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ABSTRACT 

 

Considering the growing population of the earth and the decreasing water 

resources, the need for reliable and accurate estimation and prediction of streamflow time 

series is increasing. Due to the climate change and anthropogenic impacts on hydrologic 

systems, the estimation and prediction of streamflow time series remains a challenge and 

it is even more difficult for regions where watersheds are ungauged in terms of 

streamflow. The research presented in this dissertation, was scoped to develop a reliable 

and accurate methodology for daily streamflow prediction/estimation in ungauged 

watersheds. The study area in this research encompasses Ontario natural watersheds with 

various areas spread in different regions.  

In this research work nonlinear data-driven methods such as Artificial Neural 

Networks (ANN) and conventional methods such as Inverse Distance Weighted (IDW) as 

well as their combination are investigated for different steps in streamflow 

regionalization. As such, Watershed classification prior to regionalization is investigated 

as an independent step in regionalization. Nonlinear classification techniques such as 

Nonlinear Principal Component Analysis (NLPCA) and Self-Organizing Maps (SOMs) 

are investigated for watershed classification and finally a methodology which combines 

watershed classification, streamflow regionalization and hydrologic model optimization is 

presented for reliable streamflow prediction in ungauged basins. 
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The results of this research demonstrated that a multi-model approach which 

combines the results of proposed individual models based on their performance for the 

gauged similar and close watersheds to the ungauged ones can be a reliable streamflow 

regionalization model for all watersheds in Ontario. Physical similarity and spatial 

proximity of watersheds was found to play an important role in similarity between the 

streamflow time series, hence, it was incorporated in all individual models.  It was also 

shown that watershed classification can significantly improve the results of streamflow 

regionalization. Investigated nonlinear watershed classification techniques applicable to 

ungauged watersheds can capture the nonlinearity in watersheds physical and 

hydrological attributes and classify watersheds homogeneously. It was also found that the 

combination of watershed classification techniques, regionalization techniques and 

hydrologic models can impact the results of streamflow regionalization substantially.  

Furthermore, to evaluate the uncertainty associated with the predictions in ungauged 

watersheds, an ensemble modelling framework is proposed to generate ensemble 

predictions based on the proposed regionalization model. 
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 : Introduction Chapter 1

 

In this chapter a general background of the research along with some definitions are 

presented. It is then followed by problem statement and motivations of the research as well as 

research objectives. Finally, the thesis layout is presented.  

1.1. Background 

The total amount of water available to the earth is limited. The hydrologists need to know the 

quantity of that water to manage and maintain the existing water resources. A water budget or 

water balance can be developed to quantify the amount of total water available at different scales 

(e.g. watershed, region, and continent).  Such water budget is a conceptualized hydrologic cycle 

illustrated in Figure 1-1 . This figure demonstrates the components of the hydrologic cycle which 

are important elements in water resources management. The main input to a hydrologic budget is 

precipitation (e.g. rain, snow, hail...). Some of the precipitation may be intercepted by vegetation 

such as trees and structural objects which will eventually return to the atmosphere by evaporation 

or reach the ground. Once precipitation reaches the ground, some of that may fill depression 

storage (water retained in puddles, ditches, and other depressions in the surface of the ground) 

some may infiltrate to the ground which will replenish soil moisture and groundwater reservoirs 
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Figure 1-1 The hydrologic cycle 

 (Ontario stormwater Management Planning & Design Manual, 2003, Ontario Ministry of the  

Environment) 

 

 

and some may become surface runoff which flow over the earth’s surface to a minor channel 

such as gullies or flows to major stream/river. Water budget can be established for a region 

defined topographically (such as watersheds or drainage basin), politically (such as country or 

city) or chosen on some grounds (Viessman and Lewis 1995). Watersheds define surface water 

boundary and are drained by a system of connecting rivers/streams to a single outlet and hence 

they are understandable basis for establishing the water balance. 

 

 

 

 

 

 

 

 

 

Surface runoff ultimately reaches the main stream of watershed and generates the 

streamflow. Streamflow is an important element in hydrologic cycle. Reliable and accurate 

prediction of streamflow plays an important role in watershed management since it is required 

for design of hydraulic infrastructures, watershed management plans, flood prediction, etc.  

Rainfall-runoff (or hydrologic) models simulate the hydrologic cycle using watersheds 

physical and climatological characteristics. Therefore, hydrologic models are main tools for 
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estimation/prediction of streamflow. Other less common options are data-driven techniques such 

as time series or regression models. Hydrologic models might be conceptual or physically based, 

lumped or distributed models. In general a hydrologic model needs a set of model parameters 

and meteorological inputs. Each of this information might be unknown or known imperfectly. 

Ungauged basins 

As explained earlier watershed or water catchment or drainage basin in hydrology is 

recognized as an area of land where surface water from precipitation or glaciers drains to a body 

of water such as stream, river or lake and finally converges to the outlet which is at the lowest 

elevation of the watershed. Ungauged basins are those without enough hydrological observations 

(or measurements).  In other words, hydrometric stations are not available in ungauged basins or 

they became inactive. Sivapalan et al. (2003) defines ungauged basins as the ones with 

inadequate records (in terms of both data quantity and quality) of hydrological observations. For 

example, if the variable of interest has not been measured at the required resolution or for the 

length of period required for model calibration, the basin would be considered as ungauged with 

respect to that variable. Variables of interest can be any of hydrological variables such as 

precipitation, runoff, streamflow, etc. 

Prediction in Ungauged basins and Regionalization 

International Association of Hydrological Science (IAHS) dedicated a decade (2003-2012) to 

the challenging issue of Prediction in Ungauged Basins (PUB), and defined it as the prediction or 

forecasting of the hydrological responses of ungauged or poorly gauged basins and its associated 

uncertainty (Sivapalan et al. 2003). Different approaches can be used for hydrological 
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predictions in ungauged basins. For example, measurements by remote sensing (e.g. satellites, 

radars) , application of physically-based hydrologic models where model parameters are 

specified using physical attributes of watersheds  and  extrapolation of hydrological information 

from gauged to ungauged basins. The two first options are less common due to low efficiency 

considering the high equipment, time and data requirements. Similarities between the watersheds 

are usually used to transfer information from gauged to ungauged locations. According to 

Kleeberg (1992), regionalization involves the transfer of information from one catchment 

(location) to another. In hydrology regionalization is usually recognized as the process of 

transferring hydrological information from gauged to ungauged basins (e.g. Wagener and 

Wheater 2006; Lamb and Calver 2002).  

1.2.  Problem Statement and Motivations 

Water is vital for the life cycle and water resources on the earth are precious for human and 

aquatic ecoystems.  The growing population of the earth, the increasing frequency and severity 

of flood and droughts worldwide, and the impact of human activities on the water resources 

highlights the need for better estimating and predicting the amount of available water on the 

earth for establishing a reliable water resources management system which includes water 

allocation, long-term planning, groundwater recharge, water supply and hydropower production, 

flood prediction, and design of hydraulic infrastructures such as spillways, culverts, dams.  

  While the importance of water availability and management is increasingly recognized, 

hydrological observation networks are declining (Mishra and Coulibaly 2009). In other words, 

hydrological measurements are not available in many river  basins or watersheds in the world. 

For example, In the United States (US), approximately less than 25000 (10 %) river basins out of 
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250000 are gauged by US Geological Survey (USGS) ( Geological Survey,  2009). According to 

Environment Canada currently there are over 2500 active hydrometric stations in Canada while 

over 5500 hydrometric stations are no longer active (http://www.ec.gc.ca/rhc-wsc ), and many 

rivers remain ungauged (Coulibaly et al. 2013). In developing countries this issue is even worse. 

In any given region, in any part of the word , only a small fraction of the catchments have stream 

gauges and all other catchments have no stream gauge  and therefore they are ungauged (Blöschl 

et al. 2013).  

1.3. Objectives of the research 

Considering the high number of ungauged basins over the world and the need for streamflow 

estimation /prediction, this research aims to develop an accurate and reliable tool for continuous 

streamflow regionalization in ungauged basins using regionalization methods. To achieve this 

objective the following goals were set to be achieved: 

• Perform a comprehensive literature review on  recent advances in streamflow 

regionalization.  

• Investigate and propose a watershed classification methodology prior to 

regionalization 

• Evaluate the efficiency of a systematic watershed classification prior to streamflow 

regionalization 

• Evaluate and propose an efficient streamflow regionalization methodology with 

uncertainty estimate.  

http://www.ec.gc.ca/rhc-wsc
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Each objective, achieved in Chapters 2, 3, 4 and 5, respectively, forms the basis of a paper that 

has been published or submitted for publication. 

1.4. Thesis Layout 

The first chapter of this Ph.D thesis presents a primary introduction of the research which 

clarifies the research motivations, objectives and layout. Chapter 2 presents an extensive 

literature review of previous streamflow regionalization studies. This review focuses on the 

studies during the last two decades (1990-2011) and covers the latest advances in the 

methodology along with hydrologic model optimization and uncertainty analysis. Chapter 3 

proposes and evaluates novel watershed classification schemes prior to regionalization. In this 

chapter two reference classification based on streamflow time series are used to evaluate the 

performance of nonlinear classification techniques based on catchment attributes. In chapter 4, 

first the efficiency of watershed classification prior to streamflow regionalization is evaluated 

and then different combination of watershed classification, streamflow regionalization and 

hydrologic models are evaluated to identify best combinations for different watersheds. In 

chapter 5 four individual regionalization models for the study area are independently developed 

and improved, and combination of the four individual regionalization models for the region is 

developed which appears to be a reliable model for all watersheds of Ontario. In this chapter a 

framework for generation of ensemble streamflow prediction is proposed which can estimate the 

prediction uncertainty boundaries. Finally in chapter 6 conclusions and recommendations for 

future research are presented. 
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Summary of Paper I : Razavi, T., and  Coulibaly, P. (2013) .Streamflow Prediction in Ungauged Basins: 
Review of Regionalization Methods. Journal of Hydrologic Engineering, 18(8), 958–975. 

 

The research presented in this work is an extensive literature review on the regionalization of 

streamflow. We have mainly focused on the research works in the period of 1990-2011. The 

main topics which are discussed in the paper include: 

• Discussion of developments in continuous streamflow  regionalization 

• Model parameter optimization methods 

• The application of uncertainty analysis in regionalization 

• Limitations and challenges 

• Further research directions 

In this paper streamflow regionalization studies are categorized into two main categories 

of: Hydrologic model-dependent and hydrologic model-independent methods. The results of 

this study indicate that: 

• Streamflow regionalization has been done mostly through hydrologic models 

• Conceptual hydrologic models , HBV and IHACRES , have been the most frequently 

used tools for streamflow regionalization 

• In arid to warm temperate climate (e.g., Australia) physical similarity and spatial 

proximity approach, in warm temperates (most European countries), regression-based 

methods, in cold and snowy climates (e.g., Canada), spatial proximity and physical 

similarity approaches seem to outperform other hydrologic model–dependent methods. 
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2.1.Abstract 

  The paper presents a comprehensive review of a fundamental and challenging issue in 

hydrology: the regionalization of streamflow and its advances over the last two decades, 

specifically 1990-2011. This includes a discussion of developments in continuous streamflow 

regionalization, model parameter optimization methods, the application of uncertainty 

analysis in regionalization procedures, limitations and challenges, and future research 

directions. Here, regionalization refers to a process of transferring hydrological information 

from gauged to ungauged or poorly gauged basins to estimate the streamflow. Huge efforts 

have been devoted to regionalization of flood peaks, low flow and flow duration curves 

(FDCs) in the literature, while continuous streamflow regionalization is helpful in deriving 

each of these variables. Continuous streamflow regionalization can be conducted through 

rainfall-runoff models or hydrologic model-independent methods. In the former case, model 

parameters are used as instruments to transfer hydrological information from gauged to 

ungauged basins; while the latter case transfers streamflow directly through data-driven 

methods.  

According to the reviewed regionalization studies, streamflow regionalization has been 

done mostly through hydrologic models, while the focus of these studies is on identifying the 

best methods to transfer the model parameters. Conceptual rainfall-runoff models such as 

HBV (Hydrologiska Byråns Vattenbalansavdelning) and IHACRES (Identification of unit 

Hydrographs And Component flows from Rainfall, Evaporation and Streamflow data) have 

emerged as the most frequently used models in this category. Physiographic attributes (e.g. 

catchment area, elevation, slope of basins or channels) and meteorological information (e.g. 

daily time series of rainfall and temperature) are the most commonly used in the 



P.h.D Thesis – T. Razavi                                                            McMaster University – Civil Engineering 

11 

regionalization studies. Diversity in catchment physical attributes and climatic variability 

produces different performances for each regionalization method’s application in various 

regions. However, overall, spatial proximity and physical similarity have shown satisfactory 

performance in arid to warm temperate climate (e.g. Australia) and regression-based methods 

have been preferred in warm temperate regions (e.g. most European countries). Similarly, in 

cold and snowy regions (e.g. Canada) spatial proximity and physical similarity approaches 

seemed to be good options among the hydrologic model-dependent methods. Hydrologic 

model-independent methods have been applied only in few cases and the results have 

indicated that in warm temperate regions linear and nonlinear regression methods perform 

well.  

 
Author keywords: Continuous streamflow, Regionalization, Ungauged basins, Rainfall-runoff models, 

Uncertainty analysis, Parameter optimization 

2.2.Introduction 

Continuous streamflow estimation is an important issue in surface hydrology, especially in 

ungauged watersheds. According to Sivapalan et al. (2003), ungauged basins are ones with 

inadequate records (in terms of both data quantity and quality) of hydrological observations. A 

catchment is ungauged or poorly gauged with respect to a variable of interest. The International 

Association of Hydrological Science (IAHS) initiated the decade 2003-2012 with the Prediction 

in Ungauged Basins (PUB), defined as the prediction or forecasting of the hydrological 

responses of ungauged or poorly gauged basins and its associated uncertainty (Sivapalan et al. 

2003). Most of the studies in this context were conducted after 2003. An example of the earlier 

studies is Burn and Boorman’s (1993) work that investigated hydrologic model parameters 

estimation based on the classification of catchments according to hydrologic similarity, rather 
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than traditionally used methods such as regression equations. Uncertainty analysis in PUB 

has also gone relatively less addressed.

The majority of rivers and stream reaches and tributaries in the world are ungauged or 

poorly gauged (Sivapalan et al. 2003; Young 2006; Mishra and Coulibaly 2009). Such ungauged 

streams are often located upstream (e.g. mountain areas in Niadas 2005), in maritime and 

mountainous Apenninic regions (e.g. Castellarin et al. 2007), in ‘unregulated’ basins (e.g. 

Stainton and Metcalfe 2007; Mishra and Coulibaly 2009), or in rural and remote areas (e.g. 

Makungo et al. 2010). Although ungauged basins are often located upstream due to 

inaccessibility or lack of developer intentions; this state also occurs in many potential sites 

downstream (Goswami et al. 2007). 

Reliable continuous streamflow forecasting is an important factor in watershed planning 

and sustainable water resource management, as it is instrumental in obtaining a deeper sense of 

flow variability in ungauged basins. Furthermore, the estimation of flood peaks, low flow 

characteristics, and FDCs can be derived once the synthetic continuous flow time series is 

generated. Streamflow data is also used in the design of critical engineering structures such as 

highways, drainage systems, reservoirs, etc. 

Streamflow in gauged and/or ungauged basins is currently forecasted using distributed 

physically-based models (e.g. BTOPMC [Block wise use of TOPMODEL with Muskingum-

Cunge flow routing method], Mike 11 NAM, MIKE-SHE , etc.), conceptual and  semi-

distributed models (e.g. HBV, SimHyd, IHACRES), and      data-driven models (e.g. MLR 

[Multiple  Linear   Regression],  ARMA [Auto Regressive Moving Average], ANNs [Artificial 

NeuralNetworks]).  

  

 



P.h.D Thesis – T. Razavi                                                            McMaster University – Civil Engineering 

13 

When predictions of streamflow response are required, less complex conceptual lumped 

models have been shown to be equally reliable and are often preferred (Yadav et al. 

2007).  The application of physically-based models in which model parameters are 

derived from physical catchment attributes to ungauged catchments is associated with 

high levels of uncertainty, reflecting uncertainty in the prior distribution of parameter 

values (Bulygina et al. 2011).This sometimes causes over-parameterization and model 

structural errors (Goswami et al. 2007; Yadav et al. 2007). Such models require 

considerable data and human effort compared to conceptual or semi-distributed models, 

such as the HBV model (Bergström 1976) and SAC-SMA (Sacramento Soil Moisture 

Accounting, Burnash et al. 1973). Therefore, usually non-distributed models are 

preferred. One example of applying physically-based  models for streamflow simulation 

in ungauged basins is Stoll and Weiler’s approach (2010), which estimates parameters of 

a distributed hydrological model (Hill-Vi) in ungauged basins by the explicit simulation 

of a stream network, and compares the simulated networks to mapped stream networks 

.They achieved some promising results but also encountered some limitations, such as the 

problems caused by simplification and modification of the model to achieve fast and 

robust runs. More recently, data-driven methods (e.g. ANNs, MLR, etc.) which are 

potentially applicable for streamflow prediction, have been investigated as alternative 

models to estimate streamflow in ungauged catchments.  

In data-driven and conceptual/semi-distributed hydrological models, the model 

parameters have to be estimated through calibration against observed streamflow in the 

process of parameter adjustment (automatic or manual), until catchment and model 
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behavior show a sufficient agreement. Since in ungauged basins an observed streamflow 

time series is not available, the transposition of either gauged streamflow or model 

parameters from a similar and/or nearby gauged basin, called regionalization, is well 

recognized as a low-cost and popular solution to provide time series of streamflow at 

ungauged basins (Young 2006; Samuel et al. 2011). 

The term “regionalization” has been used in the literature with almost identical 

concepts but some minor differences among writers. In Germany since 1993, the priority 

program “Regionalization in Hydrology" funded by the German Science Foundation 

(DFG) was concluded in 1998. The conference on Regionalization in Hydrology held in 

1997 aimed to explore new mathematical and computational tools to describe and analyze 

the behaviour of hydrological systems at all relevant scales, from the point to the global, 

for whole systems and subsystems. The priority program has identified spatial scaling as 

the main problem of transferring hydrological information between spatial objects and 

emphasized the need for the acquisition, management, analysis and cartographic 

presentation of large hydrological data sets for regionalization of hydrologic information, 

also application of the GIS technology is recognized as an essential prerequisite (Streit 

and Kleeberg 1996; Diekkruger et al. 1999). Relevant research works occurred after 1998 

have been affected by this program. For example, Hennrich et al. (1999) looked for 

regionalization techniques to transfer parameters from one scale to another while some 

other studies (e.g. Chiang et al. 2002; Mwale et al. 2011) used the term regionalization or 

“hydrologic regionalization” only for classifying the watersheds in terms of hydrologic 

characteristics, and later on used that classification for transferring hydrological 
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information. Also, Mwale et al. (2011) regionalized runoff variability and accounted for 

runoff heterogeneity across Alberta, Canada using statistical methods and their further 

plan is to model the streamflow of clusters with several classes of hydrologic models. 

According to Blöschl and Sivapalan (1995), regionalization refers to the process 

of transferring the information (i.e., “hydrological information”) from one catchment 

(location) to another, and it may be satisfactory if the catchments are similar (in some 

sense), but error-prone if they are not. Hydrological information can be either the model 

parameters or the general structure of models which estimate hydrological responses, e.g. 

streamflows. According to this definition, the ungauged catchments should be located in a 

region homogeneous with the gauged basins. The assumption behind the homogeneous 

region of runoff responses is that similar climate, geology, topography, vegetation, and 

soils in the homogeneous region would generally produce similar runoff responses, but 

not necessarily in geographically neighboring basins (Smakhtin 2001). In this paper, 

regionalization is considered as the process of transferring hydrological information from 

gauged to ungauged basins. 

Regionalization can be used to transfer hydrological information between spatial 

objects, spatial dimensions (which classify the objects according to their number of 

independent directions in space), and scale (a general idea of looking at objects in a more 

or less generalized manner) ( Streit and Kleeberg 1996). It can be done by using 

predictive approaches such as an extrapolation of hydrologic information from gauged to 

ungauged basins, observation by remote sensing and hydrologic model simulation, and 

integrated meteorological and hydrological modeling (Goswami et al. 2007).  
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Regionalization is widely regarded as a challenging task in hydrological science 

(Sivapalan et al. 2003; Oudin et al. 2008; Stoll and Weiler 2010; Samuel et al. 

2011), firstly, because of the lack of runoff data which is normally used to calibrate 

parameters of hydrological models, limits the success of simulation (Sivapalan et al. 

2003). Secondly the studies on regionalization methods usually produce different results, 

as they have been examined on different sites and also the available catchment 

characteristics vary from one case to another (Oudin et al. 2008). As a result there is no 

universal method for regionalization.  

Considering the rapid pace of regionalization-method development in the literature 

and the importance of continuous streamflow estimation in ungauged basins, we intend to 

present a comprehensive review of continuous streamflow regionalization approaches and 

their developments. Our overall motivations are to review regionalization approaches 

which have been developed and applied in estimating streamflow or runoff (streamflow 

per unit area of catchment) in ungauged basins; show the key steps in regionalization 

procedures, catchment attributes used in these studies, related uncertainty analysis and 

hydrologic model optimization; and finally present recent developments in the streamflow 

regionalization. He et al. (2011) have recently reviewed continuous streamflow 

regionalization methods, but they have only reviewed hydrologic model-dependent 

approaches. This paper provides a more comprehensive review including model-

dependent and model-independent methods, and discusses the developments and 

emergent directions in continuous streamflow regionalization. 
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2.3.Main steps in the regionalization approach  

In general, a regional model can be stated in a simplified form as follows Eq.2-1 

(Wagener and Wheater 2006): 

θ
^

𝐿 = 𝐻𝑅(𝜃𝑅|Φ) + 𝜐𝑅                                                                                 Eq. 2-1 

where θ
^

𝐿is the estimated hydrological variable of interest at the ungauged site (it can be 

an estimated model parameter, probability or cumulative distribution function parameter 

or hydrological response such as streamflow or flow events), 𝐻𝑅(. ) is a functional 

relation for  θ
^

𝐿using a set of catchment attributes (physiographic and/or meteorological 

attributes - Φ), 𝜃𝑅is a set of regional hydrological variables of interests (e.g. model 

parameters); and υR is an error term. Clearly, regionalization requires information of 

catchment attributes (physiographic and meteorological attributes) and a function 

(linear/nonlinear) for relating predictors to the predictand. 

  There are at least five main important steps in a regionalization strategy. The first 

step is to collect and manage catchment attributes, which includes meteorological 

attributes (such as mean annual rainfall, temperature, etc.) and physiographic information 

(such as the location of stream gauges or centroid of the drainage basins, area covered by 

grass, trees, etc., and soil types, permeability of soils, etc.). Unfortunately, the required 

information on catchment attributes is sometimes difficult to obtain. This raises the 

question on what minimum number and types of catchment attributes should be collected 

for a proper regionalization procedure, and also which regionalization methods are proper 

when all of the required catchment attributes are not available. In the next section 
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different catchment attributes which  are applied in streamflow regionalization studies are 

discussed.   

The second step in a regionalization procedure is to determine and clarify 

hydrological variables of interests. In the case of continuous streamflow regionalization, 

the collected streamflow data of nearby and/or similar gauged basins will be used to 

generate hydrological model parameters or relationships with catchment attributes. The 

Third step is to develop a relationship between streamflow or runoff indices or 

hydrological model parameters and catchment attributes. This relationship is the 

regionalization method which will be discussed in detail in the next section. The fourth 

step is to evaluate model performance using pseudo-ungauged basins before the model is 

applied to the real ungauged basins. Once a relationship between catchment attributes and 

hydrological variables is established, it is necessary to validate the model before it can be 

applied in ungauged basins. The leave-one-out cross-validation procedure is normally 

used to assess the validity of regionalization approach (e.g. Samuel et al. 2011; Parajka et 

al. 2005; Merz and Blöschl 2004).Other cross-validation techniques such as split-half and 

bootstrapped are not usually applicable to regionalization studies because they can only 

be applied to poorly gauged basins and for the periods in which the observed flow data is 

available. In leave-one out approach, each catchment is in turn considered as being 

ungauged for obtaining a flow simulation in that catchment, the actual discharges are 

afterwards used to evaluate the performance of the flow estimation procedures for the 

catchment. Statistical tests are then used to evaluate the performance of the flow 

estimation in the “pseudo” ungauged basins. Table 2-1 presents some error metrics 
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commonly used. Among them are the Nash-Sutcliffe efficiency, Root Mean Square Error 

(RMSE), relative RMSE, mean bias (BIAS), relative BIAS, Volume Error (VE), and 

Correlation coefficient. The fifth and final step is to include uncertainty analysis. A major 

recent improvement in regionalization procedures is to include uncertainty analysis, 

which is necessary due to uncertainties in selecting catchment properties and 

regionalization procedures, and identifying gauged and regional model structures and 

their parameters (Wagener and Wheater 2006). A discussions and outline of the general 

uncertainty analysis procedure will be presented later on. 

The main steps presented above provide an overview of the general procedure of the 

regionalization of any hydrological variable. Step 3 is where the regionalization model 

can be changed for different hydrological variables (e.g. select a different hydrologic 

model). Regionalization can be adjusted for specific purposes, such as linking to 

ecological implications (Stainton and Metcalfe 2007) or combining the approach with 

integrated data processing tools such as Geographical Information Systems (GIS, e.g. 

Streit and Kleeberg, 1996; Cheng et al.  2006). 

2.4.Catchment attributes 

Catchment attributes are different across various studies, and it seems that an initial 

hypothetical judgment is required to identify which potential catchment attributes would 

have an impact on the runoff responses of interests.  Merz and Blöshl (2004) and Parajka 

et al. (2005), for example, use the help of expert judgments to take into account the 

interaction between the runoff regime, climate, and physiographic attributes. Kokkonen et 
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al. (2003) point out that catchment attributes used for regionalization purposes should 

characterize the factors that drive the hydrological response of a catchment and should 

also be derivable from existing and readily available data sources, such as topographical 

maps. Some researchers select catchment properties with the objective that the sample of 

catchments is representative of the statistical population of catchments in the region, both 

in geographical and in parameter space (Mwakalila 2003). Some might use step-wise 

regression analysis to identify landscape-climate descriptors that are good predictors of 

percentile flows (e.g. Mohamoud 2008) while some of the relationships identified by 

step-wise regression, even though statistically significant, might be an accident of the data 

(Sefton and Howarth 1998). 

Table 2-1 Validation test (error metrics) which are normally used for regionalization studies 

Validation test Equation Note of variables in the equation 
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Table 2-2 presents the catchment attributes which have been used in reviewed papers. 

Types of catchment attributes collected to perform regionalization vary among studies. 

By simply comparing the types of data attributes used in a regionalization process it can 

be summarized that physiographic information (e.g. catchment area, elevation, slope of 

basins or channels) and meteorological attribute (e.g. mean annual or mean daily rainfall 

and temperature) are most often incorporated in regionalization studies (either in 

regionalization or hydrologic model calibration). Other catchment attributes which are 

also occasionally incorporated in some studies are: (1) the percentage of area that is 

covered by water (e.g. lakes, swamp, wetland, and groundwater) or by land use (e.g. 

forest, grass, woodland, urban/non-urban area); (2) location of stream gauges or centroid 

of catchments; and (3) other meteorological attributes such as mean annual evaporation 

and snowfall. According to Mwakalila (2003), methods which are used to quantify the 

catchment attributes usually include topographical indices, geology and soil index, 

climate indices, and vegetation cover indices. Croke et al. (2004) collected catchment 

attributes on soil covers and physiographic characteristics, since their study focused on 

predicting hydrologic responses to land cover changes due to agricultural intensification 

in gauged and ungauged basins. 

In general, the most widely used attributes by researchers in continuous streamflow 

regionalization are catchment area, elevation, slope of basins or channels, and mean 

annual or daily rainfall and temperature. 
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Table 2-2 Catchment attributes used in streamflow regionalization studies 

References Catchment attributes  References Catchment attributes  

Vandewiele 
and Elias1995 Location of basins Merz and 

Blöschl 2004 

Area, elevation, slope, porous aquifers,  land covers, geologic units, 
soil types,  river network density, lake index, mean annual 

precipitation, maximum annual daily precipitation 

Sefton and 
Howarth 1998 

Morphometric (elevation,  area, channel slope, etc); Soils 
(% groundwater, %shallow groundwater, % peaty soil, etc); 

Land use (%grass heath, mixed woodland ), rainfall and 
temperature 

Lee  et al. 2006 
Daily precipitation, streamflow and potential evaporation, 17 

physical catchment characteristics e.g. catchment drainage area, 
altitude, slope 

Post and 
Jakeman 1999 Area, elongation, slope of lid, gradient and drainage density McIntyre et al. 

