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Abstract

The space of symmetric positive definite matrices forms a manifold with an ambient is

Euclidean space. In order to measure the distances between the objects on this manifold

several metrics have been proposed. In this work we study the concept of averaging over

the elements of the manifold by using the notion of Fréchet mean. The main advanta-

geous of this method is its connection to the metrics as a result of which we can utilize the

Reimannian distances to obtain the mean of positive definite matrices. We consider three

Reimannian metrics which have been developed on the manifold of symmetric positive

definite matrices. The methods of obtaining the Fréchet mean in the case of each met-

ric will be discussed. The performance of each estimator will be demonstrated by using

models based on matrix Cholesky factor, matrix square root and matrix logarithm. The

deviation from the nominal covariance in each case will be evaluated using loss function,

Euclidean distance and root Euclidean distance. We will see that depending on the model

under investigation, Fréchet mean of Reimannian distances performs better in most of the

cases.

In terms of application, we analyse the performance of each Fréchet mean estimator in

a classification task. For this purpose we evaluate the method of distance to the center of
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mass using the simulated data. This method will also be applied on the high content cell

image data set in order to classify the cells with respect to the type of treatment that has

been used.
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Chapter 1

Introduction

1.1 Motivation and literature review

In statistical signal processing, the second order statistics of the the received signal from

M-array of observation is more informative. For example, the covariance matrix is being

used in classification to facilitate finding the type of object of interest; in estimation tasks

it is used to find the location of the object, furthermore in detection we would like to know

whether an object exists or not.

In bio-medical imaging a particular type of covariance matrix often arises which is

known as diffusion tensor. The diffusion tensor is a 3× 3 covariance matrix. It is obtained

by fitting a model on the Fourier transform of the molecule displacement density function

[4].

In field of bio-medical data processing such as EEG sleep state classification [5] the

PSD matrix of the brain signal is studied for classification of sleep state (depending on the
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frequency of each sleep state ). In brain computer interface(BCI) [3] in order to facilitate

the communication or movement of people with severe motor disorders the measured sig-

nals are used to form the covariance matrix and use it as a feature so called EEG signal

descriptors.

In face recognition and human detection [6] for the sets of given images the covari-

ance of specific regions in image is obtained with respect to the features of the region the

covariance is then used for target tracking or classification of images.

As we can see in all of the above applications covariance matrices or power spectral

density matrices play the key role in classification and detection. As far as the covariance

matrix is concerned, they have specific structures namely symmetry and being positive

definite. As a result the space of covariance matrices or equivalently positive definite

matrices are form a subspace which is known as a “Riemannian manifold”. This space lies

in the space of all Hermitian matrices.

One important task in such a subspace is how to measure the distance in appropriate

manner in which it reflects more accuracy and take to the account the curvature of the

manifold in measuring the distance between symmetric positive definite matrices. To an-

swer to this question it is needed to study different metrics on the manifold of symmetric

positive definite matrices.

Intuitively, measuring the distance on the manifold is similar to measuring the distance

between two cities. One can measure the distance between two cities as the straight line

connecting them. However, in reality such measurement is not accurate since the road

must traverse the mountains or the rivers.
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Several metrics have been proposed to measure the distance between two positive def-

inite matrices. The one which is widely used is based on projecting the points to the

tangent space and measuring the distance in tangant space using metric which is known in

literature as “Log-Riemannian” distance [7] [8].

Recently other metrics have been introduced to measure the distances on the mani-

fold of symmetric positive definite matrices. They are based on finding the horizontal

Euclidean subspace which is isometric with the tangent space of the space of symmetric

positive definite matrices [5]. The advantage of this approach is that we no longer need

to deal with a complicated formula to find the distance between the points on the mani-

fold; rather we have a closed form solution in hand for the metrics that are developed on

horizontal subspace.

1.2 Arithmetic and geometric mean

Signal processing often involves the evaluation of the mean of a collection of the signal

features. Signal processing using the covariance matrix is no different; we often have to

deal with a population of positive definite matrices resulting from several measurements

and have to find the mean of them. The conventional mean that is widely used is the arith-

metic mean or equivalently center of mass [7] of a group of symmetric positive definite

matrices matrices. We will show that this definition is in fact related to the Euclidean

distance or Frobenius norm . However, as we mentioned earlier, the space of symmetric

positive definite matrices form a manifold so the natural question would be if there exists

a systematic way to evaluate the mean of symmetric positive definite matrices with respect

3
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to Riemannian distances.

The first step towards the definition of geometric mean was reflected in works of Mau-

rice Fréchet who suggested that the mean of random variable in arbitrarily metric space

is the point which minimizes the expected value of sum of squared distance. His work is

followed by Hermann Karcher [9]. Recently it has been suggested that such definition can

be used on the space of symmetric positive definite matrices [7, 10, 11].

The Fréchet mean of positive definite matrices recently finds its way in radar target

tracking [8]. In image processing it has been used for pedestrian detection [6]. In this work

our attention is to find the metric based mean of symmetric positive definite Hermitian

matrices. Our approach is not only with respect to the metric “log-Riemannian” but also

we will use the advantage of horizontal lift subspace and its resulting metrics in finding

the mean of a population of covariance matrices.

1.3 Outline and contribution of the work

Our research is organized as follows. In Chapter 2 we will review the properties of the

sample covariance matrix since it is being widely used in signal processing. We will

employ the loss function to measure the closeness of it to symmetric positive definite

matrices. It will be shown that the sample covariance matrix is the minimizer of the risk

function. The arithmetic mean of symmetric positive definite matrices are also studied in

this chapter. Finally we discuss the properties of the space of symmetric positive definite

matrices.

In Chapter 3 we will discuss the concept of Fréchet mean in Reimanian manifold

4
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of symmetric positive definite matrices, as we mentioned earlier, this method is metric

based approach. As a result, it provides us with a reasonable connection between the

metric and its corresponding mean. We will see that for the case of having two covariance

matrices we have a closed form solution for the geometric mean of the covariance matrices

with respect to the “log-Riemannian” metric. However, when we have more than two

covariance matrices, the Fréchet mean will facilitate finding the mean of more than two

covariance matrices.

On the other hand, we also consider the metrics which are obtained by mapping the

points on the manifold to the horizontal subspace through the fibers. We will see that since

the distance between two points on the horizontal subspace is straight line it enables us to

find the mean on the horizontal subspace and project it back to the manifold.

Unlike the Fréchet mean using the log- Riemannian metric, for one of the metrics

which is developed on horizontally subspace we have derived the closed form solution for

the Fréchet mean which gives the remarkable result in terms of accuracy in comparison to

the Fréchet means of other metrics.

Chapter 4 is devoted to the numerical results. In this chapter we validate our derivation

of Fréchet mean of different metrics. Basically we measure the distance between actual

and estimated mean of symmetric positive definite matrices via several simulation runs

(Monte-Carlo) and measure the error of each estimator depending on the type of metric

which has been used to estimate the covariance matrix.

We apply the techniques that we have developed in finding the mean of population of

covariance matrices in classification of cell imaging data set using the technique which is

based on the distance to the center of mass of each cluster. The method is also performed

5
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on the simulated data set for validation purpose.
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Chapter 2

Sample covariance and arithmetic mean

In array signal processing applications as well as data classification, the estimation of co-

variance matrix is important . The conventional (and also classical) method for covariance

matrix estimation is the well-known sample covariance matrix (SCM). Consider a complex

stationary random data vector x of dimension M . We define the mean and the covariance

matrix of x as

µ = E[x] (2.1a)

Σ = E[(x− µ)(x− µ)H ] (2.1b)

where E[·] denotes the expected value, and (·)H denotes the Hermitian conjugate of a

vector or matrix. We note that Σ is Hermitian symmetric and positive definite. The values

of µ and Σ can be evaluated if the data is stationary and there is an infinite number of data

vectors.

7
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For finite data, i.e., X = [x(1),x(2), ...,x(N0)], the mean vector and the covariance

matrix are usually estimated by averaging over the N0 data vectors available arriving at

the sample mean and the sample covariance such that

µ̂ =
1

N0

N0∑
k=1

x(k) (2.2a)

Σ̂ =
1

N0

N0∑
k=1

(x(k)− µ̂)(x(k)− µ̂)H =
1

N0

S (2.2b)

Eq.( 2.2) are the arithmetic average of the samples and the sample covariance matrices.

It can be shown [12] that if x(1),x(2), ...,x(N0) are independent normally distributed

random vectors each has size 1 ×M (where M represents the number of sensors) with

mean µ and covariance Σ, Eqs. (2.2) are respectively the maximum likelihood estimates

of µ and Σ [13].

To show this fact we can form the likelihood function for x(1),x(2), ...,x(N0) as:1

Lµ,Σ (x(1),x(2), ...,x(N0)) =
1

(π)N0M det (Σ)N0

× exp

(
−

N0∑
k=1

(x(k)− µ)H Σ−1 (x(k)− µ)

)
(2.3)

1We note that observation x of size 1 ×M has the probability density function f (x) = 1
(π)M det(Σ)

×

exp
(
− (x− µ)

H
Σ−1 (x− µ)

)
[14].

8
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Since we have

N0∑
k=1

(x(k)− µ)H Σ−1 (x(k)− µ) =

N0∑
k=1

(x(k)− µ̂ + µ̂− µ)H Σ−1 (x(k)− µ̂ + µ̂− µ)

=

N0∑
k=1

((x(k)− µ̂) + (µ̂− µ))H Σ−1 ((x(k)− µ̂) + (µ̂− µ))

=

N0∑
k=1

(x(k)− µ̂)H Σ−1 (x(k)− µ̂)

+

N0∑
k=1

(x(k)− µ̂)H Σ−1 (µ̂− µ) (2.4)

+

N0∑
k=1

(µ̂− µ)H Σ−1 (x(k)− µ̂) (2.5)

+

N0∑
k=1

(µ̂− µ)H Σ−1 (µ̂− µ)

(2.6)

the terms(2.4) and (2.5) in above equation are equal to zero. As a result we have:

N0∑
k=1

(x(k)− µ)H Σ−1 (x(k)− µ) =

N0∑
k=1

(x(k)− µ̂)H Σ−1 (x(k)− µ̂) +N0 (µ̂− µ)H Σ−1 (µ̂− µ)(2.7)

9
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We use the result of Eq.(2.7) to simplify equation(2.3)to:

Lµ,Σ (x(1),x(2), ...,x(N0)) =
1

(π)N0M det (Σ)N0

× exp
(
−Tr Σ−1S

)
× exp

(
−N0 (µ̂− µ)H Σ−1 (µ̂− µ)

)
(2.8)

by considering the logliklihood function of Lµ,Σ (x(1),x(2), ...,x(N0)) we will have:

lµ,Σ (x(1),x(2), ...,x(N0)) = logLµ,Σ

= c−N0 log det Σ− Tr
(
Σ−1S

)
− N0 (µ̂− µ)H Σ−1 (µ̂− µ) (2.9)

In Eq.(2.9) c is a constant. To maximize the log-likelihood equation we observe that the

quadratic form in Eq.(2.9) is non negative because Σ is positive definite matirx and so is

Σ−1. The quadratic form is equal to zero when µ = µ̂. As a result µ̂ is the ML estimator

of µ. By substituting this value in Eq.(2.9) we need to maximize the following function

with respect to Σ−1:

f
(
Σ−1

)
= c+N0 log det Σ−1 − Tr

(
Σ−1S

)
(2.10)

Using the rules for derivative of matrices [15] we will get :

∂f (Σ−1)

∂Σ−1
= N0

1

|Σ−1|
|Σ−1|
∂Σ−1

− ∂ Tr (Σ−1S)

∂Σ−1
= N0Σ− S (2.11)

10
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By setting the Eq.(2.11) equal to 0 we get the maximum likelihood estimator for covari-

ance matrix Σ which is Σ̂ = 1
N0

S.

2.1 Loss function

In order to have a bench mark to measure the discrepancy between two M×M symmetric

positive definite matrices A and B there exist a well accepted non symmetric measure so

called loss function [16]. It is defined as:

L (A,B) = Tr
(
A−1B

)
− log det

(
A−1B

)
−M (2.12)

It can be shown that under the loss function (2.12), Σ is estimated by M ×M positive

definite matrix φ(S) whose elements are functions of the elements of S. To show this we

consider the risk function L̄ as the expected value of the loss function:

L̄(Σ, αS) = E
[
αTr

(
Σ−1S

)
− log det

(
αΣ−1S

)
−M

]
= αTr Σ−1E(S)−M logα− E

[
log

det S

det Σ

]
−M

= αM(N0 − 1)−M logα− E

[
log

M∏
k=1

χ2
N0−i

]
−M

= αM(N0 − 1)−M logα−
M∑
i=1

E
[
logχ2

N0−i
]
−M (2.13)

By taking the derivative of the Eq.(2.13) with respect to α and set it equal to zero we have

α = 1
N0−1

.

11
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Overall, we can find that Σ̂ is the optimum estimation of Σ when the estimation has

form of αS when α = 1
N0−1

. Furthermore, we have

E
(

1

N0 − 1
S

)
= Σ (2.14)

which means 1
N0−1

S is an unbiased estimator for Σ [17].

2.2 Arithmetic Mean of M ×M Hermitian matrices

From the least squares point of view, the arithmetic mean covariance matrix in Eq. (2.2b)

can also be viewed as the “centroid” of all the observed sample covariance, i.e., suppose

the set of IIDM -dimensional observed vectors x(1), · · · ,x(N0) are divided intoN groups

each containing at leastM0 ≥M observed vectors. For each group {xn(1), · · · ,xn(M0), n =

1, · · · , N}, we form the observed mean µn = 1
M0

∑M0

i=1 xn(i), and the observed covariance

matrices Sn = 1
M0

∑M0

i=1[xn(i)− µn][xn(i)− µn]H .

Before we show that the arithmetic mean of {Sn}Nn=1 is the minimizer of the sum of the

square distances we need to consider the directional derivative of a function (see Appendix

A) in Euclidean space according to the natural inner product in such space.

