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Abstract
Background: Rare genetic mutations cause familial early-onset stroke disorders, known as “Mendelian strokes”. The broader relevance of rare mutations in unrelated young stroke patients is uncertain. We hypothesize that rare mutations in known and novel genes are important risk factors for stroke.
[bookmark: _GoBack]Methods: Exome sequencing was used to characterize rare disruptive protein-altering mutations in 185 young cases and 185 matched controls from INTERSTROKE, a large and globally representative stroke study. The major objectives were: 1) to precisely define the role of known Mendelian stroke genes and 2) to discover novel gene and pathway associations. 
Results: A focused assessment of known Mendelian stroke genes revealed a significant contribution from NOTCH3, the causal gene for Cerebral Autosomal Dominant Arteriopathies with Subcortical Infarcts and Leucoencephalopathies (CADASIL). CADASIL mutations were identified in six cases and no controls (P=0.03). The clinical presentation of CADASIL mutation carriers deviated from known symptomatology, consisting of small-vessel ischemic strokes (SVIS) accompanied by secondary features including migraine and depression. A novel role for non-CADASIL NOTCH3 mutations in ICH was also elucidated (OR=2.86; 95% CI, 1.13 to 7.93, P=0.02). Such mutations were present in 22% of ICH cases and 8% of matching controls. An agnostic evaluation of all genes did not reveal any genome-wide significant associations. However, NOTCH3 was among the top ICH genes out of 13,706 tested, and many others were also biologically relevant, notably, AARS2 and NBEAL2. A protective association was identified for the renin angiotensin system (P=8.1x10-4), whereas type II diabetes mellitus was associated with increased risk (P=1.9x10-2). 
Conclusion: Rare mutations influence risk of early-onset stroke. CADASIL mutations play an important role in unrelated stroke patients. Beyond CADASIL, a novel role was uncovered for other NOTCH3 mutations as common and significant risk factors for ICH. Novel biologically relevant genes and pathways may also affect stroke susceptibility. 
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Chapter One: Introduction














1.1 Stroke Biology and Epidemiology
Stroke imposes an enormous burden on society with more than 30 million people affected worldwide1. Defined as an acute neurological deficit, stroke is the result of abnormal blood flow to the brain2. The major subtypes are ischemic and hemorrhagic strokes (Figure 1.1). Ischemic stroke is characterized by thrombotic occlusion and can be further classified into small-vessel ischemic stroke (SVIS), large-vessel ischemic stroke (LVIS), or cardioembolic stroke (CES)3. In contrast, hemorrhagic strokes are characterized by ruptured vessels bleeding into the space surrounding the brain (subarachnoid hemorrhage (SAH)) or the brain itself (intracerebral hemorrhage (ICH)). ICH can be further classified as lobar or non-lobar (deep) ICH. 
The composition of stroke subtypes is estimated to be roughly 73% ischemic strokes, 19% hemorrhagic strokes, and 8% of undetermined etiology4. The most common ischemic stroke subtype is SVIS, which accounts for ~50% of all ischemic strokes and ~35% of all strokes5, whereas ICH accounts for ~80% of all hemorrhagic strokes and ~15% of all strokes4. 
1.2 A Genetic Basis for Stroke 
	INTERSTROKE, a large international study of stroke across 22 different countries, demonstrated that 10 conventional risk factors (hypertension, diabetes, smoking, alcohol intake, cardiac causes, waist-to-hip ratio, APOB/APOA1 ratio, physical activity, stress, and diet) account for approximately 90% of stroke risk5. Other emerging risk factors, such as genetics, may explain the remaining fraction of risk. Age is by far the most important risk factor for stroke6, and while generally regarded as a disease of the old (mean age: 70 years1), INTERSTROKE estimates that 14% of all strokes occur in those below 45 years5. Combined with the fact that conventional risk factors are less prevalent among younger patients5, early stroke may be disproportionately the result of genetic predisposition, much like other early forms of disease (e.g. breast and colon cancer7,8). 
A genetic basis for stroke is supported by various lines of research. Firstly, stroke concordance is 65% higher between monozygotic twins than dizygotic twins9, who presumably share similar environments. Secondly, family history is a strong predictor of stroke. Independent of conventional risk factors, parental history of ischemic stroke is associated with two-fold higher risk of ischemic stroke10, whereas having a first-degree relative with ICH is associated with six-fold higher risk of ICH11. Furthermore, familial aggregation is more pronounced in younger patients12. Thirdly, the genetic component (heritability) for both stroke and its intermediate phenotypes (intima-media thickness13, intracranial aneurysm14,15, and white matter hyperintensities16,17) is substantial. The heritability of ischemic stroke and ICH is estimated to be 37.9% and 44%, respectively18,19. The Genetics of Early-Onset Stroke (GEOS) study also found that the heritability of ischemic stroke and its subtypes was slightly higher (non-significant) for those under 50 years20. Fourthly, genome-wide association studies (GWAS) have identified common genetic variants associated with stroke risk18. Lastly, rare protein-altering mutations are known to cause early stroke disorders, “Mendelian strokes”21–24. 



1.3 Common Variant Studies: A Lesson in Phenotypic Heterogeneity
	The Common Disease-Common Variant (CDCV) hypothesis asserts that frequent mutations (MAF>5%) of modest effect (OR < 1.5) underlie a substantial fraction of diseased cases in the general population25. Common variants have been assessed through two approaches: candidate gene studies which evaluate certain biologically relevant genes and genome-wide association studies (GWAS) which systematically scan all genetic loci. 
Bevan et al. (2012) performed a meta-analysis of GWAS data and revealed vast heterogeneity across ischemic stroke subtypes. While the total heritability of ischemic stroke was estimated to be 37.9%, the heritability of LVIS, SVIS, and CES were 40.3%, 16.1%, and 32.6%, respectively18. The largest GWAS meta-analysis including 25,736 ischemic stroke cases revealed subtype specificity for established stroke loci 26,27. PITX2 and ZFHX3 variants were only associated with risk of CES, whereas locus 9p21 and HDAC9 variants were specific to LVIS. PITX2 and ZFHX3 mutations influence risk of atrial fibrillation28,29, a major risk factor for CES30, whereas HDAC9 promotes carotid atherosclerosis31. 
Similarly, there is also evidence for heterogeneity across ICH subtypes. Devan et al. (2013) estimated the total heritability of ICH be 41%19. Common APOE variants explain more than 30% of this heritability. APOE variants also exhibit heterogeneity across lobar and deep ICH subtypes19, accounting for 73% of the variation in lobar ICH risk, but only 34% of the variation in deep ICH risk. Deep ICH is primarily attributed to hypertension, whereas lobar ICH is characterized by amyloid accumulation in cortical vessel walls (cerebral amyloid angiopathies (CAA)). APOE variants are known to influence amyloid deposition for CAA and Alzheimer’s disease32. Thus, the stronger association with lobar ICH may reflect APOE’s role in amyloid pathology. Additionally, a polygenic risk score consisting of blood pressure-related loci was associated with deep ICH but not lobar ICH19, which is congruent with the hypertensive origins of deep ICH. 
There is also evidence for a shared genetic basis across subtypes. The EuroCLOT study discovered that the ABO gene was associated with LVIS and CES33. This is consistent with the observation that people with non-O blood types are more susceptible to developing thromboembolism (pulmonary embolism34 and venous thrombosis35). While it is sensible that mutations in coagulation genes should also influence risk of thromboembolism, genetic studies can reveal more complex and unexpected relationships. For instance, Anderson et al. (2013) discovered that common variants within oxidative phosphorylation genes were associated with both deep ICH and SVIS, but not LVIS nor lobar ICH36. 
In summary, findings from common variant studies underscore the importance of proper stroke subtyping. Heterogeneity exists not only between ischemic and hemorrhagic strokes but also within their subtypes. Although variants may influence risk of multiple stroke subtypes, most known associations are specific to one subtype. Consequently, subtypes must be analyzed as distinct phenotypes to properly decipher the genetic architecture of stroke. 



1.4 Rare Variant Studies: A Brave New World
The role of rare variants in disease is only beginning to be elucidated due to previous limitations in technology. One of the first large-scale sequencing initiatives, the 1000 Genomes (1KG) project, estimated that every person carries approximately 20 rare disease-associated mutations37. Consequently, rare mutations may have a broader role in the general population than previously believed. The Common Disease – Rare Variant (CDRV) hypothesis asserts that the aggregate impact of individually rare mutations (MAF < 5%) with large effects (OR > 2)25, accounts for a substantial fraction of diseased cases.
In the context of stroke, the most compelling evidence supporting the CDRV hypothesis is the existence of “Mendelian strokes”, which are severe familial stroke disorders caused by rare protein-altering mutations38. Cerebral Autosomal Dominant Arteriopathies with Subcortical Infarcts and Leucoencephalopathies (CADASIL) and Fabry’s disease are the most extensively studied Mendelian stroke disorders. In the general population, the prevalence of CADASIL is estimated to be 1-2 per 100,000 individuals39,40, whereas the prevalence of Fabry’s disease is 14-50 per 100,000 indiviudals41,42. Conversely, among stroke patients, the prevalence is estimated to be higher at 500-6000 per 100,000 individuals for CADASIL43,44 and 500-3900 per 100,000 individuals for Fabry’s disease22,23. CADASIL is caused by rare mutations in NOTCH3, an important regulator of cerebral artery development45, and Fabry’s disease is caused by rare mutations in GLA, a metabolic enzyme which processes glycosphingolipids22. Both disorders are characterized by extremely high life-time risk of small-vessel strokes (up to 71%), early onset (before 50 years), and debilitating secondary complications46,47. 
In the past, large-scale studies assessing rare variants were not possible; however, recent advances have led to an effective approach: exome sequencing. Exome sequencing enables the assessment of all types of genetic variation within the coding regions of the genome48. One major advantage over other conventional genotyping platforms is that exome sequencing can detect rare and even novel mutations49. The “exome” specifically refers to the 1-2% of the genome containing all ~20,000 protein-coding genes50. Just as genotyping arrays facilitated the transition from candidate gene studies to genome-wide scans for common variants, exome sequencing permits an agnostic exploration of rare mutations across all genes.