2005 

Daily precipitation, streamflow and potential evaporation, drainage 
area , standard- period average annual rainfall , mean catchment 

altitude (m above sea level),index of fractional urban extent  

Siebert 1999 Area, % forest, % field of meadow, and % lake  Parajka et al. 
2005 Similar as Merz and Blöschl (2004) 

Peel et al.  
2000 

Climate, terrain (90th percentile minus 10th percentile 
elevation in catchment), soil depth, and plant water holding 

capacity  

Boughton and 
Chiew 2006 

Rainfall, runoff , median elevation ,elevation range , 
 leaf area index; percent of woody vegetation on catchment;  plant 

water holding capacity, transmissivity 

Chiang et al. 
2002 

Watershed area, forest area, percentage of contributing 
drainage area, area of storage,  elevation, above mean sea 
level, stream length per unit area,  main channel slope, the 

mean annual precipitation 
 

Cheng et al.  
2006 

Land covers: vegetated area (agriculture & natural forest), bare field, 
vegetation and urban area 

Kokkonen et 
al. 2003  

Mean overland flow distance to a stream , 
mean flow distance in a stream , mean solar radiation index 

, mean topographic wetness index , catchment area 
,elevation at the weir , mean catchment slope 

Heuvelmans et 
al. 2006 Area, slope, height (masl), dominant land use, dominant soil texture 

Mwakalila 
2003 

 Catchment area and  slope , drainage density and land use 
types, indexing topography, geology,  and land use, mean 
annual rainfall (RAIN) and potential evapotranspiration  

Wagener and 
Wheater  2006 

Basefow index derived using the HOST classification, soil moisture 
deficit, catchment size and drainage path configuration, catchment 

steepness, dominant aspect of catchment slopes, average annual 
rainfall, median annual maximum 2-day rainfall 

Croke et al.  
2004 

Forest cover area, catchment area, soil and topography 
classes Young 2006 Catchment area, Mean catchment altitude, The mean aspect of 

direction of all slopes, The longest drainage path, etc. 

Cutore et al. 
2007 

Area, average altitude (masl) , permeable area (%) , stream 
length  , record size Post 2009 

Daily rainfall  ,mean average wet season rainfall, total length of 
streams, percent cropping and percent forest in the catchment , 
minor till (>1 m deep)  ,thin till, rock ridges peat pond bedrock 

outcrops 

Goswami et al. 
2007 

Area, length of longest stream, altitude at outlet and the 
highest point, mean latitude and hydrological variables 

Reichl et al. 
2009 

Geomorphic characteristics e.g. min / max/ mean elevation, Climate 
e.g. mean winter & summer precipitation, Soils e.g. mean soil depth 

mean plant available water holding capacity etc. 

Götzinger and 
Bárdossy 2007 Flow time, land use, soil properties, area and geology Seibert and 

Beven 2009 
The monthly long-term mean potential evaporation, the areal, 

corrected precipitation, Temperature 

Yadav et al. 
2007 

Dynamic response characteristics in seven categories , 
magnitude of high flows, low , average flows, duration of 
flows, frequency, rate of change in flows, and timing of 

flow events & and 13 physical watershed characteristics e.g. 
climate, watershed topography and subsurface geology and 

soils 

Zhang et al. 
2008 

 Maximum & minimum temperature, incoming solar radiation, 
actual vapor pressure and precipitation, potential ET, area, aridity 
index, mean elevation, mean slope in degree, stream length, mean 

Solum thick, water holding capacity, Mean woody vegetation 
fraction 
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References Catchment attributes  References Catchment attributes  

Bastola et al. 
2008 

Rainfall, Potential Evapotranspiration (PET) and 
runoff data 

Besaw et al.  
2010 

precipitation and temperature , 
streamflow  time series 

Hundecha et 
al. 2008 

Percentages of the different land use and soil classes, size 
and mean slope of the subwatershed, a shape factor defined 
as the ratio between area of a subwatershed and the square 

of the distance from the outlet of the watershed to the 
farthest point in the watershed. 

Bocchiola et al.  
2010  

Glaciers meteorological data including temperature, precipitation 
and snow and ice ablation. 

Kim and 
Kaluarachchi 

2008 

Drainage area , soil depth ,  percent of cultivated area ,  
percent of forest area,  mean  Channel density ,  slope of 

main channel , ratio of main stream length to basin length , 
ratio of basin width to basin length , saturated hydraulic 
conductivity of the upper zone , precipitation of the wet 
season, dry precipitation of the non-wet season, mean 

annual potential evapotranspiration , total channel length  

Castiglioni et al. 
2010 

Drainage area; percentage of permeable area; maximum, mean and 
minimum elevations, concentration time; mean annual precipitation; 

mean annual temperature 

Mohamoud 
2008 

Land use and land cover%, Geomorphology e.g. minimum 
elevation, basin relief, average slope, etc. Soil e.g. total soil 

depth, geology: e.g. dominant lithology 

Lima and Lall 
2010 Drainage area, flood and streamflow time series 

Oudin et al. 
2008 

Catchment area, mean slope, median altitude, river network 
density, fraction of forest cover, aridity index (E/P) 

Makungo et al. 
2010 

Rainfall, evaporation, uncontrolled spills, downstream flow releases, 
dam water levels , domestic abstractions, area under irrigation, crop 

factors, types of crops grown and the irrigation schedule. 

Buttle and 
Eimers‘s 2009  

Physiographic characteristics e.g. area (ha), mean slope (%), 
drainage density (m) , fraction of basin area 

 Parada & Liang 
2010 

Historical streamflow records for gauged basins in the proximity of 
the ungauged watershed and streamflow prediction for ungauged 

basins, mean annual precipitation, area, location of outlet, elevation 

Li et al. 2009 

Hydro_climatic characteristics e.g. mean annual 
precipitation , mean annual potential evapotranspiration , 
mean annual runoff , Runoff coefficient ,ratio of potential 
evapotranspiration to precipitation, catchment slope, plant 

available water capacity of soil, fraction of total woody 
vegetation 

Samaniego et al. 
2010 

Area, mean & median slope , drainage density, shape factor , 
percentage of north and south facing slopes (%) , mean elevation 

(m) , saturated areas (%), mean available soil water capacity (mm) , 
fraction karstic formations (%) ,mean percentage of forest covered 
areas (%) , mean percentage of impervious areas  mean percentage 
of permeable areas (%), mean annual precipitation (mm) , mean & 

maximum temperature  

Jin et al. 2009 Area and position of basins Samuel et al. 
2011 

The location of the  centroid of the catchments (i.e., latitude and 
longitude), the morphology of the catchments  (i.e., mean elevation, 
mean catchment slope and area), the percentage of area covered by 
water , the land use , water drainage, rooting depth  and the surface 

geology , precipitation and temperature 

  
Bulygina et al. 

2011 

Hourly records of precipitation, incoming solar 
and net radiation, wet and dry bulb temperature, and wind speed and 

direction, area, mean channel slope, forest%, soil (HOST)% 
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2.5. Developments in continuous streamflow regionalization from 1990-2011 

Regionalization approaches can be classified into hydrologic model-dependent and 

hydrologic model-independent groups (Figure 2-1). The methods employed by the first 

group transfer rainfall-runoff model parameters between basins. Those model parameters 

are then used to generate continuous streamflow in the target basin. The second group 

does not estimate streamflow time series through rainfall-runoff models (in ungauged 

basins), and therefore instead of hydrologic model parameters, the equation structure and 

its parameters are transferred. These models usually develop and employ an equation 

representing input-output relationships, such as rainfall and temperature as input and 

streamflow as output. Hydrologic models require more catchment attributes to be 

parameterized and more knowledge and expertise while the structure of data-driven 

models is simpler and can be defined with less data compared to the former. An 

interesting study has been the comparison of the two approaches. Goswami et al. (2007) 

have used both categories; conceptual hydrologic models and ANN models to simulate 

daily flow in 12 French catchments considered as ungauged. The result of their study 

indicated that ANN model had better performance. Although such comparative study 

requires more resources, it appears a good approach in identifying the optimum 

regionalization method for a case of interest.It is noteworthy that the good potential of 

data-driven methods (e.g. ANN) for streamflow regionalization can be particularly useful 

for cases where data is not available for applying hydrologic model. 
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Figure 2-1 Schematic of two classes and subdivisions of continuous streamflow regionalization 
methods 

There are about 70 published studies involving streamflow regionalization within 

the last two decades (which are cited in the paper). The summary of 43 representive 

studies is tabulated in Table 2-3 and Table 2-4. Most of these regionalization studies 

estimate streamflow through hydrologic models and investigate the methods which 

transfer model parameters from gauged to ungauged basins while a lesser number use 
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data-driven methods to infer streamflow directly in ungauged basins. Table 2-3 presents 

the former category and contains references (authors’ names and publication year), study 

area, climate classification of the study area, temporal scale and key objectives, name of 

the hydrologic model, regionalization methods which extrapolate the model parameters, 

and finally the major findings of the papers. Table 2-4 shows the latter category and 

indicates the hydrologic model-independent methods which regionalize streamflow from 

gauged to ungauged basins (see column “regionalization methods”). 

Table 2-3 and Table 2-4 indicate that regionalization approaches have been widely used 

in many parts of the world such as North America, Asia, Australia, Africa, and Europe. 

The approaches have been applied to estimate streamflow from small basins (e.g. 0.04 

km2) to large basins (e.g. 823000 km2) (see column “Study Area” in both tables). These 

approaches have also been applied to various landscapes, climatic regions, and different 

topographies. Parajka et al. (2005) and Merz and Blöschl (2004), for example applied the 

regionalization approaches in the catchments located in different topographies in Austria 

.Some examples of the streamflow regionalization approaches in both groups will be 

further described and discussed in the following sections. 
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Table 2-3 Studies on hydrologic model-dependent streamflow regionalization approaches (1990-2011) 

References Study area Climate* Temporal scale and key 
objectives 

Hydrological  
model  Regionalization methods Class** Major findings 

Vandewiele 
and 

Elias1995 

75 Belgian 
basins (19-
1597 Km2) 

Warm 
temperate 

To obtain the monthly 
water balance of 

ungauged catchments  

 A monthly 
water balance 

model obtained 
by 

geographical 
regionalization 

Spatial Proximity (kriging 
and the use of 

few neighbouring basins)  
2 

Kriging is acceptable 
(RMSE<7%) in 72% of the 

basins, whereas the second is 
acceptable in 44%. 

Sefton and 
Howarth 

1998 

60 catchments 
in England and 

Wales (8.7- 
893.6 Km2) 

Warm 
temperate 

 To estimate daily flows 
in ungauged basins 

IHACRES  
with GIS  
databases  

Multiple regression  5 

The  relationships are limited in 
terms of statistical accuracy but  

robust enough to reproduce 
daily flows, NSE = 0.56 - 0.72  

Post and 
Jakeman 

1999 

17 small 
catchments (4 

to 65 (ha))  
Victoria, 
Australia 

Warm 
temperate 

To estimate daily 
continuous flow  in 

ungauged basins 
IHACRES  Multiple regression (linear 

& nonlinear)  5 

NSE around 0.72 ,errors in the 
representation of hydrologic 

response by the model and the 
limited availability of 

appropriate landscape attributes 
caused some poor results 

Siebert 
1999 

11 catchments  
in flat regions 
(7 to 950 km2) 

Central 
Sweden 

Snowy 

To develop a model to 
obtain optimized 

hydrological parameters 
and daily hydrograph 

simulation 

HBV (plus  
Monte Carlo 
simulation to 

obtained 
optimized 

parameters) 

Regression equations 
(linear, exponential, power 

and log)  
5 

Observed and simulated 
hydrograph : Reff values:0.70-
0.88- fuzzy measure=0.85 , 

About half of the parameters 
were significantly correlated to 

catchment characteristics 

Peel et al. 
2000 

331 
catchments (50 
to 2000 km2) 
in Eastern & 
southwestern 

Australia      

Warm 
temperate 

To determine the 
relationships between 
hydrological model 

parameters and catchment 
attributes and estimate 

daily streamflow in 
ungauged basins 

SIMHYD  
Linear regression between 

model parameters and 
catchment attributes 

5 

The correlations between the 
model parameters and the 

climate index are more 
statistically significant 

compared to other attributes  ( 
NSE : 0.12-0.24)) 

Schreideret 
al.2002 

Gauged and 
ungauged 

subcatchments 
of Thailand 
(68- 2157 

km2) 

Equatorial 
Prediction of monthly 
discharge in ungauged 

basins 
IHACRES 

Disaggregation procedure 
using measured streamflow 
data from a larger gauged 
catchment in which the 

ungauged sub catchments 
may be nested 

4 Relative error for the monthly 
time step: 13–17% 

Kokkonen 
et al. 2003 

13 catchments 
in North 

Carolina, USA 
(1626 ha) 

Warm 
temperate 

 
Investigation of 
regionalization 

approaches  for daily 
streamflow prediction 

IHACRES  
Arithmetic mean, 
regression, similar 

hydrological behavior  
1,5,6 

Arithmetic mean  more often  
gives poor results in 

comparison with other 
methods; Elevation was the 
most powerful explanatory 
variable in the regressions 

Croke et al. 
2004 

3 
subcatchments 

in northern 
mountainous 

regions of 
Thailand  (68-

2157 Km2) 

Equatorial 

 Prediction of hydrologic 
response to land use 

changes by simulating 
daily flow  in ungauged 

catchments 

IHACRES 
combined with 
CATCHCROP 

(conceptual 
crop model) 

Scaling of parameters 
according to the ratio of 
the area of the gauged to 

ungauged catchments 

4 

The procedure was able to 
predict the relative pattern of 
annual and seasonal flows-

Bias= 0.4-0.18 % , NSE<=0.85 

Merz and 
Blöschl 

2004 

 308 
catchments in 
Austria ( 3 to 
5000  km2 )  

Arid and 
warm 

temperate 

Estimation of continuous 
daily flow  in ungauged 

basins  
HBV  Multiple regression  5 

All model parameters are 
associated with some 

uncertainty-NSE=0.63-0.67 

 

*Climate classification according to Köppen-Geiger climate classification , source: http://koeppen-geiger.vu-wien.ac.at/present.htm ** Class is 
according to the predefined classes of approaches in Figure 1-2 .    ,   NSE: Nash and Sutcliffe efficiency 

http://koeppen-geiger.vu-wien.ac.at/present.htm
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References Study area Climate Temporal scale and 
key objectives Hydrological  model  Regionalization methods Class Major findings 

Lee  et al. 
2006 

131 
catchments in 

UK  (1-
1700Km2) 

Warm 
temperate 

Prediction of daily 
runoff in ungauged 

catchments 

 Aversion of PDM of 
Moore &  a routing 

module 

A step-wise multiple 
regression   5 

Loss in NSE less 
than 0.04 in 90% of 

catchments ( regressed 
model parameter 
values and locally 

optimized  set) 

McIntyre et 
al. 2005 

127 
catchments in  
UK (1- 1700 

km2 ) 

Warm 
temperate 

Predictions of daily 
runoff in ungauged 

catchments 

Probability distribution 
model (PDM) of Moore 

Regression; ensemble 
modeling and  similarity 

weighted averaging (SWA) 
method 

5,3 

Ensemble modeling & 
SWA method provides  

the best results and 
performs significantly  

Parajka et 
al. 2005 

320  
catchments in 
Austria   (10-

9770 km2) 

Arid and 
warm 

temperate 

Regionalization of 
catchment model 

parameters to 
produce daily runoff 

HBV (lumped model 
but allowing different 

model states in different 
elevation) 

Arithmetic mean (global and 
local mean), spatial 

proximity, regression and 
physical similarity 

1,2,3,
5 

Spatial proximity 
(Kriging)  and physical 

similarity perform 
best;  NSE = 0.62 and 

0.66 

Boughton 
and Chiew 

2006 

213 
catchments  in 
Australia (50- 

2000 km2) 

Arid and 
warm 

temperate 

 
 Estimation of 
average annual 

runoff 

Australian 
Water Balance Model 

(AWBM) 
Multiple linear regressions 5 

Two-thirds of the 
estimates of average 
annual runoff were 
within   25% of the 

actual value. NSE=0.3 
to 0.97 

Cheng et al. 
2006 

18 drainage 
basin, Great 

Toronto Area  
(6000Km2) 

Snowy 

Predicting daily  
runoff for ungauged 

basins using   gauged 
basins and 

precipitation data  

SCS curve number (CN) 
and model and 

IHACRES 
Multiple regression  5 

The SCS curve model 
is more parsimonious 
than the IHACRES 

Heuvelman
s et al. 2006 

25 catchments  
in  Belgium 
(2.24-209 

Km2) 

Warm 
temperate 

Daily stream flow 
simulation in 

ungauged basins 

SWAT (Soil and Water 
Assessment Tool) 

ANN-based and linear 
regression  5 

ANNs delivered more 
accurate 

parameter estimates 
than linear regression 

Wagener 
and 

Wheater 
2006 

10 
catchments, 
Southeast of 

England 
(28.5-1261 

Km2) 

Warm 
temperate 

Investigation of 
uncertainty of  

rainfall-runoff model 
parameters and 

structure in 
streamflow 

regionalization 

Rainfall-Runoff 
Modeling Toolbox 

(RRMT) 

Linear and multivariate 
regression analysis  5 

The uncertainty in the 
locally estimated 

model parameters is a 
function of their 
importance in 

representing the 
response of a given 

catchment 

Young 
2006 

260 
catchments 

within the UK 
(median 

area=110.25K
m2) 

Warm 
temperate 

Estimation of  daily 
streamflow in 

ungauged catchment 
IHACRES 

A regression-based 
approach ; nearest neighbour 

based approach 
2,5 

The regression-based 
approach yields the 

best predictive results 

Cutore et 
al. 2007 

9 sub-basins 
in Italy (47-
1832Km) 

Warm 
temperate 

Monthly runoff 
prediction in 

ungauged basins 

Simple rainfall-runoff 
models 

Regression-based 
approaches :one-step and 

two step, ANN 
5 

The “one-step” 
approach appear to 

be robust and adequate 
for estimating the 

streamflow in 
ungauged basins 

Götzinger 
and 

Bárdossy 
2007 

The Nectar 
catchment in 

Germany 
(14,000 km2) 

Warm 
temperate 

Estimation of 
continuous flow in 
ungauged basins 

Distributed HBV model 
(the use of square grid 

cells as primary 
hydrological units) 

Transfer function (linear of 
log relationships between 

model and transfer  function 
parameters), Modified 
Lipschitz, monotony 

condition and combination 
of modified Lipschitz and 

Monotony condition 

5 
Best NSE for Lipschitz 
condition =0.5 and  for 
3 other methods 0.47 
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References Study area Climate Temporal scale and 
key objectives 

Hydrological  
model  

Regionalization 
methods Class Major findings 

Bocchiola et 
al.  2010  

 
Pantano basin 
in the Italian 

Alps (11 km2) 

Warm 
temperate 

Evaluation of the 
daily flow discharges 

A developed 
model contains  
snow and ice 

melt calculation 
and semi 

distributed flow 
routing 

Regression  5 

Nash–Sutcliffe 
efficiency=0.67-0.75, results 

show  a somewhat good 
capability of the model to 
evaluate the average flow 

discharge within the stream 

 Castiglioni et 
al. 2010 

52 catchments 
located in 
northern 

central Italy 
(14-3082 

Km2)  

Warm 
temperate 

Parameter estimation 
for rainfall-runoff 
models and daily 

streamflow 
estimation 

HYMOD 

Regional calibration  
using a maximum 
likelihood function 
based on  regression 

relationship  

5 

Approximate likelihood cannot 
take into account the low 

frequency behaviors (long term 
autocorrelation) ,Nash–

Sutcliffe efficiency=0.22-
0.67,the results are inferior to 
classical calibration but it is 

encouraging 

Masih et al. 
2010 

 Karkheh river 
basin ,  

Western part 
of Iran 

(50,764 km2 ) 

Arid 

Simulation of daily 
streamflow for 
poorly gauged 

catchments based on 
hydrological 

similarity 

HBV  

hydrologic similarity 
based on  FDC, 

similarity of drainage 
area   and spatial 

proximity 

2,3,6 
FDC similarity produces better 
runoff simulation compared to 

the other three methods   

 Makungo et 
al. 2010 

A quaternary 
catchment in 

Nzhelele 
River 

Catchment in 
South Africa 

(92Km2) 

Arid 
Generating natural 

streamflow in 
ungauged catchment 

Mike 11 NAM 
and AWBM ( 
Australian 

Water Balance 
Model) 

Modified nearest 
neighbour 

regionalization 
approach 

2 

The approach  can be applied 
in near-real time modeling. 
NSE of verification period 

Mike 11 NAM : 0.74, AWBM 
:077 .  

  Samaniego et 
al.  2010 

38 German 
basins (70 to 
4000 km2) 

Warm 
temperate 

Using copula-based 
dissimilarity 

measures for daily 
streamflow 

simulation in 
ungauged basins 

A  
conceptualized 

hydrologic model 

Dissimilarity 
measures that are 

estimated from pair 
wise empirical copula 

densities of runoff 

3 The achieved reasonable 
results NSE=0.76-0.86 

Samuel et al. 
2011 

The main 
watersheds 
across the 

Province of 
Ontario,  ( 85-
100000 km2 ) 

Snowy 
Estimation of daily 
flows in ungauged 

basins 

MAC-HBV 
(McMaster-

HBV) 

Spatial proximity  
(i.e., kriging, inverse 

distance weighted  
(IDW) , spatial 

averaging), physical 
similarity, and 

regression-based 
approaches 

2,3,5 

An approach coupling the 
spatial proximity (IDW) 
method and the physical 

similarity produce better model 
performances than the 

remaining three 

Bulygina et al. 
2011 

2subcatchmen
ts  in Wales  

(10.55km2 and 
8.7 km2) 

Warm 
temperate 

Using a formal 
Bayesian approach  
to estimate daily 

runoff 

PDM model 
(Moore, 2007) 

A probabilistic 
method (based on 
base flow index 
(BFI) and CN)  

5 

Nash–Sutcliffe efficiency 
ranging from 0.70 to 0.81-both 
CN and HOST are potentially 

valuable sources of 
information for hydrological 

modeling of ungauged 
catchments within a stochastic 

modeling framework 



P.h.D Thesis – T. Razavi                                                            McMaster University – Civil Engineering 

30 

 

References Study area Climate Temporal scale and 
key objectives 

Hydrological  
model 

Regionalization 
methods Class Major findings 

Hundecha et 
al. 2008 

101 sub watersheds 
of Rhine basin, 

,German  ( 400 - 
2100 km2) 

Warm 
temperate 

Estimation of model 
parameters from 

watershed attributes to 
estimate daily 

streamflow 

Swedish 
Meteorological 

and Hydrological 
Institute(SMHI) 
and the  HBV 

model 

Kriging based on 
identifying the 

spatial structures of 
the parameters 
within a space 
defined using 

watershed 
physiographic and 
climatic attributes 

2,3 

NSE : 0.86 , slight 
improvement of 

performance compared 
to linear relationship 
between the model 
parameters and the 

watershed descriptors 

Kim and 
Kaluarachchi 

2008 

Upper Blue Nile 
River Basin of 

Ethiopia (176,000 
km2) 

Warm 
temperate 
and arid 

Parameter estimation 
and monthly runoff 
regionalization in 
ungauged basins 

A two-layer 
monthly water 
balance model 

with six 
parameters 

Global mean, , 
multiple regression 
(regular , regional 

calibration 
aggregated 

calibration, and 
volume fraction 

calibration) 

1,5 

Regional calibration 
performed better in 

simulating the runoff of 
lumped basins than 
multiple regression 

(Nash–Sutcliffe 
efficiency=0.61 &.81) 

Oudin et al. 
2008 

913 catchments; 
French catchments   

(10-9390 Km2) 

Warm 
temperate 

Estimation of daily 
continuous flow in 
ungauged basins 

GR4J and 
TOPMO(inspired 
by TOPMODEL) 

Spatial proximity, 
physical similarity 

and multiple 
regression 

2,3,5 

Spatial proximity 
provides the best 

regionalization results-
NSE=0.7-0.8 

Jin et al. 
2009 

13 sub-basins in 
south-china (100-

1000 km2) 

Warm 
temperate 

Simulation of daily 
stream flow in 

ungauged basins 
HBV  Proximity approach 

and global mean 1,2 
NSE for global mean 

method is  0.74 and for 
second method is 0.72 

Li et al. 2009 

210 catchments in 
south-east Australia 

(area is not 
mentioned) 

Arid to 
warm 

temperate 

Prediction of  daily 
runoff in ungauged 

catchments 

Three versions of 
Xinanjiang   

rainfall–runoff 
model 

The spatial 
proximity 

method and the 
physical similarity 

method 

2,3 

In terms of Nash–
Sutcliffe Efficiency two 

method for the 3 
versions give almost 
similar result (0.20-

0.70) 

Post 2009 

24 catchments in 
the dry tropics of 

Australia (68–
130.146km2). 

Arid 
Estimation of  daily 

streamflow in ungauged 
basins 

IHACRES Linear Regression  5 

The predicted values of 
mean annual 

streamflow are within 
20% of the observations 

(NSE around 0.7) 

Reichl et al. 
2009 

184 Australian 
catchments (Area 
Kurtosis=3.214) 

Arid to 
Warm 

temperate 

Optimization of a 
similarity measure to 

produce the best 
monthly  streamflow 

predictions 

SIMHYD 

Ensemble 
Techniques and 

Model Averaging 
model based on 

catchments 
similarities 

3 

The method is  inferior 
to local calibration but 

it is superior to 
regression and spatial 
proximity (NSE=0.7-

0.8) 

Zhang and 
Chiew 2009 

210  
catchments in 

southeast Australia 
(51-2000Km2) 

Warm 
temperate 

Daily runoff prediction 
in ungauged 
catchments 

Xinanjiang and 
SIMHYD 

Spatial proximity 
,physical similarity, 
integrated similarity 
approach(combines 

the spatial 
proximity and 

physical similarity) 

2,3 

The spatial proximity 
approach  

 performs slightly better 
than the physical 
similarity and the 

integrated similarity 
approach performs only 
very marginally better 

than the spatial 
proximity approach. 
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Table 2-4 Studies on hydrologic model-independent streamflow regionalization methods (1990-2011) 

References Study area Climate Temporal Scale and  
key objectives Regionalization methods Class Major findings 

Chiang et 
al. 2002 

94 candidate stations in 
Alabama, USA (~37 to 

30,810 mi2) 

Warm 
temperate 

Using watershed 
characteristics to 

synthesize monthly 
streamflow hydrographs 

Integrated Time series model 
and Multiple regression analysis 

(MRA) to estimate TSM 
parameters using catchment 

attributes 

1,2 
Integrated Time series model  
outperform simple regression 

analysis method 

Goswami 
et al. 2007 

12 basins in  France  (32.1 
- 371 km2) 

Warm 
temperate 

Estimation of daily 
continuous flow  in 

ungauged basins 

 
Parametric and non-parametric 

simple linear model, 
perturbation model, linearly 
varying gain factor , ANN 

1 

 
The non-linear ANN  

is best in nine out of the 12 
catchments in calibration 

Yadav et 
al. 2007 

30 small to medium sized 
watersheds in the UK ( 50–

1100 km2)  

Warm 
temperate 

Ensemble predictions of 
daily flow in ungauged 

basins   in an 
uncertainty framework 

Stepwise linear regression 
between 39 dynamic response 
characteristics & 13 physical 

watershed characteristics  

1 

This approach is not impacted 
by problems of parameter 

calibration or model structural 
uncertainty and could guide an 

improved approach to watershed 
classification 

Buttle and 
Eimers 
2009  

22 small basins (3.4–190.5 
ha) on the Precambrian 
Shield in south-central 

Ontario, Canada 

Snowy 

Explain inter-basin 
variations in streamflow 
metrics in terms of basin 
scale and physiographic 

and predict annual 
maximum and mean 

daily stream flow 

Scaling relationships based on 
basin size and physiographic 

properties 
3 

Annual maximum and mean 
daily stream flow can be  well-
predicted using simple scaling 
relationships, (NSE=0.21-0.63)  

Isik and 
Singh 
(2008)  

26 river basins in Turkey 
(~700000km2 in total) 

Warm 
temperate 

and 
Snowy 
parts 

Regionalization of 
monthly streamflow in 
Watersheds of Turkey 

FDCs model after basin 
classification using k-means 

partitioning method  
1 

Monthly discharge data with 
correlation coefficients 

between 95 and 100% for 85.7% 
of the gauging stations 

Mohamoud 
2008 

29 catchments n Mid-
Atlantic Region, US (23-

4250 Km2) 

Warm 
temperate 

Prediction of daily flow 
duration curves (FDCs) 

and streamflow for 
ungauged catchments 

 Regional FDC & drainage area 
ratio methods and Step-wise 
multiple regression analysis   

using catchment descriptors to 
find the parameters 

1 

FDC-based method shows great 
promise for predicting 

streamflow in ungauged 
basins.NSE=0.60-0.97 

Besaw et 
al.  2010 

The Winooski River basin, 
northwestern Vermont, 

USA ( 2700 km2)  
Snowy 

  Streamflow forecast 
(hourly and daily) in 

ungauged basins   

GRNN  and CPN with recurrent 
feedback loops ,  linear 

regression and time series 
autoregressive moving average  

1,2 

  Both ANNs better captured the 
climate-flow relationships when 
trained on hourly data reflecting 
the basin-scale characteristics- 
CPN, GRNN and MLR provide 
the most accurate and unbiased 

estimates of stream flow 
 

Lima and 
Lall 2010 

40 hydropower sites in 
Brazil (2588 to 823,555 

km2) 
Equatorial 

Modeling of non-
stationary monthly 

streamflow series and 
annual maximum flood 

series 

 Hierarchical Bayesian models : 
the Bayesian estimation of the 

scaling relationship with 
drainage area for annual 

maximum flows and monthly 
streamflow accounting for 
nonstationary and seasonal 

variability 

3 

Statistics of the  streamflow time 
series  in particular moments 

scale with physical properties of 
the drainage basin  (The 

correlation between simulated 
and observed flow=0.63-0.97) 

 Parada & 
Liang 2010 

North Fork Cache Creek 
watershed    (510 km2 )  

and Bluestone River 
watershed  (1023 km2 ) , 

USA 

Warm 
temperate 

 Inference of daily 
streamflow for 

ungauged basins 
combining concepts 

from both kernel 
methods and data 

assimilation 

Kernel-based inference method 1 

The inference method can 
estimate streamflow for 

ungauged basins with unknown 
and nonlinear dynamics.   

