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Thisvthesis.studies the effect of -floor slabs on the
static and dynamic behaviour of the shear wall structure.

A single component has been analysed using the 'Matrix
Transfer' technique along with Vlasov's thin walled elastic
beam theory. Experimental verification was done on a small
scale plexiglas eight stofey model in the form of a channel
section for both static and dynamic loading.

The thesis also deals with the analysis of the non-
planar shear walls coupled through'floor beams subjected
to static loading. The continuum approach along with
Vlasov's theory has been used in the analysis. Experimental
verification was done on a small scale plexiglas model in

the form of two equal angles connected by eight floor beams

at equal spacing.
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NOTATIONS ~

The following symbols are used throughout this thesis
without further definilion. Other symbols are defined when

used.

*Modulus of Elasticity
Modulus of rigidity

Poisson's ratio

<

Orthogonal axis

Vertical axis

Principal Sectorial co-ordinate
cross sectional area

Moment of Inertia about X and Y axes

>
=
2]

Torsional rigidity

H G H P g N M < @

Polar moment of inertia about shear center

o

Sectorial moment of inertia

-
e

Rotation about Z axis
Rate of change of rotation about Z axis

Displacement of shear center in x and y directions

£ g © @
<

Slope in zx and zy planes
Shear Force

Moment

Torque

Bimoment

Axial Force

;2. Co-ordinate of shear center
Mass density of material
Natural frequency

Differentiation with respect to time

-~ o~ £ D o 2 D OE <

L]

Differentiation with respect to space.
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CHAPTER I

INTRODUCTION

1.1 Description of Shear Wall

‘As buildings increase in height, it becomes necessary
to ensure adequate lateral stiffness. This stiffness may be
achieved jn various ways of which the use of shear wall is

very common and popular.

Q}though shear walls can be arranged in a building
in innumerable ways, they can be broadly classified into two
basic types. In an apartment building, shear walls are
used alone and located on both sides of the corridor -as
shown in Fig. 1.1.1. 1In an office building, shear walls
are located in the center to form a service core for stair-

cases, elevators etc. This core is surrounded by a structural
framing which are interconnected as shown in Fig. 1.1.2.

In both the above types, shear walls serve the multipurpose

function of supporting vertical and lateral loads, acting

as partition walls and serving other useful functions.

Shear walls are normally interconnected by floor
slabs at each floor level. These floor slabs act as highly
rigid diaphragm in their own plane and bend and twist out of
plane. Therefore, the slabs transmit and distribute lateral

loads among the walls and also provide some resistance



==

I [ E—

Typical Apartment Building With Shear Wall
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Typical Office Building With Shear Walls
in the central Core Surrounded by
Structural Framing

FIG. 1.1.2



to the deformation of the walls. The effect of overall inter-
acﬁion between the walls and the floors is to increase the
"late;al stiffness of the building and to reduce stress .
leﬁei in the walls.
Very often shear walls are pierced to provide openings
for doors, windows or corridors. The afrangement’may be thought
of as two or more sets of walls connected by beams. These beams
resist the deformation of the wall and increase the stiffness
of the assembly.
Frquently the section of shear walls are in the form
of open thin walled sections. Such beams are distinguished
from solid beams by experiencing 1on§itudina1 stress as a
result of torsion due to warping., Appropriate theory should
be considered for dealing with such sections.
| For these reasons, a complete analysis of a building
as shown in Figs. 1.l.1 and 1.1.2 is a most complex problem
encountered in structural engineering practice. The complexity
is due to various iﬁteracting elements. The dyhamic analysis
is even more complex. Approximate design methods, neglecting
complex interaction can be used for proportioning elements
which often under estimates the stiffness of building.
Therefore, more sophisticated téchniques of analysis are requifed.
The general purpose of research on shear wall structure
is firstly to understand fully the behaviour of different

elements and secondly, to develop more realistic methods of



analysis.

1.2 Shear Wall Project

The Canada Emergency Méasures Organization is spon-
soring an extensive program into behaviour of shear wall
buildiné. This project 1is conducted in the Department
of Civil Engineering and Enjineering Mechanics at McMaster
University. The experimental part of the project consists
of building small scale shear wall structures and studying
their r§§pénse due to static and dynamicvlateral loadings.
The theoretical part of the project consists of developing
theories to explain the behaviour of shear wall structures,
comparing theoretical results with experiments and developing
simplified design method. o

Tests have been carried on an eight feet model having
E shaped section and made of non-reinforced micro-concrete.
Afsar(l), Quareshi(2), Speirs(3), Raina(4) and Swift(5)

studied different aspects of behaviour of shear wall structures.

1.3 Review of Past Works

Coull and Smith (6) compiled a comprehensive summary

of the published literature concerning shear wall buildings.

Winokur and Gluck (7) developed a method to form
lateral stiffness matrix of gasymmetric bulding by combining
lateral stiffness matrix of each element. Tranéverse

stiffness of slab and warping torsional stiffness of individual



elements has been neglected.

The phenomenon of warping has been known to the
aeronotical engineers for a long time but its application
to shear wall structure is rather recent. Vlasov (8)
developéd the theory of thin walled open beams. Zbirohowski-
Koscia (9) presénted Vlasov's theory in simpler way and with

an aim to make it usable by practicing engineers.

Afsar (1) has outlined various analytical and experi-

mental approaches used in the shear wall study.

Quareshi (2) analysed the shear wall with rows of
opening by frame analogy method and also conducted experiments

on small scale models.

- Speirs (3) studied the behaviour of floor slabs
introduced in shear wall structure. His theoretical analysis

is mainly based on the initial parameter approach of Vlasov.

Raina (4) studied response of shear wall structure

under dynamic loading.

Swift (5) developed computer program based on matrix
Vmethod, to solve asymmetric coupled shear wall. He also

developed a program to analyse shear wall with floors.

gadeer (10) and Qadeer and Smith (11) discussed the
interaction betﬁeen walls and slabs in a cross wall structure.

Curves are given for equivalent width of slab. Experimental



work on a model was done for verification of the theory.

Taranath (12) studied open section with and without
floors. Finite element treatment for floor siab is used.
Multiple open section core structure coupled through floor

slab is also examined for the case of static loading.

Béck (13) , Rosman (14) analysed plane coupled shear
wall by continuum method. The connecting beams are replaced
by independently acting laminae. Coull and Choudhury (15),
(16) devg}oped design curves for different types of loading-

based on the continuous method of analysis.

Choudhury (17) discussed the solution single shear
wall with openings by continuous method, equivalent frame
method and finite element method. The behaviour of walls
interconnected through floor slab is also examined. A
method of complete analysis of shear wéll/frame buildings
taking into account theirthreedimensional behavicur is .

presented.

Michael (18) made torsion analysis of a core wall
consisting of two egual channels tied by beams at equal

spacing by the continuum approach.

Jenkins and Harrison (19) analysed tall building with
shear walls under bending and torsion. - His bending analysis
is based on stiffness matrix approach and torsion analysis

is based on the theorem of minimum potential energy. VThe



warping stiffness of the open sections are neglected. Experi-
ments are carried out on small scale plexiglas model in

different stages.

Holmes and Astill (20) conducted experiments on a
small scale shear wall structure under simulated wind load.
Comparison of experimental values are made with theoretical
consideration of simplifiéd structure using Rosman's (14)

theory.

Rosman (21) presented analysis of pierced torsion
boxes subjected to torsion loading, arbitrarily distributed
along the height. Treatment for two channel box and four
angle box is done. Determination of approximate fundamental

period of torsional vibration is also included.

Gluck (22) presented a lateral load analysis by

three dimensional continuous method for structures consisting
of simple or coupled, prismatic or non-prismatic, shear
walls and frames arranged asymmetrically in floor pian.
Connecting beam on the shear wall is replaced by an 'elastic
media' of known stiffness properties. Treatment for thin
walled open section is included. Differential equations are
obtained for three-generalised displacements. In his deri-
vation of stiffness matrix for 'elastic média', slight
inconsistancy of the use of 'thin walled beam theory' was
noticed. Modification of few elements of matrix has been
suggested by Biswas and Tso (24) in a discussion of Gluck's

(22) paper.



Macleod (23) commented on the limitation of the use
of continuum method when the bending stiffness of the wall
appraoch that of connecting beams. A criterion is developed
for assessing when this effect may be important. Comparison
is made with more accurate frame anglysis.

