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ABSTRACT: 

The problem of adaptively controlling the power level changes of 

a nuclear reactor, by the use of a digital computer, is considered. It 

is established, that for the application of modern control theory a 

lmv-order linear model of the reactor is needed, but that the existing 

models are not sufficiently accurate- for the desired purpose. A net.r 

technique is therefore developed for finding lmv-order linear models of 

a given high-order system. Such models are shmm to be suitable for the 

suboptimal control of the original system, subject to cost functions 

normally encountered in practice. The proposed methods of modelling and 

suboptimal control are applied to the adaptive control of a nuclear 

reactor. In order to emphasize practical realization, a model of an 

operating nuclear power plant is considered,with emphasis on the physical 

limitations imposed by the controller mechanism. It is shotvn, that 

despite wide variations in the \"f\odel parameters as a function of the 

operating pot·Jer level and of the temperature coefficient, the model can 
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be updated on-line to a sufficient accuracy to produce negligible 

deviations beb.veen optimal model and suboptimal system performance. 

Apart from the realization of the adaptive controller, it is indicated 

that the proposed technique is also suitable for the fully computerized 

design of optimal and suboptimal feedback controllers for a wide 

variety of cost functions. 
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CHAPTER 1 

INTRODUCTION 

1n March 1971, the first reactor at the Pickering Nuclear Pm-1er 

Plant went critical. A historical first had occured: a large, 500 

megawatt installation started operation, entirely under the control of 

digital computers. The uniquem~ss ''f this event is particularly 

surprising in vie~., of the parallel development of nuclear reactors 

and digital computers. 

When the first Canadian nuclear pm-1er station began corrunercial 

operation in 1967 at Ibuglas Point, Ontario, a control computer was 

installed, but it has been used only for the regulation of nonessential 

parameters. The experience gained in that application was, hmvever, 

sufficiently favournble to entrust the complete automatic control of 

the next nuclear pm·Ter station, the one at Pickering, to digital 

computers. 

The step, of going from a custom-built analogue controller to 

a digital computer, ,.ras as great as the designers of the control system 

could take, in view of the stringent safety requirements of the nuclear 

industry. The de.sign philosophy of the controller remained the same, 

the system that has been found reliable at Douglas Point, was realized 

on digital machines, except for the modifications inherent in going 

from a smaller, essentially point controlled system, to a large, multi

region one. 

Once the digital computer has proven itself in the field, the 

next step of the designer should be to take advantage of the unique 



abilities of the computer, and to attempt to improve the performt:ncc of 

the system under control. 

The classical methods of controller design, typically in the 

frequency-domain[l],£ 21, are inadequate for the task of optimizing the 

performance of a large system, such as the nuclear reactor. Recent 

2. 

advances in optimal control theory and state-variable analysis in the 

time-domain[3],[4], which necessitate the presence of an on-line computer 

for their realization, have been applied up to date mainly in the aero-

space industry. It is the purpose of this thesis, to investigate the 

on-line digital computer control of nuclear reactors, with a vim-1 to 

applying optimal control theory. Since it is knmm that the nuclear 

reactor is a nonl:l.near system having time-varying parameters, it is 

expected that the optimal controller will not be constant, but \vill 

have to be adapted to prevailing operating conditions in the plant[S],[6]. 

The inherent difficulty of field testing a new control system 

for a nuclear pmver reactor p.ecessitates the development of a vaU_d 

model for the reactor. Since an accurate digital computer simulation 

program has already been written by the author for the Douglas Point 

plant[S] and because for this smaller reactor, spatial effects may be 

neglected, it has been selected as the basis for the present work. 

TI1e earlier investigation by the author (reference [5]) of an 

adaptive nuclear reactor controller had been restricted by the 

adherence to the demanded pmver level change programs of the Douglas 

Point plant. The control scheme uas developed using semi-empirical 

simulation methods, and is limited to the minimization of the integral , 

of the absolute value of the error beb1een actual and demanded pm·Jer output. 



The aim in the present \vork is to realize near-optimum 

performance of the reactor and controller mechanism, for a variety 

3. 

of inputs and cost functions, in an adaptive configuration. The problem 

is solved by applying some of the well-known results of modern control 

theory as well as more recent numerical optimization techniques. At 

the heart of the proposed method is the computation of optimal low-

order linear models, which represent, in a piece-wise manner, the 

nonlinear nuclear reactor and controller mechanism. The model 

parameters are updated on-line, on the basis of the observed reactor 

performance. 

Important differences, frora a practical point of view·, between 

the present research effort and those described by other investigators, 

are not only in the form of the assumed lm..r-order model and in the 

method of updating its parameters, but also that the resultant optimal 

control law is tested on the actual, appreciably higher-order system 

dynamics. It is established that the difference between optimal model 

performance and the corresponding suboptimal system cost are within 

the usual engineering accuracies. 

Since an extensive literature survey prior to 1969 has already 

been presented by the author, and another work published at about the 

same time also gives a thorough expose of earlier research efforts[7J, 

only the most recent papers on nuclear reactor control are reviewed in 

this thesis. l-Jith the nonspecialist reader in mind, description and 

criticism of relevant papers ldll be undertaken in the appropriate 

chapters, after the necessary background has been established. 

In writing this thesis, an elementary appreciation of the basic 



processes that take place in a nuclear reactor is assumed. A simple 

explanation of essential aspects of the type of natural uranium fueled 

and heavy-water moderated reactor that we are considering has been 

given by the author elseHhere [S]. Several excellent texts also exist 

on the subject, to which the interested reader may turn [6]' [91. The 

reactor kinetic equations are therefore presented without detailed 

developments, and only those aspects of the Douglas Point reactor 

simulation program are described which are essential to the present 

work. 

In Chapter 2, the basic optimal control problem is stated, and 

its solution for integral quadratic cost functions is indicated. 

Relationships bet~veen the regulator and servomechanism problems are 

established, and forMul.?,e for the optimal feedback coefficients for a, 

second-order system are derived. 

The problems associated with applying the results of optimal 

control theory to the nuclear reactor control problem are discussed 

in Chapter 3. The various reactor kinetic models which have been 

described in the literature are considered, and their behaviour for 

step-changes in reactivity presented. The effect of temperature 

changes on reactivity and practical limitations on the controller 

mechanism are next observed, leading up to the model of the Douglas 

Point plant. It is established that none of the classical low-order 

reactor kinetic models are adequate for representing the behaviour of 

a realistic system. The most important parameters of a nuclear power 

plant are considered, to form a meaningful cost function that reflects 

4. 

the performance of the reactor and associated control system. A critical 



review of recent research proposals for optinal reactor control 

concludes the chapter. 

5. 

Since the on-line realization of the optimal feedback controller 

derived in Chapter 2 necessitates the availability of a low-order 

linear model of the system to be controlled, and as the classical low

order reactor models have been found inadequate in Chapter 3, the 

problem of deriving better models is considered in Chapter 4. In 

particular, a method based on search routines is presented, which j.s 

capable of giving lm-7-order linear models, such that the deviation 

between system and model responses, to the same input, is minimized 

in any desired sense. It is shown that the technique is applicable 

to the on-line identification of the model parameters, making it 

suitable for adaptive control applications. 

The use of a low-order model to derive the optimal controller 

for a high-order system will result in suboptimal performance of the 

latter. It is shown in Chapter 5, that the difference betvreen 

optimal model cost and suboptimal system cost is sufficiently small to 

make the method useful in practice. Another significant contribution 

that is presented in this chapter, is the derivation· of the optimal 

controller for least pth and minimax cost functions. 

In Chapter 6 the methods developed in the last two chapters 

are applied to the suboptimal control of the nuclear reactor. The 

types of responses obtained fom various cost functions are presented, 

and the effect of nonlinear system characteristics and plant parameter 

changes are considered. 

The solution of our origine~ problem, the adaptive control of 
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the nuclear reactor is presented in Chapter 7. The on-line identification 

of the model parameters is considered as well as the corresponding up

dating of the feedback controller. Results for a wide variety of 

operating conditions and cost functions are presented to illustrate 

the versatility of the proposed method. 

In the concluding chapter, the main results and contributions 

of the thesis are summarized. By considering the various ass~~ptions 

made in deriving our results, several recommendations for future 

research are made. 

Apart from the references cited in the thesis, selected 

bibliographies of the nuclear reactor and the control literature are 

presented. A list of papers by the author related to this thesis and 

accepted for publication is also given for the benefit of the interested 

reader. 



CHAPTER 2 

THE OPTIMAL CONTROL PROBLEM 

The majority of the applications of optimal control theory are 

based on either Dynamic Prograrnming[lO] or on Pontryagin's Maximum 

Principle[llJ. The major difficulty associated with the former is the 

very large memory requirements for systems of appreciable order (four 

or greater), while the latter technique necessitates the solution of a 

nvo-point boundary value problem. While no general solution is knovm 

to the optimal control problem, the special case of the linear 

regulator, with integral quadratic cost function, is readily treated 

by both methods[121. In this thesis the maximum principle will be 

used, as it appears to have the greater potential for the type of 

application we are considering. 

Efforts in the past, to apply modern control theory to such 

practical problems as nuclear reactor control have centered on finding 

solutions, usually numerical, to the two-point boundary value problem[7], 

[13], [14] The essence of the approach to be pursued in this thesis is 

to somehow reduce or transform the system equations to a simpler form, 

such that the solution of the two-point boundary value problem is 

avoided. 

The reactor control problem to be considered is essentially a 

servo-mechanism problem) since the final value of the output is always 

greater than zero. However, since the mathematical formalism of the 

regulator problem (final value of the state vector zero) is more 

convenient, this w:i.ll be first considered. The equivalence of the two 

7. 



problems, for a step input, will be established stilisequently. 

Since the full derivation pf the optimal linear regulator is 

well-knmm [l2], only a brief outline is presented in the next section, 

for the sake of completeness. 

2.1 The Linear Regulator 

It is desired to find the feedback control lm-t for an nth order 

single input single output linear dynamic system 

x-.: Ax+ bu (2-1) - - -
In phase-variable notation[)] x1 is the output and x2 , .•. ,x its first 

n 

and subsequent derivatives, A is the nxn system matrix, b the n-

dimensional control vector, and u is the input which is to provide 

optimum performance by minimizing the cost function 

tf 
J = JO ~(~T Q ~ + p u2)dt {2-2) 

while the system is driven from a given initial state to a desired 

final state in the time interval [0, tf]; Q is an nxn positive semi

defi.nite symmetric matrix and p a positive number. 

To solve the above problem via the maximum principle, the 

Hamiltonian is fir.st formed 

H{~,u,~,t) = ~ ~T Q ~ + ~ p u2 +~TAx+ ~T b u 

where ~ is the n-dimensi.onal costate vector. 

and 

The n1.aximum principle states that for the optimal control 

an T -- = p u + b ~ = 0 au 

(2-3) 

(2-4) 

8. 



;)H T -- = Q X + A A = -A ax - -

with the boundary condition on A given at the final time 

The optimum control is given by equation {2-l•) 

u = -p-1 £T ~ 

and since a feedback control law is desired, let 

A = R X 

to give 

{2-5) 

{2-6) 

{2-7) 

{2-8) 

u = -p-1 £T R ~ {2-9) 

It only remains nmv to determine the elements of the matrix R. Note, 

that at this stag~ all the quantities are functions of time. 

Differentiating equation {2-8) leads to 
. . . 
A = R X + R X {2-10) - - -

and using the expression for ~ as given by equation {2-5) we obtain 

R ~ + R! = -Q X - AT R X 

The substitution of equation {2-9) into equation (2-1) leads to 

X = (A - £ p-1 £T R)~ 

and it is now possible to eliminate x from equation '(2-11): 

(R + RA - Rb -1 bT R + Q +AT R)x = 0 
- p - -

{2-11) 

{2-12) 

{2-13) 

Since this equation must hold for arbitrary ~, the term in brackets 

must be zero. The result is a matrix Riccati differential equation, 

uhich must be solved for the elements of R: 

R + RA - R~ p-l ~T R + Q + AT R = 0 (2-14) 

The boundary condition is obt<:!.:tned from equations (2-6) and (2-8): 

{2-15) 

9. 



Hence the matrix Riccati equation has to be solved backward in 

time from the given terminal time, tf. The resultant time-varying 

matrix R has to be stored, and then used in equation (2-9) to give the 

desired closed-loop control law. 

In evaluating R, it is useful to note that, provided Q is a 

symmetric matrix, so is R. Another important requirement on R is 

that it be positive definite. This can be most readily seen by an 

alternative derivation of equation (2-14). The maximum principle is 

again used, but the Hamilton-Jacobi approach is followed[ 41. The only 

step of interest to us is the requirement 

T 
X R X (2-16) - -

wh:!.ch is proved in the Hamilton-Jacobi method. Since the integrand 

of the performance tndex is a positive definite function, R must also 

be positive definite. Equation (2-16) also indicates a simple method 

for evaluating the cost function. 

The main problem associated with the practical usefulness of 

equation (2-14) in providing the optimal feedback controller is, that 

for high-order systems having time-varying parameters, the repeated 

evaluation of the matrix Riccati equation cannot be accomplished in 

sufficiently short time for on-line control applications. A useful 

computational stmplification arises if the terminal time tf is equated 

to infinity, and A, ~' Q and p in equations (2-1) and (2-2) are 

restricted to be time invariant. In that case, the R matrix becomes 

a constant, as can be seen from equation (2-16): for a given!! the 

perfon::ance :tndex does not change for a finite time translation. In 

practice, for the control of transients and changes in input, the 

10. 
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terminal time may be regarded as infinite as soon as steady state is 

established. 

For a constant R, the matrix Riccati equation (2-14) reduces 

to a matrix algebraic equation 

RA - Rb p- 1 ~T R + Q +AT R = 0 (2-17) 

The solution of this equation, in general, is not readily accomplished, 

because it is nonlinear. There is a special case, hoHever, for which 

analytical expressions for the elements of the R matrix can be found. 

These are derived in the next section. 

2.2 Optimal Feedback Control of a Second-Order System 

Consider the second-order system 

(2-18) 

and a quadratic cost function in the form of equation (2-2) with 

Performing the matrix operations indicated by equation (2-17), and 

remembering the symmetric nature of R, the following three equations 

are obtained: 

b2 

a1r12 + ao r22 + ~ r12 r22 - rll = 0 

Solving these equations in the above order, and invoking the positive 
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definite requirement on R when selecting the roots of the quadratics 

which arise, we obtain the desired analytical expressions for the 

elements of the R matrix. 

(2-19) 

(2-20) 

(2-21) 

In order to obtain the expressions for the feedback coefficients, 

rewrite equation (2-9) in the form 

u = -kT X 

where 

or 

Hence 

{2-22) 

(2-23) 

(2-24) 

(2-25) 

The value of r 11 is useful in evaluating the cost function, as 

indicat~d by equation (2-16). Given the initial state 

[:~:]- [: l 
the cost incurred in driving the system to the origin of state space in 



an optimum manner is 

J: T p u2)dt J = !:2(~ Q x+ 

T 2 (2-26) = ~X R ~0 =~A r -0 11 

The use of equation (2-26) is considerably simpler than numerically 

integrating the cost function. 

2.3 The Linear Servomechanism 

The regulator problem considered in the previous sections is 

convenient from an analysis point of vietv, but is not the problem 

commonly encountered in actual practice. The more typical control 

problem is to drive the system from a given initial state at t = t 0 

to a desired finite terminal state at t = tf' such that the cost 

function 

(2-27) 

is minimized. 

For a step change in input, the solution of the servomechanism 

problem is obtained directly from the case of the linear regulator by 

the addition of a feedforward block, having a gain that ensures zero 

steady-state error, i.e.,~*- ~(tf) and u* = u(tf). Clearly, all 

that is necessary, is a linear translation from having ~(tf)=O and 

u(o+)=O to both of these quantities being finite. Furthermore, to 

prevent the cost function from becoming infinite, x* and u* must be 

introduced to ensure that the integrand of equation (2-27) tends to 

zero as tf approaches infinity. 
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The block diagram representation of the regulator and servo-

mechanism proble!!'.s are shmm in Figure 2-1. Note that the feedback 

blocks are identical in both cases. 

The use of the transfer function notation leads to a simple 

evaluation of the feedfonvard gain ! 0 from the requirement that 

x(tf) = A, lvhere x is the output and A is the value of the input at 

t = o+. 

In going from the time domain to the frequency domain, the 

following notation has been used: 

x(t) = [1 0 0 

X(s) = L[x(t)] 

U(s) = L[u(t)] 

O]~(t) 

where L is the Laplace transform operator and s the complex frequency 

variable. 

To find the value of ! 0 , assume that steady state has been 

reached after the application of the step input. Referring to 

Figure 2-lb, the following relations hold: 

Hence 

i.e., 

X(s) 
bo 

=- U(s) 
ao 

U(s) 
i

0
A 

ko = ---
s . 

b k 
X(s) [1 + ___Q_Q_] 

ao 

X(s) 

14. 

and since it is required that X(s) =% in the steady state, we must have 

ao 
! 0 =- + k b

0 
o (2-28) 
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Figure 2-1. Block-diagram representation for establishing 
the equivalence of the regulator and servo
mechanism problems for a step change in input. 
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The value of u~: (t) is also readily found using the requi.rement 

that in the steady state 

X(s) = ! 
s 

It follm.;rs from Figure 2-lb that 

In the case where u(t) is not a step but some other time 

function, the above result is still applicable as long as the value 

of u(t) approaches a constant value after a finite time interval has 

elapsed. This will ah.;rays be the case for the control problems 

considered in this thesis. For the nuclear reactor in particular, 

the task is always to transfer the pot-7er level from one given constant 

value to another. 

Before the theories developed in this chapter can be applied 

to the reactor control problem, we must consider the mathematical 

description of the system. Since the plant equations \vill be found 

to be nonlinear, it will be necessary to find a linear model of the 

plant, in order to derive the desired optimal feedback controller. 
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CHAPTER 3 

OPTIMAL CONTROL OF NUCLEAR REACTORS 

The optimal control problem, as discussed in the previous 

chapter, may be viewed as consisting of t"t-70 parts: the system 

equations and the cost function. In the general problem formulation, 

no restrictions are placed on either, but nor is an analytical 

solution knmvn. For the special case of a l:i.near system and integral 

quadratic cost function the optimal feedback controller has been 

developed in the previous chapter. Solutions have also been found 

for certain types of nonlinear systems and/or particular nonquadratic 

f t
. [15],[16],[17] cost unc 1ons • Numerical optimization techniques have 

also been found useful in solving various optimal control problems, 

for which analytic solutions are not readily obtained[lS],[l9]. 

For the particular case of nuclear reactor control, both the 

system equations and the cost function aspects of the optimal control 

problem are considered in this chapter. In the present work, the 

mathematical model used to describe the system dynamics has a dual 

role: it must be sufficiently accurate to be a valid representation 

of the physical plant, but at the same time be simple enough to make 

the computation of the feedback coefficients realizable in practice. 

