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Abstract

This thesis presents renormalization group (RG) analyses of two strongly correlated
condensed matter systems.

In the �rst part, the phase diagram of the spin-1
2
Heisenberg antiferromagnetic

model on a spatially anisotropic triangular lattice is discussed. This model, together
with a Dzyaloshinskii-Moriya (DM) interaction, describes the magnetic properties of
the layered Mott insulator Cs2CuCl4. Employing a real-space RG approach, it is
found, in agreement with a previous similar study, that a fragile collinear antifer-
romagnetic (CAF) state can be stabilized at su�ciently strong anisotropies. The
presented RG analysis only indicates the presence of the CAF and spiral states in the
phase diagram, with no extended quantum-disordered state at strong anisotropies.
Speci�cally, it reveals a �ne-tuning of couplings that entails the persistence of ferro-
magnetic correlations between second-nearest chains over large length scales even in
the CAF phase. This has important implications on how numerical studies on �nite-
size systems should be interpreted, and reconciles the presence of the CAF state with
the observation of only ferromagnetic correlations in numerical studies. The e�ect of
a weak DM interaction within this RG approach is examined. It is concluded that
Cs2CuCl4 is well within the stability region of the spiral ordering.

In the second part, the fate of a neck-narrowing Lifshitz transition in two-dimensions
and in the presence of weak interactions is studied. Such a transition is a topological
quantum phase transition, with no change in symmetry. At the critical point of this
transition, the density of states at the Fermi energy is logarithmically divergent and
a van Hove singularity appears. It is found that, at the critical point, the Wilsonian
e�ective action is intrinsically non-local. This non-locality is attributed to integrating
out an emergent soft degree of freedom. Away from the critical point, a local pertur-
bative RG description is presented, and it is shown that weak attractive interactions
grow as log2 L (L is the physical length). However, this local description is restricted
to a �nite momentum range that shrinks as the critical point is approached.
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Chapter 1
Introduction

Condensed matter physics concerns itself with the study of matter in its condensed
form where interactions between microscopic degrees of freedom become important
and enormous complexity can arise. This complexity is more prevalent at low tem-
peratures where thermal �uctuations are not strong enough to overwhelm quantum
mechanical e�ects, and a variety of exotic quantum ground states may appear. At
�rst glance, studying such strongly correlated quantum systems might seem hopeless
as most of their properties (e.g., ground state energy) crucially depend on the precise
details of interactions, number of particles, etc. Even if, hypothetically, one ascertains
such details, these systems possess such large degrees of freedom (∼ 1023 particles)
that any �rst-principle approach becomes unthinkable.1

Despite these daunting aspects of strongly-correlated quantum many-body sys-
tems, certain commonalities among microscopically distinct systems emerge at macro-
scopic scales. In practice, only certain macroscopic properties that characterize the
phase of the system and typically are not sensitive to microscopic details, such as
the presence or absence of a net magnetization or critical exponents of various ther-
modynamic functions near a critical point [2, 3], are primarily of interest. From
this perspective, condensed matter systems that manifest the same such macroscopic
properties, in spite of having di�erent microscopic details, can be regarded equiva-
lent. In general, any equivalence relation entails a classi�cation. In condensed matter
physics the equivalence classes that are de�ned based on manifesting similar such
macroscopic properties are called universality classes , and are labeled by the common
phase of the systems in that universality class [1]. Some well-known examples are
paramagnetic, ferromagnetic, antiferromagnetic, Fermi liquid and superconducting
universality classes. It is the ultimate goal of condensed matter physics to identify

1A simple back-of-the-envelope estimate (see, for example, Chapter 1 in [1]) shows that even
storing the quantum state of a magnetic sample of localized spin- 12 particles of the size of a sugar
cube, in the crudest approximation, will require more atoms than those in the known universe (the

Hilbert space will be 210
23 ' 103×10

22

dimensional). However, it is believed that a quantum computer
will be capable of dealing with these otherwise intractable problems e�ciently.
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CHAPTER 1. INTRODUCTION

and characterize all possible universality classes, i.e., states of matter.2

Another remarkable phenomena in condensed matter physics is emergence. The
signi�cance of the notion of emergence, not only in condensed matter physics but also
in disciplines outside physics, was �rst pointed out by Anderson in his famous 1972
article �More Is Di�erent� [7]. Emergence,3 in contrast to reductionism,4 is the view
that at each level of complexity qualitatively new behavior may arise. For example,
rotationally-invariant particles and interactions form highly anisotropic objects (see
Chapter 19 in Weinberg's book [9]), or a system comprised of only electrons con�ned
to a plane and subject to a strong magnetic �eld can manifest anyonic excitations that
are neither bosons nor fermions (fractional quantum Hall e�ect) [10]. Thus, complex
condensed matter systems not only exhibit certain well-de�ned universal properties
but also these properties may very well be in stark contrast with what one might
naively expect from the attributes of their constituent degrees of freedom.

One cannot help but wonder why complex condensed matter systems manifest
universality and emergence, and what the underlying principle of these phenomena is.
For a long time it was believed that the answer to these questions as well as the ques-
tion of what the possible universality classes (i.e., states of matter) are, was symmetry ,
which, together with spatial dimensionality, would exhaust all possible phases. Sev-
eral groundbreaking works in condensed matter physics, statistical physics and high
energy physics culminated in the celebrated Landau-Ginzburg-Wilson theory [11, 12]
of phases and phase transitions, which posits that phases of matter can be uniquely
labeled by their symmetries. The essence of this theory can be understood in an ordi-
nary magnetic system that undergoes a phase transition from a paramagnetic state to
a ferromagnetic state. Such a transition is characterized by the spontaneous breaking
of the rotational symmetry in the ferromagnetic phase. The statement that Landau-

2The notions of universality and universal classes were originally developed in the context of
critical phenomena [4, 5, 6]. However, later on they were extended to zero-temperature quantum
phase transitions.

3To avoid any confusion, it is important to distinguish between strong emergence and weak emer-

gence [8]. What is intended here is weak emergence where the facts about the high-level phenomenon
(properties of the whole) are unexpected, but, in principle, deducible from the facts in the low-level
domain (properties of the constituents and the rules that govern their interactions).

4By reductionism we neither mean constituent reductionism, which states a complex system is
nothing but the sum of its constituents, nor causal reductionism, which states that, for instance,
the pressure exerted by a gas in a container on the inner surface of the container is caused by its
constituent atoms or molecules. In fact, these two types of reductionism underlie physics. What is
intended here by reductionism is conceptual reductionism, which holds that the concept applicable
to the whole system is reducible to the concepts that apply to the individual constituents.

2



CHAPTER 1. INTRODUCTION

Ginzburg-Wilson theory explains all continuous5 quantum phase transitions6 tacitly
implies that spontaneous symmetry breaking is the only route to emergence. How-
ever, now we know that this theory, despite explaining myriad of phase transitions in
nature (symmetry-breaking phase transitions) is not complete [13, 15]. Surprisingly,
there are states of matter that are distinct even though they share the same symme-
tries [16]. Examples include fractional quantum Hall systems and various spin-liquid
states [1].

What is meant by �distinct phases� is that the two cannot be transformed into
each other without encountering a phase transition.7 For zero-temperature quan-
tum phase transitions, this is phrased as the possibility of adiabatically connecting
the ground states. For instance, Fermi liquids are adiabatically connected to non-
interacting electrons, and therefore one can employ perturbation theory to compute
various observables in a Fermi liquid [17, 18]. By contrast, the ground state of a
superconductor is not adiabatically connected to non-interacting electrons, and thus
is a distinct phase from the Fermi-liquid phase [19, 20].8

Seeking the underlying principle of universal behavior and emergence leads us to
the important and intimately related concepts of e�ective description [21, 22, 23] and
renormalization group (RG) [5, 6]. Both of these notions, perhaps in slightly di�erent
guises, have existed in condensed matter physics long before they were introduced in
their modern forms. The appearance of the Heisenberg Hamiltonian as the low-energy
description of the Hubbard model at half-�lling and in the strong repulsion (large-U)
limit is an instance of e�ective description [24]. The block-spin approach of Kadano�,

5Phase transitions are either continuous or �rst order. First order phase transitions are concep-
tually much simpler as they are brought about by one state becoming energetically more favourable
than the other, and thus a crossover from one state to another. In contrast, continuous phase tran-
sitions can be very subtle. For example in the Kosterlitz-Thouless phase transition no symmetry
is broken and it is only the behavior of correlations or, equivalently, susceptibilities that reveal the
transition. Interestingly, the Landau-Ginzburg-Wilson (LGW) theory was known to fail to describe
Kosterlitz-Thouless phase transitions long before the discovery of decon�ned quantum critical points
(see Ref. [13] and references therein).

6It is worth mentioning that the Landau-Ginzburg-Wilson theory was originally developed in
the context of critical phenomena (phase transitions driven by thermal �uctuations). However,
when it comes to discussing states of matter one is often interested in quantum phase transitions
at zero temperature that are driven by quantum �uctuations and are controlled by some parameter
such as density or the strength of interactions. The broad inapplicability of the LGW paradigm
to all continuous quantum phase transitions stems from the fact that only certain D-dimensional
quantum systems, upon analytically continuing real time to imaginary time, can be regarded as
(D+1)-dimensional classical systems at a �nite temperature [14].

7For example, liquid and gas are not distinct phases [3].
8From a mathematical point of view, a phase transition is a non-analyticity [2]. Analyticity is

important because it allows us to completely determine the value of an analytic function at any
point, as accurately as desired, merely by knowing its local properties (its derivatives) at a single
point. Thus, various systems that fall within the same universality class are equivalent in a stronger
sense: they are connected and even their non-universal properties, in principle, can be obtained
using perturbation theory. This is why universality is such a profound concept in condensed matter
physics.

3



CHAPTER 1. INTRODUCTION

which eventually led to modern RG schemes, is an intuitive instance of RG [25]. In
fact, as pointed out by Michael Fisher in Ref. [5], the historical development of the
Landau-Ginzburg-Wilson theory encompasses both of these notions. In particular,
the concept of order parameter, which was originally introduced by Landau, is, in
essence, an e�ective description.

The central idea in e�ective descriptions is that it is possible to replace the original
microscopic description, which describes the system on all length and energy scales,
with an e�ective theory that describes the system, as accurately as desired, only
below a certain energy scale or, equivalently, beyond a certain length scale [21, 22,
26]. In other words, it is possible to accurately determine the long-distance behavior
of the system from a coarse-grained version of it. Often the e�ective description
is in a continuum form, in which case the term e�ective �eld theory is used [21,
23]. Such e�ective �eld theories are accompanied by a characteristic energy scale (an
energy cuto�). This characteristic scale indicates how �coarse grained� the e�ective
description is.9 Naturally, one expects to be able to determine a more coarse-grained
e�ective description not only from the original microscopic description but also from
any other less coarse-grained e�ective description of the system [29]. This is indeed
what is at the heart of any RG approach, which, in fact, de�nes a semigroup not a
group [5, 30]. RG is a framework for systematically and gradually determining more
coarse-grained e�ective theories of a given model. More technically, RG describes
how the e�ective �eld theory of a system evolves as the energy cuto� is lowered,
or, equivalently, as we probe the system at length scales larger than its shortest
length scale. RG not only is a powerful concept, but is also a versatile framework to
deal with problems that seem intractable when approached by other methods such
as perturbation theory. In fact, the popularity of RG in condensed matter physics
primarily stems from its practical utility.

Let us see how universality and emergence can be understood from the perspective
of e�ective �eld theories and RG. The statement of universality, in the language of
e�ective �eld theories, becomes the statement that systems within the same universal-
ity class ultimately share the same low-energy e�ective theory. Similarly, emergence,
in this language, becomes the statement that the degrees of freedom in the low-energy
theory may not be the same as those in the original microscopic description. Still this
does not explain why most microscopic details are usually irrelevant to low-energy
descriptions. The answer to this question becomes obvious once universality is stated
in the RG language. Universality classes are characterized by �xed points [1, 31], i.e.,
e�ective �eld theories in the space of possible theories that are invariant under the
action of RG. A �xed point is, in fact, the ultimate common low-energy e�ective �eld

9In condensed matter, the shortest length scale of the e�ective theory of a model, which de�nes
the energy cuto� of the theory, always has to be larger than the lattice spacing or any microscopic
scale of the original microscopic model. Nevertheless, as a mere curiosity, one might wonder whether
it is possible to take the energy cuto� to in�nity and obtain a well-de�ned genuine continuum limit.
Such well-de�ned continuum limit quantum �eld theories are called renormalizable theories in high
energy physics (see, for example, the entry by Weinberg in [27] and the paper by Polchinski [28]).
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CHAPTER 1. INTRODUCTION

theory of all the systems in its universality class. Thus, universality classes are char-
acterized by their �xed points. RG not only describes �xed points, but also explains
how low-energy theories �ow to and away from �xed points as the length scale at
which the system is examined is increased or as the energy cuto� is lowered.

We �nally can have an explanation as to why there are so few universality classes
in comparison to the number of systems they encompass. In other words, why the
microscopic details that distinguish di�erent systems within the same universality
class are impertinent to their shared macroscopic (large-distance) properties. This
is because, as explained in more detail in next sections, such microscopic details
correspond to irrelevant terms in the RG sense, which, by de�nition, are terms that
get suppressed in the course of RG.

In this thesis we present the application of renormalization group techniques to two
strongly correlated condensed matter systems. The notions of e�ective �eld theories
and RG are central to the analyses presented in the following chapters, and, thus, merit
a more thorough and detailed description. In the following two sections we brie�y
outline these important concepts. First, we brie�y describe e�ective �eld theories, and
then describe how RG naturally arises from the notions of universality and e�ective
�eld theories.

1.1 Low-Energy E�ective Field Theories

The notion of low-energy e�ective �eld theories is of great importance in both con-
densed matter and high energy physics as both disciplines heavily rely on quantum
�eld theory to describe systems composed of many particles [21, 22, 27]. The central
premise of low-energy e�ective �eld theories is that in a quantum �eld theory the high-
energy (short-distance) modes play a limited role in the low-energy (large-distance)
observables [23]. This is the statement that it is possible to entirely capture the e�ect
of high-energy modes on low-energy dynamics by including terms that solely involve
low-energy modes.

Determining the low-energy e�ective theory of a many-body quantum system is
done most conveniently and systematically when the system is expressed as a quan-
tum �eld theory [1]. The quantum �eld theory of a lattice model can be obtained
from the continuum limit of its path integral formulation [32, 33], which provides an
equivalent description at length scales larger than a shortest length.10 This shortest
scale corresponds to a largest energy in the continuum limit, referred to as the UV
energy cuto� (Λ0) of the quantum �eld theory. Dispensing with some subtleties of the
continuum limit of the path integral formulation of some lattice models,11 we start
from the quantum �eld theory of the model and explain how its low-energy e�ective
theory below the energy scale Λ� Λ0 is determined.

10In fact, this continuum theory itself is already an e�ective description of the original lattice
model.

11See Refs. [34] and [35].
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Before proceeding to how this is done in practice, let us �rst see what the bene�t of
having a low-energy e�ective theory is when the original �eld theory already describes
the physics at all energy scales below Λ0, including the low-energy observables that
one is interested in. In principle, the main advantage of a low-energy e�ective theory
is that it provides a more economical description [23], as the low-energy description
only involves low-energy modes. Having a low-energy e�ective �eld theory becomes
particularly advantageous in practice where we are severely limited by our computa-
tional capabilities:12 often, the original quantum �eld theory is too complicated or
even intractable when it comes to computing low-energy observables. A good exam-
ple of this is the quantum Ginzburg-Landau theory for a s-wave superconductor. The
quantum Ginzburg-Landau theory is a bosonic theory that accurately describes the
low-energy (energies smaller than the superconducting gap) properties of the super-
conducting state while the underlying microscopic model is an interacting fermionic
theory [36, 37].

The low-energy (Wilsonian) e�ective action of a quantum �eld theory is obtained
from the original action by integrating out high-energy modes [23, 38]. Here we
illustrate how this is done in the context of a real scalar theory. This scalar theory
can be regarded as the continuum limit description of a system that consists Ising
spins on a D-dimensional lattice [6]. The main object of interest in any quantum �eld
theory is the partition functional Z[J ] [31], from which all observables of the theory
can be obtained. The partition function Z[J ] is given by the following path integral:

Z[J ] =

∫
E<Λ0

DΦ e−S[Φ]+
∫
J(r,τ)Φ(r,τ)drdτ . (1.1)

Here Φ is the scalar �eld variable, S[Φ] is the action, J is an external current and the
cuto� Λ0 suppresses the contribution of high-energy modes.

In general, regardless of what formulation one uses to describe a quantum �eld the-
ory, whether a Hamiltonian formulation or a path-integral description, only physical
observables of the theory (the content of the theory) are of interest and meaningful.
These observables are the expectation values of time-ordered products of the �eld
variables at various space-time points:

C(r1, τ1 ; r2, τ2 ; · · · rn, τn) = 〈TΦ(r1, τ1)Φ(r2, τ2) · · ·Φ(rn, τn)〉 . (1.2)

Various linear response functions are related to these correlation functions [1]. The
external current J in Eq. (1.1) allows us to conveniently obtain these observables from
the partition function Z[J ] much the same way one obtains magnetization or speci�c
heat in statistical mechanics by taking the derivative of the partition function with

12We can always cast the problem in terms of a path integral, but, except in a very few cases, we
do not have a general prescription for dealing with such mathematical objects. This is perhaps best
expressed in the words of A.M. Polyakov: �There are no tables for path integral�.
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CHAPTER 1. INTRODUCTION

respect to the appropriate variables:

〈TΦ(r1, τ1)Φ(r2, τ2) · · ·Φ(rn, τn)〉 =
δ

δJ(r1, τ1)

δ

δJ(r2, τ2)
· · · δ

δJ(rn, τn)
Z[J ]

∣∣∣
J=0

,

(1.3)
where, δ

δJ(r,τ)
indicates taking the functional derivative with respect to the external

current J at the point (r, t).
Let us assume that the scalar theory in Eq. (1.1) is perturbative, i.e., S is of the

following form:
S = S0 + λSint , (1.4)

where S0 is a free action, which describes non-interacting bosonic degrees of freedom,
and the parameter λ� 1.13 Here, Sint introduces interactions and, in general, is a sum
of various products of the �eld variables and their derivatives (e.g.,

∫
drdτ Φ4(r, τ)).

The perturbativity assumption (λ � 1) is necessary for being able to systematically
carry out the path integral perturbatively within a so-called loop expansion approxi-
mation [31, 39, 40].

Let us see why the Wilsonian e�ective action is obtained from integrating out
high-energy modes. The external current J(r, τ) in the path integral in Eq. (1.1])
plays a similar role to a local external magnetic �eld in the partition function of the
Ising model whose derivative at zero �eld yields the local magnetization. Using this
intuition, we notice an important advantage of this path-integral formulation. The
energy cuto� Λ0 of the theory suppresses �eld con�gurations that oscillate rapidly.
Suppose there is another energy scale Λ � Λ0 associated with the external current
that corresponds to a length scale that denotes how rapidly the external current
J(r, τ) varies (its shortest wavelength) [31, 39]. When performing the path integral
in Eq. (1.1), there will be modes integrated over that oscillate much faster than the
scale corresponding to the energy scale Λ but still slower than the scale corresponding
to the energy cuto� Λ0. These high-energy �eld con�gurations (Φ>), therefore, result
in a vanishing

∫
J(r, τ)Φ>(r, τ)drdτ , i.e., do not couple to the external current. This

is because, by assumption, J(r, τ) is almost stationary over scales shorter than the
length scale corresponding to the energy scale Λ, while Φ> still rapidly oscillates (since
Λ � Λ0). Thus, we can ignore the direct contribution of these rapidly oscillating
modes Φ> to the observables that are being measured via this external current, i.e.,
the low-energy observables.

Usually, when the model possesses translational symmetry, it is more convenient
to work in momentum space. This is because, typically, the unperturbed action
S0 becomes trivial once expressed in terms of Φ(q, ω) in momentum space. Upon
Fourier transformation, rapidly oscillating modes in space-time are mapped onto large-
momentum �eld variables. Then the energy dispersion relation in S0 makes the cor-
respondence between rapidly oscillating and high-energy models explicit [6, 29]. In

13In fact, S0 does not necessarily have to be a free action. All we need is a theory that we know
its full content (all n-point functions). We will see a neat example of this in Chapter 2.
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CHAPTER 1. INTRODUCTION

the remainder of this chapter we work in momentum space.
Let us explain why the fact that high-energy modes do not directly contribute

to low-energy observables does not mean that they can be simply ignored. In other
words, why the same path integral with Λ instead of Λ0 in general does not reproduce
the same low-energy observables as those in the original theory Eq. (1.1). This is
because of the possibility of virtual processes in quantum mechanical systems. This
is best exempli�ed in the derivation of the Heisenberg Hamiltonian from the Hubbard
model at half-�lling and in the limit U → ∞. In this limit, double occupancy is
energetically prohibited yet virtual processes that involve double occupancy result
in e�ective spin exchange terms, with the Heisenberg Hamiltonian being the leading
term [24, 41]. Similarly, in a quantum �eld theory, although high-energy modes do
not directly contribute to the low-energy observables, they, nevertheless, result in
quantum corrections to the low-energy e�ective action. This is why the correct low-
energy e�ective action is obtained by integrating out high-energy modes in the original
action:

Z[J ] =

∫
E<Λ

DΦ e
−Se�[Φ]+

∫ dq

(2π)D
dω
2π

J(q,ω)Φ(−q,−ω)
, (1.5)

where,

e−Se�[Φ] =

∫
Λ<E<Λ0

DΦ e−S[Φ] . (1.6)

So far we have shown that low-energy (at energies below the energy scale Λ < Λ0)
observables of a quantum �eld theory with the energy cuto� Λ0 can be obtained not
only from the original theory but also from a low-energy e�ective theory with the
Wilsonian e�ective action given in Eq. (1.6). Thus, the e�ective Wilsonian action
of the theory is parameterized by Λ, and coincides with the original action when
Λ = Λ0 [23, 38]. Assuming locality,14 the Lagrangian density15 of the Wilsonian action
can be written as a linear combination of local operators (products of the �eld variables
with derivatives) compatible with the symmetries and conserved quantum numbers
of the original theory. Therefore, the Wilsonian e�ective action can be viewed as a
point in an in�nite-dimensional linear space, for which these local operators furnish
a complete basis.Then, the coe�cients of local terms in the action (the coupling
constants) are the coordinates of the point that represents the low-energy e�ective
theory in this space of possible theories. Thus, determining Se� at any energy scale
below Λ0 reduces to determining the couplings of local operators as a function of Λ
with initial values given by the bare couplings (the couplings in bare action S) at
Λ = Λ0.

It might seem that we have not made much progress as we still have to perform

14A quantum �eld is local if its Lagrangian density solely involvs the product of �eld operators
and their derivatives at the same space-time points.

15The action of a quantum �eld theory is usually expressed as an integral in the space-time or in
the momentum space. The integrand of this integral is the Lagrangian density of the quantum �eld
theory.
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CHAPTER 1. INTRODUCTION

a path integral in Eq. (1.6) to determine the Wilsonian e�ective action of the theory.
Furthermore, integrating out high-energy modes usually generates an in�nite number
of terms. The power of low-energy e�ective �eld theories lies in the fact that most
of these generated terms are ultimately unimportant (hence dubbed as irrelevant)
and can be ignored [42]. As for the loop integrals encountered in computing the
e�ective action in Eq. (1.6), these loop integrals are explicitly UV and IR �nite, and,
therefore, do not su�er from any divergences. Ignoring irrelevant terms often results in
a quantitative error of order O( Λ

Λ0
)(h−hu.c.), where hu.c. is the upper critical dimension

of the theory and h is the scaling dimension of the irrelevant term [29, 31, 43].16 This
justi�es restricting the analysis to terms that are not irrelevant, i.e., the subspace
spanned by local operators with scaling dimensions not greater than the upper critical
dimension of the theory (h ≤ hu.c.).17

As pointed out above, since in integrating out high-energy modes Λ0 and Λ serve,
respectively, as UV and IR cuto�s, loop integrals can be carried out unambiguously.
However, in practice, we have to truncate the loop expansion when integrating out
high-energy modes in Eq. (1.6), and it is not clear at what order in the expansion
this can be done without introducing any bias. Thus, we still lack a systematic
prescription for determining the Wilsonian e�ective action even in local perturbative
�eld theories [33]. This point becomes particularly crucial in cases where there are
competing terms in the interaction action that a�ect each other as high-energy modes
are integrated out. We will see a good example of this in the RG analysis of Chapter
2. RG solves this problem by incrementally integrating out high-energy modes [33].

1.2 Renormalization Group

In this section we illustrate how RG naturally arises from the notions of universal-
ity and low-energy e�ective �eld theories [1, 3, 26, 44, 45, 46]. In condensed matter
physics we are ultimately interested in universality classes and their best represen-
tatives, which are their �xed-point theories. Let us �rst clarify what constitutes a
good representative for a universality class, which explains why �xed-point theories
are privileged. As pointed out earlier, any member of a universality class serves as a
representative for that universality class. What distinguish various systems within the
same universality class are non-universal properties. Non-universal properties stem
from terms in the action of the quantum �eld theory of the system that are ulti-
mately unimportant in describing the universal (i.e., large-distance or, equivalently,
low-energy) properties of that universality class. Thus, based on Occam's razor prin-
ciple, the best representative for a universality class is the theory that contains no

16This is because the coupling of irrelevant terms (as well as relevant terms � h < hu.c.) are
dimensionful and their values depend on the energy scale they are measured at.

17Often we do not know the full scaling dimension of an operator. However, when the theory is
perturbative it is possible to use the scaling dimension of operators with respect to S0, i.e., we can
ignore the anomalous scaling dimension [43] of �eld variables.
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CHAPTER 1. INTRODUCTION

non-universal terms, as such a theory provides the most straightforward description
of its universality class. Recall that universality becomes manifest at macroscopic
scales, and non-universal properties typically disappear when one probes the system
over su�ciently large length scales. This suggests that the ideal representative theory
for a universality class should be scale invariant .

The statement that a quantum �eld theory is scale invariant implies that the
observables of the theory do not involve any intrinsic scale. However, there is at least
one intrinsic scale in the path-integral formulation of the theory, namely the energy
cuto�. Therefore, somehow the dependence on the energy cuto� in the observables
should disappear. In what follows we demonstrate this for a �xed-point scalar �eld
theory. Then we illustrate how RG can be used to track the �ow of the low-energy
e�ective �eld theory of a system to or away from a �xed point.

Since the �xed-point theory is scale invariant, all of its observables including its
two-point function C(q, ω) should scale [45, 47]:

C(s−1 q, s−z Ω) = s2η C(q,Ω) , (1.7)

where z is the dynamical exponent [45], η is the scaling dimension of the �eld variables
and s & 1 is a scaling parameter.18 To deduce the criterion for being a �xed-point
action from the above scaling relation, we start with the path-integral representation
of the two-point function on the left hand side of Eq. (1.7):

C(s−1 q, s−z Ω) =
1

Z

∫
Λ

DΦ e−SF.P.[Φ(k,ω)] Φ(s−1 q, s−z Ω) Φ(−s−1 q,−s−z Ω) . (1.8)

Here, we use SF.P.[Φ(k, ω)] as a shorthand for
∫
dkdωLF.P.[Φ(k, ω)]. Let us rewrite

the action in terms of integrals over the new variables k̃ = sk and ω̃ = szω. We get:

C(s−1 q, s−z Ω) =

1

Z

∫
Λ′
DΦ e−SF.P.[s

−ηΦ(s−1 k̃,s−z ω̃)] Φ(s−1 q, s−z Ω) Φ(−s−1 q,−s−z Ω) , (1.9)

where, again, SF.P.[s−ηΦ(s−1 k̃, s−z ω̃)] is a shorthand for
∫
dk̃dω̃LF.P.[s

−ηΦ(k̃, ω̃)]. The
extra factor s−η, which originates from the Jacobian and the change of the Lagrangian
density under the change of the integration variables, has been grouped with the �eld
variable Φ so that it can be absorbed into the �eld variables subsequently. Note that,
due to this change of variables, the energy cuto� appears larger (Λ→ Λ′ = sΛ). Next,
we �relabel� the �eld variables of the path integral in Eq. (1.9) as follows:

Φ(k, ω) → Φ(sk, szΩ) . (1.10)

18In RG schemes the scaling is in�nitesimal so that integrating out high-energy modes is incre-
mental.
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We get:

C(s−1 q, s−z Ω) =
1

Z

∫
Λ′
DΦ e−SF.P.[s

−ηΦ(k̃,ω̃)] Φ(q,Ω) Φ(−q,−Ω) . (1.11)

Scaling the �eld variables by sη,

Φ(k, ω) = sηΦ̃(k, ω) , (1.12)

we obtain:

C(s−1 q, s−z Ω) =
s2η

Z

∫
Λ′
DΦ̃ e−SF.P.[Φ̃(k,ω)] Φ̃(q,Ω) Φ̃(−q,−Ω) . (1.13)

Eq. (1.13) is di�erent from the path integral representation of C(q,Ω) in that the
cuto� is at Λ′ = sΛ > Λ. Since, by assumption, the observables that we are interested
in correspond to energies much smaller than the energy cuto� Λ, we can integrate
out modes that lie at high energies (between Λ and Λ′ = sΛ) to obtain an e�ective
Wilsonian action:

e−Se� ≡
∫

Λ<E<Λ′
DΦ̃ e−SF.P.[Φ̃(k̃,ω̃)] . (1.14)

Using this e�ective Wilsonian action, we should be able to reproduce exactly the same
low-energy observables:

C(s−1 q, s−z Ω) =
s2η

Z

∫
Λ

DΦ̃ e−Se�[Φ̃(k̃,ω̃)] Φ̃(q,Ω) Φ̃(−q,−Ω) , (1.15)

We see that the scaling relation that characterizes the �xed point translates into
a statement about the e�ective Wilsonian action of the theory. Often, up to an
unimportant constant, Se� = SF.P. [29, 45].

Suppose that instead of the �xed-point theory with the action SF.P., we have a
di�erent theory described by the action S within the universality class of SF.P.. This
implies that,

S = SF.P. +
∑
i

giOi , (1.16)

where gi is the coupling constant of the irrelevant term Oi. The set of irrelevant
coupling constants {gi} under the above RG procedure will �ow to zero. Due to the
presence of these irrelevant terms in S, the scaling relation in Eq. (1.7) does not hold.
This can be made explicit by repeating the above steps but this time for S instead of
SF.P.. This time, Eq. (1.14) becomes:

C(s−1 q, s−z Ω, {gi}) =
s2η

Z

∫
Λ′
DΦ̃ e−S

′[Φ̃(k,ω)] Φ̃(q,Ω) Φ̃(−q,−Ω) . (1.17)
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where, S ′ may not be the same as S due to the tree-level running (classical scaling)
of the couplings and {gi} are the couplings of the irrelevant terms in S at the scale
Λ. Integrating out modes between Λ and sΛ, we �nd:

C(s−1 q, s−z Ω, {gi}) =
s2η

Z

∫
Λ

DΦ̃ e−Se�[Φ̃(k,ω)] Φ̃(q,Ω) Φ̃(−q,−Ω)

= s2η C(q,Ω, {g′i}) , (1.18)

where,

e−Se� ≡
∫

Λ<E<Λ′
DΦ̃ e−S

′[Φ̃(k̃,ω̃)] , (1.19)

and g′i = s(hu.c.−hi)gi + δgi(s) (here δgi(s) is the quantum correction to gi from inte-
grating out high-energy modes).

Most of the time we do not know to what universality class a given theory be-
longs. In principle, RG is capable of addressing this question. However, carrying this
out can be very di�cult and often impractical, unless a systematic approximation is
made. The main di�culty arises from integrating out high-energy modes to obtain
an e�ective action as in Eq. (1.19) where we do not have a generic prescription for
performing the path integral even when the energy cuto� is lowered incrementally
(Λ′ = ed`Λ).

When the theory is perturbative, i.e., S = S0 + λSint with |λ| � 1, one can
employ perturbation theory to integrate out high-energy modes perturbatively. This
is done by expanding the full action, S, in λ:

e−Se� =

∫
Λ<E<Λ′

DΦ̃ e−S0[Φ̃(k̃,ω̃)]−λS′int[Φ̃(k̃,ω̃)] (1.20)

≈
∫

Λ<E<Λ′
DΦ̃ e−S0[Φ̃(k̃,ω̃)]

[
1 − λ S ′

int
[Φ̃(k̃, ω̃)] +

λ2

2

(
S ′
int

[Φ̃(k̃, ω̃)]
)2

+ O(λ3)

]
,

where, again, S ′
int

can be di�erent from Sint due to the tree-level running of the
couplings (after scaling the �eld operators). Therefore, as long as the theory is per-
turbative, integrating out high-energy modes does not pose any serious problem and
can be performed perturbatively.

Often S0, the unperturbed theory, itself is a �xed point theory and we want to sys-
tematically determine how Sint evolves in the course of RG. This requires determining
the �ow of not only the coupling constants originally present in Sint but also those that
are generated in the course of RG. However, there are potentially an in�nite number
of coupling constants. Therefore, we need to �nd a way to consistently restrict the
analysis to a more manageable set of couplings to be able to make any progress.
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As in the discussion of e�ective �eld theories in the previous section, suppose local
operators provide a complete basis for any possible term that can be generated in this
perturbative theory (the assumption of locality). Then the question of how Sint evolves
in the course of RG becomes how the coupling constants of the local terms, {gi}, �ow
as the cuto� Λ is lowered. For an in�nitesimal scaling s = ed` this procedure gives
di�erential equations (β-functions) that govern the �ow of the coupling constants.
The initial conditions are provided by the coupling constants in Sint in the beginning.

The β-functions for a given coupling constant with the initial condition g ∝ λ� 1
and the scaling dimension h (with respect to S0) is of the form ∂`gi = (hu.c.−hi)gi +
O(λ)2 (` = logL is the �RG time� � here L is the physical length). Thus, as long
as λ � 1, the β-functions are dominated by the tree-level scaling dimensions, i.e.,
(hu.c. − hi).19 Therefore, most of the time,20 it is justi�ed to ignore irrelevant terms,
i.e., terms with h > hu.c., and only focus on tree-level marginal and relevant terms
(those with scaling dimensions h ≤ hu.c.).

The above outlined RG procedure is common to a class of RG schemes referred to
as local perturbative RG schemes. This is because of the two main assumptions that
were made in arriving at the β-functions: locality and perturbativity. In cases where
any (or both) of these assumptions fails, one has to resort to other RG schemes such
as functional (exact) RG schemes [29, 48]. In functional RG schemes the evolution
of Sint is usually described in terms of an in�nite hierarchy of integro-di�erential
equations for n-point one-particle irreducible (1PI) vertices. Such integro-di�erential
equations are very formal and cannot be carried out exactly [49, 48, 33]. Nonetheless,
functional RG schemes are useful as they, together with various (often case-speci�c)
approximations that make computations possible, can provide alternative approaches
to local perturbative RG schemes. For examples of such approximate functional RG
approaches see [50, 51, 52].

1.3 This Thesis

This thesis presents how renormalization group ideas can be fruitfully utilized in
addressing two strongly correlated problems in two dimensions: the spin-1

2
Heisenberg

antiferromagnetic model on an anisotropic triangular lattice, and the e�ect of weak
interactions on a neck-narrowing Lifshitz transition. These two problems are not only
of considerable interest for their relevance to real materials, but also are of interest
from a theoretical point of view. The RG analyses presented in this thesis, besides
addressing the physics of these two problems, provide instances of somewhat novel
RG scenarios.

19The term tree-level is used because the (hu.c.−hi) term in the β-function appears at O(λ) (tree
level) in the expansion in Eq. (1.20).

20One should be mindful of dangerously irrelevant terms, i.e., irrelevant terms that might a�ect
the �ow of marginal or relevant terms in a signi�cant way.
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The spin-1
2
Heisenberg antiferromagnetic model on an anisotropic triangular lat-

tice (Fig. [1.1]) is discussed in Chapter 2. The phase diagram of this model has been
the subject of extensive analytical and numerical studies, and is relevant to certain
Mott insulator materials such as Cs2CuCl4 and Cs2CuBr4. The intense interest in this
model originated from the possible existence of a two-dimensional spin-liquid state in
its phase diagram, as this model is a low-dimensional geometrically frustrated quan-
tum antiferromagnet. This was further fueled by the experimental observation of a
featureless continuum in the inelastic neutron scattering spectrum of Cs2CuCl4 [53].
This observation was taken as evidence for decon�ned two-dimensional spinons and
led to the suggestion that, while Cs2CuCl4 itself exhibits an incommensurate spi-
ral ground state, it, nevertheless, may be in close proximity to a quantum phase
transition to a two-dimensional spin-liquid state [54]. Inspired by this proposal, nu-
merous studies suggested the presence of spin-liquid state(s) in the phase diagram
of this model at strong and even moderate anisotropies [55] as shown in Fig. [1.2a].
In contrast, Starykh and Balents [56], based on a one-dimensional real-space RG ap-
proach, argued that this model exhibits a collinear antiferromagnetic (CAF) state at
strong anisotropies, with a crossover to an incommensurate spiral state at some point
(Fig. [1.2a]).

