
Quantitative Assessment of Nonfunctional

Requirements in Product Families

QUANTITATIVE ASSESSMENT OF NONFUNCTIONAL

REQUIREMENTS IN PRODUCT FAMILIES

BY

REHAM FADUL, B.Eng.

a thesis

submitted to the department of computing and software

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Master of Applied Science

c© Copyright by Reham Fadul, August 2014

All Rights Reserved

Master of Applied Science (2014) McMaster University

(Software Engineering) Hamilton, Ontario, Canada

TITLE: Quantitative Assessment of Nonfunctional Requirements

in Product Families

AUTHOR: Reham Fadul

B.Eng., (Computer Science)

Umm Al-Qura University, Makkah, Saudi Arabia

SUPERVISOR: Ridha Khedri and Tom Maibaum

NUMBER OF PAGES: x, 96

ii

To the incredible woman who brought me to this life, to my source of happiness,

and the love of my life, my mother Amnah Hemaidah. To my father Elias

Fadul, whom without his prayers I would not be the person I am today. To whom I

share with my childhood memories and grown-up dreams, my siblings, Alaa,

Walaa, Rahaf, Ahmad, and Aziz. To my little angels who spread joy and fun all

over our lives, my nephews Battal and Moayad, and my niece Aleene. Last but

not least, to my best friend, my sister from another mister, and my companion

throughout this journey, Nuha Zamzami. To you and to all the people who love

me, I say that you are amazing and I just could not imagine my life without you. I

would have never done this without your love and support. God Bless you all. I am

so proud to have you in my life and I hope that I have made you as proud.

I dedicate this to all of you ...

Love,

Reham

Abstract

Modelling nonfunctional requirements, along with many other NFR-related concerns,

have not been addressed properly in the literature. Although nonfunctional require-

ments (or quality attributes) are important, they are the most expensive and difficult

to deal with since they are (mostly) specified qualitatively not quantitatively, and also

due to the fact that nonfunctional requirements may have interdependencies among

each other leading to inconsistency in requirements specification. Moreover, the adop-

tion of the concept of product families into the software industry led to the ability

today to build families that share features. This indicates the significance of software

families. Accordingly, in this research, not only do we study nonfunctional require-

ments in a systematic way, we also attempt to examine them from the perspective of

software families. We highlight the need for developing a better quantitative assess-

ment technique for nonfunctional requirements. Then, we propose a formal approach

to the assessment of nonfunctional requirements in software product families.

iv

Acknowledgements

I would like to thank my supervisors, Prof. Ridha Khedri and Prof. Tom Maibaum,

for the patient guidance, encouragement and advice they have provided throughout

my time as their student. I am as well grateful to Jason Jaskolka who helped me

during my supervisor’s absence.

Finally, I would like to thank the Ministry of Higher Education in my home country,

The Kingdom of Saudi Arabia, not only for providing the funding which allowed me

to undertake this research, but also for giving me the opportunity to attend confer-

ences and meet so many interesting knowledgable people.

v

Contents

Abstract iv

Acknowledgements v

Contents viii

List of Tables ix

List of Figures x

1 Introduction 1

1 General Context . 1

2 Analysis of Nonfunctional Requirements 3

3 Problem Statement . 7

4 Motivation . 9

5 Thesis Contribution . 10

6 Thesis Organization . 11

2 NFRs Modelling Techniques 12

1 Informal Qualitative Modelling Techniques 14

vi

1.1 Chung’s NFR-Framework and Soft-Goal Interdependency Graphs

SIGs . 14

1.2 A Process-Oriented Approach for Representing Nonfunctional

Requirements . 17

1.3 The i∗ modelling Framework 19

1.4 A Model for Recording the Reasons for Design Decisions . . . 21

1.5 Scenario-Based Analysis of Nonfunctional Requirements . . . 22

1.6 Porter and Selby Quality Classification Tree 23

2 Informal Quantitative Modelling Techniques 25

2.1 Goal-Centric Traceability for Managing NFRs 25

2.2 KAOS . 27

3 Formal Quantitative Modelling Techniques 28

3.1 The Requirement Hierarchy Approach 28

3.2 A Process-Oriented Approach Towards Quantitative Reasoning

of Nonfunctional Requirements 29

4 Modelling of Nonfunctional Requirements in Product Families 33

4.1 The Basis of Product Families 33

4.2 Product Family Algebra (PFA) 35

4.3 Model-Based Verification of Quantitative Nonfunctional Re-

quirements in Product Lines 37

5 Conclusion . 38

3 Mathematical Backgrounds 41

1 Properties of Binary Operations . 41

2 Algebraic Structures . 43

vii

3 Intervals . 45

4 Conclusion . 46

4 Quantitative Assessment of Nonfunctional Requirements in Product

Families 47

1 The Proposed Approach . 47

1.1 Intervals to Measure The Weight of Nonfunctional Requirements 49

1.2 Quantitative Assessment Function µ 54

1.3 Quantitative Assessment Function µ̂u 64

1.4 Weighted Quantitative Assessment Function µw 68

1.5 Conclusion . 74

5 Future Work 78

1 Directions For Future Work . 78

2 Notes on a Future Model for Γ-Semirings 79

3 More Suggested Directions for Future Work 81

3.1 A Goal-Based Model . 81

3.2 The Language Extended Lexicon 82

3.3 Definition Hierarchy . 83

A 86

1 Chapter 3 Proofs . 86

Bibliography 88

viii

List of Tables

ix

List of Figures

2.1 A Hypothetical Example of a Quality Classification Tree [PS90] . . . 24

2.2 Weighting of Contribution Relationships in SIGs [AK12] 30

4.1 The Business Management Feature Model 1− 1 (inspired by [Lau06]) 50

4.2 The Business Management Feature Model 1− 2 (inspired by [Lau06]) 51

4.3 The Business Management Feature Model 1− 3 (inspired by [Lau06]) 52

x

Chapter 1

Introduction

1 General Context

Requirement’s Engineering (RE) plays a crucial fundamental rule in Software Engi-

neering (SE). It is concerned with the gathering, documentation, and evaluation of

the requirements of the system to be. Zave [Zav97] writes:

Requirements engineering is the branch of software engineering concerned

with the real-world goals for, functions of, and constraints on software

systems. It is also concerned with the relationship of these factors to

precise specifications of software behaviour, and to their evolution over

time and across software families.

We have two types of software system requirements to deal with: Functional Re-

quirements (FRs) and Nonfunctional Requirements (NFRs). A functional require-

ment articulates the behaviour of the system to be. This includes calculations, data

manipulation, processing, and any other activities related to what the system must

1

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

accomplish.

As defined by IEEE [SCCotICS90], a functional requirement is “a requirement that

specifies a function that a system or system component must be able to perform“.

For instance, a stakeholder’s functional requirement for a library system may include

the specification of a checkout function for borrowing books after checking the max-

imum number of books allowed to be borrowed by a user. Therefore, checking their

satisfaction is straightforward, either the function is performed by the system or not.

When implementing functional requirements, nonfunctional requirements are needed

to impose constraints on the implementation. Thus, functional requirements alone

are not enough to produce a reliable independent system, which means that func-

tional and nonfunctional requirements are of complementary nature.

A wide range of concerns falls under the name of nonfunctional requirements such

as reliability, security, accuracy, safety, and performance. They express constraints

that need to be satisfied by functional requirements. These concerns form as well

the overall quality of the system to be; therefore they are called quality requirements,

quality attributes, and quality characteristics of the system. As illustrated in [Tha02],

a nonfunctional requirement is “a software requirement that describes not what the

software will do, but how the software will do it“.

Nonfunctional requirements are also vague and often subjective in nature. By def-

inition, they are not related to any particular function and often specified in an

2

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

imprecise way, leading different stakeholders to interpret them differently [GW01].

Hence, they could have different meanings to different people in different environ-

ments. For example, what some see as a high performance system, others may see

it as a low performance system. This is due to the absence of an exact measure for

what high performance is and it is usually based on the former experience of the user.

System developers may consider a complex information system with a response time

of 1-2 seconds as efficient. However, users who lack the technical backgrounds may

not agree [BKJ09].

For the purpose of differentiating, a functional requirement is a certain task, service,

or process that must be performed by the system, while the nonfunctional require-

ment is the quality of service standard that a system must cope with in order to build

that standard into the system.

2 Analysis of Nonfunctional Requirements

Nonfunctional requirements present interdependencies among each other. These in-

terdependencies can be cooperative, conflicting, irrelevant, or counterbalance [LK98].

We find in [BKJ09] a list of different interdependency relationships: EQUAL, MAKES,

SOME+, HELPS, UNKNOWN, HURTS, SOME-, or BREAKS.

A nonfunctional requirement R1 MAKES for R2 when an increase in R1’s satisfaction

is accompanied by an increase in the satisfaction of R2. An example is the direct re-

lationship between reliability and security. Hence, we can say that security MAKES

3

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

for reliability.

Vice versa, when an increase of R1’s satisfaction leads to a decrease in R2’s satisfac-

tion, it is said that R1 and R2 have a negative dependency: HURTS. Then, the two

requirements are said to be conflicting. For instance, the flexibility and efficiency of

the C-related programming languages in providing low-level access to the hardware

machine is accompanied by the lack of safety measures. Such conflicts usually leads

the functionalities that help satisfy one nonfunctional requirement to hinder another

requirement. The fact that nonfunctional requirements are often conflicting is one of

the reasons why nonfunctional requirements are difficult to assess and to manage.

Since nonfunctional requirements have both positive and negative impacts among

each other, then they need to be dealt with separately [CdPL04]. This separation of

concerns is done through a conflict-resolution technique called the trade-off analysis.

The analysis of nonfunctional requirements is one of the most important activities

in requirement engineering. In many cases, analysis methodologies are based on a

translation of the software model into a different notation to be analyzed [ES08]. For

example, in scenario-based analysis, a requirement must be transformed into a sce-

nario in order to be analyzed.

In requirement engineering analysis, functional requirements are analyzed through

decomposition into further specifications, whereas analysis of nonfunctional require-

ments can be carried out by their traceability to a design or by their assessment

with an implemented system [SM98]. On one hand, if we have a design and we

4

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

want to ensure the satisfiability of that design to its nonfunctional requirements, we

use techniques to justify design decisions on the inclusion or exclusion of nonfunc-

tional requirements that impact on that software design [RG11]. On the other hand,

assessing nonfunctional requirements against an implemented system measures how

much a software system is in accordance with the set of nonfunctional requirements

that it should satisfy [RG11]. The latter set of approaches is concerned with assess-

ing nonfunctional requirements after the development process while the earlier set

is concerned with satisficing nonfunctional requirements while the making of design

decisions.

Modelling approaches of nonfunctional requirements have two general classifications,

process-oriented versus product-oriented, and qualitative versus quantitative. Product-

oriented approaches measure the software quality criteria once a product is built.

Process-oriented approaches focus on nonfunctional requirements and their inter-

actions to make design decisions. Qualitative approaches study the relationships

between nonfunctional requirements and reason about their trade-offs qualitatively.

Quantitative approaches find measures to calculate the satisfaction of quality at-

tributes.

The literature is enriched with many modelling techniques for nonfunctional require-

ments. Some of these works are goal oriented, which addresses nonfunctional re-

quirements as a first modelling concept. They represent them as vague not sharply

defined soft-goals and then decompose them into more well-defined goals. This kind

of models represent relationships between these soft-goals as well to ease detecting

5

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

conflicts or cooperations between goals and their refinements. The satisfaction of

these models are qualitative and assessed using some labelling procedure. Examples

of this kind of models are the Chung NFR-Framework and Soft-goal Interdependency

Graphs (SIGs). The NFR-Framework minds the gap between nonfunctional require-

ments and design. However, it lacks any quantitative support towards analyzing and

assessing them.

Another kind of models is the strategic dependency models such as the i∗ family.

In the i∗ structure, actors are the main modelling concept. Relationships between

these actors are captured in an organizational setting, and then the system’s goals

are related to this organizational setting.

Moreover, we have the scenario-based technique. It basically identifies nonfunctional

requirements and creates a scenario for each one of them. These scenarios will later

on be transformed into an executable format to be executed by a prototype or a model

of the system. This technique is actually a validation and testing technique rather

than a modelling one for nonfunctional requirements.

A major drawback of these techniques is that they model nonfunctional requirements

on the basis of the overall former experience of the software architect. Not to mention

that the assessment is mostly qualitative. Another drawback is that they are mostly

graphical representations that are very limited in use when expanding the system

model. Also, they can only model nonfunctional requirements in single products and

6

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

cannot be used in product families. This contradicts with the interests of many or-

ganizations that adopt the concept of software product families.

Moreover, the literature contains some quantitative modelling techniques that address

the issue of quantifying nonfunctional requirements. For instance, the Requirement

Hierarchy Approach (RHA) [Rya00] quantifies quality requirements by decomposing

them into quantifiable functional requirements. This approach completely ignores

the fact that nonfunctional requirements are not always decomposed into functional

requirements. Another example is a model proposed in [GS13] to evaluate nonfunc-

tional requirements quantitatively in Software Product Lines (SPL). However, this

model actually evaluates the processes carried by behavioural models (variable se-

quence diagrams) and not the feature models of the system.

Given all these quantitative models, the problem is still unsolved. The question here

is why not to have a quantitative evaluation for the satisfaction of nonfunctional re-

quirements in a certain system? This quantitative evaluation can be founded on the

partial quantitative evaluation of each and every system component to these nonfunc-

tional requirements. This research proposes such a model.

3 Problem Statement

Modelling nonfunctional requirements, along with many other NFR-related concerns,

have not been addressed properly in the literature. One of the reasons is that although

nonfunctional requirements are important, they are the most expensive and difficult

7

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

to deal with for a number of reasons. Firstly, they are specified qualitatively not quan-

titatively. Secondly, a nonfunctional requirement (or a quality attribute) may have a

negative interdependency with another quality attribute leading to inconsistency in

requirement specifications. The conflict resolution is qualitative as well. Also, soft-

ware quality attributes have a tendency of being imprecise and subjective, therefore

precise methods and tools are needed to create software products and services [JFS06].

The concept of commonality and variability in product families adds an additional

dimension of complexity. It is unknown how this concept affects the modelling of

nonfunctional requirements, and it ought to be investigated further. An example of

carrying the variability notion of product families into nonfunctional requirements

is the following. On one hand, a nonfunctional requirement may be required by all

products within a software family such as security. However, a requirement can also

be demanded in varying levels among families such as intense security or moderate

level of security. On the other hand, some families may need a certain nonfunctional

requirement, while others do not.

In this research, issues and challenges regarding modelling nonfunctional require-

ments will be discussed, and then extended to software product families. However,

the main objective will be conducting a model for quantitative assessment of non-

functional requirements. We will also discuss the ability to articulate this model

to capture quantitative assessment of nonfunctional requirements within a software

product family.

8

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

4 Motivation

According to Zave’s statement in page 1, it is an essential part of requirement engi-

neering to study its evolvement over software families. Thus, not only do we have to

study nonfunctional requirements in a systematic way, but also we have to examine

it from the perspective of software families. Due to the adoption of the concept of

product families into the software development, today we build families that share

features [HKM11]. This way has become very common in the software industry world,

which also indicates the significance of software families in our study. Particularly, we

need to seek documenting, analyzing, and modelling of nonfunctional requirements

in product families.