1.5 Objectives
Section 1: 
· To determine which Mendelian stroke genes, if any, should be screened in young stroke patients
· To define the clinical features associated with rare mutations in Mendelian stroke genes
Section 2:
· To systematically identify novel gene associations for early stroke
· To systematically identify novel pathway associations for early stroke
1.6 Hypotheses
Section 1: 
· Previously reported disease-causing mutations within known Mendelian stroke genes increase risk of early stroke
· Rare disruptive mutations within Mendelian stroke genes increase risk of early stroke 
Section 2:
· Rare disruptive mutations within genes alter risk of early stroke 
· Rare disruptive mutations within pathways alter risk of early stroke
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Figure 1.1 Physiological comparison of the major stroke subtypes51





















Chapter Two: An Evaluation of Mendelian Stroke Genes in Young Stroke Patients












2.1 Introduction
Suffering from stroke at a young age is a distressing event for patients and their families given the current lack of information on both etiology and prognosis. “Mendelian strokes” are genetic disorders characterized by extreme risk of stroke early on in life. Specifically, they are caused by rare protein-altering mutations in single genes1. We hypothesize that rare disruptive protein-altering mutations within such genes are important risk factors for stroke in young patients. To evaluate this hypothesis, 10 known genes were screened in a subset of participants (185 early-onset cases and 185 matched controls) from INTERSTROKE, a large international study of stroke2. 
The most extensively studied Mendelian strokes are Cerebral Autosomal Dominant Arteriopathies with Subcortical Infarcts and Leukoencephalopathies (CADASIL)3 and Fabry’s disease4. Both are small-vessel pathologies leading to enormous risk of early-onset stroke. Recurrent ischemic episodes are reported to be present in 71% of CADASIL patients (median onset: 46.1 years)5, and 18.8% of Fabry’s disease patients (mean onset: 38.3 years)6. In the general population, the prevalence of CADASIL is estimated to be 1-2 per 100,000 individuals7,8 and for Fabry’s disease, 14-50 per 100,000 indiviudals9,10. Conversely, in stroke patients, the estimated prevalence is higher but ranges widely from 500-6000 per 100,000 individuals for CADASIL11,12 and 500-3900 per 100,000 individuals for Fabry’s disease13,14. 
While rare genetic disorders are considered significant determinants of stroke in isolated families carrying Mendelian mutations, their relevance in a group of unrelated individuals is unclear. Previous studies investigating this issue lacked controls, were not comprehensive in genetic testing, and only included participants from a single ethnicity. In the present study, both cases and controls were screened to properly verify the pathogenicity of Mendelian stroke genes as one would expect a higher frequency in cases. Additionally, this marks the first exploration of multiple Mendelian genes within a single cohort, thus permitting an estimate of the combined prevalence of Mendelian stroke disorders as a whole. Newly identified Mendelian stroke disorders caused by mutations in SAMHD1 and CECR115,16 were also investigated in the current study. Ultimately, our primary objectives were to characterize the risk, prevalence, and clinical features associated with Mendelian mutations in a diverse population of unrelated patients and to determine which known genes, if any, should be considered for genetic screening. As a subproject of INTERSTROKE, which includes participants from 6 continents, 35 countries, and 18 ethnicities, this study provides globally relevant insights into the genetic basis of young stroke.
2.2 Methods
Sample Selection, Collection, & Exome Sequencing
Mendelian strokes tend to affect the small cerebral vessels17,18 and occur in the absence of conventional risk factors19. To ensure maximal representation of Mendelian strokes, the youngest INTERSTROKE cases with small-vessel pathology (ICH or small-vessel ischemic stroke (SVIS)) without risk factors were prioritized. Specifically, we selected the youngest stroke cases that could be matched to an appropriate control (sex, ethnicity, recruitment center). When two or more cases were the same age, the case with the least risk factors (hypertension, diabetes) was chosen. Conversely, when multiple controls could be selected, the oldest control with the most risk factors was chosen. The sample selection process is illustrated in Figure 2.1. 
ICH was defined by clinical evaluation and neuroimaging (MRI or CT scans), while SVIS was determined according to Trial of Org 10172 in Acute Ischemic Stroke Treatment (TOAST) guidelines20. Cardiovascular risk factors were defined in the same manner as described for the main INTERSTROKE study2. Hypertension was defined by either self-report or having a blood pressure greater than 160/90 mmHg (mean of 3 measurements for cases). Diabetes, migraine, and depression were self-reported. Specifically, migraine was assessed by asking, “do you have migraine?”, whereas depression was assessed by asking “during the past twelve months, was there ever a time when you felt sad, blue, or depression for two weeks or more in a row”. Blood samples for all study participants were collected in EDTA Whole Blood DNA tubes. DNA was extracted using the QIAGEN QIAsymphony DSP DNA Midi kit. Exomic sequences were captured with the Illumina TrueSeq Exome Enrichment Kit and subsequently sequenced on HiSeq with paired-end reads (2 x 100 bp). 
Variant Calling & Quality Control
Sequence reads were mapped to the hg19 reference genome with the Burrows Wheeler Aligner21 and processed according to the Genome Analysis Tool Kit (GATK22) protocol (Unified Genotyper) to generate single nucleotide variant (SNV) and insertion/deletion (INDEL) calls. Variant quality control (QC) filters were applied in KGGSEQ23 using default settings, except for the read depth filter which was increased to require eight reads per call. Variants deviating from Hardy Weinberg Equilibrium (HWE) within at least one ethnicity were excluded in all samples. Variants within regions that cannot be confidently called for most next-generation sequencing platforms were excluded based upon Zook et al. (2014)24. Variant QC metrics were generated in PicardTools25, BedTools26, GATK22, and SnpSift27. Sample QC included checks for ethnicity, sex, cryptic relatedness, and genotypic concordance with exome chip data. 146 exome sequenced samples were also genotyped on the Illumina HumanExome Chip V 1-1. Using exome chip genotypes as the benchmark, samples with more than 10% discrepant genotypes were excluded. Samples failing any quality control check or left without a matching sample were removed. All QC checks were performed using PLINK28, GCTA29, GATK22, and Variant Tools30. After QC, 185 case-control pairs remained (Table 2.1).
Candidate Gene Search
A list of Mendelian stroke genes was compiled from searching the Online Mendelian Inheritance of Man (OMIM) database using the key terms, “stroke” OR “intracerebral hemorrhage” OR “ischemic stroke” OR “cerebral aneurysm” OR “arterial thrombosis”. Search results were limited to those with “phenotype description, molecular basis known”, “Mendelian phenotype or locus, molecular basis unknown”, or “other, mainly phenotypes with suspected Mendelian basis”. Genes were excluded if (1) stroke was not the primary feature, (2) cardieombolic stroke, thoracic aortic aneurysm, large-vessel strokes, or venous thrombosis was the primary subtype, (3) disease onset was not adult (neonatal or pediatric), (4) they did not show clear evidence of Mendelian inheritance, or (5) they were encoded in the mitochondrial genome. More recently discovered stroke genes not yet recognized by the OMIM search, CECR1 15 and SAMHD116, were also added resulting in 10 stroke genes in total (S. Table 2.1). All candidate genes were reviewed by stroke neurologist, Dr. Michael Sharma, to ensure clinical relevance. 
Gene Association Testing
All rare disruptive protein-altering mutations within the same gene were treated as a single unit for association testing. Rare mutations were defined as those having a minor allele frequency (MAF) less than 5% in all 185 INTERSTROKE controls and participants from both the NHLBI GO Exome Sequencing Project (ESP) and 1000 Genomes (1KG). This MAF threshold was applied within each ethnic subdivision for ESP and 1KG. If a variant was common (MAF>0.05) to even a single ethnicity within ESP or 1KG, then it was excluded. Disruptiveness was determined using two criteria: either 1) manual curation of known disease-causing variants (OMIM1, UNIPROT31, or PubMed) or 2) bioinformatic prediction of “disease-causing” or “probably-disease causing” variants in either Polyphen-II (HDIV or HVAR)32 or SIFT33. 
To assess whether individual genes carried an excess burden of rare disruptive mutations in cases, a two-sided Fisher’s exact test was used in R34. Three separate analyses for all stroke, ICH, and SVIS status were conducted. P-values were corrected for multiple hypothesis testing by experiment-wise permutation of phenotypes. Case-control status was permutated within pairs to maintain appropriate matching by ethnicity, sex, and recruitment center. From every permutation, the most significant p-value out of all genes was extracted. 1000 permutations were performed thus generating a null distribution of 1000 permutated p-values for each analysis (all stroke, ICH, SVIS). Adjusted p-values were calculated as the proportion of permutated p-values that were more significant than the initial p-value.
Characterization of CADASIL mutations
	Variants within the EGFR domains of NOTCH3 were considered CADASIL-causing if 1) they involved the gain or loss of a cysteine35, 2) they resulted in an INDEL36, or 3) they affected the NOTCH3 R75 residue37,38. These criteria are based upon features of known, disease-causing CADASIL mutations.
Other Statistical Analyses
Characteristics between cases and controls were compared using the two-sided Student’s t-test for quantitative variables and two-sided Fisher’s test for count data in R34. Using Variant Tools30, HWE was evaluated within the controls of individual ethnicities (P<0.05/N).
Statistical Power
	Power calculations were performed using the “statmod” package in R assuming an allele frequency of 5%, and accordingly, a mutation carrier frequency of 9.75%. Sample sizes were sufficiently powered to detect associations of OR=2.32 for all stroke, OR=2.98 for ICH, and OR=3.11 for SVIS. 




