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ABSTRACT:

The problem of adaptively controlling the power level changes of

a nuclear reactor, by the use of a digital computer, is considered. It
is established, that for the application of modern control theory a
low-order linear model of the reactor is needed, but that the existing
models are not sufficiently accurate for the desired purpose. A new
technique is therefore déveloped for finding low-order linear models of
a given high-order system. Such models are shown to be suitable for the
suboptimal control of the original system, subject to cost functions
normally encountered in practice. The proposed meth;ds of modelling and
suboptimal control are applied to the adaptive control of a nucleér
reactor. In order to emphasize practical realization, a model of an
operating nuclear power plant is considered,with embhasis on the ﬁhysical
limitations fmposed by the controller mechanism. It is shown, that

despite wide variations in the wmodel parameters as a function of the

operating power level and of the temperature coefficient, the model can




be updated on-line to a sufficient accuracy to produce negligible
deviations between optimal model and suboptimal system performance.
Apart from the realization of the adaptive controller, it is indicated
that the proposed technique is also suitable for the fully computerized

design of optimal and suboptimal feedback controllers for a wide

variety of cost functions.
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CHAPTER 1
INTRODUCTION

h March 1971, the first reactor at the Pickering Nuclear Power
Plant went critical. A historical first had occured: a large, 500
megawatt installation started operation, entirely under the control of
digital computers. The uniqueness of this event is particularly
surprising in view of the parallel development of nuclear reactors
and digital computers.

When the first Canadizn nuclear power station began commercial
operation in 1967 at Ibuglas Point, Ontario, a control computer was
installed, but it has been used only for the regulation of nonessential
parametexs. The experience gained in that application was, however,
sufficiently favourzble to entrust the complete automatic control of
the next nuclear power station, the one at Pickering, to digital
computers.

The step, of going from a custom~built analogue controller to
a digital computer, was as great as the designers of’the control system
could take, in view of the stringent safety requirem;nts of the nuclear
industry. The design philosophy of the controller remained the same,
the system that has been found reliable at Douglas Point, was realized
on digital machines, except for the modifications inherent in going
from a smaller, essentially point controlled éystem, to a large, multi-
region one.

Once the digital computer has proven itself in the field, the

next step of the designer should be to take advantage of the unique



abilities of the computer, and to attempt to improve the performance of
the system under control. |
The classical methods of controller design, typically in the

frequency—domain[l]’[zl, are inadequate for the task of optimizing the
rerformance of a large system, such as the nuclear reactor. Recent
advances in optimal control theory and state-varizble analysis in the
time—domain[B]’[A], which necessitate the presence of an on-line computer
for their realization, have been applied up to date mainly in the aero-
space industry. It is the purpose of this thesis, to investigate the
on-line digital computer control of nuclear reactors, with a view to
applying optimal control theory. Since it is knowvn that the nuclear
reactor is a nonlinear system having time-varying parameters, it is
expected that the optimal controller will not be constént, but will
have‘to be adapted to prevailing operating conditions in the plant[S]’[el.

| The inherent difficulty of field testing a new control system
for a nuclear power reactor pecessitates the development of a valid
model for the reactor. Since an accurate digital computer simulation
program has already been written by the author for the Douglas Point

(5]

plant and because for this smaller reactor, spatial effects may be
neglected, it has been selacted as the basis for the present work.
The earlier investigation by the author (reference [5]) of an
adaptive nuclear reactor controller had been restricted by the
adherence to the demanded power level change programs of the Douglas
Point plant. The control scheme was developed using semi—empirical

simulation methods, and is limited to the minimization of the integral .

of the absolute value of the error between actual and demsnded power output.



The aim in the present work is to realize near-optiwmum

performance of the reactor and controller mechanism, for a variety

of inputs and cost functions, in an adaptive configuration. The problem

is solved by applying some of the well-known results of modern control
theory as well as more recent numerical optimization techniques. At
the heart of the proposed method is the computation of optimal low-
order linear models, which represent, in a piece-wise manner, the
nonlinear nuclear reactor and controller mechanism. The model
parameters are updated on-line, on the basis of the observed reactor
performance.

Important differences, from a practical point of view, between
the present research effort and those described by other investigators,
are not only in the form of the assumed low-order model and in the
method of updating its parameters, but also that the resultant optimal
control law is tested on the actual, appreciably higher~order system
dynamics. It is established that the difference between optimal model
performance and the corresponding suboptimal system cost are within
the usual engineering accuracies.

Since an extensive literature survey prior to 1969 has already
been presented by the author, and another work published at about the
sameAtime also gives a thorough exposé of earlier research efforts[7],
only the most recent papers on nuclear reactor control are reviewed in
this thesis., With the nonspecialist reader in mind, description and
criticism of relevant papers will be undertaken in the appropriate
chapters, after the necessary background has been established.

In writing this thesis, an elementavry appreciation of the basic



processes that take place in a nuclear reactor is assumed. A simple
explanation of essential aspects of the type of natural uranium fueled
and heavy-water moderated reactor that we are considering has been

(8]

given by the author elsewhere . Several excellent texts also exist
on the subject, to which the interested reader may turn[6]’[9]; The
reactor kinetic equations are therefore presented without detailed
developments, and only those aspects of the Douglas Point reactor
simulation program are described which are essential to the present
work.

In Chapter 2, the basic optimal control problem is stated, and
its solution for integral quadratic cost functions is indicated.
Relationships between the regulator and servomechanism problems are
established, and formulze for the optimal feedback coefficients for a.
second-order system are derived.

The problems associated withvapplying the results of optimal
control theory to the nuclear reactor control problem are discussed
in Chapter 3. The various reactor kinetic models which have been
described in the literature are considered, and their behaviour for
step-changes in reactivity presented. The effect of‘temperature»
changes on reactivity and practical limitations on the controller
mechanism are next observed, leading up to the model of the Douglas
Point plant. It is established that none of the classical low-order
reactor kinetic models are adequate for representing the behaviour of
a realistic system. The most important parameters of a nuclear power
plant are considered, to form a meaningful costvfunction that reflects

the performance of the reactor and associated control system. A critical



review of recent research proposals for optimal reactor control
concludes the chapter.

Since the on-line realization of the optimal feedback controller
derived in Chapter 2 necessitates the availability of a low-order
1ineaf model of the system to be controlled, and as the classical low- A
order reactor models have been found inadequate in Chapter 3, the
problem of deriving better models is considered in Chapter 4. In
particular, a method based on search routines-is presented, which is
capable of giving low-order linear models, such that the deviation
between system and model responses, to the same input, is minimized
in any desired sense. It is shown that the technique is applicable
to the on~line identification of the model parameters, making it
suitable for adaptive control applications.

The use of a low-order model to derive the optimal controller
for a high-order system will result in suboptimal performance of the
latter. It is shown in Chapter 5, that the difference between
optinal model cost and suboptimal system cost is sufficiently small to
make the method useful in practice. Another significant contribution
that is presented in this chapter, is the derivation of the optimal
controller for least pth and minimax cost functionms.

In Chapter 6 the methods developed in the last two chapters
are applied to the suboptimal control of the nuclear reactor. The
types of responses obtained fom various cost functions are presented,
and the effect of nonlinear system characteristics and plant parameter
changes are considered.

The solution of our origina' problem, the adaptive control of



the nuclear reactor is presented in Chapter 7. The on~line identificétion
of the model parameters is considered as well as the corresponding up-
dating of the feedback controller. Results for a wide variety of
operating conditions and cost functions are presented to illustrate

the versatility of the proposed method.

In the concluding chapter, the main results and contributions
of the thesis are summarized. By considering the various assumptions
made in deriving our results,; several recommendations for future
research are made.

Apart from the references cited in the thesis, selected
bibliographies of the nuclear reactor and the control literature are
presented, A list of papers by the author related to this thesis and
accepted for publication is also given for the benefit of the interested

reader.



CHAPTER 2
THE OPTIMAL CONTROL PROBLEM

The majority of the applications of optimal control theory are
based on either Dynamic Programming[lol or on.Pontryagin’s Maximum
Principle[ll]. The major difficulty associated with the former is the
very large memory requirements for systems of appreciable order (four
or greater), while the latter technique necessitates the solution of a
two-point boundary value problem. While no general solution is known
to the optimal control problem, the special case of the linear
regulator,bwith integral quadratic cost function, is readily treated
by both methods[lzl. In this thesis the maximum principle will be
used, as it appears to have the greater potential for the type of
application we are considering.

Efforts in the past, to apply modern control theory to such
practical problems as nﬁélear reactor control have centered on finding

(71,

solutions, usually numerical, to the two-point boundary value problem
[13]’[14]. The essence of the approach to be pursugd in this thesis is
to somehow reduce or transform the system equations to a simpler form,
such that the solution of the two-point boundary value problem is
avoided.

The reactor control problem to be considered is essentially a
servo~mechanism problem, since the final value of the output is always
greater than zero. However, since the mathematical formalism of the
regulator problem (final value of the state vector zero) is more

convenient, this will be first considered. The equivalence of the two

7.



problems, for a step input, will be established subsequently.
Since the full derivation of the optimal linear regulator is
well—known[lz], only a brief outline is presented in the next section,

for the sake of completeness.

2.1 The Linear Regulator
It is desired to find the feedback control law for an nth order
single input single output linear dynamic system
é = Ax + bu (2-1)

(3]

In phase-variable notation X is the output and X250e05X, its first
and subsequent derivatives, A is the nxn system matrix, b the n-
dimensional control vector, and u is the input which is to provide

optimum performance by minimizing the cost function
tf T
J= J 5(x Q x + p u?)dt (2-2)
0

while the system is driven from a given initial state to a desired
final state in the time interval [O, tf]; Q is an nxn positive semi-
definite symmetric matrix and p a positive nuwmber.

To solve the above problem via the maximum pfinciple, the
Hamiltonian is first formed

Tax+2Tbu (2-3)

HGxuw,dt) =% x Qx+3%pu? + )

where A is the n-dimensional costate vector,

The maxiwunm principle states that for the optimal control

%% =pu+ ET A=0 (2-4)

and



Heqx+aTa=n (2-5)

with the boundary condition on A given at the final time

M) = 0 (2-6)

The optimum control is given by equation (2-4)

1T ) -7

u = -p-

1o

and since a feedback control law is desired, let
A=Rx (2-8)

to give

u= -p'1 b

R x (2-9)

It only remains now to determine the elements of the matrix R. Note,

that at this stage all the quéntities are functions of time,
Differentiating equation (2-8) leads to

=R

1>

+ R (2-10)

g
R

and using the expression for i as given by equation (2-5) we obtain

Rx+Rx=-Qx-A Rx (2-11)
The substitution of equation (2-9) into equation (2-1) leads to

%= (A-bplb Rx | (2-12)
and it is now possible to eliminate é from equation (2-11):

(R+RA-Rbp ! b R+ Q+A  R)x =0 (2-13)
Since this equation must hold for arbitrary x, the term in brackets
must be zero. The result is a matrix Riccati differential equation,
which must be solved for the elements of R:

R+ RA ~ Rb p~! gT R+ Q+ ATR=0 (2-14)
The boundary condition is obtained from equations (2-6) and (2-8):

R(tf) =0 v (2-15)



Hence the matrix Riccati equation has to be solved backward in
time from the given terminal time, te. The resultant time-varying
matrix R has tc be stored, and then used in equation (2-9) to give the
desired closed—-loop control law.

In evaluating R, it is useful to note that, provided Q is a
symmetric matrix, so is R. Another important requirement on R is
that it be positive definite. This can be most readily seen by an
alternative derivation of equation (2-14). The maximum principle is
again used, but the Hamilton-Jacobi approach is foliowed[A]. The only

step of interest to us is the requirement
T E3 |
Rx-= J (xQx+p ul)dt (2-16)
0 .

%

which is proved in the Hamilton-Jacobi method. Since the integrand
of the performance index is a positive definite function, R must also
be positive definite. Equation (2-16) also indicates a simple method
for evaluating the cost function.

The main problem associated with the practical usefulness of
equation (2-14) in providing the optimal feedback controller is, that
for high-order systems having time-varying parameters, the repeated
evaluation of the matrix Riccati equation cannot be accomplished in
sufficiently short time for on-line control applications. A useful
computational simplification arises if the terminal time te is equated
to infinity, and A, b, Q and p in equations (2~1) and (2-2) are
restricted to be time invariant. In that case, the R matrix becomes
a constant, as can be seen from equation (2-16): for a given x the

performance index does not change for a finite time translation. 1In

practice, for the control of transients and changes in input, the

10.



terminal time may be regarded as infinite as svon as steady state is
established.
For a constant R, the matrix Riccati equation (2-14) reduces
to a matrix algebraic equation
RA - Rb p"! bT R+ Q+ AT R =0 (2-17)
The solution of this equation, in general, is not readily accomplished,
because it is nonlinear. There is a special case, however, for which

analytical expressions for the elements of the R matrix can be found.

These are derived in the next section.

2.2 Optimal Feedback Control of a Second-Order System

Consider the second-order system

X o 1] |x 0
. = + u (2-18)
Xp -ag -aj| [%2 bg

-

and a quadratic cost function in the form of equation (2-2) with

q; O

L
"

0 «q
Performing the matrix operations indicated by equation (2~17), and
remeubering the symnetric nature of R, the following'three equations

are obtained:

b2

9 2 -

'Y riz + 23, r;p ~q; =0

b2

0

p T2 v 233 Ty - 2rp; - qp =0

bg
31Ty ¥ 39 Ty F 5T Tip Ty T =0

Solving these equations in the above order, and invoking the positive

11.



12.

definite requirement on R when selecting the roots of the quadratics
which arise, we obtain the desired analytical expressions for the

elements of the R matrix.

2
anp b 1
w0 P a2 0 4 -
Ty, = - 2 + 2 [ao + > q,] (2-19)
0 0
2
a,p b 1
- 1", P 2,0 s -
Ty, = = -3~»+ 5 [a1 + > (q2 + 2r12)] (2-20)
b b
0 0
by
T, =3 1), + a; T,, +~E~ Iy, Toy (2-21)

In order to obtain the expressions for the feedback coefficients,

rewrite equation (2-9) in the form

u= -k x (2-22)
where
k' =p-1bp" R (2-23)
or
ko | Po |T12
"
k, Ly
Hence . b2
N IO R S >
ky = - 5, + b [ag + 5= q;] (2-24)
2
a b
e 2,1 2 0 3
kl = - 'B—(-)- + bo [a1 + -1;—' 9, + 2b0 k.o] (2-25)

The value of r;; 1s useful in evaluating the cost function, as
indicated by equation (2-16). Given the initial state

XIO A

%0 0

the cost incurred in driving the system to the origin of state space in



13,

an optimum manner is

il
]

T
4 X, R xq

The use of equation (2-26) is considerably simpler than numerically

integrating the cost function.

2.3 The Lipear Servomechanism

The regulator problem considered in the previous sections is
convenieﬁt from an analysis point of view, but is not the problem
commonly encountered in actual practice. The more typical control
problem is to drive the system from a given initial state at t = ts

to a desired finite terminal state at t = t

£ such that the cost

function N
f
J = I [(x - §*)T Q (x - x*) +plu - u*)z]dt (2-27)
t .
0.

is minimized.

For a step change in input, the solution of the servomechanism
problem is obtained directly from the case of the linear regulator by
the addition of a feedforward block, having a gain that ensures zero
steady—state error, i.e., §* = x(tg) and u* = u(tf). Clearly, all
that is necessary, is a linear translation from having §(tf)=0 and
u(0*)=0 to both of these quantities being finite. Furthermore, to

* and u# must be

prevent the cost function from becoming infinite, x
introduced to ensure that the integrand of equation (2-27) tends to

zero as t. approaches infinity,



14.

The block diagram representation of the regulator and servo-
mechanism problems are shown in Figure 2-1, Note that the feedback
blocks are identical in both cases.

The use of the transfer function notation leads to a simple
evaluation of the feedforward gain ’KO from the requirement that
x(tf) = A, where x is the output and A is the value of the input at
t = o,

In going from the time domain to the frequency domain, the

following notation has been used:

x(t) =[1 0 0 ... 0]x(t)
X(s) = L[x(t)]
U(s) = L{u(t)]

where L is the Laplace transform operator and s the complex frequency
variable.

To find the value of Zo, assume that steady state has been
reached after the application of the step input. Referring to

Figure 2-1b, the following relations hold:

bO
X(s) = — U(s)
2q
I_OA
U(s) = — - k, X(s)
s
Hence
b, £,A b,k
0 ™0 070
X(s) = — —— =~ X(s)
a; s a,
b.k b. L
i.e., X(s)[L + —-9 =204
ao ao S

and since it is required that X(s) =

% in the steady state, we must have

(2-28)

G

i
£, =+— +k
b, 0
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The linear regulator
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Figure 2-1.

The linear servomechanism

Block~diagram representation for establishing
the equivalence of the regulator and servo-
mechanism problems for a step change in input.

n‘il . Si
. i X(s)
i=0 ‘
= n-1 -
n
s"+ ) a,
i=0
n-1
z ki si o ——
i=
n-1 i
U(s) iZO bi s X(s)
= n-1 B
- st + Z a
i=0
n-1 i
Zo ._.ki SO B e




The value of u*(t) is also readily found using the requirement
that in the steady state

X(s) = ﬁi

It follows from Figure 2-1b that

0

In the case where u(t) is not a step but sowe other time
function, the above result is still applicable as long as the valus
of u(t) approaches a constant value after a finite time interval has
elapsed. This will always be the case for the control problems
considered in this thesis. For the nuclear reactor in particular,
the task is always to transfer the power level from one given constant
value to another.

Before the theories developed in this chapter can be applied
to the reactor control problem, we must consider the mathematical
description of the system. Since the plant equations will be found
to be nonlinear, it wili be necessary to find a linear model of the

plant, in order to derive the desired optimal feedback controller.

16.



