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Abstract

This thesis is composed of two related projects:

(1) Characterizations of semicomputable subsets of R2 as unions of

effective infinite sequences of “elementary” open sets.

This developed from Bo Xie’s MSc thesis (2004) on semicomputable subsets of R,

where the elementary sets are simply open (rational or algebraic) intervals. This is

generalized to two dimensions by taking elementary sets to be basic open semalgebraic

sets. Three structure theorems are derived, based on computability by various forms

of the ‘while’ programming language. By means of the cell decomposition theorem,

variants of these structure theorem are derived, with “basic open semialgebraic sets”

replaced by “connected open semialgebraic sets”.

(2) Equivalence of computability models for partial functions on R2.

This developed from the research in my MSc thesis (2007) for partial functions f

on R, in which four models of computability (including Grzegorczyk-Lacombe (GL)
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computability, tracking computability, and multi-polynomial approximability) were

shown to be equivalent, under two global assumptions :

(i) the domain of f is the union of an effective exhaustion of finite unions of “elemen-

tary” open sets,

(ii) f is effectively locally uniformly continuous w.r.t this exhaustion.

This thesis extends this study to functions on R2. For functions on R, the elementary

sets were simply rational open intervals. For functions on R2 (as in this thesis), the

appropriate elementary sets turn out to be bounded, connected basic open semialge-

braic subsets of the plane.

The most interesting of the equivalence proofs is in the direction “GL comp. ⇒

multipolynomial approx”. Here the function f , defined on an elementary set, is first

effectively extended to a GL-computable function on a rectangle, and then approx-

imated by a sequence of polynomials, using an effective version of the Weierstrass

theorem in 2 dimensions. The cell decomposition theorem is again used here, to

justify the algorithm extending the domain of f to a rectangle.

It is conjectured that the two global conditions are satisfied by all elementary

functions of two real variables.
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Chapter 1

Introduction

1.1 Background

1.1.1 Classical computability theory

We give a brief introduction on classical computation theory.

This was developed by Church, Turing and Kleene in 1930’s. Alan Turing used

the formalism of Turing machines, Alonzo Church that of λ-calculus, and Stephen

Kleene that of µ-recursion functions.

These three formalisms were all intended to capture the informal notion of com-

putation by a finite, deterministic algorithm on N or on Σ∗ (the set of strings from a

finite alphabet Σ).

They have all been shown to be equivalent, in the sense that they all generate the

same set of computable functions on N (or Σ∗).

1



2 1. Introduction

Some important theorems in classical computability theory are:

(1) Universal Function Theorem (Turing),

(2) Recursion Theorem (Kleene),

(3) Post’s Theorem.

1.1.2 Generalized computability theory: Motivation

A number of generalizations of classical computability theory to abstract structures

have been devised, especially to the domain of real numbers R.

The first question is: Why?

One reason is clear: Scientific computation is done largely on the reals; so it is

clearly desirable to try to apply the techniques of classical computability theory to

the set R of real numbers.

One important difference between R and N is that the elements of R, i.e, real

points, are (unlike elements of N or Σ∗) “infinite objects”; for example, a real number

is, in general, specified by an infinite sequence of approximating rationals. This means

that, in computing with reals, we must work with “finite approximations” of reals.

Further, real numbers have a metric or topological structure, giving rise to concepts

of “nearness”, and hence of closeness of approximations. Thus the topology of the

reals is a crucial concept in computation on the reals, as will be seen.

Different models of computation are used to define functions and sets on data

structures such as the reals. More precisely, a model of computation is a mathematical
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model of some general method of computing functions, or deciding membership of sets

There are two main kinds of such models: abstract and concrete

[TZ00,TZ04,TZ05].

Roughly speaking, in an abstract model of computation on the reals (let us say),

the data are taken as primitives (so to say), i.e., just as “points”, independently of

any representation. Two many-sorted algebras over the reals are constructed: a “field

algebra” R and a “ring algebra” R0. Computations are performed there.

Examples of abstract models are: (1) a high level programming language (e.g. the

‘While ’ language and extensions) over R, and (2) recursion schemes given in (say) a

typed lambda calculus. We will be working with the While model(s).

In a concrete model, by contrast, the data are given by representations. For exam-

ple, reals may have finite representations by (indices of) effective Cauchy sequences,

and the computations will, in general, depend on these representations. Examples

of such models are: tracking computability, Grzegorczyk-Lacombe computability and

Weihrauch’s Type 2 computability.

These models will be described in more detail below.

This thesis is concerned with computation of partial functions on the reals. Briefly,

it extends previous work on computable functions on the real line R to computable

functions on the Euclidean plane R2.

There are two main topics. The first extends previous work (contained in Bo Xie’s
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MSc Thesis [Xie04, XFZ13]) on characterizations of semicomputable sets on R (based

on While type languages) [Xie04, XFZ13] to such characterizations on R2.

The second extends previous work (contained in my MSc Thesis [Fu07, FZ14])

on equivalence proofs for various models of computation for partial functions on R

[Fu07, FZ14] to the case of functions on R2.

In Sections 1.2 and 1.3 we will discuss each of these topics in turn. Here we give

a brief survey of each.

Topic 1 deals with the question:

Give a topological characterization of semicomputable subsets of the plane,

where a semicomputable set is the domain of a computable partial function.

In [XFZ13] this problem was posed for semicomputable subsets of the real line R,

using three different versions of the While language, leading to three corresponding

solutions, which can all be summarized as

a set is semicomputable iff it is an effective countable union of “elementary sets”.

Here an “elementary set” here is simply an interval with either rational or algebraic

end-points. (An exact formulation will be given in Section 1.2.)

In trying to generalize this to two dimensions, the main problem was to find the

appropriate concept of “elementary” subset of the plane. This was found to be: basic

open semialgebraic set, as detailed in Section 1.2.

Turning to topic 2: here we have a number of models of computation (abstract



1. Introduction 5

and concrete) for partial functions f on the plane, and aims to prove their equivalence

under certain topological global assumptions, to be determined.

There are actually two precursors to this research project:

(i) In [TZ05] these equivalences were proved for total functions on R. The global

assumption needed there was: effective locally uniform continuity.

(ii) In [FZ14] we considered partial functions f on R. The global assumptions

needed here to prove equivalence were, apart from continuity, a domain exhaustion

assumption:

the domain U of f is a union of an effective exhaustion, i.e., an expanding

sequence of finite unions of “elementary sets”.

Here the “elementary sets” were simply rational open intervals.

In trying to generalize these results to two dimensions, with essentially the same

global assumptions, the main problem was, again, to find an appropriate concept

of “elementary” subset of the plane. This was found to be: bounded connected open

semialgebraic set, as detailed in Section 1.3. Note that this is similar, but not identical,

to the definition of “elementary set” in topic 1.

Note also that each of these topics is concerned with the (non-trivial) generaliza-

tion of topological properties of computable partial functions1 f : Rm ⇀ R from the

case m = 1 to m > 1. For each topic, we explicitly describe the case m = 2 only.

1‘⇀’ denotes a partial function.
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This decision was taken to avoid an unmanageable welter of super- and subscripts.

This generalization to m = 2 was the big step, and it would be relatively straight-

forward to generalize this study further from m = 2 to m > 2.

1.2 Characterizations of semicomputable subsets

of R2

1.2.1 Background: Subsets of R

This is a development of work in the M.Sc. thesis of Bo Xie [Xie04, XFZ13] on

characterizations of semialgebraic subsets of R.

Here one works with a partial many-sorted algebra R over R, and semicomputabil-

ity with respect to certain extensions of the While programming language over R.

These are WhileOR and While∃N, which extend While by (respectively) the oper-

ators of strong (boolean) disjunction, and existential quantification over N.

The main tools used there were

(1) Engeler’s Lemma (explained in Chapter 3) derived from an analysis of compu-

tation trees, and

(2) the Partition Lemma, characterizing the semantics of boolean expressions over R

in terms of a partition of R into positive, negative and divergent sets, composed

of finitely many algebraic open intervals and points.
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1.2.2 Extension to subsets of R2

In extending the results in § 1.2.1 to subsets of R2, Engeler’s Lemma is easily seen to

generalize. However the generalization of the Partition Lemma to two dimensions –

even its formulation – is more challenging. This was accomplished by working with

R0 instead of R, and replacing the intervals in R by basic open semialgebraic sets, i.e.

sets of the form

{x ∈ R2 | p1(x) > 0, . . . , pk(x) > 0} (k > 0) (1.1)

where p1, . . . , pk are polynomials over Z. In the sequel (Sections 4 and 5 ) we will use

“basic sets” to mean “basic open semialgebraic sets”.

In this way we derive two Structure Theorems for WhileOR and While∃N semi-

computability over R0:

Theorem 1. A subset U of R2 is WhileOR semicomputable, iff U is a countable

union of a disjoint effective sequence of finite unions of basic sets.

Theorem 2. A subset U of R2 is While∃N semicomputable, iff U is a countable

union of an effective sequence of basic sets.

− and a “partial structure theorem” for While semicomputability:

Theorem 3. For subsets of R2,

(a) While semicomputable =⇒ union of disjoint effective sequence of finite
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union of basic sets;

(b) union of disjoint effective sequence of basic sets =⇒While semicomputable.

The use of the algebra R0 instead of R in topic 1 is explained in Discussion 6.5.1.

1.3 Models of computation for partial functions on

R2

1.3.1 Background: Total and partial functions on R

This topic was developed from [TZ05, Fu07, FZ14]. In [TZ05] five models of com-

putation for total functions on the reals were investigated, and all five were shown

to be equivalent for functions f : Rm → R that are (a) total or, more generally,

defined on a product of intervals, and (b) effectively locally uniformly continuous .

The equivalence was proved for the following models:

(i) Grzegorczyk-Lacombe (GL) computability,

(ii) tracking computability,

(iii) effective locally uniform (Q-)polynomial approximability,

(iv) WhileCC approximability on a partial topological algebra R on R,

(v) local uniform While approximability on a total topological algebra Rt on R.

The first two of these are concrete, the last two are abstract, and (iii) is a ‘hybrid’

model.
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First, a brief explanation of these models. (More detailed descriptions will be given

below.) Model (i) and (ii) are well known concrete models [PER89][TZ05]. (ii) uses a

“tracking function” on N according to a standard enumeration α of the rationals, and

(hence) an enumeration α of the computable reals. (iv) and (v) are abstract models

of computability, based on versions of the While programming language. WhileCC

is a nondeterministic extension of While which incorporates countable choice, i.e.,

nondeterministic choice of a natural number satisfying a given predicate. R and Rt

are both topological algebras on R: R is a partial algebra, which includes partial

equality, order and inverse operations on the reals as basic functions, and Rt is a

total algebra, without these partial operations (but with the inverse of naturals).

In [TZ05] all five models of computability were shown to be equivalent, for func-

tions f : Rm → R (m > 0) that are (a) total or, more generally, defined on a

closed interval (or product of intervals, in the case m > 1) and (b) effectively locally

uniformly continuous .

In [Fu07, FZ14], this Equivalence Theorems was generalized to the case of partial

f : R ⇀ R. Because of complications associated with partiality, two global assump-

tions were made on f :

(a) the domain U of f is a union of an effective open exhaustion, i.e., a sequence

of stages (U0, U1, U2, . . . ), where2 for ` = 0, 1, 2. . . . , U` ⊆ U`+1 and U` is

2A denotes the topological closure of a set A.
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a finite union of rational open intervals I`1, . . . , I
`
kl

with disjoint closures, the

components of the stage U`; and

(b) f is effectively locally uniformly continuous with respect to this exhaustion.

So the “totality” assumption of [TZ05] was replaced by a more general “domain

exhaustion” assumption.) It should be noted that these two assumptions hold for

all the well-known unary functions of elementary real analysis, for example, f(x) =

cot(πx), which has domain U = R\N.

In fact, it was conjectured in [FZ14] that these assumptions seem to hold for all

unary elementary functions on R, where an elementary function on R is defined as

any function denoted by an expression built up from the variable x and constants for

computable reals, by repeated application of the four field operations, n-th roots, the

exponential and trigonometric functions and their inverses.

Since dom(f) is (in general) no longer connected as a subspace of R, some of the

arguments used in [TZ05] to prove the equivalences listed above are invalid, or at

least complicated. We list two significant issues:

(1) The proof of equivalence of While(Rt) approximability with the other four

models listed above fails. Hence this model is left out of further consideration.

(2) Polynomial approximability must be replaced by multipolynomial approximabil-

ity in which each multipolynomial approximant q` is the union of a tuple of
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polynomials (p`1, . . . , p
`
k`

), where we take dom(p`i) = I`i , the closure of the i-th

component of the stage U` (i = 1, . . . , k`).

1.3.2 Extension to partial functions on R2

The most interesting topic in this thesis, we feel, is the generalization of the

Equivalence Theorem for models (i) ,. . . ,(iv) above to the case of partial functions

f : Rm ⇀ R for m > 1. (As stated above, we only give an explicit exposition for the

case m = 2.)

To repeat the models investigated:

(i) Grzegorczyk-Lacombe (GL) computability,

(ii) tracking computability,

(iii) effective locally uniform multipolynomial approximability,

(iv) WhileCC approximability on a partial topological algebra R.

Their equivalence is proved (as in [FZ14]) by means of three Equivalence Lemmas:

Equivalence Lemma 1, 2 and 3.

These are proved under (versions of ) the two global assumptions used for m = 1

(see Section 1.2.2): domain exhaustion and continuity.

The most interesting of these equivalences is Equivalence Lemma 1, since it is here

that the difficulties in generalizing these results to m > 1 are most apparent. There

are two main problems here.
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The first problem is that the direction (iii) ⇒ (i), (multipolynomial approxima-

bility ⇒ GL computability) was proved in [FZ14] by connecting the components

of the multipolynomial approximants by linear interpolation, so as to construct the

GL-computable approximants to f , and then using a lemma about closure of GL-

computable functions under uniform limits.

For m > 1, it is not clear how one can apply interpolation for the analogous step.

The solution here is to extend the GL-closure lemma (5.2.7) to apply to approximants

fn defined not on U , but on Un.

The second problem in generalizing from m = 1 to m = 2 is: even the definition of

“effective exhaustion” becomes unclear. In one dimension a stage U` is a finite union

of finite open rational intervals with disjoint closures. How is this to be generalized?

The solution is to define a stage U` as a finite union of elementary sets E`
i , where

an elementary set is a bounded, connected basic set (see § 1.2.2) above), where (in

(1.1) p1, . . . , pn are now polynomials over the set Rc of computable reals.

It is still necessary to extend the function f continuously from the closure of each

elementary set to a containing rectangle K. This is done by our Extension Theorem,

which was quiet challenging (Theorem 4).

The reason for this extension is to be able to apply a Weierstrass -type theorem

for polynomial approximations on K. In [FZ14] this step involved a straightforward

adaptation of the effective Weierstrass theorem given in [PER89, Ch.0, Sec 7]. Here
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(with intervals replaced by rectangles) the proof of this theorem provided another

challenge, which was solved by the construction of an appropriate 2-dimensional pulse

function (Theorem 5). Details of the proof of Equivalence Lemma 1 are given in

Chapter 5.

1.4 Some remarks on the use of the cell decompo-

sition in this thesis

The cell decomposition theorem, applied to semialgebraic sets on R2, was used for

the purpose of obtaining a number of “finiteness theorems” in two distinct locations

in the thesis:

(1) In topic 1 (Chapter 4), for the purpose of formulating alternative versions of the

structure theorems, formed by replacing basic sets by connected open semialgebraic

sets (Section 4.7); and

(2) in topic 2 (Chapter 5), in connection with the proof of the Extension Theorem

(see Discussion 5.4.3).

Interestingly, the family of semialgebraic sets used is based on polynomials over

the integers in topic 1, and polynomials over the computable reals in topic 2.

The subject of CAD (cylindrical algebra decomposition)[BPM06] is, essentially,

the practical application of the theory of cell decomposition for semialgebraic sets.

I am grateful to Prof. Jacques Carette for originally suggesting the investigation of
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CAD in connection with the topics of my thesis, and to Dr Martin Bays for introducing

me to cell decomposition, and recommending Lou van den Dries’s book [vdD98].

Finally, I am very grateful to Profs. Lou van den Dries and Ludwig Bröcker for

their invaluable assistance with numerous emails on this subject.

1.5 Overview of the thesis

In Chapter 2 we review abstract many-sorted signatures and algebras, topological par-

tial algebras and, in particular, the topological partial algebra R0 and R over R (with

respectively the ring and field structures of the reals), and the While programming

language over R.

