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ABSTRACT 

Determining tendon tension in the finger is essential to understanding forces that may be 

detrimental to hand function.  Direct measurement is not feasible, making biomechanical 

modelling the best way to estimate these forces.  In this study, the intrinsic muscles and extensor 

mechanism were added to an existing model of the index finger, and as such, it has been named 

the Intrinsic model. The Intrinsic model of the index finger has 4 degrees of freedom and 7 

muscles (with 14 components).  Muscle properties and paths for all extrinsic and intrinsic 

muscles were derived from the literature.  Two models were evaluated, the Intrinsic model and 

the model it was adapted from (identified in this thesis as the Extrinsic-only model).  To 

complement the model, multiple static optimization solution methods were also developed that 

allowed for EMG-constrained solutions and applied objective functions to promote co-

contraction.  To test the models and solution methods, 10 participants performed 9 static pressing 

tasks at 3 force levels, and 5 free motion dynamic tasks at 2 speeds.  Kinematics, contact forces, 

and EMG (from the extrinsic muscles and first dorsal interosseous) were collected.  For all 

solution methods, muscle activity predicted using the Intrinsic model was compared to activity 

from the model currently available through open-source software (OpenSim).  Just by using the 

Intrinsic model, co-contraction increased by 16% during static palmar pressing tasks.  The EMG-

constrained solution methods gave a smaller difference between predicted and experimental 

activity compared to the optimization-only approach (p < 0.03).  The model and solution 

methods developed in this thesis improve co-contraction and tendon tension estimates in the 

finger.  As such, this work contributes to our understanding of the control of the hand and the 

forces that may be detrimental to hand function.   
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CHAPTER 1 

INTRODUCTION 

Proper function of the hand is critical to an individual’s autonomy and ability to perform 

activities of daily living.  The hand is susceptible to musculoskeletal and neurological 

impairments including; tendinopathies, arthritis, connective tissue disease, and dysfunction 

following a brain injury (Green et al., 2011).  Proper hand function is also important in the 

workplace.  In 2011, musculoskeletal disorders (MSD) of the hand and arm, accounted for 10.7% 

of all MSD claims, and caused over twice the average number of days away from work 

compared to other MSD injuries in the United States (Bureau of Labor Statistics, 2012).  To 

reduce the risk of developing an MSD, and to improve rehabilitation strategies, there is a need to 

evaluate forces within the hand.  Direct measurement of these forces is not feasible, thus the need 

for biomechanical modelling is obvious.   

A number of musculoskeletal models of the hand and finger have been developed (Fok and 

Chou, 2010; Wu et al., 2008; Vigouroux et al., 2007; Chalfoun et al., 2005; Sancho-Bru et al., 

2001; Li et al., 2000; Keir and Wells, 1999; Valero-Cuevas et al., 1998; Harding et al., 1993; An 

et al., 1979).  From these works, critical advances have been made towards understanding force 

transmission and coordination in the finger.  However, due to the versatility of the finger, a 

limited number of tasks have been assessed (Placet and Quaine, 2012; Vigouroux et al., 2007; 

Valero-Cuevas et al., 1998; An et al., 1979).  The finger is also anatomically complex and there 

are many methods we can use to estimate tendon loading. This has led to gaps in our ability to 

provide accurate predictions for the wide range of manual tasks we can perform. 

Static optimization methods are commonly used to estimate tendon loading.  Minimizing 

the sum of squared activation has been used to estimate forces in the finger (Sancho-Bru et al., 
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2001; Dennerlein et al., 1998; Brook et al., 1995; Chao et al., 1989).  This method preferentially 

recruits the use of muscles with larger moment arms and physiological cross-sectional areas 

(PCSA) to reduce muscular effort and delay fatigue (Anderson and Pandy, 1999).  However, 

static optimization, or optimization in general, does not effectively predict the simultaneous 

activation of agonist and antagonist muscles at a joint, also known as co-contraction (Son et al., 

2012; Erdemir et al., 2007; Herzog and Binding, 1993; Hughes and Chaffin, 1988).  A number of 

adapted optimization methods have attempted to estimate co-contraction (Jiang and Mirka, 2007; 

Brown and Potvin, 2005; Forster et al., 2004; Kellis et al., 2003; Cholewicki and McGill, 1994; 

Herzog and Binding, 1993).  These methods have not been used to estimate forces in the finger, 

even though co-contraction is essential to performing manual tasks (Valero-Cuevas, 2004; 

Valero-Cuevas et al., 1998; Thomas and Long, 1968).  Optimization methods alone are likely 

unable to provide solutions that match empirically recorded muscle activity (Vigoroux et al., 

2007; Jinha et al., 2006; Ait-Haddou et al., 2004; Raikova and Prilutsky, 2001; Challis and 

Kerwin, 1993).  Vigouroux et al. (2007) used a combined EMG-optimization approach to 

estimate tendon tensions during static fingertip pressing.  The combined method was able to 

provide tendon tensions that respected mechanical equilibrium while being consistent with 

individual muscle activation patterns (Vigouroux et al., 2007).  EMG-constrained optimization is 

a promising approach to achieve co-contraction and better match recorded muscle activity 

(Vigouroux et al 2007; Amarantini and Martin, 2004; Gagnon et al, 2001; Cholewicki and 

McGill, 1994).   

Over the past decade, the increasing popularity of open-source musculoskeletal 

modelling software (i.e. OpenSim 3.1, Simbios, Stanford, CA; Delp et al., 2007) has provided a 

way to develop a model and solution method and readily distribute it to researchers.  The current 
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model of the hand available through OpenSim lacks anatomical fidelity.  The index finger of the 

model is actuated only by the four extrinsic muscles (Holzbaur et al., 2005).  The intrinsic 

muscles, such as the interossei and lumbricals, are necessary to perform functional tasks (Fok 

and Chou, 2010; Vigouroux et al., 2007; Chalfoun et al., 2005; Valero-Cuevas et al., 1998; 

Buchner et al., 1988).  As of July 6th 2014, an Upper Extremity model with updated muscle 

parameters and pathways has become available (Saul et al., 2014).  However, this updated model 

does not include the intrinsic muscles that are necessary for proper finger control.  A model of 

the finger in OpenSim, that accounts for the complex pathways of the extrinsic and intrinsic 

muscles, combined with using EMG to constrain an optimization method that considers co-

contraction, would improve tendon loading estimates.  With an improved ability to predict 

internal forces, we can better understand mechanisms of injury and develop more appropriate 

rehabilitation strategies.   
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CHAPTER 2 

REVIEW OF LITERATURE 

2.1  Anatomy of the hand 

The hand is a complex structure.  A number of multi-joint muscles transmit force through 

the hand.  Extrinsic muscles originate in the forearm; while intrinsic muscles originate in the 

hand (Table 2.1).  There are four main extrinsic finger muscles (Figure 2.1).  Flexor digitorum 

profundus (FDP) originates at the coronoid process of the ulna and insert into the base of the 

distal phalanx of digits 2-5.  Flexor digitorum superficialis (FDS) originates on the medial 

epicondyle of humerus and the coronoid process of ulna and inserts into the base of the middle 

phalanx of digits 2-5.  In addition to flexing the metacarpophalangeal (MCP), proximal 

interphalangeal (PIP), and distal interphalangeal (DIP) joints, these muscles flex the wrist (note: 

only FDP flexes the DIP joint).  Opposing the flexors is extensor digitorum communis (EDC), 

which originates from the lateral epicondyle of humerus.  There is an additional extensor muscle 

for the index finger, extensor indicis (EI) which originates on the distal posterior surface of the 

ulna.  The extrinsic extensors insert into the extensor mechanism of each finger (a tendinous 

aponeurosis on the dorsal surface of each finger).  These muscles extend each joint of the finger 

and the wrist as well. 

Intrinsic muscles of the hand include the dorsal and palmar interossei, lumbricals, thenar, 

and hypthenar muscles (note, thenar and hypothenar muscles will not be examined in this thesis) 

(Figure 2.2).  The dorsal and palmar interossei originate on ulnar and radial sides of the 

metacarpal shafts and cause abduction and adduction of the MCP joint, respectively.  The 

lumbricals are small muscles that have a unique origin on the FDP tendon.  Lumbricals and 

interossei merge into the extensor mechanism and facilitate MCP flexion while maintaining PIP 
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and DIP extension.  Given this simplified description, note that intrinsic muscles have multiple 

insertions and are highly variable between people (Eladoumikdachi et al., 2002a; 2002b). 
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Table 2.1 Extrinsic and intrinsic finger muscles (TCL: Transverse carpal ligament.) Origins, 
insertions, and actions are summarized from Marieb (2003). 

Muscle Origin Insertion Action 
Extrinsic muscles 

Flexor digitorum 
profundus (FDP) 

-Coronoid process of  
ulna 
-Interosseous membrane 

-Distal phalanx of 
digits 2-5 

-Flexes wrist, MCP, 
PIP and DIP 

Flexor digitorum 
superficialis (FDS) 

-Medial epicondyle of 
humerus 
-Coronoid process of 
ulna; shaft of radius 

-Middle phalanx of 
digits 2-5 

-Flexes wrist, MCP 
and PIP 

Extensor 
digitorum 
communis (EDC) 

-Lateral epicondyle of 
humerus 

-Extensor mechanism 
of digits 2-5 

-Extends wrist, MCP, 
PIP and DIP 

Extensor indicis 
(EI) 

-Posterior surface of 
distal ulna 
-Interosseous membrane 

-Extensor mechanism 
of digit 2 

-Extends wrist, MCP, 
PIP and DIP, digit 2 

Extensor digiti 
minimi 

-Lateral epicondyle of 
humerus 

-Extensor mechanism 
of digit 5 
-Proximal phalanx of 
digit 5 

-Extends wrist, MCP, 
PIP and DIP, digit 5 

Intrinsic muscles 
Dorsal interossei 
(DI) 

-Ulnar and radial sides of 
each metacarpal shaft 

 

-Extensor mechanism -Flexes MCP joint 
and extends PIP and 
DIP  
-Abducts MCP 

Palmar interossei 
(PI) 

-Ulnar and radial sides of 
the metacarpal shaft 

-Extensor mechanism -Flexes MCP joint 
and extends PIP and 
DIP  
-Adducts MCP 

Lumbricals (LUM) -Lateral side of flexor 
digitorum profundus 
tendons in palm 

-Extensor mechanism Flexes MCP joint and 
extends PIP and DIP  
-Abducts MCP  

Abductor digiti 
minimi 

-Pisiform -Medial side of 
proximal phalanx 

-Abducts little finger 
at MCP 

Flexor digiti 
minimi brevis 

-Hamate 
-TCL  

-Medial side of 
proximal phalanx, 
digit 5 

-Flexes little finger at 
MCP 

Opponens digiti 
minimi 

-Hamate 
-TCL 

-Medial side of 
metacarpal, digit 5 

-Brings metacarpal of 
digit 5 toward thumb 
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Figure 2.1 Extrinsic muscles of the hand.  Left hand view with muscles inserting into the index 
finger indicated to and shaded over (flexor digitorum profundus (FDP), flexor digitorum 
superficialis (FDS), extensor digitorum communis (EDC), extensor indicis (EI)) (adapted from, 
Standing et al., 2008). 

 

 
Figure 2.2 Intrinsic hand muscles going to long fingers.  Left hand view with muscles inserting 
into the index finger indicated to and shaded over (first palmar interosseous (FPI), first lumbrical 
(LUM), first dorsal interosseous (FDI)) (adapted from Palastanga et al., 2011).   

 

Anterior
Deep Superficial

Posterior
Deep Superficial
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In addition to muscles of the hand, there are a number of ligaments and retinacula that 

influence force transmission.  Retinacula are fibrous structures that restrict tendon movement and 

modify force transmission through the body.  The extensor mechanism is an important 

retinacular structure on the dorsal surface of each finger (Figure 2.3).  The extensor mechanism 

is created by the extrinsic extensors and intrinsic muscle tendons merging into a retinaculum.  

Since the tendons are woven into this retinaculum, the line of action and the moment arms of 

each muscle changes depending on finger posture.   

 
Figure 2.3 Dorsal view of the left index finger extensor mechanism.  Structures addressed in this 
thesis are in bold (from Clavero et al., 2003). 

 

In the index finger, five muscles insert into the extensor mechanism (EDC, EI, FDI, FPI, 

and LUM).  Forces from these five muscles are transmitted through the extensor mechanism, and 

affect the PIP joint via the central slip and the DIP joint via the terminal slip.  The central and 

terminal slips are important components of the extensor mechanism that are commonly used to 

describe and evaluate force transmission through the finger (Lee et al., 2008; Valero-Cuevas et 

al., 2008).  The extensor mechanism allows the PIP and DIP joints to move independently from 

2”

1 extensor digitorum tendon
2 FDI
2’ LUM
2’’ FPI 
3 sagittal band 
4 extensor tendon component of radial band
5 central slip
6 extensor tendon component of ulnar band
7 radial band
8 ulnar band
9 triangular ligament
10 terminal slip
11 transverse fibers
12 oblique fibers
13 retinacular ligament
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the MCP joint (Beasley, 2003; Harris and Rutledge, 1972; Landsmeer, 1963).  The extensor 

mechanism also provides medial-lateral symmetry of muscle forces.  This helps the finger to 

remain stable while it moves (Zancolli, 1979).  All of these structures within the finger have a 

significant impact on hand function, coordination, and force transmission characteristics (Ranney 

et al., 1988).  

 

2.2  Force transmission 

Interphalangeal coordination has been found to depend on the relationship between 

intrinsic and extrinsic muscle activity (Chalfoun et al., 2005; Valero-Cuevas et al., 1998; 

Buchner et al., 1988).  Intrinsic muscles have the unique ability to flex the MCP joint while at 

the same time extend the PIP and DIP joints, and abduct or adduct the finger (Chao and An, 

1978).  Using a biomechanical model, Fok and Chou (2010) found that high intrinsic muscle 

activity was needed to maintain mechanical equilibrium during a single static pinch task.  

Additionally, forces from the lumbrical can alter the force produced by FDP (Ranney et al., 

1988).  Since the lumbrical originates on the FDP tendon, lumbrical contraction will reduce force 

in the FDP tendon and help prevent IP joint flexion.  To keep the PIP and DIP joints extended, 

tension from the lumbrical is transferred through the extensor mechanism in conjunction with the 

extrinsic extensors and interossei on the dorsal aspect of the finger.   