2.3 Results
Study Subject Characteristics
Overall, men comprised 57.6% of all study participants (Table 2.1). On average, cases (46.7 years) were younger than controls (74.1 years) (P<2.2x10-16). ICH and SVIS accounted for 54% and 46% of all stroke cases, respectively. Among all participants, there were 120 (32.4%) Europeans, 86 (23.2%) Latin Americans, 70 (18.9%) South East Asians, 48 (13%) Africans, 30 (8.1%) Persians, 8 (2.2%) South Asians, and 8 (2.2%) others. As expected because of the selection criteria, the prevalence of hypertension and diabetes did not vary significantly between cases and controls as 51.3% of cases and 57.3% of controls were hypertensive (P=0.30) and 18.9% of cases and 14.6% of controls were diabetic (P=0.33). However, other risk factors such as BMI (27.3 vs. 26.1; P=0.02), current smoking status (28.1% vs. 9.2%; P=3.94x10-6), and APOB/APOA1 ratio (0.88 vs. 0.80; P=0.01), were elevated in cases. Parental history of stroke was similar between cases (16.2%) and controls (13.5%) (P=0.56). 
Mendelian Stroke Gene Analysis
The presence of rare disruptive mutations within any of the 10 Mendelian genes was significantly associated with stroke status (OR=1.62; 95% CI, 1.02-2.62; P=0.04) (Table 2.2). Overall, 66 (35.7%) cases and 47 (25.4%) controls were mutation carriers. Stratifying by stroke subtype, the presence of mutations was associated with ICH status (OR=2.82; 95% CI, 1.46-5.59; P=0.001) but not SVIS status (OR=0.84; 95% CI, 0.41-1.72; P=0.74). 43 (43%) ICH cases and 21 (21%) controls were mutation carriers. Upon closer examination of individual genes, there was only one significant gene association. NOTCH3 (P=0.009) was significantly associated with ICH status and remained significant after adjustment for multiple hypothesis testing (P=0.01). COL4A1 exhibited a trend towards significance (P=0.06) but not after adjustment (P=0.12). 22 (22%) ICH cases and 8 (8%) controls were NOTCH3 mutation carriers (OR=3.23; 95% CI: 1.29 to 8.87; P=0.009). Notably, one ICH case had two rare disruptive NOTCH3 mutations. To evaluate whether this association was solely accounted for by NOTCH3 mutations, we tested whether significance persisted after excluding NOTCH3. The presence of mutations within any of the other nine genes was not associated with ICH status, nor was there a trend towards association (OR=1.77; 95% CI: 0.79-4.13; P=0.19).
NOTCH3 Analysis
Rare NOTCH3 CADASIL-causing mutations follow a highly stereotyped pattern. We evaluated whether such mutations contributed to the NOTCH3 signal. Overall, there were six (3.2%) stroke cases, of which three (3%) were ICH and three (3.5%) were SVIS, carrying putative CADASIL mutations (Table 2.3). No CADASIL mutation was observed in controls. The presence of CADASIL mutations was significantly associated with stroke status (P=0.03). The ethnic distribution was Persian (3), African (2), and European (1). Migraine and depression are common secondary symptoms of CADASIL39. However, migraine was absent, and depression was only present in a single carrier. Additionally, five of the six mutation carriers had at least one cardiovascular risk factor. 
Excluding CADASIL mutations, the presence of other NOTCH3 mutations per se conferred significantly higher risk to ICH (OR=2.86; 95% CI, 1.13 to 7.93; P=0.02). 19 (86.4%) of the 22 total NOTCH3 mutation carriers with ICH possessed mutations of the non-CADASIL variety. Non-CADASIL NOTCH3 mutations were observed among multiple ethnic groups; there were nine European, six African, two Latin American, one South East Asian, and one individual of unknown ethnicity who carried non-CADASIL NOTCH3 mutations. Stratifying by ethnicity, the presence of non-CADASIL NOTCH3 mutations was not associated with ICH status in any single ethnicity though we were underpowered to detect associations within individual ethnic groups. Among all stroke cases, the prevalence of migraine and depression was similar between non-CADASIL mutation carriers and non-carriers (Table 2.4). Specifically, migraine was present in one (4.2%) non-CADASIL mutation carrier as compared to 20 (13.0%) non-carriers, whereas depression was present in seven (29.2%) non-CADASIL mutation carriers as compared to 44 (28.6%) non-carriers. 
Previously Reported Disease-Causing Mutations

Known Mendelian stroke mutations were found across CECR1, COL4A2, GLA, and NOTCH3 genes (Table 2.5). In total, there were 11 (2.97%) mutation carriers, of which six (3.2%) were cases and five (2.7%) were controls. The presence of these mutations was not significantly associated with stroke (OR=1.20; 95% CI, 0.30-5.06; P=1), ICH (OR=0.74; 95% CI, 0.11-4.52; P=1), or SVIS status (OR=3.05; 95% CI, 0.24-163.08; P=0.62).




2.4 Discussion 
Summary of Findings 
	The presence of rare disruptive mutations within Mendelian stroke genes significantly increases the risk of stroke in young patients (OR=1.62; 95% CI, 1.02-2.62; P=0.04). Specifically, NOTCH3 mutations were associated with ICH susceptibility (OR=3.23; 95% CI: 1.29 to 8.87; P=0.009), and there was also a trend towards significant for COL4A1 mutations and ICH (P=0.06). Our findings also confirm the pathogenicity of CADASIL mutations, which were exclusively found in cases, but not Mendelian mutations in other genes that have been previously reported as disease-causing. Finally, a novel role for non-CADASIL NOTCH3 mutations was uncovered. While individually rare, collectively, these mutations were common risk factors for ICH, being present in 19% of ICH cases and 8% of controls (OR=2.86; 95% CI, 1.13 to 7.93; P=0.02).
NOTCH3 mutations are important risk factors for young stroke
Based on our findings, NOTCH3 mutations can be categorized into two classes with respect to stroke risk: 1) CADASIL mutations which are very rare and lead to an extreme risk of stroke, and 2) non-CADASIL mutations that are more common and lead to a more moderate, albeit still substantial, risk of stroke. Non-CADASIL NOTCH3 mutations have not been studied in the context of ICH; however, Schmidt et al. (2011) also identified rare disruptive mutations in elderly individuals with severe white matter lesions, a hallmark of small-vessel disease 40. Moreover, Fouillade et al. (2008) pinpointed another non-CADASIL NOTCH3  variant, L1515P, as the cause of a hereditary small-vessel disease that was distinct from CADASIL pathology41. In conjunction with these studies, there may be a more pervasive role for NOTCH3 mutations in stroke than formerly recognized. 
Clinical Implications 
CADASIL is characterized by SVIS, migraine, and depression, among other debilitating symptoms5. In contrast, putative CADASIL mutation carriers deviated from this classic presentation. Firstly, ICH was the primary manifestation in 50% of carriers, suggesting that ICH is a major feature of CADASIL. While the number of CADASIL patients identified in our study was small, this notion is consistent with larger studies reporting ICH in ~25% of South East Asian CADASIL patients42–46. Secondly, migraine was not reported by any mutation carriers, which was unexpected given that it is more prevalent than stroke in some Caucasian studies19,39,47. Conversely, Wang et al.(2009) demonstrated that migraine was very rare (5%) in Chinese CADASIL patients48. Even the occurrence of MRI features once believed to be pathognomonic of CADASIL is less common in non-Caucasians42,47–49. 
Altogether, our results are consistent with emerging CADASIL literature suggesting that classic CADASIL symptoms may be deceiving due to variability across ethnic groups. Mutation carriers generally resembled other young stroke patients without NOTCH3 mutations. As such, NOTCH3 screening might be warranted in all young stroke patients regardless of clinical presentation. While the risk of stroke is extremely high in CADASIL mutation carriers, it is not absolute. Conventional risk factors, especially hypertension and smoking, still modulate symptom severity and onset in CADASIL patients19,39. As an example, five of the six CADASIL mutation carriers in our study still had at least one cardiovascular risk factor. Accordingly, therapy should focus on aggressively minimizing the presence of these conventional risk factors. “Cascade testing” could be implemented to identify entire families at high genetic risk for stroke. Our research also has specific implications for NOTCH3 screening. Current diagnostic testing for CADASIL only encompasses the EGFR domains and leaves approximately 30% of potentially functional coding regions unexamined. 9 (47.3%) NOTCH3 mutation carriers with ICH had mutations beyond EGFR domains (S. Table 2.2). To comprehensively detect disease-causing NOTCH3 mutations, the spectrum of mutations should be expanded to all coding regions of the gene.
Research Implications 
Our findings corroborate the rare-variant common disease hypothesis50, which asserts that many individually rare variants of large-effect account for a substantial proportion of diseased cases in the population. Additionally, using diverse cohorts appears to be an effective way to study rare genetic disorders. For example, had participants been limited to solely Caucasians, the sample size would need to be more than seven times as large to be equally powered to detect the significant case-enrichment in CADASIL mutations. Results also highlight the importance of controls since a similar frequency between cases and controls was observed for mutations presumed to be validated for clinical pathogenicity. This also suggests that some known, disease-causing mutations either confer minor risk to stroke or are false-positives. We identified one such mutation, GLA D313Y, which was originally assumed to be pathogenic in a Fabry’s disease patient with two different GLA variants. However, after Yasuda et al. (2003) demonstrated its presence in 4 (0.5%) out of 800 control chromosomes51, it became clear that this mutation was a benign polymorphism. In our study, the same variant was identified in a single control (0.54%), which is consistent with non-pathogenicity. Overall, our data suggest that researchers should be cautious to label variants as disease-causing on the basis of case-only observations. 
Limitations
There were several limitations in our study: 1) potentially important mitochondrial stroke disorders52–56 were not evaluated, 2) the pathogenicity of putative CADASIL  mutations were not verified by MRI features or skin biopsy testing for granular  osmiophilic material57, 3) the ESP database used for filtering variants based on frequency did not make stroke status publically available, 4) we did not have perfect coverage of candidate genes denoting that causal variants could have been missed (e.g. HTRA1 and CST3) (S. Table 2.3), 5) implications of research are restricted to small-vessel strokes (ICH or SVIS), and 6) we evaluated the role of 10 known Mendelian stroke genes, but many more novel genes yet to be identified may also influence stroke susceptibility.
2.5 Conclusion
To the best of our knowledge, we conducted the first case-control study of Mendelian stroke. The presence of rare disruptive mutations within Mendelian genes was associated with stroke status, particularly ICH. NOTCH3 was the major gene driving the association. In contrast to putative CADASIL mutations which were the most rare, other non-CADASIL NOTCH3 mutations were pervasive and potentially represent a novel class of disease-causing NOTCH3 mutations. Classic CADASIL symptomatology may be deceiving as migraine and depression were uncommon among mutation carriers, whereas ICH was actually common. Consequently, young stroke patients should be tested for all rare disruptive NOTCH3 mutations even in the absence of CADASIL signs. Ultimately, our results strongly support a role for rare mutations in early-onset stroke. Future studies should focus on more precisely defining the clinical features of NOTCH3 mutation carriers and verifying the pathogenicity of specific mutations in larger cohorts. 
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2.7 Tables
Table 2.1. Characteristics of study subjects.
	
