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Abstract

Beamforming is a spatial filtering technique using a sensor array to enhance the sig-

nal of interest (SOI) and suppress interferences and noise. It is widely used in radar,

sonar, wireless communications, Global Positioning System (GPS) navigation, micro-

phone array speech processing and many other areas. Most existing beamforming

approaches are based on the minimum variance (MV) criterion. The MV approach

is statistically optimal only when the desired signal, interferences and the noise are

Gaussian-distributed. However, many real-world signals are non-Gaussian. For non-

Gaussian signals, the higher-order statistics or fractional lower-order statistics contain

useful information and can be utilized to improve the beamformer performance. In

this thesis, a family of the minimum dispersion (MD) criterion-based robust beam-

forming algorithms, which minimize the ℓp-norm (p ≥ 1) of the array output subject

to linear or nonlinear constraints, are proposed for non-Gaussian signals. The dis-

persion, which is a generalization of variance, implicitly exploits the higher-order

statistics for p > 2 or fractional lower-order statistics for p < 2.

We utilize the MD criterion with a single linear constraint and multiple linear

constraints, which gives us the minimum dispersion distortionless response (MDDR)
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beamformer and linearly constrained minimum dispersion (LCMD) beamformer, re-

spectively. The MDDR and LCMD beamformers can be tailored to Gaussian, sub-

Gaussian or super-Gaussian signals and noise by adjusting the value of p. Three

efficient iterative algorithms, namely, the iteratively reweighted MVDR (IR-MVDR),

complex-valued full Newton’s and partial Newton’s methods, are devised to solve the

resulting convex optimization problems.

We extend the LCMD beamformer to the quadratically constrained minimum

dispersion (QCMD) beamformer. The robustness against model uncertainty of the

QCMD beamformer is significantly enhanced compared with the LCMD beamformer.

A gradient projection algorithmic framework is developed to efficiently solve the re-

sulting convex optimization problem. Furthermore, we derive a closed-form expression

of the projection onto the constraint set.

Note that sub-Gaussian signals that are frequently encountered in practical ap-

plications. Therefore, a minimum ℓ∞-norm criterion is then adopted by the robust

linear programming beamformer (RLPB). In this way, the sub-Gaussianity of the sig-

nals can be fully exploited. We model the uncertainty region as a rhombus in which

the ℓ1-norm of the steering vector error is bounded. As a result, the proposed RLPB

beamformer can be obtained by solving a linear programming (LP) problem. We

also present the theoretical explanation to the reason why the RLPB can implicitly

exploit the high-order statistics from the statistical perspective.
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Notations

Bold upper case letter Matrix

Bold lower case letter Vector

III Identity matrix

111 All-ones matrix or vector

000 All-zeros matrix or vector

(·)∗ Complex conjugate

(·)T Transpose

(·)H Hermitian transpose

j =
√
−1 Imaginary unit

Re(·) or (·)R Real part of a complex-valued number

Im(·) or (·)I Imaginary part of a complex-valued number

| · | Absolute value of a real number

or the modulus of a complex number

∥ · ∥ Euclidean norm (i.e., ℓ2-norm) of a vector

∥ · ∥p ℓp-norm of a vector

E{·} Expectation operator

Pr(·) Probability operator
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R Set of real numbers

R+ Set of nonnegative real numbers

C Set of complex number

λmax(·) Maximum eigenvalue of a square matrix

tr(·) Trace of a square matrix
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Chapter 1

Introduction

In this chapter, we review the basic concepts of beamforming technique and briefly

describe the major results of each chapter. The chapter is organized as follows:

Section 1.1 gives the background of beamforming. The contributions of our works

are described in Section 1.2. In Section 1.3, the signal model is given and several

representative beamforming techniques are briefly reviewed. Section 1.4 gives the

outline of this thesis.

1.1 Background of Beamforming

Sensors may have different gains for signals transmitted to different angles and signals

received from different angles. The directivity pattern of a sensor is a function of

angles, which is called the beampattern. It is governed by the sensor’s physical

construction and cannot be changed once the sensor is built [1]. Consider a sensor

with the beampattern that has a large gain around angle 45◦ but has small gains at

other angles. We can use this sensor to receive the signal of interest (SOI) from 45◦.
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However, to receive the signals from other angles, we need to rotate the sensor to the

desired direction mechanically, which is costly and usually slow.

To avoid mechanical rotation, we can use a technology called beamforming, which

allows us to change the beampattern electronically. Beamforming is a spatial filtering

technique [2] using a sensor array to enhance the SOI and suppress interferences and

noise. Usually, we assume that all the sensors have omnidirectional beampatterns.

Beamforming is widely used in radar, sonar, wireless communications, microphone

array speech processing, Global Positioning System (GPS) navigation, biomedicine

and many other areas [3–8]. It is applicable to either transmission or reception of

signals. In this thesis, we consider the receive beamforming.

The conventional beamforming technique, i.e., Bartlett beamformer, dates back

to the second world war [9]. It maximizes the power of the beamformer output of

the desired signal, which yields a spatial matched filtering to the SOI. Since it is

independent of the received signals, its capability for interference suppression is quite

limited. The modern beamforming techniques are data-dependent, which obtain the

weights vector by optimizing the performance of the beamformer based on the re-

ceived data [10]. The data-dependent beamformers can achieve better resolution

and much better interference mitigation capability than the data-independent ones.

A classical data-dependent beamforming method is the minimum variance distor-

tionless response (MVDR) beamformer [11]. It minimizes the output variance while

keeping the response of the desired signal to unity. However, the performance of

the MVDR beamformer degrades when the sample size is too small. Furthermore,

it is quite sensitive to the steering vector mismatch, which is an unavoidable prob-

lem in practical applications because of a variety of reasons, such as angle-of-arrival

2
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(AOA) mismatch, imperfect array calibration, source wavefront distortion, and dis-

torted antenna shape [8,12]. The errors between the assumed steering vector and the

true one may lead to a severe undesired attenuation of the SOI. This effect is com-

monly referred to as signal cancellation or signal self-nulling [13]. In [14], the linearly

constrained minimum variance (LCMV) beamformer has been proposed by adding ad-

ditional linear constraints to the MVDR beamformer to broaden the coverage around

the nominal AOA. In this way, its robustness to AOA mismatch is enhanced. The

drawback of the LCMV beamformer is that the degrees of freedom for interference

suppression are reduced as more linear constraints are added [8]. Meanwhile, it cannot

handle the case of arbitrary steering vector mismatch.

In order to improve the robustness against general steering vector mismatch, much

effort has been made over the past three decades [10, 15–36]. The eigenspace-based

beamformer [15] is a powerful technique which is applicable to any type of mismatch.

However, it loses efficiency as the signal-to-noise ratio (SNR) decreases or number

of interferences increases. Robust beamforming techniques based on worst-case per-

formance optimization are proposed in [18, 20, 24], where nonlinear constraints are

employed instead of the linear ones. The key idea of [18, 20, 24] is to model the ac-

tual steering vector as the sum of the nominal steering vector and an uncertainty

term, where the Euclidean norm of the uncertainty is upper-bounded. A spherical

uncertainty region is used in [18] and a more general ellipsoidal uncertainty region is

considered in robust minimum variance beamformer (RMVB) [24] and robust Capon

beamformer (RCB) [20]. The problems of worst-case performance optimization with

infinitely many nonconvex constraints are finally converted to a second-order cone

programming (SOCP), which can be solved by the standard interior-point methods

3
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(IPM). In addition, using the Lagrangian multiplier method, the RMVB and the RCB

can be solved with a low computational complexity. Using the idea of worst-case per-

formance optimization, a general-rank model has been suggested in [21] and [36],

which is applicable to both rank-one and higher-rank SOI models.

1.2 Contributions of Our Works

Most existing works are based on second-order statistics [10, 15–30, 32, 34–36], which

is only optimal for Gaussian signals and noises because a zero-mean Gaussian dis-

tribution is completely characterized by its second-order statistics. However, many

real world signals are non-Gaussian [37, 38]. Based on the kurtosis of a distribu-

tion, non-Gaussian distributions can be classified into two categories, namely, sub-

Gaussian with kurtosis smaller than three and super-Gaussian with kurtosis larger

than three [39,40]. Many signals that arise in wireless communications, radar, sonar,

and GPS navigation are sub-Gaussian [37, 41]. On the other hand, common super-

Gaussian signals include speech and biomedical data [40, 42]. Non-Gaussian noise is

also frequently encountered in practice [43]. For non-Gaussian signals and noise, the

higher- and lower-order statistics contain useful information and can be utilized to

improve the beamformer performance. In this thesis, we focus on the robust beam-

forming techniques for non-Gaussian signals.

In this thesis, a family of the MD criterion-based beamforming algorithms are pro-

posed. In statistics, E{| · |p} is referred to as the dispersion, which is a generalization

of variance. It implicitly exploits the higher-order statistics for p > 2 or fractional

lower-order statistics for p < 2 [38]. Hence, the MD criterion can be tailored to Gaus-

sian, sub-Gaussian or super-Gaussian signals and noise by choosing different values

4
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of p. Combining the MD criterion with linear constraints or nonlinear constraints

gives us different robust minimum dispersion beamforming techniques. To our best

knowledge, there is no computationally simple and efficient numerical algorithm for

the MD optimization problem. Therefore, several efficient algorithms, which converge

fast and are computationally efficient, are also proposed.

Now we briefly summarize the contributions of our work as follows.

i) The minimum dispersion distortionless response (MDDR) beamformer and lin-

early constrained minimum dispersion (LCMD) beamformer are proposed by

using the MD criterion with a single linear constraint and multiple linear con-

straints, respectively. The LCMD beamformer is robust against AOA mismatch.

The MDDR and LCMD beamformers can be considered as the extensions of the

MVDR and LCMV beamformers from the Hilbert space to ℓp-space, respec-

tively. Three efficient iterative algorithms, namely, the iteratively reweighted

MVDR (IR-MVDR), complex-valued full Newton’s and partial Newton’s meth-

ods, are devised to solve the resulting ℓp-norm minimization problems with a

linear constraint and multiple linear constraints.

ii) We extend the LCMD beamformer to the quadratically constrained minimum

dispersion (QCMD) beamformer. The robustness against model uncertainty of

the QCMD beamformer is significantly enhanced compared with the LCMD

beamformer. A gradient projection algorithmic framework is developed to effi-

ciently solve the resulting convex optimization problem. Furthermore, we derive

a closed-form expression of the projection onto the constraint set.

iii) The minimum ℓ∞-norm criterion is then adopted by the robust linear program-

ming beamformer (RLPB), which is proposed for sub-Gaussian signals that are

5
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frequently encountered in many practical applications. We model the uncer-

tainty region as a rhombus in which the ℓ1-norm of the steering vector error

is bounded. As a result, the proposed RLPB beamformer can be obtained by

solving a linear programming (LP) problem.

1.3 Signal Model and Beamforming Techniques

1.3.1 Signal Model

Consider an array of M receiving sensors. The narrowband far-field sources impinge

on this array from different directions. The complex baseband signal received by the

mth (1 ≤ m ≤ M) sensor at time n is denoted as xm(n). The vector of the array

output xxx(n) = [x1(n), · · · , xM(n)]T is expressed as

xxx(n) = s(n)aaa+
I∑

i=1

si(n)aaai + vvv(n) (1.1)

where s(n) is the SOI, {si(n)}Ii=1 are the I interferences, aaa ∈ CM and {aaai}Ii=1 are the

steering vectors of the SOI and interferences, respectively, and vvv(n) is the additive

noise. The SOI is assumed to be uncorrelated with the interferences and noise. This

assumption holds in many practical applications and it is also widely assumed in

array processing, e.g., see [8], [15], [20] and [44]. Certainly, there exist cases where

the signals are mutually correlated or coherent due to multipath propagation [45].

This case, which may be handled using spatial smoothing techniques [45], is beyond

the scope of this thesis. We collect all the I interferences into a term iii(n) =
∑

i si(n)aaai.

Depending on the array configuration, the steering vector has different forms. For

6



Ph.D. Thesis - Xue Jiang McMaster - Electrical Engineering

*
1w

*
2w

*
M

( )y n

���

( )x n ( )x n ( )x n

d

1 2 M

i
θ

( )
i
s n

1( )x n 2( )x n ( )
M
x n

Figure 1.1: A uniform linear antenna array (ULA).

example, aaa has the following form for a ULA depicted in Fig. 1.1

aaa(θ) =
[
1, ej(2π/ζ)d sin θ, · · · , ej(M−1)(2π/ζ)d sin θ

]T
(1.2)

where θ is the AOA, d is the inter-sensor spacing, and ζ is the wavelength.

The task of data-dependent beamforming is to design a beamformer www ∈ CM

to enhance the SOI and suppress interference and noise using the observed data

XXX = [xxx(1), · · · ,xxx(N)] ∈ CM×N with N being the number of snapshots. A general

structure for narrowband beamforming is shown in Fig. 1.2. The output of the

beamformer is expressed as

y(n) = wwwHxxx(n). (1.3)

It is desired that the output y(n) preserves the desired signal component and miti-

gates the interference and noise.

The output signal-to-interferences-plus-noise ratio (SINR), which is taken as the

7
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Figure 1.2: The diagram of narrowband beamforming.

performance measure of a beamformer, is defined as

SINR =
E
{∣∣s(n)wwwHaaa

∣∣2}
E
{
|wwwH(iii(n) + vvv(n))|2

} =
σ2
s

∣∣wwwHaaa
∣∣2

wwwHRRRi+nwww
(1.4)

where σ2
s = E{|s(n)|2} is the power of the SOI andRRRi+n is the interferences-plus-noise

covariance matrix.

1.3.2 Beamforming Techniques

In this section, we review several representative data-dependent beamforming tech-

niques, namely, MVDR beamformer [11], LCMV beamformer [14], subspace beam-

former [15] and robust MV beamformer [18, 24]. This will help us clarify the rela-

tionships and differences between these well-known beamforming techniques and the

proposed ones in Chapters 2–4.
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1) MVDR Beamformer: The MVDR beamformer [11] maximizes the output SINR

by minimizing the total output variance while constraining the SOI response to be

unity, i.e.,

min
www

(
E{|y(n)|2} = wwwHRRRwww

)
s.t. aaaHwww = 1

(1.5)

where RRR = E{xxx(n)xxxH(n)} is the covariance matrix of xxx(n). Note that (1.5) is equiv-

alent to minimizing wwwHRRRi+nwww subject to aaaHwww = 1 because

wwwHRRRwww = wwwHRRRi+nwww + σ2
s

∣∣wwwHaaa
∣∣2 = wwwHRRRi+nwww + σ2

s . (1.6)

The closed-form solution of (1.5) is known as MVDR or Capon beamformer [11] and

is given by

wwwMVDR =
RRR−1aaa

aaaHRRR−1aaa
. (1.7)

In practice, the true covariance matrix RRR is unknown and it is estimated using N

snapshots as

R̂RR =
1

N

N∑
n=1

xxx(n)xxxH(n) =
1

N
XXXXXXH . (1.8)

By replacing RRR in (1.7) with its estimate R̂RR, we obtain the so-called sample matrix

inversion (SMI) beamformer. In other words, the SMI beamformer is a practical

implementation of the MVDR beamformer. When the sample size N is small, the

covariance matrix RRR cannot be estimated accurately and the performance of the

SMI beamformer will degrade [8, 15, 46]. Moreover, it is sensitive to steering vector

mismatches and its performance deteriorates in the presence of array mismatches [7,8].

9
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2) LCMV Beamformer: One cause for steering vector mismatch is the AOA esti-

mation error. A remedy to address the AOA mismatch is to impose multiple linear

constraints for a small spread of angles around the nominal AOA [14]. That is,

min
www

wwwHRRRwww

s.t. CCCHwww = ggg

(1.9)

where CCC = [ccc1, · · · , cccK ] ∈ CM×K contains K steering vectors or the derivatives of the

steering vectors and ggg = [g1, · · · , gK ]T is usually taken as the vector with all elements

being unity. The closed-form solution of the optimization problem in (1.9) is called

the LCMV beamformer and is given by [14]

wwwLCMV = RRR−1CCC
(
CCCHRRR−1CCC

)−1
ggg. (1.10)

When the number of linear constraints is K = 1, the LCMV beamformer reduces to

the MVDR beamformer. The disadvantages of the LCMV beamformer are twofold.

On one hand, the degrees of freedom for interference suppression are reduced as the

linear constraints are added. On the other hand, it cannot handle the case of arbitrary

steering vector mismatch [8].

3)Subspace Beamformer: To mitigate the adverse effects induced by the noise sub-

space disturbance, the subspace beamformer that uses only the signal-plus-interference

subspace component of the sample correlation matrix is proposed in [15]. The eigen-

value decomposition (EVD) of RRR is given by

RRR = UUUΓΓΓUUUH = UUU sΓΓΓsUUU
H
s +UUUnΓΓΓnUUU

H
n (1.11)

10
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where UUU = [UUU s,UUUn], ΓΓΓs = diag {γ1, · · · , γI+1} is a diagonal matrix containing the I+1

non-increasing principal eigenvalues and UUU s contains the corresponding orthonormal

eigenvectors. Note that UUUn contains the M− (I+1) orthonormal eigenvectors associ-

ated with the eigenvalues listed in the diagonal elements of ΓΓΓn = diag {γI+2, · · · , γM}.

The range space spanned by UUU s is the signal-plus-interference subspace and its or-

thogonal complement, spanned byUUUn, is the noise subspace. The MVDR beamformer

of (1.7) can be expressed in terms of eigenspace representation as [15]

wwweig = c
(
UUU sΓΓΓ

−1
s UUUH

s +UUUnΓΓΓ
−1
n UUUH

n

)
aaa (1.12)

where c is a constant and does not affect the performance of a beamformer. The

subspace beamformer further assumes that the noise is spatially white. This requires

the noise covariance matrix to be expressed as σ2
vIII with σ2

v being the noise variance.

In this case, the eigenvalues of the noise subspace satisfies γI+2 = · · · = γM = σ2
v .

Under this assumption, one can conclude that the steering vector aaa is orthogonal to

UUUn, i.e., UUU
H
n aaa = 000 [47]. Therefore (1.12) can be simplified as

wwweig =
UUU sΓΓΓ

−1
s UUUH

s aaa

aaaHUUU sΓΓΓ−1
s UUUH

s aaa
. (1.13)

Note that wwweig in (1.13) is referred to as the subspace beamformer [15]. A key issue

with the subspace beamformer is the need to determine the dimension of signal-

plus-interference subspace, which is equal to the value of the number of SOI plus

interferences, i.e., I + 1. The Akaike information criterion (AIC) or the minimum

description length (MDL) criterion [48] can be applied to this source enumeration

problem. The subspace beamformer is a powerful technique which is applicable to

11
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any steering vector mismatch. However, it loses efficiency as SNR decreases or the

number of interferences increases.

4) Robust MV Beamformer: Due to a variety of mismatches, the steering vector

aaa is not known exactly. The actual steering vector is expressed as

ccc = aaa+ eee (1.14)

where eee ∈ CM is the steering vector error. It is assumed that the Euclidean norm of eee

is upper-bounded, which corresponds to the case of spherical uncertainty set [18]. A

more general ellipsoidal uncertainty region is considered in [20] and [24]. The goal of

robust MV beamforming is to ensure that the magnitude response does not attenuate

in the uncertainty set while minimizing the variance of the output, i.e.,

min
www

wwwHRRRwww

s.t.
∣∣(aaa+ eee)Hwww

∣∣ ≥ 1, for all eee ∈ E
(1.15)

where E is the uncertainty region. Under the spherical or ellipsoidal model, the robust

MV beamformer can be obtained by solving an SOCP problem [18].

1.4 Outlines of the Thesis

The remainder of this thesis is organized as follows. The MDDR beamformer and

LCMD beamformer are proposed in Chapter 2. Three efficient iterative algorithms,

namely, the IR-MVDR, complex-valued full Newton’s and partial Newton’s methods

are also derived for solving the resultant ℓp-minimization problem with linear con-

straints. In Chapter 3, the QCMD beamforming technique is exploited and three

12
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fast projected gradient methods (PGMs) are developed for solving the resulting ℓp-

minimization problem with quadratic constraints. The RLPB for mismatch-robust

beamforming is presented in Chapter 4. Finally, conclusions are drawn in Chapter 5.

The main body of the thesis has been presented in the following journal papers:

• X. Jiang, W.-J. Zeng, A. Yasotharan, H. C. So, and T. Kirubarajan, “Mini-

mum dispersion beamforming for non-Gaussian signals,” IEEE Transactions on

Signal Processing, vol. 62, no. 7, pp. 1879–1893, April 2014.

• X. Jiang, W.-J. Zeng, A. Yasotharan, H. C. So, and T. Kirubarajan, “Robust

beamforming by linear programming,” IEEE Transactions on Signal Processing,

vol. 62, no. 7, pp. 1834–1849, April 2014.

• X. Jiang, W.-J. Zeng, A. Yasotharan, H. C. So, and T. Kirubarajan, “Gradient

projection for robust minimum dispersion beamforming,” Submitted to IEEE

Transactions on Signal Processing.
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Chapter 2

Linearly Constrained Minimum

Dispersion Beamforming

Most of the existing beamforming methods are based on the minimum variance (MV)

criterion. The MV approach is statistically optimal only when the signal, interfer-

ences and the noise are Gaussian-distributed. However, non-Gaussian signals arise

in a variety of practical applications. In this chapter, minimum dispersion distor-

tionless response (MDDR) beamforming, which minimizes the ℓp-norm of the output

while constraining the desired signal response to be unity, is devised for non-Gaussian

signals. It is shown that the MDDR beamformer, which implicitly exploits non-

Gaussianity, can improve the performance significantly if p > 2 for sub-Gaussian

signals or p < 2 for super-Gaussian signals. Three efficient algorithms, the iteratively

reweighted minimum variance distortionless response (IR-MVDR), complex-valued

full Newton’s and partial Newton’s methods, are developed to solve the resulting ℓp-

norm minimization with a linear constraint. Furthermore, the MDDR beamformer
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with a single constraint is generalized to the linearly constrained minimum disper-

sion (LCMD) beamformer with multiple linear constraints, which exhibits robustness

against steering vector mismatch. The LCMD beamformer yields significant per-

formance improvement over the conventional linearly constrained minimum variance

(LCMV) beamformer. Simulation results are provided to demonstrate the superior

performance of the proposed minimum dispersion beamforming approaches. Most of

the results of this chapter have been reported in our recent journal paper [49].

