
On Closure Operator for Interval Order Structures

ON CLOSURE OPERATOR FOR INTERVAL ORDER STRUCTURES

BY

NADEZHDA ZUBKOVA,

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTING & SOFTWARE

AND THE SCHOOL OF GRADUATE STUDIES

OF MCMASTER UNIVERSITY

IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

© Copyright by Nadezhda Zubkova, August 2014

All Rights Reserved

Master of Science (2014) McMaster University

(Computing & Software) Hamilton, Ontario, Canada

TITLE: On Closure Operator for Interval Order Structures

AUTHOR: Nadezhda Zubkova

B.Sc., Computer Science

State Technical University MADI, Moscow, Russia

SUPERVISOR: Prof. Ryszard Janicki

NUMBER OF PAGES: 1, 68

ii

Dedications

I dedicate this thesis to my mother Marina and my late grandmother Raisa.

iv

Abstract

Formal studies of models of concurrency are usually focused on two major models: Inter-

leaving abstraction (Bergstra, 2001; Milner, 1990) and partially ordered causality (Diekert

and Rozenberg, 1995; Jensen, 1997; Reisig, 1998). Although very mature, these models

retain a known limitation: Neither of them can model the “not later than” relationship ef-

fectively, which causes problems with specifying priorities, error recovery, time testing,

inhibitor nets, etc. See for reference: Best and Koutny (1992); Janicki (2008); Janicki

and Koutny (1995); Juhas et al. (2006); Kleijn and Koutny (2004). A solution, proposed

independently (in this order) in (Lamport, 1986; Gaifman and Pratt, 1987) and (Janicki

and Koutny, 1991), suggests to model concurrent behaviours by ordered structure, i.e. a

triple (X ,≺,@), where X is the set of event occurrences, and ≺ and @ are two binary rela-

tions on X . The relation ≺ is interpreted as “causality”, i.e. an abstraction of the “earlier

than” relationship, and @ is interpreted as “weak causality”, an abstraction of the “not later

than” relationship. For ordered structures’ model, the following two kinds of relational

structures are of special importance: stratified order structures (SO-structures) and interval

order structures (IO-structures). The SO-structures can fully model concurrent behaviours

when system executions (operational semantics) are described in terms of stratified orders,

while the IO-structures can fully model concurrent behaviours when system executions are

described in terms of interval orders (Janicki, 2008; Janicki and Koutny, 1997). It was ar-

gued in (Janicki and Koutny, 1993), and also implicitly in a 1914 Wiener’s paper Wiener

v

(1914), that any execution that can be observed by a single observer must be an interval

order. Thus, IO-structures provide a very definitive model of concurrency. However, the

theory of IO-structures remains far less developed than its simpler counterpart - the theory

of SO-structures.

One of the most important concepts lying at the core of partial orders and algebraic

structures theory is the concept of transitive closure of relations. The equivalent of transi-

tive closure for SO-structures, called ♦-closure, has been proposed in (Janicki and Koutny,

1995) and consequently used in (Janicki and Koutny, 1995; Juhas et al., 2006; Kleijn and

Koutny, 2004) and others. However, a similar concept for IO-structures has not been pro-

posed. In this thesis we define that concept.

We introduce the transitive closure for IO-structures, called the �-closure. We prove

that it has same properties as the standard transitive closure for partial orders and ♦-closure

for SO-structures (published in Janicki and Zubkova (2009); Janicki et al. (2009)), and pro-

vide some comparison of different versions of transitive closure used in various relational

structures. Some properties of another recently introducedF-closure (Janicki et al., 2013)

are also discussed.

vi

Acknowledgements

I would like to thank all those people with whom I was fortunate to work during my studies.

First, I want to kindly thank my supervisor Prof. Ryszard Janicki for his advice, extraor-

dinary patience and encouragement. Second, I want to thank the supervisory committee

Prof. Michael Soltys and Prof. Ridha Khedri for their time and guidance.

Also, I want to express my sincere gratitude to Laurie Leblanc and Prof. William

Farmer.

vii

viii

Contents

Abstract v

Acknowledgements vii

1 Introduction and Motivations 1

1.1 Mathematical basics: Relations, Partial Orders and Transitive Closure . . . 3

1.2 Lamport’s Model . 6

1.2.1 Mutual Exclusion Problem . 6

1.2.2 Bakery Algorithm . 8

1.2.3 Formalization of the Bakery Algorithm 10

1.2.4 Proof of Correctness . 13

1.3 Janicki-Koutny Motivation . 19

1.4 Thesis structure . 23

2 Mathematical Basics 25

2.1 Representation Theorem for Partial Orders 25

2.2 Properties of Transitive Closure . 27

3 Closure Operator for Stratified Order Structures 29

3.1 Stratified Order Structures and ♦-Closure 29

ix

4 Closure Operator for Interval Order Structures 35

4.1 Interval Order Structures and �-closure 35

4.2 Introduction of Interval Traces . 50

5 Causal Structures for General Concurrent Behaviours 53

5.1 Mutex Order Structures and Generalized Mutex Order Structures 53

5.2 F-Closure . 57

6 Conclusion 61

x

Chapter 1

Introduction and Motivations

The concept of closure (c.f. Cohn (1981); Rosen (2002)) is one of the basic constructions

used in abstract algebra and its applications. In principle, it can be described as follows.

There is a set R of some type (R could be a family of interrelated relations) that may, or may

not have some property P. If there is a set S of the same type with property P containing

R such that S is a subset of every set (of the same type as R) with property P containing R,

then S is called the closure of R with respect to P.

Closures are most often used for relations (transitive, symmetric closures, etc.), but

they are also powerful tools for relational systems (c.f. Cohn (1981); Janicki and Koutny

(1995); Janicki et al. (2013)) as well. They allow to construct desired object by defining

their skeletons and then applying appropriate closure operator.

In Janicki and Koutny (1995) the ♦-closure was introduced and used to derive stratified

order structures (a model of concurrent behaviours) from quite general initial relational

structures. This construction allowed to define a relationship between monoidal comtraces

and stratified order structures. The ♦-closure can be interpreted as some specialized gener-

alization of transitive closure.

The �-closure, the main contribution of this thesis, is an equivalent of ♦-closure but for

1

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

more advanced and general model of concurrent behaviours, namely interval order struc-

tures. Introduction of the �-closure and proving its properties in the main contribution of

this thesis. Results of this thesis were successfully published in Janicki and Zubkova (2009)

and Janicki et al. (2009). Moreover, the �-closure was consequently used to construct in-

terval traces, resulting in the follow-up publication Janicki et al. (2012).

The rest of this chapter will be devoted to providing some motivations that lead to the

concept of interval order structures, to justify the introduction of the �-closure in the first

place.

The study of reasoning about concurrent computations is a subject of great complex-

ity and interval order structures is a mathematical tool used to model complex concurrent

behaviours. The notion of interval order structures is studied in this thesis and has two dif-

ferent underlying motivations. One was introduced by Lamport in 1986 and concerned with

proofs of correctness of solution to a mutual exclusion problem, and the other introduced

by Janicki and Koutny in 1991 gives a partial order semantics for concurrency. We will

briefly present both of the approaches.

Janicki and Koutny have a general motivation to study and model concurrent systems

using various types of partial orders and their generalizations. For that purpose they needed

to have a mathematical structure that can uniquely represent a concurrent history when all

system runs are modelled by interval orders.

In Lamport’s case, the problem of managing shared resources and synchronization for

multiple processes in a concurrent system was interesting rom both practical and theoretical

perspective. Mutual exclusion problem is an abstraction of the shared resources manage-

ment problem and lies at the heart of concurrency theory.

Both motivations have resulted in introduction of a single mathematical object, an in-

terval order structure.

2

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

We will describe the developments in reasoning about concurrent processes in this chap-

ter, starting from Dijkstra’s “cyclic” computations and going into Lamport’s more refined

view of those computations, separating stages of concurrent process into noncritical, critical

and trying sections. At the end we present a case for use of main subject of this thesis, rela-

tional structures, as a tool to devise constructive correctness proofs for a version of bakery

algorithm.

But first we will recall some basic mathematical definitions that are used in motivation.

1.1 Mathematical basics: Relations, Partial Orders and

Transitive Closure

In this section we present relatively well known mathematical concepts and results that will

be used frequently in the thesis, cf. Fishburn (1985) and Rosen (2002).

Definition 1. Let X be a set and R1,R2,R,Q⊆ X×X be relations on X. We define

1. the composition operator ◦ on these two relations as

R1 ◦R2
df
=
{
(a,b) | ∃x ∈ X . (a,x) ∈ R1∧ (x,b) ∈ R2

}
.

2. the identity relation as

idX
df
= {(a,a) | x ∈ X}.

3. R0 = idX and Rn = Rn−1 ◦R, for all n≥ 1.

3

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

4. a composition operator over Q, ◦Q, as

R1◦Q R2
df
=
{
(a,b) | ∃(x,y)∈Q.

(
(a,x)∈R1∧(x,b)∈R2

)∧(
(a,y)∈R1∧(y,b)∈R2

)}
.

5. the inverse of R as R−1 = {(b,a) | (a,b) ∈ R}.

Definition 2 (Basic Classification). A relation R⊆ X×X is:

1. Reflexive if idX ⊆ R;

2. Irreflexive if idX ∩R =∅;

3. Symmetric if R = R−1;

4. Asymmetric if R∩R−1 =∅;

5. Transitive if R◦R⊆ R;

6. An equivalence relation if it is symmetric, transitive and reflexive;

The most important relation in this thesis is partial order, which is defined below.

Definition 3 (Partial Order).

1. A relation <⊆ X×X is called a (strict) partial order, if it is irreflexive and transitive,

i.e. for all a,b,c ∈ X we have: a 6< a and a < b < c =⇒ a < c.

2. For a given partial order <, a relation _<, defined as

a _< b
df⇐⇒ ¬(a < b) ∧ ¬(b < a) ∧ a 6= b

is interpreted and incompatibility.

4

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

3. For a given partial order <, a relation <_, defined as

a <_ b
df⇐⇒ a < b ∨ a _< b

is interpreted as ‘not less than’.

The theory of partial orders is very rich and complex, however in this thesis we will use

only three types defined below.

Definition 4 (Type of Partial Orders). Let < be a partial order on a set X. Then < is:

1. Total if _<=∅. In other words, ∀a,b ∈ X: a < b ∨ b < a ∨ a = b;

2. Stratified if ∀a,b,c ∈ X: a _< b _< c =⇒ a _< c ∨ a = c, i.e., the relation

_< ∪ idX is an equivalence relation on X;

3. Interval if ∀a,b,c,d ∈ X: a < c ∧ b < d =⇒ a < d ∨ b < c.

It follows directly from these definitions that every total order is also stratified and every

stratified order is also interval. Figure 2.1 illustrates the above definition. We will reserve

the symbol � to denote total orders.

Definition 5 (Extension). Given a partial order <⊆ X ×X, a relation <′⊆ X ×X is an

extension of < if <⊆<′.

For convenience, we separately define the set

Total(<)
df
= {�⊆ X×X |� is a total order and <⊆�}.

In other words, the set Total(<) consists of all the total order extensions of <.

Definition 6 (Closures). Let R⊆ X× x be a relation. We define:

5

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

1. The reflexive closure of R as R∪ idX ;

2. The transitive closure of R as R+ df
=
⋃

i≥1 Ri;

3. The reflexive and transitive closure of R as R∗
df
=
⋃

i≥0 Ri = R+∪ idX ; and

4. The irreflexive and transitive closure of R as R� df
= R+ \ idX = R∗ \ idX ;

5. The symmetric closure of R as R./ df
= R∪R−1.

Definition 7 (Acyclicity). A relation R is acyclic if its transitive closure is asymmetric.

Note, that we can now define stratified orders using symmetric closure.

Corollary 1. A relation R is a stratified order if it is a partial order, such that X ×X \R./

is an equivalence relation.

1.2 Lamport’s Model

1.2.1 Mutual Exclusion Problem

The mutual exclusion (ME) problem was first formally stated and solved by Edsger Dijkstra

in (Dijkstra, 1965).

