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APSTRACT: 

To provide a logical framework for the comparison of various 

methods of kinematic flood routing a general method of kinematic 

flood routing is developed. After presenting the general framework, 

the properties of the numerical model are investigated by: 

l. 	 Algebraic examination of the finite difference scheme. 

2. 	 Numerical experiments using a high speed digital computer. 

3. 	 Comp3.ris on of the kinematic flood routing results with 

results of simulations using the complete one dimensional 

dynamic representation. 

Particular facets of the numerical kinematic model that were 

studied included: 

1. 	 The stability of the numeric3.1 schematizations. 

?.. 	 The degree of approximation with the finite difference 

system. 



3. 	 The applicability of kinematic methods to unsteady flow 

systems. 

4. 	 Methods of extending the kinematic solutions to predict 

attenuation as well as translation of the flood wave through 

the channel systems. 

The results indicate that kinematic flood routing methods 

differ primarily in the point about which the finite difference equa

tion is formulated, hereafter termed the nucleus, and that the general 

framework is capable of emulating such methods as the Muskinghum 

Method, other non-linear kinematic methods and reservoir routing. 

By varying the location of the nucleus the stability and degree of 

approximation is significantly altered. This results in the outflow 

hydrograph being sensitive to the location of the nucleus and the 

size of the finite difference steps. 

T I!) facilitate further research and application of the methods 

outlined in the thesis, a computer program was developed to enable 

kinematic flood routing to be performed in a natural channel with 

arbitrary geometry. Furthermore, the data is compatible with a 

program that is capable of performing a flood routing analysis using 

a numerical solution of the complete Saint- Venant equations. Doc

umentation of the computer program for kinematic analysis is included 

with this thesis. 
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CHAPTER 1 

INTRODUCTION 

Flood routing is the process of calculating the deformation 

and position o£ a flood wave as it passes through a body of water 

with a free surface. Fluctuations in the level of this surface pro

vide temporary changes in storage which in turn give rise to some 

reduction in the flood peak. In the recent past there has been a con

siderable amount of effort directed towards the developn1ent of efficient 

methods uf performing these types of calculations. The rnain reason 

fo1· the interest in this particular type of unsteady flow phenomena 

may be the multitude of ways that this nal·ural and sometin:es man 

made occurrence affects the life patterns of humanity. 

The primary usage of flood routing techniques is frequently 

associated with catastrophic floods, the objective being to estimate 

the magnitude and/ or depth of the flows that may be expected at 

particular locations. The utilization of flood routing calculations for 

flood warning p•_nposes is however just one of a number of functions 

that these mathematical tools can perforrn. For example, the analy

sis of unsteady flow in river systems may be a vital part of the day 

to day operation of a hydro-electric scheme on a multi-purpose water

way. The usc of these algorithms as an operational tool n1ay also aid 
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in the efficient manipulation of flow control structures so that water 

is available for power generation, shipping and recreatio"lal purposes, 

without causing undue fluctuations in water levels or cau?ing sudden 

surges in the channels. 

The use of flood routing techniques as a planning and design 

tool must not be overlooked. Flood routing techniques are beneficial 

in analyzing a river system which is being developed or modified 

and thus ensure that adverse side effects and environmental impact 

are IT'inimized. Alternatively, the analysis of an existing watershed 

may be useful in the development of land zoning bylaws to prevent the 

construction of expensive structures in areas subject to flooding. 

Currently there is increasing interest in the establishment 

of such flood plain maps in semi-urban areas. In such locations the 

incidence of highway culverts and bridges result in the formation of 

a chain of "reservoirs" along short, relatively steep watercourses 

and it is essential to have an economic and reliable tool for the analy

sis of such systems. 

Just as there are a large number and diverse types of prob

lems that are tackled by flood routing algorithms, there are numerous 

approaches to performing the actual computation. Two general classi

fications may be used to identify flood routing techniques. These are: 
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1. 	 Hydraulic techniques. The methods that fall into this 

classification are usually founded on the two laws that 

govern unsteady flow; conservation of mass and conser

vation of energy or momentum. 

2. 	 Hydrologic techniques. These algorithms frequently do 

not employ the rigorous equations describing unsteady flow, 

but instead attempt to model the system by the use of equa

tions that yield results similar to the observed phenomena. 

The correct classification of a particular approach to flood 

routing may be very dependent on the system being simulated. For 

example, if a flood routing method is formulated from the partial 

differential equations which describe unsteady flow, b:1t with several 

of the time variant terms ignored, the approach could be classified 

as hydraulic if the exclusion of the terms is justifiable. However, if 

a system were encountered where it was not realistic to neglect some 

terms, the algorithm would fall into the hydrologic classification. 

Kinematic flood routing methods are a particular exam.ple of techniques 

which may be classified as either hydraulic or hydrologic. 

Kinematic flood routing is a generic term which identifies a 

broad class of numerical methods used to route flood waves through 

a channel or waterway. Flood waves which behaved in a kinematic 

fashion were observed on the Mississippi River by Seddon ( 1900). 
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Th~ term kinematic was applied to the particular phenomena by 

Lighthill and Whitham ( 19 55) for the reason that the equations are 

described in terms of velocities rather than forces. 

Prior to Lighthill and Whitham's presentation, storage

routing methods, which are special cases of kinematic routing, were 

employed by engineers and researchers. This was necessitated by 

the prohibitively large computational load imposed by a solution of 

the equations which describe the conservation of energy and mass. 

Even the simplified approaches were oftimes fraught with problems 

associated with excessive amounts of calculations. This led to the 

use of large time and distance steps in the numerical methods which 

in turn created stability problems in the numerical calculations. 

With the advent of the high speed digital computer, it be

came feasible to tackle unsteady flow problems using a hydraulic 

approach. At the same time, attention was directed towards pro

gramming kinematic algorithms so that solutions could be obtained 

using the computer. This has resulted in a variety of techniques for 

approaching the problems. Because the hydraulic methods of analysis 

are usually founded on the momentum and continuity equations, these 

methods have a relatively unified basis on which they may be compared. 

It seems that kinematic flood routing algorithms are not as 

clearly set in a logical framework foJ.· comparison, even though they 
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are all founded on the continuity equation. Thus, the primary pur

pose of this thesis is to develop 3.. general framework that may be 

used to compare the various kinematic algorithms. 

The usefulness of a numerical technique depends not only 

on how well it models the physical phenomena; but also on the famili

arity of the user with the characteristics of the algorithm. This aids 

the user by providing information that will allow the user to identify 

the limitations of the model and particular properties of the model 

that may be used to an advantage. In addition, a thorough understand

ing of the computational tool being employed is necessary to differ

entiate between physical phenomena that are predicted and numerical 

phenomena, the result of instability, numerical error or poor conver

gence characteristics, which do not truthfully represent the actual 

physical system. Thus a second objective of this thesis, after devel

oping the general framework, is to investigate the numerical charac

teristics of the algorithm. 

To provide a verification of the theoretical studies of the 

general kinematic flood routing method, a series of numerical experi

ments are presented for purposes of demonstration and comparison. 

These computer simulations are also utilized to demonstrate the accur

acy of kinematic simulations when representing dynamic physical systems. 

These numerical experiments provide a comparison to determine the 
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limits of kinematic algorithms and this, i.nves·tigation of the practical 

limitations of the kinematic metho::is is another of the thesis objec

tives. An explicit finite difference representation of the momentum 

and continuity equation is utilized to provide a data base for compari

son purposes. 

The application of a kinematic method to a particular prob

lem may require the use o£ specific types of kinematic flood routing, 

for example, lag and route, :rv~uskinghum flood routing, or reservoir 

routing. After studying the general method, several chapters are 

devoted to studying non-linear cases of these problems and a com

parison of the results with dynamic simulations. The primary 

objective 1s to determine not only the useful ness of the various 

methods; but also to identify the effect of varying the step size m 

finite difference analyses and the effects of non-linearity. 

The fii1al objective of the study is to provide an efficient 

and versatile computer program that will enable a user to pe:;:form 

the various kinen~atic floo::i routing computatio!ls. This has been 

accomplished and a chapter is devoted to describing the develo?ment 

and use of the computer program. Designed to be used in a time

shared mode, the program is compatible "vith the Civil Er1gineering 

Program Library to allow cas y access to the completed program. 



CHAPTER 2 


THE DYNAMIC SOLUTION 


To provide a precise data base against which alternative flood 

routing methods may be compared it is necessary to have a means 

of generating the time history of flows resulting from inflow of a 

specified hydrograph to a known channel system. The :.1se of natural 

channel systems to provide a data base can be immediately ruled out 

due to the complexity of both system and input, the inability of con

trolling flow parameters and the expense of monitoring flows at 

downstream sections A laboratory facility of sufficient scope and 

flexibility was not available and it was therefore decided to substi

tute a numerical model capable of generating the required data base 

with reasonable accuracy for systems of simple geometry. 

The mathematical analysis of unsteady flow phenomena is 

founded upon the partial differential equations based on the laws of 

conservation of mass and linear momentum. Methods of solving 

these eq,1ations to yield values of flow depth and quantity at any de

sired point in space and tim0 are numerical in nature (as opposed to 

analytical} and consist of the solution of finite difference formulations 

7 
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of the partial differential equations. This chapter is concerned with 

the discussion of the method adopted in this study to obtain such a 

solution. 

A brief description of the literature and alternate schemes for 

analyzing unsteady flow is provided prior to presenting the method 

used in this study. Following the description of the finite difference 

formulation, the sensitivity tests used to verify the numerical model 

are outlined. The conclusions summarize the findings that the al

gorithm was capable of providing the data necessary for comparing 

alternative methods of flood routing. 

2.1 THE 	EQUATIONS 

The equations describing unsteady flow may be written as fol

lows: 

The Momentum Equation: 

bh 	 Sf = 0 ( 2.1)+ !..(L) + _!_~ + 
bx bx 2gA2 gAbt 

The Continuity Equation: 

bQ 1: b h+ w- = q 	 (2.2)ox 	 bt 

Where: 	 X = distance 


t = time 
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h = water surface elevation 

Q = flow rate 

A = area of cress section 

g = acceler~t~on of gravity 

Tw = surface width 

q = rate of lo.teral inflow 

Sf = slope of the frict•.on line 

The derivation of thes~ equati•)ns, often called De Saint Venant's 

equations, may be found in numerous books. Several of these are 

Stoker (1957), Chow (1959), and Henderson (1965). The first two 

terms in equation 2.1 des~riue effects caused by nonuniform flow. 

Results of unsteady conditions are reflected in the third term whi.ch 

n{:'scribes temporal accelerc.·.ti0·:1. T~·P. effect of friction is modelled 

by the slope of the friction line, 'I'erms in the continuity equation 

(~quation 2. 2) describe the chapge in flow rate along the channel, 

the rate of change of storage, and the amount of lateral inflow. 

Because no analytic solution has been found for the partial 

differential equations which describe unsteady flow conditions, fi

nite difference techniques must be used. Previous to the advent of 

the high speed digital computer it was not practically feasible to 

obtain solutions of these equations. In special cases, the meth'od 

of characteristics was employed. However, the amount of calcu

http:frict�.on
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lations required for this relatively rapid method of solution limited 

its use. With the increased availability of high speed digital compu

ters, it has become possible to solve the partial differential equa

tions using numerical techniques. Still, the use of these methods 

may be rather difficult and expensive due to problems of stability 

with some formulations and the expense involved in programming 

and operating the computer. 

Numerical solutions of De Saint Venant's equations do have 

several advantages. These equations provide an accurate descri.p

tion of the one dimensional flow system and enable the user to ob

tain very detailed information abo"clt the wave shape and its position 

during the time in which the wave is being propagated along the 

channel. It is beyond the scope of this chapter to provide an ex

haustive comparison of all the various techniques used to solve the 

equations which describe unsteady flow. However, a short section 

giving a general description of several techniques follows. 

2. 2 DISCUSSION OF NUMERICAL METHODS 

There exist two general methods of obtaining solutions to 

the partial differential equations. These are direct methods and 

characteristics methods. The partial differential equations describ

ing unsteady flow may be rearranged in the form of four ordinary 
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differential equations. Two of these equations define characteristic 

lines, paths of energy transfer, while the two other equations define 

energy change along the characteristic lines. Applying finite differ

ence techniques to these equations is termed the characteristics 

method. Alternate! y, finite difference formulations of the partial 

differential equations may be used to provide solutions. This is 

known as the direct method. 

The finite difference techniques used to solve either charac

teristics or direct methods may in turn be classified as explicit or 

implicit. An explicit method provides for a specific solution for an 

unknown quantity while an implicit technique requires the solution 

of several similtaneous equations to provide the values of a number 

of quantities. In both methods, the object is to obtain .Values of flow 

rate (or velocity) and water surface elevation (or water depth) at 

discrete points on a space-time diagram. Figure 2. l shows a space

time diagram with a staggered rectangular grid. The solution pro

gresses from the known initial conditions thro·.1gh successive incre

11 t 11ments in time. Thus, conditions along the c:!'lannel at time are 

used in conjunction with the boundary conditions to find the solution 

at time 11 t + .6.t 11 
• 

The type of boundary conditions encountered depends on the 

physical system being simulated. If flow is subcritical there is a 
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boundary condition at the upstream and downstream limits. Ty-pi

cally, the upstream boundary would be an inflow hydrograph while the 

downstream condition would be water surface elevation as a function 

of time and/ or flow rate. When supercriti.cal flow is encountered 

the boundary conditions are found only at the upstream limit, 

The type of grid used on the space-time diagram is related to 

the type of solutions used. A characteristics solution, which results 

from applying finite difference methods to characteristic equations 

may be used with an irregular grid defined by intersections of char

acteristic lines or may be applied to a rectangular grid. The direct 

methods are usually used with a regular rectangular grid; the stag

gered rectangular grid being used primarily with explicit formulations 

of the direct method. 

The attributes and drawbacks of various methods are briefly 

outlined in the following paragraphs. 

2, 2. 1 Characteristics Method. 

This method is believed to solve a given space-time diagram in 

the least time. More accuracy is claimed, especially where the flow 

varies quite rapidly as the solution progresses along the paths of 

energy transfer (characteristic lines). The answers are not provided 

at fixed r-oints in Eme or space, which is a disadvantage when informa
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tion at a particular time or location is required. This difficulty can 

be overcome by using a method of characteristics which solves for 

fixed points on a space-time diagram, Several other factors that 

favour the use of characteristics methods are: 

l. 	 The solution is more stable when flow conditions are super

critical. 

2. 	 The case of a flood wave propagating down an initially dry 

stream bed is more correctly modelled. 

3. 	 Characteristic's methods are the most accurate methods 

of modelling rapidly varied flow as the characteristics lines 

are closer in regions of rapid variation. 

References are: Amein ( 1966), Henderson ( 1965), Woolhiser 

and Liggett (1967), and Yevjevich and Barnes (1970). 

· 2. 2. 2 Direct Method. 

This method is widely used due to the relative ease of algebra

ically expressing the various equations and the subsequent reduction 

of programming difficulties. Answers are provided at fixed points in 

time and space which is convenient for interpretation of results. The 

disadvantages of direct finite difference techniques are that explicit 

versions are subject to stability problems especially when there are 

rapid variations of flow or if supercritical conditions are encountered. 
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Stability problems have been overcome by using implicit algor

ithms. 

References are : Woolhiser and Liggett ( 1967), Smith ( 1968), 

Amein ( 1968), Amein and Fang ( 1970), Yevjevich and Barnes ( 1970), 

and Walden ( 1973). 

2. 3 NUMERICAL METHOD USED IN THIS STUDY 

In choosing a numerical method to use as a base for compari

son with approximate methods, preference was given to an algorithm 

which would provide the necessary accuracy with a minimal amount 

of con1puter programming. As initial tests were going to be made 

using rectangular channels, stability would not be as difficult a prob

lem as would be encountered with a natural non-prismatic channel. 

Thus, an explicit method which used a staggered mesh on the time

space diagram was employed, This scheme had been successfully 

used in a similar situation where the channels were very nearly pris

matic. James and Horne ( 1969), Smith ( 1968). In addition experi

ence had been obtained with this method in conjunction with class room 

studies. Thus, a small computer program was available which could 

be easily adapted to the present study. 

The staggered mesh used by this method is shown in figure 2. l. 

An inflow hydrogra.ph was used as the upstream boundary conditi0n 

http:hydrogra.ph
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while the downstream condition for subcritical flow was assumed to 

be uniform flow. Initial conditions consist of a horizontal row of 

known flow rates at t =-~T/2 and a horizontal row of water surface 

elevations specified at t =o. The row of flow rates is displaced 

AX/2 upstream from the known water surface elevations. 

For time AT/2 , the momentum equation is applied to a 

point under the first unknown flow rate downstream of the upstream 

limit. The unknown value is calculated using the initial conditions 

and the upstream boundary. This calculation is repeated as the pro

cess moves in the downstream direction. The previously unknown 

value is treated as the upstream boundary condition in calculating the 

next unknown flow rate. Figure 2. 2 shows the way in which the dynamic 

equation is applied. When the downstream limit is reached, time is 

incremented by AT/2 , the downstream boundary value is obtained 

and a series of calculations is begun in the upstream direction. This 

time, the continuity equation is applied to a point below the first un

known water surface elevation upstream of the downstream limit. 

After the unknown elevation is determined, the calculation is repeated 

at the next upstream location. Again the previously unknown value is 

used as the downstream boundary condition in predicting the next un

known. Figure 2. 3 portrays the application of the equation of contin

uity. When the upstream limit is reached, time is incremented by .6-T/2 
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a new value for the upstream boundary is obtained, and the cycle 

begins again with the application of the momentum equation in sue

cessive steps moving downstream. 

By repeating the previously described cycle, a time history of 

flow conditions along the channel may be obtained. The computation 

is stopped when a defined time is reached or when a nearly steady 

state is reached after a flood wave has passed through the channel. 

The cost of computing is related to the number of iterations required 

to fill the time space diagram and the amount of calculations in each 

cycle. When only the outflow hydrograph is desired, this method may 

seem to be quite wasteful due to the amount of unnecessary data which 

must be generated. However, it will be shown later that some methods 

of finite difference solution of unsteady flow can be relatively inexpen

sive. 

2. 4 FINITE DIFFERENCE FORMULATION OF THE UNSTEADY 

FLOW EQUATIONS 

The first step in the solution of a problem requiring the solv

ii?-g of partial differential equations by a finite difference method is 

to express the partial differentials as finite differences. This was 

done in the following manner. The momentum equation is: 

bh b ( Q
2 

) I bQ {2.3)bx + bx 2 g A2 + gA bt + Sf ::; O 
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Where: 

(2.4) 

and 

bA I ~bh bA (2.5)
bx t=~onstant bx + bx h=constant 

Substituting equation 2. 5 into equation 2. 4 

From the continuity equation, assuming lateral inflow is equal 

to zero. 

bQ ~bh+ = 0 (2.7)
bx bt 


bQ bh 
=-T.- (2.8)
bx wbx 

Thus 

(2.9) 

The dynamic equation may now be rewritten in the following manner 
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Figure 2. 2 shows an enlarged portion of the space-time diagram. 

The momentum equation is applied at poi•1t 11A". Q( K, L) is unknown 

and all the data is known for points on rows below Q(K, L). In addi

tion, information is available for points on the L row to the 1eft of 

Q(K, L) thus the following approximations can be made 

bh H(I,J)- H(l-I,J) 
= (2.11)

bx .6-X 


bh H(I-I,J)- H(I-I,J-1) + H(I,J)- H(I,J-1) 

= (2.12) 

bt 2.6-T 

bQ Q{K,L)- Q{K,L-1) 
-= (2.13) 
bt AT 

As this portion of the study is limited to rectangular channels 

with uniform slopes, the following approximations are appropriate. 

A= T.J(H(I,J)- 8(1) + H(I-L,J)-B(I-1))/2 (2.14) 

bA B(I)-B(l-1) 
-= Tw------ (2.15)
hx AX 

Where: 


B = invert elevation at the section. 


http:Tw------(2.15
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Describing the slope of the friction Hne by Mannings equation 

results in the following express ion. 

_ Q(K,L)x lo<K,L-1 >I x n2x p 413 
( 2.16)Sf- 2.21 X pJ0/3 

VThere: 	 n =Mannings roughness coefficient 


p = Tw+ (H(I,J)+H(I-I,J)- B(I)-B(I-1)) 


Using the absolute value of the known flow rate gives the energy 

slope term the same sign as the unknown flow rate. Thus, flow rever

sals which do not occur in a rapid fashion can be modelled with this 

scheme. 

' 
. Rewriting the momentum equation in terms of finite differences 

yields the following: 

I- Q(K,L) Q(K,L-1 )Tw) x H(I,J)- H(l-I,J) 
( gA3 AX 

Q(K,L) Q(K,L-1) B(I)- B(I-1) 


gA3 AX 


Q(K,L)+ Q(K,L-1 ) Tw H(I,J)-H(I,J-1)+ H(I-I,J)-H(I-I,J-1) 
-	 X·-X------------

2 oA2 2AT 

+...!.X Q(K,L)-Q(K,L-1) 
gA AT 

Q(K,L)x IQ(K,L-1 >lx n2 x p4/3 
(2.17)+ 	 2.21 )( ~0/3 = 0 
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Solving for the unknown flow rate produces the following ex

pression. 

Q(K L) = ( H(l,J)-H(l-I,J) - Q(K.L-1) _-...;.I_ 

, ax . · gAaT 


+ Q(K,L-I)Tw x H( 1-I,J)-H(l-I,J-1) + H(I,J)-H(I,J-1) )/ 
2gA2 2aT 

Q(K,L-I)Tw x H(I,J)- H(I-I,J) Q(K,L-1) B(I)- B(I-1) 
( gA3 ax + gA3 x ax 

+ __]!_ x H(I-I,J)- H(I-I,J-1)+ H(I,J)- H(I,J-1) 

2gA2 2aT 

2 x P413IQ(K,L-1)1 x n ) (2.18)
gAaT 2.21x A10/ 3 

The continuity equation is applied in a similar fashion. As

suming no lateral inflow, the continuity equation is: 

bQ bh 
+ T.- = 0 (2.19)

wbtbx 
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Applying this equation at point 11 Bff on the space-time diagram 

of figure 2. 3 allows the following approximations to be made: 

bQ Q(K,L)- Q(K-I,L)
-= (2.20)

bX AX 


bh H(I-I,J)-H(I-I,J-1) 

- =--------- (2.21)

bt AT 

Thus the continuity equation in finite difference form is: 

Q ( K, L) - Q ( K-I, L) + Tw H(I -I ,J) - H(I-I, J-I) =O 
(2.22)

AX AT 

The unknown water level is given by the expression: 

H(l-l J) = H(l-l J-1) _ AT(Q(K,L)- Q(K-I,L)) (2.23) 
, ' TwA X 

2. 5 DISCUSSION OF THE FINITE DIFFERENCE SOLUTION 

After a finite difference scheme has been developed, it is nee

essary to determine the limitations of the method. Numerical stabil

ity, convergence properties, the degree of approximation and the dis

cretization errors are factors which influence the way in which the 
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algorithm may be used. Numerical stability 1s a property of the 

numerical method \vhich keeps errors from concealing the tru~ sol

uti on. Convergence is a measure of the accuracy \vith which a .fin.ite 

difference equation will represent the partial differential eq;1ati.on 

as A.X and ~T approach zero. Another measure of the accllracy of 

the numerical solution is the degree of approxin1atlon. The discret

ization errors represent errors caused by replacing a derivative.(a 

tangent) with a finite difference (a chord). 

The finite difference algor-i_thm must first be numerically sta:ble 

to be useful as a tool. An unstable forrnulatio::c \vill allmv srnall errors 

to grow unbounded which -in turn will mask the true solution. Som.e 

algorithms are unstable, others are conditionaUf>table. Stability in 

explicit formulations of finite differences is largely dependent on the 

size of time step used in the calculation. This has been demonstrated 

by the Courant Condition which is: 

. aT 
(V+C) AX ~ {2.2~-) 

Garrison et. al. (1969) reported that another conditio:1 must be 

satisf-ied for a particular explicit scheme to be stable. The a0diti.")nal 

constraint is: 

{2.25) 

http:eq;1ati.on


For the present study, a pragmatic approach to determining 

the stability properties of the numerical scheme was used. A short 

description of the problem used in the tests is outlined i1. the follow

ing paragraphs. 

To facilitate easy computation, a rectangular channel was used 

as a prototype. Figure 2. 4 shows a picture of the channel similar 

to the one used in this study. Channel properties were as follows: 

Length = 50, 000 ft. 

Width = 100 ft. 

Depth = 20 ft. 

Slope = varied for vat ious executions 

n = varied for various executions 

The upstream boundary condition was a symmetrical triangular 

hydrograph. Figure 2. 5 shows the characteristics of this hydrograph. 

Downstream control was assumed to be uniform flow depth for the 

flow rate of the previous time step. 

Equal increments of .AX were used in this analysis. By enter

ing the number of subreaches into the program, .AX was computed by 

dividing the total length by the number of subreaches. Further docu

mentation of the computer program is provided in Appe::1dix "D". 
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During the execution of the program, I:..T \vas held fixed at a 

value determined by the following relationship: 

lV+C)!~ ~ Z {2.26) 

Where: v = full bank velocity 

c = full bank celerity 

Z = an arbitrarily chosen constant between 0 and 1 

The constant, Z, is known as the Courant Number. It is defined 

as the time step used for the computation divided by the time step 

which satisfies the Courant Condition. The value of the Courant Nurn

ber \vas reduced until no instabilities were detected. Results of sev

eral runs are shown in table 2. l. With Z = 0. 67 the first test showed 

signs of instability on the falling limb of the hydrograph. Putting 

Z = 0. 5 resulted m a hydrograph which showed no signs of instabil

ity. Increasing the slo?e to 0. 00 l and executing the program with 

Z=O. 5 resulted in an unstable solution which terminated the job. The 

problem was successfully tackled with Z=>O, 25. This does not appear 

to agree with the stability condition as reported by Garris on. As the 

slope increases, the size of the Z value should decrease, this is in 

agreement with the condition of Garrison. However, their formula 

predicts that as the roughness coefficient n increases, the value of 

Z should also decrease. These tests indicate that as n increases 
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TABLE 2. 1 


STABILITY TESTS OF EXPLICIT METHOD 


Slope n z Comments 

0.0002 

0.0002 

0.0010 

0.0010 

0.0010 

0.0149 

0.0149 

0.0149 

0.0149 

0.0322 

0.67 

0. 50 

0. 50 

0.25 

0.50 

slight signs of instability 

stable 

unstable 

stable 

stable 
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the value of Z should also increase. It appears that: 

z = f ~v: ) (2.27) 

The sensitivity of the solution to changes in .6..X and ~T is 

related to the way that the finite difference equation approximates the 

differential equation and to the discretization errors. 

The degree of approximation is obtained by substituting a Taylor's 

Series expansion into the finite difference solution and observing how 

well it represents the partial differential equation. Appendix "B" 

contains the calculations which show that the momentum equation is 

represented by the finite difference equation in the following manner: 

2
&h & ( Q y I &Q .2 2) (2.28)- +- -- + -- + Sf + O(~X , ~T = 0 
bx bx 2gA2 gAb t 

Similarly the representation of the continuity equation is: 

(2.29) 

Several executions of the computer program were performed to 

determine the effects of approximation errors and discretization errors 

as ~X and ~T vary. 
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Table 2. 2 contains vital data from several executions which 

demonstrate the changes caused by varying AX and AT. 

Based on a comparis on of peak values, it appears that the solution is 

sensitive only to the value of AX used. The lack of sensitivity 

to changes in AT can be attributed to the fact that stability cri

teria are a more stringent constraint than are convergence require

ments. The stability criteria also makes AT a function of AX 

with the result that convergence appears dependent on AX. 

Figure 2. 5 shows the inflow hydrograph and a typical outflow 

hydrograph obtained using the finite difference analyses. 

A check was provided by comparing the results with an impli

cit method developed by Walden ( 1973) with those provided by the ex

plicit method described in the report. These results are presented 

in table 2. 2. 

Further checks we:ce provided by using an example proposed by 

Thomas ( 19 34). Amein ( 196 7) shows the results of routing a flood 

through a very wide channel using characteristics, a direct explicit 

method and a direct implicit technique. The channel had a slope of 

one foot per mile and a Mannings n approximately equal to 0. 03. 

The inflow hydrograph was sinusoidal with an initial flow of 50 cfs /ft 

width, a peak flow of 200 cfs /ft. width, and a time base of 96 hours. 
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TABLE 2. 2 

SENSITIVITY TESTS OF THE EXPLICIT METHOD 
AND COMPARISON WITH IMPLICIT METHOD 

AX 
(Ft) 

z AT 
·(Sees.) 

Time of 
Maxin1um 

Flow 
(hrs.) I 

Maximum 
Flow 
(cfs) 

Time of 
Maximum 

Depth 
(hrs.) 

Maximum 
Depth 

(ft.) 

1000 1 0.50 14. 8 2.274 12537 2.620 15.858 

2000 0.50 29.7 2.290 12577 2.636 15.841 

5000 0.50 74.2 2. 348 12619 2.636 15.850 

2000 0.25 14.8 2.295 12551 2.636 15.843 

2000 0.50 29.7 2.290 ]2577 2.636 15.841 

2000 0.67 39.7 2.296 12602 2.628 15.845 

,:<2000 10.2 600 2. 330 12565 2.50 15·. 14 

Slope::: 0.0002 
n == o. o149 

All data from a station located 40, 000 1 from the start. 

·:~Implicit method 
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These results are presented in table 2. 3 along with results 

obtained from the direct explicit method utilized in this report. 

Based on these results it can be seen that the method used in this 

thesis are less sensitive to change m ~X and ~T than the other 

methods reported by Amein (1968). This may be due to the size of 

binary word used by the computer. A large binary word will reduce 

errors due to truncation in the numerical calculation. Other differ

ences may be explained as follows: Using a staggered mesh, which 

displaces the inflow hydrograph AX/2upstream, may explain why 

the peak is predicted at a slightly later time, Reducing the size 

of ~X causes the peak to occur at an earlier time. Varying the time 

step has only a small effect on the time of the peak. 

2. 6 CONCLUSIONS 

After studying the various numerical methods of solving the 

partial differential equations which describe unsteady flow, a direct 

explicit scheme was utilized to provide a precise data base for compar

ison of alternative flood routing methods. From tests to determine the 

stability and convergence properties of the finite difference formula

tion the following observations have been drawn: 

1. To insure stability of the numerical solution, the size of 

the time increment must Le reduced to a value which is smaller than 
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TABLE 2. 3 


COVPARISON OF RESULTS FOR FLOOD ROUTING METHODS 


DEPTH AND TIME OF ARRIVAL OF PEAK FLOW 

AT 200 MI STATION 


Method ~X 

Mi 
~T 

Hrs 
Depth 

Ft 
Time of Arrival 

Hrs 

Expl-icit 5 0.05 28. 6 76.0 
(As per Amein) 5 0. 10 28.6 76.0 

10 0. 15 26.9 76.0 
10 0. 20 26.0 76.0 

Characteristics - 0. 2, 0.4 29.0 76.0 
0. 8, 1.2 

- 2.0 28.6 76.0 

- 2.5 26.9 76.0 
3.3 26.0 76.0 

Implicit 5 0. 5, l. 0, 1.5 
2. 0, 3.0 

29. 11 76.0 

5 5.0 29. 13 76.0 
5 10.0 29. 20 76.0 

10 0. 5, 1. 0 
1. 5, 2,0 

29. 11 76.0 

Explicit 
(As used in 
this report) 

5 
10 
10 

0. 10 
0. 15 
0. 20 

29. 18 
29. 18 
29. 18 

76.70 
76.95 
77.00 



36 

that required to satisfy the Courant Condition. The Courant Number 

was used to define the size of the time step. This number, which is 

the size of the time step used divided by the time step implied by the 

Courant Condition appears to be inversely proportional to Vs /n , . 
As n increases, the Courant Number may also increase and as -v"S 
increases, the Courant Number must decrease to insure stability. 

While a smaller size of time step increased computation costs, 

it was still economically feasible to perform the required computa

tions. Using a CDC 6400, unly 36 seconds of central processor time 

were requ1red to route a flood down the rectangular channel when it 

was divided into 25 sections each 2000 feet long and with Z = 0. 5. 

2. Sensitivity tests and theoretical analysis show that the 

solution of the equation is sensitive to the size of ax and AT. 

However, the variation of the solution was deemed sufficiently accu

rate for the purposes of this study. The variation in the peak value 

was less than l o/c. Also, the variations between alternate flood rout

ing techniques are on a larger order of magnitude. 

3, Comparisons with other finite difference schemes. which 

have been successfully employed, show that the method used in this 

study compares very favourably in representing unsteady flow in a 

system with simple geometry. 
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Thus it was concluded that the numerical model will provide the 

data base which is required in the study of alternative flood routing 

methods. 



CHAPTER 3 

THE KINEMATIC SOLUTION 

Kinematic flood routing is a generic term that identifies a class 

of methods for calculating the deformation of a flood wave as it passes 

through an open channel such as a river reach or man made conduit. 

These methods are based primarily upon the continuity equation and the 

assumption that there exists a single valued function relating flow rate 

to the physical properties of the channel. The popularity of these 

techniques can be attributed to the relative simplicity and low cost 

of obtaining solutions, especially before the widespread availability 

of the high speed digital computer lightened the computational load 

imposed by a complete solution of the momentum and continuity equa

tions. 

A literature review revealed numerous approaches to solving the 

continuity equation using either direct finite difference methods or 

characteristics techniques. This chapter attempts to provide a stand

ard basis for comparison of the various algorithms by developing a 

general framework against which the different kinematic flood routing 

techniques may be compared. The first portion provides a review of 

the theoretical background of waves and shows the development of a 

38 
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general direct numerical method of kinematic flood routing. After 

discussing several special cases of kinematic flood routing and show

ing how they fit into the general method, a section is devoted to sensi

tivity tests of the numerical algorithm to determine limitations imposed 

by convergence properties, numerical stability, the degree of approx

imation and discretization errors. 

Studies were carried out, by the ~riter, of the practical limita

tions of kinematic techniques in modelling physical systems and the 

validity of assuming single valued rating curves. These, however, 

are not discussed in this chapter but are reported later in the thesis. 

The chapter ends with several suggestions for further study and a 

summary of the results of various theoretical considerations of the 

general kinematic method. 

3. 1 THEORY 

Seddon ( 1900) was one of the first to report on what are now termed 

kinematic waves. His observations of flood waves on the Mississippi 

River formed the basis of his classical report. The tE:rm "kinematic 

wave" was applied by Lighthill and Whitham ( 1955) in a paper which 

provided a thorough discussion of the theoretical background for the 

phenomena. This paper outlined the basic assumptions used 

in their study of kinematic waves. 
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Briefly 	these assumptions are as follows: 

1. 	 The channel flows may be assumed to be incompressible 

and one-dimensional, i.e., zero flow component normal 

to the flow direction. 

2. 	 For each point in the channel there exists a single valued 

relationship between the flow rate and the cross section area 

The continuity equation which describes the phenomena is written 

in the following manner: 

bQ bA 
+- =q 	 (3.1)-bx bt 

Where: 	 Q = flow rate 

A= Area of cross section 

q = rate of lateral inflow 

x = distance 

t =time 

For 	the case of no lateral inflow, equation 3. 1 can be written as: 

dQ 	by by 
--	+ T.- = 0 {3.2)
dy 	 bx wbt 
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Where: Tw= top width 

y = depth of water 

To an observer moving downstream with a speed equal to the 

velocity of propagation of the wave, both depth, y and dis charge, 

Q will appear to remain constant. Thus the total derivative of depth 

dy/dt is zero. Therefore: 

dy dx by by
-= 0=-- +- {3.3)
dt dt bX bf 

Substituting for dy/dt in equation 3. 2 yields: 

dx I dQ dQ 
=-- = {3.4)

dt Twdy dA 

That is, the wave velocity is equal to the slope of the curve relating 

flow rate and cross section area. (See Figure 3. 1 for example. ) 

In Chapter 2, characteristic lines were defined as the paths in 

a space-time co-ordinate system along which changes in flow para

meters may be described by ordinary differential equations. For flow 

situations described by the dynamic equation it can be shown that two 

sets of characteristic lines exist, being projected in the upstream 

and downstream direction respectively. 
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FiGURE 3 .I 
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(3.5) 


- ~f9Ac=v-1-;- (3.6) 
Tw 

In the kinematic wave situation only one set of characteristic 

lines exists- -those projected in the downstream direction along paths 

defined by 

dQ 
(3.7)

dA 

From equation 3. 4 it may be seen that wave velocity is a function 

of the depth of flow alone and therefore kinematic waves are non-

dispersive and do not attenuate. However, they do change shape as 

a result of a variation of wave velocity with depth. The slope of the 

stage -discharge curves dQ/ dA is usually steeper with higher flow rates. 

Thus higher flow rates (stages) move downstream faster than low flow 

rates, This variation in wave velocity can result in the intersection 

of char~cteristic lines from low flows and high flows. VJhen this occurs 

I 

a kinematic shock wave is formed. More discussion of kinematic shock 

waves is provided by Lighthill and Whitham (1955) and by Henderson ( 196(+,). 
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Lighthill and Whiteham also reported an additional criterion 

that must be satisfied in order for kinematic wave theory to apply. 

To prevent the formation of a hydraulic bore, the dynamic wave must 

attenuate. This attenuation will occur if the rate of change i.s given by: 

dy gyoSo (2- Fr) (I+Fr) _...._ = (3.8)
dt 3Vo 

Where: So = Bed slope 

yo= Depth 

Vo = Velocity 

Fr = Froude number = Vo lygYo 

This imposes an upper limit on the rate of change of depth in the 

rising limb of the flood wave. 

3.2 APPLICATION OF KINEMATIC WAVE THEORY 

The application of kinematic wave theory can be carried out by 

using either ( i) a characteristics s elution or (H) by the direct appli.

cation of finite difference methods to the continuity equation. Charac

teris tic s elutions have been proposed by several authors. Lighthill 

and Whitham (1955); Henderson and Wooding (1964). These algorithms 

are very simple and efficient for systems with simple geometry and 

constant lateral inflow; the ·;nain advantage is that they may be solved 
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using analytic techniques, The extension of characteristic methods to 

allow for variation of lateral inflow in time and space could be accom

plished, but this would prohibit the use of analytic techniques for obtain

ing s elutions. 

Numerous direct finite difference methods have been proposed 

and implemented, Several of these are reported by Kibler and Wool-

his er ( 1970) and Brakensiek ( 1967). Direct methods offer a very flex

ible algorithm which provides the best approach to the development of 

a general kinematic method suitable for sections of arbitrary geometry. 

The continuity equation expressed earlier is: 

bQ bA 
+ = q (3.1)

bx bt 

and may be approximated by the finite difference expression. 

AQ
--+ =q (3.9)
AX 

Figure 3. 2 shows a portion of a time-space diagram which is 

typical of those used in direct solutions of the continuity equation. 

In reviewing the approaches used by various workers, the basic differ

ence appeared to be in the definition of the finite difference molecule. 

With' the exception of the Lax- Wendroff method, all the techniques use 
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a rectangular ''molecule" defined by the ax and AT steps of the 

space-time grid. The equation is applied at a point somewhere with

in or on the boundary of the rectangle. A molecule was, therefore, 

chosen which allows the point of application of the continuity equation 

to be varied and defined by two parameters a and 8 as shown in 

figure 3, 2. The algorithm based on this molecule provides a general 

framework which allows comparison with the other methods by the 

simple device of adjusting the values of the a and 8 parameters. 

The general method used to describe points in the space-time 

co-ordinate system usually employs a double subscript notation as 

indicated in figure 3. 2. 

Thus the upstream points of the molecule are located at points 

I, J and I, J+ l while the downstream points are at I+ l, J and I+ l, 

J + l. As a convenient short hand notation, the points are also num

bered l through 4 as defined in figure 3. 2 The unknown quantities 

are at location I + l, J + 1 or in short hand form, point 4. Point "P" 

defines the location about which the continuity equation is applied, here

after termed the nucleus. 

Rewriting the continuity equation in terms of the approximations 

shown in figure 3. 2 yields the following equation: 
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Multiplying by b.X and collec:ti:1g unknowns]eads to: 

D.. X 
=<B-I) {o~-a1> + a (.1). 1- AJ

- ""AT 

Further rearranging gives: 

.6. X AX 
- DQ +OA- +Bo,-aA.,

IJ. I 1AT ... -Ll.T 

(3.12) 

In this equation the two unknowns 04 and A4 are defined impli.

citly. Another equation relating flow rate and cross section area at 

point 4 allows a solution to be obtained for 04 and A4 by iteration or 

by means of a technique which employs functional relationships and 

interpolation. 

These functional relationships are written as: 

.6.X 
f(Q) =Ba- aA- (3.13) 

. .6.T 

http:Ba-aA-(3.13
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for the upstream points and 

AX 
g{Q) = {3Q +{I- a)A (3.14)

AT 

for the downstream locations. 

Thus equation 3, 12 can be rewritten as: 

(3.15) 

The solution of the unknown is obtained by computing g(Q) from 

the known quantities on the right hand side of the equation 3, 15 and 

obtaining 04 by interpolation from a curve relating Q 4 and g( 04). The 

solution may be continued either to the next molecule in the downstream 

direction or to the succeeding tim.e increment. . Thus the method may be 

used to define the conditions throughout the system at one time step or 

a complete time history can be determined for each elementary reach, 

3. 3 A CONCEPTUAL MODEL 

In comparing special cases of kinematic flood roudng methods, a 

conceptual model is helpful in visualizing the relationship of one algor
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ithm to another. The elementary reach which served as an example 

is shown in figure 3.3. Traditionally, storage in a channel is assumed 

to consist of two components, prism storage and wedge storage. Prism 

storage is considered to be a function of outflow whereas wedge storage 

is related to the amount by which inflow and outflow differ. However, 

in this study storage was thought of as two prisms. The storage in 

the downstream section is related to outflow, with storage in the up

stream section a function of inflow. Storage in the upstream section 

is shown in figure 3. 3 between sections "a" and "b" and is labelled 

ST1 • The volume of water stored in the reach between section 11 b 11 

and "c" is labelled ST0 , and is a function of the outflow. Examining 

equation 3. 12 reveals that it can be rewritten with the following sub

stitutions. 

(3.16) 

(3.17) 

(3.18) 

(3.19) 
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Thus equation 3. 12 can be written as: 

(3. 20) 


This shows the portions of the continuity equation which accounts 

for storage in the system and is helpful in considering two commonly 

used flood routing techniques which are special cases of the general 

kinematic method. 

3. 3. 1 THE MUSKINGHUM METHOD AS A SPECIAL CASE OF 

KINEMATIC ROUTING. 

The derivation of the Muskinghum method begins with the contin

uity equation expressed in the following rnanner: 

AST
I= 0 +- (3.21)

AT 

employing the notation conventionally applied to the method, 

I = Inflow 

0 = Outflow 
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ST = Storage 


T-;:: Time 


Another equation relating the amount of water stored in an 


elementary reach to the inflow and outflow is defined in the follow

ing manner: 


ST = K 0 + KX {I - 0) (3.2 2) 

The parameter K is a constant which relates storage to flow 

rate, while x is a factor which determines how much of the storage 

is related to outflow and how much is related to inflow. Prism stor

. age is determined by the first term in the above equation and wedge 

storage is accounted for by the second term. This equation can be 

rewritten as: 

ST = ( I - x) K 0 + x KI (3. 23) 

Setting the parameter x equal to zero makes storage a function 

of outflow alone. Storage is equally dependent on inflow and outflow 

whenx=0.5. 
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Expressing the change of storage aST as a function of the 

flows defined on the space-time diagram of figure 3. 2 yields the 

following: 

' 
(3. 24) 


which may b-e expressed using expressions similar to those defined 

in equation 3. 16 - 3. 19. 

(3.25) 

Substituting equation 3. 25 into equation 3. 21 and defining in

flow and outflow using the notation defined on figure 3, 2 leads to: 

(3.26) 


From which the following is obtained: 

O 5 Q + STo4= O 5 Q + STo3_ Q -O SQ +Slit 
3 3 1• 4 aT · AT • aT 

(3. 27) 
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Comparing equation 3, 27 with equation 3. 20 reveals that they 

have a similar form. This shows that the Muskinghum method in a 

special case of the general method with the cross section area and 

flow rate related by a linear function which results in dQ/dA being 

constant for all values of Q. 