Lemma 2.2.1. [18] : Let φ1 and φ2 be continuously differentiable real valued functions

on the interval (0,∞) and let

h(X) = 〈φ1(X), φ2(X)〉 = Trφ1(X)φ2(X) (2.15)

For all Hermitian matrix X. Then the directional derivative of h is given by the formula:

12
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DY h(X) =
〈
φ
′

1(X)φ2(X) + φ1(X)φ
′

2(X),Y
〉

(2.16)

If we define the square of the Frobenius distance between two matrices A and B as

d2
F (A,B) = ‖A−B‖2

2 = Tr(A−B)(A−B)H (2.17)

then the sample mean covariance given by Eq.(2.2b) is the matrix which minimizes

Σ̂A = arg min
Σ

N∑
n=1

d2
F (Sn,Σ) (2.18)

That Eq.(2.18) is indeed true can be shown using the directional derivative expression:

Let

F (Σ) =
N∑
n=1

〈Σ− Sn,Σ− Sn〉 =
N∑
n=1

‖Σ− Sn‖2
2 (2.19)

From Eq.(2.19) and using lemma (2.2.1) the directional derivative of the function F is

given by

DRF (Σ) =
N∑
n=1

〈2 (Σ− Sn) ,R〉 (2.20)

Letting DRF (Σ) = 0 we have Σ̂ = 1
N

∑N
n=1 Sn. As mentioned Σ̂ is the ML estimator of

13
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Σ. The expected value of this estimator is equal to

E
(
Σ̂
)

= E

(
1

N

N∑
n=1

Sn

)

=
1

N
E

(
N∑
i=1

Sn

)

=
1

N

N∑
i=1

E (Sn)

=
1

N

N∑
i=1

M0 − 1

M0

Σ =
M0 − 1

M0

Σ (2.21)

Eq.(2.21)shows that Σ̂ is the biased estimator of Σ. However, as M0 tends to infinity, Σ̂

converges to Σ [19].

From Eq.(2.21) we can conclude that the expected value of the estimation Σ only

depends on the size of each group not number of groups.

2.3 Geometry of M ×M Covariance Matrix

So far we have studied the properties of the sample covariance matrices; However we need

to take to the account the nature of the space that such matrices exist on it. Since the co-

variance matrix of a vector is positive definite Hermitian, let us now denote the set of all

the M ×M complex matrices byH, the set of all the M ×M Hermitian matrices byHH ,

and the set of all positive definite Hermitian matrices byM.

14
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We first define the inner product of two M ×M matrices A,B as

〈A,B〉 = Tr[ABH ] =

(
M∑
m=1

M∑
n=1

amnb
∗
mn

)
(2.22)

Where amn and bmn are respectively the mnth elements of A and B respectively. We note

that this is the sum of all the elements of the Hadamard (element by element) product

A
⊙

BH . We further note that for A and B being Hermitian, Tr[ABH ] = Tr[AB] and

A
⊙

BH = A
⊙

B.

The following is an important property of matrices inM [5].

Lemma 2.3.1. M is a manifold in the real linear vector spaceHH.

Proof. From the definitions of HH and M, we can write HH = {H ∈ H : HH =

H} and M = {S ∈ HH : S � 0}. From which we can establish thatM ⊂ HH ⊂ H.

Given S ∈ M, if a small perturbation is set on the eigenvalues of S, the resulting S + δS

remains inM. Hence,M is an open subset ofHH and is thus a manifold inHH. ThatHH

is real can be shown such that, for H ∈ HH and a complex scalar c, cH /∈ HH in general

since cH may no longer be Hermitian. Therefore,HH is closed only for real scalar field.

Furthermore, we can establish a set of basis {Ẽmn; m,n = 1, · · · ,M}

such that Ẽmn,m > n, has only two non-zero elements of 1 at the mnth and nmth

positions, Ẽnm,m < n, has only two non-zero elements of j and −j at the mnth and

the nmth positions, and Ẽmm has only one non-zero element of 1 at the mmth position.

Thus, any H ∈ HH can be represented as a linear combination of the Hermitian basis set

15
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{Ẽmn; m,n = 1, · · · ,M} such that

H =
M∑
m=1

M∑
n=1

αmnẼmn, with Ẽmn = ẼH
mn (2.23)

The coefficients αmn are real since H−HH =
∑M

m=1

∑M
n=1(αmn − α∗mn)Ẽmn = 0 from

which we conclude αmn = α∗mn. Thus, H can be represented as an (M × M)-tuple

{αmn;m,n = 1, · · · ,M} in a real (M ×M)-dimensional space R(M×M).

Since the basis matrices {Ẽmn} in Eq. (2.23) are all orthonormal the inner product

〈H1,H2〉 inHH as given by Eq. (2.22) is reduced to

〈H1,H2〉 =
M∑
i=1

M∑
j=1

α1ijα2ij (2.24)

which is also real. Henceforth, we refer toHH as a real vector space.

In order to demonstrate the manifold of symmetric positive definite matrices we con-

sider an example of the space of 2 × 2 symmetric positive definite matrices with real en-

tries. Each covariance matrix can be depicted as the point in three dimensional Euclidean

space . Two coordinates show the variance and the third coordinate shows the covariance.

Now the covariance matrices in this space have the positive elements on the main diagonal

which shows the variance. On the other hand the off diagonal elements satisfy the Cauchy

Schwartz inequality [20]:

|cov(x1, x2)| ≤
√

(var(x1))
√

(var(x2)) (2.25)

In Eq.(2.25), cov(x1, x2) denotes the covariance between two variables x1 and x2. Also
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’var’ represents the variance. By definition of the space of 2× 2 covariance matrices, each

matrix has a representation in three dimensional space R3 with coordinates:

p = [var(x1), var(x2), cov(x1, x2)]T (2.26)

To preserve positive definiteness property of the covariance matrix the point in Eq.(2.26)

must be interior point of the region. On the other hand, Once the representative point

touches the boundary of the figure (2.1), i.e when the equality holds in equation (2.25), the

matrix is no longer positive definite.

The example illustrates that treating the space of positive definite matrices as a linear

space is not accurate. So we need to consider the natural geometry of space of such

structured matrices for further study.

17
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Figure 2.1: Visualization of space of 2 × 2 covariance matrices with real entries in three
dimensional space.
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Chapter 3

Fréchet mean of Hermitian positive

definite matrices

3.1 Introduction

The covariance matrix, or equivalently, the power spectral density (PSD) matrix, of the

signals from a multi-sensor system is a feature useful for many purposes in statistical

signal processing including detection, estimation, classification, and signal design. In a

recent paper [5],the importance of power spectral density matrix in classification of EEG

signals was demonstrated.

In many applications of signal processing, the covariance matrix of the observed sig-

nal is utilized as a feature from which information is extracted. Often, for extraction of

information, averaging and interpretation of these matrices are needed. To develop algo-

rithms for such evaluations, one important fact has to be born in mind that the structural
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constraints, i.e., Hermitian symmetry and positive definiteness, on such matrices must be

maintained [5] [2].

It was suggested [5] that since such features form a manifold in the signal space due

to their structural constraints, measurements of these features ought to be carried out on

the manifold, and not as vectors in the signal space. It is further observed that if a curve

on the covariance matrix feature manifold M is lifted along the fibres (special mapping

connections) into the Euclidean signal space H, then there exists a subspace U ⊂ H

isometric to the tangent space of the manifold to which the curve can be lifted. This

implies that measurements on the feature manifold may be equivalently obtained from the

measurement in the subspace U . From this concept, using different Riemannian metrics

and different mappings, various Riemannian distances on the feature manifoldM can be

derived.

In this chapter, the focus of our attention is on the estimation of the Frechet mean of

the covariance matrices on the manifoldM using the different measures of Riemannian

distances.

The necessary frame work and algorithms to obtain the mean of covariance matrices

from group of sample covariance matrices using Riemannian distances on manifold of

positive definite matricesM will be developed and studied in this chapter.

First we will review the Riemannian distances which form the basis of measuring the

Frechet mean. Then the Fréchet mean for each of the metrics will be obtained and dis-

cussed.
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3.2 Fréchet mean

The history of defining mean goes back 2500 years when the ancient Greeks introduced

ten types of different means. Among them only three of them survive and are still being

used. These are the arithmetic, the geometric and the harmonic means.

We use the notion of Fréchet mean to unify the method of finding the mean of positive

definite matrices. The Fréchet mean is given as the point which minimizes the sum of the

squared distances [8]:

Σ̂ = arg min
Σ∈M

n∑
i=1

d2(Si,Σ) (3.1)

where {Si}ni=1 represents the symmetric positive definite matrices and d(., .) denotes

the metric being used respectively.

In fact if we have a closer look at the definition of arithmetic mean of positive mea-

surement {xi}ni=1, which is denoted as x̄ = 1
n

∑n
i=1 xi, and using the usual distance, we

can see that it has the variational property. This means that it minimizes the sum of the

squared distances to the points xk :

x̄ = arg min
x≥0

n∑
i=1

|x− xi|2 (3.2)

with respect to metric

d(x, y) = |x− y| (3.3)
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In fact if we form the quadratic cost function

f(x) =
n∑
i=1

(x− xi)2 (3.4)

By taking the derivative of Eq.(3.4) with respect to the variable x and set it equal to zero

one can obtain the x̄ which is the arithmetic mean of positive scalars {xi}ni=1.

Figure 3.1: Fréchet mean of five points on Euclidian space [1].

3.3 Riemannian metrics

So far we only considered the Euclidean distance which is valid on the space with zero

sectional curvature.
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To measure the distance between two M ×M covariance matrices A and B on mani-

fold of positive definite matricesM, we consider the metrics which have been developed

to measure distance between two points on the manifold itself. The following metrics will

be considered throughout the remaining chapters.

The first metric is obtained when we lift the points A,B to the horizontal subspace

U ⊂ H using the fiber and measure the distance between them [5]:

dR1 (A,B) = arg min
Ũ1,Ũ2∈U(M)

∥∥∥A 1
2 Ũ1 −B

1
2 Ũ2

∥∥∥
2

=
∥∥∥A 1

2 U1 −B
1
2 U2

∥∥∥
2

(3.5)

where U(M) denotes the space of unitary matrices of size M ×M . Alternatively Eq.(3.5)

can be rewritten as: √
Tr(A) + Tr(B)− 2 Tr(A

1
2 BA

1
2 )

1
2 (3.6)

In general for any positive definite matrix A its square root is defined as A
1
2 = S

√
ΛDH ;

where A = SΛDH is the eigenvalue value decomposition of matrix A with diagonal

matrix Λ consisting of eigenvalues of A.

In Eq(3.5), U1 and U2 are the left and right multiplicative of singular value decom-

position of B
1
2 A

1
2 [21]. To see that the equation (3.5) and (3.6) are indeed equivalent we

observe that if the singular value decomposition of matrix B
1
2 A

1
2 is given by U1ΓUH

2

where Γ is the diagonal matrix consists of singular values of matrix B
1
2 A

1
2 in descending
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order and U1 and U2 are unitary matrices, then we can write:

arg min
Ũ1,Ũ2∈U(M)

∥∥∥A 1
2 Ũ1 −B

1
2 Ũ2

∥∥∥2

2
=

= arg min
Ũ1,Ũ2∈U(M)

Tr
(
A

1
2 Ũ1 −B

1
2 Ũ2

)(
A

1
2 Ũ1 −B

1
2 Ũ2

)H
= Tr (A) + Tr (B)

− 2<e arg min
Ũ1,Ũ2∈U(M)

Tr
(
A

1
2 B

1
2 Ũ1Ũ

H
2

)
(3.7)

In order to minimize the right side of Eq.(3.7), we need to maximize the last term. As

a result the last term in Eq.(3.7) should be maximized with respect to variable P , where

P = Ũ1Ũ
H
2 . We note that P is still unitary operator so it belongs to U(M). So we have

the following Lagrangian equation:

Tr

(
A

1
2 B

1
2 P− 1

2
Ω
(
PPH − I

))
(3.8)

where Ω is diagonal Lagrangian multiplier matrix of size M × M and I is the identity

matrix of size M ×M . By taking the derivative of the Lagrangian with respect to P and

equating it to zero we have :

B
1
2 A

1
2 = ΩP (3.9)

Since P is a unitary matrix, we have Ω = B
1
2 A

1
2 PH . As a result we conclude that

Ω2 = B
1
2 A

1
2 PHPA

1
2 B

1
2 . The latter equation can be simplified as:

Ω2 = U1ΓUH
2 U2ΓUH

1 (3.10)
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As a result we can set Ω = U1ΓUH
1 . Substituting this value in (3.9) we obtain the opti-

mum value

Popt = U1U
H
2 . (3.11)

We observe that according to the singular value decomposition of matrix A
1
2 B

1
2 we have :

A
1
2 B

1
2 Popt = U1ΓUH

2 U2U
H
1 = U1ΓUH

1 . (3.12)

On the other hand one can observe that:

A
1
2 B

1
2 B

1
2 A

1
2 = U2Γ

2UH
2 . (3.13)

Thus we have:

Tr
(
A

1
2 B

1
2 B

1
2 A

1
2

) 1
2

= Tr
(
A

1
2 B

1
2 Popt

)
. (3.14)

According to the equations (3.12), (3.13) and (3.14) one can observe that the equations

(3.5) and (3.6) hold.

If we put U1 and U2 to be equal to the identity matrix in Eq.(3.5), in other words lifting

up the points along the fibers through the identity operator, we will have the expression for

metric dR2 as follows [5]:

dR2(A,B) =
∥∥∥A 1

2 −B
1
2

∥∥∥
2

=

√
Tr(A) + Tr(B)− 2 Tr(A

1
2 B

1
2 ) (3.15)

Let the points A,B ∈M and let X be a the point on the manifold at which we construct a

tangent plane ( it is usually denoted as TMX). According to the inner-product 〈A,B〉X =
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Tr(X−1AX−1B) the log- Riemannian metric is given as [7]:

dR3(A,B) =
∥∥∥log(A−

1
2 BA−

1
2 )
∥∥∥

2
=

√√√√ M∑
i=1

log2 (λi) (3.16)

where the λi’s are the eigenvalues of the matrix A−1B [22]. (Metric dR3 has been

developed in various ways and has, for a long time, been used in theoretical physics).