Zave’s work [Zav97] is quite old, but the situation did not really change. According

to Nguyen [Ngu09], the literature still does not provide a systematic way to analyze

and design nonfunctional requirements from the perspective of the concept of com-

monality and variability of product families.

Moreover, the quality of product families is determined by the satisfaction of their

nonfunctional requirements (quality attributes). However, the evaluation of project

quality attributes is one particular difficult problem. It highly depends on the experi-

ences of software architects. Quantifying quality attributes is feasible in many cases.

An example is when defining the performance attribute of an online media broadcast

server [TFQ06] where many factors can be defined and evaluated quantitatively (i.e.,

bandwidth and throughput). Even though we almost have some sort of quantitative

frameworks, we are still far away from being fully capable of assessing architectural

9

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

designs quantitatively. In order to solve the problem, a software architect must an-

swer the following two questions [TFQ06]: what is the possibility of satisfying the

quality attributes of the proposed architecture design? And how to establish the

NFR-dependencies among system’s components?

Quantitative approaches either formally estimate the probability of failure in meet-

ing and satisfying the quality requirements, or informally yet rigorously specify the

degree to which software properties are contributing towards the satisfaction of same

qualities [JFS06]. A formal method is a technique based on mathematics to model

complex systems as mathematical entities. We intend to ground the model by formal

methods in order to be able to reason about the satisfaction of nonfunctional require-

ments quantitatively and have values for the quality of products.

5 Thesis Contribution

This thesis presents a mathematical model for a quantitative assessment of nonfunc-

tional requirements in product families. We aim through the construction of this

model to analyze nonfunctional requirements in an automated fashion, to measure

the impact caused by nonfunctional requirements over software product families, and

to have a well-established way to answer numerous questions in regards of the nu-

merical analysis and modelling of nonfunctional requirements. For example, such

questions may include the overall quantitative assessment of the impact caused by

two nonfunctional requirements (i.e., performance and security) simultaneously over

a product family.

10

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

We set out to develop this model using some mathematical structures including the

algebraic mathematical structure of Γ-semirings and intervals. The choice of these

mathematical structures is suitable towards modelling nonfunctional requirements for

reasons that will be illustrated later on in Chapter 4. Our model is specifically tack-

ling nonfunctional requirements in product families.

6 Thesis Organization

In Chapter 2, we review closely some of the NFR-modelling techniques and frame-

works, and then we introduce product family algebra and its basics. In Chapter 3,

we take a closer look at some mathematical backgrounds that are necessary for the

proposed approach. In Chapter 4, we present in details the mathematical model for

the quantitative assessment of nonfunctional requirements in product families. In

Chapter 5, we conclude and lay some potential future work.

11

Chapter 2

NFRs Modelling Techniques

The acceptance of a software product by a customer highly depends on its overall

quality [RG11]. These overall quality attributes are commonly referred to as non-

functional requirements. The incorporation of a quality in a product can be done

systematically upon the consideration of the dependencies among NFR goals and

functional features [PLZ09]. Therefore, identifying nonfunctional requirements is vi-

tal. A way to achieve that is through requirement analysis.

Several analysis models for requirements are presented in the literature [UK11]. Some

early works [AK12] [MCN92] on nonfunctional requirements are product-oriented as

they measure how much a software system is in accordance with a set of nonfunc-

tional requirements that it should satisfy. Therefore, they are more like evaluation

tools that take place at the end of the software development life cycle to assure the

satisfaction of quality requirements. In contrast, newer works are process-oriented

that take place at each stage of the development cycle to aid the decision-making

process of the inclusion of each nonfunctional requirement. The latter kind of works

12

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

explicitly deal with nonfunctional requirements [RG11] [BKJ09].

Nonfunctional requirements are always expressed in a general abstract manner that

is later on refined into more details [CdPL09], which makes goal-oriented models

suitable for modelling these requirements. Goal-oriented (or goal-centric) models em-

phasize relationships between nonfunctional requirements and treat them in depth.

Some goal-oriented models, such as NFR-framework, KAOS [DvLF93], and i∗ fam-

ily [Yu97] deal with nonfunctional requirements as a first modelling concept merged

together with functionality [CdPL09].

For the sake of a better treatment of nonfunctional requirements, a classification

of process-oriented approaches was proposed in [JFS06]. These approaches help

reasoning about quality requirements during the early stages of the development

process. The approaches are classified as follow: formal, informal, qualitative, and

quantitative. Formal approaches are mathematical approaches that use formal no-

tations such as temporal logic or fuzzy logic to specify nonfunctional requirements

in a precise accurate way [JFS06]. Semi-formal or informal approaches use struc-

tured non-mathematical notations to organize information about nonfunctional re-

quirements [JFS06]. Qualitative approaches use qualitative measures and traditional

labels to specify the degree of satisfaction of quality requirements [JFS06]. Finally,

quantitative approaches either formally estimate the probability of failure in meet-

ing and satisfying the quality requirements, or informally specify the degree to which

software properties are contributing towards the satisfaction of same qualities [JFS06].

13

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

In this chapter, we survey some of the process-oriented and goal-oriented models for

assessing nonfunctional requirements within a product or a family of products.

1 Informal Qualitative Modelling Techniques

1.1 Chung’s NFR-Framework and Soft-Goal Interdependency

Graphs SIGs

Chung et al. [CdPL09] proposed a qualitative approach for dealing with nonfunc-

tional requirements. It is called the NFR-framework and it is process-oriented in

the sense that it takes place at each stage of the development process. The NFR-

framework promotes goal orientation, but with the main emphasis on nonfunctional

requirements. As stated by Chung [CdPL09], the idea behind the NFR-framework

is the Soft-goal Interdependency Graphs (SIGs), which makes requirement analysis

one of many areas in software engineering that have dealt with some aspects of SIGs.

Basically, the NFR-framework is the proposed model whereas SIG is a visual graph-

ical representation of the model that maintains soft-goals and their interdependencies.

SIGs [BKJ09][CBLA08] describe both nonfunctional requirements and their alterna-

tive solutions. When defining a nonfunctional requirement, it is inevitable to use the

definition of another nonfunctional requirement, which leads to an increased complex-

ity in the original nonfunctional requirement’s satisfaction. Therefore, nonfunctional

requirements should not be addressed absolutely, and here emerges the need to use

14

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

the concept of soft-goals. Soft-goals are goals with success criteria not sharply de-

fined [CBLA08]. If the criteria are met to an acceptable level, then the soft-goal is

considered satisficed rather than satisfied. There are mainly three types of soft-goals

in SIGs: NFR soft-goals, operationalizing soft-goals, and claim soft-goals. The NFR

soft-goals are the nonfunctional requirements to be satisficed. The operationalizing

soft-goals or hard-goals are the functional requirements that help satisficing the NFR

soft-goals. Finally, the claim soft-goals describe the rationale of soft-goals or a refine-

ment between them.

Interdependencies between nonfunctional requirements and their refinements are also

shown in SIGs. There are multiple kinds of correlations (or, interdependencies) that

indicate the rationale of all different relationships between goals. These correlations

are: Break ’−’ and Hurt ’−−’ for negative relationships, Unknown ’?’ for undefined

relationships, Help ’+’ and Make ’++’ for positive relationships. The hard-goals,

soft-goals, and correlations all together conclude the major elements of SIGs.

The analysis process goes as follows. We start with a high-level set of NFR soft-

goals that are decomposed into operationalizing soft-goals. The vagueness and level

of ambiguity of the NFR soft-goals decreases gradually as the decomposition process

continues until we reach clearly defined operationalizing soft-goals.

SIGs can be visualized graphically as follows. NFR soft-goals are used to represent

the stakeholder’s objectives and therefore they correspond graphically to the roots

of the graph. They need to be further analyzed and refined throughout AND/OR

15

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

decomposition trees into operationalization sub-goals that correspond graphically to

the leaf nodes of the graph. These operationalizations can be either mandatory or

optional. Mandatory operationalizations are must to include, whereas optional ones

are included up to the choice of the software architect. OR-decomposition between

NFR-soft-goals and its operationalizations represent alternative and optional oper-

ationalizations, while AND-decomposition represents all included mandatory opera-

tionalizations. The degree to which each operationalization is willing to contribute

towards the satisfaction of their parents is qualitatively defined and assigned to the

operationalizations using some labelling system. Thus, edges are labeled by the char-

acterizations of previously mentioned correlations (i.e., −−,−, ?,+,++). This is

made to clarify both positive and negative interdependencies between hard-goals and

soft-goals. Thus, conflicts can be identified between operationalizations.

The refined operationalizations are the system’s potential functionalities and they

provide different alternative solutions for satisficing the parent NFR soft-goals. Some

of the alternative solutions are of complementary nature and others are of conflicting

nature. In case of compatibility, more than one solution can be chosen to satisfice the

parent NFR soft-goal [CBLA08]. Otherwise, the software architect has to choose the

most suitable one. The process of choosing the most suitable alternative is called the

trade-off analysis, and it is directed and run by the software architect. SIGs enable

software architects to clearly describe all options and their relationships.

16

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

1.2 A Process-Oriented Approach for Representing Nonfunc-

tional Requirements

A comprehensive framework was proposed in [MCN92] for representing NFRs. The

framework is process-oriented in terms that it takes place during the development

process to assess the design-decision making at each stage of the process. The ap-

proach is mainly composed of the next four components: goals, link types, methods,

and labelling procedure.

Goals: Since the goals representing nonfunctional requirements cannot be satisfied

absolutely, it is suggested to refer to their satisfaction status as satisficed when a

goal is satisfied and met within an acceptable limit. There are three goal classes.

Goals representing nonfunctional requirements called NFR-goals, goals representing

design decisions called satisficing goals, and goals representing arguments against or

in support of other goals called argumentation goals. All these goals are organized in

a specialization/generalization manner using a traditional AND/OR tree. Each goal

has a sort associated to it. The sorts of NFR-goals vary among the different categories

of nonfunctional requirements such as performance and security. Whereas the sorts

of satisficing goals range over the different categories of design decisions. Some sorts

can be further sub classified into sub-sorts. For instance, the performance sort can be

subdivided into time performance and space performance sub-sorts. Nevertheless, the

argumentation goals have fixed claim sort that has two sub-sorts: formalClaim and

informalClaim. They represent formally or informally (respectively) the evidences for

other goals or goal refinements. There is also zero or more parameters associated to

every sort. The cost requirements, for example, may have an upper bound parameter.

17

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

Link types: The analysis process continues with NFR-goals being decomposed into

satisficing goals one or many times. Meanwhile, multiple types of relationships take

place between parent goals and one or more of their off-spring goals. These relation-

ships are the link types, and they indicate either a positive or a negative support

towards a particular refinement. Links may relate another relationship to an argu-

mentation goal. Thus, link types need to be satisficed as well.

Methods: A goal in this framework can be refined either manually by the designer or

using some goal-refinement methods. There are three types of goal-refinement meth-

ods in accordance with the previously mentioned goal classes: goal decomposition

methods, goal satisficing methods, and argumentation methods. As illustrated earlier,

we start with a set of NFR-goals that are refined and expanded until we form an NFR-

graph. During the expansion, two lists are maintained: Open for the propositions that

are to be refined, and Closed for propositions that have been completely refined. The

process goes as follows. A proposition is selected from the open list to be refined.

After that, the designer decides whether the refinement should be done manually

or using one the available methods. As the refinement continues, new propositions

and links for the new off-springs are created and added to the open list. This process

is repeated until no refinements are left and all propositions are placed in the close list.

Labelling procedure: The qualitative labelling procedure assign a label to nodes

and links in the constructed graph to determine their satisfaction status. They are

18

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

labelled satisficed (S) if they are satisficeable, denied (D) if they are deniable, con-

flicting (C) if it is both, and undetermined (U) if it is neither. They are used to

qualitatively reason about NFR-frameworks.

1.3 The i∗ modelling Framework

The i∗ family inherited the concept of soft-goals from the NFR-framework to be able

to address them as a first class modelling concept [CdPL09]. As argued in [Yu97],

the i∗ framework features distinguishing early-phase requirements engineering from

late-phase requirements engineering. It is mainly composed of two modelling compo-

nents: the Strategic Design (SD) and the Strategic Rationale (SR). The main concept

in the i∗ framework is intentional actors. An intentional actor is an organizational

actor with intentional elements and properties such as goals, tasks, resources, and

soft-goals. Those actors depend on one another to meet goals and perform tasks.

Thus, they can either achieve the impossible together or hinder each other if one of

them do not participate adequately.

The Strategic Dependency (SD) model basically describes the dependency relation-

ships between intentional actors. An SD model consists of a set of nodes and links

connecting the actors. Nodes represent actors and each link represents a dependency

between two actors. The depending actor is called Depender and the actor who is

depended upon is called the Dependee. Dependency types are used to differentiate be-

tween different kinds of relationships between actors as the SD model does not model

relationships between elements or activities. There are four depender-dependee types

19

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

in SD: goal dependency, resource dependency, soft-goal dependency, and task depen-

dency. A goal dependancy is when fulfilling a goal relies on an actor. A resource

dependency is depending on an actor as a resource, such as an agreement from an

actor to provide certain data. A soft-goal dependency is a measurement taken with an

actor to assure the satisfaction of a soft-goal. Finally, a task dependency is reflected

through the reliance of a certain task on an actor. The reader can find an illustrative

example in [Yu97].

In contrast, the Strategic Rationale (SR) model describes the objectives and interests

of the stakeholders and how to meet them. While the SD model shows one level

of abstraction, the SR model shows a more detailed level of modelling. Also while

the SD model expresses external intentional relationships between actors, the SR

model expresses internal relationships between the same intentional elements (goals,

tasks, resources, and soft-goals) using two types of links: means-ends links and task-

decompositions links. The means-ends links basically answer the why question about

the reasons to perform certain tasks, whereas the task-decompositions links answer

the how question about the required actions to achieve those tasks.

The resulted hierarchical graphical representation of the intentional elements and the

links among them create a routine. A routine is the ability to perform and address

a certain objective, and it is granted by knowing the SD and SR models for that

objective.

20

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

1.4 A Model for Recording the Reasons for Design Decisions

Potts and Bruns [PB88] outlined a model to represent the relationships between

artifacts and deliberations. Artifacts are the system’s requirements and specific doc-

umentations that give attention to issues regarding the developed system, such as use

cases and class diagrams. Nevertheless, deliberations are derived from design artifacts

and they can be either justifications or alternatives. An alternative is one of many

solutions or positions that respond to an issue or an artifact. These alternatives range

over the suggestion of creating new artifacts, modifying already existing ones, or not

making any design changes at all. On the other hand, a justification is a statement

that demonstrates the rationale in support of or against the related alternative. One

of the main issues during the derivation process is traceability. As in, objects in ear-

lier artifacts must be implemented by objects in later artifacts. Vice versa, objects

in later artifacts must be reflected to the earlier artifacts.

In a multi-phase development process, intermediate artifacts are generated to docu-

ment the design decisions as the derivation continues. However, they only document

the results of a previous design phase not a subsequent one. The progression of a

single product development results into a graph. This graph has two kinds of design

documentations: nodes and links or arcs. Nodes document the design results (arti-

facts), whereas links document the derivation processes (rationale or alternatives).