2.1 Introduction

Many existing data-dependent beamforming methods are based on the MV criterion

[8,24]. In particular, the MVDR beamformer constrains the response of the SOI to be

unity and minimizes the variance of the output [11]. It is generally recognized as an

optimal beamformer since minimizing the output variance with distortionless response

constraint is equivalent to maximizing the output signal-to-interferences-plus-noise

ratio (SINR). However, the MVDR approach can achieve optimality only when the

true covariance matrix is available [8]. This requires an infinite number of snapshots,

which is impractical. In fact, the performance of the MVDR beamformer degrades

significantly with short data length [8, 46]. On the other hand, the eigenspace-based

beamformer [15], which uses only the signal-plus-interference subspace component of

the sample correlation matrix, can mitigate the adverse effects induced by the noise

subspace disturbance, and hence performs better than the MVDR beamformer.

The MVDR and subspace beamformers exploit only the second-order statistics

of the array output. The MV criterion is statistically optimal for Gaussian signals

and noise because the first- and second-order statistics of a Gaussian distribution
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contain all necessary statistical information. Nevertheless, many real-world signals

are non-Gaussian [43, 52]. Based on the kurtosis of a distribution, non-Gaussian

distributions can be classified into two categories, namely, sub-Gaussian with kurtosis

smaller than three and super-Gaussian with kurtosis larger than three [39,40]. Many

signals that arise in wireless communications, radar, sonar, and GPS navigation are

sub-Gaussian [37, 41]. On the other hand, common super-Gaussian signals include

speech and biomedical data [40,42]. Non-Gaussian noise is also frequently encountered

in practice [43]. For non-Gaussian signals and noise, the higher-order and lower

fractional order statistics contain useful information and can be utilized to improve

the beamformer performance. In [44], a blind beamforming method was proposed

for non-Gaussian signals using fourth-order cumulants. However, it uses only the

fourth-order statistics and other statistical information is discarded. The ℓp-norm

minimization criterion was proposed for beamforming in [53]. However, the goal

of [53] was to suppress impulsive noise only with 1 ≤ p < 2. A smaller value of p

was suggested in [53] although there is no theoretical justification. However, it will

be shown in this chapter that this recommendation is ambiguous. Moreover, there

is no efficient algorithm for solving the resulting ℓp-norm minimization. It uses the

gradient descent method, but there is no discussion on the selection of the step size

parameter. The special case with p = 1 was reconsidered in [31] while taking into

account the steering vector error. Again, the gradient descent method was adopted

to solve the optimization problem. In fact, the gradient descent scheme is quite slow

and it may not even converge unless the step size is appropriate.

In this chapter, we do not explicitly construct any higher or lower-order statistics

but adopt the minimum dispersion (MD) criterion for beamforming. The proposed
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MDDR beamformer minimizes the ℓp-norm (p ≥ 1) of the output while constraining

the desired signal response to be unity. The dispersion, which is a generalization of

variance, implicitly exploits the higher-order statistics for p > 2 or fractional lower-

order statistics for p < 2 [38]. Compared with [53] and [31], the proposed MDDR

beamformer can be tailored to Gaussian, sub-Gaussian or super-Gaussian signals and

noise by choosing different values of p. We fully analyze the selection of p for signals

and noise with different statistical properties. To our best knowledge, there is no

computationally simple and efficient numerical algorithm for the MD beamforming

problem. Therefore, three efficient iterative algorithms, which converge fast and are

computationally efficient, are also proposed.

Another drawback of the standard MVDR beamformer is that it is too sensitive

to steering vector mismatch [8, 18, 20, 24, 26]. The SOI will be considered as an

interference and hence attenuated by the MVDR beamformer if the steering vector

of the SOI is imprecise. Therefore its performance dramatically degrades under these

conditions. One common cause of steering vector mismatch is due to the angle-of-

arrival (AOA) estimation error. Several mismatch-robust beamforming approaches

have been proposed [14,18,20,24]. The LCMV beamformer [14] is a direct extension

of the MVDR beamformer. It tries to cope with the AOA mismatch by imposing

multiple linear constraints for a small spread of angles around the nominal AOA.

Analogous to this, we derive the LCMD beamformer, which uses multiple linear

constraints to enhance the robustness against steering vector uncertainty.

We briefly summarize the contributions of our work on MD beamforming as fol-

lows.

i) It is pointed out that the MVDR approach is not statistically optimal in the
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presence of non-Gaussian signals. We show that the proposed MDDR beam-

former can effectively exploit the non-Gaussianity and hence considerably im-

prove the performance if p > 2 for sub-Gaussian signals or p < 2 for super-

Gaussian signals. We also discuss the case of p→∞, i.e., the ℓ∞-norm MDDR

beamformer.

ii) Three efficient iterative algorithms, the IR-MVDR and the complex-valued full

Newton’s and partial Newton’s methods, are devised to solve the resulting ℓp-

norm minimization problem with a linear constraint. The three algorithms

converge fast and are computationally efficient. They have the same complexity

as the MVDR beamformer. It is also shown that the IR-MVDR is a special case

of the partial Newton’s method with a fixed step size.

iii) Note that many conventional optimization methods cannot directly handle

complex-valued variables. They work by splitting the complex variables into

real and imaginary parts, which may distort the special data structures used for

implementation. Unlike these conventional methods, the proposed algorithms

directly handle complex variables as a single entity.

iv) We extend the MDDR beamformer with a single constraint to the LCMD beam-

former with multiple linear constraints, which exhibits robustness against steer-

ing vector mismatch. The three algorithms for ℓp-norm minimization are ac-

cordingly generalized to the case of multiple constraints.

The remainder of this chapter is organized as follows. In Section 2.2, we present

the minimum dispersion beamformer based on ℓp-norm minimization. Three itera-

tive algorithms, namely, the IR-MVDR and two complex-valued Newton’s methods,
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are developed for the efficient computation of the MDDR beamformer. In Section

2.3, the minimum dispersion beamformer is extended to multiple linear constraints.

Computer simulations are performed to demonstrate the effectiveness of the proposed

beamformer for non-Gaussian signals in Section 2.4. Finally, conclusions are presented

in Section 2.5.

2.2 MinimumDispersion Beamformer Via ℓp-Norm

Minimization

2.2.1 Motivation by Non-Gaussianity

The MVDR and subspace beamformers utilize only the second-order statistics. For

Gaussian signals and noise, the MV criterion is statistically optimal because the

first- and second-order statistics of a Gaussian distribution contain all necessary and

sufficient statistical information. However, many signals in practice are non-Gaussian

distributed. Random signals can be classified into three classes according to the

kurtosis [40]. The kurtosis of a random stationary signal s(n) with zero-mean is

defined as

κ(s(n)) =
E {|s(n)|4}

(E {|s(n)|2})2
. (2.1)

If s(n) is Gaussian, then κ(s(n)) = 3. If κ(s(n)) < 3, s(n) is sub-Gaussian. There are

a number of sub-Gaussian distributions such as uniform distribution and Bernoulli

distribution. If κ(s(n)) > 3, s(n) is super-Gaussian. Super-Gaussian distributions,

which include Laplace distribution and α-stable distribution [54], are also common.

For example, the phase shift keying (PSK) and quadrature amplitude modulation
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(QAM), radar, sonar, and GPS navigation signals are sub-Gaussian [37, 41]. A com-

mon example of super-Gaussian signal is speech [40]. In addition to non-Gaussian

signals, non-Gaussian noise is also frequently encountered [43]. For non-Gaussian

signals, the higher-order (higher than 2) and lower fractional order statistics contain

useful information and can be exploited to improve the performance of beamforming.

In [44], a blind beamforming technique was proposed for non-Gaussian signals using

the fourth-order cumulants. In the following, we will introduce the minimum dis-

persion beamforming, which implicitly uses the higher-order or fractional lower-order

statistics.

2.2.2 Minimum Dispersion Criterion

The proposed MDDR beamformer is obtained by solving the following linearly con-

strained optimization problem:

min
www

E
{
|wwwHxxx(n)|p

}
s.t. aaaHwww = 1

(2.2)

where p ≥ 1. Clearly, the MDDR beamformer is reduced to the MVDR beamformer

for p = 2. In statistics, E{|y(n)|p} is referred to as dispersion, which is a generalization

of variance [38]. Therefore, we call the solution of (2.2) as the minimum dispersion

beamformer. It should be pointed out that the criterion of (2.2) has been proposed

for beamforming in [53]. Furthermore, p = 1 is adopted in the beamformer of [31].

However, no insightful guideline on how to choose an appropriate p is given in [53]

and it advocates to use small value of p, which is not technically accurate because the

choice of p is not only related to statistical characteristics of the noise but also the
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signal sources. Also at present, there is no efficient numerical algorithms to solve the

problem in (2.2). In the following, we will develop three low complexity algorithms

with fast convergence to calculate the MDDR beamformer and discuss how to choose

an appropriate p.

Replacing the expectation with the sample mean and ignoring the constant 1/N ,

(2.2) can be rewritten as

min
www

(
fp(www) = ∥XXXHwww∥pp

)
s.t. aaaHwww = 1

(2.3)

where XXXHwww = yyy∗ is the conjugate of the beamformer output yyy = [y(1), · · · , y(N)]T ,

and the ℓp-norm is defined as

∥yyy∥p =

(
N∑

n=1

|y(n)|p
)1/p

. (2.4)

However, (2.3) has no closed-form solution except for p = 2. The optimization prob-

lem in (2.3) is convex for p ≥ 1 and the global optimum is guaranteed using the

standard interior point method for convex optimization [55]. However, we propose

simpler and more efficient algorithms for solving it. Note that the ℓp-norm mini-

mization of (2.3) is a constrained optimization problem, but different from the one

encountered in robust linear regression using least ℓp-norm [56, 57], which is uncon-

strained. Before discussing the optimization algorithms, we give general guidelines

for selecting p. For Gaussian signals, the optimal p is 2. For sub-Gaussian signals,

p > 2 will achieve better performance, whereas p < 2 is preferred for super-Gaussian

signals. The optimal value of p depends on the probability density function (PDF) of

the signals. In the simulation examples, we will further investigate the selection of p.

21



Ph.D. Thesis - Xue Jiang McMaster - Electrical Engineering

For signals with very strong super-Gaussianity, e.g., heavy-tailed distributions,

like Laplacian [58] or α-stable distribution [54], one may require 0 < p < 1. However,

0 < p < 1 leads to a non-differential and nonconvex ℓp-norm minimization problem.

It has been pointed out that (2.3) with 0 < p < 1 is strongly NP-hard and that the

global minimum is difficult to obtain [59]. Due to the mathematical difficulty, we do

not consider the choice of 0 < p < 1 in this work.

2.2.3 Iteratively Reweighted MVDR Algorithm

We rewrite the objective function in (2.3) as

fp(www) = ∥yyy∗∥pp =
N∑

n=1

|y(n)|p =
N∑

n=1

|y(n)|p−2|y(n)|2

= ∥ΦΦΦyyy∥2 = ∥ΦΦΦyyy∗∥2
(2.5)

where ΦΦΦ is a diagonal weighting matrix

ΦΦΦ = diag
{
|y(1)|(p−2)/2, · · · , |y(N)|(p−2)/2

}
(2.6)

with its diagonal elements being real and positive numbers. This means that the

ℓp-norm minimization problem can be converted into an ℓ2-norm minimization one.

Equation (2.5) can be further expressed as

fp(www) = yyyTΦΦΦHΦΦΦyyy∗ = yyyTDDD(www)yyy∗ = wwwHXXXDDD(www)XXXHwww (2.7)

where

DDD(www) = diag
{
|y(1)|p−2, · · · , |y(N)|p−2

}
. (2.8)
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Note that DDD depends on the unknown www because it is related to yyy. Therefore, it is a

function of www, which is written as DDD(www). Now we rewrite (2.3) as

min
www

wwwH
(
XXXDDD(www)XXXH

)
www

s.t. aaaHwww = 1

(2.9)

whose optimal solution is given by

www =

(
XXXDDD(www)XXXH

)−1
aaa

aaaH (XXXDDD(www)XXXH)−1 aaa
. (2.10)

Equation (2.10) has a structure similar to that of the MVDR beamformer but the

covariance matrix has been reweighted using the weighting matrix DDD(www). However,

we cannot obtain a closed-form expression for the optimal www since DDD(www) is related to

the unknown www. An alternative is to use the following fixed-point iteration

wwwk+1 =

(
XXXDDD(wwwk)XXXH

)−1
aaa

aaaH (XXXDDD(wwwk)XXXH)−1 aaa
(2.11)

to find the optimal solution, where the superscript (·)k is used to denote the result

at the kth (k = 0, 1, · · · ) iteration. In each iteration, the MVDR beamformer with a

reweighted covariance matrix is computed. Therefore, we refer to this algorithm as

IR-MVDR, which is summarized in Algorithm 1. The initial value can be taken as

the data-independent beamformer

www0 = aaa/∥aaa∥2. (2.12)

Next, we analyze the computational complexity of the IR-MVDR method. The com-
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Algorithm 1 IR-MVDR

Given the received dataXXX, error tolerance ϵ, and maximum iteration numberKmax.
Initialize: www0 = aaa/∥aaa∥2.
for k = 0, 1, 2, · · · do

Compute output yyy =
(
XXXHwwwk

)∗
and weighting matrix

DDD(wwwk) = diag
{
|y(1)|p−2, · · · , |y(N)|p−2

}
.

Update beamformer: wwwk+1 =
(XXXDDD(wwwk)XXXH)

−1
aaa

aaaH(XXXDDD(wwwk)XXXH)
−1

aaa
.

Stop if ∥wwwk+1 −wwwk∥/∥wwwk+1∥ < ϵ or k > Kmax is satisfied.
end for

plexity of matrix multiplication XXXDDD(wwwk)XXXH is O(NM2) because DDD(wwwk) is diagonal.

The computational cost for calculating
(
XXXDDD(wwwk)XXXH

)−1
aaa is O(M3). Hence the com-

plexity of IR-MVDR is max (O(NM2),O(M3)) in each iteration. Since it is always

assumed that the sample size is larger than the number of sensors, i.e., N > M , then

the complexity is O(NM2) of each iteration.

Remark 2.1: The convergence behavior of the IR-MVDR is similar to that of

the iteratively reweighted least-squares (IRLS) algorithm for unconstrained ℓp-norm

minimization [56, 57]. Their convergence is guaranteed only for some specific values

of p. We find that it does not converge when p ≥ 3.4. This means that 3.4 is the

critical value of the IR-MVDR scheme.

2.2.4 Complex-Valued Newton’s Methods with Equality Con-

straint

Despite the simplicity of the IR-MVDR algorithm, it may not converge [60]. In this

subsection, we propose two Newton’s methods, whose convergence is guaranteed for

p > 1, to efficiently solve the complex-valued ℓp-norm minimization of (2.3). It is
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worth pointing out that the proposed Newton’s methods are different from those

in [61]. The Newton’s methods of [61] can deal only with the unconstrained ℓp-

norm minimization problem, but the proposed schemes can handle the problem with

equality constraints.

The optimization problem of (2.3) involves complex-valued variables. We first

give the definition of the gradient with respect to (w.r.t.) complex-valued variables.

The gradient of the objective fp(www) w.r.t. the complex vector www ∈ CM is defined as

∇fp(www) =
∂fp(www)

∂www∗ =

[
∂fp
∂w∗

1

, · · · , ∂fp
∂w∗

M

]T
(2.13)

where

∂fp
∂w∗

i

=
1

2

(
∂fp

∂Re(wi)
+ j

∂fp
∂Im(wi)

)
, i = 1, · · · ,M.

The Newton’s method uses the following iteration to find the minimizer of (2.3):

www ← www +∆www (2.14)

where www is the point of current iteration, and ∆www is the update direction, which is

called the Newton direction [62]. It requires thatwww be feasible in each iteration, which

is equivalent to requiring

aaaH∆www = 0. (2.15)

The second-order Taylor expansion of fp(www + ∆www) around the complex vector www

is given by

fp(www +∆www) = fp(www) + qwww(∆www) + o
(
∥∆www∥2

)
. (2.16)

Here, qwww(∆www) is a quadratic function w.r.t. ∆www, which contains the first two order
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expansion terms and can be expressed as

qwww(∆www) = ∇fp(www)H∆www +∇fp(www)T∆www∗

+
1

2
∆wwwHHHHwww∗www∆www +

1

2
∆wwwTHHHwwwwww∗∆www∗

+
1

2
∆wwwHHHHwww∗www∗∆www∗ +

1

2
∆wwwTHHHwwwwww∆www

(2.17)

where

∇fp(www) =
∂fp(www)

∂www∗ =
p

2
XXXDDD(www)XXXHwww (2.18)

is the gradient of fp(www), and the four M ×M partial Hessian matrices are expressed

as

HHHwww∗www =
∂2fp(www)

∂www∗∂wwwT
=

p2

4
XXXDDD(www)XXXH ,

HHHwwwwww =
∂2fp(www)

∂www∂wwwT
=

p(p− 2)

4
XXX∗EEE(www)XXXH ,

HHHwwwwww∗ =HHH∗
www∗www, HHHwww∗www∗ =HHH∗

wwwwww

(2.19)

where EEE(www) is a diagonal matrix of the form

EEE(www) = diag
{
|y(1)|p−4y2(1), · · · , |y(N)|p−4y2(N)

}
. (2.20)

The partial Hessians HHHwww∗www and HHHwwwwww∗ are positive definite because DDD(www) in (2.8) is

positive definite. Then, qwww(∆www) can be written more compactly as

qwww(∆www) =
[
∇fp(www)H ,∇fp(www)T

]  ∆www

∆www∗

+

[
∆wwwH ,∆wwwT

]  HHHwww∗www HHHwww∗www∗

HHHwwwwww HHHwwwwww∗


 ∆www

∆www∗


(2.21)

26



Ph.D. Thesis - Xue Jiang McMaster - Electrical Engineering

where the 2M × 2M full Hessian matrix is denoted as

HHH =

 HHHwww∗www HHHwww∗www∗

HHHwwwwww HHHwwwwww∗

 . (2.22)

The full Hessian matrix is positive definite when p > 1. It is noticed that the two

off-diagonal block matrices HHH∗
www∗www∗ and HHHwwwwww become zero if p = 2. In this case, these

two partial Hessian matrices contain no information. When p ̸= 2, these two matrices

do not vanish and contain useful information for optimization.

1) Full Newton’s Method: For fixed www in the current iteration, the Newton’s

method aims to find an update direction ∆www that minimizes the quadratic function

qwww(∆www) under the linear constraint. That is,

min
∆www

qwww(∆www)

s.t. aaaH∆www = 0.

(2.23)

We use the method of Lagrangian multipliers [62] to solve the constrained optimiza-

tion problem. The Lagrangian function of (2.23) is

L(∆www, λ) = qwww(∆www) + λaaaH∆www (2.24)

where λ is the Lagrangian multiplier. In optimization with complex-valued variables,

the unknown ∆www and its conjugate ∆www∗ are jointly considered. According to the
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optimal condition and using (2.17), we obtain

∂L(∆www, λ)

∂∆www∗ = ∇fp(www) +HHHwww∗www∆www +HHHwww∗www∗∆www∗ + λaaa = 000,

∂L(∆www, λ)

∂∆www
= ∇fp(www)∗ +HHHwwwwww∗∆www∗ +HHHwwwwww∆www + λaaa∗ = 000,

∂L(∆www, λ)

∂λ
= aaaH∆www = 0

(2.25)

which can be written compactly as


HHHwww∗www HHHwww∗www∗ aaa

HHHwwwwww HHHwwwwww∗ aaa∗

aaaH 000T 0




∆www

∆www∗

λ

 = −


∇fp(www)

∇fp(www)∗

0

 . (2.26)

By solving the linear system of (2.26), the Newton direction ∆www is obtained. Propo-

sition 2.1 guarantees the uniqueness of the solution of (2.26).

Proposition 2.1 : There is a unique solution for (2.25) or (2.26) with p > 1. Hence,

the update direction of the full Newton’s method given by (2.25) is unique. In other

words, the coefficient matrix of (2.26) must be nonsingular.

Proof : It follows from (2.25) that

 HHHwww∗www HHHwww∗www∗

HHHwwwwww HHHwwwwww∗


 ∆www

∆www∗

 = −

 ∇fp(www) + λaaa

∇fp(www)∗ + λaaa∗

 . (2.27)

For p > 1, the full Hessian matrix in (2.22) is positive and hence nonsingular since

the objective function fp(www) is strictly convex. Then, the linear system of equations
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of (2.27) has a unique solution:

 ∆www

∆www∗

 = −HHH−1


 ∇fp(www)
∇fp(www)∗

+ λ

 aaa

aaa∗


 . (2.28)

Taking the complex conjugate of both sides of the constraint aaaH∆www = 0 yields

aaaT∆www∗ = 0. Hence, we obtain the equivalent constraint

[aaa, aaa∗]H

 ∆www

∆www∗

 = 0. (2.29)

Substituting (2.28) into (2.29) leads to a unique solution of the Lagrangian multiplier

λ =

[aaa, aaa∗]HHHH−1

 ∇fp(www)
∇fp(www)∗


[aaa, aaa∗]HHHH−1

 aaa

aaa∗


. (2.30)

Note that the denominator of (2.30), which is a quadratic form associated with HHH−1,

must be positive and hence impossible to be zero because the inverse of the full Hessian

HHH−1 is positive definite and aaa ̸= 000. This guarantees the uniqueness of λ. Now it is

clear that (∆www,∆www∗, λ) has a unique solution and the update direction is uniquely

determined. This also means that the coefficient matrix of (2.26) is nonsingular. �

The full Newton’s method exploits all the partial Hessian matrices, which is the

reason for its name. The complexity of solving (2.26) is O(2M + 1)3 = O(M3) since

the size of the system is (2M + 1)× (2M + 1). Recalling that the cost of calculating

29



Ph.D. Thesis - Xue Jiang McMaster - Electrical Engineering

the partial Hessian matrices is O(NM2), the complexity of the full Newton’s method

is thus max (O(NM2),O(M3)) in each iteration, which is the same as that of the IR-

MVDR algorithm. After obtaining the Newton direction ∆wwwk in the kth iteration,

the beamformer is updated as

wwwk+1 = wwwk + µk∆wwwk (2.31)

where µk ≥ 0 is the step size. The selection of µk is an important issue. In the

conventional Newton’s method [62], the fixed step size µk = 1 is adopted, which is

clearly not optimal. For a given Newton direction ∆wwwk, the optimal step size is given

by solving the line search

µk = argmin
µ≥0

∥∥XXXH
(
wwwk + µ∆wwwk

)∥∥p
p
. (2.32)

Recalling that XXXHwwwk = yyy∗ is the conjugate of the array output at the kth iteration

and denoting the output increment as XXXH∆wwwk = ∆yyy∗, the objective function w.r.t.

the step size µ can be written as

min
µ≥0

fp(µ) = ∥yyy∗ + µ∆yyy∗∥pp (2.33)

which is a simple one-dimensional optimization problem and can be easily solved by

traditional line search techniques such as the golden section search or the tangential

method [63]. The global optimality of µ is guaranteed since fp(µ) is unimodal w.r.t.