Coull and Irwin (28) presented a method for the
analysié’of the distribution of load amongst the shear
walls of a three dimensional multistorey building subjected
to bending and torsion. The method is based on the continuum

approach.

1.4 Present Investigation

In the second and third chapters of this thesis,
particular interest is givén on shear wail with floors.
A shear wall structure consisting of channel section with
floor slabs is analysed for static and dynamic loading
‘using the 'Matrix Transfer' method. To the best of
the author's knowledge, this method has not been used to
solve similar problems before. Experimental study'was
conducted on a small scale plexiglas model. This model was
subjected to lateralrldading at different floor levels when
the recorded deflections and strains were studied. It was then
subjected to lateral vibration to determine the reéonant
frequencies. The relative strain distribution at resonance
is also studied.

In the fourth chapter, particular interest is on the

nonplanar shear walls coupled by floor beams where warping



due to torsion of piers is taken into account. Differential
equations are obtained using the continuum approach. The
presént formulation is applicable to two shear walls
connected by one row of beams and subjected to forces and
torques distributed along its height. The experimental
study was performed on a small scale plexiglas model
consisting of two equal angle sections connected by beams

at egual spacing. It was subjected to a force and a

torque at top. The resulting strains and deflections are
then énalysed. A comparison of the experimental results

with the theory is made in all three chapters.



CHAPTER II1

STATIC STUDY -OF SHEAR WALL WITH FLOORS

2.1 Summary

In this chapter, a shear wall structure consisting of a
channel section with floor slab is analysed for static lateral
load. The 'Matrix Transfer'’ technique.is used. An experimenti
performed on a small scale plgxiglas model Fig. (2.1.1) is de-
scribed and the experimental results are compared with theore-

tical predictions.

2.2 Matrix Transfer Method

This method was originally developed by Holtzer (25) for
treating torsional vibrations of shafts with lumped system.
Myklestad (26) used a similar method for study of. beam vibration
éroblems;i It was modified by Thomson(27) to extend its appli-
cability to more general problems. Application of such
method to static problem is less common.

Consider a system with n points and n elements along its
length as shown in Fig.(2.2.1l). For any point i there are two
sub-point (i)_ and (i)+ denoting position before and after the
ith point. Generalised force and displacement gquantitites of a
sub-point is assembled in a column matrix called state vector {z}.
The part of the structure between (i)_ and (i-l)+ is defined
as ith field and that between (i)_ and (i)+ is defined as
ith point. Field transfer matrix [Fi] relates the state

vectors of two subpoints in ith field and is obtained from

10
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solution of differential egquation of the element. Point
transfer Matrix [Pi] relates the state vectors of two
subpoints in ith point. Load vector at ith point is de-

fined as {Li} . The relations can be expressed as
{z3} = [F,1{z]_J} (2.2.1)
it T Hiiteia “een
+ - ~ '
tz;} = (p 1z} + {L;} (2.2.2)

where i = 1,2,...n
From these two sets of egs. (2.2.1) and (2.2.2) it is possible
to eliminate the state vectors of the inner points and get a
relation between the state vectors of the extreme points
(0)+ and (n)+

{zn} =,[A1{zo} + {n} ‘ (2.2.3)

Where [A] is combined transfer matrix and {N} is combined
load vector obtained from multiplication of appropriate
matrices.
Mathematically, they are given by
(A1 = (P 1(F J....(P,]1[F,](P ][F,] (2.2.3a)
{n} = (P IIF,T... . [Py IF,0{L )
+ [Pn][Fn]....[P]2[F3]{L2}
+ [P 1IF 1IP _1(F _1{L _,} (2.2.3b)

*IplIE I, ) ()

The next step is to substitute the boundary conditions

in the boundary state vectors, namely'{zg} and {Z:} in eq. 2.2.3.
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Simplification of this matrix equation will yield a set of
linear simultaneous equation which can be solved. The
solution will give the values of boundary state vectors
{Z;} and {ZZ} . The state vector at other points follow

from the eq. 2.2.1 and 2.2.2 as,

- +
cAzgYy = IF 1Mz}
+ +
{zl} = [Pll[Fll{Zo} + {Ll}

- +
{zz} = [F2][P11[Fl]{zo} + [le{Ll}
o+ +
{zz}= [P2][F21[P1][Fl]{zo} + [P2][F2]{Ll} + {Lz}

- +
{z_}= [F 10p__q10F _;1....[B;]1(F 1{2}}

n-1
+ [F 10p _(J[F _;)....[P,1(F,1{1}

+ [Fn][Pn_l}[F 1]....[P3]{F3]{L2}

n-—

.,......;...+ (F 1D 41

(2.2.4)

2.3 Application of Matrix Transfer Method

The structure considered consists of a prismatic mono
symmetric section with equaily spaced slabs. The floor slab
represents 'point' and the part of the beam in between floor
slabs represents 'field' as defined earlier. The simplified
model to be used in Matrix Transfer method is shown in
Fig. 2.3.1. 1In this case n equals eight and all field transfer

matrices and points transfer matrices are identical.
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2.3.1 State Vector

The state vector is aneighth order column matrix con-

sisting of the following terms

[ v ]

<

(

The notations are explained and illustrated in fig, 2.3.2.

2.3.2 FPield Transfer Matrix

The field is a prismatic thin walled beam of length ¢
and its transfer matrix is obtained from the solution of the
differential equations. When refered to principal axes, the
uncoupled differential equations for bending in y-direction

and rotation are (Eq. A.4, Appendix-A):

21 v 'Y =0 (2.3.1)

Exwe'v - 38" =0 | (2.3.2)

The solution of the first equation yields the following

expressions for displacement, slope, moment and shear.
’

_ 3 2, '
v(z) = D,Z /6 + D,2Z /2 + DyZ + Dy

2
v'(2) = D 2%/2 + D,2 + D,
hg (2.303)

v'' =D

M(2) /ET 1% + D,

: - <pt TR ,'_."’_
v(2) /BT v - D J
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Where Dl' Dy D3 and D, are constants of integration deter-
mined from the boundary_condition at Z=0 namely

'V = V(0), v' = v'(0), M = M(0) and V = V(0)
The sﬁate vector at Z = £ can be expressed in terms of state

vector at Z = 0 by the relation,

22 g3
v(L) = (0) + &v'(0) + —2—E—I-;— M(0) - gﬁ; V(O) )
L) = v (0) + A m(0) - 22 v(0)
v -V BT 2ET, i
(2.3.4)
M(L2) = M(0) +2.V(0) :
V(L) = V(0) )

The solution of the second equation yields the following

expresssions for rotation, warping, bimoment and torque.

= ) : 3
6(z) = C; + C,Z + C4y sinh KZ + C, cosh K2
6'(2) = C2 + C3K cosh KZ + C4 K sinh KZ 4 (2.3.5)
B(z)/EI_ = -§'' = ~C K° sinh k? -c, K2 cosh K2Z
H(z) = - EI8 77 + c70T = C,.6J J

Where K = /§£~
EIw

The constants Cl' C2, C3 and C4are constants of integration

determined from the boundary conditién at 2 = 0 namely
6 = 6(0), 6' = 6'(0), B = B(0) and H = H(O)

The boundary condition at Z = % are
8 =6(), 6" = 6'(2), B = B(L) and H = H(Z)



They can be

H(0) by the

it

L 9(8R)

it

8'(2)

B(%)

H(L2)

n

Eq. 2.3.4 a

as

where

{2z

18

expressed in terms of 0(0) ©6'(0), B(0) and

following expressions

Lo ' -1 - A
g (0) g sinh K& 6'(0) GJ(l cosh K&) B(0)
1 1 . .
+ 55 (2 z sinh K&) H(0)
cosh K& 6'(0) - 23 sinh K2 B(0)
1 r(2.3.6)
-+ &7 (1 - cosh K&) H(0)
- Q% sin K& 6'(0) + cosh K& B(0)
1 .
+ 7 sinh K& H(0)
H(O) J

nd eq. 2.3.6 can be combined in a single matrix eq.

