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Section 1

Introduction

If the mass centres of two neutral systems are sep-
arated at a distance, R, which is large in comparison with
atomic dirﬁansiona negative interaction eneryy exists and is
reaponeihle for the initial attraction between the systems,
The effect of electron exchange between the systems is
ﬁegligible when R is large but becomes increasingly import-
ant as R decreases, The interaction 'energy reaches a mine
imum value at some R= Ro and finally becomes positive and
strongly repulsive ss R decreases further. The magnitude
of the interaction energy when R= Re compared toc ths com-
bined unpsrturbed energies of the two a&stem- g o - Aten
tion of the probability of their starle union, but a ema..
minimum value of interaction energy can exist even when
stable union is hignly improbable. In this thesis the
attractive forces for large vslues of Rwill be considezred,

This long range interaction energy is usual_ly 2 -
pressed in the form of & power series in R~ By expanding
the interaction potential, ,Thes dynamic dipole=-dipcle in-
teraction term proportional to R~ is called the Van der
Jalls energy. If meithar system paseasds permanent dipole

or quadrupole moments this is the first term of the energy

-
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ex;znsicn but terms of lower order in ~R" can exisat when
tre systems possess such permenent momente and these terms
ars cdue to static interacticns.

fu Section 3 of this thesis exransions are developed
for use in Secticrs 4 and &, wkich 3cticns are concerned
wi{h the calculation of long range interaction energy in the
cases H-H and H» ~H interacticns respectively, Results
chtained are compared with published resultis, in part=-
icular it is to be not:=d that published results use only the
fircst three terms of the expansion of the interaction poten-
tial 1in opowers Bf R™! whercas later terms are included in

the

ey

rogent treatment and can have a large effect on the

w

coefficiente of the terms in tre energy expansicn. 1t shculd
also e nnted that expansicus of the potential in powers of
R~/ have been ussd in rublished treatments outside the
regiong of conveorgence of trese expansions. 1he conseguences
of such treatments is considered.
*ction 2 contains a survey of arproximate methods

of snluti~n »f Schroiinzer's staticnary state equation, and
methels used tc treat He and /;, are stated because approx-

irmte wave functicns of these systenms are used in Section 5.
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Section 2

The Schrodinger Representation and Approximate Solutionsg

Application of the classical laws of physics to the
phenomena of atomic structure led to erroneous results which
could only be corrected by the addition of special restrice
tiona. Jith De Broglie's hypothesis, and its subasequent
Yerificatiou for light particles, that every particle had ,
agssociated with it a wave gtructure of definite wave length
it was possible to set up a new branch of physics which
describéd stomic phenomena and whiech included results of
classical physics for macroscopic phenomena. 7The two laws

which describe the atomic processes were given by Sehrodinger

as “;Wz -"*%, 2ol
‘3H£"‘=;lsaubjndpz . -

2,1 is called the time dependant equation, and 2.2 the
staticnary state equation which is applicable when the atate
of the system does not change with time. H is thea Hamil=
tonisn operator, B the energy, and £/ the probabdility
amplitude of the system,

The @implest atomic problem, that of determining
the atationary states of the hydrogen afom, has bcen solved

only after making 2 number of simplifications. Relativistie

3



corrections being neglected,has well as the magnetic and
electric interactions of the spins of the electron and the
nucleus, reduces the problem to the solving of the differen-
tial equation

V'Y +ern(evip=o 2.

?hig,can be solved exactly if the potential, V, ia
of the ‘central field type permitting the separation of the
coardinste of the differential equation. Corrections for
the omission of the small terms in M can Le made by means of
{he ciéseical pertubstion theory. In this way it is possible
to get eneréy exprezsions for the hydrogen atom thaf are corr-
ect to better than one part in a million.

The equation 2,2 for a more complicated atomic system
" than that of the hydrogen ﬁtom has not been solved exactly
and fecourse is usually made to one or two approximate methods
to obtain a solution.

The first method ie to assume a trial function which
is to represent fho electron distribution, The trial funetion
contains parameters which are varied a0 as to minimize the
energy of the system. ‘this variational method is zZenerally
used to evaluate the ground state energy of the system,

The trial function is set up with as many parameters
as is desirable for flexibility. However it 18 possible te
use a large number of parameteg; and atill obtain a poor

value of energy 1if the correct coordinates are not included,



A good exampslie of this is the Jame s and Coolidge function

Iee

uged for tve hvdrogsen molecule problem, This function is
in the form of a series and contains five parameterg., it
y

was possible by using thirteen terms of the series to get
an ansver that agrees to within the expermimental error
with the value cof the ground state energy of H; . How=
gver, the cmission of a term deprendant on the electron
6eparati0n s1lves an energy vaiue that 18 scarcely better
th-n thet obtsined by Rosen with a 8imple trial furction
gontainving twe naranc iesrs,

in seneral twe tynes »f wave functions ars used.

The cne type depends on giving the trial functicn a form
which 18 dictated by a physical picture of the system. tThus
this method takes account of poiarization by disturting
unpolarized furctions. 1he other metnod is to use a flexli-
vie function wnich has no readily availavle physical repre-
sentation but contains all the necessary variables in a form
eaaily handied.

The correctness of the wave function is not made cer-
tein by its siving the correct energy since many varied
distributions can give the same minimum energy. As a result
& function which gives the correct ground atate energy by
the variaticnal principle can sti.l lead to incorrect re-

si:lts for the next highest energy since the two distribu-



tiona need not be members of an orthogonal set cf funotions,

The asecond me thod is to uae pertubation theory. 1In
this me thod the actual syatem ig replaced by a similar
though simpler one which is referred to as the unperiurbed
system and which must provide s complete set of orthogonal
eizen functions., Where there is 1little difference in the
description of the twoc aystems the pertubation metrnod gives
a gcod ansver %ith few terms teing considered., W%ith proper
wave functinone the variatirnal method sives & lower bound
to the enerzy whita the rertubation givﬁs an upper bound.
The theo-ry of pertuhations was developed by classical
physicists t2 Bolve problems in astronomy involving more
thanu twe hodies.

"he Hartree and Hartree-Fock treatments can be
cléssified as pertubation and variaticnal methods respect-
ively. In acplying this method the problem is simplified
by replacing all the elecirons but one by the centra! field
obtaired by averaging the electron distribution of all the
elzoircns over the polar angles, Tfhe wave function ob-
tained represents a first avproximaticn and theege functions
are uged t: correct the central field potential by redeterm-
ininus the sverage eiectron distribution., This process is
repeated until further celculation yields no better result.

