
Monitoring & Remote Operation of an Engine Test

Cell

MONITORING & REMOTE OPERATION OF AN ENGINE TEST

CELL

BY

JAMIE TURNER, B.Eng.

a thesis

submitted to the Department of Computing & Software

and the School of Graduate Studies

of McMaster University

in partial fulfillment of the requirements

for the degree of

Master of Applied Science

c© Copyright by Jamie Turner, September 2014

All Rights Reserved

Master of Applied Science (2014) McMaster University

(Department of Computing & Software) Hamilton, Ontario, Canada

TITLE: Monitoring & Remote Operation of an Engine Test Cell

AUTHOR: Jamie Turner

B.Eng., (Mechatronic Engineering)

McMaster University, Hamilton, Canada

SUPERVISOR: Dr. Martin von Mohrenschildt

NUMBER OF PAGES: xiii, 87

ii

To my family, friends, and colleagues.

Abstract

In the automotive industry engines are regularly tested and evaluated by running

them for a prolonged time under controlled conditions; environmental conditions,

engine load, and drive cycle. These tests are performed in an engine test cell; a

computer controlled environment with mechanical fittings and sensors to facilitate

the testing of an engine.

Our goal was to develop a software suite that provides a distributed graphical

interface to the data acquisition and control systems of an engine cell. As we found

existing systems to be inadequate in providing a distributed interface, we designed and

developed a light weight flexible software suite to remotely, over a network, observe

and control the parameters in an engine cell. We used the Fast Light Toolkit (FLTK)

GUI library, with networking sockets and process threads to establish the software

architecture of the engine test system.

Through use of process threads, the client architecture divides tasks into network

data sending and receiving, local channel synchronization, and interface operation.

Networking sockets used in network data sending and receiving facilitate synchroniza-

tion of each clients’ channel storage and host’s channel data. The FLTK GUI library

produces visual interactive components of the interface for invoking interactions.

iv

Distributed interfacing allows display and modification of the engine cell’s oper-

ation remotely in locations where relocating an engine cell is not feasible. These

locations, such as demonstrations to distant clients and meeting rooms, display the

current status of the engine cell through its interfaces without requiring migration of

the engine cell to the specified rooms.

v

Acknowledgements

I would like to give my thanks to my fellow workers, for all the long hours they have

given to helping me write and defend my thesis. I would like to thank my family, for

the support they have given me over the years for my endeavours. To my colleagues,

I give them my best for their efforts and the information they have provided to let

this project reach what it is now.

vi

Notation and abbreviations

Acronym Meaning
DAQ Data Acquisition

DAQC Data Acquisition and Control
ESTOP Emergency Stop

ETC Engine Test Cell
ETCS Engine Test Cell Suite
FLTK Fast Light Toolkit
FLUID Fast Light User Interface Designer

GUI Graphical User Interface
OOP Object-Oriented Programming
TCP Transmission Control Protocol
UDP User Datagram Protocol
XML Extensible Markup Language

Any abbreviations missing from here will be explained and expanded on within

the document.

vii

Contents

Abstract iv

Acknowledgements vi

Notation and abbreviations vii

1 Introduction 1

2 Background Review 6

2.1 Overview . 6

2.2 Controlling Systems . 7

2.3 State Machines . 7

2.3.1 Control Graphs and Diagrams 9

2.3.2 Signal-Flow Diagrams . 10

2.4 Monitoring Systems . 10

2.4.1 Digital Value Representation 12

2.5 Monitoring & Control over Networking 13

2.5.1 Deterministic Networked Control 16

2.6 Impact of Causality . 17

viii

2.6.1 Deadlocks, Race Conditions & Causality 18

2.7 Object-Oriented Programming . 19

2.8 User Interface . 20

2.9 User Interface Suite . 21

2.10 Signal-Flow User Interface Suite . 22

2.10.1 Drag-and-Drop Graphical UI 23

2.10.2 MATLAB(Simulink) . 23

2.10.3 LabVIEW . 24

3 Requirements 26

3.1 Introduction . 26

3.1.1 Purpose . 26

3.1.2 Conventions . 26

3.2 Overview . 27

3.2.1 Operating Requirements . 27

3.2.2 Safety Requirements . 28

3.3 Frontend Requirements . 28

3.3.1 Operating Requirements . 29

3.3.2 Widget Requirements . 29

3.4 Backend Requirements . 30

3.4.1 Operating Requirements . 30

3.4.2 Communication Requirements 31

3.4.3 Host Requirements . 31

4 Design 33

ix

4.1 Frontend Design . 33

4.1.1 Operating Design . 33

4.1.2 Safety Design . 34

4.1.3 Interface Modes . 35

4.2 Backend Design . 36

4.2.1 Operating Design . 36

4.2.2 Safety Design . 36

4.2.3 Network . 37

4.3 Host Design . 38

4.3.1 Safety Design . 38

4.3.2 Operating Design . 39

4.4 Design Focus . 40

4.4.1 Widgets . 40

4.4.2 Reliability . 42

4.5 Frontend & Backend Components . 43

4.5.1 Widget Management . 45

4.6 Visual Representation . 45

4.6.1 Widget Features . 48

4.6.2 Callbacks . 49

5 Implementation 50

5.1 Overview of the Project . 50

5.2 Physical Details . 50

5.3 Engine Test Cell Software . 52

5.3.1 Communication . 52

x

5.4 Frontend/Backend Architecture . 59

5.4.1 Thread Concurrency . 61

5.4.2 Interface Library . 64

6 Validation 68

6.1 Frontend Validation . 69

6.1.1 Widget Dependencies . 69

6.1.2 Widget Value Display . 69

6.1.3 Widget Availability . 71

6.1.4 Frontend-to-Backend Communication 72

6.2 Backend Validation . 74

6.2.1 Functionality . 74

6.2.2 Information Transmission . 77

6.2.3 Network Functionality . 78

6.3 Validation Conclusion . 80

7 Conclusion and Future Work 81

7.1 System Conclusion . 81

7.2 Future Considerations . 83

xi

List of Figures

1.1 Automotive Engine Test Cell . 1

1.2 Layout of engine test cell . 2

1.3 Layout of host and client . 3

1.4 System Feedback Loop . 4

2.1 Simple State Machine . 8

2.2 Layout of four variable model . 11

2.3 Message lost due to timeout . 15

3.1 Widget types represented by operation type and example inherited types 30

4.1 Flow of data throughout engine test cell suite host 43

4.2 Flow of data throughout engine test cell suite clients 44

4.3 Control flow throughout engine test cell suite host 46

4.4 Control flow throughout engine test cell suite clients 47

4.5 Selection of FLTK widgets for displaying and interacting with the fron-

tend . 48

5.1 Overview of the Engine Test Cell . 51

5.2 Overview of the IOConnection hierarchy 53

5.3 Example of writing and reading with two different byte orders. 56

5.4 Example of XML structure in profiles 58

xii

5.5 Network Packet Structure . 59

5.6 Architecture of frontend and backend 60

5.7 Threads of the client . 62

6.1 Widget value before interaction. 70

6.2 Widget value after interaction. 71

6.3 Widget values after retrieval from host. 73

6.4 Channel values on the host. 73

6.5 Final state of the frontend . 75

6.6 Status messages shown on the host 75

6.7 Limit (-1.0,1.0) applied to channel 24. 77

xiii

Chapter 1

Introduction

Figure 1.1: Automotive Engine Test Cell

(Centre for Mechatronics and Hybrid Technologies, 2013)

In the automotive industry, testing is a major task in ensuring vehicle reliability.

Engineers have many advanced tools available to assist them in facilitating testing.

A common tool used for testing engines is the engine test cell . An engine test cell

contains the following components:

1

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

• Engine

• Dynamometer

• Transducers

• Data acquisition & control unit

• Host

HostData Acquisition
and Control Unit

. . .

Sensor

. . .

Sensor

Output

Output

Client

. . .

Client

. . .

Figure 1.2: Layout of engine test cell

The purpose of the engine test cell is to create an environment where quantifiable

data can be acquired from the engine and used on a host computer. Data acquired

from an engine are quantities pertaining to linear or rotational movements of mechan-

ical parts such as the crankshaft or pistons, electrical voltages and currents such as

spark plugs and alternator outputs, or thermal/barometric levels at different points

on the engine.

In the engine test cell , we were previously using LabVIEW as its monitoring

and control interface. Unfortunately LabVIEW is closed source, which limited our

flexibility in research. In order to improve control of the engine test cell beyond

the range of LabVIEW, we created our own interface suite. This project aimed at

developing a solution to observing and interacting with the engine test cell . We

needed a lightweight product and less restrictive license for use in observation and

research of the engine. To achieve this task, we decided to create a new suite as an

alternative to LabVIEW’s virtual instrument in use.

2

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

A suite is a collection of software tools and modules used to accomplish tasks such

as:

• Gathering and pruning of data from outputs

• Mathematical calculations/modifications on sets of data

• Output data into human-readable format(sending to displays and other devices)

• Output data into machine-readable format(sending to other suites/systems)

The project was further extended to allow the host to send data to client comput-

ers. These clients connect to the host to retrieve data and send commands to observe

and alter the engine’s set points. The main focus of the project was to create both

the host and the client to collaboratively monitor and control the engine cell.

Host

Client Client Client Client Onsite Storage

Figure 1.3: Layout of host and client

In isolating the graphical user interface to the clients , we separate the observation

and controlling aspects from the data acquisition unit and host to the clients , making

it more economical to reduce the processing requirements of the host to a smaller,

more portable computer system. The purpose of this was to separate the project

into smaller sections for deploying the DAQC compactly into a vehicle or other such

environment.

3

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

To make the system operate in a specified manner, tuning must be done before-

hand. Tuning the system is done to set up how feedback loops and set points will

affect the operation of the engine test cell suite. This tuning is crucial for crafting a

system to do what is desired. In the engine test cell suite, the host can be designed to

accomplish feedback through deriving output channels from specified input channels.

As each channel can be linked to inputs from the clients , modification of the host’s

feedback loop parameters can be changed during execution if desired by the engine

test cell suite designer.

PLANTCONTROLLER

MONITOR

Setpoints

Feedback Monitored
 Output

Tuning

Figure 1.4: System Feedback Loop

When monitoring and/or controlling a system, there must be a method of commu-

nicating between the monitoring/set point (host) system and the target controlling

(DAQC) system. If the two systems are physically close in proximity to each other,

it may only be necessary to physically connect the control wires (if electrical), or

drivechains and pumps (if mechanical). In cases where being close to one another is

not possible, remote connectivity over networked communications may be required.

Networked communications are done with software and hardware to allow transmit-

ting and receiving information compactly over communication lines such as:

• Telephone Lines (RJ-11, RJ-23)

• Serial Communication (I2C, SPI, TWI)

• Ethernet Connections (RJ-45)

• Proprietary Connectors

4

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

To interface with the engine test cell suite, a user interface (UI) is built to facili-

tate operations. User interfaces are collections of icons on a computer screen which

organize input and output to/from a system. For this project, we looked at graph-

ical user interfaces(GUI); where actions are done through using a pointing device

connected to a computer with a keyboard for entering values and other inputs.

To create this project, we developed the communication class implementation and

the client/host collaboration systems. Starting at the network socket and file I/O

levels, we devised a polymorphic communicator which would ease the requirements

of client information transfer from one to all clients . Once the communicator was

implemented, we were able to devise the client’s frontend to be based on a standard

user interface library called FLTK which would fulfill the need for an easy to configure,

lightweight dependency for operator input and output. The backend was designed to

take advantage of the communication implementation to read and write data to/from

the host over a specified network path. The host was designed to plug into a fellow

graduate’s real-time Linux data acquisition & control module when their work was

to be completed. As of now, we await their work to be finished before full integration

of the communication system can be done. Testing has been done to determine that

it is feasible to read and write the data from the real-time module for sending and

receiving data between the host and clients . Until their work reaches completion, the

system will not be available for testing in a proper testing environment.

5

Chapter 2

Background Review

2.1 Overview

The engine test cell , as stated in the introduction, uses monitoring and controlling

tools to gather information on an engine’s operation. Monitoring tools provide proce-

dures to produce observation data on the engine. An engine’s execution is controlled

to simulate and test certain conditions and events. To monitor and control the system

interactively, an interface accompanies the engine test cell in a suite.

