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Abstract

Finite-Difference (FD) based complex modes solver and Complex Mode Matching Method

(CMMM) is one of the most popular combinations in modeling and simulation of opti-

cal waveguides. This thesis covers the basic theories behind the approaches and impor-

tant implementation details. Weighted Optical Path Distance is proposed to speed up

convergence and improve numerical accuracy to deal with asymmetric structures. An

improved formula is derived for Complex Mode Matching Method expansion process

based on matrix optimization. The latter part applies the above approach in the mod-

eling of bending structures and grating structures. Typical structures, including bend-

ing structures, straight-bend-straight structures, long-period gratings, gratings with de-

posited layer, gratings with deep corrugations, are investigated and analyzed.
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Nomenclature

ε permittivity of dielectric

ε0 permittivity of vacuum

E Electric field (vectorial)

H Magnetic field (vectorial)

µ permeability of dielectric

µ0 permeability of vacuum

E Electric field (scalar)

H Magnetic field (scalar)

k wavenumber in dielectric

k0 wavenumber in vaccum

n refractive index

FD Finite Difference
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PML Perfectly Matched Layer

PRB Perfect Reflection Boundary
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Chapter 1

Introduction

1.1 Backgrounds

The increasing demand of high bandwidth, low latency and low power consumption in

areas of communications and integrated systems provide great opportunities for optical

devices. The advancements of optical devices analysis, design and fabrication in turn re-

quires the simulation processes to be both rigorous and efficient. In the area of waveguide

modeling, Mode Matching Method (MMM) is popular for its simplicity and straight, and

much more efficient when comparing with time domain methods like Finite-Difference

Time Domain (FDTD) method. The process usually requires the determination of a com-

plete mode set. One of the possible approaches is Finite-Difference (FD) based mode

solver, with Perfectly Matched Layers as boundary conditions.

However, one of the drawbacks of Mode Matching Method is that large number of modes
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are involved in the process in order to get relatively accurate results, especially for struc-

tures with significant radiation effects like in the case of bending structures and second-

order gratings etc.

1.2 Contributions

To address the problem mentioned above, an Improved Mode Matching Method is pro-

posed to improve numerical stability and speed up convergence. Besides, the Perfectly

Matched Layer framework for asymmetric structures is improved with the introduction of

Weighted Optical Path Distance, which provides better numerical results for asymmetric

structures. Typical waveguide structures including bending structures, straight-bending-

straight structures, long-period gratings, gratings with deposited layers and gratings with

strong index corrugations are investigated and analyzed using the above approaches.

This thesis is organized in the following manner. Chapter 2 summaries the basic theo-

ries about waveguide simulation. Governing equations, i.e., Maxwell Equations, are re-

duced to simple second-order differential Helmholtz equations using scalar approxima-

tion, which serves as basic starting point of analyzing passive devices. Basic scheme of

Finite-Difference method is explained and higher order schemes are summarized. Bound-

ary condition, i.e., Perfectly Matched Layer, is introduced from the point of theory as

well as implementation. Weighted Optical Path Distance is proposed to improve numeri-

cal precision for asymmetric structures. Chapter 3 reviews conventional Complex Mode

Matching Method and provides better expansion formula based on matrix optimization.

Chapter 4 talks about the application of Mode Matching Method to bending structures.

2
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Bending structures with different radiuses are investigated and analyzed. Important roles

of high order complex modes in energy transfer is revealed in structures of small radii.

Chapter 5 provides the simulation results of several typical gratings usingModeMatching

Method, with the comparison of Coupled ModeTheory. Chapter 6 wraps up the work and

talks about possible improvements and work directions in the future.

3



Chapter 2

Complex Modes

The process of waveguide simulation and analysis relies on the determination of a com-

plete mode set from governing equations. Of all the proposed approach, Finite-Difference

Method (FDM) based method is by far the most popular for its simplicity and straight-

forwardness. In practice, however, to improve accuracy one step further and accelerate

convergence, higher order finite-difference based schemes are commonly used.

Due to the nature of numerical simulation, boundary conditions must be chosen carefully.

Simple boundary conditions, like Perfect Reflection Boundary (PRB), are relatively easy

to be implemented, but are not in coherence with reality. To address the problem , com-

plicated boundary condition, Perfectly Matched Layer (PML) [1] [2], is introduced. To

validate the numerical results, the parameters of the PML is altered, showing the conver-

gence within the PML framework itself as well as convergence to real world structure.

4
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2.1 Scalar Approximation

Before starting the discussion, the following assumption are made: i) the electro-magnetic

waves propagates in source-free, lossless, piece-wise isotropic dielectrics, which is true for

most photonic devices, ii) the time parameter is eliminated, i.e. only frequency domain is

considered.

Under those assumptions, the governing equations, i.e., Maxwell equations, are written

as [3]

∇× E = −jωµ0H

∇×H = jωε0n
2E

∇ · E = 0

∇ ·H = 0

(2.1)

in which E, H are vectorial electric and magnetic fields, respectively, with n = n(x, y, z)

the refractive index of the dielectric, ε = ε0n
2 the permittivity of the dielectric, µ0, ε0 the

permittivity and permeability of vacuum.

By separating transverse and propagating components, the governing equation could be

reduced to

∇2
tEt + (k20n

2 − β2)Et = ∇t

[
∇t · Et −

1

n2
∇t · (n2Et)

]
(2.2)

This is often referred as full-vector form of the governing equations, since it includes both

5
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transverse components of the field [4].

More often than not, it is sufficient to solve one component. Follow this simplicity, let E

denote one of the field components, and neglect the coupling between the two polariza-

tions, the full-vector equation becomes

∂2E

∂x2
+ (k20n

2 − β2)E = 0 (2.3)

This procedure is referred as scalar approximation. The expression is known as scalar

equation or semi-vector equation, which takes the form of an Helmholtz equation. The

solutions associated with the previous equation are Transverse Electric (TE) modes.

The same procedure could be applied to H field

n2
[ ∂
∂x

( 1

n2

∂H

∂x

)]
+ (k20n

2 − β2)H = 0 (2.4)

The is the scalar governing equation formagnetic field. The solutions associated are Trans-

verse Magnetic (TM) modes.

Once solving the above differential equation, the other filed components could be easily

dissolved. Suppose the E component of TE mode is ready, then

6
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Hx =
β

ωµ0

Ey

Hy = − β

µε0
Ex

Hz =
j

ωµ0

(∂Ey

∂x
− ∂Ex

∂y

) (2.5)

For TM mode,

Ex = − β

ωε0n2
Hy

Ey =
β

ωε0n2
Hx

Ez =
1

jωε0n2

(∂Hy

∂x
− ∂Hx

∂y

) (2.6)

2.2 Finite-Difference Method

TheFDMwas firstly introduced into area of optical devices simulation by Stern in 1988 [5].

According to Stern’s propose, the second-order derivatives is approximated using basic

three-point difference scheme, while the discontinuity of the medium is matched by av-

eraging refractive indices across interface.