µ if p ≥ 1. The line search has a marginal computational cost of O(N).

If the initial value www0 is feasible, then the solution of each iteration wwwk is feasible
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due to the constraint aaaH∆www = 0. We can initialize the beamformer using the sample

matrix inversion (SMI) beamformer [15]

wwwSMI =

(
XXXXXXH

)−1
aaa

aaaH (XXXXXXH)−1 aaa
(2.34)

or just initialize it as the data-independent beamformer of (2.12). These two initial-

izations ensure thatwww0 is feasible. The full Newton’s method for MDDR beamforming

is summarized in Algorithm 2. The convergence of the Newton’s method has been

already proved [62–64]. In particular, it converges to the global minimum with a

quadratic convergence rate if the point is sufficiently close to the optimum since the

problem of (2.3) is convex [62].

2) Partial Newton’s Method: As a simplification of the full Newton’s method, the

partial Newton’s method ignores HHHwwwwww and HHHwww∗www∗ by assuming them as 000. Then the

linear system of (2.25) reduces to

HHHwww∗www∆www + λaaa = −∇fp(www) (2.35)

aaaH∆www = 0 (2.36)

From (2.35), we obtain

∆www = −HHH−1
www∗www(∇fp(www) + λaaa). (2.37)

Substituting (2.37) into (2.36), λ is solved as

λ = −a
aaHHHH−1

www∗www∇fp(www)
aaaHHHH−1

www∗wwwaaa
. (2.38)

Substituting (2.38) back into (2.37) leads to a closed-form solution of the update
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Algorithm 2 Full Newton’s method for MDDR beamforming

Given the received data XXX and error tolerance ϵ.
Initialize: www0 = aaa/∥aaa∥2 or set www0 using SMI beamformer of (2.34).
for k = 0, 1, 2, · · · do

Compute output yyy =
(
XXXHwwwk

)∗
and construct two diagonal matrices

DDD(wwwk) = diag
{
|y(1)|p−2, · · · , |y(N)|p−2

}
EEE(wwwk) = diag

{
|y(1)|p−4y2(1), · · · , |y(N)|p−4y2(N)

}
.

Calculate gradient and Hessian matrices

∇fp(wwwk) =
p

2
XXXDDD(wwwk)XXXHwwwk

HHHwww∗www =
p2

4
XXXDDD(wwwk)XXXH

HHHwwwwww =
p(p− 2)

4
XXX∗EEE(wwwk)XXXH .

Solve (2.26) to obtain Newton direction ∆wwwk.
Determine optimal step size µk by (2.33).
Update beamformer:

wwwk+1 = wwwk + µk∆wwwk.

Stop if
∣∣Re (∇fp(wwwk)H∆wwwk

)∣∣ < ϵ.
end for
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direction as

∆www = −HHH−1
www∗www

(
∇fp(www)−

aaaHHHH−1
www∗www∇fp(www)

aaaHHHH−1
www∗wwwaaa

aaa

)
. (2.39)

Once the Newton direction is determined, the beamformer is updated using (2.31).

Again, a line search procedure in (2.33) can be applied to obtain the optimal step size.

We refer to this algorithm as the partial Newton’s method because it utilizes only

the partial Hessian matrix HHHwww∗www. Since the size of the linear system of the partial

Newton’s method is only half of the full Newton’s method, the cost for computing

the Newton’s direction for the partial Newton’s method is approximately 1/8 of that

of the full Newton’s method. The computational simplicity results from ignoring the

off-diagonal Hessian matrices HHHwww∗www∗ and HHHwwwwww. These two partial Hessian matrices

are not null and contain useful information for p ̸= 2. Hence the performance of

the partial Newton’s method is inferior to that of the full Newton’s method — its

convergence rate is slower than that of the full Newton’s method.

An interesting relationship between the IR-MVDR and the partial Newton’s method

for ℓp-norm minimization is described in the following proposition.

Proposition 2.2 : The IR-MVDR algorithm is a special case of the partial Newton’s

method using a fixed step size of p/2.

Proof : The update formula of the partial Newton’s method with step size of p/2

is

wwwk+1 = wwwk +
p

2
∆wwwk. (2.40)
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Substituting (2.37) into (2.40) leads to

wwwk+1 = wwwk − p

2
HHH−1

www∗www

(
∇fp(wwwk) + λaaa

)
= wwwk − p

2
· 4
p2
(
XXXDDD(wwwk)XXXH

)−1

×
(p
2
XXXDDD(wwwk)XXXHwwwk + λaaa

)
=
−2λ
p

(
XXXDDD(wwwk)XXXH

)−1
aaa.

(2.41)

Since wwwk+1 is feasible, i.e., it satisfies the constraint aaaHwwwk+1 = 1, we have

−2λ
p

=
1

aaaH (XXXDDD(wwwk)XXXH)−1 aaa
. (2.42)

Plugging (2.42) into (2.41) yields (2.11), i.e., the update formula of the IR-MVDR

algorithm. �

Clearly, the fixed step size of p/2 is not optimal. Therefore the IR-MVDR is

inferior to the partial Newton’s method in terms of convergence rate.

The convergence rates of the IR-MVDR, two Newton’s methods, and the gradient

descent method [53] with optimal step sizes for different values of p are compared

here. Note that [53] does not discuss how to select a step size for the gradient descent

method although it is an important issue. Here we use the optimal step size for this

gradient method, which yields the best performance. Six values of p, namely, p ∈

{1.2, 1.5, 3.2, 3.4, 4, 8}, are tried. In this numerical example, we use the experimental

settings in example 1 of Section 2.4. We are primarily interested in the behavior, as

a function of the number of iterations, of the relative error |fp(wwwk) − fp(w̄ww)|/fp(w̄ww),

where w̄ww and fp(w̄ww) are the minimizer and the global minimum of (2.3), respectively.

This global minimum can be calculated exactly (in practice, up to the computer
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round-off precision) with a finite number of steps using the full Newton’s method or

any optimization software package in advance. For fair comparison, all the methods

use the same initial value of www0 = aaa/∥aaa∥2. Fig. 2.1 shows the convergence rates

of the three methods. We can see that the IR-MVDR algorithm does not converge

for p ≥ 3.4 while the two Newton’s methods converge in all cases. The gradient

method [53] converges very slowly. When the IR-MVDR algorithm converges, it has

a linear convergence rate. The partial Newton’s method also has a linear convergence

rate but it converges faster than the IR-MVDR. The full Newton’s method has a

quadratic convergence rate and converges very fast. It only needs several iterations

for convergence. Ignoring the two off-diagonal Hessian matrices makes the partial

Newton’s method lose the property of quadratic convergence.

Remark 2.2 : We can use the SMI beamformer of (2.34) as the initial value to

speed up the convergence of the IR-MVDR and the two Newton’s methods because

the SMI beamformer may be closer to the true solution than the data-independent

beamformer of (2.12). Fig. 2.2 compares the convergence rates using these two dif-

ferent initializations. It is observed that the SMI beamformer is a better initial value

that can accelerate the convergence rate.

2.2.5 MDDR Beamforming via ℓ∞-Norm Minimization

The MDDR beamformer is applicable to the case of p → ∞, where the ℓp-norm

becomes

∥yyy∥∞ = max
1≤n≤N

|y(n)|. (2.43)
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Figure 2.1: Convergence rate versus number of iterations of the IR-MVDR, two New-
ton’s methods, and gradient descent method [53] with optimal step sizes for p = 1.2,
1.5, 3.2, 3.4, 4, and 8.
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IR−MVDR initialized by (24)

Partial−Newton initialized by (24)

Full−Newton initialized by (24)

Gradient descent initialized by (24)

IR−MVDR initialized by (46)

Partial−Newton initialized by (46)

Full−Newton initialized by (46)

Gradient descent initialized by (46)

Figure 2.2: Convergence rate versus number of iterations for p = 1.2 using different
initial values. The blue curves are results using data-independent beamformer as
initialization while the red curves are obtained by use of SMI beamformer as initial
value.
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Accordingly, the ℓ∞-norm MMDR beamforming corresponds to

min
www
∥XXXHwww∥∞

s.t. aaaHwww = 1

(2.44)

Since the function of ℓ∞-norm is non-differentiable, the Newton’s method cannot be

applied. However, we show that (2.44) can be converted into a second-order cone

programming (SOCP). First, the complex-valued variables are split into real-valued

ones, that is, www = wwwR + jwwwI , aaa = aaaR + jaaaI , yyy = yyyR + jyyyI , and XXX = XXXR + jXXXI

with wwwR, wwwI , aaaR, aaaI ∈ RM , yyyR, yyyI ∈ RN , and XXXR, XXXI ∈ RM×N . Then we have

|y(n)| =
√
y2R(n) + y2I (n). The problem of (2.44) is reformulated as the following

SOCP:

min
wwwR,wwwI ,yyyR,yyyI ,u

u

s.t.
√

y2R(n) + y2I (n) ≤ u, n = 1, · · · , N XXXR XXXI

XXXI −XXXR


T  wwwR

wwwI

 =

 yyyR

yyyI


 aaaR −aaaI

aaaI aaaR


T  wwwR

wwwI

 =

 1

0



(2.45)

where u ∈ R+ is an auxiliary variable participating in the optimization. The New-

ton’s method cannot handle this SOCP problem because it contains an inequality

constraint. A more sophisticated interior point method [55] is needed to solve it. This

results in a computational complexity of O ((N +M)3.5) in each iteration, which is

higher than those of the IR-MVDR and the Newton’s methods.

In order to avoid solving the SOCP, one can use a large enough value for p to
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approximate the ℓ∞-norm. From the simulation results, we find that p = 20 provides

performance similar to that of the ℓ∞-norm. It is not advisable to adopt too large

values for p since it may result in overflow during calculating.

2.3 Extension to Multiple Linear Constraints

It is known that the MVDR beamformer suffers significant performance degradation

due to the uncertainty or mismatch in the steering vector [8, 18, 24]. One cause for

steering vector mismatch is the AOA estimation error. When the steering vector of

the SOI is imprecise, the SOI will be mistaken as interference and attenuated by

the MVDR beamformer [26]. A remedy to address the AOA mismatch is to impose

multiple linear constraints for a small spread of angles around the nominal AOA [14].

That is,

min
www

wwwHRRRwww

s.t. CCCHwww = ggg

(2.46)

where CCC = [ccc1, · · · , cccK ] ∈ CM×K contains K steering vectors or the derivatives of the

steering vectors and ggg = [g1, · · · , gK ]T is usually taken as the vector with all elements

being unity. The closed-form solution of the optimization problem in (2.46) is called

LCMV beamformer and is given by [14]

wwwLCMV = RRR−1CCC
(
CCCHRRR−1CCC

)−1
ggg. (2.47)

When the number of linear constraints is K = 1, the LCMV beamformer reduces to

the MVDR beamformer. Similar to the MDDR beamformer, we can generalize the
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LCMV method to the following LCMD beamforming

min
www
∥XXXHwww∥pp

s.t. CCCHwww = ggg.

(2.48)

Equation (2.48) is an extension of (2.3) from a single linear constraint to multiple

constraints. Meanwhile, the three algorithms for solving (2.3) can be extended to

multiple constraints in (2.48).

Replacing the covariance matrix RRR using the reweighted version XXXDDD(wwwk)XXXH , the

update rule of the Iteratively Reweighted LCMD (IR-LCMD) algorithm is given by

wwwk+1 =
(
XXXDDD(wwwk)XXXH

)−1
CCC
(
CCCH

(
XXXDDD(wwwk)XXXH

)−1
CCC
)−1

ggg (2.49)

which is an extension of the IR-MVDR algorithm of (2.11).

The full Newton’s method can also be applied to solve the LCMD problem of

(2.48). The Newton direction ∆www is calculated by

min
∆www

qwww(∆www)

s.t. CCCH∆www = 0.

(2.50)

The Lagrangian function of (2.50) is

Lc(∆www,λλλ) = qwww(∆www) + λλλTCCCH∆www (2.51)

where λλλ = [λ1, · · · .λK ]
T is the Lagrangian multiplier vector corresponding to the K
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linear constraints. Applying the optimal condition to (2.51) leads to

Lc(∆www,λλλ)

∂∆www∗ = ∇fp(www) +HHHwww∗www∆www +HHHwww∗www∗∆www∗ +CCCλλλ = 000,

Lc(∆www,λλλ)

∂∆www
= ∇fp(www)∗ +HHHwwwwww∗∆www∗ +HHHwwwwww∆www +CCC∗λλλ = 000,

∂Lc(∆www,λλλ)

∂λλλ
= CCCH∆www = 000

(2.52)

which can be rewritten as
HHHwww∗www HHHwww∗www∗ CCC

HHHwwwwww HHHwwwwww∗ CCC∗

CCCH 000K×M 000K×K




∆www

∆www∗

λλλ

 = −


∇fp(www)

∇fp(www)∗

000

 . (2.53)

The Newton direction ∆www is obtained by solving the linear system of (2.53), which

requires a complexity of O ((2M +K)3).

Again, assigning the two Hessian matrices HHHwwwwww = HHHwww∗www∗ = 000 gives the update

direction of the partial Newton’s method

HHHwww∗www∆www +CCCλλλ = −∇fp(www)

CCCH∆www = 000.

(2.54)

Solving (2.54) gives

λλλ = −
(
CCCHHHH−1

www∗wwwCCC
)−1

CCCHHHH−1
www∗www∇fp(www) (2.55)

and

∆www = −HHH−1
www∗www

(
III −CCC

(
CCCHHHH−1

www∗wwwCCC
)−1

CCCHHHH−1
www∗www

)
∇fp(www). (2.56)
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After obtaining the Newton direction, the remaining steps of the full and partial

Newton’s methods are the same as the single constraint algorithms in Section 2.2.4.

The Newton’s method exploits the second-order derivatives of the objective func-

tion, which are contained in the Hessian matrix. The gradient descent method in [53]

just utilizes the first-order derivatives. Assuming that the Hessian matrix HHHwww∗www = III,

(2.56) is simplified to

∆www = −
(
III −CCC

(
CCCHCCC

)−1
CCCH
)
∇fp(www) (2.57)

which is the update direction of the gradient descent method for constrained opti-

mization problems. Note that
(
III −CCC

(
CCCHCCC

)−1
CCCH
)

= PPP⊥
CCC is the projector onto

the orthogonal complementary space of range(CCC). Therefore the update direction

∆www = −PPP⊥
CCC∇fp(www) represents the projected gradient or gradient projection [64].

In [53], the gradient projection method is adopted to compute the LCMD beam-

former. However, it does not mention how to select a step size. The step size is

determined empirically. For the proposed full and partial Newton’s methods, the

optimal step size is solved using line search method for a given Newton direction.

Furthermore, the convergence rate of the gradient projection method is slower than

that of the Newton’s method and even much slower than that of the IR-LCMV algo-

rithm.

2.4 Simulation Results

To facilitate a fair comparison, experimental parameters used in [24] and [26] are

adopted in our computer simulations as well. A uniform linear array (ULA) of M
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omnidirectional sensors spaced half a wavelength apart is considered. The steering

vector is computed using (1.2). Three zero-mean signals, namely, the SOI s(n) and

two uncorrelated interferences s1(n) and s2(n), impinge on the array. The AOA of

the SOI is θ = 43◦ and the AOAs of the two interferences are θ1 = 30◦ and θ2 = 75◦.

The signal-to-noise ratio (SNR) is defined as

SNR =
σ2
s

σ2
v

. (2.58)

The two interferences are stronger than the SOI with variances being σ2
1 = 4σ2

s and

σ2
2 = 9σ2

s . That is, they are 6 dB and 9.5 dB above the SOI, respectively.

2.4.1 Results with Perfect Steering Vector

We first present the simulation results with a perfect steering vector. The performance

of the MDDR with a variety of p, MVDR (i.e., p = 2), and subspace beamformers,

as well as the optimal SINR bound, are compared. According to (3.53), the up-

per bound on the SINR is the maximum generalized eigenvalue of the matrix pair(
σ2
saaaaaa

H ,RRRi+n

)
. Note that the subspace beamformer requires the dimension of the

signal-plus-interference subspace. The minimum description length (MDL) [48] is

applied to estimate this quantity. Monte Carlo trials are conducted to evaluate the

output SINR performance of the beamforming algorithms. When plotting the SINR

curves, 200 Monte Carlo trials are performed to calculate the average output SINR.

Example 1 : Sub-Gaussian signals

In the first example, the SOI and two interferences are QPSK signals, which are

frequently encountered in communications and are sub-Gaussian distributed. The

additive noise is a white Gaussian process. Fig. 2.3 shows the output SINR versus
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Figure 2.3: Output SINR versus SNR for QPSK signals and additive Gaussian noise.

SNR when the number of sensors M = 10 and number of snapshots N = 100. Fig. 2.4

displays the output SINR versus N at M = 10 and SNR = 10 dB. Fig. 2.5 shows the

output SINR versus M at N = 100 and SNR = 10 dB.

From Figs. 2.3 to 2.5, it can be seen that the MDDR beamforming of p > 2

leads to an improved performance compared with the MVDR beamformer (p = 2) for

QPSK signals. It can be seen from Fig. 2.3, when SNR ≥ 10 dB, the output SINR

for p = 20 is 10–20 dB higher than that of the MVDR beamformer. In Figs. 2.4

and 2.5, this performance gain is still about 10 dB when the number of snapshots is

larger than 50 or the number of sensors is more than 8. In particular, only the ℓ∞-

MDDR beamformer (p = ∞) approaches the upper bound of the SINR as the SNR
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Figure 2.4: Output SINR versus number of snapshots for QPSK signals and additive
Gaussian noise.
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Figure 2.5: Output SINR versus number of sensors for QPSK signals and additive
Gaussian noise.
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increases. The results demonstrate that the MDDR beamformer with larger value of

p has better performance. The MDDR beamformer with p < 2 is not recommended

for sub-Gaussian signals because its performance is worse than that of the MVDR

beamformer. The subspace beamformer is also superior to the MVDR beamformer

and it has similar performance as the MDDR beamformer with p = 4. However, its

performance degrades severely at low SNR.

Example 2 : Super-Gaussian signals

In the second example, the beamforming algorithms are tested using super-Gaussian

signals. The SOI, two interferences and noise are modeled as random processes sat-

isfying a generalized Gaussian distribution (GGD) [58]. The PDF of the circular

zero-mean GGD with variance σ2
s is

ps(s) =
βΓ(4/β)

2πσ2
sΓ

2(2/β)
exp

(
−|s|

β

cσβ
s

)
(2.59)

where β > 0 is the shape parameter, Γ(·) is the Gamma function, and c = (Γ(2/β)/Γ(4/β))β/2

[58]. When β = 2, the GGD reduces to the circular Gaussian distribution. Note that

β > 2 models sub-Gaussian signals while β < 2 models super-Gaussian ones. Espe-

cially, β = 1 corresponds to the Laplacian distribution [58], which is widely used to

model speech signal [42]. The smaller the value of β, the more impulsive the signal

is. We take β = 0.4 in this example.

Fig. 2.6 displays the output SINR versus SNR for M = 10 and N = 100. Fig. 2.7

illustrates the output SINR versus N for M = 10 and SNR = 10 dB. Fig. 2.8 shows

the output SINR versus M for N = 200 and SNR = 0 dB.

The results of Figs. 2.6, 2.7, and 2.8 are opposite to those given by Figs. 2.3, 2.4,

and 2.5, respectively. This is not surprising because the signals used in this example
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are super-Gaussian distributed, which are different from the sub-Gaussian signals used

in the first example. These results illustrate that the MDDR beamformer with p < 2

will yield a SINR gain for super-Gaussian signals. The performance improvement with

p = 1 is about 5–7 dB when SNR ≥ 10 dB, which is optimal in this example. In the

presence of super-Gaussian signals, the MDDR beamformer with smaller p has better

performance. Contrary to the case of sub-Gaussian signal, p > 2 is not recommended

for super-Gaussian signals. The subspace beamformer has a performance comparable

to that of the MDDR beamformer with p = 1.

As SNR increases, even the optimal setting p = 1 cannot approach the upper

bound of SINR. It still has a large gap from the bound. Hence we infer that p < 1 may

achieve better performance for GGD signals with β = 0.4. However, as mentioned

above, we do not consider the choice of 0 < p < 1 since the resulting optimization

problem is difficult to solve [59].

Example 3 : Gaussian signals

In the third example, all the signals and noise are Gaussian. Fig. 2.9 illustrates

the output SINR versus SNR for M = 10 and N = 100. We can see that p = 2 is the

optimal value for Gaussian signals. It is demonstrated that all the MDDR methods

have similar performance if p is not far away from 2. The subspace method has the

best performance for Gaussian signal model if the SNR is not very low. However, the

performance of the subspace beamformer degrades at smaller SNRs.

Example 4 : Impact of interference number

In the fourth example, we investigate the impact of the interference number on

beamforming performance. The SOI and the interferences are QPSK modulation and

noise values are Gaussian. The snapshot number is N = 100. The AOA of the SOI is
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Figure 2.6: Output SINR versus SNR for GGD signals and noise with β = 0.4.
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Figure 2.7: Output SINR versus number of snapshots for GGD signals and noise with
β = 0.4.
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Figure 2.8: Output SINR versus number of sensors for GGD signals and noise with
β = 0.4.
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Figure 2.9: Output SINR versus SNR for Gaussian signals and noise.

