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Abstract

This dissertation concentrates on the problem of synthesizing fault-tolerant compo-

nents from specifications, i.e., the problem of automatically constructing a fault-

tolerant component implementation from a logical specification of the component,

and the system’s required level of fault-tolerance. In our approach, the logical speci-

fication of the component is given in dCTL-, a fragment of a branching time temporal

logic with deontic operators, especially designed for fault-tolerant component speci-

fication. Deontic logics have proved to be useful for reasoning about legal and moral

systems, where the situation is more or less similar to fault-tolerance: there exists

a set of rules that states what the normal behaviours or scenarios are. Violations

arise when these rules are not followed and, as a consequence, some actions must be

performed to return to a normal or desirable state.

As a black-box overview, our synthesis algorithm takes the component specifica-

tion and a user-defined level of fault-tolerance (masking, nonmasking, or failsafe),

and automatically determines whether a component with the required fault-tolerance

is realizable. Moreover, if the answer is positive, then the algorithm produces such

a fault-tolerant implementation. Our technique for synthesis is based on the use

of (bi)simulation algorithms for capturing different fault-tolerance classes, and the

extension of a synthesis algorithm for CTL to cope with dCTL- specifications.

Some case studies are provided throughout this thesis to illustrate how the ideas

described below can be applied in practice. Moreover, we have implemented a tool

called dCTL Synthesizer (syntdctl) which was used to synthesize automatically well-

known fault-tolerant examples.
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and sisters Romina, Cintia, and Sofi, for all their support and love.

Saving the best for last: Flor, thank you so much for everything, your support,

your love, your patience, everything. Without her this PhD would not have been

v



possible.

vi



Contents

Abstract iv

Acknowledgements v

Declaration of Academic Achievement xiii

1 Introduction 1

1.1 Fault-Tolerant Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Faults, Errors, and Failures . . . . . . . . . . . . . . . . . . . 5

1.1.2 Levels of Fault-Tolerance . . . . . . . . . . . . . . . . . . . . . 6

1.1.3 Approaches to Dependability . . . . . . . . . . . . . . . . . . 7

1.1.4 Fault-Tolerance Techniques . . . . . . . . . . . . . . . . . . . 8

Hardware fault-tolerance techniques . . . . . . . . . . . . . . . 8

Software fault-tolerance techniques . . . . . . . . . . . . . . . 10

1.2 Formal Methods and Fault-Tolerance . . . . . . . . . . . . . . . . . . 12

1.3 Deontic Formalisms and Fault-Tolerance . . . . . . . . . . . . . . . . 17

1.4 Automated Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.1 Program Synthesis in Closed Systems . . . . . . . . . . . . . . 20

1.4.2 Program Synthesis in Open Systems . . . . . . . . . . . . . . 21

1.4.3 Automated Synthesis of Fault-Tolerance . . . . . . . . . . . . 23

1.5 Aim of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.6 Outline of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Preliminary Concepts 29

2.1 Kripke Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.1 Colored Kripke Structures . . . . . . . . . . . . . . . . . . . . 30

vii



2.2 Temporal Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.1 Linear Time-Temporal Logic . . . . . . . . . . . . . . . . . . . 31

2.2.2 Branching Time Logic . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Deontic Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.1 dCTL: A branching time temporal logic with deontic operators 35

2.4 Model of Computation . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Bisimulation and Fault-Tolerance 42

3.1 Masking Fault-Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Nonmasking Fault-tolerance . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Failsafe Fault-tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Some Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 Checking Fault-Tolerance Properties . . . . . . . . . . . . . . . . . . 60

3.5.1 Computing Masking Fault-Tolerance . . . . . . . . . . . . . . 61

3.5.2 Computing Nonmasking Fault-Tolerance . . . . . . . . . . . . 64

3.5.3 Computing Failsafe Fault-Tolerance . . . . . . . . . . . . . . . 67

3.6 Some Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6.1 The Muller C-element . . . . . . . . . . . . . . . . . . . . . . 70

3.6.2 The Byzantine Generals Problem . . . . . . . . . . . . . . . . 72

3.6.3 Altitude Switch (ASW) . . . . . . . . . . . . . . . . . . . . . . 75

3.6.4 A Simple Train System . . . . . . . . . . . . . . . . . . . . . . 77

4 The Synthesis Approach 80

4.1 The Synthesis Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 The dCTL- Decision Procedure . . . . . . . . . . . . . . . . . . . . . 82

4.2.1 Building the initial AND/OR graph . . . . . . . . . . . . . . . 84

4.2.2 Successors of OR-nodes . . . . . . . . . . . . . . . . . . . . . . 84

4.2.3 Successors of AND-nodes . . . . . . . . . . . . . . . . . . . . . 87

4.2.4 Pruning Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3 Injection of Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4 The Synthesis Method . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4.1 Synthesis Algorithm for Masking Fault-Tolerance . . . . . . . 97

4.4.2 Synthesis Algorithm for Nonmasking Fault-Tolerance . . . . . 102

4.4.3 Synthesis Algorithm for Failsafe Fault-Tolerance . . . . . . . . 102

viii



4.5 Extraction of the Model from the Tableau . . . . . . . . . . . . . . . 105

4.5.1 Construction of fragments . . . . . . . . . . . . . . . . . . . . 105

4.5.2 Construction of the model . . . . . . . . . . . . . . . . . . . . 107

4.6 Complexity of the Synthesis Method . . . . . . . . . . . . . . . . . . 107

5 Case Studies 110

5.1 A Memory Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2 Byzantine Agreement . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3 N-Modular-Redundancy (NMR) . . . . . . . . . . . . . . . . . . . . . 119

5.4 Token Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.5 The Muller C-element with a majority circuit . . . . . . . . . . . . . 125

5.6 Altitude Switch (ASW) . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.7 A Simple Train System . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.8 Description of the syntdctl tool . . . . . . . . . . . . . . . . . . . . . 135

5.8.1 Tool Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 135

6 Concluding Remarks 138

6.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

ix



List of Tables

5.1 Experimental results. . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

x



List of Figures

2.1 A simple colored Kripke structure. . . . . . . . . . . . . . . . . . . . 38

2.2 A simple program “Never 7”. . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Never 7 program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Two masking fault-tolerance colored Kripke structures. . . . . . . . . 46

3.2 Two nonmasking fault-tolerance colored Kripke structures. . . . . . . 52

3.3 Two failsafe fault-tolerant colored Kripke structures. . . . . . . . . . 57

3.4 Counterexample for reflexivity. . . . . . . . . . . . . . . . . . . . . . . 58

3.5 The Muller C-element program with majority voting (fault-intolerant

version). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.6 The Muller C-element fault-tolerant program with majority. . . . . . 71

3.7 A nonmasking fault-tolerance for the Muller C-element with a majority

circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.8 A masking fault-tolerance for the Byzantine generals problem. . . . . 74

3.9 A nonmasking fault-tolerance for the Altitude Switch Controller. . . . 76

3.10 A failsafe fault-tolerance for a Simple Train System. . . . . . . . . . . 78

4.1 Expansion of an OR-node d with L(d) = {O(φ U ψ)}. . . . . . . . . . 86

4.2 Expansion of an OR-node d with L(d) = {EG p}. . . . . . . . . . . . 86

4.3 Tiles of an AND-node. . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4 A part of a faulty tableau. . . . . . . . . . . . . . . . . . . . . . . . . 92

5.1 Partial tableau for a Memory Cell. . . . . . . . . . . . . . . . . . . . 113

5.2 Part of the fault-tolerant program extracted from the structure in Fig-

ure 5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3 Fault-tolerant model synthesized for the Byzantine agreement problem. 118

5.4 Part of the fault-tolerant program synthesized for the 5MR. . . . . . 121

5.5 Part of the fault-tolerant program synthesized for the token ring. . . . 124

xi



5.6 Part of the nonmasking fault-tolerant program synthesized for the

Muller C-element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.7 Part of the masking fault-tolerant program synthesized for the Muller

C-element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.8 Part of the nonmasking fault-tolerant program synthesized for the

ASW controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.9 Part of the failsafe fault-tolerant program synthesized for the train

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.10 The Arquitecture of syntdctl. . . . . . . . . . . . . . . . . . . . . . . . 136

xii



Declaration of Academic

Achievement

Ramiro Demasi, Pablo F. Castro, T.S.E. Maibaum, and Nazareno Aguirre (2013a).

Characterizing Fault-Tolerant Systems by Means of Simulation Relations. In E. B.

Johnsen and L. Petre (Eds.), Integrated Formal Methods, 10th International Confer-

ence, IFM 2013, Volume 7940 of Lecture Notes in Computer Science, pp. 426-440,

2013. Springer.

Ramiro Demasi, Pablo F. Castro, T.S.E. Maibaum, and Nazareno Aguirre (2013b).

Synthesizing Masking Fault-Tolerant Systems from Deontic Specifications. In D. V.

Hung and M. Ogawa (Eds.), Automated Technology for Verification and Analysis,

11th International Symposium, ATVA 2013, Volume 8172 of Lecture Notes in Com-

puter Science, pp. 163-177, 2013. Springer.

Ramiro Demasi (2013). Synthesizing Fault-Tolerant Programs from Deontic Logic

Specifications. In 28th IEEE/ACM International Conference on Automated Software

Engineering - Doctoral Symposium, ASE 2013, pp. 750-753, 2013. IEEE.

Ramiro Demasi, Pablo F. Castro, T. S. E. Maibaum, and Nazareno Aguirre (2014).

Simulation Relations for Fault-Tolerance. Submitted for journal publication.

The results described in this dissertation have been submitted for publication in

conferences. So far, three papers [Demasi et al., 2013a], [Demasi et al., 2013b], and

[Demasi, 2013] have been accepted. Additionally, [Demasi et al., 2014] has been sub-

mitted to a journal. Each of these papers is co-authored and I am the lead author

xiii



for each. Overall, I conceived of each paper with my supervisors (Dr. Tom Maibaum

and Dr. Pablo Castro) and Dr. Nazareno Aguirre (my Licentiate’s supervisor from
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Chapter 1

Introduction

The increasing demand for highly dependable and constantly available systems has

focused attention on providing strong guarantees for software robustness, understood

as the ability of software to continue operating in an acceptable way despite erroneous

behavior during its execution or the existence of an uncooperative environment; this

is particularly true for safety-critical systems. Some examples of such safety-critical

systems include software for medical devices and software controllers in the avionics

and automotive industries. Unfortunately, there are many examples of safety-critical

systems which, due to software systems malfunctioning, ended up being big catas-

trophic failures, such as the Ariane 5, the radiation therapy machine Therac-25, and

the Denver Airport baggage handling system. These and many other examples of

catastrophic failures are described in [Peterson, 1996]. On June 4, 1996 the Ariane

5 rocket, launched by the European Space Agency, exploded just forty seconds after

initiation of the flight sequence, due to a software problem. Specifically, a component

raised an operand error exception while converting a 64-bit floating point number to

a 16-bit integer, where no specific exception handler was defined; then, the uncaught

exception caused the termination of the system and consequently, an estimated loss

of $500 million. The Therac-25 radiation-treatment machine for cancer treatment

injured and even killed several patients (six accidents between 1985 and 1987) by

administering massive radiation overdoses. Denver Airport planned to automate the

handling of luggage through the entire airport, using software controlled conveyor

belts; the system never worked well; bugs delayed the airport’s opening for months.

After 10 years of repetitive failures, it has been abandoned, and consequently more
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than $15 millions were wasted. In general, the causes of these and other failures in

safety-critical systems is due to different factors, such as poor management of require-

ments, inconsistency between the different construction phases, like requirements and

implementation phases, limited or no use of verification and validation techniques,

etc. As we observe, safety-critical systems are subject to a variety of potential fail-

ures that can corrupt or degrade their performance; so, being able to reason about

computer systems behavior in the presence of potential failures in order to provide

strong guarantees for software correctness has gained considerable attention.

The field of fault-tolerance is concerned with providing techniques that can be

used to guarantee reliability and availability of critical services as well as application

execution. This includes specific mechanisms for achieving fault-tolerance, as well as

for appropriately modeling fault-tolerant systems, and expressing and reasoning about

fault-tolerant behaviors. Some examples of traditional techniques employed to deal

with fault-tolerance are: component replication, N-version programming, exception

mechanisms, transactions, etc. All of these techniques can add confidence to safety-

critical systems about their capability for dealing with faults (standard references to

the field of fault-tolerance are [Lee and Anderson, 1990; Avizienis, 1995; Prasetya and

Swierstra, 2005; Siewiorek and Swarz, 1998; Torres-Pomales, 2000]). However, these

techniques are mainly for the implementation phase and not for the design phase.

Several approaches have been proposed to deal with fault-tolerance in formal set-

tings, with the main aim of mathematically proving that a given system effectively

tolerates faults, and thus implements reliable software. Some examples are the use of

program transformation [Kulkarni and Arora, 2000; Kulkarni and Ebnenasir, 2003,

2004; Ebnenasir et al., 2008; Bonakdarpour et al., 2012], process algebra based ap-

proaches [Janowski, 1995, 1997], specification languages (e.g., Alloy [Kang and Jack-

son, 2008], TLA+ [Lamport and Merz, 1994], and Event-B [Yadav and Butler, 2009]),

etc. Related to the last, recently some researchers (e.g., [Carmo and Jones, 1996a;

Khosla and Maibaum, 1987; Kent et al., 1991; Khosla, 1989; Lomuscio and Sergot,

2004; Fiadeiro and Maibaum, 1991]) have pointed out that deontic logic, a variation

of logic advocated for the study of norms, is useful for reasoning about fault-tolerant

systems. Deontic logics have proved to be useful for reasoning about legal and moral

systems, where the situation is more or less similar to fault-tolerance: there exists

a set of rules that states what the normal behaviours or scenarios are. Violations

2



Ph.D. Thesis - Ramiro Adrian Demasi McMaster - Computing and Software

arise when these rules are not followed and, as a consequence, some actions must be

performed to return to a normal or desirable state.

In the last three decades, automated verification (particularly model checking)

is probably the most exciting and successful advance of formal methods applied to

hardware and software development. In order to achieve automatic correctness in

system design, two different approaches have been applied: correct-by-verification

and correct-by-construction. Recently, formal approaches involving model checking,

applied to fault-tolerance, have been proposed (e.g., see [Bernardeschi et al., 2002;

Schneider et al., 1998; Yokogawa et al., 2001]). In these approaches, temporal lo-

gics are employed to capture fault-tolerance properties of reactive systems, and then

model checking algorithms are used to automatically verify that these properties hold

for a given system. Since model checking provides fully automated analysis (for

finite systems), and counterexamples are generated when a property does not hold

(which is extremely helpful in finding the source of the problem in the system), model

checking based approaches to fault-tolerance provide significant benefits over other

semi-automated or manual formal approaches. However, the languages employed for

the description of systems and system properties in model checking do not provide a

built-in way of distinguishing between normal and abnormal behaviors. Thus, when

capturing fault-tolerant systems, and expressing fault-tolerance properties, the spe-

cifier needs to encode in some suitable way the faults and their consequences. This

makes formulas longer and more difficult to understand, which has an obvious neg-

ative impact on the analysis, since the performance of model checking algorithms

depends on the length of the formula being analyzed; moreover, the counterexamples

generated are harder to follow. On the other hand, but with less emphasis, approaches

for automatically synthesizing programs, in particular fault-tolerant ones, have also

been studied [Attie et al., 2004; Bonakdarpour et al., 2012; Kulkarni and Arora, 2000;

Kulkarni and Ebnenasir, 2004].

In this thesis, we study the problem of automatically synthesizing fault-tolerant

systems from logical specifications, i.e., the problem of automatically constructing a

fault-tolerant component implementation from a logical specification of the compo-

nent, and the system’s required level of fault-tolerance. In our approach, the logical

specification of the component is given in dCTL-, a fragment of a branching time tem-

poral logic with deontic operators, especially designed for fault-tolerant component

3
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specification. As a black-box overview, our synthesis algorithm takes the compo-

nent specification and a user-defined level of fault-tolerance (masking, nonmasking,

or failsafe, see below), and automatically determines whether a component with the

required fault-tolerance level is realizable. Moreover, if the answer is positive, then

the algorithm produces such a fault-tolerant implementation. Our technique for syn-

thesis is based on the use of (bi)simulation algorithms for capturing the different

fault-tolerance classes, and the extension of a synthesis algorithm for CTL to cope

with dCTL- specifications. Some case studies are provided throughout this thesis to

illustrate how the ideas described below can be applied in practice. Moreover, we

have implemented a tool, called Synthesizer of dCTL- (syntdctl), which was used to

synthesize automatically solutions to well-known fault-tolerant examples.

1.1 Fault-Tolerant Systems

Fault-tolerance is the ability of a system to perform its function correctly even subject

to the occurrence of faults. The objective of fault-tolerance is to increase the depend-

ability of a system. Generally speaking, a fault-tolerant system is able to mitigate

the occurrence of faults in order to guarantee behaviors that will not cause critical

failures of the application. Nowadays, most safety safety-critical systems require full

fault-tolerance, i.e., the system continues operating in the presence of faults, perhaps

for a limited period, with no important loss of functionality or performance observed

by the user. In the worst case, the system fails safely, i.e., in a state that does not

cause a disaster. However, in practice, graceful degradation is an alternative approach

used in the face of faults, where the system continues to operate in the presence of

faults, accepting a partial degradation of functionality or performance during recov-

ery or repair. For example, considering the Anti-lock braking system (ABS) in a car,

if there is a situation in which a sensor is broken, then the brake should continue to

work under manual control even under the malfunction of the sensor.

According to [Chou, 1997; Torres-Pomales, 2000; Guelfi et al., 2007], software

faults are the root cause in a high percentage of operational system failures. The

consequences of these failures depend on the application and on the particular cha-

racteristics of the faults. The repercussions of these can range from minor problem

(e.g., having to restart a personal computer) to catastrophic events (e.g., software

4
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in an aircraft that prevents the pilot from recovering from an input error). In the

context of business, the consequences caused by operational failures are related to

loss of potential customers, lower sales, higher warranty repair costs, and losses due

to legal actions from the people affected by the failures.

Fault-tolerance has been extensively studied in the literature: [Avizienis et al.,

2004a] gives an exhaustive list of the basic concepts and terminology of fault-tolerance,

and [Gärtner, 1999a] formalizes the important underlying notions of fault-tolerance.

In the following subsections we explore the main concepts of fault-tolerance, as

well as different tactics to achieve dependability, and finally we give a brief description

of software and hardware fault-tolerance techniques.

1.1.1 Faults, Errors, and Failures

A computer system may be affected by events that can menace its ability to deliver

desirable and correct services. A commonly occuring cause is when engineers or devel-

opers of systems have introduced unintended defects or bugs during the construction

phase. Another common factor is related to hardware defects that may threaten the

computer system’s functionality, for example unexpected events produced in noisy

environments. These factors that can generate unexpected malfunctions in computer

systems are designated as faults. In short, a fault is either a hardware defect or a

software/programming mistake (i.e., a bug).

An error is an undesired state of a system, which is a manifestation of a fault.

Notice that, an undesired state is reached in a computer system only when the fault

has been activated ; this means that the fault itself may not cause a malfunction of

the system. For example, suppose that a fault, like a programming mistake, exists in

a certain area of the memory that is not accessed (i.e., the fault is dormant); in this

sense, there is no harm to be expected from the behavior of the system as a result of

this fault. Nevertheless, in case we access that area of memory during the execution

of the system, the fault is activated and we observe an error. Consequently, the

result obtained may be used for further computations that can affect the expected

behavior of the system, violating its specification, i.e., the required service is not

delivered. The use of the computed faulty value for further computation is referred

to as propagation. Finally, a failure is the consequence of error propagation to the

output of the computer system, i.e, there is an observable deviation of the behaviour
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of the system from what is prescribed by its specification. Therefore, the main goal of

fault-tolerance is to avoid system failure in the presence of faults. We have explained

these basic concepts following the terminology of fault-tolerance defined in [Avizienis

et al., 2004b].

1.1.2 Levels of Fault-Tolerance

A fault-tolerant system is able to cope with situations where a subset of its com-

ponents are affected by the occurrence of faults. Depending on the chosen type of

fault-tolerance, the system can deal with the faults in different ways. In general, three

levels of fault-tolerance are considered: masking, nonmasking and failsafe. Masking

fault-tolerance corresponds to the case in which the system may completely mask the

faults, not allowing these to have any observable consequences for the users; non-

masking fault-tolerance corresponds to the case in which, after a fault occurs, the

system may undergo some process, observable by users, to eventually take the system

back to a “good” behavior; finally, failsafe fault-tolerance corresponds to the case in

which the system may react to a fault by switching to a behavior that is safe, but in

which the system is restricted in its capacity.

As argued by the author in [Gärtner, 1999a], these fault-tolerance properties can

be classified in term of the varying satisfaction of the system’s safety and liveness

properties in the presence of faults:

• Masking fault-tolerance: the program continuously satisfies the safety and live-

ness specifications, even in the presence of faults, i.e., the program never violates

the safety part of the specification and, in the case that a fault occurs, it even-

tually recovers to its normal behavior. Some examples of systems which require

masking fault-tolerance are those based on consensus, agreement, voting, or

commitment.

• Failsafe fault-tolerance: the requirement for failsafe fault-tolerance is that only

the safety part is guaranteed, but not necessarily the liveness part. A standard

example of this is a nuclear power plants where, subject to the occurrence of

faults, we need to ensure that the system goes into a safe state (e.g., shut the

system down), where perhaps some liveness properties are not preserved, but

the system is kept in a safe state.
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• Nonmasking fault-tolerance: the liveness part is always guaranteed but the

safety part is only eventually respected. Intuitively, this type of fault-tolerance

allows the program to violate the safety specification while it is recovering to the

normal behavior. Systems based on reset, checkpointing/recovery, or exception

handling typically require nonmasking fault-tolerance.

These fault-tolerance properties capture the fault-tolerance requirements of extant

computing systems. In [Arora and Gouda, 1993], the authors discuss how these

fault-tolerance properties capture the requirements in distributed systems, networks,

circuits, database management, etc.

1.1.3 Approaches to Dependability

In order to deal with faults, developers have been applying various techniques over

the last 50 years. These methods can be grouped into the following four classes, as

explained in [Torres-Pomales, 2000]:

• Fault Avoidance/Prevention: the main goal is to prevent and reduce the intro-

duction and the occurrence of faults during software construction. A rigorous

software development process is necessary to produce software of good quality.

In particular, formal methods provide an appealing approach to produce soft-

ware without faults; theories and languages arising from mathematics are used

to prove mathematically that software is free of faults. If despite fault avoidance

efforts, faults are created, then fault removal is needed.

• Fault Removal: the aim is to detect and remove existing faults during soft-

ware verification and validation. Exhaustive and rigorous testing is the usual

technique to attain this, which can be done in several different ways to dis-

cover faults during the development process and therefore delete them from the

design and the implementation phase. Other common techniques are formal in-

spection and formal design proofs. Particularly, model checking is a successful

method that can be used to check that the implementation corresponds to the

specification of the system. Fault removal is imperfect, so fault forecasting and

fault-tolerance are needed.
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• Fault Forecasting: also called as software reliability measurement by Lyu in

[Lyu, 1996]. It provides information during the validation phase to enhance

dependability by estimating the present number, future incident, and conse-

quence of faults. This method can indicate the need for additional testing or

for applying fault-tolerance.

• Fault-Tolerance: the main idea is to tolerate faults that remain in the system

after its development, preventing system failure and delivering the expected

functionality even in the presence of faults. In order to accomplish it, the system

should be able to detect the occurrence of errors and, eventually, to recover

from those errors in the system. There are several fault-tolerance techniques

(see Section 1.1.4) which help to reduce the risks of software design faults and

thus enhance the dependability of the system.

As we observed, testing techniques and formal methods play an important role in

the above techniques. However, system testing can never be exhaustive and remove

all potential faults; as Dijkstra in [Dijkstra, 1972] argued, testing can show the pres-

ence, but not the absence of faults. In the case of formal methods, these techniques

are hard to apply to large and complex systems. In addition, we can achieve a sys-

tem which is free of faults, but the system will always be exposed to faults from a

malicious environment, or even from the operating system and possible malfunctions

of hardware. Therefore, fault-tolerance techniques are needed in order to provide a

guarantee that safety-critical systems continue working in an acceptable way, even

subject to the occurrence of faults.

1.1.4 Fault-Tolerance Techniques

Several fault-tolerance techniques have been developed in order to improve the capa-

bility of a system to deal with faults. These are commonly divided into fault-tolerance

hardware and software techniques, depending on whether they are used at the hard-

ware level or the software level. We briefly review both approaches.

Hardware fault-tolerance techniques

The main approach to attaining hardware fault-tolerance is by using additional hard-

ware, better known as redundancy. In general, hardware techniques can be classified
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into static, dynamic, and hybrid redundancy.

Static redundancy is characterized by using redundant components inside a system

in order to hide the effects of faults. A typical example is the use of Triple Modular

Redundancy (TMR), in which three identical subcomponents perform a process and

the result of all of them are compared by a majority voting system producing a single

output. If one of them differs from the other two that output is masked out by the

other two subcomponents. In short, these techniques prevent the faults from resulting

in errors using fault masking to hide the effects of faults. Moreover, fault-tolerance is

achieved without requiring any system or operator action. Finally, these techniques

do neither detect faults nor change the configuration of the hardware dynamically. On

the contrary, dynamic redundancy achieves fault-tolerance by detecting the existence

of faults and performing some action to remove the faulty parts. It also requires the

system to be reconfigured to tolerate faults. Specifically, three steps are performed

in these techniques in an attempt to achieve fault-tolerance: fault detection, fault

location, and fault recovery. There are many dynamic mechanisms like duplication

with comparison and the pair-and-a-spare technique. In the former, two modules

perform the same computations in parallel and compare the results. In the case that

the two results disagree, then an error message is generated and subsequently some

recovery actions are performed in order to take the system back to an acceptable

state. In the latter, two modules are operated in parallel at all times and their

results are compared to provide the error protection capability. The error signal from

the comparison is used to initiate the reconfiguration process (switch) that removes

faulty modules and replaces them with spares. Finally, hybrid hardware redundancy

combines the attractive features of both static and dynamic techniques: fault masking,

fault detection, fault location, and fault recovery. Most hybrid redundancy techniques

are based on the concept of N-modular redundancy (NMR) with spare. The idea is to

provide N modules arranged in a voting configuration. Moreover, spares are provided

to replace failed modules. The main advantage of NMR with spares is that voting

can be restored after a fault has occurred.

Hardware fault-tolerance has been investigated deeply and successfully applied in

aeronautics, nuclear applications, aerospace systems, healthcare, telecommunications

and transportation industries. A good reference is [Siewiorek and Swarz, 1998].
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Software fault-tolerance techniques

Software fault-tolerance techniques are used to build software capable of tolerating

faults. Following [Torres-Pomales, 2000], they can be classified into two classes:

• Single version fault-tolerance: this class focuses on improving the fault-tolerance

of a single piece of software by adding mechanisms into the design. Specifically,

targeting the detection, the containment, and recovery from errors caused by the

activation of design faults. There are several techniques that use a single-version

of some software. As explained in [Torres-Pomales, 2000], decomposing software

into several components or pieces which are independent to some degree is im-

portant to avoid the propagation of errors from one part of the system to other

parts, or possibly all of the system. Here, it is important to use techniques that

restrict the propagation of errors from one component to others when designing

the architecture of the software. For example, the system closure technique is

based on a principle that no action is permitted unless it is explicitly authorized

[Denning, 1976]. Then, when an error is detected, the system reacts disabling

any valid actions to avoid error propagation. Atomic actions [Lee and Ander-

son, 1990] is another approach in which a group of components interact with

each other and there is no communication among these components and with

the rest of the system during this atomic activity. There are two possible out-

comes of an atomic action: it either terminates normally or it is aborted upon a

detection of a fault. In the first case, its results are complete and committed. In

the second case, it is known in advance that only the participating components

can be affected; therefore it is possible to isolate the errors to the participating

components. Another common technique for tolerating software design faults

is the use of exception mechanisms, that is the interruption of normal opera-

tion to respond to the occurrence of unexpected events (exceptions) requiring

special processing - often changing the normal flow of program execution. In

[Randell and Xu, 1994], the authors list three classes of exception triggering

events for a software component: interface exceptions (a module raises an ex-

ception immediately upon detection of invalid service request), local exceptions

(a module raises an exception when its fault detection mechanism detects a

fault), and failure exceptions (a module raises an exception to signal that its

recovery mechanism is enabled to recover successfully).
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Many programming languages provide mechanisms for exception handling. Well-

known examples are: Ada, Java, C++, Eiffel, ML, and Smalltalk. Other tech-

niques used are checkpoints, classified into static and dynamic. On the one

hand, static checkpoint stores in memory information of a single snapshot of

the system at the beginning of the program execution. If a fault is detected, then

the system goes back to this state and restarts the execution of the program

from the beginning. On the other hand, dynamic checkpoints are generated

dynamically at different points during the execution. In the case that a fault

is detected, then the system goes back to the last checkpoint and continues the

program execution. Note that the checks for fault detection need to be inserted

in the code and be executed prior to when the checkpoints are generated. Fi-

nally, recovery mechanisms are used once a fault is detected and contained, a

system attempts to recover from the faulty state and reach a safe or correct

state. If fault detection mechanisms are implemented correctly, then the conse-

quences of the faults are enclosed within an appropriate set of modules at the

time of fault detection. Most importantly, knowledge of the fault containment

region is indispensable for the design of an efficient fault recovery mechanism.

• Multiversion fault-tolerance: is based on the use of two or more versions (or

variants) of a piece of software, executed either in sequence or in parallel to

prevent system failures. The main idea is that components are built differently

through different designer teams, different programming languages or different

algorithms can be used to maximize the probability that all the versions do

not have common faults. Therefore, if one version fails on particular input,

at least one of the alternate versions should be able to provide an appropriate

output. N-version programming [Avizienis, 1995] and Recovery blocks (RB) are

two popular examples of these techniques. The former, is a technique in which

several versions of some software are produced to satisfy the same specification,

and then the output of the system is decided considering all the outputs from

the execution of a task. This decision is based on a voting mechanism which

determines the result based on majority voting or some other selection rules.

There exist diverse variations of this approach, essentially changing the way

in which the output is selected, and also combining this technique with single-

version methods. The latter, RB uses multiple alternates (backups) to perform
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the same function. One task is selected as primary and the others as secondary.

Initially, the primary task executes a particular function. After its completion,

an acceptance test is applied to check its result. In the case that the output is

not acceptable, then a secondary task executes the same function at the state in

which was invoked the primary task. This process continues until an acceptable

result is achieved or the deadline of the task is missed. See [Torres-Pomales,

2000] for a more exhaustive list of methods that have been used in practice.

These techniques have to be complemented with an important aspect of fault-

tolerance: the detection of errors. The aim is to define efficient mechanisms in order

to detect errors during the execution of the system. In the literature, we found that

the most usual forms of implementation of error detection are the following: error de-

tecting codes, duplexing and comparison, timing and execution checks, reasonableness

checks, and structural checks. The latter three checks are usually implemented by ex-

ecutable assertions in software. Error detection codes and duplexing and comparison

are based on redundancy in the information representation, either by adding control

bits to the data (checksum), or characterizing the data in a new form accommodating

the redundancy.

1.2 Formal Methods and Fault-Tolerance

In the last few decades, significant effort has been made to use formal methods to

specify and verify fault-tolerant systems. In this section we review briefly some of

these approaches.

Program Verification: There are many case studies in which formal methods have

been used to verify correctness of distributed and/or real-time protocols [Kulka-

rni et al., 1999; Schlichting and Schneider, 1983] in the dependability area.

Moreover, an important point to achieve an amenable verification is to decom-

pose the fault-tolerant program into several components. In [Cristian, 1985], the

author introduced a framework for the design and verification of the correctness

of fault-tolerant programs. In this approach, faults are modeling as operations

performed at random time intervals by the system’s adverse environment. He

investigates programs that are subject to hardware faults and processor crashes.
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The core of his work is the extension of Flloyd/Hoare logic with rules which en-

able reasoning about crashes and failures in hardware devices. Schlichting and

Schneider [Sinha and Suri, 1999] propose a formal methodology to specify and

verify dependable computing systems. Their approach rests on the notion of

fail-stop processors, i.e., processors that automatically halt in response to any

internal failure, with the intention of avoiding the failure becoming visible by

the user. An axiomatic verification technique is described to verify programs

running on these kinds of processors. In [Arora, 1992; Arora and Gouda, 1993],

the authors characterize fault-tolerant programs by means of predicates. In

order to distinguish those states which are free of errors, they use invariants.

Moreover, their framework is based on the concepts of closure and convergence

used to define fault-tolerance features. The former is the property of a sys-

tem of remaining in a certain set of “legal” states during the occurrence of

faults. The latter is the case when faults stop occurring, and the program

eventually reaches a state where the invariant describing the correct states is

satisfied. They demonstrate the applicability of their definitions for specifying

and verifying the fault-tolerance properties of a variety of digital and computer

systems (e.g., Atomic Commitment Protocol, Data Transfer Protocol, and a

Delay-Insensitive Circuit).

Program Transformation: In general, in this approach, the idea is to transform

a fault-intolerant program into a fault-tolerant program by adding necessary

fault detection and correction components. Early work on transformation for

fault-tolerance has focused on recovery mechanisms. For instance, in [Liu and

Joseph, 1992, 1993; Peled and Joseph, 1994], they used the method of check-

pointing with forward and backward recovery. Arora and Kulkarni in [Arora

and Kulkarni, 1998b] introduced the idea of detector and corrector components,

in which a fault-intolerant program is transformed to a fault-tolerant one by

adding these components. The authors have proven that these components are

necessary and sufficient to achieve the usual types of fault-tolerance. In more

recent works, Kulkarni et al. [Kulkarni and Arora, 2000; Kulkarni and Ebne-

nasir, 2003, 2004; Ebnenasir et al., 2008; Bonakdarpour et al., 2012], have been

working on adding fault-tolerance concerns to existing programs under the oc-

currence of faults. The reader can find an interesting survey of transformational
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approaches of fault-tolerant systems provided by Gärtner in [Gärtner, 1999b].