ψi−1 ψi ψi+1

x− h x x+ h

Figure 2.1: Basic Finite Difference scheme

Consider the scheme shown in Figure 2.1, ψi−1, ψi, ψi+1 are electric or magnetic fields at

locations of x − h, x, x + h, respectively, with h as step size of the uniform mesh. The

7
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second-order derivatives could be approximated as

∂2ψi

∂x2
=
ψi−1 − 2ψi + ψi+1

h2
+O(h3) (2.7)

Thus the scalar equations (Equation 2.3 and Equation 2.4) shall be discretized as

1

h2
(
ψi−1 − 2ψi + ψi+1

)
+ n2

i k
2
0ψi = β2ψi (TE)

n2
i

h2
( 1

n2
i−
ψi−1 − (

1

n2
i−

+
1

n2
i+

)ψi +
1

n2
i+

ψi+1

)
+ n2

i k
2
0ψi = β2ψi (TM)

(2.8)

in which

ni− =
1

2
(ni−1 + ni)

ni+ =
1

2
(ni + ni+1)

(2.9)

Combining all the sampling points and rewrite the equation into matrix form

AΨ = β2Ψ (2.10)

where A is a tri-diagnonal matrix. Once solving the equation, the eigenvalues would be

β2, while the eigenvectors would be mode profiles, thus the problem of generating mode

set is transformed into an eigenvalue solving problem.

The scheme showed above is extremely easy to implement, yet the results are relatively

8
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less accurate. One reason is that the scheme adopts a three-point stencil. Secondly, in-

terface conditions at refractive index discontinuities are over simplified. The truncation

error of this scheme is O(h), where h is the mesh size. Although the accuracy could

be improved by using finer meshes, the overhead of computation would be significant.

Other schemes have be proposed over the years to address the problem. Vassallo [6] pro-

vided an improved scheme with O(h2) truncation error by setting interfaces at middle

of sampling points and expanding Taylor series at refractive index discontinuities. Fur-

ther, Chiou [7] expanded the work by introducing the Generalized Douglas operator. The

truncation error was reduced to O(h4), irrespective of the location of interfaces. Until

recently, arbitrary precision scheme was proposed by Chiou [8], that is, any higher order

scheme could be achieved by using wider stencil and higher order interface conditions.

The implementation accompanying this thesis adopts Chiou’s scheme using a five-point

stencil, which has a O(h4) truncation error.

2.3 Boundary Conditions

To illustrate the FDM and PML framework, a 1D computation model is shown as Figure

2.2. The innermost is a core layer, clamped by cladding 1 and cladding 2 (also referred as

substrate and cover), of which the refractive index of core layer is usually higher than its

neighbors. There might be multiple groups of core-cladding layers. The PML layers are

placed at outer part, with PRB terminating the computation grid.

Perfect Reflect Boundary (PRB) terminate the computation window, which internally re-

quires field amplitude at boundaries to be zero. This practice relies on the fact that the

9
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Cladding 1 Core Cladding 2PML PMLPRB PRB

Figure 2.2: Computation model. Perfectly Matched Layers (PMLs) are placed at outermost

while Perfect Reflection Boundary (PRB) terminate the computation grid.

guided mode will always decay to zero with large enough computation window. How-

ever, parasite reflections may happen for radiative waves and therefore affect the simu-

lation results. Further, larger computation window means more computation resources

are required to complete the process. To address the problems, Perfectly Matched Layers

(PML) is introduced.

PMLs are artificial anisotropy materials. The field propagation in PMLs are governed by

modified Maxwell’s equations, [1]

∇× E− jβE = −jωµΛH

∇×H− jβH = jωεΛE
(2.11)

in which ε(x, y) is the refractive index. The tensor Λ is given by

10
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Λ =


SySz/Sx 0 0

0 SxSz/Sy 0

0 0 SxSy/Sz

 (2.12)

in which Sx and Sy are called coordinate stretching factors and are given as

Sx = 1 +
σx
jωε

Sy = 1 +
σy
jωε

Sz = 1 +
σz
jωε

(2.13)

where σx, σy are absorption parameters, along x, y and z directions, respectively.

The coefficients σ are crucial to effectively reduce parasite reflections from the PRB. One

of the commonly used absorption profiles is

σ = σmax

( ρ

TPML

)m (2.14)

in which TPML is PML thickness and ρ is the distance measured from the starting point of

PML. Whenm = 2, the PML is most effective. Using this profile, the reflection coefficient

of the PML is

RPML = exp
[
− 2σmax

n
√
ε0/µ0

∫ TPML

0

( ρ

TPML

)m] (2.15)

11
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which is the main measurement for effectiveness of the PML.

Alternatively, given reflection coefficient, the PML profile could be constructed as

S = 1 +
λ

j4πnTPML

[
(m+ 1) ln

1

RPML

]( ρ

TPML

)m (2.16)

To simply the incorporation of PML into FDM framework, introduce the complex coordi-

nate as [2]

x̃ =

∫ x

0

Sx(x
′)dx′

ỹ =

∫ y

0

Sy(y
′)dy′

(2.17)

Within such a complex coordinate system, the governing equations with PML layers stay

the same as scalar approximation Equation 2.3 and Equation 2.4.

2.4 Mode Orthoganlity

Letm, n be two mode indices, it is proved that the transverse modes satisfy the following

relation,

∫ ∫
A

(
Etm ×Htn

)
= 0 form 6= n (2.18)

Here is a simplified derivation. For TE modes, there exists three non-zero components,

12
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i.e.,Ey, Hx, Hz . The modified governing equation with PML layers is

1

Sx

∂

∂x

1

Sx

∂

∂x
Ey + (k2 − β2)Ey = 0 (2.19)

and Hx = Sxβ
ωµ
Ey , thus

∫ L

0

EymHxndx =
βn
ωµ

∫ L

0

EymSxEyndx (2.20)

and

∫ L

0

EymSxEyn =
1

β2
m − k2

∫ L

0

∂

∂x

1

Sx

∂

∂x
EymEyndx

=
1

β2
m − k2

[ 1

Sx

∂

∂x
EymEyn −

∫ L

0

1

Sx

∂

∂x
Eym

∂

∂x
Eyndx

]
=

1

k2 − β2
m

∫ L

0

1

Sx

∂

∂x
Eym

∂

∂x
Eyndx

=
1

k2 − β2
n

∫ L

0

1

Sx

∂

∂x
Eyn

∂

∂x
Eymdx

(2.21)

From the last two lines of the above formula plus the fact that βm 6= βn when m 6= n,

there exists

∫ L

0

EymHxn = 0 form 6= n (2.22)

13
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Parameter Value

core refractive index nco 2.0

core thickness dco 2.0 µm

cladding refractive index ncl 1.0

cladding thickness dcl 1.0 µm

working wavelength λ 1.5 µm

PML thickness dPML 1.0 µm

PML reflection coefficient RPML 10−4

mesh size 50 µm−1

Table 2.1: Parameters used in the slab waveguide simulation

If the modes are further normalized by power, then the modes satisfy

∫ ∫
A

Em ×Hn = δmn (2.23)

where δmn is Kronecker delta.