In our first main topic, working with the ring algebra R0, we give characterizations

of WhileOR and While∃N semicomputable subsets of R2, This is covered in Chapters

3 and 4. Our second main topic, the equivalence of various models of computability

for partial functions on R2, is covered in Chapters 5 and 6. In more detail:

In Chapter 3, the semantics of infinite disjunctions is discussed, the WhileOR

and While∃N language are defined, and the concept of semantic disjointness, and

Engeler’s Lemma for the WhileOR and While∃N languages, are presented.

Chapter 4 presents the Partition Lemma for boolean expressions over R2, and

hence the two Structure Theorems for WhileOR(R0) and While∃N(R0) semicom-

putable subsets of R2 (and a “partial structure theorem” for While semicomputable
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sets).

We introduce the concepts of semialgebraic and basic subsets of R2, which are

fundamental for this purpose. In addition, we discuss “finiteness theorems” based

on cell decomposition, and use these to present alternative versions of the Structure

Theorems.

In Chapters 5 and 6, we work with the full “field algebra” R, and consider the four

models of computation and prove their equivalence under the global assumptions. In

Chapter 5 we first define the concepts of elementary set and effective exhaustion, and

then state our global assumptions (domain exhaustion and continuity) on functions

f : R2 ⇀ R. Next we define two of the four models: GL-computability and effective

locally uniform multipolynomial approximability, and prove their equivalence under

the global assumptions (Equivalence Lemma 1).

In Chapter 6 we define the language WhileCC and the two remaining models:

α-tracking computability and WhileCC approximability. The remaining two equiv-

alence Lemmas:

“Tracking computability ⇐⇒WhileCC approximability ”

and

“GL-computability ⇐⇒ tracking computability ”
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are stated. They are not proved in detail, since their proofs are fairly straightforward

generalizations of the corresponding proofs in [FZ14] for unary functions.

The Equivalence Theorem, linking all four models, follows.

Chapter 6 ends with a discussion on the ease of generalizing the results in this

thesis to Rm for m > 2, and ideas for future research, including (1) connecting

our computation models on R2 with Weihrauch’s [Wei00], and (2) investigating the

conjecture that our two global assumptions hold for all elementary functions on R2.



Chapter 2

Signatures; The topological partial

algebras R0 and R; While

Computability

In this thesis, some abstract models1 of computability on R2 are given. To prepare

for this, we discuss abstract many-sorted signatures and algebras (Section 2.1), and

more specifically, topological partial algebras (Section 2.2), and in particular the

topological partial algebras R0 and R of reals (Section 2.3). We then describe the

While programming language, and the concept of While computable functions on

R2.

The material in this chapter is in the nature of a review. It is taken largely from

[TZ00, XFZ13, FZ14], and included so as to make the thesis self-contained.

1See discussion in Section 1.1.
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2.1 Basic Concepts: Signatures and algebras.

Definition 2.1.1 (Many-sorted signatures). A many-sorted signature Σ is a pair

〈Sort(Σ),Func (Σ)〉 where

(a) Sort(Σ) is a finite set of sorts, written s, s′, . . .

(b) Func (Σ) is a finite set of (primitive or basic) function symbols F with

F : s1 × · · · × sm → s (m ≥ 0).

Each symbol F has a type s1 × · · · × sm → s (written F : s1 × · · · × sm → s),

where m ≥ 0 is the arity of F . The case m = 0 corresponds to constant symbols;

we then write F : → s.

Definition 2.1.2 (Product types over Σ). A Σ-product type has the form

s1 × · · · × sm (m ≥ 0), where s1, . . . , sm are Σ-sorts. Product types are written

u, v, . . .

Definition 2.1.3 (Σ-algebras). A Σ-algebra A has, for each sort s of Σ, a non-

empty set As, called the carrier of sort s, and for each Σ-function symbol F : u→ s,

a (not necessary total) function2 FA : Au ⇀ As, where

Au =df As1 × · · · × Asm .

2We use ‘⇀’ to denote partial functions.
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The algebra A is total if FA is total for each Σ-function symbol F . Otherwise it

is partial.

We will write Σ(A) for the signature of an algebra A.

2.2 Topological algebras

Definition 2.2.1 (Continuity). Given two topological spaces X and Y , a partial

function f : X ⇀ Y is continuous if for every open V ⊆ Y ,

f−1[V ] =df {x ∈ X|x ∈ dom(f) and f(x) ∈ V }

is open in X.

Definition 2.2.2 (Topological partial algebra). A topological partial algebra is

a partial Σ-algebra with topologies on the carriers such that each of the basic Σ-

functions is continuous. The carriers B and N (if present) have the discrete topology.

Remark 2.2.3 (Continuity of computable functions; the continuity princi-

ple). The significance of the continuity of the basic functions of a topological algebra

A is that it implies continuity of all While computable function on A [TZ99, TZ00].

This is in accordance with the Continuity Principle which can be expressed as

“computability =⇒ continuity .”
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This principle is discussed in [TZ99, TZ04].

2.3 The algebras R0 and R of reals

In this thesis, we will work with the following algebra:

algebra R

carriers R, B, N

functions 0R, 1R : → R,

plusR, timesR : R2 → R

invR : R⇀ R,

0N : → N,

sucN : N→ N

tt, ff : → B,

or, and : B2 → B,

cor, cand : B2 → B,

not : B→ B,

eqN, lessN: N2 → B

eqR, lessR: R2 ⇀ B

The signature Σ of R, with sorts real, bool, and nat, can be inferred from the above.

The topic 1 we actually work with the “ring algebra” R0, with signature Σ0, which

is the retract of R formed by removing the inverse operator invR.

Remarks 2.3.1.

(1) R contains three carriers: R, N and B, of sorts real, nat and bool respectively.
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(2) R contains (as retracts) the field of reals, the naturals with 0 and successor, and

the booleans with their standard operations, including equality and order on R

and N.

(3) R contains two sets of boolean operators: (1) the strict operators ‘or’ and ‘and’;

and (2) the “conditional” operators ‘cor’ and ‘cand’ (denoted by ‘||’ and ‘&&’ in

C-like languages), “evaluated from the left”, and non-strict in the 2nd argument.

(4) R is a partial algebra, with the following basic partial functions: invR, eqR and

lessR, where for x, y ∈ R:

invR(x) '

 1/x if x 6= 0

↑ otherwise.

eqR(x, y) '

 ↑ if x = y

ff otherwise.

and

lessR(x, y) '


tt if x < y

ff if x > y

↑ if x = y.
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By contrast, the boolean functions on N: eqN and lessN, are total.

The reason for these semantic definitions will be given in Discussion 2.3.4.

Remark 2.3.2 (Terminology).

(a) The symbol ‘'’ denotes Kleene equality, where the two sides are either both

defined and equal, or both undefined.

(b) Above, the symbol ‘=’ on the r.h.s means (of course) equality at the semantic

level. Below we will also often write ‘t1 = t2’ for both eqR(t1, t2) and eqN(t1, t2).

Which of the three meaning is intended in any particular case will generally be

clear from the context.

Remarks 2.3.3 (Standard and N-standard algebras).

(a) The algebras N and R are standard, in the sense that they contains the carrier B

with the standard boolean operations. (In other words, they are expansions3of

the algebra B.) Standardness of R is necessary for a decent theory of computa-

tion on R [TZ00, TZ05].

(b) R is also N-standard, in the sense that it contains the carrier N with the standard

arithmetic operations. (In other words, it is an expansion of N.) N-standardness

of R is not really necessary for our main result, since the integers, and hence

the naturals, can be implemented in the reals [TZ00, Prop. 6.17]. However, it

is a very useful assumption.

3The concept of “expansion” is defined in [TZ00, Def.2.6].
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Discussion 2.3.4 (Motivation for definition of partial functions).

We want to motivate the definitions of partial functions in general, and more specifi-

cally, the functions eqp and lessp in R. We present our motivation in two ways: the first

based on continuity considerations, and the second based on a “thought experiment”

concerning (concrete) computation of the basic functions under discussion.

(a) The total versions of eqp and lessp are not continuous, as can easily be checked. (By

contrast, the total functions eqnat, lessnat on N are continuous, because of the discrete

topology on N.) Continuity of basic functions such as eqp and lessp in accordance with

our definition of topological algebra, is important in connection with the Continuity

Principle (see Remark 3.3.3).

(b) Consider now a thought experiment involving the computation of an atomic

formula ‘x = y’, where x and y are real variables. Suppose, at a particular state4, we

want to determine whether x = y is true at σ. Suppose also (we are now combining

“abstract” and “concrete” modes of description5) that the values of x and y at σ are

“given by” Cauchy sequences of rationals (r0, r1, r2, . . . ) and (s0, s1, s2, . . . ), which

(for convenience) we assume to be “fast”, i.e.,

∀n,∀m ≥ n |rn − rm| < 2−n,

and similarly for (sn). Suppose also that for n = 1, 2, 3, . . . the inputs rn and sn are

observed (from some device) at n time units. Now x < y is true at σ iff for some

4States are defined in Section 2.6
5Recall the discussion in §1.1
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n, rn + 2 · 2−n < sn, and this can be determined within a finite amount of time.

Correspondingly, x = y is true iff for all n, |rn − sn| ≤ 2 · 2−n, but this cannot be

determined within any finite amount of time. These considerations explain the form

of the partial definitions of equality and order on the reals.

2.4 The algebra R∗

The algebra R∗ is formed from R by adding the carrier R∗ (of sort real∗) consisting

of all finite sequences or arrays of reals, together with certain standard constants and

operations for the empty array, for updating arrays, etc.

The significance of arrays for computation is that they provide finite but un-

bounded memory. The reason for introducing the starred sort real∗ is the lack of

effective coding of finite sequences from R (unlike the case with N and B).

Since the use of R∗ is not essential in the thesis, and it plays only a heuristic role,

we omit a precise definition, which can be found in [TZ99, TZ00, TZ05].

Although the use of R∗ is convenient for computational purposes, it is not strictly

stronger than R, as we will see (Section 6.3).

We will be using the topological partial algebras R0, R and R∗ in the rest of the

thesis.
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2.5 While programming language

Our abstract models of computation on R2 are based on the While programming

language and certain extensions, applied to R [TZ99, TZ00, TZ04, TZ05].

Let A be a standard algebra with signature Σ.

We begin with the syntax of Σ-terms. Note that we use ‘≡’ to denote syntactic

identity between two expressions.

Definition 2.5.1 (Σ-variables). For each Σ-sort s, there are variables xs, ys, ...

of sort s. Var s(Σ) is the set of variables of sort s, and Var(Σ) is the set of all

Σ-variables, x,y,. . .

Definition 2.5.2 (Σ-terms). Tm(Σ) is the set of Σ-terms t, . . ., and Tms(Σ) the

set of Σ-terms of sort s (denoted ts), defined (in modified BNF) by

ts ::= xs|F (ts11 , . . . , t
sm
m )

where F is a Σ-function symbol of type s1 × . . . × sm → s (m ≥ 0).

We often drop the sort superscript s, and also write t : s to indicate that t ∈

Tms(Σ). More generally, we write t : u to indicate that t is a tuple of Σ-terms of

product type u. We write Terms for Terms(Σ), etc. We also write b, b′, . . . for

boolean Σ-terms, i.e. Σ-terms of sort bool.

Next, we consider program statements and procedures.
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Definition 2.5.3 (Statements). Stmt(Σ) is the class of Σ-statements S, . . . gen-

erated by:

S ::= skip | x := t | S1 ;S2 | if b then S1 else S2 fi | while b do S0 od

where x := t denotes simultaneous assignment, i.e for some m > 0, x ≡ (x1, . . . , xm)

and t ≡ (t1, . . . , tm) are variable and term tuples of the same product type, with the

condition that xi 6≡ xj for i 6= j, and b is a boolean term.

Definition 2.5.4 (Procedures). Proc(Σ) is the class of Σ-procedures P . . . of the

form:

P ≡ proc D begin S end

where the statement S is the body and D is the variable declaration of the form

D ≡ in a : u out b : v aux c : w

where a, b and c are tuples of input variables, output variables and auxiliary variables

respectively. We stipulate:

(i) a, b and c each consist of distinct variables, and they are pairwise disjoint,

(ii) every variable occurring in the body S must be declared in D (among a, b, c).

If a : u and b : v, then P has type u→ v, written P : u→ v.

We will write Tm for Tm(Σ), While for While(Σ) etc.
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2.6 States; Semantics of the While language

Definition 2.6.1 (State).

(a) A state on A is a family 〈σs | s ∈ Sort(Σ)〉 of functions σs : Var s → As.

(b) State(A) is the set of states on A, with elements σ, . . . .

Notation 2.6.2. For x ∈ Var s, we write σ(x) for σs(x). Also, for a tuple x ≡

(x1, . . . , xm), we write σ[x] for (σ(x1), . . . , σ(xm)).

Definition 2.6.3 (Variant of a state). Let σ be a state over A, and for some Σ-

product type u, let x ≡ (x1, . . . , xn) : u and a = (a1, . . . , an) ∈ Au (for n ≥ 1). We

define σ{x/a} to be the state over A formed from σ by replacing its value at xi by ai

for i = 1, . . . , n. That is, for all variables y:

σ{x/a}(y) =

 σ(y) if y 6≡ xi for i = 1, . . . , n

ai if y ≡ xi.

For t ∈ Terms, we will define the function

[[t]]A : State(A) ⇀ As

where [[t]]Aσ is the value of t in A at state σ.

Notation 2.6.4

(a) We write [[t]]Aσ ↓ to mean that evaluation of [[t]]Aσ halts, or converges, and

[[t]]Aσ ↓ a to mean that evaluation of [[t]]Aσ converges to a value a.
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(b) We write [[t]]Aσ ↑ to mean that evaluation of [[t]]Aσ diverges, i.e. does not halt.

Notation 2.6.5 (Kleene equality). We write e.g

[[t1]]
Aσ ' [[t2]]

Aσ

to mean that the two sides of the equality either both converge to the same value, or

both diverge (cf. [Kle52, §63]).

Definition 2.6.6 (Semantics of terms). The definition of [[t]]Aσ is by structural

induction on Σ-terms t:

[[x]]Aσ = σ(x)

[[F (t1, . . . , tm)]]Aσ '

 FA([[t1]]
Aσ, . . . , [[tm]]Aσ) if [[ti]]

Aσ↓ for 1 ≤ i ≤ m

↑ otherwise

Note that if c : → s, i.e. c is a constant symbol of sort s, then [[c]]Aσ = cA ∈ As

Note also that the semantics of the language (so far) is strict, based on the strict

definitions of FA for function symbols F . This will change with the definitions of

“strong” boolean operator below (Section 3.2).

Definition 2.6.7 (Semantic equivalence of terms). Two Σ-terms t1 and t2 of

the same sort s are (semantically) equivalent over A, written t1 ≈ t2, iff

∀σ ∈ State(A)
(
[[t1]]

Aσ ' [[t1]]
Aσ
)
.

Definition 2.6.8 (Weak semantic equivalence of booleans). Two Σ-booleans

b1 and b2 are weakly (semantically) equivalent over A, written b1 ∼ b2, iff
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∀σ ∈ State(A)
(
[[b1]]

Aσ ↓ tt ⇐⇒ [[b2]]
Aσ ↓ tt

)
.

The meaning [[S]]A of a While(Σ) statement S is a partial state transformer on

an algebra A:

[[S]]A : State(A) ⇀ State(A).

Its definition is standard [TZ00,§§ 3.4-3.6] and lengthy, and so we omit it here. Briefly,

it is based on the definition of the computation sequence of S starting in a given state

σ, or rather the n-th component of this sequence, by a primary induction on n, and

a secondary induction on the size of S.

The semantics of procedures is defined from the semantics of statements in a

standard way [TZ99,TZ00], and we omit details. So if

P ≡ proc in a : u out b : v aux c : w begin S end

is a procedure of type u→ v, then its meaning is a partial function

PA : Au ⇀ Av

2.7 While computability

Definition 2.7.1 (While computable function). Let A be a standard algebra.
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(a) A function f : Au ⇀ As is said to be computable (on A) by a While procedure

P : u→ s if f = PA.

(b) While(A) is the class of functions While computable on A.

Definition 2.7.2 (Halting set). The halting set of a procedure P : u→ v on A is

the set

HaltA (P ) =df {a ∈ Au|PA(a) ↓}

Definition 2.7.3 (While semicomputable set). A set R ⊆ Au is While

semicomputable on A if it is the halting set on A of some While procedure.

From now on, we restrict our attention to the algebras R0 and R.



Chapter 3

Infinite disjunction; WhileOR and

While∃N; Semantic disjointness;

Engeler’s Lemma

Chapters 3 and 4 cover the first topic of this thesis. In Chapter 4, we will prove cer-

tain structure theorems for While(R)-semicomputable sets of reals in the real plane.

