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An algebraic procedure for considering the general 

n-tuple pr~blem for a random defect lattice is developed in 

this thesis. When specialized to pairs {n=2) the deviations 

from randomicity have also been considered. The low concen-

tration defect theory (n•l) is used to calculate: 

a) the frequencies and widths of phonons in disordered Cu0 . 97 

Au0.03 

b) the frequency shift of singular points in the defect-induced 

+ ++ (Na , Sm ) far infrared spectrum of RBr as a function of 

defect coucsntration 

c) the one phouon side bands of H
2

, D
2

, and N
2 

in solid Ar. 

In c.rder to take into account the "long range" beha-

viour of ra~dom substitutional defects, an effective lattice 

theory is fcrmulated. This theory proves essent~.al to the 

discussion of the Cu/Au disper$ion curves and tn~ one phonon 

side band of the vibrational spectrum of a H
2

, (D
2

) molecule 

in solid Ar. 

ii 



ACKNOWLEDGEMENTS 

I am indebted to McMaster University .for giving 

me the opportw\ity to study in Ontario and to the National 

Research Cou•lcil of Canada for their financial support. 

I wnuld like to thank Dr. o.w. Taylor for supervising 

this work. His many su9gestions have proved useful and his 

willingness to discuss every as.pect of the problem has been 

invaluable in developing the physical ideas presented here. 

I wis~ to express a special thanks to my wife for 

her encouragement and patience, and to both Eileen Jones and 

Efstratios 7:ouros, without whose assistance this thesis could 

never have been produced. 

The more philosophical aspects of this i:hesis have 

arisen from the many useful and provocative discussions I 

have had with E~uce Hayman, Jules Carbotte and Harold Chapman 

on the purpose and usefulness of contemporary science and 

scientific research. 

iii 



CHAPTER I 

CHAPTER II 

TABLE OF CONTENTS 

INTRODUCTION 

A. Thesis Outline 

B. Historical Survey 

THEORY 

A. General Formalism 

1. Double-Time Thermal Green's 

Functions 

2. The Hamiltonian for :Lattice 

Dynamics 

3. The Probability Distribution 

Function 

B. The Low Concentration Theory 

1. Exact Single Scattering 

2. Perturbative Approximation 

c. Pairs with Correlation 

D. The N-Tuple Process 

E. The Effective Lattice Theory 

CHAPTER III DEVELOPMENT 

A. Perfect and Effective Lattice Green's 

PAGE 

1 

2 

10 

19 

20 

20 

24 

33 

39 

39 

46 

49 

58 

66 

75 

Functions 77 

!.i. Group Theory and the Substitutional 

Impurity 83 

iv 



CHAPTER IV 

c. Interatomic Potentials and the 

Defect Lattice 

1. The Crystal Potential 

2. The Morse Potential 

3. The Lennard-Jones Potential 

4. Ionic Crystals 

PAGE 

90 

90 

97 

100 

101 

D. Neutron Scattering 103 

E. Impurity Induced Infrared Absorption 107 

F. The Local Mode 110 

.APPLICATION 115 

A. A Calculation of the Ffequencies and 
I 

Widths of Phonons in cu
0

•
97

Au
0

•
03 

116 

1. Effective Lattice and Local' Force 

Constants 

2. Comparison with Experiment 

B. Singular Points in Na+ and Sm++ 

Induced Infrared Spectra of KBr 

1. Single Phonon Approach 

2. Convolution Model 

3. Results 

c. Calculation of Phonon Side Bands of 

H
2

, D
2 

and N
2 

in Solid Argon 

119 

125 

149 

150 

156 

158 

171 

1. The Problems and Some Results 172 

2. The Effective Lattice for H2 , (D
2

) 

in Ar 

v 

176 



CHAPTER V 

AFTERWORD 

APPENDIX I 

APPENDIX II 

CONCLUSION 

THE INDEPENDENT GREEN'S FUNCTIONS FOR 

F.C.C. 

THE REDUCTION MATRIX FOR THE FIRST 

NEAREST NEIGHBOUR DEFECT SPACE IN AN 

F.c.c. LATTICE 

PAGE 

184 

187 

188 

195 

APPENDIX III THE REDUCED FORM OF P
1 

AND v 1 OF THE 

FIRST NEAREST NEIGHBOUR DEFECT SPACE 

APPENDIX IV 

APPENDIX V 

BIBLIOGRAPHY 

IN-AN F.C.C. LATTICE 202 

SINGULARITIES 206 

THE FACTOR l/n FROM THE CONVOLUTION MODEL 207 

209 

vi 



FIGURE 

(F-lA) 

(F-2A) 

(F-3A) 

(F-4A) 

(F-5A) 

(F-6A) 

(F-7A) 

(F-8A) 

(F-9A) 

(F-lOA) 

(F-lB) 

(F-2B) 

(F-3B) 

(F-4B) 

(F-5B) 

(F-6B) 

(F-7B) 

LIST OF FIGURES 

DESCRIPTION 

~OPPER MODE GRUNEISENS 

FITTED T(0,0,l,;), T
1 

(l; 1 l; 1 0) FREQUENCY 

SHIFT (NO VOLUME EFFECT), (Cu/Au) 

FITTED T(O,O,l;) FREQUENCY SHIFT (Cu/Au) 

FITTED T
1 

(1; 1 1;,0) FREQUENCY SHIFT (Cu/Au) 

T ( 1;, 0, I;) FREQUENCY SHIFTS (NO VOLUME 

~FFECT) , (Cu/Au) 

PAGE 

139 

140 

141 

142 

143 

T1 (1;,1;,0) FREQUENCY SHIFTS (NO VOLUME EFFECT) 

(Cu/Au) 144 

T(0,0,1;) NEUTRON CROSS SECTION WIDTHS (Cu/Au) 145 

T
1 

(1; 1 1;,0) NEUTRON CROSS SECT~ON WIDTHS 

(Ct:/Au) 

~(0,0,1;) PAIR CALCULATION (Cu/Au) 

~(O,O,l;) AND T
1

(l;,1;,0) VOLUME EFFECT (Cu) 

THE ENVELOPE FUNCTION 

Sm++ IN KBr SPECTRAL FUNCTIONS 

Na+ IN KBr SPECTRAL FUNCTIONS 

SI~GULARITY B FREQUENCY SHIFTS (Na+, Sm++) 

StNGULARITY A FREQUENCY SHIFTS (Na+, Sm++) 

~INGULARITY C FREQUENCY SHIFT (Na+) 

CONVOLUTION MODEL WITH LORENTZIANS ~Sm++) 

vii 

146 

147 

148 

163 

164 

165 

166 

167 

168 

169 



FIGURE DESCRIPTION PAGE 

(F-SB) CONVOLUTION MODEL WITH GAUSSIANS {Sm++) 170 

(F-lC) TFY.J?E RATURE DEPENDENCE OF LOCAL MODE 

:N 2/Ar) 181 

(F-2C) H2 IN Ar IN BAND SPECTRUM 182 

(F-3C) D2 IN Ar IN BAND SPECTRUM 183 

viii 



TABLE 

(T-lA) 

(T-2A) 

(T-3A) 

(T-lB) 

(T-2B) 

(T-lC) 

(T-2C) 

LIST OF TABLES 

DESCRIPTION 

MO.l:IBE PORENTIAL DATA (Cu) 

~OPPER FORCE CONSTANTS 

EFFECTIVE LATTICE FORCE CONSTANTS AND 

PAGE 

136 

137 

CHANGES IN LOCAL FORCE CONSTANTS (Cu/Au) 138 

Na+ in KBr EFFECTIVE LATTICE DATA 

CONVOLUTION MODEL CONSTANTS (Sm++) 

FORCE CONSTANT DATA (Ar) 

IENNARD-JONES POTENTIALS AND TEMPERATURE 

DATA FOR Ar 

ix 

161 

162 

179 

180 



PREFACE 

I have chosen the following ideas from various works 

of T.S. Kuhn because of our mutual agreement on the subject. 

Scien~ists work from models acquired through educa

tion and th::ough subsequent exposure to literature often with

out quite knowing or needing to know what characteristics have 

given theso models the status of community paradigms. And 

because they do so, they need no full set of rules. The co

herence displayed by the research tradition in which they 

participate may not imply even the existence of an underlying 

body of rul~s and assumptions that additional historical or 

philosophical investigation might uncover. That scientists 

do not usually ask or debate what makes a particular problem 

or solution legitimate tempts us to suppose that, at least 

intuitively, thay know the answer. But it may only indicate 

that neither ~he question nor the answer is felt to be relevant 

to their re33arch. 

PhiLosophers of science have repeatedly demonstrated 

that more than one theoretical construction can always be 

placed upon a given collection of data. History of science in

dicates that, particularly in the early developmental stages of 

a new paradigre, it is not even very difficult to invent such al

ternates. But that invention of alternates is just what scien

tists seldom undertake. So long as the tools a paradigm 

x 



supplies co41tinue to prove capable of solving the problems it 

defines, science moves fastest and penetrates most deeply 

through confident employment of those tools. The reason is 

clear. As in manufacture so in science--retoo~.ing is an 

extravagance to be reserved for the occasion that demands it. 

To scientists, at least, the results gained in normal 

research are significant because they add to the scope and 

precision ¥ith which the paradigm can be applied. That an

swer, however, cannot account for the enthusiasm and devotion 

that scientists display for the problems of normal research. 

No one devotes years to, say, the development of a better 

spectrometer or the production of an improved solution to the 

problem of vibrating strings simply because of the importance 

of the information that will be obtained. The data gained by 

computing ephemerides or by further measurement3 with an 

existing instrument are often just as significant, but those 

activities are regularly spurned by scientists because they 

are so largely repetitions of procedures that have been carried 

through before. That rejection provides a clue to the fasci

nation of the normal research problem. Though its outcome can 

be anticipated, often in detail so great that what remains to 

be known is itself uninteresting, the way to achieve that 

outcome remains very much in doubt. Bringing a normal research 

problem to a ?onclusion is achieving the anticipated in a new 

way, and it ~equires the solution of all sorts of complex in

strumental, conceptual, and mathematical puzzles. The man who 
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succeeds proves himself an expert puzzle-solver, and the 

challenge o:i: the puzzle is an important part of what usually 

drives him on. 

It is no criterion of goodness in a puzzle that its 

outcome be intrinsically interesting or import~nt. On the 

contrary, the really pressing problems, e.g., a cure for 

cancer or the design of a lasting peace, are often not puz

zles at all~ largely because they may not have any solution. 

Consider t:he jigsaw puzzle whose pieces are selected at 

random from each of two different puzzle, boxes. Since that 

problem is likely to defy even the most ingenious of men, it 

cannot serve a~ a test of skill in solution. In any usual 

sense it is not a puzzle at all. Though intrinsic value is 

no criterion for a puzzle, the assured existence of a solution 

is. 

In the development of any science, the first received 

paradigm is usually felt to account quite successfully for 

most of the observations and experiments easily accessible to 

that science's practitioners. Further development, therefore, 

ordinarily calls for the construction of elaborate equipment, 

the development of an esoteric vocabulary and skills, and a 

refinement of concepts that increasingly lesse~s their resem

blance to their usual common-sense prototypes. That profes

sionalization l~ads, on the one hand to an immense restriction 

of the scient~st's vision and to a considerable resistance to 

paradigm change. The science has become increasingly rigid. 
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On the other hand, within those areas to which the paradigm 

directs the attention of the group, normal science leads to 

a detail of information and to a precision of the observa

tion-theory match that could be achieved in no other way. 

Furthermore, that detail and precision-of-match have a value 

that transcen~s their not always very high intrinsic interest. 

Without the ~pecial apparatus that is constructed mainly for 

anticipated functions, the results that lead ultimately to 

novelty could not occur. 

In the normal mode of discovery, even resistance to 

change has a use. By ensuring that the paradig~ will not be 

too easily surrendered, resistance guarantees that scientists 

will not be Lighly distracted and that the anomalies that 

lead to par~digm change will penetrate existing knowledge to 

the core. The very fact that a significant scientific novel

ty so often emerges simultaneously from several laboratories 

is an index both to the strongly traditional nature of normal 

science and to the completeness with which that traditional 

pursuit prep8res the way for its own change. 

xiii 
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"Wh~n philosophy is severed from its roots 
in experience, whence it first sprouted and 
grP.!w, it becomes a dead thing." 

--Francis Bacon 

SECTION A 

THESIS OUTLINE 

Th£ language of quantum mechanics, contrary to the 

Aristoteli~.n physics of qualities and in contrast to the 

Newtonian physics of primary properties, is a language of 

2 

interactions rather than attributes, of processes rather than 

properties. Fcrmally, at least, it is in this vernacular 

that the particular problem in lattice dynamics of crystals 

with substitutional impurities is considered. 

The excitations in crystals called phonons have been 

studied for more than half a century, beginning with the 

work of Born and Von Karman (1912). However, the study of 

the effects of substitutional defects on the vibrational 

properties o~· perfect crystals has been subjected to inten

sive invest~gation only in the last decade. Recently, the 

effects of jmpurities on the dynamical propertieR of crystals 

has been observed experimentally by such techniques as 

infrared absorption (A.A. Maradudin (1966b)) and neutron 

scattering (Brockhouse (1966)). The main purpose of this 

thesis is to develop a theoretical structure by which the 
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dynamical properties of crystals with substitutional impuri

ties may be considered, and to apply this formal work to the 

discussion of experimental observation. 

To achieve this goal, double-time thermal Green's 

functions served as the basic mathematical tool. The usage 

of these Green's functions follows closely that of Zubarev 

(1960) and has been adapted for particular application to 

lattice dyr-~lnics. Although the whole formalism is based on 

the Green'~ function approach, it is the configurational 

averaging ~rocedure that, in the end, defines the defect 

lattice. This averaging method, which restores translational 

symmetry to the defect lattice, can be understood more pre

cisely by using probability distribution functions similar 

to those of Lax (1951). 

In ~his thesis, before approaching the actual problem 

of perfect lattice excitations scattering off of substitution

al impurities, a discussion is presented on the approximations 

required to define the perfect crystal excitations. This 

approach is t~en extended to the defect lattice with substi

tutional imp~rities and forms the starting point for the 

lattice dynm~ical problem. 

Section B of Chapter II considers the defect problem 

for a low enough concentration c of defects where the conf igu

ration averaged Green's function for the system is correct to 

c in concentration. The result obtained is the low concentra

tion theory, Freviously derived by Taylor (1967). The point 
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of interes~: in this section is not so much the exact form of 

the low concentration theory, as its extension to what is 

called the ~erturbative approximation. 

In the exact form, the low concentraticm theory defines 

a scattering matrix which has the dimension of the defect 

space, the defect space being the spacial extent of an im

purity mas~· and force constant disturbance from a previously 

perfect lattice. For a small disturbance that includes only 

the impurit.y site and the first nearest neighbour shell, the 

defect space, if not reduced, has a size so for~idable as to 

make calculations on even the highest speed computers a 

lengthy process. Even with the reduction of the defect space 

by the use of group theory, as discussed in Section B of 

Chapter III, the problem is still one of sizable proportions 

--if not in dimension then certainly in the determination of 

all the appropriate Green's functions and the necessary group 

theory operations. 

The remedy for these difficulties was found by making 

a perturbatic.n on the change of the lattice potential (force 

constant matrix} while considering the mass defect scattering 

as exact. 'I'his approach to the low concentration theory 

considerably reduces the number of independent Green's functions 

necessary, and r~quires no group theory for reduction since it 

is already in ~ompact form. Furthermore, this method can be 

extended to the consideration of larger defect spaces with 

no loss in simplicity of calculation. Section A of Chapter IV 
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shows that, for reasonable mass changes, the perturbative 

approach to the low concentration theory gives agreement that 

differs negligibly from its exact form, for a wide range of 

force constant changes. 

Sine~ the low concentration theory is concerned in an 

exact f ashic·n with only single site scattering, many higher 

order proce~ses have been neglected. The general process 

for the scattering off of n sites is called the n-tuple 

process. Although the theory for pairs is a special case of 

the general n-tuple process with n=2 (as is the low concentra

tion theory for n=l), it is presented separately in Section C 

of Chapter II because it is applied directly for comparison 

with experirr-ent. 

The algebraic method for the evaluation of the full 

n-tuple scattering, self energy, and configurational averaged 

Green's functicn is presented in Section D, Chapter II. The 

mechanism uRed in this derivation is similar to that of 

Section B an~t C. Here, only the case of a mass defect is 

considered, and the result obtained is correct to en. For 

algebraic simplicity, the discussion of this pro~ess has only 

been given for the truly random impurity, although it can be 

extended to a lattice with defect correlations. 

The •lifficulty with the theory of n-tuple processes, 

as well as w~th low concentration theory, is that it does not 

allow for th~ changes that occur in the lattice due to the 

"long-range" effects of impurities. In Section E, Chapter II, 
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a method for considering such effects of impurities is pre

sented. Although the discussion proceeds along the lines of 

the low cou~entration theory it is easily generalized to 

incorporate any n-tuple process if the approximation,that the 

"short ran•Je" effects of the impurities are the mass change 

while the "long-range" effects are considered o.s the force 

constant change, is made. The visual pattern of this section 

is somewhat reminiscent of a self consistent approach, but the 

idea behind the pattern, and the development of it, differs 

from that of the self consistent method. The basic idea of 

this approHch involves the redefining of the perfect lattice 

into which the impurities are placed, as an effective lattice 

into which "local" impurities are placed. In this lattice, 

the impurities do not possess any "long-range" effects, and 

there is little probability that any two defect spaces would 

overlap. If such a lattice can be found from a consideration 

of the atomic potentials between pairs of atoms, or from 

observed macroscopic changes--such as a change in the lattice 

constant--then the lattice Green's function used in the Dyson 

equation is taken to be that which describes the effective, 

rather than ~he perfect lattice. A knowledge of the atomic 

potentials and/or macroscopic changes of the lattice is re

quired to make this approach useful. 

In order to use the theoretical structur~s of Chapter 

II for comparison with experimental results, a development 

chapter, Chapter III, is used to bridge the gap between the 



formal theory and the computer oriented formalism necessary 

for applications. In this chapter, Section A gives the 

equations for finding the perfect or effective lattice 
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Green's function, while Section B contains a brief discussion 

of the group theory necessary for reducing the labour involved 

in solving the impurity problem. In order to build up the 

idea of an atomic potential between atom pairs in a crystal, 

a brief discussion of interatomic potentials is presented in 

Section c. Since Section c, Chapter IV requires information 

on local modes, Section F of Chapter III gives a short discus

sion on local modes in a defect lattice. Finally, Section D 

(neutron scattering) and E (impurity induced infrared absorp

tion) of the chapter are presented so that they can be used 

as the starting points for the discussion of experimental 

results of Sections A and B respectively, of Chapter IV. 

The experimental application of theory is given in 

Chapter IV. Section A considers the work of Svensson, 

Brockhouse and Rowe (1967), Svensson and Brockhouse (1967), 

and Svensson and Kamitakahara (1971), by using 

low concentration theory along with the effective lattice 

theory. However, the theory for pairs is also used in 

comparison with the low concentration theory. This is done 

£or the case of a mass impurity only, in order to evaluate 

the effect that pairs would have on the scattering. In the 

same section, the experimental neutron groups are compared 

with the appropriate Green's functions as they would be per

ceived in the experimental situation. 
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For fa~ infrared absorption, it is impossible, within 

the framework of the low concentration theory, to observe 

directly the changes in position of Van Hove singularities as 

a function ~f defect concentration. Thus, in Section B, 

Chapter IV, bhe experimental results for far infrared absorp-

tion given by Timusk and Ward (1969) are considered by looking 

directly at the phbnons involved in the absorption process 

and following their movement with concentration. Also in this 

section, a convolution model is developed and proved to be a 

useful tooJ for considering the absorption induced by Sm++ 

impurities in KBr. + For Na impurities in KBr, ooth the low 

concentration theory and the effective lattice are used to 

explain the results observed experimentally for the movement 

of singular :-;>oints.in the Na+ defect induced spectra of KBr. 

The most direct method to obtain information about 

the immedia .. :e environment around an impurity is through the 

local mode. Section C of Chapter IV relates the local mode 

work of Chapter III to the induced near infrared absorption 

of molecular i~purities in Ar. The theoretical work of the 

thesis is ccmpared to the experiments of Kriegler and Welsh 

(1968) for n2 , De Remigis and Welsh (1970) for D2 and De Remigis 

(1971) for N2 dissolved in Ar, by using the information ob

tained from Batchelder, Collins, Haywood and Sido.1ey (1970) 

on the Ar phononn, and from Batchelder, Haywood and Sanderson 

(1970) on the temperature dependence of phonons in solid Ar. 

Because of this information on Ar, the position of the local 
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mode can be theoretically determined for any temperature. 

This is applied to the experimental observations of N2 in Ar 

as a function of temperature. Here, the effective lattice 

theory proves Most useful in the treatment of H2 and o2 in Ar. 

Thi.s work on the lattice dynamics of crystals with 

substitutional impurities has the advantage of an algebraic 

formalism w~1ich is not the case for other authors. An out

line of previous work in the field follows in tne next 

section. 
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"Truth emerges more readily from erroi: than 
from confusion." --Francis Bacon 

SECTION B 

HISTORICAL SURVEY 

The introduction of impurity atoms by substitution 

into a lattice changes the vibrational properties of that 

lattice. For such a lattice, the phonons of. a given wave 

vector are s~ifted in frequency, and in general, phonons no 

longer have. infinite lifetimes since they can now scatter off 

of impurities. This means that the lattice excitation is now 

not described by a delta function but rather by a pseudo-

Lorentzian. In such a defect lattice, the def.ect atom and 

those atoms which define the defect space may prefer to vib-

rate at particular frequencies. If these frequencies of 

vibration are within the perfect lattice band modes (as for 

a heavy imp~rity and/or a weakening of the lattice force 

constants in the defect space) then they are cnlled "resonance 

modes", while if they occur above the perfect lattice band 

modes (as in th~ case of a light impurity and/or a strength-

ening of th~ lattice force constants in the defect space) then 

they are called "localized modes". 

The quantitative aspects of a perturbed lattice have 

been studied and discussed extensively in recent years. 
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Lifshitz (1965) was one of the first to describe a general 

theory of rlefect modes based on the method of normal Green's 

functions. Theories of perturbed lattices having a low 

concentration of impurities have also· been de,reloped by 

Langer (1961), Takeno (1962a' 1963) and Davies and Langer 

(1963). These authors considered lattices with a random array 

of defects c-nd were correct in their approach to order c. An 

excellent ~ummary and review of much of this work was given 

by Maradud.::.n, Montroll and Weiss (1963) and also by Maradudin 

(1965, 1966a) • 

The use of double-time thermal Green's functions was 

first introdu~ed by Zubarev (1960} and was applied by Elliott 

and Taylor (1967) to the defect problem in lattice dynamics 

for a three dimensional lattice containi~g a small concentra-

tion of substitutional impurities. Taylor (1967} used this 
I 
I 

Green's function form to derive algebraically the low concen-

tration theory and Hartmann (1968) extended the theory to 

include correlations between defects through a short range 

density function (in the author's words, "an order parameter") 

about any defect site. In considering short ranged order in 

this paper, Hartmann does not indicate what his extension of 

the low concentration theory has excluded or included. It 

seems that the author treats only single site scattering, 

weighted by an appropriate conditional probability function, 

and has excluced pair scattering. 
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Although Hartmann (1968) tends to give slightly 

better agre..:!ment for the experimental results of Svensson, 

Brockhouse and Rowe (1965) than does Behara and Deo (1967), 

both retain the same qualitative features for the description 

of the frequency shift of the dispersion curve for the 9.3% 

Au/90.7% C~ system. These approaches then, do not form a 

complete e~planation for the experimentally observed results. 

Beh~ra and Deo's (1967) analysis uses an approximate 

method to treat force constant changes in the dafect space. 

The complete low concentration theory treatment of force con

stant changes, in the defect space of the first nearest 

neighbour s~ell for the f .c.c. lattice and in the defect space 

of the first and second nearest neighbour shell for the b.c.c. 

lattice was performed by Lakatos and Krumhansl (1968, 1969). 

The factors which limit the usefulness of the Lakatos and 

Krumhansl (1968) scheme are: (a) only the self energy was 

determined (this is not related directly to the neutron 

groups obse:r'\·ed experimentally), (b) the method for finding 

the k-space re~resentation of the self energy was unnecessarily 

difficult. Furthermore, the similarity transformation given 

by Lakatos (1967) for the reduction of the defec~ space does 

not reduce the space properly. 

The dynamics of a defect crystal with large distortion 

have been disc.•1ssed by Lifshitz and Kosevich (1967). The 

drawback of their method is related to their formalism and 

the fact that the approach is similar to that of the one 
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impurity problem. Litzman and Rozsa (1965) present a rather 

cumbersome matrix method which is not readily applicable to 

a calculation. 

The pair problem has been considered from a theoretical 

viewpoint hy Takeno (1962b) for an isolated pair of defects 

and by Lang~r (1961) for a large number of pairs where no 

correction was made for multiple occupancy of sites by defects. 

Leath and Goodman (1968) dealt with pairs by using a cluster 

expansion, but this led to an over-correction and certain 

spurious features. Recently, Aiyer, Elliott, Krumhansl and 

Leath (1969/ considered pairs from a diagranunatic point of 

view and have included the proper corrections for multiple 

2 occupancy in their treatment which is correct to c • 

Up to the present, no algebraic scheme has been pro-

posed to consiaer the general n-tuple or cluster processes, 

nor has any algebraic means been formulated to obtain the 

pairs resul~ of Aiyer, Elliott, Krumhansl and Leath (1969). 

The advanta~a of such a scheme (as presented .in Chapter II) 

over the diagrammatic approach adopted by the above authors 

is that it readily lends itself to the consideration of not 

only the purely random defect lattice but also of a crystal 

where the dei~cts are correlated, and have some degree of 

spacial order. 

It has been shown, Takeno (1962b)' that the presence 

of a finite number of impurities in a crystal, e7en at low 

concentrations, has an effect on the lattice vibrations in 
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the local mode frequency region. Lifshitz (1963) demonstrated 

that the amplitude of a local mode dies away in an approxi

mately exponential manner; thus, the local mode is not loca

lized, since the vibrations due to one defect can affect those 

of nearby detects. The machine calculations of Dean (1961, 

1965) found a density of states in a frequency of range about 

the local mode frequency. Since the carrier of these vibra

tions is the host lattice, it is expected that ~he density 

of vibrations in the local mode frequency range mirrors, in 

some way, the vibrations of the host lattice. In fact, it is 

the higher o~der correlations (such as pairs, triplets, etc.) 

that give rise to the fine structure about the local mode 

(Dean (1961)). This problem has been considered by many 

authors, such as Agacy (1964), using machine calculations, 

and Taylor (1967) using a self consistent Green's function 

treatment. The self consistent approach given by Taylor (1967) 

defines an ~ffective lattice such that no scattering occurs. 

In this approach, Taylor used an approximation that elimina

ted the scat~ering from single sites. Aiyer, Elliott, 

Krumhansl and Leath have extended Taylor's work to include 

pairs. Unlike the effective lattice theory {Chapter II, 

Section E) whicr. uses phonons of infinite lifetime for the 

effective lattice, the self consistent Green's function theory 

uses the perturbed phonons of the defect lattice as the start

ing point in an iterative process for the averaged Dyson equa

tion. 
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Th~ usual approach to defect induced far infrared 

absorption in ionic crystals uses the one defect theory. 

Even though this theoretical method is rather crude, it has 

produced some interesting comparisons with experiment 

(Woll, Gethins and Timusk (1968)). In Part B of the pro-

ceedings of the Irvine Conference (Wallis (1967)) there is a 

good review of the subject of defect modes in ionic crystals. 

