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Abstract

In this study we develop a computational approach to the solution of an inverse mod-

elling problem concerning the material properties of electrolytes used in Lithium-ion

batteries. The dependence of the diffusion coefficient and the transference number on

the concentration of Lithium ions is reconstructed based on the concentration data

obtained from an in-situ NMR imaging experiment. This experiment is modelled by

a 1D time-dependent PDE describing the evolution of the concentration of Lithium

ions with prescribed initial concentration and fluxes at the boundary. The mate-

rial properties that appear in this model are reconstructed by solving a variational

optimization problem in which the least-square error between the experimental and

simulated concentration values is minimized. This optimization problem is solved

using an innovative gradient-based method in which the gradients are obtained with

adjoint analysis. In the thesis we develop and validate a computational framework

for this reconstruction problem. Reconstructed material properties are presented for

a lab-manufactured and a commercial battery electrolyte providing insights which

complement available experimental results.
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Symbols

D+ Diffusion coefficient of positive ion

D− Diffusion coefficient of negative ion

t+ Transference number of positive ion

J Cost

τ Step length in gradient direction

c̃ In-situ experimental concentration

A Cross-sectional area of the cell

c Salt concentration

c∗ Solution of adjoint system obtained by perturbing D

c∗∗ Solution of adjoint system obtained by perturbing t+

ci Initial concentration

co Solvent concentration

cLi+ Concentration of Lithium ion
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cs Salt concentration

cTFSI− Concentration of TFSI− ion.

D Diffusion coefficient

D′ Perturbation direction for D

Df Fick’s diffusion coefficient

Dm Maxwell-Stefan’s diffusion coefficient

F Faraday’s constant

i Applied current

j−cur Flux of negative ions due to current

j−diff Flux of negative ions due to diffusion

j−net Total flux of negative ions

L Length of the cell

T Final time value

t′+ Perturbation direction for t+

V o
m Molar volume of solvent

V s
m Molar volume of salt
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Chapter 1

Introduction

Lithium (Li) ion batteries are popular electrochemical power storage devices and are

used in a wide range of electronic devices around the world. Significant research

efforts are being invested into Li-ion batteries right now, because of their potential

applications in next generation automotives [21] and green technology [5]. A com-

plete understanding of the physics and electro-chemistry behind the working of Li-ion

batteries is necessary to further improve their efficiency and performance.

Many researchers across the world have tried to come up with mathematical models

for Li-ion batteries for analyzing and optimizing their performance. Two main types

of models that are widely used are equivalent circuit models [4] and physics-based

models [24]. Both types of models have their own advantages and disadvantages, but

to understand the complex behavior of the batteries at various scales [27], physics

based models are preferred.

In physics-based models, different physical components are modeled separately and

put together as a closed system of equations in which the individual components are

allowed to interact with each other. A typical Li-ion battery is made up of solid and

1



M.Sc. Thesis - A. K. Sethurajan McMaster - CSE

liquid components. Solid components constitute the anode and the cathode which

stores energy in the form of lithium atoms and also helps conduct negatively charged

electrons to the external circuit. The liquid component of the battery is an electrolyte

that is made up of a Li-based salt and a suitable solvent. The electrolyte helps to

shunt positively charged Lithium ions across the electrodes and hence completes the

circuit. The interaction of solid and liquid components takes place at the solid-liquid

interface inside the battery.

Transport of lithium as atoms in the electrode and as ions in the electrolyte is as-

sumed to be a diffusion-based process in most of the physics-based models [1, 7]. The

transport of lithium in the electrolyte is of particular interest in this study. Lithium is

transported as positively charged ions and they are influenced by the existing electric

potential inside the battery. The main material properties that are involved in the

transport of Li ions in the electrolyte are the electrical conductivity, the diffusion co-

efficient and the transference number. Knowledge about these properties of different

electrolytes not only helps us to use them in the transport model, but also tells us

about the intrinsic nature of the material under consideration. Diffusion coefficient

and transference number are the properties in the focus of this study, as their mea-

surement methods are difficult and not well developed.

Diffusion coefficient is typically measured as a constant number using Stokes-Einstein’s

relation [9], NMR spectroscopy [22] and by inverse calculations using potentiostatic

and galvanostatic measurements [28]. The transference number of Li ion, which is

defined as the fraction of applied current carried by the Li ion in the electrolyte, is

another important material property. In low concentration ranges it is approximated

2
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as the ratio of diffusion coefficients as shown below [11]

t+ =
D+

D+ +D−
. (1.1)

Inverse calculations using galvanostatic and potentiostatic experiments are also

used to estimate the transference number in electrolytic solutions [12]. In all the

above mentioned methods, the diffusion coefficient and the transference number are

measured as constant numbers. On the other hand, there are various studies which

indicate that the diffusion coefficient and the transference number are not constant

and they vary with state variables such as the concentration [15]. This fact has been

confirmed by repeating the above mentioned measurements on electrolytes of various

concentrations [26]. In addition, modeling studies also provide evidence that models

with concentration-dependent material properties more accurately predict the behav-

ior of battery systems [16]. Motivated by these evidence, this study attempts to

develop and validate a tool that estimates concentration-dependent diffusion coeffi-

cient and transference number of the electrolyte by solving an inverse problem using

experimental data.

An Inverse problem is a framework that converts observed measurements into infor-

mation about the system or the object. For example, a galvanostatic experiment

measures the variation in potential with time for a constant current applied through

the electrolyte. With this measurement, an inverse calculation can estimate the ma-

terial properties of the electrolyte such as diffusion coefficient, transference number

and conductivity. Inverse problems are also an area of study that receives significant

attention in many research fields such as medicine [18], earth sciences [8], image pro-

cessing [2], astronomical sciences [19] etc.. Specifically, inverse problems in which one

3
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estimates material properties as a function of space are well researched and under-

stood and they serve as an important tool in modern non-invasive techniques [6] in

medical and geological applications. In most of these applications inverse problem

is posed as an optimization problem constrained by Partial Differential Equations

(PDE). Use of adjoint analysis [23] to solve optimization problems constrained by

PDE, for finding control parameters dependent on space, time and state, is also well

understood and effectively used in advanced optimization algorithms.

Inverse problems also finds their application in estimating material properties of Li-

ion battery electrolyte. A research study by M. Klett et al. [13] uses concentration

data collected using NMR imaging technique to estimate the diffusion coefficient and

transference number as constants. That study uses COMSOL software package to

solve the PDE models and MATLAB optimization algorithm. That study is taken

as a primary reference for our experimental setup and data collection. The novelty

of our research study is that we propose a method to estimate material properties as

a function of concentration with the same experimental effort that has been outlined

by M. Klett et al.

Solving an inverse problem to estimate the state dependent material properties has

been documented for a purely diffusive multi-dimensional model by V. Bukshtynov

et al. [3]. In that study, solution to the inverse problem is obtained by solving an

optimization problem using adjoint analysis and the diffusion coefficient is estimated

for a manufactured data. It also addresses the various computational challenges re-

lated to accurate and efficient evaluation of cost functional gradients for optimization.

Taking it as a primary reference for the computational setup, the current study was

carried out to estimate two material properties (diffusion coefficient and transference

4
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number) that appear in the model for Li transport in electrolyte, as a function of

concentration. Although the reference study uses a model simpler than the one used

here, the general guidelines that it provides are very relevant for our research study.

The plan of this thesis is as follows: The experiment and the mathematical model

that is suitable for the problem are first outlined in chapter 2, then the problem of

estimating material properties is defined and the methodology for estimating them

is outlined in chapter 3. Then in the chapter 4, various approaches to validate the

method and the algorithm are outlined and the results of validation is presented. In

chapter 5, the estimated material properties for real battery electrolytes that are pre-

pared in lab and that are commercially available are presented and compared against

the material properties measured by other methods and conclusions are drawn in

chapter 6.

