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ABSTRACT 
 

Approximately 10% of pregnant women take antidepressants.  Prenatal exposure to selective 

serotonin reuptake inhibitors (SSRIs), a class of antidepressants, has been shown to alter 

serotonergic signaling in the brain.  However, the effects of SSRIs on peripheral serotonin (5HT) 

synthesis and/or signaling have largely been ignored.  Serotonin in the gut is critical for intestinal 

function and dysregulation of this pathway is associated with intestinal disease.  Therefore, the 

goal of this study was to determine the effects of perinatal exposure to the SSRI fluoxetine 

(Prozac®) on intestinal health in the offspring.    

Dams were given vehicle or fluoxetine hydrochloride (FLX 10 mg/kg/d; N=15) for 2 weeks prior 

to mating until weaning. We assessed markers of serotonergic signaling, inflammation, and 

composition of the gut microbiota in the offspring  

Male offspring of fluoxetine-treated dams had significantly elevated serum levels of 5-HT and 

decreased expression of the 5HT2A receptor and MAO.  In female offspring there was no effect of 

SSRI exposure to alter any components of serotonergic signaling. Although we did not find any 

evidence of increased inflammation following fluoxetine exposure, there were significant 

alterations in the composition of the gut microbiota in the exposed offspring.  

 

Male offspring of SSRIs-exposed mothers had changes in key components of the gut 

serotonergic system in association with elevated levels of serum 5-HT and alterations in the gut 

microbiota in adulthood. The impact of these changes on intestinal health and the reasons for the 

sex specific effects remain to be determined. 
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CHAPTER 1: INTRODUCTION 

1.1 The occurrence of depression  

According to the Canadian Community Health Survey, the 12-month prevalence rate of 

depression is approximately 4.5% among all Canadians older than 12 years of age [1]. In another 

population-based survey, approximately 7% of adults reported depression in the preceding year 

[2]. Subsequently in 2010, the Global Burden of Disease (GBD) study identified depressive 

disorders as the leading cause of disability worldwide [3, 4]. Depressive disorders have increased 

significantly over the last 20 years; similar studies conducted in 1990 and 2000 ranked 

depressive disorders as the fourth and third leading cause of disability, respectively [5, 6]. 

Clearly depression is a global public health concern. Within depressive disorders, major 

depressive disorder (MDD or major depression) was the main contributor to disease burden, 

accounting for 85% of years lived with disability (YLDs) and disability adjusted life years 

(DALYs) [4]. The DSM-IV-TR [7] describes MDD as an episodic disorder with a chronic 

outcome and an elevated risk of mortality, equivalent to the World Health Organization’s 

(WHO) International Classification of Disease (ICD) -10’s description of recurrent depressive 

disorders [8]. MDD involves the presence of at least one major depressive episode, which is 

characterized by discrete occurrences of persistent depressed mood accompanied by a loss of 

interest or pleasure in all activities for at least 2 weeks duration. Among the 298 million cases of 

major depression reported in the most recent GBD study, the highest proportion occurred in 

individuals between 25 and 34 years of age [4]. Furthermore, consistent with previous reports of 
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sex differences [9-11], women were twice as likely as men to experience an episode of major 

depression (5.5% (95% uncertainty: 5.0-6.0%) vs. 3.2% (3.0-3.6%)) [4].  

 

1.1.2 Depression in women of childbearing age 

The risk of major depression among women ranges from 10% to 25%, with peak prevalence 

during childbearing years (18-44 years) [12-15]. When compared to other non-communicable 

diseases, such as hypertension and diabetes, the occurrence of depression in women of 

reproductive age remains significantly higher (14.7% vs. 6.9% and 3.1%) [16]. Reasons for the 

increased risk of depression in women are unclear but likely involve biological, psychological 

and sociocultural factors [12, 17, 18]. Importantly, the increased lifetime risk of depression in 

women has been largely attributed to the hormonal changes associated with the reproductive 

cycle [19]. Since hormonal changes are exacerbated during pregnancy, this period represents a 

vulnerable window for the onset, recurrence, or exacerbation of depression [20-22]. The 

prevalence rates of depression during pregnancy are 7.4%, 12.8% and 12% for the first, second 

and third trimesters, respectively [23]. Furthermore, antenatal depression increases the risk of 

developing postpartum depression; an outcome which affects approximately 10-15% of women 

[24, 25]. Taken together, estimates show that 10-16% of all pregnancies fulfill the diagnostic 

criteria for depression [23, 26-28] 

  

1.1.3 Untreated maternal depression is associated with poor obstetrical, fetal and 

neonatal outcomes 

Pregnancies complicated by maternal depression constitute a complex medical situation, as both 

the health of the mother (including self-neglect, risk of self-harm or suicide, reduced compliance 

with prenatal and postnatal care and increased risk taking activities such as drug and alcohol use) 

[29] and her unborn child (including reduced fetal growth, impaired mother-child bonding and 
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impaired cognitive, behavioral and emotional development in childhood) may be compromised 

[30-33]. A meta-analysis has demonstrated that untreated antepartum depression is a strong 

predictor of adverse pregnancy outcomes including neonatal intensive care unit admission, 

cesarean or preterm delivery (<37 weeks gestation) and low birth weight (<2,500 g) [34]. The 

latter two obstetrical complications are leading causes of neonatal, infant and childhood 

morbidity and mortality worldwide [35-37]. Therefore, drug therapy is recommended during the 

perinatal period for moderate to severe depression [21, 38]. As rates of perinatal depression have 

increased [23, 26, 32, 33], so too has the use of antidepressants during pregnancy. It has been 

reported that antidepressant use during pregnancy increased 300% from 1998 to 2005 [39]. This 

increase was mostly accounted for by increases in selective serotonin reuptake inhibitor use [40-

42].  

 

1.2 SSRI use during pregnancy  

A wide variety of medications are available to treat perinatal depression including; first 

generation tricyclic antidepressants (TCAs) and monoamine oxidase inhibitors (MAOIs), 

serotonin norepinephrine reuptake inhibitors (SNIRs), selective norepinephrine reuptake 

inhibitors (NRIs), and norepinephrine and dopamine reuptake inhibitors (NDRIs) [43]. However, 

as a result of their proven specificity, efficacy and safety in adults relative to first generation 

antidepressants [44-46], the Selective Serotonin Reuptake Inhibitors (SSRIs) including 

fluoxetine (Prozac®), sertraline (Zoloft®), paroxetine (Paxil®), fluvoxamine (Luvox®) and 

citalopram (Celexa®) are recommended as first-line therapy in pregnant and postpartum women 

[14, 47]. Epidemiological data show that over 50% of all women will take a prescription 

medication in pregnancy, and the most frequently used class of agents is the SSRIs [48]. The 

SSRIs —which ease depression by inhibiting the reabsorption of the neurotransmitter serotonin 
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(5-HT) in the brain—remain the pharmacotherapy of choice for up to 15% of expectant women 

[40]. This is despite evidence from animal studies which link SSRI exposure with an increased 

risk of birth defects [49-51]. Currently SSRIs are designated a pregnancy Class C (i.e., to be used 

only if “the potential benefit outweighs the potential risk”) (excludes paroxetine [Paxil], which 

carries a grade D) by the U.S. Food and Drug Administration [52, 53] . Of the 8.7% of women 

prescribed antidepressants during pregnancy in the United States, 6.2% had exposure to an SSRI 

[41]. Indeed the SSRI antidepressants sertraline and fluoxetine were among the top 20 

prescription medications taken in the first trimester of pregnancy during the years 1997 to 2003 

[48]. The pattern of antidepressant use across pregnancy is variable; with peak prevalence 

occurring in the first trimester, decreasing in the second trimester and increasing around the time 

of delivery [40, 54]. Studies suggest that 25% of depressed women continue their antidepressant 

use throughout pregnancy whereas 0.5% of women start using antidepressants once pregnant 

[55]. As the use of SSRIs during pregnancy has been steadily on the rise [40-42, 56, 57], so too 

has the concern regarding the potential for adverse effects on fetal and postnatal development 

[58].  

 

1.3 Defining Fetal Programming  

Sir David Barker was the first to report that babies born with lower birth weight had an increased 

risk of coronary heart disease mortality in adulthood [59]. This observation was the foundation 

for the developmental origins hypothesis of adult disease (DOHaD) [60], otherwise known as 

“fetal programming”. The DOHaD hypothesis proposes that an adverse intrauterine environment 

can exert profound impacts on fetal development and postnatal health potential. Indeed, there is 

now considerable evidence that demonstrates an association between poor fetal growth and an 

increased incidence of cardiovascular disease [61, 62], altered glucose tolerance [63, 64], obesity 
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[65, 66], type 2 diabetes (T2DM) [67, 68] and hypertension [61] in adult life. The definition of 

an adverse intrauterine environment encompasses maternal exposures such as undernutrition, 

smoking, stress, prenatal glucocorticoid exposure, environmental toxicants, and exposure to 

xenobiotics including environmental toxicants and medications [67].  

 

1.4 Perinatal exposure to SSRIs affects the offspring  

Concerns about the use of antidepressants, including SSRIs, in pregnancy and the treatment of 

mental illness has been the focus of considerable scrutiny [69-71]. SSRIs and their metabolites 

(e.g. norfluoxetine) have been shown to cross from the placenta into the fetus [72-74] and can be 

identified in amniotic fluid, umbilical circulation, and fetal serum [75, 76]. Paired maternal and 

umbilical cord blood collected at delivery shows that SSRIs achieve cord blood concentrations 

over 50% of those seen in maternal circulation and, in some cases, cord blood concentrations are 

equal to maternal blood concentrations [77]. Despite the significant heterogeneity among 

individual SSRIs, animal exposure studies have demonstrated that placental transfer of SSRIs 

can achieve concentrations in the fetus which are sufficient to block over 90% of the transporter 

sites in the developing rodent brain [78]. In addition, SSRIs and their metabolites are also present 

in breast milk [77], and are commonly prescribed for postpartum depression therefore neonates 

are also equally exposed to these antidepressants [27, 79-81]. As a consequence there have been 

numerous studies on the safety of SSRI use during pregnancy [77]. 

 

1.4.1 Adverse birth outcomes, neonatal complications and neurobehavioural outcomes  

There have been many studies looking at the safety of SSRI use during pregnancy; for the most 

part these studies have focused on the risk of congenital abnormalities [82]. Large studies using 

national databases confirm that the use of SSRIs during pregnancy is not associated with an 

increased risk of either major or minor congenital malformations to offspring when used in their 
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recommended doses [40, 83-90]. Similarly, smaller studies that primarily used cohorts drawn 

from teratogen information services do not show an effect of SSRI treatment on the overall 

major malformation rate [85, 86, 91]. Indeed, with the exception of an increased risk of 

cardiovascular malformations associated with maternal paroxetine use [92], meta-analyses do not 

find a significant association or pattern of malformations related to perinatal antidepressant 

exposure [93-100]. These results held across exposures in all trimesters of pregnancy [86, 101]. 

Diav-Citrin and Ornoy [102] calculated that the overall rate of major congenital malformations 

and of cardiovascular anomalies in published prospective studies after prenatal exposure to 

SSRIs were both within their baseline risk (3.8% [189/4920] and 0.9% [53/6094]) in the general 

population. Therefore, it is generally accepted that SSRIs are not major teratogens [103]. 

However, a number of epidemiological and population studies outline the relationship between 

SSRI use and risk of miscarriage, spontaneous abortion [53, 104], stillbirth, and rare birth defects 

[87, 105, 106].  

 

The potential association between SSRI use and low birth weight has become an important 

consideration in the evidence supporting “fetal programming” as a model of risk for later adult 

illnesses. While several studies have shown an association of prenatal SSRI use with low birth 

weight or small size for gestational age [89, 107-118], others do not [52, 54, 83, 85-87, 105, 119-

123]. Despite these conflicting results, meta-analyses associate SSRI use with a significantly 

increased risk for low birth weight, preterm birth, reduced APGAR scores and increased neonatal 

hospitalizations [124-126]. These studies and meta-analyses varied widely in design, 

populations, control groups and methods, and few control for the mental health status of the 

mother and other potential confounding variables including the drug dose [127], the timing of 

exposure [54, 118, 128] and the specific SSRI [129]. 
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Short-term adverse outcomes occur in up to 30% of infants exposed in utero to SSRIs during the 

neonatal period [130-132]. These outcomes include persistent pulmonary hypertension for the 

newborn (PPHN) [83, 116, 119, 123, 133] and neonatal behavioural syndrome [130, 132, 134, 

135]. There is evidence to suggest that late SSRI use in pregnancy (>20 weeks) may increase the 

risk for PPHN [136-139] however other studies have failed to show a similar effect [40, 140-

142]. Similar to all psychotropic medications, SSRIs cross the blood-brain barrier resulting in 

fetal central nervous system (CNS) exposure. Therefore, maternal SSRI used has been associated 

with adverse events in the infant including; irritability, trouble feeding, tremor, agitation, 

hypertonia, respiratory distress, seizures and excessive crying [143-145]. Within the neonatal 

period, these SSRI-related symptoms have been attributed to both withdrawal syndrome [132] 

and direct drug effects [146], that result in the disruption of the aforementioned neurobehavioural 

outcomes [115]. Neonatal neurological symptoms include central nervous system excitation 

(increased motor activity, restlessness, tremors, seizures, increased arousals) and autonomic 

symptoms (decreased heart rate variability, temperature instability), fewer changes in behavioral 

state, increased motor activity and abnormal sleep patterns [115, 132, 147, 148].  

 

Despite the widespread use of SSRIs during pregnancy there is relatively limited information 

regarding the long-term outcomes related to fetal and/or neonatal exposure to SSRIs. However 

there is data from animal models which has shown that perinatal exposure to SSRIs can cause 

subtle changes in brain circuitry and promote maladaptive behaviors (increased anxiety, 

aggression, depression) that are maintained in adulthood. Indeed, Hansen et al. [149] reported 

that in rats SSRI exposure during postnatal days (P) P8–P21 resulted in depression-like 

symptoms during adulthood. Furthermore, Ansorge et al. [150] showed that chronic SSRI 

treatment during postnatal days P4–21 resulted in reduced exploratory behaviour and increased 
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anxiety-related phenotype. Other animal studies focusing on the effects of prenatal SSRI 

exposure revealed that exposed offspring showed a range of behavioural abnormalities including: 

delayed motor development, improved spatial learning [151], reduced impulsivity, increased 

immobility in the forced swim test [152] and increased sensitivity to the reinforcing effects of 

cocaine and reduced extinction of drug-seeking behaviour [153]. There is also data from human 

clinical studies which suggests that exposure to SSRIs during pregnancy can permanently alter 

brain development leading to long-term neurodevelopmental abnormalities and behavioral 

changes [115] including lowered psychomotor development [111, 154, 155] and blunted 

response to pain [156]. In addition, children exposed to SSRIs in utero have impaired cognitive 

and language development [120, 154, 157], in addition to an increase in internalizing [158] and 

externalizing behaviors [157, 159]. More recently there has been considerable interest in the 

association between prenatal exposure to prenatal SSRIs and an increased risk for autism 

spectrum disorder (ASD) [110, 160-165]. To date, most of the evidence for altered 

neurodevelopmental and behavioural outcomes is in young children; whether or not these persist 

into adulthood is not clear. However, evidence from rodent studies demonstrates that these 

anxiety- and depression-like behaviors caused by the perinatal and/or neonatal administration of 

SSRIs may persist into adolescence [166] and adulthood [150]. Taken together these data suggest 

that prenatal exposure to SSRIs may have profound and persistent effects on neurodevelopment; 

effects which are likely mediated via alterations in central serotonergic pathways.  

 

1.4.2 Perinatal SSRI exposure and effects on the gastrointestinal tract 

In neonates whose mothers were taking SSRIs, there have been reports of adverse 

gastrointestinal (GI) symptoms including diarrhea, poor feeding, vomiting, necrotizing 

enterocolitis and infantile hypertrophic pyloric stenosis (IHPS) [106, 146, 167, 168]. However, 
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there is limited epidemiological evidence to suggest an association between maternal SSRI use 

and abnormal function of the GI tract, most of the evidence comes from small cohort studies or 

case reports. For example, one study reported a 10-fold increase in laxative and anti-diarrheal 

medication use in children exposed in utero to SSRIs (mainly fluoxetine and paroxetine) [169, 

170]. These findings suggest the possibility of an association between the use of exposure to 

specific SSRIs during pregnancy and abnormal function of the GI tract in children. Due to the 

inconsistencies between this association and a paucity of data with regards to GI effects 

following perinatal SSRI exposure, further studies are warranted.  

 

Although there are no studies which conclusively link prenatal SSRI exposure with abnormal GI 

development, it is biologically plausible SSRIs could influence both structure and function of the 

GI system [169]. SSRIs have significant placental transport [72-74] and fetal exposure to SSRIs 

has been shown to alter components of the serotonergic signaling pathway in the CNS [171, 

172]. Importantly, serotonin (5-hydroxytrptamine; 5-HT) is critical for the motility of the GI 

tract and the development of the enteric nervous system [173, 174]. Therefore, if SSRI exposure 

can also perturb peripheral serotonin signaling it may have profound effects on the intestinal 

health in the offspring.  

 

1.5 SSRIs and serotonin 

Deficiencies in CNS levels of serotonin (5-hydroxytryptamine [5-HT]) have been proposed to be 

the underlying cause of MDD [175]. SSRIs act to increase serotonin availability in the brain by 

blocking the plasma membrane serotonin transporter (SERT; 5-HTT) preventing the reuptake of 

serotonin. Thus, treatment with an SSRI results in enhanced and prolonged serotonergic 

neurotransmission as there is an increase in the magnitude and duration of the activity of 5-HT 

on pre- and postsynaptic 5-HT receptors [176]. All SSRIs share a similar mechanism of action 
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despite having different chemical structures and affinity for SERT [177-179]. However, since 

SERT is expressed not only in the CNS but in a number of peripheral tissues, including 

gastrointestinal tract, the use of SSRIs may also alter 5-HT signaling in the periphery.  

 

1.6 Serotonin synthesis and signaling 

Serotonin or 5-hydroxytryptomine (5-HT) is well-known for its role in the CNS with well-

defined roles in depression [180], arousal and pain pathways [181], appetite [182-184] and other 

cognitive and behavioral functions [185]. In the CNS serotonin is synthesized in the serotonergic 

neurons of the raphe nucleus in the brain stem [186]. However, the major source of bioavailable 

5-HT in the human body is located in the gut, primarily in enterochromaffin (EC) cells, a subset 

of enteroendocrine cells scattered throughout the enteric epithelium from the stomach to the 

colon [187]. Indeed, approximately 95% of 5-HT is synthesized in the gut; 90% of which is 

localized in EC cells and the remainder synthesized and released in the neurons of the enteric 

nervous system (ENS) [188-191]. Because of its resemblance to the brain, the ENS is often cited 

as a “simple nervous system” [192].  

