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n-tuple prcblem for a random defect lattice is developed in

this thesis. When specialized to pairs (n=2) the deviations

from randomicity have also been considered. The low concen-

tration defect theory (n=1) is used to calculate:

a) the frequencies and widths of phondns in disordered Cu

0.97

Au, o3

b) the frequency shift of singular points in the defect-induced

(8a*, sm™) far infrared spectrum of KBr as a function of
defect concentration
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PREFACE

I have chosen the following ideas from various works
of T.S. Kuhn because of our mutual agreement on the subject.

Scientists work from models acquired through educa-
tion and th:-ough subsequent exposure to literature often with-
out quite knowing or needing to know what characteristics have
given these models the status of community paradigms. And
because they do so, they need no full set of rules. The co-
herence displayed by the research tradition in which they
participate may not imply even the existence of an underlying
body of rules and assumptions that additional historical or
philosophical investigation might uncover. That scientists
do not usually ask or debate what makes a particular problem
or solution legitimate tempts us to suppose that, at least
intuitively, thay know the answer. But it may only indicate
that neither “he question nor the answer is felt to be relevant
to their res=zarch.

Phi:.osophers of science have repeatedly demonstrated
that more than one theoretical construction can always be
placed upon a given collection of data. History of science in-
dicates that, particularly in the early developmental stages of
a new paradigm} it is not even very difficult to invent such al-
ternates. But that invention of alﬁernates is just what scien-

tists seldom undertake. So long as the tools a paradigm



supplies coutinue to prove capable of solving the problems it
defines, science moves fastest andvpenetfates most deeply
through confident employment of those tools. The reason is
clear. As in manufacture so in science--retocling is an
extravagénce to be reserved for the occasion that demands it.
To scientists, at least, the results gained in normal
research are significant because they add to the scope and
precision with which the paradigm can be applied. That an-
swer, however, cannot account for the enthusiasm and devotion
that scientists display for the problems of normal research.
No one devotes years to, say, the development of a better
spectrometer or the production of an impfoved solution to the
problem of vibrating strings simply because of the importance
of the infermation that will be obtained. The data gained by
computing ephemerides or by further measurements with an
existing instrument are often just as significant, but those
activities are regularly spurned by scientists because they
are so largely repetitions of procedures that have been carried
through before. That rejection provides a clue to the fasci-
nation of the normal research problem. Though its outcome can
be anticipated, often in detail so great that what remains to
be known is itself uninteresting, the way to achieve that
outcome reméins very much in doubt. Bringing a normal research
problem to a »onclusion is achieving the anticipated in a new
way, and it requires the solution of all sorts of complex in-

strumental, conceptual, and mathematical puzzles. The man who

xi



succeeds proves himself an expert puzzle-solver, and the
challenge oi the puzzle is an important part of what usually
drives him on.

it is no criterion of goodness in a puzzle that its
outcome be intrinsically interesting or important. On the
contrary, the really pressing problems, e.g., a cure for
cancer or the design of a lasting peace, are often not puz-
zles at all, largely because they may not have any solution.
Consider the jigsaw puzzle whose pieces are selected at
random from each of two different puzzle boxes. Since that
problem is likely to defy even the most ingenious of men, it

|

cannot serve as a test of skill in solution. In any usual
sense it is not a puzzle at all. Though;intrinsic value is
no criterion for a puzzle, thé assured existence of a solution
is. |

In the development of any science, the first received
paradigm is usually felt to account quite successfully for
most of the observations and experiments easily accessible to
that science's practitioners. Further dévelopment, therefore,
ordinarily calls for the construction of elaborate equipment,
the developrient of an esoteric vocabulary and skills, and a
refinement of concepts that increasingly lessens their resem-
blance to their usual common-sense prototypes. That profes-
sionalization leads, on the one hand to an immense restriction
of the scientist's vision and to a considerable resistance to

paradigm change. The science has become increasingly rigid.

xii



On the other'hand, within those areas to which the paradigm
directs the attention of the group, normal science leads to

a detail of information and to a precision of the observa-
tion-theory match that could be achieved in no other way.
Furthermore, that detail and precision-of-match have a value
that transcends their not always very high intrinsic interest.
Without the =special apparatus that is constructed mainly for
anticipated functions, the results that lead ultimately to
novelty‘could not occur.

In the normal mode of discovery, even resistance to
change has a use. By ensuring that the paradigm will not be
too easily surrendered, resistance guarantees that scientists
will not be Lighly distracted and that the anomalies that
lead to paradigm change will penetrate e%isting knowledge to
the core. The very fact that a significant scientific novel-
ty so often emerges simultaneously from several laboratories
'is an index both to the strongly traditional nature of normal
science and to the completeness with which that traditional

pursuit prepares the way for its own change.
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CHAPTER I

INTRODUCTION



"When philosophy is severed from its roots
in experience, whence it first sprouted and
grew, it becomes a dead thing."

--Francis Bacon

SECTION A
THESIS OUTLINE

The language of dguantum mechanics, contrary to the
Aristotelian physics of qualities and in contrast to the
Newtonian physics of primary properties, is a language of
interactions rather than attributes, of processes rather than
properties. Fcrmally, at least, it is in this vernacular
that the particular problem in lattice dynamics of crystals
with substitutional impurities is considered.

The excitations in crystals called phonons have been
studied for more than half a century, beginning with the
work of Born and Von Karman (1912). However, the study of
the effects of substitutional defects on the vibrational
properties ol perfect crystals has been subjected to inten-
sive investrgation only in the last decade. Recently, the
effects of impﬁfities on the dynamical properties of crystals
has been observed experimentally by such techniques as
infrared absorption (A.A. Maradudin (1966b)) and neutron
scattering (Brockhouse (1966)). The‘main purpose of this

thesis is to develop a theoretical structure by which the



dynamical properties of crystals With substitutional impuri-
ties may be considered, and to apply this formal work to the
discussion of experimental observation.

To achieve this goal, double-time thermal Green's
functions served as the basic mathematical tocl. The usage
of these Green's functions follows closely that of Zubarev
(1960) and has been adapted for particular application to
lattice dyramics. Although the whole formalism is based on
the Green's function approach, it is the configurational
averaging frocedure that, in . the end, defines.the defect
lattice. This averaging method, which restores translational
symmetry to the defect lattice, can be understood more pre-
cisely by usiug probability distribution functions similar
to those of nLax (1951).

In chis thesis, before approaching the actual problem
of perfect lattice excitations scattering off of substitution-
al impurities, a discussion is presented on the approximations
required to define the perfect crystal excitations. This
approach is then extended to the defect lattice with substi-
tutional impurities and forms the starting point for the
lattice dynarical problem.

Section B of Chapter II considers the derect problem
for a low enough concentration c of defects where the configu-
rafion averaged Green's function for the system is correct to
¢ in concentration. The result obtained is the low concentra-

tion theory, rreviously derived by Taylor (1967). The point



of interes! in this section is not so much the exact form of
the low concentration theory, as its extension to what is
called the perturbative approximation.

In the exact form, the low concentraticn theory defines
a scattering matrix which has the dimension of the defect
space, the defect space being the spacial extent of an im-
purity mass and force constant disturbance from a previously
perfect lattice. For a small disturbance that includes only
the impurity site and the first nearest neighbour shell, the
defect space, if not reduced, has a size so formidable as to
make calculétions on even the highest speed computers a
lengthy process. Even with the reduction of the defect space
by the use of group theory, as discussed in Section B of
Chapter III, the problem is still one of sizable proportions
--if not in dimension then certainly in the determination of
all the appropriate Green's functions and the necessary group
theory operations.

The remedy for these difficulties was found by making
a perturbaticn on the change of the lattice potential (force
constant matrix) while considering the mass defect scattering
as exact. This approach to the low concentration theory
considerably reduces the number of independent Green's functions
necessary, and redquires no group theory for reduction since it
is already in compact form. Furthermore, this method can be
extended to the consideration of larger defect spaces with

no loss in simplicity of calculation. Section A of Chapter IV



shows that, for reasonable mass changes, the perturbative
approach to the low concentration theory gives agreement that
differs negligibly from its exact form, for a wide range of
force constant changes.

Since the low concentration theory is concerned in an
exact fashicn with only single site scéttering, many higher
order processes have been neglected. The general process
for the scattering off of n sites is called the n-tuple
process. Although the theory for pairs is a special case of
the general n~tuple process with n=2 (as is the low concentra-
tion theory for n=l1l), it is presented separately in Section C
of Chapter II because it is applied directly for comparison
with experiment.

The algebraic method for the evaluation of the full
n-tuple scattering, self energy, and configurational averaged
Green's functicn is presented in Section D, Chapter II. The
mechanism uséd in this derivation is similar to that of
Section B and C. Here, only the case of a mass defect is
considered, and the result obtained is correct to c®. For
algebraic simplicity, the discussion of this process has only
been given for the truly random impurity, although it can be
extended to a lattice with defect correlations.

The difficulty with the theory of n-tuple processes,
as well as with low concentration theory, is that it does not
allow for the changes that occur in tﬁe lattice due to the

"long-range" effects of impurities. 1In Section E, Chapter II,



a method for considering such effects of impurities is pre-
sented. Although the discussion proceeds along the lines of
the low counnentration theory it is easily generalized to
incofporate any n-tuple process if the approximation,that the
"short ranye" effects of the impurities are the mass change
while the "long-range" effects are considered as the force
constant change, is made. The visual pattern of this Section
is somewhat reminiscent of a self consistent approach, but the
idea behind the pattern, and the development of it, differs
from that of the self consistent method. The basic idea of
this approach involves the redefining of the perfect lattice
into which the impurities are placed, as an effective lattice
into which "local" impurities are placed. In this lattice,
the impurities do not possess any "long-range" effects, and
there is little probability that any two defect spaces would
overlap. If such a lattice can be found from a consideration
of the atomic potentials between pairs of atoms, or from
observed macroscopic changes--such as a change in the lattice
constant--then the lattice Green's function used in the Dyson
equation is token to be that which describes the effective,
rather than the perfect lattice. A knowledge of the atomic
potentials and/or macroscopic changes of the»lattice is re-
quired to make this approach useful.

In order to use the theoretical structures of Chapter
IT for compariéon with experimental results, a development

chapter, Chapter III, is used to bridge the gap between the



formal theoryland the computer oriented formalism necessary
for applications. In this chapter, Section A gives the
equations for finding the perfect or effective lattice
Creen's function, while Section B contains a brief discussion
of the group theory necessary for reducing the labour involvéd
in solving the impurity problem. In order to build up the
idea of an atomic potential between atom pairs in a crystal,
a brief discussion of interatomic potentials is presented in
Section C. Since Section C, Chapter IV reqﬁires information
on local modes, Section F of Chapter III gives a short discus-
sion on local modes in a defect lattice. Fihally, Section D
(neutron scattering) and E (impurity induced infrared absorp-
tion) of the chapter are presented so that they can be used
" as the starting points for the discussion of experimental
results of Sections A and B respectively, of Chapter IV.

The experimental application of theory is given in
Chapter IV. Section A considers the work of Svénsson,
Brockhouse and Rowe (1967), Svensson and Brockhouse (1967),
and SvenSSon.and Kamitakahara (1971), by using
low concentration theory along with the effective lattice
theory. However, the theory for pairs is also used in
comparison with the low concentration theory. This is done
for the case of a mass impurity only, in order to evaluate
the effect that pairs would have on the scattering.k In the
same section, the experimental neutron groups are compared
with the appropriate Green's functions as theybwould be per-

ceived in the experimental situation.



For far infrared absorption, it is impossible, within
the framework of the low concentration theory, to observe
direétly the changes in position 6f Van Hove singularities as
a function of defect concentration. Thus, in Section B,
Chapter IV, the experimental results for fér infrared absorp-
tion given by Timusk and Ward (1969) are considered by looking
directly at the phonons involved in the absorption process
and following their movement with concentration. Also in this
section, a convolution model is developed and proved to be a
useful tool for considering the absorption induced by Sm++
impurities in KBr. For Na+ impurities in KBr, noth the low
concentration theory and the effective lgttice are used to
explain the results observed experimentally for the movement
of singular »oints in the Na+ defect induced sbectra of KBr.

The most direct method to obtain information about
the immediaze environment around an impurity is through the
local mode. Section C of Chapter IV relates the local mode
work of Chapter III to the induced near infrared absorption
of molecular impurities in Ar. The theoretical work of the
thesis is ccmpared to the experiments of Kriegler and Welsh
(1968) for Hz, De Remigis and Welsh (1970) for D2 and De Remigis
(1971) for N2 dissolved in Ar, by using fhe information ob-
tained from Batchelder, Collins, Haywood and Sidaney (1970)
on the Ar phonons, and from Batchelder, Haywood and Sanderson
(1970) on the temperature dependence of phonons'in solid Ar.

Because of this information on Ar, the position of the local



mode can be theoretically determined for any temperature.
This is applied to the experimental observations of N2 in Ar
as a function of temperature. Here, the effective lattice
theory proves most useful in the treatment of H2 and D2 in Ar.
This work on the lattice dynamics of crystals with
substitutional impurities has the advantage of an algebraic
formalism wihich is not the case for other authors. An out-
line of previous work in the field follows in tne next

section.
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"Truth emerges more readily from error than

from confusion.” .
--Francis Bacon

SECTION B
HISTORICAL SURVEY

The introduction of impurity atoms by substitution
into a lattice changes the vibrational properties of that
lattice. For such a lattice, the phonons cf a given wave
vector are shifted in frequency, and in general, phonons no
longer have infinite lifetimes since they can now scatter off
of impurities. This means that the lattice excitation is now
not described by a delta function but rather by a pseudo-
Lorentzian. In such a defect lattice, the defect atom and
‘those atoms which define the defect space may prefer to vib-
rate at particular frequencies. If these frequencies of
vibration are within the perfect lattice band modes (as for
a heavy imparity and/or a weakening of the lattice force
constants in the defect space) then they are éalled "resonance
modes", while if they occur above the perfect lattice band
modes (as in the case of a light impurity and/or a strength-
ening of the lattice force constants in the_defect space) then
they are called "localized modes”.

The quantitative aspects of a perturbed lattice have

been studied and discussed extensively in recent years.
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Lifshitz (1765) was one of the first to describe a general
theory of defect modes based on the method of normal Green's
functions. Theories of perturbed lattices having a low
concentration of impurities have also been developed by
Langer (1961), Takeno (1962a, 1963) and Davies and Langer
(1963). These authors considered lattices with a random array
of defects ¢nd were correct in their approach to order c. An
excellent summary and review of much of this work was given
by Maradud:n, Montroll and Weiss (1963) and also by Maradudin
(1965, 1966,).

The use of double-time thermal Green's functions was
first introduced by Zubarev (1960) and was applied by Elliott
and Taylor (1967) to the defect problem in lattice dynamics
for a three dimensional lattice containing a small concentra-
tion of substitutional impurities. Taylor (1967) used this
Green's function form to derive algebraiéally the low concen-
tration theory and Hartmann (1968) extended the theory to
include correlations between defects through a short range
density function (in the author's words, "an order parameter")
about any defect site. In considering short ranged order in
this paper, Hartmann does not indicate what his extension of
the low concentration theory has excluded or included. It
seems that the author treats only single site scattering,
weighted by an appropriate conditional probability function,

and has exclucded pair scattering.



12

Altnough Hartmann (1968) tends to give slightly
better agreament for the experimental results of Svensson,
Brockhouse and Rowe (1965) than does Behara and Deo (1967),
both retain‘the same qualitative features for the description'
of the frequency shift of the dispersion curve for the 9.3%
Au/90.7% Cv system. These approaches then, do not form a
complete explanation for the experimentally observed results.

Behara and Deo's (1967) analysis uses an approximate
method to treat force constant changes in the dzfect space.
The complete low concentration theory treatment of force con-
stant changes, in the defect space of the first nearest
neighbour shell for the f.c.c. lattice and in the defect space
of the first and second nearest neighbour shell for the b.c.c.
lattice was performed by Lakatos and Krumhansl {1968, 1969).
The factors which limit the usefulness of the Lakatos and
Krumhansl (1968) scheme are: (a) only the self energy was
determined (this is not related directly to the neutron
groups observed experimentally), (b) the method for finding
the k-space representation of the self energy was unnecessarily
difficult. Furthermore, the similarity transformation given
by Lakatos (1967) for the reduction of the defect space does
not reduce the space properly.

The dynamics of a defect crystal with large distortion
have been discussed by Lifshitz and Kosevich (1967). The
drawback of theif method is related to their'formalism and

the fact that the approach is similar to that of the one
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impurity problem. Litzman and Rozsa (1965) present a rather
cumbersome matrix method which is not readily applicable to
a calculation.
| The pair problem has been considered from a theoretical

viewpoint by Takeno (1962b) for an isolated pair of defects
and by Lang=r (1961l) for a large number of pairs where ho
correction was made for multiple occupancy of sites by defects.
Leath and Goodman (1968) dealt with pairs by ﬁsing a cluster
expansion, but this led to an over-correction and certain
spurious featufes. Recently, Aiyer, Elliott, Krumhansl and
Leath (1969 considered pairs from a diagrammatic point of
view and have included the proper corrections for multiple
occupancy in their treatment which is correct to cz.

Up to the present, no algebraic écheme has been pro-
posed to consider the general n-tuple or‘cluster processes,
nor has any algebraic means been formulated to obtain the
pairs result of Aiyer, Elliott, Krumhansl and Leath (1969).
The advantace of such a scheme (as presented in Chapter IT)
over the diaérammatic approach adopted by the above authors
is that it readiiy lends itself to the consideration of not
bnly the purely random defect lattice but also of a crystal
where the deitects are correlated, and have some degree of
spacial order.

It has been shown, Takeno (1962b), that the presence
of a finite number of impurities in a crystal, even at low

concentrations, has an effect on the lattice vibrations in



14

the local rode frequency region. Lifshitz (1963) demonstrated
that the.amplitude of a local mode dies away in an approxi-
mately exponential manner; thus, the local mode is not loca-
lized, since the vibrations due to one defect can affect those
of nearby defects; The machine calculations of Dean (1961,
1965) found a density of states in a frequency of range about
the local mnde frequency. Since the carrier of these_vibra-
tions is the host lattice, it is expected that the density

of vibrations in the local mode frequency range mirrors, in
some way, the vibrations of the host lattice. 1In fact, it is
the higher order correlations (such as pairs, triplets, etc.)
that give rise to the fine structure about the local mode
(Dean (1961)). This problem has been coﬁsidered by many
authors, such as Agacy (1964), using machine calculations,
and;Taylor‘(l967) using a self consistent Green's function
treatment. The self consistent approach given by Taylor (1967)
defines an effective lattice such that no scattering occurs.
In this apprcach, Taylor used an approximation that elimina-
ted the scatﬁering from single sites. Aiyer, Elliott,
Krumhansl and Leath have extended Taylor's work to include
péirs. Unlike the effective lattice theory (Chapter II,
Section E) which uses phonons of infinite lifetime for the
effective lattice, the self consistent Green's function theory
uses the perturbed phonons of the defect lattice as the start-
ing point in an iterative process for the averaged Dyson equa-

tion.
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The usual approach to defect induced far infrared
absorption in ionic crystals uses the one defect theory.

Even though this theoretical method is rather crude, it has
‘produced some interesting comparisons with experiment

(Woll, Gethins and Timusk (1968)). 1In Part B of the pro-
ceedings of the Irvine Conference (Wallis (1967)) there is a
good review of the subject of defect modes in ionic crystals.
Timusk and Ward (1969) found that certain points of the
absorption which are associated with Van Hove singularities
shift in frequency as the concentration of impurities is
changed. . Although any perturbative approach in terms of the
perfect lattize Green's functions will always reflect the
perfect lattice Van Hove singularities--or at most, produce
a metamorphosis of these singularities (Okazaki et.al. (1967))
in the absocption constant--Taylor (1971) has shown by using
a model density of states for a monatomic crystal, that sin-
gular points do shift if a self consistent calculation is
made. So far. a self consistent treatment of a three-dimen-
sional diatomic lattice has not been attempted.

Recently, some interesting experimental work has been
done on rare gas crystals with molecular impurities. Kriegler
and Welsh (1968) have considered the interaction of the lattice
vibrations of Ar on the rotational and vibrational excitations
of Hz. De Remigis and Welsh (1970) have repeated the same
experiment for D2 in Ar, and also, De Remigis (1971) has con-

sidered the cnange of this interaction for N2 in Ar as a



le

‘function of temperature. The theory for infrared absorption
in rare gas crystals has been developed in an article by
Davies and Healey (1968) for one phonon absorption, however,
they do not consider the interaction between the lattice
vibrations and the rotational/vibrational excitations of the
impurity. A comprehensive study of this interaction of

H2 has been given by Noolandi and Van Kranendopk (1970a,b)’
Although Noolandi and Van Kranendonk have only considered
this problem in solid hydrogen, it can easily be extended

to near infrared absorption of molecular impurities in

solid argon.

A large body of work on atomic potentials for mole-
cules in either the gaseous or liquid state is contained in
Hirshfelder, Curtiss and Bird (1954), and Hirshfelder (1967).
Girifalco and Wiezer (1959) have considered the Morse poten-
tial for metallic crystals by fitting the parameters to the
heat of sublimation, Born stability condition, and the bulk
modulus. Zotterill and Doyama (1967) note that Girifalco
and Wiezer's use of the heat of sublimation in determining
the Morse potential parameters for metallic crystals is in-
correct. They argue that the heat of vacancy formation should
be used, since it takes into account the electron redistri-
bution. The use of an interatomic potential to discuss the
lattice dynamnics of a perfect crystal lattice was demonstrated
by de Wette, Cotterill and Doyama (1966). Here, a Morse

potential, found by using the technique of Cotterill and
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Doyama (19f7), was émployed to obtain the dispersion curvés
of copper. Although the parameters of de Wette, Cdtterill
and Doyama (1966), and Cotterill and Doyama (1967)’for Cu
differ; the derived dispersion curves are correct to within-
5% and 10% respectively, of the experimental results. Since
the work urdertaken in this thesis is applied to metals for
which pseudopotentials have not been used to calculate phonons,
the idea of using an interatomic potential to discuss the
lattice dynamics of a crystal is of great interest. Though a
knowledge of the interatomic forces is very limited, rough
approximaticns have been used for crystals in the study of
dislocatiors and stacking faults. Christian and Vitek (1970)
present an excellent review of the interatomic potentials
necessary to the study of dislocations and stacking faults.
Discussion of potentials in ionic crystals are standard
(Seitz, 1940). For rare gas crystals, the gas pair potentials
remain valid even in the crystal state (Kriegler and Welsh, 1968).
A theoretical account of the chaﬁge of force constants
about an impurity atom was presented by Parlinski (1970) using
a pseudo-harmonic approach. In the article, this method is
restricted to one dimension and assumes that the bare potential
of the impuritv atoms is the same as that of the host lattice.
Page (1970) uses the "lattice statics" method to compute the
lattice relaxation about point defects. The displacement of
the atoms about the impurity site is found relative to unit

relaxation of the nearest neighbour atoms. The usual methods
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used in qalculating the distortion of the lattice about an
impurity involves either the minimum energy principle or the
balancing «f interatomic‘forces in the defect space. In
this thesis, relaxations will be considered via the latter

nmethod.
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"So far as the work of the intellect is con-
cerned, I may perhaps successfully accomplish
it by my own powers, but the materials for
the intellect to work upon are so widely scat-
tered that, to borrow a metaphore from the
world of commerce, factors and merchants must
seek them out from all sides and import them."
--Francis Bacon

SECTION A

GENERAL FORMALISM

1. Double-Time Thermal Green's Functions

In statistical mechanics, Green's functions are
generally connected with the concept of correiation functions
and intimately linked with the evaluation of observables.

In general, the quantities of interest in systems
with large numbers of interacting particles are the correla-

tion functions of the following form:

FAB(t—t') <A(t)B(t')>

and _ FBA(t—t') <B(t')A(t)>

where <++++> denotes the usual thermodynamic average,

-H/kBT "‘H/kBT)

<esee>= Tr(e ees)/Tr (e

and A(t), B(t') are Heisenberg operators.

By expressing these‘correlation functions explicitly
in terms of the exact eigenvalues E, and eigenvectors | n>
of the Hamiltonian, it is found that they can be written in

terms of the spectral intensity J(w).
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o -iw(t-t")
FAB(t—t') = [ J(w)exp(Bw)e dw (I1-1)
Fpa(t-t') = [ J(w)exp(-iw(t-t"))dw (11-2)

- 00

where B=t/k T and equation (II-1l) and (II-2) are ralated

by
Fpa (t+iB) = F, (%) (1I-3)
The spectral intensity is given by
1 (E_ (E_-E_
J(w) = — Y <m|A(0) |[n><n|B(0) |[m>exp - 8 -w
Tr (e~ #/%¥8T) mn (kgT] | H
1  en| | ( E_ )
= <m|A(0) [n><n|B(0) [m>exp|~ ——
2miTr(e”H/%XBT) mn . kgT)
1l 1
E -E E -E
n m N m .
. =w=1€ -w+ie
5 f .
+0

where the term in the sum of J(w) has poles in w at every
excited stave of the system.

By using advanced and retarded double-time thermal
Green's functions:

G, (t,t") 10 (£'-£)<[A(E) ,B(£)]>  (II-4)

<<A(t);B(t')>>_

G, (t,t") <<A(t);B(t')>>, -ig(t-t")<[A(t),B(t")]> (II-5)

where 0(t) = é E:g and [A,B] = AB-nBA, n=%*1, this spectral

intensity car be evaluated without any khowledge of the eigen-

function of the Hamiltonian. The sign of n indicates the
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the commutator or anticommutator. If A and B are Bose
operators, the commutator or positive sign of n is taken,
whereaé/if they are Fermi operators, the negative sign is‘
taken. This thesis considers only Bose operators.