So far we have introduced the matrices for which we would like to find the correspond-

ing Fréchet mean. In the following sections we will develop the necessary framework to

obtain the mean in each case.

3.4 Fréchet mean using metric dR1

Obtaining the Fréchet mean of set of positive definite Hermitian matrices {Si}ni=1 with

respect to metric dR1 results on the following optimization problem:

arg min
Σ∈M

n∑
i=1

∥∥∥S 1
2
i Ui −Σ

1
2 U
∥∥∥2

2
(3.17)

To find the solution for Eq.(3.17) we need to use the next lemma. The result of it will be

used to form an algorithm to obtain the solution Σ̂ in Eq.(3.17).

Lemma 3.4.1. : Let {Di}ni=1 be set of n points in Hilbert space (H, ‖.‖2). Then we have:

n∑
i=1

∑
j≥i

‖Di −Dj‖2
2 = n

n∑
i=1

‖Di −C‖2
2 . (3.18)

where C = 1
n

∑n
i=1 Di.
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Proof.

n∑
i=1

‖Di −X‖2
2 =

=
n∑
i=1

‖Di −C + C−X‖2
2 (3.19)

=
n∑
i=1

‖Di −C‖2
2 + 2(C−X).

n∑
i=1

(Di −C) + n ‖C−X‖2
2

Since C is center of mass we have
∑n

i=1(Di −C) = 0. As a result:

n∑
i=1

‖Di −X‖2
2 =

n∑
i=1

‖Di −C‖2
2 + n ‖C−X‖2

2 (3.20)

Now suppose X varies over the set {D1,D2, ....,Dn} . Using Eq.(3.20) and adding up

n equations together we have:

∑
i,j

‖Di −Dj‖2
2 = n

n∑
i=1

‖Di −C‖2
2 + n

n∑
j=1

‖C−Dj‖2
2

= 2n
n∑
i=1

‖Di −C‖2
2 (3.21)

We note that:

∑
i,j

‖Di −Dj‖2
2 = 2

∑
i

∑
j≥i

‖Di −Dj‖2
2 (3.22)

So from the equation (3.21) and (3.22) and we get the desired result:
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n∑
i=1

n∑
j≥i

‖Di −Dj‖2
2 = n

n∑
i=1

‖Di −C‖2
2 (3.23)

Divide the sides of Eq.(3.23) by n and set Di = AiUi, where for the given set of

positive definite matrices {Si}ni=1 , Ai = S
1
2
i ; define function g as [23]:

g (A1,A2,A3, ...,An) =
1

n

n∑
i=1

∑
j≥i

‖AiUi −AjUj‖2
2 . (3.24)

where in Eq.(3.24) Ui’s are unitary operators. Lemma (3.4.1) facilitates the process of

identifying the set of unitary matrices {Ui}ni=1 such that minimize the function g.

From Eq.(3.23) we have C = 1
n

∑n
j=1 AjUj . Also Uj’s are the optimum solution of

function g.

The next algorithm simultaneously find the set of unitary matrices{Ui}ni=1 in order

to minimize function g(A1,A2, ...,An) in (3.24) and as a consequent finding the Fréchet

mean with respect to metric dR1.

28



M.A.Sc. Thesis - Mehdi Razeghi Jahromi McMaster - Electrical Engineering

Algorithm for computing the Fréchet mean of metric dR1:

Algorithm 1 Fréchet mean for metric dR1

1. Initialize the positive threshold value ε. For the set {Si}ni=1 of positive definite matrices

on manifoldM find the square root of each element: Ai = S
1
2
i ; i = 1, 2, ..., n.

2. For each i = 1, 2, ..., n consider Âi := 1
n−1

∑n
j 6=i Aj and find Ûi which minimizes∥∥∥Âi −AiUi

∥∥∥
2
; then consider Âinew := AiÛi

3. At iteration (k + 1) set Ai = Âinew; i = 1, 2, ..., n and Evaluate gk+1 using Eq.(3.24)

4. Repeat step 2 until:

|gk(A1,A2, ...,An)− gk+1(A1,A2, ...,An)| ≤ ε .

5. Calculate Ĉ = 1
n

∑n
i=1 ÂiUi.

6. The resulting Fréchet mean on manifoldM is then obtained as Σ̂ = ĈĈH

3.5 Fréchet mean corresponding to metric dR2

So far we have seen how to obtain the Fréchet mean using metric dR1. Unlike the Fréchet

mean for metric dR1, it will be shown that metric dR2 can be utalized in Eq.(3.1) to obtain

a Fréchet mean which has a closed form expression.

The optimization problem in Eq.(3.1) with respect to the metric dR2 and given positive

definite hermitian matrices {Si}ni=1, is expressed as:
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Σ̂ = arg min
Σ∈M

n∑
i=1

∥∥∥Si 12 −Σ
1
2

∥∥∥2

2
(3.25)

The optimisation problem (3.25) has closed form solution on manifold of positive definite

matrices. It can be obtained through the following lemma:

Lemma 3.5.1. For the set of positive definite Hermitian matrices {Si}ni=1 on manifoldM

we consider Li = (Si)
1
2 ; i = 1, 2, ..., n . Then we have:

L̂ = arg min
L

n∑
i=1

∥∥∥Li − L
1
2

∥∥∥2

2
=

1

n

n∑
i=1

Li (3.26)

Proof.

arg min
L

n∑
i=1

Tr (L− Li)
H (L− Li) =

= arg min
L

n∑
i=1

(
‖L‖2

2 + ‖Li‖2
2 − 2 Tr

(
LHLi

))
≡ arg min

L

n∑
i=1

‖L‖2
2 − 2

n∑
i=1

Tr
(
LHLi

)
= arg min

L

n∑
i=1

‖L‖2
2 − 2 Tr

(
LH

n∑
i=1

Li

)
(3.27)

Now in order to minimize the last expression in Eq.( 3.27) we need to maximize

Tr
(
LH
∑n

i=1 Li

)
. In general for any two Hermitian matrices A and B we note that the

Cauchy-Schwartz inequality for trace operators is given by [15]:
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Tr
(
AHB

)
≤
√

Tr (AAH)
√

Tr (BBH) (3.28)

Equality in Eq.(3.28) holds when one of the matrices A and B are multiple of each

other. So we have : L = β
∑n

i=1 Li where ‖L‖2 = α . Thus we can write:

‖L‖2 = |β|

∥∥∥∥∥
n∑
i=1

Li

∥∥∥∥∥
2

= α

Since β ≥ 0, we get β = α

‖∑n
i=1 Li‖

2

. Substituting β in L = β
∑n

i=1 Li we have :

LH =
α (
∑n

i=1 Li)
H

‖
∑n

i=1 Li‖2

(3.29)

As a result Eq.(3.29) can be written as:

arg min
α

nα2 − 2 Tr

 α

‖
∑n

i=1 Li‖2

(
n∑
i=1

Li

)H ( n∑
i=1

Li

) =

= arg min
α

nα2 − 2αTr

( n∑
i=1

Li

)H n∑
i=1

Li


= arg min

α
nα2 − 2

α ‖
∑n

i=1 Li‖2

2

‖
∑n

i=1 Li‖2

(3.30)
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Now we need solve the minimization problem in Eq.( 3.30). Take the derivative of equa-

tion Eq.( 3.30) with respect to α and equal it to zero we have:

α =
1

n

∥∥∥∥∥
n∑
i=1

Li

∥∥∥∥∥
2

(3.31)

Thus we have:

L̂ =

∑n
i=1 Li

n
(3.32)

This is the solution on the horizontal subspace HH the corresponding point on the

manifold itself is given by:

Σ̂ = L̂L̂H ; where; L̂ =
1

n

n∑
i=1

S
1
2
i (3.33)

In similar manner to the above theorem we have seen in Chapter 2 that the solution of

the following optimization problem :

Σ̂ = arg min
Σ∈M

n∑
i=1

‖Σ− Si‖2
2 (3.34)

is Σ̂ = 1
n

∑n
i=1 Si which by definition is arithmetic mean of positive definite covari-

ance matrices.

It is worth to note that in the case that the measurement are in form of non negative
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scalars {xi}ni=1 the analogy to the solution of optimization problem in (3.25) is :

Σ̂ =

(
1

n

n∑
i=1

√
xi

)2

(3.35)

which is known as square root mean [24].

3.6 Fréchet mean using metric dR3

The Fréchet mean with respect to metric dR3 for the set of positive definite matrices

{Si}ni=1 in manifoldM using Eq.(3.1) can be formulated as:

Σ̂ = arg min
Σ∈M

n∑
i=1

d2
R3(Si,Σ) (3.36)

3.6.1 Convexity of the problem

Before going through the algorithm for finding the optimum solution of Eq.(3.36) we show

that this optimization problem has a unique solution1. The next theorem characterizes the

geodesic in the case of metric dR3. The result of it later on will be used in proof of

convexity of Eq.(3.36).

Theorem 3.6.1. Let A and B belong to the manifold of positive Hermitian matricesM.

1parts of the results of this section is the extension to the case of n covariance matrices from [10] .
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Then there exists a unique geodesic 2 γ(t) joining A and B such that it can be parameter-

ized as follows :

γ(t) = A
1
2 exp

(
t log

(
A−

1
2 BA−

1
2

))
A

1
2 ; 0 ≤ t ≤ 1 (3.37)

Proof. We want to find the path with minimum length such that it connects the matrices

A and B. From [18], it has been shown that the congruence transformation ΓX(A) =

XHAX and ΓX(B) = XHBX preserve the length between the two points A and B, i.e.,

dR3(A,B) = dR3(ΓX(A),ΓX(B)) on manifold M. On the other hand for any pair of

commutative matrices C and D, the shortest path (geodesic) is formulated as (see Ap-

pendix C):

γ0(t) = exp ((1− t) log (C) + t log (D)) (3.38)

Now we apply congruence operator Γ
A−

1
2

on the path passing through the points A and

B. The result is the same length of the path passing through the points I and A−
1
2 BA−

1
2 ;

since they commute [18] the geodesic between them according to the Eq.( 3.38) is given

by :

γ0(t) = exp
(
t log

(
A−

1
2 BA−

1
2

))
(3.39)

Now we apply congruence Γ
A

1
2

on Eq.(3.39) to get the geodesic passing through the

points A and B as follows:

γ(t) = A
1
2 exp

(
t log

(
A−

1
2 BA−

1
2

))
A

1
2 0 ≤ t ≤ 1 (3.40)

2The geodesic in our work can be assumed as the path which has the minimum length among the other
paths which connect two points on the manifoldM. For more details on the notion of geodesic see [25] .
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which is the geodesic connects A at t = 0 to B at t = 1.

In Eq.(3.39) if t = 1
2

the point γ(1
2
) is the middle point on the geodesic connecting

two points A and B inM; it is called the geometric mean of A and B and represented by

A#B [11] .

In Hilbert space H we know that for any two points A and B with the middle point

M = A+B
2

together with any point C we have parallelogram rule :

AB2 + CD2 = 2
(
AC2 + BC2

)
(3.41)

Figure 3.2: Parallelogram rule in the Hilbert space. M is the middle point in the sense that
‖A−M‖ = ‖M−B‖. The forth vertix D is determined using Eq.(3.41).

Similar to the Eq.(3.41) we have semi parallelogram rule with respect to metric dR3

[10]:

Theorem 3.6.2. Suppose A and B are two points on the manifold of positive definite

matricesM. Let M = A#B be the middle point of the geodesic passing through A and

B. Let C be any arbitrary point inM. Then we have :

dR3

2 (M,C) ≤ dR3
2 (A,C) + dR3

2 (B,C)

2
− dR3

2 (A,B)

4
(3.42)
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Lemma 3.6.3. For the fixed positive definite Hermitian matrix A function f(X) = dR3
2(A,X)

is convex.

Proof. Since every continuous midpoint convex function 3 is convex [26] , it is sufficient to

show that f is continuous and midpoint convex for any positive definite Hermitian matrices

X1 and X2 . Function f(t) = log(t) is continuous [27] on (0,∞). Let Xn be a sequence

in M such that limn−→∞Xn = X. For the fixed Hermitian positive matrix A we have

limn−→∞A
1
2 XnA

1
2 = A

1
2 XA

1
2 . As a result: 4

lim
n−→∞

∥∥∥log
(
A

1
2 XnA

1
2

)∥∥∥2

2
=
∥∥∥log

(
A

1
2 XA

1
2

)∥∥∥2

2
(3.43)

So f is a countinious function. Using theorem ( 3.6.2) we can see that f is mid-point

convex:

f(X1#X2) = dR3
2 (X1#X2,A) ≤ dR3

2 (X1,A) + dR3
2 (X2,A)

2
− dR3

2 (X1,X2)

4

≤ 1

2

(
dR3

2 (X1,A) + dR3
2 (X2,A)

)
(3.44)

Equation (3.44) shows that f is mid point convex.

Lemma 3.6.4. The function f (X) =
∑n

j=1 dR3
2 (Aj,X) has a unique minimizer solution

inM.
3A function f : M −→ R is called midpoint convex if for any arbitrary points A,B ∈ M one can

conclude that: f (A#B) ≤ 1
2 (f (A) + f (B)).

4A function f is called continious if for any sequence {Xn} in the given space, in here manifoldM,such
that {Xn} converges to the X as n tends to the infinity, one can conclude that f (Xn) converges to f (X). It
is equivalent to the conventional definition of continuity of the function f and in some cases it facilitate the
proof of continuity of a given function. For more information see [28].

