15.95
3 0 -2.71 0.89 -2.58 0 12 0 7 12 7 144.18 38.74
4 0 -2.8 -398 173 0 0 12 9 8 12 130.03 67.87
5 0 -2.76 505 1.86 0 8 8 8 8 8 178.76 101.35 101.35
6 0 0.97 496 3.35 8 7 6 8 7 6 201.63 88.16
7 0 339 48 -0.78 7 9 0 7 9 9 145.62 66.96 66.96
8 0 2.63 -0.52 0.09 8 0 7 8 10 7 115.24 21.65 21.65
9 0 0.84 -0.75 -0.29 8 0 0 8 7 12 66.88 6.7
10 0 238 147 253 6 10 10 6 10 10 207.81 46.07
11 0 -0.5 -3.05 1.05 0 0 6 10 10 6 41.45 6.27
SCWP 189.96
5 1 0 -0.8 -3.86 1.24 0 0 10 14 7 10 132.29 75.59 439.62 8.36 9.68 6.91
2 0 1.03 -0.91 0.94 10 0 6 10 10 6 125.05 15.95
3 0 -2.71 0.89 -2.58 0 12 0 7 12 7 144.18 38.74
4 0 -2.8 -398 173 0 0 12 9 8 12 130.03 67.87
5 0 -2.76 505 1.86 0 8 8 8 8 8 178.76 101.35 101.35
6 0 0.97 496 3.35 8 7 6 8 7 6 201.63 88.16
7 0 339 48 -0.78 7 9 0 7 9 9 145.62 66.96 66.96
8 0 2.63 -0.52 0.09 8 0 7 8 10 7 115.24 21.65 21.65
9 0 0.84 -0.75 -0.29 8 0 0 8 7 12 66.88 6.7
10 0 238 147 253 6 10 10 6 10 10 207.81 46.07
11 0 -0.5 -3.05 1.05 0 0 6 10 10 6 41.45 6.27
SCWP 189.96
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Figure 11: The auctioneer’s and suppliers’ payoff in an iterative auction
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determines the stabilization round RS. We capture the GP of the auctioneer’s TCP,
and Lagrangian multipliers, as well as the GG of suppliers’ cumulative profit at round
RS with respect to round 1 and round 2 (denoted as R1 and R2). The growth

percentage GP or the gross growth GG for an index X (which could be either the
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Table 8: 20 Instances of iterative auction implementation-comparison results

GP_TCP GP_A1 GP_A2 GP_A3 GG_SCWP

Instance RS (RS,R1)  (RS,R2) (RS,R1) (RS,R2) (RS,R1) (RS,R2) (RS,R1) (RS,R2)  (RS,R1)  (RS,R2)
1 4 5.4 7.7 0 0 6 9.3 4.2 0 136.8 49
2 3 9.3 0 8.5 0 9.4 0 -13.2 0 146.4 0
3 6 20.3 12.6 19 19 5.5 1.1 -4.7 -1 169.9 256
4 4 3.2 2.1 8.1 0 6.2 0 2.8 0 172.6 -12.2
5 3 35.1 0 1.7 0 47.4 0 -27.8 0 283.1 0
6 4 34 20.5 0 0 0 0 5 0 187 1.6
7 8 19.2 8.5 -8.6 229 34 16.5 0 0.9 146.8 26.2
8 4 5.6 5 1 0 -13.1 0 0.5 0 61.3 56.6
9 4 14.4 2.1 0 0 4.2 0 0.2 0 148.1 29
10 3 0.8 0 8.1 0 -18.8 0 19.7 0 195.1 0
11 3 2.6 5.9 8.4 0 4.4 0 0 0 61.2 0
12 3 9.4 -4.5 28.2 0 3.9 0 0 0 111.1 275
13 6 15.9 5.4 0 8.3 14 01 47 12.4 49 0.2
14 4 32.7 1.3 0 10.5 157 43 8.8 75 93.7 26.1
15 3 2.3 8.3 7.2 0 0.9 0 12.5 0 205.3 75.2
16 4 33.9 6.4 -25.3 0 11.8 0 6.1 0 56.8 -46.8
17 4 33.9 6.4 12.9 0 6.4 0 19.4 0 269.4 355
18 5 14.9 23 1.6 9.4 4.3 1.7 9.7 2.8 293 3.6
19 4 15.3 35 9.1 0 7.8 0 5.4 0 305.2 -34.4
20 4 5.6 0 23 0 4.3 0 -16.7 0 278.6 0

Average 4 15.4 2.1 2.5 2.6 5 1.6 1.1 0.3 168.5 12.8

TCP, A1, A2, A3, or SCW P) at round Rn as compared to round Rm is defined as

XRn - XRm

GG_X(Rm,Rn) = Xg, — Xgm, GP_X(Rm,Rn) = e
Rm

Compared to the first round, the auctioneer’s TCP growth percentage is positive
among most problem instances (except for instances 10 and 15) with an average of
15.4%. This is excepted due to some suppliers’ inaccurate valuations at the initial
round of the auction resulting in their negative profit. However, comparing the fi-
nal round to the second round in which suppliers are able to maintain a reasonable
minimum profit shows a much less growth percentage with an average of 2.1% which
suggests that even though the growth percentage of TCP is positive, the auctioneer

can appreciate the little growth of TCP at the final round (around 2%) as compared
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to the second round.

Table 9: 20 Instances of iterative auction implementation-comparison results

RS vs. R1 RS vs. R2
Items GP* GP’ GpP° GP* GP GP°
% Ave stdev % Ave stdev % % Ave stdev % Ave stdev %
1 45 12.3 9.3 30 -10 8.1 25 20 15.2 6.9 5 -9.4 75
2 65 12.2 13.3 30 -9.9 7 5 25 3.3 3.7 5 -0.1 60
3 55 8.3 6.6 30 -11.7 9.6 15 10 7.6 6.8 15 -3.1 3.8 75
Average 55 10.9 9.7 30 -10.5 8.2 15 18.3 8.7 5.8 8.3 -4.2 3.8 70

In Table |8 we observed the growth percentage of items’ prices over 20 problem in-
stances. We extend this analysis in Table [J] to understand what percentage of this
population possesses a positive, negative, or zero price growth (respectively repre-
sented as GPT,GP~,GP"). We also look for the amount of average price growth

percentage in each class. Define

A Average price over Ai, Ao, A3
PGP;\+ , PGPy, PGPS(\) The percentage of instances with respectively positive
negative, and zero GP of A

GPf,GP; Positive and negative GP of \.

Studying the results we observe that,

e Going from R1 to RS we realize a positive average price growth percentage for

the majority of problem instances (55%). There is a negative price growth on
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nearly half of this population (30%). This analogy holds as we compare RS to

R2 (18.3 % of the instances have positive growth and 8.3% have negative), i.e.,

PGP} (RS, R1) ~ 2PGP; (RS, R1)
PGP} (RS, R2) ~ 2PGP; (RS, R2).

Thus, at rounds R1 and R2 it is more likely that the prices increase than to
decrease as compared to RS.

e The percentage of the instances with positive price growth is much larger at
R1 as compared to R2. Comparing R1 to RS, 55% of the instances have a
positive price growth. This percentage shrinks down to 18.3 when comparing
the prices at R2 against RS. Similar analogy holds for instances with a negative

price growth, i.e.,

PGP} (RS, R1) ~ 3PGP; (RS, R2)
PGP (RS, R1) ~ 4PGP; (RS, R2).

Thus, the likelihood that the prices change (increase or decrease) is less at R2

as compared to R1.

e The prices on the majority of problem instances in R2 (around 70%) remain

unchanged compared to RS, i.e.,

PGPY(RS, R2) >> PGP} (RS, R2) > PGP: (RS, R2).

Thus, at the second round of the auction when bidders prepare their bids based
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on the feedback from the auction, it is likely that the item prices do not change

too much till the end of the auction.

e The growth rate of the average prices for the population with either positive
or negative price growth is below 10%. Thus, the final prices have a growth
percentage ranging from -10% to +10%. Also, the absolute growth percentage

is larger when comparing RS to R1 than to R2, i.e.,

0 < GP}(RS,R1) < 10%
~10% < GP;(RS,R1) 0%,

and
G’P;(RS, R2) < G’P;(RS, R1)

|GP (RS, R2)| < |GP; (RS, R1)|.

For more clarification, Figure illustrates PGPXJr , PGPy, PGP){J when comparing
RS to R1 and R2.

In comparison of the suppliers cumulative profit from the auction, referred to as
SCWP profit in Table [§] we detect a large growth of RS compared to R1. This
is expected considering the fact that in round 1 suppliers can make small or even
negative profit. Compared to R2, suppliers’ cumulative WDP profit makes an average
gross growth of around 13% implying the limited increase in suppliers” WDP profit

as the auction proceeds from R2.
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Figure 12: Percentage of problem instances with positive, negative, or 0 growth

percentage
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Chapter 5

Divisible-Bid Auctions

When the demand on each item on auction is relatively large, suppliers can find it
challenging to carefully combine and price different units of items in a package con-
sidering their internal capacity and production costs. In such auctions it would help
to provide the bidders with more flexibility in constructing their bundles. In this
chapter we consider the case when the bidder can reveal their price functions to the
auctioneer allowing the auctioneer a continuum of order options. We refer to this

type of bidding as divisible bidding.