 

The 5-HT signaling components of the gut mucosa are the same as those found in the CNS. EC 

cells express the enzymatic machinery, including the rate liming enzyme tryptophan hydroxylase 

(TPH) to synthesize 5-HT which is then stored in secretory granules until stimulated by luminal 

stimuli where it is secreted as a first messenger [193]. There are two TPH isoforms, TPH1 and 

TPH2, the former found primarily in EC and mast cells, while the latter is localized to the brain 

and enteric neurons. 5-HT may be released through a variety of stimuli which include 

mechanical, chemical, neural factors, infection and inflammation in the GI tract [194]. Once 

released, 5-HT acts on receptors located on the processes of sensory neurons that pass into the 

lamina propria (mucosa in intestine). 5-HT released from EC cells into the blood mediates a 



M.Sc. Thesis- H. Law; McMaster University- Medical Sciences 

 

11 

 

variety of physiological functions, including gastrointestinal motility and secretory reflexes [194-

196]. Both EC cells and enteric neurons not only synthesize 5-HT but also express 5-HT 

receptors and respond to 5-HT activation [197]. 5-HT responsive sensory nerves in the lamina 

propria confer specificity on the responses because of the 5-HT receptors they express. Indeed, 

the action of 5-HT is mediated through 7 receptor groups (14 subtypes), 5-HT1 to 5-HT7. Most of 

the receptors are expressed in the GI tract, and their stimulation plays different roles (either 

inhibitory or excitatory) in the control of intestinal motility and secretion [188, 198-200]. 

Responses to 5-HT activation of pre- (5-HT1A/1P/4) and postsynaptic (5-HT1A/2A/2B/2C/3/7) 5-HT 

receptors [192, 201] are terminated by its reuptake [202, 203]. Similar to the brain, 5-HT is 

transported into mucosal enterocytes by the serotonin transporter (SERT; 5-HTT), which 

mediates 5-HT uptake into nerve fibers [192, 204-206]. There is only one SERT gene, with an 

identical protein encoded in both the CNS and the gut [204, 207-209]. The mucosal epithelial 

cells are well equipped to catabolize the 5-HT they take up by means of enzyme monoamine 

oxidase (MAO) [210, 211]. These are functions of 5-HT in the adult, but there is evidence that 

suggests that 5-HT modulates cell migration, differentiation and survival through certain 5-HT 

receptors [173, 189, 212-216].  

 

1.7 Serotonin during development: central and peripheral implications 

Serotonin is critical for normal development. The serotonergic neurons are among the earliest 

neurons to appear in the developing embryo [217] where 5-HT is released by growing axons 

before conventional synapses are established [212]. Importantly, manipulation of 5-HT levels in 

animal models has been shown to result in neuroanatomical and functional deficits that are 

dependent on the timing (critical period) and direction (increase or decrease) of the perturbation 

[218]. For example, SERT knockout mice exhibit altered 5-HT homeostasis in the brain, as 
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evidenced by increased extracellular 5-HT levels and decreased expression of 5-HT receptors 5-

HT1A/1B/2A/2C, resulting in an anxiety-like phenotype [219, 220]. Similarly, changes to 5-HT 

homeostasis by genetic alterations to components of the serotonergic system have been 

correlated with changes to adult behavior [212]. Indeed, dysregulation of the central 5-HT 

system has been implicated in the pathogenesis of many psychiatric and neurological disorders 

[221, 222]. There is now considerable evidence from animal studies to show that prenatal 

exposure to SSRIs can alter serotonergic biosynthesis and signaling pathways in the CNS of the 

offspring [119]. SSRIs increase synaptic 5-HT levels by inhibiting the reuptake of 5-HT via the 

5-HT transporter. The subsequent elevation in synaptic 5-HT levels following prenatal exposure 

to SSRIs can alter the expression of many components of the central serotonergic pathway in 

offspring [172, 223-225]. Evidence from animal studies has shown that gestational exposure to 

SSRIs can result in alterations to brain 5-HT content, elevation in peripheral 5-HT levels, and 5-

HT2A/2C receptor density and SERT expression, indicating decreased 5-HT function [148-150, 

226]. Taken together these studies clearly show that prenatal SSRI exposure can alter central 

serotonergic signaling, however, whether or not similar effects occur in the peripheral 

serotonergic system is less well studied.  

 

1.7.1 The effects of prenatal SSRI exposure on the peripheral serotonergic system 

If like the brain, the fetal/neonatal gut serotonergic system is also sensitive to SSRI-induced 

perturbations; it may have long-term implications for intestinal health in the offspring. A recent 

review suggested that there may be an association between in utero exposure to SSRIs and 

enteric nervous system (ENS) function [169]. Previously conducted studies [169, 170] show that 

SSRIs could influence the development of the ENS in two ways: (i) through inhibition of SERT 

and (ii) through binding of some SSRIs to the 5-HT2B receptor. Nijenhuis and colleagues [169] 
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proposed that the mechanism underlying these changes may involve alterations in the peripheral 

serotonergic system, namely changes in the expression of 5-HT receptors (i.e. 5-HT2B), SERT 

and/or enzymes responsible for 5-HT synthesis. This is plausible since SERT plays a role in the 

development of the ENS by regulating 5-HT concentrations. Therefore, blockage of these 

transporters during fetal development could influence migration, differentiation and survival of 

cells. The addition of enteric neurons to the developing bowel happens gradually in the 

developing embryo. Enteric neurons can be detected in the mouse foregut as early as E12, 

however, new neurons continue to be added at least through the first 3 weeks of postnatal life in 

rodents [173]. Since all enteric serotonergic neurons develop early, for this reason, 5-HT’s role 

as a growth factor that affects the development of late-enteric neurons has long been suspected 

[173, 227]. Since the peripheral nerves that innervate the gut store the majority of the body’s 5-

HT [228], alterations to the development of the ENS may have profound implications for the 

production of gut-derived serotonin. It has previously been shown that pups born to mother’s 

given a high tryptophan diet have significantly increased 5-HT protein expression in their gastric 

tissues [229]. Similar to the CNS, the development of the enteric serotonergic neurons by 5-HT 

is thought to occur primarily through the 5-HT2B receptors [189, 214-216, 230]. 5-HT2B 

expression can first be detected in the fetal mouse at embryonic day (E) 14, peaks at E15 and 

declines to adult levels by E18 [173]. The discovery that 5-HT is a growth factor has potential 

implications in that the early experience-related activity of the ENS can sculpt its subsequent 

development. This is significant because chronic use of the SSRI fluoxetine has been shown to 

initially down regulate (desensitize) and then up regulate the 5-HT2 receptor family in the 

astrocytes of the CNS [231-235]. The peripheral 5-HT2B receptor located in the fundus of the 

stomach has been shown to be homologous to the central 5-HT2C receptor [169]. Therefore it is 
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probable that the receptors in the ENS will respond similarly to the 5-HT2B receptors found in the 

fundus. SSRIs that pass through the placenta may bind to the 5-HT2B receptor and disrupt the 

development of the ENS by changing the concentration of 5-HT. As a result of this disruption, 

the development of the fetal myenteric (Auerbach’s) plexus - which provides motor innervation 

to the GI tract to control peristalsis [236] may also be affected by increasing the activity of 

endogenously released 5-HT. Although it is biologically plausible that fetal exposure to SSRIs 

may disrupt gut serotonergic signaling, it has not been demonstrated in either animal models or 

human studies. However, if intestinal serotonergic signaling is altered by perinatal exposure to 

SSRIs it may have profound implications for intestinal health in the offspring.  

 

1.8 Disorders of the gut  

Inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) represent two common 

but distinct gastrointestinal (GI) disorders. IBD is a chronic and relapsing inflammatory disease 

of the intestines that manifests as Crohn’s disease (CD) or ulcerative colitis (UC). While CD can 

manifest at any part of the GI tract, UC only affects the colon. In both cases, the intestinal 

mucosa is infiltrated by activated cells from the innate and adaptive immune systems that lead to 

destructive inflammation [237]. Combined, CD and UC affect nearly 2 million people in North 

America [238]. Although IBD does not often lead to mortality, it gives rise to substantial 

morbidity and decreased quality of life [239, 240]. 

 

IBS is not inconsequential. It is classified as a chronic functional GI disorder that affects up to 

11% of the population globally and approximately 20% of adults in North America [241]. 

Consequently, its prevalence is accompanied with high societal cost and negative impact on 

quality of life [242-245]. Clinical presentation of constipation, diarrhea, or a combination, 

constitutes the different subtype of IBS: IBS with constipation (IBS-C), IBS with diarrhea (IBS-
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D), mixed IBS (IBS-M) or post-infectious IBS (PI-IBS) which is similar to D-IBS [246]. The 

underlying pathophysiology of each is poorly understood and has not been fully elucidated [247, 

248]. However, it is considered to be multifactorial [248, 249]. Known risk factors include 

familial tendency [248, 250-254], physical and psychosocial factors [250, 255-258], and 

bacterial factors derived from acute infection such as gastroenteritis [259, 260]. Unlike IBD, IBS 

does not produce destructive inflammation despite abdominal pain; discomfort; increased 

visceral sensitivity; changes in bowel habit; impaired GI motility; imbalanced autonomic 

nervous system function; disrupted intestinal flora and altered intestinal secretions [261, 262].  

 

IBD is of unknown etiology; however its development seems to involve a complex interplay 

between genetic predisposition and the environment. The role of genetics has been well 

documented as contributing to the pathogenesis of IBD; however twin studies demonstrate the 

significance of the environment [263]. This is further reinforced by several epidemiologic studies 

that highlight a rising incidence of IBD and geographic variation that has occurred over the past 

several decades [264, 265].  

 

Early onset IBD is becoming increasingly common. The development or exacerbation of IBD 

can be brought on by childhood influences, medications, immunizations, mental health, air 

pollution, lifestyle choices (e.g. breast feeding, smoking, diet, exercise), and seasonal variation 

[266, 267]. The possibility that early life factors, such as maternal and/or childhood medication 

use might influence the pathogenesis of IBD has been illustrated in children where antibiotic 

exposure has been associated with the development of childhood CD [164, 268, 269], and where 

their use between 2 to 5 years of age has preceded a 1.3-fold increased risk of adult-onset IBD 

[270, 271]. Future prospective studies are needed to better understand and identify the early 

determinants on the onset and disease course of IBD. Similar to IBS [255, 272, 273], these 
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environmental disturbances may create a predisposition to IBD by altering the mucosal immune 

system and serotonergic system, influencing intestinal permeability, and disrupting the intestinal 

microbiota [238]. Importantly, for this thesis, disruptions in 5-HT signaling have been implicated 

in the pathophysiology of both IBD and IBS.  

 

1.9 Disorders of the gut and serotonin 

5-HT released from EC cells is an important signaling molecule involved in the maintenance of 

intestinal homeostasis [274]. Abnormalities in intestinal 5-HT signaling, which is critical for 

normal gut function and sensation, have been demonstrated in a range of intestinal pathologies 

[198, 275-277]. Elements of 5-HT signaling include: EC cell number, 5-HT content, TPH1 

message levels, 5-hydroxyindoleacedic acid levels, platelet free serum 5-HT levels and SERT 

expression. Indeed, EC cell hyperplasia, in addition to elevated tissue and plasma 5-HT levels 

[196, 228, 249, 278] and increased 5-HT content have been observed in models of experimental 

colitis [279-286], murine models of IBS  [287] and in patients with IBD and IBS as compared 

with control subjects [208, 275, 277, 288-291]. These alterations to 5-HT signaling may underlie 

the disruptions in gut motility, secretion and visceral sensation that characterize these patients 

[292, 293]. A common feature of these studies conducted to date is that they report changes in 

one or more aspects of 5-HT signaling. As reviewed by Mawe and colleagues [287], 

combinations of changes in EC cell populations and 5-HT content vary with IBS type.  

Interestingly, under basal or stimulated conditions, Coates et al. [208] reported no changes in 5-

HT release in IBS-D or IBS-C release. If this finding reflects the physiological nature of 5-HT 

release in these individuals, it would indicate that the same amount of 5-HT is being released 

regardless of possible changes in EC cell numbers or 5-HT content. Therefore, changes in 5-HT 
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signaling upstream of 5-HT release may be irrelevant. However, inconsistencies also exist with 

regards to signaling downstream of 5-HT release. 

 

Murine models of IBS exhibit EC cell hyperplasia and reduced mRNA encoding SERT [294-

296]. Similar results have been found in human studies. Indeed, IBS-D and IBS-C patients show 

a decrease in rectal SERT expression [208] which is consistently accompanied by an increase in 

serum 5-HT levels [297, 298]. Similarly, Singh and colleagues [299] found that concentrations of 

5-HT were significantly higher in individuals with D-IBS as compared to healthy volunteers. In 

contrast, a decrease in serum 5-HT and SERT expression were reported in patients with IBS-C. 

Despite these inconsistencies in the literature, taken together these data suggest that 5-HT may 

be involved in the pathogenesis of IBS.  

Although IBS- like conditions often co-exist with IBD, there are fewer published data on the role 

of 5-HT in the context of IBD [300, 301]. EC cell hyperplasia and increased 5-HT content in 

inflamed colon also underscore those with IBD [282]. In terms of downstream effectors of 5-HT, 

patients with IBD have been reported to have similar changes seen in other animal models and in 

mice with 2,4,6-Trinitrobenzenesulfonic acid (TNBS)-induced colitis. For instance, SERT 

transcription was reduced in animal models of postinfectious bowel dysfunction [294] and 

enteric infection [302]. These findings translate to human populations of UC and IBS, where 

SERT transcription has been observed to be decreased [208]. Taken together, alterations to 5-HT 

signaling components and its downstream effectors may be accompanied by inflammation [282].  

1.9.1 Disorders of the gut, serotonin and inflammation 

EC cell hyperplasia and changes to 5-HT signaling may underlie the development of enteric 

infection and inflammation [283, 288, 295, 303]. Inflammation of the intestinal mucosa (e.g. 
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elevated colonic IL-13 levels) has been associated with a profound decrease in the expression of 

SERT [282] and up-regulation of EC cell numbers and colonic 5-HT content [304, 305] in animal 

models of induced colitis. Clinically, biopsies of human colonic mucosa from individuals 

affected by UC or IBS have also shown similar results [208, 306]. The effects predicted to be 

exerted by changes in serotonergic expression components underlie the abnormalities of 

gastrointestinal function and sensation [287]. 

 

EC cells are located in very close proximity to or in contact with key immune cells [307]. 

Considering the strategic location of EC cells in the GI mucosa, it is probable that 5-HT plays an 

important role in immune activation and generation of gut inflammation in GI disorders. Indeed, 

the intestinal mucosa of patients with IBD is characterized by ulcerative lesions accompanied by 

a prominent infiltrate of activated cells from both innate and adaptive immune systems [308-

311]. This pathology is accompanied by an enhanced immune response (and increase in CD3-

positive T cells) and/or low-grade systemic inflammation [246, 280, 295, 312-315]. It is also 

becoming increasingly clear that low grade inflammation and immune activation may 

accompany a subset of IBS cases [312, 316-318]. Particularly, increases in pro-inflammatory 

cytokines IL-1β [315, 319, 320], IL-6 [321], TNF-α [314] have been reported in PI-IBS and D-

IBS patients. 

 

Several independent lines of evidence from SERT and TPH1 knockout models support a 

proinflammatory role of 5-HT in the pathogenesis of mucosal inflammation in both chronic and 

functional GI disorders [174, 285, 286, 322]. In one approach, TNBS-induced model of colitis 

was further exacerbated in mice that lacked SERT (SLC6A4) as seen by changes in histological 

assessment of the colonic mucosa and an increase in myeloperoxidase (MPO) activity caused by 

the increased potentiating of serotonergic signaling. An increase in colitis severity was also seen 



M.Sc. Thesis- H. Law; McMaster University- Medical Sciences 

 

19 

 

in the IL-10 mutant mouse model [285]. There is also relevance of TPH1 in intestinal epithelial 

5-HT production and modulation of intestinal inflammation. Ghia and colleagues (2009)[286] 

demonstrated that TPH1-deficient (TPH1-/-) mice, which have significantly lower amounts of 5-

HT in the gut, were almost completely protected in two different chemical models of colitis. 

Also in this model, Li et al. [322] demonstrated that the absence of TPH1 is accompanied by 

reduced colitis severity and down regulation of IL-17 and IFN-ϒ levels in colonic tissue. 

Similarly, Margolis et al. [323] found that depletion of 5-HT by oral administration of peripheral 

TPH inhibitors led to a reduced severity of TNBS-induced colitis; and at least a four-fold 

reduction in expression of 17% of 84 genes encoding inflammation-related cytokines and 

chemokines. 

 

5-HT-induced inflammation appears to be potentiated by several receptor subtypes. In vitro 

models of osteoarthritis demonstrate that stimulation of 5-HT2A and 5-HT3 receptors results in a 

5-HT-induced increase in regulators in inflammation, prostaglandin E2 (PGE2) expression [324]. 

In vivo, the 5-HT3 receptor appears to be a predominant mediator of inflammation and immune 

responses [325, 326]. Administration of 5-HT3 receptor antagonists has been shown to lead to the 

inhibition of inflammatory cytokine production in colitis rat models [327-329]. Similarly, the 5-

HT7 receptor has recently been shown to have pro-inflammatory effects [330]. Kim and 

colleagues [330] reported that inhibition of 5-HT7 receptor signaling ameliorated both acute and 

chronic colitis induced by DSS and lowered histological damage and proinflammatory cytokine 

levels. Colitis severity was significantly lower in 5-HT7-/- mice, thus highlighting the role of this 

receptor in intestinal inflammatory disorders such as IBD. 5-HT receptor antagonists have 

therefore been suggested as therapeutic targets in the treatment of IBS [199, 331]. Disruption of 
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5-HT may also cause GI deficits due to altered barrier function and/or dysbiosis of the gut 

microbiota [332, 333].  

 

1.10 Serotonin disruption and  altered gut barrier function 

Animals with genetic ablation of SERT, which leads to an increase in bioavailable 5-HT, are well 

characterized as having abnormal gastrointestinal motility [334] and impaired intestinal barrier 

function [285]. These models also frequently exhibit diarrhea associated with watery stools 

interspersed with periods of constipation [207]. The use of SSRIs in adulthood has been 

frequently associated with increased incidence of diarrhea [341, 342].Similarly in humans, the 

loss of epithelial barrier integrity, triggered by multiple factors coming from the lumen or the 

mucosa, may contribute to the generation or perpetuation of C- and/or D- IBS symptoms [208, 

335-340]. This increase in barrier dysfunction may arise as the result of a combined process of 

low-grade mucosal inflammation and immune activation caused by altered gastrointestinal 5-HT 

homeostasis [237].  

 

Throughout the body, epithelial cells are connected by junctional complexes that form 

boundaries between compartments of the body and the external environment. The intestinal 

epithelium forms the largest barrier that separates the intestinal lumen and its bacterial 

population and products from surrounding peritoneal tissues. Its paracellular permeability is 

maintained by the expression of tight junctions (TJ). The tight junction associated proteins 

include the zonula occludens-1(ZO-1), claudin-1 (CLND) and occludin (OCLN) comprises the 

TJ multi-protein complex [343-346]. In the digestive tract, these transmembrane proteins 

regulate intestinal permeability to macromolecules while acting as a barrier against pro-

inflammatory cytokines [347]. Their expression is dynamic and may be regulated by intracellular 
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processes and extracellular stimuli. Modification to the tight-junction barrier function is closely 

associated with health and susceptibility to both intestinal and systemic diseases [348-350].  

