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Section 1 

Introductiop 

If ihe mass centrea of two ue~tral syatema are sep

arated at a diatance, R. which ia large in comparison with 

at;omic dimensions negative interaction ener~y exists and ia 

re~poneible for the initial attraction between the syatsma. 

~ effect of elec~ron exchange between the ayatems is 

negligible when R is large but becomes increasingly import

ant as R decreases. The interaction energy rea.che a a min

imum value at some R= Ro and finally be comes positive and. 

atrongly repulsive a a R decreases further. The magni. 'tt~de 

of the interaction energy when R~ A. comrared to the enm

bined unperturbed energies or the two syatema ia a.c· !. , .Jl ,,. · 

tion of the probability of their etarle uni~n, but a ama~. 

minimum value of interaction energy can exist even when 

etable union is hi.g!tly improbable. In this the sis the 

attractive forces for large va.lues or ftwill be conside-:red. 

This long range interaction energy is usually ex

pressed in the form of ~power aeries in R- 1 
by expanding 

the interaction potential. ,The dynamic dipole-dipole in

teraction te~m proportional to R_, ia called the Van der 

WaLle ener~. Ir uei tMr system p..,••s• permaneni dipole 

' or quadrupole moments this ie the first term of the energy 

., 
.... 
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o-J can exl· st ....henex:··::O..ti:Jicn but terms of lovier order in " '" 

tr~e systems possess such pe:-manent momenta and tr~ese terms 

ar'2 ctue tr static interactir·ns • 

.lu Section 3 of this thesis exr3.nsi:Jns are deve:_oped 

f o r u se i n Se c t i e r: s 4 a tJd 5 , wr: i ch ~ c t i orl s are c .1 n c e .!' nt d 

with the ca:culation of lon~ ran~e interaction energy in the 

cases H·H andHa. -He interacticns respecti~ely. Results 

obtained are compared with published results. 1n part

icular 1t is to be not::d thAt published results use or.!ly the 

fir:t three terr.1s of the ex~ansion of the interaction poten- ' 

tiai ir.; powers of R-1 whereas later terms are inc~.uded in 

the :;:·r2 sent treatment and can have a lar.;;e e:fect on the 

coefficients o:' the terms in the energy expansion. .I.t shculd 

also be :10ted that expa:;.sic~s of the potential in powers of 

R-1 hcJve bt?en uar:1 in r·ublished tr~at!T.ents ot~teide the 

regic•r:s (')f convr:rgence of t!-~ese ~xpansions. 'l'he cor..seq1.1et:ees 

of such tr~2-tmente is considered. 

93ction 2 contains a. survey o·f arproximate r~etho,.ls 

of soluti~~ 0f Schr~1inger's stati8nary state equation, and 

ms t l:c .~ s used t c treat He and t-I:L are a ta. ted be cause approx

irJ8te wave f~~ncticns of tr_ese syate:11s a.re used in Section 5. 

http:r~etho,.ls


Section 2 

The Schrodinger :Repreeenta.tion and_hproximate Solutions 

Application of the classical lawe of phyeics to the 

phenomena or atomic structure led to erroneous results which 

could only be corrected by the addition of special restric• 

t i 0na. '!/i th De Broglie 'a hypothesis, and ita aubse quen i 

verification for light particles, that every particle had 

associated with it a wave atruciure of definite wave length 

it wae possible to set up a new branch of physica which 
I 

described atomic phenomena and which included results of 

classical phyaice for macroscopic pheno.ena. 1be two lawa 

which describe ihe atomic prooeeaes •ere giTen by Solarodinger 

aa 2.1-·HY~ -~•,., 
'lf}lc ~.,.~ , ·:. 

2.2 
2.1 is called the time deyendant equation, a.nd 2.2 the 

stationary state equation which is applicable when the aiate 

of the system d-:>ee not chafl6e with time. H 111 tlw Hamil

tonian operator, B the energy, and p tlw p.robabi 1 i t1 

amplitude or ihe system. 

The simplest atomic preble~, that of determining 

the ata t ionary atate s of the hydrogen a tom~ has been solved. 

only after making a number of simplifications. Relativistic 
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corrections being neglected, ae well aa the magnetic and 

electric interactions o! the spins or the electron an4 tO. 

nucleus, reduces the problem to the solving of the dit:reren

tial equation 

2.J 

Th~a, ca.n be solved exactly if the potential, V, ia 
' . 

of the·· 
< 

··c~ntral field type perrn1 t t ing the ae pa.ra t ion of the 

coordinate of the differential equation. Corrections for 

the omission of the small terms in H can he made by means ot 

the classical pertubation theory. In ti1a way it ia possible 
. , 

to ge~ energy expressions for the hydrogen atom that are corr
\ 

e ot to ·better than one part in a mi 11 ion. 

The eqL;ation 2.2 for a more complicated atioi!lio eyatem 

than tr~t of the hydroGen atom hae not been solved exactly 

and feoou=se ia ueually made to one or two approximate methoda 

to.· obtain a solution. 

The first nethod ia to aseume a trial function which 

is to repreaent the electron distribution. !he trial function 

contains p3.rametere which are varied !JO as to minimize 'the 

energy of the system. This varia.tional method is generally 

used to evaluate the ground state energy of the ayatem. 

The .tria.l function ·is set up with as many parame tere 

as is desirable for flexibi~ity. However it ia possible tQ 

use a larg~ number of parameters and atill obtain a poor 

value of energy if the cor~ect coordinates are not included. 
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A g')cd exa.m1~le of this is the Jam: s and CoclidcSe function 

used for t~._e ~yclro'-·~en mn:ecule pro~;lem. This function ia 

in the form of a aerie e and contains five parametex:·s. .Lt 

was possible by using tt.ir teen terms of the aeries to get 

an answer that agrees to within the expermin~ntal error 

with the value of the gro~nd state energy of H2 • How

e ve r , the e r.1 i s s i on o: a t e r m de re n rl an t on the e 1 e c t ron 

S€::'9.rati"n ~;iv~.s a.n energy value th&.t is scarcely better 

tr..~. n that oht:;.~ ned. by Rosen wi t'!-1 a airnple trial fucctiun 

.in ~:enera~ two ty?es ')f wave fL:nctions are used. 

The one type depends on tSivinc; the trial func tic·n a form 

which is dictated by a physical picture of the system. l~ua 

this meth0d takes account of polarization by diet:~~rting 

unpolarized functions. The other met!lod is to use a flexi

ble function whiGh has no rea.di -_y ayailable phyeica: repre

setJtation but cc)ntains all the necessary variables in a form 

eG.sily handled. 

