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SCOPE AND CONTENTS

It has been the purpose of this work to design a system,
suitable for the digital computer, to allocate individual activities
(uncured tires) to a fixed and limited resource (tire-curing presses).

A comprehensive study of the requirements of the system has
been conducted in the field. The results of this study and a review
of existing methods of allocation are presented.

A thorough literature search in the area of Operations Research
and Systems Eﬁg?neering has been completed with primary attention given
to computer adaptable mathematical programming techniques for the
optimal solution of both linear and nonlinear assignment problems.

The tire-curing resource allocation problem has been formulated
as a classical quadratic assignment problem. The logic and theory
behind this formulation are covered.

Two distinct suboptimal algorithms have been programmed.
Included is a discussion of the logic of these programs with the theory
employed by them. Also, a full listing in FORTRAN 1V for a computer
program embodying the logic of the solution determined in this design
project is presented,

Realistic problems have been tested; the results of which,



complete with analysis, are presented.

Conclusions drawn to the extension of this system to encompass
the entire production facility are discussed as well as conclusions
concerning the feasibility of using these processes for production

control.
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| ABSTRACT

The purpose of this work has been to generate a method by
which an automobile tire manufacturer can optimally allocate its
weekly production ticket to its automatic tire-curing presses.

The problem is of interest for the reason that the value
of the objective function is markedly affected by thelrelative
locations of tires amongst themselves. This consideration has
negated the possibility of a solution being effected by the
application of an algorithm for the classical linear assignment
problem. in this work the problem has been formulated and solved
as a quadratic assignment problem.

The logic of this method of solution has been programmed
and subsequently used to solve example problems, the results of

which are extremely encouraging.



i1 INTRODUCTION

I1.1 General

In the past decade there has been a significant increase
in the implementation of computer-controlled industrial systems.
The areas that have enjoyed, perhaps, the most notable assist by
the employment of automatic systems have been Process Control,
industrial Engineering and Management Science.

The computer has given rise to an area of Industrial or
Systems Engineering that concerns itself with the practical
application of the theories being generated by operations research
scientists and applied mathematicians. Prior to the advent of
high-speed computing devices with large memory capacity, some of
the more promising concepts of operations research for industrial
applications were impracticable from computation aspects and for
that reason were studied out of theoretical interest only. As
recently as 1958, T. €. Koopmans and M. Beckmann (1) in their paper
YAssignment Problems and the Location of Economic Activities'' stated
in their conclusions on the formulation of what has become known as

the Quadratic Assignment Problem that ‘'the computatibna1 difficulties

of finding a solution'' to the above probiem have ''so far been

insurmountable'.

1T, ¢. Koopmans and N. Beckmann, ''Assignment Problems and the
Location of Economic Activities', Econometrica, 25 (1957), 52-76.




i1.2 Qutline of the Problem

The underlying theory of, and a suboptimal algorithm for,

the solution to the Quadratic Assignment Problem form the basis on

which this design project has created an automated system for the
solution of a real resource-allocation problem that occurs in the
tire manufacturing industry.

This work was undertaken with the co-operation of the
GOODYEAR THIRE AND RUBBER CO., who supplied the facilities for
investigation into the required design criteria. Since this
system deals with the final construction stage of an automobile
tire and since it directly affects the production capabilities
of the plant, it will be used as the basis upon which other systems
will be designed to deal with the manufacturing stages upstream
from this process. It is feasible that this system could grow
until it virtually encompassed the whole of the tire manufacturing
process. Thus, the output from this system will serve as the input
to the system for the next upstream manufacturing process.

GOODYEAR TIRE and McMaster University have different
computing devices, and it was not feasible to utilize GOODYEAR
TIRE's computerized information files. Thus the primary purpose
of this work has been to demonstrate by means of realistic examples,
considering all the known variables, that a solution to this
resource-allocation problem can be provided by the methods of
operations research. Thus, the logic involved rather than the
detailed program is the essence of this thesis.

The primary requirement of this resource-allocation system



is to translate management's sale orders, or listing of quantities
and models of tires formulated from predicted market conditions,
into an optimal production schedule by assigning these tires to

the manufacturing equipment so as to minimize production costs.

I1.3 Design Considerations

Since rapidly changing service requirements of tires have
meant a considerable change in manufacturing methods, it has there-
fore been a requirement of this design to allow the system to be
adjusted with minimal disruption to the program. 1t should also be
noted that since the production facility under consideration has
been Goodyear Tire's Toronto plant, the design has naturally been
orientated towards its requirements. An attempt has been made to
formulate as general a design as possible, and where this has not
been possible it has been indicated. Also there may be installation
dependant parameters not anticipated in this design.

The program was written for execution on a Control Data

Corporation model 6400 computer.



It THE TIRE MANUFACTURING PROCESS

The initial phase of tire production consists of the
assemblage of the ingredients in correct proportions to give the
desired properties to the finished product. The prime component,
of course, is rubber--both natural and synthetic. A change in
the proportion of these ingredients can markedly affect the cured
characteristics of the product. Each subsection of the tire has
different property requirements. For example, the tread stock
compound requires high abrasion resistance while the bead compound
must possess good adhesion properties. To accommodate these
diverse requirements, the tire companies employ a batch-mixing
system which enables different compounds to be used in the component
manufacturing processes (see Fig. 1). This mixing operation is
effected in large counter-rotating worm screw mixers called Bénburies.

The second production stage is a multi-stream component
manufacturing process. One of these components is the ply stock
which is produced from woven tire cord materials such és rayon,
nylon and more recently polyester and Fibreglas. These materials
are coated with rubber on both sides by a vertical three-roll
scraper mill known as a calender. From the calenders the ply stock
is skived to the proper length at an angle known as the bias angle.
An example of one extreme is the radial-ply tire which has a bias
angle of ninety degrees.

Another major component is the sidewall-tread combination

which is extruded through two opposed screw extruders working
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through a common die. Using the two extruders it is possible to
utilize different compounds for the two portions--the tread and
the sidewall. This continuous extrusion is then skived to the
proper component length for a particular tire line.

The third stage of production is the union of the ply
stock, beads, tread and sidewall components on a tire-building
machine (seg Fig. 11). These machines consist primarily of a
col!aps}ble drum upon which the components are '‘iayed up'' by a
semi-autdmatic interaction of mezn and machine. The final product
of the tire-building machine is a cylindrical structure known in
the industry as a ''green tire' (see Fig. I11).

The fourth and final construction process for the tire is
the molding and vulcanization during which the green tires are
shaped into their final form while under elevated temperature and
pressure conditions. It is at this time that the tire acquires
its tread pattern as well as the aesthetic impressions and pro-
tusions on the sidewalls. The production machines employed to |
effect these changes are dual position tire-curing presses. These
machines are supplied to virtually all North American tire manufact-

ures by two major rubber equipment companies.
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FIGURE 110 A Green Tire



IV THE PROBLEM IN DETAIL

IV.1 The Equipment

During the past two decades there has been a very significant
change in the vulcanization procedures employed by the tire industry.
The basic technique of forming'a tire in a mold under elevated
temperature and pressure has remained, but the equipment employed to
accomplish this has been changed dramatjcally.- The original process
consisted of two separate operations, first, shaping, and then, curing.
The green tire was formed into a shape approximating that of a finished
tire by the insertion of a heavy rubber curing tube. This assembly of
tire and curing tube was inserted into a tire mold. After several
molds had been filled, they were lowered into a large diameter
vertical pot heater where the tires were mofded by the introduction of
high pressure steam into the enclosed curing bag. A hydraulic ram
counter-balanced the internal steam pressure of the tires being
vulcanized and kept the molds closed. Upon completion of the specified
curing cycle the molds were removed and the tires were stripped.

During both the insertion and the removal of the curing tube, the tires
were subjected to undesirable distortion.

Except for the very large tire sizes, the pot heater curing
techniquerhas been replaced by the automatic tire curing press. The
necessity for the implementation of this change in process equipment
has been based on both quality and production considerations. These
machines consist of a stationary base portfon that contains the lower

half sections of two tire-curing molds, a rubber bladder, instrument-

10
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ation, and a movable dome portion that contains the upper half
sections of the two tire-curing molds (see Fig. {V). The changing
design of the automotive tire plus the ever-present need for
increased productivity have contributed to a significant evolution

of these machines during the past decade. An example of a tire
parameter change that has directly affected the press requirements
has been the industry's tendency to lower profile designs. The
standard tire of two years ago had a height-to-width ratio of 0.82,
This ratio on contemporary tires has been reduced to 0.78 with
speculation of further reductions. This, coupled with the intro-
duction of Wide Tread high performance tires with height-to-width
ratios of 0.70 and even 0.60, has meant an increase in mold thickness
over conventional tires with similar overall diameters. Thus, the
new presses must have the capability of accommodating these tires.
The net result of this evolution has been that the tire manufacturers
;re faced with a conglomeration of different models of presses with
overlapping but different capabilities.

The capability differences, as well as differences due to
technical innovation in these presses, have considerable influence
on how the product is allocated to them. The previously mentioned
dimensional considerations of the machine usually result in "GO" or
""NO GO'' decision criteria. An example of a "NO GO'" situation would
occur if the tire being evaluated for a particular curing location
has a mold height that was in excess of the maximum mold clearance
in the press. The effects of other changes are less direct, but

are equally important. The later model presses have been equipped
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with automatic loaders which enable the lines of such presses to
be scheduled in a manner that aliows completely random operation.
This is possible since these machines do not require a machine
operator to be present at the coﬁpletion of the cure cycle. The
iines of presses not equipped with automatic loaders can not be
scheduled as freely. Here, an attempt must be made to keep tires
with similar overall cure cycle times in those press lines. This
consideration permits the line to be operated sequentially which,
in turn, allows the operator to tend to each machine in an orderly
manner (i.e., as he completes the loading of a press, the next
press in the line has its cycle ending, allowing the operator to
complete its unloading and subsequent loading and so on, until he
has completely progressed down the press line). Another allocation
criteria that is equipment-dependent concerns the available post
cure inflation equipment. The newer presses are equipped with post
cure infiators which, upon completion of the cure cycle, automatically
mount and inflate the hot tires on rims. On the older presses the
tires are manually removed from the presses, mounted on rims
(resembling road rims), and inf]aged. Certain tire types do not lend
themselves to easy manual mounting and are thus preferably located
on presses equipped with the automatic inflation equipment (see
Fig. V).

One of the more recent innovations in the vulcanization
process has been the introduction of an incremental shaping process
during which the green tire is deformed into the finished tire shape

in phases rather than in one continuous procedure. 1t has been
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established that by allowing the tire to stabilize in several stages
of its deformation results in less variation in the radial force, a
force evaluated about the tire's circumference, that is required to
produce a standard deformation in the tire. The newer presses have
this staged shaping incorporated into their cycle control, making
them capable of single, double, or triple phase shaping. The older
machines lack this facility. The earliest models of curing presses
were equipped only with a single cycle controller to regulate the
temperature and pressure cycles for both tire-curirg positlons.
This means both tires must be identical in every aspect of their
curing cycle. On the newer models, the manufacturers have included
a separate controller for each mold position on the press. The
result of the above considerations is an Inconsistency in that the
targe volume models that require more than one curing location best
fulfill the identical cycle requirements of the older machines.
Unfortunately these are also the tires that should, for quality

reasons, be allocated to the newer presses.

Different models of presses, due to inherent design features,

produce varying degrees of quality or consistency in the cured pro-
duct. For this reason the premium lines'of tires should be allocated
to the machines that consistently produce the best guality cure.

Reliability is another factor that has to be considered when tires

are being scheduled. The most important and high volume tires should,

all other factors being equal, be scheduled on those presses that

maintain the best service records.

19



IV.2 The Product

The large tire manufacturers market different lines of tires
each consisting of a variety of sizes which in combination can result
in approximately two thousand items in the product line-up for the
company. This myriad of products can be broadly subdivided into
three major classifications based on the tire construction: radial
ply, Fibreglas belted, and conventional. Different cure processes
.are required for the different tire constructions. Thus, an obvious
consideration for an allocation system Is that the curing location
being evaluated must be capable of fulfilling the specified curing
requirements of the tire. (See Figure VI.)

Since the tire receives its external distinguishing features
during the curing operation, there are cases where the different
finished products are produced from the same green tire. The
importance of this fact becomes significant in the allocation
decision process in consideration of preprocess storage locations
for the green tires (see Fig. VI1). 1t is desirable to locate all
common green tires in the general vicinity of each other.

For purposes of allocation of two tires to any one facility,
the scheduler or scheduling system must also consider the relative
heights of the green tires. If one of the tires is significantly
longer than the other it would be impossible to arrive at a compatible
shaping cycle for the two tires. This consideration arises from the
fact that the taller tire has both beads in contact with the mold for

a significantly longer period of time than has the shorter tire. The

20
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effect of failing to comply with this consideration is that by the
completion of the first stage of deformation of the longer tire,

the shorter tire has not been deformed enough to warrant a shaping
pause. Similarly, if tires with bead diameter differences exceeding
a prescribed limit are cured together, the result would be that the
smaller diameter tire would have been deformed by the expanding
bladder significantly in advance of the tire with the greater bead
diameter.

The most important curing parameter to be considered by this
system is the cycle time. |If it is possible to satisfy the above
requirements, it is most important that tires be matched by utilizing
the base cure times. |t is possible to give a tire a satisfactory
cure at different overall cycle times by manipulating the other cure
variables. An example would be to decrease the curing temperature
and correspondingly increase the cycle time. There is a base cure
cycle for each tire in the line. It is the cycle that has the
shortest overall time while stil]l maintaining a satisfactory cure.
It is, therefore, imperative to attempt to have every tire curing
on its base cycle, and consequently where this condition cannot be

attained there will be wasted production machine time.

IV.3 The Procedure

The merchandise distribution department prepares a list of
tires it requires to meet its distribution commitments and these
tires then constitute the ''on' tire list. Accordingly, since pro-

duction positions are fixed in number, there must be an equal number



of tires removed from production and these tires constitute the "off"
tire list. After compilation these lists pass to the production
control department whose responsibility It is to assign the "on' tires
to the production equipment. 1in the present manual system, the cure
scheduler obtains all the pertinent curing information for each '"on'
tire from catalogues. At this point, all 'off" tires are removed

from the master press schedule, and the scheduler attempts to fill
these vacant cure positions with the '"on' tires in accordance with

the criteria discussed above. This procedure necessarily results in
considerable relocation of tires already In the cure and a continual
re-shuffling of the "on' tires. The scheduler, at the same time,
must also attempt to minimize mold relocations since those changes

are carried out at premium time on the weekend shifts. After a
schedule has been compiled, it is returned to the merchandise distri~
bution department with the suggested changes and deletions that the
scheduler considers are required to complete an acceptable assignment,
The schedule is then usually subjected to further modifications by

the merchandise distribution people. Once a finalized schedule has
been settled upon, it is returned to the production control department
which uses this schedule of sizes, makes and quantities to schedule
the tire-building machines. This process continues until all the

upstream activities have been scheduled.

V.4 Summary of the Problem Requirements

Upon receipt of a proposed production list of tires, it is

necessary to make an optimal assignment of these tires to the manu-

24



facturing equipment. |t is therefore necessary to schedule the
individual tire to the press that has the most suitable attributes
to cure the tire. The considerations to be made in this evaluation
are the dimensional capabilities of the machine, the type of post-
cure inflation equipment, the make and model of the press, the press
operating condition, the service record, the cycle capabilities of
the machine and the type of controls on the press, single or dual.

A fufther complication to this assignment is the duality
feature of the press. [t is the scheduler's responsibility also to
consider that the tires being scheduled for any one press are them-
selves compatible in terms of green tire height, bead diameter,
construction, and cure cycle.

It is also necessary to consfder'the relative locations of
comnon green tires within the cure. In addition other considerations

such as quality and machine reliability must be adhered to.

iV.5 Objectives of the Automated System

Since the cure is the final production stage of the tire, it
is the first stage to be scheduled. This, by definition, means that
the degree of closeness of this schedule to the optimum assignment
has a very direct influence on the production of the entire plant,
The aim of this project then is to utilize an optimization routine
to determine the best possible assignment of tires to curing positions.
It should be noted that the techniques demonstrated by this
system are alﬁo applicable to many of the upstream systems, most

notable of which is the tire-to~tire machine allocation system. It
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is conceivable that this system could form the basis of a master
scheduling system to control all the scheduling operations for the

entire manufacturing process,

The necessity of finalizing the cure schedule before the
rest of the operation can be scheduled, means a lengthy lead time
from demand to implementation. This procedure invites what are
termed 'emergency changes''. These are legitimate changes based on
an unforeseen alteration in the market position of the company. It
is hoped that the implementation of anefficient automated optimal
system could substantially reduce this lead time. Such a reduction
would benefit the company by allowing it to operate closer to the

market with reduced inventories.



V LITERATURE SURVEY

Y.1 Classical Methods - Development

Many of the problems of distribution and allocation of products
have been formulated and solved by the application of linear programming
technigues. An early realization that linear optimization methods could
be gainfully employed in the allocation or ‘'optimal utilization of
machinery'' was shown by the Russian Professor Kantorovich (1) in 1939.
In his paper the achor formulates three problems, termed A, B, and C,
of which the first two, as shown by T. C. Koopmans (2), make use of a
coefficient matrix which exhibits a form similar to the 'effectiveness'
matrix used In the transportation method of linear programming.
Kantorovich further envisaged the application of the three problems to
situations that include the assignment of items or tasks to machines
in metalworking, in the plywood industry, in earth-moving, in trimming
_problems of sheet metal, in lumber, in paper, in oil refinery operations,
in allocation of fuels to different uses, in allocation of lands to
crops and on transportation equipment to freight flows.

Dantzig in a classical work in 1947 developed a numerical
iterative technique known as the simplex method to solve linear
optimization problems. As Thompson (16) notes the simplex technique
is a general method by which any linear programming problem can be
solved. The resource allocation problem lends itself more readily
to one of several special procedures that simplifies the problem-
solving process. One of these procedures is known as the transportation

method of linear programming. The greatest advantage of this method
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is its computational simplicity. Bowman (12) cites an example of a
problem~solving session at the Massachusetts Institute of Technology
that demonstrated an increase of up to six hundred percent in the
time to solve a problem that fit within the scope of the transporta-
tion method by using the simplex procedure. Several variations of
the transportation procedure have been developed, The methods most
frequently employed have been the ''stepping-stone'' suggested by
Charnes and Cooper (17) and an algorithm suggested by Munkres (10).

The transportation method may be stated generally as follows:

ifN={1,2,.....,n} and M = {},2,..... ,m}
minimize Z = Xizjaijxij (i e M, jeN) 5.1
subject to
ijij = p; (i e M 5.2
zixij = bj (j ¢ N) 5.3
i 0 (i e M, jeN) 5.4

For the case of balanced supply and demand, commonly referred
to as the Hitchcock Distribution Problem, the following constraint is

also applicable.

T.p, = L,b, 5.5

it should be noted that this constraint is required for the
application of the above solution technigques. Thus, on occasion a
slack destination or source must be added.

