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Abstract

Multitarget tracking in the presence of false alarm is a difficult problem to consider.

The objective of multitarget tracking is to estimate the number of targets and their

states recursively from available observations. At any given time, targets can be born,

die and spawn from already existing targets. Sensors can detect these targets with a

defined threshold, where normally the observation is influenced by false alarm. Also

if the targets are with low signal to noise ratio (SNR) then the targets may not be

detected.

The Random Finite Set (RFS) filters can be used to solve such multitarget prob-

lem efficiently. Specially, one of the best and most widely used RFS based filter is

the Probability Hypothesis Density (PHD) filter. The PHD filter approximates the

posterior probability density function (PDF) by the first order moment only, where

the targets SNR assumed to be much higher. The PHD filter supports targets die,

born, spawn and missed-detection by using the well known implementations including

Sequential Monte Carlo Probability Hypothesis Density (SMC-PHD) and Gaussian

Mixture Probability Hypothesis Density (GM-PHD) methods. The SMC-PHD filter

suffers from the well known degeneracy problems while GM-PHD filter may not be

suitable for nonlinear and non-Gaussian target tracking problems.
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It is desirable to have a filter that can provide continuous estimates for any dis-

tribution. This is the motivation for the use of B-Splines in this thesis. One of the

main focus of the thesis is the B-Spline based PHD (SPHD) filters. The Spline is

a well developed theory and been used in academia and industry for more than five

decades. The B-Spline can represent any numerical, geometrical and statistical func-

tions and models including the PDF and PHD. The SPHD filter can be applied to

linear, nonlinear, Gaussian and non-Gaussian multitarget tracking applications. The

SPHD continuity can be maintained by selecting splines with order of three or more,

which avoids the degeneracy-related problem. Another important characteristic of the

SPHD filter is that the SPHD can be locally controlled, which allow the manipula-

tions of the SPHD and its natural tendency for handling the nonlinear problems. The

SPHD filter can be further extended to support maneuvering multitarget tracking,

where it can be an alternative to any available PHD filter implementations.

The PHD filter does not work well for very low observable (VLO) target tracking

problems, where the targets SNR is normally very low. For very low SNR scenarios

the PDF must be approximated by higher order moments. Therefore the PHD imple-

mentations may not be suitable for the problem considered in this thesis. One of the

best estimator to use in VLO target tracking problem is the Maximum-Likelihood

Probability Data Association (ML-PDA) algorithm. The standard ML-PDA algo-

rithm is widely used in single target initialization or geolocation problems with high

false alarm. The B-Spline is also used in the ML-PDA (SML-PDA) implementa-

tions. The SML-PDA algorithm has the capability to determine the global maximum

of ML-PDA log-likelihood ratio with high efficiency in terms of state estimates and
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low computational complexity. For fast passive track initialization, search and res-

cue operations the SML-PDA algorithm can be used more efficiently compared to

the standard ML-PDA algorithm. Also the SML-PDA algorithm with the extension

supports the multitarget tracking.
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10, ṕ = 100). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.8 OSPA distance (m) averaged over 1000 Monte Carlo runs (σω = 4◦, ć =
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Chapter 1

Introduction and Problem

Statement

1.1 Multitarget Tracking

Multitarget tracking is a dynamic state estimation problem [3,5], in which both the

number of targets and the corresponding states are unknown and vary with time due

to target appearance and disappearance at random times. Moreover, not all existing

targets are detected by the sensors at every sampling time due to thresholding. In

addition, the measurements received from sensors might have originated either from

targets or from clutter and some may be false alarms. As a result, the observation

set at each time step is a collection of indistinguishable partial observations, where

only some of these observations are actually generated by the targets. The objective

of multitarget tracking is to jointly estimate the number of targets and their states

from measurements with uncertain origins.

1
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A common method to solve the multitarget tracking problem is to use a data

association technique [3] to assign a measurement to each track followed by the appli-

cation of a single target filter [2,36,38] (e.g., a Kalman Filter (KF) for a linear system

model or an Extended Kalman Filter (EKF) for a nonlinear system model [3]) to

that track. There are several strategies in the literature to solve the data association

problem. Some widely-used classical approaches are the Nearest Neighbor Standard

Filter (NNSF) [2], Joint Probability Data Association Filter (JPDAF) [2] and the

Multiple Hypothesis Tracker (MHT) [2].

The NNSF predicts the measurement for each target state and associates the pre-

diction with the closest measurement. In contrast, the MHT keeps track of all possible

association hypotheses over time. This is an NP-hard problem, since the number of

associations grows exponentially over time, thus the MHT requires additional sim-

plifications like pruning and merging to reduce the computational complexity. The

JPDAF is a more appealing approach in that during each time update many hy-

potheses are merged to form a single track hypothesis following a validation process.

A state estimate is then calculated for each remaining hypothesis and combined in

proportion to the corresponding posterior hypothesis probabilities. The combination

of multiple measurement-constrained estimates in the JPDAF can lead to problems

such as track coalescence and latency in the initialization [41] of new tracks. Due

to its combinatorial nature, data association in hypothesis enumeration techniques

like MHT and JPDAF constitute 60%–90% of the computational load [47]. How-

ever, there are data association formulations that avoid explicit associations between

measurements and tracks, including multitarget particle filters [18] and the Random

Finite Sets (RFS) method [36,38,54].
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1.2 Random Finite Sets Based Filtering

Since there is no ordering on the respective collections of target states and measure-

ments at a certain time in association, they can be naturally represented as finite

sets. This finite set property is also applied in the RFS formulation [36,38]. Modeling

set-valued states and set-valued observations as RFS permits the Bayesian filtering

framework [63] to estimate the multitarget states in the presence of clutter, missed

detections and association uncertainty. Two most tractable alternatives to the opti-

mal multiple target filter are the RFS based Probability Hypotheses Density (PHD)

filter [36,38] and the Multitarget Multi-Bernoulli (MeMBer) filter [36,38,64].

The PHD filter is a recursion that propagates the first order statistical moment, or

the intensity of the RFS of states over time [38]. The mathematical derivations of the

PHD filter equations are based on probability generating functionals. The integral of

the PHD in any region of the state space is the expected number of targets in that

region. The PHD filter can track a time-varying number of targets and their PHD

without the need for multitarget data association between measurements and tracks.

The Multitarget Multi-Bernoulli filter [36,71] is based on the assumption that ev-

ery multitarget posterior is a multitarget multi-Bernoulli process. This approximation

can be predicted forward recursively in time and updated with a set of measurements

in a manner similar to the PHD filter recursion. The MeMBer filter can be extended

into a full multitarget tracking algorithm with the inclusion of track labels to form

a track table that can be recursively propagated to provide a full multitarget solu-

tion including track ID, existence likelihood and state uncertainty. Not only can the

RFS based PHD filter and MeMBer filter successfully track non-maneuvering targets,
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they can also handle tracking maneuvering targets with two multiple model imple-

mentations, the Sequential Monte Carlo (SMC) method [18,36,45], and the Gaussian

Mixture (GM) method [20,46,63,64,71]. Both the PHD filter and the MeMBer filter

yield similar performances [36,54,65]. The main focus of this first part of the thesis

is the PHD filter.

Two distinct PHD filter implementations are available in the literature: the Se-

quential Monte Carlo Probability Hypothesis Density (SMC-PHD) and the Gaussian

Mixture Probability Hypothesis Density (GM-PHD) filters. The SMC-PHD filter im-

plementation [65] consists of approximating the PHD by a set of weighted particles

and does not need any further assumptions. The GM-PHD filter implementation [63]

assumes that the PHD is a Gaussian mixture (GM). The design of the importance

sampling (IS) function critically affects the filtering performance [18] of the SMC-

PHD filter. One of the widely used methods is to approximate the IS function by

the transition density [65]. Also, one can use the auxiliary particle approach to in-

corporate the measurement into the IS function as in the Auxiliary Sequential Monte

Carlo Probability Hypothesis Density (ASMC-PHD) filter [69], and an improved ver-

sion of the ASMC-PHD filter is the Auxiliary Particle Probability Hypothesis Density

(AP-PHD) [4] filter. The Gaussian Mixture Unscented Sequential Monte Carlo Prob-

ability Hypothesis Density (GM-USMC-PHD) [73] filter uses the Gaussian mixture

representation to approximate the IS and the predictive density functions via the

Unscented Information Filter (UIF) [35]. The performance of particle based filters

may be affected by degeneracy-related problems, which can be alleviated by using the

Regularized Particle Filter (RPF) [19,44]. Combined GM-particle based implementa-

tions of the PHD filter were introduced in the Gaussian Mixture Particle Probability
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Hypothesis Density (GMP-PHD) filter [15,72,74] and the Gaussian Mixture Sequen-

tial Monte Carlo Probability Hypothesis Density (GM-SMC-PHD) filter [50]. Note,

GM-based methods may not be suitable for highly nonlinear non-Gaussian systems.

1.2.1 Original Contributions: SPHD and MM-SPHD Filters

The Spline Probability Hypothesis Density Filter

It is desirable to have a filter that can provide continuous estimates for any distri-

bution. This provides the motivation behind the newly proposed Spline Probability

Hypothesis Density (SPHD) filter. The proposed SPHD filter is developed based on

B-Splines [17,53]. Any arbitrary geometrical, numerical or statistical curve can be

represented by splines. This includes the multitarget probability density function

or the probability hypothesis density in the PHD filter. The spline based multitar-

get PHD can be locally controlled [17] and such as permits manipulations on the

PHD [11]. The spline based multitarget PHD is a polynomial of finite order and

finding the spline based multitarget PHD at any point in the state space involves

evaluation of a polynomial at that point [67]. The polynomial order of the multitar-

get PHD determines its continuity. The C1 continuity [53] of the multitarget PHD

can be maintained by selecting splines with order of three or more [53].

The B-Spline approach to multitarget tracking is an alternative to the SMC-PHD,

the GM-PHD, the GMP-PHD, the GM-USMC-PHD, the GM-SMC-PHD and the AP-

PHD filters. The SPHD filter offers continuous estimates of the PHD function of the

state for any system model and avoids degeneracy by providing continuous estimates.

The nonlinearity of the measurement model is naturally handled by the SPHD filter.

The SPHD filter is not limited to Gaussian systems. The B-Spline method for single
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target tracking in a clean environment, i.e., no false alarms or missed detections, is

presented in [11,25,33,48]. It is shown that not only does the B-Spline approach of

single target tracking work well for one dimensional nonlinear non-Gaussian filtering

problems, but also for multidimensional systems with the use of tensor products of

splines [24,25,48].

Chapter 4 presents the SPHD filter derivations for a multitarget tracking problem.

The multitarget multidimensional system state transition model of a SPHD filter is

represented by tensor products of splines. The corresponding analytical SPHD predic-

tion and posterior update equations are derived. A nonlinear non-Gaussian example

is used to validate the performance of the proposed filter. The proposed SPHD filter

interpolates the multitarget PHD function only over the region in which the multitar-

get density is significant, increasing the efficiency of the SPHD filter. The multitarget

density outside the interval is assumed to be zero. Simulation results in Chapter 4

reveal that the SPHD filter works efficiently and increased measurement noise levels

do not destabilize the SPHD tracker. The SPHD filter can maintain highly accurate

tracks by taking advantage of dynamic knot movement, but at the expense of higher

computational complexity, which makes it suitable for tracking few high-value targets

under difficult conditions.

Spline Probability Hypothesis Density Filter for Nonlinear Maneuver-

ing Target Tracking

To extend the application of the SPHD filter to maneuvering multitarget tracking

problems, a multimodal version, called the Multiple Model (MM) Spline Probability

Hypothesis Density (MM-SPHD) filter, is derived. The best choice for implementing
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multiple model estimation is the Interacting Multiple Model (IMM) [2] estimator.

The IMM is a suboptimal filter that has been shown to be one of the most cost-

effective state estimation schemes. Note, the standard IMM estimator assumes that

the densities are Gaussian where the mode-dependent PHD filter is not.

Therefore, the integration of the IMM estimator into mode-dependent PHD filter

algorithm is not preferred. Note, the IMM estimator uses only the first and the

second order statistics to estimate the states, but for multiple-model multitarget state

problems that cannot be approximated using the IMM estimator due to densities

can be multi-modal when they represent multitarget states. Therefore, the multiple

model implementation used here adopts a method similar to the one used in the

MM-PHD [49] filter. This new MM-SPHD filter not only works well for tracking

maneuvering targets, but also inherits all the capabilities of the SPHD filter [58].

Chapter 5 presents the MM-SPHD filter derivations with details on the estimation

of maneuvering multitarget state and the extraction of corresponding individual target

states. The multidimensional multitarget system state transition model of the MM-

SPHD filter is represented by tensor products of splines. The corresponding analytical

state prediction and posterior density equations are derived. A nonlinear example is

used to validate the performance of the MM-SPHD filter vs. those of other multiple

model PHD implementations. Simulation results reveal that the MM-SPHD filter

works efficiently and increased measurement noise levels do not destabilize it whereas

other MM implementation suffer at higher noise levels. The MM-SPHD filter can

maintain highly accurate tracks by taking advantage of dynamic knot movement [58],

but at the expense of higher computational complexity.
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1.3 Passive Track Initialization for a Very Low Ob-

servable Target

In passive and active radar or sonar target tracking problems very low observable

(VLO) targets are problematic [2], due to targets being masked by lofty background

noises. Note, that the target with very low signal to noise ratio (SNR) is dim or very

low observable. The target with low SNR can be detected by lowering the detection

threshold with sufficient probability of detection Pd to track [2], but lower threshold

level leads to higher probability of false alarm Pfa, results in high clutter. In addition,

a high value of false alarm can be a problematic for data association in any standard

tracking algorithm. The VLO target tracking problems in presence of clutter can be

handel by using the well known track-before-declare (TBD) [2]. Where TBD either

uses unthresholded sensor data or threshold data. TBD method uses remarkably

lower threshold or no threshold where compared to other standard trackers and can

be implemented by using recursive method or batch processing method [2,7]. Several

frames of measurement data are used in TBD’s batch processing method to extract

or initialize target state. TBD’s techniques include maximum likelihood-probabilistic

data association (ML-PDA) algorithm [2]. Note, for low SNR and high false alarm

target tracking problem the PHD filter under performs.

Generally, the single target tracking problem using azimuth and frequency mea-

surements of many scans with high clutter or lower SNR scenario is a very ill con-

ditioned problem [31]. The ML-PDA algorithm was introduced in [27] to solve such
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scenarios. The ML-PDA algorithm with the assumption of deterministic target mo-

tion uses no or low threshold level measurement data scans to determine track es-

timates [2]. Features such as the amplitude information (AI) as in [31] was also

used to improve the performance of the ML-PDA algorithm. Where the amplitude

information is integrated into the ML-PDA likelihood function [31]. By maximiz-

ing the log-likelihood ratio (LLR) the target state can be extracted from a batch

of measurements. Sliding window implementation can be applied for real-time ap-

plications. Since the ML-PDA algorithm uses a very low or sometime no detection

level thresholding, the complexity is higher compared to other standard trackers [3,2].

For initializing a single-target tracking with high clutter or low SNR the ML-PDA

algorithm performs very well and standard ML-PDA algorithm cannot apply for mul-

titarget tracking problems.

The ML-PDA algorithm has been used widely in a single target tracking by us-

ing variety of data sets i.e., optical [14] and active sonar [10]. Also the ML-PDA

algorithm is used in multistatic tracking [70]. The ML-PDA recursive estimator as

in [32] provides accurate initial estimates. The standard ML-PDA algorithm was

further extended to a multitarget scenario as in [8,9,29]. Multiple targets can also

be initialized in the existence of false alarms and missed detections as in [13]. De-

spite having the ability to handle VLO targets for target tracking, the ML-PDA

algorithm’s performance degraded by high-computational complexity and the lack of

efficiency improvements [8]. The ML-PDA algorithm’s track estimates have to satisfy

the track validation process due to the fact that the outcome may come from no

target or false alarm [2]. The main focus of this section is the initialization of VLO

target using the ML-PDA estimator in target tracking.
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The scalar value of the ML-PDA estimator’s state estimates maximizes the highly

non-convex ML-PDA LLR. The LLR function is made out of many local maxima and

the region of LLR may have its maximum value close to insignificant gradient. The

global maximum of LLR can be determined by three available methods i.e., Multipass

Grid (MPG), Genetic Search (GS) and Directed Subspace Search (DSS) [8,10,27,31].

In terms of lower computational complexity the DSS is shown to performs the best [8].

Although the GS method is little used in tracking community [22] the GS method is

used to find the maximum global of ML-PDA LLR in [8] show that the improvement

in both low complexity as well as better performance than MPG. The DSS method

easily identifies the areas in the parameter space that include the global maxima. This

method is viable if the measurement space is a subspace of the parameter space [10].

1.3.1 Original Contributions: SML-PDA Algorithm

Spline Maximum-Likelihood Probabilistic Data Association Algorithm for

Track Initialization

Any arbitrary geometrical, numerical or statistical shapes can be represented by B-

Spline [12] including ML-PDA LLR. The B-Spline is used in many areas including

target tracking [33,48,58,67], where the prior, predicted and posterior probability den-

sities are represented by B-Splines using a finite set of knots. The B-Spline based

filters [58,57] are applicable to any scenarios i.e., linear, non-linear, Gaussian and non-

Gaussian problems. Using B-spline can model any probability density functions and

probability hypotheses density [58] functions without any assumption regarding the

system and measurement noises [25,58]. A spline approach is used to solve the nonlin-

ear estimation problem of phase modulation in [11], B-splines using genetic algorithm
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for the optimization of a cost function is discussed in [23] and using monosplines to

solve a nonlinear estimation problem is discussed in [67]. The B-Spline method for

single target tracking in a clean environment, i.e., no false alarms or missed detec-

tions, is presented in [11,33,48]. The multidimensional target tracking problem can

be solved as [24,25,48] by using tensor products of splines. The Spline filter can also

track the multitarget state in conjunction with a data association algorithm as in [58]

and an extension to [58] as in [57] supports the multiple model target tracking.

Considering all the capabilities of splines in Chapters 4 and 5, a new way of de-

termining the global maximum of ML-PDA LLR by using B-Spline is implemented

and is termed the Spline Maximum-Likelihood Probabilistic Data Association (SML-

PDA) algorithm. The newly proposed algorithm represents the LLR in terms of

B-Splines. The SML-PDA LLR can be of any distribution. Using a few knots SML-

PDA LLR can be represented and the optimal knot selection, which is an iterative

method. Iterative method can be used to create an optimal knot vector reverence

to a given parameter. The global maximum of SML-PDA LLR can be easily de-

termined by finding the knot element with a higher distribution. The SML-PDA

LLR distribution can be linear, nonlinear, Gaussian or non-Gaussian. The tensor

product of splines can be used to represent the single target multidimensional system

state transition model. The analogous target originated likelihood function, likeli-

hood function given that all the measurement are false detection and log-likelihood

ratio are derived [2] in terms of B-Spline. Note, the AI integration to the ML-PDA

LLR is also explained by the B-Splines formulation. The formulation also support

the narrowband sonar scenario. From the parameter space a track is estimated us-

ing the LLR global maximum followed by the SML-PDA track validation [31]. The
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SML-PDA algorithm can determine the global maximum of SML-PDA LLR with high

efficiency and low complexity. For higher dimensional target state tracking problem

(i.e., the sonar scenario) the SML-PDA algorithm performs well, but with a higher

computational complexity. The proposed algorithm’s performance is evaluated by

using a nonlinear example both with and without AI for a bearing-only scenario and

a narrowband sonar scenario. The SML-PDA algorithm is affected by the curse of

dimensionality, which affects the computational complexity. But the performance in

terms of target state initialization with low root means square error (RMSE) and

high track acceptance is never compromised with increasing dimension of the target

states.

1.4 Geolocating Very Low Observable Multitarget

in High Clutter

During a reconnaissance mission in an enemy territory by the use of Unmanned Aerial

Vehicle Systems (UAVS) or any Surveillance Aircraft System (SAS) the geolocation

of Radars important [40]. Note, the reconnaissance is a military observation of a

region to locate an enemy or ascertain strategic features i.e., emitters, missile bat-

teries and submarine communication. On the other hand geolocation is also applied

in civilian areas i.e., search and rescue missions of missing airlines/vessels, locating

mobile phones [52] and used in intelligent transport and taxi systems [51]. In all of

these cases the ascertained strategic features normally emit signals in presence of false

alarm and the ascertained strategic features can be stationary or mobile.

There are several techniques for accurate positioning of the ascertain strategic
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feature including angle of arrival (AOA), time of arrival (TOA), time difference of

arrival (TDOA) and frequency difference of arrival (FDOA) methods [26,39]. AOA is

not suitable for airborne surveillance system. The maintenance of an array antenna

and precise calibrations are required for AOA technique. The TOA technique is used

in Global Positioning System (GPS) and requires the knowledge of time of emission.

However, often in unfriendly environment the time of emission is unknown. This issue

can be solved by using the TDOA technique as along as the synchronization between

receivers can be maintained. If there is a relative motion between the emitter and

receiver the FDOA technique performs well. All of these techniques do not work well

in the presence of false alarm and/or very low signal to noise ratio (SNR). In military

applications often the emitted-signal is very low observable (VLO) with high false

alarm. Even in civilian cases i.e., search and rescue of an airplane’s missing black-box

in an ocean is a VLO geolocation problem.

Generally to initiate or prolong track in VLO single target tracking problem

the standard Maximum-Likelihood Probabilistic Data Association (ML-PDA) algo-

rithm [2] is widely used. The standard ML-PDA algorithm supports the initialization

of multitarget in target tracking problems by the use of its multitarget extension the

Joint Maximum-Likelihood Probabilistic Data Association (JML-PDA) [2, 9] algo-

rithm. The JML-PDA algorithm extracted the joint track estimates from the batch

of measurements by maximizing the joint log-likelihood ratio (JLLR) followed by the

track validations. As the number of targets increase the performance of the JML-

PDA algorithm degrades. Practical multitarget tracking application of JML-PDA

algorithm for more than 3 targets may not be possible [9]. A combined ML-PDA and

JML-PDA algorithms (MT-MLPDA filter) can be used for multitarget tracking as
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in [9]. The MT-MLPDA filter can handel track initiation, track maintenance/update

and track termination. The MT-MLPDA filter performs well for linear, Gaussian

multitarget tracking problems. The main focus here is the geolocation of VLO target

using the JML-PDA algorithm in multitarget tracking. Since only the initializa-

tion/geolocation issues are considered, the affect of the number of targets is not a

concern. Note, in search and rescue operation the computational complexity is not a

problem, but the state estimate accuracy is an important factor. For example, con-

sider a practical scenario i.e., geolocation of missing war-planes with sophisticated

payload in a deep ocean with mountainous seabed. Here search operation may take

weeks, months or years due to depth, the mountain-clutter, weather and under water

current. But locating the position of the VLO signals is important due to environ-

mental and security concern. So the JML-PDA algorithm can be applicable in certain

practical multitarget geolocation problems.

1.4.1 Original Contributions: SJML-PDA Algorithm

Geolocating Multitarget in High Clutter Using the B-Spline Based Joint

Maximum-Likelihood Probabilistic Data Association Algorithm

As with the application of B-Spline in ML-PDA algorithm a similar implementation

is used here for the JML-PDA algorithm to improve performance. The proposed

estimator is called the Spline Joint Maximum-Likelihood Probabilistic Data Asso-

ciation (SJML-PDA) algorithm. The SJML-PDA algorithm performs well for VLO

multitarget tracking in high false alarm. The SJML-PDA algorithm initializes or

geolocates the targets using the batch of measurements by maximizing the spline
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joint log-likelihood ratio (SJLLR). Note, the SJML-PDA LLR can be of any distri-

bution. The optimal knot selection is used to represent the SJML-PDA LLR. The

global maximum of SJML-PDA LLR can be easily determined by finding the knot

element with a higher distribution peak. A tensor product of splines can be used to

represent the multitarget multidimensional system state transition model. Note, the

SJML-PDA LLR distribution can be linear, nonlinear, Gaussian or non-Gaussian.

Here, formulations are derived based on a narrow-band sonar multitarget tracking

problem. Formulation is also consider the AI information. The tracks are initial-

ized or geolocated using the SJLLR global maximum and then track is validated [31]

to identify the origin of the targets. The SJML-PDA algorithm is inherited all the

capabilities of the SML-PDA algorithm. The proposed algorithm’s performance is

evaluated by using a nonlinear example both with and without AI for a narrowband

sonar scenario. The curse of dimensionality is not a problem for geolocation since

the time constrain is not consider in here. The performance is never compromised

compared to the standard JML-PDA algorithm.
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Chapter 2

Multitarget Tracking

2.1 Single Model Multitarget Tracking

The general state space model for a nonlinear multitarget dynamic system is of the

form

Xk = f(Xk−1, νk) (2.1)

where Xk is the multitarget system state at time k, νk is the iid process noise sequence

with known statistics and f is the nonlinear system transition function. The objective

of multitarget tracking is to jointly estimate the number of targets and their states

from measurement set

Zk = h(Xk, ωk) (2.2)
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with uncertain origin, where Zk is the observation set at time k while ωk denotes

the iid measurement noise with known statistics. The approach is to use an RFS

to represent the Bayesian model for recursively estimating and updating the mul-

titarget density based on measurements received at each time step. Let ϑk be the

number of targets at time k, and suppose that at time k − 1, ϑk−1 system states

Xk−1 = {x1,k−1, . . . ,xϑk−1,k−1} are maintained in target state space Es. At the next

time step k, some of these targets may die or new targets may be spawned. The sur-

viving targets evolve to their new states, and new targets may appear independent of

existing targets. This results in ϑk new states Xk = {x1,k, . . . ,xϑk,k}. Note that the

order in which the states are listed has no significance in the RFS multitarget model

formulation. Let Z(k) : Z0, Z1, . . . , Zk ∈ Eo be a sequence of measurement sets over

time and ηk measurements Zk = {z1,k, . . . , zηk,k} are received at time k. Only some

of these measurements are actually generated by targets. The dimensions of the state

and measurement vectors Xk and Zk are unknown and time-varying. The randomness

in the set can be characterized by modeling the multitarget states and multitarget

measurements as random finite sets Ξk and ℵk, respectively. Given the realization

Xk−1 of Ξk−1 at time k − 1, the multitarget states at time k can be modeled by the

RFS as [38]

Ξk = Sk(Xk−1) ∪ Bk(Xk−1) ∪ Γk (2.3)

where Sk(Xk−1), Bk(Xk−1), and Γk denote the RFS of survived targets, spawned

targets and newborn targets, respectively. Similarly, given a realization of Xk of ℵk,
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the multitarget measurement can be modeled by RFS as

ℵk = Φk(Xk) ∪ Ck (2.4)

where, Φk(Xk) and Ck denote the RFS of measurements generated by Xk and due to

clutter, respectively. Let pk−1|k−1(Xk−1|Z(k−1)) denote the multitarget priori density.

Then the predicted and updated densities of the optimal multitarget Bayes filter

recursion are given by

pk|k−1(Xk|Z(k−1)) =

∫

pk|k−1(Xk|Xk−1)

·pk−1|k−1(Xk−1|Z(k−1))

·µs(dXk−1) (2.5)

and

pk|k(Xk|Z(k)) =
pk(Zk|Xk)pk|k−1(Xk|Z(k−1))

∫
pk(Zk|Xk)pk|k−1(Xk|Z(k−1))µs(dXk)

(2.6)

respectively, where pk|k−1(Xk|Xk−1) is the system model multitarget Markov transi-

tion density, pk(Zk|Xk) denotes the multitarget likelihood function and µs denotes an

appropriate reference measure [65].
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2.2 Multiple Model Multitarget Tracking

Maneuvering multitarget tracking algorithms face target motion model uncertainties

and to overcome these uncertainties, most multitarget filters adopt multiple-model

estimation techniques [30,49]. Thus, multiple-model estimators run each filter in

their mode set using the same measurement assuming that the target state evolves

according to one of r models in its mode set at any time and fuses the output of those

filters to find an overall estimate [30].