How forces are transmitted through the extensor mechanism depends on active and 

passive muscle forces and finger posture.  The tension developed at the central and terminal slips 

have been found to change with joint angle.  Using five index finger cadaver specimens, Lee et 

al. (2008) applied a constant load to the extrinsic extensor muscles and measured fingertip force 

at different postures.  Through this experiment, they estimated central and terminal slip tension 
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using a static optimization procedure.  Their results indicate a decrease in slip tension with 

greater joint flexion (Figure 2.4).  They also observed a constant ratio of force between the 

terminal and central slips across postures (1.7:1, terminal slip: central slip ratio).  However, the 

estimate of terminal and central slip forces varies across studies.  In a cadaveric study of the 

middle finger at a single posture, Valero-Cuevas et al. (2007) found the terminal: central slip 

ratio to range from 1:1.75 to 1:2.25 depending on the tension from each muscle going to the 

extensor mechanism.  There is limited research, with great variability across studies, that 

estimate central and terminal slip forces.  The complex pathways, of the muscles that influence 

central and terminal slip force, contribute to this difficulty.  There is a need to address this 

deficiency since understanding the relationship between these muscles can provide insight into 

coordination and control during manual tasks. 
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Figure 2.4 Estimated tension from EDC transferred to the terminal and central slip.  Finger 
flexion increases across the horizontal axis from posture 1 to 9.  Slip force on the vertical axis 
decreases as PIP and DIP joint angles increase within each panel.  A consistent terminal: central 
slip ratio is also observed at each posture. (Force at the terminal slip (fTS) is in the solid line.  
Force from the central slip (fCS) is in the dotted line).  (Adapted from Lee et al., 2008). 

 

2.3  Biomechanical models of the finger 

A number of musculoskeletal models have been developed to evaluate forces through the 

finger (Fok and Chou, 2010; Wu et al., 2008; Vigouroux et al., 2007; Sancho-Bru et al., 2001; Li 

et al., 2000; Valero-Cuevas et al., 1998; Harding et al., 1993; An et al., 1979).  These models are 

often developed towards assessing a specific task (Placet and Quaine, 2012; Vigouroux et al., 

2007; Valero-Cuevas et al., 1998; An et al., 1979).  For instance, An et al. (1985) used a 

biomechanical model to evaluate changes in pinch strength after inhibiting the contribution from 

different muscles.  Similarly, Harding et al. (1993) applied a biomechanical model of the finger 

to optimize tendon and joint loading during selected piano playing postures with the aim of 

Posture 1 2 3 4 5 6 7 8 9

MCP° 0 0 0 30 30 30 60 60 60

PIP° 0 30 45 0 30 45 0 30 45

DIP° 0 20 30 0 20 30 0 20 30



M.Sc. Thesis – A.R. MacIntosh  McMaster University – Kinesiology 
 

12 
 

reducing overuse injuries.  Recently, the versatile nature of the finger has been quantified using 

modelling techniques as well.  Valero-Cuevas et al. (2007) performed simulations where they 

varied the tension of each muscle going to the finger.  The authors concluded that the anatomical 

complexity of the extensor mechanism allows for the wide variety of forces and movements that 

we can produce with our finger.  However, the nature of the extensor mechanism makes it 

difficult to model and predict accurate muscle forces.  To mitigate this, simplified versions of the 

extensor mechanism have been used (Valero-Cuevas et al., 2007; An et al., 1985; Zancolli, 

1979).  

 

2.3.1  Representing the extensor mechanism with Winslow’s Rhombus  

Winslow’s Rhombus is a simplified version of the extensor mechanism.  Originally 

developed by Winslow (1732) and adapted by Zancolli (1979), this structure is commonly used 

when modelling the finger (Valero-Cuevas et al., 2007; Kamper et al., 2006; Li et al., 2001; 

Dennerlein et al., 1998; Harding et al., 1993; An et al., 1985; An et al., 1979).  Winslow’s 

Rhombus reduces the complex blanket of connective tissue that makes up the extensor 

mechanism into a number of bands.  Tension from the extrinsic extensors and intrinsic muscles 

propagate along the finger through these bands.  These bands blend together and insert into the 

central and terminal slips to cause extensor moments at the PIP and DIP joints, while at the MCP 

joint extension is caused by the extrinsic muscles before merging with the intrinsic muscles 

(Figure 2.5). 
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Insertion 
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Muscles 

 

Terminal slip (ts) Radial band (rb) EDC 
EI 

LUM 
FDI 

Ulnar band (ub) EDC 
EI 
FPI 

Central slip (cs) 
 

Central band (cb) EDC 
EI 

Diagonal band (db) LUM 
 PI 

   

Figure 2.5 Dorsal view of right index finger with Winslow’s Rhombus overlaid.  Grey rectangles 
indicate bones of the finger. MCP, PIP, and DIP joints indicated with dotted lines                
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Often, models using Winslow’s Rhombus assume the distribution of tensions through 

each band is constant (Dennerlein et al., 1998; Harding et al., 1993; An et al., 1985; An et al., 

1979).  In the model of the hand developed by An et al. (1985), the following relationships were 

used to estimate muscle forces during isometric pinching tasks: 

  

𝑡𝑠 ≤ 𝑟𝑏 + 𝑢𝑏 

𝑟𝑏 ≤ 2
3� 𝐿𝑈𝑀 + 1

6� 𝐸𝐷𝐶 + 1
6� 𝐸𝐼 

𝑢𝑏 ≤ 1
3� 𝐹𝑃𝐼 + 1

6� 𝐸𝐷𝐶 + 1
6� 𝐸𝐼 

𝑐𝑠 ≤ 1
3� 𝐿𝑈𝑀 + 1

3� 𝐹𝑃𝐼 + 1
3� 𝐹𝐷𝐼 + 1

6� 𝐸𝐷𝐶 + 1
6� 𝐸𝐼 

(1) 

where, ts and cs are the tensions in the terminal and central slips, rb and ub are tensions 

in the radial and ulnar bands.  These relationships have been able to estimate fingertip forces 

well for static postures, considering they were assumed by identifying tendon locations from 

only ten cadaveric specimens (An et al., 1985; An et al., 1979). 

 In contrast to the assumed distribution of force developed by An et al. (1985), Valero-

Cuevas et al. (1998) suggested a force distribution based on the angle of each band with respect 

to the tendon from which it originates.  Angles between bands were adjusted such that the forces 

exerted through the extensor mechanism best correlated to experimental muscle activities and 

caused the desired external load.  In this method, 62.5% of the force from the extrinsic 

musculature (EI and EDC) went to the central slip, and the remaining 37.5% was divided evenly 

between each lateral band.  This opposes An et al. (1985) where 16.7% of the force from the 

extrinsic extensors went to the central slip and an additional 16.7% went to each of the bands.  In 

addition to adjusting the angles of each band for the single posture tested, a number of other 
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model parameters were adjusted including muscle moment arm and PCSA (Valero-Cuevas et al., 

1998).   

Kamper et al. (2006) constructed a model of the index finger that incorporated the 

extensor mechanism using the musculoskeletal modelling software SIMM (Motion Analysis 

Corporation, Santa Rosa, CA, USA).  In this model, LUM and PI muscles insert into the central 

band with EDC proximal to the PIP joint.  However, the lateral bands were not included 

(Kamper et al., 2006).  Given the structure of their model, they were unable to determine the role 

of the intrinsic muscles at the DIP joint.  As such, their results are limited when evaluating the 

muscle contributions to the production of fingertip forces.     

Force distribution patterns through the extensor mechanism are often specific to the 

model and the task assessed.  There is a need to determine force transmission characteristics for a 

variety of tasks.  Moreover, force distribution estimates are subject to how forces are calculated.  

Static optimization and electromyography (EMG) assisted optimizations are commonly used 

methods to identify a feasible force distribution for a model.  The criteria used in an optimization 

will have a significant impact on the resulting force distribution, and on how we understand the 

control of the finger. 

 

2.4  Muscle force prediction methods 

2.4.1  Static optimization 

Static optimization is commonly used to solve for the muscular load sharing problem 

(Erdemir et al., 2007).  Optimization provides a set of muscle forces while maximizing or 

minimizing certain factors.  These factors are used to create equations known as objective 

functions, and the objective functions are constrained to only provide solutions that maintain 
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mechanical equilibrium of the system.  Other elements may also be used to constrain the system 

such as the maximum isometric force of each muscle.  While objective functions are created with 

the intent of providing realistic muscle force estimates, they often produce non-physiological 

results (Erdemir et al., 2007).  There is a need to further develop optimization methods, 

particularly for estimating hand and finger forces. 

The objective function, for the static optimization method used in OpenSim, solves for a 

set of muscle forces by minimizing the sum of activation squared of all muscles as seen in 

Equation 2. 

 

J= �(am)p
N

m=1

 

(2) 

where, J is the objective function, N is the number of muscles in the model, 𝑎𝑚 is the 

activation of muscle m at a discrete time point, and p is the activation exponent (usually 

squared).  Minimizing the sum of squared activation relies on the assumption that a task will be 

completed by utilizing muscles with advantageous moment arms and large PCSAs to reduce 

muscular effort and delay fatigue (Anderson and Pandy, 1999).  Using these minimized muscle 

activations, external joint torque is matched through Equation 3 (Zajac, 1988).   

 

𝜏𝑗 = � [𝑎𝑚𝑓(𝐹𝑚0 , 𝑙𝑚, 𝑣𝑚)]𝑟𝑚,𝑗 
𝑁

𝑚=1

 

(3) 
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where, 𝜏𝑗 is the moment acting at the jth joint (calculated from the motion of the rigid 

bodies), n is the number of muscles in the model, 𝑎𝑚 is the activation of muscle m at a discrete 

time point, 𝑓 is the force of the muscle (which is constrained by: 𝐹𝑚0 , the muscle’s maximum 

isometric force, 𝑙𝑚, the current length of the muscle, and 𝑣𝑚, the shortening velocity at that time 

point), and 𝑟𝑚,𝑗 is the moment arm of that muscle about the jth joint (Hicks, 2013; Thelen et al., 

2003; Delp, et al., 2000).  Force, length, and velocity properties are normalized with a Hill-type 

muscle model based on maximum isometric forces and optimal fibre lengths (Zajac, 1988).            

For the hand, estimating muscle activity based solely on minimizing muscular effort is 

likely inappropriate.  Simultaneous agonist and antagonist activation is necessary during manual 

tasks (Nikanjam et al., 2007; Dennerlein et al., 1998 Darling and Cole, 1990).  This co-

contraction increases the muscular effort above what is required to match a net external joint 

torque (de Monsabert et al., 2012; Sanei and Keir, 2011).  Co-contraction is also required to 

coordinate finger posture.  For example, high intrinsic muscle activity is needed to keep the MCP 

joint extended during DIP and PIP flexion (Fok and Chou, 2010; Qiu et al., 2009; Valero-Cuevas 

et al., 1998).  This is also true for free flexion movements, in which the extensor muscles act as a 

brake to control finger movement (Vignais and Marin, 2014; Sancho-Bru et al., 2001; Valero-

Cuevas et al., 1998).  Although the sum of squared activation objective function (Equation 2) has 

been widely used, it does not effectively evaluate muscle co-contraction (Son et al., 2012; 

Erdemir et al., 2007; Herzog and Binding, 1993; Hughes and Chaffin, 1988).  Other methods 

have been developed to help predict co-contraction in static optimization (Jiang and Mirka, 2007; 

Brown and Potvin, 2005; Forster et al., 2004; Kellis et al., 2003; Cholewicki and McGill, 1994; 

Herzog and Binding, 1993).  Two of these methods are described below since they are used in 

this thesis.  Forster et al. (2004) were able to predict co-contraction by incorporating a ‘shift 
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parameter’ into the standard objective function (Equation 4).  The shift parameter is a value 

applied to the activity of each muscle to decrease its contribution to the objective function.  

 

J= �(am − as)p
N

m=1

 

(4) 

where, J is the objective function, N is the number of muscles in the model, 𝑎𝑚 is the 

activation of muscle m at a discrete time point, p is the activation exponent (squared), and as is 

the shift parameter that changes each muscles contribution to the objective function.  Forster et 

al. (2004) demonstrated this method using a single joint model with five muscles.  Force-length 

and force-velocity properties were not included in the calculations.  They stated that shift 

parameters might vary by muscle and task; however, they did not indicate an appropriate range 

of values (Forster et al., 2004).  Finally, there is no physiological basis for introducing a shift 

parameter to the objective function (Parsa et al., 2013).  The applicability of this objective 

function to the finger still remains to be seen.  

Jiang and Mirka (2007) developed an objective function to predict co-contraction with a 

formula based on a theory from the field of neurophysiology.  This objective function is used to 

represent the hypothesis that there is a weighted combination of reciprocal and coactivation 

commands controlling agonist and antagonist motorneurons (Feldman 1993, Feldman et al., 

1990).  The theory suggests that reciprocal commands produce movement while coactivation 

commands increase joint stiffness and allow for more precise control, but do not contribute to the 

movement itself (Feldman, 1993; Humphrey & Reed, 1983; Hultborn et al., 1979).  A number of 

studies identify neural systems to support coactivation, either through activation of antagonist 
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muscles directly (Nielsen and Kagamihara, 1993; Lacquaniti, 1992; DeLuca et al., 1987; 

Humphrey and Reed, 1983) or through the reduced suppression of antagonist activity by the 

decrease in Ia inhibitory interneuron activity from agonist muscles (Lewis et al., 2010; Hultborn 

et al. 1979: Jankowska et al. 1976).  The objective function developed by Jiang and Mirka (2007) 

is the weighted sum of two terms: the first being the standard sum of squared activation (as seen 

in Equation 2), and a second term being what the authors refer to as the “co-contraction entropy 

term”.  The complete objective function from Jiang and Mirka (2007) can be seen in Equation 5. 

 

J= (1-W)�(am)p + W
N

m=1

� am log am

N

m=1

 

(5) 

where, J is the objective function, N is the number of muscles in the model, 𝑎𝑚 is the 

activation of muscle m at a discrete time point, p is the activation exponent (squared), and W is 

the co-contraction weight factor.  

The co-contraction entropy term decreases when activities from different muscles are 

more similar, thus promoting co-contraction.  Jiang and Mirka (2007) tested this objective using 

an elbow flexion task comparing correlation coefficients between muscle forces determined 

experimentally and from the entropy-assisted optimization.  They found a coefficient of 

determination (r2) = 0.55 for the triceps during the elbow flexion tasks.  The hand load, elbow 

joint angle, and elbow joint velocity were used in regression equations to estimate the 

appropriate weight factor for each condition.  These equations were task specific and based on 

one subject’s data.  Large data sets would need to be collected to use this method for the whole 

body.  Entropy-assisted optimization is a physiologically based approach that merits further 
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investigation.  While it is beneficial to develop optimization parameters to guide a models 

prediction towards experimental loading conditions, in some cases muscle activities can be used 

to guide the solution. 