	SVIS
	ICH
	All
Case
	All
Control
	All Stroke
P-value
	SVIS 
P-value
	ICH 
P-value

	N
	85
	100
	185
	185
	-
	-
	-

	Men, n 
(%)
	49
(57.6%)
	53
(53%)
	102
(55.1%)
	102
(55.1%)
	1
	1
	1

	Age
(SD)
	50.1
(9.79)
	45.6
(12.55)
	47.6
(11.55)
	74.1
(8.36)
	<2.2x10-16
	<2.2x10-16
	<2.2x10-16

	Hypertension
(%)
	46
(54.12%)
	49
(49%)
	95
(51.35%)
	106
(57.30%)
	0.30
	1
	0.12

	Diabetes
(%)
	23
(27.06%)
	12
(12%)
	35
(18.92%)
	27
(14.59%)
	0.33
	0.20
	1

	Current Smoker
(%)
	31
(36.47%)
	21
(21%)
	52
(28.11%)
	17
(9.19%)
	3.94x10-6
	4.08 x10-5
	0.03

	BMI
(SD)
	26.9
(4.88)
	27.7
(5.51)
	27.3
(5.23)
	26.1
(4.83)
	0.02
	0.14
	0.08

	APOB/APOA1
(SD)
	0.90
(0.29)
	0.87
(0.28)
	0.88
(0.28)
	0.80
(0.31)
	0.01
	0.05
	0.12

	Parental History
(%)
	23
(27.1%)
	7
(7%)
	30
(16.2%)
	25
(13.5%)
	0.56
	0.47
	1
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Table 2.2 Mutation carrier counts for Mendelian stroke genes.

	Gene
	SVIS Case
	SVIS Control
	SVIS P-value
	ICH Case
	ICH Control
	ICH 
P-value
	All Stroke
Case
	All Stroke 
Control
	All Stroke
P-value

	APP
	2
	2
	1
	1
	1
	1
	3
	3
	1

	CECR1
	0
	0
	1
	2
	1
	1
	2
	1
	1

	COL4A1
	2
	3
	1
	5
	0
	0.06
	7
	3
	0.33

	COL4A2
	12
	12
	1
	11
	9
	0.81
	23
	21
	0.87

	CST3
	0
	0
	1
	0
	0
	1
	0
	0
	1

	GLA
	0
	0
	1
	0
	2
	0.50
	0
	2
	0.50

	HTRA1
	0
	0
	1
	1
	0
	1
	1
	0
	1

	NOTCH3
	7
	8
	1
	22
	8
	0.009**
	29
	16
	0.06

	SAMHD1
	0
	0
	1
	0
	0
	1
	0
	0
	1

	TREX1
	0
	1
	1
	1
	0
	1
	1
	1
	1

	Total
	23
	26
	0.74
	43
	21
	0.001**
	66
	47
	0.04*




Table 2.3. Clinical features of putative CADASIL mutation carriers.

	Variant
	ESP MAF
	Stroke Type
	Ethnicity
	Sex
	Risk Factors
	Age
	Migraine
	Depression
	Parental Stroke

	R1285C
	Novel 
	SVIS
	Persian
	F
	Diabetes, APOB/APOA1
	45
	No
	No
	Yes

	R1231C
	7.7x10-5
	ICH
	Persian
	F
	None
	52
	No
	No
	No

	R1231C
	7.7x10-5
	SVIS
	Persian
	F
	Diabetes, APOB/APOA1
	45
	No
	Yes
	No

	R1100C
	Novel
	ICH
	African
	F
	Obesity
	50
	No
	No
	No

	R75W
	Novel
	ICH
	African
	M
	Hypertension, Obesity
	60
	No
	No
	No

	F1273-
	Novel
	SVIS
	European
	M
	Hypertension
	54
	No
	No
	No


Table 2.4. Comparison of secondary CADASIL features among cases. 

	
	CADASIL
Mutation Carrier
(CAD)
	NON-CADASIL Mutation Carrier
(NCAD)
	NON-CARRIER
(NCAR)
	CAD/NCAR
P-value
	NCAD/NCAR
P-value

	N
	6
	24
	155
	–
	–

	ICH/SVIS
	3/3
	19/5
	78/77
	–
	–

	Migraine
	0 (0%)
	1(4.2%)
	20 (13.0%)
	1
	0.29

	Depression
	1 (16.7%)
	7 (29.2%)
	44 (28.6%)
	1
	1

	Parental Stroke
	1 (16.7%)
	3 (12.5%)
	26 (16.9%)
	1
	0.77





Table 2.5. Summary of known disease-causing mutation carrier counts. 

	Gene
	Disease
	Variant
	ESP MAF
	SVIS Case
	SVIS Control
	ICH Case
	ICH Control
	All Stroke
Case
	All  Stroke Control

	CECR1
	Stroke and Vasculopathy
	G47W
	.
	0
	0
	0
	1
	0
	1

	COL4A2
	ICH
	E1123G
	9.78x10-3
	2
	1
	0
	2
	2
	3

	COL4A2
	ICH
	Q1150K
	6.67x10-3
	0
	0
	2
	0
	2
	0

	GLA
	Fabry's Disease
	D313Y
	2.94x10-3
	0
	0
	0
	1
	0
	1

	NOTCH3
	CADASIL
	R1231C
	7.70x10-5
	1
	0
	1
	0
	2
	0

	Total
	–
	–
	–
	3
	1
	3
	4
	6
	5

	P-value
	–
	–
	–
	0.62
	1
	1



2.8 Supplementary Material
Supplementary Table 2.1. Candidate Mendelian stroke genes

	Gene
	Disease
	Mode of Inheritance

	APP 
	Amyloid Angiopathies 
	Dominant 

	CST3 
	Amyloid Angiopathies 
	Dominant 

	CECR1 
	Early-onset stroke and cerebral vasculopathy 
	Recessive 

	COL4A1 
	Porencephaly / ICH 
	Dominant 

	COL4A2 
	Porencephaly / ICH 
	Dominant 

	GLA 
	Fabry’s Disease 
	Recessive 

	HTRA1 
	CARASIL 
	Recessive 

	NOTCH3 
	CADASIL 
	Dominant 

	SAMHD1 
	Early-onset stroke and cerebral vasculopathy 
	Recessive 

	TREX1 
	Retinal vasculopathy with cerebral leukodystrophy
	Dominant 













Supplementary Table 2.2. Non-CADASIL NOTCH3 mutation carrier counts.

	Variant
	ESP MAF
	In EGFR domain?
	SVIS Case
	SVIS
Control
	SVIS 
P-value
	ICH Case
	ICH Control
	ICH 
P-value
	All Stroke Case
	All Stroke Control
	All Stroke P-value

	A64D
	0.0006
	Yes
	0
	0
	N/A
	1
	0
	1
	1
	0
	1

	V159M
	Novel
	Yes
	0
	0
	N/A
	0
	1
	1
	0
	1
	1

	H170R
	0.0011
	Yes
	1
	0
	1
	0
	0
	N/A
	1
	0
	1

	V237M
	Novel
	Yes
	0
	0
	N/A
	1
	0
	1
	1
	0
	1

	D367N
	Novel
	Yes
	0
	0
	N/A
	0
	1
	1
	0
	1
	1

	P380L
	Novel
	Yes
	0
	0
	N/A
	1
	0
	1
	1
	0
	1

	P496L
	0.0155
	Yes
	1
	1
	1
	3
	1
	0.62
	4
	2
	0.68

	T575M
	0.0001
	Yes
	0
	0
	N/A
	1
	0
	1
	1
	0
	1

	A979T
	Novel
	Yes
	0
	1
	1
	0
	0
	1
	0
	1
	1

	G1105A
	0.0013
	Yes
	0
	0
	1
	0
	1
	1
	0
	1
	1

	H1133Q
	0.0131
	Yes
	0
	0
	N/A
	4
	2
	0.68
	4
	2
	0.68

	L1518M
	0.0014
	No
	2
	3
	1
	2
	1
	1
	4
	4
	1

	R1560P
	0.0035
	No
	0
	1
	1
	2
	0
	0.50
	2
	1
	1

	E1638Q
	Novel
	No
	0
	0
	1
	1
	0
	1
	1
	0
	1

	R1834G
	Novel
	No
	0
	0
	1
	1
	0
	1
	1
	0
	1

	R1857Q
	0.0001
	No
	0
	1
	1
	0
	0
	N/A
	0
	1
	1

	V1952M
	0.0078
	No
	1
	1
	1
	3
	1
	0.62
	4
	2
	0.68

	EGFR
	–
	11
	2
	2
	1
	11
	6
	0.31
	13
	9
	0.51

	Non-EGFR
	–
	6
	3
	6
	0.50
	9
	2
	0.06
	12
	8
	0.49

	Total
	–
	17
	5
	8
	0.60
	20
	8
	0.02*
	25
	16
	0.18




Supplementary Table 2.3. Coverage metrics for candidate genes. 
	Gene
	Average Coverage (SD)
	% Targets > 8x
(SD)
	% Targets > 20x 
(SD)

	APP 
	33.00 
(9.02)
	86.59
(1.73)
	69.17
(13.63)

	CECR1 
	34.93 
(9.59)
	99.48
(1.82)
	81.13
(16.03)

	COL4A1 
	50.81 
(11.89)
	94.26
(3.29)
	79.81
(8.81)

	COL4A2 
	60.26 
(14.08)
	96.33 
(2.23)
	87.48
(5.63)

	CST3 
	14.19 
(4.16)
	52.78
(12.96)
	34.30
(13.05)

	GLA 
	20.20
(8.40)
	90.10
(13.49)
	43.53
(29.76)

	HTRA1 
	34.67
(8.92)
	66.23
(2.21)
	56.26
(6.40)

	NOTCH3 
	73.48
(17.39)
	89.46
(2.32)
	82.50
(4.66)

	SAMHD1 
	30.99
(10.02)
	98.59
(4.26)
	76.11
(21.41)

	TREX1 
	157.24
(36.46)
	93.38
(1.15)
	90.62
(1.34)








Supplementary Table 2.4. Allele counts for candidate genes. 

