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INTRODUCTION 

Neutrons and protons, which may be called nucleons, constitute 

a nucleus. The forces between these particles are of a very short 

range character, as is known from Rutherford's classic experiments on 

scattering of ~~particles by the atomic nucleus. These forces should 

be quite strong too, when compared to electromagnetic forces, in order 

to keep the nucleus bound at the observed density i~pite of coulomb 

repulsion between the protons and the repulsion_coming about from 

surface effects in finite nuclei. The nuclear forces, then, are of 

a fundamentally different character from electromagnetic or gravitational 

forces. This force can be made up of two-body forces and many-body 

forces. In this work, we shall neglect many-body forces. The point 

of view is taken that all the observed phenomena should be attempted to 

be explained by two-body forces alone, since these are so much simpler. 

If we are convinced that these are not s"fficient, then three-body and 

other forces can be introduced, which will make the situation much more 

complex. 

The nucleons obey the Fermi-statistics. This means that there 

is a built-in many-body force which forbids two protons or two neutrons 

to be in the same quantum state. This also means that p-p or n-n can 

interact only in singlet-even or triplet odd states while n-p can 

interact in all states. We shall be assuming that the nuclear force 

is charge-independent. This means that if the coulomb force is 
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disregarded, p-p, n-p, and n-n forces are the same. The fact that 

only n-p bound-state is found is because n-p can interact in the 

triplet even states, whereas this is not possible for n-~ or p-p. 

We have noted, then, that nuclear forces are of short-range 

(2 x 10-l3 em;: 2 fm), strong, and charge-independent. In order 

to study this force in detail, one can proceed in two ways. One 

is the fundamental approach, where one tries to get the nuclear 

force due to exchange of some particle or particles between the 

nucleons. In order to give the right range, these exchange 

particles should be massive, and they should have strong nuclear 

interactions. The K-meson has these properties. Yukawa ( Y35) 

was the first to take this approach. The tail of the nuclear 

potential arises due to the single exchange of a pion. This is 

the One-Pion-Exchange-Potential, or the O.P.E.P. The internucleon 

forces in the range less than 1.5 fm can arise due to multiple 

exchange of pions or due to some heavier particles. In the 

present state of nuclear theory, one is only sure of the O.P.E.P. 

part of the two-body potential beyond about 1.5 fm. 

In the absence of any complete fundamental theory of 

nuclear forces, one falls back on the phenomenological approach. 

One is attempting to describe the force between two nucleons in 

the nonrelativistic range by a potential (local or nonlocal) which 

can be plugged into the SchrHdinger equation. 

Any two-body potential must obey some invariance conditions. 

Okubo and Marshak (OM58) have given the most general form of the 



potential from these considerations. The considerations are&-

(1) Translational invariance in configuration space. 

(2) Galilean invariance - which is the nonrelativistic limit of 
Lorentz invariance. 

(3) Symmetry between particle 1 and particle 2. 

(4) Rotational invariance. 

(5) Space-reflection invariance - which is valid for strong 
interactions. 

(6) Time-reversal invariance 

and 

(?) Hermiticity of the potential. 

3 

Due to the properties of the Pauli spin matrices, o~e can write 

V as the sum of a spin independent term, a t~rm linear in r a term 

bilinear in ~ • The spin independent term can be expressed as 

( 2 2 2> .. <_. -+ > .. 1L <~ ~ > t c• V0 r • p • L , where r = r1 - r 2 , p • n p1 - p2 and = r X p). 
All the potentials that we shall be considering will obey the •bove 

invariance restrictions. 

Let us now consider how the repulsive core was introduced in 

the two-nucleon potential (P62). 

It was observed in high-energy p-p scattering experiments 

that the p-p scattering differential cross-section remains amazingly 

constant at about 4mb/sterad from 1?0 Mev - 500 Mev. 

This type of behaviour can not be explained by an ordin«q 

attractive central force. Consider the even orbital-states first 

(since singlet even forces are stronger than triplet oda forces). 

The cc:mtribution from the s-sta:te to <T'(9) is propo~ional to 

2 sin 6 , where 6 is the a-wave phase-shift. The d-wave- gives 
0 0 ' 

sin
2
62 .[P2(cos 9)] 2, where P2(cos 9) is Legendre polynomial of 



4 

order two., This term alone will give a forward peak, with a zero at 

about 0 
9 = 55 • Beyond this P2(cos 9) goes negative~ In order to 

compensate in the backward direction, the interference term 

sin 5 sin o2.P2 (cos 9) must play a role by giving a positive 
0 

t.:onb·ibution. This is only possible in the backwa.rd angles i.f 

o
0 

and o2 have opposite signs, since P2(cos 9) is negative in this 

region. Now it is known that the s-wave can 'feel' all the details 

of the potential, including the short range part, w~~le the higher 

partial waves mainly •reel' the tail of the potential, seeing more 

and more of the close range part, as the energy increases. Since 

one knows that the O.P.E.P. tail is attractive, it follows that the 

d-wave phase-shift o2 must be ,csitive. H~nc~ the s-wave phase-

shift c0 must be negativ~~at these energies. This would mean that 

the potential must be strongly repulsive at short ranges. 

The s-wave feels more and more of it as its wave-function 

gets packed in more and more with increasing energy, while the 

d - and higher waves, at the energies concerned, do not experience 

repulsion. Actually, to fill the 'dip' around 55° in IT(a), one 

has to consider the triplet-odd forces, and introduce a tensor force, 

Jastrow (J51) noted that this behaviour of the singlet even 

potential could be described by a hard-core of very sm.:\ll radius 

( 0.4 fm) surrounded by an attractive tail. Thus, in this model, 

the p-p scattering data could be explained by a central potential 

in singlet-even states, which is a function of /rf only, but has 

a hard-core; and a noncentral potential in triplet-odd :::;tateso 

It was noted only much later by Peierls (P60) that the phase-shift 
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behaviour of s- and d - waves could be described by velocity-dependent 

potentials, which also obey the invariance restrictions, and which are 

non-singularo 

Since the time Jastrow first suggested the hard-core, more and 

more high energy scattering data have become available. Accurate sets 

of phase-shifts have been obtained by Stapp eto al. (SYM57) and more 

recently by Breit and coworkers (B609 6l), which fit these experimental 

Gammel and Thaler (GT57) constructed a hard-core potential which 

more or less fitted Stapp's solution I, which is the most acceptable of 

the eight sets found, for p-p scattering data at 310 Mev. In the 

singlet even state, this potential was central, with a hard-core of radius 

Oo4 fm, followed by a Yukawa type attraction. In the triplet-odd 

states, however, a pure central plus a tensor force could not reproduce 

the phase-shift data at high energies. This is because the experiments 

show that for ranges within 0.7 fm, the 3p2 wave feels much less 

repulsion than the 3p
0 

or 3P1 waveo This sort of behaviour is not 
-7~ 

reproducible by a tensor force, but a potential of (L.S) type does 

give such a behaviour. Consequently, they introduced a very short-
- ·"' ·-:? 

range, but strong (L.S) potential in the triplet-odd state, repulsive 

in the 3P state. 
0 

Of course the tensor force is also there, but no 

central attraction was needed in the triplet-odd states. This made 

the singlet-even state potential much stronger than the triplet odd 

This feature of the even-£ state potentials being stronger 

than those of odd-£ state is quite generalo 

To fit the n-p scattering data, singlet-odd and triplet-even 

potentials were also constructed by themo These data were relatively 

few, they retained (L.S) force in triplet-even states also; the hard-

core of radius Oo4 fm was retained in all states. These combinations 
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gave good fit of n-p scattering data at 90 Mev and at lower energies, 

but it was seen that the parameters had to be changed in order to give 

good fits at 156 Mev and 310 Mev. Thus the parameters of the G.T. 

potential were not str:i..ct).y energy independent for the n-p case., Also~ 

in the singlet even case, the 1d2 - phase shift at 310 Mev is much too 

large when compared to Stapp's I solution. Both these defects of the 

Gammel-Thaler potential have been remedied recently by Hamada and 

Johnston (HJ62), who introduced an additional quadratic (L.S) potential 

in the interaction. Their model consists of four terms instead of 

three of Gammel and Thaler: 

where ~2 = the V's are 

functions of r only. The phases produced by the Ramada-Johnston 

potential are in fair agreement with YLAM (T = 1) and YLAN3M (T = O) 

solutions of Breit's group. It is undoubtedly the best two-nucleon 

potential, so far as the scattering-data is concerned. However, 

the hard-core radius chosen is about 0.5 fm for all states, and this 

results in giving too low a binding energy of nuclear matter at too 

low an equilibrium density (Ra63). 

Before going into velocity-dependent potentials, it would be 

desirable to discuss the motivation of trying to replace the hard-core 

by velocity-dependence in the potential. Afte~ll, the hard-core 

potential reproduces the phases very well, Why then replace it? 

The objection about it is the infinity it introduces in the potentialo 

It is not very satisfying, physically, to think of a potential which 

changes abruptly from infinitely repulsive to infinitely attractive. 

It is too nonsmooth. And this imposes many practical difficulties 



when one tries to calculate any properties of the nucleus using such 

a model. Ordinary Rayleigh Schradinger perturbation theory fails 

since individual matrix-elements diverge. One has to use modified 

perturbation techniques, and sum up a whole class of matrix-elements9 

in order to get ~ finite results. These calculations are very 

eo11~licated, by the very nature of the two-body potential chosen. 

Brueckner et al. (B58) have done such calculations on nuclear matter 

and on some finite nuclei using the reaction-matrix method. Gomes, 

Walecka and Weisskopf (G58) have discussed the nature of the two-body 

wave function insici0 Iluclear matter when such hard-core potentials 

7 

are taken in the two-body potential. They took some highly simplified 

models for simplicity in calculations. Moszkowski and Scott (MS60) 

developed a very elegant formalism to calculate the properties of 

nuclear matter when they noted that at the energies concerned, the 

repulsive core really cancels off a lot of the attraction in the 

potential, leaving a relatively weak tail which is attractive. We 

shall consider this method of calculating properites of nuclear matter 

in detail in Chapter IV when we apply this to velocity-dependent 

potentials also. Recently Bethe et al. have devised a 'reference 

spectrum' method of calculating the B.E. of nuclear matter (BBP63). 

Having realized that calculations with a non-singular two-

Lody potential would be much simpler, one tries to replace the hard-

core by a velocity-dependent potential. The hard-core, as we 

noted, was intrDduced to turn the 1s phase-shift negativeo This 
0 

could also be achieved by putting a short-range repulsive 

velocity-dependent potential, followed by an attractive tail. The 
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repulsive part will increase in magnitude with increasing energy 

because of its velocity dependence, ultimately turning the 1s
0 

1 phase-shift negativeo It would not, however, affect the a2 

phase, because of its short-range. 

Green (G62) of Birmingham used a potential of the type 
2 2 ~-t' 

V(r) + (p w(r) + w(r)p ) for the central part, and added (LVS) 

and tensor parts in triplet states. w( r) was short-range and 

repulsive, whereas V(r) of longer range and attractive. We 

shall consider this potential in detail in Chapter I. Levinger's 

group at Louisiana State University concentrated mainly on 

constructing potentials in the singlet-even state. Razavy 

(Ra61) considered in addition potentials of type 
+ + V (r) + p,.w(r)p 

0 

If both V (r) and w(r) are taken as square-wells, the SchrHdinger 
0 

equation can be solved analytically. Levinger and Simmons (LS61) 

solved the neutron gas problem, taking a potential of the above 

type (V {r) had an O.P.E.P. tail) and using perturbation method 
0 

directly. They got substantially the same result as of 

Brueckner, Gammel and Kubis {BGK60) who used the Gammel Thaler 

potential and reaction-matrix method. Herendon et al. (HST63) 

used a velocity-dependent potential to calculate the binding 

energy of the ~-particle by the variational method. They got 

again results similar to those of hard-core, indicating that in 

a light nucleus where the average inter-nucleon distance is 

somewhat larger than the range of the two-body potential used, the 

binding energy is insensitive to the detailed nature of the 

potential used. Baker (Ba62) showed, by a unitary transformation9 

0 
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that outside the range of velocity-dependence, the two-body wave­

function is the same as that produced by an angular-momentum 

dependent potential outside a hard-core. This equivalence of 

velocity-dependent potential and hard-core holds only outside the 

range of the velocity-dependent potential, but as we shall see~ 

it is the inside region that is important for giving satu:r'ed;::~ "n in 

nuclear matter. 