 

2.4.2  EMG-assisted muscle force prediction 

Optimization, in conjunction with EMG, has been used under static and dynamic 

conditions to obtain physiologically realistic estimates of muscle forces (Amarantini and Martin, 

2010; Vigouroux et al., 2007; Gagnon et al, 2001; Cholewicki and McGill, 1994).  Amarantini 

and Martin (2010) used a two-step approach to estimate muscle contributions to knee moments 

during dynamic squatting.  The first step required an estimate of the net joint moment along with 

the agonist and antagonist moments at the knee given the segment kinematics, ground reaction 

forces, and EMG.  In the second step, muscle forces were predicted with static optimization 

while constraining the solution such that agonist and antagonist moments at the knee were equal 

to the estimates from the first step.  Using this method, they found higher force estimates and a 

better fit to the experimentally recorded EMG compared to the optimization only approach, 

especially for the antagonist muscles.  While this method shows promise for a single joint model, 

in the finger muscles often act as agonists at one joint and antagonists at another simultaneously.  

The complex multi-articular pathways of muscles actuating the finger make it difficult to treat 

them solely as agonists or antagonists for a task. 

EMG assisted optimization has been used to improve finger force predictions.  

Vigouroux et al. (2007) directly incorporated EMG values into static optimization to estimate 

tendon tensions during fingertip pressing.  They compared results between optimization-only, 

EMG-only, and a combined EMG optimization method.  The combined method provided tendon 
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tensions that respected mechanical equilibrium, while being consistent with individual muscle 

activation patterns, for both agonist and antagonist muscles (Vigouroux et al., 2007).  The only 

way to truly validate tendon tension estimates would be through simultaneous in vivo 

measurements, but this is technically impossible given the current technology.  However, 

incorporating muscle activity into optimization constraints may help to provide estimates of 

muscle forces that more appropriately incorporate antagonist activation. 

 

2.5  Summary 

Intrinsic and extrinsic muscles allow us to perform highly specific and powerful tasks 

with our fingers.  These muscles actuate the finger through a connective tissue network called the 

extensor mechanism. The extensor mechanism is a critically important structure to consider 

when estimating muscle forces in the finger.  To estimate internal forces of the finger, 

biomechanical modelling often represents the extensor mechanism using a form of Winslow’s 

Rhombus which reduces it into discrete bands to approximate the transfer of force from each 

muscle to the finger.  Each muscle exerts a moment about the finger through the central and 

terminal slips.  Understanding the relationship between the central and terminal slips provides 

insight to estimating the force each muscle contributes during a task.  In addition to the geometry 

of the model, the calculation method employed is instrumental to predicting accurate muscle 

forces.  Static optimization methods are often used in biomechanical models, but by itself this 

method often provides non-physiological results.  EMG has been used in conjunction with static 

optimization to improve muscle force estimates.  EMG assisted static optimization has the 

potential to improve muscle force estimates such that mechanical equilibrium of the system can 

be maintained while accounting for additional muscle activity that is required to perform a 
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coordinated manual tasks.  A biomechanical model and solution method that can provide 

appropriate muscle force estimates would be useful towards improving surgical and 

rehabilitation strategies for individuals who have impaired hand function. 
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2.6  Purpose 

The purpose of this thesis was to:  

1) Improve the musculoskeletal model of the index finger available through OpenSim by 

adding intrinsic muscles, incorporating a representation of the extensor mechanism, and 

adjusting the solution method.   

2) Determine how forces are transferred through the finger by assessing central and terminal 

slip tension ratios, and characterize how these ratios change with force, posture, and 

movement.  

3) Experimentally collect muscle activity during manual tasks to: 

a) Compare with model predicted muscle activities, and 

b) Improve model predicted muscle activities.   

 

2.7  Hypotheses 

1) Adding intrinsic muscles, the extensor mechanism, and adjusting the solution method 

will improve the fit and reduce the difference between predicted and experimental muscle 

activities. 

2) Terminal and central slip tension ratios will be unique to force, posture, and movement. 

Force will have a greater effect than posture or speed on slip tension ratio. 

3) Using experimental muscle activity to drive the prediction of model activity will further 

improve the fit and reduce the difference between predicted and experimental activities.   
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CHAPTER 3 

METHODS 

3.1  Model and solution method development 

3.1.1  Model development 

The index finger from the OpenSim Upper Extremity model (Holzbaur et al., 2005) has 

previously been adapted to match in vitro experimental data (Kociolek and Keir, 2011).  The 

four extrinsic muscles of the index finger were included in this model.  This will be referred to as 

the Extrinsic-only model and will be used as the basis of development for this thesis.  In the 

current study, all extrinsic and intrinsic muscles controlling the index finger were added (Figure 

3.1).  Torus and elliptical wrap objects, along with control point functions were used to maintain 

appropriate moment arms over the complete range of motion for each of the four degrees of 

freedom in the finger.  The first lumbrical (LUM), first dorsal interosseous (FDI), first palmar 

interosseous (FPI) were added using SIMM to create the Intrinsic model of the index finger 

(SIMM, Motion Analysis Corporation, Santa Rosa, CA, USA).  Maximum isometric force, 

optimal fibre length, tendon slack length, and pennation angle are used to determine the force 

generating capacity in the model (Table 3.1) (Delp et al., 2007; Holzbaur et al., 2005).  These 

properties were determined from cadaveric literature (Lieber et al., 1992; Jacobson et al., 1992).  

Maximum isometric forces were determined using a muscle stress of 45 N/cm2 multiplied by 

each muscle’s PCSA (Holzbaur et al., 2005).  As tendon slack length has not been directly 

measured, values were adjusted such that the normalized fibre length of each muscle stayed 

between 0.75-1.25 times the muscles’ optimal fibre length throughout the range of motion of 

each joint (Holzbaur et al., 2005).  Muscle properties were normalized and forces were estimated 

using a Hill-type muscle model (Millard et al., 2013; Zajac, 1988).  Ligamentous and passive 
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forces are not included in the analysis.  To account for the extensor mechanism, a novel 

adaptation of Winslow’s Rhombus was developed.  In this adaptation, muscles were represented 

with multiple components and each component was identified by the band or insertion that it 

connects with (Table 3.1). 

        

 
Figure 3.1 Four views of the Intrinsic model A) dorsal, B) palmar, C) ulnar, and D) radial.  
Muscle paths developed in SIMM (Motion Analysis Corporation, Santa Rosa, CA, USA). 
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Table 3.1 Intrinsic model muscle parameters.  Muscles divided into components are identified by 
the bands or insertions they connect with from Winslow’s Rhombus (Holzbaur et al., 2005; 
Lieber et al., 1992; Jacobson et al., 1992). 

Muscle Abv. PCSA 
(cm2) 

Maximum 
isometric 
force (N) 

Optimal 
fibre 

length 
(cm) 

Tendon 
slack 
length 
(cm) 

Pennation 
(°) 

Flexor digitorum superficialis FDS 1.40 61.24 9.38 30.70 6.00 

Flexor digitorum profundus FDP 1.50 68.27 8.38 32.58 7.00 

Extensor digitorum communis EDC 0.40 18.28 7.86 37.13 3.00 

Central slip EDC_C 
 

12.18 7.88 35.64 3.00 

Ulnar band EDC_U 
 

3.05 7.85 37.88 3.00 

Radial band EDC_R 
 

3.05 7.85 37.88 3.00 

Extensor indicis EI 0.50 21.69 6.51 19.41 6.00 

Central slip EI_C 
 

7.23 6.54 17.95 6.00 

Ulnar band EI_U 
 

7.23 6.5 20.15 6.00 

Radial band EI_R 
 

7.23 6.49 20.12 6.00 

First dorsal interosseous FDI 1.50 67.50 4.10 5.83 9.20 

Proximal insertion FDI_P 
 

54.00 4.10 2.68 9.20 

Terminal slip FDI_T 
 

13.50 4.10 8.97 9.20 

First palmar interosseous FPI 0.75 33.76 3.16 6.53 7.40 

 Central slip FPI_C 
 

22.45 3.15 5.55 7.40 

Terminal slip FPI_T 
 

11.31 3.17 7.51 7.40 

First Lumbrical LUM 0.11 4.96 7.07 4.12 1.20 

Central slip LUM_C 
 

1.81 7.07 3.15 1.20 

Terminal slip LUM_T 
 

3.15 7.07 5.08 1.20 
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3.1.2  Optimization solution methods development 

The default static optimization analysis tool available in OpenSim uses the Sum of 

squared activation objective function (Equation 2).  For this thesis, the OpenSim static 

optimization analysis tool was expanded in two ways.  First, two alternative objective functions 

were added. One being the Shift parameter objective function developed by Forster et al. (2004) 

(Equation 4), and the other being the Entropy-assisted objective function developed by Jiang and 

Mirka (2007) (Equation 5).  These two solutions aimed to improve the prediction of antagonist 

activity.  In total three objective functions were made available for use during static optimization 

in OpenSim as seen below:   

1) Sum of squared activation (SSa) J= �(am)p
N

m=1

 
(2) 

2) Shift parameter J= �(am − as)p
N

m=1

 
(4) 

3) Entropy-assisted J= (1-W)�(am)p + W
N

m=1

� am log am

N

m=1

 
(5) 

 

where, J is the objective function, N is the number of muscles in the model, 𝑎𝑚 is the 

activation of muscle m at a discrete time point, p is the activation exponent (2 in the current 

study), as is the shift parameter that adjusts each muscles contribution to the objective function 

(0.2 in the current study), and W is the co-contraction weight factor between the two terms (0.5 

in the current study).  The second expansion to the static optimization analysis tool in OpenSim 

was that normalized recorded EMG was used to set the constraints for the activity of each muscle 
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(i.e. EMG-constrained static optimization).  In total, three objective functions were used to solve 

for the muscle load sharing problem, and each solution was either unconstrained or constrained 

using normalized recorded EMG, then these solution methods were applied to both the Intrinsic 

and Extrinsic-only models.  This gave 12 possible model-solution method combinations for any 

one task.  All changes were incorporated programmatically into OpenSim through a custom 

analysis tool plugin. 

 

3.2  Experimental Protocol 

3.2.1  Participants 

Ten (five female, five male) right-hand dominant volunteers aged 25.3 ± 3.1 participated.  

Exclusion criteria included peripheral nerve disease, tendinopathy, and pain tingling or 

numbness of the hand.  All participants gave informed written consent prior to data collection.  

The study methods were approved by the university’s research ethics board.   

3.2.2  Experimental procedure 

Participants performed a series of static finger pressing tasks, dynamic unloaded motions, 

and functional pinching and grasping tasks with the right index finger.  Each task was performed 

twice, once with the elbow supported and once without support.  All tasks were block 

randomized and performed with forearm pronated and the elbow at 90°.  During static pressing 

tasks, participants pressed into the force sensor from their distal phalanx.  Forces were applied in 

four directions, one from each side of their distal phalanx (palmar, radial, dorsal, and ulnar).  For 

every direction force was applied at three levels: 5, 15, and 30 N (Table 3.2, Figure 3.2).  For 

each pressing direction and force level, participants performed two postures, one with their 

finger flexed and one extended.  It is important to note that for the palmar pressing direction 
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there were two flexed postures in addition to the extended posture.  In the first flexed posture 

(flexeda) both the DIP and PIP joints are flexed, while in the second (flexedb) the DIP remained 

extended.  In total, participants performed 54 static pressing tasks.   

 

Table 3.2 Static pressing tasks participants completed during data collection. 

Task Direction of pressing force 

Palmar Flexeda Pressing down from the palmar side of 
the distal phalanx, perpendicular to the 
surface of the force cube 

Palmar Flexedb 

Palmar Extended 
Dorsal Flexed Pressing sideways from the dorsal side of 

the distal phalanx (forearm semi-prone), 
perpendicular to the surface of the force 
cube 

Dorsal Extended 

Radial Flexed Pressing sideways from the radial side of 
the distal phalanx, perpendicular to the 
surface of the force cube Radial Extended 

Ulnar Flexed Pressing sideways from the ulnar side of 
the distal phalanx, perpendicular to the 
surface of the force cube Ulnar Extended 
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Figure 3.2 Four directions the force was applied in during static pressing tasks.  Rectangles 
identify the forces sensor, and the arrow indicates the direction of force.  The diagram shows 
forces applied in the extended finger posture only, but forces were also applied in the same 
directions with a flexed posture.  Each direction/posture combination was performed at three 
force levels (5 N, 15 N, and 30 N).  Note: palmar pressing direction had additional posture 
(flexedb) where the DIP remained extended. 

 

Five dynamic unloaded motions were performed at two speeds.  Tasks were performed at 

a fast speed (1.5 repetitions per second) and a slow speed (0.5 repetitions per second).  The first 

three tasks (triggering, tapping, and pointing) required participants to flex and extend each joint 

of their finger in isolation or in coordination.  The last two tasks (circling and ab-adducting) 

required participants to move the tip of their finger in a circle or in a horizontal line back and 

forth (Table 3.3, Figure 3.3).  Each trial consisted of three repetitions of one task.  In total, 

participants performed 20 dynamic unloaded motions.   
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Table 3.3 Dynamic tasks participants completed during data collection. 

Task Description of motion 

Triggering Flexing-extending all three phalangeal joints concurrently through the full 
range of motion of each joint 

Tapping Flexing-extending through the full range of motion of the MCP while keeping 
the IP joints extended  

Pointing Flexing at the MCP joint while extending the IP joints through the full range of 
motion of each joint  

Circling Tracing a circle with the fingertip, articulating through the full range of motion 
of the MCP, keeping the IP joints extended  

Ab-adducting Moving the fingertip medial to lateral, articulating through the full ab-
adduction range of motion of the MCP joint, keeping the IP joints extended  
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Figure 3.3 Five dynamic unloaded motions.  Arrows indicate direction of rotation.  Top three 
images are a radial view of the right index finger showing triggering, tapping, and pointing 
motions, and the bottom two images are a dorsal view of the circling and ab-adducting motions. 
Grey shadows indicate how the finger moves while circling and ab-adducting.      

  

Additionally, four functional tasks were assessed (Table 3.4, Figure 3.4).  Two pinching 

tasks and two cap twisting tasks were performed.  In one pinch task, participants pressed from 

the palmar surface of their distal phalanx (pulp pinch).  In the other pinch task, participants 

pressed from the radial side of their distal phalanx (key pinch) (An et al., 1985).  For both 

pinching tasks, the thumb and index were 20 mm apart.   The cap twisting tasks required the 

subject to twist off lids of two different sizes (62 mm and 22 mm in diameter).  The task started 

with the lid closed, and then the participant twisted the lid with their right index finger and 
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thumb until the cap was off the container.  

 

Table 3.4 Functional tasks participants completed during data collection. 