Thus when numerical funeticns are used trhe method is simiicr



in principle to pertubation theory. If analytic wave funce
tions are assumed the me thod na$ 3¢ e gimilarity to the
variational re thaod.

Molecular probhlems are furtaner complicated by the
fact that a molecule possessges nuclear vibrational and
rotational energy in eddition to electrrnic energy. MNuclesr
com=crainates can be meparated from the electronic cnes
provided the conditicns required for a theorem by Scrn and
ﬁppenheimerlare satisfied, The electreric part must be
snlved by one of the ahove nethods and the electronic energy,
as a function of nuclear coordinates, placed in the egquationse
for the vibraticn snd rctation where it acts in the sama
way as the potential does in the electronic motione.

In all provlems where two or mere electrons are
invelvad prover use must he made of the rau:i Principle
whern using arvrroximate metrods of soluticn. The pertubsticn
method camnot be us2d unless all eigen functiona of the
unperturbed srystem are members of the same set.

e next 3{mplest atom to hydrogen is the helium
atom, lts grourd gtate has been calculsted by epproximation
me thods. The simplast approximation to the exact ground
state ei enfunction is the zercth order function e*lﬁ*&J
-iving a 6% error in the energy. The firat order function

ig C-- 1(’0 f’;) and with Z minimized to 17//‘ Zives an



error in energy of less than 2%. The next major atep which
a

resul ted in the correct energy was taken by Hylileraas who

introduced the electron separation Fa into the wave

function with the form

[e~(f¢'21p'i)+e-(p';fx I;.)Je-ff:z

With this ecomplicated function with three parameters he was
able to get an energy value indistinguishable from that of
expsriment, This illustrated the manner in which a reasone
able energy value can be obtained with a simple function
dnd the extremes to which one must go in order to ebtain

a value approximating the eﬁpe;imental value .

¥or the hydrogen molecule much the same proceedure

wes followed, The first wave function developed by Heitler
and Londonatook account of electron exchange and had the

form

N ( e‘(ﬂ*-r" )+ ?: (I H',,})(x(p }tz) ~ (3 ;w)

Subsequent workers improved upon this as the basic form
by introducing parame tersa to account for screening, polar-
ization, the shift of the centre of electron density from
the nuclear centre, and ionic terms plus polarization,
Bach of these methods gave an improvement to the energy
value obtained by calculation as compared to the experiw

mental value, Also each type was based upon a physical

e



picture., 'The most success}ul attack wasg made not using
a piocture guide, but merely stragetically placing para-
meters in a simple functional combination. Thie is the
aforementioned Jame s and Coolidge4}unction.

Thus the best variaticnal approach appears to be
to.introduce as many parameters as can be cgonveniently
handled and at the same time to introduce into the function
variables as they occur in the potential, Rosen's work
with the hydrogen molecule seeme to indicate that polar-~
ization of a syatem can be conveniently handled by assum-
ing a distribution dependant in a linear manner on the

interaction potential,

1, Born and Oppenheimer: Ann. der Phy. 84, W57, (1927).

2, Hylleraas: Z. f Phy. 65, 209, (1930).

3. Heitler and London: Z. f‘Phy.Mk, k55, (1927).

4, Ho M. James and A. S. CoolidgesJournal of Chemlcal
Physics 1, 825, (1933).



Section 3
Some Mathematical Re.ations.
Relatione are developed in this section which are to
e applied in sectione 4 and 5. ‘hese are ~ased on the
properties of the uegenbauer Polynomials,
‘'he Gegenbauer Polynomial,(ﬁ%): for integral values
of n, i3 defined as the coefficient of h” of the termgise

exnansion of the generating function
-Y
(I“Zﬁz +#)
Thieg coefficient has the form
",
y — I3
- -2
C () = [\_ ("1) _:_ﬂﬂ(.S (22) 3.1
-7 S0 [v $t(n-as)!
Bateman, 176,9

An inverse power of the distance [R-pr |, in

terms o5f this polynomial, is then written

|R‘!’|‘w= j C: [cos(t-, g.)] r" , VBV <R

" Rn+-2-Y'

=0 3.2
—_ v n
- z C,, [eoo 15, &»)]Kmv , 1R141C]

n=o P

1. ™Higher Transcendal Functions™, Bcleman
Manuscript Project, Vol.l, pp. 175-179 (MeGraw-Hill, 1953),.
References to the results in this book will henceforth be
Labelled “Bateman™ followed by the page on which it occurs
and the number assigned tc it therein.
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- -2v
ihe distance represented by )B-t.i-!_‘,.] may be

expressed by a double gerieg of the Gegenbauef Folynomials,

'R [.+r,, -zv Z C(-cosX) - ,m)(]a-r,l
'R r' +2

= Z CY (—cosx) ’;n 2— CK%I(CO.SG,) __'_,‘_x 3.3
»
n=o ;

thﬁuv
K=o

EC (+cos)/)r' 2 C Gcose,,) , 5.4

IR ORI
whers (@ , @) and (6, # )

are the polar angles »f t

and ti’ referred to R as polar as shown in Fige 3.1

i
- L
'5e| SGL\
# _& —/
Fio, Z.1 )
Cos Xz cos@, (B- #coss,) + hsine, sine, casig-a,) 3.5
|R- 1|
Cosy= cos6, (R+ Hcose,) + sme,sme;.Cos(d; -4) 3.6

1R+ LI



tsing 3.5 it will be proved that

o
jj J [ (-wsx) [ (cos@,) Sine, de, dg, d4,
o ©

(o]

T ar2f "

J J JC:(‘CUSG),)[E%:C“QI)S’hGL andﬂ‘(fz, 3.7
K

o 00

Proof of 3.7.

17

COSX: 2 so) TR Sineycol bR 5.8
(rrs)lS"
$=o jR-B 17
whe re _d_ = (R- /_“,'(0.:9,) , /L: 53/})6,
¥ A
] J' cos(d 4) I8, Y,

0o 0

- ,sz’ru (o), -AH4)]E
= ( )jj [.g +e ] A
o o

¥

s
2 (5) S J
v=o °

'(S*AVX‘r -$h) d/IJA

1

Qb—;p

(6] it S~ avfo
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2f af
[ X cos’h-4.) o, 6{4 = o Sfav
| »
¢ o '
- Ly S- ﬁ dd df
@)z )
it § is even 3.9

o« ) T
- o .. A
J coso sino de = (k1) Jcos o s P*e deo
)

7
By repeated application with Podd this reduces to

e+/)1 (B-1)!! Tcu'é 2ined&

orB) !