1be correctness of the wave function is not made cer

tain by 1 ts .;i.ving the correct energy since ~any varied 

distributions can give the sarre minimum ene:-5y • .As a result 

a ft..:nction YThich giYes the correct gr0und ata.te energy by 

the variati0nal principle ca~ sti~l lead to incorrect re

sa;lts for the next highest ene:-~y since the two distril)u
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tiona need not be members of an orthogona.l set of !unctions. 

!he second ~rethod is to uae pertubation theory. In 

this qthod the actual eyatem is replaced by a. similar 

though simpler one which is referred to as the unperturbed 

ayetem and which muet provide a complate aei of orthogonal 

ei,sen functioEs. \fhere there is little differ~nce in the 

de ecri pt ion of the two .systems the per tuba t ion ~ tr,o d & i ve s 

a t;cod anawer with few terms .te in:;S considered. With proper 

wave functions the variatirnal method 6ives a lower bound 

to the ener:,7 w11i-.: e the_ r:;ertuhation gives an upper bound. 

The the:~r:y of pertu1:ations was developed by classical 

physiciate t~ solve problem• in astronomy involving ~ore 

than tii'IC1 r, odie 8. 

1~ Hartr~e and Hartree-Fock treatments c~n be 

classified as pertubation and variational methods respect

ively. In ar:plying this method the problen1 is sim~~lified 

by repla.cing all the electrons but one by the centra~ field 

obtained by averaging the electron distribution of all thl 

eleo ~rona over the polar angles. The wave function ob

tained represents a first approximation and t!:t:-ee functions 

are used t ..: c0:;:orect the central fie:d potentia: by rede term

initL~~ tte a.vera6e o::-lectron distribution. This procesa ia 

re:)eated until further ca"!.c·;lo.tion yields no better result. 

Thus wten nur:erical functions are used t1:.e method is simil(:r 
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in principle to pertubation theory. If analytic wave func

t~one are assumed the raethod !1aS S(me similarity tc the 

"ra.r ia t i onal re tb n d. 

Ko:..ectllar problems are furtner complicated by the 

fact 'that a molecule pnsaesaes nuclear, vibrationa.: and 

r o tat i '0 n a.~ energy in e. 0 d i t i n n t o e 1e c t r r. n i c energy. .N u c 1e a.r 

co-crc(inates ca.n be separated from the electronic r:nes 

provided the conc::i tiona required for a theorem by ~ern and 
. 1 
(l';panhei.ner are satisfied. The electror:ic part must be 

snlve d by 0ne of the a.bo ve ne thn da and the e le ctroni o e r~ergy, 

as a function of nuclear coor~~inates, plc.ced in the equations 

for t !1e vi brat i c n a n d ro tat i on VI he :-e i t a.c t s i n the same 

way as the potential does in the electronic motion. 

In all pro:,:e-ma whe:re t\\',:: or more eleotrone are 

invcl ved pro!Jer use rnus t be made of the i"au~i Principle 

w!;en using a~~proximate met~~ode of solution. The pirtubation 

-~·Jethod ca:·!not be us·~d unless all eigenfunctions of the 

unperturbed s:retem are members of the same set. 

!bl next si!!lplest atom to hydrogen is the helium 

a trJm. 1 t s crnu r~cl state has been calc u lz ted by a ppr ·Jxima t ion 

rre thod a. Tl-1e simp~-= s t a pproxima t 1on to the exact ground 

f" t L)_~lirlt)s t ate e 1c~en ~ un c 1on 1e the ze r c t h or de r fun c t ion ~-

:_;iT ing a 6% error in the energy. 'file first order function 

ie t,-~C~t-t;.) and with % minimized to .a.~, c;ivea an 
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error in energy of lesa t'h.a.n 2%. !he next major step which 

resulted in the correct energy was taken by ~ylleraaa who " 

introduced tht electron separation in to the wave 

function with the form 

With this complicated function with three paraDE tera he was 

able to get an energy value ind.istinguiahable froa that o~ 

ex:periment. Thie illustrated the manner in whiah a reaaon

able energy Talue can be obtained with a aimple function 

and the extreme a to which one 
• 

mu•t go 
; • 

iD.' "Or"-r 
~ '.,. .. J • ~· 

io eb"taiJl 

a Talue approximating the experimental valLW. 

Par ths hydrogen molecule much the same prooeedure 

was followed. The firs~ wave function developed by Heitler,. 
and London took account of electron exchange and had the 

form 

Subsequent workers improved upon this ae the basic :rorm 

hy introducing parameters to aocount Cor 1creen1ug, pola.r

iaation, "the shift of the centre of elec'\J.l·on deneity from 

tha nuclear centre, and ionic terms plua polarization. 

Each of these methode gave an improvement to lhe energr 

Talue obtained by calculation ae compared to the ex,er1. 

ments,l value. Also each type was based upon a pllyaical 
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picture. 1he most successful attack was made not using 

a picture guide, but merely atragetically pla.cing para

meters in a simple functional combination. Thie ia the 
4'aforementioned Ja.m: s and Coolidge function. 

·thus the beat variational approach ap~ars io be 

to introduce as many parameters aa can be oonvenientl~ 

handle4 and. a 't the same time to introduce into the function 

variablea aa they occur in the potential. R~een'• work 

with the hydrogen molecule eeema to indicate that polar

ization of a syatem can be conveniently handled by asaum

1ng a di s tr i b l.l t i on de pe nd an t 1n a 1i ne a.r manner on 'tbe 

interaction potential. 

1. 	Born and Oppenheimer: Ann. der Pbf. 8~, ~57, (1927). 

2. 	Hylleraas: z. f Phy. 65, 209, (1930). 

3. 	He1tler and-London: z. f Phy.~, 455, (1927). 

4. 	H. M. James and A. s. Coolidge:Journal of Chemical 

Physics 1, 825, (1933). 



Section 3 

Some Mathematical l-te: at ions. 

Relatione are developed in this aection which are to 

.be applied in sectione 4 and 5. 'l'hese a::.-e ~·a.eed on the 

properties of the Gegenbauer Polynomials. ,., . 
'l'he Gegenbauer Polynomial, Ctz.), for integra: va1ue s, 

of n, is defined a.a the coefficient of n 
Lit 

of the termw.ise 
! 

expansion of the generating function 

11.1ie coefficient has ths form 

...; ~ 'Y2.c(Z) = 2._ (-1t [n +f-5 ( J.Z)n-J.S 

.. "11 S=o {Y S' (n-~S)~ 
Bateman, 176,9 

An inTer ae power of the distance f B.- [ I , in 

terms 0f t~ia polynomial, is then ·ari tten 

I B -r r:lv"= ~ cV' [ C.O$ ( t! , ~) lr.: ) I r I dB I . L n pn~~~ 

I ''''1r1 

IJ=o " 

'1. •Higher Tranacendal Functions•, &.tema.n 

Manuscr i p t Pro j e c t , Vo 1 • 1 , pp • 1 75-1 79 lYc l}raw-H 1 :. l , 1 9 53 ) • 

Referencee to the results in this book will henceforth be 

labelled ..Baterran• fo:lowed by the page on which it occurs 

and the number assiGned to it therein. 