Task name Description of task 

Pulp Pinch Pinching between the pulp of the 
index and the thumb 

Key Pinch Pinching between the radial side of 
the distal phalanx of the index and 
the thumb 

Large Cap Twist Twist off and on a cap (62 mm in 
diameter) 

Small Cap Twist Twist off and on a cap (22 mm in 
diameter) 

 

 
Figure 3.4 Overhead view of the four functional tasks participants performed.  Top left: pulp 
pinch pressing from the palmar surface of the distal phalanx. Top right: key pinch pressing from 
the radial surface of the distal phalanx. Bottom left: large cap twist and, bottom right: small cap 
twist. 
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3.2.3  Data collection 

Participants were instrumented with 20 reflective markers (4 mm in diameter) 

corresponding to 5 marker clusters (4 markers on a rigid base) placed on the dorsal surface of 

each segment: distal phalanx, middle phalanx, proximal phalanx, metacarpal and the forearm 

(Figure 3.5).  Calibration markers were placed on the dorsal aspect of each joint, and the lateral 

epicondyle for a single trial.  Kinematic data were recorded using a passive optoelectronic 

motion capture system sampled at 120 Hz (Motion Analysis Corp., Santa Rosa, CA).  The static 

finger pressing tasks were performed against a six-degree of freedom force transducer that was 

clamped to the table and sampled at 2400 Hz (MC3A-6-100, AMTI, Watertown, MA) (Figure 

3.6).  Force data were collected and visual feedback was provided using a custom program 

(LabView 8.5, National Instruments, Texas, USA).  

 

 
Figure 3.5 Five clusters of reflective markers placed on the dorsal surface of each segment: distal 
phalanx, middle phalanx, proximal phalanx, metacarpal and forearm. 
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Figure 3.6 Setup of force transducer clamped to the table for a palmar pressing tasks. Participant 
in an extended finger posture with marker clusters on the dorsal surface of each segment.  
 
 

During all trials, activity from five muscles (FDS, FDP, EDC, EI, and FDI) was collected 

using bipolar surface electrodes (Kendall MediTrace 130, Mansfield, MA, USA).  Prior to A/D 

conversion EMG was differentially amplified and band pass filtered between 10 and 1000 Hz 

(CMRR > 115 dB at 60 Hz, input impedance ~ 10GΩ; AMT-8, Bortec Biomedical Ltd., AB, 

Canada).  EMG was sampled at 2400 Hz (16 bit, USB-6229, National Instruments, TX, USA).  

All sites were scrubbed with isopropyl alcohol (and shaved where appropriate) prior to applying 

electrodes.  Electrodes were affixed over the belly of each muscle, parallel to fibre direction, and 

confirmed with palpation and manual resistance tests.  Maximum voluntary exertions were 

performed to determine each muscle’s maximal voluntary excitation (MVE).  Exertions were 

held for five seconds and performed three times.  Of the two closest trials, the highest peak 
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activity was used for normalization. Electrode placement and maximal exertion test descriptions 

can be found in Table 3.5.  

 
Table 3.5 Electrode placement and maximal exertion descriptions (Sanei and Keir, 2013; Leijnse 
et al., 2008). 

Muscle Electrode placement Maximal exertion test description 

FDS Distal third of forearm on the lateral 
border of ulna 

Finger in neutral with resistance applied to 
the palmar side of the middle phalanx 

FDP 
Distal to the medial epicondyle, 
proximal and dorsal to the FDS 
electrode 

Finger in neutral with resistance applied to 
the palmar side of the distal phalanx 

EDC Mid-forearm medial to extensor carpi 
radialis brevis 

Finger in neutral with resistance applied to 
the dorsal side of the proximal phalanx 

EI Distal end forearm radial to the ulnar 
head 

Finger in neutral with resistance applied to 
the dorsal side of the proximal phalanx 

FDI Medial side of the second metacarpal Finger in neutral with resistance applied to 
the radial side of the middle phalanx 

 
 

3.2.4  Data analysis 

Kinematic data were filtered with a low-pass bi-directional Butterworth filter (fc = 6 Hz) 

and imported into OpenSim.  Force data were processed with a bi-directional low-pass 

Butterworth filter (4th order, fc = 2 Hz).  EMG data were smoothed with a bi-directional high-

pass Butterworth filter (1st order, fc = 410 Hz), de-biased, full-wave rectified, then low-pass 

filtered using a single pass Butterworth filter (4th order, Fc = 2 Hz), and normalized to maximal 

voluntary exertion (McDonald et al., 2013; Buchannan et al., 2004; Potvin and Brown, 2004).  

All data were processed using custom program (Matlab 2013b, MathWorks, Inc., Natick, MA).      

For each task, 12 unique muscle activity patterns were predicted based on three variables: 

1) the model, 2) the activity constraint, and 3) the solution method (Figure 3.7).  There were two 
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models being evaluated in this thesis, either the index finger from the previous Upper Extremity 

model (referred to here as the Extrinsic-only model) (Kociolek and Keir, 2011; Holzbaur et al., 

2005) or the Intrinsic model developed for this study.  There were also two activity constraint 

approaches being evaluated: an optimization-only approach, were activity ranges from 0-100% 

of MVE, and an EMG-constrained approach where muscle activity can be equal to the 

normalized recorded EMG value ± 15% of the maximum muscle activity (for example, if 

normalized EMG = 30%, the predicted muscle activity could be anywhere between 15-45% 

MVE).  Lastly, three objective functions were also evaluated: Sum of squared activation (Delp et 

al., 2007), Shift parameter (Forster et al., 2004), and Entropy-assisted (Jiang and Mirka, 2007) 

optimizations. 
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Figure 3.7 Model and solution method combinations resulting in 12 unique muscle force 
predictions per task.  The 12 unique solutions are created from the combination of 2 models x 2 
activity constraints x 3 static optimization objective functions. 

 

Two measures of co-contraction were also derived to analyze each model and solution 

method combination.  The two measures were relative antagonist activity and normalized 

antagonist moments (Equations 6 and 7).  These measures were calculated from the average 

activity of each muscle during the one second static pressing trials.  Relative antagonist activity 

was calculated as the sum of the activity from muscles causing extension divided by the 

combined activity of muscles causing flexion and extension about a joint.  Normalized antagonist 

moment was the sum of extensor moments from each muscle divided by the net joint moment.  

Similar calculations have been made to assess the relative contribution of extensor muscles 

towards total muscle activity and moment (van Dieën et al., 2003; Osu et al., 2002). 
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𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑎𝑛𝑡𝑎𝑔𝑜𝑛𝑖𝑠𝑡 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦

=  
∑  𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑓𝑟𝑜𝑚 𝑚𝑢𝑠𝑐𝑙𝑒𝑠 𝑐𝑎𝑢𝑠𝑖𝑛𝑔 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛

∑𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑓𝑟𝑜𝑚 𝑚𝑢𝑠𝑐𝑙𝑒𝑠 𝑐𝑎𝑢𝑠𝑖𝑛𝑔 𝑓𝑙𝑒𝑥𝑖𝑜𝑛 𝑎𝑛𝑑 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛
 

(6) 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑎𝑛𝑡𝑎𝑔𝑜𝑛𝑖𝑠𝑡 𝑚𝑜𝑚𝑒𝑛𝑡 =
∑𝑚𝑜𝑚𝑒𝑛𝑡𝑠 𝑓𝑟𝑜𝑚 𝑚𝑢𝑠𝑐𝑙𝑒𝑠 𝑐𝑎𝑢𝑠𝑖𝑛𝑔 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛

𝑁𝑒𝑡 𝑗𝑜𝑖𝑛𝑡 𝑚𝑜𝑚𝑒𝑛𝑡
 

(7) 

 
Lastly, force at the terminal and central slip was calculated as the sum of all muscle 

components inserting into that slip.  For static tasks, forces were taken from the average value 

during the one second trial.  For dynamic tasks, the forces were calculated at each instant during 

the cycle.  Terminal and central slip contributions were determined as the force at that slip 

divided by the total slip force (terminal slip force plus central slip force).       

 
 

3.2.5  Statistical analysis 

 
Three of nine static pressing tasks were assessed.  The three palmar pressing postures 

(palmar flexeda, palmar flexedb, and palmar extended) were selected since they better align with 

and may be compared to previous literature (Paclet and Quaine, 2012; Vigouroux et al., 2007; 

An et al., 1985).  Two 3x3x2x6 repeated measures ANOVAs were used to determine differences 

between the Intrinsic and the Extrinsic-only models’ fit with recorded muscle activity.  Two 

dependent variables were used to assess fit in separate calculations: one being the coefficient of 

determination (r2) as an index of shape similarity, and the other being normalized root mean 

square deviation (NRMSD) to reflect differences in magnitude.  These ANOVAs were 

conducted for each of the four extrinsic muscles (FDS, FDP, EDC, EI).  For both repeated 
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measures ANOVAs the independent variables were: posture (3), force (3), model (2), and 

solution method (6).  A similar analysis was conducted with all five dynamic tasks.  The same 

dependent variables, r2 and NRMSD, were used for each muscle.  However for dynamic tasks, 

5x2x2x6 repeated measures ANOVAs were performed where the independent variables for 

were: motion (5), speed (2), model (2), and solution method (6).  A summary of the ANOVAs 

performed for static and dynamic tasks can be found in Table 3.6.    

Additionally, for the three static pressing tasks, repeated measures ANOVA’s were 

conducted with the two measures of co-contraction (relative antagonist activity and normalized 

antagonist moment).  These two measures served as dependent variables in separate 4-way, 

repeated measure ANOVAs, while the independent variables were: posture (3), force (3), model 

(2), and solution method (6) (Table 3.6).  Lastly, to determine changes in terminal slip 

contribution as a function of posture and force during static pressing tasks a 3x3 repeated 

measures ANOVA was conducted using forces derived from the EMG-constrained entropy-

assisted static optimization solution method.  The dependent variable was the terminal slip 

contribution.  The two independent variables were posture (3) and force (3) (Table 3.6).   

For all repeated measures ANOVAs, Greenhouse-Geisser corrections were applied where 

the assumption of sphericity was violated, as assessed by Mauchly's test of sphericity, p < 0.05.  

Bonferroni adjustments were made for multiple comparisons, and post-hoc univariate repeated 

measures ANOVAs were conducted following significant interaction effects.  

In addition to the ANOVAs performed, descriptive statistics were evaluated for terminal 

and central slip contributions during dynamic tasks.  The maximum, minimum, and range of slip 

contribution during all dynamic tasks were found for fast and slow motions.  Mean and standard 
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deviation of the collected muscle activity for the extrinsic muscles are also presented for each 

static pressing posture and force. 
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Table 3.6 Summary of ANOVAs performed for static pressing and dynamic tasks 

RM-ANOVA Independent variables Dependant variable Description 

4-way Posture (3) NRMSD between 
predicted and 
experimental muscle 
activity 

Performed for each of the 4 extrinsic muscles (FDP, FDS, 
EDC, EI) on static pressing tasks   Force (3) 

 Model (2) 
 Solution method (6) 

4-way Posture (3) r2 between predicted and 
experimental muscle 
activity 

Performed for each of the 4 extrinsic muscles (FDP, FDS, 
EDC, EI) on static pressing tasks  Force (3) 

 Model (2) 
 Solution method (6) 

4-way Motion (5) NRMSD between 
predicted and 
experimental muscle 
activity 

Performed for each of the 4 extrinsic muscles (FDP, FDS, 
EDC, EI) on dynamic tasks  Speed (2) 

 Model (2) 
 Solution method (6) 

4-way Motion (5) r2 between predicted and 
experimental muscle 
activity 

Performed for each of the 4 extrinsic muscles (FDP, FDS, 
EDC, EI) on dynamic tasks  Speed (2) 

 Model (2) 
 Solution method (6) 

4-way Posture (3) Mean relative antagonist 
activity (Equation 6) 

Calculated as an average value during each static pressing 
task.  Mean of the DIP, PIP, and MCP joints)  Force (3) 

 Model (2) 
 Solution method (6) 
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Table 3.6 continued  

RM-ANOVA Independent variables Dependant variable Description 

4-way Posture (3) normalized antagonist 
moment (Equation 7) 

Calculated as an average value during each static pressing 
task.  Mean of the DIP, PIP, and MCP joints)  Force (3) 

 Model (2) 
 Solution method (6) 

2-way Posture (3) Terminal slip 
contribution to total slip 
force 

Calculated using the Intrinsic model and the EMG-
constrained Entropy assisted objective function for static 
pressing trials 

 Force (3) 
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3.3  Model and solution method parameter rationale 

Given the nature of the modelling environment and the musculoskeletal system, a number 

of decisions needed to be made prior to the complete analysis to obtain the robust results while 

keeping to the scope of the thesis.  Results from the preliminary investigation related to these 

decisions are discussed in the following sections. 

 

3.3.1  Linear scaling 

The model segment lengths were scaled according to participant specific 

anthropometrics.  Muscle properties including: optimal fibre length, tendon slack length, and 

pennation angle were scaled linearly with the physical dimensions of each participant as well.  

Maximum isometric force of each muscle was determined using a muscle stress of 45 N/cm2 

multiplied by each muscle’s PCSA (Holzbaur et al., 2005; Lieber et al., 1992; Jacobson et al., 

1992).  Upon initial investigation, both models were unable to generate the forces produced 

during the experimentally recorded pressing tasks.  An initial estimate of the strength needed by 

the model to generate the necessary force was determined using Equation 8:    

 

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑜𝑓 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙

=  
𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑛𝑒𝑡 𝑀𝐶𝑃 𝑚𝑜𝑚𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠

𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑛𝑒𝑡 𝑀𝐶𝑃 𝑚𝑜𝑚𝑒𝑛𝑡 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙𝑙𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑚𝑢𝑠𝑐𝑙𝑒𝑠 
 

(8) 

The approximate net MCP moment produced by the muscles (the denominator of Equation 8) 

was defined as the sum of the extrinsic muscles maximum isometric force multiplied by each 

muscles moment arm and normalized activity during the high force palmar pressing tasks.  It was 

found that scaling all the muscles by a factor of three allowed both models to generate the 
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required forces.  Linearly scaling forces to this degree has previously been done to allow a model 

to function while maintaining the force relationship between muscles (Arnold et al., 2010; Delp 

et al., 1990).  

 

3.3.2  Optimization settings 

In order to use optimization solutions that aimed to increase the prediction of co-

contraction, two additional parameters needed to be incorporated.  For the Shift parameter 

objective function (Equation 4) the additional parameter was the shift value, as.  For the Entropy-

assisted objective function (Equation 5) the additional parameter was the weight factor, W.  To 

determine the most appropriate values, static optimization was run multiple times with varying 

parameter values for a subset of data (static palmar pressing in the flexeda and extended postures 

at 5 and 30 N for one participant on EDC).  The shift value, as, and weight factor, W parameters 

were altered from 0-1 in increments of 0.1.  At each increment, static optimization was run and 

normalized root mean square deviations (NRMSD) between predicted and experimental results 

were evaluated.  The parameter values that provided the lowest NRMSD between predicted and 

experimental activity was used for the complete analysis.  The shift parameter selected was 0.2, 

indicating that every normalized muscle activity would be reduced by 20% MVE when it was 

applied to the objective function.  This is similar to the values used by Forster et al. (2004).  The 

weight factor used for Entropy-assisted optimization was 0.5, in other words an equal balance 

between terms of the objective function.  For both parameters, the authors suggested that the 

value is likely to be task and model specific.  It would be ideal to identify subject and task 

specific parameters.  However, these values were used for all tasks and subjects to demonstrate 

the overall utility and limitations of the Intrinsic model and static optimization solution methods.  
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Future work should be directed to specifying these values.  Finding the most appropriate shift 

parameters and weight factors will help maximize the fit and reduce the error between predicted 

and experimental activity. 