	Gene
	SVIS Case
	SVIS Control
	SVIS P-value
	ICH Case
	ICH Control
	ICH 
P-value
	All Stroke
Case
	All Stroke Control
	All Stroke
P-value

	APP
	2
	2
	1
	1
	1
	1
	3
	3
	1

	CECR1
	0
	0
	1
	2
	1
	1
	2
	1
	1

	COL4A1
	2
	3
	1
	5
	0
	0.06
	7
	3
	0.34

	COL4A2
	13
	14
	1
	13
	9
	0.50
	26
	23
	0.77

	CST3
	0
	0
	1
	0
	0
	1
	0
	0
	1

	GLA
	0
	0
	1
	0
	2
	0.50
	0
	2
	0.50

	HTRA1
	0
	0
	1
	1
	0
	1
	1
	0
	1

	NOTCH3
	8
	8
	1
	23
	8
	0.008**
	31
	16
	0.03*

	SAMHD1
	0
	0
	1
	0
	0
	1
	0
	0
	1

	TREX1
	0
	1
	1
	2
	0
	0.50
	2
	1
	1

	Total
	25
	28
	0.74
	47
	21
	0.0002***
	72
	49
	0.01*













Chapter Three: A Systematic Exploration of Rare Variants influencing risk of Small-Vessel Stroke










3.1 Introduction
Stroke is the third most common cause of death worldwide and the leading cause of adult-acquired disability in Canada1,2. INTERSTROKE, a large international case-control study, demonstrated that approximately 90% of stroke risk can be attributed to 10 conventional risk factors3. Other undetermined risk factors, such as genetics, may explain the remaining portion of stroke risk, especially in young patients in which conventional risk factors are less prevalent3. We previously conducted exome sequencing in 185 early-onset case-control pairs and demonstrated that rare disruptive mutations within Mendelian stroke genes increased stroke risk, yet only a minority of cases had mutations. In the present investigation, we extend the previous analysis to an agnostic exploration of all genes. Thus, we hypothesize that rare disruptive protein-altering mutations in novel genes and pathways are important risk factors for early stroke. 
Only one other case-control study of stroke using exome sequencing has been published to date. The NHLBI GO Exome Sequencing Project (ESP) replicated a known association with PON14,5 (P= 3.01x10-3) in 496 ischemic stroke cases. While this study was important in revealing a role for rare mutations within PON1, common variants within this gene have already been associated with ischemic stroke6. Alternatively, novel genes and pathways may play a role, where pathways are defined as a collection of genes involved in the same biological process. For instance, common mutations within genes related to oxidative phosphorylation7 and blood pressure8 are associated with increased stroke risk. Whether rare variants in these or other pathways alter stroke risk is uncertain. Secondly, the ESP study consisted primarily of Europeans, thus limiting the generalisability of its implications. Lastly, ischemic stroke subtypes were pooled together and treated as a single disease outcome despite recognized heterogeneity across subtypes9. 
The current study is the first agnostic exploration of rare variants in the context of stroke. Exome sequencing was conducted in an ethnically diverse case-control study of small-vessel stroke (100 ICH and 85 SVIS). Not only does this study have globally relevant implications for stroke genetics, but it is also the first exome sequencing study of ICH. An extreme phenotype study design was adopted to enrich for a genetic etiology to stroke. Specifically, the youngest cases without major risk factors were matched to the oldest controls with risk factors. Accordingly, our main objective was to systematically identify genes and pathways associated with either protective or harmful effects.
3.2 Methods 
Sample Selection, Collection, & Exome Sequencing
The youngest INTERSTROKE cases of small-vessel subtype (ICH or SVIS) were matched with the oldest controls by sex, ethnicity, and recruitment center. The rationale for selecting cases without conventional stroke risk factors and controls with risk factors was to enrich for a genetic basis for stroke in the phenotypic extremes. Specifically, we selected the youngest stroke cases that could be matched to an appropriate control (sex, ethnicity, recruitment center). When two or more cases were the same age, the case with the least risk factors (hypertension, diabetes) was chosen. Conversely, when multiple controls could be selected, the oldest control with the most risk factors was chosen. Age is the strongest risk factor for stroke10 and was prioritized above all other risk factors. Hypertension and diabetes were minimized in cases but maximized in controls when possible. Because the major stroke risk factors do not account for controls’ protection and cases’ susceptibility to stroke, genetic factors are more likely to influence risk in selected individuals.
ICH was defined by clinical evaluation and neuroimaging (MRI or CT scans), whereas SVIS was determined according to Trial of Org 10172 in Acute Ischemic Stroke Treatment (TOAST) guidelines 11. Cardiovascular risk factors including hypertension and diabetes were defined in the same manner as previously described for the entire INTERSTROKE study3. Blood samples were collected in EDTA Whole Blood DNA tubes. DNA was extracted using the QIAGEN QIAsymphony DSP DNA Midi kit. Exomic sequences were captured with the Illumina TrueSeq Exome Enrichment Kit and subsequently sequenced on HiSeq with paired-end reads (2 x 100 bp). 
Variant Calling & Quality Control
Read pairs were mapped to the hg19 reference genome with the Burrows Wheeler Aligner12 and processed according to the Genome Analysis Tool Kit (GATK13) protocol (Unified Genotyper) to generate single nucleotide variant (SNV) and insertion/deletion (INDEL) calls. Default variant quality control (QC) filters were applied in KGGSEQ14, except for the read depth filter which was increased to require eight reads per call. Variants deviating from Hardy Weinberg Equilibrium (HWE) within at least one ethnicity were excluded in all samples. Regions that cannot be confidently called for next-generation sequencing platforms were excluded based upon Zook et al. (2014)15. Variant QC metrics were generated in PicardTools16, BedTools17, GATK13, and SnpSift18. Sample QC included checks for ethnicity, sex, and cryptic relatedness. Accuracy of genotyping calls was confirmed through secondary genotyping using the Illumina HumanExome Chip V 1-1 for a subset of 146 samples. Using exome chip genotypes as the benchmark, samples with more than 10% discrepant genotypes were excluded. Samples failing any of the aforementioned QC checks were removed along with their matching sample. After QC, 185 case-control pairs remained (S. Table 3.1). QC checks were performed using PLINK19, GCTA20, GATK13, and Variant Tools21. 
	Cases and controls did not differ in terms of sequencing depth, target coverage, or other alignment metrics (S. Table 3.1). On average, there were 9.1% duplicates, and 57.5% of unique reads were on target indicating efficient capture of exomic regions. Mean target coverage was 52x, and 94.4% of all targeted regions were covered by at least two reads. 73.6% of targeted regions were covered by more than 20 reads. Genotypic concordance was 99.8% with no significant differences between cases (99.8%) and controls (99.9%) (P=0.34). 17,917 coding mutations were detected per sample with similar numbers in cases (17,599) and controls (17,670) (P=0.65) (S. Table 3.1). Of all coding mutations, 17,635 (98.4%) were single nucleotide polymorphisms (SNPs) whereas 283 (1.6%) were insertions or deletions (INDELs). On average, 17,382 (98.57%) SNPs and 240 (85.23%) INDELs were recorded in dbSNP137. The number of mutations did not differ between cases and controls when stratifying by functional class (S. Table 3.2).
Gene and Pathway-based Association Testing
Rare disruptive protein-altering mutations within the same gene, as defined by RefGene22, were consolidated into a single unit for association testing. Mutations were also grouped by KEGG pathways23. Rare mutations were defined as those having a minor allele frequency (MAF) less than 5% in all 185 INTERSTROKE controls, NHLBI GO Exome Sequencing Project (ESP), and 1000 Genomes (1KG) participants. The MAF threshold was applied within each ethnic subdivision for ESP and 1KG. Variants that were common (MAF>0.05) to a single ethnicity in ESP or 1KG were excluded from the analyses. Variants designated as “disease-causing” or “probably-disease causing” according to either Polyphen-II (HDIV or HVAR)24 or SIFT25 algorithms were considered “disruptive”. 
Under the Variant Tools framework21, the collapsing test was applied to genes and pathways. This method overcomes the bias incurred when rare variants cosegregate due to genomic proximity (i.e. linkage disequilibrium) and not genuine association with disease status. Three separate analyses were conducted for all stroke, ICH, and SVIS. Moreover, cases were coded as 1 to identify associations conferring risk, and then controls were coded as 1 to identify associations conferring protection. P-values were corrected for multiple hypothesis testing by experiment-wise permutation of phenotypes within matched pairs. The major advantage of this method is that it does not assume an identical error rate for each association test. Instead, the family-wise error rate is empirically derived without this assumption. Specifically, this entails extracting the most significant p-value among all genes from each of 1000 permutations to create a null distribution of 1000 p-values. Adjusted p-values were calculated as the proportion of permutated p-values that were more significant than the initial p-value. A sensitivity analysis was also conducted using an additional rare variant association test, SKAT-O26. Results were generally consistent among top genes using either method (S. Table 3.4).
Biological Relevance
A PubMed search for the top 50 genes and 10 pathways of each analysis was perfrmed to ascertain biological relevance. Genes or pathways related to stroke pathology (e.g. thrombosis, vessel wall integrity, etc.), major risk factors (e.g. diabetes, hypertension, dyslipidemia), or intermediate phenotypes (e.g. white-matter disease) were reported.
Other Statistical Analyses
Characteristics between cases and controls were compared using the two-sided Student’s t-test for quantitative variables and two-sided Fisher’s test for count data in R27. Using Variant Tools21, HWE was evaluated within the controls of individual ethnicities (P<0.05/N). 
3.3 Results 
Study Subject Characteristics
Overall, men comprised 57.6% of all study participants (Table 3.1). On average, cases (47.6 years) were younger than controls (74.1 years) (P<2.2x10-16). ICH and SVIS accounted for 54% and 46% of all stroke cases, respectively. Among all study participants, there were 120 (32.4%) Europeans, 86 (23.2%) Latin Americans, 70 (18.9%) South East Asians, 48 (13%) Africans, 30 (8.1%) Persians, 8 (2.2%) South Asians, and 8 (2.2%) others. As expected because of the selection criteria, the prevalence of hypertension and diabetes did not differ between cases and controls. 51.3% of cases and 57.3% of controls were hypertensive (P=0.30) and 18.9% of cases and 14.6% of controls were diabetic (P=0.33). However, other risk factors such as BMI (27.3 vs. 26.1; P=0.02), current smoking status (28.1% vs. 9.2%; P=3.94x10-6), and APOB/APOA1 ratio (0.88 vs. 0.80; P=0.01), were elevated in cases. Parental history of stroke was similar between cases (16.2%) and controls (13.5%) (P=0.56). 
Variant Summary 
In total, 174,464 protein-altering mutations were detected, of which 148,379 (85.05%) were rare and 86,687 (49.69%) were both rare and disruptive. At least one rare disruptive mutation was observed in 13,706 genes and 208 KEGG pathways. On average, each individual possessed 378 rare and disruptive protein-altering mutations. 
Gene-based Analysis
The top five genes associated with all stroke status were CDK5RAP2 (P=1.2x10-4), EEF1D (P=1.7x10-4), GTSF1L (P=2.2x10-4), BCAN (P=3.6x10-4), and POLG2 (P=5.4x10-4) (Table 3.2). Among the 50 most significant genes, POLG2, VEGFC, DOK2, THBS4, and PEAR1 were biologically relevant. Stratifying by stroke subtype, the top genes for ICH were CDK5RAP2 (P=1.4x10-4), GGT5 (P=4.4x10-4), MYOM1 (P=5.6x10-4), CPAMD8 (P=1.0x10-3), and BCAN (P=1.1x10-3) (Table 3.3), whereas the top genes for SVIS were KCNH6 (P=1.0x10-3), TRANK1 (1.0x10-3), DENND2C (P=1.8x10-3), FOCAD (P=1.9x10-3), and STXBP2 (P=1.9x10-3) (Table 3.4). Among the top genes in either subtype analysis, biologically relevant genes included DOK2, PEAR1, AARS2, PODN, POLG2, NOTCH3, EPN1, ALDH1L1 and MTOR for ICH and EIF2AK3, NBEAL2, NINJ2, and MPL for SVIS. Biologically relevant genes are described in more detail in S. Table 3.3. No gene was significant after adjustment for multiple hypothesis testing.
Pathway-based Analysis
	Pathway results are summarized in Table 3.5. No pathways were significant after correction for multiple hypothesis testing. The most significant pathways for all stroke, ICH, and SVIS analyses are presented in detail in Supplementary Tables 3.5-3.7. Biologically relevant pathways included the renin-angiotensin system (RAS) which conferred protection against all stroke (P=8.1x10-4), ICH (P=1.3x10-2), and SVIS (P=1.2x10-2), and type II diabetes mellitus (T2DM) which increased risk of all stroke (P=1.9x10-2) and ICH (P=1.1x10-2), but not SVIS (P=0.27). The genes most strongly contributing to the pathway associations were ACE, CMA1, CPA3, and MME for the RAS pathway (S. Table 3.8); and ANGPTL7, INSR, PIK3CG, PRKCE, PRKCZ for the T2DM pathway (S. Table 3.9). Mutations in the RAS pathway were not associated with hypertension status (OR=0.97; 95% CI, 0.62-1.52; P=0.91), nor were mutations in the T2DM pathway associated with diabetes status (OR=1.28; 95% CI, 0.71-2.32; P=0.41). Pathways did not remain significant after adjustment for age, sex, ethnicity, case status, and cardiovascular risk factors (APOB/APOA1, BMI, smoking status, hypertension, and diabetes). 
3.4 Discussion
Suggestive evidence for novel stroke genes
	We conducted the first agnostic assessment of rare variants for small-vessel stroke. NOTCH3 was the 17th most significant gene for ICH overall. NOTCH3 is the causative gene for Cerebral Autosomal Dominant Arteriopathies with Subcortical Infarcts and Leucoencephalopathies (CADASIL), a Mendelian stroke disorder characterized by early ICH and SVIS28,29. Although some associations were nominally significant, results were encouraging considering that an established small-vessel stroke gene was among top genes out of more than 10,000 tested. 
CDK5RAP2 was the top association for all stroke (P=1.4x10-2) and ICH (P=1.2x10-4) but not SVIS (P>0.10). CDK5RAP2 is essential for chromosome segregation in neuronal progenitor cells and regulates the DNA damage response30,31. Conversely, KCNH6 and TRANK1 were tied as the top genes for SVIS status (P=1.0x10-3). KCNH6 is a voltage-gated potassium ion channel whose function is unknown, while TRANK1 is a risk locus for bipolar disorder32. Numerous top genes were also biologically relevant. In the present study, AARS2 was the second most significant gene among those associated with increased risk of ICH. Rare AARS2 mutations were recently found to cause early-onset leukodystrophy, an indicator for cerebral small-vessel dysfunction, though no strokes were reported33. Another biologically relevant gene, NBEAL2, was nominally associated with SVIS. Rare NBEAL2 mutations cause gray platelet syndrome, a genetic bleeding disorder characterized by deficiency in platelet α-granules, which are the intracellular vesicles that store clotting factors34. Therefore, AARS2 and NBEAL2 may be intriguing candidates to cause novel Mendelian stroke disorders. Other pertinent top genes and their relation to stroke are described in S. Table 3. Additionally, the PON1 gene, which was replicated by the ESP as an ischemic stroke locus, was not associated with all stroke (P=0.28), ICH (P=0.49), or SVIS (P=0.16) in our study.


