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Abstract

We examine the signal design for Multiple Input Multiple Output (MIMO) radar by

matching a desired beam pattern, while suppressing the auto-correlation and cross-

correlation sidelobes. We further reason that since the estimated covariance matrix

of the transmitted signal forms a manifold in the signal space, the difference between

the estimated covariance matrix and the desired one should be measured in terms of

Riemannian distance (RD) instead of the commonly used Euclidean Distance (ED).

We transform the design problem into a convex (CVX) optimization problem which

can be solved efficiently by convex optimization methods. Applying RD concept of

measure to our design objective function, results show that the performance of our

design is superior to that of using ED for the objective.
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Notation and Abbreviations

Notations

A Matrices

a Vectors

(·)T Matrix transpose

(·)−1 Matrix inverse

(·)† Matrix pseudo inverse

(·)∗ Matrix complex conjugate

(·)H Matrix hermitian

diag{·} Diagonal matrix

IN N ×N identity matrix

R Field of real numbers

C Field of complex numbers

tr(·) Trace of matrices

0 Zero matrices

A � B A, B and A−B are all positive semi-definite matrices

[A]ij The entry in the ith row and jth column

M Manifold

vi



⊗ Kronecker product

δkl Kronecker delta: 1, if k = l; otherwise 0

‖ · ‖ Frobenious norm of a vector or a matrix

〈·〉 Inner product

Abbreviations

ED Euclidean Distance

i.i.d. Independent and Identically Distributed

FN Frobenius Norm

ISI Inter-symbol Interference

MIMO Multiple Input Multiple Output

MISO Multiple Input Single Output

N-D N Dimensional

PSD Positive Semidefinite

RD Riemannian Distance

SIMO Single Input Multiple Ouput

SISO Single In Single Out

SNR Signal to Noise Ratio
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Chapter 1

Introduction

1.1 A Radar System

A radar system employs electromagnetic waves to detect distant objects and, from

the returned waves, to estimate the parameters of these targets, which usually are

aircraft, ships, vehicles, people, meteorological events, or terrains. The parameters of

these targeted objects include locations, directions and velocities of movements [6].

Figure 1.1 shows the major processing elements involved in a radar system. These

include the processes of transmitting a radar signal, propagation of the signal through

the atmosphere, reflection of the signal from the target, and receiving the reflected

signals.
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Figure 1.1: Illustration of a Radar System [1]

The major parts in a radar system include a transmitter, an antenna, a receiver

and a signal processor. The subsystem that generates electromagnetic waves is the

transmitter. The antenna takes these electromagnetic waves as input from the trans-

mitter and passes them into the propagation medium. The transmitter is connected

to the antenna through a transmission/reception (T/R) device, which has the func-

tion of providing a connection point so that the transmitter and the receiver can both

be attached to the antenna. The transmitted signal propagates through the medium

to the target. In this propagation process, the electromagnetic waves induce currents

on the target, which reradiate waves back into the environment. In addition to the

desired target, other surfaces on the ground or in the atmosphere reflect the signal.

Some of the reradiated signals from objects including the target propagate towards

the receiver. Propagation effects of the atmosphere and the earth on these waves may

alter the strength of the electromagnetic waves both at the target and at the receive

antenna. The receiver antenna captures the electromagnetic waves reflected from the

2



M.A.Sc. Thesis - Jia Xu McMaster - Electrical Engineering

object, which are passed to the receiver circuits. The components in the receiver

amplify the received signal, convert the radio frequency signal to an intermediate fre-

quency, and subsequently apply the signal to an analog-to-digital converter (ADC).

The detector is the device that removes the carrier from the modulated return signal

so that target data can be analyzed by the signal processor. A primary function of

the radar signal processor is to determine the presence of a target in the presence of

interference, such as noise, clutter and jamming [1].

1.2 From SISO to MIMO Radars

Radar systems have evolved through different generations, from Single Input Single

Output (SISO) to Multiple Input Multiple Output (MIMO). In the SISO systems, the

transmitter operates with one antenna, as does the receiver. Therefore, there is no

diversity and no additional processing required. The advantage of a SISO system is its

simplicity. However, SISO systems are limited in their performance. The system will

be more easily affected by interference and fading than other advanced systems. When

an electromagnetic wave interacts with other obstacles, the reflected waveforms may

become scattered and take many paths to reach the receiver. This multipath issue can

cause fading, losses and attenuation, etc. [7]. Another type of radar is the phased

array radar. The system can only transmit scaled versions of a single waveform,

which are perfectly correlated. Because only a single waveform is used, the phased

array radar is also called single input multiple-output (SIMO) radar and is known

as receive diversity [6]. A MIMO radar is a generalization of a phased array in that

the signals need not be correlated from one antenna element to another. Figure 1.2

and Figure 1.3 [2] are brief illustrations of phased-array radar and MIMO radar. It is

3
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characterized by its ability to emit signals from multiple spatially diverse transmission

antenna elements and to observe the returns from multiple spatially diverse reception

element [8], although the signals may or may not be correlated. In much of the

current literature, the waveforms transmitted from each antenna are assumed to be

orthogonal, but this is not a requirement for MIMO radar. However, orthogonality

facilitates the subsequent processing of the received signals. MIMO radar systems

have many potential advantages, such as improved target detection performance,

enhanced angle estimation accuracy, and decreased minimum detectible velocity [6].

For statistical MIMO radar, in which the transmission and reception antenna elements

are broadly separated, providing independent scattering responses for each antenna

pairing, the diversity provided by the multiplicity of transmission and reception angles

can be exploited to improve the detection performance. Moreover, spatial diversity

can be employed to reduce the probability of a bad scattering response causing a target

to be missed [9]. Coherent MIMO radar is another type of MIMO radar, in which

the transmission and reception array elements are closely spaced so that the target

is in the far field of the transmission-reception array. In this radar system, since the

antennas are spaced relatively closely to each other, angle estimation performance

can be enhanced. In some sense, the performance of the MIMO system can be

characterized by a virtual array constructed by the convolution of the transmission

and reception antenna locations. This virtual array can be much larger than the one

of an equivalent traditional system [9]. Thus, the MIMO system will have much better

intrinsic resolution. Above all, fully exploiting the potential of MIMO radar systems

can result in more significantly improved target detection and tracking, parameter

estimation, and recognition performance than other radar systems.

4
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Figure 1.2: MIMO Radar [2]

Figure 1.3: Phased-Array Radar [2]
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1.3 Signal Design in MIMO Radar

In recent years, the field of MIMO radar has been developing rapidly. Along with the

rapid development, the design of incoherent waveforms for each of the transmitting

antennas has drawn considerable attention from researchers. Extensive methods and

algorithms about signal design for MIMO radar are proposed, which aim at matching

a given transmission beampattern [10]. Radar analysis and radar signal design prob-

lems have also been examined from the point of information theory [11, 12]. Ensuing

research in radar signal design inspired by this approach includes [13, 14, 15] which are

carried out by maximizing the mutual information (MI) between the target impulse

response and the reflected radar waveforms. Chen and Vaidyanathan [16] extend the

radar ambiguity function to MIMO radar which characterizes the resolutions of the

radar system, and aims at reducing the sidelobes of the MIMO radar in terms of am-

biguity function. However, most of the research in transmitted waveform design for

MIMO radar is concerned with how to design these waveforms so that they possess

a desired covariance matrix R. Stoica et al. [17] optimized the covariance matrix of

the transmitted waveforms to achieve a given transmission beampattern, and modi-

fied the beampattern matching criterion in terms of the cross-correlation between the

signals bounced back to the radar from the targets of interest. Wang et al. [5] p-

resented the design of unimodular signal sets with good orthogonal, auto-correlation

and cross-correlation properties using different algorithms. Here, the signal wave-

forms are optimized to meet the beam pattern specification directly by formulating

the problem as an unconstrained fourth-order trigonometric polynomial minimization

model. A quasi-Newton iterative algorithm is implemented to solve it. Similarly, in

[4], the waveforms were also synthesized directly to approximate a given covariance

6
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matrix by deploying a cyclic algorithm (CA). However, the signal waveform matrix

was reformulated into a larger one, which could hardly satisfy the signals with a long

lasting period. He et al. [3] introduced several CAs for unimodular waveform design

by transforming existing problem into different mathematical expressions.