 

3.3.3  Determining maximum isometric forces 

The Intrinsic model was designed to have muscle paths that represent the extensor 

mechanism.  As such, all the muscles that insert to the extensor mechanism are divided into 

either two or three components (EDC, EI, FDI, FPI, LUM).  For example, the LUM muscle is 

comprised of two separate components, one that inserts at the central slip (LUM_C) and one that 

inserts on the terminal slip (LUM_T).  While the two components have similar paths proximally, 

their paths differ distally.  This made it possible to estimate the terminal and central slip tension.  

Based on the software, there is no way to link different muscle paths or identify that they are part 

of the same muscle, thus they are effectively treated as unique muscles.  To mitigate this 

limitation, a preliminary analysis was performed to determine how to distribute forces within 

each multi-component muscle such that the results most closely match experimental activity.  In 

the first step of the analysis, the maximum isometric force of each muscle was divided equally 

into the number of components that muscle had (either 2 or 3 components).  Then, a scale factor 

was used to adjust the maximum isometric force of each component such that it varied from 20 

to 180% (in 20% increments), while the other component(s) made the remainder of that muscle’s 

total maximum isometric force.  In doing this, the total muscle force was preserved.  A Sum of 

squared EMG-constrained static optimization was run for each set of component muscle forces, 

and then activation profiles were compared to experimentally recorded EMG.  This analysis was 

completed for one subject in the flexeda (where both the DIP and PIP are flexed) and extended 
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postures at 5 and 30 N force levels.  The set of component forces that gave the lowest NRMSD 

on average across the trials tested in the preliminary analysis was used.  The scale factors used to 

optimize maximum isometric forces for each component can be seen in Table 3.7. 

 

Table 3.7 Scale factor used to adjust maximum isometric forces of each muscle component to 
optimize muscle force distribution such that it minimized NRMSD with experimental activity.  
Initial maximum isometric forces were set to the maximum force of the muscle divided by the 
number of components (either 2 or 3). 
 

Muscle component Scale Factor 

EDC_C 2 

EDC_U 0.5 

EDC_R 0.5 

EI_C 1 

EI_U 1 

EI_R 1 

FDI_P 1.6 

FDI_T 0.4 

FPI_C 1.33 

FPI_T 0.67 

LUM_C 0.73 

LUM_T 1.27 

 

  The trend towards increased force going to the central slip compared to the terminal slip 

is supported in previous works.  Valero-Cuevas et al. (2007) determined tension to range from 

1:1.75-2.25 (terminal: central slip).  When modelling larger muscle groups, activation levels 

from muscle components are commonly lumped into one value (Hamner et al., 2010; Arnold et 

al., 2010).  However, to determine a muscle’s contribution to central and terminal slip tension in 

the finger, some variability was needed between compartments.  An alternative method would 
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have been to analyze each task and force level individually, varying the component forces 

iteratively and finding the closest match to the recorded activity.  However, this would require a 

unique model for each task and force level, which would be at odds with the purpose of this 

thesis.  Additionally the analysis would be prohibitively time consuming (at an average of 4 

hours per run with 6 solution methods, and 9 conditions it would take 216 hours (9 days) per 

subject, for the three static pressing trials alone). 
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CHAPTER 4 

RESULTS 

4.1  Experimental results 

Overall, participants directed 98.4 ± 1.7% of the resultant force directly down into the 

force cube.  Across the three pressing postures, participants generated a mean force of 4.9 ± 0.4 

N for the 5 N tasks, 14.2 ± 0.8 N for the 15 N tasks, and 25.0 ± 3.7 N for the 30 N tasks.  Mean 

vertical force, and the contribution of the vertical force to the resultant, can be seen in Figure 

4.1).  Mean and standard deviations of muscle activity for static pressing tasks are presented in 

Table 4.1.  Additional information related to mean joint angles and speed of motion can be found 

in appendix A).    



M.Sc. Thesis – A.R. MacIntosh  McMaster University – Kinesiology 
 

50 
 

 

Figure 4.1 Absolute vertical force and vertical force percent contribution to resultant at each 
static pressing posture and force level.  Left axis corresponds to bars at each force and posture.  
Right axis corresponds to the percent contribution to resultant indicated by the horizontal line 
above each bar.  In flexeda both the PIP and DIP joint are bent, while in flexedb the DIP 
remained extended.  

 

Table 4.1 Normalized activity for the extrinsic muscles (expressed in percent MVE). Average 
activity during the three palmar pressing tasks at each posture and force are presented. 

Posture Force FDS FDP EDC EI 
flexeda 5 N 11.0 (5.7) 12.1 (5.0) 11.7 (2.7) 13.6 (7.1) 

15 N 24.9 (11.6) 24.1 (9.8) 19.8 (8.1) 20.3 (9.3) 

30 N 38.8 (18.9) 40.6 (12.2) 31.1 (11.5) 33.0 (13.3) 

flexedb 5 N 11.5 (4.6) 13.8 (5.7) 10.4 (3.3) 12.2 (6.6) 

15 N 23.3 (9.3) 30.6 (11.9) 17.0 (7.4) 19.1 (9.0) 

30 N 36.2 (10.5) 51.3 (18.1) 23.0 (9.5) 28.8 (15.3) 

extended 5 N 12.1 (6.4) 14.3 (5.1) 10.2 (3.6) 10.6 (4.9) 

15 N 21.0 (9.5) 26.4 (8.9) 13.6 (5.8) 15.1 (8.4) 

30 N 39.1 (15.4) 50.0 (14.2) 27.7 (11.8) 30.3 (16.8) 
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4.2  Modelling results 

Based on the volume of data to analyze, only findings which most directly address the 

purpose of this thesis are included in the following sections.  The complete list of significant 

results from the repeated measures ANOVAs identified in the Statistical analysis section can be 

found in Appendix A (Table A.3).  For the results presented below, many findings were 

consistent across multiple muscles.  In these cases, the relevant muscles have been identified and 

the statistics presented are from the muscle with the highest significance (i.e. the p value closest 

to 0.05).   

 

4.2.1  Solution method and muscle activity 

During static palmar pressing, EMG-constrained methods provided lower NRMSD than 

Optimization-only methods for all muscles (F 1.036, 9.326 = 6.493, p < .030 for the FDP) (Figure 

4.2, Note: degrees of freedom adjusted from Greenhouse-Geisser corrections for sphericity).  For 

FDS and EDC, when activity was constrained by EMG, co-contraction objective functions gave 

lower NRMSD than the Sum of squared activation (SSa) objective function (F 1.544, 13.895 = 

28.285, p < .046).  Across solution methods, posture did not affect the NRMSD during static 

pressing (F 1.995, 17.915 = 0.981, p > .394).  However, there was a main effect of force for the EDC.  

Pressing at the 30 N force level provided lower NRMSD (11.5 ± 5.2) then pressing at the 5 N 

force level (23.4 ± 9.3) across solution methods (F 1.91, 17.22 = 8.249, p > .003). 
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Figure 4.2 Solution method main effect of NRMSD for extrinsic muscles during static pressing. 
* Significant difference between EMG-constrained and Optimization-only methods. 
† Significant difference between SSa and co-contraction objective functions. 

  

For dynamic trials, the 5x2x2x6 RM ANOVA revealed that motion did not affect the 

NRMSD for FDS or EDC (F 1.714, 15.422 = 2.614, p > 0.111).  For FDP and EI, there were 

differences in NRMSD depending on the motion.  For FDP, circling had a higher NRMSD (13.5 

± 6.2) than pointing (7.6 ± 3.2) (F 4, 36 = 4.740, p < .004).  However for EI, Ab-adducing had a 

higher NRMSD (5.5 ± 1.8) than circling (3.6 ± 1.7) (F 4, 36 = 4.788, p < .003).  Overall, the 

average NRMSD across the five motions was 8.1 ± 1.4%.  There was a Speed*Method 

interaction for FDS and FDP.  At slow speeds but not at fast speeds, activity predicted from co-

contraction objective functions was closer to the experimental values compared to the SSa 

objective (F 1.05, 9.451 = 14.246, p < .037).    

Furthermore, across all dynamic trials, extensor muscle activity predicted from EMG-

constrained methods had lower NRMSD than Optimization-only methods (F 1.098, 9.88 = 
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26.452, p < .044) (Figure 4.3).  For EDC, co-contraction objective functions gave lower NRMSD 

than SSa solutions (F 1.035, 9.312 = 28.056, p< 0.013).  With flexor muscles, there was an 

interaction between the model and solution method.  For FDP, when using the Intrinsic model, 

EMG-constrained Entropy optimization had lower NRMSD than EMG-constrained SSa 

optimization (F 1.01, 9.094 = 13.064, p < .019).  Using the Extrinsic-only model, EMG-constrained 

co-contraction optimizations had lower NRMSD than all other solution methods (F 1.069, 9.625 = 

17.762, p < .031).   

With EMG-constrained solutions, a decrease in NRMSD was often accompanied by a 

decrease in the fit between predicted and experimental activity.  The EMG-constrained SSa 

method averaged a higher NRMSD (7.00 ± 2.13) and r2
 (0.38 ± 0.15), while the EMG-

constrained co-contraction methods averaged a lower NRMSD (6.62 ± 2.05) and r2 (0.31 ± 0.13).  

Coefficients of determination (r2) for dynamic trials were generally low across solution methods, 

ranging from 0.07 ± 0.04 in the FDS when using optimization-only methods to 0.62 ± 0.21 for 

the EI using an EMG-constrained solution method (Table 4.2).  Speed also influenced the 

explained variance (r2) between predicted and experimental activity.  There was a Speed*Method 

interaction from the repeated measures ANOVA performed for each muscle.  At slow speeds, r2 

values were higher for all muscles when using the EMG-constrained SSa solution compared to 

EMG-constrained co-contraction optimizations (F 1.103, 9.931 = 6.062, p = 0.031).  At fast speeds, 

the r2 for EDC was higher when using the EMG-constrained SSa method compared to the EMG-

constrained Entropy method (F 1.464, 13.117 = 10.367, p = 0.018).   

Between the two co-contraction objective functions, the Entropy-assisted objective gave 

lower NRMSD than the SSa objective more often than the Shift parameter objective.  In five of 

nine cases the Entropy-assisted objective function gave lower NRMSD than the SSa while the 
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Shift parameter objective did not.  The Entropy-assisted objective was uniquely significant for 

FDS and EDC during static pressing, FDP and EDCI in dynamic trials, and for EI during fast 

dynamic trials.  However, the Shift parameter objective was uniquely significant in only one 

condition, for EI during static pressing.  Otherwise, both co-contraction methods produced lower 

NRMSD than the SSa method.  

 

 
Figure 4.3 Mean NRMSD for extrinsic muscles by solution method during dynamic tasks.  
* Significant difference between EMG-constrained and Optimization-only methods. 
† Significant difference between SSa and co-contraction objectives. 
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Table 4.2 Coefficients of determination (r2) between predicted and experimental activity during dynamic trials for each muscle and 
solution method at slow and fast speeds. 

 

 

EMG-
constrained 

Sum of 
squared 

activation 

EMG-
constrained 

Shift 

EMG-
constrained 

Entropy 

Optimization-
only Sum of 

squared 
activation 

Optimization-
only Shift 

Optimization-
only Entropy 

FDS Fast 0.25 (0.10) 0.19 (0.07) 0.21 (0.08) 0.22 (0.07) 0.22 (0.09) 0.21 (0.10) 

 
Slow† 0.19 (0.10) 0.13 (0.09) 0.11 (0.10) 0.11 (0.06) 0.07 (0.04) 0.07 (0.04) 

FDP Fast 0.32 (0.21) 0.26 (0.19) 0.26 (0.19) 0.24 (0.14) 0.23 (0.09) 0.21 (0.10) 

 
Slow† 0.32 (0.28) 0.22 (0.17) 0.26 (0.23) 0.11 (0.07) 0.07 (0.05) 0.08 (0.05) 

EDC Fast‡ 0.37 (0.18) 0.30 (0.11) 0.31 (0.16) 0.30 (0.07) 0.14 (0.05) 0.13 (0.04) 

 
Slow† 0.31 (0.15) 0.21 (0.13) 0.26 (0.16) 0.12 (0.05) 0.08 (0.04) 0.08 (0.04) 

EI Fast 0.55 (0.25) 0.45 (0.20) 0.48 (0.23) 0.35 (0.08) 0.18 (0.06) 0.18 (0.05) 

 
Slow*† 0.62 (0.21) 0.47 (0.20) 0.53 (0.21) 0.12 (0.04) 0.08 (0.03) 0.08 (0.03) 

* Significant difference between EMG-constrained and Optimization-only methods.  
† Significant difference between EMG-constrained SSa and EMG-constrained co-contraction methods.  
‡ Significant difference between EMG-constrained SSa and EMG-constrained Entropy methods. 
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4.2.2  Model and muscle activity 

During static pressing tasks, only for EI were there differences in NRMSD between the 

Extrinsic-only and the Intrinsic models.  There was a Model*Method interaction wherein the 

Extrinsic-only model provided lower NRMSD (17.1 ± 7.1) than the Intrinsic model (21.2 ± 7.7) 

when using EMG-constrained co-contraction optimization methods (F 1, 9 = 16.504, p < .003).  

During dynamic tasks, NRMSDs were similar between models as differences were dependent on 

the solution method.  

Across all dynamic tasks, the differences between models were specific to the solution 

method and muscle.  Intrinsic model r2 values were higher for FDP when using Optimization-

only co-contraction solutions methods (F 1, 9 = 6.758, p < .029).  Similarly, r2 was higher from the 

Intrinsic model for EI when using EMG-constrained co-contraction optimization solutions (F 1, 9 

= 9.534, p < .013).  In contrast, for EDC the r2 values from the Extrinsic-only model were higher 

when using two of the six solution methods (either the EMG-constrained SSa or EMG-

constrained Entropy optimization method (F 1, 9 = 8.085, p = .019) (Table 4.3). 
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Table 4.3 Coefficients of determination (r2) between predicted and experimental activity during dynamic trials for each muscle and 
solution method determined by the Intrinsic and the Extrinsic-only models. 