In order to make a precise comparison with a hard~core 

potential, Green {G62) used a very simple modele He constructed 

a velocity dependent potential of type V{r) + {p2w{r) + w{r)p2) 9 

which fitted the a-wave phase-shift and low energy parameters of 

the standard-hard-core-potential {S.HoCoP.) of MosZkowski and Scott 

{MS60). It was assumed that this potential acts only in the 

a-state and is spin-independent. Green calculated the binding 

energy of nuclear matter using such a potential. He compared his 

results with that of MosZkowski and Scott, who had used similar 

assumptions. Green's results were completely different from the 

hard-core case, in as much as he did not get any saturation at all. 

The major part of this thesis will be concerned with this question, 

and in trying to get a velocity-dependent potential which will give 

similar results as those of the hard-core potentialo 

Peischl and Werner {PW6?) have recently used a simple 

velocity-dependent potential very similar in form to one used by 

Levinger, and have obtained saturation in nuclear-matter. Both 

the static and the velocity-dependent parts had equal range in 

their potential, and were simple square-wells. We shall investigate~ 
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in some detail, in Chapters III and IW. why their potential gives 

saturation while Green's s-state potential tails. 

In Chapter I, we shall consider Green's full potential 

(in all states) in detail. We shall briefly review the application 

of this potential to nuclear matter, to the neutron gas and finally 

to the optical model. In Chapter II, we shall take Green's simple 

s-state v,~, potential, and give the results he obtained with it on 

nuclear matter. We shall consider whether one should expect 

different results from the hard-core case on the basis of Beg 0s 

(B61) work. In Chapter III, we shall see that the off-shell 

matrix elements of the scattering amplitude can be quite different 

for the two potentials (hard core and velocity dependent), even 

though phase-shifts are the same. In order to get similar results 

in nuclear-matter, the off-shell matrix-elements of the scattering 

amplitude should also be comparable for the two potentials concerned, 

in addition to the phase-shift fito In Chapter IV, we shall apply 

the Moszkowski-Scott separation method for calculating the binding 

energy of nuclear-matter to Green's potential considered in 

Chapter II. This would check the convergence of the perturbation 

method used by Green, and show where exactly the differences come 

in. After seeing this, in Chapter V, we shall construct a velocity~ 

dependent potential, which will give more distortion of the two-

body wave function in the near regiono This potential, which acts 

only in the s-state~ and fits the same phase-shift data as the 

SoHoCwPo of Moszkcwski and Scott, gives saturation in nuclear matter9 

just as the S.H.C.Po does. 



CHAPTER I 

VELOCITY-DEPENDENT NUCLEON-NUCLEON POTENTIAL OF GREEN 

A. M. Green (G62) has considered two-nucleon potentials of 

the type 
2 2 

U(r,p) • V(r) + ~ w(r) + w(r) ~ 
II II 

where V(r) consists of central, tensor and spin-orbit parts. 

p, of course, is the relative momentum, and m the nucleon mass. 

His objective was to see whether such a potential could reproduce 

phase-shifts comparable to the Gammel-Thaler potential, and then to 

apply it to some problems of physical interest. 

(a) The Two-body Schr8di¥er Equation: The potential in the triplet 

state is 
2 2 

U = V(r) +; w(r) + w(r) ; + VT(r)~2 + VLS(r) L.s 

where ~ is the tensor operator. 

We have, (T + U) Y = Ef where Y is the wave-function. 

In the centre-of-mass system, writi.Dg (for the triplet case, which 

is the more complicated) 

we get 

(1) 

~l 
M 

uJL (r >'1-i .. 
OJLl L 

11 



+ vr L-r) )_ s,~ 11;1- ~~LI 
L 

12 

:: £ ') ~JJ.. (-r) 1{ H 
L y 0 JLI 
L 

~·M Premultiplying by O JLl and integrating over solid-angles d .0..., 

we get 

_ t'l.- ~ cl~ 'tlJL(Y) + t,.'~-- L(Ltl) ~l- + V(r) l 'l.tJL(Y) 
m.· 1' J-;'2.- m ''l- r T 

- ~2 l ,),.l [lil(T)'tlh(Y)j + -~;.z L(L+I) lV(T) J.. ttJL(-r) 
~ ~ ~'l- ~ y~ T 

- wl•) t J. 
rvv'l 

1+-1 

+ VT L'~') L 
~ ~ J --I 

~' _ f 1t1 ,__(r} 

-y ., 



Note that, 

< ~MJ J-1 1 \ 5n. \ 'tJ~ J-1 1/ = J } ) ) ) 

- ;( (J-1) -
(~ J +I) 

,j J(Jtl} 

(lJtl) < "t;,JH, I $11- hr;J-IJ I~ = 

< M I s l M > --" ( J +2) 
-1Jr,Jtl,l ll- ~r,Jt-1,1 - (Htl) 

aDd < ~;,r) S,l-1 ~~,r,1) = ~ 
Let L • (J-1), then the Schr8dinger equation reduces to L } 

t_'l· ~ I fit I d.-2 [ 1 CJ(r} d.- 'U 
-- - - u, J J ... l + - - tJtrJ 'ttr J ... l + - 'rz. I;J ... I 

m 1' J.1z. ' r tlrz.. ) r (71-

+ .f L (L+I) ~)1 ... 1 (l+!l.i.J) + V(..,-) 11r,J-I~ l (J-1) Vr(r) ~T-1 
TAt r ')_, -r i' ;_ J +- I r 

' ,, 
+ ' [ J (HI)] ~ (r) ~Jtl v. (r) ..!. [r(J+ 1)- (r-1) J-~ ttr,r-l 

(2 J + I) T r + ~s 1. u . i' 
::- £ _:Jr ... , 

"12 I 
simplifying this, and using units of - • 1, we get· • • 

= 0 
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2 We have put E == k above, 

For ~. ~ + 1), the equation is 

'~·J· "Ttl '' "'')... V'·) + ~ ( rt'-) Vr ('r) + (r+'-)Vt..s(r) 
~ , J + w + " - l,. ;2 r + 1 - Ur J r +I 
~r~ (lr~w) 

:tw' c!'IAJJJt-1 
+ -

( l+~w) d:r 
(Jti)(J+l) ( ) 

Ur 1+ 1 r 
' )... J 
'f 

IIJ. 
(, IrlJtl)] 

(2J t I ) 

v,('f) ( 
1t r 1-1 1) 

(1+2W) J 

- 0 

For J • L, however, the equation remains uncoupled, 

+ ~w' d UJ r _, 
(I+~ w) dr 

J (Jtl) 
Urr (r) =- 0 

yl- ) 

-
These equations can be put in a more simplified form b7 aaking the 

substitutions 1 '}.; :: (_ l t '2 W ) 

~J,J-1.:: ~ u J,J-1 

J r)r :::: ~ ttr,r 
(2) 
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Then, after some manipulations, the equations can be reduced to the form 

(4) 

and (5) 

where 

and (6) 

For the singlet case, the equation is identical to (5), except that 

one puts VLS = VT • 0 in g(r). 

(b) Phase-shifts: We shall discuss the more complicated triplet 

case briefly first. In the asymptotic region, the coupled equations 

f~} aDd (4) become uncoupled, as VT(r)-70, and the solutions take 
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the following form: 

(?) 

here A's, B's are constants, and in general complex. One defines the 

S-matrix by the relation 

B = SA, (8) 

where 

&. [ ~ J , and S is a 2 x 2 mtrix 

using the uni tari ty and syumetry of the 8-ma.trix, one can parametrize 

it using three real parameters (HS.57). These are the two coupled 

phases and the coupling parameter. In the Blatt-Biedenharn (BB52) 

form, the S-matrix is written as 

s 1!1 

These are the Blatt-Biedenharn phase-parameters, which can be easily 

transformed to the 'bar phases', using the formulae given by Stapp 

ete al.(SIM57)e Although we have written four complex constants in 

(7) 9 only two of these are independent. It can be shown that 

ReA1 =-ReB1 ; Im ~ • Im B1• Bence, there are only two complex 

constants, or four real constants, in (7). 
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Using (7) and (8)~ it can be shown that 

Re -\ + Re ~ tanE 
tan 6 • Im -\ Im A2 tan E + 

and Re A Re ~ tan € (9) 
2 -

tan 6+ • Im A2 Im ~ tan~ -
It is more convenient to write the asymptotic solutions in the form 

d'J - 1 9 J--+ r 

1'J + 1, J_,. r [A' jJ+l (kr) + B' ~J+l (kr~ 
Then (9) can be written as 

tan 6 = 
(B + B' tan E ) 

(A + A' tau E. ) 

( -B 1 + B tan G ) 

(A' - A tan E- ) 

In (10) 9 all the constants are realo 

(10) 

(11) 

Equations (3) and (4) can be solved with two different sets 

of initial values, giving two sets of independent solutionso By 

solving the coupled differential equations numerically and going to 

the asymptotic region, one can find the values of 6 +, 6 and tanG o 

These9 in turn, can be transformed to bar-phase-shifts. These 

phases for both triplet and singlet states were found first by Green 

(G61) 9 and we have extended the calculations to a large set of phase-

shifts (PAB62). Our results are shown in appendix 1 where comparison 

has been made with Gammel-Thaler, Ramada-Johnston and Breit's phases at 
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90 Mev9 156 Mev and 310 Mev. The singlet and triplet-even phases are 

as good as for the Gammel-Thaler case, but triplet-odd phases needs 

improving. The numerical parameters and the detailed form of the 

potential is also given in appendix 1. 

(c) Application of Nuclear-matter: Green applied the above potential 

for calculating the binding energy of nuclear matter. Ordinary 

Rayleigh-Schr8dinger perturbation theory vas used. The results were 

not at all satisfactory, since it vas found that the convergence is 

poor. Applying just first-order theory, saturation vas obtained 

around the right value of equilibrium density, (~Nl.5 fm-1 ), but 

there was too little binding (~-2 Mev/particle). However, these 

first order values do not mean much, since second order contributions 

are large. The second order direct term from the central forces 

was not too large9 (singlet even potential contributed about -4 
-1) Mev/particle at ~ = 1.5 fm • The exchange term from the central 

forces was not calculated, but a rough estimate indicated it to be 

small. The main trouble arose from the tensor force, which starts 

contributing in the second order. The triplet even tensor potential, 

for example, contributes about -11 Mev/particle at~ • 1.5 fm-1 • 

In order to reach any conclusion about the convergence of the series 

at all, it would be necessary to calculate higher order terms. It 

is clear9 however, that simple Rayleigh-Schr8dinger type perturbation 

theory is not very suitable for binding energy calculations eT«D for 

a non-singular potential like Green's, specially for the tensor part 

of the potential (DaP63). 

(d) Beutron Gas: This problem is a neat one, because only the singlet-

even forces are important here, the triplet-odd forces being very weak. 
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Simple perturbation theory is more reliable in this case if one neglects 

the noncentral forces in the triplet-odd states, and also because the 

kinetic energy of the neutron gas, T)/(v), the average potential 

energy. This is because triplet-even interaction is absent, for this 

case. In nuclear matter, the situation is much less favourable, since 

there T and {v) are comparable, and their difference is a small quantity, 

which can be drastically modified by higher order terms. Green 

calculated the average energy per particle of the neutron gas in the 

-1 range ~ ,. 0.5 to 1.5 fm , and his results were in agreement with those 

calculated by Levinger and Simmons (LS61). The results of the neutron 

gas binding energy calculations with velocity-dependent potentials and 

with the hard-core potential of Gammel and Thaler agree well at small 

densities (0.5 (kr(l.O fm-1 ), but wider divergences appear at higher 

densities. This, as Levinger and Simmons have pointed out, may be 

expected on the basis of Beg's (B61) work. We shall discuss this 

point in some detail in chapter II. The hard-core calculations were done 

by Brueckner9 Gammel and Kubis (BGK60). There is no experimental data 

on the neutron gas, but all calculations indicate that it is unbound. 

(e) The Optical~model potential: Kerman et. al (KMT59) had previously 

calculated, among other quantities, the optical model potential at high 

energies, using Gammel-Thaler phases. They made two important 

approximations: 

(i) The multiple-scattering approximation, according to which the total 

T-matrix could be written as a sum of two-body t-matrices, and 

(ii) The impulse approximation, by which one replaces the actual 

two-body t-matrix in nuclear matter by the two-body t-matrix in free 

space .. These approximations are good at high energies (~ab)90 Mev). 
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With the above two approximations, the optical model potential can 

be expressed in terms of phase-shifts alone. The higher partial 

waves upto J = 5 are important in this calculation at 310 Mev, 

although Kerman et. al. cut off earlier. 