36



M.A.Sc. Thesis - Mehdi Razeghi Jahromi McMaster - Electrical Engineering

Proof. Considerm = inf f (X)5 and let {Xr} be a sequence inM such that limr−→∞ f (Xr) =

m . Using semi parallelogram rule for j = 1, 2, 3, ..., n we have :

dR3
2 (Xr#Xs,Aj) ≤

dR3
2 (Xr,Aj) + dR3

2 (Xs,Aj)

2
− dR3

2 (Xr,Xs)

4
(3.45)

Adding up all the equations in Eq.(3.45) we get:

f (Xr#Xs) =
n∑
j=1

dR3
2 (Xr#Xs,Aj)

≤ 1

2

(
n∑
j=1

dR3
2 (Xr,Aj) +

n∑
j=1

dR3
2 (Xs,Aj)

)
−

n∑
j=1

dR3
2 (Xr,Xs)

4

=
1

2
(f (Xr) + f (Xs))−

n

4
dR3

2 (Xr,Xs)

(3.46)

From Eq.(3.46) we have:

n

4
dR3

2 (Xr,Xs) ≤
1

2
(f (Xr) + f (Xs))− f (Xr#Xs)

≤ 1

2
(f (Xr) + f (Xs))−m

(3.47)

Multiplying both sides of Eq.(3.47) by 2 and notice that the right hand side of it is positive

5Infimum of a function f which is usually denoted as inf f is the greatest lower bound of the function.
For more information about infimum of a function see [28].
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so we can consider its absolute value:

n

2
dR3

2 (Xr,Xs) ≤ |f (Xr)−m+ f (Xs)−m|

≤ |f (Xr)−m|+ |f (Xs)−m|

≤ 2ε (3.48)

Thus Xr is a Cauchy sequence inM and since (M, dR3) is a complete space it converges

to its limit point X0; in other words limr−→∞Xr = X0 . On the other hand since f is a

continuous function we can write limr−→∞ f(Xr) = f(X0); since the limit is unique as a

result we must have f (X0) = m = inf f (X). Furthermore, f is the summation of convex

functions as a result it is convex so it reaches its minimum at the unique point inM.

3.6.2 Steepest descent algorithm on Riemannian manifold

We have shown that Eq.(3.36) is a convex optimization problem and its solution, if it exists,

must be unique. However, to our knowledge a closed form solution for Eq.(3.36) has not

been found yet. To find the Fréchet mean we need to use numerical methods [29]. Among

the numerical approaches that can be applied we will use gradient descent method [2] to

find the optimum solution.

Recall that manifold of positive definite matricesM equipped with the inner product:

〈A,B〉X := Tr
(
AX−1BX−1

)
(3.49)

Which leads to the Riemannian distance dR3.
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The optimum solution of the smooth cost function can be obtained when its differential

is equal to zero. On the manifold equipped with the inner product (3.49) we have the well-

known relation [22] between vector V in TXM and the gradient of the real valued function

f :M−→ R+,∇f , at point X ∈M:

DVf (X) := 〈∇f,V〉X (3.50)

DVf (x) is called directional derivative of function f at point X in direction of V.

For more details on the directional derivative, see Appendix A. In order to connect the

definition of directional derivative on the manifold with its corresponding on the Euclidean

space we observe that:

〈
∇f<,V

〉
X

= Tr
(
∇f<X−1VX−1

)
=
〈
X−1∇f<X−1,V

〉
(3.51)

where the notation∇f< emphasizes that the gradient vector is obtained on the Riemannian

manifoldM. The first expression is given by definition of Riemannian metric inner prod-

uct as mentioned in equation (3.49). The last expression by definition is equal to the inner

product on the Euclidian space; in other words we have the following relation between the

gradient vector on the Reimannian manifold and its counterpart on the Euclidean space:

X−1∇f<X−1 = ∇fE (3.52)

where∇fE represents the corresponding gradient vector with respect to the inner prod-

uct on the Euclidean space.
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In view of Lemma (2.2.1), let h(X) = ‖log(X)‖2
2, X ∈M then we have :

DYh(X) = 2
〈
X−1 log X,Y

〉
(3.53)

For all Y ∈ TM.

The immediate consequence of this result shows that if we consider

h(X) =
∥∥∥log(A−

1
2 XA−

1
2 )
∥∥∥2

2
(3.54)

then for every Y ∈ TM we have:

DYh(X) = 2
〈
A−

1
2 XA−

1
2 log(A−

1
2 XA−

1
2 ),A−

1
2 YA−

1
2

〉
(3.55)

Theorem 3.6.5. The directional derivative of the function f(X) =
∑n

i=1

∥∥∥log(A
− 1

2
i XA

− 1
2

i )
∥∥∥2

2
,where

{Ai}ni=1 ∈M, is given by:

DYf(X) = 2
n∑
i=1

〈
X−1 log(XA−1

i ),Y
〉

(3.56)

Proof. The function f is given to have n terms and according to Eq.(3.55) each term has
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the following form:

2
〈
A
− 1

2
i XA

− 1
2

i log(A
− 1

2
i XA

− 1
2

i ),A
− 1

2
i YA

− 1
2

i

〉
= 2 Tr

(
A

1
2
i X−1A

1
2
i log

(
A
− 1

2
i XA

− 1
2

i

)
A
− 1

2
i YA

− 1
2

i

)
= 2 Tr

(
X−1A

1
2
i log

(
A
− 1

2
i XA

− 1
2

i

)
A
− 1

2
i Y

)
= 2 Tr

(
X−1 log

(
XA−1

i

)
Y
)

=
〈
2X−1 log

(
XA−1

i

)
,Y
〉

(3.57)

Using the linearity of gradient and the definition of gradient on the Euclidean space

(see appendix A) we have:

∇fE(X) = 2
n∑
i=1

X−1 log
(
XA−1

i

)
(3.58)

We observe that the corresponding gradient with respect to the Riemannian inner prod-

uct of 〈A,B〉X := Tr (AX−1BX−1) is obtained as:

∇f<(X) = X∇fEX = 2
n∑
i=1

log
(
XA−1

i

)
X (3.59)
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The last term in above equation can be rewritten [29] as:6

∇<f(X) = X∇EfX =

= 2
n∑
i=1

log
(
XA−1

i

)
X

= 2
n∑
i=1

X
1
2 X−

1
2 log

(
XA−1

i

)
X

1
2 X

1
2

= 2
n∑
i=1

X
1
2 log

(
X

1
2 A−1

i X
1
2

)
X

1
2 (3.60)

So far we have shown that the Eq.(3.36) is a convex problem. Furthermore, we have

obtained the gradient vector according to Eq.(3.60). At this point we can use gradient

descent algorithm to find the minimizer of f(X). This algorithm is illustrated in figure

(3.3).

Figure 3.3: Gradient descent algorithm at step k [2].

6For any invertable matrix X and positive matrix A we have: X−1 log (A)X = log
(
X−1AX

)
;see

[27], [30].

42



M.A.Sc. Thesis - Mehdi Razeghi Jahromi McMaster - Electrical Engineering

The geodesic γ(t),where t ∈ [0, 1], such that γ(0) = P ∈ M and dγ(t)
dt
|t=0 = S ∈ TM

is represented by [7] :

γ(t) = P
1
2 exp

(
tP−

1
2 SP−

1
2

)
P

1
2 (3.61)

At point Xk ∈ M together with the gradient vector ∇f< (Xk) ∈ TMXk, the point

Xk+1 at iteration k + 1 is obtained by considering the descending direction of gradient

vector at point Xk ∈ M. The resulting point according to the Eq.( 3.61)and Eq.(3.60) is

given by :

Xk+1 = X
1
2
k exp

(
−tX−

1
2

k

n∑
i=1

X
1
2
k log

(
X

1
2
kA−1

i X
1
2
k

)
X

1
2
kX
− 1

2
k

)
X

1
2
k (3.62)

The following algorithm summarizes the process of gradient descent method with respect

to metric dR3 on manifoldM:

Descent algorithm for finding the Fréchet mean using metric dR3:
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Algorithm 2 Fréchet mean for metric dR3

1. For the given set of symmetric positive definite matrices {Si}ni=1 Initialize the starting

point X0 as the arithmetic mean of the positive definite matrices.

2. Compute the gradient of function f according to the equation Eq.( 3.60).

3. Consider the negative direction of gradient vector. It shows the descent search direction.

4. At step k+ 1 calculate the geodesic on manifoldM starting at point Xk in direction of

−∇f<(Xk) with step size 7t ∈ (0, 1) using Eq.( 3.62):

Xk+1 = (Xk)
1
2 exp

(
−t

n∑
i=1

log
(
X

1
2
kS−1

i X
1
2
k

))
(Xk)

1
2 (3.63)

5. For the given threshold ε; repeat step 4 until ‖∇f(Xk)‖2 ≤ ε.

7Step size t can be determined by using the Armijo rule [2].
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3.6.3 Alternative representation for metric dR3

We note that it has been shown that in general
∥∥∥log

(
B−

1
2 AB−

1
2

)∥∥∥
2
is not equal to

‖log (A)− log (B)‖2 (3.64)

Unless for any two positive definite matrices A and B of sizeM×M inM they commute

with each other [10]; i.e AB = BA. However, the following relation between metric in

Eq.(3.64) and metric dR3 exists:

‖log (A)− log (B))‖2 ≤ dR3 (A,B) (3.65)

The inequality(3.65) is called [31] “Exponential Metric Increasing property” or (EMI).

Since (3.64) satisfies on the all axioms of metric it can be used for obtaining the Fréchet

mean.

If we define

d (A,B) = ‖log (A)− log (B)‖2 (3.66)

It can be seen that :

(1) For any symmetric positive definite matrices A and B inM, d (A,B) is non nega-

tive.

(2) d (A,B) = 0 if and only if we have

log (A) = log (B) (3.67)
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It can be seen [30] that by taking the exponential from both side of Eq.(3.67) and

since A and B are positive we conclude that A = B

(3) For any triple (A,B,C), we have :

d (A,B) = ‖log (A)− log (B)‖2 = ‖log (A)− log (B)− log (C) + log (C)‖2

≤ ‖log (A)− log (C)‖2 + ‖log (C)− log (B)‖2

= d (A,C) + d (B,C) (3.68)

Equation (3.68) confirms that Eq.(3.66) satisfies in triangle inequality. As a result

Eq.(3.66) meets all axioms of the metric.8

As a consequence of Eq.(3.66) if we have the set of positive scaler observation {xi}ni=1

then its Fréchet mean with respect to metric dR3 is given as :

Σ̂ = exp

(
1

n

n∑
i=1

log (xi)

)
= Πn

i=1xi
1
n (3.69)

Equation(3.69) is known as the geometric mean of for the set {xi}ni=1.

In this chapter we have developed the frame work to obtain the Fréchet mean of Her-

mitian positive definite matrices depending on the metrics which have been developed on

the Riemannian manifoldM. As far as the analysis of the performance of each estimator

is concerned, next chapter is devoted to evaluate the methods in estimation of mean of

positive semi definite matrices together with the application in classification of real data

sets.

8If we form the definition of Fréchet mean for this metric it can be seen that for the given positive definite
matrices {S}ni=1 it has the closed form solution of form Σ̂ = exp

(
1
n

∑n
i=1 log (Si)

)
.
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Chapter 4

Simulation results and implementation

In Chapter 3 we focused on the manifold of positive definite matrices M. It has been

shown that we could not only work with the Euclidean metric but also could consider

the Riemannian distances. Consequently we considered the notion of geometric means.

Depending on the different metrics, we developed a metric based method to approach to

the problem of estimating the mean of collection of positive definite matrices.

In this chapter the performance of each metric in estimation of Fréchet mean of group

of covariance matrices will be studied. Basically, through sets of simulations it will be

shown that how close is the estimated symmetric positive definite matrix to the nominal

value.

To utilize the concept of Fréchet mean on a real data application,the high content cell

image date set (HCI) have been chosen for classification task. For this purpose the method

of distance to the center of mass will be performed on the data set.
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4.1 Evaluation of Fréchet mean of symmetric positive def-

inite matrices

We have introduced different estimators corresponding to the different distance measures

to find the Fréchet mean of set of symmetric positive definite matrices {Si}ni=1 on manifold

M. In order to compare the performance of each estimator we consider a population

of M × M covariance matrices and find the mean of them using each estimator. We

will consider different models having the same “true” means so that a comparison of the

closeness of the different estimates to this “true” mean is possible.

4.1.1 Model description

To come up with the first model we consider the known symmetric positive definite matrix

Σ as the nominal value. Then we apply the Cholesky decomposition to it. By definition

the Cholesky factor of a symmetric positive definite matrix Σ is a lower triangular matrix

Ψ with positive diagonal elements such that Σ = ΨΨH .

We denote the Cholesky factor of Σ in the model with Ψ and set Ψ=Chol(Σ); where

“Chol” represents the Cholesky factor of Σ. We also consider set of matrices {Xi}ni=1

with the entries
{
xijk
}
j,k

drawn from a normal distribution with zero mean and prescribed

variance σ2. Now to form the new population of covariance matrices {Si}ni=1 with respect

to the nominal covariance matrix Σ we consider the following model:

Si = (Ψ + Xi) (Ψ + Xi)
H (4.1)
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The next model that we consider for the simulation purpose is similar to the first model;

However, the noise is added to the upper triangular entries of the Cholesky factor Ψ.

Si = (Ψ + Xi) (Ψ + Xi)
H ; i = 1, 2, ..., n (4.2)

where the upper triangular entries of Xi are non zero.

In the third model we perturb the covariance matrix Σ by taking its square root :

Σ
1
2 = ∆. The new population Si is defined as :

Si = (∆ + Xi) (∆ + Xi)
H ; i = 1, 2, ..., n (4.3)

where Xi is a random matrix such that the entries are withdrawn from Gaussian distri-

bution with zero mean and variance σ2.

The model (4.3) can be viewed as the Gaussian noise is added to the ∆ on the hori-

zontal subspace HH and the resulting Si’s are their corresponding covariance matrices on

the manifoldM.

The last model that will be considered in here uses the natural connection between

manifoldM and its tangent space TM by using logarithmic and exponential maps.
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Figure 4.1: connectivity between manifold M and its tangent space TM using Log-
Exponential map [3].

In this model for the given covariance matrix Σ, the logarithm of its Cholesky factor

is considered. The random Gaussian noise matrix {Xi}ni=1 is added to the logarithm of

the Cholesky factor of true covarience matrix Σ to form the matrix {Yi}ni=1 . The entries

of the additive Gaussian random matrix have zero mean and certain amount of variance

σ2; The amount of variance in additive noise is chosen to be a fraction of the trace of

nominal covariance matrix. The population {Si}ni=1 where n represents the population

size of symmetric positive definite matrices is defined as:

Si = exp
(
YiY

H
i

)
i = 1, 2, .., n. (4.4)
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In order to evaluate the performance of each estimator, we measure the closeness of

the estimated covariance matrix, Σ̂, to the nominal covariance matrix, Σ, using different

metrics. In this work three metrics will be considered to evaluate the distance between Σ

and the resulting estimation Σ̂ according to each model.