Stating explicitly the time dependence of these
Green's functions, clearly demonstrates that they depend

only on differences in time, i.e.,

G(a’r)(t,t') = G(a’r)(t-t') (II-6)

To establish the relation between the Green's functions
and the spectral intensity, it is necessary to define the

Fourier trensforms:
G(t) = [ G(u)e ut
Gw) = z=f G(r)e'tac C(II-7)

Using the definition (1I-5) of, say, Gr(t), the

frequency representation Gr(w) becomes

G_(w) = znlf d0'3 (') (B -1) ] ato (t)el (W0t (11

-0
Since the step function can be written in the form

ixt

B (t) = f dx e+ot (I1-9)

x+ie

equation (I1-8) can be expressed as

© Bw'
= 1 v (e -1)J(w') -
»Gr(w) - Zﬂiwdw w-w'-i€ (11-10)
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and similaxly
1l o Bw' _aygyp. .
6 (w) = — [ aude DI’ (II-11)
21 = w-w'+ie

The functions Gr(m) and Ga(w), as expressed in (II-10)
and (II-11l) respectively, can be continued analytically in the
complex w plane. Indeed, by taking w=z as complex, equations

(IT-10) and (II-11) become

l] = Bw' '
G(z) = — f dwl(e ~1)J(w')

27 - z-w' Ga(z) Im z<0

G (2) Im 2>0
ol (I1-12)

If a cut is made along the real axis, G can be considered as
one analytical function in the complex plane. 1In this case,
G is made up of two branches, one defined in the upper (Gr)
and the other in the lower (Ga) half of the complex z-plane.
If G(z) is known, the spectral intensity J(w) can be

found from the relation
G (w+ie) -G (w-ic) = -i(eB®-1)T(w) (II-13)

for real w, € and s+0+. Equation (II-13) is a direct result
of the properties of G(z) as expressed by (II-12).

Now the Green's function must be found in order to
solve the problem. Althbugh this depends upon the physical
problem under ccnsideration, in general the equation of motion
for the Green's function is used. To obtain this equation,
the Green's Ifunction is differentiated with respect to one of

the times. The form of this equation is the same for both
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the retarded and advanced Green's functions:

dG (t~t")
A
dt

= A5 (t-t")<[A(t) ,B(t"') I>+<<[A(t),H(t)];B(t")>> (1I-14)

The evaluation of the commutator in the last term of
equation (II-14) generates new Green's functions, and thus,
a chain of coupled equations. It is these eqﬁations that

form the starting point for the discussion of lattice dynamics.

2. The Hamiltonian For Lattice Dynamics

This part of Section A presents the approximations
made in developing the lattice dynamics of crystals and
demonstrates the quantization of lattice vibrations. The
discussion in this part is similar to that of Born and
bppenheimer (1927). |
a. The Adiabatic Approximation

Follbwing the approach of Seitz (1940) the full
Hamiltonian operator, H', for a crystal is given by

2 \2 e?

H' = -] — v2-J — _ v24] 4V (§,D)+V. . (@)
i2m ok 2m (B) ° i<jlE -2, =T

~

where u = (u l(ll),...,ua (L

o N N))Ir= (rl’...’rn) i
S

s

the indices i, j, extend over electrons while the indices
o and % extend over the ions; Ma(i) is the mass of the ath
ion in the P unit cell; Vei(ﬁ,?) is the electron-ion inter-

action potential with the ions displaced U from their equi-
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librium positions while the electrons are at position T;
and Vii(:) is the interaction potential of the rigid ions
displaced by ?‘from their equilibrium positions.

Although the exact eigenfunction ¥ of H' is an
involved funétion of u and ?, the decomposition of ¥ into the
form

¥(u,r) = x(u,r)é () | (II-15)

is attempted. If y in (II-15) is regarded as electronic wave

function satisfying the Schrddinger equation
ﬁz e-2
-1 — v24)
i 2m i<j |, -%,|
i ]

+_, (@,7) px (@,T) = E_(@x(u,r) (II-16)

for eiectrons in a static lattice, with the lth ion fixed at

i (%), then the result is what is commonly called the adiabatic
approximation. Here the u's are regarded as parameters for

the description of the electronic system, It is assumed that
X, the many—-electron wave function, has eigenvalues Ee(ﬁ) which
can be considered as a set of quasi-particle levels. Since
these eigenvalues are functions of 3&(%), the energy of the
electron gas will depend on the position of the ions.

This adiabatic approximation is onlyvtrue if the
electrons move much more rapidly than the ions. It will be
shown that the accuracy of this approach depends on the ionic
masses being much larger than the electron mass.

Applying the operator H' to the wave function Y,
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_ 2 _ 1 -
H'¥= (WD) =]  ——— VI 4E (@+V (W) o (W) (II-17,)
ark 2M (T) G e e 2
ﬁZ __ . ﬁz
+{-1 ——— Y, 3@ .V K@D =] ——— $(@ V2 (T, D
o,B2M (1) & o X o,k 2M (1) o

If (II—17b) can be ignored, then the complete eigenvalue

problem
CH'Y =

{11

b4

can be solved by having ¢(§) satisfy the Schrodinger equation
R
- _—y2 a oy SY=Fd (a1 -
a,%‘ZMa(E) Va,1+Ee(u)+Vii(u) ¢ (u)=E¢ (u) (I1-18)
It is this equation for a wave function of only the ions that
leads to a quantum mechanical solution of the lattice dynamical
problem.

In Qrder to show that the second term of (II—l7b) nay
ordinarily be neglected for stationary state problems, two
extreme cases are considered. In the first case, the elect-
rons are considered as free, and in the second, they are
considered to be completely bound. Multiplying (II-l7b) by
x*(i,?) and integrating over the electron coordinates
produces

-52

-l ——— [ (x* @DV, x (E,T)AT) .V, (T)
o,k 2M_ (%) I ol al

+¢(ﬁ)jx*(ﬁ,?)v; zx(?.?)d‘? (II-19)
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In the free electron case, the wave functions are of the
form eiK'f and hence are practically independent of the ion
coordinates. Thus (II-19) is vanishingly small, For the
opposite cuse, the electrons are tightly bound to "their"

ions
x(Q,r) = y(r-u)

Therefore, the second term of (II-19) gives a dontribution

like
.ﬁz ' ﬁz
[x*(r-u) ——— V2 Zx(f-ﬁ__)df = [yx*(r-u) ——— V2y(r-u)dr
2M (1) ¢ 2M (R) *
[0 a
m x2 _
= [x*— Vixdr
M (%) 2m
ol
m v
which is just times the kinetic energy of the electrons.
m , Ma(l)
Since «~ 104 or 10~5 this term is negligible in com-
M (%)
a

parison with ordinary thermal energies.
The first term of (II-19) for tightly bound electrons
may also be dropped in stationary state problems since y can

then be chosen as a real function and

Jx* WV, x(@Dar=3v, ,[|x@,5)|2dF

NI N

\% 1=0

o,

Thus, in the adiabatic approximation, the effective

potential function for the ion motion
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o(u) = Ee({‘f') +vii(1T) (II-20)

which contains information about the total energy of the
electron system as a function of ion positions, is used to

describe the lattice dynamical problem.

b. The Harmonic Approximation and Quantized Lattice Vibrations
If the adiabatic approximation is assumed, the
Hamiltonian for the ions becomes
P2(E,t)
o % ZMQ(Z)

H =

+ @(35

At finite temperature, the atoms;of the crystalline
solid execute small oscillations about their equilibrium
positions as a result of thermal fluctuation. If u(X) defines
the displacement of the atom ¥ from its équilibrium position,
then for small oscillations the potential energy may be
expanded in powers of displacement. This series expansion

may be expected to converge rapidly if the displacements are

small compared to the interatomic spacing.

3¢ )
= 1 :
o(u) = ¢(0)+) w, (X,t)|——oI +5 u, (Z;,t)u, (X,,t)
fox P du, (%) 22111 By T TRy RN
B 0
' B2%>
320
x + e (II-21)
3u61(21)3u62(22)

where g = (8, b)
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In this expansion of ¢, uB(E,t) is the displacement

h atom of the Eth unit cell in the g}h direction at

of the bt
time t. Here, ¢(0) is just the static (equilibrium) potential
‘energy of the crystal and may be neglected for this discussion.
The coefficienc of the linear term in (II-21) must vanish
since the crystal is near equilibrium; thus the first term
of importance must be the quadratic term.

By dropping terms of higher order than two, the
harmonic approximation is obtained. Sucﬁ a curtailment of
the series guarantees the dynamical independence of different
modes of vibration in a perfect lattice.

Accepting this approximation, the Hamiltonian is now

defined by

u (I,£)0  (L,89u_(',t) (1I-22)
o o

B
[
where ' { 320 (u) }
aua(z)aus(i‘) 0

th h

unit cell in the
th

is the force felt by the a ~ atom of the gt

gth direction due to a unit displacement of the »

E.th

atom of
unit cell in the gfh direction (a= (go,a),B = (g,b)).
@as(i,i'), which is called the force constant matrix, satis-

fies the symmetry relation

5 om -
QaB(x,z ) QBa(z ' L)

and also
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T T -
92; ®(@,a), g,y 2eE) =0

4 |

The latter xelation is a result of invariance of the lattice
under rigid body translations. |

Attention is now focused on the perfect lattice. 1In
the case of the perfect crystal, M&(E) is obvioqsly independent
of #. The Heisenberg operators, ua(i,t)‘and pa(E,t) satisfy

the commutaiion relations
[ua(l.t), pB(R';t)] = iﬁéasé(zll')
[ua(llt)r uB(I'lt)] = [pa(zrt)r‘PB(z'rt)] =0

Using the ordinary Lagrangian procedure, the equation of
motion for ua(l,t) is found to be

d2
) M — a(z,z-masm,z-) uB(E',t) =0 (II-23)
B

il Gatz B

The solution is found by expanding u (%,t) and pa(i,t) in
normal coordinates Qj(ﬁ,t) and Pj(k,t), taking into account
the translational symmetry of the lattice.
) 1 U
u, (X,t) = J ool (k)Qd (k,e)e
, vy 3.,k ¢

[+

Z

(II-24)
=73 ~oj(i)Pj(i,t)e'if"E
ka

P (zlt) =
o N j’

- SE—

where N is the number of unit cells in the crystal and S is

the number of atoms per unit cell. There are N quasi—continu—
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ous values of wave vector k filling the first Brillouin zone
and for each vector k there are 38 normal modes or branches
labelled by j.

. The normal coordinates Qj(ﬁ,t) satisfy the equation

of motion
d2

QI(K,t) = -w2(K)QI(k,t)
dt? ‘ J
where w?(k) are the eigenvalues and cu(ﬁ) the eigenvectors of

gda8<i)o§j(ﬁ) = witBord@® (1I-25)

with the dynamical matrix

apB 7 /ﬁ:ﬁ;

og(ﬁ) is chosen in such a way that it satisfies the orthogani-
lity and closure conditions

Foxd (f 3! = 3 IRy =
gc; (K)o, (k) Gj'j and go; (E)UB(E) S

aB
These eigenvectors, although complex in general, are real for
Bravais lattices.

Of the branches j, three are called acoustical with
wj(E)+0 as k+0 while the remainder are called optical, and
in a diatomic lattice

ol 0 o3 (0 |
o) - (&e2)  for j= acoustical
/Ml /M2
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whereas AWIG% 1)(0) = - M3 (0) for j=optical.

& 2 (%12)

The normal coordinates can be conveniently written

in terms of new variables

4~ r - 7 -
Q- (k,t) = |-— (at(k,t)+a_ (k,t))
J2e,x) J
J
(II-26)
. Hw. (k) . .
Pl(k,t) = i|—1— (at(k,t)-a,(K,t))
2 J J
R
which satisfy the commutation relations:
[ajuz,t).a;r,(ﬁ',tn = 845, 8(K,K")
: (II-27)

[aj(R',t) Iéjl(K'lt)] = [a'g(KIt) ra'g (R',£)1 =0

These are the usual boson relations and in the
number representation these new operators have only the

following non-zero matrix elements:

1
z

<n|at|n-1> = n

. 1
and <nja| n+l> = (n+l)*

where n is the occupation number of a given mode.

Thus, a* and a can be considered to create and
annihilate respectively normal mode excitations or phonons
of the perfect crystal. In terms of these operators, the
Hamiltonian (II-22) reduces to the simple form

ﬁwj(k)

H = E,E ‘_f;__ [a;(k,t)aj(k,t)+aj(k,t)a§(k,t)]
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3. The Probability Distribution Function

This discussion of probability and density distri-
buﬁion functions which follows that giveﬁ by Lax (1951) is
necessary only for the consideration of the n>l1 tuple processes
since the procedure for the n=1 process is rather intuitive.

The determination of the statistical distribution
for any sub-set of a set of scatterers is a fundamental problem
of statistical physics. It should be noted that the probabilis-
tic nature of the results of the statistical process adopted
is not an inherent property of the objects‘considered, but
simély arises from the fact that these ;esults are derived
from much less information than would be necessary for a
complete mechanical description.

The probability that the set of dN of NoAscatterers
. _

will be located at any set'{s}aN contained in U, of Nc
sites {s} = {s}_ = (s,,s so ) is given by
dy,, ‘T Ng 17727 Ny
p({s}Nc) = P(Sll-- . 'SNO)

where U, is the set of all possible sites. The sum of these
N  scatterers in p over all sites possible, is normalized to
unity.

The probability distribution for a single scatterer
is obtained ry summing the remaining (Né-l) scatterers over
all sites |

P(s,) = ) p(sl,sz,...,sN )
82,...,SN (¢)

(o)
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Similarly, the correlation probability for the simultaneous
location of a pair of scatterers is obtained by summing the

remaining (n -2) scatterers over all sites

p(s,,s,) = plis})) =] p({s} )
s3,...,sNo o

In general, the correlation probability for the simultaneous

location of nSNo scatterers can be written as

-n

p({s})) = Jp({s} .8} _) (I1-28)
3j c

h

where the jt configuration of the remaining (Nc-n)

scatterers is

3 = J
SNc—n (sn+l N

If the scatterers are equivalent, then a relabelling of the

configuration produces

st = (sJ

J = i
n+1,-to’sNo) (S

where the No~n is understood.

If the set of dN of N0 scatterers is considered as
o
the universal set, UG, of scatterers, then (II-28) becomes

p({s},) = gp({s}n;{sj}nc> (II-29)

where ‘{s}nc ='{S}(d )
“nc

is the set of No-n scatterers, (dnc), located at the sites

'S 48 4eeesS respectively. The superscript ¢ for the
m M ™Ng-n .

set dn in brackets indicates the complement.
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For a truly random distribution, the probabilities
associated with a single scattererare not influenced by the
informatibn concerning other scatterers, and so the complete
distribution breaks down as follows:

p(isly ) = p(s)p(s,)...p(s ) (I1I-30)

o o
It should be noted that for a random crystal lattice equation
(II-30) holds only if si# sj ¥ i # j, otherwise this probabi-

lity is zero. Clearly the quantity
p(s,,s,)- p(s,)p(s,) (IT-31)

can give a measure of correlation or non-randomness between
pairs.

Even if the distribution is non-random, it is possible
to introduce a pseudo-factorization by using conditional
probabilities:

p({s}No) = p(s))p(s |{s}; o) (I1-32)

where the second term of (II-32) represents the conditional
probability distribution for scatterers 2, 3,...,N if it is

known that scatterer 1 is at S, - Generally,

p({S}NO) = p({s} ,{s} o) = p({s} Ip({s} [{s} o)  (II-33)

In this notation, the average of an operator O, which
depends on all the No scatterers over the ensemble of scatterers,

is given by
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<0>= Jo({s?} )p({si} ) (II-34)
N A
J o o .
(the configarational average). If the scatterers 1l,...,n
are held fizxed at sl,...,sn, and all other scatterers are
averaged over, then the average of O will be denoted by

<0> = <0> ) = §o<{s}n;{sj}nc)p<{s}n|{sj}nc)' (11-35)

Syres-8 {s}n

and is referred to as the conditional configuration average.
Here, j refers to configurations of No-n scatterers.

Using the normalization condition, the probability
distribution for a single scatterer in a lattice having N
equivalent sites is

1
p(s.) = — (II-36)
N

S

It can be shown from (II-33) that

(131 (s} o) = ~m) pis} [gs)_,) (11-37)
R pds))) L

n

Eefore’discussing the crystal system one more point
should be added'to this rather general discussion of probability
distribution functions--that is, that probability distributions
may be converted to density distributions by multiplying by

some power of the number of scatterers
= n -
p({s} ) = (N )"p({s} ) (II-38)

The relative fluctuations of physical quantities de-

scribing a crystal should occur;with a vanishing probability,



37

if the crystal system contains a sufficiently large number of
sites Ns. In such a system, the number of sites contained,
even in a small part Nc of Ns sites, may still be very large,

. N
i.e., Ns+m but ﬁg remains finite.
S

The configurational average is now considered in
such a system, If T is an operator that depends only on a
single scatterer M and O is an operator that depends on all
the scatterers of the system, then the configurationél average

of
I T(S,)0(5,,{8},c) =] T(M)O(M,M°) (1I-39)
MeU MeU_ :

is given by

ceeess = Tp({sT} ) . T(RIO(R,{s?'}_ ) (1I-40)
§ Ng ;G{SJ}N- Ng-1
g

where in equation (II-39) each scatterer M is associated
with a different possible crystal scattering site SM, and

th scatterer is associated with the

in equation (II-40) the M
possible crystal scattering site R. The configuration j' in
(II-40) is a coanfiguration of No-l scatterers. It should be
noted that Zor a crystal system the probability distribution
function has absorbed the information that no two scatterers

can occupy the same possible crystal scattering site. With

the aid of equation (II-32), equation (II-40) Lkecomes

<eeee> = Ipship(s)11s?, 0] . TRO® sy, ) (T1I-41)
3 Re{sJ }No » o

expanding the second summation and rearranging the first

1

(II-41) may be rewritten as
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Coooed> = 2 P(S
3 M

M 1

)T(sul)g'p(lel{sj’}Mg) oty 1157 1ye)

1
+ ® e s e

PR ICIRLICHER D TEN 1{s3"3, 05, {87 1)

MN NU NU J NU NO' NU NU

o (I1-42)
and by using (II-35) this is the same as
o

N
<eese> =¥ p(S,)T(S,)<0>_ (I1-43)
i z 1 1 S

i=1 §, i
1

Now, assuming that all the crystal lattice sites of Us are
equivalent and also that all the scatterers of UO are equi-
valent, then by using equation (II-38), equation (II-43)
becomes

Cosoed> = 2p(R)T(R)<O>R (II-44)
R

where the sum in equation (II-44) extends over all possible
different crystal scattering sites which can be made up of the
crystal siteé‘and p(R), the density distribution, is the
probability that any scatterer of UG can be found at any

possible crvstal scattering site R.
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"We are under obligation to the ancients for
having exhausted all the false theories that

1 1] .
could be formed. --Fontenelle

SECTION B

THE LOW CONCENTRATION THEORY

1. Exact Single Scattering

In lattice dynamics, the Hamiltonian H for any crystal

can be expressed as

13 i ) (L,£)0 _(L,2)u, (',&)  (II-45)
H=35 -_—+ F u ,t @ ’ ' u ',t II_
zu,i Ma(i) 2%’2 o aB B )

in the harmonic approximation.
The crystal lattice under consideration, formed from
the perfect lattice by the introduction of substitutional

impurities, has a mass change expressed by

Ma Ma(sn) Maea (II-46)

and a force constant change of

n .5 vy = 7 Tvy_5° (7 ~I. -
A@ae(ln,ln) @as(zn,ln) @as(ln,zn) (II-47)

th

where n refers to the defect space (in,ig) of the n impurity

located at §n. In (II-46) and (II-47) Md is the mass of the

ath atom, and

° (2 ) (II-48)
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is the force constant between (d,in) and (B,I;) in the
perfect 1attice.

The Green's function relevant to optical absorption
and neutron scattering is the displacement—displacement

double-time thermal Green's function

£,8;e,t") = 2T <cu (B,t)5u, (R',t")>>
o B

(x,a)7 al)(II--49)

(x,

(r,a)

Using equation (II-14), the equation of motion for this
Green's function may be written as |

a o 2mi 3 5
;t- GGB(Z,I‘;t)-f- —ﬁ—(S(t)<[ua(2’ro) IuB(QI :0)1>

1 27ni - -
+ o—_—— 6(t)<[[ua(2,t)H]ruB(l"o)]>
iF A ' '

271 6 (t)
£ — — <[p (%,t) ,uB(I',0)1> (1I-50)
5 oM_(2) @

Differentiating (II-50) with respect to time produces

a2 Y. 2wi . -
——Gas(f‘;l';t)= ——T'('(S(t))<[pa(2uo) ru8(2'10)1>
dt? ﬁMa(Z)
2mi  6(t) - -
+ - <[lp (Z't),H],uB(ﬁ'.0)1> (II-51)
mM (%) in @ '

which simplifies to
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. a2 -
Ma(Z)g;; Gas(z,z-;t) = -2n6d36(2,%')6(t)

- z~'¢dy(i,i")eys(z",i';t) (I1-52)
ya"

an expression involving only G.

Using equation (II-7), the Fourier transform of (II-52)

is | .
2 . - 7 ’ \ o "“; " " ',
M w Gas(i,l jw) = 8 S(EE+) @ay(z,% )GYB(E FEARTN)
2y
+ v® (Z,1";w)G ", % II-5
g %" ay(z,z w) Yscz AR ( 3)
where n n 9
i o - T 7t 7 Al -
VaB(zn,Qn,w) A@as(znpzn)+Maeaw G(anzn)ﬁas (II-54)

The total defect matrix is written as Vv = J v®
. n

where s
n

010

“lofolo

and v" = the perturbation matrix spanning the defect space of
defect n. 1In order to facilitate the handling of these
equations, the full matrix notation is adopted. In the no-
tation, (II-53) becomes
MG = I+0%G+)v"G (II-55)
n
where

(M) (2,2') = M w?s_ 6(E,1")

and the other terms are self evident.
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If P is the perfect lattice Green'svfunction, (II-55)
can be simplified into the following equation
MP = I+¢°P
or P = (M-0°)7? (II-56)
by noting that in the perfect lattice
Vi= 0  VneU_

It is observed that (II-56) is intimately related to (II-23).
Thus, a knovwledge of the dynamics of the perfect lattice
implies a knowledge of P and vice-versa.

Using equation (II-56), eqﬁation (II-55) becomes

Pl = 1+ 7 v
m
or v G = P+ 2 PV™G . (II-57)
m

The Dyson equation (II-57) defiﬁes the starting point
for the discussion of the impurity problem.

If the concentration of impurities is "low enough"
and the change of environment about an impurity "local enough”,
so that the probability of any two defect spaces overlapping
is small, then it.seems reasonable to assume that G is
dominated by whether or not any individual defect matrix
affects the space of its definition. This suggests separating
out the Green's function associated with a given defect as

follows:
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G-PV"G = (I-PVM)G = ¢ (I1-58)
where ' G¢"= p+] PV'G (II-59)
n#n :

Using equation (II-58), equationsA(II—57) and (II-59)

become

G = p+] PV (I-P V™) TiG" (II-60)
m
and G" = p+]  PV®(1-P V™) l¢® (II-61)

n#n

where the matrix P1 only has a contribution in the defect space
of the defect m and this contribution is equai to P in that
space.

From (II-60) and (II-6l), it is observed that

S
m
00
T} = v VTt = s 10 [ t8]0 (1I-62)
0100

is the usual t-matrix describing the scattefing_of lattice
excitations due to the perturbation introduced by one defect
atom in an otherwise perfect crystal (Klein (1963)).

After substituting (II-62) into (II-60) and (II-61)
the resulting equations are averaged over all configurations
of defects in the set of Uo and n°, respective;y, where Ud is

now considered as the universal set of defects.
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<G> =p+p<]  TiE™ (II-63)
neyU
g
n - m . m -
<G'> = P+P<] TG > (II-64)
menc

Assuming that only one type of impurity is being
substituted. for only one type of host atom, then all the
lattice sites into_which a defect atom can be placed substi-
tutionally are equivalent, and by using (II-35) and (II-44),

equations (II-63) and (II-64) become:

S s
<G>= P+PJ T, <6 > (II-65)
s_eU m
m S
S
’<Gsn>s = P+P z cT:m<G m (II-66)
n s # s €U *n’®n
m n S
- 8 S ’
or <G> = P+P ] cT ™G ™ (II-67)
s ' Sm
m
S S .S
<G B> = P+P )  cT ™G ™ (I1-68)
s 1 S_,8
n sm#sn m’"n

where ¢ is the defect concentration and the universal set of
all possible different crystal defect sites , Us, is understood
in the summation. These are only two of a whole hierarchy of
conditionally averaged equations that can be defined in an
attempt to obtain <Gsm>sm. -This infinite set of equations

can only be terminated by making an approximation. This

approximation can be found by using the information given to

define G", i.e., that only single site scattering information
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is retained at "sufficiently low" c¢. Therefore, in thé con-
figurational average of the effective field Gs“; seen by the
atoms, the wave has been allowed to scatter off all other
defects before it scatters off the perturbation due to the
defect n at s . The T1 matrix describes this final scatter-
ing explicitly. The logical approximation is to neglect the
effect of variations in local environment due to other defects
and "rememper" those defects of which the field has an imme-

diate knowledge. This leads to

s
<G ™ = <G > (I1-69)
s ,s s
m’"n m

and breaks the infinite set of equations into

s
<G> = P+) PeT 1< 1> (I1I-70)
1 s
s 1l .
1
S S S
<G %> = p+] PoT '<G 1> (II-71)
2 sl#s2 1

‘Subtracting (II-71) from (II-70) gives

S . -
<6 %> = (1+PcT;?) t<e> (II-72)

2

and so the configurational averaged Green's function is given

by

s 1

<G> = P+) ch1(1+PlcT§)' <G> (II-73)
seUs

which by (II-62) can be written in terms of the defect matrices

<G> = p4] _ PeV®(I-(1-c)P V")

seU
S

<G> (I1-74)
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Equation (II-74) is the low concentration theory

result for a concentration c of defects.