Timusk and Ward (1969) found that certain points of the 

absorption which are associated with Van Hove singularities 

shift in frequency as the concentration of impurities is 

changed. Although any perturbative approach in terms of the 

perfect latti~e Green's functions will always reflect the 

perfect latt.i.ce Van Hove singularities--or at most, produce 

a metamorphvsis of these singularities (Okazaki et al. (1967)) 

in the absocption constant--Taylor (1971) has shown by using 

a model density of states for a monatomic crystal, that sin

gular points do shift if a self consistent calculation is 

made. So far. a self consistent treatment of a three-dimen

sional diato~ic lattice has not been attempted. 

Recently, some interesting experimental work has been 

done on rare gas crystals with molecular impurities. Kriegler 

and Welsh (1968) have considered the interaction of the lattice 

vibrations of Ar on the rotational and vibrational excitations 

of H2 • De Remigis and Welsh (1970) have repeated the same 

experiment for D2 in Ar, and also, De Remigis (1971) has con

sidered the cnange of this interaction for N2 in Ar as a 
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function of temperature. The theory for infrared absorption 

in rare gas crystals has been developed in an article by 

Davies and Healey (1968) for one phonon absorption, however, 

they do not: consider the interaction between the lattice 

vibrations and the rotational/vibrational excitations of the 

impurity. A comprehensive study of this interaction of 

H2 has been given by Noolandi and Van Kranendonk (1970a b). 
. ' 

Although Noolandi and Van Kranendonk have only considered 

this problem in solid hydrogen, it can easily be extended 

to near infrared absorption of molecular impurities in 

solid argon. 

A large body of work on atomic potentials for mole-

cules in either the gaseous or liquid state is contained in 

Hirshfelder, Curtiss and Bird (1954), and Hirshfelder (1967). 

Girifalco and Wiezer (1959) have considered the Morse poten-

tial for metallic crystals by fitting the parameters to the 

heat of sublimation, Born stability condition, and the bulk 

modulus. :otterill and Doyama (1967) note that Girifalco 

and Wiezer's use of the heat of sublimation in determining 

the Morse potential parameters for metallic crystals is in

correct. They argue that the heat of vacancy formation should 

be used, sinc9 it takes into account the electron redistri-

bution. The use of an interatomic potential to discuss the 

lattice dyna.~ics of a perfect crystal lattice WdS demonstrated 

by de Wette, Cotterill and Doyama (1966). Here, a Morse 

potential, found by using the technique of Cotterill and 
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Doyama (19f.7), was employed to obtain the dispersion curves 

of copper. Although the parameters of de Wette, Cotterill 

and Doyama (1966), and Cotterill and Doyama (1967) for Cu 

differ, the derived dispersion curves are correct to within 

5% and 10% respectively, of the experimental results. Since 

the work u~dertaken in this thesis is applied to metals for 

which pseuC..opotentials have not been used to calculate phonons, 

the idea o~ using an interatomic potential to discuss the 

lattice dynamics of a crystal is of great interest. Though a 

knowledge of the interatomic forces is very limited, rough 

approximaticns have been used for crystals in the study of 

dislocations and stacking faults. Christian and Vitek (1970) 

present an excellent review of the interatomic potentials 

necessary to the study of dislocations and stacking faults. 

Discussion of potentials in ionic crystals are standard 

(Seitz, 1940). For rare gas crystals, the gas pair potentials 

remain valid even in the crystal state (Kriegler and Welsh, 1968). 

A t?1eoretical account of the change of force constants 

about an impurity atom was presented by Parlinski (1970) using 

a pseudo-harmonic approach. In the article, this method is 

restricted to one dimension and assumes that the bare potential 

of the impurity atoms is the same as that of the host lattice. 

Page (1970) 113es the "lattice statics" method to compute the 

lattice relaxation about point defects. The displacement of 

the atoms about the impurity site is found relative to unit 

relaxation of the nearest neighbour atoms. The usual methods 
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used in ca~.culating the distortion of the lattice about an 

impurity iuvolves either the minimum energy principle or the 

balancing ~f interatomic forces in the defect space. In 

this thesis, relaxations will be considered via the latter 

method. 



CHAPTER II 

THEORY 
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"So far as the work of the intellect is con
cerned, I may perhaps successfully accomplish 
it by my own powers, but the materials for 
the intellect to work upon are so widely scat
tered that, to borrow a metaphore from the 
world of commerce, factors and merchants must 
seek them out from all sides and import them." 

--Francis Bacon 

SECTION A 

GENERAL FORMALISM 

1. Double-Time Thermal Green's Functions 

In statistical mechanics, Green's functions are 

20 

generally connected with the concept of correlation functions 

and intimately linked with the evaluation of observables. 

In gene~al, the quantities of interest in systems 

with large numbers of interacting particles are the correla-

tion functions of the following form: 

FAB(t-t') = <A(t)B(t')> 

and FBA(t-t') = <B(t')A{t)> 

where<••••> denotes the usual thermodynamic average, 

and A{t), B(t') are Heisenberg operators. 

By expressing these correlation functions explicitly 

in terms of the exact eigenvalues En and eigenvectors In> 

of the Hamiltonian, it is found that they can be written in 

terms of the spectral intensity J(w). 
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oo -iw(t-t') 
F (t-t') 

AB 
= J J(w)exp(Sw)e dw ( II-1) 

-oo 

00 

F 8 A (t-t') = J J (w) exp (-iw (t-t')) U(Jl (II-2) 
-oo 

where S=~/k T ~nd equation (II-1) and (II-2) are ralated 

by 

J(w) = 

The spectral intensity is given by 

1 
mnl <mlACO) ln><nlB(O) lm>exp[- En ] 

2~iTr(e-H/kBT) ksT 

1 

E -E n m 
--- --~-ie: 

1 

E -E n m 
-w+ie: 

(II-3) 

where the te.'l..·m in .the sum of J (w) has poles in w at every 

excited sta·..:e of the system. 

By u8ing advanced and retarded double-tim~ thermal 

Green's functions: 

G (t,t') = <<A(t);B(t')>> = i6(t'-t)<[A(t),B{t')]> (II-4) a a 

Gr(t,t') = <<A(t);B(t')>>r = -ie(t-t')<[A(t),B(t')]> (II-5) 

where 6(t) = 1 t>O and [A,B] = AB-nBA, n=±l, this spectral O t<O 

intensity can be evaluated without any knowledge of the eigen-

function of the Hamiltonian. The sign of n indicates the 



22 

the commutator or anticommutator. If A and B are Bose 

operators, the commutator or positive sign of n is taken, 

whereas if t~ey are Fermi operators, the negative sign is 

taken. This thesis considers only Bose operators. 

Stating explicitly the time dependence of these 

Green's functions, clearly demonstrates that they depend 

only on differences in time, i.e., 

G ( ) ( t ' t I ) = G ( ) ( t-t I ) (II-6) 
a,r air 

To ~stablish the relation between the Green's functions 

and the spE-ctral intensity, it is necessary to define the 

Fourier trc-.nsforms: 

()() . 
G(t) = J G(w)e-iwtd 

-co 
co . 

G(w) = 
2
!f G(t)eiwtdt 

-co 

Using the definition (II-5) of, say, G (t), the 
r 

frequency rspresentation G (w) becomes 
r 

(II-7) 

G (w) = ~cof dw'J(w') (eSw'-1>cof dte(t)ei(w-w')t (II-8) 
r 2iri -oo -oo 

Since the step function can be written in the form 

.co ixt 
a (t) = -3:..f e-.- dx 

2ir x+ie: -co 

equation (Il·~B) can be expressed as 

e:+o+ 

G (w) = ....!.cof dw'(e6w'-1}~(w') 
r 2ir w-w'-ie: 

-OC> 

(II-9) 

(II-10) 
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and simila::ly 

G (w) = a 
l j dw I ( e 13 w I -1) J ( w I ) (II-11) 

21T -oo w-w'+ie: 

The functions G (w) and G (w), as expressed in (II-10) 
r a 

and (II-ll) r.espectively, can be continued analytically in the 

complex w p!ane. Indeed, by taking w=z as complex, equations 

(II-10) and (II-11) become 

G(z) = 1 j dw' (el3w'-l)J(w') = 
21T -oo z-w' 

G (z) Im z>O 
r 

G (z) Im z<O 
a 

{II-12) 

If a cut is made along the real axis, G can be considered as 

one analytical function in the complex plane. In this case, 

G is made up of two branches, one defined in the upper (G ) 
r 

and the other in the lower (G ) half of the complex z-plane. 
a 

If G{z) is known, the spectral intensity J(w) can be 

found from the relation 

G(w+ie:)-G(w-ie:) = -i(eew_l)J(w) (II-13) 

+ for real w, e: and e:-+O • Equation (II-13} is a direct result 

of the propE!rties of G(z) as expressed by (II-12). 

Now the Green's function must be found in order to 

solve the problem. Although this depends upon the physical 

problem under ccnsideration, in general the equation of motion 

for the Green's function is used. To obtain this equation, 

the Green's function is differentiated with respect to one of 

the times. ~he form of this equation is the same for both 
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the retarded and advanced Green's functions. 

dG(t-t') 
i~ = ffo(t-t')<[A(t),B(t')]>+<<[A(t),H(t)];B(t')>> (II-14) 

dt 

The evaluation of the commutator in the last term of 

equation (II-14) generates new Green's functions, and thus, 

a chain of coupled equations. It is these equations that 

form the starting point for the discussion of lattice dynamics. 

2. The Hamiltonian For Lattice Dynamics 

This part of Section A presents the approximations 

made in developing the lattice dynamics of crystals and 

demonstrates the quantization of lattice vibrations. The 

discussion in this part is similar to that of Born and 

Oppenheimer (1927). 

a. The Adiabatic Approximation 

Following the approach of Seitz (1940) the full 

Hamiltonian operator, H', for a crystal is given by 

H' = -I 
i 2m 

'il~- \ ]. l-
aR. 

fi2 e2 
--- v2 l\'+I ---- +v . Cu,r)+v .. Cu> 
2 en) ax.. ·1- - I ei ii Ma N i<J r.-r. 

]. J 

where u = (ij cil), ••• ,ij ciN )) 'r = C?l, ••• ,?n) ; 
al aN s 

s 

the indices i, j, extend over electrons while the indices 

a and R, extend over the ions; Ma (JI.) is the mass of the a th 

ion in the ith unit cell; V . (u,r) is the electron-ion inter-
e J. 

action potential with the ions displaced u from their equi-
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librium positions while the electrons are at position r; 

and V .. (u) is the interaction potential of the rigid ions 
11 

displaced by u from their equilibrium positions. 

Although the exact eigenfunction ~ of H' is an 

involved function of u and r, the decomposition of ~ into the 

form 

~(u,r) = xcu,r)~(u) (II-15) 

is attempted. If x in (II-15) is regarded as electronic wave 

function satisfying the Schrodinger equation 

fi 2 

V~+l 
2m 

1 i<j 
e

2 

+v . (u,r>}x (u,r) = 
I- - I e1 . r.-r. 

1 J 

E (u)x(u,r) e 
(II-16) 

for electrons in a static lattice, with the tth ion fixed at 

u (t), then the result is what is commonly called the adiabatic 

approximation. Here the u's are regarded as parameters for 

the description of the electronic system, It is assumed that 

x, the many-electron wave function, has eigenvalues Ee(u) which 

can be considered as a set of quasi-particle levels. Since 

these eigenvalues are functions of u (l), the energy of the 
Cl 

electron gas will depend on the position of the ions. 

This adiabatic approximation is only true if the 

electrons move much more rapidly than the ions. It will be 

shown that the accuracy of this approach depends on the ionic 

masses being much larger than the electron mass. 

Applying the operator H' to the wave function~, 
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H' '¥--= x cli,r> {-I 
ex.,! 

V2 n+E (u) +V .. (u) }<!> (u) 
et.,JtV e 11 

(II-17 a) 

v ?r<I> Cu> • v ?rx cU',r> -1 a.,x. a.,x. ?r ?r 
a., x. 2Ma. ( x.) 

<1><u>v 2 ?r<1>Cu,r>} . a.,x. 

If (II-17b) can be ignored, then the complete eigenvalue 

problem 
H''l' = ?:'¥ 

(II-17b) 

can be solved by having <j>(u) satisfy the Schrodinger equation 

{-l 
112 

Va.2 ?r+E (u)+V. ,(u)}<j>(u)=?:<j>(u) 
a.,! 2M (!) ,x. e 11 . 

a. 

(II-18) 

It is this equation for a wave function of only the ions that 

leads to a quantum mechanical solution of the lattice dynamical 

problem. 

In order to show that the second term of (II-17b) may 

ordinarily be neglected for stationary state problems, two 

extreme cases are considered. In the first case, the elect-

rons are considered as free, and in the second, they are 

considered to be completely bound. Multiplying (II-17b) by 

x*(u,r) and integrating over the electron coordinates 

produces 

{
-l 
a.,! 

+$(u)fx•(ll,r>v~.tx<U,rJdrJ. (II-19) 
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In ·the free electron case, the wave functions are of the 

f iR.r d h · 11 · d f h . orm e an ence are practica y in ependent o t e ion 

coordinateE. Thus (II-19) is vanishingly small. For the 

opposite cc...se, the electrons are tightly.bound to "their" 

ions 

xCu,r) = x<r-u) 