We (PAB62) have applied the above formalism to calculate 

the integrated optical potential using Green's two-body velocity­

dependent potential. The results are given in appendix 1. 

It will be seen that the-agreement with experimental values is as 

good as in the Gammel-Thaler case. Of course, since the optical 

potential is expressible in terms of phase-shifts alone, two 

potentials which give the same phases would also give identical 

optical potential. 



CHAPTER II 

CALCULATIONS ON NUCLEAR MATTER IN e-STATE: DIFFERENCES IN RESULTS 

The nuclear matter calculation with the complete velocity-

dependent potential was considerably complicated by non-central forces, 

as we saw in chapter I. No definite comparison with the hard-core 

potential could be made because the convergence of the perturbation 

series was so poor, mainly due to the tensor forces. The question 

of interest is, would a velocity-dependent potential, which has the 

same two-body scattering data as a hard-core potential, give similar 

results as those of the hard-core potential in nuclear-matter 

calculations? To decide this qaeetion, Green (G62 I, II) chose a 

very simple model. In this model, the two-nucleon potential was 

assumed to be spin-independent and acting only in the s-state. 

The low-energy parameters and the phase-shifts of such a potential 

upto 300 Mev were chosen to be identical to the standard-hard-core 

potential (SHCP) of Moszkowski and Scott (MS61). The effective range 

is 2.5 fm and scattering length is infinity, so that there is no two-

body bound-state. The phase-shift characteristic is very similar 

1 to that of the singlet s-state, and is shown in fig. (II-1) together 

with the s.H.C.P. phase-shifts. Specifically, the form of potential 

chosen by Green was again given by 

22 B~{2 V(r) • -A exp (-a r ) + ~ ~ 
2 2 exp (-b r ) + exp 
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where 

-2 6 -1 fm , a = o. 27 fm , A • 1.062 
.lft2 

in units of­
II 

= 1. This particular potential, which Green calla 

No. 3 potential, fits the s.a.c.P. data best. 

Green applied this simple velocity-dependent potential to 

calculate the binding energy of nuclear-matter. In his first 

paper (G62 I), he applied simple Rayleigh-Schr8dinger type 

perturbation theory, modifying the propagator by a one-bo~ potential 

derived from the first-order calculation. The convergence was not 

too good, the second-order contribution being as large as -11 

I -1 Mev particle at kf = 1.5 fm • In the next paper (G62 II) he used 

a modified perturbation theory, using a transformed wave function 

and an effective potential. The convergence was much better now, 

the second-order contribution being about -3 Mev/particle at 

The binding energy curves are shown in fig. (IV 4) 

together with the curves of Scott and Moszkowski (SM62) who 

calculated the same with the standard hard-core potential. The 

results of the two potentials are very different. Whereas the 

4 -1 hard-core potential gives saturation around kf = 1. 0 fm , with 

a binding energy of about -10.6 Mev/partic1e, the velocity-

dependent potential shows no sign of saturation even at 

8 -1 kf = 1. fm • Green's curve will presumably turn up at some 

higher value of kf' and the binding will be much too large. 

This result of Green we have checked by using a completely 

different method of calculating the binding energy of nuclear matter -

the separation method of Moszkowski and Scott. The hard-core 
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calculations were done by Moszkowski and Scott using this method, and 

by doing a similar calculation with the velocity-dependent potential, 

we could appreciate where and why the differences come in. These 

details will be given in chapter IV, where the separation method will 

also be discussed in some detail. 

Green comments (GI62) that these results are in disagreement 

with Beg's (B61) conclusions about equivalent potentials. Our point 

of view is just opposite: we think that different results may be 

expected for the potentials concerned on the basis of Beg's work. 

In order to see this, let us go over the salient points in Beg's 

work. From the previous work of Gel'fand and Levitan (GL51), and 

Jost and Kolm (JK52) one knows that a local potential in an angular 

momentum state is uniquely determined if 

(a) The phase-shifts in that angular momentum state are known for 

all positive energies; 

(b) The energies of the two-body bound-states are known; and 

(c) The residua of the S-matrix at the poles corresponding to the 

bound-states are known. 

Since these residua can not be fixed by two-body scattering 

experiments, one can construct a set of equivalent potentials which 

give the same two-body scattering data. The situation is less 

complicated if there is no two-body bound-state - but in any case 

one needs to know the phase-shifts for a prescribed l for all 

positive energies to determine the potential uniquely. The objective 

of Beg's paper is to investigate whether one can distinguish between 



equivalent potentials by looking at the three-body amplitude. 

To this purpose, Beg uses the 

following simplified model. 

The scatterer consists of 

two bound particles, of mass 

M each. The incident 

particle, of mass m (m((M) 
f 
Om 
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interacts identically with these two centres of scattering. The 

centre of mass of the scatterers are supposed to be fixed at O, 

although their distance, R, can vary according to the density of 

the system concerned. The collision operator for the system can 

be written as 

-1 

' 
where 

vl, v2 are the interactions of the incident particle with the targets. 

G, for the outgoing wave is 

G • (E + iO - Ho)-1, where E is the total energy of the 

system (including the interaction energy, and H
0 

• Htarget + Hincident' 

without any interaction. One can then define the composite scattering 

amplitude by 

j-<t• ~k) = - i; <i• ,o I T I k,o> 
... ~ 

where 0 denotes the ground-state of the target system and k 9 k' the 

initial and final states of the incident particle. It is thus 

assumed that the target remains unexcited. 
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* ~ t' (k' 9 k, R) 

being the ground~state target 

wavefunction, and 1[; can be split up into two parts, using a 

multiple scattering expansion:-
... "* .;, ~ ~~ 

(k 1( tip) (pi tl k) j
0 
(f K-Jt R) ~~ ~ ~ 

"'[; (k' ,k; R) = j
0

(qR) (k' I t I k) 

here 
-? :;,. ~.:;,. 1~ ~ 
K = q + k; q = 2 (k- k'); 

( k
2 + iO - p

2
) 

~ is spherical Bessel function of 
0 

zero order. and t is the one-centre collision operator located at 

the origino It will be noticed that~ has been split up into a 

single-centre scattering part and a double-centre scattering part. 

Specializing to the case of s-wave scattering alone (where expressions 

are simpler) 9 Beg writes 

"f.:.( 

whore I 0 • - h S pdp 
,.. 
~t(, 

exp (ipR) (pltolk) 2 

(k
2 

+ iO - p
2

) 
• 

I (k, R) 
0 

We notice that! is expressible in two terms- one of which is 
0 

the on-the-energy shell one-centre amplitude part, whereas the 

other contains off-shell elements. By specializing further to 

the case of interactions of finite range (i.e., the interaction 

between the incident particle and a target centre vanishes exactly 

beyond a range •a•), Beg shows that I also is expressible in terms o-

of on-shell one-centre amplitude (k I t I k), provided R)2a. This 
0 

means that if there is no 'overlap' of the target particles, the 
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off-shell contributions to the composite scattering amplitude can 

be simply expressed in terms of two-body physical (on-shell) 

amplitudes. So, for R)2a, ~ additional information can be gained 

from 3-body amplitude. One can write 

J(k'. -k) = Jl (~· 9 ~) + 12 ,~.,-~), where 

rt "1- ~ 
J. (k' t k) 
I 

i_Q,. 

= - 2 S R
2 

dr fCR) "'C (-:', k9 R) is the part 
0 

containing off-shell two-bqdy amplitudes, and hence containing 

additional information about the potential. Beg then goes on 

to construct two potentials, one local and the other nonlocal 

separable (i.e., of the form (pj VI k) = T(p)T(k) ), which 

have the same scattering matrix, but the potential sensitive parts 

~l (k', ~) for the two are quite different. 

For interactions with infinite tails, the composite 

amplitude always contains off-shell amplitudes. Thus it is seen 

that one can hope to distinguish between potentials which give 

the same phase-shifts by observing quantities which involve the 

composite amplitude - specially at high densities where there 

will be 'overlap' between target particles. At ..Ulibrium 

densities of nuclei, the average distance between nucleons is 

about 1. 7 fm, whereas the range of nuclear force is tv 2 fm, and 

oTerlap can be expected. Thus there is no reason why one should 

not expect different results in the binding-energy curves of 

nuclear matter at higher densities, when calculations are done 

with velocity-dependent and hard-core potentials. This will 
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become more evident when we calculate, i.n the next chapter, off-shell 

two-body scattering amplitudes for the two types of potential which 

have the same on-shell amplitudes. It will be seen that the off~shell 

parts are quite different for the types of velocity~dependent potentials 

considered9 and the hard-core potential9 because of the tw~bodJ 

wavefuactioD •t short distances being different. We shall see 

(chapter Y), that modifications can be made in the velocity-

dependent potential, such that off-shell amplitudes will also be 

approximately the same as the hard-core potential. Then one can 

expect similar results in many-body calculations from the two 

potentials. 



CHAPTER III 

ON-AND OFF-THE-ENERGY-SHELL MATRIX-ELEMENTS 

We saw in chapter II that two potentials (with no two-body 

bound-state) having the same phase-shift characteristics upto about 

300 MeV gave different results when applied to the .any-bod1-problem. 

On the other hand, Peischl and Werner (PW63), using a simple Levinger 

type velocity-dependent potential, get saturation in nuclear-matter. 

In this chapter, we shall see that in order to get similar results 

in nuclear-matter, not only the phase-shifts but also the off-shell 

elements of the scattering amplitude should be comparable. This 

is so since these off-shell amplitudes do come into nuclear-matter 

calculations. When we do nuclear-matter calculations in the next 

chapter, this will become clear. 

If two potentials have the same phase-shifts, the 

asymptotic parts of the two-body wavefunction arising from the 

two potentials must be identical. Any differences, then, arise 

from different behaviour of the wavefunctions at short ranges. 

The only restriction to the short-range part of the wavefunction 

::.:1:::::7:••:t~~Jc~;:·2~: ::·~~f:::::-:r-::•t::t:::::~:ic 
0 0 0 0 

0 
and u

0 
the actual wavefunction at zero energy. But otherwise, 

the wavefunctions within the potential range can be quite different, 



although giving the same phase-shifts. 

It is known that oa the energy shell, the scattering 
~+ 

amplitude, f (k,k) for two-body scattering can be expressed in terms 

of phase-shifts alone. It is the off-shell part that depends 

sensitively on the nature of the vavefunction within the potential 

range. A condition for a velocity-dependent potential to give 

similar results in nuclear-matter to those of a hard-core potential 

is that it should have comparable off-shell elements. We shall see 

that a simple Levinger type velocity-dependent potential, vith square-

vella of equal range for both the static and velocity-dependent part, 

gives off-shell matrix-elements of scattering amplitude, comparable 

to those of a hard-core Gomes-Walacka-Weisskopf type of potential. 

This is exactly the type considered by Peischl and Werner and the,r 

get saturation. On the other hand, in the next chapter, we shall 

see that the off-shell scattering amplitudes for Green's s-vave 

potential are very much smaller than the standard-hard-core potential 

of Scott and Moszkowski. That is vhy saturation vas not obtained 

vith Green's potential. In the last chapter, we shall modify Green's 

potential such that off-shell elements will be comparable, and 

saturation in nuclear-matter vill be obtained. 

As a first orientation, ve shall take a pure hard-core and 

a velocity-dependent potential of the type considered by Levinger et. al. 

The phases of these vill be adjusted to be identical upto about 200 MeV. 

We shall then compute the off-shell elements to see hov different 

these are for the two potentials. Next, a more realistic case will 



be treated. 

Let us consider the scattering problem with a pure hard-core, 

in the a-state. 

The SchrHdinger equation for 

2 
r (r is (with "L = 1) 

c • 

d
2u:t 2 -< + k u ... 

dr2 

"!. • v u - (l) 

and for r)rc' it is 

(2). Here u • tf(r). 

