
A VIDEO GAME FOR TEACHING INTRODUCTORY PROGRAMMING

THE EDUCATIONAL EFFECTIVENESS OF A COOPERATIVE AND COMPETITIVE
VIDEO GAME FOR TEACHING INTRODUCTORY PROGRAMMING

By
SAMANTHA CHAN

A Thesis
Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements
for the degree

Master of Applied Science in Software Engineering

McMaster University
c© Copyright by Samantha Chan, 2014

MASTER OF APPLIED SCIENCE (2014) McMaster University
(Software Engineering) Hamilton, Ontario

TITLE: The Educational Effectiveness of a Cooperative and Competitive Video Game for
Teaching Introductory Programming
AUTHOR: Samantha Chan
SUPERVISOR: Dr. Spencer Smith and Dr. Christopher Anand
RESEARCH ETHICS NUMBER: 2013 176 (McMaster University Research Ethics Board)
NUMBER OF PAGES: ix, 166

ii

For my mother, who taught me to always learn from my experiences

iii

Abstract

The subject of computer programming is highly practical and it is crucial that beginners
participate in hands-on experimentation as part of the learning process. Unfortunately,
many first year engineering students that are new to this discipline are often intimidated
by the material and unmotivated to review or practice the concepts on their own. The
purpose of this study is to measure the success of using a cooperative and competitive
video game as a pedagogical tool in software engineering education. The video game
that was developed for this research is called Space Race and it harnesses the power of
group discussion to encourage students to share their individual understandings of basic
programming concepts. This dissemination of knowledge within groups was able to teach
many students new concepts that they did not understand previously.At least 67% of the
students stated that the game motivates them to review course material. The game was well-
received with at least 82% of the students that played Space Race agreeing that they would
recommend that others also learn basic programming concepts with this game. Although
the game does not directly teach students new concepts, it allows the instructors to identify
what concepts students struggle with. Space Race encourages students to ask the instructor
questions when they do not understand. In some cases, game participants outperform non-
participants on course exams. On the final course exam, all of the statistically significant
(p<0.05) comparisons (42% of the relevant questions) showed a performance improvement
of game participants, with a maximum grade improvement of 41%. The findings also
suggest that some students can retain the knowledge obtained from Space Race for at least
7 weeks. The results of this study provide strong evidence that a video game can be a
successful pedagogical tool for software engineering education.

iv

Acknowledgments
This work would not have been possible without the support and help I have received

from very many wonderful people over the years. In the course of completing this research,
I was reminded of how very little I know and how much I rely on the experience and
intellect of others. I also could not have finished this research, with my sanity intact,
without the incredible encouragement and kindness I have received from so many amazing
people I have met along the way.

I would like to thank the entire Engineering I Department and the Computing and Soft-
ware Department for their continuous encouragement and assistance. Thank you, Michael
Curwin, for all of the invaluable technical support and advice you provided. Thank you,
Jessica Anderson, Helena Collins, Tina Macala, Ruth Nicholson, Joanne Squires, Kristina
Trollip, and Teresa Trimboli for being so helpful, and encouraging. Thank you, Joanne
Bannister, for being such an incredible friend. Deep thanks to Dr. Tom Doyle, Dr. William
Farmer, Dr. Robert Fleisig, and Dr. Colin McDonald for being so accommodating and sup-
portive. To the Engineering I students that I have taught or that have participated in my
research: thank you for making this work possible and for brightening my day with your
kind words of support.

I would also like to thank all of the great peers that I had the fortunate opportunity to
work with. You have all made my time here so unforgettable and enjoyable. To Sari Latif
and Leo Li, thank you for listening to all my crazy ideas; providing invaluable help and
direction; and just making me laugh. Thank you, Monika Bialy and Widmer Bland for
being my friends and helping me with my graduate courses. For being such great listeners,
game-testers, advice-givers, and friends: thank you so much, Shawn Simon, Alessandro
Minali, Mohsin Khan, Jamie Counsell, Taralyn Schwering, JJ Booth, Omar Boursali, Ian
Sinke, Karl Good, Alexander Halliwushka, and Taylor Sorgini.

I also want to send a big thank you to Dr. Christopher Anand, Kevin Browne, and
Andrew Curtis for giving me such great advice on ethics approval, game and research
design, and statistical analysis. I would also like to give huge thanks to Michael Viveros
for working so unbelievably hard to help me develop Space Race. Michael’s remarkable
work was what allowed Space Race to be such a success. Thank you again for making all
the necessary adjustments for Space Race and for smiling through it all.

My sincerest appreciation and thanks to Dr. Spencer Smith for believing in me, pro-
viding me with outstanding guidance, and giving me the freedom to spread my wings. I
truly could not have done this without you. Thank you for constantly reassuring me and
providing me with such incredible opportunities. I have learned so much from you and I
will be sure to take this knowledge with me everywhere I go.

Finally, as always, thanks to my family for believing in me from the start. Thank you,
Paulo Fetalvero, for being impossibly patient with me. Thank you, Dad, for reminding me
of the importance of school. To my Brother, thank you for supporting me in your own way;

v

whether that means driving me to school or never questioning the work I do, thank you.
For the wonderful meals and support, thank you, Grandma. To my Grandpa, thank you for
inspiring me to always improve myself and to constantly seek out new knowledge. Finally,
I want to say thank you to my superhuman Mom for being my best friend and biggest fan.

vi

Contents

Abstract iv

Acknowledgments v

1 Introduction 1
1.1 Problem Statement . 1
1.2 Proposed Solution . 2
1.3 Thesis Contributions . 2
1.4 Thesis Organization . 3

2 Theoretical Background 5
2.1 Learning Theories . 5

2.1.1 Experiential Learning . 7
2.1.2 Collaborative Learning . 8

2.2 Games . 10
2.2.1 Definition of Games . 10
2.2.2 Flow in Games . 11
2.2.3 Competition and Cooperation in Games 11

2.3 Game-Based Learning . 13
2.4 Rationale for Game-Based Learning . 13
2.5 Edutainment versus Educational Games 14

3 Literature Review 16
3.1 Collaboration to Learn Programming . 16
3.2 Game-Based Learning to Teach Programming 17

3.2.1 Demand and Interest from Students 17
3.2.2 Previous Research . 18

3.2.2.1 ToonTalk-Teaches Abstract Programming Concepts Through
Concrete Actions . 19

3.2.2.2 LearnMem1- Teaches Basic Computer Memory Concepts 20

vii

3.2.2.3 Program Your Robot- Practice Introductory Programming
Constructs Through a Game 22

3.2.2.4 Robocode . 24
3.2.2.5 6 Tablet Video Game Applications to Teach Introductory

Science Concepts . 24

4 Game Design 27
4.1 Design Goals . 27
4.2 Game Overview . 28

4.2.1 Gameplay . 28
4.2.2 Level Design . 29

4.3 Level 1 Design . 29
4.3.1 Programming Concepts . 29
4.3.2 Game Screen . 30
4.3.3 Game Controls . 30
4.3.4 Game Mechanics . 31

4.4 Level 2 Design . 32
4.4.1 Programming Concepts . 32
4.4.2 Game Screen . 32
4.4.3 Game Controls . 33
4.4.4 Game Mechanics . 34

4.5 Level 3 Design . 39
4.5.1 Programming Concepts . 39
4.5.2 Game Screen . 40
4.5.3 Game Controls . 41
4.5.4 Game Mechanics . 42

4.6 Level 4 Design . 43
4.6.1 Programming Concepts . 44
4.6.2 Game Screen . 44
4.6.3 Game Controls . 45
4.6.4 Game Mechanics . 46

5 Experimental Procedure 50
5.1 Participants . 50
5.2 Surveys and Assessments . 51

5.2.1 Surveys . 51
5.2.2 Pre and Post-Game Quizzes . 52
5.2.3 Course Exams . 53

5.3 Data Collection Timeline . 53

viii

6 Student Attitudes and Prior Experience 55
6.1 Previous Programming Experience . 55
6.2 Video Gaming Habits . 57
6.3 Attitude Towards Educational Video Games 58

7 Game Reception and Feedback 64
7.1 Survey B Results . 64

7.1.1 Playability . 70
7.1.2 Teachability . 75
7.1.3 Cooperation . 77
7.1.4 Competition . 79

8 Educational Effectiveness of Game 81
8.1 Benchmark for Student Abilities . 81
8.2 Pre and Post Quiz Results . 86

8.2.1 Comparing the Effects of Space Race on Different Students 90
8.3 Exam Results . 92

8.3.1 Midterm Exam Results . 92
8.3.2 Final Exam Results . 95

9 Conclusions 100
9.1 Limitations and Future Work . 102

Bibliography 104

A Level Solutions for Space Race 110

B Cheat Sheets for Space Race 139

C Pre and Post Quizzes 143

D Experimental Surveys 148

E Exam Questions 154
E.1 Midterm 1 . 154
E.2 Midterm 2 . 160
E.3 Final Exam . 161

ix

Chapter 1

Introduction

Computing is an important discipline for future engineers and scientists to understand.
However, it is challenging to motivate and teach computing to many of today’s students in
higher education. This thesis considers the use of video games to teach this material more
effectively than current, more traditional, methods. A new cooperative and competitive
video game is developed and then analyzed for this study. Student attitudes towards gaming
in education is surveyed. The game is also assessed in its short term impact and longer term
impact on knowledge retention.

This chapter begins with a statement of the problem that the researcher would like to
address. It is then followed by a discussion of the solution that has been proposed. The
contributions of this study will also be highlighted and a general mapping of the thesis will
be provided.

1.1 Problem Statement
Computer programming is a complex subject that cannot be taught through conventional
lecturing and explanation alone. The practical nature of programming requires that those
new to this discipline must engage in hands-on experimentation to become skilled in this
field. Students in first year engineering at McMaster University are required to take Engi-
neering Computation (ENG 1D04), an introductory course to the fundamentals of computer
programming. The current curriculum prescribes 3 hours of mandatory hands-on lab ac-
tivities over the course of 12 weeks to provide students with an opportunity to explore
programming first hand. Unfortunately, this is an insufficient amount of time for beginners
to become experienced with programming. When this is coupled with a general lack of
motivation from students to study the material on their own, many students find themselves
struggling with the course content.

Observation has shown that a majority of students enrolled in ENG 1D04 are unmo-

1

MASc Thesis - Samantha Chan - McMaster - Computing and Software

tivated to learn computer programming during their regular study. This is partly because
students are intimidated by new syntax and lengthy code examples shown in textbooks
and course slides. Students have also been observed to learn programming concepts more
successfully through discussion in a group. They are much more capable at solving pro-
gramming lab assignments in a group as opposed to individually. Anecdotes from students
also suggest that they prefer this method of learning to working individually. This observa-
tion matches the findings of other researchers, as discussed in Chapter 3.

Efforts have been made through the new Experiential Playground and Innovation Class-
room (EPIC) lab at McMaster University to encourage students to learn through experi-
ence [21]. Bonus marks are rewarded for students that volunteer to complete any or all four
lab activities being offered. Almost all the students enrolled in ENG 1D04 of Term 1 of the
2012-2013 Academic Year completed the first lab activity and 65% of the students com-
pleted at least 1 of the remaining 3 lab activities. This leaves room for improvement. More
efforts need to be directed in motivating students on learning through experimentation.

1.2 Proposed Solution
To improve student engagement with programming course material, the project proposes
a solution that introduces a video game into teaching practices. Specifically, a cooperative
and competitive game, Space Race, was designed to teach students basic programming con-
cepts. This was an additional activity that was integrated into the EPIC lab. The incentive
for this project stems from the tendency of games to engage users and their ability to cater
to the needs of this generation’s learners. Moreover, games provide an ideal environment
for students to actively learn programming through self-exploration and experimentation.
This notion is explored in depth in Chapter 2. Finally, as mentioned above, students were
observed to learn more effectively in groups, rather than individually. A game could take
advantage of this fact and encourage these group discussions by incorporating social inter-
action between players.

1.3 Thesis Contributions
The findings of this research can provide software engineering educators and pedagogical
researchers with insight on the feasibility and effectiveness of a video game as a teaching
tool. As seen in Chapter 3, teaching computer programming through a game in higher
education remains a relatively new field and more research must be conducted to evaluate
the effectiveness of such an approach. Specifically, this study will contribute the following:

• Provide evidence that a majority of students in engineering would like to see video

2

MASc Thesis - Samantha Chan - McMaster - Computing and Software

games incorporated into education and feel that their inclusion could motivate stu-
dents to engage with course material

• Demonstrate how cooperation and group discussion can be harnessed effectively
through a game to teach students basic computer programming concepts

• Highlight the importance of feedback in educational video games

• Prove that a video game can potentially have a positive effect on student knowledge
in programming immediately after gameplay

• Show that an educational video game that teaches programming can potentially pos-
itively impact student understanding of course material

• Reveal that programming knowledge obtained in a video game can be used in a non-
gaming context

• Indicate that the understandings acquired through a video game that teaches pro-
gramming can be retained for at least 7 weeks by some students that play the game

1.4 Thesis Organization
The thesis is organized according to the chronological order of steps that were followed in
designing this research experiment.

To begin, Chapter 2 will orient the reader with the theoretical background for this
project including learning theories such as experiential learning and collaborative learn-
ing. Games will also be explored and defined. Specifically, flow theory, competition, and
cooperation in games will be mentioned. The rationale for game-based learning will also
be presented.

Chapter 3 will investigate the motivations for injecting game-based learning into soft-
ware engineering education. The chapter will also explore the role that cooperation can
play in learning programming. Finally, previous research on video games as a pedagogical
tool for computing and software education will be presented.

Chapter 4 will cover the gameplay, level design, and game mechanics of Space Race.
Space Race was the game that was used for this study. An understanding of how the game
is played is imperative to understanding the results of this study.

Chapter 5 mentions the experimental procedures that was followed by the researcher.
This chapter will describe the participants of the study, the data that was collected for
analysis, and the data collection timeline.

Chapter 6 states the results of a survey that was used to gauge student attitudes towards
the incorporation of games in education as well as their perceived prior experience with

3

MASc Thesis - Samantha Chan - McMaster - Computing and Software

programming. The results of the survey will also reveal the video gaming habits of the
student population within this study.

Chapter 7 discloses the feedback and comments that the researcher received from stu-
dents regarding the playability, teachability, and the cooperative and competitive aspects of
Space Race.

Chapter 8 presents a discussion of the results of various exams and quizzes that were
used to assess the educational effectiveness of Space Race. The exam results of game
participants will also be contrasted and compared to non-participants.

Finally, Chapter 9 will deliver conclusions that can be derived from the results of this
study. The chapter will also discuss the limitations of this study as well as the future work
that can be done to both improve Space Race and the education that students can receive in
software engineering.

4

Chapter 2

Theoretical Background

This chapter introduces and examines learning theories that support the incorporation of
video games in education. Specifically, the progression from behavioural to cognitive to
constructivist perspectives will be presented with an emphasis on the constructivist ap-
proach, since it most closely aligns with the goals of experiential and collaborative learn-
ing.This chapter will also formally define games and review some characteristics of games
like their tendency to engage players. Finally, research literature presented will also be on
recent empirical studies that have investigated the feasibility of game-based learning.

2.1 Learning Theories
Throughout history, many researchers and philosophers have tried to understand and de-
velop theories on how people learn. This led to the development of many philosophies of
education that attempted to unify pedagogy, curriculum, learning theory, and the purpose of
education. Up until the late 1950s, behaviourism was the leading theory in education [12].
Behavioural theorists believed that learning would take place as a result of responses to
stimuli in the environment which was reinforced by teachers; the mind was a “black box”
that could be studied and manipulated by observing and controlling external behaviour.
For those that followed this philosophy, teaching through conditioning, by supplying the
appropriate reinforcer for each desired behaviour, was the primary technique [27].

By the late 1950s, cognitivism was the primary educational philosophy [12]. Propo-
nents of the cognitive theory believed the mind was more than a “black box” and mental
processes such as thinking, memory, and problem-solving needed to be understood to ex-
plain how learning occurs. As such, the individual learner was more important than the
environment for cognitivist theorists. Instructional design was influenced by their under-
standing of how the human mind works and the focus was on building intelligence and
cognitive development [27]. In more recent years, constructivism has taken over as the

5

MASc Thesis - Samantha Chan - McMaster - Computing and Software

prevailing paradigm for instructional designers [12].
Jean Piaget, a French philosopher, is commonly credited for the formalization of the

constructivism learning theory [37]. The constructivism perspective builds upon the cogni-
tivist approach. Like cognitivists, constructivists believe that knowledge is constructed by
the individual. However, a greater focus is placed on the role of interactions between ex-
ternal experiences and internal ideas in the learning process. When applying this approach
to pedagogical design, students are encouraged to learn by increasing their participation
in the appropriation of their knowledge. This type of instructional strategy sees self ex-
ploration and questioning as necessary components to the learning process. Consequently,
when teaching within the constructivist mode, learners become actively involved so that
they may build knowledge for themselves; they do not simply mirror and reflect what they
have read. In this style of active learning, teachers become facilitators of a framework of
free exploration and, as such, learners bear the responsibility of learning [37].

The constructivist theory is composed of many suppositions, but Savery and Duffy have
condensed them to three fundamental ideas [61]:

1. Understanding is in our interactions with the environment

2. Cognitive conflict or puzzlement is the stimulus for learning and deter-
mines the organization and nature of what is learned

3. Knowledge evolves through social negotiation and through the evaluation
of the viability of individual understandings

The first idea states that one cannot consider what is learned independently from how it
is learned; this is the essential concept of constructivism. To expand, what an individ-
ual learns is a function of the context, content, learner’s activity, and the objectives of the
learner. Since an individual’s understanding is constructed independently, this understand-
ing cannot be shared with others but group discussion can be a means of testing the com-
patibility of separate understandings. The second proposition identifies cognitive conflict
or puzzlement as the primary source of motivation for learning. This intrinsic motivation to
understand is responsible in determining what the learner attends to and what is constructed
from experiences. Essentially, the goal of the learner is pivotal to considering what will be
learned. The final supposition establishes social collaboration as a critical part in devel-
oping individual understanding. Discussion with people is a mechanism that an individual
can utilize to test their personal understanding. Furthermore, other individuals can pro-
vide alternative views that challenge thinking. These collaborative groups are necessary to
enrich, interweave, and expand understandings of different phenomena [61].

Research conducted by Tynjala in 1999 [65] examined the benefits of a constructivist
learning environment versus a traditional learning environment in universities. Tynjala
argues that traditional forms of university instruction focuses on the acquisition of inert

6

MASc Thesis - Samantha Chan - McMaster - Computing and Software

knowledge. Such knowledge is suitable in instructional settings but is often not trans-
ferable to a real working environment where problems are much more complex and social
factors can influence outcomes. Within this traditional framework, students are encouraged
to simply memorize and reproduce the acquired knowledge; much like one would do in a
behaviourist learning environment. This passive reception of information is vastly differ-
ent than the active learning that takes place with the continuous process of construction and
reconstruction of perceived phenomena in a constructivist learning environment. Tynjala
found that students within a constructivist learning environment acquired more diversified
knowledge. Students that learned in the constructivist schema reported that the knowledge
they acquired could be practically applied. In addition, they also felt a development in
their thinking and communication skills, which helped them articulate their thoughts and
function as a more effective team member. In summary, the findings of the study suggests
that learning outcomes generated in a constructivist environment better fulfills the require-
ments of working life. This could be attributed to the constructivist student’s perceived
enhancement of personal transferable skills [65].

These philosophies of constructivism and constructivist learning environments are im-
portant for this study because of the way these ideas are apparent in certain types of video
games. In addition, several researchers have discovered that learning with well-designed
video games follow constructivist principles [17]. For instance, video games can create
an environment through which learners can explore. While navigating immersive virtual
worlds with rich media, learners can practice skills that can be transferred to the real world.
Furthermore, games can present a context for problem-solving. Finally, collaboration and
learning from peers, which is fundamental to the constructivist approach, can be facili-
tated through multi-player video games or collaborative gameplay in the same physical
space [69].

In the following subsections, experiential learning and collaborative learning will be
explored. Both of these learning styles have characteristics that are congruent with the
principles of constructivism. Each of these styles support the argument that games can be
used to create a constructivist learning environment, which in turn will create a space where
effective learning can take place.

2.1.1 Experiential Learning
As mentioned previously, constructivism posits that students learn better through self-
exploration and deriving personal meaning from that experience. It is no surprise then
that experiential learning, which strives to instruct through experience, stems from con-
structivist principles. In the experiential learning model, experience plays a central role
in the learning process. Kolb’s experiential learning model (Figure 2.1) consists of four
stages. It begins with the student actively taking on the learning process by exposure to
tangible experiences. The second stage requires the student to reflect on the experience.

7

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Figure 2.1: Kolb’s Experiential Learning Cycle [32]

This reflection is then followed by the generation of abstract concepts, which must then be
generalized. Finally, the learner must modify and plan the next learning session. Generally,
this model places importance on the continuous nature of learning and the appropriate feed-
back; this is key to providing a basis for a continuous process of goal-motivated action [32].

For a long time, designers of digital learning environments have looked to experiential
learning theory for direction [35]. The ideas of experiential learning provides a solid foun-
dation for the integration of games and pedagogy. The virtual worlds created by games
have been found to be highly interactive since they can provide dynamic feedback, ex-
perimentation and exploration opportunities. As such, video games provide an excellent
platform for interaction and feedback to take place; these are essential components of the
experiential learning cycle [29]. When players are immersed in these virtual worlds, they
must examine the environment, reflect on the situation, and generate a theory about what
something in this circumstance might mean, and re-adjust the virtual world to observe what
effect it has. This process closely matches that of the experiential learning cycle.

2.1.2 Collaborative Learning
A central component of constructivist learning is the collaboration of students. When stu-
dents group together, they can share and clarify ideas and opinions, while enhancing their
communication skills and learning from one another. Collaboration enables each individ-
ual to work to their strengths, expand their critical thinking skills, exercise their creativity,
confirm their understandings, and become familiarized with different learning styles, skills,
and perspectives [69]. When considering group-based learning, Strijbos stipulates that it is
composed of an intertwining of cognitive, social, and motivational components [63]. As
seen in Figure 2.2 motivation can affect cognition through persistence in practice and alter
social aspects, such as group cohesion and student responsibility. Cognitive development,

8

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Figure 2.2: Theoretical Perspective of Group-Based Learning [63]

on the other hand, can lead to increased self-confidence, which can raise motivation to learn
and also improve social skills. This, in turn, may stimulate cognitive gains through more
effective collaboration [63]. Vygotsky’s contributions to the field of social constructivism
is particularly involved with the collaborative element of learning. According to his theory,
problem solving skills of specific tasks can be evaluated based on a student’s ability to per-
form these tasks independently; with help from others; and not at all, even with help from
others. The second component takes place in a collaborative environment where individu-
als can learn from their more knowledgable peers [67]. This ability to solve problems with
others is transferable from the classroom to “real life” [54].

Collaborative learning can take place when players play multiplayer online games. Re-
search has shown that, in multiplayer online games, individual players collaborate in teams
where each person contributes a different, but overlapping, set of skills [24]. These groups
often share knowledge and values with others both inside the game and in real life. During
gameplay, teams create a distributed and dispersed knowledge within a community much
like in the workplace [24].

9

MASc Thesis - Samantha Chan - McMaster - Computing and Software

2.2 Games
After exploring some educational theories that support the incorporation of game-based
learning in school, this section will look at some characteristics of games and gaming.
Independent features of games and gaming will be reviewed for their potential to provide
educational value. Finally, the engaging nature of games will be discussed.

2.2.1 Definition of Games
Although everyone is familiar with the concept of a game, it is difficult to exactly define
what a game is. Given that there are very many different types of games, when one attempts
to provide a definition of “games”, it seems as though games could be very many things.
It is perhaps easier to identify what games are not. Specifically, how do games differ
from regular play? In 1949, Huizinga defined play as a free activity taken under by an
individual that is consciously outside the “ordinary”. Furthermore, this activity is not taken
“seriously” but it nonetheless absorbs the player intensely and completely [25]. These are
elements that are also found in gaming. However, the main difference between play and
gaming lies within the territory that these activities take place. In play, the individual’s
world is open-ended and make-believe and world-building are key. Contrastingly, games
take place in confined worlds where the rules of engagement are defined and gamers are
encouraged to interpret and optimize their tactics to fit into this defined space [6].

There is no common definition in literature for “game” and there are varying perspec-
tives from different fields of study. However, most agree that although many different
types of games exist, they all share common characteristics. Avedon, in particular, has
identified ten structural elements of games by combining the work of mathematicians and
behaviourists. These ten elements are [3]:

1. Purpose of the game

2. Procedures for action

3. Rules governing action

4. Number of required players

5. Roles of participant

6. Participant interaction patterns

7. Results or pay-off

8. Abilities and skills required for participation

9. Physical setting and environmental requirements (not always present)

10. Required equipment (not always present)

10

MASc Thesis - Samantha Chan - McMaster - Computing and Software

These components can be used to produce a “game-like” activity. An activity becomes
increasingly more “game-like” with the presence of more of the characteristics in Avedon’s
list.

2.2.2 Flow in Games
Perhaps one of the biggest points of interest in games is their tendency to engage players
and immerse them into another world. When players are both engaged and immersed within
the game, they are said to be experiencing “flow”. The concept of flow was first introduced
by Csikszentmihalyi after studying people perform activities such as chess and dance [13].
When individuals are experiencing flow, they are said to be in a state of complete absorption
and this results in the optimal experience of the activity that elicited this state [13].

Observations have shown that a person is more likely to be in a state of flow when they
are performing an activity with a defined set of goals that require specific responses. It
is easy to see then that games, with defined goals and rules that make it very clear to the
player what to do and how, can be very effective in putting players into flow. Flow can also
occur when a person dedicates their skills to solving a problem that is manageable but still
challenging. This can, in turn, bring about an intention to learn new skills to cope with new
challenges. Games often present obstacles and challenges that can bring about a state of
flow for players [14].

Flow can also be considered as a source of mental energy. This is because it can focus
an individual’s attention and motivate action. Like any other sources of energy, flow can be
harnessed for both constructive and destructive purposes. It has been shown that learning,
a constructive purpose, is positively affected by flow [68]. As such, educational games
should be designed in such a way to induce flow so that the player’s learning experience
can be optimized. Generally speaking, educational games must strive to provide players
with challenges that are related to the main task so that flow is possible. It is important
that these challenges relate to the main task and are not, in fact, artifacts that distract from
gameplay. Also, if the game offers challenges that match the player’s existing skills, the
probability of experiencing flow is increased. If the skill required to overcome a challenge
far exceeds that of the player’s skill, the player may exhibit anxiety, which hinders flow
from occurring. Contrastingly, if the task is too simple, the player may feel bored, which
will also prevent flow. As a general outline, game designers should design the game such
that challenges increase in difficulty as players develop their skills. This should keep the
player in a state of flow while playing the game [68].

2.2.3 Competition and Cooperation in Games
Social competition in games arises when a player competes with one or more opponents
that can either be controlled by another person or by a computer. When social competition

11

MASc Thesis - Samantha Chan - McMaster - Computing and Software

occurs, a player will perform actions to maintain their own interests at the disadvantage
of their opponent. During gameplay, each player will monitor how their individual perfor-
mance compares to the performance of others and how this difference is expected to con-
tinue for the rest of the competition. These social comparisons will affect the player’s emo-
tional state, self-esteem, and mood. Better performance will positively affect the player’s
emotions, self-esteem, and mood, while worse performance will have negative effects [66].
Emotional states are caused by intense feelings that are directed at someone or something,
whereas moods are less intense and the often (though not always) lack a contextual stim-
ulus. Most experts believe moods linger longer than emotional feelings. However, both
emotions and moods can affect each other. For example, defeating an opponent may cause
an individual to experience an intense emotion of joy, which can put them into a good mood
over the next few days [26].

Research has found that challenge and competition can be an important reason for the
enjoyment felt by computer game players [66]. However, the extent of this enjoyment will
differ from person to person, as some individuals may prefer engagement in competitive
situations more than others. From this, one can surmise that people that are more com-
fortable with competitive situations will seek out games that offer this more so than people
who are less interested in social comparisons. Individuals may also seek out competitive
situations for their psychological consequences. Competition allows one to maintain or
enhance their self-esteem and to bring about positive moods. However, it is important to
note that not all individuals may seek out competition for these psychological benefits; this
is dependent on their social value orientation. A person’s actions can be categorized into
three outcomes: competitive, individualistic, and cooperative. Individualistic outcomes
occur when one tends to their own benefits. While a cooperative orientation means that
individuals care about their own benefits in addition to the benefits of others. Finally, a
person with a competitive orientation, will maximize their personal benefits in relation to
the benefits of others. Those that exhibit a competitive orientation will be most likely to
put themselves in a competitive situation [66].

Since not all individuals may see competition as motivation to play games, it may be ad-
vantageous to incorporate a cooperative component to games, to motivate those that have
a cooperative orientation. This can be done in games that support competitive groups.
Within this context, individuals cooperate within a group but compete across groups. Em-
pirical studies have shown that individuals show higher levels of cooperation within their
teams when there is competition between groups [7]. This is because of the player’s ten-
dency to view their group mates as collaborators rather than competitors. Also feelings of
guilt are registered when the individual does not feel that they have contributed as much as
their group members [7]. Those that are more individualistic in nature are also more likely
to contribute under group competition, as opposed to a standard public situation [57]. Con-
sequently, games that incorporate both competition and cooperation in the form of group
competition may increase players’ motivation to participate and play the game.

12

MASc Thesis - Samantha Chan - McMaster - Computing and Software

2.3 Game-Based Learning
Having considered learning theories that support the inclusion of games in education and
formally defined games, this section talks about game-based learning, a combination of the
aforementioned topics.

In recent years, video games have become a pervasive part of everyday life. This is a
direct consequence of the introduction of mobile devices such as smart phones and tablets,
which allow easy access to video games at any time. Furthermore, the explosive advance-
ment in computing power and graphics enabled the creation of “serious games” such as
high definition first-person shooters, driving games, open world games, action-adventure
games, and real-time strategy games [36]. Surveys results published in 2008 by the Pew
Internet & American Life Project have shown that 76% of students (82% of full-time and
69% of part-time students) who are 18 or older are regular or occasional game players [1].
It is not surprising then that there is a renewed interest in the educational potential of
video games [20]. With the rapid progression of video games, contemporary education
researchers and game developers both have much to explore. For example, the educational
potential in an early text-based adventure game is vastly different from a high-definition
action-adventure game. As such, there is a high demand for research-based educational
video games that challenge the existing method of game-based learning.