10 

3.2 
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'/ 

lhe distance represented by IB- t• -r.!), J-:t"'ma.y be 

expressed by a double series of the ~&enbauer Polynomials. 

I6 - JJ ~ra. r:l\1= ~ ('c_,osX) ~ I~J ( llt-r.l 
~ II IR-r, ln+1"' 

3.3 

1.~ here ( e, J ~~ ) and ( 9~, , ~ ) are the po 1 ar angle s J f ~ 

and 1, referred toE as polar as shov.'n in Fil. 3.l. 

!Pi:_:. 3 .l 

Cos X= G05 9L ( g- t:' U>S9,) + !j Slf)6~ Sine, Gos(~-4_) 

18-t,l 

co.se, { !?.+ ~C.OSG.r.) -1- !i sins,si'Je,cos(fi,-~) 
l & +~I 

3.5 
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Using 3.5 it will be proved that 

..,- J.1( J.f y ~JJJC(-c.osx) ( (cos~) SliJ6.l. de~, d.~, dlz 

0 0 0 

Pro·Jf of 3. 7. 

3.8 

wlle re a= ( 8. - fJ£OJe, ) 
' r11( cas S({l, -1..) dtl/ clh, 

0 0 

- 0 it 



• • 

1~ 

•• 111" 

0 S/z.v11 cos'(~~;'"') dlt dh = 

0 0 S!(f)$ ____.. [jt~;;J~:= 
.~., 'I,t.. .z 

it s i • ena 3.9 

Ey repeated application wtth p odd thia reclucee to 

~+!)!! '1-,)!! r,U~4,/It~d6 
WrfiJ! f • 

'l'h.e re f'ore 

0 it 
..,.

(~-t)!! ( p-t)/1 1S/;,~ d& it even 
( D(.,.. ft) .I! C) 

_.,.,J(Ds""'6 lir/S~'€, d8 lli th 


IJ requiNI n evea 


= (n-S,-1)~'S!! I st"neti& = ~-S-1)11$!! r.....9 Sifl9d-8 1.10J1 

W/n)!! ill (TH)!! ·. 
0 ' 
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Place 3.9 and 3.10 in 3.8 and integrating gives 

S!-!J .S..I 
~· ~. 

(L n-s b$COS "•.a SJ/16~ d6o.a t!fo~A 
1~-!il" 

= Jrr (,OS ne, st"n&l. Jo,z d#, riA 

0 0 • 

-- 0 for f} odd 3.12 

v
·.vi th (,C... cost) expanded as in 5.1 and using 3.12 

..,- ~JJ.,..J;.11 

c:(~wsX) (,(~coso,) S/'161. de.z cl'l, dtJ. 

0 0 0 

f afT' 1..,.. )I ~ _::: JJf ( {-c.os6,.) ~ ;r.(c;~s~,)S/;,6~ de~.~d~ 
(J 0 0 


which 1 s the required proof of 3. 7 • 
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Since 

;t (.Y-t)C.,
)I 

£z_) - Bateman 178,30 

then 

' ~~ .. '-lY--1) 1 C&> ol.zc1 (,.,.,ex> J' ~
J_, _, 


= 2 fn '*- "-v-1 
2(Y,.1)(?H1)! {2.(~-1) 

. ~ 

~ ( n +-.1V;_I= 

(h,.l}! (.:L v-1 

== 0 
As a result 

1 ~ 
= 

Be. te.man 1 ?6, '1 
' . 


tt n eveu 
r~.l3 

1! 17 odd J 

1. {,, (-z.J a'z ..le In 
_, (~t)! ro : 

~ " ~. 

-- 0 nlo t 
J11=0 



I 	 .' 

1& 


, . 


V.:.l ; .r, ,{%) rlt. .= . .:z r;;w: 

(n~t(iJ ', .. _, .,,',• 

I 	 ' 

_A_ i't-	 neve\.: f' -··· (n+t) 
~.15 

"'~ ~ 

- 0 ·-tr n. oddj-

I . 

2.f K-I-t-It ..,.z.,)):: '1: i Jct(t!i'():.) J.~ = 
f:lr+tJ! r~-~ .., 

= ), I· .1(+ OW+ I 

c;~!J ·' rn~-: 

= 	 .z, ( ll+ ..,J! 
{K.,.I)! n f 

~.16 

.::. 0 

W101 v~~and ~/ in 3.2 using reeult 3.14 and ~.lS 

in 3.2 and with ~"=-I~J)I:/, and li•J.tt u1ing 3.14·, 3.15, 

and 3.16 with 3., in 3.3 these resulta followt 

...,...

JI11- r. r' Stfu~citJ ... 
0 
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-- .l,G-c~ lf~t.IR I ~.18 

FG IIi II. Uti 

11" tX) 

£_ lt;I{RI~

J I R- t', 1- .L .s lfl8a'6;: RPt.t{nH)- - l 
(J tr-tJ it n eYeD 

- 110 

I JL_ 
,~~ 

all n...!..- 3.19
Ran.,.J..(.21¥1+1} 

1'/;() 

,...- 11' a# 211

JJjJIB-(trf5-rz. st'n&, rifJJS;mtt.d~ d~o!A, " 

a o o o 

( Krn)! r, ~ r,.~ if K even 
( Krl)! (n~,).1 N.",..~-~":L 

a.nd n even 

(.;2 K .,_J ,) ! . r;.J. k f;.,~ 

( :t K +I)! ( ~7'1-t()! R'-IHJ.I'"'I 

.. .,. ": 



18 

Since 

then 

3.21 

C, 
v& 

arul ~ comt a froa 

where p,.s-= n for all o ~ ~~ ~ s s nn , o · 

as a result 
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1'hua 

,. .,.... 21f 1-f'"JJJJj8-!1+5r!J~-!!r~ stne,stheLde,cl~d"~A. 
0 CJ 0 0 . 

--

; 

•One more· ge·ner~l angular .re aul t 18· tiee.ded. 

v .
( [z,z. - (z,"-J)t•(r':.J)'/1. c.osp] 

n 


1-;:;:i. 

= (NJ~ 

Bateman 177,19 

For \1:~this becon:e s the legendre double angle 

expansion in terms of the Aesociated legendre FUnctions. 
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.ror V'• r the expaneion ia 

(,' [zr,- (~ t,)t'a (z£- t) '4,.r~] 

=~ of.' (n-{}! (~/)"· (:l/1-1) (1-z~l~-o-xlP. ... 
L l~-~-,)! 