 

The accompanying symptoms that characterize functional and chronic GI disorders are 

accompanied by structural changes to these TJ complexes. Indeed, Piche et al. [351] have shown 

that IBS patients with a decrease in ZO-1 mRNA level are associated with an increase in colonic 

paracellular permeability. In this study, OCLN mRNA expression remained unchanged between 

groups, while in another reported a decreased expression in the colonic mucosa [352]. This 

decrease was the result of a higher degradation of OCLN by the proteasome system, whereas its 

mRNA level remained unaffected. Bertiaux-Vandaële et al. [353] demonstrated that while 

colonic mRNA levels remained unaffected, the protein expression and the cellular distribution of 

TJ proteins, ZO-1 and claudin-1, but not OCLN, were significantly lower in D-IBS patients. 

 

At present, there exists no evidence between fetal and neonatal exposure to SSRIs and altered 

intestinal barrier function in the offspring. However, since animal models with dysregulated 5-

HT homeostasis exhibit changes and SSRI use in adulthood are both associated with alterations 

in intestinal permeability it is plausible that prenatal SSRI exposure will have similar effects in 

the offspring. 

 

1.11 Dysbiosis is associated with intestinal pathology 

The role of the gut microbiota in health and disease is becoming increasingly apparent. A shift 

from a normal (commensal) host-micobiota relationship to a pathogenic relationship (termed 

dysbiosis) increases the risk of adverse health outcomes [354, 355]. Many of the diseases and 

disorders associated with adult gut microbiota dysbiosis exhibit an overall reduction of bacterial 

diversity [356]. When compared to healthy subjects who exhibit distinct, diverse and temporally 
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stable microbiota, those displaying disease symptoms have dramatically altered bacterial 

community composition [357-359]. Dysbiosis of the gut microbiota has been implicated in the 

pathogenesis of chronic intestinal disorders such as irritable bowel syndrome (IBS) (Malinen et 

al., 2005), inflammatory bowel disease (IBD) [360, 361] and necrotizing enterocolitis [362].  

 

1.11.1  Gut microbiota, disorders of the gut and serotonin 

Inflammatory gastrointestinal disorders including IBS and IBD are characterized by instability of 

the enteric microbiota and aberrant serotonergic functioning [292]. Earlier studies have shown 

reductions of Lactobacillus spp. and Bifidocbacterium spp. and increased number of 

Enterobacteriaceae in the gut flora of IBS patients when compared to healthy volunteers [363, 

364]. Furthermore, patients with increased colonic colonization to Bacteroides/Prevotella cluster 

have an increased susceptibility to UC [365, 366]. Importantly, there also appears to be a link 

between alterations in the microbiota and 5-HT signaling.  

 

In adults, interactions between the microbiota and 5-HT signaling in the GI tract have been 

demonstrated [367]. Moreover, Clarke et al. [368] reported that animals lacking gut microbiota 

(i.e. germ free [GF] animals) have perturbations in hippocampal 5-HT production versus 

conventionally colonized control animals. Furthermore, concentrations of tryptophan, the 

precursor of 5-HT were increased in the plasma of male GF animals [368]. Interestingly, the 

absence of the gut microbiota did not affect expression of Tph2, SERT or the range of 

serotonergic receptor (5-HT1A, 5-HT6 and 5-HT2C) gene expression evaluated in either the male 

or female GF animals compared with their respective control counterparts. Nevertheless, results 

from this study strongly suggest a link between the gut microbiota and regulation of serotonergic 

signaling pathways. However, whether or not the gut microbiota in the offspring can be altered 

following maternal SSRI use remains to be determined.  
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1.11.2  The gut microbiota is susceptible to environmental perturbations 

The adult human gut contains an immense number of microorganisms, collectively known as the 

microbiota [369]. When healthy, the gut microbiota has a symbiotic relationship with its host, 

serving a multitude of functions which include maintenance of the immune system (Hooper et 

al., 2012), fat storage [370], stimulation of intestinal angiogenesis [371], regulation of host 

energy metabolism [372] and epithelial barrier function [373]. The enteric microbiota can also 

directly influence gut homeostasis by the regulation of bowel motility and modulation of 

intestinal pain, immune responses and nutrient processing [367, 374, 375]. 

 

The gut microbiota is established during infant life; the infant GI tract progresses from being 

sterile to being colonized by a dense mixture of microbiota resembling that found in the adult GI 

tract [376-378]. Multiple factors have been found to influence the composition of the intestinal 

microbiota in early life, including gestational age, mode of delivery, maternal contact, and type 

of infant feeding and administration of antibiotics [376, 378-382]. More recently, it has been 

suggested that medication use may also affect the establishment of the enteric microbiota [383], 

suggesting that prenatal exposure to maternal medication, including SSRIs, may alter the gut 

microbiota in the offspring.  

 

1.12  Overall aims of the study 

Serotonin (5-HT) is critical for normal gut function and sensation. Abnormalities in intestinal 5-

HT signaling have been demonstrated in a range of intestinal pathologies including inflammatory 

bowel disease (IBD) and irritable bowel syndrome (IBS).  Evidence from animal studies has 

shown that perinatal exposure to selective serotonin reuptake inhibitors (SSRIs) can disrupt the 

development of the central serotonergic system resulting in alterations in brain 5-HT content, 
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peripheral 5-HT levels, 5-HT receptor density and serotonin transporter expression [171, 172]. If 

like the brain, the fetal/neonatal gut serotonergic system is also sensitive to SSRI-induced 

perturbations; it may have long-term implications for intestinal health in the offspring. Taking 

cues from the pathophysiology of these gastrointestinal disorders and given that early onset IBD 

is becoming increasingly common [384], I hypothesized that prenatal and neonatal exposure to 

the SSRI Fluoxetine (Prozac®) will lead to changes to the signaling and biosynthesis 

components of the gut serotonergic pathway, and that such changes will also be associated with 

alterations to 5-HT levels and serotonergic signaling components, leading to increased intestinal 

inflammation, impaired barrier permeability and/or changes in the gut microbiota. Therefore my 

aims were (Figure 1): 

1) To determine whether fetal and neonatal exposure to an SSRI will lead to altered 5-HT 

levels and changes to the components of the gut serotonergic system. 

2) To determine whether changes to the gut serotonin signaling system and 5-HT levels are 

accompanied by an increase in colonic damage and inflammation.  

3) To determine whether disruption to the serotonergic signaling pathway will be 

accompanied by dysbiosis of the gut microbiota and altered gene expression of key proteins 

involved in intestinal barrier function. 

 

 

 

 

 

 



M.Sc. Thesis- H. Law; McMaster University- Medical Sciences 

 

25 

 

 

 

 

CHAPTER 2: MATERIALS AND METHODS 

 

2.1 Aim 1- Determining EC cell number, 5-HT levels and expression of the components of 

the gut serotonergic system. 

 

2.1.2 Production of animal model 

Nulliparous female Wistar rats (N=15 per group) were randomized to receive vehicle (flavoured 

gelatin base) or fluoxetine hydrochloride (10 mg/kg/d, Toronto Research Chemicals, North York, 

ON) daily 2 weeks prior to mating until weaning (postnatal day 21; PND21) (Figure 2). Based 

on prior studies in pregnant rats, this dose of fluoxetine is predicted to yield serum 

concentrations in the rat which are comparable to serum levels in humans (ranging from 5-577 

ng/mL during pregnancy and 21-506 ng/mL during lactation) determined from a large 

therapeutic drug monitoring database [385]. Previous studies have demonstrated that in rodents, 

five days of oral fluoxetine administration is sufficient to yield steady state serum levels [386]. 

All dams were allowed to deliver normally. After parturition animals were sacrificed and colon 

tissue was collected at birth (P1), weaning (P21) and adulthood (26 weeks of age) as previously 

described [387, 388]. Briefly, the colon was washed in PBS and then either fixed in 10% neutral 

buffered formalin for 24 hours or snap frozen in liquid nitrogen. Fixed samples were dehydrated 

in 70% ethanol and embedded in paraffin and sectioned for histological analysis. Frozen samples 

were stored at -80°C until needed for molecular analysis. 
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2.1.3 Determining EC cell number by immunohistochemistry 

SSRI treated and control offspring were sacrificed during the early postnatal period (P1 and 

P21). The colon was collected and processed for frozen sections. EC cells were immunolabeled 

in cryosections of colon by overnight incubation with polyclonal rabbit anti-rat antibody directed 

against 5-HT (1:5000 dilution; Immunostar). Sites of antibody binding were detected by 

incubation for 3 hours with goat anti-rabbit Alexa Fluor 488 (1:200 dilution; Molecular Probe) 

and nuclei were identified by staining DNA with Bisbenzimide (1μg/mL dilution in PBS; 

Sigma). The slides were cover slipped with Vectashield mounting medium and the tissues 

photographed. EC cell numbers were quantified by counting the number of 5-HT positive cells 

per 10 crypts (for colon) as previously published [303]. 

 

2.1.4 Measuring serum 5-HT levels 

Fasting blood samples were collected from offspring of rats sacrificed in adulthood (age 26 

weeks). After solid-phase extraction, the serum levels of 5-HT were analyzed using a 

commercially available rat ELISA kit (MyBioSource; San Diego, California, USA).  

 

2.1.5 Determining gene expression of the gut 5-HT pathway 

 

2.1.5.1 Tissue homogenization and RNA Isolation 

For the duration of the process, colon samples were kept on crushed dry ice and all collection 

tubes pre-cooled. Frozen tissue was placed in the mortar and ground to a fine powder and kept 

chilled by liquid nitrogen. The resulting powder was stored at -80°C. Following disruption of 

tissue, purification and isolation of total colonic RNA was done following protocol from the 

Qiagen Allprep mini kit and homogenized using a needle and syringe. A spectrophotometer 

(ND-1000, Nanodrop Technologies Inc, Wilmington, DE) measured RNA yield and purity. 
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Single-stranded cDNA was synthesized using 1 μg of RNA and a High Capacity reverse 

transcription kit (Applied Biosciences®). A starting material of 30 mg was used. Sample lysates 

were washed in 70% ethanol by running them through an RNeasy spin column and were further 

purified through subsequent buffer washes. Resultant RNA was eluted from column in 30 µL of 

RNase-free water and immediately stored at -80°C until use for extraction of total RNA for 

quantitative real-time PCR analysis.  

 

2.1.5.2 Evaluation of gene expression 

Expression of selected genes was evaluated by quantitative real-time PCR (qPCR). qPCR was 

performed using PerfeCTa® SYBR® Green FastMix® (Quanta Biosciences), a Light-cycler 480 

real-time PCR detection system (Roche Applied Sciences) using specific primers coding for 

components of the 5-HT signaling and biosynthesis pathway including, serotonin receptors 

(Htr1a, Htr1b, Htr1d, Htr2a, Htr2b, Htr3a, Htr3b, Htr4, and Htr7); the plasma membrane 

serotonin transporter (SERT); rate-limiting enzyme in 5-HT synthesis (Tph1) and aromatic L-

amino acid decarboxylase (enzyme involved in serotonin synthesis); transcription factor PET1 

(Fev), and Monamine oxidase-A (Mao A; enzyme involved in 5-HT degradation). Primers were 

designed for each target using Pubmed’s nucleotide database. The FASTA sequence was entered 

in Primer Express® Software (Version 3.0; Life Technologies) under the sequence tab section. 

Appropriate sequences were selected based on a ∆G < -9 and with minimal hairpins using Oligo 

Analyzer (Integrated DNA Technologies®). Primers were synthesized by MOBIX, McMaster 

University’s DNA sequencing and oligo synthesis facility. Before use, they were validated by 

assessing standard and melting point curves. Expression data were normalized to β actin, 18S, 

and HPRT messenger RNA (mRNA) expression and presented as a relative message level. 

(Primer sequences can be found in Appendix J, Table 11) 

http://www.quantabio.com/product.php?base_id=95072
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2.2 Aim 2- Determining macroscopic disease score and targets of inflammation  

2.2.1 Production of animal model 

Nulliparous female Wistar rats (N=15 per group) were randomized to receive vehicle (flavoured 

gelatin base) or fluoxetine hydrochloride (10 mg/kg/d, Toronto Research Chemicals, North York, 

ON) daily 2 weeks prior to mating until weaning (postnatal day 21; PND21) (Figure 2). Based 

on prior studies in pregnant rats, this dose of fluoxetine is predicted to yield serum 

concentrations in the rat which are comparable to serum levels in humans (ranging from 5-577 

ng/mL during pregnancy and 21-506 ng/mL during lactation) determined from a large 

therapeutic drug monitoring database [385]. Previous studies have demonstrated that in rodents, 

five days of oral fluoxetine administration is sufficient to yield steady state serum levels [386]. 

All dams were allowed to deliver normally. After parturition animals were sacrificed and colon 

tissue was collected at birth (P1), weaning (P21) and adulthood (26 weeks of age) as previously 

described [387, 388]. Briefly, the colon was washed in PBS and then either fixed in 10% neutral 

buffered formalin for 24 hours or snapped frozen in liquid nitrogen. Fixed samples were 

dehydrated in 70% ethanol and embedded in paraffin and sectioned for histological analysis. 

 

2.2.2 Evaluation of colon morphology and histology 

Formalin-fixed colon segments were paraffin embedded and stained with hematoxylin and eosin 

(H&E) to assess colon damage. The sections were examined with a light microscope and 

photographed. Images were scored by a single investigator who was blinded to the experimental 

group using a previous scoring system that considers changes in crypt architecture, cellular 

infiltration, goblet cell depletion and crypt abscess [389].  
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2.2.3 Tissue homogenization and RNA Isolation 

For the duration of the process, colon samples were kept on crushed dry ice and all collection 

tubes pre-cooled. Frozen tissue was placed in the mortar and ground to a fine powder and kept 

chilled by liquid nitrogen. The resulting powder was stored at -80°C. Following disruption of 

tissue, purification and isolation of total colonic RNA was done following protocol from the 

Qiagen Allprep mini kit and homogenized using a needle and syringe. A spectrophotometer 

(ND-1000, Nanodrop Technologies Inc, Wilmington, DE) measured RNA yield and purity. 

Single-stranded cDNA was synthesized using 1 μg of RNA and a High Capacity reverse 

transcription kit (Applied Biosciences®). A starting material of 30 mg was used. Sample lysates 

were washed in 70% ethanol by running them through an RNeasy spin column and were further 

purified through subsequent buffer washes. Resultant RNA was eluted from column in 30 µL of 

RNase-free water and immediately stored at -80°C until use for extraction of total RNA for 

quantitative real-time PCR analysis.  

 

2.2.4 Evaluation of inflammatory gene expression 

Expression of selected genes was evaluated by quantitative real-time PCR (qPCR). qPCR was 

performed using PerfeCTa® SYBR® Green FastMix® (Quanta Biosciences), a Light-cycler 480 

real-time PCR detection system (Roche Applied Sciences) using specific primers for 

inflammatory markers including: IL (Interleukins) -1β, 6, 10, and 13, MCP1 (monocyte 

chemoattractant protein 1), TNFα (tumour necrosis factor α), F4/80 (Macrophage marker) and 

CD68 (cluster of differentiation 68). Primers were designed for each target using Pubmed’s 

nucleotide database. The FASTA sequence was entered in Primer Express® Software (Version 

3.0; Life Technologies) under the sequence tab section. Appropriate sequences were selected 

based on a ∆G < -9 and with minimal hairpins using Oligo Analyzer (Integrated DNA 

http://www.quantabio.com/product.php?base_id=95072
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Technologies®). Primers were synthesized by MOBIX, McMaster University’s DNA 

sequencing and oligo synthesis facility. Before use, they were validated by assessing standard 

and melting point curves. Expression data were normalized to β actin, 18S, and HPRT messenger 

RNA (mRNA) expression and presented as a relative message level. (Primer sequences can be 

found in Appendix J, Table 11) 

 

2.3 Aim 3- Determining the composition of the gut microbiota and tight-junction 

associated protein expression 

 

2.3.1 Production of animal model 

Nulliparous female Wistar rats (N=15 per group) were randomized to receive vehicle (flavoured 

gelatin base) or fluoxetine hydrochloride (10 mg/kg/d, Toronto Research Chemicals, North York, 

ON) daily 2 weeks prior to mating until weaning (postnatal day 21; PND21) (Figure 2). Based 

on prior studies in pregnant rats, this dose of fluoxetine is predicted to yield serum 

concentrations in the rat which are comparable to serum levels in humans (ranging from 5-577 

ng/mL during pregnancy and 21-506 ng/mL during lactation) determined from a large 

therapeutic drug monitoring database [385]. Previous studies have demonstrated that in rodents, 

five days of oral fluoxetine administration is sufficient to yield steady state serum levels [386]. 

All dams were allowed to deliver normally. After parturition animals were sacrificed and colon 

tissue was collected at birth (P1), weaning (P21) and adulthood (26 weeks of age) as previously 

described [387, 388]. 

 

2.3.2 Evaluation of tight-junction associated protein gene expression 

Expression of selected genes was evaluated by quantitative real-time PCR (qPCR). qPCR was 

performed using PerfeCTa® SYBR® Green FastMix® (Quanta Biosciences), a Light-cycler 480 

http://www.quantabio.com/product.php?base_id=95072
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real-time PCR detection system (Roche Applied Sciences) using specific primers for the 

evaluation of gut permeability by examining expression of tight-junction associated proteins: 

CLDN (claudin) 1, 3, OCLN (occludin), and ZO-1 (zonula occludin). Primers were designed for 

each target using Pubmed’s nucleotide database. The FASTA sequence was entered in Primer 

Express® Software (Version 3.0; Life Technologies) under the sequence tab section. Appropriate 

sequences were selected based on a ∆G < -9 and with minimal hairpins using Oligo Analyzer 

(Integrated DNA Technologies®). Primers were synthesized by MOBIX, McMaster University’s 

DNA sequencing and oligo synthesis facility. Before use, they were validated by assessing 

standard and melting point curves. Expression data were normalized to β actin, 18S, and HPRT 

messenger RNA (mRNA) expression and presented as a relative message level. (Primer 

sequences can be found in Appendix J, Table 11) 

 

2.3.3 Fecal Sample Collection  

Stool was collected from offspring at 24 weeks of age for gut microbiota profiling. Samples were 

individually stored at -80°C immediately after collection (Figure 3).  

 

2.3.3.1 Extraction of DNA from fecal samples  

DNA was extracted from a single fecal sample taken from each rat using a standard 

extraction/purification method for mixed clinical samples as previously described [390, 391]. 

This approach involved the basic steps of mechanical lysis, chemical lysis, and DNA purification 

in a series of 10 steps. Approximately 300 µL of feces was placed in a 2mL plastic screw top 

tube containing 0.2 g of 2.0 mm diameter ceramic beads, and suspended in 800 µL of 200 mM 

NaPO4 (pH 8) and 100 µL of GES.  The tube was homogenized at 3000 r.p.m for 3 minutes in a 

bead-beater instrument two times. Approximately 0.2 grams of 0.1 mm diameter ceramic beads 

were added and then homogenized at 1500 r.p.m for an additional 3 minutes. Samples were then 
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subjected to a two-step enzymatic lysis. The first comprised of an incubation at 37°C water bath 

for 1-1.5 hours in a 110 µL solution of 50 µL of lysozyme (100 mg/mL in H2O), 50 µL of 

mutanolysin (10 U/µl) and 10 µL of RNase A (10 mg/mL in H2O). In the second stage, samples 

were incubated for 0.5-1.5 hours in 125 µL solution of 25 µL 25% SDS, 25 µL Proteinase K, and 

75 µL 5 M NaCl. Screwcap tubes were then centrifuged at max speed for 5 minutes and then 900 

µL of supernatant was removed and transferred to a 2 mL tube containing 900 µL (equal 

volume) of 25:24:1 phenol-chloroform-isoamyl alcohol. The solution was vortexed and then 

certrifuged at max speed (15000 rpm; Eppendorf 5424) for 10 minutes, and the top layer 

transferred to a sterile 1.5 mL tube. Purification and final elution of DNA was done using a 

Zymo DNA clean and concentrator 250 kit. DNA was eluted in 50 µL of sterile DNase/RNase 

free water pre-heated at 65°C. DNA concentration and quality in the extracts was determined 

with a Nanodrop 1000 spectrophotometer Thermo Scientific. Extracted DNA was stored at -

80°C until needed for PCR amplification.  