{z()} = [F1{z(0)} (2.3.7)
[ v(2)) [ v(0)]
v' (2) v' (0)
M(2) ' M(0)
v(g) - - V(0)
2)} =y 6(2)r and 2Z(0) =4 8(0)¢
8' (%) | 8'(0)
B(2) ' . B(0)
CH(R)) | H(0) ]




Field transfer matrix is an eigth order square matrix

(£

[F]

[

Where the

11

22

33 7

55

57

66

68

77

1
0

1 1o

£92

0

0

0

0

0

0
non zero
=1, f12 =
1, £,y =
1, £34 =

(1 - cosh Kg)/GcJ, £

cosh K¢,

(1 - cosh KQ)/GJ, £

cosh K&,

= - 23/6EIX,

£15 f14 0 0 0
£,5 £,y 0 0 0
fa5 fag 0 0 0
0 £, 0 0 0
0 0 f55 f55  foy
0 0 0 feé fer
0 0 0 foe 99
0 o 0 0 0
elements afe

8, f,5 = 8°/2E1, £,
9/EL,, £,, = - 8%/2B1,,
Le £hq= 1y

sinh K/K,

f

f

67

78

58

= - K sinh Kg/GJ

76

= sinh K%/K,

£

88

= - GJ sin K/K

= l.

58
68
78

Hh  Fh Fh Hh

88

= (g - kl— sinh Kg)/GJ

19

(2.3.8)
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2.3.3 Action of Floor Slab

Vlasov (1) considered‘the effect of a diaphragm on the
behaviour of a thin walled beam. In a shear wall structure,
floor slab is equivalent to diaphragm. Vlasov assumed that
the diaphragm acts as a plafe in torsion and derived the
followihg relationship for the bimoment applied to the shear

wall by the action of the slab (Fig. 2.3.4(a)).

3
_ Et’bd .,
Bt = m) 8 (2.3.9)
Where b = width of slab

d = 1ength.of slab
t = thickness of slab
v = Poisson's ratio
E = modulus of elasticity of slab
6' = warping of the shear wall at the level
of slab. |
In this derivation Vlasov neglected the effect of
bending of slab (Fig. 2.3.4 (b)) due to fixity of walls.
This can be considered by treating the slab as a series of
beams running between the flanges. The center line of the
beams is the locus of point 6f contraflexure for each beam.
If a cut is made along that line, there will be relative
displacement to the left and right of the cut. (Fig. 2.3.4(c)).
Shear force g will develop along the line to maintain con-
tinuity (Fig. 2.3.4 (d)}). For an element of beam at a

distance £ from the wall, the sectorial areas at the center
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(@) Torsion of slab {(b) Bending of slab

(d) Shear force

Rigid
arm

(e) Sectorial area (f)y Bimoment from slab

»
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(Fig. 2.3.4(e)) considering rigid arms attached to thin
walled beam are:

w_ = &4, w, = -£d.

r £
Discrepancy of displacement is

= - ' - gt
§ = (wr @2)9 2§d8
Shear force develops to maintain continuity considering bending

deformation only 2Et3E

=329
(1-v7)d

The bimoment due to the shear force is

B dB = q(wr - wz)dg = 2 g &4 dg
The total bimoment due to bending is obtained on integration
b
B '
B = [ ap = 4BERT_ 4 (2.3.10)
2
3d(1-v7) .
o

The combined bimoment due to torsion and bending is

Bs = Bt + Bb =D ¢! (2.3.11)
Where
_{ Etdba | 4Et3
= (1Y) —— (2.3.12)
) 34(1-v°)

From Fig. 2.3.4 (a), the bimoment contribution from slab is
related to the bimoments in the walls immediately above and

below the floor slab.

B, =B_.-B_=B_-D§' 3 (2.3.13)

2.3.4. Point Transfer Matrix and Load Vector

The Point transfer matrix [P] is a squarematrix of

order eigth. It is obtained from the consideration of



equilibrium and compatibility:

r

1 0 0 00 O 0 O

0 0 0 0 O

0 1 0
0 0 1 0 0 06 0 0
0 0 0 1 0 0 0 O

[P] =

(0 0 0 0 0 0 0 1,

The load vector is a column matrix of order eight.

0 Where i = 1,2....8
-P, _ .
{L )=y ¢ and P; is applied lcad
0 and Qi is the applied
0
torque at ith level.
—Qi

2.3.5 Boundary Conditions

- The shear wall is fixed at the base and free at top.
Therefore, the state vectcrs at the base and the top

can be written as



Substituting the

{zhy =

A,

Y

——

g

<:+ Oz+ o o

0O+0+0 © O

m

+ and

{z;} = 4

24

T O O -+

above conditions in eq. 2.2.3 and making

some rearangment of terms the following eg. is obtained.

Where

and

(B]

]

Y

o o B+ o

o

o o o

[Bl{Y} = {Nn}
[ v; 3
vé+

M

v

{Y}'=< e;

oy

B
| H: )

"233 "4 O 0
“333 "34 0
“a33 "234 O 0
—a,4 "y 0 0
o 1 0

o o 0 1

o o0 o0 0
o0 0 0 0

r

~857

Y

827

%87

(2.3.14)

and {N} is defined
in eq. 2.2.3b

~85g
Y

~a7g

~agg
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Here 'a' denotes the elements of matrix [A] as défined in
.eq, 2.2.3 (a). The solution is obtained by inversion-
| {v} = [B]17 N} (2.3.15)
Knowing {Y}, {Z;} and {Z;} can be formed. State vector at

other points are obtained from. expressions in eq.-2.2.4.

2.4 Computer Program

A computer program'based on the above analysis hag
been ﬁritten. The input data are the geometric and elastic
properties and loading of the structure. The output
quantitites are the state vectors at all floor levels.

The present program is for identical floor slabs, equal
storey heights and prismatic section. Extension for
‘stepped cases or different storey heights and floor slabs
can be made with little modification.

The flow chaft is given in Fig. 2.4.1 and the computer

program is included in Appendix-B.

2.5 Experiment

An experiment was done on a small scale plexiglas
model (F;g. 2.1.1). It‘was made by assembling different
»c?mponents representing walls and floors. The base of
the model was cénnected to a thick base plate which in
turn was fixed to two heavy I sections t§ achieve fixity
(Fig. 2.5.1), It was loaded at the 8th, 6th and 4th floor

respectively, one floor at a time, by hanging weights over
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a pulley. Strain gauges weréattached at the middle of
1st, 2nd and 5th storéy,. Leads from the strain gauges yere
hooked up to a strain indicator through switch boxes and
strain readings at every increment of loading were taken.
Deflectibns are measured from readinés of dial gauges
mounted at different points of the structure (Fig. 2.5.2).
'Tﬁg strg}n gauge and dial gauge regdiggﬁmaygﬂtabg}gtedhip
Appendix C. Fig. 2.5.3 shows the experimental set up for
the case with loading at top.

The following is a list of equipment and materials
uéed in this experimental wofk.
A. Model Material: Plexiglas

Elastic properties: E = 0.40 x lO6 psi,v = 0.35

B. Electric Resistance Strain Gauges
Make: Micro Measurement
Type: EA-41-25086-120
suitable for plastic
Resistance: 120 Q + 0.15%
Gauge Factor: 2.01+ 0.5%

C. Dial Gauges:
Make: Baty
Reading: .001 in and .0001 in

D. Strain Indicator:
Make: Budd Corporation
Reading: Directly calbirated to strain in uin/in
Range: + 40,000 p in/in
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2.6 Results and Discussion

The linearity of the test structure is checked in fig

2.6.18 . The comparison of theoretical and experimental data
as plotted in fig. 2.6.3 to 2.6.11 shows that the structure
is not so stiff as predicted by considering both torsional and
flexural stiffness of floér slabs. If only the torsional
stiffness of floor slab is taken, the theoretical analysis
gives a mathematical model which is more flexible than the
actual structure. The difference between theory and experi-
ment attributed to the local bending of the wall section

at the goint of the floor slab as shown in fig. 2.6.1.

As a result of this bending, the joint is not rigid which

in turn reduces the shear force g at the centerline of

slab (Fig. 2.3.4&); To allow for this éffect, the bimoment
contribution from flexure of the floor slab is modified by

a factor K. The effect of the floor is then expressed

as.
3 3.3
£t 3ba 46t33
D = | + K ] (2.6.1)
6 (1+v) 3 (1-v2)

An approximate method to assess the value of K is
given below. Consider a 6ng‘bay multistory frame as in
fig. 2.6.1. Assuming;mdntséf contraflexure are at
the center of storey height. Let M be the moment -induced
at the end of the slab strip if the joints do not rotate
locally. Dﬁe to the local bending of the joints the final

moment is XM where K is obtained as
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K = 1t ‘ (2.6.2)
3h | |
1+ (=)° 2=

T W
Where?ts and'gaarethicknes of slab and beam flange respectively.

