
AUTOMATED RESOURCE ALLOCATION 



A STUDY AND DESIGN 

OF AN AUTOMATED RESOURCE ALLOCATION SYSTEM 

By 

DAVID JAMES BONHAM, B.Sc. 

A Thesis 

Submitted to the Faculty of Graduate Studies 

in Partial Fulfillment of the Requirements 

for the Degree 

Master of Engineering 

McMaster University 

January 1970 



MASTER·OF ENGINEERING (1970) McMASTER UNIVERSITY 
Hamilton, Ontario 

TITLE: A Study and Design of an Automated Resource Allocation 
Sys tern 

AUTHOR: David James Bonham. B.Sc. (Queen's University) 

SUPERVISOR: Professor W. R. Newcombe 

NUMBER OF PAGES: viii, 149 

SCOPE AND CONTENTS 

It has been the purpose of this work to design a system, 

suitable for the digital computer, to a11ocate individual activities 

(uncured tires) to a fixed and limited resource (tire-curing presses). 

A comprehensive study of the requirements of the system has 

been conducted in the field. The results of this study and a review 

of existing methods of allocation are presented. 

A thorough literature search in the area of Operations Research 

and Systems Engineering has been completed with primary attention given 

to computer adaptable mathematical programming techniques for the 

optimal solution of both linear and nonllnear assignment problems. 

The tire-curing resource allocation problem has been formulated 

as a classical quadratic assignment problem. The logic and theory 

behind this formulation are covered. 

Two distinct suboptimal algorithms have been programmed. 

Included is a discussion of the logic of these programs with the theory 

employed by them. Also, a full listing in FORTRAN IV for a computer 

program embodying the logic of the solution determined in this design 

project is presented. 

Realistic problems have been tested; the results of which, 



complete with analysis. are presented. 

Conclusions drawn to the extension of this system to encompass 

the entire production facility are discussed as well as conclusions 

concerning the feasibility of using these processes for production 

control. 
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ABSTRACT 

The purpose of this work has been to generate a method by 

which an automobtle tire manufacturer can optimally allocate its 

weekly production ticket to its automatic tire-curing presses. 

The problem is of interest for the reason that the value 

of the objective function is markedly affected by the relative 

locations of tires amongst themselves. This consideration has 

negated the possibility of a solution b~ing effected by the 

application .of an algorithm for the classical linear assignment 

problem .. In this work the problem has been formulated.and solved 

as a quadratic assignment problem. 

The logic of this method of solution has been programmed 

and subsequently used to solve example problems~ the results of 

Which are extremely encouraging. 
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I I I NTROOUCTI ON 

11 • 1 Gener a 1 

In the past decade there has been a significant increase 

in the implementation of computer-controlled industrial systems. 

The areas that have enjoyed, perhaps, the most notable assist by 

the employment of automatic systems have been Process Contro1, 

Industrial Engineering and Management Science. 

The computer has given rise to an area of Industrial or 

Systems Engineering that concerns itself with the practical 

application of the theories being generated by operations research 

scientists and applied mathematicians. Prior to the advent of 

high~speed computing devices with large memory capacity, some of 

the more promising concep~s of operations research for industrial 

applications were impracticable from computation aspects and for 

that reason were studied out of theoretical interest only. As 

recently as 1958, T. C. Koopmans and M. Beckmann (1) in their paper 

"Assignment Problems and the Location of Economic Activities 11 stated 

in their conclusions on the formulation of what has become known as 

the Quadratic Assignment Problem that 11 the computational difficulties 

of finding a solution" to the above problem have "so far been 
l 

insurmountable11
• 

1T. C. Koopmans and N. Beckmann, 11Assignment Problems and the 
Location of Economic Activities", Econometrica, 25 (1957), 52-76. 
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II .2 Outline of the Problem 

The underlying theory of, and a suboptimal algorithm for, 

the solution to the Quadratic Assignment Problem form the basis on 

which this design project has created an automated system for the 

solution of a real resource-allocation problem that occurs in the 

tire manufacturing industry. 

This work was undertaken with the co-operation of the 

GOODYEAR TtRE AND RUBBER CO., who supplied the facilities for 

investigation into the required design criteria. Since this 

system deals with the final construction stage of an automobile 

tire and since it directly affects the production capabilities 

of the plant, it will be used as the basis upon which other systems 

will be designed to deal with the manufacturing stages upstream 

from this process. It is feasible that this system could grow 

until it virtually encompassed the whole of the tire manufacturing 

process. Thus, the output from this system will serve as the input 

to the system for the next upstream manufacturing process. 

GOODYEAR TIRE and McMaster University have different 

computing devices, and it was not feasible to utilize GOODYEAR 

TIRE 1 s computerized information f11es. Thus the primary purpose 

of this work has been to demonstrate by means of realistic examples, 

considering all the known variables, that a solution to this 

resource-allocation problem can be provided by the methods of 

operations research. Th~s, the logic involved rather than the 

detailed program is the essence of this thesis. 

The primary requirement of this resource-allocation system 
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is to translate management's sale orders, or listing of quantities 

and models of tires formulated from predicted market conditions, 

into an optimal production schedule by assigning these tires to 

the manufacturing equipment so as to minimize production costs. 

I 1.3 Design Considerations 

Since rapidly changing service requirements of tires have 

meant a considerable change in manufacturing methods, it has there

fore been a requirement of this design to allow the system to be 

adjusted with minimal disruption to the program. It should also be 

noted that since the production facility under consideration has 

been Goodyear Tire•s Toronto plant, the design has naturally been 

orientated towards its requirements. An attempt has been made to 

formulate as general a design as possible, and where this has not 

been possible it has been indicated. Also there may be installation 

dependant parameters not anticipated in this design. 

The program was written for execution on a Control Data 

Corporation model 6400 computer. 
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I I I THE TIRE MANUFACTURING PROCESS 

The initial phase of tire production consists of the 

assemblage of the ingredients in correct proportions to give the 

desired properties to the finished product. The prime component, 

of course, is rubber--both natural and synthetic. A change in 

the proportion of these ingredients can markedly affect the cured 

characteristics of the product. Each subsection of the tire has 

different property requirements. For example, the tread stock 

compound requires high abrasion res is tanc.e wh i 1 e the bead compound 

must possess good adhesion properties. To accommodate these 

diverse requirements, the tire companies employ a batch-mixing 

system which enables different compounds to be used in the component 

manufacturing processes (see Fig. 1). This mixing operation is 

effected in large counter-rotating worm screw mixers called Banburies. 

The second production stage is a multi-stream component 

manufacturing process. One of these components is the ply stock 

which is produced from woven tire cord materials such as rayon, 

nylon and more recently polyester and Fibreglas. These materials 

are coated with rubber on both sides by a vertical three-roll 

scraper mill known as a calender. From the calenders the ply stock 

is skived to the proper length at an angle known as the bias angle. 

An example of one extreme is the radial-ply tire which has a bias 

angle of ninety degrees. 

Another major component is the sidewall-tread combination 

which is extruded through two opposed screw extruders working 

5 
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through a common die. Using the two extruders it 15 possible to 

utilize different compounds for the two portions--the tread and 

the sidewall. This continuous extrusion is then skived to the 

proper component length for a particular tire line. 

The third stage of production is the union of the ply 

stock, beads, tread and sidewall components on a tire-building 

machine (see Fig. II). These machines consist primarily of a 

collapsible drum upon which the components are "iayed up" by a 

semi-automatic interaction of man and machine. The final product 

of the tire-building machine is a cylindrical structure known in 

the industry as a "green ti reu (see Fig. It I). 

The fourth and final construction process for the tire is 

the molding and vulcanization during which the green tires are 

shaped into their final form while under elevated temperature and 

pressure conditions. It is at this time that the tire acquires 

its tread pattern as well as the aesthetic impressions and pro

tusions on the sidewa11s. The production machines employed to 

effect these changes are dua 1 position tire-curing. presses. These 

machines are supplied to virtually all North American tire manufact

ures by two major rubber equipment companies. 
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IV THE PROBLEM IN DETA'L 

IV. 1 The Equipment 

During the past two decades there has been a very significant 

change in the vulcanization procedures employed by the tire industry. 

The basic technique of forming a tire in a mold under elevated 

temperature and pressure has remained, but the equipment employed to 

accomplish this has been _changed dramatically.· The original process 

consisted of two separate operations, first, shaping, and then, curing. 

The green tire was formed into a shape approximating that of a finished 

tire by the insertion of a heavy rubber curing tube. This assembly of 

tire and curing tube was inserted into a tire mold. After several 

molds had been filled, they were lowered into a large diameter 

vertical pot heater where the tires were melded by the introduction of 

high pressure steam into the enclosed curing bag. A hydraulic ram 

counter-balanced the internal steam pressure of the tires being 

vulcanized and kept the molds closed. Upon completion of the specified 

curing cycle the molds were removed and the tires were stripped. 

During both the insertion and the removal of the curing tube, the tires 

were subjected to undesirab1e distortion. 

Except for the very large tire sizes, the pot heater curing 

technique has been replaced by the automatic tire c~ring press. The 

necessity for the implementation of this change in process equipment 

has been based on both quality and production considerations. These 

machines consist of a stationary base portion that contains the lower 

half sections of two tire-curing melds, a rubber bladder, instrument-
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atton, and a movable dome portion that contains the upper half 

sections of the two tire-curing molds (see Fig. IV). The changing 

design of the automotive tire plus the ever-present need for 

increased productiv1ty have contributed to a significant evolution 

of these machines during the past decade. An example of a tire 

parameter change that has directly affected the press requirements 

has been the industry 1 s tendency to lower profile designs. The 

standard tire of two years ago had a height-to-width ratio of 0.82. 

This ratio on contemporary tires has been reduced to 0.78 with 

speculation of further reductions. This, coupled with the intro

duction of Wide Tread high performance tires with height-to-width 

ratios of 0.70 and even 0.60, has meant an increase in mold thickness 

over conventional tires with similar overall diameters. Thus, the 

new presses must have the capability of accommodating these tires. 

The net result of this evolution has been that the tire manufacturers 

are faced with a conglomeration of different models of presses with 

overlapping but different capabilities. 

The capability differences, as well as differences due to 

technical innovation in these presses, have considerable influence 

on how the product is allocated to them. The previously mentioned 

dimensional considerations of the machine usually result in 11G0 11 or 

11 NO G011 decision criteria. An example of a 11NO GO" situation would 

occur if the tire being evaluated for a particular curing location 

has a mold height that was in excess of the maximum mold clearance 

in the press. The effects of other changes are less direct, but 

are equally important. The later model presses have been equipped 

11 



12 

I . 

• 

FlGU!\lt r>/ (.o l l\U'l'OHATI:C Tl.!U! CURNr. PRESS 



LOADllS---~ 

( ...... ,... ,,,.. . .......... ) 

·p IGURE IV CB I. AUTOMATIC TTRE CURIN@ PRESS 

' 
(Green ti:r:e:s~ in. positi:on to oe · loadedl_ 



PlGURE IV (c) At.1POMATIC TI:R& C~•tNG PR8SS 

Copen sficwing nolda and bladder•> 

't 



• 
. 

• 

-~ --·~·j!lf il~f'lil4~'~ 



with automatic loaders which enable the lines of such presses to 

be scheduled in a manner that allows completely random operation. 

This is possible since these machines do not require a machine 

operator to be present at the completion of the cure cycle. The 

1 ines of presses not equipped with automatic loaders can not be 

scheduled as freely. Here, an attempt must be made to keep tires 

with similur overall cure cycle times in those press lines. This 

consideration permits the line to be operated sequentially which, 

in turn, allows the c.>perator to tend to each machine in an orderly 

manner (i.e., as he completes the loading of a press, the next 

press in the line has its cycle ending, allowing the operator to 

complete its unloading and subsequent loading and so on, until he 

has completely progressed down the press line). Another allocation 

criteria that is equipment-dependent concerns the available post 

cure inflation equipment. The newer presses are equipped with post 

cure inflators which, upon comp1etion of the cure cycle, automatically 

mount and inflate the hot tires on rims. On the older presses the 

tires are manually removed from the presses, mounted on rims 

(resembling road rims), and infJa~ed. Certain tire types do not lend 

themselves to easy manual mounting and are thus preferably located 

on presses equipped with the automatic inflation equipment (see 

Fig. V). 

One of the more recent innovations in the vulcanization 

process has been the introduction of an incremental shaping process 

during which the green tire is deformed into the finished tire shape 

in phases rather than in one continuous procedure. It has been 
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established that by allowing the tire to stabilize in several stages 

of its deformation results in less variation in the radial force, a 

force evaluated about the tire 1s circumference, that is required to 

produce a standard deformation in the tire. The newer presses have 

this staged shaping incorporated into their cycle control, making 

them capable of single, double, or triple phase shaping. The older 

machines lack this facility. The earliest models of curing presses 

were equipped only with a single cycle controller to regulate the 

temperature and pressure cycles for both tire-curing positions. 

Thi5 means both tires must be identical in every aspect of their 

curing cycle. On the newer models, the manufacturers have included 

a separate controller for each mold position on the press. The 

result of the above considerations is an inconsistency in that the 

large volume models that require more than one curing location best 

fulfill the identical cycle requirements of the older machines. 

Unfortunately these are also the tires that should, for quality 

reasons, be allocated to the newer presses. 

Different models of presses, due to inherent design features, 

produce varying degrees of quality or consistency in the cured pro

duct. For this reason the premium lines of tires should be allocated 

to the machines that consistently produce the best quality cure. 

Reliability is another factor that has to be considered when tires 

are being scheduled. The most important and high volume tires should, 

all other factors being equal, be scheduled on those presses that 

maintain the best service records. 

19 



lV.2 The Product 

The large tire manufacturers market different lines of tires 

each consisting of a variety of sizes which in combination can result 

in approximately two thousand items in the product line-up for the 

company. This myriad of products can be broadly subdivided into 

three major classifications based on the tire construction: radial 

ply, Fibreglas belted, and conventional. Different cure processes 

.are required for the different tire constructions. Thus, an obvious 

consideration for an allocation system is that the curing location 

being evaluated must be capable of fulfilling the specified curing 

requirements of the tire. (See Figure VI.) 

Since the tire receives its external distinguishing features 

during the curing operation, there are cases where the different 

finished products are produced from the same green tire. The 

importance of this fact becomes significant in the allocation 

decision process in consideration of preprocess storage locations 

for the green tires (see Fig. VII). It is desirable to locate all 

common green tires in the general vicinity of each other. 

For purposes of allocation of two tires to any one facility, 

the scheduler or scheduling system must also consider the relative 

heights of the green tires. If one of the tires is significantly 

longer than the other it would be Impossible to arrive at a compatible 

shaping cycle for the two tires. This consideration arises from the 

fact that the taller tire has both beads in contact with the mold for 

a sfgnificantly longer period of time than has the shorter tire. The 

20 
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effect of failing to comply with this consideration is that by the 

completion of the first stage of deformation of the longer tire, 

the shorter tire has not been deformed enough to warrant a shaping 

pause. Similarly, if tires with bead diameter differences exceeding 

a prescribed limit are cured together, the result would be that the 

smaller diameter tire would have been deformed by the expanding 

bladder significantly in advance of the tire with the greater bead 

diameter. 

The most important curing parameter to be considered by this 

system is the cycle time. If it is possible to satisfy the above 

requirements, it is most important that tires be matched by utilizing 

the base cure times. tt is possible to give a tire a satisfactory 

cure at different overall cycle times by manipulating the other cure 

variables. An example would be to decrease the curing temperature 

and correspondingly increase the cycle time. There is a base cure 

cycle for each tire in the line. It is the cycle that has the 

shortest overal 1 time while sti 11 maintaining a satisfactory cure. 

It is, therefore, imperative to attempt to have every tire curing 

on its base cycle, and consequently where this condition cannot be 

attained there wi 11 be wasted production machine time. 

IV.3 The Procedure 

The merchandise distribution department prepares a list of 

tires it requires to meet its distribution commitments and these 

tires then constitute the "on" tire 1 is t. Accordingly, s i nee pro

duction positions are fixed in number, there must be an equal number 

23 



of tires removed from production and these tires constitute the 1toff11 

tire list. After compilation these lists pass to the production 

control department whose responsibility It is to assign the 110011 tires 

to the production equipment. In the present manual system, the cure 

scheduler obtains all the pertinent curing information for each 11on11 

tire from catalogues. At this point, all 11off11 tires are removed 

from the master press schedule, and the scheduler attempts to fill 

these vacant cure positions with the 11on11 tires in accordance with 

the criteria discussed above. This procedure necessarily results in 

considerable relocation of tires already In the cure and a continual 

re-shuffling of the 11on11 tires. The scheduler, at the same time, 

must also attempt to minimize mold relocations sine~ those changes 

are carried out at premium time on the weekend shifts. After a 

schedule has been compiled, it is returned to the merchandise distri

bution department with the suggested changes and deletions that the 

scheduler considers are required to complete an acceptable assignment. 

The schedule is then usually subjected to further modifications by 

the merchandise distribution people. Once a finalized schedule has 

been settled upon, it is returned to the production control department 

which uses this schedule of sizes, makes and quantities to schedule 

the tire-building machines. This process continues until all the 

upstream activities have been scheduled. 

IV.4 Summary of the Problem Requirements 

Upon receipt of a proposed production list of tires, it is 

necessary to make an optimal assignment of these tfres to the manu-

24 



facturing equipment. It is therefore necessary to schedule the 

individual tire to the press that has the most suitable attributes 

to cure the tire. The considerations to be made in this evaluation 

are the dimensional capabilities of the machine, the type of post

cure inflation equipment, the make and model of the press, the press 

operating condition, the service record, the cycle capabilities of 

the machine and the type of controls on the press, single or dual. 

A further complication to this assignment is the duality 

feature of the press. It is the scheduler's responsibility also to 

consider that the tires being scheduled for any one press are them

selves compatib1e in terms of green tire height, bead diameter, 

construction, and cure cycle. 

It is also necessary to consider the relative locations of 

common green tires within the cure. In addition other considerations 

such as qua 1 i ty and machine re l i ab i 1i ty must be adhered to. 

IV.S Objectives of the Automated System 

Since the cure is the final production stage of the tire, it 

is the first stage to be scheduled. This, by definition, means that 

the degree of closeness of this schedule to the optimum assignment 

has a very direct influence on the production of the entire plant. 

The aim of this project then is to utilize an optimization routine 

to determine the best possible assignment of tires to curing positions. 

It should be noted that the techniques demonstrated by this 

system are also applicable to many of the upstream systems, most 

notable of which is the tire-to-tire machine allocation system. It 
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is conceivable that this system could form the basis of a master 

scheduling system to control all the scheduling operations for the 

entire manufacturing process. 

The necessity of finalizing the cure schedule before the 

rest of the operation can be scheduled, means a lengthy lead time 

from demand to implementation. This procedure invites what are 

termed "emergency changes". These are legitimate changes based on 

an unforeseen alteration in the market position of the company. It 

is hoped that the implementation of an efficient automated optimal 

system could substantially reduce this lead time. Such a reduction 

would benefit the company by allowing it to operate closer to the 

market with reduced inventories. 

26 



V LITERATURE SURVEY 

V. 1 Classical Methods - Development 

Many of the problems of distribution and allocation of products 

have been formulated and solved by the application of linear programming 

techniques. An early realization that linear optimization methods could 

be gainfully emp1oyed in the allocation or 11optimal utilization of 

machinery" was shown by the Russian Professor Kantorovich (1) in 1939. 

In his paper the author formulates three problems, termed A, B, and C, 

of wh i eh the first t~"o, as shown by T. C. Koopmans ( 2) , make use of a 

coefficient matrix which exhibits a form similar to the "effectiveness" 

matrix used in the transportation method of linear programming. 

Kantorovich further envisaged the application of the three problems to 

situations that include the assignment of items or tasks to machines 

in metalworking, in the plywood industry, in earth-moving, in trimming 

. problems of sheet metal, in lumber, in paper, in oil refinery operations, 

in allocation of fuels to different uses, in allocation of lands to 

crops and on transportation equipment to freight flows. 

Dantzig in a classical work in 1947 developed a numerical 

iterative technique known as the simplex method to solve linear 

optimization problems. As Thompson (16) notes the simplex technique 

is a general method by which any linear programming problem can be 

solved. The resource allocation problem lends itself more readily 

to one of several special procedures that simplifies the problem

solving process. One of thes~ procedures is known as the transportation 

method of linear programming. The greatest advantage of this method 
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is its computational simplicity. Bowman (12) cites an example of a 

problem-solving session at the Massachusetts Institute of Technology 

that demonstrated an increase of up to six hundred percent in the 

time to solve a problem that fit within the scope of the transporta-

tion method by using the simplex procedure. Several variations of 

the transportation procedure have been developed. The methods most 

frequently employed have been the "stepping-stone" suggested by 

Charnes and Cooper (17) and an algorithm suggested by Munkres (10). 

