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Abstract 

 Most transportation problems arise from individual travel decisions. In response, 

transportation researchers had been studying individual travel behavior – a growing trend 

that requires activity data at individual level. Global positioning systems (GPS) and 

geographical information systems (GIS) have been used to capture and process individual 

activity data, from determining activity locations to mapping routes to these locations. 

Potential applications of GPS data seem limitless but our tools and methods to make these 

data usable lags behind. In response to this need, this dissertation presents a GIS-based 

toolkit to automatically extract activity episodes from GPS data and derive information 

related to these episodes from additional data (e.g., road network, land use). 

 The major emphasis of this dissertation is the development of a toolkit for 

extracting information associated with movements of individuals from GPS data. To be 

effective, the toolkit has been developed around three design principles: transferability, 

modularity, and scalability. Two substantive chapters focus on selected components of 

the toolkit (map-matching, mode detection); another for the entire toolkit. Final 

substantive chapter demonstrates the toolkit’s potential by comparing route choice models 

of work and shop trips using inputs generated by the toolkit. 

 There are several tools and methods that capitalize on GPS data, developed within 

different problem domains. This dissertation contributes to that repository of tools and 

methods by presenting a suite of tools that can extract all possible information that can be 
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derived from GPS data. Unlike existing tools cited in the transportation literature, the 

toolkit has been designed to be complete (covers preprocessing up to extracting route 

attributes), and can work with GPS data alone or in combination with additional data. 

Moreover, this dissertation contributes to our understanding of route choice decisions for 

work and shop trips by looking into the combined effects of route attributes and 

individual characteristics. 
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Preface 

 This dissertation is presented as a compendium of four substantive chapters either 

accepted, submitted, or in preparation for peer-reviewed publications. For this reason, 

there is some degree of repetition among the substantive chapters, particularly in the 

description of common toolkit modules, datasets, and illustrations. While the substantive 

chapters have been co-authored with the research supervisor, the content of each chapter 

was the sole responsibility of the dissertation author. This includes summary of the 

relevant literature, data processing and organization, script programming and debugging, 

specification and estimation of statistical models, and interpretation of results. The 

supervisor’s contribution included critical appraisal of manuscripts prior to journal 

submission, editorial advice concerning articles yet to be submitted for publication, and 

discussion of empirical results and future research. These substantive chapters are as 

follows: 

Chapter 2: 

Dalumpines, R., Scott, D.M., 2011. GIS-based map-matching: development and 

demonstration of a postprocessing map-matching algorithm for transportation 

research. In S. Geertman, W. Reinhardt & F. Toppen (Eds.), Advancing 

Geoinformation Science for a Changing World (Vol. 1, pp. 101-120): Springer 

Berlin Heidelberg. 

Chapter 3: 

Dalumpines, R., Scott, D.M., 2014. Making mode detection transferable: extracting 

activity and travel episodes from GPS data using multinomial logit model and 

Python. Submitted to Transportation Research Part C: Emerging Technologies. 
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Chapter 4: 

Dalumpines, R., Scott, D.M., 2014. GIS-based episode reconstruction toolkit (GERT): a 

transferable, modular, and scalable framework for automated extraction of activity 

episodes from GPS data. Submitted to Travel Behaviour and Society. 

Chapter 5: 

Dalumpines, R., Scott, D.M., 2013. Determinants of route choice behavior: a comparison 

of shop versus work trips using the potential path area - gateway (PPAG) 

algorithm and path-size logit. Submitted to Journal of Choice Modelling. 
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Chapter 1 

Introduction 

1.1 Justification of research topic 

 Several procedures have been developed to extract information from person-based 

global positioning system (GPS) data primarily to supplement data from recall-based 

surveys (e.g., Chung and Shalaby, 2005; Stopher et al., 2005; Schuessler and Axhausen, 

2009). However, most of these procedures suffer from specific data requirements and 

complexity that limit their transferability to other application environments. Further, they 

have a limited set of modules to extract all necessary information (e.g., automatic 

extraction of route attributes), and are not specifically designed to handle huge GPS 

datasets. To deal effectively with these problems, this dissertation presents a framework 

based on three design principles (transferability, modularity, and scalability), and 

introduces the geographic information system (GIS)-based episode reconstruction toolkit 

(GERT) based on this framework, for automated extraction of activity episodes from GPS 

data. 

 The problems mentioned earlier, which relate to GERT’s three design principles, 

have not been explicitly addressed in the development of tools and methods in the past. In 

general, this dissertation argues for the importance of a framework that guides the 

development of an integrated set of practical tools. This framework was applied in the 

development of GERT. Without an effective framework and a toolkit to implement this 
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framework, GPS data cannot be fully utilized for the following reasons: (1) it is difficult 

to adopt tools developed by other researchers for lack of transferability, (2) there exists 

limited ability to derive more information from GPS data for lack of an integrated set of 

modules, and (3) high computational costs and lack of automatic procedures in dealing 

with huge datasets. These three key issues tend to hinder progress in the development of 

tools and methods in processing GPS data to support activity analysis in general and route 

choice modeling in particular. Data limitations are among the factors that have hindered 

research progress in activity analysis (Kitamura, 1988; Jones et al., 1990; Ortúzar & 

Olszewski, 2009) and route choice modeling (Prato, 2009). 

 This dissertation contributes to the repository of tools and methods that extract 

information from GPS data, and subsequently contributes to the advancement of travel 

behavior research at the individual level, by introducing a framework for toolkit 

development and demonstrating the potential of GERT (based on this framework) to 

automatically generate inputs useful for activity analysis and route choice modeling. 

 This introductory chapter presents the research context that motivates this 

dissertation (Sections 1.1.1 and 1.1.2), and the four research objectives that deal with the 

development and demonstration of GERT’s key components (Section 1.2). Finally, this 

chapter also presents an overview of the contents of this dissertation (Section 1.3), which 

highlights the links between the four objectives and the four substantive chapters, and 

provides a brief summary of the findings and study implications. 
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1.1.1 Reconstructing activity episodes from GPS data for activity analysis 

 The availability of datasets pertaining to stationary activity and travel episodes 

plays an important role in activity analysis. Pas (1997, p. 96) envisioned that these 

datasets “…will very likely stimulate and facilitate continuing research and development 

of activity-based travel models…”; more so in the age of GPS technology that peoples’ 

movement can be captured in greater detail and higher frequency, potentially creating a 

wealth of data useful for activity analysis. Activity analysis is defined as a “framework in 

which travel is analyzed as daily or multi-day patterns of behavior, related to and derived 

from differences in life styles and activity participation among the population” (Jones et 

al., 1990, p. 34). The early roots of activity analysis were attributed to the contributions to 

time geography (e.g., Hägerstrand, 1970), planning theory (e.g., Chapin, 1974), and 

psychology (e.g., Fried et al., 1977). As a more holistic view of travel, activity analysis
1
 

focuses on the complete understanding of travel behavior and the likely effects of 

transport-related policies on travel by primarily viewing travel as part of an activity-based 

framework (Jones et al., 1990). As such, activity analysis serves as a tool in the practice 

of transport planning and policy development; and supports transport policy decision 

making (Kitamura, 1988; Jones et al., 1990; Pendyala, 2009). 

                                                      
1
 Quite often, the term activity analysis is used interchangeably in the travel behavior literature as activity 

approaches, activity-based analysis, activity-based travel demand analysis, or activity-based travel demand 

modeling (e.g., Kitamura, 1988; Jones et al., 1990; Pendyala, 2009). The latter two terms refer to the 

specific application of activity analysis to travel demand forecasting. For consistency, activity analysis is 

used throughout this dissertation as an umbrella term that encompasses all aspects (e.g., theories, 

applications, methods) of the activity-based framework. 
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 GPS data are naturally suited to the needs of the common features of activity 

analysis, such as the focus on sequences or patterns of behavior and detailed timing and 

duration of activity and travel episodes (Jones et al., 1990), since person-based GPS 

devices capture time, distance, and route information better than traditional recall-based 

surveys. Also, the use of GPS in activity/travel surveys reduces respondent burden and 

improves trip reporting (Wolf et al., 2003; Stopher & Shen, 2011). Moreover, GPS data 

collected over long periods of time create new research opportunities for the exploration 

of the dynamics of travel behavior (Gonzalez et al., 2008; Ortúzar & Olszewski, 2009). In 

understanding travel patterns, Jones et al. (1990) identified three ways that travel can be 

measured: the number of stops in a tour or chain, the duration of travel or activities, and 

the sequence of events. Efficient processing of GPS data basically provides the inputs for 

these travel measurements. Burnett and Hanson (1979, cited in Damm (1983), p. 7) 

provided a list of the dimensions of activity behavior with the highest theoretical 

plausibility: 

1. timing (clock time and relative time) 

2. duration 

3. location (absolute location as given by coordinates and relative location such as 

distance from the last stop) 

4. mode(s) to reach activity (including non-motorized) 

5. frequency of participation 

6. sequencing 
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7. flexibility or elasticity (how easily moved in time and space) 

8. importance or priority 

9. variety (over periods longer than one day) 

 Note that a large majority of the items in the list can be captured directly or 

derived from GPS data. However, efficient processing and extraction of these dimensions 

from large GPS datasets for the benefit of travel behavior research remains a challenge. 

At the 11th International Conference on Travel Behavior Research, Ortúzar and 

Olszewski (2009) called for further development of methods in automating the extraction 

of meaningful travel information from tracking data, building upon several proposed 

methods (Doherty et al., 2001; Asakura and Hato, 2004; Chung and Shalaby, 2005; 

Stopher et al., 2005; Schuessler & Axhausen, 2009). 

 Existing procedures in extracting or reconstructing episodes from GPS data can be 

categorized into several modules: preprocessing (data filtering and smoothing), extraction 

of episodes (stages or segments), mode detection (assignment of mode to travel episode), 

route detection (map-matching), and purpose detection. GPS data consist of a series of 

points with latitude, longitude, and time – trajectories that represent stationary activity 

and travel episodes over space and time. These data need cleaning to remove erroneous or 

invalid points (preprocessing) before they are categorized into stationary activity or travel 

episodes (segmentation). Travel episodes are assigned to the most likely travel modes 

(mode detection), and trajectories corresponding to travel episodes are matched to a 

digital road network (map-matching) to determine travel routes and extract route 
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attributes. Points corresponding to stationary activity episodes can be analyzed with land 

use and other additional data to determine the most likely activity types (purpose 

detection). 

 To the author’s knowledge, original attempts to automate the extraction of 

episodes in the transportation literature (Chung and Shalaby, 2005; Stopher et al., 2005; 

Schuessler and Axhausen, 2009) suggest the lack of transferability of existing modules 

(e.g., non-generic variables used in preprocessing), an incomplete set of modules (e.g., no 

modules for purpose detection in two studies while not fully automatic for route 

detection), and only one study was specifically designed for large GPS data (Schuessler 

and Axhausen, 2009) (for related studies in other fields, see Biljecki (2010) and Bolbol et 

al. (2012)). Only a few studies (Schuessler and Axhausen, 2009; Bohte and Maat, 2009) 

specifically addressed the development of tools and methods in extracting travel episodes 

and trip purposes from large-scale GPS datasets. 

 Existing methods used unique inputs or variables to filter valid points, and extract 

and classify episodes. For example, some researchers (e.g., Wolf et al., 2000; Stopher et 

al., 2005; Chung and Shalaby, 2005) used the number of satellites, heading, and 

horizontal dilution of precision (HDOP) in a preprocessing module to remove outliers and 

invalid GPS points; in the absence of the above inputs, Schuessler and Axhausen (2009) 

instead used the known altitude of Switzerland to remove low quality or erroneous GPS 

points. Other researchers (e.g., Chung and Shalaby, 2005; Bohte and Maat, 2009; Gong et 

al., 2012) used proximity measures (e.g., distances to bus, subway, and railway stations) 
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to determine probable travel modes but threshold distances significantly vary among 

studies. Lawson et al. (2010) recognized the difficulty of directly comparing different 

approaches because of different data used in developing these methods, not to mention 

the different variables required by each approach. 

 In recent years, there has been an increase in large-scale GPS data used for travel 

episode (trip) extraction (e.g., Zheng et al., 2008; Schuessler and Axhausen, 2009; Bohte 

and Maat, 2009; Biljecki, 2010; Millward and Spinney, 2011). Hence manual procedures 

are no longer practical in dealing with huge GPS data that span millions of records. The 

availability of huge GPS data and the high potential to collect more make it necessary to 

come up with efficient procedures that can automatically extract information from these 

data. 

 From the perspective of activity analysis, most of the existing methods did not 

fully capture valuable information from GPS trajectories for these methods were focused 

more on mode detection, that is, the extraction of travel episodes and classifying these 

episodes into several types based on travel modes (Stopher et al., 2005; Schuessler and 

Axhausen, 2009; Gong et al., 2012). Hence no modules were specifically developed to 

extract information associated with activity locations (stop episodes), wherein more 

information can be extracted with the aid of additional data such as land use and potential 

activity locations (PAL), and information on observed routes (road attributes) connecting 

these locations. The current practice of extracting routes (map-matching) is a tedious 

process of tracing the routes manually from GPS trajectories in a GIS (e.g., Ramming, 
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2002; Papinski et al., 2009; Winters et al., 2010) or asking respondents directly through 

web questionnaires (e.g., Kaplan and Prato, 2012). While some researchers had 

incorporated route detection using map-matching routines (e.g., Chung and Shalaby, 

2005; Tsui and Shalaby, 2006), the map-matching lacks integration with route choice set 

generation algorithms (e.g., Prato and Bekhor, 2006) to automatically generate alternative 

routes for route choice modeling. In addition, existing modules that automatically 

generate route attributes for map-matched routes (e.g., Papinski and Scott, 2011) are not 

integrated with route detection and route choice set generation modules. 

 To the author’s knowledge, no toolkit has been developed that integrates all the 

above modules, and at the same time include extra modules that automatically generate 

route choice sets and route attributes from GPS trajectories as further discussed in Section 

1.1.2. 

1.1.2 Generating route choice sets from GPS data for route choice modeling 

 The lack of input data for route choice modeling adds to the difficulty in 

developing better route choice models as indicated by the limited number of observations 

used across several studies (Ramming, 2002; Zhang & Levinson, 2008; Bekhor & Prato, 

2009). Nowadays, advances in geospatial technologies such as GIS and GPS, along with 

computer-aided surveys, provide more accurate and less costly route choice data (e.g., 

Frejinger & Bierlaire, 2007) than the tedious and expensive roadside/mail-back surveys 

used in the past (e.g., Ben-Akiva et al., 1984). However, these advances present a 
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computing challenge involving the automatic extraction of useful inputs from huge GPS 

datasets for route choice modeling. 

 To the author’s knowledge, no toolkit has been developed that automates the 

preprocessing of raw GPS data up to the generation of route choice data inputs. In 

particular, there exists the lack of sound behavioral basis and computing efficiency 

among existing route choice set generation algorithms (Prato, 2009). These algorithms are 

specified based on the experience and knowledge of the analyst, which is not reflective of 

the actual behavior of drivers. Since these methods take into account the universal set or 

the complete list of possible route alternatives, computing for the subset of relevant route 

alternatives takes a huge amount of computing time. The potential path area (PPA) 

approach (Papinski, 2010), which constrains the universal set of route alternatives based 

on the activity spaces of drivers, has potential in addressing the two aforementioned 

issues. Hence this dissertation introduces a modified PPA-based path generation 

algorithm, which is incorporated in the proposed GIS-based episode reconstruction 

toolkit. 

1.2 Research objectives 

 The main objective of this dissertation is to advance the current tools and methods 

for automatically generating information from GPS data to support travel behavior 

research at the individual level, specifically to provide inputs for activity analysis in 

general and route choice modeling in particular. This main objective entails the 
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development of the GIS-based episode reconstruction toolkit (GERT) to automatically 

extract activity episodes (includes travel episodes) from GPS data and derive information 

related to these episodes from additional data (e.g., road network, land use). GERT 

consists of several components (tools or modules) that address key issues identified in 

Section 1.1.1: lack of transferability of existing tools and methods, an incomplete set of 

tools to extract information from GPS data, and the inability of existing tools to deal with 

huge GPS datasets. Because of GERT’s broad range of tools, this dissertation focuses on 

specific objectives that relate to the key components, which deal with the key issues 

identified earlier. To achieve the main objective, this dissertation deals with the four 

specific objectives as outlined below. 

 Objective 1: Develop a simple yet effective approach in matching GPS trajectories 

to the road network, an approach that can support an integrated set of tools for path 

generation and extraction of route attributes. This objective lays down one of the key 

components of the toolkit in addressing the lack of transferability among existing tools to 

maximize the potential of GPS data for transportation research. The lack of transferability 

is often associated with complexity (i.e., many assumptions and user-defined parameters) 

that inhibits the utility of tools dealing with GPS data. As GIS becomes prevalent among 

transportation researchers, it is best to use GIS as a platform in the development of a 

postprocessing map-matching algorithm. This algorithm is an integral component of the 

toolkit designed to manipulate the outputs of another key component as addressed in 

Objective 2. 
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 Objective 2: Develop a transferable and efficient method of extracting and 

classifying activity episodes from GPS data, without additional information. This 

objective addresses the need to develop practical tools that automatically extract activity 

episodes (i.e., stationary activity and travel episodes) from GPS data in the absence of 

time use or travel diary data. Again, this objective emphasizes that the method should be 

transferable, that is, applicable to different GPS datasets collected from different locations 

without the need of an extensive diary survey. Because most of existing methods in 

classifying episodes (mode detection algorithms) require more assumptions and user-

specified values, this objective suggests a minimalist approach. Hence, it calls for the 

development of an efficient mode detection algorithm as an integral component of the 

toolkit, which is further expanded to include more functionalities (components) to fully 

automate, if possible, the extraction of information from GPS data as addressed in 

Objective 3. 

 Objective 3: Design and develop an integrated set of tools that automatically 

extract activity episodes from GPS data and derived information related to these episodes 

from additional data, a toolkit that includes tools from GPS data preprocessing to route 

choice data generation. This objective highlights the importance of design principles (i.e., 

transferability, modularity, and scalability) that can be used to explicitly address the 

challenges identified in Section 1.1.1. These design principles serve as the framework in 

the development of independent but integrated components (tools), which, taken together, 

support the data needs of activity analysis in general and route choice modeling in 
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particular. The framework also serves to guide the adoption and modification of effective 

algorithms from the literature, and the development of new procedures to fill-in the gaps. 

Furthermore, this objective lays down the main components of the GIS-based episode 

reconstruction toolkit, and its application demonstrated as addressed in Objective 4. 

 Objective 4: Demonstrate the application of the GIS-based toolkit in generating 

inputs for route choice modeling, a modeling exercise that aims to test whether route 

choice preference for work trips differs from that of shop trips. This objective emphasizes 

the capability of the toolkit in automating the often tedious process of preparing data 

inputs for route choice modeling. Also, this objective highlights the flexible nature of the 

toolkit – an ability to automatically extract travel episodes (of different trip purposes) 

from GPS data, given the corresponding time use diary data. 

 In summary, Objectives 1 and 2 deal with the development and validation of the 

key components of the toolkit, while Objective 3 highlights all the toolkit’s main 

components, including those components introduced in the first two objectives. Finally, 

Objective 4 provides a demonstration of the toolkit’s ability in supporting the data needs 

of route choice modeling. The four objectives correspond to the four substantive chapters, 

which are outlined in Section 1.3. 

1.3 Dissertation contents 

 The remainder of this dissertation is organized into four substantive chapters 

(either published or submitted for publication), and one concluding chapter on research 



Ph.D. Thesis - R. Dalumpines; McMaster University - School of Geography and Earth Sciences 

  13 

 

contributions and future directions. Corresponding to the four objectives, the four 

substantive chapters (papers) form a coherent substantial body of work that focuses on the 

advancement of tools and methods for extracting information from GPS data, which in 

turn supports the data needs of activity analysis in general and route choice modeling in 

particular. 

 Chapter 2 presents a GIS-based map-matching (GMM) algorithm that makes use 

of geometric, buffer, and network functions in a GIS – to illustrate the suitability of a GIS 

platform in developing a postprocessing map-matching algorithm for transportation 

research applications such as route choice analysis. Moreover, this chapter laid down one 

of the key components of GERT, a component that supports the extraction of segment-

related attributes and other route generation procedures. The GMM algorithm was tested 

using a GPS-assisted time use survey that involved nearly 2,000 households in Halifax, 

Nova Scotia, Canada. Actual routes taken by household members who travelled to work 

by car were extracted using the GPS data and the GMM algorithm. The test results 

suggest that the GMM algorithm can be used as a practical tool in extracting routes based 

on GPS trajectories. 

 Chapter 3 presents a transferable and efficient method of extracting and 

classifying activity episodes from GPS data – an important component of GERT that 

provides inputs to GERT’s subsequent modules in the absence of time use or travel diary 

data. The proposed method, developed using Python
®
, introduces the use of the 

multinomial logit (MNL) model in classifying extracted episodes into different types: 
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stop, car, walk, bus, and other travel episodes. The proposed method is demonstrated 

using GPS data from the Space Time Activity Research (STAR) project in Halifax, 

Canada. The GPS data consisted of 5,127 person-days (about 47 million points) – 

complementing a time use diary data that provided 7,271 reported episodes that matched 

GPS episodes within five minutes of episode’s start or end time. The demonstration 

shows that the proposed method proved to be simple yet effective in extracting and 

classifying episodes from GPS data, and consequently suggests that the method has 

potential as a transferable and efficient alternative among mode detection algorithms. 

 Chapter 4 presents GERT’s framework based on three design principles 

(transferability, modularity, and scalability), and the entire set of GERT’s components 

(modules) including the two previously demonstrated in Chapters 2 and 3. This chapter 

puts emphasis on the linkages among components in the automated extraction of activity 

episodes from GPS data, and deriving additional information related to extracted episodes 

from additional data such as road network and land use. To validate that GERT works 

properly at the aggregate level (i.e., in terms of episode and duration distributions), time 

use diary (TUD) and GPS episodes were matched based on start/end time difference and 

total duration. Overall, the validation results indicate that GERT provides a transferable, 

modular, and scalable set of practical tools in automatically reconstructing episodes from 

GPS data, and potentially supports the data needs of activity analysis in general and route 

choice modeling in particular. 
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 Chapter 5 presents a comparison of the route choice models for work and shop 

trips in order to test whether route choice decision processes differ by trip purpose. In the 

process, this chapter introduces a practical path generation method, called Potential Path 

Area - Gateway (PPAG) algorithm, which automatically generates route choice sets from 

GPS trajectories. Moreover, this chapter demonstrates the capability of GERT in 

generating route attributes automatically, given a road network dataset and GPS 

trajectories. The GERT-generated route choice sets were used as inputs to Path-Size Logit 

modeling (Ben-Akiva & Bierlaire, 1999), which is in turn used as the basis for the scaling 

estimation method and likelihood ratio test (Swait & Louviere, 1993) to check whether 

the utility and scale parameters are different for separate route choice models of work and 

shop trips. The results show that route choice preferences vary by trip purpose, and 

suggest that route choice behavior for work trips tend to be restrictive while 

nonrestrictive for shop trips. In addition, descriptive analysis of route choice sets and 

intuitive model results suggest the utility of GERT in generating inputs for route choice 

modeling, clearly reducing the burden often associated with reproducing actual routes 

taken by survey respondents. 