The problem: Given N processes involved in a computation, and each process’s com-

putation path containing a critical section (CS), i.e. the a region in computation, that at any

given moment in time, only one process can access this section, devise a fair algorithm that

can guarantee every process exclusive access to its CS.

Definition 8 (Mutual Exclusion Property). Given N processes in the system, for no two

processes i and j the execution of their critical section CSi and CS j can be observed con-

currently.

6

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

The high-level algorithm for a process that executes the computation is given below.

Keep in mind that in a concurrent system there are N such processes and each of them

executes the code of the same structure.

initial declaration;
repeat forever

noncritical section;
trying;
critical section;
exit;

end repeat

Later developments of the subject established standard requirements for such an algo-

rithm. It must possess the basic set of properties defined formally below.

Deadlock freedom: If there exists a nonterminating trying section execution, then there

exists an infinite number of critical section executions.

The deadlock freedom (later referred to as DF) guaranties the continual progress of the

computation, but it does not include the case, when one of the processes in stuck in the

infinite repeat of a trying section without eventual access to CS. This condition is stated as:

Livelock freedom: Every trying operation execution must terminate.

The livelock freedom (later referred to as LF) guarantees that every process that is trying

to access CS with eventually be granted that access. The next requirement is the strongest

fairness requirement that can be imposed on concurrent processes:

First-Come-First-Served: For any pair of processes i and j and any execution of CS j,

if i requested access to CS earlier than j, then execution of CSi is granted earlier than

execution of CS j.

We will later refer to that requirement as FCFS, and in the literature, especially queuing

theory, it is sometimes called FIFO (First-In-First-Out). We now present a useful result

showing relations between those requirements.

7

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

Theorem 1 (Lamport (1986)). If both Deadlock freedom and FCFS are satisfied, then Live-

lock freedom is also satisfied.

1.2.2 Bakery Algorithm

The bakery algorithm presented here describes the procedure for fair, in the sense of Defi-

nitions 1.2.1-1.2.1, access to shared resources and solves the mutual exclusion problem for

the most general case of N processes.

We assume processes are communicating through reading and writing into communica-

tion variables, or, simply, shared variables. Every shared variable has an owner - the process

that can write into this shared variable, and we restrict that no other process can write into

that variable. When these variables grow in size, it becomes possible to execute read and

write concurrently, but this discussion is outside of the scope of the thesis.

When process wants to enter a critical section, it picks a ticket with number on it and

waits until his number is being called. The next process that wants to enter the critical

section takes the consecutive ticket with a consecutive number. If two processes come

to request access to critical section simultaneously, we break the ties by comparing an

issued number (numi,num j) with process’s own number (i, j), so that the process with lower

number accesses the critical section first. Formally, processor i cannot enter critical section

until the one of the conditions num j > numi or num j = numi∧ j > i is met.The pseudocode

is given in Algorithm 1. Lines 2− 9 represent the trying protocol to access the critical

section, where line 2−4 are the bakery’s “doorway”, and 4−9 are “the bakery”. Line 10

represents the exit protocol.

8

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

Algorithm 1 Lamport’s Bakery Algorithm
shared variables:

num[1..N] . array of integers initially all 0’s (ticket number)
dw[1..N] . array of Booleans, initially all False (doorway)
Process i owns numi and dwi

Program for process i
local variables:

j : 1..N
repeat

1: NCS . noncritical section
2: dwi← True . open and enter the doorway
3: numi← 1+max

{
num j : 1≤ j ≤ N

}
. take the ticket

4: dwi← False . close the doorway
5: for j← 1 to N do begin . start trying
6: while dw j do skip
7: while num j 6= 0 and 〈num j, j〉< 〈numi, i〉 do skip
8: end
9: CS . critical section

10: numi← 0 . exit
forever

9

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

1.2.3 Formalization of the Bakery Algorithm

Definition 9 (Process execution). A process execution is a tuple Γ = (X ,≺,@), where:

1. X =
⋃

1≤i≤n Xi and every Xi ∈ X is a countable set of operations of the process i;

2. ≺ and @ are binary relations on X.

Two binary relations ≺ and @ represent causal (temporal) ordering of operations. We

say≺ is a causality and a≺ b iff a is “earlier than” b, i.e. a ends before b. And@ is a weak

causality and a @ b iff a is “not later than” b, i.e. a starts “not later than” b or a is earlier

than or concurrent with b. In other terms, if a causally affects b we say a≺ b, and if a could

causally affect b, we say a@ b.

Lamport suggests the following general axiomatization of these relations.

Definition 10 (Lamport’s axiomatization). Given two binary relations≺ and@ on X, where

X is a set of all elementary operations of every process, and an execution Γ, given by

relational structure Γ = (X ,≺,@), for every elementary operation a,b,c,d:

A1: a 6≺ a

A2: a≺ b =⇒ a@ b

A3: a≺ b =⇒ b 6@ a

A4: a@ b≺ c ∨ a≺ b@ c =⇒ a@ c

A5: a≺ b@ c≺ d =⇒ a≺ d

Axiom A1 states that ≺ is an irreflexive partial order. Axiom A2 states that if one

operation is earlier than the other it is also not later then the other. Axiom A3 states that if it

10

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

is known that one operation precedes the other, it cannot be that the other one is concurrent

or in reverse order. Axioms A4 and A5 give tools for reasoning about interplay of two

relations.

Axioms A6−A7 are additional axioms to construct proofs for reasoning about sets of

operations, rather than elementary ones.

A6: {e | e@ a} is finite

A7: a,b ∈ Xi =⇒ a≺ b ∨ b≺ a

Axiom A6 asserts that all events in the system execution have started at initial point

in time and this moment is not infinitely back into the past. Axiom A7 states that if op-

erations a and b belong to the same process, then one must precede the other. It is fairly

straightforward, that operations in one single process must be linearly ordered.

We follow with the rest of Lamport axiomatic characterization for process’ communica-

tion and presenting axioms describing the behaviour of operations Read(x) and Write(x).

Let variable x be a process’ shared variable.

A8: ∃W ∈Write(x).∀R ∈ Read(x) : W ≺ R

A9: Let R ∈ Read(x).∀W ∈Write(x) : W ≺ R ∨ R ≺ W. Let Wmax be the maximum

element over relation≺ of the set X =
{
W |W ∈Write(x)∧W≺ R

}
. Then R returns

the value x, written by operation Wmax.

Axiom A8 states that there is always a write operation that sets the initial value of the

shared variable and it precedes the first read operation for that value. Axiom A9 states that

any read operation that is mutually exclusive with write operation for the same variable

must return the value written to that variable by the last read operation.

11

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

Now lets extend this axiomatization to reason about sets of operations, i.e. we get rid of

atomicity restriction. Then the causality ≺ and weak causality @ over arbitrary operations

will be redefined as follows.

Definition 11. Let A⊆ X and B⊆ X be arbitrary sets of operations. Then:

1. A≺ B
df
=
{
∀a ∈ A,∀b ∈ B | a≺ b

}
2. A@ B

df
=
{
∃a ∈ A,∃b ∈ B | a@ b

}

Definition 11 provides tools for reasoning about correctness of algorithms at a higher

abstraction levels. Given that the system is defined by the set of its executions, the correct-

ness of bakery algorithm can be extended from single execution level to the level of the

whole distributed system.

Axioms A1−A5 continue to hold for sets of operations. Axiom A7 does not hold, and

A6 holds in weaker form (see Proposition 1(4)).

Definition 12 (Immediate successor). Let (X ,≺) be a partial order. Let a and b be two

elements in X and let a ≺ b. They are called successive iff there is no such element c that

a≺ c≺ b.

Element b is sometimes called an immediate successor of a.

Proposition 1. Let two operations W,W′ ∈Write(x) s.t. W ≺W′, s.t. W′ is an immediate

successor of W (within one process). Then:

1. Let R ∈ Read(x), s.t. W ≺ R≺W′. Then R returns the value written by W.

2. Let W be the last Write(x) operation and R is a read operation s.t. W ≺ R, then R

returns the value written by W.

12

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

3. If an execution has finitely many Write(x) operations and infinitely many Read(x)

operations, then the set of Read(x) operations that return a value other than that

written by the last Write(x) is finite.

4. For any operation A (not necessarily terminating) the set
{

B | B≺ A
}

is finite.

Note, that this model assumes that concurrent reads of shared resources do not affect

each other and there is only one writer. So the correctness proof essentially checks the case

of reads overlapping one or more writes.

1.2.4 Proof of Correctness

We first provide some useful notation:

1. ni is a line n of bakery algorithm executed by process i

2. ni : R(x = v) represents a process i reading variable x in line n of i’s algorithm and the

value returned by this read is v.

3. ni : W(x← v) represents a process i writing value v into variable x in line n of i’s

algorithm.

Also note, that in Algorithm 1, line numbering 1− 10 provides a useful insight into

linear ordering behind the operations within the same process.

Lemma 1. Suppose some process i is in the CS, while some other process k, s.t. i 6= k, is in

the bakery. Formally, 4k @ 9i @ 9k. For p ∈
{

i,k
}

, let vp be the value that process p writes

into nump in line 3. Then 〈vi, i〉< 〈vk,k〉

13

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

Proof. Since i is in CS, we know it has already completed its “trying” cycle at 6i (since

operations within the process are linearly ordered, see A7). Thus, it has executed the read

6i : R(dwk = False), and so it cannot be that i did it in this order:

2k ≺ 6i : R(dwk = False)≺ 4k. (∗)

Because if that would be the case, by Proposition 1(1), i would have found dwk = True in

line 6, i.e. the operation would have been 6i : R(dwk = True), not 6i : R(dwk = False). The

register dwk’s value could be True only while k was in the “doorway” of the bakery (lines

2k to 4k), and it must have been not the case at the time of i “trying”. Meaning, it has to be

that i has entered the CS either before/concurrent with k’s “doorway” or after/concurrent

with k’s “doorway”. Hence, by A3 and (*), either 6i @ 2k or 4k @ 6i. Then we have two

cases to consider:

(1) Case 1. Looking at numk’s behaviour. Suppose 4k @ 6i : R(dwk = False). Then by

A7 we can extend it to

3k : W (numk← vk)≺ 4k @ 6i : R(dwk = False)≺ 7i : R(numk = v)

for some value v. By applying A5 we get

3k : W (numk← vk)≺ 7i : R(numk = v). (∗∗)

But we also have 9i @ 9k from problem statement, so by applying A7 we get

7i : R(numk = v)≺ 9i @ 9k ≺ 10k.

So, by A5, we get 7i ≺ 10k and therefore by A7 and (∗∗) we have

3k : W(numk← vk)≺ 7i : R(numk = v)≺ 10k : W(numk← 0).

14

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

So it must be by Proposition 1(1) that v = vk. That is, i read the value written by k

into numk in line 3k. Note, that vk > 0, because k always writes a positive number

into numk and 3k must have executed by now. Since i is in CS, it must have already

executed 7i : R(numk = v) for some v, and it read either v = 0 or 〈vi, i〉 < 〈v,k〉. But

we just showed v = vk 6= 0, so it must be that 〈vi, i〉< 〈v,k〉= 〈vk,k〉, as we wanted.

(2) Case 2. Looking at numi’s behaviour. Suppose 6i :R(dwk =False)@ 2k. By applying

A7 we have

3i : W(numi← vi)≺ 6i : R(dwk = False)@ 2k ≺ 3k : R(numi = v)

for some v. Note, that k could only read numi in 3k. And by A5 it becomes

3i : W(numi← vi)≺ 3k : R(numi = v). (∗∗∗)

From the problem statement we have 4k @ 9i, and by applying A7 we get

3k : R(numi = v)≺ 4k @ 9i ≺ 10i : W(numi← 0).

So by A5 , we get

3k : R(numi = v)≺ 10i : W(numi← 0).

Combining it with (∗∗∗) we get

3i : W(numi← vi)≺ 3k : R(numi = v)≺ 10i : W(numi← 0).

By Proposition 1(1), v = vi. So k read value vi in 3k. Therefore, it must be vk > vi,

since algorithm sets the next picked number to be greater than the maximum preceded

number. Since vi > 0 after write at 3i and before write in 10i, we have 〈vi, i〉< 〈vk,k〉,

as desired.

15

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

�

Theorem 2. The bakery algorithm satisfies mutual exclusion (ME), deadlock freedom (DF)

and first-come-first-served (FCFS) condition.