J'

J

Figure 1.1: Spatially anisotropic triangular lattice. Spin-1
2
's reside on the sites of

the lattice. Spatial anisotropy stems from the fact that the strength of the coupling
between spins along the horizontal bonds, J , is di�erent (here larger) than that of the
diagonal bonds, J ′.

In a collinear antiferromagnetic spin texture (see Fig. [2.7b]), unlike in a spiral
spin con�guration (see Fig. [2.7a]), second-nearest chains are coupled antiferromag-
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Figure 1.2: Proposed phase diagrams for the spin-1
2
HAF model on a spatially

anisotropic triangular lattice. (a) studies that advocated for the presence of quantum-
disordered states in the phase diagram. (b) studies that did not indicate any extended
quantum-disordered state in the phase diagram.

netically. However, this does not necessarily mean that second-nearest chains are
coupled antiferromagnetically on all length scales when the system is in the CAF
phase: the antiferromagnetic coupling between second-nearest chains in the CAF
phase may manifest itself only at large length scales, while on short length scales
spins on second-nearest chains can even exhibit ferromagnetic correlations. Whether
or not this is the case can be easily determined from the RG �ow of the couplings.
The RG analysis of Starykh and Balents [56] suggests that second-nearest chains are
antiferromagnetically coupled on all length scales. However, high-precision numerical
studies on �nite-size systems only indicate ferromagnetic correlations between spins
on second-nearest chains, which is very puzzling. Using the same real-space one-
dimensional RG approach of Starykh and Balents, we examine a more comprehensive
set of β-functions, and �nd, due to a subtle �ne-tuning of couplings, the presence of
ferromagnetic correlations over large length scales is compatible with such a collinear
antiferromagnetic state. Also, we examine the e�ect of a weak Dzyaloshinskii-Moriya
interaction term, which is relevant to materials such as Cs2CuCl4 and Cs2CuBr4

within this RG approach. The presented RG analysis does not indicate any extended
quantum-disordered state in the phase diagram of this model at strong anisotropies.
Given the experimentally determined parameters in the Hamiltonian of Cs2CuCl4, we
conclude that this material is well within the stability region of the spiral state.

The RG analysis for a neck-narrowing Lifshitz transition in two-dimensions and
in the presence of weak interactions is presented in Chapter 3. At the critical point of
the neck-narrowing Lifshitz transition studied here, the Fermi surface contains a van
Hove singular point. The interest in this problem stems from the fact that van Hove
singularities or proximity to such singular points are ubiquitous in real materials.
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Examples of such Fermi surfaces include the diamond Fermi surface of the Hubbard
model on a square lattice at half �lling and Graphene at 3

8
or 5

8
�lling, which contains

three distinct van Hove singularities and has received a great deal of attention in recent
years. Neck-narrowing transitions are, in fact, topological quantum phase transitions
where, across the transition, only the topology of the Fermi surface changes, with
no change in symmetry. It is, thus, of great importance to understand the e�ect of
interactions on such transitions.

We study a model described by the dispersion εk = k2
x − k2

y, together with a
momentum cuto� that plays the role of the size of the Fermi surface. The neck-
narrowing transition in this model is controlled by the chemical potential, with the
critical point at µc = 0. Slightly away from the critical point, the Fermi surface has a
narrow neck, which vanishes as the critical point is approached. We �nd that, at the
critical point, the Wilsonian e�ective action is intrinsically non-local. This intrinsic
non-locality of the e�ective action is attributed to integrating out a soft degree of
freedom. Away from the critical point, locality in the Wilsonian e�ective action can
be restored only in the presence of a momentum cuto� that keeps the size of the
Fermi surface �nite. However, this local description is available only within a �nite
momentum range that shrinks in the course of RG. Within this analytic range, we
�nd that attractive interactions grow as log2 L.
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Chapter 2
Spin-12 Heisenberg Antiferromagnetic Model

on a Spatially Anisotropic Triangular

Lattice

This chapter presents an RG analysis of the spin-1
2
Heisenberg antiferromagnetic

(HAF) model on a spatially anisotropic triangular lattice in the strong anisotropy
limit. In the strong anisotropy limit, this model is quasi-one-dimensional, and be-
comes amenable to a real-space RG scheme [57] appropriate for spin-1

2
Heisenberg

antiferromagnetic chains. Treating the coupling between the chains as a weak pertur-
bation to decoupled spin-1

2
chains, we analyze the nature of the dominant interchain

coupling at large length scales. Clearly, this perturbative RG approach is feasible only
up to a length scale where a renormalized interchain coupling becomes comparable
to the intrachain coupling. Once this scale is reached, we use the output of this RG,
i.e., the renormalized interchain couplings, to predict the fate of the system based on
what is known about certain two-dimensional quantum magnets.

The main focus of the analysis presented in this chapter is on the nearest-neighbor
Heisenberg model. Nevertheless, the e�ect of a weak Dzyaloshinskii-Moriya [58] in-
teraction, which is relevant to materials such as Cs2CuCl4 and Cs2CuBr4, is brie�y
discussed within this one-dimensional RG approach at the end. The phase diagram of
this model in the presence of a magnetic �eld is a rich and interesting topic at its own
right that will not be discussed here. The analysis presented in this chapter is largely
based on Refs. [59, 55]. The DMRG and ED results presented here were obtained by
Prof. Erik Sorensen. The RG analysis and the analysis of the DMRG and ED results
were all performed by the author of this thesis.

The main results of this chapter are as follows. In contrast to many numerical
and theoretical studies that suggest the presence of spin-liquid states over a large
parameter range in the phase diagram of this model (see Eq. (2.1)), the presented RG
analysis does not indicate any extended quantum-disordered state in the phase dia-
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gram at strong anisotropies. The dominant coupling between the chains is a relevant
second-nearest-chain Néel coupling that, depending on its sign, either results in ferro-
magnetically or antiferromagnetically coupled second-nearest chains. Ferromagnetic
coupling between second-nearest chains is compatible with spiral ordering, whereas
antiferromagnetic coupling, via the order-by-disorder mechanism, entails a collinear
antiferromagnetic (CAF) state. Most notably, the β-functions reveal a subtle �ne-
tuning, because of which the relevant second-nearest chain Néel coupling term does
not grow as fast as a relevant coupling is expected to grow. In particular, because of
this �ne-tuning, even in the CAF state, ferromagnetic correlations persist over large
length scales. It is found that the spiral state dominates the phase diagram, and a
fragile CAF state can be stabilized only at su�ciently strong anisotropies and when
the Dzyaloshinskii-Moriya interaction is extremely weak. It is pointed out that this
�ne-tuning has important implications on how the results of numerical studies on
�nite-size systems should be interpreted. Finally, it is concluded that Cs2CuCl4 is
well within the stability region of the spiral order.

2.1 Introduction

The spin-1
2
Heisenberg triangular antiferromagnet is the simplest and perhaps most

well-known instance of geometric frustration in quantum magnetism. The interest in
this model dates back to the early 70s when Anderson [60] suggested that the ground
state of this model is likely a resonating valence bond (RVB) state, i.e., a spin-liquid
state. However, later on, using �nite-temperature series expansions, Monte Carlo
simulations and exact diagonalization on �nite-size systems, it became clear that
the ground state of this model exhibits a long-range ordered state: the 120◦ phase
(see Fig. [2.3a]), which is the classical ground state of this model [61, 62, 63, 64].
Nevertheless, Anderson's RVB state, as an instance of quantum-disordered states of
matter at zero temperature that do not break any symmetries of the Hamiltonian,
introduced the notion of spin liquids in condensed matter physics.1

The interest in frustrated quantum magnets has been predominantly driven by
the pursuit of spin-liquid ground states in two and higher dimensions [66]. Low-
spin two-dimensional frustrated quantum magnets, in particular, have been explored
more extensively due mainly to the fact that mean-�eld e�ects that favour ordered
states are typically weaker in lower dimensions [67, 68]. In general, frustration and
low-dimensionality are antagonist to long-range ordered states. Frustration results in
energetically less favourable classical ground states2 that experience stronger quantum
�uctuations and are typically degenerate. In lower dimensions, quantum �uctuations

1The interest in such quantum disordered states that break none of the symmetries of the Hamil-
tonian goes back to a very interesting debate between Nevill Mott and John Slater, the account of
which can be found in Anderson's book [65].

2Spin con�gurations that minimize the Hamiltonian in which spins are treated as classical vectors
of �xed length.

18



CHAPTER 2. SPIN-1
2
HEISENBERG ANTIFERROMAGNETIC MODEL . . .

around ordered states could be potent enough to �melt� the long-range magnetic order,
and result in a quantum-disordered state. The extreme case of this melting of long-
range magnetic order due to strong quantum �uctuations occurs in one dimension,
where antiferromagnetic chains either exhibit a spin-liquid ground state or a valence-
bond solid [69, 67, 24, 57]. This is why low-dimensional frustrated quantum magnets
are generally believed to be more prone to realize quantum-disordered ground states,
and perhaps spin-liquid states [66, 70].

On the theoretical side, there already exist several arti�cial two-dimensional mod-
els that were speci�cally designed to manifest spin-liquid ground states [71, 72, 73,
74, 75, 76, 77, 78]. However, most of these models are too abstract, and, thus,
are of interest mostly from a theoretical perspective.3 On the experimental side,
the organic Mott insulator κ-(BEDT-TTF)2Cu2(CN)3 [82, 83], which is close to its
Mott transition point (is a weak Mott insulator), is suspected to possess a spin-
liquid ground state [70]. However, this material, being a weak Mott insulator, in-
volves substantial ring-exchange terms, and cannot be described by a model of short-
range Heisenberg exchanges. Another promising experimental candidate is Herbert-
smithite [70, 84], which is a mineral with a kagome lattice structure and the chemical
structure ZnCu3(OH)6Cl2. We also seem to have strong numerical evidence that the
ground state of the spin-1

2
HAF model on the kagome lattice is a spin liquid [85].

The spin-1
2
HAF model on the kagome lattice had long been suspected to possess

a spin-liquid ground state as its classical ground state is highly degenerate (has a
thermodynamic degeneracy) [72, 86]. The fact that classical ground state of a model
has a thermodynamic degeneracy suggests that its quantum ground state is most
likely a quantum disordered state, i.e., either a spin-liquid state or a valence-bond
solid [85, 87]. This reasoning proves illuminating in rationalizing the result of the RG
analysis on the spin-1

2
HAF model on a spatially anisotropic triangular lattice, whose

classical ground state is only two-fold degenerate.
Numerical studies on the spin-1

2
Heisenberg triangular antiferromagnet indicate

signi�cantly renormalized magnetic moments, attesting to strong quantum �uctua-
tions [63, 64]. This suggests that the addition of a moderate perturbation may drive
the ground state of this model a spin liquid. Hence, the persistence of interest in this
model as a potential candidate for realizing a spin-liquid state. Various extensions of
the spin-1

2
Heisenberg triangular antiferromagnet have been considered. In particular,

easy-plane anisotropy [88, 89], the addition of ring-exchange terms [90, 91, 92, 93, 94],
which is relevant to organic Mott insulators κ-(BEDT-TTF)2Cu2(CN)3 and κ-(BEDT-
TTF)2Cu2[N(CN)2]Cl, and spatial anisotropy. Here we focus on the spatial anisotropy,
which is largely motivated by its relevance to the layered inorganic Mott insulators
Cs2CuCl4 and Cs2CuBr4. In the remainder of this chapter, we use the term �Heisen-
berg Hamiltonian� to refer to the nearest-neighbor isotropic Heisenberg Hamiltonian.

3Recently there have been several studies on so-called Heisenberg-Kitaev models. See, for example,
Refs. [79, 80, 81] and references therein.
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2.1.1 Motivation from Experiments

Cs2CuCl4, an inorganic layered magnetic salt, is a perfect realization of the spin-1
2

HAF model on an anisotropic triangular lattice (see Figs. [2.1,2.2]) [95, 96, 97]. As
shown in Fig. [2.2], the Cu2+ ions, which carry spin-1

2
and are responsible for the mag-

netic properties of this material, are organized in a staggered stack of triangular layers.
The spin Hamiltonian of this material was accurately determined experimentally by
applying a strong magnetic �eld, which polarizes the spins and results in a ferromag-
netic texture, and studying the spectrum of its magnons using neutron scattering [98].
It was found that the triangular layers in Cs2CuCl4 are weakly magnetically coupled
with the interlayer exchange J ′′ = 0.045(5) J . Within the triangular layers, the inter-
chain exchange J ′ = 0.34(3) J and the intrachain exchange J = 0.374(5)meV. Also
there is a weak Dzyaloshinskii-Moriya interaction [58] present in this material, with a
D-vector of the magnitude |D| = 0.053(5) J and perpendicular to the triangular lay-
ers. Cs2CuCl4 exhibits an incommensurate long-range ordered state below the Néel
temperature TN = 0.62(1) K. Since it seems that the role of the interlayer couplings is
solely to stabilize the ordered state below TN , the ground state of this material is ex-
pected to be accurately described by the following two-dimensional Hamiltonian [54]:

H = J
∑
x,y

Sx,y · Sx+1,y + J ′
∑
x,y

Sx,y · Sx,y+1 + Si,y · Sx∓1,y+1 +

±
∑
x,y

D ·
[
Sx,y ×

(
Sx,y+1 ∓ Sx∓1,y+1

)]
, (2.1)

where x labels sites on the chains, y labels the chains and the D-vector is along the
a-direction (perpendicular to the triangular layers � see Figs. [2.1,2.2]). The choice
of sign in the above lattice Hamiltonian depends on y: when y is even the top sign
should be used and when odd the bottom sign. This is due to the staggered labelling
convention we use for sites on the chains as shown in Fig. [2.9]. For a similar reason,
the sign of the D-vector alternates between even and odd layers due to the adjacent
layers being shifted with respect to each another as shown in Fig. [2.2].

As mentioned above, experiments indicate that Cs2CuCl4 develops incommensu-
rate spiral order (see Fig. [2.3b]) below the Néel temperature TN = 0.62(1)K. Such a
state is characterized by aQ-vector. For Cs2CuCl4, it was found thatQ = (0.5+ε0)b∗

(b∗ is the reciprocal vector corresponding to the lattice vector b), where ε0/εclassical =
0.56(2) [53]. This signi�cantly renormalized ε0 compared to that of its classical ground
state (Qclassical = π + 2 sin−1(J ′/2J) thus εclassical = 1

π
sin−1(J ′/2J)) indicates strong

quantum �uctuations. This signi�cantly renormalized ε0, nevertheless, seems to be
in agreement with zero-temperature linked-cluster series expansion studies [99, 100].
Note that, in Cs2CuCl4 spins in the spiral state lie in the bc-plane, as depicted in
Fig. [2.3b], due to the weak DM interaction.

Low-energy excitations in magnetic systems that exhibit long-range order are spin-
waves or magnons , which are the Goldstone bosons associated with the spontaneously
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Figure 2.1: Crystal structure of Cs2CuCl4. Cu2+ ions with spin-1
2
are responsible

for the magnetic properties of this material. The lattice parameters (at 0.3 K) are as
follows: a = 9.65Å, b = 7.48Å and c = 12.26Å. (Reproduced from [54]).
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(a) (b)

Figure 2.2: (a) Intra- and interchain couplings within a single layer of Cs2CuCl4,
together with the Dzyaloshinskii-Moriya (DM) interaction. (b) The orientation of two
adjacent layers in Cs2CuCl4. The D-vector of the DM interaction is perpendicular
to the triangular layers (along the a direction). The sing of the coupling of the DM
interaction in relation to the central spin in the above �gure is indicated with ⊗ and
�. (Reproduced from [98]).
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(a) (b)

Figure 2.3: Commensurate (a) and incommensurate (b) spiral spin textures.

broken rotational symmetry of the Hamiltonian [45]. Thus, one expects sharp peaks
in the magnetic dynamical structure factor of such quantum magnets, which can be
determined in inelastic neutron scattering experiments [68]. For Cs2CuCl4, inelastic
neutron scattering studies found broad peaks instead of sharp peaks with tails that
persist to fairly high energies [53, 54]. Such broad peaks are reminiscent of spinon
excitations in one-dimensional Heisenberg antiferromagnetic chains [101, 102, 103,
104, 105], with the exception that experiments indicated that the observed continua
disperse in both spatial directions within the bc-plane, while being non-dispersive
along the a-direction (perpendicular to the the triangular layers). This feature was
found to persist even above the transition temperature TN , as shown in Fig. [2.5].
These observations were taken as evidence for Cs2CuCl4 being in close proximity to a
quantum phase transition from an incommensurate spiral state to a two-dimensional
spin-liquid state [54]. This proposal rekindled interest in the phase diagram of the
spin-1

2
HAF model on a spatially anisotropic triangular lattice, and triggered a surge

of numerical and theoretical studies to explain the experimental observations.

2.1.2 Previous Theoretical and Numerical Studies

The problem of spatially anisotropic HAF model on a triangular lattice has been ex-
tensively studied using various analytical and numerical approaches. However, due to
discrepancies between the results from di�erent studies, there seems to be no consen-
sus on the phase diagram of this model except in the vicinity of the isotropic point
(J ′ ' J). Nonetheless, as explained below, careful unbiased numerical [106, 100] and
analytical [59, 56] studies in recent years strongly suggest the presence of incommen-
surate spiral ordering over most of the phase diagram with possibly a CAF state at
su�ciently large anisotropies.

Motivated by the proposal in Ref. [54] that Cs2CuCl4 might be in close proximity
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Figure 2.4: Directions along which the dispersion of the magnetic excitations were
measured in the reciprocal space. The magenta dots along the curves (1)-(4) are the
measurement points. (Reproduced from [98]).

Figure 2.5: Magnetic excitations above (�lled circles) and below (empty circles)
TN . The solid and dashed curves are �ts to the data points. The resolution of the
measurments are indicated by the gray peak. (Reproduced from [98]).
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to a quantum phase transition to a spin-liquid state, several studies [88, 89, 107,
108, 109, 110, 111, 112, 113] suggested that the incommensurate spiral state near
the isotropic point (J ′/J . 1) is destroyed by quantum �uctuations and is replaced
by a quantum-disordered state as J ′/J is reduced (see Fig. [2.6]). Some of these
studies estimated the transition point to a quantum-disordered state to be as large as
J ′/J ≈ 0.9. A brief summary of these studies is provided below.

0 1 J'/J~0.8~0.3

Spiral (a)

Spin Liquid 1 Spiral (b)

(c)CAF Spiral

SL 2

Figure 2.6: A comparison of various suggested phase diagrams for the spin-1
2
HAF

model on an anisotropic triangular lattice. (a) Incommensurate spiral order with
renormalized Q-vector throughout the phase diagram suggested in Ref. [100]. (b)
The phase diagram suggested by Refs. [109, 110, 111, 112, 113] with two spin-liquid
states indicated by 1 and 2. (c) The phase diagram based on the RG studies [56, 59]
where a collinear antiferromagnetic (CAF) state appears at strong anisotropies.

Chung et al. [107], examined the large-N limit of the Heisenberg and Hubbard
models on an anisotropic triangular lattice. For the Heisenberg model, they used a
bosonic representation for spins. This bosonic representation is then generalized to
a Sp(N) (symplectic) form, which they treated in the large-N limit using a saddle-
point approximation. This approach had been developed earlier in Refs. [114, 115] for
non-bipartite lattices instead of the SU(N) extension that is appropriate for bipartite
lattices. The caseN = 1 is expected to reduce to the original spin-1

2
Heisenberg model,

as Sp(1) ∼= SU(2). From their saddle-point analysis, they concluded the presence of
two phases in the phase diagram in the interval 0 ≤ J ′/J ≤ 1 for the N = 1 (spin-1

2
)

case: an incommensurate long-range ordered state that terminates at J ′/J ' 0.128,
followed by a phase where the chains are decoupled.

Isakov et al., [108] studied the quantum phase transition between an incommensu-
rate spiral state and a Z2 spin-liquid state with bosonic spin-1

2
spinons and gapped Z2

vortices (visons). Since the visons are gapped throughout this quantum phase transi-
tion, a direct continuous phase transition from the spin-liquid state to the spiral state
is possible via the condensation of the bosonic spinons. The critical point of such a
transition is in the universality class of the classical O(4) model in three dimensions.
They obtained a large anomalous exponent (η ≈ 1.37) for the spin-spin correlation
function, 〈S(−q, ω) · S(q, ω)〉 ∼ 1

(ω2−k2)1−η/2 (k = q − Qspiral), at the critical point.
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They argued that their �ndings are qualitatively consistent with the experimental
observation of broad tails in the inelastic neutron scattering spectrum of Cs2CuCl4.

Another possible scenario for the destruction of the spiral state and the appearance
of a quantum disordered state is a quantum phase transition to a valence-bond solid.
This possibility, although for a square lattice with next-nearest-neighbor antiferro-
magnetic couplings, which is also frustrated, was examined by Bhattacharjee [116].
Such a quantum phase transition would be a �Landau-forbidden� quantum phase
transition, as the two phases on both sides of the phase transition break di�erent
symmetries of the Hamiltonian (a spiral state breaks the rotational symmetry, while
a valence-bond-solid state breaks the lattice transnational symmetry). In contrast
to the aforementioned quantum phase transition from a spiral state to a Z2 spin-
liquid state examined by Isakov et al. [108], in this quantum phase transition to a
valence-bond-solid state, visons are not gapped and play an important role.

Alicea et al., [88, 89] studied this problem using a fermionized vortex approach.
This approach applies to both isotropic (XXX) and anisotropic Heisenberg (XXZ)
models. The Heisenberg Hamiltonian is regarded as a quantum rotor model (S+ →
eiφ̂ and Sz → n̂ − 1

2
) with an on-site repulsion term that imposes the hard-core

constraint (n̂ = 0, 1) at each site by energetically penalizing higher occupations (a
softened hard-core constraint). Then, using the well-known duality between the XY
model and an Abelian U(1) superconductor in two dimensions [117], this quantum
rotor model on an anisotropic triangular lattice is mapped to an Abelian U(1) gauge
�eld on the dual lattice (a honeycomb lattice). Finally, using a Chern-Simons �ux
attachment procedure, the vortices are fermionized (regarded as fermions with �ux
quanta attached to them). Within a mean-�eld approach similar to those used in the
study of fractional quantum Hall systems, the �ux quanta are smeared and treated as
a background magnetic �eld. Solving the resultant free-fermion problem, they found
a critical spin-liquid state.

Weng et al. [109] examined this problem using exact diagonalization (ED), and
density matrix renormalization group (DMRG) on small systems (6×6, 4×4 and 6×4
using ED, and 6 × 18 and 8 × 18 using DMRG). They concluded that a spin-liquid
state exists in the strong anisotropy limit that persists up to J ′/J ' 0.78.

Yunoki et al. [110], using a variational wave-function approach, with Monte Carlo
simulations for determining optimal variational parameters, found two spin-liquid
states in the phase diagram of this model: a gapless spin liquid at large anisotropies
(J ′/J . 0.65) and a gapped spin liquid in the parameter range 0.65 . J ′/J . 0.8.

Hauke et al. [111] studied the ground state of this model using the modi�ed spin-
wave theory in Ref. [118], where it is assumed that the sublattice magnetization is
zero, together with an ordering vector optimization step. They arrived at a phase
diagram very similar to that of Yunoki et al. [110].

Heidarian et al. [112], using a variational Monte Carlo approach together with the
Lanczos (ED) method on a 6 × 6 cluster, arrived at the same conclusion as Yunoki
et al. and Hauke et al.: a 1D spin liquid for J ′/J . 0.6, a 2D spin liquid for
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0.6 . J ′/J . 0.85 and �nally the long-range ordered state for 0.85 . J ′/J ≤ 1.
Reuther et al. [113] used a functional renormalization group approach to compute

the magnetic susceptibility and suggested a �rst-order phase transition at J ′/J ' 0.9
to a quantum-disordered state.

In spite of the above studies that all suggest that the long-range magnetic or-
der is destroyed by quantum �uctuations (see Fig. [2.6]), several other numerical
and analytical studies have suggested a di�erent scenario that does not involve any
quantum-disordered state. In particular, some of these studies examined the possi-
bility of a transition from an incommensurate spiral state, with highly renormalized
Q-vector due to quantum �uctuations, to a collinear antiferromagnetic (CAF) state
at a small J ′/J [56, 59, 100, 106, 119]. Schematics of the spiral and CAF states can
be seen in Fig. [2.8].

Bocquet et al. [120], studied the �nite-temperature dynamical response of a this
model in the strong anisotropy limit, where it is quasi-one-dimensional. The �nite-
temperature dynamical response function was obtained by starting with the �nite-
temperature dynamical susceptibility of decoupled chains and taking into account the
e�ect of interchain couplings within the random phase approximation (RPA). They
found a weak instability to an incommensurate long-range ordered state by starting
from a high-temperature disordered state.

Dalidovich et al. [121] showed that a rather conventional anharmonic spin-wave
theory can qualitatively account for the experimental observations as well as that
large renormalization in the magnetic moments and the Q-vector of the long-range
ordered state. A similar result was found by Veillette et al. [122].

Starykh et al. [56] examined this model at strong anisotropies using the same
RG scheme as the one employed here, and suggested a collinear antiferromagnetic
state at strong anisotropies. They argued that the dominant interchain coupling is
a second-nearest-chain Néel coupling, generated by quantum �uctuations of order
(J ′/J)4. This interchain term couples second-nearest chains antiferromagnetically,
which via the order-by-disorder mechanism stabilizes the CAF state. In contrast,
in [59] intense competition between the CAF and incommensurate spiral states, and
also ferromagnetic �uctuations of order (J ′/J)2 were found, which will be explained
in detail in the following sections.

Pardini et al. [100], motivated by the proposed CAF state of Starykh and Ba-
lents [56] at strong anisotropies, studied magnetic ordered states in this model using
linked-cluster series expansions at zero temperature in this model. They compared
the energies of the CAF state and the incommensurate spiral state (with a variational
Q-vector), and found that the CAF state has a slightly higher energy than the spiral
state (J ′ = 0.1J was the smallest non-zero J ′ value they could access due to the
convergence of the series expansions). However, the di�erence between the energies
of the two states was small, and they concluded that both phases can be stabilized.

Weichselbaum et al. [106] examined large two-dimensional patches using the DMRG
approach for 0.5 . J ′/J ≤ 1. To avoid frustrating the spiral correlations, they used
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a cylindrical geometry, where the boundary conditions are periodic in the direction
perpendicular to the chains and open in the direction along the chains. To further
minimize the �nite-size e�ects, they used a pinning magnetic �eld on one of the open
ends of the cylinder, and exponentially suppressed the couplings near the other end.
The pinning �eld allows for conveniently determining the spin-spin correlations by
measuring the induced local moments 〈Si〉. They observed an even-odd e�ect de-
pending on whether the width of the patch was 4n or 4n+ 2 chains, which seemed to
disappear with increasing n. Speci�cally, they observed only incommensurate spiral
correlations for all systems they studied, with no sign of any collinear state at J ′/J

values down to 0.5, and found the Q-vector of the form c1(J
′

J
)2 e−c2

J ′

J best �ts the
observed spiral correlations.

Harada [123], using a tensor network approach, supplemented with an entangle-
ment renormalization (ER) step, was able to explore large system sizes: N = 144
with one ER level and N = 2166 with two ER levels for 0.7 ≤ J ′/J < 1. He found
a stable incommensurate spiral state in contrast with most studies that suggested a
transition to a spin-liquid state at J ′/J ≈ 0.8.

Thesberg et al. [119] studied �nite-size systems with twisted boundary conditions
using ED. The twisted boundary condition allows for accommodating spiral states
with wavelengths much larger than the systems sizes that can be handled using ED.
Interestingly, their analysis seems to be in good agreement with the DMRG study
of Weichselbaum et al. [106]. The result of their analysis suggests a phase transition
between a long-range spiral phase and a subtle phase with only short-range spiral
correlations. Also, they observed close competition between ferromagnetic and anti-
ferromagnetic correlations between second-nearest chains.

In another study, Thesberg and Sorensen [124] examined the phase diagram of
the generalized version of this Heisenberg antiferromagnetic triangular model where
next-nearest-neighbor couplings along the chains are present (the J1-J2-J ′ model).
This study indicated good agreement with the picture expected based on the RG
analysis (see Ref. [56]). This case, although di�erent from the model discussed here,
is expected to provide an indirect test of the RG predictions. The continuum limit
of a J1-J2 spin-1

2
antiferromagnetic chain for J2/J1 . 0.24 is the same as that of a

nearest-neighbor spin-1
2
antiferromagnetic chain except with |γbs| < 0.23 (see the next

section). Based on the discussion in the next section and Ref. [56], the J1-J2-J ′ model
in the strong anisotropy limit is expected to exhibit a dimer state su�ciently close
to J2/J1 = 0.24. Note that, in comparison with the RG analysis in Ref. [56], the
presented RG analysis indicates in this chapter indicates that this model is slightly
more resistant to dimer states as J2/J1 → 0.24 is approached. This is due to the g2

N

term in the β-function of γbs in Eq. (2.8a), which will be discussed in the next section.
The results obtained in careful numerical studies of [100, 106], as well as the

RG analyses in [56, 59] are hard to refute. However, if there is no transition to a
spin-liquid state, then how can one explain the results of inelastic neutron scattering
experiments [53, 54] on Cs2CuCl4 that suggest spinons propagating in both spatial
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directions? A convincing answer to this question was provided by Kohno et al. [125].
They showed that the dynamical structure factor S(q, ω), computed within a two-
spinon approximation (truncating the Fock space of 1D spin-1

2
chains to two-spinon

excitations) and taking into account the interchain couplings perturbatively, can ac-
count for the experimentally observed continuum being dispersive in both spatial
directions. This should be contrasted with some of previous anharmonic spin-wave
studies that were able to qualitatively account for the observed continuum. The
approximate structure factor, computed within this two-spinon approximation, quan-
titatively explains the experimental observations without any �tting parameters and
only using the experimentally measured exchanges J and J ′. Based on this, Kohno
et al. argued that the observed continuum in the neutron scattering spectrum of
Cs2CuCl4 is due to the descendants of 1D spinons, and the naive expectation that 1D
spinions solely disperse in one direction (only along the chains) was erroneous. Two
spinons can hop from one chain to another, which results in dispersion in the direction
perpendicular to the chains.

The RG analysis of Starykh and Balents [56], which suggests a CAF state at strong
anisotropies, only indicates antiferromagnetic correlations between spins on second-
nearest chains on all length scales. This is somewhat puzzling as �nite-size systems [59,
106] only exhibit ferromagnetic correlations between second-nearest chains. As shown
in Figs. [2.7,2.8], ferromagnetic correlations are compatible with a spiral state, whereas
in a CAF spin texture antiferromagnetic correlations are expected. This discrepancy
was resolved in [59], which is explained in detail in the remainder of this chapter.

(a) Incommensurate Spiral (b) CAF

Figure 2.7: (a) Ferromagnetic correlations between second-neighbor chains in a
spiral spin texture. (b) Antiferromagnetic correlations in a CAF con�guration.
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(a) J ′ = J . (b) J ′ . J

(c) J ′ � J (d) CAF

Figure 2.8: (a) Commensurate spiral state (120◦ phase). (b) Incommensurate spiral
state for J ′ . J . (c) Incommensurate spiral state with Q ≈ π. (d) Collinear
antiferromagnetic state (CAF).
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2.2 Continuum Model and RG Analysis

In this section we present the details of the RG analysis for spin-1
2
HAF model on an

anisotropic triangular lattice at strong anisotropies. Employing a one-dimensional RG
scheme appropriate for antiferromagnetic spin-1

2
chains, we perturbatively determine

the running of interchain couplings as the short-distance cuto� of the problem is
increased. Since in this RG approach interchain couplings are treated perturbatively,
the obtained β-functions can be relied on only up to a length scale L∗ where any of the
interchain couplings reaches unity (in the units of the intrachain exchange coupling J)
and the quasi-one-dimensional picture no longer holds. For the purpose of this one-
dimensional RG approach, it is the continuum limit of the chains that is needed and
not the full continuum limit in both spatial directions. Thus, the desired continuum
Hamiltonian is obtained from the continuum limit of a collection of decoupled spin-1

2

chains together with a set of interchain couplings compatible with the symmetries of
the lattice Hamiltonian. In this section, we only focus on the Heisenberg part of the
Hamiltonian in Eq. (2.1), and postpone the discussion of the e�ect of a weak DM
interaction to Section. [2.4].

The symmetries of the lattice Heisenberg Hamiltonian,

HH = J
∑
x,y

Sx,y · Sx+1,y + J ′
∑
x,y

Sx,y · Sx,y+1 + Si,y · Sx∓1,y+1 , (2.2)

determine what interchain couplings are allowed in the continuum limit of this model.
The relevant symmetries here are lattice translational symmetry, invariance under a
global SU(2) rotation and invariance under re�ections with respect to planes perpen-
dicular to the chains as shown in Fig. [2.9]. Note that, a Néel spin con�guration or a
nearest-neighbor dimer state is odd under a re�ection that maps even and odd sites
to each other. As shown in Fig. [2.9], under a re�ection whose plane intersect a chain
at a site, even sites are mapped onto even sites and odd sites to odd sites, whereas
when the re�ection plane intersects a chain at the centre of a bond, even and odd
sites are mapped to each other.

The continuum limit of an antiferromagnetic spin-1
2
chain can be described by the

SU(2)k=1 Wess-Zumino-Novikov-Witten (WZNW) model perturbed by a backscatter-
ing term (see Appendix [A.1] for more details). Since J ′/J � 1, the leading (O(J ′/J))
continuum interchain couplings are the direct descendants of the couplings present in
the lattice Hamiltonian in Eq. (2.2). Using the approximation,

Sx,y → My(x) + (−1)xNy(x) , (2.3)

where My(x) is the uniform magnetization and Ny the staggered (Néel) magnetiza-

30



CHAPTER 2. SPIN-1
2
HEISENBERG ANTIFERROMAGNETIC MODEL . . .

i i+1

i

i

i

i

i+2

Figure 2.9: Our convention for labelling sites in the y-direction is shown. The
dashed blue lines indicate the intersections of two re�ection planes with the lattice.
Under a re�ection with respect to a plane that intersects a chain at a site, even sites
are mapped to even sites and odd sites are mapped to odd sites. In contrast, when
the re�ection plane intersects a chain at the centre of a bond, even sites are mapped
to odd sites and vice versa.
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tion, we obtain:

HContinuum = HIntra +HInter (2.4)

HIntra =
∑
y

{
HWZNW

y + γbs

∫
dxJL,y(x) · JR,y(x)

}
HInter =

∑
y

{
γM

∫
dxMy(x) ·My+1(x) +

γtw
(−1)y

2

∫
dx
(
Ny(x) · ∂xNy+1(x)− (∂xNj(x)) ·Ny+1(x)

)
+

O(J ′/J)2
}
,

Note that M and N do not couple with each other due to the rapidly oscillating
factor (−1)x in the above continuum approximation for a single spin operator. This
continuum Hamiltonian is valid at length scales larger than a shortest length L0, which
is larger but comparable to the lattice spacing a0. Here, JL (JR) is the left-(right-)
moving current operator (see Appendix [A.1] and Eq. (2.5) below). The coupling
constant of the backscattering term, γbs = −0.23, which was determined using ED on

�nite spin-
1

2
antiferromagnetic chains in [126]. The uniform magnetization operator

is given in terms of the chiral current operators as M = JL + JR. The term in the
last line with the coupling γtw is a twist term, and promotes spiral ordering.

The geometric frustration of the lattice Hamiltonian is dictated on the continuum
Hamiltonian by the aforementioned symmetries. These symmetries prevent a direct
coupling between Néel magnetization operators (as well as dimerization operators ε)
on adjacent chains, and on nth-nearest chains for any odd n. Thus, direct Néel (and ε)
coupling between nth-nearest chains for any even n, and, in particular, second-nearest
chains are not prohibited and can get generated in the course of RG.