These requirements are conflicting, and research efforts in the past 

invariably used oversimplified models to represent the reactor, and 

no apparent attempts "t<lere made to evaluate the performance of the 

proposed controller on a more complete mathematical model. As will be 

shol~ in this chapter, these reduced order models are far from adequate 

17. 



in describing the behaviour of the nuclear reactor • 

.3.1 The Six Delayed Neutron Group Hodel 

The point kinetic equations, that adequately describe the 

dynamic behaviour of a nuclear reactor for the purposes of control 

system design, lead to the so-called six delayed neutron group 

model[ZO]: 

dn(t) ok(t)-8 (t) + \ , ( ) 
dt = l n i hi ci t 

i=l, ••• ,6 

where 

n(t) = neutron pmver as a fraction of full pm.;er 

t = time 

ok(t) = reactivity 

8 = total delayed neutron fraction 

l = mean effective lifetime of a prompt neutron 

Ai = decay constant of the ith neutron precursor 

c
1 

(t) = concentration of ith precursor 

(3-1) 

(3-2) 

Bi = fraction of delayed neutrons due to.ith precursor 

Numerical values for these constants, appropriate to the Douglas Point 

reactor, are given in Appendix I. 

It is important to note that, in equation (3-1) the input (ok) 

and the output (n) appear as a product, making the input dependent on 

the operating poW'er level. Henr.e, even though for a given reactivity 

18. 

step the kinetic equations are linear, tl1e output varies in a nonlinear 

manner as different values of reac~ivity are applied. These nonlinear 



characteristics are clearly illustrated in Figure 3-1, 't<7here the 

results of solving equations (3-1) and (3-2) for various constant 

values of reactivity input have been plotted. 

Further nonllnearities arise when closed loop control is 

attempted, since in that case the reactivity is an explicit function 

of the instantaneous neutron population. In the so-called power 

range (20% - 100% of full pm.;rer), reactivity also becomes a function 

of the operating temperature. Both of these nonlinearities will be 

discussed in this chapter. 

Since the optimal controller equations derived in Chapter 2 

are applicable only to linear syster~, it is desirable to have a 

linearized form of equations (3-1) and (3-2). Linearization may be 

achieved in the neighbourhood of a given operating point, by 

considering small perturbations in neutron level (n0 + on) and 

precursor concentrations (ci
0 

+ oc1). Since at equilibrium the 

reactivity is zero, the change in reactivity is still denoted by ok. 

Substitution of these small deviations in equations (3-1) and (3-2) 

leads to the following: 

d(on) ok-8 (no + on) + l >.i(cio + oci) dt = --.e:-
i 

(3-3) 

d(oc.) ei l. 
(no + on) - >.i(c. + oc.) dt =r l.O l. 

(3-4) 

At t = 0 equation (3-4) gives 

Bi 
- >.i cio 0-- n 

- .e. 0 

i.e., 
ei 

Ai ciO (3-5) y-no = 

19. 
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Figure 3-1. Response of six delayed neutron group reactor 
kinetic model, for step changes in reactivity. 
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and 

since 

d(cc.) 
1 

dt 

e = I e 
i i 

Expanding equations (3-3) and (3-4) yields 

(3-6) 

Using the relationships of (3-5) and (3-6) and neglecting terms of 

second order, the linearized kinetic equations are obtained. 

d(cn) ok e on + l ).i oc. dt = r no - .e. 
i 

1 
(3-7) 

d(oci) ei 
}.. . oc. dt =ron-

1 1 
(3-8) 

Comparison of the responses produced by the linearized, and 

the original, essentially nonlinear kinetic equations, will be 

presented in the next section, after several other kinetics models 

have been derived. 

3.2 Classical Low-Order Reactor Hodels 

Based on the physical understanding of the nuclear process, 

21. 

the order of the point kinetic equations may be reduced considerably£61. 

The resultant models, typically of order one or two, may be referred 

to as the 11 classical" reactor models. Their main use is in deriving 

approximate solutions to reactor kinetic problems, and they have been 



used extensively in optimal control studies. However, as l'lill be 

illustrated in the subsequent sections, the deviation bebveen the 

responses of these simplified models and the six delayed neutron 

group representation is excessive for practical control system design. 

3.2.1 One Delayed Neutron Group 

The basic problem in trying to reduce the order of the six 

group model is how to account for the delayed neutrons. A very 

useful simplification results from assuming all the neutrons to 

belong to a single group, resulting in the one delayed neutron 

group model 

dn(t) = ok(~)-~ n(t) + AC(t) 
dt .(.. 

:~ = ~ n(t) - AC(t) 

where the average decay constant A is computed from 

1 1 6 8i 

I= a i~l Ai 

(3-9) 

(3-10) 

The linearization of the one delayed neutron group model is made along 

similar lines to the previous case, except that the 'subscripts and 

summation sign are omitted. By analogy, the result can be tvritten 

dmm by inspection of equations (3-7) and (3-8): 

d(on) ok e 
dt = z- n0 - I on + Aoc (3-11) 

d(oc.l = 1': on - AOC 
dt .e. (3.12) 

Further simplifications of the one delayed neutron group model 

are possible by setting the derivative in either equation (3-9) or in 
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(3-10) to zero. The following is the physical reasoning behind 

obtaining these first order models. 

3.2.2 Prompt-Jump Approximation 

Reference to Figure 3-1 indicates that an almost instantaneous 

change in neutron population occurs at t=O. At this stage, the prompt 

neutrons are the major influencing factor, ~lith a time-constant in 

the order of a millisecond. For most control applications such short 

time-constants may be neglected, and the assumption that there is 

a step change in neutron level at t=O does not introduce significant 

errors. The result is the so-called prompt-jump model. 

Setting the derivative equal to zero in equation (3-9) gives 

or 

and 

dn ok-8 
- = 0 = ---o- n + AC dt .(.. 

de 8-ok dn 
dt = --:e.r- dt 

(3-13) 

(3-14) 

Substituting the last two relationships into equatio? (3-10) leads to a 

first-order differential equation for the neutron level. 

(3-15) 

The linear model is again found by considering a perturbation about the 

operating neutron level no + on. 

d(on) AcSk 
dt = 8-ok <no + ok) 

Neglecting the term of second order, vle obta.:ln the linearized prompt 

23. 



jump model 

d(on) Anook 
dt = 8-ok 

3.2.3 Infinite Delay-Time Approximation 

(3-16) 

Returning to the one delayed neutron group model, consider the 

effect of setting to zero the derivatj.ve in equation (3-10). In 

physical terms, the assumption is thnt the delayed neutrons take an 

infinite time to appear. In other \-mrds, the precursor concentration 

remains constant at its original level at t~O~ 

Using equation (3-10) 

or 

Substituting for AC in equation (3-9) gives the infinite delay time 

model 

dn ok-8 B -=---n+-n dt l l 0 
(3-17) 

Writing n = n 0 + on and again neglecting the second-order term, 

the linear model is obtained 

d(on) ok B 
dt = T no -I on (3-18) 

3.2.4 Weighted Average Neutron Generation Time 

The simplest reactor model is obtained if the delayed neutrons 

are completely neglected. 

dn(t) 
-dt- = 

ok(t) ·l- n(t) (3-19) 
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This model gives a reasonably good description of system behaviour if 

the reactor is critical on prompt neutrons alone. For control 

purposes this is never the case, and therefore for reactivity changes 

below prompt critical (ok < S) it is desirable to replace l by the 

weighted average neutron generation time, l*[ZOJ. 
6 s. 

l* = l(100 - S) + I _! 
i=l Ai 

(3-20) 

The weighted average neutron generation time model is therefore 

written in differential equation form as 

(3-21) 

3.2.5 Comparison of Responses for a Step-Change in Reactivity 

A comparison of the responses of the various simplified reactor 

kinetic models to the six delayed neutron group representation is 

given in this sect:ton. The initial power level is assumed to be at 

50% FP, and a step increase of 0.3 mk is applied. The responses of 

the six group and the various low-order models are shown in Figure 3-2. 

The prompt-jump and the one delayed neutron group model have responses 

very close together, but at an appreciable distance from the correct 

output. The performance of the infinite delay-time model is very poor, 

except during the prompt response, as expected from the derivation. 

The response of each of the linearized models is shmm in 

Figure 3-3. The deviations from the correct response are even greater 

than previously. It is clear, that none of these models give an 

accurate representation of the reactor kinetic process, at least for 

step changes in reactivity. 
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Figure 3-2. Comparison of responses of the six delayed neutron 
group model and various lower-order kinetic models, 
for a 0.3mk step change in reactivity. 

26. 



Pm.;rer 
level 
(%FP) 

llO 

100 

90 

80 

70 

60 

Legend: . 
1 - six group (nonlinear, reference response) 

2 - linearized six group 

3 - linearized one group 

4 - linearized prompt-jutr.p 

5 - linearized infinite delay-time 

50 Time (sec) 100 

Figure 3-3. Comparison nf responses of the six delayed neutron 
group model and various linearized kinetic models, 
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3.3 A Realistic Nuclear Reactor Hodel 

The mathematical models discussed so far in this chapter have 

pertained only to the neutron kinetics. Furthermore, the effect of 

temperature on reactivity has been neglected, and only open loop 

operation has been considered. While the addition of these factors 

does give a reasonably accurate description of the neutron dynamics, 

elements of the controller. m2chanism cannot be neglected if a realistic 

reactor model is desired. In particular, attention must be given to 

the pow·er level sensing elements on the one hand, and to the reactivity 

actuating devices on the other. 

To appreciate the task of the reactor control system, and of 

the designer who hopes to improve on it, one should look at the 

operation of the existing feedbsck controller, in our case the one 

used at Douglas Point. The block diagram representation of the reactor 

and parts of the present control system are shown in Figure 3-4. Since 

the operation of this plant has already been described by the author 

in considerable detail, only those aspects that are most relevant to 

the present work will be considered here. 

The reactivity change (ok.r) brought about by the change in 

temperature of the reactor core as the neutron level varies, is 

represented by a feedback loop around the point kinetics model. In 

differential equation form, the temperature effect may be approximated 

by: 

(3-22) 

where Tc is the temperature coefficient of reactivity, and TT is the 

time-constant associated w·ith this effect. For the Douglas Point reactor 
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design values for these constants are 

mk 
Tc = - 0. 0454 %FP 

TT = 12.5 sec 

The operating power level is measured by two independent 

transducers. Ion-chambers detect the neutron flux directly, while 

the change in temperature of the coolant as it flows through the 

reactor gives an indication of the actual power level. While the 

neutron levels are synonimous, neither of the above measures are 

accurate. A neutron reading taken by the ion-chamber may be less 

than the true neutron level, by a constant, slowly varying amount, 

due to the "shielding"~ The temperature channel signal indicates 

the power level of the reactor at an earlier instant, because of the 

finite transport time betv1cen the reactor core and the temperature 

transducer (RTD). Furthermore, this signal has a considerable noise 

component due to the turbulent coolant flow. While neither of these 

indicators give a precise reading of the reactor power level, they 

may be processed to achieve this aim[SJ. For the purpose of the 

present work therefore, we can assume that an instantaneous noise-

free measure of the reactor level is available. 

The error signal (e), that indicates the deviaticn bet,veen 

the demanded and actual power levels, is amplified, and the output 

is applied to the absorber rod drive motor, which is represented by 

the first order differential equation 

dv 
-= dt 

::v + Ge 
't" 

m 
(3-23) 

*Shielding ic due to the depression of the neutron flm;. by 
the poison di.ssolved in the moderator. 
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where G Js the gain of the amplifier, r the motor time-constant and m 

31. 

v the effective voltage that determines the rate of reactivity insertion. 

The latter introduces a further nonlinearity into the system, as the 

motor reaches its full speed at 15 volts, corresponding to a power error 

of 10% FP. 

Tite nonlinear absorber rod insertion rate characteristic is 

represented by the function 

f(v) = 0.02 

0.3 = --v 

lvl < 15 

lvl > 15 
(3-24) 

The units of f(v) are rrlk./sec/volt, hence the effect of a power level 

error. is to cause a certain rate of reactivity insertion (or removal) 

by the movement of the absorber rod. 

By deleting the details of the present feedback controller from 

Fi~t.n:e 3-4 and .i.nclucting the temperature ettect in a single :REACTOR 

block, a simplified block diagl:'am is obtained, as shown in Figure 3-5. 

The block indicating the feedback controller represents the optim:tl 

control problem: its coefficients are to be determined such that a 

meaningful cost function is minimized. 

Combining equations (3-1), (3-2), (3-22), (3-23) and (3-24) 

results in a ninth-order dynamic model for the nuclear reactor and the 

reactivity actuating mechanisms. The. model is open-loop and contains 

multiple nonlineariUes. In state variable form it may be written as 

follows: 
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[ ~~ -8 
).2 \ 

n ntf(v) n 0 y- ).1 ... 1.. .e. 

81 de 1 
-AI 0 0 0 0 cl 0 

dt T 

dc
2 82 

0 -).2 0 0 0 c2 0 
dt z-

== + c (3-25) 

d., 66 ""'- 0 b 0 0 -).6 0 0 c6 
dt ·r 

dokT T -1 0 c 0 0 0 0 ckT 
dt T TT T 

dv 0 0 0 
-1 G 0 0 v 

dt Tm 

or using matrix notation 

X= A x+ b e (3-26) - r - -r 

and the system output is given by 

T (3-27) y = ~ X 

where 

T d = [1 0 OJ 

The behaviour of the nuclear reactor model, as represented by 

equation (3-25) has been studied extensively by the author in reference 

[5]. The responses obtained by digital computer simulation studies 

have been verified by the designers of the Douglas Point control system 

as adequately representative of the true behaviour of the reactor. 

Our main interest in the present chapter is to evaluate the 

performance of the various low-order classical models in comparison to 

~~e six delayed neutron group model. For this purpose, consider unity 
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feedback, and let it be desired to increase the pOiV"er level from 50% 

to 100% of full power. The step responses of the closed-loop system, 

assuming the various kinetic models are used to·represent the neutron 

kinetics, are shmm in Figure 3-6. The error bet~veen the reference 

response and the one group model is not as great as in the open-loop 

case, but the maximum error is still greater than 10% FP. It is 

interesting to note, that the infinite delay-tim~ model gives the second 

best approximation, the prornpt-jurnp and average neutron generation 

time models being totally inadequate. 

The linearized models show even greater deviations from the 

correct response (Figure 3-7). None of the loH-order models give an 

acceptable approximation to the transient part of the response, and 

the maximum error of even the six group linear model is over 15% FP. 

The usefulness of these lmv-order linear reactor kinetic models 

for the purpose of optimal control computation is further reduced 

when we realize, that the addition of the effect of temperature on 

reactivity and the absorber rod drive moto~still results in a fourth

order system. 

What is desired is a second-order model of the form given by 

equation (2-18), which accurately depicts the input-output relationship 

of the overall system. Clearly, the classical approach of reducing 

the order of the reactor model based on physical insight cannot give 

such a representation, and some other method for reducing the order of 

a system must be used. The development of a suitable technique is 

presented in Chapter 4. 
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3.4 The Cost Function 

Having considered the dynamic representation of the nuclear 

reactor, we turn our attention to the other important aspect of the 

.control problem: choosing an appropriate cost function. This is one 

of the most difficult aspects of an optimization problem, requiring 

considerable experience and insight. Clearly, the fi.nal optimal 

design is only as good as the assigned measure of performance. 

Ideally, every system variable should be included in the cost. function, 

appropriately weighted to reflect its relative importance. This could 

be readily achieved, for example, if the actual dollar value, say on 

a per unit basis, were knm·m for all the variables. Such a case is 

rarely encountered in practice. 

For the nuclear model that has been described in this chapter, 

it is not practical to include all the model parameters in the cost 

function. The criterion of choosing the elements of the cost function 

is two-fold: every term must reflect an important aspect of system 

performance and each must be a readily measurable quantity. 

For a point kinetics model, terms ~.;hich meet the above criteria 

must be associated with either the input or the output. They relate 

to the instantaneous value and rate of change of the neutron population, 

and the extent of the control effort, \vith particular emphasis on the 

mechanical movements of the absorber rod. A cost function that includes 

all the terms found significant in practice has the follmo1ing form: 

J = f{aln*(t) - n(t) I, Ylan~~~- ~n~~)l, 

I l
ae*(t) ae(t)l 

nle*(t) - e(t) , e --at-- _a_E_ ' 

vlsgn[e(ti)] - sgn(e(ti_
1
>ll} (3-27) 
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The 't<leighting factors a, y, n, e and ].l may be constant for all instants 

of time, or they may emphasise a given portion of the time response. 

Their values reflect the relative importance of the terms they are 

associated with. The significance of each variable in the cost 

function is described below. The superscript * is used to denote the 

desired value of the appropriate quantity. 

n(t) i.s the neutron. or pm·rer level. It is usually desired to foll.or.-1 

the demanded value, and is the quantity often of prime i.mportance. 

an(t) 
Ot 

By assigning relatively large weights to a near the desired 

terminal time, the steady-·state error can be made to approach 

zero. 

gives the instantaneous rate of change of the neutron population. 

It is related to the period of the reactor, and hence to stability, 

and via the rate of change of temperature, to the thermal stress 

during a pov1er level change. 

e(t) can be regarded as the input to the reactivity control mechanism. 

ae(t) 
at 

Its value determines the extent of the control effort, and 

relates to the bun1 up of the absorber rod. 'since the quantity 

of actual interest is the reactivity, the nonlinear dependence 

of ok on e must be appreciated. 

is the rate of change of the error signals. The acceleration of 

the absorber rod is a function of this quantity, and therefore 

is a contributing factor to the mechanical uear of the rod drive 

mechanism. 
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sgn[e(t
1

)] - sgn[e(ti_
1
)J is also included with the purpose of reducing 

mechan:f.cal movements of the absorber rod. It tends to eliminate 

reversals in the direction of the travel of the absorber rod 

during a change of pO"tver level. The sgn function has the 

value plus or minus one, depending on the sign of the argument; 

e(ti) is the value of the error signal at the ith sampling 

instant. Considering a step change of demanded power, this 

last term of the cost function will have a zero value only for 

a monotonic decrease of the power error. 

The functional relationship represented by equation (3-27) 

usually implies the surn.mation of the terms at a given sampling instant. 

·rhe cost runction is evaluated either by summing the functional values, 

each raised t:.o the power p, over the time-interval of interest, or 

the maximum value of the function amongst all the sample points is 

taken. Accordingly, the objective of the optimization problem is 

either to minimize a sum or the maximum value. While integral cost 

functions are useful in theory, they are seldom used in practice, 

because of the problem of numerical integration on the digital computer. 

The exact form of the cost function to be used will be discussed as 

each optimization problem is encountered. 

3.5 Review of Recent Publications 

The problem of optimally controlling the power level changes in 

a nuclear reactor hns been fornulated in previous sections of this 

thesis. A realistic reactor model has been chosen and a practical cost 
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function has been proposed. It is appropriate at thi.s stage to 

briefly review the results of recent research efforts, and to evaluate 

.their usefulness in solving the problem we have formulated. 

The paper by Murray, Bingham and Hartin[2l] is based on the 

assumption that the precise form of the pm.;rer response is known, and 

it is desired to find the reactivity variation that will bring about 

this response. The method :i.s restri.cted to pm-:er functions whose 

Laplace transforrr~ exist. The six delayed neutron group model is 

used, and the effect of temperature on reactivity is included in the 

treatment. 

While the basic concept of starting ~vith a known or desired 

output and cor.tputing the corresponding input is a sound one, the 

method as presented has great disadvantages from the control point 

of view, in that only a certain class of power functions are admissible, 

and that the resultant control is open-loop in nature. Using essentially 

the same concept, both of these limitations will be overcome by a nel-l 

procedure presented in this thesis. 