Consider the first equation, with V not infinite, but 

very large, such that V))k2 • Then we can write (1) as 

or 

~I . 
r 

But the solutioa outside the core is given b7 

so i6 • e o cos (kr + 6 ) 
0 

(4) 



Equating (3) and (4) at r • r , and remembering that cos {kr + 6 ) ~ 1 c c 0 

and vt .. , we get 

'fe. 1 vl clr • o160 aa n··. 
0 

One solution of this is obviousl7 

(r-r ) as V -1- ... 
c 

Now, to compute the off-shell scattering amplitude, 

f (:•;t> • -(~)-1 ~ 

• -<~>-1 ~ 

~ -)' 
-ik' r • • 

~ + 
-ik' r e • 

~ 
tnk(r) dr 

'ic(r) 

v ---­r 

{5) 

(6) 

• -(~)-1 ~ .-~• ~ e16o(k) &(r-r c) r dlt dr, f!'OIIl (5), 

• -(~)-1 ~ .-ik'r coa 9 e16o(k) &(r-rc) r d (cos 9) df dr, 

.. - ~sin k'r 
k'r 

ei60 (k) 6 (r-r ) 
c: rdr 

sin k'r 
eib0 .(k) c 

k' . -
But since (-k'r ) is the phase-shift for a wave with wave-number k', c: 

this can be written in the alternative form 

~ ~ 

f (k',k) • 
sinb (k') 

0 

k' 
(7) 



This result is remarkable in that the off-shell scattering 

amplitude for a pure hard-core is expressible in terms of phase-shifts 

alone. This will not be true when the hard-core is surrounded by a 

static finite potential. Also, we note that for a hard-core, 

the scattering length 

effective range 

a ... r 
0 c 

Now we shall try to get the same scattering characteristics as 

(8) 

that of a hard-core by taking a velocity-dependent potential of the 

Levinger type: 

m 

For simplicity, we take 

J1 (r) .,. J2(r) • ~ - 9 (r-b~ where 9 (r-b) is the unit step 

function. That is, both the'static and the velocity-dependent 

parts are square-wells of the same range. Such simple potentials 
I 

have been considered by Razavy (1&61). 

The Schr8dinger equation with such a potential takes 
1i 2 

the form, for r(b, (-- • 1), m 

1/ 2 2 1 2 
uj; -k1 u:t: = 0, where ~ • (1+A. ) (V 

0 
- k ) (10) 

In order to get expressions for scattering-length and effective-

range with such a potential, we·are interested in the region k~o, 

2 so that ~ can be assumed positive. 



So the vavefunction is of the form 

B sin (kr + o ) for r)b 
0 

It can be shown (Ra61) that 

tan (kb + 6 ) = 
0 

k sinh k1b 
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(11) 

From this 9 we can get a closed expression for the scattering length 

which is of a different form from Rozavy's. This can be done by 

calculating k cot o
0

, as k~O. We get the scattering-length 

b (12) 

(1 +A) b K' coth bK'- ~ 

where 

K' = 

Also9 by making use of the expression 

r = 2 (cx"(v 2 - u 2 ) dr, ve get, 
0 .) 0 0 

r = 2 (b 
0 

"'o 

a 
0 

) - (1 ~ b 
)
2 [!_ coth K0b - b J 

ao K' siDh~eb 

(13) 

To get the same low-energy parameters as those of a hard-core~ we 

use equations (8), (12) and (13) to fix two of the three adjustable 



parameters of the velocity-dependent potential (9). The other 

parameter can be varied to get the best fit in phase-shift upto 

200 MeV. 

To simulate a hard-core of radius r = o.4 fm, the para­e 

meters in the velocity-dependent potential (9) were found to be: 

8 -2 b = 1 fm, V • 2. 2 fm 9 0 
A= -o.5 (14) 

The a-wave phase-shift is plotted against wave number k for the 
~ + 

two cases in fig~~f).Using (7), we can at once find f (k',k) 

for the hard-core. Our next aim is to get an expression for 
-.:,.. ~ 

f(k',k) for the velocity-dependent caseo We can then make 

numerical estimates for the two cases. 

In order to do this, we shall follow a derivation due to 
...,. ... ..,. ~ 

Fulton and Schwed (J'S59-} who express f (k' ,k) in terms of f (k,k) 

and an integral of the distortion of the wavefunction from its 

unperturbed form over the potential rangeo The Schr8dinger 

equation is 

But 

f(k• ,k) • -(4.)-l J 
• -(4.)-lf 

For s-wave scattering, 

= 

"'!12 
where again = 1 m 

-lJo -)o 

e -ik' or (k2 + v 2) 'fk (r) d3r 

e 
io (k) 



2 2 ) Since (k + V ) 1 k (r = 0, one can write 

Integrating by parts, after some manipulation, one can write 
O(J 
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f(k-,"it> • (k'2 -k2) ( sin k 'r 
J k' 

-:.-7 
dr + f (k,k) 

0 (15) 

Here ~(r) is the actual radial wavefunction and vk(r) its 

asymptotic formo The integrand vanishes outside the potential 

rangeo Note that for a pure hard-core, ~ = 0 for r ~r c' and 

equation (15) can be reduced to the simple form of (?)o 
..:. ~ 

In order to evaluate f(k',k) for the velocity-dependent 

potential that we are considering in this chapter, we note, 

from (11), that 

2 
where ~ = 1 

and vk(r) = B sin (kr + o(k) ) 0 

eio(k) 
If we choose B = - , then, since the wavefunction is 

k 

continuous at r = b9 

sin (kb + o ) 
0 

Making these substitutions and carrying on the integrations, 

which are of standard forms, we finally get 



kk' 

coth (~b) - k' cos (k'b)_} 

{ k sill k'b cos (kb + 6
0

) 

-k' sin (kb + 6 ) cos (k'b) + k' 
0 

~+ 
f (k,k). (15b) 

Note that the first two terms in the right-hand side vanish fork a k'. 
~ ~ 

Now let us see how much different f(k',k) is, for a velocity-

dependent potential, given by (15b), and a pure hard-core, given by 

~~ 
(7). The f (k,k)'s for the two are of course the same upto at 

-1 
least k = 1.5 fm • 

For a hard-eore: 

~ ~ ~.:., i 6 (k){sin 60 (k') 
f(k',k) - f(k,k) a e o 

k' 

sin 6 (k) l 
- __...;;,._,k 0 j 

-1 -1 
Taking r = 0.4 fm, k' = 0.5 fm , k = 1.0 fm , a simple c 

calculation yields, 

"t ·~ ? :., 

f (k' ,k) - f(k,k) 

k' 

'k 

-1 = .5 fm 

a 1.0 fm -l 

= -e-i(0.4 ) (.0080) fm. (hard-core) 

For the velocity-dependent potential with parameters given by (14), the 

same quantity, when evaluated according to (15b), is 



~ ~ ~ ~ 
f (k' ,k) - f (k,k) 

k' 

k 

-1 = .5 fm 
-1 = 1.0 fm 

which is about double the hard-core value. 
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(velocity­
dependent 
potential) 

Numerical calculations 

will be done in some detail for the next case, where a hard-core is 

surrounded by an attractive square-well. 

Hard-core potential of Gomes-Walecka-Weisskopf t:pe: 

-f12 
Again, we put - • 1. m 

2 2 Define ~ = (k + V
0

), then the 

radial wave-function in s-state is 

One can easily derive 

i60 e =-k 

sin (kr + 6 ) n o 

sin k1(r - r ) n c 

(16) 

(17) 

Using the expansion of k cot 6 9 it can be seen that the scattering 
0 

length is 

a = r - -K1 
tan I (r - r ) n n c (18) 



where 
_2 '*!1.2 
~ = V (since -- = 1) o m 

Making use of the effective-range integral, the effective range 

r 3 (a-r ) rc (r - a)2 
n c n 

ro = rn - 3&2 - a2K2 + a2 (19) 

Gomes, Walecka and WeisBkopf take the aoattering length to be 

infinity, same as the standard-hard-core of Moszkowski and Scott. 

From (18), then 

from (19), if 

K (r - r ) = n c 

a .....l!o• 
' ' 

r
0 

= (r + r ) n c 

X 

2 

The values used 'b7 Gomes et. al. are, 

r = 2.3 fm, r • o.4 fm, r?- = o.682 fm-2• n c 

This gives a~ • and r = 2. 7 fm. We shall now calculate the off­o 
... -:)> 

shell scattering amplitude f(k',k) for such a potential. 

We have, oO 

-ik• :r 
I 

.. .!r 

e • V '\:(r) r d.O dr 

This can be split-up into two parts, 

(20) 

where fc corresponds to the core part, and fn for the surrounding 

attractive region. 

fc • -<4·>-1 r:-J.;; vc "k (r) r d.tl. dr 

"f :: c 

where V ~ • c 



and f = n 

11'1 

+ ( .... )-1 ~ 
1k 
v 

::. ~ 

-ik' .r e V 
0 

'it(r) rd!L 

Making use of the fact that for r ,<rc• 

v u. = 
c K Lt 

where~= 

v~­
c 

k 

kk' 

sin (krn + 6
0

) 

sin k1 (r - r ) n c 

= J k2 
+ rf~ we get 

i60 (k) 
sin (k'r ) e c 

dr 

sin (krn+6
0

) 

sink_ (r -r ) 
-~ n c 

To ca~culate f , we use the wave-function (16) for the region 
n 

i>-
0

- (r ,<rn, a:ttd get 

~~ 
f (k •k) 
n 

where A = 

VA 
= -2-. f',.oin (k'r) sin ~ (r - r

0
) dr 

1(, 

sin (krn + 6 
0

) 

sin k1 (rn - rc) 

SolTil'lg the integral, one gets, 

~ 7 K2 f (k' ,k) = _....;;;.. ___ ~ 
n k' (k'~ - k 2 ) 

1 

i6 (k) 
e o 

k 
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sin k1 (rn - rc) cos k' rn 

- ~Bil>lt'r0 J 
. ~ 

The total expression for f (k',k) ins-state, for a repulsive 

core + square-well potential is, 

(21) 



iS (k) 
~ ~ e o 

f (k',k) = 

k'k 

.2 where, of course, K = V 
0 

+ 

(22) 

Our next task is to find a velocity-dependent potential which will 

reproduce the scattering-length, effective-range and phases upto 
-7~ 

a certain energy, and then computet (k',k) for such a potential. 

If we get similar values oft rk•:k) also, then such a potential 

can be expecte« to give saturation. The form of velocity-

dependent potential that we consider now has been used by Levinger 

and Razavy and later by Peischl and Werner. 

). 
V(r,~) = -V J1(r) + --o m 

where 

We put 

Jl(r) = J2(r) 

~ = V , K' 2 = 
0 

(see equation (12); 

is the unit step-function of range b. 

1 V
0

, and obtain, as before (l+A ) 

coth b~ ~ cot bK' since V is attractive) 
0 

b 

(1 +>.) K'b cot lt&' -A 



We want a -~-) co which yields 
0 9 
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tan K'b (24) 
= 

K'b 

The effective range r
0

, as a0~ • 9 is given by 

r = b 
0 

(25) 

To fit the low-energy characteristics of the hard-core potential of 

Gomes eto al 09 we should therefore have 

r 
: 1 

L 
(26) 

Equations (24) and (26) fix two of the three parameters in the 

potential (23); the other parameter can be used to give the best 

possible phase-shift fito The parameters chosen by us were 

K' • I~~ • 0.5~ fm-
1 (27) 

This potential gave a f~rly good phase-shift fit upto about 

Elab = 100 MeV, and agreement of low energy parameters with the potential 

of Gomes eto alo The phase-shift characteristic of this potential9 

along with the hard-core potential of Gomes eto alo, are shown in 
-~ ;,.. 

figure (III-2) o We shall now calculate f(k',k) for such a 

potential in the range in which the phases fit and compare with the 

result of the hard-core potential of Gomes eto alo 



Calculation of f(k'.k) for velocity-dependent potential (2?): 

We shall again use formula (15) 
oc 

r(k• ,kl = (k'
2
-k

2
) j, "1~,k'r [ "k(r) - Yk(r~ 

~ ~ ei6 0 (k) 
where f(k,k) = ..;;..... ___ _ sin 6 

0 
k 

sin (kr + 6 ) 
0 

(k) 

~~.,. ..;.,. 

dr + f (k,k) 
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(15) 

For the velocity-dependent potential (23) 9 the radial wave-function 

is given by 

'( Uk = A sin (k1r) for r(b 9 

where A = 

and = 

Put B = 

k 

k 

ei6
0 
(k) 

k 

sin (kb+6 ) 
0 ; 

sin (kr + 6 )i for r)b 
0 

Then a straight~forward calculation using these wavefunctions yields, 

ei
60

(k) -lain (kb+6 0 ) 5 sin (k'-k1 )b 

. sin ( k1 b) l~ ( k' -k1 ) 

f sin (k'-k)b sin (k'+k)b } cos 6 '\ 
0 

; (k'-k) (k'+k) 
'',., 

! cos (k'-k)b cos (k'+k)b }j + sin 6 \ = + 
0 I~ (k'-k) (k' +k) 

sin(k'+k~b ~ 

(k'+kl) ' 
" 

(28) 



~~ 

Note that this reduces to the usual expression for f(~) when we 

put k'=k on the right-hand side. 