2.4 Rationale for Game-Based Learning
When reviewing the literature on game-based learning, an assumption is commonly made
that the rationale for this method is that games are intrinsically motivating. Also, the argu-
ment made by supporters of game-based learning is that if the motivational factors associ-
ated with playing games could be transferred to learning then the learning would be more
successful. However, most of these researchers do not consider that game playing is not
necessarily motivating to all individuals. For the individuals that are not motivated to play
games, another reason must be made to use games educationally. Another argument for the
incorporation of video games in education is the changing profile of modern learners.

Present-day students are drastically different from the students of the past. The current
educational system was designed for the students of the past and may no longer fit the
needs of today’s students. Prensky identifies these modern students as being digital natives
or “Games Generation” learners [55]. These digital natives have grown up with computer
games, television, and other media. Prensky argues that these mediums have taught them
how to learn instinctively and, as such, this generation is cognitively different from previous
generations. The ten cognitive changes in people of the Games Generation are [55]:

1. Games Generation learners process information at a much faster pace than traditional
learners

13

MASc Thesis - Samantha Chan - McMaster - Computing and Software

2. Games Generation learners can multitask and process information from multiple
sources at the same time

3. Games Generation learners are drawn towards graphics and images rather than tex-
tual information

4. Games Generation learners do not follow a linear path through learning materials

5. Games Generation learners will expect to work collaboratively with others rather
than alone

6. Games Generation learners play a more active role in obtaining information and plan-
ning their learning

7. Games Generation learners view play and work as being closely related and playing
games to learn will feel natural

8. Games Generation learners expect quick reward and feedback and will quickly be-
come demotivated if they do not get rewards for their effort

9. Games Generation learners do not part with fantasy play as they grow up like the
traditional learners of the past; they are willing to go a lot further with their imagina-
tions

10. Games Generation learners are quick to familiarize themselves with new technology
and welcome change and advancement

It is important to note that these changes in cognition are based on experience, not empir-
ical studies [55]. Nevertheless, they provide a compelling argument for a new approach
in education. When one reviews the characteristics of Games Generation learners listed
above, it becomes obvious that video and computer games are able to satisfy these modern
students’ learning needs.

2.5 Edutainment versus Educational Games
Games, without computers, have long been used as a pedagogical tool in instructing stu-
dents. The fun that students derive from playing these games serve as motivation to remain
engaged with the material [59]. With advances in technology, game developers and ped-
agogical researchers alike realized the potential of multimedia in improving games used
in instruction, which could result in higher-quality education. This awareness motivated
the creation of the “edutainment” industry in the seventies. Edutainment is a broad term

14

MASc Thesis - Samantha Chan - McMaster - Computing and Software

that represents the union of education and entertainment. It embodies the delivery of knowl-
edge through multiple media platforms, including video games [20]. The eighties and early
nineties were spent developing multiple games of diverse genres such as educational adven-
ture games and drill-and-practice games. The development of these games was motivated
by the business market, as opposed to cognitive or educational principles. Consequently, by
the late nineties, such edutainment games slowly lost their appeal. A majority of the edu-
tainment titles currently left in the market are now targeted towards young and pre-school
children [59].

Edutainment and educational games can be differentiated in their interactivity. Edu-
tainment games usually force players to practice repetitive skills or rehearse memorized
facts, whereas educational games require players to strategize, test hypotheses, or solve
problems. These educational games usually feature a system, rewards, or goals that moti-
vate the players. The content to be learned is also relevant to the narrative plot. Usually,
unlike educational games, edutainment titles fail to transmit non trivial knowledge. Nev-
ertheless, edutainment games that employ skill and drill have also demonstrated gains in
learning [18]. For example, in 2004, researchers found that a math facts game designed for
second graders encouraged players to complete a larger number of problems at an increased
level of difficulty [38]. This math facts game was played on handheld computers and those
that played this game completed nearly triple the number of problems in 19 days than those
that used paper worksheets. The learners employing edutainment game also voluntarily
increased the degree of difficulty in the game as they continued to play [38].

15

Chapter 3

Literature Review

Many university students must study the basics of programming because it is relevant in
many fields of technology. Unfortunately, some students experience great difficulty in both
understanding and applying the basics taught in these courses. The difficulty of the subject
stems from its practical nature and the presence of many abstract concepts. The classes of
basic programming courses are often large and heterogenous in nature; students exhibit a
large range of familiarity with the subject [34]. As such, it is often difficult to design course
content that is relevant for experts and manageable by novices.

This chapter will review some of the current methods that have been employed to teach
programming. Collaboration-based learning in the form of paired programming will be
explored in addition to game-based learning. It is important to understand the current
methodology used for instruction and its effects so that improvements can be made.

3.1 Collaboration to Learn Programming
As mentioned in Chapter 2, social collaboration can be highly beneficial for learners. The
following criteria has been established for tasks that benefit most from social collabora-
tion [64]:

• The task is complex or conceptual

• Problem solving is desired

• Divergent thinking or creativity is desired

• Mastery and retention are important

• Quality of performance is expected

• Higher-level reasoning strategies and critical thinking are needed

16

MASc Thesis - Samantha Chan - McMaster - Computing and Software

It is clear that these qualities are all inherent in programming. In 1991, Flor [22] observed
and recorded verbal and non-verbal conversations between two programmers collaborating
on a software maintenance task. He noticed that each member of the pair was able to
add their previous experience, task-relevant knowledge, and perspective to the problem
through collaboration. This increased the possibility of generating more diverse plans,
which lead to a greater ability to solve the problem [22]. His observations are consistent
with the advantages of collaborative learning. Furthermore, other research has shown that
collaboration is an effective pedagogical approach for introductory programming [9, 15].
Also, collaborative learning has been found to be particularly effective for computer science
because of the grand scale of complexity and how it continuously changes [56].

When teaching students about programming, paired programming has often been used
as a form of collaborative learning. When students perform paired programming, each pair
sits side-by-side at one computer to work on the same program, or problem, at the same
time. Research done by Cliburn in 2003 [9] on students in an introductory programming
course at a small college shows that pair programming produces better projects in a shorter
time-frame. Also most students enjoyed the class more when they were asked to program
in pairs and it was perceived that the group work experience would be transferable to the
skills required in the industry. Finally, exam scores were comparable with courses that
did not incorporate paired programming [9]. Research conducted by McDowell et al. on
600 students in an introductory programming class yielded similar positive results. Like
Cliburn, they found that students who programmed in pairs generated better programs and
performed equally well on the final exam as those who programmed independently. In-
terestingly, they found that those that programmed in pairs also completed the course at
higher rates [46]. These findings support the notion that social collaboration can be used to
great effect in teaching introductory programming.

3.2 Game-Based Learning to Teach Programming
This section begins with a review of the interest students in higher education have in seeing
games in computing classes. It will then examine the literature on the use of computer
games to instruct software engineering concepts.

3.2.1 Demand and Interest from Students
Research conducted by Kumar and Khurana in 2012 [4] shows that students in the field of
computing are showing a great interest in a gamified approach for the learning process. A
survey was conducted upon 207 students enrolled in a post graduate program in computer
applications (higher education). Three parameters were explored within this survey:

• Identification of the students perspective with the current pedagogy system

17

MASc Thesis - Samantha Chan - McMaster - Computing and Software

• Students’ outlook towards games

• Willingness to accept innovation in pedagogies and other factors

Results showed that 86% of the students would like the instructor to incorporated game-
oriented pedagogies into classes. 94% of the students believed that fun learning in classes
would elevate the quality of classes and encourage comfort with courses by lowering the
barriers associated with fear of course content. 87% stated they would be comfortable
with new game-oriented pedagogies in place of PowerPoint or whiteboard presentations
and videos. 46% of the students believed that motivating students would be the best way to
engage students in the classes while another 45% believed that incorporation of new peda-
gogies in class, such as games, would be best. The remaining 9% believed that mandatory
attendance be the best source of engagement [4]. These findings show a desire among stu-
dents for the transition from traditional pedagogy to game-oriented pedagogies in computer
programming courses.

3.2.2 Previous Research
As mentioned in Chapter 2, game-based learning can be highly effective. However, there
is still a lack of empirical evidence to suggest that its application in software engineering
or computing is effective. It is important to mention again that game-based learning here
refers to the use of games as a tool to teach programming; it does not refer to the develop-
ment of games as a method of teaching programming. As such, many popular block-based
graphical languages such as StarLogo The Next Generation [70], Scratch [42], Alice2 [31],
and Cleogo [10] will not be considered. These novice programming environments are not
considered games, since students have to build a game, not play one, to learn programming.

Very little research has been done to explore game-based learning as a method of in-
struction for programming. Furthermore, most of the research that has been completed does
not definitively compare the effects of game-based learning to more traditional methods.
Moreover, almost none of the research has evaluated whether the programming knowl-
edge acquired from the game is transferable to contexts outside of the game and none
of the games employ collaboration or teamwork in gameplay. In fact, many games have
been proposed by researchers, but they have either not been implemented or not investi-
gated [11]. Table 3.1 lists some games that have been proposed by different researchers for
implementation in software engineering or computer science education.

From Table 3.1, one can see that the educational effectiveness of the game-based learn-
ing approach in teaching programming is severely limited and in many cases non-existent.
The following sub-sections will cover the few conclusions that other researchers have
drawn after developing and studying the effects of a video game or a computer-based game
that teaches programming or computing concepts to students.

18

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Table 3.1: Games Proposed for Implementation in Software Engineering Education

Author(s) Game(s) Programming Topics Evaluation
Rathika Ra-
jaravivarma
(2005) [58]

Number and
Word Games

basic programming skills:
terminal and file IO, string
manipulation, control struc-
tures, random numbers,
arrays, exception handling,
algorithm design

No evaluation

Wen-Chih
Chang, Yu-Min
Chou (2008) [39]

“Bomberman”
computer game

introductory C programming
language

No evaluation

Mathieu Muratet
et al. (2009) [49]

Real-time strat-
egy game

basic programming skills
(same as above)

Evaluation
proposed-results
not published

Emily Oh
Navarro, An-
dre van der Hoek
(2005) [50]

SimSe-
Interactive
Simulation Game

software engineering process
(project management)

No evaluation

Charles Wes-
ley Ford,
Steve Minsker
(2003) [23]

“TREEZ” com-
puter game

Tree traversal techniques and
iterative and recursive traver-
sal algorithms

No evaluation

Andrew Martin
(2000) [45]

Simulation game information systems develop-
ment

No evaluation

3.2.2.1 ToonTalk-Teaches Abstract Programming Concepts Through Concrete Ac-
tions

An example of a game that attempts to teach programming was developed by Kahn in
1999. ToonTalk is an animated interactive world that allows users to build a large range of
computer programs. This interactive puzzle game is unique in that players do not construct
programs by typing text or arranging icons; it does so by taking actions in its world. For
example, the player can perform primitive operations such as addition by building a stack
of numbers. In this fashion, ToonTalk strives to make the abstractions for computation
concrete. Demos also supplement the puzzle games. In this situation, the player observes
a playback, with synchronized narration, of a solution to a programming construct or tech-
nique. However, in this passive mode, the learner typically learns superficially, unless
puzzle solving or free form constructions proceeds after viewing.

To test the success of this game, two classes of 24 children in a fourth grade class

19

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Figure 3.1: Example of a room and question in LearnMem1 [52] (message is shown in
Greek)

were asked to play it. These children had no prior exposure to ToonTalk and only two had
any experience with computer programming. They were paired up and observed to use
Toontalk for three 40-minute sessions. Nearly all the pairs of children were able to solve
the first 25 puzzles without assistance. Since ToonTalk is designed so that each progressive
puzzle builds on programming concepts introduced in previous puzzles, the completion of
25 puzzles suggests that the children are successfully learning programming concepts [28].

This experiment did not compare instruction through the game to more traditional meth-
ods. As such, one cannot tell whether the video game taught any better than regular instruc-
tion would have. Furthermore, Kahn did not test these children outside of the game envi-
ronment to evaluate whether they are able to apply these programming concepts outside of
the ToonTalk world.

3.2.2.2 LearnMem1- Teaches Basic Computer Memory Concepts

LearnMem1 is a game designed to introduce students to basic computer memory concepts;
it conforms to the Greek high school computer science curriculum. It is a game that en-
courages active learning by providing an environment that combines learning material in
the form of webpages with game playing. This environment (Figure 3.1) is structured
around three rooms in the form of mazes and players travel through these mazes to review
different learning materials and to solve questions in progressive levels of difficulty. The
student has to accomplish the mission of reaching and collecting a termination flag in each
room to successfully complete the game. Obstacles to be dealt with include questions to be

20

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Figure 3.2: Example Learning Material (left) and Quiz (right) in LearnMem2 [52] (message
shown in Greek)

answered, doors to be opened, walls to be blasted by setting off bombs, and moving robots
to impede the player’s progress. Explanatory feedback regarding the player’s response fol-
lows each question answered. Also, in each room there is a “golden book” that contains a
listing of all the learning material the student has access to and a navigation menu for this
material.

The player starts the game off with a number of lives and zero points. Their lives
decrease by one for ever incorrect answer. Points are gained with correct answers or bonus
items found in each room. These bonus items may also provide the player with extra lives.
The game terminates when the player loses all of their available lives. Once this happens,
the player may choose to resume the game from the last room they were able to reach in
the previous game or they may stop playing.

Another non-gaming application called LearnMem2 was used as a non-game-based
learning approach. This application had identical learning objectives and content to Learn-
Mem1. LearnMem2 consisted of three thematic units that matched the rooms in Learn-
Mem1. The learning material for each thematic unit was accessible through a navigation
hyperlink. After browsing through the learning material, the student was prompted to com-
plete a quiz. Successful completion of the quiz would allow the students to progress to the
next thematic unit. The feedback that is provided for each question in the quiz is identical
to the feedback given in LearnMem1. Screenshots of LearnMem2 can be seen in Figure 3.2

Research was conducted on two randomly selected high schools in town of central
Greece: Trikala. The test population was comprised of 88 total students that attended the
course ‘Computer Science and Computer Applications’. In each school, participants were
randomly assigned to one of two groups. Group A played LearnMem1 and Group B learned
through LearnMem2. In total, six classes from the high school participated in the research;

21

MASc Thesis - Samantha Chan - McMaster - Computing and Software

three used LearnMem1 and three used LearnMem2.
Pre-tests and post-tests were used to evaluate the effectiveness of the gaming and non-

gaming learning applications. The pre-test and post-test consisted of the same 30 questions
on computer memory but the questions appeared in different orders. Analysis of the pre-test
showed that there was no statistically significant difference in the performance between the
LearnMem1 group and LearnMem2 group [F(1,86)=2.625, p=.109]. However, there was a
statistically significant difference in the performance of the post-test in favour of the Learn-
Mem1 group [F(1,83)=8.853, p=.004] which suggests that the gaming application was a
more effective teaching tool than the non-gaming application. A survey was also provided
after the students completed LearnMem1 and LearnMem2 to understand their opinions to-
wards the application. The students that used LearnMem1 found their application to be
significantly more appealing and educationally fruitful than their peers that used Learn-
Mem2. The survey revealed that LearnMem1 was deemed to be more engaging, effective,
active, and “relaxed” than LearnMem2.

The study was able to demonstrate that the gaming approach was both more effec-
tive in teaching computer memory concepts and more motivational to students than the
non-gaming approach. However, it is important to note that the gaming approach was not
compared to a more traditional approach. Rather, it was compared to another form of ICT
(information and computer technology)-based learning. Also, LearnMem1 lacked sophis-
ticated graphic designs, sound effects, and storylines of immersive multiplayer games that
students play outside school. From the feedback surveys, students identified this as some-
thing they would like to see improved. However, since this simple game was able to have
a positive effect on students’ knowledge acquisition and motivation, one can surmise that
perhaps a more sophisticated game would yield even greater results. Finally, the long term
effects of this game was not investigated so it is not clear whether the gaming approach
would help students retain the knowledge that they have gained [52].

3.2.2.3 Program Your Robot- Practice Introductory Programming Constructs Through
a Game

Program Your Robot is a serious game designed to allow higher education students to
practice introductory programming concepts within an environment that allows them to
attain skills like algorithm building, debugging, and simulation. The premise of the game
is for the player to assist a robot escape from a series of obstacles by generating an escape
plan called a solution algorithm. These players will build their solution algorithm by giving
the robot various commands to perform. The commands can either be categorized as action
commands or programming commands. Action commands have a direct effect on the robot;
these commands cause the robot to go forward, turn left, etc. Programming commands
affect the action commands through functions, decision making structures, and looping
mechanisms. All of these commands are dragged from toolbars and dropped into slots to

22

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Figure 3.3: Game Screen for a Level in Program Your Robot [30]

build the solution algorithm. The game screen for Program Your Robot can be seen in
Figure 3.3.

The game consists of six levels with each level presenting a different challenge that
aims to teach a different programming construct. Each level also becomes progressively
more difficult to complete. To pass a level, players must reach a destination point called
the teleporter by developing their solution algorithm.

Twenty-five students who were studying degrees within the computer science discipline
at University of Greenwich were asked to provide an initial evaluation of the game. Since
the participants were studying in different degree programs, their programming knowledge
were also considerably different. Participants provided positive feedback and said that they
enjoyed the game. They also thought that this type of game-based approach could enhance
the problem solving abilities of more novice programmers. Participants also provided feed-
back on improvement of the game mechanics and user interface.

Although this game is similar to the game developed for this study and the players are
similar to the target audience for this study, there is much still remaining to be explored with
regards to the educational value of such a game. The study population for Program Your
Robot was small so the significance of their feedback is questionable. Also, no tests were
conducted to evaluate whether learning took place before and after the game; there were no
quantifications. Finally, it would be interesting to see if this game would be well-received
if it was incorporated into an introductory programming course [30].

23

MASc Thesis - Samantha Chan - McMaster - Computing and Software

3.2.2.4 Robocode

Robocode was started by Mathew Nelson in 2001 and it is an open source educational
game. The purpose of Robocode is to help people learn how to program in Java or .NET
framework programming languages. Players write software that controls a miniature tank.
These miniature tanks are then placed in a playing field to fight other identically-built (but
differently programmed) tanks. The robots can be programmed to move, shoot at, and scan
for other robots. The Robocode framework provides a set of rules that every robot has to
follow. Re-usable object structures are also available to players to ease the development of
robots.

There are several leagues for Robocode. These leagues feature 1-on-1, melee (free
for all with more than two bots) and teams competition. The rankings for of each these
leagues are also publicly available. International competitions for Robocode are held by
international online coding festivals. The Robocode community is very large and diverse.

In one research study, 500 surveys were sent out to Robocode community members and
83 members responded. This survey discovered that 80% of the participants perceived that
their programming skills increased after playing Robocode. Results also demonstrated that
participants in various education levels and expertise levels all enjoyed playing the game.
They also found that the opportunity to learn new programming skills and to have fun was
the greatest sources of motivation to participate in Robocode [41].

While Robocode is a successful game with many participants, its incorporation into
education may not be as effective. One research study tried to incorporate Robocode into
course curriculum but they discovered that many students were able to find open-source
code for their robots online. Students were caught attempting to program tanks from pieces
of existing code from online sources instead of implementing original designs [5].

3.2.2.5 6 Tablet Video Game Applications to Teach Introductory Science Concepts

In Fall 2012, Browne conducted a series of experiments at McMaster University to inves-
tigate the success of 6 tablet video games designed to teach introductory computer science
concepts [8]. The primary goal of this study was to determine whether game-based learn-
ing or gamification could increase student satisfaction and engagement in course material.
Other goals include investigating what game features increase satisfaction and how educa-
tional software can be effectively integrated into the classroom.

The 6 independent tablet games were designed to teach the following concepts: binary
search, binary numbers, CPU/assembly language, polynomial graphs, quicksort algorithm,
and Dijkstra algorithm. All of these games were designed to teach the relevant concepts by
representing them interactively. For example, the Binary Search app, shown in Figure 3.4,
asks students to find a golden egg hidden in a row of coconuts. When the student taps
on a coconut, the coconut will either reveal the golden egg or an arrow that points in the

24

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Figure 3.4: Binary Search App [8]

direction of the golden egg. Once the golden egg has been found, if the student did not
follow a search sequence that conforms to binary search, the game will suggest to the
student to find the egg in a different manner. In this way, the concept is represented in
an interactive manner. In addition, game elements such as objectives, rewards, penalties,
levels, narrative, multiplayer, and in-game assistance was included in the games at different
degrees.

The experiment was conducted on 101 first year computer science students over the
span of 6 weeks where one game is introduced every week during a 50 minute lab session.
Three identical quizzes, relating to the topic being taught, was issued to students at different
points in time during each lab session. One quiz was issued before instruction, another after
the first lesson, and then the final quiz at the end of the second lesson. Students were divided
into two groups, one group would receive a conventional lecture for their first lesson and
then the game for their second lesson. The other group would, alternatively, play the game
for their first lesson, and then receive a conventional lecture for their second lesson. In
addition to the quizzes, students were also given questionnaires to complete to provide
feedback for the usability of each game and to express their attitudes towards game-based
learning.

Browne found that participants generally performed better on Quiz 3 than on Quiz 2 for
all 6 games, after they had experienced both instructional methods. This result is consis-
tent with questionnaire responses where the majority of participants recommended future
instruction should incorporate both traditional and game-based instruction. There was also
no consistent trend in differences in performance on Quiz 2 amongst the two groups for the

25

MASc Thesis - Samantha Chan - McMaster - Computing and Software

6 games game. Overall, participants expressed that they preferred instruction with the apps
more than through traditional academic instruction. Browne did not investigate whether
knowledge obtained through the game could be retained overtime [8].

The success of existing projects with educational games provides the motivation for the
game used in this study (Space Race). To contrast with the projects summarized above, the
current project has the following characteristics and goals:

• There are a large number of participants (485 students total)

• The educational game will be designed to teach introductory programming concepts
to students in higher education (university)

• The educational game will incorporate cooperation and competition

• The effectiveness of the educational game will be quantified

• The longer term impacts of the educational game on learning will be measured (7
weeks after gameplay)

• The transferability of the knowledge gained from the educational game to the real
world will be evaluated

Details of the game used for this study, Space Race, can be found in the next Chapter:
Game Design.

26

Chapter 4

Game Design

Space Race is a multi-player Android tablet game that was developed for this research
project. Levels 2, 3, and 4 was inspired by Spaceteam, a cooperative Android and iPhone
game developed by Sleeping Beast Games 2012 c© [62].

This chapter explores the design elements of Space Race that are relevant for research
purposes. In particular, the details of gameplay are established and the programming con-
cepts present in the game are listed. For brevity, irrelevant details such as menu design,
sound effects, and graphics design have been omitted.

4.1 Design Goals
Two primary goals were set to maximize the effectiveness of the game by motivating stu-
dents to engage with the content.

1. Cooperation between students to reinforce learning of programming concepts.

Since there is evidence that group discussion and cooperation can be highly ben-
ficial for learners, the game should encourage communication between students dur-
ing gameplay [69]. It should be designed such that progression is dependent upon
teamwork between students to maximize cooperation.

2. Competition between groups of students to motivate learning.

An aspect of competition should be included in the game design. This, combined
with cooperation, should prompt students to engage participate in gameplay which,
in turn, will increase opportunities for learning [7].

27

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Figure 4.1: Leaderboard for Space Race

4.2 Game Overview
This section will summarize Space Race’s overall gameplay and level design.

4.2.1 Gameplay
Every player must have their own Android tablet to play Space Race. The game is played
in teams of four for all four levels. The players are able to create their own team along with
their team names. They may choose to stay in the same teams while playing all four levels,
or they may opt to switch teams between levels.

The game features cooperation amongst team members and competition between teams.
Players progress through a level by correctly answering or executing a series of questions
or instructions served by the game. Game performance is dependent upon the time it takes
to complete the instructions in a level; the shorter the time, the better the performance. The
best time for each team is recorded per level on a public leaderboard that players are able
to access through the main menu in the game (Figure 4.1). The times are listed from best
to worst according to team names.

28

MASc Thesis - Samantha Chan - McMaster - Computing and Software

4.2.2 Level Design
The game is comprised of four levels. Each advancing level introduces new programming
concepts that rely on a firm understanding of concepts taught in the previous levels. The
game mechanics between Levels 2, 3, and 4 are very similar, while the game mechanics of
Level 1 are different. The game is designed this way because the concepts introduced in
Level 1 are much more basic than the other levels. Each level of Space Race was designed
to be completed in an hour or less. On average, teams completed each level within 45
minutes. The programming language being taught in all four levels is Python version 2.7.

4.3 Level 1 Design
The sections below describe the design components of Level 1. They provide design details
on the programming concepts introduced, the game controls, the game screen, and the game
mechanics.

4.3.1 Programming Concepts
The following programming concepts are introduced in Level 1:

• Python built-in types

– Boolean type

– Numeric types: int, float, long

– Sequence type: str

• Python built-in operations

– Comparison operations: <, <=, >, >=, ==, !=

– Numeric operations: +, -, *, **, / (emphasis on integer division), %, int(),
float(), round, abs()

– Sequence operations: +, str()

• Variable assignment

• Python Built-In Exceptions

– TypeError

– NameError

– SyntaxError

– ValueError

29

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Figure 4.2: Game Screen for Level 1

4.3.2 Game Screen
Figure 4.2 depicts the game screen for this level. A timer, the team’s high score (if ap-
plicable), the overall high score for all teams (if applicable), and the number of questions
completed out of 45 are displayed on the game screen. The game screen also includes the
following elements:

1. Question Monitor- displays a block of Python code and the last line asks the players
the value of a single variable

2. Answer Buttons- provides four distinct values for the variable in question shown in
the Question Monitor, with one correct answer

3. Panel Type- displays the individual player’s Python data type

4. Correctness Indicator- indicates whether a chosen answer is “Correct” or “Incor-
rect”

4.3.3 Game Controls
The player can interact with Level 1 through four touch buttons and a shake motion. The
four touch buttons are used to select answers and the shake motion is used to indicate an
Error response.

30

MASc Thesis - Samantha Chan - McMaster - Computing and Software

4.3.4 Game Mechanics
The gameplay of Level 1 is very similar to that of a multiple choice quiz game. However,
modifications were made to ensure the design goal of cooperation between team members
is attained.

Every player on the team of four will view the same game screens. The only difference
in information being displayed is the Python data type shown in the Panel Type display.
This data type is randomly assigned to each player at the beginning of the game and they
may be one of the following: int, str, bool, or float\long. Every player on the team
will have a different data type.

The objective of this level is to answer all the questions in the shortest time possible.
Since all four players will see the same question in the Question Monitor and the same four
values for the Answer Buttons, the player to select the correct answer must have the data
type that corresponds to the data type of the variable in question in the Question Monitor.
Refer to Listing 4.1 for a simple example of a question that could be shown in the Question
Monitor.

Listing 4.1: An example of a question shown in the Question Monitor of Level 1
1 X= 6
2 Y= 5
3 Z= X+Y
4
5 Z=?

Assume 10, 11, 12, 13 are the values for the four Answer Buttons given the question in
Listing 4.1. The player with the Panel Type of int must be the player to select the answer
of 11, since the data type of variable Z (line 5) is also of type int. For the question to
advance, the correct answer must be selected by the player with the correct data type. This
encourages the team to converse and generate the correct answer together.

In some cases, the code block shown in the Question Monitor may raise Python excep-
tions (ie. there is an error in the question). An example of this is shown in Listing 4.2.

Listing 4.2: An example of a question with an error shown in the Question Monitor of
Level 1

1 X=6
2 Y==X
3
4 Y=?

For this question, since a Python NameError exception is raised by line 2, all four players
must shake their tablets to acknowledge this error and advance to the next question.

31

MASc Thesis - Samantha Chan - McMaster - Computing and Software

The level is complete when all 45 questions have been answered correctly. Each iter-
ation of this level generates the same questions in the same order. The questions served
by the game are shown in Appendix A. This ensures that every team receives the same
questions and each team has an equal opportunity to improve their overall time with ev-
ery iteration of this level. However, the data type that the players are assigned may differ
through different iterations of Level 1, since the data type is randomly assigned to each
player.

4.4 Level 2 Design
The programming concepts, game controls, game screen, and game mechanics of Level 2
are outlined in the sections below.

4.4.1 Programming Concepts
In addition to the programming concepts introduced in Level 1, the following concepts are
introduced in Level 2:

• Python built-in operations

– Sequence operations: indexing and slicing s[i], s[i:j], len()

• Python Built-In Exceptions

– ZeroDivisionError

For this level, students are provided with a “Cheat Sheet” that concisely summarizes the
concepts that are introduced in this level. This “Cheat Sheet” can be found in Appendix B.

4.4.2 Game Screen
The game screen for this level can be seen in Figure 4.3. The game screen for this level
includes a timer, the team’s high score for that level (if applicable), the overall high score
for that level for all teams (if applicable), and the number of instructions executed out of
112. The game screen also includes the following:

1. Instruction Display- displays a unique instruction to be executed

2. Control Panel (also simply called Panel)- displays the game controls with each con-
trol labeled by a unique control name and paired with its submit button

32

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Figure 4.3: Game Screen for Level 2

3. Previous Values Display- displays the most recent correct value for each game con-
trol on the control panel, if applicable

4. Correctness Indicator- indicates whether a submitted control value is “Correct” or
“Incorrect”

Every player will have the same controls but all the controls will have unique names. That
is, the control names are never duplicated; either on one panel or across different panels.

4.4.3 Game Controls
All of the touchscreen controls that the player can interact with for this level are displayed
together on a single control panel on their screens (seen in Figure 4.3). Each touchscreen
control on the panel is paired with a touch button that is used to submit that control’s
selected value. These Submit Buttons will turn green if the control’s submitted value is
correct, red when the control’s submitted value is incorrect, and yellow if the incorrect
control has been changed.

The interface for the controls was selected to be as intuitive as possible by making use of
“cultural conventions”. Norman [51] describes cultural constraints as conventions that are
shared by a cultural group. For example, the fact that one should click on a button through
touch to cause a desired effect is a cultural, learned convention [51]. These commonly
learned conventions by tablet users was applied to the game design to make it more intuitive

33

MASc Thesis - Samantha Chan - McMaster - Computing and Software

for players to interact with the game. The following controls that these players can interact
with are labeled with a unique name and are shown on each player’s control panel:

• two NumberPickers with a predefined range of 0-5

– Players swipe up and down on a wheel-like mechanism to select an integer
value from its predefined range

– Used to represent Python int values

• an Alphapad with keys A, B, C, D, and del for deleting characters

– The typed characters are shown in a display above the keypad

– Used to represent Python str values

• a Numpad with integer key values 0-9, a decimal (.), and del for deleting characters

– The typed value is shown in a display above the numpad

– Used to represent Python int and float values

• a Switch with values True or False

– Players swipe the control left and right to select True or False, respectively

– Used to represent Python bool values

In addition to the touchscreen controls, players can also trigger a game event with a
shake motion. This shake motion is, again, used to acknowledge a Python exception.