Muscle Model 

EMG-
constrained 

Sum of 
squared 

activation 

EMG-
constrained 

Shift 

EMG-
constrained 

Entropy 

Optimization-
only Sum of 

squared 
activation 

Optimization-
only Shift 

Optimization-
only Entropy 

FDS Intrinsic 0.21 (0.08) 0.18 (0.08) 0.16 (0.09) 0.17 (0.05) 0.16 (0.08) 0.16 (0.08) 

 
Extrinsic-only 0.22 (0.08) 0.14 (0.06) 0.15 (0.06) 0.16 (0.06) 0.12 (0.05) 0.11 (0.05) 

FDP Intrinsic 0.30 (0.25) 0.28 (0.24) 0.26 (0.22) 0.17 (0.09) 0.17 (0.08)* 0.16 (0.09)* 

 
Extrinsic-only 0.34 (0.24) 0.20 (0.12) 0.26 (0.20) 0.17 (0.11) 0.13 (0.05) 0.12 (0.05) 

EDC Intrinsic 0.24 (0.15) 0.22 (0.15) 0.23 (0.16) 0.22 (0.06) 0.12 (0.04) 0.12 (0.06) 

 
Extrinsic-only 0.44 (0.18)* 0.30 (0.10) 0.34 (0.17)* 0.20 (0.05) 0.11 (0.05) 0.10 (0.03) 

EI Intrinsic 0.58 (0.21) 0.52 (0.21)* 0.53 (0.21)* 0.25 (0.05) 0.12 (0.03) 0.12 (0.04) 

 
Extrinsic-only 0.59 (0.22) 0.40 (0.15) 0.48 (0.20) 0.22 (0.05) 0.14 (0.06) 0.13 (0.06) 

* Significant difference between Intrinsic and Extrinsic-only models. 
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For static pressing tasks, there were differences between models for relative antagonist 

activity and normalized antagonist moment.  The Intrinsic model had higher relative antagonist 

activity and normalized antagonist moment compared to the Extrinsic-only model (F 1, 9 = 

93.99, p < .001).  Relative antagonist activity was higher in the flexed postures compared to the 

extended posture (F 2, 18 = 8.316, p = .003) (Figure 4.4).  Both relative antagonist activity and 

normalized antagonist moment increased at the highest pressing force (F 2, 18 = 3.873, p < .040) 

(Figure 4.5). 

 
Figure 4.4 Mean relative antagonist activity for each model across static pressing postures.  Data 
are collapsed across solutions methods.  In flexeda both the PIP and DIP joint are bent, while in 
flexedb the DIP remains extended.    
* Significant difference between Intrinsic and Extrinsic-only models. 
† Significant difference between Flexed and Extended postures. 
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Figure 4.5 Mean relative antagonist activity (left) and normalized antagonist moment (right) for 
each model across static pressing forces.  Data are collapsed across solution methods.  
* Significant difference between Intrinsic and Extrinsic-only models. 
† Significant difference between high and low forces. 

 
 

4.2.3  Terminal slip versus central slip force distribution 

Mean profiles of each dynamic task performed at fast and slow speeds can be found in 

Figures 4.6, 4.7. The accompanying descriptive statistics are presented in this section.  The 

terminal slip to central slip force distribution averaged 0.60: 0.40, ± 0.06 across participants for 

slow tasks and 0.59: 0.41 ± 0.07 during fast tasks.  Slip distribution changed by up to 20% 

throughout the cycle of each task, and varied more in slow trial than in fast.  Slip force varied the 

most during slow tapping motions (range during one cycle = 0.17 ± 0.08) compared to when the 

finger was moving fast (range during one cycle = 0.09 ± 0.04).  Slip distribution remained the 

most consistent throughout pointing and triggering tasks.  During fast pointing cycles, the 

terminal slip contribution varied from 0.55 to 0.61 (range during one cycle = 0.06 ± 0.05) and 

during slow triggering cycles the terminal slip contribution varied from 0.54 to 0.59 (range 

during one cycle = 0.05 ± 0.04).      



M.Sc. Thesis – A.R. MacIntosh  McMaster University – Kinesiology 
 

60 
 

 

Figure 4.6 Mean terminal and central slip contribution (as a proportion of total force from both 
slips) during the five dynamic tasks when performed fast.  Terminal slip (solid), central slip 
(dotted) and one standard deviation in grey.       

  



M.Sc. Thesis – A.R. MacIntosh  McMaster University – Kinesiology 
 

61 
 

 

Figure 4.7 Terminal and central slip contribution (as a proportion of total force from both slips) 
during the five dynamic tasks when performed slow.  Terminal slip (solid), central slip (dotted) 
and one standard deviation in grey. 
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For static pressing tasks, the average terminal slip to central slip force distribution (as a 

proportion of total slip force) was 0.59: 0.41, ± 0.05 across participants.  Differences in slip 

distribution across posture and forces were assessed using EMG-constrained Entropy 

optimization method as it had the closest match with experimental muscle activity.  Using this 

solution method, terminal slip contribution increased with pressing force from  0.58 ± 0.09 at 5 

N to 0.68 ± 0.08 at 30 N) (F 2, 18 = 3.661, p < 0.046) and remained consistent across postures (F 2, 

18 = 0.140, p < 0.871) (Table 4.4). 

 

Table 4.4 Proportion of terminal slip force (terminal slip force / terminal + central slip force) 
during static pressing tasks by force and posture. 

 
Flexeda Flexedb Extended 

5 N 0.60 (0.09) 0.58 (0.06) 0.57 (0.16) 

15 N 0.62 (0.09) 0.63 (0.07) 0.61 (0.16) 

30 N 0.65 (0.07) 0.69 (0.08) 0.70 (0.13) 

* Significant difference in terminal slip contribution to total slip force between 5 N and 30 N 
static pressing tasks across all postures. 
 

 

 
* 
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CHAPTER 5 

DISCUSSION 

This thesis presented a model and solution methods in an open-source musculoskeletal 

modelling environment (OpenSim) that improves the anatomic fidelity of the finger.  The 

Intrinsic model provided higher relative extensor activity and normalized extensor moments 

when compared to the Extrinsic-only model during static palmar pressing.  Using an EMG-

constrained solution with a static optimization procedure that incorporated co-contraction 

provided closer matches to experimental activity as seen by significantly lower error in static and 

dynamic tasks.  The model and solution method are newly developed tools for the OpenSim 

platform and can serve as valuable resources for researchers looking to assess manual tasks. 

  

5.1  Slip forces and tendon tensions 

EMG-constrained entropy-assisted optimization gave the lowest error between predicted 

and experimental muscle activity, and so results from this method were used to analyze slip 

distribution.  It was hypothesized that terminal and central slip tension ratios would be unique to 

force, posture, and movement.  Force did have a greater effect as terminal slip contribution was 

consistent across postures but increased by 10% from 5 N to 30 N in static pressing.  In dynamic 

trials, slip contribution varied more in slow trial than in fast, but was similar across motions.  

Static and dynamic tasks produced similar terminal to central slip force distributions.  Terminal 

slip force averaged 60% of the total slip force in dynamic tasks, and 63% across static tasks.   

However, no changes in slip forces were observed between flexed and extended postures in static 

tasks (62% ± 23 in flexeda, 63% ± 20 in flexedb, and 62% ± 42 in extended postures).  The great 

variability between participants illustrated the challenge in confidently determining the 
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relationship between the terminal and central slips (Valero-Cuevas et al., 2007).  Anatomic 

variability, the differences between force transmission characteristics of each structure, and the 

many combinations available to estimate muscle loading all complicate the solution.  There is a 

wide range of estimates in the literature.  In a previous computational modelling investigation 

from Lee et al. (2008), the terminal: central slip force ratio during static pressing remained 

consistent across postures at approximately 1.7:1.  Similarly, Valero-Cuevas et al. (2007) found a 

ratio of approximately 2:1 depending on the input muscle forces.  In the same study, Valero-

Cuevas et al. (2007) directly measured slip forces in a cadaver model.  This experiment resulted 

in a ratio in the opposite direction, approximately 1:2 (terminal: central slip force distribution).  

To put results from this thesis into context, there was approximately a 1.5:1 terminal: central slip 

ratio across static and dynamic tasks.   

The contribution of force from each muscle, to the two slips, has a critical impact finger 

movement and on static fingertip force generation (Balasubramanian et al., 2014).  Lee et al. 

(2008) evaluated the changes in force between the terminal and central slip by looking at 

differences in deformations under an applied load in a cadaver study.  While this work was 

technically challenging, it gave insight into how muscle forces propagate through the extensor 

mechanism.  With the Intrinsic model, estimates of how muscle forces propagate can readily be 

obtained.  The difference in force between components of the same muscle (i.e. the terminal and 

central components of the EDC) can be interpreted as the propagation of tension through the 

finger.  For instance, across static pressing tasks, force from the central component of EDC 

(EDC_C) was approximately 2 times greater than the terminal components (EDC_R, EDC_U).  

From this, one may conclude that the EDC muscle loses force as it travels distally along the 
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finger, which would be in accordance with the cadaver experiment performed by Valero-Cuevas 

et al. (2007) that found over twice as much force at the central slip compared to the terminal slip.   

There is a high degree of variability in muscle force estimates across the literature (Figure 

5.1).  Often the design, solution method, and the tasks differ between studies.  In some cases, 

intrinsic muscle forces have been combined into a single parameter, making it impossible to 

discern the role of each muscle (Li et al., 2000; Fowler and Nicol, 2000; Weightman and Amis, 

1982).  Our results suggest that the total extrinsic flexor force (the combined force from FDP and 

FDS) was 4.2 times the externally applied load, while the extrinsic extensor force (force from 

EDC and EI) was 0.3, and an intrinsic force (from FDI, FPI, and LUM) was 1.7 times the 

externally applied load across postures and forces during static pressing.  In comparison, Placet 

et al. (2012) estimated the same extrinsic extensor force (0.3), but higher extrinsic flexor force 

(5.1) and intrinsic force (2.8) by using a model of the hand that incorporated a mechanical link at 

the wrist.  These results were obtained for a task that involved pressing with all four fingers, and 

used an optimization technique to minimize muscle stress.  Conversely, Valero-Cuevas et al. 

(1998) found a higher extrinsic extensor force (1.1) and a similar intrinsic force (1.9), but a lower 

extrinsic flexor force (3.48).  Valero-Cuevas et al. (1998) examined a 27 N static pressing task 

while the index finger was highly constrained in a flexed posture.  The higher extensor forces 

may be attributed to how Valero-Cuevas et al. (1998) adjusted the model moment arms and 

PCSA to best match experimental EMG and contact forces.  In terms of matching for posture and 

force, a more direct comparison can be made with work by Vigouroux et al. (2007) who also 

examined high force extended finger pressing using a combined EMG and optimization approach 

(Table 5.1).  The two studies predicted similar FDP values (approximately 2.6 times the 

externally applied load), however Vigouroux et al. (2007) predicted half as much force from the 
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radial interosseous (FDI), 2.2 times the force from FDS, and 3.7 times more force from EDC.  

Vigouroux et al., (2007) evaluated static pressing using the middle finger as opposed to the 

index, as such the radial interosseous (FDI in the index finger) activity is expected to be lower 

given its larger size and greater role in the index (Infantolino and Challis, 2010).  Additionally, 

EMG data were incorporated as an inequality constraint to the static optimization solution which 

led to increased FDS and EDC estimates.     

 

 
Figure 5.1 Muscle force estimates from literature compared with the current data (normalized to 
resultant external force).  Range of data presented from this thesis are from all static palmar 
pressing trials.  Radial interosseous (RI) corresponds to FDI and ulnar interosseous (UI) 
corresponds to FPI in the index finger. 
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Table 5.1 Tendon loading during extended finger static pressing at high force (normalized to 
resultant external force). (Actual LUM value for Intrinsic model = 0.004 (0.002)).   

 
FDP FDS LUM UI RI EDC EI 

Vigouroux et al., 2007 2.85 3.62 0.00 1.29 0.88 0.68 - 

Intrinsic model 2.66 
(0.35) 

1.64 
(0.40) 

0.00 
(0.00) 

0.41 
(0.21) 

1.76 
(1.31) 

0.18 
(0.15) 

0.18 
(0.17) 

     

 

5.2  Co-contraction in the finger 

It was hypothesized that adding intrinsic muscles and a representation of the extensor 

mechanism would improve the fit and reduce the error between predicted and experimental 

muscle activities.  There were no consistent overall differences in NRMSD and in r2 between 

models and these results were specific to the solution method used.  However, with the Intrinsic 

model we were able to address co-contraction in the finger.  By assessing relative antagonist 

activity and normalized antagonist moment, the relationship between flexion and extension 

during static pressing could be captured.  In the Extrinsic-only model, there was minimal relative 

antagonist activity and normalized antagonist moments.  Using the Intrinsic model increased the 

predicted relative antagonist activity by 16%.  This is a 29% improvement over to the Extrinsic-

only model in relation to the relative antagonist activity calculated from experimental EMG.  

This increase in predicted antagonist activity is important since proper coordination depends on 

the relative flexor-extensor moments produced across the MCP, PIP, and DIP joints (Valero-

Cuevas, 2005; Valero-Cuevas et al., 1998; Thomas and Long, 1968).  Valero-Cuevas et al. 

(1998) had participants apply force from each side of their distal phalanx (palmar, dorsal, radial, 

ulnar, and tip).  Muscle activity estimated from the model was able to elicit the required external 

force and matched experimental EMG for pressing in the palmar, dorsal, and distal directions.  
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From this result, the authors concluded that it was mechanically advantageous to use extensor 

muscles to produce palmarly directed external forces (Valero-Cuevas et al., 1998).  This concept 

was further supported when Valero-Cuevas (2005) mathematically illustrated that, given the 

anatomical pathway of the musculature, co-contraction is necessary to be able to produce 

fingertip forces in all directions.  In this thesis, normalized antagonist moments predicted from 

the Intrinsic model were 6 times greater than that from the Extrinsic-only model, without being 

constrained by EMG.  This demonstrates that muscle pathways of the Intrinsic model facilitates a 

more appropriate distribution of forces required during static palmar pressing.  

During static pressing, there were changes in relative antagonist activity at different 

postures but not for normalized antagonist moment.  In the flexeda posture both the DIP and PIP 

joints were bent, while in the flexedb posture participants allow their DIP to extend.  This 

difference caused an increase in PIP flexion angle in the flexedb posture.  Moment arm has the 

largest effect in the Flexedb posture since PIP moment arm decreases with higher joint angles.  

The small extensor moment arms of the lateral bands at the PIP joint decreases the relative 

antagonist moment in the Flexedb posture (where the average PIP angle = 70° compared to 30° in 

the flexeda posture).  However, activities from muscles attaching to the lateral bands are not 

mitigated by these small moment arms.  As such, there is a change in mean activity across the 

three joints, but not in mean moment (Figure 5.2).   
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Figure 5.2  Relative antagonist activity at left (Equation 6 - sum of extensor activity/ sum of 
flexor and extensor activity for each joint) and normalized antagonist moment at right (Equation 
7 - sum of extensor moments/ net joint moment) at each joint across pressing postures.  Arrow 
above PIP moment in flexedb posture illustrates the difference between activity and moment that 
accounts for the mean postural affect observed across the finger for activity.  Postural effect not 
observed for moment due to reduced lateral band extensor moment arms in high PIP flexion. 