Suppliers’ consent for revealing price functions eases out their bundle evaluation and
bid submission processes by enabling them to more efficiently communicate innu-
merous variations of pricing multiple units of items via concise bids. Once bids are
reported, the auctioneer formulates his winner determination problem, represented
as a mixed integer programming (MIP) formulation, to decide whom to assign how

many units of what items.
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In this chapter we differentiate the combinatorial auctions with divisible bids from
the ones with indivisible bids. The former is referred to as divisible-bid auctions and
the latter as indivisible-bid auctions hereafter. We study the auctioneers’ winner de-
termination problem for divisible bid auctions, namely WDPD, and how it helps both
the suppliers and the auctioneer to mitigate combinatorial auctions’ computational
bottlenecks. We investigate the application of Lagrangian relaxation and analyse the

optimal Lagrangian bound, solution, and multipliers derived.

The rest of this chapter is devoted to formulating appropriate profit maximization
problems for suppliers to help them identify how many units of what products and
at what price to offer in the next round of the auction in order to remain competitive
with the rest of the suppliers. In the formulation of profit maximization problems we

take into account various levels of suppliers risk-taking attitudes.

As part of our empirical experiments, we simulate a divisible auction environment
and computationally implement and compare our presented models. The results are
further compared against the optimal prices and quantities obtained from an auction

with indivisible bids.

5.1 Notations and Definitions

The definition of i, k, di, A*(k) is consistent with Chapter . Other notations fre-

quently used throughout this chapter are as follows.
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j Index on the suppliers’ price functions j € J = {1,...,n;}
piji  Supplier i’s price for item £ in price function j
Pijx  Pijk from the previous round
cijk  Supplier ¢’s unit cost of item k in price function j
¢ijx  Supplier ¢’s quantity of item £ in price function j
Qi ijx from the previous round
fi;  The jth price function submitted by supplier 4
b; The bid submitted by supplier ¢
a;jx The minimum amount of item & supplier ¢ offers in price function j,
(aijr € NTU{0})
bijx ~ The maximum amount of item k supplier ¢ offers in price function j,
(bijr € NT U {0})
Ly Supplier i’s minimum capacity to produce item k, (L, € Z7T)
Uij  Supplier ¢’s maximum capacity to produce item k, (U, € Z7T)
I,  The minimum net profit that supplier i expects to take from the auction
Q; The minimum net profit margin that supplier ¢ expects to take from the auction
Bi The minimum profit percentage that supplier ¢ expects to take from the auction
d;;j  The binary variable which equals 1 if the jth price function submitted by supplier

1 is selected and 0 otherwise

5.2 The Winner Determination Problem for Divisible-

Bid Auctions (WDPD)

Assume each supplier submits bids containing several linear price functions which

explicitly define distinct ranges of quantities and their corresponding per unit prices.
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Rather than deciding whether or not to select a bid as in conventional WDP problems,
in a WDPD, the auctioneer solves for the optimal quantities from suppliers. In this
section we introduce the bids as well as the problem formulation in a divisible-bid
auction. We discuss how this auction is beneficial for both parties in an auction supply
chain framework. Finally, we look at the problem’s optimal Lagrangian relaxation

values.

5.2.1 Bid Formulation

Let b; define the bid submitted by supplier i as

by = {fi;|fij = Dop iskijr for  qiji € [aijn, bijil,
ijie 2> Lk, bijr < Ui, (5.1)

@ik, biji] O (@i, biji) = 0 Yi,j#75 k}.

In bid representation b;, we assume that suppliers determine prices with respect to
an all-units cost function. Meaning that the cost per unit drops when the order size
is greater than or equal to the discount break points. For supplier ¢ and product &

the cost function is defined as

ag a1 <q <bh

gy ax < q2 < by
c=T+

CniQn;  On; < Gn, < by,

\

where K denotes the fixed production cost. Note that for simplicity we drop the
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indices 7, k to formulate the cost with respect to the supplier ¢’s jth cost function.

Selection of all-units cost function for suppliers in a divisible-bid auction allows sup-
pliers to provide appropriate production costs on an arbitrary range of quantities

without supplying the product in quantities lower than the lower bound of that range.
Proposition 5.1. Bid formulation (5.1) preserves

e synergies among products,

e discounts on provision of larger quantity units,

e the XOR bidding Language.

Proof. Each price function included in bid b; is in fact representative of a bundle with
the additional flexibility on the number of units included in the package from each item
and the associated price. Suppliers are able to indicate complementarity among items
by grouping them in a function and assigning low per-quantity prices. Discount on

provision of large quantities is represented by assigning low per-unit price coefficients.

The suppliers’ all-units cost function allows for the supplier to have only one of the
cost functions selected. Once the price function j is selected, the supplier is required
to supply certain quantities of the items included in this function. Needless to say,
the quantities assigned need to satisfy the ranges defined in the function. This is in
line with the XOR bidding environment wherein at most 1 bid is accepted from each

bidder. O
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5.2.2 WDPD Problem Formulation

With the bid representation ([5.1)), the winner determination problem for a divisible-

bid auctions is formulated as

min >, 35> Pijkdijk

st X ik = dy, vk (1)
aijrdij < qijr < bijrdy; Vi, 3.k (2) (WDPD)
>0 <1 Vi (3)
6i; € {0,1} Vi, j
¢i;r € NTU{0} Vi, j, k.

The objective function minimizes the total price of procurement, constraint (1) en-
sures the demand on each product is satisfied. Constraint (2) determines whether
bidder i’s function j is selected or not. With the selection of this function positive
quantities of the items contained in this function are selected on the ranges intro-
duced. Otherwise, all quantities from this function remain at level 0. Constraint (3)

makes sure that at most one function is selected for each supplier (XOR condition).

5.2.3 The Virtue of Implementing WDPD

As discussed in Section there are several complexities inherent in the application
of combinatorial auctions. With the condition that suppliers reveal their price func-
tions, implementing divisible-bid auctions helps reduce these complexities. Below, we

discuss this in more details.
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5.2.3.1 Suppliers’ Complexity on Bundle Evaluation

In a combinatorial auction environment determining the value of each bundle necessi-
tates solving pricing, marketing, and revenue management problems. Requiring this
computation to be done for exponentially many combinations of multiple units of
multiple products is almost impractical. In a problem formulation with K items and
demand dj,, each supplier will have Zfil (If)dfg different options. With 5 items and

10 units of demand for each item this yields 161,050 combinations.

Specifically, in an iterative auction framework, due to the short bid-submission time,
the bundle evaluation process becomes challenging. Suppliers will only have a limited
time to carefully evaluate and price the combinations they are willing to compete
on. Divisible-bid auctions help reduce this complexity by providing the opportunity
for suppliers to determine prices for ranges of quantities rather than explicit quantity
values. As stated in Proposition [5.1] they will still be able to express synergies among
different products as well as quantity discounts when providing more units of the same

product.

5.2.3.2 Suppliers’ Complexity on Bundles’ Communication

Once the valuations are determined, bidders need to communicate exponentially many
bids to the auctioneer. Assuming the pricing stage is done, the suppliers’ next bottle-
neck is to communicate an exponentially large number of bundles to the auctioneer
(161,050 bids for a relatively small auction with 5 items and 10 units of each). Sub-
mission of price functions based on the intervals of quantities provides a more concise

bid representation format which reduces suppliers’ communication complexity.
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5.2.3.3 Auctioneers’ Complexity on Solving WDPD

In order to investigate the computational efficiency of divisible-bid auction formula-
tion, we conduct numerical experiments to: generate divisible-bid auction problem,
convert it to the equivalent indivisible-bid counterpart, and record the CPU time that

CPLEX 12 solver consumes to solve each formulation.

To simulate a divisible-bid auction, we use a uniform distribution to generate cost
values on the interval [50,100]. To represent the interval of quantities, we generate a
random number m;;;, € [5, 15] and derive the lower and upper bounds a;; and by, of
the quantity ¢,z as

ik € [O, mijk], bijk < [mijk + 1, 20]

Each generated instance is next converted to distinct packages in an indivisible-bid
auction. For instance, bid b; submitted by supplier 1, consisting of two functions and

3 products is represented as

bh={ fu= Zipllk%lk Quk € [a11k, big] for k=1,2,3,

fi2 = 22 PiokGiok  Qi2k € @1k, biok] for k=1,2,3}.

by is equivalent to the submission of the following indivisible bid:

{{a111, a112, a113}, P = ai1qui1 + a112q112 + a113q113 }

{{a111, an12, 0113 + 1}, p = arn1qinn + ar2quiz + (@113 + 1)guis}

{{b121, b122, 123}, P = bia1qi21 + b122q122 + bi23qi03 }-
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Table [10[ summarizes our results for ¢ suppliers, each submitting j price functions on
k products. Column 2 illustrates the number of bundles equivalent to each instance
of the divisible-bid auction problem generated. Columns 3 and 4 record the CPLEX
CPU time for solving the two equivalent problem instances in seconds, and column 5

is the time ratio of the divisible-bid to the indivisible-bid problems CPU time.