When designing a monitoring and controlling system, there are general user in-

terface suites available. Many are actively used in the educational and commer-

cial/industrial sectors. These suites allow an operator to operate an interface using

premade graphical components on a computer. The capabilities of these suite are

modular. Components can be added and removed without redesigning the interface

from an empty initial state. Modules provide functions distinct and specific to their

particular operation.

To enable communication between suites and target systems (whether local or

6

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

networked), each suite employs a backend to facilitate intra-system and inter-system

communication. The different types of communication protocols are numerous, so

focus will be on those most prominently used in mainstream user interface suites .

2.2 Controlling Systems

To control a system means to change the inputs, which can effect a change in the

outputs of the system.

The personnel controlling the system, in contrast to those programming it, are

deemed the operators . As the team members in charge of running the system, oper-

ators will use a control interface to modify the behaviour of the system. The degree

to which a system can be modified depends upon the number of available states. For

complex systems, an intuitive interface is desired as its main objective is to stream-

line the inputs available to the operator without hindering their ability to reach all

specified states of the system.

A model of the inputs, outputs, operations, and effects can be defined through a

state machine.

2.3 State Machines

A finite state machine is a model describing how a system will respond to events dur-

ing its operation. We refer to these events as a finite sequence of “symbols” (inputs)

into the model, which is in turn used by the model to reach an “answer” (output)

(Rabin and Scott, 1959, 115). State machines are beneficial for understanding how a

system will operate after an initial sequence of events. States and event transitions

7

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

visualize the operations of the system in a more intuitive and natural way for develop-

ers and operators than enumerated or itemized lists. (Harel, 1987, 232.p3). A simple

example of a state machine can be seen in Figure 2.1. Each arrow originating from

one state to the next is a transition. These transitions are events which conditionally

mark when a state should be relinquished and operations changed to the next state.

The next state must exist in the finite non-empty set of internal states for the

machine to be complete (Rabin and Scott, 1959, 116). Using undefined states removes

the finite resolution of a sequence of inputs for a state machine. In addition to avoiding

undefined states , a deterministic finite state machine must avoid non-deterministic

execution.

To avoid non-deterministic execution, where the next state cannot be predicted

from the previous state and transitioning event, events must satisfy mutual exclu-

sivity. It must not be possible to arbitrarily choose between two transitions during

execution (Huang, 2010, 37.p2).

ON OFF

OFF Button Pressed

ON Button Pressed

OFF Button PressedON Button Pressed

Figure 2.1: Simple State Machine

State machines can be represented in state diagrams , which are a type of control

graph.

8

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

2.3.1 Control Graphs and Diagrams

Graphs and diagrams have been designed to facilitate expressiveness in representing

the aforementioned systems. Through fundamental theory, Harel explains that graphs

and diagrams are sets of points and nodes with interconnections, edges and arcs, for

expressing some type of link between two or more entities (Harel, 1988, 514.p3). Edges

and arcs join each point or node in a way relevant to the concerns being displayed

by the graph. Simplifying the structure of systems into such primitive designs may

cause some details to become lost or overwhelm the graphs, which is a factor in

choosing certain model types. Harel states that events causing a transition from a

“large number of states, such as a high-level interrupt” can result in an “unnecessary

multitude of arrows” (Harel, 1988, 522).

A trade-off between node complexity (the number of details per node) and link

complexity (the number of links between nodes) is one of the defining features of

control graphs and diagrams. Simple graphs such as state diagrams can have high

link complexities to the point where the diagram is convoluted with numerous transi-

tion links if certain events are universal to most states (Harel, 1988, 522.p4). Higher

abstraction graphs such as state charts reduce the number of transition links by in-

creasing the defining semantics required to create and interpret such graphs. The

trade-off is between quantity (number of transitions) and quality (number of seman-

tics).

A type of graph used for illustrating signal relationships is the signal-flow diagram.

9

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

2.3.2 Signal-Flow Diagrams

Signal-flow diagrams are graphs used to depict relations between signal outputs and

signal inputs. Two important aspects of the graph are loops and gain between signals.

Gain is the ratio between two connected nodes on the graph, which is the ratio of

signal magnitude from one node to another (Edwards, 2001, 3-11.p1). Loops are

multi-node connections where a specified node is its own ancestor and descendant.

Loops are important for representing feedback relationships between signals within

the diagrams. Feedback returns information to a signal about the net propagated

effect of output. Since feedback is not separable into its amalgamated components, it

can only be used to ascertain whether the signal caused a general increase or decrease

in magnitude of the output. The only limit to the number of feedback loops in a

signal-flow diagram is the number of unique connections between each node.

In conjunction with a controlling system, a monitoring system poses another part

of the control system structure.

2.4 Monitoring Systems

Monitoring a system and controlling a system are different in view of their distin-

guished roles. Monitoring systems record and display the properties of the system

to an external entity. Controlling a system changes the system’s inputs and state to

operate towards a desired output.

Parnas used his four variable model to relate the real world input and outputs

variables to the internal software input and output variables (Parnas, 2003, 14). The

four variables are the physical and virtual mappings of monitored and controlled

10

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

quantities.

Virtual World

Physical World

Monitored Variables Controlled Variables

Inputs Outputs

Software

REQ

Figure 2.2: Layout of four variable model

Reading values into a requested form for an input or output variable may require

converting the values between continuous and discrete forms. It is necessary to de-

termine if the perceived values (values gathered by the monitor) adequately resemble

the system being watched. Computer systems are inherently discrete in operation.

In contrast to the continuous values, discrete values occur at distinct intervals in a

discontinuous mode.

During monitoring, it is not possible to observe data and directly “read” it into a

computer system in its original continuous form; it must be sampled . Sampling is the

reading of values at predetermined intervals to get an approximation of the values

when the intervals occurred.

To compare continuous versus discrete values, several major differences must be

resolved. Each digital value occurs after a certain time delay inversely proportional

to the operating frequency. The higher the frequency, the higher the sampling rate,

the lesser the magnitude of time intervals and thusly a representation of the signal

more closely approximating the continuous time signal, if the resolution of the sys-

tem is the same at the higher sampling rate (Branicky et al., 2000, 2355.p6). To

increase the frequency and sampling rate, we need to conform to certain limitations

11

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

within components of our “monitor”. Limitations may be due to physical compo-

nents, connections/communications or logical properties of the system. Exceeding

these limitations will result in inaccuracies or precision errors resulting in misrepre-

sentative data.

The problem of retaining values does not stop at the relation between real world

values to virtual variables, there is also a consideration about “how” these variables

must be stored. To do this, an understanding of the digital representation of values

is necesssary.

2.4.1 Digital Value Representation

Computer systems have the ability to store information not because of an inherent

translation ability, but through executed conversions between virtual formats and

binary storage. As explained previously when describing Parnas’ four variable model ,

a relation between the internal binary structures of a computer and virtual values

must be formed to use such values.

Floating Point Representation

Floating Point is defined by the IEEE 754 as a standard for encoding and decoding

scientific numbers

Numbers encoded in this format follow a designation for the number of bits to use

to represent the information required (IEEE, 2008, 9.p2):

• Sign - Whether number is positive or negative

• Exponent - Magnitude of number in base-10

• Significand - Integer value with no exponent

12

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

Integer Representation

Integers are one of the basic virtual representations of data on a computer system.

Created in fixed bit-length sizes such as 32-bit, 64-bit or higher, these numbers can

represent values from 232 (approx. 4.29 billion at unsigned 32-bit) to 2n for n bits

(approx. 3.40 x 1038 at unsigned 128-bit).

One major concern when dealing with integers (especially when stored on trans-

ferrable media) is the endian type of the architecture the integers are being used on.

Big endian is a storage method where the bytes are stored based on the most signif-

icant part of the computer’s internal registers first. Little endian allocates the least

significant part of the register first (James, 1990, 1.p3). When information travels

between little endian and big endian systems without regards to conversions of byte

order, the extracted value of the information will be incorrect. The ordering of bytes

will affect the interpretation of data on the opposing system.

If all computers and devices in a working group, such as an environment or system

cluster, operate on the same byte order, this point becomes moot and can be avoided.

Floating point and integer data are utilized in representing data values in low-level

networked monitoring and control.

2.5 Monitoring & Control over Networking

With the continued success of the Internet and communication over inter-entity me-

dia (Ethernet, Modem, etc.), controlling systems remotely using networked computer

systems has become very favourable in contrast to monolithic all-in-one systems.

Monolithic all-in-one systems were systems hosting all calculations and operations

13

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

within a single computer. As requirements for such systems increased, the price in-

creased at a higher-than-linear rate. By using multiple networked computer systems,

the role of calculations and acquisition became shared. This lowered the overall cost

of the system.

Communications over a network are composed of messages . Each message is an

electrical transmission sent from one system to another for the purpose of exchanging

information digitally. The information is encoded in a standardized fashion to allow

reliable transceival on the sender and recipient sides of the network. These standards

for transmitting and receiving are numerous, from industrial proprietary standards

to open source free-to-use standards. Below are a few examples of physical standards

for network communication (IEEE, 2013):

• Ethernet - IEEE 802.3

• Wireless Networking - IEEE 802.11

• Personal Wireless Networking - IEEE 802.15

Each standard, as stated by the IEEE, defines the specifications for implementing

compatible communication devices. For general purpose communications, the open

standards work well enough in addition to being under lesser restrictions than indus-

trial proprietary standards. One major advantage of using these open standards is the

overwhelming number of off-the-shelf devices ready for purchase from manufacturers.

Depending on the properties required, these devices can perform the lower-level phys-

ical communications without having to put a larger load on the computer systems

executing the backend , if such communications are necessary.

These devices will take care of forwarding and receiving low-level messages . One

14

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

of the major issues with communicating between systems over a network is the impor-

tance of timing between messages . If a message is sent to another system, it must be

received within a pre-defined amount of time. If the message takes any longer than

expected, it will timeout . Timeout is the failure in which the message is determined

to have been lost or never sent. Even if the message reaches its destination after

being timed-out, it will be discarded as an error since the recipient wasn’t expecting

it anymore, as seen in Figure 2.3. Without being able to timeout messages , commu-

nications would never be able to shut down, as it could miss a message still on its

way.

"A" Message Sent

Time Progression

"A" Message Arrival

"A" Message Timeout Limit

"B" Message Sent

Message Transmit

"B" Message Timeout Limit

"B" Message Arrival

Failure To Receive Message

Figure 2.3: Message lost due to timeout

The maximum length of time between messages has a different effect; the lower

the maximum time between them, the higher the number of messages which can be

sent per second. This leads to a higher data rate. Any events, such as overburdening

the network with enough traffic to overwhelm the transmission medium, will cause

the timing between messages to increase. This will lead to a drop in the effective

data rate (Branicky et al., 2000, 2355.p6).

Being able to send a message is only one part of the problem. To sufficiently trust

the data sent as being relevant for the current time frame, we need to be able to know

15

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

that the message has arrived without significant delay. If the delay is too long, the

information sent may not be correct for the time being. This is where deterministic

networking is necessary. Not only must a message arrive, it must arrive within a

specified time frame (Galloway and Hancke, 2012, 3.p2).

2.5.1 Deterministic Networked Control

In networked control, the determinism is related to the reduction of “randomized”

properties of the system. If messages arrive haphazardly with no precision to when

they arrive or are sent, the system cannot be deterministic. For deterministic net-

worked control, we need a system with strict limits on the maximum length of time

between messages . Being able to limit the length of time between messages to a finite

range is not the only problem inherent in deterministic networked control. For the

receiving system to operate on the data it reads from the transmitting system, the

information must be “fresh”. The data must be relevant to the current value. If the

system is receiving data after it has changed, the information loses its relevancy and

becomes “stale”.

As stated by Halpern, the information available to each entity will limit the actions

they can accomplish successfully (Halpern and Moses, 1990, 1.p4). To know what this

“information” entails, we need to give an adequate description of what it is and why it

is important. If we imagine the delay between systems as a barrier between local and

remote “knowledge” (information), or location-based data, we can infer that a system

cannot work unless it can resolve some distant remote data into local data for further

operations (Halpern and Moses, 1990, 7.p1). Even after resolving such information, it

is to be assumed that the information could already be expired and changed. We can

16

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

never perfectly synchronize local and remote information with non-negligible delay,

so we must make some trade-offs.

Since we are working with a discrete system, we can assume that by following

what was said by Galloway above, by keeping the network transit time to be shorter

than the time between data changes, we can assume the information on both sides

of the interconnect to be “synchronized” (Galloway and Hancke, 2012, 3.p1). This

skips over the fact that networks are not absolutely reliable in their transmissions;

any messages lost, even after being retransmitted, will affect the synchronicity of the

systems if the entire process takes longer than the time taken between data changing.