The‘procedure of obtaining K is by a moment distribution
scheme as shown in fig. 2.6.2.

If tﬁe ratio t_/t, is very small, the value bf
K is unity and the total flexurai stiffness of the slab is
effective. On the other hand if tS/tb is large, there
will be large local bending of the flange'which will violate
the hypothesis of non deformable section of Vlasov.
Therefore in order to uée Vlasov's theory, the expression
of K is valid only for ts/tb < 3,

For the model structure the value of K is 0.2545
and the displacement/rotation plots are found to have
reasonable agreement with the experiment.

The strain distribufion are plotted in fig. 2.6.12
. to 2.6.17 and found to have reasonable agreement with

the experiment.



CHAPTER III

DYNAMIC STUDY OF SHEAR WALL WITH FLOORS

3.1 Summary

In this chapter, the same shéar wall structure
treated in Chapter 2 is analysed, for dynamic loading.
The 'Matrix Transfer' method is used in the analysis. A
dynamic test was carried out éo determine natufal frequencies.
The strain distribution at resonance was also determined.
The experimenta; values are compared with the theoretical

predictions.

3.2 Matrix Transfer Method

As in static case, field transfer matrix'[Fi] relates

the state vector {z} of two subpoints in ith field. The
point transfef matrix [Pi]'relates the state vector {z} of
two subpoints in ith point. The application of the method
is the same in the dynamic case except the external loading
is replaced by inertial forces which appear in the point
transfer matrix [Pi]. Consideration of equation for vibration
is necessary for obtaining field transfer matrix [Fi]. The
relation between state vectors can be expressed as

{z]} = [(F;11z]_;) (3.2.1)

{z;} = [P,1{z]) | (3.2.2)

Where i = 1,2,...n
From these relations, the state vectors at inner points can

be eliminated and the relation between state vectors of extreme

49
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points (0)+ and (n)+ can be expressed as:
+ +
{zn} = [A]{zo} (3.2.3)

Where [A] is the combined transfer matrix and is defined as
[al = [Pnl[Fn]...;[PZ][F2]{Pl][Fl] (3.2.3a)
Substituting boundéry conditions in the boundary state vectors
namely {z;} and {z;} in eq. 3.2.3, a set of homogeneous linear
simultaneous eqpations are obtained. They can be expressed
in matrix form as |
[RI{X} = O (3.2.4)
Where {x} is a vector formed by collecting non zero terms of
state vector'{zg} . The matrix [R] is obtained from matrix
[A] depending on boundary condition.
For non trivial solﬁtion, the determinant of R must
vanish. Thus
[R| = 0 ' (3.2.5)
The eqg. 3.2.5 is the condition ﬁo détermine natural frequency

of vibration of the structure.

3.3 Theoretical Analysis

The state vector is the same as used in Chapter 2.
Fig. 2.3.1 and Fig. 2.3.2 are refered to for the simplified

model and the illustration of notations.

3.3.1 Field Transfer Matrix

The field transfer matrix for a thin walled beam of
length 2 is determined from the solution of differential

equation of free vibation. For mono-symmetric section, the
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equations are obtained by substituting ay =0 in the eg. A.5
(Appendix A). The first and the third equations are

uncoupled and represent independent extensional vibration and
flexural vibration in x-direction. The remaining equations

" representing coupléd torsional and flexural vibration in -

y-direction are:

E Ix v'v +p A v. - P Ix v - p A ax 8 = 0
_ _ (3.3.1a)
EI 6V -Gie'' +p16 -pI 8  -—pAa v =0
w P W X
- (3.3.1b)

Assuming periodic solution of the form

v - ¥ eiwt
8 (¢ ‘ (3.3.2a)

and substituting eq. 3.3.2 in eq. 3.3.1, there is obtained

2 2

v 2 . ‘ 1t -
E Ix y wopAy +woop Ix Ve ‘+ w- p A a, ¢ =0

. (3.3.3a)
2 2 ' 2
p Ip ¢ + wo p Im ' + w

'V_ e o —
E Iw ) GJ¢ W p A a, y = 0

(3.3.3b)

Expressing in terms of y from eq. 3.3.3a there is obtained

'¢=BlY'V+BzY"+B3Y -(3.3.4)
Where
= - o2 .
By = - E I 0 Aay
By = - I a): By = /3,

Eliminating ¢ from eqg. 3.3.3busing eq. 3.3.4, there is obtained

B, y"" +3B,y" + B y}v + By, y'' +#+ Bgy =0 (3.3.5)

~
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Where
= - pl )
B4— E Iw Ix
_ _ 2
Bs—-EGJ_Ix 2w pEIw;x
= o2 - wh i
BG_W p (B Iu)_A+EIp IX+GJ Ix) wp Iw Ix>(3.3.5a
_ L2 4 2
B7 = w' p GJA + wp (Ip I+ Iw A)
_ 42 2 _2
Bg = wo” (-I, A+ A% a)) J
Assuming solution of the form
: mZz
y =cCc e
The characteristic equation is
- 8 6 4 2 _
, Bym~ + Bom~ + B.m® + B7m + Bg = 4] (3.3.6)
Let the eight roots of this polynomial are
ml' m2' m3’ . " e e m8.
The solution can then be expressed as
| iwt 8 m;z
v{z) = e z Ki e
i=1
. 8 m,z
v'(z) = eVt & Ki"ml e
i=1
iwt 8 2 MiZ
M(z) =E I_v'' =¢e (K. mfel ) EIx
X . i7i
i=1
. 8 m, 2z
- - " iwt 3 i
viz) = E Ix \'4 = e E Ix .Z Ki mi e
. i=1
. . 8 m.z
6(z) = e™* 5 B.m? + B, m? +BOK, e T
. i'i 2 i 3771
i=1
. 8- m,z
8'(z) =~eth (B m§ + B’m? + B,m,)K, e T
. 171 21 3ii
i=1
, : . 8
B(z) = -E I 0'' = -e"¥® EI £ (B.m+B m +B.m?)
: w w4y 11 271 7371
m;z
X K. e

1
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H{(z) = -E Iwe"' + GJ6'
\ = eth g {-EI B m7 + (E I B, + GJB )m5
‘ i=1 w i w 2 1'71
3 m. 2z
+ (-E Iw B3 + GJB2)mi + GJB3@i} e
Where Kl’ K2,A ..... K8 are the constants to be determined

from boundary conditions.’

The above equations can be expressed in matrix form as
(a2} = [C1D(z)d &} eIV (3.3.8)

Where 2(z) is the state Qector at a distance z from the

origin and defined as -

(v (z))

1v'(z)

M(z)
v(z)
z(z)=+ 6(z)T (3.3.8a)
8" (z)

B(z)
| H(z)]

‘[C] is a 8 x 8 square matrix with elements as follows

c(l,i) =1
c(2,i) = m,

N oo 2
c(3,i) = E Ix my

oy 3
c(4,i) = E Ix my ,
c(5,i) = B, m* + B, m? + B

’ 171 2 i 3.

. 5 3
c(6,i) = Bl my 4+ B2 m; + B3 m,

oy 6 4 2
c(7,1i) = E Im (Blmi + B2 m; + BBmi)
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- L 7, 5
c(8,1i) = E Iw Blmi + (- E Iw B2 + GJBl)mi

5 ‘
+ (- E Iw B3 + GJBZ)mi + GJB3mi
where i = 1,2, ..... 8

[D(z).] is a 8 x 8 diagonal matrix with diagonal elements as
m.z
a(i,i) = e ', where i=1,2...8

{K} is a column matrix consisting of constants K; i=1,2...8

The boundary conditions at the base z = 0 are

1l

v=v(0), v' =v'(0), M= M(0), V= V(0)

B(0), H = H(O0)

I
Il

6 = 06(0), 6' = 6'(0), B
Substituting these conditions in eq. 3.3.8, there is obtained
C{z(0)} = [cllTl{x} &'V (3.3.9)
The constants can be determined by matrix inversion in
eq. 3.3.9
: -1 1 -iwt
{x} = [c] “{Z()} e 7 (3.3.9a)

The boundary conditions at z = £ are

v=v(l), v'N = v'(2), M M(R), V V(L)

B(R), H

) 8(e), 9' = 6'(2), B H(L2)

it

Substituting these conditions in eq. 3.3.8 and using eq. 3.3.9
to eliminate {K}

{Z(0} = [l 1IC1  {z(0)} (3.3.10)
The field transfer matrix is a 8 x 8 square matrix obtained

from matrix multiplication

[F] = [c1ID(2)]IC1 ™t (3.3.11)
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3.3.2 Point Transfer Matrix

The displacement of the center of gravity of the
slab is shown in Fig. 3.3.la. The inertia forces due to
motion of the slab is shown in Figs. 3.3.1b to‘3.3.ld.
Stiffening action of the slab to contribute bimoment is
shown in Fig. 3.3.1le.