Table 10: Comparison of CPU time for problems with divisible and indivisible bids

(i,j,k) number of packages Divisible CPU time Indivisible CPU time Ratio
(2,2,3) 632 0.102 0.113 1.11
(2,3,3) 1248 0.1 0.107 1.07
(3,2,3) 1072 0.099 0.237 2.39
(3,3,3) 1184 0.101 0.126 1.25
(2,2,5) 5052 0.101 0.452 4.48
(3,2,5) 6498 0.105 0.703 6.7
(4,2,5) 39358 0.101 17.889 177.12
(5,2,5) 28954 0.153 20.857 136.32
(2,3,5) 6320 0.105 0.496 4.72
(2,4,5) 27272 0.107 4.19 39.16
(2,5,5) 37892 0.119 7.651 64.29
(3,3,5) 26379 0.104 6.024 57.92
(3,4,5) 33333 0.118 12.604 106.81
(3,5,5) 40773 0.122 15.262 125.1
(4,4,5) 61408 0.213 28.825 135.33
(4,5,5) 76912 0.208 105.402 506.74
(5,5,5) 81876 0.207 177.202 856.05

As observed, CPLEX takes much more time to solve the indivisible-bid problem
formulations. In addition, the CPU time for the indivisible-bid problem instances
grows quickly with the increase in the size of the problem. Comparison of the smallest
and largest problem instances shows that while the CPU time in the largest divisible-

bid problem instance takes almost twice as much as the smallest problem instance,
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this ratio increases to as large as 1737.3 on the equivalent indivisible-bid problem.

5.2.4 Analysis of the Lagrangian Relaxation Bound

Assigning the nonnegative Lagrangian multiplier vector A = (Aq, ..., A\g) to the de-
mand constraint and relaxing it produces the following dual function and optimization

problem.

L(A)= min } Zj >k Pigkigh + D Ak(di — > Zj iji)

st a0 < Qi < biji0ij Vi, j, k
S0y <1 Vi (5.2)
6;; € {0,1} Vi, j
gijr € NU {0} Vi, 4, k.

The Lagrangian subproblem can be rewritten as L(X) = >, L;(X) + >, A\pdj; where

Li(A) = min 37> qiji(pijr — M)

st a0 < Gijk < bijrdi; Vj,k

>0 <1 (5.3)
5ij € {07 1} vj
Qijk € NU {0} Vi, k.

The dual problem seeks optimal values of A > 0 that maximize L(X). As observed
in Proposition the Lagrangian subproblem for an indivisible-bid WDP satisfies
the integrality property, i.e. given any choice of coefficients in the objective func-
tion, it has an integer optimal solution even if the integrality constraints are relaxed.

We study this property for WDPD in Proposition[5.2, Corollary[5.1} and Theorem 5.1}
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Proposition 5.2. The Lagrangian subproblem corresponding to the relaxation of the
demand constraints for a divisible-bid auction environment as formulated in ([5.2))

satisfies the integrality property.

Proof. To see the integrality property of (5.2)), it suffices to find the closed form
optimal integral solution. The objective function of is minimized if for each
supplier 7 at most one function corresponding to the most negative value of ), (pijr —
Ak)@ijk is chosen. The least value of >, (pijr — Ak)@ijk is attained by fixing quantities
giji. at respectively their upper and lower bounds for negative and positive values of

Dijk — M. Let us define these bounds by parameter 7;;;, as

bijr  if pijr — A <0,
Tijk =
ik if Dijk — )\;; > 0.

Let g; = min;{}>, (pijx — A\x)Tijx } obtain the lowest value derived from the functions,

and j* = argmin;{} , (pijt — Ax)7ijr ;- Then for each supplier ,

1 ifg; < 0,5 =77,
or =

ij
0 ow.

The optimal quantity values are equivalent to 7;;, for the chosen function, and they
are defined zero elsewhere.
Tijk 1f 5:} = 1,

*

Qi =
0 0.W.
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O
Corollary 5.1. The Lagrangian and linear relaxations WDPD yield equivalent bounds.

Proof. According to Theorem 16.10 in [2], the linear and Lagrangian relaxation
bounds equal if the Lagrangian subproblem satisfies the integrality property which is

the case according to Proposition [5.2 O]

Theorem 5.1. For WDPD, the dual variables associated with the demand constraints
of the linear relaxation problem correspond to the Lagrangian multipliers associated

with relazation of demand constraints of the Lagrangian relaxation problem.

Proof. The Lagrangian dual function L(\) as formulated in is equivalent to
g(N) =Y Medi+ > min{0, mjin{Z(min(pijk — Ak, 0)bijk +max(pij, — M, 0)aijn) } -
k i k
It can be seen that function g produces equivalent optimal solution as . Let,
g1(7) = min(pijx, — A, 0)byji + max(pijx — A, 0) -

g1(j) sets products corresponding to negative values of p;j, — i, to their upper bounds.

More clearly,

min(pix — Ak, 0) = Dijr — Mk
Dijk — )\k <0 =
max(p;jx — Ak, 0) = 0.

= 91(J) = (Pijr — Mk)bijn-
Alternatively,
Dijk — A >0 = 91(J) = (Pijk — k) Qijke-
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If for supplier 4, min; g;(j) is nonnegative, the optimal quantity values are set to zero.
This defines the optimal solution for g(A) that is equivalent to the optimal solution

for L()) as stated in Proposition [5.2] Now, let
Vgje = min(pgix — Ak, 0), wige = max(pie — Ak, 0).

Obviously vijr < pijr — Ak, Vije < 0, and wiji > piji — Ak, wijr > 0. This transforms

the Lagrangian dual function as
g(N) = Aedy + ) min{0, mjin{Z(Uz‘jkbijk + Wijkijk) } -
k i k

With the definition of s; = min{0, min;{} ", (vijxbijx + wijraix)}}, the Lagrangian

dual problem can be formulated as

max Zk )\kdk —+ Zz Si

st si— > p(Viebijr + wijraie) <0 Vij
Al + Vi + Wi = pijk Vi, 5,k
Ve < 0, wij > 0, A, > 0,5, <0 Vi, g, k.

Assigning positive dual variables d;; and g;;, to the first and second constraints of the

above linear programme leads to the dual problem
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min 3, o Pijrdijh

s.t. Zz’j Qijk Z dk Yk
ij < bijrdij Vi, 5,k
Qijk JkCij J (54>
Qijk > aijpdi; Vi, j,k
giji. free variable, d;; > 0 Vi, g, k.

Note that, Zj 0;; < 1 implies that §;; < 1 and a;;10;; < gijr < biji0;;, implies that the
free variable ¢;;, > 0. This makes formulation (5.4)) equivalent to the linear relaxation
(WDPD)) and the dual variables of the linear relaxation problem equivalent to the

Lagrangian multipliers \g. O

5.3 Suppliers’ Profit Maximization Model (PMBD)

In order to package a new bundle in a divisible-bid auction setting we assume that
each supplier fixes the bounds of the quantities he offers at the beginning of the first
round of the auction based on his production capacity and costs. Throughout dif-
ferent versions of the PMBD model, each supplier seeks an optimal pricing scheme
on the corresponding intervals considering internal conditions. The new bundle is
formulated in such a way that supply of the new bid is profitable for the supplier and

yet remains competitive in the auction.

Since the PMBD models are designed for each supplier i, we drop this index from all
variables and constants we use in this section. Also, index j previously assigned to

suppliers’ bids now associates with the functions included in each bid. This slightly
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changes our notations. p;-k, q}k are the price and quantity from the previous round of

the auction and we define

[k = (@i, + bjr)/2
Tik, tiw €T = {ajk, ik, bk}
mjg = minO‘ZW}k)

M; = max()\z,p;k).

We study quantity- and risk- based profit maximization formulations for the suppliers

pricing problems.