52



Ph.D. Thesis - Xue Jiang McMaster - Electrical Engineering

−10 −5 0 5 10 15 20 25 30
−10

−5

0

5

10

15

20

25

30

35

40

SNR (dB)

S
IN

R
 (

dB
)

 

 

p=1
p=1.5
p=2 (MVDR)
p=4
p=8
p=20
p=infinity
subspace
upper bound

Figure 2.10: Output SINR versus SNR for QPSK signals and Gaussian noise with six
interferers.

fixed to 43◦ while that of the ith (1 ≤ i ≤ I) interference is θi = −30◦+(i−1)10◦. The

power of all interferers is the same and 10 dB higher than the SOI. We first consider

I = 6 interferers. Fig. 2.10 plots the output SINR versus SNR. By comparing Fig. 2.3,

which has only two interferers, with Fig. 2.10, we observe that the performance of the

subspace beamformer substantially degrades for larger signal number values. Fig. 2.11

shows the output SINR versus interference number at SNR = 20 dB. It can be seen

that the subspace beamformer loses its efficiency as the interference number increases

while the MVDR and MDDR beamformers maintain their performance.
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Figure 2.11: Output SINR versus interference number for QPSK signals and Gaussian
noise.
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2.4.2 Results with AOA Mismatch

In this subsection, we investigate the performances of the LCMD, LCMV, and MVDR

beamformers in the presence of steering vector mismatch. The steering vector mis-

match is first simulated using imprecise AOA. We focus on the sub-Gaussian signal

case where the QPSK signal is used. The experimental settings are the same as that

of Example 1 in Section 2.4.1. The true AOA of the SOI is 43◦ but the assumed AOA

is 45◦. For LCMV and LCMD beamformers, two linear constraints which force the

responses of the signals from 42◦ and 48◦ to be unity.

Figs. 2.12 and 2.13 show the output SINR versus SNR and number of snapshots,

respectively. It can be seen that the performance of the MVDR beamformer signifi-

cantly degrades due to the 2◦ AOA error. It is not surprising that the output SINR

of the MVDR beamformer decreases as the SNR increases because the signal can-

cellation phenomenon caused by AOA mismatch is more severe at high SNRs. The

LCMV beamformer with two linear constraints enhances the robustness against AOA

mismatch. The LCMD beamformer with p > 2, especially for relatively large values of

p, significantly improves the performance the LCMV for sub-Gaussian QPSK signals.

For example, the SINR of the proposed LCMD beamformer with p = 20 is about

10 dB higher than that of the LCMV beamformer when the number of snapshots is

greater than 50.

We then investigate the robustness against the look direction of the SOI. The AOA

of the SOI, i.e., θ, is varied from −20◦ to 20◦ while the AOAs of the two interferers

are fixed to 30◦ and 75◦, respectively. It is assumed that there is a 2◦ error in the

AOA estimate. That is, the AOA estimate is θ + 2◦. Hence we impose two linear

constraints as θ− 1◦ and θ+3◦, which are centered around the AOA estimate θ+2◦,
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Figure 2.12: Output SINR versus SNR for QPSK signals in the presence of 2◦ AOA
mismatch.
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Figure 2.13: Output SINR versus number of snapshots for QPSK signals in the
presence of 2◦ AOA mismatch.
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Figure 2.14: Output SINR versus AOA of SOI for 2◦ AOA mismatch.

for LCMV and LCMD beamformers. Fig. 2.14 shows the output SINR versus θ, from

which we see that the LCMD beamformer is not sensitive to the look direction.

2.4.3 Results with Sensor Position Mismatch

In addition to AOA estimation error, the steering vector mismatch may be caused

by a variety of reasons, such as uncertainties in array response and sensor geometry

position. Similar to LCMV, the LCMD beamformer was originally designed for AOA

mismatch. However, it can be adapted to handle other types of mismatch. In this

simulation example, the error in sensor geometry position is considered. From (1.2),

it is observed that the steering vector is a function of the inter-sensor spacing d
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and hence denoted as aaa(d). In practice, the inter-sensor spacing with error can be

expressed as d = d0 + ∆d, where d0 is the nominal value and ∆d is the error. We

investigate the effect of spacing error on beamforming performance. The nominal

spacing is equal to half the wavelength, i.e., d0 = 0.5ζ. The maximal relative error

∆d/d0 is ±10%, which corresponds 0.9d0 ≤ d ≤ 1.1d0. Three linear constraints,

namely,
{
cccHk www = 1

}3
k=1

, are used with the LCMV and LCMD beamformers. We set

ccc1 = aaa(0.9d0), ccc2 = aaa(d0), and ccc3 = aaa(1.1d0) in (2.48). The SNR is 20 dB and snapshot

number N = 100. The other experimental settings are the same as those in Example

1 in Section 2.4.1.

Figs. 2.15 shows the output SINR versus the relative error that varies from −10%

to 10%. The performance of the MVDR beamformer significantly degrades as the

spacing error increases. The LCMV and LCMD beamformers with three linear con-

straints improve the robustness against sensor position. Again, the LCMD beam-

former with p > 2 yields better performance than the LCMV.

2.5 Conclusion

By recognizing the fact that the minimum variance criterion is not statistically op-

timal for non-Gaussian signals, this chapter investigated the minimum dispersion

beamforming with either single or multiple linear constraints. The use of a single lin-

ear constraint resulted in the MDDR beamformer while the use of multiple constraints

led to the LCMD beamformer. The LCMD beamformer is robust against steering vec-

tor mismatches. The MDDR and LCMD beamformers outperform their respective

standard counterparts based on minimum variance, namely, the MVDR and LCMV

beamformers. Three computationally efficient algorithms, i.e., the IR-MVDR, full
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Figure 2.15: Output SINR versus relative error of inter-sensor spacing.
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Newton’s and partial Newton’s methods, were developed to efficiently solve the re-

sultant ℓp-minimization problem with linear equality constraints. It was shown that

the IR-MVDR is a special case of the partial Newton’s method. Simulation results

demonstrated the superior performance of the minimum dispersion beamformers. An

important future work is combining the minimum dispersion criterion with the non-

linear constraints, such as those in [18, 24]. These nonlinear constraints force the

magnitude responses of the steering vectors in an uncertainty set to exceed unity.

This will generate new beamforming techniques that are more robust against steering

vector mismatch as well as enhance the SINR performance.
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Chapter 3

Gradient Projection for

Quadratically Constrained

Minimum Dispersion Beamforming

A quadratically constrained minimum dispersion (QCMD) beamformer that is ro-

bust against model uncertainties is devised for non-Gaussian signals. Different from

the minimum variance based beamformers, the QCMD beamformer minimizes the ℓp-

norm (p ≥ 1) of the output while constraining the magnitude response of any steering

vector within a spherical uncertainty set to exceed unity. A gradient projection algo-

rithmic framework is proposed to efficiently solve the resulting convex optimization

problem instead of directly applying the standard optimization algorithm which has

a high computational complexity. In each iteration, the gradient projection updates

the solution along the gradient direction and projects it back to the constraint set.

Importantly, a closed-form expression of the projection onto the constraint set is de-

rived, which only needs a low complexity of O(M) with M being the sensor number.
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Therefore, the proposed algorithm is much faster and simpler to implement compared

with the standard method. In addition, the robust constant modulus beamformer

(RCMB) is also discussed as a special case of the QCMD beamformer. Simulation

results demonstrate the efficiency of the gradient projection algorithm and superiority

of the QCMD beamformer over several representative robust beamformers, indicat-

ing that it can approach the optimal performance bound. Most of the results of this

chapter have been reported in our recent journal paper [51].

3.1 Introduction

Beamforming is an important technique used to enhance the desired signal and al-

leviate the interference and noise in array processing. Its applications can be found

in radar, sonar, wireless communications, audio processing, biomedicine and many

other areas [5, 7, 8].

The minimum variance distortionless response (MVDR) beamformer [11], which is

a classical data dependent beamforming method, minimizes the variance of the array

output while fixing the response to the direction of the signal of interest (SOI) to unity.

However, the MVDR beamformer is quite sensitive to the steering vector mismatch,

which is an unavoidable problem in practical applications [8]. The angle-of-arrival

(AOA) estimation error is a common cause for the steering vector mismatch. In [14],

the linearly constrained minimum variance (LCMV) beamformer has been proposed

by adding additional linear constraints to the MVDR beamformer to broaden the

coverage around the nominal AOA. In this way, its robustness to AOA mismatch is

enhanced. The drawback of the LCMV beamformer is that the degrees of freedom for

interference suppression are reduced as more linear constraints are added [8]. There
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are also several methods developed for AOA mismatch [17,26,28]. Nonetheless, they

cannot handle the case of arbitrary steering vector mismatch.

In order to improve the robustness for general steering vector mismatch, a number

of robust beamforming techniques have been proposed [10,36]. The eigenspace-based

beamformer [15] is a powerful technique which is applicable to any type of mismatch.

However, it loses efficiency as the signal-to-noise ratio (SNR) decreases or number

of interferences increases. Robust beamforming techniques based on worst-case per-

formance optimization are proposed in [18]– [20], where nonlinear constraints are

employed instead of the linear ones. The key idea of [18]– [20] is to model the ac-

tual steering vector as the sum of the nominal steering vector and an uncertainty

term, where the Euclidean norm of the uncertainty is upper-bounded. A spherical

uncertainty region is used in [18] and a more general ellipsoidal uncertainty region is

considered in robust minimum variance beamformer (RMVB) [24] and robust Capon

beamformer (RCB) [20]. The problems of worst-case performance optimization with

infinitely many nonconvex constraints are finally converted to a second-order cone

programming (SOCP), which can be solved by the standard interior-point methods

(IPM). In addition, using the Lagrangian multiplier method, the RMVB and the RCB

can be solved with a low computational complexity. Using the idea of worst-case per-

formance optimization, a general-rank model has been suggested in [21] and [36],

which is applicable to both rank-one and higher-rank SOI models.

Note that most existing robust beamforming techniques are based on the second-

order statistics (variance) of the array output [8, 11, 14, 15, 17, 18, 20, 21, 24, 26–28,

35, 36], which is optimal for Gaussian signals and noise. However, many real world

signals and noise are non-Gaussian. For example, the digitally modulated signals
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encountered in wireless communication systems are found to be sub-Gaussian [37,41].

In this case, the higher-order statistics can be utilized to improve the performance

of the beamformer. In [49], a minimum dispersion (MD) criterion is proposed by

minimizing the ℓp-norm (p ≥ 1) of the array output, which implicitly utilizes the

higher-order statistics with p ≥ 2 or lower-order statistics with p ≤ 2. The MD

criterion with multiple linear constraints leads to the linearly constrained minimum

dispersion (LCMD) beamformer [49]. Although the LCMD beamformer achieves a

performance gain compared with the LCMV beamformer for non-Gaussian signals, it

inherits the disadvantages from the LCMV beamformer.

In this chapter, by exploiting the MD criterion combined with magnitude response

constraints, we develop a quadratically constrained minimum dispersion (QCMD)

beamforming technique for non-Gaussian signals that is robust to arbitrary steering

vector mismatch. Instead of resorting to the standard optimization algorithm with a

high computational complexity, a gradient projection algorithmic framework is pro-

posed to solve the resultant constrained ℓp-norm minimization problem. We briefly

summarize the contributions of our work on QCMD beamforming as follows.

i) We extend the LCMD beamformer [49] with multiple linear constraints to the

QCMD beamformer with nonlinear constraints. The QCMD beamformer sig-

nificantly enhances the robustness against model mismatch compared with the

LCMD beamformer.

ii) The property, including the condition of nonemptiness and closeness, of the

convex constraint set induced by the quadratic magnitude constraint is investi-

gated. In addition, we derive a closed-form expression of the projection onto the

constraint set. Computation of this projection only requires a low complexity
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of O(M) with M being the number of sensors.

iii) A gradient projection algorithmic framework is developed to efficiently solve

the resulting convex optimization problem instead of directly employing the

standard algorithm that has a high computational complexity. There are three

variants of this method depending on different line search strategies. All the

three projected gradient methods (PGMs) are fast and simple to implement due

to the low cost for computing the projection.

iv) For communication signals, the robust constant modulus beamformer (RCMB)

is proposed by exploiting the property of constant modulus or finite alphabet.

The RCMB, which minimizes a combination of the ℓ4- and ℓ2-norm of the out-

put, can be viewed a special case of the QCMD beamformer.

The remainder of this chapter is organized as follows. In Section 3.2, the signal

model for beamforming is given and the MVDR, minimum dispersion distortionless

response (MDDR), and LCMD beamformers are briefly reviewed. In Section 3.3,

we present the fast PGMs for mismatch-robust beamforming. Simulation results are

provided in Section 3.5. Finally, conclusions are drawn in Section 3.6.

3.2 MDDR and LCMD Beamformers

Instead of the minimum variance (MV) criterion, the MDDR beamformer [49] solves

the following linearly constrained optimization problem:

min
www

E
{
|wwwHxxx(n)|p

}
s.t. aaaHwww = 1

(3.1)
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where p ≥ 1. Clearly, the MDDR beamformer reduces to the MVDR beamformer

for p = 2. The quantity E{|y(n)|p} is called dispersion of y(n) in statistic literature,

which is a generalization of variance [49]. Therefore, we call the solution of (3.1) as

the minimum dispersion beamformer. Similar to the MVDR beamformer, the MDDR

beamformer is not robust to steering vector mismatch. The LCMD beamformer [49],

which is an extension of the MDDR beamformer in (3.1) from a single linear constraint

to multiple linear constraints, is obtained by solving

min
www

E
{
|wwwHxxx(n)|p

}
s.t. CCCHwww = ggg

(3.2)

where CCC = [ccc1, · · · , cccK ] ∈ CM×K contains K steering vectors and ggg = [g1, · · · , gK ]T

is usually taken as the vector with all elements being unit. By selecting, as the

columns of CCC, the steering vectors corresponding to a small spread of angles around

the nominal AOA, the LCMD beamformer can handle the AOA mismatch. When

the number of linear constraints is K = 1, the LCMD beamformer reduces to the

MDDR beamformer. Efficient numerical algorithms for solving (3.1) and (3.2) have

been developed in [49].

The LCMD beamformer broadens the mainbeam and hence enhances the robust-

ness against the AOA mismatch. However, there are two drawbacks with the LCMD

beamformer. On one hand, as more linear constraints are added, the beamformer

loses more degrees of freedom for interference suppression although the robustness is

enhanced. On the other hand, the LCMD beamformer can only handle AOA mis-

match but not random mismatch.
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3.3 QCMD Beamformer

In this section, we formulate the QCMD beamformer and derive the fast PGM for

the resulting constrained optimization problem.

3.3.1 Formulation of QCMD

Most of the existing robust beamforming techniques are based on minimizing the

variance of the output [8]. They belong to the class of second-order statistics meth-

ods. The MV criterion is statistically optimal for Gaussian signals and noise because

the first- and second-order statistics of a Gaussian distribution contain all necessary

statistical information. Nevertheless, many real-world signals encountered in radar,

sonar, wireless communications, and navigation are sub-Gaussian distributed [37,41].

For sub-Gaussian signals, the higher-order (larger than 2) statistics contain useful

information and can be exploited to improve the beamforming performance [44]. To

utilize the higher-order statistics, we suggest to minimize the ℓp-norm with p > 2 of

the output instead of minimizing the variance.

Stacking N samples of the beamformer output y(n) = wwwHxxx(n) into a vector

yyy = [y(1), · · · , y(N)]T , one has the following matrix-vector formulation:

yyy∗ =XXXHwww. (3.3)

The minimum dispersion beamformer minimizes the pth power of the ℓp-norm of the

output, i.e.,

min
www
∥XXXHwww∥pp (3.4)
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where the ℓp-norm of the complex-valued vector yyy is defined as

∥yyy∥p =

(
N∑

n=1

|y(n)|p
)1/p

(3.5)

with |y(n)| =
√

Re2(y(n)) + Im2(y(n)) being the modulus of y(n). The guideline on

selecting an appropriate value of p is given in [49]. For Gaussian signals, the optimal

p is 2. For sub-Gaussian signals, p > 2 will achieve better performance, whereas

p < 2 is preferred for super-Gaussian signals. The optimal value of p depends on the

probability density function (PDF) of the signals. For a large number of modulated

signals in radar, sonar, and wireless communications, which are considered in this

chapter, p > 2 will lead to a performance improvement.

Due to a variety of mismatches, the steering vector aaa is not known exactly. The

actual steering vector is expressed as

ccc = aaa+ eee (3.6)

where eee ∈ CM is the steering vector error. It is assumed that the error is in an

uncertainty set. The goal of robust beamforming is to ensure that the magnitude

response does not attenuate in the uncertainty set. In [18], the uncertainty region is

modeled as a sphere, that is,

E = {eee| ∥eee∥ ≤ ε} (3.7)

where ε is the radius of the sphere. In [24], the uncertainty region is modeled as an

ellipsoid. Under the spherical or ellipsoidal model, the robust MV beamformer can

be obtained by solving an SOCP problem [18].
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The proposed robust beamformer minimizes the ℓp-norm of the output while re-

quiring the magnitude of the array response to exceed unity for all eee ∈ E . This can

be written as the following optimization problem:

min
www
∥XXXHwww∥pp

s.t.
∣∣(aaa+ eee)Hwww

∣∣ ≥ 1, for all eee ∈ E .
(3.8)

The constraint
∣∣(aaa+ eee)Hwww

∣∣2 = wwwH(aaa+eee)(aaa+eee)Hwww ≥ 1 is a quadratic constraint of www.

Therefore we refer to the solution of (3.8) as QCMD beamformer. However, directly

solving (3.8) is not easy because there are infinitely many constraints and they are

nonconvex as well.

Following the strategy of [18], we can seek a tight lower bound of
∣∣(aaa+ eee)Hwww

∣∣
using the triangle inequality and Cauchy-Schwartz inequality

∣∣(aaa+ eee)Hwww
∣∣ ≥ |aaaHwww| − |eeeHwww|
≥ |aaaHwww| − ∥eee∥∥www∥

≥ |aaaHwww| − ε∥www∥.

(3.9)

Replacing
∣∣(aaa+ eee)Hwww

∣∣ in (3.8) with this lower bound, (3.8) can be converted into

min
www
∥XXXHwww∥pp

s.t. |aaaHwww| − ε∥www∥ ≥ 1.

(3.10)

Note that the objective function of (3.10) is phase-invariant w.r.t. www. Therefore, we

can find www which satisfies |aaaHwww| = Re(aaaHwww) and Im(aaaHwww) = 0 while the objective
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function remains unchanged. That is, (3.10) is equivalent to

min
www
∥XXXHwww∥pp

s.t. Re(aaaHwww) ≥ ε∥www∥+ 1.

(3.11)

It is clear that (3.11) is a convex optimization because the objective function is convex

and the constraint constitutes a convex set. The solution of (3.11) gives the QCMD

beamformer, which reduces to the RMVB of [18] for p = 2. The case of p = 2

will lead to an SOCP. Although there exist well-established IPM for solving (3.11)

with arbitrary value of p ≥ 1, it will result in a high computational complexity if

the standard IPM is directly employed. In the next subsection, we will develop a

gradient projection algorithmic framework for solving (3.11), which has a quite low

complexity.

3.3.2 Fast PGM

1) Property of Constraint Set: The constraint in (3.11) is a convex set, which is

denoted by

C =
{
www
∣∣Re(aaaHwww) ≥ ε∥www∥+ 1

}
. (3.12)

By this way, (3.11) is written as

min
www

(
fp(www)

∆
= ∥XXXHwww∥pp

)
s.t. www ∈ C.

(3.13)

Before discussing the algorithm for solving (3.13), we first need to investigate whether

the constrained optimization problem of (3.13) has a solution. In other words, the
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first task is to check if (3.13) is feasible. This problem is equivalent to determining

whether the convex set C is nonempty. The following proposition gives the answer to

this question.

Proposition 1: If ε ≥ ∥aaa∥, then C is empty; otherwise C is nonempty and has

infinitely many elements.

Proof: By Cauchy-Schwartz inequality, we have

Re(aaaHwww) ≤ |aaaHwww| ≤ ∥www∥∥aaa∥. (3.14)

If C is nonempty, it requires

∥www∥∥aaa∥ ≥ ε∥www∥+ 1 (3.15)

which yields

ε ≤ ∥aaa∥ − 1

∥www∥
< ∥aaa∥. (3.16)

If ε ≥ ∥aaa∥, it contradicts with (3.16). This means that there is no such a www satisfying

(3.16) and hence C is empty. If ε < ∥aaa∥ and the two inequalities in (3.14) are tight,

then all the vectors satisfying

∥www∥ ≥ 1

∥aaa∥ − ε
(3.17)

are in C. Therefore, C is nonempty. To be more specific, if www = βaaa with β ∈ C

being a scalar, the second inequality in (3.14), i.e., the Cauchy-Schwartz inequality,

is tight. In addition, the tightness of the inequality Re(aaaHwww) ≤ |aaaHwww| requires aaaHwww

is a positive real-valued number. Therefore, we have aaaHwww = β∥aaa∥2 ∈ R+. Then the

scalar β is a positive real number and hence ∥www∥ = β∥aaa∥. Substituting this result

72



Ph.D. Thesis - Xue Jiang McMaster - Electrical Engineering

into (3.17) yields

β ≥ 1

∥aaa∥(∥aaa∥ − ε)
. (3.18)

It is clear that www = βaaa with all β satisfying (3.18) are in C. That is, C is nonempty

and it contains infinitely many elements. �

In particular, the point

www =
aaa

∥aaa∥(∥aaa∥ − ε)
(3.19)

lies in the boundary of C. Proposition 1 provides a guideline for selecting the param-

eter ε. It requires ε < ∥aaa∥ to make the optimization problem of (3.13) feasible. From

now on, we assume that ε < ∥aaa∥ is satisfied.

The following proposition is a direct conclusion followed from Proposition 1 and

the property of projection onto convex sets (POCS) [64].