The transportation problem, as its name suggests, was first
formulated as a special technique for determining a minimal cost
program for transporting a product from several factories or manu-

facturing points to several distribution points or warehouses.



V.2 The Linear Assignment Problem

The assignment problem constitutes an allocation problem in
which N activities are to be allocated to N facilities, and each
facility can accommodate only one activity. |I|f we consider each
facility to be designated by i = 1,2,..... ,h and each activity
designated by j = 1,2,.....,n, it is possible to construct an N x N
matrix A where aij represents the productivity or effectiveness of
activity | on facility j. The problem thus becomes one of assigning
all activities to different facilities to optimize the overall effect-
iveness. An example application of this formulation that occurs is
the assignment of personnel where N persons are to fill N jobs. In
this case the effectiveness matrix A would be a measure of the
individual's abilities at the task; such measures could be the number
of man-hours required to perform the tasks, or, perhaps, the scores
attained by the candidates on a set of aptitude tests. If the
assumption is made that the activity is free to utilize any resource
for any part of its total assignment, let xij be the fraction of
time that activity i should utilize resource j, or in terms of the
example cited, the fraction of time person | should perform task j.

The formulation of this problem thus becomes:

minimize Z = ZiE.a‘jx.. ieN, jeN 5.7

J 1]
subject to

£,Xx,, =1 jeN 5.8
J 13

.x,, = 1 5.9
tH ieN

x., >0 5.10



It can be seen from the above expressions that the assignment
problem is a special case of the transportation problem with balanced
demand and supply in which M =N, a, =1 (i ¢ N} and bj =1 (j ¢ N).
Although the above equations represent a system of 2N constraint
equations in N variables, one of the constraint equations is not
independent because of the known condition of balanced supply and
demand. Thus, the classical assignment problem may be regarded as
a linear programming problem having (2N - 1) constraint equations in
N? variables. There will be only (2N - 1) basic variables in the
optimal solution. The remaining nonbasic variables must be zero.
Since the number of nonbasic variables is the difference between the
total number of variables (N2) and the number of basic variables
(28 - 1) then

N2 - (2N - 1) = (N-1)? 5.11

The above assignment problem is of a form that can be readily
solved by the simplex method of linear programming although there is
a possibility of considerable increase in computation if this is
attempted, The most popular aligorithm formulated for the solution of
this linear assignment problem has been given by Kuhn (19). This
algorithm is known as the '"Hungarian Method of Assignment'. Variants
of this algorithm have been given by Munkres (10) and Flood (18).

Simple combinatorial algebra gives, for an N-dimensional
assignment; N! distinct solutions. Munkres (10) shows that by
assuming the worst possible conditions at each stage of his algorithm,

the maximum number of operations needed is

(YIN3 + 12N2 + 3IN)/6 5.12
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This maximum is of theoretical interest since it is so much smaller
than the number of operations necessary to formulate the N! possible

solutions.

If the allocation of activities is limited to facilities such
that each facility is utilized singularly by each activity, we have
replaced the inequality constraint of xij > 0 by the integer constraint
xij =0, or 1. In a suitable and, perhaps more significant notation,

the problem can be restated as:
minimize Z = Zia;p(i) 5.13

where o is a square permutation matrix of dimension N.

Balas (11) presents an interesting algorithm for the solution
of a generé! linear program with zero-one variables. Essentially,
this algorithm employs a tree-search technique that uses information
generated in the search to exclude portions of the tree from consid-
eration. This algorithm, from the examples included by Balas, seems
- to be a vefy efficient method for the solution of this type of problem.
Balas cites a particularly ill-behaved examplie with 12 variables and
6 constraints that necessitated the investigation of 39 of a possible

4096 solutions.

V.3 The Quadratic Assignment Problem

One of the basic assumptions of the linear assignment problem
is that the assignment of any one activity to utilize a facility in
no way affects the economic return or effectiveness of any other

activity on any other resource; or simply, there is no interaction



between activities. Within the frame of reference previously cited,
it is assumed that the personnel do not interact with each other in
a manner so as to affect the overall efficiency of the total assignment.

The first published statement of the quadratic assignment
problem was presented by Koopmans and Beckman (3), in the context of
an analysis of economic acitivity. In this paper the quadratic
assignment problem has been formulated for application to the assignment
of manufacturing plants to geographical locations. Koopmans and Beckman
state:

The assumption that the benefit from an economic

activity at some location does not depend on the

uses of other locations is quite inadequate to the

complexities of Locational decisions.?
The criteria considered in this analysis of the problem has been the
cost of interplant material flows. In this formulation they consider
the allocation of N plants to N locations. In the A matrix, referred
to previously in the discussion of the linear problem, the element aij
represented a net revenue. In this example the element aij of A
represents a ‘'semi-net'' revenue from the operaticn of plant i at
tocation j; that is, gross revenue less cost of primary inputs, but
before subtracting the cost of transportation of intermediate products
between plants. Thus, this semi-net revenue is still independent of
the assignment of other plants to other locations. To express this
interpliant transportation cost they used two symmetric matrices, C and
D, where the element cij of matrix C represents the commodity flows

(in weight units) from plant i to plant j and element dij of matrix D

2T, C. Koopmans and N. Beckmann, "Assignment Problems and the
Location of Economic Activities', Econometrica, 25 (1957), 52-76.
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represents the cost of tranﬁportation for the unit flow from location
i to location j. The flow coefficients cij are assumed to be
independent of the plant assignment, and are applicable to all amounts
and compositions of flows. Koopmans énd Beckmann made the further
stipulation that the cost coefficients dij satisfy the triangular
inequality

d., < d,

TR

Kj (i,j,k ¢ N) 5.4

which simply states that transportation from location i to location j
via a third location k is not cheaper than direct transportation. The
notation used here, for the purpose of continuity is the same as
Gilmour, not that used by Koopmans and Beckmann. To find the total
interplant transportation cost, it is necessary to begin with a known

permutation p to evaluate the expression.
Xizjcijdp(l)p(j) 5.15

it follows that the total net revenue for an assignment thus becomes

= Zaip(i) - Zcijdp(i)p(j) (i,j € N) 5.16

The quadratic assignment problem formulated is thus the maximization
of the above expression. Koopmans and Beckmann point out that the
designation of the quadratic assignment problem is rather arbitrary.
The justification for this designation stems from the fact that the
maximand contains a term in the second degree in the unknown permu-
tation. This is more obvious in the notation of Koopmans and Beckmann

where the equivalent expression to the above can be written
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2= LEaP T R S Pridi P 5.17

where p is the desired permutation matrix,

Conway and Maxwell (8) suggest an approach to the problem of
facility assignment that assumed no economic advantage of any location
over any other location for an a;tivity. In other words, they were
primarily concerned with the interaction costs or interplant commodity
transportation costs, between the facilities. Again, this paper
formulates the problem by measuring the value of an assignment by
summing, as the interaction costs, the permuted products of traffic
and distance matrices. The approach utilized minimizes the value of
this summation. In the case of the symmetric ''distance'' and ''traffic"
matrices there are n = (N -~ 1)N different paths between pairs of
locations. Let Dl,Dz,.....,Dn represent the lengths of these paths
ranked so that By > Dy > 03..... > D . Consider the n = (N - 1)N
pair of facilities; let Cl,Cz,.....,Cn represent the traffic between
these pairs ranked so that C; < C, < ..... < C . Using these values

construct an n x n matrix X such that

Xij = Di°Cj 5.18

Thus, there will be an assignment that consists of selecting n elements
of the X matrix, one element per row and one element per column. The
sum of these n elements will then be the value of that assignment. The
converse of the above statement is not trﬁe. Any n elements with one
in each row and one in each column do not necessarily correspond to an
assignment due to the possibility of an incompatible arrangement of

facilities. Thus, the problem can be stated as: find the n elements
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of X, taking one from each row and one from each column which correspond
to an assignment of facilities to locations, whose sum is minimal. Thus,
a solution can be effected if the partial sets of n elements from X can
be determined. The successive sets could be examined starting with the
set with the smallest sum until a set that constitutes an assignment is
discovered. Conway and Maxwell point out that the minimum sum set of n
elements from X (one from each row and column) are the elements of the
principal diagonal. They further point out that if by luck this set of

. elements corresponds to an assignment, the problem is solved., Since

this will not always occur they have utilized an additional matrix Y

whose elements are defined as:

y.. = the minimum sum of n elements of the X matrix,

one from each row and one from each column

which includes xij'
This Y matrix demonstrates fhe following characteristics for any element
Y,p O0 OF above the principal diagonal, Yap < yij for all i <a, j > b,
For any element Yo < y;j for all i >m, j < n. Practically this Y
matrix would not be computed but rather the properties discussed would
be used to suggest that the search for a small sum set, which corres-
ponds to an assignment, commence in the neighborhood of the principal
diagonal and work out systematically from there. This solution technique
still requires considerable luck and is computationally prohibitive.

tand (7) considered the problem of inter-related costs under the

simplifying assumption of no economic advantage to any facility in any
-location, and formulated a numerical routine that utilized a systematic

exploration of a limited part of the solution space. To illustrate his
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development, Land considered the problem of locating manufacturing

departments in evaluating a plant layout. This problem is easily

seen to be analogous
-method postulated by
which shows for each
would be incurred if

the problem has been

and can be stated as:

to the previous problem of plant location. The
Land consists of constructing a cosf matrix A
pair of departments, i and j, the cost which
theyrwere allocated to locations p and gq. Thus,

reduced to the form of a linear assignment problem,

Eaip(i) 5.19

where p is again a permutation matrix with one non-zero element in

each row and column.

Since there are n(n - 1)/2 possible pairs of

departments, n(n - 1)/2 possible combinations of locations, the cost

matrix A is square and of dimension n{n - 1)/2. Unfortunately, a

solution of the above problem, for the same reason as Maxwell's form-

ulation, is not necessarily a solution to the real problem. An example

of this would be an assignment that gave an optimum cost that included

department pair A and B in location pair 1 and 2, and department pair

A and C in location pair 3 and 4. This, of course, is incompatible.

Land's numerical routine is based on the‘following logic:

Consider any

one variable Xw which assigns departments

t

k and L to locations u and v, i.e., w = (kL) and t = (uv),

then

X (w) 7!

ki) (pa) =% °" X(jk) (pq) = ©

5.20

ofa
W

5.21

of,

“Either the left column equals zero or the right column equals zero.
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x(iL)(pq) =0 or X(Li)(pq) = 0 5.22
X(ij)(uq) =0 or x(ij)(qu) =0 5.23
Xantew =0 °F Xaiew = ° 52
k#i 4L 5.25
k#J#L 5.26
u#Fp#év 5.27
u#Fq¥v 5.28

There will be a3 minimum cost of the simple assignment problem under
each of the mutually exclusive assumptions x(wt) =0 and x(wt) = 1.
The linear assignment costs on the basis of these two assumptions

will represent lower bounds. Thus a decision tree can be created

by eliminating areas of secarch. Pairs of departments can be assigned
and a lower bound calculated. Thus, each branch of this 'branch and
bound' technique need only to be pursued until the lower bound exceeds
the value of a known assignment. It is impossible to predict the
length of the computation; in the extreme case where all costs are
equal, the routine will generate all n! possible solutions.

The problem of scheduling classes in a university was the
motivation for the investigation by Carlson and Nemhauser (4) of an
algorithm to solve a guadratic assignment problem. The formulation
presented had the following two major conditions. First, each
activity must be scheduled on exactly one facility, and second, any
number of activities can be scheduled on any single facility. Every
combination of two activities scheduled on the same facility gives

rise to an interaction cost. This technique has a particular application
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for assignments where the real assignment is not subjected to the
constraint of one and only one activity or even a singie pair of
activities being allocated to one facility.

The fact that the quadratic assignment problém can be

formulated as an equivalent integer linear program was demonstrated

by Lawler (6). His approach defined a linear problem of n* variables
yszq from the quadratic problem of n® variables xij where,
effectively
Yitpa T %i3%pq >89
The objective function then becomes:
= I,., Cuv Y.. N = {1,2, ..,N} 5.30
PipaTijea’iipa L 07Ty
subject to the constraints
ijij = ] (j e N) 5.31
Xixij = | (i e N) 5.32
L., . bad l2 .
iipqijpq = " 2:33
Xi 5 + Xpg ~ Zyiqu >0  (i,i,p.q € N) 5.34
x;; =0, 0r1 (i,j e N) 5.35
Yiqu =0, or 1 (i,j,p,q £ N) 5.36

Reference (6) shows a proof that a feasible solution of the
above !inear problem corresponds to a feasible solution of the
equivalent quadratic problem. Although the above formulation of
the problem is theoretically interesting, it is not computationally

useful considering the present state of integer linear programming.



Lawler realized the disadvantages of this technique of solution, and
as an alternative suggested a technique of calculating a lower bound
for the assignment as a basis for an algorithm to solve the quadratic
problem. He further discussed the extension of this formulation to
cover cubic.....n-adic problems. A discussion of the theory employed
in the development of this method is omitted at this point, since,
independently, Gilmore (9) and Lawler arrived at algorithms that are
essentially identical when applied to the Koopman-Beckmann problem.
Thus, discussion of this algorithm is included with the discussion of
Gilmore's work.

Lawler did discuss several extensions of the application of
the quadratic assignment problem. These were the ''candidates problem'
(see ref. (6)), the minimization of latency in magnetic drum computers,
placement of electronic assemblies so as to minimize wire lengths,
and various problems in the synthesis of sequential switching circuits.

Further and independent work on the placing of electronic
modules on a computer backboard, in a manner so as to minimize the total
wire lengths, has been performed by Steinberg (5). He formulated a
solution based on a quadratic assignment problem; again, considering
that one location could not attain an economic advantage by having any
particular module scheduled to it. Steinberg used two matrices, C and
D, where element cij represents the number of wires connecting module

i to module j, and the element da represents the distance from

B

location Pa to P From this it can be seen that matrices C and D

B‘
must be symmetric with their main diagonals all zero. Steinberg's

algorithm proved very successful in this particular application.
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As an extension to the work of Steinberg, and independently
parallel to the work of Lawler, Gilmore (9) formulated three distinct
algorithms for the solution of the quadratic assignment problem. One
of these algorithms is an optimal solution technique while the other
two are suboptimal. Gilmore based his algorithms on a minor revision
to the original formulation by Koopmans and Beckmann. The revision
consists of minimizing not just an interaction sum but the interaction
sum and the sum for an ordinary assignment problem. This can be
stated as:

minimize Z = Xiaip(i) + Eijcijdp(i)p(j) 5.37

where C and D are two matrices such as those employed by Steinberg in
the wiring problem.

Gilmore's algorithm, similar to Lawler's, utilizes a branch
and bound technique to limit the area of search for an optimal sclution.
Let o be a partial permutation for which p is a completion. By a
partial perﬁutation of 1,2,.....,n means a 1-1 map of some subset of
{1,2,.....,n} into {},2,.....,n}. An extension of a partial permutation
is a permutation or partial permutation p such that a(i) = p(i} for all
i for which o is defined. if Z_ is the smallest possible Z(p) then
is a satisfactory solution if and only if Z_ = Z{p).

If we assume we are given any permutation p, not knowing Z0
to determine whether g is satisfactory, or not, it is necessary to
determine whether there exists a permutation n such that Z(w) < Z(g).
1f o is any partial permutation for which Z(a) » Z(p), then no completion
% of o can satisfy Z(w) < Z(p) since necessarily Z(w) > Z(a). Gilmore's

algorithm exploits this simple fact by generating a succession of



permutations TLPYRRRRRIN such that Z(p) > Z(m}), 2(ny) > Z(xy),
.....,Z(nk_l) > Z(ﬁk), and such that m, is satisfactory.

The efficiency of this algorithm is dependent upon the closeness
of the initial permutation p to the actual minimum. The two suboptimal
algorithms given by Gilmore could be used as a means to determine the
initial permutatibn. The suboptimal algorithms are based on the premise
that the problem of determining a permutation p to minimize Z(p) could
be regarded as an (N - 1) stage decision process where at each stage
two numbers, i and j, must be chosen by some guiding decision criteria
until a complete permutation p has been constructed. These suboptimal
algorithns when applied to Steinberg's wiring problem compete very well
with Steinberg's algorithm. Details of these algorithms are included

in Appendix A of this thesis.
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V]l MATHEMATICAL FORMULATION

For this particular problem where tires are to be allocated
to tire-curing presses, a typical problem of scheduling N tires on
N/2 presses can be considered. The first and most obvious decision
criteria in evaluating an allocation arrangement is the suitability
of the tire being scheduled to the tire-curing press. As a brief
review the pasrameters to be considered in this evaluation are as
follows:

(1) overall mold height;

(2) overall mold diameter;

(3) shaping phases required;

{4) post-cure inflation equipment required; and

(5) press rating.

If the facility is considered as consisting of N curing
locations rather than N/2 presses, it is possible to formulate a
simple linear assignment problem where the objective function to be
minimized would be the unused machine attributes. This is a valid
aspiration on the basis that it is consistent with the secondary
consideration of forcing the higher precision tires towards the
newer and more versatile machines. Thus, the formulation ceonsists
of measuring the ''cost'' resuiting from scheduling any tire on any
facility, and of arranging these '‘costs'’ into an assignment matrix A.
The term ‘''cost'’ as used in this context is not a cost in monetary
terms; rather, a measure of the suitability of a tire to a press.

Thus element aij is the cost of scheduling tire i into curing location j.



As mentioned the cost is a measure of the machine attributes used

and the more closely a tire comes to making full use of the machine,

the lower the cost.

This can be stated as
minimize 2 = Xiaip(i) (i ¢ N) 6.

Again p is an N x N permutation matrix with one non-zero
element per row and per column.

An element ai} of matrix A is evaluated from the following

1)

relations:

dy = PMHTj - TMLDHi 6.

9= Py 7 Throw, 6.
j i

d3 = Pgyp - SHAPE, 6.

J .

d, = 0 {if press rating and tire rating 6.
are compatible)

d;, = 100 (if above is not true) 6.

dg = 0 (if press post cure inflation 6.
equipment and the tire requirements
are compatible)

de = 100 (if above is not true) 6.

a,, = d}XWl + deWZ + daXW3 + quWt, + d5XW5 6.

The variables W (p = 1,2,...,5) are weighting factors that consist

of two components: a magnitude adjustment factor and an influence

“see Appendix € for variable definitions,

AN
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factor. The use of these variables will be explained more fully
later by means of an example. (See also Section C.3.)

If anf of relations 6.2, 6.3, and 6.4 are negative, a ""NO GO"
condition exf;ts and the value of aij is arbitrarily set at 10000.
Thus a '"NO GO'" situation Is formally treated as a high cost situation.