4.4.4 Game Mechanics
The game mechanics of Level 2 are different from Level 1, but they are also designed to
encourage cooperation amongst team members.

The objective for this level is for players to execute all the instructions in 4 different
programs in the shortest time possible. Before the game begins, each player is randomly
assigned a unique program from four available programs. During the game, the players are
served one instruction at a time from their assigned program. A new instruction is served
to a player when the previous instruction has been correctly executed. Instructions indicate
the value that controls on the control panel should be set to. It is possible for a player to
receive instructions for a control on their own control panel, or for a team member’s control
panel.

Figure 4.4a is an example of a possible game scenario in Level 2. Player 1 has received
the instruction Aileron= 9%2. This is an example of an instruction a player can receive

34

MASc Thesis - Samantha Chan - McMaster - Computing and Software

that affects a control on their own panel. To correctly execute the instruction, Player 1 must
set their Aileron control to the value of 1 and press the matched Submit Button. Once
the instruction has been cleared, Player 1 will be served the next instruction from their
program.

The game scenario presented in Figure 4.4 also demonstrates an instance where a
player’s given instruction does not refer to a control on that player’s control panel. Player 2
has been served the instruction Message= "DAB". However, the Message control is found
on Player 4’s control panel. In this instance, Player 2 must verbally communicate to Player
4 that Message should be set to DAB. Once Player 4 completes this task correctly, Player
2’s instruction will be cleared.

Finally, Player 4 is presented with an instruction that raises a Python SyntaxError
in Figure 4.4d. To clear this instruction, every team member must shake their tablets to
acknowledge the exception.

Similar to a regular computer program, some instructions will require controls to be set
to a new value that is dependent on that control’s current value or another control’s current
value. As an example of this, a possible instruction a player may receive is: Feedback=
Feedback+"C". The player with the Feedback control would then refer to their Previous
Values Display to determine the current value of Feedback. This current value is the previ-
ously correct value that the control was set to. Assuming that the current value of Feedback
is DCA, the player would have to set Feedback to DCAC to clear the instruction.

Table 4.1: Level 2 Programs and Panel Distribution

Program 1 Program 2
Panel# Control Name Control Type Panel# Control Name Control Type

1 Aileron int 2 Flaps int
4 Elevator int 1 Slats int
4 Rudder float/int 1 Hover float/int
3 Text string 4 Message string
2 Break bool 3 Horn bool

Program 3 Program 4
Panel# Control Name Control Type Panel# Control Name Control Type

3 Torque int 4 Roll int
2 Pitch int 3 Yaw int
2 Yoke float/int 3 Altitude float/int
1 Speaker string 2 Feedback string
4 Light bool 1 Lock bool

35

MASc Thesis - Samantha Chan - McMaster - Computing and Software

(a) Player 1

(b) Player 2

36

MASc Thesis - Samantha Chan - McMaster - Computing and Software

(c) Player 3

(d) Player 4

Figure 4.4: Example Level 2 Space Race Game Scenario

37

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Since a control’s value may depend on that control’s previous value or another control’s
current value, it is imperative that the game be designed to ensure that multiple players will
not provide conflicting instructions for a single control. The following design decisions
were made to avoid conflicts:

1. Each player is randomly assigned one of four program/panel pairs:

• Program 1 with Panel 1

• Program 2 with Panel 2

• Program 3 with Panel 3

• Program 4 with Panel 4

2. Each program will only affect 5 predefined variables of set types

3. The 5 predefined variables are preassigned to one of four panels

Table 4.1 illustrates the program/panel pairs that are available for Level 2. For example,
if a player is assigned Program 1, that player would also be assigned the controls associ-
ated with Panel 1 on their panel: Aileron (int), Slats (int), Hover (float/int), Speaker
(string), and Lock (bool). The Program 1 instructions the player receives would affect
controls Aileron (int), Elevator (int), Rudder (float/int), Text (string), and Break
(bool). This setup ensures that each player will receive the same distribution of control
types on their panel as well as in their program instructions. Furthermore, the distribu-
tion is designed such that each player is guaranteed to provide instructions for every team
member. For each program, there exists two controls that belong to the same panel (ex.
Elevator and Rudder for Panel 4 in Program 1). This is because these paired controls will
have instructions in the program that depend on each other’s values.

The game is designed to maximize player involvement and multi-player interactions
throughout the level. To accomplish this, a pattern is set for the order that instructions from
a program are issued for each team member and, consequently, each panel. To illustrate,
Program 1 has instructions that affect the panel controls in this order: Panel 1, Panel 2,
Panel 3, and then Panel 4. Every program follows a different pattern; this is shown in
Appendix A. This ensures that a player will not repetitively provide instructions to the
same team member. It also serves to guarantee that every player will begin the game by
providing instructions to a different player. The only exception to this pattern is when an
instruction with an error/exception occurs. For those scenarios, every player is involved,
since an error can only be cleared when all team members shake their tablets.

For research purposes, the game has to be designed to ensure that every player on the
team receives the same learning experience. To achieve this, every program has the same
type of instructions. However, the type of instructions do not occur in the same order

38

MASc Thesis - Samantha Chan - McMaster - Computing and Software

across different programs. For instance, Aileron = 9%2 is instruction # 1 from Program
1 and Torque= 5%3 is instruction # 4 from Program 3. These instructions are of the same
type; they both test the player’s understanding of how the modulus (%) operator functions.
However, they both occur at different points in their respective programs. By the end of the
level, all the players will have given and received a set of instructions that covers the same
range of topics as everyone else.

With the way the game is designed, it is possible for players to finish all the instructions
for their programs at different points in time. A player will be given the instruction to
“Listen to teammates!” if they have completed their programs before everyone else.
They will then have to continue to participate in the game by executing the instructions
verbally communicated from their team members. The level ends when all four programs
have been executed to completion.

4.5 Level 3 Design
Like Level 1 and 2, the programming concepts, game controls, game screen, and game
mechanics of Level 3 are described in the subsequent sections.

4.5.1 Programming Concepts
In addition to the programming concepts introduced in Level 1 and 2, the following con-
cepts are added in Level 3:

• Python built-in types

– Sequence type: list- including nested lists of one level

• Python built-in functions

– range()

• Python file input

– open(), file.read(), file.readline(), and file.readlines()

• Python built-in operations

– Sequence operations: indexing of nested lists s[i][j], slicing s[i:j:k]

– Mutable sequence operations: s.index()

• Python built-in string method

39

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Figure 4.5: Game Screen for Level 3

– str.split()

• Python built-In exceptions

– IndexError

• Aliasing

Similar to Level 2, students are provided with a “Cheat Sheet” that summarizes the concepts
that appear within this level. This “Cheat Sheet” can be found in Appendix B.

4.5.2 Game Screen
Figure 4.5 shows the game screen for this level. The game screen for this level includes all
of the same information that is displayed in Level 2. However, the number of instructions
to be executed are out of 108 instead of 112. Also, a new display component is introduced:

1. File Viewer- displays content within a text file

As with Level 2, every player will have the same controls but all the controls will have
unique names.

40

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Figure 4.6: List- type Controls in Level 3

4.5.3 Game Controls
The game controls for Level 3 follow the same scheme and behaviour as Level 2; each
player has a set of controls with their corresponding Submit Buttons on their panel. The
Submit Button in Level 3 functions in the same way as Level 2.

The main difference between the control panels for Level 2 and Level 3 is the introduc-
tion of a control that represents a new type: Python lists. Also, controls of type bool and
float/int are absent in Level 3. A listing of the controls available in Level 3 are provided
below. Descriptions for the controls that were mentioned previously in Level 2 are omitted.

• a NumberPicker with a predefined range of 0-5

• an Alphapad with keys A, B, C, \n, and del for deleting characters

• three groups of controls with each group consisting of five Spinners, an Append
Button, and a Remove Button (shown in Figure 4.6)

– Used to represent Python list values

– Each Spinner is a drop-down menu with predefined values that represent the
list’s elements

∗ an int list= a group of 5 Spinners with preset values: 0, 1, 2, 3, 4, and
5

∗ two str list(s)=2 groups of 5 Spinners with preset values: "", "A", "B",
"C", "A\n", "B\n", and "C\n"

– The visibility of the Spinners are used to represent the presence/absence of
elements in the list. If all the Spinners in a group are invisible, the list is
empty.

41

MASc Thesis - Samantha Chan - McMaster - Computing and Software

– The Append Button is visible when there are less than 5 Spinners visible.
When clicked, a new element will be added to the list by making the next
Spinner visible.

– The Remove Button is visible when there is one or more Spinner(s) visible.
When clicked, the last element in the list will be removed by making the
right-most Spinner invisible.

In addition to the touchscreen controls, players can also trigger a game event with a
shake motion. This shake motion is, again, used to acknowledge a Python exception.

4.5.4 Game Mechanics
The objective and game mechanics for Level 3 are the same as Level 2. The only difference
lies in the controls/control types that are available and the introduction of files. As with
Level 2, all the players are randomly assigned a program and panel pair. For this level, the
program and panel pairs are also matched with a specific file. This is shown in Table 4.2.
The file I/O instructions in any given program will only refer to the file that is matched with
that program. For example, a player assigned with Program 1 may receive the instruction
shown in Listing 4.3. One can see that “text1.txt” is opened on line 1. This file is the file
matched with Program 1. This design limits confusion by ensuring that a player will never
have to ask their team members for the contents of an opened file. Furthermore, it brings
the player’s focus towards understanding how the lines of code should be interpreted rather
than where the file is located.

Listing 4.3: An example of a file I/O instruction from Program 1 of Level 3
1 myfile= open("text1.txt","r")
2 Text= myfile.read()
3 myfile.close()

The programming concept of aliasing is also presented for the first time in Level 3.
Since aliasing involves the access of a data location in memory by different symbolic names
in the program, the game must be designed to reflect this notion. This means that any
instruction involving aliasing must require the player to set all the aliased variables/ controls
to the appropriate values. Listing 4.4 is an example of an instruction that involves aliasing.
For this example, Rudder and Elevator are aliased. As such, both controls need to be set
to the correct value and submitted before the instruction is cleared. A hint in the form of
a comment (seen on Line 3 in Listing 4.4) reminds the players that two control must be
changed because this gameplay differs slightly from what players are familiar with.

42

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Table 4.2: Level 3 Programs, File, and Panel Distribution

Program 1 Program 2
Panel# Control Name Control Type Panel# Control Name Control Type

1 Aileron int list 2 Flaps int list
4 Elevator str list 1 Slats str list
4 Rudder str list 1 Hover str list
3 Text string 4 Message string
2 Break int 3 Horn int

text1.txt text2.txt
A B
B C
C A

Program 3 Program 4
Panel# Control Name Control Type Panel# Control Name Control Type

3 Torque int list 4 Roll int list
2 Pitch str list 3 Yaw str list
2 Yoke str list 3 Altitude str list
1 Speaker string 2 Feedback string
4 Light int 1 Lock int

text1.txt text2.txt
C B
A A
B C

Listing 4.4: An example of an instruction involving aliasing in Level 3
1 Rudder= Elevator
2 Rudder[2]= "A"
3 #Hint: Two controls changed!

4.6 Level 4 Design
The programming concepts, game controls, game screen, and game mechanics of Level 4
are described in the ensuing sections.

43

MASc Thesis - Samantha Chan - McMaster - Computing and Software

4.6.1 Programming Concepts
The programming concepts included in Level 4 are an extension of the topics covered in
Levels 1 through 3. The primary emphasis of Level 4 is for- loops. The topics covered
also include the introduction of the following:

• Python built-in functions

– list()

• Python built-in list methods

– list.append()

• Python built-in string methods

– str.strip()

• Python flow control tools

– for statements- including nested for-loops of one level

• Python file input

– for line in file

The “Cheat Sheet” provided for players for this level can be found in Appendix B.

4.6.2 Game Screen
Like the previous two levels, every player will have the same controls, but all the controls
will have unique names except for the Terminate Loop button. Figure 4.7 depicts the game
screen for Level 4. The information available in Levels 2 and 3 are also available in Level
4. The instructions to be completed are out of 102 for this level. Unlike Level 3, all the
players will view the same file in their File Viewers. The contents of this file are shown in
Listing 4.5.

Listing 4.5: Level 4 test1.txt file content for all players
1 C
2 A
3 C

44

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Figure 4.7: Game Screen for Level 4

4.6.3 Game Controls
The game controls for Level 4 are very similar to Level 2 and 3. The available controls in
Level 4 are listed below and descriptions for controls that have appeared in previous levels
have been omitted for conciseness.

• a NumberPicker with a predefined range of 0-5

• an Alphapad with keys A, B, C, \n, and del for deleting characters

• two groups of controls with each group consisting of five Spinners, an Append But-
ton, and a Remove Button

– Used to represent Python list values

– Each Spinner is a drop-down menu with predefined values that represent the
list’s elements

∗ an int list with preset values: 0, 1, 2, 3, 4, and 5

∗ a str list(s) with preset values: "", "A", "B", and "C"

• a Button labelled “Terminate Loop” is used to indicate termination of a for-loop

A shake motion is, again, used to acknowledge the presence of a Python exception in the
instructions of any of the programs.

45

MASc Thesis - Samantha Chan - McMaster - Computing and Software

4.6.4 Game Mechanics
The game mechanics for this level are similar to Level 2 and 3 but there are some significant
differences because of the addition of for-loops. To begin with, Level 4 shares the same
goals as Level 2 and 3 with regards to the completion of all instructions in 4 programs.
These 4 programs are, once again, paired with a panel and randomly assigned to each
player at the beginning of the game. As mentioned previously, these panel and program
pairs are matched with the file shown in Listing 4.5. The program and panel pairs can be
seen in Table 4.3.

Table 4.3: Level 4 Programs and Panel Distribution

Program 1 Program 2
Panel# Control Name Control Type Panel# Control Name Control Type

1 Aileron int list 2 Flaps int list
1 Elevator str list 2 Slats str list
1 Rudder string 2 Message string
1 Text int 2 Hover int

Program 3 Program 4
Panel# Control Name Control Type Panel# Control Name Control Type

3 Torque int list 4 Roll int list
3 Pitch str list 4 Yaw str list
3 Speaker string 4 Feedback string
3 Yoke int 4 Altitude int

It is important to note that these 4 programs are no longer separate and distinct pro-
grams. The programs follow a pattern; instructions alternate between one Level 2 and 3-
style instruction and a group of instructions for a for-loop. For simplicity, moving forward,
the Level 2 and 3- style instructions will be referred to as “regular instructions”. All the
regular instructions in a given program for this level will affect the controls on the panel
that is paired with that program. After the completion of one regular instruction, all the
players will be told to “Wait for other teammates” until every team member executes
their regular instruction. Once this occurs, all the players will advance to the same for-loop
instructions. One may notice from Table 4.3 that players will not be providing instructions
to team members with different control panels. This is done to facilitate the gameplay for
the for-loop instructions.

From Appendix A, one can see that the for-loop instructions are the same across all
four programs. The first for-loop instruction is shown in Listing 4.6. It is worth noting
again that all four players will see the same for-loop instruction at the same point in time.

46

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Listing 4.6: First for-loop instruction for Level 4
1 for Rudder in range(3):
2 Hover= Hover+1
3 Torque.append(Rudder)
4 Roll[Rudder]=Rudder

The controls that are affected in this group of instructions are Rudder from Program 1,
Hover from Program 2, Torque from Program 3, and Roll from Program 4. Since one
control from each panel is affected in the group of instructions, all of the team members
will be able to participate in the execution of the for- loop.

To start with, the first line from the group of for-loop instructions is highlighted (shown
in Figure 4.8a). This highlighter indicates the line to be executed. The highlighter will ad-
vance once the instruction is executed by the correct player 4.8b. After the loop body is
executed, the highlighter will loop back to the first line, much like a for-loop in program-
ming. For the example shown in Listing 4.6, the highlighter will travel through the loop 3
times and end at Line 1. Once the loop has been executed to completion, all 4 players must
press the Terminate Loop button to indicate that the for-loop has terminated. This will
then prompt the game to serve the next set of regular instructions.

This gameplay for the for-loop forces the players to traverse through the loop like a
computer program. When the players take turns executing their instructions repeatedly,
they receive first-hand experience with the looping mechanism of a for-loop.

For research purposes, the gaming experience was designed to be as equal as possible
amongst different players. To that effect, all of the programs have the same types of regular
instructions. These same-type regular instructions may occur at different time points across
different programs. To further equalize the gaming experience for different team members,
a group of for-loop instructions generally places players in different “roles” and the players
take turns fulfilling these different roles between different for-loop instructions. These
“roles” are either variables that play an essential part in determining how a loop iterates or
they are variables that are directly affected by the looping mechanism. Listing 4.7 is used
to classify these roles. From Line 1 in Listing 4.7, the player with control Speaker plays
the role of the “Iterating Variable” while the player with the Feedback control plays the
role of the “Sequence Variable”. The player responsible for the Hover control in Line 2
and the player responsible for the Aileron control in Line 3 plays the role of the “Loop
Body Variable”s.

Listing 4.7: Second for-loop instruction for Level 4
1 for Speaker in Feedback:
2 Hover= Slats.index(Speaker)
3 Aileron.append(Hover)

47

MASc Thesis - Samantha Chan - McMaster - Computing and Software

(a) First Line Highlighted

(b) Second Line Highlighted

Figure 4.8: Level 4 Space Race For-Loop Example

48

MASc Thesis - Samantha Chan - McMaster - Computing and Software

These roles do not always appear in the same proportion across different instances of
for-loop instructions. To exemplify this, a group of instructions with nested for-loops
may have two “Iterating Variable” roles and two “Loop Body Variable” roles. However,
every effort has been made to distribute these roles evenly across all players. In other
words, every player should experience each role approximately the same number of times.
This, combined with the fact that all four players simultaneously see the same block of
instructions should serve to equalize the gaming experience.

Like Level 2 and 3, the level ends when all the instructions from all 4 programs have
been executed correctly.

49

Chapter 5

Experimental Procedure

This chapter presents an overview of the experimental procedures for this study. It will
begin with a description of the participants and the participation rates for each level of
Space Race. Continuing on, the selected methodologies for data collection will be outlined
as well as the data collection timeline. This chapter will not describe the results of the data,
it simply describes what type of data will be collected for research purposes. The results
will be discussed in Chapters 6, 7, and 8

5.1 Participants
The study was conducted with voluntary participants from the first-year engineering stu-
dent population of McMaster University in the Winter Term of the 2013-2014 Academic
Year. Specifically, these 485 students were enrolled in ENG 1D04-Engineering Computa-
tion, a 12 week introductory programming course. There were no restrictions placed on
these volunteers based on their characteristics (e.g. age, gender, location, affiliation, etc.).
All participants were informed of the risks involved with participation as approved by the
McMaster Research Ethics Board.

This group of participants was further divided into two groups: one control group that
did not play Space Race and the other group that did play Space Race. The participants of
Space Race will henceforth be identified as the experimental group. The members of the
experimental group were offered an incentive in the form of bonus marks for ENG 1D04
for participation Space Race. Specifically, 0.5% was added to the student’s final ENG
1D04 grade for every level played with the opportunity to earn an extra 0.5% if the student
played all four levels. This adds up to a maximum of 2.5% bonus ENG 1D04 marks if the
volunteer played all four levels of Space Race. Since students were not required to play all
four levels, the number of participants in the experimental and control group varied across
the four levels. Table 5.1 shows the number of participants in each level of Space Race.

50

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Table 5.1: Space Race Participation Numbers

Level Experimental Group Control Group
1 236 249
2 214 271
3 194 291
4 190 295

5.2 Surveys and Assessments
This section provides an overview of the methods used to obtain data relevant to this study.
It includes a description of the surveys and quizzes administered to the student population,
as well as the ENG 1D04 exams that were used as an indicator of course performance. In
addition, a summary of the data collection timeline is included.

5.2.1 Surveys
The entire population was given the opportunity to participate in Survey A (seen in Ap-
pendix D). The purpose of this survey is to assess their pre-existing knowledge in program-
ming. It also measured the students’ habits with video games as well as their attitudes
toward video games and their inclusion in higher education. It features 26 Likert scale [40]
questions, 6 multiple choice questions, and 2 short answer questions. The Likert scale [40]
questions had a response range of Strongly Agree, Agree, Neither Agree nor Disagree (neu-
tral), Disagree, and Strongly Disagree. The multiple choice questions had options that
were specific to each question. The survey was completed online by the student population
and completion was optional.

The experimental group was also asked to complete Survey B online upon the comple-
tion of each level of Space Race (seen in Appendix D). This means that the experimental
group had the opportunity to complete this survey 4 times. Students used this survey to
evaluate the perceived usability, effectiveness, and quality of the game. Furthermore, this
survey allowed students to report how the game affected their motivation to study ENG
1D04 course material. It features 25 Likert scale [40] questions that had a response range
of Strongly Agree, Agree, Neither Agree nor Disagree (neutral), Disagree, and Strongly
Disagree. It also included 4 short answer questions. Completion of the survey was, again,
voluntary.

The Likert questions of Survey B can be broken down into four categories: playability,
learnability, team cooperation, and competition. Questions relating to playability asks stu-
dents to rate Space Race according to their user experiences and their perceived enjoyment
of the game. Learnability questions are used to gauge a student’s self-perceived learning
and relevance of the educational material in Space Race. The success to which communica-

51

MASc Thesis - Samantha Chan - McMaster - Computing and Software

tion and cooperation is used as a means of teaching through Space Race is assessed through
team cooperation questions. Finally, competition questions are used to indicate whether
students perceive the competition aspect of Space Race to motivate repeated gameplay and
revision of course content. The Likert scale questions were chosen because this type of
scale is used in many questionnaires so it would be familiar to participants and it is also
relatively straightforward to develop [60]. A five-point scale is chosen because it gives a
significant level of discrimination without forcing the participant toward an opinion. The
results of these surveys are discussed in Chapter 6 and 7.

5.2.2 Pre and Post-Game Quizzes
In many experimental design studies a pre-test followed by the intervention or treatment,
followed by a post-test is commonly used to collect performance data. The difference
between the pre and post-test is used to measure the effectiveness of the intervention in
producing a desired result. Game-based learning research, in particular, has used this tech-
nique to measure whether learning takes place after exposure to the educational game. For
example, this approach has been used to great effect by Ebner and Holzinger in their study
of an educational game in civil engineering [19]; Vivrou, Katsionis, and Manos in their
study of the educational effectiveness on an educational virtual reality game [44]; and Pa-
pastergiou in her study of digital game-based learning in high school computer science
education [52].

For this experiment, two identical quizzes were given to the experimental group to
complete before and after playing a level in Space Race (seen in Appendix C). The quizzes
feature 5 multiple choice questions that relate to the material covered in the level to be
played. Solutions to the quiz are not offered after completion of the pre or post-quiz. The
quizzes are completed once by the students on the the Android tablets. That is, the students
are not asked to complete the quiz again if they choose to re-play the level. All questions
have to be completed before the quiz can be submitted. The students were also instructed
to complete the quiz individually.

The difference in performance in pre and post-quizzes is an indicator of whether Space
Race was able to immediately teach students certain programming concepts. Improved
performance on the post-quiz suggests that learning took place after the intervention of
Space Race. Conversely, if performance on the post-quiz is worse than that of the pre-quiz,
this would indicate that Space Race is teaching the incorrect concepts to students. Finally,
equal performance on both quizzes would suggest that Space Race has had no influence
on student knowledge. While this pre and post-quiz technique is great for showing the
immediate effects of Space Race, it cannot indicate whether learned knowledge is retained
by students over time. The approach for measuring this is discussed in the next section.
The results for these pre and post-game quizzes are presented in Chapter 8

52

MASc Thesis - Samantha Chan - McMaster - Computing and Software

5.2.3 Course Exams
Exams used in ENG 1D04 are completed by the entire student population and thus, dif-
ferences in performance on the exams between the control and experimental group can be
used to show that Space Race has caused different levels of learning. Furthermore, since
the majority of exam questions are designed by the instructor of ENG 1D04, and not by
the researcher, the questions should have a minimal bias. That is, the questions will not
be designed to target the material covered in Space Race explicitly. As a result of this,
the exam can also indicate whether the concepts learned in Space Race can be applied to a
context that is unrelated to Space Race. Finally, since the final exam takes place at the end
of the term, 7 weeks away from when Space Race is last played, it can serve as an indicator
on the retention of material learned in Space Race.

ENG 1D04 uses two midterm exams and one final exam to evaluate students’ profi-
ciency in the course material. All of the questions on the exams are in a multiple-choice
format and they cover material taught in the course. Midterm 1 tests all of the content
covered in weeks 1 through 5 while Midterm 2 covers material taught in weeks 6 through
9. The final exam tests students on the information covered in the entire course, from week
1 through to week 12.

All of the exam questions are designed and set by the course instructor with the excep-
tion of three questions. Questions 5, 6, and 7 in the final exam were designed and set by
the researcher. These questions were selected from the pre and post-quizzes; question 5
from Level 3, question 6 from Level 2, and question 7 from Level 1. The results from these
questions are presented in Chapter 8 and they will be used to gauge whether knowledge
directly obtained from Space Race has been retained.

5.3 Data Collection Timeline
Table 5.2 outlines the weeks that performance data was collected. Starting from Week 3,
each Space Race level is available for students to play with for one week. This is because
the content of each Space Race level is designed to incorporate the concepts taught in the
ENG 1D04 lectures, labs, and tutorials from the previous week. For example, Space Race
Level 1 covers the content taught in the ENG 1D04 course during weeks 1 and 2.

53

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Table 5.2: Experimental timeline according to ENG 1D04 Weeks

Week # Item
Week 1 ENG 1D04 begins
Week 2 Survey A
Week 3 Space Race Level 1, Survey B
Week 4 Space Race Level 2, Survey B
Week 5 Space Race Level 3, Survey B
Week 6 Space Race Level 4, Survey B, and Midterm 1
Week 10 Midterm 2
Week 12 ENG 1D04 ends
Week 13 Final Exam

54

Chapter 6

Student Attitudes and Prior Experience

This chapter will begin with a discussion of the programming experience that students
of the experimental and control group have had prior to taking the ENG 1D04 course.
The proceeding sections will then explore students’ video gaming habits along with their
attitudes towards video games in education. All of the aforementioned information was
obtained from the responses of Survey A, which can be seen in Appendix D. As mentioned
previously in Section 5.2.1, members of the control and experimental group could volunteer
to complete Survey A. For this chapter, students belonging to the experimental group are
defined to be any student that has played at least one level of Space Race. In total, there
were 394 respondents for Survey A; 181 belongs to the control group and the other 213 are
part of the experimental group. Not all students chose not to answer all of the questions on
the survey.

The last section of this chapter will comment on whether past programming experience,
video gaming habits, and attitudes towards educational video games had an influence on
whether students chose to participate and play in Space Race.

6.1 Previous Programming Experience
From Survey A, question 1, students were asked if they had any programming experience
prior to taking ENG 1D04. The experimental group and control group had nearly an iden-
tical proportion of students that answered “yes”. From the experimental group, 40% of the
respondents stated they had experience with programming. Similarly, 41% of the control
group respondents also claimed to have experience with programming. Question 2 and
Question 3 were used to get a better sense of what type and how much experience these
students had with programming in the past. From Question 2, students were asked how
many courses (high school, college, extracurricular courses) they have taken that have in-
volved computer programming (excluding ENG 1D04). The results are seen in Figure 6.1.

55

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Figure 6.1: Number of Courses Students Have Taken Involving Programming Prior to ENG
1D04

Although 60% of the respondents reported they had no programming experience prior to
taking ENG 1D04 in Question 1 for both groups, only approximately 48% stated they had
never taken a programming course prior to ENG 1D04. This may be because some respon-
dents chose not to answer one question or the other. Students may also have misinterpreted
either one of the questions. Despite this, both groups still have a very similar distribution
of responses.

Question 3 was used to further understand the depth of familiarity that students have had
with computer programming in the past. Students were asked how many lines of code they
wrote in their single largest simple program. From the 213 individuals in the experimental
group, only 87 students (41%) have written a program before and the average number of
lines for their largest programs is 459 lines. The standard deviation for this group is large:
1355.204 with only 48 students (55%) that have written at least 100 lines in their largest
program. Similarly, from the 181 students in the control group, only 59 students (33%)
have written a program before and the average number of lines for their largest programs
is 613 lines. Once again, the standard deviation for this group was large: 1140.344 with
42 students (71%) that have written at least 100 lines in their largest program. Although
the number of lines of code in a program is not an accurate indicator of how proficient a
student may be with programming, it can still help to clarify what students interpret to be
“programming experience”. From the results stated above, it appears that many students’
“programming experience” does not involve writing computer programs. Furthermore, one
could theorize that a student that has written a maximum of 2 lines of code in their largest
program has had less practice with programming compared to another student that has
written 2000 lines in their largest program. To summarize, at least 60% of the students from
both groups have had no experience in producing computer programs. For the students that
have produced programs, 55% of experimental group and 71% of the control group have

56

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Figure 6.2: Frequency at which Students Play Video Games

written programs that are at least 100 lines long. Although a lower proportion of students
in the control group have written programs, on average, their programs are longer than that
of their peers in the experimental group.

Finally, when students were asked which programming languages they have used prior
to taking the ENG 1D04 course, only a small proportion of each group claimed to have
experience with Python, the language used in ENG 1D04. From the control group, 14%
of the students have used Python. Java was the top response with 23%. Like the control
group, Java was the most frequently used language amongst the experimental group with
23% and only 9.9% of the students having used Python.

From the survey, the researcher is unable to precisely define the level of skill in pro-
gramming that students have from either the experimental or the control group. However,
based on the information above, it appears that there are not any significant differences
between the two groups regarding the students’ perceptions of their experience with pro-
gramming. Lastly, the responses give the impression that a large majority of the students
would be considered novice programmers.

6.2 Video Gaming Habits
Students were surveyed to gain a better understanding of their video gaming habits. Ques-
tion 5 from Survey A was used to gauge the frequency with at which students play video
games. The results are in Figure 6.2. There does not appear to be a large difference in the
distribution of responses from students. Students from the control group only appear to
play video games slightly more frequently than the students in the experimental group. In
both groups, only 6-7% of the students reported that they never play video games.