Let ϑk be the number of targets at time k in multitarget state space Es. Then the

multimodal multitarget state at time k can be written as

Xk = {xMk

1,k , . . . ,x
Mk

ϑk,k
} ∈ Es (2.7)

where x
Mk

l,k denotes the mode-dependent l-th target state vector at time k and l ∈

{1, . . . , ϑk}. Note that the order in which the multitarget states are listed has no

significance in the Random Finite Set (RFS) multitarget model formulation. In the

above, Mk ∈ {1, . . . , r} is the mode index parameter, where r is the number of possible

models, and the mode index parameter is governed by an underlaying Markov process

with mode transition probability

πpq = P (Mk = q|Mk−1 = p) p, q = 1, 2, . . . , r (2.8)

The mode transition probability πpq can be assumed time-invariant and independent

of the multitarget state. The state of the l-th target is given by

xl,k = fk,Mk
(xl,k−1, νk,Mk

,Mk) (2.9)
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where at time k xl,k denotes the l-th target state, the mode-dependent i.i.d. process

noise sequence is denoted as νk,Mk
and fk,Mk

(·) is the mode-dependent nonlinear

system transition function.

Let Z(k) = {Z0, Z1, . . . , Zk} ∈ Eo be the cumulative sets of measurements from

time 0 to time k and assume that ηk denotes the number of target-originated mea-

surements at time k. Measurements also consist of observations generated by the

false alarm process and assume ̟k denotes the number of false measurements at time

k. Then the set of measurements at time k in observation space Eo is given by

Zk = {z1,k, . . . , zηk,k}
⋃

{c1,k, . . . , c̟k,k} ∈ Eo (2.10)

where the l-th target-originated measurement is given by

zl,k = hk,Mk
(xl,k, ωk,Mk

,Mk) (2.11)

and ωk,Mk
denotes the mode-dependent i.i.d. measurement noise with known statistics

and hk,Mk
is a mode-dependent nonlinear function. The false measurements ci,k are

assumed to be uniformly distributed and their number ̟k is Poisson-distributed. Let

Pd,k denote the probability of detection, thus the probability of Zk(x
Mk

i,k ) = zi,k = ∅

(i.e., the i-th target is not detected) is 1−Pd,k. The average number of measurement

is kג = Pd,k × ηk +̟
′

k, where ̟
′

k is the average number of false alarms.

There are ϑk targets in state space Es at time k and these targets can continue

to exist, spawn new targets or terminate. In addition, new targets are born inde-

pendently of already-existing targets. The number of targets and their states are

unknown and, with maneuvering targets, the dynamic model of a target at any time
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is also unknown. That is, there are two unknown discrete random variables (i.e.,

number of targets and mode index of each target) and a continuous random variable

(i.e., target state of each target) to be estimated at each time. From the observation

space Eo, kג measurements are received at time k. The origins of the measurements

are not known, and thus the order in which they appear bears no significance. The

measurements can also originate from clutter and false alarms.

At time k, the dynamic models of all targets and the dimension of the multitarget

state Xk are unknown and time-varying. In the absence of model uncertainty, the

randomness in the set can be characterized by modeling the multitarget states and

multitarget measurements as random finite set Ξk and ℵk respectively. Given the

realization Xk−1 of Ξk−1 at time k-1, the multitarget states at time k can be modeled

by the RFS as

Ξk = Sk(Xk−1) ∪ Bk(Xk−1) ∪ Γk (2.12)

where Sk(Xk−1) denotes the surviving targets and Bk(Xk−1) denotes the spawned

targets. In addition, Γk denotes the newborn targets and these newborn targets are

born independently from the surviving targets. Similarly, given a realization of Xk of

ℵk, the multitarget measurement can be modeled by the RFS as

ℵk = Φk(Xk) ∪ Ck (2.13)

where Φk(Xk) denotes the RFS measurement generated by Xk and Ck denotes mea-

surement generated by clutter.
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Let pk−1|k−1(Xk−1|Z(k−1)) denote the multitarget prior density of the system dy-

namic model at time k − 1. Then, the prediction and update steps of the optimal

multitarget Bayes filter recursion are given by [2]

pk|k−1(Xk|Z(k−1)) =

∫

pk|k−1(Xk|Xk−1)

·pk−1|k−1(Xk−1|Z(k−1))

·µs(dXk−1) (2.14)

pk|k(Xk|Z(k)) =
gk(Zk|Xk)pk|k−1(Xk|Z(k−1))

∫
gk(Zk|Xk)pk|k−1(Xk|Z(k−1))µs(dXk)

(2.15)

respectively, where pk|k−1(Xk|Xk−1) is the multitarget dynamic model transition den-

sity, gk(Zk|Xk) denotes the multitarget likelihood and µs takes the place of Lebesque

measure. The posterior density pk|k(Xk|Z(k)) can be determined using (2.15). With

model uncertainty states extraction from (2.15) becomes very difficult. Since multiple

model formulation is only used in PHD filters here (not for ML-PDA or JML-PDA

filters) the multimodal multitargets tracking formulation only described for the PHD

filter implementation.

In order to get a multiple model PHD filter, in [37,49], it is assumed that there

are r dynamic models and each target evolves according to one of them at time k.

Furthermore, from time k to time k+1, the target can switch from model i to model

j with probability π(Mk+1 = j|Mk = i). Then, a multimodel state space of the form

X =
r⊎

i=1

Xi (2.16)
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is considered for the target dynamic state evolution. The state vector in X is xe and,

for xe ∈ Xi, it has the form [xT i]T . Every target, no matter which dynamic model it

follows, evolves in this hybrid space. The state vector for a single target is represented

as [xT M]T where M ∈ {1, . . . , r}. Here, x is the kinematic state vector of that target.

On the other hand, M is a variable with integer value and M = i denotes the random

event that the target is evolving according to the i-th dynamic model at time k. It

should be noted that the single target state space for different dynamic models may

be different, so the dimension of x depends on the type of dynamic model represented

by M. With the above state space model, given the targets following dynamic model

i, these targets can only stay in space Xi (i = 1, · · · , r). For a real–valued function

f(xe) defined on X, its integration in a subregion S ∈ X is given by

∫

S

f(xe)dxe =
r∑

i=1

∫

Xi

⋂

S

f([x i]T )dx (2.17)

Correspondingly, for two real–valued functions f and g defined in space X, their inner

product, 〈f, g〉, becomes

〈f, g〉 =
r∑

i=1

∫

Xi

f([x i]T )g([x i]T )dx (2.18)

In [37,49], the state transition for the k-th target is assumed to follow a jump

Markov model:

f([xk,Mk]|[xk−1,Mk−1]) = π(Mk|Mk−1)f(xk|[xk−1,Mk−1]) (2.19)

In [37,49], except for the above jump Markov dynamic mode transition model, all the
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assumptions related to the target dynamic system and the measurement model are

exactly same as those made in [36,63]. Thus, by substituting (2.17) and (2.18) into

the PHD prediction–updating equations in [36,63], the equations for the MM–PHD

prediction and update were obtained.

2.3 Introduction to PHD Filter

The Probability Hypothesis Density filter (PHD) is a first-order moment of a multitar-

get system with the assumption of higher targets signal to noise ratio. The first-order

moment is not a vector as in the single target case, but rather it is a density, an

information-theoretic best-fit approximation or a generalized fuzzy membership func-

tion [36]. The PHD is not a probability density function (PDF). At every instance

in time the PHD filter estimates the number of targets directly from the data and

it has the tendency to reject clutters. The PHD filter can be easily implemented by

sequential Monte Carlo and Gaussian mixture approximation techniques. Note, it

does not need a measurement to track association and it discloses unequivocal sta-

tistical models for missed detection, sensor field of view and false alarm. The PHD

implementation supports major multitarget dynamics i.e., target appearance, target

disappearance, spawning of new targets by prior targets.

2.3.1 PHD Filter for non-Maneuvering Targets

Here, we briefly review the PHD filter. The readers are referred to [36,38] for more

details.
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PHD Filter Initialization

The initialization of the multitarget PHD filter consists of choosing a multitarget

prior PHD as

D0|0(x|Z(0)) = N0S0(x) (2.20)

where S0(x) is a probability density whose peaks correspond to a priori target posi-

tions, and N0 is an initial estimate of the expected number of targets. The prior PHD

denoted by D0|0(x|Z(0)) as a density function defined on single target state x ∈ Es [38],

and the expected N0 is determined from the multitarget prior PHD D0|0(·) as

N̂0 =

∫

Es

D0|0(x|Z(0))dx (2.21)

PHD Filter Predictor

The PHD filter assumes the standard multitarget motion model of Section 2.1 and

that each target evolves and generates observations independently from one another.

The motion of existing individual targets can be described by a single target Markov

transition density pk|k−1(xk|xk−1). The probability that a target with the state xk−1

at time step k−1 survives to time step k is Ps,k|k−1(xk−1). Spawning of new targets by

existing targets can be described by βs,k|k−1(Xk|xk−1), which denotes the likelihood

that a group of new targets with state set Xk is spawned at time step k by a single

target which state xk−1 at time step k − 1, and its PHD is βs,k|k−1(xk|xk−1). Ap-

pearance of completely new targets is described by βnb,k(Xk), which is the likelihood

that new targets with state set Xk will enter the scene at time step k, and its PHD
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is βnb,k(xk).

Assume that the prior PHD from scan k − 1 is

Dk−1|k−1(xk−1|Z(k−1)) ≈ D0|0(x|Z(0)) (2.22)

Then the predicted PHD equation can be written as

Dk|k−1(xk|Z(k−1)) = Dc,k|k−1(xk)

+ Ds,k|k−1(xk)

+ Dnb,k(xk) (2.23)

where the predicted PHD of existing targets is

Dc,k|k−1(xk) =

∫

Ps,k|k−1(xk−1)

·pk|k−1(xk|xk−1)

·Dk−1|k−1(xk−1|Z(k−1))

·dxk−1 (2.24)

The predicted PHD of spawned targets can be expressed as

Ds,k|k−1(xk) =

∫

βs,k|k−1(xk|xk−1)

·Dk−1|k−1(xk−1|Z(k−1))

·dxk−1 (2.25)
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and, the predicted newborn target PHD

Dnb,k(xk) = βnb,k(xk) (2.26)

depends on the system model. The predicted expected number of targets can be

determined as

N̂k|k−1 =

∫

Dk|k−1(xk|Z(k−1))dxk

= N̂c,k|k−1 + N̂s,k|k−1 + N̂nb,k (2.27)

and

N̂c,k|k−1 =

∫

Dc,k|k−1(xk)dxk (2.28)

N̂s,k|k−1 =

∫

Ds,k|k−1(xk)dxk (2.29)

N̂nb,k =

∫

Dnb,k(xk)dxk (2.30)

where (2.28), (2.29) and (2.30) are the predicted expected number of existing targets,

spawned targets, and newly-appearing targets, respectively.

PHD Filter Corrector

The predicted PHD can be corrected with the availability of measurement from ob-

servation space Zk ∈ Z(k) at time step k to get the updated PHD with the assumption

28



PhD. Thesis - Rajiv Sithiravel McMaster - Electrical Engineering

that no target generates more than one measurement. Each measurement is generated

by no more than a single target and all measurements are conditionally independent

of target state. The number of false alarms is Poisson distributed with an average

rate of λk and the probability density of the spatial distribution of false alarms is

Ck(zk). The detection probability of a target with state xk at time step k is Pd,k(xk)

and the updated PHD at time step k is

Dk|k(xk|Z(k)) = (1− Pd,k(xk))Dk|k−1(xk|Z(k−1))

+
∑

zk∈Zk

Pd,k(xk)pk|k(zk|xk)Dk|k−1(xk|Z(k−1))

λkCk(zk) + φk(zk|Z(k−1))
(2.31)

where

φk(zk|Z(k−1)) =

∫

Pd,k(xk)

·pk|k(zk|xk)

·Dk|k−1(xk|Z(k−1))

·dxk (2.32)

and pk|k(zk|xk) denotes the single sensor-single target likelihood. The updated equa-

tion (2.31) is not lossless since approximations are made on the predicted multiple

targets PHD to obtain the closed-form solution [38]. Finally, the updated expected

number of targets can be determined as

N̂k|k =

∫

Dk|k(xk|Z(k))dxk (2.33)
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2.3.2 PHD Filter for Maneuvering Targets

As described in [49], a recursive MM-PHD filter algorithm has three main stages.

Those three stages are mixing, prediction and update.

MM-PHD mixing

Assume that the model-dependent prior density Dk−1|k−1(xk−1,Mk−1 = p|Z(k−1)) is

available at time k−1. Then using the total probability theorem the mode-dependent

initial density can be defined as D̃k|k−1(xk−1,Mk = q|Z(k−1)) can be determined as [49]

D̃k|k−1(xk−1,Mk = q|Z(k−1)) =
r∑

p=1

Dk−1|k−1(xk−1,Mk−1 = p|Z(k−1))πpq q = 1, . . . , r (2.34)

where r denotes number of filters and πpq denotes the Markovian model transition

probability matrix. Note, the initial density fed to the PHD filter that is matched to

motion model q. The target can spawn, die, or born and these are only considered in

the prediction stage.

MM-PHD prediction

Assume that each target evolves and generates observations independently of one an-

other. A target can continue to survive or disappear from the scene, can be spawned

by already-existing targets, and also new targets can be born in the scene indepen-

dently from the already-existing targets. The mode-dependent predicted density is
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determined as

Dk|k−1(xk,Mk = q|Z(k−1)) = Dc,k|k−1(xk,Mk = q)

+ Ds,k|k−1(xk,Mk = q)

+ Dnb,k(xk,Mk = q) (2.35)

where the mode-dependent predicted density of existing targets is expressed as follows:

Dc,k|k−1(xk,Mk = q) =

∫

Ps,k|k−1(xk−1,Mk = q)

·pk|k−1(xk,Mk = q|xk−1,Mk−1 = p)

·D̃k|k−1(xk−1,Mk = q|Z(k−1))

·dxk−1 (2.36)

where pk|k−1(xk,Mk = q|xk−1,Mk−1 = p) denotes a mode-dependent single Markov

transition density of the state of existing-targets and Ps,k|k−1(xk−1,Mk = q) denotes

the mode-dependent survival probability of existing targets that accounts for the

event that a target with state xk−1 at time step k−1 will survive at time step k. The

mode-dependent predicted density of spawned targets can be expressed as

Ds,k|k−1(xk,Mk = q) =

∫

βs,k|k−1(xk,Mk = q|xk−1,Mk−1 = p)

·D̃k|k−1(xk−1,Mk = q|Z(k−1))

·dxk−1 (2.37)

where βs,k|k−1(xk,Mk = q|xk−1,Mk−1 = p) denotes the mode-dependent PHD of the

new targets spawned by existing targets. The PHD of the mode-dependent likelihood
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function is βs,k|k−1(Xk|Mk = q), which is the mode-dependent likelihood that a group

of new targets with state set Xk will be spawned at time step k by a single target

that had state xk−1 at time step k − 1.

Appearance of completely new targets is also described by βnb,k(Xk,Mk = q),

which is the mode-dependent likelihood that new targets with state set Xk will enter

the scene at time step k and its PHD is βnb,k(xk,Mk = q). The mode-dependent pre-

dicted newborn target density Dnb,k(.) depends on the system model. The expected

number of targets in the surveillance region can be determined by finding the area of

the mode-dependent predicted PHD Dk|k−1(xk,Mk = q|Z(k−1)).

MM-PHD update

The predicted density can be corrected with the available measurements Zk ∈ Z(k)

from observation space Eo at time step k to get the updated density with the as-

sumption that no target generates more than one measurement. Each measurement

is generated by no more than a single target and all measurements are conditionally

independent of target state. The number of false alarm λk is Poisson distributed

with spatial density Ck(zk) with the assumption of standard multimodal multitarget

measurement model from Section 2.2.

At time step k the detection probability of a target with state xk is defined as

Pd(xk,Mk = q) and the mode-dependent updated PHD at scan k can be determined

32



PhD. Thesis - Rajiv Sithiravel McMaster - Electrical Engineering

as (for q = 1, . . . , r)

Dk|k(xk,Mk = q|Z(k)) ∼= (1− Pd,k(xk,Mk = q))Dk|k−1(xk,Mk = q|Z(k−1))

+
∑

zk∈Zk

φk(zk|Z(k−1),Mk = q)

λkCk(zk) +
∫
φk(zk|Z(k−1),Mk = q)dxk

(2.38)

where the function φk(.) is given as

φk(zk|Z(k−1),Mk = q) = Pd,k(xk,Mk = q)

·pk|k(zk|xk,Mk = q)

·Dk|k−1(xk,Mk = q|Z(k−1)) (2.39)

By finding the area of the mode-dependent updated PHD Dk|k(.) one can deter-

mined the average number of targets as

N̂Mk=q

k|k =

∫

Dk|k(xk,Mk = q|Z(k))dxk (2.40)

and the total number of estimated targets as

N̂k|k =

r∑

q=1

N̂Mk=q

k|k (2.41)
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2.4 Introduction to ML-PDA and JML-PDA Al-

gorithms

The ML-PDA algorithm uses low threshold measurement data over a batch of mea-

surement frames and computes track estimates using a sliding window with the as-

sumption of deterministic target motion [2]. The ML-PDA algorithm was first intro-

duced in [27] to estimate the motion parameters of a single target using bearing and

frequency measurements over several scans in a high clutter or lower SNR scenario

and it was later enhanced by incorporating measurement amplitude as a feature into

the ML-PDA likelihood function [31]. The target state is obtained by maximizing

the log-likelihood ratio (LLR) formulated from a batch of measurements. It is an

effective approach to initialize tracks in high clutter environments, but it is restricted

to a single-target tracking.

The standard ML-PDA algorithm supports the initialization/geolocation of mul-

titarget in target tracking problems by the use of its multitarget extension the Joint

Maximum-Likelihood Probabilistic Data Association (JML-PDA) [2, 9] algorithm.

The JML-PDA algorithm extracted the joint track estimates from the batch of mea-

surements by maximizing the joint log-likelihood ratio (JLLR) followed by the track

validations. As the number of targets increase the performance of the JML-PDA algo-

rithm degrades. In practical multitarget tracking application of JML-PDA algorithm

for more than three targets may not be possible [9].
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2.4.1 ML-PDA Algorithm

The standard ML-PDA algorithm’s detail derivation is explained in this section. Note,

the derivation supports a general scenario with features like amplitude information

and frequency [31]. For further details readers can refer to [2].

At any given reference time r the multidimensional target system state can be

defined as

xr , [x1r , . . . , x
n
r ]

′

(2.42)

where xr denotes the target kinematic state and n denotes the number of dimensions.

At any time i the target evolves according to

x(i) = f(xr, i), (2.43)

without the influence of process noise. With the known detection probability Pd a

single target is present in each data frame. Across the data frame the detections are

independent.

In a single data frame at time i all the measurements can be defined as

Z(i) , {zj(i)}mi

j=1 (2.44)

where mi denotes the measurement number. A true-target originated measurement
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is present per frame. The measurement vector zj(i) from i-th frame and j-th mea-

surement number can be defined as

zj(i) , [βij aij]
′

(2.45)

where βij and aij are denoted the bearing and amplitude measurements, respec-

tively [31].

The cumulative set of measurement during the entire period is given as

Z , {Z(i)}Nw

i=1 (2.46)

where Nw denotes the frame number.

The target originated measurement is defined as

βij = h(xr,xs(i)) + ωi, (2.47)

where the sensor kinematic state is denoted by xs(i) and ωi is a zero-mean white

Gaussian noise. Note that the measurement can also originate from false detection.

Across the surveillance region with volume Uβ the false alarm ui is distributed uni-

formly as a random variable.

Further the ML-PDA implementation is needed some assumptions as described

in [27] as follows:

1. Across the frames the number of false detection is independent and Poisson

distributed respect to probability mass function µf(m), with spatial density λ.

2. The target and false alarm originated amplitudes are distributed as p1(a) and
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p0(a), respectively. Note, p1(a) is affected by the signal to noise ratio (SNR) of

the target. Generally, p1(a) is known or estimated.

3. Measurements conditioned on the target state received at different times are

independent.

p[Z(i1), Z(i2)|xr] = p[Z(i1)|xr]p[Z(i2)|xr] ∀ i1 6= i2 (2.48)

where i1, i2 ∈ {1, . . . , Nw}

The assumptions in the ML-PDA algorithm are allowed to express the target-

originated measurement’s likelihood probability density function as

p(βij|xr) = N (βij; h (xr,xs(i), i) ,R) . (2.49)

where R = E[ωiω
′

i] denotes the known covariance and sensor kinematic state is de-

noted by xs(i).

The target states can be determined by maximizes the likelihood function, p(Z|xr).

Further, an amplitude likelihood ratio can be included in the likelihood function.

The amplitude likelihood ratio is the ratio between the target and false alarm

originated amplitudes likelihood functions and it can be described as

ρij =
p1(aij|ξ)
p0(aij|ξ)

, (2.50)

where p1(aij|ξ) is the amplitude probability density function (PDF) of those originated
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from the target that defined as

p1(aij |ξ) =
aij

Pd(1 + SNR)
exp

(

− a2ij
2(1 + SNR)

)

, aij > ξ (2.51)

and p0(aij |ξ) denotes the amplitude PDF of the validated measurements originated

from false alarm that defined as

p0(aij|ξ) =
aij
Pfa

exp

(

−a
2
ij

2

)

, aij > ξ (2.52)

where aij and ξ are denoted the amplitude and the detector threshold in each mea-

surement cell, respectively. The amplitude likelihood ratio is condition on aij > ξ. To

declare a detection the value of ξ is selected depend on the SNR value and a suitable

value of ξ is normally selected [31].

The probabilities Pd and Pfa are denoted the probabilities of measurements that

originated from true-target and noise-only with conditioned on exceeding the thresh-

old ξ.

For many applications p1(aij |ξ) and p0(aij |ξ) are considered Rayleigh distribution.

For Rayleigh distributed measurements Pd and Pfa satisfy

Pd = exp

(

− ξ2

2(1 + SNR)

)

(2.53)

Pfa = exp

(

−ξ
2

2

)

(2.54)

For simplicity assume we have a 4-D scenario with target motion model including
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the frequency information then a 5-dimensional target state vector can be defined as

xr , [x1r ẋ
1
r x

2
r ẋ

2
r γ]

′

(2.55)

where a constant unknown emitted frequency is denoted by γ, (x1r , x
2
r) are positions

of the target and ẋ1r , ẋ
2
r are velocities of the target.

Assume the state of the sensor-platform is at time i

xs(i) , [ξs(i) ξ̇s(i) ηs(i) η̇s(i)]
′

(2.56)

where ξs(i), ηs(i) are positions of the sensor and ξ̇s(i), η̇s(i) are velocities of the sensor.

The noise free Doppler shifted frequency can be defined as

γi(xr) = γ

[

1− vξ(i,xr) sin θi(xr) + vη(i,xr) cos θi(xr)

c

]

(2.57)

where γi(xr) denotes the Doppler shifted frequency at the sensor at time i. The

target and sensor-platform relative motions affect the γi(xr). The relative velocity

components are denoted as vξ(i,xr), vη(i,xr). The velocity of sound in the medium

is c. The angle θi(xr) is defined as

θi(xr) = arctan

(
ηs(i)− x2r
ξs(i)− x1r

)

(2.58)

Using (2.55) and (2.56) the relative velocity components can be defined as

vξ(i,xr) = ξ̇s(i)− ẋ1r, (2.59)
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and

vη(i,xr) = η̇s(i)− ẋ2r (2.60)

The noisy frequency measurement can be defined as

ψij = γi(xr) + νi, (2.61)

where at time i, ψij denote the frequency-generated measurement, νi ∼ N(0, σ2
γ)

The measurement noise components ωi and νi are conditionally independent.

Noise-originated frequency measurements are assumed to be uniformly distributed

in the entire surveillance region with volume Uγ.

The measurement vector zj(i) from i-th frame and j-th measurement number can

be defined to support the narrowband sonar case as

zj(i) , [βij aij ψij ]
′

(2.62)

The bandwidth of the sonar is normally known [Ω1,Ω2] and the measurements

can lie anywhere within the range. If the measurement is only azimuth then the

sonar operator can select a frequency subregion [Γ1,Γ2]. The frequency region can be

defined as

Uγ = [Γ1,Γ2] ∈ [Ω1,Ω2] (2.63)

A same method can be applied to find the frequency information for a 6-D scenario.
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At time i using the total probability theorem as used in Probability Data As-

sociation (PDA) approach [2] the likelihood function p (Z(i)|xr) can be determined

as

p (Z(i)|xr) = (1− Pd)

mi∏

j=1

p(zj(i)|“clutter”)

+
Pd

mi

mi∑

j=1

p(zj(i)|xr)
∏

l 6=j

p(zl(i)|“clutter”)

= (1− Pd)

mi∏

j=1

p(βij , aij, ψij |“clutter”)

+
Pd

mi

mi∑

j=1

p(βij , aij, ψij |xr)
∏

l 6=j

p(βil, ail, ψil|“clutter”)

=
(1− Pd)

Umi
µf(mi)

mi∏

j=1

p0(aij |ξ)

+
Pdµf(mi − 1)

Umi−1mi

mi∏

j=1

p0(aij|ξ)
mi∑

j=1

p(βij, ψij |xr)ρij (2.64)

where U = UβUγ and (2.64) denotes the weighted sum of all the likelihood functions

corresponding to a certain measurement or no measurement respect to a true-target

where rest of the measurements originated from the false alarm.

The observations are conditionally independent across the frame and the likelihood

function of the entire set of measurements can be written in terms of individual

likelihood functions [2] for a Nw frames as

p(Z|xr) =

Nw∏

i=1

p (Z(i)|xr) (2.65)
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Note, the likelihood function conditioned on all measurements are false detection

is defined as

Nw∏

i=1

[

1

Umi
µf(mi)

mi∏

j=1

p0(aij|ξ)
]

. (2.66)

Dividing (2.65) by (2.66) and taking the logarithm of the resulting function, the

log-likelihood ratio (LLR) can be determined as

Λ (Z|xr) =

Nw∑

i=1

ln

[

(1− Pd) +
Pd

λ

mi∑

j=1

ρijp(βij , ψij|xr)

]

(2.67)

The target estimates, x̂r can be determined as

x̂r = argmax
xr

Λ (Z|xr) , (2.68)

The ML-PDA algorithm’s track estimates have to satisfy the track validations

process due to the outcome may come from no target or false alarm [2].

2.4.2 JML-PDA Algorithm

The JML-PDA algorithm details of derivation is explained in this section. The deriva-

tions are based on a 5D dimensional narrowband sonar tracking. The kinematic

measurements are angle-only and the amplitude information is also available.

The multidimensional multitarget system state can be expressed at reference time

r as

xr , [x1
r , . . . ,x

n
r ]

′

(2.69)
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where xr denotes the multitarget state, n denotes the number of targets.

Figure 2.1: Motion of the platform and the ℓ-th target at time i

As shown in Figure (2.1) at time i a sensor on a platform moves along X-Y plane

and xℓ
r denotes the ℓ-th target state,

xℓ
r , [xℓ(i) ẋℓ yℓ(i) ẏℓ γℓ]

′

(2.70)

where the length of the vector xℓ
r is 5. The ℓ-th target’s constant unknown emitted

frequency is denoted by γℓ, (xℓ(i), yℓ(i)) are positions of the ℓ-th target and the

corresponding constant velocities in each direction are denoted by ẋℓ, ẏℓ.

The ℓ-th target evolves at any time i according to

xℓ
r(i) = fℓ(x

ℓ
r, i) (2.71)

where the process noise is ignored. Generally in JML-PDA algorithm the number of
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existing targets are known and assumed to be alive during the reconnaissance mission.

Each target is detected with the probability P ℓ
d and all the targets are present in each

data frame. Across the data frame the detections are independent.

The observation at time i in a single data frame can be defined as

Z(i) , {zj(i)}mi

j=1 (2.72)

where the total measurment/observation is denoted by mi. All the true-target origi-

nated measurements are present per frame. The j-th measurement number from the

i-th frame can be expressed as

zj(i) , [βij ψij aij ]
′

(2.73)

where βij, ψij and aij are denoted the bearing, frequency and amplitude mea-

surements, respectively [31]. As stated in [31] the envelope output of the detector is

referred to amplitude.