The parameter X has the same meaning as the a parameter 

in the gener~al method. Values of the parameters are: 

0=0.5 (3.28) 

o.o' a~ 0.5 (3.29) 

3. 3. 2 RESERVOIR ROUTING AS A SPECIAL CASE OF KINE

MATIC ROUTING, 

The derivation of the numerical methods for reservoir routing 

begins with the same equation as 1s used for Muskinghum routing. 

That is: 

AST 
1=0+- (3.21}

AT 

http:1=0+-�(3.21
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The storage in a reservoir is usually a function of the outflow 

alone, but for completeness storage will be expressed as a function 

of inflDw and outflow using the following equation: 

ST =(1- O)ST0 + OST1 (3.30) 

In order for storage to be a function of only outflow, a 

must equal zero. 

Thus: 

ST = STo (3.31) 

and 

(3.32) 

Substituting equation 3. 32 into equation 3. 21 and expressing 

the tern:.s as defined on the space-time diagram of figure 3.2 yields: 

Q2+ Q, Q +Q STt04- STt03+ qaX = 4 3 + (3.33)
2 2 AT 

which can be expressed as: 

(3.34) 
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The above equation is also similar in form to equation 3. 20 

with 8 = 0. 5 and the storage independent of inflow. ( i. e. 0=0.0.) 

?etting a= 0. 0, the functional relationships defined earlier 

(equations 3. 13 and 3. 14) become: 

f(Q) = BQ (3.35) 

and 

ST
g(Q) (3.36)= BQ +AT 

Thus the general kinematic method may be used to route a flood 

through a reservoir where the characteristics of the storage element 

can be defined as a function of outflow. Traditionally the value of 8 

chosen for this\ type of analysis is 0. 5. 

3. 3. 3 FURTHER COMPARISONS. 

Table 3. 1 provides further comparisons of the general kine.;. 

matic method with several other methods in addition to the two cases 
" 

discussed earlier. The first of these methods ( 1, 2 and 3) were pro

posed by Brakensiek ( 1967) in a paper which reported the results of 

numerical experiments to determine the properties of the three form

ulations. 



TABLE 3.1 


COMPARISON OF FINITE DIFFERENCE SCHE~\11ES 


SCHEME GENERAL METHOD I METHOD 2 METHOD 3. MUSKINGHUM RESERVOIR 

MOLECULE rnI 3 mI 3 
]If
I 3 lrtI 3 H

I 3 EI 3 

a o.o~ a ~~.o 0.5 0.5 0.5 

.. 

o.o~ a ~ 0.5 
(DEFINED AS X) 

0.0 

8 0.0~ 8 ~1.0 0.5 1.0 o.o 0.5 0.5 

bQ-
bX 

B(a4a~+(1-flHa3-a,> 

Ax 
~-a2+~-al 

2.AX 

Q4- Q2 

Ax 
a3- a, 

Ax 
SAME AS METHOD I SAME AS METHOD I 

bA-
bt 

(J-Q)(A,r~)i'Q(A2-Av 

Ax 
A.r- A3+ A2-AI 

2AX 
SAME AS METHOD I SAME AS METHOD I 

SAME AS 
GENERAL METHOD 

A4- A3 

Ax 
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He found that the location of the nucleus has a marked affect 

on the behaviour of the algorithm and the solutions provided by the 

analysis. The three approaches can be modelled using the general 

kinematic method by defining a and 8 as follows: 

Method 1 

a = o. 5 

B = o. 5 

Method 2 

a = o. 5 

B = L o 

Method 3 

a = o. 5 

B = o. o 

Another approach to formulating a finite difference approxi

mation to the continuity equation is known as the Lax- Wendroff method. 

This method employs four of the six nodal points defined by a double 

molecule and it is therefore not practical to provide a direct compar

ison with the general kinematic method. The arrangement of the mole

cule is shown in figure 3. 4 and the finite difference equation is derived 

in Appendix E. 
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3. 4 GENERAL SIGNIFICANCE OF THE a AND 8 PARAMETERS. 

By detailed analytic comparison with reservoir and Muskinghum 

methods and by graphical representation and comparison with other 

methods as in table 3. 1, it has been shown that most methods previously 

documented are special cases of the general method derived herein. 

By simple variation of the parameters a and B one is able to 

emulate the numerical behaviour of these other methods. It is, there

fore, instructive to attempt to gain some insight as to the physical and 

numerical significance of varying a and 8 between their extreme 

values. 

3. 4. 1 SPATIAL DERIVATIVES. 

is the gradient of Qwith respect to distance and 

due to the wave passing along the channel, must clearly be different 

at time t = T and t'ime t = T + 6T. 

The choice of {3 determines the manner in which the partial 

derivative bQ / bx is approximated in terms of the nodal values. 

With 8 = 0. 0, the gradient ~Q/bx is approximated using the con

ditions at time t = T. When 8 = l. 0 conditions at time t = T + AT 
. 

are used to describe bQ/bxand with 8 = 0. 5 averages of the two 

previously mentioned values are used. 



62 

3, 4. 2 TIME DERIVATIVES, 

The second term in the continuity equationbA/bt describes the 

rate of change of eros s section areas with respect to time, The way 

in whichbJVbt is specified by the physical conditions is determined by 

the value of the parameter a 

Using a value of a = o. o the gradient Wbt is determined by 

conditions which exist at a position X = X + AX while setting a= l. 0 

will definebA/bt by conditions at x = X. Using a= 0. 5 provides a 

value for bA~twhich is a simple average of the conditions at the ends 

of the increment being considered, 

The physical significance of describing bMt at different locations 

within the molecule has been discussed previously in connection with 

the comparison of the Muskinghum method, Briefly, however, defining 

bNbt at the downstream location in the molecule ( a= 0. 0 or X= X +AX) 

describes the storage in the reach of length AX as a function of outflow 

alone, Similarly with a= 1. 0 storage is dependent only on the in

flow. When a= o. s,bMt is obtained as a simple average of the 

values at each end of the molecule and storage is equally dependent 

on inflow and outflow. 
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3. 5 	 TESTING OF THE KINE).1ATlC FLOOD ROUTING TECH:::\IQUES 

There are four properties which determ.ine the suitability of a 

finite 	difference scheme in representing a differential equation. 

These are: 1. Stability 

2. Degree of approximation 

3. Discretization errors 

4. Convergence 

Before implementing a finite difference algorithm, it is neces

sary to check the suitability of the method in each of these four respects. 

Each of these questions must be answered through engineering judg

ment based on mathematical analysis and experience. The next portion 

of this chapter provides some discussion of analytic investigations and 

numerical experiments which demonstrate the applicability of and dif

ferences between the alternative sys terns. 

A portion of the following text is devoted to a discuss ion of each 

of the properties \Vhich describe the performance of a finite difference 

scheme. 

3. 5. 1 	 STABILITY 

A numerically stable procedure is a method in which small 

errors introduced into the calculations at a particular point in the 

x-t plane are not ampl-ified as tl1e solution is advanced through space 
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and time. Errors caused by an unstable finite difference scheme 

will destroy the usefulness of the solution, thus the stability of the 

general kinematic method was the first item investigated, An anal

ytic method of determining the stability of a finite difference scheme 

was successfully employed by several researchers, Walden ( 1973), 

Strelkoff ( 1970), Kibler et al ( 1970). This procedure, known as 

Van Neumann analysis, involves the investigation of a locally linear

ized version of the finite difference scheme on the assumption that the 

more complex non-linear system will behave in a similar manner 

to the linearized model. 

Appendix A contains a detailed description of the various steps 

involved in determining a stability criterion. Briefly these steps are 

as follows. The finite difference scheme is first expressed in terms 

of the errors, which in turn are expressed as a Fourier Series. Be

cause the system is linear the principle of superposition is applicable 

and only one component of the system need by examined at a time. If 

none of the harmonics of the Fourier Series are amplified in the suc

ceeding computations, stability is attained. 

The condition for stability may be expressed as follows: 

(3.37)'*' ~ 1.0 
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' ' Where: A4 = Error of the unknown 

A~= Error of the value preceeding the un

known. 

The results of this analysis are tabulated m table 3. 2 along 

with results by Kibler et al ( l 970) which provides the data for the 

Lax- Wendroff Scheme. These results indicate a trend toward de" 

c'reasing stability as the nucleus moves upstream and toward earlier 

time levels, The worst condition was found to occur when the equa

tion is applied so that the finite difference approximations are obtained 

by backward differences, that is when a= 1. 0 and 8 = 0. 0. The 

solution is unstable at this point regardless of the size of time and 

distance step used for computation. 

Other points were located that provided solutions which were 

unconditionally stable as well as conditionally stable as shown in 

table 3. 2. 

3. 5. 2 DEGREE OF APPROXIMATION 

The degree of approximation provides a measure of how well 

the finite difference scheme represents the differential equation. If 

the differential equation is first order and finite difference schemes 

involve errors which are on the order of AX and ~.Tv the finite 

differential equation may not converge to the differential equation as 

AX and AT approach zero. 
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TABLE 3.2 

RESULTS OF STABILITY ANALYSIS 

KN=CA.T 
A.X 

GENERAL METHOD: 

IX 1.00 0.75 0.50 0.25 0.00 

1.00 oo~ KN~ I oo!!:KN~ 3 
4 

oo~KN~.l 
2 

oo!!:KN!!:.l 
4 

oo~KN~O 

0.75 UNSTABLE KN= I 2!!:KN~g_
3 

3~KN!!:l..
3 

4::::KN~O 

0.50 UNSTABLE UNSTABLE KN =I ]._ ~KN!!:j_
2 2 

2!!:KN~O 

0.25 UNSTABLE UNSTABLE UNSTABLE KN= I ~ ~KN!!: 0 

0.00 UNSTABLE UNSTABLE UNSTABLE UNSTABLE I~ KN~ 0 

LAX- WENDROFF; KN ~ I 
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Analyzing a finite difference scheme involves expanding the finite 

difference equation using a Taylor series and determining what terms 

are truncated, Appendix C shows the process by which the order of 

approximation of the general kinematic method was determined. 

The investigation showed that the degree of approximation in

volves first and higher order terms in AX and .AT as shown by 

tne error terms in the modified continuity equation ( 3, 3 7). 

~ + bA + (2a-I)O(AX)+(I-28)0(AT) +O{AX2,AT2
) = q {3.37) 

bx b t 

The finite difference scheme provides the best approximation 

to the differential equation when a= o. 5 and 8 = 0. 5, When 

a =0. 5 and 8 =0. 5, the equation for the finite difference rep

resentation of the differential equation becomes: 

(3.38) 

As the parameters a and B are varied and the nucleus 

moves off the centre point of the molecule, errors on the order of 

AX and AT are introduced. The absolute value of errors on the 

order of AX and AT introduced by varying these parameters in

creases linearly as the nucleus moves away from the centre of the molecule. 
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Kibler et al ( 1970) reported that the Lax-Wendroff method 

represented the continuity equation in the following manner: 

{3.39) 


Thus the Lax- Wendroff method can be expected to behave in 

a manner similar to the general method with the equations applied 

to the centre of the molecule. HO\V ever, the Lax-Wendroff molecule 

cannot be applied to obtain the downstream points on the time-space 

diagram because of the inverted "T" shape of the molecule. One of 

the other methods must be used for this portion of the grid. 

3. 5. 3 DISCRETIZATION ERROR 

Discretization errors are a result of replacing a tangent (dif

ferential) with a chord (finite difference). These discrepancies are 

often analyzed using several numerical experiments to determine the 

sensitivity of the solution to the size of increments used in the com

putation. As the size of the finite difference :increases the accuracy 

of the aforementioned approximation decreases. 

This type of study is closely related to the analysis of the degree 

of approximation. Thus, based on the results of the previous section 

it is reasonable to expect ihe computer solutions of the system to be 
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sensitive to the position of the nucleus as well as to the size of time 

and distance steps used. 

Chapter 2 contains a description of two physical systems which 

were used to test the finite difference scheme for solving the dynamic 

equations. The results reported in this section are based on the first 

system described in the previous chapter. The problem can be de

scribed as a wide, rectangular channel which is subject to an inflow 

defined by a trap-ezoidal hydrograph. The particular values used in 

the simulation were: 

Width ::: 100 1 

Depth = 20 1 

Length ::: 50, 000 1 

The inflow hydrograph is shown in figure 2. 5. 

A computer program was written which provided a solution using 

the general kinematic flood routing method. For each execution of 

this program, fixed values of ax and .6.Twere specified, which 

the routine used to provide twenty-five s elutions with various values 

of the parameters a and 8 . Several executions of this program 

provided the data necessary to carry out the sensitivity tests which 

demonstrated the effect of varying key parameters. 

Tables 3. 3, 3. 4, and 3. 5 summarize the results of three com

puter runs. The elements of the matrix define positions of the nucleus 
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TABLE 3. 3 

PEAK VALUES OF THE OUTFLOW HYDROGRAPH 

SYSTEM l 


40, 000 FT DOWNSTREAM 


6.T = ZOO SECONDS 

AX= 2500 FEET 

~ l.D 0.75 0.50 0.25 0.00 

1.0 unstable 0.927 0. 894 0. 867 0. 843 

0.75 unstable unstable 0.925 0. 892 0. 865 

0. 50 unstable unstable 0.988 0.924 0.890 

0.25 unstable unstable unstable 0.984 0.922 

0.00 unstable unstable unstable unstable 0.981 



7 1 


TABLE 3. 4 

PEAK VALUES OF THE OUTFLOW HYDROGRAPH 

SYSTEM 1 

40, 000 FT DOWNSTREAM 

AT = 200 SECONDS 

AX = 5000 FEET 

'li'Z 1. 00 0.75 0.50 0.25 0.00 

l. 00 unstable 0.969 o. 894 0.844 0. 804 

0.75 unstable unstable 0.924 0.865 0.821 

0.50 unstable unstable 0.965 0.890 0. 840 

0.25 unstable unstable unstable 0.920 0. 861 

0,00 unstable unstable unstable 0.961 0. 886 
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TABLE 3. 5 

PEAK VALUES OF THE OUTFLOW HYDROGRAPH 

SYSTEM 1 

40, 000 FT DOWNSTREAM 

AT = 200 SECONDS 

AX = 10, 000 FEET 

X 
l. 00 

l. 00 0.75 0.50 0.25 0.00 

unstable unstable 0.888 0.806 0.748 

0.75 unstable unstable 0.914 0.822 0. 579 

0.50 unstable unstable 0.941 0. 840 0. 771 

0.25 unstable unstable 0 ..973 0,859 0. 784 

o.oo unstable unstable unstable 0.881 0.799 
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I 

and each 1s characterized by a parameter equal to the peak flow 

divided by full bank flow. Only stable solutions are reported. 

Examination of the results show that the peak value decreased 

as the value of Q was reduced and/ or as 8 increased. The rate 

at which the peak decreased or increased was related to size of the in

creme.nts used in the computation. 

This agrees with the results predicted by the analysis of the 

degree of approximation. As the size of the distance step increased, 

the peak value provided by the general method with the equation applied 

at a point where a was less than o. 5, decreased. 

Similarly, for a fixed value of ax' the peak value provided 

by the solution decreased as a was varied from 0. 5 towards 0. 0. 

The decrease was not linear as predicted by the previous analysis. 

However, this prediction was based on a linear system. It is encourag

ing to note that the non-linear system does behave in a manner similar 

to the linear system. 

Table 3. 6 shows the ratios of peak out flow 40, 000 1 downstream 

of the point of inflow obtained using the following fixed parameters: 

a= o. 5 

11 = 0. 5 

AT= 200 seconds 


Values of AX used were 2, 500, 5, 000 and 10, 000 feet. 
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TABLE 3. 6 

PEAK VALUES OF THE OUTFLOW HYDROGRAPH 

SYSTEM 1 

40, 000 FEET DOWNSTREAM 

AT = 200 SECONDS 

a = o. 5 

8 = 0. 5 

AX (FT) PEAK FLO"W RATIO 

2500 0.988 

5000 0.965 

10000 0.941 
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Comparing the peak flow rates at the outflow with the peak 

flow rate modified to account for the error in interpreting the hydro

graph reveals that discretization errors and other types of inaccura

cies have not caused any error of the peak flow ratio at the location 

where the outflow was recorded with 4X = 2, 500 '· However, when 

the size of AX was doubled to 5, 000 1, a 2. 4o/o reduction was made 

to the peak value. Furthermore, increasing the distance step to 

10, 000 1 introduced another 2. 4o/o error to which is a total error of 

4. 8% from the value predicted by kinematic wave theory. 

Thus, based on comparisons of the peak value of the outflow 

hydrographs, using a solution with the continuity equation centred in 

the middle of the molecule and time and distance steps of: 

4T = 200 seconds 

AX= 2, 500 feet. 

the solution appears to be free of discretization errors. 

It may be argued that considering only the peak value of the out

flow hydrograph does not give a complete picture of the behaviour of 

the solution in reproducing a particular shape of hydrograph. To 

compare the shape of the hydrographs, several plots were made of 

hydrographs which had peaks that were approximately equal. 

These hydrographs are shown in figures 3. 5 and 3, 6. Only one 

hydrograph was plotted on each graph because the results from the 
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different simulations compared so closely. The values of the para

meters for these different simulations are shown on the plots, 

As a result of these comparisons, it was concluded that for the 

purposes of this study, comparing the peak value of the hydrograph 

was a reasonable method of quickly determining the sensitivity of 

the solution to changes in the size of increments used in the solution 

and to the location of the point where the continuity equation was 

applied to the finite difference molecule. To provide a visual method 

of correlating the peak value of the shape of the hydrograph, figure 3. 7 

is provided, This graph contains outflow hydrographs which have a 

range of peak values from 0. 748 to 0, 988, and shows the variety of 

shapes obtained for the outflow hydrograph. Generally, as the peak 

value reduced the rising limb of the hydrograph started earlier and 

the falling limb dropped less rapidly 

3. 5. 4 CONVERGENCE 

Convergence is a measure of how well a finite difference equa

tion approximates the differential equation as the size of Ax and 

AT approach zero. Finite difference schemes may be classified 

as convergent, conditionally convergent or non-convergent. 

If the finite difference scheme converges to. the differential 

equation as AX and AT approach zero, the schetne is tern1ed 
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converg<:>nt. A conditional convergent algorithm is one which only 

converges for particular values of ~X and AT, while a non-con

vergent scheme will not accurately represent the differential equa

tion regardless of the size of the finite difference steps. 

Examination of the results of the degree of approximation 

analysis shows that the terms of the continuity equation are approx

imated by the finite difference scheme in the following manner: 

bQ 
bx 

(3.40) 

(3.41) 

These equations show that as AX and AT approach zero, 

the finite difference equation will converge to differential equation. 

Furthermore, convergence of general kinematic flood routing method 

is independent of the values of the parameters a and 8 and the 

relative sizes of AX and AT. 

The fact that convergence is independent of a and 8 veri

fies a conclusion made by Dooge { ]959) that a series of reservoirs 
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can be used to model a kinematic channel; .further discussion of 

this will be provided in a later chapter. 

3. 6 VEIUFICATION OF THE GENERAL KI:'~E~v:ATIC FLOOD ROUT

ING METHOD 

The previous sections have each dealt \vith a particular aspect 

of finite difference techniques which are used to ga:,1ge the perfor

mance of anum erical solution of a differential equation. "This sec

tion provides a comparison of a solution obtained from a finite differ

ence algorithm with the results of an analytic solution as verification 

of the numerical method. 

The analytic solution was obtained in the following rr1anner: 

Kinematic waves have one set of characteristics which travel down

stream with a velocity. 

dx dQ 
{3.4)dt = dA 

Along a characteristic line, the flow rate Q is constant. Thus, 

associated with each flow rate there is a particular wave velocity. 

Knowing the wave velocity and the length betwL~en the point of inflow 

and the location wherP the outflow is being measuc-ed. the time be

tween inflow and outflow for a 2e1rticular vr~lue of Q can be obtained. 



I 

82 

Using Mannings equation, the flow rate can be expressed in 

the following manner: 

A5 3I. 49 ' _ ,-;:: {3.42)Q =n p2!3 vS 

Where.: n = roughness coefficient 

A =eros s section area 

P = wetted perimeter 

S ·= slope 

For the rectangular channel being studied: 

A= Twx Y (3.43) 

P = Tw+ 2Y (3.44) 

Where: 'IW= top width 

Y = depth of flow 

From which: 

dQ 
{3. 45)

·dA 

(3.47)Q ( 5 4)
=Tw 3Y - 3P, 
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A computer program was utilized to s Dlve for flow r2.te and 

kinematic wave velocity as a function of depth. Using the results of 

this program, a curve of wave velocity vs. flow rate/full bank flov.1 

rate was plotted, This is sho\vn in Appendix F along with a listing 

of the computer program and results. 

!he inflow time of a particular flow rate was deterrnined, and 

the wave velo:::ity o:f the flow rate obtained from the graph. Multi

plying the wave velocity by the length of the channel and adding the 

time of inflow, provided the time at which o·.1tflow of the particular 

flow rate would occur. By repeating this operation for a nnmber of 

values in the range of flows specified by the inflow hydro;,;raph, the 

outflow hydrograph was obtained. 

Figure 3. 8 shO\vs a comparison of results obtained using both 

the ana] ytic technique and the general kinematic flood routi.ng method. 

These results compare very favourably and verify the useful ness of 

the general kinematic flood routing method in simulating the particular 

system under consideration when a= 0. 5 and 8 = 0. 5. 

3. 7 CONCLUSIO~S 

This chapter has provided a discussion of kinematic wave theory 

and has shown the development of<... general method of rm1ting a floort 

using kincn1at1c wa-,·e theory. 

http:routi.ng


INFLOW 

~ 
I,. 

I 
I 

' I I 
I

...-------·.J 

;\ 
\ 
~ 

FIGURE 3.8 

RESULTS USING CHARACTERISTICS METHOD 
SYSTEM I 

1.00 

OUTFLOW 

0.75 \/
\ 

\ 

••\ • RESULTS FROM 
\ FINITE DIFFERENCE 0.50 

\ METHOD 

" 
0.25 ' ' ' ' 

0.00 

12 16 20 24 

TIME (THOUSAND SECONDS) 

0 4 8 




85 

With the framework provided by the general method of kinematic 

flood routing, it has been possible to compare several commonly used 

methods of flood routing. These techniques include reservoir routing, 

Muskinghum routing and several methods proposed by Brakensiek ( 1967). 

The main feature of the general kinematic method, which allows 

flexibiHty in the choice of simulation method, is the ability to move 

the nucleus to any location on or within the boundaries of the finite 

difference molecule. This point is specified by two parameters a 

and B . The value of a specifies the position of the nucleus in 

the space domain while B locates the point in time, Most routing 

techniques utilize a finite difference molecule with 8 = 0. 5. The 

parameter a is set equal to zero when a reservoir routing technique 

is used, When the widely known Muskinghum method is simulated, 

8 is set equal to 0, 5 and a is given the value of the Muskinghum 

weight factor X • 

Analytic studies and numerical experiments have been employed 

to •letermine the numerical behaviour of the general kinematic method. 

The two parameters a and B have a very pronounced effect on 

the solutions provided with this method. Numerical errors and 

apparent attenuation may result depending on the values chosen for the 

a and B parameters. Amplification of the wave, as predicted 

by theoretical studies, was not reproduced by the numerical experi
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ments due to a peculiarity of the computer program which constrained 

the v•Jave to full bank flow conditions. Further study should be under

taken utilizing a routine free from this constraint so that the theoret

ical predictions of amplification may be verified. 

Stability also has been found to be dependent on the choice of 

a a'nd 8 For example, with the molecule defined to route a 

flood using the reservoir technique, the scheme is conditionally stable. 

However, when the space and time derivatives are evaluated using a 

backwards differencing method ( a= 1. o, 8 = 0. 0), the algor

ithm is unstable regardless of the size of AX or AT used in the 

simulation. A typical location of the nucleus, which defines a con

ditionally stable routine, is found at the centre of the molecule 

a= o. 5, /3 = 0. 5). 

With other properties being affected by the choice of a and 

8 , it is reasonable to expect the degree of approximation of the 

finite difference scheme to be sensitive to these two parameters. This 

. has been verified through analysis of the degree of approximation. 

Introductions of errors on the order of AX and AT appear to be 

the cause of the pseudo-attenuation and amplification mentioned earlier. 

The amount of attenuation is related not only to the choice of a and 

8 , but also to the size of the finite space and time steps used in 
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the simulation. It has been shown that the best representation of a 

kinematic wave in an open channel is obtained by locating the nucleus 

in the centre of the finite difference molecule. With a =0. 5 and 

{J = 0. 5, the degree of approximation contains only second order 

and higher terms, no first order errors being introduced into the 

compu.tations. This is comparable with the accuracy obtained using 

the Lax- WeLdroff method. 

Having studied the numerical properties of the general kine

matic flood routing method, the next direction for further regard may 

be a comparison of the kinematic solutions with the more rigorous 

dynamic method. 

From these comparisons, it may be possible to determine guide

lines for choosing appropriate values of a and {J so that the pro

perties of the general method may be more efficiently utilized in the 

simulation of dynamic flow systems. In addition, information may be 

obtained to determine the practical limitations of kinematic techniques. 



CHAPTER 4 

COMPARISON OF COMPLETE AND KINEMATIC SOLUTIONS 

The two previous chapters have each dealt with a particular 

method of flood routing. The solution of the momentum and continuity 

equations describing unsteady flow was discussed il}. Chapter 2, and 

tests showed that it provided reasonable answers when modelling un

steady flow in open channels with simple geometry. Chapter 3 pre

sented the theory and applications of kinematic methods used to sim

ulate unsteady flow phenomena. The question now arises, 11 Which 

method is appropriate for the analysis of a specific physical system1 n 

In an attempt to answer this question, two different physical 

systems were modelled using both dynamic and kinematic analysis 

techniques. This chapter provides a comparison of these results and 

a discussion of the similarities and discrepancies of the results. 

It has been pointed out in an earlier chapter that the dynamic 

method in general provides a more accurate answer than the kinematic 

solution. However, certain classes of problems may be identified in 

which the solutions obtained by both methods are not significantly dif

ferent and it is not clear that any advantage results from the use of 

88 
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more rigorous dynamic methods. One of the objectives in this chap

ter will be to investigate criteria which may aid in the classification 

of such problems. 

The approach taken to achieve these objectives may be outlined 

in the following manner, First, a review of the momentum equation 

and the various terms of that equation is made, and a method for per

forming an order of magnitude analysis of the terms is presented. 

Secondly, the two physical systems that were utilized in the study 

are introduced and the importance of the terms in the momentum 

equation are discussed. Thirdly, the results of the simulations are 

presented and discussed. Also, a critique of current discussion in 

the literature is provided along with the framework developed in this 

chapter. 

In conclusion, a brief review of the chapter is provided and s ug

gestions for further study are made. 

4. 1 ORDER OF MAGNITUDE ANALYSIS 

Computation of flowrate in an open channel1nay be obtained 

typically by means of Manning's equation: i.e. 

(4.1) 
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Where: Q = flowrate 

A= Cross section area 

P ::!: Wetted perimeter 

Sf = Slope of the friction line 

n = roughness coefficient 

If a steady flow regime in a prismatic channel is being consid

ered and the flow is assumed to be uniform, then the slope of the frie

tion line must be the same as the bed slope. However, when an un

steady flow system is being considered, the fricFon slope is dependent 

on spatial and temporal acceleration, the variation of flow depth along 

the channel as well as the bed slope. 

This can be seen by examining the dynamic equation expressed 

earlier in this thesis. It is: 

bh I bQ+--+s,=o (2.1)
bx gA bA 

Where: x = distance 

t =time 

h = water surface elevation 

Q =flow rate 

A = cross section area 
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g =acceleration of gravity 


Sf = slope of the friction iine 


Expanding this equation leads to: 


(4.2) 

Where: y =depth of flow 

So =bed slope 

Tw= surface width 

The other variables have the same meaning as previously de

fined. Viewing each of the terms individually in the order they appear, 

they may be described as: (i) the rate of change of depth along the 

channel, ( ii) the bed slope, (iii) the spatial acceleration, ( iv) the rate 

of change of velocity head, (v) the temporal acceleration and (vi) the 

il'ic.Hol'l slope. 

Solving for friction slope yields: 

Q bQ I &Q--- (4.3)
~A &t 

This may also be expressed in the form 

by 2 Q bQ I bQsf = So- - ( 1- FR ) - -- - - - (4.4)
Ibx gA2 ~x gA &t I 
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Where: 

Q 
= Froude number 

~rt:f
lg:r:Tw 

Substituting equation 4. 4 into equation 4, 1 gives 

I &Q 

gA&t 
(4.5) 

Equation 4. 5 shows the terms mentioned earlier in this sec

. tion which describe the slope of the friction line which in turn is 

used to compute the flowrate for an unsteady flow system. 

When a kinematic flood routing techn'ique is employed, flow-

rate is assumed to be a function only of y and x, that is no time 

variation of the stage discharge relation occurs. Expresshg this in 

a sl~ghtly different manner; flow rate at any section o! the reach is 

assumed to be dependent only on the stage. Thus, for a single value 

stage-discharge curve to adequately describe a physical system, so 

that a kinematic solution is appropriate, it appears that terms other 

than the bed slope must be relatively small. 

Q &Q
Spatial acceleration and temporal acceler

gA2 &x
I &Q

ation are functions of time because they vary as the flood wave 
gA &t 
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passes through a section. However, variation of the spatia: accel

eration may also occur due to lateral inflow or outflow which may or 

may not be time dependent. 

Similarly, the term describing the rate of change of specific 

energy due to a variation in depth with respect to· distance will be a 

function of time as the flood passes, but it is also a description of the 

non-uniformity of flow under steady conditions. Thus, it is not nee

essary to assume that the single valued stage-discharge must be 

described by uniform flow conditions (i.e. s, :::So). (Henderson, 

1966.) 

For the present discussion, all the terms describing the slope 

of the friction line will be considered time dependent with the eyt"-ept~on 

of the bed slope. 

Hender1:;on ( 1963) reported an analyais that was made to compa:;:e 

the relative order of magnitude of the four slope terms in an equation 

similar to equation 4. 5 using the kinematic wave. as an approximatic~ 

of the wave under consideration. The ensuing discussion follows the 

analysis presented by Henderson. 

Defining kinematic wave velocity as c, equation 3. 3 may be 

written as: 

dy = 1Jy + c by = 0 (4.6)
dt bf ~X 
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This can be rewritten as: 

by = .!.. by (4.7)
bx C bt 

For a system with a given inflow hydrograph Q = Q ( t ), equa

tion 4. 7 can in turn be redefined in the following manner: 

by I by bQ I bQ---- c:--- =--- (4.8)
bx C2 bt T)y C21:0t 

Henderson's analysis continues by considering a wide rectangu

lar channel in which the flow resistance is defined by the Chezy equation. 

The following result was obtained: 

by/'bx 
(4. 9) 

Where: q =flow rate per unit width 

When co~sidering channels with arbit:::-ary geometry and utiliz

ing more complex resistance laws it is more difficult to obtain results 

in a form similar to equation 4. 9. However, the results shown by 

equation 4. 9 can also be deduced from the more general equation 4. 8. 

As the bed slope is increased. equation 4. 9 shows tna.t the relative 
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importance of by/ bX will decrease. Similarly, as q increases 

or the rate of change of q with respect to time gets smaller, the im

portance of by/ bX is reduced. 

In general, c and 'I, increase when flow rate increases; also, c 

increases when the slope is increased. Thus as slope or flow rate 

increa·se, the absolute value of the by/ bX term will decrease. 

Decreasing the rate of change of flow rate with respect to time will 

also reduce the absolute value of the by/ bX term. 

Q bQ 
Comparing the spatial acceleration g AZ bX with 

by lbx yields 

Q bQ 

= 0( F~) (4.10) 

Where: 

Q 
= Froude number = 

_{A3 
Also: "9'5Tw 

bQ 
= oc£.~, = (4.11)

gA bt gA ox 

I bQ
Thus the two acceleration terms and are 

gA ot 
of the same order of magnitude and are of no higher order than by/bx 
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unless fA>> I which wonld occur ~c.ly on extremely steep slopes 

such as mountain torrents. 

In a system that has a channel with a very gentle bed slope, 

Thus, while -
~y 

IS may be appreciable, the accel
~X o 

eration terms could be negligible. 

This led Henderson to classify open channel, unsteady flow sys-

terns into three categories depending on the importance of the four 

slope terms. 

The first of these categorie::; wan the steep sloped system. In 

this case, all the terms except the bed slope are negligible when 

describing friction slope. The second category consists of an inter

mediate sloped system ir. which all four of the terms defining friction 

slope are necessary to provide an accurate description of the flow 

rate. The tC.ird c.:lassification consists of a gentle sloped system 

where the acceleration terms are negligible and the friction slope is 

~y
defined only by the bed slope So aad 

While these claasificativns are termed according to the bed 

slope, this is not the only factor which determines the relative im

portance of the various term::.. These other factors include channel 

roughness, geometry of the channel, a11d the inflow hyclrograph. It 

may be possible for a partic·.dar physical system to be classified as 

being steep if the inflow hyd•:ograph ri:>es and falls very slowly or it 
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could be classified as intermediate if the hydrograph is very rapid 

and the flows are such that F~ is large enough so that acceleration 

terms are important. If the flows are in a range where FR2 
is low 

and the acceleration terms are negligible, but the changes in flow rate 

are rapid, the same system may be classified as gentle sloped, A 

later portion of this chapter describes an attempt to use these criteria 

to determine the importance of the various terms in the dynamic equa

tion and to demonstrate the method of classifying open channel unsteady 

flow s ys terns. 

4. a THE SYSTEMS STUDIED 

The two examples used for the comparison of dynamic and kine

matic flood routing techniques were very similar in s orne aspects, but 

quite diverse in other areas. 

The first system has been discussed earlier in the sections deal

ing with sensitivity tests of the two methods of analysis, and comprised 

a wide rectangular channel having a downstream boundary condition of 

uniform flow and subject to a triangular inflow hydrograph as shown 

typically in figure 2. 5 This system was used with several bed slopes. 

In each case a combination of bed slope and roughness was utilized 

which provided a consistent stage-discharge curve for all the results, 

'i.e.~ In = constant. All comparisons were made at a section 
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some distance upstream from the downstream boundary in an attempt 

to eliminate errors arising from the assumption of an unnatural down

stream control. 

The second system studied was taken from the problem first 

proposed by Thomas in 1934. Amein ( 1967) reports that the channel 

was assumed to be very wid~ with a sinusoidal inflow hydrograph start

ing from a base flow of 50 cfs /ft., and peaking at 200 cfs /ft. width, 

A time base of 96 hours was used with this hydrograph. 

The main differences between the two systems were a differ

ence of scale. 

1. 	 The phy~ical length of the first problem is of the order of 

l I 40 that of Thomas 1 problem. 

2, 	 Although the flow rate per unit width of the inflow hydro-

graphs were of the same order of magnitude, the first s ys

tern employs a hydrograph with a time base of 2, 77 hours 

compared to 96 hours for the second example. The effect 

of this is to greatly change the magnitude of the acceleration 

/ 

terms in the momentum equation. 

A concise description of the variables used for each problem is 

provided in table 4. l A comparison o; the inflow hydrographs 1s shown 

in figure 4. 1 
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TABLE 4. 1 

COMPARISON OF SYSTEMS 

VARIABLE SYSTEM 1 SYSTEM 2 

distance to outflow position 

width 

depth 

slope 

roughness 

40, 000 ft 

100 ft 

20 ft 

0. 0002- 0. 0100 

0. 0149 - 0, 1050 

300 miles 

very wide 

30. 1 ft 

1/5280 

0.02985 

INFLOW HYDROGRAPH 

shape 

time base 

peak 

baseflow 

triangular 

2. 77 hrs 

166. 7 cfs /ft 

33. 3 cfs /ft 

sinusoidal 

96 hrs 

ZOO cfs /ft 

50 cfs /ft 
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The result of an order of magnitude analysis for the two SY,Stems 

is shown in table 4. 2 From this analysis, the systems may be clas si

fied in the following manner. When a bed slope of 0. 0002 is used in 

System l, all the terms of the momentum are of the same order of 

magnitude or greater than the bed slope, thus this system would be 

terme~ as an intermediate sloped system. With a bed slope of 0. 00 l, 

the importance of the acceleration term is diminished and the system 

may be classified as either intermediate or gentle sloped, depending 

on what criterion is use·d to define terms as being significant. The 

simulation with the bed slope of 0. 002 can be classified as gentle sloped 

because the acceleration terms are only approximately 5% of the bed 

slope and the ~ term is still significant. This demonstrates 
bx 

the statement made earlier that bed slope is not the only criterion 

for determining how a system is to be classified. Because the rough-· 

ness coefficient was increased as the slope increased, the gentle sloped 

system was encountered at a slope greater than the intermediate 

sloped system. 

To demonstrate the results obtained for a steep sloped system, 

by
where the bed slope is much larger than the - or acceleration 

hx 
terms, an execution of the program was made with So = 0. 0100. 

The order of ma'gnitude analysis shows that .£ystem 2 would also 

be classified as a system with an intermediate slope, and from thes..e 



TABLE 4.2 

ORDER OF MAGNITUDE ANALYSIS 

So Iby 
bx 

II bQ I
gAbf F~ 

by 

bx V. 
So 

II bQI
gAbiy byl 

bx 

SYSTEM I 

0.0002 

I.75 X10- 4 

-
4.74xlo-4 

0.41xlo- 4 

-
1.1-Gx 10- 4 

0.099 

-
0.107 

0.875-2.37 

0.087 

-
0.67 

0.0010 0.175 -0.474 

0.0020 0.0875-0.237 

0.0100 
1.75xlo-2 

- 4.74xJo-2 

SYSTEM 2 

0.00019 2.4 xlo-3 0.28xlo- 4 0.035 -0.045 1.28 xiO-I 0.11 X 10-l 
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re~ults, one would expect less attenuation of the flood wave in System 1 

as the bed slope is increased. While a comparison between the two 

systems is difficult due to the differences of scale, one wou'!d expect 

a less marked attenuation of the flood wave in System 2 when compared 

with the attenuation obtained with System l using a bed slope of 0. 0002, 

Sy
due to the relative sizes of and bed slope.

Sx 

4. 3 COMPARISON OF RESULTS FOR SYSTEM l 

The general kinematic flood routing technique with the nucleus 

located at the centre of the molecule (0-=0.5, 8= 0.5} was used 

to obtain a kinematic solution for System 1. Because the ratio of bed 

slope and roughness was adjusted to maintain a constant ratio of 

, only one kinematic solution was required for the 

various bed slopes. 

Figure 4. 2 contains a comparison of the outflow hydrographs 

obtained from the four dynamic simulations of System l, and from the 

kinematic solution. This clearly demonstrates the pronounced effect 

of the time variant terms on the resultant outflow hydrograph. The 

simulation of System l with a bed slope of 0. 0002 shows the effect of 

terms which are of the same order of magnitude as the bed slope. In 

this case, the wave reached the outflow quicker than the other waves 

and subsided less rapidly. As slope.increased, the attenuation of the 
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I 
wave decreased and the wave form approached the shape predicted 

by kinematic wave theory. 

Another demonstration of the effects of the terms in the dynamic 

equation can be seen by examining the stage-discharge curves in figure 

4. 3, With increased bed slope and roughness, the slope of the energy 

line was dominated by the bed slope term. Thus the hysteresis loop 

in the stage-discharge decreases as shown in the figure. 

4. 4 COMPARISON OF RESULTS FOR SYSTEM 2 

An approach, similar to the one utilized for comparing the re

sults of System l, was used to compare the results of this system. 

However, hydrographs at two sections were recorded and peak values 

at a point hal£ way between the two hydrographs were also printed to 

provide further comparisons. This allowed the results of this study 

to be viewed in conjunction with the results of two other studies, 

Amein ( 1967), and Garrison ( 1968). 

A comparison of the hydrograph 100 miles downstream from the 

upper end of the channel as obtained by kinematic and dynamic solutions 

is shown in figure 4. 4. The attenuation of the flood wave is apparent; 

but differences m the wave shape are relatively negligible. 

However, by the time the flood wave has reached a point 300 

miles downstream, there are-considerable differences in the wave 
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shapes resulting from the two methods of analysis as shown in figure 

4. 5. The wave front on the kinematic sobtion is much steeper and no 

attenuation has taken place. Conversely, the dynamic solution shows 

a wave which has steepened slightly, and has attenuated. The stage-

discharge curve for this system 300 miles downstream is shown in 

figure ,4. 6. 

From the order of magnitude analysis and a comparison with 

simulations of the first system, more attenuation may have been ex-

by
pected because of the high value associated with the term. 

bX 
However, this may be explained by considering the manner in which the 

by
order of magnitude of the term was obtained. In System 1, 

bX 
the trapezoidal inflow hydrograph provided a rate of change of flow 

bQ
rate - that was constant when the hydrograph was rising or 

bt 
falling. With the sinusoidal inflow hydrograph, varied with 

bt 
time and the maximum rate of change of flow rate was used to determine 

~y
the order of magnitude of the - term. During the major portion

bxby
of the simulation, was actually much less than the value 

bx 
specified in table 4. 2. This may account for the relatively small 

amount of attenuation demonstrated in the results of this simulation. 

4. 5 FURTHER COMPARISONS 

Kinematic solutions of unsteady open channel flow problems were 

first utilized by engineers and researchers before the advent of high 
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speed digital computers due to the enormous amount of calculations 

required to solve the dynamic equations. While these shorthand methods 

reduced the computational load, it was still necessary tom ve large in

crements in time and space to reduce the number of calculations re

quired for the numerical s elution by a kinematic technique. The use 

of step sizes which were too large may have provided s elutions which 

were not realistic or which gave results that were extremely sensitive 

to the step sizes in time or distance. 

Recording the peak values of depth and flowrate and the times at 

which these maximums occurred at a section 200 miles downstream in 

System 2, allowed a comparison to be made with results of the studies 

by Amein ( 1968) and Graves ( 1967). Table 4. 3 contains a table which 

shows a comparison of peak values for flowrate and depths obtained 

using the various techniques. 

When a kinematic solution was used with the nucleus in the centre 

of the molecule, no attenuation resulted. Moving the nucleus to the 

downstream boundary so that the channel was simulated by a series 

of reservoirs, caused s orne attenuation of the flood wave. The size 

of AX dictated the amount of attenuation that was manifested in the 

kinematic solution with the nt.:cleus located off of the centre of the 

molecule. There appears to be considerable difference in the timing 

of the peak values as the sizes of AX and AT were varied. This, 
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.TABLE 4.3 

COMPARISONS TWO HUNDRED MILES DOWNSTREAM 
SYSTEM 2 

METHOD AX 

(MILES) 

AT 

(HOURS) 

FLOW RATE DEPTH 
PEAK 

(CFS/FT) 
TIME 

(HOURS) 
PEAK 
(FEET) 

TIME 
(HOURS) 

KINEMATIC 

a= o.5o 

8=0.50 

10 
2 199.9 75.1 30.06 75.1 

3 200.0 74.6 30.07 74.6 

20 
2 200.2 74.8 30.07 74.8 

'3 200.0 74 8 30.06 74.8 

KINEMATIC 

a= o.oo 

8=0.50 

10 
2 194.2 75.1 29.54 75.1 

'3 194.4 75.2 29.55 75.2 

20 
2 188.0 

' 
75.8 28.97 75.8 

3 188.1 75.9 28.98 75.9 

EXPLICIT DYNAMIC 
SOLUTION 10 0.15 191.0 75.1 29.18 76.9 

STORAGE ROUTING 

AMEIN (1968) 

METHOD PROPOSED 
BY THOMAS(I934) 

25 
12 - - 29.2 78.0 

24 - - 21. a 90.0 

50 
12 - - 27.7 78.0 

24 - - 26.0 84.0 

GRAVES ( 1968) 50 I 193.9 76.0 29.5 77.6 
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however, is due to the relatively flat top o£ t'he ·wave which :-esulted in 

the peak being ill defined. The depth did not vary by more than a few 

hundredths of a foot several time steps before or after the peak. The 

average value of the time of peak is 75. 25 hours and the values obtained 

for individual runs do not vary from this value by more than one time 

step. ·The results obtained with the kinematic solution also compare 

favourably with the answers provided by the finite differen.ce solution 

of the dynamic equations. \"-'hile the atte~uation was not accurately 

modelled, the tim. es to the peak values compare reasonably well. 

Amein (1968) reports the results of Thomas' storage-routing 

technique in a paper describing an implicit finite difference solution 

of the dynamic equation. He pointed out that these results seem to 

indicate that the storage routing technique is unacceptable due to the 

variation of the values recorded for peak stage and the time of peak. 