 

2.3.3.2 Bacterial profiling of 16S rRNA genes using Illumina Miseq Sequencing 

Variable region 3 (V3) of bacterial 16S ribosomal RNA genes present in each fecal community 

was amplified by PCR, and the resulting amplicons were sequenced on an Illumina MiSeq 2000 

instrument. Samples were amplified in triplicate using a Veriti® 96-Well Fast Thermal Cycler, 

model 9902. The PCR reaction mixture in a volume of 60 µL contained 6 μL (10 pmol/µL) each 

of V3 forward and barcoded reverse primers, 1.5 µL magnesium chloride (MgCl2) (50 mM) 

solution, 6 µL 10 x PCR buffer, 1 uL dNTPs (10 mM each), 34.25 uL dH2O, 0.25 uL Taq 

Polymerase, and 5 uL Template DNA (30 ng total) with the following cycling conditions: 30 

cycles (94°C, 30 s, 50°C, 30 s; 72°C, 30 s) after an initial denaturation of 2 min at 94°C. 
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Amplicons from the triplicate reactions were pooled together, and separated electrophoretically 

on a 2% agarose gel.  

 

2.3.3.3 Microbial Sequencing and analysis 

Analysis was performed using an in-house bioinformatics pipeline that generates clusters of 

operational taxonomic units (OTUs), taxonomic assignment and various measures of alpha and 

beta-diversity. PCR products were sequenced using the Illumina Miseq with paired-end reads. 

Custom Perl scripts were developed in-house to process the sequences. First, Cutadapt [392] was 

used to trim these sequences to the V3 region, ridding of any sequences surpassing this region. 

Next, sequences were aligned with their pair using PANDAseq [393]; during this alignment, any 

mismatches or ambiguous bases were culled. Operational taxonomic units (OTUs) were picked 

using AbundantOTU and as described previously [394] with a clustering cutoff of 97%. 

Taxonomy of the resultant OTUs was assigned via comparison of a representative sequence of 

the unit to the Greengenes reference database [395] using the Ribosomal Database Project (RDP) 

classifier [396].  

 

 Comparative 16S rRNA gene sequence analysis was used to determine differences in the 

bacterial composition between groups were summarized with the QIIME (Quantitative insights 

Into Microbial Ecology) software package [397, 398]. Comparisons were made between control 

and treated offspring within each sex by Student’s t-test with Bonferroni correction. Taxonomic 

units were excluded from analysis if 1) they were undefined at the level of analysis or 2) less 

than 10% of all samples had detectable levels of the OTU. Pricincipal Component of Analysis 

(PCoA) plots were made using R 3-1-0.  
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2.4 Statistical Analysis 

Analysis was performed using SPSS software (SPSS release 20.0, IBM, Chicago, IL, USA) and 

plotted using GraphPad Prism version 6.00 for Windows, (GraphPad Software Inc., San Diego, 

CA, USA). The results are expressed as means ± S.E.M. Data were tested for normality with the 

Kolmogorov-Smirnov test and Grubbs test method to identify outliers. Comparisons between 

two means were tested with the Student’s t test. All tests were two-sided and significance level 

was set at 0.05. 
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Serotonin (5-HT)

SSRIs

 

Figure 1 Study aims. Evidence from animal studies has shown that perinatal exposure to selective serotonin reuptake inhibitors (SSRIs) can 

disrupt the development of the central serotonergic system resulting in alterations in brain 5-HT content, peripheral 5-HT levels, 5-HT 

receptor density and serotonin transporter expression. If like the brain, the fetal/neonatal gut serotonergic system is also sensitive to SSRI-

induced perturbations; it may have long-term implications for intestinal health in the offspring. Therefore I hypothesized that prenatal and 

neonatal exposure to SSRI fluoxetine will lead to changes to the components of the gut serotonergic pathway. This will also be accompanied 

by alterations to peripheral serotonin levels. Disruptions to serotonin levels caused by changes in expression of key serotonergic pathway 

components may independently or mediate changes to the gut microbiota exacerbate intestinal inflammation. Solid lines denote determined 

associations according to previous literature; broken line depicts possible associations. 
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Figure 2 Production of the animal model. Nulliparous female Wistar rats were randomized to receive vehicle or fluoxetine hydrochloride (10 mg/kg/d), Toronto Research Chemicals, 

North York, ON) daily by oral administration 2 weeks prior to mating until weaning (postnatal day 21; PND 21). Outcome measures related to obesity, including body weight and 

visceral fat were determined. Colon was collected at P1, P21 and week 24. Fecal samples were collected from offspring postnatally at 24 weeks of age. 
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Figure 3 Overview of methods involved in phylogenetic identification and detection of microbial groups or species for Specific Aim #3. DNA was extracted from 

fecal samples and amplicons of the V3 hypervariable region from the16S rRNA were made by PCR for Illumina sequencing. Data analysis occurred by QIIME.  
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CHAPTER 3: RESULTS 

3.1 Determine whether prenatal and neonatal fluoxetine exposure will lead to altered 

peripheral 5-HT levels and changes to the components of the gut serotonergic system 

Prenatal exposure to SSRIs, a class of antidepressants, has been shown to alter serotonergic 

signaling in the brain. However, the effects of SSRIs on peripheral serotonin (5HT) synthesis 

and/or signaling have largely been ignored. A recent review suggested that there may be an 

association between in utero exposure to SSRIs and enteric nervous system (ENS) function 

[169]. 5-HT in the gut is critical for intestinal function and elevated peripheral 5-HT levels and 

dysregulation of the serotonergic pathway is associated with intestinal diseases including IBS 

and IBD. 

 

 Therefore, the goal of this first aim was to determine the effects of perinatal exposure to the 

SSRI fluoxetine (Prozac®) on EC cell number- the primary source of 5-HT in the body; serum 5-

HT levels and components of the 5-HT signaling pathway. A comparison of the number of EC 

cells between control and fluoxetine-exposed offspring was determined by sacrificing, collecting 

and processing colon for frozen sections at P1 and P21. Colonic EC cells were immunolabeled in 

cryosections with polyclonal rabbit antibody directed against 5-HT. Sites of antibody binding 

were detected with goat anti-rabbit Alexa Fluor 488 and nuclei identified by staining DNA with 

Bisbenzimide. EC cell numbers were quantified by counting 5-HT positive cells per 10 crypts 

(for colon) as previously published [303]. Serum 5-HT levels were determined by ELISA from 

fasting blood samples collected from sacrificed offspring in adulthood. Gene expression of the 
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gut serotonergic pathway was determined by isolating RNA from snap frozen colon sections 

collected from animals sacrificed in adulthood and evaluating selected genes by qPCR. The 

purpose behind the aforementioned experiments was to establish whether prenatal and neonatal 

SSRI exposure has similar effects in the periphery as it does in the central compartment.  

 

3.1.2 Perinatal exposure to fluoxetine alters EC cell number and increases blood 5-HT 

concentrations 

At postnatal day 1 (P1), there was a significant decrease in colonic EC cell number in the 

fluoxetine exposed group compared to controls (Figure 4). By weaning (Postnatal day 21; P21), 

EC cell number was significantly increased in the treatment group (Figure 5). At 26 weeks 

(adulthood), serum 5-HT levels were significantly elevated in treated male (51.8 ± 13.2 vs. 39.0 

± 5.90; p= 0.005) but not female offspring (33.6 ± 2.21 vs. 35.3 ± 2.44) (Figure 6).  

 

3.1.3 Sex-dependent changes in serotonergic synthesis, catabolism and signaling 

In male adult offspring, there were no differences in the expression of genes involved in 5-HT 

synthesis between treatment groups (Tph1 2.1 ± 0.40 vs. 1.9 ± 0.34; p= 0.696) and PET1 (1.4 ± 

0.39 vs. 1.3 ± 0.31; p=1.00). However, transcripts encoding the enzyme MAO (1.6 ± 0.2 vs. 3.1 ± 

0.60; p value= 0.043) (Figure 9) and 5HT2A receptor (1.1 ± 0.50 vs. 4.4±1.34; p-value= 0.009) 

(Figure 7) were significantly decreased in fluoxetine-exposed offspring. Other receptor subtypes 

(5-HT1a, 5-HT1b, 5-HT1d, 5-HT2b, 5-HT3a, 5-HT3b, 5-HT4, and 5-HT7) and the serotonin 

transporter (SERT; 5-HTT), levels remained unchanged between treatment groups (Figure 7). In 

female offspring, fluoxetine exposure did not significantly alter the expression of any genes 

involved in 5-HT synthesis (TPH1), transport (SERT), signaling (5-HT1a, 5-HT1b, 5-HT1d, 5-

HT2a, 5-HT2b, 5-HT3a, 5-HT3b, 5-HT4, and 5-HT7) or degradation (MAO) ((Figures 8 and 10).  
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3.2 Determine macroscopic disease score and expression of inflammatory targets 

 

In animal models, 5-HT has been considered to have a proinflammatory role, particularly in the 

pathogenesis of intestinal inflammation. Patients with colonic inflammation and inflammatory 

bowel disease (IBD) demonstrate an increase in the number of 5-HT-producing enterochromaffin 

(EC) cells and subsequently elevated 5-HT levels. EC cells respond to inflammatory responses 

such as cytokines and bacterial infection by increasing their release of 5-HT. Such pathologies 

are accompanied by increased in pro-inflammatory markers IL-1β and 6 in the colon.  Indeed, 

mouse models of DSS induced colitis have elevated colonic IL-13 levels accompanied by up-

regulation of EC cell numbers and colonic 5-HT content. Many components of the serotonergic 

system itself have been shown to directly mediate this response. Therefore, my second aim was 

to determine whether changes to the gut serotonergic system and 5-HT levels are accompanied 

by an increase in colonic damage and inflammation. 

 

Colon morphology and histology were determined using colon sections taken in adulthood and 

stained with hematoxylin and eosin (H & E) to assess damage using a previous scoring system 

that considers changes in crypt architecture, cellular infiltration, goblet cell depletion and crypt 

abscess [389]. At the molecular level, inflammation was evaluated by gene expression of pro- 

and anti-inflammatory targets by qPCR. The purpose behind these experiments was to evaluate 

whether alterations to colonic 5-HT signaling and peripheral 5-HT levels in adulthood was 

associated with inflammation. 

 

3.2.1 Perinatal exposure to fluoxetine does not increase colonic damage or inflammation  

 

Macroscopic disease and inflammation scores were similar between SSRI-treated offspring and 

controls in both males and females (Figures 11 and 12). In support of this finding, there were no 
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significant changes in the mRNA expression of the proinflammatory (IL-1β, IL-6, and IL-13; 

TNF-α, and CD68) or anti-inflammatory (IL-10) cytokines (Figures 13 and 14). However, 

MCP1 was significantly lower in fluoxetine-exposed male offspring (0.238 ± 0.0538 vs. 0.0845 

± 0.0360; p= 0.0489) (Figure 13).  

 

3.3 Determine the effects prenatal and neonatal exposure to fluoxetine on TJ structural 

components and the composition of the gut microbiota  

Animals with genetic ablation of SERT, which leads to an increase in bioavailable 5-HT, are well 

characterized as having impaired intestinal barrier function [285]. Similarly in humans, the loss 

of epithelial barrier integrity, triggered by multiple factors coming from the lumen or the 

mucosa, may contribute to the generation or perpetuation of C- and/or D- IBS symptoms [208, 

335-340]. This increase in barrier dysfunction may arise as the result of a combined process of 

low-grade mucosal inflammation and immune activation caused by altered gastrointestinal 5-HT 

homeostasis [237]. The use of SSRIs in adulthood has been frequently associated with increased 

incidence of diarrhea [341, 342]. Since animal models with dysregulated 5-HT homeostasis 

exhibit changes and SSRI use in adulthood are both associated with alterations in intestinal 

permeability it is plausible that prenatal SSRI exposure will have similar effects in the offspring. 

 

In adults, interactions between the microbiota and 5-HT signaling in the GI tract have been 

demonstrated [367]. Moreover, Clarke et al. [368] reported that animals lacking gut microbiota 

(i.e. germ free [GF] animals) have perturbations in hippocampal 5-HT production versus 

conventionally colonized control animals. Results from these studies strongly suggest a link 

between the gut microbiota and regulation of serotonergic signaling pathways.  
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Inflammatory gastrointestinal disorders including IBS and IBD are characterized by instability of 

the enteric microbiota and aberrant serotonergic functioning [292]. Earlier studies have shown 

reductions of Lactobacillus spp. and Bifidocbacterium spp. and increased number of 

Enterobacteriaceae in the gut flora of IBS patients when compared to healthy volunteers [363, 

364]. Furthermore, patients with increased colonic colonization to Bacteroides/Prevotella cluster 

have an increased susceptibility to UC [365, 366]. The gut microbiota is established during infant 

life. More recently, it has been suggested that medication use may also affect the establishment 

of the enteric microbiota [383], suggesting that prenatal exposure to maternal medication, 

including SSRIs, may alter the gut microbiota in the offspring. Therefore, our final aim was to 

determine whether disruption to the serotonergic signaling pathway via prenatal exposure to 

fluoxetine will also be accompanied by dysbiosis of the gut microbiota and altered expression of 

tight-junction associated proteins in adulthood.  

 

The evaluation of colonic mRNA expression of TJ associated proteins was done by qPCR. 

Comparative 16S rRNA gene sequence analysis was used to determine differences in the 

bacterial composition between groups were summarized with the QIIME (Quantitative insights 

Into Microbial Ecology) software package [397, 398]. 

 

3.3.1 Perinatal fluoxetine exposure does not alter expression of tight-junction associated 

proteins 

Fetal and neonatal exposure to fluoxetine did not significantly alter the expression of the gut 

permeability markers CLND1, CLDN3, OCLN or ZO-1 between treatment groups in both sexes 

(Figures 15 and 16).  
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3.3.2 Perinatal fluoxetine exposure is associated with alterations to the adult gut 

microbiota 

At 24 weeks, there were no significant differences in the major mammalian phyla Bacteroidetes 

and Firmicutes between treatment and control groups in either sex (Table 1). Class Bacilli (P= 

0.0020) (Phylum Firmicutes) was significantly higher in treated female offspring compared to 

controls (Table 2). At the Order level (Table 3) there were no significant differences between 

treatment groups in male offspring. However, Lactobacillales (Phylum Firmicutes) was 

significantly less abundant in female offspring exposed to fluoxetine. Similarly, at the Genus 

level (Table 4); there were no differences between treatment groups in male offspring. For 

instance, Prevotella (Phylum Bacteoridetes) was similar between treatment groups in both male 

(P=0.519) and female (P=0.72) offspring. However, Lactobacillus (Phylum Firmicutes; female 

only, P<0.001) were significantly higher in offspring exposed to fluoxetine.  

 

When looking at overall β diversity (Appendix G and H; Figures 22 and 23), it appears that 

despite the aforementioned significant differences in certain bacterial groups between treatment 

and control offspring, the gut microbiota overall remain similar in both sexes. Thus, the lack of 

discrete clusters reflects the subtle differences in the bacteria populations observed in adulthood. 
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Figure 4 At postnatal day 1 (PND1), there was a significant decrease in colonic 

enterochromaffin (EC) cell number in the fluoxetine-exposed group compared to controls 

(P=0.041). Pups were sacrificeed at PND1 and colon was collected for immunohistochemistry. 

EC cells were labelled using polyclonal rabbit anti-rat antibody directed against 5-HT (1:5000 

dilution; Immunostar); and goat anti-rabbit Alexa Fluor 488 (1:200 dilution; Molecular Probe). 



M.Sc. Thesis- H. Law; McMaster University- Medical Sciences 

 

45 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* 

Figure 5 By weaning (Postnatal day 21; P21), fluoxetine exposure led to a 

significant increase in enterochromaffin (EC) cell number (P= 0.0012). Pups 

were sacrificed at P21 (weaning) colon was collected for 

immunohistochemistry. EC cells were labelled using polyclonal rabbit anti-rat 

antibody directed against 5-HT (1:5000 dilution; Immunostar); and goat anti-

rabbit Alexa Fluor 488 (1:200 dilution; Molecular Probe). 
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Figure 6 In adulthood (26 weeks), serum 5-HT levels were significantly elevated in 

treated male (mean ± SEM; 51.8 ± 4.41 vs. 39.0 ± 1.64; p= 0.005) but not female 

offspring (35.3 ± 2.44 vs. 33.6 ± 2.21; p= 0.616). Serum 5-HT levels were determined by 

blood samples collected using a commercially available rat ELISA kit.  
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Figure 7 Evaluation of colonic serotonergic genes in male offspring at 26 weeks was done by quantitative real-

time PCR (qPCR). Gene targets for this analysis included serotonin receptors. Transcripts encoding 5HT2A 

receptor (mean ± SEM; 1.1±0.50 vs. 4.4±1.34; p-value= 0.009) expression were significantly decreased in 

fluoxetine exposed males. Other receptor subtypes (Htr1a, Htr1b, Htr1d, Htr2b, Htr3a, Htr3b, Htr4, and Htr7) 

levels remained unchanged between treatment groups. Expression level is relative to housekeeping genes β-Actin, 

HPRT, and 18S. 
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Figure 8 Evaluation of colonic serotonergic genes in female offspring at 26 weeks was done by quantitative real-time 

PCR (qPCR). Gene targets for this analysis included serotonin receptors. Transcripts encoding receptor subtypes 

(Htr1a, Htr1b, Htr1d, Htr2a, Htr2b, Htr3a, Htr3b, Htr4, and Htr7) remained unchanged between treatment groups. 