 

 

5.3  Solution method and muscle activity 

In addition to the adjustments made to the model, the solution methods employed played 

an important role in the tendon tension distributions calculated.  As hypothesized, using the Shift 

parameter and Entropy-assisted co-contraction objective functions provided lower error 

compared to the SSa objective across the range of static and dynamic tasks.  Both co-contraction 

methods improve the prediction of antagonist activity, but the Entropy-assisted objective 

function gave a significantly lower NRMSD more frequently than the Shift parameter objective 

function.  This supports the theory from the field of neurophysiology suggesting a weighted 
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balance between an agonist and antagonist drive (Lewis et al., 2010; Feldman, 1993; DeLuca and 

Mambrito, 1987).  Parsa et al. (2013) examined these two objective functions with an 

unconstrained solution method using a planar model of the elbow.  They found that the shift 

parameter and entropy-assisted objective functions provided similar trends in predicted 

antagonist activity.  They also stated that the error between predictions from these methods and 

experimental results could be minimized by adjusting the objective function weight factor and 

shift parameter values.  For this thesis, weight factors and shift parameter values were 

predetermined using a subset of data from one participant (Chapter 3.3.2).   

As hypothesized, EMG-constrained methods did provide lower NRMSD and r2 values 

than Optimization-only methods particularly for extensor muscles.  Contrary to our hypothesis, 

the co-contraction objective functions did not improve the fit (r2) with experimental data.  In 

static pressing trials at high forces and in dynamic trials, EMG-constrained solutions using the 

SSa objective function provided higher r2 values but also a larger errors between predicted and 

experimental results.  Conversely, when using the co-contraction objective functions, there were 

smaller errors but also lower r2 values.  The ability of the co-contraction objective functions to 

predict more similar muscle activity is beneficial, particularly for static pressing tasks, as activity 

remained fairly consistent over the one second task.  By more heavily constraining activity 

boundaries, r2 values can be improved to match experimental activity for dynamic tasks.  

However this would restrict the freedom of the optimizer when finding appropriate forces for 

muscles that are not constrained by EMG. 

  



M.Sc. Thesis – A.R. MacIntosh  McMaster University – Kinesiology 
 

71 
 

5.4  Limitations 

Forces from passive structures within the finger were not included in the current 

investigation.  However, incorporating a viscoelastic tendon network in a musculoskeletal model 

is one of the largest challenges towards providing clinically relevant results (Valero-Cuevas, 

2005).  The influence of these structures is also variable.  Qian et al. (2014) performed 

mechanical testing on 19 cadaveric extensor mechanisms.  They found that thickness and strain 

were greater proximally.  These variations in mechanical properties can have an influence on 

force transmission, and will be incorporated in future iterations of the model.  The influence of 

passive structures also changes depending on speed of motion.  During fast finger motions, 

muscle and ligament passive forces have been shown to have a significant effect.  Sancho-Bru et 

al. (2001) simulated free motions with and without ligamentous forces.  Their work demonstrates 

the need to incorporate passive properties in order to reproduce muscle force patterns during fast 

motions (Sancho-Bru et al., 2001, Sancho-Bru et al., 2003).  Wohlman and Murray (2013) have 

added passive structures into a model of the thumb.  They were able to reproduce experimentally 

derived contact forces using a forward dynamics approach.  Muscle forces were determined 

using a Monte Carlo simulation across a wide range of muscle activities.  While the results were 

specific to the task, they necessitate the incorporation of passive structures towards completing 

forward dynamic simulations that closely match experimental observations.   

There are also important neurological and physical connections between fingers and 

between the hand and forearm that affect force transmission.  These factors are not considered in 

the Intrinsic model.  For example, the enslaving effect is characterized by involuntary 

movements or forces in fingers that are not associated with the voluntary movements or forces 

required to complete a particular task (Sanei and Keir, 2013; Schieber and Santello, 2004).  The 
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enslaving effect is thought to derive from mechanical links between the extensor tendons of each 

finger and from neural restrictions between finger specific compartments of the extrinsic muscles 

(Leijnse et al., 2008; Keen and Fuglevand, 2004; Zatsiorsky et al., 2000).  Forces from the 

extrinsic finger muscles also influence moments at the wrist.  Placet et al. (2012) evaluated 

finger loading of two models, one that considers fingers independently, and one that has the 

fingers linked where balance at the wrist is accounted for.  They found higher extensor tendon 

forces when the wrist is considered.  They highlight the role of finger muscles towards balancing 

proximal moments.  These factors indirectly influence tendon loading estimates of the index 

finger.     

Providing a complete model of the hand, one that extends proximally would improve the 

anatomical fidelity and breadth of application for this model.  The index finger alone was 

considered as an initial step.  Computationally, it is expensive to run a complete analysis on the 

whole upper extremity in OpenSim.  During preliminary testing, the Intrinsic model was 

appended to the whole Upper Extremity model (Holzbaur et al., 2005).  A one second static 

optimization analysis with the whole upper extremity model took a prohibitively long time (after 

leaving it overnight, the analysis consistently would not begin to process. i.e. less than 1% 

complete).  The wrap objects used to guide muscle paths can increase computational time 

(Christophy et al., 2012).  Given the number of wrap objects in the whole model and the 

phantom limbs used in the Upper Extremity model (Holzbaur et al., 2005), it would be preferable 

to find an alternative method of setting muscle paths, possibly through using control point 

functions only (which are less expensive), and by appending the finger to the most recent 

dynamic model of the upper extremity released July 6, 2014 (Saul et al., 2014).  These 

adjustments may allow the model to run more efficiently.  The utility of the Intrinsic model is 



M.Sc. Thesis – A.R. MacIntosh  McMaster University – Kinesiology 
 

73 
 

limited to determining forces within the finger and does not account for more proximal 

interactions between fingers or at the wrist.  This model should be incorporated into a model of 

the upper extremity to test how these interactions alter loading estimates in the finger.   

For a third limitation, EMG was collected on the four extrinsic muscles and on FDI.  

Activity from FPI and LUM muscles were not collected and thus predicted activity of those 

muscles are dependent upon the objective criteria alone.  Given the size and potential moments 

of these muscles it is possible that their contributions were underestimated.  Physiologically, 

intrinsic muscles can provide fine motor control during manual tasks (Schroeder and Botte 2001; 

Ranney et al., 1988).  The contribution from intrinsic muscles can be misleading when being 

evaluated with the current static optimization objective functions.  While the co-contraction 

objective functions were used to increase antagonist activity, they do not incorporate principles 

of fine motor control.  Alternative objective functions, such as those directed towards 

incorporating stability (Brown and Potvin, 2005; Cholewicki and McGill, 1994) may be able to 

alter the predicted activities for these muscles, but to our knowledge a static optimization 

objective function that preferentially activates smaller muscles has not been developed.  A more 

appropriate option may be to direct efforts towards completing successful forward simulations 

that can accurately track desired kinematics and produces experimental end-point forces, while 

staying within the bounds of expected muscle activities.  Results from these types of simulations 

would greatly improve the confidence of tendon loading distributions and predicted muscle 

activity for manual tasks.       

As a final limitation, previous literature has demonstrated the sensitivity of predicted 

results to model and solution method parameters (Parsa et al., 2013; Valero-Cuevas et al., 1998).  

Many of these have been discussed (Section 3.3).  In addition to these parameters, the EMG-
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constraint value of ± 15% MVE was determined using a subset of static palmar pressing data 

(flexeda and extended postures at 5 and 30 N for one participant).  Constraints from 5-25% were 

tested and 15% allowed the optimization to find a solution consistently, while also being able to 

observe the influence of both the constraint and the co-contraction objective functions.  This 

constraint value has great influence of the NRMSD and r2 values between predicted and 

experimental activity.  A more tightly constrained solution would give a better fit and lower 

error, but would lead to the optimizer not being able to find a solution more frequently.  If the 

constraint value were to increase or decrease, the findings presented in this thesis can be 

expected to hold true.  In cases where experimental activity was less than 15% MVE, predicted 

activity from EMG-constrained solutions were still significantly higher than the unconstrained 

activity.  In terms of getting predicted activity as close as possible to experimental recordings, 

the EMG-constraint value would need to be reduced.  Alternatively, it may be useful for an 

EMG-assisted solution to be developed for OpenSim.  This would incorporate experimental 

activity directly into the objective function.  With this method, a closer match may be made 

between predicted and experimental activity and the optimizer would more consistently find a 

solution.  
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CHAPTER 6 

SUMMARY AND FUTURE DIRECTIONS 

6.1  Contributions 

This thesis provides a way to evaluate tendon and joint loading through the finger for a 

variety of manual tasks.  Towards this goal, a model of the index finger (The Intrinsic model) 

was developed that incorporates intrinsic muscles and the extensor mechanism.  Additionally, 

new static optimization solution methods were programmed to compliment the model.  This 

model and solution method can be used in the open-source musculoskeletal modelling platform, 

OpenSim.  Data from this thesis indicate that, by using the Intrinsic model with the EMG-

constrained co-contraction static optimization methods, tendon and joint loading estimates can be 

obtained that incorporate co-activation while maintaining mechanical equilibrium for static and 

dynamic tasks. 

With this model, muscle contributions to joint loading can be readily discerned and 

analyzed.  Being able to evaluate these muscle contributions has great clinical implications.  

Muscle damage or imbalance can cause finger impairment such as clawing and arthritis (Lee and 

Kamper, 2010; Valero-Cuevas et al., 2003; Brand and Hollister 1993; Leijnse, 1997).  With the 

Intrinsic model we can estimate each muscles contribution to joint loading and provide evidence 

to develop clinical treatments towards regaining and maintaining proper hand function.  Tendon 

transfer surgery technique can benefit from understanding how each muscle contributes to the 

production of force across the finger (Yamazaki et al., 2008; Tada et al., 1991).  OpenSim has 

already been used to explore mechanical implants that interface with a transferred tendon to 

improve grip strength (Balsumaranian et al., 2013).   
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The Intrinsic model can also be helpful towards determining joint loading patterns to 

better understand joint dysfunction.  For example, osteoarthritis (OA) is associated with higher 

internal joint loading (Lee and Kamper, 2010; Lewek et al., 2005).  Work needs to be done to 

assess the mechanical pathways related to developing OA in the finger for the wide variety of 

tasks we can perform (Lee et al., 2014; Wu et al., 2012).  Lee and Kamper (2010) showed that 

individuals with OA create higher co-contraction and joint forces at a lower external force 

compared to their healthy counterparts.  The researchers collected extrinsic muscle EMG and 

grip force, and used a normative model of the finger to estimate muscle contributions to PIP joint 

force (Lee and Kamper, 2010).  With the ability to evaluate joint loading during a variety of 

tasks, we can better understand the mechanical pathways by which injury and degradation occur.  

Additional clinical relevance for this work can be related to improving functional electrical 

stimulation techniques (Mansouri and Reinbolt, 2012; Crago et al., 1996).  Functional electrical 

stimulation is designed to facilitate muscle innervations to complete a desired task.  The muscle 

activity patterns identified from modelling the finger can help to predict the activity required to 

complete a manual task.  By developing the Intrinsic model and static optimization analysis tool 

in OpenSim we have made future analyses and modelling manual tasks more accessible to the 

research community.  By these means we are accelerating the discovery of principles related to 

control of the hand and providing evidence for intervention strategies to improve the quality of 

life for impaired populations. 

 

6.2  Future directions 

Modelling is a continuous and iterative process.  Each step towards meaningful model 

predictions gains useful information and helps to identify critical components of a model or 
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solution method.  Adding passive structures across each joint of the finger is a promising, 

immediate, and actionable step towards improving the Intrinsic model.  Adding passive 

structures is likely to give activity estimates more similar to experimental observation, and can 

help towards assessing the model with a forward dynamics solution method (Wohlman and 

Murray, 2013; Valero-Cuevas 2005; Sancho-Bru et al., 2003; Knutson et al., 2000).  The 

complete influence of passive structures across joint angles and velocities still needs to be 

clarified (Lee et al., 2014).  Notwithstanding, passive forces can be considered from previous 

literature.  After implementing these properties the experimental tasks can be re-analyzed and the 

model may be capable of performing forward dynamic simulations that match experimental 

observations.     

In the long term, including the large anatomical and physiological differences between 

individuals would be beneficial.  Patient specific modelling is one possible tool that can be used 

to address this variability and affect clinical outcomes.  For example, patient specific 

measurements of the hip joint have been used to map differences in pressure related to the 

development of OA (Sánchez Egea et al., 2014).  However, developing patient specific models 

can be arduous.  Work is being done to improve this process.  Patient specific parameters can be 

scaled to template meshes to adjust generic musculoskeletal models.  The aim of this work is 

ultimately to image an individual (with CT, MRI, or other techniques) and apply that data to a 

generic musculoskeletal model such that theoretical treatments specific to that person can 

quickly be designed and improved upon (Fregly et al., 2012; Neal et al., 2009).  While this work 

is useful for developing individual models, it still requires the collection of large data sets.  Also, 

this method does not address the variability seen across the population and as such the breadth of 

the results is limited. 
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There is a need to capture population variability to accurately determine patterns in 

tendon and joint loading.  Computational tools such as machine learning and probabilistic 

evaluation have been used to represent the variability seen in the population for different 

musculoskeletal parameters (Chopp-Hurley et al., 2014; Valero-Cuevas et al., 2009).  These 

approaches can lead to important non-normally distributed parameter predictions that reflect the 

population variability.  Additionally, distinct clusters of parameter values that satisfy a solution 

can be identified (Valero-Cuevas et al., 2009).  Having clusters of likely parameters can be a 

compromise between the solutions from a generalized model (that may be less precise and not 

reflect any one individual) and solutions from patient specific models (that are highly accurate 

but are prohibitively expensive to implement on a large scale).  Having groups of solutions 

allows researchers and clinicians to explore scenarios of control and rehabilitation that are more 

likely to represent specific populations, without having to collect large datasets. 

 

6.3  Conclusion 

This thesis presented model of the index finger with improved anatomical fidelity by 

including the intrinsic musculature and extensor mechanism of the finger.  Muscle properties and 

paths were developed from the literature and match previously determined moment arms across 

the range of motion of each joint in the finger.  To complement this model, a static optimization 

solution method that allows for EMG-constrained solutions and objective functions which 

incorporate co-contraction has also been developed.  The Intrinsic model and newly applied 

solution methods have been tested across static and dynamic tasks at varying postures, forces, 

and speeds.  We have improved predicted co-contraction known to be essential towards applying 

forces in different directions and maintaining finger posture.  However, this are still gaps 
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between predicted and experimental activity which should be addressed in future research.  The 

model and solution methods developed in this thesis are valuable resources for assessing manual 

tasks.  By providing tendon loading and muscle activity estimates, rehabilitation and surgical 

strategies can be improved to enhance the quality of life for individuals who have a reduced 

ability to perform activities of daily living.  
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APPENDIX A 

SUPPLEMENTARY DATA 

Moment arms for each muscle path in the Intrinsic model are compared to literature 

moment arms across the range of motion for each degree of freedom of the finger (Figures A.1, 

A.2). 