Self-Stabilizing Programs: provide a built-in safeguard versus transient failures

that might corrupt the data in a distributed system. The concept was intro-

duced by Dijkstra in [Dijkstra, 1974] and Lamport in [Lamport, 1985] showed its

relevance to fault-tolerance in distributed systems. However, serious work only

began in the late nineteen-eighties. An interesting survey of self-stabilizing al-

gorithms can be found in [Schneider, 1993]. In this context, faults are transient

(these occur once and then disappear), which means that it is not necessary to

have as an assumption a bound on the number of failures. An elemental idea

of self-stabilizing algorithms is that the distributed system may be started from

an arbitrary global state. Then the system eventually reaches a correct global

state, named a legitimate or stable state. An algorithm is self-stabilizing if the

following two conditions are satisfied. First, from any initial illegitimate state

it reaches a legitimate state after a finite number of node moves. Second, from

any legitimate state the next state is a legitimate state. In case that the system

is affected by other classes of faults like Byzantine, a self-stabilizing system can

not guarantee that the system is able to operate correctly. Several other works

have proposed a formal framework to reason about self-stabilization, some of

them are: [Katz and Perry, 1993; Prasetya and Swierstra, 2005; Lentfert and

Swierstra, 1993], mainly extending the logic of UNITY.

Theorem Provers: Many significant problems have been, and continue to be, solved

using Automated Theorem Proving. The fields where the most notable suc-

cesses have been achieved are mathematics, software creation and verification,

and hardware verification. In recent years, there have been many examples of

significant applications in the area of safety-critical systems. For instance, PVS

[Owre et al., 1992] is a (semi-)automatic theorem prover that has been success-

fully used in various applications, including diagnosis and scheduling algorithms

for fault-tolerant architectures, and requirements specification for portions of

the space shuttle flight control system. Some interesting examples are the ver-

ification of the AAMP5 avionics processor [Srivas and Miller, 1996] and the

formal verification for fault-tolerant time-triggered algorithms [Rushby, 1999].

In other works, a formal verification system based on the use of automated rea-

soning techniques is described to validate fault-tolerance in [Jr. et al., 1989].
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Moreover, Hickey in [Hickey, 1999] presents an architecture, implemented in the

MetaPRL logical framework, for distributing tactic proving over large groups of

processors using the Ensemble group communication system. Other theorem

provers have been used to prove fault-tolerant properties in specific scenarios;

examples can be found in [Moreau, 2006; Barsotti et al., 2007; Zhang, 2008;

Mantel and Gärtner, 2000; Lincoln and Rushby, 1993; Qadeer and Shankar,

1998].

Model Checking: On the other hand, many researchers have been used model

checking techniques in order to verify and validate fault-tolerant systems. For

example, in [Schneider et al., 1998] the requirements of an embedded spacecraft

controller were validated using SPIN [Holzmann, 1997], and in [Gnesi et al.,

2000] several properties of a railway control system were proven using SPIN.

Moreover, in [John et al., 2013b,a], the authors focus on model checking of

fault-tolerant distributed algorithms like Paxos. They show how one can model

this basic fault-tolerant distributed algorithm in Promela such that safety and

liveness properties can be efficiently verified in SPIN. A more general approach

is taken in [Yokogawa et al., 2001], where programs written in the programming

language introduced in [Arora, 1992] are translated to SMV [McMillan, 1992]

and then properties of a given program are verified using the SMV tool. In

[Bruns and Sutherland, 1997], the authors present an approach to the model

checking of fault-tolerant systems based on process algebra (CCS-based). They

define new, special-purpose process operators to model faults and fault-handling

mechanisms. They argue that these definition has technical advantages where

both the size and generality of model checking can be reduced. Ezekiel and

Lomuscio [Ezekiel and Lomuscio, 2009] combine automatic fault injection with

model checking to verify fault-tolerance in multi-agent systems (MAS). They

present a generic method to mutate a model of a correct system behavior into

a faulty one, and discuss how the mutated model can be used to reason about

fault-tolerance, which includes recovery behavior from faults. They demon-

strated the application of their work by injecting automatically faults into a

sender-receiver protocol, and verifying temporal and epistemic specifications of

the protocols’ fault-tolerance using the MCMAS model checker [Lomuscio and

Raimondi, 2006]. Some other interesting work can be found in [Bernardeschi
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et al., 2002; Gnesi et al., 2005].

Process Algebra based Approaches: In several works, notions coming from pro-

cess algebra [Milner, 1980] are used to specify and verify fault-tolerant concur-

rent programs. For example, Peleska in [Peleska, 1991] models fault-tolerance

achieved by dynamic redundancy in CSP, in which he proposes a general ap-

proach for proving correctness properties. Amadio and Prasad [Amadio and

Prasad, 1994] present an extension to the π-calculus with locations and fail-

ures, and gives example of small fault-tolerant programs. Krishnan [Krishnan,

1994] proposed a CCS-based approach in which he models majority voting, us-

ing pre-orders to characterise relativised fault-tolerance, and the notion of fault

injection. Riely and Hennessy [Riely and Hennessy, 1997] use process algebra

to describe a model of locations and failures providing a number of semantic

equivalences. Janowski in [Janowski, 1995, 1997], investigated various notions

of bisimulation with the aim of capturing fault-tolerant properties, in a CCS-

based approach. In addition, these approaches have been applied to several

case studies. For instance, Jifeng and Hoare [He and Hoare, 1987] uses CSP to

describe and prove correct a distributed recovery algorithm. Bruns in [Bruns,

1992] models railway interlocking using CCS, including failure behaviors and a

failure-handling mechanism, verifying safety properties. Gilmore et al. [Gilmore

et al., 1995] uses a stochastic process algebra to model performance of robot

control with and without failures. Finally, Bernardeschi et al. [Bernardeschi

et al., 1998] uses process algebra to verify correctness properties of the GUARDS

project, in which he represents faults as actions, and uses a standard concur-

rency tool kit.

Specification Languages: Several formal languages and frameworks have been used

to formalize and to prove properties of specific examples of fault-tolerant sys-

tems. In general, these do not have any special construct for modelling fault-

tolerant systems in terms of differences between correct, expected or ideal be-

haviour and incorrect, unexpected or abnormal behaviour. Hence, these features

are encoded using ad-hoc mechanisms as part of the general design. For exam-

ple, one well-known case study is the Byzantine generals problem formalized by

Lamport and Merz in [Lamport and Merz, 1994] using TLA+ [Lamport, 1994].

Another popular area of research in the community of fault-tolerant systems
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is Railway Signalling [Abdelouahab and Braga, 2008; Abrial, 2006; Guiho and

Hennebert, 1990]. This demands the use of an ultra reliable fault-tolerant sys-

tem since it is directly related to the movement of passenger trains and a fault

in the system may cause a train collision and the loss of human life. In [Abrial

and Hallerstede, 2007], the Event-B language [Abrial, 2006] is used to model a

software controller responsible for the management of the movements of trains

on a track network. The authors in this work focused on the prevention of

errors and also on their tolerance. Moreover, the formal modelling of this case

study included not only the software model but also a detailed model of its

environment. Another example using Event-B is given in [Yadav and Butler,

2009], where a broadcast protocol is specified and verified. In [Kang and Jack-

son, 2008], a file system is specified with the lightweight modeling language

Alloy [Jackson, 2006], and verified using the Alloy analyzer. Duration calculus

[Chaochen et al., 1991] has been designed for reasoning about real time systems;

several examples related to fault-tolerance and real time systems are described

in [Chaochen and Hansen, 2004] (e.g., a gas burner).

1.3 Deontic Formalisms and Fault-Tolerance

Deontic logic is a variation of modal logic whose purpose is to logically capture the

notion of norm. Deontic formalisms have been used in computer science for different

purposes such as database security, reactive system specification, artificial intelli-

gence and legal reasoning; see [Wieringa and Meyer, 1993] to read a more detailed

survey. Regarding fault-tolerance, the main motivation for using deontic logic that

many researchers put forward is that norms and normative reasoning arise naturally

in fault-tolerance and it appears inviting to include deontic predicates into existing

formal languages. Consequently, this allow us to differentiate between normal and

abnormal behaviour. Other researchers (e.g., [Wieringa and Meyer, 1993]) argue that

deontic logics are appropriate for reasoning about fault-tolerant systems due to the

similarity between fault occurrences in computer systems and the situation in legal

and normative systems where violations of laws or regulations occur. We present

the following works which use deontic logics for reasoning about problems related to

fault-tolerance.
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[Carmo and Jones, 1996a] present an extension of standard deontic logic for

database specification. They investigate how to deal with problems when a viola-

tion arises because of a norm violation, focussing on how to react to, recover from, or

repair this violation using their logic. Moreover, the authors consider distinct kinds of

integrity constrains and a distinction is made among hard (necessary) and soft (deon-

tic) constraints. The soft integrity constraints admit violations; therefore, the notion

of recovery (from the violation of static or state constraints) is characterized. The

authors do not cover the concept of transition constraint, in which permitted changes

can be made on database states, thus only norms concerning states are studied.

In [Lomuscio and Sergot, 2004], three variations of the bit-transmission problem

are formalized by means of a deontic interpreted logic. In this approach, a deontic

machinery is developed based on the classification of agents’ states into “green” and

“red”. These terms correspond to the correct and incorrect functioning behaviour

respectively. We use this idea in our work, see Chapter 2 for more details on our

framework. Finally, Lomuscio and Sergot state that the extension incorporating col-

ored transitions in their framework is left for future work.

[Khosla and Maibaum, 1987] present a deontic logic for the specification of sys-

tems, but fault-tolerance concerns are not discussed in this work. One of the impor-

tant points made by the authors is that this logic can be used for the prescription and

description of computing systems and this can also be used for the characterization

of abnormal executions. The description of a system action is usually given in terms

of its precondition and postcondition (what the system does). On the other hand,

the prescription of a system is understood as what the system should do, stated using

deontic predicates.

Fiadeiro and Maibaum in [Fiadeiro and Maibaum, 1991] present an approach in

which from a deontic specification of a system, they show how to reason about safety

and liveness properties of the normative behaviors of that system. In this approach,

they can distinguish between normal and abnormal behaviors, allowing us to prove the

properties that hold in normal situations and those that are fulfilled in consequence

of an unexpected behaviour.

In [Kent et al., 1993], the authors present a deontic action logic which is used

to formalize a library system. Through this example, they explain how to specify

temporal constraints and error recovery. However, the logic is sketched and only a
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partial axiomatization is presented.

In a more recent work by Castro and Maibaum [Castro, 2009; Castro and Maibaum,

2007, 2009a,c], they introduce a new deontic action logic for specification and analy-

sis of fault-tolerant systems. The main idea behind this mathematical framework is

to use axiomatic theories to specify systems. They provide two different deductive

systems; the first one is a standard (Hilbert style) deductive system, and the second

one is a tableaux system, which can be applied automatically to prove properties of

specifications. Several case studies are provided, such as the Diarrheic Philosophers,

the Muller C-element, a Simple Train System, Processor Coolers, etc. In [Castro

and Maibaum, 2010], the authors extended their logic to a first-order deontic action

version which has standard quantifiers of first-order logic and algebraic operators for

actions similar to those of the propositional deontic logic. Finally, the authors in

[Castro et al., 2011] present a branching time temporal logic for fault-tolerant system

verification called dCTL, which will provide the foundation of our work, see Subsection

2.3.1 for more details.

1.4 Automated Synthesis

Automated synthesis of programs is an algorithmic approach where a program is

constructed starting from a set of properties. It was originally suggested by Church

[Church, 1963] and subsequently solved by two techniques [Büchi and Landweber,

1969; Rabin, 1972]. This problem has been extensively studied for some time through

different approaches [Alur et al., 1996; Attie and Emerson, 2001; Emerson and Clarke,

1982; Lafortune and Lin, 1991; Lin and Wonham, 1990; Maler et al., 2006; Manna

and Wolper, 1984; Thomas, 2002; Wallmeier et al., 2003], in which the synthesis

problem has been analyzed from two points of view: synthesis from a specification

and synthesis via solving games. The first one is based on the decision procedure that

verifies the satisfiability problem of the corresponding specification language, whereas

the second one is based on the the realizability problem [Abadi et al., 1989] of the

corresponding specification language. Moreover, one important difference between

these methods is that the former only considers synthesis of closed systems, and the

latter considers open systems, where the system interacts with the environment.

In the following Subsections 1.4.1 and 1.4.2, we discuss the line of research on
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synthesis of closed and open systems, respectively. Finally, we review in Subsection

1.4.3 the most important works in the area of automatic synthesis of fault-tolerant

systems.

1.4.1 Program Synthesis in Closed Systems

In general, synthesis methods for closed systems concentrates on deriving the syn-

chronization skeleton of a program from a given specification written in a specific

temporal logic, e.g., [Emerson and Clarke, 1982; Manna and Wolper, 1984; Attie

et al., 2004; Attie, 1999; Attie and Emerson, 2001]. These methods are all based on

the satisfiability problem for the input specification language. One drawback on these

techniques is that any change in the input specification requires the synthesis process

to be restarted from the beginning.

The seminal work in this area is due to Emerson and Clarke [Emerson and Clarke,

1982], who propose a tableau-based method for deriving a finite state model from

CTL specifications. Essentially, their synthesis method builds a tableau containing

all potential models. Hence, if a formula f is satisfiable, then a model of f exists

in the tableau. As a output of their synthesis method, a synchronization skeleton

of the model is extracted from the tableau. In short, a tableau for a CTL formula

is a finite directed AND/OR graph. The construction process of this graph involves

the following two steps: (1) setting the formula as the root of the tableau, and (2)

expansion of frontier AND-nodes and OR-nodes until the set of frontier nodes is empty

(i.e., a node without successor). Finally, pruning rules are applied in the tableau to

delete inconsistence nodes. If the root of the tableau is not removed, then the input

formula f is satisfiable.

Similarly, Manna and Wolper [Manna and Wolper, 1984] propose a method for

synthesizing distributed communicating processes from a formula written in Proposi-

tional Temporal Logic (PTL) using a tableau-based satisfiability algorithm for PTL.

Their synthesis method produces two outcomes: either the input specification is un-

satisfiable; or, it produces a model graph from which all possible models of the input

specification can be extracted. The final model can be viewed as the synchronizer

process and the other inter-processes can be obtained as restrictions of that model.

Attie and Emerson investigate the problem of synthesizing concurrent programs

from CTL specifications in a series of papers. For example, they extend in [Attie and
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Emerson, 1998] the synthesis methods introduced in [Emerson and Clarke, 1982] and

[Manna and Wolper, 1984] based on the behavioral similarity of processes and thus

avoiding the exponential overhead as a result of the state explosion problem. In a

different work, the authors address the problem of synthesizing distributed processes

following the synthesis method in [Emerson and Clarke, 1982], where they included

atomic read/write actions [Attie and Emerson, 2001].

1.4.2 Program Synthesis in Open Systems

In reactive systems, a program interacts with the environment, where the ideal behav-

ior of a correct program should satisfy its specification considering all environments.

Game-theoretic approaches consider the situation as a game between the environment

and the program. A correct program can be then viewed as a winning strategy in

this game. It is well-known that satisfiability of the specification is not sufficient to

guarantee the existence of such a strategy. In [Abadi et al., 1989], the authors called

specifications for which a winning strategy exists realizable. Game theory and control

theory are closely related to the problem of program synthesis. We analyze briefly

both approaches.

Synthesizing controllers in control theory: The general scenario is that there is

a system, called a plant in this context, which interacts with an environment.

The main goal is to design a controller (modeled as a discrete-event system

(DES)) which will interact with the system, observing and controlling it using

its own inputs to it, in order to make the system behave in an appropriate

manner. The seminal work in the area of controller synthesis is due to Ramadge

and Wonham [Ramadge and Wonham, 1987, 1989]. In this work, the problem

was investigated in an automata-theoretic framework and was demonstrated to

have reasonable sub-classes where the problem is decidable. Research in the

community of supervisory control of DES has been studying different issues,

such as partial observability (where the controller has a restricted capability

of observing the plant) [Lin and Wonham, 1990; Rudie and Wonham, 1992;

Thistle and Lamouchi, 2009], supremal controller (the controllers that present

the least restriction of the system) [Kumar et al., 1991], decentralized control

(several controllers are involved, each one having access and control of one
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part of the system) [Kumar and Shayman, 1997; Wong and Wonham, 1998].

Other interesting works in the area can be explored in [Kupferman et al., 2000;

Madhusudan and Thiagarajan, 1998, 2001; Maler et al., 1995].

Synthesizing strategies for two-player games: In general, game theoretic ap-

proaches for the synthesis of controllers and reactive programs [Pnueli and

Rosner, 1989a] are based on the model of two-player games [Thomas, 1995].

In such games, a program and its environment are the players. They interact

through a set of interface variables, where the environment is restricted to up-

date only these interface variables. Game theoretic methods are based on the

theory of tree automata [Thomas, 1990]. The specification of a system is rep-

resented by an automata, then a synthesis algorithm tests whether there exists

a tree acceptable by the tree automata, this is better known as the nonempti-

ness problem of tree automata. If the synthesis method returns as a result that

the language of the tree automata is nonempty, then the specification is named

realizable. Hence, a model of the synthesized program exists. In [Pnueli and

Rosner, 1989a], Pnueli and Rosner investigate the problem of synthesizing syn-

chronous open reactive modules from a specification given in Linear Temporal

Logic (LTL). In a subsequent work [Pnueli and Rosner, 1989b], they generalized

their method by means of a technique for synthesizing asynchronous reactive

modules. One drawback of this approach is the high complexity of the syn-

thesis process. However, other researchers [Alur and La Torre, 2004; Harding

et al., 2005; Pnueli et al., 1998; Wallmeier et al., 2003] have obtained some

interesting results, where the synthesis problem can be solved in polynomial

time, by restricting the specification of the design to be synthesized to simpler

automata or partial fragments of LTL. Particularly, in [Bloem et al., 2012] the

authors present an algorithm that solves realizability and synthesis for a sub-

set of LTL, which can essentially be viewed as a generalization of the results

of [Pnueli et al., 1998] and [Alur and La Torre, 2004]. An interesting result is

that the synthesis algorithm works in cubic time. The authors have shown that

the approach can be applied to a wide class of formulas, which covers the full

set of generalized reactivity (1) properties (GR(1)). Some other interesting re-

lated works are [D’Ippolito et al., 2010, 2011]. In more recent work, Wallmeier,

Hütten, and Thomas [Wallmeier et al., 2003] introduce a synthesis algorithm
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for finite state controllers by solving infinite games over finite state spaces. The

authors model the winning constraint of the game graph by safety conditions

and a set of request-response properties as liveness conditions, and transforming

this game into a Büchi game.

1.4.3 Automated Synthesis of Fault-Tolerance

The problem of synthesizing fault-tolerant systems has been studied in the litera-

ture from different perspectives. The primary work in this area is due to Attie,

Arora, and Emerson [Attie et al., 2004], where they synthesize fault-tolerant concur-

rent programs from CTL specifications, based on the tableau-based method defined

by Emerson and Clarke in [Emerson and Clarke, 1982]. They require as input of

their synthesis algorithm: (1) a problem specification expressed in CTL, (2) a fault

specification involving a set of auxiliary atomic propositions and a set of fault actions

which represent faults expressed as guarded commands over the atomic propositions,

(3) the coupling specification, which is also a CTL formula relating the atomic propo-

sitions in the problem specification with those in the fault specification, and (4) a

level of fault-tolerance. Initially, the synthesis algorithm builds a tableau based on

the tableau-based method defined in [Emerson and Clarke, 1982], which contains

normal nodes and transitions representing the intended behaviour of the program

in the absence of faults. Then, the current tableau is augmented with fault nodes

and transitions by applying the fault actions introduced in the fault specification to

every state of the generated model. This step introduces those states reached under

the occurrence of faults. Subsequently, recovery transitions are generated in order

to produce a recovery behavior where the desired user’s level of fault-tolerance (e.g.,

masking, nonmasking, or failsafe) is satisfied. Finally, a set of deletion rules is applied

to remove all nodes that are either propositionally inconsistent, or do not have enough

successors, or are labeled with a CTL eventuality formula which is not fulfilled. If the

root of the generated tableau is not removed, then a final model is embedded in the

final tableau. In the last step of the algorithm, an unravelling process is applied to

extract the fault-tolerant program from the generated tableau. We revisit this work

in more detail in Chapter 4.

A different approach for automatic addition of fault-tolerance is presented by

Kulkarni et al. [Kulkarni and Arora, 2000; Kulkarni and Ebnenasir, 2003, 2004;
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Ebnenasir et al., 2008; Bonakdarpour et al., 2012], where the main idea is to add

fault-tolerance concerns to existing programs under the occurrence of faults. In more

detail, the synthesis method consists of transforming an existing fault-intolerant pro-

gram into a fault-tolerant version. In particular, they introduce sound and complete

algorithms for adding the three levels of fault-tolerance, masking, nonmasking, and

failsafe, to programs. They require as input of these algorithms a fault-intolerant

program, a safety specification, and a set of fault transitions. The output of the

algorithms is a fault-tolerant program satisfying a desired level of fault-tolerance in

the presence of faults, and the safety and liveness properties of the fault-intolerant

program are fulfilled in the absence of faults.

The initial work by Kulkarni and Arora [Kulkarni and Arora, 2000] introduced syn-

thesis techniques for automated addition of fault-tolerance specifically for centralized

and distributed programs. Specially, for centralized programs they introduce sound

and complete algorithms for adding the different levels of fault-tolerance (masking,

nonmasking, and failsafe) in polynomial time. Regarding distributed programs, the

authors show that the problem of adding masking fault-tolerance to distributed pro-

grams is NP-complete in the size of the input program’s state space. In order to deal

with this complexity, the authors in [Kulkarni et al., 2001] define a set of heuristics to

solve the problem of synthesizing distributed masking programs in polynomial time.

Kulkarni and Ebnenasir in [Kulkarni and Ebnenasir, 2004] studied the problem of

synthesis of multitolerant programs, i.e., those programs that tolerate multiple classes

of faults, in which different fault classes may require distinct levels of fault-tolerance.

The novelty of their synthesis approach is that the addition of fault-tolerance is per-

formed in a stepwise fashion. They obtained interesting results depending on the

diverse combination of fault classes. For example, if it is intended to add either

failsafe or nonmasking fault-tolerance considering one class of faults and masking

fault-tolerance to a different class of faults, then this addition has been proved by

the authors to take polynomial time with respect to the size of the state space of

the fault-intolerant program. However, if it is the case that one intends to add fail-

safe fault-tolerance with respect to one class of faults and nonmasking fault-tolerance

considering another class of faults, then the problem result in being NP-complete.

Bonakdarpour, Kulkarni, and Abujarad in [Bonakdarpour et al., 2012] concen-

trate on automated addition of masking fault-tolerance to fault-intolerant distributed
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programs. The main contribution of this work is the development of an efficient sym-

bolic heuristic based on Ordered Binary Decision Diagrams (OBDDs), which are used

to represent programs, faults, specifications, etc. They showed that in spite of the

synthesis problem being NP-complete in the size of the input program’s state space,

synthesizing masking distributed programs from a fault-intolerant version is feasible

in practice. They validated their work with different case studies like the Byzantine

agreement problem, token ring, Infuse, etc. Another efficient method is presented by

Ebnenasir [Ebnenasir, 2007], where the author develops a divide-and-conquer method

for automatic addition of failsafe fault-tolerance to fault-intolerant distributed pro-

grams. The efficiency of this approach is based on the utilization of processing power

on separate machines in a parallel platform.

In the context of controller synthesis, Chao and Lim [Cho and Lim, 1998] intro-

duced in this area the idea of transforming a fault-intolerant system into a fault-

tolerant one. Moreover, Girault and Rutten [Girault and Rutten, 2009] present a

framework for automating the addition of fault-tolerance using Discrete Control Syn-

thesis (DCS). They use labeled transition systems (LTS) to specify the several con-

current parts of the system, where they model different kinds of faults (e.g., processor

crash, Byzantine faults, value corruption) by uncontrollable actions in a LTS. Then,

given a fault-intolerant program, DCS is used to synthesize a fault-tolerant version

of the input program satisfying the fault-tolerance requirements under the specified

fault hypothesis.

Other interesting works in the area of synthesis of fault-tolerance can be explored

in [Kulkarni and Ebnenasir, 2005; Gärtner and Jhumka, 2004; Marchand and Samaan,

2000]. In Section 6.1 of Chapter 6 we compare our synthesis approach with some of

these works described above.

1.5 Aim of the thesis

The specific goal of this dissertation is the development of a synthesis method for

fault-tolerant programs. More specifically, we are interested in studying the problem

of automatically synthesizing fault-tolerant systems from logical specifications, i.e.,

the problem of automatically constructing a fault-tolerant component implementation
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from a logical specification of the component, and the system’s required level of fault-

tolerance.

Several algorithms have been presented in the literature for synthesis of reactive

system from their temporal logic specification (see Section 1.4). With regards to au-

tomated synthesis of fault-tolerance from a specification, the primary work is due to

Attie, Arora, and Emerson [Attie et al., 2004], where they present an algorithm for

synthesizing fault-tolerant programs from CTL specifications, based on the tableau-

based method defined by Emerson and Clarke in [Emerson and Clarke, 1982]. Most

of these works consider CTL and CTL* as the temporal logic specification languages

for the input of their synthesis methods. It is well-known that these logics have im-

portant applications in model checking [Clarke et al., 2001]; however, these logics are

not specialized for describing properties of fault-tolerant systems. For this reason,

we hypothesize that it is important to provide to the users, from the beginning, a

more natural way for specifying properties of fault-tolerant systems. In our work, we

support the idea that deontic logics are appropriate to reason about fault-tolerant

systems because they allow us to distinguish between normal and abnormal situa-

tions; by using this, we can characterize what may be wrong and what to do about

it. Moreover, benefits of deontic logics include: they have a language to express nor-

mative reasoning (permission, obligation, forbidden) and it is easy to mix them with

temporal logics, and therefore to gain the good properties of temporal frameworks

to verify systems. We present several case studies explaining how we use deontic

operators in order to specify fault-tolerant programs.

Another important issue in our research is how faults are injected during the syn-

thesis process in order to produce a program which tolerates those faults, satisfying

one of the levels of fault-tolerance. In our investigation, we observed that in many

approaches (e.g. [Attie et al., 2004; Kulkarni and Arora, 2000; Kulkarni and Ebne-

nasir, 2004; Ebnenasir et al., 2008]) faults are given explicitly as part of the behavior

model of the system. This means that the user has to provide the faults as input

for these synthesis methods in order to obtain a fault-tolerant program that tolerates

those faults. We observe that these faults should be known in advance by the users.

Similarly to the above approaches, we also allow users to lists the possible faults that

can affect the system. Additionally, we investigate how we can inject faults in our

framework, but trying to do it from the obligations stated using the deontic operators
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in the input specification.

Moreover, another question that requires attention is the problem of representing

the different fault-tolerance properties (masking, nonmasking, and failsafe) desired

for the synthesized program. These play an important role in the synthesis algorithm

when we have to check if the chosen level of fault-tolerance required by the user is

fulfilled. In our case, we propose an alternative formal approach for dealing with the

analysis of fault-tolerance, which allows for a fully automated analysis, and appro-

priately distinguishes faulty behaviors from normal ones. This approach provides a

formalism for modeling fault-tolerant systems that features a built-in notion of abnor-

mal transition, to capture faults. In this setting, fault-tolerance is characterized by

defining simulation/bisimulation relations, between the desired “fault-free” or “ideal”

program, and that which tolerates or deals in some way or another with faults. We

present the foundations of this approach for representing the fault-tolerance proper-

ties and also the different algorithms for fully automated analysis of the three levels

of fault-tolerance.

Finally, we are concerned about how our approach works in practice, so we present

several case studies showing how to use deontic logics and also we present a software

tool which is used to provide experimental results about our synthesis method.

1.6 Outline of the dissertation

In Chapter 2, we review briefly the notions needed to tackle the rest of the thesis. We

start by reproducing the basic definitions of Kripke and colored Kripke structures;

then we take a look at Computation Tree Logic (CTL). We continue with an overview

of deontic logics and we present dCTL-: a fragment of a branching time temporal logic

with deontic operators, especially designed for fault-tolerant component specification.

Finally, we describe our model of computation.

In Chapter 3, we introduce the first core of the thesis: a formal characterization

of fault-tolerant behaviors (masking, nonmasking, and failsafe) of computing sys-

tems via simulation relations. In addition, we present the corresponding algorithms

for checking automatically fault-tolerance properties in polynomial time, i.e., to ve-

rify that a system behaves in an acceptable way even subject to the occurrence of
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faults. Finally, we demonstrate the practical application of our formalization through

some well-known case studies, which illustrate that the main ideas behind most fault-

tolerance mechanisms are naturally captured in our setting.

Chapter 4 addresses the second core of the dissertation: our synthesis method. We

present the extension of a synthesis algorithm for CTL to cope with dCTL- specifica-

tions. Moreover, we explain the details of each of the algorithms for the three degrees

of fault-tolerance, as well as their complexity. Finally, we prove some properties like

soundness and completeness of our method.

In Chapter 5 we present several case studies to show how the logical system pre-

sented in Chapters 3 and 4 can be used in practice. Moreover, we present our tool

syntdctl which was used to synthesize some of these examples.

Finally, in Chapter 6, we conclude. We present the related work in the literature

of automated synthesis of fault-tolerant programs. Additionally, we present a detailed

road map for future work, and make concluding remarks.
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Chapter 2

Preliminary Concepts

In this chapter, we formally define the fundamental elements of our framework. We

will start by reproducing the definition of standard Kripke structures, colored Kripke

structures, and we continue giving a brief overview of Temporal Logics: Linear Time-

Temporal Logic and Branching Time Logic. Moreover, we present a variation of a

branching time temporal logic with deontic operators called dCTL, which will provide

the foundation of our work. Finally, we describe our model of computation.

2.1 Kripke Structure

Kripke structures [Kripke, 1963] are traditionally used to interpret modal or temporal

logic formulas as well as for characterizing the dynamic behavior of reactive systems

[Clarke et al., 2001].

Definition 2.1.1. (Kripke Structure) Let AP be a set of atomic propositions. A

Kripke structure over AP is a 4-tuple 〈S, I, R, L〉, where S is a set of elements called

states, I ⊆ S is a set of initial states, R ⊆ S × S is a transition relation between

states, and L : S → 2AP is an interpretation function, which denotes the set of atomic

propositions that are true in each state.

Given a Kripke structureM = 〈S, I, R, L〉, the interpretation of logical connectives

and modal operators in a modal logic can commonly be defined by resorting to L and

the structure of R. In the case of temporal logics, it is generally necessary to utilize

the notion of trace to define the semantics of some operators.
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2.1.1 Colored Kripke Structures

Colored Kripke structures are a simple variation of Kripke structures that we will use

for describing fault-tolerant systems. We reproduce its definition as introduced in

[Castro et al., 2011]:

Definition 2.1.2. (Colored Kripke Structure) Given a set of propositional letters

AP = {p, q, s, . . . }, a colored Kripke structure is a 5-tuple 〈S, I, R, L,N〉, where S is

a set of states, I ⊆ S is a set of initial states, R ⊆ S × S is a transition relation,

L : S → 2AP is a labeling function indicating which propositions are true in each

state, and N ⊆ S is a set of normal, or “green” states. The complement of N is the

set of “red”, abnormal or faulty, states. Arcs leading to abnormal states (i.e., states

not in N ) can be thought of as faulty transitions, or simply faults.

Given a colored Kripke structure M = 〈S, I, R, L,N〉, a trace is a maximal se-

quence of states, whose consecutive pairs are in R. That is, a sequence:

s0s1s2s3 . . .

is said to be a trace of M when si ∈ S and siRsi+1 for every i. Note that traces

may be infinite or finite. When a trace of M starts in an initial state, it is called an

execution of M , and the set of executions of a structure M is denoted by T R(M).

Normal executions are those transiting only through green states; the set of normal

executions is denoted by NT (M). We assume that, in every colored Kripke structure,

for every normal state there exists at least one successor state that is also normal,

and that at least one initial state is green. This guarantees that every system has at

least one normal execution, i.e., NT (M) 6= ∅, for any M .

Given a trace σ = s0s1s2s3 . . . , the ith state of σ is denoted by σ[i], and the final

segment of σ starting in position i is denoted by σ[i..]. Moreover, we distinguish

among the different kinds of outgoing transitions from a state. We denote by 99K

the restriction of R to faulty transitions, and → the restriction of R to non-faulty

transitions. We define PostN(s) = {s′ ∈ N| s → s′} as the set of successors of s

reachable via non-faulty (or good) transitions; similarly, PostF (s) = {s′ ∈ S| s 99K
s′} represents the set of successors of s reachable via faulty arcs. Analogously, we

define PreN(s′) and PreF (s′) as the set of predecessors of s′ via normal and faulty

transitions, respectively. Moreover, Post∗(s) denotes the states which are reachable
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from s. Without loss of generality, we assume that every state has a successor; this

is a standard assumption in temporal logics [Baier and Katoen, 2008]. We denote by

⇒∗ the transitive closure of 99K ∪ →.

2.2 Temporal Logics

In [Pnueli, 1977], Pnueli proposed to use temporal logics to specify and verify pro-

grams, especially for nonterminating or continuously running concurrent programs

(e.g., operating systems). Ever since, temporal logics have been used extensively

by computer scientists to build reliable software. Temporal logic extends classical

logic by modalities that allow us to referal to the infinite behavior of reactive (i.e.,

concurrent, dynamic, distributed) systems.

Additionally to the operators of classical logic, the fundamental temporal modal-

ities that appear in most temporal logics include the following operators:

X “next” (next moment in time)

F “eventually” (at some future moment)

G “always” (at every future moment)

There are many different temporal logics, where these can usually be classified

regarding the underlying nature of time as either linear time or branching time. On

the one hand, in the linear view, time is linear and discrete which means that at

any given instant of time there is a single successor. On the other hand, in the

branching view, time may split into different courses, where it has a branching, tree-

like structure. Branching time models are used when non-determinism is present in

specifications. In the following subsections we briefly introduce both approaches.