5.3.1 Quantity-based Profit Maximization Model

We keep our first problem formulation (QPMBD)) consistent with the formulation
(VPMB)) defined in Section for the indivisible-bid problems with variable price

functions as

max Y > qk(pjk — i) (QPMBD)
Tk
s.t. Z ¢k (pjk — cji) > 11 Vi (5.5a)

%

D @ik — A0 < Y ap(pl — A) vj (5.5b)
% A

a0k < Qi < bjrdjp Vi, k (5.5¢)

Mkl < ik < Mjrdj, Vi, k (5.5d)

pik > 0,q; € NTU{0},6;, € {0,1} Vi, k.
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Constraint defines the minimum profitability condition as described in Equa-
tion [GPMD] It ensures that with the selection of each of the suppliers’ cost functions,
he will earn the minimum net profit of II. Constraints enforces the competi-
tiveness condition, and constraint ensures the production capacity for each item
at the corresponding prices. The use of binary variable ¢;; ensures the possibility for
the supplier to withdraw some products in his new bid. Therefore, he will choose
either not to supply a quantity, or supply it on a certain range with predetermined

cost values.

Constraint guarantees pricing consistency condition. For positive quantity val-
ues with 9, = 1 we enforce each new price to be greater than the minimum of the
previous price and the Lagrangian multiplier and lower than the maximum of the
two. Thus, if the previous prices are already competitive with values lower than the
Lagrangian multipliers, the supplier is able to slightly increase prices as long as they
do not exceed the Lagrangian multipliers. On the contrary, if previous prices are
not competitive in the previous round of the auction, meaning that they are greater
than the announced Lagrangian prices, the supplier needs to cut down on his price
submission as long as they are not less than the Lagrangian multipliers. Without this
condition, we experimentally observe that prices can get very large on a few products
and 0 on the rest. ¢;; = 0 ensures that the new item price is zero if the bid is not
including the corresponding item. Note that an optimal quantity of an item ¢}, can
be zero despite positive optimal value of d;;, when the corresponding lower bound a;y,

is set to zero.
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(QPMBDJ) is a mixed nonlinear integer programming problem. In the following we

discuss solution techniques that can be used to solve the problem.

5.3.1.1 Technique 1: Linearization by the Change of variables

One solution approach is to linearize (QPMBDJ]) by the change of variables as s, =

¢;kpjk- This problem can then be formulated as follows:

max E E Sik — 45kCjk
J k

s.t. Z Sik — QjCir > 11 v (5.6a)
k
D sk = GAE < D ap(i — Ab) Vj (5.6b)
k %
ajkdjk < qjx < bjpdjk Vi, k (5.6¢)
mikQie < Sjk < M;rqik Vi, k (5.6d)
Sk > O, 4k € N*T U {O}, (Sjk c {O, 1} VJ, k.

Once the model is solved, optimal prices are derived as

Note that s;, replaces gjxp;r in the objective function and constraints (5.6al) and
(5.6b)). To formulate ([5.6d)) we multiply all sides of (5.5d)) by g;x. The new constraint
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is linear and equivalent to (5.5d)):

1. For ;; = 0 in (5.6¢) = ¢;x = 0 = s = 0 and pj; = 0.

2. For 6j; = 1in (5.6c) = qjr > 0 = mrqjx < sjr < Mjpq;r and mjr < pjr < M.

This technique transforms (QPMBD)) into a linear mixed integer programming prob-

lem with binary, nonnegative integer and nonnegative real variables: §;, g5, and sjy.

5.3.1.2 Technique 2: Defining closed-form solution

Let a rational bidder submit bids which satisfy p;z > cji. Proposition provides

the solution for (QPMBD)).

Proposition 5.3. For all j,k, the profit mazimization problem (QPMBD)|) for a

rational bidder

1. yuelds integer optimal solution:
bir. if =0,

=1 a4 = 717;1@:(1_
Qjk if v < 0.

Gk
*
45,

)+ ()P

¥
4k

2. 1is feasible for II < min;{> ", ajx(m;i — c;i)} and infeasible if there exists j for

which 11> 24 aje(Plhe — Ap) + 225 bin(AL — cj)-

Proof. Combining constraints ({5.5al), (5.5b]), we have:

I <> am(pie —cin) < Dopa®, — M%) + 2, 4N — cjx) V3. (5.7)
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For an arbitrary k define

OBjr(qjk, pjr) = @k (Pjr — Cjr)

UBje(qjr) = aji(ply, — Ne) + @M — ¢

This defines the objective function as » . >, OBjr(gjr, pjr)- Also, from constraint

(5-7) >, OBji(qj, pjk) < >, UBji(g;x) for all j. To see part (1) of the proposition

consider the following cases:

() Ak = Cji-

With this condition the upper bound U Bjx(g i) attains its maximum when ¢;; = bj.
Also, defining 0 < nj, <1 as nj, = Zj—_':, pir = (1 = mjx) AL + njxp), provides a convex
combination of {p},, At} Clearly, A} < pj < ply if A < ply, and pjy, < pj, < Ap if

otherwise. In either case,

OBijk(bjk, pjt) = bi((1 = FENL + ()P — i)
= (bj — aji)\p + ampjy, — cirbjn
= ae (Pl — AR) + bjr(AL — i)
= UBji(bji).

Thus, for the defined pjx and g;i, OBjk(b;k, p;r) realizes the upper bound U By (bji ).
(Clearly, the objective function can not improve any further beyond the upper bound

without violating the feasibility of the constraints.

(ii) Pl < pje < AL and A < cji.

In this case p;»k < pjr < A\, < ¢jk, and thus pjp < ¢;,. This contradicts the rationality
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of the bidders. With the assumption of non-rationality, the optimal price, quantity

and thus the objective function is 0.

(iil) A < pjr < Pl and A} < cjp.
Condition (iii) implies that A\; < cj < pj < pj,. While setting g to 0 makes

OBj, =0, g = a;; improves OBj;, to a strictly positive value:

UBje(an) = a(ply, — M) + ain( Mg — cji)

= a; (P, — Cjk)-

With pjx = pj, OBj; attains the upper bound UBj(aj), ie., OBji(a;r, ply) =
UBji(ajx). Due to the negativity of \; — ¢;i, increasing g;, beyond this point deteri-

orates UBj(gj). To see this define a;;, < (i < bji.

UBji(Gr) = aju(Ple — o) + Gr(Af, — cji)
< a(pl, — ML) + ain(A; — cji)

< UBjk(ajk)-

For n;, = ‘Z—: and pji = (1 —njp) A + njkp;-k, OBk (Cjk, pji) realizes the upper bound
UBjx(Gi):
OBji (G i) = G((L = )N + ()P — i)
= (Gk — azi) Ak + @Dl — CieGin
= a;i (Pl — Ap) + Gr(Ap — ¢ji)
= UBjr(Gr)-

Since UBji((jx) < UBji(aji), ¢j, = ajx and ply = piy.
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To see part (2) note that g;x = ajx and pj = pj), always satisfy Constraint [5.5bf
Thus, for the model to be feasible it suffices that parametrization of II is appropriate.
Based on part (1) of this proposition for rational bidders p;; > 0 for all j, k. So, the

minimum value that it attains is m; ;. Thus,

I <> auPik — cn) vj

< ming{); ajr(pjr — cjr) }-

Since for all j, k, pji € [myg, Mji], I = >, ajp(mj — cjr) guarantees the feasibility of
the problem. Any lower value of IT maintains the feasibility of constraint [5.5a] More-
over, based on constraint if there exists j for which the minimum required prof-
itability exceeds the maximum that the supplier can get, then the problem becomes
infeasible. Mathematically this happens when TT > 7 a;x(p)), — Af) + D25 bjn(Af —
Cik)- O

Note that part (2) in Proposition [5.3| defines the interval that guarantees feasibility.
While (QPMBD)) can be feasible for values greater than the upper end of this interval,
having a maximum value that ensures feasibility is helpful for the suppliers to know

for what values of the minimum expected profit the model promises feasible solutions.

Solving for a closed form solution is relatively easy and is preferred over the lin-
earization derived by the change of variables. Moreover, the closed-form solution
guarantees that the supplier will price all different supply scenarios with/without
quantity discount. If the supplier is unwilling to include a product, he is able to do
so by adjusting the production bounds (for instance, setting the lower bound of an

item to zero, considers the possibility of excluding the item from the package).
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5.3.2 Risk-based Profit Maximization Model (RPMBD)

In our next set of formulations, we determine optimal pricing scheme irrespective of
the optimal quantity orders ¢;; € [aji, bj;]|. Instead, items are priced based on a mini-
mum, average, or maximum quantity offerings for suppliers with different risk-taking
level. To do so, we customize the objective function of (GPMB]|) to maximization
of profit with respect to reception of either minimum, average, or maximum order.
The profitability condition is adjusted to guarantee minimum net profit, minimum
net profit margin, and minimum profit percentage. The competitiveness condition is
reflected for the suppliers when they receive minimum, average or maximum order
of quantities in constraint and constraint maintains pricing consistency,
i.e., the item is either supplied in the corresponding interval or not at all when the

price is zero. The profit maximization problem is formulated as

max Z Z rik(Djk — k) (RPMBD)
7 k
st ) aj(pjn — ) > PI vV (5.8a)

k

S o = A <D ai — M) vj (5.8b)
k k

Mjrdie < pix < Ml Vi, k (5.8¢)

pik > 0,0, € {0,1} Vi, k.