These problems may be symptoms of using large steps resulting in the 

solution becoming unstable. In all of the cases cited, the time of 

pea}: did not vary from the peak predicted using the dynamic soi•Jtion by 

more than one time step. Thus the kinematic and the dynarnic solutions 

are similar 111 that there are maximum sizes of ax and AT that 

can be used to achieve satisfactory results. 

Graves ( 1967) used a flood routing technique based on the contin

uity equation and a stage discharge curve that "\vas a function of the steady 

http:differen.ce
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flow conditions and the rate of change of flo\v with respect to time. 

This type of solution is neither kinematic or dynamic in a strict 

theoretical sense. However, it is notev;orthy in that it is an exa1nple 

of methods which attempt to bridge the gap between kinematic solu

tions and the complete solution of the dynamic equation. The results 

of his ·study show a peak flow rc.te of 193.9 cubic feet per second per 

foot channel width occurring at a point 200 miles downstream 76 hours 

after the start of the simulation. The maximum stage was 29.46 feet 

78 hours after the start of the simulation. These results compare 

quite favourably with the dynamic solution. 

In rr1aking these comparisons, two problems have been mani

fested which are \vorthy of further discussion. First, when compar

isons of results are obtained using numerical flood routing models, 

it is sometimes advantageous to cornpare stages while other situations 

warrant a comparison of flov: ._.3..te.s.. In reporting results of models 

which do not assume a single valued stage-discharge relation, it may be 

expedient to report both stage and flow rates. The other problem en

countered dealt with the size of the time step used in t!:le computation. 

Difficulties associated with using large step sizes in a finite difference 

schen1e are well documented and are usually guarded against. However. 

the type of flood wave that was encountered in System 2 had a relatively 

flat top which made locating the true time of peak a difficult task. 



115 

Using smaller time steps would reduce this uncertainty; but would 

increase the computation costs, Another approach to overcoming this 

problem would be to fit a curve to the data points in the region of the 

peak using either graphical methods or a numerical technique. The 

latter angle of attack was used with data \\<here the peak did not appeftr 

to fall· close to one of the time increments. A second order curve was 

utilized in this attempt. The equation has the form: 

Q = a + bt + ct 2 (4.12) 

Where: a, b, c, = coefficients determined from the data 

Q =flowrate 

t = time 

The results shown in table 4. 3 have been refined by this interpolation 

technique. 

4. 6 CONCLUSIONS 

In this chapter, a review of the terms in the momentum equation 

has been made and a method for determining the order of magnitude 

of these terms has been investigated, From this study, several 

broad qualitative classifications of unsteady flow phenomena have 

been demonstrated. These form a preliminary basis for determin
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ing the suitability of applying a kinematic solution to a particular 

unsteady flow situation. 

The classifications, first proposed by Henderson, are: 

( 1) STEEP SLOPE - Only the bed slope is significant in this 

by
type of system. The absolute value of is estimated 

using the equation: 

( 4.8)I:~ 	I= 

If the quantity 

(4.13)I:~ 1/So << 


the system may be classified as steep. 


( 2) 	 GENTLE SLOPE - With this classification, only the bed 

. by
slope and - terms of the dynamic equation are signifi

bx 
cant. It has been shown that if the system does not fit into 

the steep slope classi.fication and 

F~ <<I 	 (4.14) 

the 	system may be classified as gentle sloped. 

( 3) 	 INTERMEDIATE SLOPE - This system is encountered when 

all the terms in the momentum equation are important. A 
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system which cannot be classified with the two previous 

categories will fit under this title. 

Results of several simulations were presented which showed 

the comparisons of dynamic and kinematic s oluti.ons for various class

ifications of systems. As the bedslope became more significant in 

relatiqn to the other terms, the solutions tended toward a kinematic 

solution. However, attenuation, which resulted from the dynamic 

effects in the system, was detected even when the bedslope was two 

by
orders of magnitude greater than the term. It is felt that 

cSx 
this observation is not a general observation that can be applied to 

other 'cases of unsteady flow phenomena. Other systems, which have 

a longer wave length hydrograph, may have much less attenuation. 

It should also be noted that the classifications steep, intermed

iate or gentle slope are not the result of a particular bedslope in a 

channel. These classifications also reflect the flow resistance, channel 

geometry, ranges of flows encountered in the hydrograph and the rate 

of change of the flow rates. This was demonstrated by studying a 

system which, for a particular inflow hydrograph, changed from 

intermediate slope to gentle slope and finally to a steep slope system, 

as the bedslope and roughness were increased. 

Comparisons of results from this study were made with results 

reported by Amein ( 1968) and Graves ( 1967) to demonstrate problems 
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associated with using excessively large time steps. The difficul

ties were manifested in the form of instabilities and in data interpret

ation. This demonstrates that both the kinematic methods and the 

dynamic methods have limitations to the sizes of ~X and 

that can be successfully employed to provide a solution. An inter

polati?n technique was employed to overcome problems associated 

with data interpretation. 

The method proposed by Graves is interesting in that it is an 

example of methods which are employed to model the attenuation and 

movement of a flood wave with a quasi-kinematic approach. Another 

example of a technique which employs an approximation in conjunc

tion with kinematic flood routing to model movement and attenuation 

is the kinematic solution with the nucleus moved from the centre of 

the molecule. These types of models have not been discussed at this 

point in the· thesis. However, the next chapters present a discussion 

of several methods that may be utilized to extend the usefulness of 

kinematic models. 



CHAPTER 5 

ATTENUATION AND KINEMATIC METHODS 

This chapter provides a discussion of a method of modelling 

attenuation in conjunction with the general kinematic flood routing 

algorithm. The previous chapter, which contains a comparison of 

kinematic and dynamic solutions of two physical systems, demon

strates the ability of the two methods to model attenuation. The 

dynamic solution follows from a rational numerical representation 

of the actual physical phenomena. Kinematic methods, per se, 

do not predict attenuation but depend on a manipulation of the com

putational scheme to approximate the reduction of the flood wave, 

which may not, in fact, truly represent the process that is occurr

ing in the prototype. 

Thus, while dynamic techniques provide a more realistic 

method of predicting attenuation, it may be possible and compu

tationally advantageous to utilize a modified kinematic routine, 

if the solutions can be shown, by a calibration process, to be valid, 

In presenting this discussion three components of modelling 

attenuation will be explored, These are: 

119 
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1. 	 "Molecule effect:" the attenuation introduced 

by moving the nucleus from the centre of the 

molecule. 

2. 	 "Cascade effect:" the way in which attenua

tion is affected by varying the number of 

storage units in series. 

3. 	 "Storage effect:" the dependance of the atten

uation on the relative magnitude of live storage 

and volume in the flood hydrograph. 

To show the usefulness of this approach in the simulation of 

unsteady open channel flow, a number of numerical experiments 

are presented and the results are compared with the correspond

ing dynamic solutions. A description of the way in which an engi

neer might calibrate a model of this type is included along with 

the concluding remarks. 

5. 	1 THE "MOLECULE EFFECT" -MODELLING ATTENUATION 

BY MOVING THE NUCLEUS 

In designing the numerical experiments used with this study, 

two distinct physical systems were employed. These systems, 

described in detail earlier in this thesis were: 

(i) 	 a rectangular channel 20' deep and 100 'wide 

subjected to a triangular shaped inflow hydrograph 
) 
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(ii} a very wide channel subjected to a sinu

soidal inflow hydrograph. 

The primary difference between the two systems was the scale. 

The time base of the inflow hydrograph for the first system was 

2. 77 hours while the second hydrograph had a time base of 96 

hours. The length o£ the channel for the first system was 40, 000 

feet whereas a channel 300 miles long was used in the second system. 

To examine the sensitivity of the flood routing solution to 

the position of the nucleus within the molecule, a program was em

ployed which for fixed values of AX and A~ carried out a routing 

an~lysis for a range of values of a and 8 . Both parameters 

were varied between 0. 0 and 1. 0 with increments of 0. 25, so that 

a total of 25 possible solutions were obtained. It was recognized 

at the o•.1tset, that a significant number of these nucleus positions 

would not result in an acceptable solution, because of numerical 

instability at certain values of a and 13 

The results for the first system are shown in Tables 3. 3 

and 3. 4 and 3. 5 of Chapter 3. The elements of the matrix define 

the positions of the nucleus and the values contained in each element 

are the ratios of the peak outflow divided by the full bank flow. rate. 

A sit1;1ilar set of results was compiled for the second system in 

tables 5. 1, 5. 2, 5. 3 and 5-. 4. 
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TABLE 5. 1 

PEAK VALUES OF THE OUTFLOW HYDROGRAPH 

S.YSTEM 2 


300 MILES DOWNSTREAM 


AT= 2 HOURS 


AX= 10 MILES 


~ 1. 00 0.75 .o. 50 0.25 0.00 

1. 00 0.976 0.954 0.932 0.910 0. 888 

0.75 unstable 0.986 0.964 0.942 0.919 

0,50 unstable unstable 0.996 0.975 0.952 

0.25 unstable unstable unstable unstable 0.986 

0.00 unstable unstable unstable unstable unstable 
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TABLE 5. 2 

PEAK VALUES OF 	THE OUTFLOW HYDROGRAPH 

SYSTEM 2 

300 MILES DOWNSTREAM 


AT== 2 HOURS 


AX== 20 MILES 


~ l. 00 0.75 0. 50 0.25 0.00 

1. 00 unstable 0.975 0.931 0,887 0. 849 

0.75 unstable unstable 0.963 0.918 0. 875 

0.50 unstable unstable 0.997 0.951 0.904 

0.25 unstable unstable unstable 0.985 0.938 

0.00 unstable unstable unstable l. 000 0.972 
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TABLE 5. 3 

PEAK VALUES OF 	THE OUTFLOW HYDROGRAPH 

SYSTEM 2 

300 MILES DOWNSTREAM 

..6.T = 3 HOURS 

AX= 10 MILES 

~ l. 00 0.75 0.50 0.25 0.00 

1. 00 0.746 0.924 0.902 0.880 0. 860 

0.75 unstable 0.970 0.949 0.927 0.903 

0,50 unstable unstable 1.000 0.975 0.954 

0,25 unstable unstable unstable unstable 1. 000 

0.00 unstable unstable unstable unstable unstable 
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TABLE 5. 4 

PEAK VALUES OF THE OUTFLOW HYDROGRAPH 

SYSTEM 2 

300 MILES DOWNSTREAM 


AT :: 3 HOURS 


AX == 20 MILES 


~ 
1. 00 

0.75 

0.50 

. 
o. 25 

o.oo 

' 1. 00 

unstable 

unstable 

unstable 

tmstable 

unstable 

0.75 

0.944 

0.990 

unstable 

. 
unstable 

unstable 

0.50 

0.901 

0.948 

0.995 

unstable 

unstable 

0.25 

0.860 

0.903 

0.952 

-
0.999 

unstable 

I 

0.00 

0.825 

0.860 

0.904 

0.9~~ 

1. OG 

~, 

I 

-I 
1 
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Before proceeding with the theoretical aspects o{ the 11 mol

ecule effect" it is vital that the reader obtain a clear picture of the 

phenomena that is manifested by these results. If a three dimen

sional plot were made, showing the peak outflow versus a and 

8 , a smooth surface would be depicted. This surface may be 

visualized by imagining contour lines across the tables which 

contain these values. For example, the results shown in table 3. 3 

for System l, would form a surface with the line of steepest descent 

going fro~ the central position toward the upper right hand corner 

of the table ( a= 0. 0, /3 = l. 0) with the gradient of this line becom

ing shallower in the proximity of the corner. Similarly, table 5. l, 

which shows some results from System 2, presents data which would 

form a surface with the steepest descent upwards and to the right. 

If the strike of the surface were plotted to determine the direction 

of the dip, the strike being a horizontal line perpendicular to the 

dip or line of steepest des cent, the direction of the dip would be 

found to be three increments upwards and two increments to the 

right. Examination of the other tables ( i. e. 5. 2 to 5.4) reveals 

a similar result, although it can be seen that as the size of AX 

and AT varies, the direction of the dip changes. When aX· is 

made larger, the dip swings towards the right hand side; b:.1t if 

dT is increased, the dip __points toward the upper portion of the 

matrix. 
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If the necessary key factors could be identified enabling an 

engineer or researcher to describe the characteristics of these 

surfaces without having to generate numerous computer simulations, 

it would then be possible to preselect the necessary values of a , 

/3 etc. in order to produce attenuation of a required amount. 

The following theoretical investigation is di:~:ected towards 

identification of the parameters which characterize the P( a , IJ ) 

surfaces described above and towards rationalizing the introduction 

of numerical error, or "molecule effect" that is brought about by 

moving the nucleus away from the centre of the molecule. 

Examination of the finite difference approximation of the con

tinuity equation in differential form has revealed that the repre

sentation is given by equation 5. 1. 

2bQ bA I bQ I b2A 2 2 
+ +-(2a-I)AX- + -(I-2/3)AT- +O(AX,AT )

bx bt 2 bl 2 b t 2 

=q (5 .I) 

The mathematical proof of this statement is presented in Appendix C. 

Ignoring error terms higher than first order allows the equa

tion to be written as: 

bQ bA ~ _ 
+-+~=q (5.2) 

bx b t 
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where:1
I 

I o2a I ilAE=-(20-I)AX- + -(I-2/3)AT- {5.3)ox2 M22 2 

To calculate the sensitivity of the size of the error terms to 

variations of a, /3 , AX and AT, it is necessary to analyze the 

nature of the mathen:a tical model. This information can be obtained 

b2Q 
by determining the relative size of the terms and 

bx 2 

Describing the kinematic wave by the partial differential 

equation: 

by + c by =0 {5 .4)
bt bx 

irr.plicitly defines the wave celerity as 

-by/bt bxC=--- = (5 .5)
by/bx bt 

Rearranging the differential form of the continuity equation yields: 

_ bA = q- (5. 6)
bt 

or: 

bA _ bQ 
= q-- {5.7)

bt bx 
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Further differentiation of equations 5. 6 and 5. 7 leads to the second 

order terms of 5. 8 and 5. 9. 

b2
Q b2A 
=-- (5.8)

bx2 , &xbt 

(5.9) 

Wultiplying equation 5. 8 by the kinematic wave velocity gives: 

(5.10) 

from which: 

(5.11) 

(5.12) 
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This leads to several important points. First, by substituting 

equation 5. 12 into the error expression 5, 3 the following equation 

is obtained: 

(5.13) 

. [>2 ( )=bx~ (a-0.5l~X +(0.5 -BlC~T (5.14) 

This demonstrates the qualitative dependance of the error term 

on linear terms in a, B . 

The second item that can be developed from the previous 

algebraic manipulations is a finite difference rep res entation of the 

error terms. 

By referring to figure 3. 2 for a definition of nodal values in 

the finite difference molecule, it can be seen that: 

(5.15) 

(5 .16) 
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I 
1 Similarly: 

(5.17) 


(5.18) 

Using the following finite difference approximations: 

bQ 

bX 
= 

Q4 + Q3- Q2- Ql 

2..6.X 
(5.19) 

and: 

bA 

bt 
= 

A4+A2- A3-A1 

2..6.T 
(5.20) 

equation 5. 1 may be rewritten in finite difference form. The 

equation is: 

= q (5. 21) 
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Collecting terms yields: 

1-28 Q3+Q2-Q4-QI 
+ 

2 AX 

2a-1 
+ = q (5. 22)

2 

Further simplification gives: 

8(Q4-Q2) + (I-B)(Q3-QI) 

'AX 

= q (5.23) 

It can be seen that equation 5, 23 is precisely the same as 

equation 3. 10. This leads to the conclusion that the error term 

related to the selection of a and AX has physical significance in that 

it indicates the amount of reservoir type storage, storage which is 

a function of outflow alone, that is assigned to the elementary reach. 

Furthermore, because the error terms are linear additions 

to the continuity equation, the introduction of error related to the 

choice of 8 and AT causes the model to behave in a manner 

-

similar to the introduction of reservoir storage in the channel. 
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Thus, by the use of equation 5. 14, the first order errors associ

ated with aT may be converted to equivalent reservoir storage. 

This property has already been demonstrated in pictorial 

fashion in a previous chapter, where the shape of the outflow hydro-

graph for the first system was shown to be related to the peak of 

the hydrograph. (Figure 3, 6) If the peak attenuated to a particu

lar value, the flood wave appeared to have the same shape regard

less of whether the attenuation resulted from the introduction of 

error in the order of aX or error in the order of aT. 

A qualitative descr-iption of the equivalent reservoir storage 

in the channel may be obtained in the following manner. Dividing 

. AX b2Q 
equation 5. 12 by --- yields:2 . 2 hx 


2( CaT
=s = (2a-l) + (1-2/3) - (5. 24)

6-X 


where: S = stability number defined in Appendix A. 

Using the dimensionless number, S, it is possible to describe 

the amount of equivalent reservoir storage in an elementary reach. 

If the nucleus is in the centre of the molecule, S = 0. 0 and there is 

no reservoir storage in the channel. However, when the nucleus 

is located at the downstream boundary (a = 0. 0, 13 = 0. 5) the value 

of S is -1. 0 and the elemeptary unit is modelled as a reservoir. 
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The amount of apparent reservoir storage in the elementary reach 

can be increased even further by selecting a value of 8 greater than 

0. 5. The exact amount by which the apparent reservoir storage will 

aT 
increase depends upon the values of c-, AX and aT . If c is 

ax 
precisely equal to unity, the value of Swill vary in direct proportion 

to both ( 2 Q - I) and ( 1- 2 8 ) . 

For a linear channel the kinematic wave velocity is constant 

with respect to y and there is no difficulty in determin.ing the value 

of c to use in calculating S. In non-linear channel elements in which 

c is a function of the stage y, it is necessary to choose some value 

of. stage or discharge for which c may be computed. Ideally this 

stage should be able to be selected from a knowledge of the inflow 

hydrograph. However, until some suitable guidelines are available 

to aid in this selection it is preferable to determine the appropriate 

value of c by simulation. Because the attenuation is a function of 

aT 
S it 	is possible to determineC-from the data presented in the 

AX 
tables: 

aT 
For System 1, C- may be calculated in the following manner: 

ax 
(a) 	 The time steps chosen for the simulation caused 

the peak of the inflow hydrograph to be truncated to 

0. 984 times the maximum full bank flow. Thus, 

the ~alues chosen to dete.L·mine c should be di

vided by 0. 984. 
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(b) 	 Using data from table 3. 3, the sensitivity 

to changes of a at the centre of the mole

cule are: 

I OO _ 0.924 
. 0.984 

= 	 = -0.122A(2a-l) -0.50 

The 	sensitivity to changes in /J are: 

I OO _ 0.925 
. 0.984 =------- =-0.120

A( 1-28) -0.50 

Thus, Sis slightly more sensitive to the 

value of a and 

AT -0.120c- =--
AX -0.122 

or 

C = -0.120 X 2500 = 
-0.122 200 12 ·3 fps 

(c) 	 This type of calculation can be repeated for 
I 

all of the data available and an average value 

dete-rmined. However, when applying this 
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method it should be noted that attenuation 

may not, and indeed, usually will not, be 

a linear function of S. Thus, the sens itiv

ity tests described above should be made 

using values of the attenuated peak outflow 

that are approximately equal. 

If we replace the parameters a and 8 by equivalent vari

ables with the origin at the centre of the molecule we obtain 

9=20-1' C/>=1-2/3 

Then the desired value of c may be expressed as 

-bP 

AX bel> 
c =- (5.25)
AT bP-

b8 

If pis assumed to be 1. 0 at the point a= 0. 5, 13 = 0. 5 

( 9 = 0, cJ> = 0) then two simulation runs will provide the forward 

difference values for and from which c may be 

evaluated. 

5, 2 11 CASCADE EFFECT 11 

The 11 cascade effect 11 is defined as the extent to which overall 

attenuation is increased as the number of subreaches of constant AX 



137 

are increased. Dooge ( 1959) demonstrated that the peak outflow 

issuing from a series of :inear n~servoirs may be related to the 

Poisson (N-1, N-1). Evaluation u:f the Poisson function reveals 

that the term P(N-1, N-1) is proportional to YN where N is the 

number of elements chained tcgether. A similar situation may be 

shown to exist for chains o{ non-linear reservoirs. 

Several numerical experiments were performed to determine 

the relationship between the attenuation, ( 1-P), and the number of 

elements n when the constraint of linearity is removed. For these 

experin,ents, the cross section area from System 1 was utilized 

with reach lengths of 1, 250 and 5, 000 feet. The inflow hydrograph 

was defined as the triangular hydrograph used for System 1. 

The hydrograph was routed through various cascades with 2, 4, 8, 

16, 32 and 64 units in each cascade. 

In order to introduce a significant degree of attenuation and 

vary the molecule effect the computations were made with the fol

lowmg positions of the nucleus. 

~ I 2 -.. 
R 

a 0.0 0.0 0.5 

8 J.5 
. j 1.0 1.0 
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The results of these simulations a:re presented in figure 5. 1. 

which shows a plot of attenuation ( 1-P), versus the number of cas

caded reaches, N, in the system. Each of these numerical experi

ments resulted m a set of points that could be approximated by a 

straight line on a log-log plot. After fitting the straight lines to 

the data it could be seen that a family of nearly parallel curves 

resulted. 

The slope of the various lines was determined to provide an 

estimate of the exponent, e, in the general equation 

( 1-P) = k Ne (5. 26) 

where: P =peak outflow ratio 

k =a coefficient 

N =number of reaches in the simulation 

e = an exponent 

The results indicated a range of results from 0. 542 to 0. 574 

for e as shown on figure 5. l. 

These results are presented to demonstrate an interesting 

feature of the system and simulation. It is also interesting to note 

that if a linear system was utilized, the exponent w auld be of the 

order of 0. 5. More tests are required to delineate the relation

ship of the exponent e to factors such as the input, and system 
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FIGURE 5.1 


ATTENUATION. Vs NUMBER OF REACHES 


1.0 

0.5 

2 

CURVE 
No. 

I 

2 

3 

4 

a 8 AX 
0.0 1.0 5000 

0.0 1.0 1250 

0.5 1.0 1250 

0.0 0.5 1250 

3 - 4c.. 
1 0.1 --

0.05 
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characteristics. Further investigations into these items and the 

variance of the exponent, e, could provide information which may 

quantify the effect of system non-linearity on the response char

acteristics. 

, 5. 3 "STORAGE EFFECT" 

''Storage effect" is defined as the attenuation that results from 

a finite quantity of live storage expressed as a proportion of the 

volume in the flood hydrograph. It is intuitive that more attenuation 

will occur as reservoir volume increases. 

Since a constant inflow hydrograph was employed in all 

tests, this effect was studied by running further numerical experi

ments with System 1 in which the attenuation, 1-P, was dependant 

on the reach length AX . 

Following empirical evaluation of the molecule and cascade 

effect it was then intended to relate the attenuation as a function of 

the live storage. Although it may be anticipated that this relationship 

is highly non-linear over a wide range of attenuation vaiues, it is 

reasonable to assume that within the relatively small range of 

AX values examined the function would not depart significantly 

from a straight line plot. 
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5, 4 ANALYSIS OF NUMERICAL EXPERIVENTS 

For the purpose of evaluating the several functional relations 

described above, attention was directed to the result of numerical 

experiments on System 1 as recorded in tables 3. 3 - 3. 5. The 

various effects were isolated in a slightly different order to that in 

which they have been considered up to this point, i.e. cascade 

effect and molecule effect and storage effect. 

5. 4. 1 CASCADE EFFECT 

In order to study the effect of increasing the number of 

serial elements in a system, the program was modified slightly so 

tliat A.X, a and fJ could be heid constant, while n was increased 

g.eorr.etrically. The results for various values of aX , a and /J 

are tabulated in table 5. 5. 

Following on the argument of section 5. 2, a log-log plot of 

the attenuation ( 1-P) versus n (number of elements) revealed that 

the value of e in equation 5. 26 was essentially constant with a 

mean value of 0. 55 . The slope of the various plots is indicated 

if figure 5. 1 and ranges from 0. 542 to 0. 576. 

The effect of this correlation is to allow the attenuation of a 

single reach to be determined as a function of 

(1- P) 
No.ss 
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TABLE 5. 5 

TYPICAL RESULTS OF CASCADE EFFECT EXPERIMENTS 

SYSTEM 1 

AT =ZOO SECONDS 

AX= 1250 FEET 

a B N ( 1-P) 

0.00 0. 50 

2 

4 

8 

16 

32 

64 

0.0164 

0.0247 

0.0381 

0.0525 

0.0755 

0. 1089 
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'"here P is the resultant relative peak flow issuing from a cascade 

of N elements. Armed with this information it was now possible 

to extend the analysis to the molecule and storage effects. 

5. 4. 2 MOLECULE EFFECT 

As discussed in section 5. 1, the attenuation ( 1-P) may be 

related to the stability parameter S which is shown to be a function 

of a , 8 , A X , AT and c by equation 5. 24. 

Figure 5. 2 shows a log-log plot of ( 1-P·) /N' 55 as a function 

of S. Each line rcpres ents values obtained for constant values of 

AX Once again the relations appear to be simple exponentials 

with the range of experiments covered. However, the exponent 

of the different experiments varies between 0. 5 and 0. 6. The aver

age of these values is 0. 55. The general result is that for constant 

values of N and AX , the attenuation ( 1-P) is proportional to approx

imately--50· 55 . Thus for constant Nand AX 

1- p 
-= CONSTANT (5.27}

-S0. 55 

·5, 4. 3 STORAGE EFFECT 

Using the correlations determined in the foregoing two sec

tions it is now possible to isolate the dependence of attenuation on 
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FIGURE 5.2 
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the live storage. This was achieved by reducing the results of 

the numerical tests to obtain values of 

( 1- P) 
= f(AX) (5.28) 

To express the relative live storage as a volumetric ratio, it 

is convenient to use as abscissa the non-dimensional term 

AX ·L::t.A 

Vol 

where: L::t.A = A(Qmax} - A(Qbase) 

Vol= volume of inflow hydrograph above the base flow 

This choice of parameter is somewhat arbitrary and valid here only 

because of the constancy of the inflow hydrograph employed and the 

prismatic nature of the channel. The results of this analysis are 

shown in figure 5. 3 in which it may be seen that the "reduced" 

attenuation is approximately a linear function of the relative live 

storage parameter. 

( 1- p) L::t.X·L::t.A 

= k---- (5.29)


Vol 


where: k = 0. 485 for the rec:;nlts examined 

http:k----(5.29


- -- -~~~---------------~--
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5. 4. 4 EXTENSION TO OTHER SYSTEMS 

The re&ults of the foregoing analysis are of interest but 

ar'e rather dependent on the assumptions and constraints of the 

particular system from which the numerical data were obtained. 

It must be recognized that a more generally applicable relation 

may require inclusion of the effect of the hydrograph shape (de

fined perhaps by higher statistical moments) and the degree to 

which the express ion lii.X·~truly represents the live storage in 

the system. 

It must be recognized that the functional relations developed 

above are valid only for the system from v:hi.ch numerical data were 

obtained and that application of these correlations to other systems 

is unwarranted until such time as further num.erical tests can be 

carried out. Until such time, however, it is desirable to develop 

some simple guidelines for the development, use and calibration of 

kinerr a tic routing models. The following section attempts to develop 

such a methodology on the basis of the analysis presented earlier 

and the application in various circumstances is illustrated. 

5. 	5 GUIDELINES FOR CALIBRATION OF KINEMATIC ROUTING 

WODELS 

Since it is :r-ccoznized th2.t no attempt has been n--.ade to quan

tify the dependance of attenuation on hydrograph shape and storage 
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effect, it follows that the engineer engaged in constructing a 

kinematic routing model must make use of trial numerical experi

ments as an aid to calibration. This being so, it is desirable to 

identify a compo•.md parameter which combines the several sepa

rate effects described above and which will enable computational 

effort to be minimized in the process of model development and 

adjustment. 

In the process of calculating the relation of attenuation to 

S, AX and N, it was shown that a correlation existed which 

promised to become a useful tool to efficiently calibrate a numerical 

model. 

Rearranging equation 5. 14 indicates that 

(5.30) 

The term 
b2Q 

bx2 
is a function of the system and the inflow 

'ahydrograph and remc:.dns fixed for ar..y independant values of 

/3 , AX and AT. Assuming that the attenuation is some 

function of the error term, a correlation between P and-S.6.X 

should exist. Figure 5. 4 contains a plot of P versus-S .6.X for 

System 1; a similar plot for System 2 is shown in figure 5. 5. The 

results platted on these curves are shown in tables 5. 6 and 5. 7. 

http:compo�.md
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TA:RLE 5. 6 


TYPICAL VALUES USED TO DEFINE 

THE P VS SaX CURVE 

SYSTEM 1 

40, 000 FT. DOWNSTREAM. 

AT 
(SEC.) 

ax 
(FT.} 

a 8 s sax 
(FT.) 

PEAK 

2.00 

2, 500 

0. 50 

0. 5 

0.0 0 0 q 88 

0. 25 -0' 5 - 1?. 50 0.924 

0.00 -·L I) -2500 

0 

0. 890 

0.965 

5, 000 

0. 50 0.0 

0.25 -0. s -2500 0. 890 

0.00 -1.0 -5000 0. 840 

10. 000 

0. 50 0.0 0 0.941 

0.25 -0. 5 -5000 0.840 

0.00 -1.0 - 10000 0. 771 
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TABLE 5. 7 


TYPICAL VALUES USED TO DEFINE 


THE P VS SAX CURVE 


SYSTEM 2 


300 MILES DOWNSTREAM 


AT 
(HRS.) 

AX 
(MI.) 

a 8 s SAX 
(MI.) 

PEAK 

2 10 

0.00 

0.25 
0. 50 
0.75 
l. 00 

-0.285 
-1. 000 
-1.715 
-2.430 

- 2. 85 
-10.00 
-17. 15 
-24. 30 

0.986 
0.952 
0.919 
0. 888 

0.25 

0. 50 
0.75 
l. 00 

-0. 500 
-1.215 
-1. 9 30 

- 5.00 
-12. 15 
- 19. 30 

0.975 
0.942 
0.910 

0. 50 

0. 50 
0.75 
l. 00 

0.000 
-0.715 
-1. 430 

0.00 
- 7. 15 
-14. 30 

0.996 
0.964 
0.932 

0.75 
0.75 
1. 00 

-0.215 
-0.930 

- 2. 15 
9. 30 -

0.986 
0.954 

1 00 l. 00 -0. 430 - 4. 30 0.976 

0.00 

0.25 
0. 50 
0.75 
1. 00 

-0.463 
-1. 000 
- 1. 537 
-2.075 

- 5. 26 
-20.00 
-30. 74 
-41. 50 

0.956 
0.904 
0. 860 
0.825 

0. 25 +0.037 + 0.74 0.999 
0. 50 -0. 500 -10.00 0.952 

3 20 0.25 0.75 -1.037 -20.74 0.903 
l. 00 -1.537 -30.74 0.860 

0. 50 

0. 50 
0.75 
1. 00 

0.000 
-0. 537 
-1. 07 5 

00. 00 
··10.74 
-21. 50 

0.995 
0.948 
0.901 

0.75 
0.75 
1. 00 

-0.037 
-0. 575 

- 0. 74 
- 11. 5 

0.990 
0.944 
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It seems reasonable to assume that similar curves may be 

obtained for any system. A procedure may therefore be developed 

whereby these curves may be obtained from two or more simula

tion runs with carefully selected parameters. This curve may 

then be used as a guid~line for the selection of the required value 

of SAX corresponding to the observed attenuation, A suggested 

procedure for the selection of parametric values is given below 

in the form of a check test. 

1} 	 Select an appropriate value of AT to model the inflow 

hydrograph. If the channel is arbitrarily shaped it may 

be necessary to specify the AX increments due to the 

constraints of geometric data. 

2) 	 Obtain an estimate for the kinematic wave velocity, c, 

based on the system and the inflow hydrograph. 

3} 	 Assuming that the AX steps can be varied, select 

a value of AX ~ CAT (say) with the constraint that 

_b._ is an integer. In the first simulation selecting
AX 

a= o. o, {J = 1. 0 will provide the maximum amount 

of attenuation that is possible with the specified AX and AT 

In addition, the numerical calculations will be uncondition

ally stable. 
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'I 

4) 	 The above steps would define SaX and performing the 

necessary mathematical calculations would provide a 

result with an attenuated outflow hydrograph. 

5) If the predicted attenuation is greater than the observed 

peak then adopt a smaller value of SaX, say one half of 

the previous value, There are a number of ways in which 

SAX may be varied by adjusting one of four variables 

a , 8 , AX or AT Unless the value of c is well 

established, it is suggested that a and 8 be adjusted and 

AX and AT held fixed, This may provide more informa

tion which may be helpful in determining c. 

6) 	 Repeat the calculations with the reduced value of c to 

obtain a new estimate of the peak outflow and hence define 

another point on the relationship 

P = 	f(SAX) (5. 31) 

from which i.t may be possible to approximate the sax 

required to provide the needed amount of attenuation. 

7) 	 If the first value of the attenuated hydrograph is less than 

the desired amount, it is necessary to increase sax. 

This can be done by increasing either AX or aT . If 

the channel has been defined with arbitrary cross sections 

it would be necessary to adjust aT . Otherwise an 
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adjustment of aX may provide the most e f f i c i en t 

solution. 

8) 	 Successive adjustments of SaX "Would produce the rela

tionship of P to SaX and allow the user to calibrate the 

model. 

There may be other variations on the previously described 

calibration process that may be employed to achieve the desired 

results. For example, if the value of c is unknown, the preliminary 

calculations may be performed with 8 = 0. 5 and thus eliminate the 

need to have a value for the kinematic wave velocity. Another nu

merical experiment with a= 0. 5 and 8 > 0. 5 would yield the 

data required to determine c. In selecting values for the para

meters a and 8 and step sizes ax and aT the user 

should remember to follc."W stability criteria guidelines (see Chap

ter 3) and must also utilize sound engineering judgment. This will 

ensure thnt unreasonably large numerical errors and approximations 

are not introduced into the calculations. 

5. 6 	 DISCUSSION OF HYDROGRAPHS RESULTING FROM ATTENUATED 

KINEMATIC SOLUT~ONS 

The results obtained from the kinematic simulations are 

shown in figures 5. 6 - 5 8 for System 1 and in figure 5. 9 for Sys

tern 2. 
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When the bed slope was very shallow, dynamic effects were 

significant and the kinematic solution was lagged relative to the 

dynamic solution as shown in figure 5. 6. However, as the bed 

slope was increased and dynamic effects became less significant 

the dynamic solution and the attenuated kinematic solution were very 

close as demo:qstrated on figures 5. 7 and 5. 8. Figure 5. 9 illus

trates that with System 2 there was a very close correspondence of 

the results from the two methods of analysis. Further discussion 

of criteria relating to the applicability of kinematic routing is found 

in Chapter 4. 

5. 7 CONCLUSIONS 

Numerical experiments have been performed to study the way 

in which attenuation is modelled by the: 

1) Molecule effect 

2) Cascade effect 

3) Storage effect 

Results of using the general kinematic flood routing method 

to simulate the above effects reveal. that in certain cases it is possible 

to accurately model unsteady open channel flow. In the past kinematic 

techniques have been subject to criticism due to the sensitivity of 

the solution to the size of AX and AT However, investi
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gating this sensitivity and determining how it affects the solution, 

provides valuable insight into a potentially useful numerical tool. 

Varying the size of AX changes the molecule effect, depending on 

the selection of a and 13 J it changes the storage effect and for a 

fixed total reach length it affects the cascade effect. 

Similarly the selection of AT is a significant parameter in 

determining the molecule effect if the nucleus is not located on 

the centre of the molecule. 

In the course of the numerical experiments, it was noted 

that the peak outflow, if plotted over the finite difference molecule, 

forms a relatively smooth surface. A limited relationship has 

been developed which can be used to predict the value of the peak at 

any point over the molecule after calibration. With this relationship, 

which combines molecule, cascade and storage effects, it is poss

ible to establish a kinematic model based on results of a dynamic 

model and/ or actual recorded input and output of the prototype. Using 

S and AX it is possible to select values of a , B , AX and AT 

to produce a particular O'.ltflow hydrograph, provided the dynamic 

effects are not too dominant. 

Further research is required to determine the influence of 

other factors such as the inflow hydrograph characteristics and 
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1 
physical properties of the system on the outflow hydrograph. This 

I 

may enable a user to reduce the number of numerical experiments 

required to calibrate a model and may make it possible to predict 

the outflow hydrographs after the system has been altered without 

subsequent recalibration, 



CHAPTER 6 

MODELLING ATTENUATION WITH AN IMAGINARY RESERVOIR 

The previous chapter was devoted to a discussion of apparent 

attenuation which resulted from the inclusion of storage in an elem

entary reach. This storage was introduced by modifying the com

putational approach so that combination channel-reservoir units 

were modelled. This chapter is devoted to studying a system where 

the char.nel and reservoirs were modelled as two distinct phenomena. 

The prime objectives of this chapter are; (i) to provide a 

picture of the basic idea of a channel and reservoir. in series, (ii) 

to study the sensitivity of the solution to the location of the reser

voir and (iii) to investigate differences resulting from simulations 

where the reservoirs have different degrees of nonlinearity. 

The results of the study are summarized in the concluding 

remarks. As well, several suggestions are included which point 

out areas where future research of this topic may be beneficial and 

where the conc-ept of a channel and imaginary reservoir in series 

may be useful. 

163 
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6. 1 THE PHYSICAL SYSTEJvf: 

Using a channel and an imaginary reservoir in sertes to sim

ulate a natural channel system is an often used hydrologic tool. 

This technique, commonly known as the lag and route method, 

utilizes two components in performing the numerical simulation. 

These are (i) a linear channel and (ii) a linear reservoir. A linear 

channel is defined as a channel in which the flow rate is a linear 

function of the cross-sectional area. Thus, the kinematic wave 

dQvelocity is a constant for any specific cross-section indepen
dA 

dent of flow rate (or stage). Translation of the wave is modelled 

by this portion of the model. The linear reservoir, which produces 

the attenu ati.on of the flood wave, is defined as a reservoir in which 

the storage is a linear function of the outflow. 

There are several characteristics of linear systems that allows 

the simulation process to be simplified to a degree. Firstly, when 

linear components are utilized in the study the response of the system 

and therefore the solution are not sensitive to the input and it is 

possible to utilize the principle of superposition. Thus, it is not 

necessary to consider the order in which the components occur. 

The present study enlarges upon the basic lag and route approach 

by allowing for the inclusion of non-linear channel and non-linear res
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~rvoir elements in the system. In particular, the following vari

ables were considered: 

1. The location of the reservoir. 

2. The degree of non-linearity of the reservoir. 

3. The magnitude of live storage associated with the reservoir. 

In studying the sensitivity of the solution to the location of the 

reservoir, the limiting cases were investigated. The traditional lag 

and route method, with the reservoir located at the downstream end 

of the channel was used along with what is hereafter defined as the 

route and lag method, a system with the imaginary reservoir at 

the upstream limit of the channel. 

. . 
System 1 was utilized for this portion of the study. The channel 

was modelled as e'ight elementary reaches, each 5000 feet long. The 

single imaginary reservoir was described using the following equation: 

ST = KQw ( 6. I) 

-where: ST =storage 

Q =flow rate 

K = a parameter 

w = a parameter 

A schematic representation of the system is shown in figure 6. 1. 

When studying System 1 using the finite difference solutions of 

the momentum and continuity equations, attenuated peaks of the order of 

0. 7 and 0. 8 were obtained. By trial and error, an approximate res
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ervoir size was determined which would result in attenuation of 

approximately the aame magnitude. This was used to study the 

sensitivity of the solution to the location of the reservoir. 

6. 2 THE POSITION OF THE RESERVOIR 

Table 6. l contains a set of results obtained from a series 

of simulations using the route and lag analysis (reservoir upstream) 

while table 6. 2 contains a set of results for similar simulations 

using the lag and route (reservoir downstream) method of analysis. 

For each system studied, nine reservoir types were examined 

using value of K and w as follows: 

K = 12000, 14000, 16000 

w = 0. 8, 0. 9 , 1. 0 

For each system at:1d reservoir type, the attenuated peak, P, and 

t,w o measures of lag were recorded. The lag p<'trameters used 

were defined as follows: 

Tp =time to peak (hr) 

Tc = time to centroid (hrs) of hydrograph above baseflow 

The values of P, Tp, Tc are given for each system and reservoir 

type in tables 6. J and 6. 2. As might be expected, the attenuation 

P varies inversely with K and w since each of these terms tend to 

increase the sensitivity of live storage to the discharge Q (see equa

tion 6. 1). The lag terms similarly increase with increase of storage 
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TABLE 6. 1 

DATA FROM RESERVOIR-- CHANNEL SIMULATION 

SYSTEM 1 

40, 000 	FT DOWNSTREAM 

*Truncated 

~ 0.8 0.9 1.0 

12000 p = 0. 833 

Tp ~ 1. 24 

Tc = 1. 47 

p = 0.632 

Tp = 1. 69 

Tc = 1. 91 

p = 0. 437 

Tp = 2. 13 

Tc = 1. 89>:~ 

. 
14000 

p = 0. 808 

Tp = 1. 30 

Tc = 1. 54 

p = 0.599 

Tp = 1. 74 

Tc = l. 93 

P=0.412 

Tp = 2. 19 

Tc = 1. 87>:~ 

16000 

p = 0. 780 

Tp = 1. 36 

Tc = 1. 60 

p = 0. 570 

Tp = 1. 80 

Tc = 1. 96 

P=0.391 

Tp = 2. 19 

Tc = 1. 85>:~ 

P = Peak Flow /Full Bank Flow 

Tp = Time to Peak (hrs) 

Tc =Time to Centroid (hrs) 

See figure 6. 3 for definition of above terms. 
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TABLE 6. 2 

DATA FROM CHANNEL--RESERVOIR SIMULATION 

SYSTEM 1 

40, 000 FT DOWNSTREAM 

>!<Truncated 

~ 0.8 0.9 1.0 

12000 

P=0.818 

Tp = 1. 13 

Tc = 1. 42 

P=0.616 

Tp = 1. 58 

Tc = 1. 80 

p = o. 429 

Tp = 2. 02 

Tc = 1. 8(}!< 

14000 

P=0.791 

Tp = I. 19 

Tc = 1. 49 

p = 0. 584 

Tp = I. 63 

Tc = 1. 7 8>!< 

p = 0. 405 

Tp = 2. 08 

Tc = 0. 80>!< 

16000 

p = 0. 766 

Tp = 1. 25 

Tc = 1. 56 

p = 0.556 

Tp = 1. 69 

Tc = l. 74 * 

P=0.386 

Tp =2. 08 

Tc = 0. 10•!< 

P = Peak Flow /Full Bank Flow 

Tp = Time to Peak {hrs) 

Tc =Time to Centroid (hrs) 

See figure 6. 3 for definition of above terms. 
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(K and w increasing) although with large amounts of lag and atten

uation, the outflow hydrograph is significantly truncated resulting 

in serious error in evaluation of Tc. These cases are marked in 

tables 6. 1 and 6. 2. 

The initial observation is that whereas the value of P is sen

sitive to values of K and w, the sensitivity to the position of the 

reservoir is low. In general, values of P in table 6. 2 are 2% lower 

than in table 6. 1. The effect of moving the reservoir downstream 

is small and even this small difference is due not to any fundamen

tal change in the performance of the model, _but rather to numerical 

"softening" of the peak in the channel routing stage which is more 

pronounced when the unattenuated hydrograph is routed down the 

channel. Thus, for this particular system, the attenuation is quite 

insensitive to the location of the reservoir. This can be attributed 

to the fact that the modulating effect of the reservoir is dependent 

upon wave shape, among other things, and there is no significant 

change in the wave shape as it passes down the channel. 

While there was no significant differences in the amount of 

attenuation when the reservoir location was varied from the upstream 

end of the channel to the downstream limit, there was an appreciable 

change in the shape of the outflow hydrograph as shown in figure 6. 2. 

With a route and lag system, the peak outflow occurred later and the 
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rising limb of the hydrograph was steeper than the simulation 

of the lag and route configuration. This phenomena results from 

the variation of kinematic wave velocity with stage. 

For the system studied, higher stages have a higher kine

matic wave velocity than lower stages or flow rates, thus, the 

peak of the unattenuated wave would travel down the channel faster 

and arrive at the downstream end passing through the reservoir 

sooner than the wave which was attenuated by a reservoir and then 

flowed down the channel. This variation in kinematic wave velocity 

also causes waves to steepen; but with the reservoir at the down

stream end, the steepening caused in the channel was smoothed out. 