Stacey[22] has considered the use of variational synthesis 

techniques for the optimal control of a point reactor model. A cost 

function of the form of equations (3-27) is considered, and the sum 

of the terms raised to the second pmver is used. It is assumed that 

the input can be expanded into a sum of orthogonal functions over the 

time interval of interest. The coefficients in the expansion are 

chosen to minimize the cost fnnction while satisfying the point kinetic 

' equations. The method is illustrated for the one delayed neutron group 

model and using Legendre polynomi~ls as the approximating functions. 



Apart from the greatly increased computational complexity that Hould 

result if the more complete reactor model was used, this method also 

results in open-loop control. 

In a paper published by Enns [23] , linear prograrmning is used 

to minimize the maximum deviation of the state variables from their 

preassigned values. The reactor equations are linearized, thereby 

permitting the computation of open-loop optimal trajectories~ These 

are applied in a feedfon;ard sense, while plant parameter changes are 

to be compensated by a fixed, nonoptimal feedback controller. The 

author illustrates the improvements afforded by the addition of the 

feedforward signal to the previous feedback control system, but no 

attempts are made to evaluate the effect of plant nonlinearities, 

parameter changes and optimizing the feedback controller. 

Weaver and Schultz[241 have proposed an interesting approach 

to nuclear reactor control. It is based on state variable feedback 

design, and necessitates the reduction of the high-order nonlinear 

system to a low-order linear model. This reduction is made in an 

apparently arbitrary manner, approximately cancelling poles and zeros 

and neglecting poles far from the jw axis. Because of several gross 

approximations, the authors rely on limiting the input signal, but 

even then the responses of the linear model and of the nonlinear 

system differ considerably. The basic shortcomings of the method are 

the technique used to derive the lm.,r-order model and that optimization 

of general cost functions is not possible. 

Lipinski and Vacroux[ 2S] describe the application of linear 

optimal control theory and nonlinear estimation to derive feedback 
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control for a quadratic performance index. A second-order reactor 

model is used by considering only a single group of delayed neutrons 

and the prompt jump approximation. Since a sampling interval of one 

second is assumed, the authors can select the delayed neutron decay 

constant so that it gives the best approximation to the six group 

response over a one second interval. The reactor equations are 

linearized in order to derive the optimnl feedback controller, and the 

result is applied to the nonlinear model, but not to the six group one. 

Furthermore, neither the effect of temperature on reactivity, nor 

the absorber rod characteristics are considered. 

3.6 The Proposed Method of Solution 

It is apparent that none of the techniques reviev1ed in the 

previous section are capable of solving the reactor control problem 

as it has been formulated in this thesis. Ho~-1ever, each of these 

earlier papers contributes one or more significant concepts to~vards 

finding a practically realizable solution to the optimal reactor 

control problem. Some of these concepts are: assuming suitable 

functions to approximate the desired response, proceeding backw·ards 

to compute the corresponding input, the use of a lotv-order linear 

model to compute the feedback controller, optimizing the parameters of 

the model so that it provides the best fit to the actual system. 

In addition to the above concepts, the follm-dng observations 

must be made prior to a detailed solution of the control problem. It 

is clearly impractical to feed back all the state variables, as 

required by optimal control theory. The system performance obtained 
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by using a lower order controller can be regarded as optimal only for 

the specified constraint of having a limited number of state variables 

to feed back. In the control literature such a controller is usually 

described as being suboptimal. 

When deriving a low-order linear model for the nonlinear 

reactor, it is advantageous to include in the high-order system the 

effect of temperature on reactivity and the characteristic of the 

absorber rod, instead of attempting to simplify the kinetic equations 

alone. 

Since the behaviour of the reactor is a function of the 

instantaneous power level, and since the plant parameters vary widely 

over the operating life of the reactor, the parameters of the model 
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must be adjusted to reflect the changes in the plant characteristics. 

Furthermore, this identification should be performed lvithout introducing 

extraneous disturbances. The form of the model should be such that it 

readily leads to the evaluation of the optimal feedback controller. 

To find the optimal control for nonquadratic performance 

indices, it is proposed to approximate the desired response by a 

function that has the same form as the low-order model, which is used 

to replace the system for the purpose of analysis. The parameters 

of this approximating function are varied to minimize the appropriate 

cost function. 

In the next uvo chapters methods will be developed to derive 

the parameters of a low-order model on the basis of the response of 

the high-order system such that the deviations between their respective 

outputs are minimized. The same basic techniques t-lill also be used to 



obtain the parameters of the optimal feedback controller for quite 

general cost functions. 
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CHAPTER 4 

OPTIHAL L0\-1-·0RDER NODELS 

It has been shown in the previous chapter, that the low-order 

reactor kinetic models which have been derived on the basis of the 

physical nature of the nuclear process, fall far short of the accuracy 

required for control purposes. Linearization of these simplified 

models results in the further degredation of performance, as compared 

to the six delayed neutron group kinetic eqUations. It is necessary, 

therefore, to investigate alternative methods for deriving low-order 

models for a given high-order system. Because of the time-varying 

nature of the parameters of the nuclear reactor, the technique must 

be efficient enough for on-line applications, and only require the 

availability of signals which are already provided by the monitoring 

facilities, viz. the input and the output. It is also highly desirable 

that the model be optimal, hence the approximating parameters should be 

derived such that a suitable cost function is minimized. 

The problem of approxin~ting high-order systems by low-order 

models has recej.ved considerable attention in the recent literature [26 ] ' 

[27] 
The proposed methods fall into two broad classes: 

a. The given system equations are manipulated such that only 

the dominant poles and zeros are retained, or a reduced 

pole-zero pattern is found. In all of these cases the 

approximation to the original system is qualitative, i.e., 

no measure of their goodness of fit can be ascertained. 

b. The remaining methods minimize the mean square error 
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between the responses of the original and reduced sets 

of equations. While a cost function is minimized by these 

techniques, they are limited to the one specific objective 

function. 

The use of the least squares error criterion arises because 

of mathematical convenience. Although in many cases it reflects the 

energy of the system, and is therefore a desirable objective to be 

minimized, it is not necessarily the most appropriate cost function 

for modelling purposes. 

The present chapter is aimed at developing a method that will 

provide models for any conceivable error criterion, as long as it can 

be evaluated by a digital computer. Since analytical solutions are 

kno~~ only for the mean square error case, and appear feasible for a 

limited number of error criteria, a solution based on search techniques 

is proposed[ZS],[Z91. A direct as well as a gradient search method is 

to be investigated. 

4.1 Pattern Search 
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The pattern search strategy ll7as devised by Hooke and Jeeves [30], 

and is one of the most popular of the multidimensional direct search 

methods. (Search techniques lvhich do not require information regarding 

the gradient of the objective function are considered direct.) Its 

main feature is that it attempts to establish the "pattern" of success

ful search points. It is, therefore, particularly adept in following 

a valley, once its direction has been established. Since several well 

documented descriptions of pattern search are available in the 
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literature, only its basic characteristics are reviewed here. 

Two sequences make up the pattern search algorithm: exploratory 

moves and pattern moves. During the former, starting from a base 

point £, each variable is incremented in turn, by specified amounts, 

first in one, and if a decrease in the function value is not found, 

in the opposite direction. Exploration with the next variable begins 

with the best point established by the previous ones. Having incremented 

every variable, exploration is completed, and a new· base point, b* has 

been found. A pattern move is now made in the direction of the 

improvement from~ to ~* to the point given by 2b*-b. The new base 

point is not established until exploration has been completed about 

the end of the last pattern move. In this manner the size of the 

pattern move changes ~ftcr c~ch s~cce3sful eAplo~ation. 

latter fails, the last base point is used to start a new exploration 

with reduced step sizes. The pattern is, however, destroyed. 1be 

search is terminated when the step sizes have been reduced below the 

specified levels. 

The computational inefficiency of the pattern search method 

arises from the necessity of having to evaluate the objective function 

after every exploratory step. Hence, for a problem having n variables, 

each base point requires at least n and at most 2n function evaluations. 

In a typical optimization problem, there will be many base points, 

the other hand, since the computation of derivatives is avoided, pattern 

search is very suitable for feasibility studies, and the initial 

evaluation of new concepts, where the exact value of the optimum is not 



significant. It may also be found useful for certain off-line 

optimization problems, where computer time is not at premium. 

4.2 The Ne,., Fletcher Hethod 

In a recent paper[3l], Fletcher proposed a new gradient search 

algorithm, ~vhich dispenses with the linear search used in the highly 

regarded Fletcher-Powell method[ 32J, with a corresponding reduction 

in the number of function evaluations. The method is applicable to 

the minimization of a function of n variables J(<fl), 't-7hen the vector 

of first derivatives ~(!) ~ y~ J(t) is available explicitly, 

matrix of second partial derivatives G (the hessian) is not. 

but the 

(<P is the 

n-dimensional parameter vector.) The method is based on approximating 

c- 1 by a matrix H, in an iterative manner, such that the eigenvalues 

of H tend monotonically to those of c- 1 • 

The H matrix is used to give the direction of parameter changes 
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that will result in the continuous decrease of J. Using the superscript 

* to denote values appropriate to the next iteration, the follm·ling set 

of formulae are relevant: 

o = ->.Hg - -
~* = 4> + 0 

y = g* ..:. g 

The scaling factor A is based on a simple test, which ensures that the 

decrease in J is sufficiently large to guarantee ultimate convergence, 

but rarely requires more than one evaluation of J and g. 

The updating of H is based on one of the follmV'ing two formulae, 

the choice depending on another simple test: 



0 oT H y YT H 
H* H + =--=-- - -::: 

oT y YT H y 
- -

0 oT H H y oT T y H y 0 oT 

H* H - - -=--=- + (1 + - -) = 
oT o oT y oT y oT y 

At the start of the first iteration H is usually not known, and is 

assumed to be the unit matrix. 

4.3 Statement of the Problem 

The problem of approximating a high-order system by a low-order 

model such that the deviations bet\veen their outputs to the same input 

is minimized, may be formulated in the follot-7ing manner. 

Let the given high-order single-input single-output system be 

described by the usual state-variable notation: 

and 

x=Ax+bu 

T . 
y = ~ ?! 

(4-1) 

(4-2) 

Consider a discrete set of values of y taken over a suitable 

interval of time: 

where yi = y(ti), i.e., the output at the ith sampling instant. This 

set represents samples of the response of the system described by 

equations (4-1) and (4-2) to a specified input u(t). It may have 

been obtained by solving the system equations on a digital computer, 
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or it may have been observed by a measuring instrument connected to the 

actual system. In either case, the continuous output y(t) is sampled 



at sufficiently close intervals of time so that no significant 

information is lost. 

The objective is to find another output'set Y*, assocj_ated with 

a model of order m (where 1 < m < n) described by the equations 

x = A* x* + b* u (4-4) 

* .. ,T ... 
y = d' x" (4-5) 

such that, for the same input, one of the follmving t\-JO objectives 

is satisfied, 

(i) for a given m, the error function J is minimized, where 

* J = f [wi(y. - y.)] 
~ ~ 

(4-6) 

which is some suitable function of the errors yi - y~ with a 

vector weight w1 attached at each sampling instant, or 
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(ii) for a given value of J, the lmvest order model (m) is determined 

such that the resultant error J* satisfies the inequality 

J - J* > 0 (4-7) 

4.4 Error Criteria 

The functional form that the error criterion expressed by 

equation (4-6) takes, has a vital bearing on the parameters of the 

approximating model. Since the purpose of the objective function is 

to measure the extent to \vhich the model deviates from the actual 

system, the main problem is hmv to express numerically this deviation. 

The error criterion expressed by equatJ.on (4-6) states that the 

error is a function of the dif, :!;:ence bett·reen the outputs of the original 

and reduced systems, and a weighting sequence. It is usual practj.ce to 

take the absolute value of the output error, and to raise it to some 
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pm-1er p. In addition, the weighting sequence normally appears as a 

multiplying factor. A more specific form of equation (4-6), but one 

that includes all the relevant error criteria is 

J = f(w. IY· - Y~lp> 
~ l. ~ 

(4-8) 

We can now turn our attention to the functional relationship 

involved. Again, ~-re can distinguish t~vo alternatives in current 

practice. One involves a summation, over all i, for the time-interval 

of interest; the other retains the value at one particular sample only, 

where the deviation is a maximum. Accordingly, the objective is either 

to minimize a sum of the errors, or to minimize some maximum deviation. 

The two alternative forms of equation (4-8) may therefore be 

written as 
I 

J = t wi I Y. - Y~~ I p 
i=O l. i 

(4-9) 

or 

J = max {wily. - Y~ll 
i=O,I l. l. 

(4-10) 

Considering a ~-Teighting sequence of unity, we see that the 

criterion of equation (4-9) gives a measure of the area between the 

curves when p;l, and the mean square error if p=2 (~xcept for appropriate 

scaling factors). As the value of p increases the result of (4-9) 

(after taking the pth root of the summation) tends to that of (4-10). 

This is, in fact, a convenient method for minimizing a criterion of 

the form of equation (4-10), and it will be used, with slight modifi-

cations, in later parts of this work. 

Turning our attention um-1 to the weighting sequence, it should 

be noted that all error criteria Heigh some aspects of a response 



against others. For example, a least squares objective tends to 

emphasize the transi.ent portion at the expense of the steady-state 

value. 

The tendency of every error criterion to give a bias to the 

resultant model may of course be further emphasized or, on the other 

hand, compensated for by assigning appropriate weights by which each 

sample error is multiplied before it is included :i.n the summation, 

or compared 'tdth the previous maximum. 

The desire to obtain a criterion that is free of an apparent 

bias has led to the development of a netv objective function, based 

on measuring the shortest or perpendicular distance between the 

reference and the approximating responses. 

4.5 The Shortest Distance Ninirnax Criterion 

Since the aim of our approximation problem is to find a model 

whose output closely resembles that of the original system, the error 

criterion used in optimizing this closeness must give an accurate 

measure of the proximity of the two responses. The most frequent 

choice of minimizing the mean square error arises out of mathematical 

convenience, rather than of regard to any particular physical aspect 

of the problem. 

Perhaps the ffiost common physical measure of the proximity of 
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two functions is the area betv7een them. This criterion is suitable for 

comparing various models, or finding one of a specified order that 

produces the closest response. Hotvever, for the more typical engineering 

specifications, that express the deviations at various points bett.;een the 



actual and desi.red responses, and set the limit on these as a tolerance 

of ±x%, criteria that involve summation are not suitable, and we must 

turn to minimax type objectives. 

The typical minimax objective used in approximation problems 

measu!'es the di.fference between tt-10 curves at the same value of the 

independent variable, which may be, for example, distance, time or 

frequency. Hhile this formulation is appropriate in the frequency

domain, it may not ahv-ays be so in the time-domain. Particularly 

during rapid transients, the difference between two responses is 

considerably exaggerated by taking the values at the same sampling 

instants. This practice, like the use of the mean square error 

criterion, arises more from convenience than from physical regards 

for the problem. 

The most appropriate measure of the maximum deviation of nv-o 

time-functions appears to be the shortest distance between them, 

i.e., the perpendicular line drawn from the reference curve to a 

point on the approxi.mating response. 

The basic difference benveen taking the sample error or the 

perpendicular error as.a measure of the deviation of two curves, is 

illustrated in Figure 4-1. The desired response is a piece-wise 

linear function of time, and it is required that the response of the 

approximating model be everywhere tvithin ±a of the given curve. For 
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the example, a has been chosen to be 10% of the steady state value of 

the desired response. In part (a) of the diagram, a has been 

interpreted in the conventional, sample error sense, and the correspond

ing bounds on the error have been drawn. Note the apparent closeness of 
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a. Errors measured at same instant of time. 
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b. Errors measured ever)TioThere perpendicular to reference curve. 

Figure 4-1. Piece-wise linear reference response with 
specified error bom1ds, and responses of 
approximating second-order systems. 
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the curves along the lines of finite slope. In part (b), the error 

bounds are dra~~ at a perpendicular distance of ±a from the reference 

function, and the width of the region, into which the approximating 

curve is to fit, appears to be uniform. 

To illustrate the type of responses that result from the 

alternative proh1em formul~tions we have presented, consider approxi-

mating the reference function in Fip,ure 4-1 by the output of a 

second-order system of the form: 

Y(s) bo 
U (s) = -s-2 _+ ___ + __ 

a 1s a 0 

(4-11) 

where Y(s) and U(s) are the Laplace transforms of the output and 

input functions respectively. An input step of magnitude five is 

appll<;:.; L.o l.tlt:! Ci1.JiJl.ux.i.uldLing l:>JStt::m, anci r:ne response comput:eo over 

an interval of ten seconds, using 501 sample points. The initial 

conditions are assumed to be zero. Using a pattern search algorithm, 

the follm..ring parameter values have been obtained: 

1. }linimizing the sample error: 

b 0 = 1.5464 a 1 = 0.5020 a 0 = 1.6315 

and the maximum sample error is Js = 0.764. 

2. }linimizing the perpendicular error: 

b 0 = 1. 3862 a 1 = 0.5797 a = 1.4664 0 

and the maximum perpendicular error is J = 0.408. p 

The corresponding responses are also plotted in Figure 4-1. Evidently, 

using the sample error interpretation of the tolerance (a= ±0.5), the 

model as given by equation (4-11) cannot satisfy the specifications. 

If, on the other hand, the errors are measured in the perpendicular 
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sense, the second order system obtained by the minimization procedure 

does fulfill the design requirements. 

The basic problem associated with the use of the· perpendicular 

measure of the error is its computation by an automated scheme. 

Since in most applications the sampling intervals are uniform and 

the same for both responses, no direct measure of the perpendicular 

distance between them is available. 

Consider first the problem of establishing the error bounds 

on a desired response for a given tolerance ±a. In the case of 

piece-wise linear responses, such as the one considered in Figure 

4-lb, the perpendicular error bounds are readily formed by line-

segments parallel to each linear portion of the reference response, 

and at a perpendicular dictance cf ±a f~cm it. Referring to Figura 

4-lb, we can establish a relationship between the tolerance a and the 

corresponding limits on the sample error (o). Taking an arbitrary 

point ti' let the slope of y(t) at that point be 

(4-12) 

Then the bound on the sample error, oi, that corresponds to a specified 

tolerance a. at t = ti is g,iven by: 

a. 
0 • = --"'---::----

]. cos ei 
(4-13) 

The following points should be noted with reference to equation (4-13): 

a. 'fhe slope of the specified function must be finite in 

the region of interest, i.e., 

o < e 
- i 

'Tl' <-
2 
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Step-changes may, hoHever, be accommodated in an automated 

scheme by appropriate programming. 

b. Equation (4-13) is exact only if ai· is further restricted 

to be constant over the interval [ti- oi, ti + oi], tvhere 

If e. varies sloH1y over the interval in question, the 
1 

approximation given by equation (4-13) is good. The 

accuracy is further enhanced by making a small, 'vhich \'Jill 

be the case whenever a close-fitting approximation is 

required. 

c. At places of zero slope, such as the peak overshoot and 

the steady state, a = c:t, and the above restrict:i.ons on a 

do not apply. 

If equation (4-13) is written in the form 

a = o cos e
1
• i . 

oi can be associated with the sample error at ti, to give 

which is the proposed minimax objective. 

(4-14) 

(4-15) 

Comparing equation (4-15) to the formulation of the general 

minimax objective function (equation (4-10)), the cos ai term may be 

identified as a weighting sequence, that de-emphasizes the sample 

error along a transient as compared to the deviations ,,zhere the 

reference response has a steaoy value. The overall effect is to 

produce a response that approxlmatrs the desired one in such a manner 
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that the maximum deviation bea.;reen the t\-70, measured in a direction 

perpendicular to the reference curve, is minimized. Comments a, b 

and c above apply to equation (4-15) also, but it should be noted 

that the inaccuracy, ,.,hj_ch results from changes in the slope of the 

reference function, diminishes as the optimum is approached. 