The linear assignment problem, stated above, makes the
assumption that the economic benefit of a tire in a curing location
does not depend on the uses of the other locations.- This is
obviousiy inadequate for the real problem. The overall cure
efficiency is greatly affected by the interaction of the tires
scheduled into adjacent curing locations. The extreme case of this
occurs when a curing location becomes invalid, even with a low
attributes cost, to a tire on the basis of violating one of the
compatibiljty considerations listed below and described previously,
There is also an interaction that occurs from the relative positions
of similar (in the extreme ''common green'') tires in the adjacent
presses and oress lines. Thus an interaction ''cost' can be
considered to exist between tires based on their similarities. Again,
the term "interaction cost' is a relative one that is a measure of the
simitarities of two tires. Therefore, all the possible comparisons of
N tires can be expressed in an N x N matrix C where Cij is the inter-
action cost of tire i and tire j. The value of C is small for tires
that are similar and high for dissimilar tires. In the limit cij =0,
i # j, and i and j are common green tires.

A brief review of the parameters evaluated for compatibility

considerations follows:



m
(2)
(3)
(4)
(5)
(6)

bead diameter;

construction;

post-cure inflation pressure;
number of shaping phases;
cure times (basic); and

green tire heights,

The element cij of the C matrix is evaluated by means of the

following relationships:

hy

if

c.. = hixwg + hoxwy + hgxwg + hyxwg + hgxwyg + hgxwyy

= Ass(Bwi - Bwj)

0 (if the construction of tires i and j
are the same)

10 (if the above condition is not true)

[

Aas(Pc:Pi - PCIPj)

ABS(SHAPEi - SHAPEJ)

ABS(CTi - CTj)

ABS(GTHTi - GTHTJ)

hg > 1.5, then hg = 10 x hg

[+ 2

o O O O O O O

The C matrix, in this case representing the interaction of

.10

L

2
3
b
A5
.16
A7
.18

activities, is comparable to Steinberg's (5) matrix C that represented

the number of wires connecting each module to every other module.

this problem, consistent with the '‘backboard wiring problem', the C

In

matrix has all zeros on the principal diagonal, and it is symmetrical.

To complete the synthesis of the tire scheduling brob!em as a

quadratic assignment problem, it is necessary to consider the inter-

relationshi

ps of the tire-curing locations. The considerations suggested



in the previous discussion of the problem are mainiy locational in

nature.

A brief review of these locational considerations follows:

Are locations i and j
(1) on the same press?
{2) in the same press line?
(3} in adjacent press lines?
(4) on the same make of press? or

(5) on the same model of press?

Thus, the relatlonships between each cure location can be

established and described by an N x N matrix D where element d;
is a numeficai representation of the relation of lecation i to
location j.

Element dij is calculated as follows:

fy = 100 (if location i and j are on the same press)

0 (if above relation is not true)

-n
-
L}

f, = 20 (if i and j are in the same press line)

15 (if i and j are in adjacent press lines)

-
~
[

f, =5 (if i and | are separated by at least one
press line)

10 (if i and j are on same make of press)

-,
[eLy
]

5 (if i and j are on different makes of presses)

-ty
w
1

10 (if i and J are on same model of press)

~h
T
]

5 {(if i and j are on different models of presses)

"
&
L]

dij = fyxwip + foxwig + faxwyy + fuxwyg

J

(oA TR # AN o )

o

6.
6.
6.
6.
6.

.19
.20
.21

.22

.23

24
25
26
27
28

From the above relationships it can be seen that the highest

46
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value of element dij occurs when location i and j are a pair on the
same press. The lowest value occurs if i and j are on dissimilar
presses in different and not adjacent press lines. The D matrix
used in this problem corresponds in nature and usage to the distance
matrix D of Steinberg's wiring problem.

It is now possible to write the objective function as:
minimize Z = ziaip(i) + Eizjcijdp(i)p(J) 6.29

which is similar to the form presented by Gilmore (9).

In order to minimize Z it is necessary to minimize both terms
contained in it. The first term, as mentioned previously, is a
minimum when the fewest machine attributes remain unused. It meets
the initial requirement that each of the elements aij of the assignment
matrix is the benefit obtained by locating tire i in facility j and is
independent of the assignment of other tires to other facilities.
Therefore, the minimization of this guantity drives the solution to
alleocate the tires to the most suited facility.

The second term, the quadratic term, consists of the sum of
the products of the interaction costs of tires i and j in the element
i and the interaction costs dij of the facilities on which tires i
and j are scheduled. Simple combinatorial analysis shows that a
minimum occurs for the sum of a permuted product when the largest of
one element is combined with the smallest of the other. In other
words, the minimum occurs when the tires with the lowest interaction

cost c¢,, are scheduled to the pairs of facilities with the highest

a
i

e+ e

interaction cost dij’ and the pair of tires with the highest inter-



action cost cij are scheduled to the facilities with the lowest
interaction cost dij' Therefore, the minimization of this second

term will drive the tires that have the greatest number of similarities
towards a single press since the highest value of dij oécurs when | and
j are on the same facility. The minimization will also drive similar
tires to facilities in one area of the department since the next highest
value of dij occurs when i and j are in the same line of presses. The
next increase in the value of dij occurs when i and j are on the same
make and model of press, The result of this is a tendency of the
solution to keep the similar tires grouped in the same area within a
line of machines.

To summarize, the minimization of the optimization function
results in:

(1) matching tires to presses on the basis of minimizing

unused press attributes;

{2) matching tire to tire on basis of similarities in

construction, model, cure parameters, and styles;

{3) grouping similar tires in an area in the cure; and

(h) grouping the most alike tires on a single press.

The action of this solution technique on this problem is
analogous to the backboard wiring problem with the added consideration
of an advantage gained by the location of a module to a particular
position on the backboard. As stated previously, Cij represents the
number of wires from module i to module j and dij the distance between
location i and j. To minimize wire the modules with the highest

number of wires connecting them must be located close to each other.
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At the same time the advantage gained by the location of these modules
in these positions must be considered. Therefore, as with the tire
problem, the minimum occurs when the highest cij is combined with the

smallest dij and vice versa.
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Vil THE SYSTEM

The primary purpose of this thesis has been to demonstrate
that the principles of formulating the tire allocation problem as a
quadratic assignment problem could be employed as the basis of an
automatic systém to solve a real problem for The Goodyear Tire and
Rubber Co. of Canada Limited.
It has been the intent of this project to generate as general
a solution as possible, while still satisfying the requirements of
the particular system under study. |t must be emphasized that the
discrete values used to demonstrate various points.are ficticious and
in no manner represent the operating position of the Goodyéar Tire
and Rubber Co.
The overall design considerations of the system are these:
(1) To arrive at an optimum allocation of tires to tire-curing
presses, the optimum being a function of both guality and quantity.
{2) To minimize expensive internal mold relocation.
(3) To design the input and output operations such that the system
can be utilized as a 'black box' routine which does not require the
user to have a complete understanding of its mode of operation.
Consideration of the second requirement, the minimization of
‘internal mold relocations, suggests that as an initial trial the on-
coming N tires should be tried in the N vacant cavities. Thus, if
an optimal arrangement occurred it would represent the most ideal
éondition--optimum production with no rearrangement of existing éuring

positions. However, this is an unlikely occurrence, and the method
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of allocation on the surface appears to be inconsistent with the
optimization of the entire operating position of the plant. This
inconsistency can be dealt with by several different techniques.
One of these would be the addition of any tires in the present

cure to both the "on'' and "off' lists. This procedure would
effectively bring these tires into consideration by the system.

The limit of these additions would be the inclusion of the balance
of the cure to these lists, and the subsequent re-allocation of all
the tires in an optimal manner would occur. The difficulty, obviously,
would be the unprofitablevnumber of mold changes that would occur.
The cost of mold changes would likely exceed the increase in profit
derived by the total re-allocation.

Another approach would be to apply a suboptimal system that
evaluates every tire on the production list and which arbitrarily
decreases the linear independent assignment cost aij if tire i in
the prévious assignment occupied facility j. The arbitrary constant
could be adjusted by the user until, by experience, the number of
mold changes occurring would be economical. Thus, each tire would
have a preference for its present position. It would only be re-
lo;ated if in the newly assigned position a more beneficial return
was produced than in its compensated present position. The advantage
of this system is the inclusion of every tire in the cure for the
evaluation of the interaction cost matrix C.

The approach utilized in this system introduces the assumption
that there will be a value that assesses the performance of each press

in curing the tires assigned to it. If the least desirable assessment



is represented by a high numerical value, then an additional assumption
is that there is a value of this parameter that can be set by each
plant below which a press can be considered to be operating satisfact-
orily. This is effectively establishing an allowable tolerance to the
optimum operating position within which the system is considered to be
functioning acceptably. With this consideration, the first allocation
attempt made by this system is to fit N tires specified on the list of
additions to the locations vacated by the N tires being removed from
production. This does not exclude the possibility of supplementing
additional tires from the present cure to these lists for consideration
by the system. However, no attempt is made to deter the relocation of
these additional tires. A first fit is attempted and tested according
to the above criteria; if acceptable the system terminates. |[f the
results are not satisfactory, the effectiveness of every press is
evaluated, and those that exceed the user set minimum are then re-
evaluated amongst themselves. This procedure is then repeated until
either the condition for every press having an acceptable effectiveness
coefficient or the number of mold relocations has exceeded a user'set
value, or there has been no further improvement in the overall cure.
The attempt to_fit the new tires to the vacant locations is
not an unreasconable starting condition because the partial problem does
not require the relative line positions of various tires to be con-
sidered. For this installation the exclusion of this consideration is
not serious since like machines are themselves grouped. Therefore,
the machine suitability considerations tend to drive the solution to

schedule similar tires in the general proximity of each other--although
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this is not guaranteed. |In the general case, the consideration of
relative positions may have more importance. However, it is unlikely
that these considerations would take preference over the suitability
or combinatorial considerations, neither of which is affected by
dealing with partial solutions. Thus, if an optimallroutine was
émployed on their initial allocation and the previous schedule had
been satisfactory, this approach will at least not drive the solution
into an infeasible area on the basis éf previously allocated tires.
The advantages of employing this approach are as follows:
(1) 1t enables the user to control directly such things as
the number of allowable mold changes.
{2) 1t enables him to observe the fit that occurs at each
stage. |
(3) The size of the problem is substantially reduced at any
one stage.
As example of this last point, an installation consisting of
P locations (P/2 presses), the previous approaches would necessitate
the evalqation of three P x P matrices. For a typical Canadian plant
this could easily exceed the capacity of most industrial computing
devices. The above approach only requires the evaluation of three
N x N matrices, where N is usually in the order of P/10 - P/4 for an
average plant.
The algorithms chosen to solve the quadratic assignment problem
formulated by this system were the two suboptimal algorithms described
by Gilmore (3). These algorithms were chosen in preference to Gilmore's

or Lawler's optimal algorithm, based on the computation of lower bounds



since Gilmore states that this algorithm becomes unrealistic for
fifteen or more activities. The problem here is consistently larger
in magnitude than this limit allows,

The Carlson-Nemhauser (4) algorithm was considered because
it is based on the concept of assigning activities considering there
to be an interaction cost arising from every combination of two
activities allocated to the same facility. This appears to be
exactly the case with the tire assignment p}oblem. However, the
ailgorithm made the additional assumption that any number of activities
could be scheduled on any single facility., This, of course, is a
violation of.a real constraint of this problem.

A further, rather arbitrary, decision made in the design of
- this system was the selection of an algorfthm for the solution of the
linear assignment problem, formulated by and necessary for the solution
of Gilmore's algorithm for the quadratic problem. The algorithm
.selected was Munkre's (10). The reason is no more sophisticated than
that it was the one suggested by Gilmore. It is believed that any one
of several exceiient algorithms for this linear problem could have
been utilized with equal success.

The system, presented here relies on the user to supply, by
means of punched cards, all of the pertinent cure facts for every tire
to be scheduled. In a real installation this information could easily
be stored in a random access file and the informafion could be referenced
by part number.

Because Goodyear Tire and McMaster University have different

computer systems it became prohibitive to attempt to duplicate Goodyear's
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files at McMaster's machine. Therefore, to demonstrate the workability
of the solution, ficticious inputs have been used for the sampie problem

solved in Appendix D.

A system flow-chart follows (see Fig. VIII).

VIl.1 Sample Calculation

The purpose of this section is to clarify the description of
the system given in the preceeding section by means of a numerical
example. Where possible the variables here have the same meaning as

the variables used in the program in Appendix C.

Vit.1{a) The Problem

Consider the problem cof scheduling ten new tires in an
installation similar in arrangement to the one shown in Figure ViI.

(a) The Equipment: The pertinent information about each press

Is given in Table |.

(b) The ON and OFF Tire Lists: These lists, including the

relevant cure cycle information for each ON tire, are given in Table II.
STEP 1.
(a) Search the existing cure for the tires listed on the OFF tire list.
These locations are then numbered | to N (N = 10 for this problem). See
Table IIfor a list of avallable locations.
STEP 2,

From Table ITit can be seen that the first six tires being
removed empty 3 complete presses. Similarly, tires 9 and 10 empty

a3 complete press. However, tire 7 empties only half of press Blk
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and tire 8 empties only half of press Cl4. In order to be able to
compute the compatibility relations for the establishment of matrix C,
it is necessary to add the tires left on these presses to the ON tire
list and increase N by 2. (The cure parameters for these tires are

given in Table 2.)

STEP 3.

The problem is now to be formulated as a quadratic assignment
problem. The first step in this formulation is the evaluation of the
suitability relations 6.2 to 6.9 in order to complete matrix A.

Sample calculations for element a,s follows:

dy = PMHT; - TMLDH,

1.5 - 10

].5
PMWs = TMLDW,

]

o
N
"

38 - 35

= 3

¥

PSHP. - SHAPE,

[~
w
(]

n

3-3
=0

Since tire 2 (TIRE N202) is a high quality tire requiring
precision curing and since press 5 (B13) has only got a ﬁedium rating,
then d; = 100.

Since tire 2 requires automatic post-cure inflation and since
press 813 is equipped with manual inflation equipment, then dg = 100.

Therefore

az5 = dyxwy + doxwy, + dyxws + dyxwy, + dgxwg

= {}1.5 x 100) + (3 x 100) + (100 x 1) + (100 x 1) = 650
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The purpose of the weighting factors is to allow the user to
adjust the affect of each of the above factors on the assignment. As
an examplg of this a user may deem a difference in the réquired
number of shaping phases and the available number of phases of one
to be twice as important as a three-inch difference in available and
required mold heights. Therefore, using the given value of wy, ws
should equal 6.

w3 = 2 x {w; x dy)/100
= 2 x (100 x 3)/100
=6

A table of the values of the weighting factors used in this
example is given in table 111,

The remaining elements of matrix A are §hown in Table 1V.

The next step required to formulate this problem as a quadratic
assignment problem is the evaluation of the compatibility relations
6.10 to 6.18. |

Sample calculations for element c;g (tire | compared to tire 8)
follows:

hy = |Bw; - Bwg|
=11 ~ 10
= |

Since the construction type of tire 1 (TIRE N201) is the same
as the construction type of tire 8 (TIRE N208), then h, = 0.

hs = |(PCIP]; - PCIPg)|
= |40 - 35|
=5



TABLE | - EQUIPMENT

/
* o -S’:: TR

Q T /IS/TL /IS8
Al-A2 BOM | MI | 10.5 43
A3-Al BOM | M} i 10.5 38
A5-AE gOM | Mi ! 11.5 38
A7-Al13 BOM Mi ! 10.5 43
Al4 BOM | M1 2 10.5 38
Bl BOM | M) 2 12.5 38 3 D
82-814 | BOM | MI 2 1.5 38 3 D
ci-C2 NRM | 46 3 14.5 6 3 h) A
€3 NRM | L0 3 4.5 | 40.5 3 D A
Ch NRM L6 3 14.5 he 3 D A
€5-¢6 NRM | 40 3 4.5 | 40.5 3 D A
c7-cn BOM | Ml 2 11.5 38 3 D A
Ci2-CI3 | NRM | 4O 3 4.6 | 40.5 3 D A
Cik BOM | Mi2 i 13 40 2 D M
D1-D5 BOM | Mi2 1 13 40 2 D
p6-D14 | BOM | MIO | 3 13 40 3 D
Ei~EL BOM M10 3 13 ko 3 D A
E5-E6 BOM | MI12 1 13 Lo 2 D A
E7-E14 | BOM | MIO | 3 13 40 3 D A

*BOM: McNIEL CORPORATION - BAG-0-MATIC PRESS.
NRM: NATIONAL RUBBER MACH. CORPORATION - AUTOFORM VULCANIZER.

%%§ - SINGLE CONTROL
D - DUAL CONTROL
#xEM - MANUAL POST INFLATOR
A - AUTOMATIC POST INFLATOR



TABLE 1! - ON TIRE LIST

N
£S
& ko
& YL $ /e
TIREN20} 3 12
TIRENZO2 3 10 2
TIREN203 3 H 3
TIREN20L 3 12 Lo 1 4o 2 ] STD BOM I
THREN205 3 11 33 13 35 2 1 STO BOM 5
TIREN206 3 11 33 13 35 2 ] STD BOM | 6
TIREN207 2 10.5 31 12 35 i ] STD BOM 7
TIREN208 3 10 35 10 35 2 ] STD BOM 8
TIREN209 3 R 33 1313 | 2 i 1 STD | BOM | 9
TIREN210 4219 21 13.81 2 10.5 31 12 35 1 1 STD BOM {10

ADDITIONAL TIRES FROM PRESSES B1h AND C1h

TIRENO91 | 4091 20 15 3145 138 |14 [ 35] 2 {0 | STD | BOM
TIRENO93 | 4093 | 20 15 2 113.0 | b0 |14 | 35| 2 | O | STD | BOM

THE OFF TIRE LIST N Q
&« A S & $
o S ) & ) &€
I &S s S& $§
AR W
TIRENO61 Lob61 D1 1
TIRENOG) 4061 DI 2
TIRENY17 iz D14 3
TIRENI1IY Lyi7 D14 L
TIRENO33 4033 B13 5
TIRENO33 4033 B13 6
TIRENQI1 4091 B4 7
TIRENQSG3 h093 Cih 8
TIRENO76 Lo7e £6 9
TIRENO76 ho76 E6 10




Wl
Wz

W3

W7
Wg
Wo
Wio
W11
W12
Y13
Wy 4

WIS

TABLE III WEIGHTIMNG FACTORS

it

]

1]

1

3]

H}

(mold height differences) = 100
100

{mold diameter differences)

{shaping phase differences) 100

{rating differences) = 1

(P.C. 1. equipment differences) = 1
{bead diameter differences) = 20
{construction differences) = 1
(P.C. I. pressure differences) = 1
{(shaping phase differences) = 40
{cure cycle time differences) = 100
(green tire height differences) = 20
(same press for two locations) = 1
(relative press lines) = 1

{makes of presses) = 1

(models of presses) = 1



TABLE IV THE A MATRIX

10C 100 200 200 10000 10000 10000 100 100 100 10000 100
800 800 900 900 650 650 650 800 800 200 650 800
900 300 1000 1000 750 750 750 900 - 900 900 750 900
160 160 200 200 10000 10000 10000 100 160 100 10000 100
900 200 1000 1000 750 750 750 900 900 900 750 900
900 900 1000 1000 750 750 750 900 900 300 750 900
1250 1250 1250 1250 1100 1100 1100 1250 1250 1250 1120 1250
800 800 900 900 650 650 650 800 800 800 650 800
300 900 1000 1000 750 750 750 900 300 900 750 900
1250 1250 1250 1250 1100 1100 1100 1250 1250 1250 1100 1250
450 k5o 550 550 200 200 200 450 450 450 200 450

200 200 300 300 10000 10000 10000 200 200 260 10000 200



535
995

1095
995
115
535

1095

- H5

2295

2335

535

1480
535
820

1480
540

820
540
2600
2640

995
1480

995
1280

820
1480

1280

820
3280
3320

535
995

1095
995
115
535

1095
115

2295

2335

TABLE V.,

1025
820
1280
1095
0
1280
580
820

580
3200

3240

935
1480
0
995
1280

820
1480
1280

820
3280
3320

THE C MATRIX
115 535
540 0
820 1480
ti5 535
580 820
820 1480

0 540
540 0
580 820

0 540

2580 2600
2540 2640

1095
820

1095

1280
580

8ZQ

580
3200

3240

115
540
820
115
580
820

540
580

2580
2540

2295
2600

3280
2295
3200
3280
2580
2600
3200

2580

4o

2335
2640
3320
2335
3240
3320
2540
2640
3240
2540

50



h, = |SHAPE; - SHAPEg]
= |3 - 3]
=0

hs = |CT) =~ CTgf
= |14.1 - 13]
PRR |

hg = |GTHT, - GTHTg]
= |20 - 22|
= 2

Since hg is greater than a limit of 1.5, it is penalized by

a factor of 10. Therefore:
hg = 10 x hs = 20

Therefore:
Cig= hyxwg + hoxwy + haxwg + hyxwg + hoxwyy + hgxwyy
= (1 x20) + (0x 1)+ (5x1)+ (0x 4) + (1.1 x 100)
+ (20 x 20)
= 535
The complete C matrix is given in Table V.