The cumulative set of measurement during the entire period is given as

Z , {Z(i)}Nw

i=1 (2.74)

where Nw denotes the frame number.

Note the state of the sensor-platform at time i given as

xs(i) , [ξs(i) ξ̇s(i) ηs(i) η̇s(i)]
′

(2.75)

where the sensor kinematic state is denoted by xs(i), (ξs(i), ηs(i)) are positions of the
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sensor and ξ̇s(i), η̇s(i) are velocities of the sensor.

The ℓ-th target originated measurement at time/frame i is defined as

βℓ
ij = hℓ(x

ℓ
r,xs(i)) + ωℓ

i , (2.76)

where βij = {β1
ij, . . . , β

n
ij}, ωℓ

i is a zero-mean white Gaussian noise. Note that the

measurement can also originate from false detection. Across the surveillance region

with volume Uβ the false alarm ui is distributed uniformly as a random variable.

The JML-PDA derivations use some the following assumptions [27]:

1. Across the frames the number of false detection is independent and Poisson

distributed respect to probability mass function µf(m), with spatial density λ.

2. The multitarget and false alarm originated amplitudes are distributed as pℓ1(a)

(where ℓ = {1, . . . , n}) and p0(a), respectively. Note, pℓ1(a) is affected by the

signal to noise ratio (SNR) of the ℓ-th target. Generally, pℓ1(a) is known or

estimated.

3. Measurements conditioned on the ℓ-th target state received at different times

are independent.

p[Z(i1), Z(i2)|xℓ
r] = p[Z(i1)|xℓ

r]p[Z(i2)|xℓ
r] ∀ i1 6= i2 (2.77)

where ℓ = {1, . . . , n}, i1, i2 ∈ {1, . . . , Nw}

4. Total n number of previously confirmed targets exist.

5. Each target correspond to a certain measurement in each frame.
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6. A certain measurement can not be associated to more than one target.

7. Target-originated measurement errors have the same distribution for each tar-

get.

The ℓ-th target-originated measurement’s likelihood probability density function

can be determined as

p(βℓ
ij|xℓ

r) = N
(
βℓ
ij; hℓ

(
xℓ
r,xs(i), i

)
,R
)
. (2.78)

where R = E[ωiω
′

i] denotes the known covariance and sensor kinematic state is de-

noted by xs(i).

The noisy ℓ-th target generated frequency measurement can be defined as

ψℓ
ij = γi(x

ℓ
r) + νℓi , (2.79)

where γi(x
ℓ
r) denotes the noise free Doppler shifted frequency, ψij = {ψ1

ij , . . . , ψ
n
ij}

and νℓi ∼ N(0, (σℓ
γ)

2)

The noise free ℓ-th target-originated Doppler shifted frequency can be defined as

γi(x
ℓ
r) = γℓ

[

1− vξ(i,x
ℓ
r) sin θi(x

ℓ
r) + vη(i,x

ℓ
r) cos θi(x

ℓ
r)

c

]

(2.80)

where the relative velocity components are denoted as vξ(i,x
ℓ
r), vη(i,x

ℓ
r). The velocity

of sound in the medium is c. The angle θi(x
ℓ
r) is defined as

θi(x
ℓ
r) = arctan

(
rη(i,x

ℓ
r)

rξ(i,xℓ
r)

)

= hℓ(x
ℓ
r,xs(i)) (2.81)
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The target and sensor-platform relative motions affect the γi(x
ℓ
r).

The measurement noise components ωℓ
i and νℓi are conditionally independent.

Noise-originated frequency measurements are assumed to be uniformly distributed in

the entire surveillance region with volume Uγ.

The bandwidth of the sonar is normally known [Ω1,Ω2] and the measurements

can lie anywhere within the range. If the measurement is only azimuth then the

sonar operator can select a frequency subregion [Γ1,Γ2]. The frequency region can be

defined as

Uγ = [Γ1,Γ2] ∈ [Ω1,Ω2] (2.82)

The SNR of each target can be different and therefore, the measurement amplitude

likelihood ratio must be defined for each target. The amplitude likelihood ratio is the

ratio between the target-originated amplitudes likelihood function and the false alarm

originated amplitudes likelihood function.

The amplitude likelihood ratio for the ℓ-th target can be defined as

ρℓij =
p1(a

ℓ
ij |ξ,Hℓ)

p0(aij|ξ)
, (2.83)

where p1(a
ℓ
ij |ξ,Hℓ) is the amplitude probability density function (PDF) of those origi-

nated from the target, Hℓ denotes the ℓ-th hypothesis, p0(aij |ξ) denotes the amplitude

PDF of the validated measurements originated from false alarm, aij and ξ denote the

amplitude and the detector threshold in each measurement cell, respectively. The am-

plitude likelihood ratio is conditioned on aij > ξ. A value of ξ is selected to declare a

detection and ξ depends on SNR values [31]. The probabilities P ℓ
d and Pfa are denoted
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the probabilities of measurements that originated from ℓ-th (ℓ = {1, . . . , n}) targets

and noise with conditioned on exceeding the threshold ξ. For many applications pℓ1(·)

and p0(·) are considered Rayleigh distribution.

For simplicity assume n = 3 targets are present in a surveillance area with high

false alarm. Using the measurements from a single frame of data the joint likelihood

function can be determined by taking the weighted sum of eight events. The following

refer to the possible target detection events and are expressed as

L0
i = p (Z(i)|xr, no target detections) (2.84)

L1
i = p (Z(i)|xr, only target 1 is detected) (2.85)

L2
i = p (Z(i)|xr, only target 2 is detected) (2.86)

L3
i = p (Z(i)|xr, only target 3 is detected) (2.87)

L12
i = p (Z(i)|xr, only targets 1,2 are detected) (2.88)

L13
i = p (Z(i)|xr, only targets 1,3 are detected) (2.89)

L23
i = p (Z(i)|xr, only targets 2,3 are detected) (2.90)

L123
i = p (Z(i)|xr, only targets 1,2,3 are detected) (2.91)

48



PhD. Thesis - Rajiv Sithiravel McMaster - Electrical Engineering

Then the multitarget likelihood p(Z(i)|xr) is determined as

p(Z(i)|xr) = (1− P 1
d )(1− P 2

d )(1− P 3
d )L

0
i

+ P 1
d (1− P 2

d )(1− P 3
d )L

1
i

+ (1− P 1
d )P

2
d (1− P 3

d )L
2
i

+ (1− P 1
d )(1− P 2

d )P
3
dL

3
i

+ P 1
dP

2
d (1− P 3

d )L
12
i

+ P 1
d (1− P 2

d )P
3
dL

13
i

+ (1− P 1
d )P

2
dP

3
dL

23
i

+ P 1
dP

2
dP

3
dL

123
i (2.92)

where P ℓ
d is the single frame detection probability for the ℓ-th target.

The possible target detections terms, Lℓ
i are determined by associating a certain

observation to each detected target and the rest of the observations are considered as

false detection. The possible target detection terms are determined as

L0
i =

µf(mi)

Umi

mi∏

j=1

p0(aij|τ) (2.93)

L1
i =

µf(mi − 1)

Umi−1mi

mi∏

j=1

p0(aij |τ)
mi∑

j=1

p(βij , ψij|x1
r)p

1
ij (2.94)

L2
i =

µf(mi − 1)

Umi−1mi

mi∏

j=1

p0(aij |τ)
mi∑

j=1

p(βij , ψij|x2
r)p

2
ij (2.95)
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L3
i =

µf(mi − 1)

Umi−1mi

mi∏

j=1

p0(aij |τ)
mi∑

j=1

p(βij , ψij|x3
r)p

3
ij (2.96)

L12
i =

µf(mi − 2)

Umi−2mi(mi − 1)

mi∏

j=1

p0(aij |τ)
mi∑

j=1

mi∑

l=1
l 6=j

p(βij, ψij |x1
r)

·p(βil, ψil|x2
r)p

1
ijp

2
il (2.97)

L13
i =

µf(mi − 2)

Umi−2mi(mi − 1)

mi∏

j=1

p0(aij |τ)
mi∑

j=1

mi∑

l=1
l 6=j

p(βij, ψij |x1
r)

·p(βil, ψil|x3
r)p

1
ijp

3
il (2.98)

L23
i =

µf(mi − 2)

Umi−2mi(mi − 1)

mi∏

j=1

p0(aij |τ)
mi∑

j=1

mi∑

l=1
l 6=j

p(βij, ψij |x2
r)

·p(βil, ψil|x3
r)p

2
ijp

3
il (2.99)

L123
i =

µf(mi − 3)

Umi−3mi(mi − 1)(mi − 2)

mi∏

j=1

p0(aij |τ)
mi∑

j=1

mi∑

l=1
l 6=j

mi∑

q=1
q 6=j
q 6=l

p(βij , ψij |x1
r)

·p(βil, ψil|x2
r)p(βiq, ψiq|x3

r)p
1
ijp

2
ilp

3
iq (2.100)

where where U = UβUγ . The joint likelihood function ofNw frames can be determined

as

p(Z|xr) =

Nw∏

i=1

p(Z(i)|xr) (2.101)
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and the likelihood of all noise originated measurements is given as

Nw∏

i=1

(1− P 1
d )(1− P 2

d )(1− P 3
d )L

0
i (2.102)

Then the joint log-likelihood ratio (JLLR) can be determined by dividing (2.101)

by (2.102) and by taking the logarithmic of the result as

Ψ(Z|xr) =

Nw∑

i=1

ln[1 +
P 1
d

λ(1− P 1
d )

mi∑

j=1

p(βij , ψij|x1
r)p

1
ij

+
P 2
d

λ(1− P 2
d )

mi∑

j=1

p(βij, ψij |x2
r)p

2
ij

+
P 3
d

λ(1− P 3
d )

mi∑

j=1

p(βij, ψij |x3
r)p

3
ij

+
P 1
dP

2
d

λ2(1− P 1
d )(1− P 2

d )

mi∑

j=1

mi∑

l=1
l 6=j

p(βij, ψij |x1
r)p(βil, ψil|x2

r)p
1
ijp

2
il

+
P 1
dP

3
d

λ2(1− P 1
d )(1− P 3

d )

mi∑

j=1

mi∑

l=1
l 6=j

p(βij, ψij |x1
r)p(βil, ψil|x3

r)p
1
ijp

3
il

+
P 2
dP

3
d

λ2(1− P 2
d )(1− P 3

d )

mi∑

j=1

mi∑

l=1
l 6=j

p(βij, ψij |x2
r)p(βil, ψil|x3

r)p
2
ijp

3
il

+
P 1
dP

2
dP

3
d

λ3(1− P 1
d )(1− P 2

d )(1− P 3
d )

mi∑

j=1

mi∑

l=1
l 6=j

mi∑

q=1
q 6=j
q 6=l

p(βij, ψij |x1
r)

·p(βil, ψil|x2
r)p(βiq, ψiq|x3

r)p
1
ijp

2
ilp

3
iq] (2.103)

where the expected number of false alarm per unit volume is denoted by λ.
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The parameter estimate of x̂r can be determined as

x̂r = argmax
xr

Ψ (Z|xr) , (2.104)

and (2.104) gives the track estimates of three targets in this case. The track val-

idation must be done to determine whether targets originated from false alarm or

true-target [2]. Note, this method can be applied to any number of targets with false

alarm.
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Chapter 3

B-splines

3.1 Introduction

In this section, a brief background on B-spline is provided and for further details

readers can refer to [17,53]. Any arbitrary geometrical, numerical or statistical

curve/surface/volume/hypersurface can be described by the B-spline representation [53].

The B-spline representation can be taken by two available methods: the Spline In-

terpolation Method (SIM) and the Spline Approximation Method (SAP) [12]. The

SAP and the SIM can give a better representation for any given problem with any

dimensions, but both methods are affected by the curse of dimensionality. The curse

of dimensionality mostly influenced by the parameters of the problem and it is a

challenging problem to solve with existing computer algorithms. The following sub-

sections describe the theories and properties on B-spline for any dimension.
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3.2 Univariate B-spline

Using B-Splines, any one-dimensional curve C(x) can be represented by

C(x) =

ns∑

i=1

PiBi,p,t(x). (3.1)

where Pi denotes the i-th control point and ns denotes the total number of control

points. The Bi,p,t(x) denotes the B-basis function of a certain variable x (e.g., multi-

target state), which are piecewise polynomial functions forming a basis for the vector

space of all piecewise polynomial functions of the desired degree and continuity. The

order of the curve is denoted by p and the degree of the curve is (p − 1). Note

that continuity is determined by the basis functions, hence the control points can

be modified without altering the curve’s continuity. The knot vector denoted by t

is a non-decreasing sequence of real numbers, where t = {t1, . . . , tτ}, i.e., ti ≤ ti+1,

i = 1, . . . , τ . The total number of knots is denoted by τ . Another important charac-

teristic of the B-basis function is that of local support; this implies that each Bi,p,t(x)

is non-zero only on a limited number of subintervals, not the entire domain, [t1, tτ ].

Since Pi is multiplied by Bi,p,t(x), moving Pi affects the curve only on the subintervals

where Bi,p,t(x) is non-zero.

There are a number of ways to define the B-spline basis functions, e.g., divided-

differences of truncated power functions, blossoming, or recurrence formula [12]. Gen-

erally, the recurrence formula is used since it is most suitable for computer implemen-

tation [53]. The i-th B-basis function of order p (or of degree p − 1), is defined
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as

Bi,1(x) =







1 if ti 6 x < ti+1,

0 otherwise.

(3.2)

Bi,p(x) =
(x− ti)Bi,p−1(x)

ti+p−1 − ti
+

(ti+p − x)Bi−1,p−1(x)

ti+p − ti+1
(3.3)

The Control Polygon

Figure 3.1: A B-spline curve for a given curve.

Figure (3.1) illustrates a B-spline curve for a given curve. The control points Pi

in the B-spline curve define the vertices. The control polygon of a B-spline curve is

the polygonal arc and also in here the control polygon is a piecewise linear B-spline

curve. The polygonal arc formed by its control points, P1,P2, . . . ,Pns
. The distance

between the control polygon and the curve increases as the order of the given curve

increases. A higher order B-spline curve tends to smooth the control polygon and at

the same time mimic its shape. As shown in Figure (3.2) the B-spline curve can be

redefined by inserting knots into the curve to make the control polygons get closer
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to the given curve. If the refinement is infinite then the control polygon converges to

the curve.

Figure 3.2: The B-spline curve with a redefined knot vector.

The Knot Vector

Moving a control point on a B-spline curve usually cause an effect on the curve. This

effect can influence on a range of the curve (locally) or the whole curve (globally).

Using the B-spline a curve locally controllable. The range of the curve is effected by

the control point movement can be divided and they refer to as knots. The knots of

a B-spline curve describe the following properties of the curve: the parametrization

of the B-spline curve and the continuity at the joins between the adjacent polynomial

segments of the B-spline curve. The chord-length parametrization is used for inter-

polation. The degree of continuity is determined by the number of equal knots. The

curve is discontinuous if ntu consecutive internal knots are equal. Likewise if ntu − 1

consecutive internal knots are equal, then the curve is continuous but not in general

differentiable. As shown in Figure (3.3) a continuously differentiable curve with a

discontinuity in the second derivative can be modeled using ntu − 2 equal knots. For
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intersection algorithms, curves are usually expected to be continuously differentiable

(C1) [53].

Figure 3.3: A quadratic B-spline curve with two equal internal knots.

3.3 Bivariate B-spline

A bivariate B-spline is defined as

S(u, v) =

ns,1∑

i=1

ns,2∑

j=1

Pi,jBi,p1,tu(u)Bj,p2,tv(v) (3.4)

where u and v denote two variables (or parameters) and Pi,j denotes the control points.

The basis function in (3.4) represents a B-spline surface. The B-spline surface is a

product of two B-basis functions of B-spline curves. The data of the bivariate B-spline

must fulfill the following requirements: both knot vectors must be non-decreasing, the

number of vertices must be greater than or equal to the order with respect to both

parameters: ns,1 ≥ p1 and ns,2 ≥ p2 and there should be p1 equal knots at the

beginning and end of knot vector tu and p2 equal knots at the beginning and end of
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knot vector tv. The properties of the representation of a B-spline surface are similar

to the properties of the representation of a B-spline curve. As shown in Figure (3.4)

the control points Pi,j form a control net. The control net has similar properties to

the control polygon of a B-spline curve, described in section 3.2. A B-spline surface

has two knot vectors, one for each parameter. Figure (3.4) shows that isocurves,

surface curves defined by fixing the value of one of the parameters. The surface is

drawn using isocurves and the dimension is 3.

Figure 3.4: A B-spline surface and its control net.

A basis function of a B-spline surface is the product of two basis functions of two

B-spline curves, Bi,p1,tu(u)Bj,p2,tv(v). The B-basis support is the rectangle [t
u
i , t

u
i+p1

]×

[tvj , t
v
j+p2

]. If the basis functions in both directions are of degree one and all knots

have multiplicity one, then the surface basis functions are pyramid-shaped [53]. For

higher degrees, the surface basis functions are bell shaped.
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3.4 Trivariate B-spline

The tensor-product B-Spline of three variables is called a trivariate B-spline (B-spline

volume) and has the form

T(u, v, w) =

ns,1∑

i=1

ns,2∑

j=1

ns,3∑

l=1

Pi,j,lBi,p1,tu(u)Bj,p2,tv(v)Bl,p3,tw(w) (3.5)

with control points Pi,j,l and three variables (or parameters) u, v and w. The equa-

tion (3.5) shows that the B-basis function of a trivariate B-spline is a product of

three basis functions of B-spline curves (B-splines). This is why a Trivariate B-spline

is called a tensor-product trivariate/volume. The number of vertices with respect to

the first, second and third parameters are denoted by ns,1, ns,2 and ns,3. Can consider

a same order for all the parameters and the order of the B-splines in here for the first,

second and third parameters are denoted by p1, p2 and p3.

The knot vector of the B-splines with respect first, second and third parame-

ters are defined as tu = (tu1 , t
u
2 , . . . , t

u
ns,1+p1

), tv = (tv1, t
v
2, . . . , t

v
ns,2+p2

) and tw =

(tw1 , t
w
2 , . . . , t

w
ns,3+p3

). The control points of the B-spline volume, Pd,i,j,l, where d =

1, . . . , ℘, i = 1, . . . , ns,1, j = 1, . . . , ns,2, l = 1, . . . , ns,3. When the dimension of the un-

derlying Euclidean space is ℘ = 3, P = (x1,1,1, y1,1,1, z1,1,1, . . ., xns,1,1,1, yns,1,1,1, zns,1,1,1, . . .,

xns,1,ns,2,1, yns,1,ns,2,1, zns,1,ns,2,1, . . . and xns,1,ns,2,ns,3, yns,1,ns,2,ns,3 , zns,1,ns,2,ns,3).

The data of the B-spline volume must fulfill the following requirements: three

knot vectors must be non-decreasing, the number of vertices must be greater than or

equal to the order with respect to both parameters: ns,1 ≥ p1, ns,2 ≥ p2 and ns,3 ≥ p3

and there should be p1 equal knots at the beginning and end of knot vector tu, p2

equal knots at the beginning and end of knot vector tv and p3 equal knots at the
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beginning and end of knot vector tw.

Evaluation and Rendering of Trivariate B-spline

Suppose it is necessary to evaluate T at (û, v̂, ŵ) as,

T(û, v̂, ŵ) =

ns,1∑

i=1

ns,2∑

j=1

ns,3∑

l=1

Pi,j,lBl,p3,tw(ŵ)Bj,p2,tv(v̂)Bi,p1,tu(û) (3.6)

First consider evaluating the isoparametric surface with a fixed of w. For i =

1, . . . , ns,1, j = 1, . . . , ns,2, let

γi,j =

ns,3∑

l=1

Pi,j,lBl,p3,tw(ŵ) (3.7)

Then

T(u, v, ŵ) =

ns,1∑

i=1

ns,2∑

j=1

γi,jBj,p2,tv(v̂)Bi,p1,tu(û) (3.8)

is an isoparametric surface of T, which is just a bivariate tensor product univariate

B-spline. This can be evaluated with standard surface techniques, either using sub-

division and refinement techniques or using the method of evaluating a surface as a

series of curves. Now, consider evaluating an isocurve with fixed values of w and v.

Then, for i = 1, . . . , ns,1

σi =

ns,2∑

j=1

γi,jBj,p2,tv(v̂)

=

ns,2∑

j=1

ns,3∑

l=1

Pi,j,lBl,p3,tw(ŵ)Bj,p2,tv(v̂) (3.9)
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and

T(u, v̂, ŵ) =

ns,1∑

i=1

σiBi,p1,tu(û) (3.10)

Thus, the control points/coefficients σi of the isocurve in a u are actually points on

a B-spline surface (in v and w). Finally,

T(û, v̂, ŵ) =

ns,1∑

i=1

ns,2∑

j=1

ns,3∑

l=1

Pi,j,lBl,p3,tw(ŵ)Bj,p2,tv(v̂)Bi,p1,tu(û)

=

ns,1∑

i=1

ns,2∑

j=1

γi,jBj,p2,tv(v̂)Bi,p1,tu(û)

=

ns,1∑

i=1

σiBi,p1,tu(û) (3.11)

The roles of u, v, and w in the formulation above are interchangeable. More generally,

define

γi,j(w) =

ns,3∑

l=1

Pi,j,lBl,p3,tw(w), (3.12)

and

σi(v, w) =

ns,2∑

j=1

γi,j(w)Bj,p2,tv(v)

=

ns,2∑

j=1

ns,3∑

l=1

Pi,j,lBl,p3,tw(w)Bj,p2,tv(v). (3.13)

There are several ways to use the tensor-product nature of T(u, v, w) to evaluate it

at (û, v̂, ŵ): the ns,1 + 1 isoparametric surfaces σi(v, w) can be evaluated at (v̂, ŵ),
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after which the resulting curve in u can be evaluated at û, the σi(v̂, ŵ) are the curve

coefficients and alternatively, the (ns,1+1)(ns,2+1) isoparametric curves, γi,j(w) can

be evaluated at w=ŵ. This yields an isoparametric surface, which can be evaluated

at (u, v)= û, v̂.

3.5 Polyvariate B-spline

Unidimensional splines can be extended to multidimensional ones through the use

of tensor product spline construction. A spline subspace Bij ,pj ,tj(xj) is defined for

each dimension where xj denotes the variable in the j-th dimension. Thus, the spline

representation of a multidimensional function C(x1, . . . , xm) is given as

C(x1, . . . , xm) =

ns∑

i1

. . .

ns∑

im

Pi1,...,imBi1,p1,t1(x1) . . . Bim,pm,tm(xm) (3.14)

Similar to the unidimensional case, the construction of the above multidimensional

spline polynomials can be done by solving a corresponding set of linear equations.

3.6 SIM vs. SAM

Using a set of control points {P1, . . . ,Pns
} ∈ Rd, d = 2, 3, can generate a piece-wise

polynomial curve C, by using B-spline approximation or interpolation as follows:

1. Interpolation: Interpolate through the given points (for a given parametrization

x = (x0, . . . , xns
)), create C i.e.,

C(xi) = Pi (3.15)
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2. Approximation: Find a curveC that will pass as close as possible to the given set

of points. The distance is measured at the parameter values x = (x0, . . . , xns
).

The closest spline is defined by:

min
t,x

D(t,x) (3.16)

where

D(x, t) =

ns∑

i=1

‖C(xi)− Pi‖2 (3.17)

Two most popular curve approximation techniques are available in literature. One

scheme is based on a deterministic approach using quadratic B-spline and the other

scheme uses a genetic algorithm (GA) in its formulation where the B-spline can have

any order [12], but here the B-splines interpolation has been used for our analysis.

Generally, for a given basic sequence of B-splines {Bi,p,t}ns

i=1 and strictly increasing

sequence of data series {xj}ns

j=1, the B-spline interpolation function ĉ(x) can be written

as

ĉ(x) =

ns∑

i=1

PiBi,p,t(x) (3.18)

where ĉ(x) agrees with function c(x) at all xj if and only if

ns∑

i=1

PiBi,p,t(xj) = c(xj), for j = 1, . . . , ns (3.19)

63



PhD. Thesis - Rajiv Sithiravel McMaster - Electrical Engineering

In fact, (3.19) is a linear system of ns equations with ns unknown values of Pi and

the i-th row and j-th column of the coefficient matrix equals Bi,p,t(xj), which im-

plies that the spline interpolation function can be found by solving a set of linear

system equations [17]. The coefficient matrix can be verified for invertibility using

Schoenberg-Whitney theorem [53].

3.7 Properties of B-splines

3.7.1 Local Control

Each segment is determined d+ 1 control points. If t ∈ [tr, tr+1)(d ≤ r ≤ τ − d− 1),

then

C(x) =
r∑

i=r−d

PiBi,p,t(x), (3.20)

Thus to evaluate C(x) it is sufficient to evaluate Br−d,p,t(x), . . . , Br,p,t(x)

3.7.2 Convex Hull

If t ∈ [tr, tr+1)(d ≤ r ≤ τ − d− 1), then

C(x) ∈ CH{Pr−d, . . . ,Pr}. (3.21)
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3.7.3 Invariance under Affine Transformation

Let T be an affine transformation. Then

T

(
ns∑

i=1

PiBi,p,t(x)

)

=

ns∑

i=1

T (Pi)Bi,p,t(x) (3.22)

3.7.4 Differential of a B-spline

D(

ns∑

i=1

PiBi,p,t(x)) = (p− 1)

ns+1∑

i=1

Pi − Pi−1

ti+p−1 − ti
Bi,p−1,t(x) (3.23)

where D(·) denotes the differential operator, and both P0, and Pns+1 are zeros.

3.7.5 Integral of a B-spline

The integral of a B-spline over the interval [t1, x] (t1 ≤ x ≤ ts) is given by

∫ x

t1

ns∑

i=1

PiBi,p(c)dc =

s−1∑

i=1

(

i∑

j=1

Pj(tj+p − tj)/p)Bi,p+1(x) (3.24)

3.7.6 Positivity property

The B-splines Bi,p,t is made up of at most p nontrivial polynomial pieces and vanishes

outside the interval [ti, ..., ti+p] and is positive on the interior of that interval [17]. That

is,

Bi,p,t(x) > 0, ti < x < ti+p (3.25)
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while

Bi,p,t(x) = 0 for ti = ti+p (3.26)

With the positivity property of B-splines and having Pi ≥ 0 for all i, the spline

representation of probability densities and likelihood functions all can be positive.

3.7.7 Knot insertion property

Additional knots can be inserted with the following knot insertion property [53]. If

the knot sequence t̂ is obtained from the knot sequence t by the insertion of just one

term, say x, then for any function c ∈ Ψ

∑

i

PiBi,p,t(x) = c =
∑

i

P̂iBi,p,t̂(x) (3.27)

with

P̂i = (1− ŵi,p(x))Pi−1 + ŵi,p(x)Pi for all i (3.28)

where Ψ is the span of Bi,p,t(x) and ŵi,p(x) =
x−t̂i

t̂i+p−1−t̂i
.

3.7.8 Knot removal property

Knot removal is the reverse process of knot insertion. Let

c(x) =
ns∑

i=1

PiBi,p,t(x) (3.29)
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be defined on x, and let te be an interior knot of multiplicity s in t; end knots are not

removed. The size of the knot vector is τ = ‖t‖, e ∈ {p, . . . , τ − p} and 1 ≤ s ≤ p.

Let tr denote the knot vector obtained by removing te r times from t(e ≤ r ≤ s+ e).