RMSE=0.37 & 0.21-Bias=0.23 
& 0.02 
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 Hydrologic model-dependent methods 

       The regionalization methods which use hydrologic models to estimate streamflow in 

ungauged basins are essentially methods which transfer the model parameters from 

gauged basins to ungauged ones. In recent studies, Peel and Blöschl (2011) and He et al. 

(2011) have reviewed the methods which are used to estimate model parameters of 

ungauged catchments. According to the classification of Peel and Blöschl (2011), these 

approaches are split into groups which estimate model parameters a priori (without 

calibration using relationships between model parameters and catchment characteristics), 

regionalize calibrated model parameters from gauged to ungauged basins (e.g. regression 

relationships, spatial proximity, and physical similarity), use multi-objective and regional 

calibration to assess predictive uncertainty, model (output) averaging,  and hydrological 

signatures (indices) modeling. The described classification is a very general one, 

regardless of simulated hydrologic variables and includes the studies which aim to 

estimate uncertainty. The classification scheme employed by He et al. (2011) includes 

distance-based (using geographical and hydrological similarities) and regression-based 

methods. This classification and the described examples, cover only the hydrologic-model 

dependent methods presented in the next paragraph.   

In a more specific classification, we classify techniques which have been used to 

extrapolate hydrologic model parameters to estimate streamflow at ungauged basins into 

the following groups:  (a) arithmetic mean method (e.g. Merz and Blöschl 2004; Oudin et 

al. 2008; Jin et al. 2009); (b) spatial proximity (spatial distance) approach (e.g. Merz and 

Blöschl 2004;  Parajka et al. 2005; Oudin et al. 2008; Li et al. 2009); (c)  physical 
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similarity approach (Oudin et al. 2008; Samaniego et al. (2010) ; Samuel et al. 2011); (d) 

scaling relationships (e.g. Croke et al. 2004; Schreider et al. 2001); (e) regression-based 

methods (linear and nonlinear), such as ANNs, MLR (e.g. Sefton and Howarth 1998; Post 

and Jakeman 1999; Merz and Blöschl 2004 ; Parajka et al. 2005; Cheng et al. 2006; 

Young  2006; Heuvelmans et al. 2006; Götzinger and Bárdossy 2007; Oudin et al. 2008;  

Mohamoud 2008 ) (f) hydrological similarity approach (e.g. Masih et al. 2010 ) . 

 With techniques such as arithmetic mean and spatial proximity, in which 

catchment attributes are not directly involved, one assumes that all catchments within the 

particular radius are similar and differences in the parameter values arise only from 

random factors (as in studies performed by Merz and Blöschl 2004; Parajka et al. 2005). 

All techniques which transfer model parameters from one basin to another are based on 

the assumption that two basins are similar and will respond identically to the same input 

(Stoll and Weiler 2010). In the arithmetic mean approach, the rainfall-runoff model 

parameters of surrounding basins (local) or all basins (global) are averaged. Parajka et al. 

(2005), for example, used the arithmetic mean of parameters of a region within a radius of 

50 kilometers from the catchment of interest for the local technique and all basins for the 

global technique. Arithmetic mean might also be used as a computation technique after 

basin classification using other regionalization methods. Spatial proximity approaches 

transfer the model parameter sets based upon a spatial distance technique, i.e., an 

interpolation technique which is a function of the geographic location. The most popular 

interpolation technique in this context is kriging. Vandewiele and Elias (1995), applied a 

monthly water balance model to 75 Belgian basins which were considered as ungauged in 
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turn and used two spatial proxy techniques (kriging and the use of parameter values of a 

few neighboring basins) to compute their parameter values. In their experience, kriging 

gave satisfactory results (root mean squared error less than 7% or relative error less than 

20%) in 72% of the basins, whereas the second technique gave satisfactory results in only 

44% of basins. Jin et al. (2009) used both of the described regionalization methods. They 

applied the HBV model using proxy-basin and global mean to regionalize model 

parameters in 13 sub-basins in southern China to simulate daily streamflow. With the 

global mean method, they constructed three different sets of regional mean parameters: an 

arithmetic mean regardless of the size and position of basins, area-weighted mean values 

of parameters, and a proxy-basin method. The parameter set of simple arithmetic mean 

values produced the best results compared to other applied methods.  

The third method is a physical similarity approach. The concept of this approach 

is to transfer hydrological model parameters from gauged to ungauged basins according 

to the similarity of their physical attributes. An example of such an approach is presented 

by Oudin et al. (2008) and Samuel et al. (2011). In this method, catchments are first 

grouped according to their physical or non-hydrological similarities. Multivariate 

statistics analysis is normally used to group the catchments. It is recommended that one 

use a ranked proximity technique if catchment attributes have different units and ranges. 

Then, rainfall-runoff model parameters of gauged basins are computed and model 

parameters located in the same group are arranged, for example by using an arithmetic 

mean, to obtain a regional rainfall-runoff model parameter set. That parameter set is then 

used to generate streamflow in the target basin having physical similarity. Some might 
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use physical catchment attributes to find dissimilarity measures. For example, Samaniego 

et al. (2010) proposed a procedure to find a metric on the basis of dissimilarity measures 

that are estimated from pair wise empirical copula densities of runoff. They defined a 

metric in a transformed space of basin descriptors consisting of 22 physical characteristics 

of the basins, such as area, slope, elevation, permeability, imperviousness, and estimated 

streamflow in an ungauged basin by transferring parameters from gauged basins on the 

basis of the selected metric. Simulated daily discharge using their proposed methods has 

NSE=0.76-0.86, which is considered as a reasonable result. Reichl et al. (2009) selected 

an ensemble of hydrological models to optimize similarity measures among 27 geometric, 

climatic, soil and vegetative attributes of catchments to transfer SIMHYD model 

parameters to 184 Australian catchments and predict monthly streamflow. Their results 

indicate that flow prediction using an optimized model averaging method (based on 

physical similarities) is superior to regression and spatial proximity approaches. 

The fourth method is scaling relationships based on area or other catchment 

attributes. For instance, Croke et al. (2004) computed model parameters in ungauged 

basins by scaling the area, deep drainage, and surface runoff of gauged basins according 

to area and estimates of surface runoff and deep drainage of ungauged basins obtained 

from other models e.g. an agricultural model. This method can be used for simulation of 

subcatchments’ streamflow in ungauged subcatchments, assuming that the streamflow 

contribution from each subcatchment to the total catchment yield is proportional to a ratio 

of the catchment area or other attributes (Schreider et al. 2002).  
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Another type of approach is the use of regression-based methods, which include 

nonlinear regression methods such as ANNs and linear regression methods. Within this 

group, a linear or nonlinear relationship is developed between model parameters and 

catchment attributes.  Kokkonen et al. (2003) applied a regression scheme to the six-

parameter IHACRES model and physical catchment descriptors (Table 2-3) on thirteen 

Australian catchments to produce daily flow time series which provided to be more 

accurate than those produced by arithmetic mean method. Sefton and Howarth (1998) 

conducted a multiple regression analysis to find the relationship between IHACRES 

model parameters and the selected catchment attributes in 60 basins in the UK. They 

selected the important catchment attributes in defining hydrologic response by correlation 

matrix, step wise regression and principal component analysis. Some studies, such as 

those by Götzinger and Bárdossy (2007) and Cheng et al. (2006) used the multiple 

regression approach in their regionalization studies, albeit with some modifications due to 

the use of distributed hydrological model parameters in their model which results in large 

number of model parameters. Götzinger and Bárdossy (2007) used the transfer function 

approach to ensure consistent parameter estimation, whereas Cheng et al. (2006) used the 

multiple regression approach to govern the relationship between the areas of different 

land cover types occupying the drainage basins. Cutore et al. (2007) tested   particular 

regionalization procedures to transfer the parameters of simple rainfall-runoff models, 

based on a “two-step” approach in which the first step is a simple regression-based 

between rainfall and streamflow and the second step is regression equations between 

model parameters and the geomorphological characteristics, such as average altitude, soil 
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permeability, stream length, etc. The “one-step” approach is only based on regional 

rainfall–streamflow model calibration for gauged basins. According to their experience 

models based on the “one-step” approach appeared to be robust and adequate for 

estimating the streamflow in ungauged basin.  

The last method in this category considers hydrological similarities between 

basins to transfer the model parameters. A simple method based on hydrological 

similarity assumes that all catchments within the region are similar in their hydrological 

behavior. In this case, a mean of available or an entire set of calibrated parameter values 

is typically used to estimate the value in the ungauged catchment instead of deriving 

quantitative relationships between catchment descriptors and model parameters 

(Kokkonen et al. 2003; Mohamoud 2008). Flow duration curves (FDCs) similarity is also 

considered as a hydrological similarity which is used by Masih et al. (2010). They found 

that the HBV model parameters transferred from similar gauged basins based on FDCs’ 

similarity to a data-limited gauged catchment is a better basis for streamflow time series 

generation than similarity approaches based on drainage area and spatial proximity. This 

may be due to the fact that FDCs account for climatic factors. 

Some studies resort to a combination of the aforementioned methods to transfer 

hydrologic model parameters. For example, after basin classification according to 

physical or hydrological similarities or spatial proximity criteria, regression-based or 

averaging techniques  can be used to transfer the model parameters. More examples and 

details about reviewed studies in these categories are presented in Table 2-3. 
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The wide spectrum of regionalization studies uses hydrologic models and involves 

methods which transfer or estimate the hydrologic model parameters of ungauged basins 

using the gauged ones. Different approaches can produce different results in various 

regions. Using a cross-validation procedure and basing its results on model validation 

statistics, each study claims that one method is more suitable than the others. But, in 

general, the best performing method is site-specific which seems driven by climate and 

physiographic conditions that play an important role in the differences of method 

performance from one region to another. Therefore a major challenge may lay ahead with 

climate change suggesting that an optimal regionalization method for a given basin may 

not be the appropriate one in the future. Further research is needed on that topic.  

Hydrologic model-independent methods 

As displayed in Figure 2-1, hydrologic model-independent (mainly data-driven 

methods) can be classified into three groups. The first group is regression-based analysis 

which includes linear regression (e.g. MLR, parametric simple linear model used by 

Goswami et al. 2007), and nonlinear regression (e.g. ANNs) between streamflow and 

catchment attributes. For instance, nonlinear regression methods are used in  Besaw et al. 

(2010) and Parada & Liang (2010). The  former trained the recurrent ANNs on climate-

flow data from one basin and used them to forecast streamflow in a nearby basin with 

different (more representative) climate inputs, and found that ANNs that always converge 

and avoid stochastic training (e.g. General Regression Neural Network  (GRNN) and 

Counter Propagation Neural Network (CPNN)) are straightforward to execute and widely 

http://voyagememoirs.com/pharmine/2008/07/06/general-regression-neural-network-grnn/
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applicable to small ungauged basins. The latter presented a Kernel-based methodology, 

which is applicable to those ungauged basins whose hydrological and system 

properties/behavior are non-linear and non-Gaussian and inferred streamflows for two 

basins in the US treated as ungauged. The next category is time series models, e.g. 

AutoRegressive (AR) models. Chiang et al. (2002a) used Multiple Regression Analysis 

(MRA) to construct relationships between the parameters of streamflow time series 

(dependent variables) and watershed characteristics (independent variables). The 

predicted streamflow parameters from the MRA equations were then used to synthesize 

hydrographs under the time series model. The regression equations might be developed 

between streamflow percentile and catchment attributes. For example, Mohamoud (2008) 

developed a linear regression between the parameters of a FDC model and landscape-

climate descriptors identified through a step-wise regression method for gauged basins, 

transferred these equations to ungauged basins, and converted the simulated FDCs to a 

streamflow time series. Isik and Singh (2008) also used FDC models to compute 

streamflow discharge at ungauged sites in 26 river basins in Turkey after defining 

homogeneous regions with a hierarchical clustering algorithm. They found that FDCs 

constructed for each homogeneous region estimated monthly discharge data with 

correlation coefficients of 95-100% for most of the gauging stations. The last category of 

these approaches is scaling methods. Buttle and Eimers‘(2009) study on the Precambrian 

Shield in south-central Ontario indicates that annual maximum and mean daily 

streamflow can be  well-predicted using simple scaling relationships. These scaling 

relationships between streamflow metrics and basin size are potentially capable of the 
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extrapolation of data from gauged basins to ungauged sites (Yue and Wang 2004). A 

similar study on the Mackenzie River Basin in northern Canada estimated streamflow for 

ungauged basins using streamflow-area relationships of gauged basins (Woo and Thorne 

2003). In addition to streamflow time series, the statistics of these time series are also 

potentially applicable in scaling analysis. Lima and Lall (2010) remarked that statistics of 

the streamflow time series also scale with physical properties of the drainage basin such 

as catchment area. More examples of the second category of regionalization methods are 

presented in Table 2-4.  

The accuracy of predictions can be impacted by time scale, i.e., the time step of 

prediction based on catchment area. In Besaw et al. (2010) study  which examines the 

case of streamflow prediction at two small sub basins of about 2,700 km2, predictions 

using hourly data were slightly more accurate than those using daily data (Root Mean 

Square Error of 5.5 versus  5.2) . However such minor difference in model performance 

may not allow drawing conclusion on the time scale effect on model performance. More 

studies are needed to clarify that issue. 

In conclusion, among the hydrologic model-independent methods for streamflow 

regionalization described above, regression equations (including linear and nonlinear) 

developed between the desired hydrologic responses, (e.g. streamflow) and catchment 

attributes are the most commonly used ones. One of the advantages of hydrologic model-

independent methods is the lower data requirement of these approaches and the simplicity 

of their structure which does not require special knowledge and expertise of hydrological 

modeling. However, the identification of an appropriate model structure (e.g. ANN 
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architecture) requires some expertise. Data-driven methods do not simulate the actual 

rainfall-runoff process and therefore they are not impacted by uncertainty due to the 

physical process being modeled; however, they are still affected by other sources of 

uncertainty, e.g. the estimation method and its parameterization. 

2.6. Hydrologic models in streamflow estimation in ungauged basins  

 
Compared to conceptual and semi-distributed models (e.g. SAC-SMA), fewer studies 

have used fully distributed physically-based models (e.g. MIKE SHE) to estimate 

streamflow time series in ungauged basins. Using fully distributed physically-based 

models for streamflow estimation in ungauged basins is not usually involved with 

regionalization process due to a priori parameter calibration. However, Gotzinger and 

Bardossy (2007) used a grid-based modification of the HBV model concept for 

simulation of catchment runoff in ungauged basins using regionalization approaches. 

While majority of studies calibrate them a priori . For example, Ibrahim and Cordery 

(1995) developed a model which represents hydrological processes in a physically 

realistic manner to estimate runoff volumes from generally available geophysical data of 

ungauged basins. The inputs to the model were monthly rainfall, monthly climate data, 

and reference soil characteristics. The model was able to provide good estimates of 

volumes of flow on ungauged catchments in New South Wales. Nyabeze (2005) 

estimated runoff using a distributed parameter value estimation approach for various 

poorly gauged catchment sizes in Zimbabwe, and simulated runoff of different segments 

independently, in which each segment represents an area of different rainfall, soil 
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condition, vegetation cover, and land use, which all influence runoff. Ao et al. (2006) 

proposed a mixed model structure BTOPMC (Block wise use of TOPMODEL with 

Muskingum-Cunge flow routing method), which is a physically-based model that has the 

advantages of both lumped and distributed models to avoid large data requirements , 

uncertainty and high cost, which often limit the distributed model’s applicability. Their 

experience  finally resulted in a reasonable agreement between the simulated and 

recorded runoff .The application of more detailed physically-based hydrologic models 

along with regionalization methods appear to yield some improvement but at a quite high 

cost. This approach is data intensive, and may not be appropriate in data poor regions. 

In hydrologic model-dependent regionalization methods (Table 2-3), a rainfall-runoff 

model is first selected (see column “Hydrologic Model”). The rainfall-runoff models 

selected in regionalization studies are usually conceptual and semi-distributed models 

such as HBV (e.g. Jin et al. (2009) , IHACRES (e.g. Young2006), HYMOD (e.g. 

Castiglioni et al. 2010) , RRMT (e.g. Wagener and Wheater 2006), SIMHYD (e.g. Peel et 

al. 2000), PDM (McIntyre et al. 2005), AWBM (e.g. Boughton and Chiew 2006), 

Xinanjiang (e.g. Li et al. 2009), GR4J and TOPMO (e.g. Oudin et al. 2008) , SMHI 

(Hundechha et al. 2008) , SWAT (e.g. Heuvelmans et al. 2006) and TOPMODEL (e.g. 

Bastola et al. 2008) and rarely physically-based models such as Mike 11 NAM (Makungo 

et al. 2010) . The full names of these models can be found in Table 2-3.  

In selecting an appropriate model, there is a consideration of data-availability and that the 

model should be simple (parsimonious with less model parameters), able to capture more 

hydrological variability and behaviors required in the study catchments (such as snowfall, 
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lakes, etc.), and has been effectively applied in similar regions. In the regionalization 

approach, a parsimonious hydrologic model structure is usually selected and calibrated to 

observable watershed responses for a large number of gauged watersheds (Yadav et al 

2007). Next step is the selection of regionalization model to govern the relationships 

between catchment attributes and model parameters in gauged basins and transfer them to 

ungauged basins.  

The most widely used hydrologic models in streamflow regionalization studies are 

HBV and IHACRES. This may be due to the fact that those models represent well the key 

components of rainfall-runoff process without unnecessary details. To identify the best 

model for streamflow estimation in ungauged basins in a certain region, both physically-

based and conceptual hydrologic models are suggested to be examined. Makungo et al. 

(2010) applied both Mike 11 NAM (a physically-based model) and AWBM (a conceptual 

model) for estimation of daily discharge in ungauged basins of a catchment in South 

Africa using regionalization method of spatial proximity and found that AWBM slightly 

outperforms the other model. But, in practice, usually both categories of models available 

for streamflow estimation in ungauged basins are not examined for various reasons. In 

future studies, the benefit of using methods from each category should be further 

emphasized.  

2.7. Model parameter calibration (optimization process) 

In conceptual and semi-distributed rainfall-runoff models, most parameters are not 

measurable and have to be estimated by calibration using observed runoff data. 
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Optimized model parameters are required in model parameter regionalization, since the 

most common approach in this context is to look for relationships between optimized 

parameter values and catchment characteristics in gauged basins. Parameter sets can then 

be compiled for ungauged catchments from measurable variables (Seibert 1999). The 

range of parameter values is usually selected based on authors’ knowledge of the study 

area and the experience of other studies (Seibert 1999) as well as initial model runs for 

the study area. Recent advances in optimizing rainfall-runoff model calibration have 

focused mainly on incorporating multiple objective measures of model performance and 

improving optimization algorithms (Li et al. 2010). Some examples of model parameter 

optimization efforts in the reviewed studies are presented in this section. 

Oudin et  al.  (2008) used local gradient search procedure as an optimization algorithm for 

GR4J and TOPMODEL, with four and six parameters respectively on gauged catchments.  

Li et al. (2010) combined multi-objective optimization with averaging across multiple 

calibration sites and estimated model parameters by multi-objective optimization at each 

calibration site, and then finalized it by weighted averaging of the parameter values across 

sites. The weight for each site was calculated from the prediction error at that site. 

Mwakalila (2003) calibrated the Data-Based Mechanic (DBM) model using the 

Generalized Likelihood Uncertainty Estimation framework whereby, using the Monte 

Carlo simulation technique, the model was run 5,000 times with different randomly 

chosen parameter sets. The feasible range of parameters to be sampled was based on the 

initial estimated parameter values. The optimum values of parameter sets for each 

catchment were selected through an evaluation of the likelihood measure. Kim  et al. 
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(2008) used the large scale trust-region method to solve nonlinear large scale optimization 

problems. Li et al. (2009) used the Particle Swarm Optimization (PSO) to optimize the 

model parameters. PSO is a relatively new addition to the evolutionary computation 

methodology and is expected to provide the global or near-global optimum. Samuel et al. 

(2011) used Brent’s parabolic interpolation method to optimize the MAC-HBV model 

parameters.  

In most of the mentioned optimization algorithms, multiple objective measures of 

model performance are used to improve the optimization algorithm and pick the least 

uncertain set of model parameters.  

2.8. Developments in continuous streamflow regionalization with uncertainty estimation 

In 2003, PUB focused on the estimation and subsequent reduction of predictive 

uncertainty as its central theme (Sivapalan et al. 2003). In regionalization studies, the 

inclusion of uncertainty analysis is necessary, firstly because model uncertainty is 

inherent and unavoidable (Yadav et al. 2007) and secondly because there are uncertainties 

in selecting catchment properties and regionalization procedures, and identifying gauged 

and regional model structures and their parameters (Wagener and Wheater 2006). In 

addition, calibration procedure to obtain regional model parameters increases the 

uncertainties (Wagener and Wheater 2006; Yadav et al. 2007; Zhang et al. 2008; 

Samaniego et al. 2010). Clearly, uncertainty analysis needs to be incorporated within the 

regionalization procedure to provide better predictions of streamflow in ungauged basins. 
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However, this has been a challenging task over the last decade because of the various 

sources of uncertainties involved. 

Some examples of studies applying uncertainty analysis in regionalization include: 

Wagener and Wheater (2006); Yadav et al. (2007); Zhang et al. (2008); Samaniego et al. 

(2010); and Masih et al. (2010). Briefly, the methodology of uncertainty analysis is 

performed by calculating prediction limits, determining upper and lower bounds for each 

parameter, simulating Monte Carlo or any other multi objective function tools to obtain 

behavioral or non-behavioral parameter sets, and then using a behavioral simulation to 

create ensemble predictions in the ungauged basins. Wagener and Wheater (2006) 

detected the uncertainties that resulted from  difficulties in identifying model parameters, 

finding an appropriate calibration strategy and model structure errors by investigating the 

role of each model parameter and model structure behaviors’ effects on streamflows in 

ungauged basins. Yadav et al. (2007) used a Monte Carlo simulation, whereas Zhang et 

al. (2008) applied the ε-NSGAII algorithm. Zhang et al. (2008) claimed that the use of the 

ε-NSGAII is more efficient and robust in finding behavioral parameter sets, and it can 

reduce uncertainty bounds of streamflows in ungauged basins. McIntyre (2005) 

regionalized conceptual rainfall-runoff models on the basis of ensemble modeling and 

model averaging. They remarked that the ensemble of candidate models provides an 

indication of uncertainty in ungauged catchment predictions, although this is not a robust 

estimate of possible flow ranges, and frequently fails to encompass flow peaks. 

Samaniego et al. (2010) accounted for uncertainty of parameterization by running the 

hydrologic model in an ungauged basin with sets of global parameters obtained from the 
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k nearest neighboring donor basins using various metrics. With 22 basin descriptors, a 

Monte Carlo experiment was carried out to assess the explanatory power of possible 

combinations of these predictors.  Masih et al. (2010) assessed the impact of parameter 

uncertainty on the regionalization results using the best parameter set of a study 

catchment in the regionalization procedure among 50 different parameter sets of a 

catchment that yielded in the highest Nash Sutcliffe Efficiency (NSE) values during the 

automatic Genetic Algorithm (GA)-based optimization procedure while Heuvelmans et 

al. (2006) assessed the uncertainty of the regionalization procedures with a non-

parametric bootstrap method. Samuel et al. (2011) calculated a measure of the goodness 

of fit between the observed streamflow and model predictions (NSE) for each parameter 

combination in each basin. If the goodness-of-fit value for any parameter combination 

was inside the accepted range, the parameter set was accepted to provide flow-prediction 

confidence limits.  

An effective approach to reduce the impacts of parameter uncertainties on model 

simulations might be an appropriate reduction of the number of model parameters as is 

found by Huang and Liang (2006).They introduced a subsurface flow parameterization 

based on the concepts of kinematic wave and hydrologic similarity, with one parameter 

for calibration into VIC-3L model to reduce the impacts of model parameter uncertainties 

on model simulations by reducing the number of model parameters that need to be 

estimated through a calibration process. More recently, Samuel et al. (2011) resorted to a 

Monte Carlo simulation technique to capture flow variability in ungauged basins in 

Ontario. Significant developments in streamflow regionalization with uncertainty 
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estimates have been achieved in the last decade. However, there is still no general method 

that could be applied to streamflow regionalization. This is in part due to the variety of 

the regionalization methods, and the different level of details of hydrologic models and 

data involved. This remains an interesting research avenue specially in a context of 

changing climate and land use/cover. 

2.9. Discussion and Conclusion 

This paper provides a comprehensive review of regionalization methods for 

estimating continuous streamflow or runoff in ungauged basins. Continuous streamflow 

regionalization can be carried out through a hydrologic model in which its model 

parameters are used as instruments to transfer hydrological information from gauged to 

ungauged basins. An alternative method is the use of hydrologic model-independent 

approaches which are usually based on data-driven methods. The use of rainfall-runoff 

models causes some sources of uncertainties due to errors in computing local and regional 

model parameters and the relationship between local parameters and catchment attributes, 

and due to the uniqueness of the catchments (Wagener and Wheater 2006) and the 

structure of the rainfall-runoff model. Conversely, hydrologic model-independent 

methods such as data-driven models avoid the impact of hydrologic model structure and 

parameter uncertainty, but still contain uncertainties due to the estimation method which 

is derived from the gauged basin and uncertainty due to the data-driven model’s 

calibration. Data-driven methods usually require less data and expertise which might be 

useful to deal with constraints of data-availability. There is no clear indication from the 
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literature on which regionalization approach should be preferred for a given case. 

Comparative study using methods from each category (model-independent and model-

dependent) appears the best approach to identify appropriate regionalization method for a 

given site or region.  

Since the regionalization process is inherently involved with using catchment 

attributes, it is not possible to establish a universal approach as the best method for all of 

the catchments. Therefore a specific study needs to be done on any region of interest to 

identify the best approach among hydrologic model dependent or independent methods. 

For example most reviewed studies on hydrologic model-dependent methods in arid to 

warm temperate climate (e.g. Australia) indicate that physical similarity and spatial 

proximity appears to be the best approach, while in warm temperate (most European 

countries)  regression-based methods have been preferred. Similarly, in cold and snowy 

climate (e.g. Canada) spatial proximity and physical similarity approaches seem to 

outperform other hydrologic model-dependent methods. It has been found that the HBV 

and IHACRES are the most frequently used hydrologic models. Among the hydrologic 

model-independent methods, linear and nonlinear regression methods have performed 

well in warm temperate regions (e.g. European countries) while in cold and snowy 

climate (e.g. Canada) and warm humid climate (e.g. Brazil) scaling relationships have 

shown good performance. This highlights the site-specific nature of the regionalization 

methods and the need for comparative study before selecting a regionalization method for 

a given site or region. Existing studies summarized in this review can provide some 

guidance and reduce the number of methods to be investigated. 
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Wagener and Wheater (2006), and later followed by other researchers such as Yadav 

et al. (2007), Zhang et al. (2008), Besaw et al. (2010), and Samaniego et al. (2010)  

suggested and then applied uncertainty analysis in their regionalization studies. The use 

and development of the regionalization approach, including uncertainty estimate, is in 

line with the central theme of the PUB initiative promoted by the International 

Association of Hydrological Sciences (IAHS, see Sivapalan et al. 2003). Although 

significant developments have been achieved on that topic, in general, there is still no 

standard method for estimating uncertainty in streamflow estimation at ungauged basins 

using regionalization techniques. This issue remains a challenging research topic in a 

context of climate change along with changes in land use and cover. Thus it is raising the 

emerging issue of nonstationarity that is generally overlooked by most regionalization 

methods that assume stationarity. Future research should focus on those key issues to 

advance the regionalization techniques for streamflow estimation in ungauged basins. 

There has been some preliminary work in studding the nonstationary effects on 

streamflow prediction in ungauged basins. For instance, Lima  and  Lall (2010) developed 

and applied hierarchical Bayesian models, to assess regional and at-site trends in time in a 

spatial scaling framework and to reduce parameter and model uncertainties. They used a 

log–log scaling law of annual maximum series and catchment area to estimate varying 

scaling parameters. 

This review provides a comprehensive overview of various methodologies used in 

continuous streamflow regionalization over the last two decades. Clearly, after 1990 

hydrologic variables regionalization approaches have remarkably progressed. Recent 
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improvements in this area include for example the use of data-driven methods in both 

hydrologic model’s parameters extrapolation and hydrologic response inference such as 

the ANN approach proposed by Heuvelmans et al (2006), Goswami et al. (2007), Besaw 

et al. (2010); and  the statistical inference methods for watersheds with non-linear 

behavior (Parada and Liang 2010); the transfer function approach (Götzinger and 

Bárdossy 2007); the use of uncertainty analysis with an optimum multi-objective function 

(Zhang et al. 2008); nonstationarity analysis (Lima and Lall 2010), and  the incorporation 

of multi-objective measures of model performance and improved optimization algorithms 

for watershed models calibration (Li et al. 2010).  