2.5 Numerical Results and Validation of Mode Solvers

Consider a symmetric one dimensional computation model shown in Figure 2.3. The pa-

rameters used in the simulation are listed in Table 2.1.

It is noted that while the parameters of waveguide itself is fixed once the computation

model is selected, the choice of parameters for PML, i.e. the PML thickness and reflection

14
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Cladding 1 Core Cladding 2PML PMLPRB PRB

Figure 2.3: Illustration of a semmetric slab waveguide computation model

coefficient, is flexible, as long as the reflection back from PRB is negligible. The effect of

different PML parameters to results will be discussed in details later in this section.

The numerical output for TE modes are shown below. Figure 2.4 reveals distributions of

effective indices of first 100 modes. As it shows, the effective indices of guided modes

are not effected as pure real numbers, while effective indices of the radiation modes are

discretized and scattering in fourth quadrant of complex plane. It is noted that real part

of the complex refractive index could be smaller than 1. This does not mean that the light

speed will be larger than c since the imaginary part is significant. This behavior is like the

situation when light propagating in the metal. Figure 2.5 plots profiles (actually amplitude

of Ey) of first 3 guided modes, and Figure 2.6 profiles of 3 complex modes. It is clear that

for lower order modes, the energy is concentrated mainly in core layers, while for higher

order modes, the energy is more evenly distributed in core layers, claddings layers as well

as PML layers. It is also noted that for much higher order layers, most energy leaks to

PML layers, but the waves decay dramatically as propagating into PML layers, becoming

effectively zero at the end of the PML layers, i.e. PRB. Profiles of the complex modes show

clearly the purpose of PML layers and justify the effectiveness of them. Orthogonality of
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Figure 2.4: Effective indices of TE modes

modes are visualized in Figure 2.7.

Similar results apply for TM modes.

In order to validate the PML framework, a few routines could be adopted in the calculation

process.

Firstly, the step size of grid could be varied to reveal whether the numerical computation

process itself is stable and convergent. Figure 2.8, Figure 2.9 and Figure 2.10 show how

effective indices of guided modes and complex modes changes with regard of step size of

computation grid. As the step size decreases, i.e., the mesh size increases, the numerical

results stabilizes and converges.

Same verification routines could be applied to TM modes.

Secondly, parameters of the PML layers might be changed to reveal how close the models
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with PML layerswhen compared to real world structures. The thickness, dPML, and reflec-

tion coefficient, RPML, are two key parameters to PML layers. Due to the approaches of

numerical implementation, only RPML are manipulated. Figure 2.11 shows how effective

indices of modes are affected by reflection coefficient of PML layer. The effective indices

of guided modes remains un-effected regardless of PML parameters, while the effective

indices of complex modes are highly sensitive. When RPML equals to 1, the computation

model is actually PRB models. The effective indices of guided modes locates on x-axes

while radiation modes are discretized and are pure imaginary complex numbers. With

these settings, the computation model is most away from real world structure. As RPML

decreases, the computation model get closer to real world structure. The complex modes

shift to right part of the plane and start to split. More branches emerges asRPML becomes

smaller. One notable fact is that one of the branches stabilizes when RPML becomes sig-

nificant small. This specific branch is called the quasi-leaky branch. So far the modes

are divided into three categories, the guided modes, the quasi-leaky modes and the PML

modes. Guided modes and quasi-leaky modes are internally supported by the structure

itself, thus remains un-affected with parameters of PML layers, as shown in Figure 2.12

and Figure 2.13. While for PML modes, energy of the waves mostly resides in PML lay-

ers, thus highly sensitive to changes of PML parameters, as shown in Figure 2.14, Figure

2.15 and Figure 2.16. The choice of PML parameters is empirical. When the reflection

coefficient relatively large (close to 1), which means large portion of the waves will be

reflected back to cladding layer, the computation model is most divergent from real word

structure. While when the reflection coefficient is relatively small (close to 0), the floating-

point truncation error will be significant, causing problem in convergence processes.

Similar results applies to TM case.
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Figure 2.12: Effective index of guided modes vs. RPML (TE)
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Figure 2.13: Profiles of guided modes vs. RPML (TE)
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Figure 2.14: Effective index of complex modes (real part) vs RPML (TE)
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Figure 2.15: Effective index of complex modes (imaginary part) vs RPML (TE)
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Figure 2.16: Profiles of complex modes vs RPML (TE)
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2.6 Weighted Optical Path Distance

Problem arises when dealing with asymmetric waveguide structures. The Berenger modes

will split into two branches, namely S-Berenger modes (Substrate-Berenger modes) and

C-Berenger modes (Cladding-Berenger modes), which have different phase angles. These

high order modes cause convergence problem in mode matching since the integral over-

lap between these modes and guided modes are usually small which makes the coefficient

matrix becomes singular. The phase angles of Berenger modes are highly depend on pa-

rameters of structures and PMLs. Thus adjustments could be made to avoid the splitting of

Berenger Modes [9]. This method could help to reduce numerical fluctuations and speed

up convergence process in Mode Matching Method.

Suppose neff,n is the effective index of m-th Berenger mode, and neff = |neff |e−jθn ,

where θ is the phase angle. For high order Berenger mode, there is approximation,

lim
n→∞

neff,n = ∞

lim
n→∞

θn = θ0

(2.24)

where 0 < θ0 <
π
2
. The phase angles for S-Berenger mode and C-Berenger mode are

approximated by [10]

tan θs,c0 = −2k0
ϕs,c

lnRPML,(s,c)

(2.25)

in whichϕ =
∫
nxdx is the optical path distance in substrate or cladding with PML layers.
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Parameter Value

refractive index of Si 3.47

refractive index of SiO2 1.44

refractive index of Ge 4.1

core thickness 0.22 µm

cladding thickness 0.5 µm

working wavelength λ 1.55 µm

PML thickness dPML 2.0 µm

Table 2.2: Parameters used in photon-detector simulation

It is clear that the phase angles of the Berenger modes are affected by two factors, that is,

the reflection coefficient of PML layers RPML and the optical path distance ϕ. Thus the

PML reflection coefficient could be adjusted according to the the optical path distance to

ensure same phase angles in S-Berenger modes and C-Berenger modes.

To demonstrate the effectiveness of the weighted optical path distance technique, we sim-

ulated a photon-detector structure, as shown in upper right corner of Figure 2.17. TE light

is launched from silicon slab waveguide into a Germanium photodetector. The parameters

used in the simulation are listed in Table 2.2.