First, the discrepancy is measured by using metric dF :

dF

(
Σ, Σ̂

)
=
∥∥∥Σ− Σ̂

∥∥∥
2

(4.5)

where for matrix A, ‖A‖2 =
√

Tr AAH .

In order to take to account the signature of randomness in producing samples using

model (4.1) we use Eq.(4.6) to measure the discrepancy in several simulation runs; This

approach is known as Monte Carlo simulation [32]. In this method for the fixed covariance

matrix Σ one can generate the population set {Si}ni=1 for N times. Each time the Fréchet

mean of the population will be evaluated, ñ = 1, 2, ..., N . Finally, the criterion which is

known as “Root Mean Square Error” or (RMSE) is formed as follows :

RMSEdF =

√√√√ 1

N

N∑
ñ=1

dF
2
(
Σ, Σ̂ñ

)
(4.6)

Next method for measuring the deviation can be defined as the ’Root Mean Square

Error’ using the metric:

dR2

(
Σ, Σ̂

)
= ‖Σ

1
2 − Σ̂

1
2‖2 (4.7)
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Likewise to the Eq.(4.6) we define the Root mean square error as follows:

RMSEdR2
=

√√√√ 1

N

N∑
ñ=1

dR2
2
(
Σ, Σ̂ñ

)
(4.8)

The other measure of deviation that will be used in this research is based on the loss

function L. It was mentioned in Chapter 2 that the expected value of loss function is

called risk function,L̄. We follow very similar approach as it was described for RMSEdF ;

The exception is unlike root mean square error we consider the ensemble average of loss

function between true covariance matrix and its estimation as follows:

L̄ =
1

N

N∑
ñ=1

L
(
Σ, Σ̂ñ

)
(4.9)

In the following section either of the explained models will be analyzed and evaluated

through sets of numerical simulations.

4.1.2 Simulation results

In previous chapter the mathematical tools to find the Fréchet mean of covariance matrices

was developed. According to the models that we explained and considered in last section,

we examine different Fréchet means to obtain the corresponding estimation of mean for

the group of symmetric positive definite matrices.
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Our objective is to demonstrate that when we consider the inherent structure of mani-

fold of symmetric positive definite matrices it enables us to achieve more accurate estima-

tion by utilizing geometric based means in comparison to the arithmetic mean of covari-

ance matrices.

Example 4.1.1. First we consider the model (4.1) to demonstrate the performance of the

Fréchet mean of Riemannian distances. For this reason we consider a Covariance matrix

Σ3×3. The eigenvalues of the covariance matrix is λ = diag [1, 0.3573, 0.065]. As far as

the model (4.1) is concerned the Cholesky factor of the covariance matrix is considered.

The additive random noise matrix {Xi}ni=1 has independent and identically distributed

(i.i.d) entries come from Gaussian distribution with zero mean:

E
(
xij,k
)

= 0 j, k = 1, 2, 3 , i = 1, 2, .., n (4.10)

where E denotes the expected value of the random variable. The standard deviation of the

entries of random noise is 0.09 in this experiment.

The population size of the covariance matrices, {Si}ni=1, varies between 10 to 60 in step

size 10. In order to take to account the signature of randomness of the additive Gaussian

noise matrix Xi’s in model (4.1), for each population we perform the Monte-Carlo sim-

ulation 2000 times and obtain the resulting error between Σ̂ and the nominal covariance

matrix using loss function, RMSEdF and RMSEdR2
. The results are shown in Figure

4.2.
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(a) (b)

(c)

Figure 4.2: Error evaluation corresponding to the different Fréchet means using
Eqs.(4.6),(4.8) and (4.9). Model (4.1) is used.
(a): Error is measured using metric dF .
(b): Error is measured using Loss function.
(c): Error is measured using metric dR2.

We observe that the amount of discrepancy between the Fréchet mean using metric

dF , which was shown in Chapter 2 that it is indeed the arithmetic mean of the samples for

the given population, and the Fréchet mean of the developed metrics on the manifold of

symmetric positive definite matrices using the algorithms that have been studied in Chapter
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3 are in average quite significant. It can be seen that the Fréchet means of the metrics dR1,

dR2 and dR3 are very close to each other when the bench mark for error is loss function.

As far as the error measurement with respect to RMSEdR2
is concerned, estimators

based on metrics dR1 and dR2 demonstrate less RMSE error in comparison to the metrics

dR3 and dF . Meanwhile, the RMSE error between Fréchet mean using Riemannian metrics

dR1 and dR2 is very close to each other.

To illustrate the Fréchet mean based on the second model (4.2), we consider the same

covariance matrix Σ3×3 as used for model one. The result of this experiment are depicted

in figure(4.3). It can be observed that the behavior of model one and model two are quite

similar and metrics dR1 and dR2 perform in general better than metric dF .

In the third model the Gaussian noise is added to the square root of Σ3×3. We observe

that when the error is measured using RMSEdF , Fréchet mean of metric dR2 performs

slightly better than the other estimators. In overall metrics dR1 and dR2 provides smaller

error across the different methods of measuring discrepancy.

Regarding to the last model, with the same seeded covariance matrix Σ3×3, we ob-

serve that estimator Σ̂ based on metric dR3 offers best performance mainly due to the

model structure which inherently consider the connection between the manifold and tan-

gent space. The results are provided in Figure 4.5.
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(a) (b)

(c)

Figure 4.3: Error evaluation corresponding to the different Fréchet means using
Eqs.(4.6),(4.8) and (4.9). Model (4.2) is used.
(a): Error is measured using metric dF .
(b): Error is measured using Loss function.
(c): Error is measured using metric dR2.
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(a) (b)

(c)

Figure 4.4: Error evaluation corresponding to the different Fréchet means using
Eqs.(4.6),(4.8) and (4.9). Model(4.3) is used.
(a): Error is measured using metric dF .
(b): Error is measured using Loss function.
(c): Error is measured using metric dR2.
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(a) (b)

(c)

Figure 4.5: Error evaluation corresponding to the different Fréchet means using
Eqs.(4.6),(4.8) and (4.9). Model (4.4) is used.
(a): Error is measured using metric dF .
(b): Error is measured using Loss function.
(c): Error is measured using metric dR2.

Example 4.1.2. In this example we seed a covariance matrix Σ5×5 , which is obtained

from five sources of measurement . The eigenvalues of this covariance matrix is

λ = diag [1, 0.5860, 0.3602, 0.1427, 0.0466] .
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The standard deviation of additive noise to the models in this experiment is the same

as example one. We observe that when the models (4.1), (4.2) and model(4.3) are used, as

the population size is increased, the error is deceasing by using different measurements.

In the last model it can be seen that Fréchet mean of metric dR3 provides smaller error

among other metrics; We expect that due to the structure of this model which generates

the population by projecting back the logarithm of Cholesky factor of Σ using exponential

map . Based on the examples we expect that the Fréchet means of the metrics which have

arisen from Riemannian manifold reflect better performance as oppose to the Fréchet mean

of metric dF .
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(a) (b)

(c)

Figure 4.6: Error evaluation corresponding to the different Fréchet means using
Eqs.(4.6),(4.8) and (4.9).Model(4.1) is used.
(a): Error is measured using metric dF .
(b): Error is measured using Loss function.
(c): Error is measured using metric dR2.
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(a) (b)

(c)

Figure 4.7: Error evaluation corresponding to the different Fréchet means using
Eqs.(4.6),(4.8) and (4.9). Model (4.2) is used.
(a): Error is measured using metric dF .
(b): Error is measured using Loss function.
(c): Error is measured using metric dR2.
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(a) (b)

(c)

Figure 4.8: Error evaluation corresponding to the different Fréchet means using
Eqs.(4.6),(4.8) and (4.9). Model(4.3) is used.
(a): Error is measured using metric dF .
(b): Error is measured using Loss function.
(c): Error is measured using metric dR2.
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(a) (b)

(c)

Figure 4.9: Error evaluation corresponding to the different Fréchet means using
Eqs.(4.6),(4.8) and (4.9).Model(4.4) is used.
(a): Error is measured using metric dF .
(b): Error is measured using Loss function.
(c): Error is measured using metric dR2.

Tables (4.1) to (4.8) show the distance between Fréchet means of studied metrics ,ac-

cording to the different models, to the corresponding nominal value using three methods

of measurements . In the tables n represents the population size. Q indicates the size of

nominal covariance matrix. The estimators Σ̂dR1
, Σ̂dR2

, Σ̂dR3
and Σ̂dF are corresponding to
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the Fréchet mean of metrics dR1, dR2, dR3 and dF respectively. The discrepancy has been

evaluated using the benchmarks RMSEdF , RMSEdR2
and ’Average of loss function’ re-

spectively through out the tables. The eigenvalues of each seeded covariance matrix are

within range [0, 1].

As far as the closeness of each estimator of population mean is concerned, one can

observe that when the estimation Σ̂ is obtained by Fréchet mean corresponding to the

metric dR2 or dR1 and the error is measured by using criterion (4.6) or (4.8) the error is

smaller than the estimations Σ̂dR3 and Σ̂dF . Regarding to estimation based on metric dR3,

we observe that it provides higher root mean square error in compare to the estimators

using metrics dF , dR1 and dR2 when the model is based on the matrix Choleskey factor or

the matrix square root and the error is measured by using metric dF ; On the other hand

when we use the loss function to measure the distance we observe that Fréchet means of

metrics Σ̂dR1,Σ̂dR2 and Σ̂dR3 perform better than the metric dF on the same model.

The distance between ’true’ convenience matrix and estimated one, depending on the

type of metric, has also been provided for the exponential model (4.4) in tables (4.7) and

(4.8) respectively. The results illustrate that the mean of the population resulting from

metric dR3 has smaller error in comparison to the other estimators with respect to the

different metrics of measuring errors.
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RMSEdF RMSEdR2
Average of Loss Function

n Q Σ̂dR1 Σ̂dR2 Σ̂dR3 Σ̂dF Σ̂dR1 Σ̂dR2 Σ̂dR3 Σ̂dF Σ̂dR1 Σ̂dR2 Σ̂dR3 Σ̂dF

10 3 0.086 0.084 0.117 0.092 0.062 0.061 0.078 0.073 0.066 0.065 0.082 0.104

20 3 0.061 0.060 0.098 0.070 0.044 0.045 0.062 0.062 0.032 0.035 0.043 0.085

30 3 0.051 0.049 0.092 0.061 0.037 0.037 0.056 0.055 0.022 0.024 0.033 0.072

40 3 0.045 0.043 0.091 0.055 0.032 0.033 0.053 0.053 0.017 0.019 0.026 0.070

50 3 0.041 0.039 0.087 0.053 0.029 0.030 0.050 0.053 0.014 0.017 0.021 0.071

60 3 0.038 0.036 0.088 0.050 0.027 0.028 0.049 0.051 0.012 0.015 0.019 0.068

10 4 0.100 0.097 0.162 0.109 0.078 0.077 0.106 0.097 0.148 0.149 0.179 0.276

20 4 0.072 0.069 0.146 0.085 0.058 0.058 0.088 0.085 0.080 0.089 0.099 0.240

30 4 0.062 0.058 0.142 0.076 0.049 0.050 0.082 0.079 0.056 0.069 0.075 0.227

40 4 0.053 0.049 0.139 0.068 0.043 0.044 0.078 0.075 0.042 0.056 0.059 0.216

50 4 0.052 0.046 0.138 0.066 0.040 0.042 0.076 0.073 0.036 0.050 0.051 0.214

60 4 0.047 0.042 0.137 0.062 0.037 0.039 0.075 0.072 0.031 0.046 0.047 0.211

10 5 0.121 0.117 0.172 0.135 0.090 0.090 0.114 0.115 0.186 0.197 0.209 0.395

20 5 0.090 0.085 0.152 0.107 0.065 0.066 0.094 0.098 0.091 0.112 0.114 0.331

30 5 0.075 0.070 0.145 0.093 0.055 0.057 0.087 0.091 0.066 0.088 0.085 0.313

40 5 0.069 0.063 0.145 0.087 0.050 0.053 0.084 0.089 0.054 0.079 0.074 0.311

50 5 0.064 0.058 0.138 0.082 0.046 0.049 0.079 0.087 0.044 0.071 0.063 0.307

60 5 0.060 0.054 0.137 0.079 0.043 0.046 0.078 0.085 0.038 0.064 0.057 0.301

Table 4.1: Error analysis of different estimators using model (4.1) for Q = 3, 4, 5. The
dimension of seeded covariance matrices varies depending on the choice of population.
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RMSEdF RMSEdR2
Average of Loss Function