Therefore

= O ifr « odd
T

= @<=t (p-n!! j sme de if o«  even

7" B

J‘cos""o 35" oo with 8 even

o requires n even

(D-S"/).’.’S.’./ ‘r S/ha doe = @‘S*I)”g!l ]“’9 sinede $5.10
Mf’).’.l r (n"‘).‘.’ :
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Place 3.9 and 3.10 in 3,8 and integrating gives

f’rf‘
: n’ L L]
5 (3)
0

St (s ™S o5y, sine,dendl oK,
oo ' =
S=o0
o i
i 2" 4% cos "e, sine,descft o
(1-5).! s'/ 1R-1;1"
oo o %0

w2 2ff
jj %! (d) L% os"6, s'me;l de, de,dp, A,

("5. )/

Y g0 9 | 8-1)"
w an af
]]f cos"e, sine, do, dF, op, 511
00 ¢

= O fornodd .12

Y
“ith (n(‘cosx)expanded as in 3.1 and using 3.12

aF 37

-

JJ J Cy('wsx’ (mty(‘”")"bel de, I¥, d¢,
n k

000

arm v

""
jJ f ( (- wsgl) ( (cose,) S//?é; e, c/ﬁdp;
00

which is the required proof of 3.7.
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Since

y-/ y
da (M = 2 (v)C, ()  Bateman 178,30

dz

then

i V-7 ! 5
d(, = = | (&) dz

- <

X C: (x)dz =

-1

[( - w]

J(V—l :

= 2lnravs Bateman 176,7

2(v-1)(m)} [2¢v~)

2 [n+av-i - if A even \ 3.3
! fav-~¢

o] ' il odd J

I -
J.(:sz)dk = 4;JE£
-1

As 8 result

i
C
s
N

o

3.14

e
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v=/ wa . aflpn
‘J C”Cz) dz = (’“9’/_'_

’ N - . .

- . iﬁf neve
@r+) . Q\ 3.15

n
8]

it n odd]

z l K= irne

8

T
N‘
i

!
V= af&; | J Cni;
) &)1 [r30-
= 2;‘"4(4.-%01

e S (241
2 (kemd 12 o

7Y “"1

f

=0 ‘ if «
odd/

With V:léand ¥/ in 3.2 using result 3,14 and 3.1%
in 3.2 and with V= /§,4/, end Ve % using 3.14, 3.15,

and 3.16 with 3.7 in 3,3 these results followt

- ‘

- ‘
J [R-51 sinecls = . 2,17
A ) R
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T

-l ‘
jijj ’g*_c +h] 5/06,5/6'/ SING, 0/6:,_C/¢,d/¢,
0006 0

= [6zr IPJURY . 3.18
R ALY
¥ L2 ” I
-2, 2 - e
[ g § 2 £
g N=0 if N even
= % am |
\ r all n 3.19
[ @wy g -
nz0
- f].f 2%
| R-T+6 ] sine, b, 5116y oloy, o, o )
o © o 0
) =<3
= [ (xen)! 5 K" it &k even
(K1) (m-r).’ RIMHr2
n=0 -0 and n even
-
- ]577“‘}0 @xnan)! n ol il 3.20
(2x+7)! {an+)! R‘Vmﬂl

79 k=90
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Since

|

120
!
=

i

[R- 6| ™ = |R-p i

then

2
Z C;,M /)r’ 2- CS (“551)
=

S2o R”I

=\ ( (cos S A 3.21
L Rm" \
B=o

and C L comss from C‘%
f

¢/

W

where pe¢s-»p  for all ospen, oSS h .

as a repult

§ e
©
2 C"(—amx) 2( (caos,));" . %,
f r —ery (s (cess,) 1*
R F 25t
=0

’QV‘fP
( (“’"‘) 2( Zgeooe) i K 5.22

nexeVrYa
n=o R



Thus

- One more general angular result is deeded.

V .
( [Z.Z - @A) (i) ;osﬁ]
n

[av-t

(7

‘, L eso

o o
Z(.,// | 7m0 [ e 17 (aveat-1)

[t -
£ »
A % (x> (,,’_'; «) (,,'.'f (z) (, ( cosd)

Bateman 177,19

For \/=l/lthis become s the Legendre double angle

expansion in terms of the Aascciated lLegendre PFunctiions.

.
Chl [Z,z S {AY V!-((‘./)ﬁto:‘] = P”(Z) }; (z,) |
. } 62-2)! /?,(Ex) F;,‘(&,) cosly 3.25

/
& nrd)

19

) Rana ) 3.23

|

J.24



For Vsy the expansicn is

[;_,‘[ZI - (z )%z~ r)“‘co:p’]

Z 4! (0! @)* (et e) (1-29 0212
(rwd+)!

/ y Y4 %
Z 2
e @ (e Jeon

—_—

20

3.25

An equivalent expanaion for ]g-§+5,l-i'n the region

ll_f 1R} 1R 18 10

]
[R-r,+5 [ =2 H)”(w” (o). L
. ! ¢4

R
K=o
—j Z & (~c8o%) ( *leoser) BA 17
(‘0 B0 Rnﬂﬁl
whare L= “.”‘"+3“/£ s 7

1=
\

- {)Q-o-jy‘.(z

v: 1..9._ 4-3-3- -rl'.a.
X Jy AZ

Ve = 2 +;2 + 2
X J%‘ )3‘.

Se26



Then
2" "ﬁ)’l = C (coss;) r” 5. 26
”’ k Ro-v-l i
v, (DML 1 o - @ 0" @)
N R wo R
= - q Cny.‘, CCOSG) !L::' 3.27
R" '
ama  FWC 0" (©5)" LR XU 1A
n!’ R n! - R
4 (,,"'(cow,)_gf 3.28
Rﬂf‘

slee <r_;-v.){ @)’ 1 S i)’ 1 )
B=e n' R Féo P! R ’
IS Q)" Vengryt o l{n-r?l
nt R L Pr R
n-o Pzo
—_ ] :
= ZSC"’((“G')'E: 3.29
RS‘*Z
S=0
8o (rv'){g(-:)(ﬂf) (Vfa Z(I)P(Vf)P'
£, ' P!
e Z _.NC& (—cosx) C,, (cose,) P Ii 3,30
o R Presa :

P



Bgquivalent results are obtained in the coeordinates
of point two, These are obtained Wy repnlacing all sub-

scripts 1 by 2 and vige veraa,

A furthur quantity which is required is given below
for one of two situations, The second situationm is ob-
tained by using expansion 3.4 in plage of 3.3. 1t is ob=-
tained in the same manner as 3,29 since it ia the same

thing multiplied by a constant as far as 1 is conecerned.

e
(r v)f y CEa) @n)t E E“')‘Q-_n)‘ @ !