1.4 Contribution of This Thesis

In the above-mentioned methods of synthesizing signals, the treatment of the errors

in the estimation of covariance matrices is usually in terms of the Euclidean Distance

(ED), which is induced by the corresponding inner product norm for matrices, called

the Frobenius Norm (FN). The use of the ED might not be appropriate for modeling

the mismatch on the covariance matrices since the covarince matrices are not freely

structured, but are Hermitian and positive semi-definite (PSD). Therefore, the set

of covariance matrices forms a manifold in the signal space. Thus, instead of using

the Frobenius Norm, the distance between the true covariance matrix R and the

estimated covariance matrix R̂ should be measured more appropriately along the

surface of the manifold using a Riemannian Distance (RD) [18]. This concept is akin

to finding the distance between two cities on Earth: The ED between two cities is

neither informative nor accurate.

In this thesis, we employ the RD for measuring the estimation error in the covari-

ance matrix instead of using the ED metric. The goal of our design is to attain the

transmitted signal directly rather than decomposing the estimated covariance matrix

to obtain the desired signal. To further guarantee the properties of incoherent wave-

forms, we define auto-correlation and cross-correlation constraints in this problem.

An iterative approach is used to approximate the original problem. In each iteration,

7
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aspects of the design obtained in the previous iteration are employed to drive the

algorithm, until the predefined convergence criteria are satisfied. We also show how

the proposed approach can be used to design signals using the ED metric.

1.5 Outline of the Thesis

In this thesis, we propose to design the transmitted signals to meet certain specifi-

cations directly using RD. In Chapter 1, the background knowledge of MIMO radar

and the contribution of our work are briefly introduced. In Chapter 2, we introduce

some existing researches on MIMO radar signal design mainly from three approaches.

Including the MIMO radar signal model and statistical properties, all of these will

be discussed in details in this chapter. Our proposed method using RD as an error

measure is introduced in Chapter 3. A brief introduction of RD is provided. Model

formulation and the iterative method used to transform our problem into a convex

one are also given in this chapter. Numerical results are shown in Chapter 4. Finally,

the conclusion of this thesis and our future work are presented in Chapter 5.

8



Chapter 2

Signal Design Methods in MIMO

Radar

The MIMO radar transmitting orthogonal waveforms benefits from the waveform

diversity to extract useful information at a receiver via the use of different waveforms

[19]. In recent years, most of the research on waveform design for MIMO radar has

taken an algorithmic approach. In this chapter, we will review three approaches: two

Cyclic Algorithms (CAs) and one Quasi-Newton Algorithm. All these are designed

to match a desired covariance matrix with Euclidean Distance (ED).

2.1 Multiple Input Multiple Output (MIMO) Sig-

nal Model

Consider that a MIMO radar system consists of Mt transmission antennas and Mr

reception antennas. To simplify the notation, we assume that the numbers of antennas

9
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in the transmitter and in the receiver are both equal to M . Let xm(n) denote the

discrete time baseband signal transmitted by the mth antenna at time slot n, and

define

xm = [xm(1), xm(2), . . . , xm(N)], with 1 ≤ m ≤M,

x(n) = [x1(n), x2(n), . . . , xM(n)]T , with n = 1, . . . , N,

where xm represents the transmitted signal sequence from the mth antenna, N de-

notes the number of samples in each waveform [17], and x(n) denotes the vector of

transmitted signals at time n.

We will construct X so that it consists of the transmitted signals from all the

antennas, such that

X = [x1,x2, . . . ,xM ]T

=



x1(1) x1(2) . . . x1(N)

x2(1) x2(2) . . . x2(N)

...
...

. . .
...

xM(1) xM(2) . . . xM(N)


, with X ∈ CM×N .

(2.1)

Let θk denote the location parameter of the kth generic target, and then the

transmitting steering vector is

a(θk) = [ej2πf0t1(θk), ej2πf0t2(θk), . . . , ej2πf0tM (θk)]T ,

where tm(θk) is the time needed by the signal emitted via the mth transmission

antenna to arrive at the target located at θk.

10
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Here, we are assuming that the transmitter antennas and the receiver antennas are

co-located (meaning that they are situated close together with respect to the distance

to the target), so that the transmission angle and the receiver angle are the same θk.

Let ym(n) denote the signal received by the mth receive antenna at instant n, and let

y(n) = [y1(n), y2(n), . . . , yM(n)]T , with n = 1, . . . , N.

The receiving steering vector is

b(θk) = [ej2πf0 t̃1(θk), ej2πf0 t̃2(θk), . . . , ej2πf0 t̃M (θk)]T ,

where t̃m(θk) is the time needed by the signal reflected by the target located at θk to

arrive at the mth receive antenna. Then, the received data vector can be described

by the equation [20]

y(n) =
K∑
k=1

βkb
∗(θk)a

H(θk)x(n) + ε(n), with n = 1, . . . , N, (2.2)

where K is the number of targets that reflect the signals back to the radar receiver,

βk are complex amplitudes proportional to the radar cross sections (RCSs) of those

targets, θk are the target location parameters, and ε(n) denotes the interference-plus-

noise term.

11
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2.2 Statistical Properties for MIMO Transmission

Waveform

MIMO radar transmission signal design problem is often associated with statistical

properties possessed by the signal sequence, which should not only match an ap-

propriate transmission covariance matrix, but also present good auto-correlation and

cross-correlation properties [21].

Consider the transmitted signals from all the antennas within a period. The

covariance matrix of X (2.1) is R = E(XXH). The “spatial spectrum” [17], which is

also called the transmission beampattern, is the transmission power as a function of

the angle θ. It is expressed as P (θ) = aH(θ)Ra(θ).

Now, let us see the correlation properties of the waveforms [4]. The expression

rm1m2(τ) =
N−τ∑
t=1

xm1(t+ τ)x∗m2
(t) = rm2m1(−τ),

with 1 ≤ m1 ≤M , 1 ≤ m2 ≤M, τ = 0, 1, 2, . . . . (2.3)

denotes the correlation between the m1th and m2th sequences at time lag τ . (M is

the transmission antenna number.)

Different integers of m1 and m2 bring different interpretations of rm1m2(τ). If

m1 = m2, rmm(τ) is the auto-correlation of the mth antenna at time lag τ . If

m1 6= m2, rm1m2(τ) indicates the cross-correlation between the m1 and m2 antennas

at time lag τ .

Good auto-correlation and cross-correlation properties of the transmitted wave-

forms are also often required in range compression applications. Good auto-correlation

12
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means that a transmitted waveform is nearly uncorrelated with its own time-shifted

versions, while good cross-correlation indicates that any one of the transmitted wave-

forms is nearly uncorrelated with other time-shifted transmitted waveforms. This kind

of design ensures that matched filters at the receiver end can easily extract the signals

backscattered from the range bin of interest while attenuating signals backscattered

from other range bins [3]. Therefore, the values associated with rm1m2(τ) should be

small enough for all τ when m1 6= m2.

Using (2.3), we can represent the waveform correlation matrices for different time

lags [3] as

Rτ =



r11(τ) r12(τ) . . . r1M(τ)

r21(τ) r22(τ) . . . r2M(τ)

...
...

. . .
...

rM1(τ) rM2(τ) . . . rMM(τ)


,with −N + 1 ≤ τ ≤ N − 1. (2.4)

It should be noticed that when τ = 0, it is the covariance matrix of x mentioned

above. When τ 6= 0, the diagonal elements in Rτ specify the auto-correlations of the

antennas in the system, and the off-diagonal elements specify the cross-correlations

of the antennas.

2.3 MIMO Radar Waveform Synthesis with Eu-

clidean Distance (ED)

In this section, we will talk about the syntheses of MIMO radar waveform based on the

previous discussed statistical properties. Both [3] and [4] propose Cyclic Algorithms

13
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(CA) in dealing with this optimization problem. Reference [5] implements a quasi-

Newton iterative algorithm to solve this problem.