21

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

1.5 Scenario-Based Analysis of Nonfunctional Requirements

In scenario-based analysis in [SM98], scenario templates are created for nonfunctional

requirements and guidelines are provided for scenario creation and validation. Not

only do scenarios are used as a method for early exploration of nonfunctional require-

ments, but they also have the ability to capture the real-world experience and that

what makes them suitable and efficient for requirements analysis [Potts et al. 1994].

As nonfunctional requirements interact with each other, we need to trace these in-

teractions and relationships. To investigate relationships between nonfunctional re-

quirements, NFR-scenarios alone are not enough. The following two elements are also

required. First, a system model that may be either an architecture, a technical design,

a prototype, or an implementation. This system model is required to describe the

characteristics of agents, tasks, resources and soft-goals. Second, a design rationale to

argue different design options and decisions. Sutcliffe and Minocha [SM98] used the

QOC notation [Maclean et al. 1991], which expresses design problems as questions,

functional requirements as options, and nonfunctional requirements as criteria. A de-

sign rationale provides a range of trade-off functional decisions that only have either

a positive relationship that help satisfying nonfunctional requirements, or a negative

relationship that hinders the satisfaction of nonfunctional requirements. Therefore,

scenarios must be run against some views of the system to investigate relationships

between nonfunctional requirements, different refined alternatives, and trade-offs to

satisfy nonfunctional requirements.

The use of the method in [SM98] starts with the identification and decomposition

22

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

of nonfunctional requirements into quality criteria to help assess how well the re-

quirements are satisfied. Then, a contextual scenario is created for each and every

requirement. Thereafter, scenarios are converted from their narrative-stories format

into an executable format that can be executed by the system. Finally, they are

assessed against the system model to decide on the most suitable trade-off for the

satisfaction of nonfunctional requirements.

Scenario-based analysis is not a modelling technique. It is a way of testing nonfunc-

tional requirements and validating relationships between them.

1.6 Porter and Selby Quality Classification Tree

Nonfunctional requirements are commonly represented by trees expressing the con-

cept of NFR-decomposition [CdPL09]. Another example is the Porter and Selby

quality classification tree [PS90]. Porter and Selby’s metric-based classification trees

are measurement-based models of high-risk components of the system that help iden-

tifying and eliminating high-risks whenever they are encountered before they spread

and affect the system. The method is called automatic generation of metric-based

classification trees.

The classification trees can be customized using different kinds of software metrics.

Thus, the proposed approach can generate software quality classification trees to

distinguish between high-quality modules and low-quality modules. The graphical

representation of such tree has two kinds of nodes: a predicate node and a terminal

23

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

Figure 2.1: A Hypothetical Example of a Quality Classification Tree [PS90]

node. A predicate node is for classifying modules into several classes by a certain given

factor (software metric). Figure 2.1 shows a hypothetical classification tree inspired

by [PS90]. The tree illustrates that only one software metric is used per decision node

as a classifying factor. Each category of the classifying metrics corresponds to a tree

edge. Each edge is called terminal node, which is a certain quality class. Thus, a

terminal node is used to determine the quality class of a module that is distinguished

from other modules by the predicate node. On a path from a root predicate node to

a terminal node there are no duplicate factors.

In general, software quality trees recognize the relationships and interactions between

24

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

nonfunctional requirements. Whereas in particular, Porter and Selby quality clas-

sification tree emphasizes the fact that a predicate quality classifies other quality

modules into several terminal classes.

2 Informal Quantitative Modelling Techniques

2.1 Goal-Centric Traceability for Managing NFRs

Traceability is defined as “the ability to describe and follow the life of a requirement

in both a forwards and backwards direction“ [GF94]. However, tracing nonfunctional

requirements is hard because they have an overall impact upon a software system,

and also due to the excessive number of interdependencies and trade-offs among non-

functional requirements [CHSB+05].

As illustrated in [CHSB+05], Goal-Centric Traceability (GCT) equips the developers

with the ability to reason about the impact of functional changes upon nonfunctional

requirements and therefore maintain the system’s quality. This assessment is achieved

in a quantitative informal manner. GCT is implemented through the following four

phases: goal modelling, impact detection, goal analysis, and decision making.

Goal modelling takes place at the early stages of the system’s development. During

this phase, nonfunctional requirements are modelled as goals and operationalizations

within a soft-goal interdependency graph (SIG).

25

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

Impact detection phase takes place during the change process. When changes occur

to functional requirements, traceability links are dynamically established between

the impacted functional elements and the potentially impacted SIG elements. This

dynamic approach is definitely due to the excessive number of links and interdepen-

dencies between functional and nonfunctional elements. These traces allow developers

to identify the direct functional impact of the change and then evaluate its larger im-

pact on SIG elements. A retrieval algorithm is used to identify and return a set of

the potential impacted SIG elements. After the user’s evaluation and approval, the

output of this phase is a set of operationalizations and goals.

During the goal analysis phase, all retrieved goals are re-evaluated. Goal re-evaluation

is a recursive process that is applied on each and every operationalization and its par-

ent goal if the satisficing of the parent goal is affected by the proposed change. This

continues until all potentially impacted goals have been re-evaluated.The output of

this phase is a report identifying all affected goals whether negatively or positively.

Finally, during the decision making phase, stakeholders view the resulted report and

decide in support of or against to the implementation of the change. A noteworthy

information is that this approach is useful when having two separate models, one for

functional requirements and another for nonfunctional requirements. However, since

this style of modelling is not of our concern, this approach may as well not concern us.

26

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

2.2 KAOS

KAOS [CdPL09] [DvLF93] stands for Knowledge Acquisition in Automated Specifi-

cation. It is a rigorous goal-oriented modelling technique that was developed in the

early 90’s. The framework employs the notions of goals and agents and uses real-

time linear temporal logic for defining these entities. For example, both functional

and nonfunctional goals are formalized into operators like Achieve, Maintain, and

Avoid [CdPL09]. These operators usually operate over past and future states and

they semantically capture maximal sets of desired behaviours.

In KAOS, “Goals are generally modelled by intrinsic features such as their type and

attributes, and by their links to other goals and to other elements of a requirements

model“ [vL01]. The approach [DvLF93] starts by defining a set of high-level goals,

nonfunctional requirements, as well as a set of agents and actions. Then it iter-

atively refines these goals and introduces the AND/OR operationalization links to

relate the high-level goals to the refined operationalizations. Obstacles and conflicts

towards satisfying theses goals are defined later on. The refined operationalizations

are software constraints that can be assigned to agents. The approach terminates

when all operationalizations are realized by individual agents and can be described as

constraints in temporal logic. Thus, KAOS features a great significance of high-level

goals since it is a top-down process rather that bottom-up process. It starts from

system-level and organizational objectives to reach lower-level descriptions.

27

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

3 Formal Quantitative Modelling Techniques

3.1 The Requirement Hierarchy Approach

Rayan in [Rya00] proposed a technique called the Requirement Hierarchy Approach

(RHA). The technique creates a visual tool that helps stakeholders visualize the re-

quirements, their relations, and their affect on the system. Such a tool is very bene-

ficial since stakeholders’ requirements tend to have an overlapping nature. Moreover,

the Requirements Hierarchy Approach (RHA) can aid in requirements elaboration,

validation, and verification. It also helps with the tradeoff analysis since the graphical

visual representation eases detection of conflicts.

As put by Ryan [Rya00], nonfunctional requirements can be quantified by the percent-

age of functional requirements they satisfy. These functional aspects are generated

through placing high-level nonfunctional requirements at the top of the hierarchy

and gradually decomposing them into functional requirements. The approach uses a

weighting procedure to assign weights to top-level NFR requirements based on the

experience of stakeholders and domain experts. Using the hierarchy, weights (from 0.1

to 1.0) inspired by stakeholders are assigned to the low-level functional requirements

and then traversed upward to calculate a final number for the top NFR-requirement.

After the evaluation of the top NFR-requirements, the RHA compares, parses out,

and checks for uniqueness among these requirements according to a rigorous classi-

fication of nonfunctional requirements. Otherwise, the quantification process will be

inconsistent. According to Ryan, the best classification to use is the ISO software

quality standard. The ISO/IEC 9126 taxonomy of quality requirements identifies six

28

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

main internal and external quality characteristics, namely: Functionality, Reliability,

Usability, Efficiency, Maintainability, and Portability. These characteristics are in

turn subdivided into sub-characteristics, which is the level where functional require-

ments are defined and therefore quantification occurs.

In short, the approach helps stakeholders to have a clear vision of the system to

be. However, nonfunctional requirements are not always decomposed into functional

aspects. Sometimes, they are decomposed into design-decisions, which might com-

plicate their quantification. Moreover, it does not accurately assess nonfunctional

requirements quantitatively even though it does require some empirical data as in-

puts. Therefore, Ryan’s quantification method [Rya00] has a quite limited scope of

applicability.

3.2 A Process-Oriented Approach Towards Quantitative Rea-

soning of Nonfunctional Requirements

The work presented by Affleck and Krishna in [AK12] is an extension to the NFR-

Framework proposed in [CNYM00]. They want to bridge the gap between non-

functional requirements and design by providing quantitative support towards the

decision-making process. They attempt to calculate the effect of the operational-

izations (decomposed nonfunctional requirements) on the developed system. Their

proposed extended framework includes several modifications to the original NFR-

Framework [AK12]. These modifications are labelled as follows: Original (O), Addi-

tion (A), Extension (E), or Replacement (R). The calculation is carried out through

29

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

Figure 2.2: Weighting of Contribution Relationships in SIGs [AK12]

the following steps:

• Steps 1&2: Identify Soft-goals (O) & Decompose Soft-goals (E): Similar to the

original framework, nonfunctional requirements are identified and decomposed.

However, the decomposition process is extended to assign weights to the con-

tribution of the decomposed children towards the satisfaction of their parents.

The weighting procedure is defined according to the table in figure 2.2.

• Step 3: Assign Leaf-Soft-goal Weights (A): Weights are assigned to the leaf-

soft-goals. The weighting is based on the interval unit of [0, 1] with 0 being

non-critical and 1 being most critical. This weight is referred to as LSGweight.

• Step 4: Identify Operationalizations (E): The original framework [CNYM00]

identify operationalizations yet this step is extended in [AK12] to assign weights

to the relationships between leaf-soft-goals and operationalizations according to

the table in figure 2.2 as well. The relationship is referred to by impactLSG×OP .

30

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

• Step 5: Calculate Operationalization Scores (A): The following equation is ap-

plied in a top-down manner to calculate the individual score of operationaliza-

tions.

OPscore = OPparent.score +
∑

LSG impactLSG×OP × LSGweight

Where OPscore is the quantified affect of the operationalization upon the sys-

tem in case it was implemented, and OPparent.score is the score of the parent

operationalization. In case of having no parent, a score of 0 is assigned to

OPparent.score.

• Step 6: Select Operationalizations (R): The OPscore clarifies whether the op-

erationalization is accepted or rejected. The score varies among three ranges:

(0,∞) for positive affect, (−∞, 0) for negative affect, or 0 for no affect. Op-

erationalizations that directly impact leaf-soft-goal are accepted if their score

is positive or equal to zero. Otherwise, they are rejected. Operationalizations

of an AND contribution are also accepted when their score is greater than or

equal to zero, and rejected otherwise. However, the rejection of an AND opera-

tionalization indicates the rejection of its accepted parent due to a conflict. The

involvement of the software developer is then required. Finally, operationaliza-

tions of an OR contribution are accepted under two conditions. First, they must

have either a positive affect or no affect. Second, their benefit to the system

has to be greater than their parent.

31

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

• Step 7: Calculate Leaf-Soft-goal Scores (R): The satisfaction of the leaf-soft-

goal is generated by adding up the scores of the accepted operationalizations.

The overall score is contained within [−1.0, 1.0] using the following equation:

LSGscore = max(min(
∑

OPaccept=true
impactLSG×OP , 1),−1)

• Step 8: Calculate Soft-goal Scores (R): The score of a soft-goal is calculated via

the equation:

SGscore = max(min(
∑
SGchild × SGchild.contrib, 1),−1)

Where SGchild is the score of a child soft-goal, and SGchild.contrib is the percent-

age by which a child soft-goal contribute to satisfice its parent soft-goal.

• Step 9: Calculate Attainment (A): Both an actual and optimal attainments can

be calculated. An optimal attainment is when a nonfunctional requirement has

been fully satisficed. This is done through:

attainmentoptimal =
∑

LSG LSGweight

Nevertheless, an actual attainment is calculated according to the percentage

each leaf-soft-goal is attained:

attainmentactual =
∑

LSGmax(LSGscore × LSGweight, 0)

An illustrative bank system example can be found in [AK12]. An evaluation of both

the original framework and the extension showed no difference in decisions. In fact,

it was discovered that the proposed extension provided more detailed feedback then

32

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

its qualitative alternative.

4 Modelling of Nonfunctional Requirements in Prod-

uct Families

In this section, we talk about the basis of the product family concept in software

engineering. Then, we elaborate on a formal algebraic technique used for analyzing

and constructing product families mathematically. The content and examples of this

section is mainly taken from [HKM11].

4.1 The Basis of Product Families

A product family is a set of products with common basic features. Features are

variants of requirements and components. According to [HKM11], “a feature is a

conceptual characteristic visible to stakeholders“. However, at the requirements level

and according to Savolainen et al. [SOMZ05], “a feature is specified by a set of re-

quirements; this set may contain one or more requirements“. An example taken

from [BLP05] describes a company that has three lines of products: MP3 players,

DVD players, and Hard Disk recorders. Members of this family have some common-

alities, such as having an audio equalizor. They also have mandatory features like

the ability to play mp3 files for a MP3 player, and other optional features such as the

ability to record mp3 files for MP3 players.

33

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

There are various ways to analyze and model product families or software families.

One widely-known and widely-used approach is called feature modelling. Feature

modelling (FM) is an approach to analyze, build, and represent compact software

families on the basis of their features. A feature, in this context, is a distinctive

quality attribute or a user-defined aspect of the software system to be. A feature

model defines features and their derivatives and dependencies. Feature models are

the resulted reference architecture and they are widely used during the software de-

velopment process.

There are many feature modelling techniques. Some of these techniques are graphical,

which result into graphical representations of software families called feature model di-

agrams. The other some are algebraic non-graphical techniques called product family

algebra. All of these techniques share the same concept of features and feature models.

An example of feature model diagrams is FODA. FODA stands for Feature Oriented

Domain Analysis and it was the first to introduce feature models. A graphical feature

model in FODA is composed of nodes. Each node represents a feature. The root node

represents the main concept of the model. A node can be either external, which is a

primitive feature represented by a leaf on the edge, or internal, which is a compound

feature of other smaller subsequent features. In case of compound features, under-

neath features can be either composite using the AND notation or alternated using

the XOR notation. Finally, a feature can be mandatory or optional. A mandatory

feature is a feature that must be addressed in the product, while an optional feature

is a feature that can be addressed in the product.

34

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

4.2 Product Family Algebra (PFA)

Product family algebra is a mathematical calculus-oriented way of representing prod-

uct families. It can capture commonality and variability of product families and allow

manipulations upon product families in a mathematical way.