The rapid development of streamflow regionalization, in terms of its methodologies 

after 1990 and applications as shown in this paper brings greater confidence that accurate 

streamflow estimation at ungauged basins can be achieved. However, there are still many 

particular aspects that require more research to improve regionalization analysis and 

results. For example the problem of data-availability raises questions about which 

approaches of streamflow estimation in ungauged basins should be taken. When a 

rainfall-runoff model is to be selected, which model is most efficient and applicable and 

also parameter calibration or optimization approach needs to be addressed. Uncertainty 

analysis is always required and strongly recommended in regionalization efforts; however 

a well-established method for uncertainty estimation in the context of streamflow 

regionalization is still to be developed. The emerging issue of nonstationarity  in 

hydrological time series (e.g. streamflow time series) due to climate change and changes 

in land use and cover, raises question as to the validity of most of the regionalization 
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methods used with the assumption of stationary. Significant work still lies ahead to 

properly address both the issue of “nonstationarity” and “uncertainty estimate” in the 

context of streamflow regionalization. 
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Summary of Paper II : Razavi, T., and  Coulibaly, P. (2013) . Streamflow Prediction in Ungauged 
Basins: Review of Regionalization Methods. journal of Hydrologic Engineering, 18(8), 958–975. 

Summary: 

In this research work two novel techniques for watershed classification i.e. Non-Linear 

and Compact Non-Linear Principal Component Analysis are proposed, and SOM as 

another technique for watershed classification technique using catchment attributes and 

streamflow series is investigated.  The watershed classifications of two benchmarks: the 

standard Principal Component Analysis (PCA) and K-means classification based on 

recently proposed runoff signatures are used for comparison.  

The results of this research work imply that: 

•  SOM, NLPCA and CNLPCA can be robust tools for the classification of 

ungauged watersheds using watershed attributes prior to regionalization.  

• The classifications are sound from the hydrological point of view since further 

analysis of the classification results using SOM, NLPCA and CNLPCA based on 

watershed attributes indicated distinct patterns of FDC slope, timing of event 

flows (annual hydrograph) shape, and dominant physical attributes in each cluster. 
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3.1. Abstract 

Nonlinear cluster analysis techniques including Self Organizing Maps (SOMs), standard 

Non-Linear Principal Component Analysis (NLPCA) and Compact Non-Linear Principal 

Component Analysis (Compact-NLPCA) are investigated for the identification of 

hydrologically homogeneous clusters of watersheds across Ontario, Canada. The results 

of classification based on catchment attributes and streamflow series of Ontario 

watersheds are compared to those of two benchmarks: the standard Principal Component 

Analysis (PCA) and K-means classification based on recently proposed runoff signatures. 

The latter classified the 90 watersheds into four homogeneous groups used as a reference 

classification to evaluate the performance of the nonlinear clustering techniques. The 

similarity index between the first largest group of the reference classification and the one 

from the NLPCA based on streamflow, is about 0.58. For the Compact-NLPCA the 

similarity is about 0.56 and for the SOM it is about 0.52. Furthermore, those results 

remain slightly the same when the watersheds are classified based on watershed attributes 

– suggesting that the nonlinear classification methods can be robust tools for the 

classification of ungauged watersheds prior to regionalization. Distinct patterns of flow 

regime characteristics and specific dominant hydrological attributes are identified in the 

clusters obtained from the nonlinear classification techniques -- indicating that the  

classifications are sound from the hydrological point of view. 

Keywords: Nonlinear Principal Component Analysis (NLPCA), Self Organizing Maps 

(SOMs), Principal Component Analysis (PCA), Cluster analysis, Watersheds 

classification, Ungauged watershed. 
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3.2. Introduction 

Classification of watersheds in hydrology is needed for different purposes. It has 

been used in the prediction or extension of shorter records of flow characteristics such as 

floods or low flows in ungauged watersheds (e.g. Cavadias et al., 2001; Natahan and 

McMahon 1990), regional flood frequency analysis (e.g. Rao and Srinivas, 2006; 

Castellarin et al., 2008), generalization of hydrologic system understanding (Sawicz et al. 

2011), and to generate streamflow hydrographs in ungauged watersheds (e.g. Chiang et 

al., 2001a, 2001b; Kahya et al., 2008). According to Blöschl and Sivapalan (1995), 

regionalization, the process of transferring hydrological information from gauged 

watersheds to ungauged ones, may be satisfactory if the watersheds are similar (in some 

sense), but error-prone if they are not . Therefore, the main advantage of watersheds’ 

classification is its application in regionalization. In fact, regionalization is expected to be 

more accurate if it is applied on similar watersheds i.e., considering the similarities in the 

selection of donor watersheds. Streamflow records are affected by hydro-climatic 

variability at local or regional scale (Coulibaly and Burn, 2005) and the estimation of 

streamflow in different regions is affected by hydrological or physiographic 

characteristics. Therefore, the classification of watersheds can make a significant 

difference in regionalization studies. 

Watersheds’ classification is generally based on watershed physiographic 

characteristics or its hydrologic behavior e.g. streamflow metrics. The first one is 

appropriate for ungauged watersheds while the later one is not applicable to ungauged 

watersheds since streamflow time series are not adequately available in those. Some 

examples of watershed classification studies are presented in Table 3-1. 
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Most of these studies apply linear classification techniques such as principal 

component analysis and k-means clustering.  

For example Burn and Boorman (1993) applied k-means clustering on the flow 

response variables of watersheds and classified the watersheds according to the 

hydrological similarity. They assigned ungauged watersheds into groups based on 

physical characteristics of the watersheds and finally transferred hydrological parameters 

e.g. the unit hydrograph time to peak and standard percentage runoff from gauged to 

ungauged watersheds. Chiang et al., (2002a) used 16 streamflow parameters estimated by 

a time series model to classify 94 watersheds into 6 regions and using principal 

component analysis (PCA), they identified the regional membership in the classification 

by the watershed variables of elevation, forest, area, and channel slope. The limitation of 

linear classification techniques is that they may not capture the nonlinear patterns in data, 

hence, it should not be considered as the only option in watershed classification. The 

authors agree with Wagener et al., (2007) that hydrology has not yet recognized a 

generally agreed upon watershed classification system. However, a discussion on 

outstanding components that should be included in such classification framework 

constitutes a step in that direction. 

One can assume that when the goal of watershed classification is to estimate 

hydrological responses (e.g. streamflow) streamflow metrics used in first-order analysis 

are the most reliable variables as the basis of classification. Sawicz et al., (2011) 

introduced six signatures defined as hydrologic response characteristics and possible 

universal metrics to identify homogeneous groups of hydrologically similar watersheds. 
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The signatures include: runoff ratio, baseflow index, snow day ratio, slope of flow 

duration curve, streamflow elasticity and rising limb density. Ssgane et al., (2012) used 

three of these indices to identify reference watersheds classified as homogeneous and 

compared them with classification performance of four watershed variable groups using a 

similarity index. Earlier, Di Prinzio et al., (2011) compared a reference watersheds’ 

classification identified using available indices of streamflow regime e.g. mean annual 

runoff and sample L-moments of the annual maximum floods with four alternative 

classifications using watershed descriptors.      

In Canada some efforts have been devoted to classify the watersheds or/and 

identify the streamflow variability in various regions of the country.  For example Mwale 

et al., (2011) applied wavelet analysis, independent component analysis (ICA) and 

empirical orthogonal function (EOF) to regionalize runoff variability and account for 

runoff heterogeneity across Alberta (western Canada) and identified three hydrologic 

clusters from 59 stations of watershed runoff data using ICA and EOF. 
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Table 3-1 Summary of watershed classification and runoff variability studies 

 

Author Purpose of classification Classification techniques Study area Major findings 

Ssegane et 
al. (2012) 

Flow predictions in 
ungauged watersheds 

K-means clustering  using: 
geographic proximity; watershed 
hypsometry;  causal selection 
algorithms; PCA and stepwise 
regression 

Three Mid-
Atlantic 
ecoregions 
within USA 

Classification performance 
was highest using causal 
algorithms 

Di Prinzio 
et al. (2011) 

Predicting streamflow 
indices i.e. mean annual 
runoff, mean annual flood, 
and flood quantiles in 
ungauged watersheds 

SOM on  the available catchment 
descriptors and derived variables 
obtained by applying PCA and 
Canonical Correlation Analysis 
(CCA) 

~300 Italian 
catchments 
scattered 
nationwide 

PCA and CCA on the 
available catchment 
descriptors before applying 
SOM improve the 
effectiveness of 
classifications. 

He et al. 
(2011) 

Set up and test a non-
parametric catchment 

classification scheme 

Multidimensional scaling (MDS) and 
local variance reduction (LVR) using 
hydrologic model performance as a 
measure of similarities 

27 catchments 
in Germany 

The scheme is potentially 
useful for prediction in 
ungauged watersheds and  
provides an alternative to 
conventional regression-
based regional approaches. 
 

Mwale et 
al. (2011) 

Regionalize runoff 
variability and establish 
baseline predisturbance    
hydrologic regimes 

Wavelet, independent component 
analysis (ICA), and empirical 
orthogonal function (EOF) analysis 

59 stations of 
catchment 
runoff data in 
Alberta, Canada 

ICA identified hydrologic 
clusters that agree better 
with the five ecoregions of 
Alberta. 

 
 

Sawicz et 
al. (2011) 

 
 
 

Understanding hydrologic 
similarity in a 6-
dimensional signature space 

 

A Bayesian clustering applied on 6 
hydrological signatures including: 
runoff ratio, baseflow index, snow 
day ratio, slope of the flow duration 
curve, streamflow elasticity, and 
rising limb density 

280 catchments 
located in the 
Eastern US 

Identification of nine 
clusters with a relatively 
clear separation which 
suggests that spatial 
proximity is a good 
indicator of similarity. 

Kahya et al. 
(2008) 

Delineating the 
geographical zones having 
similar monthly streamflow 
variations 

Hierarchical clustering applied to 
streamflow data 

80 watersheds 
in Turkey 

The zones having similar 
streamflow pattern were 
not overlapped well with 
the conventional climate 
zones of Turkey. 

Stainton 
and 
Metcalfe 
(2007) 

To identify reference 
watersheds in Ontario for 
understanding  the 
ecological significance of 
hydrological variability 

Classify the full range of flow 
variability using five components of 
the natural flow regime: the timing, 
magnitude, duration, frequency and 
rate-of-change 

135 watersheds 
in the province 
of Ontario, 
Canada 

Cluster analysis using mean 
monthly hydrographs 
identified a total of 8 
hydroclimatic groups and 
FDC identified 13 groups. 

Rao and 
Srinivas 
(2006) 

Estimation of flood 
Quantiles in ungauged 

watersheds 

Fuzzy clustering algorithm (FCA) on 
attributes and flow records 

245 gauging 
stations in 
Indiana, USA 

 
FCA derives homogeneous 
regions, effective for flood 
frequency analysis. 
 

Chiang et 
al. (2002) 

Streamflow estimation in 
ungauged watersheds 

Discriminant Analysis and PCA using 
16 parameters of streamflow time 
series 

94 watersheds 
in Alabama, 
Georgia, and 
Mississippi 
(USA) 

The 6 regions seem to be 
separated by 
physiographical boundaries 
and regional membership is 
mainly identified by some 
of the watershed variables 
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Using mean monthly hydrographs they identified a total of 8 hydro-climatic 

groups, and the classification based on flow duration curve (FDC) identified 13 separate 

FDC groups, irrespective of their hydro-climatic group. Their study classifies the flow 

variability of watersheds using only flow characteristics; consequently, it is only 

applicable to gauged watersheds. 

 In the current study the performance of the selected nonlinear classification 

techniques (SOMs, NLPCA, Compcat-NLPCA) is evaluated on both watershed attributes 

and daily streamflows which is essential to assess their applicability for both gauged and 

Author Purpose of classification Classification techniques Study area Major findings 

Cavadias 
et al. 

(2001) 

 
 

Estimation of flood 
characteristics of ungauged 
watersheds 

 
 

Canonical correlation 20 watersheds in Ontario 
, Canada 

 
The homogeneous regions 
determined in the canonical 
space of the flood variables 
are based on relationship 
between the watershed and 
flood variable. 

Burn and 
Boorman 

(1993) 

Estimation of rainfall-
runoff model parameters  
in ungauged watersheds 

 
K-means clustering on 
flow response variables 
and determination of 
group membership based 
on catchment attributes 

99 Catchments , UK 

Methods are effective in 
estimating the unit 
hydrograph time to peak and 
standard percentage runoff. 

Natahan 
and 

McMahon 
(1990) 

Prediction of low flow 
characteristics  which can 
be used in ungauged 
watersheds 

Cluster analysis, multiple 
regression, principal 
component analysis 

184 catchments in 
southeastern Australia 

Use of watershed 
characteristics makes the 
grouping very sensitive to 
the initial choice of 
predictor variables. 

Acreman 
and 

Sinclair 
(1986) 

Flood frequency analysis 
Multivariate clustering 
algorithm applied on 11 
watershed variables 

168 watersheds in 
Scotland 

 
Four of  the five identified 
regions  yield homogenous 
distributions of flood 
frequency. 
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ungauged watersheds. So far, to our best knowledge, NLPCA and Compact-NLPCA 

models have not been investigated as watershed classification techniques. 

3.3. Study Area and Data 

Study area covers 90 natural watersheds across the Province of Ontario, Canada. 

The climatology and landscape vary from the northern to the southern region. The annual 

mean precipitation is 400–600 mm in the northern region and 800–1,200 mm in the 

southern part. In the northern regions, with more severe air temperatures, the average air 

temperature ranges approximately between -20°C (in January) and 17°C (in July); and in 

the southern regions, it ranges between -10°C (in January) and 19°C (in July). The relief 

varies between 300 m and 500 m above mean sea level (msl) in the southern region, and 

down to 100 m–200 m above msl in the northern region. Most of the natural watersheds 

in the northern region are covered with coniferous forest, with gaps of swamp, muskeg, 

and small lakes, whereas the southern region is dominated by mixed forests (Atlas of 

Canada, available at http://atlas.nrcan.gc.ca). 

Meteorological data, i.e., daily precipitation and air temperature, were obtained 

from the Canadian Daily Climate Data (CDCD, provided by the Environment 

Canada).Only precipitation/temperature stations which have less than 20% missing data 

(for the period of 1960–1995) are selected for this study. The daily flow data were 

obtained from the HYDAT database (Environment Canada, 2004). The number of natural 

watersheds with active flow station that has more than 20 years continuous flow records 

of sufficient quality, and approximately more than 100 km2 of drainage watershed area 

resulted from the initial screening were 135 watersheds (used by Stainton and Metcalfe, 

http://atlas.nrcan.gc.ca/
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2007), 90 watersheds out of 135 watersheds are selected for this study due to the 

availability of data for the selected time period (1976–1994). The areas of the watersheds 

range from approximately 100 to 100,000 km2, representing different types and sizes of 

watersheds. 

Table 3-2 Catchment attributes 

Classification Catchment attribute  Unit Notes 

Location of watersheds 

(centroid) 

Latitude deg 

 
Longitude deg 

Morphology of 

watersheds 

Area km2 

Mean slope % 

Mean elevation m 

Percentage of 

area covered 

Water Lakes % Percentage of area covered by 

lakes. 

Land use Forests % 

sum of percentage of area covered 

by coniferous, deciduous and 

mixed forest 

Drainage 

class 
Rapid % 

sum of percentage of area covered 

by rapid, well and moderately well 

drainage class 

Rooting 

depth (RD) 

RD deeper than 150 

cm 

 

% 
percentage of area covered by RD 

deeper than 150 cm 

Surficial 

geology 

Glaciofluvials % 
sum of percentage of area covered 

by glaciofluvial plain and complex 

Glaciodeposits % 
sum of percentage of area covered 

by till blanket and till veneer 

Rocks % 
Percentage of area covered by 

undivided 
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3.4. Methodology 

Nonlinear classification techniques including: Self-Organizing Maps (SOMs), 

Non-linear Principal Component Analysis (NLPCA) and Compact-NLPCA are applied to 

watershed attributes and daily streamflows of 90 watersheds across Ontario, Canada, to 

classify the watersheds into four clusters and the results of classification using benchmark 

methods i.e. principal component analysis (PCA) and K-means clustering based on 

streamflow signatures are compared with those of investigated techniques to identify the 

method with highest performance. Figure 3-1 illustrates the flowchart of the methodology 

used in the study. 

Benchmark Methods 

Principal Component Analysis (PCA) and K-means Clustering 

 

Principal Component Analysis (PCA) finds combinations of the original variables 

(known as latent variables or principal components—PCs) which describe the dominant 

patterns and the main trends in the data (Jackson, 2003). In datasets with multiple 

variables, usually more than one variable determine the same driving principle which 

controls the behavior of the system. In this case, replacing a group of variables with a 

smaller set of new variables can make the analysis simpler. 
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Figure 3-1 Flow chart of methodology 

 

This new set of variables, are principal components. Each principal component is a linear 

combination of the original variables. PCA is done through an eigenvector decomposition 

of the covariance matrix of the original variables. The extracted latent variables are sorted 

according to their eigenvalue. With PCA the high dimensional space described by matrix 

X is modeled as (Aguado et al., 2008):   

90 Basins, Ontario, 
Canada 

Daily 
streamflow 

series 

Catchmnt 
attributes 

Cluster 
analysis  

NLPCA Compact-NLPCA 

Homogenity test 

Check 
discordancy 

measure 

Comparison with hydrologically 
homogenous and PCA classification 

results 

Check the 
similarity 

index 

Identify the 
potentially  best 

classification 
technique 

SOM 
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X = TPT + E                                         Eq. 3-1 

Where T is the score matrix (composed by the PCs), P the loadings (composed by the 

eigenvectors of the covariance matrix) and E the residual matrix (variance that was not 

captured by the model). Principal Component Analysis (PCA) maximizes the rate of 

decrease of variances (Haykin, 1999). Usually the sum of the variances of the first few 

principal components exceeds 70% of the total variance of the original data  . In the 

current study PCA is carried out on physiographic and land cover attributes (Table 3-2) 

and daily streamflows of 90 watersheds across Ontario. MATLAB 7 (2011b) is used to 

make PCA calculations and graphs. 

 K-means algorithm is used to distinguish the boundaries of PCA scores. The k-

means method developed by MacQueen (1967), assigns each data point to the cluster 

where the distance between the data points to the cluster centroid is smallest. This non-

hierarchical clustering first chooses some initial clusters of data then alters the cluster 

memberships in order to obtain new clusters that minimize the variance within each 

cluster. 

The Davies–Bouldin (DB) index introduced by Davies and  Bouldin  (1979) is a metric 

for evaluating clustering algorithms. This DB index is defined as: 

DB = 1
n
∑ max � Si+Sj

d(Ci,Cj)
�n

i=1,i≠j                         Eq. 3-2 

Where n is the number of clusters,  Si and Sj are the average distances of all points in 

clusters i and j to their cluster centers (within cluster scatter) and d(Ci, Cj) is the distance 

between cluster centers (Ci and Cj). Small values of this index correspond to clusters that 

are compact, and whose centers are far away from each other (Aguado et al., 2008). This 

http://www.sciencedirect.com/science/article/pii/S1474706510000094#ref_bib14
http://en.wikipedia.org/wiki/Davies%E2%80%93Bouldin_index
http://en.wikipedia.org/wiki/Clustering_algorithm
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index is calculated for classifying PCA scores using K-means algorithm. Therefore, the 

number of clusters that minimizes Davis-Bouldin index is taken as the optimal number of 

clusters  

Streamflow Indices and K-means Clustering (namely Reference Classification) 
Streamflow signatures which measure characteristics of hydrologic response are 

used in first order analysis to classify watersheds or runoff variability. In this study we 

apply K-means clustering on five streamflow indices of 90 watersheds across Ontario 

including runoff ratio, slope of flow duration curve (FDC), base flow index (BFI), 

streamflow elasticity and snow day ratio, a subset of six signatures recently introduced by 

Sawicz et al., (2011). The resulting clusters from this analysis are made homogenous in 

terms of discordancy measure (D) which is defined as (Hosking and Wallis, 1997): 

 𝐷𝑖 = 1
3
𝑁(𝑢𝑖 − 𝑢�  )𝑇 𝐴−1 (𝑢𝑖 − 𝑢� )                                                         Eq. 3-3 

Where N is number of sites (watersheds) in a cluster, ui is the vector of sample L-

moments including L-CA, L-skewness and L-kurtosis and A is the matrix of sums of 

squares and cross-products defined as: 

𝐴 = ∑  (𝑢𝑖 − 𝑢�𝑁
𝑖=1 )(𝑢𝑖 − 𝑢�  )𝑇                              Eq. 3-4 

D indicates site i to be discordant if 𝐷𝑖 is large i.e. more than 3 for 15 or higher number of 

sites in the group. Using this measure the discordant watersheds are moved to other 

groups until hydrologic homogeneous clusters are identified. Watershed classification 

using this method is considered as reference classification and it is compared with the 

results of other methods in section 4. A brief definition of each of the indices is provided 

hereafter following Sawicz et al., (2011):  
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  Runoff ratio 

Runoff ratio (R) is defined as the ratio of long-term average streamflow (Q) to the long-

term average precipitation (P).  

𝑅 = 𝑄
𝑃

                                                                                                                Eq. 3-5 

 A high runoff ratio indicates that large amount of precipitation turned into streamflow 

while lower values of R shows that larger amount of precipitation converted to 

evapotranspiration.  

 Slope of FDC  

Flow duration curves represent the percentage of time or probabilities of streamflow 

equaled or exceeded. FDCs can be developed using hourly, daily or monthly streamflow. 

The normalized daily streamflows by drainage area are used to develop FDCs for the 

watersheds. The slope of the curves (S) between probabilities of exceedance of 33 % and 

66% is used as the slope of FDC: 

𝑆 = ln (𝑄33%)−ln(𝑄66% )
(0.66−0.33)

                                                                         Eq. 3-6 

The shape of the flow duration curve can also be used as an indication of physiographic 

characteristics of watersheds including slopes and drainage distribution and plant cover 

(Peters and Driscoll, 1987).   

 Base Flow Index (BFI) 
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BFI is defined as the ratio of long-term base flow to total streamflow (Sawicz et al., 

2011). The digital filter method has been widely used in base flow separation. This 

method provides a good match between filtered base flow and measured base flow values 

(Arnold and Allen 1999; Lim et al. 2005). 𝑞𝑡 = 𝛼 × 𝑞𝑡−1 + 1+𝛼
2

×  (𝑄𝑡 − 𝑄𝑡−1)                                                             

Eq. 3-7 shows the digital filter method used for baseflow separation:  

𝑞𝑡 = 𝛼 × 𝑞𝑡−1 + 1+𝛼
2

×  (𝑄𝑡 − 𝑄𝑡−1)                                                             Eq. 3-7 

Where 𝑞𝑡 and 𝑞𝑡−1 are filtered direct runoff at time step t and t-1, 𝛼 is the filter parameter 

and 𝑄𝑡   and 𝑄𝑡−1 are the total values of streamflow at the time step t and t-1. 

 However, Champan (1991) pointed out that this method provides constant streamflow 

and baseflow when the direct runoff has ceased. The algorithm proposed by Champan 

(1991) and simplified equation proposed by Champan and Maxwell (1996)  is  used in 

this paper to calculate base flow values using daily streamflows : 

𝑏𝑡 = 𝛼
2−𝛼

× 𝑏𝑡−1 + 1−𝛼
2−𝛼

× 𝑄𝑡                                        Eq. 3-8 

Where bt and 𝑏𝑡−1 are the filtered base flows at time step t and t-1 and 𝛼 is the filter 

parameter. α is set at a value of  0.925 (based on Eckhardt (2008)).The Based flow index 

(I) can be then calculated as the summation of all ratios of daily baseflow (QB) to daily 

total streamflow (Q) as follows: 

    𝐼 = ∑𝑄𝐵
𝑄

                                                                                                          Eq. 3-9             
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 Streamflow elasticity 

Streamflow elasticity (𝐸) indicates the rate of changes in streamflow with respect to 

changes in precipitation. It is calculated as the median of the values of inter-annual 

difference between annual streamflow (𝑑𝑄) divided by the inter-annual difference 

between annual precipitation  (𝑑𝑃) , normalized by ratio of mean annual precipitation 

(𝑃� ) to mean annual streamflow (𝑄�  ) (Sawicz et al., 2011) : 

𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑑𝑄
𝑑𝑃

𝑃� 
𝑄�

)                                      Eq. 3-10          

 

Snow day ratio 

Snow day ratio(𝑅) uses the time series of temperature, precipitation; therefore it 

represents both the climatic and hydrologic characteristics of watersheds. It is defined as 

the ratio of the number of wet days (days with precipitation, 𝑁𝑆) when the average daily 

air temperature is below 2 ºC to the total number of days with precipitation (𝑁𝑃) (Sawicz 

et al., 2011): 

𝑅 = 𝑁𝑆
𝑁𝑃

                                              Eq. 3-11 
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Nonlinear Techniques 

Self-Organizing Maps (SOMs) 

Kohonen maps (or Self Organizing Maps, SOMs) are one type of neural networks 

which are capable to solve unsupervised rather than supervised problems. Self-organizing 

maps learn to recognize groups of similar input vectors. (Kohonen, 1995; Aguado et al., 

2008). The SOMs can be used as data compression technique by mapping high-

dimensional data into a lower-dimensional grid or to identify groups of observations with 

similar characteristics. SOMs have shown a good potential for watershed classification in 

Italy (Di Prinzio et al., 2011) and is therefore selected here for further analysis and 

comparison with NLPCA and Compact-NLPCA for watersheds classification based on 

streamflows and watershed attributes respectively. 

 Two layers compose a typical SOM: the input layer and the output layer (also 

known as competitive layer). A schematic 3 × 3 two dimensional SOM is displayed in 

Figure 3-2. The input layer contains neurons representing variables (i.e. watershed 

attributes) fully connected to neurons of output layer by applying weight vectors. The 

number of neurons in output layer is predetermined by modeler and here it is considered 

as the number of desired clusters. Each neuron from the output layer represents its 

position in the grid and its weight vector. In the network training process the weights are 

gradually changed in order to span the weight vectors across the input data set and the 

dimension of the weight vector equals the dimension of the input data vectors. At the end 

of the network training, samples are placed in the most similar neurons of the Kohonen 
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map. The training is both competitive and cooperative because the weights of the neuron 

which resembles most to that input data are updated (competitive) and also the weights of 

both the winning neuron and neighboring neurons are updated (cooperative). The trained 

neural network is to achieve a topology preserving characteristics of the data, for example 

if two input data vectors are similar (close in the input space), the corresponding winning 

neurons should be close (Aguado et al., 2008). Some toolboxes for calculating supervised 

and unsupervised SOMs are proposed in the literature e.g. SOM toolbox developed at 

Helsinki University of Technology (Aguado et al., 2008) and Kohonen and CP_ANN 

toolbox developed at University of Milano Bicocca (Ballabio et al., 2009) which are used 

in this study.  

 
 

Figure 3-2 Schematic of a two-dimensional Self Organizing Map (SOM) 

 

Non-Linear Principal Component Analysis (NLPCA)  

Standard PCA is a suitable option to identify the classification pattern in the data if the 

structure of the data is inherently linear otherwise if the data contain nonlinear structure it 

will not be detected by PCA (Monahan, 1999). In 1991, Kramer introduced a neural 

Output            
Layer 

Input            
Layer 
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network–based generalization of PCA for the nonlinear feature extraction problem which 

is referred to as Nonlinear Principal Component Analysis (NLPCA). In NLPCA the 

mapping into feature space is defined as (Kramer 1991): 

𝑇𝑖 = 𝐺𝑖(𝑌)                                                           Eq. 3-12 

Where 𝐺𝑖 is the ith nonlinear factor of Y (input) and 𝑇𝑖  (output) represents the ith element 

of T. The inverse transformation is implemented by a second nonlinear vector function H: 

𝑌𝑗’ = 𝐻𝑗(𝑇)                                                             Eq. 3-13 

The functions G and H are mapping and de-mapping functions and are selected to 

minimize the loss function L: 

L=�(𝑌 − 𝑌’)�                                                                                          Eq. 3-14 

 A basis function approach which is used by Kramer (1991) to generate G and H is based 

on the following nonlinear functions suggested by Cybenko (1989) which fits any 

nonlinear function 𝑣 = 𝑓(𝑢) to an arbitrary degree of precision: 

𝑣𝑘 = ∑ 𝑤𝑗𝑘2  𝜎(∑ 𝑊𝑖𝑗1 𝑢𝑖+𝜃𝑗1)𝑁1
𝑖=1

𝑁2
𝑗=1                                                           Eq. 3-15 

𝜎(𝑥) is any continuous and monotonically increasing function such as a sigmoid function: 

𝜎(𝑥) = 1
1+𝑒−𝑥

                                                                                            Eq. 3-16 

Equations 15 and 16 describe a feedforward artificial neural network with 𝑁1 inputs, a 

hidden layer comprised of 𝑁2 nodes with sigmoidal transfer functions and a linear output 

node for each k . 𝑊𝑖𝑗𝐿 in Eq. 3-15 represents the weight on the connection from node i in 
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layer L to node j in layer L+1. The θ are nodal biases, treated as adjustable parameters 

like the weights.  

Neural networks are able to fit arbitrary nonlinear functions owing to the hidden 

layers and nonlinear transfer functions between the nodes. G and H in  𝑇𝑖 = 𝐺𝑖(𝑌)                                             

              Eq. 3-12 and 𝑌𝑗’ = 𝐻𝑗(𝑇)                                                            

 Eq. 3-13  can be represented by two single hidden layer neural networks. The 

network for G operates on Y as input vector with m nodes and its hidden layer is called 

mapping (or encoding) layer with sigmoidal transfer function and its output is T with n 

nodes. The network representing the inverse function H takes T as input and its hidden 

layer is called de-mapping (or decoding) layer and its output is reconstructed data, Y. 