2. Perturbativé Approximation

Clearly, from (II-57), the configurationally averaged

G has the general form
<G> = P+PI<G> ‘(II-75)

where I is the self energy.

In the low concentration theory

zj = ch(I-(l-c)Ple)-l (II-76)
where r=3¢,=7) z°
1 seUs 1

Even if the defect space defined by the extent of V® is
small, Zi is a formidable "creature" to calculate.

In order to simplify the calculation for Zi, an
approximation to Ei is found. The first step is to decompose

the defect matrix

s s

vS = vi4vyS (II-77)
o p

where Vz is the major local change in environment and will be
treated exactly in the low concentration theory, while V;
is a perturbation to VZ and the perfect lattice. The simplest
and most obvious Vz is the mass change, but in general, this
_need not be the case.

The self energy for the process whose scattering is

treated exactly is
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s _ S -
I, = oX, (II-78)
S _ ywSitr_11- ' s, =1 -
where X, =V _(I-(1-c)P,V ) (I1-79)

while the self-energy Zi, in the low concentration theory

(II-76) is given by

% = ox® | (I1-80)
where , x5 = v& (I-(l-c)Plvs)_l (II-81)

Using equation (II-79), Vz may be written as
S

_ - S -1,8 -
Vo = (I+(1 c)XoPl) Xo ‘ (II-82)

With the aid of equations (II-77) and (II-82), equation

(II-81) becomes
s s “1,S v/S1)= ey S 1,88 -
X" (I-(1=c)P, [(I+(1-c)X_P,) x°+vp]) (I+(1 c)xoplf x°+vp (I1-83)
After some rearrangement of the terms, equation (II-83) becomes
s s s = vSiuS - s -
X" (I-(1 c)P1Yp[I+(1 c)Plxol) xo+Vp(I+(1 c)PlXo) (I1-84)

Since V: is taken as a perturbation to the defect system
described exactly by the defects Vz,'equation (II-84) (to

first order in V:) becomes

s s - s _ s _ s
X" = (X°+VP(I+(1 c)Plxo))(I+(l c)Ple(I+(l c)Plxo))

w vS3,uS - s s _ s s ) 24 S s s -
= X°+VP+(1 c)VpPlX°+(l c)XoPIVP+(1 c)'XOPIVpPlx° (I1-85)

and so the self energy to first order in V: is
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' : - (1-c)2
= S S - S s - S s S S-S -
ZO+CVP+(1 c)VpPlzo+(l C)ZOPlVP+———;—— Zoplvpzo (I11~-86)

S

1

If szescribes only the mass impurity, then the advantage of
this form for Zi is obvious. In the first place, Pl does not
span the whole defect space in (II-86) (i.e.,vdoes not link
all sites of the defect space), but rather, is limited to

the space where the impurity site is connected to any site

of the defect space. Secondly, except for the trivial terms

(1-c) 2
s s s s
2:o ' o zoPlVdPIZo

and cv: (this term is said to be trivial since it is known
and does not have to be computed), the terms in the expansion
(I1-86) of Zi only connect the impurity site to a site in
the defect space.

| It should be stressed that this approximation of the
low concentration theory result is only valid for force
constant changes that are small relative to the mass change.
These force constant changes may, nevertheless, if c¢ is "low
enough", have a large extent. Even if the mass change is
large, it is obvious that for low enough w thevperturbative
approximation will not be valid (for the Cu/Au system this

frequency corresponds to a wavevector of about 1/40).
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"The last product of an antecedent stage
is always the basis of that which is sub-
sequent."” :

—--L.0Oken

SECTION C

PAIRS WITH CORRELATION

In order to obtain any analytic theory of normal
modes in a lattice having substitutional impurities, some
account must be taken of the formations of clusters and the
cluster contribution to scattering. This section, which was
motivated ky the work of Aiyer, Elliott, Krumhansl and
Leath (1969), contains the formal treatment of defect pairs
with the possibility of pair type correlations. The ahalytic
expressions will be derived for mass defects and will be
found simple enough to use for calculations. It is assumed
throughout that only one type-of'impurity is being substituted
for only one type of host atom.

Again, the starting point is the Dyson eﬁuation (II-57).
It is assumed here, that only pair scattgring information is
retained, while any higher order process is not "remembered".
With this assumption, it seems reasonable to state that G is
governed principly by whether or not the space of its defini-
tion is affected by any pair of defects. Thié suggests

separating out the Green's functions associated with a given



pair of defects as follows:

GfPanG—PVnZG = (I-pV"1-pV"2)G = g!P1rm2)

- where n;# n, and

G(P1/n2)=p,y PV'G
m#nl,nzeU0

Since the space of V"1 does not overlap that of v'2 for

snl# Sn, cquation (II-87) may be rewritten as

(nllnz)

g{nr1/n2) - (1-py )G
where
Sny Sn,
(0 0 0)
nj
/ s v 0
‘-\nlynz) nl 0 n 0
Sn, 0 v
|0 0 0)

In this notation
ypvmg = § pv™lg+] PV™2G
m ml mz

50

(I1-87)

(I1-88)

(I1-89)

(II-90)

The error in stating that Uo can be arbitrarily broken up ihto

UO = ((112)1(314)1'-01(N0‘1)1N0))

is, at most, -1_~ 10723, and therefore negligible.

2No

(IT-91)

Using the notation of Part 3, Section A, Chapter II, equations
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(II-89) and (II-90) may be written as

GN = (IfPVN)G‘  (11—92)

J pvc =) pvMe (I1~93)

mer MeUO

where N = (nl,nz)er of (II-91), and M = (ml,mz)sUo of (11-91).
With the aid of equations (II-92) and (II-93), equations

(II-57) and (II-88) may be written as

G = p+] pvM(z-p,v*) "icM (II-94)
MeU,
and ¢V = p+]  pvM(z-p,v") "icM (11-95)
: MeN°®
where Sm, Sm,
(0 0 0 )
s P(0) P(sp. ,sp.)
p,= "1 o0 12 0
Sm, P(sp,rsp,)  P(0)
0 0 0
\ /
Furthermore, if
S S
i T
( 3
0 0 0
s £ 0
1
™= T1] o a0
sz 0] t12
0 0 0
\ /
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and s s
ml m2
( 3
0 0 0
Sh P(O0) O
P1 = 1 0 0
0 P(0
sz , (0)
0 0 0
\ J

then, by using (II-62), equations (II-94) and (II-95) become

G = P+  PT,(I+(P,-P,)T)) ‘6" (1I-99)
MeU,
G" = p+] BTV (I+(p,-P,)Ty) 'G" (II-100)
MeN€

It is observed from (II-99) and (II-100) that

M -1

1) (II-101)

M M
I, = T, (I+(P -P,T

is just the t-matrix describing the scattering of lattice
excitatione, due to the perturbation introduced by two defect

atoms of an otherwise perfect lattice. In its present form,

£§ contains all the information about the scattering due to
two defect atoms m, and m,. Thus, gg is made up of two parts--

one non-decdmposable (where the scatterer is a pair of defects),
and the other decomposable (where the scatterers are two

separate defect atoms) into smaller spaces. The first of these,

M__M_m]__mz__ _ -
T, = Tp-T;) -T)° = IT,-T; (11-102)

contains all the information about pure pair scatterings, and
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therefore is not decomposable into the smaller spaces m, and

mz. On the other hand,

M _ W1, W2 -10
T, = T, 1+T] (II-103)

which contéins all the information about pure single scattering
of two different defects M, is decomposable into the smaller
spaces m, and m,. With the information contained in (II-101),
(IT-102) and (II-103), equations (II-99) and (II-100) may be

rewritten as

G = P+] PTyG+] PTIG" (II-104)
MeUg Me Uy
G = P+ PT?GM+Z PT?GM (II-105)
(o] (o] ’
MeN MeN

These equations are now averaged over all configurations of

defects of the set U_ and N€, respectively:

<G> = p+p<) T G">+p<]  TG"> (II-106)
MeU Meu, ! |
o o
and <G'> = P+p<] 6> o 4p<]  TiE> ) (II-107)
N ' MeN€ ny‘nj MeN€ n‘°ny

There are nuw four averages which must be resolved; they are:

<y ™ | (II-108,)
MeU, 2
MM _

<y T'G > (s s ) (II-108y)
MeN€ n,""n,

<% . TYG"> (II-108.)

€
g

and <y e (II-1084)
| MeN© Mﬁsnl’snz) d
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In (II-lOBé) it is observed that the scatterer is a defect

pair and so by using (II-44) it is found that

. (s, ¢S, ) (s.r,S. )
<) TMGM>=Z p(s ,s )T T1 M2 g M1 M2,
Rg 2 . ' (s ¢ 8 )

MeU _ 2
o n ,sm 1 s ml m2

1 s
. (II-109,)
where the sum is over all different pair separations Rs < '
m3 *omy
between a pair of possible crystal defect sites (sm ,sm )
1 2
associated with the defect pair (ml,mz). Furthermore, using

(II-35) and realizing that, as for (II;108a),equation (II—108b)

also has the scatterer as a defect pair. Thus, by (II-44),

(s s (s s_ -
= p(s_,s_)T my ’ m2)<G my’ m2‘)>
#K m," m, 2 (sm 'S )(Sn 'S )
s s .8 8. 1 2 1 2

m m n n
12 (II-109p)

The expressions (II-lOBc) and (II-108d)'obviously
depend on the scatterer being a single defect. Expanding

(II-108_) as follows:

mp

(mllmz)
1 >

MM
<] 16> =<} (T

+TTZ)G
MeUd (ml,mz)eU0

the configuration average of this term is now determined.

<y T?GM> =3 v p(sl...s ) )
N
MeUG si...sN o} (sm ,sm )e(sl...sN
o 1 2 o}

*n “m
1y M2
)(Tl +Tl )

sJ s (s4,8)
) P(sis)...st )(T11+T12)G 1-52)
s o}

'
NG
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+ ® 0 00
s! s
+z 2 p(s/ S ,8!,...8" ) (T N l+T'N0)
W ! ' [ ' N 1 N 1 N 2 1 1
s 'S s'...s
N _-1'°N 1 N_-2
o] (o] o] (sg -175y !
X G o]
Lo ) (s_ )p(s_ |s_ )T m1j ( | )
= m—— p S p S S p S ’s S ...S
2 s ,8 ) my, ™'l s L..s m My Wy N
m m nm m ag
1 2 3 N (S rSma)
o x G Wml’°m2
N s
o] )
+ — ¥ p(s_ )p(s_ |s_ )T, 4} p(s._ ,s_ |s_...s )
2 s ,s | momy Ll g s my Wy, M ™y
ml m2 m3 mN (e}
A o 5 G‘Sml'smz)
(IT -110)

Since the indices are only dummy indices (II-110) becomes

. s (s s )
<J  r¥e™> = NN_] ﬁl pis, |s, )T, "<e ™' 2’5 |

MeUqg : s s 1 2 m. 'n

m, i 2
_ SM SM

=] p(s_ (8. )T. <G > (II-111_)

R mll m, 1 Su a

*m. " °m
1 2

It should be realized that, after averaging, the above expres-
sions depend only on the distance between s and S, hence

1 2
s can be any arbitrary site. Similarly, by using (II-35),

)

it is seen that

<G > (II—lllb)

Therefore, by using the results of (II-109a),»(II-109b), (II-llla)
and (II—lllb), equations (II-106) and (II-107) éimplify to
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S S S S

<G>=P+P£ ots. ,s_ 1. % ™ +P; p(s_ |s_T Mg M (IT-112)
S m m 2 S m m 1 S
s 1 2 M S 1 2 M
M M
S s S
<G N>S = P+Pé pls_ ,s_ )T2M<G M>s <
N s #RS 1 2 M'EN
M N .
Sy Su
+ Pé pls s )T, <G "> . (11-113)
s #RS 1 2 ‘ M'TN
M N :
where SM = (sml,smz) and SN = (snl,snz). More simply, (II-112)
and (II-113) can be written as
Sy Sn Sn
<G> = P+Pé (p(s_ ,s_ )T “+p(s_ |s_ )T ")<G 7> (II-114)
: m m 2 m n 1 S
s 1l 2 1 2 M
M
and _
[ , ' S S S
<G N>S = P+PE (p(sm ,sm )T2M+p(s |s )TlM)<G M>S 5
N g 7R 1 M ol T M'°N
M Sy v

(I1-115)
It is obvious that these are only two of a whole hierarchy of
conditionally averaged equations that can be defined in an
attempt to solve <G>. This infinite set of equations can only
be terminated by making an approximation.

GSN can be thought of as the effective field seen by
the atoms, where the wave has been allowed to .scatter off all
other defects before it scatters off the perturbation due to
the defects N at Sye It is noted that giN describes this
final scattering explicitly. Using the information given in

defining G (i.e., that only pair type scattering information

is retained for a set of non-overlapping defects), an approxi-
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mation can now be found. The logical approximation is to
neglect the effect of variations in the environment due tq
any other defects, and "remember" those defects of which the
field has an immediate knowledge. This leads to

] s
<«g ¥ s = <G M, (II-116)
SmrSy Sm

and breaks the infinite set of equations into equation (II-114)

and S : S ’ s g
V> = 2 (IO Yy Mo(s s )T M <6
N g PR S B! 1 M2 M
M N (II-117)

Subtracting (II-117) from (II-114), and using (II-29) and

S
(IT-32), <G N, can be expressed as

SN

1

<G > = (I+Pp(sn <G> (ITI-118)

S S -
|s_ ) [eT. N+7.N])
N n, 2 1 _

1

and so, the configurational averaged Dyson equation becomes

<G> = P+P22<G> (IT-119)
where
S S s s
_ N N N N, -1
L, = E (p(snllsnz)[cT2 +T, ])(I+P2p(snl|sn2)[c‘1‘2 +T,°1)
S
N
(II-120)
For random defects
p(s ' S ) 02
o(s_ s ) = —-—T2 = —=c¢ (II-121)
1l 2
p(snl) c

and the self energy becomes
: s S S s -
- 2. PN N 2..°N N 1
L, = é (c*T, +cT, ") (I+P, (c*T, +cT, "))
SN
which is the result that Aiyer, Elliott, Krumhansl and Leath

(I1-122)

(1969) find for a random alloy with their diagrammatic method.
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"The ovary of an ancestress will contain not
only her daughter, but also her grand-daughter, .
her great-granddaughter, and her great-great-
grand-daughter, and if it is once proved that
an ovary can contain many generations, there

is no absurdity in saying that it contains them
ali."” --Albrecht von Haller

SECTION D
THE N-TUPLE PROCESS

Thé method used in Section C of Chapter II is certainly
not limited to pairs but can also be extended to treat the
corresponding "n-cluster" or n-tuple self energy. Although
the configutation averaged result can be expressed in terms
of any type of site correlations, the procedure to obtain this
general result tends to be quite involved. Thus, only the
random defect is considered while the general defect correla-
tion result is not attempted. It is assumed in this section
that the pure}single, pair, triplet,.;.(n—l)—tuple scatterings
have alreacly been solved for, and that n<<<NG.

The notation of this section will be modeled on that
of the previous two sections, and also on that of Part 3,
Section‘A of ﬁhis ¢hapter. |

As has been the case before, the discussion begins
with the Dyson equation (II-57). It is assumed that the
defects are mass defects of one type and that they are being

substituted for only one type of host atom. Also, it is
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assumed that at most n-tuple scattering information is
retained while any higher order process ié not "remembered".
With this last assumption, it seems reasonable to say that

G is governed principally by whether or not the space'of its
definition is affected by any set of n defects. This suggests
separating out the Green's functions associated with a set

of n defects as follows:

1 2 1 ] (15,28¢++..n )
c-pv %G-pv eG-...-pv %G = (1-pv *-...-Pv &g =g §'°S §
(II-123)
»where 16¢ 26# e # n,
l1s,28¢0ce0 )
g lter2e "87 = b4y Pv™G (II-124)

) m#16'26’00-n6
and § indicates an arbitrary selection of n defects.
Since the space of V18 does not overlap that.of V'S for

s; # Sy * equation (II-123) may be written as

8 8
(lsseecernng) (lsseecersnyg)’
g ¢ 80 o (1-pv 8 ¢'ye (II-125)
where
S coos
1s ng
0 0 0
S VlG
AL L 0 e ° 0
: 0 M
s v
ng
0 -0 0
{ )
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In this notation

YPVRG = J PG+, . .+] pv™ngG

m ml mn
_ (m3,...mp)
= J py T "6 . (11-126)

The error in stating that U0 can be broken up into

t]o = ((16,...1'16),((n+1)6,...,(2n)6),...,((No_-"n)ap...(Nc)s)

(IT1-127)
n
is at most o= <<<]

and is therefore negligible.
2NG

Thus, equations (II-57) and (II-124) may be written
in the form

M Moo, M _
G=pP+] PV T(z-pV ™ g™ (II-128)
M €U n
n o
N M oMM
and 6" =P+ ) PV " (1+P V )76 " (I1-129)
M eN°© n
n n
where
M, = (ml,...,mn)
and
Sml.l'.'l.smn
{ N
0 0 0
'S P(0)+++P(s s )
Pp = M 0 T, 1?1' n 0
smn P(sm;,sm )++3P(0)
0 0 0
k )
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It is observed from equations (II-128) and (II-129)

that , M M

_ n,. n, -1 -
E‘n =V (1 an ) v (II-131)

is just the t-matrix describing the scattering of lattice
excitations due to the perturbation introduced by n defect
atoms M of an otherwise perfect lattice. ‘In its present form
g:n contains all the information about the scattering due to
any set of n defects. Thus, g:n is made up of n parts, one
of which is non-decomposable and has the scatterer as the

n defects, while the others are decomposable into smaller
spaces and have as the scatterers i defects where i=l,...,n-1.

M »
The pure i-tuple scattering matrix Tila, i.e., where

the scatterer is i defects, for any set of i defects

Mia = (lalza,on.'ia) Vv i = 1,...,1’1"1

M
and o is assumed known. Using this notation, Tin is defined
as M Mj
n _ a _
T, = ZTi (I1-132)

where a is the ath set of i different defects chosen from

the set Mn of n different arbitrary defects of UO. Therefore
M,
Til“, for all i=1,...n-1 and all possible o's associated with

a given i, form all the possible "pure" scatterings that can
M

occur, except Tnn --the "pure" n-tuple scattering. Thus,

the"pure" n-tuple scattering is obtained by subtracting from

M

Tn
=n

»(the total n-tuple scattering in the space of n defects)

all the possibie "pure" scatterings in any sub-space of the
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space defined by these n defects

M M n-1 M;
Ty = Tp-) LTy C (T1-133)
i=l o

Using (II4133), equations (II-128) and (II-129) become.

6= P+] PTznGMn+{ P} ZT "n (I1-134)
’ M, eUg, M,eU; 1 @
.ANn _ Mla :
and G " = P+) PTn G ) L2l ITi (I1-135)
M, eNg M,eNg i a

in terms of the non-decomposable scattering matrices.
These equations can now be‘averaged over all configu-

rations of defects of the set U, and N_, respectively.

w oM.
<G> = P+P<) Tp"G > (II-136,)
M,eUy :
Mig My
+P<) y yry %> (I1-136y)
M,eU; i a
’ My, M
<c'ms = P+P<) T, %G "> (I1-137,)
SN n SN a
n M, eN§ n
Mi, My
+P<) ) LT3 %G ">y (II-137p)
MnsNg 1a Ny :

Using equations (II-44) and (II-35), the average in equations

(II-l36a) and (II—l37a) becomes
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M, M Sm SM
< e ™ = chr g > (II-138)
M,eu_ | R " SMp
o Sm
n
Mp M ' SM SM
< TG ">, =) chT g >, (11-139)
n S n S 'S
eNS Na R, #R : Mp’"Np
Mn n SM SN
n n

respectively, where the sum over RSMn extends over all possible
different crystal scattering n-sites associated with an arbi-
trary set of n defects SMn.

It is now necessary to consider the averages in
(II-136,) and (II-137,). The configurational average of these
. expressions is determined for an arbitrary i=1l,...,n-1.

) ZTfiaG "ns %p({s}zo)f ‘XTiMi“ “n

3
M eU; a sMne{s}Nc a

S ; ' SM
Ni) p(sy)T ) p(silsice ™
& O

S

p(Sy ) .. S
_ Ty p(sy |8gc)G
{s},_, p(sy)jn '™ 'n

Mp

]

~1

Lo}

—

4]
'—l.

S

=]
(R

e

(II—140a)
where N, is the number of i~defect scatterers and the sum over
Rg. extends over all possible different i-defect crystal scat-

1
tering sites. For the random crystal lattice,
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p(s;) (Ns)n-i

therefore, by using (II-35), equation (II-140,) may be

written as

Mio Mp 1 iSi_ SMp
<z ZT. G s = z —— z ol ica >q (II"l40b)
M, eU, a * {s}, _; n-1 gr + M
o n~-i (Ng) S; n

Reshuffling the sums in (II-140y) brings this equation into

the form

M, ' . S S

<) ZTilaGMn> —_— ) clTiMn<G Mn>SM
Mn€U°' Q (Ns)n-l {S.}n_i RSM : n

: n

. SM SM
) oty <G Mg (II-141)
M
RS n
M
n
S

where T; " is the scattering matrix in the space of 5, sites
n

containing all the information about pure i-tuple scatterings

resulting from n defects. Similarly, by using (II-35) the

expression (II-137,) becomes,for an arbitrary i=1l,...n-1
giaGMn i, SMp  Smy

1 :
‘ sy = Z_ c'T1L <6 T>g sy (I1-142)
M. eNg o n Ry #Rg n “n

Substituting (II-138), (II-139), (II-141) and (II-142)

into (II-136) and (II-137), these equations can be rewritten as

. n sy Sy
<G> = P+P] Y clmy <G Mg (I1-143)
Rg, 1=1 Mn
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Sy n Sy Sy
<G F>g = P+PJ Y ettt B>y o (II-144)
i = " PMp PN
Np Rg #RS i=1l n n
Mn Nn

As Has'been the case before, these aré only two equa-
tions of a whble hierarchy of-conditionally aﬁeraged equations
that will be terminated by an approximation. Following the
same argument as is givenAfor n=2 in the previous section,
the approximation that is made is

SM SM
= <G >g (II-146)

n
<6 ™ =
Sy ¢S
M, SNy My

which breaks the infinite set of equations into (II-143) and

<G ">g = P+P) Y c'r; "<G n>S (I11-147)
Nn Rg, #Rs, 1i=1 Mn
n n ’

Subtracting (II-147) from (II-143) gives

SN n . SN .
<6 P>, = (1+P) ciry ny-legs (II-148)
Np i=1

and therefore, the configuration averaged Dyson equation

becomes

<G>= P+PI_<G> (II-149)

. Sy n . sy
ctr; P) (1+p,) ciT; ML (II-150)
i -

where n
" T ; (z—l
an i=
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"They have, and can have, no properties, and
their concepts can include no attributes,
save these relations, or rather, our mental
representation of them."

--J.B. Stallo

SECTION E
THE EFFECTIVE LATTICE THEORY

The purpose of the present section is to present a
different, but intuitively simple, method for determining the
lattice dynamics of a lattice with substitutional impurities,
where the manifestation of the "long range" effects of these
impurities tendsto affect the whole crystal. The "long range"
effects that are being considered are those that produce
"considerable" distortion in the neighbourhood of an impurity,
and so define a reasonably large defect spacé for a given con-
centration. These distortions in the one defect picture
usually manifest themselves on a macroscopic scale when exten-
ded to many defects placed randomly in a lattice. This macro-
scopic manifestation can be seen as a change in lattice constant
of the crYstal or as a change of the average environment about
a host atom.

From (II-23) and the derivation of (II-57), it has been

seen that the lattice dynamics problem can be approached from

Lu =0 (II-151)
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where

Log (B,2'50) = M (R)w26,58 (E,2') - &,5(%,1")

In the perfect crystal
L°u =0 _ (II-152)
and
p=1r° "1 (11-153)
Then, in the crystal made by placing impurities substitutionally

into the perfect lattice,

(L°-V)u = 0 ‘ : (II-154)

where L = L°-V

and the Green's function for this system is

G = (Lo-v) * (II-155)

By using (II-153), the usual Dyson equation is found:
G = P+PVG (I1I~156)

If the element of V referring to a defect site n (i.e.,

ni

v") contains both "long range" contributions VzR (where V, o,

and Vzi, nl#nz have a large extent and a reasonable probability
of overlapping) and also “"short range" contributions ng(where
Vzl and ng, n,#n, have a very small probability of overlapping
for a suitably small concentration c of defects), then to pro-

ceed further than equation (II-156) almost becomes an academic
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exercise in futility. To get around this difficulty, it is
necessary to start from (II-151) again.