In case of Unadjusted Optical Path Distance (conventional approach, referred as UOPD

below), the PML reflection coefficients are set to 5× 10−3 in both substrate and cladding

side. For Weighted Optical Path Distance (referred as WOPD below), the reflection coeffi-

cient in cladding side is set to 5× 10−3, while the reflection coefficient in substrate side is

adjusted to 2.8× 10−7 to ensure same phase angle in S-Berenger modes and C-Berenger

modes.
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Figure 2.17: Comparision of convergence speed in Mode Matching Method between Un-

adjusted Optical Wave Path (UOPD) and Weighted Optical Wave Path (WOPD)

As shown in Figure 2.18 UOPD S-Berenger modes and C-Berenger modes are splitting

with different angles, while in case of WOPD, they share the same asymptote angle. Also

shown in in the figure are the mode profiles of 81-th and 82-th modes. In case of UOPD,

most energy is concentrated in cladding side, making the mode profiles much smaller in

the other side, which results in more errors in numerical computation. While the energy

in WOPD is more evenly distributed.

Figure 2.17 compares the convergence speed in Mode Matching Method between Unad-

justed Optical Wave Path (UOPD) and Weighted Optical Wave Path (WOPD). The y-axis

is relative field matching error on the interface. It is clear that the results from WOPD

suffer less fluctuations and converge more quickly.
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Figure 2.18: Comparision of phase angle (a, b) and mode profiles (Ey) (c, d) between Un-

adjusted Optical Wave Path (UOPD) and Weighted Optical Wave Path (WOPD)

2.7 Summary

In this chapter, the governing equations for source-free waveguide are derived and ex-

plained. Scalar approximation are made to simplify simulation. Numerical simulations

based on Finite-Difference Method are explained and higher order schemes are touched

in brevity. As with other numerical simulations, the boundary condition must be chosen

carefully to ensure validation of the simulation. Specially for the simulation of waveg-

uides, the Perfect Matched Layers are used to inhibit wave reflections from boundaries.

Thanks to the nature of numerical computation, the radiation modes are discretized such

that the integration of continuous radiation modes are avoided and the complex modes

could be dealt the same way as guided modes. Later on, results of an example slab waveg-

uides are presented and analyzed. To justify the validation of computation model, a few
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computation parameters are altered to show the robustness and convergence of the nu-

merical results. A simple technique, i.e., adjusting PML reflection coefficient according

to Weighted Optical Path Distance, is proposed to ensure same phase angles in Berenger

modes. These works laid solid foundations for computation and analysis of more complex

waveguide structures.

Though the FD method is widely used, it is far from perfect. In practice, higher order FD

schemes, which means much more complex formulas, shall be adopted to achieve more

precise results. The FD approach turns the problem of mode finding into eigenvalue solv-

ing problem, but most eigenvalue solvers implemented in modern software systems is im-

plemented with convergence process as termination condition, which is time consuming

and un-efficient. The computation complexity soars up and the computation time quickly

becomes intolerable when computation dimension becomes larger, which becomes the

main bottleneck of the FD methods.
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Chapter 3

Improved Mode Matching Method

Mode Matching Method (MMM), also known as Bidirectional Eigenmode Propagation

(BEP) or Eigenmode Expansion (EME), is an efficient and rigorous approach to simulate

electromagnetic propagation within waveguides, especially with discontinuities along

propagation direction. In MMM, the electromagnetic fields are decompose into a basis

set of local eigenmodes, which is found by solving Maxwell equations in each cross sec-

tion. By applying interface condition at discontinuities, both sides are related using a

transfer/scatter matrix. The entire waveguide properties are calculated by cascading the

transfer/scatter matrices. With the introduction of PML framework, complexmodes could

be treated the same way as guided modes, thus making Complex Mode Matching Method.
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3.1 Conventional Mode Matching Method

Considering a wave propagating through an interface locating at z = 0, part of the wave

will be reflected back into z < 0 region and part into z > 0 region. Given set of eigen-

modes for z < 0 region (denoted as A), which consists ofN modes, and set of eigenmodes

for z > 0 region (denoted as B), which consists ofM modes, then the forward transmis-

sion wave and backward reflection wave could be expressed as

EA
t =

N∑
n=1

(
a+n e

−jβnz + a−n e
+jβnz

)
eAtn

HA
t =

N∑
n=1

(
a+n e

−jβnz − a−n e
+jβnz

)
hA
tn

EB
t =

M∑
m=1

(
b+me

−jβmz + b−me
+jβmz

)
eBtm

HB
t =

M∑
m=1

(
b+me

−jβmz − b−me
+jβmz

)
hB
tm

(3.1)

where EA
t denotes transverse electric fields, with eAtn transverse electric fields of n-th

eigenmode within waveguide A, a+ and a− are amplitudes of forward and backward

waves. The same naming conventions applies on magnetic fields as well as waveguide

B.

The interface conditions require continuities of tangential components of electric and

magnetic files at interfaces, i.e., z = 0
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N∑
n=1

(a+n + a−n )e
A
tn =

M∑
m=1

(b+m + b−m)e
B
tm

N∑
n=1

(a+n − a−n )h
A
tn =

M∑
m=1

(b+m − b−m)h
B
tm

(3.2)

Define inner product of field vectors as

〈e |h〉 ≡ 1

2

∫ ∫ (
e× h

)
· ẑds (3.3)

By taking inner product of Equation 3.2 with hB
tm and eBtm, respectively, and utilizing or-

thogonal properties of eigenmode set, the modal amplitudes b+m and b−m could be obtained

as expressions of a+n and a−n ,

b+m =
N∑

n=1

a+n
(〈eAtn ∣∣hB

tm

〉
+
〈
eBtm

∣∣hA
tn

〉
2 〈eBtm |hB

tm〉
)
+

N∑
n=1

a−n
(〈eAtn ∣∣hB

tm

〉
−

〈
eBtm

∣∣hA
tn

〉
2 〈eBtm |hB

tm〉
)

b−n =
N∑

n=1

a+n
(〈eAtn ∣∣hB

tm

〉
−
〈
eBtm

∣∣hA
tn

〉
2 〈eBtm |hB

tm〉
)
+

N∑
n=1

a−n
(〈eAtn ∣∣hB

tm

〉
+
〈
eBtm

∣∣hA
tn

〉
2 〈eBtm |hB

tm〉
) (3.4)

Written in Matrix form,

B+

B−

 =

T++ T+−

T−+ T−−


A+

A−

 = T

A+

A−

 (3.5)

where
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T±±(m,n) =

〈
eAtn

∣∣hB
tm

〉
+
〈
eBtm

∣∣hA
tn

〉
2 〈eBtm |hB

tm〉

T±∓(m,n) =

〈
eAtn,hB

tm

〉
−

〈
eBtm

∣∣hA
tn

〉
2 〈eBtm |hB

tm〉

(3.6)

and

T =

T++ T+−

T−+ T−−

 (3.7)

is known as T-matrix (Transfer Matrix).