As in any RG analysis, we should include all relevant and marginal terms (as well
as any dangerously irrelevant term) compatible with the symmetries of this model. For
this purpose, we need to determine the scaling dimension of various operators in the
continuum description. Since the �xed-point theory that we perform our perturbative
RG analysis with respect to is a conformal �eld theory (CFT), the scaling dimensions
of various operators can be easily obtained. The SU(2)k=1 WZNW theory is de�ned
in terms of a SU(2) matrix �eld g with the conformal scaling dimension 1

2
[127, 128].

The chiral currents and the Néel magnetization operator are expressed in terms of
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this matrix �eld as follows (see Appendix [A.1]):

JL =
1

4π
Tr{σg−1∂z̄g} (2.5a)

JR =
1

4π
Tr{σg−1∂zg} (2.5b)

N = Tr{gσ} (2.5c)

ε = Tr{g} (2.5d)

Here z and z̄ and the so-called light-cone coordinates. The operator ε in the last line
is the dimerization operator. We see that both N and ε have the scaling dimension
1
2
. The scaling dimension of the chiral currents is 1. From the scaling dimensions of

these operators we can determine the scaling dimensions of interchain couplings.
The interchain coupling terms Ny ·Ny+2n and εy εy+2n for n ≥ 1 have the scaling

dimension 1, and, therefore, are relevant. In fact these are the only relevant terms
in the RG analysis. The presence of spatial derivative in the twist term in Eq. (2.4)
(as well as its dimerization analog and their farther-neighbor versions) increases the
scaling dimension by 1, and, therefore, the twist term is marginal. Any bilinear of
chiral currents has the scaling dimension 2, and, thus, is marginal (here the upper
critical dimension du.c. = 2).

Note that, although there are an in�nite number of relevant and marginal inter-
chain couplings in this model (as there are an in�nite number of chains), the RG
analysis can be restricted to only those that couple nearby chains. The reason for
this is that almost all of such terms (except for the interchain terms in Eq. (2.4)) are
originally absent in the microscopic Hamiltonian, and will be generated by quantum
�uctuations. For this reason, in the strong anisotropy limit (J ′/J � 1), the coupling
constants of nearest and second-nearest interchain terms are expected to be much
larger than their farther-neighbor counterparts at L0. The only marginal and rele-
vant interchain couplings included in the RG analysis, in addition to those in Eq. (2.4)
are:

gN

∫
dxNy(x) ·Ny+2(x) (2.6a)

gε

∫
dx εy(x)εy+2(x) (2.6b)

γε
(−1)y

2

∫
dx
(
εy(x)∂xεy+1(x)− εy+1(x)∂xεy(x)

)
(2.6c)

gM

∫
dxMy(x) ·My+2(x) . (2.6d)
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In addition to the above terms, we also include two irrelevant interchain couplings:

ζN

∫
dx ∂xNy(x) · ∂xNy+2(x) (2.6e)

ζM

∫
dx
[
JL,y+1(x) · JR,y+1(x)

][
My(x) ·My+2(x)

]
. (2.6f)

The reason for including these two irrelevant terms, as we will see, is that ζN , together
with gM , enters in the β-functions of gN and gε, and ζM generates gM .

Before proceding to the RG analysis, let us explain an important point regarding
the form of the twist term in the continuum Hamiltonian in Eq. (2.6c) that distin-
guishes our RG analysis from [56]. The couplings between the Néel operators on
nearest chains with the couplings constant γtw (as well as its farther chain analogs
and similar interchain couplings with ε operator instead of N � all referred to as twist
terms) can be reduced to γtw (−1)y

∫
dxNy(x) · ∂xNy+1(x) only when the boundary

conditions in the x-direction are periodic. As will be discussed in the next section,
this can be observed in numerical studies on �nite-size systems. The form adopted
here for such twist terms is the same as the one in Ref. [129].

We start the RG analysis with the two relevant couplings gN and gε. When the
relevant coupling gN dominates, depending on its sign, second-nearest chains are either
ferromagnetically (gN < 0) or antiferromagnetically (gN > 0) coupled. Similarly, a
dominant gε, depending on its sign, induces either a columnar or staggered dimer
state, as depicted in Fig. [2.10].

(a) (b)

Figure 2.10: (a) Columnar dimer state. (b) Staggered dimer state.

In this real-space RG, the running of couplings is generated by increasing the short-
distance cuto� of the theory and integrating out the short-distance modes. Since the
�xed-point theory is a CFT, we do not explicitly integrate out short-distance modes
and directly use the available n-point functions of the �xed-point theory. For this
purpose, we need the operator product expansions (OPEs) of various operators in this
RG. The derivation of the OPEs are presented in Appendix [A.2]. The OPEs are as
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follows:

JaL(z̄)JbL(w̄) ' δab

8π2(z̄ − w̄)2
+

iεabc

2π(z̄ − w̄)
J cL(w̄) + O(z̄ − w̄) (2.7a)

JaR(z)JbR(w) ' δab

8π2(z − w)2
+

iεabc

2π(z − w)
J cR(w) + O(z − w) (2.7b)

Na(z, z̄)Nb(w, w̄) ' δab

4π2|z − w|2
+ O(z − z′, z̄ − z̄′) (2.7c)

ε(z, z̄) ε(z′, z̄′) ' 1

4π2|z − w|2
+ O(z − z′, z̄ − z̄′) (2.7d)

JaL(z̄) ε(w, w̄) ' i

4π(z̄ − w̄)
Na(w, w̄) + O(z̄ − w̄) (2.7e)

JaR(z) ε(w, w̄) ' − i

4π(z − w)
Na(w, w̄) + O(z − w) (2.7f)

Na(z, z̄) ε(z′, z̄′) ' 0 + O(z − z′, z̄ − z̄′) (2.7g)

JaL(z̄)Nb(w, w̄) ' iδab

4π(z̄ − w̄)
ε(w, w̄) − iεabc

4π(z̄ − w̄)
Nc(w, w̄) + O(z̄ − w̄) (2.7h)

JaR(z)Nb(w, w̄) ' − iδab

4π(z − w)
ε(w, w̄) − iεabc

4π(z − w)
Nc(w, w̄) + O(z − w) (2.7i)

In this RG, as shown in Appendix. [A.3], using the above OPEs, the one-loop β-
functions are derived from the products of the interchain couplings and the backscat-
tering term, which are treated as perturbations to the WZNW term. The one-loop
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β-functions are as follows:

∂lγbs = γ2
bs − 6g2

N + 2g2
ε (2.8a)

∂lγM = γ2
M (2.8b)

∂lγtw = −1

2
γbsγtw + γMγtw − 3γtwgN −

1

2
γMγε (2.8c)

∂lgN = gN −
1

2
γbsgN + gMζN +

1

4
γ2
tw + gMgN (2.8d)

∂lgε = gε +
3

2
γbsgε −

3

2
gMζN +

1

4
γ2
ε −

3

2
gMgN (2.8e)

∂lγε =
3

2
γbsγε −

3

2
γtwγM −

3

2
γεgε (2.8f)

∂lgM = g2
M −

1

4π2
γbsζM (2.8g)

∂lζN = −ζN −
1

2
γbsζN − γ2

tw + gMζN (2.8h)

∂lζM = −2ζM − 8π2γ2
M + γbsζM (2.8i)

Note that we have scaled all couplings by π2J and e` = L/L0 (` is the RG time
and L is the physical length scale). Also irrelevant and relevant couplings are made
dimensionless by accompanying them with appropriate powers of the short-distance
cuto� (or, alternatively, by setting L0 = 1).

We point out that our β-functions for gN (Eq. (2.8d)) and gε (Eq. (2.8e)) are
di�erent from the β-functions of these couplings in the RG analysis of Starykh and
Balents [56]. This is the consequence of the form of the twist terms and, in particular,
γtw. Without the γ2

tw term in the β-function of gN , this coupling will be of O(J ′/J)4 at
the scale L0 (due to gM ζN). As explained below, this extra term in Eq. (2.8d) explains
the discrepancy between the RG study of [56] and numerics: O(J ′/J)2 contribution of
γtw does not order the system, rather it is responsible for the ferromagnetic correlations
observed in numerical studies on �nite-size systems. Another important feature of our
β-functions is the g2

N term in the β-function of γbs (Eq. (2.8a)). This term was absent
in the RG analysis of [56] as its contribution in their analysis was of O(J ′/J)8. In
contrast, here its contribution is of O(J ′/J)4. The g2

N term in the β-function of γbs
becomes important when one considers the extension of this problem to the problem
of weakly coupled J1 − J2 chains, near J2/J1 = 0.24 where γbs vanishes [126].

Focusing on small J ′/J , γtw = γM/2 = J ′

π2J
and γbs = −0.23 at L0, the general

analysis of the β-functions is as follows. The couplings gN and gε (Eqs. (2.8d,2.8e))
are the only relevant couplings in the β-functions in [2.8], and, once generated, grow
exponential in ` (linearly in L/L0). The marginal couplings γtw, γM , gM and γbs grow
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linear in ` (logarithmic in L/L0). Note that, due to the negative backscattering term,
gN grows a little faster than gε (irrespective of their signs). As discussed in [56], in
the case of weakly coupled J1 − J2 chains at J2/J1 ≈ 0.24, where γbs vanishes, the
system can exhibit a dimer state. Therefore, we conclude that the fate of the this
model is determined solely by gN , which will reach unity at `∗ ≡ ln(L∗/L0) before
any other coupling. Thus, the question of the fate of the system described by the
Hamiltonian in Eq. (2.2) reduces to the sign of gN , which in turn determines whether
second-nearest chains are coupled ferromagnetically or antiferromagnetically at L∗.

When the initial value of gN at L0 is positive, gN remains positive and �ows to
+1 at `∗ while the rest of the couplings remain small. Then, at `∗, the problem
becomes similar to the problem of two interpenetrating square lattices coupled to
each other by γM (γtw gets suppressed when gN > 0). Via the order-by-disorder
mechanism [44, 130, 131], a CAF state is then stabilized. This is the prediction
of Starykh and Balents in [56]. They obtained gN(0) = −2

3
gε(0) =

Ax0
π6 (J ′/J)4 (the

normalization factor Ax0 ≈ 0.13) by integrating out every other chain. Note that, since
gN in this picture remains positive throughout its �ow, one expects antiferromagnetic
correlations between second-nearest chains, which, as pointed out in the beginning of
this chapter, is not what numerical studies �nd.

When gN(0) is negative, as the β-function for gN in Eq. (2.8d) indicates, there are
two possibilities: either it stays negative or eventually changes its sign and becomes
positive. This depends on the precise initial values of gN and γtw, and is shown in
the �ow diagram of the couplings γtw and gN in Fig. [2.11]. The behavior of gN in
this case depends on whether gN(0) is smaller or larger than a critical initial value
gcritN (0) ∝ O(J ′/J)2 for which gN is completely �ne-tuned, i.e. does not grow at all.
Below, we explain these two cases separately.

First, consider the case where gN < gcritN < 0 at L0 such that gN(0) − gcritN (0) ∝
(J ′/J)2. In this case, gN does remain negative (ferromagnetic) and grows exponen-
tially. γtw receives a boost from this negative gN and grows marginally. At `∗, where
gN = −1, second-nearest chains are coupled ferromagnetically. The e�ective model
at `∗ is then Néel-ordered block-spins of length L∗ that are coupled ferromagnetically.
This is because γbs is marginal and remains negative by the time `∗ is reached, which
means that intrachain Hamiltonian has not changed much. The renormalization of
the Q vector can be estimated using the value of L∗ and treating the e�ective model
classically (partly justi�ed by the fact that this is a model of large block-spins). Thus,
we expect a spiral order with ε0 ∝ (J ′/J)3. Such a spiral state would be the most
robust spiral state possible in this model.

In the case gN − gcritN . 0 at L0 such that gN(0) − gcritN (0) is cubic or quartic in
J ′/J , one obtains a fragile spiral state with ε0 ∝ (J ′/J)n, where n is 4 or 5 depending
on whether gN − gcritN at L0 is cubic or quartic in J ′/J . If gN(0) is exactly �ne-
tuned to gcritN (0), then a weak spiral order can be stabilized only when γtw reaches
unity �rst, in which case ε0 ∼ ea(J ′/J)2

, where, to leading order in J ′/J , a = 2.6
if the value γbs = −0.38 at a0 is used. For this to happen, none of the relevant
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couplings, speci�cally gε, should grow exponentially or even faster than γtw, which is
highly unlikely as such terms are not prohibited from �owing faster than γtw by the
symmetries of this model.

Finally, the case gN > gcritN where gN(0) − gcritN (0) ∝ (J ′/J)2 is similar to the case
gN > 0 explained above. The only di�erence is that, as shown in Fig. [2.11], gN
remains brie�y negative before changing its sign and becoming positive. The closer
gN(0) to gcritN (0) in this case, the longer gN stays negative.

-0.1

-0.05

0.05

0.1

0 0.02 0.04 0.06 0.08 0.1

gN

γtw

0.003

-0.003

CAF

Spiral

0.03 0.07

Figure 2.11: The �ow diagram of gN and γtw for gN(0) = α(J ′/J)2 < 0 (ferromag-
netic initial value) for −0.3 ≤ α ≤ −0.26, gε = γε = 0 and J ′/J = 0.5. As in the text,
both gN and γtw are in scaled units. For α ' −0.26, the �ow lines are close to the
vertical axis and reach +1 and result in the CAF state. For α ' −0.3, the �ow lines
are again close to the vertical axis, but reach −1, which results in a robust spiral state
as explained in the text. The inset shows that when gN(0) is close to gcritN (0) the �ow
lines reach gN(`∗) = ±1 substantially away from γtw = 0, as gN grows considerably
slower.

Assuming that the initial value of gN is such that a CAF state stabilizes in the
strong anisotropy limit, one expects either a �rst-order phase transition or an inter-
mediate state (dimer state would not be a good candidate) separating this CAF state
from the spiral phase. As J ′/J increases, the initial values of γtw and γM increase.
Also, γtw receives a larger boost from γbs and γM at larger J ′/J values, as can be seen
in Eq. (2.8c). Thus, even when gN(0)− gcritN < 0 (i.e., the antiferromagnetic regime),
as can be seen in Fig. [2.11], the RG �ows reach gN(`∗) = 1 at larger γtw(`∗). Thus
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when J ′/J is not too small, γtw can reach unity before gN and result in a spiral order.
From the β-functions in Eq. (2.8) and using γbs(0) = −0.23 we estimate J ′c ' 0.3J as
the smallest J ′ for which γtw reaches unity �rst.

So far, we have found that the general behavior of the β-functions in this RG
analysis indicates that the fate of this system is determined by the precise initial
value of gN at L0 for J ′/J � 1. At this point one might wonder whether this peculiar
behavior of gN where it changes its sign when gcritN (0) < gN(0) < 0) is at all physical.
The origin of this behavior becomes more clear when one considers the e�ective action
at the length scale L, which can be obtained by integrating out modes between the
two length scales L0 and L > L0 at once using perturbation theory. This results in a
quantum correction to gN(0), given by:

− γ2
tw

∫
dzdz′[∂x∂x′G(z − z′)]Ny(z) ·Ny+2(z′) , (2.9)

where, z = i(vt + x) and z̄ = i(vt − x) with v = πJ/2, G(z − z′) = 〈Ny+1(z) ·
Ny+1(z′)〉 ∼ 1/

√
(z − z′)2 + L2

0, which is obtained from the OPE of two N operators
(Eq. (2.7c)). We see that the integrand is positive for 0 < |z − z′| < L0, which
generates a ferromagnetic initial condition for gN , while negative for |z − z′| > L0.

Note that the above reasoning is independent of the way we chose to regularize the
continuum theory. The ferromagnetic (negative) initial value of gN follows from the
fact that [∂x∂x′G(z− z′)] in the integrand of the above expression is a total derivative
and integrates to zero. Since the integrand is negative (note that the integral is
accompanied by −γ2

tw) at large distances, the initial value of gN has to be negative
to balance it out. With the same token, in a gradient expansion, the above γ2

tw

contribution to gN does not contribute to q = 0, and, therefore, is not expected to
result in ordering. This also explains why ferromagnetic correlations were absent in
the RG study of Starykh and Balents [56]. They missed the ferromagnetic correlations
due to this γ2

tw contribution because, as mentioned earlier, they completely integrated
out the middle chains. Finally, we point out that the RG results of Starykh and
Balents [56] are reproduced by the set of β-functions in Eq. (2.8) if the initial value
of gN is tuned to gcritN to O(J ′/J)4.

In summary, from the analysis of the β-functions it follows that determining the
fate of this model crucially depends on the precise value of gN at L0 & a0. We
argued that initially gN(0) ∝ (J ′/J)2 and is negative. Since, the studies of Pardini et
al. [100] and Bishop et al. [132] indicate that the di�erence between the energies of
the CAF and the spiral states is much smaller than O(J ′/J)2, it seems that gN(0) is
enough close to gcritN (0) so that the order is not stabilized at O(J ′/J)2. Thus, while
the quadratic term in the initial value of gN does not result in the ordering of the
system, it, nevertheless, is important as it describes the ferromagnetic �uctuations
observed in numerical studies. The projection of the phase diagram of this model
onto the γtw − gN plane is shown in Fig. [2.12].
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gN

γtw

Collinear

AF

Spiral

Figure 2.12: The projection of the phase diagram of the spin-1
2
HAF model on an

anisotropic triangular lattice onto the γtw − gN plane. The shaded region indicates
the case where gN(0) is too close to gcritN (0) where a dimer or other ordered states may
appear.

2.3 Numerical Analysis on Finite-Size Systems

In the previous section we determined the β-functions of the main interchain terms,
and discussed the general �ow of the couplings. While we were able to draw some gen-
eral conclusions about the large-distance behaviour of this model and possible states
it can exhibit, we found that the precise initial values of various couplings, and in par-
ticular gN , is needed for determining what kind of order the system exhibits. Often,
in RG studies, the knowledge of the precise initial values of the couplings in the con-
tinuum description is not necessary for predicting the fate of the system. However, in
this model, due to the intense competition between ferromagnetic and antiferromag-
netic �uctuations, whether the system exhibits the CAF state or an incommensurate
spiral state becomes extremely sensitivity to the initial value of gN .

Let us �rst explain why direct determination of couplings in any continuum ap-
proximation to a lattice spin model is challenging. Any continuum model is in fact
an e�ective �eld theory for its underlying lattice model at length scales larger than
its short-distance cuto�. Thus, in principle, the couplings in the continuum model
should be determined via a matching process: the couplings in the continuum model
are chosen so that the continuum model reproduces exactly the same observable (n-
point functions) as those obtained from the original lattice model. But, we resorted
to continuum description and RG analysis in the �rst place as we could not compute
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the large-distance observables of the lattice model.
Although we cannot solve the lattice Hamiltonian and determine its correlation

functions in the thermodynamic limit, we can employ exact diagonalization and high-
accuracy DMRG to study relatively small systems with high precision. Such �nite-size
systems, however, su�er from �nite-size e�ects; nevertheless, one can always extract
useful information about correlations at length scales up to the size of the system
using the �nite-size scaling theory . Such correlations can be used in conjunction with
the RG analysis to determine the couplings constants at the scale L0. This is the
approach we take to estimate the initial value of gN .

To connect to the RG analysis, the correlation between 1D block-spins of vari-
ous sizes on second-nearest chains are needed. In principle, such correlations can be
obtained from correlations between spins on second-nearest chains. A more straight-
forward way of obtaining such correlations between block-spins on second-nearest
chains is to use an interchain Néel susceptibility de�ned as,

χs(L) = −i
L∑
n=1

(−1)n
∫

dt θ(t)〈[Szi,y(t), Szn,y+2(0)]〉 . (2.10)

This is the response of the system to a staggered magnetic �eld applied to spins on
the y + 2 chain at a site in the middle of the y chain, as depicted in Fig. [2.13].

Figure 2.13: The Néel susceptibility is determined numerically by applying a weak
staggered magnetic �eld on one chain (the top chain in the �gure), and measuring
〈Sz〉 on the bottom chain for a site in the middle of the chain. The grey box indicates
the site where 〈Sz〉 is measured, and the staggered magnetic �eld is indicated with
cyan arrows on the top chain.

Since high-precision numerical computations restrict one to small system sizes, we
only consider three-chain systems. The reason for this is that, as argued in the previ-
ous section, farther neighbor interchain couplings play a less important role than their
nearest and second-nearest analogues due to their smaller initial conditions. Thus,
restricting the analysis to a three chain system is expected to result in a quantita-

41



CHAPTER 2. SPIN-1
2
HEISENBERG ANTIFERROMAGNETIC MODEL . . .

tive error of O(J ′/J)3. Indeed, as argued in [59], the di�erence between the results
of a four-chain system with periodic boundary conditions in the y-direction and a
three-chain system is of this order.

Before proceding to the detailed analysis of numerical results obtained from high-
accuracy DMRG and ED, let us �rst con�rm that, O(J ′/J)2 ferromagnetic �uctua-
tions associated with the presence of γ2

tw in the β-function of gN are present in systems
with open boundary conditions along the chains. The response of three-chain systems
of lengths 6 to 12 (with open boundary conditions along the direction of the chains)
to a weak staggered magnetic �eld applied to one chain obtained from ED is shown
in Fig. [2.14]. We see that this response is ferromagnetic and O(J ′/J)2. In addition,
all higher-order terms (cubic and quartic term in J ′/J) are also ferromagnetic. As
discussed in [59], for periodic boundary conditions along the chains, this response is
O(J ′/J)4 in agreement with the discussion of the γ2

tw in the β-function of gN in the
previous section.
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Figure 2.14: Exact diagonalization results for the response of 3 × L systems to
a weak staggered magnetic �eld, h, applied to spins on the �rst chain for lengths
L = 6 to L = 12 and the interchain exchange J ′ in the range −0.2J ≤ J ′ ≤ 0.2J .
This response is obtained from 〈Szi 〉/hL, where i is a site in the middle of the third
chain. The points are the ED results and the dashed curves are the polynomial
A(J ′/J)2 + B(J ′/J)3 + C(J ′/J)4 �ts to the data. The �tting parameters A, B and
C are shown in the inset for each system size.
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To relate the Néel susceptibility χs, obtained from exact diagonalization and
DMRG on �nite-size systems to the correlations of the system in the thermodynamic
limit, we use the �nite-size scaling theory. In �nite-size scaling theory, the length of
the system is treated as a relevant parameter. Thus, the following relation should hold
between the susceptibility of a system of the size L = L0 e

` with the set of couplings
{gi(` = 0)} and that of a system with the size L0:

χs(L, {gi(0)}, L0) = C(L)χs(L0, {gi(l)}, L0) , (2.11)

where C(L) is a length-dependent function related to the dimension of the operatorN,
as the staggered susceptibility is proportional to the two-point function 〈N(x) ·N(0)〉.
To determine C(L), we note that the dimension of the product of two N operators
with respect to the SU(2)k=1 WZNW model perturbed with a backscattering term is
give by the β-functions of gN and γbs as the backscattering term itself runs. Thus, the
scaling factor C(L) is in fact the solution of the β-function of gN (ignoring O(J ′/J)2

terms). We �nd C(L) = L
L0

√
1− γbs(` = 0)`. The factor L

L0
is due to the dimension

of the operator N with respect to the unperturbed WZNW model and the rest is due
to the presence of the backscattering term.

It only remains to relate χs to gN . For small gN(`), χs(L0, {gi(l)}, L0) is expected
to be approximately proportional to gN(`). Thus, we �nd:

χs(L, {gi(0)}, L0) ∝ L

L0

√
1− γbs(` = 0)`, gN(`) . (2.12)

This relation allows us to directly relate the numerically measured susceptibility χs
for a �nite-size system of the length L to the value of the coupling gN at ` = log L

L0
. In

what follows, we use the above �nite-size scaling relation to determine the coe�cients
in the expansion of gN(` = 0) in J ′/J by �tting gN to the scaled susceptibility,

χ̃s(L) =
L0

L

χs(L)√
1− γbs(` = 0)`

∝ gN(`) . (2.13)

The �tting parameters are the initial values of the couplings in the RG analysis, which
we restrict to γtw(0), γbs(0), γM(0), and gN(0).

The details of the presented numerical results are as follows. Three-chain systems
of lengths L = 8 to L = 28 sites (24 to 84 site systems) were studied. For systems up
to 36 spins ED was used and for larger systems DMRG. In the DMRG analysis up to
2600 states were kept to ensure the accuracy of the results.

The results for system sizes up to 3 × 28 sites and for −0.11 ≤ J ′/J ≤ 0.5 are
presented in Fig. [2.15]. We see that the numerical results indicate increasing fer-
romagnetic correlations without any hint of antiferromagnetism. The β-functions
suggest that for J ′/J ' 0.5 one should see the tapering of the ferromagnetic corre-
lations at L & 20 if the system is destined to CAF ordering; however, J ′/J is too
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large for this quasi-one-dimensional RG approach to be quantitatively accurate at
that point.
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Figure 2.15: DMRG and ED results for χs (points) and RG �ts for −0.11 ≤ J ′

J
≤ 0.5

as a function of chain length L. The sign of χs is positive, indicating that chains are
coupled ferromagnetically for all analyzed chain lengths L and J ′/J values.

Fig. [2.16] shows the scaled Néel susceptibility for −0.11 ≤ J ′/J ≤ 0.11, which is
more appropriate for determining the initial value of gN(0) in the strong anisotropy
limit. Fitting to the numerical results is done at once, which gives the initial values
of the couplings at L0 = 10a0. We obtain γtw = 0.416J

′

J
+ 0.121(J

′

J
)2, γbs = −0.072,

γM = 0.24J
′

J
and gN(0) = −0.0450(J

′

J
)2 − 0.0425(J

′

J
)3. We note that the extracted

value for the backscattering term γbs(L0 = 10a0) is much smaller than the expected
result −0.19 at this length scale base on the ED study of Eggert on J1−J2 chains [126].

As pointed out in the previous section, it is gN(0)−gcritN (0) that determines the fate
of the system. Using the �t results for γbs, γtw and γM , we �nd (see Appendix [A.5])
gcritN (0) = −0.0447(J

′

J
)2−0.0479(J

′

J
)3 +O(J

′

J
)4. We see that the extracted initial value,
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gN(0), although indicates �owing to large ferromagnetic values, deviates from gcritN (0)
small enough (1% for the quadratic term and 12% for the cubic term) to be attributed
to �nite-size e�ects in the numerical results.
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Figure 2.16: DMRG and ED results for the scaled susceptibility χ̃s (points) and RG
�ts (solid curves) for −.1 ≤ J ′

J
≤ 0.1 as a function of chain length L.

Given the limitations of the numerics as well as all the approximations made in
the RG analysis (in particular, ignoring the irrelevant terms that are important at
small length scales), we conclude that the numerical results are consistent with no
order being selected up to O(J ′/J)4.
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2.4 Dzyaloshinskii-Moriya Interaction

The RG analysis presented in section [2.2] only took into account the Heisenberg
part of the full lattice Hamiltonian in Eq. (2.1). In this section, we extend the RG
analysis to the full Hamiltonian and explain how the presence of a weak DM term
a�ects the running of the couplings and in particular gN . Since our RG scheme is
one-dimensional, we need to distinguish between the inter- and intrachain parts of
the DM interaction in Eq. (2.1). We start the analysis by absorbing the intrachain
DM interaction into the intrachain lattice Hamiltonian, which results in a weakly (as
|D| � J) anisotropic XXZ intrachain Heisenberg Hamiltonian.

Since the presence of the intrachain DM term introduces easy-plane anisotropy
(breaks down the SU(2) symmetry down to a U(1) symmetry), it may seem that there
is no advantage in using the WZNW theory for the continuum limit. As explained in
Appendix [A.1], one can use a sine-Gordon theory instead of the SU(2)k=1 WZNW
theory for the continuum limit of the spin-1

2
chains, which is more appropriate for

spin-1
2
XXZ chains. However, since we are assuming that the DM interaction is

weak in comparison with the intrachain exchange J , following [133], we regard the
resultant XXZ Heisenberg Hamiltonian from absorbing the intrachain DM term into
the Heisenberg term as an isotropic Heisenberg Hamiltonian weakly perturbed by a
term that breaks the SU(2) symmetry. Such a term will result in an exactly marginal
term in the continuum model that breaks the SU(2) symmetry, and, thus, although
weak, cannot be ignored. However, since the interchain DM interaction also breaks
the SU(2) symmetry in exactly the same way, this perturbation, as argued below,
becomes unimportant.

The lattice Hamiltonian in Eq. (2.1) can be written as:

H = HIntra

H +HIntra

H +HIntra

DM
+HInter

DM
, (2.14a)

where,

HIntra

H = J
∑
x,y

Sx,y · Sx+1,y (2.14b)

HInter

H =
∑
x,y

Sx,y · Sx,y+1 + Si,y · Sx∓1,y+1 (2.14c)

HIntra

DM
= D

∑
x,y

[
Sxx,yS

y
x+1,y − Syx,ySxx+1,y

]
(2.14d)

HInter

DM
= D

[
Sxx,y(S

y
x,y+1 ± S

y
x∓1,y+1)− Syx,y(Sxx,y+1 ± Sxx∓1,y+1)

]
. (2.14e)

Much the same way that the Heisenberg exchange Sn ·Sm can be written as 1
2
(S+

mS
−
n +

h.c.) + SzmS
z
n, a DM term with a D-vector in the ẑ-direction can be written as

i
2
(S+

mS
−
n + h.c.). Using this, following [133], we absorb the intrachain part of the

DM interaction into the intrachain Heisenberg Hamiltonian by locally rotating the
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basis of spin operators as follows:

HIntra

H +HIntra

DM
→ HIntra

XXZ =
J̃

2

∑
x,y

(
S̃+
x,yS̃

−
x+1,y + h.c.

)
+ J

∑
x,y

S̃zx,yS̃
z
x+1,y (2.15)

where, J̃ = J/ cosα, and the new spin operators (indicated with twiddles) are de�ned
in the twisted bases: S̃ = eiαxS̃

z
x,y S eiαxS̃

z
x,y . The angle α is given by the equation:

J cosα +D sinα =
J

cosα
. (2.16)

Next we need to determine the interchain Hamiltonians HInter

DM
and HInter

H in terms
of the twisted spin operators S̃x,y. For this, we need the relative twist between the
two spins S̃x,y and S̃x±1,y+1. Using our convention for labelling sites on the chains
(see Fig. [2.9]), we obtain:

HInter

H → H̃Inter

H =
J ′

2

∑
x,y

[
S̃+
x,y

(
e−i

α
2 S̃−x∓1,y+1 + ei

α
2 S̃−x,y+1

)
+ h.c.

]
+ J ′

∑
x,y

S̃zx,y
(
S̃zx∓1,y+1 + S̃zx,y+1

)
, (2.17)

and,

HInter

DM
→ H̃Inter

DM
=

iD

2

∑
x,y

[
S̃+
x,y

(
ei
α
2 S̃−x,y+1 ∓ e−i

α
2 S̃−x∓1,y+1

)
− h.c.

]
, (2.18)

where we have rotated sites on odd chains around the z axis by −α
2
for convenience.

Thus, the full lattice Hamiltonian can be written in this representation as:

H = HIntra

XXZ + H̃Inter

XXZ + H̃Inter

DM
. (2.19)

Indicating the coupling of the SzSz terms with ∆ and ∆′, and those of the XY
term with J̃ and J̃ ′ in the intra- and interchain XXY Hamiltonians, and D̃ for the
interchain DM interaction, we have the following set couplings:

∆̃ = J

∆̃′ = J ′

J̃ = 1
cosα

J ≈ J(1 + D2

4J2 )

J̃ ′ = cos α
2
J ′ − sin α

2
D

∆̃′ = cos α
2
D + sin α

2
J ′

(2.20)

where we have used α ≈ D
2J
, as, by assumption, J � J ′ , D. Note that the intrachain
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XXZ Hamiltonian is still critical as ∆ < J̃ [134]. Therefore, as an approximation, we
ignore D2

4J2 in J̃ and only consider the interchain DM term. This amounts to regarding
the intrachain XXZ Hamiltonian as a weakly perturbed isotropic (XXX) Heisenberg
Hamiltonian by an intrachain XY term which we ignore.

The continuum limit of the interchain DM interaction with the coupling D̃ ≈ D
is:

HDM = D

∫
dx εabz

[
Na
y (x)N b

y+1(x) + · · ·
]
. (2.21)

Since the presence of the DM interaction results in easy-plane anisotropy, all coupling
constants for the product of vector operators (except those involving ε, which is a
pseudoscalar operator) in the previous RG analysis should be split into the XY and
Z couplings. In what follows, we only focus on the XY couplings where the DM
interaction enters. As we will see, the DM interaction promotes spiral ordering in the
x-y plane.

The β-functions for gDM and XY part of gN are (see Appendix [A.4]):

∂lgDM = gDM −
1

2
γbs gDM +

1

2
γMgDM − 4gN gDM (2.22a)

∂lgN = gN −
1

2
γbsgN + gMζN +

1

4
γ2
tw + gMgN − 2g2

DM
, (2.22b)

Where gDM(0) ≈ 2|D|
π2J

is the scaled coupling constant. The β-functions of other

couplings and, in particular, that of γtw remain the same. Note that, this new term,
gDM, promotes and gets enhanced by a ferromagnetic gN . Also, the β−function in
Eq. (2.22a) indicates that, in the presence of a weak DM interaction, the initial value
of gN at L0 receives a contribution from gDM, which is approximately −2g2

DM
(0). We

see that the presence of the DM interaction is detrimental to the CAF state.
Both gN and gDM are relevant couplings, and are boosted the same by a negative

γbs. Therefore, in the limit J ′/J � 1, where the rest of the terms in the β-functions
of gN and gDM are negligible, both of these couplings grow at the same rate. If gDM(0)
is larger than gN(0)− gcritN (0), which was argued to be O(J ′/J)4, the DM interaction
will suppress the CAF state. Note that classically the DM interaction favours a spin
con�guration where spins on adjacent chains are oriented perpendicular to each other;
however, the presence of γtw results in a spiral state.

A suggested phase diagram in the J ′ − D plane based on the above analysis is
shown in Fig. [2.17]. The transition between CAF and spiral states at small J ′/J
occurs at the critical DM strength Dcrit ∝ J ′4/J3. The maximum Dcrit where the
CAF state survives is expected to be small (smaller than

(J ′c
J

)4
).
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CAF

Spiral

Figure 2.17: Cartoon phase diagram in the J ′ − D plane. As explained in the text,
the DM interaction promotes ferromagnetic coupling between second-nearest chains,
and, thus, suppresses the CAF state. In the limit J ′/J � 1, the critical DM strength
Dcrit, which de�nes the boundary between CAF and spiral states in the �gure, vanishes
as J ′4/J3.

2.5 Summary and Conclusions

In summary, in this chapter we presented careful RG analysis for the spin-1
2
Heisen-

berg antiferromagnetic model on a spatially anisotropic triangular lattice. Also we
discussed the e�ect of a weak DM interaction with a D vector in the z-direction,
which is relevant to Cs2CuCl4, within this RG approach. To determine the initial val-
ues of the coupling constant of the second-nearest interchain Néel coupling, which was
argued to be crucial for determining the fate of this system, we studied �nite-size sys-
tems using exact diagonalization and high-accuracy density-matrix renormalization
group.

The presented RG analysis revealed intense competition between ferromagnetic
and antiferromagnetic second-nearest chain �uctuations. It was argued that the dom-
inance of antiferromagnetic correlations results in a collinear antiferromagnetic (CAF)
state via the order-by-disorder mechanism, while ferromagnetically coupled chains,
together with the interchain twist term, result in an incommensurate spiral (non-
collinear) state. In agreement with a similar study by Starykh and Balents [56], we
found that the CAF state can be stabilized at strong anisotropies. However, a small
(O(J ′/J)4) ferromagnetic second-nearest chain coupling or a weak DM interaction
su�ces to replace this tenuous CAF state with a spiral state.

As shown in Fig. [2.12], the RG analysis does not indicate any sign of an ex-
tended quantum-disordered state, and suggests that the phase diagram of this model
is dominated by spiral and CAF states. This is in contrast with many numerical and
theoretical studies that suggest that the appearance of a spin-liquid state at small
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or even moderate anisotropies in this model. Careful numerical studies of Pardini
et al. [100] and Weichselbaum et al. [106], which suggest the prevalence of the spi-
ral order in the phase diagram of this model, lend support the picture presented in
this chapter. The CAF and spiral states are likely separated by a direct �rst-order
transition, which was estimated to be at J ′c . 0.3J .