 Finally, Chapter 6 wraps up the four substantive chapters by summarizing the 

contributions of this dissertation to activity analysis and route choice modeling, and 

identifying the results from each substantive chapter that make substantial contributions 

to the literature. This chapter also discusses the practical implications of GERT and 

identifies possible directions for future research. 
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Chapter 2 

GIS-based Map-matching: Development and Demonstration of a 

Postprocessing Map-matching Algorithm for Transportation Research 

2.1 Introduction 

 The increasing popularity of Global Positioning Systems (GPS) inspires some 

renewed interests in travel behavior research. Person-based GPS devices are increasingly 

used in travel or time use surveys (Doherty, 2001; Murakami and Wagner, 1999; Ogle et 

al., 2002; Wolf et al., 1999; Casas and Arce, 1999; Yalamanchili et al., 1999; Draijer et 

al., 2000; Pearson, 2001; Wagner, 1997). Matching the GPS coordinates to the digital 

road network has become an accepted approach in determining the actual routes taken by 

travelers, thus improving travel behavior analysis by providing a more accurate account 

of observed routes (Chung and Shalaby, 2005; Marchal et al., 2005; Schuessler and 

Axhausen, 2009). This approach is commonly known as map-matching in the field of car 

navigation and transportation research. Map-matching is a method of tracing the path or 

route taken by a traveler (represented by a sequence of GPS points) relative to a digital 

road network map. The underlying issues in map-matching has been extensively explored 

within the broader field of geographic information science focusing on different 

applications: geographic integration (Devogele, 2002; Harvey, 1994, 2005; Harvey and 

Vauglin, 1996a, 1996b; Walter and Fritsch, 1999), similarity measures for 

feature/geographic data matching (Bel Hadj Ali, 1997; Lemarié and Raynal, 1996; 
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Vauglin and Bel Hadj Ali, 1998), spatiotemporal databases and moving objects data 

(Brakatsoulas et al., 2005; Cao and Wolfson, 2005). 

 Map-matching can be classified generally into real-time and postprocessing map-

matching (Quddus et al., 2007). Real-time map-matching captures the location of a 

traveler in the road network with a real-time feed of GPS locations (often augmented by 

data from dead reckoning devices). Postprocessing map-matching takes GPS data 

recorded from a travel or time-use survey and matches it to the road network to trace the 

routes taken by travelers. This postprocessing procedure allows the integration of network 

attributes with the socio-economic information of travelers, providing data that can be 

used for analysis and model estimation. 

 Although most map-matching approaches use geometric and topological analysis 

— two common built-in functions in most GIS packages — nevertheless very limited 

studies have attempted to develop a postprocessing map-matching algorithm in a GIS 

platform because most published articles on map-matching focus on real-time navigation 

applications (Quddus et al., 2007), and the perceived slow performance of map-matching 

in a GIS (Schuessler and Axhausen, 2009). In the case where it is used for real-time map-

matching, GIS use is limited only to visualize the map-matching results (Taylor et al., 

2006). Few studies have been published on postprocessing map-matching algorithms 

specifically for transportation research. At least 35 articles on map-matching are claimed 

to be published for the period 1989-2006 (Quddus et al., 2007) although an extensive 

literature exists in geographic information science pertaining to similar concept but used 
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for different applications (e.g. Brakatsoulas et al., 2005; Cao and Wolfson, 2005). Yet in 

the context of transportation research, to the authors’ knowledge, only two articles are 

written on postprocessing map-matching developed and implemented in a GIS platform 

(Chung and Shalaby, 2005; Zhou, 2005). The large majority of the articles focus on real-

time map-matching algorithms generally developed for navigation purposes. This 

suggests the lack of research for postprocessing map-matching algorithms and the need 

for more of these tools for transportation research particularly in travel behavior analysis. 

This paper helps to fill this gap by introducing a postprocessing map-matching algorithm 

developed in a GIS platform to support travel behavior research in exploiting the 

increasing popularity of GPS in travel or time-use studies. Hence, this paper argues that a 

GIS is an ideal platform for the development of a postprocessing map-matching algorithm 

for transportation research. 

 The research presented in this paper is unique in two respects: technique and data 

input. Compared to previous map-matching algorithms, this is the first purely GIS-based 

map-matching algorithm for postprocessing person-based GPS data. Only two other 

published studies used GIS as a platform in developing postprocessing map-matching 

algorithms; however, they employed real-time map-matching procedures such as a 

reconfiguration of Greenfeld’s (Greenfeld, 2002) weighted topological algorithm (Chung 

and Shalaby, 2005), and multiple-hypothesis testing matching with rank aggregation 

(Zhou, 2005). The algorithm presented in this paper utilizes mainly built-in functions in a 

GIS such as buffer analysis and route analysis tools. In terms of data input, the algorithm 
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uses the largest GPS-assisted time use survey undertaken to date (Bricka, 2008). This 

research is a novel attempt to extract observed routes for work trips using GPS data and 

time diaries (episode data file). This is different from the two related studies on 

postprocessing GPS data. The first used large GPS records without any additional 

information (Schuessler and Axhausen, 2009). The second had travel survey data but 

need to re-enact the trip data using a person-based GPS (Chung and Shalaby, 2005). Also, 

the proposed algorithm fully utilizes the network dataset from a private data provider 

(DMTI) that includes attribute information such as turn restrictions, one-way street 

information, road classification, road speed, etc. Such effective use of a network dataset 

in a GIS platform for postprocessing map-matching has not been done before. 

 The GIS-based map-matching algorithm generates the actual routes taken by 

respondents based on the GPS data and time diary. The actual routes (or observed routes) 

serve as the dependent variable in route choice modeling. Aside from the observed routes, 

the algorithm also generates a travel time, route distance, and number of left and right 

turns for each observed route — used as independent variables in route choice models. 

2.2 Introducing GIS platform for postprocessing map-matching 

 A map-matching problem is characterized by two objectives: 1) identify the link 

traversed by the traveler, and 2) find his/her actual location within that link (Quddus et 

al., 2007; White et al., 2000). Postprocessing map-matching algorithms focus only on the 

first objective while real-time map-matching algorithms need to address the two 
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objectives. Postprocessing and real-time map-matching algorithms also differ in data 

inputs. Road network map and GPS data are often enough for postprocessing map-

matching. Real-time map-matching requires other data (e.g., from dead reckoning 

devices, elevation models, etc.) usually to augment the inaccuracies of GPS in urban 

environments. The kind and nature of these data inputs and the purpose of the algorithm 

largely influence the development of the map-matching procedures. For example, 

postprocessing procedures can create a polyline feature from the entire series of GPS 

points, which are already available, and match this line to the road network (i.e., global 

map-matching procedure (Lou et al., 2009)). This is not possible in real-time map-

matching because the map-matching needs to process the GPS coordinates as they are 

being updated online (i.e., incremental map-matching procedure). 

2.2.1 Postprocessing map-matching merits a different approach 

 Adopting procedures originally developed for real-time map-matching to 

postprocessing map-matching restricts the search for more appropriate procedures 

specifically for postprocessing map-matching. For example, the shortest path algorithm 

has not been used for real-time map-matching but can be appropriately used for 

postprocessing map-matching applications. Zhou (2005) cites that the shortest path 

algorithm can be utilized for postprocessing map-matching algorithm but did not proceed 

on exploring the idea. Hence, the core element of the GIS-based postprocessing map-

matching as proposed in this paper, which is the use of the shortest path algorithm, is not 

a new idea. But this idea, to the authors’ knowledge, has not been fully explored 
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particularly in a time when advances in GIS platforms offer more flexibility and advanced 

functionality. 

 Furthermore, there should be a clear distinction as far as postprocessing map-

matching is concerned. For this reason, the development of postprocessing map-matching 

algorithms should take a different approach from those of real-time map-matching. The 

dominance of the real-time map-matching procedures in the literature leads to the on-

going adoption of these procedures to postprocessing applications. Since real-time map-

matching procedures have not established an affinity with GIS platforms, postprocessing 

map-matching procedures currently focus on developing procedures in non-GIS 

platforms. 

2.2.2 Premise to the use of the GIS platform for map-matching 

 The platforms used for the development of the map-matching algorithms reveal 

the range of techniques that can be employed. GIS provides excellent data models and 

tools in dealing with spatial data. For example, ArcGIS
®
 provides an advanced network 

data model that allows for the modeling of complex road layouts by taking into account 

road design parameters such as turn restrictions, road hierarchy, and impedances. This 

strength of GIS makes it an ideal platform in developing a postprocessing map-matching 

algorithm that fully integrates network topology and attributes to match streams of GPS 

points to the road network. 

 However, GIS packages are often proprietary, comprehensive, and platform-

dependent. For these reasons, most map-matching procedures are developed and 
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implemented in non-GIS platforms. For example, Java is free, platform-independent and 

used in some postprocessing procedures (Marchal et al., 2005; Schuessler, and Axhausen, 

2009). Even so, non-GIS platforms have limited capability in handling spatial data 

models such as road networks and thus rely on a planar network that consists of nodes 

and arcs (links). This paper provides evidence that a postprocessing map-matching 

algorithm that utilizes a GIS network data model is effective in integrating topological 

information and resolving the map-matching problems of complex road intersections. 

2.3 Constraints and limitations of existing algorithms 

 The existing literature identifies the constraints and limitations of the current map-

matching algorithms for transportation applications (Quddus et al., 2007; White et al., 

2000). Although the literature review by Quddus et al. (2007) focuses on real-time map-

matching algorithms, some of the major constraints and limitations they identified also 

apply to postprocessing map-matching algorithms. These constraints and limitations refer 

to problems associated with the identification of initial links, calibration of threshold 

values used in decision processes, and the difficulty in correctly matching locations in 

complex road layouts (e.g., cloverleaf interchanges, flyovers). 

2.3.1 Problem with the initial map-matching process 

 One of the problems of existing map-matching algorithms is the identification of 

the initial link. The existing map-matching techniques use an error ellipse or circle to 

snap the GPS point/s to the junction (intersection) node to identify the initial link. The 
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problem occurs if the junction node falls outside this error region. Moreover, the entire 

length of the link is assumed to be traversed once an initial link is identified. This is 

problematic for trip ends covering only a portion of the road link because the travel 

distance will be overestimated if computed based on all the links traversed. This problem 

is avoided when using the GIS-based map-matching algorithm. This algorithm snaps the 

initial GPS point to the nearest link instead of the junction node, and the route length is 

calculated from the portion of the link covered by the GPS trajectory. 

2.3.2 Calibration of threshold values 

 All of the existing map-matching algorithms use some parameters. For example, a 

postprocessing map-matching algorithm developed by Marchal et al. (2005) depends on 

two parameters, N (number of candidate paths) and α (u-turn parameter). The number of 

parameters increases as the map-matching algorithm becomes complicated. Often it is 

difficult to recommend default values and this becomes an issue when applying the map-

matching technique to a different operational environment (Quddus et al., 2007). A map-

matching algorithm that uses a minimum number of parameters that can be calibrated 

easily will be helpful to transportation researchers. 

2.3.3 Problems at complex intersections 

 Development of map-matching algorithms should effectively address the 

problems that arise at intersections. Route changes occur at intersections making it 

difficult for map-matching processes to identify the next link (White et al., 2000). This 
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difficulty is more pronounced in complex intersections (e.g., cloverleaf interchanges, 

flyovers) and further exacerbated by GPS errors. For this reason, the existing literature 

repeatedly suggests the integration of network topology in map-matching procedures 

(Marchal et al., 2005; Quddus et al., 2007; White et al., 2000; Quddus et al., 2003). Most 

of the existing algorithms did not go beyond the simple connectivity rules, often 

incorporated in some scoring procedures (or set of rules) to determine the next link after 

the intersection. Hence, Quddus et al. (2007) recommends the use of road design 

parameters (e.g., turn restrictions, road classification, etc.) and Marchal et al. (2005) 

hinted at the use of turn rules to improve map-matching performance particularly at 

intersections. 

 To the authors’ knowledge, no map-matching algorithm has taken full advantage 

of these road attributes. Quddus et al. (2007) attributed this to unavailability of data but it 

can be argued that the standard network data model (planar network model) limits the 

inclusion of road attributes. Spatial road network data are available from governments for 

free and private providers sell more comprehensive data at a reasonable cost. Private data 

vendors provide route logistics or road network data in GIS formats (e.g., ArcGIS
®
, 

MapInfo®), which the existing map-matching methods have not taken full advantage. 

 Therefore, this paper argues that a GIS platform should be used in developing a 

postprocessing map-matching algorithm to utilize the network topology and road 

attributes that can be handled easily in a GIS environment. The next section describes the 

GIS-based postprocessing map-matching algorithm followed by the testing results using 
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the Halifax STAR Project dataset (focusing on routes taken by 104 individuals during 

their drive to work in the morning). 

2.4 GIS-based map-matching algorithm 

 The core of the GIS-based map-matching algorithm is the use of a route analysis 

tool in ArcGIS
®

 (Network Analyst extension). This tool uses a shortest path algorithm 

and basic inputs (stops, barriers) to generate the shortest path or route. Stops and barriers 

are the basic parameters that need to be set by the user. Stops refer to the origin and 

destination locations (i.e. trip origin and destination) used by the shortest path algorithm 

to generate the best or shortest route. Barriers play a significant role in controlling the 

shortest path algorithm to generate only the route based on the streams of GPS points that 

represent a trip. The algorithm creates a buffer region around GPS trajectories to produce 

a set of barriers that control the route analysis tool to correctly generate the observed 

routes. These routes are automatically stored in a file geodatabase feature class format 

that contains relevant attributes for the route choice analysis (e.g., travel distance, travel 

time, number of left and right turns). These attributes are automatically added by the 

algorithm to every route generated. The route generated depends on the impedance or cost 

defined by the user. Travel time is the default impedance used by the algorithm but the 

user can change it to travel distance if desired. 

 The postprocessing GIS-based algorithm is developed and implemented in 

ArcGIS
®
 v9.3.1 using Python scripting language. Python scripting is free and well 
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supported in ArcGIS
®
 and works well with ArcObjects

™
 - the building blocks of 

ArcGIS
®
 software. The algorithm can be run as a standalone program or added as a tool 

in ArcGIS
®
. The standalone implementation saves some processing overhead and hence it 

has computational speed advantage. The latter approach provides a user-friendly GUI, 

allowing users to specify the input data and parameters. To run the algorithm via GUI 

(Figure 1), the user specifies the following parameters: the workspace location of the file 

geodatabase containing the GPS data, a sample GPS data file from the file geodatabase 

(for the script to read the attribute fields of the GPS data file), line field and sort fields 

used to convert the GPS points into a polyline feature, the network dataset, and the buffer 

distance in meters (50 m is the default value). 

 

Figure 2.1 Sample GUI of the GIS-based map-matching algorithm showing the input 

data and the buffer distance parameter 
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 Python scripting is used to automate the detailed steps for the GIS-based map-

matching, the steps are described as follows: 

1. Convert the stream of GPS points (representing the trip made by a traveler) into a 

polyline feature. The first and the last GPS points in the sequence are designated 

as stops (origin and destination points) in the network analyst module in ArcGIS
®
. 

The intermediate points between the stops are used to generate the polyline 

feature; this feature is the basis for the buffer in step 2. 

2. Create a buffer around the polyline feature based on user-defined distance. The 

buffer distance should be, more or less, 5x to 6x the horizontal accuracy of the 

GPS data. This is based on the results of the sensitivity analysis, which is 

explained further in the next section on results (section 5.4). The experiment for 

GPS data with a horizontal accuracy of 10 m revealed that a buffer of 50 m 

produces accurate results. This was set as the default distance in the algorithm but 

can be changed by the user. 

3. Assign the stops and barriers for the route solver (from ArcGIS
®
 Network Analyst 

module). Start and end points define the stops. (The route solver can also work 

with multiple stops in between the start and end points, similar to the Traveling 

Salesman Problem (TSP)). Barriers are defined by the intersection of the boundary 

of the buffer region created in the previous step and surrounding links. Barriers 

ensure the accuracy and efficiency of the shortest path algorithm. This step 
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assumes that there are no errors particularly gaps in the GPS data. Outliers and 

other errors are handled by the GPS data preprocessing module. 

4. The observed route is generated (or not generated) depending on the buffer 

distance specified by the user. This route is the shortest or best route generated by 

the shortest path algorithm (using the origin and destination points) inside the 

buffer region. Topological rules and road attributes (e.g. one-way restrictions, 

road hierarchy, etc.) are used by the built-in shortest path algorithm in ArcGIS
®
 in 

generating the shortest path between origin and destination points. 

5. The network attribute table is updated for the number of left and right turns in 

traversing the observed route, aside from the travel distance and travel time that 

are automatically generated by the route solver (Figure 2). 

 

Figure 2.2 Portion of the attribute table generated by the GIS-based map-matching 

algorithm showing the important attributes for each observed route (i.e., travel time 

(minutes), travel distance (meters), and the number of left and right turns) relevant to 

route choice modeling 
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2.5 Results 

2.5.1 Data input and preprocessing 

 The Halifax Space-Time Activity Research (STAR) Project was claimed to be the 

world’s first largest GPS-assisted prompted-recall time diary survey (Bricka, 2008). The 

survey was conducted for a 2-day period covering approximately 2,000 households in 

Halifax, Nova Scotia, Canada from 2007 to 2008. Person-based GPS devices were used. 

The GPS data have a spatial resolution of within 10 meters (but generally <3m) and a 

temporal resolution of 3 recordings every 2 seconds. About 47 million GPS points were 

collected. The GPS data were obtained in SPSS format from the Halifax STAR Project 

then converted into GIS format as point features. Start time and end time corresponding 

to trip ends for work trips were extracted from a time diary episode data file into a matrix 

of respondent IDs, start time, and end time. The matrix was used to extract the portion of 

the daily trips corresponding to work trips by car using a Python script in ArcGIS
®
. Work 

trips by car were extracted because most individual daily trips consist of this kind of trip. 

Moreover, work trips are extensively studied in the field of transportation, particularly in 

route choice modeling. The selection of the sample is motivated by the potential 

application of the GIS-based algorithm to generate the input data for route choice 

modeling. Thus, the selection focused on interzonal, home-based work trips that are at 

least a kilometer in length, and performed by unique individuals. Out of 3,023 simple 

work trips from the STAR time diary - episode data file, about 574 home-based work 



Ph.D. Thesis - R. Dalumpines; McMaster University - School of Geography and Earth Sciences 

  36 

 

trips are selected. Some of the reported work trips in episode data file have missing GPS 

trajectories. All the GPS trajectories representing home-based work trips are 

preprocessed. Data preprocessing involved removal of outliers and gaps. GPS points with 

horizontal dilution of precision (HDOP) value greater than 2 are removed. Also, “position 

jumps” are removed if the calculated speed between two consecutive GPS points exceeds 

50 m/s (Schuessler and Axhausen, 2009). Gaps are filled in using proximity analysis and 

data management tools in ArcGIS
®
. After data preprocessing, 104 work trips are finally 

selected. 

 A first experiment is performed on the sample of 104 work trips that accounts for 

about one percent of the data (46K points) or about 18 percent of total home-based work 

trips. Each work trip from the sample begins at home and ends at work place. The small 

sample was chosen because it is easy to manage and helps facilitate the manual validation 

of the routes generated by the algorithm – enough to illustrate the performance of the 

GIS-based map-matching algorithm. Future experiments will attempt to use the entire 

GPS dataset, starting with the application of the algorithm to extract routes for the 3,023 

simple work trips. The validation process involved visual checking of home and work 

place locations and GPS trajectories with the aid of contextual information from time 

diary data, and satellite image. The preprocessed GPS data were stored in ArcGIS
®
 file 

geodatabase ready for map-matching, representing about 104 individual work trips. 

 The GIS-based map-matching algorithm requires two inputs: (1) the preprocessed 

GPS data file stored in file geodatabase format, and (2) the network dataset. The 
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preprocessed GPS data for 104 individual work trips comprise about 440 points per trip. 

The network dataset was from DMTI Spatial CanMap® Route Logistics Version 2008.3 

that provides a detailed road and highway network for Canada. A subset of this network 

was extracted for Nova Scotia because some of the trips go beyond the Halifax region. 

The road network for Nova Scotia consists of 116,647 links and 98,132 junctions. 

2.5.2 Accuracy 

 The algorithm correctly generated the routes for 88 percent of the work trips (91 

routes). The few inaccuracies are mainly attributed to the wrong turn restrictions in the 

network dataset from DMTI. Manual correction of the wrong turn restrictions produced 

accurate results. However, the algorithm performed well at complex intersections (Figure 

3). The validation is performed by visually retracing the routes taken by respondents 

using time diary records for each of the 104 respondents. The advanced network data 

model and the shortest path algorithm in the GIS platform effectively utilized the network 

topological information enabling the GIS-based algorithm to produce accurate results. 

Other map-matching algorithms that use the planar network model have difficulty in 

matching GPS trajectories at complex intersections (Quddus et al., 2007). This is because 

of the limited capability of the planar network in modeling complex road layouts. 

 Unlike the planar network data model commonly used in existing map-matching 

algorithms (Marchal et al., 2005; White et al., 2000; Quddus et al., 2003), the proposed 

map-matching uses an advanced network data model of ArcGIS
®
. The planar network 

data model is a simple representation of road network in terms of nodes and arcs. It is 
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computationally efficient but very limited in making use of topological rules and road 

attributes to model the actual road network. For this reason, White et al. (2000), Quddus 

et al. (2003), and Marchal et al. (2005) call for the integration of network topology to 

improve accuracy, and address the limited capability of map-matching when it comes to 

complex road layouts, particularly at road intersections. The network dataset in ArcGIS
®

 

is an advanced network data model that fully utilizes connectivity rules and road 

attributes (e.g., costs, restrictions, road classification) that allow for the modeling of 

complex scenarios. The route analysis tool makes use of the ArcGIS
®
 advanced network 

data model and has a potential in addressing the two prevailing issues in the literature: 

effective use of topological in-formation and dealing with the problems that arise in road 

intersections. The route analysis uses the shortest path algorithm to solve for the best 

route based on the cost or impedance parameter. This produces accurate results in a 

matter of seconds. This is made possible with the use of the advanced network 

connectivity and attribute data model. 
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Figure 2.3 An example of a complex intersection where the GIS-based map-matching 

algorithm accurately generated the route for the GPS trace 

 The GIS-based map-matching algorithm avoids the problem with the initial map-

matching process. The snapping function in the GIS environment works effectively in 

snapping the initial GPS point to the nearest road link. However, the resolution or the 

quality of the road network often affects the accuracy of the algorithm at the start and end 

locations. Access roads that connect parking areas or home locations to main roads are 

missing in most digital road network. At the start or end of the trip, the GIS-based map-

matching uses the nearest road to match the GPS trajectories when access roads are 

missing (Figure 4). Based on the experiment results, the missing access roads to home 

locations or parking areas account for about 10 percent difference between the actual trip 

distances and generated routes. An in-depth analysis of problems associated with missing 
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links has not been fully addressed here but would be interesting to investigate in the 

future. 

 

Figure 2.4 The algorithm sticks to the nearest road whenever some network link is 

missing 

2.5.3 Computing speed 

 The testing of the algorithm is implemented in a PC with an Intel Core Duo 

processor clocked at 2.66 GHz with 3 gigabytes of physical memory. The experiment 

revealed an average computing speed of one minute per trip. This is approximately 6 s per 

point relative to the sample. The computing speed per trip seems to remain constant 
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regardless of an increase in the number of trips or route length (Figure 5). However, 

computing speed gradually increases with the increase in buffer distance or the increase 

in complexity of the GPS trajectory that prolongs the creation of the buffer region. Chung 

and Shalaby (2005) reported a computing speed of 2-6 minutes per trip in a PC with an 

Intel Pentium III 1 GHz. No direct comparison can be made with other previous studies 

because of the lack of objective and comparable performance indicators. The computing 

speed can be improved by minimizing the overheard processing through efficient coding. 

 Although considered important, computing performance is not the top priority for 

postprocessing map-matching for transportation research. However, the GIS-based map-

matching algorithm demonstrated an acceptable computational speed in generating 

accurate routes for 88 percent of the work trips tested. 