CHAPTER 3
OPTIMAL CONTROL OF NUCLEAR REACTORS

The optimal control problem, as discussed in the previous
chapter, may‘be viewed as consisting of two parts: the system
equations and the cost function. In the general problem formulation,
no restrictions are placed on either, but nor is an analytical
solution known. For the special case of a linear system and integral
quadratic cost functioﬁ the optimal feedback controller has been
developed in the previous chapter. Solutions have also been found
for certain types of nonlinear systems and/or particular nonquadratic

(151, [161, [17]

cost functions Numerical optimization techniques have

also been found useful in solving various optimal control problems,
for which analytic solutions are not readily obtained[lS]’[lg].

For the particular case of nuclear reactor control, both the
system equations and the cost function aspects of the optimal control
problem ére considered in this chapter. In the present work, the
mathematical model used to describe the system dynagics has a dual
role: it must be sufficiently accurate to be a valih representation
of the physical plant, butrat the same time be simple enough to make
the computation of the feedback coefficients realizable in practice.
These requirements are conflicting, and research efforts in the past
invariably used oversimplified mcdels to represent the reactor, and
no apparent attempts were made to evaluate the performance of the
proposed controller on & more complete mathematical model, As will be

shown in this chapter, these reduced order models are far from adequate

i7.
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in describing the behaviour of the nuclear reactor.

3.1 The Six Delayed Neutron Group Model
The point kinetic equations, that adequately describe the
dynamic behaviour of a nuclear reactor for the purposes of control

system design, lead to the so-called six delayed neutron group

model[zo]:

dgét) - 6k(z)*8 alt) + g Ay ¢y (0) (3-1)
dci(t) Bi ‘
4 T n(t) - Ai ci(t) i=1,...,6 (3-2)
where

n(t) = neutron power as a fraction of full power

t = time

8k(t) = reactivity

B8 = total delayed neutron fraction

L = mean effective lifetime of a prompt neutron

Ai = decay constant of the ith neutron precursor

ci(t) = concentration of ith precursor

Bi = fraction of delayed neutrons due tolith precursor

Numerical values for these constants, appropriate to the Douglas Point
reactor, are given in Appendix I.

It is important to note that, in equation (3-1) the input (8k)
and the output (n) appear as a product, making the input dependent on
the operating power level., Hence, even though for a given reactivity
step the kinetic equations are linsar, the output varies in a nonlinear

manner as different values of reaccivity are applied. These nonlinear



characteristics are clearly illustrated in Figure 3~1, where the
results of solving equations (3-1) and (3-2) for various constant
values of reactivity input have been plotted.

Further nonlinearities arise when closed loop control is
attempted, since in that case the reactivity is an explicit function
of the instantaneous neutron population. In the so-called power
range (20% - 1007 of full power), reactivity also becomes a function
of the operating temperature. Both of these nonlinearities will be
discussed in this chapter.

Since the optimal controller equations derived in Chapter 2
are applicable only to linear systems, it is desirable to have a
linearized form of equations (3-1) and (3-2). Linearization may be
achieved in the neighbourhood of a given operating point, by
considering small perturbations in neutron level (n0 + 8n) and
precursor concentrations (ciO -+ Gci). Since at equilibrium the
reactivity is zero, the phange in reactivity is still denoted by d&k.
Substitution of these small deviations in equations (3-1) and (3-2)

leads to the following:

d(én) _ 6k-8
iy (n0 + én) + g )\i(cio + Gci) (3-3)
d(ﬁci) By
"—'&?—-‘ = —Z— (no + &n) - }\i(cio + Sci) (3-4)
At t = 0 equation (3-4) gives
B
S S
0 =71 = A ¢4y
Bi
i.e., 7m0 = Ay ey (3-5)

19.
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and
Ba, =712, ¢ (3-6)
L0 i i Tip
since
B =178
i i
Expanding equations (3-3) and (3-4) yields
a@n) sk _ 8 Skén _ Bén |
dc ST Mo T Z™ T2 £+§Ai°io+§"i‘5°1
d(sc,) B, B.
i 1 T S -
dc =7 ng + 7 én Ai Cio Ai Gci

Using the relationships of (3-5) and (3-6) and neglecting terms of

second order, the linearized kinetic equations are obtained,

dc(lin) - %k_ ng - % en+ ] se, (3-7)
1

d(éc,) B

__Ezi_.= zi én -~ Ai Gci (3-8)

Comparison of the responses producéd by the linearized, and
the original, essentially nonlinear kinetic equations, will be
presented in the next section, after several other kinetics models

have been derived.

3.2 Classical Low-Order Reactor Models

Based on the physical understanding of the nuclear process,

21.

the order of the point kinetic equations may be reduced considerably[6].

The resultant models, typically of order one or two, may be referred

to as the 'classical" reactor models. Their main use is in deriving

approximate solutions to reactor kinetic problems, and they have been



used extensively in optimal control studies. However, as will be
illustrated in the subsequent sections, the deviation between the
responses of these simplified models and the six delayed neutron

group representation is excessive for practical control system design.

3.2.1 One Delayed Neutron Group

The basic problem in trying to reduce the order of the six
group model is how to account for the delayed neutrons. A very
useful simplification results from assuming all the neutrons to
belong to a single group, resulting in the one delayed neutron
group model

dn(e) | SEDZ6 o(e) + re(n) (3-9)

dc

dt

el

n(t) - Ac(t) ; : (3-10) -

where the average decay constant X is computed from

L.
)

™|

=
1=1 M
The linearization of the one delayed neutron group model is made along
similar lines to the p;evious case, except that the subscripts and
- summation sign are omitted. By analogy, the result can be written

down by inspection of equations (3-7) and (3-8):

d(éu) _ Sk B
4t "% M "7 én + Adc (3-11)
4(e) _ B s _ '

ic "7 én - ASc (3.12)

Further simplifications of the one delayed neutron group model

are possible by setting the derivative in either equation (3-9) or in

22,
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(3~10) to zero. The following is the physical reasoning behind

obtaining these first order models.

3.2.2 Proumpt-Jump Approximation

Reference to Figure 3-1 indicates that an almost instantaneous
change in neutron population occurs at t=0. At this stage, the prompt
neutrons are the major influencing factor, with a time-constant in
the order of a millisecond. For most control applications such short
time-constants may be neglected, and the assumption that there is
a step change in neutron level at t=0 does not introduce significant
errors. The result is the so-called prompt-jump model.

Setting the derivative equal to zero in equation (3-9) gives

dn _ . _ Sk-B
at = 0= —7 n + Ac
or
_ B-Sk i
c="p-n (3-13)
and
de _ B-8k dn _
dt L) dt (3-14)

Substituting the last two relationships into equation (3-10) leads to a
first-order differential equation for the neutron level,

d ASk
dt = 3ok (3-15)

The linear model is again found by considering a perturbation about the

operating neutron level n, + 6n.

0

d(én) _ Adk
dt  g-sk

(ny + 6k)

Neglecting the term of second order, we obtain the linearized prompt



jump model

asny  \modk

de = ek (3-16)

3.2,3 Infinite Delay-Time Approximation

Returning to the one delayed neutron group model, consider the
effect of setting to zero the derivative in equation (3-10). 1In
physical terms, the assumption is that the delayed neutrons take an
infinite time to appear. In other words, the precursor concentration
remains constant at its original level at t=0.

Using equation (3-10)

de _ _ B

'a'_t""O"‘zno-}tco
or

% n, = Aco

Substituting for Ac in equation (3-9) gives the infinite delay time
model

%% - -.12_'_8_ n + % n, (3-17)
Writing n = n; + én and again neglecting the second~order term,

the linear model is obtained

d(én) _ Sk

8
dt 7 % "7 - 6n (3-18)

- 3.2,4 Weighted Average Neutron Generation Time
The simplest reactor model is obtained if the delayed neutrons

are completely neglected.

24,
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This model gives a reasonably good description of system behaviour if
the reactor is critical on prompt neutrons alone. For control
purposes this is never the case, and therefore for reactivity changes

below prompt critical (6k < B) it is desirable to replace £ by the

weighted average neutron generation time, Z*[ZO].
6 Bi '
£F = £(100 - 8) + ] T (3-20)
i=1 i

The weighted average neutron generation time model is therefore

written in differential equation form as

dn(t) _ dk(¢)
dt £

n(t) (3-21)

3.2.5 Comparison of Responses for a Step-Change in Reactivity
A comparison of the responses of the various simplified reactor
kinetic models to the six delayed neutron group representation is
given in this section. The initial power level is assumed to be at
50%Z FP, and a step increase of 0.3 mk is applied. The responses of
the six group and the varioﬁs low-order models are shown in Figure 3-2.
The prompt-jump and the one delayed neutron group quel have responses
very close together, but at an appreciable distance from the correct
» output. The performance of the infinite delay~time model is very poor,
except during the prompt response, as expected from the derivation.
The response of each of the linearized models is shown in
Figure 3-3. The deviations from the correct response are even greater
than previously. It is clear, that none of these models give an
accurate representation of the reactor kinetic process, at least for

step changes in reactivity.
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Figure 3-2. Comparison of responses of the six delayed neutron
group model and various lower-order kinetic models,
for a 0.3wk step change in reactivity.
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Figure 3-3. Comparison nf responses of the six delayed neutron
group medel and various linearized kinetic models,
for a 0.3mk step change in reactivity.
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3.3 A Realistic Nuclear Reactor Model

The mathematical models discussed so far in this chapter have
pertained only to the neutron kinetics. Furthermore, the effect of
temperature on reactivity has been neglected, and only open loop
operation has been considered. While the addition of these factors
does give a reasonably accurate description of the neutron dynamics,
elements of the controller machanism cannot be neglected if a realistic
reactor model is desired. In particular, attention must be given to
the power level sensing elements on the one hand, and to the reactivity
actuating devices on the other.

To appreciate the task of the reactor control system, and of
the designer who hopes to improve on it, one should look at the
operation of the existing feedback controller, in our case the one
used at Douglas Point, The block diagram representatioﬁ of the reactor
and parts of the present control system are shown in Figure 3-4. Since
the operation of this plant has already been described by the author
in considerable detail, only those aspects that are most relevant to
the present work will be considered here.

The reactivity change (GkT) brought about bylthe change in
temperature of the reactor core as the neutron level varies, is
represented by a feedback loop around the point kinetics model. 1In
differential equation form, the temperature effect may be approximated
by:

d(ckT) 8k

—— = -y
dt
Tp

H! =3
e}

n ' (3-22)

3

where Tc is the temperature coefficient of reactivity, and Tp is the

time~-constant associated with this effect. For the Douglas Point react

28.
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design values for these constants are

mk

T = - 0.0454 3o

tp = 12.5 sec

The operating power level is measured by two independent
transducers. Ion-chambers detect the neutron flux directly, while
the change in temperature of the coolant as it flows through the
reactor gives an indication of the actual power level. While the
neutron levels are synonimous, neither of the abdve measures are
accurate. A peutron reading taken by the ion-chamber may be less
than the true neutron level, by a constant, slowly varying amount,
due to the "shielding"¥ The temperature channel signal indicates
the power level of the reactor at an earlier instant, because of the
finite transport time between the reactor core and the temperature
transducer (RTD). Furthermore, this signal has a considerable noise
component due to the turbulent coolant flow. While neither of these
indicators give a precise reading of the reactor power level, they
may be processed to'aéhieve this aim[s]. For the purpose of the
present work therefore, we can assume that an instantaneous noise-
free measure of the reactor level is available.

‘The error signal (e), thét indicates the deviaticn between
the demanded and actual power levels, is amplified, and the output
is applied to the absorber rod drive motor, which is repreéented by

“the first order differential equation

SE =T+ Ce - (3-23)

*Shielding is due to the depression of the neutron flux by
the poison dissclved in the moderator.
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where G is the gain of the amplifier, T the motor time-constant and
v the effective voltage that determines the rate of reactivity inmsertion.
The latter introduces a further nonlinearity into thé system, as the
motor reaches its full speed at 15 volts, corresponding to a power error
of 107 FP.
The nonlinear absorber rod insertién rate characteristic is

represented by the function

£(v) = 0.02 |v] < 15
(3-24)
203 s

The units of f(Qi are mk/sec/volt, hence the effect of a power level
error is to cause a certain rate of reactivity insertion (or removal)
by the movement of the absorber rod.

By deleting the details bf the present feedback controller from
figure 3-4 and including the temperature etfrect in a single REACITOR
block, a simplified block diagram is obtained, as shown in Figure 3-5.
The block indicating the feedback controller represents the optimal
vcontrol problem: its coefficients are to be determined such that a
meaningful cost‘function is minimized.

Combining equations (3-1), (3-2), (3-22), (3-23) and (3-24)
results in a ninth-order dynamic model for the nuclear reactor and the
reactivity actuating mechanisms.” The model is open—loopvand contains
mul;iple nonlinearities. In state variable form it may be written as

follows:
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Figure 3-5, Simplified block diagram of Reactor and control system.
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- - 1r 7 [
dn ] -B n .___._..--—-ntf(v) n 0
ey 7 11 Az ves ls 7 7
de 8
1 1
——— - u - 0 LI 0 0 0 c 0
dt £ A !
de 8
2 2 “A. ... O 0 0 c 0
dt y A 2
. - : . . . . . . + | e (3-25)
B s | A O 0 0
me————— e eee c
dt £ o 0 6 6
dék T -
T . 9 o0 ... 0 X o ok, 0
dt TT TT
dv o o 0 ...0 o = v G
Lde | L - Tm v 4k
or using matrix notation
x=A_x+b e (3-26)
and the system output is given by
y=d x (3-27)

where

The behaviour of the nuclear reactor model, as represented by
equation (3-25) has been studied extensively by the author in reference
{5]. The responses obtained by digital computer simulation studies
have been verified by the designers of the Douglas Point control system
as adequately representative of the true behaviour of the reactor.

Our main Interest in the present chapter is to evaluate the
performance of the various low-order classical models in comparison to

the six delaved neutron group model. TFor this purpcse, consider unity
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feedback, and let it be desired to increase the power level from 50%

to 100% of full power. The step responses of the closed-loop system,
assuming the various kinetic models are used to represent the neutron:
kinetics, are shown in Figure 3-6. The error between the reference
response and the one group model is not as great as in the open-loop
case, but the maximum error is still greater than 107 FP. It is
interesting to note, that the infinite delay-time model gives the second
best approximation, the prompt-jump and average neutron generation

time models being totally inadequate.

The linearized’models show even greater deviations from the
correct response (Figure 3-7). None of the low-order models give an
acceptable approximation to the transient part of the response, and
the maximum error of even the six group linear model is over 157 FP,

The usefulness of these low~order linear reactor kinetic models
for the purpose of optimal control computation is further reduced
when we realize, that the addition of the effect of temperature on
reactivity and the absorber rod drive motor, still results in a fourth-
order system.

What is desired is a second-order model of the form given by
equation (2-18), which accurately depicts the‘input-output relationship
of the overall system. Clearly, the classical approach of reducing
the order of the reactor model based on physical insight cannot give
such a representation, and some other method for reducing the order of
a system must be used. The development of a suitable technique is

presented in Chapter 4.
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3.4 The Cost Function

Having considered the dynamic representation of the nuclear
reactor, we turn our attention to the other important aspect of the
control problem: choosing an appropriate cost function. This is one
of the most difficult aspects of an optimization problem, requiring
considerable experience and insight. Clearly, the final optimal
design is only as good as the assigned measure of performance.

Ideally, every system variable should be included in the cost function,
appropriately weighted to reflect its relative importance. This could
be readily achieved, for example, if the actual dollar value, say on

a per unit basis, were known for all the varizbles. Such a case is
rarely encountered in practice.

For the nuclear model that has been described in this chapter,
it is not practical to include all the model parameters in the cost
function. The criterion of choosing the elements of the cost function
is two—fold: every term must reflect an important aspect of system
performance and each must be a readily measurable quantity.

For a point kinetics model, terms which meet.the above cri;eria
must be associated with either the input or the outﬁht. They relate
to the instantaneous value and rate of change of the neutron population,
and the extent of the control effort, with particular emphasis on the
mechanical movements of the absorber rod. A cost function that includes

all the terms found significant in practice has the following form:

= flafox(e) - n(o)|, y[2RELE) _ BnlB))

l3e<(t) 363((:)1

nlex(t) - e(t) ],

ulsenfe(c )] - senle(t; D11} (3-27)
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The weighting factors a, v, n, & and u may be constant for all instants

of time, or they may emphasise a given portion of the time response.

Their values reflect the relative importance of the terms they are

associated with. The significance of each variable in the cost

‘function is described below. The superscript * is used to denote the

desired value of the appropriate quantity.

n(t)

e(t)

de(t)
ot

is the neutron or power level. It is usually desired to follow
the demanded value, and is the quantity often of prime importance.
By assigning relatively large weights to o near the desired
terminal time, the steady-state error can be made to approach

Zero.

gives the instantancous rate of change of the neutron population.
It is related to the period of the reactor, and hence to stability,
and via the rate of change of temperature, to the thermal stress

during a power level change.

can be regarded as the input to the reactivity control mechanism,
Its value determines the extent of the control effort, and
relates to the burn up of the absorber rod. Since the qﬁantity
of actual interest is the reactivity, the nonlinear dependence

of 8k on e must be appreciated.

is the rate of change of the error signals. The acceleration of
the absorber rod i1s a function of this quantity, and therefore
is a contributing factor to the mechanical wear of the rod drive

mechanism.
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sgn{e(ti)] - sgn{e(ti_l)] is also included with the purpose of reducing

mechanical movements of the absorber rod. It tends to eliminate
reversals in the direction of the travel of the absorber rod
during a change of power level. The sgn function has the

value plus or minus one, depending on the sign of the argument)
e(ti) is the value of the error signal at the ith sampling
instant. Considering a step change of demanded power, this

last term of the cost function will have a zero value only for

a monotonic decrease of the power error.