An equivalent expansion for JB -!;+§.1
-I 

in the region 

l~l4~j-Jij.IL/8/ i e 

where r; = ;, >lc." + j. 'i. f- If}'i 

R- -(.·x. +j'j 4-l{z 
v = <~.d._ + j ~ ..,.., L 

;J){ Jy ,)Z 
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(-l)~(t·r.>• l = 
n! It 

v,. {-t)n {"3· t•J n ..!. - v (-1) n - ' {V·P) ""'' I-- en-•>! Rn.• R 

= Q ( Ya ) n-1 - 11-1 ( co.s~ .!£..... 3. 2'7 

R" 

n C....JJ"fv·'i)n.! ~ 
And n! . It 

..-

So 

3.30 
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Rquivalent results are obtained in the eo-ordinates 

of poin-t two. The ae are obtained by replacing all sub

scripts 1 by 2 and vise versa. 

A furthur quantity which is required is given below 

for one of two s-ituations. The second ei tuation ie ob

tained by using expansion 3.4 in place bf 3.3. .lt is ob

tained in the same manner as 3.29 since it ia the same 

thing multiplied by a constant aa far as 1 is coneerne4. 
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The radial in~egration of section 4 ie or the 

type 
atrfe~~,.~,. = Io+a(a"'"J 

0 

rc~ ...) - I ,..-:----:. -.t."'l.I'H-l. Cn.,..z >I (~ r) ,.,.:ua..-4. ~ 
11+.1 - ~ tt+J Jn+3 - e{ ( ---n<~-;a..-«)1«=o 

These integra~- a are tabula ted be low for values o! z ~ 

.1. cr:_,.r1 8; 10 I.Z.JI"J~ove r i.rl6 cases t l), t 2) and t 3} of
1 

Section 4. 

Tabulation or Xn+:J(ar) 

""··~, ... 

0 

oO 

·zo-o 
' 

·J.Jr 

s 
·2+7 

I 

' 10 

·:J.+! 

12, 

·2S""O 

16 

·:Loo 

.zo 

· 2S"O 

.1 ·375" '318 ·3&1 ·371 ·31.tr ·37S ·J1S 

:L 
T 

~ 

·7~0 

-
, 1·87S 
~ 

. ,);z 1 ~ 

1... ooo 

·G7C 

! ·5.t.g 

.. 1J8 

J· 7~9 

·/tf...~ 

.1.·837 

·/Sl 

.1·97~ 

· 7~v 

1·/J)'.f 

1-' ~.5· 6',25 ,t.-oyr +""'s +·S9S 4='4!l S:6'~.J S:l'.1.+ 

S" lf·6'87S +·GlO 10·76'0 L.s'·JHJ 17·!+o ,,. .,..91. 19·,11 

c 71· 7..fO Y·7fo .32. ·/S(J .5.:1·6'5"0 62·S".s-o 77·0Jo 78 ·S9tJ 

1•ABI..E 3 · 1 


http:cr:_,.r1
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The integrals which oocur in section 5 may be 

written in the form given i~dia.tely below. ~r T&rioue 

ta11W•~·. s-~.. at the ind,oies :2n ~,a,,..parttcular general re

sults bold and theee will be first inTeatigated. 

I
I :Z#' .0 I ,.r 

I""'.N'- JJJJJ { e· y'o,1-~,+~~~e- l/(,.,-u,t~te.-Hi.J}"'>:u:A:u} 
• .., 0 ' _, () • 

~ d.' ( >.,1 -.JL1•)('A:-~;)dA,dll~ rip,tiJ...ellllrii1A 
8~ ~~3 

wbere 

z~= .s =(J·I~IJ( ,.,.38) == t-&77 

where ;c. is the value of the screening parameter and tl is 

the 
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By repla.cing. u 1 by-'(, a.nd "L by ·"-~3.35 becomes 

I •I 1-1 

0 p+~ odd 

p +-ij even 
p ,,1 odd 

p~ even 
3.38 

p 4."'" ~ odd 
oO I 

1r~_, >...( ,.~ -~.t·) tfA~"u, =1i.]) 
I -1 

c.¢1JJ .e-so... -.J.ta.>o.;-.~~..... )J).,_d«& = 4=3 
I -1 
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?art i c~ lar cases de sired 1 

rn::::. :z.J A• o, p=o J ~ =o X, 

m :: 0 I fl':l 0.) j:J; ~/ r= () 
n?-- :z. 

~ 

Using :3.34, 3.39 and 3.40 with the even odd pro
, 

perty of 3.36 the following is obtained, 
,01 

.r, +~::: X Jr(e~ '(A,#.ll,) + "/).€._, ~(At-..tt/) rb... d u, 
4(1-1])':) J 

( -1 

.r,+1, = 3.41 
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Using the same properties as for 3.41, 

- -Z·J. 3S. 3.42 

Using 3.3'1 

I •I I •I 

_, 
( 1+-j)") 

- - o· &as-
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Section 4 

-


The Long Ran[e Interaction of 11-Jo Hydrogen Atoms. 

A binary system consisting of two hydrogen a_tome is 

described as in Fig. 4.1, where the atomic nucleus A and 

nucleus .B have associated tsith them electrons 1 and 2 

r~ spec t i ve ly. 

-.1' .. r..-

R .. I 

!Pig. 4.1 

Interparticle distances are denoted aa in the :tie;ure. The 

polar angles (9,)1,) of Jr and. (Q%)?z) of~ are referred 

to the internuclear distance 8 = '!.} as polar and an ar

bitrary plane tr~ough fi,B • 'lb.e Z axis of the Cartesian 

co-ordinates of A and B with origins at A and B respectively 

are taken in the direction of R.-

In order to calculate the interaction energy for 

lar:~e values of -q electron excha.ne;e ·between the atoms is 

~eg~ected and the interaction energy is taken to be due to 

the pe r t urb 1 ng e f f e c t o f the Coulomb i c 1n te .ra c t 1on , 

V(R) = _L +_!_- .J_ - _L .. 4.1 
R t;'z, IR3. If I 

Atomic nni t s are used. At normal tempe r9. ture a each of the 

28 
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unperturbed atoms can be taken to be in its ground atate 

because or the predominant statistical weighting of that 

etate. '.1'he difference be tween the energies of the ground 

eta te and the first excited state of a hydrogen a tom ia 

so large that the probabi 1 i ty of e 1 ther a tom being excited 

intd a "ligher energy at ate as a result of the pertuba.tioo 

is negligible. 

ln the calculation of the long range interaction 

energy the usual method is to obtain a eeriee repre senta
-

tion of ~he interaction, V(R), in inTerae powers of R. 

This power series is then terminated at whatever atage ia 

desired and the average value ia calculated from this finite 

series. In doing the problem in thia way three cas·? • arise, 

de;)ending upon the subsequent arp.roxima tiona which are made. 