Aside from video gaming habits, students also had an opportunity to report on whether

57

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Figure 6.3: Student Opinion on the Incorporation Video Games in Education

they have ever used an educational video game as part of a course in the past (Question
7). From both groups, only a very small proportion of students have played an educational
video game as part of a course: 7.1% of the control group and 13% of the experimental
group.

Students that have played an educational video game before were asked to comment
on their perception of how beneficial the game was to their overall learning experience
(Question 9). The question did not explicitly state that the educational video game had to
be played as part of a course in the past. 21 individuals (12%) from the control group and 27
students (13%) from the experimental group responded to the question. Figure 6.3 displays
the proportion of responses from the respondents. Again, the distribution of responses are
nearly identical between the two groups. Furthermore, more than half of the respondents
felt that the educational video game they played was at least beneficial if not very beneficial.
Lastly, there was an equal percentage of students that found the video game either very
beneficial or somewhat beneficial between the two groups.

From the results shown above, it can be seen that the experimental and control group
have approximately equivalent video gaming habits. Additionally, only slightly more stu-
dents from the experimental group, about 5%, have played an educational video game
before as part of the course. Finally, for the students that have played an educational video
game before, at least half believe that the experience was beneficial to their learning.

6.3 Attitude Towards Educational Video Games
This section will cover students’ viewpoints on the inclusion of video games into school
curricula as well as their inclination to play video games to learn. Some of the Likert
responses of Survey A provide information on this topic. The relevant questions and the

58

MASc Thesis - Samantha Chan - McMaster - Computing and Software

responses students provided are shown in Figure 6.4 and Figure 6.5. The results are shown
with diverging stacked bar charts. This format has been chosen because it is easy for the
reader to compare whether the respondents generally agree or disagree with the statements
in the survey. The percentage of respondents who agree with a given statement are shown
to the right of the zero line; the percentage of those who disagree are shown to the left. The
percentage of respondents that have chosen “Neither Agree nor Disagree” on the survey
are split in half and are shown in a neutral blue colour.

When comparing the graphs visually, it appears there are no significant differences in
the distribution of responses between the experimental group and control group. To con-
firm, a Mann-Whitney U test [43] was performed using SciPy [16], a Python-based open-
source software. This non-parametric test requires that the two samples are statistically
independent and that the observations are ordinal. This test works well for this scenario
since the experimental and control group are independent from each other. Additionally,
Likert responses are ordinal; the response scale is arbitrary and the perceived distance be-
tween each item is subjective but there is a defined ranking from the response options. The
null hypothesis for this test states that the two samples are derived from the same popu-
lation; that is, there are no significant differences in the distribution of responses between
one group and the other. When the null hypothesis is rejected then it means that the sample
distributions differ in center, spread, and/or shape. When the forms of the distributions are
similar, then the rejection of the null hypothesis is taken to mean that one sample tends to
have a larger median than the other. The Mann-Whitney U test provides two values: the
U-statistic and the p-value. The smaller the U-statistic, the less likely that the differences
have occurred by chance alone. The p-value, if it is lower than 0.05, can indicate that the
result is significant at a level of 0.05; the null hypothesis can be rejected. The results of the
Mann-Whitney U test can be seen in Table 6.1. Questions 12, 21, and 34 have significantly
different results. There is very weak evidence that the results of the other questions are
significantly different; they are very similar.

When students were asked if “[they] would enjoy playing video games to learn” in
Question 12, 67% of the experimental group and 64% of the control group agreed (either
“Agree” or “Strongly Agree” chosen) that they would. Alternatively 5.4% of the exper-
imental group and 8.3% of the control group disagreed with a remaining 27% and 28%
choosing to neither agree nor disagree, respectively. This shows that approximately the
same proportion of students either agree or disagree that they would enjoy playing video
games to learn. However, a greater percentage of the experimental students (23% versus
13%) chose to strongly agree with the statement which most likely accounts for the sig-
nificant difference in results in the Mann-Whitney U test for Question 12. From this, one
can conclude that more students from the experimental group would derive more joy from
playing a video game to learn than the control group, although almost the same proportion
of students would feel at least some enjoyment from playing video games.

The response from Questions 20 to 23 can be used to gain an understanding on how

59

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Figure 6.4: Experimental Group Survey A Likert Response Results

60

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Figure 6.5: Control Group Survey A Likert Response Results

61

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Question U-statistic p-value Significant at p<0.05?
Q12 15390 0.029 Yes
Q19 16198 0.099 No
Q20 16599.5 0.227 No
Q21 15679.5 0.031 Yes
Q22 15495 0.053 No
Q23 16674 0.322 No
Q24 16592.5 0.349 No
Q25 17073 0.355 No
Q26 16573.5 0.319 No
Q27 15755 0.079 No
Q29 17126 0.455 No
Q30 16203.5 0.158 No
Q31 16101.5 0.099 No
Q32 15518.5 0.038 Yes
Q34 16539.5 0.222 No
Q35 16327.5 0.156 No

Table 6.1: Mann-Whitney U test Results Between Experimental and Control Group

students feel a video game would impact their curiosity on a subject and motivation to
learn. Out of these three questions, only Question 21 had a significant difference in results
between the experimental and control group. Like Question 12, there is approximately
the same proportion of students that agree and disagree that “video games can motivate
students to learn” between the two groups. However, the experimental group had 10%
more students choosing to strongly agree with the statement versus the control group. From
this, one can conclude that more students from the experimental group feel more strongly
that video games can motivate students to learn. When viewing the remaining questions,
it is clear that a large majority of students that chose to either agree or disagree with the
statements have chosen to agree. This indicates that, across both groups, most students feel
that video games can do the following:

• “Video games can teach students how to set and reach goals”

• “Video games can motivate students to seek out additional information that will help
them succeed”

• “Video games can stimulate a student’s curiosity on a topic”

The first three statements above are all very important for learning according to the
fundamental ideas of the constructivist theory [61]. From Section 2.1, it was shown that,

62

MASc Thesis - Samantha Chan - McMaster - Computing and Software

according to constructivist principles, puzzlement is the stimulus for learning and deter-
mines the organization and nature of what is learned. If the first three statements above
are true, then video games can greatly influence and enhance the learning experience. If
students agree with the above statements, then it suggests that they are open to the idea that
video games can affect their learning experience.

Questions 24 and 26 implicitly ask questions on whether video games can be an effec-
tive part of experiential learning. Experiential learning was discussed in Section 2.1 and it
was revealed that student exploration with tangible experiences and personal reflection on
the feedback received from those experiences is part of Kolb’s experiential learning model.
At least 77% of the students from the experimental and control group agreed that “video
games can provide a safe way to test new ideas or try new techniques”. Furthermore, a
minimum of 69% of the students from both groups agreed that “video games can provide
immediate feedback to students”. It is important to note that, at most, 4.8% of the students
chose to disagree with either one of those statements in both groups; the rest chose to nei-
ther agree nor disagree. This information indicates that students feel video games can have
a role to play in experiential learning.

Questions 25, 31, and 32 comment on student attitudes towards the incorporation of
video games in education. Most students from both groups (at least 67.1%) agree that
“video games can be used to complement course objectives” (Question 25); only, at most,
4.8% disagree with the statement. Also, across both groups, at least 35% more students
disagree that “the use of educational video games does not belong in the post-secondary
classroom”(Question 31) as opposed to agree. There were significant differences in the
distribution of responses for the statement given in Question 32: “In general, students will
not take educational video games seriously”. For both groups, at least 40% of the students
chose to neither agree nor disagree with the statement. The experimental group had more
students disagree with the statement: 3.5% more disagreed. Conversely, the control group
had more students agree with the statement: 11% more agreed. This indicates that there is
a greater proportion of students from the control group that feel that students, in general,
will not take educational video games seriously.

Finally, students were asked to comment on how they perceived gender could influence
the enjoyment and benefits that an educational video game could provide through Questions
34 and 35. Perhaps surprisingly, both groups had a slightly greater proportion of students
that agreed that “in general, males will enjoy using educational video games in classes
more than females will” (Question 34); 7.2% more in the control group and 15% more in
the experimental group. However, in both groups more students agreed that “in general,
females will benefit from using educational video games as much as males” than disagreed
(Question 35): 27% more agreed in the experimental group compared to 35% more that
agreed in the control group.

63

Chapter 7

Game Reception and Feedback

This chapter will provide details on the results of Survey B (seen in Appendix D), which
allowed students to provide feedback on each level of gameplay in Space Race. These
results will be used throughout the chapter to support the qualitative observations made
by the researcher while watching student participants play Space Race. Based on these
observations, the playability and teachability of Space Race will be discussed. Further-
more, the cooperative and competitive aspects of Space Race and their contributions to the
effectiveness of Space Race as a teaching tool will be explored.

7.1 Survey B Results
A detailed description for the design of Survey B can be found in Section 5.2.1. The Likert
response results of Survey B (questions 1 through 24) from Level 1, Level 2, Level 3, and
Level 4 can be seen in Figures 7.1, 7.2, 7.3,and 7.4, respectively. The responses are shown
with diverging stacked bar charts like the Likert responses from Survey A in Chapter 6.
The number of respondents for Survey B in each Level are shown in Table 7.1.

Table 7.1: Number of Survey B Respondents

Level Number of Respondents
1 180
2 180
3 92
4 98

A quick look through the results show that respondents generally hold the same opinion
towards a statement on the survey. That is, a great majority of respondents respond in the

64

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Figure 7.1: Level 1 Survey B Likert Response Results

65

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Figure 7.2: Level 2 Survey B Likert Response Results

66

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Figure 7.3: Level 3 Survey B Likert Response Results

67

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Figure 7.4: Level 4 Survey B Likert Response Results

68

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Table 7.2: Survey B Level 1,2,3,4 Kruskal-Wallis H-test

Question Number H-statistic p-value Significant at p<0.05?
Q1 32.861 0 Yes
Q2 7.752 0.051 No
Q3 22.865 0 Yes
Q4 4.083 0.253 No
Q5 6.419 0.093 No
Q6 7.894 0.048 Yes
Q7 7.139 0.068 No
Q8 1.389 0.708 No
Q9 2.171 0.538 No
Q10 1.117 0.773 No
Q11 5.624 0.131 No
Q12 19.038 0 Yes
Q13 11.028 0.012 Yes
Q14 11.175 0.011 Yes
Q15 4.62 0.202 No
Q16 4.062 0.255 No
Q17 4.788 0.188 No
Q18 0.717 0.869 No
Q19 1.616 0.656 No
Q20 4.214 0.239 No
Q21 4.224 0.238 No
Q22 0.264 0.967 No
Q23 2.848 0.416 No
Q24 1.802 0.614 No

same manner for any given statement; either agreeing or disagreeing.
To aid in simplifying the analysis of the results, each question was evaluated to deter-

mine if the results across the four levels of the game can be combined. A Kruskal-Wallis
H-Test [33] was performed, using SciPy [16], to compare and evaluate if there were any
significant differences between the four groups of responses. This test is chosen because
Likert scale responses are ordinal and there are four categorical groups: Level 1, Level
2, Level 3, and Level 4 respondents. The Kruskal-Wallis H-test tests the null hypothesis
that the response distributions are equal. The p-value indicates how likely any differences
observed would have occurred if responses were drawn from the same population. That
is, a small p-value would indicate that it would be rare to observe differences, if there was
no relationship between the group and the value being tested. The results of the Kruskal-

69

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Wallis H test performed on Questions 1 through 24 on Survey B across the four categorical
groups can be seen in Table 7.2. If the p-value for a given responses is not less than 0.05,
one cannot say that there is a significant difference in attitudes on the survey for the Lik-
ert responses between the four categorical groups. However, if there is a significant result
then one can make the conclusion that at least one of the groups is different form the other
groups. The test does not identify where the differences occur or how many differences
actually occur [33].

The results of Table 7.2 indicate that there are significantly different responses from at
least one group for Questions 1, 3, 6, 12, 13, and 14. Since the game mechanics of Level 2,
3, and 4 are very similar while the game mechanics for Level 1 are different, the Kruskal-
Wallis H-Test was performed again, but this time only on the responses for Levels 2, 3,
and 4. The results can be seen in Table 7.3 and they indicate that for Levels 2, 3, and 4,
only Questions 1 and 3 have responses that are significantly different. Going forward, all
of the questions that had insignificant differences between the four levels will be analyzed
using the results for all of the data pooled together. Alternatively, all questions that yielded
a significantly different result between the four levels will be analyzed further to identify
what may have caused these differences in responses.

The following subsections will review the Likert responses according to the categories
that were specified in Section 5.2.1: playability, teachability, team cooperation, and com-
petition. The discussion of results from the Likert responses of Survey B will be supple-
mented by some additional feedback that was provided by respondents through the short
answer questions of Survey B.

7.1.1 Playability
Questions 1-5 and 24 on the Likert response portion of Survey B relate to playability.
Playability questions allow students to rate Space Race according to their user experience.
It also allows the student to comment on how much they enjoyed playing Space Race.

The statement from Question 1, “The video game was easy to play”, was met with a
large majority of agreement (either “Agree” or “Strongly Agree”); over 60%, for all four
levels. However, there was a gradual increase in the proportion of students that agreed with
that statement across the last three levels: 64% for Level 2, 76% for Level 3, and 86% for
Level 4. This may account for the significant difference in results seen from the Kruskal
Wallis H-test in Table 7.3. The gradual increase in the percentage of students that agreed
with the statement suggest that students found the game easier to play as they continued
from Level 2 to Level 4. This may be because of the similar game mechanics across those
levels. From the survey, a student commented that they “appreciated the fact that the format
of level 3 was similar to that of level 2. [They] were able to get straight into the game!”.
Alternatively, 79% of the students in Level 1 agreed that the game was easy to play. This
suggests that students found the game mechanics of Level 1 easier to manage than in the

70

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Table 7.3: Survey B Level 2,3,4 Kruskal-Wallis H-test

Question Number H-statistic p-value Significant at p<0.05?
Q1 27.41 0 Yes
Q2 0.549 0.76 No
Q3 10.798 0.005 Yes
Q4 4.165 0.125 No
Q5 0.458 0.795 No
Q6 4.001 0.135 No
Q7 4.314 0.116 No
Q8 1.311 0.519 No
Q9 0.088 0.957 No
Q10 0.929 0.628 No
Q11 0.887 0.642 No
Q12 0.152 0.927 No
Q13 4.012 0.135 No
Q14 4.67 0.097 No
Q15 2.696 0.26 No
Q16 2.119 0.347 No
Q17 4.586 0.101 No
Q18 0.625 0.732 No
Q19 1.487 0.475 No
Q20 3.863 0.145 No
Q21 3.081 0.214 No
Q22 0.073 0.964 No
Q23 0.935 0.626 No
Q24 0.459 0.795 No

other levels. This result makes sense given the simple game mechanics for Level 1.
Perhaps one of the main reasons why students found Level 1 easier to play than Level

2 and 3 is the potential for chaos to be introduced in Level 2 and 3. For Levels 2 and 3,
the game was designed to simultaneously provide each player with a different instruction.
The intention behind this design decision was to ensure that all students would be simul-
taneously involved in the game. Although the designer was aware that some chaos may
be introduced, it was believed that this minimal disorder would increase players’ immer-
sion into the game. However, this chaos may have also introduced more distraction than
desired. A student suggested that perhaps “maybe only 1 or 2 members has a question on
[their] screen or else it gets kind of hectic”. Level 4 had the greatest number of respon-
dents that felt the video game was easy to play. This may have been because there is less

71

MASc Thesis - Samantha Chan - McMaster - Computing and Software

chaos introduced in this level than in Levels 2 and 3. This was achieved by having students
alternate between an instruction for their own panels and a for-loop that all team members
worked to execute together (more details given in Chapter 4). Many students commented
that they liked this format because “the for-loops included all of the group members”.
Another student stated that “[they liked] the idea of working together in an orderly manner
to execute the loops. It was a good way to make sure [they] were all following the code
being executed”. To summarize, it appears that Space Race could increase ease of play, by
introducing more order to gameplay.

The statement from Question 3, “It was difficult to learn how to play the video game”,
provided insight to the learning curve students faced to play the video game. According to
the Kruskal Wallis H-test results of Table 7.2 and Table 7.3, Question 3 had significantly
different results for the four levels. Level 1 had the greatest percentage of students that
were in disagreement (either “Disagree” or “Strongly Disagree”) with that statement: 72%.
On the other hand, Level 2 had the lowest percentage of students that disagreed with that
statement: 50%. Level 3 had a larger proportion of students that disagreed: 70%. Finally,
Level 4 saw a decrease again in the proportion of students that disagreed with the statement:
58%. The game mechanics of Level 2 are more involved than Level 1 so it is not surprising
that more people found it more difficult to learn how to play Level 2. The increase in the
number of students that did not find it difficult to learn how to play the game in Level 3 can
be explained again by the fact that Level 3 has nearly identical game mechanics to Level
2. Lastly, Level 4 may have seen a decrease in the portion of students that did not find it
difficult to learn how to play the game, in comparison to Level 3, because for-loops are
introduced in this level. However, it is important to note that students felt Level 4 was
still easier to learn how to play than Level 2. This would be expected since the underlying
game mechanics of Level 4 do not differ much from Level 2 and 3 despite the introduction
of for-loops.

A large majority of the feedback on the survey mentioned the need for a more interactive
tutorial to teach students how to play the game. A student said that they “like the game
however the instructions were not very intuitive and it was hard to initially learn how to
play. After learning how to play it was more fun.”. An example of the current tutorial
page, which is shown before each level of gameplay, can be seen in Figure 7.5. The page
features the game screen that students will see for each level along with explanations for
each game control that students can read after clicking on the appropriate button. The
researcher observed that the students rarely, if at all, read the instructions before playing
the game. A wide majority of the students preferred to skip the instructions and proceed
directly to gameplay. This may contribute to the perceived difficulty in learning how to play
the game. It also suggests that the traditional method of defining game rules through text
is no longer as effective and perhaps, as a student suggested, “...a video or example would
be much more effective”. While a video tutorial could be more interesting for students
to review, it is not clear whether a tutorial presented in a different manner would have

72

MASc Thesis - Samantha Chan - McMaster - Computing and Software

any effect on each player’s ability to learn how to play the game. Research by Andersen
et al. has shown that the value of tutorials is highly dependent upon the complexity of the
game; they have a surprisingly negligible effect on player engagement in games that are less
complex and more similar to existing games in the same genre [2]. Furthermore, providing
help on-demand, during gameplay, can either have positive, negative, or negligible effects
on player engagement. Their results concluded that perhaps tutorials are not necessary
for games that can easily be learned through experimentation. For these types of games,
players seem to learn more through experimentation than from reading text [2]. Given
the relatively simplistic game mechanics of Space Race, perhaps a complete tutorial is not
necessary; it could either be omitted entirely or help on-demand can be provided during
gameplay. However, given the unpredictable effects of help on-demand (positive, negative,
or negligible effects), this tutorial implementation should be tested to avoid unforeseen
negative effects.

While playing the game, students experienced some minor technical difficulties. The
greatest issue was that the tablets would sometimes struggle to maintain connection with
the server because of the weak wireless signal. In the feedback section of the survey some
students suggested the researcher “provide a much more reliable internet connection”. If
one of the players were disconnected during gameplay, the game would bring all of the
other team members back to a waiting room where they could resume the game once the
disconnected player reconnected to the server. This was a minor inconvenience; it did not
hinder gameplay too much because the game state would be saved. It appears to have
had some effects on the student’s perception of the benefits of the game as the survey
indicates that at most 24% agreed with the statement that “the video game required too
much technical support to be beneficial”.

Overall, it appears that a large majority of the students enjoyed playing the game with
at least 82% students agreeing with the statement “I enjoyed playing the video game” on
the survey across all the levels. Level 2 had the highest proportion of students that were in
agreement with that statement: 88%. A student commented that they “enjoyed the whole
game, [because] it helped [them] learn some basic programming techniques and cleared up
some uncertainty.”. A student suggested that there should be a “storyline element [added
to the game] as it makes it much more immersive and easier to remember when told as
a narrative”. Another student even offered a storyline where “four astronauts have crash
landed on a planet and need to recode their computer in order to take off again” suggesting
that this storyline would “draw the players in to the game”.

When students were asked if they “[wished] there was more gameplay time in the
video game” (Question 24), Level 1 respondents had the highest proportion of students
that agreed with the statement at 52% while Level 3 had the lowest with 42%. This was
also the question where the greatest number of students selected “Neither Agree nor Dis-
agree” as their response. The game was designed so that each level could be completed
within an hour because of the time constraints students faced with their busy schedules.

73

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Figure 7.5: Space Race Level 3 Tutorial Page

74

MASc Thesis - Samantha Chan - McMaster - Computing and Software

An average of the best times for each level can be seen in Table 7.4. As expected, Level
3 had the longest time while Level 1 had the lowest time which may explain the results of
Question 24.

Table 7.4: Averages of the Best Times for each Level of Space Race

Level Average Time
1 0:07:58
2 0:19:07
3 0:32:14
4 0:23:49

From Table 7.4, it can be seen that Level 1 has an extremely low average best time. In
reality, most teams took approximately 30 to 45 minutes to complete the first level the first
time through. All of the groups completed the first level as intended the first time through
the game. However, many groups discovered that they could achieve a much faster time if
they “cheated” the second time through. These groups would continuously press random
buttons and shake their tablets to advance in the game. This is a problem with Level 1
since there are no consequences to making mistakes. This was noted by a few students
in the survey as some students suggested that the the game should “incorporate the effect
of wrong answers into the final score”. Alternatively other students said that “[they] liked
that [they] don’t lose points when [they] get the questions wrong”. While including the
number of incorrect answers to the score in the first level could have prevented cheating,
this method would not be necessary for the other levels since it is much more difficult, and
nearly impossible, to cheat. Furthermore, it is not clear if a score is necessary to encourage
students to answer questions accurately. For example, a student said that “the running
clock was a very interesting part of the game, it encouraged [them] to think fast and try
[their] hardest to answer the questions accurately and quickly”. This suggests that the
clock was sufficient to prompt the student to try and answer the questions as accurately as
possible without guessing. Additionally, the researcher observed that all of the groups were
more interested in learning the material correctly rather than guessing and pressing random
numbers for Levels 2, 3, and 4, and the first iteration of Level 1.

7.1.2 Teachability
This section explores students’ perceptions of how effective Space Race was at teaching
basic programming concepts. It will also comment on whether Space Race was able to
motivate students to study the course material and whether students prefer the game over
traditional teaching methods. Questions 6-8, 11, 12, 15-17, 22, and 23 on Survey B are the

75

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Likert responses that relate to the teachability of the game.
When students were asked if “the video game helped [them] to learn the basic pro-

gramming concepts being presented” (Question 6), at least 85% students answered with
agreement in all four levels. Level 4 had both the most students that agreed with the state-
ment (88%) and disagreed with the statement (6.5%). The Kruskal Wallis H-Test results
shown in Table 7.2 reveal that there was a significant difference in the results between the
four groups. However, this can most likely be attributed to the difference in the proportion
of students that chose “Strongly Agree” as opposed to “Agree” since all four levels had ap-
proximately the same proportion of students that chose “Neither Agree nor Disagree” and
“Disagree”/“Strongly Disagree”; all were comparatively low. Notably, Level 3 and Level 4
had almost double the proportion of students that selected “Strongly Agree” versus Level 1.

For Question 8, at least 82% of the students felt that they “would recommend that
others try to learn the basic programming concepts with [Space Race]” for all four levels.
However, from the survey, a student has noted that “the game confirms knowledge [; it]
doesn’t really teach”. Some other students expressed the same feelings and felt that Space
Race needed “a better response system to incorrect answers”. For example, a student
suggested that “hints [appear] if a team continuously got a certain question wrong”. To
summarize, students felt that the game needed more feedback response to teach students
concepts instead of simply confirming correct knowledge. Even though there was a lack
of feedback from the game, which prevented the game from directly teaching students
concepts, it certainly created multiple opportunities for team members to teach each other
new concepts. This will be discussed in more detail in the following section (Section 7.1.3).
Furthermore, the game pushes students to reference their “Cheat Sheets” (Appendix B) in
Levels 2, 3, and 4 for assistance and feedback. Most students felt that “the cheat sheet was
very helpful in summarizing the game”.

From the researcher’s observations, although the game does not directly teach students
new concepts, it definitely creates many “teachable moments”. An instructor was present
while the students were playing the game and when a team failed to execute an instruction
correctly after much discussion, they would raise their hands to ask for additional assis-
tance. This allowed the instructor to gain a better understanding of what the students did
not understand. Moreover, it helped the students identify concepts that they were not fa-
miliar with. Finally, although the game cannot teach students directly, it is certainly an
excellent pedagogical tool because it encourages students to ask the instructor questions
when they do not understand. A student is perhaps more likely to receive help from an
instructor when they are working with team members that are also unable to solve the
problem at hand. This could be because a student that is less assertive and may normally
not ask for help from a teacher may have a team member that is more assertive and not as
shy to ask questions. Also, there is less shame associated with not understanding a concept
if their peers also do not understand the concept. This, in turn, could lower a student’s
anxiety towards requesting their instructor, an authoritative figure, for help. Finally, asking

76

MASc Thesis - Samantha Chan - McMaster - Computing and Software

an instructor for help in the context of a game could perhaps be lower risk than asking a
question in another context; for example, in lectures, tutorials, or labs.

Question 15 was used to assess students’ preference for an educational video game
over traditional teaching methods. At least 65% of the students agreed with the following
statement: “I would prefer to learn basic programming concepts through a video game as
opposed to other traditional teaching methods such as lecture tutorials, or textbooks”. A
student also said that ‘when [they] played this game [they] felt as if [they] were studying.
[They] would enjoy using this game as a break from the regular studying for tests and
exams.”. Another student has stated that they “learned a lot from this game as [they] were
able to apply what [they learned] in lectures and tutorials”. Finally, a student has said
that “the interactions between team members bolstered the understanding of concepts and
created a better learning experience than just reading a textbook.”.

The results of Question 16 and 17 can be used to gauge how effective Space Race was
in motivating students to be more interested in the subject of programming. When students
were asked if “the video game stimulated [their] curiosity on the basic programming con-
cept being presented” (Question 16), at least 74% agreed and at most 7.4% disagreed with
the statement for all the levels . Furthermore, at least 67% agreed that “the video game has
motivated [them] to review the course material” across all four levels. This is important
because it suggests that the game has the side effect of motivating students to seek an un-
derstanding of programming outside the context of the game. Furthermore, curiosity in a
subject is a key component to learning that material from the constructivist perspective as
mentioned previously in Section 2.1.

Finally, the results of Questions 22 and 23 of the survey can indicate whether the level
of difficulty of the game was a hindrance to learning the programming concepts being
taught. It appears that a large majority of the students felt that the game was neither too
challenging nor too easy to teach the basic concepts. This is supported by the results that
at most 15% felt that the “the video game was not effective in teaching basic programming
concepts because it was not challenging enough” (Question 22) while at most 20% felt that
“the video game was not effective in teaching basic programming concepts because it was
too challenging” for all of the levels. A student also commented that they “[enjoyed] the
level of difficulty and the relevance of the questions with regards to the course material”.

7.1.3 Cooperation
Perhaps the most important aspect of Space Race is its ability to teach was the incorporation
of cooperation in the game design. Questions 9, 10, 13, 14, 18, and 21 provide insight on
how cooperation was able to affect how students learned while playing the game.

From Question 9, across all levels, as little as 2.3% and at most 7.4% disagreed with
the statement that “[their] team members helped [them] to better understand the basic
programming concepts being presented” for all four levels. Furthermore, only 0 to 2.3%

77

MASc Thesis - Samantha Chan - McMaster - Computing and Software

disagreed with the statement that “cooperation between team members makes this video
game an effective teaching tool for learning basic programming concepts” (Question 18)
for all the levels. From this, one can conclude that cooperation played a large part in the
effectiveness of Space Race as a teaching tool. Students have also provided the following
feedback with regards to cooperation in Space Race:

• “I really enjoyed the cooperative aspects of the game because it does a
tremendous job of encouraging teamwork and sharing individual knowl-
edge for the benefit of a common goal...”.

• “When we were stuck on a question, the team would offer suggestions
and we would get through the question together. This was helpful when
questions were hard and especially when the player did not know the
correct answer on their own. ”

• “[My team members] helped me a lot , as sometimes my initial guess was
incorrect, but they [would] correct me and explain the concept.”

• “My team members helped me to understand the various tools being pre-
sented and helped to clarify things I did not quite understand.”

• “Communicating with team members encourages discussion of concepts
which I like”

• “I really liked the cooperative nature of this video game. Individually, we
may have struggle with the concepts; but as a team, we conquered them.”

The quotes given above certainly highlights how cooperation influenced gameplay in
Space Race and facilitated learning. These findings are consistent with the theories dis-
cussed in Chapter 2. For example, students did, in fact, find that they could share and
clarify ideas and learn from each other when they grouped together to play Space Race.
Furthermore, it was mentioned previously that, according to Vygotsky’s contributions to
the field of social constructivism, problem solving skills of specific tasks can be evaluated
based on a student’s ability to perform tasks with others [67]. This ability is cultivated
when students learn in a collaborative environment and is transferable from the classroom
to “real life”. This notion was echoed by one of the students in their feedback: “I liked
how team member cooperation results in better final scores. [This represented] real life
situations [since] working in cooperative teams translated to better success.”.

In Chapter 2, it was also mentioned that cooperation could encourage students to work
harder since feelings of guilt are registered when the individual does not feel that they
have contributed sufficiently. Question 21 on the survey targets this concept. At least 73%
agreed with the statement that “[their] role as an effective team member motivates [them]
to review course material” while at most 8.0% disagreed with the statement for all four
levels. A student has said that “[their] team member really motivated [them] to actually

78

MASc Thesis - Samantha Chan - McMaster - Computing and Software

work hard, and not mess up, since it’s a team effort. It encouraged [them] to review [their]
knowledge about Python.”.