 
Figure 2.5 Plot of the computation time over route length for a sample of 104 routes 
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2.5.4 Advantages and limitations 

 The accuracy of the GIS-based map-matching algorithm is sensitive to the buffer 

distance. A sensitivity analysis is conducted on some randomly selected trips. These trips 

are selected because they are more complex than the rest, often with loops and sharp 

curves. Buffer distances of 10 m, 15 m, 20 m,…, 100 m are tested. The results show that 

no routes are generated for buffer distances below 50 m. Inaccurate routes are generated 

for buffer distances of 60 m and above. Figure 6 shows the effect of buffer distances to 

the map-matching accuracy. Therefore, the buffer distance for the GPS trajectory should 

be, more or less, 5x to 6x the horizontal accuracy of GPS data. This range of buffer 

distance values accounts for the width of the roads, the sharpness of curves, and GPS 

positioning errors. Values greater than this threshold will cover irrelevant links resulting 

to incorrect routes generated while, values lower than the threshold will be too restrictive 

and no shortest path or route will be generated. The buffer distance that will produce 

accurate map-matching results depends on the complexity of the road network and the 

horizontal accuracy of GPS device. But this distance can be easily set by the user unlike 

some threshold values in other map-matching algorithms that need in-depth empirical 

study to determine the appropriate values for several parameters (Marchal et al., 2005; 

Quddus et al., 2003). Future research should perform a more thorough investigation 

concerning the buffer distance parameter and computing performance (e.g. using different 

GPS and road network datasets). 
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Figure 2.6 Sensitivity of map-matching algorithm to buffer distance: (a) buffer distance = 

50 m and (b) buffer distance = 60 m 

 The shortest path algorithm in ArcGIS
®
 is the core component of the map-

matching algorithm proposed in this research. The shortest path algorithm alone is 

computationally efficient in generating routes and could also take into account multiple 

stops or destinations. With some modification, the algorithm can be extended or expanded 

to automatically extract multi-modal trips, similar to the trip reconstruction tool (Chung 

and Shalaby, 2005) or a GPS postprocessing tool (Schuessler and Axhausen, 2009). 

 The GIS-based algorithm is timely for the increasing availability of road network 

data from government sources and private data vendors. Rich network datasets of good 

quality are readily available, mostly from private data vendors for a reasonable price. This 

reduces the time to provide road network data required for the map-matching algorithm. 

In the absence of road network data, new data can be created in the GIS environment. 
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 In summary, the advantages of the proposed algorithm are the simple user 

interface (GUI), parameters can be changed to suit the demands of a particular dataset 

(i.e. using the appropriate buffer distance), can be expanded to perform more functions 

(e.g. extract multi-modal trips), generates accurate routes within a reasonable amount of 

time, and its portability. The algorithm was developed using Python script and can be 

easily added in ArcGIS
®

 as a tool. The portability of the script makes it available to many 

users. Also, the script can be easily edited and improved by accessing the script file in any 

text reader application. 

2.6 Conclusion 

 This paper argues that a GIS is the ideal platform for the development of 

postprocessing map-matching algorithm for transportation research like route choice 

modeling because it is easier to develop and implement, is scalable, and generates 

accurate results at an acceptable computing cost. To support this argument, this paper 

presented a postprocessing algorithm developed and implemented in a GIS platform. The 

development of the algorithm is easy and fast by making use of the functionalities already 

available in commonly used GIS platforms. As shown in this paper, the GIS-based map-

matching algorithm is able to deal effectively with complex road intersections and 

generate accurate routes at reasonable computing cost. The script can be improved and 

can be easily employed by researchers with GIS in their research environment. Basically 

the algorithm makes use of buffer and network analysis that can effectively be done in 
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GIS. The increasing availability of commercially available network datasets and GPS-

assisted time use or activity surveys provide a timely basis for this kind of algorithm. This 

algorithm can be easily tailored to the needs of researchers in analyzing route choice 

behavior. 

 However, several issues need to be resolved for further improvement of the 

algorithm. Computing speed can be improved by the use of efficient coding and moving 

computing intensive processes to a faster programming language like C++. Seamless 

integration with the GPS data preprocessing is needed and this is another research 

direction that the authors will undertake. This integration may also include the 

development of a new module that will enable users to easily link GPS data with a time 

diary episode data file or travel survey data to enable extraction of reported trip ends, 

travel time and other information. 

 The GIS-based map-matching algorithm can be expanded to automatically detect 

and extract trips made by other modes such as public transportation, walking and cycling. 

The development of this trip reconstruction tool is perfectly suited for the Halifax STAR 

dataset and the authors are currently working towards this direction by utilizing GIS as a 

development platform. Moreover, the GIS-based map-matching algorithm presented in 

this paper is part of an on-going effort to develop a GIS-based toolkit for route choice 

modeling. 
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Chapter 3 

Making Mode Detection Transferable: 

Extracting Activity and Travel Episodes from GPS Data 

Using the Multinomial Logit Model and Python 

3.1 Introduction 

 The prevalence of global positioning systems (GPS) devices and their increasing 

use in transportation research (e.g., Murakami & Wagner, 1999; Draijer et al., 2000; 

Bohte & Maat, 2009) and other fields (e.g., Maddison & Ni Mhurchu, 2009) calls for 

practical approaches in leveraging GPS for research purposes. GPS data provide detailed 

accounts of stationary activity and travel episodes, traditionally captured by time-use 

surveys, but with more accuracy, better frequency and lesser burden to respondents 

(Wolf, 2000; Stopher et al., 2005; Bricka, 2008; Stopher & Shen, 2011). Extracting 

activity episodes from GPS data involves two main processes: (1) the extraction of 

segments (i.e., sequence of points classified as stop, trip, or mode transfer points) and (2) 

classification of these segments into stop episodes (stationary trajectories) or various 

travel episodes such as walk, car, and so on (movement trajectories); see Figure 3.1. In 

this paper, the authors propose a transferable and efficient method of automatically 

extracting and classifying activity episodes (referred hereafter as episodes) from GPS data 

without any additional information. The proposed method uses a multinomial logit 

(MNL), which provides a transferable and efficient approach in classifying extracted 
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episodes into different types. The preliminary results are promising in the light of the 

transferability issue that impedes the widespread use of GPS devices for transportation 

research. Transferability, as used here, refers to the ability of a classification method to be 

applied in different environments with minimal effort due to its minimal dependencies 

and objectivity in determining threshold values in predicting episode types. 

 

Figure 3.1 GPS trajectory subdivided into points, segments, and episodes 

 In passive mode, a person-based GPS data logger can collect huge amounts of raw 

data spanning several days. The raw data provide useful information on activity episodes 

- typically consisting of information on the location, duration, travel mode, and route. 

Several methods have been developed to automatically extract episodes from GPS data, 

particularly in imputing travel modes based on these episodes. These methods of 

classifying segments from GPS data into different activity episodes are called mode 

detection or movement trajectories classification (e.g., Schuessler & Axhausen, 2009; 

Biljecki, 2010). Often dictated by available data and unique research purposes, these 

methods are difficult to apply in different geographic areas. Transferability of the existing 
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methods remains a challenge. This issue was identified by Lawson et al. (2010) based on 

their experiment that aimed to replicate currently used methods on mode detection. Their 

experiment provides an objective examination of currently used mode detection 

algorithms to date. They recognized the difficulty of directly comparing different 

approaches because of different data used in developing these methods, not to mention 

the different variables required by each approach. Transferability of various methods of 

extracting episodes from GPS data is difficult, and often researchers narrowly focus on 

the performance of their proposed methods. This problem can be attributed to many, if 

not, unique input variables required and the lack of clear-cut input values that will yield 

the best results. Moreover, the authors believe that the main reason for the lack of 

transferability is the method used in classifying episodes extracted from GPS data. These 

classification methods have specific data requirements that are hard to replicate in 

different application environments, not to mention the subjectivity of selecting threshold 

values used in classification. 

 Following Lawson et al. (2010), there are three basic methodologies in classifying 

episodes: rule-based, neural networks, and fuzzy logic (for a comprehensive list, see 

Biljecki, 2010). Rule-based methods are linked with data-intensive processes and require 

many trials to determine the best input values that often vary in different application 

environments (e.g., Chung & Shalaby, 2005; Bohte & Maat, 2009; Gong et al., 2012). In 

addition, rules vary across different researchers and data used. For these reasons, the rule-

based approach is the least transferable among the three methodologies. Neural networks 
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(e.g., Gonzalez et al., 2008) need a good quality training dataset and it is difficult to 

determine the best variables automatically except to compare percent of test samples 

accurately predicted. Unlike rule-based methods, neural networks can be adapted to 

different training datasets, which makes them more transferable. However, the problem 

with neural networks is the fine-tuning of input weights to achieve the best predictive 

accuracy. Fine-tuning is often an ad hoc process lacking in clear guidelines, aside from 

little guidance given on the selection of neural network architecture (Hunt & Lyons, 

1994). As training datasets vary across different application environments, it is difficult to 

determine how much training is sufficient. Fuzzy logic (e.g., Tsui & Shalaby, 2006; 

Schuessler & Axhausen, 2009) suffers the same limitation of rule-based methods, as it is 

difficult to find the right combination of rules that will produce the best results. These 

three basic methodologies also lack the flexibility of accommodating additional input 

variables as dictated by different application environments. For example, the 

classification of GPS segments into bus episodes often assumes that segment endpoints 

are within a certain distance of a bus stop (e.g., Tsui & Shalaby, 2006). This distance 

threshold used as a predictor is ineffective in environments where most bus stops are 

located where car episodes also begin or end such as shopping malls, government 

buildings, street intersections, and so on. Eventually this predictor will be dropped and 

one has to search for another input variable in its place. Within the frameworks of 

existing methodologies, searching for additional input variables takes many trials and 

errors. Logit models, as used in travel demand models, have been investigated for their 
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transferability in space and time (e.g., Atherton & Ben-Akiva, 1976; Wilmot, 1995; 

Cotrus et al., 2005). As logit models appear to be stable across different data sources, we 

can adopt this technique as a more transferable and efficient method of classifying 

episodes extracted from GPS data. 

 This paper argues that the transferability of the method of extracting episodes 

automatically from GPS data can be significantly improved by using generic variables 

and MNL to classify GPS segments into episodes. By using MNL, input weights are 

automatically estimated - significantly reducing the burden of determining thresholds for 

input variables as in rule-based methods. One also avoids the complexity of setting up 

analysis layers associated with neural networks by having a parsimonious MNL model. In 

addition, MNL specification and estimation is easier to implement than setting up rules 

when using fuzzy logic. Utility specification in MNL provides flexibility for its use in 

various classification problems (e.g., easy to add variables in utility specification), and 

has been pointed out as its strength (e.g., Koutsopoulos et al., 1994; Sorci et al., 2010). 

Following Karlaftis and Vlahogianni (2011), all mentioned methods have advantages and 

limitations but often simple ones give as good results as complex ones. MNL looks 

promising as a transferable and efficient method in classifying GPS segments into activity 

and travel episodes, with an overall accuracy of 90% as demonstrated in this paper. 

Reported overall accuracies of existing methods range from 70 to 95%, based on the 

comparative experiments done by Lawson et al. (2010) and the extensive list reviewed by 

Biljecki (2010). 
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 The following sections discuss the proposed method along with the sample data 

used to demonstrate the automatic extraction and classification of episodes into five 

types: stop, walk, car, bus, and other (travel) episodes. Data and methods are presented 

briefly introducing existing and refined procedures adopted from existing algorithms for 

GPS data preprocessing. The remaining sections focus on the specification and validation 

of a MNL model for classifying GPS segments into different activity episodes. The 

concluding section summarizes the potential of MNL along with the segmentation 

techniques in extracting activity episodes from GPS data. 

3.2 Data and methods 

 This section describes the GPS and time-use diary data used in the development 

and testing of the proposed method of extracting activity and travel episodes. Also, the 

GIS-based Episode Reconstruction Toolkit (GERT; Dalumpines & Scott, 2014) 

components for mode detection is presented, summarizing the key steps involved in 

generating statistical descriptors for extracted GPS episodes. Finally, this section presents 

the MNL model specification based on the statistical descriptors. 

3.2.1 GPS and time-use diary (TUD) data 

 The proposed method, consisting of GERT’s extraction and mode detection 

component (Figure 3.2; further discussed in Section 3.2.2), is demonstrated using a GPS 

data set from the Space-Time Activity Research (STAR) project - a comprehensive 

survey of time-use and travel activity conducted in Halifax, Nova Scotia, Canada from 
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April 2007 to May 2008 (for more information on this data set, see Millward and 

Spinney, 2011). Apart from a time-use diary, respondents carried a GPS-equipped mobile 

device (Hewlett Packard iPAQ hw6955), which recorded a location every second and 

with a horizontal accuracy <= 10 m. The GPS data logger collected positional data that 

includes unit ID, date, time, x-coordinate, x-direction (north/south), y-coordinate, y-

direction (east/west), speed, altitude, horizontal dilution of precision (HDOP), and the 

number of satellites; 1,967 respondents collected over 47 million points for two survey 

days (equivalent to 5,127 person-days). STAR time-use diary (TUD) data provided a 

sample of 7,271 reported episodes from 1,277 respondents that matched extracted GPS 

episodes within five minutes of the TUD episode’s start or end time. Of particular 

interest, each TUD episode has information on the activity location such as home, 

workplace, car, bus, and so on. 

 A helper module written in Python
®
 as part of GERT automatically extracts the 

matching episodes from diary and GPS data. In extracting matching episodes, this module 

automatically classifies TUD episodes as stop episodes if their associated locations were 

outside of travel modes (e.g., activity episodes performed at home were labeled as stop 

episodes). This was done to correctly match TUD episodes with that of GPS episodes. 

Out of 7,271 episodes, 49% (3,569) were reported by survey respondents as stop 

episodes, 43% (3,131) as car episodes, 5% (390) were recorded as walk episodes, while 

the minority consists of 2% (110) for bus episodes and 1% (71) for other (travel) 

episodes. Since other travel episodes have a very small share in the sample, these minor 
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travel episodes were grouped together under other episodes. These minor travel episodes 

included the following travel modes: bicycle (42), boat ferry (19), motorcycle (9), and 

refused to be reported (1). Bus episodes were retained to reflect public transportation 

modes in the classification scheme. In general, about 90% (6,544) of the sample from the 

STAR data was used for the MNL model estimation, and the remaining 10% (727) for 

model validation. 

3.2.2 The proposed method: GERT’s Extraction and Mode Detection Module (MDM) 

 The proposed method (of extracting and classifying episodes from GPS data) is 

one of the main components or modules in GERT, referred to as the GPS Episodes 

Extraction and Mode Detection Module (MDM) or the Stage 2 in GERT’s workflow 

(Figure 3.2). The development of GERT was motivated by the lack of practical tools that 

can automatically extract information from GPS data for activity analysis in general and 

route choice modeling in particular. To make it practical, GERT used a framework built 

around three design principles: modularity, transferability, and scalability (Dalumpines & 

Scott, 2014). GERT and its modules were designed to work on minimal input 

requirements: latitude, longitude, and time; but can easily scale-up to accommodate 

additional inputs apart from GPS data or additional modules without losing its integrity. 

As part of GERT, the proposed method or MDM was designed to be transferable to 

different application environments because it only relies on location coordinates and time 

stamps (generic inputs), and takes advantage of the efficiency and flexibility provided by 

MNL in classifying episodes. GERT’s workflow (Figure 3.2) is discussed in detail in 
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another paper by the authors dealing with the entire GERT components (Dalumpines & 

Scott, 2014). The rest of this sub-section provides an overview of the inputs and processes 

in GERT’s MDM, and summarizes the main steps involved. 

 Each GPS point pi = {latitude, longitude, time}, has a coordinate (latitude, 

longitude) and time stamp. A sequence of GPS points pi  {p1, p2, ..., pn}, called GPS 

trajectory (Figure 3.1), represents an individual’s movement for a 24-hour period. The 

coordinates and time stamps were used to extract distance, heading, duration, speed, and 

acceleration information. This extracted information was used to derive statistical 

descriptors (observed characteristics), later used in establishing decision rules for 

segmentation of preprocessed or valid GPS trajectories (i.e., slicing each trajectory into 

stationary or movement segments). Then derived statistical descriptors were used as 

explanatory variables or predictors in the classification of episodes into several episode 

types using MNL. 

 GERT’s GPS Preprocessing Module (GPM in Figure 3.2) generates valid GPS 

trajectories as inputs to MDM. GPM removes redundant records (i.e., records with the 

same coordinates) and outliers with speed greater than or equal to 50 m/s (Wolf et al., 

1999; Schuessler & Axhausen, 2009). As a data-preprocessing component, GPM adopted 

data cleaning procedures introduced by Schuessler and Axhausen (2009), with additional 

rules that allowed automatic removal of errors associated with urban canyon effects. 
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Figure 3.2 Four-stage workflow of GIS-based episode reconstruction toolkit (GERT), the 

proposed method of extracting and classifying episodes from GPS data is highlighted in 

bold 
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GPM is further discussed in detail in another paper by the authors (Dalumpines & Scott, 

2014). Given an input of valid GPS trajectories, the episode extraction and classification 

component (MDM) consists of the three steps as summarized below: 

1. Using the concept of stops as location anchors, the first step classified each 

record from valid GPS trajectories into three types of points: stop, trip, or 

mode transfer point (Chung & Shalaby, 2005; Zheng et al., 2008). Generally, 

records classified as stop points have speed <= 0.15 m/s (based on typical GPS 

device velocity accuracy with horizontal accuracy <= 10 m), and duration or 

dwell time >= 120 s as used in previous studies (e.g., Wolf et al., 1999; 

Stopher et al., 2005). Mode transfer points (MTP) are similar to stops but with 

duration of less than 120 s. Trip points are those records that did not fall under 

stop or MTP categories. Then, similar records were merged together to form 

two types of segments: stop segments comprised of stop points, and trip 

segments comprised of trip points or MTPs. Stop segments were initially 

classified into stop episodes. 

2. The second step partitioned travel episodes into walk or non-walk, where non-

walk episodes have an average speed greater than 0.91 m/s (LaPlante & 

Kaeser, 2007; Gong et al., 2012), distance >= 55 m (Schuessler & Axhausen, 

2009), average heading less than 30 degrees, and consist of at least three 

records (Bohte & Maat, 2009). Generally, travel episodes, comprised of 

MTPs, were classified as walk episodes if their duration exceeded 60 s; 
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otherwise, they were merged with non-walk episodes. The threshold values 

were determined based on a series of experiments (e.g., average heading < 30 

degrees) and previous studies as cited above. At this step, K statistical 

descriptors were computed for each episode (i.e., stop, walk, or non-walk), 

where K = µ'x; µ = [min, max, mean, median, standard deviation, sum]; x = 

[distance, heading, duration, speed, change in heading, acceleration] - a total 

of 36 descriptors excluding the count of GPS points in each episode; see Table 

3.1 for an example of these descriptors. Note that x variables were used as 

these variables can be easily derived from any GPS data (i.e., generic) and 

commonly used in previous studies, particularly speed and acceleration (e.g., 

Chung & Shalaby, 2005; Stopher et al., 2005; Zheng et al., 2008; Bohte & 

Maat, 2009; Dodge et al., 2009; Biljecki, 2010; Lawson et al., 2010). As an 

overview, average values of selected statistical descriptors are shown in Table 

3.2. 

3. Finally, a MNL model was specified for all activity episode types of interest, 

which include the travel episodes. In this research, the other travel or non-walk 

episodes were classified into travel by car, bus, or other (travel) modes. The 

MNL model specification used the statistical descriptors as explanatory 

variables for the classification of all episodes into J episode types, where J = 

{stop, walk, bus, car, other}. Dodge et al. (2009) also used statistical 

descriptors effectively as inputs to supervised vector machine in classifying 
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trajectories. Each episode was assigned to the type with maximum probability 

(Zheng et al. 2008; Schuessler & Axhausen, 2009). 

Table 3.1 An example of statistical descriptors used as MNL predictors 

episode start_time end_time dist_min dist_max dist_median dist_avg dist_stdev dist_sum 

1 4:00:50 8:24:12 8.7 15.6 12.4 12.3 3.1 49.1 

2 8:24:12 8:28:54 2.6 67.7 29.0 26.4 13.2 2349.2 

3 8:28:54 8:32:01 8.5 8.5 8.5 8.5 0.0 8.5 

4 8:32:01 8:36:49 1.6 62.4 23.2 22.5 13.2 2412.0 

5 8:36:49 8:41:21 10.6 10.6 10.6 10.6 0.0 10.6 

6 8:41:21 8:43:07 1.2 11.3 4.3 5.9 3.6 81.9 

7 8:43:07 8:45:56 22.2 22.2 22.2 22.2 0.0 22.2 

8 8:45:56 8:52:04 0.6 59.9 26.2 28.5 13.6 4154.1 

9 8:52:04 11:06:55 14.1 20.1 17.1 17.1 3.0 34.2 

10 11:06:55 11:11:48 2.4 68.9 27.4 29.3 14.9 3430.8 

11 11:11:48 11:19:56 0.7 11.5 6.1 6.1 5.4 12.2 

12 11:19:56 11:24:44 2.5 118.6 25.9 29.1 18.1 2361.1 

13 11:24:44 11:36:52 7.5 7.5 7.5 7.5 0.0 7.5 

14 11:36:52 11:40:34 4.2 62.2 24.6 26.2 14.2 1835.9 

15 11:40:34 12:34:02 8.8 8.8 8.8 8.8 0.0 8.8 

16 12:34:02 12:43:24 1.0 192.5 24.1 26.7 22.1 3233.5 

17 12:43:24 16:46:21 6.7 11.1 8.9 8.9 2.2 17.8 

18 16:46:21 16:53:44 1.0 87.4 32.1 35.0 18.5 5946.6 

19 16:53:44 17:21:28 6.4 8.3 7.4 7.4 1.0 14.7 

20 17:21:28 17:23:40 2.3 62.0 29.1 31.8 17.7 1652.8 

21 17:23:40 17:26:41 5.0 5.0 5.0 5.0 0.0 5.0 

22 17:26:41 17:30:21 1.6 160.5 27.2 31.8 24.1 1687.7 

23 17:30:21 18:03:05 2.0 8.2 5.1 5.1 3.1 10.2 

24 18:03:05 18:09:50 3.9 84.1 33.5 36.5 19.7 5955.2 

25 18:09:50 23:58:45 7.7 12.0 9.9 9.9 2.1 19.8 

Distance in meters; dist_min = minimum distance, dist_max = maximum distance, dist_median = median 

distance, dist_avg = average distance, dist_stdev = standard deviation distance, and dist_sum = total 

distance. Similar set-up for heading, duration, speed, change in heading, and acceleration but not shown 

for lack of space.  
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Table 3.2 Average values of selected statistical descriptors by episode types 

Selected predictors
a
 

Episodes (n = 6,544) 

Stop 

(n = 3,208) 

Car 

(n = 2,823) 

Walk 

(n = 355) 

Bus 

(n = 96) 

Other 

(n = 62) 

Median speed (m/s)
b
 0.7 12.0 1.7 7.4 4.9 

Maximum speed (m/s) 1.3 40.0 8.5 39.0 22.4 

Median change in heading (degrees)
b
 99.6 4.6 12.4 5.7 4.9 

Maximum change in heading (degrees) 121.0 139.7 123.3 167.8 136.4 

Average acceleration (m/s
2
) 0.054 0.319 0.073 0.242 0.163 

Median acceleration (m/s
2
) 0.040 -0.095 -0.005 -0.025 -0.041 

Total distance (m) 27.1 11,606.1 515.2 11,143.8 7,112.3 

Total duration (min)
b
 218.9 16.0 8.4 29.0 27.8 

a
 Average values may be higher in some cases due to the presence of noise in the sample GPS trajectories 

(e.g., the median speed for walk episode is quite high compared to the 1.5 m/s average walking speed 

reported by Knoblauch et al. (1996)). 
b
 Used in final MNL model.  