The power eeries in R·' is conTergent in the region r.~«., 'i<R. 

Ca.se 1. If there is to be no overlap it ia 

necessary that the a to~ic wave functions vanish for r,7/ % 
' 

~1is requires a renorma~iaation of the wave 

function,and the series for the potentiai is valid. 

Case 2. The atomic waye functions vani ah !or 

The wave functions extend over the complete 

recSion of space in \V~ich the expansion is a representation 

of t~e potential. 'Fhare is a region in v:hich-the wave 

"' 

f'11nctione overlap and this overlap is neglected on the 

•. 
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assu~pti0n that the value added· to 'the interaction energy 

by 1 ts inclusion is a TfJrY amall peroe n tage of the to tal 

non.overlap interaction anergy at large separation of the 

mass ceniers~ Thie approach also requires a re·normal

ization of the wave function. 

_Case. 3. Tb.tf":'atomio wave functions extend through

out all apace· and the expansion ot V(R.) in powers of R-' 

is ue·ed throughout - including the re~ion where it does 

r.ot converge. All oTarlap effects are neglected. 

'l"hese three cases wi~l now be considered in dets.il. 

The unperturbed atoms are represented by the ... , 

functions Y, (1) and ~8J..z.J centered on· A and B respect
81 

ively where 

and 

where o;"~,RJ~ &-e for cases (1 ),(2) and (3) respectively. 

Because V{R) is small the die tort ion of the un~ r

turbed binary system is taken to be linearly dependant on 

V(R) and t0 be of the form 

w= ~to ~t.zJ (I+ Av)r .,, 8t~. ,. 

where A. is a pararre ter to ~ uaed to minimi~e the energy. 
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:Jeing the variational :princi:tJle the energy of the 

perturb.::> J system is 

4.4£ == s~ftH '16/lcr*t,Jz - :r~ 
where H is the Hamil ton ian of the system and integration 

is tlLrr:> i.;ghr:u t the coo.rdi no. te space of e le c trona 1 and 2 • 

.!ri t ing 

I= ({I+XV)H(I+A.V)) 

:r = ( ( l+;..vt) 
'':'here 

H::: Ho +V 

11 - u ~u - _.J_nk_J_n'~_J_ _ _j_.
no - no/ r no, - v, v_ r: 

6J z.. 2 l I r%.. 

us i rJ6 3. 2 ar. d 3 • 3 is re pre se ~ t~ d by 

4.6
The ~:e .fore 

...-. (V(R))==-o 1)~, 3.14 



~2 

liV=Ho V:t- ....;z 

Ho V ~I fsz. :: 	 V II., ¢,., r ~z. Y- ~~' :..1 ~z ·f: 9., ~) V 


- ( ~& V· v~ _,.. v, V· v,) Y-.q, If,z. 


111V Ho f' ~1 r {r, ·\7, \I+ 'A. ·V. V) ¢JI/, ~.l. 
r; ~7.. / 

= (VHo +.S) ~R' y(B2 · 
t• s : r~ ; L1 • : ·rl c~~ ;: ~ .'~ _-.. --~a.:- ~-~ ~:;!... ~ ~ ~~t~ ,_:: ·->e ,t;~_ ~-·~£. 

tl() oO 

s= l 2. c/\-C63x)~'t'(ccs6...; { 1711"-'t; .t+k'l/nlik-/1 

fl=t K.. , 	 R fi-t k'+ I

<'>-=o by::C.7ad3.l4 	 .;,3 

( Hlf).: { 140 V+-v~o) = (v.,_-+ VHo + ~ = ( VH t-S) 

(vwv)=- (v3+vH"v) 

= ( y3 + v(VHo+s~= 


== ( V3-rv~Ho -rvs> 


;: <v z H+ VS / 


V S :::; .1. f f, ·l'f V ~ + !i ·Va V1 } 
 since is sea i e r.2. 	 r, ~ 
-~. 9 

http:by::C.7ad3.l4
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Using the result 3.7 this may be written 

4.10 

Usin6 t:1e expa.naion 3.1 ti1is fJrm ·:1ill involTe i:'~~oduct.s 

0f the an__::le ~~~, as well s.a Cl".>61 a n d the avera~e value a 

!r 1-K'1- r''= It- Il-L
for are the first non zero eAse-e.

11 ~,/ ,.,H ::"' ,..,_,.,.l. 
Ae a res;.; 1 t the lowe at possible order to appear in ( yJ) 

ia a·t least of orde.r R- 11 
• Since t!lis expansion is to be 

oarri ed only to order R. -Jo(v9doe s not a ppe a.r. 

\ 

Since W is the solution of the Sohrodinger equation 

Plaoin~ the results 't,t, 4.8 a.nd 4.10in.% and.:T gives 
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4.11• 

A necessary cond~tion for a minimum value ot Af 
is that cl4~A-= 0 :_;iving the following result 

-.':'! 

by neJlecting terms of order lese.""'than R-10
• Since .(y&) 

is of order fl-' :ts is s~own by t1-., -:: 

therefor~= [(t)+A2
(V

1 >} [>.<vs> +(v..) ]- F"(VS)+U(III'a)JA•(v&) 

:# (t>[>-<vs)~<v...)] 

The :-efore 

And 
~; - (-/&) 4.12 

(VS) 

Subs t i t uti on of 4. 12 1n to 4. 11 :; i ve s 
'1 

(va).,. (vs) - .2 (va~~ 
(vs~ (vs) 

<•> .,_ <;v')'
(\IS)~ 

• 
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4.13LlE - (v"/ 
(t~ ·(vs) 

T'hese a.ve:age values will no·.7 be calculated '.vi th 

the ai ·i of the re su 1 t s of section 3. 

-I +-1 

R1w t;3,a. 


~rhe inte_~ration over fi ~rd_. . ~ ~acl been rt~ne in'L 

3. 34. In te rr1s of t~1e se t n te gra1 s there 



4.17 

as 7iven by 4. 

<vs): (if r,·v,(..L •.L _ .a.[.l. +_LJ-t- L ) 


\ l f', r, :: ,.: r: 2 ~~ '1J 1 ~ ~I 


7t~e resu1ts of 3.26 to 3 .~.1 pe r ~L i t e-

e)~r- ,.,o ~o' :"'Y] -) 
.. ~..,/ .................. lo.J - • 
 t t '~ ke the ~orm 

't. :. 9 
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.7,· .... "' 4 8 L 7 a'1d 3.29, 3.30, 3.31 and the same 
~' ... "-1.1 • ' ' • ' • 

] 

(;}. /)r.;l.k) .' fni.tiJI.4 J24'"-tJ + KI~J 1;~2J 4~ 2.0 . 
(21'J<~i)! (2~-~'t).' !?a no~ :z. r+ ~ 

1)-::I k=t 

Then 

Llf= -

- .. 
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Exranding by the binomial theorem 

+ 

~~2- ~6 i;+2~-g~-
i?~ 

-

Co~lec~ing in ·oowers or R~•to the order • 

-

,., l. , & _J ... I. 