The functional relationship represented by equation (3-27)
usually implies the summation of the terms at a given sampling instant.
“the cost runction is evaluated either by summing the functional values,
each raised to the power p, over the time~interval of interest, or
the maximum value of the function amongst all the sample points is
taken., Accordingly, the objective of the optimization problem is
either to winimize a sum or the maximum value. While integrél cost
functions are useful in theory, they are seldom used in practice,
because of the problem of numerical integration on the digital computer.

The exact form of the cost function to be used will be discussed as

each optimization problem is encountered.

3.5 Review of Recent Publications
The problem of optimally controlling the power level changes in
a nuclear reactor has been formulated in previcus sections of this

thesis., A realistic reactor model has been chosen and a practical cost
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function has been proposed. It is appropriate at this stage to
briefly review the results of recent research efforts, and to evaluate
their usefulness in solving the problem we have formulated.

The paper by Murray, Bingham and Martin[21] is based on the
'assumption that the precise form of the power response is known, and
it is desired to find the reactivity variation that will bring about
this response. The method is restricted to power functions whose
Laplace transforms exist. The six delayed neutron group model is
used, and the effect of temperature on reactivity is included in the
treatment.

While the basic concept of starting with a known or desired
output and cowputing the corresponding input is a sound one, the
method as presented has great disadvantages from the control point
of view, in that only a certain class of power functions are admissible,
and that the resultant control is open-loop in nature. Using essentially
the same concept, both of these limitations will be overcome by a new
procedure presented in this thesis,

Stacey[zz] has considered the use of variational synthesis
techniques for the optimal control of a point reacﬁér model., A cost
function of the form of equations (3-27) is considered, and the sum
of the terms raised to the second power is used. It is assumed that
the input can be expanded into a sum of orthogonal functions over the
time interval of interest. The coefficients in the expansion are
chosen to minimize the cost function while satisfying the point kinetic
equations. The method is illustrated‘fpr the bne delayed neutron group

model and using Legendre polynomizls as the approximating functions.
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Apart from the greatly increased computational complexity that would
result if the more complete reactor model was used, this method also
results in open-loop control.

In a paper published by Enns[23], linear programming is used
‘to minimize the maximum deviation of the state variable§ from their
preassigned values. The reactor equations are linearized, thereby
permitting the computation of open-loop optimal trajectories, These
are applied in a feedforward éense, while plant parameter changes are
to be compensated by a fixed, nonoptimal feedback controller. The
author illustrates the improvements afforded by the addition of the
feedforward signal to the previous feedback control system, but no
attempts are made to evaluate the effect of plant nonlinearities,
parameter changes and optimizing the feedback controller.

Weaver and Schultz[24] have proposed an interesting approach
to nuclear reactor control, It is based on state variable feedback
design, and necessitates the reduction of the high-order nonlinear
system to a low-ovrder linear model. This reduction is made in an
apparently arbitrary manner, approximately cancelling poles and zeros
and neglecting poles far from the jw axis. Becausehgf several gross
approximations, the authors rely on limiting the input signal, but
even then the responses of the linear model and of the nonlinear
system differ considerably. The basic shortcomings of the method are
the technique used to derive the low-order model and that optimization
of general cost functions is not possible.

[

Lipinski and Vacroux 25] describe the application of linear

optimal control theory and nonlinear estimation to derive feedback



control for a quadratic performance index. A second-order reactor
model is used by considering only a single group of delayed neutrons
and the prompt jump approximation. Since a sampling interval of one
second is assumed, the authors can select the delayed neutron decay
‘constant so that it gives the best approximation to the six group
response over a one second interval. The reactor equations are
linearized in order to derive the optimal feedback controller, and the
result is applied to the nonlinear model, but not to the six group one.
Furthermore, neither the effect of temperature on reactivity, nor

the absorber rod cheracteristics are considered.

3.6 The Proposed Method of Solution

It is apparent that none of the techniques reviewed in the
previous section are capable of solving the reactor control problem
as it has been formulated in this thesis. However, each of these
earlier papers contributes one or more significant concepts towards
finding a practically realizable solution to the optimal reactor
control problem. Some of these concepts are: assuming suitable
functions to approximate the desired response, procéeding backwards
to compute the corresponding input, the use of a low-order linear
model to compute the feedback controller, optimizing the parameters of
the model so that it provides the best fit to the actual system.

In addition to the above concepts, the following observations
must be made prior to a detailed solution of the control problem. It
is clearly impractical to feed back all the state variables, as

required by optimal control theory. The system performance obtained
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by using a lower order controller can be regarded as optimal only for
the specified counstraint of having a limited number of state variables
to feed back. In the control literature such a controller is usually
described as being suboptimal.

When deriving a low-order linear model for the nonlinear
reactor, it is advantageous to include in the high-order system the
effect of temperature on reactivity and the characteristic of the
absorber rod, instead of attempting to simplify the kinetic equations
alone.

Since the behaviour of the reactor is a function of the
instantaneous power level, and since the plant parameters vary widely
over the operating life of the reactor, the parameters of the model
must be adjusted to reflect the changes in the plant characteristics.
Furthermore, this didentification should be performed without introducing
extraneous disturbances. The form of the model should be such that it
readily leads to the evaluation of the optimal feedback controller.

To find the optimal control for nonquadratic performance
indices, it is proposed to approximate the desired response by a
function that has the same form as the low-order médel, which is used
to replace the system for the purpose of analysis. The parameters
of this appfoximating function are varied to minimize the appropriate
cost function.

In the next two chapters methods will be developed to derive
the parameters of a low-order model on the basis of the response of
the high—order system such that the deviations betwzen their respective

outputs are mlnimized. The same basic techniques will also be used to



obtain the parameters of the optimal feedback controller for quite

general cost functions.
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CHAPTER 4
OPTIMAL LOW-ORDER MODELS

It has been shown in the previous chapter, that the low-order
reactor kinetic models which have been derived on the basis of the
physical nature of the nuclear process, fall far short of the accuracy
required for control purposes. Linearization of these simplified
models results in the further degredation of performance, as compared
to the six delayed neutron group kinetic equations. It is necessary,
therefore, to investigate alternative methods for deriving low-order
models for a given high-order system. Because of the time~varying
nature of the parameters of the nuclear reactor, the technique must
be efficient enough for on-line applications, and only require the
availability of signals which are already provided by the monitoring
facilities, viz. the input and the output, It is also highly desirable
that the model be optimal, hence the approximating parameters should be
derived such that a suitable cost function is minimized.

The problem of approximating high-order systems by low-order

. . . ’ . 6
models has received considerable attention in the recent 11terature[2 1

[27]. Th

i

proposed methods fall into two broad classes:

a. The given system equations are manipulated such that only
the dominant poles and zeros are retained, or a reduced
pole-zero pattern is found. In all of these cases the
approximation to the original system is qualitative, i.e.;
no measure of their goodness of fit can be ascertained.

b. The remaining methods minimize the mean square error
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between the responses of the original and reduced sets

of equations. While a cost function is minimized by these
techniques, they are limited to the one spécifié objective
function.

The use of the least squares error criterion arises because
of mathematical convenience. Although in many cases it reflects the
energy of the system, and is therefore a desirable objective to be
minimized, it is not necessarily the most appropriate cost function
for madelliﬁg purposes.

The present chapter is aimed at developing a method that will
provide models for any conceivable error criteriomn, as long as it can
be evaluated by a digital computer. Since analytical solﬁtions are
known only for the mean square error case, and appear feasible for a
limited number of error criteria, a solution based on search techniques
is proposed[zs]’[zgl. A direct as well as a gradient search method is

to be investigated.

4,1 Pattern Search

The pattern search strategy was devised by ﬁooke and Jeeves[BO],
and is one of the most popular of the multidimensional direct search
methods. (Search techniques which do not require information regarding
the gradient of the objective function are considered direct.) Its
main feature is that it attempts to establish the "pattern" of success-
ful search points. It is, therefore, particularly adept in following

a valley, once its direction has been established. Since several well

docurented descriptions of pattern search are available in the
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literature, only its basic characteristics are reviewed here.

Two sequences make up the pattern search algorithm: exploratory
moves and pattern moves. During the former, starting from a base
point b, each variable is incremented in turn, by specified amounts,
first in one, and if a decrease in the function value is not found,
in the opposite direction. Exploration Qith the next variable begins
with the best point established by the previous ones. Having incremented
every variable, exploration is complefed, and a new base point, 9* has
been found. A pattern move is-now made in the direction of the
improvement from b to b* to the point given by 2b*-b. The new base
point is not estéblished until exploration has been completed about
the end of the last pattern move. Iﬁ this manner the size of the
nges after cach svccessful explorvation. IL the
latter fails, the last base point is used to start a new explorationJ
with reduced step sizes. The pattern is, however, destroyed. The
search is terminated when the step sizes have been reduced below the
sbecified levels.

The computational inefficiency of the pattern search method
arises from the necessity of having to evaluate the objective function
after every exploratory step. Hence, for a problem having n variables,
each base point requires at least n and at h@st éh function evaluations.
In a typical optimization problem, there will be many base points,
_particularly since convergence near the minimum is rather slow. On
the other hand, since_the computation of derivatives is avoided, pattern

search is very suitable for feasibility studies, and the initial

evaluation of new concepts, where the exact value of the optimum is not
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significant. It may also be found useful for certain off-line

optimization problems, where computer time is not at premium.

4,2 The New Fletcher Method

[31], Fletcher proposed a new gradient search

In a receat paper
algorithm, which dispenses with the linear search used in the highly
regarded Fletcher-Powell method[32], with a corresponding reduction
in the number of function evaluations. The method is applicable to
the minimization of a function of n variables J(?), when the vector

of first derivatives g(¢) = V J(¢) is available explicitly, but the

¢
matrix of second partial derivatives G (the hessian) is not. (E is the
n-dimensional parameter vector.) The method is based on approximating
-1 by a matyrix H, in an iterative manner, such that the eigenvalues
of H tend monotonically to those of G~1.

The H matrix is used to give the direction of parameter changes
that will result in the continuous decrease of J. Using the superscript

* to denote values appropriate to the next iteration, the following set

of formulae are relevant:

§ = -AHg
¥ = ¢ + 8
L

The scaling factor XA is based on a simple test, which ensures that the
decrease in J is sufficiently large to guarantee ultimate convergence,
but rarely requires more than one evaluation of J and 8-

The updating of H is based on one of the following two formulae,

the choice depending on another simple test:
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6§ § Hy vy H
HA = H + =5 = — 2
T T
sy vy HY
§ 6T H Hy sl CyTry st
He = H = =m— — —= T 4 (1 + STy T
5T & 6 y sty 8Ly

At the start of the first iteration B is usually not known, and is

assumed to be the unit matrix.

4.3 | Statement of the Problem

The problem of approximating a high-order system by a low-order
model such that the deviations between their outputs to the same input
is minimized, may be formulated in the following manner.

Let the given high-order single-~input single-output system be
described by the usual state-variable notation:

x=Ax+bu (4-1)
and
T

y=4d x (4-2)

Consider a discrete set of values of y taken over a suitable

interval of time:

Y={y0, yl, st e ’Yi

s =ee 5 ¥q} (4-3)
where ¥y = y(ti), i.e., the output at the ith sampling instant. This
set represents samples of the response of the system described by
equations (4-1) and (4~-2) to a specified input u(t). It may have
been obtained by solving the system equations on a digital computer,

or it may have been observed by a measuring instrument comnected to the

actual system. In either case, the continuous output y(t) is sampled
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at sufficiently close intervals of time so that no significant
information is lost.

The objective is to find another output set Y*, associated with
a model of order m (where 1 < m < n) described by the equations

x =A% x¥* +p* u (4-4)

Y* = g:'c §>'c (4_5)
such that, for the same input, one of the following two objectives

is satisfied,

(i) for a given m, the error function J is minimized, where
= - * —
J = flw, (yy - y))] (4-6)

which is some suitable function of the errors vy - yi with a
vector weight w; attached at each sampling instant, or
(ii) for a given value of J, the lowest order model (m) is determined

such that the resultant error J* satisfies the inequality

J-J*>o0 : (4-7)

4.4 Error Criteria
The functional form that the error criterion expressed by
equation (4-6) takes, has a vital bearing on the parameters of the
approximating model. Since the purpose of the objective function is
to measure the extent to which the model deviates from the actual
system, the main problem is how to express numerically this deviation.
The error criterion expressed by equation (4-6) states that the
error is a functioa of thé dif. :rence between the outputs of the original
and reduced systems, and a weighting sequence. It is usual practice to

take the absolute value of the output error, and to raise it to some



power p. In addition, the weighting sequence normally appears as a
multiplying factor. A more spacific form of equation (4-6), but one

that includes all the relevant error criteria is

J = f(wi!yi - yi'p) (4-8)

Wé can now turn our attention to the functional relationship
involved. Again, we can distinguish two alternatives in current
practice. One involves a summation, over all i, for the time-interval
of interest; the other retains the value at one particular sample only,
where the deviation is a maximum. Accordingly, the objective is either
to minimize a sum of the errors, or to minimize some maximum deviation.

The two alternative forms of equation (4-8) may therefore be

written as

I
o= = xlP _
J = 1£o wilyy = vil (4-9)
or
J = max {Wilyi - Y:l} (4-10)

=0,I

Considering a wéighting sequence of unity, we see that the
criterion of equation (4-9) gives a measure of the area between the
curves when p=1, and the mean square error if p=2 (except for appropria
scaling factors). As the value of p increases the result of (4-9)
(after taking the pth root of the summation) tends to that of (4-10).
This is, in fact, a convenient method for minimizing a criterion of
the form of equation (4-10), and it will be used, with slight modifi-
cations, in later parts of this work.

Turning our attention uow to the weighting sequence, it should

be noted that all error criteria weigh some aspects of a response

51.
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against others. For example, a least squares objective tends to
emphasize the transient portion at the expense of the steady-state
value,

The tendency of every error criterion to give a bias to the
resultant model may of course be further emphasized or, on the other
hand, compensated for by assigning appropriate weights by which each
sample error is multiplied before it is included in the summation,
or compared with the previous maximum.

The desire to obtain a criterion that is free of an apparent
bias has led to the development of a new objective function, based
on measuring the shortesi or perpendicular distance between the

reference and the approximating responses.

4.5 The Shortest Distance Minimax Criterion

Since the aim of ocur approximation problem is to find a model
whose output closely resembles that of the original system, the error
criterion used in optimizing this closeness must give an accurate
measure df the proximity of the two responses. The most frequent
choice of minimizing the mean square error arises o&i of mathematical
convenience, rather than of regard to any particular physical aspect
of the problém.

Perhaps the most common physical measure of the proximity of
two functions is the area between them. This criterion is suitable for
comparing various models, or finding one of a specified order that
produces the closest response. However, for the more typical engineering

specifications, that express the deviations at various points between the
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actual and desired responses, and set the limit on these as a tolerance
of *x¥%, eriteria that involve summation are not suitable, and we must
turn to minimax type objectives.

The typical minimax objective used in approximation problems
measures the difference between two curves at the same value of the
independent varisble, which may be, for example, distance, time or
frequency. While this formulation is appropriate in the frequency-
domain, it may not always be so in the time-domain. Particularly
during rapid transients, the difference between two responses is
considerably exaggerated by taking the values at the same sampling
instants. This practice, like the use of the mean square error
criterion, arises more froﬁ convenience than from physical regards
for the problem.

The most appropriate measure of the maximum deviation of two
time-functions appears to be the shortest distance between them,

. i.e., the perpendicular line drawn from the reference curve to a
point on the approximating response,

The basic difference between taking the sample error or the
perpendicular error as. a measure of the deviation of'two curves, is
illustrated in Figure 4-1. The desired response is a piece-wise
linear function of time, and it is required that the response of the
approximating model be everywhere within *a of the given curve. For
the example, o has been chosen to be 10% of the steady state value of
the desired response. In part (a) of the diagram, o has been
interpreted in the conventional, sample error sense, and the correspond-

ing bounds on the error have been drawn. Note the apparent closeness of
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Figure 4-1. Piece-wise linear reference response with
: specified error bounds, and responses of
approximating second~order systems.
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the curves aleng the lines of finite slope. In part (b), the error
bounds are drawn at a perpendicular distance of *a from the reference
function, and the width of the region, into which the approximating
curve is to fit, appears to be uniform,

To illustrate the type of responses that result from the
alternative problem formulations we have presented, consider approxi-
mating the reference function in Figure 4-~1 by the output of a
second~order system of the form:

b

Y(s) _ 0

U(s)

5 (4-11)
s” + as + ay

where Y(s) and U(s) are the Laplace transforms of the output and
input functions respectively. Ah input step of magnitude five is
applied Lo e appxuximdLing system, and the response computed over
an interval of ten seconds, using 501 sample points. The initial
conditions are assumed to be zero. Using a pattern search algorithm,
the following parameter values have been obtained:
1, Minimizing the sample error:
by, = 1.5464 a, = 0.5020 a, = 1.6315
and the maximum sample error is Jg = 0.764.
2. Minimizing the perpendicular error:
b, = 1.3862  a, = 0.5797  a, = 1.4664
anq the maximum perpendicular error is Jp = 0,408.
The corrésponding responses are also plotted in Figure 4-1. Evidently,
using the sampleverfor intgrpretation of the tolerance (o = #0.5), the

model as given by equation (4-11) caunot satisfy the specifications.

If, on the other hand, the errors are measured in the perpendicular
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sense, the second order system obtained by the minimization procedure
does fulfill the design requirements.

The basic problem associated with the use of the perpendicular
measure of the error is its computation by an automated scheme.