The striking outcome of our RG analysis that was absent in the similar RG study
of Starykh and Balents [56] is the �ne-tuning of the coupling constant of the second-
nearest interchain Néel coupling. Due to this �ne-tuning there will be O(J ′/J)2

ferromagnetic correlations that do not result in ordering. We argued that these
correlations are sensitive to the boundary conditions along the chains. Speci�cally,
such second-nearest-chain ferromagnetic correlations persist over large length scales
(LFM ∝ (J/J ′)2) even in the CAF state, where the system eventually manifests an-
tiferromagnetic correlations. This reconciles the observation of only ferromagnetic
correlations in numerical studies on �nite-size systems with the existence of the CAF
state at su�ciently strong anisotropies. Our analysis of the scaling of an interchain
Néel susceptibility in small three-chain systems obtained from ED and high-accuracy
DMRG in section [2.3] clearly indicates these ferromagnetic correlations, and, as dis-
cussed, is in agreement with no order being selected up to O(J ′/J)4. Therefore, our
results, while consistent with the presence of the CAF state at strong anisotropies,
do not provide direct evidence for the presence of such a state.

We showed that the presence of a weak DM interaction term enhances ferromag-
netic second-nearest chain couplings, and, thereby, helps to stabilize the spiral order.
This is shown in the illustrative phase diagram in Fig. [2.17]. Based on this and the
fact the the estimated crossover between CAF and spiral states J ′c . 0.3J , we con-
clude that Cs2CuCl4 with J ′/J ' 0.3 and D/J = 0.053 is well within the stability
range of the spiral order.

In the future, it would be interesting to further explore the nature of the transition
between the CAF and spiral states more rigorously. Speci�cally, to examine the possi-
bility of the appearance of an intermediate dimer state brought about by gε at a point
or over a small sliver in the phase diagram of this model. Also, as pointed out above,
the results of our numerical analysis and the study of Pardini et al. [100], although
compatible with the presence of the CAF state at su�ciently strong anisotropies, do
not directly support the presence of such a state. Thus, the presence of the CAF state
at strong anisotropies, while certainly very likely and strongly suggested by the RG
analysis, has not yet been fully established.

The �ne-tuning of the relevant coupling gN in the presented RG analysis has
important implications on how the results of numerical studies should be interpreted.
As discussed earlier in this chapter, gN is responsible for magnetic ordering in this
model. Given that, due to its �ne-tuning, this coupling does not run as fast as a
relevant coupling is expected it is not surprising that many numerical studies on
�nite-size systems concluded that at strong anisotropies a quantum-disordered state
appears. Likely, those studies mistook this rather peculiar behavior of gN for a spin-
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liquid state, which, to appear, requires gN to remain small on all length scales.
With the understanding gained from the RG analysis in the strong anisotropy limit

available, con�rming and further elucidating the structure of the phase diagram of
this model demands careful numerical analysis. Several numerical studies have already
pursued this line of thought, and this is still an ongoing e�ort [100, 106, 119, 124]. Due
to convergence issues, accessing the strong anisotropy regime in this mode using series
expansions and large-system DMRG approaches, which are more suited for studying
relatively large system sizes, has so far been somewhat problematic. It might be
possible to circumvent such issues by resorting to other numerical approaches that are
tailored for this model such as the study in Ref. [119]. This study seems to show good
agreement with the picture proposed here. Thesberg et al. found a phase transition
from a long-range spiral state to another state with short-range spiral correlations at
J ′/J ' 0.5. However, they were unable to identify the latter phase. Thus, despite
many hints, it still remains to �nd direct evidence for the putative CAF state at high
anisotropies, which demands further numerical investigations.
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Chapter 3
Renormalization Group Analysis for a

Neck-Narrowing Lifshitz Transition in Two

Dimensions

This chapter discusses the e�ect of weak interactions on a neck-narrowing Lifshitz
transition in two dimensions using an RG approach. The model studied here is de-
scribed by the dispersion relation ε(k) = k2

x − k2
y together with a momentum cuto�

that plays the role of the size of the Fermi surface. The neck-narrowing transition
in this model is controlled by the chemical potential with the critical point of the
transition at µc = 0. It is shown that, at the critical point of this transition, the
Wilsonian e�ective action is intrinsically non-local. The appearance of non-locality in
the e�ective action at the critical point is attributed to integrating out an emergent
soft degree of freedom.

Slightly away from the critical point of the neck-narrowing transition, where the
Fermi surface has a narrow neck, locality can be restored only in the presence of the
momentum cuto�, which keeps the size of the Fermi surface �nite. It is found that the
coupling of a weak attractive contact density-density interaction grows as log2 L in this
RG. Nevertheless, quantum corrections are analytic only within a �nite momentum
range that shrinks as the critical point is approached. The analysis presented in this
chapter is largely based on [135].

3.1 Introduction

Determining the fate of Fermi surfaces in the presence of interactions in two and
three dimensions is a problem of great signi�cance in condensed matter physics. The
importance of this problem arises from the fact that a wide range of condensed matter
systems are described by fermions that form a Fermi surface and interact with each
other via short- or long-range interactions. Such systems not only include common
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examples such as metals and liquid 3He [136] but also rather more abstract models
such as the Halperin-Lee-Read state (a compressible phase of ν = 1

2
fractional quantum

Hall liquid) and spin-liquid states that are described by fermionic spinons, which, at
the mean-�eld level, form a Fermi surface [1, 137, 47].

Depending on the nature of low-energy interactions, i.e., whether the low-energy
interactions are short-range or long-range, entirely di�erent physics is expected. Our
understanding of the low-energy e�ective �eld theories of Fermi surfaces in the pres-
ence of long-range interactions, mediated by a soft boson or a gauge �eld, where
a non-Fermi liquid state can appear, despite great progresses in recent years [137,
138, 139, 140, 141, 142] still remains incomplete. In contrast, for Fermi surfaces in
the presence of weak short-range interactions we seem to have a fairly complete un-
derstanding: Landau's celebrated Fermi liquid theory together with its well-known
pairing and density wave instabilities.

Landau's Fermi liquid theory [143, 144, 145, 136, 146] is, in fact, one of the pillars
of modern condensed matter physics. This theory not only describes the low-energy
(energies much smaller than the Fermi energy) properties of normal metals, but also
is the cornerstone of our understanding of conventional superconductivity. What
lies at the heart of the Fermi liquid theory is the notion of well-de�ned fermionic
quasi-particles that are adiabatically connected to non-interacting fermions [136, 146].
More technically, this is the assumption that the single-particle propagator, G(k, ω) =
−i 〈ψk,ω ψ

†
k,ω〉, in a Fermi liquid state has a well-de�ned single-particle pole. This, in

fact, is a statement about many-particle states in Fermi liquids: the presence of this
well-de�ned single-particle pole can be equivalently expressed as the �niteness of the
so-called wave-function renormalization parameter Z [146].

Fermi liquid behavior is fairly resilient and very common in real systems. This
raises the question of what the origin of Fermi liquid behavior is. The original proof
given for the Fermi liquid theory [136, 146] was a self-consistency argument: assuming
a �nite wave-function renormalization Z and showing that to any order in the per-
turbation theory this assumption holds. However, this approach obscures the crucial
role of the Fermi surface. In the early 90s, an alternative approach for explaining the
Fermi liquid behavior based on the notions of low-energy e�ective �eld theories and
the RG theory was developed by J. Polchinski [21], R. Shankar [147, 148] and oth-
ers [149]. This approach provides a much simpler conceptual picture of Fermi liquid
behavior in terms of a �xed-point theory. Also the role of the Fermi surface is much
more transparent. However, as discussed later in this section, this RG approach is not
particularly suited for determining the fate of a given Fermi surface starting from a
microscopic scale: this RG program � henceforth referred to as Shankar's RG � solely
describes the Fermi liquid �xed point.1

Before describing Shankar's RG approach, it is worth pointing out a subtle point

1Note that, Shankar's RG approach provides a qualitative explanation for why Fermi liquid
behavior arises at low energies: it shows that non-forward and non-BCS scattering processes are
kinematically suppressed.
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in RG approaches to Fermi surfaces. A marked characteristic of many-body fermion
systems is that they can form Fermi surfaces, which are extended zero-energy mani-
folds as opposed to isolated points. Note that systems with zero-dimensional (point)
zero-energy manifolds not only include ordinary many-body boson systems but also
certain many-body fermion systems whose zero-energy manifolds are consisted of a
few isolated points. Instances of such fermion systems include Graphene at half-�lling,
where Dirac points appear, quantum electrodynamics in 3+1 dimensions (QED4) [39],
superconductors that have nodal superconducting gap structures such as a d-wave
superconductor [150], and 1D fermion systems where the Fermi surface consists of
Fermi points [69]. The signi�cance of this point becomes clear once one notices that
low-energy modes become synonymous with long-distance observables only when the
zero-energy manifold that one renormalizes towards is a point in the momentum space.
In fact, this poses a serious problem when there is a coupling to a boson degree of
freedom whose zero-energy manifold is a point. Developing appropriate scaling re-
lations in such cases that apply to 3D Fermi surfaces or to the whole Fermi surface
in two-dimensions (i.e., beyond the so-called patch approximation) still remains an
unsolved problem [38, 151, 152].

3.1.1 Shankar's RG

Shankar's RG is based on normalizing towards the Fermi surface, along the normal to
the Fermi surface, while keeping the Fermi surface �xed at tree level [148].2 Therefore,
this RG scheme only applies to regular Fermi surfaces, i.e., Fermi surfaces that do not
contain van Hove singularities [153]. This is because, at a van Hove singularity, the
normal to the Fermi surface does not exist, and, therefore, renormalizing towards the
Fermi surface becomes meaningless.

To put our RG approach in context, here we brie�y review the main points of
Shankar's RG for a circular Fermi surface described by the dispersion εk = |k|2 and
the chemical potential µ = k2

F . At the end, following Shankar, we explain how this RG
approach can, in principle, be extended to non-rotationally-invariant regular Fermi
surfaces, which will clarify why not only van Hove singular Fermi surfaces but also
Fermi surfaces that are su�ciently close to such singular points may deviate from the
Fermi-liquid paradigm.

The starting point of Shankar's RG is the following (imaginary-time) fermion path-
integral for a rotationally-invariant two-dimensional Fermi surface in the presence of
weak short-range interactions:

Z =

∫
|ξk|<Λ

DψDψ̄ exp
{∫ dkdω

(2π)3
ψ̄k,ω(iω − ξk)ψk,ω − Sint

}
, (3.1)

2Note that the Fermi surface in general may run in the course of RG due to quantum corrections
to the quadratic part of the action (chemical potential and self-energy corrections).
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where the energy cuto� Λ � EF = k2
F and ψ̄ and ψ are Grassmann �eld variables.

Here G0(k, ω) = − 1
iω−ξk

and ξk = ε(k) − k2
F . Since the interactions are short range,

the vertex function, Γ(k1,k2,k3,k4), in the interaction term,

Sint = g

[
4∏
i=1

∫
dki

(2π)2

∫
dωi
2π

]
Γ(k1,k2,k3,k4) δ(ω1 + ω2 − ω3 − ω4) (3.2)

δ(k1 + k2 − k3 − k4) ψ̄(k1, ω1)ψ̄(k2, ω2)ψ(k3, ω3)ψ(k4, ω4) ,

is an analytic function of the momenta.3

In Shankar's RG it is the momentum measured from the Fermi surface (k − kF )
that is rescaled. The interaction vertex Γ(k1,k2,k3,k4) can be Taylor expanded
in ki − kF . The leading term of this expansion, Γ(K1,K2,K3,K4) (|Ki| = kF ),
de�nes the dimensionless interaction vertex. However, this does not mean that the
four-fermion interaction term with the vertex Γ(K1,K2,K3,K4) is marginal at tree
level. This is because of the δ-function, which, under the non-linear scaling4 (ki −
Ki)→ s−1(ki −Ki), transforms in a non-trivial way for an arbitrary set of momenta
{Ki}. Therefore, not all four-fermion scattering processes with the interaction vertex
Γ(K1,K2,K3,K4) are marginal at tree level. This is a kinematic constraint brought
about by the presence of the Fermi surface, and, as we will see shortly, results in the
suppression of all scattering processes except for forward (K1 = K4 and K2 = K3, or
K1 = K3 and K2 = K4) and pairing (BCS) (K1 = −K2 and K3 = −K4) scatterings
at low energies [148] (see Fig. [3.1]). This kinematic constraint is the origin of the
in�nite life-time of quasi-particles in Fermi liquids at the Fermi surface [21]. Let us
see how this kinematic constraint that arises from the presence of the Fermi surface in
Shankar's RG in regular Fermi surfaces (excluding nested Fermi surfaces) and at low
energies only leaves forward and pairing scatterings marginal at tree level. Because of
the momentum-conserving δ-function not all the momenta in an arbitrary four-fermion
interaction with the by-power-counting marginal vertex Γ(K1,K2,K3,K4) can be laid
on the Fermi surface. Therefore, as the result of scaling momenta measured from the
Fermi surface, the �legs� that are left out will grow as the energy cuto� is lowered
towards the Fermi surface. Using a geometrical argument, it can be easily shown that
for a two-dimensional regular Fermi surface that is not nested only forward and pairing
scatterings satisfy this constraint, and, thus, are marginal at tree level [148, 21].5

At one-loop order, it is found that the forward scattering channel does not re-

3Although the interaction vertex is an analytic function, it may have a �nite convergence radius.
For example, suppose Γ(k1,k2,k3,k4) = Γ(p = k1 − k4) = 1

|p|2+m2 (density-density interaction

mediated by a massive boson), which is analytic only within |p| < m.
4This scaling is non-linear because K, the Fermi momentum, changes its orientation. See, for

example, [49, 154, 155].
5For nested regular 2D Fermi surfaces there will be an extra scattering process, characterized by

the nesting vector, that satis�es this constraint, which, at one-loop order, suggests a density-wave
instability [148].
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(a) (b)

Figure 3.1: Instances of forward and BCS scatterings in a 2D rotationally invariant
Fermi surface. (a) A forward scattering with momenta on the Fermi surface. (b) A
BCS scattering.

ceive any quantum corrections, while the BCS scattering, depending on whether the
interactions are attractive or repulsive is either marginally relevant (for attractive
interactions) or marginally irrelevant (for repulsive interactions). Shankar, invoking
a large-N -like argument, showed [148] that based on Λ � k2

F the one-loop scenario
persists to all loop orders, and, therefore, the forward scattering is exactly marginal.
Note that owing to the rotational symmetry of this problem, there is only one coupling
constant for the pairing scatterings and one for the forward scatterings. This is the
advantage of rotational symmetry; otherwise, even at one-loop order, one encounters
functional β-functions (not to be confused with functional β-functions in functional
RG approaches that do not rely on the analyticity of quantum corrections) as each
scattering process will have its own coupling constant (each BCS or forward scattering
process can be labeled by two angles, associated with the orientations of the vectors
Ki � see Fig. [3.1]) [148, 156].

Finally, let us outline how this RG approach can be extended to regular Fermi
surfaces that are not rotationally-invariant. This will show why not only van Hove
singular Fermi surfaces but also Fermi surfaces close to a singular point are patholog-
ical. For a generic Fermi surface with an energy cuto� much smaller than the Fermi
energy, one can use a di�erent set of coordinates to describe modes in the vicinity of
the Fermi surface: (kx, ky) → (ξ, θ). Here ξ = ξk is the energy measured from the
Fermi surface, and θ is a coordinate that parameterizes the constant energy contours
labelled by ξ. For regular Fermi surfaces, the Jacobian associated with this change of
coordinates, J(ξ, θ), can be Taylor expanded in ξ. If this Taylor expansion holds for
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|ξ| < Λ, then one can write the quadratic part of the action at low-energies as:

S0 =

∫
dω
∫

dθ
∫

dξ
[
J(0, θ) + ξ J ′(0, θ) + · · ·

]
ψ̄σ(ξ, θ)

(
iω − ξ

)
ψσ(ξ, θ) . (3.3)

In the above expansion, the �rst-order and all higher-order terms (indicated by
ellipses) are accompanied by powers of ξ, and, therefore, are irrelevant in Shankar's
RG and will eventually renormalize to zero. Ignoring these terms and absorbing the
J(0, θ) factor in the �eld variables, one arrives at a description (for the quadratic part
of the action) very similar to that of a rotationally-invariant Fermi surface. Note that
the anisotropy of the Fermi surface is encoded in J(0, θ), which in general is not a
constant.6

Regardless of whether the Fermi surface is rotationally invariant or not, due to
the non-trivial transformation of the δ-function in Eq. (3.2), it is not feasible to in-
corporate the e�ect of non-forward and non-pairing scattering processes to determine
how various parameters, such as the e�ective mass [158], are renormalized as one
lowers the energy cuto� in the course of this RG. This is why Shankar's RG is only
suited for describing the �xed-point theory, i.e., the Fermi liquid theory. To determine
the fate of a Fermi surface in the presence of weak short-range interactions, starting
from a microscopic scale, it is important to know how exactly the low-energy e�ec-
tive interactions are renormalized by non-forward and non-BCS scatterings [156, 159].
For example, it is well known that even starting with repulsive weak interactions an
attractive interaction can be generated through the Kohn-Luttinger mechanism in
3D [160], or its 2D version [161].

3.1.2 Neck-Narrowing Lifshitz Transitions

We saw that 2D Fermi surfaces that contain van Hove singularities cannot be ad-
dressed using Shankar's RG. The fate of such Fermi surfaces in the presence of weak
short-range interactions is a question of great theoretical interest and very relevant
to real materials (see Fig. [3.2]). From a simple scaling analysis based on renormal-
izing towards the singular point one can readily see that there is no analog of the
kinematic constraint in Shankar's RG in a van-Hove singular Fermi surface [21, 162].
This argument already suggests departure from the Fermi-liquid theory. This raises
the question of the fate of Fermi surfaces that contain van Hove singularities in the
presence of interactions. Speci�cally, what happens to such Fermi surfaces in the
presence of weak interactions near the singular points, and how the singular points

6This procedure tacitly assumes that the Fermi surface does not change its shape in the course
of RG. However, the shape of the Fermi surface is expected to change while maintaining a �xed
density (volume enclosed by the Fermi surface) to respect Luttinger's theorem [157]. Shankar showed
that this ultimate (renormalized) Fermi surface can be determined self-consistently by including an
initially unknown deviation from the ultimate Fermi surface, δξ(θ), and requiring that this to be the
�xed point [148].
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a�ect the rest of the Fermi surface.

(a) (b)

Figure 3.2: Instances of Fermi surfaces in real systems that contains van Hove
singular points. (a) Hubbard model on a square lattice at half �lling. (b) Graphene
at 5

8
�lling.

Here we discuss the e�ect of weak short-range interaction on Fermi surfaces that
contain or are in close proximity to a van Hove singularity in a simple model using
an RG approach. We saw that a Fermi surface that is close to a van Hove singularity
although formally regular cannot be treated using Shankar's RG due to close proximity
to the singular point, which potentially can have a dramatic e�ect on the low-energy
interactions. This is because Shankar's prescription is inapplicable as long as the
singular point is at an energy scale smaller than the energy cuto� (see Fig. [3.3]). Such
Fermi surfaces that are in close proximity to a van Hove singular point are actually
more common than Fermi surfaces that contain a van Hove singularity as realizing a
van Hove singular Fermi surface requires �ne-tuning the chemical potential or some
other parameters such as hopping amplitudes in the underlying tight binding model.
In fact, in the absence of interactions, the appearance of a van Hove singularity upon
tuning the chemical potential in a Fermi surface is an instance of neck-narrowing
Lifshitz transitions .
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(a) (b)

Figure 3.3: The neck region of a Fermi surface near a singular point that has a narrow
neck. (a) When the energy cuto� is larger than the energy scale of the singular point
(the momentum scale corresponding to the energy cuto� is larger than the width
of the neck). Thus the Fermi surface seems van Hove singular and Shankar's RG
in inapplicable. (b) The energy cuto� is much smaller than the energy scale of the
singular point. In this regime one may apply Shankar's RG.

Lifshitz transitions are quantum phase transitions where the topology of the Fermi
surface changes [163, 164]. Lifshitz classi�ed such phase transitions into pocket-
disappearing and neck-narrowing transitions [165]. An instance of the former transi-
tions is Graphene at half-�lling, where Dirac points appear. Lifshitz transitions are,
in fact, topological quantum phase transitions where only the topology of the Fermi
surface changes while all symmetries remain unchanged throughout the transition [1].
Here we are interested in neck-narrowing Lifshitz transitions. How the change in
topology in a neck-narrowing Lifshitz transition manifests itself in the entanglement
entropy of the system [166] is an interesting question at its own right, which we do
not discuss here.

The neck-narrowing Lifshitz transition that we examine in this chapter is described
by the quadratic dispersion ε(k) = k2

x − k2
y with a momentum cuto� K that keeps

the size of the Fermi surface �nite. In fact, this model can be regarded as a crude
approximation to realistic Fermi surfaces that undergo neck-narrowing Lifshitz tran-
sitions and are described by this quadratic dispersion near the neck, such as those
shown in Fig. [3.2]. Then, the momentum cuto� roughly plays the role of the size of
the Fermi surface. At the critical point of this class of neck-narrowing transitions a
van Hove singularity, with its characteristic logarithmically divergent density of states
(DOS) appears. In fact, these are the most common neck-narrowing transitions in
two-dimensions as neck-narrowing transitions that are described by other dispersion
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relations near the neck (e.g., ε(k) = k4
x − k4

y with a more singular DOS) require
�ne-tuning the hopping matrix elements in the underlying lattice model.7

(a) µ < 0 (b) µ = 0 (c) µ > 0

Figure 3.4: A neck-narrowing Lifshitz phase transition in 2D for a non-interacting
Fermion model with the dispersion ε(k) = k2

x − k2
y + 1

K2k
4
y at (a) µ < 0, where the

Fermi surface is made up of two separate lobes, (b) the critical point, µ = 0, where
the two lobes �rst touch and a van Hove singularity is developed, and (c) µ > 0 at
which point a smooth monolithic Fermi surface is formed.

As we will see in this Chapter, the Wilsonian e�ective action of this model at the
critical point of the neck-narrowing transition is intrinsically non-local. This intrinsic
non-locality can be regarded as the result of integrating out an emergent soft degree of
freedom. Therefore, a question of great theoretical interest regarding Fermi surfaces
that undergo such neck-narrowing Lifshitz transitions in the presence of interactions
is whether the e�ect of the change in topology on the low-energy e�ective interactions
can somehow be captured by an independent degree of freedom at low-energies of
perhaps a topological nature. To clarify this idea, it is instructive to draw a parallel
between neck-narrowing Lifshitz transitions and Ising-nematic phase transitions in
metals [167].

Ising-nematic phase transitions in metals are phase transitions driven by interac-
tions where the point-group symmetry is spontaneously broken. The phase transition

7Note that dispersion relations of the form ε(k) = |kx|3 − |ky|3 are non-local and cannot be
obtained from any microscopic tight-binding model with short-range hoppings.
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can be described by an Ising order parameter that undergoes a symmetry breaking
Ising phase transition and is coupled with the Fermi surface. At the critical point
of such Ising-nematic transitions the Ising order parameter is gapless and mediates
long-range interactions between fermions, where a non-Fermi liquid state may ap-
pear [137, 141, 139, 140, 168, 151]. In fact, this Ising order parameter is a convenient
way to represent collective excitations of fermions and have a local description. With
this analogy in mind, we will look for hints of description in terms of an emergent
independent degree of freedom in our RG analysis.

3.1.3 Previous Studies

The fate of 2D van Hove singular Fermi surfaces in the presence of weak, short-range
interactions has already been addressed by numerous studies [169, 170, 171, 172, 173,
174, 175, 176, 177, 178, 179, 180, 181] using various approaches and, in particular,
RG [162, 182, 183, 184, 185, 186, 187, 188, 189, 190]. However, none of these studies
based on RG has been successful in achieving a consistent RG description. This
is because these studies encountered non-locality in the e�ective low-energy action.
Since non-local terms typically proliferate under RG (unless a symmetry constraints
the form of non-local terms that can get generated), these studies are not, strictly
speaking, consistent.

The problem with the appearance of non-local terms in the low-energy action
is that it is not clear how to restrict the RG analysis to a closed set of operators.
This is in contrast with local perturbative RG approaches where analyticity makes
it possible to classify all allowed terms into local tree-level relevant, marginal and
irrelevant terms. Then, all or most of irrelevant terms are ignored, which restricts
the RG analysis to a much smaller set of marginal and relevant couplings. Therefore,
it is not clear whether one can trust any conclusion drawn from restricting the RG
analysis to marginal local terms when quantum corrections are non-local (non-analytic
in momentum space), as done in the aforementioned studies.

Gonzalez et al. [162], studied an isolated van Hove singularity described by the
dispersion relation εk = k2

x− k2
y at zero chemical potential, using a �eld-theoretic RG

approach. In their analysis, they encountered a non-analytic two-loop self-energy of
the form 1

8π4
U2

t2
ξq(log Λ

|ξq|)
2 (where ξq = q2

x−q2
y, and t and U are the usual hopping and

on-site repulsion parameters in the Hubbard model), which required a non-analytic
counterterm. In spite of the appearance of this non-local self-energy term, they argued
that due to the topological character of the dispersion relation, one can ignore the
e�ect of this two-loop self-energy and focus on the renormalization of interactions.
They concluded that, in the weak-coupling limit, the interaction strength of repulsive
interactions renormalizes to zero, and also suggested the existence of a strong-coupling
phase arising from the �attening of the dispersion near the van Hove singularity.

Furukawa et al. [183], examined the diamond Fermi surface of the Hubbard model
on a square lattice at half �lling, where the Fermi surface contains two distinct van
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Hove singularities. Relying on a patch approximation, they only focused on the two
van Hove singularities and restricting the interactions to intra- and inter-singularity
interactions (the so-called g-ology approach). The non-locality can be seen in the
one-loop intra-particle-particle and inter-particle-hole diagrams, which they found to
be ∝ log2 ω/E0 (ω is the transfer frequency and E0 is their energy cuto�). Due to this
log-square form of intra-particle-particle and inter-particle-hole susceptibilities, they
de�ned their β-functions by taking the derivative of the running couplings with respect
to (logE0)2, which implies undermining non-analyticity of quantum corrections.

Nandkishore et al. [187], extended the analysis of Furukawa et al. [183] to the
case of Graphene at 5

8
�lling where the Fermi surface contains three distinct singular

points. As far as the physics near an isolated van Hove singularity is concerned, this
study follows the same approach as that of Furukawa et al. [183].

Kapustin et al. [188], studied and isolated van Hove singularity described by the
dispersion εk = k2

x − k2
y in the presence of weak short-range interactions using di-

mensional regularization as to regularize the theory and extract counter terms. At
one-loop order, they encountered a non-local interaction counter term of the particle-
particle nature.

The main message of this chapter is that non-locality of the Wilsonian e�ective
action at the critical point of the neck-narrowing Lifshitz transition is intrinsic and
unavoidable, which was not paid enough attention to in the previous studies. By
intrinsic non-locality of the e�ective action we mean that it is not an artifact of the
speci�c regularization scheme that one chooses. Imposing a sharp cuto� results in the
appearance of extrinsic non-local terms in the Wilsonian e�ective action, which can
be removed by resorting to a soft energy cuto�. This is not the case here, and we
encounter non-local terms even when all cuto�s are smooth. In addition, we show how
one can recover the log2 L growth of interactions within a consistent local perturbative
RG approach, away from the critical point and in the presence of a �nite momentum
cuto�.
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3.2 RG Analysis

In this section we present the details of our RG analysis. We start with the model
that we study. Then we explain our RG scheme. Finally, the structure of one-loop
quantum corrections and their implications are discussed.

3.2.1 Model

We study Fermi surfaces described by the quadratic dispersion relation ε(k) = k2
x−k2

y

together with a momentum cuto� K. The need for the momentum cuto� arises from
the fact that this quadratic dispersion entails a non-compact Fermi surface. This mo-
mentum cuto�, in fact, plays the role of the size of the Fermi surface. Ideally, in study-
ing neck-narrowing Lifshitz transitions, one should study dispersion relations that de-
scribe compact Fermi surfaces, such as the dispersion relation ε(k) = k2

x − k2
y + 1

K2k
4
y

as shown in Fig. [3.4c]. However, such cases are more di�cult to treat analytically.
In this model the chemical potential controls the neck-narrowing transition with the
critical point at µc = 0 (see Fig. [3.5a]). At �nite but small chemical potentials
(0 < µ � K2) the Fermi surface has a narrow neck of the width 2

√
µ as shown in

Fig. [3.5b].
Note that, despite the fact that the momentum cuto� alone suppresses both high-

energy and large-momentum modes, one should not treat the momentum cuto� as
an energy cuto� and lower it in the course of RG. Lowering the momentum cuto�
amounts to integrating out zero-energy modes (portions of the Fermi surface), which
results in the appearance of non-analytic (hence non-local) terms. In this RG scheme
the running of the couplings is generated by integrating out high-energy modes away
from the Fermi surface.

The starting point of our RG analysis is the following regulated action:

S = S0 + Sint (3.4)

S0 =

∫
dk

(2π)2

∫
dω
2π
ψ̄σ(k, ω)G−1

0 (k, ω)ψσ(k, ω)

Sint = g
[ 3∏
i=1

∫
dki

(2π)2

∫
dωi
2π

]
ψ̄σ(k1, ω1)ψ̄σ′(k2, ω2)ψσ′(k3, ω3)ψσ(k4, ω4)

δ(k1 + k2 − k3 − k4) δ(ω1 + ω2 − ω3 − ω4) ,

where the partition function is given by,

Z =

∫
DψDψ̄ e−S , (3.5)
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and,

G0(k, ω) = −e
− ξ(k)2

Λ2 e−
|k|2

K2

iω − ξ(k)
(3.6)

is the regularized free propagator, and ξ(k) = k2
x − k2

y − µ. Here |g| � 1 is the
coupling of the four-fermion contact density-density interaction. Note that the choice
of smooth cuto�s is to maintain locality in the regulated theory. Since the energy
and momentum cuto�s are included in the free propagator, the contribution of high-
energy (|ξk| > Λ) and large-momentum (|k| > K) modes in computing diagrams are
automatically suppressed.

The vertex of a quartic short-range interaction term is an analytic function of
the form Γσ,σ′(k1,k2,k3,k4), where σ, σ′ =↑, ↓. A marked di�erence between the
RG scheme that we employ here and Shankar's RG is in the way that the mo-
menta are rescaled. As explained in the previous section, in Shankar's RG it is
Γσ,σ′(K1,K2,K3,K4) (Ki = kF ) that is taken as the dimensionless marginal interac-
tion vertex. In contrast, in our RG scheme, the momentum k is rescaled. Therefore,
it is the leading term in the Taylor expansion of Γσ,σ′(k1,k2,k3,k4) that gives the
marginal quartic interaction vertex in our RG scheme, i.e., g ≡ Γσ,σ′(0, 0, 0, 0). Note
that, because of the anticommutativity of fermions, the spin indices should be dissim-
ilar (σ 6= σ′), as Γσ,σ′(0, 0, 0, 0) for σ = σ′ reduces to a chemical potential term.

K

(a) µ = 0

K

(b) µ > 0

Figure 3.5: Fermi surfaces together with energy and momentum cuto�s at (a) the
critical point of the neck-narrowing Lifshitz transition (µ = 0), and (b) away from
the transition point (0 < µ < Λ). In (b) the width of the neck is 2

√
µ.

This model, at zero chemical potential, possesses a �pseudo-particle-hole� sym-
metry: invariance under the particle-hole transformation together with a π

2
rotation
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in momentum space, which reverses the sign of k2
x − k2

y. In the limit K → ∞, this
model manifests O(1, 1) symmetry in momentum space. However, the presence of the
momentum cuto� spoils this symmetry.

3.2.2 RG Scheme

Since renormalizing towards the Fermi surface, when the Fermi surface contains a van
Hove singularity, at the singular point is nonsensical, an RG approach di�erent from
Shankar's RG is required for Fermi surfaces that contain a van Hove singularity. In
the model that we study here, at µ = 0, lowering the energy cuto� Λ results in getting
closer to the van Hove singularity. Rescaling momenta restores the lowered energy
cuto�. As a result, in this RG scheme, the momentum cuto�K runs. Thus, in contrast
with Shankar's RG, there is no kinematic constraint, and therefore all dimensionless
vertices are equally important at tree level (i.e., all momentum-independent quartic
interactions are marginal at tree level).

Slightly away from the critical point (0 < µ � Λ), despite the fact that the van
Hove singularity is no longer on the Fermi surface, we continue using the same RG
scheme outlined above: renormalizing towards the singular point, which is now away
from the Fermi surface. This results in the running of the chemical potential µ, in
addition to the momentum cuto� K, and, thereby, the whole Fermi surface (at tree
level, µ/K2 remains constant) as shown in Fig. [3.6]. Our intention of employing this
scheme is that we are interested in the evolution of the e�ective action as the energy
cuto� is lowered: running of µ and K while Λ is held �xed, serves as a proxy for
systematically lowering the energy cuto�.

(a) (b) (c)

Figure 3.6: Running of K and µ in our RG scheme. (a) The Fermi surface with the
momentum cuto� K, the energy cuto� Λ and the chemical potential µ > 0. (b) The
energy cuto� is lowered to e−d`Λ. (c) The energy cuto� is restored to Λ by rescaling
momenta: k→ e

d`
2 k. This results in µ→ ed`µ and K → e

d`
2 K.

At tree level, the lowered energy cuto� e−d`Λ (` is the RG �time�) can be restored
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to Λ by: 

k → e
1
2
d` k

µ → ed` µ

ω → ed` ω

K → e
1
2
d` K

{ψ, ψ†} → e−
3
2
d` {ψ, ψ†}

→



[k] = 1
2

[µ] = 1

[ω] = 1

[K] = 1
2

[ψ] = [ψ†] = −3
2

(3.7)

From the above tree-level scaling dimensions we obtain [g] = 0, which implies that g
is marginal.

At one-loop order, we have diagrams shown in Figs. [3.7,3.8]. Among the diagrams
in Fig. [3.7] that renormalize the interaction vertex, the diagram in Fig. [3.7b] (the
so-called penguin diagram) is not allowed as it requires same spin indices on all four
legs of one of the vertices. Diagrams in Fig. [3.7a] and Fig. [3.7c] do not vanish and
involve the exchange of a particle and a hole, while the diagram in Fig. [3.7d] involves
a pair of particles. Note that the contributions of the diagrams in Fig. [3.7a] and
Fig. [3.7c] to the interaction vertex are distinct due to the spin indices of the external
legs, nevertheless they have the same loop integral:

ΓLadder

PH
(q,Ω) = − ΠPH(q,Ω) =

∫
dk

(2π)2

∫ ∞
−∞

dω
2π
G0(ω,k)G0(ω + Ω,k + q)

=

∫
dk

(2π)2

θ(ξk)− θ(ξk+q)

iΩ− ξ(k + q) + ξ(k)
e−

ξ2k+ξ2k+q

Λ2 e−
|k|2+|k+q|2

K2 . (3.8)

The diagram in Fig. [3.7d] is given by:

ΓPP(q,Ω) =

∫
dk

(2π)2

∫ ∞
−∞

dω
2π
G0(−ω,−k)G0(ω + Ω,k + q) (3.9)

= −
∫

dk
(2π)2

θ(ξk)− θ(−ξk+q)

iΩ− ξ(k + q)− ξ(k)
e−

ξ2k+ξ2k+q

Λ2 e−
|k|2+|k+q|2

K2 .

The renormalized interaction term at one-loop order is given by:
Γ(4)

= g − g2

2
− g2 (3.10)

− g2 .

We postpone the discussion of the structure of ∂log ΛΓLadder

PH
(q, 0) and ∂log ΛΓPP(q, 0) to

the next subsection.
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g

σ′

σ′

g

k4 , σ

k1 , σ

k3 , σ

k2 , σ

(a) ΠPH

g
g

k4

k1

k3

k2

(b) ΓPenguin
PH

g g

k4 , σ

k2 , σ
′

k1 , σ

k3 , σ
′

(c) ΓLadder
PH

g g

k4

k3

k1

k2

(d) ΓPP

Figure 3.7: Diagrams that renormalize four-fermion interactions at one-loop order.
In order to keep track of the spin indices, a wiggly line is used for the marginal
density-density interaction even though the vertex of this interaction is momentum-
independent. Diagrams (a), (b) and (c) involve the exchange of a particle and a hole,
whereas diagram (d) is a particle-particle diagram. Diagram (a) is the usual particle-
hole bubble ΠPH, diagram (b) is the penguin diagram, diagram (c) is a one-loop ladder
diagram ΓLadder

PH
.
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Diagrams shown in Fig. [3.8] contribute to the renormalization of the chemical
potential at one-loop order. The pseudo-particle-hole symmetry at µ = 0 ensures
that the contribution of these diagrams (as well as all higher-order corrections to the
chemical potential) vanishes. For µ > 0, ∂log ΛΣ(1) ∝ gµ (with no singular dependence
onK asK →∞), and is negligible. Since we assume that the bare interaction vertex is
momentum independent, momentum-dependent self-energy contribution �rst appears
at a two-loop self-energy diagram. Note that, the momentum dependent self-energy
obtained from the diagram in Fig. [3.8b] with weak, short-range interactions instead
of the contact density-density interactions that we consider here, will only result in
trivial (∝ µ and O(g)) �eld renormalizations.

k

g

q,Ω

(a) Σ(1)

k

g

q,Ω

(b) Σ(1)

Figure 3.8: Self-energy diagrams at one-loop order. Since we are considering a
momentum-independent bare interaction vertex with di�erent spin indices the Fock
diagram, (b), is not allowed.