· / '/.Z.S. I7 + 3 Zj Ii, - 2 ..:r::s'r,.,. 2 _z:i.lj - t3JI.c~.r1 

.:<.o:{.ZI.,. J;2_ .z: .I.J)._z: .I.f.Tf 6-.r/.. I+~ 

R'" 

c 

4.21 

4.22 
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fl= .J_ .Ij .B= 3I::xz X::r.c 
3 .X.zz,_ XL I~.I~')..,I~ '3 4 

...71I":ri7.l. 3Z:.L2. .2Is-Ia 2k.li -'.9~Z,C= + 
~ 

+ 
20 Z.J2...~ ..z:Z.J: ;a .z '1-:r. 7..- s .x; .r../J .,. :.J .,. .xJL, 

Table of ~oefficients 

~=,to'~ R=6 It ::. t 

II (~,.. ') b. l 6 6 

f~~~.LII (:z..-. A') 2·6"69 
' 

+·7s-3 

b. oooC·OOOII (:Lr: ,I 1 S·B12 
~ 

B t:z. ,.. .c~ ) 1...1.2 ·~.1.1.2·~-111·F 

B (.:l.tr. I ) 23·1.01 9()1.&0Bl·i-1~ 

B (~n .;J.fl) JOl·Go/f t!2·IC"f~tt·852' 

c (~:a41l) :1.9J..j· . .]lS ~j.t!-375 29.1.9:375' 

c (.3. :: 1l ) 11.:J~·38.398/f~./6'4-1-JJ·t/.11 

c (.Z. .. 21f) 2Y'.i1·1tJ.t2J8f·eJC1 ~9'1+·119 
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~~able of' ~n• ,.a"i A • ,.:: ~ Jl:;t? R~ Jo 

.£!_ (:l~.o) t IO~:r b!tJOD~I0-4.3·.2iJtl.1· 2 8 ' ~ 10 -+R' 

fl. {2r:: R) r 7J2 I( to·~' 1,_ ·8/.J ( 'iJ •r G·Stz .c,.,-'R.' 

I) ' t~ tr: :L R.) ~- .1..$", ( 1(.) -~ .1-;J.t!f ''• ·r '. ()6/1 6M_,
ll' 

8 (.;t~ ...) ~· 7()6 X ID 

~ 

..,,. '.JJ. X IO •I ! • J.l.s- I IIJ '"' 
RB 

8 (3cr:: ll) 13-~.to x, ... , 4 ·.Jtlt ~~ -~- J·oJG x• 
-7 

lt8 

_,-~ (.2.,-•.lR) 6 ·16'5" tiiJ .. ,. G·6'T ~I()_, j·J.~S'ILIO1{8 

- ( ;J ,-;. .-t) ) -14--·82.8 Ill/)., 3· r.t.f ~J( -t. tCIQ~- !J:z..cli(J' 
_,c (:1,.;; tt ) 1.:13& ~ ~ -]e·2..2. :L .t to- .1·166 ¥/tl-

7 

RID 

c _,- (;u; l.R) 3 ·'I~ I_., lo -I .2 -~1! tlil _, 2·912 II..I. lfJ 

_, 
,. f/114 10:1· Jb'2 { (0 -fIJE {:ur: oa) j ·tZ.J I X /(.J ·s

6·?-rf ~f() -ItJ £ {;Jr. R} i·lo' l(tc -5" 3•J91- ~111 -~-
1.99/1$ ~;.4 ,.9. A'fJ.u ·•~£ J..;.J. 

.1·~70 1((() ... 1· ../.1GJ( '" t•A f (2r:21l) 3-::lJ.tJ xto -r 
. ., .J'o ~.~ •·•l~#)l,i~A-~·fit"!# 

-~:.. 

http:3-::lJ.tJ
http:2.,-�.lR
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'The results obtained above are compa.red with those 
I 

of 	other authors in the following table 

·~'Jeff. of Coeff. of 
R-~ R-•o 

( i) -6 -1.35 - .1. 4.1.-b 


\ ;;) - b -.LJS 


(iii) - 6 - ~06.J ·.t. 


(/v) -6 - 1.1.2:5' 


( \i) -,6 ·/11.903 - .t 1..3S~.J 


(v/J -b -.2.9.ti·.J75 


Author \Vav'?. function Potential . J! thcd 

f1er'h.(-UM)r,rc~ r,•r..t 
(;) - Mar:.;enau , ';c ...;: ~1 .t'e r t • 

vt J <v">: (H'V) Vo.r.(i i) "3e an 


Pauling and 

(iii) "2€ ,_ ~?h 	 Var. 

(iii) Bean 	 Var. 

Paqling 	and 

Beach 
 l}N,A\"'(4 'ft.' vt Var. 

{VI) Bean var.Vt 6IJt -1',-l'w.( t+I\V) 
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- i··,, 

Gra,ha of the varia.tion of coefficient \"Ji th rg,nge of inte6r.a.tion 

."R~ 

(1) J 

--~----------------------------------------------------~ 


..... . _ '... 

6_: ..... -- -- /() 

R. 




Graphs of the variation of en·ergy with distnnce for the three 

0 



-
The graphs of section 4 show that although the 

coefficients are subject to very large· deviations for 

case 1, case 2 and case 3 show very little difference at 

separations of greater than 7 atomic units.· The actual 

total energy of the first three ter~s _of the seri~e can 

hardly re distin~uiehed in casee, 2 and 3, w~ereas case 1 

showed as muoh error at a separation of 10 at 1mic units 

as caae 2 a t only _6 at om i c u n 1 t s • 

1~e individual coefficients become smaller as the 

separatinn distance decreases. The ·values obtained un~jer 

I 
case 3 may be l;-Joked upon as the maximum l imi tine; values 

of t!--;.ese coefficients for any partJcu:~ wjave 'function used. 