2.2.1 Linear Time-Temporal Logic

Linear temporal logics (or LTLs for short) were introduced by Pnueli in 1977 in his

landmark work [Pnueli, 1977]. This logic is an extension of classical logic including

the following temporal operators:

• X φ (in the next moment in time φ is true)
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• F φ (eventually φ is true)

• G φ (always in the future φ is true)

• φ U ψ (ψ is true at some moment in the future, and until ψ becomes true, φ is

true).

From these temporal modalities, various other operators can be derived such as a

weak version of φ U ψ denotedW , i.e., ψ may never be true in the future (see [Manna

and Pnueli, 1992]).

The semantics of LTL is given by Kripke structures and traces over it (i.e., paths

in the Kripke structure). Paths are usually maximal (though some works consider

all the possible paths), and the relation of satisfaction is defined with respect to an

instant, a path and a Kripke structure, i.e., i, σ,M |= φ indicates that a formula φ is

true at the point i of path σ in the structure M . We say that σ satisfies a formula

φ in M , denoted σ,M |= φ iff 0, σ,M |= φ. The formal semantics for these operators

can be found in classic textbooks like [Manna and Pnueli, 1992] and [Emerson and

Clarke, 1980].

LTL has been widely used for model checking; SPIN is the most well-known LTL

model checker developed by Holzmann [Holzmann, 1997]. Further, LTL model check-

ing using a tableau construction is supported by NuSMV [Cimatti et al., 2000]. The

complexity of model checking for LTL was proven to be PSPACE-complete by Sistla

and Clarke [Sistla and Clarke, 1985].

2.2.2 Branching Time Logic

Branching time logics consider, for each moment of time, several different possible

futures. Each instant of time may hence split into several possible futures. Computa-

tion Tree Logic (CTL) is an important branching time temporal logic introduced by

Emerson and Clarke [Emerson and Clarke, 1980], which has important applications

in the model checking area [Clarke et al., 1986]. This logic allows for the description

of properties over Kripke structures, by combining branching operators A (“for all

paths or computations”) and E (“for some paths or computations”) and temporal

operators X, F, G, U , where these are immediately preceded by a path quantifier.

More precisely, the following are the possible combinations of path quantifiers and

temporal operators with their intuitive interpretation:
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• A (φ U ψ), on all future paths, φ is true until ψ becomes true.

• AG φ, on all future paths, φ is always true.

• AF φ, on all future paths, φ is eventually true.

• AX φ, on all future paths φ is true at the next moment.

• E(φ U ψ), on some future path, φ is true until ψ becomes true.

• EG φ, on some future path, φ is always true.

• EF φ, on some future path, φ is eventually true.

• EX φ, on some future path φ is true at the next moment.

CTL formulas are interpreted on states over Kripke structures (see [Emerson and

Clarke, 1980]).

Regarding the time complexity of the model checking problem for CTL, it results

linear in the size of the model and the length of the formula. A very successful CTL

model checker called SMV (Symbolic Model Verifier) was implemented by McMillan,

which is based on a symbolic OBDD (Ordered Binary Decision Diagrams) based

representation of the state space. Moreover, Cimatti et al. developed NuSMV [Cimatti

et al., 2000], a variant of SMV.

There has been a lot of discussion about the benefits and drawbacks of using linear

and branching temporal logics for reasoning about concurrent programs [Emerson

and Halpern, 1986; Lamport, 1980]. More recently, Vardi presented an interesting

paper [Vardi, 2001] discussing linear and branching frameworks. One argument in

favor of the branching time approach is that the complexity of the model checking

problem is polynomial whereas in the linear approach, it is often exponential. An

issue that everyone is agreed on is that the expressivenesses of LTL and CTL are

incomparable, i.e., there are properties that are possible to express in LTL, but that

cannot be expressed in CTL, and vice versa. Extended Computation Tree Logic

(CTL*) combines the expressive powers of CTL and LTL offering a more expressive

logic. However, the model checking problem for this logic is exponential in the size

of the verified formula [Clarke et al., 2001].
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These temporal logics allows for the specification of a large number of system

properties. In [Manna and Pnueli, 1990], temporal properties are classified by cate-

gories where in practice two are the most common: safety and liveness properties.

Informally speaking, the former specifies that “something bad never happens”, and

the latter specifies that “something good will eventually happen”.

2.3 Deontic Logics

Deontic logic is a branch of modal logic, which focuses on the study of the reasoning

arising in ethical and moral contexts, which usually involve norms and prescriptions.

Usually these logics have two modalities: P (permission) and O (obligation). After

studying the literature, we concluded that there are no standard definitions for these

predicates due to the philosophical nature of this logic. Some benefits of deontic logics

are: they allow us to distinguish between normal and abnormal situations, they have

a rich language to express normative reasoning (obligation, permission, forbidden),

they provide a natural level of abstraction in semantic structure (states are divided

into “good” and “bad” ones), and finally, it is easy to mix them with temporal logics,

and therefore to gain the good properties of temporal frameworks to verify systems.

In [Wieringa and Meyer, 1993] are described many examples of computer science

applications, like specification of fault-tolerant systems, the specification of security

policies, the automation of contracting, and the specification of normative integrity

constraints for databases.

We are interested in deontic concepts in the context of fault-tolerant systems,

where some researchers [Carmo and Jones, 1996b; Wieringa and Meyer, 1993; Maibaum

and Turski, 1984; Kent et al., 1991; Khosla, 1989] have been studying the application

of deontic logics to reason about fault-tolerant systems (see Section 1.3). Particu-

larly, we have studied the work of Castro and Maibaum [Castro, 2009; Castro and

Maibaum, 2007, 2009a,c] and a more recent work [Castro et al., 2011]. We focus on

the last, which is a branching time temporal logic for fault-tolerant system verification

called dCTL. In this section, we present a variation of dCTL, which will provide the

foundation of our work.
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2.3.1 dCTL: A branching time temporal logic with deontic

operators

As we mention above, we model fault-tolerant systems by means of colored Kripke

structures introduced in the previous subsection 2.1.1.

In order to state properties of systems, we use a fragment of dCTL [Castro et al.,

2011], a branching time temporal logic with deontic operators designed for reasoning

about fault-tolerant systems. Formulas in this fragment, that we call dCTL-, refer to

properties of behaviors of colored Kripke structures, in which a distinction between

normal and abnormal states (and therefore also a distinction between normal and

abnormal traces) is made. The logic dCTL is defined over the Computation Tree

Logic (CTL), with its novel part being the deontic operators O(ψ) (obligation) and

P(ψ) (permission), which are applied to a certain kind of path formula ψ. The

intention of these operators is to capture the notion of obligation and permission over

traces. Intuitively, these operators have the following meaning:

• O(ψ): property ψ is obliged in every future state, reachable via non-faulty

transitions.

• P(ψ): there exists a normal execution, i.e., not involving faults, starting from

the current state and along which ψ holds.

Obligation and permission will enable us to express intended properties which should

hold in all normal behaviors and some normal behaviors, respectively. These deontic

operators have an implicit temporal character, since ψ is a path formula. One way of

thinking about the semantics of this logic is considering some executions as painted

green, these are the correct executions of the system, and others painted red or red

and green, and they represent the executions of the system containing faults. The

obliged properties are those true in the green executions.

The syntax of dCTL- is defined as follows. Let AP = {p0, p1, . . . } be a set of atomic

propositions. The sets Φ and Ψ of state formulas and path formulas, respectively, are

mutually recursively defined as follows:

Φ ::= > | pi | ¬Φ | Φ→ Φ | A(Ψ) | E(Ψ) | O(Ψ) | P(Ψ)

Ψ ::= XΦ | Φ U Φ | ΦW Φ

35



Ph.D. Thesis - Ramiro Adrian Demasi McMaster - Computing and Software

Other boolean connectives (here, state operators), such as ∧, ∨, etc., are defined as

usual. Also, traditional temporal operators G and F can be expressed as G(φ) ≡
φW ⊥, and F(φ) ≡ > U φ. We define CTL liveness formulas as those CTL formulas

that only contain AF and EF temporal operators and ∨ and ∧ boolean operators.

On the other hand, safety formulas are those that only contain AG and EG temporal

operators and ∨ and ∧ boolean operators. We remark that, the fragment dCTL-

differs from plain dCTL by excluding two operators: R(ψ) (repair or recovery) and

ψ  ψ′, which it represents a conditional between trace properties. Intuitively, R(ψ)

indicates that property ψ holds in every future state, immediately after a fault has

occured and ψ  ψ′ states that, for every normal trace σ starting in the current

state, if σ satisfies ψ then it also satisfies ψ′, see [Castro et al., 2011] for more details.

Now, we formally state the semantics of the logic. We start by defining the relation

|=, formalizing the satisfaction of dCTL- state formulas in a state s in a colored Kripke

structure M . The definition of |= is as follows:

• M, s |= >

• M, s |= pi ⇔ pi ∈ L(s), where pi ∈ AP.

• M, s |= ¬ϕ⇔ not M, s |= ϕ.

• M, s |= ϕ→ ϕ′ ⇔ (M, s |= ¬ϕ) or (M, s |= ϕ′).

• M, s |= A(ψ) ⇔ for every σ such that σ[0] = s we have that for every i ≥ 0

M,σ[i..] |= ψ.

• M, s |= E(ψ) ⇔ for some σ such that σ[0] = s we have that for every i ≥ 0

M,σ[i..] |= ψ.

• M, s |= O(ψ) ⇔ for every σ ∈ NT (M) such that σ[0] = s we have that for

every i ≥ 0 M,σ[i..] |= ψ.

• M, s |= P(ψ) ⇔ for some σ ∈ NT (M) such that σ[0] = s we have that for

every i ≥ 0 M,σ[i..] |= ψ.

The above satisfaction relation makes use of dCTL- satisfaction for path formulas,

whose definition is standard:
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• M,σ |= Xϕ⇔M,σ[1] |= ϕ.

• M,σ |= ϕ U ϕ′ ⇔ there exists j ≥ 0 such that M,σ[j] |= ϕ′ and for every

0 ≤ k < j, it holds that M,σ[j] |= ϕ.

• M,σ |= ϕ W ϕ′ ⇔ either there exists j ≥ 0 such that M,σ[j] |= ϕ′ and for

every 0 ≤ k < j it holds that M,σ[j] |= ϕ, or for every j ≥ 0 we have that

M,σ[j] |= ϕ.

We denote by M |= ϕ the fact that M, s |= ϕ holds for every state s of M , and

by |= ϕ the fact that M |= ϕ holds for every colored Kripke structure M .

In order to illustrate the semantics of the deontic operators, let us consider the

colored Kripke structure in Figure 2.1, where the set of propositional variables is

{p, q, r, v, t}, and each state is labeled by the set of propositional variables that hold

in it. The states that are the target of dashed arcs are abnormal states (those in which

something has gone wrong); faulty states are also drawn with dashed lines, while the

other ones represent normal configurations. Notice that the unique faulty state in

this model is that labeled by t. In this simple model, for every non-faulty execution,

p ∧ q is always true. In dCTL- this is expressed by the formula O(p ∧ q). Note that

there also exist normal executions for which p∧ q ∧ r holds. This fact is expressed as

P(p ∧ q ∧ r). Other deontic operators such as prohibition can be expressed by using

those introduced above (see [Castro et al., 2011]).

One of the interesting characteristics of dCTL- is the possibility of distinguishing

between formulas that state properties of good executions and the standard formulas,

which state properties of all possible executions. For every formula ϕ, a formula ϕN

can be built, which captures the same property as ϕ but restricted to good executions.

This leads to the notion of the normative formula corresponding to a given formula,

and is defined as follows.

Definition 2.3.1. Given a dCTL- formula ϕ over an alphabet AP, the normative

formula ϕN corresponding to it is defined by the following rules:

• (pi)
N def

= pi,

• (¬ϕ)N
def
= ¬ϕN ,

• (ϕ ∧ ϕ′)N def
= ϕN ∧ ϕ′N ,
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Figure 2.1: A simple colored Kripke structure.

• (AXϕ)N
def
= OXϕN ,

• (EXϕ)N
def
= PXϕN ,

• (A(ϕ U ϕ′))N def
= O(ϕN U ϕ′N),

• (A(ϕW ϕ′))N
def
= O(ϕN W ϕ′N),

• (E(ϕ U ϕ′))N def
= P(ϕN U ϕ′N),

• (E(ϕW ϕ′))N
def
= P(ϕN W ϕ′N),

• (O(ϕ U ϕ′))N def
= O(ϕN U ϕ′N),

• (O(ϕW ϕ′))N
def
= O(ϕN W ϕ′N),

• (P(ϕ U ϕ′))N def
= P(ϕN U ϕ′N),

• (P(ϕW ϕ′))N
def
= P(ϕN W ϕ′N).

2.4 Model of Computation

Some remarks are necessary about our model of computation. We take the view of

[Arora and Gouda, 1993; Attie et al., 2004; Dijkstra, 1976; Gärtner, 1999a; Kulkarni

38



Ph.D. Thesis - Ramiro Adrian Demasi McMaster - Computing and Software

Normal Actions:
(state = 0)→ (state := 1)
(state = 1)→ (state := 2)
(state = 2)→ (state := 0)

Faulty Actions:
(state = 1)→ (state := 3)
(state = 1)→ (state := 6)
(state = 3)→ (state := 4)
(state = 4)→ (state := 5)
(state = 5)→ (state := 7)
(state = 6)→ (state := 7)

Figure 2.2: A simple program “Never 7”.

and Arora, 2000] and describe programs in a guarded command style. A guarded

command is composed of a boolean condition over the actual state of the system

and an assignment, written as Guard→ Command. These syntactical constructions

are called actions, and a program consists of a collection of actions. We can use

some actions to represent faults (as done in [Arora and Gouda, 1993; Attie et al.,

2004; Gärtner, 1999a]). Furthermore, we can devise distributed systems, where we

have several programs interacting concurrently; the interested reader is referred to

[Chandy and Misra, 1989] for a detailed introduction to this style of programming.

The important point here is that we can map these programs to colored Kripke

structures, mapping variable valuations to states and actions to transitions; here

green transitions represent non-faulty actions and red ones capture faulty actions.

An example of this is shown in Figure 2.3. This is a simple example called Never 7,

introduced by Bastian Braun in his M.Sc. thesis at University of Mannheim and it

was also used by Bonakdarpour in his PhD thesis [Bonakdarpour, 2008], where we

have adapted from this last reference. The program has eight states and the system

specification requires that state 7 is not reached in the future, and the invariant

predicate of the program is the set {0, 1, 2}. The behavior of this small system can

be expressed by the program shown in Figure 2.2. For the sake of simplicity, we

assume that we only have boolean variables in our programs; it is straightforward to

extend this programming language with other programming types. Note that, in the

kinds of programs described above, we may have two actions enabled at the same

time; if this happens infinitely often during the execution of a system, we may have
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Figure 2.3: Never 7 program.

scenarios where some actions are neglected infinitely often. To avoid such scenarios,

we must introduce the notion of fair executions. In order to express this fairness

assumption, we follow the ideas introduced in [Aminof et al., 2004], where Kripke

structures are augmented with fairness conditions. The authors consider a transition

fairness defined as follow: “A path π is fair with respect to the transition fairness

condition iff all the transitions that are enabled along π infinitely often are also taken

along π infinitely often”.

Definition 2.4.1 (Set of Fair Executions). Given a colored Kripke structure M =

〈S, I, R, L,N〉 we define the set of fair executions of M as follows:

FT (M) = {σ | σ ∈ T R(M) and ∀w, t ∈ S : ∀i : ∃j > i : t ∈ Post(σ[j]) ∧ σ[j] = w

⇒ ∀i : ∃j > i : σ[j] = t ∧ σ[j − 1] = w}

We say that a transition w → t is enabled in position i in σ, if σ[i] = w. Definition

2.4.1 says that actions that are enabled infinitely often are executed infinitely often. In

practice, fair programs can be implemented by using schedulers, and it is a standard

assumption in concurrency. It is worth noting that in our definition of fair executions

we also consider faulty actions, that is, the faulty actions that are enabled infinitely

often in an execution, will occur infinitely often. We can also introduce fair normative

executions which do not take into account faults, as follows:

Definition 2.4.2 (Set of Fair Normative Executions). Given a colored Kripke struc-

ture M = 〈S, I, R, L,N〉 we define the set of fair normative executions of M as

follows:
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FNT (M) = {σ | σ ∈ T R(M) and ∀w, t ∈ S : ∀i : ∃j > i : (t ∈ PostN(σ[j]) ∧
σ[j] = w)⇒ ∀i : ∃j > i : σ[j] = t ∧ σ[j − 1] = w}

When useful we denote the set of fair (normative) executions starting in state s

by FT (M)(s) (FNT (M)(s)).

Note that the restriction to fair executions is reasonable when one inspects the

way in which faults are distributed in practice. If a fault has a positive probability of

occurring (if it has probability 0, it can be deleted from the model), then during an

infinite execution it will occur infinitely often. However, in the case that one wants

to restrict the number of occurrences of any fault, the program and the specification

of the faults can be modified straightforwardly to do so. The restriction of |= to fair

(normative) executions is denoted by |=f (|=nf ).
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Chapter 3

Bisimulation and Fault-Tolerance

Bisimulation and Simulation are rich concepts which appear in various areas of theo-

retical computer science. Its origins lie in concurrency theory, for instance see Milner

[Milner, 1980], in modal logic, see van Benthem for example [van Benthem, 1999], and

with respect to temporal logics [Browne et al., 1987] and [De Nicola and Vaandrager,

1995].

In this chapter we present suitable notions of simulation relations that allow us to

capture diverse fault-tolerance properties, namely, masking, nonmasking, and failsafe

fault-tolerance. In order to define these properties, we follow the basic definitions

regarding simulation and bisimulation relations given in [Baier and Katoen, 2008].

We assume that the properties of interest of a system are defined by means of

a set of safety and liveness properties (recall that any temporal specification can

be written as a conjunction of safety and liveness properties [Alpern and Schneider,

1985]). Basically, in order to check fault-tolerance, we consider two colored Kripke

structures for a system, the first one acting as a specification of the intended behavior

and the second as the fault-tolerant implementation. A system will be fault-tolerant if

it is able to preserve, to some degree, the safety and liveness properties corresponding

to its specification, even in the presence of faults. Our main goal is to capture, via

appropriate (bi)simulation relations between the system specification and the fault-

tolerant implementation, different kinds of fault-tolerance, with different levels of

property preservation.

In the following definitions, given a colored Kripke structure with a labeling L, we

consider the notion of a sub-labeling: we say that L0 is a sub-labeling of L (denoted
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by L0 ⊆ L), if L0(s) = L(s)∩AP ′, for all states s and some AP ′ ⊆ AP . We also say

that L0 is obtained by restricting AP to AP ′. The concept of sub-labeling allows us

to focus on certain properties of models.

We remark that the content of this chapter is fully similar to the version submitted

for a journal publication [Demasi et al., 2014].

3.1 Masking Fault-Tolerance

Recall that a program is said to be masking fault-tolerant when it continues satisfying

part (perhaps all) its safety and liveness specification even under the occurrence of

faults. A minor observation about this definition is useful. Usually, when verifying a

component, one is interested in the behavior that is observable through its interface;

thus, when defining masking fault-tolerance we restrict ourselves to the interface of

the component, captured formally by means of the notion of sub-labeling. Let us

introduce the notion of masking fault-tolerance simulation.

Definition 3.1.1. (Masking fault-tolerance) Given two colored Kripke structures

M = 〈S, I, R, L,N〉 and M ′ = 〈S ′, I ′, R′, L′,N ′〉, we say that a relationship ≺Mask⊆
S × S ′ is masking fault-tolerant for sublabelings L0 ⊆ L and L′0 ⊆ L′ iff:

(A) ∀s1 ∈ I : (∃s2 ∈ I ′ : s1 ≺Mask s2) and ∀s2 ∈ I ′ : (∃s1 ∈ I : s1 ≺Mask s2).

(B) for all s1 ≺Mask s2 the following holds:

(1) L0(s1) = L′0(s2).

(2) if s′1 ∈ PostN(s1), then there exists s′2 ∈ Post(s2) with s′1 ≺Mask s′2.

(3) if s′2 ∈ PostN(s2), then there exists s′1 ∈ PostN(s1) with s′1 ≺Mask s′2.

(4) if s′2 ∈ PostF (s2), then either there exists s′1 ∈ PostN(s1) with

s′1 ≺Mask s′2 or s1 ≺Mask s′2.

We say that state s2 is masking fault-tolerant for s1 when s1 ≺Mask s2. Intuitively,

the intention in the definition is that, starting in s2, faults can be masked in such a way

that the behavior exhibited is the same as that observed when starting from s1 and

executing transitions without faults. Let us explain the above definition. Conditions

A, B.1, B.2 and B.3 imply that we have a bisimulation between the normative parts
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of M and M ′, thus the non-faulty behavior of both components is basically the same.

Condition B.4 states that every outgoing faulty transition from s2 either must be

matched to an outgoing normal transition from s1, or s′2 is masking fault-tolerant

for s1; this condition expresses that faulty transitions from the second component

mimic a normal behavior of the first component. Finally, it is worth remarking that

the condition symmetric to (B.4) is not required, since we are only interested in the

masking properties of M ′.

Notice that, if there exists a self-loop at state s′2, then we can stay forever satisfying

s1 ≺Mask s′2. In this case, fairness is an important assumption which allows us to

ensure system progress. Another important remark is that an execution could be

fair but after a while all its transitions become faulty; in this case we say that the

execution diverges by faults. To deal with these executions, we will require that from

every state it has to be possible to reach another state where non-faulty transitions

are enabled, that is, we always have the possibility in the future of executing a correct

action.

Definition 3.1.2 (Fault divergence). We say that a model M does not diverge by

faults when for every s ∈ S there exists s′ ∈ S such that s→∗ s′ and PostN(s′) 6= ∅.
In this case we say that M is a NDF (non-divergent by faults) structure.

That is, a model diverges by faults when it can reach a state where all the ac-

tions that can be executed in the future are faulty. The assumption that a model

does not diverge by faults is natural in fault-tolerance where assumptions about the

way that faults occur are needed to prove properties about systems. In the case of

masking fault-tolerance, which is one of the most benign forms of fault-tolerance, the

hypothesis that normal actions are not always neglected by the model being analyzed

is required, in particular, to ensure the preservation of liveness properties. Note that

this condition can be checked with a depth-first search over the model. Other au-

thors, for instance [Arora and Gouda, 1993; Arora and Kulkarni, 1998a,b], require

that only a finite number of faults should occur in any execution of the system in

order to provide masking fault-tolerance; note that this requirement is stronger than

the absence of fault divergence.

Roughly speaking, we say that M ′ masks faults for M iff for every initial state s0

of M there exists an initial state s′0 of M ′ such that s0 ≺Mask s′0, for some masking

fault-tolerant relation ≺Mask; we denote this situation by M ≺Mask M ′. Let us now
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present a simple example to illustrate the above definition.

Example 3.1.1. Let us consider a memory cell that stores a bit of information and

supports reading and writing operations. A state in this system maintains the current

value of the memory cell (m = i, for i = 0, 1), writing allows one to change this value,

and reading returns the stored value.

A potential fault in this scenario occurs when a cell unexpectedly loses its charge,

and its stored value turns into another one (e.g., it changes from 1 to 0 due to charge

loss). A typical technique to deal with this situation is redundancy : use three memory

bits instead of one. Writing operations are performed simultaneously on the three

bits. Reading, on the other hand, returns the value that is repeated at least twice in

the memory bits; this is known as voting, and the value read is written back to the

three bits.

We take the following approach to model this system: each state is described

by variables m and w, which record the value stored in the system (taking voting

into account) and the last writing operation performed, respectively. The state also

maintains the values of the three bits that constitute the system, captured by boolean

variables c0, c1 and c2. For instance, in Figure 3.1, state s0 contains the information

11/111, representing the state: w = 1, m = 1, c0 = 1, c1 = 1, and c2 = 1.

Consider the colored Kripke structures M (left) and M ′ (right) depicted in Fig-

ure 3.1. M only contains normal transitions describing the expected ideal behavior

(without taking into account faults). M ′ includes a model of a fault: a bit may suffer

a discharge and then it changes its value from 1 to 0.

We can show that in this simple case there exists a relation of masking fault-

tolerance between M and M ′ with the sublabelings L0 and L′0 obtained by restricting

L and L′ to propositions m and w, respectively. The relation

R1 = {〈s0, t0〉, 〈s1, t1〉, 〈s0, t2〉}

is masking fault-tolerant for 〈M,M ′〉. Notice that each pair of R1 satisfies each

condition of Definition 3.1.1:

• 〈s0, t0〉 satisfies condition B.1 because L0(s0) = L′0(t0). Conditions B.2 and B.3

are satisfied because the transition s0 → s0 is masked by t0 → t0 and vice versa

with 〈s0, t0〉 ∈ R1, and transition t0 → t1 masks s0 → s1 and vice versa with
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Figure 3.1: Two masking fault-tolerance colored Kripke structures.

〈s1, t1〉 ∈ R1. Finally, condition B.4 is satisfied because the faulty transition

t0 99K t2 masks the normal transition s0 → s0 with 〈s0, t2〉 ∈ R1.

• 〈s1, t1〉 satisfies condition B.1 because L0(s1) = L′0(t1). Conditions B.2 and B.3

are satisfied because the normal transition t1 → t0 is masked by s1 → s0 and

vice versa with (s0, t0) ∈ R1, and the normal transition t1 → t1 masks s1 → s1

and vice versa with 〈s1, t1〉 ∈ R1.

• 〈s0, t2〉 satisfies condition B.1 since L0(s0) = L′0(t2) (taking into account that

reading operations return the value that is repeated at least twice in the memory

bits). Conditions B.2 and B.3 are satisfied because the normal transition t2 →
t0 masks s0 → s0 and vice versa with 〈s0, t0〉 ∈ R1, and the normal transition

t2 → t1 masks s0 → s1 and vice versa with 〈s1, t1〉 ∈ R1.

Now, we provide some results that allows us to apply the definition of masking

fault-tolerance to paths.

Lemma 3.1.1. Let M = 〈S, I, R, L,N〉 and M ′ = 〈S ′, I ′, R′, L′,N ′〉 be colored Kripke

structures, ≺Mask⊆M×M ′ a masking relation and s ≺Mask s′ with s ∈ S and s′ ∈ S ′.
If M ′ is a NDF structure, then for any path σ′ ∈ FT (M ′) such that σ′ = s′0s

′
1s
′
2 . . .

with s′0 = s′, there exists a function f : N→ N and a normative path σ ∈ FNT (M)

such that σ = sf(0)sf(1)sf(2) . . . with s0 = s and sf(i) ≺Mask s′i. Furthermore, f

preserves initial segments of N.
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Proof. Note that a path in S is just a function σ : N→ S that respects the transitions

in the structure. Given σ′ ∈ FT (M ′), we define a trace σ∗ : N→ S ∪ {∗} where ∗ is

a new state, as follows:

σ∗[i] =


s if i = 0,

w if ∃w ∈ PostN(σ∗[last(σ∗, i)]) s.t. w ≺Mask s′i and ,

∗ otherwise.

Where last(σ∗, i) = max{j|0 ≤ j < i : σ∗(j) 6= ∗}, that is, this expression denotes

the last position in σ∗ that is less than i and contains an element different from ∗.
Moreover, we choose some w ≺Mask s′i; if we have several states that satisfy this

condition, we define the function in such a way that it selects the state that has

the minimum number of occurrences in σ∗[0..i − 1]. This ensures the fairness of the

execution.

Function f is defined by means an auxiliary function g(i, j), which calculates the

position of the j-th symbol different from ∗ from position i in σ∗.

g(i, j) =


j if i = 1 and σ∗[j] 6= ∗;
g(i− 1, j + 1) if i 6= q and σ∗[j] 6= ∗;
g(i, j + 1) if σ∗[i] = ∗.

Then, f is defined as follows:

f(i) = g(i+ 1, 0)

Now, we f to define a normative trace σ as follows:

σ[i] = σ∗[f(i)]

Notice that in the last item in the definition of g the ∗ symbol is skipped; this

function is well-defined because we cannot have an infinite sequence of ∗′s in σ∗. This

is straightforward to prove by using the fact that σ′ is a fair execution and M ′ does

not diverge by faults; thus, in any infinite execution we have an infinite number of

non-faulty actions enabled.

By definition σ ∈ NT (M) , and sf(i) ≺Mask s′i. Furthermore, note that σ is a

fair execution; if we have that a transition si → t is enabled infinitely often in σ,

then we have (by condition B.2) an infinite number of positions k in σ′ such that t
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≺Mask σ′[k]. Then, by definition of σ∗, at some point we will choose t as successor

of some σ[i], and this will happen infinitely often, thus σ ∈ FNT (M). Note that, if

[0 . . . i] is an initial segment of N, then, by definition of f , f([0 . . . i]) (its image by f)

is also an initial segment of N.

Notice that, if we only consider normal executions starting in s1 and s2 with s1

≺Mask s2, by conditions (B.3) and (B.4) of definition 3.1.1 we have that, for each

normative path starting in s2, there exists a corresponding path from s1, where its

states are similar by masking. This is proven in the following lemma.

Lemma 3.1.2. Let M = 〈S, I, R, L,N〉 and M ′ = 〈S ′, I ′, R′, L′,N ′〉 be colored Kripke

structures, ≺Mask⊆M×M ′ a masking relation and s ≺Mask s′ with s ∈ S and s′ ∈ S ′.
Then there exist functions f : FNT (M)(s)→ FT (M ′)(s′) and g : FNT (M ′)(s′)→
FNT (M)(s) such that:

• ∀σ ∈ FNT (M)(s) : ∀i ≥ 0 : σ[i] ≺Mask f(σ)[i],

• ∀σ′ ∈ FNT (M ′)(s′) : ∀i ≥ 0 : g(σ)[i] ≺Mask σ[i]

Proof. We prove the first item; the other one is similar. Given σ ∈ FNT (M)(s) s.t.

σ = ss1s2 . . . , then note that we have s ≺Mask s′ and by (B.2), if si ≺Mask s′i and

si+1 ∈ PostN(si) then there exists s′i+1 ∈ Post(s′i) such that si+1 ≺Mask s′i+1. Thus,

we can define inductively a sequence f(σ) = s′s′1s
′
2 . . . that satisfies σ[j]≺Mask f(σ)[j]

for every j. To ensure the fairness of such a construction, when choosing the successor

of a given f(σ)[i] where σ[i] ≺Mask f(σ)[i], we select the successor f(σ)[i] → t such

that σ[i + 1] ≺Mask t which appears the minimum number of times in f(σ)[0..i],

which exists by condition (B.2). The result follows.

Now, we can prove that, in the case of masking simulation, the liveness and safety

properties of the normal behavior of the specification are preserved by the imple-

mentation. However, let us note that not all the temporal properties are preserved;

formulas with occurrences of the next operator may not be preserved by the imple-

mentation. Roughly speaking, this is because condition (B.4) allows implementations

to advance in time while staying on the same state in the specification side.

Theorem 3.1.3. Let M = 〈S, I, R, L,N〉 and M ′ = 〈S ′, I ′, R′, L′,N ′〉 be colored

Kripke structures, s1 ∈ S and s2 ∈ S ′. If s ≺Mask s′ for sublabelings L0 and L′0
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obtained by restricting L and L′ to AP ′, respectively, then:

M, s |=nf ϕ
N ⇔M ′, s′ |=f ϕ,

where ϕ is a CTL formula with no next operators and all the propositional variables

of ϕ are in AP ′.

Proof. We proceed by induction over the structure of the formula ϕ.

• Base case: ϕ = p. From s ≺Mask s′ it follows by condition (B.1) for masking

fault-tolerance that s and s′ have the same valuation. Thus, M, s �f pN ⇔
M ′, s′ �f p, where (pi)

N = pi by Definition 2.3.1.

• Inductive case:

Case 1: For ϕ = ψ ∧ ψ′ and ϕ = ¬ψ the result follows by applying the inductive

hypothesis.

Case 2: ϕ = A(ψ1 U ψ2). Suppose that M, s |=nf (A(ψ1 U ψ2))
N and M ′, s′ 2f

A(ψ1 U ψ2)). This means that both:

– ∃σ′ ∈ FT (M ′) : ∃j ≥ 0 : M ′, σ′[j] 2 ψ1 and ∀0 ≤ i ≤ j : M ′, σ′[i] 2
ψ2,

– ∃σ′ ∈ FT (M ′) : ∀0 ≤ i : M ′, σ′[i] 2 ψ2.

In the first case, by Lemma 3.1.1 we have a normative path σ ∈ FNT (M)

and function f s.t. σ[f(i)] ≺Mask σ[i] for any i ≥ 0, and then by induction

we get M,σ[f(i)] 2nf (ψ1)
N and also ∀0 ≤ j ≤ i : M,σ[f(j)] 2nf (ψ2)

N ,

since f(0), f(1), . . . , f(i) is an initial segment of N we get that ∀0 ≤ j ≤
f(i) : M,σ[j] 2 ψ2, thus M,σ 2 O((ψ1)

N U (ψ2)
N). The second case

is similar. The other direction can be proven similarly but using Lemma

3.1.2.

Case 3: ϕ = E(ψ1 U ψ2). Suppose that M, s |=nf (E(ψ1 U ψ2))
N , then for some

path σ ∈ FNT (M) with σ[0] = s we have that:

∃i ≥ 0 : M,σ[i] |=nf (ψ2)
N and ∀0 ≤ j ≤ i : M,σ[j] |=nf (ψ1)

N
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then by Lemma 3.1.2 we have a path f(σ) ∈ FT (M ′) with f(σ)[0] = s′

s.t. ∀i ≥ 0 : σ[i] ≺Mask f(σ)[i], this implies by induction that:

∃i ≥ 0 : M ′, f(σ)[i] |=f ψ2 and ∀0 ≤ j ≤ i : M, f(σ)[j] |=f ψ1

then, M ′, s′ |=f E(ψ1 U ψ2). The other direction is similar.