5



Chapter 2

Material Transport in

Electrochemical System

2.1 Experimental Setup

Li-ion battery electrolyte is typically made by dissolving a Lithium-based salt in an or-

ganic solvent. Lab-manufactured electrolyte used in our study is Lithium bis(trifluoro-

methanesulfonyl)imide (LiTFSI) dissolved in propylene carbonate. When dissolved

in a solvent, LiTFSI will decompose into its ionic forms Li+ and TFSI−. If a dif-

ferential electric potential is applied to this electrolyte, these ions migrate causing

electric current to flow through the electrolyte. This ion migration charecterizes the

material properties associated with electrolytes. As our goal is to reverse estimate

the material properties from the material transport, a simple experiment was setup

by our collaborator Dr. Sergey Krachkovisky under the supervision of Dr. Gillian

Goward from the Department of Chemistry, McMaster University. With his expertise

in NMR imaging [15] our collaborator has designed and developed the experimental

6
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Figure 2.1: Schematic diagram of experimental setup featuring Lithium Electrodes.

tools and method described in this section.

The experimental setup shown in fig. 2.1 is a cylindrical cell whose length is char-

acterized by spatial dimension x. The cell is filled with electrolyte of 1000 mol/m3

salt concentration and sealed with Lithium electrodes. An In-Situ NMR (Nuclear

Magnetic Resonance) imaging technique [22] was used to estimate the concentration

of ions present in the electrolyte when the current was passed through the cell. This

experiment is hereafter referred to as an ”in-situ experiment”. In this experiment a

NMR probe was allowed to scan through the region of cell filled with electrolyte and

measure the intensity of electromagnetic radiation emitted by Fluorine atoms present

in the TFSI− ion due to the presence of a magnetic field. As it is assumed that the

concentration of ions is directly proportional to the intensity of electromagnetic wave

emitted by them, the intensity measurement is a indirect measure of the concentra-

tion of TFSI− ions present in the electrolyte. As NMR probe scans through the

length of the cell, it measures the intensity of emitted electromagnetic wave across

the cell and gives us the intensity profile of the entire cell as output.

Reference data was collected at the beginning of the experiment when no current

flowing, as the concentration of the salt in the electrolyte was homogeneous through-

out the cell. Then, a constant current was allowed to flow through the cell and the

intensity profile was collected at equal time intervals. The intensity measurements

7
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Figure 2.2: Intensity distribution across the cell - Different shades of color denotes
measurement at different time levels

obtained by our collaborators are shown in fig. 2.2.

The measurement denoted as ’0 hours’ in fig.2.2 will serve as the reference correspond-

ing to the homogeneous 1000 mol/m3 concentration. With this measurement and the

assumption that the intensity is proportional to the concentration, the concentration

distribution at all other time levels can be obtained. fig. 2.3 shows the corresponding

concentration profiles obtained from electromagnetic wave intensity measurements at

various time levels. In this figure we can see that the concentration values become

8
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polarized as time progresses, which is what we would expect to happen when negative

ions move towards the positively charged electrode.

Similarly, this experiment was also performed with a commercial electrolyte manu-

factured by from Novalyte Ltd.. The commercial electrolyte is made up of LiPF6

dissolved in 1:1 volume mixture of Ethylene Carbonate (EC) and DiMethyl Carbon-

ate (DMC). Since both LiPF6 and LITFSI molecules yields one positive ion (Li+)

and one negative ion (TFSI− or PF−6 ), the material transport model applicable to

both electrolytes will be same.

To compare the estimated diffusion coefficient, another set of experiments was carried

out andwill be referred to as ”ex-situ experiment”. NMR self-diffusion technique is

used here to measure the diffusion coefficient of both positive and negative ions in the

electrolyte. This experiment was carried out repeatedly for electrolytes of different

concentrations to obtain a map of diffusion coefficient as a function of concentra-

tion. For further information about NMR self diffusion experiment, the readers are

recommended to read the cited article by William S. Price [22].

2.2 Mathematical Modeling

The following assumptions are made for modeling the ion transport in electrolyte.

Assumptions 1

i. Isothermal conditions.

ii. Salt is assumed completely ionized i.e., no neutral ion pairs or clusters exists in

the solution.

9



M.Sc. Thesis - A. K. Sethurajan McMaster - CSE

Figure 2.3: Concentration distribution across the cell - Different shades of color de-
notes measurement at different time levels

10
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iii. Ion transport occurs only through the length of the cell and any transport in the

radial direction of the cell is neglected. the Domain of the model is [0,L] ⊂ R,

where L is the length of the electrolyte region in cell as shown in fig. 2.1

iv. The system is electrically neutral, which implies cLi+ = cTFSI− = cs.

v. Advection other than due to the electric potential is assumed negligible.

In this study two types of models are considered, namely, Maxwell-Sefan’s model

and Fick’s model. These two models differ only in their approach to model diffu-

sion. Maxwell-Stefan’s theory assumes that the diffusion is driven by gradient of the

chemical potential. On the other hand, Fick’s theory postulates that the diffusion is

driven by gradient of the concentration. Though these two models differ in how the

diffusion process is represented, the transport PDE corresponding to these models

are very similar to one another.

2.2.1 Maxwell-Stefan’s Model

Because of assumption (v), transport of ions is influenced only by two phenomena,

namely, the diffusion and the migration due to applied potential. Both these phe-

nomena can be modeled separately. Since experimental data shows the concentration

distribution of anion (TFSI− or PF−6 ), the material transport based on negative

migration will be derived.

The flux of anions due to diffusion (denoted j−diff ) occurs due to the combined effect

of diffusion of ions and solvent in opposite directions because of differing chemical po-

tentials. If Dm is assumed to be the Maxwell-Stefan diffusion coefficient, the diffusion

11
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flux of cation can be written as eqn. (2.1) [20] valid on x ∈ [0, L]

j−diff = −
(

1 +
cs
co

)
Dm

∂cs
∂x

. (2.1)

In eqn. (2.1), co is the concentration of the solvent given by expression co = (1 −

V s
m)/V o

m. Since the total concentration in the system is ctot = co + cs, the expression

1 + cs
co

can also be represented as ctot
co

.

The flux of anions due to applied current is the product of the fraction of the current

carried by anion and the total flux due to the current and is given in eqn.(2.2) [20].

j−cur = −(1− t+) i

FA
, (2.2)

where F is Faraday’s constant used to convert amperes to moles. As t+ is the trans-

ference number of cations (Li+), 1− t+ will be the fraction of the current carried by

the anion.

The total (or net) flux of anions is j−net = j−diff + j−cur. The law of conservation

for the salt dissolved in the solvent is written as [20],

∂cs
∂t

+
∂

∂x

[
V o
mco

(
j−net
)]

= 0, x ∈ (0, L) and t ∈ [0, T ], (2.3)

where T is the final time of the experimental data. By eliminating j−net in eqn. (2.3)

and by using the relation V o
mco + V s

mcs = 1, we obtain a PDE for cs

∂cs
∂t

=
∂

∂x

[
(1− csV s

m)

(
ctot
c0
Dm

∂cs
∂x

+
(1− t+) i

FA

)]
, x ∈ (0, L) and t ∈ [0, T ].

(2.4)

12
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Eqn. (2.4) requires initial and boundary conditions for unique solution. As the

boundaries are isolated, we can assume that the net flux (j−net) is zero there. By

substituting the expression of fluxes from eqn. (2.1) and (2.2) in this condition, we

can derive the following the boundary condition.