Consideration of equilibrium of the slab element yields the
following equations.

v, = V. +mv’’ + amd™"’ ©)
2

H + Jme“ + amv'® + a“mb"’

T (3.3.12)

M + Jv' s + aJ_8'""
- X X

Hy
M =M+ JY
B,

B - BS = B_ - DO )

Notations used in the above egs. are

a Distance between shear center of the section and
the center of gravity of the slab

m Mass of the slab
Polar mass moment of inertia of the slab about an
axis through the center of gravity.

g Mass moment of inertion of the slab about an axis

parallel to x énd passing through.the center of
gravity A |

D Bimoment contribution factor defined in eq. 2.3.12
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For a periodic vibration of frequency w

( ) (
| v(z,t) y‘Z) ]
- *V‘(z.t) [ -+_Yf(z) vt
8(z,t) ¢ (z)
0" (z,t) | 9 (2)

Differentiating twice with respect to time
[ v (z,t)) ( v(z,t)]
Lv"‘(z,t) 2 v'(z,t)

- =W -~

8°°(z,t) 8(z,t)

; (3.3.13)

o (z,0) ] 607 (z,¢) )

Substituting in eq. 3.3.12, there is obtained

v, =V_ - w’mv - w2amé )

H_ ~wlamv - w2(Jm + a’m) g

2 2

H

+ 4 (3.3.14)
. — - L - ¥ .
M4 = M_ w Jxv w aJxe

B,

=B_ - Do

" Compatibility conditions give

T (3.3.15)

Point transfer matrix [P] can there be formed from eq. 3.3.14

and eqg. 3.3.15 as



l

Pgi1

1 0 0 0 0
1 0 0 P3¢
0 0 1 Pys 0
0 0 0 1 0
0 0 0 0 1l
0 0 0._ 0 P6
0 0 0 Pgs 0

The elements of matrix are

P32
Pa1
P7¢

Pgsg

1t

= - wz(J + a
m

o w2 o 2
- w2m ¢+ Pgg = - wzam
=-D, pgy = - w2am

2m)

3.3.3 Boundary Conditions

0 0
0 0
0 0
0 0
0 0
0 0
1 0
0 1

58

(3.3.16)

The boundarv conditions for the shear wall fixed at

‘base and free at top can be written as

{z

} =

+ and

{zg} = 4
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Substituting these conditions in eq. 3.2.3, there is obtained

( V; 3 4 ¢ 0 3
v'+ 0
8 +
Mo
0
+
0 Vo
+ 0
68 = [ A ] (3.3.17)
I+ 0
Og BZ
0 H+
— o
0
0 ) u

Re-arrangement of terms of the above eq. yields

[RI{X} =0 . (3.3.18)
Where
(333 @34 2337 33g
343 %44 %47 %4s
273 274 277 27g

%83 %34 g7 %8s

Here 'a' denotes elemnets of matrix [A].

(X} = 4

The condition to determine the natural fregeuncies is

IR| =0 (3.3.19)
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After determining the natural frequencies, the relative
values of the elements in vector {X} can be determined. The
mode shape of the structure follows by back substitution of

the vector {X} .

3.4 Computer Program

A computer program based én the above analysis has
been written. The. input data are the geometric and elastic
properties of the shear wall structure. The trial frequency
w is increased from an initial value and |R| (eq. 3.3.19)
is calculated. If |R| # 0 another value of w is tried.

The same procedure is repeated until |[R| is reasonably

small to be considered as zero. The next higher frequency is
then determined following the same scheme. These natural
frequencies obtained are then used as inputs in a second
program to determine associated modé shapes.

The flow chart for the first program is shown in
fig. 3.4.1 and the computer program is included in

Appendix B.

3.5 Experiment

A dynamic experiment was carried out on the model
(Fig. 2.1.1). The model was fixed on the shaking table and
subjected to lateral vibration of khown amplitude while the
frequepcy is gradually swept from an initial value upwards.

In all the dynamic tests, the shaking table was subjected
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. to a constant displacement of 0.005.inch from 10 cps to 44 cps.
After cross over frequency of 44 cps it was subjected to
constant acceleration of 0.5 g. The response of the accelero-
meters fixed at different poinfs of the model was studied.
The experimental set up is shown in fig. 3.5.1 to 3.5.3.
The output from the accelerometers was _viewed in an
oscilloscope. The RMS response of the accelerometers were
plotted in a XY recorder. D;C. voltage proporfional to RMS
acceleratioq was fed in X ordinate and Y ordinate was adjusted
in a suitable‘time scale. . The érrangement of instruments is
shown in fig. 3.5.4. arked increase in response is noticed
in the frequency response plots (Fig. 3.6.1 to 3.6.4) at the
resonant frequéncies. For locating the resonant peak more
accurately, the frequency was manually changed around each
resonance zone and the response was monitored on a RMS
voltmetér. The strains at resonance were determined from
plotting outputs from the strain gauges in the Viéicorder.
The arrangement of instrument used is shown in fig. 3.5.5.
Relative strain distirubtion is drawn from these plots and
shown in fig. 3.6.7 to fig. 3.6.10.

The following is a list of different instruments
used in the experiment.

The dynamic.tésting set-up consists of

A. Sweep Oscillafor SD104A-5D

Make: Spectal Dynamic Corporation
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B. Amplitude Servo/Monitor SDlOSA
Make: Spectal Dynamic Corporation.

D. Accelerometer source follower SFA-100
Make: Ling Electronics

"E. Accelerometer Normalizing Amplifier ANA-101
Make: Ling Electronics

.F. Power Amplifier CP-5/6
Make: Ling Electronics

G. Shaker B 290

Make: Ling Electronics

H. Vibraglide Sliptable SINGCO 30-30

Make: Marshall Research and Dvelopment Corporation

For monitoring and’plotting the ?esponse the following
instrumentsAWere employed.
I. Dual geam Oscilloscope
Make: Tectronix Inc.
J. Acceleroﬁeter
K. Laboratory amplifier 2616B
Make: Endevco Corporation
L. D.C. Amplifier, High Gain Type 1-165
Make: Endevco Corporation
M. Bridge Amplifier
Make: Ellis Associates
N. RMS Voltﬁeter
Make: Hewlétt Packard
0. Visicorder (2 channels)

Make: Honeywell Controls Ltd.
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P. Digital Counter

| Make: Hewlet Packard.

3.6 Results and Discussions

The frequency response plots as‘obtained froﬁ the
dynamic test for the accelerometers located at different
- positions are shown in fig. 3.6.1 to 3.6.4. The figures
near the peaks are the experimental resonant frequencies.
Average of all the experimenﬁal frequencies together with
the theoretical frequenéies for different consideration of
floor slabs are shown in table 3.6.1.

It can be seen that for the first and third modes
the experimental freq. lies between the theoretical predicted
value when thé torsional restraining effect of the slab
is considered and the theoretical predicted value when both
.the torsional and effective bending restraining effect
of the slab is considered. The difference between the
theoretical and experimental values is about 5%.

In the second mode, the experimental value is 16%
lower than the theoretical calculated value. Since the
second mode is a bending predominant mode, in this case,

. the larQer difference may be caused be neglecting shear
deformation in the mathematical model. The importance of
considering shear deformation for bending predominant mode

was noted by Tso (29).