Proposition 2: The convex set C is nonempty, closed, and unbounded if ε < ∥aaa∥.

Therefore, there exists a unique projection onto C for any vector zzz ∈ CM .

The operator of the projection onto the convex set C is denoted by PC(·).

2) Framework of PGM: We propose to use the PGM to solve the constrained op-

timization problem of (3.13). The gradient of the objective fp(www) w.r.t. the complex

vector www ∈ CM is defined as

∇fp(www) =
∂fp(www)

∂www∗ =

[
∂fp
∂w∗

1

, · · · , ∂fp
∂w∗

M

]T
(3.20)

where

∂fp
∂w∗

i

=
1

2

(
∂fp

∂Re(wi)
+ j

∂fp
∂Im(wi)

)
, i = 1, · · · ,M. (3.21)
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By this definition, we compute the gradient of fp(www) as

∇fp(www) =
p

2
XXXDDD(www)XXXHwww (3.22)

where

DDD(www) = diag
{
|y(1)|p−2, · · · , |y(N)|p−2

}
. (3.23)

Note that DDD depends on the unknown www because it is related to yyy. Therefore, it is a

function of www, which is written as DDD(www).

In order to solve (3.13), the PGM generates a sequence {wwwk} ∈ CM (k = 1, 2, · · · )

through the following iterative procedure:

Initialization: Take www0 ∈ C, e.g., initialize www according to (3.19).

Iterative step: If the convergence condition is satisfied, then stop. Otherwise,

let

uuuk = PC
(
wwwk − µk∇fp(wwwk)

)
(3.24)

∆wwwk = uuuk −wwwk (3.25)

wwwk+1 = wwwk + αk∆wwwk (3.26)

where µk > 0, 0 ≤ αk ≤ 1 are positive step sizes, and ∆wwwk = uuuk − wwwk denotes the

search direction in the kth iteration.

It is clear that wwwk+1 belongs to the constrained set C for all k due to αk ∈ [0, 1].

That is, the sequence {wwwk} is feasible. The step sizes can be determined by line

search. There are three different PGMs according to different selections of the step

sizes µk and αk, as follows.
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(a) PGM–1: The first step size is fixed as µk = 1 and the second one is determined

by the exact line search

αk = argmin
α≥0

fp
(
wwwk + α∆wwwk

)
. (3.27)

Note that the one-dimensional (1-D) function f̃p(α)
∆
= fp

(
wwwk + α∆wwwk

)
is convex

w.r.t. α. The global minimizer of α is guaranteed to be found. Classical exact

line search techniques such as the golden section search or tangential method [63]

can be applied to find this global minimizer. The line search has a computational

cost of O(N). In optimization literature, the PGM–1 is referred to as Armijo

search along the feasible direction [64,65].

(b) PGM–2: The second step size is fixed as αk = 1. Then the iteration is simplified

to

wwwk+1 = PC
(
wwwk − µk∇fp(wwwk)

)
. (3.28)

Note that the 1-D function ˜̃fp(µ)
∆
= fp

(
PC
(
wwwk − µ∇fp(wwwk)

))
is not convex

w.r.t. µ even though fp(www) is convex w.r.t. www. Therefore, it is difficult to find

the global minimum of ˜̃fp(µ) and to perform an exact line search to determine

the optimal step size µk. The non-convexity of ˜̃fp(µ) is due to the nonlinearity

of the projection operator PC(·). Instead, it chooses µk to sufficiently decrease

the objective function by an inexact line search, e.g., backtracking line search

[62]. The procedure of backtracking line search is listed in Algorithm 3. The

parameter γ ∈ (0, 1). Typical algorithmic parameters are µ0 = 1, γ = 0.5, and

δ = 0.1. The PGM–2 is referred to as Armijo search along the boundary of

C [64, 65].
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(c) PGM–3: It is just a combination of PGM–1 and PGM–2. To be specific, the

PGM–3 determines the first step size µk using the backtracking line search of

PGM–2 and the second one αk via the exact line search of PGM–1.

Algorithm 3 Backtracking line search

Initialize: µ = µ0.
for i = 1, 2, · · · do

Compute wwwk+1 = PC
(
wwwk − µ∇fp(wwwk)

)
;

Break if fp(www
k+1) < fp(www

k) + δ · 2Re
(
∇fp(wwwk)H

(
wwwk+1 −wwwk

))
µ← γµ;

end for
Output: µk = µ.

Some remarks on the PGMs are listed in the following.

Remark 1: It can be verified that Re
(
∇fp(wwwk)H

(
wwwk+1 −wwwk

))
< 0 using the prop-

erty of the POCS [64]. Hence, the three PGMs strictly decrease the objective function

in each iteration. In other words, the three algorithms are descent methods. In addi-

tion, the objective function is bounded below zero. Therefore, the three algorithms

converge. Furthermore, it has been proved that all the three PGMs converge to the

global minimum for convex optimization. For the proof of the global convergence of

the PGM, the interested reader is referred to [65,66].

Remark 2: From the numerical results shown in Fig. 3.1, we see that the PGM–1

has a much slower convergence rate compared with PGM–2 and PGM–3. PGM–2 and

PGM–3 have similar convergence performance. This result implies that selection of

µk is more important than that of αk. As can be seen from Fig. 3.2, the three PGMs

need less than 10 iterations to achieve a satisfactory signal-to-interferences-plus-noise

ratio (SINR) performance.

Remark 3: PGM–1 only needs to compute the projection onto C once while many

76



Ph.D. Thesis - Xue Jiang McMaster - Electrical Engineering

projections are possibly required for PGM–2 and PGM–3 in the kth iteration. In the

next subsection, we will prove that the projection PC(·) has a closed-form expression

and is easy to compute with a low complexity. PGM–2 and PGM–3 are competitive

since PC(·) is very easy to calculate. 3) Closed-Form of Projection: The remaining

problem is to efficiently compute the projection PC(·). For any vector zzz /∈ C, the

projection onto C is the point in C that is closest to zzz, which is the solution of the

optimization

min
www
∥www − zzz∥2

s.t. Re(aaaHwww) ≥ ε∥www∥+ 1.

(3.29)

Note that zzz is not in C. Its projection onto C, i.e., the optimal solution of (3.29), must

lie in the boundary of C. Thus, (3.29) with the inequality constraint is equivalent to

the following one with an equality constraint

min
www
∥www − zzz∥2

s.t. Re(aaaHwww) = ε∥www∥+ 1.

(3.30)

Denote www = wwwR + jwwwI , zzz = zzzR + jzzzI , aaa = aaaR + jaaaI , and the expanded real-valued

vectors

w̄ww =

 wwwR

wwwI

 , z̄zz =

 zzzR

zzzI

 , āaa =

 aaaR

aaaI

 ∈ R2M . (3.31)

By exploiting ∥www − zzz∥2 = ∥w̄ww − z̄zz∥2, ∥www∥2 = ∥w̄ww∥2, and Re
(
aaaHwww

)
= aaaTRwwwR + aaaTIwwwI =

āaaTw̄ww, the optimization problem of (3.30) with complex-valued variables is converted
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into the one with real-valued variables

min
w̄ww
∥w̄ww − z̄zz∥2

s.t. āaaTw̄ww = ε∥w̄ww∥+ 1.

(3.32)

If the optimal solution of (3.32) denoted by w̄ww⋆ is obtained, we can at once construct

the projection www⋆ = PC(zzz). Note that the optimal point w̄ww⋆ is unique because the

projection is unique. The following proposition describes how to efficiently compute

the optimal solution of (3.32).

Proposition 3: The optimal solution of (3.32) has the closed-form

w̄ww⋆ =
1

1 + λ⋆ε2

(
z̄zz +

λ⋆ (r − 1− λ⋆ε2)

1 + λ⋆ (ε2 − ∥āaa∥2)
āaa

)
(3.33)

where

r = āaaT z̄zz (3.34)

is the inner product of āaa and z̄zz, and λ⋆ is the optimal Lagrangian multiplier (dual

variable) of the optimization problem (3.32). The optimal λ⋆ is the unique positive

real root of the following quartic equation

g(λ)
∆
= g4λ

4 + g3λ
3 + g2λ

2 + g1λ+ g0 = 0 (3.35)

78



Ph.D. Thesis - Xue Jiang McMaster - Electrical Engineering

where the polynomial coefficients have the forms of

g4 = ε6
(
∥āaa∥2 − ε2

)
g3 = 2ε4

(
∥āaa∥2 − 2ε2

)
g2 = ε2

(
∥āaa∥2 + 2(r − 3)ε2 −

(
∥āaa∥2 − ε2

)
r2

+
(
∥āaa∥2 − ε2

)2 ∥z̄zz∥2)
g1 = 2ε2

(
2r −

(
∥āaa∥2 − ε2

)
∥z̄zz∥2 − 2

)
g0 = ε2∥z̄zz∥2 − (r − 1)2.

(3.36)

It is well known that the solution of quartic equation has an analytic form [67].

Therefore λ⋆ can be obtained in closed-form with a low complexity ofO(1). According

to (3.33), the projection has a closed-form, whose computational complexity is only

O(M).

Proof: For the purpose of computational simplicity, we take square on both sides

of the constraint āaaTw̄ww − 1 = ε∥w̄ww∥ and consider the more loosened problem

min
w̄ww
∥w̄ww − z̄zz∥2

s.t.
(
āaaTw̄ww − 1

)2
= ε2∥w̄ww∥2.

(3.37)

It can be seen later that there are two real-valued Karush-Kuhn-Tucker (KKT) points

of (3.37). One corresponds to the original constraint āaaTw̄ww − 1 = ε∥w̄ww∥ and the other

corresponds to āaaTw̄ww−1 = −ε∥w̄ww∥. The optimal solution of (3.32) w̄ww⋆ is the KKT point

associated with the original constraint. The Lagrangian function of the optimization
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problem (3.37) is

L(w̄ww, λ) = ∥w̄ww − z̄zz∥2 + λ
(
ε2w̄wwTw̄ww − w̄wwT āaaāaaTw̄ww + 2w̄wwT āaa− 1

)
. (3.38)

According to the KKT condition [62], the optimal point satisfies

∂L(w̄ww, λ)
∂w̄ww

= 2(w̄ww − z̄zz) + 2λ
(
ε2w̄ww − āaaāaaTw̄ww + āaa

)
= 000 (3.39)

which leads to

w̄ww =
((
1 + λε2

)
III − λāaaāaaT

)−1
(z̄zz − λāaa). (3.40)

Applying the matrix inversion lemma [68] yields

((
1 + λε2

)
III − λāaaāaaT

)−1

=
1

1 + λε2

(
III +

λāaaāaaT

1 + λ (ε2 − ∥āaa∥2)

)
.

(3.41)

Substituting (3.41) into (3.40), we obtain

w̄ww =
1

1 + λε2

(
z̄zz − λāaa+

λ (r − λ∥āaa∥2)
1 + λ (ε2 − ∥āaa∥2)

āaa

)
=

1

1 + λε2

(
z̄zz +

λ (r − 1− λε2)

1 + λ (ε2 − ∥āaa∥2)
āaa

)
.

(3.42)

Substituting (3.42) back into the constraint in (3.37) and performing some manip-

ulations, we can derive that the optimal Lagrangian multiplier satisfies the quartic

equation of (3.35) with the polynomial coefficients shown in (3.36).

The quartic equation of (3.35) has a pair of complex conjugate roots, a positive

real root and a negative real root. The two complex roots are not of interest since
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the optimal solution is real-valued. The negative real root corresponds to āaaTw̄ww− 1 =

−ε∥w̄ww∥ while the positive real root corresponds to the original constraint āaaTw̄ww − 1 =

ε∥w̄ww∥. Thus, the optimal Lagrangian multiplier λ⋆ is taken as the unique positive real

root. �

It is emphasized that the optimal primal and dual variables w̄ww⋆ and λ⋆ has a

closed-form solution because the quartic equation has analytic roots. The proposed

PGMs are very fast since the projection onto the constraint set is easy to compute.

Now it is clear that the dominant cost of the PGMs is to calculate the gradient of

(3.22) and evaluate the objective function, which has a complexity of O(NM) in each

iteration. However, the complexity of the IPM in each iteration is max (O(N3),O(M3))1,

which is much higher than the PGMs.

3.3.3 ℓ∞-Norm QCMD Beamformer

The proposed gradient projection algorithm is applicable to any finite value of 1 <

p <∞. However, it does not work for the case of p =∞ because the ℓ∞-norm func-

tion is non-differentiable2. The ℓ∞-norm QCMD beamformer solves the optimization

problem

min
www
∥XXXHwww∥∞

s.t. Re(aaaHwww) ≥ ε∥www∥+ 1

(3.43)

where the ℓ∞-norm of the complex-valued vector yyy = yyyR + jyyyI is defined as

∥yyy∥∞ = lim
p→∞
∥yyy∥p = max

1≤n≤N
|y(n)| (3.44)

1Since the sample size N is usually lager than the sensor number M , the complexity of the IPM
in each iteration is max

(
O(N3),O(M3)

)
= O(N3).

2There is no definition of gradient for the non-differentiable functions and hence the gradient
projection cannot be applied.
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with the modulus being |y(n)| =
√
y2R(n) + y2I (n).

By splitting the complex-valued variables into real-valued ones, the problem of

(3.43) can be converted into the following SOCP:

min
w̄ww,yyyR,yyyI ,t

t

s.t.
√

y2R(n) + y2I (n) ≤ t, n = 1, · · · , N XXXR XXXI

XXXI −XXXR


T

w̄ww =

 yyyR

yyyI


āaaTw̄ww ≥ ε∥w̄ww∥+ 1

(3.45)

where t ∈ R+ is an auxiliary variable, XXX = XXXR + jXXXI , w̄ww and āaa are defined in

(3.31). The IPM is required to solve the SOCP of (3.45), which results in a high

computational complexity. One can use a large enough p to approximate the ℓ∞-

norm to avoid solving the SOCP. Simulation results demonstrate that p = 20 provides

performance similar to that of the ℓ∞-norm. It should be pointed out that too large

values for p are not advisable because it may result in overflow when computing the

pth power of a number.

Note that the ℓ∞-norm QCMD beamformer is different from the recently proposed

robust linear programming beamformer (RLPB) [50], where an ℓ∞-norm minimization

criterion is also used. The ℓ∞-norm adopted by the RLPB is based on the ℓ∞-modulus

of the complex numbers but the QCMD beamformer uses the conventional modulus.

Additionally, the QCMD beamformer makes use of a spherical uncertainty set while

the RLPB adopts a rhombic uncertainty region.
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3.4 Robust Constant Modulus Beamformer

The QCMD beamformer exploits the property of non-Gaussianity or finite alphabet

of the signals. This property has also been widely used in blind equalization. By

borrowing the idea of the most representative blind equalization techniques, i.e., the

constant modulus algorithm (CMA) [37,69], we propose to use the following constant

modulus (CM) criterion

min E
{(
|y(n)|2 − κ

)2}
(3.46)

for beamforming, where κ > 0 is the dispersion constant [37] defined as

κ =
E {|s(n)|4}
E {|s(n)|2}

. (3.47)

Different constellations may have different dispersion constants. Expanding (4.30)

and replacing the expectation by the sample mean, the CM criterion is equivalent to

minimizing

fCM(www) = ∥yyy∥44 − 2κ∥yyy∥2 = ∥XXXHwww∥44 − 2κ∥XXXHwww∥2 (3.48)

where ∥yyy∥4 is the ℓ4-norm of yyy. Therefore the CM beamformer minimizes a combi-

nation of the ℓ4-norm and ℓ2-norm, which exploits both the fourth- and second-order

statistics. Since the objective function of the CM criterion also describes the dis-

persion of the recovered signal, the CM beamformer still belongs to the minimum

dispersion beamforming. By imposing the constraint in (3.11), we formulate the
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following optimization problem

min
www

fCM(www)

s.t. Re(aaaHwww) ≥ ε∥www∥+ 1

(3.49)

whose solution corresponds to the RCMB. Note that fCM(www) is nonconvex and it is

difficult to find the global minimum of (3.49). This constitutes a drawback of the

RCMB. Instead of seeking the global minimum, we can employ the three PGMs to

obtain a stationary point of (3.49). Simulation results demonstrate that a stationary

point of (3.49) can provide a satisfactory performance. The PGMs for solving (3.49)

are almost the same as those for solving (3.11) in Section 3.3. That is, we just replace

the gradient of fp(www) by the gradient of fCM(www), which is

∇fCM(www) = 2XXX (DDD(www)− κIII)XXXHwww. (3.50)

Remark 4: For common digital modulated communication signals, such as PSK

and QAM, we find that the performance of the RCMB is better than that of QCMD

beamformer with p = 4 but is inferior to that of p = 8. This is because the RCMB

exploits a combination of the fourth- and second-order statistics, which is helpful to

improve the performance compared with the use of only fourth-order statistics.

3.5 Simulation Results

Similar parameter settings as in [26] and [24] are taken in the simulations. A uniform

linear array (ULA) of M = 10 omnidirectional sensors with a half-wavelength spacing
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is considered. For ULA, the steering vector has the following form:

aaa(θ) =
[
1, ej(2π/ζ)d sin θ, · · · , ej(M−1)(2π/ζ)d sin θ

]T
(3.51)

where θ is the AOA, d is the inter-sensor spacing, and ζ is the wavelength. Three

zero-mean sub-Gaussian signals, namely, the desired source s(n) and two uncorrelated

interferences s1(n) and s2(n), impinge on the array. Unless stated otherwise, the

AOA of the desired signal is θ = 43◦ and the AOAs of the two interferences are

θ1 = 30◦ and θ2 = 75◦. We consider applications in communications because most of

the corresponding signals are sub-Gaussian. We take quadrature phase shift keying

(QPSK) scheme as example. That is, the desired signal and interferences adopts

QPSK modulation while the noise is Gaussian distributed. The SNR is defined as

SNR =
σ2
s

σ2
v

(3.52)

where σ2
s and σ2

v are the variances of the desired signal and additive noise, respectively.

The two interferences are stronger than the desired signal with variances being σ2
1 =

σ2
2 = 10σ2

s . That is, they are 10 dB above the desired signal. We adopt the output

SINR as the performance measure of beamforming, which is defined as

SINR =
E
{∣∣s(n)wwwHaaa

∣∣2}
E
{
|wwwH(iii(n) + vvv(n))|2

} =
σ2
s

∣∣wwwHaaa
∣∣2

wwwHRRRi+nwww
. (3.53)

The output SINRs of six robust beamformers, namely, the subspace [15], RMVB

[18,24], general-rank [21], RCMB, LCMD [49] and QCMD beamformers with different

values of p, are compared. Four values of p = 4, 8, 20, and ∞ are taken for the
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LCMD and QCMD beamformers. Note that the results of p < ∞ are obtained

by using the proposed PGM while those of p = ∞ are computed by solving the

SOCP of (3.45) using the IPM. The upper bound of the SINR is the maximum

eigenvalue of the matrix σ2
sRRR

−1
i+naaaaaa

H , which is also provided for comparison. Since the

subspace beamformer requires the dimension of the signal-plus-interference subspace,

the minimum description length (MDL) principle [48] is adopted to estimate this

quantity. When plotting the SINR curves, 200 Monte Carlo trials are performed for

their computation.

3.5.1 Convergence Behavior of PGM

We first investigate the convergence behavior of three PGMs. Figs. 3.1 and 3.2 plot

the objective function and output SINR versus the number of iterations, respectively.

The three PGMs take the same initial value of (3.19). Three typical values of p = 4,

8, and 20 are tried. The global minimum of the objective function is also plotted

in Fig. 3.1. The upper bound of the SINR and the output SINR of the RMVB are

plotted in Fig. 3.2 for the purpose of comparison. As can be seen, the PGM–1 has

a much slower convergence rate to the global minimum compared with PGM–2 and

PGM–3. PGM–2 and PGM–3 have similar convergence rate. The three PGMs need

less than 10 iterations to achieve a satisfactory SINR performance. Since the output

SINR reflects the performance of a beamformer, it requires no more than 10 iterations

of the PGMs for beamforming.
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Figure 3.1: Objective function versus number of iterations.
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Figure 3.2: Output SINR versus number of iterations.
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3.5.2 Running Time Comparison

In this simulation, we compare the running time of the proposed PGMs with a stan-

dard convex optimization package for solving (3.11). The package for convex opti-

mization is CVX version 1.22, available online at [70]. Since the three PGMs have

similar computational complexity, we only list the results of PGM–2 as example. We

run the two methods in MATLAB on a computer with a 2.2 GHz CPU and 2 GB

memory. The sensor number is fixed to M = 10 while the received signal length N

takes values of 100, 500, 1000, 5000, and 104. The running times (in seconds) of the

two methods for p = 4, 8, and 20, which are based on an average of 20 independent

runs, are listed in Tables 3.1, 3.2 and 3.3, respectively.

It can be observed that the proposed PGM is much faster than the CVX package

using standard IPM, especially for large N . The CVX package is too time-consuming

when the problem size is large. The running time of the PGM is approximately

linear with N while that of the CVX is cubic with N . This agrees with the earlier

conclusion that the PGM and IPM have the computational complexities of O(NM)

and O(N3) in one iteration, respectively. Since the complexity of the proposed PGM

is significantly smaller, it is very efficient for solving the QCMD beamforming problem

with large sample size N .

Table 3.1: Running time of PGM–2 and CVX for p = 4.
N 100 500 1000 5000 104

PGM–2 0.0399 0.2324 0.3058 1.3884 2.7043
CVX 0.5321 15.4722 125.795 1.592× 104 Out of memory
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Table 3.2: Running time of PGM–2 and CVX for p = 8.
N 100 500 1000 5000 104

PGM–2 0.0416 0.1685 0.2855 1.4586 2.9593
CVX 0.5980 16.321 135.602 1.735× 104 Out of memory

Table 3.3: Running time of PGM–2 and CVX for p = 20.
N 100 500 1000 5000 104

PGM–2 0.0572 0.1981 0.3869 1.9758 3.9577
CVX 0.7609 18.789 147.613 1.968× 104 Out of memory

3.5.3 Random Steering Vector Mismatch

In this subsection, we consider the case of random steering vector mismatch, where the

error eee is modeled as zero-mean circular Gaussian distributed variables with variance

σ2
e , that is,

eee ∼ CN
(
000, σ2

eIIIM
)
. (3.54)

According to the central limit theorem [71], the Gaussian distribution can well model

the arbitrary random model errors. The RMVB, QCMD, and RCMB take the same

algorithmic parameter ε = 5.6σe such that the probability of the steering vector lying

in the uncertainty region is 95% [50]. The parameter for the general-rank beamformer

is εF = 2
√
Mε. Note that the LCMV and LCMD beamformers are designed only for

AOA mismatch and cannot handle random mismatch. Therefore, we do not include

the results of the LCMV and LCMD beamformers in this experiment.