However, the waves from the reservoir located at the upstream end 

of the channel were steepened by the passage down the channel. 

A comparison of the kinematic solutions with the dynamic 

solutions indicates that there is a considerably longer lag in the 

outflow from the kinematic simulations. This can be attributed 

to the introduction of the imaginary reservoir and the fact that the 

kinematic wave velocity of the channel is less than the dynamic 

'Wave velocity. 

Although these preliminary tests confirmed the general quali

tative dependence on K and w, further tests were used to extend this 

knowledge. In these tests the routt:: and lag configuration was used 
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to minimize the errors that were introduced into the kinematic 

channel routing calculations. 

6. 	3 MEASUREN1"ENT AND DEFINITION OF THE RESPONSE 

CHARACTERISTICS 

In order to provide a quantitative base for the comparison 

of the results of the numerous simulations that were made during 

the process of studying the effects of varying K and w, the following 

items were quantified: 

l. Peak outflow, 


2, Centroidal lag of the outflow hydrograph. 


3, Skewness of the outflow hydrograph. 


The first two items were computed in the simhlation program 

and obtained from the computer printouts. A triangular inflow 

hydrograph, defined earlier in the description of System 1 was 

used in this study. As a result of the discretization of the hydrograph 

to conform with the time steps used in the numerical calculations. 

the peak of the hydrograph was truncated. Therefore, the inflow 

hydrograph was trapezoidal in shape with a peak value of 0. 984 

times the peak of the triangular hydrograph. However, this trun

cation was ignored and no corrections were made to the data pro

duced by the computer. The centroidallag value calculated by the 

computer included all of the base flow. Corrections were made to 
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the data generated by the computer to obtain the centroid of the 

outflow hydrograph alone. A graphical representation of these and 

other values used to describe the hydrograph is contained in figure 6. 3. 

The third parameter used to describe the hydrograph was 

an attempt to quantify the general shape of the hydrograph in rela

tion to the centroid and the peak discharge. This empirical skew 

factor was defined a,.s: 

SF= Tc-Tp (6.2) 
Tb(P-0.2) 

where: SF = skew factor 

P ·= peak flow ratio 

Tc = time of centroid 

Tp = time of peak discharge 

Tb = time base of inflow hydrograph. 

0. 2= bc:se flow rate ratio 

The skew factor describes the slope of the line from the base 

flow rate and the centroid of 6e hydrograph to the peak outflow and 

time of peak outflow as shown in figure 6. 3, 

6. 4 SYSTE!-/ PARAMETERS. 

A measure of the system parameters (independent variables) 

was required to complement the response variables (dependent 
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I 

I 

variables) so that the effects of non-linearity and the size of the 

reservoir could be studied. 

The channel properties and the configura:ion of the system 

were held constant. The syste.m was characterized by the ST 

versus Q curve and the two parameters that were utilized to de

scribe this curve were the slope of the chord and the ''bow" or 

departure from linearity in the curve over the range of flow rate 

that was experienced by the system. These parameters ·are respec

tively: 

.6.ST
CHORD SLOPE = (6. 3)

AQ 

where: ST =storage 

Q -= flow rate 

and 

dST' _ dsTI 

NL = 
dQ QMAX 

aST 

dQ QBASE 
(6.4) 

AQ 

where: 

dST wKQw-1= 
dQ 

A definition sketch of these parameters is included in figure 6. 4. 
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Because the range of flows that were encountered was constant 

for all of the tests NL reduced to a function of w, however, i.f the 

range of flows varied, NL would reflect the change in the curva

ture of the ST versus Q curve for different ranges of flows. 

6. 5 DISCUSSION OF THE RESULTS 

To determine the relationship of the response characteris

tics to the system parameters, a number of plots were made to 

AST 
show the relationship of P, Tc and SF to and NL. In each 

AQ
AST 

of the 	cases,- was found to be the dominant physical para-
AQ 

meter. The solutions were sensitive to the non-linearity of the 

reservoir as will be shown in the discussion d the various graphs. 

6. 	5, 1 RELATION OF PEAK FLOW RATIO, P, TO SYSTEM 

PARAMETERS. 

AST 
Figure 6, 5 contains a plot of P versus 	 E:1ch of the 

aQ 
co-ordinate pairs plotted was identified to show the NL number for 

the particular simulation from which the value was obtained, This 

.AST 
figure 	indicates that as - increases, P decreases. In other 

AQ 
words, as the surface area of the reservoir increases, there is a 

larger amount of attenuation. 

There was a small amount of scatter in the points that were 

plotted, By identifying each of the poirt s according to the non
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Hnearity of the reservoir, it was obvious that this scatter could 

be correlated to NL. 

As the non-linearity number, NL, increased algebraically 

.AST 
frorr negative values to positive values, a larger - was 

.AQ 
required to yield a given amount of attenuation. It should be 

aST 
noted that was calculated on the basis of base flow and the 

.AQ 
maximum flow rate of the input, which in this study was full bank 

.AST 
flow. If had been calculated using base flow and the peak

aQ 

of the attenuated outflow hydrograph, the variation of the values of 

.AST 
with respect to NL may have been reduced. 

aQ 

6. 5. 2 RELATION OF TIME OF CENTROID, Tc, TO SYSTEM 

PARAV ETERS 

.AST 
The plot of Tc versus -- shown in figure 6. 6 indicates 

.AST aQ 
that as -- increases there is a corresponding increase in the 

.AQ 
centroidal lag. This is a result which is intuitively correct for as th.e 

size of a reservoir increases, it is reasonable to expect an increase 

in the delay caused by storage. The plot showed a small amount of 

scatter that again could be attributed to the non-linearity of the res

ervoir. With an algebraic increase of NL, there was a decrease 

.AST 
in the cetroidal lag associated with a particular value of 

aQ 

This can be attributed to the properties of a storage unit which has 

a proportionally larger storage with high flow rates when compared 
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with lower dis charges. During the early portions of the inflow 

hydrograph, when the flows are low, there is no delay in the flow 

through the storage element. This contributes to the earlier 

centroid of the outflow hydrograph. 

6. 5. 3 RELATION OF SKEW FACTOR, SF, TO SYSTEM 

PARAMETERS 

aST 
The plot of SF versus - is shown in figure 6. 7. The 

aQ 
two previous graphs have shown relationships that were very nearly 

single valued. However, there is a large amount of scatter that 

can be attributed to the non-linearity of the reservoir and to what 

appears to be numerical errors in the computation of the skewness 

factor. This numerical error is a result of truncation in the com

puter output. From the data available, it appears that as the non

aST 
linearity increases, the skewness decreases. An increase of-

AQ 

causes a larger skewness. It will be shown later that the time of· 

the peak outflow is a unique function of P. Thus, for a given P value, 

the time of the peak will be fixed, but the centroid of the hydrograph 

will vary in relation to NL. As NL increases and Tc decreases, SF 

will decrease. 

The curves that are presented in the previous discussion are only 

aST 
valid over a finite range. This is due to the fact that as 
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increased, there was an increase in the length of the falling limb 

of the outflow hydrograph, which in turn resulted in a truncation 

of a portion of the hydrograph due to the termination of the simu

AST 
lation, The curve showing P versus A.Q is not subject to 

errors of this nature, but the plots o: the centroidal lag and the 

AST 
skewness factor are influenced by this error when is larger

AQ 
than approximately 4, 000 seconds. 

Reductions in the amount of scatter in the figures which 

show peak outflow, centroidal lag and skewness factor as a func-

A.ST 
tion of may be obtained if the chord slope is computed using

AQ 
the base flow and the peak outflow rather than base flow and peak 

inflow. However, the use of the latter technique may remain the 

most useful due to the fact that peak outflow is an unknown until 

the simulation is completed. 

6. 6 FURTHER COMPARISONS 

To provide a comparison of the shapes of the variance of 

the hydrograph shape as the parameters K and w were varied, two 

of the many hydrographs obtained fro:n these simulations were 

plotted on figure 6.8. Each of these hydrographs had a peak 

ratio of approximately 0. 83. With K = 10 and w = 1. 5, the hydro-

graph rose slightly quicker and dropped slightly sooner than the 

simulated hydrograph that was obtained using K = 12, OQO and 
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w = 0. 8. In the region of the peak there was no significant differ

ence between the hydrographs and the two plots coincide. 

The reason for the very close correspondence of the two 

floodwaves in the region of the peak can be attributed to the char

acteristics of the system being studied. For a given inflow hydro

graph, kinematic channel system and imaginary reservoir the time 

at which a particular peak outflow occurs is constant regardless of 

the value K and w chosen to simulate the reservoir. For example, 

with the reservoir located at the upstream end of the channel, the 

hydrograph will be attenuated and the peak will occur at the inter

section of the outflow hydrograph and the falling limb of the inflow 

hydrograph, thus uniquely determining the time of peak o•.1tflow 

from the reservoir independent of the reservoir characteristics, 

though the reservoir properties determine the peak. Similarly, 

the travel time for a specific flow rate is constant for a particular 

kinematic channel. A plot of the peak outflow ratio was plotted 

along with the times that these peaks occur. This data is contained 

in figure 6. 9. As the peak o•.1tflow increased the speed at which 

the wave propagated increased and thus the time lag decreased. 

Scatter resulted from the discrete representation of the hydro

graph which caused the occurences to be represented at intervals 

one time step apart. 
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Figure 6. 10 shows three storage versus flow rate curves for 

reservoirs which attenuated the flood wave to a peak ratio of 0. 7 

orll, 672 c!s.. It can be seen that the maximum amount of storage 

utilized varied significantly as the non-linearity of the reservoir 

characteristics varied. With K = 15 and w = 1. 544, the maximum 

storage required was twenty seven million cubic feet. Forty two 

million cubic feet of storage was required with K = 16, 000 and 

w = 0. 833. This fact may not be particularly important where the 

reservoir is imagina.ry, however, if the reservoir was being con

structed to provide maximum attenuation, it would be prudent to 

design and operate the control structures so that the storage-out

flow relationship is defined by an equation with a high index, w. In 

essence, this means that the reservoir should not be filled during 

the lower flows of the rising limb of the hydrograph, and the avai.l

able storage should be reserved for larger flows immediately 

before and after the peak inflow . 

.6. 7 CONCLUSIONS 

This chapter has provided a brief review of lag-route and 

route-lag methods of simulated unsteady flow in open channels. It 

-may be of interest to note that the use of a reservoir in series with 

a kinematic channel is analogous to the continuously stirred tank 

http:imagina.ry
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reactor and the plug flow tank reactor utilized in chemical engineer

ing simulations. With reservoir and channel systems the objective 

is to predict ~low rates while the concentration of a tracer is the 

important variable with the tank reactor systems. 

The basic properties of the reservoir channel system that 

were studied included: 

1. 	 The location of the reservoir. 

2. 	 The degree of non-linearity of the reservoir. 

3. 	 The magnitude of live storage associated with the res

ervoir. 

Reservoir characteristics were described using the following 

equati.on: 

ST:: KQW 	 (6.1) 

where: ST == storage 

Q 	 :: flow rate 

K 	 == a parameter 

w 	 =a parameter 

The general kinematic flood routing method was utilized to 

pe_rform the channel routing computations. 

The results of the study may be summarized as follows: 

I. The general kinematic flood routing technique seems to 

perform more satisfactorily when the flood wave is less peaked. 

http:equati.on


191 

2. 	 For the particular system studied, the position of the 

imaginary reservoir affects th~ shape and timing of the 

hydrograph. Moving the reservoir toward the downstream 

boundary results in an outflow hydrograpb that occurs 

sooner and which rises more slowly. The amount of 

attenuation predicted by the simulations indicates that the 

reduction of the flood peak is relatively insensitive to the 

location of the reservoir. 

3, 	 The non-linearity of the reservoir affects the peak of the 

outflow hydrograpb, the centroidal lag of the hydrograph 

and the skewness factor. However, the chord slope of 

AST
the 	rela~ionship between storage and discharge, 

AQ 
appears to be the dominant factor in determining values 

of these response characteristics. A comparison of 

several hydrographs, which had approximately the same 

peak outflow ratio indicated a relatively small change in 

the outflow hydrograph as a result of varying the parameters 

K and w. This lends substance to the statement of Dooge 

and Harley ( 1967) that the assumption of a linear reser

voir for simulation purposes does not appear to be 

particularly restrictive. 
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4. 	 The simulation of System 1 by means of the dynamic 

or "complete" solution with So= 0. 0002 and n = 0. 0149 

yi~lds an outflow hydrograph which is attenuated to a peak 

. 
value approximately equal to 0. 75 times full bank flow. 

Comparisons with the results of the route and lag method 

indicate that s orne thirty to forty million cubic feet of 

storage would be required to produce an attenuation equal 

to that provided by dynamic dispersion. If the construe-· 

tion of a reservoir on a channel similar to System 1 was 

being contemplated, the attenuation of the flood wave as 

it passes down the river must be considered. Ignoring 

this attenuation would result in the dam being larger than 

required to produce a given reduction o:f the flood wave. 

However, if the channel attenuation ·is accounted for, it is 

possible that the size o:f the dam could be reduced knowing 

that 	the :flood wave would be attenuated to the required 

amount before flowing out of the system. 

The comparison of the route-lag and lag-route results 

with the data obtained from the dynamic simulation in

dicates that the lag predicted by the complete solution is 

significantly shorter than the lag predicted by either of the 
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other two methods. This can be attributed to the lag 

that was introduced by the inclusion of the imaginary 

reservoir and the fact that the kinematic wave velocity 

is slower than the dynamic wave velocity. The route

lag model has the longest lag of the systems studied. 

More study is required to provide guidelines for selecting the 

appropriate parameters to use in describing the imaginary reser

voir for a particular physical system. However, it appears that 

utilizing a linear reservoir and ca.li.brating the simulation tool 

with recorded or simulated data is a viable and extremely useful 

tool for hydrologic simulation. 



CHAPTER 7 


A KINEMATIC FLOOD ROUTING MODEL 


Comparisons of kinematic flood routing simulations with 

rigorous solutions of the momentum and continuity equations de

scribing unsteady flow phenomena have revealed that unsteady flow 

problems may be classed in three different categories. These are: 

1. 	 Situations where kinematic theory provides as accurate an an

swer as could be obtained by the use of the mora expensive 

rigorous solution. 

2. 	 Cases where a good approximation is obtained by using the 

kinematic theory in conjunction with another approximation 

such as an imaginary reservoir in series with the channel to 

account for attenuation. 

3. 	 Problems where the changes in flow are so rapid or the slope 

so shallow. that the !cinematic wave theory provides answers 

which are markedly different hom those observed or predic

ted by a dynamic solu~i.:m. 

At present, criteria for :iifferentiati.ng between the various 

classes of problems are mo!"e q..1alitative than quantitative and these 
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criteria require further study. Development of an efficient and ver

satile computer program to pe rfc.·r·m kinematic flood routing calcu

lations can be justified on the groumls that it can be used as a research 

tool to help establish quantitative g•,idPlines for determining into which 

of the above menticned cate;~c;ries a given physical problem falls. 

Further comparisons betwe~n kinematic. wave solutions and results 

obtained by solving the momentum ani cc,ntinui.ty equations could 

provide the key to development of the ~ules for successfully applying 

kinematic wave methods. The use of l.:'!::e program as an engineering 

tool must not be overlooked and, to this end the program should be 

capable of handling natural channels cdined by arbitrary geometry. 

Thie: chapter deals with the cbjectives and development of an 

interactive computer program c:1.pable of performing kinematic flood 

routing calculations for systems of arbitrary geometry. After out

lining the objectives of the program and elementary operations used 

to route a flood, several applications of the program are shown. 

Concluding re~arks are provided, which outline specific aspects 

of the method and the computer prog:ram that could be developed 

further. 

7. 1 OBJECTIVES 

The primary objective of this aspect of the study was to de

velop a computer program capable ot being used as an engineering 

http:cc,ntinui.ty
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or research tool. To accomplish this goal, the following specific 

program capabilities were identified. 

l. 	 Kinematic routing methods must be able to be applied to 

natural channels of arbitrary geometry. The general 

kinematic method outlined in Chapter 3 was used as the 

theoretical basis and the numerical calculations were per·· 

formed using a direct finite difference technique. 

2. 	 It has been shown in Chapters 3 and 5 that the values 

selected for the two parameters a and B have a ver~r 

noticeable effect on the results of the computer simulation. 

To enable the use of this program as a research aid, it 

i.s vital that there be flexibility in the selection of a and 

8 . Also, changing the two parameters may be bene

ficial in engineering applications. 

3. 	 To predict the attenuation of the flood wave, it may be 

necessary to insert a reservoir in series with the channel. 

This storage unit may be included either by variation of 

the parameters in the kinematic routing algorithm, as 

outlined above, or by placbg an imaginary reservoir in 

series with the channel. 

4. 	 A command oriented procedure is desirable to enable the 

user to have maximum flexibility in the manner in which 

the particular sys~ern is analyzed. 
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5. 	 The program should be designed to take advantage of 

the facilities of time sharing S>lnce this mode of oper

ation allows the maximum amount of flexibility and inter

action with the numerical representation of the system 

as the flood is being routed along the channel. 

7. 2 	 DEVELOPMENT OF PROGRAM PROCEDURE 

The development of a program that fulfils the above objectives 

was ca~ried out within the context of the Civil Engin..:lering Program 

Library (CEPL), Smith ( 1970), Smith ( 1974 .), Walden ( 1973). This 

allowed the existing resources of the program library to be utilized 

and, hopefully, will ensure that the finished program is accessible 

for use by others. 

Currently, the CEPL is compr;sed of FORTRAN routines cap

able of analyzing a nUI~ber of elementary engineering programs, and 

designed to perform a number of basic operations. These programs 

may be classified into three general categories. 

1. 	 Basic rout1.nes provided to perform, one elementary func

tion or calculation. A subroutine, which determines the 

cross-section properties, falls into this category. 

2. 	 Slightly more comprehensive routines which require 

calls of the lower lP-vel St1broutines to perform an elem

entary operation fall into the second group. 
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3. 	 1v'a.nagerial routin~s which util i_:z;e the other routines 

in the process oi .:>olving 2. pa!·ticular problem. 

A "builtling block" approach may b2 taken to develop a new 

program utilizing small moclules. In this v.:a y, documentation is 

simplified and users can easily apply the routines. 

One of the features of the CEPL, w:1ich is particularly useful 

1n achieving the objectives outlined earlier, is the method of defining 

the arbitrary geometry of a nCJ.tural channel. These properties are 

specified by section number, chainage from the upstrean'l end and 

a rou~hness measure. The cross-section data is entered by speci

fying a series of coordinates which define the outline of the channel. 

Figure 7. 1 contains a pido:rlal representation of the mann e.!:" in which 

the cross-section is defined. 

The computation of steady state profiles is a vital step in the 

process of routing a flood using the kinematic method outlined in 

Chapter 3. 

A number of 1 outines are av::~.ilable in the CEPL to calculate 

these flow profiles. For example, subroutine EZRA performs the 

back\vater ca.lculation for each reach between two cross-sections. 

However, subroutines CRITIC and CONTRO are available to calcu

late the flow d<;pth that rr:ay 02cur at a channel transition such as a 

bridae or weir. 
0 
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New subroutines, known as KINRUT and RESVOR, de

signed to be consistent with CEPL, were written to perform the 

kinematic flood routing and the reservoir routing. Documentation 

of these subroutines is provided in Appendix D. KINRUT routes 

the flood through one elementary reach using the functional re

lationships which are defined prior to calling the subroutine. 

This allows flexibility in the selection of values for the parameters 

a and 8 . The other method of including a pseudo-reser

voir into the simulation is facilitated by RESVOR. Storage in the 

imaginary reservoir is defined using the following equation: 

ST = KQw ( 1. I) 

where: ST =Storage 

Q = Flowrate 

K =A parameter 

w = .A parameter 

7. 3 THE PROGRAM 

The program developed to analyze the passage of a flood wave 

in a channel using kinematic wave theory is predominently a sub

routine of the "managerial'' type. A small dri.ver program serves 
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merely to dimension the arrays required for the calling state

ment. The chief function of the managerial subroutine is to pro

vide a forum for its interactive operation of the various elemen

tary computational subroutines through the use of operational data 

entered from a time-shared console. 

The flow diagram in figure 7. 2 shows the general operation 

of this routine, After the execution of the program begins, the 

required storage space is dimensioned in the main program. Sub

sequently, subroutine RIVER3 is called and the geometric data 

is read in from a previously defined tape. Further operation of 

the program requires explicit direction by commands entered in 

the operational data. 

The operational data includes commands which direct the program 

to allow entry of data describing the downstream water levels, flow 

rates along the channel and the resistance law to use for computation 

of the steady flow state profiles, among other things. Data describ

ing the system geometry may be printed and this information may be 

adjusted, if desired. The extent of the options available is best de

scribed by the list of commands available in RIVER3 shown in figure 7. 3. 

7. 4 USE OF THE PROGRAM 

Before presenting an example of the use of the program, a 

brief discussion of the steps required to perform the kinematic 
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FIGURE 7. 2 
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routing co!nputations will be discussed. To calculate the functional 

relationships required for the flood routing, it is necessary to per

form a steady state analysis of the watercourse and to calibrate the 

model. 

The data required, and the order of operations is generally as 

follows: 

1. 	 Define the downstream control by specifying the stage

discharge curve using a series of coordinates. 

2. 	 Define the lowest and highest flow rates to be used for 

computing the flow profiles and the number of profiles 

to be computed. These flow rates may be varied along 

the channel to account for lateral inflow or outflow. 

3. 	 Define the resistance law to be used in the computations. 

4. 	 After entry of the above data, the profiles may be computed. 

5. 	 If a printout of the surface profiles is desired, it may be 

obtained using the PROFILES command. 

At this point, the user is provided with data describing the 

steady state performance of the system and field observations, if 

available, may be compared with the profiles. If the two sets of infor

mation show significant discrepancies, physical data, such as the 

roughness coefficients, may be varied and the profiles recalculated. 

This process could then be repeated if necessary until the computed 

results agree with the observed profiles. Alternately, the user may 
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wish to use only the steady state capabilities of the program and 

could study the effects of channel modifications by varying the 

cross-section data or could discontinue the execution of the pro

gram. 

If the steady-state calculations are found to be satisfactory 

after completing an examination and/ or calibration process, the 

unsteady analysis may be started. This involves the separate 

operations of (i) defining the inflow hydrograph and (ii) perform

ing the required flood routing. 

Currently the program is capable of handling only one inflow 

hydrograph; but this hydrograph may be defined at any section 

specified by the user in the operational data. 

7. 4. 1 Definition of Inflow Hydrograph 

The inflow hydrograph is described by time and flow rate 

coordinates. Straight lines are assumed between these points. 

The flow rate for time less than the first coordinate is assumed 

to be the flow rate of the first coordinate and the flow rate for 

time greater than the time of the last coordinate is assumed to be 

the flow rate of the last coordinate. 

7. 4. 2 Performing the Routing 

Kinematic or reservoir routing may be performed in any 

order. The only limitation, at present, is that the routing must 



206 

start at the location where the inflow hydrograph is defined or where 

the last routing ended. This allows a user to route a flood for sev

eral reaches, insert a reservoir, if desired, and/or continue with 

the kinematic routing. Alternately, the process may be restarted 

at the location where the inflow hydrograph was defined. 

I£ the kinematic routing through the channel is used, an option 

allows the user to redefine the parameters a and 8 for a number 

of elementary reaches. The default value for these two parameters 

is 0. 5. Other information defining the time step, sections where 

the routing is to begin and end, and the start and finish of the time 

period under consideration must also be entered. The reservoir 

routing option requires the same type of data regarding time step, 

as well as start and finish time, but the size of the reservoir, as 

defined by the parameters K and w, and the location of the reservoir 

must be specified. 

Using these features, a calibration of the response hydrograph 

may be performed or sensitivity tests may be performed. In general, 

the other command options may be used at any time to provide infor

mation or to modify data. Checks are built into the options to warn 

the user if other data must be entered before the specified operation 

may be carried out or if changes have been made, say to cross-sec

tion data, and vital information such as surface profiles, has not been 
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recalculated. The exception to this rule is the STOP command. This 

command may be used only at the end of the computations. No other 

commands may be entered after STOP. 

7. 5 EXAMPLE APPLICATIONS 

This section of the chapter is devoted to demonstrating the 

use of RIVER3 in providing an effective means of studying kinematic 

flood waves in natural channels for research or engineering purposes. 

Two systems and the results from each are presented. Each descrip

tion outlines the physical system and results from the various numer

ical experiments. 

7. 5. l Application One 

The first system studied consisted of approximately 10 miles 

of channel defined by 58 cross-sections. The profile of the invert 

level along the watercourse is shown in figure 7. 4 along with some 

of the typical cross-sections. Appendix G contains a listing of the 

geometric data used to describe the channel. 

An inflow hydrograph with a trapezoidal shape having a base 

flow of 350 cfs and a peak of 4, 000 cfs ·was utilized. Figure 7. 5 shows. 

this hydrograph and the outflow hydrograr:>h obtained using an im

plicit dynamic analysis. Walden ( 1973). 
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This particular physical system showed very little attenuation, 

which indicates that a kinematic solution may prove to be a very good 

approximation to the more complete dynamic solution. The first 

tests performed were used to study the effects of changing the size 

of the time step. The values chosen for the two tests were 1, 200 

seconds and 300 seconds. The outflow hydrographs predicted from 

these simulations are shown on figure 7. 5 along with the solution 

predicted using the dynamic analysis. Both of the kinematic solutions 

predicted the general shape of the outflow hydrograph. However, 

there were signs of slight instability on the falling limb of the hydro

graph with 4T= 1, 200 seconds. Neither kinematic solution correctly 

predicted the peak outflow nor did they simulate the dynamic effects 

demonstrated by the earlier rise of the outflow hydrograph. 

To simulate the attenuation of the floodwave, several tests 

were performed with the reaches between section numbers 41 and 45 

simulated using: 

a= o. o 

8 = 0. 5 

The other reaches were simulated using the standard default values 

of 0. 5 for these parameters. The results of these tests, which did 

not successfully predict the attenuation of the flood wave as it passed 
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through the channel are shown in figure 7. 6. This may have been 

due, in part, to slight instability of the c amputation in the region 

of the peak. Nevertheless, the general shape of the outflow hydro

graph was modelled. 

A number of other tests were performed using various values 

for the pararneters and time steps, etc. In general, these tests 

did not successfully model large amounts of attenuation. This was 

not a severe restriction in application one due to the fact that the 

physical prototy-pe did not appear to manifest large amounts of 

attenuation. The introduction of a significant amount of attenuation. 

if that was deemed necessary, could be made by the inclusion of an 

imaginary reservoir in series with the channel. The simulation 

shown in application one was relatively successful in simulating the 

shape of the outflow hydrograph. This was due largely to the fact 

that the system was relatively steep and a kinematic analysis was 

a good approximation. The useful ness of the kinematic analysis 

as an engineering tool relies upon the verification of the results. 

In the present study, this verification was provided by a more rig

orous dynamic analysis. Other means of substantiating the results 

could be (i) verification by comparison of the computed results with 

hydrologic data recorded in the system or (ii) development of guide
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lines that would enable a user to determine the applicability of 

kinematic analysis to the particular system without the use of the 

dynamic analysis or extensive hydrologic data. A preliminary 

basis for these guidelines is presented in Chapter 4. 

7. 5. 2 Application Two 

The second prototype that was modelled using RIVER3 was a 

natural channel that had two major constrictions in the lower reaches. 

Figure 7. 7 contains a profile of the invert elevations of application 

two and some typical cross sections of this waterway, the geometric 

data is listed in Appendix G. These constrictions were large em

bankments with relatively small culverts extending through the lower 

portions. During a major flood, substantial ponding of water would 

occur behind these embankments, particularly the upstream embank

ment. This ponding would result in the attenuation of a flood wave 

if the embankment was stable under the severe load imposed by the 

innundation of the upstream side. The system described above exists, 

in the Lower Ancaster Creek near Hamilton, Ontario. The upstream 

embanklnent carries a railroad track and a highway traverses the down

stream embankment, 

In this study, several modifications were made to the data to 

make the problem more tractable. Firstly, during a major flood, 

the culverts would be flowing full, the assumption of open channel flow 



FIGURE 7.7 
INVERT PROFILE AND CROSS- SECTIONS 

APPLICATION TWO 

345 

SECTION 38 -t
~ 325 ~ LL 

I"= 100' VERT -z 
/ I"= 200' HORZ SECTION 490

-305 SECTION 50 ----~ :> w ---- -----------,r---------
•• ~....J 

------~l1----W285 
I"= 100' VERT 

I"• 200' HORZ 

265 

245 
6· 8 22 24 26 

_..,
INVERT PROFILE 

10 12 14 16 18 20 

CHAINAGE (THOUSAND FEET) 



215 

is not valid. Thus, instead of culverts through embankments, the 

structures were modelled as embankments with deep, narrow slots, 

through which the water flowed. Secondly, Sulphur Creek, a major 

tributary, joins the main stream above the first large constriction. 

The program was designed to handle a single water course as 

opposed to a network. The complication arising from the existence 

of Sulphur Creek tributary was avoided by ignoring the tributary 

inflow and modifying the storm hydrograph accordingly. 

It should be noted that these difficulties were a result· of 

restrictions in the CEPL routines designed to compute the steady 

state profiles rather than limitations of the flood routing algorithm. 

Further development of the computer program could lead to a solution 

of these problems without the above ment~oned simplifications. 

The primary purpose of application two was to demonstrate 

the use of RIVER3 in a situation where a significant amount of atten

uation would be manifested. 

The input hydrograph, shown in figure 7. 8 was routed from 

section number 37 to the first embankment at section 51 and thence 

to section 64, the downstream limit of the stream. 

The first routing, using the nucleus in the centre of the finite 

difference molecule proved to be unstable. To provide a solution 

which was stable, the nucleus of the molecule was moved downstream 
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(i.e. maintaining 8= 0. 5). The results of these simulations are 

shown in figure 7. 8. 

With a set to o. 0, the outflow hydrograph rose slowly and 

peaked at a value of approximately 1, 850 cfs. There were no signs 

of numerical instability. Using a value of a= 0. 2, a similar sol

uation was obtained, except there was a sharp rise to a peak of 

about 2, 200 cfs., and then a drop to approximately the same hydro-

graph predicted by the solution with a= 0. 0. The last solution 

shown on figure 7. 8 was obtained using a= 0. 4. In the early 

po-rtions of the outflow hydrograph, there is no significant differences 

between it and the other two s elutions. However, in the region of 
/ 

the peak there are indications of numerical instability. The tests 

results shown on figure 7. 8 were compiled using a time step of one 

half an hour. To determine the sensitivity of the numerical analysis 

to changes in the size of the time step, two tests were performed with 

a= 0. 5 and 8 = l. 0 These results are shown in figure 7. q, It can 

be seen that with both of the simulations, a relatively long, well rounded 

hydrograph resulted and the peak outflow was attenuated to approximately 

one-half of the peak inflow. Using aT= 1 hour resulted in the flood 

wave being attenuated to a peak of 1, 420 cfs. while the peak obtained 

using aT = Thr. was 1, 530 cfs. 
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Figure 7. 10 contains a comparison of several outflow hydro

graphs at the downstream limit of the stream. When the nucleus 

was located in the centre of the molecule for all of the reaches in 

the simulation, some numerical instability appeared after the peak. 

The same simulation was performed using .6T =+hour, and the 

solution showed even greater numerical errors, therefore, the results 

were not plotted, In general, numerical stability problems were 

reduced when the simulation was performed with the nucleus shifted 

from the centre of the molecule for at least a few of the reaches up

stream of the first large embankment. 

The results of these simulations indicate that it is possible 

to model a system where the flood wave is att,enuated as it passes 

through the system, However, it is necessary that the results be 

verified by· a more rigorous analysis. 

An attempt to provide the data to verify the kinematic model 

using an implicit dynamic technique was unsuccessful. Amein ( 1969), 

Walden ( 197 3). .The computer program utilized a four point implicit 

method to approximate the differential equations governing unsteady 

flow in open channels. The system of non-linear equations that re

sulted from the finite difference equations was solved using a Newton

Raphson iteration technique, However, for this application, the in

tera tive procedure failed to converge to a solution and execution 
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was abnormally halted. It appears that alternate methods of solving 

the system of equations must be employed in order to obtain a solu

tion. 

Application two may be handled by an alternate approach which 

involves assuming a reservoir in the reaches above the first embank

ment. The properties of the reservoir would be determined by the 

volume of water stored in the valley as a function of outf_low. This 

type of approach could possibly yield a more valid solution than the 

previous method which considered the large volume in the valley as 

a series of channel reservoirs. If the valley section was simulated 

as one unit, more attenuation may result and the time of travel through 

the valley would probably be reduced. This remains an area that 

requires further study. 

7. 6 CONCLUSIONS AND DISCUSSION OF RESULTS 

The computer program has been developed to allow a user to 

route a flood through an open channel system defined by arbitrary 

geometry. The routine is designed to be utilized in time sharing 

mode with operational data entered on a teletype console. The results 

are printed on the same unit. Execution of the program is directed 

by commands entered as operational data. The general capabilities 

of the program include the ability to perform steady state analysis 
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of a system and store the data for use during the analysis of unstea.dy 

flow conditions. Additional commands are included to provide effi

cient data handling capabilities and to allow modification of the 

geometric data during the execution of the program, 

Several applications of the program have been presented and 

have yielded results which indicate that the kinematic analysis is 

useful in analyzing physical systems provided the solutions can be 

verified by either (i) a more rigorous analysis or by (ii) recorded 

hydrologic data. Attenuation may be simulated by varying the values 

of a and 8 or by the introduction of an imaginary reservoir in 

series with the channel. Commands incorporated in RIVER3 facili

tate both of these devices. 

Stability was one of the prime factors which governed the sue

cess of the various numerical experiments that were performed to 

demonstrate the two applications, Numerical instability may be 

reduced by positioning the nucleus away from the centre of the mole

cule in a more stable region. However, another approach may be 

utilized to improve stability. Because the program analyzes a com

plete time history of one reach before computing the conditions in the 

next portion of the watercourse, it is possible to use a time step that 

varies as a function of the reach length and the kinematic wave vel

ocity through that section of the stream. The output hydrograph would 

http:unstea.dy
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be reduced to a common time step via an interpolation routine. This 

requires further study and would involve some rearrangement of 

the routines currently being employed in RIVER3. Some experimen

tation with the selection of the value of 4T may result in a solution 

which is stable and yet avoids the need to have a variable time step. 

Alternately, the flood may be routed through one series of reaches 

using one time step and then routed through another series using a 

different increment of time. One unique feature of kinematic routing 

is the fact that, in some cases, a large time step n1ay produce more 

stable results. 

Compatibility with the CEPL has been one of the major guide

lines utilized in the development of RIVER3, and it is hoped that an 

improved version will become an addition to this library of routines. 

There are several specific areas that should be investigated and poss

ibly improved. These are outlined in the following paragraphs. 

The improvements that are envisaged for RIVER3 are primarily 

rearrangements of the input and output modes to allow greater flex

ibility and easier operation. For example, the channel analysis routines 

are cc>.pable of handling cross sections defined by arbitrary geometry, 

however, the reservoir characteristics must be defined by the two 

parameters K and w of the exponential relation ( 7. l). By providing 

the necessary input options, it would be possible to define arbitrary 
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reservoir characteristics by using co-ordinates to define storage as 

a function of flow rate. RESRUT, a subroutine currently available 

in the CEPL, is capable of employing this type of data, or a simple 

rearrangement of the data, to perform a reservoir routing. 

The basic command options that are available in RIVER3 

have, by and large, been adopted from other similar programs 

currently found in the CEPL. However, several of the commands 

have been enlarged and other options have been added. As a result, 

the amount of operational data has increased. To alleviate the 

amount of input required from the teletype terminal, some of the 

data may need to be incorporated in files similar to the data file 

used for geometric data. Particular examples of this include the 

values of Q and 13 which may be included directly in the cross

section data. Reservoir data and inflow hydrograph information may 

be stored on files and read in at the user's command. 

There are several suggestions that may also be investigated 

as major improvements to extend the power of RIVER 3 and the 

CEPL. The item which could receive first priority is the provision 

of graph plotting capabilities for the program. This could be done 

either as a graph on the remote t2rminal or via storage of the neces

sary data to provide plots on the off line plotter associated with a com

puter facility. Other improvements could allow watershed (overland 
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flov·) simulation by the inclusion of routines to handle the data that 

describes the watershed as a large number of surfaces specified by 

length, width, slope and roughness. In addition, the routine would 

then require additional input capabilities to allow definition of the 

rainfall hyetograph( s). The third improvement would enable a user 

to verify the results obtained using a kinematic analysis by utilizing. 

the dynamic flood routing capabilities of the CEPL. This might 

be done by programming a command option into RIVER3 which would 

allow the user to generate the input cards necessary to perform the 

more rigorous analysis in a batch mode, for example. 

There are many other items that could be included m a routine 

such as RIVER3, however, the selection of the items and the approach 

used to carry out these functions would depend upon individual tastes, 

and the degree of sophistication desired in the program. The appli

cation and further development of RIVER3 remains an almost limit

less area for future work. 



CHAPTER 8 

CONCLUSIONS 

The preceeding chapters include detailed conclusions relating 

to the specific topks. This final chapter contains only a summary 

of the major points. 

The 	objectives of this thesis were as follows: 

( 1) Provide a precise data base which can be utilized to 

compare various flood routing algorithms. 

( 2) 	 Investigate kinematic flood routing methods to develop 

a general framework for comparison of the variety of 

techniques found in the literature. 

( 3) 	 Determine the numerical characteristics of the general 

kinematic flood routing method. This will help determine 

the limitations of the finite difference schemes. 

(4) 	 Compare the results of the kinematic simulations with 

the data base in an attempt to determine practical limi

tations of the kinematic algorithms. 

( 5) 	 Investigate methods of modelling attenuation with kine

matic flood routing methods. 

226 
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(6) Provide a versatile computer program that will 

enable a user to apply kinematic flood routing tech

niques and the methods of modelling attenuation in 

channel systems of arbitrary geometry. 

These objectives have been achieved in the following manner. 

Chapter 2 outlines the steps that were taken to provide the 

data base. An explicit staggered mesh finite difference scheme was 

used to provide a numerical solution to the differential equations 

describing the conservation of linear momentum and rnass in pris

matic channels of simple geometry. Tests were performed on the 

stability and convergence of the calculations to ensure as far as pos

sible that the results of the numerical model were indeed reliable. 

Comparisons with other finite difference 3chemes which had been 

employed successfully show that the explicit method compared very 

well in representing unsteady flow in a system with simple geometry. 

The general framework to compare the various kinematic algor

ithms was developed in Chapter 3. This method employs a rectangu

lar finite difference molecule with the system variabl~s defined at the 

corners of the molecule. (See figure 3. 2) The difference between this 

method and the various other approaches to kinematic flood routing 

lies in the selection of the point about which the continuity equation is 
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expanded; a further distinction lies in the relationship adopted be

tween the flow rate and the cross section area. Applying the con

tinuity equation about the centre of the finite difference molecule 

models the elementary channel unit as an ideal channel section 

where storage is related equally to inflow and outflow. A reser

voir is simulated when the continuity equation is expanded about a 

point on the downstream boundary of the molecule. The stability 

of the numerical schemes is affected significantly by the location 

of the nucleus, the point about which the continuity equation is ex

panded. Three areas of stability were identified, a zone of uncondi

tional instability, a zone of conditional stability, and a point of un

conditional stability. (See table A-1 in Appendix A.) 

When the continuity equation is applied to a point on the down

stream edge of the molecule and on th-= highest time level of the mol

ecule, the scheme is unconditionally stable. The definition of the 

stable and unstable zones of the molecule was shown to depend on 

the size of the space and time incremental values of a and 8 . 

Moving the nucleus from the centre of the molecule results in 

an increase in the amount of error that is introduced in the numerical 

calculations. An analytic investigation of the finite difference equa

tion of continuity indicates that first order errors are not introduced 

into the calculations when the nucleus is located at the centre of the 
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molecule, However, as the nucleus is moved in a downstream 

direction or to an increasing level of time, there is an increase 

in the amount of first order error introduced into the computations. 

These errors are always negative in sign and introduce a pseudo

attenuation into the kinematic representation of a flood wave passing 

through a channel system. 

Chapter 4 cr:mtains the results of a number of kinematic simu

lations compared with results produced by the solution of the momen

tum and continuity equations. An investigation was made of the order 

of magnitude of the various terms of the momentum equation to help 

evaluate the differences between the various simulations. The results 

show that as the order of magnitude of the terms reduce in compari

son to the bed.slope, the kinematic results agree closely with the 

more precise results produced by the numerical solution of the mom en

tum and continuity equation, No guidelines were developed to indicate 

the difference in the relative size of the various terms in order to have 

close agreement between the results of the two methods of simulations. 

Preliminary results indicate that as the time base of the inflow hydro

graph increases, the difference in the relative size of the terms can 

decrease in comparison with the relative size necessary to produce 

good results with a peaky, fast rising hydrograph. 
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Without intuitive or pre-calibrated use of the pseudo-attenu

ation phenomena referred to above, kinematic flood routing methods 

do not correctly pre~.~ct attenuation of the flood wave as it passes 

through the channel. Chapters 5 and 6 outline modifications that 

can be made to the numerical model to introduce attenuation into 

the simulated flood wave. The method outlined in Chapter 5 is the 

introduction of a calibrated numerical error into the computational 

scheme. Alternately. the procedure used, moving the nucleus away 

from the centre of the finite difference molecule, may be viewed as 

modelling the elementary reaches as combination channel-reservoir 

units. The results of the numerical experiments indicate that in 

certain cases it is possible to simulate unsteady open channel systems 

accurately. This is true when dynamic effects demonstrated by an 

early rise of the outflow hydrograph, are not the dominant process 

in the physical system. 

The series of numerical experiments demonstrated that the 

values of attenuated peak outflow obtained as function of the coefficients 

a and 8 , defining displacement of the nucleus from the centre of 

the molecule, constituted a set of points comprising a well conditioned 

and slightly concave surface denoted by P( Q, {J ) . The properties 

of this surface were examined and it was demonstrated to be a useful 

tool in the calibration of kinematic flood routing models based on 
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results of either a dynamic (or 1 complete 1) solution and/or actual 

prototype observations. The calibrated model may then· in turn 

be used for further simulations. A detailed example of the use of 

this tool is included in Chapter 5. 

Experiments, of a preliminary nature, were performed with 

System 1 to determine the effect of arranging identical elementary 

reaches in a cascade. The results, for the system modelled, indi

cate that as the number of elementary reaches increased the total 

attenuation increased. The amount of attenuation was found to vary 

with the number of reaches to the power of 0. 55. (See equation 5. 26} 

Chapter 6 was devoted to studying the inclusion of a reservoir 

in series with a kinematic channel as a tool to model attenuation. 

The device of combining a channel and an imaginary reservoir in 

series is commonly used to model a hydrologic system. The method 

is known as the lag and route technique. The study reported in Chap

ter 6 utilized non-linear components in an attempt to identify the 

sensitivity of the solution to the reservoir location and different de

grees of non-linearity in the reservoir. The numerical experiMents 

indicated that the position of the imaginary reservoir affects the timing 

and shape of the hydrograph. Moving the reservoir toward the down

stream boundary results in an outflow hydrograph that occurs .soone,r 

and rises more slowly. The simulations indicate that the amount of 
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attenuation is relatively insensitive to the location of the reservoir. 

Furthermore, the non-linearity of the reservoir affects the peak of 

the outflow hydrograph, the centroidal lag of the hydrograph and the 

'skewness factor. However, the chord slope of the relationship be

tween storage and discharge {as illustrated in figure 6,4} appears 

to be the dominant factor in determining the response characteristics. 

Finally, Chapter 7 describes the development of an interactive 

computer model that is capable of performing kinematic flood routing 

in natural channels using the general method outlined 1.n Chapter 3 as 

well as allowing for the inclusion of a reservoir at any section along 

the channel. Execution of the program is directed by commands 

entered as operational data. The general capabilities of the compu

ter program include the ability to perform steady state analysis as 

well as allowing for the modification of the geometric data, which 

describes the channel, during the execution of the program. 

Two examples of the program are included in the thesis. Both 

of these experiments demonstrate the effect of moving the nucleus 

from the centre of the molecule. Not only was there an increase of 

attenuation as the nucleus was moved from the centre; there was also 

an increase in the stability of the numerical analysis. 