Signal Design with Cyclic Algorithms

The main waveform design problem is to synthesize the discrete waveform with good

correlation properties. Then the objective in [3] is formulated as

ε =
M∑
m=1

N−1∑
τ=−N+1,τ 6=0

|rmm(τ)|2 +
M∑

m1=1

M∑
m2=1,m2 6=m1

N−1∑
τ=−N+1

|rm1m2(τ)|2 , (2.5)

in which the first term is the auto-correlation of the signal sequence, and the sec-

ond term is the cross-correlation. Given the waveform correlation matrices in (2.4),

defining a shifting N ×N matrix Jτ as

Jτ =



τ zeros︷ ︸︸ ︷
0 · · · 0 1 0

. . .

1

0


= JT−τ , with 0 ≤ τ ≤ N − 1, (2.6)

then the shifted transmitted signal of X in (2.1) can be written as

XJTτ =



x1(τ + 1) x1(τ + 2) . . . x1(N)

x2(τ + 1) x2(τ + 2) . . . x2(N)

...
...

. . .
... 0M×τ

xM(τ + 1) xM(τ + 2) . . . xM(N)


.

14
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Referring to the expression of (2.3), the correlation matrices (2.4) can be rewritten

as the product of XJTτ and XH , which is

XJTτ XH

=



x1(τ + 1) x1(τ + 2) . . . x1(N)

x2(τ + 1) x2(τ + 2) . . . x2(N)

...
...

. . .
... 0M×τ

xM(τ + 1) xM(τ + 2) . . . xM(N)





x∗1(1) x∗2(1) . . . x∗M(1)

x∗1(2) x∗2(2) . . . x∗M(2)

...
...

. . .
...

x∗1(N) x∗2(N) . . . x∗M(N)



=



· · · x1(τ + 1)x∗m2
(1) + · · ·+ x1(N)x∗m2

(N − τ) · · ·
...

...
...

· · · xm1(τ + 1)x∗m2
(1) + · · ·+ xm1(N)x∗m2

(N − τ) · · ·

· · ·



=



N−τ∑
t=1

x1(t+ τ)x∗1(t)
N−τ∑
t=1

x1(t+ τ)x∗2(t) · · ·
...

...
...

N−τ∑
t=1

xm1(t+ τ)x∗m2
(t)

· · ·


= Rτ = RH

−τ .

With this newly defined notation Rτ = XJTτ XH , the expression in (2.5) can be

rewritten as

ε = ‖R0 −NIM‖2 + 2
N−1∑
τ=1

‖Rτ‖2. (2.7)

15
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Using the notation that δτ =

 0 τ 6= 0

1 τ = 0
, we can express the design criterion

as

ε =
N−1∑

τ=−N+1

‖Rτ −NIMδτ‖2. (2.8)

Define Φ(ωp) ,
∑N−1

τ=−N+1 Rτe
−jωpτ , in which ωp = 2π

2N
p, p = 1, . . . , 2N . This is

the cross-power spectral density matrix of the vector sequence x(τ) = [x1(τ) · · ·xM(τ)]T .

Then Φ(ωp) can be written as the following form,

Φ(ωp) = ỹ(ωp)ỹ
H(ωp), (2.9)

where

ỹ(ωp) =
N∑
τ=1

y(τ)e−jωpτ , y(τ) = [x1(τ) x2(τ) · · ·xM(τ)]T .

It follows from Φ(ωp) and (2.9) that (2.8) can be written as

ε =
1

2N

2N∑
p=1

‖Φ(ωp)−NIM‖2

=
1

2N

2N∑
p=1

‖ỹ(ωp)ỹ
H(ωp)−NIM‖2. (2.10)

16
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Writing ỹp , ỹ(ωp), and further simplifying Eq (2.10), we have

ε =
1

2N

2N∑
p=1

tr[(ỹpỹ
H
p −NIM)(ỹpỹ

H
p −NIM)H ]

=
1

2N

2N∑
p=1

(‖ỹp‖4 − 2N‖ỹp‖2 +N2M)

= 2N
2N∑
p=1

(∥∥∥∥ ỹp√
2N

∥∥∥∥2

− 1

2

)2

+N2(M − 1). (2.11)

From (2.11) it can be noticed that ε is lower bounded by N2(M−1) and therefore

the correlations of the signal sequences cannot be made very small.

From the above discussion, the optimization problem could be considered in a

simpler form as

min
X,{αp}2Np=1

2N∑
p=1

‖ ỹp√
2N
−αp‖2

s.t. |xm(τ)| = 1, m = 1, . . . , M, n = 1, . . . , N

‖αp‖2 =
1

2
, p = 1, . . . , 2N (αp ∈ CM×1).

(2.12)

To solve this minimization problem, define

aHp = [e−jωp . . . e−j2Nωp ],

A =
1√
2N

[a1 . . . a2N ],

X̃T = [X 0]M×2N ,

V = [α1 . . .α2N ]T ,

17
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and then the objective function in (2.12) is observed to be

‖AHX̃−V‖2 = ‖X̃−AV‖2.

In [3] a Cyclic algorithm is proposed to solve this problem, which is summarized in

Table 2.1.

Table 2.1: Cyclic Algorithm (CAN) [3]

Step 0: Initialize X by a randomly generated M ×N matrix.

Step 1: Fix X̃ and compute V.

Step 2: Fix V and compute X̃.

Step 3: Repeat Steps 1 and 2 until the pre-specified stop criterion is satisfied.

The result for the numerical examples of the signal sequence with N = 40 samples

and M = 3 transmission antennas in [3] is compared with that of the cross entropy

(CE) sequence in [22], which is shown in Fig. 2.1.

Here, we just give a general description for CE method used in [22]. The opti-

mization problem is

min
P

{
EP

{
I{E(X)≤e} ln

I{E(X)≤m}f(X, P̂)

f(X,P)

}}
.

This can be translated into the choice of an optimum parameter P, which can

be found by minimizing the CE between the two distributions f(X, P̂) and g∗(X).

The original parameterized family of density is denoted as f(X, P̂). The matrix

of probability is P, such that the element P(m,n, p) denotes the probability that

the element X(m,n) has a phase p. A collection of indicator functions on X for
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various threshold levels e is denoted as I{E(X)≤e}. The optimal g∗(Xi) is given as

I{E(Xi)≤e}f(Xi,P̂)

l
, in which l is the probability that the performance function E(X) is

less than or equal to the threshold e.

Since P̂ is determined, the optimum P for the jth iteration is shown as

P
(j)
i =

N∑
i=1

I{E(X
(j)
i )≤e}X

(j)
i

N∑
i=1

I{E(X
(j)
i )≤e}

.

The CE procedure used in [22] is divided into two phases: generating N random

samples of signal sequence and then updating the parameters.

Figure 2.1: Correlations of the 3× 40 CAN and CE Sequences [3]
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Instead of considering the correlation properties of the whole length of the signal

sequences, the work in [4] considers the waveform correlation properties within a

certain lag interval P − 1 < N (N is length of the transmitted sequences). The

reason is that in some radar applications like synthetic aperture radar imaging, the

transmitted pulse is relatively long so that the signals backscattered from objects in

the near and far range bins overlap significantly. In this case, only the waveform

correlation properties in a certain lag interval are relevant to range resolution [3].

In this case, a proper minimization criterion is formed as

ε̃ = ‖R0 −NIM‖2 + 2
P−1∑
τ=1

‖Rτ‖2. (2.13)

This optimization problem is solved directly in [4]. Unlike the method introduced

from (2.8) to (2.12), the correlation matrix in [4] is given as X̃X̃H , in which X̃ is the

block-Toeplitz matrix

X̃ =

N+P−1︷ ︸︸ ︷

x1(1) · · · x1(N) 0

...
. . . . . .

0 x1(1) · · · x1(N)

...

xM(1) · · · xM(N) 0

...
. . . . . .

0 xM(1) · · · xM(N)



.

Note that X̃ ∈ CMP×(P+N−1) and MP < P +N − 1. Define R̃ = R0 ⊗ IP , and then
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the optimization problem (2.13) can be written more compactly as

min
X
‖X̃X̃H −NR̃‖2. (2.14)

Introduce a semi-unitary matrix ŨH ∈ CMP×(P+N−1) with ŨHŨ = IMP , and then

another mathematical formulation can be written as

min
X,Ũ
‖X̃H −

√
NŨR̃

1
2‖2

s.t. ŨHŨ = IMP .