Alternatively, a−n and b+m can be obtained as expressions of a+n and b−m,

A−

B+

 =

RAB TBA

TAB RBA


A+

B−

 = S

A+

B−

 (3.8)

which is known as S-matrix (Scatter Matrix).

The S-matrix and T-matrix are related as

RAB = −T−1
−−T−+

TBA = T−1
−−

TAB = T++ − T+−T−1
−−T−+

RBA = T+−T−1
−−

(3.9)
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Figure 3.1: Cascade of S-matrix

For structures with multiple discontinuities, the global transfer matrix could be easily

obtained by cascading every T-matrix,

T = Pn · Tn,n−1 · Pn−1 · · ·P2 · T2,1 · P1 (3.10)

Where Pn is T-matrix within each individual waveguide section,

Pn =

diag(e−jβdn) 0

0 diag(e+jβdn)

 (3.11)

Things becomes slightly complicated when it comes into S-matrix since S-matrix could

not be cascaded directly. Consider examples shown in Figure 3.1,

Suppose S-matrices for individual section are ready,
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A−
1

A+
2

 =

R12 T21

T12 R21


A+

1

A−
2

 (3.12)

A−
2

A+
3

 =

R23 T32

T23 R32


A+

2

A−
3

 (3.13)

The overall S-matrix is

A−
1

A+
3

 =

R13 T31

T13 R31


A+

1

A−
3

 (3.14)

in which

R13 = R12 + T21(I− R23R21)
−1R23T12

T31 = T21(I− R23R21)
−1T32

T13 = T23(I− R21R23)
−1T12

R31 = R32 + T23(I− R21T23)
−1R21T32

(3.15)

The complexity of cascading S-matrix is necessary since cascading of T-matrix is usually

numerically unstable due to the term Pn. When section length dn is significant large, the

term Pn is close to singular, making the numerical results unreliable. While S-matrix does

not suffer from this problem since the cascading of S-matrix does not require Pn.
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Parameter Value

A side core refractive index nA1 3.6

A side core thickness dA1 0.2 µm

A side cladding refractive index nA2 3.24

A side cladding thickness dA2 1.0 µm

B side refractive index nB 3.24

working wavelength λ 0.86 µm

PML thickness dPML 1.0 µm

PML reflection coefficient RPML 10−2

mesh size 50 µm−1

Table 3.1: Parameters used in wave junction simulation

In the practice of grating simulation, there usually exists thousands of periods in the struc-

ture, making the cascading of S-matrix consuming too much computation resources. The

process could be accelerated by using a doubling algorithm or association reduction al-

gorithm. That is, firstly the transfer or scatter matrix is constructed for one unit. Then

the matrix for one unit is cascaded with itself to produce a matrix for two units. The new

matrix is used to cascade to produce matrix for four units. And so on so forth until the

overall matrix is obtained. It is obvious that the algorithm works best when period num-

ber N is exactly 2i. When it is not the case, N could always be divided into 2i part plus

an remaining part. And the calculation of remaining part could use the same approach

of division and could make use of the cached results of the larger half. It is obvious that

caching the intermediate results will further accelerate the process.

Consider a wave junction shown in Figure 3.2. Parameters are listed in Table 3.1.
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Figure 3.2: Complex Mode Matching Method computation model

Using the mode solvers implemented in the previous chapters, a set of 50 modes are ob-

tained, as shown in Figure 3.3. Assuming fundamental mode launched from left side and

no input from right side, the reflection and transmission could be calculated by solving

Equation 3.5. The results are displayed in Figure 3.4. As it shows, when the wave propa-

gate through interface, part of it transmitted and part reflected. What is more interesting

is that not only fundamental mode is involved in this process but also other low order

modes. And the higher order of the mode, the less it is involved. The fact that optical

waves interacting with each other at interfaces is the key working principle of optical

devices. Figure 3.5 shows the amplitude of electron-magnetic fields on both sides of the

interface. The main fields are almost identical on both sides, which is required by the

interface condition and implied by the name of the method.

Similar results applied to TM case.
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3.2 Improved Mode Matching Method

Traditionally the process of Mode Matching Method requires mode orthogonality and

normalization, and involves huge number of complex modes to achieve rigorous results.

The truncation error might cause underestimation of radiation and crosstalk effect. Here

an optimized approach is proposed to improve numerical accuracy and speedup conver-

gence process.

Given a complete set of modes, the electric and magnetic fields are approximated by com-

binations of eigenmodes,

Et ≈
[
et, et

]
A

Ht ≈
[
ht,ht

]
A

(3.16)
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in which et, ht are electric and magnetic components of eigenmode set and A is defined

as [a+1 , a2+, · · · , a+N , a
−
1 , a

−
2 , · · · , a−N ]. Define residual field error as

∆E = Et −
[
et, et

]
A

∆H = Ht −
[
ht,ht

]
A

(3.17)

From the perspective of energy conservation, input energy from left side should be equal

to energy output to right side. Energy could be leaked out upward or downward since for

an interface, the integral areas for upward and downward propagation waves are 0s. That

is, the choice of A should make the residual power errors minimized,

1

2

∫ ∫
S

(
∆E∗ ×∆H+∆E×∆H∗) · ẑds (3.18)

This is a least square problem [12] and the optimized expression of A is [13]

A =
{∫ ∫

S

−ht ht

et et


H

×

et et

ht ht

 · ẑdS
}−1{∫ ∫

S

−ht ht

et et


H

×

Et

Ht

 · ẑdS
}

(3.19)

Figure 3.6 a silicon-on-insulator (SOI) anti-guidedwaveguide structure, propagating along

z direction. The discontinuities appear at z = 0 and z = 1, where guided structure begins.

The parameters of the structure is listed in Table 3.2.

Fundamental mode is launched at interface z = 0, the convergence speed is compared

39



M.A.Sc. Thesis - Junfeng Li McMaster - Electrical and Computer Engineering

Parameter Value

refractive index of Si 3.47

refractive index of 1.44

thickness s 1.5 µm

thickness t 0.22 µm

thickness D 3.5 µm

working wavelength λ 0.86 µm

length L 1.0 µm

PML thickness dPML 3.0 µm

PML reflection coefficient RPML 10−2

Table 3.2: Parameters used in anti-waveguide simulation

between Conventional Mode Matching Method and Improved Mode Matching Method in

Figure 3.7. It is clear that the Improved Mode Matching Method has smaller residual field

error and converges more quickly, which means Improved ModeMatching Method would

require much less number of mode when doing mode expansion thus saves computation

resources.

3.3 Summary

In this chapter, the Mode Matching Method is derived and explained. Both T-Matrix and

S-Matrix are covered, as well as approaches to deal with structures of multiple interfaces.

An example computation model is provided to verify the validation of the method. Then,

an improved approach of Mode Matching Method is proposed to speed up convergence
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Figure 3.6: Silicon-on-insulator anti-guided waveguide

Figure 3.7: Comparison of convergence between Conventional Mode Matching Method

(CMMM) and Improved Mode Matching Method (IMMM). The IMMM speeds up conver-

gence process and provides more accurate results.
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when doing mode expansion. The numerical results show that improved formula con-

verges more quickly and provides better results.
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Chapter 4

Bending Structure Simulation

This chapter talks about the simulation of bending structures usingModeMatchingMethod.