 

Figure A.1 Extension moment arms across the DIP and PIP joints compared to literature.  
Positive value indicates extension.   
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Figure A.2 Moment arms for each muscle across the MCP joint compared to literature. Positive 
values indicate extension and abduction. 
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Across participants, joint angles during static palmar pressing postures varied.  However, 

the significant difference between PIP and DIP flexion-extension angles allowed for evaluations 

between postures.     

 
Table A.1 Finger posture during static palmar pressing tasks.  † Significant difference in PIP 
flexion-extension angle between each posture.  ‡ Significant difference in DIP flexion-extension 
angle between Palmar Flexeda and other postures. 

Posture Mean joint angles (°) Direction of 
pressing force MCP_FE MCP_AB PIP† DIP‡ 

Palmar Flexeda -3.1 (17.0) 9.5 (7.7) 30.7 (14.5) 33.8 (18.0) Pressing down 
from the palmar 
side of the distal 
phalanx, 
perpendicular to the 
surface of the force 
cube 

Palmar Flexedb 1.1 (21.6) 11.3 (5.5) 71.6 (13.3) -0.9 (20.9) 

Palmar Extended -0.2 (22.2) 2.4 (11.9) 7.0 (2.7) 2.7 (17.2) 

 

 
The speed required during dynamic tasks was well met as it took participants an average 

of 5.86 ± 0.36 s to complete three cycles at the slow rate, and 1.98 ± 0.10 s at the fast rate. Table 

A.2 shows the average time to complete three cycles for each dynamic task.  

 
Table A.2 Dynamic task average time to complete three cycles. 

Task Time to complete 3 slow cycles (s) Time to complete 3 slow cycles (s) 
Ab-adducting 5.83 (0.30) 1.96 (0.06) 
Circling 5.85 (0.42) 1.94 (0.15) 
Pointing 5.88 (0.69) 2.01 (0.10) 
Tapping 5.89 (0.26) 2.00 (0.09) 
Triggering 5.84 (0.11) 2.00 (0.09) 
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Table A.3 Significant findings from each ANOVA performed (Table 3.6).  All significant main and interaction effects are identified 
here.  Findings most relevant to the purposes of the thesis are highlighted in the results section 4.2. 

ANOVA Type  Dependent variable Significant finding F statistic Sig. 

3x3x2x6 
RM ANOVA  
Static pressing  

NRMSD- FDP Force F (1.02, 11.17) = 7.431  0.016 
Method F (1.04, 9.33) = 6.493  0.030 
Force*Model F (1.16, 10.46) = 4.747  0.049 

NRMSD- FDS Method F (1.01, 9.91) = 8.349  0.015 
Force*Model F (1.16, 10.46) = 7.112  0.020 
Force*Method F (1.57, 14.10) = 5.79  0.019 

NRMSD- EDC Force F (1.91, 17.22) = 8.249  0.003 
Method F (1.54, 13.90) = 28.285  0.001 
Force*Method F (2.62, 23.65) = 4.329  0.017 

NRMSD- EI Force F (2, 18) = 9.134  0.002 
Model F (1, 9) = 25.181  0.001 
Method F (1.15,10.37) = 21.101  0.001 
Force*Method F (1.98,17.81) = 4.224  0.032 
Model*Method F (1.5, 13.52) = 15.105  0.001 
Force*Model*Method F (2.74, 24.7) = 4.058  0.020 

3x3x2x6 
RM ANOVA 
Static pressing  

r2- FDP Force F (1.63, 14.71) = 7.414  0.008 
r2- FDS Force F (1.59, 14.32) = 7.7  0.008 

Method F (1.52, 13.64) = 16.742  0.001 
Force*Method F (3.28, 29.52) = 5.297  0.004 

r2- EDC Force F (1.98, 17.8) = 6.981  0.006 
Model F (1, 9) = 6.952  0.027 
Method F (1.72, 15.47) = 8.407  0.004 
Posture*Force*Model F (2.72, 24.46) = 5.242  0.007 
Force*Method F (3.68, 33.12) = 2.926  0.039 
Model*Method F (2.75, 24.71) = 8.063  0.001 

r2- EI Force F (1.94, 17.47) = 8.228  0.003 
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Method F (1.48, 13.33) = 9.241  0.005 
Force*Method F (4.25, 38.28) = 2.891  0.032 

5x2x2x6 
RM ANOVA  
Dynamic tasks 

NRMSD- FDP Motion F (2.96, 26.63) = 4.74  0.009 
Model F (1, 9) = 13.142  0.006 
Method F (1.02, 9.22) = 15.406  0.003 
Motion*Method F (1.93, 17.34) = 5.725  0.013 
Speed*Method F (1.1, 9.9) = 6.546  0.027 
Model*Method F (1.85, 16.66) = 11.699  0.001 

NRMSD- FDS Speed F (1, 9) = 5.154  0.049 
Model F (1, 9) = 70.424  0.001 
Method F (1.14, 10.26) = 15.777  0.002 
Motion*Model F (1.37, 12.3) = 4.512  0.045 
Model*Method F (5, 45) = 25.909  0.001 

NRMSD- EDC Method F (5, 45) = 29.585  0.001 
Speed*Method F (1.21, 10.93) = 15.971  0.001 

NRMSD- EI Motion F (4, 36) = 4.788  0.003 
Model F (1, 9) = 48.978  0.001 
Method F (1.04, 9.37) = 28.584  0.001 
Motion*Model F (2.64, 23.8) = 3.437  0.038 
Speed*Model F (1, 9) = 8.662  0.016 
Motion*Method F (2.3, 20.73) = 3.943  0.031 
Speed*Method F (1.32, 11.9) = 8.083  0.011 
Model*Method F (5, 45) = 29.654  0.001 
Motion*Model*Method F (2.79, 25.07) = 3.569  0.031 
Speed*Model*Method F (1.98, 17.83) = 4.803  0.022 

5x2x2x6 
RM ANOVA 

Dynamic tasks 

r2- FDP Motion F (1.86, 16.73) = 4.035  0.040 
Speed F (1, 9) = 19.589  0.002 
Motion*Speed F (2.59, 23.32) = 3.801  0.028 
Speed*Method F (5, 45) = 10.046  0.001 
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r2- FDS Speed F (1, 9) = 20.05  0.002 
Model F (1, 9) = 9.251  0.014 
Method F (5, 45) = 2.783  0.028 
Motion*Method F (4.71, 42.39) = 3.221  0.016 

r2- EDC Speed F (1, 9) = 38.732  0.001 
Model F (1, 9) = 5.477  0.044 
Method F (1.22, 10.97) = 16.086  0.001 
Motion*Speed*Model F (3.13, 28.18) = 3.884  0.018 
Speed*Method F (2.03, 18.23) = 3.887  0.039 
Model*Method F (2.67, 24) = 17.46  0.001 

r2- EI Method F (1.16, 10.45) = 30.011  0.001 
Motion*Method F (3.94, 35.43) = 4.129  0.008 
Speed*Method F (1.62, 14.55) = 9.395  0.004 
Motion*Speed*Model F (4.74, 42.68) = 2.595  0.041 
Model*Method F (2.12, 19.09) = 8.744  0.002 

3x3x2x6 
RM ANOVA  
Static pressing 

Mean relative 
antagonist activity 

Posture F (2, 18) = 8.316  0.003 
Force F (2, 18) = 4.811  0.021 
Model F (1, 9) = 153.565  0.001 
Method F (1.09, 9.81) = 33.411  0.001 
Posture*Method F (3.27, 29.46) = 5.038  0.005 
Force*Method F (2.85, 25.65) = 12.516  0.001 

3x3x2x6 
RM ANOVA  
Static pressing 

Mean normalized 
antagonist moment 

Force F (1.15, 10.36) = 32.528  0.001 
Model F (1, 9) = 71.281  0.001 
Method F (1.02, 9.21) = 18.857  0.002 
Force*Model F (1.19, 10.7)  = 84.144  0.001 
Force*Method F (1.23, 11.07) = 24.636  0.001 
Model*Method F (1.33, 11.99) = 20.514  0.001 
Force*Model*Method F (2.43, 21.84) = 21.822  0.001 
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3x3  
RM ANOVA 
Static pressing 

Terminal slip 
contribution 

Method F (1.27, 11.47) = 39.106  0.001 
Force*Method F (3.65, 32.81) = 12.319  0.001 
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APPENDIX B 

LETTER OF INFORMATION AND CONSENT 

 
 

 

February 24, 2014 

 

Letter of Information and Consent 

Collection of Wrist & Forearm Postures 

 

Principal Investigator:  Dr. Peter Keir 

Department of Kinesiology, McMaster University  

    (905) 525-9140 ext. 23543 (pjkeir@mcmaster.ca) 

 

Student / Co-Investigator  Alex MacIntosh    (905) 525-9140 ext. 20175 

 

Research Sponsor:  Natural Sciences and Engineering Research Council (NSERC) 

 

 
Purpose of the Study  

Carpal tunnel syndrome and other disorders of the upper extremity are common in repetitive jobs that use forceful 
efforts and awkward wrist postures.  Research in our laboratory seeks to evaluate the risk of these injuries.  To do 
assess hand and finger function, we often use computer models, or simulations, as part of this process we need to see 
how muscle activity changes with simple motions and tasks, like pinching. The purpose of this study is to monitor 
the motion of the wrist and fingers while performing simple motions and a pinching task, and to use the muscle 
activity data to drive a computer simulation of the hand. 

Procedures involved in the Research 

Before completing these tasks a number of reflective markers will be affixed to your hand and wrist using double-
sided tape.  Our camera system registers the locations of the reflective markers but will not capture your image like a 
regular camera.  At the same time, we will place surface electrodes on the forearm and hand to measure muscle 
activity. These electrodes will only monitor the electrical activity of the muscle and will not transmit an electrical 
signal to the body.  Surface electrodes are small self-adhesive pads with a conductive gel in the middle.  The skin 
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over each muscle will be shaved and cleaned with alcohol.  For this study, muscle activity from four muscles in the 
forearm that flex and extend the index finger, plus one muscle on the back of the hand that moves the finger 
sideways will be recorded using the surface electrodes.  Once the electrodes are placed, in order for us to calibrate 
the sensors, we will ask you to contract each muscle by pressing your finger against a secure surface. You will be 
asked to move your right hand in a number of motions and perform a series of different types of grips and pinches 
using a force sensing device.  Each action will be less than 10 s in total and your total time in the lab should be 
under 90 minutes.  

Potential Harms, Risks or Discomforts:  The data collection is brief and amounts to moving your wrist through its 
comfortable range of motion and pinching at relatively low levels, thus poses no additional risks beyond your 
normal daily activities. However it is important to recognize minor the potential discomforts that may occur:  

1. You may experience mild discomfort or skin irritation from being shaved and cleansed in preparation for 
electrode placement. This is usually very mild and clear within 24 hours. 

2. There may be discomfort in your forearm related to muscle soreness from performing maximal 
contractions. If muscle soreness does occur, it is usually very mild and should dissipate within 72 hours.   

Potential Benefits:  We hope create a detailed model of the hand for biomechanical and ergonomic assessment.  
The research will not benefit you directly but should help assess jobs in the future so that their injury risk is reduced.   

Confidentiality:  Your identity will be kept confidential and the data collected will be used for teaching and 
research purposes only.  No videos or video images with any identifying marks will be used to present the data.  The 
information directly pertaining to you will be secured in a locked cabinet or on a secure computer for a maximum of 
15 years.  

Participation: Your participation in this study is voluntary. If you agree to participate, you can decide to stop at any 
time, even after signing the consent form or part-way through the study, with no consequences to you.   

Payment or Reimbursement: You will be paid $20 for participating in the study. 

Information about the Study Results: You may obtain information about the results of the study by contacting Dr. 
Keir directly.  

Information about Participating as a Study Participant:  

If you have questions or require more information about the study itself, please contact Dr. Keir.  This study has 
been reviewed and has received ethics clearance from the McMaster Research Ethics Board.  If you have concerns 
or questions about your rights as a participant or about the way the study is conducted, you may contact: 

   McMaster Research Ethics Board Secretariat 

   c/o Office of Research Services 

Telephone: (905) 525-9140 ext. 23142 

E-mail: ethicsoffice@mcmaster.ca 

 

 

 

mailto:ethicsoffice@mcmaster.ca
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CONSENT 

I have read the information presented in the information letter about a study being conducted by Dr. Peter Keir and 
Alex MacIntosh of McMaster University.  I have had the opportunity to ask questions about my involvement in this 
study, and to receive any additional details I wanted to know about the study.  I understand that I may withdraw 
from the study at any time, if I choose to do so, and I agree to participate in this study. I have been given a copy of 
this form. 

 

 

 

 

 

______________________________________ 

Name and Signature of Participant 


	CHAPTER 1 INTRODUCTION
	CHAPTER 2 REVIEW OF LITERATURE
	2.1  Anatomy of the hand
	2.2  Force transmission
	2.3  Biomechanical models of the finger
	2.3.1  Representing the extensor mechanism with Winslow’s Rhombus 

	2.4  Muscle force prediction methods
	2.4.1  Static optimization
	2.4.2  EMG-assisted muscle force prediction

	2.5  Summary
	2.6  Purpose
	2.7  Hypotheses

	CHAPTER 3 METHODS
	3.1  Model and solution method development
	3.1.1  Model development
	3.1.2  Optimization solution methods development

	3.2  Experimental Protocol
	3.2.1  Participants
	3.2.2  Experimental procedure
	3.2.3  Data collection
	3.2.4  Data analysis
	3.2.5  Statistical analysis

	3.3  Model and solution method parameter rationale
	3.3.1  Linear scaling
	3.3.2  Optimization settings
	3.3.3  Determining maximum isometric forces


	CHAPTER 4 RESULTS
	4.1  Experimental results
	4.2  Modelling results
	4.2.1  Solution method and muscle activity
	4.2.2  Model and muscle activity
	4.2.3  Terminal slip versus central slip force distribution


	CHAPTER 5 DISCUSSION
	5.1  Slip forces and tendon tensions
	5.2  Co-contraction in the finger
	5.3  Solution method and muscle activity
	5.4  Limitations

	CHAPTER 6 SUMMARY AND FUTURE DIRECTIONS
	6.1  Contributions
	6.2  Future directions
	6.3  Conclusion