Therefore, the second term of (II-19) gives a contribution 

like 

f x* cr-u> v 2 x<r-u)dr = fx*Cr-u> a I JI: 
~~~ v~x(r-u)dr 

1 2M ( t) 
a 

· 2M (I) 
a 

= m [fx*~2 V~xdr] 
M ( t) 2m • 

a 

m 
which is just times the kinetic energy of the electrons. 

m M (I) 
a 

Since ,,_. lo-4 or lo-5 this term is negligible in corn-
M (t) 

a 
parison with ordinary thermal energies. 

The first term of (II-19) for tightly bound electrons 

may also be dropped in stationary state problems since x can 

then be chosen as a real function and 

1 = -v 1 = 0 2 a, JI: 

Thus, in the adiabatic approximation, the effective 

potential function for the ion motion 
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<P (u) = E <u>+v .. <u> e i. J. 
(II-20) 

which contains information about the total energy of the 

electron system as a function of ion positions, is used to 

describe the lattice dynamical problem. 

b. The Harmonic Approximation and Quantized Lattice Vibrations 

If the adiabatic approximation is assumed, the 

Hamil tonia1\ for the ions becomes 

p2(R:,t) 
H = I a . + <P(ii) 

a t 2M (t) 
a 

At finite temperature, the atoms of the crystalline 

solid execute small oscillations about their equilibrium 

positions as a result of thermal fluctuation. If u(t) defines 

the displacement of the atom t from its equilibrium position, 

then for small oscillations the potential energy may be 

expanded in powers of displacement. This series expansion 

may be expected to converge rapidly if the displacements are 

small compare~ to the interatomic spacing. 

+ (II-21) 

where 8 = c,a, b) 
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In this expansion of ~' ue o:,t) is the displacement 

of the bth atom of the Ith unit cell in the lith direction at 

time t. Here, ~(0) is just the static (equilibrium) potential 

energy of the crystal and may be neglected for this discussion. 

The coefficienc of the linear term in (II-21) must vanish 

since the crystal is near equilibrium; thus the first term 

of importar .. ce must be the quadratic term. 

By dropping terms of higher order than two, the 

harmonic approximation is obtained. Such a curtailment of 

the series guarantees the dynamical independence of different 

modes of vibr3tion in a perfect lattice. 

Accepting this approximation, the Hamiltonian is now 

defined by 

u 0:,t)~ 
13
ci,i 1 )u

0
CI',t) 

B a. a. "' 
(II-22) 

I I 

where 

[ 
a2~<~> ] 

aua. Ci> au 13 o:' > 0 

~ Cl l') = a. i3 ' 

is the force felt by the ath atom of the ith unit cell in the 

ath direction due to a unit displacement of the 0th atom of 

the i,th unit cell in the ~th direction (a= (a,a),8 = (.{i,b)). 

~a. 6 (t,t'), which is called the force constant matrix, satis

fies the symmecry relation 

and also 
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fr ~<g,,a>, <.a.,b> 0:,I•> = o 
111, a 

The latter ~elation is a result of invariance of the lattice 

under rigid body translations. 

Attention is now focused on the perfect lattice. In 

the case of the perfect crystal, M (t) is obviously independent a . 

of I. ~he H~isenberg operators, u (!,t) and p (i,t) satisfy 
a a 

the commutc-:tion relations 

Using the ordi.11ary Lagrangian procedure, the equation of 

motion for u (!,t) is found to be 
:l 

l [M ~ o 0 o(I,I 1 )+~ 0 (I,t')]u 0 Cr 1 ,t) = o 
-, adt2 aµ <lµ µ 

a' JI, 

(II-23) 

The solution is found by expanding u (l,t) and p (i,t) in 
a a 

normal coordinates Qj(K,t) and Pj(K,t), taking into account 

the translat~.onal symmetry of the lattice. 

1 
u o:,t> = -

a {NM 
a 

p (!,t) = JMa l ~crj (k)Pj (k,t)e-ik.I 
a N j ,k a 

(II-24) 

where N is the number of unit cells in the crystal and S is 

the number of atoms per unit cell. There are N quasi-continu-
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ous values of wave vector k filling the first Brillouin zone 

and for each vector k there are 3S normal modes or branches 

labelled by j. 

The normal coordinates Qj(k,t) satisfy the equation 

of motion 
d2 

- oj (k,t) = -w~ (K)Qj (k,t) 
dt 2 J 

where w2 (k) are the eigenvalues and cr (K) the eigenvectors of 
a 

w~(k)cr*j(k) 
J a 

(II-25) 

with the dynamical matrix 

crj(k) is chosen in such a way that it satisfies the orthogani
a 

lity and closure conditions 

and 

These eigenvectors, although complex in general, are real for 

Bravais lattices. 

Of the branches j, three are called acoustical with 

w. (k)~O as R~o while the remainder are called optical, and 
J 

in a diatomic lattice 

j (0) 
cr,a.,2> 

IM 
2 

for j= acoustical 
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whereas ~cr{~,l) (0) = - ~a{a, 2 ) (0) for j=optical. 

Thfl normal coordinates can be conveniently written 

in terms of new variables 

.; -
Q .. (k ,t) (at(k,t)+a. (k,t)) 

J J 

= 1
JwJ.

2

(ie) 
P j (k,·t) (at(k,t) -a. (k,t)) 

J J 

which satisfy the commutation relations: 

[a.(k,t),at,(k',t)] = o .. ,o(k,ki) 
J J JJ 

[aj(R'.,t),aj,(R'.',t)] = [a!(R:,t),aj (R:',t)] = 0 

These are the usual boson relations and in the 

number representation these new operators have o~ly the 

following non-zero matrix elements: 

and 

<nlatln-1> 
1 

= n '2" 

1 
<nlal n+l> = (n+l) 7 

where n is tha occupation number of a given mode. 

Thus, at and a can be considered to create and 

(II-26) 

(II-27) 

annihilate respectively normal mode excitations or phonons 

of the perfect crystal. In terms of these operators, the 

Hamiltonian (II-22) reduces to the simple form 

H = l 
j ,K' 

ffo.lj (k) 
[at(k,t)a.(k,t)+a.(k,t)at(k,t)] 

J J J J 2 



33 

3. The Probability Distribution Function 

This discussion of probability and density distri-

bution functions which follows that given by Lax (1951) is 

necessary only for the consideration of the n>l tuple processes 

since the procedure for the n=l process is rather intuitive. 

The determination of the statistical distribution 

for any sub-set of a set of scatterers is a fundamental problem 

of statistical physics. It should be noted that the probabilis

tic nature of the results of the statistical process adopted 

is not an inherent property of the objects considered, but 

simply arir.es from the fact that these results are derived 

from much less information than would be necessary for a 

complete m~chanical description. 

The probability that the set of dN 
a 

of N . scatterers a 

will be located at any set {s}dN 
a 

sites {s}d = {s}N = (s1 ,s 2 , ••• sN ) 
Na a a 

contained in U of N 
s a 

is given by 

where U is the set of all possible sites. The sum of these s 

N
0 

scatterers in p over all sites possible,·is normalized to 

unity. 

The probability distribution for a single scatterer 

is obtained r.y summing the remaining (N -1) scatterers over 
a 

all sites 
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Similarly, the correlation probability for the simultaneous 

location of a pair of scatterers is obtained by summing the 

remaining (n -2) scatterers over all sites 

p(sl,s2) = p({s}2) = l p({s}N ) 
s

3
, ••• ,s a 

. Na 

In general, the correlation probability for the simultaneous 

location of n~N scatterers can be written as a 

p({s}n) = ~p({s}n,si -n) 
J a 

where the jth configuration of the remaining (N -n) 
a 

scatterers is 

S j - (sj sj ) 
N - 1, ••• , -n n+ N a a 

(II-28) 

If the scatterers are equivalent, then a relabelling of the 

configuration produces 

S i = ( j j ) = sn+l' 000 'sN 
a 

where the N -n is understood. a 

If the set of dN of Na scatterers is considered as 
a 

the universal set, U , of scatterers, then (II-28) becomes 
a 

(II-29) 

where 

is the set of N -n scatterers, (d c), located at the sites 
a n 

'sm , sm , ••• , s respectively. The superscript c for the 
1 2 mNa-n 

set d in brackets indicates the complement. 
n 
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For a truly random distribution, the probabilities 

associated with a single soattererare not influenced by the 

information concerning other scatterer&, and so the complete 

distribution breaks down as follows: 

p({s}~) = p(s1)p(s 2 ) ••• p(sN) 
0 0 

(II-30) 

It should be noted that for a random crystal lattice equation 

(II-30) holds only if s.# s. Vi# j, otherwise this probabi-
i J 

lity is zero. Clearly the quantity 

(II-31) 

can give a measure of correlation or non-randomness between 

pairs. 

Even if the distribution is non-random, it is possible 

to introduce a pseudo-factorization by using conditional 

probabilities: 

p({s}N ) = p(sl)p(s1J{s}1c> 
0 

(II-32) 

where the second term of (II-32) represents the conditional 

probability distribution for scatterers 2, 3, ••• ,N if it is 

known that scatterer 1 is at s 1 • Generally, 

p({s}N ) = p({s} ,{s} c> = p({s} )p({s} l{s} c> n n n n n 
(II-33) 

a 

In this notation, the average of an operator O, which 

depends on all the N
0 

scatterers over the ensemble of scatterers, 

is given by 
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<O>= Io({sj}N )p({sj}N ) (II-34) 
j cr cr 

(the config.irational average). If the scatterers l, ••• ,n 

are held fi~ed at s 1 , ••• ,sn' and all other scatterers are 

averaged over, then the average of o will be denoted by 

= <O>{s} 
n 

= /:O ( {s) , {sj) 
0

) p ( {s) I {sj) c>" p'~;J:jS) 
j n n n n 

and is referred to as the conditional configuration average. 

Here, j refers to configurations of N -n scatterers. 
cr 

Usi~g the normalization condition, the probability 

distribution for a single scatterer in a lattice having N 

equivalent sites is 

1 
(II-36) 

It can be shown from (II-33) that 

(II-37) 

Before discussing the crystal system one more point 

should be added to this rather general discussion of probability 

distribution functions--that is, that probability distributions 

may be converted to density distributions by multiplying by 

some power of the number of scatterers 

p ( { s} ) = (N ) np ( { s} ) 
n cr n 

(II-38) 

The relative fluctuations of physical qua~tities de-

scribing a crystal should oceur with a vanishing probability, 
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if the crystal system contains a sufficiently large number of 

sites N • In such a system, the number of sites contained, 
s 

even in a small part N of N sites, may still be very large, 
a s 

i.e., remains finite. 

The conf igurational average is now considered in 

such a system. If T is an operator that depends only on a 

single sca~terer M and O is an operator that depends on all 

the scatte~ers of the system, then the conf igurational average 

of 
l T(M)O(M,Mc) 
Me:U 

(II-39) 

a 

is given by 

<••••> = lP({Sj}N >I . T(R)O(R,{Sj'} ) 
N -1 a 

(II-40) 
j a Re: { SJ} 

Na 

where in eq~ation (II-39) each scatterer M is associated 

with a different possible crystal scattering site SM, and 

in equation (II-40) the Mth scatterer is associated with the 

possible crystal scattering site R. The configuration j' in 

(II-40) is a configuration of N -1 scatterers. It should be 
a 

noted that =or a crystal system the probability distribution 

function has absorbed the information that no two scatterers 

can occupy the same possible crystal scattering site. With 

the aid of equation (II-32), equation (II-40) becomes 

<••••> = lP(S~)p(S~j{Sj}Mc>l . . T(R)O(R,{sj'}N -1> 
j Re: { S J } N 

0 
a 

expanding the second summation and rearranging the first 

(II-41) may be rewritten as 

(II-41) 
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+ 

p(SM )T(SM >~.p(SM !{sj'}M )O(SMC ,{sj'}Mc ) 
No No J No No No No 

and by using (II-35) this is the same as 

Na 
<••••> = l l p(S.)T(S.)<0> 5 . 

i=l s. 1 1 1 
1 

(II-42) 

(II-43) 

Now, assuming that all the crystal lattice sites of U are 
s 

equivalent and also that all the scatterers of U are equi
o 

valent, then by using equation (II-38), equation (II-43) 

becomes 

<••••> = lP(R)T(R)<O>R 
R 

(II-44) 

where the sum in equation (II-44) extends over all possible 

different crystal scattering sites which can be made up of the 

crystal sites and p(R), the density distribution, is the 

probability that any scatterer of U can be found at any 
a 

possible crystal scattering site R. 



"We are under obligation to the ancients for 
having exhausted all the false theories that 
could be formed." --Fontenelle 

SECTION B 

THE LOW CONCENTRATION THEORY 

1. Exact Single Scattering 
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In lattice dynamics, the Hamiltonian H for any crystal 

can be expressed as 

H = 
P 2 o: ,t) 

l~ !2~ 
2l - - + l 

a.,R, M (R,) a.,13 
a. I,I' 

(II-45) 

in the harmonic approximation. 

The crystal lattice under consideration, formed from 

the perfect lattice by the introduction of substitutional 

impurities, has a mass change expressed by 

M -M (s ) = M En 
a. an a.a. 

(II-46) 

and a force constant change of 

n - - ~ - o - -/J. <P Q ( R, , R, ' ) = <P Q ( R, , R, ' ) -<P Q ( R, , R, ' ) aµ n n <lµ n n aµ n n (II-47) 

where n refers to the defect space (i ,i') of the nth impurity 
n n 

located at s . In (II-46) and (II-47) M is the mass of the 
n a 

ath atom, and 

(II-48) 



40 

is the force constant between (a,i ) and ca,l') in the n n 

perfect lat·cice. 

The Green's function relevant to optical absorption 

and neutron scattering is the displacement-displacement 

double-time thermal Green's function 

G a { l, R: ' ; t, t ' ) C ) = 2 ir < <u { R: , t) : u 0 o: ' , t ' ) > > C > (I I -4 9) aµ r,a fi a µ r,a 

= G ( R: i I ; t-t I ) 
aS ' (r,a) 

Using equation (II-14), the equation of motion for this 

Green's function may be written as 

d 21Ti 
-G a<R:,l>;t)= -(o(t)<[u (R:,O),u 0 (~',0)]> dt aµ ~ a µ 

1 21Ti 
+ - - 0{t)<[[u C:Lt)H],ua(t',O)]> 

i~ f.i a µ 

= (II-50) 

Differentiati:1g (II-50) with respect to time produces 

d2 2iri 
-- G a<l,i';t)= (-o(t))<[p (t,O),u6 Ci',O)]> 
dt 2 aµ ~M (i) a 

a 

21Ti 0(t) 
+ - <[[p (R:,t),H],u

0
(i 1 ,0)]> (II-51) 

~M (!) ifi a µ 
a 

which simpliEies to 
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. d2 
M (~)-· _. G o<I,l';t) = -27To~o<Hl,l')o(t) 

a dt2 a.., "'I-' 

- ~ q,· (:i t")G (:i" t'·t) £_ ay I yD I I 
yR." fJ 

(II-S2) 

an expression involving only G. 

Using equation (II-7), the Fourier transform of (II-S2) 

is 
1, 

M w 2G ( l l ' · w) a af3 ' ' = o oCl,l'>+r <t>
0 cl,l">G <l",l';w> 

af3 l"y ay yf3 

+ l Y vn (t,t";w)G Cl",l';w) 
n l"y ay yf3 

(II-S3) 

where 
Vn

0
(l ,l';w) = ~<l>n 0 (t ,t')+M E w2 o(t ,R;')o 

0 
(II-S4) 

a.., n n a.., n n a a n n a.., 

The total defect matrix is written as V = l vn 
n 

where 

and vn = the perturbation matrix spanning the defect space of 

defect n. In order to facilitate the handling of these 

equations, the full matrix notation is adopted. In the no-

tation, (II-S3) becomes 

where 

MG = I+<I>9G+rvnG 
n 

(M) Cl I 1
) = M w2 o o(I l') 

af3 ' a al3 ' 

and the other terms are self evident. 

(II-SS) 
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If P is the perfect lattice Green's function, (II-55) 

can be simplified into the following equation 

MP = I+~0P 

or p = (M-~o)-1 (II-56) 

by noting that in the perfect lattice 

It is observed that (II-56) is intimate~y i.·elated to (II-23). 

Thus, a kno~ledge of the dynamics of th~ perfect lattice 

implies a knowledge of P and vice-versa. 

or 

Using equation (II-56), equation (II-55) becomes 

G = P+ l PvnG 
m 

(II-57) 

The Dyson equation (II-57) defines the starting point 

for the discussion of the impurity problem. 

If the concentration of impurities is "low enough" 

and the change of environment about an impurity "local enough", 

so that the probability of any two defect spaces overlapping 

is small, then it seems reasonable to assume that G is 

dominated by whether or not any individual defect matrix 

affects the space of its definition. This suggests separating 

out the Green's function associated with a given defect as 

follows: 



where 

become 

and 

Gn= P+I PVmG 
m~n 
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(II-58) 

(II-59) 

Using equation (II-58) , equations (II-57) and (II-59) 

G = P+I PVm(I-P Vm)-lGm (II-60) 
m 1 

Gn = P+l PVm(I-P Vm)-lGm (II-61) 
m~n 

1 

where the matrix P1 only has a contribution in the defect space 

of the defect m and this contribution is equal to P in that 

space. 

From (II-60) and (II-61), it is observed that 

s m 

(II-62) 

is the usual t-matrix describing the scattering of lattice 

excitations due to the perturbation introduced by one defect 

atom in an otherwise perfect crystal (Klein (1963)). 

After substituting (II-62) into (II-60) and (II-61) 

the resulting equations are averaged over all configurations 

of defects in the set of U and n°, respectively, where u is a a 

now considered as the universal set of defects. 
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(II-63) 

(II-64) 

Aseuming that only one type of impurity is being 

substituted for only one type of host atom, then all the 

lattice sites into which a defect atom can be placed substi-

tutionally are equivalent, and by using (II-35) and (II-44), 

equations (II-63) and (II-64) become: 

or 

<G>= 

s 
<G n> 

Sn 

s 
<G n> 

= 

<G> 

s 
n 

P+Pl 
s EU m 

l P+P 
s ':f; m 

= P+P 

s s cT ·m<G m> 
1 s m s 

s s cT m<G m> 
s EU 

1 s 
n s 

l 
s s 

cT m<G m> 
s Sm 

m 

(II-65) 

m' 6 n 
(II-66) 

(II-67) 

(II-68) 

where c is the defect concentration and the universal set of 

all possible different crystal defect sites , U , is understood 
s 

in the summati~n. These are only two of a whole hierarchy of 

conditionally averaged equations that can be defined in an 

attempt to obtain <G 6 m> • This infinite set of equations 
Sm 

can only be terminated by making an approximation. This 

approximation can be found by using the information given to 

define Gn, i.e., that only single site scattering information 
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is retained at "sufficiently low" c. Therefore, in the con

figurational average of the effective field G6n~ seen by the 

atoms, the wave has been allowed to scatter off all other 

defects before it scatters off the perturbation due to the 

defect n at sn. The T1 matrix describes this final scatter

ing explicit~.}'. The logical approximation is to neglect the 

effect of 7ariations in local environment due to other defects 

and "remember" those defects of which the field has an imme-

diate knowledge. This leads to 

s 
<G m> 

s , s m n 

and breaks the infinite set of equations into 

<G> 

Subtracting (II-71} from (II-70} gives 

(II-69) 

(II-70} 

(II-71) 

(II-72) 

and so the configurational averaged Green's function is given 

by 

(II-73} 

which by (II-62) can be written in terms of the defect matrices 

<G> = P+l PcV6 (I- (1-c) p 1 V6
) -l<G> 

se:U s 
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E~ation (II-74) is the low concentration theory 

result for a concentration c of defects. 

2. Perturbative Approximation 

Clearly, from (II-57), the configurationally averaged 

G has the general form 

<G> = P+PE<G> (II-75) 

where E is the self energy. 

In the low concentration theory 

(II-76) 

where E = E1= Ie:u E~ 
s 

Even if th~ defect space defined by the extent of V6 is 

small, E~ is a formidable "creature" to calculate. 

In order to simplify the calculation for E~, an 

approximation to E~ is found. The first step is to decompose 

the defect matrix 

Vs = Vs+Vs 
0 p 

(II-77) 

where V6 is the major local change in environment and will be 
0 

treated exactly in the low concentration theory, while V6 

p 

is a perturbation to V~ and the perfect lattice. The simplest 

and most obvious V6 is the mass change, but in general, this 
0 

need not be the case. 

The self energy for the process whose scattering is 

treated exactly is 
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(II-78) 

where (II-79) 

while the self-energy E~, in the low concentration theory 

(II-76) is given by 

(II-80) 

where (II-81) 

Using equation (II-79), V8 may be written as 
0 

(II-82) 

With the aid of equations (II-77) and (II-82), equation 

(II-81) becomes 

X8 (I- (1-c) P
1 

[(I+ (1-c) X8 P
1

) - 1X8 +V8
]) =(I+ (1-c) X8 P

1
) 1X8 +V8 (II-83) 

0 0 p 0 0 p 

After some rearrangement of the terms; equation (II-83) becomes 

Since v; is taken as a perturbation to the defect system 

described exactly by the defects V~, equation (II-84) (to 

first order in v;) becomes 

X8 
:::: (X 8 +V (I+ (l-c)PlX8

)) (I+ (1-c) PlV8 (I+ (l-c)PlX8
)) 

0 p 0 p 0 

and so the self energy to first order in V8 is 
p 

(II-84) 
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s s s s s s s· ( l-c) 2 s s s 
L = L +cv +(1-c)V Plr +(1-c)E PlV + L p v L 

1 0 p p 0 0 p c 0 1 p 0 
(II-86) 

If E9 describes only the mass impurity, then the advantage of 
0 

this form for E~ is obvious. In the first place, P
1 

does not 

span the whole defect space in (II-86) (i.e., does not link 

all sites of the defect space) , but rather, is limited to 

the space where the impurity site is connected to any site 

of the defect space. Secondly, except for the trivial terms 

I 

and cV 9 (this term is said to be trivial since it is known p 

and does not have to be computed), the terms in the expansion 

(II-86) of E~ only connect the impurity site to a site in 

the defect space. 

It should be stressed that this approximation of the 

low concentration theory result is only valid for force 

constant changes that are small relative to the mass change. 

These force constant changes may, nevertheless, if c is "low 

enough", have a large extent. Even if the mass change is 

large, it is obvious that for low enough w the perturbative 

approximation will not be valid (for the Cu/Au system this 

frequency corresponds to a wavevector of about 1/40). 



"The last product of an antecedent stage 
is always the basis of that which is sub
sequent." 

--L.Oken 

SECTION C 

PAIRS WITH CORRELATION 

In order to obtain any analytic theory of normal 

modes in a lattice having substitutional impurities, some 

49 

account must be taken of the formations of clusters and the 

cluster coritribution to scattering. This section, which was 

motivated ~y the work of Aiyer, Elliott, Krurnhansl and 

Leath (1969), contains the formal treatment of defect pairs 

with the possibility of pair type correlations. The analytic 

expressions will be derived for mass defects and will be 

found simple enough to use for calculations. It is assumed 

throughout that only one type of impurity is being substituted 

for only one type of host atom. 

Again, the starting point is the Dyson equation (II-57). 

It is assumed here, that only pair scattering information is 

retained, while any higher order process is not "remembered". 

With this assunption, it seems reasonable to state that G is 

governed principly by whether or not the space of its defini

tion is affected by any pair of defects. This suggests 

separating O'l4t the Green's· functions associated with a given 



50 

pair of defects as follows: 

(II-87) 

GCn1,n2)=P+l Pvn'G (II-88) 
m~n1 ,n2e:ucr 

Since the space of v°l does not overlap that of v° 2 for 

s01~ s02 , ~quation (II-87) may be rewritten as 

where 
Snl Sn 2 

0 0 0 

Snl 
n1 0 

\. (n 1 , n2 ) v 
= 0 0 

Sn2 0 n2 v 

0 0 0 

In this notatiC'n 

= l PVmlG+l Pvm2G 
m1 m2 

= l pv<m1,m2>G 
(m1 ,m2) e:Ucr 

( II-89) 

(II-90) 

The error in stating that Ucr can be arbitrarily broken up into 

Ucr = ((1,2),(3,4), ••• ,(Ncr-l),Ncr)) 

is, at most, ~1- ~ 10- 23 , and therefore negligible. 
2Ncr 

(II-91) 

Using the no"tation of Part 3, Section A, Chapte:i: II, equations 
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(II-89) and (II-90) may be written as 

(II-92) 

(II-93) 

where N = (n1 ,n2 )eUcr of (II-91), and M = (m1 ,m2 )eUcr of (II-91). 

With the aid of equations (II-92) and· (II-93), equations 

(II-57) ana (II-88) may be written as 

G = P+I PVM(I-P VM)-lGM 
2 (II-94) 

MeUcr 

and GN = P+l p'if1(I-P2'if1>-lGM 
Me Ne 

(II-95) 

where Sml Sm2 
( 0 0 0 

s~l P(O) P(sm ,sm ) 
P2 = 0 1 2 0 

Sm P(sm ,sm ) P(O) 
2 2 1 

0 0 0 

Furthermore, if 
Sm 

1 
Sm 

2 

0 0 0 l 
Sm tml 0 

TM 1 
= 1 0 0 1 

t~2 Sm2 0 

0 0 0 
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and Sm Sm 
1 2 

0 0 0 

s p (0) 0 
pl = ml 0 0 

Sm 0 P (O) 
2 

0 0 0 

then, by using (II-62), equations (II-94) and (II-95) become 

(II-99) 

(II-100) 

It is observed from (II-99) and (II-100) that 

(II-101) 

is just the t-matrix describing the scattering of lattice 

excitations, due to the perturbation introduced by two defect 

atoms of an otherwise perfect lattice. In its present form, 

TM contains all the information about the scattering due to 
=2 

two defect atoms m1 and m2 • Thus, T~ is made up of two parts--

one non-decomposable (where the scatterer is a pair of defects) , 

and the otheJ: decomposable (where the scatterers are two 

separate defect atoms) into smaller spaces. The first of these, 

(II-102) 

contains all the information about pure pair scatterings, and 
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therefore is not decomposable into the smaller spaces m1 and 

m
2

• On the other hand, 

(II-103) 

which contains all the information about pure single scattering 

of two different defects M, is decomposable into the smaller 

spaces m1 and m2 • With the information contained in (II-101), 

(II-102) and (II-103), equations (II-99) and (II-100) may be 

rewritten as 

(II-104) 

(II-105) 

These equations are now averaged over all configurations of 

defects of the set U and Ne, respectively: 
(J 

and N <G. > 
N 

(II-106) 

(II-107) 

There are now four averages which must be resolved; they are: 

and 

<l T~GM> 
M£U0 

<}: TMGM> 
M£Nc 2 ( sn 1' sn 2) 

<l T~GM> 
M£U

0 

<}: TMG~ 
M£Nc 1 sn1'sn2> 

(II-108c) 

(II-108d) 



In (II-108a) it is observed that the scatterer is a defect 

pair and so by using (II-44) it is found that 
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where the s1.im is over all different pair separations :R 
sm1•sm2 

between a pair of possible crystal defect sites (s ,s ) 
ml m2 

associated with the defect pair (m
1

,m
2
). Furth~rmore, using 

(II-35) and realizing that, as for (II-108a), equation (II-108b) 

also has the scatterer as a defect pair. Thus, by (II-44), 

(II-109b) 
The expressions (II-108c) and (II-108d) obviously 

depend on the scatterer being a single defect. Expanding 

(II-108c) as follows: 

the configuration average of this term is now determined. 

= l 
s•s• 

1 2 
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+ •••• 

(II -110) 

Since the indices are only dummy indices (II-110) becomes 

1 Sm { S , S ) = N~Nssl ~ p(s Is )T l<G ml m2 > ) 
v N m1 m2 l {s ,s 

s m
1 

m
2 ml 

k 
R s ,s 

al m2 

It should be realized that, after averaging, the above expres-

sions depend only on the distance between s and s , hence 
ml . m2 

s can be any arbitrary site. 
m2 

it is seen that 

Similarly, by using (II-35), 

Therefore, by using the results of (II-109 ), (II-109b)' (II-111) a a 

and (II-lllb)' equations (II-106) and (II-107) simplify to 
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(II-112) 

(II-113) 

where SM= (s ,s ) and SN= (s ,s ). More simply, (II-112) 
ml m2 n1 n2 

and (II-113) can be written as 

<G> 

(II-115) 

It is obvious that these are only two of a wh.ole hierarchy of 

conditionally averaged equations that can be defined in an 

attempt to solve <G>. This infinite set of equations can only 

be terminated by making an approximation. 
SN 

G can be thought of as the effective field seen by 

the atoms, where the wave has been allowed to scatter off all 

other defects before it scatters off the perturbation due to 

the defects N at SN. It is noted that ~~N describes this 

final scattering explicitly. Using the information given in 

defining GN (i.e., that only pair type scattering information 

is retained for a set of non-overlapping defects), an approxi-
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mation can now be found. The logical approximation is to 

neglect the effect of variations in the environment due to 

any other defects, and "remember" those defects of which the 

field has an immediate knowledge. This leads to 

(II-116) 

and breaks the infinite set of equations into equation (II-114) 

SM SM SM 
= P+P} (p(s ,s )T

2 
+p(s ls )T

1 
)<G >s 

~ rR ml m2 ml m2 M 
SM SN (II-117) 

Subtracting (II-117) from (II-114), and using (II-29) and 

(II-32), <GsN> can be expressed as 
SN 

(II-118) 

and so, the configurational averaged Dyson equation becomes 

where 

For random defects 

and the self energy becomes 