∂c

∂x

∣∣∣∣
x=0,L

= − (1− t+) i
ctot
c0
DmFA

(2.5)

To simplify the notations, the concentration variable cs will be hereafter represented

as c.

Since the concentration was homogeneous in the cell at the beginning of the ex-

periment, it is assumed that initial concentration is constant (ci) and equal to 1000

mol/m3

c|t=0 = ci. (2.6)

To simplify the system equation in Maxwell-Stefan’s model, we denote

D = (1− cV s
m)

ctot
c0
Dm. (2.7)

Using equation (2.7), we can then transform between the variables D and Dm. The

governing system of Maxwell-Stefan’s model can now be consolidated as

∂c

∂t
=

∂

∂x

[
D
∂cs
∂x

+ (1− csV s
m)

(1− t+) i

FA

]
, (2.8a)

∂c

∂x

∣∣∣∣
x=0,L

= −(1− t+) i

DFA
(1− csV s

m) , (2.8b)

c|t=0 = ci. (2.8c)

13
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There are four material properties that are involved in the model equation (V s
m,V o

m,Ds

and t+), out of which two are molar volumes of the salt and solvent (V s
m and V o

m, re-

spectively). The molar volumes are intrinsic properties and are measured with simple

experimental techniques. These values of the molar fluxes are also experimentally

measured by our collaborators.

2.2.2 Fick’s Model

To eliminate uncertainties in the measurement of the molar volumes, we can use an

alternative model which is derived from Fick’s law. In this formulation j−cur is the

same as the expression in eqn. (2.2), but the expression for diffusion flux and law of

conservation is different and given as

j−diff = −Df
∂c

∂x
, (2.9)

∂c

∂t
+
∂j−net
∂x

= 0, (2.10)

where Df is Fick’s diffusion coefficient. Using these expression our governing system

can be rewritten as

∂c

∂t
=

∂

∂x

[
Df

∂c

∂x
+

(1− t+) i

FA

]
(2.11a)

∂c

∂x

∣∣∣∣
x=0,L

= −(1− t+) i

DfFA
(2.11b)

c|t=0 = ci (2.11c)

14
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For Fick’s model Df is same as D defined in eqn. (2.7).

The diffusion coefficients of both Maxwell-Stefan’s model and Fick’s model are

different and they will have different values in the same experiment. Fick’s diffusion

coefficient is popular across the modeling research community and available as a

constant for popular electrolytes in the literature. On the other hand, Maxwell-

Stefan’s diffusion coefficient is not as popular but Maxwell-Stefan’s theory is more

comprehensive and does not exclude the possibility of negative diffusion coefficient

[14].

The following parts of this thesis will explore the ways to estimate the diffusion

coefficient and the transference number as a function of the concentration based on

the available experimental data.

15



Chapter 3

Inverse Problem for

Reconstruction of Transport

Coefficients

3.1 Reconstruction as Optimization Problem

A common approach to reconstruct material properties is to use some strategy to

minimize the least-square error between the experimental and simulated concentra-

tion values. Thus, an optimization problem is posed where the least-square error is

the cost functional that has to be minimized with respect to the material properties,

namely, the diffusion coefficient and the transference number, as the control param-

eters.

16
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J (D, t+) =
1

2

∫ T

0

∫ L

0

(c(x, t;D, t+)− c̃(x, t))2 dxdt, (3.1)

where the dependence of concentration c(.;D, t+) is given by the mathematical model

described in eqn. (2.8) and (2.11). The minimization problem is posed as

min
D,t+
J . (3.2)

This optimization problem can be stated in two distinct ways

P1 : [D̂, t̂+] = argmin
[t+,D]∈R2

J and

P2 : [D(c), t+(c)] = argmin
[t+,D]∈U

J ,

where U is the function space with a Hilbert structure. The problem posed in P1 is

simple, as the solution is obtained as a constant vector in real space R2. This type

of inverse problem is rather straight forward and solution methodologyia already

documented [13]. On the other hand, problem P2 is not trivial as one seeks there

to identify D(c) and t+(c) as a function of concentration c, and a major part of this

thesis is devoted to the development of a solution strategy for P2.

The problem P2 is an unconstrained optimization problem and hence the first order

optimality condition requires that the gradient of cost functional J with respect to

control parameters to vanish. The symbols ∇DJ and ∇t+J will denote gradients

of cost functional with respect to D and t+, respectively. With the help of these

gradients, local minima for D and t+ can be obtained using a simple-gradient decent

algorithm.

17
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D(n+1) = D(n) − τ (n)D ∇DJ (D(n), t

(n)
+ ) n = 1, 2, ....,

t
(n+1)
+ = t

(n)
+ − τ

(n)
t+ ∇t+J (D(n+1), t

(n)
+ ) n = 1, 2, ....,

(3.3)

where τnD and τnt+ are the length of the decent step at iteration n and D(1) and t
(1)
+

are the initial guesses. Local minima of D and t+ can therefore be computed as

D̂ = limn→∞D
n and t̂+ = limn→∞ t

n
+, respectively.

There are many ways of formulating a gradient descent algorithm for problem P2

and eqn. (3.3) is just one possibility. In this method the values for D and t+ are

updated one after the other in the spirit of Gauss-Seidel iteration for solving linear

systems.

In our study, optimal solutions of problem P1 is assumed to be the initial guess of

problem for reducing the computational time and to avoid local optima in higher cost

regions and it can be expressed as following

[D(c)(1), t+(c)(1)] = [D̂, t̂+]. (3.4)

3.2 Gradient of Cost Functional

Gradient of the cost functional in a function space is the key ingredient for solving

problem P2. Gradients can be derived using adjoint analysis with the directional

derivative of cost functional. A similar derivation for a simple diffusion system is done

by Bukshtynov et al.[3]. Following the same technique, the derivation of gradient of

cost functional (∇DJ ) with respect to diffusion coefficient (D) is shown below.

To obtain the gradient of J with respect to D, we first have to define the directional

18
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derivative (Gâteaux) of J with respect to D.

J ′(D, t+;D′) = lim
ε→0

ε−1 (J (D + εD′, t+)− J (D, t+)) , (3.5)

where D’ is the perturbation of the control variable D. To calculate the gradient of

J , Riesz representation of directional derivative is used [3].

J ′(D, t+;D′) = 〈∇DJ , D′〉X , (3.6)

where 〈., .〉 is the inner product in the functional (Hilbert) space X . The directional

derivative of J in the form represented in eqn. (3.1) is computed as

J ′(D, t+;D′) =

∫ T

0

∫ L

0

[c(x, t;D, t+)− c̃(x, t)] c′(x, t;D,D′)dxdt, (3.7)

where c′ is the solution of PDE system obtained after perturbing the PDE system

((2.8) or (2.11)).