Assuming analyticity of quantum corrections, one-loop β−functions for local op-
erators are obtained from the Taylor expansion of the one-loop quantum corrections:

ġ = −g2 ∂log ΛΓLadder

PH
(0, 0)− g2 ∂log ΛΓPP(0, 0)

ġ
{n,m}
PH = −(n+m) g

{n,m}
PH − g2 ∂2n

∂q2n
x

∂2m

∂q2m
y

∂log ΛΓLadder

PH
(q, 0)

∣∣
q=0

ḣ
{n,m}
PH = −(n+m)h

{n,m}
PH − g2

2

∂2n

∂q2n
x

∂2m

∂q2m
y

∂log ΛΠPH(q, 0)
∣∣
q=0

ġ
{n,m}
PP = −(n+m) g

{n,m}
PP − g2 ∂2n

∂q2n
x

∂2m

∂q2m
y

∂log ΛΓPP(q, 0)
∣∣
q=0

K̇ =
1

2
K

µ̇ = µ+O(g) . (3.11)

Here, g is the coupling of the momentum-independent interaction term, g{n,m}PH (di�er-
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ent spin) and h{n,m}PH (same spin) are the couplings of the following (by-power-counting)
irrelevant interaction term:

S{n,m}PH =
[
g
{n,m}
PH (1− δσ,σ′) + h

{n,m}
PH δσ,σ′

] ∫ dk
(2π)2

dω
2π

∫
dk′

(2π)2

dω′

2π

∫
dq

(2π)2

dΩ

2π

ψ̄σ(k, ω)ψσ(k + q, ω + Ω)
q2n
x

Λn

q2m
y

Λm
ψ̄σ′(k

′ + q, ω′ + Ω)ψσ′(k
′, ω′) , (3.12)

and g{n,m}PP is the coupling constant of:

S{n,m}PP =g
{n,m}
PP

∫
dk

(2π)2

dω
2π

∫
dk′

(2π)2

dω′

2π

∫
dq

(2π)2

dΩ

2π
(3.13)

ψ̄σ′(k + q, ω + Ω) ψ̄σ(−k,−ω)
q2n
x

Λn

q2m
y

Λm
ψσ(k′ + q, ω′ + Ω)ψσ′,(−k′,−ω′) .

Diagramatic representation of these irrelevant interactions are shown in Fig. [3.9].

Γ
{nm}
PH (q)

k + q

k

k′

k′ + q

(a)

Γ
{nm}
PP (q)

k′ + q

−k′

k + q

−k

(b)

Figure 3.9: Diagramatic representation of irrelevant particle-particle and particle-
hole interactions S{n,m}PP and S{n,m}PH .

3.2.3 One-Loop Quantum Corrections

Here we show that the Wilsonian e�ective action at the critical point of the neck-
narrowing transition is intrinsically non-local. Also, we demonstrate that slightly
away from the critical point, locality can be retained only in the presence of the
momentum cuto� in our model that keeps the size of the Fermi surface �nite. Even
then, the quantum corrections are analytic within a �nite momentum range, related
to the width of the neck. Within this analytic range, we determine the β-functions
and �nd that, due to the running of K in this RG scheme, a negative g (attractive
four-fermion contact interactions) grows as `2 = log2 L.

To lay out our arguments, we primarily focus on one-loop particle-hole quantum
corrections ∂log ΛΓPH(q, ω = 0) (form here on, we use ΓPH ≡ ΓLadder

PH
= −ΠPH) for

q = qx̂. In the absence of any momentum regulator (K → ∞), where the O(1, 1)
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symmetry of the model is intact, any dependence on q is through q2
x − q2

y. Thus, it
su�ces to determine the dependence of any diagram with the transfer momentum
q on q2

x − q2
y for only three representative directions: q = qx̂ for x-like momenta

(q2
x − q2

y > 0), q = qŷ for y-like momenta (q2
x − q2

y < 0) and q = q√
2
(x̂ + ŷ) for null

momenta (q2
x−q2

y = 0). The presence of the momentum regulator (K <∞), however,
spoils this symmetry. Despite this, we restrict the computation of ∂log ΛΓPH to q = qx̂.
Thus, assuming the analyticity of quantum corrections, of the interaction vertices in
Eq. (3.12) we only have access to those with m = 0.

Slightly away from the critical point of the neck-narrowing transition (0 < µ �
K2,Λ), for any x-like transfer momentum q (q2

x−q2
y > 0), ∂log ΛΓPH(q, 0) is analytic as

long as q2
x− q2

y < 4µ. Non-analyticity at q2
x− q2

y = 4µ stems from the well-known 2kF
singularity, which arises when the transfer momentum q connects antipodal points on
the Fermi surface, as shown in Fig. [3.10]. For q = qx̂, this implies that ∂log ΛΓPH(qx̂, 0)
is non-analytic at q = 2

√
µ.

Figure 3.10: All three indicated vectors satisfying ξq = 4µ and connecting antipodal
points correspond to �2kF � momentum transfers q on the Fermi surface.
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For ∂log ΛΓPH(qx̂, 0) we obtain the following series expansion in q (see Appendix [B.3]):

∂log ΛΓPH(qx̂, 0) ≈ 1

2(2π)2

[
8
K2

Λ

q2

Λ
+
(

19.7 log
µ

K2
+ 101− 5.6

K4

Λ2

) q4

Λ2

+
(
− 1.87

Λ

µ
+
[
22.8

K2

Λ
+ 86

Λ

K2

]
log

µ

K2
+ 4.11

K6

Λ3
+ 162

K2

Λ

) q6

Λ3

+
(
− 0.13

Λ2

µ2
− 2.06

K2

µ
+
[
237

Λ2

K4
+ 255 + 8.7

K4

Λ2

]
log

µ

K2
+ 1462

− 71.5
K4

Λ2
− 3.16

K8

Λ4

) q8

Λ4
+
(
− 0.014

Λ3

µ3
− 0.138

K2

Λµ2
− 0.326

Λ3

K2µ2

− 0.716
K4

Λµ
− 17.13

Λ

µ
− 12.98

Λ3

K4µ
+
[
− 1.262

K6

Λ3
+ 305

K2

Λ
+ 1082

Λ

K2

+ 483
Λ3

K6

]
log

µ

K2
+ 2.52

K10

Λ5
+ 9.235

K6

Λ3
+ 1987

K2

Λ

)q10

Λ5
+O(q)12

]
, (3.14)

where we have ignored all O(µ) and O(1/K) terms.
Let us explain the origin of di�erent K- and µ-dependent terms in this series

expansion. First consider terms singular in µ. Since the above series expansion is
valid only for q < 2

√
µ and singular terms in µ are accompanied by su�ciently high

powers of q, there is no divergence in Eq. (3.14) as µ → 0. Singular dependence on
µ �rst appears at O(q4). This feature depends on the choice of the energy cuto�. If
instead of exp(−ξ2

k/Λ
2) we imposed, for example, exp(−ξ4

k/Λ
4), singular dependence

on µ would �rst appear at O(q6). More generally, for an energy cuto� of the form
exp(−ξ2n

k /Λ
2n), singular terms in µ appear at O(q2n+2). Note that, in the limit

n → ∞, where the energy cuto� becomes the sharp energy cuto� θ(1 − |ξk|
Λ

), the
singular terms completely disappear. This can be understood as follows. With a
soft-energy cuto�, although quantum corrections are most sensitive to modes at the
energy scale Λ, they nevertheless weakly sense all other modes. This is because the
derivative of a soft energy regulator with respect to log Λ is not a δ-function. Thus,
the appearance of an IR singularity upon setting µ to zero is �sensed� by quantum
corrections (in this case, ∂log ΛΓPH).

Another important feature of the series expansion in Eq. (3.14) is the presence
of terms with positive powers of K. These terms indicate that the series expansion
breaks down not only when q = 2

√
µ, as discussed above, but also when q < Λ

K
. Note

that, unlike terms singular in µ, the appearance of these terms is not sensitive to the
details of the energy cuto�. The origin of non-analyticity at q ' Λ/K becomes evident
when both cuto�s are imposed sharply. As depicted in Fig [3.11], when both cuto�s
are sharp the smaller |q|, the farther from the origin the modes that are decimated
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lie. This will result in non-analyticity of ∂log ΛΓPH(q, 0) as it will be proportional to
θ(1 − Λ2

q2K2 ). Note that this applies to both µ = 0 and µ � Λ, K2. Imposing a
soft momentum cuto�, while maintaining a sharp energy cuto�, will not cure this
non-analyticity and only results in a softer non-analytic dependence on q. For our
momentum regulator exp(−|k|2/K2), one �nds non-analytic dependence on |q| in
∂log ΛΓPH(q,Ω) of the form exp(− Λ2

|q|2K2 ). When both cuto�s are imposed softly, this
aspect of the problem manifests itself as a �nite convergence radius q < Λ/K.

K

Figure 3.11: When both cuto�s are imposed sharply, as depicted in this �gure,
for smaller |q|, the eliminated modes will be farther from the origin. Thus, if |q| is
su�ciently small (< Λ

K
) ∂log ΛΓPH(q,Ω) suddenly vanishes (as a result of using sharp

cuto�s). When both cuto�s are imposed softly, as discussed in the text, this feature
results in the convergence radius q < Λ/K in ∂log ΛΓPH.

As shown in the previous subsection, the β-function of g (the coupling of the
contact density-density interaction) receives a contribution from ∂log ΛΓPP(0, 0) (see
Eq. (3.11)). For ΓPP(q = 0,Ω� Λ) we obtain:

ΓPP(q = 0,Ω� Λ) ≈ 1

(2π)2

[
log

K2

Λ
log
(

1 +
4Λ2

Ω2

)
+

1

4
log2

( Ω2

4Λ2

)]
, (3.15)

where, we have only kept singular terms in Ω. From Eq. (3.15) we �nd:

∂log ΛΓµ=0
PP

(0,Ω) ≈ 1

(2π)2

[
8Λ2

4Λ2 + Ω2
log

K2

Λ
− log

(
1 +

Ω2

4Λ2

)
+ O(

Ω2

Λ2
)

]
, (3.16)
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which, in the limit Ω→ 0, reduces to 1
2π2 log K2

Λ
.

The series expansion in Eq. (3.14) indicates that as µ→ 0 the quantum corrections
become non-analytic. Indeed, we �nd that at the critical point of the neck-narrowing
transition (µ = 0), ∂log ΛΓPH(qx̂, 0) is non-analytic in q. Isolating the non-analytic
terms, for small q we obtain the following series expansion in q (see Appendix [B.2]
for the computational details):

∂log ΛΓnon-analytic

PH
(qx̂, 0) =

1

(2π)2

[
− 0.028

q4

Λ2
− 0.368

K2

Λ

q6

Λ3
+
(

0.473
K4

Λ2
+ 0.448

) q8

Λ4

−
(

0.55
K6

Λ3
+ 0.6

K2

Λ

)q10

Λ5
+O(

q12

Λ6
)

]
log

q2

K2
. (3.17)

The β-functions of g, and the couplings of the �rst �ve tree-level irrelevant vertices
g
{n}
PH ≡ g

{n,0}
PH are obtained from Eq. (3.14). These β-functions describe the evolution

of the e�ective action when µ > 0 and for transfer momenta within the convergence
radius of quantum corrections. From here on we set Λ to 1 for brevity (Λ can be
restored by K2 → K2/Λ and µ→ µ/Λ). The one-loop β-functions are:

ġ =− g2

2π2
logK2 (3.18a)

ġ
{1}
PH =− g{1}PH −

g2

2(2π)2
8K2 (3.18b)

ġ
{2)
PH =− 2g

{2}
PH −

g2

2(2π)2

(
19.7 log

µ

K2
+ 101− 5.6K4

)
(3.18c)

ġ
{3}
PH =− 3g

{3}
PH −

g2

2(2π)2

(
− 1.87

µ
+
[
22.8K2 +

86

K2

]
log

µ

K2
+ 4.11K6 + 162K2

)
(3.18d)

ġ
{4}
PH =− 4g

{4}
PH −

g2

2(2π)2

(
− 0.13

µ2
− 2.06

K2

µ
+
[237

K4
+ 255 + 8.7K4

]
log

µ

K2

+ 1462− 71.5K4 − 3.16K8
)

(3.18e)

ġ
{5}
PH =− 5g

{5}
PH −

g2

2(2π)2

(
− 0.014

µ3
− 0.138K2

µ2
− 0.326

K2µ2
− 0.716

K4

µ
− 17.13

µ

− 12.98

K4µ
+
[
− 1.262K6 + 305K2 +

1082

K2
+

483

K6

]
log

µ

K2
+ 2.52K10

+ 9.235K6 + 1987K2
)
. (3.18f)

where, K = K0e
`/2 and µ = µ0e

` (` is the RG �time�, µ0 = µ`=0 and K0 = K`=0 are
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the initial values). The β-function of g can be solved analytically:

g(`) =
2π2

` logK2
0 + 1

2
`2 + 1

g0

, (3.19)

where g0 = g`=0. Thus, g is marginally relevant if g0 < 0 (attractive) and is marginally
irrelevant if g0 > 0 (repulsive). The quadratic term in ` in the denominator of
Eq. (3.19) is due to the running of K from the logK contribution of ∂log ΛΓPP(q =
0,Ω = 0) to the marginal four-fermion interaction term. For an attractive bare

interaction (g0 < 0), |g(`)| reaches unity at `∗ = − logK2
0 +

√
log2K2

0 + 2
|g0| + 4π2.

Thus, for |g0| � 1 and K2
0 ' 1 (recall that we set Λ = 1), `∗ ∝ 1/

√
|g0|. The rest of

the β-functions can be solved numerically.
Observe that, the β-functions of more irrelevant couplings contain higher powers of

K. For example, there is aK10 term in the in the β-function of g{5}PH (Eq. (3.18f)). This
is the re�ection of the �niteness of the convergence radius. Note that, although the
coupling constants of irrelevant interactions grow large, the overall strength of such
irrelevant interaction vertices remains small, due to the restriction of the transfer
momentum to the convergence radius of the Taylor expansion of ∂log ΛΓPH.

The analytic window, within which one can describe the evolution of e�ective inter-
actions by the above β-functions, changes in the course of RG as shown in Fig. [3.12].
Regardless of the details of the cuto�s (even for a sharp cuto�), by the time that the
energy cuto� has been su�ciently lowered (Λ . µ) this analytic window has shrunk
to O( µ

K
). This indicates the strong dependence of quantum corrections on q that

cannot be captured entirely in terms of local operators.
Finally, we point out that the this feature of this model that there is a non-

analyticity at |q| ' Λ
K
, independent of the details of the energy and momentum

regulator, is already manifest in the imaginary part of the particle-hole susceptibility
χ′′
PH

(qx̂,Ω), as shown in Fig. [3.13].

3.3 Summary and Conclusions

In summary, in this chapter we examined a two-dimensional neck-narrowing Lifshitz
transition in the presence of weak interactions using an RG approach in a model de-
scribed by the dispersion ε(k) = k2

x − k2
y together with a momentum cuto� K. We

argued that this simple model serves as an approximation to more realistic Fermi
surfaces, and is expected to capture the essential features of common neck-narrowing
Lifshitz transitions in two-dimensions in the presence of interactions. Thus, the mo-
mentum cuto� K in our simple model, which keeps the size of the Fermi surface �nite,
should be regarded as the full size of the Fermi surface. This model undergoes a neck-
narrowing Lifshitz transition as the chemical potential is varied, with the critical point
at µc = 0. Slightly away from the critical point, the Fermi surface has a narrow neck
of the width 2

√
µ. Our main goals were to determine the e�ect of interactions on the
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Figure 3.12: The analytic range of ∂log ΛΓPH(q) in the course of RG is indicated by
the shaded region. Initially, the width of the neck (due to the 2kF physics) determines
this analytic window (blue curve). Beyond the point

√
µ(`)K(`) = Λ, it is Λ/K that

dictates analytic range of quantum corrections (the black curve). Starting from a
microscopic scale (Λ ' K2), by the time that the energy cuto� has been su�ciently
lowered, the analytic window has shrunk to O( µ

K
).

Fermi surface at and close to the critical point of the transition.
We rigorously showed that, at the critical point of the neck-narrowing Lifshitz

transition, the Wilsonian e�ective action is intrinsically non-local. This non-locality
is due to the presence of the van Hove singularity, which results in non-analytic
quantum corrections, and is not the artifact of the regularization scheme we chose.
The non-locality of the e�ective action at the critical point is attributed to integrating
out an emergent soft collective degree of freedom related to the critical �uctuations
of the Fermi surface topology.

Precise identi�cation of this emergent degree of freedom and devising a completely
local description similar to those in symmetry breaking phase transitions in metals are
left to future works. In principle, the nature of the suggested emergent soft degree of
freedom at the critical point of the neck-narrowing Lifshitz transition can be inferred
from the generated non-local terms. However, in contrast with the Ising-nematic phase
transitions, this emergent degree of freedom may not be as simple. More precisely,
if this emergent soft mode, aside from the coupling to the low-energy fermions, is an
interacting mode, then identifying it based on the non-locality it entails upon being
integrated out becomes extremely challenging and most likely practically impossible.
An equally important and related question is how exactly this emergent soft mode is
coupled to low-energy fermions, which again in principle can be addressed based on
the structure of the non-local terms. Further insight into the nature of this emergent
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Figure 3.13: (a) Density plot of the imaginary part of the particle-hole susceptibility,
χ′′
PH

(qx̂,Ω) computed for K = 1000
√
µ. (b) Density plot of χ′′

PH
(qx̂,Ω) to small q

values. (c) Constant Ω slices. (D) Constant Ω slices in the small q region. Non-
analytic behavior for q < Ω

K
is re�ected by the sudden drop close to the vertical axis

in (a) and almost �at curves at small q in (b).
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degree of freedom may be gained based on the topological role that it plays in this
transition.

As discussed here, due to the non-localities that appear at the critical point in the
low-energy e�ective action, the application of local RG approaches are inconclusive.
Aside from the above proposal to retain locality by isolating the emergent gapless
mode responsible for the appearance of the non-local terms, it might be illuminat-
ing to try to recover locality by introducing a control parameter. One viable route
is to extend the co-dimension of the Fermi surface, which suppresses the divergent
density of states. Starting from the co-dimension 1 + ε, this approach may allows for
determining how precisely non-locality is developed as one approaches the physical
co-dimension 1.

We demonstrated that the locality of the e�ective action can be restored only
away from the critical point (µ 6= 0) and in the presence of the momentum cuto�.
Even then, the quantum corrections are analytic within a �nite momentum range,
which shrinks as the critical point is approached. Within this analytic window, we
derived the β-functions for the couplings of marginal and irrelevant interactions, and
captured the log2 L growth of weak attractive contact density-density interactions in a
consistent RG picture. This growth is faster than logL expected for ordinary marginal
couplings due to the running of the momentum cuto� in this RG, which is treated
as a dimensionful coupling constant. The �niteness of the analytic window, which is
proportional to the width of the neck is indicative of the strong momentum dependence
of quantum corrections that cannot be entirely captured by local operators. In analogy
with Ising-nematic phase transitions in metals, this development of non-locality as the
critical point of the neck-narrowing transition is approached lends further support to
the idea of an independent degree of freedom at low energies (the analog of the Ising
order parameter) that couples to the Fermi surface and becomes gapless at the critical
point.
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Chapter 4
Conclusions and Outlook

In this �nal chapter, we draw some general conclusions about the use of RG approaches
in studying strongly correlated condensed matter systems based on what we saw in
the RG analyses of the preceding chapters. We conclude this short chapter by a few
comments on the prospect of RG-based approaches that reach beyond the scope of
local perturbative RG schemes.

4.1 Summary

We started with the premise that condensed matter systems fall into universality
classes that are uniquely labelled by the common phase of systems within each class.
We argued that, while any system in a universality class serves as a representative for
that universality class, universality classes are best typi�ed by �xed-point theories,
which are theories that possess no non-universal properties and are scale invariant.
We illustrated how these ideas materialize as e�ective �eld theory and RG statements
about the low-energy e�ective �eld theories of condensed matter systems. We learned
that �xed-point theories are indeed privileged as they are invariant under the action
of RG, and all systems within the same universality class ultimately �ow to the �xed-
point theory that characterizes that universality class. Thus, the question of the fate
of a given system becomes synonymous to the question of to what �xed point the
low-energy e�ective �eld theory of the system �ows under RG.

While the notion of RG is very elegant and powerful, implementing it in practice
may not be easy. Nonetheless, as we saw, under the assumptions of locality and
perturbativity it becomes possible to systematically carry out the RG transformation
approximately in the vicinity of a �xed point. Such RG approaches are referred to as
local perturbative RG schemes, which we utilized in the presented RG analyses in this
thesis. As brie�y explained in Chapter 1, perturbativity allows us to systematically
integrate out high-energy modes within a loop-expansion approximation, and locality,
together with perturbativity, enables us to consistently restrict the RG analysis to a
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manageable set of coupling constants.
Before further discussing practical challenges of implementing RG, let us point

out a more basic problem in studying some lattice models that we encountered an
instance of in Chapter 2: sensitivity to the precise values of the coupling constants
in the continuum �eld theory of a lattice model. Sometimes the RG analysis of the
quantum �eld theory of a lattice model can be carried out without much di�culty
and what prevents us from accurately determining the fate of the system is the lack of
the precise values of the couplings in the continuum �eld theory, i.e., the initial values
of the running couplings. A simple and well-known example of this is the so-called
spin-1

2
J1 − J2 model in one dimension, which is an isotropic Heisenberg antiferro-

magnetic spin-1
2
chain with nearest and next-nearest-neighbor exchanges J1 and J2.

This model undergoes a phase transition to a gapped phase at J crit

2 = 0.241167 J1,
and, in the continuum limit, just like a nearest-neighbor isotropic Heisenberg anti-
ferromagnetic chain, is described by the SU(2)k=1 WZNW theory perturbed by a
backscattering term. The sign of the coupling constant of the backscattering term
changes at the critical point J crit

2 , which brings about the transition. Precise determi-
nation of this critical next nearest exchange, J crit

2 , has only been possible by numerical
calculations [126, 191]. Nevertheless, as we saw in Chapter 2, being able to identify
main instabilities based on the general �ow of the coupling constants in an RG analysis
is extremely valuable.

The analysis of the �ow of coupling constants in local perturbative RG schemes is
typically restricted to the vicinity of the �xed point with respect to which the calcu-
lations are carried out (the UV �xed point). As a result of this, often we are unable
to track the �ow of the low-energy e�ective �eld theory of the system all the way to
its �xed point (the IR �xed point) in these RG schemes. One possible solution to
circumvent this shortcoming of local perturbative RG schemes is to introduce another
control parameter (e.g. increasing a �avour number, or extending the dimensions of
the system) that allows for making a systematic approximation. A well-known exam-
ple of this is the �ow from the Gaussian �xed point to the Wilson-Fisher �xed point
in a φ4 scalar �eld theory in (4 − ε)-dimensions. There, extending the physical di-
mensions from ε = 1 (or even ε = 2) to ε� 1, allows for systematically accessing the
Wilson-Fisher �xed point [5, 29, 192, 193]. Other recent examples of such approaches
are the RG studies in Refs. [138, 141, 194].

In general it may not be possible to harness the RG �ow, away from the UV �xed
point, by increasing the �avour index, or it may not be easy to de�ne the theory in
non-integer dimensions. An instance of the former is the insu�ciency of the large-N
approximation in the case of a U(1) gauge �eld coupled to a single patch of a Fermi
surface in two dimensions that was pointed out in Ref. [151]. In cases where the UV
�xed point is a (1 + 1)D CFT, such as the RG analysis in Chapter 2, extending to
non-integer dimensions is not yet fully understood [195].

The above discussion of the �ow of the low-energy e�ective �eld theory of a sys-
tem from the vicinity of its UV �xed point to its IR �xed point allows us to bet-
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ter understand the rationale behind the RG analysis of Chapter 2. Speci�cally, the
meaning of the length scale L∗ where an interchain coupling reaches O(1) and quasi-
one-dimensionality is lost. This will also explain why in both the RG analysis and the
numerical calculations three chains were enough while the system is two-dimensional.
The length scale L∗ marks a dimensional crossover. At length scales smaller than L∗

the model is controlled by the one-dimensional �xed point of decoupled spin-1
2
chains.

On the other hand, at length scales larger than L∗ the system is controlled by its true
two-dimensional �xed point.

In Chapter 3, we encountered two other obstacles in implementing RG for fermion
systems that possess Fermi surfaces. The �rst problem was related to applying RG
to fermion systems with Fermi surfaces in general. The second problem was the
breakdown of locality, which was more speci�c to that model and Fermi surfaces that
undergo symmetry-breaking phase transitions.

We argued that in applying RG to Fermi surfaces, one has two options: either
renormalizing towards a point on the Fermi surface or renormalizing towards the entire
Fermi surface. The former is the underlying idea in the so-called patch approximation,
and the latter is the central idea in Shankar's RG. Patch approximations have their
own limitations [151, 38]. On the other hand, RG schemes based on renormalizing
towards the Fermi surface entail non-linear scaling relations [148, 154, 155]. Thus,
despite great progresses, the application of RG approaches to Fermi surfaces even
after twenty years since Shankar's and Polchinski's works still remains incomplete.

The loss of locality in the RG analysis of Chapter 3 at the critical point was
attributed to the emergence of a gapless mode at the critical point. It was argued
that, similar to more conventional symmetry-breaking phase transitions, locality can
be retained if one isolates the putative emergent gapless mode. Nonetheless, this
indicated that loss of locality poses a serious problem to systematic implementation
of RG in practice.

4.2 Future Directions

Being able to treat strongly interacting systems is of great importance. Here we brie�y
mention three possible approaches that are based on or are related to RG and may
allows us to address a wider range of problems.

As brie�y mentioned in Chapter 1, exact, or more precisely, functional RG ap-
proaches can serve as better alternatives in cases where local perturbative RG ap-
proaches are problematic. In particular, in cases where the low-energy e�ective theory
is non-local but still perturbative functional RG schemes can be useful.

While tracing RG �ows from UV �xed points to IR �xed points in general may
seem too far-fetched, one can attempt addressing a more modest question: whether
there are general restrictions (no-go theorems) on the RG �ows between various �xed
points. A perfect instance of such �no-go� theorems for the RG �ows between �xed
points already exists in one dimension: Zamolodchikov's celebrated c-theorem. In one
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dimension, a �xed point with dynamical critical exponent z = 1 is scale invariant and
must be a CFT [196]. A Conformal �eld theory is characterized by its central charge,
c, which is a measure of the total number of degrees of freedom in the system [197, 127].
Zamolodchikov [198] showed that it is not possible to �ow from a CFT with a smaller
central charge to another one with a larger central charge. There has been attempts
to extend this theorem to higher dimensions, most notable Cardy's a-theorem in four-
dimensions [199, 200]. Also, there has been proposals to use entanglement entropy to
impose constraints on RG �ows between various �xed points [201, 202, 203].

Another recent promising direction in dealing with strongly interacting quantum
�eld theories is the use of holography [204, 205, 206].
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Appendix A
Appendix to Chapter 2

In this appendix we present the detailed derivation of the OPEs and the β-functions
that were used in the RG analysis of Chapter 2. We begin with a brief review of the
continuum limit of spin-1

2
Heisenberg antiferromagnetic chains. Then the derivation

of the OPEs, β-functions and the modi�ed β-functions in the presence of the DM
interaction are presented. Finally, an approximate analytic computation of gcritN is
given.

A.1 Continuum Limit of Spin-1
2 Heisenberg Antifer-

romagnetic Chains

The continuum limit of a spin-1
2
Heisenberg antiferromagnetic chain is given by a

conformal �eld theory together with a tree-level marginal term that, depending on
the precise details of the Hamiltonian, may or may not be relevant [207, 208, 209].
For critical chains, which are described by solely the CFT at low-energies, the tree-
level marginal term is irrelevant. The continuum limit of spin-1

2
isotropic Heisenberg

antiferromagnetic chains can be represented in two equivalent ways: either by a so-
called sine-Gordon theory, or the SU(2)k=1 Wess-Zumino-Novikov-Witten (WZNW)
model perturbed by a marginally backscattering term. The backscattering term is
marginally irrelevant for critical Heisenberg chains and, in particular, chains with
only nearest-neighbor Heisenberg exchanges. Here, k = 1 is the level of this WZNW
theory which, together with the symmetry group SU(2), determines the central charge
of this CFT, and is related to the fact that this theory describes spin-1

2
(k

2
is the highest

conformal spin of the primary operators in this CFT) [128, 127, 197]. Note that, the
precise microscopic continuum limit theory involves an in�nite number of irrelevant
terms, which are typically ignored. Nevertheless, such terms are potentially important
if one is interest in short-distance correlations [210].

Let us start with the continuum description based on a sine-Gordon model, which
is more appropriate for anisotropic Heisenberg (XXZ) chains. A spin-1

2
isotropic
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antiferromagnetic nearest-neighbor Heisenberg chain can be regarded as the isotropic
(∆ = J) point of an XXZ chain with the Hamiltonian,

HXXZ =
J

2

∑
i

[
S+
i S

−
i+1 + h.c.

]
+ ∆

∑
i

Szi S
z
i+1 . (A.1)

To obtain the continuum limit of the above Hamiltonian, it is more convenient to
�rst fermionize the model using the Jordan-Wigner transformation, which results in
a Hubbard model for spin-less fermions in 1D, and then bosnize the continuum limit
of the Hubbard model [41, 129]. Using the Jordan-Wigner transformation,

S+
i = ci e

iπ
∑i−1
j=1 c

†
jcj , Szi = n̂i , (A.2)

where n̂i = c†i ci. One obtains the following fermionized XXZ Hamiltonian [208]:

HXXZ =
J

2

∑
i

[
c†i ci+1 + h.c.

]
+ ∆

∑
i

n̂i n̂i+1 . (A.3)

The continuum limit of the above one-dimensional Hubbard chain can be bosonized
(Abelian bosonization) [207, 129], which results in a sine-Gordon Hamiltonian [207,
211]:

HSG =
ν

2

∫
dx
[
Π̂2 + (1 +

4∆

π
)(∂xΦ̂)2

]
+

ν∆

(πa0)2
: cos(4

√
πΦ̂) : , (A.4)

where Π̂ is the momentum conjugate to the boson �eld operator Φ̂, a0 is the lattice
spacing and : O : indicates the normal-ordered operator O. The velocity ν can be
extracted from the Bethe ansatz solution of the XXZ Hamiltonian, which is inte-
grable [212, 213]. The cosine term in the above Hamiltonian is irrelevant for |∆| ≤ J ,
and is relevant and results in a �nite gap when ∆ > J . Thus, as stated in Chapter 2,
the XXZ spin-1

2
antiferromagnetic chains for |∆| ≤ J are critical [134]. In a critical

sine-Gorodon theory the cosine term is irrelevant and the �xed-point theory, which is
a CFT, is the free boson theory.

Let us now turn to the continuum description based on the SU(2)k=1 WZNW
model. The main disadvantage of the above continuum description based on the sine-
Gordon theory is that it conceals the SU(2) symmetry of the isotropic Heisenberg
chains. As Witten showed [214], it is possible to construct a CFT that is explicitly
invariant under a Lie group [127, 197]. In this case, this is the SU(2)k=1 WZNW
theory, which is a CFT explicitly invariant under the SU(2) group with the same
central charge as the free-boson CFT (c = 1).

A convenient way to obtain the continuum description for an isotropic spin-1
2

Heisenberg antiferromagnetic chain based on the SU(2)k=1 WZNW theory is to start
with the parent Hubbard model of the Heisenberg chain. This approach o�ers a par-
ticularly convenient way for deriving (most of) the OPEs, which we will use the next
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section. The main idea is to take advantage of the spin-charge separation phenomenon
in one dimension that occurs at any U/t (as opposed to in the limit U/t→∞ in higher
dimension) [215, 208].1 Then using non-Abelian bosonization [214], the spin sector
of the Hubbard model is represented by the SU(2)k=1 WZNW model perturbed by a
backscattering term.

The continuum limit of the 1D Hubbard model for spin-1
2
fermions at low energies

can be written in terms of the left- and right-moving fermion �elds (�eld operators
near the two Fermi points � left and right Fermi points), ψL,α and ψR,α as [208]:

HHubbard =

∫
dxH0 +

∫
dx
{
λ1JL(x)JR(x) + λ3 JL(x) · JR(x) (A.5)

+ λ2

[(
εαβψ†L,αψ

†
R,β

)(
εγηψL,γψR,η

)
+ h.c.

]}
,

where λi are the couplings constants. The free continuum Hamiltonian can be written
in terms of the chiral spin and charge currents as follows:

H0 =
π

2
νc

∫
dx
[

: JL(x)JL(x) : + : JR(x)JR(x) :
]

+ (A.6)

π

2
νs

∫
dx
[

: JL(x) · JL(x) : + : JR(x) · JR(x) :
]
,

where, νc and νs are charge and spin velocities, respectively, which are the same in
general [129]. The left- and right-moving spin currents are given by:

JL = ψ†L,ασ
α,βψL,β , JR = ψ†R,ασ

α,βψR,β . (A.7)

Similarly, the chiral charge currents are given by:

JL = ψ†L,α ψL,α , JR = ψ†R,α ψR,α . (A.8)

Note that, normal ordering of bilinear products of fermion operators using point
splitting [41], one can easily show that the normal-ordered currents in H0 are the
same as the usual ψ†∂xψ term in the continuum Hubbard Hamiltonian.

Using non-Abelian bosonization [208, 134], the continuum Hubbard model in
Eq. (A.5) can be bosonized. Then, an ordinary boson �eld Φ describes the charge
sector and a matrix �eld g describes the dynamics in the spin sector,2 which makes the
aforementioned spin-charge separation manifest, as there will be no coupling between
the spin and charge sectors. This way, H0 is mapped onto a free boson for the charge

1Strictly speaking, spin-charge separation occurs at low energies where one can use a linear
approximation near the two Fermi points. The spin-charge separation would have been exact if one
was dealing with a perfectly linear dispersion, i.e., the Tomonaga-Luttinger model [215].

2In Abelian bosonization, a separate ordinary boson �eld is used for the spin sector, which results
in the sine-Gordon theory in Eq. (A.4).
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sector and the SU(2)k=1 WZNW model for the spin sector. The charge sector of H0

we have the following action,

Scharge = −1

2

∫
dτdx

[ 1

νc
(∂τΦ)2 + νc(∂xΦ)2

]
, (A.9)

and the SU(2)k=1 WZNW model is given by the action,

SWZNW =
1

8π

∫
d2xTr{∂µg†∂µg}+

1

12π

∫
d3xεµνλTr{g†∂µg g†∂µg g†∂λg} . (A.10)

The bosonized form of the interaction terms in Eq. (A.5) are obtained from the fol-
lowing non-Abelian bosonization dictionary [134]:

Boson Operators Fermion Bilinears
1

2π
e
i 1√

2π
Φ
gα,β ψ†R,αψL,β

i 1√
2π
∂z̄Φ

1
2

: ψ†L,αψL,α :

i 1√
2π
∂zΦ

1
2

: ψ†R,αψR,α :

1
2π
Tr{σg−1∂zg} : ψ†R,ασα,βψR,β :

1
2π
Tr{σg−1∂z̄g} : ψ†L,ασα,βψL,β :

Table A.1: Non-Abelian Bosonization �dictionary�.