We have evaluated (28) and the corresponding~ expression (22) 

-1 -1 for the hard-core potential for k = Oo? fm and k = 1.0 fm and 

various values of k'. ~ere is no point in comparing beyond values 

-1 of k' = 1.2 fm or so, since the phases do not fit for larger values. 

The values are shown in table (1) and the p~ots in fig. (III-3). It 

will be seen that the values are very close. 
~~ 

Since f(k',k) is the 

quantity that enters into nuclear-matter calculations (as we shall 

see in the next chapter), we should expect such a velocity-dependent 

potential to give results comparable to those of a hard-core. In 

fact Peischl and Werner have got saturation in nuclear-matter with a 

potential of the same form. Their singlet-even potential had the 

following parameters -

as compared to (27). We can not compare the off-shell elements 

of this potential with those of the Gomes-Walecka-Weisskopf one, since 

the low-energy characteristics as well as phases of the two are 

different. (The potential of Gomes et. al. is a brPothetical 'test' 

potential, with scattering length of infinit~). 

All this calculation shows is that in a4ditioa to fitting 

the phase-shift data for scattering, one should also pay attention 

to the two-body scattering wave-function inside the potential range, 

in order to get reasonable results in nuclear matter. Establishing 



the equivalence of two potentials outside the range of velocity­

dependence (Ba62), and saying that the equivalent core-radius 

of the velocity=dependent potential is too sm~l (GII62) is not 

a satisfactory explanation for different results in the many-body 
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COMPARISON OF OFF-THE-ENERGY-SHELL MATRIX-ELEMENTS f{kJk) FOR s-STATE. 

HARD-CORE POTENTIAL IS THAT OF GOMES ET. AL. 

POTENTIAL IS GIVEN BY III-{23), III-{27). 

TABLE I 

k k' f(k' ,k)/eif>(k) in fm 
(fm-1) (fm-1) ve1oci t;y-dependent potn .• 

o.4 1.0748 

0.5 0.9960 

o.6 0.9056 

o.8 0.7024 
0.7 

0.9 0.5962 

1.0 0.4912 

1.1 0.3904 

1.5 0.0755 

o.4 0.7497 

0.5 0.6841 

o.6 o.6096 
1.0 

0.7 0.5290 

o.8 0.4454 

0.9 0.3618 

1.1 0.2060 

1.5 -0.0038 

VELOCITY-DEPENDENT 

f(k',k)/eif>\KJ in fm 
hard-core potn. 

1.1294 

1.0537 

0.9647 

0.7542 

0.6370 

0.5151 

0.3908 

-0.0850 

0.6622 

0.6158 

0.5616 

0.4991 

0.4313 

0.3588 

0.2057 

-0.0949 



CHAPTER IV 

SEPARATION=METHOD CALCULATION WITH GREEN'S POTENTIAL 

In this chapter, we shall apply the separation method of 

Moszkowski and Scott to calculate the binding energy of the ground-

state of nuclear-matter. Green's velocity-dependent a-state 

potential is used, which simulated the two-body scattering dat~of 

the standard hard-core potential-of Moszkowski and Scotto It 

was noted in chapter II that this velocity-dependent potential 

failed to give saturation even at kf = 1 0 8 fm~lo By recalculating 

this bindipg-energy curve by the separation method, we shall be 

(i) checking the result of Green who used perturbation theory 

upto the second order, and 

(ii) seeing exactly how the short-range part of the two-body 

wavefunction enters into the calculations giving different 

results from the hard-core potential. 

Also, it will be easier to see how the velocity-dependent 

potential should be modified in order to give saturation at a 

reasonable densityo First, we shall discuss the separation method 

in some detail, deriving the formulae that we use. 

The separation method of calculating the binding-energy of 

nuclear-matter: This method was developed by Moszkowski and 

Scott (MS61) and modified by K8hler (K61). They noted that 
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although the nuclear force is very strong, only a relatively weak 

part of it is responsible for giving the binding in nuclear mattero 

This is because, at the energies concerned, a large part of the 

attraction is spent up in 'c~celling' the short-range repulsion, 

leaving the weak tail to give the binding. 

If such a separation could be ~de, then ordinary 

perturbation theory could be applied directly to the long-range 

part of the potential. The short-range part would contribute 

only in the second-order. One should be more explicit about 

what exactly is meant by 'cancella~ion' of the repulsive and 

attractive parts of the potential. One knows that for free 

particles, the diagonal element of the reaction-matrix is 

proportional to the phase-shift. And the diagonal elements of 

the reaction matrix determine the pair-interaction energy. If the 

phase-shift is negative, the potential must be repulsive, giving 

positive interaction energy. A positive phase-shift implies 

negative interaction energy and net attraction. If, then, the 

division of the potential is made at the point where the local 

phase of the (free) two-body scattering wavefunction is zero, the 

potential within the separation distance would give zero inter­

action ·energy for free two-body scattering. By this kind of 

separation, then, the cancellation is exact for free two-body 

scattering and the short-range part does not contribute at all 

to the interaction energy. If we remember that positive phase­

shift means pulling the wave function in, and negative phase-

shift means pushing the wavefunction out, with respect to the 
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unperturbed wavefunction, then it is clear that at the separation 

distance, the properly normalized two-body wavefunction for free 

scattering will be tangential to the unperturbed wavefunction. 

Regardless of normalization, the logarithmic derivatives of the 

unperturbed and actual wavefunctions will be equal at the 

separation distance. This separation distance, which we denote by 

'd' 9 will depend both on the angular momentum and the relative 

momentum of the state concerned. As the energy of the particles 

increases, more and more of the attraction would be needed to 

cancel the repulsion, and 'd' would increase. This kind of 

separation is not possible when the total phase-shift goes 

negative. 

In nuclear-matter, of course, conditions are different 

from free two-particle scattering. Even if three-body clusters 

are neglected (the importance of these have been recently emphasized 

by Rajaraman at Cornell, Raj.63), two main differences come in. 

The Pauli principle drastically cuts down any scattering by the 

long-range part (which is weak) and so there is actually no 

phase-shift inside nuclear-matter. Also, the energy=momentum 

relation inside nuclear-matter is modified by the average one­

body potential that a nucleon feels due to the presence of all 

the other nucleons. These two effects give rise to two 

correction terms in. the second·order. Since the short-range 

part of the potential is strong, it distorts the wavefunction 

in this region drastically, and primarily mixes high momenta 
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components into ito Since these are mostly above the fermi-sea, 

the Pauli exclusion principle has only a small effect on the 

short-range part of the potentialo For this reason, one expects 

the Pauli correction term to be smallo There is another 

correction term which arises out of the coupling of the short-

range and the long-range parts of the potentialo For the kind 

of separation made, th~ two parts are essentially decoupled for 

free two-body scattering, but in nuclear-matter, interference 

terms appear in the second-ordero We shall now derive an 

expression N for the nuclear reaction-matrix t by making such a 

separationo 

Let the two-body wavefunction for free nucleon-nucleon 

scattering for the given two-body interaction be if = !: o 
R r 

The unperturbed wavefunction is ~ = ;2o At the separation 

distance d9 

~\ dr 

r = d 

= (1) 

Define the nuclear reaction-matrix in momentum-space by 

Q(P,k') 

e(k,k',P) 
(2) 

where Q(P,k') is the Pauli operator: it is unity if the 

intermediate states of both the nucleons are outside the 

Fermi-sea, and zero otherwiseo 
~~ 
k,k' are the relative momenta 

t . 1 
2 



• 1- ... ~ 
k' = - (k ' - k ~ and P is the total momentum9 2 1 2 ' 

~ - ~ 
p = (~ + k2)., 

e(k,k',P) is the two-particle propagator where the many-body 

effects have been taken care of by incorporating in it the one-body 

potential arising out of all the other particles -

2 
e(k,k',P) = ~ (k2

-k• 2 ) + U(k
1

) + U(k
2
)- U(~t)- U(k

2
1 ) (4a) 

The one-body potential is defined by 

U(~) = y-1 I t~ 
k2< k.f-

• k beihg given by (3) and V is the nuclear volume. 

Equation (2) can be written in operator form as 

Now 'making the separation 

the above equation becomes 

N £ N o N 
t = V 1 + T + V 1 t + T ~ t 

~ s ~ e s e 

(4b) 

(6) 

Now define two reaction-matrices due to the short-range part 

of the potential- v : 
s 

tD = v + T 1 tD 
s s s e s (?) 



where e = 
0 

1!.2 

m 

+ v s 
1 
e 

0 

Note that the Pauli principle 

is neglected in both these operators; D but whereas t has s 
F 

the actual propagator e, t describes free two-body scattering 
s 

due to v with a propagator e which ignores the average field s 0 . 

of other particles. In the following derivation, we shall 

assume v to be Hermitian, which is strictly true only if d s 
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(8) 

be independent of k. Since this is actyally not so, additional 

terms arise in third-order, which we ignore. Although d does 

vary with k, its variation is very slow in the region 

-1 -1 k = 0.6 fm to 1.0 fm , which is the most important region 

for nuclear-matter calculation. 

From (?), then, tD = v 
s s 

D 1 
+ t - v s e s 

V = (1 + t D !)-1 inverting~ 
s s e 

Substituting (9) in (5), and pre-multiplying throughout by 

(1 + tD 1) we get, 
s e ' 

Now~ make the approximation on the right-hand side 

Then the above equation becomes 



D F To simplify {10), we shall express t in terms of t e 
8 s 

Define the 'wave-matrices' ..() 1 s by 

Note that 

1 tF = ( .0 sF - 1) 
e s 

0 

1 tD "" ( t') D - 1) 
e s .l"'s 

From (?), (8), one can write 

~1 

tD = (1 + tF 1 ) tF + 
s 6 e 6 

0 
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(11) 

(12) 

~ tF + ( 0 F - 1) (e ~ e) ( f'l F
6 

~ 1) (14) 
S . 6 0 lL 

Substituting this in the expression (10) for tN, we get, 

N F s s F FS t =V,+t +V, v,+v, t +t V0 
~ s ~ e ~ ~ e s s e ~ 

0 0 

+ < n! = 1> <e
0 

~ e) <D.!- 1> + <O.!- 1> e CQ=l) <0_!=1> 

(15) 



where we have used <11~ - 1) 

Expression (15) is identical with the one derived by K8hler 

(K61) in a slightly different way. We have retained, in (15) 

F 
only upto second-order terms in vl and t

8
• 

I~ one arranges the normalization such that 

1 (16) 

where yN is the actual two-particle wavefunction in nuclear-
... 

matter and ~ the unperturbed wavefunction, then the total energy 

of the system can be written as 

(17) 

where 

(18) 
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Ti is the kinetic energy of the ith particle, Vis the nuclear 

volume, and k the relative-momentum of the interacting particles i, 

j. Thus, in order to find the energy of the system, we need to 

know the diagonal matrix-elements of tN, which in turn is given 

approximately by (15). In (15), the first term on the right is 

just the first-order Born approximation of the long-range part of 

the potential. With the kind of separation made, (t!)kk = O, since 

the phase-shift due to this part of the potential is zero. The 

third term, vl ~ vl, is just the second-order Born-term, with the 



actual propagator e, and where Q reduces the magnitude of this 

term drastically. The next two terms in {15) are the interference 

terms, arising because the short-range and the long-range parts of 

the potential are not completely uncoupled in nuclear-matter. 

For free-space, Q = 
((lF - 1) (e - e) s 0 

1, and these terms vanish. The term 

( D F - 1) is called the 'dispersion' s 

It has appeared because the propagator in nuclear-matter is e, 

and not e o 
0 

We shall see that this term is extremely important 

for saturation of the binding energy curve. The last term in 

(15), F F { 0_ s - l)e{Q-1) { [\,s - 1) is the Pauli-correction term 

mentioned earliero For free-space, Q = 1, and this term also 

vanisheso We thus see that for free nucleon-nucleon scattering, 

tN is given by only the first three terms of (15), upto second= 

order. 