3.2.1 Maxwell-Stefan’s Model

As the perturbation system depends on the specific version of the governing equation,

we have to deal with them separately. Maxwell-Stefan’s model is considered first and

the following transformations are invoked to begin the derivation of the cost functional

gradient

V (x, t) =

∫ c(x,t)

cα

D(s)ds on domain x ∈ [0,L] and t ∈ [0,T], (3.8)
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where [cα, cβ] is the identifiability interval I defined as the range of concentration

values spanned by the solution of PDE system (2.4)-(2.6). Then we denote

Q(x, t) = (1− c(x, t)V s
m)

(1− t+)i

FA
. (3.9)

Using these two simplifications, the perturbation system for governing system (2.4)-

(2.6) can be rewritten as

∂c′

∂t
=

∂

∂x

(
∂V ′

∂x
+Q′

)
x ∈ (0,L) t ∈ (0,T], (3.10a)

(
∂V ′

∂x
+Q′

)∣∣∣∣
x=0,L

= 0 t ∈ [0,T], (3.10b)

c′|t=0 = 0 x ∈ [0,L]. (3.10c)

Multiplying eqn. (3.10a) by adjoint variable c∗ and integrating over time and space,

we get ∫ L

0

∫ T

0

∂c′

∂t
c∗dtdx =

∫ T

0

∫ L

0

[
∂2V ′

∂x2
c∗ +

∂Q′

∂x
c∗
]
dxdt. (3.11)

By re-organizing eqn. (3.11) and integrating it by parts we get

∫ L

0

[
[c′c∗]T0 −

∫ T

0

∂c∗

∂t
c′dt

]
dx

=

∫ T

0

[[
∂V ′

∂x
c∗
]L
0

−
∫ L

0

∂V ′

∂x

∂c∗

∂x
dx+ [Q′c∗]L0 −

∫ L

0

Q′
∂c∗

∂x
dx

]
dt. (3.12)
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Using eqn. (3.10b) and (3.10c), we can eliminate a number of boundary terms and

then integrate the term with ∂V ′

∂x
by parts one more time we get

∫ L

0

[
[c′c∗]t=T −

∫ T

0

∂c∗

∂t
c′dt

]
dx

=

∫ T

0

[
−
[
∂c∗

∂x
V ′
]L
0

+

∫ L

0

V ′
∂2c∗

∂x2
dx−

∫ L

0

Q′
∂c∗

∂x
dx

]
dt. (3.13)

Perturbation variables V’ and Q’ can be then expressed as

V ′(x, t) =

∫ c(x,t)

cα

D′(s)ds+D(c)c′(x, t;D′), (3.14)

Q′(x, t) = −
(

(1− c(x, t)V s
m)

dt+
dc

c′(x, t;D′) + V s
mc
′(x, t;D′)(1− t+)

)
i

FA
. (3.15)

We can assume adjoint system (in the same domain as PDE system (2.8)) in the form

−∂c
∗

∂t
= D

∂2c∗

∂x2
+

(
(1− cV s

m)
dt+
dc

+ V s
m(1− t+)

)
i

FA

∂c∗

∂x
+ (c− c̃) , (3.16a)

∂c∗

∂x

∣∣∣∣
x=0,L

= 0, (3.16b)

c∗|t=T = 0. (3.16c)

With this assumed form of adjoint system, we can eliminate most of the terms from

eqn. (3.13) and are left with expression for the directional derivative of cost functional

J ′(s) =

∫ T

0

∫ L

0

[∫ c(x,t)

cα

D′(s)ds

]
∂2c∗

∂x2
dxdt. (3.17)
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The adjoint (3.16) does not have an initial condition but has a terminal condition.

This terminal value problem can be solved by solving the system backward in time.

With Riesz representation expressed in eqn. (3.20) we can now obtain the gradient

of cost functional, which takes the following form in L2 functional space.

∇L2
D J (s) =

∫ T

0

∫ L

0

χ[cα,c(x,t)](s)
∂2c∗

∂x2
dxdt, (3.18)

where χ[a,b] =


1, s ∈ [a, b]

0, s /∈ [a, b]

.

Similarly, the directional derivative of cost functional with respect to the transference

number t+ can also be defined and from its respective Riesz representation, we can

obtain the gradient of cost functional with respect to transference number

J ′(D, t+; t′+) = lim
ε→0

ε−1
(
J (D, t+ + εt′+)− J (D, t+)

)
, (3.19)

J ′(D, t+; t′+) =
〈
∇t+J , t′+

〉
χ
, (3.20)

where t′+ is the perturbation of the control variable t+. We can simplify the derivation

by introducing variables V and Q as defined in eqn. (3.8) and (3.9). The perturbation

system will look exactly the same as the one defined for ∇DJ , which is given in eqn.

(3.10a)-(3.10c). As a next step, we integrate perturbation equation over space and

time and multiply both sides with adjoint variable c∗∗. Then we apply integration

by parts and use boundary and initial conditions to eliminate boundary terms. The
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resulting equation has an exact form as eqn. (3.13) but with adjoint variable c∗∗

∫ L

0

[
[c′c∗∗]t=T −

∫ T

0

∂c∗∗

∂t
c′dt

]
dx

=

∫ T

0

[
−
[
∂c∗∗

∂x
V ′
]L
0

+

∫ L

0

V ′
∂2c∗∗

∂x2
dx−

∫ L

0

Q′
∂c∗∗

∂x
dx

]
dt. (3.21)

The perturbation variable V’ and Q’ can be expressed as following for the directional

perturbation t′+

V ′(x, t) = D(c)c′(x, t; t′+), (3.22)

Q′(x, t) = −
[
(1− c(x, t)V s

m)
dt+
dc

c′(x, t; t′+)

]
i

FA

+
[
(1− c(x, t)V s

m) t′+ + V s
mc
′(x, t; t′+)(1− t+)

] i

FA
. (3.23)

Using V’ and Q’ we can finally obtain the adjoint system as

−∂c
∗∗

∂t
= D

∂2c∗∗

∂x2
+

(
(1− cV s

m)
dt+
dc

+ V s
m(1− t+)

)
i

FA

∂c∗∗

∂x
+ (c− c̃) , (3.24a)

∂c∗∗

∂x

∣∣∣∣
x=0,L

= 0, (3.24b)

c∗∗|t=T = 0. (3.24c)

With this assumed form of adjoint system, we can express directional derivative of

cost functional (J ′) with respect to t+ as follows

J ′ =
∫ T

0

∫ L

0

∂c∗∗

∂x
[1− c(x, t)V s

m] t′+dxdt. (3.25)
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Using Riesz representation, the gradient of cost functional in L2 space can be ex-

pressed as

∇L2
t+J (s) =

∫ T

0

∫ L

0

∂c∗∗

∂x
[1− c(x, t)V s

m] δ(s− c(x, t))dxdt. (3.26)

Eqn. (3.18) and (3.26) are the expressions of the gradient of cost functional in L2

space for Maxwell-Stefan model. To obtain this gradient, one has to solve system and

adjoint equations characterized by each control variable and obtain the gradient of

cost functional in the identifiability region I.

3.2.2 Fick’s Model

For Fick’s model the derivation of gradient in L2 space is very similar and in fact the

expression of the gradient of cost functional in L2 space is exactly as eqn. (3.18) and

(3.26). The difference arises only from the adjoint equation. For the control variable

D the adjoint system is the following

−∂c
∗

∂t
= D

∂2c∗

∂x2
+
dt+
dc

i

FA

∂c∗

∂x
+ (c− c̃) , (3.27a)

∂c∗

∂x

∣∣∣∣
x=0,L

= 0, (3.27b)

c∗|t=T = 0, (3.27c)
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whereas for the control variable t+ the adjoint system is

−∂c
∗∗

∂t
= D

∂2c∗∗

∂x2
+
dt+
dc

i

FA

∂c∗∗

∂x
+ (c− c̃) , (3.28a)

∂c∗∗

∂x

∣∣∣∣
x=0,L

= 0, (3.28b)

c∗∗|t=T = 0. (3.28c)

Using these adjoint equation and the system mentioned in eqn. (2.11a)-(2.11c), we

can find the gradient of cost functional to carry out the reconstruction of material

properties that appear in Fick’s model.