Figure 3-3 (a) displays the architecture of the described neural networks for modeling G 

and H. Since T is unknown and it is the output of G and input of H, the two networks are 

combined so that G feeds directly into H and a network is obtained whose inputs and 

desired outputs are known. The second hidden layer is referred to as bottleneck layer 

because it has the smallest number of nodes. Therefore, standard NLPCA model consists 

of an auto-associative feedforward neural network (having same input and output), with 

five layers of neurons including: input, three hidden layers (encoding, bottleneck, 

decoding) and output layer. The neural network is called auto-associative because the 

output neurons are in pairs with input neurons.   

In the current study, watershed attributes and daily streamflows of 90 watersheds 

are used as input to the three-hidden-layer feedforward neural network. The number of 

encoding and decoding neurons are adjusted for an optimal fit of output to the target and 
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is set to be the same (following Kramer, 1991 and Lu and Panadolfo , 2011). The number 

of neurons in the middle hidden layer or bottleneck layer should be less than neurons in 

the encoding and decoding layers and dimension reduction is achieved in bottleneck 

layer. The outputs of this layer, representing the network output are considered as 

nonlinear principal components. In this study a single neuron bottleneck layer gives the 

nonlinear principal component vector (of 90 watersheds).  

To overcome the common problem of overfitting , methods such as “early-stop 

during the training phase” and “weight penalty” can be applied (Hsieh, 2001; 2004; 

2007). MATLAB codes for nonlinear principal component analysis developed by Hsieh 

(2007) at the University of British Columbia are used. The NLPCA training algorithm 

used avoids overfitting by determining the best weight penalty. For further details on the 

NLPCA model as used herein, the readers are referred to Hsieh 2007. 

Compact-NLPCA 
Lu and Pandolfo (2011) modified the structure of the three hidden layer neural 

network introduced for NLPCA because they found that the three-hidden-layer neural 

network can cause the non-uniqueness of solutions and data-over-fitting due to the linear 

transfer function which convert encoding signals to bottlenecks (output layer in the neural 

network representing function G in Figure 3-3 (a)). The encoding layer and also output 

bias terms are removed in this new model structure.  Therefore, the bottle neck neurons 

make up the first hidden layer and encoding layer is the second hidden layer and both 

having nonlinear transfer functions. This model is called compact-NLPCA because it has 

two hidden layer and four layers in total rather than the five layers of standard NLPCA 

model (see Figure 3-3 a,b). This simplified neural network is expected to obtain more 
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stable nonlinear components. The bottleneck signal in this model is the output of 

nonlinear function e.g. sigmoid operated on input vector. It can be expressed as: 

𝑇 = 𝜎(∑ 𝑊𝑖
𝑚
𝑖=1 𝑦𝑖 + 𝜃)                         Eq. 3-17 

 

Where Wi is the weight of the bottleneck neuron to signal from the ith input neuron, yi ,  

and  𝜃 is the bias term. The architecture of this two-hidden layer neural network is 

displayed in Figure 3-3 (b). 

 
 

Figure 3-3 Schematic architecture of feed forward neural network used for NLPCA model  
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a) Standard NLPCA with three hidden, one input and one output layers following 

Kramer, 1991   

b) Compact-NLPCA with two hidden, one input and one output layers; the first hidden 

layer is called bottleneck layer consists of a single neuron and the second hidden 

layer is called decoding layer introduced by Lu and Pandolfo (2011) 

3.5. Results 

  K-mean clustering on PCs and streamflow signatures 

PCA is first applied on watershed attributes, considered as variables of 90 

watersheds (observations). Prior to classification the raw data (attributes) are mean-

centered and scaled to unit variance to handle the different measurement units of 

attributes and giving equal importance to each attribute. After the standardization all 

attributes have zero mean and unit variance. Figure 3-4 shows a plot of the percentage of 

variability explained by each principal component of watershed attributes. The graphical 

plot shows that the first three principal components explain almost 90 percent of the total 

variability in the standardized data, so that is considered as a reasonable way to reduce 

the dimension in order to visualize the principal components (PCs).  

To visualize the analysis results, both the principal component coefficients 

(loadings) for each attribute and the principal component scores for each observation 

(watershed) are presented in a single plot in Figure 3-5. Each of the 12 variables 

(watershed attributes) is represented in this plot by a vector, and the direction and length 

of the vector indicates how each variable contributes to the two principal components. 

For example, the first principal component has positive coefficients for 7 out of 12 
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watershed attributes and negative coefficients for the remaining five attributes. That 

corresponds to the seven vectors directed into the right half of the plot. Each of the 90 

observations is represented by a point in the plots, and their locations indicate the score of 

each observation for the principal components. For example, in the first plot points near 

the left edge of the plots have the lowest scores for the first principal component. In the 

plot of loading vectors, variables (watershed attributes) which are positively correlated 

are grouped together (in the same quadrant) and if they are inversely correlated they are 

located in opposite sides of the plot origin. From the first graph, it can be seen that slope 

and elevation are correlated since they have same direction and almost same magnitude. 

Also the two graphs show that the two first principal components are more affected by 

latitude, area, elevation/slope and forest, therefore classification is expected to be more 

affected by these attributes. 

 
 
Figure 3-4 Percentage of total variability explained by each principal component of 
catchment attributes 
 
 
K-means algorithm with Davies-Bouldin index is applied to the scores of the first 

three principal components to discover groups of observations (watersheds) with 

similar characteristics. K-means partitions the points into K clusters. 
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Figure 3-5 PCA loading plots  for (a) the two first principal components and (b) the second 
and third principal components of catchment attributes (Table 3-2) 

 
 



P.h.D Thesis – T. Razavi                                                            McMaster University – Civil Engineering 

84 

The optimal number of clusters is obtained by minimizing the Davies-Bouldin 

index.  The value of this index for different number of clusters is averaged after 10 runs 

and it is shown in Figure 3-6.  The results indicate a lower value of Davies-Bouldin index 

for four and nine clusters, four is taken as an appropriate number of clusters for the 

simplicity of analysis. K-means algorithm is applied on the first three principal 

components (scores) of watersheds attributes and classified them into four clusters.  

PCA is also applied on the watershed daily streamflows. The continuous daily 

streamflows for the 90 watersheds are used for this analysis. Streamflow time series for 

each watershed are normalized by the watershed area. Similarly to watershed attributes, 

the graphical plot of watershed daily streamflow indicated that the first three components 

account for most of the variance in the flow (more than 70 percent) and K-means 

algorithm is applied on the scores of the first three principal components of daily 

streamflows to classify the watershed into four clusters.  

Runoff ratio, slope of FDC, streamflow elasticity, baseflow index and snow day 

ratio are calculated for 90 watersheds. The summary of statistics of the calculated indices 

is presented in Table 3-3. Precipitation and temperature time series are obtained from the 

closest meteorological station to the center point of each watershed with less than 20 

percent missing data. Since meteorological stations are not homogeneously distributed 

throughout the province and may not be coincident with the streamflow gauges calculated 

indices are involved with some source of uncertainty which can also affect the 

classification results. The correlation between baseflow index and slope of FDC was 

highest among the remaining signatures which is 0.53. Since the correlation between the 

signatures is negligible all the five indices are used for the classification using K-means 



P.h.D Thesis – T. Razavi                                                            McMaster University – Civil Engineering 

85 

algorithm into four clusters. Discordancy measure (D) is calculated for the four identified 

clusters (each cluster consists of more than 15 watersheds). Two of the clusters are 

homogeneous according to this measure and for the two largest clusters only one 

watershed in each was discordant and was moved to another cluster, and D was 

recalculated until the watersheds in all groups became homogenous. The clusters resulted 

from this method are used as reference classification. 

 
 
 
 

Figure 3-6 Davies-Bouldin index for the K-means clustering algorithm applied to the 
PCs of catchment attributes (average of 10 runs) 
 
SOM  

Component planes allow the visualization of correlation patterns among the process 

variables. In order to visualize the relationships among the variables, the component 

plane of a given variable shows the estimated value of that variable in all neurons of the 

map. Each component plane is composed by many hexagons (neurons), and the color of  
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each hexagon informs on the value of the component in that neuron. 

Figure 3-7 U-matrix and component planes of the trained SOM  (Attributes have same 

units as in Table 3-2) 

Figure 3-7 displays the component planes of 12 watershed attributes used as input 

variables to SOM. Comparing the color gradient of the component planes some 

correlation patterns among the variables can be discovered. Similar dark and light areas 

on different component planes indicate positive correlation. Therefore, area, slope and 

elevation exhibit positive correlation. Also, the component planes of the percentage of 

area covered by root depth deeper than 150 cm and rapid drainage class are almost 

similar reflecting that the larger area covered by root depth deeper than 150 cm in a 
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watershed is related to larger area of rapid drainage class and the similarities between 

latitude and lakes indicate the watersheds with higher latitudes are covered with more 

percentage of lakes.  

Table 3-3 Summary of statistics of runoff signatures for 90 watersheds across Ontario 

 

 

 

 

 

 

 

 

The analysis of the component planes reveals the watersheds with similar 

characteristics. The U-matrix plan in Figure 3-7 shows the distances between 

neighbouring neurons on the whole map: high values (dark colour) correspond to large 

distances between neighboring neurons and indicates cluster borders. This plane reveals 

that 3 to 4 distinct clusters that are visible in the whole data set. The number of four 

clusters is in line with the results of K-means algorithm on watershed attributes along 

with Davis-Bouldin index.  

 

 

Runoff 
ratio 

FDC     
slope 

streamflow 
elasticity 

Snow day 
ratio 

Baseflow 
index 

Min: 0.252 1.278 -0.288 0.228 0.502 

1st Qu.: 0.377 2.499 0.808 0.294 0.541 

Mean: 0.413 3.034 1.277 0.340 0.569 

Median: 0.410 2.98 1.29 0.342 0.563 

3rd Qu.: 0.447 3.67 1.63 0.398 0.601 

Max: 0.610 5.30 3.84 0.500 0.668 

Std Dev.: 0.071 0.907 0.6878 0.0637 0.0425 
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Table 3-4 Discordant sites for the two largest groups from each classification technique 

 

PCA,att PCA,St 

 

 

 n1 DB2 Percent%  n DB Percent% 

 C1 40 0 0 31 2 6.45 

 C2 31 1 3.23 24 1 4.17 

   NLPCA,att NLPCA,St 

 

 

 n DB Percent%  n DB Percent% 

 C1 39 0 0 41 0 0.00 

 C2 33 0 0 27 1 3.70 

 

 

SOM CNLPCA,St 

 

 

 n DB Percent%  n DB Percent% 

 C1 43 1 2.33 40 0 0.00 

 C2 28 1 3.57 26 1 3.85 

 

 

CNLPCA,att 

    

 

 n DB Percent% 

  C1 41 0 0.00 

    C2 20 1 5.00 

    C1: First largest group 1n is the number of watersheds in the group 

C2: Second largest group 2DB is the number of discordant watersheds  

 

NLPCA  and Compact-NLPCA 

The architecture of three hidden layer auto associative neural networks used for 

the standard NLPCA is I-m-u-m-I and for the Compact-NLPCA is I-u-m-I where I is the 

number of both the input and output neurons (they are the same), m is the number of 

hidden neurons in encoding and decoding layers and u is the number of bottleneck 

neurons. In this study watershed attributes of 90 watersheds and also daily streamflow 
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series are used as inputs, u is considered as one, m is changing from 2:10 and P (weight 

penalty) having the values of [0, 0.01, 1] . The most appropriate values of P and m, 

yielding the smallest MSE (Mean Square Error) and also consistent in assigning NLPCs 

to nearest neighbors are selected by running the NPCA algorithm multiple times. The 

nonlinear principal components of selected solution are classified according to their 

magnitude into four clusters.   

Inter-comparison of classification results 

The number of discordant sites for the two largest groups (as representatives of 

each classification) resulting from the different methods are presented in Table 3-4. From 

Table 3-4 NLPCA based on watershed attributes identifies homogenous clusters (i.e. the 

two largest clusters have no discordant watersheds) and also PCA based on watershed 

attributes and NLPCA  based on streamflow have equally the next least number of 

discordant watersheds. Figure 3-8 demonstrates the Ontario watershed classification 

using runoff signatures (Reference one) in comparison with other alternative 

classifications. The three ecozones of Ontario including Boreal shield, Hudson plain and 

Mixed wood plain, characterized by bedrock (defined by Ontario ministry of natural 

resources) are also shown in the background. 

A similarity index (SI) (proposed by Ssegane et al., (2012)) is used to show the 

similarity between clusters. This index combines three existing measures of similarity 

included the hamming distance (HD) by Dunne  et al., (2007), similarity index (Ss) by 

Kalousis et al., (2007) and a consistency index (CI) by Kuncheva (2007) . This SI 

accounts for the cardinality of set intersection of A and B ( |𝐴 ∩ 𝐵|), the cardinality of set 



P.h.D Thesis – T. Razavi                                                            McMaster University – Civil Engineering 

90 

difference and unequal number of features in the two sets A and B which are not 

considered in any single of the mentioned indices: 

𝑆𝐼 = 1
2

(1−|𝐴\𝐵|+|𝐵\𝐴|−2|𝐴∩𝐵|
|𝐴|+|𝐵| ) )               Eq. 3-18     

Where |𝐴| is the cardinality of set A and |𝐵| is the cardinality of set B,   |𝐴\𝐵| is 

cardinality of set difference of A from B and |𝐵\𝐴| is cardinality of set difference of B 

from A. Set A is considered to be one of the homogenous reference clusters (classified 

using streamflow signature) and set B is one of the clusters classified by alternative 

techniques. Table 5 presents the SI between the two largest groups (as representatives) of 

hydrologically homogenous classification and corresponding cluster of other techniques.  

According to this table the classified groups using NLPCA based on watershed attributes 

and daily streamflows have the highest similarity in both largest groups (in average) with 

the corresponding groups of hydrologically homogeneous classification. Also 

classification results of SOM and Compact-NLPCA (average of both attributes and 

streamflow) have higher SI compared to standard PCA.  

It is also shown that the Compact-NLPCA (an improved version of NLPCA) does 

not outperform the typical NLPCA model in this experiment. The superior performance 

of the NLPCA based on watershed attributes suggests that it can be a good alternative for 

watersheds classification where appropriate streamflow series are unavailable. 
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Table 3-5 Similarity index between the reference homogenous groups and nonlinear techniques 

First largest class 

  

PCA- 

att 

PCA- 

st 
SOM 

NLPC- 

att 

NLPCA-
st 

CNLPCA-
att 

CNLPCA-
st 

A 38 38 38 38 38 38 38 

B 40 31 43 39 41 41 40 

A/B 20 19 17 16 15 18 16 

B/A 22 12 22 17 18 21 18 

A∩B 18 19 21 22 23 20 22 

A+B 78 69 81 77 79 79 78 

SI 0.46 0.55 0.52 0.57 0.58 0.51 0.56 

Second largest group 

A 23 23 23 23 23 23 23 

B 31 24 28 33 27 20 26 

A/B 18 19 18 12 16 16 17 

B/A 26 20 23 22 20 13 20 

A∩B 5 4 5 11 7 7 6 

A+B 54 47 51 56 50 43 49 

SI 0.19 0.17 0.20 0.39 0.28 0.33 0.24 
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(a) 
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(b) 

 

Figure 3-8  Ontario watersheds classified using runoff signatures, PCA and nonlinear 
techniques (att: catchment attributes, st: daily streamflows) 

 

 3.6. Discussion of Hydrologic Implications 

The classification results of the nonlinear techniques (SOM, NLPCA,Compact-

NLPCA) based on watershed attributes are selected for further investigation of 
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hydrological homogeneity in clusters because of their superior performance and also their 

applicability for the classification of ungauged watersheds. 

Using the PCA the attributes with highest coefficients in each cluster are specified in 

Table 3-6. Latitude appears the main attribute in the first large cluster (C1) whatever the 

nonlinear classification method which is consistent with the spatial distribution of the 

cluster (C1) watersheds shown in Figure 8a,b for the nonlinear methods. The dominant 

effect of latitude in the largest cluster further confirms (albeit indirectly) the importance 

of climate-streamflow relationship in the regional hydrology (Coulibaly and Burn, 2005).  

Elevation, area covered by rooting depth>150cm and forest are the other attributes that 

differentiate the two largest clusters. The shape of the flow duration curve (FDC) reflects 

specific attributes of the watershed (Post, 2004) because when flows are ranked 

according to their frequency of occurrence and plotted on a FDC, the resulting curve 

shows the integrated effect of all the various factors that affect runoff magnitude and 

frequency (Searcy, 1959).  The slope of  FDC (Q5/Q95) which is the ratio of high flow to 

low flow is selected as a criterion  further analysis of the clusters. Table 3-7 presents the 

number of watersheds in each cluster with high, moderate and low value of FDC slope 

(Q5/Q95). The majority of watersheds in the first largest cluster (C1) has a high slope 

whatever the classification method. The majority of the watersheds in the second largest 

cluster (C2) of SOM and NLPCA-att  has a moderate FDC slope while the ones in  

CNLPCA-att cluster (C2) have a low slope. Since latitude, elevation and area covered by 

forest are among the principal attributes in the first two largest clusters and also the 

existence of a dominant pattern in the ratio of Q5/Q95 in the corresponding clusters 

suggests some physical hydrologic implication  of these attributes in the  magnitude  and 
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frequency of flow.  Furthermore, Table 3-8 shows the number of watersheds in each 

cluster with the same timing  of event flows. Timing of low flow, spring snowmelt peak 

flow,  and autumn peak reflect the shape of annual hydrograph. According to previous 

study (Stainton and Metcalfe 2007), climate and regional physiography influence the 

timing of event flows in certain areas of the Province of Ontario. In the first largest 

clusters of all the three classifications,  for the majority of watersheds, low flow occurs in 

July/August, spring snowmelt in March and autumn peak in December. For the second, 

third and fourth clusters, dominant patterns of the flow timing in majority of watersheds 

can be observed. There is a consistent pattern in flow timings for the majority of 

watersheds in each cluster whatever the method. Although, the flow timings for the 

watersheds in the CNLPA-att clusters (C2, C3, C4) are different for some seasons as 

compared to those of the SOM and NPCA-att, there is a consistent pattern for each 

cluster. For example in cluster 1 of CNLPCA-att, majority of watersheds have spring 

snowmelt in March, in cluster 2 it happens in June/May and for clusters 3 and 4 it 

happens in April  

Stainton and Metcalfe (2007) identified eight hydroclimatic regions in  Ontario based on 

annual flow regime characteristics which are most affected by climate and indicate 

generally good geographic contiguity (see Figure 3-9). According to their findings, 

distinct trends in the timing of spring snowmelt and low flow periods with increasing 

latitude were observed across the Province specially the delayed spring snowmelt with 

increasing latitude. All the watersheds in the first largest cluster (C1) of SOM and 

CNLPCA-att and the majority of watersheds in the first largest cluster (C1) of NLPCA-

att belong to hydroclimatic regions 1, 2 and 3 which consist of small watersheds in 
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southern Ontario, the most spatially contiguous regions, spanning the  mixed wood plains 

ecozone.  Most of these watersheds show a pattern of maximum discharge in the month 

of March/April, a summer low-flow in July / August, and an autumn peak in December. 

It appears that the nonlinear classification methods are able to capture the complex 

patterns in cold region hydrology based only on the watershed attributes. This is 

particularly important for improved streamflow regionalization for ungauged basins 

which is the target of future investigation. Further study should evaluate the potential of 

the nonlinear classification methods for continuous flow regionalization as compared to 

standard methods. 

 
 

 

Figure 3-9 Eight hydroclimatic regions of Ontario watersheds identified by Stainton and 
Metcalfe (2007) . 
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Table 3-6 Catchment attributes with highest coefficient of principal component in each cluster 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3-7 Number of watersheds with low, moderate and high value of FDC’s slope (Q5/Q95) in 
each cluster 

 

NLPCA-att CNLPCA-att SOM 

 

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

Low  6 11 8 5 9 13 6 2 9 9 5 7 

Moderate 12 15 2 1 12 5 8 5 14 12 3 1 

High 21 7 1 1 20 2 3 5 20 7 2 1 

Number of 
Watersheds 39 33 11 7 41 20 17 12 43 28 10 9 

 

Classification 
Technique 

Cluster 
Number of 
watersheds 

Principal  Attributes 

SOM 

C1 43 Latitude, Slope, Elevation, >150cm 

C2 28 Latitude, Longitude, >150cm,Glaciodeposit 

C3 10 >150cm,Elevation,Slope,Longitude 

C4 9 Area, Slope,Latitude, Longitude 

NLPCA ,att 

C1 39 Latitude, Forest, Elevation, Glaciodeposit 

C2 33 Latitude,Longitude, Forest, >150cm 

C3 11 >150cm, Longitude, Glaciofluvial 

C4 7 Slope, Elevation, Glaciofluvial, Area 

CNLPCA ,att 

C1 41 Latitude, Longitude, Forest, Glaciofluvial 

C2 20 Forest, Rapid, Elevation, Glaciodeposit 

C3 17 Rapid, Forest, Elevation 

C4 12 Forest, Rapid, Lakes 
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Table 3-8 Flow timing (time of event flows) in the watersheds of each cluster 

3.7. Conclusion  

This study evaluated the ability of nonlinear statistical techniques including SOM, 

NLPCA, and Compact-NLPCA to classify Ontario watersheds into hydrologically similar 

clusters. The classification results of two benchmark methods: (1) K-means clustering on 

PCA scores of watershed attributes/daily streamflow and (2) K-means clustering on 

streamflow signatures were compared with the results of the proposed nonlinear 

techniques.  Applying K-means clustering to PCA scores of watershed attributes and 

 

 

 

  

  

Cluster 

Event Time SOM NLPCA-
att 

CNLP
CA-att 

Cluster 

SOM NLPCA-
att 

CNLPCA-
att 

C1 

Low flow  July/Aug. 42 37 41 

C3 

0 2 6 
Feb./March 1 2 0 10 9 11 

  Spring 
Snowmelt 

March 32 21 31 0 1 0 
April 10 18 10 0 1 10 

June/May 1 0 0 10 9 7 

Autumn 
Peak 

Oct. 1 1 0 10 8 4 
Nov. 11 14 10 0 1 13 
Dec. 31 24 31 0 2 0 

Number of 
watersheds 43 39 41 10 11 17 

C2 

Low flow  July/Aug. 17 20 19 

C4 

0 0 12 
Feb./March 11 13 1 9 7 0 

Spring 
Snowmelt 

March 2 12 0 0 0 3 
April 18 11 1 2 0 9 

June/May 8 10 19 7 7 0 

Autumn 
Peak 

Oct. 6 8 20 7 7 0 
Nov. 14 12 0 2 0 4 
Dec. 8 13 0 0 0 8 

Number of 
watersheds 28 33 20 9 7 12 
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using Davis-Bouldin index lead to four clusters that appears the best number of clusters 

of watersheds in Ontario – which was also visible in the SOMs of watershed attributes. 

The homogeneity of the classified watersheds using each technique was evaluated using 

discordancy measure and the similarity between the hydrologically homogenous 

classification and the alternative techniques was evaluated using a similarity index.  

Overall, in average, the investigated nonlinear techniques (SOM, NLPCA and Compact-

NLPCA) for both watershed attributes and daily streamflow series were consistently 

superior to PCA in terms of identifying hydrologically homogenous clusters of Ontario 

watersheds. Surprisingly, despite its more advanced structure, the compact-NLPCA does 

not outperform the typical NLPCA in the watershed classification experiment. The 

superior performance of NLPCA based on watershed attributes suggests its potential for 

the classification of ungauged watersheds. The study results suggest that the nonlinear 

classification techniques could be reliable alternative methods for the classification of 

gauged and/or ungauged watersheds. 

Further analysis of the classification results using SOM, NLPCA and CNLPCA 

based on watershed attributes indicated distinct patterns of FDCslope, timing of event 

flows (annual hydrograph) shape, and dominant physical attributes in each cluster. The 

identified difference between the clusters can be an indicator of a meaningful watershed 

classification from the hydrologic point of view. The proposed nonlinear classification 

methods based on attributes can potentially improve the performance of streamflow 

regionalization in ungauged watersheds. This needs further study of streamflow 

regionalization techniques having two scenarios of classified and unclassified watersheds 

and will be the next stage of our research. 
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Summary of Paper III: Razavi, T., and  Coulibaly, P. (2014) . Evaluation of Continuous Streamflow 
Regionalization Using Classified and Unclassified Basins. Submitted to : Journal of Hydrology. 

 

In this research work we used the classified watersheds from the previous study to 

evaluate the potential of improvement in the performance of continuous streamflow 

regionalization. We also investigated the combination of watershed classification 

techniques / regionalization techniques/ rainfall-runoff models. That includes: 

1. Four regionalization techniques : IDW , MLP, CPN , SVM 

2. Two conceptual hydrologic models :  MAC-HBV and SAC-SMA  

3. Watershed classification techniques:  SOM, NLPCA , CNLPA 

The results of this study reveal that: 

• MLP model is very competitive with IDW while SVM and CPN have 

competitive performance in case they are applied on pre-classified 

watersheds.  

• The accuracy of estimated daily mean, low and peak flows is improved 

when certain combination of regionalization and rainfall-runoff models 

are used.  

• MAC-HBV and SAC-SMA coupled with CPN indicate a clear 

improvement in daily mean, low and peak flow regionalization after 

watersheds’ classification using NLPCA. 
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4.1. Abstract 

In this study the potential of watershed classification prior to regionalization in 

improving the performance of continuous streamflow regionalization as well as the 

combination of watershed classification and regionalization techniques and rainfall-

runoff models is evaluated in Ontario (Canada) watersheds. Four regionalization 

techniques including a spatial proximity approach (IDW, Inverse Distance Weighted) and 

three types of neural networks i.e. a Multi-Layer Perceptron (MLP), a Counter 

Propagation Neural Network (CPN) and a Support Vector Machine (SVM), are applied to 

transfer the parameters of two conceptual hydrologic models namely MAC-HBV 

(McMaster University Hydrologiska Byråns Vattenbalansavdelning) and SAC-SMA 

(Sacramento Soil Moisture Accounting) from gauged to ungauged watersheds in 

unclassified case as well as homogenous clusters of watersheds obtaining from self-

organizing map (SOM), nonlinear principal component analysis (NLPCA) and compact-

nonlinear principal component analysis (CNLPA) classification techniques. Overall, it is 

found that the MLP model is very competitive with IDW which was previously identified 

as the best regionalization method in the study area, while SVM and CPN have 

competitive performance in case they are applied on pre-classified watersheds. It is 

shown that the accuracy of estimated daily mean, low and peak flows is improved when 

certain combination of regionalization and rainfall-runoff models are used. For example 

MAC-HBV model coupled with CPN indicates a clear improvement in daily mean, low 

and peak flow regionalization after watersheds’ classification using a nonlinear principal 

component analysis (NLPCA). Interestingly, a higher improvement is achieved for low 

flow as well which is usually difficult to estimate in ungauged basins. 
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Key words: Continuous daily streamflow, Regionalization, Watershed Classification, Neural Networks 

4.2. Introduction 

Continuous streamflow series are required for water resources’ management and 

for designing various hydraulic infrastructures. Sustainable management decisions can 

help to maintain the existing water resources for future generations and protect human 

life from catastrophic flood events. Continuous daily streamflow series are useful for the 

estimation of daily flow peaks, low flow and flow duration curves. Unfortunately 

streamflow data are not available in many of the watersheds in the world (Mishra and 

Coulibaly, 2009).  In Ontario (Canada) most of natural basins (more than 60 %) within its 

one-million-square-km area are still ungauged or poorly gauged (Samuel et al., 2012a).  

In the United States (US), approximately less than 25000 (10 %) river basins out of 

250000 are gauged by US Geological Survey (USGS) (Besaw et al., 2010 ; Geological 

Survey,  2009). This picture gets worse for many developing countries. 

Streamflow series in gauged and/or ungauged watersheds are usually predicted 

using rainfall- runoff models including fully distributed physically-based and 

conceptual/semi-distributed models. Other alternative methods recently considered in the 

literature are hydrologic model-independent or data-driven methods such as regression-

based approaches in which streamflow series are not estimated through hydrologic 

models but based on watershed physiographic and/or meteorological characteristics and 

data-driven models (detailed discussion on these methods can be found in Razavi and 

Coulibaly, 2013a). 
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For prediction of continuous daily streamflow, among rainfall-runoff models, less 

complex conceptual models are often preferred due to their acceptable and reliable 

performance. In physically-based models, parameters are usually derived from physical 

attributes of watersheds which need considerable data and human resources, while 

parameters of conceptual hydrologic models are calibrated against observed streamflow. 

Since in ungauged or poorly gauged watersheds, observed streamflow series are not 

available, the model parameters of gauged watersheds are usually transferred to ungauged 

ones. This process is called regionalization and it is expected to be more reliable if 

gauged and ungauged watersheds are similar in some aspects (Blöschl and Sivapalan, 

1995). To our best knowledge, watershed classification prior to regionalization has not 

yet been systematically evaluated in large watersheds such as the Canadian river basins. 

This study aims to investigate the possibility of improvement in continuous daily 

streamflow regionalization after systematic watershed classification using nonlinear data-

driven approaches such as Artificial Neural Networks (ANNs).  Some conventional 

regionalization techniques are inherently involved with watershed classification. For 

example in physical similarity or spatial proximity approaches the hydrologic responses 

are transferred from gauged watersheds to ungauged ones in clusters of similar physical 

attributes or location.  While other types of regionalization approaches such as linear 

regression or artificial neural networks can be applied on either homogenous groups of 

watersheds or unclassified ones.  Several studies have investigated the potential of 

improvement in hydrological predictions in ungauged watersheds after classification. 