The transportation method may be stated generally as follows: 

i f N = { 1 , 2, ••••• , n} and M = { 1 , 2, ••••• , m} 

minimize Z = r.E.a •. x .. 
I J I J I J 

( i £ M, j E N) 5. l 

subject to 

l: • x .. = p. ( i E M) 
J IJ I 

5.2 

E. x •• = b. (j £ N) 
f IJ J 

5.3 

x •. > 0 ( i e.: M' j € N) 
I J 

For the case of balanced supply and demand, commonly referred 

to as the Hitchcock Distribution Problem, the following constraint is 

also applicable. 

l..p. = 1:.b. 
I I J J 

s.s 

It should be noted that this constraint is required for the 

application of the above solution techniques. Thus, on occasion a 

slack destination or source must be added. 

The transportation problem, as lts name suggests, was first 

formulated as a special technique for determining a minimal cost 

program for transporting a product from several factories or manu-

facturing points to several distribution points or warehouses. 



V.2 The Linear Assignment Problem 

The assignment problem constitutes an a11ocation problem in 

which N activities are to be allocated to N facilities, and each 

facility can accommodate only one activity. If we consider each 

facility to be designated by i = 1 ,2, ••... ,n and each activity 

designated by j = 1,2, ••.•. ,n, it is possible to construct an N x N 

matrix A where a .. represents the productivity or effectiveness of 
I J 

activity i on facility j. The problem thus becomes one of assigning 

all activities to different facilities to optimize the overall effect-

iveness. An example application of this formulation that occurs is 

the assi_gnment of personnel where N persons are to fill N jobs. In 

this case the effectiveness matrix A would be a measure of the 

individual 1 s abilities at the task; such measures could be the number 

of man-hours required to perform the tasks, or, perhaps, the scores 

attained by the candidates on a set of aptitude tests. If the 

assumption is made that the activity is free to utilize any resource 

for any part of its total assignment, let xij be the fraction of 

time that activity i should utilize resource j, or in terms of the 

example cited, the fraction of time person i should perform task j. 

The formulation of this problem thus becomes: 

mi n i mi ze Z = L. E . a .. x .. 
I J t J I J 

subject to 

E.x •• == 
J IJ 

2: .x .. = 
I I J 

x •• > 0 
IJ 

j £ N 

t N 

i t. N, j £ N 5.7 

5.8 

5.9 

5. 10 
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It can be seen from the above expressions that the assignment 

problem is a special case of the transportation problem with balanced 

demand and supply in which M = N, a.= 1 (i c N) and b.= 1 (j EN). 
I J 

Although the above equations represent a system of 2N constraint 

equations in N2 variables, one of the constraint equations is not 

independent because of the known condition of balanced supply and 

demand. Thus, the classical assignment problem may be regarded as 

a linear programming problem having (2N - 1) constraint equations in 

N2 variables. There will be only (2N - 1) basic variables in the 

optimal solution. The remaining nonbasic variables must be zero. 

Since the number of nonbasic variables is the difference between the 

total number of variables (N 2 ) and the number of basic variables 

(2N - 1} then 

N2 - (2N - 1) = (N - 1) 2 5. 11 

The above assignment problem is of a form that can be readily 

solved by the simplex method of linear programming although there is 

a possibility of considerable increase in computation if this is 

attempted. The most popular algorithm formulated for the solution of 

this linear assignment problem has been given by Kuhn (19). This 

algorithm is known as the 1tHungarian Method of Assignment". Variants 

of this algorithm have been given by Munkres (10) and Flood (18). 

Simple combinatorial algebra gives, for an N-dimensional 

assignment, Nl distinct solutions. Munkres (10) shows that by 

assuming the worst possible conditions at each stage of his algorithm, 

the maximum number of operations needed is 

(llN 3 + 12N 2 + 31N)/6 5. 12 
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This maximum is of theoretical interest since it is so much smaller 

than the number of operations necessary to formulate the N! possible 

solutions. 

If the allocation of activities is limited to facilities such 

that each facility is utilized singularly by each activity, we have 

replaced the inequality constraint of x .. > 0 by the integer constraint 
I J 

x •. = Os or 1. In a suitable and, perhaps more significant notation, 
IJ 

the problem can be restated as: 

minimize Z = L.a.p(i) 
' ' 

where p is a square permutation matrix of dimension N. 

5. 13 

Salas (11) presents an interesting algorithm for the solution 

of a general linear program with zero-one variables. Essentially, 

this algorithm employs a tree-search technique that uses information 

generated in the search to exclude portions of the tree from consid-

eration. This algorithm, from the examples included by Balas, seems 

to be a very efficient method for the solution of this type of problem. 

Balas cites a particularly ill-behaved example with 12 variables and 

6 constraints that necessitated the investigation of 39 of a possible 

4096 solutions. 

V.3 The Quadratic Assignment Problem 

O~e of the basic assumptions of the linear assignment problem 

is that the assignment of any one activity to utilize a facility in 

no way affects the economic return or effectiveness of any other 

activity on any other resource; or simply, there is no interaction 
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between activities. Within the frame of reference previously cited, 

it is assumed that the personnel do not 1nteract with each other in 

a manner so as to affect the overall efficiency of the total assignment. 

The first published statement of the quadratic assignment 

problem was presented by Koopmans and Beckman (3), _in the context of 

an analys;s of economic acitivity. In this paper the quadratic 

assignment problem has been formulated for application to the assignment 

of manufacturing plants to geographical locations. Koopmans and Beckman 

state: 

The assumption that the benefit from an economic 
activity at some location does not depend on the 
uses of other locations is quite inadequate to the 
complexities of Locational decisions. 2 

The criteria considered in this analysis of the problem has been the 

cost of interplant material f\aNs. In this formulation they consider 

the allocation of N plants to N locations. In the A matrix, referred 

to previously in the discussion of the linear problem, the element a .. 
lj 

represented a net revenue. In this example the element a .. of A 
I J 

represents a "semi-net1
' revenue from the operation of plant i at 

location j; that is, gross revenue less cost of primary inputs, but 

before subtracting the cost of transportation of intermediate products 

between plants. Thus, this semi-net revenue is still independent of 

the assignment of other plants to other locations. To express this 

interplant transportation cost they used two symmetric matrices, C and 

D, where the element c .. of matrix C represents the commodity flows 
I J 

(in weight units) from plant i to plant j and element d .. of matrix D 
I J 

2L C. Koopmans and N. Beckmann, "Assignment Problems and the 
Location of Economic Activities", Econometrica, 25 (1957), 52-76. 
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represents the cost of transportation for the unit flow from location 

i to 1 oca t ion j . The flow coefficients c .. are assumed to be 
I J 

independent of the plant assignment, and are applicable to all amounts 

and compositions of flows. Koopmans and Beckmann made the further 

stipulation that the cost coefficients d •. satisfy the triangular 
I J 

inequality 

d • . <. d • k + d k • 
t J • J 

(i,j,k£N) 5. 14 

which simply states that transportation from location i to location j 

via a third location k is not cheaper than direct transportation. The 

notation used here, for the purpose of continuity is the same as 

Ci1mour, not that used by Koopmans and Beckmann. To find the total 

interplant transportation cost, it is necessary to begin with a known 

permutation p to evaluate the expression. 

E.Lc .. dp(i)p(j) 
I J IJ 

5. 15 

It follows that the total net revenue for an assignment thus becomes 

Z = l:a.p(i) - L:c •• dp(i)p(j) 
I I J 

(i,j £ N) 5. 16 

The quadratic assignment problem formulated is thus the maximization 

of the above expression. Koopmans and Beckmann point out that the 

designation of the quadratic assignment problem is rather arbitrary. 

The justification for this designation stems from the fact that the 

maximand contains a term in the second degree in the unknown permu-

tation. This is more obvious in the notation of Koopmans and Beckmann 

where the equivalent expression to the above can be written 
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z • rkE.ak.pk. - rklr.Jcklp 1 •• d .. p .. 
I I 'I I Jf. I I J IJ 

5. 17 

where p is the desired permutation matrix. 

Conway and Maxwell (8) suggest an approach to the problem of 

facility assignment that assumed no economic advantage of any location 

over any other location for an activity. In other words, they were 

pr·imarily concerned with the interaction costs or interplant commodity 

transportation costs, between the facilities. Again, this paper 

formulates the problem by measuring the value of an assignment by 

summing, as the interaction costs, the permuted products of traffic 

and distance matrices. The approach utilized minimizes the value of 

this summation. In the case of the symmetric 11distance11 and 11 traffic11 

matrices there are n = (N - l)N different paths between pairs of 

locations. Let D1 ,D2 , ••••• ,Dn represent the lengths of these paths 

ranked so that 01 > D2 > 03 ••••• > D • Consider then= (N - l)N 
n 

pair of facilities; let C1 ,C2 , ••••• ,C represent the traffic between 
n 

these pairs ranked so that C1 < C2 < ••••• < C . Using these values 
n 

construct an n x n matrix X such that 

X.J = D. •C. 
I I J 

5. 18 

Thus, there wi 11 be an assignment that consists of selecting n elements 

of the X matrix, one element per row and one element per column. The 

sum of these n elements will then be the value of that assignment. The 

converse of the above statement is not true. Any n elements with one 

in each row and one in each column do not necessarily correspond to an 

assignment due to the possibility of an incompatible arrangement of 

facilities. Thus, the problem can be stated as: find then elements 
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of X, taking one from each row and one from each column which correspond 

to an assignment of facilities to locations, whose sum is minimal. Thus, 

a solution can be effected if the partial sets of n elements from X can 

be determined. The successive sets could be examined starting with the 

set with the smallest sum until a set that constitutes an assignment is 

discovered. Conway and Maxwell point out that the minimum sum set of n 

elements from X (one from each row and column) are the elements of the 

principal diagonal. They further point out that if by luck this set of 

elements corresponds to an assignment, the problem is solved. Since 

this wi11 not always occur they have utilized an additional matrix Y 

whose elements are defined as: 

y .. = the·minimum sum of n elements of the X matrix, 
•J one from each row and one from each column 

which includes x ... 
I J 

This Y matrix demonstrates the following characteristics for any element 

Y on or above the principal diagonal, y b < y .• for all i <a, j >b. 
~b a IJ 

For any element Ymn < ylj for all i > m, j < n. Practically this Y 

matrix would not be computed but rather the properties discussed would 

be used to suggest that the search for a small sum set, which corres-

ponds to an assignment, commence in the neighborhood of the principal 

diagonal and work out systematically from there. This solution technique 

still requires considerable luck and is computationally prohibitive. 

Land (7) considered the problem of inter-related costs under the. 

simplifying assumption of no economic advantage to any facility in any 

location, and formulated a numerical routine that uti 1 ized a systematic 

exploration of a limited part of the solution space. To illustrate his 
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development, Land considered the problem of locating manufacturing 

departments in evaluating a plant layout. This problem is easily 

seen to be analogous to the previous problem of plant location. The 

- method postulated by Land consists of constructing a cost matrix A 

which shows for each pair of departments, i and j, the cost which 

would be incurred if they were allocated to locations p and q. Thus, 

the problem has been reduced to the form of a linear assignment problem, 

and can be stated as: 

Z = Ea. p ( i) 
I 

5. 19 

where p is again a pe1-mutation matrix with one non-zero element in 

each row and column. Since there are n(n - 1)/2 possible pairs of 

departments, n(n - 1)/2 possible combinations of locations, the cost 

matrix A is square and of dimension n(n - 1)/2. Unfortunately, a 

solution of the above problem, for the same reason as Maxwell's form-

ulation, is not necessarily a solution to the real problem. An example 

of this would be an assignment that gave an optimum cost that included 

department pair A and B in location pair 1 and 2, and department pair 

A and C in location pair 3 and 4. This, of course, is incompatible. 

Land's numerical routine is based on the following logic: 

Consider any one variable Xwt which assigns departments 

k and L to locations u and v, i.e., w = (kl) and t = (uv), 

then 

if x(kL)(uv) = 1 

x ( kj) ( pq) = 0 or 
... 

x (j k) ( pq) = 0" 

5.20 

5. 21 

*Either the left column equals zero or the right column equals zero. 
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X ( i L) (pq) = 0 or X (Li) ( pq) = 0 5.22 

X ( i j) ( uq) = 0 or x( ij) (qu) = 0 5.23 

x(ij)(pv) = 0 or x(ij) (pv) = 0 5.24 

k ;. ~ L 5.25 

k-/. j :/: L s.26 

u ; p # v 5.27 

u ~ q ~ v 5.28 

There will be a minimum cost of the simple assignment problem under 

each of the mutually exclusive assumptions X(wt) = 0 and X(wt) = 1. 

The linear assignment costs on the basis of these two assumptions 

will represent lOrJer bounds. Thus a decision tree can be created 

by eliminating areas of search. Pairs of departments can be assigned 

and a lower bound calculated. Thust each branch of this 11 branch and 

bound" technique need only to be pursued until the lower bound exceeds 

the value of a known assignment. It is impossible to predict the 

length of- the computation; in the extreme case where all costs are 

equal, the routine will generate all n! possible solutions. 

The problem of scheduling classes in a university was the 

motivation for the investigation by Carlson and Nemhauser {4) of an 

algorithm to so1ve a quadratic assignment problem. The formulation 

presented had the following two major conditions. First, each 

activity must be scheduled on exactly one faciJ ity, and second, any 

number of activities can be scheduled on any single facility. Every 

combination of two activities schedu-led on the same facility gives 

rise to an interaction cost. This technique has a particular application 
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for assignments where the real assignment ts not subjected to the 

constraint of one and only one activity or even a single pair of 

activities being allocated to one facility. 

The fact that the quadratic assignment problem can be 

formulated as an equivalent tnteger linear program was demonstrated 

by Lawler (6). His approach defined a linear problem of n4 variables 

y 1• from the quadratic problem of n2 variables x .. where, 
jpq IJ 

effective 1 y 

y i jpq = x •. x 
IJ pq 

The objective function then becomes: 

z = ): i j pq c i j pq y i j pq 

subject to the constraints 

r .x .. = 
J I J 

E. x •• = 1 

' IJ 

N = {1,2, ...•. ,n} 
(i,j,p,q £ N) 

(j t: N) 

( i £ N) 

r. i j pq y iJ pq 
-= n2 

x •. + x - 2y •. > 0 (i,j,p,q £ N) 
IJ pq ljpq 

x •• = o, or 1 ( i ,j £ N) 
I .J 

y ijpq = 0' or (i ,j,p,q £ N) 

5 .29 

5. 30 

5.31 

5.32 

5.33 

5.34 

5.35 

5.36 

Reference (6) shows a proof that a feasible solution of the 

above linear problem corresponds to a feasible solution of the 

equivalent quadratic problem. Although the above formulation of 

the problem is theoretically interesting, it is not computationally 

useful considering the present state of integer linear programming. 
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Lawler realized the disadvantages of this technique of solution, and 

as an alternative suggested a technique of ca1culating a lower bound 

for the assignment as a basis for an algorithm to solve the quadratic 

problem. He further discussed the extension of this formulation to 

cover cubic .•.•• n-adic problems. A discussion of the theory employed 

in the development of this method is omitted at this point, since, 

independently, Gilmore (9) and Lawler arrived at algorithms that are 

essentially identical when applied to the Koopman-Beckmann problem. 

Thus, discussion. of this algorithm is included with the discussion of 

Gilmore 1 s work. 

Lawler did discuss several extensions of the application of 

the quadratic assignment problem. These were the ''candidates problem" 

(see ref. (6)), the minimization of latency in magnetic drum computers, 

placement of electronic assemblies so as to minimize wire lengths, 

and various problems i~ the synthesis of sequential switching circuits. 

Further and independent work on the placing of electronic 

modules on a computer backboard, in a manner so as to minimize the total 

wire lengths, has been performed by Steinberg (5). He formulated a 

solution based on a quadratic assignment problem; again, considering 

that one location could not attain an economic advantage by having any 

particular module scheduled to it. Steinberg used two matrices, C and 

D, where element c .. represents the number of wires connecting module 
t J 

i to module j, and the element d~$ represents the distance from 

location Pa to P
8

• From this it can be seen that matrices C and D 

must be symmetric with their main diagonals all zero. Steinberg 1 s 

algorithm proved very successful in this particular application. 
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As an extension to the work of Steinberg, and independently 

parallel to the work of Lawler, Gilmore (9) formulated three distinct 

algorithms for the solution of the quadratic assignment problem. One 

of these algorithms is an optimal so1ution technique while the other 

two are suboptimal. Gilmore based his a1gorithms on a minor revision 

to the original formulation by Koopmans and Beckmann. The revision 

consists of minimizing not just an interaction sum but the interaction 

sum and the sum for an ordinary assignment problem. This can be 

stated as: 

mi n i mi ze Z = ~ . a. p ( i ) + E. • c •. d p ( i ) p (j) 
I 1 t J & J 

5.37 

where C and 0 are two matrices such as those employed by Steinberg in 

the wiring problem. 

Gilmore's algorithm, similar to Lawler's, utilizes a branch 

and bound technique to limit the area of search for an optimal solution. 

Let a be a partial permutation for which p is a completion. By a 

partial permutation of 1 ,2, .•••• ,n means a l-1 map of some subset of 

{1 1 2, .•..• ,n} into {l,2, ..••• ,n}. An extension of a partial permutation 

is a permutation or partial permutation p such that a(i) = p(i) for all 

i for which a is defined. If Z is the smallest possible Z(p) then 
0 

is a satisfactory solution if and only if Z = Z(p). 
0 

If we assume we are given any permutation p, not knowing Z 
0 

to determine whether p is satisfactory, or not, it is necessary to 

determine whether there exists a permutation n such that Z(;,) < Z(p). 

tf ~ is any partial permutation for which Z(a) ~ Z(p), then no completion 

~of a can satisfy Z(n) < Z(p) since necessarf ly Z(n) > Z(a}. Gilmore's 

algorithm exploits this simple fact by generating a succession of 

40 



permutations rr1,-rr 2 , ••••• ,rrk such that Z(p) > Z(TI 1), Z(rr 1) > Z(11 2), 

.•••. ,Z(nk-l) > Z{nk), and such that nk is satisfactory. 

The efficiency of this algorithm is dependent upon the closeness 

of the initial permutation p to the actual minimum. The two suboptimal 

algorithms given by Gilmore could be used as a means to determine the 

initial permutation. The suboptimal algorithms are based on the premise 

that the problem of determining a permutation p to minimize Z(o) could 

be regarded as an (N - I) stage decision process where at each stage 

two numbers, i and j, must be chosen by some guiding decision criteria 

until a complete permutation p has been constructed. These suboptimal 

algorithms when applied to Steinberg's wiring problem compete very well 

with Steinberg's algorithm. Oetai ls of these.algorithms are included 

in Appendix A of this thesis. 
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VJ MATHEMATICAL FORMULATION 

For this particular problem where tires are to be allocated 

to tire-curing presses, a typical problem of scheduling N tires on 

N/2 presses can be considered. The first and most obvious decision 

criteria in evaluating an allocation arrangement is the suitability 

of the tire being scheduled to the tire~curing press. As a brief 

review the parameters to be considered in this evaluation are as 

fol lows: 

( l) overa 11 mold height; 

( 2) overa 11 mold diameter; 

(3) shaping phases required; 

( 4) pos t - c u re i n f l at i on equipment required; and 

(5) press rating. 

If the facility is considered as consisting of N curing 

locations rather than N/2 presses, it is possible to formulate a 

simple linear assignment problem where the objective function to be 

minimized would be the unused machine attributes. This is a valid 

aspiration on the basis that it is consistent with the secondary 

consideration of forcing the higher precision tires towards the 

newer and more versatile machines. Thus, the formulation consists 

of measuring the 11cost" resulting from scheduling any tire on any 

facility, and of arranging these 11costs11 into an assignment matrix A. 

The term 11cost 11 as used in this context ls not a cost in monetary 

terms; rather, a measure of the suitability of a tire to a press. 

Thus element a .. is the cost of scheduling tire i into curing location j. 
IJ 
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As mentioned the cost is a measure of the machine attributes used 

and the more closely a tire comes to making full use of the machine, 

the 1 o.-1e r the cost . 

This can be stated as 

minimize z = r.a.p(i) 
I I 

( i £ N) 

Again p is an N x N permutation matrix with one non-zero 

6. 1 

element per row and pe-r co 1 umn. 

An element a •• of matrix A is evaluated from the fol lowing 
IJ 

relations: 

6.2 

6.3 

d3 = PSHP. - SHAPEi. 6.4 
J 

d4 = 0 (if press rating and tire rating 6.5 
are compatible) 

d4 = 100 (if above is not true) 6.6 

ds = 0 (if press post cure inflation 6.7 
equipment and the tire requirements 
a re compa t i b l e) 

d~ = 100 (if above is not true) 6.8 

The variables w (p = 1,2, .•• ,5) are weighting factors that consist 
p 

of two components: a magnitude adjustment factor and an influence 

~t: 

See Appendix C for var i ab 1 e definitions. 
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factor. The use of these variables will be explained more fully 

later by nreans of an example. (See also Section C.3.) 