Case 4: The cases ϕ = A(ψ1 W ψ2) and ϕ = E(ψ1 W ψ2) are similar to cases 2

and 3, respectively.

Summing up, in the case of masking simulation, the basic temporal properties

of systems without faults, such as invariants or liveness formulas, are preserved by

implementations with faults.

3.2 Nonmasking Fault-tolerance

We now focus on nonmasking fault-tolerance. This kind of tolerance is more per-

missive than masking tolerance; recall that it allows for the existence of some states

that do not mask faults. Intuitively, this type of fault-tolerance allows the system

to violate its specification while it is recovering from a fault and thus returning to a

normal behavior. More technically, the liveness properties of the nonfaulty part of the

system are preserved, whereas the safety properties observed in the correct behavior

of the system may not be fully preserved, but should be eventually reinstated. The

characterization of this kind of fault-tolerance is as follows.

Definition 3.2.1. (Nonmasking fault-tolerance) Given two colored Kripke structures

M = 〈S, I, R, L,N〉 and M ′ = 〈S ′, I ′, R′, L′,N ′〉, we say that a relation ≺Nonmask
⊆ S × S ′ is nonmasking for sublabelings L0 ⊆ L and L′0 ⊆ L′, iff:

(A) ∀s1 ∈ I : (∃s2 ∈ I ′ : s1 ≺Nonmask s2) and ∀s2 ∈ I ′ : (∃s1 ∈ I : s1 ≺Nonmask s2).

(B) for all s1 ≺Nonmask s2 the following holds:

(1) L0(s1) = L′0(s2).

(2) if s′1 ∈ PostN(s1), then there exists s′2 ∈ Post(s2) with s′1 ≺Nonmask s′2.
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(3) if s′2 ∈ PostN(s2), then there exists s′1 ∈ PostN(s1) with s′1 ≺Nonmask s′2.

(4) if s′2 ∈ PostF (s2), then there exists s′1 ∈ PostN(s1) with s′1 ≺Nonmask s′2, or

(5) if s′2 ∈ PostF (s2) with s′1 ⊀Nonmask s′2 for all s′1 ∈ PostN(s1), then for any

finite fragment s2s
′
2w0 . . . wk such that s′1 ⊀Nonmask wi for all s′1 ∈ PostN(s1)

and wi, there exists a path wk ⇒∗ s′′2 such that s′1 ≺Nonmask s′′2 for some

s′1 ∈ PostN(s1).

Let us briefly explain this definition. Conditions A, B.1, B.2, B.3, B.4 are similar

to the conditions of Definition 3.1.1. Condition B.5 asserts that, if s1 ≺Nonmask s2 and

every “faulty” successor state (say s′2) of s2 is not in a nonmasking relation with any

normal successor of s1, then any faulty path fragment starting at s′2 can be extended

to reach a s′′2 such that s′1 ≺Nonmask s′′2 for some normal successor s′1 of s1; that is,

the system can recover from faults.

We say that M ′ is nonmasking fault-tolerant with respect to M iff for every initial

state s0 of M there exists an initial state s′0 of M ′ such that s0 ≺Nonmask s′0, for some

nonmasking fault-tolerant ≺Nonmask (indicated by M ≺Nonmask M ′).

At first sight, nonmasking fault-tolerance seems similar to the notion of weak bi-

simulation used in process algebra [Milner, 1980], where silent steps are taken into

account. Notice, however, that, as opposed to weak bisimulation where silent steps

produce only non-observable (i.e., internal) changes, faults may produce observable

changes in a nonmasking fault-tolerance relation. Let us present an example of non-

masking fault-tolerance.

Example 3.2.1. For the memory cell introduced in Example 3.1.1, consider now the

colored Kripke structures M (left) and M ′ (right) depicted in Figure 3.2. Now we

consider that two faults may occur: up to two bits may lose their charge before any

normal transition is taken. The relation R2 = {〈s0, t0〉, 〈s1, t1〉, 〈s0, t2〉} is nonmasking

tolerant for 〈M,M ′〉 and the sublabelings L0 and L′0, obtained by restricting L and

L′ to propositions m and w, respectively.

In nonmasking fault-tolerance, one is interested in preserving the liveness proper-

ties of the non-faulty part of the system, that is, the requests need to be granted, or

rather the program should exhibit some advance towards some goal, even during a

faulty scenario. Note that in this case safety conditions do not need to be preserved.

As acknowledged in [Gärtner, 1999a], this kind of fault-tolerance is not the usual one
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Figure 3.2: Two nonmasking fault-tolerance colored Kripke structures.

in practice since one usually intends to keep the system in safe states. First, we prove

that liveness properties are preserved by nonmasking simulation. To do so, we need

a couple of lemmas; the following two lemmas relate normative and faulty executions

of two systems related by a nonmasking relation.

Lemma 3.2.1. Let M = 〈S, I, R, L,N〉 and M ′ = 〈S ′, I ′, R′, L′,N ′〉 be colored Kripke

structures, s ∈ S, s′ ∈ S ′ with s ≺Nonmask s′ for some sublabelings L0 and L′0 obtained

by restricting L and L′ to AP ′. If there is a σ′ ∈ FT (M ′)(s′) with M ′, σ′ � Gp for

some p ∈ AP ′, then there exists a σ ∈ FNT (M)(s) such that M,σ � Gp.

Proof. Suppose that we have a σ′ ∈ FT (M ′)(s′) such that M ′, σ′ � Gp. We know

that s ≺Nonmask s′, thus we can define an execution σ of M and a function f : N→ N
as follows:

• σ[0] = s and f(0) = 0,

• Let σ[i] be a defined position. Note that we have σ[i] ≺Nonmask σ′[f(i)], σ[i+1]

is a w ∈ S such that w ∈ PostN(σ[i]) and there is a σ′[f(i) + k] such that w

≺Nonmask σ′[f(i) + k] (for some k). If there are many such w’s, we select the

one that appears less often in σ[0..i]. Note that, because of Definition 3.2.1 we

have a least one. Furthermore, we define f(i+ 1) = f(i) + k.

First, let us note that since every position of σ is nonmasking similar to a position

of σ′, we have M ′, σ′ � Gp. We need to prove that σ ∈ FNT (M)(s). Suppose
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that σ /∈ FNT (M)(s), that is we have w ∈ PostN(σ[i]) infinitely often in σ for

some t = σ[i], and the fragment . . . tw . . . does not occur infinitely often in σ. But

since σ′ is fair, and by definition of σ, we have an unbounded number of positions

i where σ′[i] → ti is a transition in M ′ and w ≺Nonmask ti. Since we have a finite

number of transitions, we have states tk, t
′
k′ such that tk → t′k′ is enabled infinitely

often in σ′, and so (σ′ is fair) we have that the fragment . . . tkt
′
k′ . . . occurs infinitely

often in σ′. Now, note that fragment . . . tw . . . also should occur infinitely often in

σ by construction, since at some point we select w as successor since it is the state

that occurs a minimum number of time in the sequence σ. That is, we obtain a

contradiction and so σ ∈ FNT (M)(s).

Similarly we can relate traces of the faulty model with those of the specification.

Lemma 3.2.2. Given M = 〈S, I, R, L,N〉 and M ′ = 〈S ′, I ′, R′, L′,N ′〉, s ∈ S,

s′ ∈ S ′ with s ≺Nonmask s′ for some for sublabelings L0 and L′0 obtained by restricting

L and L′ to AP ′. If there is a σ ∈ FNT (M)(s), such that M,σ � Fp, for some p in

L0, then there is a σ′ ∈ FT (M ′)(s′) such that M ′, σ′ � Fp.

Proof. Given σ ∈ FNT (M)(s), we define an execution σ′ ∈ T R(M ′) as follows:

• σ′[0] = s′,

• suppose that σ′[i] has been already defined, σ′[i + 1] is the state w such that

σ[i]⇒∗ w and σ[i] ≺Nonmask w, that appears the minimum number of times in

σ′[0..i].

As in Lemma 3.2.1, the definition of σ′ guarantees that σ′ ∈ FT (M ′)s′. Now, if we

have some k such that M,σ[k] � p then, we have that σ[k] ≺Nonmask σ′[k], and then

M ′, σ′ � Fp, the result follows.

Now, we can prove that, in the presence of fairness, liveness properties are pre-

served by nonmasking implementations:

Theorem 3.2.3. Let M = 〈S, I, R, L,N〉 and M ′ = 〈S ′, I ′, R′, L′,N ′〉 be colored

Kripke structures s ∈ S and s′ ∈ S ′. If s ≺Nonmask s′ for sublabelings L0 and L′0
obtained by restricting L and L′ to AP ′, respectively, then

M, s �nf ϕ
N ⇒M ′, s′ �f ϕ,
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where all the propositional variables of ϕ are in AP ′, and ϕ is a liveness CTL property.

Proof. The proof is by induction on ϕ. For the base case, we have two possibilities:

• If ϕ = EFp, suppose M, s �nf ϕN , that is, there is an execution σ ∈ FNT (M)

such that M,σ[i] � p, for some i, thus by Lemma 3.2.1, we have a σ′ ∈ FT (M ′)

such that M ′, σ′[k] � p for some k.

• IF ϕ = AFp, we reason similarly to the case above, but using Lemma 3.2.2.

The inductive cases (that is, ψ1 ∨ ψ2 and ψ1 ∧ ψ2) are direct using the inductive

hypothesis.

Note that this theorem guarantees that implementations preserve the liveness

properties of specifications. Furthermore, notice that the other direction of this prop-

erty is not necessarily true. This is mainly because nonmasking implementations may

eventually make true some properties, during its faulty behavior, which do not hold

in the non-faulty program.

As argued in [Arora and Kulkarni, 1998b; Gärtner, 1999a], in practice we are inter-

ested in those nonmasking programs that eventually reestablish the safety properties

of their specifications, that is, faulty programs may exhibit an incorrect behavior,

but at some point they start behaving as expected. Obviously, to guarantee such a

property in a nonmasking simulation, we need to avoid such scenarios where faults

occur in such a way that the system cannot reach a normal execution. When all the

executions of the system only exhibit a finite number of faults, then we can ensure

that the normal behavior of the system will be reestablished; this is proven in the

following theorem.

Theorem 3.2.4. Let M = 〈S, I, R, L,N〉 and M ′ = 〈S ′, I ′, R′, L′,N ′〉 be colored

Kripke structures such that s ∈ S and s′ ∈ S ′ and for any σ′ ∈ FT (M ′)(s′) the

number of i’s such that σ′[i + 1] ∈ PostF (σ′[i]) is finite. Then, if s ≺Nonmask s′ for

sublabelings L0 and L′0 obtained by restricting L and L′ to AP ′, respectively, then

M, s �nf (AGϕ)N ⇒M ′, s′ �f AFAGϕ,

where all the propositional variables of ϕ are in AP ′.
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Proof. To prove this property, we need to take note of some observations. First,

note that, since we have finite structures, requiring that the number of faults of

any execution is bounded, is the same as requiring that no faults occur in any cy-

cle, otherwise we can find a trace (the cycle) where we have an unbounded number

of faults. That is, in this case, for any execution σ′ ∈ T R(M ′), we have an in-

stant i such that T R(M ′)(σ′[i]) ⊆ NT (M ′)(σ′[i]), that is, we have a point from

which all the transitions are non-faulty. Note also that, if s ≺Nonmask s′ with

T R(M)(s) ⊆ NT (M)(s) and T R(M ′)(s′) ⊆ NT (M ′)s′, then we have that s and

s′ are bisimilar (there are no faulty actions, and B.2 and B.3 for Definition 3.2.1

guarantee a bisimulation) and thus M, s � ϕ iff M ′, s′ � ϕ for any CTL formula ϕ.

Now, suppose that M, s �nf (AGϕ)N . Take any path σ′ ∈ T R(M ′)s′, at some point i;

we have that T R(M ′)σ′[i] ⊆ NT (M ′)σ′[i]. Also by Definition 3.2.1 we have instants

k and k′ > i such that σ[k] ≺Nonmask σ[k′], and also note that, by hypothesis, we

have M,σ[k] �nf (AGϕ)N . By the remark above, we have M ′, σ′[k′] �f AGϕ and thus

M ′, s � AFAGϕ.

Summarizing, this theorem says that, if we only consider a finite number of faults

occurring in executions, then safety properties are eventually reestablished.

3.3 Failsafe Fault-tolerance

We now present a characterization of failsafe fault-tolerance. Essentially, failsafe

fault-tolerance must ensure that the system will stay in a safe state, although it

may be limited in its capacity. More technically, this means that the normative

safety properties must be preserved, while normative liveness properties may not be

respected.

Definition 3.3.1. (Failsafe fault-tolerance) Given two colored Kripke structures M =

〈S, I, R, L,N〉 and M ′ = 〈S ′, I ′, R′, L′,N ′〉, we say that a relation ≺Failsafe⊆ S × S ′

is failsafe for sublabelings L0 ⊆ L and L′0 ⊆ L′ iff:

(A) ∀s1 ∈ I : (∃s2 ∈ I ′ : s1 ≺Failsafe s2) and ∀s2 ∈ I ′ : (∃s1 ∈ I : s1 ≺Failsafe s2).

(B) for all s1 ≺Failsafe s2 the following holds:

(1) L0(s1) = L′0(s2).
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(2) if s′1 ∈ PostN(s1), then there exists s′2 ∈ Post(s2) with s′1 ≺Failsafe s′2.

(3) if s′2 ∈ PostN(s2), then there exists s′1 ∈ PostN(s1) with s′1 ≺Failsafe s′2.

(4) if s′2 ∈ PostF (s2), then either:

i. there exists s′1 ∈ PostN(s1) with s′1 ≺Failsafe s′2 or s1 ≺Failsafe s′2, or

ii. ∀s : (s′2 ⇒∗ s)⇒ L0(s2) = L0(s)

Whenever two states s1 and s2 are related by a failsafe fault-tolerant relation

≺Failsafe , i.e., s1 ≺Failsafe s2, we say that s2 is failsafe fault-tolerant for s1. We say

that M ′ is failsafe fault-tolerant for M if we have some relation ≺Failsafe ⊆ S × S ′;
we denote this situation by M ≺Failsafe M ′.

Let us briefly explain this definition. Conditions A, B.1, B.2, B.3, B.4.i are similar

to those conditions of Definition 3.1.1 regarding masking fault-tolerance. Condition

B.4.ii intuitively asserts that, from s′2 the system in M ′ remains in a state (or several

equivalent states) which is safe. We now present a simple example to illustrate this

notion.

Example 3.3.1. Consider the colored Kripke structures M (left) and M ′ (right)

depicted in Figure 3.3. M is the specification of the expected ideal, fault-free, be-

havior. M ′, on the other hand, involves the occurrence of one fault. The relation

R3 = {(s0, t0), (s1, t1)} is a failsafe fault-tolerance relation for (M,M ′) and the sub-

labelings that are obtained by restricting L and L′ to propositions m and w.

In the following we prove that our definition of failsafe fault-tolerance preserves

safety properties. First, note that a failsafe relation imposes a relationship between

the traces of the two models involved in the relations; this is proven in the following

lemmas.

Lemma 3.3.1. Let M = 〈S, I, R, L,N〉 and M ′ = 〈S ′, I ′, R′, L′,N ′〉 be colored Kripke

structures, s ∈ S, s′ ∈ S ′ with s ≺Failsafe s′ for some sublabelings L0 and L′0 obtained

by restricting L and L′ to AP ′. If there is a σ′ ∈ FT (M ′)(s′) with M ′, σ′ � Fp for

some p ∈ AP ′, then there exists a σ ∈ FNT (M)(s) such that M,σ � Fp.

Proof. Given σ′ ∈ FT (M ′)(s′) where we have s ≺Failsafe σ′[0] and we have p ∈
L′0(σ

′[k]) for some k, now we have some fragment ss1s2s3 . . . sk′ in M (by Definition

3.3.1) such that k ≤ k′ and σ′[i] ≺Failsafe sj for 0 ≤ i ≤ k and 0 ≤ j ≤ k′; obviously,
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Figure 3.3: Two failsafe fault-tolerant colored Kripke structures.

this segment has some extension σ in M that is a fair execution, and also by Definition

3.3.1 we have that for some i M, si � p, thus M,σ � Fp

Lemma 3.3.2. Let M = 〈S, I, R, L,N〉 and M ′ = 〈S ′, I ′, R′, L′,N ′〉 be colored Kripke

structures, s ∈ S, s′ ∈ S ′ with s ≺Failsafe s′ for some for sublabelings L0 and L′0
obtained by restricting L and L′ to AP ′. If there is a σ ∈ FNT (M)(s) with M,σ � Gp

for some p ∈ AP ′, then there exists a σ′ ∈ FT (M ′)(s′) such that M ′, σ′ � Gp.

Proof. Given σ ∈ FNT (M ′)(s′) such that M, s � Gp, then we can define an execu-

tion σ′ in FT (M ′)(s′) similarly to the case in Lemma 3.2.2, thus by Definition 3.3.1

we have M ′, σ′[i] � p for all i, then M ′, σ′ � Gp.

Let us now prove that failsafe implementations preserve safety properties.

Theorem 3.3.3. Let M = 〈S, I, R, L,N〉 and M ′ = 〈S ′, I ′, R′, L′,N ′〉 be colored

Kripke structures, s1 ∈ S and s2 ∈ S ′. If s1 ≺Failsafe s2 for sublabelings L0 and L′0
obtained by restricting L and L′ to AP ′, respectively, and ϕ is a CTL safety property.

Then M, s1 �nf ϕN ⇒ M ′, s2 �f ϕ, where all the propositional variables of ϕ are in

AP ′.

Proof. We proceed by induction on ϕ. The base case is as follows:

• If ϕ = AGp, then suppose M, s �nf (AGp)N and not M ′, s′ �f AGp. Thus we

have a σ′ ∈ FT (M ′)(s′) such that M ′, σ′ � Fp. So by Lemma 3.3.1 we have

M,σ � Fp for σ ∈ FNT (M)(s); this is a contradiction and then M ′, s′ �f AGp.
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• If ϕ = EGp, we proceed as before but using Lemma 3.3.2.

The inductive cases are direct by using the inductive hypothesis.

That is, if we have a failsafe relation between s1 and s2 and for every state in

normal paths starting in s1, ϕ holds in the absence of faults, then ϕ is always true

even in the presence of faults in paths starting in s2.

3.4 Some Properties

The following lemma presents some properties of all the fault-tolerance relations de-

fined above.

Lemma 3.4.1. Given relations ≺Mask, ≺Nonmask and ≺Failsafe, we have the following

properties:

• ≺Mask , ≺Nonmask , ≺Failsafe are transitive,

• If M does not have faults, then: M @M ′ ⇒M ′ @M ,

where @∈ {≺Mask,≺Nonmask,≺Failsafe},

• ≺Mask, ≺Nonmask and ≺Failsafe are not necessarily reflexive.

Proof. We prove the properties for ≺Mask . The proofs for the other relations are

similar.

• Nonreflexivity: We show that ≺Mask is not reflexive via the following coun-

terexample: given the colored Kripke structure M with state space S = {s0, s1}
depicted in Figure 3.4. Its identity relation R = {〈s0, s0〉, 〈s1, s1〉} is not mask-

ing fault-tolerant because the pair 〈s0, s0〉 does not satisfy condition (B.4) of

Definition 3.1.1: for s1 ∈ PostF (s0), there does not exist a normal successor

from s0 with s1 ≺Mask s1.

Figure 3.4: Counterexample for reflexivity.
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• Symmetry: Assume R is masking fault-tolerant for two colored Kripke struc-

tures M and M ′. Clearly, relation R−1 satisfies conditions (A) and (B.1).

Conditions (B.2) and (B.3) also hold for R−1 by symmetry of (B.2) and (B.3).

Finally, condition (B.4) is satisfied due to the fact that we do not take in ac-

count the faulty transitions in the left colored Kripke structures of the pair

〈M,M ′〉. Hence, R−1 is masking fault-tolerant for 〈M ′,M〉.

• Transitivity Let R1,2 and R2,3 be masking fault-tolerant for 〈M1,M2〉 and

〈M2,M3〉, respectively. The relation R1,3 = R1,2 ◦ R2,3, defined as usual, is

masking fault-tolerant for 〈M1,M3〉, where S2 denotes the set of states in M2.

This can be proven by checking the conditions of Definition 3.1.1:

(A) Consider the initial state s1 of M1. Since R1,2 is masking fault-tolerant,

there is an initial state s2 of M2 with 〈s1, s2〉 ∈ R1,2. As R2,3 is masking

fault-tolerant, there is an initial state s3 of M3 with 〈s2, s3〉 ∈ R2,3. Thus,

〈s1, s3〉 ∈ R1,3. In the same way, we can check that for any initial state s3

of M3, there is an initial state s1 of M1 with 〈s1, s3〉 ∈ R1,3.

(B.1) By definition of R1,3, there is a state s2 in M2 with 〈s1, s2〉 ∈ R1,2 and

〈s2, s3〉 ∈ R2,3. Then, L1(s1) = L2(s2) = L3(s3).

(B.2) Assume 〈s1, s3〉 ∈ R1,3. As 〈s1, s2〉 ∈ R1,2, it follows that if s′1 ∈
PostN(s1), then 〈s′1, s′2〉 ∈ R1,2 for some s′2 ∈ PostN(s2). Since 〈s2, s3〉 ∈
R2,3, we have 〈s′2, s′3〉 ∈ R2,3 for some s′3 ∈ PostN(s3). Hence, 〈s1, s3〉 ∈ R1,3

(B.3) Similar to the proof for (B.2).

(B.4) Assume 〈s1, s3〉 ∈ R1,3. As 〈s1, s2〉 ∈ R1,2, it follows that if s′2 ∈
PostF (s2), then 〈s′1, s′2〉 ∈ R1,2 for some s′1 ∈ PostN(s1). Since 〈s2, s3〉 ∈
R2,3, we have 〈s′′2, s′3〉 ∈ R2,3 for some s′3 ∈ PostF (s3) and s′′2 ∈ PostN(s2).

Moreover, for s2 → s′′2, by condition (B.3) there exists s′′1 ∈ PostN(s1) with

〈s′′1, s′′2〉 ∈ R1,2. Thus, we have that there exists s′′2 such that 〈s′′1, s′′2〉 ∈ R1,2

and 〈s′′2, s′3〉 ∈ R2,3. Then, for s′3 ∈ PostF (s3) there exists s′′1 ∈ PostN(s1)

with 〈s′′1, s′3〉 ∈ R1,3.

We also have properties of these relations corresponding to inclusions :
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Theorem 3.4.2. Let Mask, NMask and FSafe be the sets of masking, nonmasking

and failsafe relations between two colored Kripke structures M and M ′, and M ′ a

NDF structure, then we have:

Mask ⊆ FSafe and Mask ⊆ NMask

Proof. The inclusion Mask ⊆ FSafe is straightforward by definition of masking and

nonmasking. To prove the other inclusion, first note that conditions A, B.1, B.2,

and B.3 are the same in each one of the definitions. Suppose that s ≺Mask s′, and

t′ ∈ PostF (s′), if there is a t ∈ PostN(s) such that t ≺Mask t′, then we also have

that condition B.4 of Definition 3.2.1 holds, and so the relation is also a nonmasking

relationship. Now, in the other case we have s ≺Mask t′, but since M ′ is NDF, we

can reach a non-faulty action at some point, and thus we have a fragment t′ ⇒∗ w
such that s′ ≺Mask w by condition B.3. Thus the relation also satisfies condition B.5

of nonmasking.

3.5 Checking Fault-Tolerance Properties

Simulation and bisimulation relations are amenable to efficient computational treat-

ment. In [Baier and Katoen, 2008; Henzinger et al., 1995], algorithms for calculat-

ing several simulation and bisimulation relations are described and proved to be of

polynomial complexity with respect to the number of states and transitions of the

corresponding models. We have adapted these algorithms to our setting, thus obtain-

ing efficient procedures to prove masking, nonmasking and failsafe fault-tolerance.

Such algorithms can be used to verify whether M @ M ′, with @∈ {≺Mask,≺Nonmask
,≺Failsafe}. In this section, we present the algorithms for computing masking, non-

masking, and failsafe relations. In general, these algorithms take as input a colored

Kripke structure M = 〈S, I, R, L,N〉 and a sublabeling L0 ⊆ L, and produce a fault-

tolerance relation ≺Mask, ≺Nonmask, or ≺Failsafe, when they exist. In order to check

fault-tolerance properties, we take two colored Kripke structures M = 〈S, I, R, L,N〉
and M ′ = 〈S ′, I ′, R′, L′,N ′〉 over AP (the system specification and the fault-tolerant

implementation), and combine them in a single structure M ⊕M ′ via disjoint union,

to feed as input to the corresponding algorithm.
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3.5.1 Computing Masking Fault-Tolerance

The basic scheme for checking masking fault-tolerance is sketched in Algorithms 1

and 2. The first algorithm checks condition B.2 of Definition 3.1.1 using a standard

procedure for computing simulations [Henzinger et al., 1995], whereas the latter takes

care of conditions B.3 and B.4. In this later case some additional steps (as explained

below) are needed to deal with faulty transitions.

Algorithm 1 Computation of condition B.2 of def. 3.1.1

Require: Colored Kripke structure M with set of states S
Ensure: Relation ≺SimB2 where the states in SimB2 hold condition B.2
1: for all s1 ∈ N do
2: SimB2(s1) := {s2 | L0(s1) = L0(s2)}
3: RemoveR(s1) := S\Pre(SimB2(s1))
4: end for
5: while ∃ s′1 ∈ N with RemoveR(s′1) 6= ∅ do
6: select s′1 such that RemoveR(s′1) 6= ∅
7: for all s2 ∈ RemoveR(s′1) do
8: for all s1 ∈ PreN(s′1) do
9: if s2 ∈ SimB2(s1) then
10: SimB2(s2) := SimB2(s2)\{s1}
11: for all s ∈ Pre(s2) with Post(s) ∩ SimB2(s1) = ∅ do
12: RemoveR(s1) := RemoveR(s1) ∪ {s}
13: end for
14: end if
15: end for
16: end for
17: RemoveR(s′1) := ∅
18: end while
19: return {〈s1, s2〉 | s2 ∈ SimB2(s1)}

First, let us note that Algorithm 1 is also used in the algorithms for computing

masking and failsafe relations, since the definitions of these relations also require

condition B.2. We briefly explain Algorithm 2. For each s2 ∈ S, the set Mask(s2)

contains the normal states that are candidates for masking s2.

Initially, Mask(s2) consists of all normal states with the same labels as s2 and

Remove(s2) contains all the normal states which do not have a (normal) successor

state masking s2. Moreover, these states cannot mask any of the predecessors of s2.
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Algorithm 2 Computation of masking fault-tolerant

Require: colored Kripke structure M with set of states S
Ensure: Masking fault-tolerance relation ≺Mask for M , where conditions B.3 and

B.4 of definition 3.1.1 hold
1: for all s2 ∈ S do
2: Mask(s2) := {s1 ∈ N | L0(s1) = L0(s2)}
3: Remove(s2) := N\PreN(Mask(s2))
4: end for
5: while ∃s′2 ∈ S with Remove(s′2) 6= ∅ do
6: select s′2 such that Remove(s′2) 6= ∅
7: for all s1 ∈ Remove(s′2) do
8: for all s2 ∈ PreN(s′2) do
9: if s1 ∈Mask(s2) then
10: Mask(s2) := Mask(s2)\{s1}
11: for all s ∈ PreN(s1) with PostN(s)∩Mask(s2) = ∅ ∧ (s /∈Mask(s2)∨

s /∈Mask(PreF (s2))) do
12: Remove(s2) := Remove(s2) ∪ {s}
13: end for
14: end if
15: end for(*This takes care of faulty transitions*)
16: for all s2 ∈ PreF (s′2) do
17: if s1 ∈Mask(s2) ∧ s1 /∈Mask(s′2) then
18: Mask(s2) := Mask(s2) \ {s1}
19: for all s ∈ PreN(s1) with PostN(s) ∩Mask(s2) = ∅ do
20: Remove(s2) := Remove(s2) ∪ {s}
21: end for
22: end if
23: end for
24: end for
25: Remove(s′2) := ∅
26: end while
27: return {〈s1, s2〉 | s1 ∈Mask(s2) ∧ s2 ∈ SimB2(s1)}
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The termination condition of the loop of lines 5-26 is Remove(s′2) = ∅ for all s′2 ∈ S,

in which case there are no normal states that need to be removed from the sets

of simulators Mask(s2) for s2 ∈ PreN(s′2) or s2 ∈ PreF (s′2). Within the while-loop

body, the main idea is to pick up one pair 〈s1, s′2〉 with s1 ∈ Remove(s′2) per iteration;

for each one we scan through the predecessor list of s′2 and test for each normal state

s2 ∈ PreN(s′2) (or s2 ∈ PreF (s′2)) to see whether s1 ∈ Mask(s2). In the positive

case, s1 is removed from Mask(s2). Subsequently, we add to the set Remove(s2) all

normal predecessors s of s1 such that PostN(s) ∩Mask(s2) = ∅, and in the case of

faulty transitions, we also check that s /∈ Mask(s2) ∨ s /∈ Mask(PreF (s2)), that is,

the last part of condition B.4. Finally, the masking fault-tolerance ≺Mask is obtained

from a colored Kripke structure M by using the sets obtained from Algorithm 1 and

Algorithm 2. The proofs of correctness and termination are obtained by adapting the

corresponding proofs given in [Baier and Katoen, 2008].

Theorem 3.5.1 (Partial Correctness of Masking). On termination, Algorithms 1 and

2 return a relation ≺Mask ⊂ S × S.

Proof. We have to prove that Algorithm 2 ensures conditions B.3 and B.4 of Defi-

nition 3.1.1. First, let us note that the loop of line 5 has the following loop invariant.

For all state s2 ∈ S:

(a) Remove(s2) ⊆ N\PreN(Mask(s2))

(b) for any relation ≺Mask: {s1 ∈ N | s1 ≺Mask s2} ⊆ Mask(s2) ⊆ {s1 ∈ N |
L0(s1) = L0(s2)}

(c) ∀s1 ∈Mask(s2), either:

(1) ∃s′2 ∈ PostN(s2) with PostN(s1) ∩Mask(s′2) = ∅ and s1 ∈ Remove(s′2),

(2) ∃s′2 ∈ PostF (s2) with PostN(s1) ∩Mask(s′2) = ∅ and s1 /∈ Mask(s′2) and

s1 ∈ Remove(s′2),

(3) ∀s′2 ∈ PostN(s2) : PostN(s1) ∩Mask(s′2) 6= ∅.

(4) ∀s′2 ∈ PostF (s2) : PostN(s1) ∩Mask(s′2) 6= ∅ ∨ s1 ∈Mask(s′2).

From (c), we obtain that, when Remove(s′2) = ∅ for every s′2 ∈ S, then: ∀s2 ∈ S :

∀s1 ∈ Mask(s2) : ∀s′2 ∈ PostF (s2) : PostN(s1) ∩Mask(s′2) 6= ∅ ∨ s1 ∈ Mask(s′2).
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That is, the relation defined as s1 ≺Mask s2 satisfies condition B.4, and similarly for

B.3, of Definition 3.1.1. The proof for Algorithm 1 is similar.

Lemma 3.5.2 (Termination of Masking). Algorithms 1 and 2 terminate.

Proof. We prove termination of Algorithm 2; the proof for the other one is similar.

The key point is to note that any state s1 can only be inserted into Remove(s′) once.

That is, once we process it, it will never be inspected again in line 7 of this algorithm.

Note that, if s1 ∈ Remove(s′2) and let s′2 be the state that is selected in line 5, then

s1 6∈ PreN(Mask(s′2)). Moreover, since the Mask sets are decreasing (line 10 and

18 of Algorithm 2), s1 6∈ PreN(Mask(s′2)) in all further iterations. The only reason

to insert s1 in Remove(s′2) is when s1 ∈ PreN(s′′1) for some state s′′1 ∈ Mask(s′2)

with {s′′1} = Post(s1) ∩ Mask(s′2). But then s1 ∈ PreN(Mask(s′2)), which is a

contradiction, and therefore s1 will never be added again to Remove(s′2).

Theorem 3.5.3 (Complexity of Masking). The masking fault-tolerance relation ≺Mask

of a colored Kripke structure M = 〈S, I, R, L,N〉 for sublabeling L0 ⊆ L obtained by

restricting AP to AP ′, can be computed with Algorithms 1 and 2 in a running time

of O(|S|2 ∗ |AP ′|+ |E| ∗ |S|) where |E| is the number of edges of the structure and |S|
the number of states.

Proof. Let us prove the result for Algorithm 2; the proof for the other algorithm is

similar. Let |E| be the number of edges of M . Similar to [Henzinger et al., 1995], we

use an array to keep track of the numbers count(s1, s
′
2) = |PostN(s1) ∩Mask(s′2)|.

The initialization of Mask(s) for any s can be done in time O(|S| ∗ |AF ′|); thus,

initializing Mask takes O(|S|2 ∗ |AF ′|) time. On the other hand, Remove(s) can be

computed in time O(|S|) for any s. Then calculating line 3 of the algorithm takes at

most O(|S|2) (or O(|E|)) steps. The loop of line 5 is executed at most once for each

s1 and s→ s1; furthermore, using the array counters, lines 9− 14 can be computed

in time O(|S|) in the worst case; thus, the entire loop takes time O(|E| ∗ |S|). The

same argument holds for lines 16 − 24. Thus the algorithm has a running time of

O(|S|2 ∗ |AP ′|+ |E| ∗ |S|), which in the worst case is O(|S|2 ∗ |AP ′|+ |S|3).

3.5.2 Computing Nonmasking Fault-Tolerance

The basic scheme for computing a nonmasking fault-tolerant relation is sketched in

Algorithm 3, which takes as input a colored Kripke structure M = 〈S, I, R, L,N〉 and
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a sub-labelling L0 ⊆ L, and computes a nonmasking fault-tolerant ≺Nonmask relation

that satisfies conditions B.3, B.4 and B.5. Note that condition B.2 can be checked

with Algorithm 1.