1 4 R s! !
”‘0 ho :30 o 7-. K

3.31

z b C (- cosx) C (co:a,) I‘;

a+N-z
0.'0 bzo K

22



The radial integration of section 4 is of the

type
o ac
-2V, a2 ot . ¥ T Gae)
Je retdr= Pl Xe T o
o 3 '
2
av) __ |} ! nraa-~a
Tas = {frTZ’s" - gy (2R () 3.32
s (nea-a)l
These integra’s are tabulated below for values of 2 o~
20ze86, 8, 10, /2,/6,20c0Vering cases (1)},(2) and (3) of
Section 4.
Tabulation of Inﬂ‘”—,
&"?j o0 6 8 10 2 /6 20
o | ‘250 238 247 | 247 ‘280 ‘280 “ 280
11-37% 318 ‘361 | 374 | 37# |-37185 | -375
2 750 | 521,676 | ‘728 | y2e | 75z | 7s¢
3 /875 | 2.000 | 1529 | 1749 | 1.83) (1802 |l87%5
4’L.§‘-6‘,25 R-086 | 4065 | 48398 S392 | 5603 |5€4
S 176875 | £-620 | 10760 | 25340 |27-940 | 19- £91 |196€71
6 (76750 | 9.7 90 |32750 | 52650 |62 850 (77030 |78 590

A

TABIE 3.1
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The integrals which occur in section 5 may be
written in the form given irmediately below. For various
pover s of the incdoies ;0 pp, & ¢particular general re-

sul®s hold and these will be first investigated.

'2l'-o l
(N*m+k“&, ;

HC’:-

X c(‘ (A-22)(A] - 4} )dh du, i di ety dlp,
58 3.33

where N*= =z°

253 (Hd")
D = e"‘((1+z¢/+(;34)‘)

Zd=S= (1/4)(1-438)= (677
where A is the value of the screening parameter and d is

the internuclear separatlon of the hydrogen atoms.

I'_ 33?[:9") ijf{ S ) e—s(a.-ww\.m,) 'S(hﬂz )}

(A4 N LR AL
Jedd

< | o0

I( pergs. goid) = j J‘ f J' SO | -s(a.-u.mwa)}
JZ(HD‘)
T (N WS- 0] )y deat

U.35
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By replacing .- u, by-« and u, by -« 3,35 becomes

IJZ(’*DL) ].J:Tf[ “(I)n,) ~S(A +ul th «)j* ze-s(km\a)]

=1 t=t
[2 w78 AR /\nlqu“)]dh.dt,a'h 4

= O P*§ oaa - 2 g

“e
oOI.ot

-S(l "““Iﬂ‘. ‘“'-) m  pa¥Yne
P /] Eamasr—

b

P +4 even

P "‘8’ odd

Tfﬂ{ e“s(x;*“ +i ‘l) -thcfl\a }
/((/+D‘)

( P A e Vae) E 43-)«”&1,,"‘)} drdv, da, 4

3437

P+$ even

pandq odd 3.38

JI e (N ) iy ey _t.'D 3.39

B

o !
Jf e’ S(a\z"—tfl)(k: "‘ﬂj_l )dlzd“z = _;4—_3 3.40
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Particular cascs deaireds

.":2) ”BO/ P;o} 3-‘.0 I!
/77=°; ”:ol /J:J} j/:o .Q'

t
m=17, n=/, P/, f:/ Ts

Using 3.34, 3.39 and 3,40 with the even odd pro-
perty of 3.36 the following is obtained,

”© i
T+ 87 JS (e"‘(“'%)*DQ*SA')(*f"“’*) ad
4(1+2Y)

¢ =

= g3 8 (e 3
— Si+) +2bes + 452 28 raqs 121~ 57
4{I+DL)(S‘( ;_f ‘r 7 '5')

=. ._..2’.— : 1{ ~$ p) S,.2Y ,
s‘(lrb')(s +¢ +4D" +De (.s;: + 53+ ))

I+5 = 6472 ‘ 3.41



Using the same properties as for 3.41,

oo !

I3= S JJ {e"‘"""") rDe““‘}{ Atut A,‘J(,"j Ay, du,
4(1tD*)

1=

- ( Sl'f'4 + D_ﬁ_"“s (Sff 7,53f‘2951f'60$ MO))
s*(i+p*) /15 ,

= 2-239. | Z.42
Using 3.37

-

, |
Tye & I f T j' o7 SINT UMY 33y L\ XD - gi? ) i by
: 76(r+d*)

¢ =t '-‘

A

= - g6 J‘j e_-s(a,ul,)()“3‘1‘_)\'“"3)‘/&/&
%(r2") | 9 |

= -gt - 45®
76( 1+D%) <6
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Section 4

The Long Rangse Interaction of Iwo Hydrogenm Atoms.
L J
A binary system consisting of two hydrogen atoms is
described as in Fig. 4.1, where the atomic nucleus A and

nucleus B have associated with them electrons 1 and 2

respectively.

f
B2 o
o - v
e
2 f ]
Pig. 4.1

Interparticle digtances are denoted as in the figure. The
polar angles (e,g)) of k and (6.,4,) of | =are referred
to the internuclear distance R= Q8 as polar and an ar-
bitrary plane through 28 . The <Z axis of the Cartesian
co~ordinates of A and B with origins at A and B‘respectively
are taken in the direetion of R.

in orcder to calculate the interaction energy for
larze values of R electron exchanse between the atoms is
negirecied and the interaction energy is taken to be due to

the perturbving effect of the Coulombic interaction,

}2 l / L.

= "'-"'+—-—-"’ ——— - » 4'1
( )  °¢ ,-”z ,‘,

Atomic units are used. At normal temperatures each of the

28
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unper turbed atoms can be taken to be in its ground state
because of the predcminant statistical weighting of that
state, u1he difference between the energies of the ground
gtate and the first excitéd gtate of a hydrogen atom is

go large that the probabhility of either atom being excited
intd a nhigher energy state as a result of the pertubetion
is negligible.