Suggestive evidence for stroke pathways
Diabetes and hypertension are important risk factors for small-vessel stroke. Although diabetic and hypertensive cases were minimized by design, results suggested that genes related to these risk factors may alter risk of stroke. RAS mutations were nominally protective against all stroke, ICH, and SVIS. Assuming that mutations resulted in loss-of-function, this protective effect is consistent with RAS inhibition. Moreover, this protective effect was independent of hypertension, which was unexpected given that RAS is the primary regulatory mechanism underlying blood pressure. However, Mollsten et al. (2008) also identified a blood-pressure-independent association with a common variant in ACE, the gene encoding angiotensin converting enzyme35. Similarly, Hajjar et al. (2010) discovered a blood-pressure-independent association between a common angiotensin gene polymorphism and vasoreactivity36. Consistent with Das et al. (2014) reporting an association between an ACE polymorphism and both ischemic and hemorrhagic subtypes37, RAS mutations influenced risk of both SVIS and ICH in the present study. Also, T2DM mutations conferred risk for all stroke and ICH but not SVIS, a surprising finding given that diabetes is a risk factor for ischemic but not hemorrhagic stroke3. 
Future Implications 
	Our results validate the utility	 of exome sequencing as a discovery tool for novel stroke genes and pathways. Although no genome-wide significant associations were identified, NOTCH3 was among the top genes thus providing external validity to the study design. Many nominally significant genes were found to have protective effects just as rare variants have been reported to protect against other diseases, such as hypercholesterolemia38, coronary heart disease39,40, and type II diabetes41. Likewise, our findings prompt future studies to search for protective stroke genes to better understand the mechanisms underlying stroke resistance. Additionally, the notion that SVIS and ICH have distinct genetic etiologies is supported by the fact that none of the top genes within subtype analyses overlapped. Furthermore, most top genes associated with all stroke status were primarily driven by association with one stroke subtype. This is consistent with the fact that nearly all replicable stroke loci are subtype-specific42, thus emphasizing the importance of proper stroke subtyping.
Limitations
	The major limitation of our study is the small sample size. As such, results must be validated in additional, larger stroke cohorts. Secondly, results were dependent on the accuracy of prediction algorithms. Polyphen II and SIFT are widely used, but overall, specificity is very low (~15%) for both algorithms43. As a result, inclusion of non-disruptive mutations may mask real associations. Thirdly, coverage of protein-coding genes was incomplete. While 13,706 genes were tested, numerous genes were not assessed either due to low sequencing depth or because no rare and disruptive mutation was identified. Additionally, genes encoded in the mitochondrial genome could not be evaluated even though they are known causes of Mendelian stroke44–46. Lastly, it was assumed that genes were either associated with protective or disease-causing effects though rare mutations within the same gene could have opposing effects. However, results using SKAT-O, a rare variant test robust to effect direction, were generally concordant for top genes.
3.5 Conclusion
An agnostic, large-scale investigation of rare variants for early stroke was performed. NOTCH3, a classic stroke gene, was among the top genes out of 13,706 tested. AARS2 and NBEAL2, which were nominally associated with risk of ICH and SVIS, respectively, are plausible candidates for novel Mendelian stroke disorders. Pathway analyses revealed nominally significant associations for RAS and T2DM, which are closely linked with major risk factors despite associations being independent of hypertension and diabetes, respectively. Future studies are required to replicate the suggestive findings reported in this study.
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3.7 Tables
Table 3.1. Characteristics of study subjects.
	
	SVIS
	ICH
	All
Case
	All
Control
	All Stroke
P-value
	SVIS 
P-value
	ICH 
P-value

	N
	85
	100
	185
	185
	-
	-
	-

	Men, n 
(%)
	49
(57.6%)
	53
(53%)
	102
(55.1%)
	102
(55.1%)
	1
	1
	1

	Age
(SD)
	50.1
(9.79)
	45.6
(12.55)
	47.6
(11.55)
	74.1
(8.36)
	<2.2x10-16
	<2.2x10-16
	<2.2x10-16

	Hypertension
(%)
	46
(54.12%)
	49
(49%)
	95
(51.35%)
	106
(57.30%)
	0.30
	1
	0.12

	Diabetes
(%)
	23
(27.06%)
	12
(12%)
	35
(18.92%)
	27
(14.59%)
	0.33
	0.20
	1

	Current Smoker
(%)
	31
(36.47%)
	21
(21%)
	52
(28.11%)
	17
(9.19%)
	3.94x10-6
	4.08 x10-5
	0.03

	BMI
(SD)
	26.9
(4.88)
	27.7
(5.51)
	27.3
(5.23)
	26.1
(4.83)
	0.02
	0.14
	0.08

	APOB/APOA1
(SD)
	0.90
(0.29)
	0.87
(0.28)
	0.88
(0.28)
	0.80
(0.31)
	0.01
	0.05
	0.12

	Parental History
(%)
	23
(27.1%)
	7
(7%)
	30
(16.2%)
	25
(13.5%)
	0.56
	0.47
	1







Table 3.2. Gene-based association results for all stroke. (Top 5 most significant genes and biological candidates (bolded) within the top 50 genes).

	Gene
	ICH Count
	SVIS
Count
	All Stroke Case Count
	All Stroke
Control Count
	Effect
	P-value
	Rank

	CDK5RAP2
	21
	10
	31
	9
	RISK
	1.2x10-4
	1

	EEF1D
	0
	1
	1
	15
	PROTECTIVE
	1.7x10-4
	2

	GTSF1L
	1
	1
	2
	9
	PROTECTIVE
	2.2x10-4
	3

	BCAN
	0
	1
	1
	14
	PROTECTIVE
	3.6x10-4
	4

	POLG2
	8
	2
	10
	0
	RISK
	5.4x10-4
	5

	DOK2
	0
	4
	4
	16
	PROTECTIVE
	2.9x10-3
	22

	THBS4
	1
	1
	2
	12
	PROTECTIVE
	3.2x10-3
	31

	VEGFC
	0
	0
	0
	5
	PROTECTIVE
	6.6x10-3
	38

	PEAR1
	0
	3
	3
	14
	PROTECTIVE
	4.8x10-3
	47







Table 3.3 Gene-based association results for ICH. (Top 5 most significant genes and biological candidates (bolded) within the top 50 genes).

	Gene
	ICH 
Count
	Control Count
	Effect
	P-value
	Rank

	CDK5RAP2
	21
	4
	RISK
	1.4x10-4
	1

	GGT5
	1
	7
	PROTECTIVE
	4.4x10-4
	2

	MYOM1
	6
	22
	PROTECTIVE
	5.6x10-4
	3

	CPAMD8
	8
	24
	PROTECTIVE
	1.0x10-3
	4

	BCAN
	0
	9
	PROTECTIVE
	1.1x10-3
	5

	DOK2
	0
	9
	PROTECTIVE
	1.1x10-3
	5

	PEAR1
	0
	8
	PROTECTIVE
	1.1x10-3
	7

	AARS2
	17
	4
	RISK
	1.4x10-3
	8

	PODN
	8
	0
	RISK
	2.0x10-3
	9

	NOTCH3
	22
	8
	RISK
	2.8x10-3
	17

	EPN1
	1
	8
	PROTECTIVE
	4.7x10-3
	34

	ALDH1L1
	1
	10
	PROTECTIVE
	4.9x10-3
	36

	MTOR
	6
	0
	RISK
	6.4x10-3
	47





Table 3.4. Gene-based association results for SVIS. (Top 5 most significant genes and biological candidates (bolded) within the top 50 genes).