Expression level is relative to housekeeping genes β-Actin, HPRT, and 18S.  
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Figure 9 Evaluation of colonic serotonergic genes in male offspring at 26 weeks was done by quantitative real-

time PCR (qPCR). Gene targets for this analysis included the plasma membrane serotonin transporter (SERT); 

rate-limiting enzyme in 5-HT synthesis (Tph1); transcription factor PET1, and Monoamine oxidase-A (Mao A; 

enzyme involved in 5-HT degradation). Transcripts encoding Mao (1.6 ± .20 vs. 3.1 ± 0.60; p value= 0.043) 

expression were significantly decreased in fluoxetine exposed males. Expression level is relative to 

housekeeping genes β-Actin, HPRT, and 18S.  
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Figure 10 Evaluation of colonic serotonergic genes in female offspring at 26 weeks was done by 

quantitative real-time PCR (qPCR). Gene targets for this analysis included the plasma membrane serotonin 

transporter (SERT); rate-limiting enzyme in 5-HT synthesis (Tph1); transcription factor PET1, and 

Monoamine oxidase-A (Mao A; enzyme involved in 5-HT degradation). No significant difference in 

transcript expression was seen for any gene targets between treatment groups. Expression level is relative to 

housekeeping genes β-Actin, HPRT, and 18S. Analysis separated by stage of cycle (estrus and diestrus) can 

be found in.   
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Figure 11 Hematoxylin- and eosin-stained histological sections of the colon taken from control and fluoxetine 

exposed offspring at 26 weeks of age. Top left, control male; Top right, Fluoxetine Male; Bottom left, control female; 

Bottom right, Fluoxetine female. Arrows indicate cellular infiltration. 
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Figure 12 Fetal and neonatal exposure to fluoxetine does not increase damage in the colon 

postnatally. Microscopic criteria for damage and inflammation were investigated by light 

microscopy on hematoxylin- and eosin-stained histological sections of the colon taken from 

control- and SSRI-exposed offspring at 26 weeks of age.  The histological criteria were 

based on the following: degree of mucosal architectural changes, cellular infiltration, goblet 

cell depletion, and presence of crypt abscesses (Khan et al., 2002. Infect Immun 70:5931-7).  
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Figure 13 Evaluation of colonic inflammation (Anti- and pro- inflammatory cytokines: IL-10 (Interleukin), 

TNF-α (tumour necrosis factor α), IL1B, IL6, and IL13; MCP 1 (monocyte chemoattractant protein 1); cluster 

of differentiation 68, CD68; F4/80, (Epidermal Growth Factor) in male offspring at 26 weeks by quantitative 

real-time PCR (qPCR). Fetal and neonatal exposure to fluoxetine did not increase colonic inflammation 

postnatally in adult males. However, MCP1 was significantly decreased in treated offspring (0.238 ± 0.0538 

vs. 0.0845 ± 0.0360; p= 0.0489). Expression level is relative to housekeeping genes β-Actin, HPRT, and 18S. 
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Figure 14 Evaluation of colonic inflammation in female offspring at 26 weeks by quantitative real-time PCR (qPCR). 

Fetal and neonatal exposure to fluoxetine does not increase colonic inflammation postnatally in adult females. 

Expression level is relative to housekeeping genes β-Actin, HPRT, and 18S. Analysis separated by stage of cycle 

(estrus and diestrus) can be found in Section 5.3 Table 2. (Anti- and pro- inflammatory cytokines: IL-10 (Interleukin), 

TNF-α (tumour necrosis factor α), IL1B, IL6, and IL13; MCP 1 (monocyte chemoattractant protein 1; cluster of 

differentiation 68, CD68; F4/80, Epidermal Growth Factor) 
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Figure 15 Evaluation of tight junction-associated proteins (claudin-1, CLND1/3; Occludin, OCLN; Zona 

Occludin-1, ZO-1) in male offspring at 26 weeks by quantitative real-time PCR (qPCR). Fetal and neonatal 

exposure to fluoxetine does not alter markers of gut permeability in adult males. Comparisons between treatment 

groups were done by independent samples t-test. Expression level is relative to housekeeping genes β-Actin, 

HPRT, and 18S. 
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Figure 16 Evaluation of tight junction-associated proteins (claudin-1, CLND1/3; Occludin, OCLN; Zona 

Occludin-1, ZO-1) in female offspring at 26 weeks by quantitative real-time PCR (qPCR). Fetal and 

neonatal exposure to fluoxetine does not alter markers of gut permeability in adult males. Comparisons 

between treatment groups were done by independent samples t-test. Expression level is relative to 

housekeeping genes β-Actin, HPRT, and 18S. 
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Figure 17 Percent relative abundance of bacteria at the phyla level in control and fluoxetine-exposed offspring in adulthood. This 

was done by bacterial profiling of 16S rRNA genes using Illumina Miseq Sequencing from fecal samples taken from offspring at 

24 weeks of age. 
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Phyla 
Male (mean±SEM)  

P-value  

Female (mean±SEM)  

P-value 
CON FLX CON FLX 

Actinobacteria 0.330 ± 0.067 0.442 ± 0.112 .383 0.442 ± 0.0777 0.248 ± 0.0247 .166 

Bacteroidetes 20.3 ± 2.85 20.0 ± 5.33 .961 16.9 ± 2.21 14.3 ± 2.17 .439 

Cyanobacteria 1.07 x10
-2 

± 2.89 x10
-3

 9.60 x10
-3 

± 2.71 x10
-3

 .734 3.94 x10
-3 

± 9.71 x10
-4

 6.85 x10
-3 

± 1.78 x10
-3

 .142 

Deferribacteres 7.67 x10
-3 

± 2.93 x10
-3

 0.0176 ±5.65 x10
-3

 .112 5.24 x10
-3

 ± 1.80 x10
-3

 2.22 x10
-3

 ± 7.82 x10
-4

 .237 

Firmicutes 76.8 ± 2.85 78.5 ± 5.35 .764 80.6 ± 2.37 83.9 ± 2.12 .338 

Fusobacteria 8.76 x10
-4 

± 5.81 x10
-5

 4.31 x10
-4 

± 1.45 x10
-4

 .043 3.91x10
-4 

± 1.64 x10
-4

 0 ± 0 .116 

Proteobacteria 0.3480 ± 0.0402 0.258 ± 0.0417 
.143 

 
0.266 ± 0.0767 0.18227 ± 0.0267 .059 

TM7 0.0383 ± 8.74 x10
-3

 0.0277 ± 9.41 x10
-3

 .432 0.0717 ± 0.0185 0.0759 ± .0218 .885 

Tenericutes 1.03 ± 0.158 0.675 ± 0.142 .128 1.50 ± 0.313 0.961 ± 0.149 .199 

Verrucomicrobia 0.0308 ± 0.0114 0.0205 ± 0.0113 .535 0.0167 ± 0.0105 0.139 ± 0.0466 .0120 

*Bonferroni correction P<0.005 

 

 

 

  

Table 1 Bacterial profiling of 16S rRNA genes using Illumina Miseq Sequencing from fecal samples taken from offspring at 24 weeks of age. Relative abundance (%) of 

phyla separated by sex. Statistical significance between control and treated offspring within each sex was determined by Student’s t-test. Rules for inclusion of gut 

microbiota in analysis: (1) Had to be defined; (2) Had to have at least 10% of all samples (CON and FLX) and have non-zero abundance. 



59 

 

 

Figure 18 Percent relative abundance of bacteria at the class level in control and fluoxetine-exposed offspring in adulthood (for all 

representative sequences >0.01%). This was done by bacterial profiling of 16S rRNA genes using Illumina Miseq Sequencing 

from fecal samples taken from offspring at 24 weeks of age. Legend is presented as Phyla_Class. 
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Class 
Male (mean±SEM)  

P-value 

Female (mean±SEM)  

P-value CON FLX CON FLX 

Actinobacteria_Actinobacteria 0.330 ± 0.0671 0.442 ± 0.112 .383 0.399 ± 0.0777 0.248 ± 0.0247 .166 

Bacteoridetes_       

Bacteroidia 20.2 ± 2.85 20.0 ± 5.33 .961 16.9 ± 2.21 14.3 ± 2.17 .439 

Cyanobacteria_class       

4C0d-2 4.89x10
-3

 ± 2.25x10
-3 

2.07 x10
-3

 ± 8.17x10
-3 

.319 1.78 x10
-3

 ± 8.27 x10
-4

 4.44 x10
-3

 ± 1.97 x10
-3

 .185 

Chloroplast 6.79 x10
-3

 ± 1.67 x10
-3

 3.25 x10
-3

 ±9.15 x10
-3

 .124 2.28 x10
-3

 ±4.40 x10
-4

 2.40 x10
-3

 ± 4.96 x10
-4

 .851 

Deferribacteres_Deferribacteres 7.67 x10
-3

 ± 2.93 x10
-3

 0.0176 ± 0.00565 .112 5.24 x10
-3

 ±1.80 x10
-3

 2.23 x10
-3

 ±7.82 x10
-4

 .237 

Firmicutes_class       

Bacilli 11.6 ± 2.53 12.5 ± 3.22 .825 6.62 ± 1.14 16.2 ± 2.54 .00200* 

Clostridia 65.0 ± 3.85 65.8 ± 6.47 .915 72.2 ± 3.21 67.6 ± 3.31 .350 

Fusobacteria 8.76 x10
-5

± 5.81 x10
-5

 4.31 x10
-4

 ± 1.45 x10
-4

 .0400 3.92 x10
-4

 ± 1.64 x10
-4

 0.00 .116 

Proteobacteria_class       

Alpha-Proteobacteria 0.0269 ± 0.00833 0.0457 ± 0.00796 .133 .0564 ± .0139  .0302 ± .0120 .185 

Beta-Proteobacteria 0.185 ± 0.0342 0.128 ± 0.0238 .215 .194 ± .0378 .112 ± .0135 .103 

Delta-Proteobacteria .0200 ± .00544 0.0161 ± .00220 .215 .0216 ± 5.07 x10
-3

 .0266 ± .00722 .564 

Gamma-Proteobacteria .0296 ± .00748 .0139 ±.00292 .0930 .0215 ± 6.70 x10
-3

 6.68 x10
-3

 ± 1.49 x10
-3

 .117 

TM7_TM73 .0382 ± .00874 .0277 ± .00941 .432 .0941 ± .0280 .0759 ± .0218 .645 

Tenericutes_class       

Erysipeltrichi .703 ± .133 .466 ± .115 .212 1.01 ± .232 .366 ± .0717 .0420 

Table 2 Bacterial profiling of 16S rRNA genes using Illumina Miseq Sequencing from fecal samples taken from offspring at 24 weeks of age. Relative abundance (%) of 

taxonomy class separated by sex. Statistical significance between control and treated offspring within each sex was determined by Student’s t-test and expressed as mean ± 

SEM . Rules for inclusion of gut microbiota in analysis: (1) Had to be defined; (2) had to have at least 10% of all samples and (3) have a non-zero abundance. 
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Mollicutes .295 ± .0930 0.153 ± .0219 .239 .461 ± .115 .596 ± .151 .487 

Verrucomicrobia_Verrucomicrob

iae 
.0308 ± .0113 .0205 ± .0113 .535 6.54 x10

-3
 ± 3.06 x10

-3
 .132 ± .0530 .0170 

*Bonferroni correction P<0.003 
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Figure 19 Percent relative abundance of bacteria at the level order in control and fluoxetine-exposed offspring in adulthood (for 

all representative sequences >0.01%). This was done by bacterial profiling of 16S rRNA genes using Illumina Miseq Sequencing 

from fecal samples taken from offspring at 24 weeks of age. Legend is presented as Phyla_Order. 
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Order 
Male (mean±SEM)  

P-value  

Female (mean±SEM)  

P-value CON FLX CON FLX 

Actinobacteria_order_       

Actinomycetales .102 ± .0228 .191 ± .0491 .091 .167 ± .0276 .134 ± .0274 .413 

Bifidobacteriales .0475 ± .0174 .0103 ± .00614 .086 .0233 ± .0975 2.31 x10
-3

 ± 8.76 x10
-4

 .122 

Coriobacteriales .0647 ± .00821 .160 ± .0576 .121 .0943 ± .0172 .118 ± .0308 .483 

Bacteroidetes_order_       

Bacteroidales 20.2 ± 2.85 20.0 ± 5.32 .961 16.9 ± 2.21 14.3 ± 2.17 .439 

Cyanobacteria_YS2 4.89 x10
-3

 ± 2.25 x10
-3

 2.07 x10
-3

 ± 8.17 x10
-4

 .261 1.78 x10
-3

 ± 8.27 x10
-4

 4.44 x10
-3

 ± 1.97 x10
-3

 .185 

Deferribacteres_order_       

Streptophyta 6.79 x10
-3

 ± 1.67 x10
-3

 3.25 x10
-3

 ± 9.15 x10
-4

 .081 2.28 x10
-3

 ± 4.40 x10
-4

 2.40 x10
-3

 ± 4.96 x10
-4

 .851 

Deferribacterales 7.67 x10
-3

 ±  2.93 x10
-3

 .0176 ± .00565 .112 5.24 x10
-3

 ± 1.80 x10
-3

 2.22 x10
-3

 ± 7.82 x10
-4

 .237 

Firmicutes_order_       

Bacillales 7.38x10
-3

± 2.23 x10
-3

 .0375 ± .0162 .069 .0331 ± .0126 7.93 x10
-3

 ± 2.70 x10
-3

 .139 

Lactobacillales 10.5 ± 2.54 12.3 ± 3.25 .647 5.35  ± .709 16.1 ± 2.54 <0.001 

Turicibacterales 1.11 ± .331  .0180 ± .00636 .024 .0106 ± 3.60 x10
-3

 7.38 x10
-3

 ± 2.43 x10
-3

 .495 

Clostridiales 64.9 ± 3.85 65.7 ± 6.45 .916 72.1 ± 3.21 67.5 ± 3.32 .349 

Fusobacteria_fusobacteriales 8.76 x10
-5

 ± 5.81 x10
-5

 4.31 x10
-4

 ± 1.45 x10
-4

 .043 3.91 x10
-4

 ± 1.64 x10
-4

 0.00 .116 

Proteobacteria_order_       

Rhizobiales 3.14 x10
-4

 ± 1.32 x10
-4

 <0.001  .080 1.24 x10
-4

 ± 6.59 x10
-5

 0.00  .191 

Burkholderiales .185 ± .0340 .128 ± .0238 .217 .194 ± .0378 .0136 .104 

Table 3 Bacterial profiling of 16S rRNA genes using Illumina Miseq Sequencing from fecal samples taken from offspring at 24 weeks of age. Relative abundance (%) of 

taxonomy order separated by sex. Statistical significance between control and treated offspring within each sex was determined by Student’s t-test and expressed as mean ± 

SEM. Rules for inclusion of gut microbiota in analysis: (1) Had to be defined; (2) had to have at least 10% of all samples and (3) have a non-zero abundance. 
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Neisseriales  1.06 x10
-4

 ± 5.44 x10
-5

 0.00 .102 1.97 x10
-4

 ± 9.03 x10
-5

 0.00 .149 

Desulfovibrionales   .0200 ± 5.44x10
-3

 .016 ± 2.20 x10
-3

 .543 .0215 ± 5.07 x10
-3

 .0266 ± 7.22 x10
-3

 .560 

Enterobacteriales .0231 ± 7.75x10
-3

 .0116 ± 2.49x10
-3

 .285 .0184 ± 6.43 x10
-3

 4.44 x10
-3

 ± 1.65 x10
-3

 .124 

Pasteurellales 5.31 x10
-3

 ± 1.41x10
-3

  3.13 x10
-3

 ± 1.24x10
-3

 .285 1.74 x10
-3

 ± 3.09 x10
-4

 1.13 x10
-3

 ± 3.52 x10
-4

 .219 

Pseudomonadales 4.46 x10
-4

 ±1.53 x10
-4

 3.03 x10
-4

 ± 1.82 x10
-4

 .555 6.83 x10
-4

 ± 3.07 x10
-4

 7.49x10
-4 

± 1.81 x10
-4

 .870 

TM7_CW040 .0381 ± 8.80x10
-3

 .0276 ± 9.36 x10
-3

 .438 .0941 ± .0280 .0759 ± .0218 .645 

Tenericutes _order_       

Eryspeltrichales .703 ± .133 .466 ± .115 .212 1.01 ± .017 .366 ± .0717 .0428 

Anaeroplasmatales 2.16 x10
-3

 ± 9.44 x10
-4

  1.26 x10
-3

 ± 5.15 x10
-4

 .489 3.52 x10
-3

 ± 1.06 x10
-3

 6.16 x10
-4

 ± 2.84 x10
-4

 .152 

Mycoplasmatales 3.49 x10
-5

 ± 3.49 x10
-4

 1.82 x10
-4

 ± 1.22 x10
-4

 .216 3.91 x10
-5

 ± 3.91 x10
-5

 4.46 x10
-3

 ± 2.68 x10
-3

 .132 

Verrucomicrobia_ 

Verrucomicrobiales 
.0308 ± .0114 .0205 ± .0113 .535 6.54 x10

-3
 ± 3.06x10

-3
 .139 ± .0465 .008 

*Bonferroni correction P<0.002 
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Figure 20 Percent relative abundance of bacteria at the genus level in control and fluoxetine-exposed offspring in adulthood (for 

all representative sequences >0.01%). This was done by bacterial profiling of 16S rRNA genes using Illumina Miseq Sequencing 

from fecal samples taken from offspring at 24 weeks of age. Legend is presented as Phyla_Genus. 
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Genus 
Male (mean±SEM)  

P-value  

Female (mean±SEM)  

P-value CON FLX CON FLX 

Actinobacteria_genus_       

Corynebacterium 2.87 x10
-4

 ± 1.42 x10
-4

 8.43 x10
-4

 ± 2.64 x10
-4

 .067 1.14 x10
-3

 ± 5.50 x10
-3

 3.27 x10
-4

 ± 2.17 x10
-4

 .275 

Bifidobacterium .0475 ± .0174 .0103 ± .00614 .086 .0233 ± .0975 2.31 x10
-3

 ± 8.76 x10
-3

 .122 

Adlercreutzia .0135 ± .00242 .0141 ± 3.62 x10
-3

 .880 .0259 ± .00515 .0201 ± 6.64 x10
-3

 .501 

Collinsella 1.07 x10
-4

 ± 1.07 x10
-4

 0.00 .362 4.31 x10
-4

 ± 1.41 x10
-4

 2.31 x10
-4

 ± 1.24 x10
-4

 
.333 

 

Bacteroidetes_genus_       

Bacteroides 1.14 ± .172 .979 ± .202 .541 .745 ± .0714 .545 ± .0477 .053 

Parabacteroides .122 ± 9.90 x10
-3

 .111 ± .0294 .743 .0959 ± .0186 .0745 ± .0155 .425 

Prevotella 13.0 ± 3.22 9.72 ± 3.55 .519 6.18 ± 1.66 5.37 ± 1.15 .724 

Allstipes .0460 ± .0139 .0419 ± 6.92 x10
-3

 .800 .0448 ± .0106 .0325 ± 8.62 x10
-3

 .413 

Deferribacteres_ Mucispirillum 7.6 x10
-3

7 ± 2.93 x10
-3

 .0176 ± 5.65 x10
-3

 .112 5.24 x10
-3

 ± 1.80 x10
-3

 2.23 x10
-3

 ± 7.82 x10
-4

 .237 

Firmicutes_genus       

Jeotgalicoccus 0.00 1.35 x10
-4

 ± 8.70 x10
-5

 .098 1.56 x10
-3

 ± 6.80 x10
-4

 0.00 .102 

Staphylococcus 2.44 x10
-3

 ± 9.46 x10
-4

 4.01 x10
-3

 ±1.17 x10
-3

 .315 4.01 x10
-3

 ± 1.02 x10
-3

 3.53 x10
-3

 ± 1.08 x10
-3

 .755 

Enterococcus  .0142 ± 5.80 x10
-3

 9.12 x10
-3

 ± .0279 .497 6.48 x10
-3

 ± 1.27 x10
-3

 .0112 ± 2.39 x10
-3

 .0750 

Lactobacillus 10.2 ± 2.56 9.37 ± 1.87 .970 5.20 ± .700 16.0 ± 2.54 <0.001* 

Lactococcus 2.88 x10
-4

 ± 1.46 x10
-4

 0 .107 2.42 x10
-4

 ± 1.28 x10
-4

 0.00 .158 

Streptococcus  .0849 ± .0136 .0944 ±.0206 .693 .133 ±.0346 .0579 ± .0166 .130 

Clostridium 1.30 x10
-4

 ± 6.52 x10
-5

 0.00 .0630 4.34 x10
-4

 ± 1.59 x10
-4

 0.00 .0560 

Table 4 Bacterial profiling of 16S rRNA genes using Illumina Miseq Sequencing from fecal samples taken from offspring at 24 weeks of age. Relative abundance (%) of 

taxonomy genus separated by sex. Statistical significance between control and treated offspring within each sex was determined by e a non-zero abundance. Student’s t-test and 

expressed as mean ± SEM . Rules for inclusion of gut microbiota in analysis: (1) Had to be defined; (2) had to have at least 10% of all samples and (3) have non-zero abundance. 
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Eubacterium  .996 ± .0224 .0642 ± 6.07 x10
-3