c2 
- = c 
c 

\ 2 SN SN 2 SN SN -1 
E2 = ' (c T2 +cTl ) (I+P2(c T2 +cTl )) 

Rs 
N 

(II-119) 

(II-120) 

(II-121) 

(II-122) 

which is the result that Aiyer, Elliott, Krumhansl and Leath 

(1969) find for a random alloy with their diagrammatic method. 



"The ovary of an ancestress will contain not 
only her daughter, but also her grand-daughter, 
her great-granddaughter, and her great-great
grand-daughter, and if it is once proved that 
an 0"."ary can contain many generations," there 
is no absurdity in saying that it contains them 
all." --Albrecht von Haller 

SECTION D 

THE N-TUPLE PROCESS 
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The method used in Section C of Chapter II is certainly 

not limited to pairs but can also be extended to treat the 

corresponding "n-cluster" or n-tuple self energy. Although 

the configuration averaged result can be expressed in terms 

of any type of site correlations, the procedure to obtain this 

general result tends to be quite involved. Thus, only the 

random defect is considered while the general defect correla-

tion result is not attempted. It is assumed in this section 

that the pure single, pair, triplet, ••• (n-1)-tuple scatterings 

have already been solved for, and that n<<<Ncr. 

The notation of this section will be modeled on that 

of the previous two sections, and also on that of Part 3, 

Section A of this chapter. 

As has been the case before, the discussion begins 

with the Dyson equation (II-57). It is assumed that the 

defects are mass defects of one type and that they are being 

substituted for only one type of host atom. Also, it is 
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assumed that at most n-tuple scattering information is 

retained while any higher order process is not "remembered". 

With this last assumption, it seems reasonable to say that 

G is governed principally by whether or not the space of its 

definition is affected by any set of n defects. This suggests 

separating o:.it the Green's functions associated with a set 

of n defects as follows: 

(II-123} 

where lo~ 20~ ••• ~no 

G ( 1 o , 2 o , ••• , no ) = P+ l PVmG (II-124} 
m~l 0 , 2 0, ••• n 0 

and o indicates an arbitrary selection of n defects. 

Since the space of vio does not overlap that.of vk 0 for 

s. ~ sk, equation (II-123} may be written as 
1 o 0 

where 

( 1 QI o • • r 0 O )' 
= v = . 

0 

0 

0 

s 1 ••• s 
0 no 

0 

lo v . 0 • 
• • 

0 
. • no v 

0 

(II-125) 

0 

0 

0 



60 

In this notation 

\ m1 \ mn = l PV G+ ••• +l PV G 
ml mn 

= 
\ Cm1, ... mn) 
l PV G (II-126) 

(m
1

, ••• ,m ) gU 
n o 

The error in stating that u
0 

can be broken up into 

u
0 

= ( (10 , ••• n0), ( (n+l) 0 , ••• , (2n) 0), ••• , ( (N
0 

-n) 
0

, ••• (N
0

) 0 ) 

(II-127) 
n 

is at most 2N <<<l and is therefore negligible. 
0 

Thus, equations (II-57) and (II-124) may be written 

in the form 

and 

where 

and 

G = P+l 
M gU 

n o 

N M M M 
G n = P+ l PV 0 (I+P V n)-lG n 

0 

0 

0 

M €Ne n 
n n 

s • • • • • • • s 
ml mn 

0 

p ~ ~) • • • p ( sm ' sm ) 
• • • • • 1 n • • • 

P (Sm • , Sm ) • ~ : P ( 0 ) 
n 1 

0 

(II-128) 

(II-129) 

0 

0 

0 
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It is observed from equations (II-128) and (II-129) 

that M M 
T = V n(I-P V n)-l (II-131) =n n 

is just the t~matrix describing the scattering of lattice 

excitations due to the perturbation introduced by n defect 

atoms Mnof an otherwise perfect lattice. In its present form 
M 

T n contains all the information about the scattering due to =n 

any set of n defects. 
Mn 

Thus, T is made up of n parts, one =n 

of which is non-decomposable and has the scatterer as the 

n defects, while the others are decomposable into smaller 

spaces and have as the scatterers i defects where i=l, .•• ,n-1. 

TMia . The pure i-tuple scattering matrix . , i.e., where 
l. 

the scatterer is i defects, for any set of i defects 

M. = (1 ,2 I ••• ,i ) 
i a a a V i = l, ••. ,n-1 

a 
M 

and a is assumed known. Using this notation, T.n is defined 
l. 

as M 
T.n = 

l. 
(II-132) 

where a is the ath set of i different defects chosen from 

the set M 
n 

of n different arbitrary defects of u . 
a 

Therefore 
M. 

T.ia, for all i=l, ••• n-1 and ail possible a's associated with 
l. 

a given i, form all the possible "pure" scatterings that can 
M 

occur, except T n --the "pure" n-tuple scattering. Thus, 
n 

the"pure" n-tuple scattering is obtained by subtracting from 
M 

Inn (the total n-tuple scattering in the space of n defects) 

all the possible "pure" scatterings in any sub-space of the 



62 

space defined by these n defects 

(II-133) 

Using (II-133), equations (II-128) and (II-129) become 

G = P+l PT:nGMn+l pl LT~iaGMn 
MnEUcr MnEU0 i a 

(II-134) 

and (II-135) 

in terms of the non-decomposable scattering matrices. 

These equations can now be averaged over all conf igu

rations of defects of the set U0 and N~, respectively. 

(II-137a) 

Using equations (II-44) and (II-35) , the average in equations 

(II-136a) and (II-137a) becomes 
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(II-138) 

(II-139) 

respectively, where the sum over Rs extends over all possible 
Mn 

different crystal scattering n-sites associated with an arbi-

trary set of n defects SM • 
n 

It is now necessary to consider the averages in 

(II-136b) and (II-137b). The configurational average of these 

expressions is determined for an arbitrary i=l, .•• ,n-1. 

S· p(SM ) •n SM 
= l p(S.)T. 1 l n l p(SM ls~c)G n 

Rs. 1 1 {s} . p(S.)J'" n n 
1 n-1 1 · 

( II-140 a) 

where Ni is the number of i-defect scatterers and the sum over 

Rs. extends over all possible different i-defect crystal scat-
1 

tering sites. For the random crystal lattice, 
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, 
p(SM ) __ n_= 1 

p(Si) 

therefore, by using (II-35), equation (II-140a) may be 

written as 

Reshuffling the sums in (II-140b) brings this equation into 

the form 

= l ( II-141) 
Rs 

M n 
s 

where TiMn is the scattering matrix in the space of SM sites 
n 

containing all the information about pure i-tuple scatterings 

resulting from n defects. Similarly, by using (II-35) the 

expression (II-137b) becomes,for an arbitrary i=l, ••• n-1 

= l 
Rs 

M 
n 

(II-142) 

Subst.ituting (II-138), (II-139), (II-141) and (II-142) 

into (II-136) and (II-137), these equations can be rewritten as 

<G> (II-143) 
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(II-144) 

As has been the case before, these are only two equa

tions of a whole hierarchy of conditionally averaged equations 

that will be terminated by an approximation. Following the 

same argument as is given for n=2 in the previous section, 

the approximation that is made is 

(II-146) 

which breaks the infinite set of equations into (II-143) and 

(II-147) 

Subtracting (II-147) from (II-143) gives 

n , SN 
= (I+PI c1Ti n)-l<G> (II-i48) 

i=l 

and therefore, the configuration averaged Dyson equation 

becomes 

(II-149) 

where 
(II-150) 



"They have, and can have, no properties, and 
their concepts can include no attributes, 
save these relations, or rather, our mental 
representation of them." 

--J.B. Stallo 

SECTION E 

THE EFFECTIVE LATTICE THEORY 

66 

The purpose of the present section is to present a 

different, but intuitively simple, method for determining the 

lattice dynamics of a lattice with substitutional impurities, 

where the manifestation of the "long range" effects of these 

impurities tendsto affect the whole crystal. The "long range" 

effects that are being considered are those that produce 

"considerable"·distortion in the neighbourhood of an impurity, 

and so define a reasonably large defect space for a given con-

centration. These distortions in the one defect picture 

usually manifest themselves on a macroscopic scale when exten-

ded to many defects placed randomly in a lattice. This macro-

scopic manifestation can be seen as a chapge in lattice constant 

of the crystal or as a change of the average environment about 

a host atom. 

From (II-23) and the derivation of (II-57) , it has been 

seen that the lattice dynamics problem can be approached from 

Lu = 0 ( II-151) 
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where 

La 8 c I , I • ; w > = Ma. c 1 > .w 2 o a. s o c I , I • > - ~a. 13 c l , I ' > 

In the perfect crystal 

L0 u = 0 (II-152) 

and 
p = Lo -1 (II-153) 

Then, in the crystal made by placing impurities substitutionally 

into the perfect lattice, 

(L 0 -V)u = 0 (I!-154) 

where L = L0 -V 

and the Green's function for this system is 

G = (L 0 -V)-l (II-155) 

By using (II-153), the usual Dyson equation is found: 

G = P+PVG (II-156) 

If the element of V referring to a defect site n (i.e., 

Vn) contains both "long range" contributions V~R (where V~~' 
n2 and VLR' n1~n2 have a large extent and a reasonable probability 

of overlapping) and also "short range" contributions ~ (where 

v~ 1 and v~2 , n 1;i'n 2 have a very small probability of overlapping 

for a suitably small concentration c of defects), then to pro-

ceed further than equation (II-156) almost becomes an academic 
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exercise in futility. To get around this difficulty, it is 

necessary to start from (II-151) again. 

The matrix V is now defined to be an arbitrary force 

constant matrix that has the symmetry properties of L0 and 

depends, as L 0 , only on the difference in position of two 

sites in the crystal. In Section C of Chapter III, a dis

cussion of the nature of V, using interatomic potentials, 

is given. Then, 

(L 0 -V) (II-157) 

defines an effective crystal lattice made up of the atoms of 

the perfect lattice and kept stable by the application of 

pressure. The defect lattice can obviously be described by 

((L 0 -V)-(V-V))u = 0 (II-158) 

and if the effective lattice Green's function is 

Go = (Lo-v)-1 (II-159) 

then, from equation (II-158), the Green's function (II-155) 

of the defect lattice can be found from 

G = G0 +G 0 (V-V)G (II-160) 

Qualitatively, this means that the defects that are placed 

randomly into this lattice "relieve the pressure" required to 

maintain the effective lattice. The question that remains to 

be answered is how this is done exactly. 



69 

From the above discussion, it is obvious that any V 

can be broken up into 

v = VL+VLR (II-161) 

and that 
VL = l ~ 

m£U
0 

(II-162a) 

while l 
m 

VLR = VLR 
m£U

0 

where two properties, the "local" aspects and the "long range" 

aspects, have been associated with a defect, and these two 

properties give to each element m of the universal set of 

defects, u
0 

, a two valued nature. Since ~R has a reasonable 

probability of overlap with some V£R' m~n, for a configuration 

(arbitrary) of defects, it should be noted that the informa-

tion concerning force changes due to any defect-defect inter-

action is also contained in the "long range" defect space of 

any defect. 

Obviously, V can be expressed as a sum over all sites 

as follows: 

v = l 
S£U5 

-s v 

Equation (II-160) may now be rewritten as 

(II-163) 

(II-164) 
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-s 
If, upon configuration averaging equation (II-164), V removes 

all the information related to the "long range" effects of 

random defects at a concentration c, then the scattering in 

the effective lattice would occur only off the defects as 

m defined by VL . Assuming this to be the case (for if it is 

not, it will show up as a contradiction below) , then it is 

further assumed that only single scattering information is 

retained in this effective lattice with defects ~, and that 

any higher order process is not "remembered". As well, it 

seems reasonable to state that G is governed principally by 

whether or not the space of its definition is affected by 

m 
any single defect VL. This suggests separating out the Green's 

function associated with a given defect V~ as follows: 

(II-165) 

and Gn = G0 +L G0V~G+L G 0 V~RG-l G0 V
5

G 
m~nEUcr mEUcr SEUs 

(II-166) 

So, by using (II-165), equations (II-164) and (II-166) may be 

written as 

G = G0 +l G 0 V~(I-G!V~)-lGm+l G 0 V~RG-l 
mEUcr mEUcr SE Us 

and 

where 

-s 
G 0 V G (II-167) 

(II-168) 

(II-169) 
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is just the usual t-matrix describing the scattering of 

lattice excitations due to the perturbation introduced by a 

single defect ~ of an otherwise perfect effective lattice. 

Si!.ce the term 

m l -S G0 V G- G0 V G LR (II-170) 
se:U

9 

is repeated in both (II-167) and (II-168), this suggests that 

by taking 

<I G0 Vm G-L G0 V
9

G> . = 0 
U LR U SdJ me: o S£ s i 

(II-171) 

for all subsets j of i defects of U and "necessary" integers i, 
0 

the "long range" effects have been removed from any equation 

for <G> or <Gn 1 > ,i'=l, ••• ,i, in terms of G0
• Thus, 

n1, .•. ni 

by configuration averaging equations (II-167) and (II-168) 

over all con-figurations of defects of the set U0 and n° res

pectively, it is found that 

(II-172) 

and (II-173) 

It is obvious that these are only two of a whole hier-

archy of conditionally averaged equations that can be defined 

in an attempt to solve for <G>. 

Before going any farther, it should be stated that for 

an operator O, which depends on all U
0

, if 
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(II-174) 

for all subs~ts j of m defects of u
0

, then by using (II-35) 

and (II-37) it can easily be shown that 

v n$m and j' (II-175) 

Therefore, in equation (II-171), only the maximum value of i 

need be considered. 

Since all information related to the "long range" 

effects of these random defects has been removed from the 

discussion of the configuration averaged system with truly 

random defects, as is obvious from (II-172) and (II-173), the 

problem has now been reduced to a low concentration theory 

problem with impurities ~ and perfect lattice Green's functions 

G0
• Thus, by the same arguments as Section B of this chapter, 

the approxim~tion 

(II-176) 

is made. By (II-174) and (II-175) it is implied that i='2, for 

for equation (II-171) is the ccndition "necessary" to give the 

usual low concentration theory result for <G> with G0 replacing 

P. 

<G> = G0 +G 0 l cT~(I+G!cT~)- 1 <G> 
SmEU8 

(II-177) 

where Gi has a contribution only in the "local" defect space 

and that contribution is the same as G0 in this space. This 

condition, that for a given concentration c of defects 
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(II-178 ) 
a 

or (II-178b) 

where from {II-172) and (II-35) 

<G>s s 
~n ' n 

1 2 
= G0 +G 0 l cT~(I+GicT~) 1 <G> 

Sm1'sn1 ,sn 2e:U5 

(II-179) 

is a stateme1.1t of what V is, in terms of VLR· Clearly, 

there is no unique choice of V, VLR and VL since there are 

only two linear equations (II-161) and (II-178) for three 

unknowns. This seems to imply that all this work of the 

preceeding pages was done for nothing. No. This is not the 

case, for the distortion itself, that brings the lattice into 

an average form (II-157) and defines the effective lattice, 

has not been treated here. This, in itself, is a major 

undertaking which will not be considered here. Then, how can 

this effective lattice be determined? This has already been 

done to a large extent by the defect crystal; for instance, 

by looking at the defect crystal, one can find out experimen-

tally the change of the lattice constant due to VLR' and the 

change of the average energy per host atom due to VLR. These 

changes define V, i.e., the effective lattice. Once Vis 

/. 
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known, VL c3.n easily be found by using the interatomic poten

tials ~ , ~ ,in the effective lattice, thus host,host host,defect 

resolving the apparent problem. 

This method is not restricted only to the low concen

tration theory approach used here, for if VL can be approxi

mated by a mass defect, then this work can be carried through 

for any n-tuple process, on the condition that i of (II-171) 

be 
.:1. = n+l 



"To tell us that every species of things is 
endowed with an 'occult' specific quality by 
which it acts and produces manifest effects, 
is to tell us nothing, but to derive two or 
three general principles from phenomena and 
afterwards to tell us how the properties and 
actions follow from these manifest principles 
would be a very great step." --I. Newton 

CHAPTER III 

DEVELOPMENT 

75 
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Any formal theory, conceived by a scientist, is 

nothing more than a peculiar artistic sketch, until it is 

made usable. To physicists today, usability means computer 

programs. This chapter, which is sandwiched between Theory 

and Application, is given in order to develop the tools and 

ideas necessary for any application. 
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SECTION A 

PERFECT AND EFFECTIVE LATTICE GREEN"S FUNCTIONS 

Since the procedure for finding both the perfect and 

the effective lattice Green's functions is the same, the 

discussion will first be restricted to the perfect crystal 

Green's func~ions. 

The fundamental information about the perfect lattice 

is contained in the eigenvectors and eigenvalues described 

in Part 2b of Section A, Chapter II. Since the arguments of 

P are the displacements, it follows that an expansion should 

be made in the style of the normal coordinates, and that the 

Green's function for the normal coordinates (or the annihilation 

and creatior. operators) be determined. 

The perfect crystal Green's function, (II-56), is 

given by 

Pae<i,i 1 ;w) 

00 

= i I 
11. -co 

x < <Qj (K, t) ; Qj ' (K' , t') > >eiw < t-t' > d (t-t') 

in the "massless" formulation which involves the following 

reduction of variables: 

ua(t,t) = {Ma uaCI,t) 

Pa(t,t) 1 -= -- Pa(R.,t) 
./Ma 

(III-1) 



while 
qias<~,R:·> 

1MaMl3 

and the perfect crystal Hamiltonian becomes 

The Green's function described in (III-1) is 

times the m;iss formulated Green's function. 

1 

In equation (III-1), cr~(k) is the eigenvector, and 

Qj(k,t) the normal coordinate of the appropriate branch j, 

78 

of eigenvalue wj(k) and wave vector k, in a crystal described 

by force constants qia 13 cI,i 1
) (mass formulation) connecting 

atoms of mass Ma and M13 • 

Writing the normal coordinate operator in terms of the 

phonon annihilation and creation operators, (II-26) and 

using 

a. (k,t) = eiHt/~a. (k)e-iHt/~ 
J J . 

and the conur~tation relations (II-27), the normal coordinate 

Green's function of equation (III-1) becomes 

<<Qj (k,t) ;Qj 
1 

(k I ,t I)>> = 
r 

-ifl8 (t-t I) i(W• (k)t-W• 1 (k')t) <e J J 

- - -i(W•(k)t-W·t(k')t') - -
x CaJCk,t),aj.(k',t')]+e J · J CaJCk,t),aj,(k',t)]> 

(III-2) 
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Substituting (III-2) into (III-1), and using (II-9), Pa 8 (t,t') 

is found to be 

cr~j (k)cr~ (k)e-ilL o:-t I) 

w 2 -w~(l{) 
(III-3) 

J 

where w = w+i£ and e:-.o+ (III-4) 

If tae advanced Green's function had been evaluated, 

instead of the retarded, then equation (III-3) would remain 

the same, but (III-4) would have w=w-i£. 

Transforming the sum over k in equation (III-3) to 

an integral by 

l = 
R 

v 
-- /d 3k 
(2ir) 3 

and taking w~real, equation (III-3) becomes 

(III-5) 

where V=crystal volume and o+O+. 

Next, by applying the theorem 

b f(x) b f (x) 
lim J --- dx = R,f - dx:i:iirf (y) 
o+o+ a x-y±io a x-y 

a<y<b 

where f indicates the principal value integral and f (x) is a 

continuous function of x, equation (III-5) may be rewritten as 

O<w<wmax 

i 7T 

"aB Ci-R:' ;w) 
2w 

(III-6) 
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where 

v (!-.i' ·w) = 
Q s I 

1 1 l f d3ko*j (k)Oj (k) e-ik • ct-t I) Q (W (k)-W) 
( 2TI ) 3 nA j .. . a 13 j 

(III-7) 

and nA= the number of atoms per unit cell. It is observed 

that for i=i', "asCO;w) is just the usual density of states. 

Once vas<1-1';w) is found, it is a trivial exercise to 

find 
Im pas a I R: I ; w )=- :!L \)as ( R:-R: ' ; w) 

2w 

and numerically obtain 

{ 

w+ti 
+ f. f dW I 

w-ti 

WI max"a ci-1 • ; w I) 
=P S dw' 

= w2-w 2 . 
0 

"as <1-R:' ;w') 

\)aS (i-R: I ;W') 1 
w2- w'2 J 

wmax 

+f dw' 

w+ti 

vaS (1-R:' ;w') l 
w2-w,2 J 

(III-8) 

(III-9) 

where the second term in (III-9) becomes vanishingly small 

as ei~o+, and the greater contribution, coming from the first 

term of (III-9) in brackets, can be found by using Simpson's 

rule. 

The method used to find vas<i-R:•;w), of equation 

(III-7), was similar to that introduced by Raubenheimer and 

Gilat (1966) for the evaluation of the density of states. The 

particulars of this very accurate method can be found in their 

report, and only an outline of certain ideas is presented here. 
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The important points to consider are: that the inte-

gral of equation (III-7) is transformed into an integral over 

the irreducible zone, by taking advantage of the transformation 

properties of the eigenvectors o~j(k) and o~(k), and also the 

-ik {!-!•) factor e · ; and, that the sum and integral for this 

Brillouin zone is found by subdividing this irreducible zone 

into cubes of desired mesh size. It is obvious that not all 

of this zone can be cut into cubes, and thus an appropriate 

weight is given to each subvolume of the unit volume, i.e., 

the chosen mesh cube size. That is to say, when a cube falls 

in the irreducible zone, it is given a weight 1, while if 

(l/n)th of a cube falls in this zone it is given a weight 

(l/n). Also, this mesh can be made smaller, near k=O, where 

accuracy is more difficult to obtain. No cube is centered 

-at k=O or on any symmetry axis, so that degeneracies, other 

than accidental ones, are avoided. The only input parameters 

necessary for this calculation are those which are required 

for defining the eigenvectors, o~(k), and the eigenfrequencies 

w. (k), for the system. 
J 

These parameters (i.e., ~a 8 <i,i 1 ) and 

M ) are taken to be either experimentally determined, as in 
a 

the case of the perfect lattice, or experimentally and/or 

theoretically determined for the effective lattice. 

Apart from the mass defect, it now seems that even for 

the simplest defect space, the number of "weighted" densities 

of states, va 8 <i-i 1 ;w), is enormous. This is not really the 

case, for by using the symmetry properties of the system, the 
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number of independent va 8 <t-t';w) needed is .very much less 

than the number that seems to be needed to define the defect 

space. The equivalence of many of these functions can be 

found by the reduction procedure, and by noting that these 

functions, within a rotation, depend on li-t'I. The results, 

and some discussion of such a procedure, are presented in 

Appendix I for an f.c.c. lattice. 

Since 4> 0 and V are defined to have the same symmetry 

properties, the only difference in the above discussion 

between the derivation of P and G0 is that 4>=4> 0 is used for 

defining P, while 4>=(4> 0 -V) is used to define G0 • 
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SECTION B 

GROUP THEORY AND THE SUBSTITUTIONAL UIPURITY 

In this section, a brief synthesis of certain sections 

of Maradudin (1965) , Tinkham (1964) , Koster (1957) , Agrawal 

(1969), and Ludwig (1964) is presented. The purpose of doing 

this is to briefly describe the mechanism by which the defect 

space can be reduced. Since the low concentration theory 

requires only the single defect scattering t-matrix, the 

techniques for matrix manipulation are those for the single 

defect problem, and so it is this which is considered below. · 

If nn is the number of neighbours in the defect space, 

and m0 is the number of times the crth irreducible representa

tion appears in the representation of the group, then, ·with 

this method of reduction, the 3(nn+l) x 3(nn+l) matrix, which 

defines the defect space, is reduced into a set of m0 xm0 

matrices. These matrices usually have m0 <<3(nn+l) and 

nr 
l m0 <3 (nn+l) 
cr=l 

where nr is the number of distinct irreducible representations. 

Such a scheme is obviously useful, since it greatly decreases 

the amount of work necessary to solve any defect problem. 

The reduction of any matrix Oae<t,t'), which spans 

the defect space and has the symmetry of the group, is made by 

a similarity transformation 
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where the matrix M(oj), (!,a), connects the ith row of the 
1 ;th 

oJ · irreducible representation to the Cartesian coordinate 

~' of the ath ·atom in the ith unit cell, and j runs over l, ••. m0 • 

Using (II-153) and (II-154), the single defect problem 

may be rewr i. t ten as 

PVU = u (III-11) 

which can be broken up into a pair of equations (Maradudin 

(1965)), one of which is in the space of the defect. 

Generally, the form of (III-11) in the defect space, can be 

expressed as 

(III-12) 

where s labels the possible solutions to this equation of 

eigenvalue A
6 

and eigenvector ~<s>. 

The Green's function matrix P1 a 8 Ci,i'), under an 

operation of the point group, transforms as 

Pia I a I (LI L') (III-13) 

where the 3x3 matrix, S, is a real orthogonal transformation 

of the coordinate axes applied at the defect site. This 

transformation takes the crystal into itself, and thus, the 

lattice site {t,a) into (L,a'). A similar transformation 

law holds for v 1 , when the symmetry operations are applied to 
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the defect site. These transformations (i.e., the group 

elements) are the same if v 1 has the same symmetry at a defect 

site as L0 of equation (II-152) has at any atom, for the same 

extent. This is assumed to be the case in the discussion 

that follows. 

Returning to the eigenvalue problem (III-12), it can 

be said that there is a possibility of some eigenvalues As 

being the same, but belonging to different, linearly indepen

dent ~Cs>•s. Explicitly, this can be expressed by 

(III-14) 

where A= P 1v 1 , and the index i=l, ••• ,f
0 

labels the eigen

vectors belonging to the eigenvalue A0 , where f 0 is the 

multiplicity of the eigenvalue Acr· Thus, any linear combina

tion of the f 0 vectors ~(cri) is also a solution of (III-14) 

with eigenvalue A0 • 

Applying s to both sides of equation (III-14) , and 

using the fact that sst=l, equation (III-14) can be expressed 

as 

(III-15) 

where 

or (III-16) 
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Because S is a symmetry operation of the defect 

space, then as (1 1 ,B) run over the atoms of the space, so do 
-1 -S (i',B) although in a different order. Because of (III-16), 

equation (III-15) may be written as 

l Aa.a 0'.,I')'l'~ (oi> (I') = ;>.. 0 '¥~ Cai> (i:) 
R:'e .., .., .... 

(III-17) 

From (III-17), it is observed that if the vector 

'l'(Oi) is an eigenvector of A, with eigenvalue ;>.. , then so is 
a 

'¥' (ai). This means that '¥' <oi> must be a linear combination 

of the vectors '!'Cai>. Consequently, under all operations of 

the group which take the molecule, defined by the defect 

space, into itself, the f vectors '!'Cai> transform only 
0 

among themselves, and therefore form a proper basis for the 

group. 

The connection between 'l'(oi> and the theory of group 

representation can now be made. It is said that '!'Cai> belongs 

to the ith row of the ath irreducible representation of the 

group. If the crth representation appears more than once, say 

m times, then 'l'caI> (l) connects the ith row of the crjth 
a a. 

irreducible representation to (~,a) in the defect space. 

Therefore, the matrix M of (III-10) can be constructed out 

of the vectors '¥< 0 1>. 
The reduction of Q now lies in finding the vectors 

mCa 1~). (Oj) 
r The means by which '¥ i are found is now outlined, 

starting with the character table for the irreducible repre-

sentations of the group. This table, if not listed, can be 
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found using the following rules: 
I 

1) All the complete classes of the group (i.e., nc) can be 

2) 

found f~om a knowledge of the group elements. 

The nuroher of irreducible· representations, n is equal 
r 

to n • 
c 

3) The dimensionalities f 0 of the irreducible representations 

of the group can be found by using rule (2) and 

nr 
l f~ = g (III-18) 
a=l 

where g is the order of the group. Rule (3) determines 

the first column of the character table, because 