This computer program, known as RIVER3, has been designe~ 

to be compatible with the Civil Engineering Program Library. This 
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has been done to facilitate easy access by potential users of this 

program.. There are an almost limitless number of modifications 

that can be made to RIVER3 to improve and expand i.ts capabilities. 

Hopefully, this thesis has provided some insight into these various 

possibilities and enhances the understanding of kinematic flood 

routing techniques as very useful hydraulic and hydrologic simula

tion tools. 



BIBLIOGRAPHY 

Amein, Michael. An Implicit Method for Numerical Flood Routing. 
Water Resources Research, Vol. 4, No. 4, 719-726. August 
1968. 

Amein, Michael. Improved Method of Flood Routing. Discussion 
in J. Hydraulics Div., ASCE, 93, HY5, 310-312, September 
1967. 

Amein, Michael and Fang, Ching S. Implicit Flood Routing in 
Natural Channels. J. Hydraulics Div., ASCE, 96, HY12, 
2481-2500, December 1970. 

Brakensiek, D. L. Kinematic Flood Routing. Transactions of 
the ASAE, Vol. 10, No. 3, 340-343, 1967. 

Brakensiek, D. L. Finite Differencing Methods. Water Resources 
Research Vol. 3, No. 3, 847-860, Third Quarter, 1967, 

Chow, V. T. Open Channel Hydraulics. McGraw-Hill Co. Inc., 
1959. 

Dooge, James C. I. A General Theory of the Unit Hydrograph. 
Journal of Geophysical Research, Vol. 64, No. 2, 241-256, 
Fegruary 1959. 

Dooge, J. C. I. and Harley, B. M. Linear Routing in Uniform 
Open Channels. Proceedings International Hydrology Sym
posium, 57-63, Fort Collins, Colorado, September 1967. 

Garrison, Jack M. and Granju, Jean-Pierre P. and Price, James T. 
Unsteady Flow Simulation in Reservoirs and Rivers. J. Hydraul
ics Div., ASCE, 95, HY5, 1559-1575, September 1969. 

Grace, R. A. and Eagleson, P. S. The Modeling of Overland Flow 
Water Resources Research, Vol. 2, No. 3, 393-403, Third 
Quarter, 1966. 

Graves, Eugene A. Improved Method of Flood Routing. J. Hydraulics 
Div., ASCE, 93, HYl, 29-43, January 1967, 

234' 



235 

Graves, Eugene A. Improved Method of Flood Routing. Closure 
in Proc. J. Hydraulics Div., ASCE, 96, HY4, 1121-1129, 
July 1968. 

Gburek, William J. and Overton, Donald E. Subcritical Kinema. tic 
Flow in a Stable Stream. J. Hydraulics Div., ASCE, 99, 
HY9, 1433-1447, September 1973. · 

Henderson, F. M. Flood Waves in Prismatic Channels. J. Hyd
raulics Div., ASCE, 89, HY4, 39-67, July 1963. 

Henderson, F. M. Open Channel Flow. The MacMillan Co., New 
York, 1966. 

Henderson, F. M. and Wooding, R. A. Overland Flow and Ground
water Flow from a Steady Rainfall of Finite Duration. Journal 
of Geophysical Research, Vol. 69, No. 8, 1531-1540, April 
1964. 

Himmelblau, D. M. and Yates, R. V. A New Method of Flow Routing. 
Water Resources Research, Vol. 4, No. 6, 1193-1199, Decem
ber 1968. 

James, W. and Horne, C. W. D. Numerical Computations for Tidal 
Propogation in St. Lucia Estuary. Die Siviele ,Ingenieur in 
Suid-Afrika, 323-326, December 1969. 

Jennings, M. E. and Sauer, V. B. Flow Routing Models for Stream 
System Studies. Water Resources Bulletin, Vol. 8, No. 5, 
948-857, October 1972. 

Kellerhals, Rolf. Runoff Routing Through Steep Natural Channels. 
J. Hydraulics Div., ASCE, 96, HYll, 2201-2217, November 
1970. 

Kibler, David F. and Woolhiser, David A. 'Fhe Kinematic Cascade 
as a Hydrologic Model. Hydrology Papers, 39, Colorado 
State University, Fort Collins, Colorado, March 1970. 

Kindingstad, Eivind. Mathematical Model for Transient River Flow. 
J. Hydraulics Div., ASCE, 90, HY3, 23-28, May 1964. 



236 

Liggett, James A. and Woolhiser, David A. Difference Solution of 
the Shallow-Water Equations. J. Engineering Mechanics Div., 
ASCE, 93, EM2, 39-71, April 1967. 

Lighthill, M. J. and Whitham, G. B. On Kinematic Waves I. Flood 
Movement in Long Rivers. Proc. Roy. Soc. London, A, 229, 
2 8 1- 3 16, May 19 55. 

Overton, D. E. Kinematic Flow on Long Impermeable Planes. 
Water Resources Bulletin, Vol. 8, No. 6, 1198-1204, Dec
ember 1972. 

Posey, Chesley J. Improved Method of Flood Routing. Discussion 
in J. Hydraulics Div., ASCE, 93, HY6, 437, November 1967. 

Sauer, Vernon B. Unit-Response Method of Open-Channel Flow 
Routing. J. Hydraulics Div., ASCE, 99, HY1, 179-193, 
January 1973. 

Singh, Ramershwar. Improved Method of Flood Routing. Discussion 
in J. Hydraulics Div., ASCE, 93, HY3, 239, May 1967. 

Smith, A. A. A Problem Oriented Library for Steady Oae-Dimen
sional Open Channel Flow. McMaster University, 1970. 

Smith, A. A. Civil Engineering Program Library (CEPL), McMaster 
University, 1974 

Smith, A. A. A Numerical Analysis of the Effect of Proposed Flood 
Prevention Methods on the White Cart Water, Dept. Civil Engin
eering H0-68-l, University of Strathchyde, Glasgow, May 1968. 

Stoker, J. J. Water Waves -The Mathematical Theory with Appli
cations. Interscience Publishers Inc,, New York, 1957. 

Strelkoff, Theodor. Numerical Solution of SaintVernant Equations. 
J. Hydraulics Div., ASCE, 96, HYl, 223-251, January 1970. 

Strelkoff, Theodor. One Dimensional Euqations of Open Channel Flow. 
J. Hydraulics Div., ASCE, 95, HY3, 861-876, May, 1969 • 

. ' 



2.37 

Thomas, H. A. Hydraulics of Flood Movement in Rivers. Carnegie 
Inst. Tech. Pitsburgh, Penn., 19 34. 

Walden, R. F. Programming the Equations of Unsteady Flow. 
Thesis presented to McMaster University, November 1973. 

Williams, Jimmy R. and Hann, Roy W. Hymo, A Problem Orien
ted Computer Language for Building Hydrologic Models. 
Water Resourced Research, Vol. 8, No. 1, 79-86, February 
1972. 

Williams, Jimmy R. Flood Routing with Variable Travel Time or 
Variable Storage Coefficients. Transactions of the ASAE, 
Vol. 12, No. 1, 100-103, 1969. 

Woolhiser, D. A. and Liggett, J. A. Unsteady, One-Dimensional 
Flow Over a Plane--the Rising Hydrograph. Water Resources 
Research Vol. 3, No. 3, 753-771, Third Quarter, 1967. 

Wylie, E. Benjamin. Unsteady Free-Surface Flow Computations. 
J. Hydraulics Div., ASCE, 96, HY 11, 2241-2251, November 
1970. 

Yevjevich, V. and Barnes, A. H. Flood Routing Through Storm 
Drains, Part I, Part II, Part III and Part IV Hydrology Papers, 
43-46, Colorado State University, Fort Collins, Colorado, 
November 1970. 

Yevfevich, VV'.ji.ca M. Bibliography and Discussion of Flood
Routing Methods and Unsteady Flow in Open Channels. U. S. 
Geological Survey Water Supply Paper 1690, 1964. 

http:VV'.ji.ca


APPENDIX.A 

STABILITY ANALYSIS OF THE GENERAL KINEMATIC !vfETHOD 

This appendix is devoted to the stability analysis of the general 

kinematic method, Stability is a primary consideration used to eval

uate the performance of a numerical solution, An unstable scheme 

will cause small errors to amplify and dominate, thus, masking the 

solution. 

This analysis is based on a linearized version of the continuity 

equation. For nonlinear equations, the method is not exact, but if 

the increment being considereci is small and the coefficients of the 

derivatives are smooth functions, the approximation of constant co

efficients is reasonable. Hopefully, this analysis will identify schemes 

which are obviously unstable. 

The finite difference grid used to solve the continuity equation is: 

J+I,K+IJ,K+I 

t
T AT 

l 
J,K ~t.x-~ J+I,J< 

>-
X 
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The continuity equation is: 

oo bA (A.I)+ = q
bx bt 

Where: Q == flow rate 

A == CJ:'oss section area 

x == distance 

t :: time 

q :: rate of lateral inflow 

Because: 

dQ
c::- {A.2) 

dA 

Where: c == kinematic wave velocity 

' 
The continuity equation may be rewritten as: 

&A &A 
c- + = .q (A.3) 

0X b t 

At any point J, K the numerical solution Af is equal to the true 

solution A( JAX, KAT) plus an error term A~ or: 

A~= A(JAX, KaT)+ A~ (A.4) 
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Because the system is linear, the error term can be written 

as one term of a:Jrourier (Series: 

AK ~ Ao EXP( i( muAX + nY.AT)) 	 (A.5)
J 

Where: 	 Ao = constant 

a,Y= wave numbers in space and time 

i =fl 
By writing the linearized finite difference equation of contin

uity in terms of the numerical solution and subtracting the true solu

tion, the finite difference equation in terms of the errors is obtained. 

For the general kinematic method this equation is: 

1c( C{Aj<~f- AKj > + (1-BHAJ~I- A~) ) 
AX 

= 0 (A.6) 
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For the point J, K, m and n may be assumed .equal to zero, 

with no loss of generality, Thus: 

A1j = -Ao (A.7) 

AKj1= AoEXP(iYAT) (A.8) 

AJ~I =AoEXP(iO'.AX) (A.9) 

A~:: =Ao EXP (i(O'.AX + YAT)) (A.IO) 

- K+lSolving equation A.6 for the unknown anc;l multi-AJ +I 

plying by AT yields: 

.AT - K K 
-cAX(I-fl)AJ+I + (1-a)AJ+I 

(A. II) 

http:AoEXP(iO'.AX
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Collecting terms: 

aT) -K+I aT) -K 
(_ (l~a) + C8 aX AJ+I = ( a + (I-8)CAx AJ 

~ AT)- K+ \(l-a)·(I-8)CAX AJ+I 

(A.I2..) 

To facilitate easy algebraic manipulation, the following sub

stitutions are employed, the D terms corresponding to the numbered 

nodes of Figure 3. 2. 

aT 
01 = a + (I-8)C- (A.I3) 

. AX 

AT 
D2=-a+8C (A.J4)

AX 

aT 
03 = (1- a> - (1- 8>c (A.I5)

AX 

AT 
04 = o- a> + 8c - (A.J6).

.AX 

http:D2=-a+8C�(A.J4
http:I-8)C-(A.I3
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Thus, equation A,l2 becomes: 

-KD4AK+I= DIAK + D2AK+I + D3AJ+I (A .17)J+l J J 

To ensure stability, errors must not amplify, thus: 

- K+l 
A J+l 

= I - (A .18) 

The error term must lie within the unity circle. That is; 

K • K -K+I KD3AJ+I II DIAJ +D2A J +D3AJ.,I
IEXP(i(crax+Yarnl= K ~~ (A.I9)I 04 D3AJ+I 

Inserting the err0r terms written as components of a F'J'-lrier 

Series gives: 

- v J J Dl + D2EXP(i YAT) +D3EXP(icrAX) I 
EXP(i(crAX + 1AT)) = ~I (A.20)I 

04 
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The following trignometric i.dentities may be utilizerl in 

eq•.tation A. 20: 

EXP(iO"AX) = COSO".AX + ISINa.AX (A.21) 

EXPOYAT) = cosYAT +ISINYAT (A.22) 

Substituting equations A. 21 and A. 22 into equation A. 20 yields: 

+ D3(COS aAX + iSIN aAX) I " I (A.23) 

The worst case will occur when: 

COS erA X + iS IN aAX = t I (A.24) 

and 

cosY~r + ISINYAT = tl (A.25) 

http:ISINa.AX
http:COSO".AX


~4.5 

Thus, to ens•.Ire stability. the following equation sho'.lld be 

satisfied: 

IOil + ID21 + I031 
t£ I (A.26) 

fo4f 

Rear ranging equati.on A. 26 gives: 

(A.27) 

Expanding eq·.1ation A. 27 leads to: 

+I <t-a>- (1-B>cAT 1-lo-a> +BeaT I~ I (A.28).a.x .o.x 

http:equati.on
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For: 0 ~ a ~ 

D 1 and D4 will always be positive thus: 

J-a + 8c!; J + J (I - a l - <1- 81 c~ J 


+a + <1-D>c~ - 1 +a - sc AI !i o {A.29)
.6.X. ~X 

Or: 

(-a+ oc !~ ( + I(1-a) - <1- B> c!~ I 
+ (2a-l > + ( 1- 213} c ~~ ~ o (A.30) 

If the first two terms of equation A. 30 are of the same s_ign, 

then: 

1(1- 2a) + { 28-1) c ~~ 1 

(A.31) 

Defining: 
AT s = ( 20-1 ) + {1- 2!1) c {A.32)
.AX 

'Where: S =Stability number 



Equation A. 31 may be rewritten as: 

~ 0 (A.33) 

Thus s·tability could be achieved if: 

s~o (A.34) 

and if the following two terms have the same sign. 

CI = -a+ /3C .AT. (A.35)AX 

ATC2 = (I -0} - ( I -8) C AX (A.36) 

If the two conditions do not have the same sign then the follow

ing equation must be satisfied in order to ensure stability. 

Several examples are presented to demonstrate the application 

of these rules. 

Consider the location of the nucleus at a point specified by 

Q= o. 0 

8= 0. 0 

At that point: = o.oc 1 

c = I-CAT.
2 AX 
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Thus the two terms have the same sign and th~ only condition 

for stability is equation A. 34: 

S = - I + C .O.T ~ 0
.6-X 

Or: 

cAT t!
AX 

If the nucleus was located at a point specified by: 

a =o. o 

8 =o. 5 

then: 

The two ccnditions will have the same sign if 

and it will be necessary to satisfy only equation A. 34. 

S=-1 :!!Q 

For , equation A. 37 must be satisfied: 

f 0. 5 c !~-1 + Il - 0. 5 c !~-1 -I ~ 0 
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Or: 

c~ -2 ~ o ax 

Th1s. cond"t· · sat"1s 1ed 1 h en C ~X:r 2. o.1 10n 1s r· on y w .... .t:._ Thus 1"t 

was concluded that the solution is stable only under the following 

condition. 

This type of analysis was continued for the various points 

specified in table A. 1. 
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TABLE A.l 

OF STABiLITY Af\IALYSIS 

KN = CAT
AX 

GENERAL ME THOO: 

lx 0.25 0.001.00 0.75 0.50 

-

co~ KN~ 9_ oo?: KN=~1..oo.:! I<N::.Loo~KN!:J1.00 oo:: KN!! 0 
4 4 

... 

2 

+

3 ::.'(1·: .j_'> "" I(N"' 2 - i ...... ~... 4~KN~Oo:r5 UNSTABLE KN= I I.... . --3 
" 

-

~~KN;::L0.50 2~KN~OUNSTABLE UNSTABLE KN =I 2 2 

4:...Ui~STABLE UNSTABLE ur~STABLE0.25 KN= i ·3~-I<N~ 0 

. ·

UNs··t-ABLE I~ KN~OUNSTABLE UNST~.su;:UNSTABLE0.00 

LAX- WErJDROFF; KN :! I 

http:UNST~.su


APPE:t-JDIX B 


DEGREE OF APPROXIMATION FOR THE DYNAMIC ANALYSIS 


By expanding the differential formulations of the momentum and. 

continuity equations using a Taylor Series and observing the terms 

that are truncated when the finite difference approximat:ons are made, 

it is pass ible to determine the degree of approximation. 

The Taylor Series for a function of two variables is~ 

~f b ~ g2 ~2f 
f(x+g,t+h) :: f( X, t) + g- + h-1 + --

bx bt 2 c>X2 

h2 b2 f ~zf g3 ~3f 
+ --- -.'- gh- + -2 bt2 bx &t 6 ~x3 

...... __ h s·3f 
+ 

Q2h_ (;3f s:t: 63 f "'",.. ____....

+ --·--· + .j. ••• (El.l)
'" G. bx2 bt 2 bx &·i 2 6 l>x3 

For the continuity equation:. 

g = ~)(/2 

h = ~ T/2 

SQ 0 {X + ~X /2) t) - ~ ( X- AX/2, t)-···--..:··-·---~-~-.....,·-··---.c---~--
bx ~x 

\ 

j 
\ (3.2} 
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~ ~ A(x,t+~T/2)- A(x, t-A.T/2} 

St AT 

~ _J_(AT~ + AT
3 

1?A ••• ) ( 8.3)
AT bt 24 bt3 

Substituting into the continuity equations yields: 

(8.4) 

For the momentum equation, the follovJing approxir.1ations will 

be found: 

SQ ~T3b3Q 
~ J... (AT~ + --- ... ) (8.5)~--

bt .6.T bt 24 bt3 

oh .&.X3~3h; _..!_ (AX !t'_ + -- -....- ... ) (3. 6)
b:< AX ox 24 bx3 

and 

~h .b.T~X 2 o3 h_J_(AT~ ...) (8.7)ot .AT bt 8 bx2 ot 
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2 2Tnerefore the approximation is in the order of A.T and AX . 

However, another approximation should be analyzed. That is the manner. 

.., 
in which Q'" terms are represented. 

Q{x,t) 2
; Q(x,t+AT/2) Q(x,t- A.T/2) (B.8) 

Q( ., t'2 = (8.9)·• ,.. , i Q(x,t) - -~ 
2

(~) + ··· 
4 &t 

Thus, the approximation of the momentum equation is of the order 



APPENDIX C 

DEGREE OF APPROXIMATION FOR THE 

GENERAL KINEMATIC ROUTING METHOD 

Analyzing the degree of approximation involves expanding the 

differential equation into a Taylor Series and determining what terms 

are truncated when the finite difference approximations are made. 

For a function, f(x, t), the value of the function at f\x+g, t+h) 

is given by the Taylor Series: 

Sf , Of 
Hx+g,t+h) = f(x,t} + g- + h-

bx M 

gh2 b3f 
( C.l)+ ·-- -

2. bx M2 
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To obtain the general kinematic flood routing method,the con

tinui.ty equation is applied using finite difference methods, to a space 

time diagram as shown below. 

2 

T 
aT 

_l 

!'- tl:'f'l. 
\ 

A t 

l 
The finite difference approximations are~ 

6Q 13(04-02) + ( I-8)(Q3- Or ) 
= (C.2)ox AX 

&A (f-a)( A4 -1\d +a( A2- A,)
= (C. 3)ot A.l' 

http:tinui.ty
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Expand i.ng about point A: 
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Substituting expressions for Q4- Q2 and into 

equation C-2, the following expression is obtained: 

The values of 

expressed in the following manner: 

etc. 

(C. G) 

can be 

:<2 ~(I- Q).AX 
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This yields: 

21bQ =- (AX ~Q + .!_ (2Q-I)AX2 b Q 
bX AX ~X 2 bx2 

Thus: 

bQ bQ 
~ - + (C.8)

bX bX 

when 

·a = 0.5 

If Q'l 0.5 

(C.9) 

The magnitude of the O(AX) error is related to 

(2Q-J). 

The general description of truncation error is: 

(C.IO)
bx 
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oASimilarly expanding the term about point A: 
ot 

When {3 =0.5 the approximation will be 

--:: (C.l2) 

If 11~ 0.5 

-= (C .13) 

GE:nerally, the approximation may be written as 

(C .14) 
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The expression for the general kinematic flood routing method can 

be written as follows: 

bQ SA 
- + + (20-I)O(AX) + (I-28)0(.~T)
bX bt 

(C.I5) 

As the location about which the equation of continuity is moved 

further away from the centre of the molecule, the amount of error 

introduced by approximations on the order of AX and AT 

increases linearly. 

As Q is varied, terms on the order of AX are modified 

while varying 8 changes the way the errors on the order of 

aT are introduced. 

A plot of ( 2 Q - 1) over the molecule will reveal a plane sloping 

toward the downstream side of the molecule (denoted by points 3 

and 4). This is shown in figure C-1. Similarly ( 1-2 8 ) will be a 

plane tipped in the direction of increasing time {denoted by points 2 

and 4). 

Because the errors 0( AX) and 0( AT) introduced by varying 

a or 8 respectively, are independent of each other, it would 

be expected that a plot of errors would be a plane which has a dip 
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and strike determined by the relative size of the errors as well 

as the sign of the errors. 
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FIGURE C.l 


PLOT OF (2a-l) 
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FIGURE C.2 

PLOT OF ( 1-213) 
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APPENDIX D 

DOCUMENTATION OF 

COMPUTER ROUTINES 

>:~,:~,:~FINDIF 

>!e ,:~':~KINDIF 

HPLOT 

KINFUN 

KINRUT 

RESVOR 

RIVER3 
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UNSTEADY FLOW ANALYSIS 


(1) PURPOSE: 


(2) METHOD: 


This prograrr. provides a finite difference 

solution of the partial differential equations 

describi.ng one-dimensional unsteady flo'"' 

in a l't!ctang•.1lar channel. 

The input data. is supplied to the program 

using data cards. Problem variables are 

initialized and the input is printed to provide 

a chzck before thf> solution of the equations is 

begun. An exr>licit finite difference scheme 

based on a staggered mesh space-time diagram 

is utilized to provide the solution. Output is 

in the form of printer plots which shov1 

hydrographs at any two sections defined by 

the user. Depth versus time curves are 

also plotted for any two sections which are 

specified at the time of execution. Similarly. 

a stage disch2.rge curve is plotted for a user 

defined section. Options are available to 

have the hydrographs. etc., punched on 

cards for utilization with other programs 

and for storage purposes. 

http:describi.ng


( 3) 	 PROGRAM: 

(a) 	 DECK 
NAME: 

(b) 	 CALLING 
SEQUENCE: 

(c) 	 INPUT: 

Data Card 
Type 

1 

2 

3 

4 

5 

6 

FINDIF 

None. This is a driving program. 

Data Format 

Length of channel, width, FlO. 1, FlO. 2 

Mannings n, slope. depth 2Fl0. 8. FlO. 2. 

Number of reaches, Courant 

Number for choice of time 

increment, time at which 

the analysis is to be termi.nated 

(seconds). I3, 2Fl0. 2 

Test number (for identification) I3 

Punch code to produce hydrographs 

and depth versus time plots. 

Punch code for stage-discharge 

curve. (Enter 0 for no cards, 1 

for punched output.) 213 

Section for which stage-discharge 

curve should be plotted. 13 

Section numbers for ,,.,hich hydro-

graphs are to be plotted. 213 
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8 

9 

(d) OUTPUT: 

(e) RESTRICTIONS: 

Section numbers for which stage 

versus time curves are to be 

plotted. 2!3 

Number of points defining inflov:· 

hydrograph. I3 

The ratio of flow to full bank 

flow and time (seconds) for one 

point on the inflow hydrograph. FlO. 2, FlO. 0 

Note: Repeat card 9 for each of the points 

which define the inflow hydrograph. 

The output consists of a listing of various 

variables for the problem being tackled as 

well as two hydrographs, twG stage versus 

time curves, and a stage discharge curve, 

Options allow the stage discharge curve, 

hydrographs, and depth versus time curves to 

be punched on cards for future use. (Also 

see discussion.) 

This program is limited to the soluti.on of 

problems involving uniform rectangular 

channels where flov:• resistance is defined 

by Mannings equation. The time step is 

determined from full bank flow conditions 

and the Courant Number. Stability problems 

http:soluti.on


may be encountered if 	the Courant Number 

is to0 large. (The program is unable to 

simulate supercritical 	flow.) A uniform 

flow depth is assumed 	as the downstream 

control. (See discussion.) 

(f) OTHER DECKS: 	 INTERl, MANNGQ, PLOTPT, OUTPLT 

(4) EXAMPLE: 

(a) 	 THE PROBLEM: A rectangular channel 50, 000 1 long, 100 1 

wide and 20 1 deep is subject to a triang'.tlar 

inflow hydrograph. Twenty-five reaches 

are utilized in the analysis and bedslope = 

0. 0002 is specified with a Mannings n = 

0. 0149. The Co•.uant Number v:as set 

equal to 0. 5 and the analysis was carried 

out over a pedod of 24, 000 seconds, 

A copy of the data cards and sample outp11t. 

is shown in Appendix G of the so•.uce. 

( 5) 	 DISCUSSION: New users shotlld refer to documentation 

of all related program and routines. Further 

details of the method of analysis is available 

from the source. 

A variation of this program was developed 

to perform the same type of calculations with 

a wide channel. This 	program was further 

' 




(6) SOURCE: 


modified to provide outp•.1t which could be 

used to generate an animated movie of the 

flood wave moving down the channel. 

"A Comparison of Kinematic Flo-:>d Routi.ng 

Methods''. by Fred Bies enthal 

(A Master of Engineering Thesis) 

McMaster University 

Hamilton, Ontario 

http:Routi.ng
http:outp�.1t


UNSTEADY FLOW ANALYSIS 


(1) PURPOSE: 


( 2) "f\.A"ETHOD: 

( 3) PROGRAM: 

(a) DECK NAME: 

This program models the movement of a flo0d 

wave down a uniform rectangular channel using 

a kinematic flood routing technique. For each 

problem tackled, twenty-five solutions are 

provided. This enables a user to study the 

effects of varying the position of the "nucleus" 

within the finite difference "molecule". 

After obtaining the input data. the program 

variables are initialized, and the flood routing 

portion is carried out. The actual flood routing 

calculations are performed by subro·.1tine 

"KINRUT" and a further description of the 

algorithm may be obtained from the document

ation of that subro•.1tine as well as from the 

source. The flood routing computations are 

incorporated within nested "DO" loops so that 

the parameters ALPHA and BETA are system

atically varied to provide solutions with twenty

five positions of the nucleus. With each solution 

a title page and two graphs are provided to 

document the results of the simulations. 

KINDIF 



(b) 	 CALLING 
SEQUENCE: 

(c) 	 INPUT: 

Data 	Card 
Type 

1 

2 

3 

4 

5 

6 

7 

8 

None, this 1s a driving program. 

Data Format 

Length of channel, width, FlO. 1, FlO. 2, 

Manning n, slope, depth 2Fl0. 8. FlO. 2 

Number of reaches, time 

step (seconds). Time at 

which analysis is to be 

terminated (seconds). 13, 2Fl0. 2 

Test number (for identif

ication) I3 

Punch code to produce hydro-

graphs on cards. I3 

Section numbers for which 

hydrographs are to be plotted 213 

Section numbers for which 

stage versus time curves are 

to be plotted. 213 

Number of points defining 

inflow hydrograph I3 

The ratio of flow to fullbank 

flow and time (seconds) for one 

point on the inflow hydrograph. FlO. 2., FlO. 0 



Note: Repeat card 8 for each of the points which define 

the inflow hydrograph. 

(d) 	 OUTPUT: The output consists of a listing of various 

parameters for the problem being tackled in 

the form of a title block as well as two 

hydrographs and two stage - time curves 

for each of the solutions attempted. An 

option is incorporated in the program to 

allow a user to record the hydrographs on 

punched cards. 

(e) 	 RESTRICTIONS: This program is limited to the sohtion of 

problems involving uniform rectangular 

channels where flow resistance is defined 

by Manning s ~quation. (See dis..~C.ussion.) 

(f) 	 OTHER 
DECKS: HPLOT, INTERl, MANNGQ, T<.INRUT. KINFUN 

(4) 	 EXAMPLE: 

(a) 	 THE PROBLEM: A rectangular channel 50, 000 1 long 100 1 wide 

and 20 1 deep is subject to a triangular inflow 

hydrograph. Twenty reaches are used to 

analyze the channel which has a bedslope of 

11 n 110. 0002 and a Mannings of 0. 0149. The 

time step was set equal to 200 seconds and 

the analysis was made for a period of 

24, 000 seconds. A copy of the data input 



( 5) DISCUSSION: 


(6) SOURCE: 


cards and a sample output is shov•n in 

Appendix G of the source. 

New users should refer to documentati.on of 

all related programs and routines. Further 

details of the method of analysis is available 

fr01n the source. 

A variation of this program v•as developed to 

perform the same calculations with a very 

wide channel. 

Another variation was developed which allowed 

the user to install an imaginary reservoir in 

series with the channel. This reservoir could 

be located at a section in the channel and the 

size of the reservoir was defined in the input 

data. The "nucleus" was located in the centre of 

the finite difference molecule when the channel 

was analyzed. Nested "DO" loops were incor

porated to allow several sim•.1ltation to be 

performed with different sizes of reservoirs. 

"A Comparison of Kinematic Flood Routi.ng 

Methods", by Fred Biesenthal 

(A Master of Engineering Thesis). 

McMaster University 

Hamilton, Ontario 

http:Routi.ng
http:documentati.on
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HYDROGRAPH PLOTS 

(1) PURPOSE: This subroutine plots two hydr'Jgraphs on 

a set of axis. 

(2) METHOD: A grid. which is 50 printer lines high and 

118 spaces wide, is utilized. The hydrograph 

is specified by a series of zeros or plus 

signs positioned in the grid. Automatic 

scaling is provided within the subroutine 

and the calibration marks are placed on the 

scales, Time units are plotted (and labeled) 

as hours) across the bottom scale. An 

interpolation routine allows hydrographs 

with two different time steps to be plotted 

on the same scale. (The largest time step 

is used for the time scale.) 

For further details of the method refer to 

the subroutine listing. 

( 3) PROGRAM: 

(a}. DECK 
NAME: HPLOT 

(b) CALLING 
SEQUENCE: HPLOT (QOUT2D. DTIMAR, NQOUT, "?EAKAR, 

TSTART} 

QOUT2D = A two dimensional floating 
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DTIMAR = 

NQOUT = 

PEAKAR = 

TSTART = 

poi.nt array contain;ng the 

flowrates of the two hydrographs 

to be plotted. The flow rates 

are specified at eq'-Ial time 

intervals though the time 

step for the two hydrographs 

;:teed ;:tot be the same val,-Ie. 

A floating point array con

taining two values. The 

first value is the ti':De step 

for the first hydrograph 

and the second value contains 

the time step for the second 

hydrograph. 

A floating po'.nt array defi.n

ing the n'lmber of poi.nts i.n 

each hydrograph. 

A floating point array v·h1.ch 

defines the peak. flov• rate 

of each hydrograph. 

A floating point val•1e whi.ch 

defines the start ti.me of 

the hydrograph. 
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(c) OUTPUT: A call of thi.s subro·.1tine results in a plot 

of h:l'o hydrograp~s on one page of com

puter paper. A li.ne pri.nter whi.ch is at 

least 130 spaces wide is req·.1i.red. 

(d) FESTRICTIONS: Negative values will not be plotted 

correctly. 

(e) OTHER DECKS 
REQUIRED: None 

( 4) EXAMPLE: The sample printo•.1ts avai.lable from the 

source provide examples of this sub

ro,.ltine. 

( 5) DISCUSSION: The use of the subroutine is restricted to 

batch mode operations. It is possible, wi.th 

further modification to utilize this approach 

with interactive terminals. 

(6) SOURCE: Modified from Wi.lliams, Jimmy R. and 

Roy W. Hann, 11 HYMO, A Problem Oriented 

Language for Building Models", Water 

Resources Research, Vol. 8, No. 1, 79 -

86. February, 1972. 
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FLOOD ROUTING USING THE CONTINUITY EQUATIONS 


(1) PURPOSE: 

( 2} METHOD: 

( 3) PROGRAM: 

(a) DECK NAME: 

This routine calculates the funct1onal relation

ships of an elementary river reach prior to the 

routing of a floodwave using subroutine "KINRUT". 

The functional relationships are defined as 

follows: 

FUS = BETA • QIN -ALPHA"' STOR/DTIM 

for the upstream section and 

GDS = BETA • QOUT + ( 1.- ALPHA) 11t STOR /DTIM 

for the downstream section. 

It should be noted that STOR is the storage in 

the total length of the elementary reach with a 

steady state condition. In the case of FUS(QIN), 

the flow rate along the elementary reach is 

assumed to be that of the inflow while a steady 

flow rate of QOUT along the elementary reach is 

assumed when calculating GDS(QOUT). 

KINFUN 
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(b) 	 CALLING 
SEQUENCE: 

WHERE 

CALL KINFUN (ALPHA, BETA, DTIM, STORUS, 

QUSAR, NFUS, STORD.:3, ODSAR, NFDS, L<'USAR, 

GDSAR} 

ALPHA = Floating point variable containing 

ALPHA. 

BETA = Floating point variable containing 

BETA. 

DTIM = Floating point variable containing 

the value of the time increment. 

STORUS = Floating point array of size NFUS 

which contains values for steady 

state storage to define coordinates 

of storage - inflow relationship. 

QUSAR = Floating point array of size NFUS 

which contains values of inflow to 

define coordinates of storage -

inflow relationship. 

NFUS = Integer describing the number of 

points which define the relationship 

between steady state storage and 

inflow. 

STORDS = Floating point array of size NFDS 

which contains values for steady 

state storage to define coordinates 
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of storage - outflow relationship. 

QDSAR = Floating point array of size NFDS 

which contains values of o·~tflo'."' 

to define coordinates of storage 

outflow relationship. 

NFDS = Integer describing the nnmber 

points which define the relation

ship between steady state storage 

and o·~tflow. 

FUSAR = Floating point array of size NFUS 

containing values of the function 

relationship associated with inflow. 

GDSAR = Floating point array of size NFDS 

containing values of the function 

relationship associated with o•.1tflow. 

(c) 	 OUTPUT 
FORMAT: The function relations are assigned to array FUSAR 

for the upstream section and GDSAR for the down

stream section. 

(d) 	 OTHER DECKS 

REQUIRED: None 


. 	(e) RESTRICTIONS: The relationship between storage and flov.' rate 

must be a single valued function. 

( 4) 	 EXAMPLE: Refer to the source for an example. 

( 5) 	 DISCUSSION: None 
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( 6) 	 SOURCE: "A Comparison of Kinematic Flood R')uting 

Methods". by Fred Biesenthal 

(A Master of Engineering Thesis), 

McMaster University 

Hamilton, Ont ari.o 
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FLOOD ROUTING USING THE CONTINUITY EQUATIONS 


(1) PURPOSE: 


(2) METHOD: 


This ro:.1tine is used to deter'lline the o·~tflow 

from a system where the unsteady flow regime 

can be reasonably modelled using kinematic 

wave theory. 

The routine uses a finite difference technique to 

solve the continuity equation. Two parameters 

ALPHA and BETA are used to determine the way 

in which the finite differences are calculated. 

Figure KINRUTl shows the finite di. fference 

approximations and a portion of the space time 

grid. The calculations are made using func

tional relationships of i.nflow and outflow. The 

process of routing a flood through an elementary 

reach is very similar to the process of routtng 

a flood through a reservoir using the storage 

indi.cation method. A user should refer to the 

source for a more complete description of the 

numerical system used and the properties of the 

finite difference scheme. Refer to the docu

mentation of KINFUN for the definition of the 

functional relationships. 
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( 3) PROGRAM: 


(a) DECK NAME: KINRUT 

(b) CALLING 
SEQUENCE: CALL KINRUT (GDSAR, QDSAR, NFDS, FUSAR, 

QUSAR, NFUS, QLINAR, TIMAR.L, NPTSL, DX, 

DTIM, NPTS, QINAR, QOUTAR) 

WHERE GDSAR = Floating point array of size NFDS 

containing values for the functional 

relation of outflow. 

QDSAR = Float point array of size NFDS contain

ing values of outflow related to the 

array GDSAR. 

NFDS = Integer defining number of points which 

describe the function relation of outflow. 

FUSAR = Floating point array of size NFUS con

taining values for the functional relation 

of inflow. 

QUSAR =Floating point array of size NFUS con

taining values for inflow related to the 

array FUSAR. 

NFUS =Integer defining the number of points 

which describe the function relation 

of inflow. 
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QLINAR = Floating point array of size NPTSL 

containing the values of flow per unit 

length which describe the lateral 

inflow hydrograph. 

TIMARL = Floating point array of size NPTSL 

containing the coordinates of time 

which describe the lateral inflow 

hydrograph. 

NPTSL = 	Integer defining the number of points 

which describe the lateral inflow 

hydrograph. 

DX = Floating point variable describing the 

length of the: channel or reservoir 

which is subject to lateral inflow. 

DTIM = Floating point variable containing the 

time increment. 

NPTS = Integer defining the number of points 

which describe the inflow and outflow 

hydrographs. 

QINAR = 	Floating point array of size NPTS 

which contains the points describing 

the inflow hydrograph. 

QOUTAR = 	Floating point array of size NPTS 
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which contains the computed outflow 

hydrograph. 

(c) OUTPUT 
FORMAT: The outflow hydrograph is assigned to array 

QOUTAR. Points of the outflow hydrograph 

are specified at equal time increments of 

value DTIM. 

(d) OTHER DECKS 
REQUIRED: INTER 1 

(e) RESTRICTIONS: The user must specify the first value of the 

outflow hydrograph before calling KINRUT, 

and the points in the inflow hydrograph must 

be defined at equal time increments. Co

ordinates of the outflow hydrograph will 

correspond to the points on the inflow hydro-

graph. 

If lateral inflow is not a factor in the partie

ular problem, it will be set to zero by defining 

the first value of TIMARL as a real negative 

value. 

The functional relationships between flow and 

storage must be defined before calling KINRUT. 

(4) EXAMPLE; Refer to the Source. 

( 5) DISCUSSION: None 
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(6) 	 SOURCE: "A Comparison of Kinematic Flood Routing 

Methods 11 
, by Fred Biesenthal 

(A Master of Engineering Thesis,) 

McMaster University 

Hamilton, Ontario 
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RESERVOIR ROUTING 

(1) PURPOSE: 	 This subroutine generates the functional 

rating curves used by 	11 KINRUT 11 to route 

a flood through a reservoir. A call of 

"KINRUT 11 performs the actual routing. 

( 2.) 1\.tfETHOD: 	 For a detailed description of the method 

used to route the flood refer to document

ation of "KINRUT 11 and 11 .KINFUN'' as well 

as the source. The rating of the reservoir 

1s given by the eq·.1ation 

WHERE: 	 STOR = Storage 


FPVK =A constant 


QOUT =Flow rate 


FPVW =A constant 


( 3) 	 PROGRAM: 

(a) 	 DECK 
NA¥ E; RESVOR 

(b) 	 CALLING 
SEQUENCE: CALL RESVOR, (FPVK, FPVW, FLOWAR, 

NFLOW, DTIM, NQIN, QINAR, QOUTAR) 

VTHERE: FPVK A floating point variable 

containing the value of the 

constant K. 
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FPVW = 	 A floating point variable 

containing the value 'J£ the 

constant W. 

FLOWAR = 	 A floating poi.nt array con

taining the flow rates to be 

used when the functional 

relations hips are to be 

calculated. 

NFLOW = 	 An integer value which 

specifies the number of 

values in the vector FLOWAR. 

DTIM = 	 A floating point variable 

which specifies the time 

step used in the calculations. 

(Same units as time unit of 

flow rates.) 

NQIN = 	 An i.nteger value which specifies 

the number of poi.nts i.n the 

flow hydrographs. 

QINAR 	 A floating point array which= 
contains the flow rates of the 

inflow hydrograph specified 

at equal time intervals 

defined by DTIM. 
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(c) 	 OUTPUT: 

(d) 	 RESTRICTIONS: 

(e) 	 OTHER DECKS 
REQUIRED: 

(4) 	 EXAMPLE: 

( 5) 	 DISCUSSION: 

QOU'TAR ::: 	 A floating point array which 

contains the flo·... rates of the 

o'.ltflow hydrograph specified 

at equal time intervals as 

defined by DTIM. 

The routed flo'N is returned to the calling 

seql~ence vi.n. QOUTAR. A plot r:>f the inflow 

and o·-ltflow hydrographs is provided by a 

call of subroutine "HPLOT". 

To provide a dimensionless representation 

of the hydrograph, a floating point value is 

transfered to the subro'Jtine via a COMMON 

statement labelled 11 FLOW". The flov•s 

were divided by a flowrate so that the result 

was a value of 0 where: 

KINRUT. HPLOT 

An example of the use of this program is 

available frorn the source. 

The main purpose of this subroutine is to 

route a flood through an imaginary reservoir. 

If it is more advantageous to utilize reservoir 

rating curves which are storage as a functi 1n 
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of elevation and outflow as a functi.on of 

elevation see RESRUT. 

(6) 	 SOURCE: "A Comparison of Ki·1ematic Flo:>d Routing 

Methods'!, by Fred Biesenthal 

(A Master of Engineering Thesis) 

McMaster University 

Hamilton, Ontario 

http:functi.on
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STEADY AND UNSTEADY RIVER FLOW SIMULATION 

(1) 	 PURPOSE: This program is designed speci.ficall y 

for use in a time sharing mode and is intend

ed to set up, calibrate and s·1bseq·J.ently 

modify a numerical model of a nat•J.ral 

river channel under steady and unsteady 

flow conditions. 

A stretch of river ts described by a number 

of cross-secti.o11.s each of '"'hich is defined 

by a series of points. the initial co-':>rdinate 

values of which are referred to arbitrary 

datums for level and horizontal distance. 

Each cross-section is identified by a fixed 

chainage (and section number), and is also 

assigned an i.nlti.al value of roughness co

efficient. The resistance to flow may be 

defined by any one of a number of laws; 

the choice being made during the r;_m, 

The program operates on the system thus 

defined and for specific values of di.scharge 

and downstream rati_ng curve comp•.1tes the 

water surface elevation{ s) and energy 

I 

level(s) at the cross sections specified 

duri.ng execution. 

http:i.nlti.al
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In the course of execution the :1ser has the 

option to vary the discharge along the 

channel, the number of profi.les calc·-1lated. 

the locati.on and rati.ng curve of the down

stream control. the porti.on of the river 

over whi.ch the profile( s} is to be computed, 

the print out of the profile data, the ro•lgh

ness coefficient and the ge:::>metry of any 

selected section or any combinations of. 

the options mentioned above. In addition, 

there are several other features of the 

program devoted to steady state analysis 

which enables the user to calculate the 

critical flow depth at a selected section, 

list any changes that have been made to 

the data or to print the existing cross 

section data. 

An initially defined system may therefore 

be adjusteq to correctly reproduce an 

observed flow profile and then be ased to 

examine the effect of a chosen desi.gp flow 

and to experiment with changes to the cross 

section geometry. The profiles that are 

calculated may be utilized in the unsteady 

http:porti.on
http:locati.on


( 2.) METHOD: 
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a~1alys i. s des c r~.b ed behN-'. 

The analysi.s 0£ water pl"ofiles -i.ncorporates 

a method of handling transition sections, 

such as weirs or bridges. whi..ch may occur 

along the channel. 

The ~nsteady analysis incorporated into this 

s~broutine allows a hydrograph of varyi.ng 

flow to be ro~ted down p'Jrtions of the 

channel using kinematic wave theory. An 

optio:1 is available to allow a user to r'Jute 

the flood through a reservoi.r which "!lay 

be incorporated within the channel. Data 

which describes the hydrograph and other 

variables such as the time step for comp

utation purposes are all entered d 1ri.ng 

execution ::>f the program. 

The calculation consists essentially 0£ 

repeated applications of the subroutines 

EZRA and CONTRO, starting froM the 

farthest downstream reach and proceedi.ng 

upstream for each of the profiles. 

Flood routing is performed using kinematic 

wave theory as form11lated i.n the subroutine 

KINRUT . 

http:proceedi.ng
http:varyi.ng
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( 3) PROGRAM: 

(a) DECK 
NAME: RIVER3 

(b) CALLING 
SEQUENCE: RIVER3 (HORZ2D, VERT2D, NPTSAR, 

CHAINR, RCAR, NXSEC, M.AXPTS, G, 

NRl, NR2, NW, NF, AREAR, ELEVAR, 

FLOW2D, WLAR, QDAR, FUSAR, GDSAR, 

QUSAR, QDSAR, QRAR.) 