In this chapter, in preparation for these theorems, we discuss the semantics of strong

disjunction (‘OR’), infinite disjunctions, the corresponding extensions WhileOR and

While∃N of the While language, the concept of semantic disjointedness, and En-

geler’s Lemma, which is an important theoretical tool for the research described in

this thesis. It states (roughly) that a semicomputable set can be expressed as the

disjunction of an effective infinite sequence of booleans over the appropriate signature.

We write Σ(OR) for the signature Σ or ΣOR, and While (OR) for the While or

31
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WhileOR language.

The work in this chapter was essentially covered in [XFZ13], for computation on

R. It is repeated here applied to computation on R2, for the sake of completeness.

3.1 Introduction

As we mentioned in Chapter 1 [TZ04, §1][XFZ13, §1], there are two main kinds of

models of computation: abstract and concrete. Abstract models of computation based

on the While language, with partial basic operations on R, suffer from a limitation,

namely the inability to implement interleaving or dovetailing. The problem is that

when interleaving two processes, one process may converge and the other diverge

locally (because of the partial basic operations). The resulting process will then

diverge, whereas we would want it to converge. Thus we cannot even prove that the

union of two semicomputable sets is semicomputable! (Concrete models do not have

this limitation.)

To correct this deficiency, we construct two enhancements of the While language:

WhileOR and While∃N.

In the WhileOR language, we introduce a strong (Kleene) disjunction operation

‘∇’, where b1 ∇ b2 converges to true if either component converges to true, even if

the other one diverges. By means of this, interleaving of finitely many processes can

be simulated at the abstract level.



3. Infinite disjunction; WhileOR and While∃N; Semantic disjointness;
Engeler’s Lemma 33

The While∃N language includes a strong ‘Exist’ construct over the naturals:

xB := Exist z : P (t, z)

where z : nat and P is a boolean-valued procedure. By means of this, interleaving

of infinitely many processes can be simulated at the abstract level.

We will study the structure of semicomputable subsets of R2, where a set is said to

be (for example) While semicomputable if it is the halting set of a While procedure

on R2.

3.2 Expanding While to WhileOR and While∃N

Let Σ be a standard signature. Note that it contains the “conditional” boolean

operators ‘cor’ (‘
c
∨’) and ‘cand’ (‘

c
∧’), as well as the strict boolean operators

(‘∨’,‘∧’)(see Remarks 2.3.1 (3)).

We now give their (3-valued) truth table semantics:

b1
c
∨ b2

@
@
@

@
@

b1

b2
tt ff ↑

tt tt tt tt

ff tt ff ↑

↑ ↑ ↑ ↑
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b1
c
∧ b2

@
@
@

@
@

b1

b2
tt ff ↑

tt tt ff ↑

ff ff ff ff

↑ ↑ ↑ ↑

Note that these two operators are not strict, unlike the boolean operators ‘∨’ and ‘∧’.

Next we give the semantics of the two strong Kleene operators ‘OR’ (‘O’) and

‘AND’ (‘M’)

b1 O b2:

@
@

@
@
@

b1

b2
tt ff ↑

tt tt tt tt

ff tt ff ↑

↑ tt ↑ ↑

b1 M b2:

@
@

@
@
@

b1

b2
tt ff ↑

tt tt ff ↑

ff ff ff ff

↑ ↑ ff ↑

Note that these two operators are also not strict.

The ‘OR’ operator allows us to simulate interleaving (or “dovetailing”) at an

abstract level, since it allows us to decide a disjunction of two boolean terms b1Ob1

to be true if either of these converges to tt (even if the other one diverges).
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Note that the ‘AND’ operator can be defined as dual to ‘OR’:

b1 M b2 ≡df ¬(¬b1O¬b2).

Note that negation here (and elsewhere) is defined strictly, i.e. ¬b evaluates to ↑

wherever b does.

Let ΣOR be the expansion of Σ formed by adding ‘OR’. We then define:

TermOR(Σ) = Term(ΣOR)

BoolOR(Σ) = Bool(ΣOR)

WhileOR(Σ) = While(ΣOR)

We can also extend the While language by adding a new boolean term

Exist z : P (t, z),

where the procedure P has type u × nat → bool, and z is a “new” variable of sort

nat. This will occur only in the context:

xB := Exist z : P (t, z).

We define its semantics as:

[[ Exist z : P (t, z)]]Aσ '

 tt if PA([[t]]Aσ, n) ↓ tt for some n

↑ otherwise.
(3.1)

This corresponds to the following operational semantics: interleave the computa-

tions for

PA(t, 0), PA(t, 1), PA(t, 2), . . .
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and return tt if and only if any of these procedures terminates and returns tt; otherwise

keep on going.

This operation allows us to simulate infinite interleaving at the abstract level.

Note that this is different from “evaluating from the left”, which can be implemented

by a simple loop:

find := false;

z:=0;

repeat

find := P (t, z)

z:=z+1;

until find = true.

which will diverge in case, e.g.,

PA(t, 1) ↓ ff, P (t, 2) ↑, P (t, 3) ↓ tt,

whereas Exist z : P (t, z) will converge to tt.

The usefulness of these new program constructs will become apparent in Section 3.

Using the ‘Exist’ construct, we can “weakly simulate” OR, i.e, define a procedure

P such that1

Exist z : P (b1, b2, z) ∼ b1 O b2.

1See Definition 2.6.8.
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In fact, we can define P (b1, b2, z) ≡

proc

in b1, b2 : bool

z : nat

out b : bool

begin

b := if z=1 then b1 else

if z=2 then b2 else

false

fi

fi

end.

Note that Exist z: P (b1, b2, z) is only weakly semantically equivalent to b1 O b2; in fact

no construct of the form Exist z: P (b1, b2, z) can be strongly equivalent to b1 O b2,

since when b1 and b2 both have the value ff, then b1 O b2 has the value ff, but Exist z:

P (b1, b2, z) can only have values tt and ↑, by (3.1).

We can nevertheless think of ‘OR’ as a “finite” version of ‘Exist’, and so we adjoin

the ‘OR’ construct together with ‘Exist’ to form the language While∃N(Σ).

Remark 3.2.1 (Continuity of WhileOR and While∃N computable functions).

As stated before all While computable functions on a topological partial algebra are

continuous. The same applies to WhileOR and While∃N computable functions. We
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omit proofs. Again, this is important because of the Continuity Principle2.

Remark 3.2.2. The ‘Exist’ construct can be implemented from the ‘choose’ construct

(or the “countable choice” operator” [TZ04]), by

xB := Exist z : P (t, z) ⇐⇒ n := choose z : P (t, z) ; xB := P (t, n)

However, unlike the ‘choose’ construct [TZ04] which is nondeterministic, the ‘Exist’

construct is “weakly” or “globally” deterministic, i.e., deterministic at the abstract

level, although there is nondeterminism in the actual choice of z in a concrete im-

plementation.

We have the obvious

Lemma 3.2.3.

(1) A While computable function is WhileOR computable.

(2) A WhileOR computable function is While∃N computable.

3.3 Numerical coding of syntax

We assume given a family of effective numerical codings of the classes of Σ-

expressions, with pEq denoting the code of the expression E. This coding is assumed

to satisfy:

2See Remark 2.2.3.
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• pEq increases strictly with the complexity of E, and in particular, the code of

an expression is larger than those of its subexpressions;

• sets of codes of the various syntactic classes, and their respective subclasses,

such as { ptq | t ∈ Term}, { ptq | t ∈ Terms } and { pSq | S ∈ Stmt}, etc.,

are primitive recursive;

• we can go primitive recursively from codes of expressions to codes of their

immediate subexpressions and vice versa; thus, for example, pS1q and pS2q are

primitive recursive in pS1;S2q, and conversely.

In short, we can primitive recursively simulate all operations involved in processing

the syntax of the programming language.

Numerical coding (or Gödel numbering) of programming syntax for a very similar

language, satisfying all the above conditions, can be found in [DSW94, §4.1].

3.4 Semantics of infinite disjunctions

We will see that the halting set of a While , WhileOR or While∃N procedure can be

expressed as the countable disjunction of an effective infinite sequence of booleans. We

must therefore first consider carefully some possible semantics for infinite disjunctions

in 3-valued logic.
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Discussion 3.4.1 (Two semantics for infinite disjunctions). Let (bk) be a

sequence of Σ(OR)-booleans. There are (at least) two different reasonable semantic

definitions for the infinite disjunction

∞∨
k=0

bk

for 3-valued logics (“reasonable” in the sense of having computational significance):

(1) Infinite conditional disjunction (“evaluation from the left”), written

∞
c∨

k=0

bk, with

two possible outputs, tt and ↑:

[[

∞
c∨

k=0

bk]]
Aσ =

 tt if ∃k, [[bk]]Aσ ↓ tt and ∀i < k, [[bi]]
Aσ ↓ ff

↑ otherwise

This definition is While computable (in the sequence of codes p bkq,) with the

following procedure:

Evaluate bk (k = 0, 1, ...) one by one. There are 3 possibilities:

• for some k, bk converges to tt, and all earlier bj converges to ff, or

• for some k, evaluation of bk diverges and all earlier bj converge to ff (“local

divergence”), or

• all the bk converge to ff (“global divergence”).

In the first case, evaluation of the infinite disjunction converges to tt.

In the latter two cases, it diverges.
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(2) Infinite strong disjunction (“strong Kleene evaluation”), written
∞̀

k=0

bk, again

with two possible outputs, tt and ↑:

[[
∞h

k=0

bk]]
Aσ =

 tt if ∃k, [[bk]]Aσ ↓ tt

↑ otherwise

This definition is not (in general) While (OR) computable (in the sequence

of codes pbkq), but it is While∃N computable, by the semantic definition of

Exist z : P (t, z) This is the definition we will mainly use in this paper, e.g. in

the formulation of Engeler’s Lemma (Lemma 3.5.4 below).

Intuitively, both definitions (1) and (2) are “concretely computable” (cf. Section 1.2).

They generalize (respectively) the finite disjunctions ‘cor’ (
c
∨) and ‘OR’ (O).

Notation 3.4.2. For any boolean term b with Var(b) ⊆ x : u, and a ∈ Au, we write

b[a] to mean [[b]]Aσ ↓ tt for some σ ∈ State(A) such that σ[x] = a. Note that this is

well-defined, by the Functionality Lemma for terms [TZ00, §3.2].

Definition 3.4.3 (Relation defined by boolean). A Σ(OR)-boolean term b with

Var(b) ⊆ x : u, is said to define a relation R ⊆ Au (w.r.t x) iff for all a ∈ Au

a ∈ R ⇐⇒ b[a].
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3.5 Engeler’s Lemma for While(OR) Semantic dis-

jointedness

The following Lemma is of vital importance in our work. [Eng68]

Lemma 3.5.1 (Engeler’s Lemma for While(OR)). If a relation R ⊆ Au is

While (OR) semicomputable over a standard partial Σ-algebra A, then R can be

defined as the (strong) disjunction of an effective sequence of Σ(OR)-booleans over

A.

In [XFZ13, §3], this Lemma was proved by the use of computation trees for

While (OR) computations.

We also need the following concept.

Definition 3.5.2 (Semantic disjointedness). A sequence (b0, b1, b2, . . . ) of boolean

terms is semantically disjoint over A if for any state σ on A and any n,

[[bn]]Aσ ↓ tt =⇒ ∀i 6= n, [[bi]]
Aσ ↓ ff .

The following two lemmas are proved in [XFZ13, § 4].

Lemma 3.5.3 (Semantic Disjointedness Lemma). The sequence of computable

boolean terms generated from a WhileOR computation tree S by the construction

using computation trees in the proof of Engeler’s Lemma3 is semantically disjoint.

Lemma 3.5.4 (Semantic disjointedness evaluation). If an effective sequence of

3[XFZ14,Lemma 4.3.1].
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booleans (bk) is semantically disjoint over A, then4

∞̀

k=0

bk ≈
∞
c∨

k=0

bk,

i.e. for any σ, [[
∞̀

k=0

bk]]
Aσ can be “evaluated from the left”.

3.6 Engeler’s Lemma for While∃N

In [XFZ13], in order to develop a form of Engeler’s lemma for While∃N, com-

putation trees (or hypertrees) for While∃N computation were developed. These

are countably infinitely branching and, strictly speaking, are not trees, but directed

acyclic graph. Nevertheless they are suitable for proving a version of Engeler’s lemma

for While∃N computation.

Lemma 3.6.1 (Engeler’s Lemma for While∃N). If a relation R is While∃N

semicomputable over a standard partial Σ-algebra A, then R can be defined as the

(strong) disjunction of an effective sequence of Σ-booleans over A.

Remark 3.6.1. Here (unlike Engeler’s Lemma for WhileOR computation) the se-

quence of booleans constructed in the proof of Engeler’s Lemma for While∃N does not

satisfy semantic disjointedness, because of the structure of the While∃N computation

hypertrees.

4Recall the notation ‘≈’ for semantic equivalence (Definition 2.6.7).



Chapter 4

Partition Lemma; Structure

theorems for semicomputable sets

over R0 on the real plane

We now present our Structure Theorems characterizing the WhileOR and While∃N

R0-semicomputable subsets of R2. We will discuss the limitations of the While

language in this regard and show how theWhileOR and the While∃N languages

correct these deficiencies, generalizing the corresponding results for semicomputable

subsets of R [XFZ13].

From now on, we consider only the algebra A = R0, and write Σ, ΣOR and Σ∃N

for Σ(R) and ΣOR(R) and Σ∃N(R0) respectively.

The results here extend to two dimensions those of [XFZ13], from which the

introductory material (Section 4.1) is largely taken.

44
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In Section 4.1, we introduce a modified semantics for booleans over R0, and define

a canonical form for such booleans.

In Section 4.2, we define the notions of semialgebraic and basic set in R2, which

are fundamental to what follows.

In Section 4.3, we present the Partition Lemma for booleans on R2, which is used

to prove the Structure Theorems in Section 4.4 - 4.6.

In Section 4.7, we discuss “finiteness theorems” based on cell decomposition, and

use these to present alternative versions of the Structure Theorems.

4.1 Computational equivalence of terms; Seman-

tics of atomic booleans; Canonical form for

ΣOR booleans

Recall that we are working over the ring algebra R0 over the reals, with signature Σ0.

Note that according to the syntax of terms over Σ(R0) (Section 2.3), all atomic

terms have one of the forms, eqR(t1, t2), lessR(t1, t2), eqN(t1, t2), lessN(t1, t2), where t1

and t2 have types real in the first two cases and nat in the last two cases.

Below we will be interested mainly in the first two forms. We will call these

(boolean) atoms, and write them as (t1 = t2) and (t1 < t2) respectively. (Thus ‘=’

and ‘<’ will generally refer to equality and order over the reals, unless otherwise

specified)
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For convenience, we write x for a tuple of real variables (x1, . . . , xm), and assume

t1 and t2 contain only variables in x. Further, for a state σ on R0, we write σ[x] = a,

where a = (a1, . . . , am) ∈ Rm, and σ(xi) = ai for i = 1, . . . ,m.

The proof of the Canonical Form Lemma 4.1.12 below (and hence the Partition

Lemma 4.3.3) requires a careful analysis of the semantics of atomic booleans of the

form

(1) t1 = t2 and (2) t1 < t2.

We will see below (Lemma 4.1.6), these atoms can be simplified, respectively, to

the forms (1) p(x) = 0 and (2) p(x) > 0, for some integer polynomials p(x). Now

according to the semantics of ‘=’ and ‘<’ (Remark 2.3.1), together with the semantic

rules for terms (Definition 2.6.6), the semantic evaluation of these two atoms at a

state σ, where σ[x] = a, is given by

[[p(x) = 0]]σ '

 ↑ if p(a) = 0

ff if p(a) 6= 0
(4.1a)

[[p(x) > 0]]σ '


tt if p(a) > 0

ff if p(a) < 0

↑ if p(a) = 0.

(4.1b)

Hence at a zero a of p(x), the booleans p(x) = 0 and p(x) > 0 both diverge.

Now suppose p(x) has degree 0, i.e. p(x) ≡ c for some (integer) constant c.

Consider the two cases:
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(1) c is non-zero. Then p has no zeros, and (as we would want) at all states p(x) = 0

evaluates to ff, and p(x) > 0 evaluates to tt if c is positive, and ff if c is negative.

(2) c is zero. Now every real point is a root of p, but by (4.1) the atoms p(x) = 0R

and p(x) > 0R, which simplify to 0R = 0R and 0R > 0R respectively, diverge at

all states! But this is quite counter-intuitive.