(2.15)

Let us see how (2.14) is transformed to (2.15). Suppose that the objective in (2.15)

can reach 0, that is X̃H =
√
NŨR̃

1
2 , then X̃X̃H = NR̃

1
2
HŨHŨR̃

1
2 = NR̃, which is

the result for (2.14) when it equals to 0. However, (2.15) is non-convex due to the

constraint ŨHŨ = IMP . But it can also be solved by another CA proposed in [4],

which is described briefly in Table 2.2. The work in [4] presents several numerical

examples to demonstrate the effectiveness of this CA for signal synthesis. Fig. 2.2

shows the correlation levels of the CA synthesized waveforms under the constraints

of PAR = 1, PAR ≤ 1.1, PAR ≤ 2. (PAR stands for peak-to-average-power, whose

definition is discussed in [4].)

Table 2.2: Cyclic Algorithm (CA) [4]

Step 0: Set an initial value for Ũ.

Step 1: Fix Ũ and compute X.

Step 2: Fix X and determine Ũ.

Step 3: Repeat Steps 1 and 2 until a pre-specified stop criterion is satisfied.
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(a) M = 10, N = 256, P = 1,R0 6= IM (b) M = 10, N = 512, P = 1,R0 6= IM

(c) M = 10, N = 256, P = 10,R0 6= IM (d) M = 10, N = 512, P = 10,R0 6= IM

(e) M = 10, N = 256, P = 10,R0 = IM (f) M = 10, N = 512, P = 10,R0 = IM

Figure 2.2: Correlation Level for CA [4]
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These two CAs are both effective in the signal design. Table 2.3 compares these

two CA sequences with M = 4, N = 256, P = 50 in terms of the auto-correlation

sidelobe peak, the cross-correlation peak and the ε defined in (2.11) and (2.13).

Table 2.3: Comparison between the Cyclic Algorithms (CAs) [3, 4]

Auto-Correlation Sidelobe Peak Cross-Correlation Peak ε

CAN [3]: -20.54 -18.19 0.91

CA [4]: -21.08 -20.77 0.088

Signal Design with Quasi-Newton Algorithm

Similar to [4], the work in [5] optimizes the signal waveforms to meet the specification

directly. But the work in [5] poses the problem as an unconstrained fourth-order

minimization problem and uses a quasi-Newton iterative algorithm to solve it.

Consider that the MIMO radar transmission-reception array is uniform linear

array and half wavelength inter-element spacing. With the same signal matrix (2.1)

and a steering vector aθ = [1 ejπ sin θ . . . ejπ(M−1) sin θ], in which aθ ∈ C1×M , and θ

represents the spatial direction, the beam pattern describing the power distribution

of the signals in the special domain is defined as

P (θ) = a∗θX
∗XTaTθ . (2.16)

By using the shifting matrix (2.6), the time delayed signal matrix is described

as JHτ XT . Then the spatial auto-correlation and cross-correlation functions for X
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become

Pac(τ, θk) = a∗θkX
∗JτX

TaTθk , (2.17)

Pcc(τ, θi, θj) = a∗θiX
∗JτX

TaTθj . (2.18)

Because the beam pattern P (θ) in (2.16) describes the spatial power distribution

of probing signals, the work in [5] suggests that a desired beam pattern p(θ) can be

specified to focus the signal power along the directions of interest. This can effectively

reduce the impact of clutter and extend the detection distance. Moreover, minimizing

the autocorrelation sidelobes aims to reduce the effects of clutter and lowering cross-

correlation levels decreases the interference between signals from different directions.

For these reasons, the work in [5] proposes the following optimization model:

min
X,α

ω2
beb(α,X) + ω2

aceac(X) + ω2
ccecc(X)

s.t. |xi(j)| = 1, i = 1, . . . ,M, j = 1, . . . , N ,

(2.19)

where

eb(α,X) =
∑
θ∈Θ

|αp(θ)− a∗θX
∗XTaTθ |2,

eac(X) =
N−1∑
τ=1

∑
θk∈Θ

|a∗θkX
∗JτX

TaTθk |
2,

ecc(X) =
N−1∑
τ=1

∑
θi 6= θj

θi, θj ∈ Θ

|a∗θiX
∗JτX

TaTθj |
2.

In (2.19), α is an unknown scaling factor to be optimized. The weights ωb, ωac and ωcc
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can make tradeoff of performances among matching desired beam pattern, suppressing

auto-correlation and cross-correlation sidelobe levels. The parameter θ belongs to an

angle set Θ representing the spacial direction.

Notice that the constant modulus constraints are equivalent to every entry of X

(2.1) lying on the unit circle, xi(j) = ejφi(j). Using φi(j) as optimization variables and

writing X as X(φ) where φ is an M×N matrix, the constant modulus constraints can

be dropped and (2.19) is formulated as an unconstrained fourth order trigonometric

polynomial minimization problem, that is min
φ,α

f(α,φ), where

f(α,φ) = ω2
beb(α,X(φ)) + ω2

aceac(X(φ)) + ω2
ccecc(X(φ)). (2.20)

This unconstrained minimization model can be solved, approximately but ef-

fectively, using a quasi Newton algorithm, for example, L-BFGS (Limited-Memory

Broyden-Fletcher-Goldfarb and Shannon algorithm, refer to [23]). A detailed descrip-

tion of this iterative algorithm is given in [5], in which the evaluation of f(α,φ) and

∇f(α,φ) dominates the computational cost of each L-BFGS iteration. The signifi-

cance in [5]’s work is to transform this original minimization problem into a new form

that could be solved by L-BFGS efficiently, whose new expression is shown as follows,

f(α,φ) =v(α,φ)HQv(α,φ)+

ωac
∑
θk∈Θ

‖c∗θk(φ)⊗ c̄θk(φ)‖2 + ωcc
∑
θi 6= θj

θi, θj ∈ Θ

‖c∗θi(φ)⊗ c̄θj(φ)‖2, (2.21)
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where

⊗ is the convolution operator,

v(α,φ) =

 α

vec(XT (φ))Hvec(XT (φ))

 ,

Q = ω2
b


∑
θ∈Θ

p2(θ) −
[∑
θ∈Θ

p(θ)vec(aTθ a∗θ)

]H
−
∑
θ∈Θ

p(θ)vec(aTθ a∗θ)
∑
θ∈Θ

vec(aTθ a∗θ)vecH(aTθ a∗θ)

 ,
cθk(φ) = XT (φ)aTθk .

Table 2.4 shows a rough comparison of the complexity to compute f(α,φ) and

∇f(α,φ) using original expression (2.20) and new expression (2.21), in which the

antenna number, waveform length, spacial direction number and delay are denoted

by M, N, K, d. Simulation results are shown in Fig.2.3.

Table 2.4: Comparison of the Complexity to Compute f and ∇f [5]

Original Expression (2.20) New Expression (2.21)

f(α,φ): O(|Θ|N +K2dN) O(M4 + 6K2N log2 2N)

∇f(α,φ): O(3|Θ|NM + 2K2dNM) O(2NM2 +K2dNM)
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(a) M = 8, N = 32, delay = 8 (b) M = 8, N = 32, delay = 8

(c) M = 8, N = 32, delay = 16 (d) M = 8, N = 32, delay = 16
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(e) M = 8, N = 128, delay = 8 (f) M = 8, N = 128, delay = 8

Figure 2.3: Correlation Characteristics by L-BFGS [5]
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Chapter 3

Waveform Synthesis with

Riemannian Distance

As we have mentioned before, there is an extensive literature about the MIMO radar

waveform design [5, 2, 16, 14, 19, 17, 24, 13, 25] focusing on the optimization of

covariance matrix R. In these former works, the Euclidean Distance (ED) is used as

a metric to measure the difference between two positive semi-definite (PSD) matrices.