Definition 4.1 (Semiring [HKM11]). A semiring is a quintuple (S,+, 0, ·, 1) such that

(S,+, 0) is a commutative monoid and (S, ·, 1) is a monoid such that · distributes over

+ and 0 is an annihilator, i.e., 0 · a = 0 = a · 0. The semiring is commutative if ·

is commutative and it is idempotent if + is idempotent, i.e., a+ a = a. In the latter

case, the relation a ≤ b
def
= a+b = b is a partial order (i.e., a reflexive, antisymmetric

and transitive relation) called the natural order on S. It has 0 as its least element.

Moreover, + and · are isotone with respect to ≤. �

Product family algebra is an idempotent commutative semiring with the carrier set S

being the set of all product families. The binary operator · is interpreted as the com-

position of product families and is used to represent mandatory features. Whereas

the binary operator + is interpreted as the choice between product families and is

used to represent optional features. 0 is the empty product family, and 1 is a product

with no feature.

A product family is a set of products. A family that is indivisible with regard to +

is a product.

35

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

With the two operators + and ·, product family algebra can express the relationships

between nonfunctional requirements in different models.

Product [HKM11]: A product family a is a product if:

• ∀(b |: b ≤ a =⇒ b = 0 ∨ b = a) and

• ∀(b, c |: a ≤ b+ c =⇒ a ≤ b ∨ a ≤ c).

In particular, 0 is a product. A product a is proper if a 6= 0.

Feature [HKM11]: An element a is called a feature if it is a proper product and:

• ∀(b |: b|a =⇒ b = 1 ∨ b = a) and

• ∀(b, c |: a|(b · c) =⇒ a|b ∨ a|c)

where the divisibility relation | is given by x|y ⇐⇒ ∃z : y = x · z

Based on the natural ordering relation provided with a semiring structure, we define

a notion of refinement that is used later on to define other relations among families.

The following are expressions of some graphical feature modelling concepts into PFA

terms. The AND- composition of features b, c, and d for a product a is expressed

with the sentence a = b · c · d. The XOR- decomposition of features b, c, and d for

a product a is expressed with the sentence a = b + c + d. However, an optional

feature b and a mandatory feature c of some product a is expressed with the sentence

a = (b+ 1) · c.

36

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

See [HKM11] for further discussion regarding Product Family Algebra (PFA).

4.3 Model-Based Verification of Quantitative Nonfunctional

Requirements in Product Lines

This framework is an extension to a framework proposed in [GS11], which was de-

signed to assess nonfunctional requirements in single products or systems. The ex-

tended framework however is used to verify nonfunctional requirements in software

product lines. It derives Markov models and then assess these models against nonfunc-

tional requirements using probabilistic model checkers [GS13]. Probabilistic Markov

models are basically state machines in which transitions are labelled by probabilities.

Nevertheless, the Markov models presented here substitute probabilities on transi-

tions with variables called parameters, and therefore the resulted models are referred

to by parametric Markov models.

The proposed framework [GS13] verifies nonfunctional requirements in Software prod-

uct line (SPL) in two approaches, a product-by-product approach and a parametric

approach. The product-by-product fashion instantiates a behavioural model for every

product in the product line, transforms it into a Markov model, and then verifies

it against nonfunctional requirements. This approach is only feasible with a small

number of products due to the expensive verification time consumption. However, in

the case of large number of products, we use the parametric approach. After splitting

the products into common and variant parts, the parametric approach derives be-

havioural models out of both common and variant parts among products, transforms

37

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

them into Markov models, and verifies them. Thereafter, the results are composed to

provide evaluation. Accordingly, each property in the product line is analyzed only

once.

The modelling process [GS13] is based on the use of UML Sequence Diagrams (UML

SDs). However, in order to capture the variability, they are in this framework aug-

mented with variation points and alternatives that are linked to the the feature model

of the product line. Thus, they are called variable UML SDs. These diagrams support

messages, lifelines, and fragments.

In conclusion, most existing NFR-quantification techniques promote the use of feature

as a main artifact [MA09]. However, this approach focuses on the use of behavioural

models. They show variation on actions and not on features. Besides, it deals with

non-determinism more than quantification. Since we are attempting to quantify fea-

tures and feature-interactions, this model seems irrelevant to our research.

5 Conclusion

A major drawback of all previously mentioned techniques is that they model non-

functional requirements on the basis of the overall former experience of the software

architect. Not to mention that the assessment is mostly qualitative. Another draw-

back of these techniques is that some of them are graphical representations, which are

very limited in use when expanding the system model. Also, apart from the product

38

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

family algebra, the rest of the listed models can only model nonfunctional require-

ments in single products and cannot be used in product families. This contradicts

with the interests of many organizations that adopt the concept of software product

families.

Some quantitative models were presented as well. However, as far as we surveyed the

literature, none of the quantitative models seemed to be quiet efficient. For instance,

the Requirement Hierarchy Approach (RHA) is limited only to the quality require-

ments that are decomposed into functional requirements. Moreover, the framework

proposed by Affleck and Krishna for is quiet relevant to what we are trying to ac-

complish. However, the values of the contribution relationships are insufficient to us

since we would like to provide the flexibility of using a wide range of values to express

the nature of the contribution. Nevertheless, the model-based framework quantifies

actions and not features, and addresses non-determinism rather than quantification.

The question here is why not to have a quantitative evaluation for the satisfaction of

nonfunctional requirements in a certain system? This quantitative evaluation can be

founded on the partial quantitative evaluation of each and every system component

to these nonfunctional requirements. This evaluation can as well be carried out using

a function that illustrates the effect of these system components and their evaluation

on each other.

Moreover, the challenges of quantifying nonfunctional requirements in product fami-

lies concludes the need to develop a model that specifically addresses that issue. The

39

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

model-to-be should at least include the following specifications. The model should

handle nonfunctional requirements in an efficient manner. Inputs to the system model

are empirical data resulted from feature interactions between system components.

Most importantly, this model has to be founded on an a formal algebraic structure,

which enables us to analyze nonfunctional requirements and draw calculations to

assess the satisfaction of each nonfunctional requirement by each component in the

system or by each product in the product family.

Developing such a model is mainly the objective of this research. The next two chap-

ters will present this model in details.

40

Chapter 3

Mathematical Backgrounds

In this chapter, we introduce the necessary mathematical general concepts required

for the understanding of the material presented in the remaining part of this thesis.

In Section 3.1, we give definitions of some properties of binary operations. In Section

3.2, we define needed algebraic structures: semigroups, monoids, semirings, and Γ-

semirings. Finally, preordered sets and the measurement scale of intervals are tackled

in Section 3.3.

1 Properties of Binary Operations

The term algebraic structure refers to some arbitrary set called carrier set and a set

of operations defined on the set. Given a carrier set S and binary operators (i.e., +

and ·) defined on S, we have the following basic operations:

Closure: The set S is said to be closed under · if and only if ∀(a, b | a, b ∈ S :

a · b ∈ S).

41

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

Commutativity: The operator · is said to be commutative if and only if ∀(a, b |

a, b ∈ S : a · b = b · a).

Associativity: The operator · is said to be associative if and only if ∀(a, b, c | a, b, c ∈

S : (a · b) · c = a · (b · c)).

Idempotence: The operator · is said to be idempotent if and only if ∀(a | a ∈ S :

a · a = a).

Left Distributivity: We say that the operator · is left distributable over the operator

+ if and only if ∀(a, b, c | a, b, c ∈ S : a · (b+ c) = a · b+ a · c).

Right Distributivity: We say that the operator · is right distributable over the oper-

ator + if and only if ∀(a, b, c | a, b, c ∈ S : (a+ b) · c = a · c+ b · c).

Identity: An element e ∈ S is said to be the identity element if and only if ∀(a |

a ∈ S : a · e = e · a = a). Such an element is unique and neutral.

Annihilation: An element 0 ∈ S is said to be the annihilator if and only if ∀(a |

a ∈ S : a · 0 = 0 · a = 0).

42

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

2 Algebraic Structures

Definition 2.1 (Semigroup). A semigroup is an algebraic structure
(
S, ·
)

where S is

a nonempty carrier set closed under the operator ·, and · is associative. �

One of the most familiar examples of a semigroup is the set of positive integers Z+

with the addition
(
Z+,+

)
.

Definition 2.2 (Monoid). A monoid is a semigroup that has an identity. �

Definition 2.3 (Semiring). A semiring (or a hemiring or a near-ring) algebraic

structure is a quintuple
(
S,+, 0, ·, 1

)
consisting of a nonempty carrier set S equipped

with two binary operations, multiplication · and addition +, such that:

1.
(
S,+

)
is a commutative monoid.

2.
(
S, ·
)

is a monoid.

3. Multiplication left and right distributes over addition.

4. Multiplication has 0 as an annihilator.

�

Therefore, a semiring satisfies the following axioms: closure, associativity, identity,

commutativity, left distributivity, right distributivity, and has an annihilator.

43

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

Definition 2.4 (Γ-Semiring). The triple
(
S,Γ,+

)
where S and Γ are disjoint is called

a Γ-semiring if we have the mapping S × Γ × S → S, where
(
S,+

)
and

(
Γ,+

)
are

additive commutative monoids, and if it satisfies the following for every a, b, c in S

and for every α, β, γ in Γ:

1. aα(bβc) = (aαb)βc

2. aα(b+ c) = aαb+ aαc

3. (a+ b)αc = aαc+ bαc

4. a(α + β)b = aαb+ aβb

�

An additive monoid is a monoid equipped with the binary operation addition +, such

as the two monoids
(
S,+

)
and

(
Γ,+

)
of a Γ-semiring. According to Definition 2.4,

a Γ-semiring satisfies the following axioms: closure, associativity, identity, commuta-

tivity, and the four axioms of Definition 2.4.

The Γ-semiring
(
S,Γ,+

)
is commutative if every α in Γ is commutative (i.e., aαb =

bαa), and it is idempotent if the addition is idempotent (i.e., a+ a = a).

44

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

3 Intervals

Definition 3.1 (Preordered Set). A preorder is a binary relation ≤ defined over a

set P , which satisfies the following for all a, b, c ∈ P :

1. Reflexivity: a ≤ a

2. Transitivity: a ≤ b ∧ b ≤ c =⇒ a ≤ c

A set equipped with a preorder relation is called a preordered set. �

Definition 3.2 (Intervals). Let (P,≤) be a preordered set. Let a, b ∈ P with a ≤ b.

Then we have an interval I such that:

I = [a, b]
def
= {x ∈ P | a ≤ x ≤ b}

�

The elements a and b of the interval [a, b] are called endpoints. An open endpoint is

an excluded endpoint from the interval, and it is denoted by parentheses or reversed

square brackets. A closed endpoint is an included endpoint in the interval, and it is

denoted by regular square brackets.

An interval that includes both of its endpoints is called a closed interval. Whereas,

an interval that excludes both of its endpoints is called a open interval. A degenerate

interval is a set that includes a single element only. An empty interval is an interval

that has no element whatsoever.

45

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

4 Conclusion

In this chapter, we reviewed some basic mathematical concepts. We started with

some properties for binary operations such as: closure, commutativity, associativity,

idempotence, right distributivity, left distributivity, identity, and having an annihila-

tor. After that, we covered some algebraic structures such as semigroups, monoids,

semirings, and Γ-semirings. A semigroup satisfies two axioms, closure and associa-

tivity. A monoid is basically a semigroup with an identity axiom. A semiring is a

structure composed of two additive commutative monoids that have an annihilator

and satisfy the right distributivity and left distributivity axioms alongside the axioms

of monoids. A Γ-semiring is a semiring with four more axioms listed in Definition 2.4.

Finally, we defined preordered sets and intervals. All these concepts will be put in

good use towards the construction of our proposed algebraic technique in Chapter 4.

46

Chapter 4

Quantitative Assessment of

Nonfunctional Requirements in

Product Families

In this chapter, we present a formal framework for the quantitative assessment of

nonfunctional requirements in product families. In Section 4.1, we present the pro-

posed algebraic system.

1 The Proposed Approach

Quantifying nonfunctional requirements, NFR-relationships, and NFR-assessment is

feasible in many cases of quantifiable nonfunctional requirements. For example,

defining the performance attribute of an online media broadcast server [TFQ06]

where many factors can be defined and evaluated quantitatively (i.e., bandwidth

47

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

and throughput).

In product families, due to the concept of commonality and variability, families can

be generated from a set of features in variant alternate ways. While integrating dif-

ferent families, or in case of composite product family, nonfunctional requirements of

that family can be affected. For example, given a product family that has two non-

functional requirements (e.g., performance and security) we can build families from

features that their interactions could increase the performance but sacrifice security,

or vice versa. In addition, nonfunctional requirements affect the satisfaction of one

another according to several relationships. These relationships are mostly qualitative

and can improve or hinder the satisfaction of nonfunctional requirements on many

levels.

Instead of focusing on only one way of feature-interaction while building product

families from a given set of features, we intend through this proposed approach to

investigate numerous ways of feature interactions. At the same time, we aim to

calculate the quantitative values assigned to the satisfaction of the considered and

quantifiable nonfunctional requirements of the product family. These goals can be

captured through the use of the algebraic system of Γ-semirings and empirical data.

Thereafter, when given a Γ-semiring’s term like xαy, such that α ∈ Γ, we interpret it

as follows: “The family formed by the mandatory composition of sub-families x and

y, while considering the nonfunctional requirement α“.

48

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

For a better understanding, we provide an example to help us walk through the pro-

posed approach. In Figures 4.1, 4.2, and 4.3, we illustrate a feature model inspired

by the Online-Store example in [Lau06]. However, our feature model only features

the Business-Management part of the original Online-Store.

As shown in Figures 4.1, 4.2, and 4.3, it is quite difficult to deal with nonfunctional

requirements graphically due to time and space consumption. The diagrams become

very quickly cluttered as soon as we reach a family with a moderate size. However,

we instead provide a way to handle nonfunctional requirements textually and system-

atically, which is more convenient.

1.1 Intervals to Measure The Weight of Nonfunctional Re-

quirements

The form of the quantitative values we assign to the satisfaction of nonfunctional re-

quirements is one of the prominent features of our algebraic system. When measuring

the weight of nonfunctional requirement, it is hard to have an exact singular value

for that measure. Besides, it is a bit unrealistic since we do not have (up until now)

such precise quantifying techniques for assessing nonfunctional requirements. We will

most likely get a range of values, which starts with a minimum potential value and

ends with a maximum potential value. For that we use the concept of intervals.