Each group had individuals with different programming skill levels and degree of un-
derstanding of course material. From the feedback that has been mentioned so far, it is
clear that the less informed students felt they were able to learn from their more capable
peers. It would be interesting to investigate whether these more knowledgeable students
were still able to feel that Space Race contributed to their understanding. Questions 13
and 14 of the survey can provide some insight as to whether the provision and reception of
verbal cues was able to reassure students of their understanding of concepts. The results of
the Kruskal Wallis H-test shown in Table 7.2 reveal that there were significant differences
between Levels 1, 2, 3, and 4 for these two questions. This can, again, be attributed to the
proportion of students that selected “Strongly Agree” versus “Agree”. From all four levels,
at least 81% of the students agreed that “[they] felt reassured of [their] knowledge in the
programming concepts presented when [they] gave verbal cues to [their] team members
in the game.” (Question 13) while at least 76% of the students felt “[they] felt reassured
of [their] knowledge in the programming concepts presented when [they] received verbal
cues from [their] team members in the game.” (Question 14). From the comments re-
ceived on the survey, it seems like most of the students that felt more capable than their
team members still enjoyed the game and felt a sense of pride in being able to instruct
others. For example, a student stated that they “[were] the lead of the team so [they] did
not learn anything from [their team members] however, [they] taught them a lesson or 2
[sic] about Python.”. It is important to note that there were very few comments on the
survey where students felt their team members did not teach them anything new. Some of
the “negative” comments could even have a positive interpretation. For example, a student
said that “[their teammates] slowed [them] down but [it] was fun to play with them”. An-
other said “[their teammates were] great but they need to be more efficient”. It was much
more common for students to comment that their team members were able to teach them a
concept they did not understand. To quantify, 9 out of 231 (0.039%) respondents from all
four levels for Question 26, “How did your team members affect your ability to learn the
basic programming concepts being presented”, had responses that could be interpreted as
being “negative”.

7.1.4 Competition
In this last section, the effects of competition on Space Race will be explored. Questions
19 and 20 provide some insight on this topic. When students were surveyed, at least 68%
of the students agreed that “competition between teams [made] this video game an effec-
tive teaching tool for learning basic programming concepts” (Question 19) across the four
levels. This is lower than the proportion of students that felt cooperation between teams
made the video game effective in teaching basic programming concepts. However, this is

79

MASc Thesis - Samantha Chan - McMaster - Computing and Software

still a considerably high percentage of students that felt competition added to the game’s
effectiveness as a teaching tool. In particular, a student “thought the game was fun...[they
liked] the leaderboard because it [challenged] other teams to get a high score”. When
students were asked if “competition between teams [motivated them] to review course ma-
terial” (Question 20), at least 60% of the students agreed for all the levels. None of the
students reported feeling less motivated to participate as a result of the competitive aspect
of the game.

The researcher observed that fewer teams were interested in competing with other teams
than in successfully completing each level. To illustrate, a student commented that when
they played the game with their team, “they assisted [him/her] and [he/she] assisted them.
When someone did not understand [since they were] not that competitive [they] stopped
and helped each other through it”. For some groups, the competitive aspect was less im-
portant than the cooperative aspect of the game. An unexpected side effect was the com-
petition that some students felt with the peers within their group. This form of competition
was not at the expense of their team members; it was more individualistic in nature. A
student felt that they needed to “try to be the smartest one in the group”. This could serve
as motivation for students to review the material. Another student put it simply: “some
[people] knew more, so I wanted to know more”.

80

Chapter 8

Educational Effectiveness of Game

This chapter will quantify the educational effectiveness of Space Race. Specifically, the pre
and post quiz results will be analyzed first followed by the ENG 1D04 exam results. The
quiz results demonstrate the immediate effects of Space Race, while the ENG 1D04 exam
results demonstrate whether the knowledge obtained from Space Race can be retained over
time. The exams also provide an opportunity to examine whether the understanding of
programming through Space Race can be transferred to a context outside of the game.

When performing statistical analysis that determines the significance of results, there
are two important numbers: alpha (α) and p-value. The p-value is derived from every test
statistic and it represents the probability that the observed results occurred by chance alone.
For example, a p-value of 0.1 means that there is a 10% chance that the observed results
occurred randomly through chance. A significance level of the study must be designated to
determine the threshold value that p-values can be measured against. This numerical value
is known as alpha. It determines how extreme observed results must be to reject the null
hypothesis of any significance test. In the past, researchers most commonly selected 0.05 as
the alpha value and this is generally accepted as the standard. This is also the alpha value
that has been chosen for this experiment; the significance of the results in the following
sections will use an alpha of 0.05. The results can be called statistically significant if the
test statistic produces a p-value that is less than or equal to alpha. Contrastingly, any p-
value that is greater than alpha would mean that results are not statistically significant. All
statistical tests within this chapter were performed using SciPy [16].

8.1 Benchmark for Student Abilities
Since members of the experimental group volunteered to play Space Race, it is important to
first assess whether these individuals were pre-disposed to excelling in ENG 1D04 before
the exam results of the experimental group can be compared to the control group. That

81

MASc Thesis - Samantha Chan - McMaster - Computing and Software

is, there must be confirmation that there was minimal self-selection bias so that causation
can be attributed to Space Race rather than a biased sample group. Furthermore, by bench-
marking the abilities of students in the experimental group, one can compare the effects
of Space Race between “stronger” and “weaker” students by analyzing the differences in
post-quiz results.

A method of benchmarking must be employed to determine the distribution of students
in both the experimental and control group. To do this, a combination of the Math 1ZA3
(Engineering Mathematics I) and Physics 1D03 (Introductory Mechanics) exam marks for
each student were used. Both of these courses are mandatory for all first year McMaster En-
gineering students. They are usually taken in Term 1 of the academic year, although some
students may opt to take the courses during the summer or at a later time if they decide to
divide their first year of study into two years or more. The latter option is rare amongst the
first year engineering student population. As such, most of the ENG 1D04 term 2 students,
the research participants, will have already taken these courses. Math and physics marks
were chosen as indicators because research has shown that misunderstandings in physics,
mathematics, and computer programming display strong commonalities with one another.
These misunderstandings can arise as the result of parallel or identical causes that occur in
each domain [53]. With support from this theory, the researcher has chosen to use math and
physics marks as predictors of success in ENG 1D04, since a student’s misunderstanding
of concepts in either one of those courses may translate into a programming course.

Each student in both the control group and experimental group was assigned a score
which is calculated in the following manner:

M = Math 1ZA3 Final Exam Mark
P1 = Physics 1D03 Midterm 1 Exam Mark
P2 = Physics 1D03 Midterm 2 Exam Mark

Score = Average(M,Average(P1,P2))

When using the above equation to determine each student’s score, the following methods
were applied to special cases:

1. If only one of either Midterm 1 (P1) or Midterm 2 (P2) was available for Physics,
the available mark was used.

2. If only one of either Physics (Average(P1,P2)) or Math (M) was available, the avail-
able mark was used.

3. If neither a Physics or Math mark was available, the student was omitted from the
evaluations used to determine the educational effectiveness of Space Race.

A total of five students could not be assigned a score based on the criterion mentioned
above. Table 8.1 shows the number of students that were omitted from the evaluations

82

MASc Thesis - Samantha Chan - McMaster - Computing and Software

according to the experimental and control groups. The number of participants that were
eliminated from the study are much smaller than the original sample they were removed
from. As such, the elimination of these participants should have a negligible effect on the
observed results.

Table 8.1: Number of Participants Eliminated

Level Experimental Group Control Group
1 2 out of 236 3 out of 249
2 2 out of 214 3 out of 271
3 2 out of 194 3 out of 291
4 1 out of 190 4 out of 295

Figure 8.1 shows the distribution of scores between the experimental and control group
for each level of Space Race. A quick review of the histograms suggests that the distribution
of scores between the experimental and control group are very similar.

A two-sided t-test was performed for each level to confirm that the differences between
the distributions of the two groups are insignificant. Since the t-test assumes the samples
are normally distributed, the normality test from SciPy was used to verify that both the
experimental and control group scores are normally distributed. The normal test in SciPy
tests the null hypothesis that a sample comes from a normal distribution. The results are
shown in Table 8.2. Given that all the p-values are larger than the level of significance of
0.05, the null hypothesis cannot be rejected. As such, the distribution of scores for both the
experimental and control group can be assumed to be normal.

Table 8.2: Normality Test Results for Experimental and Control Group Scores

Level Experimental Group p-value Control Group p-value
1 0.421 0.595
2 0.364 0.699
3 0.081 0.669
4 0.355 0.668

Having established normality for the distribution of scores for both the control and
experimental group, the t-test was performed with the null hypothesis that the two indepen-
dent samples, the experimental and control group, have the same distribution. The p-value
can be used to interpret the results of this test. If a large p-value is observed, then the
null hypothesis cannot be rejected; this means there is not a significant difference in the

83

MASc Thesis - Samantha Chan - McMaster - Computing and Software

(a) Level 1

(b) Level 2

84

MASc Thesis - Samantha Chan - McMaster - Computing and Software

(c) Level 3

(d) Level 4

Figure 8.1: Score Distributions for Experimental and Control Group by Levels

85

MASc Thesis - Samantha Chan - McMaster - Computing and Software

distribution of scores.

Table 8.3: T-test Results for Comparison of Experimental and Control Group Scores

Level t-statistic p-value
1 0.5214 0.6024
2 1.2440 0.2142
3 1.0046 0.3157
4 0.8312 0.4064

The results of the t-test can be seen in Table 8.3 for each level. It can be seen that the
p-value for all four levels is well above 0.05. Consequently, the null hypothesis cannot be
rejected. This suggests that there is very weak evidence the distribution of scores between
the experimental and control group are not the same. This conclusion suggests that there
is minimal self-selection bias in the experimental and control group thus strengthening the
argument that any differences in performance between the two groups can be attributed to
the influence of Space Race.

8.2 Pre and Post Quiz Results
As mentioned previously in Section 5.2.2, the pre and post quizzes are identical and they
are completed by the students before and after every level of gameplay in Space Race.
These quizzes can be seen in Appendix C. Students were not told which questions they
answered correctly for both the pre and post-quiz; students did not receive feedback on
quiz performance. Table 8.4 shows the percentage of students that answered correctly on
the pre and post-quiz. The table also includes the number of students that successfully
completed the pre and post-quiz questions for each level (indicated by N). This number
may be less than the number of students that actually played and completed that level of
Space Race because some students were unable to submit the post quiz due to technical
issues. The quiz data, both pre and post, for these students has been eliminated from the
results. While considering the results of the pre and post quiz, it is also important to note
that some students may not have taken the quizzes seriously. This may have been because
there were no consequences for selecting an incorrect answer. Some of the quiz results may
have been affected by this.

McNemar’s test was chosen to verify the significance of the differences between the pre
and post-quiz results for each question. McNemar’s test can be used when the data being
investigated is paired and nominal and the outcome of interest is a proportion [47]. In this
case, the pair-matched data comes from each individual’s results before and after playing

86

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Space Race. The null hypothesis in this instance is that the proportion of subjects that
answer a question correctly is the same before and after playing Space Race. The results
of McNemar’s test can be seen in Table 8.4. The table shows that 65% (13/20) of all the
results are significant. Additionally, all of the results that are significant are cases where
the proportion of students that were correct in the post-quiz exceeded that of the pre-quiz
(positive delta correct). On the other hand, all of the negative delta correct results were
relatively small and not statistically significant.

Table 8.4: Pre and Post Quiz McNemar’s Test Results

Question Pre Correct(%) Post Correct(%) Delta Correct (%) McNemar’s Chi-Square Statistic P-Value Significant at p<0.05?
LEVEL 1 N= 230
1 17.83 40.87 23.04 44.59 0 Yes
2 26.09 30.43 4.35 1.79 0.181 No
3 71.3 69.13 -2.17 0.36 0.547 No
4 39.57 46.96 7.39 6.42 0.011 Yes
5 19.13 60 40.87 83.36 0.000 Yes
LEVEL 2 N= 188
1 96.28 95.21 -1.06 0.33 0.564 No
2 23.94 28.72 4.79 3.24 0.072 No
3 26.6 30.85 4.26 2 0.157 No
4 53.19 54.79 1.6 0.36 0.549 No
5 69.15 85.11 15.96 22.5 0.000 Yes
LEVEL 3 N= 171
1 66.67 73.68 7.02 5.14 0.023 Yes
2 30.41 46.2 15.79 13.75 0.000 Yes
3 66.08 81.29 15.2 16.1 0.000 Yes
4 90.06 90.64 0.58 0.04 0.835 No
5 17.54 82.46 64.91 98.57 0.000 Yes
LEVEL 4 N= 167
1 79.04 92.81 13.77 17.06 0.000 Yes
2 61.08 69.46 8.38 6.53 0.011 Yes
3 49.1 59.88 10.78 9 0.003 Yes
4 72.46 85.03 12.57 13.36 0.000 Yes
5 31.14 61.68 30.54 40.02 0.000 Yes

Level 1 had two questions where the difference in results were not significant: Ques-
tion 2 and Question 3 (abbreviated to L1Q2 and L1Q3). The insignificance of the results
suggests that there was no change in the proportion of students that were correct before
and after playing Space Race. Both of these questions were not directly from Space Race
Level 1 and required students to abstract and apply what they observed in Space Race to
answer the questions. L1Q2 required students to understand Question 43 from Level 1 of
the Space Race game. That question emphasized that floats are approximations because of
its fixed precision. Hence, 1e30+1==1e30 is true in Python (1e30 is scientific notation for
1.0x1030). This question prompted many students to ask the instructor for an explanation

87

MASc Thesis - Samantha Chan - McMaster - Computing and Software

of the results. It was established in the previous chapter that it is easy for students to cheat
in Level 1 and there is a general lack of feedback from the game. This combination could
have resulted in the poor results on L1Q2. Although many students asked for clarification,
other students may have guessed the correct answer and moved on without asking for clar-
ification. In this case, the lack of feedback from the game failed to correct or augment their
understanding. The results of L1Q2 emphasize the importance of providing feedback in
the game when it is easy for students to proceed in the game without really knowing what
they are doing. In that case, the presence of an instructor does not necessarily facilitate
learning.

L1Q3 is another question that is not explicitly taught in Level 1 of Space Race; it
requires students to understand that integer division always takes place in Python when
both the numerator and denominator are integers. This happens regardless of whether there
is a remainder value or not. The lack of improvement in this question could be due to the
lack of exposure that students have had to integer division in Level 1, or it could mean
that students were unable to understand m%n!=0. This section of the question may have
confused students.

Out of the four levels, students improved the least on the quiz in Level 2 with only one
of the positive delta correct cases being significant. L2Q1 saw negative improvement with
a delta of -1.1%. However, the percentage of students that were correct before and after
playing Space Race is over 95%. This suggests that the question was perhaps too easy; the
concept it tested was already understood by the large majority of students prior to playing
Space Race.

L2Q2 was used to assess whether students were able to make the connection that im-
mutable values assigned to variables do not change unless a new value is assigned to that
variable. The question for L2Q2 is the following:

After running the following lines of code:
X=2
float(X)
the value of X is 2.0. Is this statement true or false?

a) true

b) false

When students are given an instruction in Space Race like “Yoke=float(7/2)”, they must
change their Yoke control to 3.0 because a value has been assigned to their Yoke control.
Without assignment, none of the immutable values for their controls would change in Level
2. Unfortunately, it appears that students were unable to abstract their understanding from
Space Race and apply it to L2Q2. Perhaps, L2Q2 would have been met with more success
if there was an explicit example from Space Race where an instruction does not cause any
change for any of the controls because assignment has not taken place. Also, it may have

88

MASc Thesis - Samantha Chan - McMaster - Computing and Software

been helpful if the game provided explicit feedback that assisted students in making a con-
nection between the game mechanics and programming concept. In this instance, the game
could have revealed to the player that changing control values because of an instruction is
much like how the values from variables are changed from variable assignment.

The result for L2Q3 is surprising because of its close relationship with L2Q5. L2Q5
asks students to identify, from a list of types, which type is not mutable. 85% of the students
were able to correctly identify strings as the correct answer after playing Space Race, a
16% improvement from the pre-quiz. However, when reviewing the results of L2Q3, only
31% of the students were able to select the correct answer. The question for L2Q3 is the
following:

Assuming variable X is a non-empty string of length 3. Which of these
generates a runtime error?

a) X[0]="E"

b) Y= X[1:2]=="C"

c) Y= X[:2]

d) Y= X[2:0]

L2Q3 requires students to identify the option that produces an error; the correct answer is
the one where the line of code attempts to change the current string by doing the following:
“X[0]="E"”. The results from L2Q3 and L2Q5 suggests that students know strings are
not mutable but they do not understand what this means. Furthermore, all of the options
from L2Q3 appear in Level 2 of Space Race. That is, all of the incorrect answers are
instructions that students have to execute in Level 2 and the correct answer is an “Error”
result in Level 2. The distribution of responses for L2Q3 is shown in Table 8.5. It is worth
noting that the instructor noticed that slice notation for strings was intimidating for many
students. A lot of students had to ask questions for clarification on instructions that involved
slice notation for strings. Since correctly answering such a question requires students to
either identify the correct answer or eliminate the incorrect answers, it is unclear whether
more practice with slice notation would have improved response rates on the post-quiz.
The inability to recognize the “Error” option in L2Q3 as the correct answer may perhaps
highlight Space Race’s failure to consistently teach students to identify exceptions. As
stated in Chapter 4, when more than one player has an instruction with an error, the first
error that appears is the first error that is cleared after all four players shake their tablets. It
is possible that sometimes two errors are “in-play” and when everyone shakes their tablets
with the intention of clearing the second error, the first error is cleared instead. If the
student with the first error is not paying attention to their instructions, they may not notice
their instruction before it gets cleared. Again, feedback from the game to explain why their
error was cleared would be beneficial in this instance.

89

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Table 8.5: L2Q3 Answer Distribution

Answer Option Pre-Quiz(%) Post-Quiz(%)
X[0]="E"- correct 26.60 30.85
Y=X[1:2]=="C" 31.38 31.91
Y=X[:2] 7.98 8.51
Y=X[2:0] 34.04 28.72

Level 3 and Level 4 had the greatest number of significant results. The only insignificant
result is for L3Q4 which, like L2Q1, had a high proportion of students correct for both the
pre and post quiz results. This again, may indicate that the question was too simple and
could not measure whether a concept could be taught by Space Race. L3Q5 had the highest
improvement out of all the questions across the four levels with a delta correct of 65%. This
question is pulled directly from Space Race; it is almost identical to one of the instructions
that appears in the programs of Level 3. The question for L3Q5 is the following:

If x=“BCBC”.split(“C”), what is the value of x?

a) ["B", "B"]

b) ["C", "C"]

c) ["B", "B", ""]

d) ["", "C", "C"]

Even when this concept was explained on the “Cheat Sheet”, this was one of the instruc-
tions that most students struggled with within the game. This is not surprising since the
percentage of students that got L5Q1 correct in the pre-quiz is the lowest: 18%. While
playing the game, most students would often require additional help from the instructor to
execute the instruction when it first appears during gameplay. This instruction is different
from the other instructions because it is less intuitive and more difficult to simply guess,
thus providing the instructor with an opportunity to explain the concept in more depth. This
suggests that perhaps the game is most effective when it is supplemented with explanations
from an instructor.

8.2.1 Comparing the Effects of Space Race on Different Students
To compare the effects of Space Race on “stronger” and “weaker” students, all the students
within the experimental group will be sorted into three separate bins based on the Score
they received. The calculations and grades used to obtain these scores were shown in
Section 8.1. Each student will be sorted one of the three following categories:

90

MASc Thesis - Samantha Chan - McMaster - Computing and Software

• Bin 0: Score < 50%

• Bin 1: 50% ≤ Score ≤ 75%

• Bin 2: 75% < Score

The students in Bin 0, Bin 1, and Bin 2 represent the weakest, average, and strongest
students, respectively. After sorting the students into their respective bins, the quiz results
can be obtained for each group. These results are shown in Table 8.6, Table 8.7, and
Table 8.8.

Table 8.6: Pre and Post Quiz McNemar’s Test Results for Bin 0

Question Pre Correct(%) Post Correct(%) Delta Correct (%) McNemar’s Chi-Square Statistic P-Value Significant at p<0.05?
LEVEL 1 N= 42
1 21.43 35.71 14.29 6 0.014 Yes
2 26.19 30.95 4.76 0.4 0.527 No
3 71.43 73.81 2.38 0.09 0.763 No
4 52.38 52.38 0 0 1 No
5 14.29 54.76 40.48 17 0 Yes
LEVEL 2 N= 31
1 96.77 90.32 -6.45 1 0.317 No
2 16.13 22.58 6.45 2 0.157 No
3 25.81 35.48 9.68 3 0.083 No
4 45.16 41.94 -3.23 0.33 0.564 No
5 70.97 87.1 16.13 5 0.025 Yes
LEVEL 3 N= 30
1 53.33 70 16.67 2.78 0.096 No
2 13.33 30 16.67 3.57 0.059 No
3 63.33 73.33 10 1.29 0.257 No
4 90 90 0 0 1 No
5 13.33 90 76.67 23 0 Yes
LEVEL 4 N= 30
1 66.67 90 23.33 5.44 0.02 Yes
2 56.67 66.67 10 1.8 0.18 No
3 36.67 50 13.33 2.67 0.102 No
4 70 86.67 16.67 2.78 0.096 No
5 20 56.67 36.67 11 0.001 Yes

Results show that 6/20 (30%), 11/20 (55%), and 10/20(50%) of the improvements are
significant for Bins 0, 1, and 2, respectively. This indicates that Space Race has had a larger
positive impact on the average and stronger students than on the weaker students. Also, it
appears that the impact of Space Race on stronger and average students are approximately
the same.

91

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Table 8.7: Pre and Post Quiz McNemar’s Test Results for Bin 1

Question Pre Correct(%) Post Correct(%) Delta Correct (%) McNemar’s Chi-Square Statistic P-Value Significant at p<0.05?
LEVEL 1 N= 117
1 13.68 39.32 25.64 25 0 Yes
2 25.64 26.5 0.85 0.04 0.847 No
3 72.65 67.52 -5.13 0.95 0.33 No
4 37.61 47.01 9.4 5.26 0.022 Yes
5 18.8 62.39 43.59 42.64 0 Yes
LEVEL 2 N= 94
1 96.81 95.74 -1.06 0.14 0.705 No
2 26.6 26.6 0 0 1 No
3 26.6 29.79 3.19 0.47 0.491 No
4 51.06 54.26 3.19 0.69 0.405 No
5 70.21 88.3 18.09 12.57 0 Yes
LEVEL 3 N= 82
1 70.73 73.17 2.44 0.33 0.564 No
2 40.24 57.32 17.07 7 0.008 Yes
3 64.63 82.93 18.29 9.78 0.002 Yes
4 87.8 90.24 2.44 0.33 0.564 No
5 18.29 81.71 63.41 46.62 0 Yes
LEVEL 4 N= 89
1 83.15 94.38 11.24 6.25 0.012 Yes
2 65.17 69.66 4.49 1 0.317 No
3 48.31 59.55 11.24 4.55 0.033 Yes
4 73.03 86.52 13.48 8 0.005 Yes
5 33.71 60.67 26.97 16.94 0 Yes

8.3 Exam Results
The following section will compare the midterm and final exam results between the experi-
mental and control group. These results provide insight into how well knowledge obtained
from Space Race is retained over time. Furthermore, the results support an investigation
into whether the knowledge attained in Space Race is applicable in a context outside of the
game world.

8.3.1 Midterm Exam Results
This section compares the performance of the experimental group to the control group on
the midterm exams. Details of the midterm exams can be found in Section 5.2.3 and the
questions can be found in Appendix E.1 and E.2. The questions on the exam are all in
a multiple-choice format. The researcher chose ten questions from Midterm 1 and two
questions from Midterm 2 to investigate. These questions were chosen because they tested
material that was covered in Space Race. Only two questions from Midterm 2 were se-
lected, since the material tested in Midterm 2 covers mainly weeks 6 through 9 of ENG
1D04, while Space Race only covers material from weeks 1 through 5. After the questions

92

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Table 8.8: Pre and Post Quiz McNemar’s Test Results for Bin 2

Question Pre Correct(%) Post Correct(%) Delta Correct (%) McNemar’s Chi-Square Statistic P-Value Significant at p<0.05?
LEVEL 1 N= 39
1 28.21 46.15 17.95 5.44 0.02 Yes
2 28.21 46.15 17.95 4.45 0.035 Yes
3 71.79 71.79 0 0 1 No
4 35.9 38.46 2.56 0.14 0.705 No
5 17.95 69.23 51.28 20 0 Yes
LEVEL 2 N= 34
1 97.06 100 2.94 1 0.317 No
2 23.53 44.12 20.59 7 0.008 Yes
3 20.59 26.47 5.88 2 0.157 No
4 55.88 64.71 8.82 1.29 0.257 No
5 64.71 73.53 8.82 1.8 0.18 No
LEVEL 3 N= 31
1 70.97 80.65 9.68 3 0.083 No
2 29.03 51.61 22.58 4.45 0.035 Yes
3 67.74 87.1 19.35 4.5 0.034 Yes
4 90.32 93.55 3.23 0.33 0.564 No
5 16.13 83.87 67.74 21 0 Yes
LEVEL 4 N= 26
1 76.92 92.31 15.38 4 0.046 Yes
2 57.69 65.38 7.69 1 0.317 No
3 69.23 88.46 19.23 5 0.025 Yes
4 76.92 88.46 11.54 3 0.083 No
5 30.77 69.23 38.46 10 0.002 Yes

were chosen, each question was assigned one or more levels of Space Race according to
its relevance to the material covered in those levels. For example, if a question is assigned
Levels 1 and 2 then the core concept required to solve that question is covered in both Level
1 or Level 2. This is necessary to determine which students belong to the experimental and
control group when comparing results between the two samples, especially since not ev-
eryone that participated completed all of the levels. A student is considered to belong to
the experimental group if they have played either one of the levels that have been assigned
to that question. For example, a question that has been assigned Level 1 and Level 2 would
have students that have played either Level 1 or Level 2 in the experimental group.

Table 8.9 and Table 8.10 shows the proportion of students that were correct in both
the experimental and control group for each question of the midterm exams. The assigned
levels for each question are also listed along with the delta correct value, which shows the
difference in percentage of students that were correct between the experimental and control
group.

The Chi-square statistic was chosen to test the significance of each of the results. This
statistic can be used to investigate whether the distribution of the categorical variables dif-
fer from one another [48]. It compares the counts of categorical responses between two
or more independent groups. In this scenario, the two independent groups are the exper-

93

MASc Thesis - Samantha Chan - McMaster - Computing and Software

imental and control group, while the categorical responses are either correct or incorrect
for an individual question. The null hypothesis posits that the proportion of students that
are correct do not differ between the experimental and control group. The results of the
Chi-test is shown in both Table 8.9 and Table 8.10.

Table 8.9: Midterm 1 Chi-Square Test Results

Question Levels Experimental
Group Cor-
rect(%)

Control Group
Correct(%)

Delta Cor-
rect (%)

Chi-Square
Statistic

P-Value Significant at
p<0.05?

1 1 54.69 50.00 4.69 0.64 0.423 No
5 1 2 89.58 93.33 -3.75 1.22 0.270 No
9 1 96.35 94.44 1.91 0.40 0.527 No
10 4 46.75 36.24 10.51 3.71 0.054 No
13 3 51.92 46.76 5.16 0.77 0.380 No
17 4 74.03 63.30 10.72 4.27 0.039 Yes
20 3 4 35.26 29.63 5.63 1.07 0.300 No
23 2 3 4 59.30 47.50 11.80 4.71 0.030 Yes
27 3 4 70.51 63.43 7.09 1.73 0.188 No
28 3 70.51 57.87 12.64 5.69 0.017 Yes

Table 8.10: Midterm 2 Chi-Square Test Results

Question Levels Experimental
Group Cor-
rect(%)

Control Group
Correct(%)

Delta Cor-
rect (%)

Chi-Square
Statistic

P-Value Significant at
p<0.05?

5 1 78.80 75.14 3.67 0.50 0.479 No
27 3 4 45.70 30.37 15.32 8.30 0.004 Yes

The results show that 4/12 (33%) of the questions had a significant difference in per-
formance between the experimental and control group. All of these significant results are
for a positive delta correct value with the largest improvement being 15% for Question 27
on Midterm 2. That is, all of the significant results are represented by cases where the ex-
perimental group outperforms the control group. None of the negative delta correct results
were significant. From this, one can conclude that students from the experimental group
either perform equally well or better than the students from the control group. There also
does not seem to be a trend in determining which types of questions would guarantee that
students from the experimental group would outperform the control group. The only pat-
tern that can be drawn from the results is that any question involving Level 1 did not result
in a positive delta correct value that is significant. This suggests that Level 1 does not have

94

MASc Thesis - Samantha Chan - McMaster - Computing and Software

a significant impact on the experimental students’ results on the midterm exams.

8.3.2 Final Exam Results
The Final Exam results are presented in the same manner as the Midterm 1 and Midterm 2
results in Section 8.3.1. The questions (seen in Appendix E.3) and their associated Space
Race level were, once again, assigned by the researcher. Also, the Chi-square statistic was
used again to test the significance of results, as shown in Table 8.11. The conclusions that
can be drawn from the results of the Final Exam differ from the results of the midterm
exams because it occurs at a much later time point in the experimental timeline. There is
at least a total of 7 weeks between each student’s last exposure to Space Race and their
completion of the Final Exam. The performance of the experimental group on the Final
Exam can indicate whether the students were able to retain the concepts they learned in
Space Race over a greater time period.

Table 8.11: Final Exam Chi-Square Test Results

Question Levels Experimental
Group Cor-
rect(%)

Control Group
Correct(%)

Delta Cor-
rect (%)

Chi-Square
Statistic

P-Value Significant at
p<0.05?