If any of relations 6.2, 6.3, and 6.LJ are negative, a "NO GO" 

condition exists and the value of a .• is arbitrarily set at 10000. 
IJ 

Thus a nNo GO" situation is forma1ly treated as a high cost situation. 

The linear assignment problem, stated above, makes the 

assumption that the economic benefit of a tire in a curing location 

does not d.epend on the uses of the other locations. This is 

obvious1y inadequate for the real problem. The overall cure 

efficiency is greatly affected by the interaction of the tires 

scheduled into adjacent curing locations. The extreme case of this 

occurs when a curing location becomes invalid, even with a low 

attributes cost, to a tire on the basis of violating one of the 

compatibility considerations listed below and described previously. 

There is also an interaction that occurs from the relative positions 

of similar (in the extreme "common green") tires in the adjacent 

presses and press lines. Thus an inteiaction 11cost 11 can be 

considered to exist between tires based on their similarities. Again, 

the term "interaction cost11 is a relative one that is a measure of .the 

similarities of two tires. Therefore, all the possible comparisons of 

N tires can be expressed in an N x N matrix C where c .. is the inter-
1 J 

action cost of tire i and tire j. The value of C is small for tires 

that are similar and high for dissimilar tires. 

i ~ j, and i and j are common green tires. 

In the limit c .. = 0, 
IJ 

A brief review of the parameters eva1uated for compatibility 

considerations fol lows: 

44 



(1) bead diameter; 

(2) construction; 

(3) post-cure inflation pressure; 

(4) number of shaping phases; 

(5) cure times (basic); and 

(6) green tire heights. 

The element c 1j of the C matrix is evaluated by means of the 

following relationships: 

h1 = ABS(BW. - BW.) 
I J 

h2 ~ 0 (if the construction of tires 
are the same) 

and j 

h2 = 10 (if the above condition is not true) 

h3 = ABS(PCIP. - PCIP.) 
' J 

h4 = ABS(SHAPt. - SHAPE.) 
t J 

hs ~ ABS(CT. - CT .) 
f J 

h6 = ABS(GTHT. - GTHT.) 
I J 

If h5 > 1.5, then h6 = 10 x h6 

6. l 0 

6. 11 

6. 12 

6.13 

6. l 4 

6. 15 

6.16 

6. 17 

6. 18 

The C matrix, in this case representing the interaction of 

activities, is comparable to Steinberg 1 s (5) matrix C that represented 

the number of wires connecting each module to every other module. In 

this problem, consistent with the "backboard wiring problem11
, the C 

matrix has all zeros on the principal diagonal, and it is symmetrical. 

To complete the synthesis of the tire scheduling problem as a 

quadratic assignment problem, it is necessary to consider the inter-

relationships of the tire-curing locations. The considerations suggested 
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in the previous discussion of the problem are mainly locational in 

nature. 

A brief review of these locational considerations follows: 

Are locations i and j 

{ 1} on the same press? 

(2) in the same press 1 i ne? 

(3) in adjacent press l i nes 7 

(4) on the same make of press? or 

(5) on the same model of press? 

Thus, the relationships between each cure location can be 

established and described by an N x N ma~rix D where element d .. 
I J 

is a numerical representation of the relation of location i to 

location j. 

Element d .. is calculated as follows: 
I J 

f1 = 100 (if location i and j are on the same press) 6.19 

f 1 = 0 (if above relation is not true) 6.20 

f 2 = 20 (if and j are in the same press 1 i ne) 6. 2 l 

f 2 :: 15 (if and j are In adjacent press 1 i nes) 6.22 

f 2 a 5 (if i and j are separated by at least one 
press 1 i ne) 6.23 

f 3 = 10 (if i and j are on same make of press) 6.24 

f 3 = 5 (if i and j are on different makes of presses) 6.25 

f 4 = 10 (if i and j are on same model of press) 6.26 

f 4 = 5 (if i and j are on different models of presses) 6.27 

d .. = fixw12 + f2XW13 + f3XW14 + f4XW15 6.28 
IJ 

From the above relationships it can be seen that the highest 



value of element d .. occurs when location i and j are a pair on the 
I J 

same press. The 10Nest value occurs if i and j are on dissimilar 

presses in different and not adjacent press lines. The 0 matrix 

used in this problem corresponds in nature and usage to the di$tance 

matrix D of Steinberg's wiring problem. 

It is now possible to write the objective function as: 

minimize Z -= r.a.p(i) + LLc .• dp{i)p{j) 
r I l J I J 

6. 29 

which is similar to the form.presented by Gilmore (9). 

In order to minimize Z it is necessary to minimize both terms 

contained in it. The first term, as mentioned previously, is a 

minimum when the fewest machine attributes remain unused. It meets 

the initial requirement that each of the elements a .. of the assignment 
I J 

matrix is the benefit obtained by locating tire in facility j and is 

independent of the assignment of other tires to other facilities. 

Therefore, the minimization of this quantity drives the solution to 

allocate the tires to the most suited facility. 

The second term, the quadratic term, consists of the sum of 

the products of the interaction costs of tires i and j in the element 

c .. and the interaction costs d .. of the facilities on which tires 
I J I J 

and j are scheduled. Simple combinatorial analysis shows that a 

minimum occurs for the sum of a permuted product when the largest of 

one e 1 ement is combined with the sma 11 est of the other. In other 

words, the minimum occurs when the tires with the lowest interaction 

cost c .• are scheduled to the pairs of facilities with the highest 
IJ 

interaction cost d •. , and the pair of tires with the highest inter
IJ 
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action cost c .• are scheduled to the facilities with the lowest 
•J 

interaction cost d ••• Therefore, the minimization of this second 
IJ 

term wt 11 drive the tires that have the greatest number of similarities 

towards a single press since the highest value of d .. occurs when i and 
1 J 

j are on the same facility. The minimization will also drive similar 

tires to.facilities in one area of the department since the next highest 

The ~alue of dij occurs when i and j are in the same line of presses. 

next increase in the value of d •. occurs when i and j are on the same 
tj 

make and model of press. The result of this is a tendency of the 

solution to keep the similar tires grouped in the same area within a 

line of machines. 

To summarize, the minimization of the optimization function 

results in: 

(1) matching tires to presses on the basis of minimizing 

unused press attrlbutes; 

{2) matching tire to tire on basis of similarities in 

construction, model, cure parameters, and styles; 

(3) grouping similar tires in an area in the cure; and 

(4) grouping the most alike tires on a single press. 

The action of this solution technique on this problem is 

analogous to the backboard wiring problem with the added consideration 

of an advantage gained by the location of a module to a particular 

position on the backboard. As stated previously, c .. represents the 
'J 

number of wires from module i to module j and d .. the distance between 
'J 

location i and j. To minimize wire the modules with the highest 

number of wires connecting them must be located close to each other. 
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At the same time the advantage gained by the location of these modules 

in these positions must be considered. Therefore, as with the tire 

problem, the minimum occurs when the highest c .• is combined with the 
IJ 

smallest d •. and vice versa. 
IJ 
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VII THE SYSTEM 

The primary purpose of this thesis has been to demonstrate 

that the principles of formulating the tire allocation problem as a 

quadratic assignment problem could be employed as the basis of an 

automatic system to solve a real problem for The Goodyear Tire and 

Rubber Co. of Canada Limited. 

It has been the intent of this project to generate as general 

a solution as possible, while still satisfying the requirements of 

the particular system under study. It must be emphasized that the 

discrete values used to demonstrate various points are ficticious and 

in no manner represent the operating position of the Goodyear Tire 

and Rubber Co. 

The overall design considerations of the system are these: 

(1) To arrive at an optimum allocation of tires to tire-curing 

presses, the optimum being a function of both quality and quantity. 

(2) To minimize expensive internal mold relocation. 

(3) To design the input and output operations such that the system 

can be utilized as a ''black bo~• routine which does not require the 

user to have a complete understanding of its mode of operation. 

Consideration of the second requirement, the minimization of 

internal mold relocations, suggests that as_ an initial trial the on

coming N t_ires should be tried in the N vacant cavities. Thus, if 

an optimal arrangement occurred it would represent the most ideal 

condition--optimum production with no rearrangement of existing curing 

positions. Hcwever, this is an unlikely occurrence, and the method 
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of allocation on the surface appears to be inconsistent with the 

optimization of the entire operating position of the plant. This 

inconsistency can be dealt with by several different techniques. 

One of these would be the addition of any tires in the present 

cure to both the '*on11 and "off" lists. This procedure \-Jould 

effectively bring these tires into consideration by the system. 

The limit of these additions would be the inclusion of the balance 

of the cure to these lists, and the subsequent re-allocation of all 

the tires in an optimal manner would occur. The difficulty, obviously, 

would be the unprofitable number of mold changes that would occur. 

The cost of mold changes would likely exceed the increase in profit 

derived by the total re-allocation. 

Another approach would be to apply a suboptimal system that 

evaluates every tire on the production list and which arbitrarily 

decreases the linear independent assignment cost a .. if tire i in 
IJ 

the previous assignment occupied facility j. The arbitrary constant 

could be adjusted by the user until, by experience, the number of 

mold changes occurring would be economical. Thus, each tire would 

have a preference for its present position. It would only be re-

located if in the newly assigned position a more beneficial return 

was produc.ed than in its compensated present position. The advantage 

of this system is the inclusion of every tire in the cure for the 

evaluation of the interaction cost matrlx C. 

The approach utilized in this system introdu~es the assumption 

that there will be a value that assesses the performance of each press 

in curing the tires assigned to it. If the least desirable assessment 
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is represented by a high numerical value, then an additional assumption 

is that there is a value of this parameter that can be set by each 

plant below which a press can be considered to be operating satisfact

orily. This is effectively establishing an allowable tolerance to the 

optimum operating position within which the system is considered to be 

functioning acceptably. With this consideration, the first allocation 

attempt made by this system is to fit N tires specified on the list of 

additions to the locations vacated by the N tires being removed from 

production. This does not exclude the possibility of supplementing 

additional tires from the present cure to these lists for consideration 

by the system. However, no attempt is made to deter the relocation of 

these additional tires. A first fit is attempted and tested according 

to the above criteria; if acceptable the system terminates. If the 

results are not satisfactory, the effectiveness of every press is 

evaluated, and those that exceed the user set minimum are then re

evaluated amongst themselves. This procedure is·then repeated until 

either the condition for every press having an acceptable effectiveness 

coefficient or the number of mold relocations has exceeded a user set 

value, or there has been no further Improvement in the overall cure. 

The attempt to fit the new tires to the vacant locations is 

not an unreasonable starting condition because the partial problem does 

not require the relative line positions of various tires to be con

sidered. For this installation the exclusion of this consideration is 

not serious since like machines are themselves grouped. Therefore, 

the machine suitability considerations tend to drive the solution to 

schedule similar tires in the general proximity of each other--although 
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this is not guaranteed. In the general case, the consideration of 

relative positions may have more importance. However, it is unlikely 

that these considerations would take preference over the suitability 

or combinatorial considerations, neither of which is affected by 

dealing with partial solutions. Thus, if an optimal routine was 

employed on their initial allocation and the previous schedule had 

been satisfactory, this approach will at least not drive the solution 

into an infeasible area on the basis of previously allocated tires. 

The advantages of employing this approach are as follows: 

(1) It enables the user to control directly such things as 

the number of allowable mold changes. 

(2) It enables him to observe the fit that occurs at each 

stage. 

(3) The slze of the problem is substantially reduced at any 

one stage. 

As example of this last point, an installation consisting of 

P locations (P/2 presses), the previous approaches would necessitate 

the evaluation of three P x P matrices. For a typical Canadian plant 

this could easily exceed the capacity of most industrial computing 

devices. The above approach only requires the evaluation of three 

N x N matrices, where N is usually in the order of P/10 - P/4 for an 

average plant. 

The algorithms chosen to solve the quadratic assignment problem 

formulated by this system were the two suboptimal algorithms described 

by Gilmore (9)~ These algorithms were chosen in preference to Gi lmore 1 s 

or Lawler•s optimal algorithm, based on the computation of lower bounds 
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since Gilmore states that ~his algorithm becomes unrealistic for 

fifteen or more activities. The problem here is consistently larger 

in magnitude than this limit allows. 

The Carlson·Nemhauser (4) a1gorithm was considered because 

it is based on the concept of assigning activities considering there 

to be an interaction cost arising from every combination of two 

activities allocated to the same facility. This appears to be 

exactly the case with the tire assignment problem. However, the 

algorithm made the additional assumption that any number of activities 

could be scheduled on any single facility. This, of course, is a 

violation of a real constraint of this problem. 

A further, rather arbitrary, decision made in the design of 

this system was the selection of an algorithm for the solution of the 

linear assignment problem, formulated by and necessary for the solution 

of Gilmore's algorithm for the quadratic problem. The algorithm 

selected was Munkre 1s (10). The reason is no more sophisticated than 

that it was the one suggested by G i 1 more. I. t is believed .that any one 

of several excellent algorithms for this linear problem could have 

been utilized with equal success. 

The system, presented here relies on the user to sup~ly, by 

means of punched cards, all of the pertinent cure facts for every tire 

to be scheduled. In a·real installation this information could easily 

be stored in a random access file and ·the information could be referenced 

by part number. 

Because Goodyear Tire and McMaster University have different 

computer systems it became prohibitive to attempt to duplicate Goodyear's 
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files at McMaster's machine. Therefore, to demonstrate the workability 

of the solution, ficticious inputs have been used for the sample problem 

solved in Appendix D. 

A system flow-chart follows (see Fig. VI I I). 

VII. l Sample Calculation 

The purpose of this section is to clarify the description of 

the system given in the preceeding section by means of a numerical 

example. Where possible the variables here have the same meaning as 

the variables used in the program in Appendix C. 

VI t.1(a) The Problem 

Consider the problem of scheduling ten new tires in an 

installation similar in arrangement to the one shown in Figure VI I. 

(a) The Equipment: The pertinent information about each press 

ts given in Table I. 

{b) The ON and OFF Tire Lists: These lists, including the 

relevant cure cycle information for each ON tire, are given in Table II. 

STEP 1. 

(a) Search the existing cure for the tires listed on the OFF tire list. 

These locations are then numbered 1 to N (N = 10 for this problem). See 

Tab 1 e I I for a 1 i s t of a v a i 1 a b 1 e 1 oc at i ons . 

STEP 2. 

From Table IIit can be seen that the first six tires being 

removed empty 3 comp1ete presses. Similarly, tires 9 and 10 empty 

a complete press. However, tire 7 empties only half of press B14 
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and tire 8 empties only half of press C14. In order to be able to 

compute the compatibility relations for the establishment of matrix C, 

it is necessary to add the tires left on these presses to the ON tire 

list and increase N by 2. (The cure parameters for these tires are 

given in Table 2.) 

STEP 3. 

The problem is now to be formulated as a quadratic assignment 

problem. The first step in this fofmulation is the evaluation of the 

suitability relations 6.2 to 6.9 in order to complete matrix A. 

Sample calculations for element a25 follows: 

d1 = PMHT5 - THLDH2 

= 11.5 - 10 

= 1.5 

d2 • PMWs - THLDW2 

= 38 - 35 

= 3 

d3 = PSHP5 - SHAPE 2 

= 3 - 3 

= 0 

Since tire 2 (TIRE N202) is a high quality tire requiring 

precision curing and since press S (813) has only got a medium rating, 

then d4 = 100. 

Since tire 2 requires automatic post-cure inflation and since 

press 813 is equipped with manual inflation equipment, then d 5 = 100. 

Therefore 

a2s = d1xw1 + d2xw2 + d3xw3 + d4 xw4 + d5xw 5 

= (1.5 x 100) + (3 x 100) + (100 x 1) + (100 x 1) = 650 
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The purpose of the weighting factors is to allow the user to 

adjust the affect of each of the above factors on the assignment. As 

an example of this a user may deem a difference in the required 

number of shaping phases and the available number of phases of one 

to be twice as important as a three-inch difference in available and 

required mold heights. Therefore, using the given value of w1 , w3 

sho\jld equal 6. 

w3 r. 2 x (w1 x d1)/lOO 

= 2 x (100 x 3)/JOO 

= 6 

A table of the values of the weighting factors used in this 

example is given in table 111. 

The remaining elements of matrix A are shown in Table IV. 

The next step required to formulate this problem as a quadratic 

assignment problem is the evaluation of the compatibility relations 

6 • 10 to 6 • 18 • 

Sample calculations for element c 18 (tire l compared to tire 8) 

fol lows: 

h l = I Bw i - Bw a I 
= 11 - 10 

:s l 

Since the construction type of tire 1 (TlRE N201). is the same 

as the construction type· of tire 8 (TI RE N208) , then h2 = O. 

h3 • l(PCIP1 - PCtP8)j 

s l'+O - 35! 

= s 
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TABLE I - EQUIPMENT 

~ 
~ q_ 

Al-A2 SOM Ml 10.5 43 s M 

A3-A4 SOM Ml 10.5 38 2 s M 

A5-A6 SOM Ml 11.5 38 2 s M 

A7-Al3 BOM Ml 10.5 43 1 s M 

Allf COM Ml 2 10.5 38 3 0 M 

81 BOM Ml 2 12.5 38 3 0 M 

82-Blft BOH Ml 2 11. 5 38 3 0 M 

c 1-c2 NRM 46 3 14.S 46 3 0 A 

t3 NRM 40 3 14.5 40.5 3 D A 
1 

C4 NRM 46 3 14.5 46 3 D A 

C5-C6 NRM 40 3 14.5 40.5 3 D A 

c1-cn BOK Ml 2 11.5 38 3 D A 

C 12-C 13 NRM 40 3 14.5 40.S 3 D A 

Cllt SOM M12 1 13 40 2 D M 

Ol-05 BOM Ht2 t3 40 2 D M 

06-014 SOM MlO 3 13 40 3 0 A 

E'l .. E4 BOM MIO 3 13 40 3 D A 

ES-E6 BOM Ml2 1 13 !to 2 D A 

E7·E14 BOM MlO 3 13 40 3 D A 

~':SQM: McNIEL CORPORATION - BAG-0-MATIC PRESS. 
NRM: NATIONAL RUBBER MACH. CORPORATION - AUTOFORM VULCANIZER. 

**S - SINGLE CONTROL 
0 - DUAL CONTROL 

;h'n~M - MANUAL POST lNFLATOR 
A - AUTOMATIC POST INFLATOR 



TABLE ·11 - ON TIRE LIST 

~ 
"~ ;f ~ Q. 

TIREN20l 20 3 2 STD BOM 

Tf REN202 4202 22 13 3 10 10 2 STD BOM 2 

TIREN203 4203 18 12.2 3 11 33 13 35 2 STD SOM 3 

TtREN204 4204 20 14. 1 3 12 40 11 40 2 STD SOM 4 

TtREN205 4205 23 15 3 11 33 13 35 2 . STD BOM 5 

TIREN206 4206 18 12.2 3 11 33 13 35 2 STO SOM 6 

TIREN207 4207 21 13.8 2 10.5 31 12 35 1 STD BOM 7 

TIREN208 4208 22 13 3 10 35 10 35 2 STD BOM 8 

1'REN209 4209 23 15 3 11 33 13 35 2 ·STD BOM 9 

TIREN210 4210 21 13.8 2 10.5 31 12 35 1 STD BOM 10 

ADDITIONAL TIRES FROM PRESSES B14 ANO C14 
! 

TIREN091 4091 I 20 15 3 11.5 38 14 . 35 2 0 STD BOM 1 l 

TIREN093 4093 i 20 15 2 13.0 40 14 35 2 0 STD SOM 12 

THE OFF TIRE LIST t..... i;;-

~ 
~ QJ' ~ 

Ao. ~~~ ~ 
9j ~~ ~~~ ~~ ~-~ "' ~ q_ ~ ~~ ~~· ~~ ~& ~ <§'~ ~~ ~ '<. 