While controlling a single system with a single controller is relatively straightfor-

ward and direct, having multiple systems being able to connect simultaneously to

a single host is a different matter. In a distributed form, where each system has

some non-negligible delay between each other, we cannot assume that information

will reach each client at the same time. The delay, however small, will affect the

outcome of systems sensitive to the timing of receiving information.

To better understand the effect of order and timing of events, we can observe the

properties of causality .

2.6 Impact of Causality

Causality is a diverse topic surrounding the cause-and-effect of serial and parallel

events occurring in regards to one another. Causality is a major concern in the case

where events affect the progression of one another. Given event “A” and “B”, if “B”

cannot exist until “A”, it is said “B” depends on “A” (Lamport, 1978, 559.p7).

As discussed above in the distributed networking section, we need to understand

17

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

consistency between transmitters and receivers. The messages sent are assumed to be

transmitted successfully and, if the protocol allows for it, are organized in successive

order when received. Transmission control protocol (TCP) is such a protocol, which

helps alleviate order-of-receipt problems, but it is not the only applicable protocol

for networking. Other protocols, such as user datagram protocol (UDP), can be used

with or without adaptation if it is constructed in a way to avoid causal conflicts and

problems.

The focus on causality with respect to computer science will be on the analysis of

deadlocks and race conditions .

2.6.1 Deadlocks, Race Conditions & Causality

For systems, regardless of their digital or analog mechanisms, we must be aware of the

way these mechanisms interact with each other to avoid non-deterministic outcomes.

In computer science, a very well known yet hard to predict problem is the existence

of deadlock and race conditions . Deadlock is an event where two synchronous event

progressions reach a point where both require the other to finish its current state

before the waiting event can continue. Once a system reaches this state, an external

method must occur before they may exit. These methods consist of hard resets,

interrupts, or other such interjections of control.

Race conditions are symptoms of synchronous and asynchronous event progres-

sions where the time at which both events reach and finish, a specific state is am-

biguous. The system will react differently in relation to whichever event is resolved

as finishing “first” (Schwarz and Mattern, 1994, 1.p1). Without mechanisms such

as semaphores, mutexes, memory/progression barriers, and signals to avoid such a

18

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

problem, both race conditions and deadlocks can occur frequently and/or sporadically.

Even if a system reaches deadlock , it is hard to detect this without some method

of reading or inferring the overall state of the system. With a system of multiple

components working together, the status may only be found by resolving states into

“explicit knowledge” (Halpern and Moses, 1990, 7.p1).

One of the current paradigms to organize and operate components in software is

object-oriented programming .

2.7 Object-Oriented Programming

Object-oriented programming is one of many paradigms used for organizing the flow

and expansion of concepts and ideas in software systems. As a deep and expansive

paradigm, only a small subset of features will be described below for their relation to

the software project.

Object-oriented programming has methods of encapsulating procedures and data

into a hierarchy of classes . Classes define inheritable procedures and storage struc-

tures which can be directly expanded upon through inheritance (Cook, 1989, 1.p2).

Implementing programs using object-oriented programming can be done through sep-

arating concerns into distinct components. To do so efficiently and effectively requires

fully analyzing the system design for interdependent and independent components.

Inheritance is a design choice where ancestral, lower level objects share properties

and methods to descendant, higher level objects. The reasoning for inheritance is

to reduce duplication of properties and methods which exist in multiple locations

and perform the same tasks. By organizing the definition of structures to reside in

shared locations, design changes can be done without increasing the required work to

19

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

implement these changes in an existing infrastructure.

Classes are a collection of properties to express an object’s “blueprint”. Each

class dictates the properties and methods of an object , and from where they receive

these methods and properties from. Classes are beneficial in localizing methods

and properties which are important for the defined objects to execute correctly and

efficiently.

A major step towards effective object-oriented programming is high object cohe-

sion with low coupling . Cohesion in programming is how related the functionality of

higher-level object are to lower-level modules. High cohesion means unrelated mod-

ules are not closely grouped with other modules. The aim of high cohesion is to

keep objects organized and efficient, by only containing the components they require.

Coupling in programming outlines how interconnected different objects are to one

another. In an ideal object-oriented program, objects are connected to one another

only when required to complete their tasks. Creating dependencies between objects

only for some of their modules functionality means the module should be moved up

to a higher level and “inherited” to achieve the same means with lower coupling .

Object-oriented programming can be found in many programming avenues. One

such avenue are user interface design.

2.8 User Interface

To view, interact, and control systems, we need a frontend with which to communicate

an operator’s intentions. Some interactive elements may be as simplistic as buttons,

dials, and lights on a panel, while others have been designed to be visible and emulated

on a computer screen for abstracting away the complexities of the underlying system.

20

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

For computer systems developed over the last few decades, the visual system has

become increasingly complex.

As explained by Wills, the method of communicating data from the system to

the operator is a type of “dialogue”. These interactions can range from command-

line interfaces where typing is the main input method, to highly graphical displays

containing collections of images and text (Wills, 1994, 417.p7). Current consumer

computer operating systems use these user interfaces explicitly for simplifying all

actions down to the use of a movable on-screen pointing image and graphical entities.

For many consumers, the user interface is the focal point of their interactions, as it

is the part people can directly control and view; from being able to watch its graphical

outputs to the movement of on-screen elements to send inputs to the system (Galitz,

2002, 4.p2). An interesting aspect of isolating all elements onto a screen is the effect

of graphical positions of inputs and outputs to a user; increasing the confusion and

distortion of elements increases the time required to operate the system for similar

work flows through extending the amount of time required to verify corrections of

inputs and outputs (Galitz, 2002, 5.p3).

While building user interfaces from the ground up is possible, user interface suites

have made it possible to generate adequate interfaces with very little effort required.

2.9 User Interface Suite

User interface suites were designed to produce a common set of tools for programmers

to create interfaces. By creating a standard set of tools, making interfaces should be

easier than if the interface had to be designed from the bare operating system basics

(Galitz, 2002, 23.p8).

21

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

Some suites are “multi-platform”, which makes it easy to move a project between

different operating systems. For a suite to be “multi-platform”, it must be able to

build on multiple operating systems with no platform-specific modification required.

The images and icons on a user interface are usually linked to data storage in the

back-end of the user interface suite, which allows communicating information to and

from the backend (Xudong and Jiancheng, 2007, 540.p9).

This project’s focal type of user interface suite is Signal-Flow UI suites. These

types of suites use the step-by-step evolving state of the model to generate the output

data rather than symbolically solving the system before extracting the final data.

2.10 Signal-Flow User Interface Suite

Signal-Flow user interface suites , model systems by simulating the flow of information

as signals . Signals are routed between virtual objects during time intervals. As each

signal passes through an object, it is altered to reflect new information attained from

each particular object in its path. By modelling the progression of the system from

one time frame to the next, the signal-flow user interface suite’s backend can model

systems which cannot be easily broken down into equations and formulae.

The visual elements of a user interface suite have become synonymous with “drop-

in” design components. These elements make up what can be classified as “drag-and-

drop graphical user interfaces”.

22

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

2.10.1 Drag-and-Drop Graphical UI

Most suites that fit under the designation signal-flow user interface suite use drag-

gable elements on-screen to arrange and output information. These “draggable”

elements can be moved through the use of an on-screen pointer to be positioned in

relation to the application as necessary.

When designing an interface for use, it is imperative to keep the arrangement of

symbols and elements as compatible with the operators whom will be using the inter-

face as possible. Of course, for designing the software which will be used by operators

to create derivative interfaces, it is favourable to implement certain “features” to limit

the discord which can be created by disorganized operators (Galitz, 2002, 24.p7).

Mathworks has a specific suite under the name MATLAB, with a feature called

Simulink.

2.10.2 MATLAB(Simulink)

MATLAB’s Simulink is a product built into Mathwork’s MATLAB suite to perform

data processing and simulation with both physical and virtual data. Simulink has the

tools required to create a user interface with blocks to facilitate signal flow processing

and manipulation. The blocks shown in the user interface suite appear to be based

strongly on the block diagrams explained beforehand. As stated by Rajagopalan,

the information generated by blocks is sent to other blocks internally, depending

on the graph “lines” connecting one block’s output to another (Rajagopalan and

Washington, 2002, 4.p2).

The inherent values generated by blocks in Simulink are causal in nature; values

cannot be created from information in the future unless those values have already

23

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

occurred and the workflow is being executed as if it were simulating the future. For

causal, non-linear systems, Simulink can numerically solve the system, avoiding some

disadvantages to solving the systems analytically. The nonlinearities are simplified

and calculated during solving steps, or “iterations”, where each time sample can be

used as a snapshot of how the system has evolved to this point (Rajagopalan and

Washington, 2002, 12.p1).

Using the library of ODE solvers, Simulink has the ability to solve certain classes

of differential algebraic equations (DAE). One example is the use of the “ode15i”

solver to solve differential algebraic equations of index 1 (Mathworks, 2013). Other

equation-based solvers have the ability to solve higher index cases symbolically instead

of numerically. Modelica provides an example of problematic higher index DAE where

it must be reduced symbolically before numerical solvers can be applied to generate an

accurate and reliable answer (Association, 2012, 253.p8-9). High index DAE solutions

in general cases are not available currently in 2013 for Simulink.

National Instruments LabVIEW is another similar example of a suite providing

numerical analysis and signal-flow user interface construction.

2.10.3 LabVIEW

LabVIEW is a data processing suite created by National Instruments Inc. It includes

an array of modules and libraries for creating simulators and interfaces to monitor,

model, and control systems. Modules in LabVIEW are components used with one

another to create a virtual system. Operators can link into a real world system and/or

simulate a similar system using these components. LabVIEW has some features which

are used to help produce user interfaces and simulators that work concurrently with

24

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

each other. Some features, like the Event Structure, are used to expand on the

paradigms available for the engineer or operator creating a respective project (Smith,

2012, 1.p3).

Each LabVIEW project is called a “Virtual Instrument”. In a “Virtual Instru-

ment”, modules are represented by widgets which are organized on the “Front Panel”.

These widgets have an onscreen appearance which differentiates one type of widget

from another. In the case of LabVIEW, each widget represents a corresponding in-

put/output block which appears on the “Block Diagram” screen. The outputs of

these blocks are linked to the inputs of one or more blocks to form a flow of signals.

While the project is executing, the inputs and outputs will be updated to reflect the

state of the system and any attached devices. Devices can be data acquisition devices,

or any other supported peripherals.

A “Virtual Instrument” can be changed only if it is not currently executing. If

modules are to be added, removed, or changed, the project must be stopped. Once

the changes are complete, the project can be executed again.

The modules available to LabVIEW are proprietary. To use such modules, a

license must be obtained from National Instruments Inc. The suite is closed source

which does not allow viewing and modification of the core program source code. In

addition, the majority of drivers used to connect to peripheral devices are Windows-

only. For any projects which are to be run on other operating systems, this will hinder

development.

25

Chapter 3

Requirements

3.1 Introduction

3.1.1 Purpose

The purpose of this chapter is to define requirements of the engine test cell suite.

Requirements specify what the engine test cell suite needs to fulfill to accomplish its

role in diagnostics. We define two major types of requirements and expand on the

requirements needed to create a working engine test cell suite. Decisions with regards

to how the engine test cell suite will operate are discussed in section 4, the design

chapter.

3.1.2 Conventions

Interactive software has a user interface which is backed by a layer such as the

“business logic” or “processing layer”. When referring to the engine test cell suite

“user interface”, it is called the frontend . When referring to the engine test cell suite’s

26

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

“business logic”, it is called the backend . When referring to the “data acquisition

and control unit” attached to the engine as part of the engine test cell suite, it is

abbreviated as DAQC. The users of the system are the operators and developers .

The operators are the standard users of the frontend . Their purpose is to operate

the system in day-to-day engine test cell suite diagnostics for testing and reviewing

engines. Developers are users whose role is to program the frontend and backend of

the engine test cell suite to operate in a specified fashion.

3.2 Overview

The frontend and backend are described in terms of their requirements from operators

whom are expected to be the primary decision-makers in control of the software.

The requirements are split into two major groups, safety requirements and operating

requirements .

3.2.1 Operating Requirements

Each of the requirements described under operating requirements outline requirements

which keep the system working as specified. While failing to adhere to the safety

requirements is critical to the safety of the operator and surrounding environment,

failing to adhere to these operating requirements will affect the efficiency, reliability

and ease of use of the system.