Since in most applications the sampling intervals are uniform and
the same for both responses, no direct measure of the perpendicular
distance betweeﬁ them is available,

Consider first the problem of establishing the error bounds
on a desired response for a given tolerance *o. In the case of
piece~wise linear responses, such as the one considered in Figure
4~1b, the perpeﬁdicular error bounds are readily formed by line-
segments parallel to each linear portion of the reference response,
and at a perpendicular distance cf *a frem it. Referring to Figure
4-1b, we can establish a relationship between the tolerance o and the
corresponding limits on the sample error (o). Taking an arbitrafy

point ts, let the slope of y(t) at that point be

.(iz - -
at t=ti tan ei (4-12)

Then the bound on the sample error, Oy that corresponds to a specified
tolerance o at t = ti is given by:

[+

0i = cos ei

(4-13)

The following points should be noted with reference to equation (4-13):
a. The slope of thebspecifiéd function must be finite in
‘the region of interest, i.e.,

0 < 6i <

Y]



Step-changes may, however, be accommodated in an automated
scheme by appropriate programming.
Equation (4~13) is exact only if ei'is further restricted

to be constant over the interval [tj - &;, ty + 8;], where

i’
Gi = o sin ei

If ei varies slowly over the intervalyin question, the

approximation given by equation (4-13) is good. The

accuracy is further enhanced by making u smali, which will

be the case whenever a close-fitting approximation is

required.

At places of zero slope, such as the peak overshoot and

the steady state, 0 = o, and the above restrictions on 6

do not apply.

If equation (4-13) is written in the form

a4 = g, cos 6i - (4-14)

i

4 can be associated with the sample error at t;, to give

J = max {cos 6,|y(t,) - y*(t )r} (4-15)
i=1,N i i i :

which is the proposed minimax objective.

Comparing equation (4-15) to the formulation of the general

minimax objective function (equation (4-10)), the cos 6; term may be

identifijed as a weighting sequence, that de-~emphasizes the sample

error along a transient as compared to the deviations where the

reference response has a steaay value. The overall effect is to

produce a response that approximates the desirved one in such a manner
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that the maximum deviation between the two, measured in a direction
perpendicular to the reference curve, is minimized., Comments a; b
and ¢ above apply to equation (4~15) also, but it should be noted
that the inaccuracy, which results from changes in the slope of the
.reference function, diminishes as the optimum is approached.

While the advantage of the shortest distance error criterion
is most apparent in the case of minimax objectives, the concept could

equally well be used for least pth criteria.

4,6 Starting Parameters and Essential Features of the
Computer Programme

An important problem associated with every search technique
is the selection of the starting parameters, since these have
considerable influence on the convergence of the process, and on the
probability of locating the global optimum. It is proposed that the
starting parameters be determined on the basis of a simple first-
order model if the step;response of the system has no overshoot, and
from a simple second-order model with a pair of complex conjugate
poles if it has an overshoot. For the two responses to a unit step

input shown in Figure 4-2, the appropriate models are given below.

For (a)
G(s) = = :)_oao = %E:‘; (4-16)
where
L =1
0 T
and
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4-2. Possible responses of a stable
system to a unit step input.
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For (b)
b0
G(s) = (4-17)
2
s + a;s + ag
where ’
_ 2 2
ao =qa + B
a, = 20,
and
o 1 _A
a= . £n( Ty )
= X
B t

In general, models of higher order are required. Having found
the optimum set of parameters by the pattern search programme for a
given model, the order is then increased by one and a new pattern
search initiated. This process is then continued until the errvor
criterion is satisfied, or the desired order is reached.

To increase the order of the model by one, an additional term,
with g raised to the appropriate power is introduced. For example,
the first order model obtained from equation (4—16)A;s replaced by

5

2
s + s + ao

G(s) =

This result is a consequence of having chosen a phase-space
representation for the model in the computer programme. In this form,
the general transfer function

' o s™ 4 m-]
_ Y(s) _ »ms + bm—-ls +...+ bls + by
u(s) sn + =1 +

G(s) (4-18)
a_ .s

-1 esot a;s + a,
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is written as
x=Ax+du (4-19)
and
y=b x . (4-20)

where

o O
(@
.
o

-ao —al —a —33 ces =2 -a

(4-21)

d = . and b =
d . 2% | by,
0 0
!_1_ .
0

~

The advantages of the phase-variable representation are twofold.
It can be written down by inspection given the transfer function or
vice versa., In addition, for an nth order system, at most 2n parameters
need be varied instead of n’+n parameters in the more general state-
space representation of a single-input single-output system. Moreover,
standard techniques for transformation to the phase-variable form from

[33] .

the general case are well known . The number of variables for the

search program ig further reduced in those cases where the steady-

state error to step, ramp or higher order inpuis is constrainmed to
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equal that of the system.

A computer programme has been written that uses a pattern
search subroutine to find optimum low-order models for high-order
systems. The programme has the following features:

.(a) The original system may be specified either in the phase
variable form, or only its output response to a given input
function may be available af discrete uniform intervals of
tinme.

(b) The parameters of the model to be used for starting values
may be given by the user, cotherwise the programme will compute
these as outlined at the beginning of the section.

(c) The weighting sequence may also be specified in a variety of
ways. It may be given as an input matrix of two coluwns (time
and corresponding weights) and as many rows as there are
weights to be assigned. Alternatively, a weighting sequence
may be requested from the programme, one that gives a measure
of the shortest distance between the responses of the model
and the actual system.  If neither of the above is specified,
the programme assumes a uniform weighting séquence.

(@ The objective function to be minimized may be chosen as the
sum of the absolute values of the sample error raised to the
pth power (1 < p < 10); or as the maximum value of the sample
error. Unfortunately, the minimax formulation results in
discontinuous partial derivatives of the error criterion with
respect to the parameters of the model. In such cases, the

[34]

pattern search technique will often fail to find the optimum .



To overcome this difficulty, when a minimax objective is to
be satisfied, a least pth formulation, with p = 10 is first
undertaken. At each function evaluation, however, the maximum
deviation is also noted, and the set of parameters that give
a minimum of this maximum deviation is stored[zg]. This set
is then used at the end of the least 10th minimization as the
starting point for a new pattern search to further reduce the
minimax objective.

(e) Therorder of the time input function u(t) = tk, to which the
steady-state response of the model is to coincide with that
of the original system, can also be specified, Care must,
of course, be taken that the order k is not greater than the

type of the system.

4.7 Optimal Models for a Linear Seventh-Order System

Before an attempt is made at developing optimum low-order
models for the nuclear reactor, it is desirable to compare the
proposed search technique with already existing system order reduction
methods. A comparison of some of the earlier techniﬁues has already
been attempted, but it was done on an entirely qualitative basis: the
responses of‘the various models are plotted, and the reader is invited
to judge for himself that the response of one model is closer to the
original than all the others. The measure of closeness, however, has
never been specified. In this section, therefore, afte¥ a -brief
review of the existing methods and description of the test system,.the

quantitative comparison of the models is presented. Having thus
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established a frame of reference, it is shown that, irrespective of

the error criterion, an optimal model can be derived by the usebof

search methods, having a lower cost than any of the models obtained
by previous techniques.

As it has been pointed out at the beginning of this chapter,
presently known methods of system order reduction fall into two

broad categories: those that provide only a qualitative fit, and

those that give a least squares approximation. Of the six published

techniques, four belong to the first group.

1. Davison's method [26],[35] is based on retaining only the
dominant eigenvalues of the system, since in most cases poles
far removed from the jwu axis have only negligible effects on
the transient response.

2, Mitra's approach[36], often referred to as "the optimal
projection method", also retains the dominant eigenvalues, but
it utilizes a weighting matrix, such that the projection
error, that ariées from the linear transformation from the
space of the system equations to the subspace that forms a
basis for the model, is minimized.

3. Chen and Shieh[37] describe a method based on the continued
fraction expansion of the original system's transfer function,
that has been arranged in ascending powers of s. Using the
final value theorem, it can be shown that the quotients in the
expansion have a decreasing effect on the steady-state response.
Instead of retaining the dominant poles, this method produces a

nev pole-zero pattern representative of the original one.
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Sinha and Wismath[27] have proposed a technique based on
certain properties of the unit step response of a system, such
as initial slope, maximum overshoot, steady—stéte value, etc.
Of the four possible pole zero configurations for a second-
order system, only the case of a pair of complex poles and

no finite zero can be solved analytically. This happens to be
the case for the model of the seventh-order system chosen by
them, and the model parameters are obtained in a very straight-
forward mamner. Finding the model in the other three cases
entails recourse'to a search program on the digital computer.

]

Anderson's method[38 provides a least squares fit between the
responses of system and model. It is based on the orthoéonal
projection theorem in the theory of linear vector spaces, and
uses only the output response at discrete points of time.
Sinha and Pille[39] also describe a least squares approach to
system order reduction, but their method is based on the use
of the matrix pseudoinverse. Theirs is an iterative process,

suitable for on-line identification, and the technique is

unique in this aspect.

A linear test system, suitable for comparing the models

produced by various reduction tecﬁniques has been proposed by Sinha

and Wismath. The system is of order seven, and has an even distribu-

tion of poles in the left half s-plane. It represents the flight

control system of a supersonic transport plane

(01,

The parameters of the system transfer function, in ascending

powers of s are



numerator: . 31237.5
375000.0
denominator: 281250.0
3310875.0
2814271.0
853703.0
70341.9
4097.4
83.635
The six models which have already been published for the above
seventh~order system are listed in Table 4-1, along with the names of
their authors. The pole locations, as well as the steady-state value
of the response to a unit step are displayed. For the original systemn,
the steady~-state value is 0.11111., The method of Sinha and Wismath,
and the one due to Chen and Shieh are seen to produce accurate steady-
state responses. Looking at the pole locations, the models of
Davison and Mitra have poles closely located to one another. This is
not surprising, since they are similar methods. Comparing the models
produced by the two least-squares approaches, Ander;on's and the one
of Sinha and Pille, a considerable difference is apparent in the pole
locations. Clearly, at least one of the optima is not the global one.
For a quantitative comparison of the various models an
infinite variety of cost functions could be used, depending on the
purpose for which the model has been developed. If the objective is
to match the output of the system by the response of the model to the
identical input, the following four cost functions appear to be most

appropriate:
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Steady-
Method Transfer function Pole locations state
" value
Davison _=0:0000s £ 0:2000 ~2.053 + 30.895 0.1105
s 4 4.1126s + 5.0297
Mitra 5700129 & 0.5648 -2.024 + 30.965 0.1123
s? + 4.0488s + 5.0277 ,
Chen & 5012995 + 001100 -1.048, -0.098  0.1112
Shieh s + 1.1464s + 0.0994
Sinha & om0 2098 -0.845 + j1.083 0.1111
Wismath s <+ 1.6904s + 1.8879
Anderson 23096 -1.344 * §0.316 0.1152
s + 1.9026s + 2.6879
Sinha & —— 0.3302 -1.048 + §1.338 0.1142
Pille s” + 2,0954s + 2,8886 .
Table 4-1. Comparison of second-order models for seventh-order system,

obtained by previously published methods.
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a. the sum of the absolute values of the error (}lel),

b. the sum of the square of the errors‘(Zez),

c. the maximum sample error (M|egl),

d. the maximum perpendicular error (M[ep').

These four measures of the proximity of the two responses have
been computed for a unit step input over an interval of 20 seconds
taking 501 sample points. The results obtained for the six models
already discussed are shown in Table 4-2. In addition, an "average"
measure of the error, designed to give a convenient, quantitative
comparison of the various techniques; is also displaced. To find the
average error represented by the various column entries, they must all
be of the same dimension. The mean error is readily obtainad for the
Zlel criterion by dividing with the number cof sample points. The Zez

term similarly yields

_ le?
€s T\[501

where 501 is the number of samples taken. These two errors are shown
in Table 4-2 in brackets under the appropriate entries. To find an
overall measure of the error; we could sum all four measures for a
given‘model. However, since two of these are maximug values, while
the others are average ones, the result would be weighted too much
in favour pf the former two. For this reason, the maximum sample
error has been omitted, and an average of the remaining three taken.
A comparison of the various methods may now be made on the
basis of any one particular measure of the error. TFor example, Chen
and Shieh's model produces the smallest ZIe[ error, while the method

of Sinha and Pille results in the smallest Zez error. On the basis of
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2 Average
Method el le M[es[ Mlepl error
2.8325 0.0193
Davison 0.0107 0.0105 0.00746
(0.00567) (0.00621)
1.9675 0.0106
Mitra 0.00898 0.00831 0.00561
(0.00393) (0.00460)
_ 0.9500 0.0122
Chen & 0.0278 0.0135 0.00678
Shieh (0.00190) (0.00494)
2.4950 0.0191
Sinha & 0.0202 0.00827 0.00648
Wismath (0.00499) (0.00618)
1.0625 0.00405
Anderson 0.00852 0.00707 0.00401
(0.00212) (0.00284)
1.0250 0.00362 .
Sinha & 0.00590 0.00588 0.00354
Pille (0.00205) (0.00269)
Table 4-2. FErrors associated with the

models in Table 4-1.
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the average error, the technique of Sinha and Pille is the best, and
that of Davison the worst., It is also interesting to note that the
Fhree methods that attempt to produce an optimum model in some sense,
do in fact result in the smallest average errors.

Having established various measures for the proximity of two
responses, and observed the ability of previously published techniques
to produce accurate models of a given system, let us turn our attention
to finding models that are optinum with respect to specific criteria.
The pattern search program has been used to find models that minimize
one of the folleowing three error criteria:

1. maximum perpendicular error,

2., sum of the absolute values of the errors,

3. sum of the squares of the errors.

For each objective, two models are of interest: one that is
constrained to have the same steady-state value to a step input as the
original system, and one that is free of this requirement. The six
resultant models are shown in Table 4-3. The last three are seen to
have the correct steady-state value, as required.

The pole locations for the models that minimize the )|e| and
the Zez criteria respectively, can be observed to be quite close to
one another. The fourth model (minimax perpendicular error with steady-
state constraint) is noticable in having poles much closer to the
origin than any of the other eleven models.

The errors produced by the pattern search models are showm in
Table 4-4. As expected, each model has the smallest error for the

criterion it has been minimized with respect to, and the error is
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Obiective Steady-
£ Je .1v Transfer function Pole locations state
unction
: value
Tle| ; 0.1336s *+ 0.0132) ~0.0957, -1.250  0.1112
s + 1.3456s + 0.1196
Je? 5 0.3960 ~1.328 + j1.286 - 0.1158

s + 2.6569s + 3.4191

Mle | 002288 1 02967 -1.213 * §1.043  0.1160

s+ 2.4257s + 2.5581

i+

tle| with s.s. 0.1536s + 0.01329

> -0.0959, -1.247  0.1111
constraint s + 1.3432s + 0.1196 '
2
Je“ with s.s. 2 0.1019s + 0.05359 ~0.536 + j0.442 0.1111
constraint s” + 1.0718s + 0.4823
Mlepl withs.s. 0.0960s + 0.04545 ~0.522 + 30.370 0.1111

constraint s + 1.0432s + 0.4091

Table 4~3., Comparison of optimum second-order models for seventh-order

system, obtained by the pattern search programme.
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Objective 2 Average
funetion Zlel Xe Ie|S IelP error
0.769 0.001268
Ylel 0.02954  0.00479 0.00264
(0.00154) (0.00159)
) 0.836 0.001915 . ,
Ye 0.00445  0.00373 0.00245
(0.00167)  (0.00196)
1.086 0.003898
M]epl 0.00934  0.00293 - 0.00263
(0.00217) (0.00279)
Tle| with s 0.783 0.01265
*Se 0.02955 0.01079 0.00580
constraint (0.00157) (0.00503)
Xez with s.s, 1:963 0.01075
*Se 0.01879  0.00735 0.00531
constraint (0.00393) (0.00464)
Me_| with s.s 1.942 0.01174
pl o R 0.0172 0.00691 0.00523
constraint (0.00392) (0.00485)
Table 4-4. Errors associated with

the models in Table 4-3.
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smaller if the steady~-state constraint is not imposed. 1In comparisoh
to the models of Table 4-1, for each of the error criteria considered,
there is an optimum model with smaller error, produced by the pattern
search program, than by any of the previous approaches,

Comparing the average errors of Tables 4-2 and 4-4, the
unconstrained optimum models given by the pattern search program all
have considerably smaller errors than the best of the previously
available methods. The constrained models are also better than the
corresponding ones in Table 4-2.

While a second-order model of the seventh-order system should
be adequate for most purposes, in certain special applications a model
of higher order may be required. To indicate the type of improvement
that may be expected, third- and fourth-order models have also been
obtained for the Zez criterion. These are given in Table 4-5,
including the second-order model for comparison (qo steady~state error

constraint):

Model Order Transfer function Xez

0.3960
s + 2.6569s + 3.4191

1.915 x 1073

-0.1142s% + 0.8546s + 0.4

3 5 6.407 x 10~%
s” + 6.6677s + 9.6505s + 3.4836

-0.0372s> + 0.2924s52 + 2.8028s + 0.4
s* + 8.0944s> + 24.11245% + 25.7607s + 3.5412

3.078 x 10~3

Table 4-5. Optimal Zez models of increasing order

for seventh-order system.
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As a final illustration of the nature and accuracy of the
approximations obtained by the use of the pattern search method, the
responses of some of the optimal low-order models have been plotted,
and compared to the output of the seventh-order systém. In every case,
a unit step input has been applied. Figure 4-3 shows the response of
the second-order [elp model. The equal ripple variation of the
perpendicular error is evident from the diagram. The use of the Zez
criterion to obtain a seéondworder model results in an approximation
that is a particularly good fit along the rapid initial rise, but is
achieved at the expense of a larger error once the peak of the response"
is passed, as seen in Figure 4-4, The considerable accuracy that may
be achieved by the proposed method is well illustrated by Figure 4-5,
where the response of the fourth~order Zez model has been compared to

the original seventh-order system output.

4.8 Application to System identification

An important feature of the use of search methods to find
optimal low~order models for a given system is, that the system
equations need not be known, only the response to a.given excitation
is necessary to derive the model, The technique can therefore be
used to identify the parameters of the given system. Basically two
problems may be distinguished: in one of these, the order of the
system and the approximate values of tbe parameters are known, and the
search programme is used to identify the parameters precisely. The
second, and more difficult exaﬁple is, when the above information is

not available. The proposed solution in this case is to begin with a
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low-order model, optimize its parameters, and if the deviation between
the given and the approximating responses is too great, increase the
order of the model and reoptimize the parameters, repeating this process
until the necessary accuracy is attained. This second problem is the
one considered in this section.