To complete the formulation of this problem as a quadratic
assignmént problem it 1s necessary to determine the value of the
locational relations 6.18 to 6.27 to complete matrix D.

Sample calculations for element d;y,, Location 1| (PRESS DI)

compared to Location 4 (PRESS D14) follow:

fy = 0, since locations ! and 4 are not on the same press.

F, = 20, since locations 1 and 4 are on the same press line.

64



f; = 10, since locations ! and & are on the same make of press.
f, = 5, since locations | and 4 are not on the same model of
press.
Therefore:
diy = Fixwyo + foxwps + Faxwyy + fuxwyg
= {0 x 1)+ {(20x 1)+ (30 x 1) + (5x1)
= 35
The compiete D matrix is given in Table VI.
sTEP &,

The problem is now in a form suitable for one of the system
algorithms for the quadratic assignment problem. The details of this
solution are cmitted at this point and are assumed complete. The
resulting permutation matrix a is given in Table VIlI. The permutation
matrix o, consisting of zero or one values, indicates the assignment
determined by this system. It is interpreted as follows:

The first non-zerp element of o is in position 1,1. This
signifies that tire | is scheduled to position 1, or, in the terms of
this specific problem, TIREN201 is scheduled on PRESS DI. The next
non-zero element occurs in position 2,3 indicaiing that tire 2
(TIREN202) is scheduled into location 3 (PRESS D14). The balance of
this initial assignment is given in Table Vitl.

STEP 5.

At this point in the solution, it becomes necessary to evaluate
the effectiveness of all the curing locations. The vector Z is used
for this purpose. Z; for example is the effectiveness of press 1

(PRESS Al in this example) to cure the two tires assigned to it.

65



66

ZI R A ayi * ny
where: a; = suitability coefficient for tire x on facility i
evaluated by the relations 6.1 to 6.9;
ayi = similar to above for tire y on facility i; and
cxy = compatibility of tires x and y to be cured on the same
facility, evaluated by the relations 6.10 to 6.18.

It is assumed for purposes of this example that experience has
shown that a press can function acceptably with a value of Z that is
less than 1100.0 (ZMAX). The cure is now researched. Those presses
with an effectiveness coefficient In excess of Zmax are re-allocated,
by repeating the procedure from Step 3.

For purpcses of this example, a previous cure was contrived
in which press A3 was operating ineffectively. The remaining presses
were all operating acceptably with varying degrees of effectiveness.
The review of the cure found that there were 3 presses operating
unacceptably. These were A3, C14 and D14k, The tires on Clk4 and D14
are part of the new assignment.

Repeating the above procedure it indicates that it would be
advantageous to relocate the tires now on press A3 to presses Clh and
Dl14. The new tires originally assigned to Cl4 and D14 are now assigned
to press £6. A further re-evaluation indicates that the cure is now
operating entirely satisfactorily. The format of the program results
are shown in Table IX.

This example was solved on McMaster's computer where it took

17.3 seconds of central processor time to complete this solution.



TABLE VI THE D MATRIX

0 240 35 35 20 20 20 35 35 35 20 35
250 0 35 35 20 20 20 35 35 35 20 35
35 35 0 240 20 20 20 30 30 30 20 30
35 35 240 0 20 20 20 30 30 30 20 30
20 20 20 20 0 240 ho 30 20 20 b - 30
20 20 20 20 240 0 40 30 20 20 40 30
20 20 20 20 40 4o 0 30 20 20 240 30
35 35 30 30 30 30 30 0 25 25 30 240
35 35 30 30 20 20 20 25 0 240 20 25
35 35 30 30 20 20 20 25 240 0 20 25
20 20 20 20 40 40 240 30 20 20 0 30

35 35 30 30 30 30 30 240 25 25 30 0
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TIRE
TIRE
TIRE
TIRE
TIRE
TIRE
‘TlRE
TIRE
TIRE

TIRE

TABLE WVIIT

INITIAL PLACING OF "ON' TIRES

TIREN201 TO BE SCHEDULED

TIREN202 TO
TIREN203 TO
TIREN204 TO
TIREN20S TQ
TIREN206 TO
TIREN207 TO
TIREN208 TO
TIREN209 TO

TIREN210 TO

BE
BE
BE
BE
8E
BE
BE
BE

BE

SCHEDULED
SCHEDULED

SCHEDULED

SCHEDULED

SCHEDULED
SCHEDULED
SCHEDULED
SCHEDULED

SCHEDULED

QN
ON
ON
ON

ON

ON .

o
OoN
ON

ON

PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS
PRESS

PRESS

Dl

D14
Blh
D!

B3 .
Blh4
Cih
D14
B13

Clh



TABLE IX

THE FOLLOWING TIRES ARE RELOCATED

TIRE TIRENOO3 RELOCATED FROM PRESS A3 TO PRESS D14
TIRE TIRENO9! RELOCATED FROM PRESS Bi4 TO PRESS E6
TIRE TIRENO93 RELOCATED FROM PRESS Cil TO PRESS E6

THE ''ON'' TIRE LOCATIONS

TIRE TIREN20) TO BE SCHEDULED ON PRESS DI

TIRE TIREN202 TO BE SCHEDULED ON PRESS Clh
TIRE TIREN203 TO BE SCHEDULED ON PRESS Blh
TIRE TIREN204 TO BE SCHEDULED ON PRESS DI

TIRE TIREN205 TO BE SCHEDULED ON PRESS BI3
TIRE TIREN206 TO BE SCHEDULED ON PRESS Blh
TIRE TIREN207 TO BE SCHEDULED ON PRESS D1k
f|at TIREN2C8 TO BE SCHEDULED ON PRESS Cl4
TIRE TIREN20S TO BE SCHEDULED ON PRESS BI13

TIRE TIREN210 TO BE SCHEDULED ON PRESS A3



Viil CONCLUSIONS

The value of an automated optimizing system to allocate tires
to tire-curing presses becomes meaningful when considering the number
of operations required to evaluate all the possible unique soalutions.
For example, in the relatively minor problem of assigning ten new
tires to ten vacant curing locations on five curing presses, there
are factorial ten possible assignments of tires to locations. Each
tire to location evaluation consists of the comparison of eight tire
parameters to the corresponding machine parameters. Similarly, in

'assessing the value of each combination of tires it is necessary to
compare six additional'pérameters. Considering each parameter com-
parison to be an operation, the result of this is 3,628,800 unique
assignments requiring 50,803,000 operations to complete the evaluation.
Even if 997 of these assignments were obviously invalid for one reason
or another, there are still 36,288 possible arrangements requiring
50,803 operations. These figures, based on the simplifying assumption
that the ten vacant locations are contained on five presses, preclude
the consideration of the additional parameter comparisons required to
assess a new tiré relative to one left on a-press. Remembering this,
and extending the problem to cover as many as twenty-five new tires,
it can safely be assumed that a manual and explicit approach is not
adequate.

As a comparison, in a sample problem of assigning ten new
tires to ten locations contained on fifteen presses, including a second

run consisting of sixteen tires from eight presses, this system reached
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the known optimum assignment in 18.49 seconds of central processor time.

The implementation of an automated system, such as this one,
could conceivably contribute to the productive capability of a manu-
facturer in the following manner:
(1) by virtue of a significant decrease in the time required to effect
a schedule, it would be possible for the company to decrease the lead
time between market requirements and implementation of production. This,
in turn, would allow the company to operate closer to the market with
reduced inventories.
(2) The likelihood of reducing the number of position relocations
presently required to accomplish an acceptable assignment is greatly
enhanced. This possibility arises since the optimal system can
examine, for the initial fit, a far greater number of possible com-
binations out of which the most advantageous are selected.

~The logic of the algorithms used for the solution of both the
quadratic and linear assignment problems has been incorporated into
individual, and very general subroutines. Two reasons governed this
choice, the first of which has been to allow the user to modify the
main or executive portion of the program without being concerned with
the destruétion of the logic of the assignment portion. The second
reason, and, perhaps, the more significant reason, is to allow these
subroutines to be employed by a more general system concerned with
the assignment of components or tires to every stage in the tire-
manufacturing process. One of the more obvious extensions of the legic
of this system is to incorporate the tire to the tire-building machine

system. This system appears linear since there exists a one-to-one
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assignment condition (i.e., one tire per machine). However, an
interaction amongst the réiative locatiéns assigned to tires does
occur if one considers the grouping of tires using common or
similar components.

The desirability of applying an optimal or suboptimal
technique for the types of system discussed so far is dependent
upon the nature of the facility and the ﬁroduct line. A system
such as the tire-to-tire press system Is highly desirable in an
older installation with vastly different curing facilities and
which manufactures a diversified product line. This desirability
decreases as the homogeneity of a manufacturing plant's equipment
increases, and similarly as the nuhbgr of product lines decreases.

It is not within the scope of this thesis to calculate thé
expected savings that will be realized b* the implementation of this
automated system. The major return will be an improved operating
efficiency for the entire plant stemming.from a more efficient
use of existing equipment. One measure that can be estimated is
the difference in the cost to formulate an assignment. The present
manual system requires 1.5 man-days directly with approximately an
additional 0.5 to 1.0 man-day of interaction with advisary personnel.
Assuming a cost of $6.00 per hour for the manual system, this amounts
to an annual cost of $6250.00 to schedule the cure. On the other
hand, the system described by this project required 76.4 seconds of
central processor time to complete an assignment of twenty ON tires.
At the rate of $9.16 per minute, the annual cost to schedule auto-

matically would be about $650.00. Thus an estimated annual saving



of about $5600.00 would be realized. However, as mentioned this
would likely be trivial in comparison to the improved operating

conditions.
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{X RECOMMENDED CHANGES AND ADDITIONS

One of the benefits anticipated from the use of an automatic
optimal assignment system is the possibility of decreasing the
scheduling period (i.e., change from weekly scheduling to daily
scheduling). One result of this would be the reduction of the size
of the problem for any one assignment. This, in turn, may reduce
the problem to the point (less than 15 tires) where it would be
feasible to employ an optimal algorithm for the assignment. Either
Lawler's or Gilmore's algorithm, under these conditions, would be a
valuable addition to the program. The option to utilize this
routine could easily be made automatically by the system when the
size of the assignment warranted it.

This system has been formulated on the premise that tire-
curing timeé are continuously variable between an upper and lower
limit. While this is essentially true, there are cases where tires
- have approved cures only at discrete times within the above range.
This introduces a complication in the sense that two tires being
evaluated for a single press may have over-lapping time ranges and
vet still not have a common approved cycle time. This complication
can best be handled during the evaluation of the C, or compatibility,
matrix by the addition of a simple routine that compares all approved
cycle times for each tire, wuntil it finds the lowest commén time. A
penalty should thén be added to the value of cij the corresponding
element of matrix C. This penalty should increase in value as the
difference between the common time and the shorter of the two base

times increases. It will also be necessary to add an additional
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matrix T, where element t,. would be the common curing time of tires

J
i and j.

The system in its present form requires a great deal of core
for a rcasonable size assignment (approximately 14,500,; words for a
twenty-tire problem}. One of the factors contributing to this,
however, has been the need to carry in the program the files of curing
parameters for every tire in the previous assignment. If keyed random

access disk files were utilized the core requirements would be

substantially reduced.
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APPENDIX A
The Quadratic Assignment Problem

Glimore's Algorithm



A.1 General
A mathematical statement of the quadratic assignment problem
folluws:

minimize Z = L.a,0(i) + i Cijdp(i)p(j)

if]
Although the tire assignment problem consisted of symmetric
matrices C and D, these algorithms can be applied to the more general
problem using non-symmetric matrices.

The presentation here is essentially the same as Reference 9.

A.2 A Lower Bound

Some definitions are in order before proceeding with the
determination of a lower hound on Z for completions p of a partial
permutation a.

(1) A partia) permutation of V,.....,n is a 1-1 map of some subset
of (1,.....,n1 into {1,.....,n}.

(2} An extension of a partial permutation o is a partial permutation
3 such that ~(i) = a(i), for all i for which o is defined. By a
completion of a partial permutation o is meant a permﬁtation which is
an extension of a. |

{3) Given two vectors, V = (v;,vg,.....,vm) and W = (wl,.....,vm)
of non-neqative elements, the problem of determining a permutation

o of t,.....,m for which the permuted dot product

i
——

-
S

is a minimum is solved by matching the smallest v, with the largest wj,

the second smallest vi with the second largest wj and so forth. For
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any two vectors V and W of the same dimension. P{v,w) will denote
the minimum permuted dot product.

if lower bounds are calculated separately for the two terms

Xiaip(t)
and

Ei#jcijdp(i)p(j)

appearing id'Z. Then a lower bound for Z will be the sum of the two
bounds. A lower bound for the first term is easily calculated, since
the problem of finding such a permutation is to solve an ordinary
assignmentvprob!em. A lower bound for the second term can also be
found By solving an ordinary assignment problem. Let ¢, be the ith'
row of C and c; the i th column each‘with i deleted and let d, and
d; be similarly defined, then if t is such that 0 £ 7 =1 and if E'
is the n x n matrix TffP(ci,dj)ii + (1 - r)f]P(c%,d})’ﬁ a iower
bound for the second term results if the matrix E' is solved as an
ordinary assignment problem.

A lower bound for Z can also be determined for completions .
of a partial permutation «. This can be done directly by letting
cli,a) and cla,i) for i / dom(a}, and let d(j,a) and d(w,j) for j ¥ ran(w)
be vectors of all elements respectively djk and dkj’ j # k and k ¥ ran(u).

Further for i ¢ dom{a) and j £ ran(a) let

eij = aij 4+ 1 Ple(i,a),d(j,ad] + (1 - O)Plcla,i) ,dlua,j)]
+

m e dom(a)(cimdja(m) + Cmida(mjj)

{f dom{a) has m members then there are n - m values of i and j



for which eij is defined so that they can be regarded as the elements
of an (n - m} x {n - m) matrix E. If o ranges over all completions of

[y and
bla) = % ¢ gomla)iali) * Tinjii,g e domla)“ij%u(iali)

ek dom{a) ®ic(i)
then Z{p) % b{a). Therefore b(a) is a lower bound for Z(p) for com-

pletions a.

A.3 The Algprithm

The problem of determining a permutation p to minimize Z can
be regarded as an (n - 1) stage decision process where at each stage
two numbers 1 and j must be chousen, 1| = i,j = n, the number chosen for
i not having been chosen at an earlier stage for i and the number for
j not having been chosen at an earlier stage for j. Thus a sequence
Gy ety enny oy of partial permutations is determined by the n - |
dacisions where for each k, O 2 k= n~1, oy is of rank k, %) is an
extension of Sy s the sequence determining the single completion ¢ of
the partial permutation a1 |

For any k, O = k = n-2, let Ek be the {(n - k) = {n - k) matrix
€ defined in the computation of the lower bound b{a). The choice of an
i and j at the (k+1)5% decision stage is then the choice of an element
from Ek‘

There are many ways in which E, can be used to choose i and j.

The two recommended by Gilmore, and used in this system, are as follows:

{A) A max-min choice: determine for Ek the minimum of each row and
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column and take the maximum of the minimums.

(8) A maximum of an assignment minimum choice: solve the ordinary
assignment problem for Ek and choose the largest of the n - k elements
of Ek appearing in the assignment problem solution.

Pecision method (A) requires of. the order of {n - k)7 elementary
operations. (Where an elementary operation is taken as any one of
multiplication, addition or comparison of two numbers.) An algorithm
bases on this method then would require of the order of Ea;é (n-k)3
elementary operations or of the order of n*. |

Using Munkres® algorithm {see Appendix B) for the solution of
linear assignment problem, method (B) requfres of the order of (n-k)“
elementaéy operations. Therefore an algorithm based on this method
requires of the order of Xi;: (n-k}" elementary operations or of the
6rdcr of n,

A flow diagram for this algorithm is given in Figure T .
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APPENDIX B
The Linear Assignment Problem

Munkres' Algorithm



B.1 General

This appendix presents Munkres' algorithm for the solution
of a linear assignment problem. In this system this routine is
cmployed to determipne a permutation matrix under Method B8 of
Gilmore's algorithm for the quadratic assignment problem. The

presentation here is essentially the same as in Reference 10.

B.2 The Algorithm

A mathematical statement of the problem follows:

minimize Z = Z;aip(i)

Two remarks are in order: (1} There is a theorem of Kbnig
which states: §f A is a matrix, and m is the maximum number of
independent zero eslements of A, then there are m lines which contain
all the zero elements of A. (A set o% elements of a métrix are said
to be independent if no two of them lie in the same line where the
word line applies both to the rows and columns of a matrix.) (2) It
is readily seen that the solution of this problem is not changed if

~an arbitrary constant is subtracted from every element of the matrix.
in the ccurse of the problem, certain lines will be disting-
uished: they wiil be referred to as covered lines. An element of a
.matrix is said to be non-covered, once-covered, or twice-covered,
accordingly as it lies in precisely none, one, or two covered lines.
Some zeros are distinguished by means of asterisks and some by primes
(there are respectively "“starred zeros' and 'primed zeros'').
Nc lines are covered; no zeros are starred or primed. For

cach row of matrix A, subtract the smallest element in that row. Do
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the same for each column of the matrix.

Consider a 2ero Z of the matrix. |f there is no starred zero
in its row and none in Its column, star Z. Repeat, considering each
zero in the matrix in turn. Cover every column containing a starred
zero. (These starred zeros are independent.)