'~ 
TIREN061 4061 Dl 

TIREN06l 4061 01 2 

T l REN 117 4117 014 3 

TIREN 117 4117 014 4 

TIREN033 4033 B13 5 
TIREN033 4033 Bl3 6 

TI REN091 4091 814 7 

TIREN093 4093 C14 8 

TIREN076 4076 E6 9 

TIREN076 4076 E6 10 



TABLE III ti!EIGHTING FACTORS 

W1 = (mold height differences) = 100 

W2 = (mold diameter differences) = 100 

W3 • {shaping phase differences) = 100 

W4 = (rating differences) = 1 

W5 : (P.C. I. equiornent differences) : 1 

w6 = (bead diameter differences) = 20 

W7 = (construction differences) = 1 

Ws = (P.C. I. pressure differences) = 1 

w9 : {shaping phase differences) : 40 

W10 _ (cure cycle time differences) = 100 

w11 = (green tire height differences) = 20 

W12 = (same press for two locations) = 1 

W13 = (relative press lines) : 1 

W14 - (makes of presses) = 1 

W15 = (models of presses) : 1 



TABLE 1'7 THE A MATRIX 

100 100 200 200 10000 10000 10000 100 100 100 10000 100 

aoo 800 900 900 650 650 650 800 800 800 650 800 

900 900 1000 1000 750 750 750 900 900 900 750 900 

100 100 200 200 10000 10000 10000 100 100 100 10000 100 

900 900 1000 1000 750 750 750 900 900 900 750 900 

900 900 1000 1000 750 750 750 900 900 900 750 900 

1250 1250 i250 1250 1100 1100 1100 1250 1250 1250 1100 1250 

Boo 800 900 900 650 650 650 800 800 800 650 800 

900 900 \OOO 1000 750 750 750 900 900 900 750 900 

1250 1250 1250 1250 1100 1100 1100 1250 1250 1250· 1100 1250 

450 450 550 550 200 200 200 450 450 450 200 450 

200 200 300 300 10000 10000 10000 200 200 200 10000 200 



TABLE V. THE C MATRIX 

0 535 995 0 1095 995 115 535 1095 115 2295 2335 

535 0 1480 ·535 820 1480 540 0 820 540 2600 2640 

995 1480 0 995 1280 0 820 1480 1280 820 3280 3320 

0 535 995 0 1095 995 l 15 535 1095 115 2295 2335 

1095 820 1280 1095 0 1280 580 820 0 580 3200 3240 

995 1480 0 995 1280 0 820 1480 1280 820 3280 3320 

115 540 820 ll 5 580 820 0 540 580 0 2580 2540 

535 0 1480 535 820 1480 540 0 820 540 2600 2640 

1095 820 1280 1095 0 1280 580 820 0 580 3200 3240 

. 115 540 820 115 580 820 0 540 580 0 2580 2540 

2295 2600 3280 2295 3200 3280 2580 2600 3200 2580 0 40 

2335 2640 3320 2335 3240 3320 2540 2640 3240 2540 40 0 



h4 = ISHAPE 1 - SHAPE 8 } 

= 13 - 31 
= 0 

hs • ICT1. - CTsl 

• 114.1 - 131 
• 1.1 

h6 • f GTHT1 • GTHTel 

SI 120 • 221 

# 2 

Since h6 Is greater than a limit of 1.5, it is penalized by 

a factor of 10. Therefore: 

Therefore: 

h6 • to x h6 • 20 

c18• h1xw6 + h2xw7 + h3xw8 + h4xw9 + h5xw10 + h6xw 11 

• (l x 20) + (0 x 1) + (5 x 1) + (0 x 40) + (l. 1 x 100) 

+ {20 x 20) 

• 535 

the complete C matrix is given in Table V. 

To complete the formulation of this problem as a quadratic 

assignment problem it ls necessary to determine the value of the 

locational relations 6.18 to 6.27 to complete matrix D. 

Sample calculations for element d 1 ~, Location l (PRESS Dl) 

cocnpared to Location 4 (PRESS 014) follow: 

f1 • 0, since locations 1 and 4 are not on the same press. 

f2 • 20, since locations 1 and 4 are on the same press .line. 
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f 3 • to. since locations I and 4 are on the same make of press. 

f 4 m S. since locations 1 and 4 are not on the same model of 

press. 

Therefore: 

d 1 4 = f 1 XW l ? i" f 2 XW l 3 + f 3XW 11~ + f 4 XW l S 

Q (0 x 1) + (20 x 1) + (10 x 1) + (5 x 1) 

= 35 

The complete D matrix is given in Table VI. 

STEP 4. 

The problem is now in a form suitable for one of the system 

algorithms for the quadratic assignment problem. The details of this 

solution are omitted at this point and are assumed complete. The 

resulting permutation matrix ex is given in Table VI I. The permutation 

matrix a, consisting of zero or one vaiues, indicates the assignment 

determined by this system. It is interpreted as follows: 

The first non·zerp element of a is in position 1 ,1. This 

signifies that tire 1 is scheduled to position 1, or, in the terms of 

this specific problem. TIREN201 is scheduled on PRESS 01. The next 

non-zero element occurs in position 2,3 indicating that tire 2 

(TIREN202) is scheduled into location 3 (PRESS 014). The balance of 

this initial assignment is given in Table VIII. 

STEP 5. 

At this point in the solution, it becomes necessary to evaluate 

the effectiveness of all the curing locations. The vector Z is used 

for this purpose. Z1 for example is the effectiveness of press 

(PRESS Al in this example) to cure the two tires assigned to it. 
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Z. = a . + a . + c 
I Xl y1 xy 

where: a. =suitability coefficient for tire x on facility 
XI 

evaluated by the relations 6.1 to 6.9; 

a • a similar to above for tire yon facility i; and y1 

c •compatibility of tires x and y to be cured on the same 
xy 

facility, evaluated by the relations 6.10 to 6.18. 

It Is assumed for purposes of this example that experience has 

sh<*n that a press can function acceptably with a value of Z that is 

less than 1100.0 {ZMAX). The cure is"°"' researched. Those presses 

with an effectiveness coefftcient in excess of Z are re-allocated, max 

by repeating the procedure from Step 3. 

For purposes of this example, a previous cure was contrived 

in which press A3 was operating ineffectively. The remaining presses 

were all operating acceptably with varying degrees of effectiveness. 

The review of the cure found that there were 3 presses operating 

unacceptably. These were A3, C14 and 014. The tires on C14 and 014 

are part of the new assignment. 

Repeating the above procedure it indicates that it would be 

advantageous to relocate the tires now on press A3 to presses C14 and 

014. The new tires origina11y assigned to C14 and 014 are now assigned 

to press E6. A further re-evaluation indicates that the cure is now 

operating entirely satisfactorily. The format of the program results 

are shCft'ln in Table IX. 

This example was solved on McMaster 1s computer where it took 

17.3 seconds of central processor time to complete this solution. 
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TABLE VI THE 0 MATRIX 

0 240 35 35 20 20 20 35 35 35 20 35 

240 0 35 35 20 20 20 35 35 35 20 35 

35 35 0 240 20 20 20 30 30 30 20 30 

35 35 240 0 20 20 20 30 30 30 20 30 

20 20 20 20 0 240 40 30 20 20 40 30 

20 20 20 20 240 0 40 30 20 20 z.o 30 

20 20 20 20 40 Ito 0 30 20 20 240 30 

35 35 30 30 30 30 30 0 25 25 30. 240 

35 35 ~o 30 20 20 20 25 0 240 20 25 

35 35 30 30 20 20 20 25 240 0 20 25 

20 20 20 20 40 40 240 30 20 20 0 30 

35 35 30 30 30 30 30 240 25 25 30 0 . 
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TABLE VIII 

IN l T IAL PLAC t NG OF 110N11 TI RES 

TIRE TIREN201 TO BE SCHEDULED ON PRESS 01 

TIRE TIREN202 TO BE SCHEDULED ON PRESS 014 

TIRE TIREN203 TO BE SCHEDULED ON PRESS 814 

TIRE TIREN204 TO BE SCHEDULED ON PRESS 01 

TIRE TIREN205 TO BE SCHEDULED ON PRESS B13 

TIRE TtREN206 TO BE SCHEDULED ON PRESS 814 

TIRE TIREN207 TO BE SCHEDULED ON PRESS C!l~ 

TIRE TtREN208 TO BE SCHEDULED ON PRESS 014 

-TIRE TIREN209 TO BE SCHEDULED ON PRESS Bl3 

TIRE TfREN210 TO BE SCHEDULED ON PRESS C14 



TABLE IX 

THE FOLLOWING TI RES ARE RELOCATED 

tlRE TIREN003 RELOCATED FROM PRESS A3 TO PRESS 014 

TIRE TIREN091 RELOCATED FROM PRESS B14 TO PRESS E6 

TIRE TIREN093 RELOCATED FROM PRESS C14 TO PRESS E6 

THE "ON" T t RE LOCATIONS 

TIRE TIREN20t TO BE s·cHEDULED ON PRESS 01 

TIRE TIREN202 TO BE SCHEDULED ON PRESS CJ4 

TIRE TIREN203 TO BE SCHEDULED ON PRESS 814 

TlRE TIREN204 TO BE SCHEDULED ON PRESS 01 

TIRE TIREN205 TO BE SCHEDULED ON PRESS B13 

TIRE TIR£N206.TO BE SCHEDULED ON PRESS B14 

T\RE TIREN207 TO BE SCHEDULED ON PRESS 014 

TIRE TIREN208 TO BE SCHEDULED ON PRESS C14 

TIRE TIREN209 TO BE SCHEDULED ON PRESS 813 

TtRE TIREN210 TO BE SCHEDULED ON PRESS A3 



V111 CONCLUSIONS 

The value of an automated optimizing system to allocate tires 

to tire-curing presses becomes meaningful when considering the number 

of operations required to evaluate all the possible unique solutions. 

For example, in the relatively minor problem of assigning ten new 

tires to ten vacant curing locations· on five curing presses, there 

are factorial ten possible assignments of tires to locations. Each 

tire to location evaluation consists of tile comparison of eight tire 

parameters to the corresponding machine parameters. Similarly, in 

assessing the value of each combination of tires it is necessary to 

compare six additional parameters. Considering each parameter com

purison ·to be an operation, the result of this is 3,628,800 unique 

assignments rcqu iring 50 ,803 ,OOO operat.i ons to complete the eva 1 uat ion. 

Even if 99% of these assignments were obviously invalid for one reason 

or another, there are still 36,288 possible arrangements requiring 

50,803 operations. These figures, based on the simplifying assumption 

that the ten vacant locations are contained on five presses, preclude 

the consideration of the additional parameter comparisons required to 

assess a new tire relative to one left on a press. Remembering this, 

and extending the problem to cover a~ many as twenty-five new tires, 

it can safely be assumed that a manual and explicit approach is not 

adequate. 

As a comparison, in a sample problem of assigning ten new 

tires to ten locations contained on fifteen presses, including a second 

run consisting of sixteen tires from eight presses, this system reached 
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the known optimum assignment in J8.49 seconds of central processor time. 

The implementation of an automated system, such as this one, 

could conceivably contribute to the productive capability of a manu

facturer in the foJJowing manner: 

(1) by virtue of a significant decrease in the time required to effect 

a schedule, it would be possible for the company to decrease the lead 

time between market requirements and implementation of production. This, 

in turn, would allow the company to operate closer to the market with 

reduced inventories. 

(2) The likelihood of reducing the number of position relocations 

presently required to accomplish an acceptable assignment is greatly 

enhanced. This possibility arises since the optimal system can 

examine, for.the initial fit, a far greater number of possible com

binations out of which the most advantageous are selected. 

The logic of the algorithms used for the solution of both the 

quadratic and linear assignment problems has been incorporated into 

indivldualj and very general subroutines. Two reasons governed this 

choicet the first of which has been to allow the user to modify the 

main or executive portion of the program without being concerned with 

the destruction of the 1ogic of the assignment portion. The second 

reason, and, perhaps, the more significant reason, is to allCM these 

subroutines to be employed by a more general system concerned with 

the assignment of components or tires to every stage in the tire

manufacturing process. One of the more obvious extensions of the 1ogic 

of this system is to incorporate the tire to the tire-building machine 

system. This system appears linear since there exists a one-to-one 
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assignment condition (i.e., one tire per machine). Hcwever, an 

interaction amongst the relative locations assigned to tires does 

occur if one considers the grouping of tires using common or 

similar components. 

The desirability of applying an ·optimal or suboptimal 

technique for the types of system discussed so far is dependent 

upon the nature of the facility and the product line. A system 

such as the tire-to-tire press system is highly desirable in an 

older installation with vastly different curing facilities and 

which manufactures a diversified product line. This desirability 

decreases as the homogeneity of a manufacturing plant's equipment 

increases, and simi tar1y as the number of product lines decreases. 

It is not within the scope of this thesis to calculate the 

expected savings that will be realized by the implementation of this 

automated system. The major return wi 11 be an improved operating 

efficiency for the entire plant stemming from a more efficient 

use of existing equipment. One measure that can be estimated is 

the difference in the cost tc• formulate an ass ignroen~. The present 

manual system requires 1.5 man-days directly with approximately an 

additional 0.5 to 1.0 man-day of interaction with advisory personnel. 

Assuming a cost of $6.00 per hour for the manual system, this amounts 

to an annual cost of $6250.00 to schedule the cure. On the other 

hand, the system described by this project required 76.4 seconds of 

central processor time to complete an assig~ment of twenty ON tires. 

At the rate of $9.16 per minute, the annual cost to schedule auto-

·. matically would be about $650.00. Thus an estimated annual saving 

73 



of about $5600.00 would be realized. However, as mentioned this 

would likely be trivial in comparison to the improved operating 

cond i t ions • 
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IX RECOMMENDED CHANGES ANO ADDITIONS 

One of the benefits anticipated from the use of an automatic 

optimal assignment system is the possibility of decreasing the 

scheduling period (i.e., change from weekly schedu1ing to daily 

!tcheduling). One result of this would be the reduction of the size 

of the problem for any one assignment. This, in turn, may reduce 

the problem to the point (Jess than 15 tires} where it would be 

feasible to employ an optimal algorithm for the assignment. Either 

Lawler's or Gilmore's algorithm, under these conditions, would be a 

valuabJe addition to the program. The option to utilize this 

routine could easily be made automatically by the system when the 

size of the assignment warra.nted it. 

This system has been formulated on the pre_m i se that tire-

curing times are continuously variable between an upper and 1ower 

limit. While this is essentially true, there are cases where tires 

have approved cures only at discrete times within the above range. 

This in.traduces a complication in the sense that two tires being 

evaluated for a single press may have over-lapping time ranges and 

yet sti 11 not have a common approved cycle time. This complication 

can best be handled during the evaluation of the C, or compatibility, 

matrix by the addition of a simple routine that compares all approved 

cycle times for each tire, until it finds the lovJest common time. A 

penalty should then be added to the value of cij the corresponding 

element of matrix C. This penalty should increase in value as the 

difference between the common time and the ~horter of the two base 

times incre~scs. It wi 11 also be necessary to add an additional 



matrix. T, where element t .. would be the common curing time of tires 
fJ 

i and j. 

The system in its present form requires a great deal of core 

for a reasonable size assignment (approximately 14,500 10 wor~s for a 

twenty--tire problem). One of the facto-rs contributing to this, 

hO'rl~ver, has been the need to carry in the program the files of curing 

parameters for every tire in the previous assignment. r f keyed random 

access disk fi1es were utilized the core requirements would be 

substantially reduced. 
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APPENDIX A 

The Quadratic Assignm~nt Prob1em 

Giimore's Algorithm 



A. 1 Genera 1 

A mathematical statement of the quadratic assignment problem 

fo tlows: 

minimize Z = ~.a.p(i) + i c •. dp(i)p(j) 
I I · . ..l.. I J 

&rj 

Although the tire assignment problem consisted of symmetric 

matrices C and D, these algorithms can be applied to the more general 

problem using non-symmetric mdtrices. 

The presentation here is essentially the same as Reference 9. 

A.2 A Lower Sound 

Some definitions are in order before proceedin~ with the 

determinat;on of a lower bound on Z for c6mp1etions p of a partial 

permutation a. 

(1) A pc.rtia1 permutation of 1 1 ••••• ,n is a 1·1 map of some subset 

of { l , •••••• n} into {I , ••••• ,n} . 

(2) An extension of a partial permutation a is a partial permutation 

~) such that ,_v( i) = ~~( i), for al 1 i for which (X is defined. By a 

completion of a partial permutation (;. is meant a permutation which is 

an extension of a. 

( 3) Given two vectors, V = (vl,v2 , •.••• ,v) .. . m and \./ ~ ( w l , . . . . . , ~·1 ) 
m 

of non-negative elements, the problem of determining a permutation 

o of 1, ••••• ,m for which the permuted dot product 

\• ~ I •) .:..- iv i w~',; 

is a minimu:n is solved by matching the smallest v. v1ith the largest w., 
I J 

the scconJ smalle5t v. ~lith the second largest w. and so forth. For 
i J 
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any two vectors V and W of the same dimension. P(v,w) will denote 

the minimum permuted dot product. 

and 

If lower bf)Unds art! calculated separately for the bm terms 

La.p(i} 
I · 1 

. z. ~Jc .. dp ( i) p (j} 
lr IJ 

appearing in z. Then a lower bound for Z wilt be the sum of the two 

bounds. A 1o.,.;er bound for the first term is easily calculated, since 

the problem of finding such a permutation is to solve an ordinary 

assignment problem. A lower bound for the. second term can also be 

found by solving an ordinary assignment problem. Let c. be the ith 
I 

t I 

rm"' of C and c. the i th c:o1umn each with c •• deleted and let d. and 
' 11 l 

d! be similarly defined, then if t is such that 0 ~ T ~ and if E' 
' 

is the n x n matrix T 11 P (c. , d • ) I 11 + (J - T) I IP ( c ! , d ~) ! l a i owe r 
i J I I J I 

bound for the second term results if the matrix E' is solved as an 

ordinary assignment problem. 

A lONer bound for Z can also be determined for completions ,_, 

of a partial permutation u. This can be ~one directly by letting 

c(; .~-i) and du,i) for i. I dom(a), and let d(j,a) and d(cx.,j) for j I ran(l't) 

be vectors of all elements respectively djk and dkj' j ~ k and k_I ran(u}. 

Further for i t dom(a) and j i ran(a) let 

e. . = a + ·1 P [ c (i , ci) , d ( j , a) ] + ( I - T) P [ c (a , i ) , d ( tt , j ) ] 
1J i j 

+ 2: d ( } (c .. d. ( ) + c .d ( ) .• ) m r. om r.t 1m Jex m mt a m J 

If dom(a) has m members then there are n - m values of and j 
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for which e •• is defined so that they can be regarded as the elements 
tj 

of an (n ... m) x (n - m) matrix E. If (1 ranges over· all completions of 

,_, and 

b(n) • ,, '--'i 

+ mi n r.. { d ( ) e. (.) a • om u 10 1 

then Z(p) • b(a). Therefore b(~) is a lower bound for Z(p) for corn-

p 1e t ions a. 

A.3 The Algorithm 

The problem of determining ~ permutation p to minimize Z can 

be regarded as an (n - 1) stage decision process where at each stage 

two numbers i and j must be chosen, l ;: i ,j ~ n, the number chosen for 

not having been chosen at an earlier stage for i and the number for 

j not having been chosen at an earlier stage for j. Thus a sequence 

uo,~1.u2, •..•. , n~ 1 of partial permutations is determined by then -

decisions where for each k, 0 ~ k ~ n-lt ak is of rank k, ~k+J is an 

extension of ak, the sequence determining the single completion un of 

the partial permutation u 1. n-

F or any k, 0 ~ k ~ n-2, let Ek be the (n - k) ., (n - k) matri_x 

E defined in the computation of the lCA-1er bound b(a). The choice of an 

and j at the (k+1) 5
t decision stage is then the choice of an element 

There are many ways in which Ek can be used to choose i and j. 

The two recommended by Gilmore, and used in this system, are as follows: 

(A) A max-min choice: determine for Ek the minimum of each row and 
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column and take the maximum of the mini~ums. 

(S) A maximu~ of an assignment minimum choice: solve the ordinary 

assignment problem for Ek and choose the largest of the n - k elements 

of Ek appedring in Uw assignment problem solution. 

Oecision Method (A) requires of.the order of (n - k);;i element'ary 

operations, (Where an elementary operation is taken as any one of 

multiplication, add;tion or comparison of two numbers.) An algorithm 

bases on this method then would require of the order of i:~:~ (n-k) 3 

elementary operations or of the order of n4 • 

Using Munkres' algorithm {see Appendix B) for the solution of 

linear assignment problem. method ( B) requires of the order of ( n-k) 1
+ 

elementary operations~ Therefo1~e an a lgof"i thm based on this method 

requires of the order of >~~=~ (n-k}i• elementary opera.,tions or of the 

order of ' n->. 

A flow diagram for this algor~thm is given in Figure J":. 
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APPENDIX B 

The Linear Assignmen~ Problem 

Munkres' Algorithm 



B. 1 General 

This appendix presents Munkres 1 algorithm for the solution 

of a linear assignment problem. In this system this routine is 

employed to determine a permutation matrix under Method B of 

Gilmore's algorithm for the quadratic assignment problem. The 

presentation here is essentially the same as in Reference 10. 

8.2 Th~ Algorithm 

A mathematical statement of the problem follows: 

minimize Z = E1a1p(t) 

·rwo remarks dre in order: (t) There is a theorem of KBnig 

which statt~s: If A is a matrix, and m is the maximum number of 

independent zero elements of At then there are m lines which contain 

at! the zero elements of A. {A set of elements of a matrix are said 

to be independent if no two of them lie in the same line where the 

word line applies both to the rows and columns of a matrix.) (2) It 

is readily seen that the solution of this problem ls not changed if 

an arbitrary constant is subtracted from every element of the matrix·. 

In the course of the problem, certain lines wf 11 be disting

uished; they wiil be referred to as covered lines. An element of a 

matrix is said to be non-covered, once-covered, or twice-covered, 

accordingly as it lies in precisely none, one, or two covered lines. 