27

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

3.2.2 Safety Requirements

Each of the requirements described under safety requirements are employed as risk

mitigation properties of the system. These requirements help to avoid critical situa-

tions which may arise during operation if proper techniques are not upheld.

Both the frontend and backend share the following safety requirements:

1. Availability (Controls must not block other controls)

2. Safe (Operator and plant must be safe from damage during operation.)

3. Reliable (If operating environment changes {network traffic, latency, etc.}, the

system must continue operating as specified.)

If the system becomes unavailable, the operator risks losing control of the system

when problems arise. If the system becomes unsafe, the aforementioned loss of life or

system integrity is more likely to occur. If the system becomes unreliable, errors can

cause failure to operate as designed. Watching the system to see whether it is still

working correctly can be done through a watch dog or through a feedback system to

keep track of unresponsive components. This will be discussed in the design chapter

of this thesis.

3.3 Frontend Requirements

The frontend of the system is the user interface. Operators of the system will interact

with the engine test cell suite through widgets in this interface.

28

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

3.3.1 Operating Requirements

As a user interface, the frontend contains widgets. Widgets are objects with an

on-screen appearance. The widgets fit into the following categories:

1. Calculators

2. Operator input

3. Operator output

Calculator (scientific) widgets calculate scientific features from data. Operator

input widgets take information from the operator , which is then be sent to other

widgets. Operator output widgets take information from other widgets and present

them to the operator .

3.3.2 Widget Requirements

Of the categories listed in the operating requirements section, there are specific types

of widgets which are widespread and well used on interfaces. These widget types are

listed below, along with which category they fit under.

In Figure 3.1, the intersecting boxes illustrate combinations of multiple categories.

Some utilize communicating information across to other machines or entities in addi-

tion to outputting information to the interface, while some may use both input and

output from the operator . Information, such as channel values and incoming data,

are sent to the frontend by the backend to be outputted by output widgets. Widget

input data is sent to the backend by the frontend to be used as specified.

29

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

CALCULATOR

OUTPUT

Textbox Dial

Numeric Textbox

Rotary Meter

INPUT Radio Selector

Graph

Transform Calculator

Checkbox

Progress Bar

SliderBar

Calculator
&

Input

Input
&

Output

Inherits from X to produce Y

Widget Class Type

Inherited Widget Class Type

LEGEND

Figure 3.1: Widget types represented by operation type and example inherited types

3.4 Backend Requirements

The backend is the business logic of the engine test cell suite. The purpose of the

backend is to execute procedures initiated by the operators while receiving data from

the outputs of the engine test cell suite to be displayed on the frontend .

3.4.1 Operating Requirements

The requirements described below dictate what the backend must adhere to for opti-

mal operation of the engine test cell suite.

1. Backend must convey main operator’s change requests to the DAQC.

2. Backend must convey DAQC data to the frontend for all operators .

30

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

3.4.2 Communication Requirements

The communication component of the backend consists of procedures in transferring

and receiving information between the backend and the host of the engine test cell

suite. The mutual relationship between the frontend and backend is the following:

• The frontend requires communication from the backend for receiving data from

the DAQC.

• The backend receives data from the frontend , which is transferred to the DAQC.

For the communication medium chosen by the backend , there should be no impact

on the frontend . The frontend is only required to communicate in a specified manner

to the backend about changes initiated by the operator .

3.4.3 Host Requirements

As a part of the system hosting the DAQC business logic and being the common

end point for client communication channels, the host is required to adhere to the

following:

• The host must apply requests received by the main operating client only if

active and in safe operating conditions.

• The host must transmit all updates received from the DAQC to the connected

clients .

• The host must enter emergency shutdown upon request from main operating

client .

• The host must restart operation only after request from main operating client .

The main operating client designation will be described further in the design

section of this thesis. For the purposes of the requirements section, it is described as

31

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

the only client with the ability to modify the DAQC outputs during operation of the

engine test cell suite.

32

Chapter 4

Design

4.1 Frontend Design

The frontend of the system is the user interface used by the operator to trigger

changes in the engine test cell suite through the backend . The frontend uses widgets

to form the user interface. In addition, the frontend receives data describing the

status of the engine test cell suite via the backend . As described in the requirements

section of the thesis, we will outline the role of the main operating client with regards

to the other monitoring clients .

4.1.1 Operating Design

As stated in the requirements chapter, the frontend contains widgets. For these

onscreen objects, each widget must conform to the following specifications:

1. Widget must specify the type of input it accepts.

2. Widget must be concise and functionally isolated.

33

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

For every input widget, the input type must be specified. If a widget accepts only

numbers, then a non-numerical input must not be accepted to be transferred to the

backend . With functional isolation, widgets must not have side effects which alter

the operation of other widgets. The operation of a widget is constant until the target

procedure is changed to a different operation.

4.1.2 Safety Design

Design choices which affect the safe operation of the system are noted below:

1. Widget must not block other widgets.

2. Widget must be non-modal.

3. Widget must display the value passed to them as-is.

If a widget blocks another widget, the operator cannot operate the interface in all

online conditions. Online conditions are conditions where the engine test cell suite is

executing a test. In addition to avoiding widget blocking, the widgets must also be

non-modal. Changes to one widget must not disable access to other widgets.

Data from the backend must be kept intact before showing it to the operator . If

the frontend modifies the data from the backend , it falsely represents the data as

specified prior to modification. The data being displayed to the operator in this case

is not consistent with the data being stored in the backend . Falsely representing data

may show faults where none exist (false positive) or hide faults where some exist (false

negative).

If a widget fails to send critical control data to the backend , such as control stops

or restrictions, the engine test cell suite becomes dangerous to the operator , fellow

workers, or operating environment.

34

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

4.1.3 Interface Modes

The frontend has three modes, “Initialize Interface”, “Create Interface” and “Inter-

face Online”. Each mode focuses on one of the following tasks:

• Linking the frontend with the backend .

• Creating, loading or saving the interface of the frontend .

• Using the frontend with the backend .

Initialize Interface

“Initialize Interface” mode attaches the frontend to the backend . Once connected, the

frontend will switch to the proper interface setup and continue to “Interface Online”

mode to supervise and operate the engine test cell suite. Error checking must be

done to ensure the system retains reliability for all upcoming operations.

Create Interface

Operating in “Create Interface” mode allows the operator to move and add widgets

to the frontend . As long as this mode is enabled, each widget will be adjustable,

removable and importable. Any changes will be saved and loaded for future use.

This is done with modifying the interface to facilitate new frontend requirements.

Interface Online

Operating in “Interface Online” mode allows the operator to interact with the widgets

on the frontend without the ability to modify where the widgets are, and what effect

the widgets cause. This will be done to keep the interface uniform during operation.

During the “Interface Online” mode, the frontend will send all value changes while

35

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

operating as the main operating client to the backend while accepting value changes

from the backend .

4.2 Backend Design

The backend works to keep input values bound to safe limits during operation. The

backend also synchronizes input and output data with the host . The data received

from the host is processed and further sent to the frontend .

4.2.1 Operating Design

When designing the backend , there are several key aspects which must be planned

for before constructing the system. The operating designs are listed below:

1. Backend must provide frontend procedures to send and receive data to/from

the host .

2. Backend must provide error-checking within procedures to avoid generating

malformed data.

4.2.2 Safety Design

Safety designs are designs related to the physical safety of the surrounding environ-

ment and operator . As such, the following designs outline features which help increase

the safety of the system.

1. Backend must have an emergency stop procedure to send an emergency stop

request to the host .

36

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

2. Backend must be reliable in sending and receiving information to/from the

frontend and host .

The emergency stop procedure returns the outputs under control by the host to

their default initial values. As this does not take into consideration the physical

limitations of the devices attached to specific outputs, shunts may be required to

protect the physical devices from the change in output to the default value. Shunts

must be used if required by manufacturer specifications on specified inputs.

The backend needs to enforce safety when operating the host . Being reliable is

done through keeping the system operating as specified. To do so, message integrity,

message transmission and message receipt need to be monitored for errors. This is

outlined in the following section 4.2.3.

4.2.3 Network

The specifications described below describe how the backend interacts with the host .

1. Backend connects over Ethernet to the host .

2. Backend must resend lost data packets.

3. Backend must discard malformed packets.

4. Backend must reconnect to host in case of disconnection.

The backend works as a synchronizer with the host over the network. Any changes

done by the main operating client connected to the host must be synchronized with

all other clients to ensure consistency of operator observations.

37

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

4.3 Host Design

The host attaches to the DAQC for the duration of use of the suite. During operation

of the engine test cell suite, the role of the host is to modify the set points of the engine

test cell suite through updating the inputs of the DAQC while reading incoming data

from the DAQC. These values are transmitted to all connected backends .

4.3.1 Safety Design

The safety concerns of the host focus on the interactions with the DAQC and the

effects of the DAQC’s outputs.

1. Host must keep DAQC from exceeding the power and voltage limits of the

engine dynamometer as specified by the dynamometer manufacturer.

2. Host must keep DAQC from ambiguous unpowered outputs.

To keep the system from becoming damaged, the host must avoid setting the

DAQC outputs to values which exceed the physical limits of the engine test cell

suite dynamometer. Increasing outputs past physical limits and/or leaving outputs

undefined can lead to safety issues endangering the engine test cell suite and operator .

Values must have the ability to be bound to ranges which satisfy the specified safety

concerns of the engine test cell suite. To know that the system is fully bound, we

must inspect each input/output relation in the system with regards to the outputs

controlling the dynamometer and other such actuators. For each output connected

to a physical system, the specified output must be limited to a range not exceeding

the manufacturer specified limits for the actuator input. If part of the system is a

designated black box in terms of its operation, any outputs connected from such a

system must have a limiter placed between the black box system and the actuator to

38

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

enforce the limitation.

4.3.2 Operating Design

1. Host receives connections over Ethernet from backends .

2. Host transmits DAQC outputs to all connected backends .

3. Host must discard malformed packets.

4. Host keeps track of active backends .

During operation, the host is responsible for ensuring synchronization data from

each backend is propagated to all other active backends . Each backend works in

tandem with the host to ensure the DAQC is outputting the values requested by the

operators , and that the backends receive the data specifying the current input values

of the DAQC.

During design, it was assumed that the host would host business logic to assert

unsafe combinations of controls by defining a specific client as authoritative. This

client has the authority to send shutdown requests to the host , which will bring

the host into an emergency shutdown state. All other clients may send shutdown

requests, which will be forwarded by the host to the main operating client to act

upon. In terms of updating values on the host , only the main operating client may

send these change requests. All clients will receive the updated values as specified in

the beginning of this subsection.

39

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

4.4 Design Focus

The project, as stated in sections 1 and 3.1.2, is an engine test cell suite. The

frontend and backend suite synchronizes data over a local area network. When fully

implemented, it will be possible to view the output data from the engine test cell

suite on each frontend with the ability to connect more backends to the system

during execution. In addition to viewing the data, it will also be possible to modify

the set points on the engine test cell suite using the main operating client .

4.4.1 Widgets

Adding and removing widgets from the screen is done during configuration. Config-

uration is done either online or offline. If the changes are allowed to occur while the

interface is executing a test, the changes are online. If the user interface must be

shut down before changes can be done, the changes are offline.

Offline Configuration

As an example of offline configuration, LabVIEW and Simulink must be changed

while the system is in offline mode. Once the user interface begins execution, repo-

sitioning elements on-screen cannot be done. The advantage of this type of interface

is the simplicity of state. The system is executing or it is being organized and set up

for execution. Mixed cases where the system is being reconfigured while important

events occurred are not possible as long as configuration and execution were mutu-

ally exclusive. A disadvantage of this type of interface is the need for down-time.

One cannot expect the system to be permanently executing while allowing changes

as any changes to the layout require shutting down the interface for modification. An

40

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

interesting case occurs with having multiple interfaces connected to the same host

system. If an operator wants to keep track of the system without losing incoming

information, rolling reconfigurations of each interface need to be designed into the

system. Each executing user interface is sequentially shut down, reconfigured, and

restarted. At least one interface is actively executing while the engine test cell suite

is running. With proper organization, no major events are lost. The additional effort

required for synchronization would be on the operators running the engine test cell

suite.

Online Configuration

For online changes to the system, there is no need for down-time when reconfiguring

the screen. Changes can be done while objects are still rendering data to the operator .