Note that te is r times removable if c(x) has a precise representation of the form [53]

c(x) =
ns−r∑

i=1

QiB̂i,p,tr(x) (3.30)

where B̂i,p,tr(x) are the basis functions on tr, that is equations (3.29) and (3.30)

geometrically and parametrically represent the same curve. Hence, the knot te is

r times removable if and only if the curve c(x) is Cp−s+r continuous at tes. The

new control points denoted by Qi can be determined as described in [53]. Thus, the

equations for removing te r-th time are

Qi =







Qr
i=k =

Qr−1
k

−(1−αk)Q
r
k−1

αk
(e− p− r + 1) ≤ k ≤ 0.5(2e− p− s− r),

Qr
i=j =

Qr−1
j −αjQ

r
j+1

(1−αj)
0.5(2e− p− s+ r + 1) ≤ j ≤ (e− s+ r − 1).

(3.31)

with

αk =
t− tk

tk+p+r − tk
(3.32)

and

αj =
t− tj−r+1

tj+p+1 − tj−r+1
(3.33)
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3.7.9 Schoenberg-Whitney theorem

Let t be a knot vector, p and n be integers such that n > p > 0, and suppose x is

strictly increasing with n + 1 elements. Then matrix L = Bi,p,t(xj) from (3.19) is

invertible if and only if Bi,p,t(xi) 6= 0, i = 0, . . . , n, i.e., if and only if ti < xi < ti+p+1,

for all i [53].
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Chapter 4

The Spline Probability Hypothesis

Density Filter

4.1 Introduction

The Probability Hypothesis Density (PHD) filter is a multitarget tracker that can al-

leviate the computational intractability of the optimal multitarget Bayes filter. The

PHD filter recursively estimates the number of targets and their PHD from a set of ob-

servations and works well in scenarios with false alarms and missed detections. Two

distinct PHD filter implementations are available in the literature: the Sequential

Monte Carlo Probability Hypothesis Density (SMC-PHD) and the Gaussian Mixture

Probability Hypothesis Density (GM-PHD) filters. While particle-based PHD im-

plementations may suffer from degeneracy, GM-based methods may not be suitable

for highly nonlinear non-Gaussian systems. This chapter proposes a B-Spline based

Spline Probability Hypothesis Density (SPHD) filter, which has the capability to bet-

ter approximate any arbitrary probability density function. The resulting algorithm
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can handle linear, non-linear, Gaussian, and non-Gaussian models. The SPHD filter

can provide continuous estimates of the probability density function of the system

state and it is immune to the degeneracy problem. The SPHD filter can maintain

highly accurate tracks by taking advantage of dynamic knot movement, but at the

expense of higher computational complexity, which makes it suitable for tracking a

few high-value targets under difficult conditions. The SPHD filter derivations and

simulations are provided in this chapter.

4.2 SPHD Filtering

This section describes the proposed SPHD filter derivation of the PHD filter. Consider

a spatial Poisson process Xk = {xi,k}ϑk

i=1 ∈ Es, where each xk is a random target vector

with survival probability Ps,k(xk) in a state space Es and ϑk denotes the number of

targets at a particular time k.

Denote the PHD and the SPHD of the multitarget state by Dk|k(xk) and Bk|k(xk),

respectively. Consider the following observation model with the detection probability

Pd,k(xk) where each target in state space Es generates a noisy observation in an obser-

vation space Eo through a kernel with density pk(zk|xk). This happens independently

for each target in Xk.

Let Zk = {zi,k}ηki=1 ∈ Z(k) ∈ Eo denote the set of observations generated by targets

in Xk and ηk denote the number of observations at time k. In addition to these

detected targets, observations might be due to false alarms or clutter. False alarms

are Poisson-distributed with an average rate of λk and the spatial density of false

alarms is Ck(zk).
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4.2.1 Unidimensional SPHD filtering

To illustrate the Spline concept, we first derive a unidimensional SPHD and then

generalize it to the multidimensional case.

Prediction

Assume that the prior multitarget SPHD of the system state at time (k − 1) is

Dk−1|k−1(xk−1|Z(k−1)) ≈
ns∑

i

PiBi,p,tk−1
(xk−1) (4.1)

and for brevity (4.1) can be written as

Bk−1|k−1(xk−1) =
∑

i

PiBi,p,tk−1
(xk−1) (4.2)

where Bk−1|k−1(xk−1) denotes the multitarget prior SPHD, tk−1 = {t1,k−1, . . . , tτ,k−1}

is the set of prior knots of the splines and Pi denotes the i-th control point of the

prior SPHD. The number of knots is denoted by τ and ns denotes the number of

control points. The prior number of expected targets is the integral of the region of

state space Es, which can be determined as

N̂k−1|k−1 =

∫

Es

Bk−1|k−1(xk−1)dxk−1 (4.3)

The spline system model Markov transition density pk|k−1(xk|xk−1) is a two dimen-

sional function determined using system model (2.1), and is given as

pk|k−1(xk|xk−1) =
∑

r,y

Pr,yBr,p,tk(xk)By,p,tk−1
(xk−1) (4.4)
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where tk = {t1,k, . . . , tτ,k} is the set of sequences of predicted knots. These predicted

knots can be determined as [24]

tj,k = f(tj,k−1, 0) for j = 1, . . . , τ (4.5)

where the f(., .) is the function of state transition as in (2.1) and this method of de-

termining knots ensures that spline covers the region where the probability of density

of system state is significant. The coefficients or control points of spline transition

density Pr,y can be determined as described in [25].

A target may continue to exist, die or spawn or new targets may be born inde-

pendently from existing ones. Thus considering these random events, the predicted

SPHD can be determined using (2.23) [38] as

Bk|k−1(xk|Z(k−1)) = Bc,k|k−1(xk) +Bs,k|k−1(xk) +Bnb,k(xk)

= Bk|k−1(xk) (4.6)

The predicted SPHD for the existing targets can be determined as [38]

Dc,k|k−1(xk) =

∫

Ps,k|k−1(xk−1)pk|k−1(xk|xk−1)

·Dk−1|k−1(xk−1|Z(k−1))dxk−1

=

∫

Ps,k|k−1(xk−1)
∑

r,y

Pr,yBr,p,tk(xk)By,p,tk−1
(xk−1)

·
∑

i

PiBi,p,tk−1
(xk−1)dxk−1

=
∑

r,y

Pr,yBr,p,tk(xk)
∑

i

Pi

∫

Ps,k|k−1(xk−1)

·By,p,tk−1
(xk−1)Bi,p,tk−1

(xk−1)dxk−1 (4.7)

72



PhD. Thesis - Rajiv Sithiravel McMaster - Electrical Engineering

where the third equality follows from the property that the order of summation and

integration of splines is interchangeable [12]. Let

ξi,y =

∫

Ps,k|k−1(xk−1)By,p,tk−1
(xk−1)

·Bi,p,tk−1
(xk−1)dxk−1 (4.8)

which are integrals of polynomials. Then the predicted SPHD of the system state can

be expressed as

Dc,k|k−1(xk) =
∑

r

∑

y

Pr,yBr,p,tk(xk)
∑

i

Piξi,y (4.9)

where the coefficient of the predicted SPHD is given as

Pr =
∑

y

∑

i

Pr,yPiξi,y (4.10)

Assume ψr
y,i = Pr,yPi for any fixed r. Then a more concise expression for the coefficient

can be written as Pr = tr(ψτξ). Then the equation could be simplified as

Dc,k|k−1(xk) =
∑

r

PrBr,p,tk(xk)

= Bc,k|k−1(xk) (4.11)

where Bc,k|k−1(xk) denotes the existing targets predicted SPHD. A similar approach

can be applied to determine the spawned targets predicted SPHD Bs,k|k−1(xk). The

SPHD of new targets Bnb,k(xk) could be determined using proposition 2 from [69]

where the posterior probability for an observed measurement that originates from a
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new target Pk(Yi) is determined as

Pk(Yi) =

∫
Pd,k(xk)p(zi|xk)Dk|k−1(xk|Z(k−1))dxk

λkCk(zi) +
∫
Pd,k(xk)p(zi|xk)Dk|k−1(xk|Z(k−1))dxk

, (4.12)

zi ∈ Zk , i = 1, . . . , ηk

In the above, Dk|k−1(xk|Z(k−1)) ≈ Dc,k|k−1(xk) + Ds,k|k−1(xk), Yi denotes an i-th

observed measurement that originates from a new target at time k and ηk denotes

the total number of measurements at time k. Also Pk(Yi) values are determined for

each measurement and it is compared with a tuning threshold probability ǫ. That is,

Nnb,i =







1 if Pk(Yi) 6 ǫ,

0 otherwise.

(4.13)

A new target must be added if the number of newborn targets Nnb,i is 1 for a specific

measurement index i. This is achieved by adding a Gaussian distribution with mean zi

that originated from a new target and variance of measurement noise. Equation (4.12)

can be written in terms of spline representation as

Pk(Yi) =

∫
Pd,k(xk)Bl,k(zi|xk)Bk|k−1(xk)

Bλ,k(zi) +
∫
Pd,k(xk)Bl,k(zi|xk)Bk|k−1(xk)

, (4.14)

zi ∈ Zk , i = 1, . . . , ηk

whereBk|k−1(xk) ≈ Bc,k|k−1(xk)+Bs,k|k−1(xk) andBl,k(·) denotes the spline likelihood

density and could be determined using the measurement model (2.2) over the interval

[t1,k, tτ,k]. The spline uniform clutter density is denoted by Bλ,k(·). Then Pk(Yi) value

is compared with the tuning threshold ǫ. Using (4.13) a newborn target SPHD can
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be added as

Bnb,k(xk) =

Nnb∑

i=1

Bnb,k,i(zi) (4.15)

where Bnb,k,i is the SPHD of a newborn target with mean zi and variance of mea-

surement noise. The total number of newborn targets per scan is denoted by Nnb and

Bnb,k(xk) denotes the cumulative sum of all the SPHD of newborn targets at scan k.

Update

Note that the SPHD filter provides the PHD estimates in a continuous space in

state. These predicted SPHD Bk|k−1(·) at any point over the interval [t1,k, tτ,k] can

be determined using (4.6). Then, the interval where Bk|k−1(·) is significant could

be found. Using the measurement model equation (2.2), the value for the likelihood

density function Bl,k(zk|xk) can be evaluated for the same interval. The updated

posterior SPHD can be determined as [38]

Dk|k(xk|Z(k)) = (1− Pd,k(xk))Dk|k−1(xk|Z(k−1))

+
∑

zk∈Zk

Pd,k(xk)pk|k(zk|xk)Dk|k−1(xk|Z(k−1))

λkCk(zk) + φk(zk|Z(k−1))
(4.16)

Dk|k(xk|Z(k)) = (1− Pd,k(xk))Bk|k−1(xk)

+
∑

zk∈Zk

Pd,k(xk)Bl,k(zk|xk)Bk|k−1(xk)

Bλ,k(zk) + φk(zk|Z(k−1))

=
∑

j

PjBj,p,tk(xk) (4.17)
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where the φk(zk|Z(k−1)) can be evaluated as

φk(zk|Z(k−1)) =

∫

Pd,k(xk)Bl,k(zk|xk)Bk|k−1(xk)dxk (4.18)

Then the updated SPHD can be written

Bk|k(xk) =
∑

j

PjBj,p,tk(xk) (4.19)

where tk denotes the set of posterior knots and (4.19) ensures that the multitarget

posterior SPHD Bk|k(xk) is only evaluated over the interval where it is significant.

Once the significant region is obtained, a simple way of selecting the knots for the

posterior SPHD is to uniformly distribute the knots over this significant region [24].

The number of updated targets can be determined as

N̂k|k =

∫

Es

Bk|k(xk)dxk (4.20)

4.2.2 Multidimensional SPHD filtering

The tensor product transformation of splines can be used to approximate the SPHD [17]

at higher dimensions. A polyvariate model is used here to derive the SPHD fil-

ter implementation for multidimensional multitarget state space models. Assume

that a multidimensional multitarget system state at time k is denoted as Xk =

{x1,k, . . . ,xϑk,k} where each of the targets has multidimensional state xk = [x1
k, . . . ,x

n
k ]

′

and n denotes the number of dimensions.
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Prediction

Assume that the multitarget multidimensional prior SPHD of the system state at

time (k − 1) is

Dk−1|k−1(xk−1|Z(k−1)) ≈
ns∑

i1

. . .

ns∑

in

Pi1,...,inBi1,p,t
1
k−1

(x1
k−1) . . .Bin,p,t

n
k−1

(xn
k−1)

= Bk−1|k−1(xk−1) (4.21)

where i = i1, . . . , in and n denotes the number of dimensions. The number of knots for

all the dimensions is the same (τ). The n dimensional knot tk−1 = {t1k−1, . . . , t
n
k−1}

is an n × τ array. Each row vector of tk−1 consists of a set of prior knots tlk−1 =

{tl1,k−1, . . . , t
l
τ,k−1} where l = 1, . . . , n. The n dimensional control point or coefficient

matrix is denoted by Pi and ns denotes the number of control points. The number of

control points for all the dimensions is the same. Note that the number of knots must

be greater than the number of control points. The system state transition density

function pk|k−1(xk|xk−1) is a combination of two polyvariate functions with spline

representation. That is,

pk|k−1(xk|xk−1) =
∑

j1

. . .
∑

j2n

Pj1,...,j2nBj1,p,t
1
k
(x1

k) . . . Bjn,p,t
n
k
(xn

k)

·Bjn+1,p,t
1
k−1

(x1
k−1) . . .Bj2n,p,t

n
k−1

(xn
k−1) (4.22)

where j = {j1, . . . , j2n} and tk denotes an n × τ knot array at k and it consists of

row vectors t1k, . . . , t
n
k . Each row vector of tk consists of a set of predicted knots tlk =

{tl1,k, . . . , tlτ,k} where l = 1, . . . , n. The predicted knot selection of a multidimensional

system is much more challenging. A suboptimal but computationally efficient method
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is used here to find the predicted knots for the multidimensional spline. Assume that

there are τ = τl knots in tlk−1. Then
∏

l

τl different sample vectors Ψk−1,t can be

formed by selecting one knot tlel,k−1 from the set of knots in each dimension tlk−1

and el = 1, . . . , τ . For example, the collection of all such sample vectors in the n-

dimensional spline filter is Ψk−1,t = {[tle1,k−1 . . . t
l
en,k−1]

′}e1,...,en and the total number

of Ψk−1,t is τ1 × . . .× τn. Then, the predicted sample knots Ψk,t are found by

Ψ
e1,...,en
k,t = fk(Ψ

e1,...,en
k−1,t , 0) (4.23)

where fk(·, ·) is the transition function in (2.1). Then, to select the predicted knots

in each dimension l, first project all sample vectors Ψe1,...,en
k,t into the axis of the l-th

dimension [24,25]. In the n dimensional case, the projection will result in τ1×· · ·×τn
possibly overlapping points in each axis. Denote them as {tl

1′ ,k
, tl

2′ ,k
, . . . , tl

(τ1×...×τn)
′
,k
}

and assume that they are sorted in a non-decreasing order. Then, select the first

predicted knot as tl1,k = tl
1′ ,k

and the last predicted knot as tlτl,k = tl
(τ1×...×τn)

′
,k
. The

remaining τl − 2 knots are selected for each dimension as tl
i
′′
,k
= tl

φ(i′′ ),k
, where

φ(i
′′

) = 1 + ⌈((
∏

l

τl)− 2)/(τl − 2)⌉ · (i′′ − 1) (4.24)

The selection of 2n dimensional control point Pj is described next. For simplicity,

assume that the multitarget multidimensional system equation (2.1) can be written

as

xk = fk(xk−1) + νk (4.25)
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The l-th dimensional system noise is white Gaussian with variance σ2
ν,l. Then the

coefficients or control points of spline transition density Pj1,...,j2n can be determined

as follows:

The l-th dimensional range of xl
k−1 at scan k − 1 is selected as

xl
range,k−1|k−1 = [min(tlk−1) min(tlk−1) + δlk−1|k−1

min(tlk−1) + 2δlk−1|k−1 . . . max(tlk−1)] (4.26)

where xl
range,k−1|k−1 and tlk−1 denote the l-th dimensional range of xk−1|k−1 and l-th

dimensional knot sequence vector, respectively. Also, the l-th dimensional δlk−1|k−1 is

the step size and it can be determined as

δlk−1|k−1 =
max(tlk−1)−min(tlk−1)

ns − 1
l = 1, . . . , n (4.27)

where ns denotes the number of control points.

Next, define two column vectors as

xmin
range,k−1|k−1 =









min(x1
range,k−1|k−1)

...

min(xn
range,k−1|k−1)









(4.28)

and

xmax
range,k−1|k−1 =









max(x1
range,k−1|k−1)

...

max(xn
range,k−1|k−1)









(4.29)
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Then, using the state transition equation (4.25), (4.28) and (4.29), the n dimensional

predicted state of xmin
range,k|k−1 and xmax

range,k|k−1 can be determined as follows:

xmin
range,k|k−1 = fk(x

min
range,k−1|k−1) (4.30)

and

xmax
range,k|k−1 = fk(x

max
range,k−1|k−1) (4.31)

Using (4.30) and (4.31), the l-th dimensional updated state of xl
range,k|k is given by

xl
range,k|k = [xmin

range,k|k−1(l)− σν,l xmin
range,k|k−1(l)− σν,l + δlk|k−1

xmin
range,k|k−1(l)− σν,l + 2δlk|k−1 . . . xmax

range,k|k−1(l) + σν,l] (4.32)

where the l-th dimensional step size can be determined as

δlk|k−1 =
xmax
range,k|k−1(l)− xmin

range,k|k−1(l) + 2σν,l

ns − 1
(4.33)
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The spline transition density p(xk|xk−1) = p(ρ1, . . . , ρn, λ1, . . . , λn) can be deter-

mined as

p(ρ1, . . . , ρn, λ1, . . . , λn) =

ℓλ1,k∏

λ1=1

· · ·
ℓλn,k∏

λn=1

ℓρ1,k−1
∏

ρ1=1

· · ·
ℓρn,k−1∏

ρn=1

· 1
√

2πσ2
ν,1

e

−(x1range,k|k(λ1)−(x1range,k−1|k−1
(ρ1)+···+x

n
range,k−1|k−1

(ρn)))
2

2σ2
ν,1

· 1
√

2πσ2
ν,2

e

−(x2range,k|k(λ2)−(x2range,k−1|k−1
(ρ2)+···+x

n
range,k−1|k−1

(ρn)))
2

2σ2
ν,2

· · · 1
√

2πσ2
ν,n−1

e

−(xn−1
range,k|k

(λn−1)−(xn−1
range,k−1|k−1

(ρn−1)+x
n
range,k−1|k−1

(ρn)))
2

2σ2
ν,n−1

· 1
√
2πσ2

ν,n

e

−(xnrange,k|k(λn)−(xnrange,k−1|k−1
(ρn)))

2

2σ2
ν,n (4.34)

where ℓρl,k−1 and ℓλl,k denote the lengths of the l-th dimensional xl
range,k−1|k−1 and

xl
range,k|k, respectively, and l = 1, . . . , n.

Then,

p(ρ1, . . . , ρn, λ1, . . . , λn) =
∑

j1

. . .
∑

j2n

Pj1,...,j2nBj1,t
1
k
(x1

k) . . .

·Bjn,t
n
k
(xn

k)

·Bjn+1,p,t
1
k−1

(x1
k−1) . . .

·Bj2n,p,t
n
k−1

(xn
k−1) (4.35)

From (4.35), where the blending functions, p(ρ1, . . . , ρn, λ1, . . . , λn) are already known
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from (4.34), the values of Pj1,...,j2n can be determined by solving a set of linear equa-

tions with the unknown parameters being the coefficients.

For a general nonlinear, non-Gaussian system, finding the predicted PHD is more

challenging. For example, assume that the system follows (2.1), but with process

noise being white and additive with density pνk(νk), which can be expressed as

pνk(νk) = pνk(xk − fk(xk−1)) (4.36)

Also consider the measurement model

zk = hk(xk) + ωk (4.37)

where the measurement noise ωk is additive white with density pωk
(ωk). It is also

independent of the process noise. Then, pωk
(ωk) can be written as

pωk
(ωk) = pωk

(zk − hk(xk)) (4.38)

In view of the additivity of the process noise in (2.5) [3], one has

p(xk|xk−1) = pνk(xk − fk(xk−1)) (4.39)

Now substituting (4.39) in (4.22), the transition density of system state given in (4.22)

becomes a nonlinear convolution. The n dimensional coefficients Pj1,...,j2n for a non-

linear, non-Gaussian system model can be determined as in the nonlinear, Gaussian

case in (4.35). Note that for the non-Gaussian case, (4.32) and (4.33) need to be

modified accordingly.
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The multidimensional multitarget predicted SPHD of a system state can be writ-

ten as

Bk|k−1(xk|Z(k−1)) = Bc,k|k−1(xk) +Bs,k|k−1(xk) +Bnb,k(xk) (4.40)

where the multidimensional predicted SPHD for existing targets can be determined

as

Dc,k|k−1(xk) =

∫

Ps,k|k−1(xk−1)pk|k−1(xk|xk−1)

·Dk−1|k−1(xk−1|Z(k−1))dxk−1

=

∫

Ps,k|k−1(xk−1)
∑

j1

. . .
∑

j2n

Pj1,...,j2n

·Bj1,p,t
1
k
(x1

k) . . . Bjn,p,t
n
k
(xn

k)

·Bjn+1,p,t
1
k−1

(x1
k−1) . . .Bj2n,p,t

n
k−1

(xn
k−1)

·
∑

i1

. . .
∑

in

Pi1,...,inBi1,p,t
1
k−1

(x1
k−1) . . . Bin,p,t

n
k−1

(xn
k−1)

·dx1
k−1 . . . dx

n
k−1 (4.41)

Define two 2n dimensional matrices W and C, and one n dimensional matrix ξ as

follows:

Wjn+1,...,j2n,i1,...,in =

∫

Ps,k|k−1(xk−1)

·Bjn+1,p,t
1
k−1

(x1
k−1) . . .Bj2n,p,t

n
k−1

(xn
k−1)

·Bi1,p,t
1
k−1

(x1
k−1) . . . Bin,p,t

n
k−1

(xn
k−1)

·dx1
k−1 . . . dx

n
k−1 (4.42)
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Let Cj = Pj and ξi = Pi. Using (4.41), (4.42) and (4.44) with additional manipulation,

it can be shown that

Bc,k|k−1(xk) =
∑

j1

. . .
∑

jn

Pj1,...,jnBj1,p,t
1
k
(x1

k) . . .Bjn,p,t
n
k
(xn

k) (4.43)

where Pj1,...,jn is given by

Pj1,...,jn =
∑

i1

. . .
∑

in

ξi1,...,in
∑

jn+1

. . .
∑

j2n

Cj1,...,j2nWjn+1,...,j2n,i1,...,in (4.44)

A similar approach, as described for multidimensional state space case to find the

predicted SPHD of existing targets, Bc,k|k−1(xk), can be applied to determine the

predicted SPHD of spawned targets, Bs,k|k−1(xk).

The multidimensional SPHD of predicted newborn targets, Bnb,k(xk), can be

determined as follows. Using (4.12) for the i-th measurement vector, zi the Pk(Yi)

(scalar) value can be determined and then using (4.13) a newborn target can be

added. If for the i-th measurement, zi the Pk(Yi) = 1 then each element of zi can be

considered as the mean of a newborn target state in their respective dimension with

the variance of measurement noise. A newborn target can be added using Gaussian

distribution with corresponding mean and variance from each state element of that

newborn target.

The SPHD of all predicted newborn targets can be written as

Bnb,k(xk) =

Nnb∑

i=1

Bnb,k,i(zi) (4.45)

where Bnb,k,i(zi) is the SPHD of a predicted newborn target. The total number of
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newborn targets per scan is denoted by Nnb and Bnb,k(xk) denotes the cumulative

sum of the SPHD of all predicted newborn targets at scan k.

Update

Similar to the unidimensional case, the posterior SPHD of the multidimensional mul-

titarget system state

Dk|k(xk|Z(k)) = (1− Pd,k(xk))Dk|k−1(xk|Z(k−1))

+
∑

zk∈Zk

Pd,k(xk)pk|k(zk|xk)Dk|k−1(xk|Z(k−1))

λkCk(zk) + φk(zk|Z(k−1))
(4.46)

can be found after evaluating its value over the region defined by the knots tk, i.e.,

the n dimensional region covered by the splines. Then the updated SPHD can be

written as

Bk|k(xk) =
∑

ι1,...,ιn

Pι1,...,ιnBι1,p,t
1
k
(x1

k) . . .Bιn,p,t
n
k
(xn

k) (4.47)

4.3 Simulation Results

In this section a nonlinear non-Gaussian multitarget tracking example is used to

validate the effectiveness of the proposed SPHD filter. The selected example is a

multidimensional one dealing with a practical bearing-only tracking problem. The

problem of bearing-only tracking arises in many practical applications such as sub-

marine tracking or airborne surveillance using a passive radar [42]. As shown in
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Figure 4.1, a sensor is on an aircraft with

xp(k) = x̄p(k) + ∆xp(k) k = 0, 1, . . . , 40 (4.48)

yp(k) = ȳp(k) + ∆yp(k) k = 0, 1, . . . , 40 (4.49)

where x̄p(k) and ȳp(k) are the average platform position coordinates, k is the scan

index and the perturbations ∆xp(k) and ∆yp(k) are assumed to be mutually indepen-

dent zero-mean Gaussian white noise sequences with variances σ2
∆xp

= 1 and σ2
∆yp

= 1,

respectively. The average unperturbed platform motion is assumed to be horizontal

with a constant velocity. Its coordinates are given by

x̄p(k) = 100k ∗ T (m) (4.50)

ȳp(k) = 10000 (m) (4.51)

where the sampling time T = 10 (s). Targets move along the X-axis with

xi(k + 1) =






1 T

0 1




 xi(k) +






T 2/2

T




 νi(k) (4.52)

where the target state is

xi(k) =






x1i (k)

x2i (k)




 i = 1, 2, 3 (4.53)

and x1i denotes the position (m) while x2i denotes the velocity (m/s) of the i-th

target. Note that there are three targets on the ground. This problem, which has
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been used for the comparison of nonlinear filtering algorithms before [3,34], represents

a multitarget ground target tracking using an airborne passive radar in the presence

of false alarms and missed detections.

Figure 4.1: Motion of the platform and the three targets

These three targets, which have a probability of survival Ps,k = 0.98, appear and

disappear at specific times. The initial states are

[x1(k) x2(k) x3(k)] =






400 6000 8000

20 −20 −25




 (4.54)

and the start and end time steps are (1,40), (5,24) and (16,38), respectively. The

process noise ν(k), which models the acceleration, is zero mean white Gaussian with

standard deviation σν = 0.01 m/s2. Each target is detected with probability Pd,k =
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0.98 and the target-originated measurements follow the observation model

zi(k) = h[xp(k), yp(k), x
1
i (k)] + ω(k) i = 1, 2, 3 (4.55)

where

h[.] = tan−1 yp(k)

x1i (k)− xp(k)
i = 1, 2, 3 (4.56)

is the angle between the X-axis and the line of sight from the sensor to the targets,

and the sensor noise ω(k) is zero-mean white Gaussian with σω = 2◦. The sensor

noise is assumed independent of the sensor platform perturbations. The received

measurements include clutter and false alarms. The clutter is modeled as uniform

with average false alarm rate λk = 10−4 (rad)−1 over the whole surveillance region

[0, π] rad.

For tracking multiple targets, an SPHD filter of order 3 is used with 20 knots

for position and 10 knots for velocity. At scan k = 0, all measurements are used to

initialize newborn targets as described in Section (4.2.2). The probability of target

spawning is assumed to be zero and the probability of spontaneous target birth is

0.01.

Figures 4.2, 4.3 and 4.4 show the prior, predicted and posterior distributions of the

SPHD filter at scan k = 15, respectively. As shown in these figures, the SPHD filter is

capable of modeling any arbitrary density function of the system state without putting

any specific constraint on system/measurement model. The two peaks correspond to

the two targets at that time. Note that target 3 appears only at k = 16.
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Figure 4.2: Prior PHD at k = 15 (σω = 2◦).
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Figure 4.3: Predicted PHD at k = 15 (σω = 2◦).
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Figure 4.4: Posterior PHD at k = 15 (σω = 2◦).
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Figure 4.5: True vs. average of estimated number of targets from 1000 runs (σω = 2◦).
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The key feature of the SPHD filter is to find the number of targets at any time in

any particular surveillance area. As shown in Figure 4.5, the SPHD filter accurately

determines the number of targets for two different scenarios. In Figure 4.5, the Pfa

denotes the probability of false alarms and Pd denotes the probability of detection.