Let us explain Algorithm 3. For each s2 ∈ S, the set NMask(s2) will contain the

normal states that are nonmasking for s2. Initially, NMask(s2) consists of all normal

states with the same labels as s2 while Remove(s2) contains all the normal states

which do not have successor states simulating some successor state from s2. We also

consider a set Remove+(s2), which intuitively contains those states that do not have

successor states simulating some reachable state from s2. Both sets are updated while

inspecting the structure. This is the main difference with Algorithm 2. Note that

in the algorithm we use the set of all states reachable from a state s starting with a

faulty action; this is defined formally as: Post+(s) = {s′′ | ∃s′ ∈ PostF (s) : s′ ⇒ s′′}.
Similarly, we define the transitive-reflexive closure as: Post∗(s) = {s′′ | s ⇒∗ s′′}.
Inside the loop of lines 6-35, we compute the sets Remove and Remove+ and the

collection NMask(s) is updated following conditions B.3, B.4 and B.5.

Note that the transitive closure can be computed in cubic time with respect to

the set of states; however, in practice, when constructing the graph that describes

our system we can also construct the transitive closure at the same time, improving

the complexity of Algorithm 3. Let us prove the correctness of the algorithm for

computing nonmasking relations.

Theorem 3.5.4 (Partial Correctness of Algorithm 3). On termination, Algorithm 3

returns ≺Nonmask.

Proof. We have to prove that Algorithm 3 ensures conditions B.4 and B.5 of Defi-

nition 3.2.1. In the first place, notice that the loop of line 5 maintains the following

loop invariant. For all faulty state s2 ∈ F :

(a) Remove(s2) ⊆ N\PreN(Nonmask(s2))

(b) Remove+(s2) ⊆ N\PreN(Nonmask(Post∗(s2)))

(c) for any relation ≺Nonmask: {s1 ∈ N | s1 ≺Nonmask s2} ⊆ NMask(s2) ⊆ {s1 ∈ N |
L0(s1) = L0(s2)}

(d) ∀s1 ∈ NMask(s2), either:
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Algorithm 3 Computation of nonmasking fault-tolerant

Require: colored Kripke structure M with set of states S
Ensure: Conditions B.3, B.4 and B.5 are checked.
1: for all s2 ∈ S do
2: NMask(s2) := {s1 ∈ N | L0(s1) = L0(s2)}
3: Remove(s2) := N\PreN(NMask(s2))
4: Remove+(s2) := N\PreN(NMask(Post∗(s2)))
5: end for
6: while ∃ s′2 ∈ S with Remove(s′2) ∪Remove+(s′2) 6= ∅ do
7: select s′2 such that Remove(s′2) ∪Remove+(s′2) 6= ∅
8: for all s1 ∈ Remove(s′2) ∪Remove+(s′2) do
9: if s1 ∈ Remove(s′2) then
10: for all s2 ∈ PreN(s′2) do
11: if s1 ∈ NMask(s′2) then
12: NMask(s2) := NMask(s2)\{s1}
13: for all s ∈ PreN(s1) with PostN(s) ∩ NMask(s2) = ∅ ∧ (s /∈

NMask(PreF (s2)) ∨ s1 ∈ RemoveF (s′2)) do
14: Remove(s2) := Remove(s2) ∪ {s}
15: if s1 ∈ NMask(s2) ∧ s1 ∈ Remove+(s′2) then
16: Remove+(s2) := Remove+(s2) ∪ {s}
17: end if
18: end for
19: end if
20: end for
21: end if
22: if s1 ∈ Remove+(s′2) then
23: for all s2 ∈ PreF (s′2) do
24: if s1 ∈ NMask(s′2) then
25: NMask(s2) := NMask(s2)\{s1}
26: for all s ∈ PreN(s1) with PostN(s) ∩NMask(Post∗F (s2)) = ∅ do
27: Remove+(s2) := Remove(s2) ∪ {s}
28: Remove(s2) := Remove(s2) ∪ {s}
29: end for
30: end if
31: end for
32: end if
33: end for
34: Remove(s2) := ∅
35: end while
36: return {〈s1, s2〉 | s1 ∈ NMask(s2) ∧ s2 ∈ SimB2(s1)}
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(1) ∃s′2 ∈ PostN(s2) with PostN(s1) ∩NMask(s′2) = ∅ ∧ s1 ∈ Remove(s′2), or

(2) ∃s′2 ∈ PostF (s2) with PostN(s1)∩NMask(Post+(s′2)) = ∅ ∧s1 ∈ Remove+(s′2),

or

(3) ∀s′2 ∈ PostN(s2) : PostN(s1) ∩ Nonmask(s′2) 6= ∅ and ∀s′2 ∈ Post+(s2) :

PostN(s1) ∩Nonmask(s′2) 6= ∅

From (c), we obtain that, when Remove(s′2) = ∅ for some s′2 ∈ S, then: ∀s′2 ∈
PostN(s2) : PostN(s1) ∩ Nonmask(s′2) 6= ∅ and ∀s′2 ∈ Post+(s2) : PostN(s1) ∩
Nonmask(s′2) 6= ∅, that is, conditions B.3, B.4 and B.5 of Definition 3.2.1 hold.

The proof of termination of Algorithm 3 is similar to the proof of Lemma 3.5.2; the

reader is referred to that theorem. With respect to the complexity of computing the

nonmasking fault-tolerance relation ≺Nonmask, it maintains polynomial complexity

with respect to the traditional simulation algorithms, as it is proven in the following

theorem.

Theorem 3.5.5. The algorithm for checking nonmasking relationship is in worst case

O(|S|4 + |S|2 ∗ |AP ′|).

Proof. First, using the same reasoning as in Theorem 3.5.3, we get that verifying

B.2 can be performed in time O(|E| ∗ |S|). Now, to calculate the set Remove(s2)

and Remove+(s2) of lines 3 − 4, we need to compute the transitive closure of →
which can be done in time O(|S|3). Since this set is calculated once per each state we

have that lines 1− 4 take time O(|S|4) and NMask is calculated in O(|S|2 ∗ |AP ′|).
On the other hand, as explained in the proof of Theorem 3.5.3, lines 5 − 34 take

time O(|E| ∗ |S|). Thus in the worst case the time complexity of the algorithm is

O(|S|4 + |S|2 ∗ |AP ′|).

3.5.3 Computing Failsafe Fault-Tolerance

We finally present an algorithm to calculate a relation of failsafe fault-tolerance be-

tween two systems, in the case it exists. The scheme of this algorithm is similar to

that of Algorithm 2. This is because both masking and failsafe tolerance require that

the safety properties have to be guaranteed. However, liveness properties are not

necessarily preserved in failsafe tolerance. The main difference with Algorithm 2 is
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in lines 12 and 18, where we allow the faulty system to stay in a safe set of sates. To

this end, we introduce a set Eq(s) containing the closure of reachable states with the

same labeling. In the case that there exists some reachable state from the origin with

a different labeling, we set Eq(s) to empty.

Summarizing, in Algorithm 4, for each s2 ∈ S, the set FSafe(s2) contains those

normal states that are candidates for simulating s2. Initially, FSafe(s2) consists of

all normal states with the same labels as s2; the set Remove(s2) is similar to its

characterization in Algorithm 2. Note that in lines 12 and 18, in the case that the

simulation relation is not preserved, the system has the option to stay in a set of safe

states.

The proofs of correctness and termination are similar to Theorem 3.5.1 and Lemma

3.5.2, with some minor changes.

Theorem 3.5.6 (Partial Correctness of Failsafe). On termination, Algorithms 4 and

1 return ≺Failsafe.

Proof. We have to prove that Algorithm 4 ensures conditions B.3 and B.4 of Defini-

tion 3.3.1. As explained above, condition B.2 is computed using Algorithm 1, which

is correct by Theorem 3.5.1. For the other conditions, first note that the loop of line

5 has the following loop invariant. For all states s2 ∈ S:

(a) Remove(s2) ⊆ (N\PreN(FSafe(s2)))

(b) for any relation ≺failsafe: {s1 ∈ N | s1 ≺failsafe s2} ⊆ FSafe(s2) ⊆ {s1 ∈ N |
L0(s1) = L0(s2)}

(c) ∀s1 ∈ FSafe(s2), either:

(1) ∃s′2 ∈ PostN(s2) with PostN(s1) ∩ FSafe(s′2) = ∅ and s1 ∈ Remove(s′2),

(2) ∃s′2 ∈ PostF (s2) with PostN(s1) ∩ FSafe(s′2) = ∅ ∧ L0(s1) 6= L0(s
′
2) and

s1 ∈ Remove(s′2),

(3) ∀s′2 ∈ Post(s2) : PostN(s1) ∩ FSafe(s′2) 6= ∅ ∨ s1 ∈ FSafe(s′2)

From (c), we obtain that, when Remove(s′2) = ∅ for every s′2 ∈ S, then: ∀s2 ∈ S :

∀s1 ∈ FSafe(s2) : ∀s′2 ∈ PostF (s2) : PostN(s1) ∩ FSafe(s′2) 6= ∅ ∨ s1 ∈ FSafe(s′2)
and also ∀s2 ∈ S : ∀s1 ∈ FSafe(s2) : ∀s′2 ∈ PostN(s2) : PostN(s1) ∩ FSafe(s′2) 6=
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Algorithm 4 Computation of failsafe fault-tolerant

Require: colored Kripke structure M with set of states S
Ensure: Failsafe fault-tolerance relation ≺Failsafe for M
1: for all s2 ∈ S do
2: FSafe(s2) := {s1 ∈ N | L0(s1) = L0(s2)}
3: Remove(s2) := N\PreN(FSafe(s2))
4: Eq(s2) := {s | s2 ⇒∗ s ∧ L0(s2) = L0(s) ∧ (@s′ : s2 ⇒∗ s′ ∧ L0(s) 6= L0(s

′))}
5: end for
6: while ∃ s′2 ∈ S with Remove(s′2) 6= ∅ do
7: select s′2 such that Remove(s′2) 6= ∅
8: for all s1 ∈ Remove(s′2) do
9: for all s2 ∈ PreN(s′2) do
10: if s1 ∈ FSafe(s2) then
11: FSafe(s2) := FSafe(s2)\{s1}
12: for all s ∈ PreN(s1) with PostN(s) ∩ FSafe(s2) = ∅ ∧ (s /∈

FSafe(PreF (s2)) ∨ FSafe(Eq(PreF (s2))) 6= ∅) do
13: Remove(s2) := Remove(s2) ∪ {s}
14: end for
15: end if
16: end for
17: for all s2 ∈ PreF (s′2) do
18: if s1 ∈ FSafe(s2) ∧ Eq(s2) = ∅ then
19: FSafe(s2) := FSafe(s2)\{s1}
20: for all s ∈ PreN(s1) with PostN(s) ∩ FSafe(s2) = ∅ do
21: Remove(s2) := Remove(s2) ∪ {s}
22: end for
23: end if
24: end for
25: end for
26: Remove(s2) := ∅
27: end while
28: return {〈s1, s2〉 | s1 ∈ FSafe(s2) ∧ s2 ∈ SimB2(s1)}
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∅. That is, the relation defined as s1 ≺Mask s2 satisfies conditions B.4 and B.3,

respectively, of Definition 3.1.1.

With respect to the complexity of the failsafe fault-tolerance ≺Failsafe, a similar

proof as for Algorithm 2 shows that it also has a polynomial complexity.

Theorem 3.5.7. The time complexity of Algorithm 4 is in O(|E| ∗ |S|+ |E| ∗ |AP ′|).

3.6 Some Examples

In this section we present four case studies of typical fault-tolerance situations to

show how our approach can be used in practice to verify fault-tolerant systems.

3.6.1 The Muller C-element

The Muller C-element [Milner, 1980] is a simple delay-insensitive circuit which con-

tains two boolean inputs and one boolean output. Its logical behavior is described

as follows: if both inputs are true (resp. false) then the output of the C-element

becomes true (resp. false). If the inputs do not change, the output remains the same.

In [Arora and Gouda, 1993], the following (informal) specification of the C-element

with inputs x and y and output z is given:

(i) Input x (resp. y) changes only if x ≡ z (resp., y ≡ z), (ii) Output z

becomes true only if x ∧ y holds, and becomes false only if ¬x ∧ ¬y holds;

(iii) Starting from a state where x∧ y, eventually a state is reached where

z is set to the same value that both x and y have. Ideally, both x and y

change simultaneously. Faults may delay changing either x or y.

We consider an implementation of the C-element with a majority voting circuit in-

volving three inputs, where an extra input u in the circuit is added. Then, the

predicate maj(x, y, u) returns the value of the majority circuit, which is assumed to

work correctly, and is defined as maj(x, y, u) = (x∧ y)∨ (x∧u)∨ (y∧u). In addition

to the traditional logical behavior of the C-element, u and z have to change at the

same time, where the output z is fed back to the input u.

Figure 3.7 shows two models of this circuit. M exhibits the ideal behavior of the

C-element containing only normal transitions. M ′ takes into account the possibility
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Normal Actions:
x = z ∧ y = z → x, y := ¬x,¬y
z 6= maj(x, y, u)→ z := maj(x, y, u)
u 6= maj(x, y, u)→ u := maj(x, y, u)

Figure 3.5: The Muller C-element program with majority voting (fault-intolerant
version).

Normal and Recovery Actions:
x = z ∧ y = z → x, y := ¬x,¬y
z 6= maj(x, y, u)→ z := maj(x, y, u)
u 6= maj(x, y, u)→ u := maj(x, y, u)
x = z ∧ y 6= z → x := ¬x
x 6= z ∧ y = z → y := ¬y

Faulty Actions:
x = z ∧ y = z → x := ¬x
x = z ∧ y = z → y := ¬y
u = z → z := ¬u

Figure 3.6: The Muller C-element fault-tolerant program with majority.

of faults occurring, and provides a reaction to these. Every state in these models is

composed of boolean variables x, y, u, and z, where x, y, and u represent the inputs,

and z represents the output. For instance, the state s0 contains the information 000\0
interpreted (reading from left to right) as x = 0, y = 0, u = 0, and z = 0. Transitions

are labeled by subsets of the set {cx, cy, cu, cz} of actions; action cx (resp., cy and

cu) is the action that changes input x (resp., y and u); cz is the action of changing

output z. When the actions cx and cy are executed in the same transition, we just

write cxy. We consider two types of faults: (i) a delay may occur in the arrival of

some of the inputs x or y (i.e., they do not change simultaneously), and (ii) a delay

in the signal from z to u occurs. We can observe these classes of faults in the faulty

states (indicated by dashed circles) when either x and y or u and z do not match

one another. Notice that these two models described in Figure 3.7 correspond to the

fault-intolerant and the fault-tolerant program in Figures 3.5 and 3.6 in a guarded

command style, respectively.

The relation Rc−element = {〈s0, t0〉, 〈s1, t1〉, 〈s2, t2〉, 〈s3, t3〉} is a nonmasking fault-

tolerant relation for 〈M,M ′〉 and the sublabelings obtained by restricting the original

labelings to letters u, x, y, z. Therefore, when the majority circuit behaves correctly,
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this implementation masks delays of inputs.

3.6.2 The Byzantine Generals Problem

An interesting example of a fault-tolerant system is the Byzantine generals problem,

introduced originally in [Lamport et al., 1982]. This is an agreement problem, where

we have a general with n−1 lieutenants. The communication between the general and

his lieutenants is performed through messengers. The general may decide to attack

an enemy city or to retreat; then, he sends the order to his lieutenants. Some of the

lieutenants might be traitors. As a consequence, traitors might deliver false messages

or perhaps they avoid sending a message that they received. The loyal lieutenants

must agree on attacking or retreating after m + 1 rounds of communication, where

m is the maximum numbers of traitors. The algorithm can ensure correct operation

only if fewer than one third of the lieutenants are traitors. We assume the following:

L0 is the general, the messages are delivered correctly and all the lieutenants can

communicate directly with each other; in this scenario they can recognize who is

sending a message. Faults can convert loyal lieutenants into traitors. Finally, traitors

cannot forge messages on behalf of loyal lieutenants.

In Figure 3.8 two models of this problem are described. M exhibits the ideal

behavior of the Byzantine agreement for four loyal lieutenants L0, L1, L2, and L3. On

the other hand, M ′ expresses the same behavior that M does, but considering the

presence of lieutenant L1 as a traitor. We specify this problem following the ideas

introduced in [Castro and Maibaum, 2009b]. We have the following propositions:

Li.Al1,...,ln (this proposition indicates that Li has received a message from lieutenants

l1, . . . , ln saying that he must attack). We have a violation proposition Li.traitor for

each lieutenant (this proposition is true when Li is a traitor) and Li.d (this proposition

is true when Li has decided to attack), ri (this proposition is true when we are in

round i). Each state has the propositions (P1, P2, P3, or P4) which hold in it and the

relevant information about the current round. Each transition is labeled with some

of the following actions: Li.sendA(Ll1,...,ln) (lieutenant Li sends to lieutenants l1, . . . , ln

the message of attack), Li.fwd(Lk,A, Ll1,...,ln) (the lieutenant Li forwards to lieutenants

l1, . . . , ln the message of attack that he received from Lk), Li.betray (lieutenant Li

becomes a traitor). We consider a clock that allows lieutenants to synchronize; the

action tt increments the clock by one unit of time. The specification uses m + 1
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Figure 3.7: A nonmasking fault-tolerance for the Muller C-element with a majority
circuit.
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rounds of messages, which are coordinated by means of the clock, where m is the

number of traitors for which the specification ensures that the loyal lieutenants will

agree on a decision.

Figure 3.8: A masking fault-tolerance for the Byzantine generals problem.

In this case the relation

Rbyzantines = {〈s0, t0〉, 〈s1, t1〉, 〈s2, t2〉, 〈s1, t3〉, 〈s2, t4〉}

is a masking fault-tolerant relation for (M,M ′) where the sub-labelings are obtained

by restricting the original labeling to AP \ {L0.traitor, ..., Ln.traitor}; this means that

the model on the bottom tolerates the existence of one traitor. This can be generalized
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to support more lieutenants and traitors.

3.6.3 Altitude Switch (ASW)

The Altitude Switch (ASW) controller in an avionics system is responsible for turning

on a Device of Interest (DOI) when the aircraft altitude is below a pre-specified

threshold. We have adapted this real-world avionics example from [Jeffords et al.,

2009].

Basically, the ASW controller reads a set of variables and produces an output.

There exist four internal variables, a mode variable that determines the operating

mode of the system, and four input variables that represent the state of the altitude

sensors. The internal variables are as follows: (1) AltBelow is true if the altitude

is below a pre-specified threshold. (2) DOIStatus is true if the DOI is powered

on; (3) Inhibit is true when the DOI power-on is inhibited, and (4) Reset is true

if the system is being reset. The ASW program can be in three different modes:

(1) the Initialization (Init) mode when the ASW system is initializing; (2) the

AwaitDOIon (AD) mode if the system is waiting for the DOI to power on, and (3)

the Standby (SB) mode for all other cases.

The ASW system can be subject to hardware malfunctions that may alter the

behavior of the ASW controller. In order to deal with potential faults, the system

is designed to tolerate three time-out faults: (1) initialization fault (InitFail), (2)

altimeter fault (AltFail), and (3) DOI fault (DOIFail). These types of faults require

the system to stay in a given state for a specific amount of time. Because we do not

include the notion of time in this example, we model these faults as on/off flags. As a

consequence of these malfunctions, a new mode, Fault (FM), is added to the mode

class to indicate the presence of faults in the system.

Figure 3.9 shows two models of this program. M exhibits the ideal behavior of

the ASW controller containing only normal transitions. M ′ takes into account the

possibility of faults occurring, and provides a reaction to these. Every state in these

models identifies some of the modes: Init, AD, SB, or FM . Transitions are labeled

by actions that represent the changes among the different modes. Action compInit

moves the system from Init to SB once the initialization is complete, requiring this as

a precondition. It returns to Init when the pilot pushes the reset button. Moreover,

the system moves from SB to AD through the action altBelow when the aircraft
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Figure 3.9: A nonmasking fault-tolerance for the Altitude Switch Controller.

descends below the threshold altitude, but requiring as precondition that powering

on is not inhibited, and the DOI is not powered on. Once the DOI signals that it is

powered on, the system goes from AD to SB. Furthermore, the system returns from

AD to Init when the pilot pushes the reset button. All these actions correspond to

the ideal behavior of the ASW program. On the other hand, actions initFail, altFail,

and DOIFail model the occurrences of faults, perturbing the normal behavior of the

system. Consequently, when the system detects any of these faults, it goes into the

faulty mode (FM). Finally, the problem specification requires that the program does

not change its mode from Standby to AwaitDOI if the altitude sensors failed, i.e.,

when AltFail is true. Moreover, from the faulty state FM , the program can only go

into the Initialization mode. In fact, the program can recover from the faulty state

if the system has been reset by the pilot.

As a result, the relation Rasw−controller = {〈s0, t0〉, 〈s1, t1〉, 〈s2, t2〉, 〈s0, t3〉} is a

nonmasking fault-tolerant relation for 〈M,M ′〉. We obtain a similar result compared

to [Jeffords et al., 2009], where the authors call eventual masking (“the system enters

a fault handling state but eventually recovers to normal behavior”) for this kind of

fault-tolerant behavior.
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3.6.4 A Simple Train System

We now consider a simple train system. Train systems control the movement of trains

through a network of rail segments. Fault-tolerance is a key aspect of these systems:

a fault in the system may cause a train collision and the loss of human life. These

kinds of systems are the object of active research in the fault-tolerance community

(see [Abdelouahab and Braga, 2008; Abrial, 2006; Guiho and Hennebert, 1990]).

The general version of our system consists of n trains and m rail segments. Rail

segments are connected to other rail segments, where in each of these connections the

rails are equipped with a signal which indicates if the segment is occupied or not. The

signals can be green (when the segment is free) or red (when another train is in the

segment). We have the following predicates. For each 0 ≤ i ≤ n and 0 ≤ j ≤ m, we

have a predicate ti.rj which indicates that train i is in the segment j; the predicate

rj.green (rj.red) expresses that the signal of segment j is green (red), respectively.

Moreover, ti.stop denotes that train ti is stopped and riRrj means that segments i

and j are connected. We have the following actions: ti.move(j): train ti moves to

segment j, ti.stops: train ti stops, ri.ggreen: the signal of ri is set to green, and

ri.gred: the signal of ri is set to red.

The specification requires that, if there is a train in a segment, then the signal

for this segment must be red. On the contrary, if there is no train in the segment,

then the signal for the segment must be green. Moreover, when a train detects that

another train is already in the same segment, a fault has occurred, and it ought to

stop to avoid train collisions. Besides, when a train is in a segment where all the

connected segments have their signals set to red, the train will stop. Finally, an ideal

safety property of this system is that there are not two trains in the same segment;

that is, this property must hold in the specification when no faults are observed.

This system is implemented by a sensor in each segment which detects the exis-

tence of two trains. Furthermore, the movement of trains between rail segments is

controlled by a pair of sensors called Block Instruments in railways. Essentially, these

devices have the task of activating the green or red signal. The basis of operation of

the system is very simple, but what is more significant is the inherent fail-safety built

into it. In case a fault occurs, the interlocking relay logic turns the signal to red.

In order to provide a better understanding of this example and the particular

situation for failsafe fault-tolerance, let us consider trains ti with 0 ≤ i ≤ 3 and
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rail segments rj with 0 ≤ j ≤ 4, where they are connected as follow: r0Rr1, r1Rr2,

r2Rr3, r2Rr4, and r3Rr4. In Figure 3.10 two models of this problem are described.

M exhibits the ideal behavior of the simple train system for three trains on five rail

segments. On the other hand, M ′ expresses the same behavior that M does, but

considering the presence of faults. Notice that in this figure is illustrated part of the

behavior for this set of train and rail segments, starting from a state s0 in which trains

are already located on the rail segments. The states are labeled with predicates (P0,

P1, P2, or P3) pointing out the formulas holding in each state. Moreover, transitions

are labeled with some of the actions described above.

Figure 3.10: A failsafe fault-tolerance for a Simple Train System.

Regarding the model M ′, faults may occur that affect the communication of the

system or the behavior of the sensors. The block instruments on each rail segment

react to this malfunction, turning the signal to red (P3). It is clear that this state still

78



Ph.D. Thesis - Ramiro Adrian Demasi McMaster - Computing and Software

guarantees the (safety) property that no two trains are located in the same segment.

However, reaching state t3 means that all trains will stop and they will stay there

until an external recovery action is performed. In this case the relation

Rtrain−system = {〈s0, t0〉, 〈s1, t1〉, 〈s2, t2〉}

is a failsafe fault-tolerant relation for 〈M,M ′〉.
Notice that a fault leading to a failsafe state is not considered as a failure in a

safety critical system. The main idea of a failsafe design is to detect the faults and

mask its impact until some recovery actions are under taken.
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Chapter 4

The Synthesis Approach

In this chapter, we address the second core problem of the dissertation: our synthesis

method. We present the extension of a synthesis algorithm for CTL to cope with

dCTL- specifications. Moreover, we explain the details of each of the algorithms for

the three degrees of fault-tolerance, as well as analysing their complexity. Finally, we

prove some properties of our method, like soundness and completeness.

4.1 The Synthesis Problem

The problem of synthesis of fault-tolerant programs is as follows, where we require

the following inputs:

(1) a deontic specification dSpec: init-spec and normal-spec, where init-spec specifies

the initial state, and normal-spec specifies correctness properties using dCTL-

formulas that are required to hold at all states that are reachable from an initial

state in the absence of faults,

(2) a fault specification fSpec: fault-variables, fault-spec, and combine-spec, where

fault-variables is a set of auxiliary atomic propositions, and fault-spec speci-

fies the faulty and recovery behavior over the atomic propositions (including

fault-variables), using CTL formulas. Finally, combine-spec are also CTL formulas

which relate the atomic propositions in the deontic specification dSpec with those

in the fault specification fSpec,
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(3) a desired level of fault-tolerance (masking, nonmasking or failsafe ) chosen by the

user, and

(4) an interface represented by a subset of the state variables, which intuitively con-

stitutes the visible part of the system.

The aim is to synthesize a fault-tolerant component that:

(1) in the absence of faults, satisfies the deontic specification dSpec, and

(2) in the presence of faults, satisfies the required level of fault-tolerance based on

the interface and the fault specification fSpec.

In other words, our goal is to automatically determine whether a fault-tolerant

component, with the required level of fault-tolerance, is realizable. Moreover, if the

answer is positive, the goal is to algorithmically produce such a fault-tolerant imple-

mentation.

Note that the deontic system specification dSpec involves the use of CTL to de-

scribe the system declaratively (including safety and liveness properties of the sys-

tem), while the deontic operators of dCTL- allow us to capture obligations, and to

indirectly characterize faults as events violating these obligations. Notice that the

deontic specification states what the expected behavior of the system is, and, indi-

rectly, what the possible faults are. In other words, the possible faults may not be

explicitly given by the user, as in other approaches, but stated at the specification

level. However, we allow the user to provide their own fault specification fSpec which

is similar to the one required in [Attie et al., 2004]. In our case the faulty behavior

is specified using CTL formulas instead of guarded commands. We present several

examples in Chapter 5.

Roughly speaking, the synthesis process is based on the extraction of a finite

behavior model from a dCTL- specification. This is achieved by constructing a be-

havior model that captures the system augmented with faults, and then combining a

synthesis algorithm for dCTL- with simulation relations that capture masking, non-

masking, or failsafe fault-tolerance, in order to remove from this model those states

and faults that lie outside the required level of tolerance. The synthesis algorithm

aims at detecting the maximal set of faults that can be tolerated (for the required
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level of fault-tolerance), and returning a (maximal) program that provides recovery

from these faults.

4.2 The dCTL- Decision Procedure

In this section we provide all the details of the dCTL- decision procedure. As we

mention, our work is strongly related to the one of Attie et al. [Attie et al., 2004].

Essentially, we present here the extension of the decision procedure for CTL to cope

with dCTL- specifications. Fundamentally, we want to use this procedure to check

whether the input deontic system specification dSpec is satisfiable in the absence of

faults.

The decision procedure takes as input a formula f0 and returns as a result true

if f0 is satisfiable or false in the case f0 is unsatisfiable. If f0 is satisfiable, a finite

model is constructed. The decision procedure performs the following steps:

(1) Construct the initial tableau T0 which encodes potential models of f0. If f0 is

satisfiable, then a final model is embedded in T0.

(2) Check the consistency of the tableau by removing inconsistent part of it. As a

result, if the “root” of the tableau is deleted, f0 is unsatisfiable. Otherwise, f0 is

satisfiable.

(3) Finally, a model MN of f0 is built by unraveling the tableau T0.

The decision procedure begins by building an AND/OR graph (tableau), formally

defined as follow:

Definition 4.2.1. (AND/ OR Graph). An AND/OR graph (tableau) K is a tuple

(VC , VD, ACD, ADC , L) with the following components:

(1) VC , a set of AND-nodes,

(2) VD, a set of OR-nodes,

(3) ACD ⊆ VC × VD, a set of AND-OR transitions,

(4) ADC ⊆ VD × VC , a set of OR-AND transitions,

82



Ph.D. Thesis - Ramiro Adrian Demasi McMaster - Computing and Software

(5) L : VC ∪ VD → 2cl(f) is an interpretation function, which denotes the set of

formulas (subset of Fisher-Ladner Closure cl(f), defined below) that holds in

each node in VC ∪ VD.

We note that this definition is reproduced and slightly modified from [Attie et al.,

2004], the difference being that we do not consider process indexes indicating which

nondeterministic choice is made in a concurrent program.

Each node of K is either an OR-node or an AND-node and is labelled by a set of

formulas. The tableau K has a root node d0 = {f0} from which all other nodes in T

are reachable. We use c, c′, . . . to denote AND-nodes, d, d′, . . . to denote OR-nodes,

and e, e′, . . . to denote nodes of either type. Each node is labeled with a subset of

cl(f) (see below), and no two AND-nodes nor two OR-nodes are equally labeled.

Definition 4.2.2. (Fisher-Ladner Closure). If f is a dCTL- formula, then cl(f), the

generalized Fisher-Ladner closure of f , is defined as follows:

cl(p) = p for atomic proposition p,

cl(φ ∧ ψ) = {φ ∧ ψ} ∪ cl(φ) ∪ cl(ψ),

cl(¬φ) = {¬φ} ∪ cl(φ),

cl(A(φW ψ)) = {A(φW ψ),AXA(φW ψ)} ∪ cl(φ) ∪ cl(ψ),

cl(E(φW ψ)) = {E(φW ψ),EXE(φW ψ)} ∪ cl(φ) ∪ cl(ψ)

cl(AG φ) = {AG φ,AXAG φ} ∪ cl(φ)

cl(EG φ) = {EG φ,EXEG φ} ∪ cl(φ)

cl(AX φ) = {AX φ} ∪ cl(φ)

cl(EX φ) = {EX φ} ∪ cl(φ)

cl(A(φ U ψ)) = {A(φ U ψ),AXA(φ U ψ)} ∪ cl(φ) ∪ cl(ψ)

cl(E(φ U ψ)) = {E(φ U ψ),EXE(φ U ψ)} ∪ cl(φ) ∪ cl(ψ)

cl(AF φ) = {AF φ,AXAF φ} ∪ cl(φ)
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cl(EF φ) = {EF φ,EXEF φ} ∪ cl(φ)

cl(O(φ U ψ)) = {O(φ U ψ),AXO(φ U ψ)} ∪ cl(φ) ∪ cl(ψ)

cl(P(φ U ψ)) = {P(φ U ψ),EXP(φ U ψ)} ∪ cl(φ) ∪ cl(ψ)

cl(O(φW ψ)) = {O(φW ψ),AXO(φW ψ)} ∪ cl(φ) ∪ cl(ψ)

cl(P(φW ψ)) = {P(φW ψ),EXP(φW ψ)} ∪ cl(φ) ∪ cl(ψ)

Part of this definition is reproduced from [Attie et al., 2004] and extended by

including the deontic operators.

In the following subsections we describe the dCTL- decision procedure in more

detail.

4.2.1 Building the initial AND/OR graph

We start constructing the initial AND/OR graph T in stages following the main idea

from [Attie et al., 2004] and [Clarke and Emerson, 1981], by the method below:

(1) Initially, let the root node of T be an OR-node d0 labeled with f0 (L(d0) = {f0}).

(2) If the set of frontier nodes (those nodes without successors) of T is empty, then

halt. Otherwise, let e be any frontier node in T . If e is an OR-node d, then

generate the successor AND-nodes c1, ..., ck from d and add a transition from d to

ci in T . If any AND-node ci has the same label as another AND-node c already

present in T , then merge ci and c. If e is an AND-node c, then generate the

successor OR-nodes d1, ..., dk from c and add a transition from c to di in T . If

any OR-node dj has the same label as some other OR-node d already present in

T , then merge dj and d. Repeat this step.

4.2.2 Successors of OR-nodes

A dCTL- formula is elementary iff it is an atomic proposition, the negation of an

atomic proposition, or has either AX or EX as its main connective. Nonelementary

formulas are classified as either a conjunctive formula α ≡ α1 ∧ α2 or a disjunctive

formula β ≡ β1 ∨ β2. In [Attie et al., 2004], CTL formulas are classified as follows:
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α = φ ∧ ψ α1 = φ α2 = ψ

α = A(φW ψ) α1 = ψ α2 = φ ∨ AXA(φW ψ)

α = E(φW ψ) α1 = ψ α2 = φ ∨ EXE(φW ψ)

α = AG φ α1 = φ α2 = AXAG φ

α = EG φ α1 = φ α2 = EXEG φ

β = φ ∨ ψ β1 = φ β2 = ψ

β = A(φ U ψ) β1 = ψ β2 = φ ∧ AXA(φ U ψ)

β = E(φ U ψ) β1 = ψ β2 = φ ∧ EXE(φ U ψ)

β = AF φ β1 = φ β2 = AXAF φ

β = EF φ β1 = φ β2 = EXEF φ

Furthermore, the α and β classification of CTL formulas given above for tableau

can be extended to our setting. For the deontic operators we proceed as follows:

β = O(φ U ψ) β1 = Oψ β2 = Oφ ∧ AXO(φ U ψ)

β = P(φ U ψ) β1 = Oψ β2 = Oφ ∧ EXP(φ U ψ)

α = O(φW ψ) α1 = Oψ α2 = Oφ ∨ AXO(φW ψ)

α = P(φW ψ) α1 = Oψ α2 = Oφ ∨ EXP(φW ψ)

where Oφ is obtained by substituting in φ any propositional variable p by a fresh

variable denoted by Opr p, and similarly for Oψ.