The bending structures are widely used in multimode interference devices and power

splitters, but are difficult to investigate using analytical solutions due to the fact that high

order radiationmodes play important roles in the transmitting process. While with the in-

troduction of PML framework, ModeMatchingMethod could simulate bending structures

accurately if given complete set of modes. In this chapter, the mode solving problem in

bending structures is firstly transformed into conventional slab structures mode solving

problem, then simulation process and analysis results are presented.
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Figure 4.1: Illustration of bending structure and how to map bending structure to planar

waveguide

4.1 Complex Mode Solver for Bending Structure

Figure 4.1 shows a typical bending structure of bending radius R. The core layer of refrac-

tive indexn1 is clamped by cladding layers of refractive indexn0. PML and PRB are closing

the structure as numerical boundary conditions. The modified governing equations with

PMLs are

1

Sr

r

R

∂

∂r

1

Sr

r

R

∂

∂r
Ey + (n2k20

r2

R2
− β2)Ey = 0 (TE)

1

Sr

r

R

∂

∂r

1

Sr

r

R

∂

∂r
Hy + (n2k20

r2

R2
− β2)Hy = 0 (TM)

(4.1)
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This step-index bending structure could be mapped into a planar waveguide using confor-

mal transformation [14], shown as Figure 4.1. The coordinate and index transformation

are described as

u = R ln
r

R

neq = n(r)eu/R
(4.2)

For the PML layers, the complex coordinates are introduced as

û =

∫
Sudu (4.3)

Using the conformal and complex transformation, the governing equation Equation 4.1

becomes similar to ordinary planar waveguides,

∂2Ey

∂û2
+ (n2

eq)k
2
0 − β2)Ey = 0

∂2Hy

∂û2
+ (n2

eq)k
2
0 − β2)Hy = 0

(4.4)

Thus the previous Finite-Difference based complex modes solvers could be used with little

modification of index profiles.
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Figure 4.2: Effective indices with relatively large bending radius

4.2 Analysis of Complex Modes in Bending Structure

Abending structurewith different bending radiuses is investigated using the abovemethod.

The core refractive index is 3.24, with cladding refractive index 3.18, core thickness 3 µm,

inner cladding thickness 3 µm, outer cladding thickness 5 µm. The inner PML thickness

is 3 µm and outer PML thickness is 5 µm, with PML reflection coefficient 10−8.

Figure 4.2 and Figure 4.3 shows mode effective indices with different bending radiuses.

As the radius decreases, the Berenger modes starts splitting into two branches and more

energy leaks into cladding area. Figure 4.4, Figure 4.5, Figure 4.6 and Figure 4.7 shows

how first, second, third and fourthmode profiles affected by changes of radius. The guided

modes modes turns to leaky modes with the decrease of radius. When the radius becomes

smaller than 25 µm, all guided modes disappear and turn into leaky modes.

It is also noted from Figure 4.2 that the imaginary part of effective indices of higher order
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Figure 4.3: Effective indices with relatively small bending radius

Figure 4.4: Profile of first mode
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Figure 4.5: Profile of second mode

Figure 4.6: Profile of third Mode
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Figure 4.7: Profile of fourth mode

modes is relatively large, which means those modes suffers great loss while propagat-

ing along z direction. However, those modes are critical in analysis of bending structure

since lower order modes are lost in the bending and only higher order modes could prop-

agate along the bending direction. Figure 4.8 shows the excitation of every mode when

launching fundamental mode from left side. As it shows, high order modes become more

important in contribute energy transfer when radius becomes smaller. Figure 4.2 shows

the convergence process of residual error with different radiuses. It shows for smaller

radius, the residual error is larger and converges slowly, thus larger number of modes are

needed to ensure accurate results.

Figure 4.9 and Figure 4.10 show the transmission of a straight-bend-straight structure

when fundamental mode launched from left. For bending structures with radius of 100

µm, only two modes are needed to get accurate results. While for structures with smaller

radius, like 25 µm, more modes are needed to consider in the propagation process in order

to get accurate results.
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Figure 4.8: Transmission coefficient with fundamental mode lanched
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Figure 4.9: Bending transmission when radius is 100 µm

Figure 4.10: Bending transmission when radius is 25 µm
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4.3 Summary

In this chapter, the Mode Matching Method are used in the simulation and analysis of

bending structures. Firstly, the bending structures are transformed into planar waveg-

uides such that the conventional complex mode solvers could be applied with little mod-

ification. Secondly, bending structures with different radiuses are analyzed. The result

shows that for bending structures with smaller radiuses, high order modes play import

roles in energy transfer while propagating along the bending part. It indicates that more

leaky modes needs to be considered to get accurate results especially for bending struc-

tures with smaller radiuses.
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Chapter 5

Grating Simulation

Another commonly used method in waveguide simulation is Coupled ModeTheory [15].

It is especially suitable for analysis of gratings with weak refractive index perturbation. In

this chapter, the Complex Coupled Mode theory is provided and results will be compared

with Mode Matching Method.

5.1 Complex Coupled ModeTheroy

Basically the Coupled Mode Theory is a perturbational approach to analyze the vibra-

tional systems. The Coupled Mode Theory states that the modal coefficients satisfy a set

of differential equations, known as Coupled Mode Equations. The exact formulas and pro-

cesses of CMT would be complex, but most of the calculations are usually redundant and

thus could be greatly simplified.
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5.1.1 Coupled Mode Equations

Assume there is permittivity perturbation within the waveguide and distribution of per-

turbation along propagation direction could be described by the function

ε̃(x, y, z) = ε(x, y, z) + ∆ε(x, y, z) (5.1)

where the index perturbation ∆ε is defined as the difference between the index profiles

of the practical waveguides under investigation and the reference waveguides for which

the complete complex mode set is known.

Suppose that the difference between the perturbed and the reference waveguides is suffi-

ciently small such that we can expand the unknown transverse electromagnetic fields of

the perturbed waveguides in terms of the transverse modal fields of the reference waveg-

uides, i.e.

Et(x, y, z) =
∑
n

[an(z) + bn(z)]etn(x, y)

Ht(x, y, z) =
∑
n

[an(z)− bn(z)]htn(x, y)

Ez(x, y, z) =
∑
n

[an(z)− bn(z)]
ε

ε̃
ezn(x, y)

Hz(x, y, z) =
∑
n

[an(z) + bn(z)]hzn(x, y)

(5.2)

where etm(x, y), htm(x, y), ezm(x, y) and hzm(x, y) are the m-th mode’s profile distribu-

tion for transverse/vertical electrical/magnetic fields, with βm the propagation constant.
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Consider a source F = E×Hm−Em×H. Here only the m-th forward propagation mode

is considered. Applying the Gauss’s law to an arbitrary volume of perturbed waveguide

from z to z + ∆z and the transverse section covering all the modal distributed area ter-

minated by PML and PRB

∫ ∫ ∫
V

∇·Fdv = −
∫ ∫

A

F(z) · ẑdA+

∫ ∫
A

F(z+∆z) · ẑdA+

∫ ∫
L

F · n̂dL (5.3)

where A is the transverse section and L is the surface around parallel to the propagation

direction. As the PRB applied as boundary, where the field should be zero, the last item

at the right hand side shall be zero.