STEP 1.

Choose a non-covered zero and prime it. Consider the row
containing it, If there is no starred zero in this row, go at once
to STEP 2. |If there is a starred zero Z in this row, cover this row
and uncover the column of Z. Repeat until all zeros covered. Go to
STEP 3.

STEP 2.

There is a sequence of alternating starred and primed zeros,

constructed as follows: Let Z; denote the uncovered zero prime.

{There is only one.) Let 2; denote the zero starred in Zy's column

(if any}. Let Z, denote the zero primed in Zy's column (if any).
Simf‘arly continue until the sequence stops at a zero primed, sz,
which haé nc zero starred in its column, {Note that no column contains
more than one zero starred and no row more than one zero primed so

that the sequence is uniquely specified.)

Unstar each starred zero of the sequence and star each primed
zero of the seqdence. (The resulting set of starred zeros is independent.
it is larger than the previous set of independent zeros by one.) Erase
all primes, uncover every row, and cover every column containing a zero

starred. {f all columns are covered, the starred zeros form the desired

independent set. Otherwise, return to STEP 1,
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STEP 3.

[At this point, all the zeros of the matrix are covered.
Each zero starred is covered by precisely one line, so there are
exactly as many covered lines as there are starred zeros.] Let h
denote the smallest nqn-covered element of the matrix; it will be
positive."Add h to cach covered row; then subtract h from each
uncovered column. Return to STEP 1, without altering any asterisks,
primes, or covered lines.

A flow diagram for this algorithm is given in Figure X .
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APPENDIX C

The Program



C.1 General

This program consists of a main executive program and four

subroutines.

The logic of the formulation of the quadratic assignment

problem as well as the execution of the input and output operations

are contained in the main program. The subroutines are used to

execute the iterative solution technique and to perform service

functions.

.2 Variable

Thesaurus

A{1,d)

ALPHA(!,J§
sw(i)
c(1,d)
CONST(4)

et (i)
CTHE

CURE (1)

o{i,J)

- E(1,J)

£8w(i)

GTHT (1)

18oM (1)

3

Matrix of effectiveness coefficients, evaluated by
relations 6.1 to 6.9.

Permutation matrix evaluated in SUBROUTINE OPT!.
Bead diameter of tire t, Example 14", 15", etc.
Matrix of compatibility coefficients.

Construction type of tire !, Example Radial Ply, Belted,
or Conventional.

Base cure cycle time for tire 1.
Cure cycle time for tires on the Semi-Automatic Presses.

Used to designate type of cure required by tire |.
Example Cure; = NRM - Tire 2 is restricted to an NRM press,

Matrix of locational coefficients.

Working array established by SUBROUTINE OPTI. Used as
input assignment matrix for SUBROUTINE LINAS.

Same as BW(l) except that the "E' prefix means that tire !
has an assigned position in the cure. Similarly for
ECT(1), EGTHT(1), ECONST(I), ECURE(}), EPCIP(1}, ESHAPE(1),
ETMLOH{1), ETMLDW(1), IEPCI(1), and IERAT(I).

Total overatl length of a green tire.

Working vector used in SUBROUTINE LINAS.



tc(t)
1ONT

ICHOICE

ICONTR(1)

toaN{i)

IDATA

1oFc (1)

IDAG

1poM(t)

1FC(1)

rk(1)

tPCi (1)

ppci(t)

IPRAT (1)

t

Working vector used in SUBROUT INE OPTI.
Counter used in the main program.

Used to select algorithm for the problem solution.
1 - Method A selected.
0 - Method B selected.

Used to designate type of control on press I.

2 - Position | has an independent temperature and
pressure control from its adjacent position.

1 -~ naot independent.

Working vector used in SUBROUTINE LINAS.

Used to output data for observation purposes if desired.
| - Data is printed out.
0 - Data is not printed out.

Four digit green tire designation number for tire | on
the OFF tire list,

Used to output intermediate calculations for observation -
if desired. '

i - Calculations are printed.

0 - Calculations are not printed.

Working vector used in SUBROUTINE OPTH.

Four digit green tire designation number for tire | on
the ON tire list.

Working vector used in the main program.

Used to denote whether tire | requires automatic post-cure
inflation. :

I - Tire requires automatic post-cure inflation.

0 - Tire does not require automatic post-cure inflation.

Indicates type of post-cure inflation equipment is
avaiiable at location !.

1 - Press is equipped with manual P.C.1. equipment.

2 - Press is equipped with automatic P.C.1. equipment.

User set rating value for performance of position |.
Example: IPRAT{2) = 1 - Position 2 gives poor overall
performance. IPRAT(6) = 3 - Position 6.gives excellent
performance.

26



tPUNCH

IRAN (1)

IRAT (1)

iToPc (1)

‘-12(3)
JOR(1)
LCTHS
MAKE (1)
MoD(1)
N

NN
Ntza(i)
NLINES
NMAX
NRUN

" NSEMI

oFF (1)

oN(1)

ONOR{1)
PCIP(l)
PMHT (1)

PMW(1)

4

nu i

Used to output punched cards containing the relevant

cure parameters for tirves in the new assignment.

1 -~ punched output.

0 - no punched output.

Working vector used in SUBRCUTINE OPTH.

User set measure of the quality of cure required by tire 1.
1 « Tire requires precision curing.

2 « Tire requires standard curing.

3 - Tire does not require precision curing.

four digit green tire designation for tire assigned to
location |.

Working Qecéor‘used in SUBROUTINE LINAS.

Working vector used in the main program.

Total number of curing locations = 2 x number of presses.
Manufacturer of curing location |.

Manutacturers designation for curing location |.

Number of tires on ON tire list.

Allctted array size.

Number of curing locations in press line .

Number of lines of presses.

Maximum number of mold changes to be allowed.

Maximum number of cycles through the program to be allowed.
Number of semf-automatic preﬁses to be allowed.

Eight digit alpha-numeric designation for tire | on the OFF
tire list.

As above, except for ON tire list.

Vorking vector used to store original ON tire list.

Post cure inflation pressure required by tire |,

The largest mold height that position | can accommodate.

The largest mold diameter that position | can accommodate.
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PRESS (1)

PSHP (1)

SHAPE(1)
THLOH (1)
TMLDW(1)

Tor (1)

VCAL(l,J)
veiadi,Jd)
VDAY (1,J)
VDJA(!,J)
w(t)

WORK] (1)
WORK2 (1)
WORK3(1,J}
-~ Z(1)

]

1

Departmental nomenclature used to designate position |.
Example Al, Cl4, etc.

Humber of shaping phasgs !ocatfon I can accommodate.
Number of shaping phases required by tire |.

Mold height for tire |I.

Mold diameter for tire 1.

Eight digit alpha~-numeric designation for the tire
assigned to location I,

Working array gsed in SUBROUTINE OPTI,
As above,
As above.
As above.

Weighting factors used to accent various assignment
considerations. {These will be explained in detail later.}

Working array used in SUBROUTINE OPT!.

As above.

As above.

Effectiveness coefficient used as a measure of how

effectively Press | is curina the two tires assigned
to it.

" £.3 Weighting Factors

In selecting a value for each of the 14 weighting factors used

in this program, the user must consider their importance relative to

each other.

There may be factors that are not very important in an

absolute sense; however, these should not be assigned a zero value.

To do so would negate the factor for which the zero weighting factor

has been assessed from consideration,

These weighting factors are as follows:



w(t)
w{z2)

w(3)

wih)

w(s)

W(6)

w(7)

Ww(8)

wW(3)

w(lo)

it

Relative importance of differenqe in mold heights between
press maximuﬁ and the tire underAconsideration. Note if this
value is negative then this positioﬁ is not considered valid.
As above but considers mold widths.

Relative importance between number of phases of shaping
available on the press and the number of phases of shaping
required by the tire under consideration. Note if this value
is negative the press Jocation is not considered valid for
that tire.

fmportance of difference in cure time between two tires. HNote
in the program only the primary times are considered.

Relative importance of height differential between tw§ tires.
Note if difference is 1.5 inches or greater this is considered
an invalid condition.

Relative importance of difference of number of phases of
shaping required between two tires.

Relative importance of the difference in bead widths of tires.
Weighting factor used to accentuate the increase in the value
of D(i,d) when curing locations | and J are on the same press.
D(1,Jd) is increased by 200%W(8} if above condition is true.
Weighting used to accentuate the increase in the value of D(1,J)
when curing locations | and J are in the same line of presses.
D(i,J) is increased by 20%W(9) if the above condition is true.
Weighting factor used to accentuate the increase in the value
of D(1,J) when curing locations | and J are on the same make of

press. O0(1,d) is increased by 10%W(10) if the above condition
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is true.

w(1l)

B

Weighting factor used to accentuate the increase in the value
of D{1,J) when curing locations | and J are on the same model
of press. D(1,J) is increased by 105W(11) if the above

condition is true,

w(i2). Neightfng factor used to accentuate the effeét on A(1,J) if

tire | requires a high quality cure and location J is a high

gquality curing location. A({1,J) ig reduced by 100#W(12) if
the condition is true.

W(13) = Weighting factor used to accentuate the effect on A(l,J) if
tire | requires automatic post cure inflation and‘locatSOn J
is equipped with the same. A{l,J) is reduced by 100%W(13) if
thé above condition is true.

W(1h4) = Weighting factor used to accentuate the difference in post

cure inflation pressures required for tire | and tire J.

"C.4 DIMENSION Statement

Throughout the program all subscripted variables have variable
dimensioning in order to simplify the program usage. All arrays and
vectors have been carried back from each subroutine to the main
program thus requiring the user to enter the required dimensions in
only one place. The required DIMENSION statement is shown in Figure ¥T.

Example. {f in the main program arrays A and X appear in the
dimension statement, and if they alsoc are used in a subroutine, then the

following form has been utilized.

 MCMASTER UNIVERSITY LIBRARY.



DIMENSION PMHT( XX)oPMW( XX?sPRESS( XX) 9TOP( XX1»ITOPC( XX) 4 IPPCIL
1 XX1 e LCOHTRE XX) o IPRAT( XXJoMODU XX} oMAKE( XX1oON{ X2 o IFCL X1 ool
2X) sPCIPE X7sIRATE X) sCONSTE %) oCUREL XD o1PCIL X) oPSHPL XX1sCTI X1
IGTHTE X) o SUAPEC %) s TMLDHE XJsTHLUWL X3 oAl X» XisCl Xa XDaDC Ko XD
BELC Ks XD s TLOMC XD s IRANG X1 sVCIAL X» X3 oVCALL X» X)sVDAJE Xo X1 oVDJ
EAL Xs XD ewORKL( X7 sWORKZ( X1 9iC( X1 9JRE X)sWORK3U Xo X7 o1Z(2XD9J2t
62X+ IBOME X))o IDANC XPeOFF{ X1 o10FCL X e JK L X'oHItL(K}'lKk XlobuTeil
T XX)ECTU XX39ESHAPE( XX oLTULDHE XX 2 oEBW( XX)2EPCIP( XXiplERATI
BXX1 s LEPCLL XX) sbCORST( XX st CURL ( XA X sUNURE XJ 0JJk( X) ot TMLUN( XX)
GeZ(KK)aki(14)

INTEGER ALPHA( X9 X)I9ZSTARE Xo X3 eZPRIMC Xo X!

WHERE _
X=THE NUMBER OF TIRES ON THE NEW SCHEUULE.
XX=THE TOTAL NUMEER OF CURING LOCATIONS.
K=THE NUMBER OF LINES OF PRESSESe

KK=THE TOTAL NUMBER OF PRESSES.

FIGURE XI THE DIMENSION STATEMENT



MAIN PROGRAM

DIMENSION A(15.15), X{10)

M= 15
CALL SUBROUTINE B(A,X,M)
END

SUBROUT INE B(A,X M)
_DIMENSION A(M,1), x(1)
ETC. '

€.5 Main Program

The purposes of the main program are to formulate the quadratic
assignment problem and to execute all input and output operations.
Special attention should be given to the foi%owing options which are
avaitable when using fhis proéram. Flow diagram is given in Figure XTL
1DATA = 1 - All the input data will be printed for observation

purposes.
= 0 - Data is omitted.

{CHOICE = } - Algorithm A is selected as the solution technique for
the quadratic assignment problem.
= 0 - Algorithm B is selected.
1DLAG = |1 - Internal calculations will be ocutput for purposes of
observation.
= 0 - No internal calculations are output.
1PUNCH 1 -~ Data for next run is punched out.

0 - No data is punched out.
The following limit parameters must be set by the user.

NRUN

'}

Number of allowable program executions.
NMAX . = Maximum allowable number of mold changes.

ZMAX ' = Maximum allc@able effectiveness coefficient.
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C.6 How to set up a Data Deck (see Figure XIIT)

VARIABLE
N, ICHOICE, IDIAG, NN, IDATA,
NRUN, NMAX, ZMAX, IPUNCH
LCTNS, NLINES, CTME, NSEM
NIEL(T)
w(i)

MAKE (1), MOD(1), 1PRAT(1), PMHT(!),
PMW (1), PSHP(1), I1CONTR(I}, 1PPCI{))

PRESS (1), ToP(1), tTOPC(I)

EGTHT (1}, ECT(1), ESHAPE(1),

ETMLDH (1), ETMLDW(1), EBW(I),
EPCIP(1), 1ERAT(}), 1EPCI()),
ECONST (1), ECURE(!)

oN{1), 1FC(4)

GTHT (1), CT(1), SHAPE(I), TMLOH(1),
™LOW(1), Bw(1), pciP(1), 1RAT(I),
tPCL(1), CONST(4), CURE(I)

oFF (1), 1oFc(})

C.7 Service Subroutines

NO. OF CARDS

}

i
(ﬁLINES)

14

(LCTNS)

(LCTNS)

(LCTNS)

(N

(n)
(N)

106

FORMAT

718, F10.0, 18
215, F10.2, 15
110
F15.3

A3, 3X, A3, 3X, 13,
F10.3, 213

AL, 6X, A8, 5X, 15

7F9.2, 213, 2A5
A8, 6X, |4

7F12.3, 2110, 2Al0

A8, 6X, 1k

Two of the four SUBROUTINES used in this program serve

essentially a service role. These are:

(1) SUBROUTINE CONVERT: The purpose of this SUBROUTINE is to convert

the cure parameters from active form to inactive, inactive to active,

and from one inactive location to another. (“E" prefix denotes Inactive

form.)

(2) SUBROUTINE SORT: This SUBROUTINE is used to sort singly dimensional

arrays into either ascending.or descending order of magnitude. SORT is



praal

OFF TIRE LISY

el

ON TiRE SPECIFICATIONS

/

ON TiRE LIST

TIRE PARAMETIRS

EXISTING CURE

PRESS PARAMETERS

~

WEIGNTING FACTORS w;

~

NitL

//u:ms NLINES CTME NSEM|

/M ICHOICE IDIAG NN IDATA NRUN NMAX ZMAX IPUNCH

FIGURE XIII SET UP OF A DATA DECK



called by SUBROUTINE OPTY. This SUBROUTINE is unchanged from the
SUBROUT INE of the same name in the library of McMaster's C.D.C. 6400

computer.
Flow diagrams for these service SUBROUTINES are given in

figure XIV and XV.

C.8 SUBROUTINE OPT!

The SUBROUTINE OPT! contains the logic of the two suboptimal
algorithms for the solution of the quadratic assignment problem. Here,
as in Appendix A, the two methods are referred to as Method A and
Method B, The choice of which algorithm is utilized is governed by
the ,value of ICHOICE in the main program. |

Although the quadratic assignment problem formulated by this
system has two symmetric matrices, € and D, the SUBROUTINE OPT! has

been written to handle the more general non-symmetric case.

A complete discussion of these algorithms including a flowchart

is given in Appendix A.

C.9 SUBROUTINE LINAS
The SUBROUTINE LINAS contains the logic of an algorithm for the

solution to a linear assignment problem. The particular algorithm used

here was derived by Munkres. A complete discussion of this algorithm is

given in Appendix 8.
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C.10 FORTRAN v LISTING

PROGRAM TO AUTOMATE THE SCHEDULING OF TIRE CURING PRLESSES.

DIMENSION PMHT( XX} aPMW{ XX sPRESS( XX sTOP{ XX!,JTOPCL XX} oIPPCII
1 XX) o ICONTRU XX)oIPRATL XX} 9yMOD( XX) oMAKE( XXV sON({ X)oIFC( X)oBW!
2X1sPCIPL X) o IRATU X)sCONSTU XIoCUREL XI2oIPCIT X sPSHPL XX}4CTL Xiy
3GTHT L X)oSHARPEL X)aTMLDHU XioTMLDWE XJIsAt Xo X)eCl Xo X1oD( X X1,
GEC Xs X)oIDOMU X)sIRANT X sVCIAL Xo XPeVCAIL X9 XEsVOAJL X9 X)eVuJ
5A0 X» X)sWORK1E X)oWCRKZ2E X o1C( X} eJRE X)) eWORKZ( X» XIsIZ(2X193Z4¢
62XV s TEOML X! sIDANL X)2OFF( XIoIOFCTE XD oJdK{ XEoNIEL(KI9IK( X)4EGTHY
T XX)sECTU XX) sESHAPE( XX sETULDH( XX¥IsEBWL XX +EPCIPL XX) s IERATH
BXX Y s TEPCI{ XX) sECONSTH XXIoECURE( XXIsONOR{ X1 o JUK( X} +JETMLOW( XX}
GeZ{KK) sWl 1) '

INTEGER ALPHA( Xs X)sZSTAR( Xy X)eZPRIM{ x4 X)

WHERE
X=THE NUMBER OF TIRES UN THE NEw SCHEDULE.
XX=THE TOTAL NUMBER OF CURING LOCATIONS.
=THE NUMBER OF LINES OF PRESSES.
KK=THE TOTAL NUMBER OF PRESSES.

READ IN THE NUMBER OF CHANGESsCHCICE OF METHOD +CHOICE OF DIGNOS-
TICSsARRAY SIZEs DATA QUTPUT.

ReAD(591007 NeICHOICEsIDTAGINNY IDATASNRUN sNMAX 9 £MAXs EPUNCH

SET CONSTANTS

NPART=N
K2=0

ICNT=0
IF(IDATAEQeLIWRITE(G6211T7iIN,ICHOICE» IDTAGsNN» JDUATASNRUNNMAX ¢ ZMAKX

READ IN NUMBER OF CURING LUCATIUNSe NUMBER OF LINES OF PRESSESsCURE
TIME FOR THE SEMI AUTOMATIC PRESSES+NUMBER OF SEMI AUTOMATICS.