3.2.3 Gradient in Sobolev Space

So far we have derived gradient expression of cost functional in L2 space , but as

pointed out in [23], L2 gradients are not suitable for the reconstruction of material

properties, because they can potentially be discontinuous and undefined outside iden-

tifiability region I. So, for the function to be smooth and continuous, we can use

the gradients of cost functional in Sobolev space. By invoking Reisz representation

theory again we can convert the gradients in L2 space to H1 space. For a given control

variable θ we can write Riesz representation as

J ′(θ; θ′) =
〈
∇L2
θ J , θ

′〉
L2

=
〈
∇H1

θ J , θ′
〉
H1
. (3.29)

Inner products in L2 and H1 spaces are defined as
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〈
∇L2
θ J , θ

′〉
L2

=

∫
I
∇L2
θ J θ

′(s)ds, (3.30)

〈
∇H1

θ J , θ′
〉
H1

=

∫
I

(
∇H1

θ J θ′ + l2
d∇H1

θ J
ds

dθ′

ds

)
ds, (3.31)

where l is the Sobolev parameter. As per expression in eqn. (3.29), we equate (3.30)

and (3.31) and use integration by parts to get

∫
I
∇L2
θ J θ

′(s)ds =

∫
I

(
∇H1

θ J θ′ − l2
d2∇H1

θ J
ds2

θ′

)
ds+

[
d∇H1

θ J
ds

θ′

]cβ
cα

. (3.32)

If we assume homogeneous Neumann boundary condition on the boundaries, we can

define an ODE for conversion of gradient from L2 space to H1 space

∇L2
θ J = ∇H1

θ J − l2
d2∇H1

θ J
ds2

on I ∈ (cα,cβ), (3.33)

with boundary condition

∇H1

θ J
∣∣∣
c=cα,cβ

= 0. (3.34)

This transformation is analogous to a low-pass filter that eliminates high-frequency

noise and this property is necessary to eliminate the discontinuities that can arise in

the L2 gradients. The degree of noise filtration is determined by the Sobolev param-

eter l. Higher values of l will have smoother gradients in H1 space. Reconstruction

of all material properties, that are shown in this thesis, are done using the gradient

of cost functional in Sobolev space.
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Chapter 4

Computational Framework and Its

Validation

4.1 Denoising Experimental data

The experimental data that has been provided, plays a key role in the reconstruction

of material properties and the gradients will be very sensitive to the noise in them.

So it is important to eliminate the presence of noise in the experimental data to

get smooth gradients which in-turn would give us smooth reconstruction. MATLAB

inbuilt filter smooth is used with ’sgolay’ option which uses Savitzy-Golay filter, with

the span of 50 points. Figure 4.1 shows the experimental data before and after

denoising using MATLAB filter smooth and it can be clearly seen that after filtering,

experimental data looks devoid of high frequency noise. This filter is applied to

all experimental data used for estimating optimal constant material properties and

reconstructing variable material properties.
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Figure 4.1: Experimental data before (solid line) and after (dashed line) denoising.
Different colors indicate the experiment data at different time.
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4.2 PDE Solver

All the PDEs involved in our study can be categorized as one dimensional advection-

diffusion equations and have parabolic and hyperbolic components in them. They are

complemented with Neumann type boundary condition in space and initial condition

in time. For simplicity and reasonable accuracy, second-order accurate numerical

discretization methods are used. Second-order finite difference method is used to

discretize equations in space and second order Runge-Kutta time stepping scheme is

used to move forward in time.

For example, let us consider PDE (2.4) with eqn. (2.7) substituted in it. Let’s define

an intermediate parameter H on an arbitrary time as

Hn
j+ 1

2
= D(cnj )

cnj+1 − cnj
∆x

+
(
1− V s

mc
n
j

) (1− t+(cnj )
)
i

FA
+O(∆x2) j = 1, 3, 4.....(J),

(4.1)

where J+1 is the number of discrete points in the uniformly discretized space domain

x , ∆x is the distance between two adjacent discrete points in space so that L = ∆x×J

and j and n indicate the position in discrete space and time, respectively. Values of

c in the end points of the domain, i.e., c1 and cJ+1 can be obtained by solving the

following discretized boundary equation.

−3cn1 + 4cn2 − cn3
2∆x2

= − (1− V s
mc

n
1 )

(
1− t+(cn−11 )

)
i

D(cn−11 )FA
+O(∆x2), (4.2a)

3cnJ+1 − 4cnJ + cnJ−1
2∆x2

= −
(
1− V s

mc
n
J+1

) (1− t+(cn−1J+1)
)
i

D(cn−1J+1)FA
+O(∆x2). (4.2b)

29



M.Sc. Thesis - A. K. Sethurajan McMaster - CSE

Using eqn. (4.1) and (4.2) we can define time derivative of concentration as

(
∂c

∂t

)n
j

= Inj =
Hn
j+ 1

2

−Hn
j− 1

2

∆x
.j = 2, 3, 4.....(J − 1) (4.3)

With this definition of the rate of change of concentration with time, we can step

forward in uniformly discretized time domain to solve for c using second-order Runge-

Kutta time stepping. In this scheme concentration at half time step is defined as

c
n+ 1

2
j = cnj +

∆tIn−1j

2
. (4.4)

Using cn+
1
2 from eqn. (4.5) we can define In+

1
2 using eqn. (4.1) to (4.3)

cn+1
j = cnj + ∆tI

n+ 1
2

j +O(∆x2) +O(∆t2)


n = 1, 2, 3...N

j = 2, 3...(J − 1)

, (4.5)

where N is the number of time steps taken to reach the final time T, ∆T is the time

interval between each time step and concentration values corresponding to c1 is given

by initial condition in eqn. (2.6). For finding solution c it is necessary to perform

O(J) operations for each of N time steps, so we can say that computational time

for solving a single PDE is O(NJ). Equations of both Maxwell-Stefan’s and Fick’s

model are solved using the described method and their respective adjoint systems are

solved in similar way, but backwards in time as the adjoint system has prescribed c∗

value at final time T.

The PDE solver is validated using the method of manufactured solution. In this

method, a simple exponential function of space and time is assumed and the initial
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condition, boundary condition and extra source term are formulated such that the

assumed function satisfies the PDE system. This formulated system is then imple-

mented in the discretized space and time and numerical solution is obtained. This

numerical solution is compared against the assumed function to validate the numeri-

cal method implemented in the programming platform.

If Cn denotes numerical solution and Cr the exact solution (assumed function) of the

PDE system, we can define the relative error E as follows

E =
‖Cn − Cr‖p
‖Cr‖p

, (4.6)

where ‖.‖p is the p-norm of a vector. For the given Cr, relative error Ep is the function

of ∆x and ∆t.

The absolute difference between the exact and numerical solution is the term

O(∆x2) + O(∆t2) in eqn. (4.5) and when we plot error vs. ∆x by fixing ∆t in

logarithmic scale, we should expect the slope of 2. Fig. 4.2 is the logarithmic plot of

relative error versus ∆x. The plot confirms that the error declines with the decrease

in ∆x and it declines quadratically. The error saturates at the constant value for

lower ∆x because of of the error due to discretization in time is higher than the error

due to discretization in space for sufficiently small ∆x. This confirms that the PDE

solver is second order accurate in space. This test also offers an insight to choose

an optimal discretization length and step size in time while using this solver to solve

the governing and adjoint PDEs. Fig. 4.3 the dependence of relative error on ∆t.

This plot, which is very similar to fig. 4.2, shows second order decay in error with

respect to ∆t. Both these plots demonstrates that the developed PDE solver exhibits
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Figure 4.2: Plot of relative error E vs discretization length in space ∆x. Step size in
time kept constant at ∆t = 2.5× 10−2.

Figure 4.3: Plot of relative error E vs step size in time ∆t. Discretization length in
space is kept constant at ∆x = 2.5× 10−2.
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expected accuracy both in space and time. This validated PDE solver used to de-

velop the governing system and adjoint solvers necessary to reconstruct the material

properties.