Proof. Let vp denote the value written by p into nump in line 3, i.e. 3p : R(nump← vp).

1. ME. This property follows directly from Lemma 1.2.4, since if two processes i and k

are both in critical section, then both 〈vi, i〉 < 〈vk,k〉 and 〈vk,k〉 < 〈vi, i〉 would hold,

which is a contradiction.

2. FCFS. Suppose, by contradiction, k finishes “the doorway” before i starts it, but

FCFS doesn’t hold and i enters the CS before k does, i.e. formally 4k ≺ 2i ∧ 9i ≺ 9k.

Given some value v that i reads in numk on line 3, we apply A7 and get

3k : W(numk← vk)≺ 4k ≺ 2i ≺ 3i : R(numk = v)≺ 3i : W(numi← vi)≺ 9i. (
∗)

Furthermore, by applying A7 to problem statement,

9i ≺ 9k ≺ 10k : W(numk← 0).

By combining this with (∗), and applying A1 and A5,

3k : W(numk← vk)≺ 3i : R(numk = v)≺ 10k : W(numk← 0)

and therefore, by Proposition 1(1), v = vk. Since the value vi that i writes into numi

in line 3 is larger than any value it reads on line 3 (see (∗)), it follows that v < vi and

therefore, vk < vi. By the problem statement, we have 4k ≺ 2i ≺ 9i ≺ 9k, and by A1

and A2 this implies 4k@ 9i@ 9k. By Lemma 1.2.4 this, in turn, implies 〈vi, i〉< 〈vk,k〉,

which contradicts that vk < vi, thus FCFS holds.

16

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

3. DF. Suppose, by contradiction, that there is a deadlock. Thus, eventually there is a

set of processes T executing nonterminating trying protocols, while the remaining

processes T are executing nonterminating noncritical sections (NCS). We claim, that

for each process i, there is only a finite number of Write(numi) and Write(dwi) oper-

ations. To see this, first consider a process i ∈ T . Since there are no write operations

of i into numi or dwi in NCS, we have by A7 and A8 that W ≺ NCS, where W is any

write operation of i into numi or dwi and NCS is a nonterminating operation of pro-

cess i. By Proposition 1(4) the set
{
W |W≺ NCS

}
is finite, so none of the processes

in T cause a deadlock in this algorithm. Regarding the case of process i∈ T the claim

follows similarly. Lets observe that there are no write operations for numi or dwi in

lines 6i and 7i, which are the only two potentially nonterminating operations inside

the trying protocol. Next, we claim that no i ∈ T can be executing a nonterminating

6i. For, as was just argued, for any j there are only finitely many operations for dw j

and the last such operation sets dw j ← False. Therefore, by Proposition 1(3), there

can’t be infinitely many Read(dw j) operations that return True. And only nontermi-

nating True as the value of dw j would have made i ∈ T to executed a nonterminating

line 6. Therefore, if there still exists a nonterminating process, it is a i ∈ T executing

a nonterminating 7i. Now pick i ∈ T such that ∀k ∈ T \
{

i
}

, 〈vi, i〉 < 〈vk,k〉(∗). As

just argued, i must be executing a nonterminating 7i. Thus, for some j, there are

infinitely many 7i : R(num j = v) operations where v 6= 0(∗∗) and 〈v, j〉 < 〈vi, i〉(∗∗∗).

As we argued before, there is only a finite number of assignments to num j.

(1) Case 1. j∈ T . Then the last assignment to num j is in line 10 j and sets num j← 0.

Therefore, by Proposition 1(3), there can’t be infinitely many 7i : R(num j = v)

operations with v 6= 0, which contradicts (∗∗).

(2) Case 2. j ∈ T . Then the last assignment to num j is in line 3 j and sets num j← v j.

17

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

Therefore, by Proposition 1(3), we must have v = v j. But by choice of i in (∗)

and the fact that j ∈ T , we have 〈vi, i〉 ≤ 〈v j, j〉 = 〈v, j〉, contradicting (∗∗∗).

Therefore, there can’t be a deadlock.

�

Note, that since bakery algorithm satisfies DF and FCFS, by Theorem 1 it also satisfies

live lock freeness (LF).

The problem with the bakery algorithm is that shared variables numi has to be of an

unbounded size. Even if we assume that any read must return a value that was previously

written or is being written concurrently with that read, in an execution in which the bakery

is never empty, the value of numi chosen by each process i will keep increasing forever. But

for the theoretical setting this restriction can be neglected.

There exists a number of mutual exclusion algorithms that work in the model of nonatomic

read and write operations that have been developed after presented algorithm. The ulti-

mate goal of those algorithms is to achieve maximum possible degree of fairness (ideally,

FCFS) with as few shared bits per process as possible. The bakery algorithm presented

here achieves the first goal, but requires shared variables that can hold unboundedly large

integers.

We have successfully showcased the proof of correctness that requires use of relational

structures to prove mutual exclusion property of an algorithm for N concurrent processes.

We believe that this example gives a good motivation for an in-depth investigation of re-

lational structures and understanding how this theory allows to reason about concurrent

behaviours.

18

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

1.3 Janicki-Koutny Motivation

Consider the following simple program written using Dijkstra’s cobegin’s and coend’s,

which is also illustrated in Figure 1.1:

Q: cobegin

a : begin worka; lock(r) end;

b : begin unlock(r); workb end;

[]

c : workc

coend

Assume that the subroutines a, b and c are atomic, worka, workb and workc require the

resource r, which can be used simultaneously by any finite number of subroutines. The

resource r is initially unlocked and available to use.

The program Q illustrates the difficulties of modelling ‘simultaneity’ and ‘not later than’

relationships when no restrictions on the shape of the system runs is assumed.

The program’s inhibitor Petri net1 representation NQ is given in Figure 1.1. For both

the program Q and the net NQ, all possible observations (system runs) that involve all three

events a, b, c are represented by the set of partial orders Obs(Q) = {<1,<2,<3,<4}.

How can we say which observations are equivalent without knowing the details of par-

ticular events? Such sets of equivalent (from concurrency viewpoint) observations are often

called concurrent histories or concurrent behaviours. How can they be defined without go-

ing to the details of particular models? The key to solution is the idea of an observational

invariant (c.f. Janicki and Koutny (1993)).

1 Inhibitor Petri nets are now a part of popular folklore knowledge. They are simply the nets with inhibitor
arcs, where the inhibitor arc forbids the execution of transition c if there is a token in place s3.

19

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

j

j

j

j

j
q

q
c

b

a

c

?

?

?

?

?

?

s1

s3

s5

s2

s4

NQ

t
t
t
?

?

a

b

c
<1

hist1

.
..
..
..
..
..
..
.......................

t
t
t
?

?

c

a

b
<2

t t
tAAAU ����
<3

a c

b

t
t t
?

<4

a

b

c

. ...
..
..
..
..
..
..
.. ..

..

..

..

..

..

..

.

hist2

?

a
c

b
time

example of
intervals that
define <4

t
t t
?

≺Obs

a

b

c

t
t
t
?

?

c

a

bR

@Obs

t
t t
?

Obs

a

b

c�

Figure 1.1: Inhibitor net NQ and all behaviours involving one occurrence of a, b and c.
The net NQ generates Obs(Q) = {<1,<2,<3,<4}, and two concurrent histories: hist1 and
hist2. Partial orders are represented by Hasse diagrams. Note that
Obs=≺Obs ∪ ≺−1

Obs and
≺Obs=
Obs ∩@Obs.

For a given set of observations Obs = {<1, . . . ,<n}, where each <i is an interval order

over some set of event occurrences X , an observational invariant is a property that can be

defined in terms of partial orders and is satisfied by all elements of Obs. It was shown in

Janicki and Koutny (1993) that we have only two such independent invariants,

• interleaving,
Obs, defined as x
Obs y ⇐⇒ ∀<i∈ Obs. x <i y∨ y <i x, and

• weak causality, @Obs, defined as x@Obs y ⇐⇒ ∀<i∈ Obs. x <i y∨ x _<i y.

The most obvious and popular invariant, causality, ≺Obs, is defined as

x≺Obs y ⇐⇒ ∀<i∈ Obs. x <i y,

20

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

can be derived from interleaving and weak causality as

x≺Obs y ⇐⇒ x
Obs y∧ x@Obs y.

Let < be any interval order on X . We say that < is an extension of

• the invariant
Obs iff x
Obs y ⇐⇒ x < y∨ y < x,

• the invariant @Obs iff x@Obs y ⇐⇒ x <_ y, and

• the invariant ≺Obs iff x≺Obs y ⇐⇒ x < y.

Clearly < is an extension of ≺Obs iff it is and extension of both
Obs and @Obs. Note also

that every <i from Obs is an extension of both
Obs and @Obs.

Let Obsinv be the set of all interval orders over the set X that are extensions of both

Obs and @Obs. The set Obsinv is called a closure of Obs with respect to the observational

invariants. Clearly Obs⊆ Obsinv.

We say that a set of observations Obs is a concurrent history (i.e. all elements of Obs

are equivalent observations) iff Obs = Obsinv.

The above equality can be verified by inspection that the set Obs(Q) is split into two

concurrent histories hist1 and hist2, both shown in Figure 1.1.

Note that for the case of Figure 1.1 we have
Obs=≺Obs ∪ ≺−1
Obs. This is not true in

general, but occurs in many models of concurrency.

Another important factor that must be included in any general model of concurrency is a

treatment of simultaneity. This can be done by using the concept of concurrency paradigms

proposed in Janicki and Koutny (1993).

A concurrency paradigm is a supposition or statement about the structure of a history

involving a treatment of simultaneity. Lets assume that Obs is a concurrent history (with

the domain X). The classical causality based approach usually stipulates that if there is a

21

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

run < ∈ Obs such that a _< b, then there must be a run such that a precedes b and a run

such that b precedes a, and vice versa.

Formally, concurrency paradigms are logical formulas defined for event variables x and

y by a simple grammar

ω := true| f alse|∃< . x < y|∃< . x > y|∃< . x _< y|¬ω|ω ∨ω|ω ∧ω|ω ⇒ ω,

A history Obs satisfies a paradigm ω if for all distinct a,b ∈ X , ω(a,b) holds. It was

shown in Janicki and Koutny (1993) that in the study of concurrent histories, we only need

to consider eight non-equivalent paradigms, denoted by π1, · · · ,π8. Of those eight, only π1,

π3 and π8 are important for modelling concurrency. The most general paradigm, π1 = true,

admits all concurrent histories. The most restrictive paradigm, π8, admits only concurrent

histories Obs such that

(∃<∈ Obs. x _< y) ⇐⇒ (∃<∈ ∆. x < y)∧ (∃<∈ ∆. x > y).

The paradigm π3, which is general enough to deal with most problems that cannot be dealt

with under π8, admits concurrent histories Obs such that

(∃<∈ ∆. x < y)∧ (∃<∈ ∆. x > y) ⇒ (∃<∈ ∆. x _< y).

Clearly, π8⇒ π3⇒ π1, The paradigms determine the way histories can be represented

by their relational invariants, see Janicki and Koutny (1993) for detailed treatment.

When the paradigm π3 holds then for every concurrent history Obs, we have

Obs=≺Obs ∪ ≺−1
Obs,

so we can use more natural invariants, causality ≺Obs (i.e. an abstraction of “earlier than”)

22

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

and weak causality@Obs (i.e. and abstraction of “not later than") as a unique representation

of Obs.

In this thesis, except Chapter 8, we will assume that the paradigm π3 does hold.

It was shown in Janicki and Koutny (1993) that for concurrent histories that assume

interval orders as observations, the relations ≺Obs and @Obs satisfy all Lamport’ s axioms

from Definition 10 and an additional axiom that was added later. In Janicki and Koutny

(1997) it was proved that two relations≺ and@ can be interpreted as concurrency invariants

if and only if they satisfy these six axioms.