In mathematical terms the parameter identification problem
appears as follows. Let the input to the plant be denoted by u(t)
and the output at the kth sampling instant as y(kT), where T is the
uniform sampling interval. Let the model of unknown parameters be in

the phase-variable form:

x(t) = A x(t) + d u(t)
F(t) =bT x(t)
[0 1 0 ... 0]
0 ee. O
A = : :

b

o
it
—
=2

2 LN ] bn]

x(t) is the state vector and y(t) the output of the model. The

parameters ay, bi’ i=0,n are to be identified, such that an error

criterion of either of the following forms is minimized:

[
fl

N
1 lyer) - yam|P
k=1

[
I

max {|y(kT) - y(kT)|}

™ k=1,N



To find the parameter values, it is assumed that the output
of the system to be identified has been observed at regular saméling
intervals, for a unit step excitation. Depending on whether the
response has an overshoot or not, the appropriate formula [equation
(4-16) or (4-17)] is used to cbtain a set of starting parameters.
Alternatively, particularly for inputs other than a step, the initial
parameter values are set equal to zero.

Two examples have been considered, a fourth-order system
displaying an overshoot in its step response, and a second-order over-
damped system. In the case of the latter, both the pattern search
and the Fletcher method have been used.

The transfer function of the fourth-order system is given by

Y(s) _ 2s + 1
Ucs) sg + 353 + 452 + 35 + 1

and its response to a unit step is shown in Figure 4-6. [The one to
one relationship of the phase-variable and transfer function notations
has been established invequations (4-18) to (4-21).] The response of
the initial second-order model in the form of equation (4-17) has also
been displayed in Figure 4-6.

The identification process begins with the parameters of the
second-order model, and these are varied by the pattern-search érogram
to minimize the error function. For the examples presented in this
section, a least squares cbjective has been used. Once the optimum
second-ovder model has been found, higher order ones are obtained by

introducing an sM term with n = 3 and after optimization, n = 4,
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The manner in which the pattern-search progresses is shown in
Figure 4-7. The stages where the order of the model increases to third
and then to fourth, are imdicated by the 0 + 1 step-changes in parameters
a, and a;. The same changes show up even more sharply in Figure 4-8,
where the objective function has been plotted against the number of
function evaluations. While the initial second-order model is near
the optimum, the subsequent higher-order ones, obtained in each case
from the one-lower optimum model, display a rather high initial error.
Final convergence is cbtained after 1270 function evaluations for a
minimum step-size of 0.0001, the values of the model parameters at
that stage being:

Y(s) _ 2.0010s + 0.9986
Uls) % 4 3.0011s° + 3.9988s% + 2.9995s + 0.9986

The average parameter error is 0.07%7 and the sum of the squares of the
response error is 2.63 x 108, Better accuracy could be obtained by
further reducing the minimum step-size.

While the problem of parameter identification has received

considerable attention in the paSt[al]’[éz]

, the author is aware of

only one previous example of an identification scheme that is also
applicable to system order reduction problems, the one proposed by

Sinha and Pille[43]. Their method is useful for the on-line identifica-
tion of discrete systems, and is based on an iteratively evaluated form
of the matrix pseudoinverse. To identify a continuous system, it is
first discretized, and the parameters of the corresponding model, in

the z-domain, are estimated from the response to a unit step. The

method provides a discrete model with a least-squares fit, the final
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error being dependent on the number of jterations before steady-state
is reached. For a given system, this is directly proportional to the
sampling interval. A continuous equivalent of the discrete model is
subsequently obtained.

The second-order system considered by Sinha and Pille has
the following transfer function:

Y(s) _ 1
Uls) 2 4 35 42

Its response to a unit step input is shown in Figure 4~9. Starting
with all parameters assumed to be zero, and a sampling interval of
0.04 second, after 100 iterations the model parameters have been
identified as

Y(s) _ 0.939
UGs) 32 4 5. 7865 + 1.902

The average parameter error is quite large at 5.87%. Using their
technique a considerable reduction of the sampling interval would be
necessary to obtain moré accurate identification.

The above problem has also been attempted using the pattern
search program, for the same sampling interval of 0.04 second. The
parameters of the model agreed with those of the system to four
significant figures after 73 funcﬁion evaluations. - The manner in
which the parameters change as well.as the reduction of the sum of
the squares of the errors are shown in Figure 4-10.

Up te this stage, no emphasis has been placed on the
computation time required by tue program, which is an important measure

of the suitability of the method for on-line aﬁplications. The obvious
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way to improve the efficiency of an identification scheme is to reduce
the number of sample points at which the given response and the output
of the model are compared. Two cases need to be considered: when the
sample points are distributed over the entire response, and when only
“the initial portion of the response has been observed. The latter
is the situation usually encountered in on-line applications.

In many practical cases the steady-state response of the system
to a step-input is known. If this is the case, the model to be
identified may be assumed to have the form:

§(s) _ A 2,

u(s) 32 + a;s + a,

where A is the steady-state gain of the system.

Making the above assumption and applying the Fletcher routine,
successively decreasing number of uniformly distributed samples of
the response of the second-order system were taken over the 4 second
interval. Table 4-6 shows the number of function evaluations required

toc identify the model parameters to four significant figures.

Number of Number of function

samples evaluations
101 _ 27
51 26
21 38
11 34
6 31
3 37

Table 4~6. Effect of reducing number of samples over a given

time interval, on the nuuwber of function evaluations.
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Note that in the last case in fact only two samples are used, at t=2
seconds and t=4 seconds respectively, since at t=0 the responses are
fixed. .
| The effect of using consecutively smaller initial segment of
the response to identify the parameters, is shown in Table 4-7, where

the number of sample points used (N), the number of function evaluations

() and the final model parameters are given.

N I a, a;
101 28 3.0000 2,0000
51 21 3.0001 2.0001
21 20 3.0000 2,0000
11 22 3.0005 2.0000
26 2.9979 1.9998
32 3.0111 2,0036

Table 4-~7., Effect of using decreasing number of initial sample

points, on the accuracy of identification.

Clearly, after only a few samples of the system have been taken, a
reasonably accurate estimate of the system parameters is obtained.
These are then improved as more samples are accumulated.

An important extension of the identification scheme presented
in this section is the consideration of noise in the observations.
Since the proposed method essentially involves optimal smoothing, no
undue difficulties are expected. Since in the pafticular reactor
control problem we are considering,a noise-free measure of the output
is available, this aspect of the identification problem is not

considered further.



CHAPTER 5
SUBOPTIMAL CONTROL OF HIGH-ORDER LINEAR SYSTEMS

In the previous chapter a new method was developed for deriving
optimal low-order models of high—order systems. Our interest was
focused on approximating the open-loop response of a given system
with that of a lower order model. We now turn our attention to using
the model to computa the suboptimal feedback controi law for the system,
The reason why such an approach produces suboptimal performance should
be evident from Chapter 2: wusing the controller computed for the model,
not all the state variables of the éystem are fed back, as would be
required for true optimal control.

The advantage of considering the suboptimal control of a linear
system prior to tackling the nuclear reactor control problem is, that
basic relationships between system and model performance are more
readily established. Furthermore, the seventh-order system we have
used in the last éhapter has been considered by other authors for

modelling as well as suboptimal control investigations[aé]’[asl.

5.1 Problem Formulation
Using the notation established in Chapter 2, consider an nth

order single input single output linear system

= An X, + En u (5-1)

X
-n
and an mth order model of this system (m < n), derived on the basis of

open-loop responses

89,



= A x +b u (5-2)
m=m ~m m

-m
where the states of the model correspond to the first m states of the
system,
For an integral quadratic cost function
o m

Jm = Jo(izl qay xii + p ui)dt (5-3)
the feedback parameters Bm that will result in optimal feedback control
can be conputed, as indicated in Chapter 2. If these same feedback
coefficients are used for the.control of the system, the performance
of the latter will be suboptimal. We are interested in measuring the
extent of this suboptimality by evaluating the cost function

Jn = I (.Z qq X4 + p un)dt (5-4)
0 i=1

Considering the more general servomechanism problem, the block
diagram representation of the optimal model controller and the
corresponding suboptimai system controller appears as in Figure 5-1.
Ug(s) is the Laplace transform of the externally applied input.

To illustrate the type of responses to be expected using the
above scheme, consider the seventh-order system and the second-order
Xez model given in Table 4-5:

X(s) _ 0.3960
Ue(s) 2 4 5 65605 + 3.4191

The responses will be evaluated for the following cost functions:

100 , , ,
J, o= J [(x,-1)° + 10 x; + 0.1(u-uw#)*]de (5-5)
0
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100 ) , , :
J, = J [10(x,-1)" + x; + 0.1(u-u*)"]dt (5-6)
0

(u* is computed from equation (2-29).)

The weights attached to the terms in the cost function reflect
“the type of transient response one desires[A]. A relatively large
value associated with the input (u) tends to produce the unforced
response of the system. Since this is rarely desired in practice, the
corresponding weight is usually the smallest. This being the case,
equations (5-5) and (5-6) represent the only other alternatives for a
second-order model: attaching a greater weight to either the output
or to its first derivative.

Using equations (2-24) and (2-25), the optimal feedback
parameters are readily computed for the model. Their values, as well

as the optimal model cost and suboptimal system costs are given in

Table 5-1.
Cost ko‘ kl Model System
function cost cost
J1 0.561 5.450 ) 5.388 - 6,247
J2 4.578 2.130 5.885 i 6.362

Table 5-1. Suboptimal system and optimal

model performances.

The plot of the above optimal and suboptimal responses is shown in
Figure 5-2, over a time-interval of 20 seconds. Clearly, the settling
time of the system is greater than 20 seconds, hence the computation

of the integral to 100 seconds.
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It is interesting to note, that the true optimal cost for thé
seventh-order system has been computed in reference [45] in the case
of Jl’ and is given as 6.175. The error in suboptimal cost, as a
percentage of the correct value, is 1.17%. This is quite acceptable
for most engineering applications, and is a small price to pay for

the convenience of needing only two state variables instead of seven.

5.2 Computational Aspects

Since the main objective in the present work iz to use low-

94.

order models and suboptimal control in an on-line adaptive configuration,

it is highly desirable to reduce the computing effort as much as
possible. The model should therefore be derived on the basis of the
least number of sample points, it should have as few varlable parameters
as possible, and be of a form that allows the computation of the
contreller parameters analytically.

The model that satisfies the last of the above criteria has
been described in Chapter 2, and has the form

b

X(s) _ 0

u(s) &2 + as + a,

-7

Furthermore, by letting b, = Ka,, where K is the steady state gain of
the system, the number of variable parameters is reduced to two.

Since in the servomechanism problem the steady state error is usually
desired to be zero, the above simplification is a particularly valid
one. In fact, it will be shown that models derived on the basis of
fixing the steady state gain yield lower suboptimal costs than if this

assumption is not made,
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The models presented in the previous chapter were derived by
considering 501 points. Since much of the computing effort is taken
up by evaluating the response of the model at each sample point, it is
highly desirable to keep these to a minimum. The effects of decreasing
bthe number of samples, on the model parameters as well as on the feed-
back parameters and on the closed loop performance, are indicated in
Table 5~2. The seventh-order system has been used, and a model of the
form

X(s) _ K a,

U(s) (5-8)

2
s + a;s + ay

has been computed, by minimizing the sum of the squares of the response
errors for a unit step input, over an interval of 20 secondé. Two

cost functions in the form of equation (5-4) have been evaluated to

te = 100 seconds, the values of the weighting factors being, respectively,
q; =1, q, =10, p = 0.1, and q, = 10, q, = 1, p = 0.1. 1In both cases

the system is transferred from the state [1 0 0 0 0 O 0]T to the
origin of state space.

The results indicate that there is no changg in system or model
cost as the number of samples are reduced from 501 tg 101. Furthermore,
in reducing the points to 21, while the maximum parameter change is
5.36% and the corresponding error in feedbéck coefficient is 2.51%, the
model cost has a 1.81% deviation, but the system cost has changed by
less than 0.02%. Hence, as far as comparing model and system costs,

100 sample points suffice, but if the suboptimal system cost is the
subject of our interest, 20 or less sample points will give a good

approximation. Since a time-interval ¢f 20 seconds has been considered,



100 100
J (x? + 1ox§ + 0.1u?)dt f (10xf + x§ + 0.1u%)dt
0 0

Model System Model  System

k 1 cost cost

1
N 29 o] X0 ky cost cost 0

501 3.2031 2.2857 0.539 5.589 5.678 6.245 4.454 2.311 5.270 6.357

201 3.2031 2.2858 0.539 5.589 5.678 6.245 4,454 2.311 5.970 6.357

1c1 3.2028 2.2855 0.539 5.590 5.678 6.245 4,454 2.311 5.970  6.357

51 3.1966 2.2818 0.539 5.589 5.678 6.245 4,454 2.314 5.974  6.357

21 3.3748 2.3868 0.539 5.610 5.694  6.246 4,454 2.253 5.866 6.356

Table 5~2. Modelling accuracy in suboptimal control, as a function of

the number of samples used over a given time interval.
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100 points imply a sampling interval of 0.2 second, while 20 samples

give 1.0 second interwvals.

5.3 Modelling Criteria for Suboptimal Control

In the previous chapter, attention was given to deriving optimal
low-order models for a system on the basis of métching the output
response only. For optimal control, however, the derivatives of the
output must also be considered. When deriving a low-order model for
the purpose of designing an optimal controller for a particular cost
function, the relative values attached to the terms in the cost
function should be reflected in the modelling criterion.,

For a cost function that includes the output and its first
derivative

2
J = Im(q1 x% +q, xi + p u)dt (5--9)
0

the following two modelling criteria appear most appropriate:

oo 5 )
AJ, Jo[ql(xnl - x)T F a0, - x )7]de (5-10)

® 2 2 .2
AJ, Io[qllxil - Xml' + q2|xn2 - xmzl]dt (5-11)

]

Note that for open-loop control the term involving the input is not
present, since u_ = u .
n m

To investigate the effect of the modelling criterion on the
corresponding suboptimal control, eight different objectives have been
used to find optimal models for the seventh-order system.b A 10 second

interval has been used, with samples taken at every 0.2 second. The

second-order model used had no finite zeros, and the effect of assuming
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zero steady-state error is also to be investigated.
The following are the eight modelling criteria, along with

the short-hand notations used to identify them:

1. sum of the absolute values of the errors [}|e|]

2. sum of the squares of the errors [Zez]

3. the maximum sample error [Mlesl]

4, the maximum perpendicular error [M[ep!]

5. the criterion given by equation {(5-10) with q, = 1 and q, = 10
[A3,(1,10)]

6. as in 5., but with q; = 10 and q, = 1 [AJ;(10,1)]

7. the criterion given by equation (5-11) with q; =1 and q, = 10
[AJ2(1,10)]

8. as in 7., but with q; = 10 and q, = 1 [AJZ(lO,l)]

For each of the models obtained, the optimal model cosﬁ and
suboptimal system costs have been computed, for transfering the states
from the origin to [1 6 ees 0]. Cost functions as given by equations
(5-5) and (5-6) have been evaluated, up to 10 seconds. The notation
used to indicate integral quadratic cost functions is: J = [ql,qz,p];f.

The results shown in Table 5-3 have been obtained with no

steady-state constraint on the model parameters, i.e., a;, a and b0

1
are all independent variables. For each of the eight criteria, the
optimal model parameters are shown, as well as the model and system
costs for the cost functions indicated. The results show, that while
there is appreciable change ia the model parameters and optimal medel

costs as a function of the modelling criterion, the corresponding

changes in suboptimal costs are very slight indeed.



J = [1, 10, 0.1]30 J = [10, 1, o.1]é0

Objective b a a Model System Model System
function 0 1 0 cost cost cost cost
Ylel -1 0.3950 2,7132 3.3541 5.267 6.235 5.946 6.310
Je? 0.4162 2.8543  3.5316 5.263 6.235 5.858 6.313
Mle, | 0.3730 2.5552 3.1691 5.282 6.235 6.043 6.307
Mlepl 0.3702 2.5071 3.1932 5.369  6.233 6.015 6.305
AJ (1,10) | 0.4229 2.7994 3.5872 5.343 6.234 6.597 6.311
AJ,(10,1) | 0.4180 2.8563 3.5468 5.271 6.235 5.847 6.313
AJ,(1,10) | 0.4869  -'2.9577 4.1375 5.537 6.236 5.491 6.313
AJ,(10,1) | 0.3551 2.5023 3.0187 5.224 6.236 6.160 6.307

Table 5-3. Performance of optimal second-order models in the

suboptimal control cf seventh-order system.
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To test the effect of assuming b0 = Ka, where K is the steady-
state gain of the system, the same eight criteria were used to obtain
new models for the seventh-order system. The model and system costs
are shown in Table 5-4. Once again, there is little difference
between the various suboptimal costs. Comparison with the entries in
Table 5-3 indicates that making the steady-state assumption (bo = Aa;)
results in usually lower suboptimal cost, or at least no worse than if
b0 is an independent variable. Keeping in mind that if b, is linearly
dependent on a,, one less variable needs to be considered, this
assumption is highly desirable for deriving low-order models for the
suboptimal control of high-order systems. The model that will be

used for suboptimal, and subsequently adaptive control, has the form

X(s) _ Ka,
u(s) 2

s + als + a,

(5-12)

The advantage of using a model which emphasises the matching
of the system response ét and near steady state for the purpose of
sﬁboptimal control is not surprising, since the feedback parameters
are computed on the assumption that the cost function is evaluated
tot = «, i,e., until steady-state is reached.

It should be noted that tﬁe response of the seventh-order
system approaches its final value to within five significant figures
only in the neighbourhood of 100 seconds. On the other hand, the
closed~loop model responses settle down within 10 seconds. Severgl of
the cost functions given in Talles 5-3 and 5-4 were evaluated to

100 seconds, but no relative changes in the costs were observed,

100.