Similarly, we would (presumably) want atoms t1 = t2 to evaluate to tt, and not

diverge, if (e.g.) t1 ≡ t2 ≡ 3, or t1 ≡ 2∗x+2 and t2 ≡ 1+x+x+1, or more generally,

where the equality t1 = t2 follows from the ring axioms.

Hence we must modify the semantics given by (4.1).

We proceed as follows. First some remarks on the set Z[x] of polynomials with

integer coefficients, and real variable x = (x1, . . . , xk).

Remark 4.1.1 (Standard form for polynomials). Any polynomial can be written

in a standard form by (1) assuming a standard listing x1, x2, . . . of the real variables,

and (2) ordering the monomials xe11 x
e2
2 . . . xenm , firstly by decreasing weight ( = e1 +

e2 + · · · + en ), and secondly, anti-lexicographically in (e1, e2, . . . , en). We can then

define a numerical coding of polynomials in standard form.

Note that our polynomial expressions in standard form are written with integer

coefficients, although the signature Σ does not have a data type int. However our

“polynomial notation” does not involve integers essentially. For example, the poly-

nomial expression ‘2x2 − 3x + 4’ stands for the Σ-term x ∗ x + x ∗ x + (−x) + (−x) +
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(−x) + 1 + 1 + 1 + 1 (suitably parenthesized) of type real.

Let E be the equational calculus in the language (0, 1,+,−, ∗), with the axioms

for commutative rings. By “real term” we mean a Σ0-term of type real.

Definition 4.1.2 (Computational equivalence). Two real terms t1, t2 are com-

putationally equivalent (written t1 ∼= t2) iff E ` t1 = t2.

Lemma 4.1.3. Any real term t can be re-written uniquely as a polynomial in stan-

dard form; more precisely, there is a unique polynomial P[t] in standard form such

that t ∼= P[t].

Lemma 4.1.4. For any real terms t1, t2, the following three assertions are equivalent:

(1) t1 ∼= t2

(2) P [t1] ≡ P [t2]

(3) P [t1 − t2] ≡ 0 (the zero polynomial).

Proof . Clear.

Note that by the equivalence (1) ⇐⇒ (2) above, computational equivalence be-

tween real terms is decidable.

Lemma 4.1.5. Any atom of the form (1) t1 = t2 or (2) t1 < t2 can be rewritten in

the form (1) p(x) = 0 or (2) p(x) > 0 respectively, where p(x) ∈ Z[x].

Proof . This follows from the observation that t1 = t2 ⇐⇒ t1 − t2 = 0 ⇐⇒ P[t1 −

t2] = 0,
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and similarly for case (2) t1 < t2.

Recall the definition (2.6.7) of semantic equivalence:

t1 ≈ t2 ⇐⇒ ∀ σ ([[t1]]
Aσ = [[t2]]

Aσ)

i.e. for all σ, the two expression [[t1]]
Aσ and [[t2]]

Aσ both converge to the same value,

or both diverge.

The following Lemma expresses the soundness and completeness of computational

equivalence w.r.t. semantic equivalence.

Lemma 4.1.6. For any two real terms t1, t2

t1 ∼= t2 ⇐⇒ t1 ≈ t2

Proof . (=⇒) This is clear.

(⇐=) This follows from the fact that if a polynomial over Rm (m ≥ 1) has value 0

everywhere, then it must be the zero polynomial, by [XFZ13, Cor.2.3.2.].

Definition 4.1.7 (Modified semantics of boolean atoms). For real terms t1, t2,

we define:

[[t1 = t2]]σ '


tt if t1 ∼= t2

↑ if [[t1]]σ = [[t2]]σ but t1 � t2

ff if [[t1]]σ 6= [[t2]]σ.

(4.2a)

[[t1 < t2]]σ '


tt if [[t1]]σ < [[t2]]σ

ff if [[t1]]σ > [[t2]]σ or t1 ∼= t2

↑ if [[t1]]σ = [[t2]]σ but t1 � t2.

(4.2b)
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Note here that [[. . .]] means [[. . .]]R0 .

These definitions will be used in the proof of the Canonical Form Lemma (4.1.12).

Discussion 4.1.8 (Justification for modified semantics).

As in Discussion 2.3.3, we consider this issue in two ways: the first based on continu-

ity considerations, and the second, again, based on a thought experiment involving

concrete computations.

(a) Recall the discussion (2.3.3(a)) on the motivation for defining equality and order

on the reals as partial functions eqp and lessp. Continuity of WhileOR computable

functions is a central concern here. We may then well ask: do the above modified

semantic definitions (4.2.6) not “spoil” this continuity result? The answer is no: with

the above definitions, it still holds that While (or WhileOR, or While∃N) com-

putable functions are continuous. The proof depends on the fact that the condition

for the atomic formula ‘t1 = t2’ to have an output of tt instead of ↑ (i.e. that t1 ∼= t2)

is independent of the state. Hence the continuity proof given in [TZ99, §6] and [TZ00,

§7.6] for While computable functions on topological algebras can be easily adapted

to the semantics based on the present definition. We omit details.

(b) Another (“concrete”) approach to justifying this definition lies in continuing with

our thought experiment in Discussion 2.3.3(b). So consider again an atomic formula

of the form t1 = t2, and see what is involved in trying to decide whether it is true

or not. First, take the case considered in Discussion 2.3.3(b)) where t1 ≡ x, and
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t2 ≡ y. Suppose, again, that these are presented to us, at a given state σ, as fast

Cauchy sequences (rn) and (sn) of rationals respectively. Then, as shown in part

(b) of Discussion 2.3.3, we can only gain “negative” information in finite time. In

other words, if x = y is true at σ, then we cannot determine this in finite time, and

so the computation diverges. Suppose, however, that (for example) t1 ≡ 1 + x and

t2 ≡ x+1. Then it is clear a priori that these terms are equal, regardless of the state,

and without any need to consult the Cauchy sequence for x at that state.1 After all,

it is the same variable, and hence the same Cauchy sequence, on both sides of the

equation! Hence in this case we let the atom t1 = t2 evaluate to tt at all states.

Unless otherwise stated, the definitions and lemmas in this subsection refer to the

ΣOR-language, with the Σ-language as a special case. We generally write b, b
′
,... for

ΣOR-booleans.

Definition 4.1.9. A boolean combination of a set of atomic booleans is a boolean

expression built up from the boolean atoms (t1 < t2) and (t1 = t2) (with t1, t2 : real)

by ‘∨’, ‘∧’, ‘
c
∨’, ‘

c
∧’, ‘O’, ‘M’ and ‘¬’.

We need a technical lemma (Note that Σ0 = Σ(R0), where the algebra R0 is

defined in Section 2.3).

1We are assuming here that the ring axioms, such as commutativity of +, hold over R0 (which is
not always true in practical computing).
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Lemma 4.1.10. Every Σ0-term t: nat has one of two forms:

either suc(suc(. . . (suc 0N) . . . )) (4.3a)

or suc(suc(. . . (suc v) . . . )) (4.3b)

where there are n times ‘suc’ (for some n ≥ 0) and in case (4.3b), v is a nat variable.

Proof . An easy structural induction on t : nat.

For the base case, t must be either 0 or a nat variable. For the inductive step,

t must have the form suc t′, for t′ : nat, and the result follows from the induction

hypothesis.

Corollary 4.1.11. Every Σ0-term t : nat without a nat variable is a numeral, i.e. of

the form:

n ≡ suc(suc(. . . (suc 0N) . . . )) (n times suc). �

Lemma 4.1.12 (Canonical form for booleans over R0). A ΣOR
0 -boolean with

variables among x ≡ (x1, . . . , xm) of sort real only, is effectively semantically

equivalent to a boolean combination of equations and inequalities of the form:

p(x) = 0 and q(x) > 0

where p and q are polynomials in x of degree > 0.

Proof . By structural induction on the boolean b.
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Base cases:

• b ≡ (t1 = t2) or (t1 < t2) for terms t1, t2: real.

By Lemma 4.1.4, these are respectively semantically equivalent to P[t1− t2] = 0

and P[t2 − t1] > 0.

• b ≡ (t1 = t2) or (t1 < t2) for terms t1, t2: nat.

By Corollary 4.1.10, t1 and t2 must be numerals, n1 and n2 respectively, for

some n1,n2 ∈ N. Hence in this case b has the form (n1 = n2) or (n1 < n2) for some

n1, n2 ∈ N, which reduces to true or false in all cases.

Induction step:

Suppose both b1 and b2 are effectively strongly equivalent to boolean combinations

of equations and inequalities: p(x) = 0 and q(x) > 0.

Then, clearly the same holds for ¬b1, (b1∨b2), (b1∧b2), (b1
c
∨b2), (b1

c
∧b2), (b1 O b2)

and (b1 M b2).

Remark 4.1.13.

(a) Although the statement of Lemma 4.1.12 does not actually specify a unique

“canonical form” of a give boolean, it can easily be made unique by suitable

conventions for listing variables, etc.

(b) The proof of the lemma is effective or constructive, in the sense that it can be

made to effectively give a (or “the”) canonical form CF (b) of a given boolean
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b, so that the map pbq 7→ pCF (b)q is recursive.

4.2 Semialgebraic and basic sets

We introduce some concepts which will be very important in our subsequent work.

We consider subsets of R2.

Definition 4.2.1 (Semi-algebraic set). A semi-algebraic set is a finite union of

sets of the form

{x ∈ R2 | p1(x) > 0, . . . , pk(x) > 0, q1(x) = 0, . . . , q`(x) = 0} (k, ` ≥ 0) (4.4)

where p1, . . . , pk, q1, . . . , q` are polynomials over Z.

Definition 4.2.2 (Basic set). A basic set is a particular kind of semi-algebraic set

of the form

{x ∈ R2 | p1(x) > 0, . . . , pk(x) > 0} (k > 0) (4.5)

where p1, . . . , pk are polynomials over Z.

Note that basic sets are open.

Notation 4.2.3. We will use B,B′,B1,. . . to range over basic sets.
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Lemma 4.2.4. Given a polynomial p(x) on R2, there are disjoint basic sets B+, B−

and a semi-algebraic set D, such that on B+, p > 0, on B−, p < 0, and on D, p = 0,

and B+
⋃

B−
⋃

D = R2.

Proof . Clear.

This will be used in the Partition Lemma (Lemma 4.3.3).

4.3 Partition Lemma for ΣOR booleans on R2

Notation 4.3.1. For a pair of variables x ≡ (x1, x2) : real2, let Bool(x) be the set of

ΣOR-booleans with no free variables other than x.

For the rest of this section, we consider only booleans in Bool(x).

Definition 4.3.2. For any b ∈ Bool(x),we define

PS(b) (the positive set of b) =df {x ∈ R2 | b[x] = tt}

NS(b) (the negative set of b) =df {x ∈ R2 | b[x] = ff}

DS(b) (the divergence set of b) =df {x ∈ R2 | b[x] ↑}

Recall Notation 3.4.2. The significance of the terminology positive set, negative set

and divergent set is given by Lemmas 4.2.4 and 4.3.3.

Lemma 4.3.3 (Partition Lemma for booleans on R2). Every boolean b ∈

Bool(x) over R0 has semantics effectively represented by a partition of R2 of the

form:
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PS(b) =
k⋃
i=1

B+
i

NS(b) =
l⋃

i=1

B−i

DS(b) =
m⋃
i=1

Di

where B+
i , B−j are basic sets, B+

i ∩ B−j = φ, and Di has the form:

{x ∈ R2 | p1(x) > 0, . . . , pr(x) > 0, q1(x) = 0, . . . , qs(x) = 0} (4.6)

where p1, . . . , pr, q1, . . . , qs are polynomials over Z, with r ≥ 0, and s > 0. Then (since

s > 0) Di is a finite set of curves and/or points. Also DS(b) is the boundary of PS(b),

and of NS(b). And

k⋃
i=1

B+
i ∪

l⋃
i=1

B−i ∪
m⋃
i=1

Di = R2

The proof will be by structural induction on the canonical form of booleans.

To clarify the proof, we first examine a simple case. Suppose b1 ≡ p(x) > 0,

b2 ≡ p2(x) > 0, where (say) p1(x) = −x21−x22+4, and p2(x) = −(x1−3)2−x22+4 > 0.

Then (writing x = (x1, x2))

PS(b1) = {x | p1(x) > 0}

NS(b1) = {x | p1(x) < 0} {(x) | − p1(x) > 0}

DS(b1) = {x | p1(x) = 0}

PS(b2) = {x | p2(x) > 0}

NS(b2) = {x | p2(x) < 0} ={(x) | − p2(x) > 0}
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DS(b2) = {x | p2(x) = 0}

Now, consider the partition of b1
c
∨ b2, b1 ∨ b2 and b1Ob2.

(1) PS(b1
c
∨ b2) can be shown as (see Figure 4.1):

Figure 4.1

and in fact,

PS(b1
c
∨ b2) = PS(b1) ∪ (PS(b2) ∩NS(b1))

= {x | p1(x) > 0} ∪ {x | p2(x) > 0, p1(x) < 0}

NS(b1
c
∨ b2) = NS(b1) ∩ NS(b1)

= {x | p1(x) < 0, p2(x) < 0}

DS(b1
c
∨ b2) = DS(b1) ∪ (DS(b2) ∩NS(b1))
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= {x | p1(x) = 0} ∪ {x | p2(x) = 0, p1(x) < 0}

(2) PS(b1 ∨ b2) can be shown as (see Figure 4.2):

Figure 4.2

In fact,

PS(b1 ∨ b2) = (PS(b1) ∩ PS(b1)) ∪ (PS(b1) ∩NS(b2)) ∪ (NS(b1) ∩ PS(b2))

= {x | p2(x) > 0, p1(x) > 0} ∪{x | p1(x) > 0, p2(x) < 0}

∪ {x | p1(x) < 0, p2(x) > 0}

NS(b1 ∨ b2) = NS(b1) ∪NS(b2)

= {x | p1(x) < 0, p2(x) < 0}
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DS(b1 ∨ b2) = DS(b1) ∪DS(b2)

= {x | p1(x) = 0} ∪ {x | p2(x) = 0}

(3) PS(b1 O b2) can be shown as (see Figure 4.3):

Figure 4.3

in fact

PS(b1 O b2) = PS(b1) ∪ PS(b2)

= {x | p1(x) > 0} ∪ {x | p2(x) > 0}

NS(b1 O b2) = NS(b1) ∩NS(b2)

= {x | p1(x) < 0, p2(x) < 0}

DS(b1 O b2) = (DS(b1) ∩DS(b2)) ∪ (DS(b1) ∩NS(b2)) ∪ (NS(b1) ∩DS(b2))
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= {x | p1(x) = 0, p2(x) = 0} ∪{x | p1(x) = 0, p2(x) < 0}

∪ {x | p1(x) < 0, p2(x) = 0}

We proceed to the proof of the Partition Lemma.

Proof . Partition Lemma 4.3.3.

We first transform the given boolean to canonical form, by the algorithm contained

in the proof of the Canonical Form Lemma (see Remark 4.1.13(b)).

We proceed by structural induction on the canonical form of b.

Base case: b ≡ p(x) = 0 or p(x) > 0. Use Lemma 4.2.4.

Note that in the case that p(x) has degree 0, i.e., it is a constant integer c, the

atomic boolean p(x) > 0 has the form c > 0, and so reduces to true or false, depending

on the value of c. Similarly with the case of an atomic boolean p(x) = 0.

Induction step: Briefly, this follows from the fact that the class of finite unions of

basic sets is closed under (binary) union and intersection. In more detail, we consider

the various cases:

• b ≡ ¬b1. Then just interchange the positive and negative sets of b1.

Now suppose:

PS(b1) =
k1⋃
i=1

B+
1i

NS(b1) =
l1⋃
i=1

B−1i

DS(b1) =
m1⋃
i=1

D1i
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PS(b2) =
k2⋃
j=1

B+
2j

NS(b2) =
l2⋃
j=1

B−2j

DS(b1) =
m2⋃
j=1

D2j

• b ≡ b1 ∨ b2. Then

PS(b) = (
k1⋃
i=1

k2⋃
j=1

(B+
1i ∩B+

2j)) ∪ (
k1⋃
i=1

l2⋃
j=1

(B+
1i ∩B−2j)) ∪ (

l1⋃
i=1

k2⋃
j=1

(B−1i ∩B+
2j))

NS(b) =
l1⋃
i=1

l2⋃
j=1

(B−1i ∩B−2j)

DS(b) =
m1⋃
i=1

m2⋃
j=1

(D1i ∪D2j)

• b ≡ b1 ∧ b2. Then

PS(b) =
k1⋃
i=1

k2⋃
j=1

(B+
1i ∩B+

2j)

NS(b) = (
l1⋃
i=1

l2⋃
j=1

(B−1i ∩B−2j)) ∪ (
k1⋃
i=1

l2⋃
j=1

(B+
1i ∩B−2j)) ∪ (

l1⋃
i=1

k2⋃
j=1

(B−1i ∩B+
2j))

DS(b) =
m1⋃
i=1

m2⋃
j=1

(D1i ∪D2j).