1.4 Thesis structure

The thesis is structured as follows. Chapter 1 provides two major motivations for our re-

search, introduce standard transitive closure operator and provide necessary notation. In

Chapter 2 we give the rest of mathematical basis for partial order theory and relational

structures used in this thesis. Chapter 3 recaps stratified order structures and their proper-

ties, as well as provides analysis for its closure operator ♦-closure. Chapter 4 introduces

main achievement of this thesis, a transitive closure for interval order structures, called �-

closure. We present our main contributions, i.e. proofs of properties of �-closure for inter-

val orders structures. Chapter 5 is devoted to generalized mutex order structures structures,

a generalization of stratified order structures, and aF-closure operator on them. Chapter 6

gives some concluding remarks on the thesis.

23

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

24

Chapter 2

Mathematical Basics

2.1 Representation Theorem for Partial Orders

Now we are ready to present two most important representation theorems used in this thesis.

Szpilrajn’s Theorem (Szpilrajn, 1930) provides the link between a partial order and the

set of its total order extensions. By Szpilrajn’s Theorem, we know that every partial order

< is uniquely represented by the the set of its total order extensions Total(<). Szpilrajn’s

Theorem can be stated as follows:

Theorem 3 (Szpilrajn (1930)). For every partial order <,

< =
⋂

�∈Total(<)

�.

In the most general case, the proof of Szpilrajn Theorem requires use of Axiom of

Choice (c.f. Fishburn (1985)).

25

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

Stratified orders can also be defined in an alternative way, namely, a partial order < on

X is stratified if and only if there exists a total order � on some Y and a mapping φ : X→Y

such that ∀x,y ∈ X . x < y ⇐⇒ φ(x)� φ(y). This definition is illustrated in Figure 2.1

with partial orders <2 and �2. Mapping φ is defined as φ : {a,b,c,d}→ {{a},{b,c},{d}}

with φ(a) = {a}, φ(b) = φ(c) = {b,c}, φ(d) = {d}. Note that for all x,y ∈ {a,b,c,d} we

have x <2 y ⇐⇒ φ(x)�2 φ(y), where the total order �2 can be concisely represented by

a step sequence {a}{b,c}{d}. As a consequence, stratified orders and step sequences can

uniquely represent each other (cf. (Janicki and Koutny, 1995; Janicki and Le, 2008; Le,

2008)).

For the representation of interval orders, the name and intuition follow from Fishburn’s

Theorem:

Theorem 4 (Fishburn (1970)). A partial order < on X is interval iff there exists a total

order � on some T and two mappings B,E : X → T such that for all x,y ∈ X,

1. B(x)�E(x), and

2. x < y ⇐⇒ E(x)�B(y).

Usually B(x) is interpreted as the beginning and E(x) as the end of an interval x. To-

tally ordered set T usually represents time and taken as the real line R. The intuition of

Fishburn’s theorem is illustrated in Figure 2.1 with partial orders <3 and �3. We define

mappings B and E as B,E : {a,b,c,d} → {B(a),E(a),B(b),E(b),B(c),E(c),B(d),E(d)}.

Then for all x,y ∈ {a,b,c,d}, we have B(x)�3 E(x) and x <3 y ⇐⇒ E(x)�3 B(y).

26

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

t
t
t
t
?

?

?

a

b

c

d
<1
total

t
t t

t

�

J
J
JĴ

J
J
JĴ

�

a

b c

d
<2

stratified

t
t
t
?

?

..

{a}

{b,c}

{d}
�2
total

t
t t
t

�

J
J
JĴ

?

a

b c

d
<3

interval

ssssssss

s
...

?
?
?
?
?
?
?

B(a)
E(a)
B(b)
B(c)
E(b)
B(d)
E(c)
E(d)
�3
total

t t
t t? ?

ba

dc

<4
not interval

Figure 2.1: Various types of partial orders (represented as Hasse diagrams). The partial
order <1 is an extension of <2, <2 is an extension of <3, and <3 is and extension of <4.
Note that order <1, being total, is uniquely represented by a sequence abcd, the stratified
order <2 is uniquely represented by a step sequence {a}{b,c}{d}, and the interval order
<3 is (not uniquely) represented by a sequence that represents �3,
i.e. B(a)E(a)B(b)B(c)E(b)B(d)E(c)E(d).

2.2 Properties of Transitive Closure

The following, well known, results regarding transitive closure R+ and reflexive transitive

closure R∗ will often be used in our proofs (see Hopcroft et al. (2003); Rosen (2002) for

details).

Lemma 2. For every binary relation R⊆ X×X, we have

1. (R∗)∗ = R∗, R∗ ◦R∗ = R∗,

2. R+ = R∗ ◦R = R◦R∗

3. R+ = (R+ ◦R)∪R, R+ ◦R = R◦R+,

4. R∗ \ idX = R+ \ idX ,

5. (R∗ \ idX)
∗ \ idX = R∗ \ idX .

27

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

The below propositions summarize properties of transitive closure operator +. These

properties were extended to the ♦-closure operator for stratified order structures in (Janicki

and Koutny, 1995) and will be extended to the �-closure operator for interval order struc-

tures in Chapter 3 (which constitute main achievements of this thesis), and F-closure in

Chapter 4.

Proposition 2 (Properties of transitive closure +). Let R⊆ X×X. Then

1. If R is irreflexive then R⊆ R+ \ idX ;

2. (R+)+ = R+;

3. R+ is a partial order ⇐⇒ R is acyclic ⇐⇒ R+ is irreflexive,

4. If R is a partial order then R+ = R;

5. If R is a partial order and R̂⊆ R, then R̂+ is a partial order and R̂+ ⊆ R.

Now, we recall definition of relational order structures.

Definition 13 (Relational structures). A tuple of relations S = (X ,R1,R2, . . . ,Rn) where

each Ri ⊆ X ×X is a binary relation on some X, with 1 ≤ i ≤ n, is an n-ary relational

structure. The set X is called the domain of a relation structure S.

We also generalize the definition of extensions for partial orders (see Definition 5) to

relational structures.

Definition 14 (Extension of Relational Structures). An extension of relational structure S =

(X ,R1,R2, . . . ,Rn), where each Ri⊆X×X, is any relational structure S′=(X ,R′1,R
′
2, . . . ,R

′
n),

satisfying Ri ⊆ R′i, for every 1≤ i≤ n. We write S⊆ S′ to denote extension of S.

28

Chapter 3

Closure Operator for Stratified Order

Structures

In this chapter we introduce the original concept of stratified order structures and present

their basic properties. Next we will discuss the concept and properties of ♦-closure, intro-

duced in Janicki and Koutny (1995).

3.1 Stratified Order Structures and ♦-Closure

In this section we will present the basic properties of stratified order structures and give

relevant ♦-closure definitions and properties.

In this thesis we are particularly interested in relational structures of two relations. For

reference we give a simplified definition. A relational structure of (order 2) is a triple

S = (X ,R1,R2), where R1,R2 ⊆ X ×X are binary relations on X . A relational structure

S′ = (X ,R′1,R
′
2) is an extension of S = (X ,R1,R2) if R1 ⊆ R′1 and R2 ⊆ R′2. If S′ is an

extension of S, we write S⊆ S′.

Definition 15 (Gaifman and Pratt (1987); Janicki and Koutny (1991)). A stratified order

29

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

structure (SO-structure) is a relational structure S = (X ,≺,@), such that for all a,b,c ∈ X,

the following hold:

S1: a 6@ a

S2: a≺ b =⇒ a@ b

S3: a@ b@ c ∧ a 6= c =⇒ a@ c

S4: a@ b≺ c ∨ a≺ b@ c =⇒ a≺ c

SO-structures were independently introduced in (Gaifman and Pratt, 1987) and (Janicki

and Koutny, 1991). Their comprehensive theory has been presented in (Janicki and Koutny,

1997) and Janicki (2008). They have been successfully applied to model inhibitor and pri-

ority systems, asynchronous races, synthesis problems, etc., see Kleijn and Koutny (2004)

and Janicki (2008) for more references.

The relation ≺ is called causality and represents the “earlier than” relationship, and the

relation @ is called weak causality and represents the “not later than” relationship. The

axioms S1 - S4 model the mutual relationship between “earlier than” and “not later than”

relations, provided that the system runs are defined as stratified orders.

In principle, event hough different language was used, the motivation of both Gaifman

and Pratt (1987) and Janicki and Koutny (1991) was the same, a concise representation of

a concurrent history, i.e. a set of equivalent system runs/observations.

Proposition 3 (Janicki and Koutny (1993)).

1. (X ,≺) is a poset, a≺ b⇒ b 6@ a, and a@ b⇒ b 6≺ a.

2. If (X ,<) is a stratified order then (X ,<,<_) is a SO-structure.

30

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

Proposition 3(2) allows an introduction of a stratified order extension of stratified order

structure.

Definition 16. 1. A stratified order < on X is a stratified extension of a SO-structure

S = (X ,≺,@) if ≺⊆< and @⊆<_.

2. The set of all stratified extensions of S will be denoted by Strat(S).

Clearly if a stratified order < is an extension of S = (X ,≺,@), then (X ,<,<_) is a

relational structure extension of S, in the sense of Definition 14.

One of the main properties of stratified order structures is the following generalization

of Szpilrajn’s Theorem.

Theorem 5 (Janicki and Koutny (1997)). For every SO-structure S = (X ,≺,@):

S =
(

X ,
⋂

<∈Strat(S)
<,

⋂
<∈Strat(S)

<_
)

.

The above theorem is often interpreted as the proof of the claim that SO-structures

uniquely represent sets of equivalent system runs provided that the system operational se-

mantics can be fully described in terms of stratified orders (see Janicki (2008); Janicki and

Koutny (1997) for details).

Transitive closure operator for relational structures ♦-closure (called "diamond clo-

sure"), was first introduced and studied in Janicki and Koutny (1995). We will now present

the concept of ♦-closure that plays a substantial role in most of the applications of SO-

structures for modelling concurrent systems (cf. Janicki and Koutny (1997); Juhas et al.

31

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

(2006); Kleijn and Koutny (2004)).

Definition 17 (Janicki and Koutny (1995)). For every relational structure S = (X ,R1,R2)

we define S♦, the ♦-closure as

S♦
df
=
(

X ,≺♦R1,R2
,@♦R1,R2

)
=
(
X ,(R1∪R2)

∗ ◦R1 ◦ (R1∪R2)
∗,(R1∪R2)

∗ \ idX
)
.

Intuitively, the ♦-closure is a generalization of transitive closure for relations to SO-

structures. More intuitive definition is that given a relational structure S = (X ,≺,@), the

♦-closure is defined as (X ,≺′,(≺∪@)∗\ idX), where≺′ is a composition of three relations:

(≺ ∪ @)∗, ≺ and, then again, (≺ ∪ @)∗. In other words, a ≺′ b if aR1 ◦ · · · ◦Rkb, where

each Ri is either ≺ or @, and at least one Ri is ≺. The ♦-closure is used to construct

SO-structures.

The theorem below shows that the ♦-closure has all the properties formulated for tran-

sitive closure in Proposition 2.

Theorem 6 (Properties of ♦-closure, Janicki and Koutny (1995)). Let R1,R2 ⊆ X ×X be

two relations and S = (X ,R1,R2) be a relational structure. Then

1. If R2 is irreflexive then S⊆ S♦.

2.
(
S♦
)♦

= S♦.

3. S♦ is an SO-structure if and only if≺♦R1,R2
= (R1∪R2)

∗ ◦R1 ◦ (R1∪R2)
∗ is irreflexive.

4. If S is a stratified order structure then S = S♦.

32

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

5. Let S be a SO-structure and let Ŝ⊆ S. Then Ŝ♦ ⊆ S and Ŝ♦ is a SO-structure.

Among others, Theorem 6 helps us to show a relationship between the SO-structures

and comtraces, an extension of Mazurkiewicz traces that allows us to model the “not

later than” relationship using quotient monoids (Diekert and Rozenberg, 1995; Janicki and

Koutny, 1995) of step sequence monoids.

33

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

34

Chapter 4

Closure Operator for Interval Order

Structures

4.1 Interval Order Structures and �-closure

This chapter contains the major contribution of this thesis.

First we describe interval order structures, its axiomatization and basic properties. Next

we will introduce the concept and properties of �-closure, a counterpart of ♦-closure for

interval order structures, which is the main contribution of this thesis.

We start with a short presentation of some properties on interval order structures (IO-

structures), then we define �-closure, the main concept studied in this thesis, and prove its

equivalence to Theorem 6. Because IO-structures are more complex than SO-tructures, the

proofs are more involved than that of Theorem 6.