The matrix V is now defined to be an arbitrary force
constant matrix that has the symmetry properties of L° and
depends, as L°, only on the difference in position of two
sites in the crystal. 1In Section C of Chapter III, a dis-
cussion of the nature of V} using interatomic potentials,

is given. Then,

(L°-V) _ (I1-157)

defines an effective crystal lattice made up of the atoms of
the perfect lattice and kept stable by the application of

pressure. The defect lattice can obviously be described by
((L°=V)=(V-V))u = 0 (II-158)
and if the effective lattiée Green's function is
Ge = (L°-V)"! (II-159)

then, from equation (II-158), the Green's function (II-155)

of the defect lattice can be found from
G = G°+G° (V-V)G (II-160)

Qualitatively, this means that the defects that are placed
randomly into this lattice "relieve the pressure" required to
maintain the effective lattice. The question that remains to

be answered is how this is done exactly.
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From the above discussion, it is obvious that any V

can be broken up into

Vo= V4V o (II-161)
and that :
v, =) Vv (1I-162)
meU
c
‘g m
while : Vir =)  Vir (II-162y)
meU .

where two properties, the "local" aspects and the "long range"
aspects, have been associatéd with a defect, and these two
properties give to each element m of the universal set of
defects, U, + & two valued nature. Since VﬁR has a reasonable
probability 6fvoverlap with some V%R, m#n, for a configuration
(arbitrary) of defects, it should be noted that the informa-
tion concerﬁing force changes due to any defect-defect inter-
action is aléo contained in the "long range" defect space of
any defect.

Obvioﬁsly, V can be expressed as a sum over all sites
as follows:

v=7] ¥° (II-163)
seUg

Equation (II-160) may now be rewritten as

G = G°+) G°VIG+] G°VIRG-} G°V°G (II-164)
meU, meUq seUg
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If, upon configquration averaging equation (II-164), V° removes
all the information related to the "long range" effects of
random defects at a concentration ¢, then the scattering in
the éffective lattice would occurvonly off the defects as
defined by VE . Assuming this to be the case (for if it is
not, it will show up as a contradiction below), theh it is
further assumed that only single scattering information is
retained in this effective lattice with defects VE, and that
any higher ordef process is not "remembered". As well, it
seems reasonable to state that G is governed principally by
whether or not the space of its definition is affected by

any single defect Vi. This suggests separating out the Green's

function associated with a given defect VE as follows:

G-G°V2G =(I-G°V§)G = g" (IT-165)
and G = Go+J GoVIG+] G°V G-} G°VG (II-166)
m#ner mer seUg

So, by using (1I-165), equations (II-164) and (II-166) may be

written as

G = Go+] GOV (I-GIVE) TTe™+]  eoviie-] 6oV (1I-167)

meU meU seUg
and G" = G°+) GovI(1-G3vI) T16™+]  Gevipe-] 6oV  (II-168)
m;éneU0 meU0 seU

' -1
where T) = Vi (I-GSVy) (II-169)
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is just the usual t-matrix describing the scattering of

lattice excitations due to the perturbation introduced by a

single defect V] of an otherwise perfect effective lattice.
Sirnce the term

J  Govige-] 6°Ve (II-170)
me Uy seUg
is repeated in both (II-167) and (II-168), this suggests that
by taking
<J eVl Ve, =0 (II-171)
meU, seUg aji

for all subsets j of i defects oftﬂ,and“necessary" integers i,

the "long range" effects have been removed from any equation

for <G> or <g"1> (i'=1l,...,1i, in terms of G°. Thus,
nl,...ni

by configuration averaging equations (II-167) and (II-168)

over all configurations of defects of the set U; and n€® res-~

pectively, it is found that

<G> = G°+G°<) .TyG™ | (II-172)
meU
(¢}
and <G >, = G°+G <) TOG"> | (II-173)
s n 1l s .
n m#neUy n

It is obvious that these are only two of a whole hier-
archy of conditionally averaged equations that can be defined
in an attempt to solve for <G>.

‘Before going any farther, it should be stated that for

an operator O, which depends on all UO, if
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<0> =0 : II-174
a3 ( )

for all subsets j of m defects of Uy then by using (II-35)

and (II-37) it can easily be shown that
<0> =0 VvV nsm and j' (II-175)

Theréfore, in equation (II-171), only the maximum value of i
need be considered.

Since all information related to the "long range"
effects of thése random defects has been removed from the
discussion of the configuration averaged system with truly
random defects, as is obvious from (II-172) and (II-173), the
problem has now been reduced to a low concentration theory
problem with impurities V? and perfect létticé Green's functions
G°. Thus, by the same arguments as Section B of this chapter,

the approximation

Sm ~ Sm -
<G >Sm'sn > <G >sm (II-176)

is made. By (II-174) and (II-175) it is implied that i=2, for
for equation (II-171) is the ccndition "necessary" to give the
usual low concentration theory result for <G> with G° replacing

P.

<G> = G°+G°]  crh(I+GSer]) Tl<a> (II-177)
Sn€Ug

where G] has a contribution only in the "local" defect space
and that contribution is the same as G° in this space. This

condition, that for a given concentration c of defects
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<z Gongg..X G°-\-I.SG>S , =(,<z VIII..lRG>s .8 —z VS<G>S ,
mEU, seUg n1t Rz meU; . P10 R2 seUg n1
_ (11
—= ' -1
or V=<l VigGs ,s (<& ¢ ) (II-17
meU R B 1 P2

where from {(II-172) and (II-35)

<G>g g = G°4G°) cT?(I+G§cT?71<G>
o B Sm#Sn, rSn,eUs
° n ni, - ny ny, -
+ s_ (T, L (z+6geT 1) “lar, 2 (14aocT; ?) Th<e>
s .
(11-17

is a statemeat of what V is, in terms of V z. Clearly,
there is no unique choice of V, V ; and V_ since there are
only two linear equations (II-161) and (II-178) for three
unknowns. This seems to imply that all this work of the
pfeceeding pageé was done for nothing. No. This is not the
case, for the distortion itself, that brings the lattice into
an average form (II-157) and defines the effective lattice,
has not been treated here. This, in itself, is a major
undertaking which will not be considered here. Then, how can
this effective lattice be determined? This has already been
done to a large extent by the defect crystal; for instance,
by looking at the defect crystal, one can find out experimen-

tally the change of the lattice constant due td v and the

LR’

change of the average energy per host atom due to Vir® These

changes define V , i.e., the effective lattice.. Once V is

)=0

Sn2

-l78ax

8},)

9)
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known, V., can easily be found by using the interatomic poten-

tials ¢ Phost deféct,in the effective lattice, thus

host,host’
resolving the apparent problem.

This method is not restricted only to the low concen-
tration theory approach used here, for if V; can be approxi-
mated by a mass defect, then this work can be carried through

for any n-tuple process, on the condition that i of (II-171)

be A
i = n+l



"To tell us that every species of things is
endowed with an 'occult' specific quality by
which it acts and produces manifest effects,
is to tell us nothing, but to derive two or
three general principles from phenomena and
afterwards to tell us how the properties and
acticns follow from these manifest principles
would be a very great step."” --I. Newton

CHAPTER III

DEVELOPMENT

75
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Any formal theory, conceived by a scientist, is
nothing more than a peculiér artistic sketch,‘until it is
made usable. To physicists today, usability means computer
programs. This chapter, which is sandwiched between Theory

and Application, is given in order to develop the tools and

ideas necessary for any application.
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SECTION A
PERFECT AND EFFECTIVE LATTICE GREEN"S FUNCTIONS

Since the procédure for finding bothlﬁhe perfeét and
the effective lattice Green's functions is the same, the
discussion will first be restricted to theiperfect crystal
Green's funétions.

The fundamental information about the perfect lattice
is contained in the eigenvectors and eigenvalues described
in Part 2b of Section A, Chapter II. Since the arguments of
P are the displacements, it follows that an expansion should
be made in the style of the normal coordinates, and that the
Green's function for the normal coordinates (or the annihilation
and creationr operators) be determined.

The perfect crystal Green's function, (II-56), is

given by _
-i(Enz-Kltz')

|~— 8

Pogll,l'iw) = Ugj(i)o%(ﬁ')e

=/ 1]
B e 3k 3R

x<<Qd (k,t);Q3 (k',£") 5>t (E ) qe-e")  (III-1)

in the "massless" formulation which involves the following

reduction of variables:

| ug (f,t) = VMg ug(Z,t)

_— 1 .
py(2,t) = p, (2,t)
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while " o
L]
¢a6(2,z )

VM MB

o

0, (E,2Y) =

and the perfect crystal Hamiltonian becones

1 7 ] A ', '
H=2] p2(Z,6)+ 2] u,(B,t)0,g (X, 8" ug (R, ¢t)
o £ % %'

The Green's function described in (III-1) is
‘ VMo Mg

times the mass formulated Green's function.

In equation (III-1), cg(i) is the eigénvector, and
03 (k,t) the-nofmal coordinate of the appropriate branch j,
of eigenvalue wj(ﬁ) and wave vector i, in a crystal described
by force constants @aB(E,i') (mass formulation).connecting
atoms of mass M, and MB'

Writing the.normal coordinate opefator in terms of the
phonon annihilation and creation operators, (II-26) and

using

[

W

e
|

= eth/ﬁa.(E)e—th/ﬁ
3 | .
ag(ilt) = eth/hag(E)e~th/h

and the commutation relations (II-27), the normal coordinate

Green's function of equation (III-1l) becomes

P s -ind (t-t') i (0 “wsr(k*
ol 2/wy (K)wy (k7)

-i(wj_(k)_t-wj ] (k')t')

x [ag(i,t),aj.(i*,t')1+e [a;(i,t),aj.(i',t)]>

(I111-2)
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Substituting (III-2) into (III-1), and using (II-9), P ,(%,%")
is found to be
o (K)o} (kye k- (R-21)

j k wz-wﬁ(ﬁ)'

(II1-3)

2+

where w = wpt+ie and e+0+ (III-4)

If the advanced Green's function had been evaluated,
instead of the retarded, then equation (III-3) would remain
the same, kut (III-4) would have w=w-iec.

Transforming the sum over k in equation (III-3) to
an-inﬁegral by |

v

N da’k
k (2m) 8 I

and taking w=real, equation (III-3) becomes

Pog(X:2'iw) Y yfa® — (111-5)
o (2m® N 3 w2-w? (K)+ié
where V=crystal volume and §-0%.
Next, by applying the theorem
b f(x) b £ (x) |
lim [ ———— dx = pf AxFinf (y) a<y<b
8§+0* a x-y*is a x-y

where P

indicates the principal value integral ard f(x) is a

continuous function of x, equation (III-5) may be rewritten as

S WnaxVag (2-L'iw") im . s
P (2,00 = p [rar 2t do'- — vgg(¥-1';w) (III-6)
aB = 2,12 o
0 we-w 20

O<w<Wwpax
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where

o 1 1 s s oo —iF X ~
Vop (A-1'iw) = — ] Ja*kozd (Ryod (R R 6 0 (%) -w)
(211_)3 n, j A J

(III-7)
and np= the.number of atoms per unit cell. 1It is observed
that for ="', Vop (0;w) is just the usual density of states.

Once vaB(E—i';w) is found, it is a trivial exercise to
find _
Im Pug(2,2';0)=- %; Vop (-1 ;w) (III-8)

and numerically obtain

w+A r i

r v (z—z';w')l

+ ngw' ob " " (I11-9)
w=A w- w' I

where the second term in (III-9) becomes vanishingly small
as A»0%, and thé greater contribution, coming from the first
term of (III-9) in brackets, can be found byvusing Simpson's
rule. |

The method used to find v,g(2-2';w), of equation
(III-7), was similar to that introduced by Raubenheimer and
Gilat (1966) for the evaluation of the densityvof states. The
particulars'of this very accurate method can be found in their

report, and only an outline of certain ideas is presented here.
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The important points to consider are: that the inte-
gral of equation (III-7) is transformed into an integral over
the irreducible zone, by taking advantage of the transformation
properties of the eigenvectorsvo;j(k) and cg(k), and also the
factor e'ii‘(l'l'); and, that the sum and iﬂtegral for this
Brillouin zone is found by subdividing this irreducible zone
into cubes of desired mesh size. It is obvious that not all
vof this zone can be cut into cubes, and thus an appropriate
weight is given to each subvolume of the unit volume, i.e.,
the chosen mesh cube size. That is to say, When a cube falls
in the irreducible zone, it is given a weight 1, while if
(l/n)th of a cube falls in this zone it is given a weight
(1/n). Also, this mesh can be made smaller, near k=0, where
accuracy is more difficult to obtain. No cube is centered
at k=0 or on any symmetry axis, so that degeneracies, other
than accidental ones, are avoided. The only input parameters
necessary for this calculation are £hose which are required
for defininy the eigenvectors, cg(i), and the eigenfrequencies
wj(i), for the system. These parameters (i.e., @as(i,i') and
Ma) are taken to be either experimentally determined, as in
the case of the perfect lattice, or experimentally and/or
theoretically determined for the effective lattice.

Apart from the mass defect, it now seems that even for
the simplest defect space, the number of "weighted" densities
of states, vae(i—if;w), is enormous. This is not really the

case, for by using the symmetry properties of the system, the
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number of independent vaB(E-E';w) needed is very much less
than the number that seems to be needed to define the defect
space. The equivalence of many of these functions can be
found by the reduction procedure, and by noting that these
functions, within a rotation, depend on |%-%'|. The results,
and some discussion of such a procedure, are presented in
Appendix I forranbf.c.c. lattice.

Since ©° and V are defined to have the same symmetry
properties, the only difference in the above discussion
between the derivation of P and G° is that 9¢=¢° is used for

defining P, while 6=(8°-V) is used to define G°.
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SECTION B
GROUP THEORY AND THE SUBSTITUTIONAL IMPURITY

In this section, a brief synthesis of certain sections
of Maradudin (1965), Tinkham (1964), Koster (1957), Agrawal
(1969), and Ludwig (1964) is presented. The purpose of doing
this is to briefly describe the mechanism by which the defect
space can be reduced. Since the low concentration theory
requires only the single defect scattering t-matrix, the
techniques foi matrix manipulation are those‘for the'singie
defect problem, and so it is this which is considered below. -

If n_ is the number of neighbours in the defect space,

th §rreducible representa-

and m; is the number of times the o
tion appears in the representation of the group, then, with
this method of reduction, the 3(np,+1) x 3(n,+l) matrix, which
defines the defect space, is reduced into a set of m xmg
matrices. Theée matrices usually have m;<<3(n,+1) and

nr

§=1m0<3(nn+l)
where n. is the number of distinct irreducible representations.
Such a scheme is.obviously usefﬁl, since it greatly decreases
the amount of WOrk necessary to solve any defect problem.

The reduction of any matrix QaB(E,E'), which spans

the defect space and has the symmetry of the group, is made by

a similarity transformation
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Q.3 j'y=1 M, _j 0.q (T, 2 )ME 5 . (III-10)
(Gi"(oi') o B (oi),(l,a) aB it toi,).(i ' B)
(A
where the matrix M(og),(l,a)’ connects the»i#h row of the

ojth irreducible representation to thé Cartesian coordinate
g,‘of the at! atom in the Ith unit cell, and j runs over l,.}.mo.

Using (II-153) and (II-154), the single defect problem
may be rewritten as

PVu = u (IT1-11)

which can be broken up into a pair of equations (Maradudin
(1965) ), one of which is in the space of the defect.
Generally, the form of (III-1l) in the defect space, can be
expressed as |

pviy(s)= ) y(®) (III-12)

where s labels the possible solutions to this equation of
eigenvalue A, and eigenvector yis)
The Green's function matrix Plas(i,i'), under an

operation of the point group, transforms as
Prarg (B, =] 8505 Proag,2)8f.g (I1I-13)
a B '

where the 3%3 matrix, S, is a real orthogonal transformation
of the coordinate axes applied ét the defect site. This
transformation takes the crystal into.itself,'and thus, the
lattice site (i,a) into (L,a'). A similar transformation

1

law holds for v, when the symmetry operations are applied to
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the defect site. These transformations (i.e., the group

1 has the same symmetry at a defect

elements) are the same if v
site as L° of equation (II-152) has at any atom, for the same
extent. This is assumed to be the case in the discussion
that follows.

Returning to the eigenvalue problem (III-12), i£ can
be said that there is a possibility of some‘eigenvalues Ag

being the same, but belonging to different, linearly indepen-

dent ¥ (8)rg, Explicitly, this can be expressed by
% A,p (Z,2 )W( 1) gy = Ag w (%) (III-14)
)

where A = Pjvl, and the index i=1,...,f_ labels the eigen-
vectors belonging to the eigenvalue A;, where f; is the
multiplicity.of the eigenvalue Ay;. Thus, any linear combina-
tion of the f; vectors v¢%1) j5 a1s0 a solution of (III-14)
with eigenvalue )

Applying S to both sides of equation (III-14), and

using the fact that SS+=1, equation (III-14) can be expressed

as

l%'s Ay (E,EN ¥ (@) = A 04 (E) (III-15)
where w&f°i)(ﬁ) = gsa.a ;°1)(z)
or v (98)(3) = Zsa.awégli ; (s “En (III-16)

o,
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Because S is a Symmetry operation of the defect
space, then as (1',B8) run over the atoms of the space, so do
s™'(%',8) although in a different order. Because of (III-16),

equation (III-15) may be written as

LA (v 8 @y = v 08 (g (I11-17)
2'8

From (III-17), it is observed that if the vector

W(ci) is an eigenvector of A, with eigenvalue Ao, then so is

VARSE R T means that ¥'(°i) must be a linear combination
of the vectors W(Ui). Consequently, under all'operations of
the group which take the molecule, defined by the defect
space, into itself, the £ vectors yloi) transform only
among themselves, and therefore form a proper basis for the

group.

The connection between W(Gi) and the theory of group

representation can now be made. It is said that W(oi) belongs

th th

to the 1 row of the o irreducible representation of the

th

group. If the o representation appears more than once, say

th th

J .
m0 times, then W;Gi)(l) connects the i row of the ol

irreducible representation to (2,0) in the defect space.

Therefore, the matrix M of (III-10) can be constructed out

of the vectors VCESN

The reduction of Q now lies in finding the vectors

3 3 .
W(cl). The means by which W(Ul) are found is now outlineqg,

starting with the character table for the irreducible repre-

sentations of the group. This table, if not listed, can be
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found using the following rules:
' .

1) All the complete classes of the group (i.e., nc) can be
found from a knowledge of the group elements.

2) The nummber of irreducible representations, n is equal
ton .

(o4 .
3) The dimensionalities f, of the irreducible representations

of the group can be found by using rule (2) and

£2 =g . (III-18)

where g is the order of the group. Rule (3) determines

-

the first column of the character table, because

x ) = £

o (;11—19)

where e is the identity element.
4) On the basis that:
a) £he rows of the character table must be orthogonal and

normalized to g, with a weighting factor N, (the number

of elements in the.kth class gk), i.e.,
Qe (61)

where R are the elements of the group G; -
b) the columns of the character table must be orthogonal
vectors normalized to g/Nk, i.e.,

n

. v
o=1 B S
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all the other elements of the character table may be
worked out.

Once these elements of the table have been found, it
is easy to find out how many times the cth irreducible reﬁre—
sentation occurs in a given representation of the group. If
X (R) is the character of a given representation of G,

associated with ReG, then,

1 , 1
m_o= = IO RwE® ==
g

o R

(=}

=1k

A3

N x OV (g, ) *x(g,)  (III-22)

o]

th irreducible representation

gives the number of times m_, the o

P(o)(R), is foﬁnd in the given representation TI'(R) of the group.
Having found the types of irreducible representations

and the number_of times they appear, it is now necessary to

define them explicitly. By inspectioh, (of literature or of

the symmetry of the representation), a set of basis functions

¢;°) h row of the cth

representation, is found, such that these functions, under

, that belong to the jt irreducible
the operation of the group operators PR, transform among
themselves. P_ is the operator which corresponds to R and

R
requires the following to be satisfied:

~ -1,
P d(X) = q(R "X)

where q is some function of X=(x,y,z). These set of f0 basis
functions are then listed alongside the appropriate represen-

tations in the character table.
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With this information, the irreducible representation
T(o)(R) can be found from
(o) _ fo (o) (o)
P47 =1 ¢, A O (I11-23)
J 'l_lj
J
Having obtained the irreducible representations r(o)(R), the

projection operator, defined by

(o) _ £ (0) .
P, = =2 Yp'"/ (R)*P (I11I-24)
—13 R g i3 R

is applied to ¥, an arbitrary vector in the defect space, and
in so doing, produces the eigenvector W(°i), which transforms

according to the ith row of the oth irreducible representation.

(o:)z plo) | _
yro4 gii vy v (II1I-25)

This is the desired result.

In general, since the character table and basisbfunctions
for most symmetry groups, can be found in the literature, only
the last few steps need be attempted to find ?(°i). In
Appendix II, %the procedure is briefly outlined for a first
nearest neighkbour defect space in the f.c.c. lattice. The
results of Appendix II are used in Appendix IIIQ to find the

reduced P1 and vl (for the same lattice and space).



90

SECTION C
- INTERATOMIC POTENTIALS AND THE DEFECT LATTICE

This section contains a brief description of pair
potentials. In the first part of the section a short motiva-
tive type discussion is given for using an effective pair
potential between atoms in a crystal lattice. The ideas of
this part, which were stimulated by the treatment of liquids
in Hirschfelder (1967), also allow for a pair potential view
of the effective lattice. Parts 2 (Morse potential), 3 (Lennard
Jones potential) and 4 (Ionic crystals) are shorts on three
effective pair potentials which prove useful in the next

chapter, Application.

1. The Crystal Potential

Consider the perfect crystal system of N_ identical
atoms, whose total potential energy function & ((Z,d),,(%,a),,

...,(i,a)N ) may be expanded as a sum of two, three,...,n-body
S .

potentials:
o= 1 ?s ?s 6 1 ? Ng ? T a4 1'§s ,?ST
i#j i#j#k il#...#in
aee : i '(111—26a)
where =0 |
da | a=a, (III-26,)
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Equation (III-26) may be rewritten as

-1 Ns Ns
go = — I oeSif (III-27)
2! j=1 =1 %7
iy

eff

where ¢ij is related to. the "bare" two-body potential by

Ns T, .
¢?§f = ¢- . 1+ _]_'_ Z __J_'_l_ls 4+ oo (III—ZB)
B TR s g5 0y

Therefore, in a crystal, if vibrations are neglected

eff

033 = 4t e 5p) (II1-29)

j'2
where B symbolizes a dependence on some bulk properties of
the solid. It is easily seen that the separation between
nearest neighbours in a crystal is not given by ro—-the
separation at which the intefatomic potentiai has a minimum.
This difference on the separation distance is the result of the
attraction of an atom to atoms beyond its nearest neighbour.
Below, the form of the pairwise potential ¢:§f in the crystal,
is taken to be the same as ¢ij with a change only in the
potential parameters.

In a crystal with No substitutional defect atoms a,
and Nb=(NS-No) remaining perfect lattice atomé b, the effective
interatomic potentials depend on the type of pairing aa, ab,
or bb. Care is needed to avoid overcounting the interactions,
while still defining physically meaningful effective potentials.

For a random distribution of NU and Nb atoms,
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1 No Ny aa. 1 Ny, Np bb Ns Np ab
<I>c h ET'Z z ¢mn ET Z 'Z ij+z z ¢mi
*m n i i
m#n i#j
3! m; m, m, mimam3 3 i, 12' 3 111233
m; #my7#m, i)#i,71,
1 Ny Ny Ny 1 Ny Ny Ny
+=—=1 1 1 pbba, - DD} rPaa . ... (1II-30)
21y § 5 idm o210 % & L Cima
i#j n¥n
If
Ny, N N, N, ‘ Ny, N
1 TP 3D pp eff 1 %o So b Yo
o, = — 1 [ ops ¥+ =7 ] e *ffy Y ) 002 ©FF (111-31)
2! 1 3 2lm n i m

i#j n#n

then the definition of the effective pair potential is ambigious,
since the environment of a given pair contains some a and some
b atoms. It is desirable to define the interatbmic effective
potential as the effective potential of a pair, immersed in a

medium of avgiven bulk composition

.- Nc {d@c

- —_

s da

a=agq
This is possible if a and b are quite similar and/or if the
properties of a and b are completely randomly distributed in
the crystal.

At "low enough" concentration ¢ of a in b, where no

a is aware of any other a, the situation may be simplified, since



93

the envirorment of the aa pair is essentially all b. This
is only reasonable if already the forces are "short enough"

ranged. The same is true for an ab or a bb pair. Consistent

bba

13m terms are assigned to the

with this picture, all the T,

b . b
¢i: pair, the Tigi terms to ¢mn and so on. Thus, (III-30)

becomes
1 3 8oy, 1 ¥ bbb /, bb
o, = 3T ) ) 653{1+ 3] /bi5) * e (I11-32,)
c ; i 3 ij 3 k#i,j 1Jk a
i#3
Ny, No N '
ba 1 b bba
+ z ) ¢im{l+57 Z . 1Jm/¢1m) + "'} : (III-32p)
im * J#L
Ng N N |
1 wo Wo b
+ =1 1 eaajl+ ] (TIR3/eaD)+ —-z (TRan/0ma)+" "
2lm n i 3! ml#m,n
m#n

(III-32)
The sums inside the curly brackets of (ITI-32,) are

over Np atoms fdund in a given volume, whereas the similar

sum in (III-28), for the perfect crystal, covers all N; atoms

of the crystal. At "low enough" concentration’that is being

considered,»thé difference between these two sums for the

terms inside the curly brackets is negligible. Thus, for the

same separation of i and j

bb eff eff

¢lJ ¢lJ (II1I-33)
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" Clearly, in this case, the effective lattice would only be
defined by
Ns Ns

oeff - 2—| ) Z 0§5% (a=a.) - (III-34)

(N

i#j
where a_, is the lattice constant of the crystal lattice with

a concentration c of random substitutional impurity atoms a.