They mostly presented a procedure to identify homogenous regions based on watersheds’ 

physical attributes to estimate hydrological responses which can also be used in ungauged 
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watersheds such as low flow characteristics (e.g., Natahan and McMahon, 1990), 

hydrologic models’ parameters (e.g., Burn and Boorman, 1993) , flood characteristics 

(e.g., Cavadis et al., 2001) and streamflow time series (e.g., Chiang et al., 2002). The 

focus of these studies has mostly been on the classification’s framework and the 

possibility of its application for ungauged basins or regionalization itself rather than the 

impacts of classification techniques on the performance of regionalization. A very few 

studies have investigated the later issue. For example Prinzio et al. (2011) investigated 

the performance of estimating streamflow indices such as mean annual runoff, flood 

quartiles and mean annual flood in ungauged watersheds after classification applying a 

self-organizing map on physical attributes, and they found that watershed classification 

using SOM could reduce the uncertainty of hydrological predictions in ungauged sites. A 

more comprehensive analysis is proposed herein; this includes investigating a systematic 

watershed classification using nonlinear classification techniques prior to regionalization 

applying two rainfall-runoff models to 90 basins in Ontario.  

Nonlinear data-driven methods such as ANNs have been largely used in 

streamflow prediction (see Abrahart et al. 2012 for a recent review), but very few studies 

have investigated ANN-based models streamflow prediction in ungauged watersheds. 

Examples of the later include flood prediction in ungauged watersheds (e.g., Dawson et 

al. 2006; Wang et al. 2006) and in a few studies daily streamflow prediction in ungauged 

watersheds either as hydrologic model-independent methods (e.g., Besaw et al.,  2010) or 

to transfer hydrologic model’s parameters from gauged to ungauged watersheds (e.g., 

Heuvelmans et al., 2006). Besaw et al. (2010) used a Generalized Regression Neural 

Network (GRNN) and a Counter Propagation Neural Network (CPNN) with recurrent 
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feedback loops to connect climate and hydrological data to hourly and daily streamflow 

in gauged watersheds and used that architecture for ungauged watersheds. They found 

that the ANNs trained on a climate-discharge record from one watershed are capable of 

predicting streamflow in a nearby watershed as accurately as the one used for training.  

Heuvelmans et al., (2006) compared linear regression analysis and a three layer feed 

forward neural network for estimating the most sensitive parameters of the semi-

distributed hydrological model SWAT (Soil and Water Assessment Tool) for ungauged 

watersheds in Belgium. They found that ANNs can estimate more accurate model 

parameters than linear regression equations if the physical watershed descriptors of the 

site under study lie within the range of the descriptor values of the ones used for the 

construction of the ANNs . 

Watersheds’ classification can be based on either physiographic characteristics of 

watersheds or streamflow metrics. Since streamflow series are not available in ungauged 

watersheds the classification based on watershed physiographic attributes is considered.In 

this study we will consider three classification scenarios in which watershed clusters are 

identified as homogeneous regions using nonlinear clustering techniques including Self 

Organizing Maps (SOMs), standard Non-Linear Principal Component Analysis 

(NLPCA), and Compact Non-Linear Principal Component Analysis (Compact-NLPCA) 

on watershed physiographic attributes to classify 90 watersheds into four clusters . The 

results of these classifications are presented in Table 4-1. It presents the number of 

watersheds in each cluster, the governing attributes in each cluster along with their ranges 

and the flow duration curves’ slope (Q5/Q95) of majority of watersheds in each cluster. 

A brief description of the classification techniques is also provided in the appendix. The 
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performance of these nonlinear techniques in watershed classification was compared with 

principal component analysis and k-means clustering based on runoff signatures 

(applicable to gauged watersheds) as linear benchmark techniques in a previous study 

(Razavi and Coulibaly, 2013b). The results suggested that the nonlinear classification 

techniques on watersheds attributes could be reliable alternative methods for the 

classification of gauged and/or ungauged watersheds. In this study we apply IDW, MLP, 

CPN and SVM as regionalization techniques to pre-identified homogenous clusters of 

watersheds as well as unclassified watersheds to investigate the possible improvement in 

continuous daily streamflow regionalization. The main objective is to investigate the 

possible improvement in continuous daily streamflow regionalization by applying 

nonlinear data-driven approaches to systematically pre-classified watersheds along with 

different rainfall-runoff models and the combination of them.  

 

Table 4-1 Clusters of homogeneous watersheds identified by SOM, NLPCA and CNLPCA techniques based 
on watersheds attributes. Ranges of high flow to low flow slope (Q5/Q95) of the majority of watersheds in 

each cluster are provided (Modified after Razavi and Coulibaly 2013b) 

Classification 
Technique 

Cluster Number of 
watersheds 

Dominant   Attributes  Q5/Q95 

SOM 

C1 43 Latitude , Elevation , Slope  High 

C2 28 Latitude Longitude , >150cm  Moderate 

C3 10 >150cm,Elevation,Longitude   Low 

C4 9 Area ,Slope , Latitude  Low 

NLPCA 

C1 39 Latitude , Forest, Elevation  High 

C2 33 Latitude Longitude >150cm  Moderate 

C3 11 >150cm, Longitude , Glaciofluvial  Low 

C4 7 Slope , Elevation(28:785 m), 
Glaciofluvial  

Low 

CNLPCA 

C1 41 Latitude , Longitude , Forest  High 

C2 20 Forest , Rapid ,  Elevation  Low 

C3 17 Rapid , Forest, Elevation  Moderate 

C4 12 Forest , Rapid , Forest  Moderate 
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4.3. Study Area and Data 

The study area covers 90 natural watersheds across the Province of Ontario, 

Canada (Figure 4-1), with annual mean precipitation of 400–600 mm in the northern 

region and 800–1200 mm in the southern part. In the northern regions, the average air 

temperature ranges approximately between -20°C (in January) and 17°C (in July); and in 

the southern regions, it ranges between -10°C (in January) and 19°C (in July). Most of 

the natural watersheds in the northern region are covered with coniferous forest, with 

gaps of swamp, muskeg, and small lakes, whereas the southern region is dominated by 

mixed forests (Atlas of Canada, available at http://atlas.nrcan.gc.ca). 

Meteorological data, i.e., daily precipitation and air temperature, were obtained from the 

Canadian Daily Climate Data (CDCD, provided by the Environment Canada). The daily 

flow data (1976-1994) were obtained from the HYDAT database (Environment Canada, 

2004). The climate and streamflow data of 1976-1985 (10 years) are used for models 

calibration while the data of 1986-1994 (9 years) are used for models validation. The 

areas of the watersheds range from approximately 100 to 100,000 km2, representing 

different types and sizes of watersheds. Watershed attributes used in this study are similar 

to ones used in Samuel et al, (2011) and Razavi and Coulibaly (2013b). They can be 

classified as follows: the location of the centroid of the watersheds (i.e., latitude and 

longitude); the morphology (i.e., mean elevation, mean slope and area); the percentage of 

area covered by water (the portion of lakes); the land use (the portion of forests); water 

drainage (i.e., the sum of the percentage of the area covered by rapid and moderate 

drainage classes); rooting depth (associated to soil depth and available water, i.e., the 

portion area covered by root depth deeper than 150 cm); and the surface geology (the 

http://atlas.nrcan.gc.ca/
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percentage of region covered by glaciofluvial, glaciodeposit, and rock). Catchment 

attributes were derived from the digital maps and digital elevation database obtained from 

the Shuttle Radar Topography Mission (SRTM), available at 

http://www2.jpl.nasa.gov/srtm/cbanddataproducts.html (Samuel et al. 2011). 

 

Figure 4-1 Location map of selected Ontario watersheds and sample watersheds 

 

http://www2.jpl.nasa.gov/srtm/cbanddataproducts.html
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4.4. Methodology 

An overview of the methodology is provided in a flowchart (see Figure 4-2). The 

method includes four regionalization approaches: three types of neural networks (i.e. 

MLP, SVM, CPN), and a spatial proximity method (i.e. IDW) that are applied to the two 

scenarios of unclassified and classified watersheds using SOM, NLPCA and CNLPCA 

techniques to transfer the hydrologic model’s parameters of gauged watersheds to 

ungauged ones. The classification techniques are described with details in a previous 

study (Razavi and Coulibaly, 2013b) and summarized in the appendix. In addition, Table 

4-1 presents the final results of the selected classification techniques. The two hydrologic 

models used to estimate continuous daily streamflow are conceptual rainfall-runoff 

models described in the next section followed by a brief description of the regionalization 

techniques and model performance evaluation criteria. 

Rainfall-Runoff Models  

MAC-HBV   

The MAC-HBV (Samuel et al., 2011) is a lumped conceptual rainfall-runoff 

model, following the structure of the HBV model (Bergström, 1976) which has been 

widely used in hydrological studies and also in many regionalization studies. The MAC-

HBV uses a concept of the HBV model similar to what has been presented earlier by 

Merz and Blöschl (2004) and modified routing routine following Seibert (1999) with a 

simplified Thornwaite formula to account for daily potential evapotranspiration (SMHI 

2005).  The model consists of a snow routine, a soil moisture routine, a response 

function, and a routing routine. The snow routine represents changes in the snowpack 
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using a simple degree-day concept. The soil moisture routine represents the soil moisture 

accounting, i.e., changes in soil moisture storage in top soil layer.  The response function 

estimates the amount of runoff from upper zone and lower zone based on the current 

water storage and the maximum storage. Channel or routing an equilateral triangular 

weighting function is used to obtain the final streamflow. The parameters of this model 

are presented in Table 4-2 Detailed description of the MAC-HBV model can be found in 

Samuel et al. (2011). 

SAC-SMA   

The SAC-SMA is a conceptual watershed model (Burnash et al., 1973) used by 

the National Weather Service (NWS) for operational streamflow forecasting and flood 

warning throughout the United States. This hydrologic model is a conceptual system for 

modeling the headwater portion of the hydrologic cycle.  The first component of the 

model i.e., rainfall occurring over the basin is considered as falling on two basic areas: 

the pervious area and impervious area. Pervious area is a permeable portion of the soil 

mantle and impervious area is a portion of the soil mantle covered by streams, lake 

surfaces, marshes or other impervious material. This model consists of six state variable 

reservoirs representing the accumulation of water in two soil zones (upper and lower) in 

the forms of both “tension” and “free” water. Tension water is considered as water which 

is closely bound to soil particles and is available for evapotranspiration while free water 

is the portion of water which is not bound to soil particles and so is free to descend to 

deeper portions of the soil and move laterally through the soil due to gravitational and 

pressure forces. 
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Figure 4-2 Flowchart of methodology showing the four regionalization techniques (IDW, MLP, 
SVM and CPN) used to transfer the parameters of two hydrologic models (MAC-HBV and SAC-
SMA) from gauged to ungauged watersheds considering two scenarios of classified and 
unclassified watersheds. 

Classified using SOM 
,  NLPCA , CNLPCA  

Unclassified 

IDW MLP SVM CPN 

Parameters of               
MAC-HBV and SAC-SMA 

Gauged 
Watersheds 

Ungauged 
Watersheds 

Continuous streamflow 
regionalization 

Model performance evaluation on mean, 
peak, and low daily flow 

90 ungauged 
watersheds 

Regionalization techniques 
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Table 4-2 Parameters of MAC-HBV and SAC-SMA models and optimized ranges (using PSO 
algorithm) 

 

 

 

 Parameter Descriptions Unit Initial range Optimized range
tr Upper threshold temperature, to distinguish between rainfall, snowfall 0C -1.5 – 2.5 0 – 2.5

scf Snowfall correction factor - 0.4-1.6 0.44-1.55
ddf Degree day factor mm/(day0C) 0-5 0.5-5

athorn A constant for Thornthwaite’s equation - 0.1-0.3 0.1-0.3
fc Maximum soil box water content mm 50-800 111-800
lp Limit for potential evaporation mm/mm 0.1*fc-0.9*fc 5-717

beta A non-linear parameter controlling runoff generation - 0-10 0.25-10

k0
Flow recession coefficient at an upper soil reservoir (for soil moisture 
exceeds a threshold lsuz value)

days 1_30 1_30

lsuz
A threshold value used to control response routing on an upper soil 
reservoir

mm 1-100 1_100

k1 Flow recession coefficient at an upper soil reservoir days 2.5-100 30-100
cperc A constant percolation rate parameter mm/day 0.01-6 0.01-6

k2 Flow recession coefficient at an lower soil reservoir days 20-1000 100-500
maxbas A triangular weighting function for modeling a channel routing routine days 1_20 1_17

rcr Rainfall correction factor - 0.5-1.5 0.65-1.5

α1 An exponent in relation between outflow and storage representing non-
linearity of storage-discharge relationship of lower reservoir

- 0.5-20 0.6-1.5

UZTWM Upper-zone tension water  maximum storage (mm) 1-150 1-150
UZFWM Upper-zone free water maximum storage (mm) 1–150 17–145
LZTWM Lower-zone tension water  maximum storage (mm) 1-500 1-446
LZFPM Lower-zone free  water  primary maximum storage (mm) 1-1000 1-966
LZFSM Lower-zone free  water  supplemental maximum storage (mm) 1-1000 1-1000
ADIMP Additional impervious area 0-0.4 0-0.4

UZK Upper-zone free water lateral depletion rate (day-1 ) 0.1-0.5 0.1-0.5
LZPK Lower-zone primary free water lateral depletion rate (day-1 ) 0.0001-0.025 0.0001-0.025

LZSK Lower-zone supplemetal  free water lateral depletion rate (day-1 ) 0.01-0.25 0.01-0.25
ZPERC Maximum percolation rate - 1-250 1-246
REXP Exponent of the percolation equation - 1_5 1_5

PCTIM Impervious fraction of the watershed area - 0-1 0-0.1
PFREE Fraction percolating from upper to lower zone free water storage - 0-0.6 0-0.6

Rq Routing coefficient 0-1 0_0.75
ddf Degree day factor mm/(day0C) 0-5 0.3-5
scf Snowfall correction factor - 0.4-1.6 0.5-1.5

tr Upper threshold temperature, to distinguish between rainfall, snowfall 0 C -1.5 – 2.5 0-2.5

athorn A constant for Thornthwaite’s equation - 0.1-0.3 0.1-0.3
rcr Rainfall correction factor - 0.5-1.5 0.7-1.5

RIVA Riparian vegetation area -
SIDE Ratio of the deep recharge to channel base -

RSERV Fraction of lower zone free water not transferable to tension water  
0

0.3

MAC-HBV

SAC-SMA

Constant numbers
0
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State variables include: Additional Impervious Area Content (ADIMC), Upper-

Zone Tension Water storage Content (UZTWC), Upper-Zone Free Water storage Content 

(UZFWC), Lower-Zone Tension Water storage Content (LZTWC), Lower-Zone Free 

Primary water storage Content (LZFPC), Lower-Zone Free Secondary water storage 

Content (LZFSC). The structure of SAC-SMA model used herein is illustrated in Figure 

4-3, and the optimized maximum and minimum ranges of each model parameter are 

presented in Table 4-2.  The routing approach used in this model is Nash cascade method 

and the same snow component and evapotranspiration calculation’s method as used in 

MAC-HBV are added to this model.  

 

Figure 4-3 Schematic representation of the SAC-SMA model as used in this study showing the 
model states parameters used. Arrows indicate fluxes between components and the streamflow at 
the watershed outlet is shown (Adapted after Vrugt et al. 2006) 
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Model Parameter Optimization 

The two rainfall-runoff models are calibrated against observed daily streamflow 

time series . The time series of 1976-1985 (10 years)  are used for models calibration  to 

obtained the optimized parameters while 1986-1994 (9 years) are used for models 

validation and comparison. The optimization algorithms including Particle Swarm 

Optimization (PSO) (Eberhar and Kennedy, 1995; Clerc, 2006), Shuffle Complex 

Efficiency (SCE) (Duan et al. 1994) and Non-Sorted Genetic Algorithm II (NSGA II) 

(Deb et al.  2001), and a Monte Carlo simulation are used to optimize the parameters of 

two models. In the Monte Carlo simulation, 100,000 uniformly-distributed random values 

of the model parameters are selected in their initial ranges and the parameter set which 

produce the highest model performance is selected as the optimized set of parameters. 

The criterion of performance evaluation used for all the optimization algorithms is the 

objective function (NVE) used by Samuel et al. (2011) which addresses mean, low and 

high flows at the same time: 

𝑁𝑉𝐸 = 0.5𝑁𝑆𝐸 − 0.1𝑉𝐸 + 0.25𝑁𝑆𝐸𝑙𝑜𝑔 + 0.25𝑁𝑆𝐸𝑠𝑞𝑟                                      Eq. 4-1 

Where 

  

                                                                                                                                  Eq. 4-2 

 

 

𝑉𝐸 = ∑ 𝑄𝑠𝑖𝑚𝑁
𝑖=1 −∑ 𝑄𝑜𝑏𝑠𝑁

𝑖=1
∑ 𝑄𝑜𝑏𝑠𝑁
𝑖=1

                                                                                             Eq. 4-3 
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𝑁𝑆𝐸𝑠𝑞𝑟 = 1 − �∑ (𝑄𝑠𝑖𝑚
2𝑁

𝑖=1 −𝑄𝑜𝑏𝑠
2 )2

∑ (𝑄𝑜𝑏𝑠
2 −𝑄𝑜𝑏𝑠

2𝑁
𝑖=1 )2

�                                                                         Eq. 4-4 

 

𝑁𝑆𝐸𝑙𝑜𝑔 = 1 − �∑ (log𝑄𝑠𝑖𝑚𝑁
𝑖=1 −log𝑄𝑜𝑏𝑠)2

∑ (log𝑄𝑜𝑏𝑠−log𝑄𝑜𝑏𝑠𝑁
𝑖=1 )2

�                                                     Eq. 4-5 

 

Qsim and Qobs  are the simulated and observed streamflow, respectively, and  Qobs  is the 

average  of observed streamflow values and N is the number of data points.  The NSElog 

is better at reflecting the accuracy of low flows; while NSEsqr is better at reflecting the 

accuracy of high flows. Using this objective function the single-objective algorithms can 

be useful as a multi-objective one. The model with the highest performance should 

produce a value close to 1 for NVE and NSE (Nash and Sutcliffe, 1970) and a value close 

to zero for Volume Error (VE). 

Regionalization Techniques  

Inverse Distance Weighted (IDW) 

 
IDW is an interpolation technique based on inverse spatial distance of 

watersheds’ centroid. This method is coupled with physical similarity approach as in 

Samuel et al. (2011), and is recognized as the best regionalization method among the 

other investigated approaches (i.e. regression-based and physical similarity) for the study 

area. The spatial distance between watersheds is calculated using latitude and longitude 
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of the watersheds’ centroids. The IDW equation (Shepard 1968) used in this study to 

estimate model parameters in ungauged watersheds is: 

𝑃𝑗 = ∑ 𝑊𝑖
𝑛
𝑖=1 𝑝𝑖                                                 Eq. 4-6 

Where n is the number of gauged watersheds; 𝑝𝑖 is the model parameter of gauged 

watersheds; Pj is the model parameter of ungauged watershed; Wi  is weight function  of 

each watershed and is calculated as follows: 

𝑊𝑖 = (𝑑𝑖
−2)

∑ (𝑑𝑖
−2)𝑛

𝑖=1
                                              Eq. 4-7 

Where di is distance from the centroid of the gauged watersheds to the centroid of the 

ungauged watershed.  

First before watershed classification each of the 90 watersheds is assumed to be 

ungauged in turn and after calculating the weights of other watersheds based on their 

distance, the model parameters of the ungauged watershed are obtained using the 

parameters of gauged ones. After classifying the watersheds the weights are calculated 

within each cluster and model parameters are obtained for each watershed assumed as 

ungauged based on the distance from other watersheds in the cluster 

 

Multi-Layer Perceptron (MLP)  

MLP is a feed forward neural network which maps input data set to output or 

network target. It is the most widely used data-driven model in hydrologic applications 

(Maier et al., 2010) and is therefore selected as a benchmark method. The MLP used in 

this study has one input layer, one hidden layer and one output layer. The neural network 

toolbox of MATLAB 2012b is used for the MLP model development and computation. 
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Physiographic watershed attributes (12 attributes) are used as network input’s vector and 

each hydrologic model parameter of MAC-HBV and SAC-SMA , presented in Table 2, 

as network output in separate networks  for 90 samples (watersheds). Data from two third 

of watersheds are used to train the network and model parameters of the remaining 

watersheds are obtained from the validation period. To cover all the watersheds, this 

procedure is repeated three times. For the unclassified watersheds, data from 60 

watersheds are used as gauged watersheds to train the network and using the same 

network architecture, model parameters of remaining 30 watersheds are estimated using 

their attributes as network’s input. This procedure is repeated 3 times so that all the 

watersheds are considered as ungauged once. For the classified watersheds the same 

procedure is performed within each cluster separately i.e., two-third of watersheds in 

each cluster are considered as gauged while the remaining one-third are considered as 

ungauged watersheds and it is performed three times to encompass all the watersheds in 

each cluster.  

Architecture of the neural network with best performance is achieved by taking 

the average of Mean Square Error (MSE) of network’s output. The network is trained 

using Bayesian regularization  backpropagation training algorithm (MacKay, 1992). 

Bayesian regularization is a network training process that updates the weight and bias 

values using Levenberg-Marquard optimization. It minimizes a combination of squared 

errors and weights, and then determines the correct combination so as to produce a 

network that generalizes well. A comparison between the networks trained by a regular 

Levenberg-Marquard and Bayesian regularization  algorithms indicated the better 

performance for the latter. The smallest network MSE was achieved for 3 hidden units 
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for the unclassified watersheds and 2 hidden units for classified ones. Tangent sigmoid 

(“tansig”) function was used as transfer function in both the hidden and output layers. 

The networks were trained 100 times and the output with highest performance on training 

data set were selected. 

Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a neural network based algorithm for solving 

multidimensional function estimation problems and it was initially developed by Vapnik 

(1995) for pattern recognition problems and later extended to solve non-linear regression 

estimation problems by introduction of Vapnik’s 𝝐-insensitive loss function (Vapnik et 

al., 1996). Therefore SVMs can be used for classification (Support Vector Classifier –

SVC) and regression (Support Vector Regression- SVR). This tool is especially useful for 

high dimensional input space (in our case 12 catchment attributes) where decision 

functions are based on nonlinear elements. SVMs apply the structural risk minimization 

principle which minimizes an upper bound of the generalization error rather than 

minimizing the training error. Generalization error is bounded by the sum of the training 

error and a confidence interval term. Therefore, SVMs are expected to result in better 

generalization performance than other neural network models. Furthermore the solution 

of SVMs is unique because the training of SVMs is equivalent to solving a linearly 

constrained quadratic programming, and also it is optimal and absent from local minima, 

unlike other networks’ training which requires non-linear optimization and involves the 

risk of getting stuck in local minima. The regression function which map a set of data 

points {(𝑥𝑖,𝑑𝑖)}𝑖=1𝑛   in which xi is the input vector, di is the desired target value and n is 
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the total number of data patterns estimated by SVMs and can be approximated by (Tay 

and Cao, 2001): 

 

𝑦 = 𝑓(𝑥) = 𝑤𝑇 ∅(𝑥) + 𝑏                               Eq. 4-8 

 

Where ∅(𝑥) maps the input x to a vector in multi feature space.  𝑤 and 𝑏 are weight and 

bias values obtained by minimizing risk function of SVMs (RSVMs) : 

𝑅𝑆𝑉𝑀𝑠 (𝐶) = 𝐶 1
𝑛
∑ 𝐿𝜀𝑛
𝑖=1 (𝑑𝑖 ,𝑦𝑖) + 1

2
‖𝑤‖2                                      Eq. 4-9 

 

Where   𝐿𝜀(𝑑, 𝑦) is 𝜀-insensitive loss function: 

  

𝐿𝜀(𝑑,𝑦) = �|𝑑 − 𝑦| − 𝜀               |𝑑 − 𝑦| ≥ 𝜀
0                          otherwise

                           Eq. 4-10 

 

The MATLAB code of LS-SVMs (Brabanter et al., 2011) is used in this study for support 

vector regression (SVR) model development.  A cross validation procedure is used as a 

performance measure to determine tuning parameters i.e., regularization and kernel 

parameters in two steps; first a global optimization technique i.e., Coupled Simulated 

Annealing (CSA) which determines suitable parameters according to some criterion and 

parameters which are then given to a second optimization procedure (simplex or grid 

search) to perform a fine-tuning step. Support vector regression (SVR) has been 

investigated for hydrological prediction in previous studies but rarely investigated for 

streamflow prediction in  ungauged watersheds. A recent study (Zakaria, 2012) has 
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shown the potential of SVR for streamflow regionalization.  Herein the SVM is further 

investigated as regionalization technique for both classified and unclassified basins, and 

compared with more advanced techniques such as the counter propagation neural 

network (CPN). 

Counter Propagation Neural Network (CPN) 

CPN introduced by Hecht - Nielsen (1987) consists of an input layer, Kohonen 

layer  and output layer called Grossberg outstar. The input layer performs the mapping of 

the multidimensional input data into lower dimensional array (most often two-

dimensional). The mapping is performed by use of competitive learning — often called 

winner-takes-it-all strategy. The counter propagation algorithm is executed in two phases: 

a training phase and an operational phase (classification/prediction). The training process 

of the CPN connects the input vector with N variables (xs=xs,1,…, xs,i,…, xs,N) with the 

weight vector (wj=wj,1,…, wj,i,…, wj,N) of the neurons in the Kohonen layer. The 

winning (or central) neuron c is first found among the neurons in the Kohonen layer, then 

the weights of both Kohonen and output are adjusted  according to the pairs of input and 

target vectors (x, y) using suitably selected learning rate η(t) and neighborhood function 

𝑓(𝑑𝑗−𝑑𝑐)(Kuzmanovski and Novic, 2008) : 

 

𝑊𝑗,𝑖
𝑛𝑒𝑤 = 𝑊𝑗,𝑖

𝑜𝑙𝑑 + 𝜂𝑡.𝑓(𝑑𝑗−𝑑𝑐).(𝑥𝑖 −𝑊𝑗,𝑖
𝑜𝑙𝑑)                                                     Eq. 4-11 

𝑢𝑗,𝑖
𝑛𝑒𝑤 = 𝑢𝑗,𝑖

𝑜𝑙𝑑 + 𝜂𝑡 .𝑓(𝑑𝑗−𝑑𝑐).(𝑦𝑖 − 𝑢𝑗,𝑖
𝑜𝑙𝑑)                                                          Eq. 4-12 

Where the difference (𝑑𝑗 − 𝑑𝑐) is the topological distance between the winning neuron c 

and the neuron j which weights are adjusted. 𝑊𝑗,𝑖
𝑜𝑙𝑑 and 𝑊𝑗,𝑖

𝑛𝑒𝑤are weights of the Kohonen 
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layer before and after its adjustments were performed, while 𝑢𝑗,𝑖
𝑜𝑙𝑑 and 𝑢𝑗,𝑖

𝑛𝑒𝑤 are the 

weights of the output layer before and after the performed adjustments. The CPN 

MATLAB code developed by Kuzmanovski and Novic (2008) was adapted and used in 

this study. Similar to MLP, the data set is divided into two parts of training and 

validation. Attributes and model parameters of two-third of watersheds are used for 

network’s training while the remaining one-third is used for the validation. Performing 

the same process tree times, all the watersheds are considered as ungauged once. The 

attributes and parameters were normalized using the maximum and minimum values of 

attributes and parameters respectively. The best values of parameters of CPN for 

regression i.e., width and length of network, parameters of rough and fine-tuning training 

and shape of network were determined by standard  trial and error approach. 

Model Performance Evaluation 

 
To evaluate the performance of the regionalization models (i.e. combination of 

regionalization and classification techniques), in addition to mean daily streamflow, the 

derived daily baseflow time series, peakflow values, streamflow over a threshold value, 

and monthly flows are estimated. The description of the estimation methods are described 

as follows. 

Baseflow  

Baseflow is derived from streamflow series to evaluate models’ performance in 

low flow estimation.  Baseflow was separated from total streamflow using a recursive 

digital filter (Lyne and Hollick, 1979) as follows: 
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  𝑓𝑛 = 𝑎 ×  𝑓𝑛−1 +  0.5 (1 + 𝑎)(𝑄𝑛 −  𝑄𝑛−1)                             Eq. 4-13  

𝑄𝑏𝑛 = 𝑄𝑛 − 𝑓𝑛                                                                              Eq. 4-14 

Where  𝑄𝑏𝑛 , 𝑓𝑛 and Qn are the baseflow, the filtered quick response and the original 

streamflow at nth event, respectively, and a is the filter parameter (set to 0.925).  

Peak Flow  

To evaluate the performance of models for peak flow estimation, usually some 

threshold values are considered and the error of model in days with flow over that 

threshold is calculated. Examples of high flow threshold are flow-duration percentile 

describing the daily mean discharge that is exceeded a given percentage of the time or 

long term median flow and flows 3, 5,7 or 9 times the long term median flow or 2 times 

the long term mean flow (Growns and Marsh,  2000). For instance some studies consider 

(1 to 10 or 15) percent duration flows (U.S. Geological Survey, 2003) as peakflow 

threshold. We consider 33 percent duration flow as a threshold and the streamflow values 

above this threshold are considered as high flows. The reason for selecting this threshold 

is to have almost same number of days with high flow for all watersheds (one-third of 

data length) and also to obtain a reasonable number of days for error calculation. Volume 

Error (VE) between the simulated and observed peak flows is calculated for all the 

simulations. Zero value for VE indicates the best model performance. 