The first item at the left hand side can be further expressed as

∫ ∫ ∫
V

∇ · Fdv =

∫
z

∫ ∫
A

∇ · FdAdz (5.4)

Substitute into the previous equation and take derivative at both side,

∫ ∫
A

∇ · Fda =
∂

∂z

∫ ∫
A

F · ẑdA (5.5)

The integrand of the left hand side can be simplified as
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∇ · F = ∇ · E×Hm −∇ · Em ×H

= (∇× E) ·Hm − E · (∇×Hm)− (∇× Em) ·H+ Em · (∇×H)

= −jωµ0H ·Hm − E · jωεEm + jωµ0Hm ·H+ Em · jωε̃E

= jω(ε̃− ε)E · Em

= jω(ε̃− ε)(Et · et + Ez · ez) exp(−jβmz)

= jω(ε̃− ε)
∑
n

[
(an + bn)etn · etm +

ε

ε̃
(an − bn)ezn · ezm

]
exp(−jβmz)

= jωε0(ñ
2 − n2)

[∑
n

(etn · etm +
n2

ñ2
)an

+
∑
n

(etn · etm − n2

ñ2
ezn · ezm)bn

]
exp(−jβmz)

(5.6)

Define the forward and backward coupling coefficients

κmn =
ωε0
4

∫ ∫
A

(ñ2 − n2)(etn · etm − n2

ñ2
ezn · ezm)dA

χmn =
ωε0
4

∫ ∫
A

(ñ2 − n2)(etn · etm +
n2

ñ2
ezn · etm)dA

(5.7)

Then the left hand side will be simplified as

∫ ∫
A

∇ · FdA = 4j(
∑
n

κmnan +
∑
n

χmnbn) exp(−jβmz) (5.8)

For the integrand of the right hand side, do the same substitution to simplify it
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F · ẑ = (E×Hm − Em ×H) · ẑ

= (Et ×Htm − Etm ×Ht) · ẑ

=
∑
n

[(an + bn)etn × htm · ẑ − (an − bn)etm × htn · ẑ] exp(−jβmz)

= 2
∑
n

bnetn × htm · ẑ exp(−jβmz)

(5.9)

Consider the complex modes’ orthogonality and normalization,

∫ ∫
A

etm × htn · ẑdA = 2Nmδmn (5.10)

where δmn is the Kronecker’s delta. Thus the right hand side could be rewritten as

∂

∂

∫ ∫
A

F · ẑdA = 4Nm
∂

∂z
bm exp(−jβmz)

= 4Nm(−jβmbm +
∂bm
∂z

) exp(−jβmz)
(5.11)

So the coupling equation for the m-th backward propagation mode is obtained as

Nm(
∂bm
∂z

− jβmbm) = j
∑
n

χmnan + j
∑
n

κmnbn (5.12)

Similarly, consider source as F = E×H−m − E−m ×H. Follow the same procedure, the

other coupling equation is
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Nm(
∂am
∂z

+ jβmam) = −j
∑
n

κmnan − j
∑
n

χmnbn (5.13)

5.1.2 Simplified Coupled Mode Equations

The general form of the Complex Coupled Mode Equations are

Nm

(∂am
∂z

+ jβmam
)
= −j

∑
n

κmnan − j
∑
n

χmnbn

Nm

(∂bm
∂z

− jβmbm
)
= j

∑
n

κmnbn + j
∑
n

χmnan

(5.14)

which is a matrix of N × N differential equations. In practice, usually the coupling be-

tween a few specific modes is significant, thus most of the equations could be reduced. In

the case of gratings, due to the periodic nature, the equations could be simplified further.

To extract envelop from the fast varying components, let

an = An exp(−jβnz)

bn = Bn exp(+jβnz)
(5.15)

The coupling equations shall be rewritten with An and Bn as

Nm
∂Am

∂z
= −j

∑
n

κmnAn exp[−j(βn − βm)z]− j
∑
n

χmnBn exp[j(κn + κm)z] (5.16)
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In the case of grating, the refractive indices of the core layer are modulated according to

a period function, which lead to the period changes of the coupling coefficients.

κmn =
+∞∑

l=−∞

Dl
mn exp(jl

2π

Λ
z)

χmn =
+∞∑

l=−∞

C l
mn exp(jl

2π

Λ
z)

(5.17)

where Λ is the period of the grating.

Then the coupling equations could be written as

Nm
∂Am

∂z
= −j

∑
n

An

∑
l

Dl
mn exp[−j(βn − βm − l

2π

Λ
)z] (5.18)

Firstly, consider only the largest Fourier expansion terms, that is, l = −1, 0, 1, or the

1st-order grating effect and ignore all other higher-order harmonics. Secondly, ignore the

coupling among cladding modes, including cladding-mode self-scattering. Thirdly, the

usual synchronous approximation is employed. We neglect all driving terms on the right

hand sides that oscillate too rapidly to contribute significantly to the change of the mode

amplitudes on the left hand sides and keep only those terms that either do not oscillate at

all or oscillate at a very small rate. Then the coupling equations between the fundamental

mode and the cladding modes are simplified to
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N1
∂A1

∂z
= −jA1D

0
11 −

∑
n

jAnD
−1
1n exp[j(β1 − βn −

2π

Λ
)z]

Nn
∂An

∂z
= −jA1D

1
n1 exp[−j(β1 − βn −

2π

Λ
)z]

(5.19)

which describes co-propagating interactions in a long-period grating.

Let

A1 = Ã1 exp(−j
D0

11

N1

) (5.20)

Substitute A1 with Ã1 and rewrite Ã1 as A1, finally the simplified complex coupled mode

equations are obtained as

N1
∂A1

∂z
=

∑
n

−jAnD
−1
1n exp[j(β1 − βn −

2π

Λ
+
D0

11

N1

]

Nn
∂An

∂n
= −jA1D

1
n1 exp[−j(β1 − βn −

2π

Λ
+
D0

11

N1

]

(5.21)

In a over-simplified situation that only one mode interacts with fundamental mode sig-

nificantly and other couplings are neglected, this specific mode satisfies

β1 − βn −
2π

Λ
= 0 (5.22)

which is also known as the Bragg condition.