Some zeros are distinguished by means of asterisks and some by primes 

(ther~ are respectively "starred zeros" and "primed zeros"). 

No tines are covered; no zeros are starred or primed. For 

each row of matrix A, subtract the smallest element in that row. Do 

89 



the same for each column of the matrix. 

Consider a zero Z of the matrix. If there is no starred zero 

in i-ts row and none in f ts column, star Z. Repeat, considering each 

zero in the matrix in turn. Cover every column containing a starred 

zero. (These starred zeros are independent.) 

STEP I. 

Choose a non-covered zero and prime it. Consider the row 

containing it. If there is no starred zero in this row, go at once 

to STEP 2. If there is a starred zero Z in this row, cover this row 

and uncover the column of z. Repeat until all zeros covered. Go to 

STEP J. 

STEP 2. 

There is a sequence of alternating starred and primed zeros, 

constructed as foll<Ms: Let z0 denote the uncovered zero prime. 

(fhere is only one.) Let Z1 denote the zero starred in Zo's column 

(if any). Let Z? denote the zero primed in Z1
1 s column (if any). 

Similarly continue until the sequence stops at a zero primed, z2k, 

which has no zero starred in its column. (Note that no column contains 

more than one zero starred and no rod more than one zero· primed so 

that the sequence is uniquely specified.) 

Unstar each starred zero of the sequence and star each primed 

zero of the sequence. (The resulting set of starred zeros is independent. 

It is l~rger than the previous set of independent zeros by one.) Erase 

all primes, uncover every row, and cover every column containing a zero 

>tarred. If all columns are covered, the starred zeros form the desired 

independent set. Otherwise, return to STEP l. 
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STEP ). 

[At this point, all the zeros of the matrix are covered. 

Each zero starred is covered by precisely one line, so there are 

exactly as many covered lines as there are starred zeros.] Leth 

denote the smallest non-covered element of the matrix; it will be 

positive. Add h to each covered row; then subtract h from each 

uncovered column. Return to STEP 1, without altering any asterisks, 

primes, or covered lines. 

A flow diagram for this algorithm is given in Figure X . 
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APPENDIX C 

The Program 



C.1 General 

This program consists of a main executive program and four 

subroutines. The logic.of the formulation of the quadratic assignment 

problem as we11 as the execution of the input and output operations 

are contained in the main program. The subroutines are used to 

execute the iterative solution technique and to perform service 

functions. 

C.2 Variable Thesaurus 

A(l,J) - Matrix of effectiveness coefficients, evaluated by 
relations 6. l to 6. 9. 

ALPHA(t,J) - Permutation matrix evaluated in SUBROUTINE OPTt. 

SW(l) - Bead diameter of tire I, Example 1411
, 15", etc. 

C(l,J) - Matrix of compatibility coefficients-

CONST(O .. Construction type of tire t, Example Radial Ply, Belted, 
or Convent i ona l • 

CT(i) - Base cure cycle time for tire I. 

CTME - Cure cycle time for tires on the Semi-Automatic Presses. 

CURE(t) - Used to design~te type of cure required by tire I. 
Ex.ample Cure2 = NRM - Tire 2 is restricted to an NRM press. 

O{l,J) Matrix of locational coefficients. 

E ( f ,J) 

EBW( I) 

GTHT (I) 

I BOM ( f) 

- Working array established by SUBROUTINE OPTI·. Used as 
input assignment matrix for SUBROUTINE LJNAS. 

- Same as BW(I) except that the 11E11 prefix means that tire I 
has an assigned position in the cure. Similarly for 
ECT(I), EGTHT(I), ECONST(t), ECURE(I), EPCIP(I), ESHAPE(l), 
ETMLOH (I) , ETMLDW( t) , I EPC t (I) , and I ERAT (I) • 

·Total overall length of a green tire. 

- Working vector used in SUBROUTINE LINAS. 
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IC (l) 

tCNT 

lC.HOfCE 

I CONTR( I) 

I DAN (I) 

IOATA 

fOFC{I) 

1DIAG 

lOOM( f) 

I FC ( t) 

I K( I) 

1 PC i (I) 

& PPC t (I) 

IPRAT(l) 

Working vector used in SUBROUTINE OPTI. 

- Counter used in the main program. 

• Used to select algorithm for the problem solution. 
= 1 - Method A selected. 
~ 0 - Method B selected. 

- Used to designate type of control on press f. 
= 2 • Position I has an independent temperature and 

pressure control from its adjacent position. 
= l N not independent. 

• Working vector used in SUBROUTINE LINAS. 

- U5ed to output data for observation purposes if desired. 
c - Data is printed out. 
= 0 - Data is not printed out. 

- Four digit green tire designation number· for tire I on 
the OFF tire 1ist. 

- Used to output intermediate calculations for observation -
if desired. · 

• 1 - Calculations ar~ printed. 
= 0 - Calculations are not printed. 

- Working vector U$ed in SUBROUTINE OPTf. 

- four digit green tire designation number for tire l on 
the ON tire list. 

\·Jorking vector used in the ma.in program. 

- Used to denote whether tire i requires automatic post-cure 
i nf l at ion. 

-= 1 - Tire requires automatic post-cure inflation. 
a:: 0 - Tire does not require automatic post-cure inflation. 

- Indicates type of post-cure inflation equipment is 
avaiiablc at location t. 

=I - Press is equipped with manual P.C.I. equipment. 
= 2 - Press is equipped with automatic P.C.I. equipment. 

- User set rating value for performance of position I. 
Example: IPRAT(2) = 1 - Position 2 gives poor overall 
performance. IPRAT(6) = 3 - Position 6 gives excellent 
performance. 
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I PUNCH 

I RAN {I) 

IRAT(I) 

iTOPC(l) 

· ·IZ (I) 

JJK( t) 

LCTHS 

MAKE (I) 

MOD (I) 

N 

NH 

NtEL(I) 

NLINES 

NMAX 

NRUN 

NSEMI 

OFF ( t) 

ON (I) 

ONOR (I) 

PCIP(I) 

PHHT (I} 

PMW(t) 

- Used to output punched cards containing the relevant 
cure parameters for tires in the new assignment. 

~ J - punched output. 
~ 0 - no punched output. 

Working vector used in SUBROUTINE OPTI. 

•User set measure of the quality of cure required by tire t. 
:s 1 - Tire requires precision curing. · 
• 2 •Tire requires standard curing. 
= 3 Tire does not require precision curing. 

- Four digit green tire designation for tire assigned to 
location I. 

- Working vector. used in SUJ3ROUTI NE LI NAS. 

Working vector used in the main program. 

Total number of curing locations = 2 x number of presses. 

Manufacturer of curing location I. 

- Manufacturer~ designation for curing location I. 

- Number of trres on ON tire list. 

- ·Allotted.array size. 

- Number of curing locations in press line I. 

- Number of lines of presses. 

- Maximum number of mold chan!1es to be allowed. 

- Maximum number of cycles through the program to be allowed. 

Number of semi-automatic presses to be allowed. 

- Eight digit alpha-numeric designation· for tire ! on the OFF 
tire list. 

- As above, except for ON tire list. 

- \.Jorkinu vector used to store ori9inal ON tire list. 

- Post cure i nfl at ion pt·essure required by tire t. 

- The largest mold height that position can accommodate. 

- Th.e largest mold diameter that position I can accommodate. 
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PRESS(1) - Departmental· nomenctature used to designate position I. 
Example Al, C14, etc. 

PSHP(l) - Number of shaping phases location l can accommodate. 

SHAPE (I} .. Number of shaping phases required by tire I • 

TMLDH(I) - Mold height for tire I. 

TMLDW(I) • Mold diameter for tire I. 

TOP{I) - Eight digit alpha-numeric designation for the tire 
assigned to location I. 

VCAt (I .J) - Working array used in SUBROUTINE OPTI. 

VCIA(l,J) - As above. 

· VOAJ (I , J) ... As above. 

VOJA(J ,J) - As above. 

W(t) Weighting factors used to accent various assignment 
considerations. (These will be explained in detail later.) 

WORK) {I) - _Working array u$ed in SUBROUTINE OPTI. 

WORK2 {I) ... As above. 

WORKS (I , J) .. As ab<Jve. 

Z(t) Effectiveness coefficient used as a measure of how 
effectively Press I is curin9 the two tires assigned 
to it. 

C.3 Weighting .Factors 

In selecting a value for ·each of the 14 weightina factors used 

in this program, the user must consider their importance relative·to 

each other. There may be factors that are not very important in an 

absolute sense; hO\~ever, these should not be assigned a zero value. 

To.do so would negate the factor for which the zero weighting factor 

has been assessed from consideration. 

These weighting factors are as fol lows: 
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W( t) == Relative importance of difference in 1nold hei~~hts between 

press maximum and the tire under consideration. Note if this 

va1ue is negative then this position is not consldered valid. 

W(2) ~As above but considers mold widths. 

W(3) = Relative importance between number of phases of shaping 

available on the press and the number of phases of shaping 

required by the tire under Gonsideration. Note if this value 

is negative the press location is not considered valid for 

that tire. 

W(4) ~ Importance of difference in cure time between two tires. Note 

in the program only the primary times are considered. 

W(S) •Relative importan~e of height differential between two tiri?s. 

Note if difference Is 1.5 inches or greater this is considered 

an invalid condition. 

W(6) =Relative importance of difference of number of phases of 

shaping required between two tires. 

W(7) =Relative importance of the difference in bead widths of tires. 

W(S) = Weighting factor used to accentuate the increase in the value 

of D(l,J) when curing locations I and J are on the same press. 

D ( J., J) is increased by 200~':\J (8) if above condition is true. 

W(9) :a Weighting used to accentuate the increase in the value of 0(1,J) 

when curing locations I and J are in the same line of presses. 

D(t,J) is increased by 20*W(9) if the above condition is true. 

W(lO) =Weighting factor -used to accentuate the increase in the value 

of 0(1,J) when ~uring locations I and J are on the same make of 

press. O(t,J) is increased by lO*W(lO) if the above condition 
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is true. 

W(Jl) = Weighting factor used to accentuate the increase in the value 

of 0(1,J) when curing locations I and J are on the same model 

of press. 0(1 ,J) is increased by 10*W(11) if the above 

condition is true • 

. W( 12) · - Weighting factor used to accentuate the effect on A( I ,J) if 

tire 1 requires a high quality cure and location J is a high 

quality curing location. A{l,J) is reduced by 100*W(12) i·f 

the condition is true. 

W(13) a Weighting factor used to accentuate the effect_ on A(l ,J) if 

tire I requires automatic post cure inflation and location J 

is equipped with the same. A(l ,J) is reduced by 1oo~·:w(13) if 

the above condition is true. 

W{tq) =Weighting factor used to accentuate the difference in post 

cure inflation pressures required for tire I and tire J . 

. C.4 DIMENSION Statement 

Throughout the program all s.ubscripted variables have variable 

dirr~nsioning in order to simplify the program usage. Al 1 arrays and 

vectors have been carried back from each subroutine to the main 

program thus requiring the user to enter the required dimensions in 

only one place. The required DIMENSION statement is shown in Fi~ure '{I:. 

Example. If in the main program arrays A and X appear in the 

dimension statement, and if they also are used in a subroutine, then the 

fol towing form has been utilized. 
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'I 

lJ I l"'1EN~ I ON PMHT ( XX l, PMW ( XX i tPRt5~ ( XX > t TOP ( XX I • l TUPL ( XX >,I PPC J C 

2 X l , PC I P ( X I • I RA T ( X } • ( 0 N .S T ( X ) t CUR l::. ( X ) t I PC I ( . X ) t P SH P ( X X l , ( T I X ~ , 

J0'T"HT( ){),SllAPE< Y.ltTMLDH< x~.T:-4LDW( XltAC x. Xit(( x, x>.oc Xt x>, 

I.+[{ x, X)tlGOM( X)tlRA;\i( X!tV(lA( x. xi.vcAI( Xt x•.VL>AJI Xt Xi1VlJJ 

6~x: ,J~O"'i( x) .IDANC Xl 10Ff{ X' tlUFC< x> •JK( .x• tNlt.LCK.) tlf.( XJ tt.i..iTdT 
.. 

7 ( X X ) , EC T < X X l , E SHAPE ( X X l , E T ~ L D H ( X X l • £ b 1rf( X X I , E PC I P C X X • , l ERA T C 

l NT E G l R /.\ L PH A. < X , X > , L 5 T /\ R t X t X l 'Z P (~ IM < X t X ) 

lt!H[R F 

X = HiE NUMHER OF TI RES UN THE NEW SCHt.uULE • 

XX=ThE TOTAL NUMbER OF CURING LOCATIONS. 

K=THE NUMUER OF LINtS UF P~~SSES• 

KK=THE TOTAL NUMbER OF PRESSES. 

FIGURE XI THE DIMENSION STATE~ENT 



MAIN PROGRAM 

DIMENSION A(l5.15), X(10) 

M = 15 
CALL SUBROUTtNE B(A,X,M) 

ENO 

SUBROUTINE B(A,X,M) 
.DIMENSION A(M,l), X(I) 

ETC. 

C.5 Hain Program 

The purposes of the main program are to formulate the quadratic 

assignment problem and to execute all input and output operations. 

Special attention should be given to the following optio~s which are 

available when using this program. F1~ diagram is given in Figure XI! 

IDATA 

fCHOtCE 

1DIAG 

I PUNCH 

= 1 - All the input data will be printed for observation 
purposes. 

= 0 - Data is omitted. 

= 1 • Algorithm A is selected as the solution technique for 
the quadratic assignment problem . 

. = 0 - Algorithm B is selected. 

a 1 - Internal calculations will be output for purposes of 
observation. 

= 0 - No internal calculations are output. 

= - Data for next run is punched out. 
= 0 - No data is punched out. 

The following limit parameters must be set by the user. 

NRUN =Number of a11<Mable program executions. 

NHAX =Maximum allowable number of mold changes. 

ZMAX •Maximum allc:Mable effectiveness coefficient. 
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C.6 How to set up a Data Deck (see Figure XIII) 

VARIABLE 

N, ICHOtCE, IDIAG, NN, IDATA, 
NRUN, NHAX, ZMAX, IPUNCH 

LCTNS, NLINES, CTME, NSEMI 

NO. OF CARDS 

N t El (I) (NL INES) 

W(I) 14 

FORMAT 

718, FlO.O, 18 

215, Fl0.2, 15 

110 

Fl5.3 
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MAKE (I) , HOO (I) , .I PRAT (I) , PMHT (I) , 
PMW(I), PSHP(I), l·CONTR(I), IPPC1 (I) (LCTNS} 

A3, 3X, A3, 3X, I 3, 
Fl0.3, 213 

PRESS(I), TOP(I) ,. JTOPC(I) (LCTNS) 

EGTHT(l), ECT(l), ESHAPE(I). 
ETMLDH(I), ETMLDW(I), EBW(I), 
EPCIP(t), tERAT(I), IEPCl(I}, 
ECONST(I), ECURE(I) (LCTNS) 

ON ( I ) , I FC ( I ) ( N) 

GTHT(I), CT{I), SHAPE( I), TMLDH(I), 
TMLOW( J) , BW( I) , PC t P (I) , 1 RAT (I) , 
IPCl(I), CONST(I), CURE(l) (N) 

OFF{ I), IOFC(I) (N) 

C.7 Service Subroutines 

A4, 6X, A8, 5X, I 5 

7F9. 2, 21 3, 2AS 

AS, 6x, 14 

7Fl2.3, 2110, 2A10 

AS, 6X, 14 

Two of the four SUBROUTINES used in this program serve 

essentially a service role. These are: 

{1) SUBROUTINE CONVERT: The purpose of this SUBROUTINE is to convert 

the cure parameters from acti_ve form to inactive, ina.ctive to active, 

and from one inactive location to another. (11E11 prefix denotes inactive 

form.) 

(2) SUBROUTINE SORT: This SUBROUTINE i.s used to sort singly dimensional 

arrays into either ascending.or descending order of magnitude. SORT is 



UST 

SPICtftCATIONS 

PAIAMITllS 

LCTIWS NLINIS ClME NSIMI 

N IC.NOICE IDIAG NN IDATA NRUN NM.AX ZMAX l"'NCM 

FIGURE XIII SET UP 01? l\ Dl\TA DECK 



called by SUBROUTINE OPTJ. This SUBROUTINE is unchanged from the 

SUBROUTINE of the same name in the library of McMaster 1 s C.D.C. 6400 

computer. 

Flaw diagrams for these service SUBROUTINES are given in 

figure XIV and ~I. 

t.8 SUBROUTINE OPTI 

The SUBROUTINE OPTI contains the logic. of the two suboptimal 

algorithms for the solution of the quadratic assignment problem. Here, 

as in Appendix A, the t\.-10. methods are referred to as Method A and 

Method B. The choice of which algorithm is utilized is governed by 

the.value of ICHOtCE in th~ main program. 

Although the quadratic assignment problem formulated by this 

system has two symme.tric matrices, C and o. the SUBROUTINE OPTI has 

been written to handle the more general non-symmetric case. 

A complete discussion of these algorithms including a flowchart 

is given in Appendix A; 

C.9 SUBROUTINE LINAS 

The SUBROUTINE LINAS contains the logic of an algorithm for the 

solution to a linear assignment problem. The particular algorithm used 

here was derived by Munkres. A complete discussion of this algorithm is 

g ·1 ven i n Append i x B • 
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C.10 FORTRAN IV LISTING 
(_ 

C PROGRAM TO AUTOMATE THE SCHEDULlNb OF TIRE lURINb PR~5StS• 
c 

c 

DIMENSION PMHT( XXJtPMW( XXitPRE5S( XX'tTOPC xxl,JTOPC( XX>tlPPCJC 
1 XX)JICONTRC XX)tlPRAT( XX»tMOD( XXltMAKE( xx•,QN( X)tJFCC x>.BWC 
7XltPCIP< x>t1RAT( X>tCONST( x>.cuRE< X)tIPCil X)tPSHPC XX)tCTC x>. 
3GTHT( x>.SHAPEl X>tTMLDHC XJ1TMLDWl X),A( x. x>.ct x. XltD( x. x•, 
4EC x, x>.IDOM< x>,IRAN( X)tVClAC x. X)tVCAit Xt x~.v~AJ( Xt X)tVVJ 
5 A < X , X > ' w 0 R K i ( X > • \aJ 0 R K 2 C X ) ' 1 C l X ) t J R ( X • t WORK. 3 t X. ' X I • l Z ( 2 X ! • J l C 
6 2 X ) '1 b OM ( X ' '1 DAN ( X > • 0 FF t X J t I 0 F C ( X I t J K ( X i , N 1 t L ( K l t B~. < X ' t E.G TH T 
7( XX)1ECTt XX),ESHAPE< XX)•El~LDH( XX~tEBWt XX~tEPClPC XX)tIERAT< 
axx>,IEPCl( xx>.ECONST( ~X)•ECURE< XX)tONORC x~.JJK( x>.ETMLDW( XX) 
91Z<KK> tWl 14) 

INTEGER ALPHA( Xt XltZSTARC x, X)•ZPRIM{ Xt X) 

WHERE 
X=THt NUMBER OF TIRES UN THE NEW SCHEDULE• 
X X :;: THE:: T 0 TA L N UM b ER 0 F C UfH NG LUC/\ T l ONS • 
K~THE NUMBER OF LINES OF P~ESSES. 
KK=THE TOTAL NUMBER OF PRESSES. 