Because of equation (III-26y)

d@eff

# 0 : (IT11-35)
da a .

ac

The placing of the impurities in this lattice results in

d¢c
= 0 (ITII-36)
da Ja=a '

or the stable defect lattice, which is observed.

If the concentration of impurities is not "low enough",

: bb eff '
the equation for ¢ij has some information about the

properties of'atoms a. Thus, if the form of_¢:: is the same

bb eff

as ¢ the parameters of ooy are different from those

13’
of ¢ij , but the form of the potential remains the same. Here
again, the symmetry about any atom b, in a lattice of atoms b,
with an 1nteratom1c potential ¢bb eff, is the same as that of
the perfect lattlce. Therefore (Section E, Chapter II), the

effective lattice energy is given by
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1 Ns Ns :
ooff o ¥ TP eff (5=a ) (II1I-37)
21§ 3 M :
i#3

where, except for mass defects,.the relation given by (III-35)
still holds.

In a real crystal, both central and non-central forces
contribute to the lattice energy. Althouéh the non-central
contributions to the lattice energy may be sizeable,»the
Change in lattice energy, due to the non-central contributions,
may be negligible in most cases (Christiah and Vitek (1970)).
Assuming this is the case for all the substances that are
treated in this thesis, even where non-centrality may be of
particular importance, central potentials can be used to
describe crystal lattices, and they are said to give a good
representation bf force changes, but not necessarily of the
forces themselves. |

The description of interatomic forces is restricted

here to central potentials

¢(rij

) = ¢ij(l(z,a)i—(2,a)jl) (III-38)
which, irrespective of their form, depend on certain parameters.
For such potertials, there are four important properties that
require parametrization; they are

a) ¢, the distance, toward the origin, beyond which the re-

pulsive forces become very large, (a measure of"hardness");
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b) €, the potential's energy depth (a measure of the strength
of binding);
c) S the distance from any origin atom, where the potential

has its minimum;

d) r,, the extent of the potential.
Using these properties, the potential of (III-38) may be

written as

¢ (8,e,ry,roiz;y)

If ¢an(SnrEnsXonrTenirij), ¢BB(GB,eB,roB,reB;rij) and
$ap (8aps€aBsToaBrTeapiXij) are interatomic potentials of the
same form, connecting the atomic pairs AA, BB and AB respective-

ly, then the following empirical combining laws may be valid:

§,+6
Spp = ——b (III-39)
2
and DAB ,
€ap = - Ve ER (II1I-40)
vD,Dg

where DAB,DA; and Dy, are the dissociation energies of the
molecules AB, AA, and BB, respectively. Since the inter-
atomic potentials have a "hard core" at r v§, the atoms

appear, at this distance, as almost rigid spheres, and (III-39)
is valid for such potentials. Equation (III-40) is a more
~general form of the molecular result, éuggested by Hirschfelder,

Curtiss and Bird (1954), i.e.,
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D = /D D _ (III-41)
AB A B

to the crystal state. If (III-41) does not hoid, then the

relationship will be out by a factor of

DAB

vDpDp

Since D,,, D, and D, are eaéily found, it was thought that if
the same type of forces determine the major part of the bind-
ing energy in the crystal, as in the molecule, then (III-40) may
be a good approximation. From crystal information (i.e.,
CujAu), it is seen in Chapter IV that this relation does not

hold for the Cu/Au crystal system. It seems obvious that

3 ‘ -—
mln(roA,roB) YoaAB < max(roA,roB) (TII-42)

and min(reA,reB) < Xoap max(reA,reB) (III-43)

but nothing more precise can be stated about these parameters.
In Chapter IV, the Morse potential, the Lennard-Jones,

and the Born-Mayer plus Coulomb potentials are used in treating

metallic, rare gas and alkali halide crystals, respectively.

A brief discussion of these potentials is now given.

2. The Morse Potential

The Morse potential, which found general use in the
problem of molecular vibrations, has also been uéed as an inter-

atomic potential for metallic crystals by Girifalco and Wiezer
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(1959), Cotterill and Doyama (1967) and De Wette, Cotterill and
Doyama (1966). This potential takes the form

o(xr) = E(e-za(r—ro)-Ze—a(r‘ro)) (ITI-44)

and has a depth of € at r=r_ . This potential is rather

physical as is seen from

r-oo ¢ (xr)->0 : (III—45a)
r-+0 ¢(r)+eear°(ear°-2)>>e (I11-45y)
since e®fos>1

For small r

6(r) ~ e((1-20r)e2%Fo-2(1-ar)e"  ©°)
N eezar°(l—2ar) (ITI-46)

and therefore,the "hard core"

2ar
e o 20
£ = ee’"TO(1-2q8)
e
-1
l-e
or Y
‘ 20
is associated with 1. For large r, very roughly
o
¢(x) ~ -2ee”*(T7T0) (III-47)

and the extent of the potential r,

"'2€
—_— v =2ce

e

~a(rg-ry)
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or v e Vv ro+ 1
a

is associated with r_ and %
For a pair of atoms in a crystal lattice, the Morse

potential parameters e, &, and r,, are calcﬁiated by solving

three indepéndent equations thét are related to the three

‘necessary and sufficient conditions for crystal stability.

These conditions are:

a) a crystal that neither explodes nor implodes

b) a crystal that is stable under infinitesimél dilution or
compressive deformation and infinitesimal shear deforma-

- tion
¢) a crystal whose cohesive energy is finite.

If the total energy of the crystal containing Ng atoms A is

2

@o - s ns v -
=5 Z L nj¢(e,a,ro,rij) (III-48)
4=

where ny are the number of atoms in the jth nearest neighbour

shell, and ng are the number of shells included in the sum,

then condition (a) means

dase
=0 (III-49)
da a=ag, )

where a, is the lattice constant of the stable lattice and
'(iII—49) is the first equation which must be satisfied.
Generally, the evaporation of a neutral atom from the crystal
requires, first, the localization of an eiectfon at the atom

to be removed;"This‘implies an electron redistribution, and
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thus the'energy per atom, (%°/Ng), cannot,_in,general,'be
equated with the energy of sublimation per atom, but rather

is associated with the energy of vacancy formation ES
(Cotterill and Doyama (1967)). Therefore, the second equation

to be satisfied is

2 g (III-50)
Nge VY

The third equation, related to condition (b), is given by

d?gpe
(III-51)

Boo = Voo

2
dVO a=a,

where B,o, = 1/Kgo, and Ky, is the zero temperature and pressure
compressibility, while V, is the zero temperature and V_, is
zero temperature and pressure crystal volume. Using (III-49),
3 ' 3
NSaO aO

and V & —
ng, n,

Voo =

where n_ is the number of atoms per unit cell, equation (III-51)

becomes

(IT1-52)

s dzq)(elarrofrij)v
1 da

Cama,
and therefore, é, o, and r, may be determined.

3. The Lennard—-Jones Potential

A complete discussion of this potential is presented in
Hirschfelder, Curtiss and Bird (1954); only a brief sketch is

presented here. The Lennard-Jones potential is given by

MEMASTER Hinnvene ITY LIBRARY



101

12 6
¢(r) = 4e{{%]ﬂ _{9] ] (IT1I-53)

r

The depth of this potential is ¢ at’r=2%0. As r>0 the
potential beéomes infinite, while as r+~ the potential tends
to a constant value, zero. It is obvious thaﬁ the extent
of this potential is governed by the attractive term [%]6.

Thus, the pctential drops to a depth of [%]e in
1
ro v (4n)® o

On the other hand, the "hard core" is determined by the re-
| 12 - v
pulsive term [g] . Thus, the potential feels an n-fold

increase in energy e at

1
12
§ [ﬁ] o

Therefore, in this potential, ¢ gives a measure of the "hard

core", extent and also position of the minimum.

4. Ionic Crystals

In order to discuss the lattice dynamics of alkali
halides, the perfect lattice Green's functions are required.
The lattice vibrations of the alkali halides have been repre-
sented by the shell model, introduced by Dick and Overhauser
(1958) , which considers the ions as consisting-of rigid charged
shells bound to cores by harmonic restoring forces; this thesis
is not concernéd with any more sophisticated model than the
~rigid ion model. Thus, it should be noted that all perfect
lattice ‘information for KBr has been obtained as input data

from Timusk (1970).
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The rigid ion model is required in this thesis so
that a crude estimation of the distortion of the defect
space about an Nat impurity in KBr can be made.

An excellent treatment of ionic cintals from the
rigid ion point of view is contained in Seitz (1940), and
only a brief discussion of the interatomic potential for
these crystals is presented here.

Ionic crystals are composed of positivély charged
metal atom ibns and negatively charged electro-negative
atom ions. The main interaction is the ordinary electro-
static one. Thé electrostatic forces in these crystals are
balanced by repulsive forces which, on the basis of quantum
mechanics, are the result of ion-ion exchange, and take the

form of a Born-Mayer potential

A e TP | (III-54)

therefore, the total potential is given by

- : 2 2
¢(rjj) = 2e Fig/e, 4 " (ITII-55)

rij
where the + sign is taken between like charges q of atoms i,3

and the ~ sign is taken between unlike charges g.
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SECTION D
NEUTRON SCATTERING

The scattering of neutrons by nuclei bound in crystals
has been discussed by many authors (e.g., Van Hove (1954),
Brockhouse (1964),(1966)). The approximations, used by these
authors, make the scattering valid for thermal‘neutrons,
whose energies are so low that only s-wave scattering is of
importance. With these approximations, the néutron scattering
cross sectioﬁ can be found by using the Born approximation
(Van Hove (;954)). Thus, in a monatbmic lattice (for simpli-
city), the scattering cross section, written in terms of the

correlation functions for the scattering particles is

2
d‘o N k1

- S kl III-SG
a0dE  2mhk, (krw) ( )

at e*“texp(<k.u(T,t)kK.a(i',0)>)

‘oo

@A~
o
.-l
~t
L
[
]
o
o
| —— 8

(ITI1I-57)

~

k., and El aré the initial and final wave vectors of the neutron,
ﬁk=h(§o—ﬁl) is the momentum transfer to the crystal, and fiw is
the energy transfer to the crystal. It is noted that equation
(III-57) is the simplified form of the general expression for
S(k,w), which is valid in the harmonic approximation. The

quantity Ay, in (III-57) can be considered as an effective

temperature dependent scattering length
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~E<(R.0(R)) 2> (II11-58)

AI = aie

where a; is the neutron scattering length of the I*h atom.
In the perfect-crystal, the exponential factor of (III-58),
known as the Debye Waller factor, is independent of ¢, but in
an imperfedt crystal, this is not the case. 

For one phonon inelastic scattering, the exponential

in (III-57) can be expanded as follows:

e<k-uld, t)kull 00> | g g S(f,0)R.G(X,0)> (III-59)

where the first term of (III-59) gives the elastic scattering,
and the second term the one phonon process. By looking at the
"form of the second term of (III~-59), it is clear that all the
information required for its evaluation is contained in the
displacement-displacement Green's function.

Now the term of interest in equation (III-57) is

]

~ l : i, -0t s ~ o~ e~ ~ o~ A
skow) = = Y AEA’;,elk-(2 2 lat elvtek. (X, 0)R.2(E,0)> (III-60)
s 2 %'

-0

Using equations (II-8), (II-13), and the fact that w can be

positive or negative, since neutrons can gain or lose |[fw]| ,

~

Jdt e cu (R, )u, (£',0)> = #n(w) Im G, (%,2'0) (I11-61)

B

[+ 2]

1l

efu_y :
1 (I11-62)

n(w) = %o (loss)

l-e

where } n(w) (gain)
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and therefore, (III-60) becomes

s (K,w) = ;E-n(m)z _aar oK Y koG (Z,000)  (1T1-63)
Ng A o ¢ B aB

| Thé scattering cross section is now defined by equations
(I11I-56) and (III-63) and can be separated into two parts, a
"coherent" part and an "incoherent" part. The incoherent
scéttering can be classified as that part ﬁhich depends on the
magnitude of k, and the coherent scattering as that part which
depends also'on the direction of k. Simply speaking, the
contribution that comes from the average behaviour of the host
atoms is the coherent part, and the incoherent part of the
scattering is the contribution due to deviations from this
average. .

-Elliott and Taylor (1967) have shown that the different
weighting given to host and defect sites by Ah‘and Ay réspecti-

vely results in

S(k,w) = sinc(i,m)+scoh(i,w) (III-64)
where o
. (Ad-Ah)zc(l-c)
;.o (Ksw) = Im n(w)h k2P(0;w) (III-65)
ne 1-(1-c)Mew?P(0;w)
and \
: c(A_.-A ) ,
~ 3 d "h s
Scoh(k,w) = Im n(w)h Ah+ 1 k,o5(k)

1-(1-c)Mew?P (0,w) jaB j

x kg0, (k) <Gy (K,0)> | (I1I-66)
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for mass defects treated in the low concentration theory.
For a low concentration of impurities, randomly

distributed in the host crystal lattice, Lakatos and

Krumhansl (1968) have shown that the coherent and incoherent

contribution to S(k,w) may be expressed as

5,0 Kiw) = ﬁn(w)gs kakB%Azxm Gy g (Lrliw) (III-67)
aﬁd
s . (K,w) = 2 n(w)H?] k k.7 k- -1 6 (Z,E';0) (III-68)
coh Ns ap o BE % a8

where AI is the deviation of the effective scattering length
from the average effective coherent scattering length H

It is obvious from both (III-65) and (III-67) that
the incoherent scattering is related to a modified density
of states, while from both (III-66) and (III-68) it is seen
that the coherent scattering is related to the individual

excitations~-the phonons.
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SECTION E
IMPURITY INDUCED INFRARED ABSORPTION

The impurity induced infrared absorption in crystals
has been treated by Klein (1968) for ionic and neutral
crystals with charged impurities, Davies‘and Healey (1968)
for rare gas crystals, and Maradudin (l966b), Elliott and
Taylor (1967) for general crystals.

In perfect crystéls, the frequencies of phonons
excited or de-excited by light, must equal the frequency
of the light, and the sum of the wave vectors of these
phonons must equal the wave vector of light. If the wave
length of light is "large enough" (compared to the size of
the unit cell), as in the case for infrared absorption,
then only those'modes, whose k (wave vector) add up to
zero, can interact with the light incident on the crystal.
For a perfect alkali-halide crystal, the 1ight.can interact
only with k=0 phonons in the one phonon absorption process.
When impurities are introduced into such a crystal, the
crystal loses its translational symmetry, and k=0 restriction
is relaxed, so that light can now interact with all vibrational
modes.

The absorption constant o(w) is given by

a(w) (I11-69)
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where c¢' is velocity of light and «k is the imaginary part
of the complex index of refraction n'=n-ik. The complex

dielectric constant

' = -3
€ El 182

is related to the complex index of refraction as follows:

r‘|2._.€|
€ = n2- k2
€. = 2nkK

and therefore (III-69) may be written as

w
o(w) = ———— ¢

n(w)ec' 2

From Jackson (1962) one finds that

BEeyB

& — = 1+4mEex-E (1I1-70)
|E?]

e' = 1+4n

where X is the general susceptibility of the medium and E

is the electric field applied and may be written as
E = |E|E

Using (III-70), the absorption constant may be

written as

(w) dmo Im) t (2 ¥ )t (III-71)
a{w) = = ——— Im X AR -
n(w)e' a g B B

zx

If the total electric dipole moment of the crystal is
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=73 Je,(Mu ()
o 2

th

where ea(I) is the effective charge of the a atom in the

Eth cell, then from the fact that the Green's function is
related to the response function of the crystal the electric
susceptibility is (Kubo (1958)) given in terms of the Zubarev
type displacement-displacement Green's function as follows:

e (Ne, (Y6 _(Z,%';w)
o B g (III-72)

X EiZ'iw) = -

v
Therefore (III-71) becomes
a(w) =+ —2™ Y te ()G, (L, A'iwle, (X)t, (III-73_)
n(w)c'v ap *¢ o8 B B a

Klein (1968) showed that the optical absorption constant for
a monovalent impurity in an alkali halide lattice may be
written as

(n (©)+2)? 4mew N

a(w) = — Im G (k=0;w) (ITI-73,)

9n (w) c'mR \Y To,To

where n(~) is the index of refraction in the high frequency
limit, and m, the reduced mass of the crystal pair of atoms.

Here, n(w) can be regarded as a constant.
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SECTION F
THE LOCAL MODE

An important property of the Green's function for a
crystal with impurities is the location of its poles. The

Dyson equation has the formal solution of

G = (1-pv) 'p (III-74)
This sdlutioﬁ establishes that the poles of G‘occur at

det (I-PV) = 0 (III-75)

or where P has poles. The latter refers to the perfect
crystal, whereas'the former (IXII-75), describes the effect
of the defect and its related modes.

For a frequency less than the maximum frequency of
vibration in the perfect crystal (monatomic), equation (III-75)
has a finite imaginary part

(Im P)V | (III-76)

and so, there‘éan be no pole due to (III-75)} However, there
can be a residual effect, called a resonance, in the neighbour-
hood of the frequencies, given by the vanishing of the real
part of equation (III-75). If on the other hand, the frequency
considered is greater than the maximum frequency of vibration

of the perfect lattice, then
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ImP =0 , (III-77)

and there can be a pole at distance i§ from the real axis.
This pole is called a local mode and the vibrations are
localized to a region around the defect. |

At "low enough" concentration ¢, where there is no
overlap of any two defect spaces vi and vj'(i#j), the local

mode problem can be reduced into the one defect form

det(I-Plvl) =0 ;W - (III-78)

Apart from the frequency of the local mode, which may
be found from (III-78), it is of interest to find an expression
for the strength of the local mode. Experimentally, any

quantity which is determined is related to
Im Gij(w) (I1I1I-79)

where the 1 and j labels refer to the particular representation
which satisfies (III-78). If the local mode occurs at w=w,,

then the strength of the pole at w=w, is related to
Wo+e
s = I Im G, (w) dw / €>0 (I1I-80)
Wo-€ :
which, within the one defect approach, may be expressed as
Wo+E
s = de % . P.k (w) (Im tklkz
we-€ 172 1
vhere t is the scattering matrix of the one defect problem.

(w))szj(w) (III-81)
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t = vl(I-Plv

) = v X (III-82)

and | (I—Plv;)x =1 (III-83)

Therefore, using Cramers rule, X may be written as

D

X = 1 (ITI-84)
det(I—Plv ) :
and (III-8l) becomes
w°+e:
1 )
s =) dw P (w)v (w)D (w)P (w) ‘Im :
1, k., k k. k 1, . o o1
k1k2k3m°-e ik, 172 273 ki3 det(I Plv )
' (III-85)
where if
10 ¢+« 0 1 0 0
01, . 0 1 . 5 5
TE e T T e )
Y r ’ [
00 *+°'1 0 o 1
and 1
Y = (Yl,...,Yn) = I-P,V
then Dij = det(Yl,...,Yi_l,Ij,?i+l,...,?n)

If Pl(w)vl(w)D(w)Pl(w) is analytical in (mo-e)SwS(wo+e),

for >0, and-

ng

I (wmw )PE(w)
n=i_

det(I-Plvl)

ionf’io n
(w=w_) 2; (w-w )E_ . (w)
n=0 _ o
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= (w—wo)i°g(w) , (IT1I-86)

then, by Cauchy's integral formula, (III-85) becomes

’ 2% N .
§ = — Fi%o Doy (III-87)
(i -1y *J °
o .
where
(n) an 1
F.. (w )= — ||} P (0 )v (w_)D (w )P (w ) 1g(w )
S ij o n 1, o’ "k.k ok k_ o1 . o' 1=z
dwo {klk2k3 ik, 172 23 k33 J
' (II1-88)

Generally, for a local mode, i°=1, and so (III-80) may be

expressed as

1l ’ :
s = 2m) P (w )v (w )D (w )P (w ))g(w )
1, o "k .k o' "k.k o' 1 . o' l=""o
k1k2k3[ ik, 172 273 k33
(III-89)
Another property of interest is the r.m.s. displacement

of the defect in the crystal

J<ul> (III-90)

This will be considered only for a mass impurity. What is

required here is the %=%'=0 Green's function
GaB(O;w)‘= g(w)dae (I11-91)

where clearly
p (w)
glw) = (I11-92)
1-mew?p (w)

m = the mass of the host atom and
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p(w) =P  (0;w)

Using equations (II-13), (III-6) and (III-92), the square

of (III-90) may be written as

o

2. _ _ 3iA 1 . .
<ué> = 3<ua(0,t)ua(0,t) = 2 deesw-l (g (w+id) -g(w=-1i6))
31 Ym v(w) coth(Bw/2)
= — |do — — (II1-93)
m oo El_ewzgj v(m')dwFr+[newv(w)]2
wz_wlz 2

This, however, is not the complete picture, since for
0<ex<l

the defect atom has a lighter mass than the host atom, and
therefore, there is an w=wo>wm for which

l-cw =0 (II1-94)

w
2 [Mvin")de"
o
0

wz_wuz
o]

(i.e., the local mode condition for a mass impurity) and another
pole appears in the integral for the correlation function.
This is dealt with in the usual way, by using a small imaginary
part i§ where 8+0t. It can be shown (Taylor (1964)), that

there is an extra contribution to (III-93), i.e.,

3% th ( 2 .
3t co (Bw/2) (II1-95)

2m ezmsU w'ZV(w')dw']

o) 2_,. 1242
(wy-w'®)

due to the pole at w=w .
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"If you want to find out anything from the
theoretical physicists about the methods they
use, I advise you stick closely to one princi-
ple: don't listen to their words, fix your

, 3 3 "
attention on their deeds. -<A. Einstien

SECTION A

A CALCULATION OF THE FREQUENCIES AND WIDTHS

OF PHONONS IN Cu, . Au .

The phonon frequehcies and widths in the random alloy

C Au are found in this section by using the low con-

Y0.97°%0.03

centration theory and are compared with experimental obser-
vation. 1In order to achieve an appropriate description of the
alloy system it is essential to include the éffects of volume
change on alloying using the effective lattice. Morse poten-
tials, discussed in Section C of Chapter IV, are used to attempt
to describe fhese effects as well as to estiﬁate the force
constant changes associated with the gold impurities.

Svensson and Brockhouse (1967) measured the phonon
dispersion curve in an alloy containing 3% goid, for the
Tl(c,c,O) branch halfway out to the zone boundafy. They found
their experimental results to be in substantial agreement with
the mass defect theory. However, the more recént‘experiments
of Svensson and Kamitakahara (1971), with which this section

is concerned, on the 3% Cu/Au alloy, although‘in substantial

agreement with the earlier work, are not in agreement
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with the mass defect theory further out towards the zone
boundary along the Tl(c,:,O) branch and élohg most of the

T (0,0,z) branch. At this concentration the low concentration
theory should be reasonable.

The c? corrections to the low concentration mass defect
theory have been calculated using (II-122) for the random de-
fect lattice and it is found (Figure (F-9A)) that no appreciable
effects occur at ¢=0.03, while at ¢=0.093 the effects are appre-
ciable. However, this calculation can oﬁly'serve as a guide
when extended defects are considered. Furthermore, Hartmann
(1968) has investigated the effect of short range order within
the low conceniration theory for c¢=0.093 and found corrections
of the order of 10% in the resonance region. For c=0.03 it is
not expected that these corrections would amouht to more than
a few percent. Hence, the assumption of perfect randomicity
in this calculation is adequate.

The experimental results, even for ¢=0.03, do not agree
with the calculations of Elliott and Maradudih (1965), and
therefore, ﬁhis‘suggests that the differences between copper/
gold and copper/copper force constants must be taken into
account. However, it is important to notice the 1.6% expansion
of the lattice, due to the addition of the imp@rities. The
use of 2.0 as an average Gruneisen parameter for copper
(Daniels and Smith (1958)) gives a frequency éhift of 0.08Thz
in the neighbourhood of the supposed resonance. As the maxi-
mum experimental shift is 0.12THz, this volume effect cannot be

ignofed.
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The changes in the force constants on addition of gold
to copper are complicated by this Change in volume. The
approximation which is made, is to regard the alloy as being
represented by an effective lattice of copper atoms at the
experimental lattice spacing of the alloy, into which the
gold atoms have been placed substitutionally. This effective
lattice described by a set of effective lattice force constants,
uniform throughout‘the crystal, can be obtained from the inter-
atomic potential for copper by using the observed volume change.
There are then loca1 force constant changes around each impurity
atom placed in this effective lattice. The lattice sites
affected by force constant changes due to a particular impurity
are called the defect space of that impurity. In Part 1 of
this section the use of Morse potentials to estimate these
various changes is described.

To obtain, in a manner similar to experiment, the change
of the dispersion curves upon alloying, it is ﬁecessary to
calculate the neutron differential scattering cross section for
the alloy as a function of energy transfer for different momen-
tum transfers. - Thus, the distortion of the phonon dispersion
curves is obtained by examining the frequency shift of these
cross sections from those for copper. This prdcedure also
allows for taking into account the effects of the rather con-

siderable experimental broadening.
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l. Effective Lattice and'tocal'Force'Constants

As mentioned above, a description of the change of the
copper phonon frequencies with volume is necessary, i.e., the
mode Gruneisen parameters.afe needed. It is not satisfactory
to just take the experimental elastic constant Gruneisen para-
meters and apply them to the phonon modes at non-zero wave
vectors. The elastic constant Gruneisen parameters for the
T(0,0,%) and.Tl(;,;,O) branches are quite different (See
(F-17)) yet T(0,0,1) and Tl(l,l,O) are the same mode.