• b ≡ b1
c
∨ b2. Then

PS(b) =
k1⋃
i=1

l1⋃
j=1

k2⋃
j′=1

(B+
1i ∪ (B−1j ∩B+

2j′))

NS(b) =
l1⋃
i=1

l2⋃
j=1

(B−1i ∩B−2j)

DS(b) =
m1⋃
i=1

l1⋃
i′=1

m2⋃
j=1

(D1i ∪ (B−1i′ ∩D2j))

• b ≡ b1
c
∧ b2. Then

PS(b) =
k1⋃
i=1

k2⋃
j=1

(B+
1i ∩B+

2j)

NS(b) =
l1⋃
i=1

k1⋃
i′=1

l2⋃
j=1

(B−1i ∪ (B+
1i′ ∩B

−
2j))
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DS(b) =
m1⋃
i=1

k1⋃
i′=1

m2⋃
j=1

(D1i ∪ (B+
1i′ ∩D2j))

• b ≡ b1O b2. Then

PS(b) =
k1⋃
i=1

k2⋃
j=1

(B+
1i ∪B+

2j)

NS(b) =
l1⋃
i=1

l2⋃
j=1

(B−1i ∩B−2j)

DS(b) =
m1⋃
i=1

m2⋃
j=1

(D1i ∩D2j) ∪ (
m1⋃
i=1

l2⋃
j=1

D1i ∩B−2j) ∪ (
l1⋃
i=1

m2⋃
j=1

B−1i ∩D2j).

• b ≡ b1 M b2. Then

PS(b) =
k1⋃
i=1

k2⋃
j=1

(B+
1i ∩B+

2j)

NS(b) =
l1⋃
i=1

l2⋃
j=1

(B−1i ∪B−2j)

DS(b) = (
m1⋃
i=1

m2⋃
j=1

D1i ∩D2j) ∪ (
m1⋃
i=1

k2⋃
j=1

D1i ∩B+
2j) ∪ (

k1⋃
i=1

m2⋃
j=1

B+
1i ∩D2j). �

Remark 4.3.4. Again, the proof of the Partition Lemma is effective, i.e. it gives an

effective map

b 7→ < PS(b), NS(b), DS(b) >

from booleans b in canonical form to partitions (i.e.recursive in codes). Composing

this map with the map given by the Canonical Form Lemma (b 7→ CF (b)) then gives

an effective map from booleans to their partitions.

Remark 4.3.5. The basic sets B+
i , B−j given by Lemma 4.3.3 need not be connected.

However, by the Cell Decomposition Theorem [vdD98], each has finitely many con-

nected components (which need not be basic! – see section 4.7, Proposition 1).
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Lemma 4.3.6. There is a WhileOR computable function

inB : N× real2 ⇀ bool

such that for any basic set B,

inB(pBq, x1, x2) '


tt if (x1, x2) ∈ B

ff if (x1, x2) /∈ B

↑ otherwise, i.e(x1, x2) ∈ B \B = ∂B

(4.7)

Proof . Suppose B is defined by:

{(x1, x2) ∈ R2 | p1(x1, x2) > 0, . . . , pk(x1, x2) > 0}. (k > 0)

Then we can define (4.6), i.e. “(x1, x2) ∈ B”, by

p1(x1, x2) > 0 M . . . M pk(x1, x2) > 0 (4.8)

,

(where M associates to the left, let us say).

Then by the semantics of ‘M’ (Section 3.2), we note that

(1) if for any i, (pi(x1, x2) > 0) evaluates to false, then, (4.8) evaluates to false;

(2) if for all i, (pi(x1, x2) > 0) evaluates to true, then, (4.8) evaluates to true.

(3) otherwise (4.8) diverges.
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Lemma 4.3.7. There is a WhileOR computable function

inS : N× real2 ⇀ bool

such that:

inS(pSq, x1, x2) '


tt if (x1, x2) ∈ S

ff if (x1, x2) /∈ S

↑ otherwise, i.e(x1, x2) ∈ S \ S
where S is a finite union of basic (open) sets.

Proof . By Lemma 4.3.5 and the semantics of ‘M’.

4.4 Characterizations of semicomputable sets in

R2

In this section, we prove the “=⇒” direction of the Structure Theorems.

Lemma 4.4.1. If a set R ⊆ R2 is WhileOR semicomputable over R0, then R can

be expressed as the countable union of a disjoint effective sequence of finite unions of

basic sets.

Proof . If R ⊆ R is WhileOR semicomputable, then by Engeler’s Lemma for

WhileOR (Lemma 3.5.1), for all x ∈ R2,
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x ∈ R ⇐⇒
∞∨
k=0

bk[x]

for an effective sequence (bk) of ΣOR-booleans in Bool(x). By the Partition Lemma

(Lemma 4.3.3) each bk defines a finite union of effective basic sets.

By the Semantic Disjointedness Lemma (Lemma 3.5.3), the sequence (bk) is se-

mantically disjoint over R0, and hence the positive sets2 for different bk’s are dis-

joint.

Lemma 4.4.2. If a set R ⊆ R is While∃N semicomputable over R0, then R can be

expressed as the countable union of an effective sequence of basic sets.

Proof . By Engeler’s Lemma for While∃N (Lemma 3.6.1), a While∃N semicom-

putable set over R0 can be expressed as a countable disjunction of ΣOR-booleans, to

which the Partition Lemma (Lemma 4.3.3) again applies.

Remark 4.4.3. Note we lose the disjointedness of the basic sets sequences because

the failure of semantic disjointedness of the boolean sequence of the hypertrees for

While∃N computation (cf. Remark 3.6.1).

2Recall Definition 4.3.2.
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4.5 Unions of effective sequences of basic sets are

semicomputable

In this subsection, we prove the reverse “⇐=” direction of the Structure Theorems.

Lemma 4.5.1. The countable union of a disjoint effective sequence of finite unions

of basic sets on R2 is WhileOR semicomputable over R0.

Proof . Finite unions of basic sets gives us a total recursive function f : N → N

such that f(n) is the code of the nth basic set. So the countable union of a disjoint

effective sequence of finite union basic sets is equal to the halting set of the procedure

proc

in x1 x2 : real;

aux i : nat;

begin

i := 0;

while not(inB(Pf (i), x1, x2))

do i := i + 1 od

end

(4.9)

where Pf is the While(N) (and hence While(R0)) procedure which computes f on

R2.

By Lemma 4.3.6, inB is WhileOR computable, and so the above procedure is

WhileOR computable.
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Next, if we drop the condition of disjointness on the sequence of basic sets, we

need to strengthen the corresponding programming language.

Lemma 4.5.2. The countable union of an effective sequence of basic sets is While∃N

semicomputable over R0.

Proof . An effective sequence of basic sets is given by a total While computable

function f : N → N such that f(n) returns the code of the nth basic set.

So the countable union of an effective sequence of basic sets equal to the halting

set of the While∃N procedure:

proc

in x1, x2: real;

out b : bool;

begin

b := Exist z : P (x1, x2, z)

end

where the procedure P (x1, x2, z) is defined as

inB(Pf (z), x1, x2)

and Pf : nat→ nat is the While(N) (and hence While(R0)) procedure which com-

putes f on R2.
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By Lemma 4.3.6, inB is WhileOR (and hence While∃N) computable, and so the

above procedure is While∃N computable.

4.6 Structure theorems for semicomputable sets

over R0

We finally present our two Structure Theorems for While , WhileOR and While∃N

semicomputable sets over R0.

Theorem 1. A subset U of R2 is WhileOR semicomputable over R0 iff U is a

countable union of a disjoint effective sequence of finite unions of basic sets.

Proof . By Lemmas 4.5.1 and 4.4.1.

Theorem 2. A subset U of R2 is While∃N semicomputable over R0 iff U is a

countable union of an effective sequence of basic sets.

Proof . By Lemmas 4.5.2 and 4.4.2.

Unfortunately, we have only a partial result for While semicomputability:

Theorem 3. For subsets of R2,

(a) While semicomputable over R0 =⇒ union of disjoint effective sequence of finite

union of basic sets.



4. Partition Lemma; Structure theorems for semicomputable sets over R0

on the real plane 69

(b) union of disjoint effective sequence of basic sets =⇒While semicomp. over R0.

Proof . (a) follows from the “=⇒” direction of Theorem 1.

(b) We modify the proof of Lemma 4.5.1 as follows. In procedure (4.8), reinterpret

‘inB’ (cf. Lemma 4.3.6) by replacing ‘M’ by ‘∧’ in (4.7). This works because of the

disjointedness of the sequence of basic sets, reduces the language from WhileOR to

While .

Remark 4.6.1 (Use of R0 for the Structure Theorems). The Structure Theo-

rems for semicomputable subsets of R2, as presented here, are not really generaliza-

tions of the corresponding theorems stated in [XFZ13] for R, since the latter used

While (etc.) semicomputability w.r.t. the field algebra R, whereas we use the ring

algebra R0. The reason for this is that the theory of Section 4.1, notably Lemmas

4.1.3 - 4.1.6 and Definition 4.1.7 (modified semantics) applies, as it stands, only to

real terms in the language of R0.

We believe that the Structure Theorems do, in fact, hold also with the field algebra

R. However we were unable to investigate this properly, due to lack of time.

4.7 Cell Decomposition and Finiteness Theorems

The technique of cell decomposition in Rn, as described e.g in [vdD98], can be used

to prove some finiteness theorems, for example (working, as usual, with open sets in
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R2):

Proposition 1. An open semialgebraic set S in R2 has finitely many connected

components, each semialgebraic.

Proposition 2. An open semialgebraic set S in R2 is a union of finitely many basic

sets.

Proposition 1 is proved in [vdD98], and Proposition 2 in [Del82].

Remark 4.7.1 (Effective Versions of Finiteness Theorems). The proofs of

Propositions 1 and 2 can be effectivized. For Proposition 1: if S has connected

components C1, . . . , Cn then we can effectively find, from a numerical code for S (as

a boolean combination of polynomial equations and inequalities) a code for the tuple

< n,C1, . . . , Cn >. Similarly for Proposition 2 3.

This will be important for the variant formulations of the Structure Theorems

given below (Remark 4.7.3).

Remark 4.7.2 Note that the components of S given by Proposition 1 need not be

basic. Moveover, the basic sets given by Proposition 2 need not be connected.

On the other hand, we have the following positive result 4.

Proposition 3. If the components of a basic set are bounded, and they have disjoint

closures, then they are also basic.

3Personal communication from Prof. Lou van dan Dries.
4Personal communication from Prof. Ludwig Bröcker.
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Counterexamples, to this proposition, in the absence of either of these two condi-

tions, are given in [ABR96, p.26, Ex.4.8].

Remark 4.7.3 (Variant formulations of the Structure Theorems). Using the

effective forms of Proposition 1 and Proposition 2 (see Remark 4.7.1), we can prove

variants of our Structure Theorems, formed by replacing, in Theorems 1 and 2, the

phrase “basic sets” by “connected open semialgebraic sets”.

However (see Remark 4.7.1) we cannot, in Theorems 1 and 2, replace “basic sets”

by “connected basic sets”.



Chapter 5

Exhaustion, Grzegorczyk-Lacombe

(GL) computability on R2,

Multipolynomial approximability

on R2, Equivalence Lemma

In Chapter 5 and 6, covering our topic 2, we return to the full field algebra R.

In this chapter we will consider two models of computation on R2: the concrete

model of GL computability and the “hybrid” model of multipolynomial approximabil-

ity, for partial functions on R2. We will make two assumptions about such functions:

(1) their domain has an “effective exhaustion” (to be defined below) and (2) they are

effectively locally uniformly continuous with respect to this exhaustion.

Under these assumptions we will prove the equivalence of these models (Equiv-

72
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alence Lemma 1). In Chapter 6, we will combine this with two other Equivalence

Lemmas to derive the Equivalence Theorem for four computability models on R2.

We will use the concepts of semialgebraic and basic sets, as in Chapter 4 (Section

4.2), for the purpose of defining “effective exhaustion”, in such a way to be able

to prove the Extension Theorem (Theorem 4) used in the proof of this Equivalence

Lemma.

The cell decomposition theorem is also relevant here, in connection with the proof

of the Extension Theorem (Theorem 4).

It turns out that the appropriate definition of “polynomial” here is polynomial

over the set Rc of computable reals (not over Z, as in Chapter 4). We therefore make

the following terminological convention.

Convention 5.0.1. In this and the following chapter, “polynomial” will mean poly-

nomial over Rc. Semialgebraic and basic sets will be defined accordingly.

5.1 Elementary set; Exhaustions; local approxima-

bility and continuity

Semialgebraic and basic sets over R2 are defined as in Chapter 4 (Definitions 4.2.1

and 4.2.2) except that the polynomials fi and gj in (4.4) and (4.5) are taken to have

coefficients in Rc (see Convention 5.0.1).
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Definition 5.1.1 (Elementary set). An elementary set is a non-empty, bounded,

connected basic subset of R2.

Remark 5.1.2. Semialgebraic sets, and in particular elementary sets E, have fi-

nite descriptions given by their defining equations (4.4, 4.5) and hence have effective

numerical codings pEq.

Definition 5.1.3 (Exhaustion on R2). Assume U is an open set of R2, which is

the union of a sequence of compact sets or “stages” (U0, U1, U2, . . . ), where each stage

U` is a finite union of elementary sets. More precisely:

(i) U =
∞⋃
`=0

U`,

(ii) U` = E`
1 ∪ . . . E`

p`
for some p` ≥ 1, ` = 0, 1, 2, . . .

where E`
i is an elementary set, and E`

i ∩ E`
j = φ for i 6= j,

(iii) ∀ `,∀ i ∈ {1, . . . , p`},∃ j ∈ {1, . . . , p`+1} : E`
i ⊂ E`+1

j .

Then (U`) is called an (open) exhaustion of U , and for each `, U` is a stage of the

exhaustion with components E`
1, . . . , E

`
p`
.

Remark 5.1.4. From clause (iii) follows:

U` ⊂ U`+1

for all `.
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Remark 5.1.5. The motivation for clause (iii) will be made clear later (Remark

5.4.4, page 97).

Definition 5.1.6 (Effective exhaustion). An exhaustion (U`) of U is called effec-

tive if for all `, the stages U` are computable, that is, the map

` 7→ < pE`
1q, . . . , pE

`
p`
q >

is recursive.

We will work with functions f : R2 ⇀ R where U = dom(f) has an effective

exhaustion.

Remark 5.1.7. The use of elementary sets as components of the stages U` of U is

important for the Extension Theorem (Theorem 4), and also permits the inclusion of

many functions commonly considered in calculus and elementary real analysis. (See

Section 6.6, Problem 2 for a conjecture in this regard.)

In order to illustrate this concept of exhaustion on Rn, we will give some examples

for n = 2:

Examples 5.1.8 (Effective exhaustion).

(1) f(x1, x2) = 1
x1x2

. The functions looks as follows (Figure 5.1):
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Figure 5.1: f(x1, x2) =
1

x1x2

Then (see Figure 5.2)

U = dom(f) = {(x1, x2) ∈ R2 | x1 6= 0, x2 6= 0} =
∞⋃
`=0

U`

where U` =
3⋃
i=0

E`
i , and

E`
0 = {(x1, x2) | 1

`+1
< x1 < `, 1

`+1
< x2 < ` }

E`
1 = {(x1, x2) | − ` < x1 < − 1

`+1
, 1

`+1
< x2 < ` }

E`
2 = {(x1, x2) | − ` < x1 < − 1

`+1
, −` < x2 < − 1

`+1
}

E`
3 = {(x1, x2) | 1

`+1
< x1 < `, −` < x2 < − 1

`+1
}
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Figure 5.2: Exhaustion of domain of function f(x1, x2) = 1
x1x2

We will return to this example in Section 5.4 (multipolynomial approximations of

GL-computable functions: see Example 5.4.10 page 111).