 .200 .103 ± .0149 .0870 ± .0122 .439 

Dehalobacterium .0833 ± .0221 .0760 ± .0162 .804 .0802 ± .0992 .0533 ± .0963 .081 

Blautia 5.54 ± 1.82 7.97 ± 2.81 .461 3.14 ± .677 2.71 ± .831 .687 

Clostridium  .0904 ± .0240 .0954 ± .0301 .896 .0597 ± .0102 .0694 ± .0153 .586 

Dorea .0140 ± 5.40 x10
-3

 .0198 ± 5.55 x10
-3

 .467 .0530 ± .0180 .0104 ± .00302 .107 

Lachnospira .590 ± .196 .974 ± .472 .419 .0808 ± .0202 .162 ± .0621 .171 

Moryella .0517 ± .0206 .142 ± .0508 .093 .0952 ± .0308 .043 ± .0124 .229 

Ruminococcus 2.17 x10
-4

 ± 1.16 x10
-4

 2.03 x10
-4

 ± 1.47 x10
-4

 .940 3.64 x10
-4

 ± 1.38 x10
-4

 3.51 x10
-4

 ± 1.85 x10
-4

 .955 

Peptococcus  3.65 x10
-3

 ± 2.67 x10
-3

 .0300 ± .0124 .0540 2.65 x10
-4

 ± 1.66 x10
-4

 1.34 x10
-4

 ± 1.34 x10
-4

 .580 

Peptostreptococcus 1.79 x10
-4

 ± 7.86 x10
-5

 2.72 x10
-4

 ± 1.10 x10
-4

 .489 3.77 x10
-4 

± 1.31x10
-4

 0.00 .032 

Anaerotruncus 9.19 x10
-3

 ± 3.43 x10
-3

 .0201 ± 5.76 x10
-3

 .106 .0150 ± 4.41x10
-3

 .0251 ± 9.28 x10
-3

 .295 

Clostridium  .0295 ± 5.23 x10
-3

 .0604 ± .0125 .021 .0473 ± .00639 .0308 ± 3.70 x10
-3

 .102 

Eubacterium .301 ± .0863 .266 ± .0533 .756 .300 ± .989 .296 ± .102 .975 

Oscillopsira .870 ± .240  .803 ± .139 .827 .938 ± .174  .894 ± .252 .883 

Ruminococcus 4.44 ± 1.13 4.28 ± .564 .909 6.59 ± 1.21 6.70 ± 1.07 .948 

Subdoligranulum  9.76 x10
-3

 ± 2.09 x10
-3

 9.00 x10
-3

 ± 2.77 x10
-3

 .824 .0100 ± 2.24 x10
-3

 .0105 ± 4.01 x10
-3

 .915 

Veillonella 4.68 x10
-5

 ± 4.68 x10
-5

 0.00 .362 1.39 x10
-3

 ± 5.96 x10
-4

 5.35 x10
-4

 ± 3.81 x10
-4

 .292 

Proteobacteria_Genus_       

Sutterella  .0550 ± .0177 .0500  ± .0177 1.00 5.74 x10
-4

 ± 3.49 x10
-4

 .0288 ± .0124 .028 

Comamonas 0.00 2.31x10
-4

 ± 1.32 x10
-4

 .100 3.16 x10
-3

 ± 1.76 x10
-4

 0.00 .147 

Neisseria 6.97 x10
-5

 ± 4.68 x10
-4

 0.00 .204 1.97 x10
-4

 ± 9.03 x10
-5

 0.00 .149 

Bilophila 3.12 x10
-3

 ± 1.13 x10
-3

 1.15 x10
-3

 ± 4.76 x10
-3

 .192 5.03 x10
-3

 ± 1.61 x10
-3

 4.89 x10
-3

 ± 2.09 x10
-4

 .048 
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Desulfovibrio 4.85 x10
-3

 ±  .0311 0.00 .184 2.00 x10
-4

 ± 1.46 x10
-4

 4.58 x10
-4

 ± 4.58 x10
-4

 .539 

LE30 9.00 x10
-3

 ± 2.64 x10
-3

 8.15 x10
-3

 ± 1.43 x10
-3

 .794 .0117 ± 2.46 x10
-3

 8.09 x10
-3

 ± 2.49 x10
-3

 .337 

Escherichia .0120 ± 3.42 x10
-3

 3.60 x10
-3

 ± 1.03 x10
-3

 .0470 9.13 x10
-3

 ± 2.42 x10
-3

 1.37 x10
-3

 ± 4.89 x10
-3

 .041 

Pasteurella 2.72 x10
-3

 ± 8.67 x10
-3

 1.77 x10
-3

 ± 8.61 x10
-3

 .460 8.28 x10
-4

 ± 1.95 x10
-4

 5.82 x10
-4

 ± 2.42 x10
-4

 .437 

Pseudomonas 4.68 x10
-5

 ± 4.68 x10
-5

 0.00 .396 2.96 x10
-4

 ± 1.16 x10
-4

 4.40 x10
-4

 ± 1.69 x10
-4

 .476 

Tenericutes_Genus_       

Allobaculum .179 ± .0428 .180 ± .0685 .987 .498 ± .141 .154 ± .0612 .0730 

Clostridium .271 ± .0890 .172 ± .0605 .404 .238 ± .0727 .0260 ± .0129 .0560 

Coprobacillus .0260 ± 7.58 x10
-3

 .0332 ± 8.27 x10
-3

 .532 .0696 ± .0198 .0287 ± 9.94 x10
-3

 .118 

Holdemania .0111 ± 4.25 x10
-3

 4.31 x10
-3

 ± 9.76 x10
-4

 .194 7.88 x10
-3

 ± 1.95 x10
-3

 4.84 x10
-3

 ± 2.17 x10
-3

 .283 

Anaeroplasma 2.16 x10
-3

 ± 9.44 x10
-4

 1.26 x10
-3

 ± 5.16 x10
-4

 .489 2.53 x10
-3

 ± 1.06 x10
-3

 6.16 x10
-3

 ± 2.84 x10
-4

 .152 

Mycoplasma 3.49 x10
-5

 ± 3.49 x10
-5

 1.82 x10
-4

 ± 1.22 x10
-4

 .216 3.91x10
-5

 ± 3.91 x10
-4

 4.46 x10
-3

 ± 2.68 x10
-3

 .132 

Verrucomicrobia_ 

Akkermansia  
.0307 ± .0114 .0203 ± .0118 .529 6.50 x10

-3
 ± 3.03 x10

-3
 .139 ± .0465 .00800 

*Bonferroni correction P< 0.001 
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CHAPTER 4: DISCUSSION  

In this study, I have shown that fetal and neonatal exposure to the SSRI fluoxetine results in 

altered expression of key components of 5-HT signaling and biosynthetic pathways in male, but 

not female, offspring. These changes in the gut serotonergic signaling pathway were not 

associated with increased intestinal inflammation. Interestingly, both male and female offspring 

of fluoxetine-exposed dams had significant changes in the composition of the gut microbiota in 

adulthood. Taken together these data suggest that early life exposure to SSRIs has the potential 

to alter gut development and perturb the normal gut microbiota. Importantly, changes in 

serotonergic signaling and/or composition of the gut microbiota following developmental 

exposure to SSRIs may be relevant in the pathophysiology of inflammatory gut disorders such as 

inflammatory bowel disease (IBD) or irritable bowel syndrome (IBS) later in life. 

 

4.1 Prenatal and neonatal fluoxetine exposure alters the number of colonic 5-HT containing 

EC cells 

Early developmental exposure to the SSRI fluoxetine may play a role in altered 5-HT production 

in adulthood. Although we observed changes in the number of EC cells at P1 and P21, we are not 

sure if these differences persist in adulthood, and how this may result in the increase in serum 5-

HT in adult males born to dams exposed to fluoxetine. This increase in circulating 5-HT can only 

be derived from the gut itself since 5-HT produced by the CNS is unable to cross the blood brain 

barrier [399]. Furthermore, postprandial 5-HT enters the bloodstream where it is rapidly taken up 

by platelets that also express the transporter [400]. Therefore, 5-HT found in the blood arises 
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primarily from 5-HT released from EC cells [187, 401]. This increase in serum 5-HT observed 

can be accounted for either by (1) an increase in EC cell number; (2) the EC cell’s increase 

capacity to endogenously synthesize 5-HT and/or (3) alterations to the serotonergic degradation 

pathway. It is possible that increased levels of 5-HT during gestation as a result of SSRI 

exposure resulted in disruption in an initial acute increase in serotonergic tone (steady state 

levels), leading to an increase in negative feedback which inhibits the development of the 

serotonergic system, resulting in disruptions to 5-HT signaling tone later in life [402]. The fact 

that a similarly significant increase in serum 5-HT concentration was not evident in the female 

animals reinforces the importance of investigating sex differences. Some limitations to this part 

of the analysis include not examining postnatal EC cell counts, or measuring fetal 5-HT exposure 

in this model.  

 

Both prenatal/neonatal SSRI exposure and SERT knockout models are known to disrupt the 

normal development of both serotonergic and non-serotonergic neurons in the CNS (Homberg et 

al., 2009). This disruption results in neurochemical and physiological changes including an 

increase in 5-HT synthesis and a decreased capacity to store 5-HT that results in markedly 

elevated extracellular 5-HT levels [220, 403, 404]. Besides the 5-HT producing neurons of the 

raphe nucleus, a diverse range of cell types briefly harbor SERT during neurodevelopment, thus 

explaining the widespread behavioural consequences that are associated with a disruption to 5-

HT homeostasis. Since 5-HT is required for the development of the CNS, understanding how this 

affects the development of the 5-HT-containing EC cells of the gut is required to determine how 

alterations in the levels of 5-HT or 5-HT receptors during specific developmental times modify 

the formation of the peripheral serotonergic system and influence intestinal health in the 

offspring later in life.  
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4.2  Sex-dependent changes in serotonergic pathways following developmental fluoxetine 

exposure  

Peripheral 5-HT levels depend on synthesis by Tph1, reuptake by SERT and subsequent 

degradation by MAO. In our model there does not appear to be a change in the former, but rather 

a perturbation in a key component of the degradation pathway. The increase in serum 5-HT in 

males coincides with a decrease in the metabolism of 5-HT as seen with the decrease in key 

regulator of 5-HT activity, intracellular enzyme MAO. The corresponding elevated serum 5-HT 

levels may indicate that potentially more 5-HT is being released as a result of higher 5-HT 

content due to a decrease in intracellular catabolism. We may not see these SSRI-related changes 

in our female offspring because the expression of MAO may be dependent on the stage of the 

estrus cycle (e.g. 30% reduction in expression between estrus and diestrus; Appendix D, Table 7). 

Furthermore, the sample size for different stages of the estrus cycle was small because although 

we documented the estrus cycle stage, we did not control for it. Although we did not measure 5-

HT levels at an earlier time point, knockout models of the main enzyme responsible for 5-HT 

degradation, MAO causes a nine-fold increase in the level of 5-HT in the brain during the first 

postnatal week of life [405]. During this period, 5-HT accumulation was associated with marked 

effects in the somatosensory and visual systems regions of the brain. Thus, it is possible that a 

similar disturbance in the gut may result in apparent functional differences, such as 

gastrointestinal motility in the gut. Indeed, we have preliminary that demonstrates the myenteric 

plexus in the colon is hyperplastic in SSRI-treated offspring at P21. 

 

Our finding that colonic SERT messenger expression in adulthood was not disrupted in our 

model means that fluoxetine has a minimal effect on the innate reuptake mechanisms in the 

periphery during maturity. Similar to our results, prenatal fluoxetine exposure has been 
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demonstrated to result in an overall increase in SERT expression in various brain regions at 

PND28, but not in adult life in the CNS [226, 406].  

 

Models of neuropsychiatric disorders demonstrate a sex-specific interaction between 5HT1A 

receptor availability and the MAO gene of the human serotonergic system, which suggests a 

neurobiological basis for sexual dimorphism in serotonin-modulated phenotypes (Mickey et al., 

2008). Mickey et al. [407] found that low-activity MAO genotype was associated with lower 5-

HT1A receptor concentrations in individuals suffering from depression. MAO knockout mouse 

models show increased extracellular 5-HT levels and decreased 5-HT1A receptor sensitivity and 

concentrations [408-410]. The reduced expression of 5-HT1A receptors has been explained as 

compensatory down-regulation resulting from excess extracellular 5-HT levels in animals that 

lack functional MAO enzyme [408-410]. This may provide a basis for the decrease of both 5-

HT2A and MAO expression and increase in serum 5-HT levels in our animal model. We found 

that 5-HT2A receptor expression significantly correlated with MAO transcript expression 

(r=0.421; p=0.015) (data not shown).   

 

In adulthood, male offspring exposed both in the prenatal and neonatal periods to the SSRI 

fluoxetine had significantly lower colonic 5-HT2A messenger expression compared to their non-

treated counterparts. In females, a similar trend was observed; however did not reach statistical 

significance (4.1 ± 2.64 vs. 1.4 ± 0.49; P= 0.689), even when separated by stage of cycle (estrus 

versus diestrus). The expression of this receptor in the brain is independent of sex hormones 

[411], confirming the similar downward pattern of expression in both sexes seen in the 

fluoxetine-treated group. 
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When compared to previous studies of prenatal exposure to fluoxetine, similar reductions in 

hypothalamic 5-HT2A/2C receptors have been observed in male rats at 70 days postnatal age [412]. 

Interestingly, these effects were not observed at P28, suggesting a delayed decrease in receptor 

density and function. As demonstrated by Lauder et al. [413], both under and over-stimulation of 

5-HT1A receptors by serotonergic drugs during prenatal development has also been shown to 

produce a significant reduction in the expression of its transcripts in the brain; whether these 

effects persist into adulthood is not known. Evidence from these studies suggests that appropriate 

levels of serotonergic stimulation of 5-HT receptors may be required for normal developmental 

regulation in the CNS, which may occur in the gut. 

 

As a consequence of altered 5-HT homeostasis in SERT knockout models, density in 5-HT 

receptor expression has been shown to vary (Haenisch et al., 2010). In contrast to chronic SSRI 

treatment which causes desensitization and thereby reduction of 5-HT1A/1B receptor function, 

these receptors are additionally down-regulated at the mRNA and protein level in SERTKO mice 

[414, 415] in several brain areas [416-418]. 5-HT2A receptors are similarly decreased in a variety 

of brain regions including the hypothalamus and cortex [419, 420].  In contrast, the 5-HT2C 

receptors show up-regulation in its brain regions [420].   

 

The 5-HT2A receptor is part of a closely related subgroup of 5-HT2 G-protein coupled receptors 

expressed predominantly in peripheral tissues, such as the stomach, intestine, heart and kidney 

[421-423]. In the mammalian gut, 5-HT2A promotes the contraction of gastric smooth muscle 

cells [424-426] and regulates secretions from epithelial cells [427-431]. This serotonergic 

receptor appears as early as embryonic day 14 (E14) on ganglia in the CNS [214], therefore it is 

possible that any perturbations made to its expression during this period may be accompanied by 

functional and/or expression abnormalities in the gut. A study by Forica-Howells et al [432] 
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however shows that genetic ablation of 5-HT2A receptor, did not alter GI transit time or colonic 

motility. Although we did not test for measures of enteric function, anecdotally we did not 

observe the presence of diarrhea in the fluoxetine-exposed offspring. Other studies have 

suggested that 5-HT2A may be involved in the continuous maintenance and development of 

epithelial cells in intestinal crypts and muscularis externa that persists throughout life [433]. 

Hence, in the colon of 5-HT2A-/- mice, enterocytes were smaller, muscle layers thinner and fewer 

Paneth cells were present [432]. These measures were not examined in our present study. The 

preservation of gross measures of motility despite the changes in the musculature suggests in the 

absence of a pathological insult these structural changes do not affect function and therefore, we 

do not expect functional changes in response to possible structural alterations in our animals. 

 

5-HT2A receptor activation has been implicated in inflammatory responses [434], and thus has 

been associated with inflammatory diseases in animal models [435, 436]. However, a 

discrepancy exists as to whether 5-HT2A receptor signaling plays an anti- or pro-inflammatory 

role. For instance, rheumatoid arthritis patients show considerably lower 5-HT2A receptor density 

than controls, thus establishing an inverse correlation between disease severity and receptor 

expression [437]. The authors suggested that the down regulation of receptor expression can be a 

compensatory mechanism directed against stimulation of 5-HT2A receptors involved in the 

pathophysiology of inflammatory conditions. Recently, however, agonism of 5-HT2A has been 

shown to exert potent anti-inflammatory effects. When stimulated, this receptor has been shown 

to decrease key inflammatory markers TNF-α, and IL-6 in the rat small intestine [434]. 

Therefore we hypothesized that the decrease in 5-HT2A receptor messenger expression seen in 

fluoxetine-exposed adult male offspring might be associated with increased inflammation in the 
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gut. However, we found no significant differences in the inflammatory gene profile in our 

fluoxetine-exposed adult male offspring. 