4.5. Results 

Hydrologic Models’ Parameter Optimization 
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Optimization algorithms including SCE, PSO, NSGA-II and Monte Carlo 

simulation were applied to calibrate hydrologic models: MAC-HBV and SAC-SMA 

against observed daily streamflow time series of gauged watersheds for 1976-1985 (10 

years) as calibration period and evaluated for 1986-1994 (9 years) as validation period. 

All variable parameters of MAC-HBV i.e. 15 parameters and all variable parameters (not 

constant values) of SAC-SMA i.e. 19 parameters presented in Table 4-2 are optimized by 

changing in their initial ranges while other parameters are kept constant at their average 

possible value. The initial and optimized ranges of the parameters of the two hydrologic 

models are presented in Table 4-2. 
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The box plots of NSE and VE values of the simulated daily streamflow for the 

validation period using optimized parameters for 90 watersheds for the two hydrologic 

models are presented in Figure 4-4. Results from PSO and SCE indicate equally superior  

mean and median of NSE and VE values with less outlier values for PSO compared to 

other optimization methods. Further analysis on the performance of PSO and SCE was 

performed by calculating NSE values for daily baseflow and VEs for peak flows. The 

results indicated almost similar performance but slightly better results for PSO. 

Therefore, the PSO is selected as hydrologic model optimization method for the 

regionalization study. Optimized parameters from PSO algorithm for the calibration 

period (1976-1985) are selected for the regionalization and will be transferred to 

hypothetical ungauged watersheds. 

 

Figure 4-5 Box plots of NSE and VE values of simulated daily streamflow for 90 
watersheds across Ontario using calibrated model parameters of a) MAC-HBV,   b) SAC-SMA 

resulted from optimization algorithms: PSO, SCE, NSGAII and Monte-Carlo for  validation 
period (1986-1994). 
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Continuous Streamflow Regionalization 

Daily Streamflow 

NSE ,  RMSE (Root Mean Square Error) and VE values of simulated daily 

streamflow using the two hydrologic models (SAC-SMA and MAC-HBV) coupled with 

the four regionalization techniques (IDW, MLP, CPN and SVM) on unclassified and 

classified homogeneous watersheds using classification techniques (SOM , NLPCA and 

CNLPCA) for validation period (1986-1994) are calculated. Table 4-3 presents the 

statistics of NSE values for MAC-HBV and SAC-SMA models coupled with IDW, MLP, 

CPN and SVR techniques on unclassified and classified watersheds. The mean and 

median of NSE values for the unclassified watersheds using IDW technique are slightly 

higher than the corresponding values for the same model coupled with MLP technique 

and clearly higher than SVM and CPN techniques. These results show that MLP is very 

competitive with IDW approach. CPN and SVM indicate competitive performance when 

they are applied on classified watersheds.  For both hydrologic models coupled with the 

four regionalization techniques, the results in average after watershed classification are 

consistently improved although it might not be the case for some watersheds.  For 

example both MAC-HBV and SAC-SMA models coupled with IDW technique reach 

their highest performance for classified watersheds using CNLPCA with NSE mean / 

median of 0.47 / 0.50 and 0.48 / 0.53,  respectively. Table 4-5 (a) presents the percent of 

basins with  less than -20% and more than 20% of improvement in RMSE of daily 

streamflow normalized by long term mean daily streamflow after watersheds’ 

classification. The minus improvements indicate deterioration and imply that watershed 

classification had negative impact on regionalization performance in some watersheds. 
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For example the performance of MAC-HBV model coupled with MLP technique indicate 

<-20% of improvement (deterioration) in normalized RMSE after CNLPCA classification 

for about 17% of watersheds while this improvement is >20% for 20 percent of 

watersheds. According to this table, when using CPN as regionalization method, MAC-

HBV and SAC-SMA models reach more than 20% improvement in RMSE of daily 

streamflow for about 39% and 13% of basins after watersheds’ classification using 

NLPCA . In general, results in Table 4-5 (a) indicate that some combinations of 

hydrologic model, regionalization technique, and basin classification method can yield 

higher improvement (>20%) in daily streamflow estimation in most of ungauged basins 

while some other combinations results in deteriorating performance. Two of the 

combinations (i.e. CPN-NLPCA and CPN-SOM) , which show consistent improvement 

in daily mean , low and peak flow regionalization using MAC-HBV and SAC-SMA in 

majority of the watersheds are further analyzed hereafter. 

  Figure 4-6 (a) and Figure 4-6 (b) demonstrate the spatial distribution of percent of 

improvement in daily streamflow regionalization using watershed classification 

techniques, NLPCA and SOM , combined with regionalization technique, CPN with 

MAC-HBV and SAC-SMA models, respectively. The basins which indicate consistent 

improvement of “>20%” in daily mean, low and peak flow regionalization are specified 

with a circle. Furthermore, the hydrographs of observed and simulated daily streamflow 

using the two hydrologic models coupled with CPN technique on unclassified and 

classified watersheds for three sample watersheds (specified in Figure 4-1) are presented 

in Figure 4-7. This figure shows a generally better performance of models after watershed 

classification.  
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Daily Baseflow and Peakflow 

 

        NSE statistics for daily baseflow are presented in Table 4 4. MLP and CPN become 

very competitive with the IDW method (in average) when applied to classified basins.  In 

general, the performance of models is superior for daily baseflow compared to daily 

streamflow.  Similar to daily streamflow, the improvements in NSE values of daily 

baseflow regionalization in average are more significant for CPN and SVR techniques. 

Table 4 5 (b) presents the percentage of watersheds with less than -20% and more than 

20% improvement in VEs  of daily baseflow for regionalization models after watersheds’ 

classification. According to this table the baseflow regionalization is improved >20% in 

high percent of watersheds when using MLP, CPN and SVR techniques after watershed 

classification.  Table 4 5 (c) indicates the percentage of watersheds with less than -20% 

and more than 20% improvement in VE of daily peak flow.  More than 20% 

improvement in VE of daily peakflow can be achieved in about 61% and 47 % of the 

watersheds when CPN and SVM are applied respectively to basins classified with 

NLPCA method while there will be the deterioration of <-20 % in 26 and 19 percent of 

watersheds , respectively. Figure 4 5 and Figure 4 6 demonstrate the spatial variability of 

percent of improvement in VE of daily baseflow and peakflow regionalization using 

watershed classification techniques, NLPCA and SOM, combined with regionalization 

technique, CPN and MAC-HBV and SAC-SMA models. 
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Table 4-3 Statistics of NSE values of estimated daily streamflow using MAC-HBV and SAC-SMA models 
coupled with regionalization techniques: IDW, MLP, CPN and SVM on unclassified watersheds (Unc) and 

classified watersheds with SOM, NLPCA and CNPLCA for validation perids 

Regionalization 
technique IDW MLP CPN SVR 

Classification 
technique Unc SOM NLPCA CNPCA Unc SOM NLPCA CNPCA Unc SOM NLPCA CNPCA Unc SOM NLPCA CNPCA 

MAC-
HBV 

Min -0.75 -0.48 -0.63 -0.14 -2.20 -0.02 -0.25 -0.28 -1.21 -0.47 -0.13 -1.11 -0.82 -0.95 -2.80 -0.89 

Mean 0.44 0.45 0.45 0.47 0.35 0.47 0.43 0.41 0.26 0.41 0.43 0.42 0.29 0.31 0.34 0.33 

Median 0.49 0.48 0.51 0.50 0.43 0.51 0.47 0.45 0.32 0.44 0.46 0.47 0.33 0.36 0.44 0.43 

Max 0.68 0.73 0.69 0.69 0.64 0.68 0.69 0.68 0.72 0.69 0.70 0.70 0.66 0.64 0.68 0.70 

SAC-
SMA 

Min -1.50 -1.28 -0.41 -0.38 -0.68 -1.07 -0.53 -1.97 -2.52 -1.03 -1.66 -0.70 -3.05 -1.07 -2.85 -0.91 

Mean 0.40 0.45 0.45 0.48 0.40 0.44 0.43 0.45 0.26 0.38 0.39 0.42 0.29 0.34 0.31 0.36 

Median 0.52 0.53 0.53 0.53 0.47 0.52 0.50 0.50 0.40 0.48 0.48 0.49 0.41 0.46 0.46 0.47 

Max 0.70 0.71 0.72 0.71 0.70 0.68 0.70 0.68 0.71 0.69 0.70 0.69 0.68 0.66 0.69 0.67 
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Figure 4-6 Spatial distribution of percent of improvement in daily streamflow , low and peak flow 
regionalization using (a) NLPCA and (b) SOM classification techniques combined with CPN 
regionalization technique on MAC-HBV model - small circles specify the basins with consistent 
improvement of “>20% “in daily mean , low and peak flow regionalization 
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Figure 4-7 Spatial distribution of percent of improvement in daily streamflow , low and peak flow 
regionalization using (a) NLPCA and (b) SOM classification techniques combined with CPN 

regionalization technique on SAC-SMA model - small circles specify the basins with consistent 
improvement of “>20% “in daily mean , low and peak flow regionalization 
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Table 4-4 NSE statstics of estimated daily baseflow using MAC-HBV and SAC-SMA models coupled with 
regionalization techniques: IDW, MLP, CPN and SVM on unclassified watersheds (Unc) and classified 
watersheds with SOM, NLPCA and CNPLCA for validation period (1986-1994 

Regionalization 
technique IDW MLP CPN SVR 

Classification 
technique Unc SOM NLPCA CNPCA Unc SOM NLPCA CNPCA Unc SOM NLPCA CNPCA Unc SOM NLPCA CNPCA 

MAC-
HBV 

Min -0.31 -0.43 -0.65 -0.44 -0.73 -0.32 -0.80 -0.29 -1.15 -0.66 -0.40 -0.68 -0.69 -0.55 -1.09 -0.69 

Mean 0.48 0.48 0.48 0.50 0.37 0.50 0.45 0.44 0.27 0.44 0.46 0.47 0.32 0.36 0.38 0.40 

Median 0.51 0.52 0.54 0.54 0.47 0.52 0.51 0.49 0.33 0.47 0.51 0.53 0.36 0.43 0.49 0.49 

Max 0.60 0.73 0.72 0.70 0.66 0.71 0.74 0.70 0.73 0.72 0.72 0.73 0.67 0.67 0.70 0.71 

SAC-
SMA 

Min -0.91 -0.37 -0.92 -0.36 -1.26 -1.33 -1.41 -1.20 -1.89 -1.32 -0.83 -0.98 -1.37 -0.96 -1.69 -0.80 

Mean 0.46 0.50 0.39 0.52 0.42 0.47 0.45 0.48 0.33 0.42 0.44 0.45 0.34 0.40 0.39 0.41 

Median 0.57 0.58 0.53 0.58 0.52 0.57 0.54 0.52 0.51 0.51 0.53 0.56 0.43 0.50 0.50 0.51 

Max 0.75 0.76 0.78 0.76 0.71 0.72 0.72 0.71 0.73 0.72 0.73 0.72 0.71 0.68 0.70 0.70 

 

Hydrologic implications 

According to Figure 4-5 and Figure 4-6 regardless of the hydrologic model used, 

most of the northern watersheds (except the largest one) reach the improvements of 

“>20%” after watershed classification consistently for mean, low and high flows, while in 

small southern watersheds this improvement is less frequent, while in most of the central 

watersheds and some southern watersheds deterioration is more apparent. 

 

 

 

 

 



P.h.D Thesis – T. Razavi                                                            McMaster University – Civil Engineering 

138 

Table 4-5 Percent of basins with percent of improvement in  (a) RMSE of daily streamflow (b) VE 
of daily baseflow (c) VE of daily peakflow less than -20 % or  greater than 20 % using 

classification techniques: NLPCA, CNLPCA and SOM prior to regionalization techniques 

(a) 

Regionalization IDW MLP CPN SVM 

Classification NLPCA CNLPCA SOM NLPCA CNLPCA SOM NLPCA CNLPCA SOM NLPCA CNLPCA SOM 

MAC-HBV 

<-20 % 8 3 9 3 17 17 7 43 12 13 14 11 
>20 % 4 3 3 16 20 20 39 10 37 16 23 18 

SAC-SMA 

<-20 % 12 1 3 7 7 9 8 10 14 11 9 18 
>20% 2 11 8 4 10 6 13 17 19 10 9 12 

 

 (b) 

Regionalization IDW MLP 
CPN 

SVM 

Classification NLPCA CNLPCA SOM NLPCA CNLPCA SOM NLPCA CNLPCA SOM NLPCA CNLPCA SO
M 

MAC- HBV 

<-20 % 34 16 17 32 38 36 33 44 36 33 34 38 
>20 % 41 23 16 53 47 56 56 41 54 51 49 41 

SAC-SMA 

<-20 % 51 26 23 34 38 35 33 44 44 31 37 42 
>20 % 11 24 23 48 50 41 49 36 48 46 49 46 

 

 (c) 

Regionalization IDW MLP CPN SVM 
Classification 

NLPCA CNLPCA SOM NLPCA CNLPCA SOM NLPCA CNLPCA SOM NLPCA CNLPCA SOM 

MAC-HBV 

<-20 % 26 11 12 41 30 22 26 39 20 19 21 29 
>20 % 31 19 16 31 43 47 61 36 52 47 47 36 

SAC-SMA 
<-20 32 14 17 26 29 18 27 29 44 31 37 42 
>20 14 12 11 39 29 42 37 37 48 46 49 46 
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Figure 4-8 Observed and simulated streamflow using hydrologic models: a) MAC-HBV and b) 
SAC-SMA models coupled with CPN technique on unclassified (CPN-Unc) and classified 

watersheds using NLPCA (CPN-NLPCA) on three sample watersheds specified on Figure 4-1. 

 

The hydrologic behavior of all basins for the period of 1976-1994 (19 years) is 

evaluated by determining the timing of monthly low and peakflow and the FDC slope, 

Q95/Q5 (the proportion of daily low/high daily flow). The shape of FDC’s has been 

shown to be dependent on some watershed attributes such as hydrogeology (Patel, 2006) 

and drainage for agriculture and urban land use (Smakhtin, 1998). Timing of low and 

peak flow is governed by climate which acts as a first order control in Ontario (Stainton 

and Metcalfe 2007),  and hydrograph shape is reflected in monthly low and peak flow. 

The hydrographs of monthly mean flow (Figure 4-9) indicate that in small southern 
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watersheds the minimum monthly flow generally occurs in July/August with early spring 

snowmelt peakflow in March/April while in northern watersheds minimum monthly flow 

generally happens in March and spring snowmelt reaches a peakflow in May/June and in 

central watersheds generally minimum flow happens in February/March and spring 

snowmelt monthly peakflow occurs  in April/May in general.  

Figure 4-8 demonstrates the spatial distribution of watersheds’ land cover and the amount 

of FDCs’ slope (Q95/Q5).  Considering the maps in Figure 5 and 6 , the spatial variability 

of FDCs’ slope (Q95/Q5) (Figure 4-8) indicate that in northern watersheds and part of the 

southern basins with higher FDC’s slope a higher improvement in regionalization can be 

achieved after watershed classification. The spatial variability of watersheds’ land cover 

(Figure 4-8) indicates that in southern watersheds with lower percent of forest, a higher 

improvement in streamflow regionalization is achieved compared to the other southern 

basins. In central watersheds where the most deterioration is apparent, forest cover is 

relatively high and in watersheds with higher percent of area covered by rapid drainage 

area and glaciodposits more improvement in regionalization is achieved after watershed 

classification. Therefore, it can be concluded that among the investigated approaches, 

nonlinear watershed classification techniques, SOM and NLPCA coupled with CPN as 

regionalization technique are more likely to improve daily streamflow regionalization in 

watersheds exhibiting these characteristics:  monthly low flow in March, spring snowmelt 

peak flow in May/June, high FDC’s slope (Q95/Q5), less area covered by forest, more 

area covered by rapid drainage  and glaciodeposits. 
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Figure 4-9 Spatial variability of percent of land covered by: Forest, Lake, Rapid drainage, 
Glaciodeposit,   and Glaciofluvial and shape of FDC’s slope (Q95/Q5) in selected Ontario 
watersheds 

 

4.5. Summary and Discussion 

In the current study, 90 watersheds across Ontario (Canada) are used to assess the 

benefit of classified homogenous basins in the regionalization of continuous daily 

streamflow. Four regionalization techniques (IDW, MLP, CPN, SVM) with two 

hydrologic models (MAC-HBV, SAC-SMA) are applied to watersheds classified with 
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nonlinear data mining classification techniques (NLPCA, CNLPCA, SOM) and to 

unclassified watersheds. 

 The study results show that the MLP model is very competitive with the IDW method 

which was identified in previous study as the best regionalization method in the study 

area while the more complicated types of neural networks, CPN and SVR, become 

competitive when they are applied on classified watersheds. It is shown that the 

combination of watershed classification and regionalization techniques for a hydrologic 

model can improve the performance of daily streamflow, baseflow and peakflow 

regionalization in most of the watersheds while that combination might not be the best 

one for some of them. For example, each of the hydrologic models coupled with CPN in 

combination with NLPCA or SOM as a classification technique, reveals a clear 

improvement in daily streamflow, baseflow and peakflow regionalization. The results of 

this study reveal that in general these nonlinear data-driven techniques are more likely to 

improve the performance of daily streamflow regionalization in watersheds with high 

FDC’s slope   (Q95/Q5) , less area covered by forest , more area covered by rapid 

drainage  and glaciodeposits,  monthly low flow in March and spring snowmelt peak flow 

in  May/June . 

Moreover, the improvement of regionalization results for daily baseflow is higher 

compared to daily streamflow and peak flows. This can have positive implication for 

environmental flow determination which is based on baseflow. Accurate baseflow 

estimation in ungauged basins is still a challenging task. This study suggests that 

appropriate combination of regionalization technique, hydrologic model, and basin 
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classification method, can provide substantially improved streamflow and baseflow 

estimates at ungauged basins. Furthermore, it appears that neural networks as dynamic 

nonlinear methods are capable to account for non-stationarity due to urbanisation and 

climate change in the hydrological modelling for ungauged watersheds. The potential of 

neural networks for nonstationary hydrological time series modeling has been 

documented by Coulibaly and Baldwin (2005). Investigation of different types of neural 

networks in watershed classification and streamflow regionalization as well as their 

combination with hydrologic models in future studies in regions with different climate 

pattern and watershed attributes is suggested to further explore the possibility of 

improvement in hydrologic predictions in ungauged watersheds. 
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Summary of paper IV:  Razavi, T., and  Coulibaly, P. (2014) . Improving Daily Streamflow 
Regionalization by Multi-Model Combination. Submitted to Journal of Hydrologic 
Engineering. 

In this research work four regionalization models are developed considering the 

results of previous papers. That includes:  

• IDW-PS  : Streamflow  values are transferred based on watersheds distance and 
physical similarity 

•  MLP-IDW : Streamflow values are transferred using a neural network trained 
with close and similar watershed attributes , 

• MAC-IDW: Streamflow time series are generated using MAC-HBV model while 
model parameters  are transferred  using IDW-PS approach 

•  SAC-IDW:  Streamflow time series are generated using SAC-SMA model while 
model parameters  are transferred  using IDW-PS approach 

The first two models are data-driven models while the two later ones are hydrologic 

model- dependent approaches. IDW which is based on the distance between the 

watersheds and is recognized as the best approach for streamflow regionalization in the 

area is incorporated to all models. Each model is investigated independently and 

improved.  For example 10 km grid climate data are used to improve each model. The 

results of the study indicate that: 

• IDW-PS perform very well for 90 % of the watersheds while it performs very 
poor for the rest 

• Each model can capture some aspects of the streamflow time series better 

 

Finally a combined model is proposed which combines the output of the four models 

based on their performance for similar and close gauged watersheds at the same time 

step. It is shown that this combined model is reliable for all of the watersheds in mean, 

low and high flow regionalization.  
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5.1. Abstract 

In this study a model combination approach is proposed for improved continuous daily 

streamflow regionalization. Four regionalization models are developed investigated for 

continuous daily streamflow. This includes an Inverse Distance Weighted and Physical 

Similarity (IDW-PS), and a Multilayer Perceptron coupled with IDW-PS (MLP-IDW),   

and two lumped conceptual hydrologic models namely MAC-HBV (McMaster 

University Hydrologiska Byråns Vattenbalansavdelning) and SAC-SMA (Sacramento 

Soil Moisture Accounting) coupled with IDW-PS respectively.  In addition to catchment 

attributes, climate gauged and gridded data are used to improve the regionalization 

analysis.  The comparison of the four models reveals that each of the four models can 

potentially outperforms other ones for a specific ungauged basin. Although the 

performance of IDW-PS  is superior to other models for most of the watersheds, it does 

not perform well for all the 90 watersheds selected. The poor performance of IDW-PS for 

10 percent of watersheds, which are the large northern and few central ones, can be 

significantly improved by combining the outputs of the four structurally different 

regionalization models. Overall, the combined model performs well on all 90 watersheds. 

The study results also indicate that each model can capture specific characteristics of the 

flow hydrograph such as low or high flows better than other models. Therefore, the 

model combination allows taking advantage of the relative strengths of each model. The 

combination of the four models is more efficient and appears more robust compared to 

the individual models. 

Key Words: Streamflow, Regionalization, model combination 
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5.2. Introduction 

Streamflow time series are required for sustainable water resources management while 

most of the watersheds over the word are ungauged or poorly gauged. It highlights the 

need for reliable regionalization models to estimate streamflow time series in ungauged 

watersheds. In hydrologic studies, regionalization is known as the process of transferring 

hydrologic information from gauged to ungauged watersheds (Sivaplan et al., 2003). 

Different approaches have been investigated for continuous streamflow regionalization in 

the literature (see Razavi and Coulibaly, 2013a for a full review). Continuous daily 

streamflow regionalization can be conducted through hydrologic models or data-driven 

approaches.  . In the first category the parameters of hydrologic models are transferred 

from gauged to ungauged watersheds and streamflow time series for ungauged 

watersheds are estimated/predicted through hydrologic models. In the second category 

streamflow time series of ungauged watersheds are estimated/predicted through data-

driven approaches initially developed for gauged watersheds using catchment attributes 

or streamflow time series.  

In order to reduce the uncertainty of hydrologic predictions in gauged watersheds 

some studies have investigated multi-model combination approaches. Different studies 

have shown that using multiple models with different structures can improve the 

reliability of predictions and reduce the uncertainty of hydrologic predictions (e.g. Li and 

Sankarasubramanian, 2012; Velazquez et al., 2010;  Coulibaly et al., 2005 ; etc.). To 

combine the outputs of multiple models, different approaches have been studied such as 

simple or weighted averaging as well as some more complicated approaches such as 

Artificial Neural networks (Shamseldin et al., 1997) and first-order Takagi-Sugeno 
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method  (Xiong et al., 2001) . The most common and popular approach of combining 

outputs of multiple hydrologic models is a weighted averaging approach due to its 

understandable basis and high efficiency. However, the optimal selection of weights 

remains a challenge. Li and Sankarasubramanian (2012) investigated two weighted 

averaging methods to combine two hydrologic models for improved prediction of 

monthly flow discharge.  In the first one a dynamic-weighting approach determines 

weights based on the inverse value of models’ error at each time step while the second 

method is based on a static optimized weighting approach that assigns weights to 

individual models by minimizing the errors over calibration period. They found a 

superior performance for the second approach. Coulibaly et al. (2005) proposed a static 

weighting approach that assigns weights based on the variance and correlation of model 

errors in the whole calibration period to combine outputs of a conceptual hydrologic 

model, a neural network model, and a nearest-neighbor model for improved daily 

reservoir inflow forecasting. Most of the studies of model combination in ungauged 

watersheds generate ensemble predictions using multiple rainfall-runoff model parameter 

sets in order to account for uncertainty stem from model parameters (e.g. McIntyre et al., 

2005 ; Randrianasolo et al., 2010). For example, McInyre et al. (2005) proposed an 

ensemble modeling and model averaging for streamflow prediction in ungauged basins 

that selects candidate models based on their performance for gauged watersheds and 

weights them accordingly. In a very few studies multiple structures of models are 

combined for prediction in ungauged basins (e.g. Goswami et al., 2007 ; Exbrayat et al., 

2011) .  For example, Exbrayat et al. (2011) combined the outputs of five rainfall-runoff 
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models using a data-fusion and weighting approach for daily runoff prediction at an 

ungauged basin.  

In the current study, the two main categories of regionalization approaches 

including hydrologic-model-independent (data-driven) and hydrologic-model-dependent 

models are investigated for continuous daily streamflow regionalization. Since the 

distance between gauged and ungauged watersheds is identified as a key factor in our 

previous regionalization studies, it is incorporated in all models to improve the results. In 

the first category (data-driven approaches) Inverse Distance Weighted and Physical 

Similarity (IDW-PS) and improved Multilayer Perceptron with IDW-PS (MLP-IDW) and 

in the second category two lumped conceptual hydrologic models including MAC-HBV 

(Samuel et al., 2011) and SAC-SMA (Burnash et al., 1973) coupled with IDW-PS for 

transferring hydrologic models (MAC-IDW and SAC-IDW) parameters, are applied to 90 

Ontario watersheds pre-classified in four homogeneous clusters. Finally, to take 

advantage of the strengths of all models and reduce uncertainty a model combination 

approach is proposed to improve the regionalization results. 

5.3. Study Area and Data 

The study area covers 90 watersheds across Ontario (Canada) with various areas 

ranging from 100 to 100000 km2 spread in northern, southern and central regions. A full 

description of the study area can be found in Razavi and Coulibaly (2013b). Two types of 

meteorological data i.e. gauged and gridded daily precipitation and air temperature are 

used in this study. Gauged daily precipitation and temperature time series of the closest 

climate station to the watersheds’ centroids were obtained from the Canadian Daily 
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Climate Data (CDCD), provided by Environment Canada and also 10 km grid 

precipitation and temperature time series are extracted from interpolated climate data 

prepared by Natural Resources Canada / Canadian Forest Service (Hutchinson et al. 

2009). The daily flow data were obtained from the HYDAT database (Environment 

Canada, 2004) for the period of 1976-1994 but the lengths of time series are set to  

be equal to the days with no missing values of streamflow for 90 watersheds during the 

whole period which is almost 1246 subsequent days (May 1991-December 1994) to train 

and validate the MLP-IDW model and also compare the results of all models for 

subsequent equal days.  

5.4. Methodology 

Four regionalization approaches investigated in this study including IDW-PS, 

MLP-IDW, MAC-IDW and SAC-IDW (summarized in Table 5-1) and the model 

combination approaches described in the following sections, are applied to four 

hydrologic homogeneous clusters of watersheds. The clusters are identified by Compact 

Nonlinear Principal Component Analysis (CNLPCA) in a previous study (Razavi and 

Coulibaly, 2013b) which classifies 90 Ontario watersheds into four clusters with 20 , 17 

,12 and 41  watersheds in each cluster based on their physical attributes such as latitude , 

longitude , area , elevation , slope and land surface cover.  
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Table 5-1 Individual regionalization models 

 

Hydrologic-model-independent approaches 

This category includes approaches which estimate streamflow time series through 

data-driven techniques rather than hydrologic models .They are IDW-PS and MLP-IDW.  

Inverse Distance Weighted and Physical Similarity (IDW-PS) 

Inverse Distance Weighted (IDW) is an interpolation technique based on the 

spatial distance of watersheds. According to this approach the weight gets higher for 

closer watersheds and less for remote ones. The IDW equation (Shepard, 1968) is used to 

calculate the weight of other watersheds in a cluster on a specific one as follows: 

𝑊𝑖 = (𝑑𝑖
−2)

∑ (𝑑𝑖
−2)𝑛

𝑖=1
                                                                                                      Eq. 5-1                 

Where 𝑑𝑖 is the spatial distance between watersheds and is calculated using latitude and 

longitude of the watersheds’ centroid, i indicate a specific watershed while n is the 

number of total watersheds in the cluster. Physical similarity is a method that identifies 

the most similar watersheds to a specific one within the cluster in terms of some physical 

attributes of watersheds. Seven catchment attributes with higher streamflow predictive 

Four regionalization models 
IDW-PS SAC-IDW MAC-IDW MLP-IDW 

Takes the inverse 
distance weighted 
average of daily 
streamflow values of 
three most similar 
gauged watersheds to 
ungauged ones (“donor” 
watersheds) inside each 
cluster. 

Takes the inverse 
distance weighted 
average of parameters of 
SAC-SMA model of 
gauged “donor” 
watersheds for the 
ungauged ones inside 
each cluster to estimate 
daily streamflow. 

Takes the inverse distance 
weighted average of 
parameters of MAC-HBV 
model of gauged “donor” 
watersheds for the ungauged 
ones inside each cluster to 
estimate daily streamflow. 

Trains a multilayer perceptron 
for each ungauged watershed 
using  attributes and climate 
data of  gauged “donor” 
watersheds  inside each cluster 
and validate the network with 
inputs from ungauged 
watershed to estimate daily 
streamflow.   
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power are selected among 12 attributes. They are latitude, longitude, percentage of the 

mean slope, average elevation, and portion of area covered by rooting depth deeper than 

150cm, by forest and by glaciofluvial deposits (Samuel et al., 2011). IDW-PS method 

identifies the three most physically similar and closest gauged watersheds to a specific 

ungauged one within a cluster and take the inverse distance weighted average of their 

streamflow time series according to the following equation: 

     𝑄𝑗 = ∑ 𝑤𝑖𝑗𝑄𝑖𝑛
𝑖=1                                                                                                Eq. 5-2 

 Where 𝑄𝑗 is the value of daily streamflow of the ungauged watershed and 𝑤𝑖𝑗 is the 

weight of gauged watershed i on ungauged watershed j and 𝑄𝑖 is the streamflow value for 

each gauged “donor” watershed and n is the total number of gauged “donor” watersheds 

(“donor” implies to the gauged watersheds that their streamflow or model parameters are 

used in statistical analysis for transferring to ungauged watersheds) which is three in this case. 