3.2.3 Multinomial logit (MNL) model as classifier 

 Using random utility models, each episode n has an episode type utility function 

njnjnj VU   that can be decomposed into a deterministic component njV  and an error 

(random) component nj
 . The deterministic part (representative utility) is assumed to 

contain variables derived from extracted GPS episodes, while the random part 

corresponds to the unaccounted factors that affect the utility not included in njV . The 

representative utility was designated as a linear function of the episode K statistical 

descriptors, which can be assumed as characteristics or indicators of J episode types. 

Thus, the representative utility for episode n classified as episode type j  J can be 

written as: 

 kn

K

k kjjnj
xV  


1
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 where 

 
j

 = alternative-specific constant for episode type j; 

 kj
 = coefficient of statistical descriptor k for episode type j; k=1,...,K; and 

 
kn

x = statistical descriptor k for episode n. 

 Following McFadden (1974), the logit model was derived by assuming that the 

error components are independently, identically distributed (IID) extreme value. With this 

assumption, the probability that episode n will be classified as episode type i becomes 

 





Jj

V

V

ni
nj

ni

e

e
P . 

 Because of the IID assumption, the MNL model restricts the odds of choosing one 

episode type over another to be independent of other episode types, known as 

independence from irrelevant alternatives (IIA) property. This restriction implies that the 

introduction of a new episode type in the set will affect all other episode types 

proportionately. This assumption can be avoided by allowing for correlated errors through 

other model specifications like nested logit and mixed logit. The nested logit model 

groups episode types that share unobserved attributes at different nest levels, which 

allows error terms within the nest to be correlated. As a highly flexible model, mixed 

logit allows for random taste variation, unrestricted substitution patterns, and correlation 

in unobserved factors over time. More details on these two alternative model structures 

can be found in the work of Train (2009). 
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 In this study, it was found that the MNL model was more appropriate for the data 

(see Table 3.1 for sample data format). Nested logit and mixed logit require multiple 

observations for each episode, where each observation consists of indicators for each 

episode type. Since there is only one observation per episode, nested logit and mixed logit 

were not implemented. Diagnostics tests were used to check if the IIA property was 

violated. The Hausman test (Hausman & McFadden, 1984) and the Small-Hsiao test 

(Ben-Akiva & Lerman, 1985) of the IIA assumption were conducted. Diagnostic test 

results showed no strong evidence that IIA was violated. To explicitly deal with 

multicollinearity, predictor variables were also evaluated based on their variance inflation 

factors (VIFs) and those with lower VIFs were finally selected (O’Brien, 2007). MNL 

estimation and diagnostics tests were performed using Stata
®
. 

3.3 Results and discussion 

 Implementation of the proposed method (GERT’s MDM) extracted episodes from 

GPS data, and generated statistical descriptors. Around 36 descriptors were used to 

specify the MNL model, which was used in the classification of extracted episodes into 

five types (stop, walk, car, bus, and other episodes). In this section, model results are 

presented that highlight the typical characteristics of episodes captured by the selected 

descriptors. Moreover, the classification results are evaluated using a validation sample 

described in the previous section. Lastly, this section describes the average performance 

of the proposed method in comparison with existing methods cited in Section 3.1. 
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3.3.1 Classification of activity episodes 

 After exploring a variety of different model specifications, the final model that 

consisted of the following statistical descriptors or variables: median speed (m/s), median 

change in heading (degrees), and total duration (min), had the best model fit (Table 3.3). 

The final model has an adjusted rho-squared of 0.81, significant at the 0.01 level, and was 

estimated using a random sample of 6,544 episodes from STAR data (90% of 7,271 

episodes; remaining 10% were used for model validation). Moreover, the final MNL 

model has a VIF below three. 

 In general, the signs of the parameters as shown in Table 3.3 were consistent with 

the expected characteristics of travel episodes (i.e., car, walk, bus, and other; stop is base 

outcome) in terms of three variables: median speed, median change in heading, and total 

duration. The positive signs for median speed imply that the utility of an episode type and 

the probability that it will be chosen (or classified as that type) increases as the median 

speed of that episode increases. The coefficients of median speed across travel episode 

types indicate a hierarchy – faster travel episodes have higher utilities compared to slower 

travel episodes. The other episode is a collection of episodes that involve other modes of 

travel, and the model results suggest that this travel episode is faster than walk episodes 

but slower than car or bus episodes. On the other hand, the negative signs of median 

change in heading and total duration imply that the utility of an episode type and the 

probability that it will be classified as that type decreases as median change in heading 

and total duration of that episode increases. In other words, median speed is a utility 



Ph.D. Thesis - R. Dalumpines; McMaster University - School of Geography and Earth Sciences 

  68 

 

while median change in heading and total duration are disutilities in the classification of 

episodes extracted from GPS data. The alternative-specific constants are considered to 

represent the average effect of all factors that influence the classification but are not 

included in the utility specification. 

Table 3.3 Model estimation results for classification of GPS episodes 

Independent variable 
Coefficient (t-statistic)

a
 

Car Walk Bus Other 

Alternative-specific 

constant 
-0.6012 (-2.31) 2.7734 (9.74) -1.3019 (-2.83) 2.3317 (3.96) 

Median speed (m/s) 1.2477 (12.84) 0.2120 (2.07) 0.9445 (9.33) 0.5991 (5.50) 

Median change in 

heading (degrees)
b
 

-0.1185 (-9.25) -0.1436 (-11.82) -0.1921 (-5.02) -0.5383 (-7.82) 

Total duration (min) -0.0394 (-7.60) -0.0200 (-6.19) -0.0060 (-2.24) -0.0118 (-3.21) 
a
 Number of observations = 6,544; null log-likelihood = -6389.13; final log-likelihood = -

1192.66; adjusted rho-squared = 0.811. All coefficients were significant at 95%. Stop episode is 

base outcome with coefficients restricted at zero. 
b
 The median of the differences in bearings (in degrees) between two consecutive points, for all 

latitude/longitude points in the sample.  

 Table 3.4 shows that for a unit increase in median speed, the odds (or relative risk) 

of the episode being classified as a car episode relative to stop episode increases by 

248%, holding median change in heading and total duration constant. Using the same 

episode type comparison, a unit increase in median change in heading and total duration 

decreases the odds by 11% and 4%, respectively. 
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Table 3.4 Percent change in odds to assess ability of selected predictors in classifying 

GPS episodes 

Odds comparing 

Episode A vs Episode B 

Percent Change in Odds due to a Unit Change in 

Median speed (m/s) 
Median change in 

heading (degrees) 
Total duration (min) 

Walk Car -64.5 — 2.0 

Walk Bus -51.9 — -1.4 

Walk Other -32.1 48.4 — 

Walk Stop 23.6 -13.4 -2.0 

Car Walk 181.7 — -1.9 

Car Bus 35.4 — -3.3 

Car Other 91.3 52.2 -2.7 

Car Stop 248.2 -11.2 -3.9 

Bus Walk 108 — 1.4 

Bus Car -26.2 — 3.4 

Bus Other 41.3 41.4 — 

Bus Stop 157.1 -17.5 -0.6 

Other Walk 47.3 -32.6 — 

Other Car -47.7 -34.3 2.8 

Other Bus -29.2 -29.3 — 

Other Stop 82.0 -41.6 -1.2 

Stop Walk -19.1 15.4 2.0 

Stop Car -71.3 12.6 4.0 

Stop Bus -61.1 21.2 0.6 

Stop Other -45.1 71.3 1.2 

— not significant at 95% level. Boldface indicates highest value.  

 Based on the highest values of percent change in odds (values highlighted in bold 

in Table 3.4), the model tends to be most sensitive to: (1) change in median speed when 

comparing car over stop episodes, (2) median change in heading when comparing stop 

over other episodes, and (3) total duration when comparing stop over car episodes. Also, 

the percent change in odds that are not significant (Table 3.4) indicate that the median 

change in heading and total duration perform poorly in differentiating walk, bus, or other 

episodes from the rest of the episode types. Among the three explanatory variables in the 
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MNL model, median speed has greater influence in classifying episodes because of 

higher magnitudes of percent change in odds for this variable. However, total duration 

has the least influence among the three probably because episodes exhibit different 

duration regardless of episode types. Note, for example, the closeness of average episode 

duration for bus and other travel episodes in Table 3.2. On the other hand, there are 

strong contrasts among episode types in terms of average values of their median speeds 

(Table 3.2). 

 In most cases, there exists a strong hierarchy in terms of median speed with car 

episodes having higher median speeds followed by bus, other (travel), walk, and stop 

episodes, in that order. There also exists a hierarchy among episode types in terms of 

median change in heading, with high variations for GPS trajectories within stop episodes 

followed by walk, bus, and other episodes; however, the values for motorized travel 

episodes (i.e., car, bus, and other) are quite similar but largely different when compared 

with walk and stop episodes. As expected, GPS trajectories will show high heading 

variations in indoor locations (stop episodes) or when walking versus when driving a car. 

In general, these observations reflect the expected patterns of GPS trajectories under 

different episode types and were captured successfully by the MNL model. These patterns 

are visually reflected in Figure 3.3, which shows how predicted probabilities of episode 

types vary with changes in one of the explanatory variables while controlling for the rest. 

For example, there was a huge difference in terms of predicted probabilities when 

comparing car over stop episodes when varying median speed values while controlling 
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for the other two explanatory variables (set at their mean values). This is illustrated in 

Figure 3.3a, at median speed below 9 m/s, episodes are likely to be classified as stop 

episodes relative to other episode types; beyond this point car episodes tend to dominate 

(with higher predicted probabilities) over the rest of episode types. It is interesting to note 

that Chung and Shalaby (2005) classified episodes with maximum speed over 8.9 m/s to 

be car episodes; though median speed as a predictor is more robust to extreme values than 

maximum speed. With the exception of stop and car episodes, bus episodes tend to 

dominate at 10 m/s over other travel episodes. 

 When varying values for median change in heading (Figure 3.3b) while setting 

median speed and total duration at their mean values, other episodes tend to dominate 

below median change of heading of five degrees, from that point until 19 degrees bus 

episodes take over, and over 19 degrees stop episodes dominate. Among travel episodes, 

car episodes tend to dominate at median change in heading of over 20 degrees followed 

by bus, walk, and other episodes in that order, but the differences in their predicted 

probabilities narrow down as values approach 60 degrees. 

 When holding median speed and median change in heading at their mean values 

while varying total duration of episodes (Figure 3.3c), car episodes dominate over the rest 

of episode types if total episode duration is below 15 minutes; after this point stop 

episodes take over. A closer look at Figure 3.3c reveals that walk episodes slightly 

dominate over other travel episodes with the exception of car episodes. 
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 In summary, the parsimonious MNL model using only three predictors (median 

speed, median change in heading, and total duration) provided an efficient method of 

classifying GPS episodes. As expected, model estimates confirm the typical 

characteristics of different episode types in terms of the three predictors as follows: (1) 

episodes with faster median speed are more likely associated with faster travel modes, (2) 

slower travel episodes or stop episodes tend to be associated with higher variation in 

heading, and (3) longer duration episodes are more likely linked to stop episodes. 

Moreover, GERT’s preprocessing and mode detection modules written in Python
®
 

demonstrated potential in making automatic classification of episodes transferable to GPS 

data collected from different locations. These modules easily provided around 36 

statistical descriptors that can be used for MNL model specification. Aside from being 

transferable and efficient, validation results suggest that the MNL model has potential as 

an episode classifier as shown in the next subsection. 

3.3.2 Accuracy 

 In Table 3.5, about 727 episodes (10% of the 7,271 episodes) from the STAR data 

were used for validation. This validation set was selected under the restriction that total 

daily duration of the episodes must have nearly the same duration as the reported episodes 

from time-use diaries (i.e., within five minutes of episode’s start or end time). The 

restriction ensures that reported episodes from time-use diaries are reasonably comparable 

with those extracted from GPS trajectories, a more conservative restriction than the 30-

minute difference suggested by Stopher et al. (2011). 
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Figure 3.3 Graphs of GPS episodes in terms of predicted probabilities when varying one 

of the explanatory variables while setting the rest at their mean values (sample of 16 

cases). The effects of varying median speed to predicted probabilities are shown in (a), 

median change in heading in (b), and total duration in (c) 

 Table 3.5 shows the observed and predicted values from the MNL model 

estimated using three statistical descriptors or independent variables: median speed (m/s), 

median change in heading (degrees), and total duration (min). The row percentages 

indicate the percentage of observed episodes in a given type that was predicted by the 

MNL model as stop, car, walk, bus, or other episode. It shows that the model is highly 

successful in classifying stop episodes (98% were predicted correctly), car episodes 

(a) (b) 

(c) 
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(98%), and walk episodes (94%), than bus and other episodes (no episodes were predicted 

correctly). 

Table 3.5 Classification table of observed (TUD) versus predicted (GPS) episodes 

Observed 

Episode 

Predicted Episode 

Stop Car Walk Bus Other Row Total 

Stop 353 (97.8) 1 (0.3) 6 (1.7) — 1 (0.3) 361 

Car 1 (0.3) 303 (98.4) 4 (1.3) — — 308 

Walk — 2 (5.7) 33 (94.3) — — 35 

Bus — 12 (85.7) 2 (14.3) — — 14 

Other — 6 (66.7) 2 (22.2) 1 (11.1) — 9 

Column Total 354 (48.7) 324 (44.6) 47 (6.5) 1 (0.1) 1 (0.1) 727 

Values in parentheses indicate row %, highlighted in bold indicate correctly classified; — = zero.  

 Based on Table 3.5, the calculated kappa statistic is 0.91 (p < 0.001), which 

indicates almost perfect agreement between observed episodes and those predicted by the 

MNL model (Landis & Koch, 1977). However, the model was ineffective in predicting 

bus and other episodes due to the limited samples used in the estimation for these 

episodes (only 96 and 62 episodes, respectively). The model tends to misclassify bus 

episodes as car episodes (86%), and other episodes as stop episodes (67%). The rest of 

bus (14%) and other episodes (22%) were misclassified as walk episodes. Moreover, a 

small number of walk episodes (6%) were misclassified as car episodes. The 

misclassifications seem to indicate the huge effect of median speed in favor of car 

episodes over bus and other episodes; that effect far outweighs the effects of the other 

two predictors combined (Table 3.4). This suggests that similarity in speeds among 

episode types, perhaps tempered by noisy GPS readings, makes it difficult to distinguish 
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one episode type from another (Biljecki, 2010). This also suggests that the model may be 

sensitive to the noise in median speed values, often favoring faster travel modes over 

slower ones. We tested the use of a dummy variable for bus route (1 if travel episode 

traverses a bus route, 0 otherwise) and found it to be very effective in differentiating bus 

episodes from the rest of the episode types. Hence, future developments should consider 

other predictors commonly derived from transportation networks and other data sources. 

 Based on the validation results (Table 3.5), the mode detection using a MNL 

model has an overall accuracy of 90% (adjusted count R
2
; Long, 1997, p. 108), which 

shows that the model reduces the errors in prediction by 90%. Reported overall accuracies 

of existing methods range from 70 to 95% (Biljecki, 2010; Lawson et al., 2010). In this 

context, the use of MNL in classifying activity episodes looks promising, given a 

parsimonious model consisting only of three independent variables: median speed (m/s), 

median change in heading (degrees), and total duration (min). 

3.3.3 Performance 

 The procedures presented were developed and implemented in Python
®
, a free 

scripting language (www.python.org). The scripting language facilitates fast development 

and allows easy integration with the map-matching algorithm (Dalumpines & Scott, 

2011), which was also written in Python
®
. These procedures and algorithms are integral 

part of GIS-based episode reconstruction toolkit (GERT), which was developed to 

automatically extract activity episodes from GPS data and derive associated information 

for each extracted episode. 
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 Running the entire procedure for 5,127 person-days (equivalent to 47 million GPS 

points) took 24 hours. This can be considered not very fast in terms of algorithm 

performance but can be considered much faster than manual recording of trip information 

(normally requiring days to complete). Considering both processing time and overall 

accuracy, the proposed method performed quite well. However, more testing needs to be 

done using different datasets, preferably from different geographic areas, to see if similar 

results are found. 

3.4 Conclusion 

 This article presented a method that automatically extracts activity episodes from 

GPS data (GERT’s MDM), introducing the use of MNL as a classifier to offer an 

alternative method that is more transferable than existing ones. The use of MNL in 

classifying GPS episodes can be a reasonable alternative because of its efficiency in 

differentiating activity episodes using generic variables, objective techniques in 

determining significant predictors, and limited dependencies in input variables (reliant 

only on GPS-derived predictors yet flexible to accommodate additional variables). About 

36 statistical descriptors were automatically derived from GPS data; median speed, 

median change in heading, and total duration are found useful in differentiating activity 

episodes. Model estimates confirmed the typical characteristics of different episodes as 

distinguished by three selected predictors: median speed, median change in heading, and 

total duration. 
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 This paper shows that MNL can be easily adopted in the design of algorithms used 

to extract activity episodes from GPS data, an approach that resulted in significant time 

savings in algorithm development and provided reasonable predictive accuracy. Efficient 

methods will require a minimal amount of time for data preparation and in performing the 

extraction of episodes from GPS data. Lawson et al. (2010) reported that it took them 

more than two months to implement the rule-based GIS method and two days for neural 

networks, the proposed method took only about a day in extracting five episode types 

from about 47 million GPS points. The proposed method achieved an overall accuracy of 

90%; however, limited observations for bus and other episodes resulted in poor 

classification performance for these two types of episodes. Nevertheless, the use of MNL 

in classifying activity episodes extracted from GPS data looks promising in terms of 

methodological transferability and efficiency that the proposed classifier provides. 

 The results suggest for the refinement of methods in preprocessing of GPS data to 

minimize noise caused by the inherent limitations of satellite signals and other factors. As 

GPS technology matures coupled by the increasing popularity of location-based services, 

better preprocessing will significantly contribute to improvement in predictive accuracy 

of GPS data mining techniques. The proposed method of extracting and classifying 

activity episodes from GPS data shows potential but also left some room for 

improvement. Future work will focus on improving further the performance of the 

proposed method. Several considerations for improvement in predicted accuracy of the 

proposed method include: (1) postprocessing of classification that takes account of 
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transition probability; i.e., considering the episode type probabilities of adjacent segments 

or episodes, similar to Zheng et al. (2008); (2) using large samples for all episode types, 

particularly for those travel episodes that are underrepresented, to be modeled by 

conducting GPS surveys for all episodes of interest; (3) adding relevant explanatory 

variables or descriptors such as a dummy variable for bus routes; and (4) improving the 

preprocessing algorithms to minimize errors in speed, heading, and duration values, for 

example, by using smoothing techniques. Future work should also consider an 

implementation of the proposed method using GPS data taken at different locations and 

different temporal resolution. 
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Chapter 4 

GIS-based Episode Reconstruction Toolkit (GERT): A Transferable, 

Modular, and Scalable Framework for Automated Extraction of 

Activity Episodes from GPS Data 

4.1 Introduction 

 Person-based global positioning system (GPS) devices capture the start and end 

times of activity episodes, their duration, and travel routes in greater spatial and temporal 

resolution than traditional recall-based surveys. Because not all episode information can 

be directly captured by these devices, GPS is increasingly used to supplement traditional 

survey methods primarily to increase the accuracy of data collection and reduce burden 

among respondents (Wolf, 2000; Bricka, 2008; Millward and Spinney, 2011). Several 

procedures have been developed to extract information from person-based GPS data in 

order to supplement data from recall-based surveys (e.g., Stopher et al., 2005; Chung and 

Shalaby, 2005; Tsui and Shalaby, 2006; Zheng et al., 2008; Schuessler and Axhausen, 

2009; Bohte and Maat, 2009). However, most of these procedures suffer from specific 

data requirements and complexity that limit their transferability to other application 

environments. Further, they have a limited set of modules to extract all necessary 

information such as route attributes, and were not specifically designed to handle huge 

GPS datasets (Schuessler and Axhausen, 2009; Biljecki, 2010; Lawson et al., 2010). To 

deal effectively with these problems, this paper presents a framework based on three 
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design principles (transferability, modularity, and scalability), and a GIS-based toolkit 

(based on this framework) for automated extraction of activity episodes from GPS data. 

Without an effective framework and a toolkit to implement this framework, we cannot 

take full advantage of GPS data for the following reasons: (1) difficult to adopt tools 

developed by other researchers for lack of transferability, (2) limited ability to derive 

more information from GPS data for lack of an integrated set of modules, and (3) high 

computational costs and lack of automatic procedures in dealing with huge datasets. 

Before elaborating on these issues (lack of transferability, huge GPS data, incomplete set 

of tools), it is best to clarify some key terms used in this paper. 

 In the context of activity analysis, a person’s 24-hour (daily) activities can be 

subdivided into episodes, which are differentiated based on location (inside a building or 

travel mode); hence an activity episode can be a stationary episode (stop episode) or a 

travel episode (e.g., car episode). Travel episodes are synonymous to trips. In this paper, 

a segment refers to a sequence of GPS points similarly classified as stop or trip points 

(Figure 4.1), while an episode refers to the diary-equivalent classification of a segment 

based on location (e.g., stop episode, walk episode, car episode, and so on) with attributes 

such as start time, end time, duration, and distance. In different contexts, some 

researchers used the term “stages” (Schuessler and Axhausen, 2009), “objects” (Dodge et 

al., 2009), and “segments” (Zheng et al. 2008; Gong et al., 2012) to refer to episodes. 
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Figure 4.1 GPS trajectory subdivided into points, segments, and episodes 

4.1.1 Challenges in developing tools and methods for extracting episodes from GPS 

data 

 Existing procedures in extracting or reconstructing episodes from GPS data can be 

categorized into several modules: preprocessing (data filtering and smoothing), extraction 

of episodes (stages or segments), mode detection (assignment of mode to travel episode), 

route detection (map-matching), and purpose detection. To the authors’ knowledge, 

original attempts to automate the extraction of episodes in the transportation literature 

(Chung and Shalaby, 2005; Stopher et al., 2005; Schuessler and Axhausen, 2009) suggest 

the lack of transferability of existing modules (e.g., non-generic variables used in 

preprocessing), an incomplete set of modules (e.g., no modules for purpose detection in 

two studies while not fully automatic for route detection), and only one study was 

specifically designed for large GPS data (Schuessler and Axhausen, 2009) (for related 

studies in other fields, see Biljecki (2010) and Bolbol et al. (2012)). Only a few studies 

(Schuessler and Axhausen, 2009; Bohte and Maat, 2009) specifically addressed the 
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development of tools and methods in extracting travel episodes and trip purposes from 

large-scale GPS datasets. 

4.1.1.1 Lack of transferability 

 Existing methods used unique inputs or variables to filter valid points for 

extracting and classifying episodes. Because procedures are often designed to make the 

most out of the data available, the decision rules vary depending on the characteristics of 

the input data. For example, some researchers (e.g., Wolf et al., 2000; Stopher et al., 

2005; Chung and Shalaby, 2005) used the number of satellites, heading, and horizontal 

dilution of precision (HDOP) in a preprocessing module to remove outliers and invalid 

GPS points; in the absence of the above inputs, Schuessler and Axhausen (2009) instead 

used the known altitude of Switzerland to remove low quality or erroneous GPS points. 

Other researchers (e.g., Chung and Shalaby, 2005; Bohte and Maat, 2009; Gong et al., 

2012) used proximity measures (e.g., distances to bus, subway, and railway stations) to 

determine probable travel modes; however, threshold distances vary significantly among 

studies. For rule-based procedures, there is absence of clear guidelines in finding 

optimum threshold values as implemented in various modules because often the cut-off 

values are based on subjective judgment and the quality of GPS data. 

 Researchers have focused more on the effectiveness of their tools and methods, 

and little attention had been given to the transferability of the tools and methods. 