Intefatomic potentials are‘required to obtain this
description aﬁd for a lack of a more sophisticated choice,
the Morse potential form is taken. This potential has been
applied with vafious degrees of success to elastic constants
(Girifalco and Weizer (1959)), line defects (Cofterill and
Doyama (1967)), and copper phonon frequencies (De Wette,
Cotterill and Doyama (1966)). However, hefe it is necessary
to use the Morse potential to calculate a volume dependent
property. As the potential is volume independent it cénnot
include such volume dependent effects as those due to changes
in the electron screening. The importance of this contribution
to the phonon frequencies depends on the degree of overlap
between the copper ions. As the screening decreases with in-
creasing volume, it can be expected that the use of the Morse
potential will overestimate the magnitude of the Gruneisen para-
meters. This error should be worse for the lbngitudinal modes
which are far more dependent upon screening than are the trans-

verse modes.
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The input data and the resulting Morse poﬁential para-
meters are given in Table (T-1A) and are Ehe same as those of
. Cotterill and Doyama (1967).. The force constants calculated
from this potential are compared with the experimental values
of Svensson,. Brockhouse and Rowe (1967) i# Table (T-2a). 1t
is seen that they are larder and of a soméwhat shorter range
than the experimental force constants. Ih faét, they lead to
values for the phonon frequencies that are about 10% too high.
This comparison also indicates a second failing of the Morse
potential in that the experimental results suggest that there
is a non-central contribution to the interatomic potential'as
(1XX-1XY) differs from 1ZZ. The data on which De Wette,
Cotterill and Doyama (1966) base their potential for copper is
not clear although the potential does give better values for
the phonon frequencies.

However, both the potentials referred to above overesti-
mate_the elastic constant Gruneisen parameters by amounts ranging
from 10% to 100%, the potential of Cotterill and Doyama (1967)
being the worse offender. To rescue the situation, it is neces-
sary to resort to the procedure of applying the percentage
force constant changes (See page 95, Thesis) given by the Morse
potential, to the experimental force constants. .This procedure
results in much better Gruneisen values. }Whether this improve-
ment is due to an approximate inclusion of non-central poten-
tial features and/or to an enhancement of the‘effects of the

"long range" forces is not clear. The resulting mode Gruneisen
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parameters, yj(K), for the various symmetry directions are
shown in Figure (F-1A) with the experimental elastic constant
values (Daniels and Smith (1958)) indicated by arrows. The
remaining disdrepancy for Tl(g,c;O) is rathér unfortunate as
this is one of the branches to be investigated. It will also
be seen that the structure obtained for this branch is
essential in obtaining agreement with experiment. A similar
structure was obtained using the Morse potentials directly.

The evidence in Part 2 of this section further suggests that
the longitudinél Gruneisen parameters are grossly overestimated
at the zone bouhdary, whereas the discrepancy for the transverse
branches is probably small. The effective lattice force con-
stants, resulting from the above calculation, are given in
Table (T-2A) while the change of frequency for the dispersion
curves for Tl(c,c,O) and T(0,0,z) due to the effective lattice
ié given in Figure (F-10A4).

The method of obtaining the interatomic potentials be-~
tween unlike atoms has been described in Seétiohlc of Chapter
III. The first requirement is the interatomic potential for
gold. Again a Morse potential is used, the parameters being
determined in the same matter that Cotterill and Doyama (1967)
determined those for copper (See Part 2, Section C, Chapter III).
The input data and results are given in Table (T-1A).

To obtain the radius of the repulsive part of the potential
for Cu/Au it is natural to take the mean of the radii for copper

and gold potentials. If ro(CuAu) is also determined as the
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mean of ro(Cu) and ro(Au) it is found that

ro(CuAu) % (ro(Cu)+r§(Au)) (IV-1)

and

o (Cuau) "1 %(d(Cu)‘1+¢(Au)‘l) (IV=2)

The molecular procedure suggests taking the geometric mean to

obtain the energy parameter ¢ (cuAu), i.e.

e (Culu) = /E(Ca) (Au) (IV-3)

It can be seen immediately, from Table (T-1A) that this would
lead to a weakening of the force constants between copper and
gold atoms as compared to those between copper atoms. The
evidence discussed in Part 2 of this section indicates the
opposite effect. 1Indeed the procedure described by (IV-3)
gives a similarly incorrect result when applied to the calcu-
lation of the dissociation energy of the CuAu‘molecule. A

more useful approach is to use the information available for
the ordered alloy Cu3Au and compare it with the result obtained
by (III-40). As the heats of vacancy formation are not avail-
able for CuAu system, only the stability condition and the bulk
modulus could be used to determine the CuAu parameters. Being
in a position tq determine two parameters, e {(CuAu) and ro(CuAu)
were chosen, since (IV-2) is the more reasonable approximation
(See Part 1 and 2, Section C, Chapter III). Forrthe interactions
between copper atoms and between the gold atoms the previously

determined potentials were used. The results for € (CuAu) and
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are given in Table (T-1Aa).

Since the neérest neighbour local force constants are

the force constants @f interest, it is natural to work with

those forces that refer to motion parallel and transverse to

the nearest neighbou# bond. The force constants for the

motion along (;,;,0))

and B, respectively.

(t,z,0) and (0,0,z), are called A, B,

They are related to the conventional

force constants, whi#h refer to motion with respect to the

crystal axes, by

If no relaxat

defect is assumed, th

stants are easily cal
discussion of Gruneis
the Morse potential £
lattice force constan
force constants (AA,

Some relaxati
positions is to be ex
atomic potentials an
tion can be made. As

is only worthwhile do

the dimension as  the

A = 1XX+1XY
1= 1XX-1XY (IV-4)
Bz=lZZ

ion of the atomic positions about the

en the changes in these local force con-
culated. Following the spirit of the
en parameters the percentage changes of
It is these changes in the latter

ts.

AB AB2) that are given in Table (T-3A4).

ll

on (m0.0043R, ISt n.n.) of the atomic

pected and with information on the inter-
estimate of the effects of such a relaxa-
. this information is not too reliable, it
ing a one-dimensional calculation, taking

direction of a nearest neighbour. If all

orce constants are applied to the effective
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‘but the impurity ato% and its nearest neighbours are held
fixed, a relaxation ?f the nearest neighbour of 0.15% (ex-
pansion) is found. This hardly changes if the second nearest
neighbours in this line (fourth heafest neighbours in three
dimensions) are reléased. Consistent with these results is
the assumption that the effective Cu potentialvfor the CuAu
lattice is the same ?s that of the perfect Cu lattice (See
Part 1, Section C, C:apter'III). The resulting nearest neigh-
bour localbforce conr . A

and its nearest neigﬁbour (AA, AB

tant changes, between the gold impurity
1’ ABZ), and between the
nearest and fourth néarest neighbours (AA', ABi, AB;), are

given in Table (T-3A). It is seen that AA, AB, and AB, are
|
somewhat smaller dueito relaxation, but the addition of AA',

ABi, and AB; numeri@ally compensate for this change. No
examination of changés in ahy of the more long>range force
constants has been attempted as the force coﬁstants themselves
are much smaller thaﬁ those considered above. Consistent with
the relaxation modelL the changeé in force constants between,
say, the nearest neithour atoms of a gold impurity or one of
these nearest neighb#ur atoms and a third nearest neighbour

atom, have not been Txamined. As is mentioned in Part 2 of

this section, this omission could be significant.
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|
2. Comparison with Experiment

The elastic one phonon cross section for the coherent

|
scattering of neutron

s by lattice vibrations is given by

Bw :
a%o a’k,e . (L1
dedE  2mk; (eP¥-1) § g (IV=5)
[N

where the neutron is
with an energy change

result has been speci

scattered from k; to k; with k=k;-k;,
E=hw at a temperature T=ﬁ/kBB. This

alized from (III-63) to the case of iden-

tical coherent scattering lengths for the atomic species,

which is an excellent
The scattering length
ation with atomic spe
the appropriate const
in (IV-5).

. The experimen

h

by the jt phonon bra

such that, approximat

k.G

approximation of a copper/gold alloy.
and the Debye Waller factor, whose vari-
fies is also neglected,have, as well as the

ants, been absorbed in the constant a

talist is able to examine the scattering

pch if he arranges his scattering geometry

ely,

' (@) = o0 for 3'# 3 (Iv-6)

where d is a wave vec
from K by a reciproca

using

U(jrk?d

#or in the first Brillouin zone, differing

i lattice vector. In this case and on

1 N .
———— exp(i K.2)o? (K)
N Mo, ¥ v

, X) (IV-7)

S u
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\
the scattering cross}section (IV-5) becomes

d%g a?k,ef
|

i 2 Im G, (§,0) (R.57(3))2  (1IV-8)
dQdE ZﬂM&ukl(e “_1) J

This form apélies for both the disordered and ordered

crystals as the hostilattice eigenvectors enter only via the

transformation (IV-7). Since these eigenvectors are indepen-

dent of |§|, for Q.ajong a symmetry direction, and since the

interest here is onl

\
function of w for a jiven k (Constant 0 method, Brockhouse

in the shape of the cross section as a

(1961)) it is only n

cessary to calculate

k eBw

J(jJE,w) = Im Gj(é,w) (IV-9)

-2
Bw_
kl e l.

The experimeAtal resolution can be taken into account,

approximately by folding J(j,k,0) with a Gaussian of appropriate
|

width W,
2

. ‘ . W= 1
3, (3.kw) = [exp —[ ]
2w

}J(j,i,w')dw' (IV-10)
Values for W were obtained by noting the width of the experi-
mental cross section |at very low gwhere the effects of alloying
should be small, This is a further approximation, as both
theory and experiment (for pure crystals) indicate that the
resolution is a function of k and w. The value, taken for W,
was that equivalent to a width (FWHM) of 0.22 THz (Svensson

and Kamitakahara (1971)).
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Following the experimental methoq (Svensson and
Kamitakahara) the cﬂntre of the peak in ib(j,i,w) was defined
to be the centre of the half maximum points. Although J(j,k,w0)
tends to develop a shoulder to tﬁe main peak in the resonance
region (Re Z (q,w (§)) ~ 0), the values of W are suff1c1ently
large as to reduce thls structure to a sl&ghtly assymmetric
peak (See for instance Elliott and Taylor1(1967)). The shift
Aw, due to the additiion of the impurities, is then the freduen-
cy difference between the peak centre and|the frequency of the
copper phonon, wj(q), due allowance hav1ng been made for the
volume effect described in Part 1 of this%section.

To carry out| these calculations anerical values for
the effective lattick Green's function, Gb are needed. These
were obtained in theistandard way using tﬁe method of Gilat
and Raubenheimer (lQGG)(Sec.A,Chap.Illf. Re G° was then ob-
tained from Im G° via equation (III-9).

With only nePrest neighbour force constant changes in

an f.c.c. lattice, vs--and hence t° and x°--are 39%39 matrices.

If M is the orthogonal transformation matrix (A-13), then,

denoting the irreducible forms of the matrices by a prime,
x' = MxSMt = v' (I-(1-¢)G°'v')7} (IV-11)
|
At worst, it is necefeary to invert a complex 4x4 matrix, (See
Appendix III for v' Pnd G°'), which is easily done on the

computer. These ste?s are obviously not necessary when x° is

given by (II-85), wikh the mass defect treated exactly.
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/ ‘ (3 . [}
The neutron'qross section involves a Fourier transform

of G. It is also coﬂvenient to transform from the Cartesian

COordinates,'d, to tﬂe phonon mode labels, j. The transfor-
|

mation is effected bj the matrix (IV-7). Using this transfor-

mation, (II-75) becoﬁes

(ﬁlw)'= S,

-G, X
i3’ 33

where

or

(EI LO)G

1

0 0
,Gj(K,w)+§ Gj(ﬁ,w)zjj

3,3
1 1

Z(w) = cUMtx'MUT

I (w) = cUx Ut

(R,w)  (IV-12)

(IV-13)

(IV-14)

The fact that the configuration average renders the Green's

|
function, G , diagonql on k is used above. The_gffective
|

lattice Green's funcﬂions, G°, are automatically diagonal on

j and k.

If k is\aloné a symmetry direction, I becomes diagonal
|

on j, as well as on ﬁ, and (IV-12) is trivial to solve. The

result is

having used

G

w) = (wZ—wg(k)—zj(k,wJ)'l

0,¢ _ _2~f“l
j(k,w) = (w? wj(k)) '

(IV-15)

wj(E) being the frequency of the phonon mode (j,k) in the

effective lattice.

For only nearest neighbour force constant changes it is

easy to check (II-76)

have been calculated

against (II-86). The spectral functions

using each of these expressions.

For the
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\
|

!
mass change appropri#te to gold in copper, no discernable

difference (i.e., le#s than .008 THz) for changes in A up to
80% and for B_., B u# to 150% were found for 1THz < w< w .
: 172 - "= "max
The differences in the frequency shift, obtained by
examining the peak i# Jb(j,ﬁ,w) and by using the self energy
on the energy shell,{zj(q,wj(ﬁ)), can be quite considerable.
\
- These two proceduresiare compared in Figure (F-2A) using the
_ | .
\
fitted force constanF changes described below. Although the
|

differences are quit% small for Tl(C)C'O),-they become signi-

ficant for T(0,0,7).

Attempting to fit all the experimental points involves

" too much labour to bé worthwhile. 1Instead, a fit to the clearly
defined features of ﬁhe experimental results is done. The
only such feature common to the two branches examined experi-

mentally is the maximum negative frequency shift. During

prelimihary investigation it was found that this shift depends,

in a natural way, on!the total force constant changes. The
T(0,0,z) branch is three times as dependent on AB, as on AA or
|

AB The Tl(;,c,O) ranch, whose polarization vector is

1°
(1/v2, -1/¥2, 0), is most dependent on AB,, being only half as
dependent on the other transverse force constant change, ABz’
and a third as depen&ent on AA. 1In general this branch is
twice as dependént on the force constant changes as the T(Z,0,0)
branch. In all cése%, an increase in force constant

decreases the above shift. The third condition chosen to

determine AA, ABl an% AB2 is the minimization of the sum of
: |
|
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the squares of the percentage changes in the force constants.
The resultin%‘fit is shown in Fidures'(F—BA), (F-44)
with the fitted force congtant changes being given in Table
(T-34). The circles%in Figure (F-3A) are the}experimental
results of Svensson edd Kamitakahara (1971). The open and
filled circles referjto different incidenf energies. Kamita-
kahara (private comm#nication) suggests that the closed
circles may be more *eliable, particularly at the higher
frequencies and it is to these closed circles thaﬁ the fit
was made. In Figure| (F-4A) the open circles are the earlier
results of Svensson %nd Brockhouse (1967) ahd the filled
circles, to which the theory was fitted, are the results of
Svensson and Kamitak#hara. Although the‘fit is good it does
need qualifying as i% depends on the use‘of the calculated
Gruneisen parameters; Before analysing it further, Figures
(F-5A7), (F-612), whic# give the shifts, without the volume
effect included are examined, These figures show the shifts
for the mass defect,Lthe fitted force constant changes and the

calculated force con tant changes. For completeness the

shifts appropriate to force constant changes of opposite signs
to those calculated %re also included.

It is observed for the T(0,0,%) branch that the fre-
quency shifts obtained from the fitted and calculated local
force constant changes are in reasonable agreement. The mass

defect result gives too large a negative shift. For the

Tl(c,c,O) branch it #s the mass defect and fitted force con-
|
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stant changes that give similar results while the calculated
force constants give too small a frequency shift. The large
magnitude of the fitted value of AB, arises from the need to
maintain approximate agreement with the mass defect result
for the Tl(;,t,O) branch but at the same time decrease the
shift for the T(0,0,z) branch.

Both the positive sign of AB, and thé large magnitude
of ABl are rather surprising but to some extent must be due
to the use of unreliable mode Gruneisen parameters. However,
near the zone boundary for the T(0,0,z) branch and to some
extent for the Tﬁc,c,O)branch, thé calculated volume effect
appears to be fairly reliable. By comparing Figures (F-3Aa)
and (F-5A), and Figures (F-4A) and (F-6A), it is seen that
the shift due to the volume effect is dominant near the zone
boundary. For the T(0,0,Z) branch, there is good agréement
with experiment, but the effect for the Tl(CI§IO) branch may
be overestimated. Since the calculated value of the T(0,0,7)
elastic constant Gruneisen pérameter is in good agreement with
the experimental value, and the calculated Gruheisen parameter
is a simple function of frequency (See Figure (F-1A)), the
inclination is to accept the calculated shift, due to the
volume change, for the whole of this branch. |

The very poor calculated value for the Tl(c,c;O)
elastic constant Gruneisen parameter, the large magnitude value
of ABl, and the conclusions of the above two paragraphs, indi-

cate that the lack of reliability for the two branches under
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consideration is confined to the Tl(c;;;O) branch in frequency
region 0 to 3 THz. The evidence indicates that the actual

shift, due to:the volume effect, is greater than that calculated.
However, any reasonable guess for the mode Gruneisen parameter

is not sufficient to bring the frequency shift, obtained from
the calculated force constant changes, into even fair agree-
ment with experiment, although the correction is in the right
direction. Such a guess leads to a fitted value of AB, of

about -1,100 dynes cm"l,which is becoming reasonable, but

1 with AA essen-

AB2 remains positive at around 300 dynes cm~
tially unchangedi These values of ABl and ABz_still require
an appreciable non-central contribution to the copper/gold
interatomic potential.

Howéver, a comparison between the experimental and
calculated widths (FWHM), T, shown in Figures (F-7A) and
(F-8A) does support the fitted force constant changes. Al-
though there is little to choose between the widths of the
T(0,0,z) phonon modes obtained from the fitted and calculated
values of the force constant changes (Figure (F-7a)) there is
a considerable difference for the Tl(c,c,O) branch (Figure
(F-8A)). In this comparison, the effects of the volume change
enter only in a very minor way, corresponding} approximately,
to a scaling of P of about 2%. Hence, the evidence is quite
strong. A readjustment of AB1 of the kind mentioned in the
previous paragraph should not seriously affect the agreement,

according to the results of some preliminary calculations.
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Also, a comparison was made of the frequency shifts
calculated using the derived force constant changes obtained
with and without relaxation (See Table (T-3A)). This compari-
son showed that there was little to be gained in obtaining
agreement with experiment by allowing for such relaxation.

The difference is not worth illustrating as it amounts to less
than 0.004 THz at the most. In view of the lack of reliability
in the calculations of the frequency shift due to the volume
change it is not worthwhile attempting to fit six forée con-
stant changes. However, the results in Table (T-3A) indicate
that if éuch a procedure were carried out it should lead to
somewhat lower values of AA, ABl and ABZ' in particular making
the magnitude of ABl more reasonable.

Before completely dismissing the effects of relaxation,
it should be noted that some force constant changes that could
be important have been omitted. Focussing on a nearest neigh-
‘bour atom of a gold impurity, it is seen that changes in only
two of its néarest neighbour force constants have been taken
into account. Relaxation would change all of them to some
degree. Simple geometric considerations suggest that only the
longitudinal changes (AA) should be important since they are
of the same magnitude as AA' (Table (T-1A)). Fu;ther, it would
seem that they should have effects similar to those due to the
nearest neighbdur (of the gold impurity) transverse force
constant changes. The omission of the possibility of these

effects could be a reason for the large magnitude of the fitted
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ABl. It is possible to allow for these effects, if the cal-
culated values of the appgopriate force cohstant changes are
accepted, by using the perturbative approach given in Part 2,
Section B of Chapter II, but the labour required is somewhat
more than that‘required to include just AA',4ABi and AB;.

The performance of such a calculation is intended in the near
future.

There has been no systematic investigation of any of
the other phonon branches in the alloy containing 3% gold.
However, Kamitakahara (1971) has investigated a few modes in
each branch and finds no frequency shift less than that given
by a line drawn between the origin and a shift of -0.15 THz at
7 THz. Unfortunately, the zone boundary Gruneisen parameters
give shifts of nearly -0.3 THz for the longitudinal modes.
The calculated zone boundary shift, neglecting the volume
effect, is negative with a lower bound of —0;04VTHz being
given by the mass defect case, and about +0.06 THz with the
calculated force constants. Obtaining any kind of agreement
with the results of Kamitakahara requires‘values for the
longitudinal zone boundary Gruneisen parameters that are half
those that have been calculated here. That the situation
would be worse for the longitudinal modes as comﬁared to the
transverse modes; was anticipated in Part 1 of this section.
However, the amount of disagreementbis rather disappointing.
It may also be a reflection on the use of the modé Gruneisen

parameters found from the Morse potential, to calculate the
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effects of the volume change.

In conclusion it can be stated that the experimental
results can be understood in the light of the low concentra-
tion defect theory_plus a correction due to the change in
volume on adding impurities. The resonance, whose possibility
started the experimental investigation, in fact does occur
although modified by local force constant changes and masked
by £he volume effept. The lack of a detailed knowledge of the
interatomic forces in an alloy, and thus a lack of a systema-
tic method of including the volume effect, renders quantita-

tive understanding difficult.



TABLE (T-1A)

Morse Potential Data

of | | |
EV ao . B € ro o D
ev R dynes cm 2x10'2 eV 1 Al |kcal mole”!
cu | 1.17(x0.11) ¥ 3.614(n P 1.371 | 0.1700 | 2.5924 2.3216] 47.0(d
Au |0.94(0.09) (@] 4.0781 1.728 0.1563 2.8855 2.8395| s52.5(d)
© 0.217(¢) |[2.597(c) 2.5546]| - @
» 0.1818 2.7389 2.5546 -
] . Other exﬁerimental results indicate
(a) Simmons and Balluffi (1963) [variations in ES of up to *.5 ]
(b) Svensson and Kamitakahara (1971)

(c) Cu3Au-data; Flinn, McManus and Rayne (1960)

(d) Weast and Selby (1966)

9¢€T
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TABLE (T-2A)

Copper Force Constants

dynes cm—.l _______ -
Experiment | Morse Potential Effective Lattice(a)
1xx 13,160£192 18,548 12,064
122 -1,489£330 -474 |  -880
1XY 14,880£337 19,022 | 13,520
2XX 4534295 296 | 434
2vY ~345+170 -2,225 o -334
| 3xx 5731228 255 - - 544
3YY 321%117 34 | 306
3Y2 2524154 - 74 | 242
3XY 3421 77 147 326
4XX 99+ B89 39 94
422 -190+154 -7 | -179
4XY 4244301 46 422
5XX -121%195 -19 ‘ . -113
5YY 15+ 86 -2 14
5%2 324114 2 | 30
5XY -51+ 97 -7 . -as

(a) appropriate to a lattice constant of 3.634(1) -

(Svensson and Kamitakahara (1971))
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Effective Lattice
Force Constants

dynes cm™1

dynes cm™?t

Changes in Local Force Constants

Calculated

no relaxation

with relaxation

Fitted

25,584
-1,456

-880

AA

AB

AB

A7’

'
ABl

'
ABZ

9,808

-552

-310

9,293

~-499

-155

731

-155

6,780

-21080

550




FIGURE (F-1A)

The mode Gruneisen parameter Yj(ﬁ) for

the longitudinal modes ( ), trans-

verse modes (except for Tz(;,;,o))( ----- )
and the trahsverse mode T, (Z,%,0) (——-—)
are shown for the (0,0,z),(z,z,0) and
(t,z,z) symmetry directions. The arrows

indicate the appropriate §=0 experimental

results.
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FIGURE (F-2A)

The frequency shifts for (a) T(0,0,%)
(b) T,(t,z,0) using the fitted force

constant changes of Table (T-3A) (no

volume effect), where ( ) was ob-
tained from the scattering cross sec-
tion while + was obtained from the

self energy, Zij(k,wj(k))/ij(k).
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FIGURE (F-3Aa)

The fitted frequency shift for the

T(0,0,z) branch. The theoretical

curve ( ) is fitted to the filled
circles. The open and closed circles
are experimental values. Kamitakahara
(1971) indicated the closed circles

to be more reliable past 2.5 THz.
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FIGURE (F-4A) The fitted (to closed circles) frequency
shift for T, (g,t,0) phonon branch. The
open and closed circles indicate the

experimental values.
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FIGURE (F-53a)

Comparison of the frequency shifts

with no volume effect for the T(0,0,z)

branch; ( ) mass defect, (----- )
fitted force constant changes, (—+—<—)
calculated force constant changes, (-°-°;)
force constant changes of opposite sign

to the calculated ones.
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FIGURE (F-6A)

Comparison of the frequency shifts with

no volume effect for the Tl(;,c,O)

branch; ( ) mass defect, (----- )
fitted force constant changes, (—*—°—)
calculated force constant changes,
(¢++++) force constant changes:.of the

opposite sign to those calculated.
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FIGURE (F-7A)

Comparison of the experimental and

theoretical neutron cross section widths

of the T(0,0,Z) branch; ( ) mass de-~
fect, (----- ) fitted force constant
changes, (—+*—+—) the caiculated force
constant changes, and the closed circles

are the experimental results.
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FIGURE (F-8A)

- Comparison of the experimental and theo-

I
retical neutron cross section widths for

) mass defect,

the Tl(CICIO) branch; (

(==--- ) fitted force constant changes,

(=*—*—) the calculated force constant

changes, and the closed circles indicate

the experimental results.
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FIGURE (F-9A)

Cdmparison of pair calculation for mass
defects (=-—-- ) with the low concentra-
tion theory result for mass defects

(

) frequency shifts for the T(0,0,Z)

branch at (a) 9.3% and (b) 3% gold in

copper.
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FIGURE (F-10A) The change of frequency in (a) Tl(;,c,O)
and (b) T(0,0,z) branches resulting from
the expansion of the perfect copper
lattice to the effective lattice for 3%

~gold in copper.
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"the decision to employ a particular piece of
apparatus and to use it in a particular way
carries an assumption that only certain sorts
of circumstances will arise"

. ==T.S. Kuhn

SECTION B

SINGULAR POINTS IN Na't AND sm** -INDUCED

INFRARED SPECTRA OF KBr

In this section the low concentration theory is applied
to the experimental work of Timusk and Ward (1969,1970). These
authors present a set of high resolution results on the impurity
induced absorption in several KBr crystals each containing
different éubstitutional impurities. For each different
impurity type in KBr, a continuous absorption spectrum, from
40 to 90 cmfl, having several very sharp discontinuities was
obtained. The authors identified these slope discontinuous
points with van Hove singularities of the host crystal. For
two of the impurities used (i.e., Na¥ and Sm++) the authors
obtained absorption spectra for several impurity concentra-
tions. Using these absorption spectra, they were able to
follow the shift in frequency of what they call singularities
A and B (Timusk and Ward (1969,1970)) and singularity C (Timusk
and Ward (1970)) as a function of concentration. It is these
results, concerning the singularity movement as a function of
impurity concentration in the absorption spectrum of Nat in

KBr or sSm*t in KBr, that are considered here.