In the calculation of the long range interaction
energy the usual method ts to obtain a series repregenta-
tion of the interaction, V(R), in inverse powers of R,

This power series is then terminated at whatever stage is
degired and the average value 1is caleculated from thia finite
series, In doing the problem in thie way three céesa‘ariae,
devending upon the subsequent approximntions whieh are made,
The power series in R~™'is convergzent in the region <R, rCR.

Case 1. If there is to be no overlap it is
necessary that the atomic wave functions vanish for l;b.gal

n> R/z. . This requires a renormayization of the wave
function, Kand the series for the potential is valid.

Case 2. The atomic wave functions vanish for £ =-R,

14 >, K . The wave functions extend over the complete
region of space in which the expansion_is a representation
of the potenti?l. There 1is & region in which-the wave

fanctions overlap and this overlap is neglected on the



assumption That the value added to the intefaction energy
by its inclusvion is a very small percentage of_the total
nen-overlap interaction\anergy at large separation of the
mass centers., This approsach also requires a renormal-
ization of the wave function.

. 'Case,s. The" atonmie vave functions extend through-
out all mpace and the expanaion of V(R) in powers of R~
is used throughout ~ including the revion where it does
rot converge. All owerlap effects are neglected,

The se three cases will now be considered in detail.
Tre unperturbed atoms are :epr'esented by the ™
functions ‘(Im(l) and séaz{,z) centered on A and B respect-

ively where

Y (D= Ne= = we E
R/ %{l) ; Ne

and N %= ff r"‘-" t (7 3ine de c/ﬁ

ey

where 076 R g0 &8 for cases (1),{2) and (3) respectively.
Because V(R) is small the distortion of the unper-
turbed binary system is taken to be linearly dependant on

V{R) and to be of the form

W= o ¢ {I* Av) 4.3

where A\ is a parareter to be used o minimize the energy.

30
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Jging the variational rrinciple the energy ~f the

perturb>4 system is

£ = [wwivar)[vsdr - T

where H is the Hamiltonian of the system and integration
is throughout the ccordinate space of electrons 1 and 2.

Iriting

jj%(r)%l(z)f %/(/)}Zgua/z',dzz = (7[\) in 4.5

TI= <( [+AV)H (1#AV) )

T= {(1+av)*)

whare
H= Hy +V
_ o VS y
= Hot + Moy = ~£ % lq 7 t
vging 3.2 and 3.3 is repressuted hy

o0
V{R)‘; R +Z 3 Cf(-c,osx)g'(cr?l(cae,)n’”_’__

R 20 HN-0 RIM’A’*/
20
- Z (yz(Cofa) n” %o b
5,7 ‘ ;?!_ = 2 Gy kosa) 1€
Neeo -i—ft
< S
= 2 f,c93

Z ya C/r (~cosX)( *(eose,) BX 1" 46

There fore =l pesy R ntre( e



3

/7IV=H0 V-f- \/2'
HoVhi oo = Vo Yo th, +Mottof 40 -290) v

- (V,_\/'Vz +V,V'V:)¢»9/ %82-

= VHol, ‘é/ * (f_;,'__;’V* '3_-_\71\’7 Yor by
/ Iy

S:- Z 2 ((ﬁ(—mX}‘c,;’(mf&A){’7,7"‘.//;(‘*",7”5’-/}
=y &
(8> =20 by 2.7 and z.14

<HV>-’ <H0V+V‘->: <V2‘+ vHo—rs): (VH f-g)

Nt x+/
4

(VHV)= { V3+ vy
= ( V3+\/(VH0+S)):
= <v3+V1Ha ‘f“VS)

= (V2H+VS)
VS = 4{8Fv3s )

h

since is scaler.
1,0
e
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s gy

= [35¢ s ] )

Using the result 3,7 this may be written

< [Z ;Ck(‘"‘d(‘%‘/{cmg A e’ }) ‘1o

n=/ ke=/ Rm'-'(

Using the expension 3.1 thig form will involve products

nf the anzle C#@p es well aa ce96, and the avera;e values

/ ,/
A’f" rri= /P /*..‘_ . .
for , are the first non zero cases,
7 +n n"= ser142 .

As g regult the lowest possible order to appear in <&V3)
is at least of order R~'. Since this expansion is to be

carried only to order R™#°¢PDdoes not appear.

Since ® is the solution cf the Schrodinger equation

/‘/“: %/% = [
a % *’% (c=42)
*hen th it = £ Ya: Eo)tEop= E
Placing the results %6, 4.8 and 4.20in ¥ andJ* gives

L= COHFAVH(1400) ) = E,(1132v) A(¥S) 22A¢VY

T = {I1+Arvr)
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Placing Lond J in 4.3 gives

AE=E-EF,= X{(vS) +arivrd
<1 -f-itv‘)

A necessary condition for a minimum value of AE

. 4.11

is that 35%)\‘5 O iving the folliowing reeult
by nesleeting terms of order less “than R™/°, Since V&)

igs of order R-‘ a3 is shown by L, 1

trerstorad= ¢ .. v‘>] [A {vs) +(v‘)]- [:wv» -u&(v‘)])\‘(v')

= <0 fA<vs)+<vz)] |

Therefore
) A CVS> +{y3d>=0
And ,
A= = (v 4.12
<vs)

Substitution of 4.12 into 4,11 jives

OF = QL?‘ {vsd - 2 ¢v»*
<VS‘)7' sy
ORI
voH*




AE = = Vl>z ) o 4.13
<1y(vs)

These averaze values will now bve calculated with

the ail of the results of section 3.

Vi -L L 41 +d .._3-_(_:_

R* ﬂzl i GI& /2

+1 )-‘-.%- +1y 4.14
’fu r’l ';Jfl‘; R

using results 3.3, 3.7, 3.19, 3,20 and 3.23 along
with 4,5

(VD= /g,,—z Z Z -
’22' poo e (JM')’ (2(4/)1 -E;;; -
n=0 «=0
o'l ©
-y L _Z VI <ol
ol Qnvi) ,gzmz < Qu+q) paw2
2  -Q
= < Z (2n+ax)! 27 p2x s
N2/ Ky (204-0_/(2(;,)! Rz»fa‘n-z /6wt 4.15

e inte ‘ration over f aud }, as been dcne in

3.34, In terrg of these integrals there

D .0
<V1): /o’rzz (2n+2x)! _‘_r__i_uﬁ | N

! ' &
/75/ k!-’/ pm’) (2K+')’ Rzm‘,k.‘.z WP S



(1)= /672 T;. I, w17

ag Ziven hy 4.