The relative perturbation

Ptb =
tr(σ2

eIIIM)

∥aaa∥2
= σ2

e (3.55)

describes the quantitative steering vector error. The steering vector perturbation is
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first fixed to Ptb = −10 dB while the SNR and N vary. Fig. 3.3 plots the output SINR

versus SNR with N = 100. Fig. 3.4 displays the output SINR versus N at SNR =

15 dB. Then the SNR is fixed to 15 dB and N = 100 while the array perturbation

varies from −30 dB to −6 dB. The −6 dB array perturbation corresponding to σe =

0.5 causes a large steering vector error. Fig. 3.5 shows the SINR versus steering vector

perturbation.

It can be observed from Figs. 3.3 to 3.5 that the QCMD beamformer has the

best performance for random steering vector mismatch. Generally speaking, the

performance of QCMD beamformer improves as p increases. Therefore, a larger value

of p will improve the beamforming performance for sub-Gaussian communication

signals. The QCMD beamformer of p = 20 significantly outperforms other robust

beamforming approaches. For example, as shown in Fig. 3.5, the output SINR of

the QCMD beamformer is about 8 dB higher than those of robust minimum variance

beamformers. It maintains satisfactory performance with large steering vector errors

and smaller numbers of samples. Furthermore, only the performance of the QCMD

beamformer can approach the optimal bounds with high SNR, large sample size, or

small amount of perturbation.

Next, we investigate the impact of the interference number on beamforming perfor-

mance with SNR = 15 dB, Ptb = −10 dB, and N = 100. The AOA of the desired sig-

nal is fixed to 43◦ while that of the ith (1 ≤ i ≤ I) interference is θi = −30◦+(i−1)10◦.

The power of all interferers is the same and 10 dB higher than that of the desired

signal. We observe that the performance of the subspace beamformer substantially

degrades for larger number of signals. Fig. 3.6 shows the output SINR versus inter-

ference number. It can be observed that the performance of subspace, RMVB, and
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Figure 3.3: Output SINR versus SNR with random steering vector mismatch.
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Figure 3.4: Output SINR versus number of samples with random steering vector
mismatch.
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Figure 3.5: Output SINR versus perturbation amount of steering vector.
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Figure 3.6: Output SINR versus number of interferers.

general-rank beamformers dramatically degrades as the number of interferences in-

creases while the QCMD beamformer is less sensitive to the number of interferences.

3.5.4 AOA Mismatch

We then consider the steering vector mismatch induced by AOA estimation error. The

assumed AOA of the desired signal is 45◦ but the true AOA is 45◦+∆θ with ∆θ being

the AOA estimation error. The maximal possible AOA deviation for all beamformers

is assigned as 3◦. In other words, the true AOA lies in the interval [42◦, 48◦]. Hence for

the LCMV and LCMD beamformers, two linear constraints force the responses of the
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signals from 42◦ and 48◦ to be unity. For fair comparison, all beamforming methods

use the same a priori information on the maximal possible AOA mismatch. Therefore

the algorithm parameter for the RMVB and QCMD beamformer is determined as

ε = max
42◦≤θ≤48◦

∥aaa(θ)− aaa(45◦)∥ = 1.95 (3.56)

while for the general-rank beamformer

εF = max
42◦≤θ≤48◦

∥aaa(θ)aaaH(θ)− aaa(45◦)aaaH(45◦)∥F = 4.73. (3.57)

The SNR is fixed to 15 dB and N = 100. Fig. 3.7 plots the SINR versus AOA

mismatch, when the AOA deviation varies from −3◦ to 3◦ with an interval 0.5◦. The

results of Fig. 3.7 illustrate that there is a substantial performance improvement from

the LCMD to QCMD by adopting the quadratic constraint instead of multiple linear

constraints. Again, the QCMD beamformer with relative large value of p outperforms

other robust beamformers and approaches the optimal bound.

3.6 Conclusion

A QCMD beamformer that minimizes the ℓp-norm of the output while constraining

the magnitude response of any steering vector in a spherical uncertainty region to

exceed unity is proposed. As a major contribution of this chapter, the property of

the convex constraint set is analyzed and a generic gradient projection framework

which includes three PGMs is developed for efficiently solving the resulting con-

strained ℓp-minimization problem. The proposed PGMs are quite suitable for the
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Figure 3.7: Output SINR versus AOA mismatch.
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robust beamforming problem with large sample size or large sensor number because

their computational complexity is linearly proportional to the number of samples and

sensors. By implicitly exploiting the higher-order statistics, the QCMD beamformer

substantially improves the SINR performance compared with the MV based robust

beamformers.
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Chapter 4

Robust Beamforming by Linear

Programming

In this chapter, a robust linear programming beamformer (RLPB) is proposed for

non-Gaussian signals in the presence of steering vector uncertainties. Unlike most of

the existing beamforming techniques based on the minimum variance criterion, the

proposed RLPB minimizes the ℓ∞-norm of the output to exploit the non-Gaussianity.

We make use of a new definition of the ℓp-norm (1 ≤ p ≤ ∞) of a complex-valued

vector, which is based on the ℓp-modulus of complex numbers. To achieve robustness

against steering vector mismatch, the proposed method constrains the ℓ∞-modulus

of the response of any steering vector within a specified uncertainty set to exceed

unity. The uncertainty set is modeled as a rhombus, which differs from the spherical

or ellipsoidal uncertainty region widely adopted in the literature. The resulting opti-

mization problem is cast as a linear programming and hence can be solved efficiently.

The proposed RLPB is computationally simpler than its robust counterparts requiring
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solution to a second-order cone programming. We also address the issue of appro-

priately choosing the uncertainty region size. Simulation results demonstrate the

superiority of the proposed RLPB over several state-of-the-art robust beamformers

and show that its performance can approach the optimal performance bounds. Most

of the results of this chapter have been reported in our recent journal paper [50].

4.1 Introduction

A classical data-dependent beamforming method is the minimum variance distor-

tionless response (MVDR) beamformer [11]. It minimizes the output variance while

keeping the response of the desired signal to unity. The MVDR beamformer is based

on the second-order covariance matrix of the interference and noise components. How-

ever, the true covariance matrix is not available in practice and is always substituted

by the sample covariance matrix [7, 8]. The minimum number of samples needed to

achieve a satisfactory performance is given by the well-known Reed-Mallett-Brennan

rule [46]. When the sample number is too small, the performance of the MVDR beam-

former will degrade. Another drawback of the MVDR beamformer is that it is too

sensitive to steering vector mismatches [7]. Therefore, it requires precise knowledge

of the steering vector of the desired signal. Nevertheless, the steering vector is not

known exactly due to a variety of reasons, such as angle-of-arrival (AOA) mismatch,

imperfect array calibration, local scattering, and antenna shape distortion [8]. The

steering vector uncertainty causes the phenomenon of signal cancellation [7, 26] and

may lead to a dramatic performance degradation in the MVDR beamformer.

Several robust beamforming approaches have been proposed to mitigate the steer-

ing vector uncertainties [26]– [35]. The linearly constrained minimum variance (LCMV)
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beamformer [14], which is a direct extension of the MVDR beamformer, handles the

AOA mismatch by imposing multiple linear constraints for a small spread of angles

around the nominal AOA. It broadens the mainbeam and hence enhances the ro-

bustness against the AOA mismatch. However, there are two disadvantages with

the LCMV beamformer. On one hand, as more linear constraints are added, the

beamformer loses more degrees of freedom. That is, although the robustness is en-

hanced, the remaining degrees of freedom for interference suppression is reduced [8].

On the other hand, the LCMV beamformer is designed only for AOA mismatch

but not random mismatch. There are several other techniques developed for deal-

ing with this type of mismatch (see [17, 26] and the references therein). Note that

these methods are restricted to scenarios with AOA mismatch. The eigenspace-based

beamformer [15] is a powerful robust scheme that can cope with arbitrary steering

vector mismatches [18]. It uses only the signal-plus-interference subspace component

of the sample covariance matrix, which can mitigate the adverse effect induced by

the noise subspace disturbance. Hence the subspace scheme outperforms the MVDR

and LCMV beamformers. Nonetheless, it is effective only under high signal-to-noise

ratio (SNR) conditions and with sufficiently large data. Furthermore, it requires that

the dimension of the signal-plus-interference subspace be exactly known and be much

lower than the number of sensors [18]. The diagonal loading method based on regu-

larization [16] is also widely used for robust beamforming. But it is not clear how to

choose an appropriate diagonal loading factor.

In the last decade, many advanced mismatch-robust beamforming approaches

based on convex optimization have been developed [7,18,24,27,28]. In these methods,

the output variance is minimized while the magnitude responses of the steering vectors
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in an uncertainty set are constrained to exceed unity. This idea is called worst-case

performance optimization [18]. The uncertainty set of the steering vector is modeled

as a sphere in [18] and as a more general ellipsoid in the robust minimum variance

beamformer (RMVB) [24]. Employing the spherical or ellipsoidal uncertainty region,

the original nonconvex optimization with infinitely many quadratic constraints is ul-

timately converted into a second-order cone programming (SOCP) problem, which

can be efficiently solved [18]. Furthermore, it has been shown that the RMVB [24]

and robust Capon beamformer (RCB) [20] can be obtained in a form of diagonal

loading using the Lagrangian multiplier technique. Although there is no closed form

expression for the optimal diagonal loading factor, it can be calculated by solving a

nonlinear equation with low computational complexity. In [21], a general-rank sig-

nal model has been considered based on worst-case performance optimization. This

model is applicable to both rank-one (point source) and higher-rank (spread source)

signal models. Multiple quadratic constraints are employed instead of the linear ones

of the LCMV beamformer in [28], which leads to a quadratically constrained quadratic

program (QCQP). The resulting nonconvex QCQP is relaxed to a semidefinite pro-

gramming (SDP) problem [28]. The SDP-based beamformer of [28] can only handle

finite constraints and is only applicable to AOA mismatch. In [27], the robust beam-

forming via worst-case signal-to-interferences-plus-noise ratio (SINR) maximization

can be cast as the SDP. It is more general and flexible in modeling uncertainty than

prior works using a special or ellipsoidal form of uncertainty region.

All robust beamforming techniques mentioned above [14]– [28] are based on the

minimum variance (MV) criterion. In fact, most of the existing robust beamformers

use the MV beamforming framework [8]. The MV criterion is statistically optimal
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under the Gaussian assumption because zero-mean Gaussian distributions are com-

pletely characterized by their second-order statistics. However, real-world signals

often exhibit non-Gaussianity. Many digitally modulated signals arising in radar,

sonar and wireless communications are demonstrated to be sub-Gaussian with kurto-

sis smaller than that of Gaussian distribution [39, 41]. In this case, the higher-order

statistics, which contain useful statistical information, can be utilized to improve

the performance of the beamformer. In [44], a blind beamforming method using

the fourth-order cumulants of the array output is proposed for non-Gaussian sig-

nals. However, it only exploits the fourth-order components while other higher-order

statistics are ignored. In this chapter, we focus on designing a robust beamformer for

sub-Gaussian signals that are frequently encountered in many practical applications.

We introduce the ℓp-modulus (1 ≤ p ≤ ∞) and a new concept of the ℓp-norm of

complex numbers. The minimum ℓ∞-norm criterion is then adopted by the proposed

beamformer, which implicitly exploits the higher-order statistics of the observed sig-

nal.

In contrast to the SOCP-based beamforming approaches that assume a spherical

or ellipsoidal uncertainty set, we model the uncertainty region as a rhombus in which

the ℓ1-norm of the steering vector error is bounded. The issue of determining the size

of the rhombic uncertainty region is discussed for both AOA and random mismatches.

The proposed beamformer minimizes the ℓ∞-norm of the output while the ℓ∞-modulus

response1 of any steering vector in a rhombic set is constrained to exceed unity to

guarantee robustness against mismatch. As a result of the newly defined ℓ∞-modulus

and ℓp-norm as well as the rhombic uncertainty set, the proposed beamformer can

1All existing beamforming methods use the magnitude (modulus) response while the proposed
beamformer adopts the ℓ∞-modulus response.
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be obtained by solving a linear programming (LP) problem. Hence our proposed

technique is referred to as the robust linear programming beamformer (RLPB). The

LP is the simplest convex optimization problem and, thus, can be efficiently solved by

the well-established simplex method [72] or interior point method [55]. Furthermore,

it is known that the computational effort per iteration required by interior point

methods to solve the LP problem is much less than that required to solve SOCP or

SDP problem with similar size and structure [73, 74]. Therefore the proposed RLPB

is computationally simpler than the SOCP and SDP based beamformers.

The remainder of this chapter is organized as follows. In Section 4.2, we present the

RLPB for mismatch-robust beamforming. The issue of algorithm parameter selection

is also discussed. A theoretical analysis of the RLPB from the statistical viewpoint is

given in Section 4.3. Simulation results are provided in Section 4.4 to demonstrate the

effectiveness of the proposed beamformer. Finally, conclusions are drawn in Section

4.5.

4.2 Robust Linear Programming Beamformer

As stated in Chapter 1, the performance of the sample matrix inversion (SMI) beam-

former will degrade when the sample size N is small. Moreover, it is sensitive to

steering vector mismatches and its performance deteriorates in the presence of array

mismatches [7,8]. In this section, we derive the new robust beamformer based on lin-

ear programming. First, we introduce the definitions of the ℓp-modulus of a complex

number and the ℓp-norm of a complex-valued vector, which is used by the proposed

beamforming technique.

104



Ph.D. Thesis - Xue Jiang McMaster - Electrical Engineering

4.2.1 ℓp-Modulus and New Definition of ℓp-Norm

The standard modulus of a complex number z = zR + jzI is defined as

|z| =
√

z2R + z2I . (4.1)

As a generalization of the standard modulus, the ℓp-modulus of z, which is denoted

by |z|p, is defined as [75,76]

|z|p = (|zR|p + |zI |p)
1
p . (4.2)

where p ≥ 1. The standard modulus is a special case of the ℓp-modulus for p = 2. By

the Minkowski inequality [77], the triangle inequality

|z1 + z2|p ≤ |z1|p + |z2|p (4.3)

holds for any z1 and z2. Hence the ℓp-modulus can be viewed as a distance (modulus)

metric of a complex number. The limit of (4.2) as p→∞ yields the ℓ∞-modulus

|z|∞ = lim
p→∞
|z|p = max(|zR|, |zI |). (4.4)

The ℓp-modulus is sensitive to phase rotation for p ̸= 2. That is, |z|p = |zejϕ|p does

not hold for any z and ϕ ∈ [0, 2π). Due to this property, the ℓp-modulus has been

used for automatic phase recovery in blind equalization [75,76].

The standard definition of the ℓp-norm of the complex vector zzz = [z1, · · · , zM ]T ∈
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CM is given by

∥zzz∥ℓp =

(
M∑
i=1

|zi|p
) 1

p

=

(
M∑
i=1

(
Re2(zi) + Im2(zi)

)p/2) 1
p

. (4.5)

The standard ℓp-norm ∥zzz∥ℓp is based on the conventional modulus. The proposed

beamforming technique uses a new definition of the ℓp-norm, which is based on the

ℓp-modulus of (4.2) and has the form of

∥zzz∥p =

(
M∑
i=1

|zi|pp

) 1
p

=

(
M∑
i=1

|Re(zi)|p + |Im(zi)|p
) 1

p

. (4.6)

Note that the new ℓp-norm is denoted as ∥zzz∥p to distinguish it from the conventional

ℓp-norm ∥zzz∥ℓp . The two norms are equivalent only for p = 2. In this case, the two

norms equal the Euclidean norm, that is, ∥zzz∥2 = ∥zzz∥ℓ2 =
√
zzzHzzz. The Euclidean norm

will be denoted as ∥zzz∥ for convenience. The new ℓ∞-norm is obtained by taking the

limit

∥zzz∥∞ = lim
p→∞
∥zzz∥p = max

1≤i≤M
|zi|∞

= max
1≤i≤M

(max(|Re(zi)|, |Im(zi)|)) .
(4.7)

The ℓp-norm ∥zzz∥p of the M -dimensional complex vector zzz = zzzR + jzzzI can be viewed

as the ℓp-norm of the 2M -dimensional real vector z̄zz =
[
zzzTR, zzz

T
I

]T
, namely,

∥zzz∥p = ∥z̄zz∥p. (4.8)

In other words, the new ℓp-norm in CM is equivalent to the standard ℓp-norm in R2M .

Therefore all the properties of a norm such as triangle inequality hold for the new
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ℓp-norm. In particular, we have

∥zzz∥1 =
∥∥∥[zzzTR, zzzTI ]T∥∥∥

1
(4.9)

and

∥zzz∥∞ =
∥∥∥[zzzTR, zzzTI ]T∥∥∥∞ . (4.10)

4.2.2 Formulation

Most of the existing robust beamforming techniques are based on minimizing the

variance of the output [8]. They belong to the class of second-order statistics meth-

ods. The MV criterion is statistically optimal for Gaussian signals and noise because

the first- and second-order statistics of a Gaussian distribution contain all necessary

statistical information. Nevertheless, many real-world signals encountered in radar,

sonar, wireless communications, and navigation are sub-Gaussian distributed [37,41].

For sub-Gaussian signals, the higher-order (larger than 2) statistics contain useful

information and can be exploited to improve the performance of beamforming [44].

To utilize the higher-order statistics, we suggest to minimize the ℓp-norm with p > 2

of the output instead of minimizing the variance. In particular, the proposed beam-

former is based on the minimum of ℓ∞-norm.

Stacking N snapshots of the beamformer output y(n) = wwwHxxx(n) into a vector

yyy = [y(1), · · · , y(N)]T , one has the following matrix-vector formulation:

yyy∗ =XXXHwww (4.11)

where yyy∗ is the conjugate of yyy. The proposed beamformer minimizes the ℓ∞-norm of
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the output, namely,

min
www
∥XXXHwww∥∞. (4.12)

Denoting www = wwwR + jwwwI , XXX = XXXR + jXXXI , and the expanded real-valued matrix and

vector

X̄XX =

 XXXR −XXXI

XXXI XXXR

 ∈ R2M×2N , w̄ww =

 wwwR

wwwI

 ∈ R2M (4.13)

and using (4.10), we convert the ℓ∞-norm of complex variables into that of real

variables

∥XXXHwww∥∞ = ∥X̄XXT
w̄ww∥∞. (4.14)

In practical applications, due to a variety of mismatches, the steering vector aaa is

not known exactly. The actual steering vector is expressed as

ccc = aaa+ eee (4.15)

where eee ∈ CM is the steering vector error. It is assumed that the error is in an

uncertainty set. The goal of robust beamforming is to ensure that the magnitude

response does not attenuate in the uncertainty set. In [18], the uncertainty region is

modeled as a sphere, that is, ∥eee∥ ≤ ε2, where ε2 is the radius of the sphere. In [24],

the uncertainty region is modeled as an ellipsoid. Under the spherical or ellipsoidal

model, the robust beamforming is finally cast as an SOCP problem. Here we propose

a new uncertainty set model, which is given by

E = {eee| ∥eee∥1 ≤ ε1} (4.16)
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where ∥eee∥1 =
∥∥∥[eeeTR, eeeTI ]T∥∥∥

1
with eee = eeeR + jeeeI being the new ℓ1-norm of the complex

vector eee and ε1 describes the size of the uncertainty region. Geometrically, E is a

rhombus.

The robust beamformer minimizes the ℓ∞-norm of the output while requiring the

ℓ∞-modulus of the array response to exceed unity for all eee ∈ E . This can be written

as the following optimization problem:

min
www

(
∥XXXHwww∥∞ = ∥X̄XXT

w̄ww∥∞
)

s.t.
∣∣(aaa+ eee)Hwww

∣∣
∞ ≥ 1, for all eee ∈ E

(4.17)

where the ℓ∞-modulus of a complex number is defined in (4.4). However, it is not

easy to directly solve (4.17) due to the following two difficulties.

1) The constraint is nonconvex.

2) There are infinitely many constraints.

In the next subsection, we will reformulate (4.17) into a linear programming that can

be solved efficiently.

4.2.3 Solution Based on Linear Programming

We first find a tight lower bound of the ℓ∞-modulus of the array response in (4.17).

By the triangle inequality in (4.3), we obtain

∣∣aaaHwww + eeeHwww
∣∣
∞ ≥

∣∣aaaHwww∣∣∞ − ∣∣eeeHwww∣∣∞ . (4.18)
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The term eeeHwww can be expressed using real-valued variables as

eeeHwww = eeeTRwwwR + eeeTIwwwI + j
(
−eeeTIwwwR + eeeTRwwwI

)
. (4.19)

Therefore, ∣∣eeeHwww∣∣∞ =

∥∥∥∥∥∥∥
 eeeTRwwwR + eeeTIwwwI

−eeeTIwwwR + eeeTRwwwI


∥∥∥∥∥∥∥
∞

= ∥EEETw̄ww∥∞ (4.20)

where

EEE =

 eeeR −eeeI

eeeI eeeR

 ∈ R2M×2. (4.21)

Applying the matrix norm inequality [68] yields

∣∣eeeHwww∣∣∞ = ∥EEETw̄ww∥∞ ≤ ∥EEET∥∞∥w̄ww∥∞ = ∥EEE∥1∥w̄ww∥∞ (4.22)

where ∥EEET∥∞ is the maximum row sum matrix norm ofEEET , and ∥EEE∥1 is the maximum

column sum matrix norm of EEE [68]. They are related by ∥EEE∥1 = ∥EEET∥∞. We can

further compute and bound ∥EEE∥1 as

∥EEE∥1 = max


∥∥∥∥∥∥∥
 eeeR

eeeI


∥∥∥∥∥∥∥
1

,

∥∥∥∥∥∥∥
 −eeeI

eeeR


∥∥∥∥∥∥∥
1


=

∥∥∥∥∥∥∥
 eeeR

eeeI


∥∥∥∥∥∥∥
1

= ∥ēee∥1 = ∥eee∥1 ≤ ε1

(4.23)
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where ēee =
[
eeeTR, eee

T
I

]T ∈ R2M . Using (4.22) and (4.23), we obtain

∣∣eeeHwww∣∣∞ ≤ ε1∥w̄ww∥∞. (4.24)

On the other hand, denoting aaa = aaaR + jaaaI ,
∣∣aaaHwww∣∣∞ is bounded from below by

∣∣aaaHwww∣∣∞ = max
(∣∣Re (aaaHwww)∣∣ , ∣∣Im (aaaHwww)∣∣)

≥ Re
(
aaaHwww

)
= aaaTRwwwR + aaaTIwwwI = āaaTw̄ww

(4.25)

where āaa =
[
aaaTR, aaa

T
I

]T
. According to (4.18), (4.24) and (4.25), we have

∣∣aaaHwww + eeeHwww
∣∣
∞ ≥ āaaTw̄ww − ε1∥w̄ww∥∞. (4.26)

Substituting this inequality into the constraint in (4.17) leads to the following opti-

mization problem:

min
w̄ww∈R2M

∥X̄XXT
w̄ww∥∞

s.t. āaaTw̄ww − ε1∥w̄ww∥∞ ≥ 1.