THEORETICAL FREQUE NCY' (cps)

EXPERIMENTAL

NO.
FREQ| = Floor Torsion Torsion + Torsion + FREQUENCY
-less Only of Eff. Bending| Bending of (cps)
Structure Slab of Slab Slab P
1 16.5 14.5 16.8 20.8 15.9
2 65.6 56.7 57.8 60.9 - 48.7
71.8 76.5 89.0 72.9

93.9

COMPARISON OF FREQUENCIES

TABLE 3.6.

1
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The associated mode shapes of the structure for first
three modes obtained theoretically are plotted in fig. 3.6.5.
It shows from these plots that the first mode consists of
torsion predominant displacement and the second mode consists
of bending predominant displécements.

-it is also noted that in first mode displacement and
rotétion are in phase. In second mode they are out of phase.
In third mode they are in phase in lower part of the structure
but out of phase in top part.

The displacements and rotations at the top of the
structure for different modes are plotted in fig. 3.6.6
The values of v and 6 written on the figure are the values
of mode shapes curve (Fig. 3.6.5) at 48 inch levels are
relative valués only. In other words the values for the
first mode does not have any relation with that for the
second or the third mode.

It is seen from the frequency response plots
(fig. 3.6.1 to fig. 3.6.4) that at ény resonant frequency,
the response varies depending on the position of the
accelerometer. For example in the third resonance the
accelerometers mounted at points g and r show lower response
than that mounted at points p and s. In the second resonance,
the accelerometers mounted at points q and r shows higher
response than that mounted at points p and s. In the first
resonance, the response of accelerometers mounted at p and s

shows higher response than that mounted at g and r. These
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type of behaviour is due to the in phase or out of phase
nature of displacements and rotations in different modes
and,c;n be explained from fig. 3.6.6. It is seen from
the plot that points p and s undergo maximum translational
displacement due to combined action of v and & in the
third and the first mode. Whereas points g and r undergo
maximum translational displacement in second mode only.
Thé'relative strain distribution at level A and
level B {(refer fig. 2.5.2 for level A and B) at the first
and the second resonace are plotted (Fig. 3.6.7 to Fig.v3.6.ld).
Theoretical distribution are drawn from the calculatéd
mode shapes. Since the mode shapes are defined by relative
values 6n1y the theoretical strain diagram is made to pass
through one experimental point. A reasonable agreement be-

tween the theory and experiment is shown in these plots.



CHAPTER IV

STATIC FORMULATION OF NON PLANAR COUPLED SHEAR WALL

4.1 Summary

In this chapter, the nonplanar coupled shear wall is
analysed using the continuum approach. 'Differentiai equa-
tions are developed for such wall subjected to lateral
forces and torques distributed along the height. Special
configurations of shear walls are shown and the modification
on differential equations and solutién is indicated. The
- experimental sfudy was performed on a smallrscale plexiglas
model consisting of two angles connected by beams at equal
spacing (Fig. 4.4.1). The model was sﬁbjected to a force
and a torque at the top storey and strains and deflections
are measured. The experimental results are then compared

with the theoretical predictions.

"4.2 Theoretical Analysis

Consider two nonplanar pieré which are connected by
floor beams at equal spacing (Fig. 4.2.1). 1In the analysis
the center of the connecting beam O is taken as the reference
point. The differential equations are derived in terms of
the displacement variables of point O, namely u, v and 6.

" The external forces and torques are also refered to the same
éoint 0. The theory is based on two assumptions: |

(i) The deformation of the connecting beams due

to bending in horizontal plane is restricted.
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GEOMETRY OF COUPLED SHEAR WALL

4.2.1

FIG.
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(ii) Points of contraflexure for the connecting
beams due to bending iniverticalrplane are taken to be at the
center.

In addition to the above assumptions, Vlasov's theory
is taken to be valied for individual section constituting
the coupled wall.

Using the continuum approach, the connecting beams
are replaced by independently.acting laminae of appropriate

stiffness (Fig. 4.2.2a).

4.2.1 Notations Used

The notationsused in the present analysis are listed
below and illustrated in fig. 4.2,1,
Xl’ Yl Orthogonal principal axes for pier 1

ul,vl,el' Generalised displacements of the shear center
of pier 1.

X,Y,2 Orthogonal global axes with origin at point 0.
X is parallel to the length of the beam.

Orthogonal axes parallel to X and Y and passing

171 _through centroid of pier 1 (Fig. 4.2.4).
u,v,0 Generalised global displacements of point O.
ex1%y1 Co-ordinates of the centroid of pier 1 refered to
global axes. :
cx1Sv1 Co-ordinate of the shear center of pier 1 refered
to global axes.
Py11Pyxo Distances of the centroid of pier 1 from point O
X measured parallel to Xl' Yl axes.
qxl,qxé Distances of the shear center of pier 1 from
point O measured parallel to Xl' Y, axes.
¢1 Angle between Xl and X axes.
wy Sectoral ordinate of pier 1 at the point O

refered to shear center of the same pier.
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IXl’ IYl Moment of inertia of pier 1 about Xl, Yl
axes.

Syyr S Moment of inertia .of pier 1 about X, and

Yl = . 1
Y, axes (Fig. 4.2.4).

SXYl Product moment of inertia of pier 1 about
axXes parallel to X,Y and passing through
centroid ij.e. Xl’Yl axes respectively.

le Principal sectorial moment of inertia.

Mx External. moment about X axis

M, External moment about Y axis

0y External torque about point O.

I, Moment of inertia of the connecting beam

Ab Area of the connecting beam

C Clear span of connecting beam.

h Storey height

Note:--The subscript 1 in the above notations are replaced

by 2 for pier 2.

4.2.2. Geometric Relations

!
The global axes of the structure are X, Y and Z are

the reference axes about which the displacements and forces
are refered. The X axis is parallel to the longitudinal
axis of the connecting beam. The principal axis of the piers
are inclined at angles ¢1 and ¢2 to the X axis (Fig. 4.2.1).
The 2 axis is the vertical axis through point O.

The assumption (i) along with Vlasov's hypothesis of
non deformable cross section leads to a rigid section of
the coupled wall, for which the following geometric relation
are valied for the transformation of displacement of the

cross section from one reference point to another.
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The Transfer matrices [Rj] and [Tj] can be defined as:

~ [Cos ¢j Sin ¢j 0
[Rj] = [=Sin ¢j Cos cpj 0 (4.2.1)
| 0 0 1J
( 0 -c.]
vi
[Tj] = 0 1 %3 (4.2.2)
L 0 0 1
(3 = 1,2)

The relatinn between the global displacement variables u, v

and 6 and the displacement variables of the piers are:

uj u
Vs = [Rj][Tj] (4.2.3)
0. 0

J

Other geometric relations which relate the distances
measured along the principal axes of the piers to the global
directions are:

C . Sin ¢.
P os ¢3 i ¢] e

xJ X '
= (4.2.4)
pyi -S5S1in ¢j Cos ¢j eYj
A5 Cos-¢j Sin ¢j '{ i -
. -5i . C . o
Iyj by Cos gyl | Gy

in which j = 1,2 j
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4.2.3 Displacement Consideration

An imaginary cut is made along the center line of the
laminae. Due todeflection of the piers, there is a relative
displacement 61 toc the left and the right of the cut as

shown in fig. 4.2.3(a).

01 = U3 Pyp " U] Py ¥ Vy Pyy T Yy Py
' (4.2.6)

Using relations in eq.‘4.2.3 and 4.2.4 this equation becomes:

61 = u'a + v(b + 8' (w+d) (4.2.7)
Where a = ex2 - exl
b = ey2 - eyl

= W, = W
w 1

d = €480 7 2% t Cp1%:1 T Cx1%

The shear force distribution g induced at the center
of laminae produces compressive force on one pier and tensile
force in the other. This axial force T in pier is related
to g (Fig. 4.2.2c) as:

’ q= - %% (4.2.8)
This axial force T produces axial deformation of the pier

which decreases the relative displacement at center of laminae

by 62.
Z

_ 1,1

8y = AN

+3) T(§) a% (4.2.9)
1 2 '

o
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Finally the force g will produce in the laminae a deformation

63 due to bending and shear.

3
g o
Where Jb is the equivalent moment of inertia of laminas

taking into account shear deformation of beam.