In this chapter, we will introduce a new metric, Riemannian Distance (RD), as a

measurement of the difference. Due to the special structure of the PSD matrix, it has

been proved in [18] that RD is more precise for calculating the distance between two

PSD matrices. With the use of this measurement for the covariance matrix, we then

propose a method of directly designing the signals by optimizing a given performance

measure with the usage of RD metric.
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3.1 Introduction to Riemannian Distance (RD)

In signal synthesis, the Frobenius Norm (FN) ‖ · ‖ is usually used to evaluate the

difference ∆ between two covariance matrices, R and Rd, such that

∆ = R−Rd ,

‖∆‖F =
√

tr(∆H∆) . (3.1)

This comes from the Frobenius inner product of 〈∆,∆〉, so it can be considered

as the ED between R and Rd. While this Euclidean metric is the most commonly

used distance measurement in signal processing, it may not be the most appropriate

one for the covariance matrix of the transmitted signals. In our problem, the covari-

ance matrix of the transmitted signals has the special structure, that is, Hermitian

symmetric and positive semi-definite. As discussed in [18], these properties describe

a hyper-surface, called a manifoldM, in the signal space on which the points of PSD

matrices are located. Therefore, we can say that our covariance matrix describes a

manifold, a Riemannian manifold, to be more specific. The definition of RD has been

given in [18], in which three kinds of RD are also derived. Theorem 1 defines the first

RD between two points P1,P2 ∈M, and Theorem 2 defines the second RD.

Theorem 1. For P1,P2 ∈M, a RD between P1 and P2 is given by

dR1(P1,P2) =

√
trP1 + trP2 − 2tr

[(
P

1
2
1 P2P

1
2
1

) 1
2

]
(3.2)

with the mapping π: H̃ →M be chosen to be P = P̃P̃H .

Theorem 2. With the mapping π: H̃ →M be given by P = P̃2, the RD between P1
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and P2 on M is

dR2(P1,P2) =

√
trP1 + trP2 − 2tr

[
P

1
2
1 P

1
2
2

]
. (3.3)

If the product of P
1
2
1 P

1
2
2 is a Hermitian matrix, i.e., they are commutative, then

U1 = U2. Then we will have dR1 = dR2 .

The Euclidean distance shown in (3.1) measuring the straight line distance be-

tween the two points may be less appropriate than Riemannian distance. This concept

is akin to finding the distance between two cities on earth. As mentioned before, R

and Rd are positive definite Hermitian matrices forming a manifold in the signal s-

pace. Then the distance between these two matrices should be measured along the

shortest path on the manifold between the points. Thus, we should use the RD to

measure the difference between R and Rd on the covariance matrix manifold. In

particular, since the second RD is more approachable, dR2 will be employed in the

signal synthesis problem discussed here.

3.2 Transmission Signal Sequence Design with Rie-

mannian Distance (RD)

In this section, we develop the approach for signal synthesis using RD as a measure

of estimation error between covariance matrices. Let us consider the scenario of a

MIMO radar equipped with M transmission antennas. Let the transmitted signal

xm(t) from the mth antenna be made up of a linear combination of orthonormal basis
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functions such that

xm(t) =
K∑
i=1

αmisi(t), with 1 ≤ t ≤ N , 1 ≤ m ≤M,

where N denotes the number of samples in each sampled waveform. And the coeffi-

cient vector associated with the mth antenna signal is

αm = [αm1, αm2, . . . , αmK ] ∈ C1×K .

In the above expression, {si(t)}Ki=1 is the orthonormal basis, which means

〈si(t), sj(t)〉 =
∑
t

si(t)s
∗
j(t) =

 1, i = j

0, i 6= j
.

The total number of orthonormal bases used in the signal synthesis problem is K

(different from the K defined in Chapter 2), and 〈·〉 is the inner product of two

complex numbers.

Let the row vectors of X ∈ CM×N be the transmitted waveforms from the anten-

nas, and then the sampled version of the transmitted waveform can be given as

X =



x1(1) x1(2) . . . x1(N)

x2(1) x2(2) . . . x2(N)

...
...

. . .
...

xM(1) xM(2) . . . xM(N)


(3.4)
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If we represent the sampled orthonormal bases by a matrix S ∈ CK×N , such that

S =



s1(1) s1(2) . . . s1(N)

s2(1) s2(2) . . . s2(N)

...
...

. . .
...

sK(1) sK(2) . . . sK(N)


, (3.5)

and the coefficient matrix as A ∈ CM×K ,

A =



α11 α12 . . . α1K

α21 α22 . . . α2K

...
...

. . .
...

αM1 αM2 . . . αMK


, (3.6)

then the transmitted signal can be rewritten as X = AS in brief.

Since there are several methods to generate the orthonormal bases, A will be the

only unknown variable focused on in our work.

Let R0 = XXH be the covariance matrix of the transmitted waveforms. Since the

orthonormal bases are represented in discrete format, then SSH ≈ IK and we will

have

R0 = XXH = ASSHAH ≈ AAH , (3.7)

and R0 ∈ RM×M , which is Hermitian and PSD matrix. Then the mathematical

formulation of the problem of synthesizing the signal matrix X in terms of parameter

matrix A using RD to match a desired covariance matrix Rd is as follows,
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min
A

∥∥AAH −Rd

∥∥2

R
, (3.8)

in which ‖ · ‖R represents the RD used in the measure of the difference between the

positive definite Hermitian matrices.

As we mentioned in the previous chapter, in many real applications such as the

matched filter reception, the good correlation properties possessed by waveforms are

important requirements. Therefore, we also consider the auto-correlation and cross-

correlation properties in the signal synthesis problem.

Let

rm1m2(τ) =
∑
t

xm1(t+ τ)x∗m2
(t) = r∗m2m1

(−τ), (3.9)

with 1 ≤ m1 ≤M , 1 ≤ m2 ≤M, τ = 1, 2, . . . , N − 1.

Then the correlation matrix of the transmitted signals could be represented by

Rτ =



r11(τ) r12(τ) . . . r1M(τ)

r21(τ) r22(τ) . . . r2M(τ)

...
...

. . .
...

rM1(τ) rM2(τ) . . . rMM(τ)


. (3.10)

Now, we would like to express the correlation matrix Rτ in terms of the parameter

matrix A and the orthonormal basis matrix S.
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Because

xm1(t+ τ) =
K∑
i=1

αm1isi(t+ τ) (3.11)

xm2(t) =
K∑
j=1

αm2jsj(t) ,

then substituting these two expressions into (3.9), we get

rm1m2(τ) =
K∑
i=1

K∑
j=1

∫
t

αm1isi(t+ τ)α∗m2j
s∗j(t)dt (3.12)

=
K∑
i=1

K∑
j=1

αm1iα
∗
m2j

∫
t

si(t+ τ)s∗j(t)dt.

Defining ϕij(τ) =

∫
t

si(t+ τ)s∗j(t)dt, we get

rm1m2(τ) =
K∑
i=1

K∑
j=1

αm1iα
∗
m2j

ϕij(τ), with 1 ≤ m1 ≤M , 1 ≤ m2 ≤M.

Therefore, Rτ could be formulated as

Rτ = AΦT (τ)AH , (3.13)
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in which

Φ(τ) =



ϕ11(τ) ϕ21(τ) . . . rK1(τ)

ϕ12(τ) ϕ22(τ) . . . ϕK2(τ)

...
...

. . .
...

ϕ1K(τ) ϕ2K(τ) . . . ϕKK(τ)


. (3.14)

To ensure the good auto-correlation and cross-correlation properties of transmitted

signal X, we need to guarantee the values of Rτ at different lag τ to be small, such

that

∥∥AΦT (τ)AH
∥∥2 ≤ ετ , ετ is a small value.

Consequently, a mathematical formulation of the problem of the signal synthesis

using RD with time correlation considerations can be written as follows,

min
A

∥∥AAH −Rd

∥∥2

R

s.t.
∥∥AΦT (τ)AH

∥∥2 ≤ ετ ,with τ 6= 0.

(3.15)

3.3 Convex Design Problem

In this part, we would like to consider how to solve the optimization model (3.15).