3= 11, 10, 0.11° 3= 110, 1, 0.1]3°

Objective b a a Model System Model System
function 0 1 0 cost cost cost cost
Ylel 0.3599 2.2804 3.2391 5,711 6.232 5.941 6.300
Je? 0.3559 2.2856  3.2028 5.678 . 6.232 5.970 6.300
Mle| 0.3560 2.6172 3.2042 5.340 6.235 6.080 6.302
_;[epl 0.3730 2.7792 3.3568 5.300 6.237 6.015 6.305
AJ (1,10) | 0.4012 2.6449 3.6111 5.600 6.231 5.769 6.301
A7 (10,1) | 0.3683 2.3712 3.3143 5.667 6.232 5.906 6.300
AJ,(1,10) | 0.4528 ' 2.6786 4.0754 5.857 6.236 5.495 6.301
AJ,(10,1) | 0.3758 2.3975 3.3826 5.689 6.232 5.863 6.300

Table 5-~4, Performance of optimal gecond-order models with fixed d-¢ gain

(bO=Kao), in the suboptimal control of seventh~order system.

‘10T
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Since the Zez objective has computational advantages over the
other criteria for deriving low-order nodels, as well as belng the one
most susceptible to analytical techniques, it will be the one to be
considered in the remainder of this thesis. For the seventh-order
system, this model is

X(s) _ 0.3559
U(s) 32 4 9.2856s + 3.2028

(5.13)

as given by the first row of Table 5-4. The optimal feedback parameters
for this model, and for the two cost functions we have been considering,

are given below:

kg ky
J = [1, 10, 0.1]; 0.539 5.590
J = [10, 1, 0.1]3 4.454 2.311

The responses of the system and the model in both the open-loop
and the closed-loop configuration are shown in Figure 5-3. It is
interesting to note that the closed-loop responses are closer than the
open—-loop ones. The extent of the reduction of the error between the

responses may be seen from Table 5-5.

Mode of Control Zez (0-10 sec)
Open-loop 0.5748
Closed-loop 0.3898

J = [1, 10, 0.113
Closed-loop 0.269

o0 L] 3

J = [10, 1, 0.1

Table 5-5. Comparison of errors for open—- and closed-

loop responses of system and model.
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This reduction of the modelling error in going from the open-
loop to the closed-loop responses has been observed for every model
that was derived on the basis of the steady-state constraint to a step
input, It indicates that if a model of sufficient accuracy can be
- found to match the open-loop response of the system, the error between
the corresponding optimal model output and suboptimal system response

will be no greater than in the open~loop case.

5.4 Optimal Control for Least-pth and Minimax Cost Functions

Up to the present stage in this thesis, optimal control has
been considered only for the case of integral quadratic cost functions.
In Chapter 4, optimal models were derived for not only quadratic
objectives, but for the more general least pth and minimax error
criteria also., In this section we consider the possibility ¢f synthesi-
zing optimal feedback controllers for the often desireable least pth
and minimax objectives..

The attractive feature of the quadratic cost function is, that
when the differentiation indicated by equations (2-4) and (2-5) is
performed, a linear differential equation results. :Analytical solution
in the general case is not known to exist, although for certain specific
nonquadratic cost functions the optimal control law has been found[17]’[46];

In this section it is shown that the application of search
methods will yleld the optimal feedback parameters for least pth and
minimax cost functions. The only restriction is that the gystem to be

controlled cannot have finite zeros.

The cost functions, for which the optimal controller is to be



found, may take one of the following forms:

1 ” ﬁ[él 1yl - gl”+ 121 ryluy - ufP1ae (5-14)
Jg = 1g[IZ1 q |x -V-x*.lp+ ‘f r lu . - ur,|P] (5-15)
57 kb 11745 ij o K Ui T YKy

j ! * s v *
JM ) jziTN{izl qiixij - xiji N kzl rk!ukj - ukj]} (5-16)

where 9 and r, are non-negative weights, p a positiﬁe number, usually
an integer, T the time interval of interest that contains N sample
points, X; is the ith component of the state vector and w the (k-1)th
derivative of the input; the superscript * denotgs desired functions
of the appropriate variables, and the subscript j refers to the jth
" sample of the variable in question.

Note that the previously considered integral quadratic cost
function is a special case of equation (5-14), with p=2. An important
practical feature of the above cost functions is the inclusion of the
derivatives of the input. In many applications, the velocity and
acceleration of the input must be limited for physical reasons. These

are readily dealt with using the above formulation.

105.

The philosophy of the proposed method evolved from the modelling

work presented in Chapter 4. There we considered approximating the
open-loop unforced response of the system by using rational functions.
The question arises: can the optimal response be also approximated
in this fashion, and is the result realizable in a feedback fashion?

The affirmative answer is presented below.



5.4.1 Frequencv-Domain Derivation

Let the system to be controlled have the transfer function

b
X(s) . 0 (5-17)
U(s) n-1
n i
s + Z a; s
i=0
where b, and a; are constants, and n is the order of the model.
Assume that the desired optimum output trajectory may be
approximated by the following rational function:
. g,U_ (s)
X(s) = —2 (5-18)
n n-l i
s + Z hi s
. i=0

where Ue(s) is the externally applied driving function, and g, and hi
are the constant parameters that are to be determined by a search
routine such that the appropriate cost function is minimized. A suitable
starting point is obtained by a direct substitution of g0=b0 and hi=ai,
i=0,1,...,n-1 from equation (5-17).

The corresponding input to the model found by combining equations

(5~17) and (5-18):

n | n-l i
go[s + z a; s ]Ue(s)
~ - i=0 > _
U(s) = - 1 ; - (5-19)
by[s + .Zo hy 7]

Since the time functions that correspond to equations (5-18) and (5-19)
are differentiable with respect to time, all the desired terms in a cost
function of the form of equations (5-14) to (5-16) are known. It can
theréfore be minimized by a search routine that systematically varies

the parameters 8 and hi'



The solution of the problem is open—~loop at this stage, as
illustrated in Figure 5-4a. What has evidently been done is to cancel
the poles of the model, and to introduce new ones, sucﬂ that the
resultant system behaviour is 6ptimum. The disadvantage of this
arrangement is well-known: it is rarely possible to exactly cancel
the poles of the model, and changes in the model parameters directly
affect the overall performance. The solution which is usually desired .
is a closed-loop one, as shown in Figure 5-4b, and our task is to
express the coefficients 20 and ki (i=0,1,...,n-1), in terms of the
constants found by the search routine and the parameters of the system.
This is readily accomplished, as shown below.

Referring to Figure 5-4b, we can write

- n-1 .
U(s) = £, U, (s) - '20 kg st X(s) (5-20)
i=

Substituting for i(s) from equation (5-18):

n n-1 1 n-1 1
[Ly(s™ + .2 hi s7) - g ) ki s ]Ue(s)
U(s) = 1=0 e — (5-21)
s™ + Z hi si
i=0

Equating now coefficients in the two expressions for ﬁ(s), equations
(5-19) and (5-21), we obtain the desired formulae for the feedback
coefficients:

k, = ——— i=20,1,...,n-1
(5-22)
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o n n-1 5
Ue(s) go(s + 120 a, s )
—> n-1 i
bo(sn + X h, s7)
, i
i=0
a. Open-loop realization
U, (s)
— £

108.

b. Closed-loop realization

Figure 5-4,.

ﬁ(s) bo i(s)
el n~1 i
s" + z s
i=0
b0 X(s)
n-1
sn + ) ai si
1=
n-1
i
5 ok, st g — |
1=0 I

Block-diagram representation

of optimum systems.
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5.4.2 Time-Domain Derivation
It is instructive, from the point of view of appreciating the
proposed method, to repeat the previous derivation in the time-domain.

Accordingly, let the system be represented by
x = Ax + bu (5-23)
and it is desired to find the feedback control law

u= -k x (5-24)

where, for the sake of simplicity, the regulator problem is considered.
Substituting for u in equation (5-23) from equation (5-24) we
obtain

=(A-b ET)E (5-25)

(30

In order to find the value of k such that the appropriate cost funcfion
in the form of equations (5-14) to (5-16) is minimized, the use of a
search routine is proposed.

We assume an approximation to equation (5-25) of the following
form:

= H %(t) (5-26)

I¥oe

and initially put H=A, which corresponds to the unfércgd case. By
varying the parameters of H using a suitable search routine, the
desired cost function is minimized.

The least number of parameters will need to be determined if

both H and A are in phase-variable form:
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[ e ] [ 0 «e. 0
0 oo 1 ... O
A = . . . E H = E E E E (5-27)
0 0 0 ... 1 0 0 0o ... 1
H-ao -2 "a, e —an—li .—hO' —h1 ~h, ... -hn-lJ

Since it is also assumed that the system has no finite zeros, the
control vector may be written as b= [0 0 0 ... bO]T.

At each iteration, it is necessary to solve equation (5-26).
Becausekof the phase-variable notation a closed form solution is readily
obtained, thus avoiding the necessity of numerically solving n
simultaneous differential equations. The input and its derivatives
must also be known at each iteration. Making use of the originally
specified model equations, we can substitute into equation (5-23) the

approximating relationship of equation (5-26) to give:

H x(t)

A x(t) + b a(t)

Rearranging, we obtain

b u(t) = —(A - H) x(t)
which on evaluation reduces to
aee) = -k x (5-27)

where

k, = —

i by i=20, n-1 (5-28)

The values obtained for k; are, as expected, the same in
equations (5-22) and (5-28). Since they are constants, the realization

of the controller is readily achieved. It should also be noted that

the above results are consistent with modern control theory: optimum



performance is accomplished by feeding back all the phase variables.

5.5 Optimal Control with Zero Steady-State Error

It was shown in section 2.3 how the regulator problem may be
converted into the servomechanism problem, by requiring that the
steady-state error between a step input and the response of the

system be zero. For a system having the transfer function

X(s) _ i
U(s) n n-1
s + Z a; s
i=0

(5-29)
i

the desired result was achieved by the addition of a feedforward block

of gain EO‘ ‘The value of KU was found to be

&9

In section 5.4.1, the same requirements led to a value of
(5.31)

It is desirable to establish the equivalence of equations (5-30) and
(5-31), and to seek the conditions under which zero steady-state errors
to ramp and higher-order inputs may also be realized.
Using equation (5-22), |
hy -3

ky = — 40—

0 b,

and substituting this value of ko in equation (5-30) gives

0
Zo =i)~—
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Since the requirement is that the d-c gain of the closed~loop system
is unity, ho = gg, as desired.

The technique used in section 2.3 to convert the regulator
problem into the servomechanism by requiring that the steady-state
value of the output equals that of the input when the latter is a step,
can be extended to inputs which are higher order functions of time.

For example, to have zero steady-state error to a ramp input, the
feedforward block becomes ZO + £;s. In general, for an input of
u(t) = t™ (5-32)

the feedforward block takes the form

8

H(s) = 2, st (5-33)

i 1

Il &~

0
The block diagram representation of an nth order system with all phase-
variables fed back and a feedforward block of the form of equation
(5-33), is shown in Figure 5-5. The coefficients Ki, i=0, m-1 are

to be determined such that the steady-state error, between the output
of the closed-loop system and inputs in the form of equation (5-32) is
equal to zero.

Referring to Figure 5-5,

bO
X(s) = 3 E(s) (5-34)
n i
s + Z a, s
i=0 i
m n-1 .-
E(s) = ] £ st U() - ] k; s" X(s) (5-35)
1=0 1=0 ~ |

Substituting in equation (5-34) for E(s) and separating the variables,

leads to

112.
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b

n—
sn + Z a, si

. i

i=0
n-1

i
S
z ki s ]

Figure 5-5. Block-diagram representation of closed-loop

system for realization of zero steady-state
error.



S i
b, igo Ki s
X(s) = . U s)
n-1 .
st + Z (a. +b, k )s1
i=0 i 01

114 .

(5-36)

Equation (5~36) is the open-loop representation of the closed-loop

system in Figure 5-5.

For an input as given by equation (5-32)

Using the final value theorem, we require

lim {s[X(s) - U(s)]} =0

s>0
n-1 m
i.e., -s? - Z (a*+b0ki)si + z (boﬂi—ai—boki)si
. - m! i=m+1 i=0
lim {— [
s>0 sm n n-1 i
s" + } (a, +bgk,)s
i 0™
i=0
This will be satisfied if
boki -a; - boki =0
i.e.,
24
Ki = E;'+ ki i=0, ml
, m < n-1

Checking our result, for i=0

0
ﬁo = ’B—O' + k.o

as already established by equation (2-28)

1} =0

(5-37)

Rasically, equation (5-37) can be applied in two configurations.

Either the response is optimized on the basis of feedback alone, and



the appropriate feedforward coefficients added when the loop is closed,
or they are included in the open-loop optimization stage. The former
approach tends to reduce the steady-state error, while the latter will
produce a smaller value of cost.

One other alternative is possible, which is to vary the ti
coefficients also at the stage of the open-loop optimization. It can
be readily shown by the procedure used in this section, that the
feedforward coefficients remain invariant under the transformation

from open- to closed-loop configuration provided g, = b,.

5.6 Results for Least~pth and Minimax Cost Functions

To illustrate the method proposed in the last two sectioms,
three examples are now considered, using each type of cost function
specified in equations (5-14) to (5-16). The task is to compute the
suboptimal controller for a high-order system, based on the optimal

controller computed for a low-order model of the system. The seventh-
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2
order system and the second-order Ze model with steady-state constraint,

given in equation (5-13) are considered, and pattern-search used to

find the optimum.

Example 5.1: Transfer the system from the state
[L 00o0O O 0]

to the origin of state space so that the cost function

10
3 = J (% 4 »- + 0.1u7)dt
0 1 2

is minimized., For this special cas2 of an integral quadratic cost



function,»the optimal feedback control may be obtained analytically
for the model, as discussed in Chapter 2. This example, therefore,
provides a useful check on the proposed method. The feedback
coefficients obtained by the two techniques and the costs incurred

by using these controller parameters for both the model and the system

are shown in Table 5-6.

ko kl Jm J'S
Analytical 0.53944 0.94505 1.24788 1.34008
solution
Proposed 0.53936  0.94498  1.24788 1.34008
solution

Table 5-6. Results for example 5.1.

Clearly, the results obtained by the proposed method are accurate for
all practical purposes. To obtain the desired optimal response, a
minimum step~size of 0.00001 was used, and convergence occured after

220 function evaluations.

Example 5.2: Transfer the system from the origin of state space to
[L oo0oo oo o]

so that the cost function
100 ,
- - - k3
J. = .Z (lxli 1] + 2[x21| + 0.1|ui uil)
i=0
is minimized over the time interval [0,10] seconds. [u* is given by

equation (2-29).] The results after 61 function evaluations and a

minimum step-size of 0.0001, are as follows:

116.
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ko = 5,845

k1 = 4,320

ﬂo = 14,844
model cost = 30,25
system cost = 35.60

Both the system and the model responses have been plotted in Figure 5-6.
The agreement between optimal model response and suboptimal system

performance should be acceptable for most practical applications.

Example 5.3: Transfer the system from the origin of state space to
[L 0000 0 0]
so that the cost function

J, = max {5]x

% * *
M - xlil + |x21 - Xzil + O.llui - ui[}
3

11

is minimized over the time interval [0,10] seconds, where

X 0.2t x, = 0.2 for 0 <t <5 sec

[ S
]
N ¥ %

X 1.0 X 0.0 for 5<t <10 sec

%

The final value of the input, uy is once again computed from equation

(2-29), such that
%o
u*(t) = B*'XT(C)
0
The externally applied input is given by
u (€)= x™(¢)

This problem has been solved by considering four different possibilities:
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Figure 5-6. Responses for example 5.2.
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The open~loop parameters h0 and h; are varied to minimize the
cost function, assuming that g, = h,. The closed-loop parameteré
are then computed from equation (5-22).

The same procedure as above is used, but 21, as given by equation
(5-37), is also included in the closed-loop realization.

The feedforward parameters 20 and Zl are evaluated at each stage
of the search process [equation (5-37) is applicable}. hg and

h1 are again the only variables, and g5 = bj.

In addition to ho and hl’ Zl is also varied by the search routine.
Once again, gy = bo, in order to make the feedforward parameters

invariant in going from the open- to the closed-loop configuration.

The results obtained for the above four cases are displaced in

Table 5-7. The corresponding responses are plotted in Figures 5-7 and

5-8.
Case ko ) % L ost ese
a 3210 2.963 4110 0.0 0.524  0.569
b 32.10 2.963 41.10 9.385 0.428 0.538
c 0.0 3.067  9.000 9.489  0.393  0.526
a 0.0 3.633  9.000 9.157  0.388  0.456

Table 5-7. Comparison of results obtained for

the four cases of example 5.3,
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Legend: —- -— — desired response
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system response
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Figure 5-7. Responses for example 5.3,
cases (a) and (b).
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Legend: desired response

model response

——————— gystem response
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Figure 5-8. Responses for example 5.3,

cases (c¢) and (d).



Both the model and the system costs decrease as one progresses
from case (a) to case (d), as expected. Inspection of the diagrams,
on the other hand, suggests, that case (b) is the most desirable one.
This example very well illustrates the care one must take in selecting
~ the cost function and the weighting coefficients to realize a desired

transient response.
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CHAPTER 6
SUBOPTIMAL CONTROL OF NUCLEAR REACTOR - RESULTS

ﬁaving developed a method for finding optimal low-order models
for high—-order systems, and having demonstrated the use of such models
in the suboptimal control of a linear system, we turn our attention to
the nuclear reactor control problem. Since it is impractical to feed
back all the state variables of this system, true optimal control
will not be attempted. Knowing that the actual plant is successfully
operating by feeding back only the output and its derivative, we
consider the suboptimal control of the nuclear reactor on the basis
of these two signals. To find the feedback parameters, an optimal
second-order model for the system is derived, using the method
proposed in Chapter 4, If the performance index is quadratic, the
optimal controller for the model is computed from equations (2-24)
and (2-25). For other cost functions, the technique presented in
sections 5.4 and 5.5, is used.