C READ IN THE NUMBER OF CHANGES1CHOlCE OF METHOD •CHOICE OF DlGNOS-
C Ties.ARRAY SIZE, DATA OUTPUT. 
c 

c 
C SET CONSTANTS 
c 

c 

NP.t~RT=!"l 

K2=C' 
ICNT=O 
IF<IDATA.EO.l>WRITE(6tll7'N,ICHOJCE•lDIAGtNN,IDATA,NWUN,~MAXtZMAX 

L R~AD IN NUM~ER Of CURING LOCATlUNS• NUM~~R OF LlNtS OF PkES5EStCU~E 
C TIME FOR THE SEMI AUTOMATIC PRESStS.NUM~ER Of SEMI AUTOMATICS. 
c 

c 

READ(5,ll4>LCTN5•NL1NEStCTMEtNSEMl 
IF(IDATA.EQ.ll WRlTEtotll3lLCTNStNLlNES 
UU 3v I=ltNLlNES 
READC5,12l)NIEL<I• 

30 CONTINUE 

C READ IN THE WEIGHTING FACTORS WC1)---~W(l4•. 
c 

r 
'-

DO 66 I=ltl4 
READ(5,140) W(l) 

66 CONTINUE 

C CLEAR ARRAYS 



c 

c 

DO l l=ltLCTNS 
PMHT(Jt=O• 
PMW(IJ40• 
PRESS<l>=O• 
TOPCIJ=O• 
ITOPC<I>=O 
IPPCl(J)=O 
ICONTR<IJ=O 
IPRAT<I>=O 
MODCI>=O 
MAKE<IJ=O 
PSHPtl>=Oe 
EGTHT<I>=o• 
l::CTCIJ=O• 
ESHAPE<l>=O• 
ETMLDH(IJ=O• 
ETMLDW<IJ=O• 
Et:lWtl>=O• 
EPCIP(l)=O• 
It.RA Tl I> =O 
lt.PCl(l)=O 
ECONSTCil•Oe 
ECURE<l>=O• 

1 CONTINUE 

C READ IN FILE OF PRESS PARAMETERS• 
c 

IF<lDATA.EQ•l> WRITtl6tl22t 
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DO 2 I=ltLCTNS 
REAOC~tlOl~MAKElI),MQD(JJ,lPRAT<l''PMHTtl)tPMW(l),p5HP<l'•lCONTR<I 

c 

1 > t I PPC I ( I J 
lF<IOATAeEO•v) GO TO 2 
\oJR IT E ( 6 t 115) MAKE< I > , MOD< I ) , I PRAT i J l , PMHT< I ) , PMW C I > t P SHP ( I I ' I CONT.~ C 

lI > tI PPC I ( I ) 
2 CONTINUE 

C READ IN THE EXISTING CURE - NOTf THI~ INFORMATION IS uERlV~D FROM 
C THE PRcVIOUS RUNNING OF THIS P~OGRAM. 
c 

c 

lF<IDATA.EQel>WRITlC6tl23) 
00·~ J=ltLC'TN5 
READt5tl02>PRESSCl>tTOP(Il,tTOPC<lJ 
IF<lOATAeEO•O> GO TO 3 
WklTEfbtll6) PRESSlJ>,TOP(ll,ITOPCtl> 

3 CONTINUE 

C REAU IN THE SPECIFIED CURE PARAMETERS FOR EACH TlRE IN THE 
C EXISTING SCHEDULE. 
c 



113 

DO 49 l=ltLCTNS 
i~EADC 5, 104' EGTHT ( 11 tC.Cl ( 11 tESHAPE' I l ,tTML.L>Ht 1) it. TMLOWC I I ,fbW( 11 tE 

1 PC IP< I J , I ERA T < 1 ) •I EPC l C I ) t t::CONS T ( l ' t lCURE ( I ) 
49 CONTINUE 

c 
C CLEAR ARRAYS 
c 

c 

DO 4 I=l•NN 
CFF<I )=0• 
ON(l)=O• 
IFC<I>=O 
IOFC<I>=O 
AW(l)=O. 
PCIPCl)=O• 
IRAT( I l=O 
CONST(l)=O. 
CURE<I>=O• 
I PC I < I > =O 
PSHPCI>=O• 
CT<I>=O. 
GTHT<I>=O. 
SHAPE<I>=O• 
TMLDH (I) =O. 
TMLDW<Il=O• 
IDOM<I>=O 
IRAN<I>=O 
WORKl<I>=O. 
WORK2<I>=O• 
IC(I>=O 
JR<I>=O 
IBOMCI>=O 
IDAN<I>=O 
DO 4 J=ltNN 
ACI,Jl=O• 
C(ltJ)=O• 
D<I1J>=O• 
E<I1Jl=O• 
VCIACl1J)=O• 
VCl\ I ( I , J > =O • 
VDAJ(l1Jl=O• 
VDJA<ItJ)s:Oe 
WORK3(1tJl=O. 
ALPHA(l1J>=O 
ZSTAR(J,J>=O 
ZPRIMCltJ>=O 
ONOR(l)=O. 
IK(!)=O 
JJK<I>=O 

4 CONTINUE 



c 
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READ THE -ON- TIRE LIST. · 
READ IN THE SPECIFIED CURE PARAMETERS FOR EVERY TIRE ON THE -ON
T lRE LIST •. 

1F(IDATA.EQ.llWRlTEC6tl24) 
DO 5 I =l tN 
READ(S,103) ONCIJtlFCCil 
lF(lUATAeEQeO) GO TO s 
WRITE(6,ll8l0N(l),IFCf I) 

:, CONTINUE 
tF<fDATA.EQ.l)WRIT~C6•125i 
00 6 l=ltN 
REAOf5tl04) GTHTll>tCTtlltSHAPEClitTMLDH<I)tTMLDWCii,BW<l)tPClPCil 

ltIRAT<J>tlPCIClltCONSTCil1CURECJ) 
· lF<IDATAeEO.OJ GO TO 6 

v. R 1 T t. < 6 ' 11 9 I GT tf T t 1 ) t C T t 1 I ., SHAP C: ' 1 J t lMl. UH < l I t TM L l> w C l J t ts W C I i , P C I P < i. 
lJtIRATtlPCl<l>tCONST(l)tCURcll' 

6 CCNTINUE 

C READ OFF TJRf LIST 
c 

c 

If<IDATA.EQel) WRITECbtl261 
DO ·7 I::: l tN 
RtADt5,l03) OFFClltlOFCCl' 
lf(IUATAec~.O) GO TO 7 
WRllt(6tll8) OFFll>tlOFClll 

7 CONTINUE 
L=O 

C S~ARCH ALL LOCATIONS TO OETERMINE THOSE BEING VACATED• 
c 

c 

UO 8 1::1,N 
DO 88 J=l,LCTNS 
IF<OFF<lleNE.TOP(J)) GO TO 88 
L=L.+l 
JK<L>=J 
ITOPC<J>=O 
TOPCJ)c8H EMPTY 
GO TC 8 

68 CONTJNUE 
8 CONTINUE 

IF<lDtAG.EQ.0) GO TO 10 
WRITE<6tl20)(JK(l),Jm1,NJ 

C WRITE OUT THE EMPTY CAVlTIES• 
c 

WR1TE(6tl05) 
DO 9 I=ltN 
J=JK ( 1 J 
WRITEC6tl06) PRESS<J> 



c ... ... 
c 
c 

c 

9 CONTINUE 
10 CONTINUE 
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AOD TIRES iN THE HALF EMPTY PRESSES TO· THE -ON- TIRE LIST.INCHEASE 
N BY THi5 NUMBER. 

NORIG=N 
DO 35 II=l•NORIG 
I =JK t I I ) 
KK=tl/2)*2 
LE=l+l 
lFtKK.EQ.i) LEsJ-1 
DO 34 JJ=l,NORIG 
lf(JKCJJl.EQ.LEJ GO TO 35 

34 CONTINUE 
N=N+l 
JKCNl=LE 

C CONVERT THE CURE SPECS FOR THE ABOVE TIRES FROM THE -E- FORMAT TO 
C ACTIVE FORM. 
c 

c 

CALL CONVERTtNtLE•EGTHTtTOP,GTHTtONtCONSTtECONSltPCIPtEPCIPtSHAPE, 
lESHAPEtCT.ECT,TMLOHtETMLUHtTMLDWttTMLDWtlPCltlEPCl,CURE,ECUREtIFC, 
2ITOPCtO> 

35 CONTINUE 
NEW=NORIG+l 
NORG2=N 
IFCIDIAG.EQeOJ GO TO 37 
\vR lTE C 6' 130) 
DO 36 I=NEWtN 
JJ=J.K. (I l 
WRITEC6tl29i PRESS(JJI 

36 CONTINUE 
37 CONTINUE 

C SET UP THE A MATRIX 
c 

58 DO 12 l=-ltN 
DO 12 J=ltN 
06=0. 
JTEMP=JK(J) 
IF<K2.Gr.o> JTEMP=JJK(J) 
IF<JTEMPeLEeNSEMI.AND•CTll!.NE·CTMEl D6slOOO• 
Dl•PMHTCJTEMPJ-TMLDH(I) 
lFlOleLT•O•) GO TO 11 
02=PMW<JTEMP>-TMLDW<I) 
IFlD2.LT•O•) GO TO 11 
U3=PSHP<JTEMPJ-SHAPECI) 
04=100. 
05=100. 



c 

IF<IRAT<l)eNE•l> GO TO 28 
IF<IPRATlJTEMPl.Ea.3t D~•Oe 

28 lF<IPCI(ti.NE·l> GO TO 29 
IF(IPPCICJTEMPl.EQ.2J 05•0• 

29 A<I,J)=Dl*W<1J+02*W(21+D3*WC3)+D4*WC121+05•Wtl3>+06 
GO TO 12 

11 A(I,J>=lOOOO. 
12 CONTINUE 

C EVALUATE THE C MATRIX 
( 

c 

DO 14 I= l_tN 
DO 14 J=ltN 
.IF CI.EQ.J) GO TO 13 
Hl=ABS<RWCl>-BWCJ)) 
lf(Hl.GE.2.JHl•lO•*Hl 
H2=0• 
IF<CONST<l~.NEeCONSTfJ)~ H2•10• 
H3=ABS<PCIP(IJ-PCIP(JI) 
H4=ABS(SHAPE<Jl-SHAPElI>> 
H5$ABS<CT<lt-CT(J)J 
H6=ABS<GTHT<lt-GTHTCJ)) 
IF(H6eGT.l•5> H6=10.*H6 
Ctl~J»=HS•W(4)+H6*W(~l+H4•wc6)+Hl*W(7>+H3*W(l4> 
GO TO 14 

13 CfhJ)=o.o 
14 CONTINUE 

C GENERATE THE 0 MATRIX 
c 

c 

DO 15 II=ltN 
DO 15 JJ=ltN 
IF«II.EQ.JJJ GO TO 27 

C AR~ LOCATIONS 1 AND J ON THE SAME PRESS• 
c 

c 

Fl=O. 
I =JK < I t l 
J=JK(JJ) 
IFCK2.GTaO> I=JJK<IIJ 
IF<K2.GT.O) J=JJK<JJ) 
KK=(l/2J*2 
IFCKK.EQ.1) GO TO 21 
LL=l+l 
IF(J.EQ.LLI Fl=200. 
GO TO 22 

21 LL=I-1 
lf(J.EQ.LL> Fl•200. 

C ARE LOCATIONS I AND j IN THL SAME LINE Of PRESSES• 
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c 
22 ICK=O 

JCK=O 
DO 23 IT~ltNLINES 
ICK=ICK+NIELllT> 
IF<I.GT.ICK> GO TO 23 
LNI=lT 
GO TO 24 

23 CONTINUE 
24 00 25 JT=ltNLINES 

JCK =.JCK+N I EL C JT) 
IFCJ.GT.JCKl GO TO 25 
LNJ11JT 
GO TO 26 

25 CONTINUE 
26 LulF=IABStLNl-LNJ> 

F2=5• 
IF<LDlFeEQ.O) F2•20. 
IF<LDIF.EQ.lJ F2sl5. 

c 
C ARE LOCATIONS I AND J ON THE SAME MAKE OR MODEL OF PRESS• 
c 

F3=5• 
F4=5• 
lF<MAKE<I>.EQ.MAKE(J>I F3•10• 
IF<MOD(l,•EQ.MOD(J)) F4•10• 
DClltJJ>=Fl*Wf8)+F2•WC9)+F3*WClO>+F4•WC11> 
GO TO l!> 

27 DCIItJJ>=O• 
l~ CONTINUE 

IF<IDIAG.EQ.Ot GO TO 19 
WR IT E ( 6 t 108) 
DO 16 I=ltN 
WRITEC6tl09)(A(l,J>,J=ltNI 

16 CONTINUE 
WRITEt6tll0) 
DO 1 7 I= l •N 
WRITE<6tl09)(((1tJ>.J•ltN) 

17 CONTINUE 
WRITEC6tlll> 
DO 18 t=ltN 
WRITE(6tl09)(0(ltJ),J•ltNl 

18 CONTINUE 
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c 
C CALL SUBROUTINE OPTI TO PERFORM AN ITERATIVE ALGORITHM TO SOLVE 
C THE QUADRATIC ASSIGNMENT PROBLEM FORMULATED 
c 

19 CONTINUE 
CALL OPTl(A,c.o.NtlCHOlCEtALPHAtlulAGtLtlOOMtIRAN,vCIA,VCAltVDAJ,v 

lDJAtWORKltWORK2tlCtJRtWORK3,lltJZ•lHOMtlUANtZSTAKtZPR1MtNNJ 



c 
c 
( 

ICNT=ICNT+l 
l F C I D I AG• E Q • u > GO . T 0 31 
WfHTE. (6tl35) 
tjQ 2 O I= 1, N 
WR1T~(6,ll2) CALPHA(ltJ•tJ•ltN' 

20 CONTINUE 
31 CONTINUE 

IFtlCNT.EQ.2) GO 10 60 
IFCNRUN.GT·ll GO TO 43 
~!R IT E C 6 ,12 8 ) . 

44 DO 33 !=ltNORIG 
DO 32 J:l,N 
IF<ALPHA(ItJ).EQ.O) GO TO 32 
JJ::JK.(J) 
H.< I l = .JK l ..J) 

wRITEt6tl27l ONtlltPRESS(JJi 
GC TO 33 

32 rONTINUE 
33 CONTINUE 

IF<NPART.EQ.lJ GO TO 45 
lf <N.NE.NOR!GJ bO TO 36 
WRITE(6tl31 > 

GO TO 42 
38 WRITE(6'132> 

LP=O 

40 

39 

43 

45 

DO 39 l=NEWtN 
DO 40 J= l tN • 
IF<ALPHA(l,JJ.t~.O) GO TO 40 
JJ=JK(J} 
tKCI >~JKtJi 
LP•l 
LJ::-JK<I> 
OLD=PRF~SCLJ) 
WRITE<6tl31J ONCI>,OLD·tPRES~(JJ> 
CONTINUE 
lf(LPeEQ.O) ~RITE(6tl341 
CONTINUE 
GO TO 42 

CONVERT PARAMETERS OF -ON- TIRES TU THOSE OF TIRES IN lrlt CUR~. 

WR IT EC 6 • 136 > 
NPART=l 
GO TO 44 
DO 68 t=NEW'N 
DO 69 J=ltN 
IF<ALPHA(J,J}.EQ.OJ GO TO 69 
I K C I l = .JK C J ) 

69 CONTINUF: 
68 CONTINUE 
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' 

DO 47 I=ltN 
UO 46 J=ltN 
lF(ALPHA(l,J'•EY•O> uO TO 46 
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JJ=JK(J) 
CALL CONVERT<JJtlttGTHTtTOPtGTHT1UNtCONSTt~CONSTtPCIPtEPClPtSHAPt, 
lE5HAPE1CT,ECT·,yMLDHtETMLDH,TMLD~,ETMLDW1IPCJ,JEPCJ,CUREtfCURE1IFC, 
2ITOPCtl> 

46 CONTINUE 
47 CONTINUE 

C CALCULATE A VALUf OF Z FOR EACH TlRt IN THE CURE• 
c 

K=O 
DO 48 I=2tLCTNSt2 
K=K.+l 
L=I-1 
DAl l =ABS C PMHT ( L > -E TMLDH CL.) > 
LiA2 l =At:iS ( PMtH ( I l-E TMLL>H C ! J ) 
UAl2=AbS(PMW(Ll-ETMLUW(LI~ 
DA22=ABSlPMWCIJ-ETMLDW(Ili 
DA13=ABStPSHP<L>-ESHAPECL)) 
DA23=ABSCPSHP(l)-ESHAPEtIJ> 
Al=DAll*W(ll+DA12*W<2>+DA13*W(3l 
A2=DA2l*WCl>+DA22*Wt2>+0A23*W(3J 
Hl2l=ABS<EBW(L)-fBWCIJ) 
IF<Hl21.GE.2e) Hl2l=Hl2.l*lO. 
Hi22=0. 
lF<ECONST<Ii.NE.ECCNSTtl~j Hl22=l0• 
Hl23=ABS<EPC.lPtL>-EPCIP(lJ~ 
H1?4=ABS(f5HAPF<L>-ESHAPECJ)J 
Hl25=AR5CtCTtLl-F.CTtt>> 
Hl26=ABS<EGTHT<L>-EGTHT(Il) 
IF(Hl26.GT~l.5t Hl26r.Hl26*10. 
Cl2=Hl25*W(4)+Hl26*W(5l+Hi24*W(6)+Hl2l*W(71+Hl23*W<l4l 
Z(K)=Al+A2+Cl2 

48 CONTINUE 
c 
c 
C SELECT THE LARGEST VALUES OF l FOR RE-OPTIMIZATION• 

LCTNS2=LCTNS/2 
DO 50 I=ltN 
ONOR<l>=ON<IJ 

50 CONTINUE 
IF<IDIAG.EQ.0) GO TO 67 
WRITEi6tl37> 
DO 51 1=2tLCTNS2t2 
K=I-1 
WRITE(6tl38) ZtK>tZ(II 

51 CONTINUE 
67 K=O 



N=O 
DG 54 t=2tlCTNSt2 
f(.::.K+l 
IF<Z<KleLTeZMAX> GO TO 54 
LC=l 
N=N+2 
L=N 
K2=2*K 
GU TO 53 
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52 LO=O 
53 CALL CONVERTCLt~2tEGTHTttOP,GTHTtONeCONSTtECONST1PClPtEPCIP,SHAPE, 

lESHAPE 'CT 'ECT 'TMLD.H. E TMLDth TMLOW .E TMLDW' t PC It 1 EPC I .cuRE tECUR[. I FC • 
.?ITOPCtO) 

JJl<.(L)=l<.2 
lFtN.GEeNN> GO TO 55 
L=N-1 
K2=K2-l 
.IF<LO.EQ.l) GO TO 52 
IFCN.GE.NMAX) GO TO 56 

54 CONTINUE 
WRITEC6tl41> N 
IF<NeGT.O> GO TO 56 
NPART:O 
N=NORG2 
GO TO 44 

5 5 WR IT E C 6 , 13 9 ) 
STOP . 

56 DO 57 J=ltNN 
DO 57 J=l•NN 
EC I , J) =O • 
A<ltJ1=0• 
(.(l,J):::Oe 
l)(l,J)=O• 
ALPHA(f,Jl:O 

57 CONTINUE 
GO TO 58 

60 WRITE<6tl32> 
DO 59 I= l tN 
DO 61 J=ltN 
l~(ALPHAtltJ>eEU.0) GO TO 61 
vO 62 tl=l•NORIG 
IF(ONtI>.NE.ONORfll>> GO TO 62 
IKf I I >=JJK (J) 

C";Q TO 59 
62 CONTINUE 

DO 63 II=NEW1NORG2 
IFCON<l>.NE.ONOR(ll)l GO TO 63 
I K (I I 1 =JJK ( J l 
GO TO 59 

63 CONTINUE 



t 

LL=JJKCIJ 
L=JJK ( J, 
IFCTOPlLL>.EQ.TOPtL)) GO TO 61 
WRITEC6tl33l TOPCLLl,PRESS<LLltPRfSSCL) 

121 

CALL CONVERf(LtLLtfGTHTtTOPtGTHTtONtCONSTtECONST,PCIPtEPCIPtSHAPlt 
lESHAPEtCTtECTtTMLUHtETMLDHtTMLDWtETMLDW•IPCltlEPCltCUREt~CUREtlFCt 
2JTOPC,2> 

6] <.ONTINUE 
59 CONTINUE 

DO 64 I=NEWtNORG2 
LL=IKCI) 
LLL=JK(I) 
WH1Ttt6,133i ONORCl>tPRESSCLLLltPW~SS(LL' 
CALL CONVERT<LL1ltEGTHT1TOP1GT~T10NORtCONST1ECONST,PClP1~PCIPtSHAP 
lEtl5HAPEtCitECTtTMLDl1ttTML~HtTMLvWt~TMLUW,JP(l,ltPClt~UR~ttCUR~t1F 

2C' lTOPC, l) 
o4 ·CONT I NUE 

WRITEC6tl28) 
DO 65 !=ltNORIG 
JJ=IK<I> 
WRITEC6tl27> ONORCtt,PRESSlJJ) 
CALL CONVERTCJJtltEGTHTtTOPtGTHTtONORtCONSTtECONSTtPClP,cPCIP,SHAP 
lEtESHAPEtCT1ECTtTMLDHtETMLDHtTMLDWtlTMLDW1IPCI,lcPCl,lUR~,tCUREtlF 
2C, I TOPC, 1) 

6~ CONTINUE 

C WRITE OUT ThE NEW CURE ASSIGNMENT• 
c 

c 

WRITE(6tl44) 
Kl=l 
DO 72 I=ltNLlNES 
KO=Kl+NlEL(l)-2 
WRITE(6tl42> tPRE55,Il>tll=Klt~Ot2~ 
WR IT E < fu 1 4 3 l < I TOP C < I I > t I I = K I , K 0 • 2 l 

· KL=KO+l 
KN=Kt+l . 
WRIT~(b,1431 <ITOPCCJl),11=KNtKLt2' 
Kl=Kl+NIEL<I> 

72 CONTINUE 
144 FORMAT<1Hv•23HTHE NEW CURE ASSIGNMENT/lH ,~3rl---------------------

1---) 
142 FORMAT(lHOtl5A8) 
143 FORMATC1HOtl9•14I8////) 

C PUNCH THE CURE PARAMETERS FOR THE NEXT RUN• 
c 

IF<IPUNCH.EQ.Oi GO TO 42 
D0·7\J I=ltLCTNS 
WRITE(4tl02~ PRE~SllltTOP<l'tlTOPCCI> 