4.3 Solution of Optimization Problem P1

Obtaining optimal D̂ and t̂+ as constants (problem P1) is the first step in the re-

construction of D(c) and t+(c) as functions of the concentration and they serve as

the initial guess for the problem P2. This first step in itself can give us a insight

about the material that is being used and can also be used as a credible validation

of the model and experimental technique [20]. This constant parameter optimization

is carried out using the inbuilt MATLAB function fminsearch, which uses a simplex

search method. Initial guess for D is given in the order of 10−10 and for t+ in the range

between 0 and 1. The surface plot of the dependence of cost functional J (D, t+) on

D and t+ is also generated to check the occurrence of more than one minima in the

solution space.

4.4 Solution of Optimization Problem P2

Reconstructing the concentration dependent material properties is D(c) and t+(c) is

a task that involves various steps and they are described in following sections.
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4.4.1 Gradient Validation

As we are using an optimization approach to reconstruct material properties, the

gradient of cost functional with respect to material properties plays a key role in this

study. So, it is very important to make sure that the gradients which are derived from

adjoint analysis are accurate. To obtain the gradient of cost functional with respect

to the control variable, we need to solve the system and adjoint PDEs and evaluate

the expressions for gradient as mentioned for various control variables in chapter 3.

To validate the gradients derived using adjoint analysis, we use a technique called

”κ test”. In κ test an arbitrary perturbation of control variable is assumed and

the corresponding directional derivative is compared with Riesz representation that

involves gradient of control variable in L2 space. For comparison purposes, the ratio

of these two parameters is defined as κ. For control variable D(c) we can define κ as

κ(ε) =
ε−1 [J (D + εD′)− J (D)]∫ cβ

cα
∇J L2

D (s)D′(s)ds
, (4.7)

where ε is the perturbation size and D′ is the perturbation direction. If the gradients

are perfectly accurate, the parameter κ should be one, but as we use approximations

while solving PDEs and while evaluating the expression for gradient, we expect κ

values close to one. Fig. 4.4 is the κ-test result that validates the gradient ∇L2
D J .

Since the validation of ∇L2
D J is to make sure that the adjoint analysis is correct, κ

test was carried out for a toy problem with manufactured experimental data. For κ

test, three different D′ functions are used (exponential, quadratic and constant) and

are plotted as three distinct curves in fig. 4.4. As we expect, the κ values are close to

the value one for fairly large range of ε and on its extreme values the accuracy drops
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Figure 4.4: κ test to validate ∇L2
D J using three different perturbation function rep-

resented in linear and log scale

rapidly. Same test for the gradient ∇L2
t+J is conducted and the results are presented

in fig. 4.5 These tests are carried out for both the models described in chapter 2 and

during various stages of code development. Satisfactory results of κ-test indicate that

the cost functional gradients are sufficiently accurate to be used for the optimization

algorithm

4.4.2 Reconstruction Algorithm

As discussed extensively, cost functional and its gradient play a major role in the

reconstruction of material properties via the solution of problem P2 (diffusion coeffi-

cient and transference number). Reconstruction algorithm is built based on a gradient

descent method using the gradients derived by solving governing and adjoint equa-

tions. Conjugate gradient method is used as an optimization method for its simplicity

and its proven ability to reduce computational time. The Fletcher-Reeves conjugate
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Figure 4.5: κ test to validate ∇L2
t+J using three different perturbation function rep-

resented in linear and log scale

gradient g[∇J ] is given by,


g0 [∇J ] = ∇J0

gn [∇J ] = ∇Jn + ∇J Tn ∇Jn
∇J Tn−1∇Jn−1

gn−1 [∇J ] n = 1, 2, 3, ..,

(4.8)

where n is iteration number. Along with the conjugate gradient, Brent line mini-

mization technique is used to determine the optimal step length τn in each iteration.

During the process of reconstruction visual examination of gradients and simulated

fitting with experimental data is done to avoid undesirable characteristics in the recon-

structed material properties. With consideration of all above mentioned components,

the following algorithm is proposed for the reconstruction of material properties en-

compassing via the solution of the problem P1 and P2.
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Algorithm 1 : Iterative minimization algorithm for finding material properties as a
function of concentration.
Input: εJ - adjustable tolerance, l(n) - Sobolev parameter as function of iteration
number, S - degree of smoothing, c̃(x, t) - Experimental concentration values, D̃ t̃+ -
constant initial guesses for diffusion coefficient and transference number
Output: D(c) and t+(c)

Smooth the experimental data using Savitky-Goley filter with degree S

Solution of problem P1, [t̂+ D̂] ← argmin
t+,D

J using initial guesses D̃ and t̃+

D(0) ← ones(c)×D̂. Initial guess.

t
(0)
+ ← ones(c)×t̂+. Initial guess.

n← 1

repeat

solve governing equation and adjoint equation obtained by perturbing D.

evaluate ∇L2
D J and solve (3.33)-(3.34) to determine ∇H1

D J

compute the conjugate direction g
[
∇H1

D J
]

using (4.8)

perform line minimization τ̂ ← argmin
τ

{
J
(
D(n−1) − τ g

[
∇H1

D J
]
, t

(n−1)
+

)}
D(n) ← D(n−1) − τ̂ g

[
∇H1

D J
]

solve governing equation and adjoint equation obtained by perturbing t+.

evaluate ∇L2
t+J and solve (3.33)-(3.34) to determine ∇H1

t+
J

compute the conjugate direction g
[
∇H1

t+
J
]

using (4.8)

perform line minimization τ̂ ← argmin
τ

{
J
(
Dn, t

(n−1)
+ − τ g

[
∇H1

t+
J
])}

tn+ ← t
(n−1)
+ − τ̂ g

[
∇H1

t+
J
]

n← n+ 1

until |J (D(n), t
(n)
+ )− J (D(n−1), t

(n−1)
+ )| < εJ |J (D(n), t

(n)
+ |

To gain insight about the performance of the gradients and the convergence of the
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algorithm, a toy problem is set up and the target concentration values are ”manu-

factured” using an arbitrarily assumed diffusion coefficient function (resembling the

actual dependence of D on c). The optimization to reconstruct diffusion coefficient

is carried out with manufactured concentration values using L2 gradients. In-situ ex-

perimental data that we have is available only in the sub domain of space and time,

so to replicate this setup the manufactured concentration data only on a similar sub-

domain is used for optimization. The range of simulated concentration in the sub

domain is the Identifiability region. The result of optimization is presented in fig.

4.6a.

From fig. 4.6a the drawbacks of gradient in L2 space is evident. The diffusion coef-

ficient values D is very close to the target value in most of the identifiability region,

but drops drastically to the initial guess close to the boundaries of identifiability re-

gions. Some irregularities in the reconstructed diffusion coefficient can also be seen.

Such drawbacks are avoided while using gradients in the H1 space as shown in fig.