Finally, let us turn to how magnetization operators M and N, as well as, the
dimerization operator ε are represented in terms of the SU(2) matrix �eld of the
SU(2)k=1 WZNW model, g. These are given by [216]:

JL =
k

4π
Tr{σg−1∂z̄g} (A.11a)

JR =
k

4π
Tr{σg−1∂zg} (A.11b)

N = Tr{gσ} (A.11c)

ε = Tr{g} . (A.11d)

where k = 1 is the level of the SU(2)k=1 WZNWmodel. We see that the chiral currents
are expressed in terms of fermion bilinears. However, the dimerization operator,
ε, and the staggered magnetization, N, cannot be expressed in terms of the chiral
fermion operators due to the presence of the boson �eld Φ for the charge sector (see
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Table [A.1]). Thus, the following naive fermionic representations are incorrect:

ε 6= 1

2

∑
α

ψ†R,αψL,α + h.c. =
1

2π
cos
( 1√

2π
Φ
)
Tr{g} . (A.12a)

N 6= 1

2

∑
α,β

ψ†R,ασα,βψL,β + h.c. =
1

2π
cos
( 1√

2π
Φ
)
Tr{gσ} . (A.12b)

This point becomes important in the next section where we compute OPEs.
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A.2 Derivation of the OPEs

In this section, the derivation of the OPEs for the set of operators in Chapter 2 are
presented. These OPEs are needed for the derivation of the β-functions in the next
section. In determining the OPEs of the chiral currents with each other and other
operators, we use the fermion representation of the spin-1

2
operators S = ψ†α

σαβ
2
ψβ.

The justi�cation for this is that, as shown in the previous section, the fermion repre-
sentations of the chiral currents,

JL = ψ†L,α
σαβ

2
ψL,β , (A.13a)

JR = ψ†R,α
σαβ

2
ψR,β , (A.13b)

once bosonized, solely depend on the matrix �eld of the SU(2)k=1 WZNW model,i.e.,
are operators in the spin sector of the Hubbard model. Thus the OPEs obtained in this
fermionic representation are the same as those obtained using the representation of
the operators in terms of the matrix �eld of the WZNW model. In contrast, the naive
representation ofN and ε in terms of the chiral fermion �elds do not completely belong
to the spin sector and their bosonized form contain both g and Φ �elds. Thus, their
correct OPEs cannot be computed directly from their fermion representation [209].

OPEs of the Chiral Currents

The OPE of the right-moving current with itself is obtained as follows:

JaR(z′)J bR(z) = : ψ†R,α(z′)
σaαβ
2
ψR,β(z′) : : ψ†R,γ(z)

σbγν
2
ψR,γ(z) : (A.14)

= : ψ†R,α(z′)
σaαβ
2
ψR,β(z′)ψ†R,γ(z)

σbγν
2
ψR,γ(z) : +

{
cross contractions

}
.

Cross contractions that contain singular terms in the space-time separation between
the two operators are (see, for example, Chapter 2 in [217]):

: ψ†R,α(z′)ψR,β(z′)ψ†R,γ(z)ψR,ν(z) :
1

4
σaαβσ

b
γν (A.15a)

: ψ†R,α(z′)ψR,β(z′)ψ†R,γ(z)ψR,ν(z) :
1

4
σaαβσ

b
γν (A.15b)

: ψ†R,α(z′)ψR,β(z′)ψ†R,γ(z)ψR,ν(z) :
1

4
σaαβσ

b
γν . (A.15c)

Using the OPE of the right-moving fermion �eld,
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ψR,α(w)ψ†R,β(z) =
δαβ

2π(w − z)
, (A.16)

we obtain:

JaR(z′)J bR(z) =
δαν

2π(z′ − z)
: ψR,β(z′)ψ†R,γ(z) :

1

4
σaαβσ

b
γν (A.17)

+
δβγ

2π(z′ − z)
: ψ†R,α(z′)ψR,ν(z) :

1

4
σaαβσ

b
γν +

δβγδαν
4π2(z′ − z)2

1

4
σaαβσ

b
γν ,

which, using the identity,
σaσb = δabI + iεabcσc , (A.18)

is written as:

JaR(z̄′)J bR(z̄) =
δab

8π2(z̄′ − z̄)2
+
iεabcJ cR(z̄)

2π(z̄′ − z̄)
(A.19)

Similarly, for the OPE of the left-moving current we �nd:

JaL(z̄′)J bL(z̄) =
δab

8π2(z̄′ − z̄)2
+
iεabcJ cL(z̄)

2π(z′ − z̄)
(A.20)

OPEs of the Chiral Currents with N

Next, let us determine the OPE of JR with N(z, z̄):

JaR(z′)N b(z, z̄) = : ψ†R,α(z′)
σaαβ
2
ψR,β(z′) : : ψ†R,γ(z)

σbγν
2
ψL,ν(z̄) : (A.21)

+ : ψ†R,α(z′)
σaαβ
2
ψR,β(z′) : : ψ†L,γ(z̄)

σbγν
2
ψR,ν(z) :

= : ψ†R,α(z′)
σaαβ
2
ψR,β(z′)ψ†R,γ(z)

σbγν
2
ψL,ν(z̄) :

+ : ψ†R,α(z′)
σaαβ
2
ψR,β(z′)ψ†L,γ(z̄)

σbγν
2
ψR,ν(z) : +{cross contractions} .

Again, the cross contractions are:

: ψ†R,α(z′)ψR,β(z′)ψ†R,γ(z)ψL,ν(z̄) :
1

4
σaαβσ

b
γν (A.22a)

: ψ†R,α(z′)ψR,β(z′)ψ†L,γ(z̄)ψR,ν(z) :
1

4
σaαβσ

b
γν . (A.22b)
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Note that there are no double contractions in this OPE. We obtain:

J bR(z′)Na(z, z̄) =
1

2π(z′ − z)

[
δβγ : ψ†R,α(z′)ψL,γ(z̄) : (A.23)

+ δαν : ψR,β(z′)ψ†L,γ(z̄) :
]1

4
σaαβσ

b
γν .

Again, using the identity [A.18], we get:

J bR(z′)Na(z, z̄) =
−iδabε(z, z̄)

4π(z′ − z)
+
iεabcN c(z, z̄)

4π(z′ − z)
(A.24)

And, similarly, for the OPE of the left-moving current JL and N we get:

J bL(z̄′)Na(z, z̄) =
iδabε(z, z̄)

4π(z̄′ − z̄)
+
iεabcN c(z, z̄)

4π(z̄′ − z̄)
(A.25)

OPEs of the Chiral Currents with ε

The OPE of the right-moving current JR with the dimerization operator ε is obtained
as follows:

JaR(z′)ε(z, z̄) =
i

2

[
: ψ†R,α(z′)

σaαβ
2
ψR,β(z′) :: ψ†R,γ(z)ψL,γ(z̄) : (A.26)

− : ψ†R,α(z′)
σaαβ
2
ψR,β(z′) :: ψ†L,γ(z̄)ψR,γ(z) :

]
.

There are only two cross contractions possible:

: ψ†R,α(z′)ψR,β(z′)ψ†R,γ(z)ψL,γ(z̄) :
σaαβ
2
, (A.27a)

: ψ†R,α(z′)ψR,β(z′)ψ†L,γ(z̄)ψR,γ(z) :
σaαβ
2
. (A.27b)

We get:

JaR(z′)ε(z, z̄) =
iNa(z, z̄)

4π(z′ − z)
(A.28)

Similarly, for the OPE of the left-moving current operator with ε we get:

JaL(z̄′)ε(z, z̄) =
−iNa(z, z̄)

4π(z̄′ − z̄)
(A.29)
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OPE of N with ε

The OPE of N with ε:

Na(z′, z̄′)ε(z, z̄) =
i

2

[
− : ψ†R,α(z′)

σaα,β
2
ψL,β(z̄′) :: ψ†L,γ(z̄)ψR,γ(z) : (A.30)

+ : ψ†L,α(z̄′)
σaα,β

2
ψR,β(z′) :: ψ†R,γ(z)ψL,ν(z̄) :

− : ψ†L,α(z̄′)
σaα,β

2
ψR,β(z′) :: ψ†L,γ(z̄)ψR,γ(z) :

+ : ψ†R,α(z′)
σaα,β

2
ψL,β(z̄′) :: ψ†R,γ(z)ψL,γ(z̄) :

]
.

The only possible contraction is:

: ψ†R,α(z′)ψL,β(z̄′)ψ†L,γ(z̄)ψR,γ(z) :
σaα,β

2
(A.31)

=
δαγ

2π(z′ − z)

δβγ
2π(z̄′ − z̄)

σaα,β
2

=
Tr{σa}

4π2|z′ − z|2
= 0 .

Therefore,

Na(z′, z̄′)ε(z, z̄) = 0 . (A.32)

One may wonder whether the above result for the OPE of N with ε, which was
obtained from their naive fermion representation, can be trusted. The fact that there
are no singular terms in this OPE can be understood based on the SU(2) symmetry.
Nevertheless, at the the end of this section, we reexamine this OPE in the Abelian
bosonization formulation and con�rm that the result is indeed zero.

OPE of ε with itself

The derivation of the OPE of ε requires more attentions, and, as pointed out in the
beginning of this section, cannot be obtained from its naive fermion representation.
The (Abelian) bosonized form of ε(z, z̄) is:

ε(z, z̄) =
λ

πa0

: cos(
√

2πΦ(z, z̄)) : (A.33)

where λ ' 1 is a constant, and Φ is the boson �eld of the spin sector in the Abelian
bosonization. Then the OPE of ε with itself can be readily computed:

91



APPENDIX A. APPENDIX TO CHAPTER 2

ε(z′, z̄′) ε(z, z̄) =
λ2

(πa0)2
: cos(

√
2πΦ(z′, z̄′)) : : cos(

√
2πΦ(z, z̄)) : . (A.34)

Writing the cosine term of exponential terms, we get:

ε(z′, z̄′) ε(z, z̄) =
λ2

(2πa0)2

[
: exp(i

√
2πΦ(z′, z̄′)) : : exp(i

√
2πΦ(z, z̄)) : +

: exp(i
√

2πΦ(z′, z̄′)) : : exp(−i
√

2πΦ(z, z̄)) : +

: exp(−i
√

2πΦ(z′, z̄′)) : : exp(i
√

2πΦ(z, z̄)) : +

: exp(−i
√

2πΦ(z′, z̄′)) : : exp(−i
√

2πΦ(z, z̄)) :
]
. (A.35)

Using the normal ordering prescription for these so-called vertex operators (see [215]
or Ch.2 in [217]),

: eA : : eB : = : eA+B : e〈AB〉 , (A.36)

the OPE can be readily computed as follows:

ε(z′, z̄′) ε(z, z̄) =
[

: exp
(
i
√

2π[Φ(z′, z̄′) + Φ(z, z̄)]
)

: exp
(
− 2π

−1

4π
ln(|z′ − z|2)

)
+

: exp
(
i
√

2π[Φ(z′, z̄′)− Φ(z, z̄)]
)

: exp
(

2π
−1

4π
ln(|z′ − z|2)

)
+

: exp
(
−i
√

2π[Φ(z′, z̄′)− Φ(z, z̄)]
)

: exp
(

2π
−1

4π
ln(|z′ − z|2)

)
+

: exp
(
−i
√

2π[Φ(z′, z̄′) + Φ(z, z̄)]
)

: exp
(
− 2π

−1

4π
ln(|z′ − z|2)

)]
.

(A.37)

Since we are only interested in the singular terms of the OPEs, we ignore the �rst and
the last terms. Finally, Taylor expanding the argument of the normal ordered vertex
operators, we get:

ε(z′, z̄′)ε(z, z̄) =
2λ2

(2πa0)2

1

|z′ − z|
. (A.38)

OPE of N with itself

The OPE of N with itself is obtained similar to that of ε. However, since N is a
vector operator, we need to treat its z-component di�erent from its other components
for the purpose of the Abelian bosonization. This is the disadvantage of Abelian
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bosonization where the SU(2) symmetry is not manifest. The bosonized version of N
in the Abelian bosonization is:

N z(z, z̄) =
−λ
πa0

: sin(
√

2πΦ(z, z̄)) : , (A.39a)

N±(z, z̄) =
λ

πa0

: exp(±i
√

2πΘ(z, z̄)) : , (A.39b)

where, again, λ is some parameter, and Θ is the so-called dual boson �eld [209, 215]: Φ(z, z̄) = ϕL(z̄) + ϕR(z)

Θ(z, z̄) = ϕL(z̄)− ϕR(z)
(A.40)

The two-point functions of the left- and right-moving boson �elds, ϕL and ϕR, are: 〈ϕL(z̄′)ϕL(z̄)〉 = −1
4π

ln(z̄′ − z̄)

〈ϕR(z′)ϕR(z)〉 = −1
4π

ln(z′ − z)
(A.41)

Now, we can easily compute the OPE of N with itself. Let us start with N z:

N z(z′, z̄′)N z(z, z̄) =
λ2

(πa0)2
: sin(

√
2πΦ(z′, z̄′)) : : sin(

√
2πΦ(z, z̄)) : (A.42)

=
λ2

(2iπa0)2

[
: exp(i

√
2πΦ(z′, z̄′)) : : exp(i

√
2πΦ(z, z̄)) : −

: exp(i
√

2πΦ(z′, z̄′)) : : exp(−i
√

2πΦ(z, z̄)) : −

: exp(−i
√

2πΦ(z′, z̄′)) : : exp(i
√

2πΦ(z, z̄)) : +

: exp(−i
√

2πΦ(z′, z̄′)) : : exp(−i
√

2πΦ(z, z̄)) :
]

=
λ2

(2iπa0)2

[
: exp

(
i
√

2π[Φ(z′, z̄′) + Φ(z, z̄)]
)

: exp
(
− 2π

−1

4π
ln(|z′ − z|2)

)
−

: exp
(
i
√

2π[Φ(z′, z̄′)− Φ(z, z̄)]
)

: exp
(

2π
−1

4π
ln(|z′ − z|2)

)
−

: exp
(
−i
√

2π[Φ(z′, z̄′)− Φ(z, z̄)]
)

: exp
(

2π
−1

4π
ln(|z′ − z|2)

)
+

: exp
(
−i
√

2π[Φ(z′, z̄′) + Φ(z, z̄)]
)

: exp
(
− 2π

−1

4π
ln(|z′ − z|2)

)]
.
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Again, the �rst and the last terms produce no singular term and thus can be ignored.
We arrive at:

N z(z′, z̄′)N z(z, z̄) =
λ2

2(πa0)2

1

|z′ − z|
. (A.43)

Next, consider the OPE of N± with N±:

N+N+ =
λ2

(πa0)2
: exp

(
i
√

2πΘ(z′, z̄′)
)

: : exp
(
i
√

2πΘ(z, z̄)
)

: (A.44)

=
λ2

(πa0)2
: exp

(
i
√

2π(ϕL(z̄′)− ϕR(z′))
)

: : exp
(
i
√

2π(ϕL(z̄)− ϕR(z))
)

: .

N+N+ =
λ2

(πa0)2
: exp

(
i
√

2π(Θ(z′, z̄′) +Θ(z, z̄))
)

: (A.45)

exp
[
− 2π[〈ϕL(z̄′)ϕL(z̄)〉+ 〈ϕR(z′)ϕR(z′)〉]

]
=

λ2

(πa0)2
: exp

(
i
√

2π(Θ(z′, z̄′) +Θ(z, z̄))
)

:

exp
[
− 2π[

−1

4π
ln(z′ − z) +

−1

4π
ln(z̄′ − z̄)]

]
.

Similarly, for other OPEs we get:

N−N− = : exp
(
−i
√

2π(Θ(z′, z̄′) +Θ(z, z̄))
)

: (A.46)

= exp
[1
2

[ln(z′ − z) + ln(z̄′ − z̄)]
]
.

Also, for the cross products, we get:

N−N+ = : exp
(
−i
√

2π(Θ(z, z̄)−Θ(0, 0))
)

: (A.47)

exp
[−1

2
[ln(z′ − z) + ln(z̄′ − z̄)]

]
,

and,

N+N− = : exp
(
i
√

2π(Θ(z, z̄)−Θ(0, 0))
)

: (A.48)

exp
[−1

2
[ln(z′ − z) + ln(z̄′ − z̄)]

]
.
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Therefore, as expected from the SU(2) symmetry, the product NxNy has no singular
terms in its OPE. Thus,

N(z′, z̄′) ·N(z, z̄) ∝ 1

|z′ − z|
. (A.49)

OPE of N with ε

Finally, for the sake of completeness, let us con�rm that the OPE of N with ε is zero.

N z(z, z̄)ε(z, z̄) =
−λ2

(πa0)2
: sin

(√
2πΦ(z′, z̄′)

)
: : cos

(√
2πΦ(z, z̄)

)
: (A.50)

=
−λ2

i(2πa0)2

[
: exp(i

√
2πΦ(z′, z̄′)) : : exp(i

√
2πΦ(z, z̄)) : +

: exp(i
√

2πΦ(z′, z̄′)) : : exp(−i
√

2πΦ(z, z̄)) : −

: exp(−i
√

2πΦ(z′, z̄′)) : : exp(i
√

2πΦ(z, z̄)) : −

: exp(−i
√

2πΦ(z′, z̄′)) : : exp(−i
√

2πΦ(z, z̄)) :
]
. (A.51)

Following the same steps as in above, it is clear this OPE does not contain any singular
terms. Therefore,

N z(z′, z̄′)ε(z, z̄) = 0 . (A.52)
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A.3 Derivation of the β-Functions

Here we present the derivation of the β-functions. Let us �rst explain how in this real-
space perturbative local RG approach the β-functions are obtained directly from the
OPEs of the interaction terms. For simplicity, suppose we only have one interaction
term Sint = λ

∫
dzdz̄O(z, z̄). As mentioned in Chapter 2, this RG approach is based

on gradually increasing a short-distance cuto�, which we indicate by Λ−1 (starting
RG at the length scale Λ−1 = L0). The quantum corrections can be conveniently
obtained from the OPEs of the operators as follows.

As usual, one starts by the expansion of the full action in the weak perturbation
parameter(s): ∫

Dg e−SWZNW

(
1− λSint +

λ2

2
SintSint + · · ·

)
(A.53)

The scaling dimension of the operators is given by their scaling dimension with respect
to the conformal WZNW model. One-loop quantum corrections are given by,

∂`

∫
Dge−SWZNWS2

int
=

∫
dz′dz̄′

∫
dzdz̄〈O(z′, z̄′)O(z, z̄)〉

∣∣
e−d`Λ−1<x′−x<Λ−1 , (A.54)

which can be conveniently obtained from the OPE of O,

O(z′, z̄′)O(z, z̄) =
−1∑

n=−2hO

cn |z′ − z|nO(n)(z, z̄) + : O(z′, z̄′)O(z, z̄) : . (A.55)

The scaling dimensions on both sides should be the same, which implies that the
scaling dimension of O(n) and O should satisfy: 2hO = n+ hO(n) .

We see that the quantum corrections are dominated by the singular terms in
the OPEs as non-singular terms (those that originate from : O(z′, z̄′)O(z, z̄) : upon
expanding in (z′ − z) and (z̄′ − z̄) ) are accompanied by Λ−1, which is small. Also,
following the same dimensional analysis for the singular terms above, operators that
appear in the non-singular part of the OPEs will have the scaling dimension 2hO and
are often irrelevant. Therefore, the one-loop quantum corrections are given by the
OPEs of the product of interaction terms in Sint.

Now let us turn to the derivation of the β-functions in Chapter 2 (Eqs. (2.8a-
2.8i)), which are obtained from integrating out short-distance �uctuations. In the
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determining the β-functions, we will encounter the following integrals:

∂`

∫ ∞
−∞

dτ
∫ Λ−1

e−d`Λ−1

dx
1

zn
= 0 (A.56a)

∂`

∫ ∞
−∞

dτ
∫ Λ−1

e−d`Λ−1

dx
1

z̄n
= 0 (A.56b)

∂`

∫ ∞
−∞

dτ
∫ Λ−1

e−d`Λ−1

dx
1

|z|n
=

8
√
π

n

(
Λ−1

)n−2
(A.56c)

where, in the last equation n ≥ 2. Note that the fact that the �rst two integrals vanish
is independent of the our RG scheme (imposing the cuto� on spatial separations �
Fig. [A.1] (a)). One obtains the same result if the regularization scheme in Fig. [A.1](b)
is used, which suppresses short separations in both space and time.

(a) (b)

Figure A.1: Di�erent regularization schemes: (a) The short-distance cuto� is im-
posed only on the spatial separations. (b) The cuto� is imposed on both spatial and
temporal separations: |z|. The purple region is the region integrated over at each
iteration of RG.
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• γbs - γbs
For the product of two backscattering terms we have:

J bR,y′(z
′)J bL,y′(z̄

′) JaR,y(z)JaL,y(z̄) (A.57)

= δy,y′
[ δab

8π2(z̄ − z̄0)2
+
iεabcJ cR,y(z̄0)

2π(z̄ − z̄0)

][ δab

8π2(z − z0)2
+
iεabdJdL,y′(z0)

2π(z − z0)

]
=

δab

(8π2)2|z − z0|4
+
−|εabc|J cR,y(z̄0)J cL,y(z0)

4π2|z − z0|2
.

• γtw - γtw

The product of two twist terms gives:

(−1)y+y′Na
y (z′, z̄′)∂xN

a
y+1(z′, z̄′)N b

y′(z, z̄)∂xN
b
y′+1(z, z̄) (A.58)

(−1)y+y′∂xN
a
y (z′, z̄′)Na

y+1(z′, z̄′)∂xN
b
y′(z, z̄)N b

y′+1(z, z̄)

− (−1)y+y′∂xN
a
y (z′, z̄′)Na

y+1(z′, z̄′)N b
y′(z, z̄)∂xN

b
y′+1(z, z̄)

− (−1)y+y′Na
y (z′, z̄′)∂xN

a
y+1(z′, z̄′)∂xN

b
y′(z, z̄)N b

y′+1(z, z̄)

There are three choices for the chain indices, y = y′, y = y′ + 1 and y = y′ − 1. Since
the singular part of the OPE of N with itself contains no operators, we ignore the
�rst choice (y = y′) as it results only in a numerical factor. On the other hand, for the
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other two case y = y′±1 we get (the following expressions are for the case y = y′+1):

(−1)y+y−1Na
y (z′, z̄′)∂xN

a
y+1(z′, z̄′)N b

y+1(z, z̄)∂xN
b
y+2(z, z̄) (A.59)

= − −δ
ab(x− x0)

2π2|z′ − z|3
Na
y (z)∂xN

b
y+2(z, z̄)

= − −δ
ab(x− x0)

2π2|z′ − z|3
Na
y (z, z̄)∂xN

b
y+2(z, z̄) − −δ

ab(x− x0)2

2π2|z′ − z|3
∂xN

a
y (z)∂xN

b
y+2(z, z̄)

(−1)y+y−1∂xN
a
y (z′, z̄′)Na

y+1(z′, z̄′)∂xN
b
y+1(z, z̄)N b

y+2(z, z̄) (A.60)

= − δab(x− x0)

2π2|z′ − z|3
∂xN

a
y (z)N b

y+2(z, z̄)

= − δab(x− x0)

2π2|z′ − z|3
∂xN

a
y (z)N b

y+2(z) +
δab(x− x0)2

2π2|z′ − z|3
∂xN

a
y (z)∂xN

b
y+2(z)

− (−1)y+y−1∂xN
a
y (z′, z̄′)Na

y+1(z′, z̄′)N b
y+1(z, z̄)∂xN

b
y+2(z, z̄) (A.61)

=
δab

2π2|z′ − z|
∂xN

a
y (z)∂xN

b
y+2(z, z̄)

− (−1)y+y−1Na
y (z′, z̄′)∂xN

a
y+1(z′, z̄′)∂xN

b
y+1(z, z̄)N b

y+2(z, z̄) (A.62)

= ∂x∂x0

[ δab

2π2|z′ − z|

]
Na
y (z)N b

y+2(z, z̄)

=

[
δab

2π2|z′ − z|3
+
−3δab(x− x0)2

2π2|z′ − z|5

]
Na
y (z)N b

y+2(z, z̄)

• γM - γM

The product of the nearest interchain uniform magnetization coupling terms is:

Ma
y (z′, z̄′)Ma

y+1(z′, z̄′) M b
y′(z, z̄)M b

y′+1(z, z̄) (A.63)

where,

My(z, z̄) = JR,y(z) + JL,y(z̄)
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Thus in terms of the products of the chiral currents we have the following 16 terms:

Ma
y (z′, z̄′)Ma

y+1(z′, z̄′) M b
y′(z, z̄)M b

y′+1(z, z̄) (A.64)

= JaR,y(z
′)JaR,y+1(z′)J bR,y′(z)J bR,y′+1(z) +

JaL,y(z̄
′)JaL,y+1(z̄′)J bL,y′(z̄)J bL,y′+1(z̄) +

JaR,y(z
′)JaL,y+1(z̄′)J bR,y′(z)J bL,y′+1(z̄) +

JaL,y(z̄
′)JaR,y+1(z′)J bL,y′(z̄)J bR,y′+1(z) +

JaR,y(z
′)JaR,y+1(z′)J bR,y′(z)J bL,y′+1(z̄) +

JaR,y(z
′)JaR,y+1(z′)J bL,y′(z̄)J bR,y′+1(z) +

JaR,y(z
′)JaL,y+1(z′)J bR,y′(z)J bR,y′+1(z) +

JaL,y(z̄
′)JaR,y+1(z′)J bR,y′(z)J bR,y′+1(z) +

JaL,y(z̄
′)JaL,y+1(z̄′)J bL,y′(z̄)J bR,y′+1(z) +

JaL,y(z̄
′)JaL,y+1(z̄′)J bR,y′(z)J bL,y′+1(z̄) +

JaL,y(z̄
′)JaR,y+1(z′)J bL,y′(z̄)J bL,y′+1(z̄) +

JaR,y(z
′)JaL,y+1(z̄′)J bL,y′(z̄)J bL,y′+1(z̄) +

JaR,y(z
′)JaR,y+1(z′)J bL,y′(z̄)J bL,y′+1(z̄) +

JaL,y(z̄
′)JaL,y+1(z̄′)J bR,y′(z)J bR,y′+1(z) +

JaR,y(z
′)JaL,y+1(z̄′)J bL,y′(z̄)J bR,y′+1(z) +

JaL,y(z̄
′)JaR,y+1(z′)J bR,y′(z)J bL,y′+1(z̄) .

Now there are two possibilities for y and y′: either y = y′ or y = y′ − 1. Ignoring
numerical factors and four-current terms (as well as other irrelevant terms), in the
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case y = y′ we �nd:

∝
[ δab

8π2(z′ − z)2
JaR,y(z)J bR,y(z) +

δab

8π2(z′ − z)2
JaR,y+1(z)J bR,y+1(z) (A.65)

+
−εabcεabc′

4π2(z′ − z)2
J cR,y(z)J c

′

R,y+1(z)
]

+

[ δab

8π2(z̄′ − z̄)2
JaL,y(z̄)J bL,y(z̄) +

δab

8π2(z̄′ − z̄)2
JaL,y+1(z̄)J bL,y+1(z̄)

+
−εabcεabc′

4π2(z̄′ − z̄)2
J cL,y(z̄)J c

′

L,y+1(z̄)
]

+

[ δab

8π2(z′ − z)2
JaR,y(z)J bR,y(z) +

δab

8π2(z̄′ − z̄)2
JaL,y+1(z̄)J bL,y+1(z̄)

+
−εabcεabc′

4π2|z′ − z|2
J cR,y(z)J c

′

L,y+1(z̄)
]

+

[ δab

8π2(z̄′ − z̄)2
JaL,y(z̄)J bL,y(z̄) +

δab

8π2(z′ − z)2
JaR,y+1(z)J bR,y+1(z)

+
−εabcεabc′

4π2|z′ − z|2
J cL,y+1(z̄)J c

′

R,y(z)
]

+

[ δab

8π2(z′ − z)2
JaR,y+1(z)J bL,y+1(z̄)

]
+
[ δab

8π2(z′ − z)2
JaR,y(z)J bL,y(z̄)

]
+

[ δab

8π2(z′ − z)2
JaL,y+1(z̄)J bR,y+1(z)

]
+
[ δab

8π2(z′ − z)2
JaL,y(z̄)J bR,y(z)

]
+

[ δab

8π2(z̄′ − z̄)2
JaL,y+1(z̄)J bR,y+1(z)

]
+
[ δab

8π2(z̄′ − z̄)2
JaL,y(z̄)J bR,y(z)

]
+

[ δab

8π2(z̄′ − z̄)2
JaR,y+1(z)J bL,y+1(z̄)

]
+
[ δab

8π2(z̄′ − z̄)2
JaR,y(z)J bL,y(z̄)

]
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Next, consider the case y = y′ − 1. This time we get:

∝
[ δab

8π2(z′ − z)2
JaR,y(z)J bR,y+2(z)

]
+
[ δab

8π2(z̄′ − z̄)2
JaL,y(z̄)J bL,y+2(z̄)

]
+

[ δab

8π2(z′ − z)2
JaR,y(z)J bL,y+2(z̄)

]
+
[ δab

8π2(z′ − z)2
JaL,y(z̄)J bR,y+2(z)

]
+

[ δab

8π2(z̄′ − z̄)2
JaL,y(z̄)J bR,y+2(z)

]
+
[ δab

8π2(z̄′ − z̄)2
JaR,y(z)J bL,y+2(z̄)

]
+

[ δab

8π2(z̄′ − z̄)2
JaR,y(z)J bR,y+2(z)

]
+
[ δab

8π2(z′ − z)2
JaL,y(z̄)J bL,y+2(z̄)

]
. (A.66)

Note that since integrals of the form
∫

1
zn

and
∫

1
z̄m

vanish, the above OPEs do not
result in a My ·My+2. Such a term is generated from the irrelevant interaction the
product of

(
JL,y+2 · JR,y+1

)(
My ·My+2

)
with the backscattering term on the y + 1

chain.

• γbs - γtw
The backscattering term in this product can either be on the �rst chain or the second
chain, which in both cases gives the same result. In the case where the backscattering
term is on the �rst chain, we have:

(−1)y

2
JaR,y(z

′)JaL,y(z̄
′)N b

y(z, z̄)∂xN
b
y+1(z, z̄)− (A.67)

(−1)y

2
JaR,y(z

′)JaL,y(z̄
′)N b

y+1(z, z̄)∂xN
b
y(z, z̄) ,
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which gives:

∝ (−1)y

2
JaR,y(z

′)
[iδabεy(z, z̄)

4πz̄′ − z̄
+
iεabcN c

y(z, z̄)

4π(z̄′ − z̄)

]
∂xN

b
y+1(z, z̄)− (A.68)

(−1)y

2
JaR,y(z

′)N b
y+1(z, z̄)∂x

[iδabεy(z, z̄)

4π(z̄′ − z̄)
+
iεabcN c

y(z, z̄)

4π(z̄′ − z̄)

]
,

=
(−1)y

2

[ i2δabNa
y (z, z̄)

(4π)2(z̄′ − z̄)(z′ − z)
+

(i)2εacdεabcNd
y (z, z̄)

(4π)2(z̄′ − z̄)(z′ − z)

]
∂xN

b
y+1(z, z̄)−

(−1)y

2
N b
y+1(z, z̄)∂x

[ i2δabNa
y (z, z̄)

(4π)2(z̄′ − z̄)(z′ − z)
+

(i)2εacdεabcNd
y (z, z̄)

(4π)2(z̄′ − z̄)(z′ − z)

]
,

=
(−1)y

2
[−δab − εacbεabc︸ ︷︷ ︸

δab

]
N b
y(z, z̄)

16π2|z′ − z|2
∂xN

b
y+1(z, z̄)−

(−1)y

2
N b
y+1(z, z̄)[−δab − εacbεabc︸ ︷︷ ︸

δab

]∂x
N b
y(z, z̄)

16π2|z′ − z|2
,

• γbs - γM

JaR,y(z
′)JaL,y(z̄

′)M b
y′(z̄, z)M b

y′+1(z̄, z) = JaR,y(z
′)JaL,y(z̄

′) J bR,y′(z)J bR,y′+1(z) +

JaR,y(z
′)JaL,y(z̄

′) J bL,y′(z̄)J bL,y′+1(z̄) + JaR,y(z
′)JaL,y(z̄

′) J bL,y′(z̄)J bR,y′+1(z) +

JaR,y(z
′)JaL,y(z̄

′) J bR,y′(z)J bL,y′+1(z̄) . (A.69)

Again, the backscattering term can either be on the �rst chain or the second term.
Here we focus on the latter case and include a factor of 2 at the end. Ignoring
C-numbers and irrelevant interactions, we �nd:

=
[ δab

8π2(z′ − z)2
+
iεabcJ cR,y(z)

2π(z′ − z)

]
JaL,y(z̄

′) J bR,y+1(z) +

[ δab

8π2(z̄′ − z̄)2
+
iεabcJ cL,y(z̄)

2π(z̄′ − z̄)

]
JaR,y(z

′) J bL,y+1(z̄) +

[ δab

8π2(z̄′ − z̄)2
+
iεabcJ cL,y(z̄)

2π(z̄′ − z̄)

]
JaR,y(z

′) J bR,y+1(z) +

[ δab

8π2(z′ − z)2
+
iεabcJ cR,y(z)

2π(z′ − z)

]
JaL,y(z̄

′) J bL,y+1(z̄) , (A.70)
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which all vanish due to the vanishing integrals
∫

1
zn

and
∫

1
z̄n
.

• γM - γtw

(−1)y
′

2
Ma

y (z̄′, z′)Ma
y+1(z̄′, z′)

[
N b
y′(z̄, z)∂xN

b
y′+1(z̄, z) − N b

y′+1(z̄, z)∂xN
b
y′(z̄, z)

]
.

(A.71)

The case y = y′ − 1 does not result in anything of interest. In the case y′ = y, only
have:

=
(−1)y

2
JaR,y(z

′)JaR,y+1(z′)
[
N b
y(z̄, z)∂xN

b
y+1(z̄, z) − N b

y+1(z̄, z)∂xN
b
y(z̄, z)

]
+

(−1)y

2
JaL,y(z̄

′)JaL,y+1(z̄′)
[
N b
y(z̄, z)∂xN

b
y+1(z̄, z) − N b

y+1(z̄, z)∂xN
b
y(z̄, z)

]
+

(−1)y

2
JaL,y(z̄

′)JaR,y+1(z̄′)
[
N b
y(z̄, z)∂xN

b
y+1(z̄, z) − N b

y+1(z̄, z)∂xN
b
y(z̄, z)

]
+

(−1)y

2
JaR,y(z

′)JaL,y+1(z̄′)
[
N b
y(z̄, z)∂xN

b
y+1(z̄, z) − N b

y+1(z̄, z)∂xN
b
y(z̄, z)

]
. (A.72)

Of the above products, the �rst two will result in 1
(z̄′−z̄) and

1
(z′−z) , which will vanish

and thus we ignore. The remaining two terms give:

=
(−1)y

2

[
JaL,y(z̄

′)JaR,y+1(z̄′)N b
y(z̄, z)∂xN

b
y+1(z̄, z)−

JaL,y(z̄
′)JaR,y+1(z̄′)N b

y+1(z̄, z)∂xN
b
y(z̄, z) +

JaR,y(z
′)JaL,y+1(z̄′)N b

y(z̄, z)∂xN
b
y+1(z̄, z)−

JaR,y(z
′)JaL,y+1(z̄′)N b

y+1(z̄, z)∂xN
b
y(z̄, z)

]
. (A.73)
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We get:

=
(−1)y

2

[[iδabεy(z̄, z)

4π(z̄′ − z̄)
+
iεabcN c

y(z̄, z)

4π(z̄′ − z̄)

]
∂x

[−iδabεy+1(z̄, z)

4π(z′ − z)
+
iεabcN c

y+1(z̄, z)

4π(z′ − z)

]
−

[−iδabεy+1(z̄, z)

4π(z′ − z)
+
iεabcN c

y+1(z̄, z)

4π(z′ − z)

]
∂x

[iδabεy(z̄, z)

4π(z̄′ − z̄)
+
iεabcN c

y(z̄, z)

4π(z̄′ − z̄)

]
+

[iδabεy(z̄, z)

4π(z′ − z)
+
iεabcN c

y(z̄, z)

4π(z′ − z)

]
∂x

[−iδabεy+1(z̄, z)

4π(z̄′ − z̄)
+
iεabcN c

y+1(z̄, z)

4π(z̄′ − z̄)

]
−

[iδabεy+1(z̄, z)

4π(z̄′ − z̄)
+
iεabcN c

y+1(z̄, z)

4π(z̄′ − z̄)

]
∂x

[−iδabεy(z̄, z)

4π(z′ − z)
+
iεabcN c

y(z̄, z)

4π(z′ − z)

]]
.