(2) f(x, y) = tan(π
2

√
(x2 + y2)). Then (see Figure 5.3)

U = dom(f) = {(x1, x2) ∈ R2 | x21 + x22 6= 2k + 1, k ∈ Z and k ≥ 0} =
∞⋃
`=0

U`

where U` =
⋃̀
i=0

E`
i , and

E`
0 = {(x1, x2) | x21 + x22 < 1− 1

`+ 2
}

for i > 0,

E`
i = {(x1, x2) | x21 + x22 > (2 ∗ i− 1) +

1

`+ 2
, x21 + x22 < (2 ∗ i+ 1)− 1

`+ 2
},

Note that the E`
i are not convex, or even simply connected – they are

“2-dimensional rings”.
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Figure 5.3: Exhaustion of domain of function f(x, y) = tan(π
2

√
(x2 + y2))

Terminology 5.1.9

(i) By “point” we will mean element of R2. We will generally denote points in R2

by x, y, . . . , with x = (x1, x2) and y = (y1, y2). For function f : R2 ⇀ R, we

write f(x) = f(x1, x2).

(ii) We write d for the Eulidean metric on the plane:

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2

(iii) By “rational point” we will mean a point r = (r1, r2) where r1, r2 ∈ Q.

We will investigate the computability of partial functions f : R2 ⇀ R where

dom(f) is an open set U with an effective exhaustion (U`).
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Definition 5.1.10 (Local uniform continuity). f is locally uniformly continuous

w.r.t (U`) iff ∀ ` ∀ε > 0 ∃ δ > 0 ∀x, y ∈ U`

d(x, y) < δ =⇒ |f(x)− f(y)| < ε.

Remark 5.1.11. We get an equivalent definition by stipulating that x and y are

in the same component E`
i of U`, since (by compactness of E`

i ) any two points in

different components of U ` will have a positive minimum distance.

Definition 5.1.10 can be effectivized:

Definition 5.1.12 (Effective local uniform continuity). f is effectively locally

uniformly continuous w.r.t (U`) if there is a recursive function M : N2 ⇒ N such that

for all k,` and all x, y ∈ U`

d(x, y) < 2−M(k,`) ⇒ |f(x)− f(y)| < 2−k.

Now let (fn) be a sequence of functions fn: R2 ⇀ R with dom(fn) = Un.

Definition 5.1.13 (Effectively locally uniformly continuous sequence). The

sequence (fn) is effectively locally uniformly continuous w.r.t (U`) if there is a recursive

function M : N3 → N such that for all k,`,n, all x, y ∈ U`, and all n ≥ `,

d(x, y) < 2−M(k,`,n) ⇒ |fn(x)− fn(y)| < 2−k.
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(Note that for n ≥ `, dom(fn) = Un ⊇ U`.)

From now on, in Chapters 5 and 6, we investigate the computability properties of

partial functions f : R2 ⇀ R, and we make the following two global assumptions on

f .

Assumptions 5.1.14 (Global assumptions on f). f : R2 ⇀ R satisfies:

(a) Domain exhaustion: The domain U of f is a union of an effective exhaustion

(U`), as in Definition 5.1.6;

(b) Continuity: f is effectively locally uniformly continuous w.r.t (U`) (Definition

5.1.12).

These assumptions are satisfied by many functions commonly encountered in cal-

culus and elementary real analysis. In Section 6.6 we make a conjecture connecting

the applicability of these global assumptions to all elementary functions on R2.

5.2 GL-computability

The following six definitions are adapted from [PER89, Ch. 0], where it was assumed

that the domains of f and fn are products of intervals: Rm or [0, 1]m (m > 0).

Definition 5.2.1 (Computable sequence of points). A sequence of real points

(xn) = ((x1n, x2n)) is computable iff there exists a computable double sequence of
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rationals (rnk)=((r1nk, r2nk)) such that for all n,k:

d(xn, rnk) ≤ 2−k

Definition 5.2.2 (Sequential computability of function). f is sequentially com-

putable on U iff f maps every computable sequence of points ((x1n, x2n)) ∈ U into a

computable sequence (f(x1n, x2n)) of reals.

Below we assume, in addition to the Global Assumption, for sequences (fn) of

functions,

dom(fn) = Un.

Definition 5.2.3 (Sequential computability of sequence of functions). The

sequence (fn) of functions is sequentially computable w.r.t (U`) iff for any computable

sequence ((x1m, x2m)) of points in Um, the double sequence ymn = (fn(x1m, x2m))

(n ≥ m) of reals is computable, i.e. there exists a computable triple sequence (rmnl)

of rationals, (rmnl)→ ymn effectively in m,n, l. In other words, there exists a recursive

function M : N3 → N, such that for all m,n, k,

N ≥M(m,n, k) =⇒ |rmnl − fn(x1m, x2m)| < 2−k

.

(Recall that for n > m, Un ⊃ Um, so that fn(x1m, x2m) is defined.)
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The variable k correspond to the error 2−k, and the function M(m,n, k) gives a bound

on N sufficient to attain this error.

Definition 5.2.4 (GL-computability on R2). f is GL-computable w.r.t. (U`) iff:

(1) f is sequentially computable on U (Definition 5.2.2), and

(2) f is effectively locally uniformly continuous w.r.t. (U`) (Definition 5.1.12).

Note that condition (2) in the definition is subsumed under Global Assumption

5.1.14(b).

Definition 5.2.5 (GL-computable sequence on R2) The sequence (fn) is GL-

computable w.r.t. (U`) iff

(1) (fn) is sequentially computable w.r.t (U`) (Definition 5.2.3), and

(2) (fn) is effectively locally uniformly continuous w.r.t (U`) (Definition 5.1.13).

Definition 5.2.6 (Effective local uniform convergence). The sequence (fn)

converges to f (fn → f) effectively locally uniformly w.r.t (U`) iff there is a recursive

function M : N2 → N such that for all k,`, all x ∈ U`, and n ≥ `

n ≥M(k, `) ⇒ |fn(x)− f(x)| < 2−k

Lemma 5.2.7 (GL-Closure). Assume dom(f`) = U`, (fn) is a GL-computable

sequence w.r.t (U`), and fn → f effectively locally uniformly w.r.t (U`). Then f is

GL-computable w.r.t (U`).
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Proof:

By the assumption, we know

(fn) is effective locally uniformly continuous w.r.t (U`), (5.1)

(fn) is sequentially computable w.r.t (U`), (5.2)

fn → f effectively locally uniformly w.r.t (U`). (5.3)

We must show that f is GL-computable.

First, we can rewrite (5.3) as:

∀n,∀x ∈ Un : |fn(x)− f(x)| < 2−n (5.3′)

by effectively taking a subsequence of (fn). Note that (5.1) and (5.2) still hold for

this subsequence.

Now given a computable sequence (xm) = ((x1m, x2m)) of points in U : we must

show (f(xm) ) is a computable sequence.

By Definition 5.2.1, there exists a computable double sequence of rational points

(rmk) = ((r1mk, r2mk)) such that for all m, rmk → xm.

We can assume (by taking an effective subsequence of (rmk)) that

∀m, k : d(rmk, xm) < 2−k (5.4)
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Note that for all m,`, if xm ∈ E`
i , we can effectively find δ > 0 s.t. B(xm, δ) ⊆ E`

i .

Hence we can find k, ` = `m such that

N(rmk, 2
−2k+1) ⊂ U`m .

Then for all j,

j ≥ k =⇒ rmj ∈ U`m ,

and so,

xm ∈ U`m . (5.5)

Now taking the subsequence Vm = U`m , note that (5.1) and (5.3) still hold for this

subsequence, with U`m replaced by Vm, and the subsequence (fn)n≥m.

We have from (5.5) for all m:

xm ∈ Vm (5.6)

and for all m, k:

rmk ∈ Vm (5.7)

Let ymn = fn(xm) (n ≥ m), and ym = f(xm). By (5.7), (5.2) (and from Definition

5.2.3) the sequence
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(ym,m, ym,m+1, . . . ) (m = 0, 1, 2, . . . )

is a computable sequence of reals. We must now show (ym) is a computable sequence

of reals.

By (5.3′):

∀m,n ≥ m : |fn(xm)− f(xm)| < 2−n (5.8)

i.e.

∀m,n ≥ m : |ymn − ym| < 2−n. (5.9)

Also by (5.2) and Definition 5.2.3, there exists a computable triple sequence of

rationals (smnN): (n ≥ m) such that

smnN → ymn effectively in m,n,N

,

i.e. there exists a recursive function M : N3 −→ N such that

∀ k,m, n ≥ m : N ≥M(m,n, k) =⇒ |smnN − ymn| < 2−k (5.10)
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Putting N = M(m,n, k), by (5.10) we get

∀ k,m, n ≥ m : |sm,n,M(m,n,k) − ymn| < 2−k (5.11)

Put tm,k = sm,k,M(m,k,k) (i.e. put n = k). Then (tmk) is computable double

sequence of rationals.

Then for k ≥ m, by (5.11),

|tmk − ymk| < 2−k (5.12)

and (again for (k ≥ m): by (5.9) and (5.12),

|tmk − ym| ≤ |tmk − ymk|+ |ymk − ym| < 2−k + 2−k = 2−(k+1).

Hence (ym) is a computable sequence of reals. That is, for any xm ∈ U , ym = f(xm)

is computable. So (by Definition 5.2.2) f is sequentially computable on U .

Further, by the global assumption, we know that f is effectively locally uniformly

continuous w.r.t (U`).

Hence, finally, f is GL-computable w.r.t. (U`). �
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5.3 Multipolynomial approximability

Definition 5.3.1 (Multipolynomial). Given a finite sequence of (Rc)-polynomials

(p1, p2. . . , pk) and a sequence of elementary sets (E1, E2 . . . , Ek) with disjoint closures,

we define an (Rc)-multipolynomial q(x) (where x = (x1, x2)) with domain
⋃k
i=1Ei as

follows:

q(x) =



p1(x) if x ∈ E1

p2(x) if x ∈ E2

...

pk(x) if x ∈ Ek

↑ otherwise.

We denote this multipolynomial as

q = [ p1 � E1, . . . , pk � Ek ].

Definition 5.3.2 (Effective sequence of multipolynomials). Given an effective

exhaustion (U`) of U , with U` = E`
1∪· · ·∪E`

k`
⊆ R2, where the E`

i are disjoint, and an

effective sequence of polynomials (i.e. effective in their numerical codes) (p`1, . . . , p
`
k`

)

(`=0, 1, 2, . . . ), the sequence (q`), where q` = [p`1 � E
`
1, . . . , p

`
k`
� E`

k`
], is called an

effective sequence of multipolynomials.
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Definition 5.3.3 (Effective local uniform multipolynomial approximability).

Given f : R2 ⇀ R, and an effective exhaustion (U`) of U = dom(f), where U` =

E`
1 ∪ · · · ∪ E`

k`
, we say that the effective sequence of multipolynomials (q`), where

q` = [p`1 � E
`
1, . . . , p

`
k`
� E`

k`
],

converges to f (q` → f) effectively locally uniformly w.r.t (U`) if there is a recursive

function M : N2 → N such that for all k,`, n, and all x ∈ U`:

n ≥M(k, `) ⇒ |qn(x)− f(x)| < 2−k.

We also say that f is effectively locally multipolynomially approximable by (q`) w.r.t.

(U`).

5.4 Equivalence between GL-computability and

multipolynomial approximability on R2

In this section we prove, under the Global Assumptions, Equivalence Lemma 1:

“GL-computability⇐⇒ multipolynomial approximability” (5.13)

In preparation for the “ =⇒ ” direction, we prove an “Extension Theorem”, which

is crucial for the application of the Weierstrass approximation theorem.
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Definition 5.4.1 (Containing rectangle). A containing rectangle K of an elemen-

tary set E is a closed rectangle K s.t. E ⊆ K (see Figure 5.4).

Figure 5.4: Containing rectangle

Theorem 4 (Extension Theorem). Let E ⊆ R2 be an elementary set. Let K be

a containing rectangle of E. Let f be a GL-computable function on E. Then f can

be extended to a GL-computable f̂ on K.

Proof. We first give a rough idea of the proof (see Figure 5.5):
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Figure 5.5: Extend f to f̂

We must define f̂(x) for any point x ∈ K \ E.

Note first that x = (x1, x2) is on a vertical line ` (Figure 5.5). This line ` can be

divided into a finite number of disjoint open segments (AB, BC, CD, DE, EF , FG,

GH in Figure 5.5), each one being either completely inside, or completely outside E.

Depending on which segment x is in, we define f̂(x) by either linear interpolation

(for x in CD or EF ) or constant extrapolation (for x in AB or GH), e.g. for x ∈

AB, define f̂(x) = f(B). In this way we can (apparently) extend f on E to f̂ on K,

maintaining continuity and GL-computability.

There is however a problem with this method,

Consider the following situation (Figure 5.6)
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Figure 5.6: A hole with LLM M

with M a “local left maximum” on ∂E1 and M ′ arbitrarily near M . Then f̂ (defined

by linear interpolation on A′B′) may be discontinuous at M . For suppose f(M) = 1,

but f(A) = f(A′) = f(B) = f(B′) = 0, then f̂(M ′) = 0, no matter how close M ′ is

to M .

We now describe how to deal with such problems.

First, we define a local left maximum (LLM) as a point (a1, a2) ∈ ∂E such that

for some δ > 0, and all (x1, x2) ∈ ∂E:

(a) |x2 − a2| < δ =⇒ x1 ≥ a1, and also (5.14a)

(b) either a2 < x2 < a2 + δ =⇒ x1 > a1 (5.14b)

or a2 − δ < x2 < a2 =⇒ x1 > a1

Clause (b) says that (a1, a2) must be a strict local left maximum either from above or

from below (or both). The reason for this clause is that in its absence, any point on

1Where ∂E is the boundary of E ( = E \ E since E is open).
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a vertical edge would count as an LLM. This is explained in more detail in Remark

5.4.2 (page 95). Local right maxima (LRM’s) are defined similarly.

Back to the problem shown in Figure 5.6: The solution to this problem is to

extend f to f̂ on K in two steps.

Step 1:

At each LLM M on ∂E, draw a level line ` extending from M to the left, either

to ∂E (Figure 5.7) or to ∂K. (Figure 5.8):

Figure 5.7: A line from an LLM point M of ∂E to the left, ending in ∂E
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Figure 5.8: A line from one LLM point M of ∂E to the left, ending in ∂K

Define f̃(x) for x in the segment MN either by linear interpolation of f on M and N

(as in Figure 5.7) or by constant extrapolation of f from M to N . (as in Figure 5.8).

Do this for each LLM of ∂E. Similarly, for each LRM (local right maximum) M ,

define f̃(x) on the level line ` extending from M to the right, and define f̃ on ` as

with the LLM’s.

We should note, in this connection, that there are only finitely many LLM’s and

LRM’s on ∂E (see Discussion 5.4.3).

Let `1, . . . , `k be all the level lines obtained from local maximum in this way, and

let

L = E ∪
k⋃
i=1

`i,

By the above construction, we have extended f to a function f̃ on L, which is
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clearly continuous and GL-computable on L.

For example (see Figure 5.9):

Figure 5.9: Extending f on E to f̃ on L

Here `1 and `2 are level lines from the LLM’s M1 and M2 respectively, and `3 is a level

line from the LRM M3. f̃ is defined by linear interpolation on `1 and by constant

extrapolation on `2 and `3.

Step 2:

We must extend f̃ to a continuous GL-computable function f̂ on K.

So let x be a point in K \ L, and consider the vertical line ` through x. This line

` is partitioned into a finite number of segments, formed by each crossing of ` with

either ∂E or a level line.
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This is best shown by an example (Figure 5.10).

Figure 5.10: Extending f on E to f̂ on K

There are two level lines `1 and `2, extending from LLM’s M1 and M2 respectively,

and a level line `3 extending from LRM’s M3.

The vertical line ` is divided into the segments AB, BC, CD, DE, EF , FG, GH.

Then f̂ is defined on the segments BC, DE and EF by linear interpolation. E.g.

for x ∈ DE, f̂(x) is defined by linearly interpolating the values of f̃ at D and E.

And f̂ is defined on the segments AB and GH by constant extrapolation. E.g.

for x ∈ AB, f̂(x) = f̃(x).

In this way, the problem with discontinuity has been avoided, since (returning to

our example in Figure 5.6) there is now a level line `M extending left from the LLM



96
5. Exhaustion, Grzegorczyk-Lacombe (GL) computability on R2,

Multipolynomial approximability on R2, Equivalence Lemma

at M (Figure 5.11):

Figure 5.11: Maintaining the continuity at M ′

Now f̂(M ′) is obtained by linearly interpolating f̃ between B′ and C, (not between

B′ and A′) giving

f̂(M ′) ≈ f̃(C) ≈ f(M) = 1

as desired.