- - t
rl 2 > — 2.
3 f" ’%']1‘.'?'-”.‘)

1
2 [’;”' @(] rﬁz/‘, +S})

~gin: the results of 3.26 to 2.31 »neriite the above

exrrezz on to toke the form

<V5 { . Ppw-t) (o,
> 5 § (ﬂf’ K171 ){Ck('mx)(;?(mo,)

=0 K=o gl)fl(-u,

+2( (G’vév)(' (’C”f’&) -2C, (-MX)[ €006,
~ 2(,,‘(0,9)/) Cfi‘(-cmé,) -}

=0 R

o0
t D
4 -
E C’l (cove,) ”_...-"m ’ +2 [k’(‘ax,)k rit'l
Aeu

7 X+2



37

7ith 4.8, 1,7, and 3,29, 3.30, 3.31 and the sare
in point two

{vs§)= /Kfz[g E ((41 P g2y, kr"'r"‘“'>} @7nr2n))

N=0 K=o é k/od) ) (,z (.,,)I Rznn.m

- -/ =
2_ <7k ) (l’r;_"‘-’)__l__ ]

(: ¢l e
=g ) ﬂ - (2D RAK+1

]
= JE73 Z S Q_ ’7*‘_.)—2’(' <4’f'1"- ,J).A’+ Krl'f—f,—:.w)

@Aty ! amo!
Py R RAN4AK+2L
XD '
= /672 ! T T.
/67 @22 (T, Ty + Koy Laa] 420,
@) ! (2h4)! Rar+iak+ 2
h=t k=

Then

Gar)!(an)! paNtANTL

[ (.zm.ur)! . Tanes G 1%
A E:_— n=e K=/ J

(3'”0.‘ Q@ur)! Ran+amsz

[ (.‘NHQK).' {nﬂmzrwz*ﬂ'ﬁg)rmzj
LN <]

2 _-Erx 4 2
_ [3 = :- 2 J_:'Zf__‘_ L ﬁ + 8 Jo::’f' J
[ g-' D ls , 4zsnr2nT &, 8LsL+81,T
ﬂ‘ R' R : 1



Exranding by the binomial theorem

o8

* > 2 2 a
AE= — 3Kk ¢ 4L + 85{317 4'-1-';17*5-1}1} + 3 LT,

+
45, T, | 9 R? 3 R# R ‘6
X .
- Ls, 3 5 Ll ,r, = 2
|- 2222 | S5d~fazog
R* R+
- =9I _ gL
F =z T Ty
R'P
Collecting in vowers of R"to the order .
- 3
- - Iy Ieh - Ig L
2z $T5 - X
R R¢

NLs I 4 3T T -2 Ly 28 a9 T T,
3 2
0T34, LTy Iz, IjI, $I2I,t
R! o

4,21



A=

C =

-39

_3_1_ s R Ll _ IET.
12171- IJ%I’, I_?LI;
Lzt |, 3LeL | 25'n, | 2nln  wELI
20 73 1, 5 Iy I, Tir, $T5IE
Table of Boefficients
| r:6 R=g R =10
A (20 8 ) ' é6 g
R (aer)| 2669 | 4753 | 5591
Alar- 28y 35872 ¢ o000 6 000
Blamw)| f12-5 4225 | 2125
B (asz R) | 23.707 | Gaé#t |9o1é0
B ozary|70L604 |214-852 |142 464
€ (B =0)12919.375 2929375 |29L9.375
Cas=r) 497097 |96+ 264 |1736383
C(2=a2r) |238¢ 357 914719 |2922:702




ko

— =< R p R< /0

A (20+

rL (2020 1.28C 210°% | 22289 107 6'000 v~

L. (1

Py (2~ p) 722 <10 % 2873 <o F 6872 -t
f—“ (P=28) (1259077 2-287 €16 | £. 000 xro-t

8 (ae= . | g <

Es (2= &) | ¢.¢31 xi0 & )o6 xn 4-1428 xr0 ¢

B (20-% - -

= (2= R) /J."(ZO x10°6 |4 526 xo 9016 o
B8 (25s2r) . -F

gs 2 6 /“f X 10 6-667‘/0 -£ 1.12‘—‘,0 -6
£ (Gr : - -

2o <) | 4828 x0°%| 2 719 #¢ "% | 2.920 <0’
C RT= . -¢ .
_R_m (arzp) | 8222 x0 9265 219”7 | 173624 ?
£ (ars2p) ' 5 "

o 3:9#f 500\ 2849 w0 € (2922 a0
DE (oeo) | 2362 %00 7| 923 1075 | P #IT n10 "¢
Ak (Grzr) 7806 xtc™5 | 2°394 0% 6797 5m¢

1990 bigh 3608 Ak 6-0% hvd
AE (20:20) | 2370 x0 ™% | 3,550 ,,p-5 | 7-H#LEX ¢
45 b o F5 Ak o011 % L34
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The

'
of other authors in the following table

(i)
i)
Gii)
av)
(V)
(vr)

(#)-
Gi)

(rii)
(iv)
(v')
(/)

Coeff. of
R—6

-6

-6

-6

-6
-649943

-€

“Author

Marrenau

Bean

Pauling and
?fi_ »’.‘h

Bean

Pauling and
Beach

Bean

¥avya

Soeff. of
;;-9
~135
-2385
~245" 7
-112.4
-124399
-112-%
function
we ' h(iev)

N"‘— ‘(I*I‘V)

ANel T (14av)

IILYS YA

Me~ TR 1+av)

results obtained above are conmpared with those

Coeff. of
R—lb
- 1416
- 14175
- 1069 ‘1
~lok9.
-1138- 21
~-2924-37%5
Potential ethed
ff(,mw(‘?’,z)r frt v
v Qo ert,
vl J <W>: <y Var
A
Vj VYar,
4
\/1 Var.
<+ Var,.
Vs
6
V7 Yar,
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Granhs of the variation of coefficien® with range of integr
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Graphs of the variation of energy with distonce for the three

cegcg,

r
8

oI xIP




The graphs of section 4 show that although the
coefficients are subject to very laryge deviations for
case 1, case < and case 3 show very little difference at
separaticns of greater than 7 stomic units. The actual
total energy of the first three terms of the geries can
hardly ve distin:uilhed in casee 2 and 3, whereas case 1
showed as much error at a geparation of 10 at mic units
as cage 2 at only 6 atomic units,
o The individual coefficients become smaller as the
separaticrn distance decreases. The values obtained under
case 3 may be 150ked upon ags the maximum limiting values
Qf trese coefficients for any part;cuigr wave function used.