	Gene
	SVIS 
Count
	Control Count
	Effect
	P-value
	Rank

	KCNH6
	9
	0
	RISK
	1.0x10-3
	1

	TRANK1
	9
	0
	RISK
	1.0x10-3
	1

	DENND2C
	8
	0
	RISK
	1.8x10-3
	3

	FOCAD
	9
	0
	PROTECTIVE
	1.9x10-3
	4

	STXBP2
	8
	0
	PROTECTIVE
	1.9x10-3
	5

	EIF2AK3
	0
	8
	PROTECTIVE
	6.6x10-3
	38

	NBEAL2
	12
	3
	RISK
	7.5x10-3
	39

	NINJ2
	8
	0
	RISK
	8.3x10-3
	42

	MPL
	1
	8
	PROTECTIVE
	8.3x10-3
	42

	PPARGC1B
	1
	8
	PROTECTIVE
	8.3x10-3
	42




Table 3.5. Pathway-based association results. Biologically relevant pathways are bolded.

	All Stroke
	ICH
	SVIS

	Pathway
	P-value
	Pathway
	P-value
	Pathway
	P-value

	Renin-angiotensin system
	8.1x10-4
	Galactose metabolism
	3.5x10-3
	Glycine, serine and threonine metabolism
	4.1x10-3

	Galactose Metabolism
	1.3x10-3
	Synthesis and degradation of ketone bodies
	4.6x10-3
	Renin-angiotensin system
	1.2x10-2

	Synthesis and degradation of ketone bodies
	2.6x10-3
	Nucleotide excision repair
	5.3x10-3
	Retinol Metabolism
	1.5x10-2

	Glycine, serine, and threonine metabolism
	9.8x10-3
	Non-small cell lung cancer
	8.1x10-3
	Dilated cardiomyopathy
	1.7x10-2

	Retinol Metabolism
	1.1x10-2
	Pantothenate and CoA biosynthesis
	8.4x10-3
	Phototransduction
	1.8x10-2

	SNARE interactions in vesicular transport
	1.3x10-2
	Type II diabetes mellitus
	1.1x10-2
	Mismatch Repair
	2.5x10-2

	Type II diabetes mellitus
	1.9x10-2
	Renin-angiotensin system
	1.3x10-2
	Huntington’s disease
	2.8x10-2

	Nucleotide Excision repair
	2.4x10-2
	Taurine and hypotaurine metabolism
	1.4x10-2
	Basal Cell Carcinoma
	3.1x10-2

	Vitamin B6 metabolism
	2.6x10-2
	Progesterone-mediated oocyte maturation
	1.5x10-2
	Porphyrin and chlorophyll metabolism
	3.6x10-2

	Cytosolic DNA-sensing pathway
	3.6x10-2
	Natural killer cell mediated cytotoxicity
	1.6x10-2
	Pentose phosphate pathway
	3.8x10-2







3.8 Supplementary 
Supplementary Table 3.1. Quality control metrics for alignment and variant calling.

	
	Cases
	Controls
	All
	P-value

	Total Reads
	75,774,471
	77,439,871
	76,607,171
	0.32

	Unpaired Reads
	395,255
	393,674
	394,464
	0.93

	Read Pairs
	37,689,608
	38,523,098
	38,106,353
	0.32

	% Unmapped
	0.99%
	1.00%
	0.99%
	0.80

	% Duplicate Reads
	8.87%
	9.28%
	9.08%
	0.17

	Total Unique Reads
	68,712,133
	70,032,113
	69,372,123
	0.36

	Unique Reads on Target
	39,608,006
	40,235,092
	39,921,549
	0.47

	% Reads on Target
	57.54%
	57.36%
	57.45%
	0.44

	Mean Target Coverage
	51
	52
	52
	0.47

	% Target > 2x
	94.33%
	94.37%
	94.35%
	0.54

	% Target > 20x
	73.32%
	73.96%
	73.64%
	0.48

	# Coding SNPs 
(# Known/# Novel)
	17,599
(17,349/249)
	17,670
(17,415/255)
	17,635
(17,382/252)
	0.65

	% Known SNPs
	98.6%
	98.6%
	98.6%
	0.72

	Ti/Tv  SNPs
	3.4
	3.4
	3.4
	0.81

	Het/Hom SNPs
	1.5
	1.5
	1.5
	0.77

	# Coding INDELs
(# Known / # Novel)
	282
(239/43)
	284
(241/43)
	283
(240/43)
	0.36

	% Known INDELs
	85.1%
	85.4%
	85.2%
	0.94

	INDEL Ratio
	1.3
	1.3
	1.3
	0.74

	Exome Chip Concordance*
	99.8%
	99.9%
	99.8%
	0.34



Supplementary Table 3.2. Variant counts by functional class. 

	
	Cases
	Controls
	All
	P-value

	Synonymous
	9,588
	9,624
	9,606
	0.69

	Missense
	7,932
	7,968
	7,950
	0.60

	Stopgain
	52
	53
	52
	0.43

	Stoploss
	73
	74
	73
	0.43

	Splicing
	5
	5
	5
	0.77

	Frameshift
	133
	134
	134
	0.53

	NonFrameshift
	149
	150
	149
	0.34

	Total
	17,880
	17,954
	17,917
	0.64



Supplementary Table 3.3. Biologically relevant genes among top 50 genes. 
	Gene
	Associated Stroke Type
	Effect
	P-value
	Related Function

	DOK2
	ICH, 
All Stroke
	Protective
	1.1x10-3
	Thrombus formation

	PEAR1
	ICH, 
All Stroke
	Protective
	1.1x10-3
	Platelet aggregation

	AARS2
	ICH
	Risk
	1.4x10-3
	Early Leukodystrophy

	PODN
	ICH
	Risk
	2.0x10-3
	Atherosclerosis

	NOTCH3
	ICH
	Risk
	2.8x10-3
	Mendelian stroke

	THBS4
	All stroke
	Protective
	3.2x10-3
	Atherosclerosis

	EPN1
	ICH
	Protective
	4.7x10-3
	Angiogenesis

	ALDH1L1
	ICH
	Protective
	4.9x10-3
	Ischemic Stroke GWAS loci

	MTOR
	ICH
	Risk
	6.4x10-3
	Stroke protection

	EIF2AK3
	SVIS
	Protective
	6.6x10-3
	Early-onset diabetes

	VEGFC
	ICH
	Protective
	6.6x10-3
	Angiogenesis

	NBEAL2
	SVIS
	Risk
	7.5x10-3
	Mendelian bleeding disorder

	NINJ2
	SVIS
	Risk
	8.3x10-3
	Ischemic Stroke GWAS loci

	MPL
	SVIS
	Protective
	8.3x10-3
	Thrombocythemia

	PPARGC1B
	SVIS
	Protective
	8.3x10-3
	Diabetes


Supplementary Table 3.4. Gene-based association results using SKAT-O.
	All Stroke
	ICH
	SVIS

	Gene
	P-value
	Gene
	P-value
	Gene
	P-value

	GTSF1L
	2.5x10-4
	MYOM1
	1.6x10-4
	KCNH6
	5.2x10-4

	EEF1D
	4.0x10-4
	CDK5RAP2
	3.1x10-4
	TRANK1
	1.4x10-3

	CDK5RAP2
	4.5x10-4
	GGT5
	4.7x10-4
	STXBP2
	2.1x10-3

	CHD3
	5.4x10-4
	KRT7
	4.7x10-4
	IQCH
	2.1x10-3

	BICC1
	6.4x10-4
	DOK2
	1.6x10-3
	MRPL36
	3.0x10-3

	BCAN
	7.9x10-4
	PEAR1
	1.7x10-3
	NINJ2
	3.4x10-3

	POLG2
	1.1x10-3
	PODN
	1.7x10-3
	CNTRL
	3.6x10-3

	DIP2C
	1.1x10-3
	BCAN
	1.8x10-3
	PLA2G4F
	4.5x10-3

	FANCC
	1.4x10-3
	BICC1
	2.4x10-3
	ANK3
	4.6x10-3

	VWDE
	2.2x10-3
	POLG2
	2.4x10-3
	TULP4
	4.8x10-3



Supplementary Table 3.5. Pathway-based association results for all stroke. Biologically relevant pathways are bolded.

	Pathway
	ICH Count
	SVIS Count
	All Case Count
	Control Count
	Effect
	P-value

	Renin-angiotensin system
	28
	23
	51
	81
	PRO
	8.1x10-4

	Galactose metabolism
	63
	41
	104
	75
	RISK
	1.3x10-3

	Synthesis and degradation of ketone bodies
	3
	2
	5
	18
	PRO
	2.6x10-3

	Glycine, serine, and threonine metabolism
	49
	44
	93
	64
	RISK
	9.8x10-3

	Retinol Metabolism
	47
	44
	91
	71
	RISK
	1.1x10-2

	SNARE interactions in vesicular transport
	17
	15
	32
	40
	PRO
	1.3x10-2

	Type II diabetes mellitus
	63
	45
	108
	88
	RISK
	1.9x10-2

	Nucleotide Excision repair
	64
	38
	102
	83
	RISK
	2.4x10-2

	Vitamin B6 metabolism
	6
	1
	7
	16
	PRO
	2.6x10-2

	Cytosolic DNA-sensing pathway
	53
	32
	85
	66
	RISK
	3.6x10-2

















Supplementary Table 3.6. Pathway-based association results for ICH. Biologically relevant pathways are bolded.

	Pathway
	ICH Count
	Control Count
	Effect
	P-value

	Galactose metabolism
	63
	44
	RISK
	3.5x10-3

	Synthesis and degradation of ketone bodies
	3
	13
	PROTECTIVE
	4.6x10-3

	Nucleotide excision repair
	64
	46
	RISK
	5.3x10-3

	Non-small cell lung cancer
	59
	42
	RISK
	8.1x10-3

	Pantothenate and CoA biosynthesis
	28
	13
	RISK
	8.4x10-3

	Type II diabetes mellitus
	63
	47
	RISK
	1.1x10-2

	Renin-angiotensin system
	28
	44
	PROTECTIVE
	1.3x10-2

	Taurine and hypotaurine metabolism
	12
	24
	PROTECTIVE
	1.4x10-2

	Progesterone-mediated oocyte maturation
	70
	55
	RISK
	1.5x10-2

	Natural killer cell cytotoxicity
	82
	69
	RISK
	1.6x10-2



Supplementary Table 3.7. Pathway-based association results for SVIS. Biologically relevant pathways are bolded.