READ(S9114)LCTNSoNLINES s CTME oNSEM]
IF(IDATAEWS]) WRITEléyll:iLCTNS.NLINLS
LO 30 I=1sNLINES

BEAD(S59121INIEL(T)

CONT INUE

READ IN THE WEIGHTING FACTORS Wlll=ee=W(l4l,

DO 66 1=1y14
READ(5,140) W(I)

CONT INUE
CLEAR ARRAYS



[aRala!

aNaNaks

aNaNa¥a

112

DO 1 1=1+LCINS
PMHT(11=0.
PMW(I}=0.
PRESS(1)=0.
TOP{1)=0e
[TOPC(1)=0
1PPCIC(T)=0
ICONTRI(I}=0
IPRAT{I=0
MODLI)=0
MAKE(1})=0
PSHP(1)=0.
EGTHT(1)=0.
ECT(!)=0.
ESHAPE(1)=0.
ETMLOH{1)Y=Co
ETMLDW(1)=0e
EBW({1)=20.
EPCIPLI}=0.
JIERATI(1)=0
IEPCI(T)=0
ECONST113=20.
ECURE(1)=0.
1 CONTINUE

READ IN FILE OF PRESS PARAMETERS.

IF(IDATACEQeL) WRITH G122

DO 2 I=1,LCTNS :

READ(Sy101IMAKE( L) sMOD(T} s IPRAT(1/ sPMAT LI} 9PMW (I ) sP5SHP (T4 ICONTRII
1) IPPCI(L} :
IFUIDATACEQeU) GO TO 2

WRITE (6115 MAKE (1) 4MODII) s IPRATII )} oPMHT (T 5PMW (1) 4PSHP (1) TCONTRI
L1YsIPPCIC(I)

2 CONTINUE

READ IN THE EXISTING CURE ~ NOTE THIS INFORMATION IS UERIVED FROM
THE PREVIOUS RUNNING OF THIS PROGRAMe. :

IF(IDATACEQe 1 IWRITE(69123)

BO-3 T=1sLCTNS '
 READ(59102)PRESS(1),TOPLTYs1TOPC(L!

IF{IVDATAEQ.Q) GO TO 3

WwRITE(62116) PRESS(I)»TOP{I1TOPC( )
3 CONTINUE

READ IN THE SPECIFIED CURE PARAMETERS FOR EACH TIRE IN THE
EXISTING SCHEDULE.
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DO 49 I=1+sLCTNS
READ(59104! EGTHT(I'»ECT(l‘9ESHAP&(llotTMLDH(l’vtTMLUW(I‘oEBW(I”t

IFCIP(11s1ERAT(I)SIEPCIIT) sECONSTUL) o CURE( T
49 CONTINUE

CLEAR ARRAYS

DO & I=1+NN
CFF(1)=0.
ON(1)=0e
IFC{iI=0
IOFC(11=0
BW(I1)=0e.
PCIP(I)=0.
IRAT(I)=0
CONSTI(1)=0.
CURE(I)1=0.
IPCI(I)=0
PSHP(1)=0.
CT(11=0.
GTHT(I1)=0.
SHAPE(I)=0.
TMLDH(T)}=0.
TMLDWI(Ii=0.
IDOM(I =0
IRAN(I)=0
WORK1(I1)=0.
WORK2(I)=0.
ICti)=0
JR{I)=0
IBOM(I})=0
IDAN(I =0
DO 4 J=1sNN
A{l+J1=0.
C({lsJ)=0e
D(leJ)=0e
E(leJ)=0¢
VCIA(LI9J)=0e
VCAT(I+J)=0.
VDAJUL{T9J)=0
VDJA(T +0)Y=00
WORK3{1+J)=0,
ALPHA(1+J1=0
ZSTAR(1+J1=0
ZPRIM(1,J2=0
ONOR(1)=0.
IK(IV=0
JJKI}=0

4 CONTINUE
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READ THE =~ON- TIRE LIST.
READ IN THE SPECIFIED CURE PARAMETERS FOR EVERY TIRE ON THE -ON-

TIRE LIST. .

IFUIDATAEQIIWRITE(H9124)
PG 5 I=1sN

READ(5,103) ON(I)SIFC(I)
IF(IDATACEQC) GO TO 5
WRITE(Gs218ION(I)LIFCHL)
CONTINUE
IF(IDATAEQalIWRITE (601251

DO 6 [=19N
READ(I55104} GTHT(I oCT (1) ySHAPE (T s TMLORII) o TMLDWII1 1 4BW(I) yPCIP(T)

12 IRATUIN 9 IPCHCT ) »CONST LI yCURE( T

IF{IDATALEQ«C) GO TO 6
WRITEC(Gs L1197 GTHTUI oCTHI129SHAPC (I 1o TMLLH (T 9 TMLLW(I ) oBW I »PCIP (I

1) 9 IRATSIPCIUTI) sCONST LI} oCURE LT

CONTINUE
READ OFF TIRE LIST

IF(IOATAEQs1) WRITE(E126)
DO 7 I=1N

 READ(5,103) OFF(1)410FC(1)

IFLIVATAEWeD) GO TO 7
WRITE(6+118) OFF(1)s10FCLL)
CONT INUE

L=0

SEARCH ALL LOCATIONS TO DETERMINE THOSE BEING VACATED.

DO 8 I=1sN

DO 88 J=1,LCTNS
IF(OFF({1)«NETOP(J)) GO TG 88
L=t+l

JKL) =Y

ITOPCtUY=0

TOP(J)=8H EMPTY

GO TC 8

CONT INUE

CONT INUE

IF{IDIAG.ERC) GO TO 10
WRITE(H9120)(UK(I)yImleN)

WRITE QUT THE EMPTY CAVITIES.

WRITE(64+105)

PO 9 I=1eN

J=JK(1)

WRITE(6+106) PRESS(J)



[ANANSNA]

aXa¥a¥a)

laNa¥s!

9
10

34

35

36
37

58

115

CONT INUE
CONT INUE

ADD TIRES IN THE HALF EMPTY PRESSES TO' THE =ON= TIRE LISTeINCREASE
N BY THIS NUMBER.

NORIG=N

DO 35 I1=1+NORIG
I=JK{11)

rK=(]/2)1%2

LtE=1+1

IF(KKsEQei) LE=21-)

00 34 JJ=19»NORIG :
IF(UK(JI) SEQGeLE} GO TO 35
CONT INUE

N=N+1

JKIN)=LE

CONVERT THE CURE SPECS FOR THE ABOVE TIRES FROM THE —-E- FORMAT TO
ACTIVE FORM.

CALL CONVERT(N»LESEGTHT o TOPsGTHT sONs CONSTHECONST »PCIPHEPCIP»SHAPL
1ESHAPE sCToECT s TMLOH sETMLLH s TMLOWSETMLOW s IPCE s TEPCE s CURESECURE Y IFC

21TCPCsO)
CONTINUE

NEW=NORIG+1

NORG2=N

IF(IDIAG.EQeU} GO TO 37
WRITE(6+130)

DO 36 I=NEWsN

JJ=IKLI)

WRITE(69129) PRESS(JJ!
CONTINUE

CONT INUE

SET UP THE A MATRIX

DO 12 1=1,N
DO 12 J=1,sN

C6=0. :

JTEMP=UKX{ J)

IF({K2eGTe0) JTEMP=JUK ()
IF(JTEMP.LE.NSEMIQAND.CT(I’QNEOCTME, 06‘10000
D1=PMHT{JTEMP)~TMLDH(I) _
1F(DlelLTe0e) GO TO 11

D2=PMW(JTEMP) =TMLDW( 1!

IF({D2eLTe0e) GO TO 11
D3=PSHP{JTEMP ) ~SHAPE(])

D‘0=1000

D5=100,

e
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IF(IRAT(I)eNESs1) GO TO 28

IFIIPRATIJTEMPaEQe3 ) D420

IF(IPCI(I)eNEeLl) GO TO 29

IFCIPPCI{JTEMP I EQe2) D5=20e

AT )=DI*W(114D2*W (2 +D30W(3i+DA*NI 121 4D5%W(13)+D6
GO TO 12

All,0)=10000,

CONT INUE

EVALUATE THE C MATRIX

DO 14 I=1sN

DO 14 J=1N

IF (l14EQeJ? GO TO 13
H1=ABS(BW{1)=BW(J))
IF(HIOGEOZO!HI'loo*Hl

H? Ge

IF(CONST(] ) eNRECONST (I} HZ:IO-
H3=ABS(PCIP(I)=PCIP(J!)
Ha=ABS(SHAPE (J)}=SHAPE(I})
HS5=ABS(CT(I)=CT(J))
H6=ABS(GTHT (1 )=~GTHTtJ})
IF{H6eGTeleb}) HE=10,%#HE
(ti;J)=H5*W(“)+H6*N(5'+Hﬁ'N!6’+H1*W(7!+H3*w{141
GO0 TO 14

ClIed)=Ve0

CONT INUE

GENERATE THE © MATRIX

DO 15 II=14N
DO 15 JUs1N
IF{11+EQedd) GO YO 27

ARE LOCATIONS I AND J ON THE SAME PRESSe

F1=0.

I=0K(I1)

JEJK I :
IF(K24GT«0) 1=JJKI(1I)
IF(K2eGT0) J=JUK (I}
KXK={1/2)1%2
IF(KKeFQel) GO TO 21
LL=1+1
xF(J.EQ.LL’_FI’ZOO.
GO TO 22

LL=I=-1

IF(J.EQ.LL) Fl1=2200.

ARE LOCATIONS I AND J IN THE SAME LINE OF PRESSES.
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ICK=0

JCK=0

DO 23 IT=1sNLINES
ICK=ICK+NIELLIT)
IF(I«GTeICK) GO TO 23
LNI=IT

GO TO 24

CONT INUE R

DO 25 JUT=1NLINES
JCK=JCK+NTEL(JT)
IF(JeaGTeJCK) GO TO 25
LNJ=JT

GO TO 26

CONT INUE
LUIF=TABS{LNI=LNJ)
F2=5.

IF(LDIF«EQe0) F2=20,
IF(LDIFeEQel!) F2=215,

ARE LOCATIONS I AND J ON THE SAME MAKE OR MODEL OF PRESSe

F3=5,

F4=5o

IF(MAKE(I)eEQeMAKE(J)} F3=10.
IF(MOD(1)+EQeMOD{J) ) FH=l0e
DIl sJU)=F1¥WiB)+F2aW(9)+F3aW(10)+FLnpw(ll)
GO TO 15 ’
D(ITeJJI=00

CONT INUE

IF(IDIAG.EQs0) GO TO 19
WRITE(69108)

DO 16 1=1sN
WRITE(69109)(A(LsJ)9J=1sid
CONT INUE :
WRITE{(69110)

DO 17 I=1eN
WRITE(69109)(C(IsJ)eumlanN}
CONT INUE

WRITE(6s111)

DO 18 1=1sN
WRITE(69109)(D(1sJ)sJd=1sN]
CONT INUE '

CALL SUBROUTINE OPTI TO PERFORM AN ITERATIVE ALGORITHM TO SOLVE
THE QUADRATIC ASSIGNMENT PROBLEM FORMULATED

CONT INUE
CALL OPTI(AsCsDsN» ICHOICE sALPHA+1UIAGHE»1D0Ms IRANSVCIALSVCAI VDALY

1DJAsWORK1 sWORK2s 1C s JRoWORK3 912952 1BOM» IVAN»ZSTARSZPRIMNNI
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39
43

45
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ICNT=ICNT+1

IF(IDIAGeEQeu) GO TO 31
WRITE(6+135)

LG 20 I=1sN

WRITE(69112) (ALPHA{(I#J) 9dm1l 9N/
CONT INUE

CONT INUE

IF{ICNT<EQe2) GO 10 6V
IFINRUNeGTe1) GO TO 43
WRITE(649128)

DO 33 [=1,NORIG

PO 32 J=1sN
IFLALPHA(T+J)eEQe0) GO TO 32
JJ=JK 1 J}

Pk (11=0K U}

WRITE(6v127) ON{I)2PRESSL IS
GC TO 33

CONT INUE

CONT INUE

IFINPART.EQel) GO TO 45
IFINeNESNORIG) GC TOQ 38
WRITE(65131)

GO TO 42

WRITE(6+132)

LP=0

DC 39 I=NEWsN

DO 40 J=1sN "
IF(ALPHA( L s J) aEWa0) GO TO 49
JJ=JK(J)

IK(1)=JK(Ji

L=l

LJ=Jdk(1)

OLD=PRFSS(L D)

WRITE(6+133) ON(I)OLDyPRESS(II)
CONT INUE

IF(LPeEQeDd) WRITE(69134)
CONT INUE

GO TO 42

CONVERT PARAMETERS OF -ON- TIRES TU THCSE OF TIRES IN 14k CURE.

WRITE(65136)
NPART=1

GO TO 44

DO 68 T=NEWsN

DO 69 J=IsN

IF (ALPHA(15J) sEQeQ} GO TO 69
IKCT)=JK(J)

CONT INUF

CONT INUE
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DO 47 I=1sN

DO 46 J=1sN

IF(ALPHA{T s J)aEWeQ) GO TO 46

JJ=JK D)

CALL CONVERT(JJsIsEGTHT o+ TOP 9GTHT yON9CONST sECONST »PCIPEPCIP 9 SHAPL »
JESHAPE s CT s ECT s TMLDH oETMLDH s TMLDW o ETMLDW 9 IPCI s JTEPC) 9 CURE sECURE S IF
21TOPC» 1)

CONT INUE

CONT INUE

CALCULATE A VALUE OF Z FOR EACH TIRE IN THE CURE.

K=0
DO 48 1=24LCTNSs?2

K=K+1

L=I-1 : ,
DAL1=ABS(PMHT(L)=ETMLDH(L))
DAZ21=ABS(PMHT(1)-ETMLDLH({ )
UALZ=ABS{PMW{LI-ETMLDWI(L
DA22=ABS(PMW (1} =ETMLDW(I })
DA13=ABS(PSHP{L)—=ESHAPE(L})
DA23=ABS(PSHP (1)~ESHAPE(!})
A1=DA11%¥W(1)+DA12#W(2)4DAY3#W(3)
A2=DA21%W(1)+DA22%W(2)4DA23#W (3]
HI121=ABS(EBW(L)~EBW(I))
IF(H121eGEe2e) H121=H121%10,
H122=0.

IF{ECONST(1)eNESECCNST(L}? 1122510
4123=ABS{EPCIP(LI=-EPCIP(L NI
H126=ABS{ESHAPF(L)=ESHAPE(I])
H125=ARS(ECT(LI-FCT(1))
H126=ABS{EGTHT{L)~EGTHT (I }}
1F(H126eGTele5) H1Z26=H126#10,
C12=H125%W 4 ) +HIZ26MW (5 +HI24¥W L6 +HI21%WITI+H123*W (14 ]
ZiK)=A1+A2+C12

CONT I NUE

SELECT THE LARGEST VALUES OF 2 FOR RE-OPTIMIZATION.
LCTNS2=LCTNS/2

DO 50 I1=1,N
ONOR{1)=ON(1)

CONT INUE

IF(IDIAGEQe0) GO TO 67
WRITE(65137)

DO 51 122,LCTNS2,2
K=1~1

WRITE(6+138) 2(K)sZ(I!
CONT INUE

K=0



N=0

DU 54 1=24LCTNSe 2

£=K+1 '
IF(Z{X)ebl.TeZMAX) GO TO 54
L=}

N=N+2

©L=N

52

K2=2%K
GO TO 53
LO=0

120

53 CALL CONVERTILsK2sEGTHT s TOP GTHT sUNsCONST sECONST »PCIPEPCIP s SHAPE,

2ITOPC M

54

55

56

57

60

62

63

JIK(LI=K2
IFINsGESNN]} GO TO 55
L=N-1

K2=K2-1

IF({LLOEQs1) GO TO 52

IF (N«GE+NMAX) GO TQ 56
CONT INUE

WRITE(Gs141) N .
IF(NeGTe0) GO TO 56
NPART=C

N=NORG2

GO TO 44

WRITE(6+139)

STOP ,

DO 57 1=1sNN

DO 57 Js1eNN

E(1,0)=0.

AllsJ)1=0e

CllesJ)=00

DCIsJ)=00

ALPHA(T,J41=0

CONT INUVE

GO TO 58
WRITE(65132)

DO 59 I=1N

DO 61 J=1sN

1IF (ALPHALL 9J) eEGe D) GO TO 61
JO 62 11=19NORIG
IF(ON(]1)«NESONCRtII)) GO YO 62
IK(IT)=00K(J)

0 TO 59

CONTINUE

DO 63 1I=NEWsNORG2
IFION(I)«NEONOR{I1))Y GO TO 63
IK(T I =JJK ()

GO TO 59

CONT INUE

1ESHAPE s CTsECT s TMLDH o ETMLOH o TMLOW sETMLOW s IPCL s JEPCT 9 CURESECURE S 1FC
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LL=JJK(T)

L=JJK ()

IF(TOPILL)+EQ.TOP(L)) GO TO 61

WRITE(6+133) TOP{LL)+PRESS(LL}IPRESS(L)?

CALL CONVERT(LSLLIEGTHT o TOPsGTHT sON2CONST sECONST oPCIP+EPCIPYSHAPLE »
JESHAPE sCTsECT o THMLDH o ETMLUH s TMLDW o E TMLDW o IPCI 9 IEPCT 9 CURE »ECURE 9 IFCy

21TOPC.2)
61 CONTINUE
59 CONTINUE
00 64 I=NEwsNORGZ
LtL=IK{1)
tLi=JK{])
WRITE(65133) ONOR(I1}sPRESS{LLL! sPRESSILLY?
CALL CONVERT(LLYL vEGTHT s TOP o GTHT ONORYCONSTHIECONST o PCIP»PCIP o SHAP

JESsESHAPE s CTsECT o TMLOH  ETMLDH TMLLW oL TMLUW s IPCT o 1P CL 9 CURL s ECURE 9 L F
2C+ITOPCy1)
64 CONTINUE
WRITE(6+128)
DO 65 I=1,NORIG

JJI=IK(T)

WRITE(65127) ONORIU1}+PRESS(JJ)

CALL CONVERT(JJs1 +EGTHT»TOPsGTHT sONOR sCONST s ECONST +PCIP +EPCIP 3 SHAP
1t,ESHAPEoCTo&CTvTMLDHoﬁTMLDH-TMLOWo&TMLDwsiPCl91&9(1,LbRtotQURt’lF
2CsITOPCS 1)

65 CONTINUE

"WRITE OUT ThE NEW CURE ASSIGNMENT.

WRITE(Es144)
Ki=1
DO 72 I=1sNLINES
KO=KI+MIELET}=2
WRITE(69142) (PRESS(II)sl1i=aKisKkDe2)?
WRITE(65143) (ITOPC({II)ell=KIsKOs2!
KL=KO+1
KN=2¢ 141 .
WRITE(69143) (ITOPC(IIdell=KNoKL2?
KI=KI+NIEL(I)
72 CONTINUE
144 FORMAT (1HU23HTHE NEW CURE ASSIbNMhNT/IH 2 AHmm e
1~=)
142 FORMAT{1HO,»15A8)
143 FORMAT(1HO»19:1018/7/7/)

PUNCH THE CURE PARAMETERS FOR THE NEXT RUN.