4 1 51.83 51.08 0.76 0.00 0.965 No
5
(L3Q5)

3 4 77.56 36.20 41.37 61.22 0.000 Yes

6
(L2Q3)

2 3 48.26 32.68 15.57 8.83 0.003 Yes

7
(L1Q5)

1 80.63 63.98 16.65 12.26 0.000 Yes

11 4 88.16 82.67 5.49 1.73 0.189 No
16 1 2 84.82 84.95 -0.13 0.01 0.913 No
17 1 37.70 43.55 -5.85 1.11 0.293 No
21 4 84.87 87.11 -2.24 0.22 0.640 No
23 3 4 82.69 79.19 3.51 0.51 0.474 No
29 3 4 76.28 61.54 14.74 8.42 0.004 Yes
44 3 4 33.33 21.27 12.07 6.27 0.012 Yes
46 1 64.92 67.74 -2.82 0.22 0.638 No

As stated in Section 5.2.3, questions 5, 6, and 7 on the final exam were set by the
researcher, not the instructor. The questions are as follows:

Question 5 (L3Q5): If x=“BCBC”.split(“C”), what is the value of x?

a) ["B", "B"]

95

MASc Thesis - Samantha Chan - McMaster - Computing and Software

b) ["C", "C"]

c) ["B", "B", ""]

d) ["", "C", "C"]

Question 6 (L2Q3): Assuming variable X is a non-empty string of length
3. Which of these generates a runtime error?

a) X[0]="E"

b) Y= X[1:2]=="C"

c) Y= X[:2]

d) Y= X[2:0]

Question 7 (L1Q5): Which of these generates a runtime error?

a) "b"*4

b) X=6!=5

c) X=str(5)

d) X=int("b")

e) X=4L/2

These questions are identical to the pre and post quiz questions given in Space Race: Ques-
tion 5 from L3Q5, Question 6 from L2Q3, and Question 7 from L1Q5. Question 5 and
Question 7 were chosen because both questions had a relatively large improvement from
the pre-quiz to the post-quiz. L3Q5 (Question 5) had a delta correct of 65%, while L1Q5
(Question 7) had a delta correct of 41% from pre to post-quiz. Question 6 (L2Q3) was
chosen because there was no significant change in results between the pre and post-quiz
responses with a delta correct of 4.3% and both the pre and post-quiz responses had a low
proportion of students that got the answer correct (27% and 31%, respectively). The fi-
nal exam results for these questions could indicate if the students that completed the quiz
questions correctly retained their knowledge over several weeks.

Table 8.12 shows a comparison of how students that completed the post-quiz for each
relevant question performed on the exam. For example, for Question 5 (L3Q5), 141 stu-
dents had the correct answer on their post quiz; of those 141 students, only 114 students
had the correct answer on their final exam (81%). Alternatively, 30 students got Question
5 (L3Q5) incorrect on their post-quiz but 15 of those students got the correct answer on the
final exam (50%). The results show that 55% of the students that had the correct answer on
their post-quiz for Question 6 selected the correct answer again on the final exam. How-
ever, Question 5 and Question 7 showed significantly better retention rates, as 80% of the

96

MASc Thesis - Samantha Chan - McMaster - Computing and Software

students that selected the correct answer in the post-quiz selected the correct answer again
in the final exam. These results indicate that not all of the students retained their knowledge
after playing Space Race, but the majority did. In particular, questions that saw a large delta
correct from pre to post-quiz results had a higher retention rate. Comparatively, a question
that had no significant change in pre to post-quiz performance had a lower retention rate. In
all cases, some of the students that originally selected the incorrect answer on the post-quiz,
chose the correct answer on the final exam. It is not clear whether these students performed
better on the final exam because Space Race motivated them to investigate the topic being
tested, but it could be a contributing factor.

Questions 5, 6, and 7 had the largest difference in performance between the experimen-
tal group and the control group as seen in Table 8.11. Out of these questions, Question 5
had the biggest delta correct value (41%). Interestingly, Question 5 (L3Q5) also had the
greatest delta correct value for the pre and post quiz as seen in Table 8.4. This could suggest
that most of the students that did not play Space Race failed to learn the concept tested in
Question 5 without the intervention of Space Race.

Overall, only 5/12 (42%) of the results from Table 8.11 were significant. None of the
negative delta correct values were significant results. This, again, suggests that students
that played Space Race either performed equally well or better than the students that did
not play Space Race. For Questions 5, 6, and 7, it is unclear whether the experimental
group performed better than the control group simply because they have seen the questions
before. Although, it is important to note that the post-quiz did not provide any feedback to
students. That is, students had no idea whether their answer was correct or incorrect unless
they sought the answer out themselves.

Finally, a comparison of knowledge retention results amongst stronger, average, and
weaker students, belonging to the experimental group, was performed on Question 5 (L3Q5),
Question 6 (L2Q3), and Question 7 (L1Q5). Students belonging to the experimental group
were divided again into Bin 0, Bin 1, and Bin 2 (shown in Section 8.2.1). Table 8.13 shows
the percentage of students that got the correct answer on the post-quiz and the final exam
from each bin. For example, 70.37% of the students from Bin 0 answered Question 5
(L3Q5) correctly on the post-quiz and the final exam. The table also shows the percent-
age of students that selected the incorrect answer on the post-quiz and then selected the
correct answer on the final exam. For example, 30.00% of the students from Bin 0 had
the incorrect answer on the post-quiz for Question 6 (L2Q3), but a correct answer on the
final exam. These results suggests that the weaker students, represented by Bin 0, are less
likely to retain the knowledge obtained from Space Race than the average and stronger
students, represented by Bin 1 and Bin 2, respectively. There also appears to be similar
retention rates amongst average and stronger students. When reviewing the results of the
students that did not select the correct answer on the post-quiz but later rectified their errors
and selected the correct answer on the final exam, it appears, again, that the average and
stronger students perform better than the weaker students. Also, in most cases, the aver-

97

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Table 8.12: Final Exam Question Results Compared to Post-Quiz Question Results

Post-Quiz Correct Sample
Post-Quiz Correct Exam Correct Percentage

(Exam/Post-
Quiz)

Question 5 (L3Q5) N= 171 141 114 80.85%
Question 6 (L2Q3) N= 188 58 32 55.17%
Question 7 (L1Q5) N= 230 138 111 80.43%

Post-Quiz Incorrect Sample
Post-Quiz Incorrect Exam Correct Percentage

(Exam/Post-
Quiz)

Question 5 (L3Q5) N= 171 30 15 50%
Question 6 (L2Q3) N= 188 130 51 39.23%
Question 7 (L1Q5) N= 230 92 70 76.09%

age students and stronger students perform equally well, with the exception of Question 5
(L3Q5) where the average students outperform the stronger students. This indicates that
the weaker students are less likely to correct their mistakes after the intervention of Space
Race in comparison to the average and stronger students.

98

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Table 8.13: Final Exam Question Correct Results Compared to Post-Quiz Question Results
for Bins 0, 1, and 2

Post-Quiz Correct Population
Bin 0 Bin 1 Bin 2

Question 5 (L3Q5) 70.37% 86.57% 80.77%
Question 6 (L2Q3) 45.45% 67.86% 55.56%
Question 7 (L1Q5) 65.22% 84.93% 83.33%

Post-Quiz Incorrect Population
Bin 0 Bin 1 Bin 2

Question 5 (L3Q5) 0.00% 73.33% 25.00%
Question 6 (L2Q3) 30.00% 42.42% 41.67%
Question 7 (L1Q5) 63.16% 75.00% 75.00%

99

Chapter 9

Conclusions

In this final chapter of the thesis, the work of the previous chapters is brought together
and discussed to identify what the study, as a whole, has discovered. The thesis began
with an identification of a problem: students in higher education are unmotivated to review
introductory programming course material and this reluctance to engage with the material
has had a negative impact on their learning. From this, the researcher proposed that a video
game could be used to improve student engagement with new programming knowledge.

Chapter 2 highlighted the potential for video games to facilitate experiential and collab-
orative learning; both of which stem from a constructivist learning approach. The chapter
also provided a rationale for the incorporation of video games in education. This rationale
does not simply stem from the supposition that individuals are intrinsically motivated to
play games. It is also supported by the argument that video games provide a stimulating
environment that satisfies the needs of modern day learners known as the “Games Genera-
tion”. The chapter also highlights how a combination of cooperation and competition can
motivate participation in games from people of all orientations: competitive, cooperative,
or individualistic.

A review of literature was presented in Chapter 3. This chapter revealed that social
collaboration can be highly beneficial for learners and programming is a topic that is well
suited for learning through collaborative work. The chapter also showed that there is a
demand and interest from students in higher education for a game-based learning approach
to learn software engineering concepts. Finally, the chapter concluded with a description
of the limited amount of work researchers have done in the past to explore the viability and
effectiveness of a game in instructing computing concepts. This highlighted the need for
more research in this field of study with an emphasis on the demand for larger test groups
and quantification of results.

Chapter 4 provided a description of the design goals for Space Race, the educational
video game used for the study. The two primary goals of implementing cooperation and
competition within the game were set based upon the information obtained in Chapter 2.

100

MASc Thesis - Samantha Chan - McMaster - Computing and Software

This chapter also gave a comprehensive description of the game mechanics of each level in
Space Race. The programming concepts that were taught in each level were also listed.

The experimental procedure and data collection timeline was outlined in Chapter 5. In
addition to this, participant sizes and incentives for participation was specified. The chapter
also provided a detailed description of the surveys and assessments that were used to collect
data from participants.

The purpose of Chapter 6 was to provide the reader with more insight on the student
population that this research was conducted upon. From surveys, the researcher was able
to conclude that an overwhelming majority of students could be considered novice pro-
grammers with very few students that have had practical experience with the subject. The
chapter also revealed that students from both the experimental and control group have ap-
proximately the same video gaming habits. Only 7.06% of the control group and 12.62%
of the experimental group have played an educational video game in the past. Even so,
63.69% of the control group and 67.32% of the experimental group agreed that they would
enjoy playing video games to learn.

The feedback for Space Race was presented in Chapter 7. Space Race was well-
received with at least 82.22% of the students reporting that they enjoyed playing the video
game for all four levels. Some students commented that playability could be improved
by decreasing the chaos in Levels 2 and 3 and by improving the game tutorials. At least
85% of the students, for all four levels, felt that Space Race helped them to learn the basic
programming concepts being presented. However, some students also expressed that the
game does not directly teach programming concepts. They suggested that more feedback
in the game could remedy this problem. The researcher also highlighted how Space Race
was an effective teaching tool because it can help instructors identify student weaknesses
by lowering student anxiety towards asking questions. The chapter also confirmed that the
collaborative aspect of the game was imperative to the teachability of Space Race. As ev-
idence of this, only 0 to 2.27% of the students disagreed that cooperation between team
members made this video game an effective teaching tool for learning basic programming
concepts across all four levels. Moreover, the cooperation in Space Race has motivated at
least 72.84% of the students to review course material so that they can be effective team
members. Finally, the competition present in Space Race appears to have motivated at least
59.55% of the students to review their course material. Also, some teams placed less value
in competing with other teams; instead, they focused their efforts towards helping each
other to successfully complete each level.

Lastly, Chapter 8 quantified the educational effectiveness of Space Race. Analysis of
the pre and post-quiz results showed that 13/20 (65%) of the results were significantly
different. All of these significantly different results were improvements on the post-quiz
after the intervention of Space Race. The greatest improvement had 64.91% more stu-
dents correct on the post-quiz compared to the pre-quiz. The chapter determined that there
was minimum self-selection bias from the experimental group thus strengthening the argu-

101

MASc Thesis - Samantha Chan - McMaster - Computing and Software

ment that differences in performance between the experimental and control group could be
attributed to Space Race. A comparison of the midterm performance between the experi-
mental and control group revealed that 4/12 (33.33%) of differences were significant and
all of these differences were in favour of the experimental group. A maximum difference
of 15.32% more experimental students got a question correct in comparison to the control
students. The final exam had 5/12 (41.67%) questions that were significantly different in
result between the experimental and control group. These different results were, again,
in favour of the experimental group. 41.37% was the maximum difference in the number
of experimental students that were correct for a question in contrast to the control group.
Three of these questions on the final exam were identical to the quiz questions. At most,
80.85% of the experimental students that got the answer correct on the post-quiz also got
the question correct on the exam. This result provides the basis for the conclusion that
knowledge obtained in Space Race was retained for at least 7 weeks by some participants.

This thesis has explored the effectiveness of a cooperative and competitive video game
in improving student understanding of basic programming knowledge. Based on the re-
sults of this study, game-based learning can be effectively used to teach basic computer
programming concepts to students in higher education. Students can find the game enjoy-
able and those that play the game can outperform other students that do not play the game
on course exams. In particular, cooperation within the game world can be used effectively
to encourage students to teach one another. Also, in some cases, the knowledge learned in
the game can be transferable to a non-gaming context and this knowledge can be retained
by some students. From the findings described above, it appears that the proposed solution
of incorporating a video game into course curriculum to teach programming and motivate
students to engage with course material was more effective than not.

9.1 Limitations and Future Work
There are limitations to the study that was conducted and there is still work to be done to
gain a better understanding of how video games can be used to teach programming. There
are a vast number of ways that a game can be designed to teach computer programming.
Space Race is only one example of a video game that can be incorporated into course cur-
riculum. There is still much left to investigate with regards to the educational effectiveness
of a video game. Specifically, this study was able to show, in a limited manner, that knowl-
edge acquired from gameplay can be retained by some students over 7 weeks. This was
shown with three questions on the final exam that was also presented in the pre and post-
quiz. In future work, a much stronger argument can be made for knowledge retention if
there were more questions or a different experimental design.

This study also demonstrated that students that played Space Race, an educational video
game, were able to outperform students that did not play Space Race on course exams in

102

MASc Thesis - Samantha Chan - McMaster - Computing and Software

some instances. However, it does not directly compare the educational effectiveness of
the video game to more traditional methods of teaching. One could argue that gaming
participants did better in some cases simply because they spent more time on computing.
Te question is whether non-gaming participants, that spent the same amount of time with
traditional methods of learning, such as reading a textbook or attending a tutorial, would
perform equally well, or surpass the performance of gaming participants.

Space Race was, in general, well-received by students. Many students enjoyed playing
the game and found it to be beneficial for their learning of basic programming concepts.
However, there is still space for many improvements and additions in Space Race. Perhaps
one of the greatest enhancements that can be added to Space Race is the introduction of
feedback during gameplay. This feedback provided by the game could ensure that the
correct knowledge is being transferred to the students when the instructor is not available
to answer questions. Overall, this feedback could improve the teachability of Space Race.
However, this could be attained at the cost of decreasing collaboration. An investigation
should be conducted to measure the trade-off between cooperation and in-game feedback.

For Levels 2 and 3, some students felt that there was too much chaos introduced during
gameplay. This chaos arises because all four players were simultaneously given different
instructions to execute. Chaos was initially introduced in the game to ensure that the game
would remain engaging and exciting throughout gameplay. However, the chaos incorpo-
rated into the game also hindered the students’ abilities to learn. This could be remedied
by altering the game to serve instructions to two players at a time instead of all four. By
decreasing chaos, it is possible that a student’s ability to learn new concepts while play-
ing Space Race could be increased. However, more research must be conducted to find a
balance between the fun and problems that chaos brings into Space Race.

The game tutorial for Space Race can also be improved. As mentioned previously,
many students did not read the instructions and expressed an interest in seeing a more
interactive tutorial. Future work could investigate and compare the effectiveness of video
tutorials and on-demand help provided during gameplay.

Finally, the range of introductory programming topics currently covered in Space Race
is limited. There is certainly space for more levels to cover more programming concepts.
These topics include, but are not limited to, conditional statements, function definitions,
while-loops, classes, and algorithm development.

Given the relative success of Space Race and its potential as a teaching tool, it is hoped
that the work presented here will motivate other educators and researchers to consider and
evaluate the inclusion of video games in higher education to engage the learners of this
generation.

103

Bibliography

[1] Alexandra MacGill Amanda Lenhart, Sydney Jones. Adults and video games. Tech-
nical report, Pew Internet & American Life Project, 2008.

[2] Erik Andersen, Eleanor O’Rourke, Yun-En Liu, Rich Snider, Jeff Lowdermilk, David
Truong, Seth Cooper, and Zoran Popovic. The impact of tutorials on games of vary-
ing complexity. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 59–68. ACM, 2012.

[3] Elliott M Avedon. The structural elements of games. The study of games, pages
419–426, 1971.

[4] Parul Khurana Balraj Kumar. Gamification in education-learn computer program-
ming with fun. International Journal of Computers and Distributed Systems, 2:46–53,
2012.

[5] Kevin Bierre, Phil Ventura, Andrew Phelps, and Christopher Egert. Motivating OOP
by blowing things up: an exercise in cooperation and competition in an introductory
java programming course. 38(1):354–358, 2006.

[6] Brad Paras Jim Bizzocchi. Game, motivation, and effective learning: An integrated
model for educational game design. In Digital Games Research Association: Chang-
ing Views- Worlds in Play, 2005.

[7] Maxwell N Burton-Chellew, Adin Ross-Gillespie, and Stuart A West. Cooperation in
humans: competition between groups and proximate emotions. Evolution and Human
behavior, 31(2):104–108, 2010.

[8] Kevin Browne Christopher Anand. Gamification and serious game apapproach for in-
troductory computer science tablet software. In Gamification 2013, Stratford Ontario,
October 2013. University of Waterloo.

[9] Daniel C Cliburn. Experiences with pair programming at a small college. Journal of
Computing Sciences in Colleges, 19(1):20–29, 2003.

104

MASc Thesis - Samantha Chan - McMaster - Computing and Software

[10] Andy Cockburn and Andrew Bryant. Cleogo: collaborative and multi-metaphor pro-
gramming for kids. In Computer Human Interaction, 1998. Proceedings. 3rd Asia
Pacific, pages 189–194. IEEE, 1998.

[11] Thomas M Connolly, Mark Stansfield, and Thomas Hainey. An application of games-
based learning within software engineering. British Journal of Educational Technol-
ogy, 38(3):416–428, 2007.

[12] P. A. Cooper. Paradigm shifts in designed instruction: from behaviourism to cogni-
tivism to constructivism. Educational Technology, 33:12–19, 1993.

[13] Isabella Selega Csikszentmihalyi. Optimal experience: Psychological studies of flow
in consciousness. Cambridge University Press, 1992.

[14] Mihaly Csikszentmihalyi. Finding flow: The psychology of engagement with everyday
life. Basic Books, 1997.

[15] Timothy H. DeClue. Pair programming and pair trading: Effects on learning and
motivation in a CS2 course. J. Comput. Sci. Coll., 18(5):49–56, May 2003.

[16] SciPy developers. Scipy.org. http://www.scipy.org/, 2014. Accessed: July 19, 2014.

[17] Mary Jo Dondlinger. Educational video game design: A review of the literature.
Journal of Applied Educational Technology, 4:21–31, 2007.

[18] Mary Jo Dondlinger. Educational video game design: A review of the literature.
Journal of Applied Educational Technology, 4(1):21–31, 2007.

[19] Martin Ebner and Andreas Holzinger. Successful implementation of user-centered
game based learning in higher education: An example from civil engineering. Com-
puters & Education, 49(3):873 – 890, 2007.

[20] S. Egenfeldt-Nielsen. Overview of research on the eduational use of video games.
Digital Kompentanse, 1:184–213, 2006.

[21] McMaster Engineering. Epic experiential playground and innovation classroom.
http://epiclab.mcmaster.ca/. Accessed: July 7, 2014.

[22] Nick V. Flor and Edwin L. Hutchins. A case study of team programming during
perfective software maintenance. In Empirical studies of programmers: Fourth work-
shop, page 36. Intellect Books, 1991.

[23] Charles Wesley Ford Jr. and Steven Minsker. TREEZ-an educational data structures
game. Journal of Computing Sciences in Colleges, 18(6):180–185, 2003.

105

http://epiclab.mcmaster.ca/

MASc Thesis - Samantha Chan - McMaster - Computing and Software

[24] James Paul Gee. What video games have to teach us about learning and literacy.
Computers in Entertainment (CIE), 1(1):20–20, 2003.

[25] Johan Huizinga and Richard Francis Carrington Hull. Homo ludens. A study of the
play-element in culture.[Translated by RFC Hull.]. Routledge & Kegan Paul, 1949.

[26] David Hume. Emotions and moods. Organizational Behavior, pages 258–297, 2013.

[27] David Hung. Theories of learning and computer-mediated instructional technologies.
Educational Media International, 38(4):281–287, 2001.

[28] Ken Kahn. A computer game to teach programmming. In National Educational
Computing Conference: NECC ’00: Spotlight on the Future: Technology for the
NEw Millenium, 1999.

[29] Slava Kalyuga. Enhancing instructional efficiency of interactive e-learning environ-
ments: A cognitive load perspective. Educational Psychology Review, 19(3):387–
399, 2007.

[30] Cagin Kazimoglu, Mary Kiernan, Liz Bacon, and Lachlan Mackinnon. A serious
game for developing computational thinking and learning introductory computer pro-
gramming. Procedia-Social and Behavioral Sciences, 47:1991–1999, 2012.

[31] Caitlin Kelleher, Dennis Cosgrove, David Culyba, Clifton Forlines, Jason Pratt, and
Randy Pausch. Alice2: programming without syntax errors. In User Interface Soft-
ware and Technology. Citeseer, 2002.

[32] David A Kolb et al. Experiential learning: Experience as the source of learning and
development, volume 1. Prentice-Hall Englewood Cliffs, NJ, 1984.

[33] William H Kruskal and W Allen Wallis. Use of ranks in one-criterion variance anal-
ysis. Journal of the American statistical Association, 47(260):583–621, 1952.

[34] Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. A study of the diffi-
culties of novice programmers. In ACM SIGCSE Bulletin, volume 37, pages 14–18.
ACM, 2005.

[35] Timo Lainema. Enhancing organizational business process perception: Experiences
from constructing and applying a dynamic business simulation game. Turku School
of Economics and Business Administration, 2003.

[36] R. C. Landers, R. N. Callan. Casual Social Games as Serious Games: The Psychol-
ogy of Gamification in Undergraduate Education and Employee Training. Springer
London, 2011.

106

MASc Thesis - Samantha Chan - McMaster - Computing and Software

[37] Marie Larochelle, Nadine Bednarz, and James W Garrison. Constructivism and edu-
cation. Cambridge University Press, 1998.

[38] Jeremy Lee, Kathleen Luchini, Benjamin Michael, Cathie Norris, and Elliot Soloway.
More than just fun and games: Assessing the value of educational video games in the
classroom. In CHI’04 Extended Abstracts on Human Factors in Computing Systems,
pages 1375–1378. ACM, 2004.

[39] Frederick Li, Jianmin Zhao, TimothyK. Shih, Rynson Lau, Qing Li, and Dennis
McLeod. Introductory C programming language learning with game-based digital
learning. In Advances in Web Based Learning - ICWL 2008, volume 5145 of Lecture
Notes in Computer Science, pages 221–231. Springer Berlin Heidelberg, 2008.

[40] R. Likert. A technique for the measurement of attitudes. Archives of Psychology,
22:140, 1932.

[41] Ju Long. Just for fun: Using programming games in software programming training
and education–a field study of ibm robocode community. Journal of Information
Technology Education, 6:279–290, 2007.

[42] John Maloney, Leo Burd, Yasmin Kafai, Natalie Rusk, Brian Silverman, and Mitchel
Resnick. Scratch: A sneak preview. In Proceedings of the Second International
Conference on Creating, Connecting and Collaborating Through Computing, C5 ’04,
pages 104–109, Washington, DC, USA, 2004. IEEE Computer Society.

[43] Henry B Mann and Donald R Whitney. On a test of whether one of two random
variables is stochastically larger than the other. The annals of mathematical statistics,
pages 50–60, 1947.

[44] Maria Vivrou George Katsionis Konstantinos Manos. Combining software games
with education: Evaluation of its educational effectiveness. Educational Technology
& Society, 8:54–65, 2005.

[45] Andrew Martin. The design and evolution of a simulation/game for teaching infor-
mation systems development. Simulation & Gaming, 31(4):445–463, 2000.

[46] Charlie McDowell, Linda Werner, Heather Bullock, and Julian Fernald. The effects of
pair-programming on performance in an introductory programming course. SIGCSE
Bull., 34(1):38–42, February 2002.

[47] Quinn McNemar. Note on the sampling error of the difference between correlated
proportions or percentages. Psychometrika, 12(2):153–157, 1947.

[48] David S Moore. Chi-square tests. Defense Technical Information Center, 1976.

107

MASc Thesis - Samantha Chan - McMaster - Computing and Software

[49] Mathieu Muratet, Patrice Torguet, Jean-Pierre Jessel, and Fabienne Viallet. Towards
a serious game to help students learn computer programming. International Journal
of Computer Games Technology, 2009:3, 2009.

[50] Emily Oh Navarro and André van der Hoek. Simse: an educational simulation game
for teaching the software engineering process. In ACM SIGCSE Bulletin, volume 36,
pages 233–233. ACM, 2004.

[51] Donald A Norman. Affordance, conventions, and design. interactions, 6(3):38–43,
1999.

[52] Marina Papastergiou. Digital game-based learning in high school computer science
education: Impact on educational effectiveness and student motivation. Computers &
Education, 52(1):1 – 12, 2009.

[53] David N Perkins and Rebecca Simmons. Patterns of misunderstanding: An integra-
tive model for science, math, and programming. Review of Educational Research,
58(3):303–326, 1988.

[54] Maja Pivec, Olga Dziabenko, and Irmgard Schinnerl. Aspects of game-based learn-
ing. In 3rd International Conference on Knowledge Management, Graz, Austria,
pages 216–225, 2003.

[55] Marc Prensky. Digital Game-Based Learning, volume 9. Paragon House, 2007.

[56] David Preston. Pair programming as a model of collaborative learning: A review of
the research. J. Comput. Sci. Coll., 20(4):39–45, April 2005.

[57] Tahira M. Probst, Peter J. Carnevale, and Harry C. Triandis. Cultural values in inter-
group and single-group social dilemmas. Organizational behavior and human deci-
sion processes, 77(3):171–191, 1999.

[58] Rathika Rajaravivarma. A games-based approach for teaching the introductory pro-
gramming course. SIGCSE Bull., 37(4):98–102, December 2005.

[59] M. Rebetez, C. Betrancourt. Education research in cognitive and educational sciences.
Cognitie, Creier, Comportament/ Cognition, Brain, Behaviour, 11:131–142, 2007.

[60] Colin Robson. Real World Research. Wiley, 3 edition, 2011.

[61] John R. Savery and Thomas M. Duffy. Problem based learning: An instructional
model and its constructivist framework. Educational technology, 35(5):31–38, 1995.

108

MASc Thesis - Samantha Chan - McMaster - Computing and Software

[62] Henry Smith. Spaceteam. http://www.sleepingbeastgames.com/spaceteam/,
July 2014. Accessed: July, 2, 2014.

[63] Jan-Willem Strijbos. The Effect of Roles on Computer-Supported Collaborative
Learning. PhD thesis, Open University of the Netherlands, 2004.

[64] Jacqueline S. Thousand and Richard A. Villa. Creativity and Collaborative Learning:
A Practical Guide to Empowering Students and Teachers. Paul H Brookes Pub Co,
1995.

[65] Paivi Tynjala. Towards expert knowledge? a comparison between a constructivist
and a traditional learning environment in the university. International Journal of
Educational Research, 31:357–442, 1999.

[66] Peter Vorderer, Tilo Hartmann, and Christoph Klimmt. Explaining the enjoyment of
playing video games: the role of competition. In Proceedings of the second interna-
tional conference on Entertainment computing, pages 1–9. Carnegie Mellon Univer-
sity, 2003.

[67] Lev Vygotsky. Mind in society: The development of higher psychological processes.
Harvard University Press, 1978.

[68] L. K. Ryan L. Webster, J. Trevino. The dimensionality and correlates of flow in
human- computer interaction. Computers in Human Behaviour, 9:411–426, 1993.

[69] Nicola Jane Whitton. An investigation into the potential of collaborative computer
game-based learning in Higher Education. PhD thesis, Napier University, 2007.

[70] Eric Klopfer Susan Yoon. Developing games and simulations for today and tomor-
row’s tech savvy youth. TechTrends, 49:33–41, 2005.