While the advantage of the shortest distance error criterion 

is most apparent in the case of minimax objectives, the concept could 

equally \vell be used for least pth criteria. 

4.6 Starting Parameters and Essential Features of the 
Computer Programme 

An important problem associated with every search technique 

is the selection of the starting parameters, since these have 

considerable influence on the convergence of the process, and on the 

probability of locating the global optimum. It is proposed that the 

starting parameters be determined on the basis of a simple first-

order model if the step-response of the system has no overshoot, and 

from a simple second-order model with a pair of complex conjugate 

poles if it has an overshoot. For the two responses to a unit step 

input shown in Figure 4-2, the appropriate models are given belm-1. 

For (a) 

G(s) 
bo Y(s) = = (4-16) s + a 0 U(S) 

where 

1 
ao = --

T 

and 

bo == A a 0 . 
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Figure 4-2. Possible responses of a stable 
system to a unit step input. 
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For (b) 

G(s) 
bo 

(4-17) = 
2 s + a 1s + ao 

where 

2 + s2 ao = a 

al = 2a 

bo = A a 0 

and 

1 A a =- ln( --) 
tm M-A 

In general, models of higher order are required. Having found 

the optimum set of parameters by the pattern search programme for a 

given model, the order is then increased by one and a nei-l pattern 

search initiated. This process is then continued until the error 

criterion is satisfied, or the desired order is reached. 

To increase the order of the model by one, au additional term, 

with s raised to the appropriate power is introduced. For example, 

the first order model obtained from equation (4-16) is replaced by 

G(s) 
bo 

- 2 
s + s +a 0 

This result is a consequence of having chosen a phase-space 

representation for the model in the computer programme. In this form, 

the general transfer function 

(4-18) 



is written as 

X -
and 

y 

where 

0 

0 

A = 

0 

-ao 

d = 

= 

= 

A x+ 

bT X 

1 

0 

0 

-al 

0 

0 

0 

1 

d u 

0 0 

1 0 

0 0 

-a2 -a3 

and 

0 0 

0 0 

0 0 

-a n-2 -a n-1 

bo 

bl 

b = bm 

0 

0 
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(4-19) 

(4-20) 

(4-21) 

The advantages of tqe phase-variable representation are tt-1ofold. 

It can be written dmm by inspection given the transfer function or 

vice versa. In addition, for an nth order system, at most 2n parameters 

2 need be varied instead of n +n parameters in the more general state-

space representation of a single-input single-output system. Moreover, 

standard techniques for transformation to the phase-variable form from 

the general case are l·7ell knmm [331. The number of variables for the 

search program is further reduced in those cases where the steady-

state error to step, ramp or hj_gher order inputs is constrained to 



equal that of the system. 

A computer programme has been written that uses a pattern 

search subroutine to find optimum lov1-order models for high-order 

systems. The programme has the following features: 

(a) The original system may be specified either in the phase 

variable form, or only its output response to a given input 

function may be available at discrete uniform intervals of 

time. 

(b) The parameters of the model to be used for starting values 

may be given by the user, other~dse the programme will compute 

these as outlined at the beginning of the section. 

(c) The lveighting sequence may also be specified in a variety of 

ways. It may be given as an input matrix of t\vo colunms (time 

and corresponding weights) and as many roHs as there are 

weights to be assigned. Alternatively, a weighting sequence 

may be requested from the programme, one that gives a measure 

of the shortest distance betlveen the responses of the model 

and the actual system. If neither of the above is specified, 

the programme assumes a uniform weighting sequence. 

(d) The objective function to be minimized may be chosen as the 

sum of the absolute values of the sample error raised to the 
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pth power (1:: p:: 10); or as the maximum value of the sample 

error. Unfortunately, the minimax formulation results in 

discontinuous partial derivatives of the error criterion with 

respect to the parameters of the model. In such cases, the 

pattern search technique lvill often fail to find the optimum [34 ]. 



To overcome this difficulty, when a minimax objective is to 

be satisfied, a least pth formulation, with p = 10 is first 

undertaken. At each function evaluation, hm.;ever, the maximum 

deviation is also noted, and the set of parameters that give 

a minimum of this maximum deviation is stored[29 J. This set 

is then used at the end of the least lOth minimization as the 

starting point for a new pattern search to further reduce the 

minimax objective. 

{e) The order of the time input function u(t) = tk, to which the 

steady-state response of the model is to coincide \vith that 

of the original system, can also be specified. Care must, 

of course, be taken that the order k is not greater than the 

type of the system. 

4.7 Optimal Models for a Linear Seventh-Order System 

Before an attempt is made at developing optimum lm.;-order 

models for the nuclear reactor, it is desirable to compare the 

proposed search technique with already existing system order reduction 

methods. A comparison of some of the earlier techniques has already 

been attempted, but it \-Tas done on an entirely qualitative basis: the 

responses of the various models are plotted, and the reader is invited 

to judge for himself that the response of one model is closer to the 

original than all the others. The measure of closeness, hcv1ever, has 

never been specified. In this section, therefore, after a brief 

review of the existing methods and description of the test system, the 

quantitative comparison of the models is presented. Having thus 
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established a frame of reference, it is shm-m that, irrespective of 

the error criterion, an optimal model can be derived by t.he use of 

search methods, having a lower cost than any of the models obtained 

by previous techniques. 

As it has been pointed out at the beginning of this chapter, 

presently knmvn methods of system order reduction fall into tt·70 

broad categories: those that provide only a qualitative fit, and 

those that give a least squares approximation. Of the six published 

techniques, four belong to the first group. 

1. Davison's method [26 ] '[JS] is based on retaining only the 

dominant eigenvalues of the system, since in most cases poles 

far removed from the jw axis have only negligible effects on 

the transient response. 

2. Mitra's approach[36 l, often referred to as "the optimal 

projection method", also retains the dominant eigenvalues, but 

it utilizes a lveighting matrix, such that the projection 

error, that arises from the linear transformation from the 

space of the system equations to _the subspace that forms a 

basis for the model, is minimized. 

3. Chen and Shieh[Jl] describe a method based on the continued 
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fraction expansion of the original system's transfer function, 

that has been arranged in ascending pm-1ers of s. Using the 

final value theorem, it can be shown that the quotients in the 

expansion have a decreasing effect on the steady-state response. 

Instead of retaining the dominant poles, this method produces a 

r.e~v pole·-zero pattern representative of the original one. 
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4. Sinha and Wismath[2?] have proposed a technique based on 

certain properties of the unit step response of a system, such 

as initial slope, maximum overshoot, steady-state value, etc. 

Of the four possible pole zero configurations for a second-

order system, only the case of a pair of complex poles and 

no finite zero can be solved analytically. This happens to be 

the case for the model of the seventh-order system chosen by 

them, and the model parameters are obtained in a very straight-

forward manner. Finding the model in the other three cases 

entails recourse to a search program on the digital computer. 

5. Anderson's method [381 provides a least squares fit betx·Teen the 

\ 

responses of system and model. It is based on the orthogonal 

projection theorem in the theory of linear vector spaces, and 

uses only the output response at discrete points of time. 

6. Sinha and Pille[391 also describe a least squares approach to 

system order reduction, but their method is based on the use 

of the matrix pseudoinverse. Theirs is an iterative process, 

suitable for on-line identification, and the technique is 

unique in this aspect. 

A linear test system, suitable for comparing the models 

produced by various reduction techniques has been proposed by Sinha 

and Hismath. The system is of order seven, and has an even distribu-

tion of poles in the left half s-plane. It represents the flight 

['·0] control system of a supersonic transport plane • 

The parameters of the system transfer function, in ascending 

pm·rers of s are 



numerator: 

denominator: 

31237.5 

375000.0 

281250.0 

3310875.0 

2814271.0 

853703.0 

70341.9 

4097.4 

83.635 

The six models w·hich have already been published for the above 

seventh-order system are listed in Table 4-1, along with the names of 

their authors. The pole locations, as well as the steady-state value 

of the response to a unit step are displayed. For the original system, 

the steady-state value is 0.11111. The method of Sinha and Wismath, 

and the one due to Chen and Shieh are seen to produce accurate steady

state responses. Looki.ng at the pole locations, the models of 

Davison and Mitra have poles closely located to one another. This is 

not surprising, since they are similar methods. Comparing the models 

produced by the tuo least-squares approaches, Anderson's and the one 

of Sinha and Pille, a considerable difference is apparent in the pole 

locations. Clearly, at least one of the optima is not the global one. 

For a quantitative comparison of the various models an 

infinite variety of cost functions could be used, depending on the 

purpose for which the model has been developed. If the objective is 

to match the output of the system by the response of the model to the 

identical input, the following four cost functions appear to be most 

appropriate: 
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Steady-
Hethod Transfer function Pole locations state 

value 

Davison -0.0505s + 0.5558 -2.053 ± j0.895 0.1105 
2 s + 4.1126s + 5.0297 

Mitra -O.Ol59s + 0.5648 -2.024 ± j0.965 0.1123 ----2 . 
s + 4.0488s + 5.0277 

Chen & 0.1299s + 0.01105 -1.048, -0.098 0.1112 2 
Shieh s + 1~1464s + 0.0994 

·-----

Sinha & 0.2098 -0.845 ± j1.083 0.1111 
2 Wismath s + 1.6904s + 1.8879 

Anderson 0.3096 -1. ~44 ± j0.316 0.1152 2 
s + 1. 9026s + 2. 6879 

Sinha & 0.3302 -1.048 ± jl. 338 O.llll2 
Pille s2 + 2.0954s + 2.8886 

Table 4-1. Comparison of second-order models for seventh-·order system, 

obtained by previously published methods. 



a. the sum of the absolute values of the error <f:lel), 

b. the sum of the square of the errors <l:e2)' 

c. the maximum sample error (M!esl>, 

d. the maximum perpendicular error (M! ep I). 
These four measures of the proximity of the tvlO responses have 

been computed for a unit step input over an interval of 20 seconds 

taking 501 sample points. The results obtained for the six models 

already discussed are shovm in Table 4-2. In additton, an "average" 

measure of the error, designed to give a convenient, quant:Ltative 

comparison of the various techniques, is also displaced. To find the 

average error represented by the various coluum entries, they must all 

be of the same dimension. The mean error is readily obtained for the 

l:lel criterion by dividing with the number of sample points. The }:e2 

term similarly yields 

e = {k 
s \J5oT 

where 501 is the number of samples taken. These two errors are sho1m 

in Table 4-2 in brackets under the appropriate entries. To find an 

overall measure of the error, we could sum all four measures for a 

given model. Hmwver, since two of these are maximum values, l'lhile 

the others are average ones, the result would be l'leigh ted too much 

in favour of the former tuo. For this reason, the maximum sample 

error has been omitted, and an average of the remaining three taken. 

A comparison of the various methods may now be made on the 

basis of any one particular measure of the error. For example, Chen 

and Shieh's model produces the smallest Ilel error, while the method 

of Sinha and Pille results in the smallest f:e 2 error.. On the basis of 
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Method I lei Ie2 Mlesl Mlepl 
Average 
error 

2.8325 0.0193 
Davison 0.0107 0.0105 0.00746 

(0.00567) (0.00621) 

1. 9675 0.0106 
Hitra 0.00898 0.00831 0.00561 

(0.00393) (O.OOlr60) 

---
0.9500 0.0122 

Chen & 0.0278 0.0135 0.00678 
Shieh (0.00190) (0.00494) 

2.4950 0.0191 
Sinha & 0.0202 0.00827 0.00648 

Wismath (0.00499) (0.00618) 

1.0625 0.00405 
Anderson 0.00852 0.00707 0.00401 

(0.00212) (0.00284) 

1.0250 0.00362 
Sinha & 0.00590 0.00588 0.00354 

Pille (0.00205) (0.00269) 

Table 4-2. Errors associated 'tvith the 

models in Table 4-1. 



the average error, trye technique of Sinha and Pille is the best, and 

that of Davison the worst. It is also interesting to note that the 

three methods that atte~r.pt to produce an optimum model in some sense, 

do in fact result in the smallest average errors. 

Having established various measures for the proximity of two 

responses, and observed the ability of previously published techniques 

to produce accurate models of a given system, let us turn our attention 

to finding models that are optimum with respect to specific criteria. 

The pattern search program has been used to find models that minimize 

one of the follo~-1ing three error criteria: 

1. maximum perpendicular error, 

2. sum of the absolute values of the errors, 

3. sum of the squares of the errors. 

For each objective, tv10 models are of interest: one that is 

constrained to have the same steady-state value to a step input as the 

original system, and one that is free of this requirement. The six 

resultant models are shotm in Table 4-3. The last three are seen to 

have the correct steady-state value, as required. 

The pole locations for the models that minimize the II el and 

the Ie2 criteria respectively, can be observed to be quite close to 
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one another. The fourth model (minimax perpendicular error with steady-

state constraint) is noticable in having poles much closer to the 

origin than any of the other eleven models. 

The errors produced by the pattern search models are sho~m in 

Table 4-4. As expected, each model has the smallest error for the 

criterion it has been minimized \d 1:h respect to, and the error is 
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Objective 
Steady-

Transfer function Pole locations state 
function value 

Lie I 0.1536s + 0.01329 -0.0957, -1.250 0.1112 
s2 + 1.3456s + 0.11.96 

re2 0.3960 -1.328 ± jl. 286 0.1158 2 
s + 2.6569s + 3.4191 

Mle I 0.0254s + 0.2967 -1.213 ± jl.043 0.1160 p 82 + 2.lt257s + 2.5581 

~lei with s.s. 0.1536s .:t 0.01329 _ 
-0.0959' -1.247 0.1111 

2 constraint s + 1.3432s + 0.1196 

Le2 with s. s. 0.1019s + 0.05359 -0.536 ± j0.442 0.1111 ··--·--
2 constraint s + 1.0718s + 0.4823 

Ml ep I nith s.s. 0.0960s + 0.04545 -0.522 ± j0.370 0.1111 
constraint 2 + 1.0432s + 0.4091 s 

Table 4-3. Comparison of optimum second-order models for seventh-order 

system, obtained by the pattern search programme. 
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Objective I lei Ie2 leis lelp 
Average 

funcdon error 

0.769 0.001268 
}:lei 0.02954 0.00479 0.00264 

(0.00154) (0.00159) 

Z:e2 
0.836 0.001915 

O.OOL;45 0.00373 0.00245 
(0.00167) (0.00196) 

1.086 0.003898 
Mlepl 0.00934 0.00293 . 0.00263 

(0.00217) (0.00279) 

Z: I e I with s.s. 
0.783 0.01265 

0.02955 0.01079 0.00580 
constraint (0.00157) (0. 00503) 

r e 2 with s. s • 1.963 0.01075 
0.01879 0.00735 0.00531 

constraint (0.00393) (0.00464) 

Hie I with s.s. 1.942 0.01174 
p 0.0172 0.00691 0.00523 

constraint (0.00392) (O.OOL•85) 

Table 4-4. Errors associated w·ith 

the models in Table 4-3. 



smaller if the steady-state constraint is not imposed. In comparison 

to the models of Table 4-1, for each of the error criteria considered, 

there is an optimum model \vith smaller error, produced by the pattern 

search program, than by any of the previous approaches. 

Comparing the average errors of Tables 4-2 and 4-4, the 

unconstrained optimum models given by the pattern search program all 

have considerably smaller errors than the best of the previously 

available methods. The constrained models are also better than the 

corresponding ones in Table 4-2. 

l{hile a second-order model of the seventh-order system should 

be adequate for most purposes, in certain special appli.cati.ons a model 

of higher order may be required. To indicate the type of improvement 

that may be expected, third- and fourth-order models have also been 

obtained for the Ie2 criterion. These are given i.n Table 4-5, 

including the second-order model for comparison (no steady-state error 

constraint): 

Hodel Order Transfer function 

73. 

2 
o. 3960 1. 915 x 10-3 

s 2 + 2.6569s + 3.4191 

3 
2 -0.1142s + 0.8546s + 0.4 

3 2 
s + 6.6677s + 9.6505s + 3.4836 

4 
-0.0372s 3 + 0.2924s2 + 2.8028s + 0.4 -------- ------

4 3 2 s + 8.0944s + 24.1124s + 25.7607s + 3.5412 
3.078 X 10-5 

Table 4-5. Optim3l Ie2 models of increasing order 

for seventh-order system. 



As a final illustration of the nature and accuracy of the 

approximations obtained by the use of the pattern search method, the 

responses of some of the optimal low-order models have been plotted, 

and compared to the output of the seventh-order system. In every case, 

a unit step input has been applied. Figure 4-3 shm·7S the response of 

the second-order lelp model. The equal ripple variation of the 

perpendicular error is evident fro~ the diagram. The use of the Ie2 

criterion to obtain a second-order model results in an approximation 

that is a particularly good fit along the rapid initial rise, but is 

achieved at the expense of a larger error once the peak of the response 

is passed, as seen in Figure 4-4. The considerable accuracy that may 

be achieved by the proposed method is well illustrated by Figure 4-5, 

where the response of the fourth-order Ie2 model has been compared to 

the original seventh-order system output. 

4.8 Application to System Identification 

An important feature of the use of search methods to find 

optimal lm.;r-order models for a given system is, that the system 

equations need not be knmm, only the response to a. given excitation 

is necessary to derive the model. The technique can therefore be 

used to identify the parameters of the given system. Basically two 

problems may be distinguished: in one of these, the order of the 

system and the approximate values of the parameters are known, and the 

search programme is used to identify the parameters precisely. The 

second, and more difficult example is, ~·7hen the above information is 

not available. The proposed solution in this case is to begin Hith a 
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low-order model, optimize its parameters, and if the deviation between 

the given and the approximating responses is too great, increase the 

order of the model and reoptimize the parameters, repeating this process 

until the necessary accuracy is attained. This second problem is the 

one considered in this section. 

In mathematical terms the parameter identification problem 

appears as follmvs. Let the input to the plant be denoted by u(t) 

and the output at the kth sampling instant as y(kT), w·here T is the 

uniform sampling interval. Let the model of unknown parameters be in 

the phase-variable form: 

~(t) = A ~(t) + ~ u(t) 

y(t) = ~T ~(t) 

0 1 0 

0 0 1 

A = 
0 0 0 

-ao -al -a2 

T 
[ 0 0 0 d = 

bT = [ bo bl b2 

0 

0 

1 

1 ] 

~(t) is the state vector and y(t) the output of the model. The 

parameters ai, bi, i=O,n are to be identified, such that an error 

criterion of either of the follmving forms is minimized: 

J 
p 

N 
= L ly(kT)- y(kT)Ip 

k=l 

J = max !ly(kT)- y(kT)!} 
m k=l,N 
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To find the parameter values, it is assumed that the output 

of the system to be identified has been observed at regular sampling 

intervals, for a unit step excitation. Depending on vlhether the 

response has an overshoot or not, the appropriate fo1~ula [equation 

(4-16) or (4-17)] is used to obtain a set of starting parameters. 

Alternatively, particularly for inputs other than a step, the initial 

parameter values are set equal to zero. 

1\-1o examples have been considered, a fourth-order system 

displaying an overshoot in its step response, and a second-order over-

damped system. In the case of the latter, both the pattern search 

and the Fletcher method have been used. 