Eventually each researcher has developed a unique set of tools using unique inputs for 

specific purposes. Transferability of the existing methods remains a challenge. This issue 
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had been identified by Lawson et al. (2010) based on their experiment that aims to 

replicate currently used methods on mode detection. Their experiment provides an 

objective examination of currently used mode detection algorithms to date. They 

recognized the difficulty of directly comparing different approaches because of different 

data used in developing these methods, not to mention the different variables required by 

each approach. At this juncture, the existing methods are mostly not generic, making it 

difficult to apply the same methods in different environments with minimal effort. 

4.1.1.2 Processing demands of huge GPS data 

 Current personal-based GPS devices are becoming widespread because of better 

accuracy, more portability (pocket-size), and lower costs. In recent years, we observed an 

increase in large-scale GPS data used for travel episode (trip) extraction: more than 

20,000 km of GPS trajectories (Zheng et al., 2008); 64.5 million GPS points (Schuessler 

and Axhausen, 2009); 17.6 million GPS points (Bohte and Maat, 2009; Biljecki, 2010); 

47.3 million GPS points (Millward and Spinney, 2011); and perhaps more. Manual 

procedures are no longer practical in dealing with huge GPS data that span millions of 

records (Schuessler and Axhausen, 2009). The availability of huge GPS data and the high 

potential to collect more make it necessary to come up with efficient procedures that can 

automatically extract information from these data. 
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4.1.1.3 Incomplete set of tools 

 From the perspective of activity analysis, most of the existing methods did not 

fully capture valuable information from GPS trajectories for these methods were focused 

more on mode detection, that is, the extraction of travel episodes and classifying these 

episodes into several types based on travel modes (Stopher et al., 2005; Schuessler and 

Axhausen, 2009; Gong et al., 2012). Hence no modules were specifically developed to 

extract information associated with activity locations (stop episodes), wherein more 

information can be extracted with the aid of additional data such as land use and potential 

activity locations (PAL), and information on observed routes (road attributes) connecting 

these locations. Although Stopher et al. (2005) and Bohte and Maat (2009) also tried to 

capture trip purposes (the former asked respondents to provide addresses of activities 

while the latter used points of interest and GPS-derived trip endpoints), both lack modules 

to automatically capture more information from detailed land use; information on land 

use and points of interest can be used to automatically classify stop episodes and assign 

trip purposes to travel episodes. 

 Traditional survey methods fell short of providing data of good quality for route 

choice modeling. GPS-assisted surveys can fill this gap; however automatic 

postprocessing is required. The current practice of extracting routes (map-matching) is a 

tedious process of tracing the routes manually from GPS trajectories in a GIS (e.g., 

Ramming, 2002; Papinski et al., 2009; Winters et al., 2010) or directly asking respondents 

through web questionnaires (e.g., Kaplan and Prato, 2012). While some researchers had 
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incorporated route detection using map-matching routines (e.g., Chung and Shalaby, 

2005; Tsui and Shalaby, 2006), the map-matching lacks integration with route choice set 

generation algorithms (e.g., Prato and Bekhor, 2006) to automatically generate alternative 

routes for route choice modeling. In addition, existing modules that automatically 

generate route attributes for map-matched routes (e.g., Papinski and Scott, 2011) are not 

integrated with route detection and route choice set generation modules. To the authors’ 

knowledge, no toolkit has been developed that integrates all the above modules, and at the 

same time include extra modules that automatically generate route choice sets and route 

attributes from GPS trajectories. 

4.1.2 Addressing challenges through GIS-based episode reconstruction toolkit (GERT) 

 A framework needs to be developed that explicitly addresses the above issues 

(lack of transferability, an incomplete set of tools, and computational demands of huge 

GPS data). Therefore, this paper presents a GIS-based episode reconstruction toolkit 

(GERT), which was built on the framework of three design principles (modularity, 

transferability, and scalability), to automatically extract activity episodes from GPS data 

with or without additional information. The development of the toolkit was motivated by 

the need to provide data to support route choice modeling in particular and activity 

analysis in general (Ortúzar and Olszewski, 2009). The data generated by the toolkit can 

be used to supplement time-use diary (TUD) data. In addition, the generated data can be 

used for other applications such as understanding activity patterns over time and space 

(dynamics), and finding determinants of route choice behavior. The toolkit reduces the 
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burden placed on respondents to record their routes. Through a validation experiment, we 

found that GERT’s core modules work properly in reconstructing episodes from GPS 

data. 

 The rest of this paper is organized as follows: the next section presents GERT’s 

components, starting with a functional overview of all components and followed by a 

detailed discussion of its main modules. To find out if GERT works well in 

reconstructing episodes from GPS data, a validation experiment and its results are 

discussed next. The concluding section highlights how GERT’s framework addressed the 

main challenges faced by existing procedures, as well as GERT’s potential in supporting 

analysis and model estimation tasks. Future research directions are also discussed. 

4.2 GIS-based episode reconstruction toolkit (GERT) 

 We developed GERT using a framework that specifically deals with lack of 

transferability, an incomplete set of tools, and demands for automatic procedures 

associated with huge GPS data. This section further explains GERT’s framework and 

presents the main components of the toolkit. 

4.2.1 GERT’s framework: transferability, modularity, and scalability 

 Inspired by best practices in software development, GERT’s framework (Figure 

4.2) was developed around three design principles: transferability, modularity, and 

scalability. 
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Figure 4.2 Four-stage workflow of the GIS-based episode reconstruction toolkit (GERT) 
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 In order to be transferable, GERT was designed to work on minimal inputs – 

generic variables such as location coordinates and time stamps. This feature allows 

implementation in environments without additional information aside from GPS data. 

Other related features are efficiency and flexibility brought by the mode detection module 

(MDM), which involves multinomial logit estimation of episode types using standard 

statistical software outside of GERT, and the resulting model can be brought in for 

episode classification. Also, GERT generates outputs in comma-separated values (CSV) 

or shapefiles (SHP). Both are cross-platform data formats for spreadsheet and GIS 

applications, respectively – making it easy to manipulate GERT’s outputs in other 

applications. 

 GERT was also developed into separate but interconnected modules, which makes 

it easy to update existing modules and add new ones without affecting its integrity. For 

example, the MDM uses a multinomial logit (MNL) model to automatically classify 

extracted episodes from GPS data into different types. New modules can be added 

providing for a different logic for MDM implementation (e.g., fuzzy logic, neural 

networks). 

 In terms of scalability, GERT was designed to process huge GPS data and can 

accommodate additional data such as time-use diary, land use, and potential activity 

locations to enrich GERT’s extracted episodes for exploratory data analysis, route choice 

modeling, and so on. 
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4.2.2 GERT’s modules: from GPS data preprocessing to route choice data generation 

 Software design partitions a program into several levels of detail wherein the 

entire system is organized into sub-systems (more abstract or higher level, referred to here 

as stages), the sub-systems or stages are further divided into classes (intermediate level), 

and the classes are divided into routines and data (lower level, where decision rules are 

implemented); for more information, see McConnell, 2004, pp. 82-87. As a toolkit for 

GPS data mining, GERT can be seen in a higher design level as a sequence of workflows 

in four stages (Figure 4.2), each stage producing data for subsequent stages or other 

processes outside of GERT. At the intermediate level, each stage is further divided into 

one or more main modules, which in turn are composed of many separate but 

interconnected sub-modules at the lower design level. 

 Stage 1 consists of the GPS Preprocessing Module (GPM), a module that removes 

invalid points from raw GPS data in comma-separated values (CSV) format using data 

cleaning procedures adopted from previous studies (e.g., Schuessler and Axhausen, 2009; 

Marchal et al., 2011). Generally, invalid points include redundant points (points with the 

same coordinates) and outliers (with speed ≥ 50 m/s). GPM uses several algorithms to 

filter valid trajectories and these algorithms were written in several sub-modules with 

each sub-module focusing on certain aspects of GPS preprocessing. Preprocessing was 

organized into two core processes: clustering and segmentation. Clustering divides GPS 

points into 24-hour trajectories, which represent sequences of points for each person-day. 

It then further divides each trajectory into sequential clusters of adjacent points based on 
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speed, distance, heading, and change-in-heading thresholds. After clustering, 

segmentation uses point-segment classification routines (PSCR) to tag each point in the 

valid trajectory as a stop (stationary) point or a trip (moving) point. PSCR are iterative 

and sequential sub-processes that classify each point based on its characteristics (i.e., 

distance, duration, speed, heading, and change in heading), the characteristics of 

surrounding points (i.e., points before and after), the characteristics of the segment where 

it belongs (a segment is a sequence of similarly tagged points), and the characteristics of 

surrounding segments. The next three stages use GPM’s output for further processing, an 

output written in CSV format. GPM’s CSV output contains original input fields such as 

latitude, longitude, time, and so on; and added new fields such as distance (m), duration 

(s), speed (m/s), heading (degrees), change in heading (degrees), and status (stop or trip 

point) – useful information for other processes outside of GERT. 

 Stage 2 uses the GPS Episodes Extraction and Mode Detection Module, in short 

the Mode Detection Module (MDM), which partitions valid GPS trajectories produced by 

GPM into segments, then classifies these segments into stationary activity episodes (stop 

episodes) or travel episodes such as walk, car, bus, and so on. At the core of MDM is a 

module that classifies GPS segments into different types of episodes using an estimated 

MNL model based on observed episodes (TUD-reported episodes with GPS trajectories). 

To support MNL model estimation, several utility modules were also developed to extract 

statistical descriptors from observed episodes. These statistical descriptors provide 

information on the signatures of different episode types of interest based on descriptive 
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statistics of distance, duration, speed, heading, change in heading, and acceleration of 

GPS segments. The utility modules extract segments from GPS data based on 

corresponding time-use diary (TUD) episodes, and generate statistical descriptors based 

on these segments. A MNL model can be estimated based on these sample segments 

using statistical software and the resulting model can be fed to the classifier module. 

Using the estimated MNL model parameters, MDM generates a CSV output of classified 

episodes (called GPS episodes) from GPS trajectories. Attached to each classified episode 

is the following information: episode ID, episode number, episode type (i.e., stop, car, 

walk, and so on), mode probability, date, start time, end time, duration, distance, and lat-

lon coordinates (if stop episode). Aside from being an input to succeeding stages, GPS 

episodes can be used for analytical processes outside of GERT that use number of 

episodes (stop versus travel), their duration, and distances (if travel episodes). For 

example, actual number of trips used in transportation studies can be derived from the 

GPS episodes. More details on the development and testing of MDM, with particular 

emphasis on the transferability of MNL as a classifier, are presented in another paper by 

the authors (Dalumpines and Scott, 2014b). 

 Stage 3 consists of three main modules: TUD-GPS Segments Extraction Module 

(TGEM), Trip Segments Extraction Module (TSEM), and Activity Locations Extraction 

Module (ALXM). TGEM and TSEM extract trip segments (sequences of GPS points in a 

travel episode) while ALXM extracts activity locations (stops or endpoints of trip 

segments) from valid GPS trajectories. TGEM extracts trip segments directly from GPS 
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trajectories using start and end times of TUD episodes; the module skips MDM in the 

process. TSEM, on the other hand, relies on the classified episodes generated by the 

MDM. This makes GERT flexible; it can handle GPS data with or without TUD episodes. 

Stage 3 generates outputs as point or multi-point shapefiles (SHP), a standard format for 

spatial data across different GIS platforms. Aside from being used as input in the final 

stage, Stage 3 outputs can be used to visualize activity episodes in a GIS or can be used as 

inputs to spatial analysis and modeling outside of GERT. 

 Finally, Stage 4 has been inspired by the need to develop tools to support route 

choice analysis (RCA). This final stage consists of three main modules: Choice Set 

Generator Module (CSGM), RCA Variables Generator (RVGM), and Activity Locations 

Identification Module (ALIM). CSGM and RVGM generate data for route choice 

modeling; both modules use the map-matching algorithm (Dalumpines and Scott, 2011) 

that snaps walk and non-walk trip segments to a digital road/pedestrian network to derive 

the actual travel (observed) routes. CSGM uses a modified potential path area - gateway 

algorithm (PPAG) to generate alternative routes for trip segments produced by TGEM or 

TSEM. The PPAG algorithm defines a potential path area based on route travel time or 

distance and uses random gateways (links) within the area to generate alternative routes. 

Alternative routes are included in route choice sets if they pass a set of criteria (overlap 

factor, loop factor, distance factor) adopted from the branch-and-bound algorithm (Prato 

and Bekhor, 2006). RVGM is an improved version of Papinski and Scott’s (2011) RCA 

toolkit that generates over 50 variables based on road network attributes such as distance, 
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time, turns, speed, and so on, and those that can be derived from these attributes such as 

the route directness index (RDI). The improved version fully automates the extraction of 

RCA variables, correctly measures route length (original version used nearest nodes as 

route endpoints), adds new variables such as number of intersections and overlap 

statistics (with other alternatives in a choice set), and makes it compatible with the latest 

version of ArcGIS
®
. 

 In the absence of TUD episodes, CSGM can also use TSEM’s output. In turn, 

CSGM’s output can be used as input to RVGM to generate variables for each alternative 

route. For route choice modeling, CSGM is used first to generate route choice sets in SHP 

format, where each choice set (containing alternative and actual routes) is stored in a 

separate folder; then RVGM uses these choice sets to generate variables for each route in 

a CSV format. RVGM is coupled with a module that calculates route overlap statistics 

such as percent of route length that overlaps with other routes in a choice set. Overlap 

statistics variables can be used as inputs to Path-Size Logit (PSL), a modified form of 

MNL that uses a correction factor in the deterministic part of utility function (Bekhor and 

Prato, 2009). The outputs of CSGM and RVGM can also support other research 

applications aside from RCA. For example, CSGM and RVGM can be used to extract and 

describe observed routes and their shortest paths to determine factors that influence 

deviation from shortest paths – an investigation of ‘route efficiency’ (Papinski and Scott, 

2013). More details on the design and application of CSGM are presented in another 

paper by the authors (Dalumpines and Scott, 2014a). 
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 The other main module in Stage 4 is ALIM, which appends additional 

information, if available, to extracted activity locations and generates output in SHP 

format. This additional information can be generated from spatial data such as land use 

and potential activity locations (PAL) using overlay analysis functions in GIS. PAL refers 

to points of interest that indicate locations of government offices, shopping destinations, 

banks, and so on. ALIM enriches ALXM’s output, making it useful for activity analysis. 

In the future, another module can be added to GERT to automatically classify activity 

locations generated in Stage 2 based on land use and PAL information. 

 Figure 4.3 shows an example of the outputs generated by GERT’s modules. 

4.3 Data and experimental design for validation 

 In this section, we describe the TUD and GPS data used in GERT’s development 

and validation. Also, the experimental design is presented to assess the performance of 

GERT’s key modules (GPM and MDM) in reconstructing episodes from GPS data. The 

purpose of validation is to evaluate the effectiveness of GERT’s ability to extract 

episodes from GPS data, without additional information. 

4.3.1 STAR dataset 

 The development and validation of GERT’s algorithms used GPS data from the 

Space-Time Activity Research (STAR) project. TUD episodes from the STAR project 

were used as the basis to validate GERT’s ability to extract episodes from GPS data.
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Figure 4.3 Example of GERT’s CSV and shapefile outputs
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 The STAR project is a comprehensive survey of time use and travel activity 

conducted in Halifax, Nova Scotia, Canada from April 2007 to May 2008 (Millward and 

Spinney, 2011). Apart from a time-use diary, respondents carried a GPS-equipped mobile 

device (Hewlett Packard iPAQ hw6955), which records a location every second and with 

a horizontal accuracy ≤ 10 m. The GPS data logger collected positional data that included 

unit ID, date, time, x-coordinate, x-direction (north/south), y-coordinate, y-direction 

(east/west), speed, altitude, horizontal dilution of precision (HDOP), and the number of 

satellites. Around 2,000 respondents collected 47.3 million points for two survey days 

(equivalent to 5,127 person-days), and a total of 108,529 TUD episodes. Of particular 

interest, each TUD episode has information on the activity location such as home, 

workplace, car, bus, and so on. 

4.3.2 Experimental design for validation 

 The original GPS data from the STAR project were stored as a single file in 

SPSS
®
 format. This single file was converted into a comma delimited (*.csv) format for 

use with GERT. Next, GERT was used to extract episodes based on an estimated MNL 

model (Dalumpines and Scott, 2014b); 25,707 episodes were extracted then further 

processed using GERT’s complete set of tools. About 31% (8,052) of these extracted 

episodes were found to match those of TUDs, equivalent to 653 person-days (567 

respondents). Since most of TUD person-days lasted 20 hours (04:00-11:59), their 

corresponding GPS person-day trajectories were included in the validation set if these 

person-day trajectories lasted for at least 18 hours (10% lower than TUD person-day’s 
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duration); otherwise, these person-day trajectories were considered incomplete and 

discarded. 

 Since not all of the GPS data had equivalent time-use diaries, the GPS data have 

been processed to match TUDs using GERT’s helper modules (part of GERT’s package 

used for converting inputs into a format used by the toolkit or in preparing data for 

validation). In this way, episodes derived by GERT from GPS data can be compared with 

TUD episodes. A helper module was used to convert TUD episodes into a format 

comparable with that of GPS episodes, converting stationary activity locations such as 

home into stop episodes and mobile activity locations such as car into travel episodes; 

similar adjacent episodes with the same location were merged (e.g., several activity 

episodes done at home were merged as a stop episode). These procedures reduced 

original TUD episodes to 57,775. Another helper module flagged TUD and GPS episodes 

as a match when the difference in their start and end times did not exceed 30 minutes as 

suggested by Stopher and Shen (2011). The same authors recommended some strategies 

for detailed comparison and will be considered in the future as part of GERT’s 

performance tuning. 

 As extensive episode-to-episode comparison is a detailed investigation in itself, 

this part is also planned for future extension of this paper. Consequently, this paper 

followed an aggregate comparison methodology as used by Schuessler and Axhausen 

(2009) to assess, at the general level, GERT’s ability to extract episodes (i.e., involving 

GPM and MDM, which are the key components of the toolkit). 
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4.4 Results and discussion 

 About 26,000 episodes were automatically reconstructed using GERT from 47.3 

million GPS points collected by the STAR project. To validate that GERT works properly 

at the aggregate level (i.e., in terms of episode and duration distributions), time-use diary 

(TUD) and GPS episodes were matched based on two thresholds: difference between start 

and end times must not exceed 30 minutes, and minimum daily duration of 18 hours. The 

resulting validation set was used in comparing TUD and GPS episodes at the aggregate 

level as discussed in this section. After that, GERT’s computational performance is 

assessed to provide a rough assessment of its scalability. 

4.4.1 Comparison of TUD and GPS episodes 

 The validation set consisted of 391 person-days, equivalent to 10,315 episodes. Of 

these episodes, 53% (5,494) were reported in TUD, and 47% (4,821) were extracted from 

GPS data using GERT. The number of GPS episodes is 12% (1,343) lower than that of 

TUD. This difference may be attributed to cases where respondents left their GPS devices 

at home for some parts of the day. For these cases, GERT correctly captures the 

stationary activity episode at home but failed to match several travel episodes reported by 

respondents in TUD. 

 In Figure 4.4, the distribution of episodes generated by GERT is compared to that 

of TUD. In terms of episode types (Figure 4.4a), GPS have more walk episodes while 
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TUD seems to dominate in the rest of episode types, which indicates that GERT works 

properly in detecting short travel episodes often not reported in TUD. 

 

Figure 4.4 Episode distribution, TUD versus GPS: (a) by episode type, (b) by episode ID 

(sequence or order of episode in a person-day; for example, at episode ID 5 the figure 

shows that GERT generated more 5
th

 episodes than reported in TUD), and (c) by duration 

(minutes) 

 GERT’s ability to detect short travel episodes is also reflected in Figure 4.4b, 

which shows the distribution of episodes based on their sequence or order in a person-

day. This figure indicates that GPS dominates in the lower-range sequence 

(approximately in the first 8
th

 episodes, where the 1
st
 episode typically represents 

maintenance activity at home); consequently, TUD dominates in the middle-range 

sequence (10
th

-31
st
 episodes) probably because some episodes were misclassified by 

(c) 

(a) (b) 
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GERT’s MDM as stop episodes. Figure 4.4c displays similar distributions for TUD and 

GPS episodes (all episodes longer than 2 h have been summarized in the last category). 

 The distribution of duration per episode type is shown in Figure 4.5. Again all 

episodes longer than 2 h have been summarized in the last category of each distribution. 

In general, the distributions reveal similar patterns in TUD and GPS episodes, with the 

exception of bus and other (travel) episodes (41 bus episodes reported but only one was 

detected in GPS; for 26 other travel episodes, only two were detected). The MNL model 

used by MDM in classifying episodes (or imputing travel modes) was not able to 

differentiate bus and other (travel) episodes from the rest. This was because of the small 

samples for these two types of episodes used in MNL model estimated by STAR data. 

Future work will consider experiments to enhance GERT’s MDM performance by using a 

balanced sample of episode types, and by including additional variables in model 

specification – another test for GERT’s transferability and scalability features. 

 Figure 4.5 also highlights some differences between TUD and GPS episodes. 

GERT’s activity extraction modules (GPM/MDM) generated more stop episodes 

(stationary activities) longer than 2 h (Figure 4.5a). This is perhaps due to GPM’s point-

segment classification routines (PSCR) that merged very short-duration travel episodes 

with stop episodes if located between stop episodes. This situation further requires 

analysis in the future to determine effective thresholds for these routines. Figure 4.5b 

shows that GERT generated more short-duration car episodes than those reported in TUD 

– attributed to short-duration episodes with high speed. 
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Figure 4.5 Duration distribution per episode type, TUD versus GPS: (a) stop episodes, 

(b) car episodes, (c) walk episodes, (d) bus episodes, and (c) other episodes 

 As expected, GERT was able to generate more short-duration walk episodes that 

were not reported in TUD. This ability is reinforced by a finding that about 18% of 

reasons trips were recorded only by GPS device was “short trip and respondent did not 

realize that it should be reported” (Stopher and Shen, 2011, p. 36). This situation 

(e) 

(c) (d) 

(a) (b) 
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highlights the advantage of GPS over recall-based surveys with respect to temporal and 

spatial accuracy. 

 Figure 4.6 shows the distributions of daily travel episodes (trips) and GPS-derived 

distances by travel mode. Trips that occurred more than 18 times per day or longer than 

20 km are summarized in the last category for the respective distributions. 

 
(a) (b) 

Figure 4.6 Distribution of travel episodes: (a) daily travel episodes (trips), TUD versus 

GPS; and (b) GPS-derived distances by travel mode 

 TUD and GPS have similar distributions in terms of the number of trips per day 

(Figure 4.6a); both are skewed to the right with GPS episodes having a slightly longer 

tail. GPS episodes dominate in the categories of less than 5 trips per day, which reveals 

that GERT tends to misclassify some trips as stop episodes hence reducing the number of 

trips per day. In addition, GERT tends to be effective in detecting short trips that resulted 

to more cases of > 18 trips per day. Figure 4.6b shows the distribution of GPS-derived 

distances by travel mode. No comparison was made between TUD and GPS episodes in 

terms of distances because distances were not available for TUD episodes. However, the 

distribution of GPS-derived distances reveals typical patterns of the different travel 
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modes; walk episodes are short while car and other episodes that use motorized modes 

cover longer distances (car episodes were most dominant). 

 In summary, the episode and duration distributions reveal similar patterns between 

TUD and GPS episodes, a similarity that confirms that GERT’s components (GPM and 

MDM) work properly, at the aggregate level, in reconstructing episodes from GPS data. 

This also means that GERT can be used to reconstruct episodes from a different GPS 

data, with some calibration of the MNL model that will be used by MDM. Some issues 

were identified for improvements in the future such as GERT’s MDM misclassification of 

travel episodes as stop episodes, and weak detection of underrepresented episode types 

(i.e., bus and other travel episodes). 