In order to evaluate AEij from equation {18), we shall 

express tN in the form 
kk 

=1 {19) 
,e 

where ,t is the angular momentum of the state concerned, c,e is 

a constant taking care of the statistics involved, and t,ekk is 

N th the contribution to t kk from the ,t partial-waveo In our 

calculations, we are only interested in a model potential which 

acts only in the i = o state. Further, the potential is spin-

independent. To determine c,e, consider the total number of 
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spin and ieo-spin states. There are the following combinations: 

T = 
0 

\ 1 state T = 
0 

( 3 states 

s = 0 J s = 1 J 
T=l~}; 

-' states 
s = 0 

T = 1 f 9 states 
sIll 1 

J 

In the £ = o state, since the total wavefunction must be antisymmetric, 

interaction can take place only in the second and third conbinations 

6 above. This means that the weighting factor is ~· But in a spin-

independent potential, the contribution of the exchange term is just 

6x2 3 the same as that of the direct term, so cl • 1g • ~· 

for our case or interest, (19) re~uces to 

Hence, 

(20) 

Using (15), we can further write (we omit the superscript o hence-

forth) 

t
0

kk= (vl)kk + (t!)kk + d~(D) + .1tkk (I) +Li~(P) +.bt~(V) 
(21) 

where (D), (I), (P), (V) denote the dispersion, interference, Pauli 

and second~order Born terms respectively. With the separation 

F 
made, (ts)kk is identically zero. 

Now we shall express the terms in (21) in a manner more 

convenient for numerical calculation. This will also show up 

the differences in the velocity-dependent and hard-core potentials. 

Treatment of the Propagator:­

defined in equation (4) as 

The propagator e has been 

e (k,k' ,P) =;: (k
2 
-k12) + U(~) + U(k2 ) - U(k\) - U(k~) 



We shall follow Moszkowski and Scott in simplifying this to a 

form suitable for computation0 

"b2 
e(k

9
k 9 

9
P) ,. 

m 

We have defired the one-body potential in (4b) 9 

We replace the sum by the reaction-matrix evaluated at some 
kf 

average momentumo This average was taken at ~ o In the 

first approxlmation9 tN~ t! + v,e, and the diagonal elements of 

F 
t 

5 
vanish c Doing the angular integrations, 

t 

Following Moszkowski, if one further assumes that 

t 

and r~r s 

k 2 
1 
4 
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(22) 

k:f'' then (22) 

3k/ -. k2) 
16- +~-

~ k'~ 1] 
16 +~; 

(24) 
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It should be noted here that this expression is not sensitive to 

th~ value of .I P l c~osen above. If one takes "f = 0, then we get 

~ instead of ':i under the s~uare-root sign, and this 

changes the numerical values only slightly in e(k,k'). It was 

seen that vl(k,k) could be approxi&ated ~uite well by an 

expression of the form 

-il-
vt<k,k) = - ~ 

2 a + bk 

1 + dk
2 

Then, after some manipulation, one can write 

-i12 2k' A + Bk2 
U(k) • t --

D + k2 m "'2 

where A= 
4 (a+~ kf~>. b 4 

B = d' D=-+ d d 

andF= 4 (ad-b) 
d2 

substituting this form in (24), we finally get 

~ kf2 

(2.5) 

(26) 

(2?) 

""'-2 2 ~2 4kf3 
e (k k' P) = ~ (k2-k 1 ) - -~ F (..!.._ • .....!.., ) (28) 

t • m m 31'2 D+k2 D+k'2 

This expression for the propagator will be used to compute the 

second-order terms. 

The Dispersion Term: We have seen that 

Atkk(D) ~ \kl <.Q~- 1) (e
0

=e) <.0.!- 1) I k) 

= (Vs-~k I (eo-e) 'Vs- ~k) 

where V
8 

is the two-body wavefunction for free nucleon-nucleon 
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scattering due to the short-range part of the potential alone 

(for wave number k) and ~ k the unperturbed wavefunction. 

Now, 

Atkk(D) = L (Y - fk I k') (k'l (e -e) I k') (k' f 1J! - 4k> 
k' I!J 0 IS 

orA\Jc (D) s ~,\<'f8-fk\ k') \
2 

(k' \ (e
0
-e) I k') 

= L ~~ ('ls- ~k\ r) (r 1 k') 1
2 

(k' l (e0 -e) f k') 
k' , r 

Put L (Vs-fk(r> <rlk') =A'fk'k 
r 

There, replacing the sum over k' by an integration, 
...a 

A.~ (D) 4Jt ~2 ~\A"' \ 2 4kf3 F (_!.,_ - __!,. ) k'2 dk.' 
~ • ---- -- ~xk'k 2 2 

x 2 ~.k D+k' ( 2K ) ;.~ m 3'K ..,., 
0 

1 
= 2K2 

4k 3 
f 

ao 2 

F r \A"k 'k 1 ' ~ J D+k 

in units of ~ -- = 1. m 

0 

Note that (~1J!k'k) for s-wave scattering is 

d.(k) s 

A IJ! _ 4 f sin k'r [' xk(r) 
~ k'k - ~ J~ k'r Nr 

0 

where the normalization N is e.ch that 

_ sin kr] r2 dr 

kr 

• sin dk. 
k at the separation distance d • 



x:<r) 
We have put Y (r) = above. s r 

d,lt) 
J. ( sin k'r [ xkNs(r) _ sikn kr] 

So ~~k'k a 4~ J. k' 
C) 

From (III-15), it will be at once seen that 

.::,~ 

~ ~ 
f (k' ,k) 
s 
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dr 

where f (k'k) is the off-shell element of the scattering amplitude 
s 

due to the short-range part of the potential alone. 

vanishes because the local phase of v is zero. s 
Beyond a 

certain value of k, when separation can no longer be made9 

1 2 2 A ~ ~ 1ii"" (k t -k ) .U.. '1' k 'k • f{k It k) 

We see here clearly how this quantity enters into many-body 

calculations, and how its value depends sensitively on the nature 

of the wave-function at short distances. From (,O), it will be 

seen that the contribution of the dispersion term to the binding 

energy is positive and that it increases very fast with increas= 

It is the term primarily responsible for pushing up the 

binding energy curve for larger values of kf and thus giving 

saturation. We have plotted the quantity[( A 'fk'k) k' } 2 
9 

(fig. V-2) which appears in the dispersion term, for the 
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potential (II-1) of Green which failed to give saturation and 

the standard-hard-core potential of Moszkowski which gave 

6 -1 8 -1 saturation. We choose the value kf • 1. fa , k = o. fm • 

It will be seen that the 'distortion' for Green's potential is 

very much smaller - which in turn gives a much smaller dispersion 

term. In the same figure, we also show[C.A 'lk'k) k'] 
2 

for the 

new potential that we shall propose in chapter V, and which is 

seen to be quite comparable to the standard-hard-core potential 

distortion. We shall come back to this point in greater detail 

in chapter v. 

The Pauli term: This is given b7 

A~(P) • (k I n! - 1) (Q-1) e ( .n.: -1) I k) 

• ('ls-~kl (Q-l) e f'le- ~k) 

2 
= ~' J&'fk'k' [Q(P,k')-1] e (k,k') 

in unite of "it • 1. 
II 

In this chapter, we use, for the operator Q, 

Q (P,k') = O, k 12 + ~ (kf2 

1 >} 
D+k 12 _ 



Q (P,k') = 1 

= 

p 
k'- - ) k 2 f 

kw 2 + :F2/4 - k/ 

k'P 
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otherwise 

P is replaced by its average value over the Fermi-sea, for two 

particles having a relative momentum k'. 

This is equal to 

= 0 

k'{k f 

It will be seen from (33b) that the contribution to the Pauli 

term comes primarily from inside the Fermi-sea. There is 

partial cancellation in the integrand, and moreover9 k 12 

dampens it appreciably. All this goes to make the Pauli correction 

very smallo For a potential which is strong at short-ranges, this 

is quite understandable physically. 

The Interference term: For this, 

~sing (12), 

This c~ again be put, after some manipulation, as 
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'«) 

1 ~ l 2 Atkk(I) = 2 (vk'k + vkk,) 
Q (; 

-ti2 
in units of • 11 m 

where 

,e s _ (k I v 11 t k • > 
ykk' ~ ' 

the superscript 4 denoting the long-range part of the potential, 

and the separation has been done for the wave number ~o In (;6), 

we have used the fact that (k I Y,e! t! I k) is identically zero1 

0 

and we have subtracted this from the original integral. This 

makes computation easier, since the contribution comes then from 

inside the Fermi-sea. 

It will be seen from (;6) that the contribution of the 

interference term to the binding energy is negative. It also 

increases with increasing kf. It partly cancels out the effect 

of the dispersion term. Its magnitude depends on how big the 

'distortion' iffk 'k is, and also how slowly the off-diagonal 

terms of the potential fall off. If this term is too big, 

saturation cannot be obtained. For Green's potential that we 

are considering, it will turn out that this term is actually 

as big as the dispersion term, cancelling its effect on the binding 

enerra. 



(v~'k + v~,) for velocity-dependent potential:-

Writing the full nucleon-nucleon potential as 

v(r,p) • v(l) (r) + (~ W(r) + W(r) -l_ ), where T(l)(r) denotes 
m m 

the static part, we shall find expressions for the off-diagonal 

matrix elements of the potential. We shall work in unite of 

~2 
- ·1 II • 

For the a•etate, put X<k,r) • e~nkr. Then, for the 

2 
velocity-dependent part, the integral (k' I ;- W (r) ( k) is 

o() 'l. 

- ~X (~', T) £;.._ ( hl (r) X (1:. ;f)) 41': d."'" 

a~ ~ ~ 

• -~lf r X l~;..-) .f:, ( ou(y) X. (r:;r)) I - r. x.'c~:.,) :/w(T) X. (K, 1)) 1 
L d(.K) ~<F> J 

• -41\ t w'(cl) X. ( ~;.', c1.) X. ( K, d.) t w(4) 0(t;,d) X' ( t- 1
, <i) 

- x.' (") d ) t ( 1:.', cl.) J 
o6 

- f ~ ) X{ I;', l) (a) ('r) X ( t ;r) <l'f J 
c:l.~) > 

• 4lf w'(J.) Xli:,cl.) X (t.',cl.) + 4-lf w(cl.) tx (t:.)-)'~ (K~J.) 
o<J - X ( 1: I d) X.' ( k ', A ) } 

+ 411 k.' 2- ( X ( 1<.>) w ('f) X ( 1:., T) ct ..... 
J(~) 



2 
The other integral (k'1 t.V(r) ~ \ k) is simplJ 

otJ 

• 4-TI (( 2. J X ( ">) w ('>')X (i. ,-r) J..-r 
tl (.K) 

The static par~ is simple -
ol) 
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<k:'l1r0
)(_-r)jK.> = 4fr f 'X (Jc;r) 11''<-rJ X (k:, ..... ) J-r 

<A (k.J t 
The complete expression for (k' I v(r,p) l k) is, 

< 1 t fol) 
k \ V' l 'Y") r) l k. > :::: Jt 1T X (I<~ r) '\Tlt) ( rr) 1. ( K) y) ~ "( 

().. 

+ 41f w'(J..) X lt.,d.) X(~<.',d.) +lflfw(<t){!:'(k,J..) X (~<;J)-

-X (K) .l.) x.' (lc ', tl)} +4lf (t<.\ 1<:'1-) s; (K.', r) w (-r) X(t) 'Y) d. y 

~ (37) 

It will be noted that the d in the above expression is alwa1s for 

the wave-number k. From (37), we can write· down the expr6ssion for 

( ~\ + IY~ .... ) = n Soax. ( ~;.',-o 1/''c•·) x. ( le1 -r) J.,.­
ct(~J 

+ ~ lT w' ( J..) X (K.,c!) ',X, ( k')J.) 
o'Jj 

+ 9Tf c~?'tk'l-) J. x.(~~,) w (1) x (K)'f) a."( 
Ol(k) 

Green's potential had 
2 2 

(1)( ) A -a r v r • - e 

2 2 
w (r) • r 2 e-b r 

<38> 
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06 -2 6 -1 where A = 1. 2 fm , a = o. 27 fm , 

.-ft2 
in units of - = 1. m 

It is quite easy to evaluate (;8) for such 

a potential. Taking the diagonal elements of (;8), we also get 

the first-order Born term v~ in (15). 

Second-Order Born term: This term is given by 

A~ ( V) • (k l v ,e ~ v ,e I k) where nov the subscript denotes the 

long-range part of the potential. Or, 

oQ 

J 
,e ,e 

(v k'k) (v kk') Q (P,k') 

e(k,k') 
(40) 

0 
where e(k,k') is given as before by (28). The contribution to 

this term comes from outside the Fermi-sea. It is quite small 

since the off-diagonal matrix-elements fall of rapidly with 

2 increasing k', and the k' in the denominator takes care of the 

2 k' in the numerator. 