	Pathway
	SVIS Count
	Control Count
	Effect
	P-value

	Glycine, serine and threonine metabolism
	44
	27
	RISK
	4.1x10-3

	Renin-angiotensin system
	23
	37
	PROTECTIVE
	1.2x10-2

	Retinol Metabolism
	44
	32
	RISK
	1.5x10-2

	Dilated cardiomyopathy
	68
	77
	PROTECTIVE
	1.7x10-2

	Phototransduction
	23
	36
	PROTECTIVE
	1.8x10-2

	Mismatch Repair
	34
	23
	RISK
	2.5x10-2

	Huntington’s disease
	71
	79
	PROTECTIVE
	2.8x10-2

	Basal Cell Carcinoma
	43
	55
	PROTECTIVE
	3.1x10-2

	Porphyrin and chlorophyll metabolism
	22
	33
	PROTECTIVE
	3.6x10-2

	Pentose phosphate pathway
	35
	24
	RISK
	3.8x10-2







Supplementary Table 3.8. RAS pathway mutation carrier counts. 

	Gene
	ICH 
Count
	SVIS 
Count
	All Case
 Count
	Control 
Count

	ACE
	11
	8
	19
	30

	ACE2
	0
	0
	0
	1

	AGT
	2
	3
	5
	6

	AGTR2
	0
	1
	1
	1

	ANPEP
	7
	0
	7
	7

	CMA1
	3
	4
	7
	15

	CPA3
	4
	2
	6
	12

	CTSA
	0
	1
	1
	2

	ENPEP
	0
	0
	0
	0

	LNPEP
	3
	2
	5
	7

	MAS1
	2
	0
	2
	2

	MME
	1
	1
	2
	8

	NLN
	0
	2
	2
	4

	REN
	0
	0
	0
	2

	THOP1
	1
	2
	3
	6























Supplementary Table 3.9. T2DM pathway mutation carrier counts.

	Gene
	ICH 
Count
	SVIS 
Count
	All Case
 Count
	Control 
Count

	ABCC8
	2
	2
	4
	5

	ADIPOQ
	3
	0
	3
	2

	ANGPTL7
	4
	2
	6
	1

	CACNA1A
	4
	5
	9
	5

	CACNA1C
	5
	4
	9
	10

	CACNA1D
	3
	0
	3
	4

	CACNA1G
	9
	6
	15
	14

	HK1
	0
	1
	1
	2

	HK2
	5
	3
	8
	4

	HK3
	23
	11
	34
	29

	INSR
	4
	2
	6
	1

	IRS1
	3
	4
	7
	6

	IRS2
	0
	1
	1
	1

	IRS4
	3
	5
	8
	7

	KCNJ11
	6
	1
	7
	8

	MAFA
	1
	0
	1
	0

	MAPK3
	2
	0
	2
	2

	MAPK9
	1
	1
	2
	1

	MTOR
	2
	1
	3
	1

	PIK3CB
	1
	1
	2
	2

	PIK3CD
	4
	4
	8
	4

	PIK3CG
	7
	1
	8
	1

	PIK3R1
	1
	0
	1
	0

	PIK3R2
	0
	0
	0
	2

	PIK3R5
	4
	1
	5
	5

	PKLR
	4
	1
	5
	5

	PKM
	4
	4
	8
	7

	PRKCD
	2
	0
	2
	0

	PRKCE
	2
	3
	5
	1

	PRKCZ
	2
	3
	5
	0

	SLC2A2
	0
	2
	2
	1

	SLC2A4
	1
	0
	1
	2

	SOCS4
	0
	1
	1
	1













Chapter 4: Conclusion











4.1 Summary of Main Findings
The candidate analysis (Chapter 2) confirmed the hypothesis that rare disruptive mutations among Mendelian stroke genes increase risk of stroke (ORStroke=1.62; 95% CI, 1.02-2.62; P=0.04) (ORICH=2.82; 95% CI, 1.46-5.59; P=0.001). However, when only considering previously reported disease-causing mutations, there was no significant difference in their frequency between cases (3.2%) and controls (2.7%) (P=1). Although 10 known genes were evaluated, our findings only support a role for NOTCH3, the CADASIL-causing gene. NOTCH3 mutations were associated with increased risk of ICH (OR=3.23; 95% CI: 1.29 to 8.87; P=0.009). CADASIL mutations were enriched in cases (3.2%) as compared to controls (0%) (P=0.03). The six CADASIL mutation carriers all presented with stroke but secondary features of migraine and depression were rare. A new role for other NOTCH3 mutations was also uncovered. Non-CADASIL NOTCH3 mutations represented a common and significant risk factor for ICH, being present in 22% of ICH cases and 8% of controls (OR=2.86; 95% CI, 1.13 to 7.93, P=0.02). Many of these mutations would not be detected by standard diagnostic CADASIL testing. Therefore, our findings recommend NOTCH3 screening of the entire gene in young stroke patients and their families. 
To elucidate the role of rare variants beyond known stroke genes, we systematically assessed all protein-coding genes for novel associations (Chapter 3). While no genes or pathways were significant at the genome-wide level, NOTCH3 was among the top ICH genes out of more than 10,000 tested (P=2.8x10-3). Many of the top associations were also biologically relevant. For instance, NBEAL2 and AARS2 were associated with elevated risk of SVIS and ICH, respectively, and are intriguing candidates to cause new Mendelian stroke disorders. Pathway analysis revealed nominal associations for the renin-angiotensin system (RAS) and type II diabetes mellitus (T2DM).  Rare disruptive mutations in RAS were protective for all stroke (P=8.1x10-4), ICH (P=1.3x10-2), and SVIS (P=1.2x10-2). Conversely, rare disruptive mutations in T2DM conferred risk to all stroke (P=1.9x10-2) and ICH (P=1.1x10-2) but not SVIS (P=0.27). While these findings are hypothesis-generating, they require further validation in additional studies.
4.2 Research Implications
Our findings corroborate the CDRV hypothesis for early stroke. NOTCH3 mutations were present in 22% of ICH cases and 8% of controls, whereas protective RAS mutations were present in 27.6% of all stroke cases and 43.8% of all controls. Together, these observations support both a monogenic and polygenic burden of rare mutations in early stroke. While a monogenic burden for rare variants was already supported by the existence of Mendelian strokes, there was no evidence for a polygenic model. A polygenic model for common variants, however, has been demonstrated as both blood pressure and oxidative phosphorylation genes are associated with increased risk of deep ICH1,2. Therefore, stroke risk appears to be the result of rare variants in single genes and rare variants dispersed across multiple genes sharing in the same functional pathway. 
The CDRV and CDCV hypotheses are not mutually exclusive but rather complementary. Studies have demonstrated that both rare and common mutations within the same genes contribute to stroke risk. For instance, NINJ2 was one of the first stroke genes identified through GWAS3 and recently, the Cohorts for Heart and Aging in Genomic Epidemiology (CHARGE) consortium replicated this association using deep sequencing, conveying that both common and rare NINJ2 mutations impact risk of ischemic stroke4. In our study, rare NINJ2 mutations were also nominally associated with risk of ischemic stroke (P=8.3x10-3).
Our findings have important implications for future stroke studies investigating the role of rare variants. Firstly, it is imperative to include controls. Previously reported disease-causing mutations were found in a similar proportion of cases (3.2%) and controls (2.7%). If a case-only study design had been adopted, one might conclude that known Mendelian stroke mutations were enriched in young stroke patients because the prevalence of Mendelian strokes in the general population is substantially. However, this conclusion relies on the false premise that previously reported mutations were causal and highly penetrant. Evidently, these allegedly pathogenic mutations appear to be marginally influential or lowly penetrant. Inclusion of controls also enables identification of protective stroke mutations. In our study, many biologically relevant genes reduced risk of stroke, including DOK2, PEAR1, THBS4, EPN1, ALDH1L1, EIF2AK3, VEGFC, MPL, and PPARGC1B. Other studies also demonstrate strong protective effects: rare APOC3 variants reduce risk of coronary heart disease by 40%5, and rare NINJ2 variants reduce risk of incident ischemic stroke by 19%4. Secondly, precise stroke subtyping is necessary to identify genuine associations due to subtype heterogeneity. The NOTCH3 association was specific to ICH and not SVIS. Additionally, many of the top ICH genes did not overlap with the top SVIS genes in the discovery analysis. Finally, our study validates the use of highly diverse patient populations in genetics research. Inclusion of multiple ethnic groups enhances generalisability of results and improves power to detect associations because mutation frequency varies by ethnicity. Had we limited participants to those of European ancestry, the sample size would have needed to be seven times larger to be as well-powered to detect the higher frequency of CADASIL mutations in cases.
4.3 Future Directions 
First and foremost, all findings presented in this thesis require replication in larger studies. The impact of rare variants in different patient populations should also be evaluated in future studies. We investigated the two most common stroke subtypes, SVIS and ICH, which collectively account for approximately 50% of all strokes6. However, the genetic architecture for other stroke subtypes might be vastly different. Cryptogenic strokes may be particularly important to explore as they account for 2% of all strokes but 22% of early-onset strokes7. Furthermore, there may be a genetic basis for cryptogenic stroke as Fabry’s disease is estimated to be responsible for ~0.6-11% of cryptogenic strokes8. Again, these figures are based on case-only studies which are not ideal. As such, conducting a case-control study of Mendelian stroke genes in young cryptogenic stroke would be optimal. Additionally, broader patient populations without stipulations for risk factor profile should be evaluated to improve generalisability of results. Lastly, studies that integrate various types of genetic information (e.g. gene expression and DNA methylation) would aid in defining the precise effects of rare variants. 



4.4 Concluding Remarks
Rare genetic mutations have long been recognized as important determinants of disease but mainly in the context of families with severe genetic disorders. Contrary to this view, we demonstrate a broader role for rare mutations in young stroke patients. CADASIL and other NOTCH3 mutations are important risk factors for stroke in young, unrelated patients. Beyond known genes, novel associations for genes and pathways were found at nominal significance in the first agnostic exploration of rare variants for stroke. Overall, rare mutations are significant risk factors for early stroke. 
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