IF(IPUNCHeEQeO) GO TG 42

DO 7u I=1+LCTNS

WRITE{(65102) PRESS(1IsTOP(LI!sITOPCUI)
70 CONTINUE
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PO 71 I=1,LCTNS
WRITE(4’1041EGTHT(I)’tCT(X)’ESHAPt(lJ,CTMLuﬂ(I)oLTMLuw(I'stLW(I),L

IPCIP(I) 9 IERAT(L) 9 LEPCI(L 4 9t CONST (1 ¢ 9ECURE(]

71 CONTINUE

100 FORMAT(TIBsF1lUa0sI18)

101 FORMAT(A393XsA3+3X{3+3F10e34213)

102 FORMAT(AGLs6EXsABsBX 15!

103 FORMAT(AB+6Xel4)

1U4 FORMAT(TF9e2+21392A5)

105 FORMAT (1HU21HEMPTY FRESS LOCATIONS!

106 FORMAT (1HC»AG)

107 FORMAT(1CFBe0) :

108 FORMAT(1H1s12HTHE A MATRIX/IM s l2H-ememweracean)

109 FORMAT(1HGs12F7.0)

110 FORMAT(1H1912HTHE C MATRIX/1H s12H=eecmccencen-)

111 FORMAT(IHIs12HTHE D MATRIX/1H s12H===—e~—= ————]

112 FORMAT(1H0+12+10)

114 FORMAT ( 1HU s LUMLOCATIONS=15¢10Xs LTHLINES OF PRESSES=9151

114 FORMAT(215+F10s2+15)

115 FORMATU(1H +AGsS5X A6 +5Xe1443F12e49216)

116 FORMATU(1H 9A4sTX9ABy6Xs14) ’

117 FORMAT ( 1HU s 49HVALUES OF NsICHOICE» IDIAGINNs IDATASNRUNSNMAX s ZMAX/ 1H
1 971104F20e3)

118 FORMAT(1H +A8+6Xs14)

119 FORMAT(1IH »7F1239211092A10)

120 FORMAT (1HUs12HVALUES OF JK/1HO.10112)

121 FCRMAT(I10)

122 FORMAT { 1HO s 4HIMAKE s 6X s SHMOUEL s 5X 9 6HRATING ¢ 3X 9 THMOLD hr.ax,anmuLo vl
1A 95X 9 THSHAP ING ¢ 2X 9 SHCONTR 9 2X 9 3HPCL )

123 FORMAT (1HO»5HPRESS»8X s4HTIRE«8X»4MCODE?

126 FORMAT{1HC»54HON TIRE L1ST 8 DIGIT PART KOs ANL 4 DIGIT FACTORY CO

1DE)
125 FORMAT(1HOsSX s4HGTHT »8X s IHCURE TIME s 9K » SHSHAPE 99X s THMGLD HT 97X 9 BHM

1CLD DIA,7X»8HBFAD DIA!

126 FORMAT(1HG+5SHOFF TIRE LIST 8 UIu'T PART NGCe ANUD 4 vliGIT FACTORY C
100t)

127 FORMAT(1A0sSHTIRE »A8.26H TO BE SCHEOULEUL ON PRESS s AL )

128 FORMAT (1HC »23HTHE =ON~ TIRE LOCATIONS/IH 323H-—=—=e———woo—oo—ome=e
1--) A

179 FORMAT{1HO»SX sAL)

130 FORMAT (1HUs37THADDITIONAL PRESS LOCATIGNS CONSIVEREV!

131 FORMAT (1HU»22HNO TIRES ARE RELOCATED)
132 FORMAT(1HO/1HO»33HTHE FOLLOWING TIRES ARE RELOCATED/IH »33H--=====

| = o o o e o e e e 2 o o o )

133 FORMAT (1HO»4HTIRE » IXsA8» 1X»20HRELOCATED FROM PRESS»A4»9H TQ PRESS

1A4)
134 FORMAT{1HD 10X s 4HNONE)
135 FORMAT(1H1s3CHTHE ALPHA (PERMUTATION) MATRIX) ,
136 FORMAT(IHU;£9HINITIAL PLACING OF =ON= TIRES/1IH »29H~==mmo—o—eos=e=-

] = i e
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42

FORMAT (1HC » 1 IHVALUES OF 2)

FORMAT(1H +2F20.4)

FORMAT (1HU » 39HINSUFFICIENT ARRAY S1ZING = JOB ABORTED)
FORMAT(F153)

FORMAT{1HO s 2HN=415)

sSTOP

END
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SUBROUTINE OPTI(AsCyDasNs ICHOICE +»ALPHASIDIAGIE s IDOMsIRANSVCIAZVCATLS
IVOAJIVDIASWORKL sWORK2 o IC o UR+WORK3» 1292 » IBOMy IDANSZSTARSZPRIM NN

PURPOSE OF THIS SUBROUTINE 135 TO EMPLOY A  SUBOPTIMAL ALGORITHM TG
DETERMINE AN ASSIONMENT OF N ACTIVITIRS ON N FACILITIESe [T IS
NECESSARY TO MINIMIZE THE SUM OF AN ORDINARY ASSIGNMENT PROBLEM
AND A QUADRATIC INTERACTION COST BETWEEN ACTIVITIES.

DIMENSION A(NNs1)sCtNNsl) sDINNs1?sEINNs L) oIDOM{1) s IRAN(LI 9 VCIA(NNS
11 sVCATINN1) s VDAJS(NNL ) s VOJAINNSL ) sWORKL (L) »WORK2(LI s IC(1}aJR(1),
2WORK3(NNs 19101093201 ) s 1BOMIL? »IVANILY

INTEGER ALPHA(NN1} 9ZSTAR(NNs1 9ZPRIMINN,1?

KK=C

T=0e5

CLEAR ALL WORKING ARRAYS

DO 1 I=1yNN
[ooMiI)=C
IRAN(TI =0
WORK1(I)=0e
WORKZ({1)=0.

DO 1 J=1sN
WORK3(I+J)=0,
ALPHA(14J)=0
VCIA(TI331=0Ce
VCAI(19J3=20e0
VDAJ(T 4 4) =0,
VDJUALL19J) =00
E(IsJ)=0.

CONT INUE

ESTABLISH DOM(ALPHA) AND RAN(ALPHA!

LL=0

DO 3 I=1sN

DO 2 J=1sN

1IF(ALPHAlT sJleEWe D) GO TO 2
1DOM(I)=1

IRAN(J)=1

LL=LL+]

GO TO 3

CONT INUE

CONT INUE

IF(IDIAGeEQG«0) GO TO 24
WRITE(6+200)(IDOM{L1) »1m19N}
WRITE(65201) (IRAN(J) »J=1eN}

ESTABLISH C(IsALPHA} AND CLALPHA,1) VECTORS AND THEN SORT INTO
ORDER OF ASCENDING MAGNITUDE
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26 DO %5 I=1N

IF(IDOM(I)+EQel) GO TC 5

M=0
DO & K=1lsN

IF(IUOMIK Y «EQel) GO TO 4

IF (KeEQel) GO TO &
M=M+1
WORKLI(MI=C (1K)
WORK2{M)=C(Ks1)

4 CONT INUE
CALL SORTIWORK1eMe=1)
CALL SORT(WORKZ2sMs~1)
IFIIDIAGeEQsU) GO TO
WRITE(6+202)

25 DO 5 K=1M
VCIA{] sKY=WORK1(K)
VCAT (14K)=WORKZ(K)
IF(IDIAG.EQsV) GO TO

25

5

WRITE(62203) VCIAULsKIsVCALLTK)

5 CONTINUE
2U3 FORMAT(1H +2F30.8}

CLEAR THE WORKING ARRAYS

DO 6 I=1sNN

WORK1(1)=0.

WORK2(11=0.
& CONTINUE

ESTABLISH D{JyALPHAG

AND ULALPHALJ)

DESCENDING ORDER OF MAGNITUDE

DO 8 J=1sN

IF(IRAN{J)«EQel) GO TO 8

MM=C
DO 7 K=1lsN

IF(IRAN(K) «EGel) GO TO 7

IF(JeEQeK) GO TO 7
MM=MM+ 1
WORK 1 (MMY=D(JsK)
WORK 2 (MM) =D (K sJ)

7 CONTINUE
CALL SORT(WORK1sMMsl)
CALL SORT(WORK2sMMs11}
IFLIDIAGeEWeU) GO TC
WRITE (642041

26 DO 8 K=1sMM
VDAJ(JsK ) =WORK1 (K}

VDJA(JsKYy=WORKZ2 (K}
IF(IDIAG.EQ.0) GO TO

26

8

VECTORS AND SORT INTO
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121
131

12z

351

27

126

WRITE(65203) VDAJ(JsK) sVDJIA(JsK!
CONT I'NUE

IF(MMeEGeM) GO TO 9

WRITE(69100)

CALCULATE THE ELEMENTS OF THE € MATRIX

DO 12 I=1sN
IF{IDOMII )} «EQel) GO TO 131
DO 12 J=1lsN
IF(IRAN(J) oEQel) GO TO 121

CALCULATE THE PERMUTED UOT PRODUCT OF P(CTIIsALPHAL SDIJSALPHALI
AND PUC(ALPHA 1) »D(ALPHALJI))

Pl=0e0
P220.0

DO 10 K=1sM
P1=P1+VCIA{1,K)*®VDJA(J K]
P2=P2+VCAI (14K ) #VDAJ(J K]
CONT INUE

FTERM=0.

EVALUATE THE FINAL TERM [N THE EXPRESSION FOR THE ELEMENT OF THE
MATRIX E .

DO 11 ME=1,N
DO 11 MN=1,sN

IF(ALPHA(ME'MNT oEQ.0} GO TO 11
FTERM=FTERM+C(IsMEIXDIJsMNI4+CIMEy I ) #D(MN o}
CONT INUE
ElloJ)=A{l s J)+THPL4(1le~TI#P2+FTERM
GO TO 12

E(l4J)=0e0

GO TO 12

DO 12 JJ=1,N

E{IsJJI=0au

CONT INUE

IF(IDIAG.EQe0) GO TO 27
WRITE(65205)

DO 351 1I=1,N

WRITE(62206) {E(TL9J)sJu=1sN)

CONT INUE

SELECT THE CRITERIA FOR SELECTION OF I AND J TO FORM NEW PERWM-
UTATION MATRIX ALPHA OF RANK K+1}

IF{ICHOICESEQel) GO TO 13

SELECTION METHOD B == 1E I AND J SELECTED ON dAbIb UF THE SOLUTION
OF A LINEAR ASSIGNMENT PROBLEM
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LN=Q
LC=0

RE~ARRANGE THE ELEMENRTS OF THE E MATRIX TO FORM A MATRIX (WORK3)
THAT CONTAINS NO NON-RELEVANT ZEROS OR LUES NOT CONTAIN ktlsJl
WHERE I IS IN THE DOMAIN OF ALPHA OR J IS IN THE RANGE OF ALPHA

DO 21 I=1sN ;
IF(IOCM(I)eEQe1l} GO TO 21
iLLM=0

LN=UN+]

DO 21 J=1sN
IFCIRAN(JI«EQel) GO TO 21
LC=LC+1

LM=LM+1

WORK3(LNsLMI=E(T4.)
CONTINUE

CALL SUBROUTINE LINAS TO SOLVE THE LINEAR ASSIGNMENT PROBLEM
USING MATRIX E AS THE ASSIGNMENT MATRIX

CALL LINAS{WORK3 shNsZSTARSIDIAGIN® 12932y 160Ms ICANYZPRIMINNI
LN=0

LM=0

BIG=0.0

SELECT THE LARGEST ELEMENT FROM THE MATRIX E THAT APPEARS IN THE
ASSIGNMENT SOLUTIONe THIS CHOCOSES THE VALUES OF T(K+1! AND J(K+1)
AND THUS DETERMINES THE NEXT PERMUTATION MATRIX ALPHA(K+1!

DO 23 I=1eN
IF(IDOM(I).EQel) GO TO 23

LM=0

LN=LN+]

L0 22 J=1oN
IF(IRAN(J)«EQel) GO TO 22
LM=LM+1

IF(ZSTAR(LNSLM) «EQe0) GO TO 22
IF(E(I9J)elLTaBIG) GO YO 23
BIG=E(I+J) .

JK=J

IK=1

60 TO 23

CONTINUE

CONT INUE

IF(IDIAG«EQG.CY GO TO 19
WRITE(692077)IKvJK

GO TO 19

CONT INUE
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SELECTION METHOD A ~= JE 1 AND 4 SELECTED ON THE‘ﬁASIS OF MAX IMUM

OF THE MIMINUMS OF EACH ROW AND EACH COLUMN

LU 14 I=1aN

FMINR=10sE 6

DO 14 J=1lsN
IF(E(I2))eEQeDe0) GO TO 14
IFIE(1sJ)eGT«FMINR) GO TO 14
FMINR=E(TsJ) :
JRODY=J

CONTINUE

DO 15 J=1sN

FMINC=10.FE 6

DO 15 [=1eN
IF(E{I4J)eEQeNel) GO TO 15
IF(E(T4J)eGTFMINCY GO TO 15
ICtur=1

FMINC=E(ls4}

CONTINUE

SELECT THE MAX OF THE MIN OF THE ROWS

FMAXR=0.0

DO 16 I=]1sN

JJIEIROTD

IF(E(IsJJ)eLTeFMAXR) GO TO 16
FMAXR=E(I eJJ)

17=1

CONT INUE

SELECT THE MAX OF THE MIN OF THE COLUMNS

FMAXC=UaU

UO 17 UsiN

[i=1C(J)
IF(E(ILsJ) e TeFMAXC) 6O TO 16
FMAXC=E(1I9J)

JT=J

CONT INUE

IF(FMAXCoGEFMAXR) GO TO 18
IK=1C(JT)

JK=JT

GO TO 19

IK=1T

JK=JR{IT)

ALPHA(IK s JK ) =1

KK=KK+1

[F(KKeEQeN) RETURN

G0 TQ 2C
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2wy
201
202
204
205
206
2077

FORMAT (1HC»36HSTOPPED DUE TO UNEUWUAL SIZED VECTORS)
FORMAT ({1HO »4HILUOM/ 1HO 1211010

FORMAT ( 1HO »4HIRAN/IHO12110)

FORMAT {1HG»21HVECTORS VCIA AND vCall
FORMAT {1HGs 13HVDAJ AND VDUA!

FORMAT { LHO» 12HTHE F MATRIX!]

FORMAT(1H +12F10el!

FORMAT {1HD»9HIK AND JK/1HG21201

END
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SUBROUTINE LlNAS(wOR$3vLCvZSTARoiDlAG’NolZ9JZslOOMoiRAN;ZPRIM,NN’

THE PURPOSE OF THIS SUBRCUTINE IS TO FIND A MINIMAL ASSIGNMENT
OF LC ACTIVITIES ON LC FACILITIESe IN CASE WHERE LINAS 1S CALLED
BY SUBROUTINE OPTl-~ THE INPUT MATRIX WORK3 15 TREATED AS AN
ASSIGNMENT MATRIX.

DIMENSION WORK3{NNo1)}oiZ (20 JZ¢L)sJDOMCL) sIRAN(L)

INTEGER ZSTAR(NN3s 1) ¢ZPRIM(NNs1}

CLEAR THE WORKING ARRAYS

DO 1 I=1sNN
1oOM(T1)=C
IRAN(1)=0

DO 1 J=1sNN
ZSTAR(1+J41=0
ZPRIM(TI93)=0
CONT INUE
LC2=LC*2

DO 111 I=1.LC2
1Z2{1)=0
JZ{1)=0
CONTINUE
IF{IVIAGeEQ.0) GO TO 32

CWRITE(6+453)

451

32

r

D0 451 I=1,LC
WRITE(6+452) (WORK3 (IsJ}sJulslC)
CONT INUE

SUBTRACT THE SMALLEST ELEMENT IN EACH ROW OF WOKK3 FROM ITS OwN
ROW

0O 3 I=1sLC
SMALL=10.E 6

DO 2 J=1sLC
IF(WORK3(1+J)eGToaSMALL) GO TO 2

SMALL=WORK3{IsJ)

JT=J

CONT INUE

DO 3 L=1»LC
WORK3(IsL)=WORK3(1,L)=SMALL
CONT INUE

SUBTRACT THE SMALLEST ELEMENT OF EACH COLUMN OF WORK3 FROM ITS
OWN COLUMN .

00 5 J=1+LC
SMALL=10eE 6

DO 4 I=1,1C

IF(WORK3(1sJ)eGTeSMALL) GO TO &
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33

9

10

30

SMALL=WORK3(IsJ}

[T=1

CONT INUE

DO 5 L=1sLC
WORK3{LsJ)=WORK3 (L s Ji=SHALL
CONT INUE

STAR THE INDEPENDANT ZERGS IN THE NEW MATRIX WORK3

DO 8 I=1sLC
DO 8B J=lsl(
IF {WORK3({1sJ)eGTeCe) GO TQO 88

CONSIDER THE ROW IN wHICH Tok ABOVE ZERO OCCURS

DO 6 L=1,yLC
IF(ZSTAR(1I,L).,EQel) GO TO &8
CONT INUE

CONSIDER THE CCLUMN iN WHICH THE ABOVE ZERO QCCURS

DO 7 L=1sLC

IF(2STAR(LyJ)eEQe1) GO TO 88
CONT INUE

ZSTAR(IsJ)=1

COMT INUE

CONT INUE

IF(IVDIAGeEQeQ) GO TO 33
WRITE(69107)

DO 108 I=1l,sLC
WRITE{62109) 1Z5TAR(T s 2} ad=l L C)

CONT INUE

COVER THE COLUMNS THAT CONTAIN A STARRED ZERO. IF
J 1S UNCOVERED. IF IRAN(JI=1 COLUMN J 1S COVERED

LO 15 J=1,LC

DO ¢ I=1,sLC
IF{ZSTAR{I+J1EQe0C) GU TO 9
IRAN(J) =1

GO 70 10

CONT INUE

CONT INUE

STEP 1 === CHOOSE A NON-COVERED ZERO ARD PRIME [Ta

ISTEP=]

IF{IDIAGeEQeG) GO TO 34
WRITE(6+104) '

DO 31 I=1HlC

IRAN{J?=1 COLUMN
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WRITE(62103) (WORK3({IsJdisd=l,elC?
CONT INUE ’

vO 13 I=19LC

DO 13 J=1sLC
IF{WORK3(I+J)eGTe0e0} GO TO 13
IF{IRAN{JI«EQel) GC TO 13
[FCIDOMIT)eEQsl) GO TO 13
ZPRIM(IsJ)=1

CONSIUER ROW IN wrlCH ASOVE ZERO UCCURS~ASCERTAIN WHETHER 1T
CUNTAINS A STARREDL 2EROe IF YES =~ UNCCVER COLUMN AND CLVER
ROW 1IN WHICH THE STARRED ZERC OCCuURS

DO 11 L=1,LC

IF{ZSTAR{IsL}eEQeD) GO TO 11

IDOM(T)=1

IRAN(L) =0

GO 710 13

CONTINUE

GO TO 14

CONT INUE

IFLIDIAG.EQeC) GO TO 23

WRITE(6s102)