. Ib

J, = ‘ leIb A (4.2.11)
h(l + —5—)
c GAb

To satisfy the condition of compatibility it is réquired

Substituting above expressions for 61, 62, and 63

uta + v'b + 0'(w+d)

/
3
= 11,1 ac .
= FZ + x )T() af + 1755 (4.2.12(a).
: 1 2 b
o
Differenting once
ulla + vllb + 9"(Lu+d)
=it +1yr74 3 ag (4.2.12)
T E'A; A I2EJ,dz

4.2.4 Force Equilibrium Conditions

The internal moments acting on the different components
of coupled shear wall are shown in fig. 4.2.5. These internal
moments along with couple produced by axial force T balances
the external moment. For equilibrium of moments about Y and

X axis, the following expressions can be derived.
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- e : 1% ’
EIylul Cos ¢l Elevl Sin ¢l + Elyzu2 Cos ¢2
| _ 1 . A — { ‘ )
‘ EIxZVZ Sin ¢2 + Ta My (4.2.13)
[ ] : k ty [ ] :
EIylul Sin ¢1 + EIle1 Cos ¢1 + EIy2u2 Sin ¢2,
L -
+EIx2v2 Cos ¢2 + Tbh = MX (4.2.14)

The relations between the moment of inertia with reference

to different axes (Fig.

S . =1
XJj V3
S . =TI .
Y] Y3
s . = ({1
XyJ Yy

4.2.4) are:

.»Sin2 $. + I.. Cos
j X

J

in which j =

2 p \

(4.2.15)

os 45 |

1,2

Using relations in eg. 4.2.3 and 4.2.15, the above eguations

are simplified as follows.
Esu''+E_v'' -ES 6'' + Ta =M 4.2.16
Y Xy A Y ( )
T o't () -
E Sxyu + E va + E S¢e 6 + Tb Mx (4.2.17)
Where
S =8, + S )
Y yl y2
Sx = le'+ Sx2
Sgy = Sxyl T Sxy2 + (4.2.18)
- Syc T %1 Sy1 t Cy2 Sy2 T %y Sky1l T Cx2 Sxy2
Sxe T ®x1 Sx1 t Cx2 Sx2 T Cy1 Sxy1 T Sy2 Sxy2 J
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The internal torques and shear forces acting on different
components of coupled shear wall are shown in fig. 4.2.6.
Let §£ be the resultantAtorque of all these forces about

point 0. Therefore:

_ T
EIxzv

- - e 11
Qp = = EInVy "9y * Bl pn 9 2 9x2

vl
te _ 3 e 1

+ BIouy"'q,, — B,y + I5)0° +G(Jy + J,)0

(4.2.19)

Using relations in eq. 4.2.3 and 4.2.15 the above equation.

is simplified as follows:

~ - [ I T ter trr , ]
Qt— E Sycu E chv EIwe + GJO (4.2.20)
Where
_ 2 2 2 )
Ty = Iml Tlaz t %1 k1t %2 Ix2 * “y1 Iyl
2
+ cy2 IY2 - 2¢xlcy11xyl —2cxzcy21xy2 (4.2.21)
J=J, +J J

Additional shear forces Qxl' le,.sz and QY2 and torques
Qtl and Qt2 develop in the section due to the shear force
g in the laminae (Fig. 4.2.7). These forces can be expressed
in terms of g from consideration of equilibrium of an element

as shown in fig. 4.2.8. Thus, -

Q1 =~ Px1 ¥ Qy2 = 7 Pyif
Ox2 = Pyp ¢ Qyp = 9Py T (4.2.22)
Oy = a7 Qe = 7 a9 ,
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The resultant torque 6£ about the point O then becomes

Qp = Q1 + Qp = O 9y F Q) Yy T %o Iy

+ Qy2 dyo (4.2.23)

Using relations in eq. 4.2.4, eq. 4.2.5 and eq. 4.2.22, the

above equation is simplified as follows:

S, = qlutd) = -(u+d) T . (4.2.24)

Equilibrium_of torque about O gives the internal torque §£

together with torque due to shear force 6t must balance the

external torque Q4 - Thus

- tre v _ 1 '
or E chv + E Sycu EIw 0 + GJB

aT _

- (w+d) T = % (4.2.25)

4.2.5 Differential Equations

The compétibility condition (eg. 4.2.12) and the
three force equilibrium condition in eq. 4.2.16, eq. 4.2.17
and eq. 4;2.25 are four equations relating the unknown of
the problem u, v, 6 and T. In the following paragraphs,
simplification is made to reduce the four coupled equations
to a single equation in 0. From eq. 4.2.16 and 4.2.17 the
following expressioné are obtained by algebraic elimination.

u't = C,8'' +C, T+C

1 2
CSG" + C

3 My + C4 MX (4.2.26)

T + C7 My + C8 Mx (4.2.27)

VII 6
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Where
- - g2 . \

SSyy = Sy 8y ~ Syy | |

Cl = (SXY SXC + Sx Syc)/SSxy;

C2 = —-(a Sx - b Sxy)/E SSxy;

C3 = SX/E SSxy H C4 = - Sxy/E SSny T (4.2.28)

C5 = —(Sy ch + Sxy Syc)/SSxy;

C6 = (b s - a Sxy)/E SSXY}

C7 = - Sxy/E Ssxy; C8 = Sy/E SSxy j
Differenciating eq. 4.2.26 and eq. 4.2.27 and substituting in
eq. 4.2.25,

~q= = -Flogrrr s Eor v cgmy v ML+ 0
rl "1 Yy
(4.2.29)
Where
= _ _ 2
Iw = Iw (Sy ch + SX ch}/SS
r; = wt a - ch(b Sy - a Sxy)/ssxy
+ Syc (a S - b Sxy)/ssxy
Co = (Sxy S%c t 5S¢ yc)/ss T
Cl0 = --(Sy ch + Sxy Yc)/SS Xy ry
Cip = - /7y |
Substituting eq. 4.2.26 and eqg. 4.2.27 in eq. 4.2.12,
2
1 aT
"y _ = ——
Er? 0 X T + Cq, My + Cy3 Mx + ~y dzz 0 (4.2.3Q)
Where
r, =W+d + a(Sxy ch + x yc)/SS
,-b(Sy ch + SXY YC)/SS
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1/A = 1/Al + l/A2 + afa Sx - b Sxy)/ssXy +

+ b(b SY - a SXY)/SSXY

C12 = (a Sx - b Sxy)/SSxy
Ci3 = (b Sy - a Sxy)/SSxy - (4.2.31)
Y = c3/12Jb

Differentiating eq. 4.2.31 once

a3

' -1 4T T
LI I ' 1 —— =
Erze Faz t Cia Myt Gz Mt de3 0 (4.2.32)
. ar adr .
Eliminating 3z and —3 using eq. 4,2.29 the following fifth
‘ 4z

order differential equation in 6 is obtained.

v _ T v ' 1 v
B, ® 8,8 + By 6 Ciq M, + C;S My + Co Mg
tee - '
+ Cyg My + Cy¢ Qy Qé (4.2.33)
Where
= )
Bl EIw
.ET.r
82 = 'EIw + GJ + 12
ay Y
By = GI/Ay ; Cy¢ = 1/AY + (4.2.34)
. 2%121 S
i 14 Y AY
o = S13N1 - Cio
15 Y Y J

The Eg. 4.2.33 along with eq. 4.2.26, eq. 4.2.27 and

eq. 4.2.29 are the final equations‘used in the analysis.



4.2.5 Boundary Conditions °

For no rotation and displacement at base

6(0) =0
u(0) =0
v(0) = 0

For no slope and warping at base
8'(0) =0
u'(0) =0 |
v'(0) =0

For no moment and bi moment at top

0''(H) = 0
w''(H) = 0
.v"(H) = 0

99

(4.2.41(a))
(4.2.41 (b))
(4.2.41(c))

(4.2.42(a))

" (4.2.42(b))

(4.2.42(c))

(4.2.43(a))
(4.2.43(b))
(4.2.43(c))

Substituting eq. 4.2.42 in eq. 4.2.128 the following-condition

is obtained at z = 0.
a(0) = - 37 |z=0 = ©

Using eq. 4.2.29
ET

9 10

T Ty

© geen _ GTa, - .
{(— © 6 C MY C Mx Cll Qg

=0

Z=0
(4.2.44)

Axial force T can be expressed in terms of g by the following

relation H

T = | q(fiay

From which at 2 = H, T = 0

Substituting eq. 4.2.43 and 4.2.46 in eq. 4.2.12
aq 4§t

azl z=0 =~ T~ 32

=0
az?