Definition 18 (Lamport (1986); Janicki and Koutny (1991)). An IO-structure is a relational

structure S = (X ,≺,@), such that for all a,b,c,d ∈ X, the following hold:

35

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

I1: (a 6@ a)

I2: a≺ b =⇒ a@ b

I3: a≺ b≺ c =⇒ a≺ c

I4: a≺ b@ c ∨ a@ b≺ c =⇒ a@ c

I5: a≺ b@ c≺ d =⇒ a≺ d

I6: a@ b≺ c@ d =⇒ a@ d ∨ a = d

Here, just like in the case of SO-structures, the causality relation ≺ also represents the

“earlier than” relationship, and the weak causality relation@ represents the “not later than”

relationship, but under the assumption that the system runs are defined as interval orders.

Axioms I1 – I5 describe relationship between interval “earlier than” and “not later than”.

As we have already presented in Chapter 1, IO-structures were independently intro-

duced in (Lamport, 1986) and (Janicki and Koutny, 1991), however the motivations and in-

tuitions were different. Some of their properties has been presented in (Janicki and Koutny,

1997), yet their theory is not as well-developed and, consequently, less often applied for

modelling concurrency than the theory of SO-structures (Janicki, 2008). The lack of a

construction equivalent to the ♦-closure prevented us from building a working relation-

ship between IO-structures and linguistic models for concurrency such as Mazurkiewicz

traces (Diekert and Rozenberg, 1995) and comtraces (Janicki and Koutny, 1995; Kleijn and

Koutny, 2004).

It was noted earlier, that every stratified order is also an interval order, so the similar

relationship holds for their corresponding relational structures.

36

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

Proposition 4 (Janicki and Koutny (1997)). Every SO-structure is an IO-structure.

Due to above theorem, many properties of SO-structures hold for IO-structures as well.

Proposition 5 (Janicki and Koutny (1993)).

1. I f (X ,≺) is a partially ordered set, then a≺ b⇒ b 6@ a, and a@ b⇒ b 6≺ a.

2. If (X ,<) is an interval order, then (X ,<,<_) is an IO-structure.

Proposition 5(2) allows an introduction of a interval order extension of interval order

structure.

Definition 19. 1. An interval order io = (X ,<) is an interval order extension of an IO-

structure S = (X ,≺,@) if ≺⊆< and @⊆<_.

2. The set of all interval order extensions of S will be denoted by Interv(S).

Clearly if an interval order < is an extension of S = (X ,≺,@), then (X ,<,<_) is a

relational structure extension of S, in the sense of Definition 14.

We also have an analogue of Theorem 5 for representation of interval orders and IO-

structures.

Theorem 7 (Janicki and Koutny (1997)). For each IO-structure S = (X ,≺,@), we have

S =
(

X ,
⋂

<∈Interv(S)
<,

⋂
<∈Interv(S)

<_
)
.

37

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

ss
ss?
?

?

a

b

c

d
<1

ss
ss?
?

?

a

b

d

c
<2

s
s s
s
�
�
�

B
B
BN

B
B
BN

�
�
�

a

b

d

c

<3

s s
s
s
?
B
B
BN

�
�
�

a

b

d c
<4

s
ss

s
�
�
�

B
B
BN

?

a

b

d

c

<5

s
s ss

�

�
�
�
�
�
�

A
A
A
AU

?

a

b
c

d ≺

s
s ss

�

�
�
�
�
�
�

A
A
A
AU

?

XXXXz

a

b
c

d
@

P: begin int x,y,z:
a: begin x:=0; y:=0; z:=0 end;
cobegin
begin
b: x=0 → y:=y+1;
d: z:=z+1

end,
c: x:=x+1

coend
end P

Figure 4.1: An example of a simple interval order structure S = (X ,≺,@), with X =
{a,b,c,d} and its set of all interval extensions Interv(S) = {<1,<2,<3,<4,<5}. The or-
ders <1 and <2 are total, <3 and <4 are stratified and <5 is interval but not stratified. The
elements of Interv(S) are all equivalent runs (executions) of the program P involving the
actions a, b, c and d, so the interval order structure uniquely defines a concurrent behaviour
(history) of P (see for details). The elements of Interv(S) are represented as Hasse diagrams,
while ≺ and @ are represented as graphs of their entire relations. In this case ≺ equals <5,
as there are not so many partial orders over the four elements set, but the interpretations of
<5 and ≺ are different. The incomparability in <5 is interpreted as simultaneity while in ≺
as having no casual relationship.

The above theorem is a generalization of the Szpilrajn Theorem (Theorem 3) to IO-

structures. It is interpreted as the proof of the claim that IO-structures uniquely represent

sets of equivalent system runs, provided that the system’s operational semantics is fully

described in terms of interval orders, c.f. (Janicki, 2008; Janicki and Koutny, 1997) for

details. An example of simple IO-structure which illustrates the main ideas behind this

concept is shown in Figure 4.1.

Before defining the concept of �-closure for IO-structures and proving its properties,

we need to introduce some auxiliary notions and prove some useful preliminary results.

38

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

Definition 20 (Sequence notation). For every non-empty sequence of relations seq= 〈S1, . . . ,Sk〉,

we define:

1. first(seq) = S1, i.e. the first relation in the sequence,

2. last(seq) = Sk, i.e. the last relation in the sequence,

3. pos(i,seq) = Si, i.e. the relation at the position i in the sequence, and

4. length(seq) = k, i.e. the length of the sequence.

Definition 21. For two sequences of relations seqS = 〈S1, . . . ,Sk〉 and seqQ = 〈Q1, . . . ,Qs〉,

we define:

1. Relational sequence concatenation seqS · seqQ as

〈S1, . . . ,Sk〉 · 〈Q1, . . . ,Ql〉= 〈S1, . . . ,Ql〉;

2. λ to be an empty sequence, or simply 〈〉;

3. seq ·λ = λ · seq = seq, for any sequence seq;

4. Subsequence of k first consecutive elements of seq: seqk = seqk−1 · seq for each se-

quence seq and for all k > 0, and if k = 0 then seq0 = λ .

Every set of sequences is called a language. For more details regarding sequences,

languages, and appropriate proof techniques the reader is referred to, for instance, Hopcroft

et al. (2003).

39

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

Definition 22. Let R1,R2 ∈ X×X be two relations and let seq = 〈S1, . . . ,Sk〉 be a nonempty

sequence of relations, such that Si ∈ {R1,R2}, i = 1, . . . ,k. Then seq has ≺R1,R2-property

in the following cases:

1. If length(seq) = 1, then f irst(seq) = S1 = R1,

2. If length(seq) > 1, then f irst(seq) = last(seq) = S1 = Sk = R1 and for each i =

1, . . . , length(seq)−1, if pos(i,seq) = R2, then pos(i+1,seq) = R1.

3. A language L has ≺R1,R2-property iff each seq ∈ L has ≺R1,R2-property.

4. S≺R1,R2
denotes the set of all sequences that have ≺R1,R2-property.

Definition 23. Let R1,R2 ∈ X×X be two relations and let seq = 〈S1, . . . ,Sk〉 be a nonempty

sequence of relations, such that Si ∈ {R1,R2}, i = 1, . . . ,k. Then seq has @R1,R2-property in

the following cases:

1. If length(seq) > 1, then for each i = 1, . . . , length(seq)− 1, if pos(i,seq) = R2 then

pos(i+1,seq) = R1.

2. A language L has @R1,R2-property iff each seq ∈ L has @R1,R2-property.

3. S@R1,R2
denotes the set of all sequences that have @R1,R2-property.

In other words, a sequence 〈S1, . . . ,Sk〉 has @R1,R2-property if it does not contain a sub-

sequence 〈R2,R2〉, and it has ≺R1,R2-property if it has @R1,R2-property and, additionally,

S1 = Sk = R1. For example, the sequence 〈R1,R2,R2,R1,R2〉 has neither @R1,R2-property

nor ≺R1,R2-property. The sequence 〈R2,R1,R1,R2,R1,R2,R1〉 has @R1,R2-property, but not

40

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

≺R1,R2-property, while the sequence

〈R1,R2,R1,R1,R2,R1,R2,R1〉 has both@R1,R2-property and≺R1,R2-property. The basic prop-

erties of those kind of sequences are given by the following lemma.

Lemma 3. Let R1 and R2 be relations on X. Then:

1. If seq has ≺R1,R2-property, then it has @R1,R2-property.

2. If 〈S1, . . . ,Sk〉 and 〈Q1, . . . ,Ql〉 have≺R1,R2-property, then concatenation 〈S1, . . . ,Sk〉·

〈Q1, . . . ,Ql〉, the sequence 〈S1, . . . ,Ql〉 has ≺R1,R2-property.

3. If seq has≺R1,R2-property, then R2 ·seq, seq ·R2 and R2 ·seq ·R2 have@R1,R2-property.

4. If seq1 has ≺R1,R2-property, and seq2 has @R1,R2-property, then seq1 · seq2 and seq2 ·

seq1 have @R1,R2-property.

5. If seq1 and seq3 have≺R1,R2-property, and seq2 has@R1,R2-property, then seq1 ·seq2 ·

seq3 has ≺R1,R2-property.

6. If languages L1 and L3 have≺R1,R2-property, and a language L2 has@R1,R2-property,

then the language (L+
1 ·L2)

∗ ·L+
3 has ≺R1,R2-property.

7. If seq1 and seq3 have@R1,R2-property, and seq2 has≺R1,R2-property, then seq1 ·seq2 ·

seq3 has @R1,R2-property.

8. If languages L1, L3 and L5 have @R1,R2-property, and languages L2, L4 have ≺R1,R2-

property, then the languages L1 · (L+
2 ·L3)

∗ ·L+
4 , (L+

2 ·L3)
∗ ·L+

4 ·L5, L1 · (L+
2 ·L3)

∗ ·

L+
4 ·L5 have @R1,R2-property.

Proof.

41

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

(1)-(5) and (7) follow directly from Definitions 22 and 23.

(6) It suffices to show that for all i,k ≥ 1, j ≥ 0, the language (Li
1 ·L2)

j ·Lk
3 has ≺R1,R2-

property.

The property is obvious for j = 0, so assume j > 0. From (2) it follows Li
1 and Lk

3

have ≺R1,R2-property. Hence by (5) Li
1 · L2 · Lk

3 has ≺R1,R2-property, which means

(Li
1 ·L2)

j ·Lk
3 has ≺R1,R2-property for j = 1. Assume j > 1. Now by (7) Li

1 ·L2 ·Li
1

has ≺R1,R2-property, i.e. (Li
1 ·L2)

s ·Li
1 has ≺R1,R2-property, for s = 1. Suppose this

holds for s, consider inductive case of s+ 1. We have (Li
1 ·L2)

s+1 ·Li
1 = (Li

1 ·L2)
s ·

Li
1 ◦L2 ·Li

1. Since by induction assumption (Li
1 ·L2)

s ·Li
1 has ≺R1,R2-property, then

by (5), (Li
1 ·L2)

s ·Li
1 ·L2 ·Li

1 also has ≺R1,R2-property, which means (Li
1 ·L2)

s ·Li
1 has

≺R1,R2-property for all s≥ 1. Hence (Li
1 ·L2)

j ·Lk
3 = (Li

1 ·L2)
j−1 ·Li

1 ·L2 ·Lk
3.

Since (Li
1 ·L2)

j−1 ·Li
1 has ≺R1,R2-property, then by (5), (Li

1 ·L2)
j ·Lk

3 has it as well.

(8) It suffices to show that for all i,k ≥ 1, j ≥ 0, the languages L1 · (Li
2 ·L3)

j ·Lk
4, (Li

2 ·

L3)
j ·Lk

4 ·L5 and L1 ·(Li
2 ·L3)

j ·Lk
4 ·L5 have@R1,R2-property. From the proof of (6) and

(5) it follows that L1 · (Li
2 ·L3)

j ·Lk
4 and (Li

2 ·L3)
j ·Lk

4 ·L5 have @R1,R2-property, from

the proof of (6) and (7) it follows that L1 · (Li
2 ·L3)

j ·Lk
4 ·L5 have @R1,R2-property.