In this way, we obtain an extension f̂ of f to K, which is continuous. It is also

GL-computable on K, by an extension of the patching theorem [PER89, p. 32] to 2

dimensions. �

Remark 5.4.2. To explain the need for clause (b) in the definition (5.14) of LLM’s:

In its absence, every point on a vertical segment, e.g. AB in Figure 5.12, would

be an LLM! With clause (b) only the two points, A and B, are LLM’s, with a level
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line from each of them, as we would wish:

Figure 5.12: With a level line from each of them (LLM’s points A and B)

Similarly, in Figure 5.13:

Figure 5.13: With a level line from LLM’s point C

Only point C is an LLM, with level line `c, as desired.

Discussion 5.4.3 (On the proof of the Extension Theorem). In order to ensure

that the above proof is quite correct, we must check certain steps to ensure that we

are not being misled by our geometric intuition. We note the following.

Let E be an elementary set, i.e. a bounded, connected basic subset of R2. Let

B = ∂E. Then



98
5. Exhaustion, Grzegorczyk-Lacombe (GL) computability on R2,

Multipolynomial approximability on R2, Equivalence Lemma

(1) B is composed of finitely many algebraic curves (i.e curves given by polynomial

equations in x1 and x2).

(2) E has only finitely many holes.

(3) Any straight line ` crosses B only finitely many times. (If ` and B coincide for

part of their lengths, that counts as a single crossing).

(4) B has only finitely many LLM’s and LRM’s (local left and right maxima).

(5) Each LLM and LRM is a computable point.

(6) It is decidable whether any given computable point on B is an LLM (or LRM).

(7) All LLM’s and LRM’s on B can be effectively located (from (4), (5) and (6)).

The results above can be proved from the cell decomposition theorem [vdD98,

Ch.3] applied to E and B.

This applies particularly to the “finiteness” results (2),(3),(4),2 which justify (e.g)

the division of the vertical line ` in Figure 5.10 into finitely many segments, each

either completely inside, or completely outside, E.

Discussion 5.4.4 (Definition of GL-computable functions on compact do-

mains). In the Extension Theorem above, we assumed that the functions were

GL-computable on compact sets C (i.e. E, or E with level lines, or K). Strictly

2We thank Prof. Lou van den Dries for clarifying this.
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speaking, we have not defined GL-computability of a function f for such domains C.

We can do so by modifying Definition 5.2.4 (page 81) as follows: In (1), replace ‘U ’

by ‘C’, and replace (2) by (2′): f is effectively uniformly continuous on C.

Then our assertion that f (as given) is GL-computable on E assumes that E is a

subset of U (the union of the given exhaustion (U`)). But this follows from clause (iii)

of our definition (5.1.3) (page 71) of exhaustion,(see Remark 5.1.5, page 71), since

E = E`
i for some `, i, and so

E = E`
i ⊂ E`+1

j (for some j) ⊂ U

Remark 5.4.5 (Other Proofs of the Extension Theorem). The Tietze Exten-

sion Theorem [Kel55] states that if X is a normal topological space and A is any closed

subset of X and f : A → R is continuous, then f can be extended to a continuous

function f̂ : X → R.

The proof in [Kel55] is, as it stands, quiet non-constructive3. A constructive

version is given by Bishop and Bridges [BB85] for the case that X is a metric space,

and A is a locally compact subset of X.

In principle we could use their construction for our Extension Theorem (Theorem

4). Clearly, however our construction, for the special case that X is a rectangle in

R2 and A is the closure of a bounded, connected basic set, is much simpler than the

3At least it appears so.
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construction given by the proof in [BB85].

The following Theorem is an adaption to two dimensions of the classical, effective

form of the Weierstrass Theorem for unary functions defined on an interval [PER89,

Ch.0, Sec.7].

Theorem 5 (Effective Weierstrass Theorem for R2). Let D be the rectangle

[−1/4, 1/4]2 ∈ R2, and let f be a function on D which is GL-computable. Then

there exists an effective sequence of polynomials pn which converges effectively and

uniformly to f on D.

First we give an outline of the proof. It follows Weierstrass’s proof ([Rud76,

Thm 7.26], [PER89, Thm. p.45]) adapted to two dimensions. Briefly, it proceeds

by assuming first that (by use of the Extension Theorem) the function f is defined

on the unit square I = [−1, 1]2. We next construct a sequence (Pm(x1, x2)) (eqn

(5.15) below) of polynomial “pulse functions” which are “large” (≈ 1) within a small

distance d of (0,0) and “small” (≈ 0) beyond that on I.

By convoluting the Pm with f (eqn (5.24)) we obtain a sequence (pm(x1, x2)) of

polynomials which approximate f uniformly on I, to any desired degree of accuracy

(eqn (5.34) below).

We turn to the precise proof. To facilitate comparison with the 1-dimensional

case, we follow the notation of [PER89] where possible.
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Proof of the effective Weierstrass Theorem for R2.

First, we can extend f from D to I = [−1, 1] × [−1, 1] by a simple constant

extrapolation from ∂D to I (cf. [PER89, Thm.3, p.33]). Let d be a large integer

(greater than 4) to be specified later.

We define:

I = {(x1, x2) | |x1|, |x2| ≤ 1},

J = {(x1, x2) ∈ I | |x1|, |x2| ≥ 1
d
},

K = {(x1, x2) ∈ I | |x1|, |x2| ≤ 1
2d
}.

the sets I, J,D,K are as follows (Figure 5.14):

Figure 5.14: I, J , D and K

We define a polynomial “pulse function” Pm(x1, x2) by:

Pm(x1, x2) =
[
(1− x21)(1− x22)

]m
. (5.15)
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Then on J ,

Pm(x1, x2) ≤
{[

1− (
1

d
)2
][

1− (
1

d
)2
]}m

= (1− 1

d2
)2m (5.16)

and on K:

Pm(x1, x2) ≥
{[

1− (
1

2d
)2
][

1− (
1

2d
)2
]}m

= (1− 1

4d2
)2m (5.17)

We want to compare the ratio of (5.16) and (5.17). Putting u=1/4d2, we rewrite

(5.16) and (5.17) as follows:

On I:

Pm(x1, x2) ≤ (1− 4u)2m (5.18)

and on K:

Pm(x1, x2) ≥ (1− u)2m (5.19)

We will compare the ratio of (5.18) and (5.19), note that for k = 1, 2, . . .

(1 + u)k ≥ 1 + ku (5.20)
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(1− u)k ≥ 1− ku (5.21)

by induction on k. Hence (by (5.21) with k =4)

1− u
1− 4u

≥ 1

(1− u)3

≥ (1 + u)3 since ((1 + u)3(1− u)3 = (1− u2)3

≥ 1 + 3u (by (5.20) with k=3) (5.22)

Hence,

r.h.s. of (5.17)

r.h.s. of (5.16)
= (

1− u
1− 4u

)2m

≥ (1 + 3u)2m by (5.22)

≥ 1 + 6mu by (5.20)

> 6mu =
3m

2d2
(5.23)

Let

pm(x1, x2) =
1

Cm

∫ 1
2

− 1
2

∫ 1
2

− 1
2

Pm(t1 − x1, t2 − x2)f(t1, t2)dt1dt2 (5.24)

where Cm is the “normalizing constant”,
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Cm =

∫ 1

−1

∫ 1

−1
Pm(u1, u2)du1du2

then also (putting u1 = t1 − x1, u2 = t2 − x2):

Cm =

∫ x2+1

x2−1

∫ x1+1

x1−1
Pm(t1 − x1, t2 − x2)dt1dt2

Hence

f(x1, x2) =
1

Cm

∫ x2+1

x2−1

∫ x1+1

x1−1
Pm(t1 − x1, t2 − x2)f(x1, x2)dt1dt2 (5.25)

So,

pm(x1, x2)− f(x1, x2) = 1
Cm

[ ∫ 1
2

− 1
2

∫ 1
2

− 1
2

Pm(t1 − x1, t2 − x2)f(t1, t2)dt1dt2 −∫ x2+1

x2−1

∫ x1+1

x1−1 Pm(t1 − x1, t2 − x2)f(t1, t2)dt1dt2
]

We write pm as follows:

pm(x1, x2)− f(x1, x2) = (A) + (B) + (C) (5.26)

where,

(A) = pm(x1, x2)− (B1) = 1
Cm

[ ∫ 1
2

− 1
2

∫ 1
2

− 1
2

Pm(t1 − x1, t2 − x2)f(t1, t2)dt1dt2 −∫ x2+ 1
d

x2− 1
d

∫ x1+ 1
d

x1− 1
d

Pm(t1 − x1, t2 − x2)f(t1, t2)dt1dt2
]
,

(B) = (B1)− (B2)
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= 1
Cm

[ ∫ x2+ 1
d

x2− 1
d

∫ x1+ 1
d

x1− 1
d

Pm(t1 − x1, t2 − x2)[f(t1, t2)− f(x1, x2)]dt1dt2
]
, (5.27)

and

(B1) = 1
Cm

∫ x2+ 1
d

x2− 1
d

∫ x1+ 1
d

x1− 1
d

Pm(t1 − x1, t2 − x2)f(t1, t2)dt1dt2

(B2) = 1
Cm

∫ x2+ 1
d

x2− 1
d

∫ x1+ 1
d

x1− 1
d

Pm(t1 − x1, t2 − x2)f(x1, x2)dt1dt2

(C) = (B2)− f(x1, x2) = 1
Cm

[ ∫ x1+ 1
d

x1− 1
d

∫ x2+ 1
d

x2− 1
d

Pm(t1 − x1, t2 − x2)f(x1, x2)dt1dt2 −∫ x2+1

x2−1

∫ x1+1

x1−1 Pm(t1 − x1, t2 − x2)f(t1, t2)dt1dt2
]
.

Here, (t1 − x1, t2 − x2) ∈ I, and I contains [−1/2, 1/2]× [−1/2, 1/2]. Also,

[x1 − 1/d1, x1 + 1/d]× [x2 − 1/d, x2 + 1/d] ⊆ [−1/2, 1/2]× [−1/2, 1/2]

. In both (A) and (C), note that

(t1 − x1, t2 − x2) ∈ J,

and

Cm =

∫ 1

−1

( ∫ 1

−1
Pm(t1, t2)dt1

)
dt2

.

Now, we consider the ratio:

∫ ∫
J
Pm(x1, x2)dx1dx2∫ ∫

I
Pm(x1, x2)dx1dx2

.
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Since
∫ ∫

I
Pm(x1, x2)dx1dx2 ≥

∫ ∫
K
Pm(x1, x2)dx1dx2

then,

∫ ∫
J
Pm(x1, x2)dx1dx2∫ ∫

I
Pm(x1, x2)dx1dx2

≤
∫ ∫

J
Pm(x1, x2)dx1dx2∫ ∫

K
Pm(x1, x2)dx1dx2

(5.28)

By (5.23) above, the ratio

sup of Pm(x1, x2) on J

inf of Pm(x1, x2) on K
≤ 2d2

3m

And the ratio

area of J

area of K
= 4(1− (

1

d
)2)
/ 1

4d2
≤ 16d2.

Note that

∫ ∫
J

Pm(x1, x2)dx1dx2 ≤ sup of Pm(x1, x2) on J × area of J

and

∫ ∫
K

Pm(x1, x2)dx1dx2 ≥ inf of Pm(x1, x2) on K × area of K.

Then we get:
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∫ ∫
J
Pm(x1, x2)dx1dx2∫ ∫

K
Pm(x1, x2)dx1dx2

≤ 32d4

3m
. (5.29)

By (5.28) and (5.29), we have:

∫ ∫
J
Pm(x1, x2)dx1dx2∫ ∫

I
Pm(x1, x2)dx1dx2

≤ 32d4

3m
(5.30)

Now, we can consider (A) and (C) above.

Hence, letting S be an (effective) upper bound of f(x) for x ∈ D:

|A| ≤ S
32d4

3m

|C| ≤ S
32d4

3m

For (B), because f is effectively uniformly continuous, there is a recursive function

d(N) such that

d(x, y) ≤ 1

d(N)
⇒ |f(x1, x2)− f(y1, y2)| ≤

1

3
2−N ,

where x = (x1, x2), y = (y1, y2).

Hence, (cf. equations (5.27)) for (t1, t2) ∈ [x1 − 1
d
, x1 + 1

d
]× [x2 − 1

d
, x2 + 1

d
] ,
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|f(t1, t2)− f(x1, x2)| ≤
1

3
2−N

,

where d = d(N), i.e. d(t, x) ≤ 1
d(N).

Then, we get,

|B| ≤ 1

3
2−N (5.31)

Now, we can define the recursive function:

m(N) = 32Sd(N)42N

so that

S
32d(N)4

3m(N)
=

1

3
2−N

then for m ≥ m(N),

|A| ≤ 1

3
2−N (5.32)

and

|C| ≤ 1

3
2−N . (5.33)
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Hence, by (5.26), (5.31), (5.32) and (5.33), for all (x1, x2) ∈ [−1/4, 1/4] ×

[−1/4, 1/4]

|pm(x1, x2)− f(x1, x2)| ≤ 2−N (5.34)

�

Remark 5.4.6 (Other Proofs of the Effective Weierstrass Theorem).

As stated above, our proof of Theorem 5 and the construction of an effective approx-

imating polynomial sequence to a function defined on a closed rectangle, is an adap-

tation to 2 dimensions of the construction given in [PER89, Ch. 0, p.45, Sec. 7], for a

function f defined on a closed interval, which essentially follows Weierstrass’s original

proof, involving convoluting f with a sequence of pulse functions. The Weierstrass

Theorem was generalized by M.N. Stone to the case of a function defined on a com-

pact topological space X, with the algebra of polynomial functions replaced by more

general subalgebras of the algebra C(X) of continuous functions on X [Kel55,Rud76].

Constructive versions of the Stone-Weierstrass theorem have also been given in

Bishop and Bridges [BB85, p.105], and Banaschewski and Mulveyb [BM97] for X a

compact space. In principle, we could use their construction for Theorem 5 directly

on the closure of our elementary set E, without the need for an Extension Theorem

(Theorem 4). However, our effective version clearly gives a much simpler method for

computing the effective polynomial sequence (cf. Remark 5.4.3), as illustrated below
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(Example 5.4.10).

Corollary 5.4.7. Let K = [a1, b1]× [a2, b2] be a rectangle in R2, and let f : K ⇀ R

be GL-computable. Then there exists an effective sequence of polynomials pn which

converges effectively uniformly to f on K.

Proof. First, let D = [−1/4, 1/4]× [−1/4, 1/4]. We use a linear transformation

ϕ: K ⇀ D with ϕ(x1, x2) = (x′1, x
′
2) where

2x′1 +
1

2
=
x1 − a1
b1 − a1

2x′2 +
1

2
=
x2 − a2
b2 − a2

Define f ′ : D ⇀ R by f ′(x′1, x
′
2) = f(x1, x2).

By the composition Lemma [PER89, p.28, Theorem 1], we know that f ′ = f ◦ϕ−1

is GL-computable.

By the Weierstrass Theorem 5, there exists an effective sequence of polynomials

p′n which converges effectively uniformly to f ′ on D.

Hence, using the linear transformation again, and letting pn = p′n ◦ ϕ, we have

an effective sequence of polynomials pn which converges effectively uniformly to f on

K.

By combining the above with the Extension Theorem, we obtain
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Corollary 5.4.8. Let E be an elementary set in R2, and let f be a function on E

which is GL-computable. Then there exists an effective sequence of polynomials pn

which converges effectively uniformly to f on E.

Proof.

We first extend the GL-computable function f on E to a GL-computable function

f̂ on a rectangle K containing E by the Extension Theorem (Theorem 4). Then by

Corollary 5.4.7, we get an effective sequence of polynomials which converges effectively

uniformly to f̂ on K. Since f = f̂ � E, this gives an effective sequence of polynomials

which converges effectively uniformly to f on E. �

We can now prove the “ =⇒ ” direction of the Equivalence Lemma ((5.13) in

Section 5.4):

Lemma 5.4.9 Suppose f is GL-computable w.r.t. (U`). Then f is effectively locally

uniformly multipolynomially approximable w.r.t. (U`).

Proof: Suppose, for each `, U` has components E`
1, . . . , E

`
k`

. For each ` and i =

1, . . . k`, apply Corollary 5.4.8, to get a polynomial p`i which approximates f � E`
i

uniformly on E`
i by ≤ 2−`, i.e.

∀ x ∈ E`
i (|p`i(x)− f(x)| ≤ 2−`).

The above procedure is effective in ` and i.

Hence, defining the multipolynomial
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q` = [p`1 � E
`
1, . . . , p

`
k`
� E`

k`
],

we have an effective locally uniform multipolynomial approximation (q`) of f . �

Recall our global assumptions (5.1.14) on f : R2 ⇀ R.