Similar equations could be obtained for contra-propagating gratings.
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Parameter Value

core refractive index 1.458

core thickness 5.25 µm

cladding refractive index 1.45

cladding thickness 59.875 µm

air thickness 10 µm

grating index perturbation ∆n 1× 10−4

grating period 269.4145× 10−6µm

grating length 25 mm

working wavelength λ 1.85 µm

PML thickness dPML 50 µm

PML reflection coefficient RPML 10−2

Table 5.1: Parameters used in simulation of long-period grating

5.2 Grating Simulation using Coupled ModeTheory

5.2.1 Long-Period Grating

Consider a long-period grating shown in Figure 5.1. The parameters used in simulation is

shown in Table 5.1 [16].

Figure 5.2 shows the coupling coefficients of fundamental mode with every other modes.

Large coupling coefficients means strong interaction and significant energy transfer with

fundamental mode. The first peak appears at 21, indicating the 21-th mode plays most sig-

nificant role in coupling and the refractive index 21-th mode satisfy the Bragg condition.
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Figure 5.2: Coupling Coefficients

62



M.A.Sc. Thesis - Junfeng Li McMaster - Electrical and Computer Engineering

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1

x 10
−6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

wave le ngth (m )

T
r
a
n
sm

is
si
o
n

(d
B
)

Tran sm ission Sp e c trum

Figure 5.3: Transmission spectrum

The transmission spectrum in Figure 5.3 verifies the statement. The other two smaller

peaks in spectrum corresponding to the other two peaks in coupling coefficients.

5.2.2 Long-Period Grating with Deposited Region

Figure 5.4 shows a long-period grating with deposited region. The parameters of the

structure is listed in Table 5.2.

The refractive index of overlay layers is larger than even core refractive index, thus more

energy will be concentrated within the overlay layers, thus made the structure highly de-

pend on the overlay parameters. Figure 5.5 and Figure 5.6 show how the effective indices

affected by the overlay thickness. The effective indices shift to the lower order mode’s

value with the increase of overlay thickness.
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Parameter Value

core refractive index 1.47

core thickness 8.3 µm

cladding refractive index 1.4647

cladding thickness 58.35 µm

overlay refractive index 1.62 + 0.004i

overlay thickness 0.23

air thickness 10 µm

grating index perturbation ∆n 2.85× 10−4

grating period 245.36× 10−6µm

grating length 20 mm

working wavelength λ 1.2 µm

PML thickness dPML 50 µm

PML reflection coefficient RPML 10−2

Table 5.2: Parameters used in simulation of grating with deposited region

nl nh

cladding

cladding

deposited regionair

Figure 5.4: Long-period grating with a deposited region
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Figure 5.7: Transmission spectrum vs overlay thickness
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Figure 5.7 shows the transmission spectrumwith different overlay thicknesses, and Figure

5.8 shows the spectrum with different overlay refractive indices. It is clear that small

changes of parameters of the overlay layer will greatly changes the transmission spectrum

of the grating.

5.3 Grating Simulation using Mode Matching Method

Mode Matching Method could be used in grating simulations as well. The overall transfer

matrix or scattermatrix could be obtained by cascade individual matrix. Since gratings are

periodic structures, the algorithm of reduction could be used to accelerate computation

and reduce numerical truncation error.

More over, the Mode Matching Method has a few advantages over Coupled ModeTheory.

Firstly, the CMT can only generate accurate results for gratings with weak index corru-

gation. While MMM also lost precision for strong index perturbation, it usually provides

better numerical results. Secondly, MMM could be used to analyze higher order grat-

ings without modifications. In this section, MMM will be applied to simulate a typical

long-period grating, a second-order grating and a strong index corrugation grating.

5.3.1 Long-Period Grating

Figure 5.9 shows a typical long-period grating. The parameters used in simulation are

listed below
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Figure 5.9: Typical long-period graing

Parameter Value

core refractive index nco 1.458

core thickness dco 5 µm

cladding refractive index ncl 1.45

cladding thickness dcl 5 µm

working wavelength λ 1.55 µm

PML thickness dPML 10 µm

PML reflection coefficient RPML 10−5

grating index perturbation ∆n 0.001

grating duty cycle 0.5

grating period Λ 0.5326 µm

grating number of periods 210

The reflection and transmission grating of the grating is shown in Figure 5.10. The results

are similar to Coupled Mode Theory.

The spectrum of second-order grating could be could also be easily obtained by changing

grating period Λ to 1.0652µm and grating number of periods to 215. The results is shown

in Figure 5.11.
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Figure 5.10: Reflection and transmission spectrum of first-order grating
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Figure 5.11: Reflection and transmission spectrum of first-order grating
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Figure 5.12: Grating with strong corrugation
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Figure 5.13: Reflection and transmission spectrum of a strong corrugation grating

5.3.2 Long-Period Grating with Strong Corrugation

Figure 5.12 shows a grating with strong index corrugation and small number of periods.

Figure 5.3 lists of parameters used in the simulation [20],

Figure 5.13 shows the reflection and transmission spectrum of the grating.
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Parameter Value

core refractive index nco 1.97916

core thickness dco 0.5 µm

air thickness dair 3 µm

substrate refractive index nss 1.44409

substrate thickness 3 µm

working wavelength λ 1.48 µm

PML thickness dPML 9 µm

PML reflection coefficient RPML 10−4

grating corrugate depth ∆h 0.125

grating duty cycle 0.5

grating period Λ 0.43 µm

grating number of periods 20

Table 5.3: Parameters used in simulation of grating with strong corrugation
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5.4 Summary

In this chapter, the Coupled Mode Equations are derived and explained. In the case of

gratings, simplified equations are obtained. Comparison and discussion aremade between

CoupledModeTheory andModeMatchingMethod. Several typical gratings are simulated

and analyzed using both methods.
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Chapter 6

Conclusion

This thesis covers various topics of waveguide simulation using Mode Matching Method

as well as Coupled Mode Theory. The Finite-Difference Method based mode solvers are

presented and higher order difference schemes are briefly touched. Pros and Cons of

the method are discussed. The Finite-Difference based complex mode solvers are then

improved with regarding to asymmetric structures by method of Weighted Optical Path

Distance. Numerical results shows that the techniquewill reduce fluctuationmodematch-

ing process. Conventional Complex Mode Matching Method is presented and the match-

ing formulas are improved though matrix optimization. The simulation process proved

that the IMMM will accelerate convergence process and provides more accurate results.

Then several typical waveguide structures are investigated and analyzed, including bend-

ing structures, straight-bending-straight structures, long-period gratings, gratings with

deposited layers and gratings with strong index corrugations. It is concluded that the

above optimization could help reduce fluctuations and speed up convergence of the mode
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matching process. It is also concluded that high order complex modes play crucial roles

in the process of energy transfer within waveguides that have strong radiation effects.

As the time is limited, the topics are not fully covered andmanymore interesting issues are

yet to be investigated. Of which the comparison of results from MMM and CMT could

be made and discussed. Also intriguing is analysis of out-of-plane losses in structures

with prominent radiation effect, as well as analysis and discussion of higher-order grating

structures.
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