�

Lemma 3 provides principal tools for proving most of the remaining results. We may

now formally define the relations ≺�R1,R2
and @�R1,R2

, the basic components of �-closure

definition.

Definition 24. Let R1 and R2 be relations on X. We define:

1. ≺�R1,R2
=
⋃
〈S1,...,Sk〉∈S≺R1,R2

S1 ◦ · · · ◦Sk ;

42

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

2. @�R1,R2
=
(⋃
〈S1,...,Sk〉∈S@R1,R2

S1 ◦ · · · ◦Sk

)
\ idX .

In other words, ≺�R1,R2
is the union of all compositions S1 ◦ · · · ◦ Sn, where n ≥ 1, S1 =

Sn = R1, Si = R2 implies Si+1 = R1, for i = 1, . . . ,n−1. And relation @�R1,R2
is the union of

all compositions S1◦· · ·◦Sn, where n≥ 1, and Si =R2 implies Si+1 =R1, for i= 1, . . . ,n−1,

and (a,a) /∈@�R1,R2
for all a ∈ X .

To express ≺�R1,R2
and @�R1,R2

in more operational manner, but also in a compact from,

we will use the following definition.

Definition 25 (Operational definition). Let R1,R2 ⊆ X×X be two relations. Then

1. R1⊕R2 = (R+
1 ◦R2)

∗◦R+
1 ,

2. R1]R2 = (R2∪ idX)◦ (R1∪R1 ◦R2)
∗,

3. R1⊕R2 ⊆ R1]R2,

4. (R1⊕R2)⊕ (R1]R2)⊆ (R1⊕R2),

5. (R1⊕R2)] (R1]R2)⊆ (R1]R2),

Proof. Follows immediately from the Definition 24. �

Immediately from the above definitions we have the following useful result.

Corollary 2. Let R1 and R2 be relations on X. Then from above definitions we have:

1. ≺�R1,R2
= R1⊕R2;

2. @�R1,R2
= (R1]R2)\ idX ;

43

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

3. R1⊕R2 =
⋃
〈S1,...,Sk〉∈S≺R1,R2

S1 ◦ · · · ◦Sk;

4. R1]R2 =
(⋃
〈S1,...,Sk〉∈S@R1,R2

S1 ◦ · · · ◦Sk

)
\ idx;

5. (R1 ⊆ Q1 ∧ R2 ⊆ Q2) =⇒ (R1⊕R2 ⊆ Q1⊕Q2) ∧ (R1]R2 ⊆ Q1]Q2).

We can now define the main concept of investigation, the concept of �-closure.

Definition 26 (�-closure). For every relational structure S = (X ,R1,R2), we define the

structure S�, a �-closure of S, as

S� = (X ,≺�R1,R2
,@�R1,R2

) = (X ,R1⊕R2,(R1]R2)\ idX).

The �-closure is an extension of ♦-closure of SO-structures and classical transitive

closure of relations to IO-structures. We start with proving equivalences of Theorem 6(1)

and 6(2).

Proposition 6. Given two relations R1,R2 ∈ X×X, an IO-structure S = (X ,R1,R2) and its

closure S�, we have

1. If R2 is irreflexive then S⊆ S�.

2.
(
S�
)�

= S�.

Proof. (1) By the definition R1 ⊆ R1⊕R2 = ≺�R1,R2
and R2 ⊆ R1]R2. Hence, if R2 is

irreflexive, R2 \ idX ⊆ (R1]R2)\ idX =@�R1,R2
.

(2) (⊇) Since @�R1,R2
is irreflexive, by (1) we have S� ⊆

(
S�
)�.

(⊆) We need to show that ≺�
≺�R1,R2

,@�R1,R2

⊆≺�R1,R2
and @�

≺�R1,R2
,@�R1,R2

⊆@�R1,R2
.

44

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

Let {a,b} ∈ X and a ≺�
≺�R1,R2

,@�R1,R2

b, i.e. (by Corollary 2) a pair (a,b) ∈ (R1⊕R2).

This means there must exist a sequence of relations 〈P1, . . . ,Pn〉, such that aP1 ◦ · · · ◦

Pnb for Pi ∈ {≺�R1,R2
,@�R1,R2

} and i = 1, . . . ,n, where n ≥ 1. From the Definition of

⊕ (Definition 25(1)) it follows that 〈P1, . . . ,Pn〉=
(
〈≺�R1,R2

〉i · 〈@�R1,R2
〉
) j
· 〈≺�R1,R2

〉k,

where i,k ≥ 1, and j ≥ 0. If x≺�R1,R2
y then there is a sequence 〈S1, . . . ,Ss〉 such that

Si ∈ {R1,R2} and xS1 ◦ · · · ◦ Ssy. The sequence 〈S1, . . . ,Ss〉 obviously has a ≺�R1,R2
-

property. Let language L(≺�R1,R2
) be set of all such sequences that for each x,y

we have x ≺�R1,R2
y. Let language L(@�R1,R2

) be the language of similar sequences

generated by the relation @�R1,R2
. Clearly, from Definitions 22(2,3) and 23(2,3),

L(≺�R1,R2
)⊆ S≺�R1,R2

and L(@�R1,R2
)⊆ S@�R1,R2

, and we can conclude

〈P1, . . . ,Pn〉 ∈
(

L(≺�R1,R2
)+ ·L(@�R1,R2

)
)∗
·L(≺�R1,R2

)+.

Since L(≺�R1,R2
) has ≺�R1,R2

-property and L(@�R1,R2
) has @�R1,R2

-property, by Lemma

3(6), the language (L(≺�R1,R2
)+ · L(@�R1,R2

))∗ · L(≺�R1,R2
)+ has ≺�R1,R2

-property, i.e.

〈P1, . . . ,Pn〉 ∈ S≺�R1,R2
. Therefore by Definition 24(1), P1 ◦ · · · ◦Pn ⊆≺�R1,R2

, so a≺�R1,R2

b.

Lets assume a @�
≺�R1,R2

,@�R1,R2

b. This means that if a 6= b, there exists a sequence

of relations 〈P1, . . . ,Pn〉 such that aP1 ◦ · · · ◦Pnb where Pi ∈ {≺�R1,R2
,@�R1,R2

} for i =

1, . . . ,n, and n≥ 1.

From the definition of@�
≺�R1,R2

,@�R1,R2

and Definition 25(2) of] it follows that 〈P1, . . . ,Pn〉

is in one of the following forms: 〈@�R1,R2
∪idX〉 · 〈≺�R1,R2

∪ ≺�R1,R2
◦@�R1,R2

〉∗

Reasoning similarly as in the case of ≺�
≺�R1,R2

,@�R1,R2

, but using Lemmas 3(8), 3(2) and

3(6) instead of Lemma 3(6) only, one can show that 〈P1, . . . ,Pn〉 ∈ S@�R1,R2
. Therefore

by Corollary 2(3) P1 ◦ · · · ◦Pn ⊆ R1]R2, so (a,b) ∈ R1]R2. Since a 6= b then by

Corollary 2(2) a@�R1,R2
b.

�

45

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

Proposition 6(2) shows that �-closure is idempotent, i.e. multiple application of the

operator returns the same result as initial application, and this is what justifies the use of

name closure, see Rosen (2002).

Unfortunately the exact replica of Theorem 6(3) is false. To show this, consider do-

main of two elements X = {a,b}, and two relations on the domain R1 = {(a,b)} and

R2 = {(b,a)}. In this case ≺�R1,R2
= R1 = {(a,b)}, @�R1,R2

= R1 ∪R2 = {(a,b) ,(b,a)}, so

≺�R1,R2
is irreflexive, but (X ,≺�R1,R2

,@�R1,R2
) is not an IO-structure, because a ≺�R1,R2

b and

b@�R1,R2
a contradicts Proposition 5(1).

However we can still prove its slightly weaker version.

Definition 27 (i-directed). A relational structure S = (X ,R1,R2) is i-directed if the follow-

ing conditions are satisfied:

1. R1⊕R2 is irreflexive,

2. ∀a,b ∈ X : (a,b) ∈ R2 =⇒ (b,a) /∈ R1⊕R2.

Proposition 7. S� is an IO-structure if and only if S is i-directed.

Proof. (⇒) If S� is an interval order structure then by (I1) and (I2), ≺�R1,R2
= R1⊕R2 is

irreflexive. Suppose (a,b) ∈ R2 and (b,a) ∈ R1⊕R2. Since R2 ⊆ @�R1,R2
, we have

a≺�R1,R2
b and b@�R1,R2

a, thus contradicting Proposition 5(1).

(⇐) We need to show that the conditions of Definition 18 are satisfied.

(I1) Directly from Definition 24(2)

(I2) From Definition 25(2) we have ≺�R1,R2
⊆ R1]R2. Since ≺�R1,R2

is irreflexive,

≺�R1,R2
⊆ (R1]R2)\ idX =@�R1,R2

.

46

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

(I3) Let a ≺�R1,R2
b and let b ≺�R1,R2

c. This means there are two sequences of re-

lation 〈S1, . . . ,Sk〉 and 〈Q1, . . . ,Ql〉, such that aS1 . . .Skb and bQ1 . . .Qlc, where

〈S1, . . . ,Sk〉 and 〈Q1, . . . ,Ql〉 both satisfy≺�R1,R2
-property. By Lemma 3(2), con-

catenation of two sequences 〈S1, . . . ,Sk〉 · 〈Q1, . . . ,Qr〉 satisfies ≺�R1,R2
-property

and aS1 . . .SkbQ1 . . .Qlc, i.e. a≺�R1,R2
c.

(I4) Let a≺�R1,R2
b and let b@�R1,R2

c. This means aS1 . . .Skb and bQ1 . . .Qlc, where

〈S1, . . . ,Sk〉 satisfies ≺�R1,R2
-property, and 〈Q1, . . . ,Ql〉 satisfies @�R1,R2

-property.

By Lemma 3(4), concatenation 〈S1, . . . ,Sk〉·〈Q1, . . . ,Ql〉 satisfies@�R1,R2
-property

and aS1 . . .SkbQ1 . . .Qlc, i.e. (a,c) ∈ R1]R2. Suppose a = c. Since a≺�R1,R2
b

and b≺�R1,R2
c, this means aS1 . . .Skb, and bQ1 . . .Qla, where Si,Qi ∈ {R1,R2}.

Either Q1 or Ql are equal to R2, otherwise b ≺�R1,R2
a, i.e. a ≺�R1,R2

a, a con-

tradiction since ≺�R1,R2
is irreflexive. Suppose Q1 = R2. This means Q2 =

R1. Now we have bR2b1 and b1R1b2 . . .bs−1Ql−1blQaR1a1S1 . . .SkakR1b, which

means (b1,b) ∈ R1⊕R2, a contradiction to Definition 27(2). Hence Q1 = R1

and Ql = R2, i.e. by Definition 23, Ql−1 = R1. Now we have bl−1R2a and

aR1a1S1 . . .SkakR1bQ1b1Q2 . . .Ql−1bl−1R1bl , which means (a,bl) ∈ R1⊕R2, a

contradiction to Definition 27(2). Therefore a 6= c, i.e. (a,c)∈ (R1]R2)\ idX =

@�R1,R2
.

For a@�R1,R2
b≺�R1,R2

c we proceed almost identically.

(I5) Let a ≺�R1,R2
b @�R1,R2

c ≺�R1,R2
d. This means there are sequences 〈S1, . . . ,Sk〉,

〈P1, . . . ,Pm〉 and 〈Q1, . . . ,Ql〉, such that aS1 . . .Skb, bP1 . . .Pmc and cQ1 . . .Qld,

where 〈S1, . . . ,Sk〉, and 〈Q1, . . . ,Ql〉 have ≺�R1,R2
-property and 〈P1, . . . ,Pm〉 has

@�R1,R2
-property. By Lemma 3(5) the sequence concatenation 〈S1, . . . ,Sk〉·〈Q1, . . . ,Ql〉·

〈P1, . . . ,Pm〉 has≺�R1,R2
-property and, clearly, aS1 . . .Pmd, so by Definition 24(1),

a≺�R1,R2
d.