X ( O) (e) = fa (III-19) 

where e is the identity element. 

4) On the .basis that: 

a) the rows of the character table must be orthogonal and 

normalized to g, with a weighting factor Nk (the number 

of elements in the kth class ~k), i.e., 

(III-20) 

where R are the elements of the group G; 

b) the columns of the character table must be orthogonal 

vectors normalized to g/Nk, i.e., 

(III-21) 



all the other elements of the character table may be 

worked out. 
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Once these elements of the table have been found, it 

is easy to find out how many times the ath irreducible repre-

sentation occurs in a given representation of the group. If 

xCR) is the character of a given representation of G, 

associated with REG, then, 

m a 
= 1 lX(o) (R)*x(R) 

g R 

1 nc = - l N x<o> cc >*x<c > 
g k=l k =k -k 

(III-22) 

gives the number of times m , the ath irreducible representation 
a 

rCo) (R), is found in the given representation r(R) of the group. 

Having found the types of irreducible representations 

and the number of times they appear, it is now necessary to 

define them explicitly. By inspection, (of literature or of 

the symmetry of the representation), a set of basis functions 

~~o), that ~elong to the jth row of the ath irreducible 

representation, is found, such that these functions, under 

the operation of the group operators PR, transform among 

themselves. PR is the operator which corresponds to R and 

requires the following to be satisfied: 

where q is some function of x=(x,y,z). These set of f basis . a 

functions are then listed alongside the appropriate represen

tations in the character table. 
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With this information, the irreducible representation 

r< 0 >{R) can be found from 

f cr 
PR~~cr) = l ~~~>r~~~(R) 

J j'=l J J J 
(III-23) 

Having obtained the irreducible representations r(cr) (R), the 

projection operator, defined by 

(III-24) 

is applied to ~, an arbitrary vector in the defect space, and 

in so doing, produces the eigenvector ~<cri>, wh~ch transforms 

d . t h .th f th th . d 'bl t t' accor ing o t e i row o e cr irre uci e represen a ion. 

(III-25) 

This is the desired result. 

In general, since the character table and basis functions 

for most symmetry groups, can be found in the literature, only 

the last few steps need be attempted to find ~Cai>. In 

Appendix II, the procedure is briefly outlined for a first 

nearest neig~bour defect space in the f .c.c. lattice. The 

results of Appendix II are used in Appendix III, to find the 

reduced P1 and v 1 (for the same lattice and space). 
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SECTION C 

INTERATOMIC POTENTIALS AND THE DEFECT LATTICE 

This section contains a brief description of pair 

potentials. In the first part of the section a short motiva-

tive type discussion is given for using an effective pair 

potential between atoms in a crystal lattice. The ideas of 

this part, which were stimulated by the treatment of liquids 

in Hirschfelder (1967), also allow for a pair potential view 

of the effective lattice. Parts 2 (Morse potential), 3 (Lennard 

Jones potential) and 4 (Ionic crystals) are shorts on three 

effective pair potentials which prove useful in the next 

chapter, Application. 

1. The Crystal Potential 

Consider the perfect crystal system of N identical 
s 

atoms, whose total potential energy function ~((i,a) 1 , (i,a) 2 , 

..• ,(~,a)N ) may be expanded as a sum of two, three, •.• ,n-body 
s 

potentials: 

1 Ns Ns 
- l l <!> •• + 
2! i=l j=l 1 J 

i;ij 

where 

1 Ns Ns Ns 
- l \ l T · .k+. • .+ 
31 . 1 ~ 1 k=l 1 J 1- J= 

i;ij;ik 

[d~o] 0 
da a=ao= 

1 Ns Ns 
- l 00000 "l T. · nl . . 11, ... ,1 

1
1 

1 n 
I. n 

il;i. • .;iin 

(III-26a) 

(III-26b) 
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Equation (III-26) may be rewritten as 

1 Ns Ns 
~o = l l cj>~:f 

2! i=l j=l iJ 
(III-27) 

i7'j 

where <1>7:f is related to the "bare" two-body potential by 
1J 

eff { <I>. • = 4>. . l+ 
1J 1J 

1 Ns [T · 'kl } - l ~ + •••• 
3 k..I.' . <!> .. r11J 1J . 

(III-28) 

Therefore, in a crystal, if vibrations are neglected 

<1>7:f = 4>~:{ (R:,a)., (l,a). ;B) 
1J 1J . 1 J = (III-29) 

where i symbolizes a dependence on some bulk properties of 

the solid. It is easily seen that the separation between 

nearest neighbours in a crystal is not given by r --the 
0 

separation at which the interatomic potential has a minimum. 

This difference on the separation distance is the result of the 

attraction of an atom to atoms beyond its nearest neighbour. 

Below, the form of the pairwise potential cp~~; in the crystal, 

is taken to be the same as cpij with a change only in the 

potential parameters. 

In a crystal with N substitutional defect atoms a, 
a 

and Nb=(N
8

-N
0

) remaining perfect lattice atoms b, the effective 

interatomic potentials depend on the type of pairing aa, ab, 

or bb. Care is needed to avoid overcounting the interactions, 

while still defining physically meaningful effective potentials. 

For a random distribution of N
0 

and Nb atoms, 
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1 N N iN N N N ~ = ~a ~a aa+__, \b \b bb ~a \b ab 
c 2 l l cl> 2' " ft <f> • • +l " cl> • ! m n mn • 1 J iJ m 1 mi 

i;'j 

(III-30) 

i;'j m#n 

If 

~ = 1 ~b ~b bb eff+ 1 ~a 
c 2!- f 3 <l>ij 21 in 

Na l <l>aa 
n mn 

i;'j m;'n 

then the definition of the effective pair potential is ambigious, 

since·the environment of a given pair contains some a and some 

b atoms. It is desirable to define the interatomic effective 

potential as the effective potential of a pair, immersed in a 

medium of a given bulk composition 

N 
c = a 

Ns = 0 

This is possible if a and b are quite similar and/or if the 

properties of a and b are completely randomly distributed in 

the crystal. 

At "low enough" concentration c of a in b, where no 

a is aware of any other a, the situation may be simplified, since 
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the enviroz&ment of the aa pair is essentially all b. This 

is only reasonable if already the forces are "short enough" 

ranged. The same is true for an ab or a bb pair. Consistent 

with this picture, all the T~~a terms are assigned to the 
i)m 

ba . baa aa 
cl>im pair, the Timn terms to cf>mn and so on. Thus, (III-30) 

becomes 

~ = \ \ ~ l+ - \ (T~~b/~~~) 1 Nb Nb bb{ 1 Nb 
c 21 ~ 4 'l'ij 3 kl~. . 1Jk 'l'iJ 

1 J r1,J 

i#j 

1 Na Na { + _\ \ cpaa l+ 
21 £ l mn 

m n 

+ ···} 

m#n 
(III-32c) 

The sums inside the curly brackets of (III-32a) are 

over Nb atoms found in a given volume, whereas the similar 

sum in (III~28), for the perfect crystal, covers all N5 atoms 

of the crystal. At "low enough" concentration that is being 

considered, the difference between these two sums for the 

terms inside the curly brackets is negligible. Thus, for the 

same separation of i and j 

cp~~ eff~ cp~~f 
1J 1J (III-33) 
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Clearly, in this case, the effective lattice would only be 

defined by 

<Pef f Ns 
~ <l>I~f(a=ac> 
J 

i~j 

( III-34.) 

where ac is the lattice constant of the crystal lattice with 

a concentration c of random substitutional impurity atoms a. 

Because of equation (III-26b) 

(III-35) 

The placing of the impurities in this lattice results in 

[
d<P c] = 0 
da a=a 

c 

(III-36) 

or the stable defect lattice, which is observed. 

If the concentration of impurities is not "low enough", 
· bb eff 

the equation for <l>ij has some information about the 

properties of atoms a. Thus, if the form of <I>:: is the same 
bb bb eff 

as <l>ij' the parameters of <l>ij are different from those 

of <l>~~f' but the form of the potential remains the same. Here 

again, the symmetry about any atom b, in a lattice of atoms b, 

with an interatomic potential <I>~~ eff, is the same as that of 1J . 

the perfect lattice. Therefore (Section E, Chapter II), the 

effective lattice energy is given by 
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q;eff 1 Ns Ns bb ff 
= - l · l <t> • • e (a=a ) 

2! i j 1J c 
(III-37) 

i~j 

where, except for mass defects, the relation given by (III-35) 

still holds. 

In a real crystal, both central and non-central forces 

contribute to the lattice energy. Although the non-central 

contributions to the lattice energy may be sizeable, the 

change in lattice energy, due to the non-central contributions, 

may be negligible in most· cases (Christian and Vitek (1970)). 

Assuming this is the case for all the substances that are 

treated in this thesis, even where non-centrality may be of 

particular importance, central potentials .can be used to 

describe crystal lattices, and they are said to give a good 

representation of force changes, but not necessarily of the 

forces themselves. 

The description of interatomic forces is restricted 

here to central potentials 

<f>(r .. ) = <f> .. (j(t,a).--(i,a).j) 
1J 1J 1 J 

(III-38) 

which, irrespe~tive of their form, depend on certain parameters. 

For such poter..tials, there are four important properties that 

require parametrization: they are 

a) o, the distance, toward the origin, beyond which the re-

pulsive forces become very large, (a measure of"hardness"); 
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b) £, the potential's energy depth (a measure of the strength 

of binding) ; 

c) r , the distance from any origin atom, where the potential 
0 

has its minimum; 

d) re, the extent of the potential. 

Using these properties, the potential of (III-38) may be 

written as 

If ~AA(oA,£A,roA1reAir1j), ~BB(oB,EB,roB'reB;rij) and 

~AB(oAB,EAB,rdAB,reAB;rij) are interatomic potentials of the 

same form, connecting the atomic pairs AA, BB and AB respective-

ly, then the following empirical combining laws may be valid: 

0AB 
OA+OB 

= 
2 

(III-39) 

and DAB 
EAB = IEAEB 

IDADB 
(III-40) 

where DAB'DA, and DB, are the dissociation energies of the 

molecules AB, AA, and BB, respectively. Since the inter-

atomic potentials have a "hard core" at r "'o, the atoms 

appear, at this distance, as almost rigid spheres, and (III-39) 

is valid for such potentials. Equation (III-40) is a more 

general form of the molecular result, suggested by Hirschfelder, 

Curtiss and Bird (1954), i.e., 
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D = lo D 
AB A B 

(III-41) 

to the crystal state. If (III-41) does not hold, then the 

relationship will be out by a factor of 

Since DAB' DA and DA are easily found, it was thought that if 

the same type of forces determine the major part of the bind-

ing energy in the crystal, as in the molecule, then (III-40) may 

be a good approximation. From crystal information (i.e., 

cu3Au), it is seen in Chapter IV that this relation does not 

hold for the Cu/Au crystal system. It seems obvious that 

(III-42) 

and (III-43) 

but nothing more precise can be stated about these parameters. 

In Chapter IV, the Morse potential, the Lennard-Jones, 

and the Born-Mayer plus Coulomb potentials are used in treating 

metallic, rare gas and alkali halide crystals, respectively. 

A brief discussion of these potentials is now given. 

2. The Morse Potential 

The Morse potential, which found general use in the 

problem of molecular vibrations, has also been used as an inter-

atomic potential for metallic crystals by Girifalco and Wiezer 
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(1959), Cotterill and Doyama (1967) and De Wette, Cotterill and 

Doyama (1966). This potential takes the form 

and has a depth of E at r=r0 • This potential is rather 

physical as is seen from 

r+O 

For small r 

r+oo cj>(r)+O 

ar ar 
cj>(r)+Ee 0 (e 0 -2)>>E 

since 

2ar 
'V Ee 0 (1-2ar) 

and therefore the "hard core" 

or 

is associated with 1 

a 

e 

1 -1 -e 

2a 

For large r, very roughly 

and the extent of the potential re, 

-2E ( ) 
'V -2Ee-a re-ro 

e 

(III-44) 

(III-46) 

(III-47) 



or 

1 
is associated with r

0 
and -

a 

99 

For a pair of atoms in a crystal lattice, the Morse 

potential parameters £, a, and r
0

, are calculated by solving 

three independent equations that are related to the three 

necessary and sufficient conditions for crystal stability. 

These conditions are: 

a) a crystal that neither explodes nor implodes 

b) a crystal that is stable under infinitesimal dilution or 

compressive deformation and infinitesimal shear deforma-

tion 

c) a crystal whose cohesive energy is finite. 

If the total energy of the crystal containing N
8 

atoms A is 

( III-48) 

where nj are the number of atoms in the jth nearest neighbour 

shell, and n 5 are the number of shells included in the sum, 

then condition (a) means 

[d~ol = 0 
da a=a 

0 

(III-49) 

where a 0 is the lattice constant of the stable lattice and 

(III-49) is the first equation which must be satisfied. 

Generally, the evaporation of a neutral atom from the crystal 

requires, first, the localization of an eiectron at the atom 

to be removed. This implies an electron redistribution, and 
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thus the energy per atom, (4> 0 /N6 ), cannot, in general, be 

equated with the energy of sublimation per atom, but rather 

is associated with the energy of vacancy formation E! 
(Cotterill and Doyama (1967)). Therefore, the second equation 

to be satisfied is 

(III-50) 

The third equation, related to condition (b), is given by 

= v 00 [d 2 4> 0 l 
dV2 

o a=a 0 

(III-51) 

where B00 = l/K00 , and K00 is the zero temperature and pressure 

compressibility, while V0 is the zero temperatur.e and V00 is 

zero temperature and pressure crystal volume. Using (III-49) , 

= and v = 

where na is the number of atoms per unit cell, equation (III-51) 

becomes 

na 

18a 
0 

(III-52) 

and therefore, £, a, and r
0 

may be determined. 

3. The Lennard-Jones Potential 

A complete discussion of this potential is presented in 

Hirschfelder, Curtiss and Bird (1954); only a brief sketch is 

presented here. The Lennard-Jones potential is given by 

McMASTt'.R I IMl\rl!"o<-1TY LIBRARY 
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~(r) = '·H~1···-l~1·1 {III-53) 

The depth of this potential is e: at r=2tcr. As r+O the 

potential becomes infinite, while as r+00 the potential tends 

to a constant value; zero. It is obvious that the extent 

of this potential is governed by the attractive term[~]'· 
of (*)e: in Thus, the potential drops to a depth 

On the other hand, the "hard core" is determined by the re-

pulsive term ·[Qr) 1 2. Thus, the potential feels an n-fold 

increase in energy e: at 

Therefore, in this potential, cr gives a measure of the "hard 

core", extent and also position of the minimum. 

4. Ionic Crystals 

In order to discuss the lattice dynamics of alkali 

halides, the perfect lattice Green's functions are required. 

The lattice vibrations of the alkali halides have been repre-

sented by the shell.model, introduced by Dick and Overhauser 

{1958), which considers the ions as consisting of rigid charged 

shells bound to cores by harmonic restoring forces; this thesis 

is not concerned with any more sophisticated model than the 

rigid ion model. Thus, it should be noted that all perfect 

lattice information for KBr has been obtained as input data 

from Timusk (1970). 



The rigid ion model is required in this thesis so 

that a crude estimation of the distortion of the defect 

space about an Na+ impurity in KBr can be made. 

An excellent treatment of ionic crystals from the 

rigid ion point of view is contained in Seitz (1940), and 

only a brief discussion of the interatomic potential for 

these crystals is pres.ented here. 

Ionic crystals are composed of positively charged 

metal atom ions and negatively charged electro-negative 

atom ions. The main interaction is the ordinary electro-

102 

static one. The electrostatic forces in these crystals are 

balanced by repulsive forces which, on the basis of quantum 

mechanics, are the result of ion-ion exchange, and take the 

form of a Born-Mayer potential 

-r/p 
.A e 

therefore, the total potential is given by 

rij 

(III-54) 

(III-55) 

where the + sign is taken between like charges q of atoms i,j 

and the - sign is taken between unlike charges q. 
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SECTION D 

NEUTRON SCATTERING 

The scattering of neutrons by nuclei bound in crystals 

has been discussed by many authors (e.g., Van Hove (1954), 

Brockhouse (1964),(1966)). The approximations, used by these 

authors, make the scattering valid for thermal neutrons, 

whose energies are so low that only s-wave scattering is of 

importance. With these approximations, the neutron scattering 

cross section can be found by using the Born approximation 

(Van Hove (1954)). Thus, in a monatomic lattice (for simpli-

city), the scattering cross section, written in terms of the 

correlation functions for the scattering particles is 

= (III-56) 

where oo 

- 1\ *ik.(t-t')f iWt --- ---S(k,w)= k AiAie dt e exp(<k.u(i,t)k.u(i',O)>) 
Ns i I' ~oo 

(III-57) 

-k
0 

and k 1 are the initial and final wave vectors of the neutron, 

1ik=fl(K
0

-k'.1 ) is the momentum transfer to the crystal, and 11.w is 

the energy transfer to the crystal. It is noted that equation 

(III-57) is the simplified form of the general expression for 

S(k,w), which is valid in the harmonic approximation. The 

quantity A1, in (III-57) can be considered as an effective 

temperature dependent scattering length 
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(III-58) 

where aR: is the neutron scattering length of the R:th atom. 

In the perfect crystal, the exponential factor of (III-58), 

known as the Debye Waller factor, is independent of i, but in 

an imperfect crystal, this is not the case. 

For one phonon inelastic scattering, the exponential 

in (III-57) can be expanded as follows: 

(III-59) 

where the first term of (III-59) gives the elastic scattering, 

and the second term the one phonon process. By looking at the 

form of the second term of (III-59) , it is clear that all the 

information required for its evaluation is contained in the 

displacement-displacement Green's function. 

Now the term of interest in equation (III-57) is 
()() 

S(k,w) = __: l A A* eik. (R:-R:'>fdt eiwt<k.u(i,t)k.u(t',0)> (III-60) 
N - -• 1. R,' s i i -oo 

Using equations (II-8), (II-13), and the fact that w can be 

positive or negative, since neutrons can gain or lose l~wl, 

()() 

Jat - -= ~n(w) Im Gae(i,i';w) (III-61) 

-oo 

n (w) 
1 

(gain) where = esw_l 

1 (III-62) 
n (w) = (loss) -ew 1-e 
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and therefore, (III-60) becomes 

S(k,w) = ~ n(w)k A A* eiK.(l-I'>r k k Im Gaa(l,I•;w) (III-63) 
Ns 1 l' I I aS a f3 P 

The scattering cross section is now defined by equations 

(III-56) and (III-63) and can be separated into two parts, a 

"coherent" part and an "incoherent" part. The incoherent 

scattering can be classified as that part which depends on the 

magnitude of k, and the coherent scattering as that part which 

depends also on the direction of k. Simply speaking, the 

contribution that comes from the average behaviour of the host 

atoms is the coherent part, and the incoherent part of the 

scattering is the contribution due to deviations from this 

average. 

Elliott and Taylor (1967) have shown that the different 

weighting given to host and defect sites by Ah and Ad respecti

vely results in 

where 

and 

S. (k,w) inc 

S . (k,w) 
cob 

S(k,w) = S. (k,w)+S h(k,w) inc co 
(III-64) 

(Ad-Ah) 2 c(l-c) 
= Im n (w)fl -------- k 2P(O;w) (III-65) 

l-(l-c)MEw 2P(O;w) 

(III-66) 
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for mass defects treated in the low concentration theory. 

For a low concentration of impurities, randomly 

distributed in the host crystal lattice, Lakatos and 

Krumhansl (1968) have shown that the coherent and incoherent 

contribution to S(k,w) may be expressed as 

s. (K,w) = ~n<w>I k kotA 2 Im G o<I,I;w) 
inc aa a PI l Qp 

(III-67) 

and 

s hCR,w) co 
(III-68) 

where Al is the deviation of the effective scattering length 

from the average effective coherent scattering length H 

It is obvious from both (III-65) and (III-67) that 

the incoherent scattering is related to a modified density 

of states, while from both (III-66) and (III-68) it is seen 

that the coherent scattering is related to the individual 

excitations--the phonons. 
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SECTION E 

IMPURITY INDUCED INFRARED ABSORPTION 

The impurity induced infrared absorption in crystals 

has been treated by Klein (1968) for ionic and neutral 

crystals with charged impurities, Davies and Healey (1968) 

for rare gas crystals, and Maradudin (1966b)' Elliott and 

Taylor (1967) for general crystals. 

In perfect crystals, the frequencies of phonons 

excited or de-excited by light, must equal the frequency 

of the light, and the sum of the wave vectors of these 

phonons must equal the wave vector of light. If the wave 

length of light is "large enough" (compared to the size of 

the unit cell), as in the case for infrared absorption, 

then only those modes, whose k (wave vector) add up to 

zero, can interact with the light incident on the crystal. 

For a perfect alkali-halide crystal, the light can interact 

only with k=O phonons in the one phonon absorption process. 

When impurities are introduced into such a crystal, the 

crystal loses its translational symmetry, and K=O restriction 

is relaxed, so that light can now interact with all vibrational 

modes. 

The absorption constant a(w) is given by 

2WK 
a(w) = 

c' 
(III-69) 
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where c' is velocity of light and K is the imaginary part 

of the complex index of refraction n'=n-iK. The complex 

dielectric constant 

e:' = e: -ie: l 2 

is related to the complex index of refraction as follows: 

n'2 = £' 

£ = n2- K2 
l 

£
2 

= 2nK 

and therefore (III-69} may be written as 

w 
a(w} = e

2 n(w)c' 

From Jackson (1962} one finds that 

(III-70} 

where x is the general susceptibility of the medium and E 
is the electric field applied and may be written as 

Using (III-70), the absorption constant may be 

written as 

a(w} = 4nw 
--- Im l t x 6 CR: , I ' ; w > t 6 n(w)c' a e a a . 

(III-71) 

R: R: ' 

If the total electric dipole moment of the crystal is 



µ = I Iea(l)ua(l) 
a 1 
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where ea(l) is the effective charge of the ath atom in the 

1th cell, then from the fact that the Green's function is 

related to the response function of the crystal the electric 

susceptibility is (Kubo (1958)) given in terms of the Zubarev 

type displacement-displacement Green's function as follows: 

(III-72) 

Therefore (III-71) becomes 

47TW 
a(w) = + Im I t e (i)G 0 (l,i' ;w)e 0 (l')t 0 (III-73 ) 

n(w)c'V a a a a ap ~ ~ a 
l l• 

Klein (1968) showed that the optical absorption constant for 

a monovalent impurity in an alkali halide lattice may be 

written as 

(n (oo)+2) 2 47Tew N 
a(w) = ~~~~~ ~~- - Im GT (K=O;w) 

9n(w) c'm V o,To 
R 

where n(oo) is the index of refraction in the high frequency 

limit, and mR the reduced mass of the crystal pair of atoms. 

Here, n(w) can be regarded as a constant. 
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SECTION F 

THE LOCAL MODE 

An important property of the Green's function for a 

crystal with impurities is the location of its poles. The 

Dyson equation has the formal solution of 

-1 G = (I-PV) P 

This solution establishes that the poles of G occur at 

det(I-PV) = 0 

(III-74) 

(III-75) 

or where P has poles. The latter refers to the perfect 

crystal, whereas the former (III-75), describes the effect 

of the defect and its related modes. 

For a frequency less than the maximum· frequency of 

vibration in the perfect crystal (monatomic), equation (III-75) 

has a finite imaginary part 

(Im P)V (III-76) 

and so, there can be no pole due to (III-75). However, there 

can be a residual effect, called a resonance, in the neighbour

hood of the frequencies, given by the vanishing of the real 

part of equation (III~75). If on the other hand, the frequency 

considered is greater than the maximum frequency of vibration 

of the perfect lattice, then 
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Im P = 0 (III-77) 

and there can be a pole at distance io from the real axis. 

This pole is called a local mode and the vibrations are 

localized to a region around the defect. 

At "low enough" concentration c, where there is no 

overlap of any two defect spaces vi and vj (i#j), the local 

mode problem can be reduced into the one defect form 

w>w 
m 

(III-78) 

Apart from the frequency of the local mode, which may 

be found from (III-78), it is of interest to find an expression 

for the strength of the local mode. Experimentally, any 

quantity which is determined is related to 

Im G .• (w) 
1J 

(III-79) 

where the i and j labels refer to the particular representation 

which satisfies (III-78). If the local mode occurs at w=w0 , 

then the strength of the pole at w=w0 is related to 

Wo-e: 

Im G .. (w) dw 
1J 

, e:>O (III-80) 

which, within the one defect approach, may be expressed as 

Wo+E: 

s = Jdw l Pi (w) (Im tk k (w))Pk j(w) 
w -e: klk2 kl 1 2 2 

0 

(III-81) 

where t is the scattering matrix of the one defect problem. 
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(III-82) 

and (III-83) 

Therefore, using Cramers rule, X may be written as 

D x = 
det (I-P 

1 
v 1

) 
(III-84) 

and (III-81) becomes 

s = ·Im . 
[ 

1 ] 
det(I-P

1
v 1

) 

(III-85) 

where if 

1 0 ••• 0 1 0 0 
0 1. • 0 1 • 

I = • • • = • • • = <i1,·· .,!n> • • • • • • ' • I • • • t • • • • • • • • . 
0 0 • • • 1 0 0 1 

and 

then D .. = det (Y
1

, ••• , Y. 
1

, I., Y. +l' •• ·, Y ) iJ 1- J 1 n 

If P1 (w)v1 (w)D(w)P 1 (w) is analytical in (w0-E)~wS(w0+E), 
for e:>O, and 

nf 
= l 

n=i 
0 

(w-w ) 0 f (w) 
o n 



= (w-w )i0 g.(w) 
0 
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(III-86) 

then, by Cauchy's integral formula, (III-85) becomes 

where 

s = __ 2_'1T __ F ~~o-1) 

(i -1) ! iJ 
0 

(w ) 
0 

(III-87) 

l.[l P1 (w >v! k (w )Dk k (w )P 1 (w )Jg(w )] 
klk2k3 ikl 

0 
1 2 ° 2 3 ° k3j 

0 
= 

(III-88) 

Generally, for a local mode, i =l, and so (III-80) may be 
0 

expressed as 

s = 2'1TL [P 1 (w )vk
1 

k (w )Dk k (w )P1 (w >Jg(w ) 
k k k 'k 0 1 2 ° 2 3 ° k . 0 = 0 

1 2 3 1 1 3J 

(III-89) 

Another property of interest is the r.m.s. displacement 

of the defect in the crystal 

'<u 2> (III-90) 

This will be considered only for a mass impurity. What is 

required here is the l=l'=O Green's function 

(III-91) 

where clearly 

g(w) = 
p(W) 

(III-92) 

m = the mass of the host atom and 
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p(w} = P (O;w} 
aa 

Using equations (II-13}, (III-6} and (III-92}, the square 

of (III-90} may be written as 

00 

<u 2> = 3<u (0,t}u (O,t} 
a a 

3i1i I 1 = dw (g(w+io}-g(w-io)) 
2 eaw_l 

-oo 

v (w) coth ( Sw/2) 
(III-93} 

This, however, is not the complete picture, since for 

O<e:<l 

the defect atom has a lighter mass than the host atom, and 

therefore, there is an w=w >w for which o m 

Wm 

I 
v (w') dw' 

l-e:w 2 · = 0 
o w2-w•2 

0 0 

(III-94) 

(i.e., the local mode condition for a mass impurity) and another 

pole appears in the integral for the correlation function. 

This is dealt with in the usual way, by using a small imaginary 

part io where o~o+. It can be shown (Taylor (1964)), that 

there is an extra contribution to (III-93), 

due to the pole at 

3fi coth (f3w/2) 

2m e:2w~[J w'
2
v(w')dw'] 

(w2-w' 2) 2 
0 

w•w • 
0 

i .e •I 

(III-95) 
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"If you want to find out anything from the 
theoretical physicists about the methods they 
use, I advise you stick closely to one princi
ple: don't listen to their words, fix your 
attention on their deeds." _.;.A. Einstien 

SECTION A 

A CALCULATION OF THE FREQUENCIES AND WIDTHS 

OF PHONONS IN Cu 0 •
97

Au
0

.
03 
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The phonon frequencies and widths in the random alloy 

Cu
0

_97Au
0

•
03 

are found in this section by using the low con

centration theory and are compared with exper"imental obser-

vation. In order to achieve an appropriate description of the 

alloy system it is essential to include the effects of volume 