109

http://www.sleepingbeastgames.com/spaceteam/

Appendix A

Level Solutions for Space Race

110

SOLUTIONS FOR LEVEL 1
Code Questio

n
Option A Option B Option C Option D Answer Panel

1 X= 5+6 X=? 56 10 11 12 C INT

2 X=4%2 X=? 2 0 4 1 B INT

3 X=5/2 X=? 2.5 2 3 1 B INT

4 X= “a”+2 X=? a2 aaa aa 2a ERROR ERROR

5 X=”a”*5 X=? a5 a*5 5a aaaaa D STR

6 X= 5.0/2.0 X=? 2 2.0 2.5 1 C FLOAT

7 X=5
Y=3
Y=X

Y=? True False 5 3 C INT

8 X=5L/2 X=? 2 2.5 0 1 A LONG

9 X= 5+3/4 X=? 2 6 5.75 5 D INT

10 X=5L>5 Z=? True False 5 4 B BOOL

11 X= 5/2.0 X=? 2 0.5 1 2.5 D FLOAT

12 X= 5+6.0 X=? 11 10 56 12 A FLOAT

13 X=5
Y=5.0
Z= X==Y

Z=? 5 5.0 True False C BOOL

14 X=3
Y==X

Y=? 3 5 True False ERROR ERROR

15 X=2*3 X=? 8 0 1 6 D INT

16 X=”b”
Y=”a”
Z=X+Y

Z=? ab ba a+b c B STR

17 X=9%2 X=? 4 1 4.5 5 B INT

18 X=9%2.0 X=? 4 1 4.5 5 B FLOAT

19 X=”a”
Y=”b”
X=”c”
Z=X+Y

Z=? ab ba cb bc C STR

20 X=”a”
Y=”A”
Z=X<Y

Z=? aA Aa True False D BOOL

21 X=5
Y=”5”
Z=X==Y

Z=? True False 5 five D BOOL

22 X=”aaaa”%2 X=? a 0 aaaa aa ERROR ERROR

MASc Thesis - Samantha Chan - McMaster - Computing and Software

111

23 X=str(5) X=? True False 5 five C STR

24 X=(16%6)/2 X=? 0 1 2 3 C INT

25 X=3.0**2 X=? 9 6 1.5 1 A FLOAT

26 X=”False” X=? 0 1 True False D STR

27 X= 6!=5 X=? 6 5 True False C BOOL

28 X= “5”+5 X=? 10 55 5 55555 ERROR ERROR

29 X=True
Y=False
X=Y

X=? True False 1 0 B BOOL

30 X=round(5.5
)

X=? 5 6 5.1 5.2 B FLOAT

31 X=int(5.5) X=? 5 6 5.5 5.6 A INT

32 6=X
6.0=Y
X==Y=Z

Z=? 6 6.0 True False ERROR ERROR

33 X=abs(-7.5) X=? -7.5 -8 7.5 8 C FLOAT

34 X=5.0/2 X=? 2 1 0.5 2.5 D FLOAT

35 X=3
Y=4
X=Y
Y=X

Y=? 3 4 True False B INT

36 X=3
Y=4
X=Y-7/X

X=? 2 3 4 5 A INT

37 X=float(3) X=? 3 2 1 0 A FLOAT

38 X=”a”
Y=””
Z=”b”
W=X+Y+Z

W=? a b a ba ab D STR

39 X=”a”
Y=str(5)
Z=X+Y

Z=? 5a a5 a 5 B STR

40 X=5./2 X=? 2 1 2.5 0.5 C FLOAT

41 X=int(“a”) X=? 97 a 1 0 ERROR ERROR

42 X=4.5
int(X)

X=? 4 4.5 5 3 B FLOAT

43 X= (1e30-
1e30)+1
Y= 1e30-
(1e30+1)
Z=X==Y

Z=? 1 0 True False D BOOL

44 X=int(5.6)/2 X=? 1.8 3 2 1 C INT

55 X=float(1/4) X=? 0 0.25 1 4 A FLOAT

MASc Thesis - Samantha Chan - McMaster - Computing and Software

112

SOLUTIONS FOR LEVEL 2

Variable Aileron Elevator Rudder Text Break

Panel # 1 4 4 3 2

 int int float/int string bool

Program 1 Panel # 0 0 TRUE

Aileron= 9%2 1 1

Break= "a"<"A" 2 FALSE

Text= "CAD" 3 CAD

Elevator=2**2 4 4

Elevator=3/0 ERROR

Aileron= Aileron+3 1 4

Break= (5%2)!=2 2 TRUE

Text= Text+"B" 3 CADB

Rudder= float(5/2) 4 2.0

Aileron= 0**0 1 1

Break= 3L==3 2 TRUE

Text=Text[:2] 3 CA

Elevator= int(5.6) 4 5

2=Aileron ERROR

Aileron= 37%4+4 1 5

Break= (5/2)>2 2 FALSE

Text="DAB"*2 3 DABDAB

Rudder=Elevator/2 4 2

Aileron=len("CAD") 1 3

Break="BCAD"[1:2]=="C" 2 TRUE

Text=Text[1] 3 A

Rudder= Elevator+12.0 4 17.0

Text[0]="C" ERROR

Aileron=int(9.0/2) 1 4

Break=len("A B")==2 2 FALSE

Text=Text[4:3] 3 EMPTY

Elevator=len("0123") 4 4

Text="DCA"[3] ERROR

MASc Thesis - Samantha Chan - McMaster - Computing and Software

113

 Flaps Slats Hover Message Horn

Panel # 2 1 1 4 3

 int int float/int string bool

Program 2 Panel # 0 0 TRUE

Message="DAB" 4 DAB

Horn="B">"b" 3 FALSE

Flaps=len("AB") 2 2

Slats=2**2 1 4

Message=Message+"C" 4 DABC

Horn=(4%2)!=2 3 TRUE

Flaps=Flaps+3 2 5

Hover= float(9/2) 1 4.0

Slats=5/0 ERROR

Message=Message[1] 4 A

Horn= 4L==4 3 TRUE

Flaps=0**0 2 1

Slats=len("012") 1 3

Message[1]="B" ERROR

Message="CA"*3 4 CACACA

Horn=(9/2)>4 3 FALSE

Flaps= 24%5-2 2 2

Hover= Slats/2 1 1

3=Flaps ERROR

Message=Message[:5] 4 CACAC

Horn="CDAB"[1:2]=="D" 3 TRUE

Flaps= int(8.0/3) 2 2

Hover= Slats+4.0 1 7.0

Message="BDA"[3] ERROR

Message=Message[2:1] 4 EMPTY

Horn=len("B C")==2 3 FALSE

Flaps=8%4 2 0

Slats=int(2.7) 1 2

MASc Thesis - Samantha Chan - McMaster - Computing and Software

114

Variable Torque Pitch Yoke Speaker Light

Panel # 3 2 2 1 4

 int int float/int string bool

Program 3 Panel # 0 0 TRUE

Speaker="BAC" 1 BAC

Pitch=2**2 2 4

Light="C">"c" 4 FALSE

Torque= 5%3 3 2

Speaker[2]="D" ERROR

Speaker= Speaker+"D" 1 BACD

Yoke=float(7/2) 2 3.0

Light=(9%2)!=4 4 TRUE

Torque=len("ABC") 3 3

Speaker=Speaker[2] 1 C

Pitch=int(5.9) 2 5

Light= 2L==2 4 TRUE

Torque= 0**0 3 1

Pitch=4/0 ERROR

Speaker=Speaker[1:0] 1 EMPTY

Yoke=Pitch/2 2 2

Light=(7/2)>3 4 FALSE

Torque= 26%3+2 3 4

Speaker= "CD"*2 1 CDCD

Yoke=Pitch+6.0 2 11.0

Light="BADC"[1:2]=="A" 4 TRUE

Torque=int(10.0/4) 3 2

2=Torque ERROR

Speaker=Speaker[:3] 1 CDC

Pitch=len("0123") 2 4

Light=len("D C")==2 4 FALSE

Torque= Torque+1 3 3

Speaker="DCC"[3] ERROR

MASc Thesis - Samantha Chan - McMaster - Computing and Software

115

Variable Roll Yaw Altitude Feedback Lock

Panel # 4 3 3 2 1

 int int float/int string bool

Program 4 Panel # 0 0 TRUE

4=Roll ERROR

Yaw=len("01234") 3 5

Roll=7%3 4 1

Feedback="DCA" 2 DCA

Lock="d"<"D" 1 FALSE

Altitude=float(11/2) 3 5.0

Roll=Roll+4 4 5

Feedback=Feedback+"C" 2 DCAC

Lock=(7%2)!=3 1 TRUE

Feedback[3]="B" ERROR

Yaw=int(3.6) 3 3

Roll=0**0 4 1

Feedback=Feedback[:3] 2 DCA

Lock=len("B C")==2 1 FALSE

Feedback="BDDA"[4] ERROR

Altitude=Yaw/2 3 1

Roll=35%3+2 4 4

Feedback=Feedback[2:0] 2 EMPTY

Lock= 1L==1 1 TRUE

Altitude=Yaw+6.0 3 9.0

Roll=int(6.0/4) 4 1

Feedback="BAD"*2 2 BADBAD

Lock="BDCA"[1:2]=="D" 1 TRUE

Yaw=3/0 ERROR

Yaw=2**2 3 4

Roll=len("CDA") 4 3

Feedback=Feedback[2] 2 D

Lock=(11/2)>5 1 FALSE

MASc Thesis - Samantha Chan - McMaster - Computing and Software

116

SOLUTIONS FOR LEVEL 3

text1.txt
 A

 B

 C
 Variable Aileron Elevator Rudder Text Break

Panel # 1 4 4 3 2

 int_list str_list str_list string int

Program 1 Panel #

Aileron=range(4) 1 [0,1,2,3]

Break=len(range(3)) 2 3

myfile=open("text1.txt","r") 3 A\nB\nC

Text=myfile.read()

myfile.close()

Elevator="ABABA".split("B") 4 ["A","A","A"]

Break=[2,3,4].index(1) ERROR

Aileron=range(2,5) 1 [2,3,4]

Break=["A",2,"C"].index("A") 2 0

Text=["A",["B","C"]][1][0] 3 B

Rudder=Elevator+["B"] 4 ["A","A","A","B"]

Aileron=range(0,6,2) 1 [0,2,4]

Break=len([“A”,”B”,[4,5]]) 2 3

myfile=open(“text1.txt”,”r”) 3 A\n

Text=myfile.readline()

myfile.close()

Elevator="A B C".split() 4 ["A","B","C"]

Text[0]="B" ERROR

Aileron=range(3,0) 1 []

Break=len(range(1,4)) 2 3

myfile=open("text1.txt","r") 3 B\n

Text=myfile.readline()

Text=myfile.readline()

myfile.close()

Rudder=Elevator 4 ["A","B","A"] ["A","B","A"]

MASc Thesis - Samantha Chan - McMaster - Computing and Software

117

Rudder[2]="A"

#Hint:Two controls changed!

Aileron=range(4,0,-1) 1 [4,3,2,1]

Break=len(range(4,0)) 2 0

myfile=open(“text1.txt”,”r”) 3 “”

Text=myfile.read()

Text=myfile.read()

myfile.close()

myfile=open("text1.txt","r") 4

["A\n","B\n","C"]

Rudder=myfile.readlines()

myfile.close()

Aileron[4]=5 ERROR

Aileron[-1]=4 1 [4,3,2,4]

Break=len([“BC”,”A”,”C”][0]) 2 2

Text=””.join([“A”,”B”]) 3 AB

Elevator="BCBC".split("C") 4 ["B","B",""]

MASc Thesis - Samantha Chan - McMaster - Computing and Software

118

text2.txt
 B
 C
 A
 Variable Flaps Slats Hover Message Horn

Panel # 2 1 1 4 3

 int_list str_list str_list string int

Program 1 Panel #

myfile=open("text2.txt","r") 4 B\n

Message=myfile.readline()

myfile.close()

Horn=len(range(5)) 3 5

Flaps=range(1,4) 2 [1,2,3]

Slats="B C A".split() 1 ["B","C","A"]

myfile=open("text2.txt","r") 4 C\n

Message=myfile.readline()

Message=myfile.readline()

myfile.close()

Horn=["B",3,"A"].index("A") 3 2

Flaps=range(4) 2 [0,1,2,3]

Hover=Slats+["A"] 1 ["B","C"."A","A"]

Flaps[4]=2 ERROR

myfile=open("text2.txt","r") 4 B\nC\nA

Message=myfile.read()

myfile.close()

Horn=len(range(2,6)) 3 4

Flaps=range(2,0) 2 []

Slats="CBCBC".split("B") 1 ["C","C","C"]

Message=["C",["A","B"]][1][0] 4 A

Horn=len(["A","C",[3,1,],"B"]) 3 4

Flaps=range(0,5,2) 2 [0,2,4]

myfile=open("text2.txt","r") 1 ["B\n","C\n","A"]

Hover=myfile.readlines()

myfile.close()

Horn=[1,3,5].index(2) ERROR

myfile=open("text2.txt","r") 4 “”

Message=myfile.read()

Message=myfile.read()

myfile.close()

Horn=len(["A","CA","ACD"][1]) 3 2

Flaps=range(3,0,-1) 2 [3,2,1]

Slats="ACAC".split("C") 1 ["A","A",""]

MASc Thesis - Samantha Chan - McMaster - Computing and Software

119

Message="".join(["C","A"]) 4 CA

Horn=len(range(3,1)) 3 0

Flaps[-1]=4 2 [3,2,4]

Hover=Slats 1 ["A","A","A"] ["A","A","A"]

Hover[2]="A"

HASHTAGHint:Two controls changed!

Message[1]="B" ERROR

MASc Thesis - Samantha Chan - McMaster - Computing and Software

120

text3.txt
 C
 A
 B
 Variable Torque Pitch Yoke Speaker Light

Panel # 3 2 2 1 4

 int_list str_list str_list string int

Program 3 Panel #

myfile=open("text3.txt","r") 1 C\nA\nB

Speaker=myfile.read()

myfile.close()

Pitch"ACACA".split("C") 2 ["A","A","A"]

Light=["B",1,"C"].index("C") 4 2

Torque=range(3) 3 [0,1,2]

Light=[1,4,3].index(2) ERROR

myfile=open("text3.txt","r") 1 C\n

Speaker=myfile.readline()

myfile.close()

Yoke=Pitch 2 ["A","A","B"] ["A","A","B"]

Yoke[2]="B"

HASHTAGHint:Two controls changed!

Light=len(range(4)) 4 4

Torque=range(2,4) 3 [2,3]

Speaker[0]=A ERROR

myfile=open("text3.txt","r") 1 A\n

Speaker=myfile.readline()

Speaker=myfile.readline()

myfile.close()

Pitch="C B B".split() 2 ["C","B","B"]

Light=len(["A","BC","A"][1]) 4 2

Torque=range(3,0) 3 []

Speaker="".join(["A","C"]) 1 AC

myfile=open("text3.txt","r") 2 ["C\n","A\n","B"]

Yoke=myfile.readlines()

myfile.close()

Light=len(range(2,3)) 4 1

Torque=range(0,6,2) 3 [0,2,4]

Speaker=["A",["C","B"]][1][0] 1 C

Pitch="BCBC".split("C") 2 ["B","B",""]

Light=len(["B","C",[3,"B"],"A"]) 4 4

Torque[-1]=3 3 [0,2,3]

MASc Thesis - Samantha Chan - McMaster - Computing and Software

121

Torque[3]=2 ERROR

myfile=open("text3.txt","r") 1 “”

Speaker=myfile.read()

Speaker=myfile.read()

myfile.close()

Yoke=Pitch+["C"] 2 ["B","B","","C"]

Light=len(range(4,1)) 4 0

Torque=range(4,0,-1) 3 [4,3,2,1]

MASc Thesis - Samantha Chan - McMaster - Computing and Software

122

text4.txt
 B
 A
 C
 Variable Roll Yaw Altitude Feedback Lock

Panel # 4 3 3 2 1

 int_list str_list str_list string int

Program 4 Panel #

Lock=[1,4,5].index(2) ERROR

Yaw="BCBC".split("C") 3 ["B","B",""]

Roll=range(4) 4 [0,1,2,3]

myfile=open("text4.txt","r") 2 B\n

Feedback=myfile.readline()

myfile.close()

Lock=len(range(5)) 1 5

Altitude=Yaw+["A"] 3 ["B","B","","A"]

Roll=range(2,3) 4 [2]

myfile=open("text4.txt","r") 2 A\n

Feedback=myfile.readline()

Feedback=myfile.readline()

myfile.close()

Lock=len(range(1,5)) 1 4

Yaw="A B C".split() 3 ["A","B","C"]

Roll=range(0,4,2) 4 [0,2]

myfile=open("text4.txt","r") 2 B\nA\nC

Feedback=myfile.read()

myfile.close()

Lock=len(["B","","AA"][1]) 1 0

Roll[2]=1 ERROR

Altitude=Yaw 3 ["A","B","B"] ["A","B","B"]

Altitude[2]="B"

HASHTAGHint:Two controls changed!

Roll=range(3,0,-1) 4 [3,2,1]

Feedback="".join(["B","C","A"]) 2 BCA

Lock=len(["C","A",[4,"B"],"B"]) 1 4

Feedback[0]="A" ERROR

Yaw="CBCBC".split("B") 3 ["C","C","C"]

Roll[-1]=0 4 [3,2,0]

myfile=open("text4.txt","r") 2 “”

Feedback=myfile.read()

MASc Thesis - Samantha Chan - McMaster - Computing and Software

123

Feedback=myfile.read()

myfile.close()

Lock=len(range(3,0)) 1 0

myfile=open("text4.txt","r") 3 ["B\n","A\n","C"]

Altitude=myfile.readlines()

myfile.close()

Roll=range(2,0) 4 []

Feedback=["C",["B","A"]][1][0] 2 B

Lock=["A",0,"C"].index("C") 1 2

MASc Thesis - Samantha Chan - McMaster - Computing and Software

124

SOLUTIONS FOR LEVEL 4
text1.txt

 C
 A
 C
 Variable Aileron Elevator Text Rudder

Panel # 1 1 1 1
 int_list str_list string int
Program 1 Panel #
$Elevator=["A","B"]*2 1 ["A","B","A","B"]
0for Rudder in range(3): 1 0
TABHover=Hover+1

TABTorque.append(Rudder)

TABRoll[Rudder]=Rudder
0for Rudder in range(3): 1 1
TABHover=Hover+1

TABTorque.append(Rudder)

TABRoll[Rudder]=Rudder
0for Rudder in range(3): 1 2
TABHover=Hover+1

TABTorque.append(Rudder)

TABRoll[Rudder]=Rudder
0for Rudder in range(3): TERMINATE
TABHover=Hover+1

TABTorque.append(Rudder)

TABRoll[Rudder]=Rudder
$Aileron=range(3,0) 1 EMPTY
2for Speaker in Feedback: 1 [0]
TABHover=Slats.index(Speaker)

TABAileron.append(Hover)
2for Speaker in Feedback: 1 [0.1]
TABHover=Slats.index(Speaker)

TABAileron.append(Hover)
2for Speaker in Feedback: 1 [0,1,0]
TABHover=Slats.index(Speaker)

MASc Thesis - Samantha Chan - McMaster - Computing and Software

125

TABAileron.append(Hover)
0for Speaker in Feedback: TERMINATE
TABHover=Slats.index(Speaker)

TABAileron.append(Hover)
$Text="ABAB"[1:] 1 BAB
0for Altitude in range(len(Text)): TERMINATE
TABSpeaker=Text[Altitude]

TABMessage="".join(Slats[Altitude:Altitude+1])
$Rudder= len(range(3,1)) 1 0
0for Rudder in 2: ERROR
TABFlaps[Rudder]=0

TABFeedback=Pitch[Rudder]
$Aileron=range(5,0,-2) 1 [5,3,1]
0for Hover in range(3,0): TERMINATE
TABTorque.append(Hover)

TABElevator[Hover]=Feedback[Hover]
2for Hover in range(2): 1

0

TABRoll.append(Hover)

TABfor Rudder in range(2):

TABTABYoke=Torque.index(Rudder)
2for Hover in range(2): 1

1

TABRoll.append(Hover)

TABfor Rudder in range(2):

TABTABYoke=Torque.index(Rudder)
2for Hover in range(2): TERMINATE

TABRoll.append(Hover)

TABfor Rudder in range(2):

TABTABYoke=Torque.index(Rudder)
2for Hover in range(2): 1

0

TABRoll.append(Hover)

TABfor Rudder in range(2):

TABTABYoke=Torque.index(Rudder)
2for Hover in range(2): 1

1

TABRoll.append(Hover)

TABfor Rudder in range(2):

TABTABYoke=Torque.index(Rudder)
2for Hover in range(2): TERMINATE

TABRoll.append(Hover)

TABfor Rudder in range(2):

TABTABYoke=Torque.index(Rudder)
0for Hover in range(2): TERMINATE

TABRoll.append(Hover)

MASc Thesis - Samantha Chan - McMaster - Computing and Software

126

TABfor Rudder in range(2):

TABTABYoke=Torque.index(Rudder)
$Rudder=len("ABCA"[2:1]) 1 0
0for Speaker in Feedback: TERMINATE

TABRudder=Rudder+1

TABMessage=Slats[0]

TABYoke=Altitude+2
1myfile=open("test1.txt","r") 1

C\n

for Text in myfile:

TABFeedback=Text.strip()

TABPitch=Speaker.split(Feedback)
1myfile=open("test1.txt","r") 1

A\n

for Text in myfile:

TABFeedback=Text.strip()

TABPitch=Speaker.split(Feedback)
1myfile=open("test1.txt","r") 1

C

for Text in myfile:

TABFeedback=Text.strip()

TABPitch=Speaker.split(Feedback)
1myfile=open("test1.txt","r") TERMINATE

for Text in myfile:

TABFeedback=Text.strip()

TABPitch=Speaker.split(Feedback)
$Elevator=list("BCAB") 1 ["B","C","A","B"]
1for Hover in range(1,3): 1

["B","C","A",""]

TABElevator[-Hover]=""

TABfor Yoke in range(Hover):

TABTABFeedback="".join(Yaw[Yoke:Yoke+1])
2for Hover in range(1,3): TERMINATE

TABElevator[-Hover]=""

TABfor Yoke in range(Hover):

TABTABFeedback="".join(Yaw[Yoke:Yoke+1])
1for Hover in range(1,3): 1

["B","C","",""]

TABElevator[-Hover]=""

TABfor Yoke in range(Hover):

TABTABFeedback="".join(Yaw[Yoke:Yoke+1])
2for Hover in range(1,3): TERMINATE

TABElevator[-Hover]=""

TABfor Yoke in range(Hover):

TABTABFeedback="".join(Yaw[Yoke:Yoke+1])
0for Hover in range(1,3): TERMINATE

TABElevator[-Hover]=""

MASc Thesis - Samantha Chan - McMaster - Computing and Software

127

TABfor Yoke in range(Hover):

TABTABFeedback="".join(Yaw[Yoke:Yoke+1])

MASc Thesis - Samantha Chan - McMaster - Computing and Software

128

text1.txt
 C
 A
 C
 Variable Flaps Slats Message Hover

Panel # 2 2 2 2
 int_list str_list string int
Program 1 Panel #
$Hover=len("ABC"[2:0]) 2 0
1for Rudder in range(3): 2

1

TABHover=Hover+1

TABTorque.append(Rudder)

TABRoll[Rudder]=Rudder
1for Rudder in range(3): 2

2

TABHover=Hover+1

TABTorque.append(Rudder)

TABRoll[Rudder]=Rudder
1for Rudder in range(3): 2

3

TABHover=Hover+1

TABTorque.append(Rudder)

TABRoll[Rudder]=Rudder
0for Rudder in range(3): TERMINATE
TABHover=Hover+1

TABTorque.append(Rudder)

TABRoll[Rudder]=Rudder
$Slats=["C","A"]*2 2 ["C","A","C","A"]
1for Speaker in Feedback: 2 0
TABHover=Slats.index(Speaker)

TABAileron.append(Hover)
1for Speaker in Feedback: 2 1
TABHover=Slats.index(Speaker)

TABAileron.append(Hover)

1for Speaker in Feedback: 2 0
TABHover=Slats.index(Speaker)

TABAileron.append(Hover)
0for Speaker in Feedback: TERMINATE
TABHover=Slats.index(Speaker)

TABAileron.append(Hover)
$Flaps=range(5,0,-2) 2 [5,3,1]
2for Altitude in range(len(Text)): 2 C
TABSpeaker=Text[Altitude]

TABMessage="".join(Slats[Altitude:Altitude+1])

MASc Thesis - Samantha Chan - McMaster - Computing and Software

129

2for Altitude in range(len(Text)): 2 A
TABSpeaker=Text[Altitude]

TABMessage="".join(Slats[Altitude:Altitude+1])
2for Altitude in range(len(Text)): 2 C
TABSpeaker=Text[Altitude]

TABMessage="".join(Slats[Altitude:Altitude+1])
0for Altitude in range(len(Text)): TERMINATE
TABSpeaker=Text[Altitude]

TABMessage="".join(Slats[Altitude:Altitude+1])
$Message="CABCA"[1:4] 2 ABC
0for Rudder in 2: ERROR
TABFlaps[Rudder]=0

TABFeedback=Pitch[Rudder]
$Slats=list(Message) 2 ["A","B","C"]
0for Hover in range(3,0): TERMINATE
TABTorque.append(Hover)

TABElevator[Hover]=Feedback[Hover]
0for Hover in range(2): 2

0

TABRoll.append(Hover)

TABfor Rudder in range(2):

TABTABYoke=Torque.index(Rudder)
2for Hover in range(2): TERMINATE

TABRoll.append(Hover)

TABfor Rudder in range(2):

TABTABYoke=Torque.index(Rudder)
0for Hover in range(2): 2

1

TABRoll.append(Hover)

TABfor Rudder in range(2):

TABTABYoke=Torque.index(Rudder)
2for Hover in range(2): TERMINATE

TABRoll.append(Hover)

TABfor Rudder in range(2):

TABTABYoke=Torque.index(Rudder)
0for Hover in range(2): TERMINATE

1

TABRoll.append(Hover)

TABRudder in range(2):

TABYoke=Torque.index(Rudder)
$Message="BACBA"[1:] ACBA
2for Hover in range(2): TERMINATE

TABRoll.append(Hover)

TABRudder in range(2):

TABYoke=Torque.index(Rudder)

MASc Thesis - Samantha Chan - McMaster - Computing and Software

130

1myfile=open("test1.txt","r") TERMINATE

for Text in myfile:

TABFeedback=Text.strip()

TABPitch=Speaker.split(Feedback)
$Hover=len(range(2,0)) 2 0
0for Hover in range(1,3): 2

1

TABElevator[-Hover]=""

TABfor Yoke in range(Hover):

TABTABFeedback="".join(Yaw[Yoke:Yoke+1])
2for Hover in range(1,3): TERMINATE

TABElevator[-Hover]=""

TABfor Yoke in range(Hover):

TABTABFeedback="".join(Yaw[Yoke:Yoke+1])
0for Hover in range(1,3): 2

2

TABElevator[-Hover]=""

TABfor Yoke in range(Hover):

TABTABFeedback="".join(Yaw[Yoke:Yoke+1])
2for Hover in range(1,3): TERMINATE

TABElevator[-Hover]=""

TABfor Yoke in range(Hover):

TABTABFeedback="".join(Yaw[Yoke:Yoke+1])
0for Hover in range(1,3): TERMINATE

1

TABElevator[-Hover]=""

TABfor Yoke in range(Hover):

TABTABFeedback="".join(Yaw[Yoke:Yoke+1])

MASc Thesis - Samantha Chan - McMaster - Computing and Software

131

text1.txt
 C
 A
 C
 Variable Torque Pitch Speaker Yoke

Panel # 3 3 3 3
 int_list str_list string int

Program 3 Panel #
$Torque=range(3,0) 3 EMPTY
2for Rudder in range(3): 3 [0]

TABHover=Hover+1

TABTorque.append(Rudder)

TABRoll[Rudder]=Rudder
2for Rudder in range(3): 3 [0,1]

TABHover=Hover+1

TABTorque.append(Rudder)

TABRoll[Rudder]=Rudder
2for Rudder in range(3): 3 [0,1,2]

TABHover=Hover+1

TABTorque.append(Rudder)

TABRoll[Rudder]=Rudder
TABHover=Hover+1

TABTorque.append(Rudder)

TABRoll[Rudder]=Rudder
$Yoke=len("CDC"[2:0]) 3 0
0for Speaker in Feedback: 3 C
TABHover=Slats.index(Speaker)

TABAileron.append(Hover)
0for Speaker in Feedback: 3 A
TABHover=Slats.index(Speaker)

TABAileron.append(Hover)
0for Speaker in Feedback: 3 C
TABHover=Slats.index(Speaker)

TABAileron.append(Hover)
0for Speaker in Feedback: TERMINATE
TABHover=Slats.index(Speaker)

TABAileron.append(Hover)
$Pitch=["B","A"]*2 3 ["B","A","B","A"]
1for Altitude in range(len(Text)): 3 B
TABSpeaker=Text[Altitude]

TABMessage="".join(Slats[Altitude:Altitude+1])
1for Altitude in range(len(Text)): 3 A

MASc Thesis - Samantha Chan - McMaster - Computing and Software

132

TABSpeaker=Text[Altitude]

TABMessage="".join(Slats[Altitude:Altitude+1])
1for Altitude in range(len(Text)): 3 B
TABSpeaker=Text[Altitude]

TABMessage="".join(Slats[Altitude:Altitude+1])
0for Altitude in range(len(Text)): TERMINATE
TABSpeaker=Text[Altitude]

TABMessage="".join(Slats[Altitude:Altitude+1])
$Torque=range(3,-1,-1) 3 [3,2,1,0]
0for Rudder in 2: ERROR
TABFlaps[Rudder]=0

TABFeedback=Pitch[Rudder]
$Speaker="CCACAC"[1:] 3 CACAC
0for Hover in range(3,0): TERMINATE
TABTorque.append(Hover)

TABElevator[Hover]=Feedback[Hover]
3for Hover in range(2): 3

3

TABRoll.append(Hover)

TABfor Rudder in range(2):

TABTABYoke=Torque.index(Rudder)
3for Hover in range(2): 3

2

TABRoll.append(Hover)

TABfor Rudder in range(2):

TABTABYoke=Torque.index(Rudder)
2for Hover in range(2): TERMINATE

TABRoll.append(Hover)

TABfor Rudder in range(2):

TABTABYoke=Torque.index(Rudder)
3for Hover in range(2): 3

3

TABRoll.append(Hover)

TABfor Rudder in range(2):

TABTABYoke=Torque.index(Rudder)
3for Hover in range(2): 3

2

TABRoll.append(Hover)

TABfor Rudder in range(2):

TABTABYoke=Torque.index(Rudder)
2for Hover in range(2): TERMINATE

TABRoll.append(Hover)

TABfor Rudder in range(2):

TABTABYoke=Torque.index(Rudder)
0for Hover in range(2): TERMINATE

TABRoll.append(Hover)

MASc Thesis - Samantha Chan - McMaster - Computing and Software

133

TABRudder in range(2):

TABYoke=Torque.index(Rudder)
$Pitch=list(Speaker) 3 ["C","A","C","A","C"]
2for Hover in range(2): TERMINATE

TABRoll.append(Hover)

TABRudder in range(2):

TABYoke=Torque.index(Rudder)
3myfile=open("test1.txt","r") 3

["","A","A",""]

for Text in myfile:

TABFeedback=Text.strip()

TABPitch=Speaker.split(Feedback)
3myfile=open("test1.txt","r") 3

["C","C","C"]

for Text in myfile:

TABFeedback=Text.strip()

TABPitch=Speaker.split(Feedback)
3myfile=open("test1.txt","r") 3

["","A","A",""]

for Text in myfile:

TABFeedback=Text.strip()

TABPitch=Speaker.split(Feedback)
1myfile=open("test1.txt","r") TERMINATE

for Text in myfile:

TABFeedback=Text.strip()

TABPitch=Speaker.split(Feedback)
$Yoke=len(range(2,-1)) 3 0
2for Hover in range(1,3): 3

0

TABElevator[-Hover]=""

TABfor Yoke in range(Hover):

TABTABFeedback="".join(Yaw[Yoke:Yoke+1])
2for Hover in range(1,3): TERMINATE

0

TABElevator[-Hover]=""

TABfor Yoke in range(Hover):

TABTABFeedback="".join(Yaw[Yoke:Yoke+1])
2for Hover in range(1,3): 3

0

TABElevator[-Hover]=""

TABfor Yoke in range(Hover):

TABTABFeedback="".join(Yaw[Yoke:Yoke+1])
2for Hover in range(1,3): 3

1

TABElevator[-Hover]=""

TABfor Yoke in range(Hover):

TABTABFeedback="".join(Yaw[Yoke:Yoke+1])
2for Hover in range(1,3): TERMINATE

0

TABElevator[-Hover]=""

MASc Thesis - Samantha Chan - McMaster - Computing and Software

134

TABfor Yoke in range(Hover):

TABTABFeedback="".join(Yaw[Yoke:Yoke+1])
0for Hover in range(1,3): TERMINATE

TABElevator[-Hover]=""

TABfor Yoke in range(Hover):

TABTABFeedback="".join(Yaw[Yoke:Yoke+1])

MASc Thesis - Samantha Chan - McMaster - Computing and Software

135

text1.txt
 C
 A
 C
 Variable Roll Yaw Feedback Altitude

Panel # 4 4 4 4
 int_list str_list string int

Program 4 Panel #
$Roll=range(5,0,-2) 4 [5,3,1]
3for Rudder in range(3): 4 [0,3,1]