GO 10 23

CONT INUE

STEP 2 -= FIND THE UNCOVERED PRIMGLU ZERO AND CONSTRUCT THE
SEQUENCE OF ZERCS

ISTEP=2

K=0

DO 15 I=1,tC

DO 15 J=1sLC
[F(ZPRIMELsdlebQe0) GO TO 15
IF(IUOM(I)eEQel) GO TO 15
IF{IRAN({J) «EQel) GO TO 15
K=K+1

1Z()=1

JZIK)=J

LEF=J2(K)

IFIIDIAGEQ.D) GO TO 16
WRITE(69110IKeIZ(K)9JZIK)
GO 70 16

CONT INUE

WRITE(6+100)

RETURN

DO 17 1=1.LC
IF{ZSTAR(ISLEF ) eEWeD) GO TO 17
K=K+1

1Z(K)=1
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17
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20

éul

21

JL(KY=JZ{K=1)}

LEM=1Z21(X)

LEP=JZ(K)

ZSTAR(ISLEP) =20
IF{IDIAGeEQ.0) GO TO 18
WRITE(691101KIZIK) U2 K]}
GO YO 18

CONT INUE

SEQUENCE OF ZEROS TERMINATED NORMALLY

GO TC 20

LO 19 L=1sLC
IF(ZPRIMILEMsL)oEGe0} GO TO 19
K=K+1

IZ(K)=IZ(K~1)

LET=12¢(K}

JZIK =L

LEF=JZ (K}

IF{IDIAG.EQeO) GO TO 16

CWRITE(62110IK 12 (K) »JZ(K)

GO TO 16
CONT INUE

THE SEQUENCE OF ZEROS TERMINATED ON A STARRED ZERO

WRITE(6,101)
RETURN
CONT INUE

UNSTAR EACH STARRED ZERO OF THE SEQUENCE ANL STAR bALH PRIMED
ZERO OF THE SEQUENCE

DO 201 1=1eKs2
L=12(1)

LL=azZ (1)
ZSTAR(LsLL)=1
CONT INUE

DO 21 I=1lsLC

DO 21 J=1lslC

ZPRIM{T»J)=0
CCNYINUE

133

UNCOVER EVERY ROW AND COVER EVERY COLUMN CONTAINING A STARRED ZERO

DO 22 I=1.LC

LC 22 J=1lsLC

[F (ZSTAR(1eJ)ebQeG) GO TO 22
IOOM(1)=0

IRAN(JY=1
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23

24

25

26

27

28

160
1vl
102
103
104

CONT INUE

IFIIDIAGeEQ.Q} GO TO 23
WRITE(69191 1
WRITE(69112)010OM(1)9l=1siCH
WRITE(6s 112 CIRANCTY o l=1 9L
WRITE(69113) '

S0 114 I=1,LC

WRITE (69109 (USTAR(T9JdsJd=1,LC?
CONT INUE

CHECK ON POSSIBLE CONDITION THAT ALL COLUMNS ARE COVERED

DO 24 I=1,LC
IFCIRAN(I)+EQel) GO TO 24
IF{ISTEP.EQel) GO TO 25
GO TO 30 ,
CONTINUE

IF(IDIAGeEQe O} GO TO 35
WRITE(6s106!

DO 29 1=1sLC

WRITE(691G5) (ZSTAR(19Jd)9Jd=1,LC!
CONT [ NUE

RETURN

STEP 3 -~

H=lUeE 6

00 26 I=1,LC
IFLIUOM{ L) «EQel) GO TO £6
PO 26 u=1sLC
IF(IRAN(J)«EQel} GO TO 26
IF{WORK3(1+J)eGESHI GO TO 26
H=WORK3I(Iad)

CONT INUE

DO 27 I=1.LC

IFLIDOMUI) eEQeO} GO TO 27
DO 27 J=1stC
WORK3(19J)=wORK3 (I s J)+H
CONT INUE

DO 28 J=1sLC
IF(IRAN(J)«EQel) GO TO 28
DO 28 I=1-LC '
WORK3{19J)=WORK3({IsJ)=H
CONT.INUE

GO TO 30 :
FORMAT { 1HO » 66MNO UNCOVERED ZERO FOURD BY LINAS DURING STEP 2}

FORMAT (1HO»42HSERIES OF ZEROS TERMINATED ON STARRED ZEROJ
FORMAT { 1HO » 29HCOULD NOT FIND UNCOVERED ZERO)

FORMAT(1H »12F10e2)

FORMAT{1HO16HTHE MATRIX WORK3)
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ivé
107
109
11l
112
113
191
452
453

FORMAT{1H ,1216)

FORMAT (1HO » 25HTEMPORARY OQUTPUT OF ZSTARI
FORMAT{1HO s 21HINDEPENDANT O STARRED!

FORMAT(1H »1216)

FORMATUIHO s 2HK=2 9 I5e5X96H 12t I =9 1595X 96HIZ(KIzg15)
FORMAT(IH 12110}

FORMAT(1IH +33HZSTAR PRECEEDING RETURN TO STEP 1)
FORMAT ( 1HO s 24HCOVEREC ROWS AND COLUMNSI
FORMAT(1H 412F1062)

FORMAT (1HO s 15HOUTPUT NUMBER 27

END
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SUBROUTINE CONVERT (1 s JoEGOTHT o TOP ¢GTHT 9UN» CONST 1ECONSTsPCIPSEPCIPSS
lHAPEsESHAPEoCToECT’TMLUHvEIMLDHqTMLUNo&TML&w,lpClQIEPCI;CURE’tCURE

29 IFCyITOPCyINVI

DIMENSION EGTHT(1) »TOP (1) oGTHT LI 9CNIY} sCONSTI1) 2ECONSTIL1} »PCIPLL)
19SHAPE(l)pESHAPE(I)QCTll)yEC?(I’oTMLDH(l’9ETMLDH(11oTMLDW(l)9ETMLD

2w¢13.19c1113.159c1tzJ,CUREtl’.ECURE(1).IFCt1),I?09C11).EPC!P(l)

IF INV=G CONVERSION IS ACTIVE TO ~E~e
IF INV=1 CONVERSION 15 ~E= TU ACTIVE.
IF INV=2 CONVERSION IS «£&~ TO =k~

IF(INVeNE.D) GC TD
ON(1)=TOP(J)
1FC{IY=1TOPC(Y)
GTHT (I )=EGTHT(J)
CCNST (1) =ECONST(JY)
PCIP(I=EPCIP{J)
SHAPE (I )=ESHAPE ()
CTOIY=ECT(J}
TMLDH(I)=ETMLDHLJ)
TMLOW(T ) =ETMLDW(J)
IPCHL)=TERPCLLL)

 CURE(1)=ECURE(J)

v

15

20

GO 70 20
IF{INV.EQe2) GO TO
TOP(I=0N(J)
(TOPC(I)=IFC{J)
EGTHT(I)=GTHT(D)
ECONST(I)=CONST{J)
EPCIPLLI)=PCIP(J)
ESHAPE(1)=SHAPE(J}
ECT(I)=CT(J)
ETMLLH (I ) =TMLDH(J)
ETMLDW(IY=TMLDW(J)
TEPCI(I)=IPCE(J)
ECURE(TI=CURE(J)
GO TO 20
TOP(1)1=TOP(J])
1TOPC( 1) =1TOPC(J)
EGTHT(TI=EGTHT (J)
ECONST(I)=ECONST(J)
FPCIP(1)=EPCIP(J)
FSHAPE (1) =ESHAPE(J)
ECT(I)=ECT I}
ETMLOH{ 1) =ETMLDH(J)
ETMLOW(I)=ETMLDW(J?
IEPCI(1I=IEPC+ (S}
ECURE(T ) =E£ CURE (J)
RETURN

END

10
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SUBROUTINE SORT{AsNsM)
DIMENSION A{1)
IF{MeGTeO) GO TO 20
DO 10 I=1sN
All)==A(1)

CONT INUE

1L0=2

1H1 =N

1i=0

PO 40 I=1LOsiIM]
IFLA(I=1)eGTeALI)) GO TO 40
1i=] :
T=A(1)

Atl)=A(1=-1)

All=1)=T

CONT INUE :
IF(114FEQe0) GO TO 60
IHl=11

11=0

LALUD= IHI+ILO

DO 50 J=ILOs 1M}
1=1ADD=J
IF(A(I=-1)1eGTeA(l))} GO TO 50
t1=1

T=A(1)

All)=A(l=1)

AllI=1)=T

CONT INUE

1LO=11

IF{ILOCNEWU) GO TO 30
1FIMeGTo0O? RETURN

DO 7C I=14N
Ally==A{1)

RE TURN

END

137



APPENDIX D

Test Problems



D.1 General
The program of Appendix C has been used to determine solutions
for several different problems, each of which has been designed to

test different aspects of the system's capabilities.

0.2 Test Problem No. 1

The first problem attempted was Jesigned to test the system's
capacity to find a contrived Aptimum assignment.
The ON tire Tist used those tires shown In Table 2 of Section |
Vil.1 in the main text of the thesls. Careful examination of these ON
tires will reveal that the best assignment possible occurs when the
following combinations océur:
TIREN201 is combined with TIREN204
TIREN202 is comblined with TIREN208
TIREN203 is combined with TIREN206
TIREN20S5 is combined with TIREN209
TIREN207 is combined with TIREN210
In éddition the ten OFF tires were contained on six different
presses. The two remaining tires on the half-emptied presses are such
- that they also would make an ideal cpmbination. The previous cure
contrived for the problem was operating satisfactorily with the
exception of press A3.
In order to be able to ascertain whether the suitability
re!atiéns were being considered, the OFF ttres were removed from presses
with widely varying capabilities. Slncé the tires themselves are quite

varied in press requirements, an inconsistency in assignment would
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easily be detected.
This system ascertained the optimum in 17.3 seconds of central

processor time. The system completed the following assignments shown

in Table X . The unexpected result of relocating tire (TIRENOO3)

from press A3 to Press DIS to be combined with tire (TIRE210) and tire
" (TIRENOO3) from A3 to C15 to be combined wifh (TIREN207) results in a
better overall cure assignment than that previously contrived. It
should be noted that on the initial fit {ON tires to OFF tire locations)
the pairwise assignment concurred exactly to the contrived pairwise

arrangement.

D.3 Test Problem No. 2

The second test problem was contrived to test the capability of
this system to handle realistic size problems. The particular problem
examined was, in effect, twice test problem number 1. (Twenty ON tires
to be assigned, the original ten tires plus an additional ten tires each
matching one of the original ten in every aspect except designation
number.} For this problem the original OFF list of ten tires was
supplemented with ten additional tires taken from five identical presses.
- The purpose of using five identical presses was to determine how many
tires are shifted about arbitrarily from the initial assignment on sub-
sequent re-examination. This would indicate the locational influence
exerted by additional tires being evaluated during this subsequent
reassignment. These relocations, of course, do not require any physical
relocation in the cure, but rather they are simply a change in assignment.

This system completed an assignment of these twenty tires, with



TABLE X

The New Assignments -~ Test Problem No. 1

THE FOLLOWING TIRES ARE RELOCATED

TIRE TIRENOO3 RELOCATED FROM PRESS A3 TO PRESS D15
TIRE TIRENOO3 RELOCATED FROM PRESS A3 TO PRESS C15
TIRE TIRENO9! RELOCATED FROM PRESS B1S TO PRESS E6

TIRE TIRENO93 RELOCATED FROM PRESS C15 TO PRESS E6

THE "ON'' TIRE LOCATIONS

TiRE TIREN201 TO BE SCHEDULED ON PRESS D1
TIRE TIREN202 TO BE SCHEDULED ON PRESS Bi3
TIRE TIREN203 TC BE SCHEDULED ON PRESS A3
TIRE TIREN20L TOVBE SCHEDULED ON PRESS DI
TIRE TIREN20S TO BE SCHEDULED ON PRESS BIS
TIRE TIREN206 TO BE SCHEDULED ON PRESS A3
TIRE TIREN207 TO BE SCHEDULED ON PRESS €15
TIRE TIREN208 TO BE SCHEDULED ON PRESS BI5
TIRE TIREN209 TO BE SCHEDULED ON PRESS B13

TIRE TIREN210 TO BE SCHEDULED ON PRESS D15
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‘one review of the total cure, in 76.4 seconds of central processor
time. The pairwise comﬁinations were, in every case, identical tires.
The machine suitability considerations seemed effective since no
impossible assignments occurred. (it is very difficult to determine
if these machines are optimally employed on a problem of this
magnitude-~the best that can be determined is that every position

is acceptable.) There were four relocations of tires from the

initial assignment. This was a wholesale interchange of tires on
adjacent presses. It should be noted that this Is the most likely

occurrance and that in terms of the real problem is not serious.



APPENDIX E

Simplified Input lnstructions



E.1 gGeneral

The purpose of this section is to present a series of questions
which, when abswered, constitute the required input info;mation for the
system. This procedure should simplify the operating procedure, and
_minimize the amount of detailed knowledge required for a user interested

in testing the program before familiarizing himself with its details,

}. How many tires to be scheduled? N = ?
2. What is the allotted array size? NN = ?

To ensure a safe value for NN, if is recommended that the user
try an initial value of NN = 2 x N. {Note the program requires approx-
imately the'folfowing storage space in words.)

MEMORY = 22{LCTNS) + 11(NN)Z + 31{Ny) + 8000
3. Hhicﬁ algorithm is to be used? 4

ICHOICE = 1 - Method A is selected.

{CHOICE = 0 -~ Method B is selected.

It is recommended that the user try Method B for an initial
attempt.

k. Do you want tﬁe internal caleculations printed?

IDIAG = 0 - No Calculations.

IDIAG = 1 - Calculations printed out.

WARNING : _there is a great deal of ocutput when IDIAG = 1.

5. Do you want the input data printed?

IDATA = 0 - No data.

IDATA = | - Data printed out.

6. What is the maximum number of iterations of that the entire system

is to be allowed to completg? NRUN = 7
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NOTE: NRUN = ) (for first attempt)
7. How many moid changes will be accepted? NMAX = ?
8. What is allowable press operating coefficient? ZMAX = ?
{(This value should be set high for initial use.)
9. Do you require punched output of the new assignment?
{PUNCH = | - Punched output.
IPUNCH = 0 - No punched output.
10. How many curing positions? (2 x number of presses) LCTNS = ?
11, How many lines of presses? NLINES = 7
12, How many presses in each line?
NIEL(1) = 7 NIEL{NLINES) = ?
13. What are the weighting factors? wil).....w(is) (éee Chapter VI1.1.)
th, Wwhat are the press parameters for sach curing po:ition?
Exémple {given for position 1):

MAKE({!) = (make of press) e.g. BOM

i

Mop (1) (model of press) e.g. MI2

IPRAT(1) = (press rating) e.g. 3

PHHT (1) = (max. mold height) e.g. 12"
PMw(i) = (max. mold diameter) e.g. 44"
PSHP(1) = (shaping phases) e.g. 2
ICONTR(1) = (type of control) e.g. 2

tPPCI(t) = {type of PCI unit) e.g. 2
15. What was previous assignment? Part no. for each position? Code no.
for each position? Example {(location I):

PRESS(!) = (department number) e.g. A3

TOP{1) = {part no.) e.g. TIREND2}



1ITOPC(1) = {code no.) e.g. 402}

16. What are cure specifications for each of the above?

Example (location i):

EGTHT (1)
ECT(1)
ESHAPE (1)
ETMLDH{1)
ETMLOW (1)
EBW(1)
EPCIP(1)
ECONST(1)

ECURE (1)

1

#

=

R

(green tire height) e.q. 22"
(Qase cure time) e.g. 15 min.
(number of shaping phases) e.g. 3
{mold height) e.g. 11"

(mold diameter) e.g. 43"

{bead diameter) e.g. 14"

(PCG pressure) e.qg. 30 psi
{construction) e.g. Radizl ply

(special cure required) e.g. NRM

17. Which are new tires to be scheduled? Part no.? Code no.?

Example (Tire 1):

ON{1) = {part no.) e.g. TIRENO33

tFC {1} = {(code no.) e.g. 4033

18. What are cure specifications for above ON tires? Example (Tire I):

GTHT (1)
cT(1)
SHAPE (1)
TMLDH (1)
TMLOW (1)
BW(1)
PCIP())
TRAT (1)

1pci (1)

=

[}

1

(green tire height) e.g. 22"

(base cure time} e.g. V4.1 min.

(shaping phases) e.g. 3

{mold height) e.g. 11"

(mold diameter) e.g. L4

{bead diameter) e.g. 13"

{(post cure inflation pressure) e.q. 35 psi
{cure rating) e.g. 2

(PC1 equipment) e.g. !}
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CQNST(I) = (construction) e.g. Radial ply
CURE(I) = (special cure) e.g. NRM
19. Which tires afe being removed from the cure? Example (Tire 1):
oFF(1) = (part no.) e.g. TIRENOLk
tOFC(1) = (code no.) e.g. 40kl

The figure showing the set up of the data deck is repeatied

here as figure XVI, Similarly the required DIMENSION statement
is repeated as Figure XVII,



™

OFF TiIRE LISY

pal

ON TIRE SPCIFICATIONS

A}

TIRE PARAMETERS

" EXISTING CURE

=

PRESS  PARAMETERS

=

WEIONTING FACTORS W,

el

L 111

LCYNS MNLINES CTME NSEMI

/ N ICHOICE IDIAG NN (IDATA NRUN NMAX IMAX (PuMCH

FIGURE XVI SET UP OF A DATA DECK



DIMENSION PMHT( XX1,PMW( XX)»PRESS( XX} sTOP( XX} ITOPC( XX)sIPPCI{
1 XXIsICORTRE XX s IPRATL XX) o MODUL Xxi.MAKE( XXV sOMN{ X1 IFCL X)oBWL
2X)sPCIPL XP2IRATE X3 +CONST( X)sCURE( X)s1PCI{ X1 oPSHPL XX)sCT( X1
3GTHT( X) »SHAPE{ X) »TMLDHE XD oTMLOW( XJsA( Xy XD2C( X5 X}sD{ X» X1
4E( X» X)oIDOM{ X)oIRANC X)oVCIAL Xy XPaVCAI{ X» X}sVDAUL Xs» X1sVDJ
5A( Xs X)sWORK1! x),wékxzt X1 oICU X219 JRU X)sWORK3L Xo Xi,12(2X)5021
62X1 s 1BOML X} o IDANG X1 9OFFL XD oIOFCt XI oK X?oNIELIK) 9 IK( X} yEGTHT
T4 XX 2ECTU XX)9ESHAPE( XX) oETMLDH{ XX} sEBW{ XX}sEPCIP( XX) s IERAT(

‘ BXXI 9 IEPCIt XX} sECONSTU XX} 9ECUREL XXJFoONOR{ X1 oJJIK( X} s TMLDW( XXV
99 Z KK} sWl14) |
“INTEGER ALPHAL X» X)2ZSTAR( X9 X1sZPRIM!{ X» X}

WHERE
X=THE NUMBER OF TIRES ON THE NEW SCHEDULE.

XX=THE TOTAL NUMBER OF CURING LOGCATIONS.
K=THE NUMBER OF LINES OF PRESSES.

KK=THE TOTAL NUMBER OF PRESSES.

FIGURE XVIX THE DIMENSION STATEMENT