change on alloying using the effective lattice. Morse paten-

tials, discussed in Section C of Chapter IV, are used to attempt 

to describe these effects as well as to estimate the force 

constant changes associated with the gold impurities. 

Svensson and Brockhouse (1967) measured the phonon 

dispersion curve in an alloy containing 3% gold, for the 

T1 (~,~,0) branch halfway out to the zone boundary. They found 

their experimental results to be in substantial agreement with 

the mass defect theory. However, the more recent experiments 

of Svensson and Kamitakahara (1971), with which this section 

is concerned, on the 3% Cu/Au alloy, although in substantial 

agreement with the earlier work, are not in agreement 



with the mass defect theory further out towards the zone 

boundary along the T1 (~,~,O) branch and along most of the 
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T (O,O,~) branch. At this concentration the low concentration 

theory should be reasonable. 

The c 2 corrections to the low concentration mass defect 

theory have been calculated using (II-122) for the random de

fect lattice and it is found (Figure (F-9A)) that no appreciable 

effects occur at c=0.03, while at c=0.093 the effects are appre

ciable. However, this calculation can only serve as a guide 

when extended defects are considered. Furthermore, Hartmann 

(1968) has investigated the effect of short range order within 

the low concentration theory for c=0.0-93 and found corrections 

of the order of 10% in the resonance region. For c=0.03 it is 

not expected that these corrections would amount to more than 

a few percent. Hence, the assumption of perfect randomicity 

in this calculation is adequate. 

The experimental results, even for c=0.03, do not agree 

with the calculations of Elliott and Maradudin (1965), and 

therefore, this suggests that the differences between copper/ 

gold and copper/copper force constants must be taken into 

account. However, it is important to notice the 1.6% expansion 

of the lattice, due to the addition of the impurities. The 

use of 2.0 as an average Gruneisen parameter for copper 

(Daniels and Smith (1958)) gives a frequency shift of 0.08Thz 

in the neighbourhood of the supposed resonance. As the maxi

mum experimental shift is 0.12THz, this voiume effect cannot be 

ignored. 
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The changes in the force constants on .addition of gold 

to copper are complicated by this Change in volume. The 

approximation which is made, is to regard the alloy as being 

represented by an effective lattice of copper atoms at the 

experimental lattice spacing of the alloy, into which the 

gold atoms have been placed substitutionally. This effective 

lattice described by a set of effective lattice force constants, 

uniform throughout the crystal, can be obtained from the inter

atomic potential for copper by using the observed volume change. 

There are then local force constant changes around each impurity 

atom placed in this effective lattice. The lattice sites 

affected by force constant changes due to a particular impurity 

are called the defect space of that impurity. In Part 1 of 

this section the use of Morse potentials to estimate these 

various changes is described. 

To obtain, in a manner similar to experimen~ the change 

of the dispersion curves upon alloying, it is necessary to 

calculate the neutron differential scattering cross section for 

the alloy as a function of energy transfer for different momen

tum transfers. Thus, the distortion of the phonon dispersion 

curves is obtained by examining the frequ~ncy shift of these 

cross sections from those for copper. This procedure also 

allows for taking into account the effects of the rather con

siderable experimental broadening. 
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1. Effective Lattice and Loca·l Force Constants 

As mentioned above, a description of the change of the 

copper phonon frequencies with volume is necessary, i.e., the 

mode Gruneisen parameters are needed. It is not satisfactory 

to just take the experimental elastic constant Gruneisen para

meters and apply them to the phonon modes at non-zero wave 

vectors. The elastic constant Gruneisen parameters for the 

T(O,O,~) and T1 (~,~,0) branches are quite different (See 

(F-lA)) yet T(0,0,1) and T1 (1,l,O) are the same mode. 

Interatomic potentials are required to obtain this 

description and for a lack of a more sophisticated choice, 

the Morse potential form is taken. This potential has been 

applied with various degrees of success to elastic constants 

(Girifalco and Weizer (1959)), line defects (Cotterill and 

Doyama (1967).), and copper phonon frequencies (De Wette, 

Cotterill and Doyama (1966)). However, here it is necessary 

to use the Morse potential to calculate a volume dependent 

property. As the potential is volume independent it cannot 

include such volume dependent effects as those due to changes 

in the electron screening. The importance of this contribution 

to the phonon frequencies depends on the degree of overlap 

between the copper ions. As the screening decreases with in

creasing volume, it can be expected that the use of the Morse 

potential will overestimate the magnitude of the Gruneisen para

meters. This error should be worse for the longitudinal modes 

which are far more dependent upon screening than are the trans

verse modes. 
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The input data and the resulting Morse potential para

meters are given in Table (T-lA) and are the same as those of 

Cotterill and Doyama (1967). The force constants calculated 

from this potential arie compared with the experimental values 

of Svensson, Brockhous1~ and Rowe (1967) i~ Table (T-2A) • It 

is seen that they are .Lar<j'er and of a somewhat shorter range 

than the experimental :force constants. In fact, they lead to 

vaiues for the phonon :frequencies that are about 10% too high. 

This comparison also indicates a second failing of the Morse 

potential in that the i~xperimental results suggest that there 

is a non-central contribution to the interatomic potential as 

(lXX-lXY) differs from lZZ. The data on which De Wette, 

Cotterill and Doyama (1966) base their potential for copper is 

not clear although the potential does give better values for 

the phonon frequencies .. 

However, both the potentials referred to above overesti

mate the elastic constant Gruneisen parameters by amounts ranging 

from 10% to 100%, the potential of Cotterill and Doyama (1967) 

being the worse offendE~r. To rescue the situation, it is neces

sary to resort to the procedure of applying the percentage 

force constant changes (See page 95, Thesis) given by the Morse 

potential, to the experimental force constants. This procedure 

results in much better Gruneisen values. Whether this improve

ment is due to an apprc1ximate inclusion of non-central poten

tial features and/or tci an enhancement of the effects of the 

"long range" forces is not clear. The resulting mode Gruneisen 
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parameters, y.(R), for the various symmetry directions are 
J 

shown in Figure (F-lA) with the experimental elastic constant 

values (Daniels and Smith (1958)) indicated by arrows. The 

remaining discrepancy for T
1 
(~ 1 ~ 1 0) is rather unfortunate as 

this is one of the branches to be investigated. It will also 

be seen that the structure obtained for this branch is 

essential in obtaining agreement with experiment. A similar 

structure was obtained using the Morse potentials directly. 

The evidence in Part 2 of this section further suggests that 

the longitudinal Gruneisen parameters are grossly overestimated 

at the zone boundary, whereas the discrepancy for the transverse 

branches is probably small. The effective lattice force con-

stants, resulting from the above calculation, are given in 

Table (T-2A) while the change of frequency for the dispersion 

curves for T 1 (~ 1 ~ 1 0) and T(O,O,~) due to the effective lattice 

is given in Figure (F-lOA). 

The method of obtaining the interatomic potentials be-

tween unlike atoms has been described in Section C of Chapter 

III. The first requirement is the interatomic potential for 

gold. Again a Morse potential is used, the parameters being 

determined in the same matter that Cotterill and Doyama (1967) 

determined those for copper (See Part 2, Section c, Chapter III). 

The input data and results are given in Table (T-lA). 

To obtain the radius of the repulsive part of the potential 

forCu/Auit is natural to take the mean of the radii for copper 

and gold potentials. If r (CuAu) is also determined as the 
0 



mean of r (Cu) and r (Au) it is found that 
0 0 

and 

r (CuAu) 
0 

1 
= 

2 
(r (Cu) +r (Au)) 

0 0 

-1 1 -1 . -1 
a(CuAu) = 2<aCCu) +a(Au) ) 
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(IV-1) 

(IV-2) 

The molecular procedure suggests taking the geometric mean to 

obtain the energy parameter e(cuAu), i.e. 

e(CuAu) = le(Cu) (Au) (IV-3) 

!t can be seen immediately, from Table (T-lA) that this would 

lead to a weakening of the force constants between copper and 

gold atoms as compared to those between copper atoms. The 

evidence discussed in Part 2 of this section indicates the 

opposite effect. Indeed the procedure described by (IV-3) 

gives a similarly incorrect result when applied to the calcu-

lation of the dissociation energy of the CuAu molecule. A 

more useful approach is to use the information available for 

the ordered alloy cu
3

Au and compare it with the result obtained 

by (III-40). As the heats of vacancy formation are not avail

able for CuAu system, only the stability condition and the bulk 

modulus could be used to determine the CuAu parameters. Being 

in a position to determine two parameters, e(CuAu) and r (CuAu) 
0 

were chosen, since (IV-2) is the more reasonable approximation 

(See Part 1 and 2, Section C, Chapter III). For the interactions 

between copper atoms and between the gold atoms the previously 

determined potentials were used. The results for e(CuAu) and 



r (CuAu) and a(CuAu) are given in Table (T-lA). 
0 
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Since the ne,rest neighbour local force constants are 

the force constants ~f interest, it is natural to work with 

those forces that reter to motion parallel and transverse to 

' 

the nearest neighbout bond. The force constants for the 

motion along Cr; ,r; ,O) (r,; ,~,0) and (O,O,r;), are called A, Bi, 

and B2 respectively. They are related to the conventional 

force constants, whi~h refer to motion with respect to the 

crystal axes, by 

defect 

A = lXX+lXY 

B = lXX-lXY 
1 

( IV-4) 

If no relaxa~ion of 

is assumed, t~en the 

the atomic positions about the 

changes in these local force con-

stants are easily ca~culated. Following the spirit of the 

discussion of Grunei,en parameters the percentage changes of 

the Morse potential constants are applied to the effective 

lattice force consta It is these changes in the latter 

force constants (8A, 8B
1

, 8B
2

) that are given in Table (T-3A). 

Some relaxat'on (~0.0043!, lst n.n.) of the atomic 

positions is to be e pected and with information on the inter

atomic potentials an !estimate of the effects of such a relaxa

tion can be made. Asl this information is not too reliable, it 

is only worthwhile doling a one-dimensional calculation, 

the dimension as.the rirection of a nearest neighbour. 

taking 

If all 
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but the impurity ato~ and its nearest neighbours are held 

fixed, a relaxation ~f the nearest neighbour of 0.15% {ex

pansion) is found. This hardly changes if the second nearest 

neighbours in this line (fourth nearest neighbours in three 

dimensions) are released. Consistent with these results is 

the assumption that ~he effective Cu potential for the CuAu 

lattice is the same ts that of the perfect Cu lattice (See 

Part l, Section c, Ctapter III). The resulting nearest neigh

bour local force con tant changes, between the gold impurity 
I 

and its nearest neig~bour (AA, AB
1

, AB
2
), and between the 

nearest and fourth nearest neighbours (6.A', ABi, AB~), are 
I 

given in Table (T-3A). It is seen that AA, 6B1 and AB 2 are 
i 

somewhat smaller due1to relaxation, but the addition of _6.A', 
! 

llBi, and llB2 numerifally compensate for this change. No 

examination of chang~s in any of the more long range force 

constants has been attempted as the force constants themselves 

are much smaller tha~ those considered above. Consistent with 

the relaxation model~ the changes in force constants between, 

say, the nearest neiihbour atoms of a gold impurity or one of 

these nearest neighb~ur atoms and a third nearest neighbour 

atom, have not been txamined. As is mentioned in Part 2 of 

this section, this o~ission could be significant. 
I 
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I 

2. Comparison with §xper:iment 
I 

The elastic qne phonon cross section for the coherent 
I 

scattering of neutrotjs by lattice vibrations is given by 

= 
a2 k2 e 8wj 
---I 
211k1 (eal1> ~ 

Im (-x -;r,.) iR.(R:-R:'). 
ka k8 Gas x, 1 x, ,w e 

f3 l' (IV-5) 
dQdE 

where the neutron is scattered from k1 to K2 with K=k1-k2, 

with an energy. change E=flw at a temperature T=!'i/kBf3. This 
I 

result has been specilalized from (III-63) to the case of iden-

tical coherent scattef ing lengths for the atomic species, 

which is an excellenti approximation of a copper/gold alloy. 
I 

The scattering length! and the Debye Waller factor, whose vari-
1 

ation with atomic spe'Fies is also neglected,have, as well as the 

the appropriate const~nts, been absorbed in the constant a 
I 

in (IV-5). 

The experimenfalist is able to examine the scattering 

by the jth phonon brapch if he arranges his scattering geometry 

such that, approximat,ly, 

I 

k.crf 1

Cq) = o for j ';' j (IV-6) 

II 

where q is a wave vector in the first Brillouin zone, differing 
I 

from R by a reciproca~ lattice vector. In this case and on 

using I 

I 

U(j,R1a.LO = 
I 

1 
--- exp (i R. l) cr~ (R) 
/NsMcu 

(IV-7) 
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the scattering cross section (IV-5) becomes 

= Im Gj (q,w) cR.0-j (q)) 2 (IV-8) 
dQdE 2'1TMJukl (e 8w-l) 

! 

This form apglies for both the disordered and ordered 
I 
I 

crystals as the hostllattice eigenvectors enter only via the 

transformation (IV-7)1. Since these eigenvectors are indepen

dent of IC!I, for q a~ong a symmetry direction, and since the 

interest here is onl~ in the shap.e of the cross section as a 
I 

function of w for a liven K (Constant Q method, Brockhouse 

(1961)) it is only n cessary to calculate 

J(j~k,w) 
I 

(IV-9) 

The experimedtal 
I 

resolution can be taken into account, 

approximately by folqing J(j,K,w) with a Gaussian of appropriate 
I 

width W, 

Jb (j ,l<,w )I = f exp [- [
00

:: 

0 

(] J (j, l<,w') dw' (IV-10) 

Values for W were ob~ined by noting the width of the experi

mental cross section I at very low q where the effects of alloying 
I 

should be small. Th~s is a further approximation, as both 

theory and experimen~ (for pure crystals) indicate that the 

resolution is a func,ion of R and w. 

was that equivalent ~o a width (FWHM) 

and Kamitakahara (19~1)). 
I 

The value, taken for W, 

of 0.22 THz (Svensson 
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Following t~e experimental method
1 

(Svensson and 
I -

Kamitakahara) the ceintre of the peak in Jb(j,k,w) was defined 

to be the centre of lthe half maximum points. Although J(j,k,w) 

tends to develop a s!hi:::>Ulder to the main p~ak in the resonance 

region (Re l:j (q,wj (qi)) "' 0), the values oif W. are sufficiently 
I 

large as to reduce t~is structure to a slightly assymmetric 
' ! 

peak (See for instanp1e Elliott 
! 

and Taylor: (1967)). The shift 

l::.w, due to the addi tlic:>n of the impurities, is then the frequen-
I 

cy difference betweeh 
I 

copper phonon, w . ( q) 1, 
J ' 

1 

the peak centre and the frequency· of the 
I 

due allowance having been made for the 

volume effect descri~4ed in Part 1 of this; section. 

To carry outi "1:.hese calculations numerical values for 
i 

the effective lattic~ Green's function, Gb are needed. These 
I 

were obtained in the! standard way using the method of Gilat 

and Raubenheimer 

tained from Im Go 

(19~15) (Sec.A, Chap. III) • 
! 

vifi equation (III-9). 
I 

Re G0 was then ob-

With only nerJrest neighbour force constant changes in 

an f .c.c. lattice, vr--and hence t 9 and x 9 --are 39x39 matrices. 

If Mis the orthogonfl transformation matrix (A-13), then, 

denoting the irreducible forms of the matrices by a prime, 
I 

x' =11 Mx 9Mt = v' (I- (1-c) G0 'v' f 1 (IV-11) 
I 
! 

At worst, it is nece~sary to invert a complex 4x4 matrix, (See 
I 

Appendix III for v' j:ind G01
), which is easily done on the 

computer. These ste~s are obviously not necessary when x 8 is 
I 

given by (II-85), wifh the mass defect treated exactly. 
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i 

; 

The neutron 9ross section involves a Fourier transform 
i 

of G. It is also co~venient to transform from the Cartesian 
! 

coordinates, a, to t~e phonon mode labels, j. The transfor-
1 

I 

I 

mation is effected b~ the matrix (IV-7). Using this transfor-

mation, (II-75) beco~es 

= 0 •• 1,G~(R,w)+~ G?CR,w)Ejj (R,w)Gj j'(R,w) 
JJ J J J 1 1 

1 

(IV-12) 

where 
E(w) = cUMtX'MUt (IV-13) 

or r Cw> = cu x ut (IV-14) 

The fact that the coqfiguration average renders the Green's 
I 

I 

function, G , diagon~l on k is used above. The effective 
I 

lattice Green's func~ions, G0
, are automatically diagonal on 

j and k. 

If K 

I 
I 

i 

is,alon~ 
! 

a synunetry direction, E becomes diagonal 

on j, as well as on ~' and (IV-12) is trivial to solve. The 

result is 

I 
I 

f:: 2 2 f:: -1 
Gj(K,w) = (w -wj(i)-Ej(K,w)) 

having used I 

lo - 2 ~ -1 

(IV-15) 

qj (k, w) = (w 2 -wj (k)) , 

wj(lt) being the freq~ency of the phonon mode (j,lt) in the 

effective lattice. I 

i 

For only nea~est neighbour force constant changes it is 
I 

easy to check (II-76) against (II-86). The spectral functions 

have been calculated using each of these expressions. For the 



mass change 

I 

i 

I 

appropri~te 
! 
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to gold in copper, no discernable 

difference (i.e., lefs than .008 THz) for changes in A up to 

80% and for B1 , B2 ut to 150% were found for lTHz < w< w max 
The differentes in the frequency shift, obtained by 

examining the peak ir Jb(j,R,w) and py using the self energy 

on the energy shell, I r. (q,wj (q)), can be quite considerable. 
'1 J 

These two procedureslare compared in Figure (F-2A) using the 
I 

fitted force constant changes described below. Although the 
I 

differences are quitt small for T
1

(t 1 t 1 0), they become signi-

ficant for T(O,O,t).i 
! 

Attempting tb fit all the experimental points involves 
! 

too much labour to b~ worthwhile. Instead, a fit to the clearly 

defined features of the experimental results is done. The 

only such feature coiJunon to the two branches examined experi-
' 

mentally is the maxi+um negative frequency shift. During 

preliminary investigltion it was found that this shift depends, 
! 

in a natural way, onlthe total force constant changes. The 
! 

T(O,O,t) branch is t~ree times as dependent on aB 2 as on aA or 

~B 1 • The T
1

(t,t,O) ranch, whose polarization vector is 

(1/12, -1/12, 0), is most dependent on aB
1

, being only half as 

dependent on the oth r transverse force constant change, bB 2 , 

and a third as depen~ent on AA.. In general this branch is 
I 
I 

twice as dependent o* the force.constant changes as the T(t,0,0) 
I 

branch. In all case~, an increase in force constant 
I 

decreases the above 'hift. The third condition chosen to 

determine ~A, aB1 an~ ~B 2 is the minimization of the sum of 
I 

i, 
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the squares of the p~rcentage changes in the force constants. 
I 

The resultin9 fit is shown in Figures (F-3A), (F-4A) 

with the fitted fore$! coneltant changes being _given in Table 

(T-3A). The circles in Figure (F-3A} are the experimental 

results of Svensson ~dd Kamitakahara (1971). The open and 

filled circles referito different inciden;t energies. Kamita-
1 

kahara (private comm~nication) suggests that the closed 
I . 

circles may be more teliable, particularly at the higher 
! 

frequencies and it is to these closed circles that the fit 
I 

I 

was made. In Figure! (F-4A) the open circles are the earlier 
I 

results of Svensson tnd Brockhouse (1967) and the filled 

circles, to which th~ theory was fitted, are the results of 

Svensson and Kamitak~hara. Although the fit is good it does 
I 

need qualifying as it depends on the use of the calculated 
I 

Gruneisen parameters~ Before analysing it further, Figures 
! 

(F~SA) , (F-6A} , whic~ give the shifts, without the volume 

effect included are ~xamined. These figures show the shifts 

for the mass defect, I the fitted force constant changes and the 

calculated force conrtant changes. For completeness the 
. I 

shifts appropriate t~ force constant changes of opposite signs 
i 
I 

to those calculated ~re also included. 
I 

It is observfd for the T(O,O,~) branch that the fre-
, 

quency shifts obtain~d from the fitted and calculated local 

force constant chang~s are in reasonable agreement. The mass 

defect result gives ~oo large a negative shift. For the 
I 
I is the mass defect and fitted force con
! 
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stant changes that give similar results while the calculated 

force constants give too small a frequency shift. The large 

magnitude of the fitted value of ~B.1 arises from the need to 

maintain approximate agreement with the mass defect result 

for the T1 (~,~,0) branch but at the same time decrease the 

shift for the T(O,O,~) branch. 

Both the positive sign of ~B2 and the large magnitude 

of ~B1 are rather surprising but to some extent must be due 

to the use of unreliable mode Gruneisen parameters. However, 

near the zone boundary for the T(O,O,~) branch and to some 

extent for the T~~'~'O) branch, the calculated volume effect 

appears to be fairly reliable. By comparing Figures (F-3A) 

and (F-SA), and Figures (F-4A) and (F-6A), it is seen that 

the shift due to the volume effect is dominant near the zone 

boundary. For the T(O,O,~) branch, there is good agreement 

with experiment, but the effect for the T 1 (~ 1 ~,0) branch may 

be overestimated. Since the calculated value of the T(O,O,~) 

elastic constant Gruneisen parameter is in good agreement with 

the experimental value, and the calculated Gruneisen parameter 

is a simple function of frequency (See Figure (F-lA)), the 

inclination is to accept the calculated shift, due to the 

volume change, for the whole of this branch. 

The very poor calculated value for the T1 (~,~,O) 

elastic constant Gruneisen parameter, the large magnitude value 

of ~B 1 , and the conclusions of the above two paragraphs, indi

cate that the lack of reliability for the two branches under 
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consideration is confined to the T 
1 

( i:;, i:;, 0) branch in frequency 

region O to 3 THz. The evidence indicates that the actual 

shift, due to the volume effect, is greater than that calculated. 

However, any reasonable guess for the mode Gruneisen parameter 

is not sufficient to bring the frequency shift, obtained from 

the calculated force constant changes, into even fair agree-

ment with experiment, although the correction is in the right 

direction. Such a guess leads to a fitted value of ~B1 of 

about -1,100 dynes cm-1 ,which is becoming reasonable, but 

~B2 remains positive at around 300 dynes cm-1 with ~A essen

tially unchanged. These values of ~B1 and ~B 2 still require 

an appreciable non-central contribution to the copper/gold 

interatomic potential. 

However, a comparison between the experimental and 

calculated widths (FWHM), r, shown in Figures (F-7A) and 

(F-8A) does support the fitted force constant changes. Al-

though there is little to choose between the widths of the 

T(O,O,i:;) phonon modes obtained from the fitted and calculated 

values of the force constant changes (Figure (F-7A)) there is 

a considerable difference for the T
1 

(1:;,1:;,0) branch (Figure 

(F-8A)). In this comparison, the effects of the volume change 

enter only in a very minor way, corresponding, approximately, 

to a scaling of P of about 2%. Hence, the evidence is quite 

strong. A readjustment of ~B 1 of the kind mentioned in the 

previous paragraph should not seriously affect the agreement, 

according to the results of some preliminary calculations. 
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Also, a comparison was made of the frequency shifts 

calculated using the derived force constant changes obtained 

with and without relaxation (See Table (T-3A)}. This compari

son showed that there was little to be gained in obtaining 

agreement with experiment by allowing for such relaxation. 

The difference is not worth illustrating as it amounts to less 

than 0.004 THz at the most. In view of the lack of reliability 

in the calculations of the frequency shift due to the volume 

change it is not worthwhile attempting to fit six force con

stant changes. However, the results in Table (T-3A} indicate 

that if such a procedure were carried out it should lead to 

somewhat lower values of llA., AB
1 

and AB
2

, in particular making 

the magnitude of AB
1 

more reasonable. 

Before completely dismissing the effects of relaxation, 

it should be noted that some force constant changes that could 

be important have been omitted. Focussing on a nearest neigh

bour atom of a gold impurity, it is seen that changes in only 

two of its nearest neighbour force constants have been taken 

into account. Relaxation would change all of them to some 

degree. Simple geometric considerations suggest that only the 

longitudinal changes (AA) should be important since they are 

of the same magnitude as AA' (Table (T-lA)}. Further, it would 

seem that they should have effects similar to those due to the 

nearest neighbour (of the gold impurity) transverse force 

constant changes. The omission of the possibility of these 

effects could be. a reason for the large magnitude of the fitted 
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AB1 • It is possible to allow for these effects, if the cal

culated values of the appropriate force constant changes are 

accepted, by using the perturbative approach given in Part 2, 

Section B of Chapter II, but the labour required is somewhat 

more than that required to include just f).A', AB{ and b.B~. 

The performance of such a calculation is intended in the near 

future. 

There has been no systematic investigation of any of 

the other phonon branches in the alloy containing 3% gold. 

However, Kamitakahara (1971) has investigated a few modes in 

each branch and finds no frequency shift less than that given 

by a line drawn between the origin and a shift of -0.15 THz at 

7 THz. Unfortunately, the zone boundary Gruneisen parameters 

give shifts of nearly -0.3 THz for the longitudinal modes. 

The calculated zone boundary shift, neglecting the volume 

effect, is negative with a lower bound of -0.04 '!'Hz being 

given by the mass defect case, and about +0.06 THz with the 

calculated force constants. Obtaining any kind of agreement 

with the results of Kamitakahara requires values for the 

longitudinal zone boundary Gruneisen parameters that are half 

those that have been calculated here. That the situation 

would be worse for the longitudinal modes as compared to the 

transverse modes, was anticipated in Part 1 of this section. 

However, the amount of disagreement is rather disappointing. 

It may also be a reflection on the use of the mode Gruneisen 

parameters found from the Morse potential, to calculate the 
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effects of the volume change. 

In conclusion it can be stated that the experimental 

results can be understood in the light of the low concentra

tion defect theory plus a correction due to the change in 

volume on adding impurities. The resonance, whose possibility 

started the experimental investigation, in fact does occur 