The transfer function of the fourth-order system is given by 

Y(s) 2s + 1 
U(s) = s 4 + 3s 3 +_4_s_2_+-3s + 1 

and its response to a unit step is shovm in Figure 4-6. [The one to 

one relationship of the phase-variable and transfer function notations 

has been established in equations (4-18) to (4-21).] The response of 

the initial second-order model in the form of equation (4-17) has also 

been displayed in Figure 4-6. 

The identification process begins vlith the parameters of the 

second-order model, and these are varied by the pattern-search program 

to minimi?:e the error function. For the examples presented in this 

section, a least squares objective has been used. Once the optimum 

second-order model has been found, higher order ones are obtained by 

introducing an sn term Hith n = 3 and after optimization, n = l1. 



Legend: 

1.0 

Output 
responses 

o.o 
·0 

system 

model 

10 Time (sec) 

Figure 4-6. Unit step responses of fourth-order system 
and second-order model. 

80. 

20 



81. 

The manner in ·1,.1hich the pattern-search progresses is shown in 

Figure 4-7. The stages where the order of the model increases to third 

and then to fourth, are indicated by the 0 -+ 1 step-changes in parameters 

a2 and a 3 • The same changes show up even more sharply in Figure 4-8, 

where the objective function has been plotted against the number of 

function evaluations. tfuile the initial second-order model is near 

the optimum, the subsequent higher-order ones, obtained in each case 

from the one-lmv-er optimum model, display a rather high initial error. 

Final convergence is obtained after 1270 function evaluations for a 

minimum step-size of 0.0001, the values of the model parameters at 

that stage being: 

" Y(s) 2.0010s + 0.9986 
U(s) = s'+ + 3 2 --------

3.00lls + 3.9988s + 2.9995s + 0.9986 

The average parameter error is 0.07% and the sum of the squares of the 

response error is 2.63 x lo-8 • Better accuracy could be obtained by 

further reducing the minimum step-size. 

While the problem of parameter identification has received 

considerable attention in the past[4l] ,[42 1, the author is aware of 

only one previous example of an identification scheme that is also 

applicable to system order reduction problems, the one proposed by 

Sinha and Pille[431. Their method is useful for the on-line identifica-

tion of discrete systems, and is based on an iteratively evaluated form 

of the matrix pseudoinverse. To identify a continuous system, it is 

first discretized, and the parameters of the corresponding model, in 

the z-domain, are estimated from the response to a unit step. The 

method provides a discrete model vlith a least-squares fit, the final 
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error being dependent on the number of iterations before steady-state 

is reached. For a given system, this is directly proportional to the 

sampling interval. A continuous equivalent of ·the discrete model is 

subsequently obtained. 

The second-order system considered by Sinha and Pille has 

the following transfer function: 

A 

Y(s) 1 

U(s) = s 2 + 3s + 2 

Its response to a unit step input is shown in Figure 4-9. Starting 

with all parameters assumed to be zero, and a sampling interval of 

0.04 second, after 100 iterations the model parameters have been 

identified as 
A 

Y(s) 0.939 
U(s) = s 2 + 2. 786s +-l-.-9-0-2 

The average parameter error is quite large at 5.87%. Using their 

technique a considerable reduction of the sampling interval would be 

necessary to obtain more accurate identification. 

The above problem has also been attempted using the pattern 

search program, for the same sampling interval of 0~04 second. The 

parameters of the model agreed \vith those of the system to four 

significant figures after 73 function evaluations. The manner in 

which the parameters change as \vell as the reduction of the sum of 

the squares of the errors are shown in Figure 4-10. 

Up to this stage, no emphasis has been placed on the 

computation time required by t:ue program) ~vhich is an important mensure 

of the suitability of the method for on-line applications. The obvious 
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way to improve the efficiency of an identification scheme is to reduce 

the number of sample points at which the given response and the output 

of the model are compared. Two cases need to be considered: when the 

sample points are distributed over the entire response, and when only 

the initial portion of the response has been observed. The latter 

is the situation usually encountered in on-line applications. 

In many practical cases the steady-state response of the system 

to a step-input is knmvn. If this is the case, the model to be 

identified may be assumed to have the form: 

... A a 0 Y(s) 
U(sf = 2 + a 1s + s ao 

where A is the steady-state gain of the system. 

Making the above assumption and applying the Fletcher routine, 

successively decreasing number of uniformly distributed samples of 

the response of the second-order system \-lere taken over the 4 second 

interval. Table 4-6 shm-1s the number of function evaluations required 

to identify the model parameters to four significant figures. 

Number of Number of function 
samples evaluations 

101 27 

51 26 

21 38 

11 34 

6 31 

3 37 

Table 4-6. Effect of reducing number of samples over a given 

tfme interval, em the nmr;b~r of function evaluations. 



Note that in the last case in fact only tlvO samples are used, at t:;.:2 

seconds and t=4 seconds respectively, since at t=O the responses are 

fixed. 

The effect of using consecutively smaller initial segment of 
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the response to identify the parameters, is shmm in Table 4-7, where 

the number of sample points used (N), the number of function evaluations 

(I) and the final model parameters are given. 

N I ao al 

101 28 3.0000 2.0000 

51 21 3.0001 2.0001 

21 20 3.0000 2.0000 

11 22 3.0005 2.0000 

6 26 2.9979 1. 9998 

3 32 3.0111 2.0036 

Table 4-7. Effect of using decreasing number of initial sample 

points, on the accuracy of identification. 

Clearly, after only a few samples of the system have been taken, a 

reasonably accurate estimate of the system parameters is obtained. 

These are then improved as more samples are accumulated. 

An important extension of the identification scheme presented 

in this section is the consideration of noise in the observations. 

Since the proposed method essentially involves optimal smoothing, no 

undue difficulties are expected. Since in the particular reactor 

control problem 'tve are considering, a noise-free measure of the output 

is available, this aspect of the identlfi~ation problem :i.s not 

considered further. 



CHAPTER 5 

SUBOPTH1AL CONTROL OF HIGH-ORDER LINEA..~ SYSTEMS 

In the previous chapter a new method was developed for deriving 

optimal lm.;-order models of high-order systems. Our interest \•laS 

focused on approximating the open-loop response of a given system 

with that of a lower order model. We now turn our attention to using 

the model to compute the suboptimal feedback control law for the system. 

The reason '"hy such an approach produces suboptimal performance should 

be evident from Chapter 2: using the .controller computed for the model, 

not all the state variables of the system are fe4 back, as would be 

reQuired for true optimal control. 

The advantage of considering the suboptimal control of a linear 

system prior to tackling the nuclear reactor control problem is, that 

basj_c relationships between system and model performance are more 

readily established. Furthermore, the seventh-order system we have 

used in the last chapter has been considered by other authors for 

modelling as well as suboptimal control investigations [441 '[451. 

5.1 Problem Formulation 

Using the notation established in Chapter 2, consider an nth 

order single input single output linear system 

x=Ax+b u -n n -n -n n (5-1) 

and an roth order model of this system (m < n), derived on the basis of 

open-loop responses 
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x=Ax+b u -m m -m -m m 
{5-2) 

where the states of the model correspond to the first m states of the 

system. 

For an integral quadratic cost function 

J
~ m 2 2 

J = ( l q. X . + p U )dt 
m 0 i=l ~ m~ m 

(5-3) 

the feedback parameters k that will result in optimal feedback control 
-m 

can be computed, as indicated in Chapter 2. If these same feedback 

coefficients are used for the.control of the system, the performance 

of the latter will be suboptimal. \.Je are interested in measuring the 

extent of this suboptimality by evaluating the cost function 

(5-4) 

Considering the more general servomechanism problem, the block 

diagram representation of the optimal model controller and the 

corresponding suboptimal system controller appears as in Figure 5-l. 

Ue{s) is the Laplace transform of the externally applied input. 

To illustrate the type of responses to be e~pected using the 

above scheme, consider the seventh-order system and the second-order 

Ie2 model given in Table 4-5: 

X{s) 0.3960 
ue <ST = s 2 + 2.-6-5-69-s-+-3.-4-1-91 

The responses "t>1ill be evaluated for the follovling cost functions: 

(5-5) 
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m-1 
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I ki -

i=O 

a. Optimal model control 

n-1 
U (s) I b U (s) ni e a + n 

i=O 
v ko 
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.... n-1 

n + l l~-
s 

i=O 

m-1 
l k. 

i=O ~ 

. 

b. Suboptimal system control 

Figure 5-l. Block-diagram representation of optimal model 
controller and suboptimal system controller. 
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J
lOO 2 2 2 

J 2 = 
0 

[10(x1-1) + x2 + O.l(u-u*) ]dt (5-6) 

(u* is computed from equation (2-29).) 

The weights attached to the terms in the cost function reflect 

the type of transient response one desires[4l. A relatively large 

value associated with the input (u) tends to produce the unforced 

response of the system. Since this is rarely desired in practice, the 

corresponding vmight is usually the smallest. This being the case, 

equations (5-5) and (5-6) represent the only other alternatives for a 

second-order model: attaching a greater weight to either the output 

or to its first derivative. 

Using equations (2-24) and (2-25), the optimal feedback 

parameters are readily computed for the model. Their values, as well 

as the optimal model cost and suboptimal system costs are given in 

Table 5-l. 

Cost k• kl Model System 0 
function cost cost 

Jl 0.561 5 ·'·50 5.388 6.247 

J2 4.578 2.130 5.885 6.362 

Table 5-l. Suboptimal system and optimal 

model performances. 

The plot of the above optimal and suboptimal responses is shown in 

Figure 5-2, over a time-interval of 20 seconds. Clearly, the settling 

time of the system is greater thon 20 seconds, hence the corr.putation 

of the integral to 100 seconds. 
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Legend: system response 

model response 

1.0 -----------------
Output 

o.o 
0 10 Time(sec) 20 

JlOO 2 2 u1:)
2 ]dt a. Jl -- 0 [(xl - 1) + 10x

2 
+ O.l(u 

1.0 .._---

Output 

0.~0~---r--·-r---.---.---.---.--.---~--,---, 
0 10 Time(sec) 20 

J
lOO 

2 2 b. J 2 = 
0 

[10(x 1 - 1) + x
2 

+ O.l(u - u*) 2 ]dt 

Figure 5-2. Suboptimal responses of seventh
order ~ystc;n nnd optJ:r.al re;_,ponse~; 

of second-order model. 
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It is interesting to note, that the true optimal cost for the 

seventh-order system has been computed in reference [45] in the case 

of J
1

, and is given as 6.175. The error in suboptimal cost, as a 

percentage of the correct value, is 1.17%. This is quite acceptable 

for most engineering applications, and is a small price to pay for 

the convenience of needing only two state variables instead of seven. 

5.2 Computational Aspects 

Since the main objective in the present work is to use low-

94. 

order models and suboptimal control in an on-line adaptive configuration, 

it is highly desirable to reduce the computing effort as much as 

possible. The model should therefore be derived on the basis of the 

least number of sample points, it should have as fe>-1 variable parameters 

as possible, and be of a form that allm-1s the computation of the 

controller parameters analytically. 

The model that satisfies the last of the above criteria has 

been described in Chapter 2, and has the form 

(5-7) 

Furthermore, by letting b 0 = Ka0, where K is the steady state gain of 

the system, the number of variable parameters is reduced to two. 

Since in the servomechanism problen1 the steady state error is usually 

desired to be zero, the above simplification is a particularly valid 

one. In fact, it will be shmm that models derived on the basis of 

fixing the steady state gain yield lm·rer suboptimal costs than if this 

assumption is not made. 
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The models presented in the previous chapter were derived by 

considering 501 points. Since much of the computing effort is taken 

up by evaluating the response of the model at each sample point, it is 

highly desirable to keep these to a minimum. The effects of decreasing 

the number of samples, on the model parameters as well as on the feed-

back parameters and on the closed loop performance, are indicated in 

Table 5-2. The seventh-order system has been used, and a model of the 

form 

(5-8) 

has been computed, by minimizing the sum of the squares of the response 

errors for a unit step input, over an interval of 20 seconds. ~vo 

cost functions in the form of equation (5-4) have been evaluated to 

tf = 100 seconds, the values of the Heighting factors being, respectively, 

q 1 = 1, q2 = 10, p = 0.1, and q
1 

= 10, q
2 

= 1, p = 0.1. In both cases 

the system is transferr~d from the state [1 0 0 0 0 0 T 0] to the 

origin of state space. 

The results indicate that there is no change in system or model 

cost as the number of samples are reduced from 501 to 101. Furthermore, 

in reducing the points to 21, \-7hile the maximum parameter change is 

5.36% and the corresponding error in feedback coefficient is 2.51%, the 

model cost has a 1. 81% deviation, but the system cost has changed by 

less than 0.02%. Hence, as far as comparing model and system costs, 

100 sample points suffice, but if the suboptimal system cost is the 

subject of our interest, 20 or less snmple points ~,;ill give a good 

approximation. Since a time-interval of 20 seconds has been considered, 



I N ao 

I 

501 3.2031 

I 

201 3.2031 

101 3.2028 

51 3.1966 

21 3.3748 

'---------------------

JlOO JlOO 2 2 2 I 2 2 2 

0 
(x1 + 10x2 + O.lu )dt 

0 
(10x1 + x2 + O.lu )dt 

I 

k kl 
Model System 

ko kl 
Model System 

al 0 cost cost cost cost 

---1 
2.2857 0.539 5.589 5.678 6.245 4.454 2.311 5.970 6. 357 

2.2858 0.539 5.589 5.678 6.245 4.454 2.311 5.970 6. 357 

I 
I 

2.2855 0.539 5.590 5.678 6.245 4.454 2.311 5.970 6. 357 I 
I 

2.2818 0.539 5.589 5.678 6.245 4.454 2.314 5.974 6.357 l 
I . 

2.3868 0.539 5.610 5.694 6.246 4.454 2.253 5.866 6.356 

I --------
-- _______ j___ 

Table 5-2. :Hodelling accuracy in suboptimal control, as a function of 

the nu~ber of samples used over a given time interval. \0 
0\ 
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100 points imply a sampling interval of 0.2 second, while 20 samples 

give 1.0 second intervals. 

5.3 Modelling Criteria for Suboptimal Control 

In the previous chapter, attention was given to deriving optimal 

lm-1-order models for a system on the basis of matching the output 

response only. For optimal control, hm-1ever, the derivatj_ves of the 

output must also be considered. iVhen deriving a lm.;r-order model for 

the purpose of designing an optimal controller for a particular cost 

function, the relative values attached to the terms in the cost 

function should be reflected in the modelling criterion. 

For a cost function that includes the Ol!tput and its first 

derivative 

(5-9) 

the following two modelling criteria appear most appropriate: 

(5-10) 

(5-11) 

Note that for open-loop control the term involving the input is not 

present, since u = u • n m 

To investigate the effect of the modelling criterion on the 

corresponding suboptimal control, eight different objectives have been 

used to find optimal models for the seventh-order system. A 10 second 

interval has been used, '"ith samples taken at every 0.2 second. The 

second-order model used had no finite zeros, and the effect of assuming 
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zero steady-state error is also to be investigated. 

The following are the eight modelling criteria, along with 

·the short-hand notations used to identify them: 

1. sum of the absolute values of the errors [IIel] 

2 f h f h [ \e2] • sum o t e squares o t e errors L 

3. the maximum sample error [N!esll 

4. the maximum perpendicular error (Niep!J 

5. the criterion gj.ven by equation (5-10) with q 1 = 1 and q2 = 10 

[L\J 1 (1,10)] 

6. as in 5., but with q 1 = 10 and q2 = 1 [L\J 1 (10,1)] 

7. the criterion given by equation (5-11) \vith q 1 = 1 and q2 = 10 

8. as in 7., but with q 1 ~ 10 and q2 = 1 [L\J
2

(10,1)] 

For each of the models obtained, the optimal model cost and 

suboptimal system costs have been computed, for transfering the states 

from the origin to [1 0 OJ. Cost functions as given by equations 

(5-5) and (5-6) have been evaluated, up to 10 seconds. The notation 

used to indicate integral quadratic cost functions ~s: 

The results shown in Table 5-3 have been obtained with no 

steady-state constraint on the model parameters, i.e., a 0 , a 1 and b 0 

are all independent variables. For each of the eight criteria, the 

optimal model parameters are shown, as well as the model and system 

costs for the cost functions indicated. The results shmv, that \vhile 

there is appreciable change i.i the model parameters and optimal model 

costs as a function of the modelling cr:i.terion, the corresponding 

changes in suboptimal costs are very slight indeed. 



I Objective 

I 

function 

I lei 
I 

I 
I Ie2 
I 
I 

I 

I Mlesl 
' ,___.. -
I 
I 

M!e I I 
l 
! :P 
l 

! 
~ l\J

1
(1,10) I 

I 
: I l\J 1 (10, 1) 

I 
! l\J2(1,10) I 
i 
I 
I 

I 
l\J2(10,1) I 

I 

I , 10 II 10 1 J = [~, 10, 0.1]0 J = [10, 1, 0.1]0 . 

I 
i 

I bo 
Model System 

I 
Model System 

al ao cost cost cost cost I 

0.3950 2.7132 3.3541 I 5.267 6.235 I 5.946 6.310 
I 
I 

0.4162 2.8543 3.5316 5.263 6.235 l 5.858 6.313 
i I 

0.3730 2.5552 3.1691 5.282 6.235 I 6.043 6.307 

0.3702 2.5071 3.1932 5.369 6.233 6.015 6.305 

0.4229 2. 7994 3.5872 I 5.343 6.234 6.597 6.311 

0.4180 2.8563 3.5468 5.271 6.235 I 5.847 6.313 

0.4869 ·'2.9577 4.1375 5.537 6.236 5.491 6.313 

I 0.3551 2.5023 3.0187 5.224 6.236 6.160 6.307 I 

I 

Table 5-3. Performance of optimal second-order models in the 

suboptimal control of seventh-order system. 
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To test the effect of assuming b0 = Ka0 \vhere K is the steady

state gain of the system, the same eight criteria were used to obtain 

' 
new models for the seventh-order system. The model and system costs 

are shotvn in Table 5-4. Once again, there is little difference 

beo·1een the various suboptimal costs. Comparison with the entries in 

Table 5-3 indicates that making the steady-state assumptinn (b 0 :.:: Aa0 ) 

results in usually lotver suboptimal cost, or at least no worse than if 

b 0 is an independent variable. Keeping in mind that if b 0 is linearly 

dependent on a0 , one less variable needs to be considered, this 

assumption is highly desirable for deriving lot.:r-order models for the 

suboptimal control of high-order systems. The model that v1ill be 

used for suboptimal, and subsequently adaptive control, has the form 

(5-12) 

The advantage of using a model \·lhich emphasises the matching 

of the system response at and near steady state for the purpose of 

suboptimal control is not surprising, since the feedback parameters 

are computed on the assumption that the cost functio.n is evaluated 

tot=~, i.e., until steady-state is reached. 