Depending on the values that 7, and t;;, take up from the set T, the profit maxi-

mization model can be customized to reflect suppliers’ levels of risk-taking attitudes.
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Figure 13: Risk-taking levels in the profit maximization model
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As illustrated in Figure [13], we define the profit maximization models for risk averse,

risk neutral, and risk seeking suppliers based on the quantity order they adopt in the

maximization of their profit. In the risk averse scenario, the model seeks the optimal

pricing scheme to maximize the minimum profit. In the risk neutral and risk seeking

scenarios the model adjusts to respectively maximize average or maximum profit.

Each risk-based model is defined as R,; where r,t € {1,2,3}. The values 1, 2, and 3

respectively indicates initialization of 7 or t; at ajk, ik, and by, (for instance Ras

defines the model wherein 7, = p;;, and t;, = b;i,).
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5.3.2.1 Optimality of RPMBD

To analyse (RPMBD)) at optimality, we first investigate how suppliers risk-taking at-
titude affects their expected profit. First we observe that increase of the suppliers’
risk-taking level produces more profit for the problems when ¢ is fixed. This means
that defining the objective function in as Z(rj, tjx), for an arbitrary ¢y,
Z* (i = i, tig) < Z*(rjk = pyk, tig) < Z*(rj = bjk, tjr). However, on the same
risk-taking level, increase of t;, does not constitute an increasing or decreasing pat-
tern for suppliers’ profit. The optimal profit from each subclassification depends on
the suppliers’ previous price values and the Lagrangian prices from the auction. In
Proposition [5.4] we show the scenarios where a monotonic change of function Z is

detected.

Proposition 5.4. With the increase of t;, for an arbitrary risk-taking attitude rp,

the optimal profit gained follows

1. a decreasing pattern if supplier’s initial prices are no less than the Lagrangian
multipliers, i.e.,

AL S P Vick = Z5(rje tie = agr) > 27 (ks tik = k) = Z5 (1, tix = bjg).

2. an increasing pattern if supplier’s initial prices are no greater than the La-
grangian multipliers, i.e.,

P S Ae Vi k= Z7(rje, tie = aje) < Z7 (e, tie = pe) < 27 (Tjks Lk = bje).-
Proof. Let v, = p;-k — A;. We examine the following cases:

1. v > 0 for all j, k.

Pj. > Aj, produces a positive value on the right hand side of constraint ([5.8b).
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This condition implies that new prices are selected to satisfy A\; < pjx < pjj,
and thus the left hand side of this constraint is also positive. Increase of ¢
values tightens this constraint and thus restricts the optimal price values and

consequently the objective function.

2. v <0 for all 7, k.
Similarly, p;, < Aj produces a negative value on the right hand side of constraint
. This condition implies that new prices are selected to satisfy A\; > p;, >
p;-k and so the left hand side of this constraint is also negative. Increase of ¢,
values loosens this constraint and thus increases the optimal price values and

consequently the objective function.

]

Therefore, if all the previous prices a supplier submits are greater than the Lagrange
multipliers, maximizing the profit for the minimum quantity orders maximizes the
supplier’s profit. Nonetheless, if all the previous prices are lower than the Lagrange
multipliers, maximizing the profit for the maximum quantity orders maximizes the

supplier’s profit.

Note that, other than the cases studied in Proposition [5.4] the increase or decrease in
the objective function among the risk subclassification models depends on how much
the increase or decrease of products improves the total profit, and does not neces-
sarily follow a monotonic pattern. Figure [14]illustrates a counter example where the

optimal profit for supplier 1 is non-monotonic.
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Figure 14: Suppliers’ non-monotonicity example on the risk-taking sub-levels
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Once the suppliers determine the risk taking level that best suits them, they have
the additional option to have their minimum profit at least as much as their desired
net profit II, net profit margin «, and profit percentage 5 as defined in Section [4.2]
Defining

o =a)y , aippik Vi

p* = sz ajrCix V7,

adjusts constraint (5.8a) in (RPMBD)) as

Yok @ik(Pje — cjp) > 1TV
>k Gik(Pjk — i) = o V) (5.9)

>k Gik(Pje — i) = B° V.
Proposition 5.5. For Vj, k, the profit mazximization problem (RPMBD)),

1. yields integer optimal solution 0%, = 1.

2. is feasible for
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(a) IL=73"5 aju(mr — cj)

_ Y ajr(mir—cik)
R

(c) = Hatgi=sel

Proof. To see part (1) recall that constraint (5.8al) defines a lower bound on the prob-
lem. In order to show that for all j, k, 07, = 1, it suffices to show that constraint (5.8b))
always holds when initializing price variables at their minimum positive values. To

see this, consider the following cases for arbitrary values of j, k.

(1) A < pjr < Dl
Setting pjr. = Aj, transforms constraint (5.8b) to t;x(A; — Ay) < aj(pj — Ap). By

assumption p;k — A, > 0 and so the equation holds.

(ii) Pj < pjr < AL
Setting pji, = pjy, we obtain t,(p)), — Ay) < ajw(pj, — AL). By assumption pf, — Ay <0

and so the equation holds.
Therefore, one feasible solution is attained when setting the price variables to their
minimum values. Clearly, further increase of the price variables, so long as it does

not violate feasibility of constraint (5.8b]), improves the optimal objective value.

In part (2), we use the results from part (1). Since 67, =1 for all j, k, optimal price
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values are nonzero. From constraint ([5.8al), we have

I <> ap(pin — i) \Z

< ming{); ajr(pjr — cjr) }-

Since, Pj; € [mjk, Mji], m = >, aju(mjr — ¢ji) is the minimum value that ensures

feasibility of the (RPMBD)) for PI = II. Similarly, with PI = a* in constraint ([5.8a)),

we have
S T vj
< minﬁ%}.
Considering the minimum value of pjj, m i, in the nominator and the maximum value
of pjr, Mj, in the denominator produces the minimum value of o that guarantees

feasibility of the problem. Similar analogy proves (c).

5.4 Empirical Experiments

In order to simulate a divisible-bid auction environment we randomly generate data,
using uniform distributions for an auction with 2 suppliers, each submitting 2 price
functions to supply 5 products. We generate cost values for suppliers’ cost function
on the interval [50,100]. To demonstrate price discount on provision of larger quanti-
ties in the second function, we fix constant dr (standing for discount rate) at 0.1 and
multiply the costs of the second function by (1-dr). To generate corresponding prices,
we set constant mp (standing for marginal profit) to 0.2. Price values are defined as

the product of (14+mp) by corresponding costs.
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To generate the lower and upper bounds of quantity offers for each supplier and each
item, we produce intervals of data on [0,20]. To do so, a middle point wvjj is first
randomly chosen on [5,15]. The interval is next created with a lower bound generated
on [0,vj;] and an upper bound on [v;; + 1,20]. The linear relaxation of the
is solved for a demand of 20 units for each product. The dual variables are extracted

as equivalents of the Lagrangian multipliers.

With the initialization explained above we solved the profit maximization problems

for each supplier. Below we describe our computational results.

5.4.1 Comparison of QPMBD models

Our first set of experiments is for the numerical observation derived for the quantity-

based PMBD models. Define @ as (QPMBD)), @; as the problem (5.6), and Q5 as
the problem solved by the direct solution. The results are summarized in Table [I1]

As observed all 3 models yield equivalent results. The optimal value for ¢* is either
the lower bound a (when v* < 0), or the upper bound b (when v* > 0). Also, although
the optimal prices often take up their lower/upper bound values, there exists cases

when they are set to a middle value (for instance supplier 1, function 2, product 1).