4.4.2 Computational performance 

 Table 4.1 shows the average performances of GERT’s main modules using a 

desktop PC (Win 7 Pro 64-bit, i7 CPU @ 3.4GHz, 16GB RAM). Preprocessing of 47.3 

million GPS points took an average of 6,000 s or about 7,887 points per second. This is 

slower compared to the reported performance of 9,100 points per second, preprocessing 

plus mode detection for 64.5 million points using Debian Linux Version 2.618-5-amd64, 

four dual-core CPUs @ 2GHz, 4GB RAM (Schuessler and Axhausen, 2009). GPM’s 

slower performance may be attributed to its point-segment classification routines to filter 

out invalid points, particularly caused by multi-path and signal blocking errors in urban 

environments. This is a tradeoff to the transferability of GPM, and of GERT in general; 

the use of generic variables offers transferability but requires complicated routines to 
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filter out invalid points effectively. Overall, GERT’s modules tend to have linear running 

times, processing time increases with the number of inputs (GPS points, stop episodes, 

travel episodes). RVGM’s performance may somewhat vary depending on the density of 

the road network; more links in the network increases the number of alternative routes, 

hence increases processing time. 

Table 4.1 Average computational performance of GERT’s main modules 

Module Function Average Performance
a
 

GPM Preprocessing (remove invalid points) 1 s per person-day (7,887 points per 

second)
b
 

MDM Extract episodes and detect modes 0.5 s per episode (2 episodes per 

second) 

TGEM/TSEM Extract travel episodes and convert to 

multi-point shapefiles 

4 s per travel episode (trip) 

ALXM Extract stop episodes and convert to 

point shapefiles 

486 stop episodes (activity 

locations) per second 

CSGM Generate route choice set for each travel 

episode 

50 s per travel episode (trip)
c
 

RVGM Generate route attributes 8 s per travel episode (trip) 

ALIM Append information from land use and 

potential activity locations 

2 s per stop episode (activity 

location) 

a
 Desktop PC (Win 7 Pro 64-bit, i7 CPU @ 3.4GHz, 16GB RAM). 

b
 5,127 person-days, about 47.3 million points. 

c
 An average of 6 routes (including observed route) per route choice set.  

 From the standpoint of the three challenges faced by existing methods (huge data, 

incomplete set of tools, and lack of transferability), GERT’s overall performance suggests 

potential because of its scalability – GERT can scale up to large GPS data (aside from its 

ability to accommodate additional information); modularity – GERT has a complete set of 

tools to support analyses and model estimations; and transferability – GERT’s reliance on 
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generic variables (latitude, longitude, time) makes it applicable to many environments 

with added flexibility to make use of additional information unique to each environment. 

For instance, one can fully appreciate the potential of GERT in generating data for route 

choice modeling using thousands of observations; a difficult task, impractical if done 

manually, but made a lot easier using GERT’s modules. A demonstration of this task is 

described in another paper by the authors (Dalumpines and Scott, 2014a), an article that 

determines the underlying route choice decisions for shopping and work trips using a 

sample of 1,462 observed routes. 

4.5 Conclusion 

 Existing methods of extracting episodes from person-based GPS data faced three 

main challenges: lack of transferability, an incomplete set of tools, and computational 

demands of huge GPS data. This paper presented a GIS-based episode reconstruction 

toolkit (GERT) to address these challenges using a framework built around three design 

principles: transferability, modularity, and scalability. Transferability guided the use of 

generic variables (latitude, longitude, time) and practical procedures (MNL as classifier 

for mode detection) that makes GERT transferable to many environments. Modularity 

allowed the development of an interrelated set of modules that provided a complete set of 

functionalities (CSGM, RVGM, and ALIM), extensions not currently available in 

existing toolkits. Scalability refers to GERT’s ability to process huge volume of GPS data 

(e.g., about 127 s in preprocessing a million points) and can accommodate additional 
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information to enrich GPS-derived data (e.g., land use and points of interest for activity 

identification of stop episodes). 

 As a complete toolkit, GERT has many modules that cannot be entirely covered 

for validation in this paper. Hence a validation experiment was only conducted on 

GERT’s ability to extract episodes from GPS data (i.e., GPM and MDM components), as 

extracted episodes are required for most of GERT’s other modules. Since TUD episodes 

from STAR project underwent good data quality review (Millward and Spinney, 2011), 

we assumed that TUD episodes correctly represent activities performed by survey 

respondents. A comparison of the episode and duration distributions reveal similar 

patterns between TUD and GPS episodes, a similarity that confirms that GERT’s 

components (GPM and MDM) work properly, at the aggregate level, in reconstructing 

episodes from GPS data. GERT’s components, GPM and MDM, made possible the 

automatic extraction of stop episodes, which covers information on stationary activities 

such as location (latitude, longitude), start time, end time, and duration. With additional 

data such as land use and potential activity locations (PAL), ALXM and ALIM can 

automatically attach more information on activity locations. To supplement TUD 

reporting, GERT’s extracted stop episodes can be used to determine missing or 

unreported locations of stationary activities and test the framework proposed by Horner et 

al. (2012) in the reconstruction of activity destinations. Extracted stop episodes can also 

be used for exploratory spatial data analysis to gain insights from the spatio-temporal 

distribution of activity locations, and destination choice modeling. In addition to stop 
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episodes, TGEM/TSEM can automatically generate travel segments (GPS trajectories of 

travel episodes); CSGM generates route choice sets from travel segments and RVGM 

attaches route attributes. GERT makes it easy to generate inputs for route choice 

modeling, which for many years has relied on disjointed, and often, manual procedures 

(e.g., Winters et al., 2010; Kaplan and Prato, 2012). Also, GERT’s RVGM can generate 

observed routes and their corresponding shortest paths that can be used to analyze route 

choice efficiency (e.g., Papinski and Scott, 2013). Overall, GERT’s modules provide 

transportation researchers with rich datasets (i.e., stop and travel episodes, activity 

locations, travel segments, route choice sets, route attributes) for improving our 

understanding of activity/travel patterns in general and route choice decisions in 

particular. 

 Further research is encouraged to improve the accuracy and applicability of the 

toolkit. TUDs often suffer from underreporting of short travel episodes (Stopher and 

Shen, 2011), mostly walk episodes. Episodes extracted by GERT from GPS data can be 

used to identify these unreported episodes. Moreover, extra care is needed when 

validating the accuracy of the toolkit using TUD because of the inaccurate reporting of 

short travel episodes. This can be addressed in the future by conducting controlled 

experiments that ensure accurate reporting of episodes and varied deployment of GPS 

devices to capture enough samples for different travel modes, giving emphasis on 

underrepresented modes (e.g., bike, bus, and so on). Consequently, an extensive episode-

to-episode validation can be performed along the lines of the framework suggested by 
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Stopher and Shen (2011). To enhance GERT’s MDM, future work should consider the 

implementation of a routine for a higher threshold value for dwell time together with a 

sensitivity analysis (e.g., Schuessler and Axhausen, 2009), use a feedback loop from the 

map-matching algorithm to provide information on the bus/train network, and employ an 

episode transition probability matrix (e.g., Zheng et al., 2008). Future work may also 

focus on the new module to extend ALIM’s functionality (e.g., Huang et al., 2010), an 

activity profiler that automatically classifies stop episodes into different activity types 

(e.g., home maintenance, work, leisure, and so on) based on the information harvested by 

ALIM from land use and points of interest. A thorough performance testing of all the 

modules would require a lot of time; this will be considered in future plans for fine tuning 

of GERT’s performance. GERT was developed using data captured by person-based GPS 

devices with high temporal resolution (at least one reading per second) and horizontal 

accuracy of 10 m or better. Although we assumed that GERT will work with GPS data of 

low temporal resolution since speed and other thresholds may still hold, it would be 

interesting to test this assumption in the future and compare GERT’s performance with 

other studies (e.g., Bolbol et al., 2012). 
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Chapter 5 

Determinants of Route Choice Behavior: A Comparison of Shop versus 

Work Trips Using the Potential Path Area – Gateway (PPAG) 

Algorithm and Path-Size Logit 

5.1 Introduction 

 Route choice behavior is a complex spatial behavior influenced by route attributes 

and individual characteristics (e.g., Carpenter, 1979; Ben-Akiva et al., 1984; Zhang and 

Levinson, 2008). The complexity of this behavior arises from the two main challenges in 

route choice modeling: the very large number of alternative routes, and the prevalent 

overlapping of these routes. To deal with these challenges, considerable efforts have been 

made toward the development of path generation methods and route choice models. 

However, most of these efforts have focused on route choice behavior related to driving 

from home to work (work trips) and less attention has been given to other types of trips 

(e.g., shop trips). Shop trips account for a substantial portion of total trips and its growing 

share suggest that research should not only focus on work trips, but also on shop trips 

(Nelson and Niles, 2000; Hanson, 2004). To put this issue into proper perspective, this 

paper seeks to test whether route choice behavior varies for work and shop trips. Failure 

to consider such systematic variation may result in bias and over/under prediction of the 

relative effects of policy relevant variables on route alternatives and route choice (Ben-

Akiva and Morikawa, 1990; Bradley and Daly, 1994). For this reason, it has been 
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suggested that such systematic variation should be incorporated in route choice model 

specification (Ben-Akiva et al., 1984; Zhang and Levinson, 2008). 

 Significant progress has been achieved in recent years in addressing the 

challenges of route choice modeling. Many studies have developed techniques for 

generating alternative routes, classified as deterministic shortest path-based methods, 

stochastic shortest path-based techniques, constrained enumeration algorithms, and 

probabilistic approaches (see Prato (2009) for a review of these algorithms). Most of 

these algorithms lack a sound behavioral basis (specified based on the experience and 

knowledge of the analyst) and computing efficiency (often accounts for the universal set 

of route alternatives not a subset of feasible routes). The use of behavioral rules generates 

a more realistic set of routes than shortest path-based methods (Prato and Bekhor, 2006; 

Papinski, 2010). The potential path area (PPA) approach is an implementation of the PPA 

concept to constrain the set of possible routes. Papinski (2010) found that PPA-generated 

choice sets improve model performance compared to k shortest paths. 

 To deal with the issue of route overlaps, route choice modeling has relied on a 

number of discrete choice models (Cascetta et al., 1996; Ben-Akiva and Bierlaire, 1999; 

Prashker and Bekhor, 2004; Frejinger and Bierlaire, 2007). The Multinomial Logit 

(MNL) route choice models have been used in investigating the determinants of route 

choice behavior (Zhang and Levinson, 2008), and was successfully applied in a number 

of network models (Wen et al., 2006). However, it was discovered that the inherent 

limitation of the MNL route choice model resulted in over prediction of the route choice 
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probabilities for overlapping links (e.g., expressways), which led to unrealistic traffic 

volume estimates along these links (Ben-Akiva et al., 2012). This limitation of MNL is its 

inability to account for similarities among route alternatives. Researchers address this 

problem by abandoning the MNL formulation to consider the correlations of overlapping 

paths explicitly (Bekhor et al., 2002; Frejinger and Bierlaire, 2007), or modify the MNL 

formulation by adding a correction term in the deterministic part of the utility (Cascetta et 

al., 1996; Ben-Akiva and Bierlaire, 1999; Bekhor and Prato, 2009). The latter approach 

benefits from the closed-form structure of MNL formulation, and is more tractable than 

probit and other GEV models that treat correlations explicitly. Moreover, the modified 

MNL formulations have been shown to be computationally efficient (Bekhor and Prato, 

2009). 

 Despite these two streams of development, little attention has been given to the 

determinants of route choice behavior related to other trip purposes aside from work. 

These pressing developments appear to have overshadowed efforts in determining the 

factors that affect route choice behavior for different trip purposes, and the relative 

importance of these factors in this varied context (Ben-Akiva et al., 1984; Zhang and 

Levinson, 2008). Over the past decade, researchers have largely focused on analyzing 

route choice behavior for work trips (Ramming, 2002; Frejinger and Bierlaire, 2007; 

Bekhor and Prato, 2009; Kaplan and Prato, 2012). Also, the lack of input data adds to the 

difficulty in expanding the scope of route choice modeling from work trips to other trip 

purposes. Traditional route assignment models apply the same shortest path search, often 
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based on travel time, regardless of trip purpose and consequently oversimplify underlying 

decision processes behind route choice behavior. To avoid this oversimplification, route 

choice model specification should account for the systematic variation associated with 

trip purpose. 

 In this paper, we argue that route choice behavior varies by trip purpose and this 

systematic variation should be considered in route choice model specification. This 

argument entails two objectives: show that the utility and scale parameters for separate 

models of work and shop trips differ; if so, highlight the contrast in route choice behavior 

between work and shop trips by considering the interaction of route attributes and 

individual characteristics. In the process, we introduce a practical path generation 

algorithm that generates feasible route choice sets for route choice modeling. Following 

the suggestion of Ben-Akiva et al. (1984), we used a limited set of route attributes, 

commonly derived from transportation network data. For the route choice model, we used 

the PSL model because it is computationally efficient (Bekhor and Prato, 2009) and meets 

the assumption of a scaling estimation procedure. The sequential scaling estimation 

method (Swait and Louviere, 1993; Louviere et al., 2000), along with the likelihood ratio 

test, are used to test whether the utility and scale parameters are different in work and 

shop route datasets, given that a PSL model underlies both datasets (work dataset is used 

as the reference set). In general, the scaling estimation process follows the approach of 

combining revealed and stated preference data within the context of discrete choice 
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analysis (Ben-Akiva and Morikawa, 1990; Swait and Louviere, 1993; Adamowicz et al., 

1994; Hensher et al., 1998). 

 This paper is the first, to the authors’ knowledge, to compare route choice models 

of work and shop trips, and include the interaction of route attributes and individual 

characteristics in the model specification. Also, this paper is the first to use the scaling 

estimation method, normally applied in the estimation of revealed and stated preference 

data, to test whether utility and scale parameters differ in the separate models of work and 

shop trips. Another unique contribution of this paper is the development of an algorithm 

used to automatically generate alternatives for each observed route. We call this 

algorithm PPAG, which is short for the combination of potential path area (PPA) and 

gateway shortest path algorithms (GSP). The PPA is a construct in time geography 

(Hägerstrand, 1970) that defines the possible area that an individual can travel within a 

time budget, anchored around the individual’s trip origin and destination. In this paper, 

the time budget refers to the reported travel time from origin to destination. The GSP 

algorithm creates an alternative route by forcing a shortest path between origin and 

destination to pass through a specified link or gateway (Lombard and Church, 1993). The 

PPA algorithm provides the constrained area wherein the GSP algorithm can extract 

feasible routes. 

 The remainder of this paper is organized as follows. Section 5.2 describes the 

generation of route choice data from a global positioning system (GPS)-assisted time-use 

survey using the PPAG algorithm, along with other geographic information system (GIS)-
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based Episode Reconstruction Toolkit (GERT) modules for route choice data generation. 

Also, in this section, the PSL model specification is presented together with the scale 

factor estimation and likelihood ratio test. Section 5.3 presents the results in terms of the 

descriptive statistics of route attributes and selected individual characteristics, the 

determinants of route choice behavior as indicated by PSL model estimates, and the 

outcome of the likelihood ratio tests. Finally, Section 5.4 summarizes the major findings 

of this study and discusses future research directions. 

5.2 Data and methods 

 To test the hypothesis that route choice preferences vary by trip purpose, we 

compare a route choice model for work trips with that of shop trips. In this section, we 

describe the data source for observed routes and introduce the path generation algorithm 

used to generate alternative routes. Then, we present the rationale for the use of PSL in 

route choice modeling, and describe the scale factor estimation and likelihood ratio tests – 

methods used to test the inequality of utility parameters and scale factors between models 

of work and shop trips. 

5.2.1 Space-Time Activity Research (STAR) data 

 Observed or actual route choices were derived from reported work and shop trips 

of 708 respondents to the Space-Time Activity Research (STAR) project in Halifax, Nova 

Scotia, Canada. The STAR project was a time use survey that employed GPS devices to 

geo-reference respondent locations for two days between April 2007 and May 2008 
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(Millward and Spinney, 2011). Start and end times of drive to work and shop trips were 

used to extract travel trajectories (sequences of GPS points representing trip segments) 

from the STAR GPS data. We used the GIS-based Episode Reconstruction Toolkit 

(GERT) module on trip segment extraction to extract work and shop travel trajectories 

(Dalumpines and Scott, 2014). These trajectories were then input into a map-matching 

algorithm (Dalumpines and Scott, 2011) to extract observed routes. In turn, the observed 

routes were used to generate the route choice data using a route choice set generation 

algorithm (discussed in Section 5.2.2), and route attributes generator: all these processes 

were implemented through GERT’s set of tools for route choice data generation. 1,462 

observed routes were extracted using GERT’s modules: 45% (653) for work trips and 

55% (809) for shop trips. 

 11% (81) of the 708 respondents were included in both work and shop datasets 

(Table 5.1). As expected, the sample for the work dataset was dominantly young 

compared to the shop dataset, where roughly a third (26%) were older drivers (age > 64 

years). In terms of other socio-demographic characteristics (e.g., sex, household size, 

personal income), both datasets are comparable. However, the two datasets differ in terms 

of residential and travel characteristics. For example, a large majority (81%) of the 

samples for the shop dataset had experience with public transit while only half had 

experience for the work dataset. About three out of four respondents drove to work for at 

least five minutes, while the ratio is even for shop trips. 
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Table 5.1 Individual characteristics used with route attributes to create interaction terms 

Variable Category (value) Sample percentage
a
 

Work 

(n = 398) 

Shop 

(n = 391) 

Socio-demographic characteristics    

Age Other [15 to 64 years] (0) 99.1 73.6 

 65 years and above (1) 0.9 26.4 

Sex Female (0) 48.6 51.2 

 Male (1) 51.4 48.8 

Household size Other (0) 92.3 92.2 

 ≥5 (1) 7.7 7.8 

Personal income Other (0) 91.5 96.2 

 C$80,000-$99,999 (1) 8.5 3.8 

    

Residential and travel characteristics    

Frequency of public transit use Other (0) 52.4 80.6 

 Never (1)
b
 47.6 19.4 

Travel time ≥ 5 minutes (0) 77.4 49.6 

 < 5 minutes (1) 22.6 50.4 

Residence tenure Other (0) 40.8 29.1 

 10 years and over (1) 59.2 70.9 
a
 Based on the number of respondents; 81 respondents were in both samples. 

b
 Excludes those who have not used public transit because of unavailability of transit service.  

 For the shop dataset, about 71% lived in their neighborhood for at least 10 years, 

while only 59% for the work dataset had the same length of residence. The 

aforementioned individual characteristics were selected because they were known to 

influence route choice efficiency (Papinski and Scott, 2013). These individual 

characteristics were incorporated into the PSL models as dummy variables. Other 

individual characteristics were not included because of missing data or no answers in time 

use diary. 

 The road network for the province of Nova Scotia consists of 98,132 nodes, 

116,647 links, and serves a land area of around 55,000 sq. km. The study area contains 
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expressways as well as local roads. This network was based on the comprehensive 

network dataset from a geospatial data provider (DMTI CanMap
®
 RouteLogistics Version 

2008.3 Release; www.dmtispatial.com). 

5.2.2. Path generation using the Potential Path Area - Gateway (PPAG) algorithm 

 Given the collection of 1,462 observed or actual routes taken by respondents, we 

used the PPAG algorithm, a core component of GERT’s Choice Set Generator Module 

(CSGM), to generate route choice sets (Dalumpines and Scott, 2014). In general, the 

PPAG algorithm defines a PPA based on route travel time or distance and uses random 

gateways (links) within the PPA to generate alternative routes. In the context of path or 

route generation, a PPA represents an area that encloses all traversable links to reach a 

destination within allowable time (or distance); hence the PPA provides a sound 

theoretical basis, often lacking in most path generation algorithms, to constrain the 

selection of alternatives from the universal set. 

 In generating route choice sets, firstly PPAG creates a list of all traversable links 

given a maximum travel time or distance using service area analysis in ArcGIS
®
. PPAG 

automatically derives travel time or distance from the observed route, the path generated 

by the map-matching algorithm (Dalumpines and Scott, 2011) from the GPS trip segment. 

Secondly, PPAG generates alternative routes based on the observed route’s endpoints 

(origin and destination) using a modified gateway shortest path algorithm (GSP) and the 

list of traversable links (created in the first step) as gateways. The modified GSP 

algorithm addresses the main drawbacks of the original (Lombard and Church, 1993) in 
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the following ways: (i) it uses a parser function that detects and discards an alternative if a 

loop exists (the alternative goes back over a link after reaching the gateway link), (ii) we 

minimized the possibility of missing alternatives through the PPA and exhaustive 

gateway enumeration, and (iii) alternatives are included in route choice sets if they pass a 

set of criteria or selection parameters. In this study, we used the following selection 

parameters, adopted from Prato and Bekhor (2006): the distance factor is 1.10, the loop 

factor is 1.50, the overlap factor is 0.80, and the maximum number of left turns is 4. 

These parameters were found to be effective as behavioral constraints in determining 

relevant route alternatives (Prato and Bekhor, 2006). The distance factor excludes routes 

that exceed the distance of observed route by 10 percent; this constraint rejects 

alternatives that require drivers to traverse routes considerably longer than their regular 

route. The loop factor, sometimes called the route directness index (Papinski and Scott, 

2011), is based on the ratio of observed route distance over straight-line distance. It 

discards routes that drivers are likely to avoid because of many detours. The overlap 

factor removes routes with a high degree of overlap that drivers would not consider as 

separate alternatives. 

 Finally, CSGM stores each observed route and its alternatives (generated by 

PPAG as shapefiles) in separate folders. The RCA Variables Generator (RVGM), based 

on the earlier work of Papinski and Scott (2011), treats each folder generated by CSGM 

as a route choice set. For each route choice set, RVGM automatically processes 

individual routes and generates over 50 explanatory variables based on road network 
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attributes (Dalumpines & Scott, 2014). In addition, RVGM automatically calculates the 

path size, a variable that measures the degree of route overlaps. The path size variable 

was incorporated in the logit model and is explained in Section 5.2.3. 

5.2.3. Specification of the Path-Size Logit (PSL) model 

 Given the choice sets generated for each observed route of the work and shop 

datasets, we estimated route choice models that account for the correlation structure 

among the alternatives in the deterministic part of the utility. Cascetta et al. (1996) were 

the first to introduce a correction term in a modified MNL to reduce systematic utility 

because of route overlaps, which they referred as the commonality factor (CF). Motivated 

by the lack of theoretical guidance for the CF term, Ben-Akiva and Bierlaire (1999) 

suggested a path size (PS) attribute instead of the CF term to correct for the overlapping 

routes. Between these two formulations, the PS formulation has been shown to perform 

better (Ramming 2002; Prato and Bekhor, 2006, 2007) and is adopted in this paper. With 

route length measurement assumed to be more reliable than travel time, the PS is further 

defined as in Bekhor and Prato (2009) as: 







k

n

Γa
Cl alk

a

k
L

L



1
PS ,         (5.1) 

where Γk is the set of links in route k, La is the length of link a and Lk is the length of link 

k, Cn is the choice set of routes generated for observation n, and δal is the link-route 

incidence dummy, which equals one if link a is part of route l and zero otherwise. 
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 There are several versions of the PS formulation (e.g., Ben-Akiva and Bierlaire, 

1999; Ramming, 2002); however, it was shown that the original formulation (5.1) 

provided intuitive results and has a theoretical motivation (Frejinger and Bierlaire, 2007). 