Binding Energy: 

In order to· calculate the binding energy per particle, 

we multiply ~ by the probability of finding a pair of particles 

with a relative momentum k,fa~ integrate over the Fermi-sphere: 

Potential Energy • ~2 ~- (l- 3 ~ + l !3~) k2 dk 
Particle ~ -kk 2 kf 2 kf/ 9 

0 (~I) 
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It will be seen from the above expression that the relative 

weights for k = 0 and k = kf are zero. Actually the most 

important contribution to binding energy at a given kf comes 

from around k = 0.5kf. 

is given by 

kinetic eneru 
particle 

Numerical Results: 

The kinetic energy, in the Gas-model, 

(42) 

In figure (IV-1), we have plotted (.yt)kk' 

the first-order Born term in (15), for Green's potential (39), 

along with the (vl)kk for the S.H.C.P. It will be seen that 

they are almost identical, giving the same first-order contribution 

to the binding energy. This is so because the phase-shifts have 

been adjusted to be the same, and it is the long-range part of 

the potential that is giving the phase-shift. All the differences, 

then, arise from the second-order terms in (15), and primarily from 

the dispersion term. The aame fact has been noted by Moszkowski 

(Mo-63) in a recent paper. We also show, in figure (IV-2), the 

variation of the separation distance d(k) with k. It is very 

similar to the hard-core case. The separation distance d(k) 

can be given the interpretation of the 'healing distance', in 

the sense of Gomes et. al. (GWW58). In Table(t) we show the 
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contribution of the first-order and the various second order 

terms to the binding energy of nuclear-matter. It will be 

seen that the total second-order contribution is very small 

compared to the first-order term, showing goo~ convergence 

of the method. Why the dispersion term is so much smaller 

with-this potential can be seen by looking at figure (V-2), 

Avk'k 2 -1 
where we have plotted (k'' 4• ) against k' for k • o.8fm • 

Our task in chapter V will be to get 

a velocity-dependent potential which gives a distortion 

comparable to the hard-core case. In figure{lY-"5), w.e have 

plotted the various second-order contributions to the binding 

energy. Finally, in figure (IV-4 ) we compare our final 

binding energy curve with that of Green's, who calculated 

it by using perturbation theory (G62II). We also give the 

curve due to Scott and Moszkowski (SM62) for their S.H.c.P. 

obtained by the same method we have used. It will be see 

that our result agrees well with Green's resul\ although it 

would seem that Green overestimated the binding energy 

6 -1 per particle by about 1 MeV at kf • 1. fm • This is not 

surprising, since Green was using perturbation theory upto 

the second-order. In this chapter, then, we have found 
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out why the results of Green are so different froa the standard­

hard-core case, in addition to checking the earlier results of 

Greeno 

Before concluding this chapter, we note that the separation 

method in this form can not be applied when attraction and 

repulsion in the two-nacleon potential are not localized. In 

the Peischl-Werner potential (PW63), the static and the velocity­

dependent parts of the potential are of the same range and this 

method can not be applied. Also, the separation method is 

much less reliable in the presence of non-central forces 

(BM62, SM61). This is because it is much harder to get self­

consistency in the one-body potential due to larger second-order 

corrections. 
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BINDING ENEmY PER PARTICLE WITH GREEN'S VELOCITY-DEPENDENT POTENTIAL 

(All 1UIIIIarked figures in MeV.) 

TABLE II 

First First Diaper- Pauli Second Inter- Total 
K.E./A Order Order sion Order terence Second 

P E./A B_E./A Term 
Term Born Term Order 

12.44 -18.46 -6.02 o.n 0.005 -1.,0 -0.29 -1.48 

17.91 -27.81 -9.90 0.31 0.02 -1.01 -0.65. -1.33 

24.38 -38.00 -13.62 0.72 o.C9 -0.75 -1.19 -1.13 

31.85 -48.33 -16.48 1.49 O.Z? -o.62 -1.88 -0.74 

Toti.l 
BindiJJg 
Energy/A 

-7.50 

-11.23 

-14.75 

-17.22 



CHAPTER V 

A MODIFIED VELOCITY-DEPENDENT POTENTIAL 

In the last chapter, we noted that the 'distortion' 

~?k'k' defined in equation (IV-;1): 

~) [ 
A ,,_ f sin k'r ~: ~r) 
.t.l?k'k = ..,.. J . k' " 

0 
was too small for Green's a-state potential. This resulted in 

too small a dispersion term, and hence no saturation in the 

binding-energy curve. It is also true that all the binding 

came from the long-range part of the potential. The short-

range part should be responsible for pushing the binding-energy 

curve up for increasing kf and giving saturation, if the 

distortion is large. We also notice, from equation (IV-,S), 

that the velocity-dependent potential contributes an attractive 

term to v~ which is directly proportional to the strength p 2 ~ 

This contribution can be quite large if the velocity-dependent 

potential is strong. 

Our objective in this chapter is to get a velocity-

dep~ndent potential which gives a large distortion, in the 

wavefunction. This distortion depends, for given k and k', on 

[
xsk(Y) ~wk1" ] 

two factors: on the magnitude of the 'wound' N - k 

in the wave-function, and on the location of this in r-space~ 
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X~(r) 
If the wave-function ~ differs from the unperturbed wave 

sin kr 1 k on y mostly near the origin (for very small values of r), 

then the factor si:,k'r will damp the integrand to a small value, 

giving a small distortion ll~k'k• It is clear that with a velocity­

dependent potential which is finite everywhere, the actual magnitude 

of [ XN'k (r) - si: kr] can never be as large as for the hard-core 

potential. We notice, however, that for the hard-core potential, 

this quantity is maximum near the origin, upto the radius of the 

hard-core, and then dies off fast. One way of getting comparable 

values of ( ~Vk'k) for a velocity-dependent potential, then, is to 

[ x~<r) sin kr] sin k'r 
shift the 'wound' N - k outward. Then k' 

would not damp out the integrand as much, and the distortion may be 

as large as for the hard-core case. This can be done by having the 

peak of the velocity-dependent potential U){r) at some suitable value 

of r, and not at the origin. This peak can not be pushed out too 

much, because of the following reasons:-

(i) The separation distance 'd' should remain around the value 

-1 of 1 fm for k = 0.7 fm • This is so because 'd' can be 

given the interpretation of the healing distance, and this 

should be much smaller than the average spacing between 

the nucleons inside the nucleus, which is about 1.7 fm. 

(ii) We have to fit the s-wave phase-shift data with such a 

potential, and this is not possible if we push U>(r) too far out. 

(iii) Also, we must arrange matters such that the interference term 

(IV-36) remains small. This would mean that (A'lk'k) should 

be small within the fermi-sphere for k'(kf and then get as 

big as possible beyond kf, to give a large dispersion term. 
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It was seen that {~Yk'k) gets too big for k'(kf if one pushes 

the peak of W {r) too far out. or course, AVk'k would become 

very small for large values of k', when more than half of a 

cycle of sin k'r can come within d. 

These considerations made us take a form for~{r) of the 
2 2 

{ ) · 2 -b {r-o( ) 
following type: Gr) r = r e • with its peak at 

r The actual value of o( taken was 0.36 fm. In 

[x={r) 
to make 4 Yk 'k large, we should also try to make N -

=o( 0 

as large as possible. This can be done by increasing the strength 

~ 2 of the velocity-dependent potential. Doing this, however, 

means introducing a lot of attraction in the long-range part too, as 

we have already noted. The static attractive potential at·the 

short ranges only counteracts the effects of the repulsive part of 

the potential. With the form of lU{r) that we have chosen now, 

there is first attraction from it for very small values of r, 

followed by strong repulsion, and then there is attraction again. 

We realized that we could dispense with the static attractive part 

completely at short-ranges, keeping.only the velocity-dependent 

part at this range. Since it is known from field theory and 

phase-shift fits that there is a Yukawa-type tail for the long-

range part, we keep a static Yukawa potential of inverse range 

t· = 
-1 .7082 fm beyond 1.4 fm. The a-state potential that we 

choosei then, is of the following form -

where V1(r) = 0 for r( 1.4 fm 
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e-.7082r vi l-r} =-Q.35 0 7082 r for r) 1.4 fm (1) 

U> (r) = 2.95 exp. (-5.2 (r-.36)2 ) in units of 
~ 
-=1 m • 

We kept the distance r = 1.4 fm beyond which V1(r) is nonzero 

fixed, and had actually four variable parameters when choosing 

the above values. These were the strength, range, and the 

position of the peak of ~(r), and the strength of the static 

Yukawa part. This potential gave the same two-body low energy 

scattering data as the s.H.c.P. of Moszkowski and Scott-scatter-

ing length of infinity and effective range = 2.5 fm, and approxi­

mately the same phase-shifts in the range 80 MeV to 230 MeV, 

as can be seen in fig. (V-1). Actually, one Should not vary 

the strength of the Yukawa tail, but take its value from field-

theory while construcing an actual potential in any-state. The 

hypothetical low-energy parameters. We are of the opinion 

that the actual singlet-even scattering data can be fitted 

approximately by varying only the three parameters of (,.) (r). 

With this potential (1), we repeated the nuclear-matter 

calculation of chapter IV. We have plotted, in figure (V-2), 
A'l'k'k 2 

(k' 4n ) against k' for this new potential and we have given 

the corresponding graphs for Green's s-state potential and the 

It will be seen that now this quantity is quite 

comparable to the hard-core case, although it falls off faster. 

Thus, we have succeeded in making the distortion larger 

by pushing out the peak of ~ ( r) and increasing its strength at 
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the same timeo 

We want to compare our results with those of Scott and 

Moskowski who used the same equation (IV-15) for evaluating the 

N nuclear reaction matrix t • This is what they call the new 

separation method. They use the approximation P = 0 in the 

Pauli operator and in the energy denominators. This makes 

the Pauli operator Q(k,P) a simple step-funct~on in k-space: 

Q(k9 P) = 0 for k(kf 

(2) 
= 1 for k)kf 

instead of equations (IV-34). The form of the propagator can 

again be written as in equation (IV-28) 9 with F given by (IV-2?) 9 

4 2 
and D = d + .5kf • The net effect of making this approximation 

is to bring about saturation at a slightly lower value of kfo 

This is because Q(k,P) is now a step-function, and this cuts 

off the interference term slightly. 

In table III, we show the first-order and various 

second-order contributions to the binding-energy of nuclear 

6 -1 matter, upto kf = 1. 0 fm • It will be seen that the 

total second-order contribution to the potential energy at 

6 ~1 
kf = 1. fm is about 3.5 MeV, compared to the first order 

contribution of about -45 MeV at the same density. The 

convergence of the method, on this basis, seems to be as good 

as the hard-core case. In figure (V~3), we show the variation 

of the separation distance against k; it has the reasonable 



value. of N lo2 fm over most of the range. In table IV, we compare 

the various second order contributions&~ to the diagonal elements 

These 

-1 figures are given for k = 0.2, 0 0 8 and kf = 1.0 and 1.4 fm • All 

unmarked figures are in MeV-fm3. The main differences are the 

following:-

(!) The dispersion term is still smaller, by about 2~, roughtly. 

This is because the distortion falls off faster with 

increasing k' than the hard-core case. 

(2) The second-order Born term is appreciably bigger. The 

contribution to the binding energy per particle, for kf = 1.0, 

due to this term for the hard-core potential is -1.3 MeV/A, 

while for the velocity-dependent potential is -2.4 MeV/A. 

This fact, that a potential without a hard-core gave larger 

second-order Born term, was also noted by Moszkowski and 

Scott in their first paper (MS61). The reason for this 

is that the off-diagonal matrix-elements of the long-range 

,e 
potential, vk'k die off less fast with increasing k' when 

there is no hard-core. We can see this in figure (V-4) 9 

where we have plotted <vik'k + v~,) against k' fork= o.B fm-
1 

for the two potentials. This is also the reason why AtKI' (I) 

is bigger for the velocity-dependent potential. The net 

result of this is that whereas Scott and Moszkoweki get 

saturation at kf = 1.40 fm-1, we get this for a larger 

4 -1 value of kf' at about kf = lo 7 fm • Their equilibrium 
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binding energy is -10 0 4 MeV/particle 9 while ours is slightly less, 

-9.9 MeV/particle. We think that if one does not make the 

approximation P = 09 the equilibrium kf will be pushed out to a 

-1 larger value, possibly around 1.60 fm • 

We conclude from the results of this chapter that a 

velocity-dependent nucleon-nucleon potential can give sub-

stantially the same results in nuclear matter as a hard-core 

potential, provided one pays enough attention to the behaviour 

of the two-body wave-function at short-ranges while constructing 

the potential. Green's a-state potential failed because only 

the phase-shifts and the low-energy data were fitted with it, 

but the distortion was so much smaller than the hard-core 

potential. Two potentials should give substantially the same 

results in nuclear matter, if they have the same on-shell 
~~ 

matrix-elements of the scattering amplitude, f(k,k) upto about 

-1 k = 1.5 fm , as well as approximately the same off-shell 
+ ~ 

elements f (k',k) (i.e., the same distortion), upto about 

4 ~1 
k' = fm • However, in order to make any reliable 

calculation in the binding energy, one has still to calculate 

the reaction-matrix, or at least to use a modified perturbation 

theory upto the second-order. 