 

4.3 Alterations to the serotonergic pathway by prenatal/neonatal exposure to fluoxetine is 

not associated with colonic inflammation in adulthood 

Despite the elevated levels of serum 5-HT measured and decreased expression of the 5-HT2A 

receptor and MAO enzyme, these changes in serotonergic signaling and regulation components 

were not accompanied by an increase in inflammation at the macroscopic level as seen by 

measuring cellular infiltration. This was confirmed molecularly through evaluation of messenger 

expression of cytokine levels and macrophage markers. This negative result is in direct contrast 

to the increase in intestinal inflammation that accompanies elevations in 5-HT and changes to the 

peripheral serotonergic signaling seen in GI disorders [208, 277, 288-291, 438]. The activation 

of the mucosal immune system by an excess of 5-HT accompanies the histologic and 

morphologic changes involving EC cells, lymphocytes, mast cells and enteric nerves and is 

believed to contribute to pathophysiology of IBS [280, 312, 439]. When compared to their 

healthy counterparts, patients with IBS have elevated levels of pro-inflammatory cytokines, 

including IL-β, IL-6 and TNF-α [249, 314, 315, 321]. Intestinal inflammation, as seen by 

increases in additional mediators including  IL-4, IL-5, IL-10, IL-12, IL-13 and IL-17 has also 

been shown to accompany the potentiation of serotonergic signaling in both models [282, 285] 

and human patients with IBD [440, 441]. The concentration of these mediators is highly elevated 

in blood, stool and intestinal mucosa. The release of these pro-inflammatory mediators is 

regulated by different pathways involved in inflammation including NF-κB and MAPK pathway 

and JAK/STAT pathway, which results in the progression of disease [442]. It is possible that the 

changes in serotonergic components we observed were not large enough to overburden the 
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organism’s innate compensatory mechanisms as seen with SERT or TPH1 knockout (KO) 

models which either respond by having an increase in colitis severity or become resistant to 

experimentally induced colitis, respectively [284-286]. A previous study has suggested that the 

elevated 5-HT that occurs as a result of these models may actually be partially protective against 

gut inflammation [207, 306]. Bischoff et al. [284] confirms that this is so in the absence of 

inflammation. They anticipated that the stress of inflammation would release 5-HT and 

overwhelm the protective compensations in SERT KO mice, such as decreased sensitivity and 

rapid desensitization of 5-HT receptors as well as a low-affinity, nonspecific uptake of 5-HT by 

backup transporters [207, 306]. Furthermore, if enteric 5-HT is involved in inflammation, 

intestinal inflammatory responses would be expected to be significantly exacerbated by the 

potentiation of serotonergic signaling that occurs when SERT is inactive [443]. On the other 

hand, due to the significantly elevated 5-HT levels in our male offspring, it is likely that there is 

excess activation of the 5-HT2A receptor, which has been shown to have anti-inflammatory 

effects [434]. These effects, however, may too be diminished since we observed a reduced 

density of 5-HT2A receptor expression. Therefore, 5-HT levels raised through reductions in MAO 

expression may confer a protective mechanism. In addition to its role as a neurotransmitter, 5-HT 

also has immunomodulatory effects which are mediated through 5-HT receptors expressed on 

lymphocytes, monocytes, macrophages and dendritic cells [444]. The finding that EC cell-

derived 5-HT acts as a pro-inflammatory mediator in the gut has generated interest in the 

potential of 5-HT antagonists for treatment of gut disorders involving inflammation [323]. 
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4.4 Prenatal SSRI exposure does not alter the expression of tight-junction associated 

proteins 

Although we did not observe any significant differences in the expression of tight-junction 

associated proteins between treatment groups, we did not measure whether similar results would 

translate at the protein level or lead to impairments in barrier integrity. However, these results 

are consistent with the finding that we did not see evidence of colonic inflammation either 

macroscopically or at the molecular level. At present, we are the first to demonstrate that 

prenatal and neonatal exposure to an SSRI does not significantly alter the structure components 

of TJs at the mRNA level in adult offspring. There is also a paucity of data with regards to both 

gut barrier structural and functional effects in adults who take SSRIs. It is well-established that 

GI symptoms, including diarrhea is commonly associated with adult SSRI use [445]. An increase 

in enteroendocrine mediators including 5-HT released from EC cells has been implicated at the 

origin of altered epithelial barrier functions and ENS signalling [337]. However, how specific TJ 

components are linked to diarrhea still remains unclear. The TJ proteins constitute a critical 

platform that regulates epithelial barrier integrity and maintains homeostasis of mucosal immune 

activation [337]. In pathological disease states, the disruption of the intestinal barrier results in 

dysregulated epithelial permeability, which can induce an increase in paracellular permeability 

and an overactive mucosal immune response leading to chronic intestinal inflammation [293]. 

Several lines of evidence suggest that compromised intestinal barrier function is associated with 

low-grade inflammation in the gut mucosa of IBS and IBD patients [297, 446-448]. Put into 

clinical context, the increase in 5-HT as a result of EC cell hyperplasia has similarly been 

suggested as the underlying cause between specific patterns of alterations in TJ and diarrhea in 

these inflammatory conditions of the gut [337]. 
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4.5 Developmental SSRI exposure is associated with sex-dependent alterations to the gut 

microbiota 

Determining the composition of the intestinal microbiota in adulthood showed small differences 

in the relative abundance of bacteria only at certain taxonomic levels between both treated and 

control offspring in female offspring. Many of the diseases and disorders associated with gut 

microbiota dysbiosis exhibit an overall reduction in bacterial diversity [356]. However, the sex-

dependent differences seen were representatives of smaller bacterial groups, such as class Bacilli 

(Phylum Firmicutes; female only) which account for less than 10% of the total gut bacteria 

sequenced. A similar trend was observed at the genus level, whereby the only significant 

difference was observed was a significant increase in Lactobacillus (Phylum Firmicutes) was 

observed in female offspring exposed to fluoxetine. As illustrated by our (PCoA) Plots 

(Appendix G, Figure 22 [unifrac]; Appendix H, Figure 23 [Bray-Curtis]) the microbiota found 

between all treatment groups (CON-M vs FLX-M; CON-F vs FLX-F) did not form discrete 

clusters, which suggests that regardless of treatment, there are similar bacterial communities and 

there are more biological differences between sexes. We are the first to characterize the 

composition of the gut microbiota in adult offspring born to dams given fluoxetine during the 

prenatal and neonatal periods. However, others have suggested that medication use may also 

affect the establishment of the enteric microbiota in adults [383]. Not only does short-term 

exposure to xenobiotics alters bacterial physiology, but it also significantly alters the structure of 

the overall microbial community as seen by 16S rRNA gene sequencing [383]. This suggests that 

prenatal exposure to maternal medication, including SSRIs, may alter the gut microbiota in the 

offspring. In light of the absence in gross alterations to the gut microbiota, it is unknown whether 

specific bacteria have unique effects on long-term alterations in gut physiology or whether 
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different pathogens converse to cause common alterations resulting in similar phenotype. Thus 

changes to gut function do not necessarily need to occur via larger dominant bacterial groups.  

 

The past decade has witnessed an appreciation for the importance of the symbiotic relationship 

regarding the vast microbial community that resides within the intestine and of their host. The 

topic has generated great expectations in terms of gaining a better understanding of disorders 

ranging from IBD to metabolic disorders and obesity. Moreover, understanding the influence of 

maternal medication use on the establishment of the gut microbiota in the offspring remains a 

relatively unexplored area of investigation. 

 

4.5.1 Gastrointestinal Disease, serotonin and the gut microbiota 

 

The gut microbiota is subject to influences from a diverse range of factors including diet, 

antibiotic usage, infection and stress. However, whether or not maternal SSRI use is one of these 

factors remains to be determined. 5-HT is an important mediator in the bi-directional interaction 

between the gut microbiota and the CNS that allows afferent signaling to the brain to modulate 

gut motility [194, 449, 450]. Taking cues from 5-HT’s role in the brain-gut axis, there is indirect 

evidence suggesting an interaction between the gut microbiota and gut-derived serotonin (GDS) 

itself. Indeed, in addition to other signaling peptides, enterochromaffin (EC) cells secrete 5-HT 

in response to physiological and pathological luminal stimuli that may be either microbial or 

bacterial in nature [451]. EC cells express a wide variety of receptors, and the possibility of 

adrenergic receptors being expressed on the brush border of epithelial cells has been proposed to 

serve as way in which bacteria could have a wide variety of target to influence gut 5-HT release 

[367]. When compared to controls, germ-free mice presented with a nearly 3-fold increase in 

plasma 5-HT levels [452]. Additionally, an elevation in plasma tryptophan, the amino acid 

precursor to 5-HT, has been observed following administration of probiotic bacteria to rats [453].  
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Altered composition of the gut microbiota has been considered as a potential aetiological factor 

in at least a subset of patients with IBS and is becoming increasingly apparent in those with IBD. 

Earlier studies have shown reductions of Lactobacillus spp. and Bifidocbacterium spp and 

increased number of Enterobacteriaceae in the gut flora of IBS patients when compared to 

healthy controls [363, 364]. Patients with CD have been observed to have a reduction in 

microbes of the phylum Firmicutes (Gram-positive bacteria, including Clostridium and Bacillus 

species) and a concomitant increase in Proteobacteria (Gram-negative rods, including 

Escherichia spp.) [454]. Microbes belonging to the genus Prevotella (Gram-negative bacteria) 

are also enriched in the stool of these patients which was in contrast to our finding of a 3-fold 

increase in Lactobacillus in female offspring born to dams exposed to fluoxetine. Lactobacillus 

is a Gram positive bacterium, and therefore lacks the bacterial endotoxin lipopolysaccharide 

(LPS) on its cell wall [455]. It is when there is an excessive presence of LPS from groups 

belonging to the Gram negative Bacteoridetes that a strong inflammatory response may be 

elicited by the organism to protect it from infection [456] through a toll-like receptor 4 (TLR4) – 

dependent mechanism [457, 458].  Structural imbalances of the gut microbiota, particularly 

reductions in the abundance of gut-barrier-protecting bacteria such as Bifidobacterium spp. and 

increases in the abundance of Gram-negative endotoxin producing bacteria such as Desulfovibrio 

spp. and Prevotella spp. may lead to increases in intestinal permeability and circulating gut-

originated antigens [459]. A higher level of circulating LPS has been suggested to be caused by 

disruptions to the intestinal mucosal TJ structure and function, thus causing increased intestinal 

permeability [242, 446]. Correlative data suggests that compromised intestinal barrier function is 

associated with intestinal immune activation that may contribute to disease progression [460]. 

Since we did not observe an increase in either any of these Gram-negative bacteria at the genus 
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level in offspring exposed perinatally to fluoxetine, this is consistent with the absence of 

inflammation and a decrease in TJ associated proteins observed in our model. Similar to 

Bifidobacterium spp, Lactobacillus spp. is considered to be a “protective” bacterium as it has 

proven to be efficacious as a probiotic in both animal models of disease and human clinical trials 

[461]. As a probiotic, Lactobacillus spp. has been shown to down-regulate both intestinal and 

systemic pro-inflammatory changes induced by a high-fat diet in a mouse model [462]. One of 

the mechanisms in which Lactobacillus confers protection is in its capacity to underpin the 

activation of intracellular signaling pathways involved in the relocalization of tight junction 

proteins through extracellular signal-regulated kinase (ERK) [463, 464]. This results in the 

protection of enhanced intestinal barrier function. Since this increase in Lactobacillus was only 

seen in female offspring born to dams exposed to fluoxetine, this highlights the importance of 

sex-dependent effects. Despite that our differences in components of the serotonergic signaling 

pathway and EC cell hyperplasia observed are consistent with those found in IBS and IBD 

disorders, our model does not, however, share the gross changes in the gut microbiota and 

inflammation seen in these pathologies. This potentially demonstrates more favorable long-term 

intestinal health outcomes in offspring exposed to an SSRI in utero. 

 

4.5.2 Sex-dependent regulation of the gut serotonergic system and the gut microbiota 

The sex differences observed in the gut microbiota in adulthood in this study may be explained 

by the fact that there is a bidirectional communication between the gut bacteria and the brain 

which are modulated by estrogens. In early life, the gut-microbiota brain axis regulates the 

hippocampal serotonergic system in a sex-dependent manner [368]. Clarke and colleagues [368] 

showed that male germ free mice, unlike females, display a significant elevation in hippocampal 

5-HT concentration and its metabolite compared with conventionally colonized control animals. 
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A recent study demonstrated that steroid nuclear receptor expression including ER-β may be a 

determinant of the intestinal microbiota composition [465]. Furthermore, results published 

recently by Markle et al., [466], indicate that sex differences in the gut microbiota drive 

hormone-dependent regulation of autoimmunity. In this study, using a non-obese diabetic mouse 

model of type 1 diabetes, male puberty in mice led to changes in the gut microbiota that increase 

testosterone production, which is protective against the development of T and B cell functions 

linked to autoimmune disease [466]. The male microbiota is associated with testosterone-

mediated protection from autoimmune disease which can be transferred to younger female 

recipients. The observations that early-life microbial exposures determine sex hormone levels 

and modify sex-mediated immune regulation may have crucial implications for the 

pathophysiology of IBS. A new concept termed “microgenderome” is emerging based on the 

recent observations that the sex bias present in numerous diseases is not entirely a host-intrinsic 

factor, but may be exercised and/or reinforced by the commensal microbiota of the host [467].  

 

4.5.3 Sex-dependent regulation of the serotonergic system and inflammatory GI disorders 

The regulation of the serotonergic system is influenced by sex [468, 469]. It is noteworthy that 

many of the colonic alterations (we found occurred in a sex-specific manner. We also observed 

potential differences in inflammatory markers when our female offspring were separated by 

stage of cycle (estrus and diestrus). For example, at a glance, IL-6 expression appears to be a 

fold-change higher in female offspring in the estrus cycle as compared to diestrus (Appendix D; 

Table 7). Since there is a paucity of data in this area, future studies will need to account for stage 

of cycle to confirm that there is no inflammation in this model. The mechanism surrounding 

these sex differences are not well understood but may relate to the well-known but complex 

influence of the oestrous cycle hormones on the CNS serotonergic system [470]. For instance, 
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estrogen and its receptor (ERβ) are known to modulate hippocampal 5-HT concentrations [471]. 

Therefore it is important to investigate the influence of SSRIs in rats of both sexes.  

 

Various observations point to a possible role for sex hormones in the pathophysiology of IBS. 

For instance, in Western countries the female-to-male ratio among non-patient population of IBS 

sufferers is 2:1 [472], thus making female gender a significant independent risk factor for new-

onset IBS (odds ratio [OR] = 2.14; 95% CI, 1.56-2.94) [473], and IBS-C subtype [474]. 

Hormonal differences (eg, ovarian vs. testicular) between men and women may contribute, at 

least in part, to the gender gap in abdominal pain and IBS symptom reporting [475]. 

Furthermore, sex hormones such as estrogens play a significant role in the physiological 

regulation of motor and sensory function in the gastrointestinal tract [476]. Therefore, their role 

in the pathophysiology of inflammatory gastrointestinal disorders is becoming increasingly 

apparent [477]. This female predominance underlies the correlation between IBS symptoms and 

hormonal status during menstrual cycle phases, pregnancy or menopause [478]. Dynamic 

changes in ovarian hormones during menstrual cycle can modulate GI contractility, transit, 

secretion, visceral sensitivity, and immune function in both the periphery and the brain [262]. In 

animal models, it has been shown that both visceral and somatic sensitivity vary over the rat 

estrous cycle and that high levels of ovarian hormones (proestrous/estrus stages) are associated 

with enhanced sensitivity [479]. Clinical studies indicate that period of low ovarian hormone 

levels in women, such as during menses, may contribute to the occurrence or exacerbation of GI 

symptoms that varies across the menstrual phase [478, 480-484]. Human data confirms that IBS 

symptomatology is exacerbated at menses and in contrast with healthy women, rectal sensitivity 

changes with the menstrual cycle [483]. This indicates that IBS patients may respond differently 

to fluctuations in sex hormones than healthy subjects. Variation in GI symptoms during the 
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menstrual cycle can be related to change in colonic motility and alterations to colonic epithelial 

barrier and mucosal immunity [289, 475, 485]. Estrogen-dependent intestinal barrier function is 

another component in sex-related differences in IBS. In humans, acute experimental stress 

evokes a differential sex-dependent increase in intestinal macromolecular permeability [486], 

thus suggesting a mechanism that may contribute to female over susceptibility to IBS. 
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CHAPTER 5: CONCLUSION  

I have found evidence for structural changes in the intestine of pups exposed to mothers who 

were administered SSRI fluoxetine compared with control animals. This was illustrated by an 

increase in colonic EC cell number. Along with the increase in EC cells, I have demonstrated an 

increase in serum levels of 5-HT in the male SSRI-treated offspring in adulthood. This was 

accompanied by altered expression of enzymes (MAO) and receptors (5-HT2A) involved in 5-HT 

function the colon of male SSRI-treated adult offspring. There was no evidence of inflammation 

and/or damage and in the expression of tight junction associated proteins in the colonic mucosa. 

However, I observed subtle sex-dependent differences in the profile of intestinal microbiota in 

offspring exposed to fluoxetine. These results demonstrate that similar to the CNS, the adult 

serotonergic system of the gut and the microbiota are susceptible to prenatal and neonatal 

exposure to the SSRI fluoxetine. Despite these alterations, it is not apparent that they potentiate 

intestinal inflammation or alter structures related to intestinal permeability. 

 

Increased levels of 5-HT have been associated with increased susceptibility to colitis [286]. 

Since there was no evidence of an increase in colonic inflammation or impairments to intestinal 

barrier function that accompanied the structural changes, this may highlight the fact that prenatal 

and neonatal SSRI exposure has minimal impact on the long-term intestinal health of the 

offspring. It is yet to be determined whether these subtle changes in 5-HT content and signaling 

can lead to increased susceptibility to IBD given the right environmental triggers. However, our 
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results may be of greater relevance to functional GI disorders (FGIDs). FGIDs, such as IBS, are 

characterized by symptoms including abdominal pain, diarrhea, constipation, anxiety, or 

depression [262]. Unlike in IBD, these symptoms are often accompanied by altered gut motility 

or visceral sensitivity [487, 488] in the absence of identifiable structural or biochemical 

abnormalities [261].  

 

In light of the alterations to the gut microbiota in offspring exposed to prenatal and neonatal 

SSRIs, this represents a possible window of opportunity for prebiotic/probiotic interventions to 

both mother and baby. Probiotics have been demonstrated to have an overall reduction in risk 

over the majority of GI inflammatory conditions [489]. Treating clinical depression in pregnant 

and breastfeeding mothers requires assessing the risk of using a psychotropic medication, which 

might affect the developing fetus, against the benefits of preventing a mother from becoming 

incapacitated with depressive symptoms. Despite progress to date, definitive conclusions on the 

use of antidepressants in pregnancy and the treatment of mental illness are limited by the 

methodological issues inherent in clinical research involving illness versus treatment effects in 

pregnancy. The risk for adverse fetal and neonatal outcomes may be an independent product of 

both maternal depression and prenatal SSRI use. It has been suggested that there is potential for 

confounding to occur and thus it is important to differentiate the effects of exposure to the drug 

itself from that of the underlying maternal psychiatric illness [119, 490, 491]. In addition, 

maternal health habits such as smoking, illicit drug and alcohol use, poor prenatal care and 

obesity can confound birth outcomes [492] but are not always reported accurately or are 

underreported in cohort studies. When compared to women who are not on antidepressant 

treatment, women who are on antidepressants are more likely to have poor health habits (e.g. 

smoking), to be older and to have elevated body mass index [54, 88]. They are also more likely 
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to have complications such as diabetes and hypertension [88]. However, few studies examining 

neonatal outcomes of prenatal SSRI exposure have attempted to account for the effect of 

underlying maternal depression [87, 123, 128, 493]. Animal models allow us to discern the 

effects of only SSRI exposure on the offspring without the potential confounding influence of 

maternal depression itself 
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CHAPTER 6: FUTURE DIRECTIONS 

Results from this study suggest that maternal use of SSRIs causes alterations in the gut 

serotonergic signaling pathways similar to what is seen in the CNS. However, in this model, the 

changes were restricted to only male offspring. There was no evidence of intestinal inflammation 

but there were subtle changes in the gut microbiota of offspring.  Analysis of the current 

literature and the results from this thesis indicates several interesting directions that require 

further investigation.  

 

For instance, it remains to be determined whether prenatal/neonatal exposure to SSRIs can lead 

to persistent structural changes in the intestine (increase in EC cells and enteric neuron density) 

as these are factors that promote an inflammatory state. Accordingly, my results should form the 

basis to characterize the temporal structural changes in EC cells, intestinal mucosa and enteric 

nervous system (ENS) in control and SSRI-exposed offspring. Animal models with reduced 

function of SERT, which leads to an increase in bioavailable 5-HT, have abnormal GI motility 

[494]. Furthermore, loss of SERT function has been shown to lead to impairment of intestinal 

barrier function [285]. Although I did not observe a difference in the expression of tight-junction 

associated proteins, it is possible that changes may appear at the protein level. To determine 

whether the observed increase in EC cells and enteric neurons are associated with functional 

abnormalities in the intestine of SSRI-treated offspring, it would be interesting to conduct 

investigations of motility and permeability. Since both EC cells, through the release of 5-HT, and 

the ENS are inextricably linked with the motility of the GI tract, these functional measurements 
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would be useful [495, 496]. Furthermore, whether SSRIs alter the microbiota in the mother 

remains to be determined. Since the mother is the first to colonize her offspring, characterizing 

the gut microbiota at earlier time points such as at birth and P21 would be beneficial to 

determine whether there are changes that precede the ones we observed in adulthood. 