WHERE: HORZ2D = Two-di.mensi onal array 

contai.ning the horizrmtal 

co·~rdinates for the 

poi.nts describing the series 

of cross-sections. The 

first subscript of the 

array represents the section 

n•.1mber and the second sub

script represents one of 

the horizontal co1rdinates. 

VERT4D = Two-dimensional array con

tai.ni.ng the vertical c 'lordin

ates for the poi.nts descri.b

ing the series of cross-secthns. 

The first subscript of the array 

represents the section n·1:nber 
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and the second subscri.pt 

represents one of the 

vertical coordi.nates. 

NPTSAR = One- dimensio::tal array con

tai.ning the number of co

ordi.nate points for each cross

section in the series of sections. 

CHAINR = One-dimensional array con

taining the chainage values 

for the ser-i.es of cross-

sections. 

RCAR = One-dimensional array con

taini.ng the roughness co

efficients for each cross 

section ;n a seri.es of sections. 

NXSEC = The number of cross-secti.ons 

in the river channel. 

MAXPTS = The maximum number of co

ordinate points req•.1ired to 

describe any cross-section 

for the ser~es of sections. 

G = Gravitational acceleration 

constant. 

http:taini.ng
http:ser-i.es
http:subscri.pt
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NRl = Periph. Devi.ce No. for 

Ge')metry fi.le. 

NR2 = Peri.pb. Device No. for 

keyboard input. 

NW = "Periph. Device N0. for ter- · 

m inal output. 

NF = 	 The number of p-:>ints m the 

working arrays and tables 

define cross-section prop

erties versus flow rate. 

A REAR = Two-dimensional array 

containing cross-section 

area for each section and 

flow used to describe the 

steady state performance. 

Dimensioned NF,:•NXSEC. 

ELEVAR = Tw0-dimensional array 

containing water surface 

elevation for each section 

and flow used to describe 

the steady state perf0rmance. 

Dimensioned NF,:•NXSEC. 
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FLO"W2D = 

WLAR = 

QDAR = 

FUSAR = 

GDSAR = 

Tw'1-dimensional array con

tai.ning the flowrates at each 

section used to calculate the 

steady state performance. 

Vector array which contains· 

the water level co0rdi.nates 

for the rati.ng curve of the 

downstream section. 

Vector array v.>hich contains 

the discharge coordinates for 

the rati..ng curve of the 

downstrean1 section. 

Vector array which contains 

the function coordinates of 

the rating curve for the 

upstream section used to 

perform the ki.nemati.c floe>d 

routing. 

Vector array which contains 

the function coordinates of the 

rating curve for the downstream 

section used to perform the 

kinematic flood ro·1ting. 
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(c) OUTPUT: 

RlVER3/8 

QUSAR 	 Vector array v•hich contains 

the flov' coordinates of the 

rating curve for the upstream 

section used to perform the 

ki.nematic flo::>d routing. 

QDSAR :: 	 Vector array which contains 

the flow coe>rdinate s of the 

rating curve for the do,~·nstream 

section used to perform the 

kinematic flood routing. 

QRAR :: 	 Vector array which contains 

the flow co0rdinate s of the 

rating curve used for 

reservoir ro·.1ting. 

The outp•.1t of the S'.lbroutine cons ·.sts of 

invitations to enter data, s•1ch as questi.ons 

requesting inp•1t, as well as the results of 

the various calculations. Generally. i.nform

ation provided consists of section n'.lmber, 

chainage. water surface elevation and energy 

level for steady state analysi$ and secti.on 

number a!ld time and flo·,_J;• rates for a hydro

graph calculated d'lring unsteady flow 

analysis. 

http:secti.on
http:outp�.1t


(d) RE.STRICTIO='!S: 
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The flo·" resi.stance law must be chosen fr0m 

among the following: Chezy. Manning. 

Strickler, Colebro~k-White. Nikuradse's 

logarithmic Sm0oth Turbulent or Nikuradse's 

logarithmic Ro'clgh Turbulent. It is the 'clserls 

responsibility to ensure that the selected law 

is appropriate both to the river system and to 

the roughness coefficient contained in the 

geometric data. 

If the smooth turbulent law 1s used, the rough

ness coefficient is ignored but arbitrary 

data must still be provided. 

The number of cross-sectio:1s cann'Jt be varied 

from that defined in the data file. Neither can 

the initially defined maximum number of points 

per section be exceeded. The di_scharge is 

assumed to be uniform alo:1g each sub-reach. 

However. a n•1mber of sub-reaches may be 

defined within the river system, When 

performing the calculations a sub-critical 

flow regime is assumed. 
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(e) OTHER DECKS 
REQUIRED: 

( 4) EXAMPLE: 

(a) 	 11\fPU TS: 

READXS, SELSEC, PROPS, CRITIC, 

BOTTOM, SFROMQ, CHEZYQ, MANNGQ, 

STRICQ, COLEQ, SMOTHQ, ROUGHQ, 

EZRA, CONTRO, KINRUT 

A rectangular cha~nel 50, 000 1 long, 100 1 

wi.de and ?0 1 deep is subject ta a tri ang1.1lar 

infhw hydrograph. Eleven sect' ons w:_th 

with fo·.1r points each were .1Fl: zed t':>1

describe the channel which had a bed 


slope =0. 0002. The Manni.ngs rough

ness coeffi.cient was n = 0. 0149. 


The geometrical data was stored ':>n a f:_le 


and was read in as TAPEL Fr:>r each 


section the data comprises: 


(i) 	 Section number (sections must be 

numbered sequentially from No. 1 at 

the upstream end, but need not be read in 

that order.) 

( ii) 	di.stance 

(ii.i) 	 roughness measure 

(iv) 	 Number af points :.1sed b descri_be 

the sccti.0n. 

http:sccti.0n
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(b) OUTPUT: 

( 5) DISCUSSION: 

(v) A seq·1ence of pai.rs of co1rdinates 

defi.n1ng the cross- ,;ectlon geometry. 

A copy of TAPEl is shown in Appendix G 

of the source. The format 0f thi.s ~.np•1t 

file i.s di.ctated by the format used for the 

read statements i.n st1bro:1tine READXS. 

Other information relating to d~ scharge, 

control level, inflow hydrographs and 

subseq·.1ent system changes etc. , is 

inp•1t from the console during the run. 

Each inptlt iR detailed ~n the sample 

outp·1t which is largely self-explanatory. 

A sample outp·1t is shown i.n Appendi.x G 

of the s o~rce. 

New •1sers should refer to docurnentati'1n 

of all related prograrns and rouFnes. 

Further details of the method used f0r 

analysis of unsteady flow are available 

from the so~rce. 
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( 6) SOURCE: 
 Modified from RIVER2 (Dr. A. A. Smi.th. 


McMaster Uni.versi.ty. Hamilton, Ontario,) 


"A Comparison of Kinematic Flo:)d Routing' 


Methods". by Fred Biesenthal 


(A Master of Engi.neeri.ng Thesis) 


McMaster University 


Hamilton, Ontario 


http:Engi.neeri.ng
http:Uni.versi.ty


APPENDIX E 


DERIVATION OF THE LAX- WENDROFF METHOD 


The continuity equation is: 

bQ bA 
- + = q ( E.I)
bx bt 

This equation can be written in the conservation form: 

bQ bA 
+ - q = 0 (E. 2)

bx bt 

Expanding A( X, T +AT) using a Taylor Series, the 

following is obtained: 

(E.3) 

From equation E. 2 

bA 
-= (E.4)
bt 
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and 

=-~ (!S.) + bq (E. 5)
bX bt bt 

Assuming a singled valued relationship between Q and A: 

bQ = f(A) bA (E.G)
bt bt 

Subs~ituting equations E. 6 and E. 4 into equation E. 5 yields: 

:: 	 ~ (f(A) bQ - f{A)q) + bq (E.7)
bx bx bt 

Therefore: 

A(X,T+~T) = A { X , T) - ~T ( ~ - c;-)
\ bx 

+aT2(!_ (f(A)bQ_f(A)q) + ~) ( E .8)
2 bx bx bt 
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Using the space-time grid shown in figure 3. 2 equation E. 8 

can be expressed in terms of finite differences, 

Figure 3. 2 is reproduced below for reference purposes, 

J+l 
t 
~T 

~ J 
-f..._~x---.1----~x---.l 

I-1 I 1+1 

The equation in finite difference form is 

A(I J+l) = A( I J) - ~T ( Q(I+J,J) - Q{I-J,J) 
' ' 2~X 


~T 2
f ~ ( Q(I+I,J) -Q(I,J) 
- {q(l+I,J} + q(I-I,J)}) + 2~X f(A} ~X

2 

_ f~A} (q(I+I,J} + q(I,J)) _ f(A) Q{I,J}~~(!-I,J) 

+ f~Al ((j(I,J) + Cj(l-J,J))) + ~ ( (j{I,J+Jl _ Cj(I,J)) {E.9} 
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It should be noted that the value f(A) is a unique value for each 

position on the space time diagram. That is, 

f{A(X,T)) = Q(X,T) 

A(X IT) 
(E .10) 

Substituting equation E. 10 into equation E. 9 gives:· 

A(I,J+I) = A(l J)- AT(Q(I+I,J)-Q(I-I,J) 
' 2AX 

I ) AT 
2 

( Q(I+I,J)
2 

~ 2 (q(I+I,J) + a(I-I,J)) + 2AX A(I+I,J)AX 

2
-2 Q(I,J) 

A(I,,I)AX 
Q(I-I,J) 2 

+ 
A(I-I,J)AX 

Q(I+I,J) Cf{I+I,J) 

2 A(I+I,J) 

+ Q(I-1, J) q(I-1 ,J)) +~2:r ( (f{I,J+I) _ q(I, J)) 
2A(I-I,J) 

(E. II) 
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After deriving A( I, J+ 1), Q(I, J+ 1) is obtained from the rela

tionship between flow rate and area. This function is single valued 

for kinematic waves. 

Using the above formulation, the solution advances downstream 

on a particular time level. Suceeding time levels are considered in 

following passes down the channel. 

\ 



APPENDIX F 

KINE1--/,ATIC FLOOD ROUTING--METHOD OF CHARACTERISTICS 

Kinematic waves have one set of characteristics which travel 

downstream with a velocity, C , where 

C = dQ (F.I)
dA 

Q =flow rate 

A= area 

To route a flood wave through a channel, using a kinematic 

method, it is necessary to calculate only the wave velocity for 

various flow rates, determine how much titne is required for the 

particular flow rate to move through the length of channel and thus 

plot points which determine the time history o£ the outflow hydro-

graph. 

Determination of 

Using 1-.rannings Formula: 

(F.2) 

(F.3) 
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{F.4) 

FOR A RECTANGULAR CHANNEL; 

{F.5) 

T = TOPWIDTH 


Y = DEPTH 


dQ I dQ 
= -- (F. G)

dA Tw dY 

dQ 
(F. 7)

dY 

dQ . (F .8)
dY 

(F.9) 

= Q ( 5 (F.IO)
dQ - 3(T.: 2Y))dA Tw 3Y 



310 

The following program was written to calculate flow rate, 

ration of flow rate to full depth flow rate and kinematic wave 

velocity all as a function depth. 

100= PROGRAM KIN< INPUT., OUTPUT., TAPES= INPUT .. TAPE6=0UTPUT> 
110= 5=0.0002 
•120= RC=0.0149 
130= G=32·2 
140= W=100.0 
150= DMAX=20·0 
160= DH=DtYJAX/40. 
170= P=DMAX*2.0+100.0 
I A0= A:I..J*Dt"VJAX 
190= CALL MANNGQ(A.,P.. S,RC.,G,QMAX) 
200= H=0.0 
210= DO I 0 I= I, 40 
220= H=H+DH 
230= A=H*W 
240= P=W+2. 0*H 
250= CALL MANNGQ(A.,P,s,~c .. G,Q) 
260= VK=Q/W*(S.0/(3.0*H)-4.0/(3.0*W+6.0*H)) 
270= QR=tUQMAX 
280= 10 WRITE<6,J00) H,Q.,QR.,VK 
290= 100 FORMAT<JX,4F12·4> 
300= STOP 
310= END 

The results are shown in table F. 1 
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TABLE F-1 


FLOV' RATE, FLOW RATIO AND KINEMATIC WAVE VELOCITY 


AS A FUNCTION OF DEPTH 
SYSTEM I 

DEPTH FLOW RATE Q /Q full bonk c 
( ft ) ( cfs) (fps) 

.5000 44.3121 .0027 I • 47 I 2 
I • 0000 139.7612 • 0084 2·3111 
I • 5 000 272.9276 .0164 2.9972 
2.0000 438.0072 .0263 3.5939 
2.5000 631.2877 • 0379 4 • I 284 
3.0000 850.0642 .0510 4·6157 
3. 5 000 1092.2224 • 0655 5. 0650 
4.0000 1356.0353 • 081 3 5o4827 
4.5000 1640.0486 • 0983 5.87 36 
5.0000 1943.0102 .I 165 6.2412 
5.5000 2263.8242 • 1 358 6.5881 
6.0000 2601 .5186 • 1560 6.9167 
6.591091 2955.2223 • 1?? 2 ?.2288 
7.0000 3324.1481 ol993 7. 5 258 
7.59100 3707.5789 .2223 7.8092 
8.0000 4104.8584 • 2462 8o0800 
8.5000 4515.3820 • 2708 8.3391 
9.0000 4938.5908 .2962 8.5875 
9.5000 5373.9658 ·3223 8.8259 

1eJ.0(l)eJ0 5821.0237 o3491 9.0549 
10.5000 6279.3127 • 3766 9o2752 
1 t • 0000 6748.4098 ·4047 9.4873 
11.5000 7227.9175 ·4334 9.6917 
12.0000 7717.4617 • 4628 9.8889 
12.5000 8?.16.6895 .4927 10.0791 
13.0000 8725.2675 ·5232 10.2629 
13.5000 9242.8803 .5543 10.4406 
14.0000 9769.2287 .5858 10.6124 
14.5000 10304.0287 ·6179 10.7787 
15.0000 10847.0104 .6505 10.9397 
15.50vH'! lt397.9171 • 6835 l1o0957 
16.0000 11956.5040 .7170 11 ·2470 
16.5000 12522.5375 .7509 11o3936 
17.0000 13095.7949 • 7853 1 I • 5 36 0 
17.5000 13676.0631 .R201 11.6741 
18.0000 14263.1384 .8553 11 .8083 
18.5000 14856.8258 .8909 11.9386 
19.0000 15456.9383 • 9269 I 2. 065 3 
19.5000 16063.2967 • 96 33 12.)885 
20.0000 16675.7291 1 • 0000 12.3083 
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This data was used to plot a curve o{ flow rate versus wave 

velocity. (Figure F .1 ) By dividing wave velocity for a particular 

flow rate into the length of the channel in feet, the lag between 

inflow and o·~tflow of that flow rate can be determined. Points on 

an inflow hydrograph can be transposed downstream and the out

flow hydrograph can be determined, 

System 1 was analyzed using this method, The results of 

the analysis are given in table F.2 and the hydrograph is plotted 

in figure 3. 8. 
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TABLE F-2 


RESULTS OF KINEMATIC FLOOD ROUTING SYSTEM I 

Inflow 
Ratio 

Velocity 
(ft/sec) 

Travel 
Time (sec) 

Inflow 
Time (sec) 

Outflow 
Time (sec) 

0.2 

0.4 

O.f 

0.8 

1.0 

0.8 

0.6 

0.4 

0.2 

7.52 

9.46 

10. 73 

11. 60 

12. 31 

11. 60 

10. 73 

9.46 

7.52 

5319 

4228 

. 3728 

3448 

3249 

3448 

3728 

4228 

5319 

1500 

2750 

4000 

5250 

6500 

7750 

9000 

10250 

11500 

6820 

6980 

7730 

8700 

9750 

11200 

12730 

14480 

16820 



1.0 

0.8 

0.6 

0.4 

0.2 

SYSTEM I 

FIGURE F.l 
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APPENDIX G 

LISTINGS OF COMPUTER INPUT FILES, ROUTINES AND OUTPUT 

INPUT FILES: 	 FINDIF 


KINDIF 


TAPEl 


ANCDAT 


WHTDAT 


ROUTINES: 	 FINDIF 


KINDIF 


KINFUN 


KINRUT 


HPLOT 


RESVOR 


RIVER3. 


OUTPUT: 	 FINDIF 


KINDIF 


RIVER3 
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T·YPICAL INPUT FILE: FINDIF 


1 0 (1=1-lF'AI; •T4 (I 0. 
B IE S ErHt-lAL 
110=ATTACH.RJVEPF•ID=H~AG·MP=l. 

120:ATTA~Y·CIVLIB·ID=HPAG·Mo=t. 

1 ·;; 0 =F 1 n.-: I =P I · ... EFt= -:. 
14 0-='_ TI·~·ET ( L I.E:=<· I '·.·'L-IE··, 
15 O=u:;o. 
151 =•ErW 
17 0=5 c: (, 0 0. 1 0 (I • 0. 014'~ 0.0002 .::0 • 
1 :=: 0= ·~ 5 0 . 5 ?4 (i (I (I. 
191)= l ·~ 0 
200= 1 
;::·10= ;::·1 
220= 1 ?1 
230= 1 21 

24fl= .-,

:· 

250=-0.2 15(11). 


2.:. 1)-:: 1 . 0 ~.5('.0 • 
.::·70=0.2 115(0. 

271 =+E[lt;· 

272=+EDF 
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TYPICAL INPUT Fl LE: KINDIF 


1 0 ft=t-Jr.:·:~c::; • T 4 0 f' • 
BIE ::Er-lTHC".!L 
l 1 0 =AT T Ft·~· H • [:· I r·m I F • 1 ft =H::;:· Fi 1; • t·l P:::: 1 • 
1;::: O=ATTriCH • ':. T\'LIE' • TD=HF'~(;. ro1P= 1 • 

130=FTNfl=~INDI~~ 

140=LD~ET(LIE'=SIVLIB~ 
150=1_1':;(]. 
1':·1 =•EO? 

170=50000. 1 0 0. 11.1"114'=< o. nn n~· .=·(I • 

1::::::0= ;::o.::·n'"'· ;::·4 on o. 

19 0= 1 ·=.t (I 

200-= 1. 1 
.::·20= 1 17 
2 ~: 0= 1 17-.240== ;. 

2~·0= il. 2 1':·0il. 
2t::. 0= 1 • 0 ~.5o ct. 
270=0 ,2 11 5 (I (I , 

271-=+EOF.' 
272=+EOF 
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•. 


r 

GEOf~iETRIC DAT/~ FILE : Tt~PEI 

(1 • (I • 0 1 4 ·~ 4 
0 • 0 0 1 3 (1 ' (: 0 (I • 0 0 1 1 0 • (I 0 

5 0 0 0 • u • (I 1 4 '3 4 
1 (' •:• • (! (I 1 1 t) • (I (I 1 0 (J • 0 (! 1 :;: (I • (I (. 

0.0012q.co o.ootn3.oo lOO.OOl09.oo 100.00129.oo 
·-=··-· 1 0 (I (I (I • 0 • (11 •1 9 --1 

0 • 0 1) 1 .::_:::: • 0 0 0. 0 0 1 r,::=; • 0 0 1 (• (, • 1) 0 1 o::::. 0 0 1 0 0 • 0 0 12:::: . 0 0 
4 1 5 0 0 (I • 0 • 01 ·+ '? 4 

0.001?7.00 0.00107.00 100.00L07.00 100.00127~00 
5 2000J.O .0149 4 

o.00126.0u 0.00106.00 100.00106.00 100.00126.00 
6 25000.0 .0149 4 

0.00125.00 0.0010~.00 100.00105.00 100.00125.00 
7 30000.0 .01d9 4 

0.00124.00 0.08104.00 100.00104.00 100.00124.00 
8 35000.0 .0149 4 

0.00123.00 0.00103.00 100.00103.00 100.00123.00 
9 40000.0 .0149 4 

(1.00122.00 0.00102.00 100.00102.00 100.00122.00 
10 d5000.0 .014S 4 

0 • (1 01 2 1 • (ltJ 0 . (I 01 0 1 • 0 0 1 (1 0 • (I 0 1 0 1 • 0 0 1 0 0 • (I 012 1 • 0 0 
1~ 50000.0 .0149 4 

~I , !"I (I 1;-;, (1 , (11) 0.00100.0~ 100.00100.00 100.00120.00 



INPUT FILE: ANCDAT (GEOMETRIC DATA FOR APPLICATION TWO) 




JNPUT - ANCDAT/2 

··'. ' 
~.-' 



INPUT- ANCOAT/3 


115 15600 0 0700 17 - 00111110 
o,o 2A5,& s,o 2eo,o 12,0 21s,o 25,o 211,0 qs,o 210,0 10o~o 2bS~oooi4S"o___________________________________________________r-t I 0. 0 ib'>. o--tt.,. tr~70-.v-32~;~711~~9.Q-2711o--u-Tl ;o-~"2671 o---ll2:S, rcb7 ,1100 I II!> I

. u~s,o,270,o ~~., o 211,0 11'>5,0 275,0 1157,0 28o,o llb3,0 285,0 Oui470 
lib \b9uO,O 0700 1 2 OOIU80 

"~~g,.g ~~~:~ "~~ ·8 ~l~:8 s~~:8 ~lg:g ~rg:8 ~~8:8 ~~g:g ~n:& ~~z:g ~g8:8~~~~6~ -------~~---~ -- ... 
117 I SbO 0 0700 2 0015'01

o,o 2Ao,& 11,0 275,o 22,0 210,0 32,o 2os,o 388,0 2o3,0 J'le,o 258,ooo1;2oI, '118 1 0 2.,8,0 1.128 1 0 2b3,0 'H2,0 2o5,0 722~!0 27~~._~2_?.~0 790,0 280 1 0001':>30 
4&--~t~zo., o -tsoo-lo----- ~015110! 0,0 2,5,~ 10,0 270,0 40 1 0 2b5,0 1106,0 2bO,O 1113,0 257 1 0 1128 1 0 257 1 0001'>50 

1 11l1 1 0 2bO,O 1164!0 2b5,0 ~30,0 270,0 5'11,0 275,0 OOI5b0 
· 11'1 lo'>75 0 0900 0 001':>70' 0,0 2,~,a • 2G,O 270,0 5'5,0 2b5,0 2'18,0 260,0 303,0 256,0 318,0 2'56 

1 
0001580 -~--~- -·--· ·-- 1

323,q 2bO,o J<~5,o 2o~,o 11118,0 210,0 '1'12,0 275,0 oot5'~0 II 50 lo)7S 0 0300 b 001600
1 

'H ~ • 7tg; ~ ~ ~ b' a 0 3 0 0~ 'g __!~~-~,2.___j?~__IIJ_'L__E_?~~.L_~ ~?__.____g_~Q..___]ll 1 ~ ~ I g~ :;-0--------------------------------~- ~ I •7!o~ 3!l,a o1o 285, o,o 2561 q,5 2561 11,5 285, 25o, 3l1,00iblo 
· 52 l~ooo~o 1 oeoo o oo16uo 

o,o z,5,u 2o,o 210,0 47,o 265,o. 33~,o 2&0,o 332,o 25q,o 355,0 25Q,ouo bSo 
37s,o zoo,o 1101ro 265,o IIJS,o 21o,o 116o,o 21~.o oo1o6o 

53 IV070 0 0700 2 00io70 
0,0 z1s,a lb,O 270,0 2b,O 265,0 3~11,0 2b0 1 0 38'1 1 0 257,0 397,0 25J,OO?lo~O 


., 11_ ~ q ~ ~ 7~" ~, o03 ~ 5.! 1 g~ -~ s_r~~~ ~L2!> o.~2!>~•-L.?6~.1L...!!~I! ..LnQ .~____!! l o, Q_~D. o~ ~ 1~ 6 8----------------------------------------
·~oo, 3~o.6 o,o 280, o,o 253, o,o 253, o.o 280 1 130, 300,001710


55 l9lOO o 031o 6 oo11co 
•lloo, Jao,6 o o 2ao, o,o 253, o,o 253, o,o 2eo, 130, 3oo,oot73o

Sb l'llCO 0 1000 10 oo\7~0 
0,0 2~v.~ 2~,0 26~,0 55,0 2bO,O 1103,0 258,0 Q06,0 252,0 qzq,O 252,0001750

1127 0 0 2"8,0 u3o 1o 2bO,O Q<IO,O Z65,0 Q5S,O 270,0 . 00176057 1v7oo,o 
1 

1500 2_ ~ ~. ~ _ _ ~ _ gup7o.______________________ 

·- -- o,o z,o,u---~3,0 ?&'5-;-cr---s;o-zoo,o 7,11'2'5tt,tr-ru,crz'5'5-;o--ll;O '2'5!.1! o.teo 


cA,o ~51,o 3o o c"s,o 31,0 259,0 29o,o ZbO,o 3bl,o cos;o 315,0 27J,oOo1790
'>6 2v900 0 0700 1I 00!800 

~·o 2,0,& A9,o 2&5,0 2'1,0 260;0 S7,0 258,0 6~,o 250,A b'I,O 25o,ooo!B~o 
~~ 7 ~"g.1 06 ~ g 258,0 11311,0 2oo,o 1139,0 265,0 116 ,o 210, ~g ~ 3 g59 7 2 0 1 1 1

0,0 2,0,6 15,0 265,0 31,0 2b0 1 0 '53,0 255,0 115,0 253,0 156,0 252,,00\dQU 

- I 5q. 0- 2 ~ 8 I 5_I 6., I 0 211 ~ .. 4 17 I, 0 2 4 II J 5 1? II ._ILZ., 2 I 5 2 I 5.!L~.l~ll~~.JIO Qllj., 0(--------------------------------------------l


~bGQ 1 0 260,0 oo'1!{}255,u-DVS,lJ270,o---- Ou Bo 
60 2lU70,0 ObUO ~ 01JIIl70 

0,0 coS,~ 10,0 260,0 29,0 257,0 119,0 25b,O qq,O 250,1 b5,0 250,00oje~o
b5,0 2<~7,2 75,0 zq7,1 85,0 2~7,2 85 1 0 2"0,0 114,0 250 1 114,0 25b,OOU !90 

119 1 0 257,0 l90!0 2o0,0 420,0 2bS,O 001q00
'bl l}o"o,o 06oo 5 oui9IO 

o,o 2o5,& 12,5 260,0 25,0 255,0 37,5 250,0 OU!920 
~7,0 ~ub,2 7!,5 24b,3 7&,5 24'1,0 96 5 250 0 10'1,0 255,0 121,5 2bO,OOOI930v______________________________________________________~ 

1 1 
~.so o~·2o'5,!)--~-~ Ov!'1lf" 

62 2!1JQ,O 1 0600 13 00!950


0,0 2o'>,v 12,5 260,0 25,0 255,0 37,5 250,0 oo 9o0 
o7,0 2~b,2 73,5 24b,3 7b,5 2~'1,0 96,5 250 10 10'1,0 255,0 121,5 260,0001970

134 o 2b5,o oot'IBO 
' &3 ~~7vo,o o~ooo n Oul9'10 

o,o z~s.a 12," 260,o 25,o 255,o 37,5 z5o,o 57,s 249,o oo,s 24b,loozooo 
b7 0 0 2oo,2 7l,S 246,3 76,5 24'1,0 96,5 _250 1 0 10'1,0 255,0 121 1 5 2b0 1 00U~Oirr0-------------------------------------------------------

i b4uzJg~g()6• 0 oooo 11 g~~8~o
I o,o 2~2.~ 22,0 251,0 26,0 248,0 47 o 247,0 11'1 o 245,0 60 1 0 ZQ5 10002040i b2,o 2111,0 81,0 24710 s7,o 251,0 177!o 252,0 111:0 262,0 Oo2v5o 

l 

' .·..'''.: 

http:2!>~�-L.?6~.1L


·' 


INPUT FILE:Vv'HTDAT (GEOMETRIC DATA FOR APPLICATION ONE) 


1 5 1.oo 222o.o 0001'101
o.o113.o o.o e~.5 56.o 86,5 6S.o 9o.~ qo.01l5.o ooo?oo
2 e 1,uv 324o,n 000?}0

•l1o0llo.0•10•0 R9,~ o.o 89.6 O•O eo.o ,.9,o Ao.o ~4•0 88,2 97,o 94,0 97.0110.coo02?8 
3 7 17"0 5040,0 ooun 

--lo.o 9 .• o zo.o 12.~ 40.o-7<t.. o--so.ll-7J,o- r.;o.o 73.8 ..a•• o--&7 ..o-s•.o-9lh -oo~240------------------·------· 
4 e 1,5u 59~o.o 000?50
o.o1o-.o O•o ~o.o 12.o ;9,7 24·0 7z,5 4B,o 7o.o 7o.~ 70.4 eo.o A7,5 ao,Oloo. 0oooz,,o
5 b ,t;U 72~0.0 000?70 
o.o 9~;o O·o 67,o 46,0 68e0 71o0 74,0 8le0 ~&.0 AJ,~ 95,0 ODO?AO 
b 1 ~su 72bn,o 000290 

60.0 9;,0 60·0 78.~ -1.0 78,7 •1.0 67.0 46.0 6Ao0 7le0 73,5 71,0 96,0 OGOJQO 
1 6 .~o 7?.~o.o ____________gg8~~~no___________________________________________--1 
o.o <J~.o. o.o 67,o 
8 b .~o 790o,o oou·no 
o.o 95,0 o.o 70,0 30,0 67.0 59,Q 69.0100,0 76o0l00e0 95,0 000340 
9 5 •40 9000,0 OOU}t;O

•1o.o q~~o zo.o 6~,n 60.n 64.0 8o.o 67.0 Ro.o 94.0 0 0 u ll'- 0 
10 7 !cO lo53o,o 000370 
o.o 9s.u O·o 75,n 19,0 60.2 5S.o 6o.5 s5.o 69.o 66.o 77.o 66,0 9~.o 0003RO 

11 7 .~u IJROO,O Oll0J90 
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15 5 0•90 !39~o.o 000470 
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o.o 9u o o.o 1o.~ so.o 57.o hS.o s1.o e5.o 57,o es.o 'lo.o OOO<;OJ

17 b • 10 15340,0 OOU'>JO 
10.0 90IO 10•0 b~.r 50.0 57.0 65.0 51•0 75,0 54.0 7~•0 9o,o on<Jo,zo
18 6 • 0 15340,0 QOU~30 
o.o e~.o o.o 7o,o 50.o 56.5 65.o 51.o As.o 56.5 85•0 85.o 00U')I+0

19 6 ,ill l6SQO,n oou.,so 
o.o &5,0 o.o 70,0 10.0 sJ.5 75.o 5J,5. ~o.o 1o.o ao.o ----------OovshO-----------------------------------------------------ta5.o20 R •}0 IR2QO,Q 000...,70
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0. 0 o.n ::;o.n zo.o 39oO 20·0 32,n1oo.o 32,Q100o(l 39,ollo.o 50.0110.0 65.0 (ill u •>f.O 
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5 9·04 ·;~~ 470 ,o 3l~001 3!0,0 4~.y -0•0 11,0170o0 1lo0l70o0--48_.0~-· 001 32
58 5 .o 5470(),0 001 330

0,0 48,0 OoO 17,0 10,0 17,3175.0 17,3175.0 48,0 OOl 340 
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PRQGRA~ FINQIF 7J/7' UPT•O TRACE FTN 4o0•P355 . 01/28/74 	 1 

I ---	 PROr.RAM F'I NDIF I INPUT, OUTPUT ,PUNCH, TAPESwlr-oiPUT t TAPE6a0UTPUT t TAP£7•PO 00100 
lUNC~-<l 	 OoO}~O

OII'FNSiu"' «C2nvo2) ,Q(200t2l oWLI20l tTWLC20l ,l(200lti30TC200l 000 0I ---- ------ Oit1fN!>!U"'ti't'Ll(;>uQ,2l tDT«YD C2l ,PI:. At< Ci?.l t lEND I~~------ --- OQOl 0
~ CII'F"'!>lU"' t-<DPc~OOf2l 1 PEHY0Ci'ltlEDPc2l 000140 

1 DII'FN!>lU'I Ill (;>vl, I lcOl 	 000150 

~ r~i;,·P~on~~M-Rour£s_A_rCooo-~srNG-AN-rx;Lir.i1-;i~ir£-oirFERENcE-- 888i~8 

I C TEC~-<NlAUF A DICTIONARY CF THE VARIABLES FOLLOWS, 000180 

10 C --------------~-------------------------------------·•••••••••••• OQOlqo
----------i:C___ BOT!Il t.LtV"TTUNS OF Tf-'E Ct<hNNEL BOTTOMS AT THE SECTIONS 000200 

- CEL THt_ I;F<.E<H TY liT flANK ~-Ill L NORI'AL' fLOW - 000210--------------------
C DT TIME l"'rHl~t.NT OF EACH ITERATION OQ0220
C DT~ax IHF MAXIMUM TIME STlP AT BANK FULL CONDITIONS 000230 
C OX THf. I f"GTH OF A REACH OQ0240 
C H(I,Jl IIATFR Lt.VELS AT THE <;fCTIONS Oo02SO 
C NHFACH IHE NUMRlR OF REACHES IN THE CHANNEL 000260 
C 1\SErS "'LI"'!"II'R 1'\t- S£CT!O~IS 111. THE CHANNEL Oo0270 
C Q(!,Jl t-Lnw RAIES AT THE SErT!ONS OQ02BO 

------"'2~----~---QII\ To-te. Vl'lbUv~:. (lF THE WATE.R WHICH FLOWED--tNTO--n~E-CHANNE -Oo02qO ------------------
C QOLJT THI' v LliME OF WATER wHICH FLOWED OUT OF THE CHANNEL 0Q03QO
C RC NUUbHNI'SS ~OEFFIC!ENT MANNINGS N 000310 
C Tji'F! ~T~~T Tl~f 000320 
C T ~rF 1~-<E FI~IS~ TI~E 000330 
C TWL I I l TrlF fl UI<IRATES ClF THE POINTS IN A STAGE DISCHARGE CURVE Oo0340 
C IIL<Tl IHE WATt.R LEYELS OF THE POINTS IN ~T&GE OtSCHARGE CURVE 000350 
C Xlll UbT•H,CE t-RQM THE OUTFALL IN f'EET 0003<,Q 

-------i.~- - T.TnTAL Tf-<E TUTAL LENGTH OF THE- CHANNP: 	 000370-------------------1 
C OQ03RO 


30 C REAn 1-'l<uRLFM V"R!ABLES , 0Q0390 

REAr'll'>•:>nl l XTuTALoT,RCtSLCPEtOEPTH 000400 

REAnl:>•:>nll NPt.hCHtOTtTIMEF OQ04)Q 

REAnl~t:>O~l ITt.ST 000420 

REAn!~o:>n~l NPUtNPU2 0Q0430 


35------'"-':_________ ~[ ~~ g~: ;g~ l~~~~~ f?~sEa~- --------------------- 88 g~~g--------------------
REAnt~•=>oblNSFul,NSED2 ggo~ 7bgREAnl~•:>n~l N~~TS O. 
REAn(=>•:>n<;l (rli<IltTICilti•t,NQPTSI 000480 c 	 0Q04qg·

c SET PI<Oril E" VAHIA-BLES OoO:.o 
PEAK(l):PFAK1cl=PEHY0Cll•PEHYOC21•1• Oo0:.10 

FMCvt=FMOMn=O,v 	 OQ0S2Q----------------o=J;o,c ---------------------------aoo53o------------------------
45 A=ToOtPTH Oo054Q 

P=T•2•"UFPTH OQ0558
CALl M"N"'(ll'\ CAot'oSLOPEtRCtGtOMAXl 	 00056 

c SET Ut' IHE INFL.OW HYOROGRAPH 000570 

DO 1H0 !sl,NQPIS OC05AO 


so l8o arcn'"tHCil 0 a .... x ooosqo 

______________________ OX=xTOlAI /FL0Af(NREAC.H..~)-------------------------------------------000600
- NSECS'""~~FArH•t ------- 0006)0------------------~-------------------~ 

QIII.•auvr.u. goo~>zo
1\P~i =~n 	 Q0b30 

55 	 !E!I.n(ll•tENDI?l•IE~Pill•IEDPI21•0 Oo06•0 

TI~F!•O, 000650 

TI~F=O• 000660 
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OT~AX•OA/CFL OOO~AO 


6,~0,_______,.__ OT =nT"D T "A X 00 0 b q 0 
- ------ ----- oooroo
c DER TV!:. !:iTAr,E n! SCHfiRGE CURVf 0 0 0 710 


0H=r>EI-'Tr1/F"I OAT INPWL•ll OQ0720

IolLi 1) "ll• 000730 


6'5 TWLfll =u.o oo0740 

DO 7 I=~.~~WL Oo075Q

oL IT) ="'L <T•ll•IJH 000760 

A=T~FLOAT(t•li*OH ----------------------------000110

-----------p=T•2•"~1 OaTIT-tl"DH -- Oo07eO ------------------------
70 CALl "'""''ri"(A,t~,SLOPEtRC,GtO)I;) OQOHO

CALl PLUTPT10XtWL(llt4) 000800 
7 TWL I ll••Jx 008818 

c oo 82 
c SET IN! flAI Cn,•DIT!gNs AT STEADY STATE 000830 


75 CALl lNfF><l (OT•Tl•l'<. PTStTl~E,QI}t2)) 000840 

BOTillaATOT~L"!:iLOPE•lOOo 000950

X ( 1 1 =ll, ll - -- ----- 0 0 0 8 6 0 

Q(ltl)>Hifl,21 00C870 

CALl INTF~l (~l_tTWLtNPWL•011tZltf"LOW0) Oo088Q 


eo H(l,JI=Ht!,?),.uoTili•FLOWO 000890 

DRCP:UA*~LnPE 0Q090Q

00 ~ I=~.~~EC~ 0009!0 

(l(I.tl=-.rt•2lc\lll•2l Oo0-.20 

BOr t I 1 =·<nT 11-1 l•DROP 0Q0930---------eor---------- X i I I = • I I -1 l • 0 X 0 0 0 9 4 0 --------------------

6 HII.!l=Htl•C):"OTIIl•fLOWD 000950 
c CALrULAfF T~TT~L STORAGE IN THE CHANNEL OQ0-.60 

STCP~l=•T~TAL*IoFLOWO OQ097Q 


c CALr~LAIF MUMA~R OF STEPS BFTWEEN PRINT OUT 000990 

90 K~:.Trr>=T!'-4EF/(US,"DTI +0,5 000990 


IF I><'SH_,..,,_n,Q\ KSTt.P=l 00l00Q 
ICCIINT=~c;TFP 001010 

------------OTrYOI11~uTHYni21•FLOATIKSTFP~•OT/360 Ool020----------------------------
·c wR!Tt lr1t rOIJn!TIOI\S FOR T~IS RUN 001030 


~RITtl~t~nnJ) ATOTAL,DEPTH,c;LOPEtRCtOMAXtC~L 001040 

~R1Tf(.,,;>llnfl) I 0Q1050 

~R!Tt ~~~~nne) NREACH,OTtDT"AX 00101>0 

~<>RITE lht;>UM,) lTEST 001070 

IIRIH<~•?lln4l -.~n.2> ooloao 


10_!! _____--t_ DO TOll 1::1 ,NSF'~$ 00 l 090 

~0 wRITEI.,o;>On5)XI!lfROT(J)oHITo2l OOIIOO 


IFINI-'Ut,fQ,}) wRy El7t3007l ITEST OOlllO 

IF(NPU•LFon) W~ITE(b,20121 001120 
F1~1PUI,1 ~:.01 oRITEi6t20131 Oo!l30 

105 c lNCRtMtNT T!MF 0Qll4Q

I Tl~F~TlMF•nT/?o 88ii~8 c c START C~t CltLATlONS OF 0 001170 
~- ~-CALL !NfFHl (OT•TltNOPTStTl"F•OUSl OollSO------------------------------------

110 Q(},?.l"\JIIS 001 90 
00 ?0 I=?oNSEr::; Ool 00 

I 
1 

HA=CHilo~l•H(T•It2l-80Tili•ROTII•l))/2o 001~10 --· 
OHDX•I~Itt?)•HII·••Z)l/IXIJI~~II• )I 001220 
FACI•Yiio1l/(A~T•·~HA*•3.1 80HOX oc;ZJOl ___ ------ 1-------- ----------- -- '------ --
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PROGRAM FINoiF UPT•O TRACE 	 Olt?Bt74 11!35.12! 4 

00 QU l•?o~SE~~ 001810 
90 STCPEl~~TORE2•Hito2)•BOTII) 001820 

------------- STCPt~z~tOcE2•1HI1o21•BOT(li•HINSECSt21•BOTINSECSlll2.o __________ Oo1830 _____________________________________ -----rrs-- STCPE~=STUI'IE2•UX•T --- - g i840Qih~U!N•nt 	 g 850 
QO~T•YOUT•nT 	 OotB~O 

c CALrULAIF rENTHOtDS 0' THE HYOROGRAPHS 	 Oo 870 
FMCM!=~~nMroDTIQIN Oo1Bso 


leO FMCMU=F~nM~•DTIOOUT 88t~9o8 

[RN~R=I~TOI'It2-~TORE1•00UT•QtNl/QIN•lOO. 	 7 
~RiTllho;>nn]\ tPROP 	 0Ql910
'WK n_ l'lt;><l~7 NSEQltFMOMt-t~V<;~-FfoiOM 0Ql'Y20 --------------------------------
IF t•·t>ul ti!n.l?v 1 llO Ool'Y30 

185 110 loi<ITt 17o~On1 )Ot.PTHoTtSLOPEoRC 	 Ool940 
IEt-.:H.Nu 1 l 1 	 Oo1950 
DO 1~0 !ai,IE~ 	 001960 
HYO 1lol I =•1vD IT •1 )•QMAX 	 Ool'l70 
HYCII•~I=~~O(Tt2) 0 0MAX 	 0 1?,~0Oo


______ 1_~-------t HOP(! tl I ,.HDP ( T t ll•DEPTH 0 1770 

&o·HOPtl•~la~nPCT•2l•OEPTH Oo20QO· 

Q~=n!N OQ~OlO
,._Sf rJ=N'>trll 0Q2020 

,.,Stn=N~t.nl Oo2030 

DO l~V ~=1.2 0Q2040

iiRllt:: I I o10n2l ,JtBOT IJI Oo20SO 

DO 14U l:l,NPWL 0Q20~0 

A:ro~L0AT(T•!I 00H 0Q2070

["!ll'lT (Jt •WI ( ) · ·- ---- 002080 


200 WRTTt( I,JnO lt.oAoTWLIIl 0Q2090

140 CO~TINUt Oo2100 


WR!Tl C7qOn4) ..JoNSEGoDTHYDIJl oQMAXoOXtl[NOCJ) Oo2110 

'WR!Tt:.llt~On5) IH'I'OiloJitl•lttt.N) 002120 

WR!TEI1o~Un8j ~~sED,OTHYDIJl'lEN 002130 

wRIT~ llqUo9 IHDPIIoJ) oi• tlENI 0Q2t40

QX=rlOUT 	 Oo2 50 

----------------r..st:rJ=N'>o:ll~ ------------ oo2 60---------------------------
"'s~n=N~o:n.! Oo2170

130 (01\T !NUt 	 Oo21BO 
120 CALl f'LOTPTIO.•O.o9l 	 OQ2190

CALl OUIPLT 	 002200 
WR!TEibo;>On9) ~STAGE 	 0Q2218
STCP 	 00222 

____g__ FORMAT STATEMP'~TS - --	 88~H8 ----------------·---.--;: 
c 	 oozzso ~ 
C FORMATS c;oo• 1NPUT FORMATS 00~260 
C FO~MATS ?On • OUTPUT (PRINTERI FORMATS 0Q2270
C FO~MATS lOnO• OUTPUT lpUNCHI FORMATS 0022AO 

220 C OQ2290
I ~01 FORMATI~10,lpF'10,2t2FlOo8tF10o2) Oo2300 

~02 FOPMATC!lt?Flno2l Oo2JlO'>-- ---------· 	":>03 FOI<MA Till I · 0 0 ~ 3 2 0---------------------
~04 FOHMATI!l) 002330 
~OS FO~MAllf)0,2tF10o0l 002340 
~86 F8RMATI~tJI oo23sgI 	 Zo 1 F RMATI1Hl,///t20Xo•FLOOO RnuTING USING THF EXPLICIT FINITE *• Oo236 

1 •ni~Ft.RENCE METHOO*t///t25Xt•CHANNEL PROPEHTIES AND FLOW *t •oo2370L_______ _ 
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P~~GRA~ KIN~!F(INPUT,OUTPUT,PUNC~,TAPf5=INPUT,TAPE6=0UTPUT, 
1 TAPE7="UNI:Yl 


OI'ict(>!ON ~!2C1l ,r'!(2C:l WU2CltTWL(20l,X(2G~) Bn12001 

OI'I=NS!NI ~l(':>~) ,F•JN(2, I 1T"'L2U·:l ,FUN2(2~l t1.I~!T(2~0l 

n l fli: t<<::! Oti~Y'J ( 2 ~ ,) 7 21 1 0 T HV 0 ( 21 7 P ~A'< ( 21 1 EtlO ( C:: l 

OI'lctl'iiON WIP!2• uf2l tPEHYfl(2l,EOP!2l. 