Thua the use of the interaction potential in the 

expanded form is justifiable from the point of view that 

little er.tor is in trodu·ce d at large ee para t i 'bn a of the 

nuclei. 1.'he reason fer t"his is that the correction. terms 

which give the v~lue of the function in tr~ convergent 

re~ion are wai~hted by an exponentially decreasing function 

with nistance. For. the sa.rre reason there is act~ally a 

static interaction potential consisting of this correction 

factor and is so small that it can be properly put equal to 

zero. 'l'he a.vera.~e static interaction .rcay- thus be likened 

to a sr!lall 1 quantity of the first order e.nd treated. as such 

in any de"relopment for interaction energies at long range. 
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T'ne calcul~tions of Pauling and Beach
1
v1era made in 

order to improve a result obtained by Uarginau.
1 

In p~ticular 
_, 


the coefficient of R was considered to be too emall and 


•ID
tha1i of R · too large. l"ne i r r e e u 1 t ~ v ) 1 s de r i ve d 

by using .many terms in the function of tv) of 4.2~ and the·ir 

result \iii) by ueinb only ~round state functions. ~~ey used 

the first three terms in the ex~ane.i·Jn of V(l) only. With 

8nly t!'lese first three .terms the present calculation gives· 

the result {iv) in which the coefficient. of g-e a.nd Fl.....,o 
are slightly smaller than in tiii). In l111) the trial 

~unction is of a different form from that used in liv). 

·ilhen the expansion of VlR) is not ter;~inated at the third 

term the present calculation shows that the coefficient o! 

R~•ta increased by about 200% because of contributiona·from 

the next two terms in V(R) w~:ich ar·e neglected by Pau:ing and 

Beach but which are f0und to lJe of' co'lsidera.ble magnitt_1de. 

lf .Pauling and ~ach had used these additional terms their 

0 co e f f i c i en t o f R_, wo ,J l d have bee n .t ncre ::t a~ d simi : ~ r 1 y 

an1 i t i s f e 1 t t ha. t the va. 1ue o f the t hi r d c o e f f i c i ent wo ul d 

be around :3300. 

'l'~·1ua the conclllSion reec 11ed is that in deter~nining 

the ser~es form of loni range inter:1cti.cn energy ths. t the 

improper use of V(RJ as in case 3 is justi.fiahle prvvided all 

the co))trihutinc ter:•1s ar-e inclL~ded in the expansion. 

http:inter:1cti.cn
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l• H.- Ma:rgenaus Physi~ .ReYiew 38, 7lt7,_ (~939). 

~ . . 
2. L. Pauling and Beacha Pbysocal Review 1+7, 686, <i9-35>. 



S!t ction 5 

The Lon& Bange Into rae tion at i•eon A !f.vdrogen 

Molecule ang a H§liu:z Atom. 

As in section 4 the long range interaction energy 

is determined by using the Ta.riational principle and 1• 

considered as arisinG fr8m the caulombic interaction of the 

~rticles of the two systems. 

Because it is shown in section 4 that the value of 

the interaction energy is not greatly affected when wave 

f1notians are not restricted to the reiion in which V(R) 

in powers of R-1 is .valid wave f·Jnctione will extend 

throJghout all space and the interaction potential, YtR), 

wi 11 be developed 1n a aerie e form valid in a restricted 

region - the expansions of section 3 being used for th1a 

purpose. Becauee the separation, R, of the hydrogen 

molecule and the helium atom ie large electron excr£nge 

will be neglected. 

Section 4 al•o shows that when ao L.C...\0. method ia 

used the interaction energy ia increased slightly oYe• 

valuea obtained by using a linearly distorted grou.nd atate 

function. Therefore only ground state functions of each 

ayetem will be considered, and these will have desirable 

eynme try properties. 

1~e hydroge~ molecule, being or diatomic homonuolear 

47 
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type will have cylindrical symmetry about it• nu~~ar axia 


in Tirtue of the Paul principle. The heliua atom will be 


aasumed to be spherically aymmetr1cal in ita ground state. 


Aa stated in sec~ion 2 this 1ntro¢ucea a 2$ error in the 


ionization of the hel1~ atom. The deviation from apher

ical symmetry due to the presence of two bound electrons 


is small.snd the co-ordinate will alao be ignored in the 


wave function. 
 . 
I \ 

Maeae7 and Buckingham, using a variational approach, 

obtained an e.xpreeaion for the long range 1nteract1~ energy 

"_Qf two hydrogen molecule a. The del'ivation ma.kea use of the 
Jl 

presence of cylindrical a~mmetry and the vanishing of t~ 

wave rune tiona on their boundary. The reaul t. is cornet &o 

the second order of approximation. Since these INWlB 

'cri ter1a are satisfied in this case the eame energy ex

preaeion may be .used V'lith proper modification of the wave 

.function. 


WritinG the unperturbed Y'iave functions ae ~JHI (IJ.t) 


for the hydr(-,gen mol~oule and ~(atfJror the helium atom 


..~hen the perturbed wave function, 'f for the complete 

syatem i's. iivan ...~ :r:o.rm similar to thai of sec'tion 4 and 

thus 

'/:: N t/-,8<~JJ ~ 0/fJ [I 1- >. v] 

N -2. = J.y,il• '4J(t/As Vc.) rl:l: 

5.1 
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5.1 ~1.e.s the same f.::>rr1 as the trial function of 

Massey and J3uc:·:iu6ham. The interaction energy of such a 

sys ter!: a~ en rd i n;5 to l!as se y and Bu ok i ngham i 8 

( { !,. Vc,; V}t) 
::he-~·e the sy!r!a·Jls have the sar.1e signi~icance a.s in section 4. 

'J:'b.e b'inc... ry system is descri"bEd as shown in Fl~. 

where A,:9 are the nuclei of the hydrogen molecule a.nd C is 

t ha t of t ~H~ he 1 i um a tom • M is the mid-point of A.B. 

B 

Ele c t r o ~1s <. =1, 1 and j :: J, f are as a i c;ne d to the hydrogen 

molecule e.nd the helium atom respectively. All p3rticlea 

are re fe rre d to lfJS :: !. as polar line , and _the re fe re n ce 

plane fo!: the azimuthal angles if' is the plane A...13C. 

Particles of the hydro~en molecule referred to ~ as ori&in 

and particles of the he:ium atom referred to C aa origin 

have po~ar oo-ordinates 

ll(r,)g,.J o}, B ( IB,Be, o) j -c·(r,' e'., ~£·) j i ( r;·~ 8;
1 

f)j) 

5.2 
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Where 

V(R.)= 	 .2:. + ..£. -/. -.d -..L -_!_ --'-- L +1. 1--.L-tl.,.. J_ 

IlK r,c r:c 6. C ~J '4~ ~ f# I,J ~3 f If. 6.1

By :5.26 

si nee the eys tems are neu tra.l. 

As in 3.3 and 3.4 with an~les defined as in 3.5 and 3.6 

vll cO 	 IJ:!i.
v.- \ \e,· c:(- C.Ot~·j·) Cn ""cc~n~;J ~;n 'i A: 

L L RfH-1(+1 

~I k"'' 

Because of the cylindrical symmetry in H and the 

spherical symmetry in He, application of 3.'7 to giTea 

by 2.14 •. 

5.5 
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~lacing 5.0 in 5.2 yielda 

( ya)l. 