5.4.2 Comparison of RPMBD models

With initial values of Lagrangian multipliers and suppliers’ prices as presented in

Table , we illustrate (RPMBD)) results in Table .
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Table 11: Comparison of optimal prices and profit from @, @1, Q-

i model k m p* M a q* b Y
1 Qo 1 0 72.6 72,6 6 6 10 -66
2 80.3 96.03 96.03 8 9 9 23.03
3 71.28 71.28 79.2 1 1 5 -0.72
4 75.9 75.9 170.94 4 5 5 101.94
5 55.44 85.62 90.2 5 5 7 -26.56
1 0 62.46 65.34 11 11 13 -59.4
2 72.27 96.03 96.03 10 13 13 30.33
3 71.28 71.28 71.28 6 16 16 6.48
4 68.31 68.31 170.94 6 6 6 108.84
5 55.44 55.44 81.18 8 8 18 -18.36
Q1 1 0 72.6 72.6 6 6 10 -66
2 80.3 96.03 96.03 8 9 9 23.03
3 71.28 71.28 79.2 1 1 5 -0.72
4 75.9 75.9 170.94 4 5 5 101.94
5 55.44 85.62 90.2 5 5 7 -26.56
1 0 62.46 65.34 11 11 13 -59.4
2 72.27 96.03 96.03 10 13 13 30.33
3 71.28 71.28 71.28 6 16 16 6.48
4 68.31 68.31 170.94 6 6 6 108.84
5 55.44 55.44 81.18 8 8 18 -18.36
Q2 1 0 72.6 72.6 6 6 10 -66
2 80.3 96.03 96.03 8 9 9 23.03
3 71.28 71.28 79.2 1 1 5 -0.72
4 75.9 75.9 170.94 4 5 5 101.94
5 55.44 85.62 90.2 5 5 7 -26.56
1 0 62.46 65.34 11 11 13 -59.4
2 72.27 96.03 96.03 10 13 13 30.33
3 71.28 71.28 71.28 6 16 16 6.48
4 68.31 68.31 170.94 6 6 6 108.84
5 55.44 55.44 81.18 8 8 18 -18.36
2 Qo 1 0 0 62.7 0 0 10 -57
2 96.03 96.03 106.7 5 5 6 -0.97
3 71.28 71.28 108.9 3 3 6 -27.72
4 69.3 149.36 170.94 3 5 5 107.94
5 55.44 55.44 61.6 5 5 9 -0.56
1 0 56.43 56.43 11 11 20 -51.3
2 96.03 96.03 96.03 7 20 20 8.73
3 71.28 71.28 98.01 7 7 18 -17.82
4 62.37 139.99 170.94 6 15 15 114.24
5 55.44 55.44 55.44 10 17 17 5.04
Q1 1 0 0 62.7 0 0 10 -57
2 96.03 96.03 106.7 5 5 6 -0.97
3 71.28 71.28 108.9 3 3 6 -27.72
4 69.3 149.36 170.94 3 5 5 107.94
5 55.44 55.44 61.6 5 5 9 -0.56
1 0 56.43 56.43 11 11 20 -51.3
2 96.03 96.03 96.03 7 20 20 8.73
3 71.28 71.28 98.01 7 7 18 -17.82
4 62.37 139.99 170.94 6 15 15 114.24
5 55.44 55.44 55.44 10 17 17 5.04
Q2 1 0 [¢] 62.7 0 0 10 -57
2 96.03 96.03 106.7 5 5 6 -0.97
3 71.28 71.28 108.9 3 3 6 -27.72
4 69.3 149.36 170.94 3 5 5 107.94
5 55.44 55.44 61.6 5 5 9 -0.56
1 0 56.43 56.43 11 11 20 -51.3
2 96.03 96.03 96.03 7 20 20 8.73
3 71.28 71.28 98.01 7 7 18 -17.82
4 62.37 139.99 170.94 6 15 15 114.24
5 55.44 55.44 55.44 10 17 17 5.04
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Table 12: RPMBD Initializations

=1 =2
Supplier k=1 k=2 k=3 k=4 k=5 k=1 k=2 k=3 k=4 k=5
118.12 79.8 83.22 59.28 74.1 118.12 79.8 83.22 59.28 74.1

1 1116 80.4 87.6 80.4 79.2 106.02  76.38 83.22 7638  75.24
87.6 84 87.6 62.4 78 83.22 79.8 83.22 59.28 74.1

Table 13: Comparison of RPMBD Models

Supplieri  Model Profit Pill Pi12 Pi13 Pil4 Pil5 Pi21 Pi22 Pi23 Pi24 Pi25
1 R11 912.65 99.28 79.8 83.22 59.28 74.1 83.22 79.8 83.22 59.28 74.1
R12 976.93 99.65 79.8 87.6 59.28 74.1 86.39 79.8 83.22 59.28 74.1

R13 1021.46 103.27 79.8 87.6 59.28 74.1 89.04 79.8 83.22 59.28 74.1

R21 1262.41 93.73 84 83.22 62.4 78 83.22 79.8 83.22 59.28 74.1

R22 1307.51 104.66 79.8 83.22 59.28 74.1 86.39 79.8 83.22 59.28 74.1

R23 1361.92 103.27 79.8 87.6 59.28 74.1 89.04 79.8 83.22 59.28 74.1

R31 1612.18 93.73 84 83.22 62.4 78 83.22 79.8 83.22 59.28 74.1

R32 1663.37 95.19 84 83.22 62.4 78 86.39 79.8 83.22 59.28 74.1

R33 1702.38 107.65 79.8 83.22 59.28 74.1 89.04 79.8 83.22 59.28 74.1

2 R11 900.04 118.12 80.4 87.6 71.27 74.1 118.12 79.8 83.22 65.24 74.1
R12 861.88 118.12 80.4 87.6 66.94 74.1 118.12 76.38 83.22 64.98 75.24

R13 841.49 118.12 80.4 87.6 64.78 74.1 118.12 76.38 83.22 64.11 75.24

R21 1155.11 111.6 80.4 87.6 80.4 79.2 106.02 79.8 83.22 75.14 74.1

R22 1051.1 111.6 79.8 83.22 77.62 74.1 106.02 76.38 83.22 74.46 74.1

R23 1021.83 118.12 80.4 87.6 64.78 74.1 118.12 76.38 83.22 64.11 75.24

R31 1410.17 111.6 80.4 87.6 80.4 79.2 106.02 79.8 83.22 75.14 74.1

R32 1282.02 111.6 79.8 83.22 75.92 79.2 106.02 79.8 83.22 72.52 74.1

R33 1202.17 111.6 79.8 83.22 73.36 74.1 106.02 76.38 83.22 72.99 74.1

Based on the results in Table [13], in Figure[15 and Figure 16, we compare the optimal
prices and profit obtained for each models. To represent the prices on the
5 products from the 2 functions on the x axis, we index the products as 5(j — 1) + k.
Thus, unit 6 on the x axis refers to the first item of the second function. Definition of
the R,; models (with r, ¢ = 1,2, 3) is compatible with the description in Section [5.3.2]
For each supplier i, P*rt identifies the optimal prices corresponding to a model with
r,t. Specifically, each figure fixes the value of r and attains the results for models

with ¢ = 1,2, 3.
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(a) Optimal Price Comparison

Figure 15: Price/Profit Comparison-Supplier 1

(b) Optimal Profit Comparison

r=1 r=1
140 1040
1020 I
120
1000 .
100 -
5 M Landa* 980
S 80 o g 960 m Profit R11
& 60 * £ %40 m Profit R12
& mP*11 920
40 1 mP*12 900 Profit R13
20 4 p*13 880
0 860
2 3 4 5 6 8 9 10 840
Function/Product R1 Models
r=2 r=2
140 1380
120 1360 —
1340
§ M Landa* 1320
% p' g 1300 m Profit R21
£ P21 | [& 1280 u Profit R22
m P22 1260 Profit R23
p*23 1240
1220
1200
R2 Models
r=3 r=3
140 1720
120 1700 ——
100 | 1680 S
S % M Landa*
S g 1660
3 %0 P g W Profit R31
£ S 1640
£ %07 mP*31 = m Profit R32
40 HP*32 1620 Profit R33
20 p*33 1600
1580
0 44
1560

Function/Product

R3 Models

Also, we recorded the right hand side values of constraint ((5.8b]) in (RPMBD)) as

=1 j=2

supplier 1 -94 -349

supplier 2 88 65
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Figure 16: Price/Profit Comparison-Supplier 2

(a) Optimal Price Comparison

(b) Optimal Profit Comparison
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As observed from the figures, supplier 1’s optimal profit maintains an increasing pat-

tern as we increase the r value. The supplier’s initial prices on product 1 both in

his first and second function are mostly lower than the Lagrangian multipliers. This

produces a negative term on the right hand side of constraint (5.8b]) in (RPMBD)).
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Thus, increasing the ¢;; values loosens this constraints letting the optimal prices and

profit increase.

Supplier 2’s initial prices are not as low as supplier 1’s. In fact, in many cases they

are larger than the Lagrangian multipliers producing a positive term on the right

hand side of constraint (5.8b)) in (RPMBD]). Thus, constraint ([5.8b) tightens with

the increase of ¢;;, producing lower optimal prices and profit.
Figure |17 shows the percentage by which each supplier needs to adjust his prices in
order to submit a competitive bid. We defined the change percentage as

Initial price — New price

* 100

Initial price

J =1 and J = 2 define the price functions and Rirt defines the problem formulation
corresponding to supplier 4, and parameters r,t. As observed, supplier 1 mostly

decreased prices to enter the second round as for supplier 2, prices are often increased.

Figure 17: Price change percentage for each supplier
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5.4.3 Comparison of RPMBD and VPMB Models

Implementation of divisible-bid auctions, if possible, is advantageous for both the
suppliers and the auctioneer. In studying the suppliers’ pricing scheme, one plausible
question that raises is how prices compare in a divisible-bid versus an indivisible-bid

auction.

To answer this question we generated divisible-bid problem instances and converted
them to equivalent indivisible-bid problems. For the sake of consistency, we com-
pared the quantity-based profit maximization problem from divisible-bid
auctions against the variable-cost profit maximization problem for indivisible-bid auc-
tions problem . Table 14 summarizes our results on 25 feasible problem in-

stances.