Therefore, in each cluster each watershed is considered as ungauged once and daily 

streamflow time series are estimated for all watersheds assumed as ungauged within each 

cluster. 

Improved Multi-Layer perceptron (MLP-IDW) 

A three layer feed-forward neural network is applied to estimate daily streamflow 

time series of watersheds in homogenous clusters. The model inputs include: daily 

precipitation time series, daily temperature time series and seven catchment attributes as 

used in IDW-PS approach (previous subsection), number of months as logical inputs to 

account for seasonal variability while model output or target is set to be daily streamflow 

time series. Tangent sigmoid (“tansig”) function was used as transfer function in the 

hidden layer and a linear transfer function in the output layer. Each network is trained 
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250 times using Levenberg-Marquat training algorithm with five hidden units and the 

network with the best performance for training step (gauged watersheds) is selected to 

account for random weights and bias values and ensure a proper network training. The 

inputs and target from gauged watersheds are used to train the neural network and then 

inputs of hypothetical ungauged watershed are used in validation period to estimate 

streamflow values. The length of streamflow time series for both training (gauged 

watersheds) and validation (ungauged watersheds) periods are equal to the 1246 

subsequent days (May 1991-December 1994). After selecting the gauged “donor” 

watersheds, catchment attributes and time series of daily precipitation and temperature 

and the months (logical input) of the gauged watersheds are used as model inputs and 

their daily streamflow time series are used as model target to train the network. In the 

validation period the model inputs from ungauged watershed are inputted to the trained 

network to get the model output or daily streamflow time series. To select the gauged 

“donor” watersheds for each hypothetical ungauged watershed, three most similar and 

close watersheds inside each cluster are selected using IDW-PS criterion. IDW-PS is 

used here because the watersheds which have similar attributes and close location have 

the most similar network inputs and with more similarity in network inputs, it is expected 

to achieve better network output. To improve the performance of MLP model, several 

actions are taken.  First, IDW-PS method as described in previous subsection is used to 

estimate streamflow time series of ungauged watershed for one year to be used as model 

output in training period while inputs from ungauged watershed i.e. catchment attributes, 

month as logical input, precipitation, temperature time series are inputted to the network. 

The performance of the network is assumed to be improved if in the training step the 
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inputs or part of the inputs of ungauged basin can be presented to the network. As the 

second improvement action, more accurate climate data i.e. 10km grid climate dataset are 

used in both training and validation periods. The average of 10 km grid climate data for 

each watershed is used instead of climate data of the closest meteorological station to the 

centroid of watersheds.  Last, the ensemble averaging approach based on the performance 

of ensemble networks in the training period is used.  Initially, the network for each 

ungauged watershed was trained 250 times to account for variability in random weights 

and bias values and the network with best performance in streamflow regionalization  for 

training period or gauged “donor” watersheds in average was selected among multiple 

trained networks. Since some of the model realizations which have not shown the best 

performance in the training period but still might produce best results in validation period 

(for ungauged watershed) are left out , to account for those model realizations an 

ensemble modeling approach is used to take the weighted average of model outputs 

which pass a performance threshold in training period. The threshold value is set to be 90 

percentile of NSE values which encompass the best 10 percent of all model realizations 

(the top 25 out of 250). Weights are defined based on NSE values of all 25 best outputs 

using a linear decreasing function.   

 Hydrologic-model-dependent methods 

Two lumped hydrologic models including MAC-HBV (Samuel et al., 2011) and 

SAC-SMA (Burnash et al., 1973) are used to estimate daily streamflow in the 

hypothetical ungauged watersheds within each cluster.  The MAC-HBV follows the 

structure of the HBV model (Bergström, 1976) with modified routing routine following 
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Seibert (1999) with a simplified Thornwaite formula to account for daily potential 

evapotranspiration. The model consists of a snow routine, a soil moisture routine, a 

response function, and a routing routine. Full description of this model can be found in 

Samuel et al. (2011). The SAC-SMA is widely used by the National Weather Service 

(NWS) for operational streamflow forecasting and flood warning throughout the United 

States (VRUGT et al. 2006). This hydrologic model is a conceptual system for modeling 

the headwater portion of the hydrologic cycle. The first component of the model i.e., 

rainfall occurring over the basin is considered as falling on two basic areas: the pervious 

area and impervious area. It consists of a Nash cascade routing method and the same 

snow component and evapotranspiration calculation methods as used in MAC-HBV are 

added to this model. The optimized parameters of hydrologic models are transferred from 

gauged to ungagged watersheds using IDW-PS approach. Each watershed is considered 

as ungauged once while the three most similar watersheds within the cluster are 

considered as gauged and optimized model parameters of the selected gauged watersheds 

are transferred to the ungauged one using IDW averaging method. The optimized 

parameters using Particle Swarm Optimization (PSO) (Eberhar and Kennedy, 1995) for 

both SAC-SMA and MAC-HBV are used in this study. In the first experiment, the 

gauged climate data of the closest station to watersheds’ centroid is used for each 

watershed. To improve the accuracy of results, 10 Km daily gridded climate data are used 

in the second experiment. 
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Model combination 

To reduce the uncertainty of regionalization results and use all the information 

provided by different model structures, a weighted averaging approach is used to take the 

weighted average of model outputs of SAC-IDW, MAC-IDW and MLP-IDW for each 

time step in the first experiment and all the four models in the second experiment. The 

weight assigned to model i at time step t (wi,t ) is determined based on the absolute value 

of error of each model applied to the gauged “donor” watersheds (in average) at each 

time step (Li and Sankarasubramanian 2012):  

wi,t = 1/ei,t
∑ ei,tI
i=1

                                                                                             Eq. 5-3                          

Where t is the time step (i.e. day) , i indicates individual models while I is the total 

number of multiple models and ei,t is the absolute value of error of each model when 

applied on gauged “donor” watersheds (in average) at each time step. To combine the 

outputs of the individual models for an ungauged watershed, each basic model i.e. SAC-

SMA, MAC-HBV, MLP and IDW-PS is first applied to the gauged “donor” watersheds 

to estimate daily streamflow and its average error on each day is calculated, then a weight 

based on this error is assigned to model output for the ungauged watershed on the same 

day. To apply individual models to each gauged “donor” watershed, SAC-SMA and 

MAC-HBV used the optimized model parameters of the watershed and MLP is trained 

with two-third (May1991- Sep. 1993) and validated with one-third (Oct. 1993- Dec. 

1994) of data-length of the watershed and IDW-PS took the distance weighted average of 

the three most similar and close watersheds to the ungauged watershed.  
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 Model evaluation criteria 

Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970) and Root Mean 

Square Error (RMSE) are used to evaluate the model performance in continuous daily 

streamflow regionalization. NSE is presented in Eq. 5-4 and RMSE in Eq. 5-5: 

 

                                                                                           Eq. 5-4 

  

RMSE = �∑ (𝑄𝑜𝑏𝑠−𝑄𝑠𝑖𝑚)2𝑁
𝑖=1

𝑁
                                                                                                 Eq. 5-5           

  

Where Qsim and Qobs  are the simulated and observed streamflow, respectively, and  Qobs  

is the average of observed streamflow values and N is the number of data points.   

Uncertainty  analysis 

The uncertainty analysis in this study focuses on uncertainty associated with the 

structure of individual regionalization models. Subsequently, it is shown that the 

combination model of the four individual models which is based on the average of all 

model outputs is more robust and reliable compared to other models.The uncertainty 

limits of the combined model as well as individual models can be assessed by generating 

possible acceptable ensemble outputs of individual models.  Four acceptable realizations 

of each individual model are generated for each watershed assumed as ungauged. The 

process of generating ensemble outputs for each regionalization model is summarized in 

Table 5-2.  To generate ensemble outputs of SAC-IDW and MAC-IDW, four sets of 
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optimized model parameters of the “donor” gauged watersheds are transferred to 

ungauged watershed using IDW-PS approach. Parameter sets of each model are 

optimized in a previous study using optimization algorithms including Particle Swarm 

Optimization (PSO) (Eberhar and Kennedy, 1995), Shuffle Complex Efficiency (SCE) 

(Duan et al., 1994) and Non-Sorted Genetic Algorithm II (NSGA II) (Deb et al., 2001) 

and a Monte Carlo simulation approach. To generate ensemble outputs of MLP-IDW, the 

four best trained networks among 200 trained networks based on their performance for 

training period (or gauged “donor” watersheds) in terms of NSE are selected to estimate 

streamflow for the ungauged watershed. Finally to generate ensembles of IDW-PS 

model, for each ungauged watershed, the IDW weighted average of streamflow values of 

four different groups of three gauged “donor” watersheds within each cluster is taken. 

Therefore, 4×4 (16) estimated hydrographs are generated for each ungauged watershed. 

The minimum and maximum limits of ensemble hydrographs are considered as 

uncertainty bounds for each hypothetical ungauged watershed. 

Table 5-2 Approaches to generate four ensemble outputs of each regionalization model 

Regionalization Model Ensemble modeling approach 

SAC-IDW and 

MAC-IDW 

Transfer the four sets of optimized model parameters by PSO, SCE,NSGA II and Monte Carlo 

optimization algorithms from gauged “donor” watersheds to the ungauged one and estimate daily 

streamflow 

MLP-IDW Select the outputs from the best four trained networks among 200 ones based on their performance 

for the gauged “donor” watersheds 

IDW-PS Take the distance weighted average of streamflow values of four different groups of three gauged 

“donor” watersheds 
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5.5. Results and Discussion 

IDW-PS and MLP-IDW 

IDW-PS is applied to all watersheds of the four clusters assumed as ungauged 

once. The NSE statistics of this method (Table 5-3) indicate a very good performance of 

IDW-PS model in average for all clusters of watersheds. MLP-IDW is trained with three 

similar and close watersheds to each ungauged watershed in each cluster and validated 

for the ungauged watershed for 1991-1994. As described in Methodology several actions 

are taken to improve the results of this model. The NSE values of estimated daily 

streamflow time series using MLP-IDW method before and after the improvement 

actions are presented in Table 5-3. According to this Table, the performance of the MLP-

IDW model is significantly improved after the improvement actions although it can be 

slightly improved further by using grid climate data or ensemble weighted averaging of 

outputs. Therefore, it can be assumed that since neural networks learn the pattern of 

input-target in training period and use the same network to generate output in validation 

period, using the same type of climate data in both training and validation periods the 

best performance of model remains the same and since even ensemble weighted 

averaging could improve the results slightly it can be assumed that the maximum 

potential performance of the neural network is achieved and the ensemble weighted 

averaged outputs is taken for further analysis because it yields slightly better results in 

average for all clusters . 
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SAC-IDW and MAC-IDW 

     Comparison of the four regionalization models including SAC-IDW, MAC-IDW, 

MLP-IDW and IDW-PS (Table 3-3 and  

Table 5-4) indicates that in average in all the four clusters IDW-PS outperforms other 

models. The parameters of the two conceptual hydrologic models i.e. SAC-SMA and 

MAC-HBV of ungauged basins are estimated using IDW-PS on three most similar 

watersheds within each cluster. Initially climate data from the closest station to centroid 

of watersheds are used as models’ input. To see if higher accuracy of climate data (i.e. 10 

km grid daily climate data) can improve the regionalization results using hydrologic 

model, average precipitation and temperature time series over all grids inside each 

watershed are used as model inputs in another experiment. The results of comparison 

between SAC-IDW and MAC-IDW using climate data of the closest climate station to 

centroid of watershed and average grid climate data is presented in Table 3-4. According 

to this Table the performance of MAC-IDW model is almost competitive with SAC-IDW 

in general and the average value of grid climate data can improve the regionalization 

results in clusters 3 and 4 using both models and cluster 1 using MAC-IDW. The 

improved results by using grid climate data are used for further analysis. 
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Table 5-3 NSE statistics of continuous daily streamflow regionalization using IDW-PS  model and MLP-
IDW model (1. MLP-IDW model before improvement actions (MLP) 2. Adding IDW-PS simulated 
streamflow and input from ungauged watershed to training dataset  (MLP1) 3. Using average grid climate 
data (MLP2) 4. Ensemble weighted averaging of outputs (MLP3)) 

NSE 
statistics 

Cluster 1 (20 basins) NSE 
statistics 

Cluster 2 (17 basins) 
IDW-PS MLP MLP1 MLP2 MLP3 IDW-PS MLP MLP1 MLP2 MLP3 

Min -0.60 -23.7 -0.21 -0.34 -0.14 Min -0.13 -9.97 0.13 0.13 0.03 
Average 0.37 -1.34 0.11 0.14 0.15 Average 0.64 -1.08 0.34 0.35 0.34 
Median 0.48 0.11 0.13 0.16 0.14 Median 0.80 -0.13 0.33 0.34 0.36 

Max 0.88 0.39 0.53 0.46 0.48 Max 0.95 0.52 0.60 0.55 0.58 
NSE 
statistics 

Cluster 3 (12 basins) NSE 
statistics 

Cluster 4 (41 basins) 
IDW-PS MLP MLP1 MLP2 MLP3 IDW-PS MLP MLP1 MLP2 MLP3 

Min -0.36 -2.15 -0.02 -0.10 -0.18 Min -0.09 -35.5 -0.05 0.10 0.032 
Average 0.51 -0.23 0.32 0.32 0.28 Average 0.48 -1.27 0.23 0.24 0.23 
Median 0.67 -0.12 0.31 0.33 0.31 Median 0.54 0.08 0.20 0.21 0.19 

Max 0.88 0.46 0.64 0.59 0.56 Max 0.77 0.54 0.68 0.65 0.66 
 

 

Table 5-4 NSE statistics of regionalization results using MAC-IDW and SAC-IDW with climate 
data from center station (Cent) and average gridded climate data (Aveg) in four clusters of 
watersheds  

 

 

 

 

 

Comparison of the individual regionalization models and model combination 

The performance of individual models for different regions is analysed . Table 5-5 

summarizes the performance of the models in different clusters along with specific 

characteristics and the slope of flow duration curve (high/low: Q5/Q95) of the majority of 

watersheds in each clusters. For example MLP-IDW and IDW-PS reach their best 

performance in clusters 2 and 3, while SAC-IDW and MAC-IDW reach their best 

performance in groups 4 and 2, and in cluster 1 MAC-IDW and IDW-PS perform better 

Cluster 1 (20 basins) Cluster 2 (17 basins) 
NSE 

statistics 
MAC-IDW SAC-IDW MAC-IDW SAC-IDW 

Cent Aveg Cent Aveg Cent Aveg Cent Aveg 
Min -0.68 -0.55 -0.69 -0.86 -0.12 -0.13 -0.15 -0.02 

Mean 0.30 0.36 0.37 0.28 0.56 0.52 0.57 0.50 
Median 0.33 0.43 0.45 0.32 0.61 0.62 0.62 0.51 

Max 0.77 0.78 0.74 0.72 0.83 0.79 0.73 0.70 
Cluster 3 (12 basins) Cluster 4 (41 basins) 

NSE 
statistics 

MAC-IDW SAC-IDW MAC-IDW SAC-IDW 
Cent Aveg Cent Aveg Cent Aveg Cent Aveg 

Min 0.19 0.04 -0.24 -0.11 0.12 0.06 -0.09 0.09 
Mean 0.42 0.54 0.37 0.50 0.54 0.58 0.48 0.56 

Median 0.44 0.57 0.46 0.57 0.58 0.61 0.54 0.60 
Max 0.61 0.76 0.64 0.71 0.81 0.84 0.77 0.80 
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compared to other models. It can be concluded that in large northern watersheds with low 

Q5/Q95, MAC-IDW and IDW-PS perform better than other models while in small 

southern watersheds with high Q5/Q95, SAC-IDW and MAC-IDW perform better than 

data-driven models and in watersheds with low elevation, small forest area and moderate 

Q5/Q95 data-driven models i.e. MLP-IDW and IDW-PS performs better compared to 

other watersheds.  

Table 5-5 Models with best performance and some governing characteristics of each cluster 

Clusters Best models Q5/Q95 Specific characteristics 

C1 (20 basins) MAC-IDW , IDW-PS Low Large northern watersheds 

C2  (17 basins) MLP-IDW, IDW-PS Moderate Low elevation 

C3  (12 basins) MLP-IDW, IDW-PS Moderate Small forest area 

C4 (41 basins) SAC-IDW , MAC-IDW High Small southern watersheds 

 

To take advantage of the strengths of each model, the outputs of individual 

models are combined based on their performance for gauged watersheds for each time 

step using weighted averaging approach. Weight of each model is specified based on its 

average absolute error for gauged “donor” watersheds at the same time step (day) using 

Eq. (3). First the outputs of the three poorer models i.e. SAC-IDW, MAC-IDW and 

MLP-IDW are combined to see if that can compete with IDW-PS. Table 5-1. a and b 

present number of basins with NSE values greater than 0.5 and less than 0.1 and 
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Figure 5-1. c and d present the boxplots of NSE and RMSE values for all the 90 

watersheds using individual regionalization and the combined models. It can be seen that 

with combined models, no watershed has NSE value less than 0.1, while most of them 

produce NSE value greater than 0.5.  The median and mean values of NSE and RMSE 

are higher and lower respectively for the IDW-PS and combined model of four individual 

models, but the box plots indicate less outliers for combined model compared to IDW-PS 

and other models.  

Figure 5-1 Boxplots of NSE and RMSE value of daily streamflow regionalization results using: 
SAC-IDW, MAC-IDW, MLP-IDW, IDW-PS  and combination models of the first three (Com3) and 
combination of the four models (Com4) 
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Therefore, the combination of four individual models is more robust compared to 

individual models. Scatterplots of observed vs simulated daily flow using individual 

regionalization models along with their combination models for all the 90 watersheds 

(Figure 5-2) reveal the performance of each model in low, high and mean daily flow 

regionalization. It can be seen that when the daily flow gets higher the distance between 

points and observed vs simulated line gets higher for all single models which indicates 

higher errors. However, for the combined models and IDW-PS, points are spread around 

the observed vs. simulated line more evenly in general. MAC-IDW indicates lower error 

for low flows compared to SAC-IDW and MLP-IDW, while SAC-IDW indicates less 

correlation of errors for high flows compared to the two other models.  

 

Figure 5-2 Scatterplots of observed vs. simulated daily streamflow for all the 90 watersheds 
using individual regionalization models and combination of the first three and all the four 
models 

 



P.h.D Thesis – T. Razavi                                                            McMaster University – Civil Engineering 

169 

To visualize the performance of each model for individual watersheds, the spatial 

distribution of NSE values using the four regionalization models for all 90 watersheds 

across Ontario are presented in Figure 5-3 and Figure 5-3.  The spatial distribution of NSE 

values for IDW-PS (Figure 5-4a) reveals that in about 10% of the watersheds, the 

performance of this method is very poor while for other watersheds it is very good and 

just in one watershed it is in the middle (or average) level. It can be seen (Figure 5-4a ) 

that in northern large basins and in few central watersheds, IDW-PS has a poor 

performance while it reveals a very good performance in small dense southern 

watersheds. Comparison of this map with the spatial distribution of NSE values using the 

remaining three regionalization models (Figure 5-3) demonstrates that those ones can 

perform better than IDW-PS in some cases while each one has a different level of 

performance. This is apparent for three specified watersheds (in Figure 5-3) which have 

different sizes and are spread in northern, central and southern regions. Furthermore, it 

can be seen that for a nested watershed in northern area (04CB001 , Figure 5-4a.) only 

MAC-IDW model has a satisfactory performance and for the large northern watershed 

(04CC001) MLP-IDW has the best performance. Figure 5-4 b shows the spatial 

distribution of NSE values for combination of four models. It can be seen that the 

combined output of three regionalization models can compete with IDW-PS, and for 

those watersheds where IDW-PS has a poor performance the combined model can 

perform better. In the next step, the outputs of IDW-PS are combined with the outputs of 

other individual models. The spatial distribution of NSE values using combination of the 

four models is presented in Figure 5-4 C. Comparison of this map with IDW-PS and the 

combination of the three other models indicates that the combination of the four models 
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can improve regionalization performance in general and this combination model does not 

reveal a poor performance in any of the watersheds.  

 

Figure 5-3 Spatial distribution of NSE values for daily streamflow regionalization models : (a) 
SAC-IDW, (b) MAC-IDW (c) MLP-IDW over Ontario watersheds  (unscaled maps) 
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Figure 5-4 Spatial distribution of NSE values for daily streamflow regionalization models: (a) 
IDW-PS (b) combined model of three models (MLP-IDW, MAC-IDW and SAC-IDW) (c) combined 
model of all the four models (unscaled maps) 

 

 Uncertainty Analysis Results   

The uncertainty bounds of all 90 watersheds are estimated using 16 possible 

acceptable ensemble outputs of the four individual regionalization models. Since the 

ensemble outputs are generated using possible acceptable results of individual models it 

can be assumed that the combined model might fluctuate in this range. The uncertainty 

bounds of estimated daily streamflow for three basins selected earlier (specified in figure 

5-1) are presented in Figure 5-5. This graph shows the observed and estimated 
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hydrographs of three sample watersheds using the combination of four models along with 

estimated uncertainty bounds. In general, this figure shows that for the three sample 

watersheds with various sizes in various regions of Ontario, the confidence limits of the 

combination model encompass the observed hydrograph.  

 

Figure 5-5 Uncertainty limits of continuous daily stream flow regionalization (shades), observed 
(solid line) and estimated hydrograph using combination of four individual regionalization 
models (dashed line) 

 

5.6. Summary and Conclusions 

In this study four regionalization models including SAC-IDW, MAC-IDW, MLP-

IDW and IDW-PS are applied to four clusters of 90 pre-classified Ontario watersheds. 

The comparison of the four regionalization models indicates that IDW-PS outperforms 

other models for almost 90 percent of the watersheds and MLP-IDW indicates the 

poorest performance for most of the watersheds. However, for large northern watersheds 

with low Q5/Q95, MLP-IDW can reach a satisfactory performance. MAC-IDW and 
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SAC-IDW outperform other models for small southern watersheds with high Q5/Q95.  

Furthermore, for daily low and high flow regionalization each model has different 

performance. For example SAC-IDW has better performance for high flows compared to 

low flows, while MAC-IDW performs better for low flows. The results of this study 

indicates that although MLP-IDW model has a relatively poor performance in general, 

and IDW-PS outperforms other models in most of the watersheds, a combination of the 

four models can significantly improve the performance of continuous streamflow 

regionalization. The combination of the four models performs satisfactory for all of the 

watersheds while individual models indicate poor performance for some of them. The 

study results suggest that the combination of structurally different models can offer a 

robust model for continuous streamflow prediction in ungauged basins.  
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6.1. Conclusions 

The research work presented in this PhD thesis covers an important issue in the 

management of water resources. Streamflow estimation/prediction in ungauged basins is 

required for water resources management purposes such as water allocation, long-term 

watershed planning, industrial and domestic water supply and flood prediction. The scope 

of this research is to present a reliable and effective methodology for streamflow 

prediction in ungauged basins. The main conclusions of the thesis can be summarized as 

follows: 

6.1.1. Streamflow regionalization approaches 

• Continuous streamflow regionalization can be carried out through hydrologic 

model dependent and hydrologic model-independent approaches.  

• Studies on hydrologic model-dependent methods in arid to warm temperate 

climate (e.g. Australia) indicate that physical similarity and spatial proximity 

appears to be the best approach, while in warm temperate (most European 

countries)  regression-based methods have been preferred. Similarly, in cold and 

snowy climate (e.g. Canada) spatial proximity and physical similarity approaches 

seem to outperform other hydrologic model-dependent methods.  

• The HBV and IHACRES are the most frequently used hydrologic models.  

• Among the hydrologic model-independent methods, linear and nonlinear 

regression methods have performed well in warm temperate regions (e.g. 

European countries) while in cold and snowy climate (e.g. Canada) and warm 

humid climate (e.g. Brazil) scaling relationships have shown good performance. 
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6.1.2. Watershed Classification 

• Proposed nonlinear classification techniques i.e. SOM, NLPCA and Compact-

NLPCA on both watershed attributes and daily streamflow series were 

consistently superior to PCA in terms of identifying hydrologically homogenous 

clusters of Ontario watersheds.  

• The superior performance of NLPCA based on watershed attributes suggests its 

potential for the classification of ungauged watersheds.  

• Watershed classification results using SOM, NLPCA and CNLPCA based on 

watershed attributes indicated distinct patterns of FDC slope, timing of event 

flows (annual hydrograph) shape, and dominant physical attributes in each cluster.  

• The proposed nonlinear classification methods based on attributes can potentially 

improve the performance of streamflow regionalization in ungauged watersheds.  

6.1.3. Nonlinear streamflow regionalization applied on classified watersheds  

• The MLP model is very competitive with the IDW (identified as the best 

regionalization method in the study area) while the more complicated types of 

neural networks, CPN and SVR, become competitive when they are applied on 

classified watersheds.  

• The combination of watershed classification technique, regionalization technique 

and hydrologic model, affects the performance of daily streamflow, baseflow and 

peakflow regionalization substantially.   
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• MAC-HBV as hydrologic model coupled with CPN as regionalization technique 

in combination with NLPCA or SOM as classification technique reveals a clear 

improvement in daily streamflow, baseflow and peakflow regionalization.  

• In general nonlinear data-driven techniques are more likely to improve the 

performance of daily streamflow regionalization after watershed classification in  

basins with high FDC’s slope   (Q95/Q5) , less area covered by forest , more area 

covered by rapid drainage  and glaciodeposits,  monthly low flow in March and 

spring snowmelt peak flow in  May/June .  

• Neural networks as dynamic nonlinear methods are capable to account for non-

stationarity due to urbanization and climate change in the hydrological modelling  

of ungauged watersheds.  

6.1.4. Improving streamflow prediction by multi-model combination 

• The investigated streamflow regionalization models which lie in the two 

categories of regionalization approaches i.e. hydrologic-model-independent and 

hydrologic model dependent including IDW-PS, MLP-IDW, SAC-IDW and 

MAC-IDW indicate potentially good performance for different Ontario 

watersheds .   

• Different structure of regionalization models result in different performance of 

daily streamflow regionalization. For example, SAC-IDW has better performance 

for high flows compared to low flows, while MAC-IDW performs better for low 

flows.  
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• Although MLP-IDW has a relatively poor performance in general, and IDW-PS 

outperforms other models in most of the watersheds, a combination of the four 

models can significantly improve the performance of continuous streamflow 

regionalization.  

• IDW-PS outperforms other models for almost 90 percent of the watersheds and 

MLP-IDW indicates the poorest performance for most of the watersheds. 

• In large northern watersheds with low Q5/Q95, MLP-IDW can reach a 

satisfactory performance while MAC-IDW and SAC-IDW outperform other 

models for small southern watersheds with high Q5/Q95.   

• The combination of the four models performs satisfactory for all of the 

watersheds while individual models indicate poor performance for some of them.  

• The combination of structurally different models can offer a robust model for 

continuous streamflow prediction in ungauged basins.  

6.2. Recommendations for future research 

Future research should focus on issues which can increase the reliability of estimation 

in ungauged basins. Climate change along with changes in land use and land cover due to 

human activities cause nonstationarity in streamflow time series which is generally 

overlooked by most regionalization methods that assume stationarity. Thus, estimating 

uncertainty in streamflow estimation/prediction in ungauged basins using regionalization 

techniques remains a challenging research topic. In the current research, neural networks 

have been emerged to be able to account for nonstationary hydrological time series 

modeling, thus, investigation of different types of neural networks in watershed 
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classification and streamflow regionalization as well as their combination with 

hydrologic models in future studies in regions with different climate pattern and 

watershed attributes is suggested to further explore the possibility of improvement in 

hydrologic predictions in ungauged watersheds. 

Hydrologic ensemble modeling can account for uncertainties in streamflow 

estimation/prediction. It has emerged as a prediction tool in hydrology particularly during 

the last decade ( Hydrologic Ensemble Predictions Experiment (HEPEX) initiated in 

2004 (www.hepex.org)). Ensemble estimations/predictions of streamflow time series can 

be used as an indication of uncertainty in hydrologic predictions and  can also  improve 

the reliability of hydrologic modeling.  Ensemble streamflow predictions in hydrology 

have been generated using multiple climatological input data (e.g. He et al. 2009), 

multiple sets of hydrologic model parameter sets (e.g., McIntyre et al 2005, Seibert and 

Beven (2009)) or multiple rainfall-runoff model structures (e.g.  Velezque et. al 2011).  

Evaluation methods for Ensemble Prediction Systems (EPS) are either deterministic or 

probabilistic. To evaluate the ensemble predictions, bias, variance and covariance of 

ensembles need to be considered. Deterministic approaches evaluate a weighted or simple 

average of model outputs while probabilistic approaches are based on the joint 

distribution of forecasts and observations. Probabilistic approaches consider all model 

realizations. Criteria which are usually used to evaluate the ensemble realizations include 

some scores adopted from meteorology such as Brier Score (Jolliffe and Stephensen 

2003), continuous ranked probability score (Brown 1974), ignorance score (Roulston and 

Smit 2002) and cost/loss function (Laio and Tamea (2007)), rank histogram approach 

which measures the tendency of model to over or under estimate (Regimbeau et al. 

http://www.hepex.org/
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(2007)). Finally, probabilistic models for streamflow estimation/prediction in ungauged 

basins are highly recommended as future research direction. 
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