47

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

(I6) Let a @�R1,R2
b ≺�R1,R2

c @�R1,R2
d. This means there are sequences 〈S1, . . . ,Sk〉,

〈P1, . . . ,Pm〉 and 〈Q1, . . . ,Ql〉, such that aS1 . . .Skb, bP1 . . .Pmc and cQ1 . . .Qld,

where 〈S1, . . . ,Sk〉, and 〈Q1, . . . ,Ql〉 have @�R1,R2
-property and 〈P1, . . . ,Pm〉 has

≺�R1,R2
-property. By Lemma 3(7) the sequence concatenation 〈S1, . . . ,Sk〉·〈Q1, . . . ,Ql〉·

〈P1, . . . ,Pm〉 has@�R1,R2
-property and, clearly, aS1 . . .Psd, so by Definition 24(2),

either a@�R1,R2
d or a = d.

�

The fact that the above result is slightly weaker than Theorem 6(3) does not seem to

matter much as in virtually all applications of ♦-closure in Janicki and Koutny (1995) and

Kleijn and Koutny (2004), the relations R1 and R2 satisfy the equivalence of the conditions

of Definition 27 for SO-structures.

We now prove an equivalence of Theorem 6(4), which states that each IO-structure is

�-closed.

Proposition 8. If S is an IO-structure, then S = S�.

Proof. Let S = (X ,R1,R2).

(⊆) If S is an IO-structure then R2 is irreflexive, so by Proposition 6(1), S⊆ S�.

(⊇) We need to show R1⊕R2 ⊆ R1 and (R1]R2) \ idX ⊆ R2. To prove that R1⊕R2 =

(R+
1 ◦R2)

∗ ◦R+
1 ⊆ R1 it suffices to show that for each i≥ 1, j ≥ 0, k ≥ 1, (Ri

1 ◦R2)
j ◦

R+
1 ⊆ R1. From (I3) it follows Ri

1 ⊆ R1 and Rk
1 ⊆ R1, so (Ri

1 ◦R2)
j ◦R+

1 ⊆ (R1 ◦R2)
j ◦

R1. Clearly (R1 ◦R2)
j ◦R1 ⊆ R1 for j = 0. Suppose it holds for j and consider the

case of j + 1. We have (R1 ◦R2)
j+1 ◦R1 = (R1 ◦R2)

j ◦R1 ◦R2 ◦R1. By induction

assumption (R1 ◦R2)
j ◦R1 ⊆ R1, so (R1 ◦R2)

j+1 ◦R1 ⊆ R1 ◦R2 ◦R1 ⊆(by (I5)) R1.

Hence R1⊕R2 ⊆ R1.

Since R2 is irreflexive than it suffices to show that (R1]R2)⊆R2. From R1⊕R2⊆

48

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

R1 it follows that (R1]R2) ⊆ (R2∪R1)∪ (R2 ◦R1)∪ (R1 ◦R2)∪ (R2 ◦R1 ◦R2). We

have R2∪R1 ⊆(by (I2)) R2, R2 ◦R1 ⊆(by (I4)) R2, R1 ◦R2 ⊆(by (I4)) R2, and R2 ◦R1 ◦

R2 ⊆(by (I6)) R2. Hence R1]R2 ⊆ R2.

�

Directly from Proposition 8 we obtain the below result which will be used in the proof

of equivalence of Theorem 6(6).

Corollary 3. Every IO-structure is i-directed.

Proposition 9. Let S = (X ,R1,R2) be an IO-structure and let Ŝ = (X , R̂1, R̂2)be any rela-

tional structure, s.t. Ŝ⊆ S. Then Ŝ� ⊆ S and Ŝ� is an IO-structure.

Proof. From Corollary 2(3) and Proposition 8 it follows,

Ŝ� ⊆ S� = S.

Due to Proposition 7 it suffices to show that Ŝ is i-directed.

Let S = (X ,R1,R2), Ŝ = (X , R̂1, R̂2). We have R̂1⊕ R̂2 ⊆ R1⊕R2 =
(Proposition 8) R1. Since

S is interval, R1 is irreflexive so R̂1⊕ R̂2 is irreflexive as well.

Let (a,b) ∈ R̂2. Since R̂2 ⊆ R2, we have (a,b) ∈ R2 which by Corollary 3, implies (b,a) /∈

R1⊕R1. Since R̂1⊕ R̂2 ⊆ R1⊕R2, (b,a) /∈ R̂1⊕ R̂2. Therefore Ŝ is i-directed. �

We will now show that �-closure is really a generalization of ♦-closure.

49

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

Proposition 10. If S = (X ,R1,R2) is an SO-structure, then S = S♦ = S�.

Proof. A consequence of Theorem 6(4), Theorem 4 and Proposition 8. �

Summing up, results proved in this chapter can be presented in the following cumulative

theorem:

Theorem 8. Let R1,R2 ∈ X×X be two relations of X, and S = (X ,R1,R2) be an relational

structure. Then:

1. If R2 is irreflexive then S⊆ S�.

2.
(
S�
)�

= S�.

3. S� is an interval order structure if and only if S is i-directed.

4. If S is an IO-structure then S = S�.

5. Let S be an IO-structure and let Ŝ⊆ S. Then Ŝ� ⊆ S and Ŝ� is an IO-structure.

6. If S is an SO-structure then S = S♦ = S�.

4.2 Introduction of Interval Traces

A concept of �-closure has been defined for IO-structures. It is an equivalence of ♦-closure

of SO-structures (Janicki and Koutny, 1995) and classical transitive closure of relations.

It has also been proved that �-closure has in principle the same properties as ♦-closure,

and, in fact, as a standard transitive closure. Because the definition of �-closure was

more elaborate, the proofs were substantially more complex than their counterparts for

50

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

♦-closure. Notwithstanding, only one proven property of �-closure is slightly weaker than

its ♦-closure counterpart.

Although not discussed in details here, �-closure has already proved useful for con-

struction of new type of traces - interval traces (see Janicki et al. (2012)).

Following the ideas of partial order representation theorems presented in Section 2.1 of

Chapter 2, the counterpart of comtraces for IO-structures has been fully developed based

on above results. Fishburn’s Theorem (Theorem 4) states that each interval order can be

represented by an appropriate total order of the interval beginnings and ends. Representa-

tion foundation for interval traces is established by Theorem 9 below. It states that each

IO-structure can be represented by an appropriate partial order (not necessarily interval) of

beginnings and ends.

Theorem 9 (Abraham et al. (1990)). A relational structure S= (X ,≺,@) is an IO-structure

iff there exists a partial order � on some Y and two mappings B,E : X → Y such that

B(X)∩E(X) = /0 and for each x,y ∈ X:

1. B(x)�E(x),

2. x≺ y ⇐⇒ E(x)�B(y),

3. x@ y ⇐⇒ B(x)�E(y).

Additionally, Szpilrajn’s Theorem allows us to represent each partial order by its total

extensions and so the combination of these three theorems (including Theorem 4 and The-

orem 7) made it possible to construct “interval traces”, a version of Mazurkiewicz traces

over an appropriate monoid of sequences (called legal) of beginnings and ends. Then we

use “interval traces” to represent IO-structures via Theorem 9. The topic of trace theory is

51

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

beyond the scope of this thesis, however, interested reader is directed to the paper by Janicki

et al. (2012) to see how �-closure is used for construction interval traces representation of

interval order structures.

52

Chapter 5

Causal Structures for General

Concurrent Behaviours

In this chapter we will present the very recent results (from Janicki et al. (2013)), that are in

one sense a generalization of those from Chapter 3, and a restriction in another sense. The

generalization is that we are no longer conforming to the paradigm π3 (so≺Obs and@Obs no

longer describe a concurrent history Obs, we have to use less intuitive and less natural
Obs

and @Obs), while the restriction is that we assume all observations to be stratified orders,

not more general interval orders as in Chapter 4. TheF-Closure discussed in this chapter

is a generalization of ♦-closure, but its relationship to �-closure - the main contribution of

this thesis, is not fully understood at this point of time.

5.1 Mutex Order Structures and Generalized Mutex Or-

der Structures

While most of concurrent behaviours conforms to the paradigm π3, there are some that do

not. If the paradigm π3 does not hold, we cannot use invariants ≺ and @ to characterize

53

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

concurrent histories, we have to use
 and @ instead. The relationship between
 and @

is less intuitive and less understood than the more natural one between ≺ and @. Finding

axioms for
 and @ turned out to be problematics and complicated. The first attempt was

given in Guo and Janicki (2002), later refined in Janicki (2008) and Janicki and Le (2008),

and called generalized stratified order structures and generalized interval order structures,

respectively. However, it was shown in Kleijn and Koutny (2011) that the model of Guo

and Janicki (2002) is not as general as originally anticipated. The solution to this problem

was recently provided in (Janicki et al., 2013), but only for the case where all observations

are represented by stratified orders.

The solution explores the relationship ≺=
 ∩ @ and starts with an alternative set of

axioms for the case of paradigm π3 and observations represented by stratified orders, i.e.

the case represented by stratified order structures. This new order structure is called mutex

order structure.

Definition 28 (Mutex Order Structures). A mutex order structure (MO-structure) is a re-

lational structure M = (X ,
,@), where
 and @ are binary relations of X, such that

∀a,b,c ∈ X we have:

M1: a 6@ a

M2: a
 b =⇒ b
 a

M3: a
 b =⇒ a@ b ∨ b@ a

M4: a@ b@ c ∧ a 6= c =⇒ a@ c

M5: a@ b@ c ∧ (a
 b ∨ b
 c) =⇒ a
 c

54

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

The following simple result show the plain relationship between mutex order structures

and stratified orders.

Proposition 11 (Janicki et al. (2013)). If (X ,<) is a stratified order then (X ,< ∪ >,<_)

is a MO-structure.

Proposition 11 allows an introduction of a stratified order extension of mutex order

structure.

Definition 29. 1. A stratified order < on X is a stratified extension of a MO-structure

M = (X ,
,@) if
⊆< ∪ > and @⊆<_.

2. The set of all stratified extensions of M will be denoted by Strat(M).

Clearly if a stratified order < is an extension of M = (X ,
,@), then (X ,< ∪ >,<_)

is a relational structure extension of M, in the sense of Definition 14.

The relationship between mutex order structures and stratified order structures is the

following.

Theorem 10 (Janicki et al. (2013)).

1. For every mutex order structure M = (X ,
,@), the relational structure

SM = (X ,
 ∩ @,@) is a stratified order structure and Strat(M) = Strat(SM).

2. For every stratified order structure S = (X ,≺,@), the relational structure

MS = (X ,≺./,@) is a mutex order structure and Strat(S) = Strat(MS).

55

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

Theorem 10 just states that mutex order structures and stratified order structures can be

considered as equivalent, however, as opposed to the stratified order structures, the mutex

order structures can be extended in a natural way, so they can model the cases that do not

conform to paradigm π3.

Definition 30 (Generalized Mutex Order Structure, Janicki et al. (2013)). A generalized

mutex order structure (GMO-structure) is a relational structure gmos = (X ,
,@), where

 and @ are binary relations of X such that, for all a,b,c,d ∈ X:

G1: a 6@ a ∧ a 6
 a

G2: a
 b =⇒ b
 a

G3: a@ b@ c ∧ a 6= c =⇒ a@ c

G4: a@ b@ c ∧ (a
 b ∨ b
 c) =⇒ a
 c

G5: a@ b@ c ∧ a
 c =⇒ b
 a

G6: a@ b@ c ∧ a@ d @ b ∧ c
 d =⇒ a
 b

The following results show the relationship between generalized mutex order structures

and mutex/stratified order structures.

Proposition 12 (Janicki et al. (2013)).

1. Every mutex order structure is a generalized mutex order structure structure.

2. If (X ,
,@) is a generalized mutex order structure structure, then (X ,
 ∩ @,@) is

a stratified order structure.

56

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

It also can be proved that every generalized stratified order structure of Guo and Janicki

(2002) is a generalized mutex order structure structure.

5.2 F-Closure

For the closures +, ♦ and �, discussed in the previous sections we have:

• for every relation R, R+ is a transitive relation,

• for every relational structure S = (X ,R1,R2), if (R1∪R2)
∗ ◦R1 ◦(R1∪R2)

∗ is irreflex-

ive then S♦ is a stratified order structure,

• for every relational structure S = (X ,R1,R2), if S is i-directed (see Definition 27) then

S� is an interval order structure.