It should be noted that the response of the seventh-order 

system approaches its final value to within five significant figures 

only in the neighbourhood of 100 seconds. On the other hand, the 

closed-loop model responses settle dmvn within 10 seconds. Several of 

the cost functions given in To.Lles 5-3 and 5-4 t·7ere evaluated to 

100 seconds, but no relative chanses in the costs were observed. 
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10 
J = [1, 10, 0.1]0 

10 J = [10, 1, 0.1]0 

I Objective 
bo 

Model System Model System 
! function al ao cost cost cost cost 

J I!el 0.3599 2.2804 3.2391 5. 711 6.232 5.941 6. 300 

Ie2 0.3559 2.2856 3.2028 5.678 6.232 5.970 6.300 
I 

~Miesl 0.3560 2.6172 3.2042 I 5.340 6.235 6.080 6.302 

Hie I 0.3730 2. 7792 3.3568 5. 300 6.237 6.015 6.305 
p 

t.J
1

(1,10) 0.4012 2.6449 3.6111 I 5.600 6.231 I 5.769 6.301 
I 
I I 

t\J 1 (10,1) 0.3683 2.3712 3.3143 I 5.667 6.232 I 5.906 6.300 
I I 
1 0.4528 I I 

I 

t\J2(1,10) •' 2.6786 4.0754 5.857 6.236 
I 

5.495 6.301 I 

' I I 
l I l t\J2 {10,1) 0.3758 2. 3975 3.3826 ! 5.689 6.232 5.863 6.300 

I 

Table 5-4. Performance of optimal second-order models with fixed d-e gain 

(b 0=Ka0), in the suboptimal control of seventh-order system. 

I 

I 
I 
I 

"""' 0 

"""' . 
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Since the Ie2 objective has computational advantages over the 

other criteria for deriving lov1-order I.lOdels, as well as being the one 

most susceptible to analytical techniques, it l-lill be the one to be 

considered in the remainder of this thesis. For the seventh-order 

system, this model is 

X(s) 0.3559 

U(s) = s 2 + 2.2856s + 3.2028 
(5 .13) 

as given by the first row of Table 5-4. The optimal feedback parameters 

for this model, and for the tl-lo cost functions we have been considering, 

are given belm-1: 

.., 
J = [1, 10, 0.1]0 

00 

J = [10, 1, 0.1]0 

ko 

0.539 

4.454 

kl 

5.590 

2.311 

The responses of the system and the model in both the open-loop 

and the closed-loop configuration are shmm in Figure 5-3. It is 

interesting to note that the closed-loop responses are closer than the 

open-loop ones. The extent of the reduction of the error between the 

responses may be seen from Table 5-5. 

Mode of Control 

Open-loop 

Closed-loop 
00 

J = [1, 10, o.1] 0 

Closed-loop 
00 

J = [10, 1, 0.1)0 

Ie
2 

(0-10 sec) 

0.5748 

0.3898 

0.2693 

Table 5-5. Comparison of errors for open- and closed-

loop responses of system and model. 



Legend: system response 

model response 
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Figmce 5-3. Comparison of open- and closed-loop 
responses of second-order model and 
seventh-order system. 
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This reduction of the modelling error in going from the open

loop to the closed-loop responses has been observed for every model 

that was derived on the basis of the steady-state constraint to a step 

input. It indicates that if a model of sufficient accuracy can be 

found to match the open-loop response of the system, the error between 

the corresponding optimal model output and suboptimal system response 

will be no greater than in the open-loop case. 

5.4 Optimal Control for Least-pth and Hinimax Cost Functions 

104. 

Up to the present stage in this thesis, opti~al control has 

been considered only for the case of integral quadratic cost functions. 

In Chapter 4, optimal models lvere derived for not only quadratic 

objectives, but for the more general least pth and minimax error 

criteria also. In this section we consider the possibility of synthesi

zing optimal feedback controllers for the often desireable least pth 

and minimax objectives. 

The attractive feature of the quadratic cost function is, that 

when the differentiation indicated by equations (2-4) and (2-5) is 

performed, a linear differential equation results. 'Analytical solution 

in the general case is not known to exist, although for certain specific 

nonquadratic cost functions the optimal control law has been found[l 7],[46J. 

In this section it is sho~m that the application of search 

methods will yield the optimal feedback parameters for least pth and 

minimax cost functions. The only restriction is that the system to be 

controlled cannot have finite zeros. 

The cost functions, for which the optimal controller is to be 



found, may take one of the following forms: 

J ... 
I 

J "" M 

(5-14) 

(5-15) 

(5-16) 

where qi and rk are non-negative 'tveights, p a positive number, usually 

an integer, T the time interval of interest that contains N sample 

points, xi is the ith component of the state vector and~ the (k-l)th 

derivative of the input; the superscript * denotes desired functions 

of the appropriate variables, and the subscript j refers to the jth 

sample of the variable in question. 

Note that the previously considered integral quadratic cost 

function is a special case of equation (5-14), with p=2. An important 

practical feature of the above cost functions is the inclusion of the 

derivatives of the input. In many applications, the velocity and 

acceleration of the input must be limited for physical reasons. These 

are readily dealt with using the above formulation. 

105. 

The philosophy of the proposed method evolved from the modelling 

work presented in Chapter 4. There we considered approximating the 

open-loop unforced response of the system by using rational functions. 

The question arises: can the optimal response be also approximated 

in this fashion, and is the result realizable in a feedback fashion? 

The affirmative answer is presented belmv. 



5.4.1 Frequency-Domain Derivation 

Let the system to be controlled have the transfer function 

X(s) 
U(s) = 

sn + 
n-1 i 
I ai s 

i=O 

where b 0 and ai are constants, and n is the order of the model. 

Assume that the desired optimum output trajectory may be 

approximated by the following rational function: 

(5-17) 

(5-18) 

where Ue(s) is the externally applied driving function, and g0 and hi 

are the constant parameters that are to be determined by a search 
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routine such that the appropriate cost function is minimized. A suitable 

starting point is obtained by a direct substitution of g0=b 0 and hi=ai, 

i=O,l, ••• ,n-1 from equation (5-17). 

The corresponding input to the model found by combining equations 

(5-17) and (5-18): 

n-1 i n I go[s + ai s ]U (s) 
,.. i=O e 
U(s) = (5-19) n-1 

bo[sn + I h. si] 
i=O 1 

Since the time functions that correspond to equations (5-18) and (5-19) 

are differentiable with respect to time, all the desired terms in a cost 

function of the form of equations (5-14) to (5-16) are knmm. It can 

therefore be min:tmized by a search routi.ne that systematically varies 

the parameters g0 and hi. 
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The solution of the problem is open-loop at this stage, as 

illustrated in Figure 5-4a. vlhat has evidently been done is to cancel 

the poles of the model, and to introduce new ones, such that the 

resultant system behaviour is optimum. The disadvantage of this 

arrangement is well-knmm: it is rarely possible to exactly cancel 

the poles of the model, and changes in the model parameters directly 

affect the overall performance. The solution which is usually desired 

is a closed-loop one, as shown in Figure 5-4b, and our task is to 

express the coefficients ~0 and ki (i=O,l, ••• ,n-1), in terms of the 

constants found by the search routine and the parameters of the system. 

This is readily accomplished, as shmm belmv. 

Referring to Figure 5-4b, ~ve can write 

(5-20) 

A 

Substituting for X(s) from equation (5-18): 

n-1 
si) 

n-1 
i [~o(sn + I hi - 8o I k. s )U (s) 

A i=O i=O 1 e 
U(s) = 

n-1 
sn + I h. i s 

i=O 1 

(5-21) 

" Equating noH coefficients in the two expressions for U(s), equations 

(5-19) and (5-21), we obtain the desired formulae for the feedback 

coefficients: 

i = O,l, ••• ,n-1 

(5-22) 



u ( e s) 
.,, . 
,.;.;. 

Ue(s) 

-· 

n-1 
si) go(sn + L ai U(s) i=O 

---""" 
n-1 --~ 

n b
0 

(s + r h. si) sn + 
i=O 

]_ 

"--· 

a. Open-loop realization 

A 

+ U(s) bo 
to t ~-... n-1 

sn + r 4 - i=O 

n-1 r ki s 
i=O 

b. Closed-loop realization 

Figure 5-4. Block-diagram representation 
of optimmn systems. 

ai 

i 
. 
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bo X(s) 
'. 

n-1 i I a. s 
i=O 

]_ 

A 

X{s) -..... 
i s 

-
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5.4.2 Time-Domain Derivation 

It is instructive, from the point of view of appreciating the 

proposed method, to repeat the previous derivat.ion in the time-domain. 

Accordingly, let the system be represented by 

x = Ax+ bu (5-23) 

and :l.t is desired to find the feedba.ck control laH 

T 
U = -k X 

where, for the sake of simplicity, the regulator problem is considered. 

Substituting for u in equat:l.on (5-23) from equation (5-24) l>Te 

obtain 

T 
X = (A - ~ ~ )~ (5-25) 

In order to find the value of k such that the appropriate cost function 

in the form of equations (5-14) to (5-16) is minimized, the use of a 

search routine is proposed. 

We assume an approximation to equation (5-25) of the follo•-ring 

form: 
. x = H ~(t) (5-26) 

and initially put H==A, which corresponds to the unforced case. By 

varying the parameters of H using a suitable search routine, the 

desired cost function is minimized. 

The least number of parameters will need to be determined if 

both H and A are in phase-variable form: 



0 1 0 0 0 1 0 0 

0 0 1 0 0 0 1 0 

A = H = 

0 0 0 1 0 0 0 1 

-ao -al -a2 -a n-1 
-h 

0 
-h 1 -h2 -h n-1 

Since it is also assumed that the system has no finite zeros, the 

control vector may be lvritten as £ = [0 0 
T o ••• b 0] • 
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(5-2 7) 

At each iteration, it is necessary to solve equation (5-26). 

Because of the phase-variable notation a closed form solution is readily 

obtained, thus avoiding the necessity of numerically solving n 

simultaneous differential equations. The input and its derivatives 

must also be knovm at each iteration. Making use of the originally 

specified model equations, we can substitute into equation (5-23) the 

approximating relationship of equation (5-26) to give: 

H §(t) = A ~(t) + b u(t) 

Rearrangi.ng, we obtain 

~ u(t) = -(A - H) ~(t) 

which on evaluation reduces to 

" T " u(t) = -~ x (5-27) 

where 

i = 0, n-1 (5-28) 

The values obtained for ki are, as expected, the same in 

equations (5-22) and (5-28). Since they are constants, the realization 

of the controller is readily achieved. It should also be noted that 

the above results are consistent '-lith modern control theory: optimum 



performance. is accomplished by feeding back all the phase variables. 

5.5 Optimal Control ~·lith Zero Steady-State 'Error 

It was shmvn in section 2. 3 how the regulator problem may be 

converted into the servomechanism problem, by requiring that the 

steady-state error between a step input and the response of the 

system be zero. For a system having the transfer function 

X(s) _ bo 
u(S)- n-1 

i n + r s ai s 
i=O 

(5-29) 

the desired result Has achieved by the addition of a feedforward block 

of gain £.0• The value of £.
0 

,.,as found to be 

(5-30) 

In section 5.4.1, the same requirements led to a value of 

(5. 31) 

It is desirable to establish the equivalence of equations (5-30) and 

(5-31), and to seek the conditions under which zero.steady-state errors 

to ramp and higher-order inputs may also be realized. 

Using equation (5-22), 

ho - ao 
k =--

0 b
0 

and substituting this value of k0 in equation (5-30) gives 

ho 
.to = --

bo 
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Since the requirement is that the d-e gain of the closed-loop system 

is unity, h0 = g0 , as desired. 

The technique used in section 2.3 to convert the regulator 

problem into the servomechanism by requiring that the steady-state 

value of the output equals that of the input ,.,hen the latter is a step, 

can be extended to inputs 'vhich are higher order functions of time. 

For example, to have zero steady-state error to a ramp input, the 

feedforward block becomes l 0 + l 1s. In general, for an input of 

u(t) = trn (5-32) 

the feedforward block takes the form 

H(s) = (5-33) 

The block diagram representation of an nth order system with all phase-

variables fed back and a feedfor~.;rard block of the form of equation 

(5-33), is shown in Figure 5-5. The coefficients l., i=O, m-1 are 
l. 

to be determined such that the steady-state error, between the output 

of the closed-loop system and inputs in the form of equation (5-32) is 

equal to zero. 

Referring to Figure 5-5, 

X(s) 
bo 

E(s) = --- n-1 
sn + I i 

ai s 

m 

E(s) = I 
i=O 

i=O 

n-1 
li si U(s) - L ki s 1 X(s) 

i=O 

(5-34) 

(5-35) 

Substituting in equation (5-34) for E(s) and separating the variables, 

leads to 
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U(s),_ m 
i + E(s) bo 

I .e.. .... _,... 
s - - n-1 

i=O 1 n I i s + a. s - i=O 1 

n-1 
i I ki -s ....... 

i=O 

Figure 5-5. Block-diagram representation of closed-loop 
system for realization of zero steady-state 
error. 
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X(s) ... 



m 
i .e.. s 

~ bo I 
i=O X(s) = _ __.::::.._:_:------·---
n-1 

sn + L (a. + bo ki)si 
• 0 ~ 
~= 

\lls) (5-36) 

Equation (5-36) is the open-loop representation of the closed-loop 

system in Figure 5-5. 

For an input as given by equation (5-32) 

U(s) m! =---
mf-1 s 

Using the final value theorem, we require 

i.e., 

lim {s[X(s)- U(s)]} = 0 
s~ 

n -s 
n-1 i m i 
L (a;+b 0k.)s + I (b 0-e..-ai-b 0k.)s 

i=m+l - ~ i=O ~ ~ 

n-1 
' lim {.!!!:... [ 

s--+0 srn 
sn + L (a. + b 0k.)s1 

i=O ~ ~ 

This will be satisfied if 

i.e., 

Checking our result, for i=O 

ao 
lo = b- + ko 

0 

i = 0, rn-1 

rn ~ n-1 

as already established by equation (2-28) 

]} -· 0 

(5-37) 
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B:tsically, equation (5-37) can be appH.ed in two configurations. 

Either the response is optimized on the basis of feedback alone, and 



the appropriate feedfon-mrd coefficients added '>vhen the loop is closed, 

or they are included in the open-loop optimization stage. The former 

approach tends to reduce the steady-state error, while the latter \vill 

produce a smaller value of cost. 

One other alternative is possible, which is to vary the l. 
1 

coefficients also at the stage of the open-loop optimization. It can 

be readily shown by the procedure used in this section, that the 

feedforward coefficients remain invariant under the transformation 

from open- to closed-loop configuration provided g0 = b 0• 

5.6 Results for Least-pth and Hinimax Cost Functions 

To illustrate the method proposed in the last t\vO secti.ons, 

three examples are nmv considered, using each type of cost function 

specified in equations (5-14) to (5-16). The task is to compute the 

suboptimal controller for a high-order system, based on the optimal 
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controller computed for a low-order model of the system. The seventh

order system and the second-order Ie
2 

model with steady-state constraint, 

given in equation (5-13) are considered, and pattern-search used to 

find the optimum. 

Example 5.1: Transfer the system from the state 

[1 0 0 0 0 0 O)T 

to the origin of state space so that the cost function 

f
lO 2 ~ 2 

J 1 = 
0 

(x
1 

; x2 + O.lu )dt 

is minimized. For this special ca::: .~ of an integral quadratic cost 
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function, the optimal feedback control may be obtained analytically 

for the model, as discussed in Chapter 2. This example, therefore, 

provides a useful check on the proposed method. The feedback 

coefficients obtained by the tHo techniques and the costs incurred 

by using these controller parameters for both the model and the system 

are shor.vn in Table 5-6. 

ko kl J J m s 

Analytical o. 539l}4 0.94505 1.24788 1.34008 solution 

Proposed 0.53936 0.94498 1.24788 1.34008 solution 

Table 5-6. Results for example 5.1. 

Clearly, the results obtained by the proposed method are accurate for 

all practical purposes. To obtain the desired optin~l response, a 

minimum step-size of 0.00001 \vas used, and convergence occured after 

220 function evaluations. 

Example 5.2: Transfer the system from the origin of state space to 

[1 0 0 0 0 0 O]T 

so that the cost function 

is minimized over the time interval [0,10] seconds. [u* is given by 

equation (2-29).] The results after 61 function evaluations and a 

minimum step-size of 0.0001, are as follm.:;rs: 
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k0 = 5.845 

kl = 4.320 

l 0 = 14.844 

model cost ·- 30.25 

system cos~ = 35.60 

Both the system and the model responses have been plotted in Figure 5-6. 

The agreement between optimal model response and subop_timal system 

performance should be acceptable for most practical applications. 

Example 5.3: Transfer the system from the origin of state space to 

[1 0 0 0 0 0 O]T 

so that the cost function 

JM = max {Six.- x*1 .1 + lx2i- x2*1
. I+ O.llu

1
.- u*

1
. !} 

i=0,200 11 1 

is minimized over the time interval [0 ,10] seconds, ~-rhere 

X~ = 0.2t * x2 = 0.2 for 0 < t < 5 sec 

* x 1 = 1.0 X~ = 0.0 for 5 < t < 10 sec 

The final value of the input, u~ is once again computed from equation 

(2-29), such that 

The externally applied input is given by 

u (t) = x*(t) 
-e -

This problem has been solved by considering four different possibilitie.s: 
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Figure 5-6. Responses for example 5.2. 
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a. The open-loop parameters h 0 and h 1 are varied to minimize the 

cost function, assuming that g0 = h0• The closed-loop parameters 

are then computed from equation (5-22). 

b. The same procedure as above is used, but £.1 , as given by equation 

(5-37), is also included in the closed-loop realization. 

c. The feedforward parameters £.0 and £.1 are evaluated at each stage 

of the search process [equation (5-37) is applicable]. ho and 

h 1 are again the only variables, and g0 = b0• 

d. In addition to h 0 and h 1, £.1 is also varied by the search routine. 

Once again, g0 = b 0 , in order to make the feedforward parameters 

invariant in going from the open- to the closed-loop configuration. 

The results obtained for the above four cases are displaced in 

Table 5-7. The corresponding responses are plotted in Figures 5-7 and 

5-8. 

Case ko kl ..e.o ..e.l 
Model System 
cost cost 

a 32.10 2.963 41.10 0.0 0.524 0.569 

·------
b 32.10 2.963 41.10 9.385 0.428 0.538 

----·--· 
c 0.0 3.067 9.000 9.489 o. 393 0.526 

d 0.0 3.633 9.000 9.157 0.388 0.456 

Table 5-7. Comparison of results obtained for 

the four cases of example 5.3. 
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Figure 5-7. Responses for exGmple 5.3, 
cases (a) and (b). 
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Both the model and the system costs decrease as one progresses 

from case (a) to case (d), as expected. Inspection of the diagrams, 

on the other hand, suggests, that case (b) is the most desirable one. 

This example very \vel! illustrates the care one must take in selecting 

the cost function and the weighting coefficients to realize a de~ired 

transient response. 

122. 



CHAPTER 6 

SUBOPTHfAI, CONTROL OF NUCLEAR REACTOR - RESULTS 

Having developed a method for finding optimal lm\'-order models 

for high-order systems, and having demonstrated the use of such models 

in the suboptimal control of a linear system, we turn our attention to 

the nuclear reactor control problem. Since it is impractical to feed 

back all the state variables of this system, true optimal control 

will not be attempted. Knm-1ing that the actual plant is successfully 

operating by feeding back only the output and its derivative, we 

consider the suboptimal control of the nuclear reactor on the basis 

of these two signals. To find the feedback parameters, an optimal 

second-order model for the system is derived, using the method 

proposed in Chapter 4. If the performance index is quadratic, the 

optimal controller for the model is computed from equations (2-24) 

and (2-25). For other cost functions, the technique presented in 

sections 5.4 and 5.5, is used. 