Example 5.4.10 (Multipolynomial approximations).

Consider (cf. Example 5.1.8 (1), page 74) the function f with domain U , where

f(x1, x2) =
1

x1x2
,

U = dom(f) = {(x1, x2) ∈ R2 | x1 6= 0, x2 6= 0} =
∞⋃
`=0

U`

where U` =
4⋃
i=1

E`
i , and let

E`
1 = {(x1, x2) | 1

`+10
< x1 < `+ 2, 1

`+10
< x2 < `+ 2 }

E`
2 = {(x1, x2) | − `− 10 < x1 < − 1

`+2
, 1

`+10
< x2 < `+ 2 }

E`
3 = {(x1, x2) | − `− 10 < x1 < − 1

`+2
, −`− 10 < x2 < − 1

`+2
}

E`
4 = {(x1, x2) | 1

`+10
< x1 < `+ 2, −`− 10 < x2 < − 1

`+2
}

In Figure 5.15, we show the multipolynomial constructed according to equation

5.24 (page 102), taking m = 50. For the sale of clarity, only the polynomial on the

1st quadrant of stage U0, i.e, E0
1 =

[ 1

10
, 2
]2

, is shown.

The views have been generated using Maple 15.01.
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x3 = 1
x1x2

x3 = p50(x1, x2)

Figure 5.15: Two views of mulitpolynomial approximation pm(x1, x2) of

f(x1, x2) =
1

x1x2
, from eqn (5.24) with m = 50, on the 1st quadrant E0

1 =
[ 1

10
, 2
]2
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We can now prove the equivalence (5.13).

Equivalence Lemma 1 (Multipolynomial approx. and GL comp.).

The following are equivalent:

(i) f is effectively locally uniformly multipolynomially approximable w.r.t. (U`),

(ii) f is GL-computable w.r.t. (U`).

Proof. (ii) ⇒ (i) is just Lemma 5.4.9.

(i)⇒ (ii) follows simply from Lemma 5.2.7, by noting that the sequence of multi-

polynomials themselves forms a GL-computable sequence w.r.t (U`).



Chapter 6

Tracking computability; While and

WhileCC approximability;

Equivalence Theorem on R2;

Conclusion and future work

In this chapter, we present, in Section 6.1, our second concrete model of computabil-

ity: (α-)tracking computability (or just α-computability), and state the second Equiva-

lence Lemma between (α-)tracking computability and GL-computability on R2. Next,

considering various abstract models over the field algebra R, we describe the While

programming language’s extensions, such as WhileCC (While with “countable

choice”) (Section 6.3), and hence the concepts of WhileCC ∗ approximability for

functions on R2 (Section 6.4). We then state (in Section 6.5) the third Equivalence

115
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Lemma on the equivalence of WhileCC approximability with ᾱ-computability. From

this follows Theorem 1, on the equivalence, under the global assumptions (5.1.17), of

our four models of computation on R2.

Much of the work in this chapter is a straightforward extension to R2 of the theory

developed in [FZ14] for computation on R.

6.1 Tracking computability.

Let α be a standard enumeration of Q, i.e. a bijection of N with Q. Given two

functions f : R2 ⇀ R and ϕ : N2 ⇀ N, we say that ϕ is an α-tracking function for f

if the following diagram commutes:

∪
R2

Q2

α2

f � Q2

ϕ

Q
∪
R

α

N2 N-

-

6 6

in the sense that for all k1, k2 ∈ N,

(i) f(α(k1), α(k2)) ↓ =⇒ ϕ(k1, k2) ↓ ∧ f(α(k1), α(k2)) = α(ϕ(k1, k2)), and

(ii) f(α(k1), α(k2)) ↑ =⇒ ϕ(k1, k2) ↑

For the purpose of computation on R, the enumeration α of Q and the use of α-

tracking functions are clearly inadequate, since, for example, a computable function
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on the reals could very well map rationals to irrationals, making a commuting diagram

as above impossible. We must extend α to an enumeration α of the computational

closure of Q, as we now explain.

Definition 6.1.1 (Computational closure of Q). We define the α-computational

closure of Q, i.e., the set Rc of (α)-computable reals, where

Q ⊆ Rc ⊆ R,

with an enumeration1

α : Ω� Rc.

The set Ω ⊂ N consists of codes for Rc, i.e. pairs of numbers c = 〈e,m〉 where

(i) e is an index for a total recursive function {e}: N → N defining a Cauchy

sequence

α({e}(0)), α({e}(1)), α({e}(2)), . . . , (6.1)

of elements of Q, and

(ii) m is an index for a computable modulus of convergence for this sequence:

1 ‘�’ denotes a surjection
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∀ k, l ≥ {m}(n) : |(α({e}(k))− α({e}(l))| < 2−n. (6.2)

For any such code c = 〈e,m〉 ∈ Ω, α(c) is defined as the limit in R of the Cauchy

sequence (6.1), and Rc is the range of α:

Q

α

Rc R

α

N Ω

⊂⊂
6 6

We define α-tracking functions just like α-tracking functions, with ‘α’ replaced by

‘α’

Definition 6.1.2 (α-computability). The function f : R ⇀ R is α-computable if

it has a recursive α-tracking function.

Remark 6.1.3 (Fast Cauchy sequence). As explained in [TZ04], we get an equiva-

lent theory if we assume (by effectively taking subsequences) that the sequences (6.1)

are fast Cauchy sequences, i.e., the modulus of convergence is always the identity

function on N, so that (6.2) becomes

∀ n,∀ k > n : |(α({e}(k))− α({e}(n))| < 2−n

and so we can work with “e-codes” instead of “c-codes” as elements of Ω.
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We come to the equivalence lemma 6.1.4 for our two concrete models of com-

putability on R2.

Recall again our global assumptions (5.1.14) on f : R2 ⇀ R

Equivalence Lemma 2 (GL and α-computability). The following are equivalent:

(i) f is GL-computable w.r.t (U`),

(ii) f is α-computable.

A detailed proof for partial functions f on R was given in [FZ14]. That proof can

be lifted to R2 easily, and we omit it here.

6.2 While programming with countable choice

We extend the While language over R to a language WhileCC (“CC” for countable

choice) by adding a new assignment statement:

x := choose z : P (z, ...)

[TZ04, TZ05] where x and the ‘choose’ variable z have sort nat, and P (z, . . . ) is a semi-

computable predicate of z (and other variables), i.e., the halting set of a WhileCC

procedure with z among its input variables.

Then ‘choose z :P (z, . . . )’ selects some value k such that P (k, . . . ) is true if any

such k exists (and is undefined otherwise). In the abstract semantics [TZ04], the
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meaning of ‘choose z :P (z, . . . )’ is the set of all such k’s (hence “countable choice”).

Any concrete model will select a particular k, according to the implementation.

The abstract semantics for WhileCC associates with a WhileCC procedure

P : real2 → real a (many-valued) function:

PR : R2 → P+
ω (R↑),

where P+
ω (X) is the set of all countable non-empty subsets of X, and R↑ = R ∪ {↑},

where ‘↑’ represents a divergent computation.

6.3 While∗ and WhileCC ∗ computability and ap-

proximability

A While∗(Σ) procedure is a While(Σ∗) procedure with the restriction that the

array variables (i.e. variables of sort real∗) are used only as auxiliary variables, not

for input or output.

The While∗ language is clearly more convenient than While for writing programs

over R. However, it is not (in theory) stronger than While for defining functions on

R; in fact (writing While∗(R) for the set of functions While∗ definable on R):

While∗(R) = While(R)

by [TZ00, §4.9], adapting the proof there to partial algebras.
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Similarly we can define the language

WhileCC ∗(Σ) = WhileCC (Σ∗)

and again show that

WhileCC ∗(R) = WhileCC (R).

Analogously, we can also define the concepts of WhileCC ∗ approximability on

R2.

From now on, we will write WhileCC (∗) to refer to the languages either with or

without arrays.

Next we consider WhileCC approximable computability or WhileCC approx-

imability. Let

P : nat× real2 → real

be a WhileCC procedure. Again we write

PR
n =df P

R(n, . ) : R2 → P+
ω (R↑)

Definition 6.3.1 (WhileCC approximability to a single-valued function). A

function f : R2 ⇀ R is approximable by a WhileCC procedure P on R if for all

n ∈ N and all x ∈ R2:
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(i) x ∈ dom(f) ⇒ ↑ /∈ PR
n (x) ⊆ B(f(x), 2−n),

where B(a, δ) is the open ‘ball’ or neighborhood with center a and radius δ, and

(ii) x /∈ dom(f) ⇒ PR
n (x) = {↑}.

6.4 Comparison with concrete computability;

Equivalence Theorem

We come to the equivalence lemma for abstract (WhileCC (∗)(R)) approximability

and concrete (ᾱ-tracking) computability.

This can also be viewed as a completeness result for abstract (WhileCC (∗)(R))

vs concrete (tracking) computability. It was proved in [TZ04] for complete separable

metric spaces.

Suppose f : R2 ⇀ R. Recall the global assumption for f (5.1.17).

Equivalence Lemma 3 (Abstract and concrete computability). The following

are equivalent:

(i) f is ᾱ-computable

(ii) f is WhileCC (∗)(R) approximable.

This was proved in [TZ04] for complete separable metric spaces.

Note that the proof of this equivalence lemma also requires the global (domain

exhaustion and continuity) assumptions for f , even though the definitions of α and
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WhileCC (∗) approximability do not mention them explicitly.

We can now present the theorem which connects all the models considered in this

thesis.

Equivalence Theorem. Given a partial function f : R2 ⇀ R, and an effective

exhaustion (U`) (cf. Definition 5.1.6) of U = dom(f), suppose f is effectively locally

uniformly continuous w.r.t (U`). Then the following are equivalent:

(i) f is GL-computable w.r.t (U`),

(ii) f is ᾱ-computable,

(iii) f is effectively locally Rc-multipolynomially approximable w.r.t (U`),

(iv) f is WhileCC (∗)(R) approximable.

Proof. This follows from the three equivalence lemmas in Section 5.4, 6.1 and 6.5.

�

Remark 6.4.1. Of the three equivalence lemmas used in proving this Theorem,

Equivalence Lemmas 2 ((i) ⇔ (ii)) and 3 ((ii) ⇔ (iv)) were proved in [FZ14] for

computation on R, and the extension to R2 is fairly routine. The really interest-

ing result here is Equivalence Lemma 1 ((i ⇔ (iii)), proved in Chapter 5, which

requires a conceptually and technically non-trival extension from computation on R

to computation on R2.
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6.5 Conclusion

In this thesis, we studied two topics: one about the characterization of semicom-

putable sets on R2, and the other about characterizations of computable partial func-

tions on the real plane.

In the first topic, we presented two Structure Theorems for WhileOR and

While∃N semicomputable sets over the ring algebra R0 in R2:

Theorem 1. A subset U of R2 is WhileOR semicomputable, iff U is a countable

union of a disjoint effective sequence of finite unions of basic sets.

Theorem 2. A subset U of R2 is While∃N semicomputable, iff U is a countable

union of an effective sequence of basic sets.

− and a “partial structure theorem” for While(R) semicomputable sets in R2:

Theorem 3. For subsets of R2,

(a) While semicomputable =⇒ union of disjoint effective sequence of finite

union of basic sets.

(b) union of disjoint effective sequence of basic sets =⇒While semicomputable.

Here basic sets are defined as sets of the form

{x ∈ R2 | p1(x) > 0, . . . , pk(x) > 0} (k > 0) (6.3)
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where p1, . . . , pk are polynomials over Z.

By the use of finiteness theorems based on cell decomposition theory, alternative

forms of the above theorems were obtained, in which the phrase “basic sets” is replaced

throughout by “connected open semialgebraic sets”.

In the second topic, four models of computability of partial functions on R2 were

described:

(i) GL-computability ;

(ii) Effective local uniform multipolynomial approximability.

(iii) α-computability ;

iv) WhileCC (∗) approximable computability ;

Their equivalence was proved for functions f : R2 ⇀ R satisfying two global

assumptions: (1) dom(f) is the union of an effective sequence (U`) of elementary

sets; and (2) f is effectively locally uniformly continuous w.r.t. (U`).

Here elementary sets are defined (roughly) as bounded connected basic sets. Basic

sets are defined as in (6.3) except that pi(x) (i = 1, . . . , k) are now polynomials over

the computable reals.

Discussion 6.5.1 (Generalization of results to dimensions > 2).

The main theme of this research, for both topics, lies in the generalization of results

previously obtained in computation theory over R, to analogous results over Rm, for

m > 1.
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The interesting, and challenging, aspect here lay in finding an appropriate gener-

alization of the concept of “elementary set” from open linear intervals (when m = 1)

to . . . what? (when m > 1).

The “correct” generalization was found to lie in the concept of basic open semi-

algebraic subset of R2. Interestingly, this was the case in both topics, with relatively

minor variations: in topic 1, an elementary set, which is used in the characterization

of semicomputable subsets of the plane, is simply a basic open semialgebraic subset

of R2, based on polynomials over Z (see Definitions 4.2.1/2), while in topic 2, where

it is used in the definition of effective exhaustions, it is again a basic open semialge-

braic set, which is also connected and bounded, and based on polynomials over the

computable reals Rc.

It seems clear that the big conceptual leap, in both topics, occurs in going from

m = 1 to m = 2.

What about generalizations to m > 2? For topic 1, this is absolutely routine, as

is clear from an inspection of the relevant definitions and proofs.

When it comes to topic 2, this is also clear for the most part. However, things are

not quite so simple in the case of Equivalence Lemma 1 (Chapter 5), in the direction

“GL-computable =⇒ effective multipolynomial approximability”.

Let us consider the two “big theorems” used here: the effective Weierstrass The-
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orem and the Extension Theorem (Theorems 5 and 6 respectively). The effective

Weierstrass Theorem will, it seems, generalize without too much difficulty to m > 2.

However, generalizing the Extension Theorem to m = 3 already presents a challenge,

although we believe it to be true.

6.6 Some ideas and conjectures about future work

In topic 2, we have the equivalence of four models under the global assumptions

(5.1.14), taking the domain of f to be a countable union of stages U`, where each U`

is a finite union of elementary sets. Two problems arising from this research are:

Problem 1: Relationship of our models with Weihrauch’s TTE

In [Wei00] it is shown that (a) the domain of every TTE (type two effective)

function is a Gδ set, i.e. a countable intersection of open sets, and conversely (b)

every effective Gδ subset of R (i.e. a set of the form
∞⋂
i=1

∞⋃
j=1

Iij for an effective double

sequence of rational interval (Iij)) is a domain of some TTE computable function.

Then we can ask:

Given f : R⇀ R and replacing our global assumptions by:

dom(f) is an effective Gδ set

with some suitable corresponding continuity assumption, to what extend do the equiv-
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alence theorems still hold for f?

Note that the precise definition of GL-computability is also problematic here.

A positive solution to this problem would also show an equivalence between TTE

computability and the other models considered here.

Problem 2: Global assumptions and elementary functions

We return to the two global assumptions (5.1.14) of domain exhaustion and con-

tinuity for functions f : R2 ⇀ R, which underline the equivalence proofs of our four

models of computability. It was remarked earlier (Section 5.1) that these assumptions

are satisfied by many functions commonly encountered in calculus and elementary real

analysis.

To make this more precise, we define an elementary function on R2 to be any

function f : R2 ⇀ R denoted by an expression built up from the variables x1 and

x2 and constants for computable reals, by (repeated) application of the four field

operations, n-th roots, the exponential and trigonometric functions and their inverses.

This is a very interesting class of functions, investigated by, among others, G.H.

Hardy [Har05]2.

Note that the functions f(x) = n
√
x (for n even) have domain dom(f) = [0,∞),

which is not open, and hence could not possibly be a union of an open exhaustion.

We therefore extend f to the whole of R by defining f(x) = 0 for x < 0. This makes

2for functions of 1 variable. Hardy also included function y = f(x) implicitly defined by polyno-
mial equations in x and y.
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f total, effectively uniformly continuous, and computable by any of our four models,

on R.

Note however that we cannot “totalize” other elementary functions such as tanx,

log x, or 1/x in this way, so as to preserve continuity and computability.

Then (following the analogous conjecture for functions on R in [FZ14]), we propose

the following

Conjecture. Every elementary function on R2 satisfies the two global assumptions.

It is not hard to show that the basic elementary functions (field operations, n-th

roots, exp and trig functions and their inverses) all satisfy the two global assumptions.

Hence, in order to prove this conjecture, it would be sufficient to prove that the

property of satisfying these global assumptions is preserved under composition of

functions. This we have been unable to do.
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