70 CONTINUE 



~----------~--~----~- -
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LJO 71 I=ltLCTNS 
WR l T E < 4 , l 0 4 I E G T t1 T ( I J , t C T ( I ' , t. SH AP t. C 1 ~ , i:. T ML.Utt ( l ' t l. T ML iJ W ( 1 ' ' t. o W < I ) ' l::. 

l PC I P C I > , l ER AT( I l , 1 EP C I ( l ' , t. CONST ( J ' t EC URE < I ' 
71. CONTINUE 

lUC FORMAT<718tFlU.O,J8) 
101 FORMAT(A3t3XtA3t3X,!3t3FlOe3t2I3> 
lJ2 FORMATCA4t6XtA8t5Xtl5' 
103 FORMAT<A8t6Xtl4> 
l \.J 4 FORMAT ( 7 F 9 • 2 , 2 I 3 t 2 A 5 l 
1~5 FORMAT<lHOt2lHEMPTY PRt~S LOCATIONSk 
1~6 FORMATClHOtA4> 
1~7 FORMAT<lOF8.0) 
108 FORMAT<1Hltl2HTHE: A MATRJX/lH tl2H------------i 
109 FORMAT<lHOtl2F7.0> 
110 FORMAT<1Hltl2HTHE C MATRlX/lH tl2H------------J 
111 FORMAT<1Hltl2HTHE D MATRIX/lH ,12H------------> 
112 FORMAT<lHOtl2+10J 
113 FORMAT(lH0tlCHLOCATIONS=15tlOXtl7HLINES OF PRESSL~=,15) 
114 FORMAT<21~1Fl0e2tl5> 
115 FORMAT<lH .A4t5XtA4t5Xtl4t3Fl2e41216, . 
116 FORMATClH tA4t7XtA8t6Xtl4i 
117 FORMAT ( lHO, 49HVALUf·s OF N t I CHO ICE t ID I AG tNN, IDA TA, NRUN, NMAX • ZMJ\X 11 H 

l t711U,F20.3J 
118 FORMAT<lH ,A8t6Xtl4) 
119 F0RMATtlH ,7Fl2·3•2·Il0t2AlO) 
120 FORMAT<lHOtl2HVALUES UF JK/lHOtl0112) 
121 FC.RMAT< I 101 
122 FORMAT(lHOt4HMAKEt4Xt~HMOOELt§Xt6HWATINGt3Xt7HMOLU HTt4XtBHMOLD UI 

1At5X,7HSHAPlNG,2Xt5HCONTRt2Xt3HPCIJ 
123 FORMATllHOt5HPRES5t8Xt4HTlRE•8Xt4MCODE' 
124 FORMATClHGt54HON TIRE LIST 8 DIGIT PART.NO• AND 4 DIGIT FACTORY CO 

1 Df. > 
125 FORMAT ( lHO ,9x., 4HGTHT ,sx, 9HCURE TIME, 9X t 5HSHAPE ,9x '7HM0U) HT '7 x '8HM 

lCLD DIA,7X,8HREAD DIA' 
126 FORMATtlHOt55HOFF TIRE LlST 8 OIG!T PART NO• ANO 4 ul~IT FACTORY ( 

lODE> 
127 FdRMATClrlUt5HTIRE tA8t26H TO bf SCH~OULEU ON PRE5S ,A4) 
128 FORMAT(lHOt23HTHE -ON- TIRE LOCATlONS/lH ,23H---------------------

1--> 
!?Q FORMAT(lHOt5XtA4) 
130 FORMATC1H0t37HADDITIONAL PRESS LOCATlOhS CUNSl0EREul 
131 FOHMATtlHUt22HNO T1R~5 AK~ R£LOCAT~D) 
132 fORMAT(lHO/lHOt33HTHE FOLLOWING TIRES ARE R~LOCATlD/lH ,33H-------

133 FORMAT<lHOt4HTIREtlXtA~tlXt20HRELOCATED FROM PRESStA4t9H TO PRESSt 
1A4l 

134 FORMATClHOtlOXt4HNONEl 
135 FORMAT<1Hlt3GHTHE ALPHA (PERMUTATION> MATRIX) 
136 FORMATClHOt29HINITIAL PLACIN~ OF -ON- TlRES/lH t29H---------------

l--------------} 



137 fORMAT(lHOtllHVALUE~ OF z> 
l3R FORMAT(lH t2F20.~) 
139 FORMAT(lHOt39HtNSUFFICifNT ARRAY SlZING - JO~ ApORTEDl 
140 FORMAT<Fl5e3) 
141 FORMAT<lH0,2HN=•l5) 

42 STOP 
END 

123 
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SUBROUTINE OPTICAtCtOtNtlCHOICEtAlPHA,JDIAG,E,IDOM,IRANtVClA,vCAI, 
lVDAJtVDJAtWORKltWORK2•1CtJRtWORK3tlltJZ,IBOMtlDANtZSTAR,ZPRIMtNN' 

c 
C PURPU~E OF THIS SUBROUTINt IS TO tMPtUY A SUbOPTlMAL ALGORITHM TO 
C UtTEKMINE AN ASSI~NMtNT OF N AlTl¥1TJ~~ ON N fA(lLITl~5• lT 15 
C NECESSARY TO MlNl~IZt THE SUM OF AN ORUINARY ASSl~N~ENT PROBL~~ 
C AND A QUADRATIC INTERACTION COST bETWEEN ACTIVITIES. 
c 

DIMENSION AtNNtlltCtNNtl>tOCNNtl>tE(NNtl~tlDOM(l),IRAN<l;,vCIA<NNt 
11JtVCAilNNtl>tVDAJ(NNtl>tVOJAlNN•l'•WORK1ClJ,woRK2<l'tlC(l>.JR(l), 
2WORK3<NNtl>tlJ(l>tJZCll,l~OMClltlUANCl' 

INTEGER ALPHACNNtl>tZ5TAR(NNtl~tZPH1MCNNtll 
KK=C 
T=0.5 

C CLEAR ALL WORKING ARRAYS 
c 

c 

DO 1 I =1'NN 
IDOMCI>=O 
IRAN<l>=O 
WORKl<Il=O• 
WOl~Kl l I >=O• 
DO l J=l,N 
WORK3CI1J)=O. 
ALPHA<ltJ)=O 
VCIA(I,Jl=O• 
VCAilltJl=OeO 
VDAJ(l,J>=O• 
VDJAll1J>=O• 
E(l,J)=O• 

1 CONTINUE 

C ESTABLISH DOM<ALPHAJ AND RAN(ALPHAJ 
c 

c 

20 LL=O 
DO 3 I= l tN 
00 2 J=ltN 
IF<ALPHACltJ).EYeOl GO TO 2 
IDOM(Il=l 
IRAN<.J>=l 
LL=LL+l 
GO TO 3 

2 CONTINUE 
3 CONTINUE 

IF<IDIAG.EQ.O> GO TO 24 
WRllE(6t200l(lDOM<l,,l•ltNi 
WRITEC6t20l)CIRAN<J>,J=ltN) 

C ESTABLISH C(ltALPHA) AND CfALPHAtl~ VECTORS AND THEN SORT INTO 
C ORDER OF ASCENDING MAGNITUDE 
c 



c 

21+ DO ::; I:: l t N 
IF<IOOMCl>.EQ.l) GO TO S 
M=O 
DO '• K= l tN 
IF(lvOM{KJ.EQ.l) ~o TO 4 
IF (K.EQ.ll GO TO 4 
M:::M+l 
WORK l< M > =C ( 1 , 10 
WORK2<M>=C(K1I> 

4 CONTINUE 
CALL SORTCWORKl1Mt-ll 
CALL SORTtWORK2tMt-ll 
lF(lulAG.tQeU) GO TO 25 
WRITE C 6 t 202 > 

25 00 5 K=ltM 
VCIAtltKl=WORKl<K> 
VCAI<ltKl=WORK2<K> 
IF<IDIAG.EQ.O) GO TO S 
WR1TE<6t203> VCIA<ltKJ,VCAllltK) 

5 CONTINUE 
2u3 FOHMAT<lH t2F30.8) 

C CLEAR THE WORKING ARRAYS 
c 

c 

DO 6 l=ltNN 
WORKl(ll=O• 
WORK2<I>=O• 

b CONTINUE 

C ESTABLISH D(JtALPHAi AND UCALPHA,J~ V~CTORS AND SORT INTO 
C DESCENDING ORDER Of MAGNITUDE 
c 

DO 8 .J= I' N 
IF(lRANCJ>•EO.ll GO TO S 
MM=O 
DO 1 K=ltN 
IF<IRANCKi•EQel> ~O TO 7 
lf (J.EQ.K) GO TO 1 
~M=MM+l 
wORK 1 'MM)=[) ( J t r,) 
WORK2CMM>=DCK1J) 

7 CONTINUE 
CALL so~TCWORKltMMtl> 
CALL SORTlWORK2tMMtl) 
lftlDlAG.EQ.O) GO TO 26 
WR IT E ( 6, 204 i 

26 DO 8 K=ltMM 
VDAJ(J,K>=WORKl<K> 
VDJA(J,Kl=WORK2(K) 
IFCIDIAG.EQ.O) GO TO 8 
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c 

WRITE(6,203) VOAJ(J,K),VOJA(JtKi 
8 CONTf·NuE . 

IF(MM.EQ.M> GO TO 9 
WRITE ( 6t100) 

C CALCULATE THE ElEMENTS OF THE E MATRIX 
c 

c 

9 DO 12 I= 1 tN 
IF<IDOM<l>.EOel> GO TO 131 
I.JO 12 J= l tN 
lFCIRAN(J).EQelt GO TO 121 

C CALCULAT£ THE PERMUTED UOT PRODUCT OF P<CCl,ALPHAl,D(J,ALPHA)I 
C AND P<C<ALPHAtlltD,ALPHAtJ)) 
c 

c 

Pl=O.O 
P2~0.0 

DO 10 K=ltM 
Pl=Pl+VClA(l1K>*VOJACJ,K) 
P2=P2+VCAICI,K>*VDAJtJ,~J 

10 CONTINUE 
FTERM=O• 

C EVALUATE THE:: FINAL TE.RM 1N THE EXPRfSSION FOR THE ELEMENT OF THE 
C MATRIX E 
c 

c 

DO 11 ME=ltN 
DO 11 MN=ltN 
JFCALPHACMftMN>.~u.oJ GO TO 11 
FTER~=FTER~+C(ltME>*DCJtMNj+ClMf,f )*DCMNtJ) 

11 CONTINUE 
E<I,JJ=A(I,J>+T*Pl+Cl•-T'*P2+FTERM 
GO TO 12 

121 E(I,J>=O•O 
GO TO 12 

1 ~ 1 DO 1 2 J J = 1 9 ~l 
E<I,JJ)::O.v 

12 CONTINUE 
IF<IDIAG.EQ.O> GO TO 27 
\oJR IT E < 6, 2 05 > 

DO 351 l=ltN 
WRITEC6t206)(£C11J),J=l1Nl 

351 CONTINUE 

C SELECT THE CRITERIA FOR SELECTION OF I ANO J TO FORM NEW PERM-
C UTATION MATRIX ALPHA OF RANK K+l 
c: 

27 lFtlCHOICE.EQ.l) GO TO 13 
c 
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t SELECTIO~ METHOP b -- lE I AND J 5tLt~TtD ON dASl~ UF THl ~OLUTlUN 
C OF A LINEAR A5SIGNMENT PRObLEM 



c 

c 

LN=O 
LC=O 

C RE-ARRANGE THE ELEMENTS OF THE E MATRIX TO FORM A MATRIX <WORK3> 
C THAT CONTAINS NO NON-MELEVANT ZEROS OR OUES ~OT CONTAIN ltltJl 
C WHERl I IS IN THE OOMAlN Of ALPHA OW ~ 15 IN THE RANGE OF ALPHA 
c 

c 

DO 21 I= l tN 
IF<IUOM(l>.EQ.lJ GO TO 21 
LM=0 
LN=LN+l 
DO 21 J=ltN 
IFtlRAN<Jl.EO.l> GO TO 21 
LC=LC+l 
'LM=LM+l 
WORK3tLN.LMl=Ec I •• n 

21 CONTINUE 

C CALL SUBROUTINE LlNAS TO SOLVE THE LlNtAR ASSIGNMENT PROBLtM 
C USING MATRIX E AS THE ASSI~NMENT MATRIX 
c 

c 

CALL LI NAS U-JORK3 • '-N, ZS TAH' l U 1 AG,;._., l Z, .JZ., 1 tiOM, I G l\N t ZPR 1 M, NNi 
LN=O 
LM=O 
BIG=O.O 

C SELECT THE LARGEST ELEMENT FROM THE MATRIX E THAT APPEAR~ IN THE 
C ASSIGNMENT SOLUTION. T~IS CHOOS~S THE VALUES OF l<K+ll ANO J(K+l' 
C AND THUS OETERMlNES THE NEXT PER~UTATION MATRIX ALPHA(K+l) 
c 

DO 23 I= l tN 
IF<IDOM<I>.EOel) GO TO 23 
LM=O 

-LN=LN+l 
DO 22 J=ltN 
IFtIRAN(J).EOelJ GO TO 22 
LM=LM+l 
IF<ZSTAR(LN9LM>eEU·O> GO TO 22 
IF<E<I,J>.LT.BIG> GO TO 23 
BIG=E<I,J) 
JK=J 
IK=I 
GO TO 23 

22 CONTINUE 
23 CONTINUE 

lF<IUIAGeEO·C• GO TO 19 
WRITEC6t2077J1K•JK 
GO TO 19 

13 CONTINUE 
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(' 
C SELECTION METHOO A -- IE 1 ANU J StLECTED ON THE tlA515 Of MAXIMUM 
C OF HiE M 1 M li\IUf"1S OF EACH ROW ANU EAC.H COLUMN 
c 

c 

UU 14 I=l•N 
FMINR=lO.E 6 
DO 14 .J=l,N 
IF<E<l,J).tQ•O•O) GO TO l4 
IFtE<I,JJ.GTaFMlNR> GO TO 14 
FMINR:E\I,Jl 
JR<I)=J 

14 C.ONTINUl 
t.JO 15 .J=ltN 
FMINC=lO.E 6 
00 15 I= l tN 
JF(E(I,JJ.Eo.o.o> ('.10 TO 15 
IF<E<I,J>.GT.FMINC> GO TO 15 
IC<J>=I 
FMlNC=E<ltJ> 

15 CONTINUE 

C SELECT THE MAX OF THE MIN Of THE ROWS 
c: 

c 

FMAXR=o.o 
DO 16 I=1tN 
JJ=JH<I> 
IF<E<I,JJi.LT·FMAXR> GO TO 16 
FMAXR=E<I1JJ) 
IT =I 

16 CONTINUE 

C SELECT THE MAX OF THE MIN OF THE COLUMNS 
c 

f.MAXC=J.0 
t>O 17 J=.1tN 
I I=ICCJ) 
lftE<IltJl.LT.fMAX() ~OTO 16 
FMAXC=E<lltJ) 
JT-;J 

17 CONTINUE 
IF<FMAXC.GE.FMAXRJ GO TO 18 
IK=IC<JT> 
JK=JT 
GO TO 19 

18 l K: IT 
JK=JR(ITl 

19 ALPHA<IKtJK)=l 
KK=l(K+l 
IFCKK.fQ.N) RETURN 
GO TO 20 



1~0 FORMATtlHQ,36HSlOPPED O~E TO UNEUUAL SIZE~ VECTORb) 
2vo FORMAT(lHOt4HIUOM/lHOtlillOI 
201 FORMAT<lHOt4HIRAN/lH0,12!lOJ 
202 FOR~AT<lHOt21HVECTORS VCIA AND VCAf t 
204 FORMATtlH0,13HVDAJ AND YDJAI 
205 FORMAT(lHOtl2HTHE F MATRIX> 
206 FORMATtlH tl2FlO.l> 

2077 FORMAT<lHOt9HlK AND JK/lHOt212vt 
ENO 
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SU~ROUTINE LINASCWORK31LCtZSTAR.IUJAGtNtlZtjZ,1uoM.IRANtZPRIMtNN) 
c 
C THE PURPOSE OF THIS SUbRCUTINE IS TO f 1ND A MINIMAL ASSIGNMENT 
C OF LC ACTIVITIES ON LC FACILITIES• IN CASE WHERE LINAS IS CALLE~ 
C BY SUBROUTINE OPTl-- THE INPUT MATRIX WORK3 IS TREATED AS AN 
C ASSIGNMENT MATRIX. 

c 

DIMENSION WORK3(~N,1>.1zc1J,jZ(l)tJOOM(lltlRANCl) 
INTEGER ZSTARCNNtl>,ZPRlM(NN,lJ 

C CLEAR THE WORKING ARRAYS 
c 

c 

DO 1 I= l tNN 
IDOMCI)=O 
lRANCI>=O 
DO l J=ltNN 
ZSTARCltJ>=O 
ZPRIM<ItJ>=O 

1 CONTINUE 
LC2=LC*? 
DO 111 l=ltlC2 
lZt I >=O 
.JZtl>=O 

111 CONTINUE 
IFCIUIAG.EOeO) GO TO 32 

. ~'1R IT E < 6 , 4 ~ 3 > 

DO 451 l=ltLC 
WRITEC6t452)(WORK3(J,JJtJ•ltLCJ 

451 CONTINUE. 

C SUHTRACT THE SMALLEST ELEMENT IN EACH ROW OF WORK3 FROM ITS OWN 
C ROW 
c 

'.32 DO 3 I= 1 • LC 
SMALL=lOaE 6 
DO 2 J=ltLC 
IF<WORK3tl.J>.GTeSMALLJ GO TO 2 
S.'4ALL=\\IORK3 (I tJ J 
JT=J 

2 <.ONTlNUt 
DO 3 L=ltLC 
WORK3<ItL>=WORK3tltL>-SMALL 

3 CONT I NlJE 

C SUBTRACT THE SMALLEST ELEMENT Of EACH COLUMN OF WORK3 FROM ITS 
C OWN COLUMN 
c 

DO 5 J=leLC 
SMALL=lOeE 6 
·DO 4 I= l tLC 
1F<WORK3(J,J>.GTeSMALL) uO TO 4 
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c 

S~ALL=WORK3(I•Jl 

IT=I 
4 CONTINUE 

DO 5 L=ltLC 
WURK3(LtJl=WORK3(L,Jl-SMALL 

5 CONTINUE 

C STAR THE INDEPENDANT ZEROS IN THE NEW MATRIX WORK3 
( 

c 

DO B I =l t LC 
DO 88 J==ltLC 
If CwORK3(ltJt.GTeOel GO TO 88 

C CONSIDER THl ROW lN WHICH TH~ A~OV~ Z~RO OCCUR5 
c 

DO 6 L=ltLC 
IFCZSTAR<ItL>.EO.l) GO TO 8 

6 CONTINUE 
c 
C tUNSlDER THE COLUMN lN whlCH TH~ AbUVt ZERO OCCURS 
c 

DO 7 L=l•LC 
IFlZSTAR(L,J).EQ.l) GO TO 88 

7 CONTINUE 
ZSTAR(f ,Jl=l 

88 CONTINUE 
6 CONTINUE 

IFlIUIAG•EO•O) bO TO 33 
WfHTE(6tl07i 
DO 108 I=ltLC 
WRlTEl6tl09)tZ5TARCltJ),J•ltLCJ 

108 CONTINUE 
c 
C COVER THE COLUMNS THAT CONTAIN A STARRtD ZE~O• IF IRAN(JJ=! COLUMN 
C J IS UNCOVERED. IF IRAN(Jl=l COLUMN J IS COVERED 
c 

c 

33 uo·1J J=l1LC 
DO 9 I=ltLC 
IF<ZSTARCltJ).fQ.O) GO TO 9 
IRAN(J)=l 
GO TO 10 

·9 CONT I NUE 
10 CONTINUE 

<:. ~TEP l --- CHOOSE A tiON-COVt::t<EL> Z.i::~O ANO PRIM£ IT• 
c 

30 ISTEP=l 
lFtIDIAG.EQ.0) GO TO 34 
WRITE(6tl04) 
00 31 I =l tLC 
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( 

WRITE<6tl03)(WORK3tltJl,J•ltlCI 
31 CONTINUE . 
:;4 .;O 13 I=l1LC. 