First of all, let us transform the objective function in (3.15) into a mathematical

form which could be applied in the convex optimization. In reality, the antenna

number should not be too big because it would be costly to deploy a large antenna

system. Therefore, in our problem, we consider the case of K > M , which means

that the number of orthonormal basis is larger than that of antennas.
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Considering the mapping condition in Theorem 2, such that P1 = P
1
2
1 P

1
2
1 and

P2 = P
1
2
2 P

1
2
2 , the expression for the second version of RD could be reformed as

d2
R2

(P1,P2) = trP1 + trP2 − 2tr
[
P

1
2
1 P

1
2
2

]
= tr

(
P

1
2
1 P

1
2
1 + P

1
2
2 P

1
2
2 − 2P

1
2
1 P

1
2
2

)
= tr

[(
P

1
2
1 −P

1
2
2

)H (
P

1
2
1 −P

1
2
2

)]
=
∥∥∥P 1

2
1 −P

1
2
2

∥∥∥2

2
.

Then the objective function of our problem by using RD could be reformulated as

d2
R2

(AAH , Rd) =
∥∥∥(AAH)

1
2 −R

1
2
d

∥∥∥2

2
. (3.16)

How can we calculate the square root of AAH? First of all, let us perform the

SVD on A, such that

A = VΣUH = V

[
Σ̃M×M 0M×(K−M)

] ŨH

ŨH
0


=

[
VΣ̃ 0

] ŨH

UH
0

 = VΣ̃Ũ
H
,

in which ŨH ∈ CM×K , UH
0 ∈ C(K−M)×K , V ∈ CM×M , Σ̃ ∈ CM×M , and ŨHŨ = IM .
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Then, we can observe that

AAH = VΣ̃Ũ
H

ŨΣ̃HVH

= VΣ̃IMΣ̃HVH

= VΣ̃Σ̃HVH

with VΣ̃ ∈ CM×M . Since V is a unitary matrix and Σ̃ is a real diagonal matrix, we

can see that the eigendecomposition of AAH is V(Σ̃Σ̃H)VH . Finally, we have

(AAH)
1
2 = V(Σ̃Σ̃H)

1
2 VH

= VΣ̃VH . (3.17)

Moreover, we can also observe

AŨ = VΣ̃Ũ
H

Ũ = VΣ̃IM = VΣ̃. (3.18)

Finally, the result used in this problem for (AAH)
1
2 is

(AAH)
1
2 = AŨVH , with Ũ ∈ CK×M and VH ∈ CM×M . (3.19)

By taking (3.19) into (3.16), the expression for the objective function is rewritten

as

d2
R2

(AAH , Rd) =
∥∥∥AŨVH −R

1
2
d

∥∥∥2

2
. (3.20)

Suppose that Ũ, VH and Rd are all known, and then (3.20) will be a quadratic

38



M.A.Sc. Thesis - Jia Xu McMaster - Electrical Engineering

form in terms of A.

The argument
∥∥AΦT (τ)AH

∥∥2
in the constraint of the problem (3.15) is not

quadratic in A. But if the last item A in
∥∥AΦT (τ)AH

∥∥2
is known, then the ex-

pression
∥∥AΦT (τ)AH

∥∥2
turns out to be in a quadratic form in terms of the first item

A, instead of a quartic form (i.e., the fourth order). In this sense, we apply the results

of Ũ, VH and A from the previous iteration to substitute the item Ũ, VH in the

objective function as well as the last item A in the constraint function in the current

iteration.

If Ũn−1,V
H
n−1 and An−1 denote the results from the previous iteration, then the

problem can be approximated as

min
A

∥∥∥AŨn−1V
H
n−1 −R

1
2
d

∥∥∥2

2

s.t.
∥∥AΦT (τ)AH

n−1

∥∥2 ≤ ετ , τ = 1 . . . .

(3.21)

The outline of this algorithm is given in Table 3.1, in which the value for A in our

problem is initialized as the first M row vectors from a K-by-K matrix containing

pseudorandom values drawn from the standard normal distribution.

Table 3.1: Iterative Algorithm

Step 0: Set an initial value for A, do SVD on A to get Ũ and V.

Repeat

Step 1: Fix Ũn−1 and Vn−1 in the objective, as well as one An−1 in the constraint.

Step 2: Compute An.

Step 3: Do SVD on An to get Ũn and Vn.
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As we mentioned previously, if the product of P
1
2
1 P

1
2
2 in dR1 is a Hermitian matrix,

i.e., they are commutative, dR1 is equivalent to dR2 . If Rd is chosen as an M -by-M

identity matrix in our problem, we will have dR2 = dR1 .

Similarly, if the objective function in the problem (3.15) is measured by Frobenius

Norm (FN), such that

d2
E =

∥∥AAH −Rd

∥∥2

2
, (3.22)

then the corresponding optimization problem will be formulated as

min
A

∥∥AAH
n−1 −Rd

∥∥2

2

s.t.
∥∥AΦT (τ)AH

n−1

∥∥2 ≤ ετ , τ = 1 . . . .

(3.23)

For Riemannian Distance we have

d2
R2

=
∥∥∥AŨVH −R

1
2
d

∥∥∥2

2

= tr

[(
AŨVH −R

1
2
d

)(
AŨVH −R

1
2
d

)H]
= tr

(
AŨVHVŨHAH −R

1
2
dVŨHAH −AŨVHR

1
2
H

d + Rd

)
.

Since

AŨVHVŨHAH = AŨIMŨHAH = VΣ̃Σ̃HVH = VΣ̃
2
VH ,
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then

d2
R2

= tr
(
VΣ̃

2
VH −R

1
2
dVΣ̃HVH −VΣ̃VHR

1
2
H

d + Rd

)
.

If Rd = IM , then

d2
R2

= tr
(
VΣ̃

2
VH − 2VΣ̃VH

)
+M. (3.24)

For Euclidean Distance we have

d2
E =

∥∥AAH −Rd

∥∥2

2

= tr
[(

AAH −Rd

) (
AAH −Rd

)H]
= tr

[
AAHAAH −RdAAH −AAHRH

d + R2
d

]
.

Since

AAHAAH = VΣ̃
2
VHVΣ̃

2
VH = VΣ̃

4
VH ,

then

d2
E = tr

(
VΣ̃

4
VH −RdVΣ̃

2
VH −VΣ̃

2
VHRH

d + R2
d

)
.

If Rd = IM , then

d2
E = tr

(
VΣ̃

4
VH − 2VΣ̃

2
VH
)

+M. (3.25)
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Comparing these two metrics, we have

d2
R2
− d2

E = tr
(
VΣ̃

2
VH − 2VΣ̃VH

)
− tr

(
VΣ̃

4
VH − 2VΣ̃

2
VH
)

= tr
(

3VΣ̃
2
VH − 2VΣ̃VH −VΣ̃

4
VH
)

= tr
[
V
(

3Σ̃2 − 2Σ̃− Σ̃4
)

VH
]

= tr
[
VHV

(
3Σ̃2 − 2Σ̃− Σ̃4

)]
= tr

(
3Σ̃2 − 2Σ̃− Σ̃4

)
.

Suppose {am}Mm=1 are the elements on the diagonal matrix Σ̃, then

tr
(

3Σ̃2 − 2Σ̃− Σ̃4
)

=
M∑
m=1

(
3a2

m − 2am − a4
m

)
=

M∑
m=1

[
−(am − 1)2(am + 2)am

]
.

For am > 0, 3a2
m − 2am − a4

m < 0. Then, d2
R2
− d2

E < 0. In the case when Rd = IM ,

we will have d2
R2
< d2

E.

Now, we will show how d2
R2

and d2
E can be quadratic in A.

d2
R2

=
∥∥∥AŨn−1V

H
n−1 −R

1
2
d

∥∥∥2

2

= tr

[(
AŨn−1V

H
n−1 −R

1
2
d

)(
AŨn−1V

H
n−1 −R

1
2
d

)H]
= tr

(
AŨn−1V

H
n−1Vn−1Ũ

H
n−1A

H −R
1
2
dVn−1Ũ

H
n−1A

H −AŨn−1V
H
n−1R

1
2
H

d + Rd

)
= vecH(A)

[(
Ũn−1V

H
n−1Vn−1Ũ

H
n−1

)T
⊗ IM

]
vec(A)

− vecH(A)vec
(
R

1
2
dVn−1Ũ

H
n−1

)
− vecH

(
R

1
2
dVn−1Ũ

H
n−1

)
vec(A) + tr(Rd),
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and

d2
E =

∥∥AAH
n−1 −Rd

∥∥2

2

= tr
[(

AAH
n−1 −Rd

) (
AAH

n−1 −Rd

)H]
= vecH(A)

[(
AH
n−1An−1

)T ⊗ IM

]
vec(A)

− vecH(A)vec (RdAn−1)− vecH (RdAn−1) vec(A) + tr(RdR
H
d ).