Thug the use of the interaction potential in the
expanded form is justifiable from the voint of view fhat
1ittle error is introduced at larxge separatidbns of the
nuciei, The reason for this iz that the correction_terms
wnich give the value of the function in the cohvergent
region are waighted by an exponentially decreasing function
with distanee. Tor {(he same reason there 1is actually a
static interaction potential consisting of this correction
factor and is so small that it can te properly put equal to
zero. ‘‘he average static interaction may thus be likened
to a small' quantity of the firsf order and treated as such

in any development for interactiou energies at long range.
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The calculations of Pauling and Beach'were made in
order to improve a result obtained by Marginau: In particular
the coefficient of F?" was considered to be too emall and
thet of R Fand R™'%00 large. Their result (v) is derived
by using many terms in the function of (v) of 4,23 and their
result {(iii) by ueing only jsround state functions., uhey used
the firet three terms in the exvansio-n of V(R) oniy. With
oaly thege first three .terms the present calculation gives
the result (iv) in which the coefficients of R~ and R-ee
are slightly smaller than in (iii). In (1ii) the trial
‘function is of a different form from that used in (iv). !
“men the exvansion of V(R) is not terminzted at the third
term the present calculation shows that the coefficient of

R 1is increazed by about 200% because of contributions from
the next two terms in V(R) which are neglected by Psuling and
Beach hut which are found to be of considerable magnitude,
1f Paulinz and “each had usged these additional terms their
cecefficient of JR"° would have been increaged gimilarly
andl it is feit that the value of the third coefficient would
be around 3300,

Tug the conelnsion resched is that in determining
the series form of lon: range interacticn energy  that the
imornper use of V(R) as in case 3 is-justifiable provided all

the contributing terms are incliuded in the expansion.


http:inter:1cti.cn

1. H. Margenau: Physical Review 38, 747, .(1939). »
2, L. Pauling and Beachs Physoeal Review 47, 686, (1935).
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Section §
The Long Rauge Interaction Bejiween A Hydrogen
Molecule and a Helium Atom.

A3 in section 4 the long range interaction energy
is determined by vsing the variational principle and is
congldered as arising from the caulombic interaction of the
particies of the two systems,

Because 1t is Bhown in section 4 that the value of
the intesraction energy is net greatly affected when wave
f metions are not restricted to the region in which Y(R)
in powers of R~/ is valid wave functions will extend
throishout all space and the interaction potential, V(R),
will be developed in a meries form valid in a restrieted
region = the expanaions of section 3 being used for this
purpose. Because the separation, R, of the hydrogen
molecule and the helium atom ie large electron exchange
will be neglected. 'S

Section 4 algo shows that when an LQAQ)mothod is
uged the interaction energy ie increased slightly over
values cbtained by using a linearly distorted ground state
function, Therefore only ground state functione of each
gystem will be cousidered, and these wiil have desirable
syrmme try properties,

The hydrogen molecule, being of diatomic homonuclear
47
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type will have ecylindrical symmetry about its nuéggar axis
in virtue of the Paul principle, The helium atogswill be
assumed to be spherically symmetrical in its ground state,
As stated in section 2 %this introduces a 2% error in the
ionization of the helium atom, The deviation from spher-
ical symmetry due to the presence of two bound eléctrons
is amall and the co-ordin&tg will also be ignored in the
wave functione. | |

Massey and Buckingham: usinz a variational appr;ach,
ochtained an exﬁression for the long range interaetiqn energy
,,Qf two hydrogen moiecules. The derivation makes uge of the
éresence of cylindrical symme try and the vanishing of the
wave functions on their boundary. The result is correct to
ihe:second order of approximation. Since these saune '
E}iteria are satisfied in this case the same encrgy ex-
pression may be used with proper modification of the wave
funetione. | |

Writin:g the unperturbed wave functions as S"N(’;l)
for the hydrogen molegule and ¢%(3ﬂ9f0r the helium atom
.Aphan the perturbed wave function, yb for the complete
qéyita& fs ziven s, form similar to that of section 4 and

thusa

b= N Yogb¥% (3,0 [1+Av]
N2 $ant] Brote) dz

5.1



5,1 has the same form as the trial function of
Massey and Bucxiugham, The interaction energy of such a

system acenrding to Massey and Buckingham is

49

+ 12
AE- (w- [~ A2 l 5.2
({2%iv)
sheve the symbols have the same siguificance as in section 4,

The bin=ry system is described as shown in Pig. 0.4
where A,R are the nuclei of the hydrogen molecule and C is

that of the helium atom. ¥ is the mid-point of AB.

9-0
.. [
% ¥
-7 )e e
* /a( i 'ts

Blectrong (=6 3

and ;%% are assigned to the hydrogen

molecule and the helium atom respectively.

All particles

are referred to M§ = R as polar line, and the refereuce
plane for the aszimuthal angles ¢ is the plane ABC.
Particles of the hvdroen molecule referred to M as origin

and particles of the helium atom referrecd to C as origin

have polar co-ordinates

A1,00,0), B(t,64,0); <(1,0¢,8:); §(v;,6;,6;)
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Wnere

V(R)-’_&-r.g_ -2 -2 _1 L
Wac I3c fic ke 43 lae 33 lag 3 b3 Tm fa#

By 3.26

v(R):zfe.-(-o L)Y L -55 u"(LJ"( y-r)ta (6”'.3-4,2)

| als ”/ g Fo & RN yz5,4

= -$ Secrwn) @) £
»/ # R

770 kst

Z Se« 17 (__72 (V_._Qk 5.4

n=6 £/

gince the systems are neutral,

As in 3,3 and 3,4 with angles defihed as in 3.5 and 3.6

0 0 e
k
V=- Z Ze,' C:‘(— coséiy) (” *Ccove:) fZ"'f; 5.5
Rmf‘”
/72y ket

Because of the cylindrical symmetry in H and the

spherical symmetry in He, application of 3.7 to gives
(\/) = (2’ ge(, ('MGJ)C, (cooe)fe , = 5.6
A kg Roﬁﬂ-/

by Z.14.
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*lacing 5.8 in 5.2 ylelds

Expressions for these two guantities will now be
‘atarmined an. the Van der Waals energy will be calculated.