While transitive closure always give a desired result, ♦ and �-closures are partial, but

still can be used to produced desired results. The F-closure is a counterpart of the three

closures presented above for generalized mutex order structures. Since mutex order struc-

tures can be simulated by stratified order structures, we do not need any special closure

operator for them.

Before definingF-closure we need to introduce some auxiliary concepts.

Definition 31 (Largest Equivalence Relation). Let R be relation. We define R~, the largest

equivalence relation contained in R∗ as:

R~ = R∗∩ (R∗)−1.

57

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

If ≺ is interpreted as an “earlier than”, @so would be a “not later than”,
so would be a

“not simultaneously” and @~so would be “simultaneously”.

We can now provide the definition ofF-closure.

Definition 32 (F-Closure, Janicki et al. (2013)).

Let S = (X ,R1,R2) be a relational structure and let R1 ?R2 be the relation derived from R1

and R2 as follows

R1 ?R2 = R~2 ◦ (R1∪ (R∗2 ◦R1 R∗2)
./)◦R~2 .

ThenF-closure of S is given by SF = (X ,R1 ?R2,R�
2).

The definition of relation R1 ?R2 follows from the requirement that SF should be a

GMO-structure and the axioms of GMO-structures: (R∗2 ◦R1 R∗2)
./ is derived from axioms

G4 and G6, while the R~2 ◦R1 R~2 corresponds to axiom G5.

As ♦ and �-closure, the F-closure give expected results only for some special order

structures.

Definition 33 (Separable Relational Structure). A relational structure S = (X ,R1,R2) is

called separable if:

1. R1∩R~2 =∅; and

2. R1 is symmetric and R2 is irreflexive.

Proposition 13 (Janicki et al. (2013)). Every generalized mutex order structure is separa-

ble.

The fundamental properties ofF-closure are the following.

Proposition 14 (Janicki et al. (2013)). If S = (X ,R1,R2) is a separable relational structure,

then:

58

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

1. SF is separable,

2. S⊆ SF,

3.
(
SF
)F

= SF,

4. If S is a GMO-structure, then SF = S,

5. SF is a GMO-structure.

As already mentioned, whileF-closure is a clear generalization of ♦-closure, its rela-

tionship to �-closure is not obvious. The generalized mutex order structures are general-

ization of stratified order structures but not interval order structures, as they cannot handle

concurrent histories containing interval orders that are not stratified orders. BothF-closure

and �-closure are extensions of ♦-closure, but in different directions. The counterpart of

generalized mutex order structures that can deal with observations that are not stratified

orders does not exist yet.

59

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

60

Chapter 6

Conclusion

In this thesis we have investigated the approach for modelling concurrency using relational

order structures. It is an axiomatic approach to system specification, where the behaviour

of the system is specified by the set of properties it has to satisfy. Then any implementation

that satisfies those properties is considered acceptable. This restrictive approach is opposed

to the prescriptive approach in which every possible execution of the implemented system

must be presented by a corresponding execution in the specification. One can easily see the

benefits and (relative) simplicity of the restrictive approach.

We have provided a motivational use case for proving correctness algorithm that re-

quires the use of IO-structures. Then we presented the mathematical model behind the

relational structures with a special focus on closure operator. We presented a spectrum of

closure operators for various order structures. A new type of closure operator, �-closure,

was introduced and analyzed. Its properties were compared with that of a regular transitive

closure for partial orders, a ♦-closure for stratified order structures and their generalization,

F-closure for generalized mutex order structures.

On the span of several relational structures we can see how the complexity of closure

operator reflects the complexity of the underlying relational structure. The complexity is

61

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

the result of a growing expressive power of the underlying relational structure, and, thus,

its ability to capture a very fine grained concurrent behaviours. The properties of closures

vary and can be found in Proposition 2, Theorem 6, Theorem 8 and Proposition 14.

The contributions of the thesis and results can be summarized as follows:

1. We defined the �-closure of relational structure S = (X ,R1,R2) in terms of composi-

tion of relations R1 and R2, where R�1 R1,R2
is a union of all compositions of relations

R1 and R2, s.t. R1 is necessarily the first and the last element, and R�2 R1,R2
is a union

of all compositions of relations R1 and R2, s.t. R2 is irreflexive and every R2 is strictly

followed by R1.

2. We proved that given any relational structure S = (X ,R1,R2):

(a) If relation R2 is irreflexive, then relational structure S is the subset of the �-

closure of that structure, i.e. S�.

(b) The �-closure idempotent, i.e. it is closed under itself.

(c) The sufficient condition for construction of an IO-structure from any relational

structure S by taking �-closure of it, i.e. S�, is that S must be i-directed (see

Definition 27).

(d) If S is an IO-structure, then its �-closure is also an IO-structure.

(e) If Ŝ is some subset of an IO-structure S, then �-closure of Ŝ is also an IO-

structure. Moreover, Ŝ� also remains a subset of S.

(f) If S is an IO-structure, then ♦-closure and �-closure are equivalent.

The �-closure in a necessary step for constructing a new variation of traces - interval

traces. The usefulness of the contributed �-closure was verified in the follow up publication

Janicki et al. (2012), where �-closure was used to show relationship between interval traces

and interval order structures.

62

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

A detailed look at relationship between �-closure and F-closure is an opportunity for

future research. Also, it will be interesting to compare different axiomatizations of IO-

structures and how this variability influences constructive proofs for mutual exclusion prob-

lems on the example of Bakery algorithm.

63

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

64

Bibliography

Abraham, U., Ben-david, S., and Magidor, M. (1990). On global-time and inter-process

communication. In M. Z. Kwiatkowska, M. W. Shields, and R. M. Thomas, editors,

Semantics for Concurrency, volume 4 of Workshops in Computing, pages 311–323.

Springer-Verlag.

Bergstra, J. A. (2001). Handbook of Process Algebra. Elsevier Science Inc., New York,

NY, USA.

Best, E. and Koutny, M. (1992). Petri net semantics of priority systems. Theoretical Com-

puter Science, 96(1), 175–215.

Cohn, P. (1981). Universal Algebra. Mathematics & Its Applications. D. Reidel Publ.

Diekert, V. and Rozenberg, G. (1995). The Book of Traces. World Scientific.

Dijkstra, E. W. (1965). Solution of a problem in concurrent programming control. Commun.

ACM, 8(9), 569–.

Fishburn, P. (1985). Interval Orders and Interval Graphs. J. Wiley, New York.

Fishburn, P. C. (1970). Intransitive indifference with unequal indifference intervals. Journal

of Mathematical Psychology, 7(1), 144 – 149.

65

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

Gaifman, H. and Pratt, V. (1987). Partial order models of concurrency and the computation

of functions. In Proc. 2nd Annual IEEE Symp. on Logic in Computer Science, pages

72–85, Ithaca, NY.

Guo, G. and Janicki, R. (2002). Modelling concurrent behaviours by commutativity and

weak causality relations*. In H. Kirchner and C. Ringeissen, editors, Algebraic Method-

ology and Software Technology, volume 2422 of Lecture Notes in Computer Science,

pages 178–191. Springer Berlin Heidelberg.

Hopcroft, J. E., Motwani, R., and Ullman, J. D. (2003). Introduction to automata theory,

languages, and computation - international edition (2. ed). Addison-Wesley.

Janicki, R. (2008). Relational structures model of concurrency. Acta Informatica, 45(4),

279–320.

Janicki, R. and Koutny, M. (1991). Invariants and paradigms of concurrency theory. In

E. H. L. Aarts, J. van Leeuwen, and M. Rem, editors, PARLE (2), volume 506 of Lecture

Notes in Computer Science, pages 59–74. Springer.

Janicki, R. and Koutny, M. (1993). Structure of concurrency. Theoretical Computer Sci-

ence, 112(1), 5–52.

Janicki, R. and Koutny, M. (1995). Semantics of inhibitor nets. Information and Computa-

tion, 123(1), 1–16.

Janicki, R. and Koutny, M. (1997). Fundamentals of modelling concurrency using discrete

relational structures. Acta Informatica, 34(5), 367–388.

Janicki, R. and Le, D. T. M. (2008). Modelling concurrency with quotient monoids. In

K. M. van Hee and R. Valk, editors, Petri Nets, volume 5062 of Lecture Notes in Com-

puter Science, pages 251–269. Springer.

66

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

Janicki, R. and Zubkova, N. (2009). On closure operator for interval order structures. In

H. R. Arabnia and G. A. Gravvanis, editors, FCS, pages 108–114. CSREA Press.

Janicki, R., Le, D. T. M., and Zubkova, N. (2009). Closure operators for order structures. In

M. Kutylowski, M. Gebala, and W. Charatonik, editors, Fundamentals of Computation

Theory, volume 5699 of Lecture Notes in Computer Science, pages 217–229. Springer

Berlin Heidelberg.

Janicki, R., Yin, X., and Zubkova, N. (2012). Modeling interval order structures with

partially commutative monoids. In M. Koutny and I. Ulidowski, editors, CONCUR 2012

âĂŞ Concurrency Theory, volume 7454 of Lecture Notes in Computer Science, pages

425–439. Springer Berlin Heidelberg.

Janicki, R., Kleijn, J., Koutny, M., and Mikulski, L. (2013). Causal structures for general

concurrent behaviours. In M. S. Szczuka, L. Czaja, and M. Kacprzak, editors, Concur-

rency, Specification and Programming, volume 1032 of CEUR Workshop Proceedings,

pages 193–205. CEUR-WS.org.

Jensen, K. (1995, 1996, 1997). Coloured Petri Nets (Vol. 1, 2, 3). Springer-Verlag, London,

UK, New York, NY, USA.

Juhas, G., Lorenz, R., and Mauser, S. (2006). Synchronous + concurrent + sequential =

earlier than + not later than. In Proc. Sixth International Conference on Application of

Concurrency to System Design (ACSD 2006), pages 261–272.

Kleijn, H. and Koutny, M. (2004). Process semantics of general inhibitor nets. Information

and Computation, 190(1), 18–69.

Kleijn, J. and Koutny, M. (2011). The mutex paradigm of concurrency. In L. Kristensen

67

M.Sc. Thesis - Nadezhda Zubkova McMaster - Computer Science

and L. Petrucci, editors, Applications and Theory of Petri Nets, volume 6709 of Lecture

Notes in Computer Science, pages 228–247. Springer Berlin Heidelberg.

Lamport, L. (1986). The mutual exclusion problem: Part i - a theory of interprocess com-

munication; part ii - statement and solutions. Journal of ACM, 33(2), 313–348.

Le, D. T. M. (2008). Studies in Comtrace Monoids. Master’s thesis, Department of Com-

puting and Software, McMaster University, Hamilton, ON.

Milner, R. (1990). Operational and algebraic semantics of concurrent processes. In J. van

Leeuwen, editor, Handbook of Theoretical Computer Science (Vol. B), pages 1201–1242.

MIT Press, Cambridge, MA, USA.

Reisig, W. (1998). Elements of distributed algorithms: modeling and analysis with Petri

nets. Springer.

Rosen, K. H. (2002). Discrete Mathematics and Its Applications. McGraw-Hill, 5th edition.

Szpilrajn, E. (1930). Sur l’extension de l’ordre partiel. Fundamenta Mathematicae, 16(1),

386–389.

Wiener, N. (1914). A contribution to the theory of relative position. Proceedings of the

Cambridge Philosophical Society, 27, 441–449.

68

	Abstract
	Acknowledgements
	Introduction and Motivations
	Mathematical basics: Relations, Partial Orders and Transitive Closure
	Lamport's Model
	Mutual Exclusion Problem
	Bakery Algorithm
	Formalization of the Bakery Algorithm
	Proof of Correctness

	Janicki-Koutny Motivation
	Thesis structure

	Mathematical Basics
	Representation Theorem for Partial Orders
	Properties of Transitive Closure

	Closure Operator for Stratified Order Structures
	Stratified Order Structures and -Closure

	Closure Operator for Interval Order Structures
	Interval Order Structures and -closure
	Introduction of Interval Traces

	Causal Structures for General Concurrent Behaviours
	Mutex Order Structures and Generalized Mutex Order Structures
	-Closure

	Conclusion