Similarly, the constraint is quadratic in A, such that

∥∥AΦT (τ)AH
n−1

∥∥2
= tr

[
AΦT (τ)AH

n−1An−1Φ
∗(τ)AH

]
= vecH(A)

[(
ΦT (τ)AH

n−1An−1Φ
∗(τ)

)T ⊗ IM

]
vec(A).

Therefore, the problem could be solved by the standard optimization tools (such as

CVX [26]).
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Chapter 4

Numerical Experiments

In this chapter, we show examples for illustrating the performance of our proposed

method described in Chapter 3. In this minimization problem, suppose that the

length of the waveform is 64ms. Walsh function is used as the orthonormal basis in

this minimization problem, and the number of orthonormal basis vectors is K = 32.

The desired covariance matrix Rd is an M ×M identity matrix. In the first part,

we synthesize the signal sequences with different numbers of antennas. In the second

part, we use one of the synthesized signal sequences in an application to detect targets.
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4.1 Optimization Results of Waveform Synthesis

with Riemannian Distance

We can offer some flexibility on the constraints in the minimization problem (3.21).

For instance, choose ε1 = αB when τ = 1, and ετ = δB when τ > 1, that is

∥∥AΦT (τ)AH
n−1

∥∥2 ≤ αB, τ = 1,∥∥AΦT (τ)AH
n−1

∥∥2 ≤ δB, τ > 1,

(4.1)

in which αB is larger than δB, but smaller than the trace of Rd. αB defines the

slope of the sequence pattern and δB defines the sidelobe levels. In our problem, B

is set to be the trace of Rd. Figure 4.1 is a diagram of the specifications against τ .

Figure 4.1: A Diagram of the Specifications
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Walsh functions are used to synthesize the orthonormal basis matrix S. The Walsh

function [27, 28] of order N consists an ordered set of N rectangular waveforms taking

only two amplitude values +1 and −1 over a limited time interval T . These waveforms

are denoted as {Wj(t), t ∈ (0, T ), j = 0, 1, . . . , N−1}. [29] It has several properties,

such that

• Wj(t) takes on the values {1, − 1};

• W0(t) = 1 for all t in the interval (0, T );

• Wj(t) has precisely j sign changes (zero crossings) in the interval (0, T );

• {Wj(t)} are orthonormal, which means 1
T

∫ T
0
Wj(t)Wk(t)dt = δjk.

Figure 4.2 shows the first four of the Walsh functions.

Figure 4.2: The First Four Walsh Functions
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Figure 4.3 shows the 32 sequences of the orthonormal bases from the Walsh func-

tions used in the signal synthesis.

(a) 1st to 8th (b) 9th to 16th

(c) 17th to 24th (d) 25th to 32nd

Figure 4.3: Orthonormal Basis

Because of the different Riemannian metrics used in measuring matrix differences,

we can formulate this minimization problem with two different objective functions by

using the first RD and the second RD. Since Rd is chosen as an M -by-M identity

matrix in our problem, the first RD dR1 equals to the second RD dR2 .

In our problem, we define a merit factor Di to compare the results by using RD

with those using ED. Given the correlation matrix of the transmitted signals in (3.10),
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Di is given by

Di =
|rii(0)|

maxi 6=j,τ 6=0 |rij(τ)|
, (4.2)

in which i is the ith antenna, and i 6= j when τ = 0. rii(0) is the autocorrelation

coeffcient on the main-diagonal of the covariance matrix R0, and rij(τ) is the cor-

relation coeffcient of the correlation matrix Rτ excluding rii(0). If the transmitted

signals have good auto-correlation properties, we can expect the values of rii(0) to be

1 (as the desired covariance matrix Rd in our case) and the values of rij(0) to be as

small as possible. Then this merit factor Di will be large.

Now, referring to the minimization problem formulated in (3.21), we specify our

problem by several groups of parameters, which is represented as (M,α, δ), in which

M is the antenna number, α and δ are the scalars in the constraints. The parameter

groups used are listed as (3, 0.1216, 0.0167), (4, 0.1727, 0.0232), (5, 0.2657, 0.0293),

and (6, 0.3170, 0.0364). First of all, using the standard optimization tools (CVX [26])

for solving the problem, we show the values of the difference between the covariance

matrix of the synthesized signals and the desired covariance matrix by using the

metric of RD and the metric of ED separately in Table 4.1. We also compare them

by setting the numbers of orthonormal basis K as 32 and 48 separately. Within the

same iteration period, by using RD, the synthesized signals can satisfy the defined

requirements more precisely.

• cvx optval contains the value of the objective function;

• The cvx status is “solved” in each condition;

• d2
E is defined in Eq.(3.22), and d2

R2 is defined in Eq.(3.20).
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Table 4.1: The Last Values of Difference in Each Condition

Secondly, Figure 4.4 displays the designed signal sequences with different antenna

number. Table 4.2 contains the values of coefficient matrix A (3.6) when M = 3.
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Table 4.2: The Coefficient Matrix when M = 3
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(a) RD, M = 3

(b) ED, M = 3
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(c) RD, M = 4

(d) ED, M = 4
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(e) RD, M = 5

(f) ED, M = 5
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(g) RD, M = 6

(h) ED, M = 6

Figure 4.4: Synthesized Signals

54



M.A.Sc. Thesis - Jia Xu McMaster - Electrical Engineering

The results for the merit factor Di (4.2) are shown in Figure 4.5, which compares

the correlation properties of every sensor measured by RD and ED. The corresponding

numerical values are listed in Table 4.3. We can observe that most of the values of Di

with RD are higher than those with ED after the same iteration period. The reason

why the Di values of ED fluctuate might be that ED has not converged while RD has

reached an optimum value.

Table 4.3: The Values of Di
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(a) M = 3 (b) M = 4

(c) M = 5 (d) M = 6

Figure 4.5: the Values of Each Di

Figures 4.6, 4.7 and 4.8 show the values of R0, R1, and the average values of Rτ

with τ > 1, which illustrate the synthesized-signals’ ability of satisfying the defined

correlation requirements. All the corresponding values are listed in Table 4.4.
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Figure 4.6: The Value of R0
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Figure 4.7: The Value of R1
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Figure 4.8: The Value of Rτ with τ > 1.
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Table 4.4: The Values of Rτ

Furthermore, we can compare the autocorrelation of each antenna without time

shift, that is, rii(0), as shown in Figure 4.9. The corresponding values are listed in

Table 4.5.
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(a) M = 3 (b) M = 4

(c) M = 5 (d) M = 6

Figure 4.9: the Values of Each rii(0)
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Table 4.5: The Values of rii(0)

From the above figures and tables, we can see that the synthesized signals from

the two methods possess good auto-correlation properties and cross-correlation prop-

erties.

4.2 Detection by Using the Synthesized Waveform-

s

With the synthesized transmitted signals, we can further our problem to the detection

of targets. In this part, we simulate the environment where there exists an additive

white Gaussian noise. Suppose that the transmitted signals last for 64ms, which are

transmitted at the speed of c = 3 × 108m/s in the space. The transmitter and the

receiver in the MIMO radar are equipped with M = 6 antennas (uniform linear array

and half wavelength inter-element spacing), and the sampling rate is 64 samples/ms.
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• Example 1.1: 3 targets at (17ms, 15o), (18.5ms, 15o), (20ms, 15o), SNR =

−10dB in Figure 4.10;

• Example 1.2: 3 targets at (17ms, 15o), (18.5ms, 15o), (20ms, 15o), SNR = 0dB

in Figure 4.11;

• Example 1.3: 3 targets at (17ms, 15o), (18.25ms, 15o), (19.5ms, 15o), SNR =

0dB in Figure 4.12.