Therefore, the original formulation was adopted in this paper. The path size has values in 

the following range: 0 < PS ≤ 1. Hence, a unique route in the choice set (with no link 

overlaps) has a path size of 1, while a route with partial overlaps has a path size of less 

than 1. The final model, commonly known as the Path-Size Logit model (PSL), takes the 

following form (Bekhor and Prato, 2009; Ben-Akiva et al., 2012): 

 





nCl ll

kk

k
PSV

PSV
P

)lnexp(

)lnexp(
,        (5.2) 

where 
k

P  is the probability of choosing route k, 
n

C is as previously defined, and 
k

V  and 

l
V  are the deterministic utilities of routes k and l, respectively. Equation (5.2) indicates 

that the systematic or deterministic utility for route k is adjusted by the ln PS, where -∞ < 

ln PS ≤ 0. For a completely unique route, there is no adjustment to deterministic utility (ln 

PS = 0). Otherwise, the deterministic utility is reduced because of link overlaps among 

feasible routes in the choice set. 

 We estimated PSL models for separate work and shop datasets, and combined 

datasets using generic route attributes. Another set of model estimations included 

individual characteristics to interact with route attributes to investigate whether route 

choice determinants for work trips differ in relative importance to that of shop trips. Prior 
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to these estimations that compare work against shop trips, we estimated corresponding 

MNL models to confirm that PSL models result in better model fit. We used the PSL 

models for work and shop datasets to test whether the coefficients of route choice 

determinants and the scale parameter are the same for work and shop trips, given that PSL 

model underlies both datasets. The test mentioned is discussed in Section 5.2.4. 

5.2.4 Scale factor estimation and likelihood ratio tests 

 The estimation of PSL models for work and shop trips could result in different 

estimates due to differences in scale factors, utility parameters, or both. In this study, we 

view scale (variance) as an integral feature of route choice behavior rather than a nuisance 

parameter, following previous authors (Swait and Louviere, 1993; Adamowicz et al., 

1994; Bradley and Daly, 1994). Hence, if datasets for work and shop trips cannot be 

combined due to unequal parameter vectors and scale factors, this inequality implies that 

the route choice preference for work trips differs from that of shop trips. To ascertain 

whether there is a significant difference in route choice preferences in terms of trip 

purposes (work versus shop), we test whether the coefficients of route choice 

determinants and scale factor (i.e. error variance) are equal for work and shop trips. Since 

the stochastic part of the utility is independent and identically Gumbel distributed (Ben-

Akiva and Lerman, 1985, pp. 104-105), the PSL as shown in equation (5.2) can be 

rewritten as: 
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,        (5.3) 

where   is the scale parameter for a particular dataset (   is often normalized to unity 

when dealing with single dataset hence not included in equation (5.2)). In this study, we 

consider identical route attributes for two different datasets that represent work trips (WT) 

and shop trips (ST). Hence, we are interested if the scales 
WT

  and 
ST

  are equal and, if 

not, whether the parameters 
WT
  and 

ST
  differ after accounting for differences in scale. 

Scaling estimation follows the standard practice of combining revealed and stated 

preference data by pooling them under the hypothesis of equal utility parameter vectors, 

while controlling for the scale parameters (Ben-Akiva and Morikawa, 1990; Swait and 

Louviere, 1993; Adamowicz et al., 1994; Hensher et al., 1998). This procedure has been 

used to test the methodological transferability of path generation algorithms and model 

parameters in the context of route choice modeling (Bekhor and Prato, 2009). For our 

purposes, we used the sequential scaling estimation method (Swait and Louviere, 1993; 

Louviere et al., 2000) over the simultaneous scaling estimation (Ben-Akiva and 

Morikawa, 1990; Bradley and Daly, 1994) for two reasons: (i) we are more interested on 

the likelihood ratio tests rather than the estimates from the pooled datasets, and (ii) 

independent variables are the same for the two datasets. Moreover, Louviere et al. (2000) 

has shown that sequential scaling estimation produced very close estimates to that 

generated by simultaneous scaling estimation. 
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 Combining the two route choice data sets allows us to estimate  ,   (PS 

coefficient), and 
ST

  (relative scale with respect to work trips), given the vector X  of 

observable route attributes common to work  and shop datasets. Given the route choice 

probabilities as defined in equation (5.3),  ,  , and 
ST

  are obtained by maximizing the 

following log likelihood function: 
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,    (5.4) 

where 1
an

y  if individual n chooses route k, otherwise 0
an

y . To maximize 
RS

L , the 

sequential scaling method graphs the log likelihood function for the combined datasets as 

a function of 
ST

  under the hypothesis of equal utility parameter vectors. Since PSL has 

the same functional form as MNL, the global concavity of the log likelihood function of 

the MNL also applies in this case, which implies that there is a unique maximum. For 

detailed implementation of the sequential scaling method, see Swait and Louviere (1993) 

or Louviere et al. (2000, pp. 237-240). 

 Following Swait and Louviere (1993), we tested whether work and shop trips 

share the same utility and scale parameters by means of the following hypothesis: 

STSTWT
H  

WT1
 and : .        (5.5) 
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Firstly, we tested whether the common observed route attributes have the same 

parameters in work and shop datasets, that is, 
WT
  and 

ST
  are equal, 

 
STWTA

H :
1

,         (5.6) 

while allowing the scale factors to differ between the two datasets (
ST

 
WT

). Secondly, 

if 
A

H
1

 is rejected, 
1

H  is also rejected. If 
A

H
1

 cannot be rejected, then we test the 

hypothesis, 

 
STB

H
WT1

: .         (5.7) 

A
H

1
 and 

B
H

1
 can be tested by standard likelihood ratio statistics. To test whether 

A
H

1
 can 

be rejected, we used the likelihood ratio test statistic, 

  
STWTRSA

LLL  2 ,        (5.8) 

where 
RS

L  is the log likelihood value in (5.4), which corresponds to the model estimated 

using the combined work and shop datasets, where 
WT

  is normalized to unity and the 

relative scale factor 
ST

  is estimated using the sequential scaling approach (Swait and 

Louviere, 1993; Louviere et al., 2000). 
WT

L  is the log likelihood value corresponding to a 

separate model for work trips and 
ST

L  the corresponding value of a separate model for 

shop trips. This test statistic is asymptotically chi-squared distributed with (K + 1) 

degrees of freedom, where K is the number of parameters in each of  , 
WT
 , and 

ST
 . 
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The additional degree of freedom accounts for the 
ST

  allowed to vary under the 

alternative hypothesis (5.6). If 
A

H
1

 cannot be rejected, then 
B

H
1

 is tested using the 

following test statistic, 

 
RSESB

LL  2 ,         (5.9) 

where 
ES

L  is the log likelihood value for the model estimated using the combined work 

and shop datasets, where the scale factors are set to be equal under 
B

H
1

 (5.7). This 

statistic is asymptotically chi-squared distributed with one degree of freedom because of 

the restriction on 
ST

 . 

5.3 Results and discussion 

 We generated route choice data from the STAR project as described in Section 

5.2. The route choice data were used in the estimation of PSL models for work and shop 

trips. In this section, we discuss the differences of PSL models for work and shop trips 

and the results of likelihood ratio tests based on these models to provide evidence that 

utility parameters and scale factors differ in both trip purposes. We also discuss PSL 

models that include interaction terms to emphasize that relative importance of route 

choice determinants varies by trip purpose. 

5.3.1 Descriptive statistics of work and shop routes generated by the PPAG algorithm 

 Table 5.2 shows the descriptive statistics of some variables generated by RVGM 

(see Section 5.2.2) for work and shop routes, based on the route choice sets generated by 
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Table 5.2 Selected route attribute statistics for work routes and shop routes 

Variables 
Work routesa 

(mean ± std.)  

Shop routesb 

(mean ± std.) 

Number of unique roads 11.2 ± 4.6 
 

9.1 ± 4.1 

Route travel time (min) 12.1 ± 9.9 
 

6.9 ± 5.6 

Route distance (m) 13,553 ± 12,876 
 

6,964 ± 6,332 

Route directness index (route distance over straight-line distance) 1.47 ± 0.45 
 

1.51 ± 0.50 

Link count 13.6 ± 5.7 
 

10.8 ± 5.1 

Longest leg distance (m) 5,130 ± 6,196 
 

2,733 ± 3,122 

Longest leg time (min) 4.1 ± 4.3 
 

2.4 ± 2.6 

Number of intersections 84.1 ± 54.0 
 

51.6 ± 39.3 

Path size 0.43 ± 0.17 
 

0.46 ± 0.17 

Turn statistics 
   

Left turns 2.8 ± 1.4 
 

2.3 ± 1.4 

Right turns 2.9 ± 1.9 
 

2.6 ± 1.7 

Sharp left turns 0.3 ± 0.6 
 

0.3 ± 0.6 

Sharp right turns 0.3 ± 0.6 
 

0.3 ± 0.5 

Total turns 6.3 ± 3.1 
 

5.5 ± 2.8 

Speed statistics (km/h) 
   

Minimum speed 46.6 ± 12.3 
 

48.2 ± 10.8 

Maximum speed 82.2 ± 17.1 
 

74.0 ± 16.3 

Mean speed 63.9 ± 9.1 
 

59.6 ± 8.6 

Standard deviation speed 11.6 ± 6.2 
 

8.7 ± 6.1 

10th speed percentile 51.2 ± 8 
 

51.1 ± 7.7 

20th speed percentile 54.0 ± 8.3 
 

52.6 ± 7.7 

30th speed percentile 56.9 ± 9.7 
 

54.4 ± 8.6 

40th speed percentile 60.0 ± 11.1 
 

56.4 ± 9.8 

50th speed percentile 63.5 ± 12.3 
 

58.7 ± 10.9 

60th speed percentile 66.7 ± 13.0 
 

61.2 ± 12.0 

70th speed percentile 70.1 ± 13.9 
 

63.8 ± 13.2 

80th speed percentile 74.0 ± 15.2 
 

66.6 ± 14.4 

90th speed percentile 77.9 ± 16.6 
 

69.8 ± 15.2 

Percentage of trip based on road type 
   

% distance on expressway 15.5 ± 22.6 
 

7.4 ± 17.2 

% distance on primary highway 17.3 ± 21.6 
 

13.5 ± 21.3 

% distance on secondary highway 12.3 ± 19.1 
 

10.6 ± 20.1 

% distance on major road 19.8 ± 20.4 
 

19.0 ± 22.3 

% distance on local road 34.5 ± 26.7 
 

49.0 ± 29.8 

% time on expressway 13.3 ± 19.8 
 

6.4 ± 15.1 

% time on primary highway 14.8 ± 19.2 
 

11.2 ± 18.7 

% time on secondary highway 12.1 ± 18.6 
 

10.1 ± 19.4 

% time on major road 19.6 ± 19.6 
 

18.1 ± 21.4 

% time on local road 37.8 ± 26.6 
 

52.4 ± 29.3 

Percentage of longest road based on road type 
   

% distance on expressway 7.7 ± 16.8 
 

3.7 ± 12.7 

% distance on primary highway 8.9 ± 18.2 
 

8.6 ± 18.9 

% distance on secondary highway 7.2 ± 16.6 
 

7.0 ± 17.5 

% distance on major road 6.6 ± 14.7 
 

7.7 ± 16.9 

% distance on local road 7.1 ± 16.8 
 

12.9 ± 20.5 

% time on expressway 5.3 ± 13.4 
 

2.6 ± 10.2 

% time on primary highway 7.3 ± 16.1 
 

6.3 ± 16.3 

% time on secondary highway 7.1 ± 16.1 
 

6.5 ± 16.7 

% time on major road 6.2 ± 14 
 

7.2 ± 16.1 

% time on local road 8.2 ± 17.3 
 

14.9 ± 21.0 

a
 Include 653 observed or actual routes; total number of routes including alternatives is 3,938. 

b
 Include 809 observed or actual routes; total number of route including alternatives is 4,292. 
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the PPAG algorithm. The work dataset consists of 653 observations, and the number of 

alternatives ranges between 2 and 28 routes, with a mean value of 6. The shop dataset 

consists of 809 observations and the number of alternatives varies between 2 and 42 

routes, with a mean value equal to 5. Consequently, the dataset for joint estimation 

contains 1,462 observations, with a maximum availability of 28 or 42 routes for each 

observation, according to trip purpose. 

 As expected, average work trip distance is roughly twice the average trip distance 

for shop trips – consistent with previous findings that shop trips are typically shorter than 

work trips (Zhang and Levinson, 2008). The majority of routes chosen by drivers for shop 

trips are around 5 km or less while work trips tend to dominate over shop trips from 10 

km onward (Figure 5.1). 

 

Figure 5.1 Route distance distribution for work and shop routes 
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 Similar patterns can be observed with respect to network travel time. In general, 

routes for work trips tend to exhibit higher values than shop trips in terms of number of 

intersections, total turns, speed, and percentage of travel distance or time in expressways 

(Table 5.2). In addition, the results confirm that work trips tend to have more direct routes 

than shop trips. The path size values indicate that routes for work trips have more 

overlaps than those of shop trips. 

5.3.2 Route choice behavior for shop trips versus that for work trips 

 Following the suggestion of Ben-Akiva et al. (1984), we used a limited set of 

route attributes commonly derived from transportation network data; that is, variables 

common to both datasets: route travel time, route distance, percentage of travel time on 

expressways, percentage of travel time on local roads, total turns, number of intersections, 

and log of path size (LNPS), which is the path size term. In this study, the number of 

intersections was used as a proxy for the number of stops. Also we focused on total turns 

because left turns have been used as a threshold to determine relevant alternative routes 

(Prato and Bekhor, 2006). Since right and left turns are both disutilities, we tested and 

found that there is a strong statistical basis to combine the two variables into a single 

variable, total turns. 

 Estimates for the PSL model are found in Table 5.3 for separate and combined 

work and shop datasets. All estimation processes are performed with Stata
®

. We tested 

MNL models for both datasets and compared them with PSL models. As expected, we 

found noticeable improvements in model fit in favor of PSL models, both statistically 
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significant at the 95% confidence level, which confirms similar findings from previous 

studies (Frejinger and Bierlaire, 2007; Bekhor and Prato, 2009). 

Table 5.3 PSL estimates for separate and combined datasets: work versus shop trips 

Variable Work  Shop  Combined 

 

coef. z  coef. z  coef. z 

Route travel time -0.1925 -2.99
a
  -0.4957 -3.87

a
  -0.2728 -4.59

a
 

Route distance 0.0003 4.53
a
  0.0006 4.35

a
  0.0004 6.16

a
 

% of travel time on expressways 3.0565 5.34
a
  0.6033 1.06  1.5787 4.36

a
 

% of travel time on local roads -1.8514 -4.40
a
  -1.2303 -3.80

a
  -1.3056 -5.81

a
 

Total turns -0.1119 -3.81
a
  -0.3222 -10.81

a
  -0.2104 -11.15

a
 

Number of intersections -0.0410 -6.61
a
  -0.0277 -3.69

a
  -0.0338 -7.87

a
 

Ln of path size (LNPS) -0.8006 -3.61
a
  -0.4767 -2.41

b
  -0.5508 -4.16

a
 

Scale parameter Work ( WT ) 

 

  

 

  1.000 Fixed 

Scale parameter Shop ( ST ) 

 

  

 

  1.189 NA
c
 

  

  

 

    

Parameters estimated 7   7   8  

Observations 653   809   1462  

Log likelihood intercept only -1014.85   -1153.46   -2168.31  

Log likelihood full model -759.23   -889.18   -1668.45  

Adjusted Rho-bar squared 0.245   0.223   0.227  
a
 Statistically significant at level 0.01. 

b
 Statistically significant at level 0.05. 

c
 Not available.  

 In general, the model estimates based on generic route attributes have expected 

signs as reported in previous studies (Ben-Akiva et al., 1984; Ramming, 2002; Frejinger 

and Bierlaire, 2007; Zhang and Levinson, 2008; Bekhor and Prato, 2009; Kaplan and 

Prato, 2012). However, these attributes have different effects (magnitude) on route choice 

decisions by purpose. These findings imply that trip purpose should be explicitly 

considered in the model specification, which supports the same idea as suggested earlier 

by Ben-Akiva et al. (1984). 
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 In both trip purposes, model estimates illustrate that drivers tend to minimize 

travel time, prefer to travel on expressways or major highways, avoid local roads, and 

minimize the number of turns and intersections. The only exception is that the variable 

route distance has positive signs (Frejinger and Bierlaire, 2007; Zhang and Levinson, 

2008). Drivers seeking to minimize travel times would prefer higher functional type 

roadways such as expressways, eventually leading them to take longer distances 

(Ramming, 2002). Although drivers prefer to travel on expressways to reduce travel time 

for work trips, this consideration has no significant effect on shop trips (p = 0.289) since 

most of the shop trips were shorter in terms of distance compared to work trips (Figure 

5.1), and often involved local roads (for work trips, the disutility of travel time on local 

roads is about 9.6 times the disutility of total travel time; only about 2.5 times for shop 

trips). The differences in the influence of route attributes between work and shop trips 

(based on separate models) were not detected in the combined or joint model. In 

particular, the estimate for percentage of travel time on expressways indicates a 

significant influence on route choice decisions based on the joint model but not 

significant in the separate model for shop trips. Neglect of this variation attributed to trip 

purpose may over-generalize the influence of route choice determinants. 

 For the most part, the model results are consistent with those of Frejinger and 

Bierlaire (2007). Although the LNPS estimate is conceived as a correction factor for link 

overlaps and expected to be positive, we agree with Frejinger and Bierlaire (2007) that 

the term has vague interpretation as shown by the negative estimates. Rather seen as a 



Ph.D. Thesis - R. Dalumpines; McMaster University - School of Geography and Earth Sciences 

  141 

 

correction factor, instead it is seen as a utility probably associated with attractive but 

hidden features of overlapping routes. We assume that route overlaps provide some 

advantages to drivers such as better access to other routes (route switching), faster routes 

(expressways), and access to shopping and other services. Interestingly enough, most 

shopping destinations are located along congested parts of the network where most of the 

routes overlap. In Table 5.3, negative LNPS estimates suggest that drivers tend to prefer 

routes that share links with other alternative routes – a higher preference in work trips 

than shop trips (based on LNPS estimate relative to route travel time). 

5.3.3 Statistical test of utility parameters and scale equality 

 The comparison of separate models for work and shop trips revealed obvious 

differences in parameter estimates as described in Section 5.3.2. To provide statistical 

basis for this argument, we estimated separate 7-parameter PSL models for each dataset 

by trip purpose (Table 5.3), obtaining log likelihood values of -759.23 (
WT

L ) for work 

dataset and -889.18 (
ST

L ) for the shop dataset. We then tested hypothesis 
A

H
1

 by 

assuming the parameters are the same in both datasets but that scale factors differed: the 

value of log likelihood of the combined datasets was -1668.45 (
RS

L ), corresponding to a 

relative scale factor estimate of 1.189. The chi-squared statistic for the 
A

H
1

 hypothesis is -

2[-1668.45 - (-759.23 - 889.18)] = 40.07, with 8 degrees of freedom, and the 

corresponding critical value of the chi-squared distribution at the 95% confidence level is 

15.51; therefore, we reject the hypothesis of parameter equality. Because 
A

H
1

 is rejected, 
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we rejected the equality of the utility and scale parameters for the separate models of 

work and shop trips (5.8). The rejection means that our estimate for the relative scale 

factor (1.189) is not valid, since it was premised on the equality of the parameter 

estimates obtained from the two datasets (5.9). This result implies that work and shop 

trips have underlying models with different parameters, which suggests that drivers attach 

value on route attributes relative to trip purpose. However, we should note that the 

difference may be the result of some hidden factors not fully captured by our model 

specifications such as perception errors associated with observed route attributes (Zhang 

and Levinson, 2008). 

5.3.4 Difference between shop and work route choice highlighted by interaction 

variables 

 Aside from the statistical tests, we included interaction variables to provide further 

evidence that individual characteristics influence route choice behavior for work trips in 

different ways than shop trips (the relative importance of route choice determinants varies 

by trip purpose). The inclusion of interaction variables also allows us to compare the 

relative importance of route choice determinants because work and shop trips’ models 

have different scale factors as shown in Section 5.3.3. Table 5.4 shows separate model 

estimates for work and shop trips, with interaction terms included in the specification. 

Due to the small number of individuals (those from large households or in the high-

income category) and identical individuals in both datasets, there is a systematic loss of 

significance for some interaction variables. In spite of this, there is an increase of model 
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fit and stark contrasts in utilities between work and shop trips (Table 5.4); these contrasts 

are discussed in the following paragraphs by individual characteristics. 

Table 5.4 PSL estimates for shop and work, with interaction terms 

Variable Work  Shop 

 

coef. z  coef. z 

Route travel time -0.2270 -3.30
a
  -0.6911 -4.86

a
 

  × Personal income (C$80,000-$99,999) -0.1706 -1.16  0.2912 1.19 

  × Age (65 years and above) -0.1001 -0.12  0.3084 2.55
b
 

Route distance 0.0004 4.81
a
  0.0006 4.79

a
 

% of travel time on expressways 3.0538 5.32
a
  0.4559 0.80 

% of travel time on local roads -1.1382 -1.97
b
  -2.0208 -3.39

a
 

  × Residence tenure (10 years and over) -1.0696 -1.45  1.1687 1.76
c
 

Total turns -0.0809 -2.68
a
  -0.2549 -6.85

a
 

  × Travel time (< 5 minutes) -0.2032 -3.76
a
  -0.1479 -3.54

a
 

  × Age (65 years and above) -0.2840 -0.70  -0.0141 -0.22 

Number of intersections -0.0352 -4.62
a
  -0.0405 -3.92

a
 

  × Sex (male) -0.0129 -1.28  0.0273 2.18
b
 

Ln of path size (LNPS) -1.0208 -2.63
a
  -0.4633 -1.22 

  × Residence tenure (10 years and over) 0.3434 0.85  -0.4344 -1.07 

  × Frequency of public transit use (never) 0.1786 0.46  1.1418 2.58
a
 

  × Household size (≥ 5) -0.9161 -1.19  0.3443 0.51 

  

  

 

 

Parameters estimated 16   16  

Observations 653   809  

Log likelihood intercept only -1014.85   -1153.46  

Log likelihood full model -747.00   -871.05  

Adjusted Rho-bar squared 0.248   0.231  
a
 Statistically significant at level 0.01. 

b
 Statistically significant at level 0.05. 

c
 Statistically significant at level 0.1.  

 High income versus low income. It is known that high-income drivers put more 

value on travel time savings when it comes to work trips (e.g., Pitombo et al., 2011; 

Papinski and Scott, 2013), but we found that this is not the case for shop trips. In fact, for 
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shop trips, high-income drivers put less weight on the disutility of travel time than low-

income drivers. Specifically, the disutility of travel time for high-income drivers 

(personal income $80,000-$99,999 CAD) for work trips is (-0.2270 + -0.1706 =) -0.3976, 

about 1.8 times the disutility of travel time for low-income drivers. Quite the reverse for 

shop trips where the disutility of travel time for low-income drivers is (-0.6911 + 0.2912 

=) -0.3999, about 1.7 times the disutility of high-income drivers for travel time. This 

comparison clearly illustrates the stark contrast between work and shop trips in terms of 

route choice decisions, given the income category of respondents. 

 Old versus young. For work trips, the effective coefficient of travel time for older 

drivers is (-0.2270 + -0.1001 =) -0.3271, about 1.4 times the disutility of younger drivers; 

for shop trips, the travel time coefficient for younger drivers (-0.6911 + 0.3084 =) is -

0.3827, about 1.8 times the disutility of travel time for older drivers. The travel time 

disutility for older drivers is not significant for work trips due to the very small number of 

working seniors (Table 5.1). In spite of this, the estimates reveal that older drivers are less 

sensitive to travel time when it comes to shop trips than younger cohorts. This is 

consistent with the observation that seniors have less mandatory activities than their 

counterparts (Scott et al., 2009); therefore, they can afford to choose inefficient routes. 

 In both trip purposes, older drivers are more likely to minimize the total number 

of turns than younger drivers. Moreover, older drivers have higher propensity to minimize 

total turns for work trips than shop trips - to minimize travel delay and consequently 

reduce total travel time. Turns, particularly left turns, have been identified as one of the 
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risky maneuvers for older drivers (Chandraratna and Stamatiadis, 2003); no wonder that 

they want to minimize turns as much as possible. 