 

Overall, a direct link between the morphological and structural correlates of developmental SSRI 

exposure in rodents still needs to be established. There are few case reports or studies to date 

found reporting disturbed bowel function when exposed to antidepressants in utero. Second, 

more research is required to draw conclusions about human SSRI use from rodent studies. Third, 

concerns about the potential adverse effects of prenatal or neonatal SSRI exposure should be 

balance by observations that untreated depression could also harm the unborn or newborn child. 

A current limitation of the animal models is that SSRIs are applied to healthy pregnant dams, 

which do not fully represent the human situation. More research is needed to understand the role 

of 5-HT in enteric development, the long-term consequences of SSRI use during pregnancy, and 

the postpartum period will allow doctors and patients to make better informed decisions on its 

use during pregnancy. 
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APPENDIX A 

Figure 21 Summary of the (1) effects of prenatal/neonatal SSRI exposure on the central serotonergic system and known developmental 

consequences; (2) role of 5-HT in postnatal life; (3) effects of prenatal/neonatal SSRI exposure on the GI system; and (4) potential 

mechanisms in which SSRIs can affect intestinal health. Solid lines denote what is known, dotted lines denote potential associations. 
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APPENDIX B 
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Figure 22 Schematic representation of endocrine cell-mediated signaling from enteric microbiota and host. Presence of Gram-negative 

bacteria and gut-derived 5-HT in the lumen might influence endocrine cells in the epithelium (enterochromaffin cells). Furthermore, the 

microbiota may influence intestinal permeability via a Toll-like receptor dependent mechanism, thereby increasing inflammation. 

Adapted from Rhee et al., 2009. 
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APPENDIX C 

 
Table 5 Summary of the effects of prenatal and/or neonatal exposure to SSRI on the central serotonergic system in offspring. 

Gene Density Exposure First Author 

SERT Reduced P8-14 (neonatal) 

15 mg/kg 

 

GD13-20 

10 mg/kg 

 

Hansen et al., 1998 

 

 

Cabrera et al., 1998 

5-HT Reduced in 

prepubescent male 

offspring 

 

GD13-20  

10 mg/kg 

Cabrera et al., 1998 

5-HT 1A/1B receptor Unchanged P8-14 (neonatal) 

15 mg/kg 

 

Hansen et al., 1998 

5-HT2A/2C receptor Reduced  Cabrera et al., 1994 
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APPENDIX D 

 

Supplemental Tables 

 
Table 6 qPCR data of genes involved in the gut serotonergic system of the colon separated by stage of cycle in female offspring 

at 26 weeks of age. No differences were observed in treatment groups of estrus and diestrus females. All comparisons were done 

by independent samples t-test. 

Genes Estrous (Mean ± SEM) p-value Diestrous Mean (Mean ± SEM) p-value 

 
Control  Fluoxetine 

 
Control Fluoxetine 

 Tph1 3.11 ± .640 1.32 ± .247 .032 1.28 ± .288 1.79 ± 1.50 .692 

Pet-1 1.42 ± .490 1.61 ± .520 .799 1.38 ± .310 1.43 ± 1.16 .966 

SERT 1.28 ± .609 1.73 ± .301 .501 1.48 ± .556 1.31 ± 1.06 .887 

Mao 5.38 ± 1.64 2.90 ± 1.13 .251 3.75 ± 2.00 6.35 ± 5.60 .634 

HTR 1a 2.21 ± 1.90 .325 ± .195 .195 .883 ± .763 .856 ± .850 .983 

HTR 1b 6.74 ± 5.56 .659 ± .234 .249 2.42 ± 2.00 .240 ± .240 .460 

HTR 1d 1.16 ± 1.01 .147 ± .052 .283 .520 ± .450 .528 ± .441 .990 

HTR 2a 9.65 ± 8.687 1.22 ± .803 .302 2.57 ± 2.30 .693 ± .667 .577 

HTR 2b 4.17 ± 2.47 .734 ± .181 .159 1.37 ± 1.05 .970 ± .815 .804 

HTR 3a 16.0 ± 1.2 6.41 ± 2.76 .343 5.15 ± 2.16 .094 ± .805 .168 

HTR 3b 5.54 ± 4.39 .741 ± .261 .250 2.52 ± 2.17 1.10 ± .555 .650 

HTR 4 3.42 ± 1.30 1.29 ± .257 .118 2.35 ± 1.45 2.63 ± 2.25 .917 

HTR 7 3.01 ± 2.15 1.62 ± .930 .539 1.31 ± .735 17.3 ± 17.2 .302 

Tph1 (Tryptophan hydroxylase-1); Pet-1 (transcription factor); SERT (serotonin transporter); Mao (Monoamine Oxidase); 5-Htr 

(serotonin receptor). 
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Table 7 qPCR data of genes involved in inflammation and gut permeability in the colon separated by stage of cycle in female 

offspring at 26 weeks of age. No differences were observed in treatment groups of estrus and diestrus females.  All comparisons 

were done by independent samples t-test. 

Genes Estrous (Mean ± SEM) p-value Diestrous (Mean ± SEM) p-value 

 
Control  Fluoxetine 

 
Control Fluoxetine 

 IL1β .696 ± .057 .747 ± .124 .798 .944 ± .270 1.18 ± 1.00 .790 

IL6 4.88 ± 3.93 .601 ± .268 .252 2.88 ± 2.66 1.17 ± .778 .656 

IL10 .565 ± .423 .069 ± .040 .223 .228 ± .209 .022 ± .013 .501 

TNFα 3.71 ± 2.62 .682 ± .235 .229 1.75 ± 1.48 1.15 ± .891 .785 

MCP1 .592 ± .494 .074 ± .040 .268 .195 ± .188 .008 ± .003 .497 

IL13 5.70 ± 4.54  1.39 ± .594  .316 3.68 ± 3.33  3.64 ± 2.87  .994 

F4/80 2.52 ± 1.27 2.34 ± .921 .914 1.17 ± .579 1.41 ± .646 .811 

CD68 1.18 ± .161 .916 ± .396 .615 .646 ± .329 1.36 ± 1.20 .523 

OCLDN 1.09 ± .274 .617 ± .148 .160 .396 ± .193 .316 ± .280 .716 

CLDN1 4.84 ± 3.79 .426 ± .201 .224 2.12 ± 1.81 2.14 ± 1.99 .995 

CLDN3 1.40 ± .156 1.09 ± .302 .455 .830 ± .113 1.44 ± 1.02 .491 

ZO-1 3.09  ± .594 2.42 ± .829 .570 1.69 ± .504 5.50 ± 4.78 .360 

TLR4 2.64 ± .465 1.48 ± .718 .271 .346 ± .173 8.46 ± 11.8 .284 

Anti- and pro- inflammatory cytokines: I-10, TNF-a, IL-1β, IL-6, and I-13; MCP 1 (monocyte chemoattractant protein 1); CD68 

(Cluster of differentiation 68); F4/80 (EGF-like module-containing mucin-like hormone receptor-like 1) Tight junction proteins 

involved in gut permeability: OCLN (Occludin); CLDN 1 (claudin 1); CLDN 3 (claudin 3); ZO-1 (zona occludin 1). 
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Table 8 qPCR data of genes involved in glucose/ fatty acid metabolism in the colon separated by stage of cycle in female 

offspring at 26 weeks of age. No differences were observed in treatment groups of estrus or diestrus females. All comparisons 

were done by independent samples t-test. 

Genes Estrous (Mean ± SEM) p-value Diestrous (Mean ± SEM) p-value 

 Control  Fluoxetine  Control Fluoxetine  

GLUT2 

 
5.45 ± 4.54 1.05 ± .386 .303 2.47 ± 2.14 2.39 ± .944 .982 

SGLT1 

 
3.58 ± .611 1.37 ± .333 .019* 1.56 ± .327 2.20 ± 1.44 .622 

Gcg 

 
2.78 ± 1.21 3.83 ± 1.35 .604 1.52 ± .178 .675 ± .657 .218 

FIAF 

 
4.38 ± 2.52 1.27 ± .207 .203 2.35 ± 1.45 3.60 ± .033 .552 

GPR41 

 
3.02 ± 2.25 .720 ± .281 .283 1.68 ± 1.35 1.92 ± 1.70 .918 

GPR43 

 
3.77 ± 1.58 1.59 ± .290 .173 2.02 ± .60 2.36 ± 1.67 .828 

FAT/CD 36 

 
1.54 ± .518 1.14 ± .645 .670 .362 ± .125 .415 ± .106 .788 

Glucose/fatty acid metabolism: SLC2A2 (glucose transporter 2; GLUT2); SLC5A1 (sodium/glucose co-transporter 1; SGLT1); 

Gcg (glucagon); Fiaf (fasting induced adipose factor); GPR41/43 (free fatty acid receptor 3; G protein coupled receptor); CD36 

(cluster differentiation 36; fatty acid translocase) 
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APPENDIX E 

 

 

OTU (#) 
Base Mean 

(CON) 

Log2Fold Change 

(FLX) 

P-value 

(adjusted) 

Bacteroidetes_Bacteroidia_Bacteroidales (81) 19.9 -1.83 0.0720 

Bacteroidetes_Bacteroidia_Bacteroidales (482) 4.33 -1.92 0.0403 

Firmicutes_Clostridia_Clostridiales (585) 5.47 1.33 0.912 

    _Lachnospiraceae (88) 55.3 1.92 0.0335 

     _Lachnospiraceae (165) 6.54 -2.12 0.0165 

    _Lachnospiraceae (545) 5.70 1.34 0.917 

    _Lachnospiraceae (673) 3.25 -1.20 0.918 

Firmicutes_Bacilli_Lactobacillales_Aerococcaceae_Aerococcus (535) 2.32 -1.29 0.787 

 _Clostridia_Clostridiales_Ruminococcaceae_Ruminococcus (135) 6.79 -1.28 0.918 

Tenericutes_Mollicutes_RF39 (162) 5.88 -1.72 0.145 

 

 

 

 

 

Table 9 Significantly different Operational Taxonomic Units (OTUs)  among groups from fecal samples obtained from adult male offspring at 24 weeks of age. Base 

mean represents the average number of counts (reads). Comparisons are made to base mean (CON) to fluoxetine expressed as a Log2fold. Positive and negative denote 

increase and negative denotes decrease relative to base mean.  Identical OTUs but with different OTU #s represent at least two different species within the taxonomic 

level, but cannot be identified to a greater taxonomic resolution. OTUs presented as phyla_class_order_family_genus (OTU #). According to the statistical analysis, 4 

out of the 6037 examined OTUs showed significant differences between control and treated offspring. A P-value of <0.05 was considered statistically significant. 
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APPENDIX F 

 

 

 

OTU (#) 
Base Mean 

(CON) 

Log2Fold Change 

(FLX) 

P-value 

(adjusted) 

Firmicutes (235) 14.504 1.932 0.2781 

Firmicutes (693) 4.202 -1.722 0.2781 

 _Bacilli (860) 2.307 -1.367 0.808 

 _Clostridia_Clostridiales_Lachnospiraceae (52) 158.968 -1.110 0.826 

      _Lachnospiraceae (391) 14.368 -1.238 0.826 

       _Ruminococcaceae (353) 16.792 1.410 0.826 

Proteobacteria_Alphaproteobacteria (292) 14.149 1.799 0.278 

Bacteroidetes_Bacteroidia_Bacteroidales (161) 100.565 1.320 0.826 

     _Bacteroidaceae_Bacteroides (78) 230.893 1.416 0.324 

Tenericutes_Erysipelotrichi_Erysipelotrichales_Erysipelotrichacea (248) 7.836 -1.927 0.2781 

Table 10 Significantly different Operational Taxonomic Units (OTUs) among groups from fecal samples obtained from adult female offspring at 24 weeks of age. 

Base mean represents the average number of counts (reads). The number of reads used was 21 444 sequences/sample. Comparisons are made to base mean (CON) to 

fluoxetine expressed as a Log2fold. Positive and negative denote increase and negative denotes decrease relative to base mean.  Identical OTUs but with different OTU 

#s represent at least two different species within the taxonomic level, but cannot be identified to a greater taxonomic resolution. OTUs presented as 

phyla_class_order_family_genus (OTU #). According to the statistical analysis, none of the 6037 examined OTUs showed significant differences between control and 

treated offspring. A P-value of <0.05 was considered statistically significant. 



M.Sc. Thesis- H. Law; McMaster University- Medical Sciences 

98 

 

 

APPENDIX G 

Supplemental figures  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22 Two-dimensional Principal Coordinate Analysis (PCoA) plots based on the relative abundance distance matrix. Percentage of the diversity explained by each axes is 

indicated on the figure. There are no distinct clusters between groups, meaning that the gut microbiota of control and fluoxetine-exposed offspring are similar. The two (axes) 

explain the variance, respectively. Samples associated with control females are labeled as red; control male- yellow; fluoxetine female- purple; fluoxetine male- green are shown 

as single points. 
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APPENDIX H 

Supplemental figures

Figure 23 Two-dimensional Principal Coordinate Analysis (PCoA) plots based on the phylogenetic distance between OTUs. Percentage of the diversity explained by each axes is 

indicated on the figure. There are no distinct clusters between treatment groups, meaning that the gut microbiota of control and fluoxetine-exposed offspring are similar. The two 

(axes) explain the variance, respectively. Samples associated with control females are labeled as red; control male- yellow; fluoxetine female- purple; fluoxetine male- green are 

shown as single points. 
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Figure 24 The number of observed species (richness) and the Shannon Diversity Index in control and treated offspring at 24 weeks of age 

separated by sex. A) Observed species diversity between male control (mean ± SEM; 298 ± 26.5) and fluoxetine-exposed offspring (346 ± 

24.1; P= 0.247). B) Observed species diversity between female control (340 ± 16.8) and fluoxetine-exposed offspring (342 ± 17.2; P= 

0.792). C) Shannon Index in male control (4.81 ± 0.232) and fluoxetine-exposed offspring (4.78 ± 0.166; P= 0.754). D) Shannon Index in 

female control (5.05 ± 0.151) and fluoxetine-exposed offspring (5.10 ± 0.0661; P= >0.999). The number of reads used was 21 444 

sequences/sample 
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APPENDIX J 

 
Table 11 Full forward and reverse primer sequences for all genes evaluated via qRT-PCR. 

Gene Forward Sequence Reverse Sequence 

18S 5’-GCG ATG CGG CGG CGT TAT-3’ 5’-AGA CTT TGG TTT CCC GGA AGC-3’ 

B-actin 5’-ACG AGG CCC AGA GCA AGA-3’ 5’-TTG GTT ACA ATG CCG TGT TCA-3’ 

CLDN1 5'-CGT GAC TGC TCA GGC CAT CT-3' 5'-CGG TGC TTT GCG AAA CG-3' 

CLDN3 5'-GAC CAC CCC ACC TTC CAG AT-3' 5'-CTG TCC TCT TCC AGC CTA GCA-3' 

GLUT2 

(SLC2A2) 5'CTG TCT GTG TCC AGC TTT GCA-3' 5'-CAA GCC ACC CAC CAA AGA AC-3' 

GPR41 5'-GCT TGT GTG CCT TGG ACT CA-3' 5'-TGG CTC TTC TCC GTT CTT TAC CT-3' 

GPR43 5'-TCG TGG AAG CTG CAT CCA-3' 5'-GCG CGC ACA CGA TCT TT-3' 

HPRT 5’-GCA GTA CAG CCC CAA AAT GG-3’ 5’-GGT CCT TTT CAC CAG CAA GCT-3’ 

HTR 1a 5'-CTC TGT TGC TGG GTA CTC TCA TT-3' 5'-ACT TGT TGA GCA CCT GGT ACA GA-3' 

HTR 1b 5'-CTT TCT ATT TAC CCA CCC TGC TC-3' 5'-GTC TGA GAC TCG CAC TTT GAC TT-3' 

HTR 1d 5'-CCC GGA GTC GAA TCC TGA A-3' 5'-TGA TAA GCT GTG CTG TGG TGA A-3' 

HTR 2a 5'-AGC TCT GTG CGA TCT GGA TT-3' 5'-CCC CTC CTT AAA GAC CTT CG-3' 

HTR 2b 5'-TGG CAG TTT CAT GCT CTT TG-3' 5'-TTC CCT TTG GAG AAC TGT GG-3' 

HTR 3a 5'-TGG CTT CTT CTT CAG CTC ACT TG-3' 5’-CCC CCC GTT GGT TGA TG-3’ 

HTR 3b 5'-CCG AAC TCG GGA TCA GGT TT-3' 5'-CAG TAT AGA GCC CCA GCA CG-3' 

HTR 4 5'-GAG ACC AAA GCA GCC AAG AC-3' 5'-AGG AAG GCA CGT CTG AAA GA-3' 

HTR7 5’-TGC TGG CTG CCG TTT TTC-3' 5’-CTA CAG GAG GTG CCA CAG ATA AAG-3’ 

IL10 5'-CCC AGA AAT CAA GGA GCA TTT G-3' 5'-CAG CTG TAT CCA GAG GGT CTT CA-3' 

IL13 5’-GAC AGC TGG CGG GTT CTG T-3’ 5’- GGC ATT GCA ACT GGA GAT GTT-3’ 

IL1β 5’-GAC CTG TTC TTT GAG GCT GAC A-3’ 5’-AGT CAA GGG CTT GGA AGC AA-3’ 

IL6 5’-CCC ACC AGG AAC GAA AGT CA-3’ 5’-GCG GAG AGA AAC TTC ATA GCT GTT-3’ 

MAO 5'-TGG GTT GAA GAA CCC GAG TC-3' 5'-TGA TCT TGA GCA GAC CAG GC-3' 

MCP1 5'-CGG TTT CTC CCT TCT ACT TCC TG-3' 5'-GCT CTG CCT CAG CCT TTT ATT G-3' 

OCLN 5'-GAG AGA TGC ACG TTC GAC CAA-3' 5'-GAA TTT CGT CTT CCG GGT AAA A-3 

Pet-1 5'-CCC TGC TGA TCA ACA TGT ACC-3' 5'-GCC AGC AGC TCC AGT AGA AA-3' 

SERT 5'-AGC GAT GTG AAG GAG ATG CT-3' 5'-GGA CGA CAT CCC TAT GCA GT-3' 
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SGLT1 

(SLC5A1) 
5'-GGA ACT GGA AGC TGC ATG GA-3' 

5'-AGT GGA CCC CGC AGA TGA T-3' 

TNFα 5’-CCC AGA AAA GCA AGC AAC CA-3’ 5’-GCC TCG GGC CAG TGT ATG-3’ 

Tph1 5'-GCC TGC TTT CTT CCA TCA GT-3' 5'-AGA CAT CCT GGA AGC TTG TGA-3' 

ZO-1 5'-GCT CAC CAG GGT CAA AAT GTT T-3' 5'-AGT GTC ATT CAC ATC CTT CTT GTT CT-3' 
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