although modified by local force constant changes and masked 

by the volume effect. The lack of a detailed knowledge of the 

interatomic forces in an alloy, and thus a lack of a systema

tic method of including the volume effect, renders quantita

tive understanding difficult. 



Cu 

Au 

Cu Au 

TABLE (T-lA) 

Morse Potential Data 

Ef ao ·B e: r a. v 0 
0 

cm- 2x10 12 0 0-1 eV A dynes eV A A 

1.17 (±0 .• 11) (a) 3.614(7)(b) 1.371 0.1700 2.5924 2.3216 

0.94(±0.09) (a) 4.0781 1.728 0.1563 2.8855 2.8395 

l.523(c) {0.211 101 {2. 597 (c) {2'5546 - 3.7426 
0.1818(d) 2.7389(IV-l) 2.5546 

. . [Other experimental results indicate) 
(a) Simmons and Balluffi (1963) variations in E! of up to ±. 5 

(b) Svensson and Kamitakahara (1971) 

(c) cu
3

Au data~ Flinn, McManus and Rayne (1960) 

(d) Weast and Selby (1966) 

D 

kcal mole-1 

47.0(d) 

52.5(d) 

55.4(d) 

...... 
w 
0\ 



TABLE (T-2A) 

Copper Force Constants 

dynes. .cm - l 
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Experiment Morse Potential Effective Lattice(a) 

lXX 13,160±192 18,548 12,064 

lZZ -1,489±330 ..;474 -880 

lXY 14,880±337 19,022 13,520 

2XX 453±295 296 434 

2YY -345±170 -2,225 -334 

3XX 573±228 255 544 

3YY 321±117 34 306 

3YZ 252±154 74 242 

3XY 342± 77 147 326 

4XX 99± 89 39 94 

4ZZ -190±154 -7 -179 

4XY 424±301 46 422 

5XX -121±195 -19 -113 

5YY 15± 86 -2 14 

5ZZ 32±114 2 30 

5XY -51± 97 -7 -48 

(a) appropriate to a lattice constant of 3.634(1) i 

(Svensson and Kamitakahara (1971)) 
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TABLE (T-3A) 

Effective Lattice Changes in Local Force Constants 

dynes cm -1 

Force Constants Calculated 
-1 Fitted dynes cm no relaxation with relaxation 

A 25,584 !::.A 9,808 9,293 6,780 

Bi -1,456 l::.Bl -552 -499 -2,080 

B2 -880 l::.B2 -310 -155 550 

!::.A' - 731 -

l::.B' - -77 -1 

l::.B' - -155 -2 



FIGURE (F-lA) The mode Gruneisen parameter y.(k) for 
J 

the longitudinal modes c~~-) , trans-

verse modes (except for T2 Cr;,r;,O~(-----) 

and the transverse mode T2 (r;,r;,O) (-·-·-) 

are shown for the (O,O,r;), (r;,r;,O) and 

(r;,r;,r;) symmetry directions. The arrows 

indicate the appropriate q=O experimental 

results. 
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FIGURE (F-2A) The frequency shifts for (a) T(O,O,z:;) 

(b) T1 (z:;,z:;,O) using the fitted force 

constant changes of Table (T-3A) (no 

volume effect), where (~~-)was ob-

tained from the scattering cross sec

tion while + was obtained from the 

self energy, I: .. (k, w. (k)} /2w. (k} • 
l.J J J 
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FIGURE (F-3A) The fitted frequency shift for the 

T ( 0 , 0 , z;;) branch. The theoret·ical 

curve ( ) is fitted to the filled 

circles. The open and closed circles 

are experimental values. Kamitakahara 

(1971) indicated the closed circles 

to be more reliable past ~2.5 THz. 
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FIGURE (F-4A) The fitted (to closed circles) fr~quency 

shift for T1 (t,t,O) phonon branch. ~he 

open and closed circles indicate the 

experimental values. 
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FIGURE (F-SA) Comparison of the frequency shifts 

with no volume effect for the T(0,0,t) 

branch; ( ) mass defect, .<-----) 
fitted force constant changes, (-•-•-) 

calculated force constant changes, (•••••) 

force constant changes of opposite sign 

to the calculated ones. 



N 
::i:: 
rt -~ -.,.., 
3 

.. 
0 .. 
0 -

LO 
0 

0 

.· . . . .. 

LO 
I 
• 
I 
• 
I 
• 

. . .. 

f • 
I • • 
I • 

• • 
• • 

• 

• • . 
• 

·-...... ·-...... ·-..... ·-' ·-- .. .._... ............. 
'· .... . . . . 

I 
·/ . ~ 

// 
1 i 

·~ ··' \ . 
,,·f 

1· I . / 
.I/ 

I/ . / 
• 

• • • • • • 

• .. 

. ... . . 

.. .. 

0 

""" 
0 
I 

. . . . 
• . 

• • 

143 

-ici: 
LO 
I 

114 



FIGURE (F-6A} Comparison of the frequency shifts with 

no volume effect for the T1 (t,t,O} 

branch; ( } mass defect, (-----} 

fitted force constant changes, (-·-·-} 

calculated force constant changes, 

(•••••} force constant changes,of the 

opposite sign to those calculated. 
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FIGURE (F-7A) Comparison of the experimental and 

theoretical neutron cross section widths 

of the T(O,O,t) branch; ( ) mass de

fect, (-----) fitted force constant 

changes, (-·-·-) the calculated force 

constant changes, and the closed circles 

are the experimental results. 
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FIGURE (F-8A) · Comparison of the experimental and theo-
I 

retical neutron cross section widths for 

the T1 (z;,z;,O) branch; <---)mass defect, 

(-----) fitted force constant changes, 

(-•-•-) the calculated force constant 

changes, and the closed circles indicate 

the experimental results. 
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FIGURE (F-9A) Comparison of pair calculation for mass 

defects (-----) with the low concentra

tion theory result for mass defects 

( ) frequency shifts for the T(O,O,~) 

branch at (a) 9.3% and (b) 3% gold in 

copper. 
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FIGURE (F-lOA) The change of frequency in (a) T1 (~,~,0) 

and (b) T(0,0,~) branches resulting from 

the expansion of the perfect copper 

lattice to the effective lattice for 3% 

. cjold in copper. 
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"the decision to employ a particular piece of 
appar.a.tus and to use it in a particular way 
carries an assumption that only certain sorts 
of circumstances will arise" 

--T.S. Kuhn 

SECTION B 

SINGULAR POINTS IN Na+ AND sm++_INDUCED 

INFRARED SPECTRA OF KBr 

149 

In this section the low concentration theory is applied 

to the experimental work of Timusk and Ward (1969,1970). These 

authors present a set of high resolution results on the impurity 

induced absorption in several KBr crystals each containing 

different substitutional impurities. For each different 

impurity type in KBr, a continuous absorption spectrum, from 

40 to 90 -1 cm , having several very sharp discontinuities was 

obtained. The authors identified these slope discontinuous 

points with van Hove singularities of the host crystal. For 

two of the impurities used (i.e., Na+ and Sm++) the authors 

obtained absorption spectra for several impurity concentra

tions. Using these absorption spectra, they were able to 

follow the shift in frequency of what they call singularities 

A and B (Timusk and Ward (1969,1970)) and singularity C (Timusk 

and Ward (1970)) as a function of concentration. It is these 

results, concerning the singularity movement as a function of 

impurity concentration in the absorption spectrum of Na+ in 

KBr or sm++ in KBr, that are considered here. 
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Timusk and Ward (1970) foWld, from an examination of 

the shell-model phonon dispersion surfaces, that singularity 

A could be associated with a saddle point on the (1,1,0) axis 

at (.5,.5,0) of the second highest acoustic branch. In a 

similar fashion (Timusk and Ward (1969,70)) singularity B was 

associated with the maximum at (.65,.35,.35) of the second 

highest acoustic branch, while singularity C was associated 

with the saddle point (.55,.35,0) in the highest acoustic 

branch. 

The perfect crystal Green's fWlctions are required 

in order to use the low concentration defect theory to obtain 

information about the frequency shift of these singularities. 

These fWlctions were foWld by Timusk (1970) using a shell-

model calculation and are used here as given input data. A 

shortcoming of the use of these fWlctions arises from the 

fact that t:hey have singularity A at 70.55 cm-1 instead of 
-1 -1 

of 74.73 cm , singularity B at 71.22 cm instead of 75.23 

cm-1 , and singularity C at 82.6 cm-l instead of 85.3 cm-l 

(Timusk and Ward (1970)). Since only the frequency shifts of 

these singularities are of interest here, the theoretical 

results have been raised appropriately so that they may be 

compared with experiment. 

1. Single Phonon Approach 

The lattice vibration frequency spectra of solids 

contains sharp slope discontinuities at points in the zone 
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where the modulus of the gradient of frequency, as a function 

of wave vector k, vanishes. If the spectral function for a 

defect lattice is found by some perturbative expansion in 

terms of the perfect lattice, then from the discussion of 

Appendix IV, it is obvious that the imaginary part of this 

spectral .function reflects only the unshifted singularities 

of the perfect crystal density of states. Thus, using the 

low concentration theory, the defect induced optical absorp

tion s.pectrum,. which depends directly on Im <G> (See (III-73)) 

will not show any shift of the singular points as a function 

of defect concentration. At most, such an approach can result 

in a metamorphosis of the singularities (See Okazaki et al. 

(1967)). Realizing this, another approach.must be used for 

attempting this problem. 

If the effective lattice approach is used, as in the 

previous section for the Cu/Au system, then the change in 

frequency of the singular points in the absorption spectrum 

can be found by using the appropriate mode Gruneisen parameters. 

Table (T-lB) gives these parameters for singularities A, B 

and C, and also compares the experimental frequency shift of 

A, B and C to that obtained by contraction of the lattice due 

to .1% Na+ in KBr. Here, the change in nearest neighbour sepa-

ration (i.e., volume change) is estimated to be 

0 0 
where aNaBr = 2.989 A and aKBr = 3.298 A (Kittel (1968)). 
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Obviously this also provides an inadequate .. description. 

For Na+ in KBr it is .s.een from (III~73b) that the 

absorption constant is proportional to Im GT
0

(R=O;w). Thus, 

if the frequencies of the singularities are such that 

I Im I: I and 

then by eqqation (II-75) 

Im<G (k=O;w)> "' To 

Im I:T
0

(k=O,w) 

(w2-w2 (0).) 2 
To 

Furthermore, it is observed from (II-76) that, apart from a 

resonance denominator, Im I:T
0

(k=O,w) (in the low concentra

tion defect theory), is directly proportional to the weighted 

densities of° states. Therefore the observed singularities 

can be associated with specific spectral functions (phonons) 

in the region of the zone which gives rise to these various 

van Hove singularities. Realizing this, the low concentration 

theory is used to follow the appropriate features of these 

spectral functions as a function of defect concentration, and 

their movement is associated with the movement of the singular 

points of the absorption spectrum. 

Because Sm is divalent and K is monovalent the case 

of sm++ in KBr is not as simple as that of Na+. Elliott and 

Taylor (1967) have shown (for the mass impurity), that for an 

impurity havi~g a cha~ge dif.ferent to that of the host atom 

it replaces, the absorption constant is .related to a linear 
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combination of Im<G> and the im~ginary part of the perfect 

lattice Gr.een's function. Assuming this type of relation 

still holds .for sm++ in KBr, even with force constant 

changes, the absorption constant (apart from resonance type 

denominators) is proportional to weighted densities of states. 

Thus, for sm++, as in the case for Na+ in KBr, the appropriate 

spectral functions are followed with concentration. Further

more, for sm++ the effective lattice theory is not used, since 

there is no expansion data availabler and the system is of 

a very complex nature (i.e., (1) unbalanced charge, (2) vacancy). 

Briefly, the movement of singularities A, B and C of 

the Na+ or sm++ induced absorption spectra of KBr is found by 

following the appropriate features of 

and 

Im <G (.5,.5,0)> 
TA2 

Im <GTA (.65,.35,.35)> 
2 

Im <GLA(.55,.35,0)> 

respectively, as a function of defect concentration. Only 

these three k points are followed since the behaviour of points 

neighbouring these K's is similar. Because the concentration 

of defects is small c~.1%), the low concentration theory is used. 

Clearly, for a Na+ impurity in KBr the perturbation V8 

due to the impurity at a site s does not lower the point sym

metry of the problem from cubic. Furthermore, Fong and Wong 

(1967) have studied the system of sm++ in KBr and have con-
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eluded that the x+ vacancy (.required to. compensate for the 

double charge of this rare-earth impurity ion) was sufficiently 

far from the rare-earth ion that the immediate environment 

of the sm++ was still cubic. Thus, for vs having cubic sym

metry, the lattice dynamics problem in the low concentration 

theory can be treated most easily by transforming the real 

ci,a) space to a space spanned by motions corresponding to 

the representations of the cubic group (Buchanan (1969)). 

Using the same procedure as outlined in the previous section, 

Im<Gj(k)> may be found. The full details of the block dia

gonalization and the explicite form of the matrices used is 

contained in Buchanan (1969) and is not repeated here. 

Si~ce k, associated with singularity A, is in a 

symmetry direction, I: is diagonal on j as well as on k. As 

for singularities B and c Buchanan (1968) has found that the 

off diagonal. elements of I: (i.e., Ej j,, j?'j ') are negligible. 

Thus, in deriving any spectral function of wave vector k, 

associated with singularities A, B or C (or any point in k-

space immediately neighbouring these three points), the self 

energy has be~n assumed diagonal on j, and therefore, by 

(II-75) 

Im<Gj(k)> = 
Im I:. (k) 

J (IV-16) 

Before obtaining any explicit results, the defect space for 

either of these impurities in KBr must be de.fined. It is 

assumed that v 8
, the matrix of the mass and force constant 
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change due to the presence of one .defect at s, can be described 

by a small number of changes localized about the impurity. 

Apart from the mass change, mE , at the orig.in, the force 

constant model of Gethins, Timusk and Woll (1967) was used 

to .describe the defect space. In this model, only the force 

constants connecting the impurity ion to its first nearest 

neighbours, f, and the force constants connecting these first 

nearest neighbours to their first nearest neighbours, g, 

(which are also the fourth nearest neighbours of the impurity 

ion), are changed. Furthermore, no change of the transverse 

force constants is allowed for in this model, since its effect 

is expected to be small, the transverse force constant being 

only about 10% of the longitudinal one. Buchanan and Woll 

(1969) applied this model to the study of the vibronic side 

bands of sm++ in KBr and found 

/if = 14500 dy.nes cm-1 

Ag = -1500 dynes cm-1 

Their results are used in the present calculation for sm++ in 

KBr since the increased Coulomb field due to the. double charge 

on the Sm ion rules out any simple interatomic potential calcu

lation. For Na+ in KBr the /if and Ilg used are calculated from 

the appropriate interatomic potentials (See Part 4, Section c, 

Chapter III) by balancing the forces on Br in the one dimen

sional system 
Na-Br- K 
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where both Na and K are held fixed. The result of this rather 

simple calculation. gives 

and 

Af = -6200 dynes cm-1 

Ag = -6000 dynes cm-1 

2. Convolution Model 

Although the spectral function approach may be a 

reasonable approximation, a proper self consistent treatment 

for a diatomic lattice would be better. Since such a self 

consistent procedure for a diatomic crystal with more than 

just mass impurities has not yet been properly formulated, a 

simulation of self consistency, using a convolution model, 

is attempted as a check~ 

If it is assumed that most of the information about 

the singularity position in the absorption spectrum comes 

from the weighted densities of states, and if the o(wj(k)-w) 

of these functions are changed to Im<Gj(k)>, as derived by the 

low concentration defect theory, then the singularities.of 

a(w), determined in this way, will shift in frequency as a 

function of defect concentration. Basically, .this is the 

idea of the convolution modei, except that Im<Gj(k)> is taken 

to be either a Gaussian or a Lorentzian, whose width and 

shift are obtained from the low concentration theory results. 

In this model the absorption spectrum is described 

by a background function 

cB 
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and an envelope function 

CD 0 (Wj (k)) 

which depends directly on the phonons. Thus, if Im<Gj (k)> 

is approximated by a Gaussian 

exp[- [w-wj(k)-c(s0+~ 1w~(k))]
2

] 
_ _ c 2 [w +w w. (k) 1 ln2 

cdw) "' cB+cf dw. (k) D (w. (k)) 0 1 J 
J 0 J 

l~ln2 c[w0 +w1wj(k)] 

whereas if it is approximated by a Lorentzian 

where 

and 

shift= c(s +s 1w. (k)) 
0 J 

(IV-17) 

(IV-18) 

are found from the low concentration theory results. The 

parameters w
0

, w1 , s
0 

and s 1 are listed in Table (T-2B) for 

the three regions of the spectrum D
0

(wj(k)) (See Figure (F-lB)). 

Band D
0

(wj(k)) used here are given in Figure (F-lB). The 

motivation for (F-lB) arises from the absorption spectra of 

Timusk and Ward (1970) and from the density of states for KBr. 
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3. Results 

Since si~gularities A and C are due to inband modes 

of vibration, their movement, in the single phonon approach, 

was obtained. by following the center·of the half maximum line 

of Im<G. CR;w)>. Singularity B, on the other hand is different 
J 

from singularities A and c, since it is due to a maximum 

frequency point beyond which there are no more modes of vi-

bration associated with the second highest accoustical branch. 

Therefore, the movement of singularity B must not only be 

associated with the shift of the spectral function but also 

with its width. The movement of singularity B is thus 

associated with some point on the high frequency tail of 

Im<Gj(K;w)>. This point is taken, somewhat arbitrarily, to 

be that point on the high frequency side of Im<Gj(k;w)> which 

is 1/25 of max(Im<Gj(R;w)>). A qualitative justification of 

this can be found from the convolution model, if Im<Gj(k,w)> 

is not too assymmetric. Using equations (A-37) and(A-38) 

and the results expressed by (F-BB) and (F-7B) it is found 

that the point to be followed on the high frequency tail of 

a Gaussian or a Lorenzian is 'Vl/50 and 1/70 of their maximum 

respectively. In a single phonon approach, the 1/25 point 

is used to follow singularity B; but if instead~ the l/n 

point is used for n< 25 then it is found that the movement of 
n>25 

slower this point is than that for n=25. 
faster 
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The behaviour of the s.pectral function Im<GTA (. 65, 
2 

.35,.35)> for two concentrations of either sm++ or Na+ in 

KBr is seen in figures (F-2B) and {F-3B) respectively. The 

vertical line on the high frequency tail indicates the 

frequency of 

1/25 max (Im<G. (K; w) >) 
J 

It is observed for sm++in KBr (F-2B) that although the spectral 

functions are assymmetric there is no resonance, whereas for 

Na+ in KBr (F-3B) a distinct resonance appears. This resonance 

is almost independent of llf but not of 6.g. A value of 6.g 

below 'V-7500 or above 'V-4500 dynes cm-1 removes the resonance 

from this region of singularity A and B. 

Figure (F-4B) compares the movement of the center point 

of the FWHM and the high frequency tail ef Im<GTA (.65,.35.,.35)> 
2 

with the experimental results for either Na+ or sm++in KBr. 

For Na+ in KBr the broken line of Figure (F~4B) shows approxi

mately the additional effect which can result from the effective 

lattice contribution. It is obvious from the results of (F-4B) 

that following the center point of the FWHM does not explain 

the experimentally observed shifts. 

The results for the shift of singularity A are presen

ted in Figure (F-5B). The theoretical curves (solid line) 

follow the center point of the FWHM of Im<GTA.}.5,.5,0)>and, 

for sm++ in KBr, are in good ag.reement with experiment. Even 

with the addition of the effective·1attice (broken line) in 
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(F-5B), the results obtained for Na+ in KBr are in rather 

poor agreement with experiment. Figure (F-6B), which follows 

the mo.vement of singularity C shows that the shift of the 

center point of the FWHM of Im<GLA(.55,.35,0)> for Na+· in 

KBr is in very good ag.reement with experiment. In this 

region, fer Na+ in KBr, the spectral functions are found to 

be symmetric and show no signs of resonance behaviour. 

Because of the appearance of a resonance in the Na+ 

results, the convolution model presented in Figures (F-7B) 

and (F-8B) was only attempted for sm++ in KBr. The results 

of this model tend to favour a Lorentzian representation of 

the spectral function for sm++ in KBr. This is not so sur

prising since the spectral function has a pseudo-Lorentzian 

form. 

In conclusion, the experimental results, which 

indicate a faster movement of the singularities (A, B) for 

Na+ than for sm++ impurities in KBr, can be ·understood 

qualitatively (from the single phonon approach) to be a 

result of the resonance behaviour in the region of interest. 

Furthermore, the more rapid movement of singularity B, for 

either of these impurity systems, is a result of its being 

a maximum frequency singularity. 
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FIGURE (F-lB) The envelope function D (w. (k) used 
0 J 

for the convolution model. 
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FIGURE (F-2B} The spectral functions appropriate to 

singularity B, for two concentrations of 

S ++ ' KB h ( } Th m in r are s own ~~-- • e 

broken vertical line indicates wTA (.65, 
2 

.35,.35} in KBr, while the vertical lines 

on the high frequency tails of the spec-

tral functions indicate the position of 

1/25 max(Im<GTA}C-65,.35,.35};w}~}. 
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FIGURE (F-3B) The spectral functions, appropriate to 

singularity B, for two concentrations of 

Na+ in KBr are shown (~~-). The 

broken vertical line indicates wTA (.65, 
2 

.35,.35) in KBr, while the vertical lines 

on the high frequency tails of the spect-

ral functions indicate the position of 

1/25 max (Im<GTA
2
( (. 65,. 35,. 35); w) >). 
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FIGURE (F-4B) Comparison of experimental and theoretical 

frequency shift of singularity B for (a) 

Sm++, (b) Na+ in KBr. The (-·-·-) line 

indicates the movement of the center point 

of the FWHM of Im<GTA
2

((.65,.35,.35);w)> 

while the ( ) line indicates the move-

ment of the high frequency tail. In (b) 

the broken line (-----) indicates the 

additional effect on the solid line as 

a result of including the volume change. 

The closed circles are the experimental 

results. 
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FIGURE (F-SB) Comparison of experimental and theoretical 

frequency shift of singularity A for (a) 

sm++, (b) Na+ in KBr. The solid line( ) 

indicates the movement of the center point 

of the FWHM of Im<GTA2((.S,.S,O);w)>. In 

(b) the broken line (-----) indicates the 

effect of including the volume change. 

The closed circles are the experimental 

results. 
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FIGURE (F-6B) Comparison of experimental and theoretical 

frequency shift of singularity c for Na+ 

in KBr. The solid line <.---) indicates 

the movement of the center point of the 

FWHM of Im<GLA((.55,.35,0);w)>, while 

the broken line (-----) indicates the 

effect of including the volume change. 

The closed circles are the experimental 

results. 
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FIGURE (F-7B) The convolution model using Lorentzian 

spectral function to follow the shift 

of singularities A and B for sm++ in 

KBr. 
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FIGURE (F-SB) The convolution model using Gaussian spec

tral function to follow the shift of 

singularities A and B for sm++ in KBr. 
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"Most of our so-called reasoning consists in 
finding arguments for going on believing as 
we already do. " · --J. H. Robinson 

SECTION C 

CALCULATION OF PHONON SIDE BANDS OF 

H2' D2 AND N2 IN SOLID ARGON 

171 

In this section the one phonon side band of the vibra

tional spectrum of a substitutional H2 , (D2 ) molecule in an 

Ar crystal is formulated in terms of the displacement-dis-

placement Green's functions. By considering the appropriate 

interatomic potentials, a considerable lattice relaxation is 

found about the H2 , (D2 ) impurity. Using a one defect model 

and the low·concentration defect theory these "long range" 

effects are crudely compensc;tted for by introducing an ef fec

ti ve lattice. 'i'he side bands are then calculated with the 

one defect theory in a harmonic approximation by using the 

temperature corrected experimental phonon frequencies. Also, 

a calculation of the position of the local mode side band 

for N2 in Ar, as a function of temperature, is performed by 

adjusting the phonon frequencies appropriately. 

Batchelder, Collins, Haywood and Sidney ·(1970) measured 

the phonon dispersion curves in solid Ar and found the force 

constants (to second nearest neighbour) by a least-squares 

fitting. Their first nearest neighbour force constants are 
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listed in Table (T-lC). Later, Batchelder, Haywood and 

Saunderson (1970) measured the ·temperature dependence of phonon 

frequencies in solid Ar for the T(O,O,r,;) branch. Their 

results are use.d to scale the perfect Ar data to the appro

priate temperature. 

The induced infrared fundamental band of 1% H2 , (D2 ) 

in solid argon was studied by Kriegler and Welsh (1968) 

(De Remigis and Welsh (1970)) at 82°K (80°K). Their results 

indicate a peak arising from a localized lattice vibration at 

about 112 cm- 1 (79 cm- 1 ) and an inband peak at about 22 cm- 1 

(22 cm- 1 ) for H2 , (D2 ) in solid Ar. Recently, De Remigis 

(1970) obtained results for the movement of the local mode 

side band peak for N2 in Ar as a function of temperature. 

These results are indicated by the closed circles in Figure 

(F-lC). No results were obtained -for the change of lattice 

constant in Ar as a result of the introduction of these 

impurities. 

1. The Problems and Some Results 

Although the melting point of argon is 83.8°K, it is 

assumed in this section that if the perfect argon vibrational 

properties are described by the temperature-corrected experi

mental phonon frequencies, then any additional ·effect, due to 

a low concentration (i.e., 1% for H2 or ·D2 , 2% for N2 ) of 

impurities, may be treated in the harmonic approximation. 
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From the Lennard-Jones potentials, using the data 

in Table (T-2C), it is found that the relaxation of the first 

nearest neighbour argon atoms about an N2 impurity is less 

than 1% (expansion). Therefore, for 2% N2 in Ar it is 

assumed that there will be no sign if icaht change in lattice 

spacing. Assuming this to be the case, and since Ar is f.c.c., 

the local mode frequency is calculated by using equation 

(III-78) and the. information, contained in Appendix III, for 

the defect space defined by the impurity and its first near

est neighbours. Furthermore, from the data in 'i'able (T-2C), 

the change of force constants due to the introduction of N2 

substitutionally into Ar is found to vary continuously from 

(in the notation of Section A, Chapter IV) 

at 55°K, to 

AA = 640 dynes/cm 

AB1 = -72 dynes/cm 

AB2= -72 dynes/cm 

AA = 592 dynes/cm 

AB1 = -68 dynes/cm 

AB2 = -84 dynes/cm 

at 80°K. With these temperature dependent force constant change 

results and the temperature corrected phonons, the local mode 

frequencies, found by using (III-78) are compared with the 

experimental results in Figure (F-lC). This 
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temperature dependence of the local mode position is thought 

to arise from the variation of the argon latti.ce constant 

and phonon frequencies as a function of temperature (De Remigis 

(1971)). Considering the approximations made, the agreement 