Since the system is nonlinear and has time-varying parameters,
it is expected that a new model will have to be found every time there
is a change in the operating power level, depending on the magnitude
and direction of the demanded power excursion, and as the system
parameters vary. The extent of the necessary changes in model para-
meters are investigated in this chapter, in order to establish the need

for the on-line updating of the model.
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The nonlinear nature of the system is also expected to affect
the agreement between optimal model and suboptimal system performance.
Since initially the model is derived on the basis of unity feedback,
6nce the suboptimal controller is applied, the model may no longer
‘reflect accurately the behaviour of the system, and its parameters

will have to be modified.

6.1 Optimal Second-order Linear Models

To find the desired optimal models for the nuclear reactor
and associated reactivity controller mechanism, the system considefed
in section 3.3 and depicted in block diagram form in Figure 3-5 is
used. It is assumed, that the response of the system to a step change
.in demanded power has been observed over a suitable time-interval.

For the models to be derived in this chapter, the d-c gain is assumed
to be the same as that of the system, viz. unity, and the Fletcher
method is used to minimize the sum of the squares of the deviations
between system and modei responses, over 101 sample points.

In order to relate the accuracy of the proposed technique of
system modelling to the previously discussed classical reactor models,
reference must be made to the responses presented in section 3.3.
Since a low-order linear model is aesired, the linearized one delayed
neutron group model has been chosen for comparison. For the same
power level change as in Figure 3-7 (507%-100% FP), the responses of
the optimal second-order model and of the one delayed neutron group
model (which becomes fourth-oiuer with the addition of temperature

feedback and absorber rod drive moter), are shown in Figure 6-1la.
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The considerable improvement in accuracy using the optimal model,
despite the lower order, is evident. That even better approximation
of the system is possible for smaller power level changes, responses

of the system and of the two models for a power level change from 90%
to 100% FP are shown in Figure 6-1b. The parameters of the optimal
model [as defined in equation (5-8)], as well as the sum of the squares

of the errors, are given in Table 6-1.

Response a, a, Zez
50%-100% 0.5239 0.1392 2,193 x 10-!
90%-100% 1.4471 1.2098 8.291 x 10~

Table 6-1. Optimal model parameters for

given reactor responses.

As expected, the model parameters change considerably from
one response to another. It is necessary, therefore, to investigate
the variations in model parameters as a function of power level
changes and as the reactor parameters vary, before the models are used

for the suboptimal control of the nuclear reactor.

6.1.1 Effect of Nonlinear Reactor Kinetics

The nonlinear nature of the reactor kinetic equations has
already been discussed in Chapter 3. Our present interest is to
observe the form and extent of the changes in the optimal model
parameters as a function of the operating power level of the reactor,
and of the magnitude and direction of the demanded change in power.

In particular, we seek to find a single model, or at least a well
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defined set of model parameters, in terms of the observable character-
istics of the plant, in order to make the design of a fixed or at least
a preprogrgmmed suboptimal controller possible.

Figure 6~2 illustrates the effect of the initial power level on
the model parameters., From various operating points, a 20% increase
was demanded. The wide range of variations of a, and a; are evident
from the diagram. A decrease of 20% in power from the same initial
point calls for a different set of médel parameters, as shown in
Figure 6-3, Although the curve for a, has not changed appreciably,
the one for a; is down by about 0.2 froun the corresponding one in
Figure 6-2. Such a change, however, could be accounted for in a
preprogrammed controller algorithm,.

Turning our attention to the effect of different magnitudes
of power changes from a given initial level, rather different foims
of model parameter variations are observed. For increases of various
magnitudes from an initial power level of 507 FP, Figure 6-4 shows the
changes in model parametérs. For decreases from 100%, two results
have been plotted in Figure 6~5. To establish a functional relation-
ship between these sets of curves and the ones shown in Figures 6-2
and 6-3, appears to be very difficult, particularly when one takes
intobaccount the several remaining combinations of initial power
levels, as well as magnitudes and directions of demanded changes.

The problem is further complicated by changes in plant parameters, as

discussed in the next section.
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6.1.2 Effect of Parameter Changes
The parameters which are time-varying in our reactor model are

the temperature coefficient (Tc) and the concentrations of the various

132,

delayed neutron groups (Bi). The range of variations in the temperature

coefficient is from -10mk to +5mk, while the maximum changes in
delayed neutron concentrations are *20Z of the design values given in

[5]

Appendix I. It was found by the author earlier , that changes in T
have a much greater effect on the system response than variations in
the Bi’ and that it is not feasible to distinguish which of these
parameters has changed, from the effect on the system response., Since
our interest is only in the change of the overall plant performance,
and its effect on the model parameters, the exact nature of the
internal change is not important.

The variations in the optimal parameters for the range of TC
are shown in Figure 6-6. The change in a; is particularly large.
Similar responses could be obtained for various other initial power
levels and demanded chaﬁges, but it should be apparent that it is not
practical to attempt to find model parameters for all possible stages
of operation. It is more desirable to continually update the model
parameters on-line, in order to take care of both the nonlinear nature
of the plant and changes in the system parameters. Before considering
such an adaptive scheme, it is useful to investigate the suboptimal
control of the reactor, in order to establish the type of performance

one can expect from the proposed technique.
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6.2 Responses for Integral Quadratic Cost Functions

The suboptimal control of the nuclear reactor follows the same
pattern as has been described in the previous chapter for a high~order
linear system. The main difference is, that instead of finding the
optimal model on the basis of the open-loop response, the reactor
system equations are initially evaluated for a unity feedback configura-
tion. This is advantageous, since the open-loop response of the
reactor for a positive power demand change would be unbounded, except
for physical limitations.

Using the examples considered in section 6.1, and the model
parameters given in Table 6~1, optimal feedback controllers for the
models have been computed for the following cost functions:

e

J, = | [0Gx, - ¥ + x>+ 0.1¢u - v)¥]ae (6-1)
‘0
(* . 2 2
J, = [(x, - x5)  + 10x° + 0.1(u - u¥) jdt (6-2)
27 J,t 1 2

where both x? and u* are equal to the new value of the demanded power
level.

The block diagram realization of the suboptimal reactor
controller and the corresponding optimal model controller are shown in
Figure 6~7. Note that the feedforward block is ky+1l, since both the
reactor and the model have unity gain.

The responses for a demanded change in power from 90%-1007% FP
and for the cost functions given by equations (6~1) and (6-2) are shown
in Figure 6-8. The effect of the relative weights attached to the

response and to its derivative are well illustrated. The most important
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thing to note, is that while for J, the model and system responses

are identical for practical purposes, there is a considerable deviation
in the case of Jl' This discrepancy is due‘to the nonlinear nature

of the plant, and will be even more apparent for larger changes in
power level. It is desirable, therefore, to reoptimize the model
parameters, on the basis of the suboptimal response. The response of
the updated model is also shown in Figure 6-8. The corresponding
change in suboptimal control as well as the effect of repeated re-
optimizations will be considered after the responses for a 507-100% FP
power change have been discussed.

Using ﬁgain the model parameters from Table 6-1 and the cost
functions of equations (6-1) and (6-2), the responses of the reactor
and the model for a 507-100% FP demanded power change are shown in
Figure 6-9. The difference between optimal model and suboptimal
system response is quite large in both cases, being worse, once again,
for J,. The responses of the updated models are also shown.

The convergence'of the model parameters and hence the optimal
and suboptimal costs, following subsequent cycles of updating the
model and finding the new reactor response, are illustrated by the
results in Table 6~2. Since in the case of Figure 6-8b, no change in
model parameters took place, only the remaining three cases are
considered. In the upper portion of the table, the model parameters
are displaced, starting with the ones obtained from the unity feedback
configuration, and already given in Table 6-1. The corresponding
optimal model costs and suboptimal system costs are shown in the first

rov of the lower part of Table 6-2. The changes in model parameters
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90% - 100% 56% - 100%
3, = [10,1,0.1]%° 3, = [10,1,0.115° 3, = [1,10,0.1]2°
Number of 0
reoptimi-
zations a, a, a; a, a; a,
0 1.4471 - 1.2098 0.5239 0.1392 0.5239 0.1392
1 1.4157 0.2561 0.2960. 0.0107 0.3816 0.0591
2 1.3136 0.2633 0;2318 | 0.0111 0.2294 0.0342
3 1.2972 0.2643 0.2231 0.0112 0.2172 0.0353
4 1.2972 0.2643 0.2220 0.0112 0.2158 0.0354
Model System Model System Model System
cost cost cost cost cost cost
0 0.0602 0.1158 3.26 12,91 0.932 1.254
1 0.1103 0.1114 12.65 11.43 1.088 | 1.254
2 0;1066 0.1108 11.20 11.24 l 1.248 1.228
3 | 0.1062 0.1107 11.03 11.22 1.226 1.226
4 0.1062 0.1107 11.01 ~11.22 1.224 1.226

Table 6--2. Reoptimization of model parameters for suboptimal
reactor responses, and corresponding changes in
model and system costs.




as well as in the cost functions at each reoptimization are seen to
converge after four cycles. The final response for the 50%-1007% FP
change are shown in Figure 6~10, indicating good final correspondence
between system and model responses.

While the above discussed use of repeated reoptimizations is
not practical in an on—line situation, the examples serve to illustrate
the potential of the proposed approach. In an on-line application,
the model parameters begin to be updated on the basis of the closed-
loop suboptimal response as soon as sufficient samples are available,
and as the updating progresses, the reoptimization of the model
parameters is performed automatically. Since this process is the
essence of the adaptive contreller to be used, it will be discussed

in detail in the next chapter.

6.3 Responses for Least pth and Minimax Cost Functions

6.3.1 Monotonic Reactivity Insertion

It was pointed out in Chapter 3, that in the reactor control
problem it is important to include in the cost function terms relating
not only to the output but also to the input. 1In ﬁérticular, the
number of sign changes of the input signal influences the mechanical
wear of the absorber rod mechanism, and should therefore be minimized.
Thg addition of such a term to the cost function renders the Riccati
matrix method ineffective, and the technique proposed in sections 5.4
and 5.5 has to be used.

The problem may be illustrated by considering a 907-100% FP

change in power level, and the cost function to be minimized is:
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J, = 1§ 10(x., - x.)% + x5, + 0.1(u, ~ u®)?
1 = 147 %14 ¥ag TV T Yy

i=0

(6-3)

The optimum response is shown in Figure 6-1la, and the necessary
reactivity variation to bring about such a power level change is
indicated in part b of the diagram. It is apparent, that following a
sudden reactivity insertion, two reversals in the direction of travel
of the absorbef rod are required to realize the desired response.

To realize a monntonic reactivity insertion, while still
minimizing the cost function of equation (6-3), a term is added to

reflect the number of sign changes of the input:

N
*
J, =J + ilesgn(ui - u;) - sgnu;_,; - ui_l)' (6-4)

The resultant power level change and corresponding reactivity variation
are shown in Figure 6-11. The degradation in performance, as far as
the power response is concerned, appears to be acceptable in view of
realizing a monotonic réactivity input. The numerical change in

system cost is from J, = 1.029 to J, = 1.368, subsequent to one cycle

of reoptimization in each case.

6.3.2 Ramp Change of Demanded Power

It has been assumed, up to this stage in this thesis, that the
demanded power change appears as a step. While this assumption may
be valid for future reactors, at the Douglas Point plant the demanded
power varies as a ramp between the initial and the desired levels.

The Riccati matrix approach is once again not suitable, and the proposed
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optimization method is to be used to find the suboptimal controller for
the case of a specified rate of power level change. In order to
further emphasize the versatility of the new technique, a least pth
cost function with p=1 as well as a minimax objective are considered
for the ramp change in power level.

The rate of change of the demanded power has been assumed‘to
be 2% FP per second. The cest functions to be minimized have been

selected as:

101
— ) % 2a *
J1 = iZo(lei - Xlil + |x21 - x;il + O.l!ui - ui[) (6-5)
J, = max {|x.-x* |+ |x. - x| +0.1u, - |} (6-6)
2 i=0,101 1i 11 213. 21 i Vl

For a change in power level from 907 to 100%, the controller parameters
and the suboptimal system costs are shown in Table 6-3, and the
responses are plotted in Figure 6-12. While there is a considerable
change in the controller parameters, particularly in kl’ the difference

between the corresponding responses is not very significant,

ko k, £0 21: Cost
J1 11.43 8.270 12.43 6.190 0.420
J2 9.264 0.965 10.26 0.624 0.0281

Table 6-3. Results for ramp change

in demanded power.
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CHAPTER 7
ADAPTIVE CONTROL OF NUCLEAR RﬁACTOR

The need for continually updating the parameters of the optimal
low-order model of the reactor on-line, as successive samples of the
given response are obtained, has been indicated several times in thé
previous chapter. Since following each updating, the feedback controller
parameters are recomputed, the resulting control system is adaptive.
Because of the nonlinear nature of the plant, the model parameters
change not only with the operating characteristics of the system, but
are also a function of the feedback parameters used to obtain the
response on the basis of which the new model is found. This interaction
between model and controller parameters has been found to give converging
values of each of the quantities involved in the case of suboptimal
operation. The same should also hold for the adaptive mode.

Before considering in detail the performance of the adaptive
controller, it is interesting to note that the proposed method, based
on a second-order model of the system to be control}ed, provides a
link between modern optimal control theory and’classical techniques of
controller design. A fundamental difference between the two approaches
is in the nature of specifying the desired performance. In optimal
control, a cost function is used for this purpose, which includes not
énly the output, but also its derivatives, as well as their effect on
the input. The classical techbniques, on the other hand, aim basically
at realizing a given transient output response. This can usually be
specified in terms of the natural frequency and damping constant of
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the response of a second-order system, to a unit step input.

Using the approach presented in Chapter 5, both of the above
objectives may be realized. In fact, if the desired response to a step
input is already given, and the optimal model of the system has been
.derived, the controller parameters are given immediately by equations
(5-22) and (5-30). The apprqximation of the system response to the
desired one will once again depend on the accuracy of the model, which
may need to be updated to improve the closed-loop response. An example
to illustrate the above application is considered in this chapter,
along with adaptive control for integral quadratic cost functions, for
least pth sums and for minimax objectives.

As in Chapter 6, the second-order model for the reactor and
the controller is assumed to have the form

X(s) _ &g
u(s) 2

s -+ als + ao

and the Fletcher routine is used to identifv the parameters a and ags
such that the sum of the squares of the sample errors between system
and model responses is minimized. This aspect of the identification

problem has already been discussed in Chapter 4, and will not be

further considered,

7.1 The Adaptive Loop

The implementation of the concepts introduced in previous parts
of this thesis for the adaptive controller may be divided into four
stages. Initially, the reactor is assumed to be operating at a steady

pover level; at time t=0 a change t> a new operating level is initiated.
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Using the model parameters appropriate for the demanded change and the
desired cost function (this information being stored in the computer)
the controller parameters are computed, and the, system begins the
transition to the new power level. Stage one continues usually for
-several sampling intervals, the value of the response being stored at
each sample point. This may be called the observation interval, since
neither updating of the model nor recomputation of the controller
coefficients takes place. TheAgoodness of fit, between model and
system responses during this stage, depends entirely on the accuracy
of the initial model for the operating conditions within the system.

The observation interval is completed after a predetermined
number of samples have been collected, and the second stage, the
updating of the model, commences. This is essentially the identifica-
tion interval, since the model parameters are "identified” or the model
is reoptimized on the basis of the observed system response.

Having found the new low-order model, the next step is to
recompute the controllef coefficients. Since this is the stage that
provides the adaptation of the control system, it is referred to as
the adaptive interval. While theoretically it is desirable to complete
both the identification and the adaptation during one sampling interval,
so that the next observation stagé may begin with the new controller
paramaters, it is possible in practice to realize a variety of combina-
tions of the relative duration of each of these three intervals. 1In
particular, the length of the adaptation interval is greatly dependent
on the choice of the cost funcuion. If a search routine needs to be

used to find the new controller parameters, the time will be much longer



than if simple analytical expressions give the desired quantities.
Since the observation interval is not in fact part of the
adaptive controller, and needs little explanation, it will not be
considered further., Before presenting some examples, however, it is
‘useful to summarize the formﬁlae used in the identification and the

adaptation stages.

7.1.1 The Identification Interval

It has been assumed throughout this thesis, that the system
to be controlled ie replaced by a low-order open-loop model for the
purpose of computing the controller coefficients. However, when
realizing the suboptimal system and optimal model responses, both
appear in the closed-loop form, as indicated in Figure 6-7. Since
the same configuration is used in the adaptive scheme, it is necessary
to be able to identify the equivalent open-loop parameters of a closed-
loop model, given the controller coefficients, and vice versa.

Referring to Figure 6~7 and using the same procedure as in
section 5.5, it can be readily shown that for a model in the form

a

X(s) _ 0

T2
U(s) s + a;s + a,

(7-1)

having a feedback loop ko + kys and a feedforward bleck of ko + 1

(Figure 6-7b), the equivalent open-~loop model is

b
X(s) _ 0
is) ~ 2 (7-2)
< s +b.s+5b
1 0
where
b0 = ag + a5k, (7-3)
b. = a, + a.k (7-4)
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Conversely, if a model in the form of equation (7-2) has been
used to represent a closed-loop system having feedback parameters
k¥ and k?, the equivalent open-loop model, on the basis of which the

0

new controller coefficients are to be determined, are given by

i

ay = ——— (7-5)
1+ k)

a; = by - aokT (7-6)

For the case of ramp or higher-order inputs as well as for systems of
order greater than two, equations (7-3) to (7-6) can be readily

extended by using equations (5-34) and (5-36).

7.1.2 The Adaptation Interval

It was pointed out during the description of the adaptive loop,

that the nature of the cost function has a vital bearing on the amount
of computer time that is necessary to determine the parameters of the
control system.