The PHD filter does not provide a mechanism to get the target state estimates

directly. One solution is to identify the local maxima of the SPHD surface. The

K-means clustering algorithm [61] is used here for state extraction. An alternative

is the expectation-maximization based peak extraction approach in [62]. The targets

are associated to tracks using global nearest-neighbor assignment [47] based on the

mean of each target cluster.

As shown in Figure 4.6, all three targets appear and disappear at various times

during the surveillance interval. Also shown in Figure 4.6 are the average of the esti-

mated trajectories. As shown in Figure 4.7, the SPHD filter estimated the velocities

of all targets accurately. The mean velocity of newborn targets is selected randomly

from a uniform distribution in the interval [−40, 40] m/s and the standard deviation

is assumed to be 0.10 m/s.
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Figure 4.6: True position vs. average of estimated position from 1000 runs (σω = 2◦,
S: start, E: end).
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Figure 4.7: True velocity vs. average of estimated velocity from 1000 runs (σω = 2◦,
S: start, E: end).
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Next, the performance of the SPHD filter is analyzed with different numbers of

knots. The number of targets is 6 and the initial states are

[x1(k) x2(k) x3(k) x4(k) x5(k) x6(k)] =





400 6000 9000 2000 5000 10000

20 −20 −25 40 25 0




 (4.57)

while the start and end time steps are (1,40), (5,24), (1,38), (6,30), (15,40) and (1,40),

respectively. As shown in Figures 4.8–4.10, the performance of the SPHD filter is not

affected by the increase in the number of targets. As shown in Figure 4.8, the SPHD

filter accurately determines the number of targets, and as shown in Figure 4.9, tracks

corresponding to these 6 targets are correctly initialized and terminated to match the

truth.
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Figure 4.8: True vs. average of estimated number of targets from 1000 runs (σω = 2◦).
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Figure 4.9: True position vs. average of estimated position from 1000 runs (σω = 2◦,
S: start, E: end).
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Figure 4.10: True velocity vs. average of estimated velocity from 1000 runs (σω = 2◦,
S: start, E: end).
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The selection of the number of knots depends on the application, especially on

target separation. As shown in Table 4.1, increasing the number of knots affects the

complexity of the SPHD filter, but results in better performance in terms of RMSE.

Note that beyond nPk = 50 and nV k = 20, the performance of the SPHD filter does

not improve much and, considering the computational time and the performance of

the SPHD filter, one can note that the optimal knot selection is given by nPk = 50

and nV k = 20. Theoretically optimal selection of the number of knots is a topic for

future research.

Number of knots RMSE (m) CPU time (sec)
nPk = 10, nV k = 5 594.05 5.700
nPk = 20, nV k = 10 340.02 7.800
nPk = 40, nV k = 18 310.58 10.190
nPk = 50, nV k = 20 260.87 13.475
nPk = 60, nV k = 22 259.10 15.190
nPk = 70, nV k = 25 258.59 16.090

Table 4.1: Average performance from 1000 runs vs. number of knots (σω = 2◦),
nPk: number of position knots, nV k: number of velocity knots, number of targets = 6.

The complexity becomes a major problem for high dimensional multitarget track-

ing problems due to the use of the method from Section 5.2.1 to predict the knots.

This step takes up 95% of the computation. As with other nonlinear filtering tech-

niques the curse of dimensionality [66] is a challenge for the SPHD filter.
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Next, the original example is analysed further with an increasing number of tar-

gets, but with fixed values for the number of position knots nPk = 20 and number of

velocity knots nV k = 10. As shown in Table 4.2, increasing the number of targets for

a given number of knots adversely affects the performance of the SPHD filter in terms

of RMSE and computational time. Note that with optimal knot selection, which is

beyond the scope of this Chapter, the SPHD filter performance can be improved but

with higher complexity.

Number of targets RMSE (m) CPU time (sec)
5 345 7.775
10 596 8.500
15 739 9.125
20 1225 10.250
40 2253 12.350

Table 4.2: Average performance from 1000 runs vs. number of targets (σω = 2◦),
nPk = 20, nV k = 10 (fixed number of knots).

The position and velocity Root Mean Squared Error (RMSE), Normalized Estima-

tion Error Squared (NEES) [3], CPU time, Optimal Sub-pattern Assignment (OSPA)

[55], the number of false tracks [6] and track continuity [16] are used as performance

metrics for the original example. The performance metric values are averaged over

1000 Monte Carlo runs.

The OSPA [55] metric measures the miss-distance between a set of true targets

and a set of estimated tracks as a combination of localisation error and cardinality

error [21]. Let X = {x1, · · · , xń} and Y = {y1, · · · , yḿ} be two finite sets. Then X

denotes the set of true targets and Y denotes the set of estimated tracks. The OSPA
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metric is defined as

d̄
(ć)
ṕ (X, Y ) =







0 if ḿ = ń = 0

Ψ(X, Y ) if ḿ ≤ ń.

d(ć)(X, Y ) if ḿ > ń

(4.58)

where

Ψ(X, Y ) ,

(

1

ń

(

min
π∈Πń

ḿ∑

i=1

d(ć)(xi, yπ(i)) + ćṕ(ń− ḿ)

)) 1
ṕ

(4.59)

and the base distance between x and y is denoted by dć(x, y) = min (ć, ‖x− y‖). Also,

Πń is the set of permutations with length ḿ on the set of {1, · · · , ń} where ń = ‖X‖

and ḿ = ‖Y ‖. In our simulations ṕ = 10 and ć = 100.

The performance of the SPHD filter is evaluated along with those of SMC-PHD,

GM-PHD, GMP-PHD, GM-USMC-PHD, GM-SMC-PHD and AP-PHD filters.

The SMC-PHD filter uses the transition density to sample particles. Particles are

initialized around the measurement [18] and 2500 particles are used per existing track

and 50 particles are used for each new track. An estimate of the number of targets

is determined by summing up the weights of the particles. The states are extracted

using clustering [18].

The GM-PHD filter was implemented with the EKF, elimination threshold Tp =

10−5, merging threshold Tm = 4m and maximum number of Gaussian terms = 200.

An estimate of the number of targets is given by the sum of the weights of the mixture,

and a Gaussian component is considered as target-originated when its weight is above

0.5.
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The particle implementation of the GMP-PHD filter is based on the Generic Par-

ticle Filter (GPF) [1] and the resampling procedure is activated when the effective

sample size [1, 18] Neff is less than 80%. The GMP-PHD filter runs with 2500 par-

ticles using the predicted mixture components as proposal distributions. To mitigate

the exponential growth of mixture components, at each time step the number of Gaus-

sian components is limited to 100 components. The pruning and merging thresholds

are the same as in the GM-PHD filter implementation.

In the GM-USMC-PHD filter implementation, the IS function is approximated in

the form of a Gaussian mixture. The GM implementation of the GM-USMC-PHD

filter is similar to the GM-PHD filter one, but with only 100 components. The number

of samples per GM component is set to 2500. The newborn target initialization,

resampling and state extraction steps follow [73]. The Unscented Information Filter

(UIF) [3] is used to compute the mean and the covariance of Gaussian.

The GM implementation of the GM-SMC-PHD filter is similar to the GM-PHD

filter one, but with only 100 components and the SMC implementation of the GM-

SMC-PHD is similar to the SMC-PHD filter one. The estimation of the number of

targets and state extraction are done as in [50].

The AP-PHD filter uses 2500 particles per existing track, while the number par-

ticles per new track is 100. The initialization of the new tracks is driven by the

measurements. Each current measurement is associated with the corresponding high-

est bidder if the bid is greater than 0.4. The auxiliary importance sampling (AIS) [4]

process starts with the selection of the measurements that are well described by the

targets’ states extracted from the estimated PHD and this is achieved using the Auc-

tion algorithm [4]. The state extraction is done as in [4].
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The RMSE vs. CPU time for low measurement noise standard deviations (0.02◦

and 2◦) with 1000 Monte Carlo runs for the SPHD filter, SMC-PHD filter, GM-

PHD filter, GMP-PHD filter, GM-USMC-PHD filter, GM-SMC-PHD filter and the

AP-PHD filter are presented in Figure 4.11.
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Figure 4.11: RMSE vs. CPU time from 1000 Monte Carlo runs, SPHD: 1, SMC-
PHD: 2, GM-PHD: 3, GMP-PHD: 4, GM-USMC-PHD: 5, GM-SMC-PHD: 6, AP-
PHD: 7 (σω = 0.02◦, 2◦).

As shown in Figure 4.11, for σω = 2◦ the SPHD filter of order 3 with 10 velocity

knots and 20 position knots provides more accurate results than the other filters, but

with increased CPU time. The SMC-PHD filter has the lowest complexity, but with

poor performance. The GM-USMC-PHD filter performance can be compared to that

of the AP-PHD filter, but the latter has a higher complexity. The GM-SMC-PHD

filter and the GMP-PHD filter have the same performance and the GM-PHD filter’s

performance is better than that of the SMC-PHD filter, but with a higher complexity.

Figure 4.12 reveals the consistency of the SPHD filter, SMC-PHD filter, GM-

PHD filter, GMP-PHD filter, GM-USMC-PHD filter, GM-SMC-PHD filter, and the
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AP-PHD filter, in terms of normalized estimation error squared (NEES) compared

with the 95% confident-region of the X 2 distribution [3] when the measurement noise

standard deviation is σω = 2◦.
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Figure 4.12: NEES comparison from 1000 Monte Carlo runs (σω = 2◦).

To illustrate the degeneracy resistance capability of the SPHD filter, the standard

deviation of the measurement noise is reduced to σω=0.02◦, but the parameters for the

filters remain unchanged (with the correct measurement noise level). This scenario

causes the variation of the particle weights to increase rapidly for the particle based

PHD filters (i.e., they become degenerative). It can be observed from Figure 4.13

that all particle based filters are affected by the reduction in measurement noise, but

the SPHD filter is able to provide efficient results with the same 10 velocity knots

and 20 position knots. The GM-PHD filter performed better than the particle based

filters at this low measurement noise level.
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Figure 4.13: NEES comparison from 1000 Monte Carlo runs (σω = 0.02◦).

Next, the advantage of the proposed SPHD filter over other methods at higher

levels of measurement noise (σω = 4◦, 8◦) is illustrated. As shown in Figure 4.14,

the SPHD filter outperforms the rest of the filters for higher measurement noise

level. As shown in Figure 4.14, the AP-PHD filter performed better than the GM-

USMC-PHD filter at higher measurement noise level, but the AP-PHD filter has a

higher complexity. Though the process noise and measurement noise components are

Gaussian, the updated posterior distribution is non-Gaussian because of the nonlinear

measurement equation. As the nonlinearity increases with increasing measurement

noise levels, GM-based PHD filters performed poorly. Note that the GMP-PHD,

GM-USMC-PHD, and the GM-SMC-PHD filters can handle nonlinear system and

measurement equations better with their particle filter implementation. But the GM

approximations of the filters are based on the Gaussian assumption, which leads to

poor performance at high measurement noise levels.
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Figure 4.14: RMSE vs. CPU time from 1000 Monte Carlo runs, SPHD: 1, SMC-
PHD: 2, GM-PHD: 3, GMP-PHD: 4, GM-USMC-PHD: 5, GM-SMC-PHD: 6, AP-
PHD: 7 (σω = 4◦, 8◦).
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Figure 4.15: OSPA distance (m) averaged over 1000 Monte Carlo runs (σω = 2.0◦, ć =
10, ṕ = 100).
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Next, we present the OSPA metric [55], number of false tracks [6] and track

continuity [16] to evaluate the performance of the SPHD filter relative to those of the

other filters.

Filters OSPA Number of Track continuity CPU time
(m) false tracks (%) (sec)

SPHD 240 0.0125 93.65 7.850
SMC-PHD 600 0.395 70.15 0.975
GM-PHD 505 0.205 76.69 1.965
GMP-PHD 450 0.178 80.25 2.165
GM-USMC-PHD 380 0.0926 88.25 4.120
GM-SMC-PHD 445 0.125 80.45 2.100
AP-PHD 340 0.0323 90.14 4.320

Table 4.3: Average performance metrics from 1000 Monte Carlo run (σω = 2◦).

As shown in Table 4.3, the SPHD filter with a few knots performs the best of in

terms of OSPA. The OSPA [55] metric measures the combination of both localization

and cardinality distance. As shown in Figure 4.15, high values of OSPA distance occur

when new targets are born around time index k = 1, 5, 16. Also, targets disappear

with small OSPA peaks at time index k = 24, 38, 40.

As shown in Table 4.3, the average number of false tracks in the SPHD filter is

lower than that of any other filter. The SPHD filter with a few knots has the lowest

average number of false tracks due to the dynamic movement of its knots, where knots

are dynamically (and automatically) moved to ensure that the SPHD filter covers the

region where the posterior SPHD of system state is significant. The GM-PHD, GMP-

PHD and GM-SMC-PHD filters have higher false track numbers due to the use of the

EKF. The track continuity presented in Table 4.3 shows that the SPHD filter has the

highest track continuity over all other filters, but the AP-PHD filter’s performance is
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comparable to that of the SPHD filter in terms of track continuity.

The computational complexity of the SPHD filter is high. However, in critical

surveillance problems where false tracks cannot be tolerated and high track continuity

is essential (e.g., high-value ground target tracking, ballistic missile tracking), the

spline filter is an appropriate option.

By moving the knots dynamically, the SPHD filter ensures it covers only the re-

gion where the posterior SPHD of the system state is significant so that the high

computational efficiency of the SPHD filter is maintained at all times. Figures 4.16

and 4.17 from scan 4 illustrate the importance of knot selection. At scan 4 the true

position and the estimated positions with and without the knot dynamic movement

are calculated as 1001.4 m, 999.74 m and 945.5 m, respectively. As shown in Fig-

ure 4.17, with automatic knot movement, state extraction of well-separated as well

as closely-spaced targets becomes more accurate. This is due to the concentration of

knots in areas of high posterior SPHD.
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Figure 4.16: Posterior PHD (without dynamic knot movement) (σω = 2.0◦).
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Figure 4.17: Posterior PHD (with dynamic knot movement) (σω = 2.0◦).

The convergence of the SPHD filter depends on the number of knots used in a knot

sequence to represent a variable as well as the distance between first and last knots.

One of the most important conditions to ensure a convergent solution for tracking

is to have the spline multitarget probability density equations to comply with the

Schoenberg-Whitney Theorem in Section 3.7.9 and this can be achieved by selecting

the number of knots to be greater than the number of control points. The number

of knots can be selected depending on the region, desired state estimation accuracy

and the number of targets. Note that increasing the number of knots always affects

the complexity. Moreover, knots can be inserted into an existing knot vector by

using the knot insertion property discussed in Section 3.7.7. The other indicator for

convergence is determined by the distance between the first and the last knots, where

the difference between these knots has to be greater than zero to have a convergent

solution. Otherwise, the denominator of (3.3) becomes zero, which leads to non-

convergent solutions. This is not an issue in tracking problems with a non-zero
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surveillance volume.
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Chapter 5

Spline Probability Hypothesis

Density Filter for Nonlinear

Maneuvering Target Tracking

5.1 Introduction

The Probability Hypothesis Density (PHD) filter is an efficient algorithm for mul-

titarget tracking in the presence of nonlinearities and/or non-Gaussian noise. The

Sequential Monte Carlo (SMC) and Gaussian Mixture (GM) techniques are com-

monly used to implement the PHD filter. Recently, a new implementation of the

PHD filter using B-splines with the capability to model any arbitrary density func-

tions using only a few knots was proposed. The Spline PHD (SPHD) filter was found

to be more robust than the SMC-PHD filter since it does not suffer from degeneracy

and it was better than the GM-PHD implementation in terms of estimation accuracy,
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albeit with a higher computational complexity. In this chapter, we propose a Multi-

ple Model (MM) extension to the SPHD filter to track multiple maneuvering targets.

Simulation results are presented to demonstrate the effectiveness of the new filter.

5.2 MM-SPHD filtering

The proposed MM-SPHD filter implementation is based on the SPHD filter’s exten-

sion to multiple model estimation. This section derives the MM-SPHD filter for the

multidimensional multitarget state space models. Assume that a multidimensional

multitarget system state at time k is denoted as Xk = {x1,k, . . . ,xϑk,k} where each

target has multidimensional state xk = [x1
k, . . . ,x

n
k ]

′
and n denotes the number of

dimensions.

5.2.1 MM-SPHD mixing

The MM-SPHD filter derivations follow Section 2.3.2. Let the initial MM-SPHD be

B̃k|k−1(xk−1,Mk = q) =
ns∑

i1

. . .
ns∑

in

Pi1,...,in

·Bi1,p,t
1
k−1

(x1
k−1,Mk = q) . . .

·Bin,p,t
n
k−1

(xn
k−1,Mk = q) (5.1)

where B̃k|k−1(xk−1,Mk = q) denotes the q-th mode-dependent initial multitarget

multidimensional MM-SPHD and Mk ∈ {1, . . . , r} is the model index at time k,

where r denotes the total number of models. The number of dimensions is denoted

by n and i = i1, . . . , in. The number of knots for all dimensions is the same at τ .
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The n dimensional knot tk−1 = {t1k−1, . . . , t
n
k−1}, is an n× τ array. Each row vector

of tk−1 consists of a set of prior knots tlk−1 = {tl1,k−1, . . . , t
l
τ,k−1} where l = 1, . . . , n.

Assume that the l-th dimensional prior knot tlk−1 represents a parametric curve in

the range [a, b] of order p (degree= p − 1) with ns input/control points. Then, the

knot vector will have τ = ns + p elements. The knot elements can be determined

using the uniform knot selection method as [17]

tlk−1 =







tl1,k−1, . . . , t
l
p,k−1 = a

tli+p,k−1 = a+ i(b−a)
ns+p−1

for i = 1, . . . , (ns − p)

tlτ−p,k−1, . . . , t
l
τ,k−1 = b

(5.2)

Alternatively, the knot elements can be created using average knot selection by

averaging the parameter values (xi, i = 1, . . . , (ns − p)) in their neighborhood given

parametrization xl
k = x1, . . . , xns

as [17]

tlk−1 =







tl1,k−1, . . . , t
l
p,k−1 = a

tli+p,k−1 =
1
p

∑i+p−1
j=i xj for i = 1, . . . , (ns − p)

tlτ−p,k−1, . . . , t
l
τ,k−1 = b

(5.3)

or one can use the optimal knot selection, which is an iterative method proposed

in [17]. This method does not consider the location of the input/control points for

the optimization. The Matlab function optknt can be used to produce this knot

vector.

The n dimensional control point set or coefficient matrix is denoted by Pi and ns

denotes the number of control points. The number of control points for all dimensions
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is the same. Note that the number of knots must be greater than the number of control

points.

The initial MM-SPHD B̃k|k−1(xk−1,Mk = q) matched to multitarget model q, is

send to the MM-SPHD filter. The initial MM-SPHD B̃k|k−1(xk−1,Mk = q) can be

calculated on the basis of the Markovian model transition probability matrix πpq and

model-dependent multitarget multidimensional prior MM-SPHDBk−1|k−1(xk−1,Mk−1 =

p). That is,

B̃k|k−1(xk−1,Mk = q) =

r∑

p=1

Bk−1|k−1(xk−1,Mk−1 = p)

·πpq q ∈ {1, . . . , r} (5.4)

where the prior MM-SPHD of the p-th dynamic system can be determined as

Bk−1|k−1(xk−1,Mk−1 = p) =

ns∑

g1

. . .

ns∑

gn

Pg1,...,gn

·Bg1,p,t
1
k−1

(x1
k−1,Mk−1 = p) . . .

·Bgn,p,tnk−1
(xn

k−1,Mk−1 = p) (5.5)

and p = {1, . . . , r}. For all r system models, the prior MM-SPHD Bk−1|k−1(·) are

summed together with scaling by the corresponding mode probability πpq to determine

the initial MM-SPHD B̃k|k−1(.) as in (5.4). The prior number of expected targets is

the integral of B̃k|k−1(xk−1,Mk = q) over the region of state space Es for the q-th

model evaluated as

N̂ q

k−1|k−1 =

∫

Es

B̃k|k−1(xk−1,Mk = q)dxk−1 (5.6)
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where q = {1, . . . , r}. Using (5.7), the prior number of expected targets can be

determined for all the models. Then the overall prior number of expected targets can

be determined as

N̂k−1|k−1 =

r∑

q=1

N̂ q

k−1|k−1 (5.7)

The target can spawn, die or born and these events only considered at the prediction

stage.

5.2.2 MM-SPHD prediction

The spline representation of the mode-dependent multitarget state transition density

pk|k−1 is a 2n dimensional function determined using system model (2.9) as

pk|k−1(xk,Mk = q|xk−1,Mk−1 = p) =
∑

j1

. . .
∑

j2n

Pj1,...,j2n

·Bj1,t
1
k
(x1

k,Mk = q) . . .

·Bjn,t
n
k
(xn

k ,Mk = q)

·Bjn+1,p,t
1
k−1

(x1
k−1,Mk−1 = p) . . .

·Bj2n,p,t
n
k−1

(xn
k−1,Mk−1 = p) (5.8)

where q, p ∈ {1, . . . , r}, j = {j1, . . . , j2n} and tk denotes an n × τ knot array at time

k and it consists of row vectors t1k, . . . , t
n
k . Each row vector of tk consists of a set of

predicted knots tlk = {tl1,k, . . . , tlτ,k} where l = 1, . . . , n.

The predicted knot selection of a multidimensional system is much more challeng-

ing. A suboptimal but computationally efficient method is used to find the predicted
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knots for the multidimensional spline. At time k−1, from (5.7) one can determine the

mode-dependent prior number of targets and their states by using the K-means clus-

tering algorithm [61]. An alternative is the Expectation-Maximization (EM) based

peak extraction approach [62]. For example, assume that there are ϑk−1 targets at

k − 1 and their states are

xhk−1,k−1 = [x1
hk−1,k−1, . . . ,x

n
hk−1,k−1]

′

hk−1 ∈ 1, 2, · · · , ϑk−1 (5.9)

Note that there are τ = τl knot elements in the l-th dimension knot vector tlk−1. Each

dimension has τ number of elements in the corresponding knot vector. Next, we can

find the l-th dimensional prior knot elements that approximate the l-th dimensional

state parameters as

tlζhk−1
,k−1 ≈ xl

hk−1,k−1 hk−1 ∈ 1, 2, · · · , ϑk−1 (5.10)

where ζhk−1
∈ (1, . . . , τ). Using the locations of ζ1, · · · , ζϑk−1

one can interactively

shape the B-spline curve: knot elements can be added to tlk−1 as in Section (3.7.7) to

increase the number of control points that can be modified. When control points are

moved, the level of continuity at the knots can increase or decrease. Knot removal as

in Section (3.7.8) can be invoked in order to obtain the most compact representation

of the curve. Knot removal can also be used to remove unnecessary knots. Note that

the first and the last knot elements are never removed. This method can be used for

all dimensions. Then,
∏

l

τl different sample vectors Ψk−1,t can be formed by selecting

one knot tlel,k−1 from the set of knots in each dimension tlk−1 and el = 1, . . . , τ . For

example, the collection of all such sample vectors in the n-dimensional spline filter is
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Ψk−1,t = {[tle1,k−1 . . . t
l
en,k−1]

′}e1,...,en and the total number of Ψk−1,t is τ1 × . . . × τn.

Then, the predicted sample knots Ψk,t are found by

Ψ
e1,...,en
k,t = fk,Mk

(Ψe1,...,en
k−1,t , 0,Mk = q) (5.11)

where the fk,Mk
(·, ·, ·) is the mode-dependent function of transition in (2.9). Then,

to select the predicted knots in each dimension l, first project all the sample vectors

Ψ
e1,...,en
k,t into the axis of the l-th dimension. In the n dimensional case, the projection

will result in τ1 × · · · × τn possibly overlapping points in each axis. Denote them as

{tl
1′ ,k
, tl

2′ ,k
, . . . , tl

(τ1×...×τn)
′
,k
} (5.12)

and assume that they are sorted in a non-decreasing order.

Using (5.10) and known prior number of targets and their states, interactively

shaped B-spline curve’s l-th knot vector can be written as

tlk−1 = {tl1,k−1, . . . , t
l
ζhk−1

,k−1, . . . , t
l
τ,k−1} (5.13)

where hk−1 ∈ 1, 2, · · · , ϑk−1. The elements of knot vector tlk−1 are in non-decreasing

order and (5.13) can be written for n dimensional knot tk−1 = {t1k−1, . . . , t
n
k−1}. Next,

extract ϑk−1 target states as

xl,k−1 = xhk−1,k−1 = [t1ζhk−1
,k−1, . . . , t

n
ζhk−1

,k−1] (5.14)
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where l = hk−1 ∈ (1, 2, · · · , ϑk−1) and the predicted states of the targets at time k as

xl,k = fk,Mk
(xl,k−1, 0,Mk) l ∈ 1, 2, . . . , ϑk−1 (5.15)

Then, using (5.12) one can select the knots. The first and the last predicted knots are

selected as tl1,k = tl
1′ ,k

and tlτl,k = tl
(τ1×...×τn)

′
,k
, respectively. The rest of the knots can

be selected close to the l-th dimensional predicted states xl,k, where l ∈ 1, 2, . . . , ϑk−1.

Knot removal can be invoked to remove unnecessary knots, but the first and the last

knot elements are never removed. This method can apply for all the dimensions.

Using this method of determining knots ensures that spline covers the region where

the PHD of system state is significant. The mode-dependent coefficients or control

points of spline transition density Pj1,...,j2n can be determined as described in [58].

The mode-dependent spline predicted density can be calculated using (2.35) as

Bk|k−1(xk,Mk = q) = Bc,k|k−1(xk,Mk = q)

+ Bs,k|k−1(Xk,Mk = q)

+ Bnb,k(xk,Mk = q) (5.16)

The predicted MM-SPHD for the existing targets can be determined as [49]

Dc,k|k−1(xk,Mk = q) =

∫

Ps,k|k−1(xk−1,Mk = q)

·pk|k−1(xk,Mk = q|xk−1,Mk−1 = p)

·D̃k|k−1(xk−1,Mk = q|Z(k−1))

·dxk−1 (5.17)
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and the spline predicted MM-SPHD for the existing targets as

Bc,k|k−1(xk,Mk = q) =

∫

Ps,k|k−1(xk−1,Mk = q)
ns∑

j1

. . .
ns∑

j2n

Pj1,...,j2n

·Bj1,p,t
1
k
(x1

k,Mk = q) . . .Bjn,p,tnk
(xn

k ,Mk = q)

·Bjn+1,p,t
1
k−1

(x1
k−1,Mk−1 = p) . . .

·Bj2n,p,t
n
k−1

(xn
k−1,Mk−1 = p)

ns∑

i1

. . .
ns∑

in

Pi1,...,in

·Bi1,p,t
1
k−1

(x1
k−1,Mk = q) . . .

·Bin,p,t
n
k−1

(xn
k−1,Mk = q) dx1

k−1 . . . dx
n
k−1

=

ns∑

j1

. . .

ns∑

j2n

Pj1,...,j2nBj1,p,t
1
k
(x1

k,Mk = q) . . .

·Bjn,p,t
n
k
(xn

k ,Mk = q)
ns∑

i1

. . .
ns∑

in

Pi1,...,in

·
∫

Ps,k|k−1(xk−1,Mk = q)

·Bjn+1,p,t
1
k−1

(x1
k−1,Mk−1 = p) . . .

·Bj2n,p,t
n
k−1

(xn
k−1,Mk−1 = p)

·Bi1,p,t
1
k−1

(x1
k−1,Mk = q) . . .

·Bin,p,t
n
k−1

(xn
k−1,Mk = q)

·dx1
k−1 . . . dx

n
k−1 (5.18)

where the third equality follows from the property that the order of summation and

integration of splines is interchangeable [12].