49

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

Business
Management

[0,100]
[0,100]

Order Management
[0,100]
[0,100]

Targeting
[0,30]
[0,18]

Fulfillment
[0,100]
[0,100]

Physical
Goods

Fulfillment
[0,16]
[0,7]

Electronic
Goods

Fulfillment
[2,9]
[4,16]

Services
Fulfillment

[1,100]
[2,100]

Warehouse
Management

[6,16]
[7,7]

Shipping
[0,100]
[0,100]

Custom
Shipping
Method
[2,100]
[2,100]

Shipping
Gateways

[0,39]
[0,32]

Pricing
[2,100]
[2,100]

Flat Rate
[100,100]
[100,100]

Rate Factors
[2,29]
[2,49]

Quantity
Purchased

[6,29]
[3,5]

Order Total
[5,15]
[12,20]

Weight
[2,8]
[7,49]

Product
Classification

[7,14]
[2,4]

Fedex
[29,39]
[5,10]

UPS
[1,1]
[6,32]

USPS
[0,0]
[0,0]

Canada
Post
[0,4]
[0,10]

Custom
Shipping
Gateways

[6,9]
[1,3]

File
Repository

[5,22]
[6,16]

License
Management

[2,9]
[4,27]

Appointment
Scheduling

[1,1]
[2,8]

Resource
Planning

[3,18]
[4,9]

Targeting
Mechanism

[0,30]
[0,80]

Targeting
Criteria
[1,100]
[1,18]

Campaigns
[50,100]
[16,20]

Display and
Notifications

[1,100]
[1,100]

Product
Flagging

[2,15]
[1,2]

Assignment
to Page

Types for
Display
[8,31]
[5,70]

E-mails
[1,100]
[9,100]

Personalized
[100,100]
[100,100]

Response
Tracking

[1,3]
[9,16]

- We use FODA notation.
- Nodes with BOLD-FONT style indicate given
values, while nodes with NORMAL-FONT style
indicate calculated values.
- Upper LARGE-SIZE values indicate Security as-
sessment, while lower SMALL-SIZE values indicate
Performance assessment.

Figure 4.1: The Business Management Feature Model 1− 1 (inspired by [Lau06])

50

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

T
ar
g
et
in
g

M
ec
h
an

is
m

[0
,3
0
]

[0
,8
0
]

A
d
ve
rt
is
em

en
t

[3
,3
0
]

[1
,8
0
]

D
is
co
u
n
ts

[0
,9
]

[0
,7
]

S
el
l
S
tr
at
eg
ie
s

[1
,2
0
]

[1
,2
0
]

A
d
ve
rt
is
em

en
t

T
yp

es
[3
,3
0
]

[4
,8
0
]

A
d
ve
rt
is
em

en
t

S
o
u
rc
es

[1
0
,1
0
0
]

[3
,1
0
0
]

A
d
v
e
rt
is
e
m
e
n
t

R
e
sp

o
n
se

T
ra

ck
in
g

[3
,3
]

[1
,5

]

C
o
n
te

x
t

S
e
n
si
ti
v
e

A
d
s

[2
0
,2
2
]

[8
,1

6
]

B
a
n
n
e
r

A
d
s

[7
,2
1
]

[4
,4

]

P
o
p
-u

p
A
d
s

[3
,3
0
]

[9
,8

0
]

H
o
u
se

A
d
v
e
rt
is
e
m
e
n
t

[1
0
,2
0
]

[3
,5

]

P
ai
d

A
d
ve
rt
is
em

en
t

[1
0
0
,1
0
0
]

[1
0
0
,1
0
0
]

A
d
v
e
rt
is
e
m
e
n
t

M
a
n
a
g
e
m
e
n
t

In
te

rf
a
c
e

[1
0
0
,1
0
0
]

[1
0
0
,1

0
0
]

D
is
co
u
n
t

C
o
n
d
it
io
n
s

[0
,1
8
]

[0
,7
0
]

C
o
u
p
o
n
s

[4
,2
1
]

[1
9
,3

0
]

A
w
ar
d

[0
,9
]

[7
,3
0
]

H
a
n
d
li
n
g

M
u
lt
ip
le

D
is
c
o
u
n
ts

[1
1
,8
8
]

[4
,1

1
]

E
lig

ib
ili
ty

R
eq
u
ir
em

en
ts

[0
,1
0
0
]

[4
,1
0
0
]

G
ra
d
u
at
io
n
B
y

[9
,5
0
]

[3
,7
]

P
ro

d
u
c
t

a
n
d

Q
u
a
n
ti
ty

S
c
o
p
e

[2
0
,4
1
]

[4
4
,9

0
]

T
im

e
S
c
o
p
e

[1
7
,1
8
]

[1
3
,7

0
]

P
u
rc
h
a
se

V
a
lu
e

S
c
o
p
e

[0
,0
]

[0
,0

]

P
e
rc

e
n
ta

g
e

D
is
c
o
u
n
t

[1
,9
]

[9
,1

0
]

F
ix
e
d

D
is
c
o
u
n
t

[0
,4
]

[8
,2

8
]

F
re

e
It
e
m

[3
,5
]

[7
,3

0
]

C
u
st
o
m
e
r

S
e
g
m
e
n
ts

[1
1
,1
1
]

[4
,6

]

S
h
ip
p
in
g

A
d
d
re

ss
[0
,1
]

[5
,5

]

P
u
rc
h
a
se

V
a
lu
e

[9
,1
8
]

[4
,6

]

Q
u
a
n
ti
ty

[1
3
,5
0
]

[3
,7

]

P
ro

d
u
c
t

K
it
ti
n
g

[1
3
,2
0
]

[5
,2

0
]

U
p
-S
el
lin

g
[2
,7
]

[2
,8
]

C
ro
ss

S
el
lin

g
[1
,1
0
]

[1
,9
]

S
u
b
st
it
u
te

P
ro

d
u
c
ts

[2
,7
]

[2
,8

]

P
a
st

C
u
st
o
m
e
r

A
ls
o

B
o
u
g
h
t

[1
,1
0
]

[1
,9

]

-
W
e
u
se

F
O
D
A

n
o
ta
ti
o
n
.

-
N
o
d
es

w
it
h
B
O
L
D
-F
O
N
T

st
yl
e
in
d
ic
at
e
g
iv
en

va
lu
es
,
w
h
ile

n
o
d
es

w
it
h
N
O
R
M
A
L
-F
O
N
T

st
yl
e
in
d
ic
at
e
ca
lc
u
la
te
d
va
lu
es
.

-
U
p
p
er

L
A
R
G
E
-S
IZ
E
va
lu
es

in
d
ic
at
e
S
ec
u
ri
ty

as
se
ss
m
en
t,
w
h
ile

lo
w
er

S
M
A
L
L
-S
IZ
E
va
lu
es

in
d
ic
at
e
P
er
fo
rm

an
ce

as
se
ss
m
en
t.

F
ig

u
re

4.
2:

T
h
e

B
u
si

n
es

s
M

an
ag

em
en

t
F

ea
tu

re
M

o
d
el

1
−

2
(i

n
sp

ir
ed

b
y

[L
au

06
])

51

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

Targeting
Criteria
[1,100]
[1,18]

Customer
Preferences

[53,92]
[6,15]

Personal
Information

[71,73]
[7,16]

Demographics
[30,89]
[8,17]

Previous
Purchases

[9,81]
[1,10]

Shopping
Cart Content

[1,30]
[2,11]

Wish List
Content
[4,60]
[4,13]

Previously
Visited Pages

[3,10]
[9,18]

Date and
Time
[2,2]
[3,12]

Custom
Targeting
Criteria
[10,100]

[5,14]

- We use FODA notation.
- The BOLD boxes are further decomposed in subsequent figures.
- Nodes with BOLD-FONT style indicate given values, while nodes with NORMAL-FONT style indicate calculated values.
- Upper LARGE-SIZE values indicate Security assessment, while lower SMALL-SIZE values indicate Performance assessment.

Figure 4.3: The Business Management Feature Model 1− 3 (inspired by [Lau06])

Let I be a set of intervals within [0, ..., N] for some N in R+. Let I , {[a, b]| a ≤ b ≤

N ∧ a, b ∈ R+}. We have (I,≤I) is a preorder on I, where for [a1, b1], [a2, b2] ∈ I, we

have:

[a1, b1] ≤I [a2, b2]
def⇐⇒ b1 ≤ b2

The set (I,≤I) satisfies the following for all intervals in I:

1. reflexivity due to the reflexivity of ≤ on R+.

2. transitivity due to the transitivity of ≤ on R+.

Therefore, (I,≤I) is a pre-ordered set or quasi-ordered set. For detailed proofs, we

refer the reader to the Appendix.

According to what we observe, nonfunctional requirements can enhance the satisfac-

tion of each other on many levels, and we need the ability and flexibility to express

that. Choosing N as an upper bound can help us achieve that. This choice is as arbi-

trary as choosing 0 to be the lower bound for intervals. Both endpoints of [0, ..., N] are

52

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

simple choices. One can take [n, ...,m] for n,m ∈ R+. In dealing with our Business-

Management case study in Figures 4.1, 4.2, 4.3, we take N = 100.

In decision making, when the goal cannot be satisfied absolutely and the optimal

solution cannot be reached, the notion of satisficing tends to select the solution that

seems to address most needs. We use the notion of satisficing with our defined pre-

order relation ≤I . Let i1 and i2 be two intervals such that i1 ≤I i2. Thus, we say

that i2 (respectively, i1) is more (respectively, less) satisficing of the non functional

requirement.

We exemplify in Figures 4.1, 4.2, and 4.3 an assessment of the security and per-

formance nonfunctional requirements for the Business-Management feature model

inspired by [Lau06]. The graphs show the use of intervals to represent the assessment

values.

For every [a1, b1], [a2, b2] in I, we define two operations ⊕ and �, such that:

1. [a1, b1]⊕ [a2, b2] = [min (a1, a2),max (b1, b2)]

2. [a1, b1]� [a2, b2] = [min (a1, a2),min (b1, b2)]

For instance, let us have two intervals [5, 13] and [2, 10]. We have:

[5, 13]⊕ [2, 10] = [min (5, 2),max (13, 10)] = [2, 13]

[5, 13]� [2, 10] = [min (5, 2),min (13, 10)] = [2, 10]

Since 0 is the least possible value and N is the highest possible value, we conclude

that [0, N] is an absorbent element for ⊕. Likewise, [N,N] acts as a neutral element

53

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

for �, and [0, 0] is the absorbent element for �.

Let us have an interval [5, 13] to test and validate these conclusions against it:

[5, 13]⊕ [0, N] = [min (5, 0),max (13, N)] = [0, N]

[5, 13]� [N,N] = [min (5, N),min (13, N)] = [5, 13]

[5, 13]� [0, 0] = [min (5, 0),min (13, 0)] = [0, 0]

The operations on I, ⊕ and �, are commutative, associative, and idempotent due to

the properties of the min and max functions.

Lemma 1.1. I is closed with respect to ⊕ and �.

To prove that I is closed with respect to ⊕, we need to prove that ∀(i1, i2 | i1, i2 ∈

I : i1 ⊕ i2 ∈ I). Also, to prove that I is closed with respect to �, we need to prove

that ∀(i1, i2 | i1, i2 ∈ I : i1 � i2 ∈ I). For detailed proofs, we refer the reader to

the Appendix.

1.2 Quantitative Assessment Function µ

Let (S,Γ,+, 0s, 1s) be a mathematical structure where Nf is the set of given non-

decomposable nonfunctional requirements to be considered in the system, and Γ is

the power set of Nf that we denote by P(Nf). For example, if we have two nonfunc-

tional requirements to be considered such as security and performance, then we take

Nf
def
= {s, p} and therefore Γ = {∅, {s}, {p}, {s, p}}.

54

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

Let S be a set of ordered tuples on Γ such that an element in Γ-semiring S takes the

form of (P(F)× Γ)|Γ|.

To illustrate an interpretation of a term in this structure, we adopt Kuratowski’s

representation of ordered pairs [Kur21], where a tuple (a, b) is represented by:

(a, b) = {{a}, {a, b}} ⊆ P(A ∪B)

Therefore, 0s is {}. For an element, α ∈ Γ, we define:

∅α = {∅, πβ⊆α({∅}, β)}

where π is the Cartesian Product.

With Kuratowski’s representation, the operation + is translated into set union.

Hence, (S,Γ,+, 0s, 1s) is a commutative idempotent Γ-semiring and + is set union

on the Kuratowski’s representation of ordered pairs or on set of elementary non-

decomposable nonfunctional requirements. We call this interpretation of Γ-semiring,

The Ordered Pairs Model.

Let
(
S,Γ,+, 0s, 1s

)
be the ordered pairs model of a commutative idempotent Γ-

semiring where S is freely generated from a set of basic features F. For an α ∈ Γ and

a set of intervals I provided by stakeholders, we define the function:

µα : S → I

The function µα is responsible for mapping all families in S to weight values in the

form of intervals I.

55

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

Note: If we do not consider any nonfunctional requirements (i.e., Nf = ∅), then

we have a Γ-semiring
(
S, {∅},+, 0s, 1s

)
. Since we only have one operator {∅} in Γ,

then we can denote that operator by the · operator. Therefore, we have an isomor-

phic semiring to
(
S, ·,+, 0s, 1s

)
. The latter semiring forms a product family algebra

when + is idempotent ∀(a | a ∈ S : a + a = a) and α ∈ {∅} is commutative

∀(a, α | a ∈ S, α ∈ {∅} : aαb = bαa).

When the set of non-decomposable nonfunctional requirements is not empty (i.e.,

Nf 6= ∅) and product families are freely generated from a set of features F, then we

define a function µ that provides a quantitative assessment of a product family with

regard to a set of nonfunctional requirements. However, prior to that, we remind

the reader of the definitions of products and features that were previously given on

page 36.

Product [HKM11]: If a 6= 0 and if:

• ∀(b |: b ≤ a =⇒ b = 0 ∨ b = a) and

• ∀(b, c |: a ≤ b+ c =⇒ a ≤ b ∨ a ≤ c).

Then, a is called a proper product.

56

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

Feature [HKM11]: Given the divisibility relation | defined as

x|y ⇐⇒ ∃(z, α | z ∈ S ∧ α ∈ Γ : y = xαz)

and a proper product a, which satisfies the following:

• ∀(b |: b|a =⇒ b = 0 ∨ b = a) and

• ∀(b, c |: a|(b+ c) =⇒ a|b ∨ a|c)

Then, a is called a feature.

Definition 1.1 (Quantitative Assessment Function µ). Let
(
S,Γ,+, 0s, 1s

)
be the

ordered pairs model of an idempotent commutative Γ-semiring where S is freely gen-

erated from a set of features F, and Γ is the power set of a set Nf of non-decomposable

nonfunctional requirements. For α ∈ Γ and a set of intervals I provided by stakehold-

ers, we define the quantitative assessment function µα as follows:

1. µα(0s) = [0, 0]

2. µα(1s) = [N,N]

3. For α = ∅, we have ∀(a | a ∈ S − {0s} : µα(a) = [N,N])

4. For α 6= ∅, we have the following cases:

(a) ∀(b | b ∈ F : µα(b) = bα)

(b) µα(x+ y) = µα(x)⊕ µα(y)

(c) µα(xαy) = µα(x)� µα(y)

(d) µα(xβy) = [N,N] for β 6= α

57

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

�

The first two cases are the base cases, the zero family 0s and the neutral family 1s.

For every nonfunctional requirement α in Γ, a quantitative weight of [0, 0] is assigned

to the assessment of the zero family 0s, and a full weight of [N,N] is always assigned

to the assessment of the neutral family 1s. For example, the Purchase-Value-Scope

operationalization in our case study in Figure 4.2 is assumed to hinder the behaviour

of the Business-Management system and the nonfunctional requirements due to some

flaws. Therefore, it is a zero product 0s and has an assessment of [0, 0] whether we

are assessing for performance or security. Whereas the Advertisement-Management-

Interface operationalization is assumed to perform perfectly in our case study and

under any circumstances. Thus, it is considered a neutral product 1s and has an as-

sessment of [100, 100] for both performance and security nonfunctional requirements.