n Q Σ̂dR1 Σ̂dR2 Σ̂dR3 Σ̂dF Σ̂dR1 Σ̂dR2 Σ̂dR3 Σ̂dF Σ̂dR1 Σ̂dR2 Σ̂dR3 Σ̂dF

10 6 0.138 0.132 0.152 0.156 0.102 0.101 0.106 0.124 0.189 0.187 0.180 0.304

20 6 0.105 0.098 0.131 0.125 0.077 0.077 0.084 0.104 0.102 0.110 0.096 0.249

30 6 0.088 0.081 0.121 0.109 0.064 0.065 0.074 0.094 0.069 0.079 0.066 0.221

40 6 0.078 0.072 0.117 0.100 0.058 0.059 0.070 0.090 0.058 0.070 0.055 0.216

50 6 0.074 0.067 0.114 0.096 0.054 0.055 0.066 0.087 0.049 0.063 0.046 0.212

60 6 0.069 0.062 0.112 0.091 0.050 0.052 0.064 0.084 0.043 0.056 0.040 0.204

10 7 0.166 0.158 0.166 0.187 0.111 0.110 0.112 0.136 0.206 0.211 0.196 0.360

20 7 0.122 0.114 0.138 0.146 0.082 0.083 0.087 0.113 0.108 0.121 0.103 0.289

30 7 0.106 0.098 0.129 0.131 0.071 0.073 0.078 0.105 0.080 0.098 0.077 0.276

40 7 0.094 0.086 0.123 0.119 0.064 0.066 0.073 0.100 0.065 0.083 0.063 0.262

50 7 0.088 0.081 0.117 0.114 0.060 0.062 0.068 0.097 0.056 0.075 0.053 0.258

60 7 0.082 0.074 0.115 0.108 0.056 0.058 0.066 0.095 0.050 0.070 0.049 0.253

10 8 0.182 0.173 0.166 0.207 0.122 0.120 0.115 0.147 0.242 0.242 0.216 0.394

20 8 0.135 0.126 0.142 0.163 0.092 0.092 0.091 0.123 0.136 0.147 0.118 0.325

30 8 0.117 0.108 0.129 0.145 0.079 0.080 0.079 0.113 0.101 0.116 0.084 0.303

40 8 0.103 0.095 0.122 0.132 0.071 0.073 0.074 0.107 0.081 0.098 0.068 0.286

50 8 0.098 0.090 0.116 0.127 0.067 0.068 0.069 0.104 0.071 0.090 0.057 0.284

60 8 0.092 0.083 0.113 0.120 0.062 0.064 0.066 0.100 0.063 0.082 0.051 0.276

Table 4.2: Error analysis of different estimators using model (4.1) for Q = 6, 7, 8.
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RMSEdF RMSEdR2
Average of Loss Function

n Q Σ̂dR1 Σ̂dR2 Σ̂dR3 Σ̂dF Σ̂dR1 Σ̂dR2 Σ̂dR3 Σ̂dF Σ̂dR1 Σ̂dR2 Σ̂dR3 Σ̂dF

10 3 0.082 0.082 0.106 0.086 0.055 0.055 0.065 0.060 0.040 0.040 0.043 0.053

20 3 0.057 0.057 0.093 0.062 0.038 0.038 0.054 0.044 0.018 0.018 0.022 0.033

30 3 0.048 0.047 0.086 0.053 0.032 0.032 0.049 0.039 0.013 0.013 0.016 0.028

40 3 0.042 0.041 0.084 0.048 0.028 0.028 0.047 0.037 0.010 0.010 0.014 0.026

50 3 0.038 0.038 0.083 0.044 0.026 0.026 0.045 0.035 0.008 0.009 0.012 0.026

60 3 0.034 0.034 0.081 0.042 0.023 0.023 0.044 0.034 0.007 0.007 0.010 0.024

10 4 0.083 0.082 0.091 0.089 0.061 0.061 0.068 0.070 0.081 0.079 0.124 0.100

20 4 0.062 0.061 0.076 0.070 0.047 0.048 0.054 0.060 0.047 0.047 0.080 0.078

30 4 0.051 0.050 0.070 0.061 0.040 0.040 0.049 0.054 0.033 0.033 0.064 0.065

40 4 0.043 0.042 0.067 0.053 0.035 0.035 0.045 0.051 0.025 0.025 0.056 0.057

50 4 0.039 0.038 0.064 0.051 0.033 0.034 0.043 0.049 0.023 0.023 0.054 0.055

60 4 0.037 0.037 0.063 0.049 0.031 0.032 0.042 0.048 0.021 0.021 0.051 0.052

10 5 0.103 0.101 0.121 0.111 0.072 0.073 0.084 0.086 0.108 0.117 0.122 0.197

20 5 0.077 0.075 0.106 0.087 0.053 0.055 0.070 0.073 0.060 0.073 0.078 0.166

30 5 0.063 0.061 0.101 0.074 0.044 0.046 0.065 0.067 0.041 0.055 0.062 0.151

40 5 0.057 0.054 0.099 0.069 0.040 0.042 0.062 0.065 0.033 0.047 0.054 0.144

50 5 0.054 0.051 0.095 0.066 0.037 0.040 0.060 0.063 0.028 0.043 0.049 0.141

60 5 0.048 0.046 0.095 0.061 0.034 0.037 0.059 0.061 0.025 0.039 0.046 0.136

Table 4.3: Error analysis of different estimators using model(4.2). Q = 3, 4, 5.
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RMSEdF RMSEdR2
Average of Loss Function

n Q Σ̂dR1 Σ̂dR2 Σ̂dR3 Σ̂dF Σ̂dR1 Σ̂dR2 Σ̂dR3 Σ̂dF Σ̂dR1 Σ̂dR2 Σ̂dR3 Σ̂dF

10 6 0.112 0.110 0.145 0.123 0.084 0.084 0.095 0.100 0.130 0.133 0.130 0.202

20 6 0.083 0.082 0.126 0.097 0.063 0.065 0.078 0.085 0.074 0.082 0.075 0.163

30 6 0.068 0.068 0.122 0.083 0.054 0.055 0.072 0.078 0.054 0.062 0.059 0.144

40 6 0.061 0.060 0.116 0.076 0.048 0.050 0.068 0.074 0.044 0.053 0.050 0.137

50 6 0.055 0.054 0.112 0.072 0.045 0.047 0.064 0.072 0.038 0.048 0.043 0.133

60 6 0.051 0.051 0.111 0.069 0.042 0.045 0.063 0.071 0.035 0.045 0.041 0.132

10 7 0.133 0.129 0.140 0.145 0.087 0.086 0.091 0.098 0.110 0.111 0.111 0.153

20 7 0.097 0.094 0.118 0.112 0.064 0.064 0.073 0.080 0.061 0.064 0.064 0.114

30 7 0.084 0.080 0.107 0.100 0.055 0.055 0.066 0.072 0.045 0.049 0.050 0.100

40 7 0.075 0.071 0.101 0.092 0.049 0.049 0.061 0.067 0.035 0.039 0.040 0.091

50 7 0.069 0.066 0.098 0.087 0.046 0.046 0.059 0.064 0.030 0.035 0.036 0.088

60 7 0.065 0.061 0.095 0.082 0.043 0.043 0.056 0.061 0.026 0.031 0.032 0.083

10 8 0.137 0.134 0.151 0.153 0.096 0.095 0.100 0.113 0.153 0.157 0.151 0.227

20 8 0.102 0.100 0.130 0.121 0.073 0.074 0.080 0.095 0.090 0.099 0.091 0.181

30 8 0.086 0.084 0.124 0.107 0.063 0.065 0.073 0.088 0.067 0.077 0.069 0.163

40 8 0.078 0.075 0.118 0.099 0.057 0.059 0.068 0.083 0.056 0.066 0.059 0.153

50 8 0.072 0.070 0.114 0.094 0.054 0.056 0.065 0.081 0.048 0.059 0.052 0.147

60 8 0.068 0.066 0.111 0.090 0.051 0.054 0.063 0.079 0.045 0.056 0.049 0.146

Table 4.4: Error analysis of different estimators using model (4.2). Q = 6, 7, 8.

68



M.A.Sc. Thesis - Mehdi Razeghi Jahromi McMaster - Electrical Engineering

RMSEdF RMSEdR2
Average of Loss Function

n Q Σ̂dR1 Σ̂dR2 Σ̂dR3 Σ̂dF Σ̂dR1 Σ̂dR2 Σ̂dR3 Σ̂dF Σ̂dR1 Σ̂dR2 Σ̂dR3 Σ̂dF

10 3 0.085 0.084 0.112 0.092 0.066 0.067 0.076 0.109 0.062 0.062 0.075 0.075

20 3 0.062 0.060 0.100 0.070 0.033 0.035 0.044 0.082 0.044 0.045 0.062 0.061

30 3 0.052 0.050 0.096 0.061 0.021 0.023 0.032 0.070 0.037 0.037 0.057 0.055

40 3 0.047 0.045 0.090 0.058 0.017 0.020 0.026 0.070 0.033 0.034 0.052 0.053

50 3 0.042 0.040 0.089 0.053 0.014 0.017 0.023 0.069 0.030 0.031 0.051 0.052

60 3 0.039 0.036 0.085 0.050 0.011 0.014 0.019 0.065 0.027 0.028 0.048 0.050

10 4 0.096 0.093 0.156 0.106 0.143 0.146 0.174 0.277 0.076 0.076 0.103 0.097

20 4 0.073 0.069 0.144 0.085 0.083 0.092 0.100 0.244 0.058 0.059 0.086 0.085

30 4 0.061 0.057 0.144 0.075 0.056 0.069 0.074 0.230 0.049 0.050 0.083 0.079

40 4 0.053 0.049 0.139 0.068 0.041 0.055 0.058 0.215 0.042 0.044 0.078 0.074

50 4 0.049 0.044 0.137 0.064 0.036 0.050 0.053 0.210 0.040 0.042 0.076 0.073

60 4 0.047 0.042 0.137 0.062 0.031 0.045 0.047 0.206 0.037 0.039 0.075 0.071

10 5 0.122 0.118 0.171 0.137 0.184 0.191 0.213 0.378 0.089 0.089 0.115 0.113

20 5 0.092 0.086 0.148 0.109 0.097 0.118 0.117 0.339 0.067 0.068 0.093 0.099

30 5 0.076 0.071 0.144 0.094 0.068 0.092 0.089 0.325 0.056 0.059 0.086 0.093

40 5 0.069 0.063 0.140 0.087 0.051 0.076 0.073 0.308 0.050 0.052 0.082 0.089

50 5 0.065 0.059 0.139 0.083 0.045 0.071 0.065 0.306 0.047 0.050 0.080 0.087

60 5 0.059 0.053 0.137 0.078 0.038 0.063 0.057 0.296 0.043 0.046 0.078 0.085

Table 4.5: Error analysis of different estimators using model (4.3). Q = 3, 4, 5.
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RMSEdF RMSEdR2
Average of Loss Function

n Q Σ̂dR1 Σ̂dR2 Σ̂dR3 Σ̂dF Σ̂dR1 Σ̂dR2 Σ̂dR3 Σ̂dF Σ̂dR1 Σ̂dR2 Σ̂dR3 Σ̂dF

10 6 0.136 0.130 0.151 0.154 0.182 0.181 0.175 0.298 0.100 0.099 0.105 0.122

20 6 0.105 0.098 0.128 0.125 0.100 0.108 0.092 0.248 0.076 0.076 0.082 0.104

30 6 0.087 0.080 0.123 0.109 0.070 0.080 0.066 0.221 0.064 0.064 0.075 0.094

40 6 0.079 0.072 0.116 0.101 0.057 0.069 0.053 0.216 0.058 0.059 0.069 0.090

50 6 0.074 0.067 0.111 0.096 0.050 0.063 0.045 0.210 0.054 0.056 0.065 0.087

60 6 0.070 0.063 0.111 0.092 0.045 0.059 0.041 0.209 0.051 0.053 0.064 0.085

10 7 0.163 0.156 0.165 0.185 0.203 0.207 0.193 0.354 0.110 0.110 0.111 0.135

20 7 0.123 0.116 0.141 0.148 0.112 0.126 0.104 0.296 0.084 0.084 0.088 0.114

30 7 0.104 0.097 0.129 0.129 0.080 0.096 0.076 0.272 0.071 0.072 0.078 0.104

40 7 0.094 0.086 0.121 0.119 0.065 0.083 0.062 0.262 0.064 0.066 0.072 0.100

50 7 0.088 0.080 0.117 0.113 0.056 0.076 0.054 0.259 0.059 0.061 0.068 0.097

60 7 0.082 0.074 0.114 0.108 0.049 0.070 0.047 0.253 0.056 0.058 0.066 0.095

10 8 0.177 0.169 0.170 0.203 0.239 0.237 0.218 0.389 0.120 0.118 0.118 0.145

20 8 0.134 0.126 0.141 0.162 0.137 0.148 0.118 0.325 0.092 0.092 0.090 0.123

30 8 0.115 0.107 0.130 0.144 0.099 0.114 0.084 0.300 0.079 0.080 0.080 0.113

40 8 0.103 0.095 0.121 0.132 0.080 0.097 0.067 0.285 0.071 0.072 0.073 0.106

50 8 0.098 0.089 0.116 0.126 0.071 0.089 0.057 0.280 0.066 0.068 0.068 0.103

60 8 0.093 0.084 0.113 0.122 0.064 0.083 0.050 0.277 0.063 0.065 0.066 0.101

Table 4.6: Error analysis of different estimators using model (4.3). Q = 6, 7, 8.
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RMSEdF RMSEdR2
Average of Loss Function

n Q Σ̂dR1 Σ̂dR2 Σ̂dR3 Σ̂dF Σ̂dR1 Σ̂dR2 Σ̂dR3 Σ̂dF Σ̂dR1 Σ̂dR2 Σ̂dR3 Σ̂dF

10 3 17.654 17.496 15.958 17.833 3.741 3.723 3.539 3.761 4.985 5.011 4.921 5.121

20 3 17.451 17.290 15.731 17.639 3.721 3.702 3.514 3.742 4.982 5.009 4.916 5.123

30 3 17.487 17.324 15.737 17.675 3.725 3.706 3.516 3.746 4.981 5.008 4.914 5.124

40 3 17.537 17.369 15.747 17.730 3.731 3.711 3.517 3.753 4.985 5.013 4.916 5.132

50 3 17.515 17.350 15.744 17.708 3.729 3.709 3.517 3.751 4.985 5.012 4.917 5.131

60 3 17.551 17.383 15.760 17.744 3.733 3.713 3.519 3.755 4.987 5.015 4.919 5.135

10 4 12.431 12.260 11.126 12.848 3.292 3.268 3.105 3.346 7.780 7.794 7.612 7.976

20 4 12.283 12.100 10.923 12.684 3.276 3.250 3.079 3.331 7.787 7.802 7.606 8.001

30 4 12.226 12.046 10.880 12.628 3.269 3.244 3.074 3.324 7.782 7.797 7.599 7.999

40 4 12.250 12.067 10.891 12.648 3.275 3.249 3.077 3.329 7.791 7.807 7.606 8.012

50 4 12.251 12.066 10.881 12.657 3.275 3.248 3.075 3.330 7.787 7.802 7.600 8.012

60 4 12.243 12.058 10.872 12.649 3.274 3.248 3.074 3.330 7.795 7.811 7.607 8.021

10 5 41.228 40.438 27.286 49.914 5.916 5.856 4.805 6.437 8.760 8.838 8.447 9.422

20 5 39.467 38.630 25.968 47.737 5.859 5.794 4.715 6.422 8.768 8.853 8.431 9.400

30 5 38.759 37.927 25.563 47.075 5.825 5.759 4.684 6.393 8.767 8.854 8.426 9.419

40 5 38.674 37.843 25.513 46.282 5.826 5.760 4.683 6.377 8.767 8.855 8.424 9.428

50 5 38.786 37.941 25.534 46.984 5.842 5.775 4.688 6.428 8.776 8.865 8.429 9.459

Table 4.7: Error analysis of different estimators using model (4.4). Q = 3, 4, 5.
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RMSEdF RMSEdR2
Average of Loss Function