One advantage of this system is less down-time. Removing down-time means

systems can be designed to operate even when they must be altered to conform

to new configuration changes. On-the-fly changes create possibilities for quick and

dynamic testing environments, which can respond to observations of missing data

opportunities and other events.

A disadvantage to this type of interface is the problem of separation of concerns.

When operating with offline configuration, the distinction between “configuration”

and “operation” is done by whether the system is currently executing or not. With

online configuration, there is no distinction; changes can be done during any point

in the engine test cell suite’s operation. Without proper design limitations, unautho-

rized operators may alter the system accidentally, negatively affecting the outcome of

testing or inadvertently causing loss of control within the system. This is one of the

41

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

flaws of removing mutual exclusivity between “configuration” and “operation”. After

deliberation, we decided to use offline configuration, to avoid the situation where two

differing systems instantiate a conflicting change in the configuration of the interface.

4.4.2 Reliability

For successful data transfer within the engine test cell suite, data reliability is crucial.

Any data missing after transmission can lead to incorrect operation of the engine test

cell suite. Missing control data will result in missing steps outputted by the DAQC

system.

A desired feature of the backend is “continued reconnection” for network commu-

nications. If the network connection does not stay consistently connected to the host ,

the backend will recreate the connection. This is done until either the connection is

re-established or the engine test cell suite is terminated. Information which fails to be

sent will be queued up to be sent again once the connection is properly re-established.

With respect to the two major protocols, UDP and TCP, the reconnection system

will differ for each. The UDP connection will use a wake-up packet to keep a virtual

connection established between the backend and host . Each of the aforementioned

features described help bring a connection back to working status without interjection

by the operator . Even with these steps, packets lost due to network transmission and

reception problems are still an issue, but the problem of manual reconnection will not

be such an issue.

The communication subsystem of the backend is required to be protocol compat-

ible with the communication subsystem of the host . “Protocol compatible” means

messages comply with the protocol through selectivity of information contained within

42

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

the message. Any messages which appear protocol-incompatible will be discarded, as

accepting corruption will alter the state of the backend and host indeterministically.

This is due to the nature of corruption as a random alteration of the data through

environmental factors such as network traffic and transfer medium imperfections.

In terms of security, the system trusts each client to not be malicious. Inputs are

assumed to be set by operators trained in the proper operation of the interface as to

not impede on the safe operation of the engine test cell . Security considerations are

listed in the future considerations section 7.2.

4.5 Frontend & Backend Components

Host

<OBJECT PURPOSE>

::<OBJECT CLASS>

DATA TRANSLATION

DATA INPUT/OUTPUT

LEGEND:

Network Transmission

::netUDP

::netTCP

DAQ->Host

Network Reception

::netUDP

::netTCP

Host->DAQ

Cell

Replay Data->Clients

DAQ

Logger

::fileXML

::fileBIN

Replay File to Clients

::fileXML

::fileBIN

To Clients

From Clients

Figure 4.1: Flow of data throughout engine test cell suite host

43

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

Client
Backend

Frontend

<OBJECT PURPOSE>

::<OBJECT CLASS>

DATA TRANSLATION

DATA INPUT/OUTPUT

LEGEND:

Profiler Network Reception

::netUDP

::netTCP

Network Transmission

::netUDP

::netTCP

Ethernet To Host Ethernet From Host

Widgets Input

::Fl_Widget Update Widgets

::Fl_Widget

Host->Channel Data

Config File

::fileXML

XML->Settings

Profile Settings

Profile Iterator

::Backend

Channel Data

Channel->WidgetWidget->Channel

Figure 4.2: Flow of data throughout engine test cell suite clients

44

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

The information within the engine test cell suite travels from the DAQC through

the host to the backend and frontend by a series of components composing the engine

test cell suite.

4.5.1 Widget Management

Frontend operations occur through interacting with input widgets. Widgets are

mapped within the frontend to channels. Value changes are sent to the backend

during widget update callbacks . Callbacks are procedures called by event handlers

when events such as operator interactions and system interrupts occur. When the

operator activates a widget through input of data, its linked callback proceeds to send

the data to the backend .

If the sending client is not the main operating client for the engine test cell suite,

the updates will not be accepted by the host , and the backend of the offending client

will receive an error message stating that such an operation is not permitted.

In the case of output widgets, data received by the backend from the host is

sent to the frontend . The frontend synchronizes all widgets awaiting updates for the

specified channel of the engine test cell suite. For output widgets with a history of

values, such as a chart as shown in figure 4.5, the data is appended to the previous

data to show a progression of values.

4.6 Visual Representation

The collection in figure 4.5 shows a selection of widgets available from the FLTK

library. Widgets appear in a form determined by their instantiated features. Widget

45

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

Decision

Action/Effect

LEGEND

Convergence PointModule

Class Function

::<Module Class>

DAQ Data/Channel Processor

Network Communication State Manager

EtherCAT DAQ~Host System

Translate Host->DAQTranslate DAQ->Host

Command Received?

Yes

No

No

Validate Command

Yes

No

Await New Message

Send to Client[s]

Client Data Received

Engine Cell and DAQ

Client Data Ready to Send

Extract Channel Updates

Channel Updates?

Yes

Extract DAQ Updates

DAQ Value Updates?

Ready Communication

Yes
No

Receive From Client[s]

Valid DAQ Update?

Frontend Update?

Yes

Network Reception

::netUDP

::netTCP

Network Transmission

::netUDP

::netTCP

Encapsulate Client Updates

Figure 4.3: Control flow throughout engine test cell suite host

46

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

Decision

Action/Effect

LEGEND

Convergence PointModule

Class Function

::<Module Class>

Frontend

Profiler

Client
Backend

Network Reception

::netUDP

::netTCP

Network Transmission

::netUDP

::netTCP

Receive from Host

Yes

No

Interface Update?

User Input

::FLTK

Change Widgets?

Yes

Initialization

Interaction

Program Start

No

Await Next Interaction

Send to Host

Widgets Input

::FLTK

Update Widgets

::FLTK

Channel Update?

Yes
No

Await Next Message

Store Channel Value

Profiler Data Stream

::Profiler

Store Channel Value

Read Profiles from XML

Config File

::fileXML

Figure 4.4: Control flow throughout engine test cell suite clients

47

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

Figure 4.5: Selection of FLTK widgets for displaying and interacting with the frontend

features define how a specified widget will appear on the frontend .

4.6.1 Widget Features

Widget features specify the appearance of widgets on the frontend . Some of the

features are:

• Width of widget

• Height of widget

• Horizontal position of widget

• Vertical position of widget

• Widget name

• Widget colour[s]

When a widget is displayed on the user interface, its features are used to create

the visual representation of the widget on the frontend . The combined appearance

of each widget on the frontend compose the interaction view of the system.

48

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

Widgets which are interacted with by the operator use callbacks to enable widget

control and feedback.

4.6.2 Callbacks

Callbacks are a tool for executing procedures when changes occur to a widget’s state.

Programmers can leverage callbacks to coordinate effects and events without the need

to poll each widget for changes to their state. Callbacks are specific to each widget

instance. The effect of the callback will be dependent on the specific callback linked

to the widget.

49

Chapter 5

Implementation

5.1 Overview of the Project

In the following sections, we discuss the implementation of the project with its ad-

vantages and disadvantages. Each component of the engine test cell suite is outlined,

explaining relevance to the project and compliance to the requirements set out in

chapter 3.

5.2 Physical Details

As introduced in chapter 1, the engine test cell suite produces diagnostic information

from the engine. This information is read by the host connected to the DAQC. Data

is transferred over a network connection to each connected backend . These backends

in turn forward the data to their frontend to display to an operator .

The frontend contains widgets, with which the operator interacts with to modify

the outputs of the engine test cell suite. The state of the backend is synchronized

50

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

C
LI

E
N

T

F
R

O
N

T
E

N
D

B
A

C
K

E
N

D

H
O

S
T

D
A

Q

LE
G

E
N

D

C
om

po
ne

nt

O
pe

ra
te

 O
n

<
X

>

S
en

d
In

fo
rm

at
io

n
T

o
<

X
>

C
on

cu
rr

en
t T

hr
ea

d

In
te

rf
ac

e
Li

br
ar

y

B
ac

ke
nd

 M
an

ag
er

IO
C

on
ne

ct
io

n
IO

C
on

ne
ct

io
n

D
A

Q
 M

an
ag

er

F
ro

nt
en

d
M

an
ag

er

C
om

m
un

ic
at

io
n

T
hr

ea
d

D
at

a
S

yn
ch

ro
ni

za
tio

n
T

hr
ea

d
F

ro
nt

en
d

T
hr

ea
d

C
om

m
un

ic
at

io
n

T
hr

ea
d

D
A

Q
 M

on
ito

r
&

C

on
tr

ol
 T

hr
ea

d

W
id

ge
ts

D
at

a
S

to
ra

ge

C
ha

nn
el

 R
ea

de
r/

W
rit

er

F
LT

K
 T

hr
ea

d

Figure 5.1: Overview of the Engine Test Cell

51

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

over the network with other backends .

5.3 Engine Test Cell Software

The following sections will expand on the implementation of the engine test cell suite

components. Focus will be on the communication of data within the engine test cell

suite, with data being exchanged between the frontends and backends , and between

the backends and host .

5.3.1 Communication

The backends and host communicate over the network module using a communica-

tion protocol built on top of TCP and UDP. This module is implemented in the

IOConnector class.

IOConnector

Information is encapsulated in a communication protocol before being sent within

the engine test cell suite. The purpose of this encapsulation is to ensure the data

being received is complete and valid. The message must not be corrupted during

transmission, and the data must be consistent with the specified encapsulation form.

The main procedures required for operating the communication module are:

1. Create connection to specified target data source

2. Push data over communication medium

3. Pop data from communication medium

4. Delete active connection to specified data source

52

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

These procedures are defined in polymorphic classes. Each class implements com-

munication over a medium which is used to transfer and receive data. Polymorphism

allows for classes to operate in place of a parent class. Each class shares functions

and properties from the parent. To allow definition of functions which differ based

on the current child class, “virtual functions” are defined to perform a version of the

task for the specified class.

IOConnection

fileBIN fileTXTfileXML netTCP netUDP

netTCPServernetTCPClient netUDPServernetUDPClient

Figure 5.2: Overview of the IOConnection hierarchy

The engine test cell suite allows the protocol to use either TCP or UDP as the base

network transfer medium. When using TCP, messages are streamed from the sending

system to the receiving system. Individual messages are extracted from the stream

and parsed in received order. When using UDP, messages are sent as individual

packets, which are processed as they are received. UDP does not handle reordering

of packets upon receipt. As a result, the protocol must add additional data to time-

stamp the packets. This ensures data occurring earlier in the state progression of a

system does not overwrite a later state.

When a TCP communicator is instantiated, the form will use TCP to communi-

cate data. A UDP communicator will use UDP to communicate. By specifying the

operations in derivative classes, changing the medium upon which communications

are done is simplified by changing the instantiation type of the runtime class.

53

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

Network-based Communicator

The network communicator in the backend uses a “many clients to one host” ar-

chitecture. While one host can send to many clients at the same time, clients will

only communicate with one host . The simplicity of this architecture means client

communicators focus on keeping their connection to the host refreshed. In return,

the host sends to clients which are currently active and have not timed out.

Protocols such as TCP have a built-in timeout metric for detecting when a com-

munication target is not available. For communication protocols where a built-in

timeout metric is not available (such as UDP), a “timeout-based round robin sched-

ule” is used by the host to check for received messages and send messages to clients .

During a “timeout-based round robin schedule”, each client’s communication channel

is observed for incoming messages. When a message is received, the timeout count for

that specific client is reset. Once the message has been received for that client , the

next client is observed. After all clients are observed, the process repeats. During

this second phase of the process, the current outgoing message is sent to each client as

per the schedule. If the maximum specified timeout is reached, the associated client

is removed from the schedule.

The TCP communicators use “piggybacking” to keep frames together in case mes-

sages run over multiple packets. “Piggybacking” is the attachment of one message

onto another to avoid sending small messages whereby a large message could accom-

plish the same purpose. By using a sliding buffer type of “piggybacking”, it is possible

to maximize the bandwidth between host and client (Tanenbaum, 2010, 226.p5). If

pieces of messages are sent, TCP will reorder them on receival after making sure they

are sent successfully. Once reordered, the message is reconstructed and isolated from

54

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

garbage data.

In UDP communicators, the messages are sent in one piece up to the maximum

transmission unit size (normally 1480–1500 bytes per packet on 100Mbps Ethernet).