Apart from the base cases, we have two more special cases. The first one is the quan-

titative assessment with regard to α = {∅}. In this case, since we do not have any

nonfunctional requirements to consider, all families in S will always have a perfect

assessment of [N,N], except for the zero family 0s since it always has a weight of [0, 0].

For instance, if we are assessing the Shipping-Gateways family in Figure 4.1 with

no respect to any nonfunctional requirement. We take the following sub-families in

S: a = Fedex, b = UPS, c = USPS, d = Canada-Post, and e = Custom-Shipping-

Gateways. Due to the exclusive-or relation between optional features we will get the

following:

58

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

µ(a+ b+ c+ d+ e)

=<Definition of µ(x+ y) >

µ(a)⊕ µ(b)⊕ µ(c)⊕ µ(d)⊕ µ(ce)

=<Assigning Values>

[100, 100]⊕ [100, 100]⊕ [0, 0]⊕ [100, 100]⊕ [100, 100]

=<Definition of ⊕ >

[0, 100]

As seen previously, all Shipping-Gateways options were given neutral assessment val-

ues of [100, 100] since no nonfunctional requirement is considered. Except for the the

USPS company, which was given a zero assessment [0, 0] since it is a zero product 0s.

The other case is the quantitative assessment with respect to α 6= {∅}, which is the

general case of the proposed approach. In the latter case, a family a ∈ S can be

one of four subsequent cases, a feature, an optional composite product family (i.e.,

x+ y), a mandatory composite product family with consideration to α operator (i.e.,

xαy), or a mandatory composite product family with consideration to β operator

while evaluating for α (i.e., xβy, β 6= α).

As for features, a quantitative weight is given by stakeholders and assigned to each

feature b in the set of basic features F. Thus, the use of empirical data is crucial in

this approach. As indicated in Figures 4.1, 4.2, and 4.3, all bold assessment values

are assumed to be assigned by stakeholders. As for the composite families, we first

59

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

assess the weight of each family independently using the µ function. After that, we

calculate the overall weight using either the ⊕ operator (for optional compositions)

or the � operator (for mandatory compositions).

For instance, to calculate the overall performance assessment of the Fulfillment family

in Figure 4.1, we apply Definition 1.1. Due to the exclusive-or relationship between

optional features, we use the binary operation⊕. Assuming we have three sub-families

x, y, z ∈ S where x = Physical-Goods-Fulfillment, y = Electronic-Goods-Fulfillment,

and z = Services-Fulfillment. Given α = performance, then:

µα(x+ y + z)

=<Definition of µ(x+ y) >

µα(x)⊕ µα(y)⊕ µα(z)

=<Assigning Values>

[0, 7]⊕ [4, 16]⊕ [2, 100]

=<Definition of ⊕ >

[min (0, 4),max (7, 16)]⊕ [2, 100]

=<Definition of min and max >

[0, 16]⊕ [2, 100]

60

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

=<Definition of ⊕ >

[min (0, 2),max (16, 100)]

=<Definition of min and max >

[0, 100]

Accordingly, the performance assessment of the Fulfillment family includes all the

possible performance assessments of the three fulfillment options, starting with the

minimum value of 0 and ending with the maximum value of 100.

Likewise, to calculate the overall security assessment of the Emails family in Figure 4.1

and due to the inclusive-or relationship between optional features, we use the �

binary operation. Therefore, assuming we have two sub-families x, y ∈ S where x =

Personalized and y = Response-Tracking. Given α = security, then:

µα((1 + x)α(1 + y))

=<Definition of µ(xαy) >

µα(1 + x)� µα(1 + y)

=<Definition of µ(x+ y) >

(µα(1)⊕ µα(x))� (µα(1)⊕ µα(y))

=<Assigning Values>

([100, 100]⊕ [100, 100])� ([100, 100]⊕ [1, 3])

=<Definition of ⊕ >

61

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

[min (100, 100),max (100, 100)]� [min (100, 1),max (100, 3)]

=<Definition of min and max >

[100, 100]� [1, 100]

=<Definition of � >

[min (100, 1),min (100, 100)]

=<Definition of min >

[1, 100]

Hence, the overall security assessment of the Emails family ranges between 1 and

100. This makes sense as it covers all the possible values in case of choosing only one

of the sub-families, both of them, or even none of them.

Another example is to calculate the overall performance of the Discount-Conditions

family in Figure 4.2. Due to the inclusive-or relationship between both mandatory and

optional features, we use the� binary operation. Assuming we have three sub-families

x = Product-and-Quantity-Scope, y = Time-Scope, and z = Purchase-Value-Scope,

and given α = performance, then:

62

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

µα(xαyα(1 + z))

=<Definition of µ(xαy) >

µα(x)� µα(y)� µα(1 + z)

=<Definition of µ(x+ y) >

µα(x)� µα(y)� (µα(1)⊕ µα(z))

=<Assigning Values>

[44, 90]� [13, 70]� ([100, 100]⊕ [0, 0])

=<Definition of ⊕ >

[44, 90]� [13, 70]� [min (100, 0),max (100, 0)]

=<Definition of min and max >

[44, 90]� [13, 70]� [0, 100]

=<Definition of � >

[min (44, 13),min (90, 70)]� [0, 100]

=<Definition of min >

[13, 70]� [0, 100]

=<Definition of � >

[min (13, 0),min (70, 100)]

=<Definition of min >

[0, 70]

63

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

The overall performance assessment of the Discount-Conditions mostly covers the

possible values of the two mandatory sub-families. However, the third sub-family is

a zero product whose assessment has no destructive affect since it is optional.

In the language of Γ, we can have terms that involve several operators from Γ (i.e.,

aαbβc, where a, b ∈ S ∧ α, β ∈ Γ ∧ β 6= α). This means that we may encounter more

than one nonfunctional requirement in the assessment process (i.e., we take α as secu-

rity and β as performance). The case of encountering the nonfunctional requirement

β while evaluating for the nonfunctional requirement α is illustrated in Definition 1.1.

In this case, while evaluating for α, we overlook the non-considered requirement β by

assigning a neutral value of [N,N] to the assessment of the product families that use

β as a means of connectivity.

1.3 Quantitative Assessment Function µ̂u

A more complex situation is the quantitative assessment of product families with

respect to a set of non-decomposable nonfunctional requirements. We define µ̂ as an

expansion of the µ function. It expands from dealing with only one nonfunctional

requirement α to a set of nonfunctional requirements α1, ..., αn.

When given a family of functions µα1 , ..., µαn defined according to Definition 1.1, then

it is critical to involve stakeholders. Stakeholders have a certain priority or prefer-

ence associated to each and every nonfunctional requirement. Therefore, whenever a

software architect is swamped with many nonfunctional requirements, it is better to

64

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

prioritize them according to a given preference factor. Accordingly, we have two cases

in regards of composite nonfunctional requirements. The first is when no priority is

provided and the second is when priority is provided.

In the case where no preference factor is provided, all nonfunctional requirements

are treated equally. The assessment is achieved through the use of our unweighted

quantitative assessment function µ̂u, which is defined as follows.

Definition 1.2 (Unweighted Quantitative Assessment Function µ̂u). Let Γ = P(Nf),

the power set of a set of non-decomposable nonfunctional requirements to be considered

Nf . Let
(
S,Γ,+, 0s, 1s

)
be the ordered pairs model of a commutative idempotent Γ-

semiring where S is freely generated from a set of basic features F. We define the

function:

µ̂u : P(Γ)× S → I

Given λ ∈ P(Γ), we have:

1. µ̂u(λ, x+ y) = ⊕(α|α ∈ λ : µα(x+ y))

2. µ̂u(λ, xλy) = �(α|α ∈ λ : µα(xαy))

�

In general, the µu function takes a product family in S along with λ, a subset of Γ,

to generate a range of possible weight values in the form of an interval I. First, we

calculate the overall weight of the considered product family with respect to every α

in λ individually using the µ function in Definition 1.1. Then, the µ̂u function builds

65

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

up the results using either the � (for mandatory compositions) or ⊕ (for optional

compositions) operators to reach the overall weight of the product family with respect

to all considered nonfunctional requirements.

A noteworthy information is that µ̂u is a recursive function as it applies the same

calculations recursively for every α in λ.

Let us assess the Rate-Factors family in our running case study in Figure 4.1 with

regard to both performance and security nonfunctional requirements. Therefore, λ =

{s, p} and we take α as security and β as performance. Due to the exclusive-or

relationship between optional features, we use the ⊕ operator. Let a = Quantity-

Purchased, b = Order-Total, c = Weight, and d = Product-Classification. Then:

µ̂u(λ, a+ b+ c+ d)

=<Definition of µ̂u >

⊕(α|α ∈ λ : µα(a+ b+ c+ d))

=<Distribution of ⊕ >

µα(a+ b+ c+ d)⊕ µβ(a+ b+ c+ d)

=<Definition of µ(x+ y) >

(µα(a)⊕ µα(b)⊕ µα(c)⊕ µα(d))⊕ (µβ(a)⊕ µβ(b)⊕ µβ(c)⊕ µβ(d))

=<Assigning Values>

([6, 29]⊕ [5, 15]⊕ [2, 8]⊕ [7, 14])⊕ ([3, 5]⊕ [12, 20]⊕ [7, 49]⊕ [2, 4])

66

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

=<Definition of ⊕, min, and max >

[2, 29]⊕ [2, 49]

=<Definition of ⊕ >

[min (2, 2),max (29, 49)]

=<Definition of min and max >

[2, 49]

Thereafter, we can say that the overall assessment of the Rate-Factors family in our

case study in Figure 4.1 with respect to performance and security at the same time

is within the range of [2, 49].

Using the previously mentioned example ofNf = {s, p} and Γ = {{∅}, {s}, {p}, {s, p}},

it is crucial to illustrate the difference between the two looking alike cases of α = {s, p}

and λ = {{s}, {p}}. In the earlier case, we are dealing with one nonfunctional re-

quirement α ∈ Γ that is composite. Thus, we have two ways to deal with it. Either

we deal with it all as one requirement, create one table of stakeholders’ input data for

it, and use the quantitative assessment function µ to assess its weight value. Or, we

can deal with it separately as two different requirements and address both of them

using the quantitative assessment function µ̂. However, in the latter case, we have

λ ∈ P(Γ). Thus, we definitely deal with them as two distinct nonfunctional require-

ments, which use the quantitative function µ̂ to assess their weights.

67

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

1.4 Weighted Quantitative Assessment Function µw

The second case of assessing product families with respect to a set of non-decomposable

nonfunctional requirements is when given a preference factor P for all considered non-

functional requirements. The preference factor P is represented by assigning weight

values to the preference or priority of the nonfunctional requirements.

Given P(Nf), the power set of the set of non-decomposable nonfunctional require-

ments to be considered, we define the preference factor P as follows:

P : Γ→ [0...1]

Such that:
∑

α∈Γ P (α) = 1

A mapping is carried out between every considered nonfunctional requirement α ∈ Γ

and the weight value of its assigned preference [0...1]. With 0 being a non-critical

requirement whereas 1 indicates the maximum critical need of that requirement. This

assignment is given by stakeholders.

In our Business-Management case study illustrated in Figures 4.1, 4.2, 4.3, we assign

weight values of 0.4 and 0.6 to the preference of the considered nonfunctional require-

ments, security and performance (respectively). Notice that the total weight value is

P = 0.4 + 0.6 = 1.

68

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

Given P , the weight value of the preference for the considered nonfunctional require-

ments, we define:

θ : P × I → I

Where
∑

α∈Γ P (α) = 1, and such that:

1. θ(0, [a, b]) = [N,N]

2. θ(n, [a, b]) = [na, nb]

A special case is when some nonfunctional requirement has 0 as preference weight.

For that special case, the above function θ is defined. In general, assuming we have a

nonfunctional requirement α, the function θ takes the assessment weight µα of that

requirement and multiplies it with its associated preference weight Pα. However,

when having a zero priority (i.e., Pα = 0), the function θ returns a value of [N,N] to

avoid multiplying the endpoints of the given interval by 0, which will result into an

interval of zeros. Otherwise, the function θ returns the interval obtained by multi-

plying the endpoints of the given interval by the given preference weight. The point

of the function θ is to avoid the complete elimination of requirements that have no

preference.

Finally, the weighted quantitative assessment function µ̂w is defined as follows.

69

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

Definition 1.3 (Weighted Quantitative Assessment Function µ̂w). Let Γ = P(Nf),

the power set of a set Nf of non-decomposable nonfunctional requirements to be con-

sidered. Let
(
S,Γ,+, 0s, 1s

)
be the ordered pairs model of a commutative idempotent

Γ-semiring where S is freely generated from a set of basic features F. We define the

function:

µ̂w : P(Γ)× S → I

Given λ ∈ P(Γ), we have:

1. µ̂w(λ, x+ y) = ⊕(α|α ∈ λ : θ(P (α), µα(x+ y)))

2. µ̂w(λ, xλy) = �(α|α ∈ λ : θ(P (α), µα(xαy)))

�

The function µ̂w in Definition 1.3 does the exact same recursive calculations as µ̂u

in Definition 1.2. The only added difference is that µ̂w takes the weight value of the

preference P into consideration. In general, µ̂w takes a product family in S along

with λ, a subset of Γ, to generate an interval I, after taking into account the weight

value of the preference P .

First, we calculate the overall assessment of the considered product family with re-

spect to every α in λ individually using the µ function in Definition 1.1. Then, the

function θ multiplies the resulted assessment of every α by the weight value of its

preference Pα. Finally, the µ̂w function adds up the results using either the � (for

mandatory compositions) or ⊕ (for optional compositions) operators to reach the

overall assessment of the product family with respect to all considered prioritized

70

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

nonfunctional requirements.

In our case study in Figure 4.3, we take the following families in S: a = Customer-

Preference, b = Personal-Information, c = Demographics, d = Previous-Purchases,

e = Shopping-Cart-Content, f = Wish-List-Content, g = Previously-Visited-Pages,

h = Date-and-Time, and i = Custom-Targeting-Criteria. Also, let λ = {s, p} and we

take α = {s} and β = {p}. Due to the exclusive-or relationship between optional

features, we use the ⊕ operator. To calculate the overall assessment of Targeting-

Criteria with regard to both performance and security at the same time and while

considering the weight value of the preference P , we do the following:

µ̂w(λ, a+ b+ c+ d+ e+ f + g + h+ i)

=<Definition of µ̂w >

⊕(α|α ∈ λ : θ(P (α), µα(a+ b+ c+ d+ e+ f + g + h+ i)))

=<Distribution of ⊕ >

θ(P (α), µα(a+b+c+d+e+f+g+h+i))⊕θ(P (β), µβ(a+b+c+d+e+f+g+h+i))

=<Definition of µ(x+ y) >

θ(P (α), µα(a)⊕ µα(b)⊕ µα(c)⊕ µα(d)⊕ µα(e)⊕ µα(f)⊕ µα(g)⊕ µα(h)⊕ µα(i))⊕

θ(P (β), µβ(a)⊕ µβ(b)⊕ µβ(c)⊕ µβ(d)⊕ µβ(e)⊕ µβ(f)⊕ µβ(g)⊕ µβ(h)⊕ µβ(i))

=<Assigning Values>

θ(0.4, [53, 92]⊕[71, 73]⊕[30, 89]⊕[9, 81]⊕[1, 30]⊕[4, 60]⊕[3, 10]⊕[2, 2]⊕[10, 100])⊕

θ(0.6, [6, 15]⊕ [7, 16]⊕ [8, 17]⊕ [1, 10]⊕ [2, 11]⊕ [4, 13]⊕ [9, 18]⊕ [3, 12]⊕ [5, 14])

71

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

=<Definition of ⊕, min, and max >

θ(0.4, [1, 100])⊕ θ(0.6, [1, 18])

=<Definition of θ >

[0.4, 40]⊕ [0.6, 10.8]

=<Definition of ⊕ >

[min (0.4, 0.6),max (40, 10.8)]

=<Definition of min and max >

[0.4, 40]

Thereafter, we can say that the overall assessment of Targeting-Criteria with respect

to performance and security requirements at the same time along with their prefer-

ence weight values is within the range of [0.4, 40].