(4.27)

which is much simpler than (4.17) since it only has a single constraint. In addition,

(4.27) is a convex optimization problem because the objective is a convex function and

the constraint is a convex set. Note that the original optimization problem of (4.17)

gives the physical meanings of the proposed beamformer. However, it is difficult to

directly solve such a nonconvex problem with infinitely many constraints. Hence we

finally relax it into a convex one with a single constraint in (4.27). It should also

be pointed out that (4.27) is not equivalent to the original optimization problem of

(4.17) since the two inequalities of (4.24) and (4.25) cannot simultaneously be tight
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in general. It is clear that the constraint of (4.27) is stricter than that of (4.17).

That is, the feasible region of (4.17) is larger than that of (4.27). Therefore any

feasible solutions of (4.27) is feasible for (4.17). This means that the robustness of

the beamformer given by (4.27) is guaranteed. In addition, the original problem of

(4.17) is nonconvex and difficult to handle but (4.27) is convex and hence easier to

be solved.

Furthermore, by introducing two auxiliary variables u, r ∈ R, (4.27) can be con-

verted into an LP problem as follows:

min
w̄ww,u,r

u

s.t. − u1112N ≤ X̄XX
T
w̄ww ≤ u1112N

āaaTw̄ww ≥ ε1r + 1

− r1112M ≤ w̄ww ≤ r1112M .

(4.28)

Therefore, the proposed beamforming method is referred to as the RLPB. The LP

problem in (4.28) is compactly written in a standard form as

min
w̄ww,u,r

[
000T2M , 1, 0

]


w̄ww

u

r



s.t.



X̄XX
T −1112N 0002N

−X̄XXT −1112N 0002N

III2M×2M 0002M −1112M

−III2M×2M 0002M −1112M

−āaaT 0 ε1




w̄ww

u

r

 ≤



0002N

0002N

0002M

0002M

−1


.

(4.29)
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The problem of (4.29) can be efficiently solved using the simplex method [72] or

interior point method [55]. The computational complexity per iteration using the

primal-dual interior point method [55] to solve the LP problem is much less than that

required to solve SOCP and SDP problems with the similar size [73, 74]. Therefore,

compared with the SOCP- or SDP-based robust beamforming approaches [18, 28],

the proposed RLPB is computationally simpler. It should be pointed out that the

RMVB [24] and RCB [20] can be calculated using the Lagrangian multiplier technique

instead of directly solving an SOCP. It just requires the solution to a low complexity

nonlinear equation, which can be faster than the RLPB.

Remark 1 : There are two reasons why the proposed beamformer makes use of

rhombic uncertainty set rather than the conventional sphere or ellipsoid. First, it

is a natural result of the fact that the ℓ∞-modulus of the array response is used

as the constraint instead of the conventional modulus. From (4.18) – (4.24), it can

be seen that the ℓ∞-modulus constraint elicits the rhombic region ∥eee∥1 ≤ ε1, where

the relation ∥EEET∥∞ = ∥EEE∥1 = ∥eee∥1 plays the dominant role in converting the ℓ∞-

norm into ℓ1-norm. Second, due to the rhombic uncertainty region, we can cast the

optimization problem into an LP. The use of spherical or ellipsoidal uncertainty set

will lead to an SOCP rather than LP.

Remark 2 : The proposed RLPB utilizes the property of non-Gaussianity or finite

alphabet of the signals. This property has also been widely used in blind equalization.

One of the most representative blind equalization techniques is the constant modulus

algorithm (CMA) [37,69]. It is of interest to discuss the difference between the objec-

tive functions of the RLPB and CMA. The CMA solves the following minimization
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problem:

min E
{(
|y(n)|2 − κ

)2}
(4.30)

where κ > 0 is the dispersion constant [37] defined as

κ =
E {|s(n)|4}
E {|s(n)|2}

. (4.31)

Different constellations may have different dispersion constants. Expanding (4.30)

and replacing the expectation by the sample mean, the CMA is equivalent to mini-

mizing

fCMA(www) = ∥yyy∥4ℓ4 − 2κ∥yyy∥2 = ∥XXXHwww∥4ℓ4 − 2κ∥XXXHwww∥2 (4.32)

where ∥yyy∥ℓ4 is the ℓ4-norm based on the conventional modulus. Therefore the CMA

minimizes a combination of the ℓ4-norm and ℓ2-norm, which exploits both the fourth-

and second-order statistics. The objective function of the CMA is different from the

newly defined ℓ∞-norm adopted by the RLPB, which is based on the ℓ∞-modulus.

Note that fCMA(www) is nonconvex and it is difficult to find the global minimum. This

constitutes a drawback of the CMA.

4.2.4 Selection of Uncertainty Set Size ε1

The size of the uncertainty region ε1 is a crucial parameter of the proposed RLPB.

Larger values of ε1 means that the beamformer can tolerate larger steering vector

mismatches. However, interference suppression capability will be weakened if ε1 is

too large. Therefore, it is important to select an appropriate value for ε1 for the

proposed RLPB according to the level of steering vector mismatch.

First we assign a maximal possible value that ε1 can take. To guarantee the

114



Ph.D. Thesis - Xue Jiang McMaster - Electrical Engineering

feasibility of (4.27), one requires

∣∣āaaTw̄ww∣∣ ≥ āaaTw̄ww ≥ ε1∥w̄ww∥∞ + 1. (4.33)

On the other hand, by Hölder inequality2 [77], we have

∣∣āaaTw̄ww∣∣ ≤ ∥āaa∥1∥w̄ww∥∞. (4.34)

Therefore,

ε1∥w̄ww∥∞ + 1 ≤ ∥āaa∥1∥w̄ww∥∞ (4.35)

which yields

ε1 ≤ ∥āaa∥1 −
1

∥w̄ww∥∞
< ∥āaa∥1 = ∥aaa∥1. (4.36)

To obtain a solution for (4.27), we require ε1 < ∥aaa∥1. Otherwise the optimization

problem of (4.27) will be infeasible. Although ε1 < ∥aaa∥1 gives a general guideline for

selecting the parameter ε1 with any type of steering vector mismatch, ∥aaa∥1 is only a

coarse bound of ε1 and it is always too large for an appropriate ε1. If some a priori

information on the cause of the steering vector uncertainty is available, a better ε1

can be selected by exploiting this a priori knowledge.

As mentioned in Section 4.1, there are many causes giving rise to steering vector

mismatch. Here we consider two types of steering vector errors. The first error type

is AOA mismatch, where the steering vector error eee is parameterized by the AOA θ,

denoted by eee(θ) = ccc(θ) − aaa with aaa the assumed steering vector and ccc(θ) the actual

steering vector. If the beamformer performance is guaranteed for all θ ∈ [θl, θu], ε1

2The Hölder inequality
∣∣āaaT w̄ww∣∣ ≤ ∥āaa∥p∥w̄ww∥q satisfies for all 1/p+ 1/q = 1 with 1 ≤ p, q ≤ ∞ [77].

In particular, it reduces to
∣∣āaaT w̄ww∣∣ ≤ ∥āaa∥1∥w̄ww∥∞ for p = 1 and q =∞.
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can be determined by

ε1 = max
θl≤θ≤θu

∥ccc(θ)− aaa∥1. (4.37)

This maximum is easily computed in advance using grid search. If aaa and ccc(θ) are not

far away from each other, the maximum usually appears at the boundary θl or θu.

The second error type is random mismatch, where the steering vector eee is modeled

as zero-mean circular Gaussian distributed variables with variance 2σ2
e , that is,

eee ∼ CN
(
000, 2σ2

eIIIM
)
. (4.38)

By the central limit theorem [71], the Gaussian distribution can model the arbi-

trary random model errors well. The real-valued variables are distributed as ēee =[
eeeTR, eee

T
I

]T ∼ N (000, σ2
eIII2M). The quantity

Ptb =
tr(2σ2

eIIIM)

∥aaa∥2
= 2σ2

e (4.39)

defines the relative perturbation of the steering vector, which is exploited from the

fact of ∥aaa∥2 = M . The following proposition guides us to the selection of ε2 for the

RMVB and ε1 for the RLPB such that the steering vector error eee will be within the

uncertainty region with a high probability.

Proposition: For a given probability Pε ∈ [0, 1], let

ε2 =
√
τσe, and ε1 =

√
2Mτσe (4.40)

with

τ = F−1
χ2 (Pε, 2M) (4.41)
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where F−1
χ2 (Pε, 2M) denotes the inverse of the cumulative distribution function (CDF)

of the χ2-distribution of degree 2M . Then we have

Pr(∥eee∥ ≤ ε2) = Pε (4.42)

and

Pr(∥eee∥1 ≤ ε1) ≥ Pε. (4.43)

Proof : Since each component of ēee = [ē1, · · · , ē2M ]T is i.i.d. Gaussian-distributed,

the following quantity satisfies the χ2-distribution of degree 2M [78]:

∥ēee∥2

σ2
e

=
2M∑
i=1

ē2i ∼ χ2(2M). (4.44)

The CDF of the χ2-distribution with degree 2M is [78]

Fχ2(β, 2M) =
γ(M,β/2)

Γ(M)
(4.45)

where Γ(·) is the Gamma function and γ(·, ·) is the lower incomplete Gamma function

[79]. The following probability

Pε = Pr(∥ēee∥ ≤ ε2) = Pr

(
∥ēee∥2

σ2
e

≤ ε22
σ2
e

)
= Fχ2

(
ε22
σ2
e

, 2M

)
(4.46)

yields the relation

ε22
σ2
e

= F−1
χ2 (Pε, 2M) = τ. (4.47)

Hence we can conclude that ε2 =
√
τσe. Using the norm inequality ∥ēee∥1 ≤

√
2M∥ēee∥,
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if ε1 =
√
2Mε2 =

√
2Mτσe, we have

Pr(∥ēee∥1 ≤ ε1) ≥ Pr
(√

2M∥ēee∥ ≤ ε1

)
= Pr

(√
2M∥ēee∥ ≤

√
2Mε2

)
= Pr (∥ēee∥ ≤ ε2) = Pε.

(4.48)

�

The inverse function of the CDF F−1
χ2 (Pε, 2M) is a standard function in statis-

tics. Its value, which can be computed numerically, has been provided in standard

percentile tables [78]. For example, τ = F−1
χ2 (Pε, 2M) = 31.41 for Pε = 95% and

M = 10.

Remark 3 : From the simulation results in Section 4.4.3, we find that the RLPB

is not sensitive to the selection of ε1. That is, it can work well for a wide range of ε1.

This advantage makes the selection of an appropriate ε1 rather flexible.

4.2.5 Performance Measures

The output SINR of (1.4) has been widely used as a performance measure of a beam-

former. The upper bound of the SINR is the maximum eigenvalue of the matrix

σ2
sRRR

−1
i+naaaaaa

H . The goal of beamforming is to recover the desired signal while mitigat-

ing interferences and noise. Therefore, it is expected that the beamformer output

y(n) recovers the desired signal s(n). Note that there is an inherent complex-valued

ambiguity factor α between s(n) and y(n). The normalized correlation coefficient can

measure the similarity of yyy and sss = [s(1), · · · , s(N)]T well, which is defined as

ρ(sss,yyy) =
|sssHyyy|
∥sss∥∥yyy∥

. (4.49)
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By Cauchy-Schwartz inequality, the correlation coefficient satisfies 0 ≤ ρ(sss,yyy) ≤ 1.

In addition to the correlation coefficient, the following mean square error (MSE)

MSE = min
α
∥αyyy − sss∥2 (4.50)

also describes the similarity, where α is the ambiguity factor. The minimizer of (4.50)

is α = (yyyHsss)/∥yyy∥2. Substituting this minimizer back into (4.50), the MSE is obtained

as

MSE = ∥sss∥2 − |s
ssHyyy|2

∥yyy∥2
. (4.51)

The normalized mean square error (NMSE) is calculated as

NMSE =
MSE

∥sss∥2
= 1− |sssHyyy|2

∥sss∥2∥yyy∥2
= 1− ρ2(sss,yyy) (4.52)

which reveals the relationship between the NMSE and correlation coefficient. For

different beamformers, the corresponding NMSE can be calculated using (4.52) to

compare their performance.

We derive a lower bound of the NMSE. Recalling that yyy∗ =XXXHwww, the quantity

|sssHyyy|2

∥yyy∥2
=

wwwH(XXXsss∗sssTXXXH)www

wwwH(XXXXXXH)www
(4.53)

is a generalized Rayleigh quotient [80]. Its maximum equals the largest eigenvalue

of the matrix (XXXXXXH)−1(XXXsss∗sssTXXXH) [80]. Since rank
(
(XXXXXXH)−1XXXsss∗sssTXXXH

)
= 1, the

maximum eigenvalue is its unique non-zero eigenvalue and equals its trace [68]. That
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is,

max
|sssHyyy|2

∥yyy∥2
= λmax

(
(XXXXXXH)−1XXXsss∗sssTXXXH

)
= tr

(
(XXXXXXH)−1XXXsss∗sssTXXXH

)
= tr

(
sssTXXXH(XXXXXXH)−1XXXsss∗

)
= sssTPPPXXXsss

∗

(4.54)

where PPPXXX = XXXH(XXXXXXH)−1XXX is the projection matrix onto the range space of XXXH .

The lower bound of the NMSE is then given by

NMSEopt = 1− sssTPPPXXXsss
∗

∥sss∥2
. (4.55)

We further analyze the asymptotic expression of the NMSE lower bound as N →∞.

Since the signals in practical applications are ergodic, we can derive that

lim
N→∞

1

N
XXXXXXH = RRR, lim

N→∞

1

N
∥sss∥2 = σ2

s (4.56)

and

lim
N→∞

1

N
XXXsss∗ = E{xxx(n)s∗(n)}

= E

{(
s(n)aaa+

I∑
i=1

si(n)aaai + vvv(n)

)
s∗(n)

}

= E
{
|s(n)|2

}
aaa = σ2

saaa

(4.57)

where we have used the fact that the desired signal is uncorrelated with the interfer-

ences and noise. Substituting (4.56) and (4.57) into (4.55), the asymptotic optimal

NMSE is obtained as

lim
N→∞

NMSEopt = 1− σ2
saaa

HRRR−1aaa. (4.58)
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Recall that the upper bound of the output SINR is the maximum eigenvalue of

RRR−1
i+nRRRs, where RRRs

∆
= σ2

saaaaaa
H . Since rank(RRR−1

i+nRRRs) = 1, its maximum eigenvalue is

its unique non-zero eigenvalue and equals its trace. Hence, the upper bound of SINR

can be simplified as

SINRopt = σ2
saaa

HRRR−1
i+naaa. (4.59)

Using the fact that RRR = RRRs +RRRi+n and the matrix inversion lemma [68], we find the

relationship between the optimal NMSE and SINR:

lim
N→∞

NMSEopt =
1

1 + SINRopt

. (4.60)

Although the upper bound of SINR and the lower bound of the NMSE is related by

(4.60), it should be pointed out that this relationship is valid only when the number

of snapshots is infinite. In addition, the output SINR and NMSE of a beamformer do

not have the relationship in (4.60) if it is not the optimal one. Therefore the output

SINR and NMSE are two independent performance measures.

4.3 Analysis From Statistical Viewpoint

The RLPB is based on the minimization of the ℓ∞-norm of the output. This enables it

to implicitly exploit higher-order statistics. Therefore the performance of the RLPB

is improved compared with the MV beamformers when it is applied to sub-Gaussian

signals. In this section, we will give a theoretical explanation to this point from a

statistical perspective. The signal model of (1.1) is compactly rewritten as

xxx(n) = AAAbbb(n) + vvv(n) (4.61)
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where the array manifold matrix AAA = [aaa,aaa1, · · · , aaaI ] contains all steering vectors,

bbb(n) = [s(n), s1(n), · · · , sI(n)]T is the vector consisting of the desired signal and

interferences. For convenience, we also denote bbb(n) = [b1(n), · · · , bI+1(n)]T . That

is, the ith (1 ≤ i ≤ I + 1) element of bbb(n) is denoted as bi(n) = biR(n) + jbiI(n)

with biR(n) and biI(n) representing the real and imaginary parts of bi(n), respectively.

Then, it can be expressed as bbb(n) = bbbR(n) + jbbbI(n). According to (1.3) and (4.61),

the beamformer output is expressed as

y(n) = wwwHAAAbbb(n) +wwwHvvv(n) = gggHbbb(n) + ν(n) (4.62)

where ggg = AAAHwww ∈ CI+1 denotes the overall response of the array and beamformer,

and ν(n) is the noise component after beamforming. Denoting ggg = gggR + jgggI , one gets

yR(n) = gggTRbbbR(n) + gggTI bbbI(n) + νR(n)

= ḡggT b̄bb(n) =
2I+3∑
i=1

ḡib̄i(n)
(4.63)

and

yI(n) = gggTRbbbI(n)− gggTI bbbR(n) + νI(n)

= ¯̄gggT ¯̄bbb(n) =
2I+3∑
i=1

¯̄gi
¯̄bi(n)

(4.64)

where ḡgg =
[
gggTR, ggg

T
I , 1
]T
, b̄bb(n) =

[
bbbTR(n), bbb

T
I (n), νR(n)

]T
, ¯̄ggg =

[
−gggTI , gggTR, 1

]T
, and ¯̄bbb(n) =[

bbbTR(n), bbb
T
I (n), νI(n)

]T
, with ḡi, ¯̄gi, b̄i(n), and

¯̄bi(n) being the corresponding ith ele-

ments, respectively. Note that νR(n) and νI(n) have been absorbed into b̄bb(n) and

¯̄bbb(n), respectively. In the following, we omit the time index n for simplicity, i.e., b̄bb(n)

and b̄i(n) are abbreviated as b̄bb and b̄i, respectively. In addition, we define L = 2I +3.
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Consider the following objective function

fp(bbb, ν) = E{|y(n)|pp} = E{|yR(n)|p}+ E{|yI(n)|p}. (4.65)

Note that the expectation is over the random variables bbb and ν. Hence fp is a function

of bbb and ν. Replacing the expectation by the sample mean based on the N available

snapshots and letting p → ∞, the minimization of fp(bbb, ν) reduces to minimizing

∥yyy∥∞, which is the objective function of the RLPB. Now we analyze fp(bbb, ν). The

result is then applicable to RLPB as p → ∞. First we consider the multivariate

function

f
(p)
R (b̄bb) = |yR(n)|p =

∣∣∣∣∣
L∑
i=1

ḡib̄i

∣∣∣∣∣
p

. (4.66)

Employing a Taylor series expansion of multiple variables b̄bb around zeros, f
(p)
R (b̄bb) can

be approximated by

f
(p)
R (b̄bb) ≈

L∑
i1=1

∂f
(p)
R

∂b̄i1

∣∣∣∣∣
b̄bb=000

b̄i1 +
1

2!

L∑
i1=1

L∑
i2=1

∂2f
(p)
R

∂b̄i1∂b̄i2

∣∣∣∣∣
b̄bb=000

b̄i1 b̄i2

+ · · ·+ 1

K!

L∑
i1=1

· · ·
L∑

iK=1

∂Kf
(p)
R

∂b̄i1 · · · ∂b̄iK

∣∣∣∣∣
b̄bb=000

b̄i1 · · · b̄iK

(4.67)

where K is the approximation order and we have used the fact f
(p)
R (000) = 000. The value

of K required for achieving a high accuracy approximation depends on p. When p is

an even number, the function can be exactly represented with K = p. For example,

with p = 2, f
(2)
R (b̄bb) =

∑
i1,i2

ḡi1 ḡi2 b̄i1 b̄i2 is just a quadratic form and K = 2 is enough

in (4.67). In general, a larger p requires a higher approximation order K. For the

ℓ∞-norm adopted by the RLPB, the desired value of K approaches infinity as p→∞.
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E
{
b̄i1 · · · b̄ik

}
=



E
{
b̄ki
}
, if i1 = · · · = ik = i

E
{
b̄2i1
}
E
{
b̄2i3
}
· · ·E

{
b̄2ik−1

}
, if i1 = i2, i3 = i4, · · · , ik−1 = ik

E
{
b̄4i1
}
E
{
b̄4i5
}
· · ·E

{
b̄4ik−3

}
, if i1 = · · · = i4, · · · , ik−3 = · · · = ik

...
0, if there is an ij ̸= il, 1 ≤ l ≤ L, l ̸= j

(4.69)

Therefore, we have

E
{
f
(∞)
R (b̄bb)

}
=

∞∑
k=1

1

k!

L∑
i1=1

· · ·
L∑

ik=1

∂kf
(p)
R

∂b̄i1 · · · ∂b̄ik

∣∣∣∣∣
b̄bb=000

E
{
b̄i1 · · · b̄ik

}
.

(4.68)

Recall that all signals and noise components are zero-mean and mutually independent.