(A.74)

Finally we obtain:

=
(−1)y

2

[[
− δabεy(z̄, z)∂xεy+1(z̄, z) + εabcεabdN c

y(z̄, z)∂xN
d
y+1(z̄, z)

] −1

16π2|z′ − z|2
−

[
− δabεy+1(z̄, z)∂xεy(z̄, z) + εabcεabdN c

y+1(z̄, z)∂xN
d
y (z̄, z)

] −1

16π2|z′ − z|2
+

[
− δabεy(z̄, z)∂xεy+1(z̄, z) + εabcεabdN c

y(z̄, z)∂xN
d
y+1(z̄, z)

] −1

16π2|z′ − z|2
−

[
− δabεy+1(z̄, z)∂xεy(z̄, z) + εabcεabdN c

y+1(z̄, z)∂xN
d
y (z̄, z)

] −1

16π2|z′ − z|2

]
.

(A.75)

Note that the terms that result from applying the spatial derivative on 1
|z′−z|2 factors

vanish and thus have not been shown. Therefore, this product generates γtw and γε.

γbs - gN

JaR,y(z
′)JaL,y(z̄

′)N b
y′(z̄, z)N b

y′+2(z̄, z) (A.76)
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There are two possibilities for the chain indices: y = y′ and y = y′ − 2. We only
consider the case y = y′ and at the end include a factor of 2.

JaR,y(z
′)JaL,y(z̄

′)N b
y(z̄, z)N b

y+2(z̄, z) (A.77)

= JaR,y(z
′)
[iδabεy(z̄, z)

4π(z̄′ − z̄)
+
iεabcN c

y(z̄, z)

4π(z̄′ − z̄)

]
N b
y+2(z̄, z)

=
[ iδab

4π(z̄′ − z̄)

iNa
y (z̄, z)

4π(z′ − z)
+

iεabc

4π(z̄′ − z̄)

iεacdNd
y (z̄, z)

4π(z′ − z)

]
N b
y+2(z̄, z)

=
[
δab + εabcεacd︸ ︷︷ ︸

δab

] −1

16π2|z′ − z|2
N b
y(z̄, z)N b

y+2(z̄, z) .

• γbs - gε
JaR,y(z

′)JaL,y(z̄
′) εy′(z, z̄)εy′+2(z, z̄) (A.78)

Just like in the previous case, here we have two choices for y′. Following the same
steps as in the previous case, we �nd:

JaR,y(z
′)JaL,y(z̄

′) εy′(z, z̄)εy′+2(z, z̄) (A.79)

= JaR,y(z
′)
−iNa

y (z, z̄)

4π(z̄′ − z̄)
εy+2(z, z̄)

=
−i

4π(z̄′ − z̄)

[−iδaaεy(z, z̄)

4π(z′ − z)
+
iεaacN c

y(z, z̄)

4π(z′ − z)

]
εy+2(z, z̄)

=
−δaa

16π2|z′ − z|2
εy(z, z̄)εy+2(z, z̄) .

• γM -gN , γM -gε, γtw-gε, and gN -gε

None of these products results in the renormalizaion of any of the couplings we are
considering here.

Ma
y (z′, z̄′)Ma

y+1(z′, z̄′) εy′(z, z̄)εy′+2(z, z̄) (A.80)

Ma
y (z′, z̄′)Ma

y+1(z′, z̄′)N b
y′(z, z̄)N b

y′+2(z, z̄) (A.81)

(−1)y

2

[
Na
y (z′, z̄′)∂xN

a
y+1(z′, z̄′) − Na

y+1(z′, z̄′)∂xN
a
y (z′, z̄′)

]
εy′(z, z̄)εy′+2(z, z̄) (A.82)
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and,

Na
y (z′, z̄′)Na

y+2(z′, z̄′) εy′(z, z̄)εy′+2(z, z̄) (A.83)

• γtw - gN

The product of a twist term with a second chain Néel coupling is:

(−1)y

2

[
Na
y (z′, z̄′)∂xN

a
y+1(z′, z̄′) − Na

y+1(z′, z̄′)∂xN
a
y (z′, z̄′)

]
N b
y′(z, z̄)N b

y′+2(z, z̄) (A.84)

Several choice are possible for the indecies. In particular, we ignore y + 1 = y′ and
y = y′ + 2 that result in farther chain analogs of the twist term. Here we only focus
on y = y′ and y = y′ + 1. First consider the case y = y′:

(−1)y

2

[
Na
y (z′, z̄′)∂xN

a
y+1(z′, z̄′) − Na

y+1(z′, z̄′)∂xN
a
y (z′, z̄′)

]
N b
y(z, z̄)N b

y+2(z, z̄)

= − (−1)y+1

2

[ δab

2π2|z′ − z|
∂xN

a
y+1(z′, z̄′) − Na

y+1(z′, z̄′)∂x
δab

2π2|z′ − z|

]
N b
y+2(z, z̄)

(A.85)

Similarly, the case y = y′ + 1 gives:

(−1)y

2

[
Na
y (z′, z̄′)∂xN

a
y+1(z′, z̄′) − Na

y+1(z′, z̄′)∂xN
a
y (z′, z̄′)

]
N b
y−1(z, z̄)N b

y+1(z, z̄)

= − (−1)y−1

2

[
Na
y (z′, z̄′)∂x

δab

2π2|z′ − z|
− δab

2π2|z′ − z|
∂xN

a
y (z′, z̄′)

]
N b
y−1(z, z̄) (A.86)

The results of Eqs. (A.85,A.86) together contribute to the renormalization of the twist
term.

• gN - gN

Na
y (z′, z̄′)Na

y+2(z′, z̄′)N b
y′(z, z̄)N b

y′+2(z, z̄) (A.87)

The case y = y′ results in a C-number and the intrachain : ~N · ~N : term, which we
ignore as it will be O(J ′/J)4 � 1. Consider the case y + 2 = y′. We have:

Na
y (z′, z̄′)Na

y+2(z′, z̄′)N b
y+2(z, z̄)N b

y+4(z, z̄) (A.88)

=Na
y (z′, z̄′)

δab

2π2|z′ − z|
N b
y+4(z, z̄) .
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This is a farther neighbor analog of gN .

• gε - gε
εy(z

′, z̄′)εy+2(z′, z̄′) εy′(z, z̄)εy′+2(z, z̄) (A.89)

Similar to the previous product, the case y = y′ only results in a C-number and a
weak intrachain term, which we ignore. The case y + 2 = y′ gives a farther neighbor
analog of gε:

εy(z
′, z̄′)εy+2(z′, z̄′) εy′(z, z̄)εy′+2(z, z̄) (A.90)

= εy(z
′, z̄′)

1

2π2|z′ − z|
εy′+2(z, z̄) .

• γbs - gM
JaR,y(z

′)JaL,y(z̄
′)M b

y′(z, z̄)M b
y′+2(z, z̄) (A.91)

Similar to other products of the backscattering term with an interchain term, the
backscattering term can either be on the �rst chain or the third chain. Here we
consider the latter case and will include a factor of 2 at the end. We have:

JaR,y(z
′)JaL,y(z̄

′)M b
y(z, z̄)M b

y+2(z, z̄) (A.92)

= JaR,y(z
′)JaL,y(z̄

′)
[
J bL,y(z̄) + J bR,y(z)

]
M b

y+2(z, z̄)

=

[[ iδab

8π2(z̄′ − z̄)2
+
iεabsJ cL,y(z̄)

2π(z̄′ − z̄)

]
JaR,y(z

′)

+
[ iδab

8π2(z′ − z)2
+
iεabsJ cR,y(z)

2π(z′ − z)

]
JaL,y(z̄

′)

]
M b

y+2(z, z̄) .

None of the above terms results in the renormalization of gM .

• γM - gM

For the same reason that ~My · ~My+2 cannot be generated from the products of two
~My · ~My+1, this product does not renormalize any of the interchain interaction terms
considered in the RG analysis (can only generate unimportant irrelevant terms). Nev-
ertheless, this product generates the irrelevant interaction term:

~My · ~My+3
~JL,y+1 · ~JR,y+1 , (A.93)

which, in the subsequent RG iterations an upon contraction with the backscattering
term on the y + 1 chain, generates ~My · ~My+3.

108



APPENDIX A. APPENDIX TO CHAPTER 2

• γtw - gM

(−1)y

2

[
Na
y (z′, z̄′)∂xN

a
y+1(z′, z̄′) − Na

y+1(z′, z̄′)∂xN
a
y (z′, z̄′)

]
M b

y′(z, z̄)M b
y′+2(z, z̄)

(A.94)
Regardless of the choice of indices, as can be inferred from the OPEs, this will not
result in the renormalization of any of the interchain couplings considered here.

• gN - gM

Na
y (z′, z̄′)Na

y+2(z′, z̄′)M b
y′(z, z̄)M b

y′+2(z, z̄) (A.95)

The only choice of chain indices that result in the renormalization of the couplings is
y′ = y. In this case we have:

Na
y (z′, z̄′)Na

y+2(z′, z̄′)
[
J bL,y(z̄) + J bR,y(z)

][
J bL,y+2(z̄) + J bR,y+2(z)

]
(A.96)

∝
[iδabεy(z, z̄)

4π(z̄′ − z̄)
+
iεabcN c

y(z, z̄)

4π(z̄′ − z̄)
+
−iδabεy(z, z̄)

4π(z′ − z)
+
iεabcN c

y(z, z̄)

4π(z′ − z)

]
[iδabεy+2(z, z̄)

4π(z̄′ − z̄)
+
iεabdNd

y+2(z, z̄)

4π(z̄′ − z̄)
+
−iδabεy+2(z, z̄)

4π(z′ − z)
+
iεabdNd

y+2(z, z̄)

4π(z′ − z)

]
 

2δab

16π2(z̄′ − z̄)
εy(z, z̄)εy+2(z, z̄) +

−2εabcεabd

16π2(z̄′ − z̄)
N c
y(z, z̄)Nd

y+2(z, z̄) ,

where, in the last line, we have ignored terms that vanish upon loop integration.

• gε - gM
εy(z

′, z̄′)εy+2(z′, z̄′)M b
y′(z, z̄)M b

y′+2(z, z̄) (A.97)

This is similar to the previous case. Consider the case y = y′:

εy(z
′, z̄′)εy+2(z′, z̄′)

[
J bL,y(z̄) + J bR,y(z)

][
J bL,y+2(z̄) + J bR,y+2(z)

]
(A.98)

∝
[−iN c

y(z, z̄)

4π(z̄′ − z̄)
+

iN c
y(z, z̄)

4π(z′ − z)

][−iN c
y(z, z̄)

4π(z̄′ − z̄)
+

iN c
y(z, z̄)

4π(z′ − z)

]
 

−2

16π2(z̄′ − z̄)
Na
y (z, z̄)Na

y+2(z, z̄) .

• γbs - ζN
JaR,y(z

′)JaL,y(z̄
′) ∂xN

b
y′(z, z̄)∂xN

b
y′+2(z, z̄) (A.99)
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As in the previous cases involving a backscattering term, the backscattering term can
either be on the �rst chain or the third chain. Again, we consider the latter and will
include a factor of 2 at the end. We have:

JaR,y(z
′)JaL,y(z̄

′)∂xN
b
y(z, z̄)∂xN

b
y+2(z, z̄) (A.100)

∝ JaR,y(z′)∂x
[iδabεy(z, z̄)

4π(z̄′ − z̄)
+
iεabcN c

y(z, z̄)

4π(z̄′ − z̄)

]
∂xN

b
y+2(z, z̄)

∝ ∂x
[−δabNa

y (z, z̄)

16π2|z′ − z|2
+

1

16π2|z′ − z|2
(
εabcδabεy(z, z̄) εabcεacdNd

y (z, z̄)
)]
∂xN

b
y+2(z, z̄)

= ∂x
1

16π2|z′ − z|2
[
−δab + |εabc|︸ ︷︷ ︸

1

]
N b
y(z, z̄)∂xN

b
y+2(z, z̄) .

• γM - ζN

Ma
y (z′, z̄′)Ma

y+1(z′, z̄′)∂xN
b
y′(z, z̄)∂xN

b
y′+2(z, z̄) (A.101)

This product results in no renormalized interaction due to the vanishing integrals∫
1

z′−z and
∫

1
z̄′−z̄ .

• γtw - ζN

(−1)y

2

[
Na
y (z′, z̄′)∂xN

a
y+1(z′, z̄′) − Na

y+1(z′, z̄′)∂xN
a
y (z′, z̄′)

]
∂xN

b
y′(z, z̄)∂xN

b
y′+2(z, z̄)

(A.102)
This will result in the renormalization of the twist term. There are two choices of
indices. First consider the case y = y′. We have:

(−1)y

2

[
Na
y (z′, z̄′)∂xN

a
y+1(z′, z̄′) − Na

y+1(z′, z̄′)∂xN
a
y (z′, z̄′)

]
∂xN

b
y(z, z̄)∂xN

b
y+2(z, z̄)

∝ (−1)y

2

[
∂x

δab

2π2|z′ − z|
∂xN

a
y+1(z′, z̄′) − Na

y+1(z′, z̄′)∂2
x

δab

2π2|z′ − z|

]
∂xN

b
y+2(z, z̄)

(A.103)

Similarly, for the case y = y′ + 1 we have:

(−1)y

2

[
Na
y (z′, z̄′)∂xN

a
y+1(z′, z̄′) − Na

y+1(z′, z̄′)∂xN
a
y (z′, z̄′)

]
∂xN

b
y−1(z, z̄)∂xN

b
y+1(z, z̄)

∝ (−1)y

2

[
Na
y (z′, z̄′)∂2

x

δab

2π2|z′ − z|
− ∂xN

a
y (z′, z̄′)∂x

δab

2π2|z′ − z|

]
∂xN

b
y−1(z, z̄) .

(A.104)
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These two result in the renormalization of the twist term as the contractions with a
single spatial derivative are odd in x and will vanish.

• gN - ζN

Na
y (z′, z̄′)Na

y+2(z′, z̄′) ∂xN
b
y′(z, z̄)∂xN

b
y′+2(z, z̄) (A.105)

This product will not result in the renormalization of any of the interaction terms in
the set of terms kept in the RG analysis.

• gε - ζN
εy(z

′, z̄′)εy+2(z′, z̄′)∂xN
b
y′(z, z̄)∂xN

b
y′+2(z, z̄) (A.106)

Since the OPE of N with ε does not contain any singular terms, this product is
ignored.

• gM - ζN

Ma
y′(z

′, z̄′)Ma
y′+2(z′, z̄′)∂xN

b
y′(z, z̄)∂xN

b
y′+2(z, z̄) (A.107)

The only choice of indices that result in anything of interest is y = y′. We have:[
J bL,y(z̄) + J bR,y(z)

][
J bL,y+2(z̄) + J bR,y+2(z)

]
∂xN

b
y(z, z̄)∂xN

b
y+2(z, z̄) (A.108)

∝ ∂x
[iδabεy(z, z̄)

4π(z̄′ − z̄)
+
iεabcN c

y(z, z̄)

4π(z̄′ − z̄)
+
−iδabεy(z, z̄)

4π(z′ − z)
+
iεabcN c

y(z, z̄)

4π(z′ − z)

]
×

∂x

[iδabεy+2(z, z̄)

4π(z̄′ − z̄)
+
iεabdNd

y+2(z, z̄)

4π(z̄′ − z̄)
+
−iδabεy+2(z, z̄)

4π(z′ − z)
+
iεabdNd

y+2(z, z̄)

4π(z′ − z)

]
 
[ 2δab

16π2|z′ − z|2
∂xεy(z, z̄)∂xεy+2(z, z̄) +

2δab

16π2|z′ − z|4
εy(z, z̄)εy+2(z, z̄)

]
+

[ −2|εabc|
16π2|z′ − z|2

∂xN
d
y+2(z, z̄)∂xN

d
y+2(z, z̄) +

−2|εabc|
16π2|z′ − z|4

N c
y+2(z, z̄)N c

y+2(z, z̄)
]
.

• γbs - γε
(−1)y

2
JaR,y(z

′)JaL,y(z̄
′)
[
εy′(z, z̄)∂xεy′+1(z, z̄) − εy′+1(z, z̄)∂xεy′(z, z̄)

]
(A.109)
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This product is similar to the product of a twist term and a backscattering term. For
the case y = y′, we have:

(−1)y

2
JaR,y(z

′)JaL,y(z̄
′)
[
εy′(z, z̄)∂xεy+1(z, z̄)− εy′+1(z, z̄)∂xεy(z, z̄)

]
(A.110)

∝ (−1)y

2
JaR,y(z

′)
[ −iNa

4π(z̄′ − z̄)
∂xεy+1(z, z̄) − εy′+1(z, z̄)∂x

−iNa

4π(z′ − z)

]
∝ (−1)y

2
JaR,y(z

′)
[ −εy(z, z̄)

16π2|z′ − z|2
∂xεy+1(z, z̄) − εy′+1(z, z̄)∂x

−εy(z, z̄)

16π2|z′ − z|2
]
.

• γM - γε

(−1)y
′

2
Ma

y′(z
′, z̄′)Ma

y′+1(z′, z̄′)
[
εy′(z, z̄)∂xεy′+1(z, z̄) − εy′+1(z, z̄)∂xεy′(z, z̄)

]
(A.111)

This is similar to the product of γM and γε. First consider the case y = y′:

(−1)y

2
Ma

y′(z
′, z̄′)Ma

y′+1(z′, z̄′)
[
εy(z, z̄)∂xεy+1(z, z̄)− εy+1(z, z̄)∂xεy(z, z̄)

]
∝ (−1)y

2
Ma

y′+1(z′, z̄′)

[[−iNa
y (z, z̄)

4π(z̄′ − z̄)
+

iNa
y (z, z̄)

4π(z′ − z)

]
∂xεy+1(z, z̄)

− εy+1(z, z̄)∂x

[−iNa
y (z, z̄)

4π(z̄′ − z̄)
+

iNa
y (z, z̄)

4π(z′ − z)

]]

 
(−1)y

2

[[−iNa
y (z, z̄)

4π(z̄′ − z̄)
+

iNa
y (z, z̄)

4π(z′ − z)

]
∂x

[−iNa
y+1(z, z̄)

4π(z̄′ − z̄)
+
iNa

y+1(z, z̄)

4π(z′ − z)

]
−
[−iNa

y+1(z, z̄)

4π(z̄′ − z̄)
+
iNa

y+1(z, z̄)

4π(z′ − z)

]
∂x

[−iNa
y (z, z̄)

4π(z̄′ − z̄)
+

iNa
y (z, z̄)

4π(z′ − z)

]]

 
(−1)y

2

2

16π2|z′ − z|2
[
Na
y (z, z̄)∂xN

a
y+1(z, z̄)−Na

y+1(z, z̄)∂xN
a
y (z, z̄)

]
, (A.112)

• γtw - γε, gN − γε, ζN − γε and gN - ζε

None of these products results in anything of interest as the OPE of N with ε does
not contain any singular terms.

• gε - γε
(−1)y

′

2
εy(z

′, z̄′)εy+2(z′, z̄′)
[
εy′(z, z̄)∂xεy′+1(z, z̄) − εy′+1(z, z̄)∂xεy′(z, z̄)

]
(A.113)
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This is similar to the product of gN and γtw. First consider the case y = y′:

(−1)y

2
εy(z

′, z̄′)εy+2(z′, z̄′)
[
εy′(z, z̄)∂xεy′+1(z, z̄) − εy+1(z, z̄)∂xεy(z, z̄)

]
∝ (−1)y

2
εy+2(z′, z̄′)

[ 1

2π2|z′ − z|
∂xεy′+1(z, z̄) − εy+1(z, z̄)∂x

1

2π2|z′ − z|

]
. (A.114)

Similarly, in the case y = y′ + 1, we get:

(−1)y+1

2
εy(z

′, z̄′)εy+2(z′, z̄′)
[
εy+1(z, z̄)∂xεy+2(z, z̄) − εy+2(z, z̄)∂xεy+1(z, z̄)

]
∝ (−1)y+1

2
εy(z

′, z̄′)
[
εy+1(z, z̄)∂x

1

2π2|z′ − z|
− 1

2π2|z′ − z|
∂xεy+1(z, z̄)

]
. (A.115)

These two together result in the renormalization of γε.

• γε - γε

(−1)y
′+y

4

[
εy′(z

′, z̄′)∂xεy′+1(z′, z̄′) − εy+1(z′, z̄′)∂xεy(z
′, z̄′)

]
× (A.116)[

εy′(z, z̄)∂xεy′+1(z, z̄) − εy′+1(z, z̄)∂xεy′(z, z̄)
]
.

There are three choices for the chain indices : y = y′, y = y′ + 1, and y+ 1 = y′. The
�rst one only results in an intrachain term, which we ignore. The second and third
choices are similar. We only consider the second one and will include a factor of 2 at
the end:

(−1)y+y+1

4

[
εy(z

′, z̄′)∂xεy+1(z′, z̄′) − εy+1(z′, z̄′)∂xεy(z
′, z̄′)

]
(A.117)[

εy+1(z, z̄)∂xεy+2(z, z̄) − εy+2(z, z̄)∂xεy+1(z, z̄)
]

∝ −1

4

[
εy(z

′, z̄′)∂x
1

2π2|z′ − z|
∂xεy+2(z, z̄) + ∂xεy(z

′, z̄′)∂x
1

2π2|z′ − z|
εy+2(z, z̄)

− εy′(z
′, z̄′)∂2

x

1

2π2|z′ − z|
εy+2(z, z̄) − ∂xεy(z

′, z̄′)
1

2π2|z′ − z|
∂xεy+2(z, z̄)

]
.

The only terms that survive the loop integration are:

1

4

[
1

2

1

2π2|z′ − z|3
εy′(z

′, z̄′)εy+2(z, z̄) +
1

2π2|z′ − z|
∂xεy(z

′, z̄′)∂xεy+2(z, z̄)

]
. (A.118)
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• γbs - ζε
This product results in the renormalization of ζε:

JaR,y(z
′)JaL,y(z̄

′)∂xεy′(z, z̄)∂xεy′+2(z, z̄) (A.119)

Again, the backscattering term can either reside on the �rst chain or the third chain.
We consider the �rst case and will include a factor of 2 at the end:

JaR,y(z
′)JaL,y(z̄

′)∂xεy(z, z̄)∂xεy+2(z, z̄) (A.120)

∝ JaR,y(z
′)∂x
−iNa

y (z, z̄)

4π(z̄′ − z̄)
∂xεy+2(z, z̄)

∝ ∂x
−i

4π(z̄′ − z̄)

[−iδaaεy(z, z̄)

4π(z′ − z)
+
iεaacN c

y(z, z̄)

4π(z′ − z)

]
∂xεy+2(z, z̄)

 
−1

16π2|z′ − z|2
∂xεy(z, z̄)∂xεy+2(z, z̄) .

• γM - ζε and γtw - ζε

We ignore these two products as they do not result in the renormalization of any of
the relevant terms.

• gM - ζε

Ma
y (z′, z̄′)Ma

y+2(z′, z̄′) ∂xεy′(z, z̄)∂xεy′+2(z, z̄) (A.121)

The only choice of indices that results in anything of interest is y = y′:[
J bL,y(z̄

′) + J bR,y(z
′)
][
J bL,y+2(z̄′) + J bR,y+2(z′)

]
∂xεy(z, z̄)∂xεy+2(z, z̄) (A.122)

∝ ∂x
[−iNa

y (z, z̄)

4π(z̄′ − z̄)
+

iNa
y (z, z̄)

4π(z′ − z)

]
∂x

[−iNa
y+2(z, z̄)

4π(z̄′ − z̄)
+
iNa

y+2(z, z̄)

4π(z′ − z)

]
(A.123)

∝
[ 1

16π2|z′ − z|2
∂xN

a
y (z, z̄)∂xN

a
y+2(z, z̄) +

1

16π2|z′ − z|4
Na
y (z, z̄)Na

y+2(z, z̄)
]
.

• γε - ζε

(−1)y

2

[
εy(z

′, z̄′)∂xεy+1(z′, z̄′) − εy+1(z′, z̄′)∂xεy(z
′, z̄′)

]
∂xεy′(z, z̄)∂xεy′+2(z, z̄)

(A.124)
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There are four possible choices for the chain indices: y = y′, y + 1 = y′, y = y′ + 2,
and y = y′ + 1. The only ones that result in the renormalization of ζε are y = y′ and
y = y′ + 1, while the rest result in the generation of farther chain analogs of ζε. For
y = y′ we have:

(−1)y

2

[
εy(z

′, z̄′)∂xεy+1(z′, z̄′) − εy+1(z′, z̄′)∂xεy(z
′, z̄′)

]
∂xεy(z, z̄)∂xεy+2(z, z̄)

∝ (−1)y

2

[
1

2π2|z′ − z|
∂xεy+1(z′, z̄′) − εy+1(z′, z̄′)∂x

1

2π2|z′ − z|

]
∂xεy+2(z, z̄) .

(A.125)

Similarly, for the case y = y′ + 1 we get:

(−1)y

2

[
εy(z

′, z̄′)∂xεy+1(z′, z̄′) − εy+1(z′, z̄′)∂xεy(z
′, z̄′)

]
∂xεy−1(z, z̄)∂xεy+1(z, z̄)

∝ (−1)y

2

[
εy(z

′, z̄′)∂x
1

2π2|z′ − z|
− 1

2π2|z′ − z|
∂xεy(z

′, z̄′)
]
∂xεy−1(z, z̄) . (A.126)

• gε - ζε and ζε - ζε

εy(z
′, z̄′)εy+2(z′, z̄′) ∂xεy′(z, z̄)∂xεy′+2(z, z̄) (A.127)

∂xεy′(z
′, z̄′)∂xεy′+2(z′, z̄′) ∂xεy′(z, z̄)∂xεy′+2(z, z̄) (A.128)

The case y = y′ will result in a C-number and an intrachain term, which we ignore.

• γbs - ζM
Finally, let us demonstrate how gM is generated from the product of γbs with ζM :

JaR,y(z
′)JaL,y(z̄

′) J bR,y′+1(z)J bL,y′+1(z̄)M c
y′(z, z̄)M c

y′+2(z, z̄) (A.129)

The only choice of indices that result in the generation of gM is y = y′ + 1:

JaR,y(z
′)JaL,y(z̄

′) J bR,y+1(z)J bL,y+1(z̄)M c
y(z, z̄)M c

y+2(z, z̄) (A.130)

∝
[ δab

8π2(z̄′ − z̄)2
+
iεabcJ cL,y+1(z̄)

2π(z̄′ − z̄)

][ δab

8π2(z′ − z)2
+
iεabcJ cR,y+1(z)

2π(z′ − z)

]
M c

y(z, z̄)M c
y+2(z, z̄)

∝
[ δab

64π4|z′ − z|4
+
−εabcεabd

4π2|z′ − z|2
J cL,y+1(z̄)JdR,y+1(z)

]
M c

y(z, z̄)M c
y+2(z, z̄) .
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• β-functions
Using the above results, we obtain the following β-functions for the dimensionless
couplings constants (after scaling couplings by 2πν = π2J and setting J = 1):

∂lγbs = γ2
bs − 6g2

N + 2g2
ε (A.131)

∂lγM = γ2
M (A.132)

∂lγtw = −1

2
γbsγtw + γMγtw − 3γtwgN + 2γtwζN −

1

2
γMγε (A.133)

∂lgN = gN +
1

4
γ2
tw −

1

2
γbsgN + gMgN −

1

2
gMgε + gMζN −

1

2
gMζε (A.134)

∂lgε = gε +
1

2
γ2
ε +

3

2
γbsgε −

3

2
gMgN −

3

2
gMζN (A.135)

∂lζN = −ζN −
1

2
γbsζN − γ2

tw + gMζN −
1

2
gMζε (A.136)

∂lgM = g2
M −

1

4π2
γbsζM (A.137)

∂lγε =
3

2
γbsγε −

3

2
γtwγM −

3

2
gεγε + 2γεζε (A.138)

∂lζε = −ζε −
1

2
γbsζε − γ2

ε −
3

2
gMζN (A.139)

∂lζM = −2ζM + γbsζM − 8π2γ2
M (A.140)
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A.4 β-Functions with g
DM

In this section we present how the inclusion of a relevant interchain term that orig-
inates from the interchain DM interaction in the continuum limit modi�es the β-
functions. For this purpose we only focus on a subset of the couplings, and in partic-
ular gN and γtw.

• γbs - gDM

εbcz JaR,y(z
′)JaL,y(z̄

′)N b
y′(z, z̄)N c

y′+1(z, z̄) (A.141)

The backscattering term can either reside on the �rst chain or the second chain, y = y′

and y = y′ + 1. We consider the latter and will include a factor of 2 at the end:

εbcz JaR,y(z
′)JaL,y(z̄

′)N b
y′(z, z̄)N c

y′+1(z, z̄) ∝ εbcz(−δab − εabdεadb)
16π2|z − z0|2

N b
y(z0)N c

y+1(z0)

(A.142)

• γtw - gDM

εbcz
(−1)y

2

[
Na
y (z′, z̄′)∂xN

a
y+1(z′, z̄′) − Na

y+1(z′, z̄′)∂xN
a
y (z′, z̄′)

]
N b
y′(z, z̄)N c

y′+1(z, z̄)

(A.143)

Now we have two distinct choices for the chain indices: y = y′ or y − 1 = y′. The
latter, aside from irrelevant terms, only results in an intrachain marginal term and a
C-number. For the case y = y′ + 1, we have:

εbcz
(−1)y

2

[
Na
y (z′, z̄′)∂xN

a
y+1(z′, z̄′) − Na

y+1(z′, z̄′)∂xN
a
y (z′, z̄′)

]
N b
y−1(z, z̄)N c

y(z, z̄)

∝ εbcz
(−1)y

2

[
δa

2π2|z′ − z|
∂xN

a
y+1(z′, z̄′) − Na

y+1(z′, z̄′)∂x
δab

2π2|z′ − z|

]
N b
y−1(z, z̄) ,

(A.144)

which is a farther chain coupling.

• γM - gDM

εbczMa
y (z′, z̄′)Ma

y+1(z′, z̄′)N b
y′(z, z̄)N c

y′+1(z, z̄) (A.145)
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The only choice of chain indices that results in anything of interest is y = y′. We
have:

εbczMa
y (z′, z̄′)Ma

y+1(z′, z̄′)N b
y(z, z̄)N c

y+1(z, z̄) (A.146)

∝ εbcz
[
−iδabεy(z, z̄)

4π(z′ − z)
+
iεabdNd

y (z, z̄)

4π(z′ − z)
+
iδabεy(z, z̄)

4π(z̄′ − z̄)
+
iεabdNd

y (z, z̄)

4π(z̄′ − z̄)

]
[
−iδacεy+1(z, z̄)

4π(z′ − z)
+
iεaceN e

y+1(z, z̄)

4π(z′ − z)
+
iδacεy+1(z, z̄)

4π(z̄′ − z̄)
+
iεaceN e

y+1(z, z̄)

4π(z̄′ − z̄)

]

 εbcz
−2 εabdεace

16π2|z′ − z|2
Nd
y (z, z̄)N e

y+1(z, z̄) ,

where, in the last line we have ignored all terms that vanish upon performing the loop
integrals.

• gN - gDM

εbczNa
y (z′, z̄′)Na

y+2(z′, z̄′)N b
y′(z, z̄)N c

y′+1(z, z̄) (A.147)

There are four choices for the chain indices: y = y′, y + 2 = y′, y = y′ + 1, and
y + 1 = y′. The two choices y = y′ and y + 1 = y′ may result in the renormalization
of gDM, whereas the other two choices only result in the generation of farther-chain
analogs of gDM. For the case y = y′ we have:

εbczNa
y (z′, z̄′)Na

y+2(z′, z̄′)N b
y(z, z̄)N c

y+1(z, z̄) (A.148)

∝ εbcz δab

2π2|z′ − z|
Na
y+2(z, z̄)N c

y+1(z, z̄) .

And for the case y + 1 = y′, we have:

εbczNa
y (z′, z̄′)Na

y+2(z′, z̄′)N b
y+1(z, z̄)N c

y+2(z, z̄) (A.149)

∝ εbcz δac

2π2|z′ − z|
Na
y (z, z̄)N b

y+1(z, z̄) .

Note that these two results are the same and do not cancel each other. Therefore the
product of gN and gDM does renormalize gDM.
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• gε - gDM
Since the OPE of ~N with ε does not contain any singular terms, this product result
in no renormalized interaction.

gDM - gDM

εabzεcdzNa
y (z′, z̄′)N b

y+1(z′, z̄′)N c
y′(z, z̄)Nd

y′+1(z, z̄) (A.150)

The choice y = y′ results in a c-number and an intrachain term, which we ignore.
However, the choice y = y′ + 1 will result in the renormalization of gN as follows.

εabzεcdzNa
y (z′, z̄′)N b

y+1(z′, z̄′)N c
y+1(z, z̄)Nd

y+2(z, z̄) (A.151)

∝ εabzεcdzNa
y (z, z̄)

δbc

2π2|z′ − z|
Nd
y+2(z, z̄)

=
−

δad︷ ︸︸ ︷
δbcεabzεdcz

2π2|z′ − z|
Na
y (z, z̄)Nd

y+2(z, z̄) .

Putting these together, we obtain the following β-functions for the couplings of
the XY part of the interactions when the DM interaction is present:

∂lgDM = gDM − 4gNgDM −
1

2
γbsgDM +

1

2
γMgDM (A.152)

∂lgN = gN − 2g2
DM

+
1

4
γ2
tw −

1

2
γbsgN + · · · (A.153)

while the rest of the β-functions remain the same.
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A.5 Computation of gcritN

The critical initial value of the interchain Néel coupling, gcritN (0), can be computed by
numerically solving the β-functions given in Eqs. (2.8a-2.8i). For this purpose, the
β-functions are solves repeatedly and the initial value of gN is re�ned while keeping
the initial value of other couplings �xed until tuning, i.e., to no exponential growth in
gN , is achieved. Nevertheless, to better understand the �ow of gN and γtw under RG,
one may attempt solving a reduced subset of the β-functions analytically. If one drops
terms in the β-functions that contribute at quartic and higher orders (in J ′/J) to gN ,
partial analytic solutions can be obtained that yield insight into the initial conditions
corresponding to tuning. This leaves us with the following reduced β-functions:

∂`γbs = γ2
bs (A.154a)

∂`γM = γ2
M (A.154b)

∂`γtw = −1
2
γbsγtw + γMγtw (A.154c)

∂`gN = gN − 1
2
γbsgN + 1

4
γ2
tw . (A.154d)

From these, we obtain the following analytic expressions for the couplings:

γbs(`) =
γbs(0)

1− γbs(0)`
(A.155a)

γM(`) =
γM(0)

1− γM(0)`
(A.155b)

γtw(`) = γtw(0)

√
1− γbs(0)`

1− γM(0)`
(A.155c)

gN(`) =

[
γ2
tw(0)

4

∫ `

0

e−t
√

1− γbs(0)t

(1− γM(0)t)2 dt+ gN(0)

]
e`
√

1− γbs(0)` . (A.155d)

For a non-zero γM(0), the integral in Eq. (A.155d) cannot be expressed in terms
of elementary functions. However, assuming γM(0)` � 1, it is possible to expand

1
(1−γM t)2 and �nd an expression for gN(`) as series in terms of the lower incomplete
Γ-function,γLower(m, z), as follows:

gN(l) =

[
γ2
tw(0)

4
e
− 1
γbs(0)

√
−γbs(0)

∑
n

(n+ 1) γnM Fn(`) + gN(0)

]
e`
√

1− γbs(0)` ,

(A.156)
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where Fn(`) is given recursively by:

Fn(`) =
[
γLower(n+ 3

2
, `+ 1

−γbs(0)
)− γLower(n+ 3

2
, 1
−γbs(0)

) (A.157)

−
n∑

m=1

(−1)mn!

γmbs(0)(n−m)!
Fn−m(`)

]
.

Each term in Eq. (A.156) is accompanied by a power of γM(0), and also we have
a γ2

tw(0) factor that multiplies the sum. Since the above analytic expressions for
the couplings were derived by neglecting quartic and higher-order contributions, we
dismiss all terms in the expansion except the �rst two terms. Finally, using the
above analytic expressions, the tuned initial condition for the interchain Néel coupling,
gcritN (0), is found (assuming γbs(0) = −0.23):

gcritN (0) = −
[
0.27620(J ′/J)2 + 1.20152(J ′/J)3 +O(J ′/J)4

]
. (A.158)

It is possible to determine the coe�cient of the quartic term in the above expansion
numerically, which gives 8.0. Note that we have taken gcritN (0) as the initial value of
gN such that gN(˜̀) = 0 and γtw(˜̀) = 1, which for any J ′/J . 0.2 is not any di�erent
from other ways of de�ning tuning (e.g. gN(˜̀) = −1), as the di�erence for these small
J ′/J values would be due to quartic and higher-order terms. However, the estimated
value, J ′c/J , for the transition from CAF to spiral, would be smaller if gN(˜̀) < 0 was
used.