WDPD_ 7Z* and WDPD_ T represent the optimal objective value and the correspond-
ing CPU time for solving an instance of the (WDPD)). QPMBD_Z*, and QPMBD_T
show the optimal objective and CPU time for . We solve this problem
using the second linearization technique based on initialization of g;i, d;, and p;;, at

their optimal closed-form values.

Similarly, WDPID_Z* and WDPID_T represent the optimal objective value and the
corresponding CPU time for solving an instance of problem (3.2), and VPMB_Z*,
VPMB_P* and VPMB_T show the optimal objective, price and CPU time for (VPMB]).

Based on the prices derived from the (QPMBD)), we find the equivalent value of
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the bundle that VPMB formulates for submission in the next round of the auction,
and denote it by QPMBD_P*. Table 14 confirms the equivalence of WDPD_Z* and
WDPID_Z*, and the shorter amount of execution time required by WDPD _Z* to find

the optimal solution.

Moreover, the results indicate that on average, divisible-bid auctions provide more
profit for the suppliers and yet produce lower bundle prices. While the higher profit
expected from divisible-bid auctions make them appealing for suppliers, production
of lower bundle prices reduces the total price of procurement and therefore attracts

auctioneers’ interest to implement this type of auctions.

It can be seen that solving QPMBD is slightly more expensive on the suppliers than
VPMBD. However, this difference, around 0.06 seconds on an average of 25 problem
instances, is a good trade-off for suppliers’ with the less complexity they face for

evaluating and communicating an exponential number of bundles with the auctioneer.
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Table 14: Comparison of QPMBD and VPMB Models

Instance Supplieri WDPD_z*  WDPD_T _ QPMBD_Z* QPMBD_P* QPMBD_T WDPID_Z*  WDPIS T _ VPMB_Z* VPMB_P*  VPMB_T

1 1 1024.8 0.19 1160.61 5290.38 0.22 1024.8 31.65 1024.8 6277.38 0.23
2 1024.8 0.19 1424.82 2830.08 0.22 1024.8 31.65 1024.8 5202.49 0.23
2 1 1155.6 0.19 1190.32 2979.6 0.24 1155.6 31.84 1155.6 5662.6 0.22
2 1155.6 0.19 1362.89 1491 0.44 1155.6 31.84 1155.6 5604.95 0.27
3 1 980.4 0.2 1294.58 6002.34 0.49 980.4 32.72 980.4 7634.28 0.23
2 980.4 0.2 111831 6815.64 0.22 980.4 32.72 980.4 7007.68 0.23
4 1 1548 0.19 1590.34 10644.36 0.26 1548 33.53 1548 10460.64 0.23
2 1548 0.19 1197.77 5485.14 0.23 1548 33.53 1548 5856.84 0.23
5 1 949.2 0.2 1551.61 9231.24 0.48 949.2 32.53 949.2 9262.39 0.23
2 949.2 0.2 1325.88 6618.78 0.23 949.2 32.53 949.2 7032.43 0.23
6 1 1942.8 0.19 1412.14 5511.24 0.5 1942.8 32.64 1942.8 6505.81 0.22
2 1942.8 0.19 1316.65 6836.94 0.22 1942.8 32.64 1942.8 7441.32 0.23
7 1 777.6 0.36 1289.98 6723.66 0.51 777.6 32.45 777.6 7532.29 0.23
2 777.6 0.36 1412.97 6192.9 0.22 777.6 32.45 777.6 7389.41 0.23
8 1 1303.2 0.2 1027.65 4742.22 0.22 1303.2 32.81 1303.2 5584.76 0.24
2 1303.2 0.2 1232.66 4404.36 0.22 1303.2 32.81 1303.2 5025.02 0.23
8 1 542.4 0.2 896.02 6881.16 0.31 542.4 33.37 542.4 6872.51 0.25
2 542.4 0.2 132291 6907.44 0.25 542.4 33.37 542.4 7396.8 0.23
10 1 1191.6 0.19 1028.59 4119.9 0.24 1191.6 327 1191.6 4478.22 0.22
2 1191.6 0.19 1297.65 8668.62 0.22 1191.6 32.7 1191.6 8521.5 031
11 1 898.8 0.2 1192.88 3424.38 0.24 898.8 33.24 898.8 4914.76 0.23
2 898.8 0.2 1124.76 5733.36 0.23 898.8 33.24 898.8 6690.19 0.23
12 1 1441.2 0.2 1347.6 4590.18 0.23 1441.2 31.83 1441.2 6776.16 0.23
2 1441.2 0.2 1029.02 4081.44 0.23 1441.2 31.83 1441.2 6505.92 0.23
13 1 1082.4 0.36 1238.6 5116.98 0.23 1082.4 32.73 1082.4 5780.91 0.23
2 1082.4 0.36 1262.78 8673.12 0.24 1082.4 32.73 1082.4 8498.24 0.22
14 1 1143.6 0.2 1319.78 2304.72 0.23 1143.6 31.55 1143.6 5009.17 0.23
2 1143.6 0.2 1036.74 2360.88 0.43 1143.6 31.55 1143.6 4951.19 0.23
15 1 968.4 0.2 1116.38 3503.88 0.32 968.4 31.83 968.4 4604.45 0.23
2 968.4 0.2 1078.2 6301.32 0.22 968.4 31.83 968.4 6290.73 0.22
16 1 1786.8 0.19 1413.76 6700.5 0.23 1786.8 32.76 1786.8 7950 0.22
2 1786.8 0.19 1679.5 7383.36 0.48 1786.8 32.76 1786.8 9186.34 0.23
17 1 1484.4 0.12 856.67 5248.32 0.36 1484.4 31.82 1484.4 5399.16 0.23
2 1484.4 0.12 1275.78 8677.08 0.23 1484.4 31.82 1484.4 8506.68 0.23
18 1 1402.8 0.19 1327.79 8442.54 0.23 1402.8 33.26 1402.8 8367.72 0.23
2 1402.8 0.19 1431.51 9468.6 0.22 1402.8 33.26 1402.8 9310.16 0.23
19 1 618 0.2 510.44 4542.12 0.24 618 33.2 618 5491.93 0.23
2 618 0.2 1147.51 5921.94 0.25 618 332 618 7265.2 0.23
20 1 1212 0.2 1356.09 9010.26 0.45 1212 32.73 1212 8864.64 0.22
2 1212 0.2 849.4 6931.26 0.23 1212 32.73 1212 6538.56 0.26
21 1 1155.6 0.2 1390.56 9273.96 0.23 1155.6 32.95 1155.6 9118.86 0.23
2 1155.6 0.2 1374 8041.32 0.22 1155.6 32.95 1155.6 8097.9 0.23
22 1 12348 0.2 1369.01 6231.78 0.22 1234.8 32.73 1234.8 7183.27 0.23
2 1234.8 0.2 142291 5493.12 0.23 1234.8 32.73 1234.8 6635.85 0.23
23 1 1117.2 0.19 908.61 6411.72 0.23 1117.2 31.56 1117.2 6323.58 0.23
2 1117.2 0.19 1010.48 6909.24 0.47 1117.2 31.56 1117.2 6768.18 0.23
24 1 2016 0.19 1513.28 7045.86 0.56 2016 33.21 2016 8175.51 0.23
2 2016 0.19 1707.3 9576.78 0.22 2016 33.21 2016 10149.06 0.28
25 1 777.6 0.22 1289.98 6723.66 0.47 ]-89777.6 32.04 777.6 7532.29 0.23
2 777.6 0.22 1412.97 6192.9 0.22 777.6 32.04 777.6 7389.41 0.23

Average 1190.21 0.21 1248.97 6173.87 0.29 1190.21 32.55 1190.21 7020.51 0.23




Chapter 6

Conclusions and Future Extensions

6.1 Conclusion

This section summarizes our concluding remark classified by the chapters.

6.1.1 Chapter 3

A combinatorial auction allows several bidders to submit bids on different selections
of items based on their personal preferences. From a computational point of view this
problem is difficult to solve due to the exponential growth of the number of combi-

nations.

An interesting design for determining the winners and the item prices involves appli-
cation of the Lagrangian relaxation on the winner determination problem. Studies
based on the Lagrangian relaxation initially solve the Lagrangian relaxation and then

focus on development of a heuristic that improves the solution to (ideally) an optimal
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one. Revelation of the Lagrangian multipliers guides sellers to adjust their prices on

the bundles they require and eventually improves auction results.

In this chapter we analytically established the equivalence of Lagrangian and linear
relaxations for a multi-item multi-unit winner determination problem with OR and
XOR bidding languages, with and without the free disposal condition. The results
also indicate equivalence of the Lagrangian multipliers and the dual variables of the
LP relaxation. Therefore, solving the linear relaxation of WDP provides fast access
to the Lagrangian multipliers as approximates for item prices and a lower bound on

the total price of procurement.