Define two 2n dimensional matrices W and C, and one n dimensional matrix ξ as
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follows:

Wjn+1,...,j2n,i1,...,in =

∫

Ps,k|k−1(xk−1,Mk = q)

·Bjn+1,p,t
1
k−1

(x1
k−1,Mk−1 = p) . . .

·Bj2n,p,t
n
k−1

(xn
k−1,Mk−1 = p)

·Bi1,p,t
1
k−1

(x1
k−1,Mk = q) . . .

·Bin,p,t
n
k−1

(xn
k−1,Mk = q)

·dx1
k−1 . . . dx

n
k−1 (5.19)

Let Cj = Pj and ξi = Pi. Using (5.17), (5.19) and (5.21) with additional manipulations,

it can be shown that

Bc,k|k−1(xk,Mk = q) =
∑

j1

. . .
∑

jn

Pj1,...,jn

·Bj1,p,t
1
k
(x1

k,Mk = q) . . .

·Bjn,p,t
n
k
(xn

k ,Mk = q) (5.20)

where Pj1,...,jn is given by

Pj1,...,jn =
∑

i1

. . .
∑

in

ξi1,...,in
∑

jn+1

. . .
∑

j2n

Cj1,...,j2nWjn+1,...,j2n,i1,...,in (5.21)

where Bc,k|k−1(xk,Mk = q) denotes the q-th mode-dependent existing targets’ pre-

dicted SPHD.

A similar approach as described for Bc,k|k−1(xk,Mk = q) can be applied to deter-

mine the mode-dependent spawned targets’ predicted SPHD Bs,k|k−1(xk,Mk = q).
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The mode-dependent SPHD of new targets Bnb,k(xk,Mk = q) can be determined as

follows [58].

First, the mode-dependent posterior probability for an observed measurement that

originates from a new target Pk(Yi,Mk = q) is determined as

Pk(Yi,Mk = q) =

BY,k(zi,Mk = q)

Bλ,k(zi) +
∑

r

q=1BY,k(zi,Mk = q)
, zi ∈ Zk , i = 1, . . . , kג (5.22)

and

BY,k(zi,Mk = q) =

∫

Pd,k(xk,Mk = q)

·Bl,k(zi|xk,Mk = q)

·Bk|k−1(xk,Mk = q)

·dxk (5.23)

where Yi denotes the i-th observed measurement that originates from a new target

at time k and kג denotes the total number of measurements at time k. In the above,

Bk|k−1(xk,Mk = q) ≈ Bc,k|k−1(xk,Mk = q)+Bs,k|k−1(xk,Mk = q) andBl,k(·) denotes

the spline likelihood density and could be determined using the measurement model

in (2.11). The spline uniform clutter density is denoted by Bλ,k(·) and Pd,k(xk,Mk =

q) denotes the mode-dependent probability of detection.

The mode dependent Pk(Yi,Mk = q) values are determined for each measurement

117



PhD. Thesis - Rajiv Sithiravel McMaster - Electrical Engineering

and it is compared with a tuning threshold probability ǫ. That is,

Nnb,i =







1 if Pk(Yi,Mk = q) 6 ǫ,

0 otherwise.

(5.24)

If the number of newborn targets Nnb,i is 1 for a specific measurement index i, then

a newborn target SPHD can be added as

Bnb,k(xk,Mk = q) =

Nnb∑

i=1

Bnb,k,i(zi) (5.25)

where Bnb,k,i is the SPHD of a newborn target with mean zi and variance of mea-

surement noise. The total number of newborn targets per scan is denoted by Nnb

and Bnb,k(xk,Mk = q) denotes the cumulative sum of all the SPHD values of new-

born targets at scan k. Overall, if for the i-th measurement, zi, Pk(Yi,Mk = q) = 1

then each element of zi can be considered as the mean of a newborn target state in

its respective dimension with the variance of measurement noise. A newborn tar-

get can be added using Gaussian distribution with corresponding mean and variance

from each state element of that newborn target. The mode-dependent MM-SPHD of

newborn targets, Bnb,k(xk,Mk = q), depends on system model q. The expected num-

ber of targets can be determined by finding the area of mode-dependent MM-SPHD

Bk|k−1(xk,Mk = q).

5.2.3 MM-SPHD update

Note that the MM-SPHD filter provides the PHD estimates in a continuous space in

state. These predicted MM-SPHD Bk|k−1(·) at any point over the interval [t1,k, tτ,k]
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can be determined using (5.16). Then, the interval where Bk|k−1(·) is significant could

be found. Using the measurement model equation (2.11), the value for the likelihood

density function Bl,k(zk|xk,Mk = q) can be evaluated for the same interval. The

updated posterior MM-SPHD can be determined as [36] (for q = 1, . . . , r)

Dk|k(xk,Mk = q|Z(k)) = (1− Pd,k(xk,Mk = q))Bk|k−1(xk,Mk = q)

+
∑

zk∈Zk

Bφ(xk,Mk = q)

Bλ(zk) +
∫
Bφ(xk,Mk = q)dxk

=
∑

ι1,...,ιn

Pι1,...,ιnBι1,p,t
1
k
(x1

k,Mk = q) . . .

·Bιn,p,t
n
k
(xn

k ,Mk = q) (5.26)

where Bφ(xk,Mk = q) can be evaluated as follows:

Bφ(xk,Mk = q) = Pd,k(xk,Mk = q)

·Bl,k(xk,Mk = q)

·Bk|k−1(xk,Mk = q) (5.27)

Then, the updated MM-SPHD can be further simplified as

Bk|k(xk,Mk = q) =
∑

ι1,...,ιn

Pι1,...,ιn

·Bι1,p,t
1
k
(x1

k,Mk = q) . . .

·Bιn,p,t
n
k
(xn

k ,Mk = q) (5.28)

where tk denotes the set of posterior knots and (5.28) ensures that the spline posterior

density is only evaluated over the interval where it is significant. Once the significant
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region is obtained, a simple way of selecting the knots for the posterior intensity is to

uniformly distribute the knots over this significant region [58]. The expected number

of targets from model q can be determined by taking the integral of mode dependent

MM-SPHD updated equation Bk|k(xk,Mk = q) as

N̂ q

k|k =

∫

Es

Bk|k(xk,Mk = q)dxk (5.29)

The total number of targets can be determined as

N̂k|k =
r∑

q=1

N̂ q

k|k (5.30)

Mode probability can be updated by first integrating a particular model’s mode-

dependent updated MM-SPHD. Then the result should be divided by the total ex-

pected/average number of targets [49].

5.3 Simulation Results

In this section, a nonlinear maneuvering multitarget tracking example is presented to

validate the performance of the proposed MM-SPHD filter. The selected example is a

multidimensional one dealing with the bearing-only ground target tracking problem,

which arises in many practical applications such as submarine tracking or airborne

surveillance using a passive radar [58]. Note that a standard radar tracking problem,

where the range and azimuth measurements are available for tracking can be converted

into a linear problem. Also, the bearing only tracking problem is inherently ill-

conditioned [42, 60] and is better suited for comparing nonlinear target tracking

120



PhD. Thesis - Rajiv Sithiravel McMaster - Electrical Engineering

algorithms.

As shown in Figure 5.1, the sensor is on an aircraft with

xp(k) = x̄p(k) + ∆xp(k) k = 0, 1, . . . , 40 (5.31)

yp(k) = ȳp(k) + ∆yp(k) k = 0, 1, . . . , 40 (5.32)

where xp(k) and yp(k) are the x and y positions of the platform, respectively. The

average platform position coordinates are denoted by x̄p(k) and ȳp(k), k is the time

index and the perturbations ∆xp(k) and ∆yp(k) are assumed to be mutually inde-

pendent zero-mean Gaussian white noise sequences with variances σ2
∆xp

= 1 and

σ2
∆yp

= 1, respectively. Note that this problem has been used to compare nonlinear

filtering tracking algorithms before [3, 24, 58]. The average unperturbed platform

motion is assumed to be horizontal with a constant velocity. Its coordinates are given

by

x̄p(k) = 100k ∗ T (m) (5.33)

ȳp(k) = 10000 (m) (5.34)

where the sampling time T = 10s. A system with three models is considered here to

demonstrate the MM-SPHD. In the second and third models, a time-varying control

term is added. The three system models are

x1
i (k) =






1 T

0 1




x1

i (k − 1) +






T 2/2

T




 ν1,k, (5.35)
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x2
i (k) =






1 T

0 1




x2

i (k − 1) +






−T/2

−T/500




 (k − 1) +






T 2/2

T




 ν2,k (5.36)

and

x3
i (k) =






1 T

0 1




x3

i (k − 1) +






T/2

T/500




 (k − 1) +






T 2/2

T




 ν3,k (5.37)

where the target state is

xi(k) =






x1i (k)

x2i (k)




 i = 1, 2, 3, 4, 5, 6 (5.38)

and x1i denotes the position in meters while x2i denotes the velocity in m/s of the

i-th target and ν1,k, ν2,k, and ν3,k are all zero-mean white Gaussian random variables

with standard deviation σν1,k = 0.05 m/s2, σν2,k = 0.08 m/s2 and σν3,k = 0.07 m/s2,

respectively.

In this example, six maneuvering targets are traveling with initial states

[x1(k) x2(k) x3(k) x4(k) x5(k) x6(k)] =





1000 −1000 17000 −17000 10000 −10000

40 −40 −50 50 50 −50




 (5.39)

and the start and end times of the six targets are (1,40), (1,40), (16,38), (16,38),

(3,33) and (3,33), respectively.
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Figure 5.1: Motion of the platform and the six targets

Target 1 moves for the first 140s at a almost steady velocity with an early velocity

of 40 m/s, then moves in a positive direction for the next 190s and, finally moves

at a almost steady velocity for the last 60s. Target 2 moves for the first 140s at a

almost steady velocity with an early velocity of −40 m/s, then moves in the negative

direction for 190s and, finally moves at a almost steady velocity for the last 60s.

Target 3 moves 90s in the negative direction with an early velocity of −50 m/s, then

moves at a almost steady velocity for 50s and for the last 90s moves in a positive

direction. Target 4 moves 40s in the positive direction with an early velocity of

50 m/s, then moves at a almost steady velocity for last 180s. Target 5 moves for the

first 70s at a almost steady velocity with an early velocity of 50 m/s, then moves in

a positive direction for the next 140s and, finally moves at a almost steady velocity

for the last 90s. Target 6 moves for the first 70s at a almost steady velocity with an
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early velocity of −50 m/s, then moves in the negative direction for 140s and, finally

moves at a almost steady velocity for the last 90s.

Targets move along the X-axis and these six targets, which have a probability of

survival Ps,k = 0.98, appear and disappear at specific times. The Markovian model

transition probability matrices πpq for the six targets are

πpq =









1/3 1/3 1/3

2/5 3/5 0.0

2/5 0.0 3/5









, (5.40)

and the initial model probabilities for the models are 0.33.

Each target is detected with probability Pd,k = 0.95 and the target-originated

measurements follow the observation model

zi(k) = h[xp(k), yp(k), x
1
i (k)] + ω(k) i = 1, 2, 3, 4, 5, 6 (5.41)

where

h[.] = tan−1 yp(k)

x1i (k)− xp(k)
i = 1, 2, 3, 4, 5, 6 (5.42)

is the angle between the X-axis and the line of sight from the sensor to the targets.

The sensor noise ω(k) is zero-mean white Gaussian with σω = 2◦. The sensor noise

is assumed independent of the sensor platform perturbations. The received measure-

ments include false alarms. The clutter is modeled as uniformly distributed in the

measurement space with average false alarm rate λk = 10−4 (rad)−1 over the whole

surveillance region [0, π] rad.
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For tracking multiple targets, an MM-SPHD filter of order 3 is used with 20 knots

for position and 10 knots for velocity. At scan k = 0, all measurements are used

to initialize newborn targets as described in Section 5.2.2. The probability of target

spawning is assumed to be zero and the probability of spontaneous target birth is

0.01.

As shown in Figure 5.2, the MM-SPHD filter accurately determines the number

of targets for two different scenarios. In Figure 5.2, the Pfa denotes the probability

of false alarms and Pd denotes the probability of detection.
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Figure 5.2: True vs. average of estimated number of targets from 1000 runs (σω = 2◦).

The standard PHD filter does not have a closed solution and also cannot es-

timates target state directly. One solution is to identify the local maxima of the

MM-SPHD surface. The K-means clustering algorithm [61] is used here for state ex-

traction. An alternative is the Expectation-Maximization (EM) based peak extraction

approach [62]. The targets are associated to tracks using global nearest-neighbor as-

signment [47] depend on the mean of each target-cluster. As shown in Figure 5.3,
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all six targets appear and disappear at various times during the surveillance interval.

Also shown in Figure 5.3 are the averages of the estimated trajectories. As shown in

Figure 5.4, the MM-SPHD filter estimated the velocities of all targets accurately. The

mean velocity of newborn targets is selected randomly from a uniform distribution in

the interval [−100, 100] m/s and the standard deviation is assumed to be 0.4 m/s.
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Figure 5.3: True position vs. average of estimated positions from 1000 runs (σω = 2◦,
S: start, E: end).

Figure 5.5 clearly shows that the choice of knots has significant influence on the

performance of the MM-SPHD filter. The selection of the number of knots depends on

the application, especially on target separation. Increasing the number of knots affects

the complexity of the MM-SPHD filter, but results in better performance in terms of

RMSE. Note that with optimal knot selection, the MM-SPHD filter performance can

be improved but with higher complexity.
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Figure 5.4: True velocity vs. average of estimated velocities from 1000 runs (σω = 2◦,
S: start, E: end).
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Figure 5.5: Average performance from 1000 runs vs. number of knots, nPk = 10,
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Next, the original example is analysed further with an increasing number of tar-

gets, but with fixed values for the number of position knots nPk = 20 and the number

of velocity knots nV k = 10. As shown in Figure 5.6, increasing the number of targets

for a given number of knots adversely affects the performance of the MM-SPHD filter

in terms of RMSE and computational time.
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Figure 5.6: Average performance from 1000 runs vs. number of targets (σω = 2◦),
nPk = 20, nV k = 10, (fixed number of knots), nt = 5: 1, nt = 10 : 2, nt = 15: 3,
nt = 20: 4, nV k = 40: 5, nt: Number of targets.

The normalized estimation error squared (NEES) [3] and optimal subpattern as-

signment (OSPA) [55] are used as performance metrics for the example.

The OSPA [55] metric measures the miss-distance between a set of true targets

and a set of estimated tracks as a combination of localisation error and cardinality

error [21]. Let X = {x1, · · · , xń} and Y = {y1, · · · , yḿ} be two finite sets. Here, X

denotes true finite set of targets and Y denotes the estimated finite set of tracks. The
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OSPA metric is defined as

d̄
(ć)
ṕ (X, Y ) =







0 if ḿ = ń = 0

Ψ(X, Y ) if ḿ ≤ ń.

d(ć)(X, Y ) if ḿ > ń

(5.43)

where

Ψ(X, Y ) ,

(

1

ń

(

min
π∈Πń

ḿ∑

i=1

d(ć)(xi, yπ(i)) + ćṕ(ń− ḿ)

)) 1
ṕ

and the base distance between x and y denoted by dć(x, y) = min (ć, ‖x− y‖), Πń is

the set of permutations with length ḿ on the set of {1, · · · , ń} where ń = ‖X‖ and

ḿ = ‖Y ‖. In the simulations ṕ = 10 and ć = 100.

The MM-SPHD filter performance is evaluated along with those of multiple model

based GM-USMC-PHD, the GM-SMC-PHD and the AP-PHD filters.

In the MM-GM-USMC-PHD filter implementation, the importance sampling func-

tion approximated in the form of a Gaussian mixture that is a sum of Gaussian com-

ponents and the maximum number of Gaussian terms = 100. The number of samples

per GM component or target is set to 2500. The newborn target initialization, re-

sampling and state extraction follow [73]. Note that the GM-USMC-PHD filter does

not need resampling because the GM process management for multitarget state ex-

traction and component deletion enables the algorithm to have the same effect as

resampling. The Unscented Information Filter (UIF) is the information form of the

unscented Kalman filter (UKF) [3]. The UIF is used to compute the mean and the

covariance of the Gaussian components.
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The GM implementation of the MM-GM-SMC-PHD filter is with the EKF for

filtering, pruning parameters of elimination threshold Tp = 10−5, merging threshold

Tm = 4m and maximum number of Gaussian terms 100. The SMC implementation of

the MM-GM-SMC-PHD uses the transition density to sample particles. Particles are

initialized around measurements [18] and 2500 particles are used per existing target

and 50 particles are used for each newborn target. An estimate of the number of

targets is determined by summing up all the weights of the particles. The estimation

of the number of targets and their state extraction carried as in [50].

The MM-AP-PHD filter uses 2500 particles per existing target, while the number

particles per newborn target is set to 100. The initialization of the newborn targets

is driven by the measurements. The current measurements are associated with the

highest bidder if the bid is at least equals 0.4. The Auxiliary Importance Sampling

(AIS) [4] process starts with the selection of the measurements that are well described

by the targets’ states extracted from the estimated PHD and this is achieved using

the Auction algorithm [4]. The state extraction is determined as in [4].

In order to facilitate a fair comparison, we ran all methods with the same multiple

model strategy [49]. All PHD filters are initialized with Gaussian distribution with

mean [1000 m, 40 m/s] and standard deviation σν1,k = 0.05 m/s2 representing target

1 and the constant-velocity model is used. Initially, assume in the desired surveillance

region there is only one track exist that correspond to the target 1

The overall filter accuracy performance metric, the OSPA [55], is computed for

each filter over 1000 Monte Carlo runs for measurement noise standard deviation levels

σω=2◦ and σω=4◦. The OSPA metric measures the combination of both localization

and cardinality errors. The average OSPA values are plotted in Figures 5.7 and 5.8.
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Figure 5.7: OSPA distance (m) averaged over 1000 Monte Carlo runs (σω = 2◦, ć =
10, ṕ = 100).

The key observation is that the MM-SPHD filter with a few knots performed the

best in terms of OSPA for both measurement noise levels. As shown in Figure 5.7

and 5.8, high values of OSPA distance occur when new targets are born around time

indices k = 1, 3, 16. Also targets disappear with small OSPA peaks at time indices

k = 33, 38, 40. As shown in Figure 5.8, as the nonlinearity increases with increasing

measurement noise levels the GM-based MM-PHD filter perform poorly.

Figure 5.9 reveals the consistency of the MM-SPHD, MM-GM-USMC-PHD, MM-

AP-PHD and the MM-GM-SMC-PHD filters in terms of normalized estimation error

squared (NEES) compared with the 95% confident-region of the X 2 distributions [3]

when the measurement noise standard deviation is σω = 2◦. To illustrate the degen-

eracy resistance capability of the proposed MM-SPHD filter, the standard deviation

of the measurement noise is reduced to σω=0.02◦. The model parameters for the
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filters remain unchanged but with the correct measurement noise level. This scenario

causes the particle-based PHD filters to become degenerative. It can be observed

from Figure 5.10 that the MM-SPHD filter is able to provide efficient results with

the same 10 velocity knots and 20 position knots. Note that using the Regularized

Particle Filter (RPF) [18, 19] can avoid the degeneracy problem caused by sampling

and resampling. However, the RPF has the disadvantage is that the samples are no

longer guaranteed to asymptotically approximate the posterior [44].
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Figure 5.8: OSPA distance (m) averaged over 1000 Monte Carlo runs (σω = 4◦, ć =
10, ṕ = 100).
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Figure 5.9: NEES comparison from 1000 Monte Carlo runs (σω = 2◦).
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Figure 5.10: NEES comparison from 1000 Monte Carlo runs (σω = 0.02◦).
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Chapter 6

Spline Maximum-Likelihood

Probabilistic Data Association

Algorithm for Track Initialization

6.1 Introduction

The Maximum-Likelihood Probabilistic Data Association (ML-PDA) algorithm is

commonly used in low-observable target tracking problems to initiate tracks. Ini-

tially, the ML-PDA algorithm was used in angle-only tracking problems, but subse-

quent extensions made it possible to work with amplitude information and frequency

measurements, especially to track very low observable targets. For real-time applica-

tions, a window-based ML-PDA algorithm was also implemented. The performance

of the ML-PDA algorithm is contingent upon finding of a global maximum in the

log-likelihood ratio (LLR) followed by track validation. To improve performance of

134



PhD. Thesis - Rajiv Sithiravel McMaster - Electrical Engineering

the ML-PDA algorithm in this paper, a B-Spline based Maximum-Likelihood Prob-

abilistic Data Association (SML-PDA) algorithm is proposed. The newly proposed

algorithm represents the LLR using a set of B-Splines and the SML-PDA LLR can

have any arbitrary distribution. Using a few knots, SML-PDA LLR can be repre-

sented accurately and the suboptimal knot selection, which is an iterative method,

can be used to create an optimal knot vector in order to find the unknown parameter

vector. The global maximum of SML-PDA LLR can be determined by finding the

knot element with the highest peak. The SML-PDA algorithm can determine the

global maximum of ML-PDA LLR with highly accurate parameter estimates, but

with low computational complexity for low dimensional problems. For higher dimen-

sional target tracking problems, the SML-PDA algorithm performs well, albeit with

a higher computational complexity, which make it suitable for tracking high-priority

targets under difficult conditions.

6.2 SML-PDA Algorithm

The proposed SML-PHD algorithm’s derivation are explained in this section. Assume

there is a single target xr = {xir}ni=1 ∈ Es already exist at a reference time r in the

multidimensional state space Es with survival probability Ps(xr), where n denotes

the state dimensions. The dynamic state of the target evolves as described in (2.43)

respect to time. Across the data frame the detections are independent. A single

target is always presence at all the data frames and it is detected with the detection

probability Pd. Assume the subsequent measurement model with the Pd where the

single target in state space Es can stimulates observations. The measurement in

the observation space Eo can also originated form the false alarms or clutter. In
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the surveillance region with volume U the false alarms are uniformly distributed.

Across the frames the number of false detection is independent and Poisson distributed

respect to probability mass function µf(m), with spatial density λ. Note, that the

measurement also contain the amplitude features. As in [31] the envelope output of

the detected is denoted as the amplitude.

Let the cumulative set of measurement Z , {Z(i)}Nw

i=1 ∈ Eo, where Nw denotes

the frame number, Eo denotes the measurement space and Z(i) denotes all the obser-

vations in a certain data-frame at time i defined as

Z(i) , {βij , aij}mi

j=1 ∈ Eo (6.1)

where βij denotes the measurement from target-originated and from false detection

and aij denotes the amplitude. In case the sensor is a narrowband sonar and the

measurements contain frequency measurements then (6.1) can be modified as

Z(i) , {βij , ψij , aij}mi

j=1 ∈ Eo (6.2)

Note, the scenario involves with a single target, the total number of measurement

per scan mi equal to the sum of number of measurement originated from true target

(once only) and the measurement originated from false detection, and ψij denotes the

frequency measurement.
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The spline likelihood probability density function (SLPDF) of a target-originated

measurement is defined as

p(βij , ψij|xr) ≈
ns∑

k1

. . .
ns∑

kn

Pk1,...,knBk1,p,t
1
i
(βij, ψij |x1r) . . .Bkn,p,t

n
i
(βij, ψij |xnr )

=
ns∑

k1

. . .
ns∑

kn

Pk1,...,knBk1,p,t
1
i
(z1r ) . . . Bkn,p,t

n
i
(znr )

= B(βij, ψij|xr) (6.3)

where i ∈ {1, . . . , Nw}, j ∈ {1, . . . , mi}, k = k1, . . . , kn and the number of dimensions

denoted by n. The number of knot elements for all the dimensions is the same (τ) and

p denotes the order of the splines. The n dimensional knot ti = {t1i , . . . , tni } is an n×τ

array. Each row vector of ti consists of a set of knot elements tli = {tl1,i, . . . , tlτ,i} where

l = 1, . . . , n. The n dimensional control point or coefficient matrix is denoted by Pk

and the number of control points denoted by ns. For each dimensions the same number

of control points are used. Note, that the number of knots must be greater than

the number of control points. For brevity SLPDF of target originated measurement

is denoted by B(βij, ψij |xr). For simplicity, {zkr }nk=1 = {(βij , ψij|xkr)}nk=1 where zlr

represent the l-th dimensional target-originated measurement. Note, with known

surveillance region and measurement noise covariance (2.49) can be easily transformed

into (6.3), but for the SML-PDA algorithm, Gaussian assumption of measurement

noise is not needed. In the desired surveillance region the false measurements are

distributed uniformly. For example, for bearing-only scenario βij ∼ U[θ1, θ2], where

θ1 and θ2 are denote the angles and the frequency ψij ∼ U[Ω1,Ω2], where Ω1 and Ω2

are frequencies. Using the tensor product of B-Spline can easily obtain the uniform

distribution for multidimensional state problem [53].
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The amplitude information can be obtained as in [31] for any scenario. Generally,

a number of detections are made by the radar/sonar at every sampling time and

must decide which measurements are likely to have originated from the target. The

estimator operates in the presence of false alarm since more than one measurement

can satisfy the validation criteria. As described in [31] the output of the envelope

detector a is a Rayleigh distributed. The output PDF of envelope detector is p1(aij) if

originated from the true target or p0(aij) if the output signal due to false alarm. Note,

a suitable detection threshold ξ must be used for detection and it depends on the SNR

as well as must satisfy the selection of Pd and Pfa values. The output likelihood PDF

of the threshold detector are described in (2.51) and (2.52). The amplitude likelihood

is incorporated into the likelihood function as ratio.

The amplitude likelihood ratio between the target and noise originated amplitude

measurement likelihoods can be defined as

ρij =
p1(aij|ξ)
p0(aij|ξ)

, (6.4)

where the target originated amplitude likelihood PDF denoted by p1(aij|ξ) and p0(aij |ξ)

denotes the amplitude likelihood PDF of the validated measurements originated from

false alarm.
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The spline amplitude likelihood probability density function (SAL-PDF) of those

originated from the target can be defined as

p1(aij|ξ) =
aij

Pd(1 + SNR)
exp

(

− a2ij
2(1 + SNR)

)

, aij > ξ

≈
ns∑

ς1

Pς1Bς1,p,t
1
′

i

(aij |ξ)

= B1(aij |ξ) (6.5)

where i ∈ {1, . . . , Nw}, j ∈ {1, . . . , mi}, B1(aij|ξ) denotes the SAL-PDF of those

originated from the target, t1
′

i = {t1
′

1,i, . . . , t
1
′

τ,i} is the set of knot elements of the

splines and Pς1 denotes the ς1-th control point of the SAL-PDF. The number of knots

is denoted by τ and the number of control points are denoted by ns.

The SAL-PDF of the validated measurements that originated from false alarm

can be defined as

p0(aij |ξ) =
aij
Pfa

exp

(

−a
2
ij

2

)

, aij > ξ

≈
ns∑

ς0

Pς0Bς0,p,t
0
′

i

(aij |ξ)

= B0(aij |ξ) (6.6)

where B0(aij |ξ) denotes the SAL-PDF of those originated from false alarm, t0
′

i =

{t0
′

1,i, . . . , t
0
′

τ,i} is the set of knot elements of the splines and Pς0 denotes the ς0-th

control point of the SAL-PDF. The number of knots is denoted by τ and the number

of control points are denoted by ns . The B-splines [12,53] can be used to represent

any distribution functions and in this case, the Rayleigh distributed functions p1(aij |ξ)

and p0(aij |ξ) mean and variance values can be determined and using these values as
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described in [12,53] can select the knot vectors t1
′

i and t0
′

i .

For further derivation purpose consider a mutually exclusive events as

ϕj(i) ,







{measurement zj(i) is from the target}, j = 1, . . . , mi

{all the measurement are false}, j = 0

(6.7)

and the PDF of the measurement corresponding to (6.7) can be defined as

p (Z(i)|ϕj(i),xr) =







1
Umi−1p(βij , ψij |xr)ρij

∏mi

l=1 p0(ail|ξ), j = 1, . . . , mi

1
Umi

∏mi

l=1 p0(ail|ξ), j = 0

(6.8)

where U = UβUγ is the volume of the surveillance region.