Prom 5M. oy 3.27

2 VgV
c',j
Q0 o0
= -.S. ;S Zc.-(ﬂ)"(v-'f,’;" ?_'5.'%’,{5
6,9 =/ wey ) -

= —'VZ ZZ‘CK-/(““Q)C‘E-(MJ" [rald

o:/m.-_/ Rﬂ*#l
+'§7:;‘j£ ‘;0 / ﬂ*‘g})(. (auﬁJlf” x4
‘) nzs ks/ Rﬂfl(fl
= = -‘lvg e~(—')" (VI" P.L. [ 88,42)
nso
[

n
= -aQ9 2 & ¢4e (“N-‘){sﬁ. 5.8

+1
”nso



)<= ﬁ —k—.,
Pla)
= "‘2 2M) o &h) 1 5.9
<. 7l R
2
{ 2. Ve Vj
€9
A

= 4| (e ) V) ” 4
r! R

= £ So(nﬂ)(,;(cooeg)_'_éj_’_'
R? & RP1L

- :
h % N k!
+25§ (#e) (he) (, e"“k’)g, Ceosél ) I} ol TS
7<0 K=o g rrd
Jsing results 3,36 and the fact thatdl:'-'-‘@only
even R can occur in the first expression—and in the same
way a3 in 3.43 A#+K must be 2ven in the second expression.

As a res-lt this denominstor expression is even in powers ofk".


http:11ft)(K+t){}tt~s6Jcfcc.o.st(Jt/r.Jl

53

The same type of congiderations when applied to
the (V‘) reveals that in the same way as in the denominator
the numerator expression must ve even in powers of R-1

Thus the form of the interaection ehergy will be

AE= -E_E’_Q- GL_(:Q o £.11
RS R'°
For the purpose of the calculation of the Van der
Waals energy term it ig simpler to use expressions 5,10
and 5.5 to ohiain the dipole-dipole interactions.
The first term of the denoninator is obtained from 5,10 and

is

. 2
2—; +2 C"Vz(ms‘)i +2 C‘(“‘@a) i ]
— R* R+

/6

7| [Twle +hiwte rar, r‘zcooomm]

Using the double angle expansion stated in 3,28 and results

3.41, 3.48 and 3,43 X ]
B2 P NS LU AR sea

R‘
+ Al av‘«])

.df [ oo’y (13+I4) + 4sum’y (11"'11‘13‘1)]

= @R + 509 s
R6 12-432 5.12


http:1.(~1"'+11.,.,.-t-A,1.11
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uging 5.4 the numerator has for its first term the dipole=

dipole term expressible as

- (TBI(T 1) L (i1 foys
TR
= [0 1) - 3(e- )R 1)) 3 5.13

Since the spherical symmetry of system 4 implies

the same zeneral conditions for average values n»f sgseidion 4

then >z gyt) s (it = L
Zud

(Z;x)) =L, y,-’)- {xjgD= 0
K cosgy; )= (sendy D= o
( cosgi D= s'sy> - ¥ .

Plaecing these results in 5.13 afiter agquaring gives the

following
[ 2 KGR+ (- 55) ™ -1 )* +
UG GUGG)+ (L tp o+l )
-6 [(I‘;Cose,v-licmél)( LoDy 3006+ -ty lacmeg 5 14
* b ijf.q,&gm)f
+ 9 coce, rGease ) (Koot 1y earoy) . ] -é“



—
e

&
L §4riticoos,cose, + 4Fiasts, 1ot s,
Lrte
~62r, 2 coots, G corte, ~Cx A 1C0/C08 8, 5.15

F2x9x2 hteaste, +2xer2 );I;,Ch&,cme‘} >
Collecting |

(.L {/6 r,*cos's, +/6'7f1cm,60::9¢+2r‘,".\‘/3"6,} ) 5.6
Zie

Using the Wang function for the distribution and
the double angle @xpansion of 3,25 along with the average
values of these angles as determined in elliptiocal co-
ordinates in 3.41, 3.42 and 3,43 the line 5.16 tekes the

numerical form

d*{g}l{ 8-219 +-38% gn 'a(} 5.17

The Van der Waals energy term comes from 5,17
squared upon 5.12, This gives the numerical form given in

the unaverazsed form below

pe= ~CE)" @A is oty

'%%/2'4-32/* [ 1+ oposeaal
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a4 E = - ;,)-375{ l+—c)974u€ocjz‘

(17 oto sin] 5.18

= - a-395” for the averaJe value.

The first term ef the interaction energy of two
hvdroc. en atoms is 6 units. That of two hydrogen molecules
is 15,01 unite according to Massey and Buckingham. It would
be expected thag:yésult for H,—-He would fall somewhere
be tween these results, This is npt the case here and can be
attrivuted to one of two reagons.. The first of these is that
the binding energy of bhoth#h " He are fairly large. The
interaction energy is small. »Consequently an error in the
izitial energy ia greatly amplified in the interaction

enerJy. Sinee the Weng function is a rather poor represent-

ation and since
2E¢ § w*ﬁwdyj;tr%/:,

then the error in the energy may be up to as much as 50%
LOW, The resuit should be at least in the right order of
magnitude. The gsecond reason is tnat the Massey and

Buckin_ ham result of 16,01 would appear to be much too large

because of the statement that <<""6)(ﬁ-13))=(0:-5)’)



57

But (/f?'&)(’z";)) 2:%' <(,;,3)z) e« Since the numerztor
Appears squared this error has greoter affect in the numer-
ator than in the denominastor. This would decrease the average
interaction which they chbtained and bring it closer to the
HH interaction value.

Because there is no permaneﬁt dipole in Mg the
interaction is expected to be less than M as it is cal=-
culated to be, This same reason accounts for the drastic
decresse of the interaction energy upon angular orientation
of the nuclear axis of Mz . The variation in this case
is negligible,

In coneclusion it is felt that the energy value ob-
tained in this section is of the correct order of magnitude
but may be considerably increased by the use of more

accurate representative functions of the unperturbed systems.

l. Massey and Buckingham :Proceedings of the Royal Irish
Academy, 45, 31, 1933,

2. S. C. Wang: Pysical Review 31, 579, (1928).
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