150

Timusk and Ward (1970) found, from an examination of
the shell-model phonon dispersion surfaces, that singulérity
A could be associated with a saddle point on the (1,1,0) axis
at (.5,.5,0) of the second highest acoustic branch. 1In a
similar fashion (Timusk and Ward (1969,70)) singularity B was
associated with the maximum at (.65,.35,.35) of the second
highest acoustic branch,'while'singﬁlarity C was associated
with the saddle point (.55,.35,0) in the highest acoustic
branch. |

The perfect crystal Green's functions are required
in order to use the low concentration defect theory to obtain
information about the frequency shift of these singularities.
These functions were found by Timusk (1970) using a shell-
model calculation and are used here as given input data. A
shortcoming 6f the use of these functions arises from the
fact that they have singularity A at 70.55 cem™l instead of
of 74.73 cm T, singularity B at 71.22 cm © instead of 75.23

em™ 1, and singularity C at 82.6 em™1 1

instead of 85.3 cm_
(Timusk and Ward (1970)). Since only the frequency shifts of
these singularities are of interest here, the.theoretical
results have béen raised appropriately so that they may be

compared with experiment.

1. Single Phonon Approach

The lattice vibration frequency spectra of solids

contains sharp slope discontinuities at points in the zone
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where the modulus of the gradient of frequénéy, as a function
of wave vector k, vanishes. If the spectral function for a
defect lattice is found by some perturbative éxpansion in
terms of thé perfect lattice, then from the discussion of
Appendix IV, it is obvious that the imaginary part of this
spectral function reflects only the unshifted singularities
of the perfect crystal density of states. Thus, using the
low concentration theory, the defect induced optical absorp-
tion spectrum, which depends directly on‘Im-<G>(See (111-73))
will not show any shift of the singular poiﬁtsAas a function
of defect concentration. At most, such an approach can result
in a metamorphosis of the singularities (See Okazaki et al.
(1967)). Realizing this, another approach must be used for
attempting this problem.

If the effective lattice approach is used, as in the
previous section for the Cu/Au system, then the change in |
frequency 6f the singular points in the ébsorption spectrum
can be found by using the appropriate mode Gruneisen parameters.
Table (T-1B) gives these parameters for singularities A, B
and C, and also compares the experimental f:equency shift of
A, B and C to that obtained by contraction of the lattice due
to .1% Nat in KBr. Here, the change in nearést neighbour sepa-

ration (i.e., volume change) is estimated to be
da = c(ayapr~axsr)

= 3.298 A (Kittel (1968)).



152

Obviously this also provides an inadequate description.
For Na' in KBr it is seen from (III~73y) that the
absorption constant is proportional to Im GTO(E=O;m). Thus,

if the frequencies of the’singularities ere such that
|Im £| and |Re Z|<<|w2~m;§(0)|

then by equation (II-75)

Im I, (k=0, w)

Im<GT°(k=0;w)> ~ NCETNE
To

Furthermore, it is observed from (II-76) tnat, apart from a
resonance denominator, Im ZTO(§=O,w) (in the low concentra-
’tien defect theory), is directly proportional to the weighted
densities of states. Therefore the observed singularities
can be associated with specific spectral functions (phonons)
in the region of the zone which gives rise to these various
van Hove singularities. Realizing this, the low concentration
theory is used to follow the appropriate features of these
spectral functions as a function of defect concentration, and
their movement is associated with the movement of the singular
points of the absorption spectrum. |

| Because Sm is divalent and K is monovalent the case
of sm** in KBr is not as simple as that of Na+._ Elliott and
Taylor (1967) have shown (for the mass impurity), that for an
impurity having a charge different to that of the host atom

it replaces, the absorption constant is“related to a linear
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combination of Im<G> and the imaginary ﬁart éf the perfect
lattice Green's function. Assﬁming this type of relation
still holds for Sm** in KBr, even with force constant
phanges, thé absorption constant (apart'frbm.resonance type
denominators) is proportional to weighted densities of states.
Thus, for Smf+, as in the case for Nat in KBr, the appropriate
spectral functions are followed with~concentra£ion. Further-
more, for sm't the effective lattice theory is not used, since
there is no expansion data available, and the system is of
a very complex nature (i.e., (1) unbalanced charge, (2) vacancy).
Briefly, the movement of singularities A, B and C of
the Nat or sm'™ induced absorption spectra of KBr is found by
following the appropriate features of

Im <GTA2('5"5’0)>

Im <GTA2(.65,.35,.35)>

and Im <GLA(.55,.35,0)>

respectively, as a function of defectvconcentration. Only

these three k points are followed since the behaviour of points

neighbouring these k's is similar. Because the concentration

of defects is small (v.1%), the low concentration theory is used.
Clearly, for a Nat impurity in KBr the perturbation VS

due to the impurity at a site s does not lower the point sym-

metry of the problem from cubic. Furthermore, Fong and Wong

(1967) have studied the system of Sm** in KBr and have con-
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cluded that the Kt vacancy (required to compensate for the -
double charge of this rare-earth impurity ioﬁ) was sufficiently
far from the rare-earth ion that the immediate environment
of the sm*t was still cubic. Thus, for V® having cubic sym-
metry, the lattice dynamics-problem in the low concentration
theory can be treated most easily by transférming the real
(2,a) space to a space spanned by motions corresponding to
the representationsvof_the cubic group (Buchanan (1969)).
Using the same procedure as outlined in the previous section,
Im<Gj(k)> may be found. The full details of the block dia-
'gonalization and the explicite form of the matrices used is
contained in Buchanan (1969) and is not repeated here.

Since k, associated with singularity A, is in a
symmetry direction, I is diagonal on j as well as on k. As
for singularities B and C Buchanan (1968) has found that the
off diagonal elements of I (i.e., ij.,j#j')‘are negligible.
Thus, in dériving any spectral function:of wave vector k,
associated with singularities A, B or C (or any point in k-
space immediately neighbouring these three points), the self
energy has beén assumed diagonal on j, and therefore, by
(II-75) | N

Im Zj(k)

Im<Gj(k)> = e (IV-16)
((w2-w? (k) -Re z;(k))%+(Im 2 (k)}°

Before obtaining any explicit results, the defect space for
either of these impurities in KBr must be defined. It is

assumed that vS, the matrix of the mass and force constant
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change due to the presence of one defect at s, can be described
by a small number of changes localized about the impurity.
Apart from the mass change, me , at the origin; the force
constant model of Gethins, Timusk and Woll (1967) was used

to describe the defect space. 1In thié model, only the force
constants connecting the impurity ion to its first nearest
neighbours, f, and the force constants connecting these first
nearest neighbours to their first nearest neighbours,»g,
(which are also the fourth nearest neighbours of the impurity
ion), are changed. Furthermore, no change of the transverse
force constants is allowed for in this model, since its effect
is expected to be small, the transverse force constant being
only about 10% of the longitudinal one. ‘Buchanan and Woll
(1969) applied this model to the study of the vibronic side

bands of Sm** in KBr and found

Af = 14500 dynes cm™1

-1500 dynes cm~1

Ag

Their results are used in the present calculation for sm*t in

KBr since the increased Coulomb field due to the double charge

on the Sm ion rules out any simple interatomic potential calcu-
lation. For Na' in KBr the Af and Ag used are calculated from
the appropriate interatomic potentials (See Part 4, Section C,

Chapter III) by balancing the forces on Br.in the one dimen-

sional system
Na —-Br — K
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where both Na and K are held fixed. The result of this rather

simple calculation gives

-6200 dynes cm™1
1

Af

and o Ag = -6000 dynes cm~

2. Convolution Model

Although the spectral function approéch may be a
reasonable approximation, a proper self consistent treatment
for a diatomic lattice would be better. Since such a self
consistent procedure for a diatomic crystal with more than
just mass impurities has not yet been properly formulated, a
“simulation of self consistency, using a convolution model,
is attempted as a check. |

If it is assumed that most of the information about
the singularity position in the absorption spéctrum comes
from the wéighted densities of states, and if the G(wj(i)-w)
of these funétions are changed to Im<Gj(i)>, as derived by the
loﬁ concehtration defect theory, then thevsingularities'of
a(w), determined in this way, will shift in frequency as a
function of defect concentration. Basically, this is the
idea of the convolution model, except that Im<Gj(i)> is taken
to be either a Gaussian or a Lorentzian, whose width and
shift are obtained from the low concentxatioh theory results.

In this model the absorption spectrum is described
by a background function

cB
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and an envelope function
cD, (wj (]«é) )

which depends directly on the phonons. Thus, if Im<Gj(E)>

is approximated by a Gaussian

[w-w; (R)=c (s +s 0, (B))]°
c2[w°+w1wj(§)jfin2

exp |-

alw) v cB+cfdwj(E)Do(wj(E))
/Tln2 clw,+wywy (k)]

(IV-17)
whereas if it is approximated by a Lorentzian
_ D (ws (k) [w+wyw, (K)]
a(w)veB+efdw , (K) ——2 — 2 — J —
] m [w-ws (k) —c (s +s 0 (K)) 1%+ [wotwiwy (K) ]
(Iv-18) -
where 5
shift = c(so+sle(k))
and o FWHM ='2c(wo+wle(k))

are found from the low concentration theory results. The
parameters w,, w,, s, and s, are listed in Table (T-2B) for
the»three regions of the spectrum Do(wj(i)) (See Figure (F-lB)).
B and D, (wy(K)) used here are given in Figure (F-1B). The
motivation for (F-1B) arises from the absorptidn spectra of

Timusk and Ward (1970) and from the density of states for KBr.
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3. Results

Since singularities A and C are due to inband modes
of vibration, their movement, in the single phonon approach,
was obtained by following the center of the half maximum line
of Im<Gj(E7w)$. Singularity B, on the other hand is different
from singularities A and C, since it is due to a maximum
frequency point beyond which there are no more modes of vi-
bration associated with the second highest accoustical branch.
Therefore, the movement of singularity B must not only be
associated with the shift of the spectral function but also
with its width. The movement of singularity B is thus
associated with some point on the high frequehcy tail of
Im<Gj(K;w)>. This point is taken, somewhat arbitrarily, to
be that point on the high frequency side of Im<Gj(E;w)> which
is 1/25 of max(Im<Gj(K;w)>). A qualitative justification of
this can be found from the convolution model, if Im<Gj(i,w)>
is not too assymmetric. Using equations (A-37) and(A-38)
and the results expressed by (F-8B) and (F-7B) it is found
that the point to be followed on the high frequency tail of
a Gaussian or a Lorenzian is ~1/50 and 1/70 of their maximum
respectively. 1In a single phonon approach, the 1/25 point

is used to follow singularity B; but if instead, the 1l/n

- point is used for n<2>5 then it is found that the movement of
n>25%
this point is slower than that for n=25.

faster
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The behaviour of the spectral function Im<GTA2(.65,
.35,.35)> for two concentrations of either Sm*t or Nat in
KBr is seen in figures (F-2B) and (F-3B) respectively. The
vertical line on the high frequency tail indicates the

frequency of

1/25 max(Im<Gj(E;w)>)

It is observed for Sm''in KBr (F-2B) that alfhough the spectral
functions are assymmetric there is no resonance, whereas for
Na® in KBr (F-3B) a distinct resonance appears. This resonance
is almost independent of Af but not of Ag. A value of Ag
below v-7500 or above v-4500 dynes cm™l removes the resonance
from this region of singularity A and B.

Figufe (F-4B) compares the movement of the center point
of the FWHM and the high frequency tail of Im<GTA2(.65,.35;.35)>
with the experimental results for either Na® or sm**in KBr.

For Na' in KBr the broken line of Figure (F-4B) shows approxi-
mately the additional effect which can resuit from the effective
lattice contribution. It is obvious from the results of (F-4B)
that following the center point of the FWHM does not explain

the experimentally observed shifts.

The results for the shift of singularity A are presen-
ted in Figure (F-5B). The theoretical curves (solid line)
follow the center point of the FWHM of Im<GT%;.5,.5,0)>and,
for sm*'t in KBr, are in good agreement with experiment. Even

with the addition of the effective lattice (broken line) in
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(F-5B), the results obtained for Nat in KBr are in rather
_poor agreement with experiment. Figure (F-6B), which follows
the movement of singularity C shows that the shift of the
Acenter point of the FWHM of Im<GLA(.55,;35,0)> for Na' in
KBr is in very good agreement with experimént. In this
region, focr Na* in KBr, the spectral functions are found to
be symmetric and show no signs of resonanceAbghaviour.

Because of the appearance of a resonance in the Nat
results, the convolution model presented in Figures (F-7B)
and (F-8B) was only attempted for Sm** in KBr. The results
of this model tend to favour a Lorentzian fepresentation of
the spectral function for Sm*t in KBr. This is not so sur-
prising since the spectral function has a pseudo-Lorentzian
form.

In conclusion, the experimental results, which
indicate a faster movement of the singularities (A, B) for
Na' than for sm*t impurities in KBr, can be -understood
qualitatively (from the single phonon apprdach) to be a
result of the resonance behaviour in the region of interest.
Furthermore, the more rapid movement of sinéularity B, for
either of these impurity systems, is a resuit of its being

a maximum frequency singularity.
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TABLE (T-1B)

singularity v, (k) (a) c Aw in cm ! Aw in cm !
% effective lattice experiment

A 2.79 .1 . 059 .38

B S 2.14 .1 .046 .72

C 2.11 .1 .051 .38

(a) Cowley (1971)
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TABLE (T-2B)

Region - Wy W, So ' Sy
(cm l/sconc) (%conc)”?! (em™1/%conc) (sconc) ™t
I 0.55 0.0 0.42 0.0
II -21.37 0.288 -68.0 0.918

III .27 0.0 1.1 0.0




FIGURE (F-1B) The envelope function Do(wj(i) used

for the convolution model.
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FIGURE (F-2B)

The spectral functions appropriate to

singularity B, for two concentrations of

sm'? in KBr are shown ( ). The

"broken vertical line indicates wTAZ(.GS,

.35,.35) in KBr, while the vertical lines
on the high frequency tails of the spec-
tral functions indicate the position of

1/25 max(Im<GTA;(.65,.35,.35);w)>).



14

UNITS)
[
N

(ARB.
[
o

IM<Gp,, ((.65,.35,.35) ju)>

Sm++

Af

in KBr

14500 dynes/cm
-1500 dynes/cm

75.6
WAVENUMBER (cm™ 1)

FIGURE (F-2B)

POt



FIGURE (F-3B)

Nat in KBr are shown (

The spectral functions, appropriate to
singularity B, for two concentrations of

). The

broken vertical line indicates “TAZ(‘GS'
.35,.35) in KBr, while the vertical lines
on the high frequency tails of the spect-
ral functions indicate the position of

1/25 max(Im<GTA((.65,.35,.35)}w)>).
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FIGURE (F-4B)

'Comparison of experimental and theoretical

frequency shift of singularity B for (a)
sm**, (b) Na' in kBr. The (—+—<—) line
indicates the movement of the center point

of the FWHM of Im<G ((.65,.35,.35);w)>
TA>

while the ( ) line indicates the move-
ment of the high frequency tail. 1In (b)

the broken line (~--~-) indicates the

‘additional effect on the solid line as

a result of including the volume change.
The closed circles are the experimental

results.
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FIGURE (F-5B)

Comparison of experimental and theoretical

frequency shift of singularity A for (a)

sm**, (b) Na' in KBr. The soli& line(
indicates the movement of the center point
of the FWHM of Im<GTA2((.5,;5,0);w)>. In
(b) the bréken.line (-=-=—- ) indicates the

effect of including the volume change.

The closed circles are the experimental

results.
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FIGURE (F-6B)

- Comparison of experimental and theoretical

frequency shift of singularity C for Nat

) indicates

in KBr. The solid line (
the movement of the center point of the
FWHM of Im<G_,((.55,.35,0);w)>, while

the broken line (===-- ) indicates the

" effect of including the volume change.

The closed circles are the experimental

results.
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FIGURE.(F—7B)' The convolution model using Lorentzian
spectral function to follow the shift
of singularities A and B for sm*t in

KBr.



UNITS)

ABSORPTION (ARB.

115

[
o
(8]

95

85

75

65

OBSERVED
SHIFT

SINGULARITY A

L

smtt in KBr
Convolution with
Lorentzian
14500 dynes/cm
-1500 dynes/cm

Af
Ag

0.05% smtt
SINGULARITY B

OBSERVED | 0.15% sm**t
SHIFT |

74

75
WAVENUMBER (cm~1)

FIGURE (F-7B)

69T



FIGURE (F-8B) The convolution model using Gaussian spec-
 , tral function to follow the shift of

. singularities A and B for sm™* in KBr.
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"Most of our so-called reasoning consists in
finding arguments for going on believing as
we already do." ~-J.H. Robinson

SECTION C

CALCULATION OF PHONON SIDE BANDS OF

“Hyy Dy AND N, IN SOLID ARGON

In this section the one phonon side band of the vibra-
tional spectrum of a substitutional Hz' (D,) molecule ih an
Ar crystal is formulated in terms of the displacement-dis-
placement Green's functions. By considering ﬁhe appropriate
interatomic potentials, a considerable lattice relaxation is
found about the H,, (Dy) impurity. Using a one defect model
and the low‘céncentration defect theory thesé "1ong range"
effects are crudely compensated for by intrbducing an effec-
tive lattice. The side bands are then calculated with the
one defect thedry in a harmonic approximétion by using the
temperature éqrrected experimental phonon frequencies. Also,
a calculatidn of the position of the local mode side band
for N, in Ar, as a function of temperature, is‘performed by
adjusting'the'phonon frequencies appropriate;y.

Batchelder, Collins, Haywood and Sidney (1970) measured
the phonon dispersion curves in solid Ar and found the force
constants (to second nearest neighbour) by a ieast-squares

fitting. Their first nearest neighbour force constants are
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listed in Table (T-1C). Later, Batchelder, Haywood and
Saunderson (1970) measured the'temperature.dependence of phonon
frequencies in solid Ar for the T(0,0,z) branch. Their
results are used to scale the perfect Ar data. to the appro-
priate temperature. |

The 1nduced 1nfrared fundamental band of 1% H,, (D,)
in solid argon was studied by Kriegler and Welsh (1968)
(De.Rem;gls and Welsh (1970)) at 82°K (80°K). Their results
indicate a‘peak arising from a localized lattice vibration at
about 112 cm™1 (79 cm'l)‘and an inband peak-at'about 22 cm?
(22 em™1) for H,, (D,) in solid Ar. Recently, De Remigis
(1970) obtained‘results for the movement of the local mode
side band peak for N, in Ar as a function of.temperature.
These results;are indicated by the closed circles in Figure
(F-1C). No results were obtained for the change of lattice
constant in Ar as a result of the'introductien of these

impurities.

1. The Problems and Some Results

'Altheﬁgh the melting pPoint of argon is 83.8°K, it is
assumed in this section that if the perfect argon vibrational
properties are described by the temperature-corrected experi-
mental phonon frequencies, then any additional effect, due to
a low concentration (i.e., 1% for H, or D,, 2% for N,) of

~impurities, may be treated in the harmonic approximation.
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Fromrthe‘Lennard—Jones potentials, using the data
in Table (T-2C), it is found that the relaxation of the first
nearest neighbour argon atoms about an N, impurity is less
than 1% (expansion). Therefore, for 2% N, in Ar it is
assumed that there will be no significant change in lattice
spacing. Assuming this to be the case, and since Ar is f.c.c.,
the local mode frequency is calculated by using equation
(III-78) and the information, contained in Appendix I11, for
the defect space defined by the impurity and its first near-
est neighbours. Purthermore, from the data in Table (T-2C),
the change of force constants due to the introduction of N,
substifutionally into Ar is found to vary continuously from

(in the notation of Section A, Chapter 1IV)

AA = 640 dynes/cm
AB1= =72 dynes/cm

AB2= -72 dynes/cm

at 55°K, to
ApA = 592 dynes/cm
AB1= -68 dynes/cm

AB2= -84 dynes/cm

at 80°K. With these temperature dependent force constant change
results and the temperature corrected phonons, the local mode
frequencies, found by using (III-78) are compared with the

experimental results in Figure (F-1C). This
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témperatureﬂdependence of thé local mode position is thought
to arise from the variation of the argon lattice constant
and phonon frequencies as a function of temperature (De Remigis
(1971)). Conéidering the approximations made,'the agreement
obtained with”éxperimental results is reassuring.
Taylor (1971) has shown that in the hgrmonié approxi-
mation, the_ébsbrption spectrum due to the Q transition
(J=0 » J=0), of H,, (D) in Ar is directly proportional to
4 4
klw =7 7  qigyIm Gi5(w) (IV-19)
1=l j=1 = ° ,
where i and j refer to the four orthonormalasyhmetry coordinates

which transform as the first row of the Fla representation of

Oy, and the parameters q; are_given by

q, = wle,+8e +de,) (IV-20,)
q, = 4#(-e1+2e3-e2).  (1v-20p,)
a3 = 8n(2el+3e3—5e2) _ (1v-20.)

q, = 8me, (Iv-20)

The values 6f'w, u, n and m for equation (iIV-20) are found

in (A-13) while the values of the e's are
el = 15702' e2 = "llol, e3 = "'1401’ e4 = 3-0

(Taylor (1971)). Using the one defect approach, the G appro-

priate to this problem may be expressed as
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G = (I--PF v

1 -lp . -
- F ) PF | (Iv-21)

lu lu " 1lu lu

where PFiu énd v%lu are found in Appendix III.;'With_only a
longitudinal force constant change, AA = -270 dynes/cm,

for a firstvnearest neighbour's defect spécé,the local mode
position for H, in Ar (82°K) and‘D2 in Ar‘(80°K) can be
fitted to 112 cm™1 and 79 cm‘l'respective;y,"Although this
perfect agreement with experiment may Seem impressive, the
'}same AA,used with (IVv-21), (IV-20), and (Ivbl9) gives an
inband mode peak at about 38 cm“l. The fact’that the local
mode fit is sovgood'is not surprising, since De.Remigis and
Welsh (1970) have already observed that 112/79 is practically
. equal to (mDZ/mHZ)%'. Furthermore, the pooriégreement of the
inband peak is to be expected. Using the parameters of Table
(T-2C), for the appropriéte Lennard-Jones potentials, the
one-dimensional relaxation model indicates a relaxation
(contraction) of 5% for the first nearest neighbour, “2% for
the second néarest heighbour, and v2% for the fourth nearest
"neighbour of'théAdéfect molecule. This indiéates that even
for 1% H,, (D,) in Ar, the defect spaces have;a reasonably -
high probability of overlapping. This being the case, this
simple one defect approach, using a firéf nearest neighbour
defect space, is not expecﬁed tdvgive very gbod agreement for

the peak due,to inband modes of vibration.
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2. The Effective Lattice for H,, (D,) in Ar

| Since no information is available on-the change of
lattice spacing for solid Ar, due to the substitutional
H,, (Dz) impufities, only a crude effective lattice can be
considered. It has been seen (one-dimensﬁonal‘model) that
the substitﬁtion of an H,, (D,) molecule in Ar causes a
long range distortion. Since no method is available to cal-
~culate, three.diménsionally, the distortion of the Ar atoms
about a»single H,, (D,), and then extend £his’procedure to
consider 1% H,, (D,) randomly placed in Ar, only the simplest
effective lattice is considered.

The effective lattice assumed in this calculation is

the stable effective lattice (See Section C, Chapter III).
Assuming that the effective lattice must be-siable implies

- that the two conditions must be satisfied. The first is

dq’eff
=0 (IV-22)
da Ja=a,

and the second is that the defects placed into this lattice
must be mass aefects.

From the work of Batchelder, Collines, Haywood and
Sidney (1970),it,is obvious that the first neéxest neighbour
transverse and second nearest neighbour force constants are
between one and two orders of magnitudé less than the first
nearest neighbour longitudinal force constant;-,This being

the case, it is further assumed that only first nearest neigh-
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bour force constants are important and need be considered.