At time i the spline likelihood function of the set of measurement can be deter-

mined by using the total probability theorem as

p (Z(i)|xr) =
(1− Pd)

Umi
µf(mi)

mi∏

j=1

p0(aij |ξ)

+
Pdµf(mi − 1)

Umi−1mi

mi∏

j=1

p0(aij |ξ)
mi∑

j=1

p(βij, ψij |xr)ρij

=
(1− Pd)

Umi
µf(mi)

mi∏

j=1

B0(aij |ξ)

+
Pdµf(mi − 1)

Umi−1mi

mi∏

j=1

B0(aij|ξ)
mi∑

j=1

B(βij , ψij|xr)
B1(aij |ξ)
B0(aij |ξ)

= B (Z(i)|xr) (6.9)

where B (Z(i)|xr) denotes the SLPDF of the set of measurement at time i. At time i

across the frames the number of false detection is independent and Poisson distributed
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respect to probability mass function µf(.), with spatial density λ. The volume of the

surveillance region is denoted by U .

Also the spline likelihood function given all the measurement are false detection

can be defined at time i as

p (Z(i)|ϕ0(i),xr) =
1

Umi
µf(mi)

mi∏

j=1

p0(aij |ξ)

=
1

Umi
µf(mi)

mi∏

j=1

B0(aij|ξ)

= B (Z(i)|ϕ0(i),xr) (6.10)

Dividing (6.9) by (6.10) a dimensionless spline ML-PDA likelihood ratio (SML-

PDA LR), BΦ (Z(i)|xr) can be determined at time i as

BΦ (Z(i)|xr) =
B (Z(i)|xr)

B (Z(i)|ϕ0(i),xr)

= (1− Pd) +
Pd

λ

mi∑

j=1

B(βij, ψij |xr)
B1(aij|ξ)
B0(aij|ξ)

(6.11)

where the expected number of false alarm per unit volume is denoted by λ.

Note, the observations are conditionally independent across the frame. Therefore

the spline likelihood function of the entire set of measurements can be written in

terms of individual spline likelihood function [2]. The dimensional SML-PDA LR for

the entire data can be defined as

BΨ (Z|xr) =

Nw∏

i=1

BΦ (Z(i)|xr)

=

Nw∏

i=1

[

(1− Pd) +
Pd

λ

mi∑

j=1

B(βij, ψij|xr)
B1(aij |ξ)
B0(aij |ξ)

]

(6.12)
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Alternatively (6.12) can be defined in terms of total log-likelihood ratio (LLR) as

BΛ (Z|xr) = lnBΨ (Z|xr)

=
Nw∑

i=1

ln

[

(1− Pd) +
Pd

λ

mi∑

j=1

B(βij, ψij |xr)
B1(aij|ξ)
B0(aij|ξ)

]

(6.13)

where SML-PDA LLR BΛ (Z|xr) is a multidimensional spline PDF. Note, tensor

product spline construction [12] can be used to build multidimensional splines PDF.

The target estimates x̂r from the SML-PDA algorithm can be determined as

x̂r = argmax
xr

BΛ (Z|xr) , (6.14)

The global maximum of SML-PDA LLR can be easily determined by finding the

knot element with a higher distribution. The optimal knot selection can be done

by using a Genetic Algorithm based on spline approximation method as described

in [22,23] or using a few knots, SML-PDA LLR can be represented by using spline

interpolation and the optimal knot selection, which is an iterative method, can be

used to create a knot vector that is optimal respect to a given parametrization [58,57].

The different between the Spline Interpolation Method (SIM) and the Spline Approx-

imation Method (SAM) is that SAM does not necessarily pass through all the control

points, but must go through the first and last ones and SIM must pass through all

P control points. This leads SIM to give a better characteristic information of any

given curve/surface/volume/hypersurface. Thus the B-spline interpolation method

has been adapted here to implement the SML-PDA algorithm.

The SML-PDA algorithm’s track estimates have to satisfy the track validations

process [31]. A track validation process is applied to see if the estimated target states
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come from true-target, no-target or false alarm [2]. Here the applied assumption is a

target exist all the time, so not necessarily have to deal with no-target scenario, but

the true-target may invisible due to high clutter or low SNR. During the validation

process for an extracted state estimates the SML-PDA LLR distribution value is

known and one can use this value as the tuning-parameter. The SML-PDA algorithm

applied with the same measurement set number of times to see if the SML-PDA

LLR distribution value go beyond the tuning-parameter. With the presence of the

true-target the estimated values not differ much for all the trails, but the SML-PDA

LLR values might be slightly differ. Note, the SML-PDA LLR formed by using an

optimal knot sections, where one can have the exact capture of the SML-PDA LLR, so

with the presence of the true-target between each trails the estimated states and the

corresponding SML-PDA LLR values are always similar. If the state estimated result

is generated from the false alarms mean for every trail/run the state estimate vary

dramatically with different SML-PDA LLR. So this kind of testing used to validate

the estimated tracks. If the outcome of track validation process comes from a false

alarm then can repeat the state estimation process again by discarding the initial

measurements frame by using a sliding window with desired size. Using the sliding

widow this process can repeated until the track validation process outcome come from

the true-target.

6.3 Simulation Results

The performance of the proposed SML-PDA algorithm is validated by using a prac-

tical problem. Here, using the SML-PDA algorithm a single target in high clutter

or low SNR is initialized. The measurements in this scenario also contain features
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i.e., frequency and amplitude. Note, the selected problem is only deal with bearing-

only ground target tracking problems. The selected scenario arises in many practi-

cal applications such as submarine tracking or airborne surveillance using a passive

radar [29,31,58,57]. The sensor is a narrowband sonar and it sits on a moving plat-

form. The desired surveillance region is selected to be a 30 km-by-30 km square

region in which one target is placed and the origin is located at the (0,0) m. For this

scenario assume a VLO target is present at all time.

Figure 6.1: Motion of the platform and a target at time i

As show in Figure (6.1) at time i a sensor on a platform moves along X-Y plane

and the state of the platform can be defined by

xmp (i) = [xp(i) ẋp yp(i) ẏp]
′

m ∈ {1, 2}, (6.15)

where m denotes the mode of operations, the positions of the sensor platform are
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denoted as xp(i), yp(i) and the velocities of the sensor platform are denoted as ẋp,

and ẏp. A sensor platform system with two models is considered here to demonstrate

the SML-PDA algorithm.

The two system models of sensor platform are

x1
p(i+ 1) =


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and
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(6.17)

where (6.16) and (6.17) denote a constant velocity model (CVM) and a constant turn

model (CTM). The sampling time is denoted as T = 30 (s) and the sensor platform
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process noises are zero-mean white Gaussian random variables with standard devia-

tion σx
p = 0.00005 m/s2, σy

p = 0.00005 m/s2 and σw
p = 0.00005 rad/s, respectively.

The angular rate is denoted by war = ±0.0200 rad/s and σw
p denotes the standard

deviation of turn rate noise variance.

For bearing-only estimation a target motion with SNR = 6 dB is defined as

x(i) = [x(i) ẋ y(i) ẏ γ]
′

, (6.18)

where x(i) is a five dimensional vector, x(i) and y(i) are the positions of the target in

the X and Y directions respect from the origin at the reference time i, respectively.

The respective velocities ẋ, ẏ and the frequency γ are assumed constants.

The target state motion, based on a constant velocity model is defined as

x(i+ 1) =
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,(6.19)

where target system process noises are zero-mean white Gaussian random variables

with standard deviation σx = 0.0 m/s2, σy = 0.0 m/s2 and σγ́ = 0.00 Hz, respectively.

As shown in Figure (6.1) the relative position and velocity components in the X

and Y directions are denoted as rx(i) and ry(i), vx(i) and vy(i), respectively.

The target is detected with probability Pd and the target-originated measurements

146



PhD. Thesis - Rajiv Sithiravel McMaster - Electrical Engineering

follow the observation model at time i

βij = h (x(i),xp(i)) + ωi j ∈ {1, . . . , mi}, (6.20)

where at time i

h[.] = tan−1

(
ry(i)

rx(i)

)

= θi(x) (6.21)

is the true bearing between the target and the platform. The sensor noise ωi is zero-

mean white Gaussian with σ2
ω = 2.3◦. The target-originated frequency measurements

follow the observation model as

ψij = γi(x) + νi j ∈ {1, . . . , mi}, (6.22)

where νi is a zero-mean white Gaussian noise with known variance σ2
γ = 0.0054 Hz

and γi(x) denotes the noise free Doppler shifted frequency at the sensor due to the

relative motion between the target and sensor platform at time time i.

The noise free Doppler shifted frequency can be defined as

γi(x) = γ

[

1− vx(i) sin θi(x) + vy(i) cos θi(x)

c

]

(6.23)

where the relative velocity components are denoted as vx(i), vy(i) and c denotes

the velocity of sound in the medium. The received measurements also include false

alarms. The sensor noise is assumed independent of the sensor platform noise. The

noise-free amplitude as well as the false alarm-originated amplitude measurements

are generated by using the Rayleigh distribution and SNR values.
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The SML-PDA algorithm’s performance is evaluated with and without frequency

information. First the SML-PDA algorithm is implemented for a general bearing-

only problem with amplitude information to track a target moving at a constant

velocity. The sensor’s two dimensional resolution cell has area A =
(
3
√
2.3
)2 ≈ 20.

The return signal is processed by a quadrature receiver with a Constant False Alarm

Rate (CFAR) setting for Pfa = 0.1 per cell, which yields a false alarm spatial density

of λi = Pfa/A = 0.0048 (degree)−1. The clutter is modeled as uniformly distributed

in the measurement space with average false alarm rate λi over the whole surveillance

region [−π, π] rad.

Next the SML-PDA algorithm performance is evaluated for narrowband sonar

scenario. For narrowband case, the signal processor was assumed to consist of the

frequency band [500 Hz 1000 Hz] with a 2048-point fast Fourier transform (FFT).

The frequency cell size defined as

Cγ = 500/2048 = 0.25 Hz , (6.24)

and for azimuth measurements the sonar is assumed to have 34 equal beams resulting

in an azimuth cell with size

Cθ = 180◦/34 = 5.30◦, (6.25)

where Cθ denotes the azimuth cell size. Since the noises are distributed uniformly in
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the cell, the frequency and azimuth measurement standard deviation can be deter-

mined as

σθ = 5.30/
√
12 ≈ 1.52◦ (6.26)

σγ = 0.25/
√
12 ≈ 0.072 Hz (6.27)

Note the uniform factor
√
12 is correspond to the worst case [31] and σ2

θ ≈ 2.3◦,

which is the same as used in bearing-only scenario. The SNR in a cell is taken as 6 dB

and Pd ≈ 0.70. Then using (2.51) and (2.52), the detection threshold is determined

to be ξ = 2.10 and the Pfa = 0.11. The expected number of false alarms per unit

volume can be determined using

Pfa = λCθCγ, (6.28)

and substituting Pfa, Cθ and Cγ can obtain the λ = 0.083/deg.Hz. Note the surveil-

lance region of azimuth and frequency measurements are

Uθ = [−π, π] (6.29)

Uγ = [747 Hz, 753 Hz] (6.30)

Finally the SML-PDA estimator performance is evaluated for both bearing-only

and narrowband sonar case with and without the amplitude information.

The trajectories of the targets and the sensor platform are shown in Figure (6.2).

As shown in Figure (6.2) the scenario represents a single ground target tracking
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problem using an Air Craft Carrier based sensor where a target is moving on the

ground. Note, for bearing-only target tracking problem the sensor platform has to

perform maneuvering to get a visible observation of the target, but for narrowband

sonar scenario maneuvering is not needed.

The sensor with initial sates at i is selected as

x1
p(i = 1) = [−7000 (m) 15 (m/s) − 7000 (m) 20 (m/s)]

′

(6.31)

and a CVM is used as the initial model. This scenario has 14 legs and the first 5

time-index the CVM is used followed by next 3 time-index CTM is used. Note, a

same pattern followed for next 56 time-index between CVM and CTM, but CTM with

angular rate war = ±0.0200 rad/s. A sliding window, with a 20 batch of measurement

frames is used to compute the target estimates.
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Figure 6.2: Trajectories of true-target and true-platform, S: start, E: end.
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The target is traveling with initial states

x(i = 1) = [5000 (m) 10 (m/s) 5000 (m) 10 (m/s) 750 (Hz)]
′

(6.32)

where the emitted frequency is 750 (Hz). As shown in Figure (6.3) the target-

originated and noise-only measurements can be distinguished from a single Monte

Carlo run (MCR). However, the index of the target-originated measurement is not

known to the estimator. Figures (6.4) and (6.5) show a set of amplitude measure-

ments and frequency measurement, respectively. Note total number of scans/frame

in a MCR is 56 and the sampling time is 30 (s).
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Figure 6.3: Target-originated and false alarm measurements, Scans = 56, T = 30 (s)
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Figure 6.4: Amplitude measurements, Scans = 56, T = 30 (s)
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Figure 6.5: Frequency measurements, Scans = 56, T = 30 (s)

152



PhD. Thesis - Rajiv Sithiravel McMaster - Electrical Engineering

For a single target estimates a SML-PDA estimator of order 3 is used with 20 knots

for positions, 6 knots for velocities and 6 knots for frequency (for narrowband sonar

case). The target initial estimate is average over 100 MCR. The spline log likelihood

ratio (SLLR) has many local maximum and a global maximum. The system must

have the property of observability [2] and it is achieved by manoeuvering the sensor

platform as shown in Figure (6.2). Note, that the SLLR contains many local maximum

and a its a highly non-convex function. The spline interpolation method as described

in Section (3.2) is used to represent the LLR. The knot elements can be determined

using uniform knot selection method as [17]. The optimal knot selection, which is an

iterative method proposed in [17], can be used to creates a knot vector that is optimal

respect to a given parametrization. This method does not consider the location of

the input/control points for the optimization. The Matlab function optknt can be

used to produce this knot vector. Also interactively can shape the B-spline LLR by

adding knot elements as in Section (3.7.7) which can increase the number of control

points. When control points are moved, the level of continuity at the knots can

change (increase or decrease); hence after modification is completed knot removal as

in Section (3.7.8) can be invoked in order to obtain the most compact representation

of the SLLR. Knot removal can also be used to remove unnecessary knots and note

that the first and the last knot elements are not removed. This method can be used

for all the dimensions.

The SML-PDA estimator can estimate the state by identifying the global max-

ima of the SLLR surface. The K-means clustering algorithm as used in [58] can be

used for state extraction. An alternative is the expectation-maximization based peak

extraction approach in [62] or using a convex optimization method. Note, SLLR is a
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non-convex and using a optimization technique is a challenging problem. Since spline

interpolation is used here to represent the LLR the convex optimization comes with

a high complexity, but this problem can be solved by using the spline approximation

method i.e., Genetic Algorithm as in [23]. Note, spline interpolation method is only

considered here. The global maximum of SLLR or the state estimation can be eas-

ily determined by finding the knot element with a higher distribution. This can be

determined by using the matlab algorithm from the Table (6.1) for a 2-D scenario.

Using the algorithm in Table (6.1) can determine the state easily and the accuracy

of the state estimate depends on the number of knot selection. On the Table (6.1)

the X(loc) and Y(loc) denote the estimated position and velocity. State estimate

validation as described in [2] is performed to validate the true target present.

M=fnplt(SLLR);
X = M{1};
Y = M{2};
Z = M{3};
maxV = max(max(Z));
loc = find(Z == maxV);
x = [X(loc) Y(loc)]

′
;

Table 6.1: State estimation algorithm for 2-D scenario

The initial state estimate is averaged over 100 MCR and the knot selection in-

fluences the performance of the SML-PDA algorithm. As shown in Figure (6.6) for

bearing-only scenario as the knot selections are increased for positions and velocities

then the root means square error (RMSE) is reduced, but with a higher complexity.

Considering the time of complexity and the RMSE of the SML-PDA algorithm can

choose nPk = 25, nV k = 7 as the sub-optimal knot selections for positions and veloci-

ties in X and Y directions. Note, as shown in Figure (6.6) with amplitude information
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(AI) the SML-PDA algorithm is performed well in terms of RMSE, but with slightly

higher complexity.
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Figure 6.6: Average performance from 100 runs vs. number of knots for bearing-only
case, nPk = 10, nV k = 4: 1, nPk = 15, nV k = 5 : 2, nPk = 20, nV k = 6: 3, nPk = 25,
nV k = 7: 4, nPk = 30, nV k = 8: 5, nPk = 35, nV k = 9: 6, nPk: number of position
knots, nV k: number of velocity knots.

Next the performance of the SML-PDA algorithm in terms of knot selection is

evaluated for the narrowband sonar case. As shown in Figure (6.7) the performance of

SML-PDA algorithm in terms of RMSE is improved by increasing the knot selection,

but with higher complexity. As shown in Figures (6.6) and (6.7) the performance

of SML-PDA algorithm for the bearing-only scenario with AI and the narrowband

sonar scenario with out AI have similar outcomes, but with dissimilar complexities.

In sonar scenario the SML-PDA algorithm is performed well with AI. The optimal

knot selection can be above nPk = 25, nV k = 7, and nfk = 7 if there is no complexity

issues. Note, in the sonar scenario the SML-PDA algorithm’s complexity much higher

compare to the bearing-only case due to the sonar case’s dimension of the state
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space increased to 5 compared to bearing-only case (four dimensions). As shown

in Figures (6.6) and (6.7) the SML-PDA algorithm performance is affected by the

dimensions of the state space.
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Figure 6.7: Average performance from 100 runs vs. number of knots for narrowband
sonar case, nPk = 10, nV k = 4, nfk = 4: 1, nPk = 15, nV k = 5, nfk = 5 : 2, nPk = 20,
nV k = 6, nfk = 6: 3, nPk = 25, nV k = 7, nfk = 7: 4, nPk = 30, nV k = 8, nfk = 8: 5,
nPk = 35, nV k = 9, nfk = 9: 6, nPk: number of position knots, nV k: number of velocity
knots, nfk: number of frequency knots.

The proposed SML-PDA algorithm’s performance is compared with a regular ML-

PDA algorithm. The parameter value of ML-PDA’s LLR is determined by using the

Directed Subspace Search algorithm and followed by a validation process as in [8]. The

scalar value of ML-PDA LLR is calculated for set of grid points and the maximum

LLR value is determined by using optimization algorithm [8]. Here, LLR’s global

maximum is a converged parameters.

As shown in the Tables (6.2), (6.3), (6.4) and (6.5) for different SNR values the
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RMSE values and the initial target state values were calculated. Clearly, the SML-

PDA algorithm performed well in terms of initializing the target state with lower

RMSE values. Note, DSS method of ML-PDA estimator has to overcome the non-

convex optimization problem and reaching a optimal solution is a challenging, which

leads to poor performance. Also, the performance of ML-PDA algorithm degraded

by the initial point selection. The SML-PDA algorithm does not use optimization.

The global maximum is determined by finding the knot element with a high LLR

value respect to a dimension and this can be applied to all the dimensions. The

performance efficiency of the SML-PDA algorithm is mostly related to the optimal

knot selections. Note, as the SNR increased (ξ fixed) Pd is also increased, which lead

both the SML-PDA and the ML-PDA algorithms to perform well. The performance

of both algorithms are compared against the Cramer-Rao lower bound (CRLB) [2]

for all the scenarios. As shown in Tables (6.2), (6.3), (6.4) and (6.5) the SML-PDA

algorithm performance for all the scenarios can be compared to the CRLB results.

Filters SNR RMSE CRLB Estimated Initial State CPU Time
(dB) (m) (m) [m m/s m m/s] (sec)

SML-PDA

3 540 530 [4625 8.52 5330 8.62] 9.52
6 461 449 [5300 8.55 4760 11.25] 9.56
9 345 339 [4795 11.25 4790 10.77] 8.56
12 245 241 [5180 8.80 5170 10.51] 8.56

ML-PDA

3 605 530 [4562 7.42 4552 7.10] 11.82
6 520 449 [5400 12.35 4612 8.25] 12.52
9 401 339 [4692 11.88 4689 11.52] 10.59
12 302 241 [4780 11.53 5230 10.85] 13.01

Table 6.2: Average performance metrics from 100 Monte Carlo run, Bearing-only
scenario without AI, nPk = 20, nV k = 6, nPk: number of position knots, nV k: number
of velocity knots.
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Filters SNR RMSE CRLB Estimated Initial State CPU Time
(dB) (m) (m) [m m/s m m/s] (sec)

SML-PDA

3 490 482 [5290 9.02 5260 10.85] 14.70
6 400 394 [4780 10.75 4790 9.22] 14.59
9 305 297 [5155 9.55 4825 10.57] 14.56
12 205 194 [5100 10.11 5150 9.77] 14.65

ML-PDA

3 550 482 [4600 12.05 4602 7.90] 18.44
6 470 394 [5350 8.12 5292 9.05] 20.35
9 350 297 [5275 10.83 5229 10.92] 19.41
12 275 194 [5180 10.75 4830 9.23] 18.22

Table 6.3: Average performance metrics from 100 Monte Carlo run, Bearing-only
scenario with AI, nPk = 20, nV k = 6, nPk: number of position knots, nV k: number of
velocity knots.

As shown in Tables (6.2) and (6.3) for bearing-only scenario the SML-PDA algo-

rithm is performed well in terms of RMSE and the computational complexity compare

to the ML-PDA algorithm. As the SNR value increased both algorithms performed

well and with amplitude information both algorithms performance efficiencies im-

proved as shown in Table (6.3). For the narrowband sonar case, as shown in Ta-

bles (6.4) and (6.5) the SML-PDA algorithm performed well in terms of RMSE with

and without AI, but with higher complexity compare to the ML-PDA algorithm. The

performance of both algorithms for bearing-only with AI scenario and narrowband

sonar case without AI scenario are the same in terms of RMSE, but with dissimilar

complexities. Using the SML-PDA algorithm as shown in Tables (6.2), (6.3), (6.4)

and (6.5) can initialize a target with high efficiency for the bearing-only and the

narrowband sonar target tracking scenarios. Both scenarios are affected by high clut-

ter or low observable problems. As shown in Tables (6.4) and (6.5) the SML-PDA

algorithm is affected by the curse of dimensionality and compare to bearing-only
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scenario with four dimensions, the narrowband sonar scenario has one more dimen-

sion. Increased state dimensions do not affect the target state initialization or RMSE

values, but the computational time. Search and rescue operations normally involve

in a longer period, but once the victim/object/target is identified the states of the

victim/object/target has to be initialized with high accuracy. The SML-PDA algo-

rithm can be used for this kind of scenarios. Not only the SML-PDA algorithm is

affected by the curse of dimensionality, but also by the optimal knot selection process.

Knot adding and removing as in Sections (3.7.7) and (3.7.8) are used to get the most

compact representation of the SLLR, which lead to high complexity.

Filters SNR RMSE CRLB Estimated Initial State CPU Time
(dB) (m) (m) [m m/s m m/s Hz] (sec)

SML-PDA

3 487 485 [5289 9.05 4740 9.15 760.27] 122.25
6 402 395 [5210 10.76 5201 10.72 759.87] 121.35
9 300 297 [5154 9.57 5160 10.59 741.52] 120.56
12 200 196 [4900 10.04 5150 9.78 742.4] 122.25

ML-PDA

3 549 485 [4603 8.05 5402 12.90 765.45] 30.87
6 475 395 [4652 8.72 4722 11.23 760.54] 29.58
9 345 297 [5274 9.73 5230 9.06 740.15] 29.74
12 274 196 [4820 9.72 5160 9.73 742.52] 28.85

Table 6.4: Average performance metrics from 100 Monte Carlo run, Narrowband
Sonar scenario without AI, nPk = 20, nV k = 6, nfk = 6, nPk: number of position
knots, nV k: number of velocity knots, nfk: number of frequency knots.
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Filters SNR RMSE CRLB Estimated Initial State CPU Time
(dB) (m) (m) [m m/s m m/s Hz] (sec)

SML-PDA

3 450 435 [4760 9.35 4765 9.22 756.52] 135.55
6 370 354 [4801 9.52 5175 10.75 753.25] 138.45
9 275 274 [5100 9.75 5100 10.67 747.45] 137.45
12 185 182 [5080 9.727 4910 10.55 748.25] 138.66

ML-PDA

3 505 435 [4680 11.65 5354 8.25 756.45] 34.22
6 410 354 [4710 11.12 4750 9.32 754.25] 34.00
9 300 274 [5250 10.53 5145 9.55 746.48] 33.25
12 215 182 [5160 10.40 4865 9.63 747.25] 34.02

Table 6.5: Average performance metrics from 100 Monte Carlo run, Narrowband
Sonar scenario with AI, nPk = 20, nV k = 6, nfk = 6, nPk: number of position knots,
nV k: number of velocity knots, nfk: number of frequency knots.

Track acceptance is evaluated base on [31] for the ML-PDA algorithm and for the

SML-PDA algorithm the evaluation technique is followed as described in Section (6.2).

As shown in Figure (6.8) as the SNR increased both algorithms are performed well

in terms of track acceptance. The ideal value of the track acceptance is 100 due

to only 100 Monte Carlo runs were used. The SML-PDA algorithm is performed

well as illustrated in the Figure (6.8) for both bearing-only and narrowband sonar

scenarios. Note, the SML-PDA algorithm is used an optimal knot section to capture

the exact replica of the SLLR, which leads the SML-PDA algorithm to perform well

in terms of track acceptance, but with a higher computational complexity. A similar

track acceptance outcomes were observed for the bearing-only case with amplitude

information and the the narrowband sonar case without the amplitude information.
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Figure 6.8: Track Acceptance vs. SNR, AI: Amplitude information, BOS: Bearing-
only scenario, NSC: Narrowband sonar scenario, MCR=100.
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Chapter 7

Geolocating Multitarget in High

Clutter Using the B-Spline Based

Joint Maximum-Likelihood

Probabilistic Data Association

Algorithm

7.1 Introduction

The geolocation problem can be solved by well known techniques such as angle of

arrival (AOA), time of arrival (TOA), time difference of arrival (TDOA) and fre-

quency difference of arrival (FDOA). However, the performances of these techniques

are degraded with false alarm. For the false alarm or low signal to noise ratio (SNR)
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scenario the Maximum-Likelihood Probabilistic Data Association (ML-PDA) algo-

rithm can be used to geolocate targets. Commonly the ML-PDA algorithm is used

in very low observable (VLO) target tracking problems. Recently proposed B-Spline

based Maximum-Likelihood Probabilistic Data Association (SML-PDA) algorithm

performed well in passive track initilization/geolocation problems for a single target

scenario with very high false alarm. Note, the SML-PDA algorithm is applicable only

to a single target tracking problem. In this paper geolocate multitarget in very low

observable problems a B-Spline based Joint Maximum-Likelihood Probabilistic Data

Association (SJML-PDA) algorithm is proposed. The formulation supports a five

dimensional passive narrowband target geolocation problems with amplitude infor-

mation. The target geolocation is determined by finding the global maximum in the

joint log-likelihood ratio (JLLR) followed by the track validation process. Simulation

results are presented to demonstrate the effectiveness of the new algorithm.

7.2 SJML-PDA Algorithm

The proposed SJML-PDA algorithm’s derivation details are described in this sec-

tion. Formulations are based on a 5D narrowband sonar scenario. The kinematic,

frequency and amplitude measurements are available. Kinematic measurements are

angle-only measurements and as in [31], the envelope output of the detector is the

amplitude. Consider a multitarget geolocation problem in a surveillance region with

n targets with low SNR. The multitarget xr , [x1
r , . . . ,x

n
r ]

′ ∈ Es already present at

the reference time r in the multidimensional state space Es. The ℓ-th target state

can be defined as xℓ
r , [xℓ(i) ẋℓ yℓ(i) ẏℓ γℓ]

′
, ‖xℓ

r‖ = η = 5 and γℓ, (xℓ(i), yℓ(i))

and (ẋℓ, ẏℓ) are the ℓ-th target’s constant unknown emitted frequency, positions and
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constant velocities, respectively. The multitarget dynamic states evolve according to

(2.71). All of the n targets are present during the surveillance in all of the frames and

ℓ-th target detected with the probability P ℓ
d . Across the data frame the detections are

independent. The subsequent measurement model with the P ℓ
d can stimulate obser-

vations from multitarget state space Es. The measurement in the observation space

Eo can also originate from the false alarms or clutter. The false alarms are uniformly

distributed in the surveillance region with the volume U . Across the frames the num-

ber of false detection is independent and Poisson distributed respect to probability

mass function µf(m), with spatial density λ.