Note that nonelementary formulas whose main connective is a temporal modality

are classified according to the fixpoint characterization of the modality.
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 O (p U q) 

 Opr q  Opr p   AXO(p U q) 

Figure 4.1: Expansion of an OR-node d with L(d) = {O(φ U ψ)}.

Suppose that we are constructing the initial tableau T0 and we have a frontier

OR-node d. Then, we need to calculate the set of AND-node successors (denoted as

Blocks(d) in [Attie et al., 2004]) of d. This node d is expanded into a tree using the

above characterization of nonelementary formulas as α or β. For instance, consider

d labeled with L(d) = {O(p U q)}. This formula f = O(p U q) is classified as

a β formula, by definition f ≡ β = Opr q ∨ (Opr p ∧ AXO(p U q)). So, for

O(p U q) two AND-node successors c and c′ are generated, where L(c) = {Opr q}
and L(c′) = {Opr p, AXO(p U q)}. This example is illustrated in Figure 4.1, where

OR-nodes (d) are displayed as hexagons and AND-nodes (c and c′) are displayed as

rectangles. The successor c labeled with Opr q certifies that the deontic eventuality

O(p U q) is fulfilled, while the successor c′ labeled with Opr p ∧ AXO(p U q)

propagates O(p U q). In general, given an OR-node d with L(d) = {f}, being

f ≡ β1∨β2 a β formula, then add two AND-nodes successors c and c′ to d with labels

L(c) = L(d)− {f} ∪ {β1} and L(c′) = L(d)− {f} ∪ {β2}.

 EG p 

 p   EXEG p 

Figure 4.2: Expansion of an OR-node d with L(d) = {EG p}.

On the other hand, consider d labeled with L(d) = {EG g}. This formula f = EG g

is classified as an α formula, by definition f ≡ α = g ∧ EXEG g. So, for EG g only

one AND-node successor c is generated where L(c) = {g,EXEG g}. This example
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is illustrated in Figure 4.2. In general, given an OR-node d with L(d) = {f}, f ≡
α1 ∧ α2 being an α formula, then add a single AND-node successor c to d with label

L(c) = L(d)− {f} ∪ {α1, α2}.

4.2.3 Successors of AND-nodes

The set of OR-node successors of an AND-node c, denoted as Tiles(c) in [Emerson

and Clarke, 1982; Attie et al., 2004], are obtained as follow:

Let the set of formulas of c contain the following AX Pi and EX Qj formulas:

AX P0, . . . ,AX Pn and EX Q0, . . . ,EX Qm

Then, the successors of c are:

d1 = {P0, . . . , Pn, Q0}, . . . , dm = {P0, . . . , Pn, Qm}

The above result assumes that c has at least one formula of the form EX Qj.

Otherwise, we have to consider two particular cases. The first one, if c has no formulas

of the form AX Pi and EX Qj, then a simple dummy of c is defined as successor of c,

i.e., Tiles(c) = {d} where L(d) = {f : f ∈ L(c)}. The second one, if the AND-node

c has no formulas of the form EX Qj, then we add the formula EX True to the set of

formulas of c (L(c) = L(c) ∪ {EX True}) and recompute Tiles(c).

Let us now consider frontier AND-node c during the initial construction of the

tableau T0, where L(c) = {AXAF q, p,E(p U q),EXE(p U q),EXEG s}. According to

the previous rule, c will have two OR-node successors d and d′ labeled with L(d) =

{AF q,E(p U q)} and L(d′) = {AF q,EG s} (see Figure 4.3).

 AXAF q, p, E(p U q), EXE(p U q), EXEG s 

 AF q, E(p U q)  AF q, EG s 

Figure 4.3: Tiles of an AND-node.

87



Ph.D. Thesis - Ramiro Adrian Demasi McMaster - Computing and Software

One difference of the above successor rules for AND-nodes and OR-nodes with

respect to the ones in [Emerson and Clarke, 1982; Attie et al., 2004] is that in our

case we do not consider process indexes indicating which nondeterministic choice is

made in a concurrent program. In fact, we are interested only in the case of a single

component.

Note that the tableau construction terminates when all leaf nodes are labeled

only with elementary formulas. This is achieved because during the expansion of

OR-nodes, one nonelementary formula f is deleted from an OR-node d and replaced

by one or two smaller formulas in one or two successor AND-node respectively.

4.2.4 Pruning Rules

The next step of the dCTL- decision procedure is to remove certain inconsistent nodes

of the tableau TN . Firstly, we need to reproduce the next definition from [Attie et al.,

2004]:

Definition 4.2.3. (Full subdag) A full subdag Q rooted at node e in a tableau T is

a finite directed acyclic subgraph of T satisfying the following conditions:

(1) For each interior OR-node d in Q exactly one of its successor AND-nodes in T is

in the subgraph.

(2) For each interior AND-node, all of its successor OR-nodes in T are in the sub-

graph.

(3) Node e is the unique node from which all other nodes in Q are reachable.

The following are the deletion rules applied to the tableau TN :

• RemoveP : remove any node containing a formula and its negation.

• RemoveOR-node: remove an OR-node if all its original successors have been

deleted.

• RemoveAND-node: remove an AND-node if one of its original successors has

been deleted.
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• RemoveEF : remove any node c such that EF(φ) ∈ L(c) and it is not satisfiable,

i.e., there does not exist a path from c to an AND-node c′ such that φ ∈ L(c′).

• RemoveEU : remove any node c such that E(φ U ψ) ∈ L(c) and it is not sat-

isfiable, i.e., there does not exist a path from c to an AND-node c′ such that

ψ ∈ L(c′) and all other AND-nodes in the path contain the formula φ.

• RemoveAF : remove any node c such that AF(φ) ∈ L(c) and there does exist

a full subdag Q rooted at c such that for all nodes c′ on the frontier of Q,

φ ∈ L(c′).

• RemoveAU : remove any node c such that AF(φ U ψ) ∈ L(c) and there does

exist a full subdag Q rooted at c such that for all nodes c′ on the frontier of Q,

ψ ∈ L(c′) and for all interior AND-nodes c′′ in Q, φ ∈ L(c′′).

• MarkFaultyPU : mark any AND-node c as faulty such that P(φ U ψ) ∈ L(c)

and it is not satisfiable, i.e., the tableau does not include a path from c to an

AND-node c′ such that ψ ∈ L(c′) and all other AND-nodes in the path contain

the formula φ.

• MarkFaultyOU : mark any AND-node c as faulty such that O(φ U ψ) ∈ L(c)

and there does exist a full subdag Q rooted at c such that for all nodes c′ on

the frontier of Q, ψ ∈ L(c′) and for all interior AND-nodes c′′ in Q, φ ∈ L(c′).

We remark that, the first seven rules are reproduced from [Emerson and Clarke, 1982;

Attie et al., 2004] regarding CTL formulas, and we have defined the last two rules for

considering the deontic eventuality formulas.

The process of pruning the tableau TN finishes when none of the above rules is

applicable. Roughly speaking, some of these rules remove all nodes that are either

propositionally inconsistent, or do not have enough successors, or are labeled with an

CTL eventuality formula which is not fulfilled. The presence of a suitable full subdag

rooted at e serves to certify the fulfillment of the corresponding eventuality in L(e).

Note that the last two rules, MarkFaultyPU and MarkFaultyOU, do not remove any

node, actually these mark the inconsistent nodes (those that do not fulfill a deontic

eventuality) as faulty. The resulting faulty nodes will be treated during the process of

checking the level of fault-tolerance (see Section 4.4). Finally, since each application
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removes or marks one node, and TN is finite, this process must terminate. Upon

termination, if the root of TN has been removed, then f0 is unsatisfiable. Otherwise

f0 is satisfiable, in which case let T ′N be the tableau induced by the remaining nodes.

The last step of the decision procedure of dCTL- is to unravel the tableau into a

model of f0. We postpone the explanation of this step to Section 4.5, where we will

include also the faulty part of the tableau (see the following Section 4.3).

4.3 Injection of Faults

In this section we describe our method for injecting faults into the initial tableau.

This method is one of the steps during the synthesis process (see Section 4.4). We

need to extend the Definition 4.2.1 in order to include the new kinds of nodes for

considering the occurrences of faults.

Definition 4.3.1. (Faulty Graph). A faulty graph (tableau) TF is a tuple with the

following components:

(1) VC , a set of AND-nodes,

(2) VD, a set of OR-nodes,

(3) VFD, a set of FOR-nodes,

(4) VFA, a set of FAND-nodes,

(5) ACD ⊆ VC × VD, a set of AND-OR transitions,

(6) ADC ⊆ VD × VC , a set of OR-AND transitions,

(7) AC−FD ⊆ VC × VFD, a set of AND-FOR transitions,

(8) AFD−FC ⊆ VFD × VFC , a set of FOR-FAND transitions,

(9) AFC−FC ⊆ VFC × VFC , a set of FAND-FAND transitions,

(10) AFC−C ⊆ VFC × VC , a set of FAND-AND (recovery) transitions,

(11) L : VC ∪ VD ∪ VFD ∪ VFC → 2cl(f) is a labeling function which labels each node in

VC ∪ VD ∪ VFD ∪ VFC with a subset of cl(f).
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Algorithm 5 Injection of faults via deontic propositional variables.

Require: AND/OR Tableau TN
Ensure: Faulty Tableau TF .
1: for all andN ∈ VC do
2: create FOR-node fo with L(fo) = L(andN)
3: attach fo as faulty successors of andN
4: end for
5: for all fo ∈ VFD (the set of FOR-nodes) do
6: for all deonp1 ∈ L(fo), being deonp1 a deontic propositional variable do
7: create FAND-node fa with L(fa) = L(fo)
8: insert violation of deonp1 on fa
9: attach fa as faulty successors of fo
10: create FAND-successors from fa with all possible combination of deontic

prop. variables
11: end for
12: end for

A faulty tableau TF is an AND/OR graph, but adding two new classes of nodes:

FOR-nodes (Faulty OR-nodes) and FAND-nodes (Faulty AND-nodes) and four tran-

sition relations. We introduce some technical definitions which will be used in the

following Section 4.4:

SuccN(s) = {s′ ∈ VC | ∃ o ∈ VD : (s, o) ∈ ACD ∧ (o, s′) ∈ ADC}

as the set of indirect non-faulty AND-node successors of s. Similarly, we denote by

Succ(s) the set of indirect AND-node successors of s, where these successors could

be either faulty or not. Moreover, we represents the set of successors of s reachable

via faulty arcs as follows:

SuccF (s) = {s′ ∈ VFA| ∃ o ∈ VFD : (s, o) ∈ AC−FD ∧ (o, s′) ∈ AFD−FC} ∪
{s′ ∈ VFA| (s, s′) ∈ AFC−FC}

Analogously, we define PredN(s′) and PredF (s′) as the set of predecessors of s′ via

normal and faulty transitions, respectively.

The process of injecting faults starts when we have obtained a positive answer

(the input specification is satisfiable) from the dCTL- decision procedure.
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n0 
 

 AXAG(r),
EX true, 
Opr p, p,
Opr q, q

n1 
 

 Opr p, p,
Opr q, q

n5 
 

 AG r

n2 
 

 Opr p, !p,
 Opr q, q

n3 
 

 Opr p, p,
 Opr q, !q

n4 
 

 Opr p, !p,
 Opr q, !q

n6 
 

 r, AXAG(r)

Figure 4.4: A part of a faulty tableau.
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In order to have a better understanding of the injection mechanism, consider a part

of a faulty tableau illustrated in Figure 4.4. In general, we take each non-faulty state

(i.e., each AND-node drawn as green boxes) and produce a copy of it which is an FOR-

node (faulty OR-nodes, shown as red hexagons), where we add a transition in AC−FD

from the AND-node to the new FOR-node. The corresponding FOR-node is labeled

identically as its AND-node predecessor. From this FOR-node we generate all possible

faults from deontic formula violations. Particularly, the AND-node n0 has Opr p and

Opr q, deontic propositional variables, expressing that p and q should be true there,

which is the case in this node. Now, we start to consider those cases in which an

obligation might be violated. Then, we negate one-by-one these deontic propositional

variables and producing new FAND-nodes. As a result, two FAND-nodes n2 and

n3 are generated from the FOR-node n1 with similar information to it except for

the new negated propositional variable. The FAND-nodes n2 and n3 introduce ¬ p
and ¬ q violating Opr p and Opr q, respectively. We add transitions to AFD−FC

from n1 to n2 and n3. Subsequently, from these two FAND-nodes a new FAND-node

n4 is create which combines both violations of Opr p and Opr q. We continue the

process of negating deontic propositional variables from these FAND-nodes until there

is no more possible combination of deontic propositional variables. This process must

terminate due to the we have a finite number of deontic propositional variables for

each AND-node in the tableau. This technique is sketched in Algorithm 5.

On the other hand, we allow users to provide their own fault specification, provid-

ing it as input to our synthesis algorithm. For example, AG(p→ AX(¬p)) introduces

a new FOR-node n1 with the same information of the AND-node (n0) which as a label

p, then a faulty transition is attached from FOR-node n1 to FAND-node n2 in Figure

4.4. Similarly, a recovery transition from FAND-node n3 to AND-node n0 is intro-

duced through AG(¬q → AX(q)). In general, these kinds of formulas have the form

AG(cond → AX(prop formula)), where cond and prop formula are propositional

formulas.

Finally, depending on the degree of fault-tolerance chosen by the user some of

these FAND-nodes could be cut out from the tableau. Moreover, recovery transitions

(shown as solid black lines in Figure 4.4) need to be added in order to go back to the

normal behavior of the system and guarantee the desired level of fault-tolerance. We

explain in more detail the corresponding algorithms for masking, nonmasking, and
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failsafe in the next Section 4.4.

4.4 The Synthesis Method

In this section, we explain the details of our synthesis algorithm and how we deal with

the three levels of fault-tolerance (masking, nonmasking, and failsafe). As we mention

above, we require as input a deontic specification dSpec: init-spec and normal-spec,

an optional fault specification fSpec: fault-variables, fault-spec, and combine-spec, a

desired level of fault-tolerance, and the interface.

The pseudocode of our general synthesis algorithm is shown in Algorithm 6. It

starts by building an initial tableau based on the dCTL- decision procedure defined in

Section 4.2. That is, we construct a graph TN = (d, VC , VD, ACD, VDC , L). During the

construction, AND-nodes and OR-nodes are expanded following the successor rules

described in Subsection 4.2.3 and 4.2.2, respectively. Additionally, when a new AND-

node (say c) is created, we check if there is some violation, i.e., if either Opr p ∈ L(c)

and p /∈ L(c), or Opr ¬p ∈ L(c) and p ∈ L(c), belong to the node. If this is the

case, the node is considered faulty (proposition Opr p is understood as: p should be

true, and when p is false we get a state in which the normal or desirable behavior is

not fulfilled). Otherwise, the node is added to Norm, the set of normal (non-faulty)

states (line 10 of Algorithm 6). If there is a faulty node (say e′) such that it has the

same CTL formulas as a non-faulty node (say e′′), e′ is deleted, since it is masked by e′′

(line 13). The process of construction stops when the set of frontier nodes is empty,

i.e., all nodes have at least one successor. We then start applying the deletion rules

(see Subsection 4.2.4), in order to remove inconsistent nodes and nodes containing

eventuality formulas that cannot be satisfied. Moreover, during this process nodes

originating from the specification of the system, that cannot fulfil deontic eventuali-

ties, are marked as faulty. We repeatedly apply the deletion rules until there is no

change. When this process finishes, if the OR-node root d0 has been removed, then

dSpec is unsatisfiable, otherwise it is satisfiable. In the case that dSpec is satisfiable,

let T ′N be the tableau induced by the remaining nodes. Assuming that the input

specification dSpec is satisfiable, the next phase of our algorithm is the injection of

faults into the tableau T ′N , obtaining a faulty tableau TF . Part of this process was

explained in Subsection 4.3 and it is sketched in Algorithm 5. Additionally, we need
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Algorithm 6 Construction of Faulty Tableau TF .

Require: dSpec : (init-spec, normal-spec), fSpec : (fault-variables, fault-spec,
combine-spec), level-of-tolerance, interface Intf

Ensure: Faulty tableau TF satisfying the level of fault-tolerance
1: Let d be an OR-node with label {dSpec}
2: TN := d
3: repeat
4: Select a node e ∈ frontier(TN)
5: if ∃ e′ ∈ VD with L(e) = L(e′) then
6: merge e and e′

7: else
8: for all e′ ∈ Succ(e) being an AND-node do
9: if e′ is non-faulty then
10: Norm := Norm ∪ {e′}
11: else
12: if ∃e′′ ∈ Succ(e) faulty such that NForm(e′) = NForm(e′′) then
13: delete(e”)
14: end if
15: end if
16: end for
17: attach all e′ ∈ Succ(e) as successors of e and mark e as expanded
18: end if
19: update VC , VD, ACD, VDC appropriately
20: until frontier(TN) = ∅
21: repeat
22: Apply deletion rules
23: until TN does not change
24: Apply Algorithm 5 and 7 for injecting faults
25: Apply corresponding simulation algorithm for the given level-of-tolerance
26: return T ′F
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to consider those faults provided by the user in the input fault specification fSpec.

These are introduced following the Algorithm 7.

Algorithm 7 Injection of faults from the fault specification fSpec.

Require: Tableau TN generated by Algorithm 6, fSpec : (fault-variables, fault-spec,
combine-spec)

Ensure: Faulty Tableau TF .
1: for all f ∈ fault-spec, where f has the form AG(cond→ AX(prop formula)) do
2: for all andN ∈ Norm do
3: if cond(f) ∈ L(andN) then
4: create FOR-node fo with L(fo) = L(andN)
5: attach fo as faulty successors of andN
6: create FAND-node fa with L(fa) = (L(fo)\{cond(f)})∪{prop formula}

7: attach fa as faulty successors of fo
8: end if
9: end for
10: end for
11: for all f ∈ fault-spec do
12: for all fandN ∈ VFA do
13: if cond(f) ∈ L(fandN) then
14: add recovery transition from fandN to each Norm state n, with

prop formula ∈ L(n)
15: end if
16: end for
17: end for

Subsequently, we apply the corresponding masking, nonmasking, or failsafe sim-

ulation algorithms (see below), depending on the user-defined level of fault-tolerance

and the defined interface. During this phase, considering the case that the user wants

to obtain a masking fault-tolerant program, only those nodes that can be masked are

preserved, and we cut out the remaining ones (obtaining T ′F ). Finally, in the last

phase of our synthesis method, we extract from the generated faulty tableau T ′F (see

Section 4.5) the synthesized fault-tolerant program satisfying the required level of

fault-tolerance.
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4.4.1 Synthesis Algorithm for Masking Fault-Tolerance

In this subsection, we present the algorithm for masking fault-tolerance. In general,

for the three levels of fault-tolerance, the main idea is to use the efficient procedures

presented in Chapter 3, Section 3.5 for computing masking, nonmasking, and failsafe

relations. In those algorithms, a colored Kripke structure is required as input, which

is the combination of a system specification M and a fault-tolerant implementation

M ′ in a single structure M ⊕M ′ via disjoint union. In this process, we need to apply

those algorithms to a faulty tableau TF and the input interface.

For this case, the process for computing a masking relation over a faulty tableau TF

is sketched in Algorithm 8. A difference between Algorithm 8 and 2 is the predecessor

and successor operations used, e.g. SuccN(s) are used in Algorithm 8 instead of

PostN(s) in Algorithm 2.

The algorithm generates a masking relation Mask satisfying conditions B.3 and

B.4 of Definition 3.1.1. Note that the loop of line 27 finally looks for those states

which are not in the relation Mask. Consequently, these states are deleted from the

current faulty tableau together with the directed acyclic graphs which have as root

each of these states. Additionally, condition B.2 of Definition 3.1.1 is computed us-

ing Algorithm 9. This step may also lead to cutting out further faulty nodes, namely

those which exhibit normal behavior, but that are not part of the correct behavior of

the system. Hence, we obtain a faulty tableau T ′F satisfying the conditions of Defini-

tion 3.1.1.

Let us state two important properties of the synthesis algorithm, whose proofs

are sketched following the proofs of correctness given for the algorithms for CTL sat-

isfiability based on tableau [Clarke and Emerson, 1981; Attie et al., 2004], and for

checking (bi)simulations [Baier and Katoen, 2008; Henzinger et al., 1995].
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Algorithm 8 Algorithm Masking: compute conditions B.3 and B.4 of Definition
3.1.1

Require: Faulty Tableau TF generated by Algorithm 6 and an interface Intf .
Ensure: Conditions B.3 and B.4 hold.
1: for all s2 ∈ VC ∪ VFA do
2: Mask(s2) := {s1 ∈ Norm | Intf(s1) = Intf(s2)}
3: RemoveL(s2) := Norm\PredN(Mask(s2)) {Note that all the nodes in Norm

are already generated}
4: end for
5: while ∃ s′2 ∈ S\Norm with RemoveL(s′2) 6= ∅ do
6: select s′2 such that RemoveL(s′2) 6= ∅
7: for all s1 ∈ RemoveL(s′2) do
8: for all s2 ∈ PredN(s′2) do
9: if s1 ∈Mask(s2) then
10: Mask(s2) := Mask(s2)\{s1}
11: for all s ∈ PredN(s1) with SuccN(s) ∩ Mask(s2) = ∅ ∧ s /∈Mask(s2)

do
12: RemoveL(s2) := RemoveL(s2) ∪ {s}
13: end for
14: end if
15: end for(* this takes care of the faulty transitions*)
16: for all s2 ∈ PredF (s′2) do
17: if s1 ∈Mask(s2) ∧ s1 /∈Mask(s′2) then
18: Mask(s2) := Mask(s2)\{s1}
19: for all s ∈ PredN(s1) with SuccN(s) ∩ Mask(s2) = ∅ do
20: RemoveL(s2) := RemoveL(s2) ∪ {s}
21: end for
22: end if
23: end for
24: end for
25: RemoveL(s′2) := ∅
26: end while
27: for all s2 do
28: if Mask(s2) = ∅ then
29: delete DAG[s2]
30: end if
31: end for
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Algorithm 9 Computes relations that satisfy condition B.2 of Definition 3.1.1

Require: Faulty Tableau TF generated by Algorithm 6 and an interface
Ensure: Relations Masked and RemoveR satisfy condition B.2 of Definition 3.1.1
1: for all s2 ∈ VC do
2: Masked(s2) := {s1 | Intf(s1) = Intf(s2)}
3: RemoveR(s2) := S\Pre(Masked(s2)) {Note that all the faulty and normal

states are already generated}
4: end for
5: while ∃ s′2 ∈ VC with RemoveR(s′2) 6= ∅ do
6: select s′2 such that RemoveR(s′2) 6= ∅
7: for all s1 ∈ RemoveR(s′2) do
8: for all s2 ∈ Pre(s′2) do
9: if s1 ∈Masked(s2) then
10: Masked(s2) := Masked(s2)\{s1}
11: for all s ∈ Pre(s1) with Post(s) ∩ Masked(s2) = ∅ do
12: RemoveR(s2) := RemoveR(s2) ∪ {s}
13: end for
14: end if
15: end for
16: end for
17: RemoveR(s′2) := ∅
18: end while
19: for all s2 ∈ VC ∪ VFA do
20: if Masked(s2) = ∅ then
21: delete DAG[s2]
22: end if
23: end for
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Theorem 4.4.1. Given a specification S over a set AP of propositional letters, if we

obtain a program P by applying the synthesis algorithm over the sublabeling obtained

from AP ′ ⊆ AP , then P is a masking tolerant implementation of S, i.e., P ≺Mask P

(with respect to AP ′) and P � S.

Proof. First, we prove that Algorithm 8 ensures conditions B.3 and B.4 of Definition

3.1.1. Then we prove that Algorithm 9 ensures condition B.2. Notice that, when Al-

gorithm 8 starts, all the normative nodes (Norm) have been computed. Then, we have

the following invariant for Algorithm 8: (i) RemoveL(s2) = Norm\PreN(Mask(s2));

(ii) for any relation ≺Mask: {s1 ∈ Norm | s1 ≺Mask s2} ⊆Mask(s2) ⊆ {s2 ∈ Norm |
Intf(s1) = Intf(s2)}; and (iii) ∀s2 ∈Mask(s1), either:

• ∃s′1 ∈ Succ(s1) with SuccN(s2) ∩ Mask(s′1) = ∅ ∧ s′1 /∈ Mask(s1) and s2 ∈
RemoveL(s1),

• ∀s′1 ∈ Succ(s1) : SuccN(s2) ∩Mask(s′1) = ∅

From the last item we obtain that, when RemoveL(s′1) = ∅ for every s′1, then: ∀s1 ∈
S : ∀s2 ∈ Mask(s1) : ∀s′1 ∈ Post(s1) : SuccN(s2) ∩Mask(s′1) 6= ∅ ∨ s2 ∈ Mask(s′1).

That is, for the relation defined as s1 ≺Mask s2, items B.3 and B.4 of Definition 3.1.1

hold.

On the other hand, notice that before executing Algorithm 8, all the faulty nodes

have been calculated. For this algorithm, we have the following invariant:

(i) RemoveR(s2) = S\Pred(Masked(s2)); (ii) for any relation ≺Mask: {s2 ∈ VC |
s1 ≺Mask s2} ⊆ Masked(s1) ⊆ {s2 ∈ Vc | Intf(s1) = Intf(s2)}; and (iii) ∀s2 ∈
Masked(s1), either:

• ∃s′1 ∈ Succ(s1) with Succ(s2) ∩Masked(s′1) = ∅ and s2 ∈ RemoveL(s2),

• ∀s′1 ∈ SuccN(s1) : Succ(s2) ∩Masked(s′1) = ∅

That is, when RemoveR(s1) = ∅, then we have ∀s1 ∈ S : ∀s2 ∈ Masked(s1) : ∀s′1 ∈
SuccN(s1) : Succ(s2) ∩Masked(s′1) 6= ∅. Thus, the relation defined as: s1 ≺Mask s2

iff s1 ∈Mask(s2)∧s2 ∈Masked(s1), satisfies condition B.2 of Definition 3.1.1. Since

it also satisfies B.3 and B.4, it is a masking relation. The proof that the obtained

structure satisfies the specification can be obtained, for CTL operators, following the
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proof given in [Attie et al., 2004]. For the deontic operators notice that all the nodes

that do not satisfy the deontic operators are marked as faulty, ensuring that the safety

deontic formulas are preserved. We treat deontic eventualities by marking as faulty

all the nodes that have unfulfilled deontic eventualities. Thus, both CTL and deontic

formulas are satisfied. Termination can be proved by resorting to the approach for

proving termination of simulation algorithms (cf. [Baier and Katoen, 2008]). The

only point to note is that the injection of faults finishes at some point since states

start repeating.

The definition of masking similarity ensures that the safety and liveness properties

of the normal behavior of P are preserved in the presence of faults. If the synthesized

program P contains no faults, we conclude that it is not possible to synthesize a

masking tolerant program supporting faults, from the specification. Moreover, we can

prove that the synthesized program is the most general satisfying these properties.

Theorem 4.4.2. Given a specification S, if a structure M is obtained by the synthesis

algorithm, then for any other structure M ′ � S such that it is masking and the non-

faulty part of M ′ coincides with that of M , then we have M ′ ≺ M , where ≺ is the

usual notion of simulation with respect to the interface Intf .

Proof. The simulation relation is defined as: (i) if s ∈ Norm, s′ ≺ s iff s′ ≺Mask s;

(ii) if s /∈ Norm, s′ ≺ s iff Masked(s′) ⊆ Masked(s), i.e., the M ′ nodes masked

for s′ are a subset of those masked by s in M . In order to prove that this relation

is a simulation, assume s ≺ t. If s → s′ and s′ ∈ SuccN(s), by condition B.3 of

Definition 3.1.1 we obtain that there is a t→ t′ such that s′ ≺ t′. Otherwise, if s→ s′

and s′ ∈ SuccF (S) and s is normative, then the transition matches some part of the

specification. Thus, a similar transition is in M and therefore we have t→ t′, now if

s′ masks any node, the same node have to be masked by t′ (otherwise M ′ would not

be masking) thus s′ ≺ t′. A similar reasoning can be used when s is faulty.

As a corollary of this Theorem, the synthesis algorithm is complete. The CTL

algorithm is complete, i.e., if some structure that satisfies the CTL specification exists,

then the algorithm produces it, and by Theorem 4.4.2 we obtain a program that is

masking, and preserves as many faulty states as possible.

101



Ph.D. Thesis - Ramiro Adrian Demasi McMaster - Computing and Software

4.4.2 Synthesis Algorithm for Nonmasking Fault-Tolerance

We now present the algorithm for computing nonmasking fault-tolerance. This is

sketched in Algorithm 10, where it is an adjustment to Algorithm 3 considering a

faulty tableau TF and the input interface Intf .

Roughly speaking, this algorithm explores the faulty tableau TF and checks whether

conditions B.3, B.4 and B.5 of Definition 3.2.1 are satisfied, considering the input in-

terface Intf . As a result, a relation NMask is returned, which consists of those pairs

of states that satisfy these conditions. Subsequently, we have to update the faulty

tableau and prune those states that are not in the relation. More specifically, for each

s2 ∈ VC ∪ VFA, if NMask(s2) = ∅, then we remove the direct acyclic graph rooted at

s2. Additionally, we have to check condition B.2 of Definition 3.2.1. Notice that it

is similar to condition B.2 of Definition 3.1.1, and hence we can test this condition

using Algorithm 9. Hence, we obtain a fault tableau satisfying all the conditions of

Definition 3.2.1.

We have presented the correctness of computing a nonmasking relation from a

colored Kripke structure in Subsection 3.5.2. For the case of a faulty tableau TF , the

correctness proof is similar to the the proof in Subsection 3.5.3. Analogously, for the

proof of the complexity of the algorithm.

4.4.3 Synthesis Algorithm for Failsafe Fault-Tolerance

We finally present an algorithm (see Algorithm 11) to calculate a relation of failsafe

fault-tolerance. This is adapted version of Algorithm 4 for computing a faulty tableau

TF taking into account the input interface. The scheme of this algorithm is similar to

that of Algorithm 8. This is because both masking and failsafe fault-tolerance require

that the safety properties have to be guaranteed. However, liveness properties are

not necessarily preserved in failsafe fault-tolerance.

In Subsection 3.5.3, we have proved the correctness of computing a failsafe relation

from a colored Kripke structure; the proof for the case of a faulty tableau TF is

straightforward, following the proof in Subsection 3.5.3. Similarly, for the proof of

the complexity of the algorithm.
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Algorithm 10 Computation of nonmasking fault-tolerant

Require: Faulty tableau TF generated by Algorithm 6 and an interface
Ensure: Conditions B.3, B.4 and B.5 of Definition 3.2.1 are checked.
1: for all s2 ∈ VC ∪ VFA do
2: NMask(s2) := {s1 ∈ Norm | Intf(s1) = Intf(s2)}
3: Remove(s2) := Norm\PredN(NMask(s2))
4: Remove+(s2) := Norm\PredN(NMask(Post∗(s2)))
5: end for
6: while ∃ s′2 ∈ VC ∪ VFA with Remove(s′2) ∪Remove+(s′2) 6= ∅ do
7: select s′2 such that Remove(s′2) ∪Remove+(s′2) 6= ∅
8: for all s1 ∈ Remove(s′2) ∪Remove+(s′2) do
9: if s1 ∈ Remove(s′2) then
10: for all s2 ∈ PredN(s′2) do
11: if s1 ∈ NMask(s′2) then
12: NMask(s2) := NMask(s2)\{s1}
13: for all s ∈ PredN(s1) with PostN(s) ∩ NMask(s2) = ∅ ∧ (s /∈

NMask(PreF (s2)) ∨ s1 ∈ RemoveF (s′2)) do
14: Remove(s2) := Remove(s2) ∪ {s}
15: if s1 ∈ NMask(s2) ∧ s1 ∈ Remove+(s′2) then
16: Remove+(s2) := Remove+(s2) ∪ {s}
17: end if
18: end for
19: end if
20: end for
21: end if
22: if s1 ∈ Remove+(s′2) then
23: for all s2 ∈ PredF (s′2) do
24: if s1 ∈ NMask(s′2) then
25: NMask(s2) := NMask(s2)\{s1}
26: for all s ∈ PredN(s1) with SuccN(s) ∩NMask(Post∗F (s2)) = ∅ do
27: Remove+(s2) := Remove(s2) ∪ {s}
28: Remove(s2) := Remove(s2) ∪ {s}
29: end for
30: end if
31: end for
32: end if
33: end for
34: Remove(s2) := ∅
35: end while
36: return {〈s1, s2〉 | s1 ∈ NMask(s2)}
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Algorithm 11 Computation of failsafe fault-tolerant

Require: Faulty tableau TF generated by Algorithm 6 and an interface
Ensure: failsafe fault-tolerant ≺Failsafe
1: for all s2 ∈ VC ∪ VFA do
2: FSafe(s2) := {s1 ∈ Norm | Intf(s1) = Intf(s2)}
3: Remove(s2) := Norm\PredN(FSafe(s2))
4: end for
5: while ∃ s′2 ∈ VC ∪ VFA with Remove(s′2) 6= ∅ do
6: select s′2 such that Remove(s′2) 6= ∅
7: for all s1 ∈ Remove(s′2) do
8: for all s2 ∈ PredN(s′2) do
9: if s1 ∈ FSafe(s2) then
10: FSafe(s2) := FSafe(s2)\{s1}
11: for all s ∈ PredN(s1) with SuccN(s) ∩ FSafe(s2) = ∅ ∧ (s /∈

FSafe(PreF (s2)) ∨ Intf(s) 6= Intf(s′2)) do
12: Remove(s2) := Remove(s2) ∪ {s}
13: end for
14: end if
15: end for
16: for all s2 ∈ PredF (s′2) with Intf(s2) 6= Intf(s′2) do
17: if s1 ∈ FSafe(s2) then
18: FSafe(s2) := FSafe(s2)\{s1}
19: for all s ∈ PredN(s1) with SuccN(s) ∩ FSafe(s2) = ∅ do
20: Remove(s2) := Remove(s2) ∪ {s}
21: end for
22: end if
23: end for
24: end for
25: Remove(s2) := ∅
26: end while
27: for all s2 ∈ VC ∪ VFA do
28: if FSafe(s2) = ∅ then
29: delete DAG[s2]
30: end if
31: end for
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4.5 Extraction of the Model from the Tableau

In this section we explain the last step of our synthesis approach, that is, the extrac-

tion of a model from a faulty tableau.