011=~SICN ~I<?~l, I!i"l 

OI'Er-<'>lON 'lll(ll ,TLT!1l ,GUN(2~) 


c --------------------------------~--------------------------------c THIS PROC.RA'1 ROUTfS A FLCC1C' USING A KINC:HATIC WAVE METHOD 
c A ~ICTIO~Aov OF T~~ VARI~1LCS F~LL'JWS 

g OOT!Il ELCVATIO~S nF THe rHAN~EL 0 0TTOHS AT THE SECTIONS 
c r:::L THF CELC:~ITV AT '1~f..K FliLL i'<OR_HAL FLOW 
c OT TIPF I~C~~H~~T OF FI~H ITE<>AT!ON 
c OT'1AX H1E HHIHUP TI.:r. ST~P AT 'lAtl'< FULL CONDITIONS 
c OX TYE LEr-<r.TH OF A R<ACH 
c H<I,JI HATeR LEVFLS AT THe S<:GTICH~S 
c ti~O::AGH T>1i: 'I<J•:f'r'< OF of ACHES IN THE CHANNEL 
c IISECS N111''1""R OF StCTIOU<; II'. TYE C'-'ANNEL 
c O<I,Jl FLO>! PAFS H THe <:~r.TIOt<S 
c 0!'1 TH<: VOLIJM<: OF TW: WAT:.'! WHICH FLOWED INTO THE CHANNEL 
c QO'JT TI-1E VOLIJt•C OF WH:::r WHICH FLO"'EO OUT OF" THE CHAt.NEL 
c RC "OUGHNC:<;S COEFFICIENT ltAtUHNGS N 
c TIM~l STA;>T T!~E 
c TI'IfF lH' Fiti!':H TI><~ 
c TWL!Il THC: FLOWRAT~S OF THE POINT~ IN A STAGE DISCHARGE CURVE 
c WL!Il TH~ WIT[~ LC:VELS 0~ THE POINTS IN STAGE DISCHARGE CURVE 
c ·X III OISTA•H:E f;>Ot- TH~ OUTFALL IN FEET 
c XTOTAL THi: TOTAL LENGTH OF THE CHANNEL 
c c PEAO PPORLEH VA~!A'1LES 

P>AO!~,r~1l XTOTAL,Tf°C 1 SLOPE,OEPTH 

P~10(5,cC?l ~~EACH,~ ,T1MEF 

R•~0(5,5r3l ITEST 

PfAO(S,,CEl NPU,NP!J2 

RF AO! 5, 5C F,) 1-<SE'U, I.S>'l2 

PFA,I5,S1~)N~E~ll~SE02 

P~A~ 1~, r,·~ I N")PT:> 

PE1~(5,5t5l (~I<Il,TIIIi,I=1,NQPTSI 


c c s~T P~fJPL<:~ VARIAPLES 
TLT<ll=-1·0 
G= 32. 2 
A=T•nEPlH 

P:T+Z,•N:<>TH 

CALL t;A t:tir.'l (A 2.Pt SL'JPE, PC 1 G, 'lHAXl 


c S~T UP TH~ I~~LOW HYOqOG~APH 
NPT S= TIt EF /OT 

1eo g~(t~~~I<ir;~~r~
OX:XT,TAL/FLOAT(NREACHI 
llS~r.S=W'EACH+l 

NP"'L=2~ 

I'll~< 11 =IENO( 21 =IEOP Ill =I EDP 121 =NPTS 

T I'1E-= ~ • 

T!'1EI=J.r 
CEL=S1RT(G•n<:PTHI+QMAX/I~EPTH•Tl
OT'1AX=flX/CEL 

9~~t6~Flait7~~£,•oT 

http:LEr-<r.TH


LISTING- KINDIF /2 


CALL INTfPtlni,TI,NQPTS,TIMfQ,QINIT(II)
190 CO~IT!NIJE 

c c 

c 

c 

220 

. 1CO 

ALFfRETA 1 DT,AL,TWL 7 NOWL 1 FUN2 0 TWL2 0 NPWL2 0GUN,FUNI
AL 1 WL,~PWL,OlNPTSJ,FAC~I
2+FACit•ALF 
".:ACfi 



LISTING- KINDIF /3 


c 

BZH~B 

REH~H 

al1260 
001270 
CJ1280 o a 129C 
OJlJCa 
CJ1 HU 
QH 12to;uzs 
01113l' 
0"1331 
Ou1132 
a o u 33 
0 11 3.31+ 
0 u1 l4C 
0.111SC 
u~ 13 60 
o:t365 
OD137:l 
0u1171 
OG1372 
~u1373
0, 1171+ 
ou1J8~ 
C.L139u 
0 Jl .. (.C 
001'+1~ 
0.:1'+2~ 
GJ1<t3J 
0~1'+4C 
QJ1,. 50 
OC146~ 
OU149C 
0:1500 
001310 
0~1520 
0 J15 30 
O:J1540 
0015SO c.- 1 -oc
o~1§1c
i)r1580
0J159C 
OGloC" 
•F11Jl~ 
0J1~'>12 
0.. 161'+ 
Cl1620 
0J11)3J
OC1F,40 
IIJ1'">50 
c: 16 70 
CGH'?O 
0017CO 
uu1710 
Ov17Zl
Ou1780 
OU1790 



·' 

LISTING- KINDIF/4 



LISTING- KINDIF/5 




1 

·' 

LISTING OF SUBROUTINE KIN FUN 

suq~~UTINE KIN~UN 73/13 l'l"T=~ TO ACe- FTN r..o +~>355 0'1115171 11t."'5olt0o oftG!' 

'SU qoouTT NF: I( I N<'IJ"'! ALF, q,.T 4 ,I)T, S1JS, 'lU<; t NUS, SO S, nn<;, "'n<;, r;tJS ~~O<;t ~OC.1~~ 
OTI'1<"NSTON SIJS ttlU"l ,QUSINUSI ,SDS!NO'>J ,QO<:!NOS) ,G1JSINU"l ,~0 !NOS) 0041"" 
01"1 1 T=t,NtJS ""r..2ao 

1 GU~III=R~TA•OUSIII-ftL~•SUS!Tif1T ~04"1~-----;- 110 ·7 T"= 1 'lcl'>.. 
2 <'OSITl=~ETA•QOSI!l+lt.O-ALc-l•S~"~S!TI/11T g~t~ro 

PETlJON r.ott?c:~ 
~NO 00 4~60 

.. - ~ 

.. 

-

. 
. 



_, 

LISTING OF SUBROUTINE KINRUT 

·

SUBROUTINE KINRUT 1 
.-..., 
- r 
~.~ 

-------- ·-------------------------------------.-------------------------

L_______________________/ 

.·. ',,,• 



LISTING OF SUBROUTINE HPLOT 


SUBROUTINE Hp~oT TRACE 	 01128/74 11!35,18. pAGE . 1 

SUSROUTl~E HPI UT!OCFSoOToiE~OoPEAK,TIMEI 002790 

C THI<; ::iUtlAOIITit.~t. PLOTS EITHER 1 OR 2 HYOROGRAPHS ON A SET OF' AXIS 0Q2800 


------------------------- DI~FN~IU~ ~CFc;I200o2ltDT!2loTENDI2loPEAK(2)tCFS(lZOitDATAI21 OQ2810
- ;, RITE I'" I 0 n l- -- - -- - --- -- 0 0 2 8 2 0 ---- · -------------------------
100 FO~~ATI!Hll • 00~830 

IDl 1 	 002!:l40 
ID2;.? oo<:8so 
S~t~ !t~n,PLU~•BLANKoDASHoOOTilHOolH••lH olH•olH,/ gg~g9g 

XM~TO • I• 	 gc2590
MAX : llA 	 O~IHO 
J = ! -- ------- ---------------------------------------- 0 0 2 9 0 0 --------------------------------

c ARE THt~F 1 OR 2 HY~ROGRAPHS 00c910 
IF I Tll<!l ;>7o 27t 28 	 Oo2928 

15 c OETFHMINF ~IG~EST PEAK IF' 2 HYOROGRAPHS 	 00~93
27 	OMAx • PFA~(In1l 0Qc940 

GO TO 3( 002958
28 IFIPEAK(fnl)- PEAK(10211 29o 29• 30 Ooc9~ 
29 CMAX a PFA~(In<!) 002978 

_____,2! o---------=- G 0 T 0 J 1 - --- 0 0 c9A · -------------------------------· 
3Q OMAX • ~FAK(Inl) go 299g

c lf ? HYuROr.RAPHS DETERMINE LARGEST OT AND tNTERPO~ATE OTHER 0300 
c HYOPO~HApH IF NECESSARY 0Q3010

31 IF tnT I IU! I - nr (10211 32t 33o 34 go3020
32 L • rur oJ03o 

K " IU2 	 003040
GO 	 TO J~ 0Q30SO---------"tl.- L : IUl -----------	 Oo30il0 -------------------------------
K : llll 	 0Q3070

30 35 M : ltNu ll I 	 Oo3080 
TfD lH (K! 	 Oo3090 
T o~ 

II 

• u. 	 OoJtoo 
DO 	 1~ I .. ~. M Oo311o 
TID~ a ITO~ • UTILI OoJ120 


3~-------------T IFITIV • TTOHI 76• 77o 75 003130
7 -J = J • 1 -- -----	 OoJl4o ----------------------------
CFSIJl "'OrFSiloLI 	 Oo3150 
TIO : T!o • OTIKI 	 003160 
GO 	 TO b OoJ170 

76 	 J = J • 1 ooJl8o 
CFSIJI ~ OrFS11•ltLI +((TID - TIOH • DTI~JJ I DTI~JJ • IOCFSilo~l OoJlYO 

1· 	ens cf•l •Lb' og3200TID = T n • TIKI 	 0 3210
5 COl\ T I NUt:. -- - -----	 0 0 3 22 0 ---------------------------

I Er--n ILl • J 	 OoJ230 
DT II I = OT IK) 	 0Q3C40
DO 	 71l I • ;., ,I OoJ2SO 

I 78 OCFc;ll,LI "CF!l•(IJ 	 Oo3260 
33 	 IFITFNUIIDll • IENOIIDZII 37t 37• 38 Oo3270 so 37 '"' : !lNtJ I Inl) 	 Oo32~0

GO 	 TO J'i 0Q3290 

398 	 M " • Mt.X.I '+c;o 4St 64 ~--- 0 0 3 3 0 0 --------------------------------JIFIM I tNU II n 2 l- - 003310 
c OETFHMINF TIRF SCALE 	 Oo3320 

55 45 MRTn • M4X. I M 	 0Q3338! XMRTO • M~TO 	 00334 
GO 	 TO • 00~350I 

'---- --------------------------- ----------------------------------------



-----------------------

LISTING- HPLOT12· 

SU8R0UTtN~ HPLOT TJ/7-., UPT•O TRACE 	 01128174 lle35.l8e 2 

64 	M • MA~ Oo3360 
4 vsst • \JMAX I :Jg· 	 ogJJ78 

_______C___ PL THYUR~r.RADH 	 -------------------------------------------------0 33806s-E?s~Il 1 ~col~H~~~ ggj~~9.-
wRlTtl~o~7l QMAXt 1Cr•S,IIl 1 At• lrMAXlt DOT o~ 441 00 57 	Fo~~~lllXoF&,?•* 1 ~ 11 00 ~ 2 
Ql c YMA~ 0Q34JO 
Jl .. &o Oo3440 

DO ~o J • 1• ~v Oa34SO 

IFIJ- Jll ··7, 68t 67 0Q3460


----------------------68 00 ~9 l • to-M~X -003470 

TO 69 CFStll • OASH 8&3480 


GO TO 71 3490 
67 DO 7U 1 • 1t ~AX OQlSOO 
70 CFS l II • 1:11 ~NI( OoJ5~0 
71 	 ~2=o: 1ll- Y Ct 8~5~ 3 g1 

-- ------------ ~0 :r c,~ ! ~~~0 ... - g g j~~g--------------------------
IF tnc~ 511, TDl! • Ql I 46t 47t 51 OQJSIJO


46 IFtnC~!:>IT•TDlJ • Q2) 5lt 51• 47 003570 

80 47 CFSt~l = 7fRO OQJS~O


51 co~.r JNVt:. ocJsqo

wRITf.l~ehOl Onft ICFSIIIt I•ltMAXlt DOT 0Q36og

If\ TU~l ..,~, S;>t 53 OoJ~>l 

53 K = l 003~20-- -- --,o;----------- DO 	 ""' I ., ::> ,- ,.___ 0 0 J1>3 0----------------------------
; 	 K : K • MIHQ 0Q3640 

IF ti'Cr ~ q ol02l • Gl I 6,6' S6t 5 0QJ6SO
I 66 	 IFtnCf"S<J•ID21 • GZI 5 :J, :J6 Oo3660 
I 56 	CFSr~l "f'tUS Oo3b70 
I 90 GO TO .,.. - Oo.3o80 

5 crs IKI " Hi ANK Oo3690 
54 CO.\TJNU!:. 0Q3700I 

______.: lli!pf.lt>tll --tCFStltTl•hMAX 	 ogJ3 7l8 ------------------
3 F0K~A1t1~••ll~•l18Al) 	 0 72 

95 S~ 5i<~ j 1.;!,,ijs• sq, se ~85H8I 'oRlrt:lr,ol) 02 0Q3750 0 
! 2 	 FOih•AT \l~•oFo.cl 0QJ760 

sa 	 01 • <1~ ooJ77o 
1 100 6o 	 FO~"ATt11X·l2n<~ll oo:neo 

-· ---- ---- SO COI\T !NUt:. 	 0 03 7'l0 -----------------------
CFS t l I • TTME Oo3800 

1 OTT ,. UTflnll • 10. I XMRTO OQJ810 
C PUT Tl~t ~~RAY IN CFS ANO wRTT~ TIM£ SCAL[ 00~828 

lOS 00 ~1 1 • ;>, 1C 0QJ83 

61 CF"Srll "CFS~r~l) • OTT 0Q3840
I 	

j

lo.R!Tt::l~o~21 0$1IIt I • lt 121 00~850 

I -----------~~2- FC~MAT\t>Xt12FlU.3) 003Bb0>--- -------- wHI"Tt:<t>•~.il ------ -oo:JF!70' 110 63 FORMAT l'tQX,•TrME HOURS*II/1 003tl80 
6 RETURN OQ3B90 

~~~o 	 oo~'<ooI 
IL_________________ 

- ·--------------------------------- -------------------~------

http:wHI"Tt:<t>�~.il
http:l~�oFo.cl


-------------------

LISTING OF SUBROUTINE RESVOR 


SU~ROUTINE ~ESVOR TRACE F"TN 4oO+P355 

l_ __ 
~--------

01/09/74 14o23o49o PAGE 1 

SUB~OUTINE RES~ORCRK,XREStlWLtNPWLtOTtNPT~oOtHI 004270 
CO~MON /FLnW/ WMAX 0Q42qQ 

----------------------------0lWcN5lUN-r.USC~O~oF0S(~O~•rW~{20~~W~2~~Q1NPSS~UN~P~f~$~1----------g 0o~23 Q0 0----------------------------------------~ DI~tNSiuN l'lLTI1,TLTClltPPI?ltHHI<:OOt21 9 llt~ltUTHI2) ~ 0 
HCl1= 1Hl1 Oo4310 
DX=l•V OQ4320 
TLlt!l=-1•0 004330 
CO I i=i.~O 0Q4340 
GUSIII=fwLf!l/o!oO 0Q43SO

ll\ ~Ll I I I= loll! I) 004360 
--------------------~ fliSCil=~l !Cllt~.O+RKoW~l(Il!~XRES/nT C04370--------------------------------------·-

CALL II.IN<><JT (~l'<:>tltiLlt20tGUStTIMLt20,QLTtTLTthUAo0TtlllPTSt0oHl 0Q4JAO 
Il111=1!C~l=tH>TS 0Q4J90 
PP(il=~~~~~=l.o 0Q44QO 
Dl~-<(ll=uT•H2l=UT/3600o0 004410 
DO e I=ioNPTS 0Q4420 
htqloll=nlTl/l'l~AX 004430 

2 HHI!tll=HIT)/I'l~AX 0Q4440 

!. 

------::-----------------11 tJ t =u. 0 - 00 44 50------------------------------------ -l
Zn CALL Hi-'Lnf!HthUTHtii,PPtTI'-'F:l 004460 

~HiltCht)OO) 01)4470 
100 f0hMATI~~~. 0 THlS IS THE HYOROGRAPHS AT TH~ IMAGINARY RESERVOIR•• 0044AO 

•1•3~~·· lNfL0-•000 OUTFLOWa••• *) 00~~90 
UO J i=l.~PTS 0045QO 

3 Qlll.,.,<ll g~4Sl0 

--------------------------~~J~~------- a&;~~&~--------------------------------------



LISTING OF SUBROUTINE RIVER3 (AND THE DRIVER) 


(.., __ --- 
w 
(,/) 



LISTING- RIVER3 /2. 


+ • PRO~lLES,,,,,TO PHI~T OUT SURFACE PHO,%L£S•,I 1 	 000700 
+ • CU~PUTt,,,,,,TO CUMPUTt PROFILES•,/, 	 000710+ • ,,,,tO HUUlt THE FLOOD•tlt 	 00072v0 _________________________________________________~uUTE, 

..-~~ .. R E H ~ v0 U ; ; ; , i~OlJT~IHRtiiJ(;WT-iR~E~Si-sEo-cR'"'Y'"OTIMR:t-i:o-7",1-r:-,---------,;00 0 7 3 .,
+ * RtSTAHT,,,,,,TO f~G!N AG.lN•f/' 0007~0 

+ « Mt~~ •• ,,,,,,,FOR CU~~·NU OP1 ONS•,/ 1 000750 

+ • S!l.lP ,, ,. TO it.R"'INATE•l 000760

IC:lFI:Ir2:f~l=frs:IFb=IF7•lf8•0 000770 

~HliE(~w,JO) 000760 

FO~~AI(• a••) OU0790 


l5 RfAD(N~2,40)CU~NU 	 ~UO~OQr -----------------------------------------------110- FU'<MA T! Ao) ~~- -~ 	 OO<Jb I 0

l t:u ouo~20 

~llUM~D,tQ,bHDlSCHA) lC=l OOOH30 Q
0 

I
IF cuw.o,to,6HD/S ~~~Ic=z ooot~~o 


F (C0'-~'<lJ,tQ,6•<><£SIST ~t::S OOOtlSO 

~ (COMNlJ,f:Li,b><U~O eE C:'l 	 OOOtioO 
F(CO"'<I>,tQ,6H"<t,. St) C=~ 000~70 

P (CU~,·;rJ,tf~,bHIJLlJ (U) (:6 OOQ/jfl't----------------------------
---~F ((Q,~~O,UJ ,bit!>.£" -co~ ~c: DO()~QO

~~~u~~u,tO,bHCU~PUI (:ij 000900 

~ (CU'"'lJ,t\l,t>nSlOP t='l 000'110 

F (tU"';lJ,t.lJ,6HC!o!ITIC IC=10 000920 


i f(Cll"'lll,tfl,6HCf<A~>;GE~ C=ll OOOQ30

f (CO'"~I.J,t Q,b"<T •HLE C=12 0009~0 


H ( l 0 ~ ~ 1J , t.!.: , b ''>ItS TAR 1 C =1 3 0 c0 '15 9 

I~ ( C U ~'<ll Ul ~""t.U' l C =It; 	 80 0 '16 Q----------------------------If ccowm:frJ:t->il'•FLO~ ~lC=JS 	 uv970 
If (~u>''ll.),tll,or<f'Hu~ IU IC=lb 000'180 

1F cco~,~u .t ll,b><><ouTf. ) IC=17 ooo<t90 

ff (CU''~lJ,Ul,bHRE.Sli<V) 1C=18 001000

f f ({ClGT,ul GUTU bO Ou10l0 

~r<IH ~".70) OO!U20 

f0~~Al~* ~EG PA~DON,,,PLEASE RETYPE•) 00 030 


&o--~eg+gtl1o;z?.o,z3o,z~oic~~(Zo~v;zeotz~ot 	 -~8!8~8---------------------------------------------------
+ 3I0,3co 1 ~2o,~;,l~,"oo,~;2,,u7,,~ot) 1~ 	 001DbO 

210 ~RITE(~~,~IlJ 001070 
I>o=O 001080

211 •u~MAT(• ENIE>i NOfOF SU8•REACHES (I3)• 1 1 1 00 090 
+ * •lTH O!rH:.I<E N DISCHARGES•) 001100 
RtAU(~~2,212) ~~S 001110 

212 FUJlMA!(lj) 00\i20 
--- ~- -tt· t "<'l3, L t ;207-iiU't0-!1~ 0 0 ll3~---------------------------------

t.uS=20 001140 
~~l1E(~~,2\~J 0011~0 


l14 FO~MAI(• ~u.OF SUB•REACHES TRUNCATED TO ~O•) 001160 

zn ~-<ITE<~•.2t:.J ooli7o 

Zl~ Fu~•AT(* SUPPLY UPSTHtAM SEC,NO, (lll AND• 1 1 1 00 80

• * ulSCHA~utS !2F9A3) FO~ EPCH SU8•REACH•,I, 001190 
t * 	SU~PLY THf LO~ V ~Ut FIRST•) 00120~0----------------------------------------------------------i>u llD l=li"''lS 0121 
·~llt(~~,cl7l I 00122U 

liT Fu~~Ar(• ~tACH ~0 *fll) 0012~0 
RCAU(~~2 1 21HJ luF~( ),QS(lrl) 1 QS(lr2) OOI~UO 

Z18 Fu~~•T<I~.2~q,J) go~~~o
IF ( r; S !I , 1 l 1 uT , 0 , ) G0 T 0 q 8 8 0 2 b 0 
Li:l(ltiJ:I,u 001270 
~MI1E(~w,~H9) 0012~0 

-~usq ~v~~•T!• N~•TIY~-QR-1~~~*-5~~·~ 'e ~.e•) 	 OO!cqo------------------------------------------------
486 	 lF(,~S(!,2)lGT,O,) GO TO 21o 00\jOQ


(lS(lt2l=l,u 001110 

~~llt(~- ... 89) 0013211 


Z1b Cu"T l"-Uf 	 OOU30 
~"1TE(-.rl 1 '1l4) OOU40 


414 FU~MAT(• tNTER ... o, OF PTS lN FUNTlON CURVES llll•) 0013SO ~ 

Rt~U(!>.M2,212l N~P S OO!)b0 .r. 


---- H ( ••i<~ T& [I.E, "F H-G~-~ls- 0013 7ii--------------- -------o--~-~-
NHPTS::M 	 001:!.11/l 

http:1TE(-.rl


LISTING- RIVER3/3· 


- .. 
~ . .. '.· ..\~ 



·' 

LISTING- RIVER3/4 


i!44 	 F"Oo.!MAT (5Cf5,1 r*•*rf''!l,1r2X)) 002071)
Guru 	 2~ oo2oso 

2so--"Kl!Et~w,2~t) 	 oo2aqrr---------------------------------------·--------------

1St FO~~AT(• utFINE SECTION N0 1 1 N0 1 OF POINTS IN SECTION, Zll*) 002100 

~tAu(~R2r2~2)~$,Np 0021\0 

lF(~s Lt,NStC3,A~D.NS 1 GT 1 0) COTO 2S7 002120
1	 002!30 ------~-~~tWllE 2 ~w,2Ub) NS,N~Et:~ 	 -

257 	 ~~~~P C~,MAXPTSAA~O,NPlGT,O) GOTO 259 gg~~~g
~~ITEl~~.2~B) N~fMAXPT~ 00216~0____________________________________________________ 

25e-fu~ ... -~,. tl0 00I'"·I' Se•,t!ll• OUT 01' RANGE 1iii,I)) 00217 
GuTO 250 002!8U 

( 252 	 FU'i><ATCZI.S) 002!'10 
259 	 lTSTC2,N~):I 002i00 


N~!~(~3):N~ 0022)0

H o:o OOU20 

wOo! I Tt(Nw 1 25l) 002£10


253 Fll~MAT(• ~Iv£ COORO-~S~JN~P~A~I~R~S~,~~Z~F~b~1~1~•~)~------------------------- 0022~v0 ______________________________________________________ 

··----ou ?.)u·I=\,NP·- - 00225~ 


w~!l'.(N~,2~~) I 002260 

255 FU~~AT(• PT * llr*' *) 002c70


RlAU(~~2.cS6JS(NS,J),H(NS 1 J) 	 002~80 
Z5b fu~~ATUft>,l) 002.090 

ZS4 CU~T I~Ut:. Oll2~00 


&UTU c5 0023i0 

ZbO ~~I l E C ·~~, 2b 1J 0 02 ~ ~--------------·----------------- 2 b 1 - f 0~" A Tt ' G I V E" -s tl;Tl"ON N 0 1 1 1) • ) 0 u 2 3 o· 

~t:.AU(~RZ,2~c) NS 002340 
Zb2 	 FlJK,.,AT(j3) 002550 


1~(NS~Lt,NStCS,AN0 1 NStGT 1 0) GOTO 2!>4 002jo0

~RltE ~~,2llb) NS,N~£C~ 002370 

GUTU bO 002HO 


2bU 	 ~~IIt(~~,2b3) NStRC(NS) 002~q0Ir ?o3 -~~~~A~~· -~•:Hll)~~NE~S AT SECN,*,I3,* IS•rFb,3) gg~~rB--------------------------------
270 ~~rt£(~w,271j 00242U
271 fU~MATCo uEF Nf SECTION N0 1 & COE"ff"t ll & FS,l *) 002430 

R~AU(~~2,27c) NS,RC(NS) 002~UO 
272 fU>l"~AT ( 13 F~ 3) 002~50

I~(NS~Lt:.,~~t~S,AN0 1 NS 1 GT,Ol GOTO 273 Cu2uco 
~~liE ~w,24b) NS,N~EC~ 002470GOlD 70 002480 _______________________________________ 

;ns- nsn1 ,NsJ= oo24Qv 
IF6:0 OU2SOO 

GU TO 25 Ou2~10 


002~20 

280 CO 'IT l•JUE 002~30 


~ (IF l,tcl,O) !>OTO 210 002~'10
i F(lf2,t~,O) GOTD 220 002~50 


------wR~~~l~3,t~ 1 ~l GOTO 	 002~b0• ----------------------------------------------Tt ("'·•'7tl)___ 230 002)70
278 FU~M•Tt• ~Pt:.CIFY UPSTRE4H LIMIT OF PROflLE•rl• 002~~0 


+ • ~v stc, ~u~ Cil)*l 002)90

RtAO(~R2,2 Q)NuS 	 002o00 

219 	 FU~'1AT(l.H 002ol0 

l~(~US,Lt\NDS,ANO,NUS,GT.Ol GOTO 29l 002b20 

~~!ll(~~,,uo)NUS,~DS 002o30
GUTU 	 280 _________________________________________________________0U2o~v0 

·-Z&1- FU><~ AT (II t, ,.-st.c-,--!H"STA~Ce: Pl-:tCltA!t1i~ WAT!!:R ENERGY*, I, ryo 2o5 rr 
+ • >.U, Ll:~f.L LE'f'EL•) 002oo0 

293 ~K!lEf~~,ut7) 	 002o70 
~17 FU~MA C• SPtCIFY DIS ST4RT1NG POINT Of PROFILES• 1 1, 	 002o80 

+ • 	 av stc NU CI3>•l oo?o90
RtA~(NA2,2{2),..§DS 	 002700 {)I
lFC~~US,LtANDS,AND 1 NSD3,GT 1 0) GO TO 418 	 86~~18 

--~~ l n-( ~ ~ ~-~ __:. ~-NS~~ !__lo!DS 	 ~ 0271it-------------------------------- .~. ------ -

http:l~(~US,Lt\NDS,ANO,NUS,GT.Ol
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LISTING- RIVER3/6 


Q 

"" t------



LISTING- RIVER3/7. 


lF(UI\flTS,EQ,I.IHHOU~S ~ JTU•1 	 0014100 
lf(U~lTSJ~~ 1 bHSEC-O~NrrO~~·T~U~·=~2~-----------------------------------i0041!vO__________________________________________________ 
lff1Tu;Nt£!7rvetlu 4-3 
"~ IE('.;,..,Iil)
GU TU YO~ 
wNITE(N~,405) . 
FU~MATC• A~Tl~ EACH "-~ ENTEM Ti~E AND 
DU uoo l=1,NPHYO
wN!TE(Nw,u07) I 
FO~~ATC• PT 1 •,l~- •
Ilt.AO (N;l2f.ijU8} .1!\')IQ 
F'U>l'<Ar{.?~'f,3) 
•~!lt(N•,UU9) 

FO~~ATC• SPlC!F'Y THE SEC N0 1 AT WHICH 


410 

425 

427 

-11(!!1
428 

-432
429 

HtAU (~~2 2121 ~SINF'
I~C•SI~~.tT,NSECS,OR,NSINF,LT,Il GO 
NF -1f':r.Slt<f 

~- ~~~~~ ·- ---~---
(,0 TO 	 25 
~~11El~•,24b) NSINF,N~ECS 
Gl! 1'1 	 411
lF(IF7,lQ,I) GO TO 421.1 
.. ~llE.('<•,u21) 
flJ~MATC• f'~UF!LES ARE NOT COMPUTED 

&0 Tu 	 ~5IF (IF!-> l:.ll,or-..,RITfCiiiliirliZrr
FO~ulT!• •AN~INGI A CHAN~~ HAS BEEN 

+ * ~OTHI~G HAS dtlN ~(COMPUTED *) 
~>illl(-~•.42'1) 

4]7 CU~TI~Ul 

4]q FlJ~~AT(/,l4(F10,t 1 3fl0 1 3)

4ijQ Fu~~AT(14X,~Ft0,3) 


~~11[(~~.292) 

GO TU 2~ 


- 4 7 5 	 I~ ! IF 1 , 1< E-, 0 l W·-fo--41 6 
~Hl1f(~w,4l7l
G0 TU 25 


483 H~IF~,r--E 1 0l GO TO 1180 

.. 1< lt.(r-. .. , .. 811)

484 fO~~Af(• THt INFLOw ~YDROGRAPM IS 
flU TO 25 

480 	 lF(lFo,~E Ol GO TO 4q0

wfd TE ('•w 1 ~ 28 )-------~---
w~ITE(~"•443) 

TO 

OOIHl"" 
00413<.1 

0041<10 

0041~0

fLOWRATE 11 (2F9 1 ])*) 0041b0 
00<~170 
004180 
OOUlqQ~----------------------------------------------------------
~0<~200 
004210 
004~20

INFLOW IS OE,lNE0 111 (13)•) 004~30 

410 

VET*) 


MADE AND t,/, 


FU~MAfC• S~tCIF'Y U/S SEC, NO, OF PRINTOUT (I3)t) 
~tAll(r.,<2,21~) NUS~R 
lFC~uSPN,~E!NUS,AND,NuSPR,LE,NDS) GO TO 430 
•~l1El~w,~3 ) NUS, NOS 

ll3r FO'l'HT(• SlC 0-NO, l'fusr-arnrTR~XNGE i,I3,i • i,lS)

Go ru 432 


430 •~11l(Nw,482)

482 F'U~~ATC• S~tCIFY 0/S S~C. NO, OF PRINTOUT C13)t)


NtAU (~~2 212) NUSPN1 IF ('<U~f'~ .~E,~us,u.O,NOSPR,I.E,NDSl GO TO 430 
~Rill( ~·,4~1) NU~,NDS 

vO TO 	 4 30 
~}0 	 l~(~D~Pk,G~ ~USPN,-Ctr-


wN!TE(N~,<I3~)~0SP~,NUSP~ 
~ 435 	F'ON~Al(• DIS SEC, *rl3r* IS SPECIFIED U/S OF UIS SEC 1 t,l3)
Gu TU <~30 


434 ft~llE(~w,281}

DU 437 l=~u~PN NOSPR

E~=tLtYClrll+Ut(l,l)**2,ot(2,0•G•AT(Ir1>••Z,O). ~~11~(~• 4\Q) ,X( ),UT\I,t),ELEV(I,l)tEN 


---DO <~3~ I 1 =<! ~•:~<lo'f~

t~=lLt~(I,JfJ+U <f•Ill**2•0/(ZtO•G•AT(I 1 Il)**Z,O)


438 	 ~~llt(~o,~'IO) QT( ,IIJ,ELtV(l, l),EN 

NOT 	 DEFINED•) 

004240
004~~0 
OO~coO 

~g~~~~----------------------------------------------------------
004~BO 
004cqo

OOU300 

00uj10

00431:!0 

004j30 
QO~j~~------------------------------------------------------~OU4~SO 
OOUlbO 

004j70 

004380

004390 
004400 
00<~410804420____________________________________________________________ 
OQ~30 


004<~'10 

00445U 

004460 

004470 

004<180 

004~90 

004~00 


~045l~-----------------------------------------------------------
004~20 
004~30 
004~~0 
004~5U 
004~b0
004~70 
004~80_____________________________________________________________ 
\l04'!>q0 
00Yb00
oouotO 
OU4bc0 
004030 
004o40 
0040~0 
004ob0 
0 o u e 1 o------------------------------------------·-------------
004o80 
004oqo
004700 
004111) 
00~720 

()I004730 
004740 	 ~ 
~ 0Q 7Sir--------------------------------- Ul~---~~~ 
no47oo 



______________________________________________ _ 

LISTING- RIVER3/8 . 

~~l 	FUQMATC• DO YOU wiSH TO CONTINUE WITH THIS CO~HANO~(YESINO)*) 604770 
REAU(N~2.l2l CONTU 00476~0-------------------------------------------------------------- · H 	 ( t: U" TII, t Q i 311 Yt S ~l:t-lt.,__________________________________-r, 0117 9 

Gl) TO 2~ 

l~(NS!N~,GEfNPSPlOR,NFRP,GE,NPSP) GO TO qqz 

~~!Tt(~~,qq ) NP~P 

FD~~AT(* PROFILES ARE ONLY COMPUTED UP TO SEC, *•I3)

GO TO 25 
H (NS!Nr ,LE t"<US.o.AND 0 Nf'RP,LE,NDS) GO TO 481 

~~{Tf(~~.~qll NvS
fl11'1MAT C• 1-'~0fiLts---mlT-CQ!I!f'"Ui~-ti/S :Jr SEC, a,13)
GO TO 2~ 

461 ALFA:0,5
1144 ~~I1E(~w,44bl 
~4b Fu~~Al(* l~t WEIGHT fACTORS ARE ASSUMED TO BE 0,5• 1 1, 

+ * DO YOU ~ISH TO CHAN~~ ANY- (YES/NO)*) 

N~H~GS:Q 

~tAcl(r•><t!,IZ) CONTU
lf (tO-. TIJ ,l Q l3 HNO- ,--GOio-114;---
~><!IE(N~oo,52~l


522 Fu~~AT(• HU~ MANY SECTIONS ARE TO BE CHANGEOw (I3)*) 

RtAU(~~2.212l NC~NGS 

H ("("'<GS,U.,20) GU TO '523 
"~11!:(·~~,494


U9U fQ~MAf(• ~UM~!:R OF CHANGES TRUNCATED TO ZO*)

~CH•,GS:,!O 

523 ~~trEc~ •• ~95l-- · 

49'5 FO~MAIC• S~tCIFY U/S SEC,NO~ (lllt*L/f


+ • ALFA A~O BtTA (2f9,3) FO~ ( , ~E~T ON*) 

Ou <~91> I=!t"'C""GS 

~~t'tf~~.u'~7J I · 


q<H 	 FlH~A (* tHA!vG!:. '110 "!D)
U9b ~tAU ~~~2,u'I0)N$A(f), LF(1) 1 8ET,I) 

498 FU~MAf(l~.2F'I 1 3)
QQ7 	 ~RITE(~~,4U9) 
U49 	 FU~MAf(• UtJI~E U/S SEC, NO, WHERE ROUTING STARTS (13)*) 

i<tAU(,~2 1 21cl "SR 
H [••S~,i.ot 1 NPSP,A~D,NSr!,LT,NIJS) GO TO 450 
"RIH(~.;,4j)) 'IPSP,N{JS
GU TO ~~7

uo;o 	 t•c"s~,t~,NFRP.oR 0 ~><SR 1 Eu,NSINF) GO To 451 
•~l TE(~o,45?l~~!Nr ,Nf~P·cr~2 fU>l"'AIC• THt HODTl"'-:i--,.,UST STAR;-&;-"SEC, NO,*rlr 

•Goi~ 6 IJ~7 o~ •,131 
451 	 •~!Tt(~w,4531
453 	FQ~~Af(• ~t~ ~E DIS SEC, NO, WHERE ROUTING FINISHES (13)*) 

~tAU(~kd,212) ~~R 
HC·~~r<,hE,NUl() !>0 TO 530 
G~ 1n(~; i ~ >.~.! ... f ~. "'s R 

530 I• C""~,vt,~Sl~F,A"D•NFR,LtANDS) GO TO 454 

~~IT!:.(~''"~~~ Nr~,~~lNF,NO~


U55 FoR~AT(• StC, NO, •,15,• OUT OF RANGE *•13,• • • 1 I3)

GU TO ~~I 

454 ~kiTE<'••"S~l 

45b fU~MAT{• ut•INE TIME STEP FOR COMPUTATIONl USE •,1,
• * UNITS OF TIME AS USED FOR HYOROGR PH (F9 4)*)

l 
SA~t 

1 ---	RtAt>(•n<.:',•?1) ·Df:t.TA 
1157 	 Fu><~Al(F'I,II) 

•will(~•••~~~
USB FO~"~AT ( • f 'IH f< STA~T TIME ~o~ITH CONSISTENT UNITS (F9 1 3)*) 

HtAU(~~2r•S9) TIMES
459 rUI<MAT (~9,3) 
533 ~K!IE(~~,IIo2)
llo2 FUI<MAT(• tNTt~ F!~ISH TIME WITH CONSISTENT UNITS, (f9,3)*) 
·· 	 QtAO("'ll2o<~'>'<} liMtf ---·-· 


lF(TIMEF,lof~i!Mf.Sl GO TO Sll 

~>~!TE(·~w,53d riMf.FrTlMt::S


532 FORMAT(• Fl~lSH T!Mt •,F9 0 3o* lS EARLIER THAN*•lJ 

- •-• Tl1t.·su~r Tll'lt- .. ;f'9 0:S) 


0011800 
004610 
004~20 
00116]0 
OUIIt!IIO 
004650 
UOII8b~O------------------------------------------------------------00467 
OUIItlt\0 
004~90 
004~00 
004910 
004920 
004930 
004'1UQ ---------00 II 'I 5o-------------------------
0011'170 
OQ49d0
004990 
005000 
OO'Ju10 
005020 
00~030 

ouSauo 
OO'JOSO 
OO'.>ObO 
005070
ou5ueo 
0050'10 
005100 

0ov0 5~1~----------------------------------------5 3 
OOSIUO 
0051SO 
OO~IbO 
005170 
go~ldO
o~I9a 

00520~0------------------------------------------------------------ll0521 
gg~~~g 
005~40 
OO~c50 
OO~cbO 
005db2 
o~ ~ ~ g~~~---------------------------------------------
00'.>~70 
00~~80 
CO'.>c9U 
00~500 
Ou55!0 
005520 
00'.>53~0__________________________________________________ 
005511 
00~350 
005~o0 
005.!70 
00~~~0
00":>5'10 
0051100
00":>111.o ____________________________________________ 
fl0~~2tr 
00'>«2.! 
00542'1 	 ~ 
005U2Tb__________________________________________~~ 

n'ill;> 	 (1) 

http:lF(TIMEF,lof~i!Mf.Sl
http:��S~,i.ot


LISTING- RIVER3/9 


------·- . 
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__________________________________________________ ___ 
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LISTING- RIVER3/IO 


Ube CONTlNUt 005q70 
5zq w~lTE(~~,472) NFR 005q8~0----------·------------------------------------------------q72 FO~~ATtff!l-~OROG~tOP~H~A~l~S"E~C-,-,N~O~,~ir,~tr3~,T/~,------------------------~005qq 

+ * T lMt. FLO~HATE <t)r473 
474 

502 

520
SOu 

+ 

506 
+ • StC 1 ~u. •,13,• OR *rll)

Gll TU ~v3 
~HITtl"~·507l 

h'"~"'~ (* tNl(J{--11:,-x[---oESCRttriNtliKtliE8ERVOIR
RlAv (~H~,~vij) HK 1 HX 

508 Fo~~AI(2r~ 5)
~~11E(N~,4~b) 
HrA0(~~2,4~/) DELTA 

~Hl!E(N~ 1 ~5KJ 

t<t.Aii("-~2.~!:1'1) TIMES
534 wH!IE(N~,4bl) 

-- --- H t AU ( C. Hc 1 ~~'I) --f 11'1 t: p
H (I l••t.F ,!•Et T!MtS) GO TO 535 

~Nli£(N~,~5c) Tl~EFrTlHES 
GU TO ';>34

535 TT:TlMtS 
~•R(\1=~•9(1!=•110

l~(NNL 1 NE,NS Nf) GO TO 50q 

N~:o--IFtl:t----

DO 47j l=!,NN 
TT:FL04T(l•ll•DEL~A+TIMES 
~R1Tt(~w,47U) TT,wK3(1)
FOWMAT(1X,FII 1 31 1XrFII 1 3) 
Gll TO 2S 
IFClF'>,f•t 1 0) GO TO 503;.Rl1E(N~,u8Q}___ 

GU TO 2~ 
Hl!Ft,t.EJO) GO TO 520 
~ >< I t 1., '' , 'J 2 ll 
FUWMA C• ~PtCIFY T~E DISCHARGES *)
GO TU 25 
•NtTt(Nw,~OU) NSlNFtNFRP 
FUw~AfC• SPtC!FY LO~ATION OF ~ESERV01R (13)• 

1
• AT s~c, "o, .--,13;·-o~•nr 

RtAU(~H2,~12) NNL 
IFC-.~L,t~,N5!NFl0NJNRL•EQ,NFRP) GO TO 505 
""llt(·.-,.,oo) llo~l"~ 6 ~o~FwP 
~UNMAI(• Trlt NtSE~V IR MUST BE AT *rlt 

511 
Soq 

5135111 

515 
512G
 
516 

OU ~~~ j=tr280
CALL N EH!( l 1 TI,NPHYO,TT,WK3(1)) 
.. ~~(!J:TT
IF (TI ,GT,TI>1EF) GO TO 512 
N~=~~+! 
TT:TT+l!t.LTA 

c u '" Tll-~12hl.tt ,; E 
N"-'<=0 
ou 513 1=1 200 
CALL l~lt.HI(w~l,wK5fNN1 TT,~K4(1))
lFCTT ,GT ,Tf"'tF) GO 0 :114 
TT:TitDELTA 
N-.r.:~~N+) 

CUNTl~UEN";:N";N 
TT:TI~ES 
00 ~15 l=lrNN 
~~!>(I):TT
TT=li+DtLTA 
wKJ(l):~1'.4(l) 
Dl :UlL U 
6~!Mtf~~~~~~;o TO 51& 
N~I\2:0NI<PTS 

OObOOO 
OObOlO 
00b020 
0060j0 
OObO~O 
0Ub050 
0~0~0-------------------·------Ob070 

00bU80 
00b090 
0 v b I 0 0 
006110 
00bl20 
00b)j01 OOb\40

1 
oo~>tso 
00blb0 
00bl70 
OOb!BO 
00bl90 
006200 
OOb~IO 
ooo~2o 

Ci!fY,3)i) 006230 
00b2~0 
00~~~0 
006~60 
00b~70 
00b~80 
OObc'IO006jQ0 ___________________________________________________________ 

0 b 3 !If 
00bjl2
OObH4 
OUb~lb 
OOb~cO -·---------------·
00b}j0
00b)40 
OUbj~vO~---------------------------------------------------------00b35" 
OUbJoO
00bj70
006580 
00td90 
0Ub400 
00b4l0 

o o b 4 2o"----------------------------------------------------0!1'15rt 
OOb'I~O 
006450 
00b4b0 
006470 
0Ub480 
00b490 

OOo~OQ. ------------------------------------------------llb':>IQ
OOo~cO 
00o~50 
00b5UO 
00b~5o 
OOb~bO •·• 
00e':>7& ::;: 
g~~;~o--------------------------------- m _____ _ 
OOooOO 



525 
52b 

517 

518 

LISTING- RIVER3/ II 


OU ~2~ l=frNYS 00bb01JJ:NQS+I• OObbO,Z ___________________________________________________________ 
-It< tN>~V,t;E·;-Io!'"oQ-1"(:1J:1J;-);-)~Gno-r-rno~5,1!"'6-------------------oobb()r 


CU~TI~UE OObbOU 

N•K3=~~~TS•1 OObbO~ 

IF (N~~3,!Y,O) NWK3.•1, OObt>Ob 

Ou 5\7 1=\,~R~TS OUbblO 

tl:(~S(JJ,cJ•QS(JJ,l))*F~OAT(l•l)INWKl+QS(JJ,l) OObbl~ 

STU•=~K•U••~X OObo~O 


w~l!ll=O,S•U 00bb30:-------------------------------------------------------- "~2ttl=o,s•u+sTo Ovob~O 

w~o(l =~K7fJ):Q OUbt>SO 

~K~(I =•K~ 1) OObbbO 

CALL K!N~U (wK2 1 wKb 1 NRPTS 1 WK1 1 WK7 1 NWK2 1 wK8 1 WK9 1 11 111 DT 1 Ouoo70 


+N''!~K3,>d~~l OObbBO 
•~ TE(~~,51~) NNL ODobqO 

FU~MAT (11 1 • HYD~UGRAPM AFTER RESERVOIR AT SEC, *rllrlr OOblOO 


+ • T I Mt ~ L 0 loOk ATE * ) 0 0 b 7 1 Q1 ---------------------------------------oo s1q r=r,-,w- oao121f 
Tl=rLOAT(I•l~*DE~TA+TlMES 00b730 
~Kj(J)~•K4(J 00b7~0 

519 •~1Tt(Nw 1 47" TT 1 wK3(1) goo750
GU TU ZS Ub'lbO 

1!90 1iTOP 00b7o'lo 
E"'O 00b71;10 



TYPICAL OUTPUT FROM FINDIF 

---------------- --------------------- ------------------------------------------------~ 

FLOOD ROUTING USTNG IHE EXPLICIT FINITE DlffEREN~E METHOD 

----------£,.ttAhNEL--i'ROPERT iE! -AND -FLOII'--cON!H-TIONS-------------------------------------

TnTAI_ "LENGTH • 50000,0 FT 
MAX!~UM DEPTH • 20,0 FT 
Si OPI' • ,00020 FT/fT
~INNT~GS N • ,Ol4q0 
M~XI~UM FLOW • 16675 7 CUSECS 
CI'L[P!TY AT MAX • 33, 72FT/S~C 

----------~------------wruTH OF CHANNE~ • 100,0 Fl------------------------------------

PROBLEM VARTABt t.S 
NIIMBF>< OF REACHES • 25 
TTME iNCREMENT • 29,7 ~ECONOS 
MAX T!ME INCREMENT • 59,3 ~ECONDS 


------------------ TFST ·~Uf'BER ___•______:150 


1!-.VEAT ELfVATin~S A~O INITIAL WATER LEVELS AT EACH SECTION 
INTIIAL FLOW RATF• 3335,1 CUSECS
CHA!NAGE TNVERT ELEVATI~N WATER LEVEL o.g no.oo ll7o00 

2000, 10~.bU ll6o60 
4000,0 109,20 116o20 
6000,0 ----------- 10R,HO----------l15o~0-----------------------
8000,0 10H.~O 1~•40 

10000,0 10R,OO 115o00 
12000,0 t07,b0 ll4,,r,O
!4000•8 107,20 1 4,z0
16000, 10b,KO 11J,g0
18000o0 l0b,40 ll3o40 
t:OOOD,(I lOt>,OO l13o00 

------------------------czooo.o----------1o~.bo 12•60-----------------------

~~ggg:g ~~;:~8 lif:~8 
ceooo.o 104,40 lll•40 
Jo~oo.o 104,oo 1 l.oo
J2000,0 101.b0 lt0t60 
~4000,0 103,20 l!O,zO 
~6000,0 102 80 l09tR0

---------------------------------------JAOOO,O 10?:~o -l09,40---------------------------------------
4000Q,O 102,00 l09,oO 
~zooo.o lOt.bo 108.60 
~•ooo.o 101,20 los;7o
~6ooo,o 100,8o o7.aO 
~aooo,o l8o.~u o; •• o 
~oooo.o o.oo O!!O~ 

~-------------------------------------------------------------------------------------------------------------< 

g: 

0 

http:czooo.o----------1o~.bo


• • • 

• • • 

• • • • • 

• • • 

• • 

• • 
• • 

• • • 

• • • • • 
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o I •0 • 0• 0 , J• o I ...• 
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o to eN 
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0 , 11.11 
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t-.Z
0 ' o I•• 0 • oz 
o to t-0 
0 1.., 
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0 11"1 ...JW 
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0 ' o I lo!t
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C+ f 
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c• to 
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o• to 
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OUTPUT- FINDIF I 4 


T~~ ~MROR IN TH~ VnLUME WAS• o022 PER CENT 
CFNT~UIO OF HYOROGRPH NO l• 2.6.. H~S 
CFNTRUIO OF HYOROGRPH NO 21• 3ol9 H!:!S 
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OUTPUT- FIND IF /5 . 
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TYPICAL OUTPUT FROM KINDIF 


T1T~L l~'IGT4 = 
11G~!MIJ" rJ':f>HI : 
'\L"~"f. 
MUP·!T•t";~ "' 
M3XI~~1 CL1~ : 
crLroyry GT M~~ : 
~T~lTH 1F CHGN~El___ = 

P<>I)"LF.:I1 va<>r anLr<; 
NJ~n'o 1r or~cHrs = ~n
rr•t: I'rorHt'"NT = 2"o;n 
H~~ TI"'" TNC"'"H'"NT 7~.~ 
TeST 'IU"'3.-~ 220 
AL'"G ~ .nJ~ 
'1:T~ - --.,------f.nJ~ .. ---- ··------------·---

INVERT 

--

.. - ---·----------··

,__ --- 

I 
I ------- ---- -

I 
I 

Il_ ________________j 
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OUTPUT- KINDIF /2. 