TABHover=Hover+1

TABTorque.append(Rudder)

TABRoll[Rudder]=Rudder
3for Rudder in range(3): 4 [0,1,1]

TABHover=Hover+1

TABTorque.append(Rudder)

TABRoll[Rudder]=Rudder
3for Rudder in range(3): 4 [0,3,2]

TABHover=Hover+1

TABTorque.append(Rudder)

TABRoll[Rudder]=Rudder
0for Rudder in range(3): TERMINATE
TABHover=Hover+1

TABTorque.append(Rudder)

TABRoll[Rudder]=Rudder
$Feedback="ACAC"[1:] 4 CAC
0for Speaker in Feedback: TERMINATE
TABHover=Slats.index(Speaker)

TABAileron.append(Hover)
$Altitude=len(range(4,2)) 4 0
0for Altitude in range(len(Text)): 4 0
TABSpeaker=Text[Altitude]

TABMessage="".join(Slats[Altitude:Altitude+1])
0for Altitude in range(len(Text)): 4 1
TABSpeaker=Text[Altitude]

TABMessage="".join(Slats[Altitude:Altitude+1])
0for Altitude in range(len(Text)): 4 2
TABSpeaker=Text[Altitude]

TABMessage="".join(Slats[Altitude:Altitude+1])
0for Altitude in range(len(Text)): TERMINATE
TABSpeaker=Text[Altitude]

TABMessage="".join(Slats[Altitude:Altitude+1])

MASc Thesis - Samantha Chan - McMaster - Computing and Software

136

$Yaw=["C","B"]*2 4 ["C","B","C","B"]
0for Rudder in 2: ERROR
TABFlaps[Rudder]=0

TABFeedback=Pitch[Rudder]
$Roll=range(3,1) 4 EMPTY
0for Hover in range(3,0): TERMINATE
TABTorque.append(Hover)

TABElevator[Hover]=Feedback[Hover]
1for Hover in range(2): 4 [0]

TABRoll.append(Hover)

TABfor Rudder in range(2):

TABTABYoke=Torque.index(Rudder)
2for Hover in range(2): TERMINATE

TABRoll.append(Hover)

TABfor Rudder in range(2):

TABTABYoke=Torque.index(Rudder)
1for Hover in range(2): 4 [0,1]

TABRoll.append(Hover)

TABfor Rudder in range(2):

TABTABYoke=Torque.index(Rudder)
2for Hover in range(2): TERMINATE

TABRoll.append(Hover)

TABfor Rudder in range(2):

TABTABYoke=Torque.index(Rudder)
0for Hover in range(2): TERMINATE

TABRoll.append(Hover)

TABRudder in range(2):

TABYoke=Torque.index(Rudder)
$Feedback="ABACA"[3:1] 4 EMPTY
2for Hover in range(2): TERMINATE

TABRoll.append(Hover)

TABRudder in range(2):

TABYoke=Torque.index(Rudder)
2myfile=open("test1.txt","r") 4

C

for Text in myfile:

TABFeedback=Text.strip()

TABPitch=Speaker.split(Feedback)
2myfile=open("test1.txt","r") 4

A

for Text in myfile:

TABFeedback=Text.strip()

TABPitch=Speaker.split(Feedback)
2myfile=open("test1.txt","r") 4

C

MASc Thesis - Samantha Chan - McMaster - Computing and Software

137

for Text in myfile:

TABFeedback=Text.strip()

TABPitch=Speaker.split(Feedback)
1myfile=open("test1.txt","r") TERMINATE

for Text in myfile:

TABFeedback=Text.strip()

TABPitch=Speaker.split(Feedback)
$Yaw=list("BACA") 4 ["B","A","C","A"]
3for Hover in range(1,3): 4

B

TABElevator[-Hover]=""

TABfor Yoke in range(Hover):

TABTABFeedback="".join(Yaw[Yoke:Yoke+1])
2for Hover in range(1,3): TERMINATE

TABElevator[-Hover]=""

TABfor Yoke in range(Hover):

TABTABFeedback="".join(Yaw[Yoke:Yoke+1])
3for Hover in range(1,3): 4

B

TABElevator[-Hover]=""

TABfor Yoke in range(Hover):

TABTABFeedback="".join(Yaw[Yoke:Yoke+1])
3for Hover in range(1,3): 4

A

TABElevator[-Hover]=""

TABfor Yoke in range(Hover):

TABTABFeedback="".join(Yaw[Yoke:Yoke+1])
2for Hover in range(1,3): TERMINATE

TABElevator[-Hover]=""

TABfor Yoke in range(Hover):

TABTABFeedback="".join(Yaw[Yoke:Yoke+1])
0for Hover in range(1,3): TERMINATE

TABElevator[-Hover]=""

TABfor Yoke in range(Hover):

TABTABFeedback="".join(Yaw[Yoke:Yoke+1])

MASc Thesis - Samantha Chan - McMaster - Computing and Software

138

Appendix B

Cheat Sheets for Space Race

139

CHEAT SHEET FOR LEVEL 2

OPERATORS
== Equality 3==3 is True

!= Non-equality 3!=3 is False

** Exponent 3**2 is 9

% Modulus (remainder) 5%2 is 1

/ Division
Integer division gives an integer result rounded down towards negative
infinity

5/2 is 2
5.0/2 is 2.5

+ Addition/ Concatenation 5+2.0 is 7.0
“A”+”C” is “AC”

= Assignment Operator
Values from right operand assigned to left operand

A=2
2=A gives
SyntaxError

INTEGERS
int() Converts a string or number to an integer, if possible. All digits after a

decimal will be truncated for a floating point number.
int(4.5) is 4
int(“9”) is 9
int(“a”) gives Value
Error

STRINGS
ASCII ASCII codes represent text in computers. “A” is represented as 65. “a”

is represented as 97
“A”<”a” is True

Index Used to specify positions of characters within a string.
Positive indexing begins at 0.
Negative indexing starts at the end of the string with -1.

“ABCD”[0] is “A”
“ABCD”[2] is “C”
“ABCD”[-1] is “D”
“ABCD”[-2] is “C”

Immutable A string’s state cannot be modified after it is created. x=”ABCD”
x[0]=”D”
gives TypeError

Slice
Notation

Used to represent a substring (a “slice” of the string)
String[start:end] = substring from index start to index end-1
If start>end then substring is always an empty string.
String[start:] = substring from index start to end
String[:end] = substring from start to index end-1
String[:] = copy of entire string

“ABCD”[1:3] is “BC”
“ABCD”[1:2] is “B”
“ABCD”[3:1] is “”
“ABCD”[1:] is “BCD”
“ABCD”[:3] is “ABC”
“ABCD”[:] is “ABCD”

len() Returns the number of characters in a string len(“ABC”) is 3

MASc Thesis - Samantha Chan - McMaster - Computing and Software

140

CHEAT SHEET FOR LEVEL 3

STRINGS
.split() Returns a list of substrings in a given string, using a

separator (if specified) as the delimiter.
If no delimiter is specified, any consecutive whitespace is used
as the separator.

“papacy”.split(“a”) is
[“p”,”p”,”cy”]
“banana”.split(“a”) is
[“b”,”n”,”n”,””]
“aardvark”.split(“a”) is
[“”,””,”rdv”,”rk”]
“a b c d”.split() is
[”a”,”b”,”c”,”d”]

“”.join() Returns a string composed of the strings in a given list “”.join([“a”,”b”,”c”]) is “abc”

FILES
Assume “testfile.txt” has the following lines:
CAT
DOG
BAT

Assume
myFile= open(“testfile.txt”,”r”)
#sample code goes here
myFile.close()

.readline() Reads next line from the file as a string. Retains newline myFile.readline() is
“CAT\n”

.read() Reads entire file until EOF (end of file) is reached as a string myFile.read() is
“CAT\nDOG\nBAT”

.readlines() Reads entire file until EOF is reached as a list of strings with
each string representing a line from the file

myFile.readlines() is
[“CAT\n”,”DOG\n”,”BAT”]

File Pointer The file pointer begins at the start of the file and it specifies the current file position. Once
a line is read, the file pointer advances to the next line. A line cannot be re-read unless the
current file position is set back to that line.

LISTS
.index() Returns first index of value in a list. Raises ValueError if the

value is not present.
[“A”,”B”,”B”].index(“B”) is 1
[“A”,”B”,”B”].index(“C”)
gives ValueError

range() Returns a list with an arithmetic progression of integers.
Accepts as arguments [start,]stop[,step] (start and step are
optional). The stop point is not part of the generated list!
If start>stop and step is positive or not given then the
returned list is empty.

range(3) is [0,1,2]
range(1,4) is [1,2,3]
range(0,8,2) is [0,2,4,6]
range(4,1) is []
range(4,1,-1) is [4,3,2]

len() Returns the number of elements in a list. len([0,1,2]) is 3

Nested
Lists

Lists formed with lists as elements. For a list within a list (one
sublevel), you can index sub-list elements with the format:
[outer][inner].

X=[1,2,[“a”,”b”],3]
X[2][0] is “a”

Mutable Lists allow in-place modification after it has been created.
Can use positive or negative indexing, or slice notation, to refer
to element(s) in a list.

X=[“A”,”B”,”C”]
X[0]=”D”
X is [“D”,”B”,”C”]

Aliasing Can occur for values that are mutable. Happens when one
variable’s mutable value (for ex. list) is assigned to another
variable. Both variables are then referring to the same
value. When an in-place change is made to the value through
one variable, the other variable “sees” the same change.

X=[1,2,3]
Y=X
Y[0]=4
Y is [4,2,3]
X is [4,2,3]

MASc Thesis - Samantha Chan - McMaster - Computing and Software

141

CHEAT SHEET FOR LEVEL 4

STRINGS
.strip() Returns string with leading and trailing whitespaces

removed
“ \ta\n”.strip() is “a”

LISTS
.append() Appends object to the end of the current list. [“A”,”B”].append(“C”) is

[“A”,”B”,”C”]

list() Returns a list initialized with the sequence/iterable’s items. If
the sequence is a string, a sequence of characters, each
element in the list will be a character from that string.

list(“abc”) is [“a”,”b”,”c”]

* Provides copies of the list, concatenated [“A”,”B”]*2 is
[“A”,”B”,”A”,”B”]

FOR- LOOPS
for iterating_var in sequence:
 statement(s)
>>for var_i in [1,2,3]:
 print var_i
1
2
3
>>>for var_j in “abc”:
 print var_j
a
b
c

iterating_var This variable is assigned one item from sequence
for every repetition/iteration of the loop

sequence Examples of sequence types in Python include
strings, lists, and tuples

statement(s) This block of code is executed once for each
element in sequence. In other words, it is executed
once for every iteration of the for-loop

loop
termination

The loop terminates when all the items from
sequence have been exhausted. That is, there are
no more elements in sequence to assign to the
iterating_var.
If sequence is empty, the statement(s) are never
executed as there are no elements to assign to
iterating_var.

nested for-loop
>>>for var_i in [“outer1”,”outer2”]:
 for var_j in [“inner 1”,”inner2”]:
 print var_i, var_j
outer1 inner1
outer1 inner2
outer2 inner1
outer2 inner2

A nested for-loop is a loop within a loop. For every iteration of the
outer for-loop, the inner for-loop must execute to completion.

FILES
Assume “testfile.txt” has the following lines:
CAT
DOG
BAT

>>>myFile=open(“testfile.txt”,”r”)
>>>x=[]
>>>for var_i in myFile:
 x.append(var_i)
>>myfile.close()

x is [“CAT\n”,”DOG\n”,”BAT”]

for loop A for loop can be used to read a line from
the file for every iteration of the loop. Think
of the file as a sequence of lines.

MASc Thesis - Samantha Chan - McMaster - Computing and Software

142

Appendix C

Pre and Post Quizzes

143

*Note: all correct answers are indicated with a tilde (~)

LEVEL 1

1. In Python, what is the value of expression float(1/2)?
a) 0
b) 0.0~
c) 0.5
d) 1
e) 1.0

2. There exists a positive (nonzero) floating point number e such that 1+e=1. Is this
statement true or false?

a) true~
b) false

3. In Python, for integers m and n, the type of the expression m/n will be float when
m%n!=0. Is this statement true or false?

a) true
b) false~

4. Concatenation of strings in Python is commutative. That is, for strings x and y:
x+y=y+x. Is this statement true or false?

a) true
b) false~

5. Which of these generates a runtime error?
a) "b"*4
b) X=6!=5
c) X=str(5)
d) X=int("b")~
e) X=4L/2

LEVEL 2
1. In Python, x=3 and 3=x have the same meaning. Is this statement true or false?

a) true
b) false~

2. After running the following lines of code:
X=2
float(X)
the value of X is 2.0. Is this statement true or false?

a) true
b) false~

3. Assuming variable X is a non-empty string of length 3. Which of these generates a
runtime error?

a) X[0]="E"~

MASc Thesis - Samantha Chan - McMaster - Computing and Software

144

b) Y= X[1:2]=="C"
c) Y= X[:2]
d) Y= X[2:0]

4. If you double the memory of your computer, what effect does this have on the
number of ASCII values that can be represented?

a) Doubles the number of ASCII values available
b) Allows including both capital and lowercase letters
c) There is an increase, but the specific results depend on the particular

architecture of your computer
d) All ASCII values will become unicode values
e) There is no change in the number of ASCII values~

5. In Python, which kind of value is not mutable?
a) Strings~
b) Lists
c) Objects
d) None of the above

LEVEL 3

1. The elements of a list can have any type, as long as the elements are not of the list
type; that is, lists of lists are not possible. Is this statement true or false?

a) true
b) false~

2. Suppose the file named LOTR contains the following two lines of ASCII characters:
One Ring to rule them all,
One Ring to find them.
After running the following lines of code:
f = open (" LOTR " ," r")
x = f . readline ()
y = f . readline ()
f . close ()
what will be the value of y?

a) "One Ring to rule them all,\n"
b) "One Ring to find them.\n"~
c) "One Ring to rule them all,\nOne Ring to find them.\n"
d) ""

3. After running the following lines of code:
x=[1,2,3]
y=x
y[0]=4
the value of x is [1,2,3]. Is this statement true or false?

a) true

MASc Thesis - Samantha Chan - McMaster - Computing and Software

145

b) false~
4. If x= range(3,0), the value of x is [3,2,1,0]. Is this statement true or false?

a) true
b) false~

5. If x="BCBC".split("C"), what is the value of x?
a) ["B","B"]
b) ["C","C"]
c) ["B","B",""]~
d) ["","C","C"]

LEVEL 4
1. In Python, what is the value of the expression ["a", "b"]*2?

a) ["aa","bb"]
b) ["a2","b2"]
c) ["a","b","a","b"]~
d) ["a","a","b","b"]

2. For m>=0 and n>=0 the value of num is the same after executing
num = 0
for i in range (n):
 num = num + 3
as it is after executing
num = 0
for j in range (m , m + n) :
 num = num + 3
Is this statement true or false?

a) true~
b) false

3. If a is an expression of type long, and m is an integer with m>=0, after the
following lines of code are executed:
x = 1
for i in range (m):
 x = x * a
what is the value of x?

a) a + m
b) a * m
c) a * a
d) a ** m~

4. After executing the following lines of code:
for i in range(2):
 for j in range(3):
 print "Hello World"
How many times is Hello World printed?

MASc Thesis - Samantha Chan - McMaster - Computing and Software

146

a) 2
b) 3
c) 6~
d) 8

5. What is the value of x if x=list("ABC")?
a) ["ABC"]
b) ["A","B","C"]~
c) []
d) undefined because of TypeError

MASc Thesis - Samantha Chan - McMaster - Computing and Software

147

Appendix D

Experimental Surveys

148

Survey A

Please note that question order may change

1. Prior to taking ENG 1D04- Engineering Computation, did you have programming experience?
a. Yes
b. No

2. How many courses (high school, college, extracurricular courses) have you taken that have

involved computer programming (excluding ENG 1D04)?
a. None
b. 1
c. 2 -3
d. >3

3. How many lines of code did you write in your single largest simple program? (Leave blank if you

have not written a program before)

4. Programming languages you have used prior to taking ENG 1D04 (you may select more than
one):

a. None
b. C
c. C++
d. Fortran
e. Java
f. Matlab
g. Python
h. Other
i. If other, please specify language(s):

5. I play video games

a. Daily
b. Weekly
c. Monthly
d. Yearly
e. Never

6. Each video gaming session lasts __________ hours (leave blank if you do not play video games)

7. Have you ever used an educational video game as part of a course?

f. Yes
g. No

MASc Thesis - Samantha Chan - McMaster - Computing and Software

149

8. If you answered yes to the previous question, please describe your experience below. Include

game title (if not known, provide a brief description), approximate grade, and subject used in. Feel
free to add any other relevant details.

9. If you have used an educational video game, to what extent did you find it beneficial to your
overall learning experience? (Select N/A if you have never used an educational video game)

h. Not beneficial at all
i. Somewhat beneficial
j. Beneficial
k. Very Beneficial
l. N/A

***The following questions will have these options: strongly agree, agree, neither agree nor
disagree (neutral), disagree, strongly disagree***

10. I consider myself to be an avid gamer

11. I play video games for fun

12. I would enjoy playing video games to learn

13. Excitement is the most important part a good video game

14. Interactivity is the most important feature of a good video game

15. Story/ Plot is the most important feature of a good video game

16. Variety is the most important feature of a good video game

17. Graphics is the most important feature of a good video game

18. Competition between players the most important feature of a good video game

19. Video games can be powerful teaching tools

20. Video games can teach students how to set and reach goals

21. Video games can motivate students to learn

22. Video games can motivate students to seek out additional information that will help them succeed

23. Video games can stimulate a student’s curiosity on a topic

MASc Thesis - Samantha Chan - McMaster - Computing and Software

150

24. Video games can provide a safe way to test new ideas or try new techniques

25. Video games can be used to complement course objectives

26. Video games can provide immediate feedback to students

27. Video games can be an effective tool to teach basic programming concepts

28. Video games are a waste of time

29. Video games should only be used as a leisure activity

30. Educational games require too much special equipment and technical support to be beneficial

31. The use of educational video games does not belong in the post- secondary classroom

32. In general, students will not take educational video games seriously

33. Students cannot learn well through video games

34. In general, males will enjoy using educational video games in classes more than females will

35. In general, females will benefit from using educational video games as much as males

MASc Thesis - Samantha Chan - McMaster - Computing and Software

151

Survey B- Gameplay Feedback Survey

Please note that question order may change
***The following questions will have these options: strongly agree, agree, neither agree nor
disagree (neutral), disagree, strongly disagree***

Please help us rate the video game by answering the following questions:

1. The video game was easy to play

2. The video game required too much technical support to be beneficial

3. It was difficult to learn how to play the video game

4. I enjoyed playing the video game

5. The video game was too slow to play efficiently

6. The video game helped me to learn the basic programming concepts being presented

7. I felt confused trying to understand the basic programming concepts with this video game

8. I would recommend that others try to learn the basic programming concepts with this video game

9. My team members helped me to better understand the basic programming concepts being
presented

10. I enjoyed cooperating with team members to successfully complete the game level

11. Video games, in general, are an effective tool to teach basic programming concepts

12. I feel confident that I understand the basic programming concepts presented in the video game

13. I felt reassured of my knowledge in the programming concepts presented when I gave verbal

cues to my team members in the game

14. I felt reassured of my knowledge in the programming concepts presented when I received verbal
cues from my team members in the game

15. I would prefer to learn basic programming concepts through a video game as opposed to other

traditional teaching methods such as lecture, tutorials, or textbooks.

16. The video game stimulated my curiosity on the basic programming concept being presented

17. The video game has motivated me to review the course material

MASc Thesis - Samantha Chan - McMaster - Computing and Software

152

18. Cooperation between team members makes this video game an effective teaching tool for
learning basic programming concepts

19. Competition between teams makes this video game an effective teaching tool for learning basic

programming concepts

20. Competition between teams motivates me to review course material

21. My role as an effective team member motivates me to review course material

22. The video game was not effective in teaching basic programming concepts because it was not
challenging enough

23. The video game was not effective in teaching basic programming concepts because it was too

challenging

24. I wish there was more gameplay time in the video game

The following question is in short answer form.

25. What were some features that you did or did not like about the video game?

26. How did your team members affect your ability to learn the basic programming concepts being

presented?

27. What are some improvements you would incorporate into the video game?

28. Is there anything important that I forgot or something you think would help me understand the
usability of the game in learning basic computer programming concepts?

MASc Thesis - Samantha Chan - McMaster - Computing and Software

153

Appendix E

Exam Questions

E.1 Midterm 1
Question 1
Let the variables x and y be bound to values of type float. If x + y == x evaluates to True,
then the value of y must be 0.0. Is this statement true or false?

1. True.

2. False. (correct answer)
Question 5
For all expressions a and b of type int with b not equal to 0, a / b is an expression of
type int. Is this statement true or false?

1. True. (correct answer)

2. False.
Question 9
In Python, = and == both mean equal. Is this statement true or false?

1. True.

2. False. (correct answer)

154

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Question 10
When evaluated, both of the following code fragments print the same sequence of numbers:

Code Fragment 1
x = 0
for i in range(5):

x = x + i + 1
print x

Code Fragment 2
for i in range(1,6):

x = i
for j in range(i):

x = x + j
print x

Is this statement true or false?

1. True. (correct answer)

2. False.

155

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Question 13
After the following code is executed, how are the contents of the files named iceland and
denmark related?

f = open("iceland","r")
x = f.read()
f.close()
g = open("denmark","w")
y = ""
for i in x:

y = i + y
g.write(y)
g.close()

1. The contents of iceland and denmark are identical.

2. The contents of iceland and denmark are identical except that the sequence of lines
in iceland are reversed in denmark. That is, the first line in iceland is the last line
in denmark.

3. The contents of iceland and denmark are identical except that the sequence of char-
acters in iceland are reversed in denmark. That is, the first character in iceland is
the last character in denmark. (correct answer)

4. The contents of iceland and denmark are identical except that the characters in each
line in iceland are reversed in denmark.

156

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Question 17
When executed, which of the following code fragments print the numeral 5?

Code Fragment 1
sum = 1
for i in range(5):

sum = sum + 1
print sum

Code Fragment 2
sum = 1
for i in "00" * 2:

sum = sum + 1
print sum

Code Fragment 3
sum = 1
for i in [2,2,2,2]:

sum = sum + 1
print sum

1. Fragments 1 and 2.

2. Fragments 1 and 3.

3. Fragments 2 and 3. (correct answer)

4. Fragments 1, 2, and 3.

157

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Question 20
A for loop can be used to compute a summation like

n

∑
i=m

ai.

Which for loop computes the value of
1

∑
i=2

i.

1. num = 0
for i in range(2):

num = num + i

2. num = 0
for i in range(1,2):

num = num + i

3. num = 0
for i in range(2,2):

num = num + i

(correct answer)

4. num = 1
for i in range(2,1,-1):

num = num + i

Question 23
If s is of type str and len(s) > 1 evaluates to True, what is returned when type(s[0])
is evaluated?

1. <type ’char’>.

2. <type ’str’>. (correct answer)

3. <type ’int’>.

4. <type ’list’>.

158

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Question 27
Let a be an expression of type str and b be an expression of type int. Which piece of
code computes a * b?

1. x = ""
for i in range(b):

x = x + a

(correct answer)

2. x = ""
for i in range(b):

x = x * a

3. x = a
for i in range(b):

x = x + a

4. x = ""
for i in range(a):

x = x + b

Question 28

a = [0,0,0]
b = [0,0,0]
c = b
a[0] = 1
b[1] = 2
c[2] = 3

What are the values of a, b, and c?

1. [1,0,0], [0,2,0], and [0,0,3].

2. [1,0,0], [0,2,0], and [0,2,3].

3. [1,0,0], [0,2,3], and [0,2,3]. (correct answer)

4. [1,2,3], [0,2,3], and [0,2,3].

159

MASc Thesis - Samantha Chan - McMaster - Computing and Software

E.2 Midterm 2
Question 5
If two real numbers are exactly representable as floating point numbers, then the result of a
arithmetic operation on them will also be exactly representable as a floating point number.
Is this statement true or false?

1. True.

2. False. (correct answer)
Question 27
A for loop can be used to compute a summation like

n

∑
i=m

ai.

Which for loop computes the value of
1

∑
i=2

i.

1. num = 0
for i in range(2):

num = num + i

2. num = 0
for i in range(1,2):

num = num + i

3. num = 0
for i in range(2,2):

num = num + i

(correct answer)

4. num = 1
for i in range(2,1,-1):

num = num + i

160

MASc Thesis - Samantha Chan - McMaster - Computing and Software

E.3 Final Exam
Question 4
Recall that (x + y) + z = x + (y + z) is the law of associativity for the operator +.
For which Python type does the law of associativity for the operator + fail?

1. int.

2. long.

3. float. (correct answer)

4. str.
Question 5
If x = "BCBC".split("C"), what is the value of x?

1. ["B","B"].

2. ["C","C"].

3. ["B","B",""]. (correct answer)

4. ["","C","C"].
Question 6
Assuming variable X is a nonempty string of length 3, which of these generates a runtime
error?

1. X[0] = "E". (correct answer)

2. Y = X[1:2] == "C".

3. Y = X[:2].

4. Y = X[2:0].
Question 7
Which of these generates a runtime error?

1. X = "b" * 4

2. X = 6 != 5

3. X = str(5)

4. X = int("b") (correct answer)

5. X = 4L / 2

161

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Question 11
In Python, what is the value of the expression 2 * [1]?

1. [1].

2. [1,1]. (correct answer)

3. [2].

4. [2,2].
Question 16
When a voltage (battery) is connected to a simple circuit containing a resistor and a capac-
itor, the current in the circuit increases as an exponential function of time. The following
program is intended to calculate the current I in a simple circuit at a given time, with resis-
tance doubled. The formula for calculating current in this circuit is:

I =
V
2R

(
1− e

−t
2RC

)
where the parameters for this calculation are the voltage supplied V , the resistance R, the
capacitance C, and the time t.

import math
V = input("Enter a value for the voltage , V: ")
R = input("Enter a value for the resistance , R: ")
C = input("Enter a value for the capacitance , C: ")
t = input("Enter a value for the elapsed time , t: ")
I = %*\textit{E}*)
print "The current for V, R, C, and t =", I

What should be the value of expression E for this code to work as expected?

1. V / (2 * R) * (1 - math.exp(- t / (2 * R * C)))

2. V / (2.0 * R) * (1 - math.exp(- t / (2 * R * C)))

3. V / (2.0 * R) * (1 - math.exp(- (1.0 * t) / (2 * R * C))) (cor-
rect answer)

4. All of the above.

162

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Question 17
In Python, arithmetic involving values of type may yield mathematically incorrect
results.

1. int.

2. long.

3. float. (correct answer)

4. str.
Question 21
If a and b are expressions of type list, what is the value of x after the following code is
executed?

x = []
for i in a:
x = x + b

1. a + b.

2. a * b.

3. len(a) * b. (correct answer)

4. a ** b.

163

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Question 23
After the following code is executed how are the contents of the files named rudolph and
albert related?

f = open("rudolph","r")
x = f.read()
f.close()
g = open("albert","w")
c = 0
for y in x:

c += 1
if y == ’\n’:

g.write(str(c) + ’\n’)
c = 0

g.close()

1. The contents of rudolph and albert are identical.

2. The contents of rudolph and albert are identical except that the newline characters
in rudolph have been removed in albert.

3. albert is obtained from rudolph by replacing each line in rudolph with the number
of characters in that line. (correct answer)

4. albert holds the number of characters, the number of words, and the number of
lines in rudolph.

164

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Question 29
A for loop can be used to compute a summation like

n

∑
i=m

ai.

Which for loop computes the value of
1

∑
i=2

i.

1. num = 0
for i in range(2):

num = num + i

2. num = 0
for i in range(1,2):

num = num + i

3. num = 0
for i in range(2,2):

num = num + i

(correct answer)

4. num = 1
for i in range(2,1,-1):

num = num + i

Question 44
What is the value of ∑

2
i=1

(
∏

1
j=3 i j

)
?

1. 2. (correct answer)

2. 3.

3. 18.

4. 54.

165

MASc Thesis - Samantha Chan - McMaster - Computing and Software

Question 46
Which of the following types in Python represents rational numbers in scientific notation?

1. int.

2. long.

3. float. (correct answer)

4. complex.

166

	Abstract
	Acknowledgments
	Introduction
	Problem Statement
	Proposed Solution
	Thesis Contributions
	Thesis Organization

	Theoretical Background
	Learning Theories
	Experiential Learning
	Collaborative Learning

	Games
	Definition of Games
	Flow in Games
	Competition and Cooperation in Games

	Game-Based Learning
	Rationale for Game-Based Learning
	Edutainment versus Educational Games

	Literature Review
	Collaboration to Learn Programming
	Game-Based Learning to Teach Programming
	Demand and Interest from Students
	Previous Research
	ToonTalk-Teaches Abstract Programming Concepts Through Concrete Actions
	LearnMem1- Teaches Basic Computer Memory Concepts
	Program Your Robot- Practice Introductory Programming Constructs Through a Game
	Robocode
	6 Tablet Video Game Applications to Teach Introductory Science Concepts

	Game Design
	Design Goals
	Game Overview
	Gameplay
	Level Design

	Level 1 Design
	Programming Concepts
	Game Screen
	Game Controls
	Game Mechanics

	Level 2 Design
	Programming Concepts
	Game Screen
	Game Controls
	Game Mechanics

	Level 3 Design
	Programming Concepts
	Game Screen
	Game Controls
	Game Mechanics

	Level 4 Design
	Programming Concepts
	Game Screen
	Game Controls
	Game Mechanics

	Experimental Procedure
	Participants
	Surveys and Assessments
	Surveys
	Pre and Post-Game Quizzes
	Course Exams

	Data Collection Timeline

	Student Attitudes and Prior Experience
	Previous Programming Experience
	Video Gaming Habits
	Attitude Towards Educational Video Games

	Game Reception and Feedback
	Survey B Results
	Playability
	Teachability
	Cooperation
	Competition

	Educational Effectiveness of Game
	Benchmark for Student Abilities
	Pre and Post Quiz Results
	Comparing the Effects of Space Race on Different Students

	Exam Results
	Midterm Exam Results
	Final Exam Results

	Conclusions
	Limitations and Future Work

	Bibliography
	Level Solutions for Space Race
	Cheat Sheets for Space Race
	Pre and Post Quizzes
	Experimental Surveys
	Exam Questions
	Midterm 1
	Midterm 2
	Final Exam