Let T ′F be the faulty tableau of TF that remains after all nodes have been deleted

applying the deletion rules and the corresponding simulation algorithm depending on

the user-defined level of fault-tolerance. We will extract a finite model MF of f0 by

a process of “unraveling”, following the idea from [Attie et al., 2004; Emerson and

Clarke, 1982] and adapting it to our approach.

Initially, we focus on the normal part of the tableau, i.e., those non-faulty AND-

nodes in T ′F . Then, for each non-faulty AND-node c in T ′F , and for each eventuality

formula g ∈ L(c), there is a subdag, DAG[c, g], rooted at c which guarantees that g

is fulfilled. The idea is to employ these subdags to produce, for each AND-node c,

a model of normal fragment NFRAG[c] such that every eventuality in c is fulfilled

within NFRAG[c]. Additionally, we have to include the faulty part of the tableau,

those FAND-nodes in T ′F that satisfy the level of tolerance chosen by the user. In-

tuitively, we have to attach to each NFRAG[c] those faults that can deviate from

the normal behavior of the system starting from c. Finally, we consolidate these

fragments to obtain a fault model MF .

In the following two subsections, we explain this process in more detail.

4.5.1 Construction of fragments

For each AND-node c in T ′F , a normal fragmentNFRAG[c] is constructed. NFRAG[c]

is a directed acyclic graph whose nodes are non-faulty AND-nodes, and whose local

structure is taken from the normal part of T ′F , that is, c → c′ in NFRAG[c] only if

c → d → c′ in T ′F for some OR-node d. In addition, c is the root of NFRAG[c] and

all eventualities in the label of c are fulfilled in NFRAG[c]. Given that c was not re-

moved by the deletion rules, it follows that, for each eventuality g ∈ L(c), T ′F contains

a full subdag with root c and in which g is fulfilled. Let DAG[c, g] be the directed

acyclic prestructure that results from removing all the OR-nodes from this subdag,

and connecting the AND-nodes up appropriately, that is, if c → d and d → c′ are

edges in the full subdag for some OR-node d, then c→ c′ is an edge in DAG[c, g]. We

construct NFRAG[c] as follows. Let g1, . . . , gm be all of the eventualities in L(c). Let
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NFRAG1 be a copy of DAG[c, g1]. In order to obtain NFRAGi+1 from NFRAGi,

do the following:

for all c′ ∈ frontier(NFRAGi) do

if gi+1 ∈ L(c′) then

attach a copy of DAG[c, gi+1] to NFRAGi at c′

end if

end for

Finally, let NFRAG[c] = NFRAGm.

In the case that L(c) does not contain eventualities, then NFRAG′[c] consists of c

together with enough local successors to satisfy all of the formulas that have form AX

or EX as main connective. That is, for each d ∈ Tiles(c), choose a c′ ∈ Blocks(d) and

add c′ as a successor of c. Identify all such c′ with the same label. Then NFRAG′[c]

consists of c together with all such c′.

Subsequently, we have to attach the faults that affect each non-faulty AND-node

c in T ′F . We then construct faulty fragments FFRAG[c] from each NFRAG[c] as

follows.

for all c′ ∈ NFRAG[c] do

for all FOR-node d such that c′ 99K d then

attach a copy of each DAG[fa] to c′, where d 99K fa in T ′F

end for

end for

Note that each fa is a FAND-node, which is a direct successor from FOR-node d

in T ′F . Intuitively, this algorithm attaches to each c′ in NFRAG[c] the direct acyclic

graphs rooted at each fa, which contain only those FAND-nodes that have remained

after the application of the corresponding simulation algorithm.
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4.5.2 Construction of the model

The last step of this process is to connect all FFRAGs calculated above. Basically,

the frontier nodes of a particular FFRAG are identified with root nodes of other

FFRAGs to form a particular Kripke structure (see below). The resulting structure

is a model of dSpec. The procedure is as follows:

Choose c0 ∈ Blocks(d0) arbitrarily, where d0 is the root of TF . Let M1 =

FFRAG[c0]. In order to obtain Mi+1 from Mi, do the following:

for all s ∈ frontier(Mi) do

if there exists s′ ∈ interior(Mi), such that s is also a copy of c, and

a copy of FFRAG[c] is directly embedded in Mi with root s then

identify s and s′

else

replace s by a copy of FFRAG[c]

end if

end for

The construction halts with i = n when frontier(Mn) is empty. Let MF =

Mn. We write MF = (c0,N ,F , RN , RF , RRec, L), where c0 ∈ Blocks(d0) is chosen

arbitrarily in MF , N is a set of normal, or “green” states, F is a set of faulty, or

“red” states, RN ⊆ N ×N is a (normal) transition relation, RF ⊆ N ×F ∪F ×F is

a (faulty) transition relation, RRec ⊆ F × N is a (recovery) transition relation, and

L is a labeling function indicating which propositions are true in each state. Finally,

we restrict L to L0 containing only the propositions occurring in dSpec and fSpec,

i.e., MF = (c0,N ,F , RN , RF , RRec, L0) where L0 ⊆ L. MF is a model of dSpec.

4.6 Complexity of the Synthesis Method

In this section we give the time complexity of our synthesis method in terms of two

parameters, following the proof given in [Attie et al., 2004]. Firstly, the length of

the deontic specification dSpec: init-spec and normal-spec and secondly, the length of

the fault specification fSpec: fault-variables, fault-spec, and combine-spec. We assume

that each auxiliary atomic proposition in fault−variables is specified at least once in
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combine-spec (since otherwise it can be removed from the fault specification without

changing the specification logically), and so the size of the set of auxiliary atomic

propositions is always smaller than the size of the combine-spec specification. Hence

it is not included as a parameter in the complexity analysis.

The construction of the initial tableau TN involves creating nodes whose labels are

subsets of cl(dSpec). Thus, the number of nodes in the construction of the normal

part of the tableau TN is O(exp(|cl(dSpec)|)), where exp(n)
def
= 2n. Moreover, for any

node e of TN , L(e) ⊆ cl(dSpec). Therefore, |L(e)| ≤ |cl(dSpec)|. Hence, the sum

of the lengths of the formulas in L(e) is in O(|dSpec|2), since each such formula has

length in O(|dSpec|). Thus, the size of each node in TN is O(|dSpec|2).

Notice that during the construction of the normal part of the tableau TN , each

node (either AND-node or OR-node) e in T0 is expanded once. The process of ex-

panding nodes essentially concern the computation of Blocks(e) or Tiles(e). On the

one hand, generating Tiles(e) has cost at most |L(e)|, because each formula in L(e)

adds at most one element of Tiles(e). Hence, the cost is O(|dSpec|). On the other

hand, the generation of Blocks(e) requires the construction of a tree, where α − β
rules are applied until all the leaves are labeled only with elementary formulas. The

cost of this is at most O(|dSpec|2
∑

f∈L(e) |f |), since each α − β expansion delivers

one connective in one formula in L(e), and produces either one or at most two new

nodes, each of size O(|dSpec|2). Therefore, the total cost of calculating Blocks(e)

is O(|dSpec|4), because each formula in L(e) has length O(|dSpec|), and there are

O(|dSpec|) such formulas.

Additionally, we need to consider the faults that can deviate from the normal

behavior of the system. For each AND-node e in TN , faults are injected into e via the

violation of deontic propositional variables and from the fault specification fSpec. In

the former, for each AND-node c, a new FOR-node fn is created and attached to c.

Subsequently, FAND-nodes are generated from fn with all combinations of violating

deontic propositional variables in fn. The number of deontic propositional variables

in an AND-node c is significantly small compared with labels that appear in a node.

This process can be performed in O(exp(|deonV (c)|)) steps, where deonV (c) is the

number of deontic propositional variables in c. In the latter, for each AND-node c, we

have to check if there exists any formula f in fault− spec, in which its antecedent is

true in L(c). If this is the case, a new FAND-node fc is attached to c labeled with the
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same propositions of c, except that the antecedent of c is replaced by the consequent

of f . This can be done in |fault− spec| steps.

After the injection of faults, we have to prune those faulty states that do not

satisfy the required level of fault-tolerance considering the input interface Intf . We

presented for each level of fault-tolerance a simulation algorithm, which we apply

for this purpose. The complexity times for all of these algorithms are polynomial

with respect to the number of edges and the number of nodes of the the tableau TF .

More specifically, for masking fault-tolerance the simulation algorithm is computed

in a running time of O(|S|2 ∗ |Intf | + |E| ∗ |S|), where |E| is the number of edges

of the tableau and |S| the number of states (all types of nodes in TF ). In the case

of nonmasking fault-tolerance, its complexity time results is O(|S|4 + |S|2 ∗ |AP ′|).
Finally, the time complexity for failsafe fault-tolerance is O(|E| ∗ |S|+ |E| ∗ |Intf |)

We need to consider other complementaries steps during our synthesis process,

e.g., application of pruning rules, construction of normal and faulty fragments, and

a posteriori construction of the final fault-tolerant model from these fragments. The

complexity times of these steps are all polynomial in the size of TF , i.e., exp(O(|dSpec|)).
The proofs of these steps are identical as that for the CTL decision procedure, which

can be consulted in [Emerson, 1981].

In conclusion, the overall time complexity is |fault−spec| ∗exp(O(|dSpec|)), that

is, a single exponential in the specification size and linear in the size of the fault

specification. We can also conclude from the above discussion that the overall space

complexity is |fault− spec| ∗ exp(O(|dSpec|)).
In general, as stated in [Attie et al., 2004], “synthesis methods based on exhaustive

state exploration will have a time complexity no better than single exponential in the

size of the specification”.
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Chapter 5

Case Studies

In this chapter we provide several case studies to validate our synthesis method. We

first focus on examples of masking fault-tolerance. Typically, masking fault-tolerant

programs involve redundancy, consensus, agreement, and majority voting techniques.

We have performed different experiments based on some of these techniques such as,

Byzantine agreement, N-Modular-Redundancy (NMR), a Memory Cell, and a Token

ring. Additionally, we synthesized a simple Train System requiring failsafe as the

level of fault-tolerance. Regarding nonmasking fault-tolerance, we provide two case

studies, an Altitude Switch (ASW) controller and the Muller C-element.

We remark that, for the following cases studies, we do not present the complete

resulting faulty tableau and the final models. This is because many of them are

not visualized properly in this thesis’s format. For that reason we provide portions

of the tableau and the models of these case studies. At the end of this chapter, on

Section 5.8.1, we provide information on how to access the full results for the following

examples.

Finally, we introduce the architecture of our tool syntdctl. Moreover, we present

the experimental results for some of the models described below.

5.1 A Memory Cell

We start with a simple memory cell example introduced in the Example 3.1.1. We re-

hearse this case study for the reader, including some extra details for the specification

in the logic dCTL-.
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The memory cell stores a bit of information, and supports reading and writing;

redundancy, via three memory bits instead of one, is employed in order to deal with

the situation in which a bit’s value unexpectedly loses its charge and it turns into

another value.

In order to specify this behavior in dCTL-, we use a variable v, that indicates the

value that the user wants to write (i.e., v = 0, v = 1 or v = ⊥, the latter being the

case in which the system is “idle” with respect to writing) is added to the model.

Writing operations are performed simultaneously on the three bits, whereas a reading

returns the value that is repeated at least twice in the memory bits. For this problem,

each state in the model is described by variables ri and wi (for i = 0, 1) which record

the last writing operation performed and the actual reading in the state. Each state

also has three bits, described by boolean variables c0, c1 and c2. The requirements

on this system (dSpec and interface) can be specified in dCTL- as follows:

--Interface

(1) r0, r1, w0, w1

--Initial State

(2) In the initial state the three bits contain the same value.

c0 ↔ c1 ∧ c0 ↔ c2

--Specification

(3) A safety property of the system: the three bits should coincide.

OG((c0 ∧ c1 ∧ c2) ∨ (¬c0 ∧ ¬c1 ∧ ¬c2))

(4) The value read from the cell ought to coincide with the last writing performed.

OG((r0 → w0) ∧ (r1 → w1))

(5) If a zero has been written, then w1 is false and vice versa.

AG(w0 ≡ ¬w1)

(6) Variable w1 only changes when w0 becomes true, and vice versa.

AG((w0 U w1) ∧ (w1 U w0))
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(7) The reading of a 0 corresponds to the value read by the majority.

AG(r0 ≡ (¬c0 ∧ ¬c1) ∨ (¬c0 ∧ ¬c2) ∨ (¬c1 ∧ ¬c2))

(8) The reading of a 1 corresponds to the value read by the majority.

AG(r1 ≡ (c0 ∧ c1) ∨ (c0 ∧ c2) ∨ (c1 ∧ c2))

(9) If the user wants to write 1, then in the next step the memory will be setup to

one.

AG(v = 1→ AX(w1 ∧ v = ⊥ ∧ c0 ∧ c1 ∧ c2))

(10) Similar to the previous, but for 0.

AG(v = 0→ AX(w0 ∧ v = ⊥ ∧ ¬c0 ∧ ¬c1 ∧ ¬c2))

(11) At any moment the user may decide to write a value.

AG(v = ⊥ → AX(v = 1 ∨ v = 0 ∨ v = ⊥))

Besides these formulas, one may add additional constraints, e.g., indicating that

atomic steps (including faults) change bits by one. These constraints are straight-

forward to capture in CTL. Finally, the type of fault-tolerance we require is masking

fault-tolerance.

Let us now illustrate how our synthesis approach works on this example. Figure

5.1 shows the partial tableau generated by Algorithm 6 for this problem. AND-nodes

and OR-nodes are shown as rectangles and hexagons, respectively. For the sake of

brevity, we put only the relevant information inside each box. Initially, a tableau is

built using Algorithm 6, employing the rules α and β for CTL and dCTL- formulas

until every node in the tableau has at least one successor. The tableau contains a fault

injection part, generated from the AND-node in the second level of the tableau. This

FOR-node is labeled identically as its AND-node predecessor. From this FOR-node

we generate all possible faults from deontic formula violations. In particular, this

node has deontic propositional variables Oc0 , Oc1 , and Oc2 , expressing that c0, c1, and

c2 should be true there, which is the case in this node. Now, we start to consider those

cases in which an obligation might be violated. Following Algorithm 5, we negate

one-by-one these deontic propositional variables. We generated three faulty AND-

nodes (for the sake of brevity, just two of them are drawn) from the FOR-node with

similar information to it except for the new negated propositional variable. The first

FAND-node successor introduces ¬c0 violating Oc0 (say f0). The second and third
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Figure 5.1: Partial tableau for a Memory Cell.

FAND-nodes introduce ¬c1 and ¬c2 violating Oc1 and Oc2 , respectively. Similarly for

the other FAND-nodes. We continue the process of negating deontic propositional

variables from these faulty AND-nodes. As a successor of f0, we obtain the same

information of f0 with ¬c1 (say f ′0). Thus, we have that Oc0 and Oc1 are violated.

After the injection of faults process, we check whether it is possible to mask these

faulty states using Algorithm 8. For example, for the case of the FAND-node which

contains ¬c0 and ¬c1 (say f ′0), Algorithm 8 checks whether this FAND-node can be

masked. Our algorithm cuts out this node because it cannot be masked. Similar
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results are obtained for the other combinations. Moreover, for each masked FAND-

node f , a (recovery) transition is added from it to each successor of Mask(f) in the

case that we can reach a normal successor using the rules of the tableau. Notice

that faults introduced change a bit and keep the bits unchanged during the recovery

process. After that, since all the faulty nodes that can be masked were generated,

we check condition B.2 of the simulation relation by using Algorithm 9. This process

may also cut out other faulty nodes: those which exhibit normal behavior which is

not the behavior of the correct part of the system. Finally, we are ready to extract the

fault-tolerant program from the tableau using the unfolding process (see Section 4.5).

Figure 5.2 shows the transition diagram of the program extracted from the structure

in Figure 5.1. For the sake of simplicity, the program does not include all the masked

faults (these are similar to those shown in the program). Graphically, the normal

states and transitions are represented as green rounded circles and lines, respectively.

Faulty states and transitions are pictured as red rounded circles and lines, respectively.

Recovery transitions are represented by black lines. The information contained in each

state is interpreted as 000 (reading from left to right) for c0 = 0, c1 = 0, and c2 = 0;

moreover, the value of v is stated.

Note that this program was generated considering that faults are computed from

deontic operators automatically, only considering some basic operations on the data

structures of the states (in this case bits). Hence, we did not include the fault specifi-

cation fSpec for this problem. Other approaches [Kulkarni and Arora, 2000; Kulkarni

and Ebnenasir, 2004; Attie et al., 2004] require faults to be given as input of the syn-

thesis process, e.g., as special actions specified as guarded commands. We also allow

to the users to specify the faults that can affect the normal behavior of the system

via the fault specification fSpec. Therefore, we can add the following formula in the

memory cell example:

(11) For i = {0, 1, 2}, at some point a bit may lose its charge.

AG(ci ∧ v = ⊥ → AX(v = ⊥ ∧ ¬ci))

Notice that sentence (11) is covered in our synthesis process.
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Figure 5.2: Part of the fault-tolerant program extracted from the structure in Figure
5.1.

5.2 Byzantine Agreement

Our second case study is the well-known Byzantine generals problem, introduced

originally in [Lamport et al., 1982]. We have introduced the underlying idea of this

example in Subsection 3.6.2.

We assume the following: G is the general, the messages are delivered correctly

and all the lieutenants can communicate directly with each other; in this scenario

they can recognize who is sending a message. Faults can convert loyal lieutenants

into traitors (Byzantines). As a consequence, traitors might deliver false messages or

perhaps they avoid sending a message that they received. The loyal lieutenants must

agree on attacking or retreating after m + 1 rounds of communication, where m is

the maximum numbers of traitors. The algorithm can ensure correct operation only

if fewer than one third of the lieutenants are traitors. Finally, traitors cannot forge

messages on behalf of loyal lieutenants.

We have formalized this problem for one general G and three lieutenants L1, L2,

and L3. We have the following propositions:

• G.a, the general G wants to attack the enemy.

• G.b, indicates if the general G is Byzantine or not.

• Li.b for 1 ≤ i ≤ 3, states if lieutenant Li is Byzantine or not.
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• Li.Ga for 1 ≤ i, j ≤ 3, indicates that lieutenant Li has received the message to

attack from the general G.

• Li.Lja for 1 ≤ i, j ≤ 3, indicates that lieutenant Li has received the message

to attack from lieutenant Lj.

• Li.d for 1 ≤ i ≤ 3, states that lieutenant Li has made a decision, either to

attack or retreat.

• ri for 0 ≤ i ≤ 1, are propositions used to indicate the number of the current

round of messages.

• reset, indicates that the system is reset to start a new round of messages.

Note that we only model the case when the general wants to attack; the case that

he wants to retreat is symmetric to the one presented below.

The requirements on this system (dSpec and interface) can be specified in dCTL-

as follows:

--Interface

(1) L1.d, L2.d, L3.d

--Initial State

(2) In the initial state, round r0, the three lieutenants are not Byzantine and they

did not make any decision yet. Moreover, the general G is not Byzantine and he

has decided to attack.

¬L1.b ∧ ¬L2.b ∧ ¬L3.b ∧G.a ∧ ¬G.b ∧ r0

--Specification

(3) In round 0 the general sends the message of attack to the lieutenants L1, L2, and

L3.

AG((G.a∧ r0)→ AX(r1∧L1.Ga∧L2.Ga∧L3.Ga∧G.a∧¬L1.b∧¬L2.b∧¬L3.b))

116



Ph.D. Thesis - Ramiro Adrian Demasi McMaster - Computing and Software

(4) Each non-Byzantine lieutenant forwards the message of attack to the other lieu-

tenants in round 1.

(a) AG((L1.Ga∧¬L1.b∧ r1)→ AX(reset∧L2.L1a∧L3.L1a∧L1.Ga∧L2.Ga∧
L3.Ga ∧G.a ∧ ¬G.b ∧ ¬L1.b ∧ ¬L2.b ∧ ¬L3.b))

(b) AG((L2.Ga∧¬L2.b∧ r1)→ AX(reset∧L1.L2a∧L3.L2a∧L1.Ga∧L2.Ga∧
L3.Ga ∧G.a ∧ ¬G.b ∧ ¬L1.b ∧ ¬L2.b ∧ ¬L3.b))

(c) AG((L3.Ga∧¬L3.b∧ r1)→ AX(reset∧L1.L3a∧L2.L3a∧L1.Ga∧L2.Ga∧
L3.Ga ∧G.a ∧ ¬G.b ∧ ¬L1.b ∧ ¬L2.b ∧ ¬L3.b))

(5) After the final round m+ 1 is reached (m is the number of traitors or Byzantine

allowed), the system is reset.

AG(reset→ AX(¬L1.b ∧ ¬L2.b ∧ ¬L3.b ∧G.a ∧ ¬G.b ∧ r0))

(6) Each lieutenant Lj decides to attack if it has received at least two messages of

attack coming from the other two lieutenants and the general.

(a) AG(L1.d ↔ ((L1.Ga ∧ L1.L2a ∧ L1.L3a) ∨ (L1.Ga ∧ L1.L2a) ∨ (L1.Ga ∧
L1.L3a)))

(b) AG(L2.d ↔ ((L2.Ga ∧ L2.L1a ∧ L2.L3a) ∨ (L2.Ga ∧ L2.L1a) ∨ (L2.Ga ∧
L2.L3a)))

(c) AG(L3.d ↔ ((L3.Ga ∧ L3.L1a ∧ L3.L2a) ∨ (L3.Ga ∧ L3.L1a) ∨ (L3.Ga ∧
L3.L2a)))

(7) The systems has been reset iff the general has taken his decision.

AG(reset↔ G.d)

(8) A safety property of the system: the three lieutenants are not Byzantine (or

traitors).

OG(¬L1.b ∧ ¬L2.b ∧ ¬L3.b)

(9) Validity: if the general G is not Byzantine, then the final decision of the lieu-

tenants must be the same as that of the general G.

OG((¬G.b ∧ reset)→ (G.d ∧ L1.d ∧ L2.d ∧ L3.d))
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Figure 5.3: Fault-tolerant model synthesized for the Byzantine agreement problem.

(10) Agreement: the final decision of any 2 non-Byzantine lieutenants must be equal.

OG(((¬L1.b ∧ ¬L2.b)→ (L1.d ∧ L2.d)) ∧ ((¬L1.b ∧ ¬L3.b)→ (L1.d ∧ L3.d))∧
((¬L2.b ∧ ¬L3.b)→ (L2.d ∧ L3.d)))

(11) If a lieutenant is Byzantine, then it means that he forwards the message of not

attacking to the other lieutenants.

(a) AG(L1.b↔ (¬L2.L1a ∧ ¬L3.L1a))

(b) AG(L2.b↔ (¬L1.L2a ∧ ¬L3.L2a))

(c) AG(L3.b↔ (¬L1.L3a ∧ ¬L2.L3a))

Finally, the type of fault-tolerance required is masking fault-tolerance.

The final masking fault-tolerant model synthesized using our technique is depicted

in Figure 5.3. Note that in the resulting masking fault-tolerant model, after that the

general G has sent the order to attack to all the lieutenants, only one of these could

become a traitor. The cases in which at least two lieutenants become traitors are not
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included in the model because these cannot be masked. On the other hand, the cases

in which only one of the lieutenants is Byzantine are masked due to the agreement

process.

5.3 N-Modular-Redundancy (NMR)

N-modular redundancy consist of N systems, in which these perform a process and

that results are processed by a majority-voting system to produce a single output.

An NMR system can tolerate up to n module failures, where n = (N − 1)/2. For this

case study, we have synthesized a 5-modular-redundancy example using our synthesis

approach. The vocabulary of the example is given by the following set of propositions

with their intuitive meaning:

• pi.in for 1 ≤ i ≤ 5, represents the input value for each process i.

• input 0, the inputs for all processes have been set to 0.

• input 1, the inputs for all processes have been set to 1.

• out 0, the output of the majority voting system is 0.

• out 1, the output of the majority voting system is 1.

• set input, variable used to initiate a new cycle for setting the inputs of the

modules.

• set input 0 (set input 1), variable used to simulate that the modules will receive

as input the value 0 (1).

The requirements on this system (dSpec and interface) can be specified in dCTL-

as follows:

--Interface

(1) input 0, input 1, out 0, out 1;
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--Initial State

(2) Initial State: the input for the five modules are set to the same value.

((¬p1.in ∧ ¬p2.in ∧ ¬p3.in ∧ ¬p4.in ∧ ¬p5.in ∧ input 0 ∧ set input)∨
(p1.in ∧ p2.in ∧ p3.in ∧ p4.in ∧ p5.in ∧ input 1 ∧ set input))

--Specification

(3) A safety property of the system: the input for the five modules should coincide.

OG((p1.in ∧ p2.in ∧ p3.in ∧ p4.in ∧ p5.in)∨
(¬p1.in ∧ ¬p2.in ∧ ¬p3.in ∧ ¬p4.in ∧ ¬p5.in))

(4) The value of the output ought to coincide with the last input.

OG((¬out→ input 0) ∨ (out→ input 1))

(5) The value of the output out ought to coincide with the value obtained from the

majority gate, at most 2 faults are tolerated.

(a) AG(out 1↔ ((p1.in ∧ p2.in ∧ p3.in) ∨ (p1.in ∧ p2.in ∧ p4.in)∨
(p1.in ∧ p3.in ∧ p4.in) ∨ (p2.in ∧ p3.in ∧ p4.in)∨
(p2.in ∧ p3.in ∧ p5.in) ∨ (p2.in ∧ p4.in ∧ p5.in)∨
(p3.in ∧ p4.in ∧ p5.in) ∨ (p1.in ∧ p4.in ∧ p5.in)∨
(p1.in ∧ p2.in ∧ p5.in) ∨ (p1.in ∧ p3.in ∧ p5.in)))

(b) AG(out 0↔ ((¬p1.in ∧ ¬p2.in ∧ ¬p3.in) ∨ (¬p1.in ∧ ¬p2.in ∧ ¬p4.in)∨
(¬p1.in ∧ ¬p3.in ∧ ¬p4.in) ∨ (¬p2.in ∧ ¬p3.in ∧ ¬p4.in)∨
(¬p2.in ∧ ¬p3.in ∧ ¬p5.in) ∨ (¬p2.in ∧ ¬p4.in ∧ ¬p5.in)∨
(¬p3.in ∧ ¬p4.in ∧ ¬p5.in) ∨ (¬p1.in ∧ ¬p4.in ∧ ¬p5.in)∨
(¬p1.in ∧ ¬p2.in ∧ ¬p5.in) ∨ (¬p1.in ∧ ¬p3.in ∧ ¬p5.in)))

(6) If the input is intended to be set to 1, then in the next step the input for the five

modules will be set up to one.

AG(set input 1→ AX(p1.in∧ p2.in∧ p3.in∧ p4.in∧ p5.in∧ input 1∧ set input))

(7) If the input is intended to be set to 0, then in the next step the input for the five

modules will be set to zero.

AG(set input 0 → AX(¬p1.in ∧ ¬p2.in ∧ ¬p3.in ∧ ¬p4.in ∧ ¬p5.in ∧ input 0 ∧
set input))
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Figure 5.4: Part of the fault-tolerant program synthesized for the 5MR.

(8) At any moment the input for the five modules can be set to 0 or 1.

(a) AG((input 0 ∧ set input ∧ ¬p1.in ∧ ¬p2.in ∧ ¬p3.in ∧ ¬p4.in ∧ ¬p5.in)→
AX((set input 0∧input 0)∨(set input 1∧input 0)∨(set input∧input 0)))

(b) AG((input 1 ∧ set input ∧ p1.in ∧ p2.in ∧ p3.in ∧ p4.in ∧ p5.in)→
AX((set input 0∧input 1)∨(set input 1∧input 1)∨(set input∧input 1)))

Finally, the type of fault-tolerance required is masking fault-tolerance.

Part of the masking fault-tolerant implementation synthesized for the 5-modular-

redundancy (5MR) problem is illustrated in Figure 5.4.

The resulting model contains many faulty states which are masked. We only

include some of them, originating from one of the normal states. Note that, from

this state, the 5MR can tolerate up to 2 module failures. Using our method, we have

injected all possible faults for the five modules and we have pruned those faults that

contain more than 2 module failures.
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5.4 Token Ring

Our fourth example involves an adaptation of a case study from [Bonakdarpour et al.,

2012], a token ring for solving distributed mutual exclusion, where processes 0 . . . N

are organized in a ring and the token is circulated along the ring in a fixed direction.

Each process, say p where p is in {0 . . . n}, maintains a variable pi.t with domain

{0, 1}. Moreover, pi.corr denotes that process pi contains a corrupted value. Process

p, 0 ≤ p ≤ n− 1, has the token and can access the critical section iff pi.t differs from

its successor pi+1.t and process n has the token iff pn.t is the same as its successor

p0.t. We have formalized the behavior of this system for four processes p0, p1, p2, and

p3. Additionally, we have the proposition pi.token for each process, which denotes

that process pi has the token. These propositions will conform to the visible part of

the system.

The requirements on this system (dSpec and interface) can be specified in dCTL-

as follows:

--Interface

(1) p0.token, p1.token, p2.token, p3.token

--Initial State

(2) Initial State: process p0 has the token and the four processes have not corrupted

values.

((p0.t ∧ p1.t ∧ p2.t ∧ p3.t) ∨ (¬p0.t ∧ ¬p1.t ∧ ¬p2.t ∧ ¬p3.t))∧
(¬p0.corr ∧ ¬p1.corr ∧ ¬p2.corr ∧ ¬p3.corr)

--Specification

(3) A safety property of the system: there is no any process with a corrupted value.

OG(¬p0.corr ∧ ¬p1.corr ∧ ¬p2.corr ∧ ¬p3.corr)

(4) There is always exactly one node which has the token.

OG((p0.token ∧ ¬p1.token ∧ ¬p2.token ∧ ¬p3.token) ∨
(¬p0.token ∧ p1.token ∧ ¬p2.token ∧ ¬p3.token)∨
(¬p0.token ∧ ¬p1.token ∧ p2.token ∧ ¬p3.token)∨
(¬p0.token ∧ ¬p1.token ∧ ¬p2.token ∧ p3.token))
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(5) Whenever a node has a token, it eventually passes it to the next one in the ring.

OG( (p0.token→ AX(p1.token)) ∧ (p1.token→ AX(p2.token)) ∧
(p2.token→ AX(p3.token)) ∧ (p3.token→ AX(p0.token)) )

(6) Process pi has the token iff pi is not corrupted and pi.t differs from its successor

pi+1.t and process n has the token iff pn.t is the same as its successor p0.t.

(a) AG(p0.token↔ ( ((p0.t∧p1.t∧p2.t∧p3.t)∨ (¬p0.t∧¬p1.t∧¬p2.t∧¬p3.t))∧
(¬p0.corr ∧ ¬p1.corr ∧ ¬p2.corr ∧ ¬p3.corr)) )

(b) AG(p1.token↔ ( ((¬p0.t∧p1.t∧p2.t∧p3.t)∨ (p0.t∧¬p1.t∧¬p2.t∧¬p3.t))∧
(¬p0.corr ∧ ¬p1.corr ∧ ¬p2.corr ∧ ¬p3.corr)) )

(c) AG(p2.token↔ ( ((¬p0.t∧¬p1.t∧p2.t∧p3.t)∨ (p0.t∧p1.t∧¬p2.t∧¬p3.t))∧
(¬p0.corr ∧ ¬p1.corr ∧ ¬p2.corr ∧ ¬p3.corr)) )

(d) AG(p3.token↔ ( ((¬p0.t∧¬p1.t∧¬p2.t∧p3.t)∨ (p0.t∧p1.t∧p2.t∧¬p3.t))∧
(¬p0.corr ∧ ¬p1.corr ∧ ¬p2.corr ∧ ¬p3.corr)) )

(7) Id process p0 has the token, then in the next state the token is passed to p1 and

there is no process with a corrupted value.

(a) AG((p0.t ∧ p1.t ∧ p2.t ∧ p3.t)→ AX(¬p0.t ∧ p1.t ∧ p2.t ∧ p3.t) )

(b) AG((¬p0.t ∧ ¬p1.t ∧ ¬p2.t ∧ ¬p3.t)→ AX(p0.t ∧ ¬p1.t ∧ ¬p2.t ∧ ¬p3.t) )

(8) Id process p1 has the token, then in the next state the token is passed to p2 and

there is no process with a corrupted value.

(a) AG((¬p0.t ∧ p1.t ∧ p2.t ∧ p3.t)→ AX(¬p0.t ∧ ¬p1.t ∧ p2.t ∧ p3.t) )

(b) AG((p0.t ∧ ¬p1.t ∧ ¬p2.t ∧ ¬p3.t)→ AX(p0.t ∧ p1.t ∧ ¬p2.t ∧ ¬p3.t) )

(9) Id process p2 has the token, then in the next state the token is passed to p3 and

there is no process with a corrupted value.