Since the system is nonlinear and has time-varying parameters, 

it is expected that a new model will have to be found every time there 

is a change in the operating pmver level, depending on the magnitude 

and direction of the demanded power excursion, and as the system 

parameters vary. The extent of the necessary changes in model para

meters are investigated in this chapter, in order to establish the need 

for the on-line updating of the model. 
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The nonlinear nature of the system is also expected to affect 

the agreement betv1een optimal model and suboptimal system performance. 

Since initially the model is derived on the bas~s of unity feedback, 

once the suboptimal controller is applied, the model may no longer 

reflect accurately the behaviour of the systent, and its pararr.eters 

wi.ll have to be mbdified. 

6.1 Optimal Second-order Linear Models 

To find the desired optimal models for the nuclear reactor 

and associated reactivity controller mechanism, the system considered 

in section 3.3 and depicted in block diagram form in Figure 3-5 is 

used. It is assumed, that the response of the system to a step change 

in demanded pmver has been observed over a suitable time-interval. 

For the models to be derived in this chapter, the d-e gain is assun!ed 

to be the same as that of the system, viz. unity, and the Fletcher 

method is used to minimize the sum of the squares of the deviations 

between system and model responses, over 101 sample points. 

In order to relate the accuracy of the proposed technique of 

system modelling to the previously discussed classic.al reactor models, 

reference must be made to the responses presented in section 3.3. 

Since a lm-7-order linear model is desired, the linearized one delayed 

neutron group model has been chosen for comparison. For the same 

pm-1er level change as in Figure 3-7 (50%-100% FP), the responses of 

the optimal second-order model and of the one delayed neutron group 

model (which becomes fourth-orl,er with the addttion of temperature 

feedback and absorher rod drive motor), are shmm in Figure 6-la. 
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Figure 6-1. Comparison oE responses of one delayed 
neutron group and optimal second-order 
model to that of the reference system. 
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The consj_derable improvement in accuracy using the optimal model, 

despite the lm.·er order, is evident. That even better approximation 

of the system is possible for smaller povmr level changes, responses 

of the system and of the ttvo models for a pmver level change from 90% 

to 100% FP are shmm in Figure 6-lb. The parameters of the optimal 

model [as defined in equation (5-8)], as well as the sum of the squares 

of the errors, are given in Table 6-1. 

Response 

50%-100% 

90%-100% 

0.5239 

1.4471 

0.1392 

1. 2098 

Ie2 

2.193 X 10-l 

8.291 X 10-'+ 

Table 6-1. Optimal model parameters for 

given reactor responses. 

As expected, the model parameters change considerably from 

one response to another. It is necessary, therefore, to investigate 

the variations in model parameters as a function of pmver level 

changes and as the reactor parameters vary, before the models are used 

for the suboptimal control of the nuclear reactor. 

6.1.1 Effect of Nonlinear Reactor Kinetics 

The nonlinear nature of the reactor kinetic equations has 

already been discussed in Chapter 3. Our present interest is to 

observe the form and extent of the changes in the optimal model 

parameters as a function of the operating pmver level of the reactor, 

and of the magnitude and direction of the demanded change in pm·:er. 

In particular, \ve seek to find a single model, or at least a well 
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defined set of model parameters, in terms of the observable character

istics of the plant, in order to make the design of a fixed or at least 

a preprogrammed suboptimal controller possible. 

Figure 6-2 illustrates the effect of the initial pmver level on 

the model parameters. From various operating points, a 20% increase 

was demanded. The wide range of variations of a 1 and a0 are evident 

from the diagram. A decrease of 20% in pmver from the same initial 

point calls for a different set of model parameters, as shown in 

Figure 6-3. Although the curve for a
1 

has not changed appreciably, 

the one for a0 is down by about 0. 2 fro111 the corresponding one in 

Figure 6-2. Such a change, hm.;rever, could be accounted for in a 

preprogran~ed controller algorithm. 

Turning our attention to the effect of different magnitudes 

of pm>Jer changes from a given initial level, rather different forr1111s 

of model parameter variations are observed. For increases of various 

magnitudes from an initial pouer level of 50% FP, Figure 6-4 shm..rs the 

changes in model parameters. For decreases from 100%, n;o results 

have been plotted in Figure 6-5. To establish a functional relation

ship between these sets of curves and the ones shown.in Figures 6-2 

and 6-3, appears to be very difficult, particularly when one takes 

into account the several remaining combinations of initial pm-;er 

levels, as t-7ell as magnitudes and directions of demanded changes. 

The problem is further complicated by changes in plant parameters, as 

discussed in the next section. 
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Figure 6-2. Changes in model parameters as a function 
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6.1.2 Effect of Parameter Changes 

The parameters Hhich are time-varying in our reactor model are 

the temperature coefficient (Tc) and the concentrations of the various 

delayed neutron groups (6i). The range of variations in the temperature 

coefficient is fron1 -lOmk to +5mk, while the maximum changes in 

delayed neutron concentrations are ±20% of the design values given in 

Appendix I. It \vas found by the author earlier [S], that changes in Tc 

have a much greater effect on the system response than variations in 

the 6i' and that it is not feasible to distinguish Hhich of these 

parameters has changed, from the effect on the system response. Since 

our interest is only in the change of the overall plant performance, 

and its effect on the model parameters, the exact nature of the 

internal change is not important. 

The variations in the optimal parameters for the range of T c 

are shmvn in Figure 6-6. The change in a
1 

is particularly large. 

Similar responses could be obtained for various other initial power 

levels and demanded changes, but it should be apparent that it is not 

practical to attempt to find model parameters for all possible stages 

of operation. It is more desirable to continually ~pdate the model 

parameters on-line, in order to take care of both the nonlinear nature 

of the plant and changes in the system parameters. Before considering 

such an adaptive scheme, it is useful to investigate the suboptimal 

control of the reactor, in order to establish the type of performance 

one can expect from the proposed technique. 



Model 
parameters 

al' ao 

2.0 

1.8 

1.6 

1.4 

1.2 

1.0 

0.8 

0.6 

0.~4~--------~---------,--------~ 
-10 -s 0 

Temperature coefficient (mk) 

Figure 6--6. Effect of temperature coefficient on 
optimal model parameters, for an 
increase in demanded power from 80% 
to 100% FP. 

5 

133. 



134. 

6.2 Responses for Integral Quadratic Cost Functions 

The suboptimal control of the nuclear reactor follows the same 

pattern as has been described in the previous chapter for a high-order 

linear system. The main difference is, that instead of finding the 

optimal model on the basis of the open-loop response, the reactor 

system equations are initially evaluated for a unity feedback configura-

tion. This is advantageous, since the open-loop response of the 

reactor for a positive power demand change would be unbounded, except 

for physical limitations. 

Using the examples considered in section 6.1, and the model 

parameters given in Table 6-1, optimal feedback controllers for the 

models have been computed for the following cost functions: 

f
ro[ ( *) 2 ( ~)2) J 1 = 
0 

10 x
1 

- x
1 

+ x
2 

+ 0.1 u - uA dt (6-1) 

J - ro[(x - x*) + 10x
2
2 + O.l(u- u*)

2
]dt 2 - J

0 
1 1 (6-2) 

where both x~ and u* are equal to the new· value of the demanded power 

level. 

The block diagram realization of the suboptimal reactor 

controller and the corresponding optimal model controller are shown in 

Figure 6-7. Note that the feedforward block is k0+1, since both the 

reactor and the model have unity gain. 

The responses for a demanded change in pm-1er from 90%-100% FP 

and for the cost functions given by equations (6-1) and (6-2) are shown 

in Figure 6-8. The effect of the relative weights attached to the 

response and to its derivative are v1ell illustrated. The most important 
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th:i.ng to note, is that while for J 2 the model and system responses 

are identical for practical purposes, there is a considerable deviation 

in the case of J 1• This discrepancy is due to the nonlinear nature 

of the plant, and will be even more apparent for larger changes in 

power level. It is desirable, therefore, to reoptimize the model 

parameters, on the basis of the suboptimal response. The response of 

the updated model is also shmm in Figure 6-8. The corresponding 

change in suboptimal control as \vell as the effect of repeated re

optimizations will be considered after the responses for a 50%-100% FP 

po't-:er change have been discussed. 

Using again the model parameters from Table 6-1 and the cost 

functions of equations (6-1) and (6-2), the responses of the reactor 

and the model for a 50%-100% FP demanded po1-1er change are shown in 

Figure 6-9. The difference between optimal model and suboptimal 

system response is quite large in both cases, being worse, once again, 

for J 1• The responses of the updated models are also shmm. 

The convergence of the model parameters and hence the optimal 

and suboptimal costs, follmving subsequent cycles of updating the 

model and finding the ne't·T reactor response, are illustrated by the 

results in Table 6-2. Since in the case of Figure 6-Sb, no change in 

model parameters took place, only the remaining three cases are 

considered. In the upper portion of the table, the model parameters 

are displaced, starting 't-Tith the ones obtained from the unity feedback 

configuration, and already given in Table 6-1. The corresponding 

optimal model costs and suboptimal system costs are shm·m in the first 

rmv of the lmver part of Table 6-2. The changes in model parameters 
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r-- -

90% - 100% 50% .... 100% 

20 20 20 
- Jl = [10)1,0.1] Jl = [10,1,0.1] 0 J2 = [1,10,0.1]0 

0 Number of 
reoptimi-
zations al ao al ao al 

....______ 

0 1.4471 1.2098 0. 5239 0.1392 0.5239 

------r-· 

1 1.4157 0.2561 0.2960. 0.0107 0.3816 

-· 

2 1. 3136 0.2633 0.2318 0.0111 0.2294 

-- --· 
3 1.2972 0.2643 0.2231 0.0112 0.2172 

4 1.2972 0.2643 0.2220 0.0112 o. 2158 

--------- .- ·- ---

0 

1 

2 

3 

4 

----- -------· 
Model System Model System Model 
cost cost cost cost cost 

-

0.0602 0.1158 3.26 12.91 0.932 

0.1103 0.1114 12.65 11.43 1.088 

-· 

0.1066 0.1108 11.20 11.24 1.248 

0.1062 0.1107 11.03 11.22 1.226 
.. 

0.1062 0.1107 11.01 11.22 1.224 

Table 6-2. Reoptimization of model parameters for suboptimal 
reactor responses, and corresponding changes in 
model and system costs. 

ao 

0.1392 

·--

0.0591 

0.0342 

--
0.0353 

--
0.0354 

System 
cost 

1. 25l• 

1.254 

1.228 

1.226 

1.226 
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as v1ell as in the cost functions at each reoptimization are seen to 

converge after four cycles. The final response for the 50;~-100% FP 

change are shmm in Figure 6-10, indicating good final correspondence 

benveen system and model responses. 

While the above discussed use of repeated reoptimizations is 

not practical in an on-line situation, the examples serve to illustrate 

the potential of the proposed approach. In an on-line application, 

the model parameters begin to be updated on the basis of the closed-

loop suboptimal response as soon as sufficient samples are available, 

and as the updating progresses, the reoptimization of the model 

parameters is performed automatically. Since this process is the 

essence of the adaptive controller to be used, it 'l:vill be discussed 

in detail in the next chapter. 

6.3 Responses for Least pth and Hinimax Cost Functions 

6.3.1 Monotonic Reactivity Insertion 

It ~as pointed out in Chapter 3, that in the reactor control 

problem it is important to include in the cost function terms relating 

' 

not only to the output but also to the input. In particular, the 

number of sign changes of the input signal influences the mechanical 

wear of the absorber rod mechanism, and should therefore be minimized. 

The addition of such a term to the cost function renders the Riccati 

matrix method ineffective, and the technique proposed in sections 5.4 

and 5.5 has to be used. 

The problem may be illustrated by consi.dering a 90%-100% FP 

change in pm·rer level, and the cost function to be minimized is: 
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ll~2. 

N \ * 2 2 * 2 L 10(x11 - x
11

.) + x21. + O.l(u. - u.) 
i=O 1 1 

(6-3) 

The optimum response is shown in Figure 6-lla, and the necessary 

reactivity variation to bring about such a pm·1er level change is 

indicated in part b of the diagram. It is apparent, that follot~ing a 

sudden reactivity insertion, t'vo reversals in the direction of travel 

of the absorber rod are required to realize the desired response. 

To realize a monotonic reactivity insertion, while still 

minimizing the cost function of equation (6-3), a term is added to 

reflect the number of sign changes of the input: 

N 
J 2 = J 1 + L lsgn(u.- u~)- sgn(u

1
._1 - ui*-

1
>1 

i=1 1 1 
(6-4) 

The resultant power level change and corresponding reactivity variation 

are sho'm in Figure 6-11. The degradation in performance, as far as 

the power response is concerned, appears to be acceptable in view of 

realizing a monotonic reactivity input. The numerical change in 

system cost is from J 1 = 1.029 to J 2 = 1.368, subsequent to one cycle 

of reoptimization in each case. 

6. 3. 2 Ramp Change of Demanded Po,;er 

It has been assumed, up to this stage in this thesis, that the 

demanded pot.Jer change appears as a step. Hhile this assumption may 

be valid for future reactors, at the Douglas Point plant the demanded 

potver varies as a ramp bet~;veen the initial and the desired levels. 

The Riccati matrix approach is once again not suitable, and the proposed 
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optimization method is to be used to find the suboptimal controller for 

the case of a specified rate of pm.;rer level change. In order to 

further emphasize the versatility of the ne\.;r technique, a least pth 

cost function t.;rith p=l as t-rell as a minimax objective are considered 

for the ramp change in power level. 

The rate of change of the demanded power has been assumed to 

be 2% FP per second. The cost functions to be minimized have been 

selected as: 

101 
J1 = L (I x 1 • - x*l . I + I x2 i - x2*. I + 0.11 u. - u ... i,. I) . 0 1 1 1 1 

1= 

(6-5) 

max {jx i- x*1 • I + lx2 • - x~il + O.llu. - u~IJ 
i=O,lOl 1 1 .J. 

1 1 
(6-6) 

For a change in pm.;rer level from 90% to 100%, the controller parameters 

and the suboptimal system costs are shmm in Table 6-3, and the 

responses are plotted in Figure 6-12. While there is a considerable 

change :i.n the controller parameters, particularly in k1 , the difference 

between the corresponding responses is not very significant. 

ko kl to ll' Cost 

Jl 11.43 8.270 12.43 6.190 0.420 

J2 9.264 0.965 10.26 0.624 0.0281 

Table 6-3. Results for ramp change 

in demanded power. 
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CHAPTER 7 

ADAPTIVE CONTROL OF NUCLEAR REACTOR 

The need for continually updating the parameters of the optimal 

low·-order model of the reactor on-line, as successive samples of the 

given response are obtained, has been indicated several times in the 

previous chapter. Since follo~·ling each updating, the feedback controller 

parameters are recomputed, the resulting control system is adaptive. 

Because of the nonlinear nature of the plant, the model parameters 

change not only ~-1ith the operating characteristics of the system, but 

are also a function of the feedback parameters used to obtain the 

response on the basis of which the new model is found. This interaction 

bettveen model and controller parameters has been found to give converging 

values of each of the quantities involved in the case of suboptimal 

operation. The same should also hold for the adaptive mode. 

Before considering in detail the performance of the adaptive 

controller, it is interesting to note that the proposed method, based 

on a second-order model of the system to be controlled, provides a 

link bet\·7een modern optimal control theory and classical techniques of 

controller design. A fundamental difference between the nw approaches 

is in the nature of specifying the desired performance. In optin:al 

control, a cost function is used for this purpose, t-7hich includes not 

only the output, but also its derivatives, as well as their effect on 

the input. The classical techniques, on the other hand, aim hasi.cally 

at realizing a given transient output response. This can usually he 

specified in terms of the natural frequency and damping constant of 
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the response of a second-order system, to a unit step input. 

Using the approach presented in Chapter 5, both of the above 

objectives may be realized. In fact, if the de~ired response to a step 

input is already given, and the optimal model of the system has been 

derived, the controller parameters are given immediately by equations 

(5-22) and (5-30). TI1e approximation of the system response to the 

desired one will once again depend on the accuracy of the model, which 

may need to be updated to improve the closed-loop response. An example 

to illustrate the above application is considered in this chapter, 

along with adaptive control for integral quadratic cost functions, for 

least pth sums and for minimax objectives. 

As in Chapter 6, the second-order model for the reactor and 

the controller is assumed to have the form 

and the Fletcher routine is used to identify the parameters a
1 

and a 0 , 

such that the sum of the squares of the sample errors bett·leen system 

and model responses is minimized. This aspect of the identification 

problem has already been discussed in Chapter 4, and will not be 

further considered. 

7.1 The Adaptive Loop 

The implementation of the concepts introduced in previous parts 

of this thesis for the adaptive controller may be divided into four 

stages. Initially, the reactor is assumed to be operating at a steady 
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poHer level; at time t=O a change t'J a netv operating level is initiated. 



Using the model parameters appropriate for the demanded change and the 

desired cost function (this information being stored in the computer) 

the controller parameters are computed, and the.system begins the 

transition to the ne-., pmver level. Stage one continues usually for 

several sampling intervals, the value of the respon~e being stored at 

each sample point. This may be called the observation interval, since 

neither updating of the model nor recomputation of the controller 

coefficients takes place. The goodness of fit, between model and 

system responses during this stage, depends entirely on the accuracy 

of the initial model for the operating conditions within the system. 

The observation interval is completed after a predetermined 

number of samples have been collected, and the second stage, the 

updating of the model, commences. This is essentially the identifica

tion interval, since the model parameters are "identified" or the model 

is reoptimized on the basis of the observed system response. 

Having found the new low-order model, the next step i.s to 

recompute the controller coefficients. Since this is the stage that 

provides the adaptation of the control system, it is referred to as 
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the adaptive interval. Hhile theoretically it is de.sirable to complete 

both the identification and the adaptation during one sampling interval, 

so that the next observation stage may begin with the new controller 

parameters, it is possible in practice to realize a variety of combina

tions of the relative duration of each of these three intervals. In 

particular, the length of the adaptation interval is greatly dependent 

on the choice of the cost fun<.don. If a search routine needs to be 

used to find the ne~v controller parameters, the time will be muc.h longer 



than if simple analytical expressions give the desired quantities. 

Since the observation interval is not in fact part of the 

adaptive controller, and needs little explanation, it will not be 

cons ide red further. Before presenting some examples , hmvever, it is 

useful to summarize the formulae used in the identification and the 

adaptation stages. 

7.1.1 The Identification Interval 

It has been assumed throughout this thesis, that the system 

to be controlled ie replaced by a low-order open-loop model for the 

purpose of computing the controller coefficients. Hm-1ever, ~vhen 

realizing the suboptimal system and optimal model responses, both 

appear in the closed-loop form, as indicated in Figure 6-7. Since 

the same configuration is used in the adaptive scheme, it is necessary 

to be able to identify the equivalent open-loop parameters of a closed-

loop model, given the controller coefficients, and vice versa. 

Referring to Figure 6-7 and using the same procedure as in 

section 5. 5, it can be readily shm-m that for a model in the form 

X(s) _ ao 
U (s) - --:-2 _.....:._ ___ . 

s + a 1s + a0 

having a feedback loop k0 + k 1s and a feedforward block of k
0 

+ 1 

(Figure 6-7b), the equivalent open-loop model is 

X(s) bo 
~(s) = 2 

s + b
1

s + b 0 
where 

bo = ao + aoko 

bl = al + aOkl 

(7-1) 

(7-2) 

(7-3) 

(7-4) 
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Conversely, if a model in the form of equation (7-2) has been 

used to represent a closed-loop system having feedback parameters 

k* * 1 1 h f h" 1 h 
0 

and k 1 , the equivalent open-loop moce , on t e basis o w 1c1 t e 

new controller coefficients are to be determined, are given by 

{7-5) 

1 + k~ 

(7-6) 

For the case of ramp or higher-order inputs as tvell as for sys terns of 

order greater than t~.,ro, equations (7-3) to (7-6) can be readily 

extended by using equations (5-34) and (5-36). 