For an integral quadratic cost function in the form of

® 2 2
J, = Jo[ql(x1 - xf) +q, x, + plu - u*)z]dt -7

0.

and the model given by equation (7-2), the optimal controller coefficients

to transfer the model from a given initial state to the state [x? O]T,

are computed from equations (2-24), (2-25) and (2-28), giving

9 %
ko = =1+ [1+ ] 4 (7-8)
a a o, q 2k, 1
kl =__£_1_+.[Tai) .;.-.3.;..5..9.]2 (7"9)
%o 0 P 0
£, =1+k (7-10)

0
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It is important to note, that ko and hence ﬂo are functions of the
performance index only, and hence remain constant dufing adaptation.
In the case of the system performance being specified in terms
of the step response of a second-order system, the controller coefficients
are again obtained by simpie formulae. Let the desired response be
h -

X(s) = ——2 U (s) (7-11)

2 e
s + hls + h0

where Ue(s) =%~. Equations (5-22) and (5-30) are now applicable giving
h, - a :
kO = ) (7-12)
a
0
h, - a
k) = R (7-13)
a
0
£y =1+ k, (7-14)

Clearly, no appreciable amount of computer time will be used in
evaluating the last three equations.

The time required for computation becomes a problem for on-line
application when the coefficients of equation (7-11) are not specified,
but need to be détefmined by’a search routine such that a general least
pth or minimax cost function is optimized. The duration of the adaptation
interval will bé a function of the accuracy to which the optimum is
approached and of the efficiency of tﬁe search routine.

It is inferesting to note in this third case, that during‘the
identification'interval the feedback coefficients are held constant,
and the model parameters are updated, while in the adaptation interval
that follows, the model is‘invariant, but the controller coeffiqients

are optimized. At the beginning of each identification and adaptation



interval the initial conditions for the model response are set equal

to the values of the system response at that particular sampling

‘instant.

7.

2

Results for Integral Quadratic Cost Functions

Because of the importance of the integral quadratic cost

function in optimal control theory, the problem of adaptively

controlling the nuclear reactor, such that a cost function of this
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form is minimized, has been chosen to demonstrate the basic capabilities

of the proposed scheme. In particular, the effect of the initial model

parameters, the duration of the identification interval and a change

in temperature coefficient are to be considered. Two sets of responses

will be used:

1.

Step change in demanded power from 907~100% FP; the cost

function being

20 2 2 2
J, = I [10(x, = x])° + x) + 0.1(u ~ u*)“]dt
0 2

A 507-100% FP change, subject to minimizing

20 2 2 2. .0
J2 = J [(x1 - X’f) + 10x2 + 0.1(u - u*) Jdt
0

The following six cases are considered:

The open-loop model parameters, as given in Table 6-2 are used
for computing the initial controller coefficients. Samples

are taken every 0.2 second, and each observation interval is

of 2 second duration. Jo limit is placed on the identification
interval, but the updating is assumed to be completed in 0.2

second.



II.

III.

IvV.

VI.
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As in I., but the number of function evaluations is limited to
10, ensuring that the identification interval does not exceed

0.2 second.

As in II., but the starting model parameters are the reoptimized
ones, as given in Table 6-2. These same parameters are used

initially for the remaining three cases.

The sampling interval is reduced to 0.1 second, the observation
interval to 1.0 second and the number of function evaluations

during identification is limited to 5.

The sampling and observation intervals are increased to 0.5
and 5 seconds, respectively, the limit on the number of function

evaluations being 25,

Using the time and starting parameter specifications as in
case III., a 20% increase in the temperature coefficient is

assumed, prior to the demanded change in power level.

The results for these six conditions and the two power level

changes are displaced in Tables 7~1 to 7-3 and Figures 7-1 to 7-3.

Tables 7-1 and 7-2 show the adaptation of k, with time (0-20 seconds)

for each of the six cases. The total costs for the 20 second interval

are given in Table 7-3.

Considering case I, the adaptation of k; is seen to be completed

after one observation interva! ror the 907%-100% power change, while it

takes three intervals and a considerable variation in k1 for the 50%-

100% response. Figure 7-1 shows the actual responses. Three curves
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Time I 11 111 v ' VI
(sec)
1 5.220
3.941 3.941 | 5.220 5.220
2 5.003
3 5.709 5.220
5.900 1.815 | 5.951 5.965
4 5.709
5 5.709
5.900 2.400 | 5.951 5.965
6 5.709
7 5.709
5.900 2.400 | 5.951 5.965
8 5.709 5.220
9 5.709
5.900 2.400 | 5.951 5.965
10 5.709
20 5.900 2.400 | 5.951 5.709 5.220 5.965
Table 7-1. Changes in k, for a 90%-100% FP

change in power level.



Time I II III v i VI
(sec)
1 10.276
8.379 8.379 10.276 10.276
2 11.156
3 10.680 10.276
3.806 3.806 3.940 4,004
4 10.680
5 12.283
9.104 5.028 7.882 8.613
6 7.880
7 14.141
9.574 14.915 9.469 9.653
8 8.006 12.895
9 13.295
9.574 15.415 9.469 9.674
10 9,797
20 9.574 9.817 9.469 9.797 9,039 9.674
Table 7-2. Changes in k; for 50%-100% FP

change in power level.
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1 II 111 v v VI
20
90%-100% FP 3y = [10, 1, 0.1]]
Model | 4 4., 0.102 0.119 0.110 | 0.148 | 0.118
cost
System | 496 0.126 0.121 0.111 | 0.151 | 0.121
cost
g, o, 20
50%-100% FP J, = [1, 10, 0.1]
Model | ; 44, 1.361 1.301 1.249 | 1.330 | 1.299
cost
System | 4 414 1.341 1.291 1.223 | 1.314 | 1.284
cost
Table 7-3. Optimal model costs and suboptimal

system costs using adaptive control.
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Legend:
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Figure 7-1. Adaptive nuclear reactor responses for
unlimited identification interwval.
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Figure 7-2. Adaptive nuclear reactor responses, when
identification interval is limited to 0.2
second. '
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Legend:
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Figure 7-3. Adaptive nuclear reactor responses,
starting with reoptimized model
parameters.
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are indicated: the actual reactor output, the closed-loop model
response, and the approximation provided by the updated model, the
latter being computed during the identification interval. Note the
large initial discrepancy between system and closed-loop model
responses. Following one stage of identification, this is greatly
reduced, and it becomes difficult to distinguish the three responses.

The good identification in the above example could be achieved
because the duration of the identification intefval was not limited,
If it is desired to update the model parameters within one sampling
interval, the number of function evaluations in the search program
had to be restricted to 10. The resulting changes in k1 are seen
in Tables 7-1 and 7-2 column IX, and the corresponding responses in
Figure 7-2. The considerable deviation between model and system
responses is evident, as is the sudden change of slope of the reactor
output at the end of the third identification interval, where kl
changes from 5.028 to 14.915., It is important to note though, that
no appreciable change iﬁ system coéts has taken place in going from
case I to case II.

The large initial discrepancy between system and model responses
may be reduced considerably by using as initial model parameters the
values found from repeated reoptimizations of suboptimal responées.
Using these values from Table 6-2, the resulting performance is
indicated in Figure 7-3, showing good agreement between system and
model responses.,

The effects of reducing and increasing the observation interval

from the above 2 second value, are indicated, respectively, by columns
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IV and V of the tables. For the 907%-100% only small changes in k1
are observed, and for the 5 second case, no updating takes plaée at
all., This is not surprising, since the resbonse has virtually
reached the desired value after 5 seconds. In the case of the 50%-
1007 response, considerable variations in k1 are observed, as the
program attempts to find the best low-order model for each segment
of the actual>response. For both responses, using one-second
observation intervals results in the lowest system cost.

The last case to be considered is the effect of a 20% increase
in the temperature coefficient, While it is possible to determine
long~range changes in the temperature coefficientls], and adjust the
model parameters accordingly, this has not been done in this case, in
order to illustrate the ability of the adaptive controller to coumpensate
for undetected parameter changes. In comparing the results of column
VI to those in III, both the values of k, and those of system costs
are very close together, indicating the successful compensation of the
parameter change, |

The above examples illustrate well the performance of the
adaptive controller. The advantage of using an integral quadratic
cost function is that once the model parameters are known, the controller
coefficients are readily computed from simple formulae.

In the examples to follow, the same detailed study of the
adaptive controller is not undertaken; they serve merely to illustrate

the versatility of the basic approach.
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7.3 Results for a Desired Step Response

While it is possible to choose the relative weights in an
integral cost function to realize a desired transient response, no
direct relationship between the two exists, and particularly for a
nonlinear system, the response for a given cost function is dependent
on the operating characteristics of the plant., If the objective of
the control system designer is to realize a particular transient
response, and if this can be specified in terms of a rational transfer
function with no finite zeros, the formulae given by equations (5-22)
and (5-30) can be used directly to obtain the desired controller
coefficients. For the particular case of a second-order system with
unity d-c gain, these relationships are given by equations (7-12) to
(7-14).

To illustrate the realization of a desired transient response
by an adaptive configuration, the critically damped case has hbeen
chosen, making hy = 1 and h; = 2 in equation (7-11). For the 90%-
100% FP power level chaﬁge and an observation interval of 2 seconds
(samples being taken at every 0.2 second), the response of the reactor
is shown in Figure 7-4. The good agreement between the actual and

desired responses is evident from the diagram.

7.4 Results for Least pth and Minimax Cost Functions

In the general case of least pth and minimax cost functions,
analytical resulis are not available, as for the particular objectives
used in the last two sections. In order to apply the formulae of

equations (7-12) to (7-14), the optimal response must first be
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actual system response

- ~ = desired response
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Figure 7-4. Adaptive nuclear reactor response to coincide
with desired critically damped response.
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approximated by a function in the form of equation (7-11). This has
been achieved by the use of search routines, but at the present,
these may take a considerable amount of computer time, and create
problems with on-line realization. While this time can be reduced

by using fewer sample points and initial values in the proximity of
the optimum, considerable work is yet to be done in developing fast
search methods which can approximate the optimum to a reasonable
accuracy in a few steps. TFor the results in this section, pattern
search has been used, which is suitable to illustrate the principle
of the technique, although inefficient for on~line applicatiens.
Adaptive responses are shown for the three suboptimal examples
considered in the last chapter: (i) a monotonic reactivity insertion,
such that the cost function in equation (6-4) is minimized, (ii) ramp
increases in reactivity, subject to the objective of equation (6-5)
and (iii) of equation (6-6). The power level changes from 907 to
100% FP in each case.

The reactor response as well as the corresponding reactivity
insertion are shown in Figure 7-5. The suboptimal response has also
been shown for comparison, and no significant deviations are observed.
The actual cost has somewhat deteriorated from the suboptimal case
i.e., 1.368 to 1.412. Considering that only 10 function evaluations
were permitted (requiring approximately 1.0 second), the closeness
of the responses is quite good,

For the ramp change in power level and the cost function
containing the sum of the absolute values of the errors, the result

is shown in Figure 7-6a, while the response for the minimax objective
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Figure 7-6. Adaptive reactor responses for ramp
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is indicated by Figure 7-6b. The latter one is seen to give particularly

good following of the desired response. The changes in system costs, in

comparison to the suboptimal ones, are:

Least pth Minimax
Suboptimal 0.420 0.0281
Adaptive 0.388 0.0318

Good agreement between the costs
the least pth case, and a slight

While it is difficult to
the proposed adaptive controller

the Douglas Point reactor, since

is evident, a small decrease for
increase in minimax cost.

choose a basis of comparison between
and the existing control system at

the design objective for the latter

is not known, the response of the actual plant is shown in Figure 7-7,

as obtained in reference [5]. Clearly, at least as far as the ability

of the system to follow the demanded power change is concernsd, the

proposed scheme is far superior to the existing one.



168. -

actual power

- - = demanded power

100

Power
level
(%FP)

90

0 100 Time (sec) 200

Figure 7-7. Response of Douglas Point nuélear reactor
to a 907%-100% FP change in demanded power.



CHAPTER 8
CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

While at the outset of this thesis considerable emphasis was
‘placed on the particular control system at the Douglas Point power
station, a great deal more has been accomplished than simply proposing
a new type of controller for this particular plant, or for other
reactors of its kind. Hence, only a fleeting comparison between the
results achieved by the proposed adaptive controller and the performanqe
of the existing control system has been made.

As a result of this thesis, a method now exists for the
adaptive control of high-order nonlinear systems with time-varying
parameters, provided a suitable gen=ral purpose computer is available
to implement the coﬁtrol system. The nuclear powef reactor is an
important example of such a system, hence its extensive use in
demonstrating the capabilities of the prcposed method.

At the heart of the new techniqhe is the use of certain
nunerical optimization algorithms, known as search routines, to find
a low-order linear model of the plant. The parametérs of the model
are chosen to minimize the deviation between the observed system
response and that of the model, in any desired sense. For such a
model, the optimal feedback parameters can be computed readily for
integral quadratic cost functions or if the desired response can be
described by a rational transfer function having no finite zeros.

For the more gensral least pth and minimax objectives, the search
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routines are again ﬁsed to find the optimal controller coefficients 6f

the model. While the same control system will result in suboptimal
performance of the plant, provided the model gives a sufficiently

accurate representation of the system response, the difference

between optimal model cost and suboptimal system cost will be negligible
for practical purposes. It should also be realized, that an adaptive
system never quite reaches the optimum, hence the approach of successively
improved suboptimal controllers is quite valid.

In deriving the adaptive controller, two important contributions
have been made, in the areas of modelling and suboptimal control of |
high—-order linear systems. Previously proposed methods, for reducing
the order of the system describing differential equations, have been
restricted to either qualitative criteria for this purpose, or only
a least squares type objective could be minimized. Using the modelling
technique presented in this thesis, no restriction is placed on the
error criterion.

While the possibility of representing a high-order system by
a substantially lower—order‘one is useful in its own right; it has -
been demonstrated in this thesis that the optimal cdﬁtroller derived
for the low—-order model can be used for the suboptimal control of the
high-order sjstem. Furthermore, for systems having no finite zeros, a
new approach has been proposed for obtaining the optimal feedback
controller for least pth and minimax cost functions. For systems
having finite zeros, suboptimal performance may be realized by the

above-mentioned modelling technique.
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A great advantage of the proposed technique of designing a
suboptimal controller is, that the whole process can be realized in
the form of a digital computer programme. All the designer has to
specify is the system equations or, alternatively, a set of input-
output data that characterizes the system, as well as the desired
closed-loop performance. The latter may be an integral or a sum of
the pth pover of samples of the input and the output as well as their
derivatives; or the desived time-domain response may be specified in
terms of the step response of a rational transfer function having no
finite zeros,

Because of the wide range of topics covered in this thesis,
from the modelling and suboptimal control of high-order linear systems
to the adaptive control of a nuclear reactor, many of these areas
need a considerable amount of additional research effort. As an
extension of the modelling work described in this thesis, the
application of various new search routines to this problem has already
been undertaken[4é]. Some of the optimal models derived for the
seventh~order system have been used in the investigation of suboptimal
control of high-order systems[45]. Both of these areas are potentially
open for additional research: models of order greater than two may be
needed in certain applications, or more than one model of first- and
second-order should be used to approximate a given system, in a piece-
wise manner. The corresponding suboptimal controller would then have
coefficients which change at the preassigned instants. An extension
of the proposed method of optiral control for least ptﬁ aﬁd minimax

cost functions, to cover the case of responses with finite zeros,
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would also be an important contribution.

Instead of using a rational transfer function to approximate
the optimal response of the system, the use of other mathematical
functions should be considered. Polynomials are an obvious candidate,
and the application of orthogonal functions could also lead to useful
results, Legendre polynomials have already been tested in such an
applicationlzz] and the use of Fourier series for signal representation
is well-known. For the use of special purpose digital controllers,

[47],[48]

the unique properties of Walsh functions could be used to
great advantage, in modelling the system as well as representing the
desired performance.

Turning our attention now to the adaptive aspect of our problem,
the most important improvements in the proposed method should accrue
from the application of more efficient numerical optimization methods
to both updating the modél parameters and to reoptimize the controller
coefficients. The use qf gradient search routines and new concepts in

optimizing minimax objectives[49]’[50]

should lead to improvements
in the accuracy of locating the minimum, There is also a great need
for search techniques which can produce significant reductions in
the cost function in only a few steps, and requiring word lengths
and fast access memory storage appropriate to process computers.

The proposed solution of the reactor control problem also
suggests many areas of useful research. The consideration of noise
is perhaps the foremost of these. The effect of noisy observations

on identifying the model parameters and on the resultant optimal

controller should be investigated. Regulation of the power level,
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despite disturbances within the plant and in the measurements, is
another important practical problem.

With the increasing size of nuclear power reactors, spatial
effects become increasingly significant. The approach presented here,
‘based on a point kinetic model will need to be modified, to take into
account the interaction of the various control zones of the reactor.
Maintaining a uniform flux density and preventing the build-up of
xenon spatial oscillations is also an important task of the control
system., The optimal start-up and shut-down control of the reactor
open up further areas for the use of modern control theory.

Perhaps the single most notable contribution of the work
presented in this thesis is the application of some well established
theoretical results to a practical problem. While it is not claimed
that all the questions which arise in ;he adaptive control of nuclear
reactors have been fully answered, the approach presented here and
the results which have been obtained, should be a considerable

contribution towards achieving that goal.
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APPENDIX
Numerical values of the Douglas Point reactor model parameters,

which have been defined in Chapter 3.

G = 945
1 = 0.159 second
m
mk
f(v) = 0.02 Sec—volt IV! <15
_ 0.3 mk :
T v sec-volt vl > 15
Tc = 4.54 mk at 1007 FP
Tp = 12.5 seconds
£ =7.216 + 10~" second
B = 4.867 - 1073
Delayed A By (%) Ay (sec™!)
group .
2 0.05667 1.61
3 0.16067 0.457
4 0.14200 0.154
5 0.11067 0.0315
6 0.01667 0.0125
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