4.6b. Reconstruction of D(c) with H1 gradients, as shown in fig. 4.6b, is also very

close to the the profile of target D(c) and behaves much better near the boundaries

of identifiability region than the reconstruction using L2 gradient.
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Figure 4.6: Algorithm validation using method of manufactured solution
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Chapter 5

Results

5.1 Estimates of Constant Optimal D̂ and t̂+

Here we show the results of solution of problem P1. Experimental data sets obtained

using lab-prepared electrolyte is used for estimating material properties in Maxwell-

Stefan’s model and Fick’s model and the result are shown in table 5.3. The initial

guess in both models can be chosen arbitrarily as computational experiments shows

that the optimization converges to the same minimizer for very wide range of initial

guesses D(1) and t
(1)
+ . The presence of uniqueness is also confirmed by the surface plots

of the cost functional J (D, t+) as a function of D and t+, which is shown in fig. 5.1

and 5.2. The PDE solver, which is described in the section 4.2, is used to simulate the

D × 10−10 t+
(m2s−1)

Maxwell Stefan’s 1.02 0.41
Fick’s 0.98 0.41
Experiment 0.98 0.39

Table 5.1: Optimization results and Experimental results for constant D and t+

40



M.Sc. Thesis - A. K. Sethurajan McMaster - CSE

0
0.2

0.4
0.6

0.8

0

10

20

30
0

0.5

1

1.5

2

 

t
+

Dx10

co
st

0
0.2

0.4
0.6

0.8

0

10

20

30
−1.5

−1

−0.5

0

0.5

 

t
+

lo
g(

co
st

)

[D̂ t̂+ ]

[D̂ t̂+ ]

-11

Dx10-11

Figure 5.1: [Maxwell-Stefan’s model] Dependence of cost functional J (D, t+) on D
and t+ in linear and logarithmic scale.
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model (2.8) and (2.11) and the cost is calculated using eqn. (3.1). This calculated cost

is passed to inbuilt MATLAB optimizer fminsearch with D and t+ as the control

variables. Tolerance for convergence was kept at 10−5 and the maximum number

of iterations is fixed at 200. The constant diffusion coefficient D̂ and transference

number t̂+ obtained after optimization is compared against the experimental values

measured using ex-situ NMR technique at 1000mols/m3 concentration of electrolyte.

We can see that that estimated parameters are in good agreement with experimental

results. The simulated concentration values are shown together with the experimental

data in fig. 5.3 and fig. 5.4 for Maxwell-Stefan’s and Fick’s model, respectively. It

can be seen that the numerical simulation using estimated material properties fits

well with the experimental concentration values.
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Figure 5.3: [Maxwell-Stefan’s model] Experimental data (circles) and the concentra-
tion predicted by solving governing equations (2.8) (lines) with optimal D̂ and t̂+ at
different time levels
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Figure 5.4: [Fick’s model] Experimental data (circles) and the concentration predicted
by solving governing equations (2.11) (lines) with optimal D̂ and t̂+ at different time
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5.2 Reconstruction of Concentration-Dependent D(c)

and t+(c)

5.2.1 Maxwell-Stefan Model

Diffusion coefficient and transference number that appear in Maxwell-Stefan’s model

are reconstructed and the results are shown in fig. 5.5 and fig. 5.6, respectively. In

this process we use Sobolev gradient (for conjugate gradient decent) obtained from L2

gradients with Sobolev parameter l that varies from 1000 to 200 linearly with iteration

for first 10 iterations and then fixed at value 200 for all iteration beyond the 10th.

This enforces the low frequency features of the reconstruction to appear in the early

stages of optimization and continuing to build the high frequency features through

every subsequent iteration. It can be seen that diffusion coefficient decrease with

increase in concentration as expected and the variation in diffusion coefficient value

is about 0.4× 10−11m2s−1 for the change in concentration value from 900mol1m−3 to

1100mol1m−3. In case of transference number, its value changes about 0.02 for the

same change in concentration values.

Fig. 5.5 shows the reconstructed diffusion coefficient as the function of concen-

tration in the identifiability region. The reconstructed D(c) value varies from value

1.01 × 10−11 to 1.42 × 10−11 in identifiability interval. Since we use homogeneous

Neumann boundary condition while finding Sobolev gradient and the initial guess for

D is constant, we see that the reconstruction predicts the function of D(c) with zero

slope at the boundary of identifiability region and continues as constant outside it,

which appears to be an artifact. This can be remedied by improving the quality of

46



M.Sc. Thesis - A. K. Sethurajan McMaster - CSE

Figure 5.5: Reconstructed diffusion-coefficient of Maxwell-Stefan’s model (2.8) com-
pared against ex-situ experimental data. .Vertical lines denote the boundary of iden-
tifiability intervel.
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Figure 5.6: Reconstructed transference number of Maxwell-Stefan’s model (2.8). .Ver-
tical lines denote the boundary of identifiability intervel.

initial guess and the boundary condition of Sobolev gradient, which is a potential

area of future exploration. Ex-situ experimental data for diffusion coefficient is also

plotted in fig. 5.5. This diffusion coefficient is measured using the NMR self diffusion

experiment with electrolytes prepared at different concentration of salt and diffusion

coefficient is then constructed as a function of concentration by linearly interpolating

all the data points. By comparing the reconstructed diffusion coefficient D(c) with

ex-situ experimental data, we can see that they don’t match quite exactly but they

fall under comparable ranges. This difference can be due to the fact that the ex-situ

diffusion coefficient measures self diffusion coefficient that appears in Fick’s diffusion

model.

Transference number as a function of concentration is reconstructed and shown in
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fig. 5.6. This reconstruction shows that t+(c) varies between 0.384 and 0.415 in the

identifiability region. This variation is small but significant. Right now we are not

able to identify any reliable experimental results to compare against the obtained

t+(c) values with, but we can see that these results are consistent with various other

studies which have probed the variation of transference number with concentration for

common electrolytes such as solution of NaCl in water [17] and, on average in these

studies, there is a 10% variation with decreasing trend of concentration in ranges

similar to the identifiability region here, which is in good agreement with our result.

While a quantitative comparison between these studies and our results is not possible

due to different electrolytes used, the same qualitative trends are observed in both

cases.

The reduction of cost functional during the reconstruction of D and t+ is shown in

fig. 5.7. It can be seen that between optimal constant and concentration-dependent

material properties there is a very significant decrease in cost functional (from 0.089

to 0.010). From fig.5.8 we can also see that the simulated concentration profiles with

reconstructed D(c) and t+(c) matches with the experimental data much better than

the simulated concentration profiles with optimal constant D̂ and t̂+.

5.2.2 Fick’s Model

The same approach of reconstruct diffusion coefficient and transference number that

is explained in previous section is used here for Fick’s model (2.11) and the results

are shown in this section. Fig. 5.9 shows the reconstructed diffusion coefficient as a

function of concentration. In this figure we can see that the reconstructed diffusion

coefficient is in better agreement with the experimental data. The value of diffusion
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Figure 5.7: [Maxwell-Stefan’s model] Cost decline during reconstruction
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Figure 5.8: [Maxwell-Stefan’s model] Comparison of experimental data with simu-
lated data that are scaled up in X and Y axis to see the visible changes. Circles -
experimental data, Dashed line - Simulated after constant D and t+ optimization,
Solid line - Simulation after variable D and t+ optimization. space and concentration
values are in X and Y axis respectively.
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Figure 5.9: Reconstructed diffusion-coefficient of Fick’s model (2.11) compared
against ex-situ experimental data..Vertical lines denote the boundary of identifiability
intervel.
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lines denote the boundary of identifiability intervel.
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Figure 5.11: [Fick’s model] Cost decline during reconstruction

coefficient varies between 8.1 × 10−11 to 11.2 × 10−11 on the identifiability interval

and closely follows the ex-situ experimental diffusion coefficient values. Transference

number on the other hand is similar to the result shown in previous section and

varies between 0.4 and 0.42 and we do not have definitive experimental result to

compare this value against, but as said in previous section this result is comparable

with the experimental results obtained for other electrolytes as discussed in various

other studies [17]. The cost value decreases from the value of 0.1 to 0.028 when we

go from optimal constant D̂ and t̂+ to reconstructed variable D(c) and t+(c). This

cost decline is significant and can be visually seen in fig. 5.12.
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Figure 5.12: [Fick’s model] Comparison of experimental data with simulated data
that shows narrow ranges of c and t to see the visible changes. Circles - experimental
data, Dashed line - Simulated after constant D and t+ optimization, Solid line -
Simulation after variable D and t+ optimization. space and concentration values are
in X and Y axis respectively.
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5.3 Reconstruction for Standard Electrolyte using

Fick’s Model

Now that we have concluded from the previous section that Fick’s model diffusion co-

efficient matches well with the ex-situ experimental results, an attempt was made to

reconstruct D(c) and t+(c) for the wider identifiability region. In this experiment, the

quality of data was also substantially improved by our experimental colleagues and

the data was less noisy than the data used in previous sections. In this experiment

a constant current of 50µA is passed through the electrolyte and concentration data

is collected as described in section 2.1. For this experiment a commercial electrolyte

purchased from Novalyte Ltd. is used and Ex-situ diffusion values are obtained for

the lab made electrolytes with same composition at different concentration of salt

(LiPF6 in EC/DMC).