Due to UDP’s lack of retransmission and ordering utility, we cannot use “piggyback-

ing” of data across UDP messages. UDP does not create “communication streams”

akin to TCP.

To keep the connection active, the UDP communicator uses a keep-alive packet

sent at certain intervals to the UDP host . A keep-alive packet is a packet which

states to the receiving system that no information is being transferred, only that

the transmitting system needs to keep the communication channel active. Each time

the host receives this packet, it will refresh the duration of communication with the

sender. This allows the host to consistently send packets to the clients without having

to emulate the TCP stream handshaking and methods.

To communicate information between files and the backend , a “file logging” IO-

Connector is used.

File Logging

To log data from an engine test cell suite, data is written to file storage. Flat storage

files help facilitate this task, but having to create entirely new communicator code

would waste the potential for polymorphism. Instead of writing an input-output

system for files, the communicator has a new derivative class for reading and writing

to files of different types.

The file class comes with three different types of communicators:

• Binary Files

55

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

• Textual Files

• XML Files

Binary files are file targets in which no transformation of data is done before

writing to the file or reading from the file. These files are the fastest to use on systems

upon which they were created from. A side effect is an inherent incompatibility with

systems using a different binary encoding.

The two byte-orders are “big-endian” and “little-endian”. In “big-endian” order,

the memory is organized by writing the most signifiant byte first to memory. In

“little-endian” order, the memory is organized by writing the least significant byte

first to memory.

The incompatibility occurs when data is not translated between byte-orders on

two byte-opposite systems. An example would be systems where the byte-order is

little-endian versus a system where the byte-order is big-endian. Reading a file written

in binary format for one with the other without byte-order conversion may cause the

data to be read incorrectly. This is not an issue for textual data, as it is written and

operated on in a byte-order agnostic form.

1 2 3 4 5 6 7 8

System Byte-Order when written by first system.

1234 5678

System Byte-Order when read by second system.

Figure 5.3: Example of writing and reading with two different byte orders.

When textual files are read, they are received “as-is” without parsing for integrated

structures and criteria. When writing textual files, the data is written in whichever

56

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

form the operating system designates appropriate for text. Data is read one line at a

time, up to 1024 bytes. This limitation is due to the restriction of UDP packet sizes

in the network interface. Without this restriction, it would require a rewrite of the

network UDP and TCP classes to uphold unbound packet and stream sizes.

XML files can be classified under textual files. During implementation however,

the library used for XML requires the state of the XML structure to be stored in

memory due to hierarchy organization. This leads to a difference between purely

textual files and XML files in our system for multiple write-access file targets. For

now, only multiple read-access will be touched upon.

XML files are read through the chosen “channel port number”. This allows reading

different streams of data from the same XML file for different connectors. As long

as data is not pushed by both connectors, the system will retain consistency. This

is because the state of two separate XML communicators is not shared through the

file system until a fresh read of the XML file is executed. If no changes are done to

the file, multiple readers from the same XML file will not fail to uphold consistency.

The IOConnector fileXML class will read entries from the zeroth entry onwards. As

long as another value is available next, the system will continue to queue up entries

for reading.

For fileXML-written files, the files will appear as seen in figure 5.4. Reading from

channel zero will result in seven values, each of which represents a floating value.

When the channel is switched to channel one, there will be three results, each of

which results in a textual response. These can be parsed by any component reading

from the fileXML IOConnector.

57

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

<CH0>

<V0 Value=2.8010 />

<V1 Value=2.4020 />

<V2 Value=1.8083 />

<V3 Value=0.8022 />

<V4 Value=0.3110 />

<V5 Value=0.2000 />

<V6 Value=0.1118 />

</CH0>

<CH1>

</CH1>

<V0 Value="Reset" />

<V1 Value="Standby" />

<V2 Value="Start" />

Figure 5.4: Example of XML structure in profiles

Sending and Receiving of Network Data

The sending and receiving of network data is done via TCP and UDP connections

underneath the network communicator objects. The communicator classes for TCP

and UDP take care of the logistics of network communication facilities, which involve

some of the subtleties of the technology. An example of these subtleties can be the

“fragmentation”, or splitting of packets into smaller sizes, in the TCP protocol.

When receiving a TCP message, the communicator class must wait to see if the

entire message has been received completely. This is due to “stream” nature of TCP,

which treats the channel as a stream, rather than discrete messages. In some cases,

a stream of N bytes can be fragmented into M messages of irregular bytes totalling

N bytes in total. Sometimes, two messages can be merged into one message in

the stream, which requires detecting the headers of both messages at the end-point

for seperation and processing. As a protocol, UDP does not have this situation as

messages stay discrete when sent.

58

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

Structure of the Network Packet

Transmissions are encapsulated in a network packet. Each network packet consists

of an engine test cell suite header, which dictates the start of a packet. The next

message component is the size of the body of the message. This size does not include

the header or the size portion of the message. The body of the message comes after

the header and size portions of the message.

EC\r\n ### . . .

Message
Header

Message
Size

Encapsulated Message Body

Figure 5.5: Network Packet Structure

Each communicator will organize to receive the message in full before operating on

the data. This is important in the case of TCP, where the message can be fragmented

into smaller pieces before being received on the receiving end-point as discussed above.

5.4 Frontend/Backend Architecture

During execution, information transmitted to the client is received by the respective

IOConnection in the backend . When received, the data is stored by the backend

for later reading by the frontend . Messages pertaining to channel updates are read,

stored in the backend , and forwarded to the frontend’s widget value synchronizer.

The purpose of the widget value synchronizer is to keep all output widgets tracking

a channel to follow the value of the specified channel. During execution, this means

changes to channels are propagated to and displayed by widgets matching the channel

number.

59

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

F
R

O
N

T
E

N
D

B
A

C
K

E
N

D

D
at

a
S

to
ra

ge

C
ha

nn
el

 R
ea

de
r/

W
rit

er

F
LT

K
F

ro
nt

en
d

M
an

ag
er

G
ra

ph
ic

al
 U

se
r

In
te

rf
ac

e
T

hr
ea

d

LE
G

E
N

D

C
om

po
ne

nt

O
pe

ra
te

 O
n

<
X

>

S
en

d
In

fo
rm

at
io

n
T

o
<

X
>

C
on

cu
rr

en
t T

hr
ea

d

B
ac

ke
nd

 M
an

ag
er

IO
C

on
ne

ct
io

n

C
om

m
un

ic
at

io
n

T
hr

ea
d

D
at

a
S

yn
ch

ro
ni

za
tio

n
T

hr
ea

d

F
l_

C
ha

rt
 T

ra
ck

er

F
l_

B
ut

to
n

T
ra

ck
er

F
l_

V
al

ua
to

r
T

ra
ck

er

C
al

lb
ac

k
M

an
ag

er

In
co

m
in

g
D

at
a

S
to

ra
ge

O
ut

go
in

g
D

at
a

S
to

ra
ge

C
ha

nn
el

 U
pd

at
e

P
ro

ce
ss

or

C
ha

nn
el

 U
pd

at
e

T
ra

ns
m

itt
er

W
id

ge
t V

al
ue

 S
yn

ch
ro

ni
ze

r

W
id

ge
ts

C
om

m
un

ic
at

or

Figure 5.6: Architecture of frontend and backend

60

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

The reverse operation occurs when input widgets tracking a channel have their

value altered by the operator . When a widget is updated, a callback executes which

sends the channel number and update value to the callback manager. The callback

manager processes this information by sending the new update to the backend’s chan-

nel update transmitter. The new value is stored by the channel writer and sent to

the outgoing data storage. When new outgoing data is available, the respective IO-

Connection sends the data to the host for modification of the specified channel on

the DAQC and further propagation of channel information to other clients . This

operation is only applicable for the main operating client . For all other monitoring

clients , the update requests sent to the host are discarded and an error message is

returned to the offending client .

With each component of the client , threads are used to increase the concurrency

of the process.

5.4.1 Thread Concurrency

The process running the client consists of four threads:

• IOConnector communication thread

• Backend synchronization thread

• Frontend widget update thread

• FLTK graphical thread

During execution, the communicator thread reads messages from the host on the

network. Valid engine test cell suite messages are placed into an incoming network

FIFO queue through a blocking write, to be read by the backend synchronization

thread. If the incoming network FIFO queue is currently owned by the backend

61

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

IO
C

on
ne

ct
or

 T
hr

ea
d

B
ac

ke
nd

 T
hr

ea
d

F
ro

nt
en

d
T

hr
ea

d
F

LT
K

 T
hr

ea
d

In
co

m
in

g
N

et
w

or
k

F
IF

O

C
ha

nn
el

In
co

m
in

g
D

at
a

F
IF

O

O
ut

go
in

g
N

et
w

or
k

F
IF

O

W
id

ge
t

O
ut

go
in

g
D

at
a

F
IF

O

W
id

ge
ts

R
ec

ei
ve

 N
et

w
or

k
D

at
a

P
us

h
to

 F
IF

O

P
op

 fr
om

 F
IF

O

R
ea

d
M

es
sa

ge

P
us

h
to

 F
IF

O

U
pd

at
e

W
id

ge
ts

P
op

 fr
om

 F
IF

O

R
ea

d
M

es
sa

ge

Lo
ck

 F
LT

K
 M

ut
ex

W
id

ge
t C

al
lb

ac
k

R
ea

d
V

al
ue

P
us

h
C

ha
nn

el
 U

pd
at

e

U
nl

oc
k

F
LT

K
 M

ut
ex

R
ea

d
M

es
sa

ge

P
op

 fr
om

 F
IF

O

P
us

h
to

 F
IF

O

P
op

 fr
om

 F
IF

O

S
en

d
N

et
w

or
k

D
at

a

Lo
ck

 F
IF

O

U
nl

oc
k

F
IF

O

Lo
ck

 F
IF

O

U
nl

oc
k

F
IF

O
Lo

ck
 F

IF
O

U
nl

oc
k

F
IF

O

Lo
ck

 F
IF

O

U
nl

oc
k

F
IF

O

S
le

ep

S
le

ep

Lo
ck

 F
IF

O

U
nl

oc
k

F
IF

O

Lo
ck

 F
IF

O

U
nl

oc
k

F
IF

O

S
le

ep
S

le
ep

Lo
ck

 F
IF

O

U
nl

oc
k

F
IF

O

Lo
ck

 F
IF

O

U
nl

oc
k

F
IF

O

Figure 5.7: Threads of the client

62

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

thread, the IOConnector thread will block until the backend thread has finished

checking for new messages on the queue. After checking for a message on the net-

work medium, the communicator thread checks the outgoing network FIFO queue for

messages to transmit. If a message is found, the message is sent to the host . After

completion of a single loop execution, the thread sleeps until the next iteration, after

a specified amount of time.

For each FIFO queue used in the engine test cell suite, a corresponding mutex is

used to enforce blocking and reduce the probability of race conditions between writing

to and reading from a FIFO queue. When a lock/unlock applied to a FIFO on figure

5.7, the FIFO being written to or read from by the enclosed push or pop procedure has

an associated mutex as specified. These mutexes are local-only, and are not shared

nor locked across the medium. This is done to avoid deadlock conditions between the

server and clients where one side fails to unlock a mutex during execution. If this were

to happen in a shared environment where mutexes are accessible across the medium

(whether network, file, or other), it would halt the entire engine test cell suite. As

the mutexes are local and accessible only through local threads, failure of unlocking

a mutex will only affect the running execution of the local system.

The backend synchronization thread reads a message from the incoming network

FIFO queue. If a message has been retrieved, the message is parsed for new channel

value updates. When an update value is detected, the data is placed into the channel

incoming data FIFO queue for reading by the frontend widget update thread. Once

the incoming messages are read, the widget outgoing data FIFO queue is read. For

any updates on the queue, these are processed into host update messages. The

newly generated update messages are placed in the outgoing network FIFO queue for

63

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

transmission to the host .

The frontend widget update thread reads a message from the channel incoming

data FIFO queue. If a channel update is available, the channel and value are extracted

from the message. From this, FLTK graphical updates are locked, and the widgets

matching the channel number are determined. The specified channel and their values

are changed to the incoming channel value. Once the widgets have been updated,

FLTK is unlocked to allow widgets to be created, altered, and destroyed by the

interface library.

The FLTK thread determines if a widget callback has occurred. When a frontend

callback occurs, the value of the widget is read and a widget outgoing data message is

constructed. This message is pushed onto the widget outgoing data FIFO queue. Af-

ter the callback has completed, the FLTK thread sleeps until another widget callback

or FLTK event occurs.