DO 13 J=ltlC 
IF<WORK3CltJ)eGT.O.OJ GO TO 13 
Ift!RAN(J).EQ.l) GO TO 13 
!FtlUOM<l>·EO•l> GO TO 13 
ZPRlfv!( I ,J) =l 

C CONSlUER WOW IN WtilCH AoUVt ZERO UCCURS-ASCERlAIN WHtTHER IT 
C CO~TAINS A STARREU ZERO. If YES - UNCCV[R COLUMN AND CLVER 
( R0W IN WHICH THE STARRED ZERO OCCURS 

DO 11 L= l 1LC 

c 

IF<ZSTARCI,L>eEQeOJ GO TO 11 
I DOM ( I > = l 
IRANCL>=O 
GO TO 13 

11 CONT lNUE 
GO TO 14 

13 CONTINUE 
IF<IUIAG.EQevJ GO TO 23 
WRITEC6tl02) 
GO TO 23 

14 CONTINUE 

C ST~P 2 -- FINU THE UNCOVER~O PRIM~U ZERO ANU CONSTRUCT TrlE 
C SEQUENCE OF ZEROS 
c 

ISTEP=2 
K=O 
DO 15 I= l tLC 
D.O 1 5 J = 1 , L C 
IF<ZPRIM(l,J) .• ~w.o> GO TO 15 
IF<IQOM<IJ•EQ.l) GO TO 15 
IF<IRAN(Jl.EQ.lJ GO TO 15 
K=K•l 
IZ<K>=I 
JZCK)=J 
LEF=JZCKl 
IF<IDIAG.E0.0) GO TO 16 
WRITE<btllu>Ktll<K>1JZ(~) 
GO TO 16 

15 CONTINUE 
WRITEl6tl00} 
RETURN 

16 DO 17 l=ltLC 
IF<ZSTARCitLEFJ.f~·O> uO TO 17 
K·=K+ 1 
IZOU=l 
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c 

Jl<K>=JZ<K-U 
LEM=IZ<K> 
LEP=JZ<Kl 
ZSTAR(!,LEP>=O 
IFCIDIAG.EQ.OJ GO TO 18 
WRlTEt6,llO)KtlZ(KJtJZCK) 
GO TO 18 

17 CONTINUE 

C SECJUENCE OF ZEROS Tt.RMINATt.D NORMALLY 
c 

c 

GO TO 20 
18 CO 19 L=ltLC 

IFlZPRIMCLEMtLJeEu.o> GO TO 19 
K=i<.+l 
IZCK>=IZ<K-1) 
L£T=IZCK> 
Jl.(K>=L 
LEF==JZ(IO 
IF<IDIAG.EO.Oi GO TO 16 

.wRITE(6tllU)K,tZ<K>,JZ(K) 
GO TO 16 

l9 CONTINUE 

C THE SEQUEN(E OF ZEROS TlRMlNATED ON A STARREU ZERO 
c 

vlRITE(61lOll 
Rf.TURN 

20 CONTINUE 
c 
C UNSTAR EACH STARRED Z~RO Of THE StYUtNCE ANU STAM tACH PWIMED 
C ZERO OF THE SEQUENCE 
c 

DO 2 0 l I = l , K , 2 
L=lZ(l> 
LL:JZCI> 
ZSTAR<LtLL>=l 

t!!.il CONTINUE 
uo 21 I=ltl<. 

· DO 2 1 J = l t L C 
lPRIM( I ,J):q) 

21 CONTINUE 
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c 
C UNCOVER EVERY ROW AND COVER EVERY COLUMN CONTAINING A STARRED ZERO 
c 

DO 2 2 I= 1 tLC 
IJO 22 J=ltLC 
IF <ZSTAR(ltJ)etO.O) ~OTO 22 
IUOM<l>=O 
IRAN<J>=l 



c 

22 CONTINUE 
!F(lOIAG.EQ.O) GO TO 23 
WR1TEC6tl9ll 
WRITt(6,112)(1UOM(l>tlal,l(i 
WR1TE(6tll2)tl.RAN<IJtl=ltLC' 
'w'JHITEC6tll3> 
GO 114 I=ltLC 
WRITEC6tl09l(USTARCltJ1,J=ltLCJ 

114 COf'..TlNUE 

C CHECK ON POSSIBLE CONDITION THAT ALL COLUMNS ARE COVERED 
c 

c 

2 :1 DO 2 4 I = l , L C 
IFC!RAN<I>.EQ.lJ GO TO 24 
IF<ISTEP.EQ.l) GO TO 25 
GO TO 30 

21-. CONT I NUE 
IF<lUlAGeEQ.OJ GO TO 35 
WR IT E ( 6, 1 O&) 
DO 29 I=ltLC 
WRITE(6tl05lCZSTARCitJJ,j=ltL'' 

29 CONTINUE 
35 RETURN 

C STEP 3 --
C 

25 H=lu.E 6 
DO 26 I=ltLC 
IF<IvOM(lJ.EQ.l) GO TO lo 
t>O 26 J=ltLC 
IF<IRANlJt.EQ.l) GO TO 26 
lf(WORK3CitJl.Gf.H) GO TO 26 
H=WORK3CltJ>. 

26 CONTINUE 
DO 2 7 I= l tLC 
lFllUOMtl>•EOeO) GO TO 27 
DO 27 J=ltLC 
WURK3tI,J)•~ORK3CltJl+H 

27 CONTINUE 
UO 2 8 J = l , L C 
IF<IRAN(J).EQ.lt GO TO 28 
D0-28 I=lt~C . 
WORK3CI,J>=WORK3(1,J)-H 

2 8 CONT-1 NUE 
GO TO 30 

l~O FORMAT<lHOt46HNO UNCOVE~EU ZtRO FOUNO ~y LlNAS UUHING ST~P 2> 
l~l FORMATllH0142HSERlES OF Z~ROS TtRMlNATtO ON STAkkEU Z~ROJ 
102 FORMAT<lHOt29HCOULD NOT FIND UNCOVERED ZERO) 
103 FORMAT<lH t12Fl0.2) 
104 FORMAT<lHOtl6HTHE .MATRIX WORK3) 
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105 FORMATtlH ,1216) 
1~6 FORMATtlH0,25HTEMPORA~Y OUTPUT OF lSTARi 
107 FORMAT(lHOt21HlNDEPENOANT 0 ~TARRED~ 
109 FORMAT<lH tl216> 
110 FORMAT<lHOt2HK=tl~t5X16rilZtKl=tlSt~X,6HJZ(K)a,I5> 
112 FORMATtlH tl21lO> 
113 FORMAT<lH t33HZSTAR PRECEEDING RETURN TO STEP l> 
191 FOWMATllHOt24HCOVEHEC ROWS AND COLUMNS~ 
452 FORMATtlH t12Fl0.2> 
4~3 FOR~AT(lHOtl5HOUTPUT NUM8~R 2~ 

END 
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c 
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SUdROUTINE CUNVERT<ltJt~~THTtTOPt~THT10N,CONSTtEC~h5TtPCtP,EP~1P,s 
lHAPE,ESHAPEtCT1ECTtTMLOHt~lMLVHtTMLOWtlTMLOWtlPCI,I~PCl,tURE,~CURE 
2, 1 FC, I TOPC t l NV> 

DIMENSION EGTHH l J tTOP< lJ tGTHlC 11tCNI1J,CONSTI1 > tECONSTt l> tPCIP < J. > 

ltSHAPECl),ESHAPEClltCTtl>tECltl>,TNLOHCl>tETMLDHCl>,TMLDWCl>tETMLU 
2Wll>tlPCl(l>tlE?C!ClltCURECl>tECUREC1>1IFCCl>1ITOPC<l>tEPCIP<l> 

C IF INV=v CONV(RSION IS ACTIVE TO -E-. 
C IF lNV=l CONVERSION IS -E- TU ACTlV~• 
t If INV=2 CONVERSION 15 -~- TO -~-
C 

IF<INV.NE.o> GO TO 10 
ON<I>=TOP(J) 
IFC~l,=ITOPC(J) 
GTHTCI>=EGTHfCJJ 
CCNSTCl>=ECONSTfj) 
PClP<I>=EPClP(J) 
SHAPE(I>=ESHAPECJ) 
CT<I>=ECT(J) 
TMLDHCI>=ETMLDH(J) 
TMLDWCI>=ETMLDW(J) 
IPCl<l>=JEPCllJ) 
CURE(ll=ECUREt.J) 
GO TO 20 

lJ lF<INV.EQ.2~ GO TO 15 
TOP<I>=ON(JJ 
lTOPC<I>=lFC(J) 
l:GTHT(l)=GTHT(J) 
ECONST(I>=CONST<J> 
EPCIPCI~=PCIP(J) 
ESHAPE<I>=SHAPECJ) 
ECT<I>=CT<J) 
tTMLUH(lJ=TMLUHlJ) 
ET~LDW<Il=TMLDWfJ) 
I EPC I C I ) =I PC I ( J) 

ECURECI>=CURE<J> · 
GO TO 20 

1"5 TOP ( I ) =TOP ( J) 
lTOPC<l>=ITOPCCJ> 
LGJHT(Jl=EGTHTlJJ 
t(ON~T<I>=ECONSTCJ) 
FPCIP<t>=EPCtP(J) 
fSHAPECl)=ESHAPECJ) 
t.CT< I >=ECT<J> 
fTMLOH<lJ=ETMLDH(J) 
ETMLDW<I>=ETMLDW<J> 
IEPCI(l!=IEPC+(J) 
tCURE<I>=lCURECJJ 

20 RETURN 
END 



sueROUTINE SORTfAtNtM> 
DIMENSION AClJ 
IFf MeGTeO) GO TO 20 
L>O 10 l•ltN 
A ( I ) =-A ( 1 ) 

10 CONTlNUE 
20 1L0=2 

1Hl=N 
30 I f::O 

DO 4 0 I • l LO t IHI 
lftAlI-l>•GT.A&JJ) GO TO 40 
ll=I 
T =AC I > 
ACl)•A(l-1> 
ACl-l)mT 

40 CONTINUE 
JF(Jl.Ea.o> GO TO 60 
JHl=II 
Il=O 
1ALJL>•1H1+1LO 
00 5 0 J == I LO • 1 HI 
l=IADD-J 
IF<ACl-l>•GTeACl)) GO TO SO 
t I= f 
T =A f t > 
ACJ>=Acl-1> 
A<I-U=T 

5v CON'TlNUt:. 
JlOall 
IF(ILO•NE•v) GO TO 30 

b~J lf tM.GT.Oi RETURN 
DO 7C I=ltN 

7rt A< I >=-J\.( I J 
RETURN 
END 
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APPENDIX 0 

Test Problems 



0.1 General 

The program of Appendix C has been used to determine solutfons 

for several different problemi, each of which has been designed to 

test different aspects of the system•s capabilities. 

D. 2 Test Problem No. 1. 

The first problem attempted was designed to test the system's 

capacity to find a contrived optimum assignment. 

The ON tire list used those tires shO#n In Table 2 of Section 

Vll.1 in the main text of the thesis. Careful examination of these ON 

tires wl 11 reveal that the best assignment possible occurs when the 

following combinations occur: 

TIREN20l is combined with f°IREN20'6 

TtREN202 is combtned with·TIREN208 

TIREN203 ~s combined with TIREN206 

TIREN205 is ~ombined with TIREN209 

TIREN207 ts combined with TIREN210 

In addition the ten OFF tires were contained on six different 

presses. The two rematning tires on the half-emptied presses are such 

that they a Jso wou 1 d make an _idea 1 combination. The previous cure 

contrived for the problem- was operating satisfactorily wt th the 

exception of press A3. 

In order to be able to ascertain whether the suitability 

relations were being considered, the OFF tlrcs were removed from presses 

with widely varying capabllitfes. Since the tires themse1ves are quite 

varied in press requirements, an inconsistency in assignment would 
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easily be detected. 

This system ascertained the optimum Jn 17.3 seconds of central 

processor time. The system completed· the following assignments shown 

in Table X • The unexpected result of relocating tire (TIREN003) 

from press Al to Press Dl5 to be combined with tire {TIRE2\0) and tire 

· (TIREN003) from Al to Cl5 to be combined with (TIREN207) results in a 

better overall 'ure assignment than that previously. contrived. It 

should be noted that on the initial fit (ON tires to OFF tire locations) 

the pairwise assignment concurred exactly to the contrived pairwise 

arrangement. 

D.3 Test Problem No . .l_ 

The second test problem was contrived to test the capability of 

this system to handle realfstic size problems. The particular problem 

examined was, in effect, twice test problem number 1. (Twenty ON tires 
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to be assigned, the ortgina1 ten tires plus an additional ten tires each 

matching o~e of the original ten in every aspect except designation 

number.) For this problem the original OFF list of ten tires was 

supplemented with ten additional tires taken from five identical presses. 

The purpose of using Five identical presses was to determine how many 

tires are shifted about arbitrarily from the initial assignment on sub

sequent re·exam i nation. This wou 1 d i nd i c:ate the 1 oca t i ona 1 in f1 uence 

exerted by additional tires being evaluated during this subsequent 

reassignment. These relocations, of course, do not require any physical 

relocation in the cure, but rather they are simply a change in assignment. 

This system completed an assignment of these twenty tires, with 



TABLE X 

The New Assignments • Test Problem No. 

THE FOLLOWING TIRES.ARE RELOCATED 

TIRE TIREN003 RELOCATED FROM PRESS A3 TO PRESS DlS 

TlRE TIREN003 RELOCATED FROM PRESS Al TO PRESS ClS 

TIRE TtR£N091 RELOCATED FROH PRESS 815 TO PRESS E6 

Tl~E TtREN093 RELOCATEU FROM PRESS ClS TO PRESS E6 

THE "OH" TI RE LOCATIONS 

TIRE TtREN20l TO BE SCHEDULED ON PRESS 01 

TIRE TIREN202 TO BE SCHEDULED ON PRESS 813 

TlRE TIREN203 TO BE SCHEDULED ON PRESS A3 

TIRE T1REN204 TO BE SCHEDULED ON PRESS Ol 

TI RE n REN205 TO 8E SCHEDULED ON PRESS B 1 S 

TIRE TIREN206 TO BE SCHEDULED ON PRESS A3 

TIRE TIREN207 TO BE SCHEDULED ON PRESS C15 

TIRE TIREN208 TO BE SCHEDULED ON PRESS 815 

TIRE TIREN209 TO BE SCHEDULED ON PRESS B13 

TIRE TIREN210 TO BE SCHEDULED ON PRESS 015 



·one review of the total cure, in 76.4.seconds of central processor 

time. The pairwise combinations were, in every case, identtcal tires. 

The machine suitabi1ity considerations seemed effective since no 

imposstble ass·ignmeots occurred. (It is very difficult to determine 

if these machines are optima11y employed on a problem of this 

magnitude··the best that can· be determined ls that every position 

is acceptable.) There were four relocations of tires from the 

initial assignment. This was a wholesale interchange of tires on 

adjacent presses. lt should be noted that this ls the most likely 

occurrance and that in terms of the real.problem is not serious. 
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APPENDIX E 

Simplified Input Instructions 



E.1 Ceneral 

The purpose of th1s section is to present a series of questions 

which, when answered, constitute the required input information for the 

system. This procedure.should simpllfy the operating procedure, and 

minimize the amount of detailed knowledge required for a user interested 

in testing. the program before familiarizing himself with Its details. 

1. How many tires to be sch~duled? N •? 

2. What is the allotted array size? NN • 1 

To ensure ~ safe value for NN, It is reeonvnended that the user 

try an initial value of NN • 2 x N. (Note the program requires approx

imate 1 y the 'fo 11 owing storage space in words.) 

MEMORY• 22(LCTNS) + 1l(NN) 2 + 3l(N:'~) + 8000 

J. Whech algorithm is to be used? 

attempt. 

ICHOICE • I • Method A is selected. 

tCHOICE = 0 Method 8 is selected. 

It is recommended that the user try Method B for an initial 

4. Do you want the internal calculations printed? 

iOIAG a O·· No Calculations. 

IDIAG = 
WARNING: 

- Calculations printed out. 

there is a gre~t deat of output when IDIAG = t. 

5. Do you want the input data printed? 

tDATA = 0 - No data. 

IDATA s l - Data printed out . 

. 6. What is the maximum number of iterations of that the entire system 

is to be allowed to ~omplete? NRUN =? 
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NOTE: NRUN • 1 (for first attempt) 

7. How many mold changes will be accepted? NHAX =? 

8. What is allowable press operating coefficient? ZMAX =? 

(Thi~ value should be set high for initial use.) 

9. Do you require punched output of the new assignment? 

fPUNCH = 1 - Punched output. 

IPUNCH • 0 - No punched output. 

10. How many curing positions? (2 x number of presses) LCTNS ~ ? 

''· How many lines of presses? NLIN£S 3? 

12. How many presses in each line? 

NIEL(I) = 7 NIEL{NllNES) ~ ? 

13. What are the weighting factors? W(l) •••.• W(tlt) (See Chapter VI I. I.) 

!4. What are the press parameters for each curing po~.ition? 

Example (given for position I): 

MAKE{I) = (make of press) e.g. BOM 

MOD(I) = (model of press) e.g. M12 

IPRAT(I) 

PHHT (I) 

PHW( t) 

c (press rating) e.g. 3 

== (max. moJd height) e.g. 1211 

s (max. mold diameter) e.g. lt4" 

PSHP(I) = (shaping phases) e.g. 2 

ICONTR(f) ~ (type of control) e.g. 2 

IPPCl(l) v. (type of PCI unit) e.g. 2 

15. What was previous assignment? Part no. for each position? Code no. 

for each position? Example (location I): 

PRESS(t) = (department number) e.g. A3 

TOP(I) = (part no.) e.g. TIREN021 
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ITOPC{I) = (code no.) e.g. 4021 

16. What are cure spec;fications for each of the above? 

Example (location I) : 

EGTHT(I) = (green tire height) e.g. 22.11 

ECT(t) c (base cure time) e.g. lS min. 

ESKAPE(l} ~ (number of shaping phases) e·.g. 3 

ETMLDH(I) • (mold height) e.g. 11" 

ETMLOW(I) ~ (mold diameter) e.g. '+3" 

EBW(I) = (bead diameter) e.g. 1411 

EPCIP{I) • (PCI pressure) e.g. 30 psf 

ECONST(I) ~ (construction) e.g. Radial ply 

ECURE(I) = (special cure required) e.g. NRM 

l7. Which are new tires to be scheduled? Part no.? Code no.? 

Example (Tire l): 

ON(I) = {part no.) e.g. TtREN033. 

IFC(I) = (code no.) e.g. 4033 

JS. What are cure specifications for above ON tires? Example (Tire I): 

GTHT ( t) a:: (green tire height) e.g. 22" 

CT(I) • (base cure time) e.g. 14.1 min. 

SHAPE(l) u (shaping phases) e.g. 3 

TMLOH{t) = (mold height) e.g. 1 JI' 

TMLDW(l) u (meld diameter) e.g. !tlf'' 

BW(f) = (bead diameter) e.-g. 13" 

PC IP (I) 

IRAT(I) 

I PC I (I) 

~ (post cure inflation pressure) e.9. 35 psi 

• (cure rating) e.g. 2 

- (PCt equipment) e.g. 
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CONST(I) • (construction) e.g. Radial ply 

CURE{I) = (special cure) e.g. NRM 

19. Which tires are being removed from the cure? Example (Tire I): 

OFF(I) = (part no.) e.g. Tt~EN044 

tOFC(I) • (code no.) e.g. 4044 

The figure showing the set up of the data deck is repeated 
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here as Figure XVI. Similarly the required DIMENSION statement 

is repeated as Figure XVII. 



•AIAMHlll 

•• 

CTMI NIIMI 

FIGURE XVI SET UP O~ A DATA DECK 



DIMENSION PMHT( XXltPMW( XXltPRESSC xx>.TOPC XX),JTOP(( XXltIPPCl( 

1 XXltl~ONTR( XX)tlPRATC xx>,MOO( xx>,MAKE< XX),QN( X'tlFCt x>,8~( 

2X>1PCIP( X)tJRAT< XJtCONSTC XltCURE< X>tJPCI< XltPSMP< XX)tCTC Xl, 

3GTHT< X>tSHAPE( X>tlMLO~IC X),TMLDWC XltAC x, x>,cc x, x>,o< Xt x>, 

/fE( Xt xJ,JOOM( X)tlRANC x>.vclAt Xt X>tVCAIC Xt x>.VOAJ( Xt X'tVOJ 

5A( x. X>tWORKl( x>,woRK2( X)tIC( x>~JRI xJ,WORK3C Xt xl,1zc2x>,Jzt 

62XltlBOM( x•.IDAN( X1tOffl xJ,IOFCt--x>,JK( x>,NIELfK)tlK( x>,EGTHT 

7( XX)tEClt XX>tESHAPEC XX)tETMLDH( XX!tEBWC XX>tEPCIP( xxJ,IE~ATt 

8XXl1lEPCil XX)ttCONSTI xx~.ECURit xxl,QNOR< x>,JJK( XlttTMLDW( xx~ 

91ZtKKl t'IJC 14) 

. INTEGER ALPHA( Xt x>.ZSTAR( Xt XJtZPRIM( Xt x> 

WHERE 

X=THE NUMBER OF TIRES ON_ THE NEW SCHEDULE• 

XX=THE TOTAL NUMBER OF CURING LOCATIONS. 

K=THE NUMBER OF LINES OF PRESSES. 

KK=THE TOTAL NUMBER OF PRESSES. 

• 

FIGURE XVII THE DIMENSION STATEMENT 