D × 10−10 t+

(m2s−1)

Fickian-D̂ 2.91 -0.21

Experiment 2.33 0.39

Table 5.2: [Standard electrolyte-experiment 1] Optimization results and Experimental
results for constant D and t+

Results show that the transference number is in the range around -0.2, which

by definition is not possible. To make sure that the obtained result is not a local

minima, dependence of cost functional J (D, t+) on D and t+ as shown in fig. 5.13

is generated. It confirms that the obtained minima is in fact global. It was also
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Figure 5.13: [Standard electrolyte-experiment 1] Dependence of cost functional
J (D, t+) on D and t+ in linear and logarithmic scale.
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Figure 5.14: [Standard electrolyte-experiment 1] Reconstructed material properties.
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speculated that this might be the effect of multiple local minima in the functional

space of D(c) and t+(c), so another algorithm was designed, by slight modification

of original algorithm, which fixes t+ as constant and reconstruct D as function of

concentration. Using this algorithm, optimal cost value is obtained for wide range of

transference number and results are plotted in fig. 5.15. This result indicates that

the solution space might just have only global minima and reinforces our confidence

in th results shown in the previous sections as well. Now, that multiple global minima

factor is eliminated, it makes one think that there might be other phenomena that

could have been unaccounted for. There are published documents that show negative

transference number measurements [12] and there are various factors discussed in

literature such as ion paring and clustering [25], precipitation [10, 12], phase change

[10], density variation with concentration[13] etc., that may affect the concentration

profile. During the experiment, we do not see any visual precipitation or phase change

and the experiment was set up in such a way that the gravity has no effect. This leads

us to think mainly about the ion coupling and ion clusters as reason for unrealistic

results.

By analyzing the negative transference numbers, we can say that according to the

current model (2.11), negative ions move in way that they use unrealistically large

current (more than the supplied current). If ion coupling or ion clustering happens in

the electrolyte, there will be neutralized anion-cation pair or ion cluster that will not

move in the applied electric field and this will result in the stagnation of Lithium in

the form of ion pair or ion cluster near cathode. This phenomenon will significantly

increase the concentration of salt near the cathode and deplete the concentration near

the anode. Therefore it may appear that negative ions using more current than the
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Figure 5.15: Transference number plotted against the cost obtained after reconstruct-
ing D(c) with constant t+.
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supplied current. This effect can be eliminated by applying low current and reducing

the range of identifiability region.

Thus in the next experiment this is implemented by applying a lower current of 35µA

and the results are shown in table 3 and fig. 5.16 - 5.17b.

D × 10−10 t+

(m2s−1)

Fickian-D̂ 3.9 0.18

Experiment 2.33 0.39

Table 5.3: [Standard electrolyte-experiment 2] Optimization results and Experimental
results for constant D and t+

In experiment 2 we can see that the transference number is positive but still in the

lower range. Optimal constants D̂ and t̂+ significantly deviate from the ex-situ NMR

experiments. By reducing the current and identifiability range there is a significant

change in transference number value from negative to positive, which suggests that

there may be indeed the formation of ion pairs and clusters. To predict the mass

transport in electrolyte with ion clustering and ion paring effect, we must include this

phenomenon in the mass transport model equations (2.8) or (2.11), which is currently

not within the scope of this thesis. However these results are shown to emphasize

the fact that the developed tool can be very useful to validate the models used for

material transport.
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Figure 5.16: [Standard electrolyte-experiment 2] Dependence of cost functional
J (D, t+) on D and t+ in linear and logarithmic scale.
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Figure 5.17: [Standard electrolyte-experiment 2] Reconstructed material properties.
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Chapter 6

Conclusion and Outlook

In this study, models for material transport in electrolyte were considered based

on Maxwell-Stefan diffusion and Fick’s diffusion and an algorithm was developed

to obtain the material properties and their dependence on concentration. The al-

gorithm was tested and validated at various levels, and then used to estimate the

concentration-dependence of material properties of lab-made and commercial Li-ion

battery electrolytes. From this study the following conclusions can be drawn.

• In contrast to various other research work [9, 22, 28, 13] that estimates material

properties as constant using inverse problem, we can conclude from this study

that we can estimate material properties that are dependent on the state using

single experiment.

• Concentration profile obtained from in-situ experiment shows best match to

the model that has concentration-dependent material properties and the cost

functional was an order of magnitude smaller when compared with constant

material properties. This emphasizes that the quality of Li-ion battery models
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can be significantly improved by using material properties that are dependent

on state.

• Diffusion coefficient in Fick’s model is in good agreement with ex-situ NMR

self-diffusion coefficient measurements and this demonstrates good reliability of

this proposed method to estimate diffusion coefficient.

• Though the transference numbers (t+) that are predicted as function of concen-

tration have to be independently validated with a reliable method, it is shown

that the t+ values are in the expected range for smaller identifiability regions.

However, for larger identifiability region the method predicts negative transfer-

ence number and this prediction is wrong for obvious reasons. It is also shown

that the solution space does not have multiple minimizing solutions and the

reconstruction method used here cannot be the reason for the non-physical pre-

dictions. On the other hand, there is some evidence that the model that is

used may not be correct and formation of ion pairs and clusters may play a

significant role in material transport.

• we wish to emphasize the following facts.

– The electrolyte used in section 5.3 is commercially used in Li-ion batteries.

– The concentration ranges in standard electrolyte experiment 1 is very sim-

ilar to the ranges seen in normal Li-ion battery operation.

– The model used here is the one that is mostly used for physics based models

of ion transport in electrolytes of Li-ion battery.

With these facts, this study records that the present ion transport models used
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for modeling Li-ion batteries may not be sufficient to account for all the factors

that affect concentration of ions in electrolyte.

With these conclusions this study leaves many open questions that are yet to be

answered. It is important to note that the methodology used here can further be

improved to get better results. The following points are identified as potential fu-

ture avenues of research in the area of modeling material transport of Li-ion battery

electrolyte and estimating its material properties.

• Improving the quality of initial guess the reconstruction algorithm, so that the

material properties outside the identifiability region is no longer a constant.

• Developing a similar algorithm for reconstruction of material properties for dif-

ferent and/or simpler experimental data. For example boundary data are easier

to obtain experimentally in potentiostatic and galvanostatic experiments than

the state value inside the domain itself. Our preliminary experience suggests

that it is possible to estimate material properties as a function of concentration

using this kind of experimental data.

• Identifying the apparent shortcoming of the electrolyte transport model and

estimating the transference number for a larger identifiability region.

• Exploring the application of this techniques to the other parameters like conduc-

tivity and other parts of batteries such as active material and particle binder.

• Exploring the the use of this technique to predict diffusion coefficient of Lithium

atom in the solid parts of the battery electrode by using concentration data ob-

tained from electron microscopy techniques or boundary data from galvanostatic

and potentiostatic experiments.
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