5.4.2 Interface Library

To generate the user interface, a graphical interface library called “Fast Light Toolkit”

(FLTK) is used. The purpose of the interface library is to minimize the code required

to create a portable user interface with the ability to operate with data being received

from the engine test cell suite. FLTK provides the procedures and code required to

generate a user interface in an integrated manner with the process.

In FLTK, widgets are designed to respond to the operator through callbacks.

These callbacks activate when the specified widget has been passed an event instigated

by the operator through FLTK. In the case of mouse events, clicking on the user

interface window will cause a propagation of the event. Each widget found directly

64

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

below the mouse cursor is inspected in order of sorting level to see whether it will

handle the event. Once a widget accepts the event and completes execution of its

handler procedure, the event is “handled”, and no further inspection of other widgets

is done.

Of the major widget classes in FLTK, the engine test cell suite user interface has

specific callback procedures for handling the following:

• Fl Valuator

• Fl Button

• Fl Chart

Valuators

Fl Valuators are widgets which obtain a floating-point value depending on the position

of the widget’s effector. For widgets without a specified effector, a textual value entry

box is available in its stead. A change to this floating-point value occurs through an

event, which triggers the widget’s callback. This effect can be leveraged to allow

synchronization of data as it occurs in lieu of explicit polling of the widget status.

When a callback occurs, the frontend can pass the information to the backend for

synchronization.

Buttons

Fl Buttons are widgets where the callback is activated through mouse interactions by

the operator . When the callback occurs, an event message is passed by the frontend

to the backend for transmission to the host . The value of the button is binary, and

does not need to be transmitted for non-toggled buttons. For toggled buttons such

65

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

as “radio” and “light” buttons, the value is added to the message explicitly in the

callback.

Charts

Fl Charts are widgets which show a progression of values over time. The frontend

has a specific tracking procedure for adding new values to widgets reading data from

a specified channel. Every additional input event adds a new data point on the chart.

The chart keeps track of a specified number of points before the oldest points beyond

the threshold are culled from the data pool. This is to reduce the memory burden all

Fl Charts will have on the executing process.

Combined, these three widget classes form the majority of design and imple-

mentation of the frontend . By creating callbacks and leveraging the synchronization

callbacks available in the frontend , operation of the client is straightforward to design

and implement.

Interface Design

In designing and implementing an interface with the engine test cell suite, each opera-

tor input is mapped through valuators and/or buttons in the application. By instan-

tiating a widget from the Fl Valuator or Fl Button class and adding it through the

frontend widget addition procedures, the widgets will be tracked with value and chan-

nel by the frontend thread. Outputs are mapped through output valuators and/or

charts in the application to display the value of their specified channel.

As stated in section 5.4, when new data is available on the DAQC through changes

to inputs, the data is sent to each client to update the specified channels pertaining

66

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

to the inputs. Once the data has been passed to be read by the frontend thread,

any output valuators and/or charts are identified through their channel-to-widget

mapping. These specified widgets are updated to match the incoming channel value,

and refreshed to show to the operator of the change. This freedom to specify channels

to widgets from the application directly greatly reduces the amount of redundant

settings required on both the client and host within the engine test cell suite.

Channels allow inputs and outputs on the DAQC to be mapped to widgets by

operators without the need to define explicit widget/channel pairings on the host . In

the case of DAQC outputs to the engine test cell suite, multiple widgets can track

the value and display it in specified formats. As an example, the torque being applied

by an engine can have the instantaneous value and the history of the value shown

simultaneously via an Fl Valuator and an Fl Chart. The Fl Valuator will show the

instantaneous value for every received value while the Fl Chart will show the history

of the value over time.

Overall design of the system is simplified by the reduction of data modification

and to channels and major widget types. By avoiding pairing of channels to widgets

between the clients and host , the interface can freely track and set channels as neces-

sary. The host sets the values as requested if possible, and returns values as specified

by the DAQC.

67

Chapter 6

Validation

Validation is the application of testing and inspection methods to show whether the

system fulfills the requirements it was designed to meet for the stakeholders. Our

stakeholders, as stated in section 3.1.2, are the developers and operators of the engine

test cell suite. To use these methods, we must first explain what they encompass and

how they are beneficial in the validation process.

Testing is a method which compares computed output with the intended output

of the target. Often this involves the creation of stubs . A stub is a custom piece of

testing code made to call procedures in the target component with specified data. The

purpose of this is to test whether the component works as defined when confronted

with pre-determined situations and requirements. For each input data parameter, the

component is expected to operate in a specified manner. For malformed data, the

component must compensate and perform in a reliable manner within the guidelines

stated by the stakeholders.

Inspection is the comparison of the system at a qualitative level with respect

to a checklist of requirements. Through inspection we determine whether the system

68

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

satisfies the expected requirements. The process is similar to the walkthrough specified

by the ESA, where segments of documentation or code are examined by reviewers who

“ask questions and make comments about possible errors [...] and other problems.”

(European Space Agency, 1995, A-6.p3).

6.1 Frontend Validation

Validation of the frontend is done through inspection of the widgets with regards to

the requirements specified in sections 4.1.1 and 4.1.2. To validate the frontend to

backend communication, testing is done using stubs to emulate different states of the

backend and output stubs to show whether the component succeeded or failed the

validation.

6.1.1 Widget Dependencies

Through inspection, we observe that FLTK widgets can inherit properties and pro-

cedures from previously defined widgets. These predecessors define properties which

are shared by descendant widgets. Descendant widgets are observed to have function-

ality of a higher specificity than their ancestor widgets. As part of the FLTK library,

widgets are self-contained upon runtime creation and initialization.

The condition of widget independence is valid through the FLTK library.

6.1.2 Widget Value Display

For testing the acceptance and restriction of input values, a series of widgets have the

following requirements applied:

69

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

1. Widget pair will be instantiated on the frontend .

2. Frontend will transmit all values written by the primary widget to a backend

stub.

The values received are read to determine whether the values sent by the frontend

match the originating values in the widget.

In the second phase of widget value testing , a backend stub is applied to the tested

components to execute the following:

1. Backend stub transmits “values read” to the frontend .

2. Widget receive value from the frontend and display value.

Values entered into widgets must not convert the value before being resolved by

the backend . Input fields can restrict values to certain types, but it must not implicitly

convert the values within the widget before sending to the backend .

Restriction of values is part of the FLTK library. Widgets will accept or restrict

values depending on the input method used for reading and writing values.

Testing was done by creating a stub to call the initialization procedures of the

widgets and the setup of the backend channels.

Figure 6.1: Widget value before interaction.

70

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

Figure 6.2: Widget value after interaction.

As the output value is the same as the specified input value, testing validates the

system has operated correctly for values sent through the backend .

6.1.3 Widget Availability

The use of widgets requires each widget to be “available” for interactions with regards

to FLTK event calls. Availability is defined to be the property of a widget in which

it can be interacted with by an operator through events. As stated in section 5.4.2,

events trigger callbacks of available widgets to perform their specified task. When a

widget is unavailable, callbacks are not triggered for the specified widget.

When reading and accessing a widget’s data (i.e. value, position, etc) from multi-

ple threads, the reading and writing are considered critical sections of execution. As

stated in section 2.6.1, for critical sections a lock is applied to the shared resource

to avoid race conditions. To keep the interface available, locks on critical sections

inside widget callbacks must finish execution in a specified length of time without

deadlocking.

Through inspection of the widgets on the frontend with data being read from the

71

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

backend , we note that the interface is locked before changing the values of the widgets

associated to the incoming channel data. The interface is unlocked once the values

have been applied to the widgets.

With regards to the time required to perform the value assignment during the lock,

the average time for the engine test cell suite executing was 1.9040 × 10−6 seconds,

with a worst execution case of 4.6596×10−4 seconds as an outlier at the 22901st index

out of 42324 locks. The standard deviation of the lock timings was 2.9463 × 10−6

seconds. During testing of the mutex locks, messages were received by the client

from the host at a rate of 1000 messages per second over a test of approximately 30

seconds.

In contrast to the frequency at which changes are done to the frontend by the

operator , on the order of 0Hz to 5Hz, the lock times are negligible.

This inspection shows that the widgets stay available as per the aforementioned

requirements.

6.1.4 Frontend-to-Backend Communication

As specified in section 5.4.1, information travelling from the frontend to the backend

uses a FIFO queue for updating all widgets matching the specified channel of the

outgoing information. The backend uses this queue to prepare for sending channel

updates to the host through the IOConnector thread.

In testing the communication between the frontend and backend , a pair of widgets

(with communication stubs) are used to show the information received after being sent

from one frontend widget to another on the same specified channel. A “value input”

stub widget takes the operator’s floating point input and transmits it to the backend .

72

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

Once the backend has received the value, it updates the channel and informs the

frontend . A “value output” stub widget was assigned to the same channel, which

updates when the backend informs the frontend of a successful change. The value of

the stub was compared to the input value to determine if the component was tested

successfully.

Figure 6.3: Widget values after retrieval from host .

In figure 6.4, the host outputs the channels verbosely as they are updated. Each

channel updates as the values are changed to illustrate successive values between each

frontend . From one frontend the values are created and sent to all others.

Figure 6.4: Channel values on the host .

As data is received in a manner which matches the transmitted data, the test is

73

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

shown to be correct.

6.2 Backend Validation

The backend is validated through inspection of the components which provide func-

tionality of physical protection states and data transceival between the frontend ,

itself, and the host .

6.2.1 Functionality

The functionality of the backend must comply with the specified physical protection

and virtual observation functions. The following outlined features are required as per

sections 4.2.1 and 4.2.2.

Emergency Stop

To test the emergency stop of the backend , an explicit ESTOP procedure is called

through a frontend stub. The backend has an explicit function SendESTOP(). When

called, SendESTOP() will create a message to the host to reset channels to their

defaults and disable all future writes. If the main operating client has sent the

request, or forwarded it from any of the monitoring clients , the host will enter a

state where any attempts by the frontend to alter values will be discarded by the

host . Changes in this state will not be propagated to any other backends until the

backends receive a restart message.

A host stub is used to show the point at which an “emergency stop” was put into

effect. This would occur when the main operating client transmitted the ESTOP

74

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

Figure 6.5: Final state of the frontend

Figure 6.6: Status messages shown on the host

75

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

message and the host received the message. In Figure 6.6, the host stub declares the

system to have reached an emergency stop. The attempt to switch the throttle in

channel 7 to 3.0 is met with a message about the system being halted. To restart the

host , a SendRestart() is used by the main operating client . This function is available

during an emergency stop. When the backend has been called using this function, it

will send a message to the host requesting a restart. If the engine test cell is in the

stopped state, the host will restart in the default state and allow the engine test cell

to restart testing.

The host stub received the “restart”, followed by changes to the 7th channel. After

the changes were observed, an “emergency stop” was sent again to see whether the

system could be safely restarted. No values could be changed while the system was

under the “emergency stop” state.

One observation is that the system only requires the singular main operating client

to operate the restart. This will be discussed in the future considerations section 7.2.

Through inspection, this test shows the emergency stop working as intended.

Physical Limits

Physical limits of the channels is a design consideration as stated in section 4.3.1. To

show the system’s physical limits controls are adequate and operational, testing is

done to the host through a stub client .

To test the physical limits management of the host , the output limiter flags must

be activated for the channels to be tested. These flags are tested on the host to

determine the limit function, as defined in the host program, to be applied to the

specified channel. The test client sends updates to the host while receiving channel

76

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

Figure 6.7: Limit (-1.0,1.0) applied to channel 24.

updates in return. The host must limit the channels to a specific range of values as

determined by the connected device physical limits.

An example of the limits of a channel was channel 24, where the values were

restricted on the host to stay within the range of [-1.0, 1.0].

A stub is used to transmit values for channel 24 to the host . Channel 24 is

inserted as a testing stub to return the current value during execution. As the roller

stub widget was operated to try and exceed 1.0 towards the positive direction, the

channel stub produces only 1.0. As the roller stub widget was operated to try and

exceed -1.0 towards the negative direction, the channel stub produces only -1.0.

As shown in Figure 6.7, this test validates the physical limiters to be working as

intended.

6.2.2 Information Transmission

The reliable transfer of information from the backend to the host is required for

the transmission of control data. The following sections show the results of the

requirements as stated in section 4.2.3.