n Q Σ̂dR1 Σ̂dR2 Σ̂dR3 Σ̂dF Σ̂dR1 Σ̂dR2 Σ̂dR3 Σ̂dF Σ̂dR1 Σ̂dR2 Σ̂dR3 Σ̂dF

60 5 38.550 37.722 25.509 46.144 5.825 5.758 4.686 6.380 8.769 8.857 8.427 9.441

10 6 8.832 8.623 6.282 12.643 2.500 2.471 2.129 2.883 8.229 8.251 7.853 8.666

20 6 7.942 7.754 5.863 10.694 2.403 2.374 2.067 2.778 8.255 8.277 7.845 8.753

30 6 7.840 7.655 5.775 11.136 2.389 2.360 2.053 2.792 8.273 8.295 7.853 8.792

40 6 7.690 7.508 5.690 10.370 2.365 2.336 2.038 2.753 8.278 8.299 7.852 8.807

50 6 7.700 7.515 5.679 10.475 2.368 2.338 2.037 2.775 8.283 8.305 7.852 8.829

60 6 7.614 7.433 5.637 10.440 2.355 2.325 2.030 2.761 8.280 8.302 7.848 8.828

10 7 81.707 80.008 23.231 250.783 6.936 6.843 4.120 9.909 8.726 8.873 8.106 9.845

20 7 57.025 55.469 21.026 140.791 6.567 6.466 4.005 9.359 8.780 8.939 8.109 10.110

30 7 57.485 55.824 20.609 195.313 6.654 6.548 3.982 9.998 8.831 9.001 8.118 10.321

40 7 54.905 53.270 20.424 181.802 6.631 6.522 3.981 10.151 8.854 9.029 8.132 10.435

50 7 54.235 52.648 20.285 182.139 6.597 6.490 3.966 10.093 8.845 9.019 8.125 10.436

60 7 52.785 51.202 19.935 172.054 6.555 6.447 3.938 10.087 8.848 9.024 8.116 10.500

10 8 54.783 52.886 14.826 168.105 5.675 5.544 3.197 8.318 9.428 9.623 8.698 10.775

20 8 50.473 48.696 13.319 382.265 5.508 5.369 3.073 9.434 9.469 9.683 8.674 11.081

30 8 36.592 34.803 12.880 113.666 5.220 5.076 3.028 7.965 9.464 9.682 8.671 11.173

40 8 35.301 33.538 12.833 90.327 5.182 5.036 3.024 7.648 9.472 9.692 8.676 11.250

50 8 35.638 33.848 12.655 127.582 5.206 5.058 3.006 8.223 9.482 9.705 8.666 11.345

60 8 35.661 33.840 12.579 207.488 5.193 5.042 2.999 8.313 9.483 9.710 8.665 11.380

Table 4.8: Error analysis of different estimators using model (4.4). Q = 6, 7, 8.
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4.2 Classification based on the distance to the center of

mass

So far we have mathematically developed the concept of mean for group of positive def-

inite Hermitian matrices on manifoldM from the distance point of view. Moreover, we

have seen that depending on model and the criterion of measuring the closeness of each

estimator to the nominal covariance matrix, Fréchet means of Riemannian distances are

better estimators.

The concept of Fréchet mean can be utilized in distance based detection and classifica-

tion on manifoldM [33], [34]. For this purpose suppose that we have a set of covariance

matrices {Sik}nk

i=1 where k represents the label of each class and nk denotes the number

of covariance matrices within kth class. For each class k the Fréchet mean of the class,

depending on type of metric, can be obtained as representative of each class. For the un-

known observation its covariance matrix is formed and considered as the unknown feature.

The observation is assigned to the class which has minimum distance to the Fréchet mean

of the class. This method can be recapitulated in form of the following algorithm.
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Algorithm 3 Distance to the center of mass algorithm

1. Input: the given known classes 1, 2, 3, , ..., k and set of covariance matrices {Sik}nk

i=1

within each class.

2. For each class k compute Σ̂ik as the Fréchet mean of {Sik}nk

i=1.

3. For the covariance matrix S of unknown observation compute

k̂ = arg min
k

d (S,Σk) . (4.11)

4. The covariance matrix S corresponding to the unknown observation in step 3 will be

assigned to class k̂.

74



M.A.Sc. Thesis - Mehdi Razeghi Jahromi McMaster - Electrical Engineering

Figure 4.10: Process of decision making according to the concept of center of each class

In order to inspect and evaluate the Algorithm 3 we perform it on the simulated data

set. For this purpose we consider three classes C1 , C2 and C3 consisting of samples

{x1(i)}10000
i=1 , {x2(i)}10000

i=1 and {x3(i)}10000
i=1 drawn from the normal distribution with zero

mean and covariance matrices Σ1, Σ2 and Σ3 respectively. At the same time Gaussian

random noise with mean zero and standard deviation σ is added to the samples of both

classes. Then we split each class to the half for train and test purpose and perform two

fold cross validation .

75



M.A.Sc. Thesis - Mehdi Razeghi Jahromi McMaster - Electrical Engineering

At training step we consider training sets C1train , C2train and C3train. From each train-

ing set Cjtrain , j = 1, 2, 3; we form a sequence of {Xk,j} of observations k = 1, 2, .., 20.

Each observation {Xk,j} has 40 samples which can be shown as [xjk(1),xjk(2), ...,xjk(40)]T

.

The Frechét mean of the covariance matrices {Sk,j} of the observation {Xk,j} are

obtained using metrics dR1 ,dR2 , dR3 and dF respectively. The method of distance to the

center of mass is performed to classify the new observation Xtest according to its observed

covariance matrix Stest.

From [35] it has been known that when we have sample of observations from a p-

variate normal distribution with zero mean and covariance matrix Σ then N x̄Σ−1x̄T has

chi-square distribution with p degrees of freedom (see Appendix B); where x̄ is the sample

mean vector of size 1×p for the observation X of sizeN×p; which is taken over columns

of X and N is the sample size. When the sample size is fairly large we can replace Σ with

Σ̂ [17]. As a result, a new observation Xtest is classified to class j whenever:

χ2
p(1− α/2) ≤ N x̄testΣ̂

−1
j x̄Ttest ≤ χ2

p(α/2) (4.12)

where χ2
p(α) is given by:

P
(
χ2
p > χ2

p(α)
)

= α

In Eq.(4.12) the significant level is set to be α = 0.05. At the same time we also compare

the result of distance to the center of mass in classification with the result of Eq.(4.12).

To illustrate the results of our classifiers using the simulated data as explained earlier,

we consider two experiments: the first one consists of two classes C1 and C2 of observations
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with prescribed covariance matrices1 Σ1 and Σ2 of size 4× 4 with parameters ρ1 = 0.75,

ρ2 = 0.8 respectively. The second model consists of three classes C1, C2 and C3 such that

the classes C1 and C2 have the same covariance matrices as the first experiment. The third

class C3, on the other hand, has the covariance matrix Σ3 of size p × p with parameter

ρ3 = 0.85. The standard deviation of additive Gaussian noise to the observations of each

classes in both experiment is σ = 0.1.

The results are shown in Figures 4.11 and 4.12 for the first model of classification.

As far as the probability of correct classification is concerned, the Reimannian classi-

fiers based on metrics dR1, dR2 and dR3 on average have smaller probability of miss-

classification in comparison to the classifier based on Euclidean distance dF . Furthermore,

we compare our result with the classifier using Eq.(4.12) we note that in this method rather

than forming the covariance matrix of the observations we classify the observations based

on the mean. The accuracy of this approach compared to the classifiers using Fréchet mean

is not satisfactory; see Tables 4.9 and 4.10.

1In this work by prescribed covariance matrix we mean that the covariance matrix Σ of size M ×M has
the form of Σ = (σll′)M×M where 1 ≤ l, l′ ≤ M and σll′ = ρ|l−l

′|. ρ is a constant between 0 and 1. This
type of covariance matrix is also known as the structured covariance matrix.
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(a) (b)

(c) (d)

Figure 4.11: Classification based on the distance to the Fréchet mean of each class. The
dash line shows the border such that the distance between the center of either class one or
two are the same and decision can be made based on it. The solid square belongs to the
class one; the circles represent class two. The distance of unknown covariance matrix has
been measured to the Fréchet mean of each class. The covariance is assigned to the class
to which it has closer distance.
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(a) (b)

(c)

Figure 4.12: Classification based on the distance to the Fréchet mean of each class when
weight has been applied.
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Fréchet means
Accuracy of classification

for Class 1 (%)
Accuracy of classification

for Class 2 (%)
Metric dR3 0.88 0.92
Metric dF 0.63 0.77
Metric dR1 0.82 0.85
Metric dR2 0.83 0.86

Metric dF (Weighted) 0.81 0.82
Metric dR1 (Weighted) 0.85 0.86
Metric dR2 (Weighted) 0.86 0.88

Classification using Eq.(4.12) 0.68 0.67

Table 4.9: Probability of correct classification within two classes C1 and C2. The classifiers
have been compared with the result of Eq.(4.12).

Fréchet means
Accuracy of

classification for
Class 1 (%)

Accuracy of
classification for

Class 2 (%)

Accuracy of
classification

for Class 3 (%)
Metric dR3 0.92 0.86 0.95
Metric dF 0.83 0.39 0.62
Metric dR1 0.91 0.51 0.78
Metric dR2 0.92 0.51 0.82

Metric dF (Weighted) 0.87 0.63 0.90
Metric dR1 (Weighted) 0.91 0.78 0.94
Metric dR2 (Weighted) 0.95 0.80 0.98

Classification using Eq.(4.12) 0.80 0.60 0.72

Table 4.10: Probability of correct classification within three classes C1, C2 and C3 in com-
parison to the resulting classifier using Eq.(4.12).

In detection and classification process we can improve the performance of a classifier

in distinguishing between the features with similar properties resulting from same class

by keeping them as close as possible and same time keep the dissimilar features as far as

possible using the a priori knowledge of the data during the training step. This process can

be performed using the concept of weighted distances [5]. This approach has also been
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used in beam forming [36].

To keep the similar training convenience matrices (features) close together and at the

same time keep those features which have been obtained from different classes as far as

possible we can maximise the follwing optimisation problem with respect to the metric

under inspection [5]:

arg max
W

∑
d2

W (Sik,Sjk)∑
d2

W (Sik,Sjk′)
W > 0 (4.13)

where in Eq.(4.13) W = ΩΩH is positive semi definite Hermitian matrix. It is known

as weighting factor where Ω is a matrix of sizeM×K , K ≤M ; The summation in nom-

inator of Eq.(4.13) is over all covariance matrices in similar classes , On the other hand,

the denominator in same equation is summation over the all possibilities of covariance

matrices in the dissimilar classes.

The metric dR3 is weight invariant; in other words for any weighting factor W and

positive definite matrices A and B we have [1] :

dR3

(
ΩHAΩ,ΩHBΩ

)
= dR3 (A,B) (4.14)

On the other hand metrics dR1,dR2 and dF are not weight invariant [5]. This means

that the length of the geodesic passing trough the covariance matrices A, B in M may

no longer be the same as the geodesic passing from the points ΩHAΩ and ΩHBΩ. Such

property allows us to use the prior knowledge of our training set and as a result increase the

probability of correct classification. In Tables 4.9 and 4.10 the effect of weight in finding

the Fréchet mean has been illustrated as well; it can be seen that by finding the appropriate

weight with respect to the metrics dR1, dR2 and dF the result of classification has been
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substantially improved.

4.3 Multi class Classification of HCI data set using Fréchet

mean

In this section we perform the method of distance to the center of mass in classification

of high content cell imaging (HCI) data set. To our knowledge this approach has not

been applied in HCI data classification. The main purpose of this part is to demonstrate

that the techniques of Fréchet means can be considered for further study in field of drug

analysis. As far as the comparison of our results is concerned the aim of our work in here

is to evaluate the performance of different Riemannian distances and their corresponding

Fréchet means when applied on the classification of real data set. We cannot say how

good is the performance of our approach to the other methods since for the time being

there is no available result from other researches in this field that can be comparable to

ours. However, we believe that the developed methods in this research can be considered

as a first step towards analyzing the drug mechanism.

The data set that we have considered for this reason has been provided from Professor

Andrew’s lab under their permission at the Sunny Brook hospital, Toronto,Ontario.

4.3.1 Preprocessing and source selection of HCI data set

Human breast cancer cells (MCF7) are widely used for studies of tumor biology and drug

mechanism action [13]. In this section we briefly explain the process of data preparation.