obtained with experimental results is reassuring. 

Taylor (1971) has shown that in the harmonic approxi-

mation, the absorption spectrum due to the O transition 

(J=O-+ J=O), of H2 , (D2) in Ar is directly proportional to 

4 4 
K(w) = ~ I qiqjim Gij(w) 

i=l J=l 
(IV-19) 

where i and j refer to the four orthonormal.symmetry coordinates 

which trans·form as the first row of the F 1 u representation of 

Oh' and the parameters qi are given by 

q 1 = w(e1+ae 3+4e 2) (IV-20a) 

q2 = 4u(-e1+2e 3-e2) (IV-20b) 

q3 = Sn (2e1+3e 3-Se2) (IV-20c) 

q 4 = 8me 4 (IV-20d) 

The values of w, u, n and m for equation (IV-20) are found 

in (A-13) while the values of the e's are 

e 1 = 157.2, e 2 = -11.1, e 3 = -14.1, e 4 = 3.0 

{Taylor (1971)). Using the one defect approach, the G appro

priate to this problem may be expressed as 
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(IV-21) 

where PF and v.J; are found in Appendix III. · With only a 
1u lu 

longitudinal force constant change, AA = -270 dynes/cm, 

for a first nearest neighbour's defect space,the local mode 

position for H
2 

in Ar (82°K) and· o2 in Ar (80°K) can be 

fitted to 112 cm-1 an(! 79 cm-1 respectively. Although this 

perfect agreement with experiment may see~ impressive, the 

same AA,used with (IV-21) , (IV-20), and <,IV-19) gives an 

inband mode peak at about 38 cm- 1 • The fact that the local 

mode fit is so good is not surprising, since De Remigis and 

Welsh (1970) have already observed that 112/79 is practically 
. t equal to (m

0 
/~ ) • Furthermore, the poor ag.reemen t of the 

2 2 
inband peak is to be expected. Using the parameters of Table 

(T-2C), for the appropriate Lennard-Jones potentials, the 

one-dimensional relaxation model indicates a relaxation 

(contraction) of ~5% for the first nearest neighbour, ~2% for 

the second nearest neighbour, and ~2% for the fourth nearest 

neighbour of the defect molecule. This indicates that even 

for 1% H2 , (D 2 ) in Ar, the defect spaces have:'a reasonably 

high probability of overlapping. This being the case, this 

simple one defect approach, using a first nearest neighbour 

defect space, is not expected to give very good agreement for 

the peak due to inband modes of vibration. 



2. The Effective Lattice for H2 , (D2 ) in Ar 

Since no information is available on the change of 

lattice spacing for solid Ar, due to the substitutional 

H2 , (D2 ) impurities, only a crude ef.fecti ve lattice can be 

considered •. It has been seen (one-dimensional model) that 

the substitution of an H2 , (D2 ) molecule in Ar causes a 
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long range distortion. Since no method is available to cal-

culate, three .dimensionally, the distortion of the Ar atoms 

about a single H2 , (D2 ), and then extend this procedure to 

consider 1% H2 , (D2 ) randomly placed in Ar, only the simplest 

effective lattice is considered. 

The effective lattice assumed in this calculation is 

the stable effective lattice (See Section C, Chapter III). 

Assuming that the effective lattice must be stable implies 

that the two conditions must be satisfied. The first is 

[ d~effl = 0 (IV-22) 
da a=a c 

and the second is that the defects placed into this lattice 

must be mass defects. 

From the work of Batchelder, Collines, Haywood and 

Sidney (1970) it is obvious that the first nearest neighbour 

transverse and second nearest neighbour force constants are 

between one and two orders of magnitude less .than the first 

nearest neighbour longitudinal force constant. This being 

the case, it is further assumed that only first nearest neigh-
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hour force constants are important and need be considered. 

With this assumption, the first condition (IV-22) becomes 

(4.2°K) 

while the second (only mass defect) implies 

Eeff = €H2,(D2) Ar 

creff = crH
2

,co
2

) Ar 

(IV-23) 

Since all these quantities are found from either Table (T-2C) 

or by using (IV-23) and (IV-24), the force constants for the 

effective lattice can be calculated. These are listed in 

Table (T-lC) • Using (III-78) , for the appropriate mass 

impurity in this effective lattice, the position of the local 

mode for H2 in Ar at 82°K and o2 in Ar at 80°K is found to be 

113.6 cm-1 and 79.8 cm-1 respectively. Furthermore, using 

(IV-21), (IV-20) and (IV-19) the inband spectrum K(w) is 

found for the appropriate mass impurity in Ar. The results 

of this calculation are shown in Figures (F-2C) and F-3C) 

for H2/Ar and o2/Ar respectively. In these figures the posi

tion of the experimental peak is indicated by the vertical arrow 
-1 and the theoretical peak at 24.S cm (82°K) can be identified 

with the 61.7 cm-1 (k=(.712,.212,.212)) critical point of solid 

Ar at 4.2°K. Because a mesh of .57 cm- 1 was used in this calcu-

lation, most singularities are not observable in (F-2C) and (F-3C). 
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Considering the lack of sophisti.cation of this 

theoretical approach and the fact that the observed experi

mental peaks have widths of roughly 20 cm- 1 , the theoretically 

derived results seem quite reasonable. 
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TABLE (T-lC) (4.2°K) 

Experimental Lennard-Jones Effective Lattice 

Force Constants Force Constants Force Constants 

lXX 531 572 259 

lXY 604 608 273 

IZZ - 7 -36 -14 
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TABLE (T-2C) 

E°K a.R Argon Temperature rAr Nearest 

(OK) Neighbour Distance 

N2 95 3.7 
3.748(a) 4.2 

H2(D2) 37 2.93 
3.796(a) 55 

Ar 120 3.40 
3.805(a) 60 

N2-A 107 3.55 
65 3.814(a) 

H2 (o2)-A 67 3.17 
3.822(a) 70 

75 3.833(a) 

80 3.845(a) 

(a) Peterson, Batchelder and Simmons (1966) 



FIGURE (F-lC) Comparison of experimental results 

(filled circles) and theoretical 

calculation (-·~~) for the position 

of the local mode side band, of the 

N2/Ar system, as a function of 

temperature. 
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FIGURE (F-2C) The inband spectrum, K(w), corresponding 

to the H2 vibrational-rotational transi

tion, Q, with J=O ~ J=O for 1% H2 in 

solid Ar. The vertical arrow indicates 

the position of the experimental peak 

while the horizontal line (--~---),and 

arrows, indicate the approximate width 

of the experimental peak. The ( ) 

line is the theoretical result. 
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FIGURE (F-3C) The inband spectrum, K(w), corresponding 

to the D
2 

vibrational-rotational transi

tion,. Q, with J=O + J=O for 1% D2 in 

solid Ar. The vertical arrow indicates 

the position of the experimental peak 

while the horizontal line (-----),and 

the arrows, indicate the approximate width 

of the experimental peak. The ( ) 

line is the theoretical result. 
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"To the discoverer in this field the products 
of his imagination appear so necessary and 
natural that he regards them, and would have 
them regarded by others, not as creations of 
thought, but as given realities." 

--A. Einstein 

CHAPTER V 

CONCLUSION 

184 
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The broader aspects of a Conclusion Chapter are pre

sented in the preface and afterword; however, there remain 

some points, associated with the body of this thesis, that 

require conclusion. 

The application chapter indicates the usefulness of 

the effective lattice approach. Even though the use of this 

approach has been restricted to the low concentration defect 

theory it can, for mass impurities, be used for pairs with 

correlation or· the n-tuple process. In Section A of Chapter IV 

is it seen that an understanding of the frequencies and widths 

of phonons in cu0 • 97Au0 • 03 is found by taking into account the 

expansion of the lattice on alloying. Furthermore, Section C 

of the same chapter shows that even a crude model for the 

effective lattice (i.e., the stable effective lattice) provides 

a qualitatively satisfactory explanation of both the inband 

vibrational side band and the position of the corresponding 

local mode for the disordered Ar0 . 99H2 , (D2 >0. 01crystal system. 

The single phonon approach used in Section B of Chapter 

IV provides some useful information about the impurity concen

tration dependence of certain singular points in the defect 

induced far infrared absorption of KBr. 

It is hoped, that the algebraic method.formulated in 

Chapter II may, in the near future, provide some hints on 

how pair or n-tuple scattering may be used for more extended 

defect spaces than for just a mass defect. 
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Chapter IV indicates that in order to achieve a clearer 

understanding of substitutional defect crystal systems, a 

proper self consistent 'treatment of defect lattices, for 

extended defects,and a better three dimensional treatment of 

relaxation (beyond lattice statics) is required. 



AFTERWORD 

"La science a fait de nous des 

dieux avant m@me que nous me

r i tions d'~tre des ho:mmes." 

--Jean Rostand 

Pensee d'un Biologiste 
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APPENDIX I 

THE INDEPENDENT GREEN'S FUNCTIONS FOR F.c.c. 

For an f .c.c. lattice, it is easily shown that there 

are 13 independent "weighted" densities of states, vae <:t-l'; w) 

in the first nearest neighbour defect space• 

The irreducible Brillouin zone in this lattice is 

l/48th of the.Brillouin zone, and any integral over such a 

zone will be indicated by f'. 
If q=ka/2n (the wave vector in reduced units, where 

a is the lattice constant) and if 

aa(q)o~(q)e 
21T i 
-a- ea. ( t-! •) 

(A-1) 

in the Brillouin zone, then equation (III-7) is given by 

vae(!-l';w) = Ifd 3 q f~e<l-l';q)o(wj(q)-w) 
. j 

(A-2) 

where, for cubic lattices, a is real. 

If the independent, reduced Vae<l-l';w) are defined as 

vi(w), then vi(w) can be written as 

vi (w) = l.J 1 

d 3 qF~ (q) o (w. (q) -w) 
j 1 J 

(A-3) 

where Fl(q) is t.he ith independent function found by 

reducing f~ 6 <l-l 1 ;q) into the l/48th Brillouin zone. 
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The 13 independent functions F~(q) of the first 

nearest neighbour defect space are listed below: 

F1 = 48 

F2 = 8(cr~(q) 2 cos(nqx) (cos(nqy)+cos(nqz)) 

+cri(ij) 2 cos(nqy) (cos(nqx)+cos(nqz)) 

+cr~(q) 2 cos(nqz) (cos(nqx)+cos(nqy))) 

F 3 = 16(cr~(qJ 2 cos(nqz)cos(nqy) 
j . 

+cry(q) 2 cos(nqx)cos(nqz) 

+cr~(q) 2 cos(nqx)cos(nqy)) 

F 4 = -16(cr~(q)cr;(q)sin(nqx)sin(nqy) 

+cr~(q)cr~(q)sin(nqx)sin(nqz) 

+cri(q)cr~(q)sin(nqy)sin(Tiqz)) 
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F5 = 16(cr!(q) 2 cos(2nqx)+cr!(q)acos(2nqy)+cr~(q) 2 cos(2nqz)) 

F6 = 8(cr~(q) 2 (cos(2nqy)+cos(2nqz)) 
+cr~(q) 2 (cos(2nqx)+cos(2nqz)) 

+cr~(q) 2 (cos(2nqx)+cos(2nqy))) 

F 7 = 8(cr~(q) 2 cos(nqx) (cos(2nqy)cos(nqz)+cos(2nqz)cos(nqy)) 

+cr~(q) 2 cos(nqy) (cos(2nqx)cos(nqz)+cos(2nqz)cos(nqx>> 

+cr~(q) 2 cos(nqz) (cos(2nqx)cos(nqy)+cos(2nqy)cos(nqx))) 

F 8 = 16(cr~(q) 2 cos(2nqx)cos(nqy)cos(nqz) 

+cri(q) 2 cos(2nqy)cos(nqx)cos(nqz) 

+cr~(q) 2 cos(2nqz)cos(nqx)cos(nqy)) 
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F9 = -8(a~(ij)a~(ij) (sin(wqx)sin(2wqy)+sin(2wqxisin(wqy))cos(wqz) 

+a~(ij)a~-(ij) (sin(wqx)sin(2wqz)+sin(2wqx)sin(wqz))cos(wqy) 

+ai(ij)a~(ij) (sin(wqy)sin(2wqz)+sin(2~qy)sin(wqz))cos(nqx>> 

F10= -16(a~(ij)a~(ij)sin(wqx)sin(wqz)cos(2wqy) 
+a~(q)a;(q)sin(nqx)sin(wqy)cos(2wqz) 
+a;(q)a~(q)sin(wqy)sin(wqz)cos(2wqx)) 

F11= 8(a~(q) 2 cos(2wqx) (cos(2wqy}+cos(2wqz)) 

+a;(q) 2 cos(2wqy) (cos(2wqx)+cos(2wqz)) 

+a~(q) 2 cos(2wqz) (cos(2wqx)+cos(2wqy))) 

F12= 16(a~(q) 2 cos(2wqy)cos(2wqz) 
+ai(q) 2 cos(2nqx)cos(2wqz) 

+a~(ij) 2 cos(2nqx)cos(2wqy)) 

-16(aj(ij)aj(ij}sin(2wq )sin(2wq) 
x . y x y 

+a~(ij)a~(q)sin(2wqx)sin(2wqz) 

+a;(ij)a~(ij)sin(2wqy)sin(2wqz)) 

If Pi are the independent Green's functions associated with 

viand Fi for i=l, ••• ,13, then the total Green's function 

matrix in the first nearest neighbour defect space is given 

by: 



0 1 2 3 4 5 6 7 8 9 10 11 12 
x y z x y z x y z x _y z x y z x .Y z xyz xy z x y z xy z x _y z xyz x y z 

l! 1 0 0 2 4 0 2 0 4 3 0 0 2-4 0 3 0 0 2 0-4 2 4 0 2 0 4 3 0 0 2-4 0 3 0 0 2 0-4 
0 y 0 1 0 4 2 0 0 3 0 0 2 4 -4 2 0 0 2-4 0 3 0 4 2 0 0 3 0 0 2 4 -4 2 0 0 2-4 0 3 0 

~ 0 0 1 0 0 3 4 0 2 0 4 2 0 0 3 0-4 2 -4 0 2 0 0 3 4 0 2 0 4 2 0 0 3 0-4 2 -4 0 2 
X! 2 4 0 1 0 0 3 0 0 2 0-4 6 0 0 7 9 a 8 9-9 b d 0 8 9 9 7 9-a 5 0 0 2 0 4 3 0 0 

1 y 4 2 0 0 1 0 0 2-4 0 3 0 0 5 0 9 8-9 9 7 a d b 0 9 7-a 9 8 9 0 6 0 0 3 0 0 2 4 
z 0 0 3 0 0 1 0-4 2 -4 0 2 0 0 6 a-9 7 -9 a 7 0 0 c 9-a 7 -a 9 7 0 0 6 4 0 2 0 4 2 
x 2 0 4 3 0 0 1 0 0 2-4 0 3 0 0 2 4 0 5 0 0 8 9 9 b 0 d 7-a 9 8-9 9 7 a 9 6 0 0 

2 y 0 3 0 0 2-4 0 1 0 -4 2 0 0 2 4 4 2 0 0 6 0 9 7-a 0 c 0 -a 7 9 -9 7 a a 7-9 0 6 0 
z 4 0 2 0-4 2 0 0 1 0 0 3 0 4 2 0 0 3 0 0 6 9-a 7 d 0 b 9 9 8 9 a 7 9-9 8 0 0 5 
j 3 0 0 2 0-4 2-4 0 1 0 0 7..;.9·a 6 0 0 2 4 0 7 9-a 7-a 9 c 0 0 2 0 4 6 0 0 7 a-9 

3 y 0 2 4 0 3 0 -4 2 0 0 1 0 .:..9 8 9 0 5 0 4 2 0 9 8 9 -a 7 9 0 b d 0 3 0 0 6 0 a 7 9 
z 0 4 2 -4 0 ·2 0 0 3 0 0 1 a 9 7 0 0 6 0 0 3 -a 9 7 9 9 8 0 d b 4 0 2 0 0 5 -9 9 8 
x 2-4 0 6 0 0 3 0 0 7-9 a 1 0 0 2 0-4 8-9-9 5 0 0 8-9 9 2 0 4 b-d 0 7-9-a 3 0 0 
}11-4 2 0 0 5 0 0 2 4 -9 8 9 0 1 0 0 3 0 -9 7-a 0 6 0 -9 7 a 0 3 0 -d b 0 -9 8-9 0 2-4 
~ 0 0 3 0 0 6 0 4 2 a 9 7 0 0 1 -4 0 2 -9-a 7 0 0 6 9 a 7 4 0 2 0 0 c -a-9 7 0-4 2 

4 

x 3 0 0 7 9 a 2 4 0 6 0 0 2 0-4 1 0 0 2-4 0 2 0 4 7 a 9 6 0 0 7-9-a c 0 0 7-a-9 
5 YI o 2-4 9 8-9 4 2 0 0 5 0 0 3 0 0 1 0 -4 2 0 0 3 0 a 7-9 0 6 0 -9 8-9 0 b-d -a 7-9 

z 0-4 2 a-9 7 0 0 3 0 0 6 -4 0 2 0 0 1 0 0 3 4 0 2 9-9 8 0 0 5 -a-9 7 0-d b -9-9 8 
x 2 0-4 8 9-9 5 0 0 2 4 0 8-9-9 2-4 0 1 0 0 3 0 0 6 0 0 7 a-9 3 0 0 7-a-9 b 0-d 

6 YI 0 3 0 9 7 a 0 6 0 4 2 0 -9 7-a -4 2 0 0 1 0 0 2 4 0 6 0 a 7 9 0 2-4 -a 7-9 0 c 0 
Z-4 0 2 -9 a 7 0 0 6 0 0 3 -9-a 7 0 0 3 0 0 1 0 4 2 0 0 5 -9 9 8 0-4 2 -9-9 8 -d 0 b (A-4) 
xi 2 4 0 b d 0 8 9 9 7 9-a 5 0 0 2 0 4 3 0 0 1 0 0 ·3 0 0 2 0-4 6 0 0 7 9 a 8 9-9 

YI 4 2 0 d b 0 9 7-a 9 8 9 0 6 0 0 3 0 0 2 4 0 1 0 0 2-4 0 3 0 0 5 0 9 8-9 9 7 a 
z 0 0 3 0 0 c 9-a 7 -a 9 7 0 0 6 4 0 2 0 4 2 0 0 1 0-4 2. -4 0 2 0 0 6 a-9 7 -9 a 7 

7 

)tj 2 0 4 8 9 9 b 0 d 7-a 9 8-9 9 7 a 9 6 0 0 3 0 0 1 0 0 2-4 0 3 0 0 2 4 0 5 0 0 
8 YI 0 3 0 9 7-a 0 c 0 -a 7 9 -9 7 a a 7-9 0 6 0 0 2-4 0 1 0 -4 2 0 0 2 4 4 2 0 0 6 0 

z 4 0 2 9-a 7 d 0 b 9 9 8 9 a 7 9-9 8 0 0 5 0-4 2 0 0 1 0 0 3 0 4 2 0 0 3 0 0 6 
x 3 0 0 7 9-a 7-a 9 c 0 0 2 0 4 6 0 0 7 a-9 2 0-4 2-4 0 1 0 0 7-9 a 6 0 0 2 4 0 

9 y 0 2 4 9 8 9 -a 7 9 O· b d 0 3 0 0 6 0 a 7 9 0 3 0 -4 2 0 0 1 0 -9 8 9 0 5 0 4 2 0 
z 0 4 2 -a 9 7 9 9 8 0 d b 4 0 2 0 0 5 -9 9 8 -4 0 2 0 0 3 0 0 1 a 9 7 0 0 6 0 0 3 
,q 2-4 0 5 0 0 8-9 ·9 2 0 4 b-d 0 7-9-a 3 0 0 6 0 0 3 0 0 7-9 a 1 0 0 2 0-4 8-9-9 

10 yi-4 2 0 0 6 0 -9 7 a 0 3 0 1-d b 0 t-9 8 9 0 2-4 0 5 0 0 2 4 -9 8 9 0 1 0 0 3 0 -9 7-a 
z 0 0 3 0 0 6 9 a 7 4 0 2 0 0 c i-a-9 7 0-4 2 0 0 6 0 4 2 a 9 7 0 0 1 -4 0 2 -9.-a 7 
x 3 0 0 2 0 4 7 a 9 6 0 0 7-9-a c 0 0 7-a-9 7 9 a 2 4 0 6 0 0 2 0-4 1 0 0 2-4 0 

11 y 0 2-4 0 3 0 a 7-9 0 6 0 -9 8-9 0 b-d -a 7-9 9 8-9 4 2 0 0 5 0 0 3 0 0 1 0 -4 2 0 
z 0-4 2 4 0 2 9-9 8 0 0 5 -a-9 7 0-d b -9-9 8 a-9 7 0 0 3 0 0 6 -4 0 2 0 0 1 0 0 3 
x 2 0-4 3 0 0 6 0 0 7 a-9 3 0 0 7-a-9 b 0-d 8 9-9 5 0 0 2 4 0 8-9-9 2-4 0 1 0 0 

12 y 0 3 0 0 2 4 0 6 0 a 7 9 0 2-4 i-a 7-9 0 c 0 9 7 a 0 6 0 4 2 0 -9 7-a -4 2 0 0 1 0 
Zl-4 0 2 0 4 2 0 0 5 t-9 9 8 0-4 2 1-9-9 8 -d 0 b -9 a 7 0 0 6 0 0 3 -9-a 7 0 0 3 0 0 1 

a=lO, b=ll, c=12, d=l3. 
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where the integers ±i indicate ±pi' and the atoms are given by: 

(000), 
a 

(110), 2 
a 

( 101) , 
a 

(011) 0 = 1 = - = - 3 = -2 2 2 

a 
( 110) ' 

a 
(Oll) , 

a 
( 101) ' 

a 
(110) 4 = - 5 = - 6 = - 7 = -2 2 2 "'I 

'" (A-5) 
a 

(101) I 

a 
(011) I 

a 
( 110) ' 

a 
(Oll) 8 = 9 = 2 10 = 11 = 2 2 2 

a 
(101) • 12 = -

2 

The other independent Green's functions that are con-

sidered, are those connecting the defect site to the 2nd,3rd, 
th th 

4 or 5 nearest neighbour shells. These Green's function 

matrices will only be considered to within a rotational trans-

formation. 

Following the method outlined above, it is found that 

the Green's function matrices connecting the defect to a second, 

third and fourth nearest neighbour shell atom are, respectively: 

a 2 (200) (200) (200) 
x y z 

(000) x P5 0 0 

(OOO) y 0 PG 0 (A-6) 

(000) z 0 0 PG 

a 
2 

(211) (211) (211) 
x y z 

(OOO) x Pa P9 P9 

(OOO) y P9 P7 Pio (A-7) 

(000) z P9 Pio P7 
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a 
(200) (200) (200) -2 x y z 

(000) x P11 P13 0 '\ 

(OOO) y P13 P11 0 (A-8) 

(000) z 0 0 pl2 

The Green's function matrix connecting the defect to a fifth 

nearest neighbour shell atom is given in terms of 

F14 = 8(cr~(q) 2 cos(31Tqx) (cos(1Tqy)+cos(1Tqz)) 

+cri(q) 2 cos(31Tqy) (cos(1Tqx)+cos(1Tqz)) 

+cr~(q) 2 cos(31Tqz) (cos(1Tqx)+cos(1Tqy))) 

F1 s = 8(cr~(q) 2 cos(nqx> (cos(31Tqy)+cos(31Tqz)) 

+cr;(q) 2 c~S(1Tqy) (cos(31Tqx)+cos(31Tqz)) 

+cr~(q) 2 cos(1Tqz) (cos(3nqx)+cos(31Tqy))) 

F16 = 8(cr~(q)~(cos(31Tqz)cos(1Tqy)+cos(1Tqz)cos(31Tqy)} 
+ai(qf 2 (cos(31Tqx)cos(1Tqz)+cos(1Tqx)cos(31Tqz)) 

+cr~(q) 2 (cos(31Tqx)cos(1Tqy)+cos(nqx)cos(3nqy))) 

F1 7 = -8(cr~(q)ai{q) (sin(31Tqx)sin(1Tqy)+sin(1Tqx~sin(31Tqy)) 
+a~ (q) a~ (q) (sin ( 31Tqx) sin ( 1Tqz) +sin ( 1Tqx) sin ( 31Tqz) ) 

+cri(q)cr~(q) (sin(31Tqy)sin(nqz)+sin(nqy)sin(3nqz))) 

by associating each P. with vi and F. for i=14, ••• ,17. 
1 1 . 

The Green's function matrix connecting a fifth ne.arest neigh-

bour shell atom to the defect atom can thus be written as: 
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a 
(310) (310) (310) -

2 x y z 

(OOO) x P14 pl7 0 

(000) y P17 P15 0 (A-9) 

(OOO) z 0 0 pl6 



APPENDIX II 

' THE REDUCTION MATRIX 

FOR THE FIRST NEAREST NEIGHBOUR DEFECT SPACE 

IN AN F.c.c. LATTICE 

To obtain the reduction matrix for the first nearest 

neighbour defect space of an f.c.c., lattice, the character 

table for the Oh group must be used. This table can be 

obtained from any standard reference, such as Koster (1957). 

With this table and the character of the total representation 

of the group 

x<£>f.c.c. = 39 0 -1 -3 1 13 0 5 3 -1 (A-10) 

the total representation rf.c.c. is found to be composed of 

the following irreducible representations: 

r f.c.c. 

It is seen from (A-11) that the largest block is a 4x4, and 

is associated with the F1 u irreducible representation. 

Using this information, and the projection operators 
{o) · {o·) 

P .. , the eigenvectors~ 1 are found to be, (A-12) ,(A-13): 
-iJ 
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xi 0 0 
0 '~ 0 0 
~ 0 0 

:xl 1 1 
l YI 1 -1 

zi 0 0 

:xl 1 -1 
2 -~ 0 0 

zi 1 1 

x: 0 0 
3 . Yi 1 1 

zi 1 -1 

x 1 1 
4 ,y -1 1 

z 0 0 

x 0 0 
5 1y 1-l -1 

z 1 -1 

1-l x 1 
6 y 0 0 

z 1- 1 

1-l x -1 
7 1-1 y 1 

z 0 0 

x 1-l 1 
8 ·Y 0 0 

Zl-1 -1 

x 0 0 
9 Yl-1 -1 

Zl-1 1 

Xl-1 -1 
10 y 1 -1 

z 0 0 

x 0 0 
11 y 1 1 

Zt-1 l 

x 1 -1 
12 y 0 0 

Zl-1 -1 

0 
0 
0 

a-b 
a-b 

0 

-a 
0 
b 

0 
-a 

b 

a-b 
~(a-b) 

0 

0 
a 
b 

a 
0 
b 

t-(a-b) 
~ ( a-b) 

0 

a 
0 

-b 

0 
a 

-b 

t-(a-b) 
a-b 

0 

0 
-a 
-b 

-a 
0 

-b 

2 
E 

g 

0 
0 
0 

-(a+b 
a+b 

0 

-a 
0 
b 

0 
a 

-b 

-(a+b 
-(a+b 

0 

0 
-a 
-b 

a 
0 
b 

a+b 
-(a+b 

0 

a 
0 

-b 

0 
-a 

b 

a+b 
a+b 

0 

0 
a 
b 

-a 
0 

-b 

0 0 
0 0 
0 0 

0 0 
0 0 

-b -a 

a 0 
0 a 

-a 0 

b 0 
0 b 
0 -b 

0 0 
0 0 

-b a 

b 0 
0 b 
0 b 

a 0 
0 a 
a 0 

0 0 
0 0 
b a 

-a 0 
0 -a 
a 0 

-b 0 
0 -b 
0 b 

0 0 
0 0 
b -a 

-b 0 
0 -b 
0 -b 

-a 0 
0 ~a 

-a 0 

0 0 0 0 
0 0 0 0 
0 0 0 0 

-b 0 0 1-b 
b 0 0 1-b 
0 b a 0 

0 a 0 0 
-a 0 a i-a 

0 a 0 0 

a b 0 I-a 
0 0 b 0 
0 0 b 0 

b 0 0 b 
b 0 0 1-b 
0 'b -a 0 

-a b 0 a 
0 0 b 0 
0 0 -b 0 

0 a 0 0 
a 0 a a 
0 I-a 0 0 

b 0 0 b 
-b 0 0 b 

0 1-b -a 0 

0 I-a 0 0 
a 0 -a a 
0 i-a 0 0 

-a 1-b 0 -a 
0 0 -b 0 
0 0 -b 0 

-b 0 0 -b 
-b 0 0 b 

0 t-b a 0 

a t-b 0 -a 
0 0 -b 0 
0 0 b 0 

0 t-a 0 0 
-a 0 -a -a 

0 a 0 0 
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0 0 0 d 0 0 0 0 0 
0 0 0 0 d 0 0 0 0 

0 0 0 0 0 d 0 0 0 

0 0 0 a f-C 0 0 t-a b 
0 0 0 1-b b 0 0 b t-a 

1- l 1-l 1 0 0 c 0 0 0 

0 0 0 ·a 0 i-a -a a 0 
1-l -1 f--1 0 a 0 0 0 0 

0 0 0 1-b 0 b b 1-b 0 

1-1 2 0 c 0 0 0 0 0 
0 0 0 0 b t-a a 0 a 
0 0 0 0 1-c b -b 0 1-b 

0 0 0 a c 0 0 -a 1-b 
0 0 0 b b 0 0 -b t-a 
1 1 1-1 0 0 c 0 0 0 

1 -2 0 c 0 0 0 0 a 
0 0 0 0 b a -a 0 0 
0 0 0 o. c b -b 0 b 

0 0 0 a 0 a a a 0 
1 1 1 0 a 0 0 0 0 (A-12) 
0 0 0 b 0 b b b 0 

0 0 0 a 1-c 0 0 -a b 
0 0 0 1-b b 0 0 b i-a 

t-1 -1 1 0 0 c 0 0 0 

0 0 0 a 0 I-a -a a 0 
1-l -1 -1 0 a 0 0 0 0 

0 0 0 1-b 0 b b -b 0 

1-1 2 0 c 0 0 0 0 0 
0 0 0 0 b i-a a 0 a 
0 0 0 0 1-C b -b 0 1-b 

0 0 0 a c 0 0 -a 1-b 
0 0 0 b b 0 0 -b I-a 
1 1 -1 0 0 c 0 0 0 

1 -2 0 c. 0 0 0 0 a 
0 0 0 0 b a -a 0 0 
0 0 0 0 c b -b 0 b 

0 0 0 .a 0 a a a 0 
1 1 1 0 a 0 0 0 0 
0 0 0 b 0 b b b 0 

The unnormalized eigenvectors 'l'(cri) (l.a) for a substitu
tion impurity in f .c.c. lattice possessing oh symmetry 



x 0 0 0 
0 y 0 0 0 

z 0 0 0 

x 0 0 0 
0 y 0 0 0 

z 0 0 0 

a = 1//24, b = 1/4, c = 1/148 

m = 1//8, n = 1//728, u = 1/128 

0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

w l-4u 16n 0 0 0 
0 0 0 0 w t-4u 
0 0 0 0 0 0 

0 
0 
0 

w = 1 

0 
0 
0 

0 
16n 
0 

0 
0 
0 

0 0 0 
0 0 0 
0 0 0 

0 0 
0 0 
w -4u 
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p = 1/112 

w = 1/113 

0 0 0 0 
0 0 0 0 
0 0 0 0 

0 0 0 0 0 0 0 0 
0 .0 0 0 0 0 0 0 
16n 0 0 0 0 0 0 0 
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x a a 0 -20 t-2c 0 0 0 0 0 b -b 0 0 0 0 -b b 
1 y a -a 0 -2c 2c 0 0 0 0 0 1-b b 0 0 0 0 -b b 

z 0 0 0 0 0 0 t-b t-b -b t-b 0 0 b b b b 0 0 

x a -a -b c 1-C -b b t-b 0 0 0 0 b 1-b 0 0 0 0 
2 y 0 0 0 0 0 0 0 0 b b -b -b 0 0 b b -b -b 

z a a b c c -b -b b 0 0 0 0 b -b 0 0 0 0 

x 0 0 0 0 0 0 b b 0 0 b b b b 0 0 -b -b 
3 y a a -b c c b 0 0 b 1-b 0 0 0 0 b -b 0 0 

z a -a b c 1-C b 0 0 -b b 0 0 0 0 b -b 0 0 

x a a 0 -2c i-2c 0 0 0 0 0 -b b 0 0 0 0 b -b 
4 y i-a a 0 2c t-2c 0 0 0 0 0 -b b 0 0 0 0 -b b 

z 0 0 0 0 0 0 -b -b b b 0 0 b b -b -b 0 0 

x 0 0 0 0 0 0 b b 0 0 -b -b b b 0 0 b b 
5 y i-a -a b -c 1-C -b 0 0 b -b 0 0 0 0 b -b 0 0 

z a -a b .c 1-c b 0 0 b -b 0 0 0 0 -b b 0 0 

x i-a a b -c c b b -b 0 0 0 0 b -b 0 0 0 0 
6 y 0 0 0 0 0 0 0 0 b b b b 0 0 b b b b 

z a a b c c -b b -b 0 0 0 0 -b b 0 0 0 0 
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w = 4 

x 0 0 0 w u 3n 0 0 0 0 m 0 0 0 0 0 0 -b -b b -b 
1 ·Y1 0 0 0 0 0 0 m w u 3n 0 0 0 0 0 0 0 b -b -b -b 

Zl-p t-a m 0 0 0 0 0 0 0 0 w -u -!On 0 0 0 0 0 0 0 

X1 0 0 0 w u 3n 0 0 0 0 0 0 0 0 m -b b b b 0 0 
2 ~y 1-p t-a -m 0 0 0 00 w -u -!On 0 0 0 0 0 0 0 0 0 0 0 

z 0 0 0 0 0 0 m 0 0 0 0 w u 3n 0 ·b b -b b 0 0 

x 1-p 2~ 0 w 1-u -!On 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

:i 0 0 0 0 0 0 0 w u 3n 0 0 0 0 m b -b 0 0 b b 
0 0 0 0 0 0 0 0 0 0 m w u 3n 0 -b -b 0 0 1-b b 

3 

x 0 0 0 w u 3n 0 0 0 0 -m 0 0 0 ci 0 0 -b -b 1-b b 

'i 0 0 0 0 0 0 -m w u 3n 0 0 0 0 0 0 0 -b b 1-b -b 
p a 1-m 0 0 0 0 0 0 0 0 w -u 1-lOn 0 0 0 0 0 0 0 

4 

x p 1-2a 0 w u -!On 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 'Y 0 0 0 0 0 0 0 w u 3n 0 0 0 0 t-m -b b 0 0 b b 
~ 0 0 0 0 0 0 0 0 0 0 -m w u 3n 0 -b -b 0 0 b -b 

~ 0 0 0 w u 3n 0 0 0 0 0 0 0 0 t-m b -b b b 0 0 
6 i~ p a m 0 0 0 0 w -u -!On: 0 0 0 0 0 0 0 0 0 0 0 

2j 0 0 0 0 0 0 -m 0 0 0 0 w u 3n 0 b b b -b 0 0 

(A-13a} 
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w1 w2 

W3 W4 

-w 3 W4 
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where the subscripts g and u denote the even and odd irredu

cible rep.resentations under inversion, As is seen in (A-12) , 

while 

~g(l a) = -~g(-l a) 

~u(l a) = ~u(-l a) 

(A-14) 

Using (A-12), all the linearly independent normalized 

eigenvectors can be found and arranged into the matrix (A-13) , 

which is equal to M+. 

This matrix M with the property 

MM+ = I (A-15) 

is the desired reducing matrix. 



APPENDIX III 

THE REDUCED FORM OF P 1 AND v1 OF THE FIRST 

NEAREST NEIGHBOUR DEFECT SPACE IN AN F.c.c. LATTICE 

By using (A-13) on matrices (A-4) and (A-27) as 

follows: 
(A-16) 

the matrices P 1 and v 1 are block diagonalized~ The various 

different block diagonal elements are: 

R 
PEg = 

VR =[16b
2

(a-y). 0 l 
Eg O · -48c 2 (a+y) 
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+24bc(-2Pr·2P4 ) 
+2Pg+2P10 



VR 
F 

2g 

R 
PA 

u 

R 
VA. 

u 

R 
PE 

u 

R 
VE 

u 

= 

8b
2

[2P1+4P2+2P4+P5 ]8b 2 (2P4~P5+PG-2P10) 
-P6-4P7+4P9-2P10 · +P11-P12-P13 
-P11 ... P12+P13 

8b
2

(2P4-P5+P6-2Pio) -8b
2

[-2P1+4P2-2P4-P5 l 
+P11-P12-P13 +P6-4P7+4P9+2P10 

+P11+P12-P13 

= [8b
2

(y-a:-8) 

8b 2 (ct-8-y) 

8b
2 

(a.-8-y) i· 

8b 2 Cy-a-S) 

= 

= 

= 

= 

= 

8b
2

[2P1+4P2-2P4+P5 l 
-P6-4P7-4P9+2P10 
-P11-P12-P13 

8b
2

(-2P4-P5+P6+2P10) 
+2P11-P12+P13 

r-8b 2 (a.+S+y) 8b
2 

(a-a+yl l 
l 8b 2 Ca.-S+y) -8b 2 Ca.+S+y) 

-12p 2 (-P1+4P4+2P6+4P10-P12> 

-12p 2 8 

24a CP 1+2P4-2P6 +2P10+P12 > 

-24a 2 8 
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(A-22b) 

(A-23a) 

(A-23b) 

.(A-24a) 

(A-24b) 



4n 2 r7P1-24P2 
+12P3+2P5 
+4P6-8P7 
+4Pa+2P11 
+P12 

8nu 

·an 2 91P1-24P2 
-142P3+9P5 
+109P6-120P7 
+18Pa+9P11 
+50P 12 

0 

u 2 (16£w 2 -200a)un(-64£w 2 +520a) -40-yum 
-368 +3128 

T 
where pR =(P: ) 

Flu lu 

n 2 (256£w 2 -1352a)l04ynm 
-676f3 

T 
and v: =<v: ) 

lu lu 

-16b: (a+y) l 

-8m2 a 

204 

8mw(P4+4Pg) 
+P13 

(A-25a) 

l 



0 1 2 3 .4 5 6 
xyz xyz xyz x x. z xy z x _y_ z x ':! z 

x w 0 0 a y 0 a 0 y a 0 0 a-y 0 a 0 0 a 0-y 
0 y 0 w 0 y a 0 0 a 0 0 a Y -y a 0 0 a-y 0 a 0 

z 0 0 w 0 0 a y O a 0 y a 0 0 a 0-_y_ a -_y_ O a 
x a y 0 -a-y 0 

1 y y a 0 -y-a o 0 0 0 0 0 
z 0 0 a 0 o-a 
x a 0 y -a 0-y 

2 y 0 a 0 0 o-a 0 0 0 0 0 
~ __)'_ 0 a -_y_ o-a 
x a •. 0 0 -a 0 0 
y O a y 0 0 0-a-y 0 0 0 
z 0 __)'_ a 0-_y_-a 
x a-y 0 -a y 0 

4 y-y a 0 0 0 0 y-a O 0 0 
z 0 0 a 0 o-a 

~ 8 0 0 -a 0 0 
5 y O a-y 0 0 0 0 0-a y 0 

z 0-1 a 0 _y_-a 
x a O,;.y -a O y 

6 y 0 a 0 0 0 0 0 0 o-a 0 
Zl-y 0 a ..::t_ 0-a 
x a y 0 

7 y y a 0 0 0 0 0 0 0 
z 0 0 a 
x a 0 y 

8 y 0 8 0 0 0 0 0 0 0 
z y 0 a 
x s 0 0 

.9 y 0 a y 0 0 0 0 0 0 
z 0 i a 
x a-y 0 

10 Y'r-Y a 0 0 0 0 0 0 0 
z 0 0 8 
x B 0 0 

11 y 0 a-y 0 0 0 0 0 0 
z 0-y a 
x a 0-y 

12 y 0 8 0 0 0 0 0 0 0 
Zl-_y_ O a 

W=£~ 2 -8a-4B, a=lXX, y=lXY, B=lZZ 

7 8 9 
xyz x _y z x_yz 
a y 0 a 0 y a 0 0 
y a 0 0 a 0 0 a .Y 
0 0 a 1 0 a 0 1 a 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

~a-y 0 
~y-a O 0 0 

0 o-s 
-a 0-y 

0 o-e 0 0 
-y 0-a 

-s ·o 0 
0 0 0-a-y 

0-y_-a 

0 0 0 

0 0 0 

0 0 0 

10 11 
x _y_ z x _y z 
a-y 0 a 0 0 

-y a 0 0 a-y 
0 0 a 0-1 a 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

~a y 0 
y-a 0 0 
0 0-_6_ 

1-S 0 0 
0 0-a y 

O _y-a 

0 0 

12 
x _y_ z 
a 0-y 
0 a 0 

-_y_ 0 a 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

~a 0 y 
o-a 0 
y 0-a 

(A-21: 

IV 
0 
U1 



APPENDIX IV 

SINGULARITIES 

It is seen from equations (III-6) and (III-7) that 

the imaginary part of the Green's function Im Pa13C~,i';w) is 

directly related to the weighted density of states Va13Ct-t';w). 

This weighted density of states is given by (III-7), i.e., 

1 1 

(21T) 3 nA 

Using the fact that 

equation (A-28) may be written as 

(A-29) 

_ _ -iR.Cl-l'> 
Oa(k)cr13(k)e 

vaeO:-t' ;w) = 
1 1 

(21T) 3 nA 
l.J dSw=w. (k) 
j J I 'VkWj (k) I 

(A-30) 

It is a well known fact that the critical points or 

singularities of the density of states is·due to ·the term 

(A-31) 

and occurs at frequencies for which this denominator term 

vanishes. Since equation (A-30) for any weighted density of 

states has the same term affecting the denominator as the 

density of states, thus it too will have such singularities and 

at the same frequencies. 
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APPENDIX V 

THE FACTOR l/n FROM THE CONVOLUTION MODEL 

The maximum amplitude of a Gaussian 

(A-32) 
lirln2 c (w +w w (k)) 

is 
1 

(A-33) 

and so the frequency w, at which the ratio of equations (A-32) 

and (A-33) is l/n, can be found from 

1 

n 

That is to say, 

[~c(s9+s 1 wj(k))-wj (k)J
2

] 

c 2 ln2[w
0

+w1 wj(k)]
2 

This factor l/n is that point on the tail of the Gaussian 

which shifts in concentration, as does singularity B in the 

convolution model, i.e., 

dw 
-= constant 
de 

207 
(A-36) 
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or 1 
- = (A-37) 
n 

Similarly, for a Lorentzian it can be shown that 

1 
(A-38) 

n (ACM-s -s
1

w. (k)) 2 + (w +w
1

w. (kl) 2 
0 . J 0 . J . 

where A in (A-38) must be determined, from the convolution 
CM 

model, using Lorentzians. 
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