The numbers on the horizontal line of the following 4 figures denote the angles in

degree.
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Figure 4.10: Correlation Pattern of Example 1.1, SNR = −10dB, 10o to 25o, with

the Locations (17ms, 15o), (18.5ms, 15o), (20ms, 15o).
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Figure 4.11: Correlation Pattern of Example 1.2, SNR = 0dB, 10o to 25o, with the

Locations (17ms, 15o), (18.5ms, 15o), (20ms, 15o).
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Figure 4.12: Correlation Pattern of Example 1.3, SNR = 0dB, 10o to 25o, with the

Locations (17ms, 15o), (18.25ms, 15o), (19.5ms, 15o).

From the above figures, the trough between the two peak values in RD is slight-

ly wider and deeper than that in ED, which poses a potential advantage in target

detection.
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Chapter 5

Conclusion and Future Work

In this thesis we examine the signal design problem for Multiple Input Multiple Out-

put (MIMO) radar focusing on matching a desired covariance matrix and on the

suppression of the auto-correlation and cross-correlation sidelobes. Furthermore, by

reasoning that the estimated covariance matrix of the transmitted signals is Hermi-

tian and positive definite, thereby forming a manifold in the signal space, we use the

measure of RD for this estimation error instead of the commonly used ED in the

formulation of our problem. Applying this measure to our design objective function,

we transform the design into a convex optimization problem, the solution of which

can be obtained efficiently by using the standard optimization methods. Although

the results don’t show that the performance of our design is significantly better than

that of using ED in detection in the real application, but with RD, the synthesized

signals can satisfy the defined requirements more precisely.

In this thesis, we propose to apply the Walsh functions to the orthonormal bases

in our problem. However, there are some other kinds of orthonormal functions with

their own advantages to be used, such as the ones designed by [30]. In our future
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work, we can refer to the work of [16] to add the MIMO ambiguity function in the

constraints of the radar waveform design so that not only the range and Doppler

resolution but also the angular resolution could be enhanced.

68



Bibliography

[1] Mark A. Richards, James A. Scheer, and William A. Holm. Principles of Modern

Radar Volume I - Basic Principles. SciTech Publishing, Inc., 2010.

[2] Jian Li, Luzhou Xu, Petre Stoica, Keith W. Forsythe, and Daniel W. Bliss.

Range compression and waveform optimization for mimo radar: A CRB based

study. IEEE Transactions on Signal Processing, 56(1):218–232, Jan 2008.

[3] Hao He, Petre Stoica, and Jian Li. Designing unimodular sequence sets with good

correlations – including an application to MIMO radar. IEEE Transactions on

Signal Processing, 57(11):4391–4405, Nov 2009.

[4] Jian Li, Petre Stoica, and Xumin Zhu. MIMO radar waveform synthesis. In

2008. RADAR ’08. IEEE Radar Conference, pages 1–6, May 2008.

[5] Yong-Chao Wang, Xu Wang, Hongwei Liu, and Zhi-Quan Luo. On the design

of constant modulus probing signals for MIMO radar. IEEE Transactions on

Signal Processing, 60(8):4432–4438, Aug 2012.

[6] Chun-Yang Chen. Signal Processing Algorithms for MIMO Radar. PhD thesis,

California Institute of Technology , Pasadena, California, June 2009.

69



M.A.Sc. Thesis - Jia Xu McMaster - Electrical Engineering

[7] Kritika Sengar, Nishu Rani, Ankita Singhal, Dolly Sharma, Seema Verma, and

Tanya Singh. Study and capacity evaluation of SISO, MISO and MIMO RF

wireless communication systems. International Journal of Engineering Trends

and Technology (IJETT), 9(9), May 2014.

[8] William L. Melvin and James A. Scheer. Principles of Modern Radar Vol. II:

Advanced Techniques. SciTech Publishing, 2013.

[9] Keith W. Forsythe and Daniel W. Bliss. MIMO Radar Signal Processing, chap-

ter 2, page 67. John Wiley & Sons, Inc., Hoboken, New Jersey, 2009.

[10] I. Oppermann and B.S. Vucetic. Complex spreading sequences with a wide range

of correlation properties. IEEE Transactions onCommunications, 45(3):365–375,

Mar 1997.

[11] P. Woodward. Probability and Information Theory, with an Application to Radar.

Pergamon Press, 1957.

[12] M.R. Bell. Information theory and radar waveform design. IEEE Transactions

on Information Theory, 39(5):1578–1597, Sep 1993.

[13] Yang Yang and R.S. Blum. MIMO radar waveform design based on mutual

information and minimum mean-square error estimation. IEEE Transactions on

Aerospace and Electronic Systems, 43(1):330–343, January 2007.

[14] Benjamin Friedlander. Waveform design for MIMO radars. IEEE Transactions

on Aerospace and Electronic Systems, 43(3):1227–1238, July 2007.

[15] Yang Yang and R.S. Blum. Minimax robust MIMO radar waveform design. IEEE

Journal of Selected Topics in Signal Processing, 1(1):147–155, June 2007.

70



M.A.Sc. Thesis - Jia Xu McMaster - Electrical Engineering

[16] Chun-Yang Chen and P.P. Vaidyanathan. MIMO radar ambiguity properties and

optimization using frequency-hopping waveforms. IEEE Transactions on Signal

Processing, 56(12):5926–5936, Dec 2008.

[17] Petre Stoica, Jian Li, and Yao Xie. On probing signal design for MIMO radar.

IEEE Transactions on Signal Processing, 55(8):4151–4161, Aug 2007.

[18] Yili Li and K.M. Wong. Riemannian distances for signal classification by power

spectral density. IEEE Journal of Selected Topics in Signal Processing, 7(4):655–

669, Aug 2013.

[19] D.R. Fuhrmann and G. San Antonio. Transmit beamforming for MIMO radar

systems using signal cross-correlation. IEEE Transactions on Aerospace and

Electronic Systems, 44(1):171–186, January 2008.

[20] Luzhou Xu, Jian Li, and Petre Stoica. Radar imaging via adaptive MIMO

techniques. In Proc. 14th Eur. Signal Process. Conf, 2006.

[21] D.R. Fuhrmann and G. San Antonio. Transmit beamforming for MIMO radar

systems using partial signal correlation. In Proc. 38th Asilomar Conf. Signals,

Systems, Computers, volume 1, pages 295–299 Vol.1, Nov 2004.

[22] H.A. Khan, Yangyang Zhang, Chunlin Ji, C.J. Stevens, D.J. Edwards, and

D. O’Brien. Optimizing polyphase sequences for orthogonal netted radar. IEEE

Signal Processing Letters, 13(10):589–592, Oct 2006.

[23] Jorge Nocedal Stephen J. Wright. Numerical Optimization. Pringer Verlag, 1999.

[24] Petre Stoica, Hao He, and Jian Li. New algorithms for designing unimodular

71



M.A.Sc. Thesis - Jia Xu McMaster - Electrical Engineering

sequences with good correlation properties. IEEE Transactions on Signal Pro-

cessing, 57(4):1415–1425, April 2009.

[25] Jian Li, Petre Stoica, and Xiayu Zheng. Signal synthesis and receiver design

for MIMO radar imaging. IEEE Transactions on Signal Processing, 56(8):3959–

3968, Aug 2008.

[26] S. Boyd M. Grant and Y. Y. Ye. CVX: Matlab software for disciplined convex

programming. Sept. 2012.

[27] J. L. Walsh. A closed set of normal orthogonal functions. American Journal of

Mathematics, 45(1):5–24, Jan. 1923.

[28] K. Beauchamp. Applications of Walsh and Related Functions: With an Intro-

duction to Sequency Theory. Academic Press Inc., Dec. 1984.

[29] A. Tchegho, S. Sattler, and H. Grab. Mixed-signal testing using Walsh functions.

In Mixed-Signals, Sensors, and Systems Test Workshop, 2009. IMS3TW ’09.

IEEE 15th International, pages 1–8, June 2009.

[30] Q. Jin, Z. Luo, and K.M. Wong. An optimum complete orthonormal basis for sig-

nal analysis and design. IEEE Transactions on Information Theory, 40(3):732–

742, May 1994.

72