With this assumption, the first condition (IV-22) becomes

off _ Ar (4.2°K) (IV-23)

while the second (only mass defect) implies

Ceff = eH2,(D2) Ar (Iv-24,)

o
eff H2,(D2) Ar

Since all these quantities are found from either Table (T-2C)
or by uéing (IV-23) and (IV-24), the force constants for the
effective lattice can be caléulated. These are listed in
Table (T-1C). Using (III-78), for the appropriate mass
impurity in this effective lattice, the positioh of the local
mode for Hz_in Ar at 82°K and D2 in Ar at 80°K is found to be

1 and 79.8 cm_l respectively. Furthermore, using

113.6 cm_
(Iv-21), (IV-20) and (IV-19) the inband spectrum k(w) is

found for the appropriate mass impurity in Ar. The results

of this calculation are shown in Figures (F-2C) and F-3C)

for H2/Ar and D2/Ar respectively. In these figures the posi-
tion of the experimental peak is indicated by the vertical arrow

1

and the theoretical peak at 24.5 cm - (82°K) can be identified

1 (k=(.712,.212,.212)) critical point of solid

with the 61.7 cm~
Ar at 4.2°K. Because a mesh of .57 cm-1 was used in this calcu-

lation, most singularities are not observable in (F-2C) and (F-3C).
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Considering the lack of sophistication of this
theoretical approach and the fact that the observed experi-
mental peaks have widths of roughly 20 cm~1l, the theoretically

derived results seem quite reasonable.



TABLE (T-1C)

(4.2°K)

179

Experimental

Force Constants

Lennard-Jones

Force Constants

Effective Lattice

Fofce Constants

1XX
1Xy

122

- 531

- 604

572

608

-36

259

273




TABLE (T-2C)
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e°K [ of Argon Temperature r,, Nearest
(°K) Neighbour Distance
N 95 | 3.7 | |
2
4.2 3.748(®)
H, (D) 37 | 2.93
2772 3 55 '3.796 ¢
Ar 120 | 3.40 (a)
60 3.805'2
N,-A" 107 | 3.55
2 65 3.814 %)
H, (D,)~A 67 | 3.17
272 70 3.822 (2
75 3.833 2
80 3.845¢®)

(a) Peterson, Batchelder and Simmons (1966)




FIGURE (F-1C)

Comparison of experimental results

- (filled circles) and theoretical

calculation (- ) for the position

of the local mode side band, of the

-Nz/Ar system, as a function of

temperature.
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FIGURE (F-2C)

of the experimental peak. The (

The inband spectrum, k(w), cofrésponding
to the H, vibrational-rotational transi-
tion, Q, with J=0 -+ J=0 for 1% H; in
solid Ar. The vertical arrow indicates
the position of the experimental peak
while the horizontal line (-----), and
arrows, indicate the approximate width

)

‘line is the theoretical result.
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FIGURE (F-3C) The inband spectrum, k(w), corresponding
to the D2‘vibrational~rotaticnal transi-
tion, Q, with J=0 » J=0 for 1% D, in
solid Ar. The vertical arrow indicates
the position of the experimental peak
while the horizontal line (----- ), and

~ the arrows, indicate the approximate width

of the experimental peak. The (= )

line is the theoretical result.
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"To the discoverer in this field the products
of his imagination appear so necessary and

natural that he regards them, and would have
them regarded by others, not as creations of

thought, but as given realities."
--A. Einstein

CHAPTER V

CONCLUSION

184
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The-broader aspects of a Conclusion Chapter are pre-
sented in the preface and afterword; howeVer;'there remain
some points, associated with the body of this ﬁhesis, that
require conclusion. |

The application chapter indicates the usefulness of
the effective lattice approach. Even thougﬁ fhe use of this
approach has been restricted to the low concentration defect
theory it can, for mass impurities, be used fbr pairs with
correlation or' the n-tuple process. In Section A of Chapter IV
is it seen}that an understanding of the freéuencies and widths

of phonons in Cu is found by taking into account the

0.97%%.03
expansion of the lattice on alloying. Furthérmore, Section C
of the same chapter shows that even a crude model for the
effective 1at£ice (i.e., the stable effective lattice) provides
a qualitatively satisfactory explanation of .both the inband
vibrational side band and the position of the corresponding
local mode fér the disordered Ar, gg9H,, (D2)0_01crystal system.

The single phonon approach used in Section B of Chapter
IV provides some'useful information about the“impurity concen-
tration'dependénce of certain singular points in the defect
induced far infrared absorption of KBr.

It is hoped, that the algebraic method.formulated in
Chapter II may, in the near future, provide SOme hints on

how pair or h-tuple scattering may be used for more extended

defect spaces than for just a mass defect.
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Chapter IV indicates that in order to achieve a clearer
understanding of substitutional defect'crysfal systems, a
proper self consistent treatment of defect lattices, for
extended defects,and a better three dimensional treatment of

relaxation (beyond lattice statics) is required.



AFTERWORD

"La science a fait de nous des
dieux avant méme que nous mé-
ritions d'étre des hommes.”

--Jean Rostand
Pensée d'un Biologiste
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APPENDIX I

THE INDEPENDENT GREEN'S FUNCTIONS FOR F.C.C.

For an f.c.c. lattice, it is easily shown that there
are 13 independent "weighted" densities of states, vgug(2-2';uw)
in the first nearest neighbour defect space. - |

Thé irieducible Brillouin zone in this lattice is

1/48%h

£ the Brillouin zone, and any integfal over such a
zone will be indicated by ['.
If,§=ﬁa/2ﬂ (the wave vector in reduced units, where

a is the lattice constant) and if

2Ti . ]
. i . l_!’.
; d@ed@e = Y
faB(I—I';Q) = - (A-1)
4 o |

in the Brillouin zone, then equation (III-7) is given by
Vog (R-1';w) = Jfdq £35(X-1';d) 6 (ws(d)-w) (A-2)

‘where, for cubic lattices, o is real.
If the independent, reduced vaB(I-Z';Q) are defined as
vi(w), then vi(w) can be written as

vi(w)= Zf'dsqu(i)G(wj(ﬁ)—w) (a-3)
: J

where Fg(ﬁ) is the ith independent function found by

reducing ng(E—E';ﬁ) into the 1/48th Brillouin zone.
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The 13 independent functions F%(ﬁ) of the first

nearest neighbour defect space are listed below:

Fl = 48

F. = 8(03(&)2cos(ﬂqx)(cos(nqy)+cos(nqz))
+c;(§)zcos(wqy)(cos(nqx)+cos(nqz))

+oi(§)zcos(nqz)(cos(wqx)+cos(ﬂqy)))

j _
F, = 16 (04 (§) >cos (nq,) cos (ngy)
+o§(§)2cos(wqx)cos(nqz)

+02(q)2cos(nqx)cos(nqy))

F, = —16(oi(Q)og(Q)sin(nqx)sin(ﬂqy)
+0i(§)d;(Q)sin(ﬂqx)sin(ﬂqz)

+0§(§)cg(é)sin(nqy)sin(nqz))
F. = lG(oi(ﬁ)2cos(2nqx)+03(Q)zcos(Zﬂqy)+oi(q)zcos(Zﬂqz))

F. = B(Oi(Q)Z(cos(anY)+cos(2qu))
+03(Q)?(cos(2nqx)+cos(2qu))

+og(§)zkcos(anx)+cos(2ﬂqy)))

F_ = 8(oi(qyzcos(nqx)(cos(2nqy)cos(nqz)+cos(2nqz)cos(nqy))
+o§(§)2cos(ﬂqy)(cos(2wqx)cos(nqz)+cos(2ﬁqz)cos(ﬂqx))

_'+og(§)2cos(ﬂqz)(cos(2nqx)cos(nqy)+cos(any)cos(nqx)))

F, = 16 (0j(§) 2cos (2nqy) cos (nqy) cos (nqy)
+oi(§)Zcos(2nqy)cos(wqx)cos(ﬂqz)

+og(§)zcos(anz)cos(nqx)cos(ﬂqy))
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Fg = —8(03(§)d§(§)(sin(wqx)sin(Zqu)+sin(qux)sin(ﬂqy))cos(nqz)
+Gi(§)cg(§)(sin(ﬂqx)sin(anz)+sin(2nqx)sin(ﬂqz))cos(nqy)

+03(§)02(§)(Sin(ﬂqy)sin(anz)+sin(2ﬂqy)sin(nqz))cos(nqx))

F10= —16(0 (q)O (q) sin (g )51n(ﬂqz)cos(2nq )
+ox(q)cy(q)51n(nqx)51n(wqy)cos(2nqz)

+cy(q)oz(q)sin(nqy)sin(nqz)cos(qux))

F,,= 8(?i(§)zcos(2ﬁqx)(cos(2nqy)+cos(2nqz))
+o;(§)2cos(2wqy)(cos(anx)+cos(2nqz))

‘ +cg(ﬁ)2008(2ﬂqz)(cos(2nqx)+cos(2nqy)))

Fyo= 16(0 (q) cos(an )cos(an )

+oy(q) cos(2mgy) cos (2nq,)

+cz(q) cos(2nqx)cos(2nqy))

_ h [PUR, IV e

F13— 16(cx(q)oy(q)51n(2nqx)31n(2nqy)

+0,(§) 62 (§) sin(2mnq,)sin(27q,)

I 2y ad () e .

+cy(q)cz(9)51n(2nqy)51n(2nqz))
If Py are the independent Green's functions associated with
vl ana F, for i=l,...,13, then the total Green's function
métrix in the first nearest neighbour defect'space is given

by:
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where the integers *i indicate tP;, and the atoms are given by:

0= (000), 1=3 (10, 2=3(l01), 3=23 (011)

a o i a - -— a ——
4=2@1T0), 5==x (0I1), 6 =<2 (T01), 7 == (110)

2 2 2 2 (A-5)
8 =2 (ToD), 9 =2 (0TI 0 =2 (T0), 11 =2 (011 |

—.2 ( ’ . = 5 ( 11)1 1l = 5 ( )l = 2 ( )
12 = = (100)
=3 .
The other independent Green's functions that are con-

sidered, are those connecting the defect site to the an,3rd,

th = _th '
4 or 5 nearest neighbour shells. These Green's function

matrices will only be considered to within a rotational’trans-
formation. |

Following the method outlined above, it is found that
the Green's function matrices connecting the defect to a second,

third and‘fourth nearest neighbour shell atom are, respectively:

g (200) (200) (200)
X v z
(000) x [ Ps 0 0
(000) y | o p o | (A-6)
(000) z | O 0 P |

; (211) (211) (211)

b4 vy z
(000) x [Py Py Py

(000) V-4 Pg Plo P7
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(200) (200) (200)
X y z

N1

(000) x [ P;; Py3 O]
(000) y | Py3 P;, O] (A-8)

(000) =z 0 0 Pler

The Green's function matrix connecting the defect to a fifth

nedrest neighbour shell atom is given in terms of

Fig = 8(ci(é)zcos(3nqx)(cos(nqy)+cos(nqz))v
+0§(§)chs(3ﬂqy)(cos(nqx)+cos(ﬂqz))

+og(§)2cos(3qu)(cos(ﬂqx)+cos(wqy)))

Fi15 = 8(oi(ﬁ)2cos(ﬁqx)(cos(3nqy)+cos(3nqz))
+0y (&) 2cos (1qy) (cos (3nqy) +cos (3rq,))

+og(§)2cqs(nqz)(cos(3nqx)+cos(3nqy)))

Fi6 = 8(01(Q)2(gos(Bqu)cos(nqy)+cos(nqz)cos(3wqy))
+c;(§)2(cos(3nqx)cos(ﬂqz)+cos(nqx)cos(3nqz))

+cg(§)2(cos(3nqx)cos(wqy)+cos(ﬂqx)cos(3rqy)))

Fip = ~8(oi(§$o§(§)(sin(3nqx)sin(nqy)+sin(nqx)sin(3nqy))
+Gi(§)02(§)(sin(3ﬂqx)sin(ﬂqz)+sin(ﬂqx)sin(3ﬂqz))

+03(§)q2(§)(sin(3nqy)sin(qu)+sin(ﬂqy)sin(3nqz)))

by associating_each Pi with vi and-Fi for i=14,...,17.
The Green's function matrix connecting a fifth nearest neigh-

bour shell atom to the defect atom can thus be written as:



(000)
(000)
(000)

NI

b

y

(310)  (310)

X

y

(310)
z
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APPENDIX II

THE REDUCTION MATRIX
FOR THE FIRST NEAREST NEIGHBOUR DEFECT SPACE

IN AN F.C.C. LATTICE

To obtain the reduction matrix for fhe first nearest
neighbour defect space of an f.c.c.: lattice, the character
table for the‘Oh group must be used. This table can be
obtained from any standard reference,Asuch as Koster (1957).
With this table and the character of the total representation

of the group
E 8Cy 3C3 6C, 6C, I 8Sg 30, 60y, 6S,

x(Qg.c.c. =39 0 -1 -3 1 13 0 5 3 -1  (A-10)

the total representation Iy , .. is found to be composed of

the following irreducible representations:

It is seen from (A-11) that the largest block is a 4x4, and
is associated with the F, irreducible representation.
Using this information, and the projection operators

(o)

gij . the eigenvectors W(Oi) are found to be, (A-12),(A-13):

195
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tion impurity in

f.c.c. lattice possessing Oh symmetry

(a-12)

1 20 1 .2 .3 .1 2 _3 1 .2 .1 .2 o3 o1 .2 .3
. F° F
AlgAzg Eg Eg F1 Fl FlgFZgFZgFZgAzuEu Eu Fl F1 F1 F2 2u 2
0lo 0 0 0ololofjojlololojojolalofofolo]o
oy o{o 0 0 olo[ofofofo|ojo|ojoldalojofoOo|oO
olo 0 ) olofof|lojloflololo}jolojojalo}jolo
d1]1 a=b |-(a+b) ojof|-b ol o}Fb {ojlojolatbc|olotalib
1y 1 (-1 a-b |[a+b [ 0jo|l b |ofo}Fploflo]jo}bpb|{b|lOloO}|Db }a
ofo o | o -bl~alo|blalofFrl1r1|r1]o]lofcloOo}Oo}]oO
1l i1 ~a -a alojolajojojo}jojolajoflal-alalo
21 o f o ) 0 oO{lal-a {0l atatrlr1Fr1]olalOo}lo]o]oO
1|1 b b -alololalolo|lolo|loFb|O|Db|Db Db ]|O
H0|o0 0 o |bpjo}lalp|lotalr|2]0o|c]ojolofo]o
3vji1{1 -a a | o}jblololblojololo]Jo|bplatalola
ﬁ 1 -1 b -b ol-pjoloitbplojojojlolotrelbi-bl O FDb
4 1)1 a-b |-(atb) ojo|bjolof{b|o|lolofalec|jo]|o0}arfb
4y1 |1 fta-b)-(a+tb)y 0jJ o}l b Jo] oFb]o}o|o]|b|b|O]|OfD [Fa
2200 0 0 -blalofbl-alo}l1}lrlr]ojolclo}o]oO
xx0}o0 0 0 bp|{o|-a{plolalr}f2|lo|lclojolojo]a
5y-1 |-1 a -a of{plololbjojlo]lojojo|[blaf-alOo]jo
z 1 -1 b | -b o{plolol-bp{ojololoflo|lclbi{blO|Db
¥111 a a alOJOlajO}jO}jO|lOjO0Oja|Oflalajalo
6yl 0} o0 0 0 Ojajaf(ojafajljijlijojajfofojoOo}|oO
711 b b alojotalolojolololbplolb}ibp|bjoO
®-11-1 b(a-b)|a+b | ol o| b |oj olvjolojolalecfjolofalb
79111 f$(a=b)|~-(atby 0] O|-b ol o}{b|Oo]OojO}Fb|b|O}O]Db [a
zto|o 0 o - | blalotpl-alofrl-1|l21]0o}o]cloOo]joOojo
111 a a |-alolotalo]ofloflojolalolafalalo
8ylo| 0 0 0 Of~rajaloflj-alatif1p1{0f[lajojotot}o
zl-1 -1 -b -b alolotalo|o|lojojoFb|[Oof{b|Db|Db|O
x{olo 0 o |[-b|lol-atb|l ofatkil{2lofctololo]olo
9yk1 {-1 a |~a | ol-blo]|oj-p]olojotltololblalajo}a
z1 | 1 -b b o|lblof{ol-b{ofojo|lo|ofFc|bfb|O}D
x-1 |1 t(a-b) a+b [ 0| 0|-b [0 OoFb|[of{o0|0|alc|o]|0|atb
10y{1}-1 | a-b | a+b | 0{o|-b loj o|bvjo|jo]jolb]bplo]o0o}Db|a
zZlo|o 0 0 bjl-ajofblafol1f1r]ojo|cjofo]oO
xofo 0 o [(-bl{oflatv|{ofalif2lo0fclolo]olo]a
11iyj 1| 1 -a | a ol-blol|ol]-plofololololblal-ajJoO|oO
zl-1 |1 -b b of-p|{ofolb{ojojlojololeclb|-b|[O]|Db
x$1]-1| -a |-a |-alo]loftalojo|o|lofjolalo]a]a]alo
12yfo | o 0 ) ol-af-a|oj-alra|{1f{1]1jojajlojo}o]o
zf1 [-1 -b -b |-a{ojo{ajojololojo|{b]o]b]blblo
The unnormalized eigenvectors W(oi)(E-a) for a substitu-
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a=1//24, b = 1/4, c=1//48 p = 1//12
m = 1//8, = 1//728, u=1//28 w = 1//13
W,
1.1 .2 .2 . 1 .2 o2 o3 o3 o1 1 2 2 o3 3
x|oJojo Jo]Jo|Jo]o]Jolo]o}o ojojo}jojo}o
viololo |o|lo|o}lolo}lo}jolo ofolofofo}o (a-13))
zlo [o o {o]ojofofofojlojojo]olo]Jojo]o]o
Wy, =
- 1 22 pl pl ol 1 o2 w2 o2 2 53 o3 3 3 ol pl p2 @2 @3 @3
A, E- B° Fy F] F{ F; F{ F{ F{ F{ F; F; F; Fj F; F; F; F3 F; Fj
x[o o jo |w|4uf16n olojo |o olo {o]Jojo|lojojojo
yloJo{o|ofo]o w Fau| 16n|0 o{o lojojo}lo]o}olo
z{o jo{o Jolo{o ololo 0lwl-4u16nfjo o jojo]o}jo]o
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(A—l3c)

F3r3 rlplyF

2 .2 .3 o3
2 Fy Fy F5 Fy

2

2 2
1 F1 B

1

1

el el g2 g2 rl Fl F

A; A,

1

Qa0 0%0 %00 %bO Qoo oo
w¢0 0%0 %00 b%O Qooloago
ocooqQjlo.qno 0%% 00% O%b.ObO
coQ|loQgo Q.0 00% Ob% o Qo
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coaq|lqoa|{qgoo|loocalaoco b0¢
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where the subscripts g and u denote the even and odd irredu-

cible representations under inversion, As is seen in (A-12),

¥g(¥ a) = =¥g(-% a)
(A-14)
while Yu(f a) = Yu(-% o)

Using (A-12), all the linearly independent normalized
eigenvectors can be found and arranged into the matrix (A-13),
which is equal to M*.

This matrix M with the property
MMt = T (A-15)

is the desired reducing matrix.



APPENDIX IiI

THE REDUCED FORM OF P, AND vl OF THE FIRST

NEAREST NEIGHBOUR DEFECT SPACE IN AN F.C.C. LATTICE

By using (A-13) on matrices (A-4) and (A-27) as

follows: R

P MP1M+ (a-16)
vR = leM+ : (A-17)

the matrices Pl and v' are block diagonalized. The various

different block diagonal elements are:

R _ 2 ' -
Pa1g = 24a” (P +2P,-2P =P +P ~2Pg~4Py+2P) =P 1 =P 3) (a-18))
.
Valg = —24a” (a+y) (A-18y)
Pazg = 24a’(P;-2P3+2P,~Pg+Pg+2Pg~4Pg-2P; o~P;1+P; 3) (a-19,)
R -
Vazg = 24a% (v-0) | (A-19y)
R } | ‘ ]
Ppg =|-8b%(~2P;-2P3+2P,+2P5~2P¢ +24bc(-2P3--2P4
‘ +2P8f4P9*2P10+2P11-2P13 +2P8+2Plo
24bc[2Pg+2P; : 24c (2P -2P3+2P,4-2P5+2Pg
(A-20_)
R 16b? (a-y) 0
Ve, = (A-20y,)
‘g 0 . -48c?(a+y)
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lg

lg

2g

ebzl

8b2[

(8b2 (

[ 8b? (

g

8b2[

8b2[

[—sb2
l 8b?

2P1+4P2+2P4+P5

8b?
*P5-4P7+4P9—2P10

~P331-P12+P;3

2P4—P5+P6~2P10] ~8b?
+Py1-P12-P13

'2P4sP5+P5F2P10]
|*P11"P127P;3

+P6-4P7+4P9+2P10
(tP311+P12-Py3

(~2p+4P»~2P4~Ps ]

ot

y-a-B) 8b2(a—B~Y)]

a-B=-vy) 8b? (y-a-B)

2P1+4P3-2P4+Ps 8b2’-2P4—P5+P6+2P10
‘P6-4P7-4P9+2P10 L+P11—P12+Pl3 j
=P31-P12-P33

—2P4—P5+P6+2P10] -8b2 (2P -4P,~2P4+P5

+2P11-P12+P13

(a+B+Y)

(a~B+7Y)

~Pg+4P7+4Pg+2P; ¢
(~P11-P12-P13

8b2 (a~B+Y)
-8b? (a+B+Y)

~12p? (=P +4P4+2Pg+4P; o~P; )

-12p?

-243%

B

B
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(A-Zla)

(A-22,)

(A~22b)

(A-23,)

(A-23y))

KA—24a)

(A—24b)
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[w2(13p,+48P, )4uw(-6Ps-P3 ) 8nw(5P+9P3 8mw (P4+4Pg
'+24P3+8P5. '+2P5+4P8 ! “+3P5—7P6 +Pj3
+16Pg+32P7 (+2P11-P12] -14P7+6Pg
+16P8+8P11 L+3P11”5P12‘
+4Py2 2 Se o o
, 4n?[7P,-24P, |8nu(-22P»+18P3| 8mu(-4P, +P13)
+12P3+2P5 +3P5+13P6
+4Pg-8P7 -26P7+6Pg
R +4P8+2P11 \+3P11+5P12J
Pp = L"'Piz J p
lu 8n? 91pP;-24P; 8mn{1l6P4-14Pg
-142P3+9P5 +3P; 3
+109P,-120P,
+18Pg+9P;
L+50P12 :
8m? P1-2Py4
-P5—-Pg¢
~2P10+P11
r , )
wlew? -duwew? 16nwew? 0.
u? (16e0w?-200a)un [~64ew?+5200) -40yum
= ~368 +3128
v, = | , (A-25,)
Flu n? (256cw2-1352q)104ynm
-6768 :
L —8m2d )
where PR =(PRf )T and v® =(vR )T |
v Flu "Flu F1u Flu
8b2 (2P ~2P3+2P4~2Pg 8b2 [-2P3-2P,+2P5. |
R +4P9+2P;0+2P13 +2Pg—-2Pg-2P10
P -2P13 (A-26_)
Fou a
8b2 [-2P3~2P4+2P5 -8b%(-2P1+2P3-2P, |
+2P6—2P8"2P10 +2Pg+4P9-2P; ¢
r  [16b*(y-a) 0
Ve = (A-26,)
2u | 0 -16b2 (a+y)

|
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APPENDIX IV
SINGULARITIES

It is seen from equations (III-6) and (III-7) that
the imaginary part of the Green's function Im Pyg(%,%';y) is
directly related to the weighted density of states vas(i-i';w)-

This weighted density of states is given by (III-7), i.e.,

-ik. (2-%")

1 1 s I .
Vag (B-2';w) = —=—— = Tfd’koy (K) o3 (R)e § (wy (R) -w)
- (@2m® n, j '
(A-28)
Using the fact that
3 : dw
d°k = ds,_, (gydke = dAS_y. (ky — (A-29)
w wJ (k) w “’3 (k) Ikaj (k) |
equation (A-28) may be written as :
' o ~ =ik.(E-T")
S 11 ogq(k)og(k)e :
vap (2-2';w) = — 1[aSy=u, (K
_ (2m) % n, 3 J | Vxwy (k) |
(A-30)

It is a well known fact that the critical points or

singularities'of the density of states ideue'to:the term
Ivkwj (k) I (A-31)

and occurs at frequencies for which this denominator term
vanishes. Since equation (A-30) for any weighted density of
states has the same term affecting the denominator as the
density of states, thus it too will have such singularities and

at the same frequencies.
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APPENDIX V
THE FACTOR 1/n FROM THE CONVOLUTION MODEL

The maximum amplitude of a Gaussian

[w-c(so+sle(k))-wj(k)12'

exp |-
c? [wo+wy 05 (k) F1n2 - (a-32)
/Tin2 c(w +w w (k))
is
1l
(A-33)

/rnln2 c(w°+w1wj(k))

and so the frequency w, at which the ratio of equations (A-32)
and (A-33) is 1/n, can be found from
: . 2
1 [w-c(s°+sle(k))-wj(k)l

- = exp|- ~ >
n c 1n2[wo+wle(k)]‘

That is to say,

w = c/(In N In(2) (wytwiug(k))+e (s +s g (k) +uy (k) (A-35)

This factor 1/n_is that point on the tail of thé Gaussian
which shifts in concentration, as does singulérity'B in the
convolution model, i.e.,

dw |

E; = ACM = céngtant‘= Y(1n n) (1n2) (wo+wlmj(k))+(so+sle(k))

A-36
207 ( )
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or 1 1
—~ = expi{-
n in2

A _~-s -s.w.(k))2]
CM "0 17 ] ' (A-37)

W°+W10)j (k)

Similarly, for a Lorentzian it can be shown that

1 (W +w,w; (k))?2
- = - °c *J (A-38)
n (A -so-slmj(k))2+(w°+wle(k))2

CM

where ACMin (A-38) must be determined, from the convolution

model, using Lorentzians.
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