(a) AG((¬p0.t ∧ ¬p1.t ∧ p2.t ∧ p3.t)→ AX(¬p0.t ∧ ¬p1.t ∧ ¬p2.t ∧ p3.t) )

(b) AG((p0.t ∧ p1.t ∧ ¬p2.t ∧ ¬p3.t)→ AX(p0.t ∧ p1.t ∧ p2.t ∧ ¬p3.t) )

(10) Id process p3 has the token, then in the next state the token is passed to p0 and

there is no process with a corrupted value.
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Figure 5.5: Part of the fault-tolerant program synthesized for the token ring.

(a) AG((¬p0.t ∧ ¬p1.t ∧ ¬p2.t ∧ p3.t)→ AX(¬p0.t ∧ ¬p1.t ∧ ¬p2.t ∧ ¬p3.t) )

(b) AG((p0.t ∧ p1.t ∧ p2.t ∧ ¬p3.t)→ AX(p0.t ∧ p1.t ∧ p2.t ∧ p3.t) )

Finally, the level of fault-tolerance required is masking fault-tolerance.

The synthesized masking fault-tolerant implementation for this problem is illus-

trated in Figure 5.5. Note that in all normal (green) states, the four processes do

not have corrupted values, i.e., in each normal state ¬p0.corr, ¬p2.corr, ¬p3.corr,
and ¬p4.corr hold. Moreover, we have included in this model only the masked faults

originating from one normal state, namely the case when p1 has the token. For the

other cases, the result is similar to that presented in the model.
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5.5 The Muller C-element with a majority circuit

We now present our fifth case study, the Muller C-element with a majority circuit.

We have introduced it in Subsection 3.6.1, where we have stated the logical behavior

of the system. In summary, it is composed of three boolean inputs x, y, and u

and one boolean output z. We have the predicate maj(x, y, u) which returns the

value of the majority circuit, which is assumed to work correctly, and is defined as

maj(x, y, u) = (x ∧ y) ∨ (x ∧ u) ∨ (y ∧ u).

We specify in dCTL- the requirements of this system (dSpec and interface) as

follows:

--Interface

(1) x, y, u, z

--Initial State

(2) Initial State: the three inputs and the output z contain the same value.

(x ∧ y ∧ u ∧ z) ∨ (¬x ∧ ¬y ∧ ¬u ∧ ¬z)

--Specification

(3) The two inputs x and y should coincide.

OG(x↔ y)

(4) The values of u and z should coincide.

OG(u↔ z)

(5) maj contains the value of the majority circuit over x, y, and u, which is assumed

to work correctly.

AG(maj ≡ (x↔ y) ∨ (x↔ u) ∨ (y ↔ u))

(6) Input x (respectively, y) changes only if x = z (respectively, y = z), i.e, x and y

change simultaneously.

(a) AG((x ∧ y ∧ z)→ AX(¬x ∧ ¬y ∧ z))
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(b) AG((¬x ∧ ¬y ∧ ¬z)→ AX(x ∧ y ∧ ¬z))

(7) u and z change simultaneously.

(a) AG((¬maj ∧ u ∧ z)→ AX(¬maj ∧ ¬u ∧ ¬z))

(b) AG((maj ∧ ¬u ∧ ¬z)→ AX(maj ∧ u ∧ z))

Finally, the level of fault-tolerance required is nonmasking fault-tolerance.

Part of the nonmasking fault-tolerant implementation synthesized for the Muller

C-element with majority circuit is illustrated in Figure 5.6. We have defined as

interface the four variables (x, y, u, and z) used in this problem, i.e., we focus

on these variables as the visible part of system to analyse the required level of fault-

tolerance. Notice that deontic violations are produced from statements 3 and 4, which

are all the possible faults that can be generated from this specification. Intuitively,

the faults illustrated in Figure 5.6 cannot be masked, but there exists a nonmasking

relation where eventually a normal state is reached from any of the faulty states. We

remark that, the fault-tolerant program synthesized in Figure 5.6 coincide with the

one presented in Figure 3.5.

On the other hand, if we only consider faults that corrupt the values of the input

x and y, i.e., we need to define as interface of this problem the variables u and z, then

we can synthesize a masking fault-tolerant version of Muller C-element with majority

circuit. Part of the resulting model, using syntdctl, is depicted in Figure 5.7. Observe

in the model that faults only affect variables x and y, generated by the negation of

deontic variables from formula (3). Because this systems is composed of a majority

circuit, these faults are masked.

5.6 Altitude Switch (ASW)

Our sixth case study involves an adaptation of the Altitude Switch (ASW) controller

presented in [Jeffords et al., 2009]. We have introduced this example in Subsection

3.6.3. In short, the ASW controller is responsible for turning on a Device of Interest

(DOI) when the aircraft altitude is below a pre-specified threshold. Essentially, the

ASW controller reads a set of variables and produces an output.
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Figure 5.6: Part of the nonmasking fault-tolerant program synthesized for the Muller
C-element.
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Figure 5.7: Part of the masking fault-tolerant program synthesized for the Muller
C-element.
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The vocabulary of the example is given by the following set of propositions for

specifying the normal behavior of the system with their intuitive meaning:

• complete init, true if the initialization of the system is complete,

• alt below, true if the altitude is below a pre-specific threshold,

• doi status, true if the DOI is powered on,

• inhibit, true when the DOI power-on is inhibited,

• reset, true if the system is being reset.

Additionally, the ASW system can be subject to hardware malfunctions that may

alter the ASW controller. The following are the propositions used to represent three

time-out potential faults, which will be used for describing the fault specification of

this problem:

• init fail, true if the initialization fails,

• alt fail, true if the altimeter fails,

• doi fail, true if the device of inters fails.

Finally, we define the next propositions for expressing the different modes that

the ASW controller can be:

• init, true if the ASW system is initializing,

• await doi, true if the system is waiting for the DOI to power on,

• stanby, true for all other cases,

• fm, true when the system detects any of the above faults.

The requirements on this system (dSpec and interface) can be specified in dCTL-

as follows:
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--Interface

(1) init, standby, await doi, fm

--Initial State

(2) Initial State: the system is in the mode init, i.e., initializing the ASW controller.

init ∧ ¬inhibit ∧ ¬doi status

--Specification

(3) Once the initialization of the system is complete, then the system moves to the

standby mode.

AG((init ∧ complete init)→ AX(standby))

(4) The system moves from standby mode to Await DOI.

AG((standby ∧ ¬inhibit ∧ ¬doi status)→ AX(await doi))

(5) The system moves from Await DOI to standby.

AG(await doi→ AX(standby))

(6) The system is at in most one of the modes init, standby, or await doi.

OG(init → ¬(standby ∨ await doi)) ∧ OG(standby → ¬(init ∨ await doi)) ∧
OG(await doi→ ¬(init ∨ standby))

--Fault Specification

(7) The system in the faulty mode is not in any of the modes init, standby, or

await doi.

AG(fm ≡ (¬init ∨ ¬standby ∨ ¬await doi))

(8) The system detects that initialization of the ASW controller fails and it goes into

the faulty mode fm.

AG((init ∧ init fail)→ AX(fm))

(9) The system detects that the altimeter failed and it goes into the faulty mode fm.

AG((standby ∧ alt fail)→ AX(fm))
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Figure 5.8: Part of the nonmasking fault-tolerant program synthesized for the ASW
controller.

(10) The system detects that the device of interest failed and it goes into the faulty

mode fm.

AG((await doi ∧ doi fail)→ AX(fm))

(11) The system can recover from the faulty state fm, if the system has been reset by

the pilot.

AG((fm ∧ reset)→ AX(init))

The level of fault-tolerance required is nonmasking fault-tolerance.

The synthesized nonmasking fault-tolerant implementation for this problem is

illustrated in Figure 5.8. The result obtained here is similar to the one presented in

Figure 3.9, where the last one is an abstraction of the presented in Figure 5.8. In

more details, there are three faulty states depicted in Figure 3.9 which represent the

initialization fails, the altimeter fails, and device of inters fails, respectively. Once

any of these faults occurs, the system goes into the faulty mode fm. On the other

hand, we have represented these three faulty states with only one faulty state labeled

with the faulty mode fm in Figure 5.8.

This is the first case study where we have used the option of the fault specification
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specified from statement (7) to (11). Essentially, we represent in these assertions three

potential time-out potential faults and how the system recovers to a normal state of

the system. We must remark that we assume that the system detects these faults

and then these propositional variables become true in each case, and similarly for the

case when the pilot presses the reset button.

Finally, we have obtained results similar to that of [Jeffords et al., 2009] and

[Abujarad and Kulkarni, 2008], where in the later they have added fault-tolerance

automatically to the requirements specification of the Altitude Switch controller de-

scribed with the SCR (Software Cost Reduction) formal method.

5.7 A Simple Train System

Our final case study is a Simple Train System, which we have introduced in Subsection

3.6.4. In summary, the system in general consists of n trains and m rail segments.

Rail segments are connected to other rail segments, where in each of these connections

the rails are equipped with a signal which indicates if the segment is occupied or not.

The signals can be green (when the segment is free) or red (when a train is in the

segment).

We consider a model defining variables for three trains ti with 0 ≤ i ≤ 2 and five

rail segments rj with 0 ≤ j ≤ 4, where they are connected as follows: r0Rr1, r1Rr2,

r2Rr3, and r2Rr4. In addition, we have the following propositions:

• ti.stop denotes that train ti is stopped,

• riRrj means that segments i and j are connected,

• rj.green expresses that the signal of segment j is green,

• rj.red expresses that the signal of segment j is red.

The requirements on this system (dSpec and interface) can be specified in dCTL-

as follows:

--Interface

(1) r0, r1, r2, r3, r4
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--Initial State

(2) The initial state starts with a specific configuration of the trains over the rail

segments.

t0.r0 ∧ t1.r2 ∧ t2.r3 ∧ r0.red∧ r1.green∧ r2.red∧ r3.redr4.green∧ r0Rr1 ∧r1Rr2 ∧
r2Rr3 ∧ r2Rr4

--Specification

(3) There are no two trains in the same segment (for 0 ≤ i, j ≤ 2 and 0 ≤ k ≤ 4).

OG(¬(ti.rk ∧ tj.rk))

(4) When there is a train ti in the rail segment rj, then the signal should be red for

this segment.

OG(ti.rj → rj.red)

(5) If there is no train in the segment rj, then the signal must be green on this

segment.

OG(¬ti.rj → rj.green)

(6) If the signal of a segment is red, then any train is forbidden to move into the

segment.

OG((¬rj.green ∧ ¬ti.rj)→ F(ti.rj))

(7) Train tk moves from rail ri to rj if both are connected and the signal on the rail

rj is green.

AG((tk.ri ∧ rj.green ∧ riRrj)→ AX(tk.rj ∧ ri.green ∧ rj.red))

--Fault Specification

(8) A communication fault of the system is detected, where the block instruments on

each rail segment react to this malfunction, turning the signal to red.

AG(comun fail→ AX(ri.red))
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Figure 5.9: Part of the failsafe fault-tolerant program synthesized for the train system.

Finally, the level of fault-tolerance required is failsafe fault-tolerance.

The synthesized failsafe fault-tolerant implementation for this problem is illus-

trated in Figure 5.9. We want to remark that in all normal (green) states the rail

segments are connected as follow: r0Rr1, r1Rr2, r2Rr3, and r2Rr4, where we did not

include these propositions in the figure for reasons of space. Notice that we have

introduced a fault specification for this problem in assertion (8), which essentially

injects faults when a malfunction in the communication of the system is detected and

then the signals of all rail segments are turned to red. Additionally, we have also

injected faults through the violation of deontic variables from statement (3) to (6),

but none can be masked. For example, violating assertion (3) leads to the case that

two trains are in the same rail segment; consequently, a train collision can result. Of

course, this kind of fault is not at all desirable in this system.
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On the other hand, the faults injected from statement 8 satisfy failsafe fault-

tolerance because, at the faulty state of Figure 5.9, all the safety properties hold

considering the visible part of the system (interface), i.e., the five rail segments.

We must remark that we assume that the system detects this malfunction in the

communication of the system, setting the propositional variable comun fail to true.

This assumption then becomes a requirement to be implemented by the system.

Finally, the model synthesized in Figure 5.9 is the same to the one presented in

Figure 3.10.

5.8 Description of the syntdctl tool

In this section we briefly describe the architecture of syntdctl and the experimental

results for some of the above case studies when using this tool. We have implemented

in our tool only the cases of masking and failsafe fault-tolerance.

syntdctl is free software. Documentation and installation instructions can be found

at https://code.google.com/p/synt-dctl/.

5.8.1 Tool Architecture

The architecture of syntdctl is illustrated in Figure 5.10. The input of syntdctl is a de-

ontic specification dSpec, composed of an init-spec, a normal-spec, an interface, and

a fault specification fSpec. interface is described by a subset of the state variables,

which intuitively constitutes the visible part of the system; init-spec and normal-spec

are dCTL- formulas, where the former specifies the initial states of the system, and

the latter specifies properties that are required to hold in all states that are reach-

able from the initial state. Finally, the fault specification fSpec, is made of a set

of fault-variables, a fault-spec, and a combine-spec. fault-variables is a set of aux-

iliary atomic propositions, and fault-spec specifies the faulty and recovery behavior

over the atomic propositions (including fault-variables), using CTL formulas. Finally,

combine-spec are also CTL formulas which relate the atomic propositions in the de-

ontic specification dSpec with those in the fault specification fSpec. We remark that

fSpec is optional for the user.

Initially, syntdctl reads a deontic specification dSpec as an input file, which is then

tokenized (Lexer) and parsed to obtain abstract syntax trees according to the dCTL-
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Figure 5.10: The Arquitecture of syntdctl.

expression grammar (Parser). The abstract syntax trees are stored as elements of a

set of dCTL- formulas. The preprocessing component constructs an initial tableau

TN for the input dSpec based on a dCTL- SAT procedure. Pruning rules are applied

to the the tableau TN in order to remove all nodes that are either propositionally

inconsistent, do not have enough successors, or are labeled with an CTL or deontic

eventuality formula which is not fulfilled. This process returns as a result true, if

dSpec is satisfiable, or false, in the case dSpec is unsatisfiable. If dSpec is satisfiable,

it has a finite model that can be embedded in the tableau TN . Assuming a positive

result from the dCTL- decision procedure for dSpec, the next step is to perform a fault

analysis. In this phase, faults are injected into the tableau in the first place, where

faults are understood as (all possible) violations to the deontic obligations imposed

in the description of the correct behavior of the system. Additionally, in case that

the user has provided a fault specification fSpec in the input file, we introduce the

corresponding faults into the tableau. Subsequently, a masking or failsafe simula-

tion algorithm (taking into account the input interface) is executed (depending on

the desired user’s level of fault-tolerance) in order to remove those nodes from the

tableau that do not satisfy the required level of fault-tolerance. Finally, the tableau
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TF is unravelled into a masking or failsafe fault-tolerant program implementing dSpec.

Table 5.1: Experimental results.

Name Faults Injected faults unmasked/removed Time in sec
Byzantine Agreement 7 4 0.20

Token Ring 220 150 111.85
5-Modular-Redundancy 410 260 535.91

Memory Cell 100 70 10.13
Muller C-Element 6 0 0.09

Simple Train System 28 25 2.3

Table 5.1 summarizes the experimental results on some of the models described

above, reporting the number of faults injected and unmasked/removed to achieve

masking or failsafe fault-tolerance, and corresponding running times.

The syntdctl tool is implemented in Java. In order to run the tool, Java 1.7+ is

required. All experiments have been conducted on a computer with a 2.9 Ghz Intel

Core i5 with 4 GB of memory.
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Chapter 6

Concluding Remarks

In this dissertation, we focused on the problem of automatically synthesizing fault-

tolerant systems from logical specifications. More specifically, the synthesis approach

we have developed aims at automatically constructing a fault-tolerant component

implementation from a logical specification of the component, and a user-specified

required level of fault-tolerance (e.g., masking, nonmasking, failsafe). System specifi-

cations are provided in dCTL-, a branching time temporal logic equipped with further

“deontic” modalities, that enable one to specify fault-tolerance related properties by

distinguishing through these additional modalities the normal (non faulty) and the

abnormal (involving faults) executions of the system. The synthesis technique is based

on a combination of a tableau-based synthesis from CTL specifications, adapted and

extended to deal with the additional modalities, and bisimulation algorithms, since

different fault-tolerance levels are captured as particular (bi)simulation relations.

In this chapter, we present an overall picture of the status of our research on this

problem. In Section 6.1, we discuss the related work in the literature of automated

synthesis of fault-tolerant programs. Moreover, we summarize in Section 6.2 the

contributions made in this dissertation. Finally, in Section 6.3, we describe some

further work that seems interesting to develop using the framework described in the

preceding chapters.
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6.1 Related Work

The first main contribution of our work presented in Chapter 3 is closely related to

several formal approaches to fault-tolerance. The programming style we use here for

describing our programs was introduced in [Arora and Gouda, 1993; Arora and Kulka-

rni, 1998a,b; Gärtner, 1999a], where programs are written using Dijkstra’s guarded

command language, and faults are specified as distinguished actions. In these works,

the authors characterize fault-tolerance using sets of states, for instance, a set P of

states captures the desired invariant of the program, whereas a set T is employed to

indicate those states that tolerate faults. In this setting, masking, nonmasking and

failsafe fault-tolerance are formalized making use of liveness and safety properties,

where properties in general are written using first-order logic; no temporal operators

are employed in these works. In our opinion, temporal logic provides key benefits

when verifying concurrent and reactive programs, in particular with respect to auto-

matic verification, where the model checking community has demonstrated relative

success when verifying hardware and embedded systems [Baier and Katoen, 2008;

Clarke et al., 2001]. Also, it is important to note that, in the cited works, the au-

thors assume a linear view of time when specifying systems and properties. In our

approach, we focus on branching time properties of programs. In our opinion, branch-

ing time is important for fault-tolerance specification. This view is also shared by

Attie, Arora, and Emerson in [Attie et al., 2004], where an algorithm for synthesizing

fault-tolerant programs from CTL specifications is presented. They consider CTL as

the temporal logic specification for the input of their synthesis method. Instead of

using CTL, we use a branching time temporal logic that has a convenient mechanism

for stating fault-tolerance properties, via the use of deontic operators. We believe

that our formalism is better suited for capturing fault-tolerance properties, since the

distinction between good, normative, ideal behavior and bad, faulty or unexpected

executions is made naturally by using the deontic operators.

Additionally, we mention the work presented in [Janowski, 1995, 1997], where va-

rious notions of bisimulation are investigated with the aim of capturing fault-tolerant

properties, in the context of process algebras. An obvious difference with respect

to our work is that we use a state based approach and a temporal logic to reason

about state based models, in contrast to the aforementioned works where process

139



Ph.D. Thesis - Ramiro Adrian Demasi McMaster - Computing and Software

algebras are employed for modeling systems, and the associated logic is a variation

of Hennesy-Milner logic, which is known to be less expressive than temporal logics.

Also, the notions of masking, nonmasking and failsafe fault-tolerance are not investi-

gated in the referenced works.

Related to the second main contribution of our work, the synthesis method, vari-

ous approaches have been proposed for synthesis of reactive systems from temporal

logic specifications. The initial work was presented by Emerson and Clarke [Clarke

and Emerson, 1981]. Their synthesis method was based on a decision procedure for

checking the satisfiability of a CTL temporal logic specification. With respect to au-

tomated synthesis of fault-tolerant systems, the seminal work in this area is due to

Attie, Arora, and Emerson [Attie et al., 2004], where they presented an algorithm

for synthesizing fault-tolerant programs from CTL specifications, based on a tableau

method defined by Emerson and Clarke in [Clarke and Emerson, 1981]. One main

difference with our work is that we use deontic operators to distinguish between good

and bad systems behavior, while in [Attie et al., 2004] the abnormal behavior is cap-

tured by means of faulty actions. Another difference with our work is that in [Attie

et al., 2004] safety properties only need to hold after faults or through fail-free paths,

which implies that the semantics of CTL has to be adapted to cope with this condi-

tion. Another important stream of work is presented in [Bonakdarpour et al., 2012].

Therein, Unity style programs are developed, the Unity logic being used to specify

programs and to state fault-tolerant properties. Moreover, only a finite number of

faults are allowed. It is important to notice that a main difference between that work

and our approach is that our synthesized programs preserve all safety and liveness

properties of the non-faulty part of the obtained program, while both [Bonakdarpour

et al., 2012] and [Attie et al., 2004] preserve only the properties explicitly stated in

the specification.

Another important issue in our research was how faults are injected during the

synthesis process in order to produce a program which tolerates those faults, satis-

fying one of the levels of fault-tolerance. In our investigation, we observed that in

many approaches (e.g., [Attie et al., 2004; Kulkarni and Arora, 2000; Kulkarni and

Ebnenasir, 2004; Ebnenasir et al., 2008; Bonakdarpour et al., 2012]) faults are given
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explicitly as part of the behavior model of the system. In more detail, they require as

input a fault specification in their synthesis method, that is, a list of fault actions in

a guarded command style. In our approach, we also require this in a similar way, but

using CTL formulas. However, this is an optional input for the users in our synthesis

algorithm. Additionally, we have proposed an automatic technique to inject faults

through the negation of deontic propositional variables. We have obtained interesting

results specially for masking and failsafe fault-tolerance when redundancy, consensus,

agreement, and majority voting techniques are involved.

Finally, another difference between Attie et al. [Attie et al., 2004] and our work

is how the required user-level of fault-tolerance (e.g., masking, nonmasking, failsafe)

is checked during the synthesis process. In [Attie et al., 2004], they test it through

CTL formulas if the level of fault-tolerance holds in the perturbed states as part of

the tableau construction using the CTL decision procedure. However, in our case,

we do not add any additional test during the tableau construction, we only use the

dCTL- decision procedure for checking the satisfiability of the normal part of the given

specification. Additionally, after the injection of faults, we perform the analysis of

fault using of our simulation algorithms for pruning those states that do not satisfy

the required level of fault-tolerance.

6.2 Contributions

We have presented a characterization of different levels of fault-tolerance by means of

simulation relations. This formalization is simple and uses standard notions of simu-

lation relations, by relating an operational system specification and a corresponding

fault-tolerant implementation. Moreover, our approach to capturing fault-tolerance

enables us to automatically verify, for example, that a given implementation of a

system masks certain faults, or recovers from these faults, by employing variants

of traditional bisimulation algorithms in our context. Indeed, we have adapted well

known (bi)simulation algorithms to our setting, so that one can automatically check if

a system implementation exhibits some degree of fault-tolerance. We have also stud-

ied the complexity of the resulting algorithms, and proved that they preserve the time

complexity of traditional bisimulation algorithms. We have also studied properties of
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our formalizations of fault-tolerance, showing that different kinds of temporal proper-

ties are preserved, depending on the degree of fault-tolerance that a system exhibits.

Moreover, we have also presented results relating the different kinds of fault-tolerance.

We have proposed an approach to synthesizing fault-tolerant components from

dCTL- specifications. dCTL- is a branching time temporal logic equipped with deon-

tic operators, which is specially designed for fault-tolerant component specification.

We believe this logic is better suited for fault-tolerance specification, and therefore

synthesizing fault-tolerant implementations from dCTL- specifications is relevant. In

order to capture fault-tolerance, we use an approach based on defining appropriate

(bi)simulation relations, describing the relationship that must hold between a system

specification and its fault-tolerant implementation. Our mechanism for synthesis is

then based on combining decision procedures for the satisfiability of dCTL- temporal

formulas, with (bi)simulation algorithms for checking a user required level of fault-

tolerance.

Finally, we have implemented a tool called syntdctl for synthesizing masking and

failsafe fault-tolerant problems. We have validated our synthesis method through sev-

eral experiments such as, the Byzantine agreement problem, N-Modular-Redundancy,

a Simple Train System, etc.

6.3 Future Work

We propose the following future work as potential extensions of our current results:

Extend our framework to accommodates multitolerance. Arora and Kulkarni for-

malized this concept in [Arora and Kulkarni, 1998a]. Essentially, in multitolerance,

the set of fault actions is divided into classes, and different fault classes may require

diverse levels of fault-tolerance (masking, nonmasking, or failsafe). For example, one

class of faults may require masking fault-tolerance, while another class may demand

only failsafe fault-tolerance. Thereby, “multitolerance refers to the ability of a system

to tolerate multiple classes of faults, each in a possibly different way”. More recently,

142



Ph.D. Thesis - Ramiro Adrian Demasi McMaster - Computing and Software

Kulkarni and Ebnenasir in [Kulkarni and Ebnenasir, 2004] addressed the problem of

automated synthesis of multitolerant programs. In short, they proved that if one

needs to add failsafe (nonmasking) fault-tolerance in respect of one class of faults

and masking fault-tolerance regarding another class of faults, then such addition can

be performed in polynomial-time in the size of the state space of the fault-intolerant

program. Nevertheless, if one needs to add failsafe fault-tolerance regarding one class

of faults and nonmasking fault-tolerance for another class of faults, then the problem

results in an NP-complete algorithm.

Extend our approach to be able to extract several concurrent components from

a deontic logic specification. In this dissertation, we have been concerned with the

synthesis of a single component. One possible way to incorporate concurrent compo-

nents in our framework is by using indexes as is done in [Attie et al., 2004]. In this

context, an issue to take into account is the preservation of the locality of the faults,

i.e., if some faults affect one component, then the malfunction of this component do

not add more faults to the states of other components.

An interesting problem to study is the property of self-stabilizing systems, i.e.,

those systems that eventually reach a global configuration from where all its behav-

iors are legitimate [Dolev, 2000]. For example, such a property is highly desirable in

network protocols. Many researchers have pointed out the difficulties of designing and

verifying self-stabilization systems since Dijkstra introduced it in the early seventies

[Dijkstra, 1974]. Most of the existing techniques are either brute force, or adopt man-

ual approaches non-amenable to automation. Recently, Farahat in [Farahat, 2012]

developed and implemented a framework of heuristics for adding stabilization to dis-

tributed algorithms like token-ring, matching, leader election and consensus.

Another direction is to explore the extension of our work on synthesis of fault-

tolerant programs to a probabilistic setting. We should start extending dCTL- allow-

ing probabilistic quantification of described properties, similar to PCTL (Probabilistic

Computation Tree Logic, see [Baier and Katoen, 2008]). Moreover, appropriate bisi-

mulation relations for masking, nonmasking, and failsafe fault-tolerance also need to

be extended, where each kind of fault occurs with a certain probability. A good basis
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for extending our work to this setting is the work of Pantelic et al. in [Vera Pantelic,

2014].

Finally, in this dissertation, we have presented experimental results using our

syntdctl tool, in particular, for the cases of masking and failsafe fault-tolerance. We

left the implementation of nonmasking fault-tolerance for further work. Additionally,

we want to provide a more concrete output format for our synthesis method. Cur-

rently, for a given dCTL- specification, we produce as output a state transition system

where normal and faulty states are distinguished. Then, the idea is to synthesize a

fault-tolerant program written in an output format such as modern language in which

normal, faulty, and recovery actions can be expressed in some way.
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Mantel, H. and Gärtner, F. C. (2000). A case study in the mechanical verification of

fault tolerance. J. Exp. Theor. Artif. Intell., 12(4):473–487.

Marchand, H. and Samaan, M. (2000). Incremental design of a power transformer

station controller using a controller synthesis methodology. IEEE Trans. Software

Eng., 26(8):729–741.

McMillan, K. L. (1992). The SMV system. Technical report.

Milner, R. (1980). A Calculus of Communicating Systems, volume 92 of Lecture Notes

in Computer Science. Springer.

Moreau, L. (2006). A fault-tolerant directory service for mobile agents based on

forwarding pointers. Scalable Computing: Practice and Experience, 7(4).

Owre, S., Rushby, J. M., and Shankar, N. (1992). PVS: A prototype verification

system. In Kapur, D., editor, 11th International Conference on Automated Deduc-

tion (CADE), volume 607 of Lecture Notes in Artificial Intelligence, pages 748–752,

Saratoga, NY. Springer-Verlag.

Peled, D. and Joseph, M. (1994). A compositional framework for fault tolerance by

specification transformation. Theor. Comput. Sci., 128(1&2):99–125.

Peleska, J. (1991). Design and verification of fault tolerant systems with CSP. Dis-

tributed Computing, 5:95–106.

Peterson, I. (1996). Fatal Defect: Chasing Killer Computer Bugs. David Mckay.

Pnueli, A. (1977). The temporal logic of programs. In 18th Annual Symposium

on Foundations of Computer Science, FOCS 1977, pages 46–57. IEEE Computer

Society.

Pnueli, A., Asarin, E., , Maler, O., and Sifakis, J. (1998). Controller synthesis for

timed automata. Proc. System Structure and Control. Elsevier.

159



Ph.D. Thesis - Ramiro Adrian Demasi McMaster - Computing and Software

Pnueli, A. and Rosner, R. (1989a). On the synthesis of a reactive module. In Sixteenth

Annual ACM Symposium on Principles of Programming Languages, POPL 1989,

pages 179–190. ACM Press.

Pnueli, A. and Rosner, R. (1989b). On the synthesis of an asynchronous reactive

module. In Ausiello et al. [1989], pages 652–671.

Prasetya, I. S. W. B. and Swierstra, S. D. (2005). Formal design of self-stabilizing

programs. J. High Speed Networks, 14(1):59–83.

Qadeer, S. and Shankar, N. (1998). Verifying a self-stabilizing mutual exclusion al-

gorithm. In Gries, D. and de Roever, W. P., editors, Programming Concepts and

Methods, IFIP TC2/WG2.2,2.3 International Conference on Programming Con-

cepts and Methods, PROCOMET 1998, volume 125 of IFIP Conference Proceed-

ings, pages 424–443. Chapman & Hall.

Rabin, M. O. (1972). Automata on infinite objects and Church’s problem. Regional

conference series in mathematics. Providence, R.I. Published for the Conference

Board of the Mathematical Sciences by the American Mathematical Society.

Ramadge, P. J. and Wonham, W. M. (1987). Supervisory control of a class of discrete

event processes. SIAM J. Control Optim., 25(1):206–230.

Ramadge, P. J. and Wonham, W. M. (1989). The control of discrete event systems.

IEEE, 77(1):81–98.

Randell, B. and Xu, J. (1994). The evolution of the recovery block concept. In

Software Fault Tolerance, pages 1–22. John Wiley & Sons Ltd.

Riely, J. and Hennessy, M. (1997). Distributed processes and location failures (ex-

tended abstract). In Degano, P., Gorrieri, R., and Marchetti-Spaccamela, A.,

editors, Automata, Languages and Programming, 24th International Colloquium,

ICALP 1997, volume 1256 of Lecture Notes in Computer Science, pages 471–481.

Springer.

Rudie, K. and Wonham, W. M. (1992). Think globally, act locally: decentralized

supervisory control. IEEE Transactions On Automatic Control, 37(11):1692 – 1708.

160



Ph.D. Thesis - Ramiro Adrian Demasi McMaster - Computing and Software

Rushby, J. (1999). Systematic formal verification for fault-tolerant time-triggered

algorithms. IEEE Transactions on Software Engineering, 25(5):651–660.

Schlichting, R. D. and Schneider, F. B. (1983). Fail-stop processors: An approach to

designing fault-tolerant computing systems. ACM Trans. Comput. Syst., 1(3):222–

238.

Schneider, F., Easterbrook, S. M., Callahan, J. R., and Holzmann, G. J. (1998).

Validating requirements for fault tolerant systems using model checking. In 3rd

International Conference on Requirements Engineering, ICRE 1998, pages 4–13.

IEEE Computer Society.

Schneider, M. (1993). Self-stabilization. ACM Comput. Surv., 25(1):45–67.

Siewiorek, D. P. and Swarz, R. S. (1998). Reliable Computer Systems (3rd Ed.):

Design and Evaluation. A. K. Peters, Ltd., Natick, MA, USA.

Sinha, P. and Suri, N. (1999). On the use of formal techniques for analyzing de-

pendable real-time protocols. In Proceedings of the 20th IEEE Real-Time Systems

Symposium, RTSS 1999, pages 126–135. IEEE Computer Society.

Sistla, A. P. and Clarke, E. M. (1985). The complexity of propositional lineal temporal

logics. J. ACM, 32(3):733–749.

Srivas, M. K. and Miller, S. P. (1996). Applying formal verification to the AAMP5

microprocessor: A case study in the industrial use of formal methods. Formal

Methods in System Design, 8(2):153–188.

Thistle, J. G. and Lamouchi, H. M. (2009). Effective control synthesis for partially

observed discrete-event systems. SIAM J. Control and Optimization, 48(3):1858–

1887.

Thomas, W. (1990). Automata on infinite objects. In Handbook of Theoretical Com-

puter Science, Volume B: Formal Models and Sematics (B), pages 133–192.

Thomas, W. (1995). On the synthesis of strategies in infinite games. In Symposium

on Theoretical Aspects of Computer Science, STACS 1995, pages 1–13.

161



Ph.D. Thesis - Ramiro Adrian Demasi McMaster - Computing and Software

Thomas, W. (2002). Infinite games and verification (extended abstract of a tutorial).

In Brinksma, E. and Larsen, K. G., editors, Computer Aided Verification, 14th

International Conference, CAV 2002, volume 2404 of Lecture Notes in Computer

Science, pages 58–64. Springer.

Torres-Pomales, W. (2000). Software fault tolerance: A tutorial. Technical report,

NASA Technical Memorandum TM-2000-210616.

van Benthem, J. (1999). Modality, bisimulation and interpolation in infinitary logic.

Ann. Pure Appl. Logic, 96(1-3):29–41.

Vardi, M. Y. (2001). Branching vs. linear time: Final showdown. In Margaria,

T. and Yi, W., editors, Tools and Algorithms for the Construction and Analysis

of Systems, 7th International Conference, TACAS 2001, volume 2031 of Lecture

Notes in Computer Science, pages 1–22. Springer.

Vera Pantelic, Mark Lawford, S. P. (2014). A framework for supervisory control of

probabilistic discrete event systems. In 12th IFAC - IEEE Workshop on Discrete

Event Systems, WODES 2014.
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