In addition, we assume that the real and imaginary parts of each signal are also

independent. Hence all the elements of b̄bb are independent with one another. The

E
{
b̄i1 · · · b̄ik

}
takes different values for different {i1, · · · , ik}. For example, it equals

zero if k is an odd number. For the case that k is an even number, its representative

values are shown in (4.69), which includes the kth-order moment of b̄i, i.e., E
{
b̄ki
}
.

Recall that b̄i denotes the real or imaginary part of the desired signal, interference

or noise, which means that E
{
b̄ki
}
represents higher-order statistics of the signal and

interferences. Furthermore, (4.68) contains the products of the even-order moments

of
{
b̄i
}L
i=1

.
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Similarly, we obtain the expectation of f
(p)
I (¯̄bbb) = |yI(n)|p as p→∞ as

E
{
f
(∞)
I (¯̄bbb)

}
=

∞∑
k=1

1

k!

L∑
i1=1

· · ·
L∑

ik=1

∂kf
(p)
I

∂¯̄bi1 · · · ∂¯̄bik

∣∣∣∣∣
¯̄bbb=000

E
{
¯̄bi1 · · · ¯̄bik

} (4.70)

where E
{
¯̄bi1 · · · ¯̄bik

}
has a similar structure as (4.69), which contains the kth-order

moment E
{
¯̄bki

}
as well as the products of the even-order moments of

{
¯̄bi

}L

i=1
.

According to (4.65), it is known that the RLPB minimizes the sum of (4.68) and

(4.70), which includes all kth-order (1 ≤ k ≤ ∞) statistics. The contribution of the

higher-order moments will decrease as the order k increases due to the attenuation

factor of 1/k!. Thus, it is clear that the RLPB implicitly exploits the higher-order

statistics of the desired signal, interferences and noise. When the signal and inter-

ferences are non-Gaussian, these higher-order statistics that contain useful statistical

information will substantially improve the performance of the RLPB. When p = 2,

all higher-statistics vanish and only the second-order moments remain because the

higher-order terms in (4.67) become zero. Therefore, p = 2 corresponding to the

MV-based beamformers only utilizes the second-order statistics. The performance

of such second-order statistic-based beamformers is inferior to that of the RLPB for

sub-Gaussian signals.

4.4 Simulation Results

We follow similar experimental settings as in [24] and [26] in the simulations. A

uniform linear array (ULA) ofM = 10 omnidirectional sensors with a half-wavelength
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spacing is considered. For ULA, the steering vector has the following form:

aaa(θ) =
[
1, ej(2π/ζ)d sin θ, · · · , ej(M−1)(2π/ζ)d sin θ

]T
(4.71)

where θ is the AOA, d is the inter-sensor spacing, and ζ is the wavelength. Three

zero-mean sub-Gaussian signals, namely, the desired source s(n) and two uncorrelated

interferences s1(n) and s2(n), impinge on the array. Unless stated otherwise, the AOA

of the desired signal is θ = 43◦ and the AOAs of the two interferences are θ1 = 30◦

and θ2 = 75◦. We consider applications in communications because most of the

corresponding signals are sub-Gaussian. We take different phase shift keying (PSK),

quadrature amplitude modulation (QAM), frequency modulation (FM), and phase

modulation (PM) schemes as example. The SNR is defined as

SNR =
σ2
s

σ2
v

(4.72)

where σ2
s and σ2

v are the variances of the desired signal and additive noise, respec-

tively. The two interferences are stronger than the desired signal with variances being

σ2
1 = 4σ2

s and σ2
2 = 9σ2

s . That is, they are 6 dB and 9.5 dB above the desired sig-

nal, respectively. The output SINRs and NMSEs of six beamformers, namely, the

MVDR [11], LCMV [14], subspace [15], RMVB [18, 24], general-rank [21], and the

RLPB, are compared. The upper bound of the SINR and the lower bound of NMSE

are also provided for comparison. Since the subspace beamformer requires the dimen-

sion of the signal-plus-interference subspace, the minimum description length (MDL)

principle [48] is adopted to estimate this quantity. When plotting the SINR and

NMSE curves, 200 Monte Carlo trials are performed for their computation.
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4.4.1 AOA Mismatch

We first consider the steering vector mismatch induced by AOA estimation errors.

The true AOA of the desired signal is 43◦ but the assumed AOA is 45◦. The a

priori maximum AOA deviation for all beamformers is assigned as 3◦. Hence for the

LCMV beamformer, two linear constraints force the responses of the signals from 42◦

and 48◦ to be unity. For fair comparison, all beamforming methods use the same a

priori information on the maximum possible AOA mismatch. Therefore the algorithm

parameter for the RMVB is determined as [26]

ε2 = max
42◦≤θ≤48◦

∥aaa(θ)− aaa(45◦)∥2 = 1.95 (4.73)

while for the RLPB

ε1 = max
42◦≤θ≤48◦

∥aaa(θ)− aaa(45◦)∥1 = 6.65 (4.74)

and for the general-rank beamformer

εF = max
42◦≤θ≤48◦

∥aaa(θ)aaaH(θ)− aaa(45◦)aaaH(45◦)∥F = 4.73 (4.75)

where ∥ · ∥F is the Frobenius norm of a matrix.

In the first simulation, the desired signal and two interferences are 16-QAM signals,

while the additive noise is a white Gaussian process. Fig. 4.1 shows the constellations

of the outputs of the six beamformers at SNR = 25 dB and number of snapshots

N = 200. The MVDR beamformer fails to recover the desired signal in the presence

of 2◦ AOA mismatch. The LCMV beamformer also exhibits limited capability for
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Figure 4.1: Scatter plots of output constellations of the six beamformers when the
desired signal uses 16-QAM modulation.

interference suppression. The output of the RLPB exhibits much tighter groupings

than those of the RMVB, subspace, and general-rank beamformers.

The desired signal and two interferences are taken as quadrature PSK (QPSK)

signals in the subsequent Monte Carlo trials. First, we fix the AOA mismatch to

2◦ and vary the SNR and N . Figs. 4.2 and 4.3 show the output SINR and NMSE

performance versus versus SNR with N = 100, respectively. Figs. 4.4 and 4.5 show

the SINR and NMSE results versus N at SNR = 15 dB, respectively. Then the SNR

is fixed to 15 dB and N = 100. Figs. 4.6 and 4.7 plot the SINRs and NMSEs versus

AOA mismatch, respectively, when the AOA deviation varies from −3◦ to 3◦ with an

interval 0.5◦. From Figs. 4.2 to 4.7, we can see that the MVDR is not robust
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Figure 4.2: Output SINR versus SNR with 2◦ AOA mismatch.
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Figure 4.3: NMSE versus SNR with 2◦ AOA mismatch.
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Figure 4.4: Output SINR versus number of snapshots with 2◦ AOA mismatch.
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Figure 4.5: NMSE versus number of snapshots with 2◦ AOA mismatch.
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Figure 4.6: Output SINR versus AOA mismatch.
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Figure 4.7: NMSE versus AOA mismatch.

134



Ph.D. Thesis - Xue Jiang McMaster - Electrical Engineering

against AOA mismatch. The LCMV enhances the robustness but it is inferior to

the RMVB and general-rank beamformer, which adopt nonlinear constraints. The

subspace beamformer has a comparable performance at high SNR levels and large

numbers of snapshots. However, its performance severely degrades at low SNR and

small snapshot numbers. The RLPB has the best performance among all beam-

formers. It leads to significant performance improvement compared with the robust

minimum variance beamformers. For example, from Figs. 4.4 and 4.6, we see that the

output SINR of the RLPB is about 5–10 dB higher than those of robust minimum

variance beamformers. This is because more statistical information on the QPSK

signals is exploited by using the minimum ℓ∞-norm criterion. From Figs. 4.4 and 4.5,

we may find that the performance of the RLPB outperforms the other beamformers

even when the number of snapshots is small. It is worth noting that only the RLPB

can approach the upper bound of the SINR and the lower bound of NMSE as the SNR

increases. The performances of other methods saturate with a large gap compared

with the optimal bounds.

4.4.2 Random Steering Vector Mismatch

Now we investigate the performance of the six beamformers with random steering

vector mismatch, where the error eee satisfies a complex circular Gaussian distribution

of (4.38). The probability that the steering vector lies in the uncertainty region is

adopted as Pε = 95%, which results in
√
τ =

√
F−1
χ2 (Pε, 2M) = 5.6. The algorithm

parameters for the RMVB and RLPB are ε2 =
√
τσe and ε1 =

√
2Mε2. Using the
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following inequality

∥(aaa+ eee)(aaa+ eee)H − aaaaaaH∥F = ∥aaaeeeH + eeeaaaH + eeeeeeH∥F

≤ 2∥aaaeeeH∥F + ∥eeeeeeH∥F ≃ 2∥aaaeeeH∥F

= 2
√
tr(aaaeeeHeeeaaaH) = 2∥eee∥∥aaa∥ ≤ 2

√
Mε2

(4.76)

where we have omitted the second-order error term ∥eeeeeeH∥F and only kept the first-

order one, the parameter for the general-rank beamformer can be approximately

determined as εF = 2
√
Mε2. Note that the LCMV beamformer is designed only for

AOA mismatch and cannot handle random mismatch. It adopts the same parameter

settings as in Section 4.4.1.

The steering vector perturbation is first fixed to Ptb = −10 dB while the SNR

and N vary. Figs. 4.8 and 4.9 plot the output SINR and NMSE versus SNR with

N = 100, respectively. Figs. 4.10 and 4.11 display the SINR and NMSE versus N

at SNR = 15 dB, respectively. Then the SNR is fixed to 15 dB and N = 100 while

the array perturbation varies from −30 dB to −6 dB. The −6 dB array perturbation

corresponding to σe = 0.35 causes a large steering vector error. Figs. 4.12 and 4.13

show the SINR and NMSE versus steering vector perturbation, respectively.

It can be seen from Figs. 4.8 – 4.13 that the RLPB has the best performance for

random steering vector mismatch. It significantly outperforms other robust beam-

forming schemes. For example, as shown in Fig. 4.12, the output SINR of the

proposed RLPB is about 8 dB higher than those of robust minimum variance beam-

formers. It maintains satisfactory performance with large steering vector errors and
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Figure 4.8: Output SINR versus SNR with random steering vector mismatch.

smaller numbers of snapshots. Again, only the performance of the RLPB can ap-

proach the optimal bounds with large numbers of snapshots or small amount of per-

turbation. Note that the performance of the LCMV beamformer designed for AOA

mismatch dramatically degrades, which demonstrates that it cannot handle random

mismatch.

4.4.3 Robustness to Parameter Selection

The sizes of the uncertainty sets, i.e., ε2 and ε1, are crucial parameters of the RMVB

and RLPB, respectively. We investigate the effect of parameter selection for Gaus-

sian random steering vector mismatch. The SNR is fixed at 15 dB, steering vector
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Figure 4.9: NMSE versus SNR with random steering vector mismatch.
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Figure 4.10: Output SINR versus number of snapshots with random steering vector
mismatch.
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Figure 4.11: NMSE versus number of snapshots with random steering vector mis-
match.
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Figure 4.12: Output SINR versus perturbation amount of steering vector.
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Figure 4.13: Output SINR versus perturbation amount of steering vector.
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perturbation Ptb = −10 dB, and N = 100. The other experimental settings are the

same as in Section 4.4.2. The maximal possible values of the algorithmic parameters

satisfy ε2 < ∥aaa∥ =
√
M = 3.16 and ε1 < ∥aaa∥1 = 12.6.

The output SINR of the RMVB versus ε2 and that of RLPB versus ε1 are plotted

in Fig. 4.14, which shows that ε2 ∈ [1, 2] and ε1 ∈ [3, 9] can provide satisfactory

performance for the RMVB and RLPB, respectively. If the probability is set to

Pε = 95%, the resulting parameters are ε2 = 1.25 and ε1 = 5.6, which are located in

the intervals of [1, 2] and [3, 9], respectively. Since a wide range of ε1 yields reliable

performance, the requirement for the selection of an appropriate ε1 is rather mild.

Furthermore, the selection of ε1 is more flexible than that of ε2 because the interval

[3, 9] is wider than [1, 2].

4.4.4 Robustness to Signal Properties

The performance improvement in the RLPB originates from fully exploiting the signal

properties. In this subsection, the effect caused by the signal properties, including

modulation type, constellation distortion due to carrier frequency offset (CFO), and

the probability distribution of the signals is analyzed. The simulation settings are the

same as in Section 4.4.2 unless stated otherwise. The steering vector perturbation is

fixed at Ptb = −10 dB and N = 100.

First, the sensitivity to modulation type of the beamformer is investigated. Eight

modulation types, i.e., binary PSK (BPSK), QPSK, 8PSK, 16-PSK, 4QAM, 8QAM,

16-QAM, and 32-QAM, are considered. The SNR is 20 dB. In each simulation, the

desired signal and interferences take one modulation type. Figs. 4.15 and 4.16 show

the output SINR and NMSE versus modulation type, respectively. It is observed that
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Figure 4.14: Output SINR of RMVB versus ε2 and RLPB versus ε1.
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Figure 4.15: Output SINR versus modulation type where the numbers 1 to 8 denote
BPSK, QPSK, 8PSK, 16-PSK, 4QAM, 8QAM, 16-QAM, and 32-QAM, respectively.

the RLPB performs well for a variety of modulation types and is better than the MV-

based beamformers. Its performance is not sensitive with respective to modulation

type.

Second, we study the effect of constellation distortion due to CFO, which is mainly

induced by oscillator discrepancies between the transmitter and receiver and/or Doppler

shifts. The desired signal adopts QPSK modulation while the two interferers use

16-QAM. Figs. 4.17 and 4.18 depict the output SINR and NMSE versus the CFO,

respectively, at SNR = 15 dB. The CFO is normalized with respect to the sampling

rate varying from 10−6 to 1, which covers small to large frequency offsets. We can see
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Figure 4.16: NMSE versus modulation type where the numbers 1 to 8 denote BPSK,
QPSK, 8PSK, 16-PSK, 4QAM, 8QAM, 16-QAM, and 32-QAM, respectively.
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Figure 4.17: Output SINR versus normalized CFO.

that the RLPB is not sensitive to the CFO and it maintains good performance even

in the presence of large frequency offset.

Third, we consider several signals with hybrid modulation types, including both

digital and analog modulations. Two common analog modulations, namely, FM and

PM, are taken into account. The AOA of the desired QPSK signal is 43◦. The

modulation types of the four interferers are 16-QAM, 4QAM, linear FM, and random

PM. All four interferers are 10 dB stronger than the desired signal and their AOAs are

30◦, 75◦, −20◦, and 10◦, respectively. The complex baseband envelop of the random

PM signal is expressed as sPM(n) = exp(jϕn), where ϕn is a random variable satisfying

a uniform distribution in [0, 2π). That is, it is generated with uniformly distributed
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Figure 4.18: NMSE versus normalized CFO.
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Figure 4.19: Output SINR versus SNR with hybrid modulation.

random phase in [0, 2π). The complex baseband envelop of the linear FM signal has

the following form:

sFM(n) = exp(j2πBn2/N), n = 0, · · · , N − 1 (4.77)

where B ∈ (0, 1] is the normalized bandwidth. In the simulation, we set B = 1/16.

Figs. 4.19 and 4.20 plot the output SINR and NMSE versus SNR with hybrid mod-

ulation, respectively. It can be seen that the RLPB can handle general interferences

with hybrid modulation.

In the last simulation, we investigate the performance of the six beamformers when
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Figure 4.20: NMSE versus SNR with hybrid modulation.
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the desired signal, interferences, and noise are Gaussian distributed. The simulation

settings are the same as in Section 4.4.2 except that the desired signal and two

interferences are now replaced by Gaussian signals. Figs. 4.21 and 4.22 show the

output SINR and NMSE versus SNR, respectively. It is observed that the performance

of the RLPB degrades and it is inferior to the three MV-based robust beamformers.

This result is not surprising because all signals and noise are Gaussian distributed.

Since all statistical information are included in the second-order statistics for Gaussian

signals, the MV criterion is statistically optimal. In this case, the MV-based robust

beamformers is superior to the RLPB using ℓ∞-norm minimization. The RLPB still

significantly outperforms the MVDR and LCMV beamformers. Note that the blind

beamforming technique based on fourth-order cumulants [44] and CMA [37,69] fail if

all signals are Gaussian distributed, but the RLPB still works. It is worth pointing out

that the scenario where all signals and interferences are Gaussian is rare in practice

because the modulated radio signals are always sub-Gaussian [37,41].

4.5 Conclusion

Most of the advanced convex optimization approaches to robust beamforming are

based on the minimum variance criterion and assume a spherical or ellipsoidal uncer-

tainty region of the steering vector error. These robust beamforming schemes require

solving an SOCP. In order to exploit higher-order statistics of sub-Gaussian signals,

the proposed RLPB adopts the criterion of minimum ℓ∞-norm of the output, where

a newly defined ℓp-norm is based on the ℓp-modulus of complex numbers. The uncer-

tainty region of the RLPB is modeled as a rhombus in which the ℓ∞-modulus response

of any steering vector is constrained to exceed unity. The issue of selecting the size of
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Figure 4.21: Output SINR versus SNR with Gaussian signals and random steering
vector mismatch.
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Figure 4.22: NMSE versus SNR with Gaussian signals and random steering vector
mismatch.
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the rhombic uncertainty region is also discussed for both AOA mismatch and random

mismatch. The proposed beamformer is finally converted into a linear programming

and hence is simpler to be solved than the SOCP based methods. A theoretical ex-

planation to the reason why the RLPB can implicitly exploit the high-order statistics

is given from the statistical perspective. Simulation results illustrate that the RLPB

significantly outperforms other representative robust beamformers.
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Chapter 5

Conclusion

In this thesis, we have presented the robust minimum dispersion beamforming tech-

niques for non-Gaussian signals.

In Chapter 2, the minimum dispersion distortionless response (MDDR) beam-

former and linearly constrained minimum dispersion (LCMD) beamformer are pro-

posed for non-Gaussian signals by using the MD criterion with a single linear con-

straint and multiple linear constraints, respectively. The MDDR and LCMD beam-

formers outperform their respective standard counterparts based on minimum vari-

ance (MV), namely, the minimum variance distortionless response (MVDR) and lin-

early constrained minimum variance (LCMV) beamformers, for non-Gaussian signals.

Three efficient iterative algorithms, namely, the iteratively reweighted MVDR (IR-

MVDR), complex-valued full Newton’s and partial Newton’s methods, are devised to

solve the resulting convex optimization problems.

In Chapter 3, we extend the LCMD beamformer to the quadratically constrained

minimum dispersion (QCMD) beamformer, whose robustness against model uncer-

tainty is significantly enhanced compared with the LCMD beamformer. A gradient
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projection algorithmic framework is developed to efficiently solve the resulting convex

optimization problem. Furthermore, we derive a closed-form expression of the pro-

jection onto the constraint set. The proposed projected gradient methods are quite

suitable for the robust beamforming problem with large sample size or large sensor

number because their computational complexity is linearly proportional to the number

of samples and sensors. Simulation results demonstrate that the QCMD beamformer

substantially improves the SINR performance compared with the MV-based robust

beamformers.

In Chapter 4, the robust linear programming beamformer (RLPB) is proposed

using a minimum ℓ∞-norm criterion for sub-Gaussian signals. We model the un-

certainty region as a rhombus in which the ℓ1-norm of the steering vector error is

bounded. As a result, the proposed RLPB beamformer can be obtained by solving

a linear programming (LP) problem. A theoretical explanation to the reason why

the RLPB can implicitly exploit the high-order statistics is given from the statistical

perspective. Simulation results illustrate that the RLPB significantly outperforms

other representative robust beamformers by using different sub-Gaussian signals.

There are various topics worthy of future research.

• Wideband Beamforming: The narrowband assumption are used throughout the

thesis. However, when the desired signal or the interferences are wideband,

the narrowband beamforming scheme no longer holds. In this case, we have

to employ an additional processing dimension for effective operation, such as

tapped delay-lines (or FIR/IIR filters), which lead to a wideband beamforming

system [32, 81]. To our best knowledge, the utilization of higher- or lower-

order statistics for non-Gaussian signals has not been considered in the existing
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wideband beamforming methods. Therefore, an important future work is to

develop an MD-based robust wideband beamforming approach. It will attract

more attentions in the field of microphone array speech processing because the

speech signals are known to be wideband and super-Gaussian [81].

• Multiuser Receivers: The MV-based beamforming approaches have been ex-

tended to the case of designing multiuser receivers for code-division multiple

access (CDMA) [82–91] and space-time coded multiple-input multiple-output

(MIMO) communication systems [92–94]. Since most communication signals

are sub-Gaussian [37,41], the higher-order statistics contain useful information.

Therefore, we may consider to incorporate the MD criterion into the designing

of multiuser receivers.

• Transmit Beamforming and Network Beamforming: Classic beamforming is

matched to a single steering vector of interest, which can be applied to both

receive beamforming and unicast transmit beamforming towards a single re-

ceiver [7]. However, in the cellular multiuser downlink, multiple transmit beam-

forming weight vectors have to be jointly designed to balance the interference

between different transmissions to different users [95–99]. Network beamform-

ing is a rapidly developing research field over the last five years [7, 100–105],

which belongs to the general field of cooperative communications [7, 106]. It

can be considered as a certain combination of receive and transmit beamforming

strategies. Both transmit beamforming and network beamforming are relative

young and exciting research fields that we want to engage in the future. The

robustness against channel state information is still a challenging problem for
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network beamforming. In addition, the computationally efficient implementa-

tion methods are critical for real-time applications of beamforming [107].

158



Bibliography

[1] D. H. Johnson and D. E. Dudgeon. Array Signal Processing: Concepts and

Techniques. Prentice-Hall, 1993.

[2] B. D. Van Veen and K. M. Buckley. Beamforming: A versatile approach to

spatial filtering. IEEE ASSP Mag., vol. 5 (no. 2): pp. 4–24, Apr. 1988.

[3] T. J. Shepherd and J. G. McWhirter. Systolic adaptive beamforming. In

S. Haykin, J. Litva, and T. J. Shepherd, editors, Radar Array Processing.

Springer-Verlag, Berlin, 1993.

[4] A. B. Gershman, E. Németh, and J. F. Böhme. Experimental performance of
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