I 1.0~ ----------------------~-----------------------------------------------------------------------------------------------.c~ 
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------------- ------------------------ -------------------------------------------

----------- ------------------- --------------------- ---------------------------------------

OUTPUT- KINDIF /4 . 


r--------------- --- ------ ------------------------------------ -------------- - ----------------------------.. 
TH~ ERDOR rq THE ~OLUME W~S= .~n~ PE~ ~E~T 

I 
1 CSNTo~I~ 1F HV~?Qr.o~H NO 1= ~.~~ H~S 

~~NTR~T~ ~~ YY0~0r,ooH ~0 17= 3.13 HD~ '-,

Hynonr.oao~ NO 1 "E,~= .9~41 TTHt= 1.•3~ ~~~ 
HYJ01G~APH NO 17 DE,~= .q4~4 TIME= ~.7z~ HO~ 

'- --- -- ----------- -------- -- -- ------------------------- --- -----------------------------------< 

NOTE: THIS IS ONLY ONE OF TWENTY-FIVE SIMULATIONS 

PRODUCED BY A SINGLE EXECUTION OF "KJNDJF~ 
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----- ------------------------------------------------------------------------
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- __-_______ -- -_______________)I, l_- -------------------------------------- ----------

' 



359 

TYPICAL OUTPUT FROM RIVER3 


SUPPLY NO OF SECTIONS ••• I3 11 
SUPPLY MA~ NO OF PTS ••• I3 4 
DO '/DU l.olAtH L I :~·r OF CDt-1t·1H!'Hr~···...••• \'E ~- ..·'HO '-.'E-~: 

AFTEF.' Hi'·/I TAT I Ot-i TO T\'F'E " :-" (3 I '·/E Dt-iE OF 
THE FDLLOI.ol Hit::; CDl'1f'1AI·Hr·~: •••• 
D E:CHAPGE •••• TO ·s·PEC 1FY FLO!_.! 
D.··<: l_._ll_ ••••••• TO DEF H1E DOI·I~r~ TF EAM COt-1TF'OL ·LEVEL 
I t·iFLOiol ••••••• TO DEF I ~1E I t·iFLDl·.l H")'DF'Ot:=.PAPH 
F.:E:~:I:~.TAt-\CE ••• l 0 ~-ET FLOI,I F:·E:::r·sTAtKE LPiol 
OLD :ECTION •• TO PPJNT COO~DS OF A ~ECTIDN 
t-iEI_.I :~:ECT I mi •• TO PEDEF HiE CDDF'DS OF A :~.ECT 101'1 
OLD COEFF •••• TO PRINT PDUGHNE~S MEA~UPE 
t·iEiol CDEFF •••• TO F'EDEF I t·iE POUt::;ht'E:~::S t·1EA:~·UPE 

CPITIC ••••••• TO COMPUTE CRITICAL DEPTH AT A SECTION 
CHAt·i6ES •••••• TO PF.: I tiT CHfi~:t:;E~ OF COOPD:~. OF' F'OI_II::;Ht'lE~ S 
TAE:L E •••••••• TO PF.' ItH TABLE OF ALL .SECT I otC DATA 
PPDFILES ••••• TO PRINT OUT ::URFPCE PROFILES 
COMPUTE •••••• TO COMPUTE PPOFILES 
ROUTE •••••••• TO ROUTE THE FLOOD 
RESEPVOIR •••• TD ROUTE THROUGH A RESERVOIR 
RESTART •••••• TD BEGIN AGAIN 
HELP ••••••••• FOP COMMAND OPTIONS 
STOP ••••••••• TD TERMINATE 
:- PESI:TANCE 
:~:PEC IF\' PE:~: I ·s·TAt-K E Uii.,J :£:\' TYP I l'i(; 
CHEZ')'~ t·1At·H·i I ~H;, :~ TP I 0: LEF' ~ COLEf:POIJV 
S~10DTH OP ROI_It:;H ••••• P. :~ • I::: 'lOUP 
ROUGHNESS MEASURE COMPATIBLE' 
: - t·1 At·H·l HiG 

D I :::CHAF.'t::iE 
ENTE~ ND.OF ~UB-FEACH~S (J3) 
WITH DIFFEPENT DISCHARGES 1 
SUPPLY UP~TPEAM ::EC.ND. ~J3) AND 

'DISCHAPGES (2F9.3) FOP EACH SUB-REACH 
:~·UF'F'L'r' THE LOI.ol 'v'ALUE F I F.·:~·T 
REACH NO. 1 1 3000. 166~5. 
EtHER t·m • OF F'T:::: Hi FLit iT I m~ CUF.''•,•'E:S: (I:~: ·:o c::

·-' 
COt·1PUTE 

DEFInE ~ EC. t·-I[J. lo.IHEF'E It.···:~· lo.IATEF' 
LEVEL TO BE :PECIFIED· 13 11 
DEFit1E t1Ut·1I:EF' OF F'DHiT:~· Hi I'-···s· !)IL F'ATH1() CUF'\'E 
DEF It1E D.<: lo.IL At-m FLOI.IPATE 2F9. :~: 
START AT THE LOIJIE:~ T loiATEP LEVEL 
P7. 1 ? 107. 3oon. 
PT. 2 ? 113. 10000. 
PT. 3 ? 120. 16675. 

http:FDLLOI.ol
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.OUTPUT- RIVER3 /2 

:- Cm1PUTE 
SPECIFY UPSTPERM LIMIT OF PROFILE 
I:\' :::EC . tm • ( I:~: :• :~: 

SPECIFY D/! STRPTING POINT OF PPOFILES 
E:'l ::EC. t·lO. • IT·· ·~ 

STAGE DISCHA?GE PELATIDN NOT DEFINED 
AT SECTION NO. 9 RELATION DEFINED AT 
SECTIONS 11 - 11 
SPECIFY D/S STAPTING POINT OF PPOFILES 
BY SEC . t·~n • ,.. I::=:> 11. 

COI··1PUTE 
SPECIFY UPSTPEAM LIMIT OF PROFILE 
BY SEC. NO. (I3> 1 
SPECIFY D/S STAPTING POINT OF PROFILES 
E:'"r' :SEC • NO . r:" I-~:> :~: 

PPDFILE::: 
SPECIFY 1_1/S ~EC. NO. OF PRINTOUT (13> 
SPECIFY D/S !EC. NO. OF PRINTOUT (13> 11 

:S:EC. DI:::TAHCE Ill :s·c HAPGE lriATEJ:.;' niEF"f3Y 
t·m. LE'v'EL LE\.'EL 

1 o.o 	 ::::ouo.OO!) 116.564 
t:"A18.750 120.627 121 . 193 

124.746 
132~56 • 2~· 0 127. 04f. 
1 E.t:-75. 000 1::::o.ooo 1::::1 • 07'3 

2 5000.0 	 .:::ooo.ooo 115.565 115.:::·~0 

tAl:::. 750 '1 q • .:.1::: 12 0. 1::::5 
·;:.:::::::7 •50 0 122 . '3~r.;: 
132~·6 . 2'5 0 126.02S 
·1667~·.000 129.000 130. 07'3 

1 0 (I 0 (I • 0 :;: 0 0 0 • 0 0 0 114. 5t.t: 114 . :::·32 
E.41 :3.75 0 1 H:: .606 119. 174 
·::a::~:=:? .50 0 121.9<::1 122.697 

1::::25E.. 25 0 125.(1(:0 ~25.945 
16675.000 12::::. (TO IJ 129. 07'3 

4 15000.0 	 3000.000 11::::.573 11 :;: • ::::·~6 
E.41:3 • 75 0 117 •5:::::: 11:::. 159 

120 .:::t:1 121.661 
132St;:., 25 0 12::=:. '?"?(I 124.917 
166~'~.5. 000 127.(100 

1 
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OUTPUT- RIVER3/3 

5 20000 .0 	 ::::ooo .000 
641:::: • ('~, 0 
·~:::::::7 • ~i 0 0 

1·::25E. .250 
l E.t:.75 .000 

6 25000 . ,-. 	 ::::0 0 (I . 0 I) 0-' 
64 t:::: • 750 
·~:::::::7 .50 0 

1::::256 .250 
16675 .000 

7 ::::oooo .0 	 ::::ooo .000 
641::: .750 
·~:::::~:7 • 5 (I 0 

132~i6 .250 
166~·'5 .000 

!:: :3~·000 .0 	 ::.=:ooo .000 
64 1 :=: . 750 
·~!:!:37 .500 

1.~:25E. . 25 (: 
1t:.675 .000 

'3 40000 .0 	 ::::ooo .000 
64H:: • (~d) 
·~::::37 .50 0 

1::::256 •25 (I 
1.::. .:.75 .000 

1 0 45000 .0 ::::oo 1) .01)1) 
1'.:.4 1::: . 750 
·::.:::::::7 .500 

1::::256 .250 
1t::.t.75 .000 

1 1 50000 .0 ::::I) 0 0 .000 
1'.:.41 ::: . 750 
·~::::~:-;:- •50 0 

1J256 .250 
16675 .000 

1 1.-,.::: •5t: 1 
c.· .- .-,1 1•:. • ·-•r:-..;..-..-..-.1 1 '3 • ()C.•=·

1.-, -,
L~C. •·::c::·c· 

126 .000 

1 1 1 .. 595 
C' .-.•::.1 lo:::- • ._rc. ..·-' 

1 1 ·=· . (5'3·-· 
121 .. :=::::5 
t·-·t:"C·-• .000 

1 1 0 .61::: 
1 14 • 4:::0 
1 17 . t.t.'3 
120 .:=:28 
124 .000 

1 0'3 .E.!5C: 
1 1·:··-· .41 0 
1 16 . ~550 

~c:---1 1·~ ... ·-'t:• 
1 .-,.-,c.-:.· .000 

1 o:=: .725 
1 1.-,.::: ..~: o::: 
1 15 •:3:::·:;. 

.- -1 1.·=·' • t;:. t:• ( 

122 .000 

1 07 • ::~::::2 

1 1 1 .1::·~ 

1 14 .170 
1 17 .:,sE, 
121 .oun 

1 07 .000 
1 0'? . •j::: 0 
1 12 • :::t::. 1 
1 16 .415 
120 .000 

1 12 .904 
1 17 .1·-:-·-:··-'I 
120 •614 
1.-,.-,c..:_. .:~::=:4 

127 .079 

1 1 1 • ·~ 16 
1 16 .1 or:. 

r=c= .-•1 19 .._.._..;. 
122 .::=:42 
126 .079 

1 1 0 • '3:?:7 
1 15 .062 
1 1 ·=· .474,_, 

121 •791 
1 -.t:"c_._, .07'3 

1 o·:=t • '3-;--':3 
1 14 .OfJO 
1 17 •::::r::,::: 
120 . '?2:3 
124 .07'3 

1 09 .034 
1 12 .91 (I 

.-,.-..-.1 16 .cc·:· 
1 1·:;-· .649 
1.-,.-,

c.-::.· .079 

1.-,.-,1 o:::: . ._")c. 

1 1 1 • 77~::-

1 15 .OJ6 
1 1 ·=· . ~~~·1·-· 1.-, -,cc .079 

.-.•-.C"1 07 • C.•:··-' 
1 1 0 .57'~ 
1 1·:· • 7E.'31·-· 
1 1? .42:~: 
121 .n7·3 

http:1t::.t.75
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OUTPUT- RIVER3/4 

:- F'OUTE 
THE HiFLDI.• I H'r'DPOr:;r~·APH C t~OT DEF ItiEII 

HiFLDi,.i 
HOI..! t·1AI·fr' PO rtn:s· DEF H~E THE HiFLOI;.i H'r'Ir-::· •• t. I 3 > ·-=··-' 
ARE THE UNITS HOURS OP ~ECDNDS? SECONDS 
RFTEP EAc·H ".-." HiTEP T H1E mm FLOJ...IRATE •• (2F9 .:~: > 
PT. 1 ? 1500. 3335. 
PT. 2 ? 6500. 166?5. 
P T • 3 ·~· 1 1 5 0 0 • :~: ·::: ::: 5 • 
2PECIFY THE :EC NO. AT WHICH INFLOW IS DEFirlED ••• (IJ) 1 

POUTE 
THE WEIGHT FACTOPS ARE AS?UMED TO BE 0.5 
DO '·,·ou I,~J I.~ H TO CHPnr:;E Al"fr'? \. '/E:~ ....-I'm> t·m 
DEFit'iE U . ..:S. :~:EC. t·iO. 1,~11-•EF'E POUTH~G STAF'TS (I:~;) 1 
DEF HiE D·<· :~ EC. tm. I.!HEPE POUT HH3 F Hi E'HE:~ (I 3) 9 
DEF HiE T lt'1E S TEF' FOP CD1'1F'I_ITAT I 01"1. u:: E 
SAt'1E Ut·i IT:~ OF T I t·1E AS u·~ ED FOF' H'r'DF'IJI::iF.'FtPH ( F9. 4.:0 2fl0. 
EtiTEP ·~. TAPT T H1E 1.• 1 I TH CDtE I ::·TniT UtH TS ( F9. 3) 0. 0 
EtHEP F Hi E.H T H1E I,J ITH COt-E I .~.TEtiT Ul"ii T:~: ~ o:' F9. 3 ':o 15 0 0 0. 

HYDPOGPAPH AT SEC. NO. 9 
TIME FLOWRATE 

0.000 :::::~:35. 000 

20(1.(1(10 ::.=::~:.:::5 • 0 0 0 

400.001) ::::.::·:;:s. ooo 

600.000 ·~:::::35 ' 0 0 (I 

::::oo.ooo ::::·~::;:',:', . 0 (I 0 


1000.000 :~:·::::35 • 0 (I 0 

1200.000 3:::::~:5. (I (I 0 

1400.000 3·:::::::5 • 0 0 (I 

1600.000 

1:::~o o. o o o 

2000.000 

2200.000 

2400.000 . 32::::2.1 ?0 

f'6 0 0. 0 0 (I 33::::9. 122 

2::::00.000 341? .::::54 

::::ooo. ooo 
3200.000 ::::2 09 • ::::06 

3400.000 32:~:0 .446 

3600.000 

3::::oo. (100 
4000.000 :~:52 0 .. E. 52 
4200.000 34::::6.22 0 
4400.000 
4600.(1(1(1 J246 .:~:41 
4:::0 0. 0 0 0 .:::14? .967 
5000.000 :3 (If, 7 • 5'35 

http:34::::6.22
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OUTPUT- RIVER3 /5 


~200.000 3030.879 
5400.000 3000.000 
5600.000 3000.000 
5800.000 3000.000 
6000.000 3226.843 
6200.000 3848.215 
6400.000 4647.208 
6600.000 5550.326 
6800.000 6472.276 
7000.000 7405.371 
7200.000 8292.711 
7400.000 8941.942 
7600.000 9495.465 
7800.000 10307.126 
8000.000 11005.271 
8200.000 11419.812 
8400.000 11749.979 
8600.000 12251.178 
8800.000 12985.908 
9000.000 13858.984 
9200.000 14707.368 
9400.000 15397.740 
9600.000 15851.727 
9800.000 16065.916 

10000.000 16046.515 
10200.000 15856.087 
10400.000 15556.072 
10600.000 15179.402 
10800.000 14753.309 
11000.000 14297.967 
11200.000 13816.157 
11400.000 13270.195 
11600.000 12733.183 
11ioo.ooo 12221.965 
12000.000 11759.379 
12211(1. 000 .11241 .67:3 
1240o.oon 10788.580 
12600.000 10411.226 
12800.000 9854.774 
13000.000 9194.578 
13200.000 8653.719 
13400.000 8267.276 
13600.000 7981.947 
13800.000 7720.165 
14000.000 7437.375 
14200.000 7127.168 
14400.000 6768.503 
14600.000 6352.529 
14800.000 5926.439 
15000.000 5468.961 
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OUTPUT- RIVER3 I 6 
! 

:- PE:S:EP'·/0 I P 

SPECIFY LOCATION OF RESERVOIP (!3) 

AT :S:EC • t·m • 1 OF' q q 


EtHER t< •:=<, DES:CF' If: HH3 THE F.'E$ EF'VO I F.: ( 2F9. 3) 1 0 0 0 0. 1 • 1 

DEFINE TIME ~TEP FOP COMPUTATION. USE 

:s:At-1E Utq T S OF T Ii1E A:~· U:~ ED FOP H'1'DF'06F.:APH (F9. 4) 200. 

ENTEP STAPT TIME WITH CONSISTENT UNITS (F9.3) 1800. 

EHTEP F HH :~.H THIE l•.II TH CotE I STENT Ut-i ITS, •T·?. 3) 15 0 0 0. 


HYDPOGPAPH AFTEP PESERVDIR AT SEC. 9 
TIME FLDWRATE 

1::::oo. ooo 
2000.000 3327.414 

2200.00iJ :~::~:27 . so:~: 


24 0 0. 0 (1 0 

2600.000 

2::::oo.ono 
3000.000 

3200.000 

3400.000 :3 ~:2t.. '3~t5 


3600.000 :~::32E, • t, 1 7 

3800.000 

4000.000 

4200.000 :3:32'=='. :::4::: 

4400.000 :3:~::3 0 • E.27 

4600.1)(11) :~::33 o. 4 7c:~ 


4:::oo. ooo 

5000.000 :~::~:27 . 7 o·::a 

5200.000 :;::~:25 . 54 0 

5400.000 3323.124 

5600.000 :~::~:2 0. E. 07 

5::: (I 0. 0 0 0 :~:31 ::: . 1 09 

6000.000 331t::.. 515 

6200.000 

6400.000 

6600.000 :;::;:·~:·3 •291 

E.:::oo. ooo :336fl.1 06 

7000.000 

7200.000 3422.736 

7400.000 :~:463 .2 02 

7600.000 35 o::: • o-;:::: 

7:::0 0. 0 0 0 ::::557.:::41 

8000.000 
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OUTPUT- RIVER3 I 7 


:32 0 0. 0 (I 0 

:::4 (I (I • 0 0 0 ::::?:~::~: • ·~?E. 


:::6 0 (I • 0 0 (I 

:::::: 0 0 • (I (I (I :::::::r:.t. o:::2 

9000.(100 :;:941. 519 

9200.000 4 022 • o:::: (I 

9400.000 41 o::: •0 o::: 

9600.(1(1(1 41 '37. 724 

9::: (I 0. 0 0 0 42::::·3. 343 


10000.000 4 :::: ::::1 • (I 0 7 

10200.000 44 (' 1 • 14 0 

10400.000 

10600.000 

1 o:::: 0 0 • 0 (I 0 

11000.000 47'39 .644 

11200.000 4:::(' 1 • 75'? 

11400.000 4':~::::9. 31 0 

11600.000 50 02. 116 

11:300.000 5060.350 

12000.000 5114.J37 

12200.000 5164. o::::5 

12400.000 

12600.000 

12:::oo. c~oo 


1::::ooo. ooo 5::::22.,:.72 

1:3200.000 5:3~5 0 . 7'27 

1::::4 (I 0 • 0 0 (I 5:374. '352 

1::?:6 0 0 • (I 0 0 

1 ::::::: 0 0 • I) 0 (I 5415 .4'?4 

14000.000 5432.::::46 

14200.000 5446.757 

144 (I 0. 0 0 (1 545:::.451 

146 0 0. 0 0 (1 


14::: (I 0 • 0 0 0 5472.274 

15000.000 5474.030 


POUTE 
THE I_~IE ll::.HT FACT OF s· fiF'E A:~·:~·UMED TO I:E 0. 5 
DO '/OU f,J I :~·H TO CHAr~t3E AN)'·;· ( \'E·s /tiD·, r·m 
DEF HiE 1_1 ..·· -~· :: EC. t·m. f,IHEF'E POUT H~G .S. TAFT~; .:'I 3 ·., ·~ 

DEF I r·JE It.-···:s: :S:EC. t·m. I_.IHEF'E F'OUT J tir:; F I t·J I:: HE'S' (I 3) 11 
DEFINE TIME ~TEP FOP COMPUTATION. U~E 

:s·m1E Uti n·:: OF T II'1E A'S l_i:S ED FOP H'1'DFOt:JPf1PH ( F'?. 4 > 2 n0. 
EtHEF.' ·s·TAF'T T It1E f.,l I TH COI'J:: IS. TEtH Ut·q T:~. (. F'3 •. ::: > 64 0 0. 
ENTER FINISH TIME WITH CONSISTENT UNITS, ~F9.3)15000. 

http:5::::22.,:.72
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OUTPUT- RIVER3/8 

HYDRDGPAPH AT ?EC. NO. 
TIME FLDWPATE 

11 


6400.000 
6600.000 
6:::0 0. 0 0 0 
7000.000 
7200.000 
7400.000 
7600.000 
7:::oo. oc1o 
:::ooo. 000 
:::200.000 
:::400.000 
:::6 (I 0. 0 0 0 
::::::(I 0 • 0 0 0 
9000.0110 
9200.000 
9400.000 
9600.000 
9:::00.000 

10000.000 
10200.000 
10400.000 
10600.000 
1 o::: (I 0 • 0 0 (I 
11000.01)0 
11200.000 
11400.000 
11600.00(1 
11<=:00.000 
12000.000 
12200.000 
12400.000 
12600.000 
12:::0 0 . 0 0 0 
1::::ooo. oc,o 
13200.000 
13400.000 
13600.000 
1:::::::oo. ooo 
14000.000 
14200.000 
14400.000 
14600.000 
14::: (I 0 . 0 0 0 
15000.000 

:::::~!25. 4 77 

331 ·~ . 4:::·::: 
:~::=:27. 4t::.·3 
:::::342 • 7:::.::. 

::=:43 0. 4:::7 
::::471.075 

:;:E.:::2 • ::::77 
·=:74:=:: • ...:.9::: 

:;::::·?·::« •·:.-~:2 

::::957.171 
4 04 (I • 09::: 
4127.572 
4217.:3:::4 
430'~ .244 
44 0 0. 1 03 
44:::·~ •215 
4575. r:.~~:::: 
4t.s::! . ~:::s~, 
4 7:3:::.455 
4813.923 
4 ::: ::::4 • ::: 0::: 
4'351 .156 
5013.1-:::0 
5 07 0.::::::::5 
'5 1 2 :::: • :::: 1 7 
5172. :=:::::4 
521:::. t::.54 
52~~·::- . 7~12 
52'35. r:.?t. 

5354.114 
5:~:78 .271 
5J99.791 
5418.942 
54:35.648 
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OUTPUT- RIVER3 I 9 


:- POUTE 
THE WEIGHT FACTOPS APE ASSUMED TO BE 0.5 
DO \'DU l.•JLH 10 CHt=mGF. fll'f/? (\'E::.···t·m~· no 
DEF I t'lE u ....·::;. :: EC. t·m. bil-tEf.'E POUT I t·!1::. :~·THPT:<:;: (I:~:) 1 
DEFInE D.··:~: ::EC. no. lriHFF'E POUT I t-Jt.3 F I t·i I S:HES: .., I :3 ':1 11 
DEFINE ·riME SlEP FOR CDMPUfAliON. U2E 
SAME UNITS OF TIME AS U2ED FOP H\DROGPAPH <F9.4) 200. 
EtHEF.: S Tf=tF'T T It1E 1.~1 I TH COtE I S.TEtH t_tt·1I TS <F9. 3) 14 0 0. 0 
EtHEP FitH:~H TH1E I.• IITH CDt'1~~:ETEtH unrr:s·, <F·~.:~:)15000. 

H'lDF.'0(3PAPH AT S:EC • t·IO • 11 
T I t·1E FLOI..IF.'fiTE 
1400.00(1 :~:.::::;:s • o o o 
1600.000 ·::J·::::5. 135 
1::::oo. ooo :::::~::::: ~: .• 147 
2000.00(1 ·~:344 . ::: 16 
2200.000 ::::::~: 12.2::::::: 
2400.000 :::344 • -;-'25 
260t_i.OOO :~::::::=:2. 342 
2:::oo. ooo 
3000.000 :~:272. 541 
3200.000 ·~:364 • 06t: 
3400.000 3441.552 
·:::6 0 0 . 0 (I 0 
:3:::00.000 
4000.000 :::::201 .'34'3 
4200.000 
4400.000 :3:344.666 
4600.000 :~:46:~:. 018 
4800.000 :::51'~ .E.77 
~·000. 000 
5200.000 :~:41 0. 329 
5400.0(1(1 :::::2·~:::. 021 
5600.000 ::::207. 041 
5:::00.000 :::=: 1 2 0 • H:!'i 
6000.000 :~: 067. 4:'52 
6200.000 3026.419 
6400.00(1 3010.347 
6600.000 3000.000 
6:::0 0. 0 0 0 3000.000 
7000.000 :~: 17'3. 674 
7200.000 4 026. ::::.:.? 
7400.000 4919.6}34 
7600.000 59'~6.• (ft=, 1 
7::: on . on o 7 o:::s . ::=: 05 
:::ooo. 000 777E.,. 07'3 
8200.000 :::429. 149 
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OUTPUT- RIVER3/ 10 

::::400.000 '3241 .573 

::::6 0 (I • 0 (I 0 10001 .907 

:;:::::(I 0. 0 (I (I 1 04::::t:.. ?:::·~ 


9000.000 1 o:::24. 222 

9200.0(1(1 1 1 1 6 2 . :::: 5 '? 

9400.000 11.:.~;9. 443 

'=-'6 0 0. 0 0 0 1235'? • ·~:::: 1 

9::: 0 0 • (I 0 f1 1·:::2 06.:::46 


10000.000 140"::.5 .501 

10200.000 14t:4(.-;'('6 

10400.000 1545:3.160 

1 06 0 0 • (I 0 0 15:::29 • 071 

1 o:::: 0 0 • I) 0 0 

11000.000 15·:lt. o . 14 o 

11200.000 157:~:4. 9::::6 

11400.000 1 54'3(' . -;";=:? 

11600.000 15174.797 

11BOO.OOO 14765.795 

120UO.OOO 

12200.000 

12400.000 

12600.000 12741.053 

12::::00 .J)(I(l 12151:':.• 4 7:::: 

1::::oon.ooo 11746.40:3 

1::::2 (I 0 • 0 0 0 113t~.9 ..:::49 

13400.0fl0 1 o::: 14.:::97 

1::::6 o(I • non 1 0143. :::o.tt:. 

l :::::::: (i 0 • 0 0 0 •34~·? ~ :3:::t:, 

1 4 0 t) (I • 0 0 (I :::::::·~c~ . c··~? 


14200.00(1 

14400.000 

14600.000 7:~:65. 744 

14BOO.OOO 7581.413 

15000.000 7280.501 


· :- CPITIC 
SPECIFY ~ECTlON NO~J3 1 1 
EtHEP DI:::: CHhf~·t;E F9. :3 50 0 (t. 

AT :: E C 1 l.t! I T H Ct = 5 0 0 0 . 0 0 0 
CF.: IT I CfiL biATEF' LE'·/EL= 114. 2.:.6 f1tm 
CRITICAL ENEPGY LEVEL= 116.399 
:- OLD ~ECTION 
DEFINE SECTION NO.• 13 3 
SECTION NO. 3 HAS 4 PTS .•••COORD~ ARE 
0.0~128.0 0.0•108.0 100.0~108.0 100.0~128.0 

:::TOP 
:=:; lTJF' 

6.7~1 CP :ECOND2 EXECUTIOM TIME 



APPENDIX H 

SUMMARY OF NOTATION 

This appendix provides a dictionary of the notation used in 

this thesis. It should be noted that several variables serve more 

than one purpose. The appropriate definition can be inferred from 

the context and from the description provided with the variables. 

"~Nhere there is more than one definition of a variable, the location 

of the less frequent definition( s) is ident1.fied, 

= area of the cross section 

= an error, expressed as a term of a Fourier Series 

= a coefficient on a term of a Fourier Series 

a = a coefficient of regression (equation 4.12) 

B = invert elevation at a section 

b = a coefficient of regression (equation 4. 12) 

c = celerity of a wave relative to water (Chapter 2) 

= kinematic wave velocity 

Cl = a stability condition variable 

C2 = a stability condition variable 

c = a coefficient of regression (equation 4. 12} 

D = a coefficient of an error term 

e = an exponent (equation 5. 26} 

Fr = Froude Number 

369 
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g = acceleration of gravity 

= a displacement on the distance axis from the point 

about which a Taylor Series is written (Appendix B, C) 

H = water surface elevation, (usually associated with a 

position in the space-time diagram) 

HORZ= 	 a vari.able discribi.ng the hori.zontal distance from an 

arbitrary axis to a coordinate describing the channel 

cross section 

h = water surface elevation 

= a displacement on the t-ime axis from the point about 

which a Taylor Series is written (Appendix B, C) 

I a subscript to denote a position -:m a space-time diagram 

= inflow (equations 3. 2 1 - 3. 24) 

i = 

J = a subscript to denote a position on a space-time diagram 

K a subscript to denote a position on a space-time diagram 

(Chapter 2, Appendix A) 

::: a parameter in the equation describing storage in an 

imaginary reservoir or an elementary reach 

::: a coefficient (Appendix F) 

KN = Kinematic Courant Number 

http:discribi.ng
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k = a coefficient in the equation relating atten11ation ancl the 

nu~ber of reaches i.n a si.mnlati.on (equation 5. 26) 

= a coefficient in the equation relati.ng "reduced" 

attenuation to relative live storage ( eq1.1ation 5. 29) 

L = a subscript to denote a position on a space-time diagram 

= total length of the channel (Chapter 5) 

m a coefficient (Appendix A)= 

N = 	 number of reaches in the total length of the channel 

NL = 	 a parameter which describes the "bow'' in the relation

ship between storage and flow rate (defined in 

fig,ue 6. 4) 

n 	 = lvtannings ro•.1ghnes s coefficient 

= a coefficient (Appendix A) 

0 = 	 outflow 

p = wetted perimeter of across section (Chapter 2, figure 3. 1, 

equations 3. 42 - 3. 47, equat~ons 4. 1 - 4. 5 Appendix F) 

= peal< outflow divided by peak inflow or full bank flow rate 

Q = 	 flow rate 

q = 	 flow rate per unit width 

q = 	 rate of lateral inflow 

R = 	 hydraulic radius 

s = 	 slope (Chapter 2, figure 3. 1, equations 3. 42 - 3. 46, 

Appendix F) 

http:relati.ng
http:si.mnlati.on
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SF 

Sf ::: 

So ::: 

ST = 

T = 
Tb = 

Tc = 

Tp = 

Tw = 

VERT= 

Vo = 

w = 

X = 

X = 

= 

skew factor, a parameter which describes the slope 

of the line from the base flow rate and the time of the 

centroid of the hydrograph to the peak outflow and the 

time of peak outflow (Defined i_n figure b. 3) 

slope of th~ friction line 

bed slope 

Storage in an elementary reach or reservoir 

time (usually associated with a finite difference step} 

time base of the inflow hydrograph 

time of the centroid of the outflow hydrograph measured 

from the time of the centroid of the inflow hydrograph 

time of peak outflow measured from the time of peak 

inflow 

surface width 

a variable describing the horizontal distance from an 

arbitrary axis to a coordinate describ;ng the channel 

eros s section 

flow velocity under steady state conditions 

an exponent in the equation describing storage in an 

im.aginary reservoir 

distance (usually associated with a fi.nite difference step} 

distance 

a parameter used in Muskinghum Flood Routing 

(equations 3. 22 - 3. 24} 
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y = 	 vertical depth of water 

y = 	 vertical depth of water 

yo = 	 vertical depth of water under steady state conditions 

z = Courant Number (Chapter 2) 

= side slope of a triangular cross secti.on {Chapter 3) 

a = a parameter which identifies the location of the nucleus 

of a molecule in the X axis. Referenced to the upstream, 

lowest time level of the molecule 

8 = 	 a parameter which identifies the loca~ion of the nucleus 

of a molecule in the t axi.s. Referenced to the upstream, 

lowest time level of the molecule 

€ = 	 error term due to finite difference approximation. 

y = a wave number (Appendix A) 

0 = 	 a paran~ eter which identH1es the location of the nucleus 

of a molecule on the x axis. Refel·enced to the centre of 

the rnolecule 

a wave number (Appendix A) 

a parameter 	which identifies the location of the nucleus= 
of a molecule on the t axis. Referenced to the centre 

of the molecule 

http:secti.on


APPENDIX I 

To provide further clarificat:on of the procedure that could 

be followed in calibrating a ki.nemati.c flood ro~1ting model. the 

following example is provided. The numerical vabes 'lsed in this 

example are taken from tables 3. 3, 3. 4 and 3. 5. However. it 

will be assumed that these results are available only after a 

simulation of the particular physical system. The channel 

employed has been described previously in Chapter 2 as System 

1. The waterway is 50, 000 feet long, 100 feet wide, with a depth 

of 20 feet. A symetrical triangular inflow hydrograph was 

employed as a description of the time variant inflow. A pea~ 

outflow of 0. 840 times the full bank flow was assumed. Figure 

4. 2 shows both the inflow hydrograph and various 01.1tflow hydro

graphs predicted '.Ising a numerical solution of the momentum and 

continuity equations. It i.s intended that this example will show the 

calibration of a kinematic model to emulate the peak outflow. A 

discussion of the wave shapes will be made i.n the concbshns of 

this appendix. 

The procedure follows the description presented in Chapter 5 

on pages 153 to 155. 

1. 	 To describe the hydrograph adequately. a time step. 

AT , of 200 seconds was ass·.1med. It should be 

374 




375 

noted that this results in the tr•1ncation of the peak inflow 

to 0. 984 times that specified in the inflow hydrograph. 

2. 	 From the results presented in Appendix F, a value of 

C, the ki.nematic wave velocity, of 12. 3 feet per second 

is assumed. This is equivalent to the full ban~ fbw kin

ematic wave velocity. (With the hi.ndsi.ght provided by 

results presented i.n Chapter 5. this i.s an accurate 

estimate of the effective kinemati_c wave velocity,) 

3. 	 An estimate of the size of the distance step. AX 

can be obtained from setting 

AX 	=l: CAT 

The first estimate of AX subject to the constraint 

that ..b.. is an integer is: 
AX 


AX =2500 FEET 


Performing a simulation with a= 0. 0 and {J=l.O 

yields a peak outflow of 0, 843 times full bank flow. 

Performing the calculations with the nucleus located in 

the upper right hand corner of the molecule defined in 

Figure 3. 2, as specified above, resr1lts ~n the maximum 

amount of atten•1ation for the gi.ven AX and AT with 

a nucleus inside the molecule. 
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4. 	 ?ecause the peak outflow does not correspond with the 

objective. it is necessary to modify the valtJ.e of SAX 

To provide an estimate of the next value of SAX to 

use in an attempt to achieve the desired attenuation, 

the following steps may be taken, First, calculate 

the value of SAX for the completed sim:.1lation. 

S = 	(20-1) +(I-28)CAT
AX 

200=(-1) + {-1) 12.3 2500 

= -1.984 

Thus~ 

SAX 	= -1.984x 2500 = - 4960 FEET 

Assuming .that no attenuation occurs with SAX = 0. 0, 

a straight line may be plotted through the points 

P= 1.0, -SAX= 0.0 

and 

P=0.843,- SAX= 4960 

This straight line may be extended to obtain the next 

estimate· of SAX, approximately 5, 000 feet. 
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It is not possible to increase the vahe of sax by 

varying a and 8 subject to the constrabt that the 

n ucleus must remain inside the molecule with the previous

ly defined parameters. Thus, 1t is necessary to vary the 

values of AX and/ or .AT For a system of arbi.trary 

geometry with sections defined at regular or irregular 

intervals, modification of AX may be impractical due 

to the fact that the system definition will be significantly 

altered. Thus, the variation of AT may prove to be the 

most fruitful alternative in altering S. The limiting 

constraints on the selection of .6.T (and AX ) are the 

discretizat\on error and the stabi.lity requirements. 

5. 	 For the second interation, ·the simulation was repeated Vl.';th 

a = o. o, 8 = 1. 0, AX = 5, 000 feet and AT= 200 

seconds. This results in a peak outflow of o; 804 times 

the 	full bank flow. Clearly this is an over estimate of 

SAX For this simulation: 

SAX = ( ( 2a -I) + (1- 2 8) Ct~ )AX 


200
= ((-1) + (-1) 12.3 5000) 5000 

= -7460 FEET 
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6. 	 The above simulation defines another point on the 

which could be used as a guide for further refinements. 

The third sim,1lation is attempted with SaX = -5, 000 

feet, Again it should be noted that there are four 

variables that may be used to modify s~ 

a, 	 /1, AX, AT 

For 	exampl~ a few of the points are: 

a 8 AX ! AT 

0.00 0. 5 5, 000 variable* 

0.246 1.0 5. 000 200 

0.25 0. 5 10, 000 vari:l.blel< 

0. 374 1.0 10, 000 200 

Two af the above points, each identified with an asteri.sk, 

are shawn i.n tables 3. 4 and 3. 5. Interpolation to obtai.n 

the 0. 840 contours on these tables will give an i.ndication 

of the interelation of the various parameters which define 

SaX The choice of the appropri.ate values of 0 

8, and AT remains at the discretion of 

the user who must observe the constraint of stability and 

discretization error. 

http:asteri.sk
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Figure 5. 8 shows a comparison of the kinerr<atic simulati.on 

performed with 

a= o. o 

B= o. s 

AX= 5, 000 feet 

AT= 200 seconds 

and a dynamic solution. The two hydrographs have the same general 

shape. The peak of the dynamic simulation is slightly higher than 

the peak of the kinematic solution. Plotting the first simulation 

presented in this appendix on the graph may yield a result which 

agrees more closely wi.th the dynamic solution. 

In certain instances. there may be si.gni.ficant differences in 

the shapes of the two hydrographs. For such cases further research 

to determine methods of modifying the shape of the hydrograph 

predicted by the kinematic solution would be req•.1ired. Prelim~_nary 

results presented in Chapter 3 on figures 3. 5 and 3. 6 i_ndi.cate 

that the hydrograph is insensitive to the variables Llsed to define 

SAX 

http:simulati.on
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