In order to set up experimental design MCF7 are plated in to three clear-bottom 384
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well plates at the density of 3000 cells per well in 30 µl serum free Alpha Minimum

Essential Medium. The plate is designed to include different treatments together with

32 wells per treatment. A 96 well source plate is prepared containing the drug solutions

with the desired doses. At the same time the staining solutions are prepared for three

mutachrome dyes. Next 10 µl from each of mutachrome solution is dispensed to each

plate at time (1 plate per dye) this process is followed by adding 10 µl of drug solutions

to each plate from prepared 96 well source plate. After 24 hour incubation 10 µl of The

Thermo Scientific Fluorescent Probe DRAQ5 is used. The resulting plates are incubated

30 minutes prior to the imaging process. During the imaging process each plate (out of

three plates) is imaged using Opera High Content imaging System (Perkin Elmar) which

is an automated spinning disc microscopy system. Multiple channel images are taken in

approximately 2 hours per plate using 20X magnification water lens. Figure 4.13 shows

the device which is used for taking the image of the cells.
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Figure 4.13: Perkin elmar High Content Imaging imaging system diagram

Once the image of the wells was captured, it can be used to extract information. For this

purpose the software called CAFE (Classification and Feature Extraction of micrographs

of cells) is used. The software automatically segments the image and detect the location

of cells. The quality of segmentation is inspected by expert via looking at the images of

few wells before running the program for entire 384 wells. It extracts 705 attributes 2 per

cell and store them for further use. These attributes correspond to three channels Draq5

together with 2 channels of mutachrome dyes.

2Attribute refers to the number of representatives of each cell which in this data set is 705.
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4.3.2 Classification result on HCI data set

The data set that we have for classification consists of 11 labels corresponding to 11 types

of treatment. As mentioned earlier, depending on type of treatment, we have 32 wells per

treatment. Since some of the attributes are highly correlated and redundant they can be

removed from the data set [37]. To remove the correlated attributes there are several ways

of approaching attribute selection namely: Principal Component Analysis (PCA), linear

discriminant analysis (LDA) or removing the correlated attributes based on the mutual

corrolation [38]. We perform the latter approach on the data set; the number of attributes

that has been selected is ten. To our knowledge, there is not unique optimum solution

based on the different methods of attribute selection to pick optimum number of attributes.

We suppose that we have {k}nk=1 classes, where n represents the type of treatments

which is eleven according to the data set. We form the sample covariance matrices of set

of cells within each class and denote them as {Sik}nk=1; where i and k represent the number

of sample covariance matrices within each class and class label respectively. For each class

k the geometric mean of the covariance matrices,
{

Σ̂k

}n
k=1

, can be obtained with respect

to the population covariance matrices {Sik}nk=1 and four metrics dR1,dR2,dR3 and dF using

the methods discussed in Chapter 3. As far as the number of covariance matrices for

training step is concerned, 50 covariance matrices of size 10 × 10 are considered. Each

covariance matrix is formed from observation of 20 cells which is selected from training

set of each class. In order to evaluate the accuracy of the classifier we train the classifier

200 times and test it against the covariance matrix of the observed cells from each class

and evaluate the probability of correct classification over number of training times.

The types of consumed drug for the experiment corresponding to each data file is given
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in Table 4.11.

Treatment Dose

Untreated null

DMSO 2.5%

Ethanol 6 µl

BFA 10 µg/ml

Rapamycin 25µ M

Tamoxifen 30 µM

Thapsigargin 40 nM

Tunicamycin 25µM

TNFalpha 10ng/ml

Starvation24 24 hours

Starvation72 72 houres

Table 4.11: The type and amount of used medications

The result of classification has been illustrated in Figure 4.14. As far as the perfor-

mance of each metric in Fréchet mean based classification using Algorithm 3 is concerned,

metric dF has the lowest accuracy in comparison to the Riemannian metrics dR1, dR2 and

dR3. Meanwhile, the classifier based on metric dR3, even though it is weight invariant,

provides highest probability of detecting the correct class across the types of the treatment

with exception in class TN (Tunicamycin); this metric perform very close to the metrics

dR1, dR2 and dF in identifying the cells which have been received Rapamycin (RAP). As

expected, the classifiers based on metrics dR1 and dR2 have very close performance; it is

merely due to their similar performance in obtaining the Fréchet means of population of

positive definite matrices.
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Figure 4.14: Class label versus probability of correct classification

As mentioned earlier in this chapter, the effect of the weight is to keep the covariance

matrices within the same classes close to each other and at the same time keep the train-

ing covariance matrices belonging to the different classes as far as possible, according to

Eq.(4.13). In order to improve the accuracy of the classifier based on the distance to the

center of mass, we apply the weight with respect to each metric on the covariance matri-

ces prior to finding the Fréchet mean. The result of this approach has been depicted in

Figure 4.15. It can be seen that by using the weight the classifier performs better in terms

of probability of correct classification across the metrics dR1,dR2 and dF . Meanwhile, in

classes “starvation for 24 hours” (starv 24),“starvation for 72 hours” (starv 72) , “Ethanol”

(ETOH) and “Thapsigargin” (TG) the algorithm of distance to the center of mass based on

metric dR3 performs slightly better than the metrics dR1 and dR2. In overall, by applying
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the weight, metrics dR1 and dR2 demonstrate higher accuracy in comparison to metrics dF .

The results of the classifier in either case of weighted and unweighted is compatible with

the results we obtained using the simulated data in Tables 4.9 and 4.10.

Figure 4.15: Class label versus probability of correct classification when weighting factor
has been used.
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Chapter 5

Conclusion and further study

5.1 Summary of research

In this thesis, our main focus is on the concept of finding mean of positive definite Her-

mitian matrices from mathematical point of view. It has been shown that the space of

positive definite Hermitian matrices is not Euclidean with zero curvature rather than it has

curvature [39]. In order to study the mean of such features we need to consider the am-

bient space as the manifoldM. In this thesis the notion of Fréchet mean was introduced

in Chapter 3 as the basic tool of finding the mean of positive definite Hermitian matrices.

Since this method depends on the type of metric, the key advantages of it was that we

would be able to utilize the Riemannian distances. As a result of that we could obtain not

only the arithmetic mean but also obtained the mean on the Reimannian manifold.

As far as finding the mean of positive definite Hermitian matrices are concerned, it

was shown that one can unify the process of finding the mean under the concept of Fréchet
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mean. Here, three Riemannian metrics were considered for derivation of Fréchet mean.

For metric dR2 we obtained a closed form solution for the resulting Fréchet mean. For

the two remaining distances it was shown that we need to resort to numerical methods to

obtain the mean.

In Chapter 4 the performance of each estimator was evaluated. We considered several

models based on the Cholesky factor of covariance matrix, square root of the covariance

matrix and logarithm of the Cholesky factor. The performance of each Fréchet mean es-

timator was assessed, depending on the choice of the model, using three methods namely

root mean square error of Frobinious norm, root mean square error of metric square root

of matrix and the average of the loss function. We evaluate the closeness of each estima-

tor to the nominal covariance matrix. The results showed that as far as the accuracy of

each estimator is concerned, when the Fréchet mean is evaluated according to the models

based on the Cholesky or square root of covariance matrix the accuracy of the resulting

Fréchet mean by using Riemannian metrics dR1 and dR2 are remarkable in comparison

to the Fréchet mean of metrics dR3 and dF . On the other hand we have seen that when

the estimators are applied to the logarithm of the Cholesky factor, Fréchet mean of metric

dR3 demonstrate slightly better performance in terms of error among other estimators. In

overall, we observed that the Riemannian metrics have better performance in finding the

mean of Hermitian positive definite matrices with respect to the models.

In terms of application we performed the concept of Fréchet mean in classification task.

Our main attention on this part was to evaluate this method according to different choice

of Fréchet mean. Furthermore, we showed that if we use the a priori knowledge of the

training features (covariance matrices) the result of classifying the unknown observation
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can be improved in terms of probability missclassification. As far as the real data set is

concerned, we applied the method of distance to the center of mass in classifying the high

content cell imaging data set; our approach for classification of the cells according to their

response to the different types of medication can be considered as a first step towards the

analysis of the drug mechanism and drug interaction in this way.

5.2 Future work

There are open problems that can be addressed during the further research on finding the

mean of covariance matrices: Regarding to the estimation of geometric mean of covariance

matrices one can consider other models of formining the population of covariance matrices

and evaluate the performance of the estimators.

It was mentioned that for the set of pairwise commutative positive definite matrices

one can obtain a closed form solution for the Fréchet mean with respect to metric dR3; this

alternative definition for metric dR3 can be considered for further research. Applications

of the Fréchet mean in other areas such as signal detection and signal estimation can also

be considered in future.
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Appendix A

Directional derivative on manifoldM

When properly formulated, many of signal optimization problem involving matrix P which

minimizes the functional F (P). For an M ×M matrix P ∈ M, a variation in P is also

an M × M matrix in M and it is not possible to uniquely describe the corresponding

variation in F at point P. What can be done is to describe the variation in F with respect

to variation in P along particular direction on the manifold. Let V be an element on the

tangent space H ofM with ‖V‖ = 1. Let DV denotes the differential operator along the

direction of V. Then for the given ε > 0, and real continuous functional F , the directional

derivative of F (P) at P in the direction of V is defined as :

DVF (P) = lim
ε−→0

F (P + εV)− F (P)

ε ‖V‖
(A.1)

where, since F is a functional of matrices in the manifold.

Thus DVF (P) is a real quantity and both P and V can be represented as a linear
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combinations in form of Eq.(2.23) such that

P =
M∑
m=1

M∑
n=1

pmnẼmn; V =
M∑
m=1

M∑
n=1

vmnẼmn; with Ẽmn = ẼH
mn (A.2)

where pmn and vmn are real coefficients. If F has a total differential ∆F at P, then we

have:

df = lim
ε−→0

∆f = lim
ε−→0

∑
m,n

∂F

∂pmn
.εvm,n (A.3)

as a consequence we have

DVF (P) =
∑
m,n

∂F

∂pmn
.
vmn
‖V‖

. (A.4)

Now, if we define the M ×M gradient operator as ∇ ,
[

∂
∂pmn

]
,1 ≤ m,n ≤ M ,then,

the result of Eq.(A.4) is the sum of the elements of the Hadamard(element by element)

product of two M ×M matrices such that

∑
m,n

[
∇F

⊙
V
]
mn

= Tr [∇F .V] , 〈∇F ,V〉 . (A.5)

Hence the directional derivative DVF (P) can be written as

DVF (P) = 〈∇F ,V〉 (A.6)
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Appendix B

Proof of Eq.(4.12)

In chapter three we used Eq.(4.12) as another classifier in order to compare its performance

with the other methods of classification . In here the proof of it has been provided.

Theorem B.0.1. If X1, ...,XN are independently identically distributed from p-variate

normal distribution with 0 mean and covariance matrix Σ, then NX̄Σ−1X̄T has chi-

square distribution with p degrees of freedom.

Proof. Let C be a nonsingular matrix such that CΣCT = I. Define the random variable

Z = C√
N

X̄T . Then Z is normally distributed with mean E (Z) = C√
N
E
(
X̄T
)

= 0 and

covariance matrix E
(
ZZT

)
= E

(
C√
N

X̄T X̄CT
)

= C√
N
E
(
X̄T X̄

)
CT
√
N

= N−1 C√
N

Σ CT
√
N

=

I. Then NX̄Σ−1X̄T = NZT
(

CT
√
N

)−1

Σ−1
(

C√
N

)−1

Z = ZT
(
N C√

N
Σ CT
√
N

)−1

Z = ZTZ.

Which ZTZ is the sum of squares of the components of Z. Thus,NX̄Σ−1X̄T is distributed

as ZTZ =
∑p

i=1 Z
2
i , where Z1, ..., Zp are independently normally distributed with mean

0 and variance 1. Since, Z2
i for i = 1, ..., p have chi-square distribution with 1 degree of

freedom,
∑p

i=1 Z
2
i has chi-square distribution with p degree of freedom.
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Appendix C

Geodesic with respect to Log

Reimannian metric dR3

In chapter two we used the result of the theorem which states for pair of positive definite

Hermitian matrices A and B of size M ×M in manifoldM, such that they commute with

each other, the exponential function maps the line segment [log A, log B] in tangent space

TM to the geodesic [A,B] inM1.

We need to show that the path:

γ(t) = exp ((1− t) log A + t log B) ; 0 ≤ t ≤ 1 (C.7)

1Let A and B be two points on the manifoldM. we denote the geodesic passing through the points with
[A,B]. On the other hand, if C and D are two points on TM or any space with zero curvature, we concern
about the line segment connection them. However, as long as the ambient space is clear for us, we still use
the similar notation to show this line segment and represent it by [C,D].
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is the unique path with shortest length (geodesic) in manifoldM with respect to the inner-

product

〈A,B〉X = Tr(AX−1BX−1) (C.8)

Since A and B commute we can write γ(t) = A1−tBt. We then have

γ
′
(t) = (log B− log A) γ(t) (C.9)

but the length of a path γ : [0, 1] −→M is given by [7] :

L(γ) :=

∫ 1

0

√
〈γ′(t), γ′(t)〉γ(t)dt =

∫ 1

0

√
Tr (γ(t)−1γ′(t))2dt (C.10)

We note that by definition the geodesic is defined by taking the infimum over all possible

paths γ connecting A and B.

According to the Eq.(C.10) and Eq.(C.9) we have :

L(γ) =

∫ 1

0

‖ log A− log B‖2dt = ‖ log A− log B‖2 (C.11)

On the other hand “the exponential metric increasing property” (EMI) [31] states that there

is no path shorter than Eq.( C.11). To show that this path is unique we suppose that γ̃ be

another path connecting A and B inM. Then H̃(t) = log γ̃(t) is the path that connects

log A and log B in TM. From [18] this path has the length ‖ log A − log B‖2. But in

Euclidean space the straight line is the unique shortest path connecting two points. As

a result H̃(t) is another reparametrization of the line segment which connects log A and

log B thus γ(t) must be equal to γ̃(t).
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In part of the derivation of the Fréchet mean with respect to metric dR3, we used the

following expression:

X−1 log (A) X = log
(
X−1AX

)
(C.12)

Eq.( C.12) is valid for any invertable matrix X. Matrix A is assumed to have strictly

positive spectrum (i.e: A must be positive definite matrix). To show this we need to use

the following theorem from [30].

Theorem C.0.2. If A and B are two M ×M matrices such that B is non-singular, then

we have:

exp
(
BAB−1

)
= B exp (A) B−1 (C.13)

According to the theorem ( C.0.2) one can write:

exp
(
B log (A) B−1

)
= BAB−1 (C.14)

which immediately gives the desired result

log
(
BAB−1

)
= B log (A) B−1 (C.15)
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