 Long-term versus new resident. Longer residency (10 years and over) have 

opposite effects on route choice decisions between work and shop trips. Because work 

schedule is typically tighter than that of shopping, those with good knowledge of 

surrounding routes - commonly drivers who lived in the neighborhood for at least ten 

years - are more likely to avoid local roads for work trips than new-resident drivers. In 

this case, drivers perceived local roads to cause travel delay and need to be avoided. But 

with respect to shop trips, drivers who are long-term residents perceived local roads to 

offer more shopping opportunities hence they are less deterred to travel in local roads 

than newer residents. 

 The effects of residence tenure to LNPS estimates strengthen our previous 

assumption that LNPS is more of a utility than a correction factor. Thus, LNPS somehow 

indicates a more behavioral interpretation, at least in this case, than what was intended 

originally in choice theory (Ben-Akiva and Lerman, 1985). There is a direct relationship 

between LNPS and route overlaps; with negative LNPS coefficients for both work and 

shop trips, route overlaps become a utility rather than just a correction factor. But if we 

take into account length of residency, some intuitive differences between the two models 

emerge. Specifically, for work trips, long-term resident drivers with good familiarity of 

surrounding routes are more likely to avoid common links (links that overlap with other 

routes), than newer residents. On the other hand, they behave differently when navigating 
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the network to shopping destinations; they have more preference for routes with common 

links than their counterparts. Hence, common links are perceived to provide more 

shopping opportunities as shopping centers are typically located along these links. Also 

these links provide better access to routes toward other shopping destinations or activity 

locations. 

 Short-duration versus long-duration travel. For short-duration travel (< 5 

minutes), drivers are more likely to minimize turns for work trips than shop trips. This 

implies that drivers prefer a more direct route for work trips to meet work schedule 

requirements as opposed to shop trips. Maximization of route directness was also reported 

in previous studies that focused on work trips (Papinski et al., 2009; Prato et al., 2012). 

 Male versus female. Male drivers are more likely to avoid intersections for work 

trips than shop trips. Conversely, male drivers have higher propensity to avoid 

intersections over female drivers for work trips, while the opposite is true for shop trips. 

Perhaps female drivers prefer to minimize travel delays at intersections to maximize their 

time for shopping. 

 Public transit experience versus without. Drivers who have not used public transit 

are more likely to avoid common links (overlap routes) for shop trips than work trips. 

Since these drivers were car dependent (never used public transit), they tend to enjoy 

more mobility than their counterparts - probably leading them to explore more unique 

routes. This behavior appears to be significant in the model for shop trips. 
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 Large versus small household. Because work schedule puts more pressure on 

other activities, drivers living in large households are more inclined to choose routes for 

work trips with common links than those in small households. Drivers, in this case, may 

perceived route overlaps to provide them with more opportunities to perform other 

activities (e.g., buy breakfast, drop kids to school) along the way to work. However, for 

shop trips, drivers from large households tend to choose unique routes to minimize travel 

time for more time for shopping, especially to visit more shopping destinations. 

 In summary, the addition of interaction variables improved the model fit and 

highlighted the contrast in route choice determinants between work and shop trips. 

Overall, the model results suggest a restrictive route choice behavior for work trips, in 

contrast to nonrestrictive route choice behavior for shop trips - both consistent with the 

mandatory and discretionary nature of trips involved. 

5.4 Conclusion 

 The empirical results clearly indicate that route choice behavior varies by trip 

purpose as suggested by the inequality of utility parameters and scale factors for separate 

models of work and shop trips (found to be statistically significant at level 0.05), given 

generic route attributes commonly employed in previous studies (Ramming, 2002; 

Frejinger and Bierlaire, 2007; Kaplan and Prato, 2012). Moreover, the comparison of PSL 

models incorporating the interaction between individual characteristics and route 

attributes have demonstrated the stark contrasts in the relative importance of route choice 
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determinants for work versus shop trips. In general, work route choice behavior tends to 

be restrictive while shop route choice behavior tends to be nonrestrictive – a 

generalization that is consistent with the mandatory and discretionary nature of work and 

shop trips, respectively. For work trips, route choice decisions are restricted by work 

schedule. Hence, the choice of routes is strongly influenced by route attributes that makes 

the total travel experience faster and easier in order to arrive on time at work destinations. 

Consequently, drivers tend to select routes with short travel time, prefer to travel on 

expressways, avoid local roads, and minimize number of turns and intersections. In 

contrast, these determinants have lax effects on route choice behavior for shop trips 

relative to work trips. Sometimes the effect is entirely the opposite; for example, high-

income individuals are more likely to avoid routes with longer duration when driving to 

work but less likely to avoid the same routes when driving to shop. These results suggest 

that trip purpose should be considered in route choice model specification. 

 We deduce from the model results that path size (represented as LNPS in the PSL 

models) took on a more behavioral meaning than originally intended (Ben-Akiva and 

Bierlaire, 1999). Along with Frejinger and Bierlaire (2007), we observed that LNPS 

captures the attractiveness of latent factors associated with overlapping routes. PSL 

models of work and shop trips suggest that drivers perceived LNPS as an indicator of 

common links. Their route choice behaviors vary accordingly depending on the 

mandatory or flexible nature of trip purpose in relation to the perceived benefits from 

choosing common links. Along these lines, it would be interesting to consider the latent 
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factors explicitly (e.g., number of shopping opportunities along route links) in model 

specification to find out if these reduce the effects of LNPS. Also, future developments 

should consider different route choice sets to test the sensitivity of LNPS on path 

generation algorithms. 

 The PPAG algorithm offers an efficient yet theoretically sound alternative among 

path generation algorithms. The algorithm uses the PPA approach in constraining feasible 

routes, which lends it theoretical validity and GSP lends it computational efficiency. 

Moreover, the entire set of GERT’s modules on route choice data generation (TGEM, 

CSGM, RVGM) proved to be successful in automatically generating relevant inputs for 

the route choice analyses, also particularly suited to the requirements of PSL and related 

route choice models. Descriptive analysis of the route choice sets generated by the PPAG 

algorithm provided intuitive results concerning route alternatives for work and shop trips, 

an outcome that suggests the reasonableness of the PPAG algorithm in generating route 

choice sets. GERT’s modules, particularly the PPAG algorithm, are useful in providing 

relevant inputs for further in-depth investigations into route choice decision processes. 

 Traditional route assignment models may have oversimplified the complex nature 

of route choice behavior. Aside from confirming the fact that route choice determinants 

are not only limited to travel time, this paper has also demonstrated that route choice 

behavior varies by trip purpose. Moreover, it was shown that the relative importance of 

route attributes varies as well in relation to individual characteristics though the findings 

need larger sample to be more conclusive. Future research should consider the use of 
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larger samples taken from different locations, and more efficient scaling estimation 

procedures (e.g., Full Information Maximum Likelihood) to provide comparable 

estimation results and identify more determinants that significantly differentiates between 

work and shop trips. 
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Chapter 6 

Conclusion 

 This dissertation set out to advance the current tools and methods of automatically 

generating information from global positioning system (GPS) data to support travel 

behavior research at the individual level, specifically to provide inputs for activity 

analysis in general and route choice modeling in particular. Existing tools and methods 

tend to suffer from several limitations: lack of transferability, lack of a complete set of 

integrated tools, and lack of capability in processing large GPS data. Collectively, these 

limitations impede leveraging GPS data to provide inputs for studies on individual travel 

behavior. Consequently, this dissertation proposed a geographic information system 

(GIS)-based episode reconstruction toolkit (GERT), which was demonstrated to be 

promising in automatically extracting activity episodes from GPS data and in deriving 

information related to these episodes from additional data such as a road network and 

land use. Specifically, this dissertation introduced and demonstrated the utility of GERT’s 

core components such as map-matching and mode detection algorithms, emphasized the 

importance of a framework for the development of GERT’s integrated set of tools, and 

demonstrated the utility of GERT in providing inputs for route choice modeling. In this 

final chapter, the contributions and implications of this dissertation are presented, as well 

as the directions for future research. 
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6.1 Contributions to activity analysis and route choice modeling 

 The four substantive chapters (Chapters 2 to 4) of this dissertation, taken together, 

focus on the development of a transferable, modular, and scalable toolkit (GERT) useful 

in extracting stationary activity and travel episodes from GPS data, and in appending 

more information to these episodes from additional data such as a road network and land 

use. These substantive chapters correspond to the four specific objectives laid out in 

Chapter 1. In general, the substantive chapters highlighted the potential of GERT to 

provide useful inputs to activity analysis and route choice modeling, given the increasing 

availability of GPS data. Specifically, each substantive chapter demonstrated the potential 

of GERT and some of its key components as summarized below. 

Chapter 2 presented the development and demonstration of a GIS-based map-

matching (GMM) algorithm. The GMM algorithm produced accurate results in a 

reasonable amount of time. In addition, the GMM algorithm generated relevant route 

attributes such as travel time, travel distance, and number of left and right turns that serve 

as explanatory variables in route choice models. The ease and flexibility of the Python
®
 

scripting language used in developing the GMM algorithm make this tool easy to develop 

and implement. It can be improved to suit data inputs and specific fields of application in 

transportation research. As GIS increasingly becomes a popular tool in transportation and 

other disciplines, the GMM algorithm serves as a practical tool that GIS users can easily 

use to automatically extract routes from GPS trajectories. For example, in extracting 
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bicycle routes from the data collected by GPS-enabled smartphones, Hudson et al. (2012) 

had chosen the GMM algorithm over other post-processing map-matching algorithms 

(e.g., Schuessler & Axhausen, 2009a; Newsom & Krumm, 2009; Hood, 2010) for it was 

easy to use for ArcGIS
®
 users, and unlike other map-matching algorithms they reviewed, 

requires very minimal user-specified values. 

Chapter 3 introduced a transferable and efficient method of extracting and 

classifying activity episodes from GPS data without additional information. The proposed 

method, which was referred as GERT’s GPS Episodes Extraction and Mode Detection 

(MDM) component, was found to be promising with 90% overall accuracy, despite using 

only three variables derived from extracted episodes from GPS data: median speed (m/s), 

maximum change in heading (degrees), and total duration (minutes). The calculated 

kappa statistic is 0.91 (p < 0.001), which indicated almost perfect agreement between 

observed episodes and those predicted by the multinomial logit (MNL) model. However, 

the model was ineffective in predicting bus and other travel episodes due to the limited 

samples for these episode types. In spite of this, the proposed method showed potential as 

a more transferable and efficient alternative among mode detection algorithms (e.g., 

Gonzalez et al., 2008; Schuessler & Axhausen, 2009b; Gong et al., 2012), given few input 

requirements directly derived from GPS data and the efficiency provided by the MNL 

model. Moreover, this chapter is the first to introduce the use of the MNL model in 

detecting the most likely mode for each extracted episode from GPS data. The 

straightforward procedures in extracting episodes, along with their descriptive statistics, 
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provide researchers with rich information to analyze episode characteristics and to 

develop more effective and efficient algorithms for mode detection. 

Chapter 4 presented the entire toolkit, with particular emphasis on its main 

components, and demonstrated its capability in extracting activity episodes from GPS 

data. About 26,000 episodes were automatically reconstructed using GERT from 47.3 

million GPS points. A comparison of the episode and duration distributions reveal similar 

patterns between time-use diary (TUD) and GPS episodes, a similarity that confirms that 

GERT’s components work properly, at the aggregate level, in reconstructing episodes 

from GPS data. From the standpoint of the three challenges faced by existing methods 

(Section 1.1.1), GERT’s overall performance can be considered impressive because of its 

scalability – GERT can scale up to large GPS data (aside from its ability to accommodate 

additional information); modularity – GERT has a complete set of tools to support 

analyses and model estimations; and transferability – GERT’s reliance on generic 

variables (latitude, longitude, time) makes it applicable to other places. Overall, GERT’s 

modules provide transportation researchers with a set of practical tools in extracting rich 

datasets (e.g., stationary activity and travel episodes, activity locations, travel segments, 

route choice sets, route attributes) from GPS datasets to advance our understanding of 

activity/travel patterns in general and route choice decision processes in particular. 

Chapter 5 compared the separate route choice models of work and shop trips to 

test whether route choice decision processes vary by trip purpose, and in the process, 

demonstrated the utility of Potential Path Area-Gateway (PPAG) algorithm and other 
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GERT modules in generating inputs for route choice modeling. The results showed that, 

indeed, route choice behavior varies by trip purpose because utility and scale parameters 

were statistically different in separate models of work and shop trips. The inequality 

suggested that drivers attach value to route choice determinants in relation to trip purpose. 

The inclusion of interaction terms in model specifications further indicated that work 

route choice behavior tends to be restrictive compared to the nonrestrictive route choice 

for shop trips, a generalization consistent with the mandatory and discretionary nature of 

work and shop trips, respectively. Moreover, these results and the descriptive analysis of 

route choice sets demonstrated that the PPAG algorithm generates reasonable alternatives 

and showed potential as a practical alternative among path generation algorithms (e.g., 

Ben-Akiva et al., 1984; Ramming, 2002; Frejinger & Bierlaire, 2010). GERT's modules 

interlinked with the PPAG algorithm helped to fully automate the procedures involved in 

extracting inputs ready for route choice modeling. With the increasing availability of GPS 

data, GERT’s ability to generate route choice data lessens the burden on researchers in 

collecting and processing these data (note the tedious process of manually tracing 

travelled routes, e.g., Ben-Akiva et al., 1984; Ramming, 2002; Papinski et al., 2009; 

Winters et al., 2010), and allow them to focus on other important aspects of route choice 

modeling. 
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6.2 Practical and theoretical implications 

 The findings from this dissertation, taken together, suggest the importance of a 

framework for the development of tools and methods in the utilization of GPS data for 

research. This dissertation also bolsters the important role of GIS as an ideal platform for 

toolkit development, and encourages the development of simple but effective techniques 

to further leverage GPS data for transportation research. From the theoretical front, this 

dissertation suggests that route choice modeling should consider the influence of trip 

purpose on route preferences. These practical and theoretical implications are further 

discussed as follows. 

 Importance of a framework in developing a toolkit to effectively utilize GPS data 

for research. In the course of the design and development of GERT’s components, it has 

been observed, in general, that basic structures tend to be lacking in the development of 

existing tools and methods for the extraction of information from GPS data. Basic 

structures, in the form of guiding principles, were not explicitly considered; instead, 

localized and immediate objectives (e.g., to derive inputs for modeling) tend to be the 

guiding principles in the development of techniques applied to GPS data utilization (see 

for example Section 3.1). This dissertation suggests the importance of frameworks that 

consider a broader perspective – taking into account the potentials and limitations of GPS 

data across different sources and across different problem domains. Moreover, this 

broader perspective should be rooted in an implementation framework that covers 
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problem identification, need and feasibility analyses, and other considerations similar to 

strategies employed in the adoption of GPS technology in the commercial sector (Theiss 

et al., 2005). As a starting point, this dissertation demonstrated the use of a framework 

based on the software design principles of transferability, modularity, and scalability. 

This framework guided the development of GERT’s components, which is potentially 

applicable across different GPS data sources, but also useful to other problem domains 

besides transportation. 

 Bolster the important role of GIS as an ideal platform for the development of tools 

and methods for extraction of information from GPS data. GIS has long ago permeated 

the confines of transportation research, and researchers in this field are often adept in the 

use of GIS in spatial data management, analysis, and reporting. GERT’s main 

components were interfaced with ArcGIS
®
 as additional tools, an integration that allows 

researchers already familiar with the GIS software ease and flexibility in using GERT’s 

components – helping them to be more productive. Since GERT’s spatial outputs are in 

native ArcGIS
®
 shapefile format (e.g., outputs of TUD-GPS Trip Segments Extraction 

Module (TGEM) and Activity Locations Identification Module (ALIM)), they can be 

easily viewed and manipulated in ArcGIS
®
 or other GIS applications. With the 

proliferation of GPS data, GIS becomes naturally a preferred tool in handling these 

locational data (e.g., Shaw & Wang, 2000; Miller, 2003); in this context, GERT’s 

integration with GIS extends existing GIS functionalities and further strengthens the 

utility of GIS for transportation research. 
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 Simple techniques can be as effective as complicated ones. In the development of 

tools and methods for extracting information from GPS data, this dissertation showed that 

simple techniques (e.g., use of GPS-derived generic inputs such as location and time 

stamp as the core inputs for GERT’s algorithms, MNL for episode classification, basic 

GIS functionalities in map-matching and extraction of additional information from other 

sources) proved to be effective in extracting and classifying episodes (Chapters 3 and 4), 

in retrieving actual routes and attributes for travel episodes (Chapters 2 and 5), and in 

extracting more information for activity locations from additional data (Chapter 4). This 

observation agrees with what Karlaftis and Vlahogianni (2011, p. 396) had opined – that 

“frequently simpler models give as good results as complex ones”. Simple techniques, as 

demonstrated in this dissertation, require minimal inputs and tend to be more efficient 

than advanced procedures developed so far – considering the effort and time in tool 

development, set-up, and processing. 

 GERT to leverage GPS data for transportation research. This dissertation 

proposed a toolkit and demonstrated the potential of this toolkit in the automatic 

generation of inputs for activity analysis and route choice modeling. With this toolkit, 

transportation researchers can easily and essentially reconstruct stationary activity and 

travel episodes from GPS data, and with these reconstructed episodes, conduct various 

analyses and modeling. Aside from route choice modeling, GERT provides useful 

functionalities for other research fields that increasingly use GPS to track down individual 

movements such as physical activity (e.g., Handy et al., 2002; Krenn et al., 2011; Clark et 
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al., 2014), tourism (e.g., Shoval & Isaacson, 2007), health research (e.g., Kerr et al., 

2011), traffic congestion (e.g., Taylor et al., 2010), among others. 

 Route choice models should consider the influence of trip purpose. The 

conventional traffic assignment uses shortest path, often based on estimated travel time, 

in loading trips onto the road network without regard to trip purpose. Chapter 5 of this 

dissertation has shown that route choice preference varies by trip purpose, and the relative 

importance of route choice determinants (travel time among one of them) varies as well. 

These findings are consistent with that of earlier studies (e.g., Wachs, 1967; Carpenter, 

1979; Ben-Akiva et al., 1984; Zhang & Levinson, 2008), and suggest the need to consider 

trip purpose in route choice model specification. 

6.3 Directions for future research 

 Future work should focus on the sensitivity and comparative analyses, 

methodological expansion, case studies that employ GERT’s components, tuning tests to 

improve the toolkit’s performance, and exploration of GERT’s potential for web 

deployment. These future research directions are discussed below. 

 Sensitivity analysis and detailed validation. This dissertation used data captured 

by person-based GPS devices with high temporal resolution (at least one reading per 

second) and horizontal accuracy of 10 m or better in the development and validation of 

GERT’s components. Future research would benefit from the application of GERT to 

GPS data with different spatial and temporal resolutions, particularly those collected by 
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GPS devices with lower positional accuracy, typical of GPS-enabled smartphones, 

tablets, and other mobile devices equipped with GPS receivers. Also, it would be 

interesting to test the sensitivity of GERT’s components (e.g., GMM, ALIM) and their 

parameters to the spatial resolution of road network and additional data such as land use 

and points of interest. Similarly, the PPAG algorithm’s behavioral thresholds (adopted 

from Prato and Bekhor, 2006) should be further tested to determine the effects of these 

thresholds to realistic generation of alternative routes, given the observed routes extracted 

from GPS data. Finally, a detailed episode-to-episode validation test should be conducted 

along the lines of the framework suggested by Stopher and Shen (2011) to evaluate 

GERT’s capability in extracting episodes from GPS data – with emphasis on sequential 

accuracy (i.e., if GERT’s episodes closely replicate the sequence of episodes as reported 

in TUDs). 

 Comparative analysis. This analysis should focus on identifying the strengths and 

limitations of different preprocessing (i.e., data cleaning and smoothing) and episode 

classification (mode detection) algorithms, including GERT’s equivalent modules. This is 

a tricky task because of the different assumptions, input requirements, and run settings of 

the algorithms to be compared (Lawson et al., 2010). In this case, GERT’s emphasis on 

the use of generic variables derived directly from GPS data (e.g., latitude, longitude, time, 

speed, distance, duration, heading, and acceleration) may serve as a common ground in 

establishing a framework for comparison. The idea behind this comparison is to make 

GERT more flexible in handling different scenarios, taking advantage of the strengths of 
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other algorithms and consequently giving users the option to use an algorithm appropriate 

for given scenario. Furthermore, there is some value in incorporating other algorithms 

that fits well within GERT’s framework. 

 Methodological expansion. Future work may also extend the functionalities of 

GERT’s components. In general, GERT’s flexible framework (Figure 4.2) allows for 

expansion in terms of additional modules that can be incorporated at the Stage level, or 

functional enhancements (e.g., new methods and properties) within the core modules. For 

example, other mode detection algorithms such as rule-based methods (e.g., Bohte & 

Maat, 2009; Gong et al., 2012), fuzzy logic (e.g., Tsui & Shalaby, 2006; Schuessler & 

Axhausen, 2009b), neural networks (e.g., Gonzalez et al., 2008), and other machine 

learning algorithms (e.g., Zheng et al., 2008; Bolbol et al., 2012) can be adapted and 

plugged into GERT at the Stage 2 level. This effort would require the new modules to 

adapt to the outputs generated at the Stage 1 level, and generate outputs in the format 

accessible to GERT’s components at Stages 3 and 4. An example for functional 

enhancements would be to extend ALIM’s functionality to automatically assign activity 

type to stationary episodes based on spatio-temporal characteristics of episodes and other 

information (Huang et al., 2010). These are not easy tasks, but these efforts would 

provide GERT’s users the option to choose algorithms appropriate for a particular task, 

and further leverage the use of GPS data for research purposes. 

 Case studies (application). GERT’s ability to reconstruct stationary activity and 

travel episodes from GPS data could provide the inputs for case studies. For example, 
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activity locations can be generated easily from GPS data using GERT; these locations can 

be used for exploratory analysis and modeling to determine activity patterns over time 

and space, and determine the factors that influence these patterns. Using the travel 

episodes and the observed routes based on these episodes, it is possible to conduct 

comparative studies of route choice efficiency across different geographic regions to 

advance knowledge in this particular issue (Papinski & Scott, 2013). Many case studies 

that employ GERT’s outputs could help in identifying other data needs that can be 

derived directly or indirectly from GPS data, and subsequently would inform future 

enhancements to GERT’s components. 

 Performance tuning. Because GERT consists of several components, detailed 

assessment of the computing performance of its components was not fully implemented 

(a rough assessment was presented in Section 4.4.2). Although Python
®

 programming 

language excelled in rapid prototyping and was chosen for GERT’s development, the 

need for computing speed requires detailed analysis of the code to determine bottlenecks, 

and if practical, recoding of some of the components in C++ or other compiled languages. 

Future work on performance tuning of GERT’s modules should also consider the use of 

efficient algorithms to boost performance, without the loss of accuracy. 

 Web deployment and sharing. GERT’s components may be deployed in a web 

application environment in order to share its functionalities to a wider audience. Through 

client applications that send requests to a GERT-enabled web application, users can 

upload GPS data for processing with the option of displaying activity locations and travel 
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routes in an interactive map or download the extracted episodes for further data analysis 

and modeling (e.g., Bohte & Maat, 2009). The web-based application environment may 

also serve as a platform for collaboration among researchers interested in the 

development of tools and methods for the utilization of GPS data – with GERT’s 

components providing the server-side processes. Taking advantage of GERT’s 

modularity, research collaborators may enhance existing modules, and add new modules 

to expand GERT’s capabilities or provide better alternatives to current modules. Future 

work along this line should consider the experience gained from similar undertakings 

such as the work of Macal and North (2009) in the development of a free and open-source 

agent-based modeling and simulation (ABMS) toolkits. 
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