The angle-only cumulative measurements Z along with the measurements from

frequency and amplitude information (AI) from Nw frames can be expressed as

Z , {Z(i)}Nw

i=1 ∈ Eo (7.1)

where Eo denotes the measurement space and Z(i) denotes all the observations in a

single data-frame at time i defined as

Z(i) , {βij , ψij , aij}mi

j=1 ∈ Eo (7.2)

where βij, ψij and aij denote the bearing, frequency and amplitude measurements

from target-originated and noise-only originated, mi denotes the total number of

measurement per scan.

The spline likelihood probability density function (SLPDF) of a ℓ-th target-originated
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measurement is defined as

p(βℓ
ij, ψ

ℓ
ij |xℓ

r) ≈
ns∑

k1

. . .
ns∑

kη

Pk1,...,kηBk1,p,t
ℓ,1
i
(βℓ

ij, ψ
ℓ
ij |xℓ

r(1)) . . .Bkη ,p,t
ℓ,η
i
(βℓ

ij , ψ
ℓ
ij|xℓ

r(η))

= B(βℓ
ij, ψ

ℓ
ij |xℓ

r) (7.3)

where ℓ-th target state dimension is denoted by η, ℓ = {1, . . . , n}, i ∈ {1, . . . , Nw}, j ∈

{1, . . . , mi} and k = k1, . . . , kη. The number of knot elements for all the dimensions is

the same (τ) and the p denotes the spline order. The ℓ-th target η dimensional knot

tℓi = {tℓ,1i , . . . , tℓ,ηi } is an n × τ array. Each row vector of tℓi consists of a set of knot

elements t
ℓ,l
i = {tℓ,l1,i, . . . , tℓ,lτ,i} where l = 1, . . . , η. The η dimensional control point or

coefficient matrix is denoted by Pk and the number of control points is denoted by ns.

For each dimension the same number of control points are used. Note that the number

of knots must be greater than the number of control points. For brevity SLPDF of ℓ-th

target-originated measurement is denoted by B(βℓ
ij, ψ

ℓ
ij |xℓ

r). The false measurements

are distributed uniformly in the desired surveillance region. For the bearing-only

measurement scenario βij ∼ Uβ [θ1, θ2], where θ1 and θ2 are denote the angles and for

frequency measurement ψij ∼ Uγ[Ω1,Ω2], where Ω1 and Ω2 are frequencies. Using the

tensor product of B-Spline can obtain the uniform distribution for multidimensional

state problem [53].

The amplitude information can be obtained as in [31] for any scenario. Generally,

a number of detections are made by the radar/sonar at every sampling time and

must decide which measurements are likely to have originated from the target. The

estimator operates in the presence of false alarm since more than one measurement

can satisfy the validation criteria. As described in [31] the output of the envelope
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detector a is a Rayleigh distributed. The output PDF of envelope detector is p1(a
ℓ
ij)

if originated from the true ℓ-th target or p0(aij) if the output signal originated from

noise-only. Note, a suitable detection threshold ξ must be used for detection and

depends on the SNR as well as must satisfy the selection of P ℓ
d and Pfa values. The

amplitude likelihood is incorporated into the likelihood function as ratio.

The amplitude likelihood ratio for the ℓ-th target can be defined as

ρℓij =
p1(a

ℓ
ij |ξ,Hℓ)

p0(aij |ξ)
(7.4)

where p1(a
ℓ
ij|ξ,Hℓ) is the amplitude probability density function (PDF) that orig-

inated from the ℓ-th target, Hℓ denotes the ℓ-th hypothesis, p0(aij |ξ) denotes the

amplitude PDF of the validated measurements originated from false alarm, aij and

ξ denote the amplitude and the detector threshold in each measurement cell, respec-

tively.

The spline amplitude likelihood probability density function (SAL-PDF) of those

originated from the target can be defined as

p1(a
ℓ
ij |ξ,Hℓ) =

aℓij

P ℓ
d(1 + SNRℓ)

exp

(

− (aℓij)
2

2(1 + SNRℓ)

)

, aℓij > ξ

≈
ns∑

ς1

Pς1Bς1,p,t
ℓ,1

′

i

(aℓij |ξ)

= B1(a
ℓ
ij |ξ) (7.5)

where i ∈ {1, . . . , Nw}, j ∈ {1, . . . , mi}, B1(a
ℓ
ij|ξ) denotes the SAL-PDF of those

originated from the target, tℓ,1
′

i = {tℓ,1
′

1,i , . . . , t
ℓ,1

′

τ,i } is the set of knot elements of the

splines and Pς1 denotes the ς1-th control point of the SAL-PDF. The number of knots
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is denoted by τ and the number of control points are denoted by ns.

The SAL-PDF of the validated measurements that originated from false alarm

can be defined as

p0(aij |ξ) =
aij
Pfa

exp

(

−a
2
ij

2

)

, aij > ξ

≈
ns∑

ς0

Pς0Bς0,p,t
0
′

i

(aij |ξ)

= B0(aij |ξ) (7.6)

where B0(aij |ξ) denotes the SAL-PDF of those originated from false alarm, t0
′

i =

{t0
′

1,i, . . . , t
0
′

τ,i} is the set of knot elements of the splines and Pς0 denotes the ς0-th

control point of the SAL-PDF. The number of knots is denoted by τ and the number

of control points are denoted by ns . The B-splines [12,53] can be used to represent any

distribution functions and in this case, the Rayleigh distributed functions p1(a
ℓ
ij|ξ,Hℓ)

and p0(aij |ξ) mean and variance values can be determined and using these values as

described in [12,53] can select the knot vectors tℓ,1
′

i and t0
′

i .

The spline amplitude likelihood ratio for the ℓ-th target can be defined as

Bℓ
ij =

B1(a
ℓ
ij |ξ)

B0(aij |ξ)
(7.7)
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The multitarget likelihood p(Z(i)|xr) described in (2.92) can be written for a

general n targets case as

p(Z(i)|xr) =

(
n∏

e=1

(1− P e
d )

)

L0
i +

n∑

q=1




























n

q













∑

k=1

P
gq(k)
d






n∏

e=1
e 6=gq(k)

(1− P e
d )




L

gq(k)
i
















(7.8)

where n denotes the number of target and using






n

q




 = n!

(n−q)!q!
all the combinato-

rial sets of targets can be determined. Note sets are independent and exclusive. The

likelihood where all the measurements are false alarm is given by
(∏n

e=1
(1− P e

d )
)
L0
i

and gq(·) is dependent of q where q denotes the number of available true-target. For

e.g., if the total target is 3,

g(q=1) = [{1}, {2}, {3}]

g(q=2) = [{1, 2}, {1, 3}, {2, 3}]

g(q=3) = [{1, 2, 3}] (7.9)

and for g(q=2)(k = 1) = {1, 2}, which indicates targets 1 and 2 are detected. Note

‖g(q=2)‖ = 3 and ‖g(q=2)(k = 1)‖ = 2. The detected probability is determined as

P
g(q=2)(k=1)

d = P
{1,2}
d = P 1

dP
2
d (7.10)
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The possible target detections terms, L
gq(k)
i are determined by associating a certain

observation to each detected target and the rest of the observations are considered as

false detection. The possible target detections terms are determined as

L
gq(k)
i =

µf(mi −̟k)

Umi−̟k

∏̟k

v=1 (mi +̟k − v)

mi∏

j=1

p0(aij |ξ)

̟k
︷ ︸︸ ︷
mi∑

j1=1

. . .

mi∑































j̟k=1

j̟k
6= j1
...

j̟k
6= j̟k−1































·
̟k∏

v∈gq(k)

p (βijv , ψijv |xv
r) ρ

v
ijv

(7.11)

where ̟k = ‖gq(k)‖ and k 6= 0. If the measurement is only from false detections

(‖gq(k)‖ = 0) then the L0
i can be defined as

L0
i =

µf(mi)

Umi

mi∏

j=1

p0(aij|τ) (7.12)

The joint likelihood function of Nw frames can be determined as

p(Z|xr) =

Nw∏

i=1

p(Z(i)|xr) (7.13)

and the likelihood of all noise-only originated measurements is given as

Nw∏

i=1

(
n∏

e=1

(1− P e
d )

)

L0
i (7.14)
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Then the spline joint log-likelihood ratio (SJLLR) can be determined by dividing

(7.13) by (7.14) and taking the logarithmic of the result as

Ψ(Z|xr) =

Nw∑

i=1

ln


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= BΛ (Z|xr) (7.15)

where P
gq(k)
nd can be determined using (7.10), Pnd = (1− Pd) and ̟k = ‖gq(k)‖. The

SJML-PDA LLR BΛ (Z|xr) is a multidimensional spline PDF. Note, tensor product

spline construction [12] can be used to build multidimensional splines PDF.
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The target estimates x̂r from the SJML-PDA algorithm can be determined as

x̂r = argmax
xr

BΛ (Z|xr) , (7.16)

The multitarget states can be determined by using any optimization algorithm.

Note, (7.16) is a nonlinear nonconvex problem. As in [59] same method can be

used to extracted the individual targets sates. The SJML-PDA LLR has many local

maximums and only the first n number of local maximums (including the global

max) with higher SJML-PDA LLR are taken into consideration. Since the number of

targets is already known we can extract the first n highest states from the SJML-PDA

LLR by finding the knot with the higher distribution then removing the knot from

that locations and looking for the next one. This can be repeated n times. The SJML-

PDA algorithm’s track estimates have to satisfy the track validations process [31]. A

track validation process is applied to see if each estimated target state comes from

true-target, no-target or false alarm [2]. Here, same method used in [59] is applied to

validate each target status. However, all the targets must hence originated from the

true-target for track-validation to be successful. If the track validation unsuccessful

then discard the current measurement frame and keep the next frame as initial frame

by using a desired size moving window. The same routine can be applied until all the

estimated-targets originated from the true-targets.

7.3 Simulation Results

In this section, the proposed SJML-PDA algorithm is used for a practical multitarget

geolocation problem to verify its performance compared to the standard JML-PDA
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algorithm. The selected scenario contains four targets in high clutter or low SNR.

The measurements in this scenario also contain amplitude information (AI) and deal

with bearing-only underwater multitarget geolocation problems. The selected sce-

nario arises in many practical applications such as submarine tracking or airborne

surveillance using a passive radar [29,31,58,57]. The four targets are assumed to be

four submarines and the sensor is a narrowband sonar which sits on a moving un-

derwater drone. The movement of the drone ensures the observability of the targets.

All the submarines and the drone are in the same plane and the surveillance region

is selected to be a 100 km-by-100 km square region in which four VLO targets are

present at all time.

The drone and the targets are moving along X-Y plane and the unknown ℓ-th

target state xℓ
r is denoted as

xℓ
r , [xℓ(i) ẋℓ yℓ(i) ẏℓ γℓ]

′

(7.17)

where (xℓ(i), yℓ(i)), (ẋℓ, ẏℓ) and γℓ denote the positions, constant velocities and con-

stant frequency of the ℓ-th target, respectively. Based on a constant velocity model

the ℓ-th target motion is defined as

xℓ
r(i+ 1) =


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
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,(7.18)

where the ℓ-th target system process noises are zero-mean white Gaussian random
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variables with standard deviation (s.d) σℓ
x = σx, σ

ℓ
y = σy and σℓ

γ́ = σγ́ , respectively,

where ℓ = {1, 2, 3, 4}.

At time i the known sensor kinematic state xs(i) given as

xs(i) , [ξs(i) ξ̇s(i) ηs(i) η̇s(i)]
′

(7.19)

where (ξs(i), ηs(i)) and (ξ̇s(i), η̇s(i)) denote the position and velocities of the sensor.

Table 7.1: Simulation parameters

Parameters Values
Pfa 0.100
ξ (detection threshold) 2.1460
SNR 5 dB, 6 dB, 7 dB, 8 dB
P 1
d , P

2
d , P

3
d , P

4
d 0.5751, 0.6299, 0.6818, 0.7298

σw (kinematic measurement noise s.d) 1.5◦

σγ (frequency measurement noise s.d) 0.0735 Hz
σx, σy, σγ́ (process noise s.d) 1.0000e−08 m/s2, 1.0000e−08 m/s2, 1.0000e−08 Hz
T (sampling time) 30 s
Targets start time 1 s, 1 s, 1 s, 1 s
x1
r(1) (Target 1 initial state) -2000 m, 30 m/s, 5000 m, 10 m/s, 750 Hz

x2
r(1) (Target 2 initial state) 20000 m, -10 m/s, 15000 m, 10 m/s, 755 Hz

x3
r(1) (Target 3 initial state) -1000 m, 20 m/s, 11000 m, 10 m/s, 745Hz

x4
r(1) (Target 4 initial state) 10000 m, -15 m/s, 10000 m, -10 m/s, 748Hz

xs (initial sensor state) -7000 m, 10 m/s, -7000 m, 10 m/s
Total time 1680 s
Bearing range Uβ [−π π] rad
Frequency range Uγ [740 760] Hz
Number of Monte Carlo runs 100
Nw (number of frames) 10

All of the target’s initial states and their corresponding initial times are known

as in Table (7.1). Each target is detected with the probability of detection P ℓ
d as
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in Table (7.1), where ℓ = {1, 2, 3, 4} and the probability of false alarm Pfa = 0.100.

Using the probability of false alarm as described in [31] the threshold value ξ = 2.1460

is determined. As stated in the Table (7.1) with known target-depended SNR (dB)

values and the calculated ξ corresponding P ℓ
d values are calculated.

The ℓ-th target-originated measurements follow the observation model at time i

βℓ
ij = hℓ(x

ℓ
r,xs(i)) + ωℓ

i , (7.20)

where ωℓ
i is a zero-mean white Gaussian noise with kinematic noise standard deviation

σℓ
ω = σω degree, where ℓ = {1, 2, 3, 4} and hℓ(·) can be determined as

hℓ(x
ℓ
r,xs(i)) = arctan

(
rη(i,x

ℓ
r)

rξ(i,xℓ
r)

)

= θi(x
ℓ
r) (7.21)

where θi(x
ℓ
r) is the angle as defined in Figure (2.1), which is the true bearing between

the target and the platform and rη(i,x
ℓ
r), rξ(i,x

ℓ
r) are the relative positions. False

alarm generated measurement is uniformly distributed in the surveillance region with

volume Uβ. For each scan 10 number of false alarms Nfa are received, with clutter

density λ = Nfa/(UβUγ) = 0.08/rad.Hz.

The ℓ-th target-originated frequency measurements follow the observation model

as

ψℓ
ij = γi(x

ℓ
r) + νℓi , (7.22)

where γi(x
ℓ
r) denotes the noise free Doppler shifted frequency defined in (2.80) and
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νℓi ∼ N(0, (σℓ
γ)

2) where νℓi is a zero-mean white Gaussian noise with known s.d

σℓ
γ = σγ Hz. The frequency originated measurements is uniformly distributed in the

surveillance region Uγ . The noise free amplitude as well as the false alarm-originated

amplitude measurements are generated by using the Rayleigh distribution and SNR

values.

Third order of B-Spline is applied for the SJML-PDA implementation to maintain

the continuity of the SJML-PDA LLR and used 35 knots for positions, 6 knots for

velocities and 6 knots for frequency. The target initial estimate is average over 100

MCR. The SJML-PDA algorithm performance is evaluated for a narrowband sonar

case with and without the amplitude information.

As shown in Figures (7.1), (7.2) and (7.3) the multitarget-originated and noise-

only generated bearing, frequency and amplitude measurements can be distinguished

from a single Monte Carlo run (MCR). However, the index of the multitarget-originated

measurements are not known to the estimator. Note, total number of scans/frame in

a MCR is 56 and the sampling time is 30 (s).
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Figure 7.1: Target-originated and false alarm measurements, Scans = 56, T = 30 (s)
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Figure 7.2: Amplitude measurements, Scans = 56, T = 30 (s)
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Figure 7.3: Frequency measurements, Scans = 56, T = 30 (s)

Knots can be added and removed as described in Sections (3.7.7) and (3.7.8) to

produce the exact replica of the multitarget spline joint log-likelihood ratio (SJLLR).

The knot elements can be determined by using the uniform knot selection method [17].

Adding new knots will increase the control points and the movement of the control

points eventually affect the level of the continuity at the knot. However, can invoke

the knot removal to keep the continuity while get best SJLLR representation. The

multitarget states are extracted from the SJLLR. Using the known number of targets

(in this case 4) the first 4 maximum values of SJLLR can be determine. The knot

locations on these maximum values are the states of each targets. Note, that the

knot vectors with first 4 higher SJLLR values are the multitarget states [59]. Each

extracted target has to go through a track validation process to determine if the

each estimated target states originates from true-target, no-target or false alarm [2].

A similar track validation method as described in [59] is used here to validate the

origin of each extracted target. If any one of the targets is determined not to have
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originated from the true-target then the validation processes is considered failed. The

geolocation process can be repeated by discarding the initial measurement frame and

by taking the second measurement frame as initial frame by using a sliding window

frames with the desired size. This process must be repeated until all the extracted

targets are determined not to have originated from noise. The geolocated states in

Figure (7.4) is averaged over 100 Monte Carlo runs.
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Figure 7.4: Trajectories of true-target, true-platform and estimated initial target
states S: start, E: end.

The performance of the SJML-PDA algorithm is compared with a regular JML-

PDA algorithm. The state extraction and track validation of the JML-PDA algorithm

follow as in [8, 9]. As shown in Tables (7.2) and (7.3) the position RMSE values and

the geolocated target state for each target values were calculated. Similar to the SML-

PDA algorithm [59] the SJML-PDA algorithm performed well in terms of geolocating

the target state with lower RMSE values. Regular JML-PDA algorithm suffer by non-

convex optimization problem. Reaching an optimal solution is hard for the regular
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JML-PDA algorithm due to the imperfect selection of the initial search point. The

SJML-PDA algorithm does not use optimization, but can use the optimization as

described in [23]. From the first 4 knot elements with higher SJLLR values are

determined with respect to each dimension. These knot elements are correspond to

the state of each target. The performance efficiency of the SJML-PDA algorithm

is mostly related to the optimal knot selections. Normally, in Search and Rescue

mission (e.g., searching a black-box) time is not a constrain, and can select the knots

depending on the scenario, area of the surveillance regions and the desired initial state

estimate accuracy. The performance of both algorithms are compared against the

Cramer-Rao lower bound (CRLB) [2] for all the scenarios. As shown in Tables (7.2)

and (7.3) the SJML-PDA algorithm performance for all the scenarios can be compared

to the CRLB results.

Filters RMSE CRLB Estimated Initial State
(m) (m) [m m/s m m/s Hz]

SJML-PDA

[−2112.52 35.45 5765.25 8.26 756]
510 470 [18965.25 − 12.35 16150.45 12.35 761]

[−916 23.75 10008.79 12.5 740]
[11070.45 − 13.75 9800.20 − 8.95 743.25]

JML-PDA

[−1790.25 38.45 3987.45 14.25 760]
670 470 [22350.25 − 14.10 17256.25 7.53 765]

[−1630.48 17.25 12253.88 14.36 751]
[8900.10 − 17.25 11545.65 − 13.45 754.12]

Table 7.2: Average performance metrics from 100 Monte Carlo run, Narrowband
Sonar scenario without AI, nPk = 35, nV k = 6, nfk = 6, nPk: number of position
knots, nV k: number of velocity knots, nfk: number of frequency knots.
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Filters RMSE CRLB Estimated Initial State
(m) (m) [m m/s m m/s Hz]

SJML-PDA

[−1945.74 32.02 5100.10 9.45 748.42]
390 360 [19627.32 − 10.89 15650 9.60 756.11]

[−988 21 11107 11.01 743]
[10120 − 14.90 10251.22 − 9.85 749.25]

JML-PDA

[−2110 33 5100.10 11.24 746]
450 360 [19000 − 12 14001.33 9.01 757]

[−1100 24.23 12125.11 13.05 740]
[9175.12 − 13.88 10822.45 − 9.05 750]

Table 7.3: Average performance metrics from 100 Monte Carlo run, Narrowband
Sonar scenario with AI, nPk = 35, nV k = 6, nfk = 6, nPk: number of position knots,
nV k: number of velocity knots, nfk: number of frequency knots.

The performance of track validation is illustrated in Figure (7.5) in terms of track

acceptance. For simplicity SNR values for all the targets are considered the same and

P ℓ
d follow the same. Track acceptance is evaluated based on the techniques described

in [8] for the JML-PDA algorithm and in [59] for the SJML-PDA algorithm. As

shown in Figure (7.5) as the SNR increased both algorithms performed well in terms

of track acceptance. The ideal value of the track acceptance is 400 since only 100

Monte Carlo runs were used with 4 targets present. Note, the SJML-PDA algorithm

is used an optimal knot selection to capture the exact replica of the SJLLR, which

leads the SJML-PDA algorithm to perform well. Using the AI both algorithms are

performed well.
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Figure 7.5: Track Acceptance vs. SNR, AI: Amplitude information, NSC: Narrow-
band sonar scenario, MCR=100.
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Chapter 8

Conclusion

In this first part of the thesis, a Spline Probability Hypothesis Density (SPHD) filter

implementation was developed by using the B-Splines. The proposed filter is an alter-

native to the Sequential Monte Carlo, Gaussian Mixture, Gaussian Mixture Particle,

Gaussian Mixture Unscented Sequential Monte Carlo, Gaussian Mixture Sequential

Monte Carlo, and the Auxiliary Particle implementations of the PHD filter. As

shown in Chapter 4, the resulting algorithm can handle linear, non-linear, Gaussian,

and non-Gaussian models. The SPHD filter can provide continuous estimates of the

probability density function of the system state and it is immune to the degeneracy

problem. The SPHD filter can maintain highly accurate tracks by taking advantage

of dynamic knot movement, but at the expense of higher computational complexity,

which makes it suitable for tracking a few high-value targets under difficult condi-

tions. The SPHD filter performs well with a few knots and provides continuous state

estimates for any system, which leads to non-degenerative results.

An extension of SPHD filter supports maneuvering target tracking as described
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in Chapter 5. The MM-SPHD filter implementation was presented as an alterna-

tive to the Sequential Monte Carlo and the Gaussian Mixture MM-PHD filters for

maneuvering target tracking problems. The resulting algorithm can handle linear,

non-linear, Gaussian and non-Gaussian models. The MM-SPHD filter inherits all of

the performance from the SPHD filter. This new filter, which yields accurate results

albeit with a higher computational load, is useful in tracking high-value maneuvering

targets (e.g., missiles, submarines, ground targets) in the presence of nonlinearity or

non-Gaussianity.

B-Splines technique is also applied to very low observable tracking problem as de-

scribed in Chapters 6 and 7. In chapter 6, a Spline Maximum-Likelihood Probabilis-

tic Data Association (SML-PDA) algorithm implementation was developed for track

initialization. The proposed algorithm is an alternative to the standard ML-PDA

algorithm. The global maximum of SML-PDA LLR can be determined by finding

the knot element with a highest peak. The SML-PDA algorithm can determine the

global maximum of ML-PDA LLR with high efficiency in terms of state estimates and

low computational complexity, which is good for fast passive track initialization. For

higher dimensional target tracking problems the SML-PDA algorithm performs well,

albeit with a higher computational complexity, which makes it suitable for tracking a

target in search and rescue operations under difficult conditions. As like the precursor

of ML-PDA algorithm the newly proposed SML-PDA algorithm performs well with

amplitude information.

Chapter 7 addressed the use of B-spline based Joint Maximum-Likelihood Prob-

abilistic Data Association (SJML-PDA) algorithm in a very low observable (VLO)
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multitarget geolocation problem without the time constraint. The SJML-PDA algo-

rithm is a multitarget extension of the SML-PDA algorithm and it inherits all the

capabilities of the SML-PDA algorithm. The proposed SJML-PDA algorithm can

be used in search and rescue mission in a very harsh environment i.e., geolocating a

flight black-box, mines and submarines in oceans around the world. The multitarget

geolocation is determined by finding the global maximum in the joint log-likelihood

ratio followed by the track validation process. The multitarget SJML-PDA LLR can

be any distribution and can be created by using the tensor product of splines. Us-

ing the optimal knot selection the SJML-PDA algorithm can geolocate in very low

SNR or high false alarm. As illustrated from the simulations results in Chapter 7

can be observed that the SJML-PDA algorithm works very well with the amplitude

information.
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Appendix A

Basic Geolocation

The geolocation of a single target in a clean environment by using the TDOA tech-

nique is used here to explain the geolocation problem. The TDOA method is used

for simplicity. As shown Figure (A.1) this is a multidimensional multisensor geolo-

cation problem with one emitter/source in the surveillance region. The emitter with

unknown location X = [x, y, z]
′
geolocated by the N number of sensors with known

locations Xi = [xi, yi, zi]
′
. At ti the emitted signal arrived at sensor i is given by

ti = tem +
‖X −Xi‖

c
+ νi (A.1)

where ti, tem denote the TOA and unknown time of emission, respectively. The

speed of the emitted signal in a specific medium is denoted by c and νi is the TOA

measurement noise. The measurement noise is a Gaussian process with zero mean

and variance σ2
i and independent from other sensors. Note in (A.1) ‖X−Xi‖ denotes

the difference of the location of emitter and the i-th sensor’s two-norm.

The TOA can be determined using (A.1) for all N sensors. From (A.1) there are
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Figure A.1: Geolocation of an emitter by multisensor with no false alarm
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four unknowns (tem, x, y, z) to determined. The time of emission tem can be eliminated

by using the time difference of arrival (TDOA) technique between two sensors as

∆tij = ti − tj

=

(

tem +
‖X −Xi‖

c
+ νi

)

−
(

tem +
‖X −Xj‖

c
+ νj

)

=

(‖X −Xi‖
c

− ‖X −Xj‖
c

)

+ (νi − νj)

= hij(X) + νij (A.2)

where i and j denote the sensors and the unknowns are (x, y, z) only. For simplicity

(A.2) can be written by considering a reference (e.g., sensor 1) then (A.2) can be

written as

∆ti1 = ti − t1

=

(

tem +
‖X −Xi‖

c
+ νi

)

−
(

tem +
‖X −X1‖

c
+ ν1

)

=

(‖X −Xi‖
c

− ‖X −X1‖
c

)

+ (νi − ν1)

= hi(X) + νi1 (A.3)

Considering N sensors (N − 1) TDOA equations can be written as


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(A.4)
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and (A.4) can be simplified as

∆t = H(X) + ν (A.5)

Then the emitter location X̂ = (x, y, z) can be determined by

X̂ = argmin
X

(∆t−H(X))
′

Q−1(∆t−H(X)) (A.6)

where Q = E[νν
′
] denotes the measurement noise covariance matrix. Estimating the

X̂ is a problem due to (A.6) is a nonlinear nonconvex problem. The TDOA method

also can be applied to multitarget geolocating problem as in [43, 68]. Generally using

two separate methods the multitarget states can be determined. First the TDOA

measurements obtained for each target then each emitter is geolocated by solving

(A.6) as described earlier.

As shown in the Figure (A.2) with false alarm the original geolocation of a single-

emitter problem becomes more complex. At time ti each sensor receives measurement

from true-emitter and from false alarm. The false alarm generated measurement at

ti is [xc,k, yc,k, zc,k]
Mti

k=1. The total number of false alarm generated measurement is

denoted by Mti . Using the well known conventional AOA, TOA, TDOA and FDOA

methods is difficult to estimate the state of the emitter with false alarm. It becomes

a complex problem for geolocating VLO multitarget.
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Figure A.2: Geolocation of an emitter by multisensor with false alarm
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