Finally, note that in the above calculation γbs(0) = −0.23 was used, which is the
coupling of the backscattering term at the length scale 4a0 rather than the lattice
spacing a0, where γM and γtw have their bare values. Of course, with the knowledge
of the value of these couplings at the scale 4a0 one can repeat the whole calculations
and determine gcritN at 4a0. Thus what has been neglected is the small growth in
γM and particularly γtw from a0 to 4a0. Taking into account the growth of these
couplings, for the quadratic and cubic parts of gcritN at 4a0 we obtain 0.291374 and
1.31288, respectively.
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Appendix B
Appendix to Chapter 3

In this appendix the computational details of ΓPH(qx̂,Ω = 0) and ΓPP(q = 0,Ω �
Λ) for the model in Chapter 3 are presented. From these, the one-loop quantum
corrections ∂log ΛΓPH(qx̂, 0) and ∂log ΛΓPP(q = 0,ΩΛ), at (µ = 0) and slightly away
(µ > 0) from the critical point of the neck-narrowing Lifshitz transition are obtained.
For ∂log ΛΓPH(qx̂, 0), a series expansion in q is determined from which we obtain the
β-functions presented in Chapter 3. At the end, the computational details of the
imaginary part of the one-loop particle-hole susceptibility, χ′′

PH
(qx̂,Ω), are given.

B.1 Computation of Γ
PH

(qx̂, 0) for µ > 0 and the β-

Functions

The one-loop particle-hole diagram ΓPH(qx̂,Ω = 0) for µ > 0 is given by:

ΓPH(qx̂,Ω = 0) =
1

(2π)2

∫
dk

θ(ξk)− θ(ξk+q)

ξk − ξk+q

e−
|k|2+|k+q|2

K2 e−
ξ2k+ξ2k+q

Λ2 . (B.1)

For the purpose of computing the above integral, it is more convenient to change the
integration variables: (kx, ky > 0)→ (ξ, ξ′), where ξ = ξk and ξ′ = ξk+q.{

ξ = k2
x − k2

y − µ
ξ′ = k2

x + q2 + 2qkx − k2
y − µ

→

{
kx = 1

2q
(ξ′ − ξ − q2)

ky = ±
√
−ξ − µ+ 1

4q2 (ξ′ − ξ − q2)2

(B.2)
The Jacobian of this change of integration variables is:

J =
∣∣∣ −1

2
√

(ξ′ − ξ − q2)2 − 4q2(ξ + µ)

∣∣∣ (B.3)
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with the constraint (ξ′ − ξ − q2)2 ≥ 4q2(ξ + µ). The integral in Eq. (B.1) becomes:

ΓPH(qx̂, 0) =
1

(2π)2

∫ ∞
−∞

dξ
∫ ∞
−∞

dξ′
θ(ξ)− θ(ξ′)
ξ − ξ′

e−
ξ2+ξ′2

Λ2 e−
|k|2+|k+q|2

K2√
(ξ′ − ξ − q2)2 − 4q2(ξ + µ)

,

(B.4)

The above integral is further simpli�ed using the new variables X = ξ − ξ′ and
t|X| = ξ + ξ′:

ΓPH(qx̂, 0) =
1

2(2π)2

∫ ∞
−∞

dX
∫ 1

−1

dt
|X|
X

θ
(
X(t+ 1)

)
− θ
(
X(t− 1)

)√
(−X − q2)2 − 4q2( t+1

2
X + µ)

e
− 1
K2 (tX+X2

q2
−2µ−q2)

e−
X2(1+t2)

2Λ2 , (B.5)

where the integration domain is restricted to the region where (X + q2)2 ≥ 2q2(t +
1)X + 4q2µ. For q ≤ 2

√
µ, applying the Heaviside functions and imposing the con-

straint (X + q2)2 ≥ 2q2(t+ 1)X + 4q2µ, we obtain:

ΓPH(qx̂, 0) =
1

(2π)2

∫ ∞
Xmin

dX
∫ 1

−1

dt
e
− 1
K2 (tX+X2

q2
−2µ−q2)

e−
X2(1+t2)

2Λ2√
X2 + q4 − 4q2µ2 + 2q2tX

, (B.6)

where Xmin = tq2 + q2
√

4 µ
q2 − (1− t2). To further simplify the above integral we �rst

need to rewrite the exponential terms as:

exp

{
− 1

K2
(tX +

X2

q2 �����−2µ− q2)− X2(1 + t2)

2Λ2

}

= exp

{
− 2Λ2 + q2K2(1 + t2)

2Λ2q2K2

(
X +

tq2Λ2

q2K2(1 + t2) + 2Λ2

)2

− q2t2Λ2

2q2K4(1 + t2) + 4K2Λ2

}
, (B.7)

where in the last line we dropped the two unimportant terms 2µ
K2 and q2

K2 . Using
X → qKY +Xmin, the integral in Eq. (B.6) becomes:

ΓPH(qx̂, 0) =
1

(2π)2

∫ 1

−1

dt e−
q2t2Λ2

2q2K4(1+t2)+4K2Λ2

∫ ∞
0

dY 1√
Y(Y + 2a(t))

e
− 2Λ2+q2K2(1+t2)

2Λ2

(
Y+ tq

K
+a(t)+ tqΛ2

q2K3(1+t2)+2KΛ2

)2

, (B.8)

123



APPENDIX B. APPENDIX TO CHAPTER 3

where, a(t) =
√

4 µ
K2 − (1− t2) q

2

K2 . Using, Y → Y + a(t), we get:

ΓPH(qx̂, 0) =
1

(2π)2

∫ 1

−1

dt e−
q2t2Λ2

2q2K4(1+t2)+4K2Λ2

∫ ∞
a(t)

dY 1√
Y2 − a(t)2

e
− 2Λ2+q2K2(1+t2)

2Λ2

(
Y+ tq

K
+ tqΛ2

q2K3(1+t2)+2KΛ2

)2

. (B.9)

The above integral can be written as:

ΓPH(qx̂, 0) =
1

(2π)2

∫ 1

−1

dt e−
q2t2

K2 β(t)

∫ ∞
a(t)
β(t)

dY√
Y2 − a(t)2

β(t)2

e−
1
β(t)

(
Y+ tq

Kβ(t)
+ tq
K

)2

, (B.10)

where β(t) = Λ2

q2K2(1+t2)+2Λ2 . Note that non-analyticity at O( Λ
K

) mentioned in Chapter
3 stems from β(t). Finally, ΓPH(qx̂, iΩ = 0) can be approximately computed by
expanding the inverse square root term in the integrand in large Y :

ΓPH(qx̂, 0) =
1

(2π)2

∫ 1

−1

dt e−
q2t2

K2 β(t)

∫ ∞
a(t)
β(t)

dY√
Y2 − a(t)2

β(t)2

e−
1
β(t)
Y2

(B.11)

=
−1

(2π)2

∫ 1

−1

dt e−
q2t2

K2 β(t)

∫ ∞
a(t)
β(t)

dY e−
1
β(t)
Y2

[
1

Y
+
a(t)2

β(t)2

1

Y3
+
a(t)4

β(t)4

3

8Y5
+

a(t)6

β(t)6

5

16Y7
+
a(t)8

β(t)8

35

128Y9
+
a(t)10

β(t)10

63

256Y11
+
a(t)12

β(t)12

231

1024Y13
+ · · ·

]

=
1

(2π)2

∫ 1

−1

dt e−
q2t2

K2 β(t) 1

2

∫ ∞
a(t)2

β(t)2

dy e−
y
β(t)

[
1

y
− a(t)2

β(t)2

1

y2
+
a(t)4

β(t)4

3

8y3

− a(t)6

β(t)6

5

16y4
+
a(t)8

β(t)8

35

128y5
+
a(t)10

β(t)10

63

256y6
+
a(t)12

β(t)12

231

1024y7
+ · · ·

]

=
1

(2π)2

∫ 1

−1

dt e−
q2t2

K2 β(t) 1

2

∫ ∞
a(t)2

β(t)3

dy e−y
[

1

y
− a(t)2

β(t)3

1

y2
+
a(t)4

β(t)6

3

8y3

− a(t)6

β(t)9

5

16y4
+

a(t)8

β(t)12

35

128y5
+
a(t)10

β(t)15

63

256y6
+
a(t)12

β(t)18

231

1024y7
+ · · ·

]
.
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Performing the y-integral in the last line, we obtain:

ΓPH(qx̂, 0) =
1

2(2π)2

∫ 1

−1

dt e−
q2t2

K2 β(t)

[
Γ(0,

a(t)2

β(t)3
) +

1

2

a(t)2

β(t)3
Γ(−1,

a(t)2

β(t)3
)

+
3

8

a(t)4

β(t)6
Γ(−2,

a(t)2

β(t)3
) +

5

16

a(t)6

β(t)10
Γ(−3,

a(t)2

β(t)3
) +

35

128

a(t)8

β(t)12
Γ(−4,

a(t)2

β(t)3
)

+
63

256

a(t)10

β(t)15
Γ(−5,

a(t)2

β(t)3
) +

231

1024

a(t)12

β(t)18

231

1024y7
Γ(−6,

a(t)2

β(t)3
) + · · ·

]
, (B.12)

where Γ(−n, a) is the upper incomplete Γ-function. Using the identity,

Γ(−n, a) =
(−1)n

n!
Γ(0, a) + e−a

1∑
i=n

(−1)n−i

ai
(i− 1)!

n!
(B.13)

ΓPH(qx̂, 0) can be written as:

ΓPH(qx̂, 0) =
1

2(2π)2

∫ 1

−1

dt e−
q2t2

K2 β(t)
∞∑
n=0

Cn

(a(t)2

β(t)3

)n
Γ
(
− n, a(t)2

β(t)3

)
(B.14)

=
−1

2(2π)2

∫ 1

−1

dt e−
q2t2

K2 β(t)
∞∑
n=0

Cn

[
e
− a(t)2

β(t)3

1∑
m=n

(m− 1)!

n!
(−1)n−m

(a(t)2

β(t)3

)n−m
+

(−1)n

n!

(a(t)2

β(t)3

)n
Γ
(
0,
a(t)2

β(t)3

)]
,

where Cn are the coe�cients in the series expansion of 1√
y2−1

in 1
y
, and

α(t)2

β(t)3
= 32

µ

K2
+
(8(t2 − 1)

K2
+

48µ(1 + t2)

Λ2

)
q2 +

(12(t4 − 1)

Λ2
+

24K2µ(1 + t2)2

Λ4

)
q4

+
(6K2(t2 − 1)(t2 + 1)2

Λ4
+

4µK4(1 + t2)3

Λ6

)
q6 +

K4

Λ6
(t2 − 1)(t2 + 1)3q8 . (B.15)

From Eqs. (B.14,B.15), one can systematically determine the coe�cients of the series
expansion of ΓPH(qx̂, 0) in q by ignoring all O(µ) and O(1/K) terms as accurately as
desired. Using Mathematica 8, we expand the integral in Eq. (B.12) (keeping up to
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Γ(−14, a(t)2

β(t)3 )) in q and then perform the t-integral. We �nd:

ΓPH(qx̂, 0) ≈ 1

2(2π)2

[(
− 5.9− 2 log

µ

K2

)
+
(
− 4

K2

Λ
+ 0.33

Λ

µ
− 5

Λ

K2
log

µ

K2)q2

Λ
+
(

1.4
K4

Λ2
− 50.4 +

Λ2

µ2
+ 0.5

Λ2

µK2
− 12.3

Λ2

K4
log

µ

K2
− 9.86 log

µ

K2

) q4

Λ2

+
(
− 0.68

K6

Λ3
− 40.5

K2

Λ
+ 0.0047

Λ3

µ3
+ 0.035

Λ3

µ2K2
+ 0.879

Λ3

µK4
+ 0.938

Λ

µ

− 23.5
Λ3

K6
log

µ

K2
− 43.0

Λ

K2
log

µ

K2
− 5.7

K2

Λ
log

µ

K2

) q6

Λ3
+ · · ·

]
. (B.16)

From this, we �nally obtain the derivative of ΓPH(qx̂, 0) with respect to log Λ:

∂log ΛΓPH(qx̂, 0) ≈ 1

2(2π)2

[
8
K2

Λ

q2

Λ
+
(

19.7 log
µ

K2
+ 101− 5.6

K4

Λ2

) q4

Λ2
(B.17)

+
(
− 1.87

Λ

µ
+
[
22.8

K2

Λ
+ 86

Λ

K2

]
log

µ

K2
+ 4.11

K6

Λ3
+

162
K2

Λ

) q6

Λ3
+
(
− 0.13

Λ2

µ2
− 2.06

K2

µ
+
[
237

Λ2

K4
+ 255+

8.7
K4

Λ2

]
log

µ

K2
+ 1462− 71.5

K4

Λ2
− 3.16

K8

Λ4

) q8

Λ4
+
(
− 0.014

Λ3

µ3

− 0.138
K2

Λµ2
− 0.326

Λ3

K2µ2
− 0.716

K4

Λµ
− 17.13

Λ

µ
− 12.98

Λ3

K4µ
+

[
− 1.262

K6

Λ3
+ 305

K2

Λ
+ 1082

Λ

K2
+ 483

Λ3

K6

]
log

µ

K2
+ 2.52

K10

Λ5

+ 9.235
K6

Λ3
+ 1987

K2

Λ

)q10

Λ5
+O(q)12

]
,
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B.2 Computation of Γ
PH

(qx̂, 0) for µ = 0

Starting from Eq. (B.5), for the case µ = 0 we have:

ΓPH(qx̂,Ω = 0) =
1

2(2π)2

∫ ∞
−∞

dX
∫ 1

−1

dt
|X|
X

θ
(
X(t+ 1)

)
− θ
(
X(t− 1)

)√
(−X − q2)2 − 2q2(t+ 1)X

e
− 1
K2 (tX+X2

q2
−q2)

e−
X2(1+t2)

2Λ2 , (B.18)

with no constraint. This can be written as:

ΓPH(qx̂, 0) =
1

(2π)2

∫ ∞
0

dX
∫ 1

−1

dt
1√

(X + q2)2 − 2q2(t+ 1)X
(B.19)

exp

{
− 2Λ2 + q2K2(1 + t2)

2Λ2q2K2

(
X +

tq2Λ2

q2K2(1 + t2) + 2Λ2

)2

− q2t2Λ2

2q2K4(1 + t2) + 4K2Λ2

}
.

Using, β(t) = Λ2

q2K2(1+t2)+2Λ2 , the above integral becomes:

ΓPH(qx̂, 0) =
1

(2π)2

∫ 1

−1

dt e−
q2t2

2K2 β(t)

∫ ∞
0

dX e
− 1

2q2K2 β(t)
(X+tq2 β(t))2√

(X + q2)2 − 2q2(t+ 1)X
. (B.20)

Using, X → X̃ = 1
q2β(t)

X, we get:

ΓPH(qx̂, 0) =
1

(2π)2

∫ 1

−1

dt e−
q2t2

2K2 β(t)

∫ ∞
0

dX̃
��

��q2β(t) e−
t2q2β(t)

2K2 (X̃+t)2

��
��q2β(t)
√

(X̃ + 1
β(t)

)2 − 2X̃ (t+1)
β(t)

. (B.21)

The inverse square root in the integrand can be simpli�ed as follows:

(X̃+
1

β(t)
)2− 2X̃

(t+ 1)

β(t)
= X̃2− 2tX̃

1

β(t)
+

1

β(t)2
=
(
X̃− t

β(t)

)2
+

1− t2

β(t)2
. (B.22)
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Now, let us break up the X̃ integral. This is because we want to Taylor expand the
inverse square root term in the integrand.

ΓPH(qx̂, 0) =
1

(2π)2

∫ 1

−1

dt e−
q2t2

2K2 β(t)

[∫ 1
β(t)

0

dX̃︸ ︷︷ ︸
I1

+

∫ ∞
1
β(t)

dX̃︸ ︷︷ ︸
I2

]
e−

t2q2β(t)

2K2 (X̃+t)2√
(X̃ − t

β(t)
)2 + 1−t2

β(t)2

.

(B.23)

Using Mathematica, the �rst integral is approximately computed as following:

I1 ≈
1

(2π)2

∫ 1

−1

dt e−
q2t2

2K2 β(t)

∫ 1
β(t)

0

dX̃
1√

(X̃ − t
β(t)

)2 + 1−t2
β(t)2

[
1− t2q2β(t)

2K2
(X̃ + t)2 + · · ·

]

≈ 1

(2π)2

∫ 1

−1

dt e−
q2t2

2K2 β(t)
[

log
1 +

√
2(1− t)− t
1− t

− t2q2β(t)

2K2

1

2Λ4

(
· · ·
)

+ · · ·
]
.

(B.24)

we �nd no singular dependence on q in I1. Next, let us consider I2. Expanding the
inverse square root in the integrand of I2 in large X̃, we �nd:

I2 =
1

(2π)2

∫ 1

−1

dt e−
q2t2

2K2 β(t)

∫ ∞
1
β(t)

dX̃
e−

t2q2β(t)

2K2 (X̃+t)2√
(X̃ − t

β(t)
)2 + 1−t2

β(t)2

(B.25)

≈ −1

(2π)2

∫ 1

−1

dt e−
q2t2

2K2 β(t)

∫ ∞
1
β(t)

dX̃

[
1

X̃
+

t

β(t)

1

X̃2
+

3t2 − 1

2β(t)2

1

X̃3
+
t(5t2 − 3)

2β(t)3

1

X̃4

+
3− 30t2 + 35t4

8β(t)4

1

X̃5
+
t(15− 70t2 + 63t4)

8β(t)5

1

X̃6
+
−5 + 21t2(5− 15t2 + 11t4)

16β(t)6

× 1

X̃7
+ · · ·

]
e−

t2q2β(t)

2K2 X̃2
[
1− 2

t2q2β(t)

2K2
(X̃ + t) + · · ·

]
.

The leading term in the above expansion in 1
X̃

results in a singular dependence on q
of the form log q2. Similarly, the remaining terms result in logarithmic dependence
on q but accompanied by polynomials in q2. If desired, using Mathematica, one can
obtain a series expansion in q as accurately as desired.

Using Mathematica 8, we determine non-analytic terms in ∂log ΛΓPH(qx̂, 0). These
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terms are all of the form q2n+2 log q2

K2 (n ≥ 1):

∂log ΛΓn.-a.

PH
(qx̂, 0) =

1

(2π)2

[
− 0.028

q4

Λ2
− 0.368

K2

Λ

q6

Λ3
+
(

0.473
K4

Λ2
+ 0.448

) q8

Λ4

−
(

0.55
K6

Λ3
+ 0.6

K2

Λ

)q10

Λ5
+O(

q12

Λ6
)

]
log

q2

K2
, (B.26)

where we have ignored O( 1
K

) terms.
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B.3 Computation of Γ
PP

(q = 0,Ω� Λ)

The particle-particle diagram, ΓPP(q,Ω) is given by:

ΓPP(q,Ω) =

∫ ′ dk
(2π)2

∫
dω
2π
G0(k + q, ω + Ω)G0(−k,−ω)

=

∫ ′ dk
(2π)2

∫
dω
2π

1

i(ω + Ω)− (ξk+q − µ)

1

−iω − (ξ−k − µ)

=
−1

(2π)2

∫ ′
dk
θ(ξk − µ)− θ(−ξk+q + µ)

iΩ− ξk − ξk+q + 2µ
, (B.27)

where the primes on the integrals indicate that the k-integration is restricted to
|ξk|, |ξk+q| < Λ and |k+|, |k−| < K (where k± = kx ± ky are the light-cone coor-
dinates) � see Fig. [B.1]. The reason that we use sharp cuto�s instead of soft cuto�s
is for convenience. Note that since we are computing ΓPP(q,Ω � Ω) at q = 0 the
question of whether the cuto�s are soft or sharp becomes irrelevant. Setting the

Figure B.1: The Fermi surface and the sharp energy and momentum cuto�s. The sharp

momentum cuto� is indicated by the �diamond�. This speci�c choice of the momentum cuto�

is for convenience.
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transfer momentum q to zero, for the case µ = 0 I have:

Γµ=0
PP

(q = 0,Ω) =
−1

(2π)2

∫ ′
dk
θ(ξk)− θ(−ξk)

iΩ− ξk − ξk
=
−1

(2π)2

1

2

∫
|k+K−|<Λ
|k±|<K

dk+dk−
2 sgn(ξk)

iΩ− 2ξk

= − 1

(2π)2

∫ K

−K

dk+

|k+|

∫
min{Λ,|k+|K}

−min{Λ,|k+|K}
dξ

sgn(ξ)

iΩ− 2ξ︸ ︷︷ ︸
I(k+)

, (B.28)

where, in the second line, we used (k+, k−)→ (k+, ξ = k+k−) with the Jacobian 1
|k+| .

The I(k+) integral gives:

I(k+) =

∫
min{Λ,|k+|K}

−min{Λ,|k+|K}
dξ

sgn(ξ)

iΩ− 2ξ

=

∫
min{Λ,|k+|K}

0

dξ

[
1

iΩ− 2ξ
− 1

iΩ + 2ξ

]

=

∫
min{Λ,|k+|K}

0

4ξ dξ
−Ω2 − 4ξ2

=
−1

2
ln

[
Ω2 + 4

(
min{Λ, |k+|K}

)2

Ω2

]
(B.29)

Plugging this result for I(k+) into Eq. (B.28) and performing the k+-integral, we
obtain:

Γµ=0
PP

(q = 0,Ω) =
1

(2π)2

∫ K

0

dk+

k+

ln

[
Ω2 + 4

(
min{Λ, k+K}

)2

Ω2

]
(B.30)

=
1

(2π)2

[∫ Λ
K

0

dk+

k+

ln
(

1 +
4k2

+K
2

Ω2

)
+

∫ K

Λ
K

dk+

k+

ln
(

1 +
4Λ2

Ω2

)]

=
1

(2π)2

[
1

2

∫ 4Λ2

Ω2

0

dκ
κ

ln(1 + κ) + ln
K2

Λ
ln
(

1 +
4Λ2

Ω2

)]

=
1

(2π)2

[
− 1

2
Li2(−4Λ2

Ω2
) + ln

K2

Λ
ln
(

1 +
4Λ2

Ω2

)]
,
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where, for the �rst term in the second last line, κ = Ω2

4K2k
2
+. Using the expansion of

the dilogarithm function in the large 4Λ2

Ω2 limit,

− Li2(−x) ≈ π2

6
+

1

2

(
ln

1

x

)2

+O(
1

a
) , (B.31)

we get:

Γµ=0
PP

(q = 0,Ω� Λ) ≈ 1

(2π)2

[
ln
K2

Λ
ln
(

1 +
4Λ2

Ω2

)
+
π2

12
+

1

4

(
ln

Ω2

4Λ2

)2

+O(
Ω2

4Λ2
)

]
. (B.32)

For ∂ln ΛΓµ=0
PP (q = 0,Ω� Λ) I obtain:

∂ln ΛΓµ=0
PP

(0,Ω) ≈ 1

(2π)2

[
8Λ2

4Λ2 + Ω2
ln
K2

Λ
− ln

(
1 +

Ω2

4Λ2

)
+ O(

Ω2

4Λ2
)

]
. (B.33)

Repeating the same calculations for µ 6= 0, we �nd:

Γµ>0
PP

(0,Ω) ≈ −1

2π2

[
1

2

(
− π2

6
+ Li2(

1

2
) +

π2

6
+

1

2

(
ln(2)

)2

− Li2(1)

)
+

1

2

(

ln
(Λ− 2µ

Λ

)
ln
(Λ− µ

µ

)
− 1

2

(
ln 2
)2

+ Li2(
1

2
) + Li2(

µ

Λ
) +

1

2

(
ln(

Λ

µ
)
)2

+ Li2(
Λ− 2µ

−µ
)

)
− 1

2

(
ln(Ω2) ln

( µ

Λ− µ

)
− 2 ln(2µ) ln(2Λ− 4µ)

+ ln(2Λ− 2µ) ln(4(Λ− 2µ)2) + 2Li2(
Λ− 2µ

−µ
)

)
− 1

2

(

ln
(Λ + µ

Λ− µ
)

ln(1 +
4Λ2

Ω2
) + ln

(Λ− µ
µ

)
ln
( Λ

Λ− 2µ

)
− Li2(

Λ− 2µ

−µ
)

+ Li2(−Λ

µ
)
)
− 1

2

(
ln
( K2

Λ + µ

)
ln
(
1 + 4

Λ2

Ω2

))]
. (B.34)

where, in the last line, we have only kept singular terms in Ω in the limit Ω → 0.
Note that taking the two limits Ω→ 0 and µ→ 0 do not commute. The latter should
reduce to Eq. (B.32). Taking the derivative of the above expression w.r.t. ln Λ, for
the leading term in the Taylor expansion in Ω I �nd:
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Γµ>0
PP

(0,Ω→ 0) ≈ −1

(2π)2
ln
(Λ2 − µ2

K4

)
. (B.35)
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B.4 Computation of χ′′
PH

(qx̂,Ω)

Here we present the computation of the imaginary part of the one-loop particle-
hole susceptibility, χ′′

PH
(qx̂,Ω), for the dispersion εk = k2

x − k2
y at a �nite chemical

potential and with a smooth momentum cuto�K. This susceptibility is obtained from
the imaginary-time (Matsubara) susceptibility χPH(qx̂,Ω) by analytically continuing
χPH(qx̂, iΩ → Ω + i0+) [40]. The imaginary-time particle-hole susceptibility is given
by:

χPH(qx̂, iΩ) =
−1

(2π)2

∫
dk

θ(ξk − µ)− θ(ξk+q − µ)

iΩ + ξk − ξk+q

e−
|k|2+|k+q|

K2 . (B.36)

Following the same steps as in Section [B.1] (see Eq. (B.5)), the above integral is
written as:

χPH(q, iΩ) =
−2

2(2π)2
Re

{∫ ∞
0

dX
∫ 1

−1

dt
X

iΩ +X

e
− 1
K2 (tX+X2

q2
−2µ−q2)√

(X + q2)2 − 4q2( t+1
2
X + µ)

}

−1

(2π)2

∫ ∞
0

dX
∫ 1

−1

dt
X2

Ω2 +X2

e
− 1
K2 (tX+X2

q2
−2µ−q2)√

(X + q2)2 − 4q2( t+1
2
X + µ)

, (B.37)

with the constraintX2+2tq2X+q4−4q2µ ≥ 0. The constraintX2+2tq2X+q4−4q2µ ≥
0, for a generic q, impliesX 6∈ (X−, X+) whereX± = −tq2±

√
4q2µ− q4(1− t2). As in

Section [B.1], for q ≤ 2
√
µ this constraint restricts the integration over X to [Xmin,∞)

where Xmin = −tq2 +
√

4q2µ− q4(1− t2).
Since we are interested in χ′′

PH
(q,Ω) not only at small q (q ≤ 2

√
µ) but also as

q ' O(µ) we need to consider the two cases q ≤ 2
√
µ and q > 2

√
µ separately.

q < 2
√
µ

For q < 2
√
µ, using X → Y = X −Xmin, the above integral becomes:

χPH(q, iΩ) =
−1

(2π)2
e

2µ+q2

K2

∫ ∞
0

dY
∫ 1

−1

dt
(Y − tq2 +

√
4q2µ− q4(1− t2))2

−(iΩ)2 + (Y − tq2 +
√

4q2µ− q4(1− t2))2

e
− t
K2 (Y−tq2+

√
4q2µ−q4(1−t2))− 1

q2K2 (Y−tq2+
√

4q2µ−q4(1−t2))2√
Y(Y + 2

√
4q2µ− q4(1− t2))

.

(B.38)
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Analytically continuing iΩ→ Ω+i0+, we �nd the retarded particle hole susceptibility:

χR
PH

(q,Ω) =
−e

2µ+q2

K2

(2π)2

∫ ∞
0

dY
∫ 1

−1

dt
(Y − tq2 +

√
4q2µ− q4(1− t2))2

−(Ω + i0+)2 + (Y − tq2 +
√

4q2µ− q4(1− t2))2

e
− t
K2 (Y−tq2+

√
4q2µ−q4(1−t2))− 1

q2K2 (Y−tq2+
√

4q2µ−q4(1−t2))2√
Y(Y + 2

√
4q2µ− q4(1− t2))

. (B.39)

In the part of the integrand that contains Ω, using the Dirac identity, we get:

1

(Y − tq2 +
√

4q2µ− q4(1− t2))2︸ ︷︷ ︸
X>0

−(Ω + i0+)2
=

1

(X − Ω− i0+)(X + Ω + i0+)
.

(B.40)

Without loss of generality, let us assume Ω > 0. We can write:

1

X − (Ω + i0+)2
=

1

(X − Ω− i0+)(X + Ω)
. (B.41)

Therefore, for Ω > 0, the imaginary part of the retarded real-time particle-hole sus-
ceptibility is given by:

χ′′
PH

(q,Ω) =
−(−π)

(2π)2
e

2µ+q2

K2

∫ ∞
0

dY
∫ 1

−1

dt
(Y − tq2 +

√
4q2µ− q4(1− t2))2

Ω + Y − tq2 +
√

4q2µ− q4(1− t2)

e
− t
K2 (Y−tq2+

√
4q2µ−q4(1−t2))− 1

q2K2 (Y−tq2+
√

4q2µ−q4(1−t2))2√
Y(Y + 2

√
4q2µ− q4(1− t2))

δ
(
Y − tq2 +

√
4q2µ− q4(1− t2)− Ω

)
. (B.42)

Imposing the δ-function, we �nally obtain:

χ′′
PH

(q,Ω) = − Ω

8π
e

2µ+q2

K2 −
Ω2

q2K2

∫ 1

−1

dt
e−

tΩ
K2√

Ω2 + 2tΩq2 − 4q2µ+ q4
. . (B.43)

with the constraint Ω + tq2 −
√

4q2µ− q4(1− t2) ≥ 0. This constraint restricts the
integration over t:

t ≥ q2

2Ω
(
4µ

q2
− 1− Ω2

q4
) (B.44)
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Finally we �nd:

χ′′
PH

(q,Ω) = − Ω

8π
e

2µ+q2

K2 −
Ω2

q2K2

∫ 1

Max{−1, 4µ−q
2

2Ω2 −
Ω

2q2
}
dt

e−
tΩ
K2√

Ω2 + 2tΩq2 − 4q2µ+ q4
.

(B.45)

q ≥ 2
√
µ

Next, we consider the q ≥ 2
√
µ. Starting from Eq. (B.37) after analytically continuing

iΩ→ Ω + i0+ and assuming that Ω > 0, we get:

χR
PH

(q,Ω > 0) =
−1

(2π)2

∫ ∞
0

dX
∫ 1

−1

dt
X2

(X + Ω)(X − Ω− i0+)

e
− 1
K2 (tX+X2

q2
−2µ−q2)√

(X + q2)2 − 4q2( t+1
2
X + µ)

, (B.46)

with the constraint X2 + q4 + 2tq2X − 4q2µ ≥ 0. Imposing this constraint restricts
the X and t integrals as following:

χR
PH

(q ≥ 2
√
µ,Ω > 0) =

−1

(2π)2

[∫ ∞
0

dX
∫ 1

−
√

1− 4µ

q2

dt︸ ︷︷ ︸
I1

+

∫ ∞
X+

dX
∫ −√1− 4µ

q2

−1

dt︸ ︷︷ ︸
I2

+

∫ X−

0

dX
∫ −√1− 4µ

q2

−1

dt︸ ︷︷ ︸
I3

]
(· · · ) , (B.47)

where, (· · · ) stands for the integrand, which is the integrand in Eq. (B.46). We
compute the above three integrals I1, I2 and I3 separately.

For I1 we �nd:

I1 =
−1

(2π)2

∫ ∞
0

dX
∫ 1

−
√

1− 4µ

q2

dt
X2

(X + Ω)(X − Ω− i0+)

e
− 1
K2 (tX+X2

q2
−2µ−q2)√

X2 + q4 + 2tq2X − 4q2µ
.

(B.48)
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Thus the imaginary part of II is given by:

Im{I1} =
−π

(2π)2

∫ ∞
0

dX
∫ 1

−
√

1− 4µ

q2

dt
X2δ(X − Ω)

(X + Ω)

e
− 1
K2 (tX+X2

q2
−2µ−q2)√

X2 + q4 + 2tq2X − 4q2µ

=
−π

(2π)2

∫ 1

−
√

1− 4µ

q2

dt
Ω

2

e
− 1
K2 (tΩ+ Ω2

q2
−2µ−q2)√

Ω2 + q4 + 2tq2Ω− 4q2µ
. (B.49)

I2 is given by a similar integral to the one for the case q < 2
√
µ,

I2 =
−1

(2π)2

∫ ∞
X+

dX
∫ −√1− 4µ

q2

−1

dt
X2

(X + Ω)(X − Ω− i0+)

e
− 1
K2 (tX+X2

q2
−2µ−q2)√

X2 + q4 + 2tq2X − 4q2µ
,

(B.50)

except that the upper limit of the t integral is di�erent. Thus for the imaginary part
of I2 we obtain:

Im{I2} =
−Ω

8π
e

2µ+q2

K2 −
Ω2

q2K2

∫ −√1− 4µ

q2

Max{−1, 4µ−q
2

2Ω
− Ω

2q2
}
dt

e−
tΩ
K2√

Ω2 + 2tΩq2 − 4q2µ+ q4
, (B.51)

For I3 we have:

I3 =
−1

(2π)2

∫ X−

0

dX
∫ −√1− 4µ

q2

−1

dt
X2

(X + Ω)(X − Ω− i0+)

e
− 1
K2 (tX+X2

q2
−2µ−q2)√

X2 + q4 + 2tq2X − 4q2µ
,

(B.52)

Using X → x = X−X, the above integral becomes:

I3 =
−1

(2π)2

∫ 1

0

dx
∫ −√1− 4µ

q2

−1

dt
X−x

2

(x+ Ω
X−

)(x− Ω
X−
− i0+)

e
− 1
K2 (tXx+

X2
−
q2

x2−2µ−q2)√
X2
−x

2 + q4 + 2tq2X−x− 4q2µ
,

(B.53)

Thus the imaginary part of I3 is given by:

Im{I3} =
−π

(2π)2

∫ 1

0

dx
∫ −√1− 4µ

q2

−1

dt
X−x

2δ(x− Ω
X−

)

(x+ Ω
X−

)

e
− 1
K2 (tXx+

X2
−
q2

x2−2µ−q2)√
X2
−x

2 + q4 + 2tq2X−x− 4q2µ

=
−Ω

8π
e
− 1
K2 ( Ω2

q2
−2µ−q2)

∫ −√1− 4µ

q2

−1

dt
θ
(
1− Ω

X−(t)

)
e−

tΩ
K2√

Ω2 + q4 + 2tq2Ω− 4q2µ
, (B.54)
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The Heaviside function imposes the constraint Ω
q2 ≤ −t−

√
4µ
q2 + t2 − 1.

Putting together the imaginary parts of I1, I2 and I3 (Eqs. (B.49,B.51,B.54)), we
�nally obtain:

χ′′
PH

(q ≥ 2
√
µ,Ω > 0) =

−Ω e
2µ+q2

K2 −
Ω2

q2K2

2(2π)2

[∫ 1

−
√

1− 4µ

q2

+

∫ −√1− 4µ

q2

Max{−1, 4µ−q
2

2Ω
− Ω

2q2
}

+

θ(
4µ− q2

2Ω
+

Ω

2q2
)

∫ −√1− 4µ

q2

Max{−1, 4µ−q
2

2Ω
− Ω

2q2
}

]
e−

tΩ
K2 dt√

Ω2 + q4 + 2tq2Ω− 4q2µ
. (B.55)

The Heaviside function that accompanies the last integral imposes the constraint
( Ω
q2 + Max{−1, 4µ−q2

2Ω
− Ω

2q2}) < 0 as we are assuming 4µ ≤ q2.

µ = 0

Since we have computed χ′′
PH

(q,Ω > 0) for µ > 0 and a generic q, we can easily
determine the µ = 0 susceptibility χ′′

PH
(q,Ω > 0) by simply taking the limit µ → 0

(the zero chemical potential case). We �nd:

χ′′
PH

(q,Ω > 0) =
−Ω

2(2π)2
e
q2

K2−
Ω2

q2K2

∫ 1

−1

e−
tΩ
K2 dt√

Ω2 + q4 + 2tq2Ω
. (B.56)
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