One last example is the assessment the product family Targeting in Figure 4.1 of

our case study with regard to both performance and security. We take α = {s} and

β = {p} and therefore λ = {s, p}. Due to the inclusive-or relationship we use the �

operator. We also take the following sub-families in S: a = Targeting-Mechanism,

b = Targeting-Criteria, c = Campaigns, and d = Display-and-Notification. Given the

preference weight values P (s) = 0.4 and P (p) = 0.6, we have:

72

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

µ̂w(λ, aαbα(1 + c)αd)

=<Definition of µ̂w >

�(α|α ∈ λ : θ(P (α), µα(aαbα(1 + c)αd)))

=<Distribution of � >

θ(P (α), µα(aαbα(1 + c)αd))� θ(P (β), µβ(aβbβ(1 + c)βd))

=<Definition of µ(xαy) >

θ(P (α), µα(a)�µα(b)�µα(1+c)�µα(d))�θ(P (β), µβ(a)�µβ(b)�µβ(1+c)�µβ(d))

=<Definition of µ(x+ y) >

θ(P (α), µα(a)�µα(b)� (µα(1)⊕µα(c))�µα(d))�θ(P (β), µβ(a)�µβ(b)� (µβ(1)⊕

µβ(c))� µβ(d))

=<Assigning Values>

θ(0.4, [0, 30]� [1, 100]� ([100, 100]⊕ [50, 100])� [1, 100])� θ(0.6, [0, 80]� [1, 18]�

([100, 100]⊕ [16, 20])� [1, 100])

=<Definition of ⊕, min, and max >

θ(0.4, [0, 30]�[1, 100]�[50, 100]�[1, 100])�θ(0.6, [0, 80]�[1, 18]�[16, 100]�[1, 100])

=<Definition of � and min >

θ(0.4, [0, 30])� θ(0.6, [0, 18])

=<Definition of θ >

[0, 12]� [0, 10.8]

=<Definition of � and min >

[0, 10.8]

73

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

The overall assessment of the Targeting family with respect to performance and secu-

rity at the same time along with their preference weight value falls within the range

of [0, 10.8].

1.5 Conclusion

Measurement is essential to many systems in our lives. As put in [FP97], ”You cannot

control what you cannot measure”. Thus, we should be creating ways to measure our

world and therefore enhance it. However, the measurement process is not defined in

a clear-cut sense and this raises a concern.

An entity is an object such as a person, a place, or an event. Whereas an attribute is

a property of an entity. For example, if the entity is a journey then an attribute could

be the cost of that journey. Accordingly, a measurement process is defined as ”the

process by which numbers or symbols are assigned to attributes of entities in the real

world in such a way as to describe them according to clearly defined rules” [FP97]. For

example, to describe the cost of a journey we will assign a number of dollars as a mea-

surement. So many loose measurement terminology are still commonly accepted and

it is our rule as scientists to overcome this issue and improve measurement techniques.

Software engineering aggregates a number of engineering techniques to implement

and maintain software products in scientific and controlled way. In software industry,

we want to be able to measure the quality of a software products, and this is why the

74

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

measurement process was introduced to software engineering. Software measurement

in software engineering is a collection of topics called software metrics. Thus, a soft-

ware metric is ”a term that embraces many activities, all of which involve some degree

of software measurement” [FP97]. Examples of these topics include: cost and effort

estimation, data collection, quality models and measures, and much more. Each of

these measurements has a measurement model.

Our attempt to quantify nonfunctional requirements matches the measurement def-

inition in terms of assigning values to attributes. It is a software measurement that

falls under the quality models and measures. Theses models (just like our model)

consists of high-level quality factors that need to be quantified. These quality factors

are decomposed into lower-level criteria that are easier to understand, measure, and

deal with. The resulted tree-like structure contains correlations between factors and

their descendants, and thus a factor is measured through the measurement of these

relationships.

A model [FP97] is an abstraction of reality that takes the form of equations, map-

pings, or even diagrams. Models enable us to view a particular aspect of this reality

from a certain point of view, and they also allow us to examine the relationships

between different component parts. For example, our proposed model allows us to

view the relationships between components in terms of considered nonfunctional re-

quirements. Unfortunately, when modelling we often focus more on the mathematical

system and manipulating numbers while disregarding the empirical system and rela-

tionship among entities. A part of modelling reality is to model its attributes and

75

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

entities as mentioned in the above measurement definition. Once we have the model

along with its entities and attributes, we start the measuring.

We define the measures based on the attributes, and they can be either direct or

indirect [FP97]. Direct measurement directly maps an entity to a numerical value

without the use of any other entity or attribute. On the other hand and in the case of

complex relationships, an indirect measurement is established by combining several

sub-attributes and sub-aspects, and a model is needed to show how the combination is

established. Hence, we can say that indirect measurements show interactions between

direct measurements. Our proposed model is an example of an indirect measurement.

It measures the assessment of nonfunctional requirements in product families through

the assessments of sub-families and sometimes the level of preference of the require-

ments.

Most measurements are for existing entities. However, we sometimes would like to

predict an entity and hence measure it. Such thing is called prediction measurement.

As stated in [FP97], ”A prediction system consists of a mathematical model together

with a set of prediction procedures for determining unknown parameters and inter-

preting results (Littlewood, 1988)”. Therefore, for prediction measurement we can

create a mathematical model of the factors that affect the entity to show the relations

between the attributes to be predicted and the affecting attributes. After that, we

understand the model and use it to predict the measurement. Similarly, we predict

that nonfunctional requirements can be measured and hence created the proposed

mathematical model following the exact same step.

76

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

As mentioned earlier, in direct measurements we assign mappings or representations

from an empirical relation system (domain) to a numerical relation system (range).

Therefore, we can manipulate data in the numerical system to measure the attributes

in the empirical one. The mapping along with both the empirical and numerical re-

lation systems are called a measurement scale [FP97]. There are five major types of

scales: Nominal, Ordinal, Interval, Ratio, and Absolute. The ordinal scale maintains

ordering and thus carries more information about the entities than the nominal scale.

However, the interval scale carries even more information, which makes it more pow-

erful. It preserves order, preserves differences, captures interval sizes between classes,

and accepts addition an subtraction. During the assignment, we have to assure that

the suitable kind of measurement scale is assigned. For our model, we used the inter-

val scale.

To summarize, our model is an indirect measurement to measure a predictable entity

(nonfunctional requirements) using the interval measurement scale.

In order to measure nonfunctional requirements satisfactorily, we created functions

like µ and µ̂, operators like ⊕ and �, and relations like ≤I . However, we were dedi-

cated during the creation to define them as sound measures. Some software engineers

claim that quality attributes (nonfunctional requirements) such as performance and

reliability cannot be measured. This claim is valid so far due to the lack of measure-

ment techniques. However, once a model proposal (like our model) is made, so many

discussions will carry out the work to a better model.

77

Chapter 5

Future Work

This chapter highlights briefly the possible future work directions in Section 5.1. In

Section 5.2, we discuss a potential proper model for the proposed Γ-semiring struc-

ture. Finally, we present some works suggested for further investigations in Section

5.3.

1 Directions For Future Work

Our future work will evolve in the following main directions. First, enhancing the

practical assessment of our approach is intended to be a main subject of future work.

We will try to apply the proposed algebraic technique to a concrete model, such as

the model illustrated briefly in Section 5.2.

78

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

Current work concerns nonfunctional requirements that can be expressed in a quan-

titative manner, such as security and performance. However, whereas some nonfunc-

tional requirements are measurable (by observation) like the level of performance,

other requirements have precise measurement metrics, such as the cost and energy

consumption. Therefore, another future work direction is extending the approach to

cover other types of quantitative nonfunctional requirements.

Finally, this research considers only frameworks that model relationships between

nonfunctional requirements and their decomposed off-spring operationalizations. How-

ever, literature is enriched with other models. There are models [KS00] that repre-

sent relationships between nonfunctional requirements and design decisions. Whereas

other models [Ngu09] [CdPL04] view functional and nonfunctional requirements as

two distinct models to apply the separation of concerns concept, and to trace the

impact caused by functional requirements over the nonfunctional requirements and

hence the overall quality of the system. These models can form another direction

for future work. Existing approaches which support functional verification can be

integrated with our approach to nonfunctional assessment to provide environments

in which quality assessments can be performed for software product families.

2 Notes on a Future Model for Γ-Semirings

Modelling the mathematical structure of Γ-semirings has been scarce in the literature.

In this section, we present a potential implementation or a model for the proposed

algebra (Γ-semiring structure) that can be further expanded and used for assessing

79

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

nonfunctional requirements. The model is inspired by an example in [SD04]. The

example presented a Γ-semiring S with matrices as its elements. A proposition aαb

denotes the matrix product of two matrices, S and Γ, where a, b ∈ S and α ∈ Γ. S

and Γ are two additive commutative semigroups that are presented as two matrices

of size 2×3 and 3×2 (respectively) over the set of non-negative rational numbers Q+
0 .

Assuming a =

1 0 0

0 1
3

0

 , b =

0 0 1
3

0 1 0

 , and α =


1 0

0 1

0 0

.

Then, aαb =

1 0 0

0 1
3

0

×


1 0

0 1

0 0

×
0 0 1

3

0 1 0

 =

0 0 1
3

0 1
3

0

.

The use of matrices is a simple direct potential implementation of Γ-semirings. As

seen in the example, products a, b ∈ S are represented through matrices, and thus all

values within those particular matrices can be thought of as evaluations of features

within products a and b. Initially, we can say that in each product matrix, rows

resemble components of the system where columns resemble the considered nonfunc-

tional requirements. Therefore, each entry in the matrix represent the evaluation of

a specific nonfunctional requirement in a specific system component. Moreover, all

considered NFR-operators (i.e., α ∈ Γ) are presented as matrices as well. The matrix

entries here represents different ways of interactions between the system components.

Finally, the inner calculations between these matrices to carry out the result of the

proposition aαb can be viewed as quantitative assessments of the different ways of

feature-interactions among products a and b via the NFR-operator α. For a visual

80

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

representation of feature-interactions, we have the following example:

Assuming a =

a1

a2

 , b =

b1

b2

 , and α =

[
α1 α2

]
.

Then, aαb =

a1

a2

× [α1 α2

]
×

b1

b2

 =

a1α1b1 + a1α2b2

a2α1b1 + a2α2b2

.

3 More Suggested Directions for Future Work

The following are works that present relationships between nonfunctional require-

ments and other elements such as functional requirements or design decisions. These

works are referenced as they could be useful for future work.

3.1 A Goal-Based Model

A goal-based model is proposed in [Ngu09]. In this model, two separate AND/OR

trees are constructed, one for functional requirements (hard-goals) and another for

nonfunctional requirements (soft-goals). These two trees are connected throughout

the same kind of correlations that link between nonfunctional requirements and their

refinements: Break −−, Hurt −, Unknown ?, Help +, and Make ++. This representa-

tion is used to examine and trace the impact of functional changes over nonfunctional

soft-goals. As suggested in [Ngu09], this combination of hard-goals, soft-goals, and

correlations can form a matrix in which hard-goals are listed as rows, soft-goals as

columns, and correlations as cell entries. These correlations are of qualitative nature

81

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

and have qualitative values. However, they can have quantitative values drawn from

the levels of priority of soft-goals assigned by the stakeholders. Based on the values

in the matrix, a software engineer can apply trade-off analysis and determine the

possibility of constructing single products within a software product family.

3.2 The Language Extended Lexicon

The software development process is viewed in [CdPL04] as composed of two distinct

evolutionary perspectives: one focuses on functional aspects and the other focuses on

nonfunctional aspects. Having an approach that deals with these two different pro-

cesses separately is good for many reasons. One of which is the fact that requirements

changes can be triggered by either functional or nonfunctional aspects, thus the sep-

aration of concerns eases the evolution aspect. Another reason is for the process to

be used in legacy system. It also allows us to detect any design inconsistency among

interdependencies when analyzing NFR-graphs.

In the Language Extended Lexicon (LEL) strategy, we first need a lexicon to represent

the common vocabulary of the requirements domain. After we build it, functional

and nonfunctional models are built separately yet concurrently. When nonfunctional

requirements are added to the lexicon, some NFR-implementation solutions are also

added. Thereafter, NFR-graphs are then constructed and extended to the strategy.

These graphs are driven from the Chung’s NFR-framework [CdPL09] which proposes

the goal-oriented model. It enables a deeper level of reasoning about nonfunctional

requirements in order to capture conflicts and apply trade-offs. Finally, we integrate

82

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

the two models and address different feedbacks during the evolution of the process.

3.3 Definition Hierarchy

Software reuse is a key to high quality and productivity. Product families are among

the best software reuse approaches. However, they suffer the lack of support by many

current practices in requirements engineering [KS00]. Definition hierarchy provides a

requirements engineering solution to the problem [Ngu09]. It models nonfunctional

requirements for product families and helps to reflect the variation of products within

one family by organizing the requirements of all different products into the same def-

inition hierarchy.

As stated earlier, most requirement analysis approaches divide requirements into func-

tional and nonfunctional. Nevertheless, definition hierarchy divide requirements a bit

differently into design objectives and design decisions [KS00]. Design objectives act

as the nonfunctional requirements as they are basically the essence of the user require-

ments. They state how the functionality of the system should be. These objectives

can be either general and very abstract requirements that are applicable to the whole

system, or they can be design specific just as required by the customer. Design de-

cisions are a bunch of features that anticipate, during the early requirement analysis

phase, how the resulted product is going to be. Ideally, no design decisions should be

made during requirements analysis, however in practice, many decisions are actually

taken during that phase. With product families, it is relatively easy to tell whether

or not a product belongs to a certain family by assuring it conforms to the family

83

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

architecture. This facilitates the reflection of the implementation to the requirement

analysis phase, and therefore the creation of design decisions in product families.

After gathering the requirements we divide them by their type into functional and

nonfunctional, or by their domain such as security, reliability and so on. However,

in both cases requirements still vary in term of the level of detail. Here emerges the

need to using the definition hierarchy.