77

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

6.2.3 Network Functionality

As a major constituent of the backend , the network communicator forms a synchro-

nization between all engine test cell suite clients. Forming a reliable backbone of the

engine test cell suite starts with being reliable in the existence of errors. The two

most common forms of malformed network information is incoming errors, and loss

of connectivity to the host .

Gracefully Discard of Incoming Errors

The host and client must work reliably in the presence of malformed network data.

In testing this condition, a network stub transmits malformed data to the host and

client while a network stub transmits to the receiving system with correctly formed

data.

To test the client and host for working reliably in the presence of malformed

network data, two network stubs are used to send data to the specified receiving

system. One stub sends a series of malformed data messages while the other stub

sends a series of correctly formed data messages. During the test, a series of 1000

messages are transmitted to the client . Of these 1000 messages, 50 messages contain

correctly formed data. The other 950 messages contain malformed data. After the

test, a stub retrieved the number of correctly formed messages retrieved by the client .

Testing is done with each of the IOConnection network communicators to determine

reliability.

For each IOConnection network class, the number of correctly formed messages

retrieved from the 1000 messages was 50 messages. Through testing, the network

classes performs with reliable communication between the client and host working as

78

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

expected.

Automatic Reconnection on Connection Loss

To test the automatic reconnection on connection loss, the host and backend are

detached from each other for an extended period of time before being allowed to

join the network again. After a connection to the host , the backend must keep

the connection active under the specified supported protocol. As the underlying

mechanisms are different for each protocol, we focus on the implemented recovery

procedures for each.

Under TCP, the backend will test if the host has returned to online status. For

such an event, the backend proceeds to create a new valid connection to the host and

resume sending of backlogged data.

Under UDP, the backend will send “keep-alive” packets to the host . When receiv-

ing a valid “keep-alive” packet with proper data structure, the host adds the valid

client to its sending pool and sends new updates to it.

During testing of the TCP connector, the host was forcefully removed from the

network. The client switches to recovery mode, which causes all new packets to be

stored in the queue while waiting for the connection to be re-established. After the

host is brought back online, the client reconnects successfully and sends all stored

packets to the host .

During testing of the UDP connector, the host was forcefully removed from the

network. As the protocol itself is unreliable, the system continues to send to the

host . After the host is returned to online status, it begins receiving the “keep-alive”

packets, and re-adds the client to the transmission list. After this state, the client

79

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

starts receiving from the host’s data stream once again.

This test shows the network automatic reconnection functionality to be working

as intended.

6.3 Validation Conclusion

Each engine test cell component showed functionality as dictated by the requirements

set out in the design stated through section 4. For components residing within the

FLTK included library, the functionality was inspected to show compliance with the

requirements. Through both inspection and testing , the validity of the components

within the engine test cell could be shown and conveyed.

80

Chapter 7

Conclusion and Future Work

7.1 System Conclusion

In this thesis, we developed an engine test cell suite to gather quantifiable data from

an engine. To enable remote operation of the engine test cell, we designed the system

with two process types; the host and the clients. The host process reads output

data from the DAQC to send to the clients while reading input data from the main

operating client to send to the DAQC. The clients receive output data from the host

to display to the operators while reading input commands from the operator on the

main operating client. Operator data is processed and sent as input data updates to

the host.

The engine test cell suite is composed of a single host process and at least one

client process. Each client process connects to the host to obtain data and listen for

updates from the main operating client. Data is obtained from the DAQC connected

to the engine, which is read by the host and sent to the clients. Each client contains

a backend thread, frontend thread, FLTK thread, and network communicator thread

81

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

to take advantage of multitasking capabilities of the operating system executing the

client.

During execution of the engine test cell suite, the client and host processes execute

as a set of threads. The IOConnector thread handles network communication to send

communication data to and receive data from the host. The backend thread handles

incoming channel synchronization messages from the IOConnector’s incoming net-

work FIFO queue, in addition to creating and pushing new channel synchronization

messages to the IOConnector’s outgoing network FIFO queue. Any messages per-

taining to synchronization from the IOConnector on the backend are processed, and

changes to the channels are pushed to the frontend thread’s channel incoming data

FIFO queue. The frontend thread maps data channels to user interface widgets. Any

changes to the channels pushed to the channel incoming data FIFO queue is read by

the frontend thread and the specified channels are set to the new value. The FLTK

thread displays the widgets on the user interface and handles any inputs given by

the operator through mouse and keyboard inputs. When an event causes a mapped

widget to alter its channel value, the FLTK thread pushes the new value and specified

channel to the widget outgoing data FIFO of the backend.

Communication is handled by a thread running within the host process and within

each client process. Each client communication thread connects to the host to read

incoming output data to push on to the backend’s incoming network data FIFO

queue. Any messages to be sent by the backend are pushed onto the communication

thread’s outgoing network FIFO queue.

The use of networked communication allows monitoring of the engine from any

networked location. Showing active systems executing in presentation scenarios and

82

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

other demonstrative purposes are definite possibilities. With reliable data transfer for

control messages, the distance for which monitoring can be granted is limited to the

reliability of the network infrastructure and the latency between the host and clients.

7.2 Future Considerations

For future work, this project will require work to be done on the IOConnector’s

fileXML communication class to facilitate multiple writes to the same target file.

Reading using multiple communicators on the same file is does not cause corruption

of the file, but multiple writers will overwrite it with malformed data. This is due to

the TinyXML library loading the file into memory during execution. In addition to

the fileXML class, the netUDP and netTCP communication classes require support

to send messages through a sender-exclusion path. The data sent by one network

communicator should not be receiving a copy of the same data to itself.

In terms of the IOConnector’s system error condition monitoring, the system must

be changed to return error codes for all operations which return a new object. If error

codes are not acceptable for future implementation choices, C++ exceptions could

also be used to throw when errors are determined to have occurred. For this to be

consistent, the entire IOConnection framework must be updated to match the new

error condition monitoring.

Security of a system is a major concern in protecting the operators and other work-

ers from malicious entities trying to create a hazardous environment. One method

to minimize the risk from such entities would be to create a pair of encapsulated IO-

Connectors using Transport Layer Security with a replacement schedule for removing

compromised private keys from the systems. With these protections, trying to send

83

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

compromised messages to the host would require breaking the security or finding a

compromised private key. Even with the protections available, a malicious internal

operator could attack the system from an authorized client , which would bypass the

security without needing to break it. As it stands, the security of the system would

require a hazard analysis into the types of risks and concerns during the engine test

cell’s operation.

Finally, implementation of a widget factory and widget state replicator would

allow on-the-fly online modification of the frontend during execution. This would

make changes done to the frontend require little to no downtime. Additions are

necessary to the backend message parser to react to such messages and push widget

positional and instantiation data to the frontend . The frontend would need to read

these changes into the widget state replicators to copy and adjust the widget state of

the frontend between each client .

Overall, the project has led to the creation of an engine test cell suite without

requiring LabVIEW. With further work, this system could be improved upon to create

a fully featured system to be used in many testing facilities covering a wide variety

of instrumentation tasks.

84

Bibliography

Association, M. (2012). Modelica R© - a unified object-oriented language for systems

modeling language specification.

Branicky, M., Phillips, S., and Zhang, W. (2000). Stability of networked control

systems: Explicit analysis of delay. In Proceedings of the American Control Con-

ference, pages 2352–2357.

Centre for Mechatronics and Hybrid Technologies (2013). Engine test cell. Cam

Fisher.

Cook, S. (1989). Introducing object-oriented systems. In Applications of Object-

Oriented Programming, IEE Colloquium on, page 1/1.

Edwards, M. L. (2001). S-paramaters, signal flow graphs, and other matrix represen-

tations.

European Space Agency (1995). Guide to software verification and validation.

ftp://ftp.estec.esa.nl/pub/wm/anonymous/wme/bssc/PSS0510.pdf. [Online;

accessed 25-October-2013].

Galitz, W. O. (2002). The Essential Guide to User Interface Design: An Introduction

85

ftp://ftp.estec.esa.nl/pub/wm/anonymous/wme/bssc/PSS0510.pdf

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

to GUI Design Principles and Techniques. John Wiley & Sons, New York, NY, 3rd

edition.

Galloway, B. and Hancke, G. P. (2012). Introduction to industrial control networks.

Communications Surveys & Tutorials, IEEE, PP(99), 1–21.

Halpern, J. Y. and Moses, Y. (1990). Knowledge and common knowledge in a dis-

tributed environment. J. ACM, 37(3), 549–587.

Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of

Computer Programming, pages 231–274.

Harel, D. (1988). On visual formalisms. Commun. ACM, 31(5), 514–530.

Huang, F. (2010). State Diagrams: A New Visual Language For Programmable Logic

Controllers. Master’s thesis, McMaster University, Hamilton, Ontario, Canada.

IEEE (2008). IEEE standard for floating-point arithmetic. IEEE Std 754-2008, pages

1–58.

IEEE (2013). IEEE-SA -IEEE get 802 program. http://standards.ieee.org/

about/get/802/802.3.html.

James, D. (1990). Multiplexed buses: the endian wars continue. Micro, IEEE, 10(3),

9–21.

Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed system.

Commun. ACM, 21(7), 558–565.

Mathworks (2013). Solve fully implicit differential equations, variable order method

- matlab ode15i. http://www.mathworks.com/help/matlab/ref/ode15i.html.

86

http://standards.ieee.org/about/get/802/802.3.html
http://standards.ieee.org/about/get/802/802.3.html
http://www.mathworks.com/help/matlab/ref/ode15i.html

M.A.Sc. Thesis - Jamie Turner McMaster - Computing & Software

Parnas, D. L. (2003). Requirements documentation: A systematic approach. Techni-

cal report, University of Limerick.

Rabin, M. O. and Scott, D. (1959). Finite automata and their decision problems.

IBM Journal of Research and Development, pages 114–125.

Rajagopalan, A. and Washington, G. (2002). Simulink tutorial. http://mercur.

utcluj.ro/mobile/cursuri_oltsi/SimulinkTutorial.pdf. [Online; accessed

05-February-2013].

Schwarz, R. and Mattern, F. (1994). Detecting causal relationships in distributed

computations: in search of the holy grail. Distrib. Comput., 7(3), 149–174.

Smith, C. (2012). A powerful new tool for UI programming–user interface event

programming. [Online; accessed 25-January-2013].

Tanenbaum, A. S. (2010). Computer Networks. Prentice Hall, 5th edition.

Wills, C. (1994). User interface design for the engineer. In Electro/94 International.

Conference Proceedings. Combined Volumes., pages 415–419.

Xudong, L. and Jiancheng, W. (2007). User interface design model. In Software

Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Comput-

ing, 2007. SNPD 2007. Eighth ACIS International Conference on, volume 3, pages

538–543.

87

http://mercur.utcluj.ro/mobile/cursuri_oltsi/Simulink Tutorial.pdf
http://mercur.utcluj.ro/mobile/cursuri_oltsi/Simulink Tutorial.pdf

	Abstract
	Acknowledgements
	Notation and abbreviations
	Introduction
	Background Review
	Overview
	Controlling Systems
	State Machines
	Control Graphs and Diagrams
	Signal-Flow Diagrams

	Monitoring Systems
	Digital Value Representation

	Monitoring & Control over Networking
	Deterministic Networked Control

	Impact of Causality
	Deadlocks, Race Conditions & Causality

	Object-Oriented Programming
	User Interface
	User Interface Suite
	Signal-Flow User Interface Suite
	Drag-and-Drop Graphical UI
	MATLAB(Simulink)
	LabVIEW

	Requirements
	Introduction
	Purpose
	Conventions

	Overview
	Operating Requirements
	Safety Requirements

	Frontend Requirements
	Operating Requirements
	Widget Requirements

	Backend Requirements
	Operating Requirements
	Communication Requirements
	Host Requirements

	Design
	Frontend Design
	Operating Design
	Safety Design
	Interface Modes

	Backend Design
	Operating Design
	Safety Design
	Network

	Host Design
	Safety Design
	Operating Design

	Design Focus
	Widgets
	Reliability

	Frontend & Backend Components
	Widget Management

	Visual Representation
	Widget Features
	Callbacks

	Implementation
	Overview of the Project
	Physical Details
	Engine Test Cell Software
	Communication

	Frontend/Backend Architecture
	Thread Concurrency
	Interface Library

	Validation
	Frontend Validation
	Widget Dependencies
	Widget Value Display
	Widget Availability
	Frontend-to-Backend Communication

	Backend Validation
	Functionality
	Information Transmission
	Network Functionality

	Validation Conclusion

	Conclusion and Future Work
	System Conclusion
	Future Considerations