( { ~ viJvJj 

EXpressions for these two quantities will now be 

~A t.~rl't11ned an..... the Van d.er \Vaals e_nergy will be calculated. 

"Vr"~•m 5 •• • oy 3. 2? 

-
-
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-- +2 ;a( lfft) ~~ 
n=o 7i 
,0 

~ +;_ 

= 

+ r~ (17~')C~ Cccn6i} r.·" 
Jl1 Lio Rn*1 

-r ~1 f (11ft)(K+t){}tt~s6Jcfcc.o.st(Jt/r.Jl' !';.10 

n.::-Q K=-o Rm-1<'.,..2. 

Using results 3.:36 and the fact that.(/:.-c!Jonly 

even R·1 can occur in the first expression-and in the same 

way as in 3.43 nt-IC must be even in the second expression. 

As a res·.~lt t~ie denominatnr expre~sion is even in powers orA.-'. 

http:11ft)(K+t){}tt~s6Jcfcc.o.st(Jt/r.Jl
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The sam! type of ·~onsiderations when applied to 

the(~) reveals that in the same way as in the denominator 

the numerator expression must be even in powers of R-l 
,, 

Thus the form of the interaction energy voJi ll be 

, 
~.11Ll E= _Ff'} - 4(«) 

R' P-.8 


lt,or the i)'lrpo se of the calculation of the Van der 

Waa.ls energy term it is simpler to use expre sa ions 5.10 

and 5.5 to ob~ain the dipole-di~ole interactions. 

The firet term of ~he deno~inator is obtained from 5.10 an~ 

ia 

Usin; the douole angle expaneion stated in ~.21 and results 
:5.41, 3.42 9.nd 3r3 

~ ~(I ),.," .M,l.A,.cYJ '~ +1.(~1"'+11.,.,.- t-A,1 .11{. 1)~U, ~ 

~' + 4 
+- 1\, A-.. tL, ~~... Ctl? ..-< ] > 

-- f2 [ 8~.."' ( I.3+-.:r+) + *sc.i.'..t (.:.t,+I.c.J3-1)] 

-- 1,2·14l,d 1 [1 + ·~oo 1c.4t~]
R6 12 ·AIJ.'l 5 • 12 

http:1.(~1"'+11.,.,.-t-A,1.11
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using 5.4 the numerator hae tor ita first term the dipole-

dipole term expre aaible a a 

- ('7-ij)(v·IJ·) 1
- R 

= [~··lj) - .1(~· 1'~)( R:! ·ri)] fa 5.1:3 

Since the spherical •ymmetry of ayatem j impliea 

the same general conditione for aTerage yaluea ol aac11on 4 

then I-

Placing 'these results in 5.13 ••ter equarjng gives the 

following 

[ .zu; ·rJ(r,.. ~J+ c.r, ·IJ} ·~ ''i ·J3J~ .,.. 
.L l 'i ·c,.)Cii·C,) +- ( r, · 4J~ ..,_ ( r,. · t;,)2 

-' [ ( I/CDs61 ~/LCt1116A.J{ f;·lj fJ eM~+ '1·'4, 1;,. UC6f. 5.14 

+ r.., ·IJ 1~+~4/f~)j 

+ tf {rj ct9<JIJ, rli,cos6,.f ( lj 1
CJJo 16J+- '1-~~~~~). Jj_ 

R.' 



·i>:. 

'U'.

==- (i!::_[+ rj /l.{.AJO&,cos6.~, f- 4-r, '-a10•61 t-.z r, "&cA 1
6 1 

- V.lr, 1 cO<J t61 -&'!lr,. 1c.tJ? 1 ~.z.. - , J(..,. r, r;_ ,t:J".t,fs1ctid t;,~, ~ .1a 

+:bt:91(2 r,"c'->•~1 +.Axfn J;li.~e-~.-.&} > 
Collecting

(i: { /6 '/ 1~'6, ~,, l",t;_C6tlf1, '*:~~ + :1., .. ,i.,1
•, J > 5.16 

Using ihe ~lang function for the diatributioD ancl 

tha double angle etxpansion o! 3.25 along wi t.h the average 

values of these anglee as determined in ellip,ioal co

ordinates in 3.4:1, 3.42 and 3.43 the line !i.l6 takes the 

numerical form 

5.17 


The Van der 'Saala energy term comes. from 5.1, 

aqua.red upon 5.12. This givea the numerical form given in 

the unavera~ed form below 

LlE= 
-<d '<~)"" (B..lt'f {I r ·o'fl'"'-"«-ri 
~, /2~4-Jllf'1. f I+ . 0._0 ~ ol t
~7; r , 
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• 

. ..t
Ll E -= ~·.3j',5 { l+~of-]~oej 

5.18 
{ I f . " 1-D ~-= j 

for the avera5e value. 

The first term e! the interaction ener~y of two 

hydro-~en atoms is 6 uni ta. That of t\~o hydrogen molecules 

1 a 1 6 • 01 1.1Il1 :t e a c co r d i n~ to lla.s ae y and Bucki nghaa. I t 11 o u 1 d. 

tht.
be expected that result for 1'1... -H-e. would fall aoJR8Where

1
between these results. This is not the case here and can be 

attributed to one of two reasons. The first of these is that 

t'b...e bind inc €lnergy of both 1-b. · He are fairly large. The 

interaction energy is small. Consequently an e=ror in the 

initial energy ia greatly amplified in the interaction 
. 

enersY• Since .the ~Ne.ng function is a. rather poor represent

ation a.nd since 

then the error in the energy may be up to as much as 50• 

low. The res~J~ t should be at least in the right order of 

magni t:•de. The second. reason is that the Massey and 

Buckincha.m resi.;.l t of 16.01 would appear to be much too large 

be cause 0f the etate~nt that <(f.·lj)(/~:IJ)./ =( a:·lj>? .. 
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Si nee the numerator• 

appears squared this error has greater affect in the numer

ator than in the denominator. l'his would decres.se the average 

interaction which they obtained a.nct bring it closer ~o the 

HH interaction value. 

:Because there is no per11ar.ent dipole in 111. the 

interaction is expected to be less than ,., ae it ia cal

culated to be. lbis same reason .accounts tor the draatia 

decrease ot the interaction energy upon angular orientation 

of the nu. clear a.xi e or t/.,_ • The Tariat ion 1n this case 

is negligible. 

In conclusion it is felt that the energy value ob

tained in this section is of the correct order of magnitude 

but 	rnay be conaiuerauly increa.sed by the use of more 

accurate repre sen tat i ve function a of the unperturbed sy a terns. 

1. 	 Massey and Buckingham :Proceedings of the Royal Irish 

Academy, 45, 31, 1938. 

2. 	 S. c. Wang: Pysical Beview 31, 579, (1928). 
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