Kuusela and Savolainen illustrated in [KS00] that the definition hierarchy is a log-

ical AND tree which is composed of two major elements: nodes and edges. Nodes

represent both design objectives (NFRs) and design decisions (features) where design

objectives are defined by other design objectives and design decisions. Thus, the child

node can be either a decision satisfying the parent node or just a sub-objective that

helps defining its parent requirement. There is also the root node that resembles the

main concept of the tree and the purpose of the system. On the other hand, design

objectives and decisions depend on one another. Their dependency is design specific

and it is expressed throughout edges. When an edge connect two objectives together

then it is a refinement between them, but when it links an objective to a decision

then it means that the objective is partially satisfied by that decision.

Priorities of the requirement are assigned to each node in a product family. If a fea-

ture or a decision has no impact whatsoever on an NFR or an objective, its priority is

equal to zero. The priority of a child cannot exceed that of its parent [Ngu09]. Like

many other NFR graphs, definition hierarchy helps to detect conflicts and inconsis-

tencies among requirements structure.

84

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

Bayesian Belief Network (BBN) and Extended PLUS [Ngu09] are also used for mod-

elling nonfunctional requirements in product families. Thus, they relate NFRs to

software design and are useful for future work.

85

Appendix A

1 Chapter 3 Proofs

To prove that (I,≤I) is a preorder, we have to prove that ≤I is reflexive and transitive.

Let in be [an, bn], where an, bn ∈ R+, then:

1. ∀(i1 | i1 ∈ I : i1 ≤I i1)

⇐= <Definition of ≤I>

∀(i1 | i1 ∈ I ∧ i1 = [a1, b1] : b1 ≤ b1)

⇐= <Reflexivity of ≤>

True

86

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

2. ∀(i1, i2, i3 | i1, i2, i3 ∈ I : i1 ≤I i2 ∧ i2 ≤I i3 =⇒ i1 ≤I i3)

⇐= <Definition of ≤I>

∀(i1, i2, i3 | i1, i2, i3 ∈ I ∧ i1 = [a1, b1] ∧ i2 = [a2, b2] ∧ i3 = [a3, b3] : b1 ≤

b2 ∧ b2 ≤ b3 =⇒ b1 ≤ b3)

⇐= <Transitivity of ≤>

True

From 1 and 2, (I,≤I) is called a pre-ordered set.

To prove that I is closed with respect to ⊕, we need to prove that ∀(i1, i2 | i1, i2 ∈

I : i1 ⊕ i2 ∈ I). Let [a1, b1] and [a2, b2] ∈ I, then:

[a1, b1]⊕ [a2, b2] ∈ I

⇐⇒ <Definition of ⊕ >

[min (a1, a2),max (b1, b2)] ∈ I

⇐⇒ <Definition of I >

0 ≤ min (a1, a2) ≤ max (b1, b2) ≤ N ∧min (a1, a2),max (b1, b2) ∈ R+

⇐⇒ <Transitivity of ≤ and the fact that 0 ≤ a1, b1, a2, b2 ≤ N >

True

87

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

To prove that I is closed with respect to �, we need to prove that ∀(i1, i2 | i1, i2 ∈

I : i1 � i2 ∈ I). Let [a1, b1] and [a2, b2] ∈ I, then:

[a1, b1]� [a2, b2] ∈ I

⇐⇒ <Definition of � >

[min (a1, a2),min (b1, b2)] ∈ I

⇐⇒ <Definition of I >

0 ≤ min (a1, a2) ≤ min (b1, b2) ≤ N ∧min (a1, a2),min (b1, b2) ∈ R+

⇐⇒ <Transitivity of ≤ and the fact that 0 ≤ a1, b1, a2, b2 ≤ N >

True

88

Bibliography

[AK12] Amy Affleck and Aneesh Krishna. Supporting quantitative reason-

ing of non-functional requirements: A process-oriented approach. In

2012 International Conference on Software and System Process, IC-

SSP 2012 - Proceedings, pages 88–92, General Post Office, P.O. Box

30777, NY 10087-0777, United States, June 2012. Association for Com-

puting Machinery.

[BKJ09] Christopher Burgess, Aneesh Krishna, and Li Jiang. Towards optimis-

ing non-functional requirements. In QSIC 2009 - Proceedings of the 9th

International Conference on Quality Software, number 5381441, pages

269–277, Jeju, Korea, August 2009. IEEE, IEEE Computer Society,

Piscataway, NJ, United States.

[BLP05] Stan Bühne, Kim Lauenroth, and Klaus Pohl. Modelling requirements

variability across product lines. In Proceedings of the IEEE Interna-

tional Conference on Requirements Engineering, pages 41–50. IEEE,

Institute of Electrical and Electronics Engineers Computer Society,

2005.

89

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

[CBLA08] Luiz Marcio Cysneiros, Karin K. Breitman, Claudia Lopez, and Her-

nan Astudillo. Querying software interdependence graphs. In 32nd

Annual IEEE Software Engineering Workshop, SEW-32 2008, num-

ber 5328411, pages 108–112, Kassandra, Greece, October 2008. IEEE,

IEEE Computer Society, Piscataway, NJ, United States.

[CdPL04] Luiz Marcio Cysneiros and Julio Cesar Sampaio do Prado Leite. Non-

functional requirements: From elicitation to conceptual models. IEEE

Transactions on Software Engineering, 30:328–350, May 2004.

[CdPL09] Lawrence Chung and Julio Cesar Sampaio do Prado Leite. On non-

functional requirements in software engineering. In Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial In-

telligence and Lecture Notes in Bioinformatics), volume 5600 LNCS,

pages 363–379. Springer Verlag, Heidelberg, Germany, 2009.

[CHSB+05] Jane Cleland-Huang, Raffaella Settimi, Oussama BenKhadra, Euge-

nia Berezhanskaya, and Selvia Christina. Goal-centric traceability for

managing non-functional requirements. In Proceedings - 27th Interna-

tional Conference on Software Engineering, ICSE 2005, volume 2005

of 27, pages 362–371, Saint Louis, MO, United states, May 2005. Inter-

national Conference on Software Engineering ICSE, Institute of Elec-

trical and Electronics Engineers Computer Society.

[CNYM00] Lawrence Chung, Brian Nixon, Eric Yu, and John Mylopoulos. Non-

Functional Requirements in Software Engineering, volume 5 of Inter-

national Series in Software Engineering. Springer US, 2000.

90

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

[DvLF93] Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. Goal-

directed requirements acquisition. Science of Computer Programming,

20:3–50, April 1993.

[ES08] Sima Emadi and Fereidoon Shams. An approach to non-functional

requirements analysis at software architecture level. In Proceedings

- 2008 IEEE 8th International Conference on Computer and Infor-

mation Technology, CIT 2008, pages 736–741, Sydney, NSW, Aus-

tralia, July 2008. IEEE, Institute of Electrical and Electronics Engi-

neers Computer Society, Piscataway, NJ, United States.

[FP97] Norman E. Fenton and Shari Lawrence Pfleeger. Software Metrics: A

Rigorous and Practical Approach. PWS Publishing Company, Boston,

second edition edition, 1997.

[GF94] Orlena C. Z. Gotel and Anthony C. W. Finkelstein. An analysis of the

requirements traceability problem. In Proceedings of the First Interna-

tional Conference on Requirements Engineering (Cat. No.94TH0613-

0), 1, pages 94–101, Colorado Springs, CO, USA, April 1994. IEEE,

IEEE Computer Society Press, Los Alamitos, CA, USA.

[GS11] Carlo Ghezzi and Amir Molzam Sharifloo. Quantitative verification of

non-functional requirements with uncertainty. Advances in Intelligent

and Software Computing, 97:47–62, 2011.

[GS13] Carlo Ghezzi and Amir Molzam Sharifloo. Model-based verification

of quantitative non-functional properties for software product lines.

Information and Software Technology, 55:508–24, March 2013.

91

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

[GW01] David J. Grimshaw and Godfrey W.Draper. Non-functional require-

ments analysis: Deficiencies in structured methods. Information and

Software Technology, 43:629–634, October 2001.

[HKM11] Peter Höfner, Ridha Khedri, and Bernhard Möller. An algebra of

product families. Software and Systems Modeling, 10:161–182, May

2011.

[JFS06] Ivan J. Jureta, Stéphane Faulkner, and Pierre-Yves Schobbens. A

more expressive softgoal conceptualization for quality requirements

analysis. In Conceptual Modeling - ER 2006 - 25th International

Conference on Conceptual Modeling, Proceedings, volume 4215 LNCS,

pages 281–295. Springer Verlag, November 2006.

[KS00] Juha Kuusela and Juha Savolainen. Requirements engineering for

product families. In Proceedings of the 2000 International Conference

on Software Engineering. ICSE 2000 the New Millennium, pages 61–9,

Limerick, Ireland, June 2000. IEEE, ACM, New York, NY, USA.

[Kur21] C. Kuratowski. Sur la notion d’ordre dans la theorie des ensembles.

pages 161–171, 1921.

[Lau06] Sean Quan Lau. Domain analysis of e-commerce systems using feature-

based model templates. Master’s thesis, Waterloo University, Water-

loo, Ontario, Canada, 2006.

[LK98] Jonathan Lee and Jong-Yih Kuo. New approach to requirements

92

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

trade-off analysis for complex systems. IEEE Transactions on Knowl-

edge and Data Engineering, 10:551–62, July-August 1998.

[MA09] Sonia Montagud and Silvia Abrahão. Gathering current knowledge

about quality evaluation in software product lines. In Proceedings of

the 13th International Software Product Line Conference, pages 91–

100, 2009.

[MCN92] John Mylopoulos, Lawrence Chung, and Brian Nixon. Representing

and using nonfunctional requirements: A process-oriented approach.

IEEE Transactions on Software Engineering, 18:483–497, June 1992.

[Ngu09] Quyen L. Nguyen. Non-functional requirements analysis modeling

for software product lines. In Proceedings of the 2009 31st Inter-

national Conference on Software Engineering and ICSE Workshops

- 2009 ICSE Workshop on Modeling in Software Engineering, MiSE

2009, number 5069898, pages 56–61, Vancouver, BC, Canada, May

2009. IEEE, IEEE Computer Society, Piscataway, NJ, United States.

[PB88] Colin Potts and Glenn Bruns. Recording the reasons for design deci-

sions. In Proceedings - 10th International Conference on Software En-

gineering., pages 418–427, Singapore, 1988. IEEE, IEEE, New York,

NY, USA.

[PLZ09] Xin Peng, Seok-Won Lee, and Wen-Yun Zhao. Feature-oriented non-

functional requirement analysis for software product line. Journal of

Computer Science and Technology, 24:319–338, March 2009.

93

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

[PS90] Adam A. Porter and Richard W. Selby. Empirically guided software

development using metric-based classification trees. IEEE Software,

7:46–54, March 1990.

[RG11] A. Ananda Rao and M. Gopichand. Four layered approach to non-

functional requirements analysis. IJCSI International Journal of Com-

puter Science Issues, 8:371–379, November 2011.

[Rya00] Andrew J. Ryan. An approach to quantitative non-functional require-

ments in software development. CiteSeer, December 2000.

[SCCotICS90] USA Standards Coordinating Committee of the IEEE Computer So-

ciety. IEEE standard glossary of software engineering terminology,

December 1990.

[SD04] S. K. Sardar and U. Dasgupta. On primitive gamma-semirings. Jour-

nal of Mathematics, Novi Sad, 34(1):1–12, 2004.

[SM98] Alistair G. Sutcliffe and Shailey Minocha. Scenario-based analysis of

non-functional requirements. Technical report, The European Com-

mission ESPRIT 21903 ‘CREWS‘ (Cooperative Requirements Engi-

neering With Scenarios), Centre for HCI Design, School of Informatics,

City University, Northampton Square, London, UK, 1998.

[SOMZ05] Juha Savolainen, Ian Oliver, Mike Mannion, and Hailang Zuo. Tran-

sitioning from product line requirements to product line architecture.

In Proceedings of the 29th Annual International Computer Software

94

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

and Applications Conference, pages 186–195. IEEE Computer Soiety,

July 2005.

[TFQ06] Lixin Tao, Xiang Fu, and Kai Qian. Software Architecture Design -

Methodology and Styles. Stipes Publishing L.L.C., 2006.

[Tha02] Richard H. Thayer. Software system engineering: A tutorial. 35:68–73,

April 2002.

[UK11] Mahrukh Umar and Naeem Ahmed Khan. Analyzing non-functional

requirements (nfrs) for software development. In ICSESS 2011 - Pro-

ceedings: 2011 IEEE 2nd International Conference on Software Engi-

neering and Service Science, number 5982328, pages 675–678, Beijing,

China, July 2011. IEEE, IEEE Computer Society, Piscataway, NJ,

United States.

[vL01] Axel van Lamsweerde. Goal-oriented requirements engineering: A

guided tour. In Proceedings of the IEEE 5th International Conference

on Requirements Engineering, pages 249–261, Toronto, ON, Canada,

August 2001. IEEE, Institute of Electrical and Electronics Engineers

Computer Society, Piscataway, NJ, United States.

[Yu97] Eric S. K. Yu. Towards modelling and reasoning support for

early-phase requirements engineering. In Proceedings of the Third

IEEE International Symposium on Requirements Engineering (Cat.

No.97TB100086), pages 226–35, Annapolis, MD, USA, January 1997.

IEEE, IEEE Computer Society Press, Los Alamitos, CA, USA Press.

95

M.A.Sc. Thesis - Reham Fadul McMaster - Software Engineering

[Zav97] Pamela Zave. Classification of research efforts in requirements engi-

neering. ACM Computing Surveys, 29:315–321, December 1997.

96

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Introduction
	General Context
	Analysis of Nonfunctional Requirements
	Problem Statement
	Motivation
	Thesis Contribution
	Thesis Organization

	NFRs Modelling Techniques
	Informal Qualitative Modelling Techniques
	Chung's NFR-Framework and Soft-Goal Interdependency Graphs SIGs
	A Process-Oriented Approach for Representing Nonfunctional Requirements
	The i* modelling Framework
	A Model for Recording the Reasons for Design Decisions
	Scenario-Based Analysis of Nonfunctional Requirements
	Porter and Selby Quality Classification Tree

	Informal Quantitative Modelling Techniques
	Goal-Centric Traceability for Managing NFRs
	KAOS

	Formal Quantitative Modelling Techniques
	The Requirement Hierarchy Approach
	A Process-Oriented Approach Towards Quantitative Reasoning of Nonfunctional Requirements

	Modelling of Nonfunctional Requirements in Product Families
	The Basis of Product Families
	Product Family Algebra (PFA)
	Model-Based Verification of Quantitative Nonfunctional Requirements in Product Lines

	Conclusion

	Mathematical Backgrounds
	Properties of Binary Operations
	Algebraic Structures
	Intervals
	Conclusion

	Quantitative Assessment of Nonfunctional Requirements in Product Families
	The Proposed Approach
	Intervals to Measure The Weight of Nonfunctional Requirements
	Quantitative Assessment Function
	Quantitative Assessment Function u
	Weighted Quantitative Assessment Function w
	Conclusion

	Future Work
	Directions For Future Work
	Notes on a Future Model for -Semirings
	More Suggested Directions for Future Work
	A Goal-Based Model
	The Language Extended Lexicon
	Definition Hierarchy

	
	Chapter 3 Proofs

	Bibliography