BINDIN3 ENERGY/A FOR (POTENTIAL V-1) 

ALL ENERGIES IN MEV. 

TABLE In 

kf First Order K.E./A Pauli Dispersion Interference Second Order Total 
P.E./A Born B.E./A 

1.0 -16.40 12.44 +.02 .70 -.51 -2.40 -6.15 
1.2 -25.14 17.91 +.Cfl 1.91 -1.27 -2.09 -8.61 

1.4 -34.76 24.38 +.21 4.36 -2.60 -1.40 -9.81 

1.5 -39.76 27.99 +.34 6.26 -3.51 -1.19 -9.87 
1.6 -44.86 31.8.5 +.57 8.69 -4.59 -1.13 -9.47 



COMPARISON OF VARIOUS SECOND-ORDER TERMS OF THE NUCLEAR REACTION-MATRIX FOR THE NE'w VELOCITY-DEPENDENT 

POTENTIAL (V-1) AND S'.H.C.P. ALL UNMARKED UNITS IN MEV-FM3. CENTRE-OF-MASS MOMENTUM P • O. 

THE FIGURES FOR S.H.C.P. ARE TAKEN FROM (SM 62) Nuclear Physics ~' (1962) 665. 

TABLE IV 

b(V) irlt(P) ~(D) ~(I) 
Total second 

order 
k kf 

(fm-1) (fm-1) Potential SHCP Potn. SHCP Potn. SHCP Potn. SHCP Potn. SHCP 
V-1 V-1 V-1 V-1 V-1 

1.0 -98.8 -71.3 1.17 0.4 28.9 40.7 -22.2 -20.1 -90.9 -50.3 
0.2 

; 

·-

1.4 -28.3 -16.6 5.54 3.0 68.4 91.3 -46.3 -38.2 -.66 39.5 

1.0 -93.0 -74.7 0.34 -0.1 26.0 32.8 -17.2 -14.3 -83.8 -56.3 

o.8 

1.4 -19.2 -13.9 2.86 1.3 62.3 75.0 -36.9 -28.5 9.06 33.9 
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Fig. II-1 

Fig. III-1 

Fig. III-2 

Fig. III-3 

Fig. IV-1 

Fig. IV-2 

Fig. IV-3 

Fig. IV-4 

Fig. V-1 

Fig. V-2 

Fig. V-3 

Fig. V-4 

Fig. V-5 
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·FIGURE CAPTIONS 

Phase-shift characteristics for Green's potential II-1 
and s.H.C.P. for a-wave. 

Phase-shift characteristics for a pure hard-core of 
radius 0.4 fm and the velocity-dependent potential 
(III-14). 

Phase-shift characteristics of the Gomes-Walecka­
Weisskopf type hard-core potential and the velocity­
dependent potential (III-27). 

Off-shell elements of the scattering amplitude, 
f(k',k) against k' for Gomes-Walecka-Weisskopf type 
potential and velocity-dependent potential III-27. 

Plot of (yl)kk the first order Born term against k, 

for Green's potential II-19 (or IV-39) and S.H.c.P. 

Variation of separation distance d with k for Green's 
potential II-1. 

Various second-order contributions to the binding 
energy/A in separation-method calculation for Green's 
potential II-1. 

Total binding energy/A for Green's potential (II-1) 
by separation method, modified perturbation method and 
the corresponding curve for s.H.c.P. 

Phase-shift characteristics of the new potential (V-1) 
and s.H.C.P. 

AY~t•k 2 
Plot of (k' 4K ) against k' for Green's potential 

(II-i), s.H.C.P. and the new potential (V-1). 

Variation of separation distance d against k for new 
potential (V-1). 

Plot of <{,k + ~') against k' for k • 0.8 fm-1 

for new potential (V-1) and s.H.c.P. 

Total binding energy/A against kf for new potential (V-1), 
and s.H.c.P., calculated by new separation method 
assuming P = o. 
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ON THE VELOCITY-DEPENDENT NUCLEON-NUCLEON 
POTENTIAL OF GREEN 

M.A. PRESTON, P. J. ARMSTRONG and R. K. BHADURI 
Physics Department, McMaster University, Hamilton, Canada 

Received 27 August 1962 

'he object of the present note is to investigate, 
)me detail, the following nucleon-nucleon ve­
:y-dependent potential, suggested by Green 1). 
potential is of the form 

V(r) + i!_ w(r) + w(r) P
2 

, 
mo mo 

re V(r) consists of the central, tensor and spin­
t potentials, pis the relative momentum, r the 
tive c:oordinate, and m0 the nucleon mass. 
m suggested the following form for the radial 
nden ce of V( r): 

= - A. exp [- (0.6772 a!Jr)2] 

- B e~;- !Jr) [1 - exp (- ~r)] ' 

·e 1J '= 0. 7082 fm -1. The subtraction in the 
Lwa part is done to eliminate the singularity 
= 0, which makes computation simpler. For 
·elocity-dependent part 

w(r) = C exp [- (0.6772 C!Jr)2] 

n adjusted the above parameters to fit the low­
gy data, i.e., scattering length, effective range 
tuadJrupole moment, and also to fit the lower 
al wave phases with the Breit 2) phase-para­
rs at 300 MeV laboratory energy. Green cal­
ed the singlet nuclear phase-shifts fairly com­
ly, :l.e., for l = 0, 1, 2, 4; but for the triplet 
, he gives all the nuclear-bar phase-parameters 
[or .J = 1; and some (though not all) phase­
netEirS up to J = 3. The potential of Green that 
1dertook for more complete investigation is 
,llowing: 
~let-even: A= 1.185 fm-2, a= 1.645, B = 
fm··2, 0! = 6, C = 1.14, c = 3, the scattering 

1 as=- 23.9 fm, and effective rangers= 
'm with this potential. 
7glet-odd: A= 0, B =- 0.798 fm-2, 0! = 0.3, 
.3, c = 2. 
·iplet-even: B = 0 throughout for central and 
r. No(L·S)force. Central:A=2.6fm-2, 
3. Tensor: A= 0.985 fm-2, a= 1.15. Veloc-
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ity-dependent: C = 0.70, c = 3. The scattering 
length: aT= 5.6 fm. Effective range: rT = 1.74 fm. 
Quadrupole moment: Q = 0.287 ef2. 

Triplet-odd: Central: A = 0, B = - 0.089 fm-2, 
0! = 6, C = 0. Tensor: A = 0, B =- 0.35 fm-2, 0! = 6. 
Spin-orbit:A = 2.0fm-2, a= 2, B = 0. 

We have calculated all the nuclear-bar phase­
parameters up to J = 5, solving the coupled SchrB­
dinger equations numerically, at laboratory ener­
gies of 90 MeV, 156 MeV and 310 MeV. Also, all 
the singlet phase-shifts up to l = 5 have been calcu­
lated at the same energies. Finally, as an applica­
tion and a test of this potential to a nuclear prob­
lem where all the phase-parameters (including the 
higher partial waves) are needed, we have calcu­
lated the integrated optical potential (the central as 
well as the spin-orbit part) at the above energies, 
using the formalism of Kerman et al. 3). 

In the graphs, the phase-parameters of Green; 
Gammel and Thaler 4) and Hamada and Johnston 5) 
are compared with Breit's values (YLAM or 
YLAN 3). Breit's values are normalised to one in 
the graphs. It will be seen that the singlet phase­
shifts and the triplet-even phase-parameters of 
Green are in reasonable 34rreement with Breit's 
values. But the triplet-odd potential of Green is 
definitely worse than the hard-core potentials. 
Since Green suggested the above potentials only by 
fitting the low-energy data and the phases at 300 
MeV, but not by making a systematic search of all 
the parameters for the best fit, it is certain that 
one can improve upon this potential. 

H one writes the optical potential in the following 
form: 

1 d 
V(r) = V c(r) + r dr Vs0 (r) I· s , 

then the integrated optical potentials are defined 
by Kerman et al. 3) as 

U =- ~ J Vc(r) dr, Wso = i ~ J Vs0 (r) dr, 

where the integration is over the volume of the nu­
cleus, and N is the number of nucleons in the nu­
cleus. These integrated potentials can be expressed 
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in terms of the forward scattering amplitudes, 
using impulse and multiple-scattering 3) approxi­
mations. These, in turn, are related to the phases 
o·Jtained. This calculation, then, deals with 
matrix-elements on the energy-shell and will not 
d"lfferentiate between potentials whose off-shell 
n: atrix-elements are different. However, the cal­
culation of integrated optical potentials involves all 
the phases obtained from he potential, including the 
higher partial waves. One can, therefore, find out 
how sensitive the integrated optical potential is to 
these phase-parameters. 

Table 1 
values of U and lrs 0 

(N ~ ,, ; neutron number = proton number) . 

E 310 MeV 156 MeV 90 MeV 

,J (MeV fm3) 60.6+i211 I 194+i222 264+i246 
(76 .3+i212 (221+i187) (289+i217) 

59+i203 (Stapp) 

II'(MeV fm5) 47-i7 63-i16.5 78-i28 
25-i6 (Stapp) 50-i13 58-i20 

The figures calculated from G-T potentials by 
Kerman et al. are shown in brackets. At 310 MeV, 
th,?y actually used phase-shifts of Stapp's solution 
(11, and used fewer phases than we do, cutting off 
at J = 4. 

The "experimental" values, quoted by Kerman 
et al. (an average over a series of nuclei) for U are 
given in table 2. 

Table 2 

E 

U (MeV fm3) 

We also calculated U and Wso for c12, and com­
pa:·ed these values with some recent experimental 
va:ues given by Batty 8) for c12 (see table 3). 
Batty's figures are given in brackets. The values 
for Im H'so by Batty are rather uncertain, but the 
sign agrees with ours. The agreement with exper­
im2ntal values is not bad, when one considers all 
the approximations involved 6). The calculated 
spin-orbit part of the integrated potential is seen 
to be higher than experimental values. 

Kerman et al., while calculating the scattering 

Table 3 

E 310 MeV 156 MeV 90 MeV 

U (MeV fm3) 55+il93 178+i203 242+i225 
(64±9 (107±7 (225±9 
+il83±2) +i132.5±2.5) +i150±4) 

lVso (MeV fm5) 48-i7 64-il6 .6 77-i28 

Re H'so (33+2.5) 
-5 

(61±5.5) (54±4) 

amplitudes from the phase-shifts using the formu­
lae of Stapp et al. 7), have cut off at J = 4 (includ­
ing J = 5 partially) even at 310 MeV. In our calcu­
lations of the scattering amplitude, the contribu­
tions to the real part of the scattering amplitude at 
310 MeV from J = 5 to J = 7 and from l = 6, were 
as large as 20%. (These phases were calculated 
using Born approximation.) Leaving them out will 
alter the results appreciably. In the triplet-even 
case, the tensor force in Green's potential has a 
much longer range than the central or velocity­
dependent part, and is the only one which contri­
butes appreciably to the phase-shifts of the higher 
partial waves. The same situation exists for the 
triplet even case of the G-T potential (the inverse 
range !JT= 1.045 fm-1, whereas J.Lc = 2.09 fm-1). 
One would, therefore, expect that the tensor force 
would again give an appreciable contribution to the 
higher partial wave phase-shifts, just as in Green', 
potential. One should not, therefore, cut off at 
J = 3 at 310 MeV for triplet-even, but should at 
least go up to J = 5. Hence the figures for U and 
Wso at 310 MeV given by Kerman et al. are not 
reliable and should not be compared with experi­
ments. 
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B 

B 60, 61 

B 61 

Ba 62 

BB 52 

BBP 63 

BGK 6 60 

BM 62 

DaP 63 

FS 59 

G 58 
or 

GWW 58 

G 61 

G 62I 

G 62!1 

GL 51 

GT 57 
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