Based on this equivalence, we propose a solution method which determines the La-
grangian solution by solving a single subproblem. This method saves significant
amount of time in finding the optimal solution as compared to traditional Lagrangian
relaxation solution methods. In order to adjust infeasibility of the Lagrangian optimal
solution, we design an Aggregate heuristic consisting of 32 computationally efficient
heuristic procedures. The best solution obtained from the heuristics is extracted as

the optimal value obtained from the Aggregate heuristic.

Our extensive numerical experiments indicate that on the class of problems whose
maximum quantity of items included in each package is less than or equal to half
of demand, the Aggregate heuristic provides a near optimal solution for respectively
10, 20, and 30 items which is on average 6, 7, and 8 percent off from the optimal in

around 1/3, 1/189, and 1/950 of CPLEX time.
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This solution scheme is most efficient for iterative combinatorial auctions in large
marketplaces with capacitated suppliers. While application of iterative combinatorial
auctions increases the auctioneers’ overall payoff, it raises the urge for them to quickly
attain a (near) optimal solution in each round of the auction. CPLEX 12 behaves
poorly in terms of the amount of time it requires to provide the optimal solution with
suppliers who are able to supply the manufacturers demand partially (specifically
around 50% and below). Application of the Aggregate heuristic scheme can provide

a good quality of the solution in relatively much less time.

6.1.2 Chapter 4

In this chapter we stressed the importance of investigating the problem of pricing
and bundling for a bidder in a combinatorial auction setting. We use the Lagrangian
multipliers as a means to inform the bidders about their valuations and those of
the competition. In case suppliers find themselves competitive, the formulated profit
maximization problem (PMB) helps them understand how to optimally bundle and
price their new package. The bidders goal is to maximize their profit while maintain-
ing their competitive advantage and respecting their capacity and/or the auctioneer

minimum order requirements.

The closed-form solution results enable us to compare prices of the two consecutive
rounds, discussing the conditions of when to expect prices to grow or shrink or stay
the same. Based on the interaction between the suppliers and the auctioneer, we

propose an iterative auction which we analytically show that is convergent.

192



Ph.D. Thesis Computational Sci. & Eng.

We performed several empirical experiments to study the dynamics of the prices and
profits in the auction. On the suppliers’ side, we show that the suppliers profit in-
creases as the auction proceeds. For the auctioneer, we observe an increase in cost as
the auction goes from the first to the second round. This is not unusual due to sup-
pliers’” imprecise first round pricing scheme. The auctioneer cost ultimately reaches a

steady state after a practical number of auction rounds.

This auction mechanism brings about a win-win environment in which the auction-
eer benefits from the intense competition among the suppliers who try to meet his
required demand. The suppliers also take advantage of supplying products that not
only preserve their desired minimum profit, but also maximize it throughout their

bidding process.

6.1.3 Chapter 5

In a traditional auction problem, suppliers submit bids which are either accepted as
a whole package or rejected by the auctioneer. Given the wide range of variations
suppliers face in pricing units of the items, in this chapter we investigate whether
accepting partial bids increases the auctioneer’s and/or the suppliers’ efficiency in

maximizing their payoff from the auction.

To this end, we define a new auction environment wherein suppliers submit bids as

price functions defined on disjoint intervals of quantities. Formulating the winner
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determination problem, we explore the Lagrangian relaxation properties of the de-
fined mixed integer programming at optimality. The computational efficiency of the
derived mathematical programming is numerically compared against the equivalent
binary integer programming with indivisible bids. With equivalent optimal objective

values, we found that CPLEX 12 solves the divisible-bid problem more efficiently.

We also studied the correspondence of the suppliers’ risk-taking attitude with the
profit they gain from the auction. Our numerical work on random problem instances
showed higher average profit value for the suppliers from the divisible-bid auction
while producing lower bundle prices. While the suppliers are able to expect higher
profit from the divisible-bid auctions, the lower prices along with lower execution

times makes them an appealing alternative for auctioneers as well.

It is worth mentioning that the application of divisible-bid auctions requires the con-
sent from the suppliers for revealing their price functions on intervals of quantities.
Moreover, on a low-demand per-product basis where suppliers are willing to sub-
mit a limited number of each product, restricting the submitted bids on intervals of

quantities is not as practical.

6.2 Extension Opportunities

This section proposes natural extensions of this thesis classified by the chapters. In
the final section, we propose interesting research directions beyond the ideas discussed

in this thesis.
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6.2.1 Chapter 3

e Studying the solutions to the linear and Lagrangian relaxations, we noticed that
in most cases both relaxations share similar solution elements with the exact
solution. Recognizing some of these elements and elevating their values to 1 can
produce the exact solution. This property motivates us to study the solution
space of the LP relaxation more carefully to recognize variables which are more
likely to appear in the IP solution. In a branch and bound-based bid ordering
heuristic scheme, this helps us find a (good quality) feasible solution quite early
on, and further improve it via more branching. In other words, the objective is
to use the linear relaxation to extract valuable information about the IP model
which within a branch and bound tree that would help us make smart choices

of branching variables.

e A Lagrangian-based heuristic algorithm for solving the winner determination
problem starts with solving the Lagrangian relaxation problem. As seen earlier,
this solution is integer, however, not necessarily primal feasible. One possible
algorithm design is to remove all variables with positive optimal Lagrangian
values and solve the relaxation for the reduced problem. One research line is to

test the execution time and the optimality gap of this algorithm.

e In Chapter |3| we established the equivalence of the Lagrangian and linear relax-
ation optimal bounds. One interesting extension is to investigate the correlation
of the linear and Lagrangian optimal solutions when the linear relaxation pro-

vides integer optimal solution.
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6.2.2 Chapter 4

Possible extensions for this chapter include the following:

e [t is often not easy to measure the complexity of a mechanism or the costs
of the length of time to complete the auction term. Analytical results on the
convergence rate of the auction will help us further establish the practicality of

our proposed pricing scheme.

e The mechanism proposed uses Lagrangian multipliers to compel more com-
petitiveness in future auction rounds. Factors that diminish or enhance their

predictive value could be investigated.

e The inability of individual pricing models to capture complementarities is an-
other restriction. Non-convex programming methods for working with duality
gaps might prove useful for providing estimates and/or bounds on complemen-

tarities.

e Even though the incentive behind the auction mechanism design as proposed
in Chapter {| is to provide an interaction between the auctioneer and suppliers
while both maximize their utilities, thinking of the economical properties at

convergence is valuable.

e Studying the effect of parameters involved in suppliers’ optimization problem,
i.e., the suppliers’ minimum profitability or internal costs, on the final prices
and equilibrium is important. Conceptually, different settings can affect the

convergence rate as well as the final procurement price.
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6.2.3 Chapter 5

In extension of Chapter 5| of this thesis one might consider investigating the following

issues:

e Elaborating on devising more expressive bidding Languages for auctions with
divisible bids. The truckload transportation literature has some good initiatives
in this area, however, as described in section suppliers are not yet fully able

to communicate their complete preferences through these languages.

e Observing the optimal solution to the winner determination problem for divis-
ible bids (WDPD) reveals that in many cases CPLEX 12 fixes the quantity
variables at either of their lower and upper bounds and there are very few cases
when an interior point (between the minimum and maximum) is detected for
the optimal quantity value. This feature can be investigated further to develop

more efficient solution procedures.

e In this chapter we observed that the equivalence of Lagrangian and linear relax-
ation bounds previously proved for indivisible bids holds for the divisible bids
as well. It is worthwhile investigating whether this result holds for a wider class

of problems.

6.2.4 General Extension Venues

Considering the concerns of industries and firms these days to reduce costs, one in-
teresting research plan is to look at jointly optimizing sourcing and making inventory
decisions using combinatorial auctions. Accepting bids in the phase of ordering ma-

terials or components allows suppliers to specify clearly during which periods they

197



Ph.D. Thesis Computational Sci. & Eng.

are willing to deliver, how many units they are willing to supply, and how much they

would charge for providing them.

In most real world environments, the holding cost of an item depends on the price of
the item and can vary from period to period. One option to determine the price of
an item in a certain period is using the associated Lagrangian multiplier. Multiply-
ing this variable by the surplus develops nonlinearity in the objective function of the

problem which adds complexity.

The focus of most lot sizing problems is to assist decision makers with short-term
production plans. In medium- to long-term decision plans, it is interesting to take
into account the cost of setting up auctions and including suppliers to determine the
optimal number of auctions to hold in a long time horizon and the number of suppliers

to invite in each.

The manufacturers’s poor estimates of demand values, and the suppliers uncertain ca-
pacity of supply quantities can result in considerable losses in a deterministic model.
This can lead to thinking of a stochastic counterpart model with uncertainty in sup-

ply and/or demand.

Finally, another research ground is to consider the possibility of delivery delays and

quantity defects in a multi-attribute procurement auction context.
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