7.1.2 The Adnptation Interval 

It was pointed out during the description of the adaptive loop, 

that the nature of the cost function has a vital bearing on the amount 

of computer time that is necessary to determine the parameters of the 

control system. 

For an integral quadratic cost function in the form of 

f~ * 2 2 * 2 
Jl = O(ql(Xl- Xl) + q2 Xz + p(u- U) )dt (7-7) 

and the model given by equation (7-2), the optimal controller coefficients 

to transfer the model from a given initial state to the state [x~ O]T, 

are computed from equations (2-24), (2-25) and (2-28), giving 

q k 
ko = -1 + (1 + fJ 2 (7-8) 

(7-9) 

(7-10) 
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It is important to note, that k0 and hence ! 0 are functions of the 

performance index only, and hence remain constant during adaptation. 

In the case of the system performance being specified in terms 

of the step response of a second-order system, the controller coefficients 

are again obtained by simple formulae. Let the desired response be 

" ho 
X(s) = --~-- U (s) 

2 c 
s + h

1
s + h 0 

(7-11) 

where U (s) e 
1 =-
s 

Equations (5-22) and (5-30) are now applicable giving 

ho - ao 
(7-12) 

(7-13) 

(7-14) 

Clearly, no appreciable amount of computer time will be used in 

evaluating the last three equations. 

The time required for computation becomes a problem for on-line 

application when the coefficients of equation (7-11) are not specified, 

but need to be determ:f.ned by a search routine such that a general least 

pth or minimax cost function is optimized. The duration of the adaptation 

interval tvill be a function of the accuracy to which the optimum is 

approached and of the efficiency of .the search routine. 

It is interesting to note in this third case, that during the 

identification interval the feedback coefficients are held constant, 

and the model parameters are updated, while in the adaptation interval 

that follows, the model is invariant, but the controller coefficients 

are optimized. At the beginning of each identification and adaptation 
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interval the initial conditions for the model response are set equal 

to the values of the system response at that particular sampling 

. instant. 

7.2 Results for Integral Quadratic Cost Functions 

Because of the importance of the integral quadratic cost 

function in optimal control theory, the problem of adaptively 

controlling the nuclear reactor, such that a cost function of this 

form is minimized, has been chosen to demonstrate the basic capabilities 

of the proposed scheme. In particular, the effect of the initial model 

parameters, the duration of the identification interval and a change 

in temperature coefficient are to be considered. ~vo sets of responses 

will be used: 

1. Step change in demanded pmver from 90%-100% FP; the cost 

function being 

2. A 50%-100% FP change, subject to minimizing 

J
20 

*)2 2 2 ' 
J2 = 

0 
[(x1 - x 1 + 10x2 + O.l(u - u1

:) ]dt" 

The follmving six cases are considered: 

I. The open-loop model parameters, as given in Table 6-2 are used 

for computing the initial controller coefficients. Samples 

are taken every 0.2 second, and each observation interval is 

of 2 second duration. JJo li111it i.s placed on the identification 

interval, but the updating is assumed to be comple.ted in 0. 2 

second. 



II. As in I., but the number of function evaluations is limited to 

10, ensuring that the identification interval does not exceed 

0.2 second. 
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III. As in II., but the starting model parameters are the reoptimized 

ones, as given in Table 6-2. 1bese same parameters are used 

initially for the remaining three cases. 

IV. The sampling interval is reduced to 0.1 second, the observation 

interval to 1.0 second and the number of function evaluations 

during identification is limited to 5. 

V. The sampling and observation intervals are increased to 0.5 

and 5 seconds, respectively, the limit on the nurooer. of function 

evaluations being 25. 

VI. Using the time and starting parameter specifications as in 

case III., a 20% increase in the temperature coefficient is 

assumed, prior to the demanded change in power level. 

The results for these six conditions and the two power level 

changes are displaced in Tables 7-1 to 7-3 and Figures 7-1 to 7-3. 

Tables 7-1 and 7-2 show the adaptation of k
1 

with time (0-20 seconds) 

for each of the six cases. The total costs for the 20 second interval 

are given in Table 7-3. 

Considering case I, the adaptation of k 1 is seen to be completed 

after one observation interva:. :ror the 90%-100% power change, while it 

takes three intervals and a considerable variation in k
1 

for the 50%-

100% response. Figure 7-1 shovrs the actual responses. Three curves 



Time ~ (sec) 
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3 

4 

5 

6 

7 

8 

9 

10 

20 

I 
-~--' 

II III IV v 
-

5.220 

3.941 3.941 5.220 

5.003 

--

5.709 5.220 

5.900 1.815 5.951 r------

5. 709 

5. 709 

5.900 2.400 5.951 

5.709 

- --
5.709 

5.900 2.400 5.951 

5.709 5.220 

5.709 

5.900 2.400 5.951 ··-

5.709 . 
-- -· 

5.900 2.400 5.951 5.709 5.220 

Table 7-1. Changes in k 1 for a 90%-100% FP 
change in power level. 
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--

VI 

-

5.220 

5.965 

5.965 

t-----

5.965 

5.965 

--

5.965 



Time 
(sec) 

1 

2 

3 

~--

4 

1--· 

5 

6 

7 

8 

9 

10 

20 

I II III IV v 
-

10.276 

8.379 8.379 10.276 ---
11.156 

10.680 10.276 

3.806 3.806 3.940 --
10.680 

-·-

12.283 

9.104 5.028 7. 882 --
7.880 

--
14.141 

9.574 14.915 9.469 

' 8.006 12.895 

13.295 

9.574 15.415 9.469 

9. 797 

··-·· 

9.574 9.817 9.469 9. 797 9.039 

Table 7-2. Changes in k 1 for 50%-100% FP 
change in power level. 
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10.276 

4.004 

8.613 

9.653 I 

r---·--·--

9.674 

9.674 



IIII I II IV v 
-

[10' 1, 
20 

90%-100% FP Jl = 0.1]0 

- --r--

Model 
0.124 0.102 0.119 0.110 0.148 cost 

--~-- ··-r------
System 0.126 0.126 0.121 0.111 0.151 cost 

1-------- '---· 

Model 
cost 

System 
cost 

....___ 

50%-100% [1' 1.0, 
20 

FP J2 = 0.1.]0 

1.330 1.361 1.301 1.249 1.330 

--
1.311 1.341 1.291 1.223 1. 314 

--

Table 7-3. Optimal model costs and suboptimal 
system costs using adaptive control. 
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1.299 
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are indicated: the actual reactor output, the closed-loop model 

response, and the approximation provided by the updated model, the 

latter being computed during the identification interval. Note the 

large initial discrepancy between system and closed-loop model 

responses. Follmving one stage of identification, this is greatly 

reduced, and it becomes difficult to distinguish the three responses. 

The good identification in the above example could be achieved 

because the duration of the identification interval was not limited. 

If it is desired to update the model parameters within one sampling 

interval, the number of-function evaluations in the search program 

had to be restricted to 10. The resulting changes in k
1 

are seen 

in Tables 7-1 and 7-2 column II, and the corresponding responses in 

Figure 7-2. 1be considerable deviation between model and system 

responses is evident, as is the sudden change of slope of the reactor 

output at the end of the third identification interval, where k 1 

changes from 5.028 to 14.915. It is important to note though, that 

no appreciable change in system costs has taken place in going from 

case I to case II. 
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The large initial discrepancy between syste~ and model responses 

may be reduced considerably by using as initial model parameters the 

values found from repeated reopti~zations of suboptimal responses. 

Using these values from Table 6-2, the resulting performance is 

indicated in Figure 7-3, shmving good agreement between system and 

model responses. 

The effects of reducing and increasing the observation interval 

from the above 2 second value, are indicated, respectively, by columns 



IV and V of the tables. For the 90%-100% only small changes in k 1 

are observed, and for the 5 second case, no updating takes place at 

all. This is not surprising, since the response has virtually 

reached the desired value after 5 seconds. In the case of the 50%-

100% response, considerable variations in k 1 are observed, as the 

program attempts to find the best low-order model for each segment 

of the actual response. For both responses, using one-second 

observation intervals results in the lm-1est system cost. 

The last case to be considered is the effect of a 20% increase 

in the temperature coefficient. Hllile it is possible to determine 

long-range changes in the temperature coefficient[SJ, and adjust the 
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model parameters accordingly, this has not been done in this case, in 

order to illustrate the ability of the adaptive controller to compensate 

for undetected parameter changes. In comparing the results of column 

VI to those in III, both the values of k 1 and those of system costs 

are very close together, indicating the successful compensation of the 

parameter change. 

The above examples illustrate well the performance of the 

adaptive controller. The advantage of using an int~gral quadratic 

cost function is that once the model parameters are knmm, the controller 

coefficients are readily computed from simple formulae. 

In the examples to follow, the same detailed study of the 

adaptive controller is not undertaken; they serve merely to illustrate 

the versatility of the basic approach. 



7.3 Results for a Desired Step Response 

While it is possible to choose the relative weights in an 

integral cost function to realize a desired transient response, no 

direct reladonship bet\-Jeen the two exists, and particularly for a 

nonlinear system, the response for a given cost function is dependent 

on the operating characteristics of the plant. If the objective of 

the control system designer is to realize a particular transient 

response, and if this can be specified in terms of a rational transfer 

function with no finite zeros, the formulae given by equations (5-22) 

and (5-30) can be used directly to obtain the desired controller 

coefficients. For the particular case of a second-order system l·lith 

uni.ty d-e gain, these relationships are given by equations (7-12) to 

(7-·14). 

To illustrate the realization of a desired transient response 

by an adaptive configuration, the critically damped.case has been 

chosen, making h 0 = 1 and h 1 = 2 in equation (7-11). For the 90%-

100% FP pmver level change and an observation interval of 2 seconds 

(samples being taken at every 0.2 second), the response of the reactor 

is sho,vn in Figure 7-4. The good agreement between the actual and 

desired responses is evident from the diagram. 

7.4 Results for Least pth and Minimax Cost Functions 

In the general case of least pth and minimax cost functions, 

analytical I'esults are not available, as for the particular objectives 

used in the last two sections. In order to apply the formulae of 

equations (7-12) to (7-14), the optimal response must first be 
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approximated by a function in the form of equation (7-11). This has 

been achieved by the use of search routines, but at the present, 

these may take a considerable amount of computer time, and create 

problems with on-line realization. vfuile this time can be reduced 

by using fewer sample points and initial values in the proximity of 

the optimum, considerable work is yet to be done in developing fast 

search methods ~vhich can approximate the optimum to a reasonable 

accuracy in a few steps. For the results in this section, pattern 

search has been used, t\lhich is suitable to illustrate the principle 

of the technique) although inefficient for on-line applications. 

Adaptive responses are shot-m for the three suboptimal examples 

considered in the last chapter: (i) a monotonic reactivity insertion, 

such that the cost function i.n equation (6-4) is minimized, (U) ramp 

increases in reactivity, subject to the objective of equation (6-5) 

and (iii) of equation (6-6). The power level changes from 90% to 

100% FP in ea.ch case. 

The reactor response as tvell as the corresponding reactivity 

insertion are shmvn in Figure 7-5. The suboptimal response has also 

been shown for comparison, and no significant deviations are observed. 

The actual cost has somewhat deteriorated from the suboptimal case 

i.e., 1.368 to 1.412. Considering that only 10 function evaluations 

were permitted (requiring approximately 1.0 second), the closeness 

of the responses is quite good. 

For the ramp change in pm.;er level and the cost function 

containi.ng the sum of the absolute values of the errors, the result 

is shmn1 in Figure 7-6a, t.Jhile the response for the minimax objective 
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is indicated by Figure 7-6b. The latter one is seen to give particularly 

good following of the desired response. The changes in system costs, in 

comparison to the suboptimal ones, are: 

Suboptimal 

Adaptive 

Least pth 

0.420 

o. 388 

Minimax 

0.0281 

0.0318 

Good agreement beb:veen the costs is evident, a small decrease for 

the least pth case, and a slight increase in minimax cost. 

~bile it is difficult to choose a basis of comparison between 

the proposed adaptive controller and the existing control system at 

the Douglas Point reactor, since the design objective for the latter 

is not knmvn, the response of the actual plant is shmvn 1.~ Figure 7-7, 

as obtained in reference [5]. Clearly, at least as far as the abiH_ty 

of the system to follow the demanded pmver change is concerned, the 

proposed scheme is far superior to the existing one. 
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to a 90%-100% FP change in demanded power. 
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CHAPTER 8 

CONCLUSIONS AND RECO:t-JNENDATIONS FOR FUTURE WORK 

While at the outset of this thesis considerable emphasis was 

placed on the particular control system at the Douglas Point pow·er 

station, a great deal more has been accomplished than simply proposing 

a new type of controller for this particular plant, or for other 

reactors of its kind. Hence, only a fleeting comparison betHeen the 

results achieved by the proposed adaptive controller and the performance 

of the existing control system. has been made. 

As a result of this thesis, a method nmv exists for the 

adaptlve control of high-order nonlinear systems tvith time--varying 

parameters, provided a suitable general purpose computer is available 

to implement the control system. The nuclear poiver reactor is an 

important example of such a system, hence its extensive use in 

demonstrating the capabilities of the proposed method. 

At the heart of the new technique is the use of certain 

numerical optimization algorithms, knmm as search routines, to find 

a lmv-order linear model of the plant. The parameters of the model 

are chosen to minimize the deviation between the observed system 

response and that of the model, in any desired sense. For such a 

model, the optimal feedback parameters can be computed readily for 

integral quadratic cost functions or if the desired response can be 

described by a rational transfer function having no finite zeros. 

For the more general least pth and rni.nirnax objectives, the search 
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routines are again used to find the optimal controller coefficients of 

the model. Hhile the same control system will result in suboptimal 

performance of the plant, provided the model gives a sufficiently 

accurate representation of the system response, the difference 

between optimal model cost and suboptimal system cost will be negligible 

for practical purposes. It should also be realized, that an adaptive 

system never quite reaches the optimum, hence the approach of successively 

improved suboptimal controllers is quite valid. 

In deriving the adaptive controller, t~-10 important contributions 

have been made, in the areas of modelling and suboptimal control of 

high-order linear systems. Previously proposed methods, for reducing 

the order of the system describing differential equations, have been 

restricted to either qualitative criteria for this purpose, or only 

a least squares type objective could be minimized. Using the modelling 

technique presented in this thesis, no restriction is placed on the 

error criterion. 

While the possibility of representing a high-order system by 

a substantially lm-1er-order one is useful in its own right; it has 

been demonstrated in this thesis that the optimal controller derived 

for the low-order model can be used for the suboptimal control of the 

high-order system. Furthermore, for systems having no finite zeros, a 

new approach has been proposed for obtaining the optimal feedback 

controller for least pth and minimax cost functions. For systems 

having finite zeros, suboptimal performance may be realized by the 

above-mentioned modelling technique. 



A great advantage of the proposed technique of designing a 

suboptimal controller is, that the \vhole process can be realized in 

the form of a digital computer programme. All the designer has to 

specify is the system equations or, alternatively, a set of input-
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output data that characterizes the system, as well as the desired 

closed-loop performance. The latter may be an integral or a sum of 

the pth pm.;rer of samples of the input and the output as well as their 

derivatives; or the desired time-domain response may be specified in 

terms of the step response of a rational transfer function having no 

finite zeros. 

Because of the vide range of topics covered in this thesis, 

from the modelling and suboptimal control of high-order linear systems 

to the adaptive control of a nuclear reactor, many of these areas 

need a considerable amount of additional research effort. As an 

extension of the modelling l-lork described in this thesis, the 

application of various new search routines to this problem has already 

been undertaken[44J. Some of the optimal models derived for the 

seventh-order system have been used in the investigation of suboptimal 

control of high-order systems[45 J. Both of these areas are potentially 

open for additional research: models of order greater than two may be 

needed in.certain applications, or more than one model of first- and 

second-order should be used to approximate a giv2n system, in a piece

wise manner. The corresponding suboptimal controller would then have 

coefficients \vhich chan3e at the preassigned instants. An extension 

of the proposed method of optir<-.al control for least pth and minimax 

cost functions, to cover the case of responses with finite zeros, 
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would also be an important contribution. 

Instead of using a rational transfer function to approximate 

the optimal response of the system, the use of other mathematical 

functions should be considered. Polynomials are an obvious candidate, 

and the applice1.tion of orthogonal functions could also lead to useful 

results. Legendre polynomials have already been tested in such an 

1 . · [ 22 ) d h f F · i f . 1 t ti app 1cat1on an t e use o our1er ser es or s1gna represen a on 

is well-knmvn. For the use of special purpose digital controllers, 

the unique properties of tvalsh functions [ 4 7) ' [ 48] could be used to 

great advantage, in modelling the system as well as representing the 

desired performance. 

Turning our attention now to the adaptive aspect of our problem, 

the most important improvements in the proposed method should accrue 

from the application of more efficient numerical optimization methods 

to both updating the model parameters and to reoptimize the controller 

coefficients. The use of gradi.ent search routines and new concepts in 

optimizing minimax objectives[49 ),[SO) should lead to improvements 

in the accuracy of locating the minimum. There is also a great need 

for search techniques which can produce significant ··reductions in 

the cost function in only a few steps, and requiring \vord lengths 

and fast access memory storage appropriate to process computers. 

The proposed solution of the reactor control problem also 

suggests many areas of useful research. The consideration of noise 

is perhaps the foremost of these. The effect of noisy observations 

on identifying the model parameters and on the resultant optimal 

controller should be investigated. Regulation of the pmver level, 
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another important practical problem. 
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With the increasing size of nuclear pm-1er reactors, spatial 

effects become increasingly significant. The approach presented here, 

based on a point kinetic model will need to be modified, to take into 

account the interaction of the various control zones of the reactor. 

Maintaining a uniform flux density and preventing the build-up of 

xenon spatial oscillations is also an important task of the control 

system. The optimal start-up and shut-dmm control of the reactor 

open up further areas for the use of modern control theory. 

Perhaps the single most notable contribution of the vJOrk 

presented in this thesis is the application of some t.vell established 

theoretical results to a practical problem. lVhile it is not claimed 

that all the questions t-Thich arise in the adaptive control of nuclear 

reactors have been fully anstvered, the approach presented here and 

the results which have been obtained, should be a considerable 

contributi.on towards achieving that goa!". 
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APPENDIX 

Numerical values of the.Douglas Point reactor model parameters, 

which have been defined in Chapter 3. 

G = 945 

't == 0.159 second 
m 

f(v) = 0.02 mk 
sec-volt 

0.3 mk =--v sec-volt 

Tc = 4.54 mk at 100% FP 

't = 12.5 seconds T 

l = 7.216 • 10-4 second 

s = 4.867 • 10-3 

Delayed si (%) 
group 

2 0.05667 

3 0.1606 7 

4 0.14200 

5 0.1106 7 

6 0.01667 

186. 

lvl < 15 

lvl > 15 

Ai (sec-1) 

1.61 

0.457 

0.154 

0.0315 

0.0125 