Z=H

(4.2.45)

(4.2.46)

(4.2.47)
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Differentiating expression in eq. 4.2.29 and using in eq. 4.2.47

(— 0 — 2= 9'' — C, M''"— C, M'" — C.. oh) =0
ry 9 'y 10 "'x 11 =t x=H

(4.2.48)

The solution of the differential equation subjected
to the above boundary conditions are the complete solution

to the problem.

4.2.7 Solution
The solution of the differential equation (eq. 4.2.33)
will consist the complimentary solution 6. and a particular

integral GP. Thus

The complimentary part 9C will satisfy the following equation

B

\" T ‘ | - ’
1 8V By 8+ 80" =0 (4.2.50)

mz

Assuming solution of the form 8, = Ke' ™ the following

characteristic equation is obtained.

Blms - 82m3-+‘83m =0 »(4.2.51)

.The roots are: my = 0

B+ /8% - 4

2 2 183
28,

MCiVIAS L EX uiNniyerS] 1Y LIBRARY,
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/o2
47 75 — 261

In thekabove expressions Bl, 82 and 83 are positive. It

can be shown that

2

Therefore all roots are real.

" Defining

i
El
N
il
El
w

*1
ay = [my] = [m

The solution is of the following form.
ec =Ky *+ K., Coshalz t K, Slnhalz + Ky Coshazz

+ KS Sinhuzz (4.2.52)

The particular integral GP depends on loading.

Case-I, Concentrated load W Wy and torgue Wt at top. The loads
. are acting in the +ve directions and refered to the center line

of beams. For such loading

M, = W, (H-2)
M, = W (H-Z)
Qp = W,

Particular integral for this case is:

6 =K 2
PP
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Where

K = - (C

P 14 WX-!- c w - C w,) (4.2.53)

15 "y 16 "t

Case-II, Uniformly distributed load W wy and torgque W
acting though out the height. The loads are acting in the
positive directions and refered to the center line of beams.

For such loading:

_ oy 2
My = wx(H Z2)"/2

_ Loy 2
Mx_— wy(H Z)“/2
Qt = wt p

Particular integral for this case is:

P pl p2
Where
RKo1 = (Cpgq Wy * Ci5 vy _.C16 Wil /283
K, == H(C v + Cgw - Cle‘}t’/ﬁa (4.2.54)

are
The constants Kl’_KZ’ K3, K4, KS (eq. 4.2.52) ,determined

from the boundary condition in eq. 4.2.41(a), eq. 4.2.42(a),
eq. 4.2.43(a), eg. 4.2.44 and eq. 4.2.48.

After obtaining complete solution for 6, the expression
for shear force g is determined from eq. 4.2.29. The expression
for axial force T is determined from direct integration of the

expression for g subjected to boundary condition as in eq. 4.2.46.
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The expression of displacements u and v are determined
from direct integration'pf the expressions in eq. 4.2.26 and
eq. 4.2.27 subjected to boundary condition as in eq. 4.2.41(b}),
eq. 4.2.41(c), eq. 4.2.42(b) and eq. 4.2.42(c).

| The displacement of the individual piers uj, vj and ej
(where j = 1,2) are detérmined from the relation in eq. 4.2.3.
The average momént and bimoment of the indivdual piers are

determined from the following relations.

B. = - EI ., 83' (4.2.55)

where § = 1,2

4.2.8 Special Configurations

For a mono symmetric configuration of piers as shown

3 - £1 = . = . = i i
in Case-A (fig. 4.2.11) b 0; Sxy 0; ch 0. Substituting

these conditions in the governing equations (eg. 4.2.12, eq.

4,2.16, eq. 4.2.17 and eq. 4.2.25) they are reduced to

' - _ 1.1 1 c dg
ulta+ 8''(wd) = E(A + X YT + 135 F ag (4.2.56)
1 2 b
E '"+ E S 6'' + Ta =M 4.2.57
Syu ye Iy ( )
| I,
E va‘ = Mx (4.2.58)
ES u''' -=EI 08'''+ GJO' - (wd) - g (4.2.59)
yc w dz t e
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|
ol
£
M r—
O b= 0
o Sxy:o
gl | Syc=0
— |
.«md-——-;--- ——>» X
l
CASE - A
—Line of Symmetry
l TY =0
R ebeeeee]—ox Sxy20
Syc*
w+d =0
I =1 =0
CASE - B oo
Line of Symmetry?
| Ay "9
{ I Sxy=0
—— “‘M-—"}"'; >X ch"' 0
! l Syc‘-'o
| W+d=0
Iw‘[:Iﬁ)z:O
CASE - C

FIG. 4. 2.1
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The eg. 4.2.58 is uncoupled and represents independent bending
of the structure about the X axis. The other equations can be
comb%ned in a single differential equation in 8 and solved
following the same scheme as before.

For a mono symmetric configuration of piers as in

Case-B (fig. 4.2.11) b =0, S_ =0, S, = 0; (u+d) = 0.

Xy
Substituting these conditions the governing equations
(eq. 4.2.12, eq. 4.2.16, eq. 4.2.17 and eq. 4.2.25) they are

reduced to.

u''a = é(%1‘+ %é)T + T§§3;5¥§ (4.2.60)
E s, W' +Ta=M | (4.2.61)
ES, v'''+ES._ 0" =M | (4.2.62)
-E S,  v''' - EI 0''' +GJ6' =0Q, | (4.2.63)

In the above equations u and T are coupled in the first
two equations. In the last two equations v and 6 are coupled
but independent of u and T.  The first two equations (eqg. 4.2.60
and eq. 4.2.61) represent plane coupled case for bending
about y axis but the bending about x axis and rotation are
coupled in the other two equations,

For a symmetric configuration of piers as shown in

Xy Xc yc
(w+d) = 0. Substituting these conditions in the governing

equations (eq. 4.2.12, eq. 4.2.16, eq. 4.2.17 and eq. 4.2.25),
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they are reduced to:

u'' a = %—:(All + %Z)T + l—g—:;—j-bj—;“— | (4.2.64)
E Syc u'''+ T a = My | . (4.2.65)
Es, v'' =M (4.2.66)
-ET 6"'''+ GJO' = Q | (4.2.67)

The first two equations (eq. 4.2.64 and eq. 4.2.65) represent the
plane coupled case for bending about y'axis. The éther two |
equations (eq. 4.2.66 and eq. 4.2.67) are uncoupled representing
independent rotation and ben&ing about x axis. It should be
noted that though the individual piers do not have any

sectorial moment of inertia, the group has an equivalent I,

as defined in eq. 4.2.21. In this case

2 2

Therefore, the torsional resistance of the combined structure

is substantially larger than the sum of individual resistance.

4.2.9 Effect of Neglecting Axial Deformation of Piers

Gluck (22) assumed the axial deformation of piers to be very
small and neglected it in.his analysis. It is of interest to
indicate the present analysis is reducible to the equation

given by Gluck.
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If axial deformation of piers is neglected, 62 =0
(eg. 4.2.9). For which the compatibility equation (eq. 4.2.12a)

is reduced to,
3

u'a+v'b+e'(md)=T%§£ (4.2.69)

Differentiating eq. 4.2.16 and eq. 4.2.17 and using eq. 4.2.8

ES ulll+s VIII__ES ell’l__ ___Ml
y Xy ye 81 =%y
(4.2.70)
' te (LN vy = 1
B E.Sxy u + ES, v + E SXC ) bqg MX
(4.2.71)

Using eq. 4.2.8, eqg. 4.2.25 becomes

- 1t veeo 1e '
E Sy V'''+ ES, U EI6''' + GJO

+(wrd)g = 0O (4.2.72)

t

Eliminating eq. g from eq.. 4.2.70, eq. 4.2.71 and eg. 4.2.72

byrthe help of eq. 4.2.69 and expressing in matrix form:

E E S -E S ree
Sy Xy ye u

- Y1
- E Sxy E SX E ch v

- [ I A
ESYC Esxc EIw 5]

0 0 0 u'

+ 0 0 0 v!
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a? ab a(wd) | (u J-M;’
+ 1280, | b2 b(wrd) | {v'f =d-mt (4.2.73)
3
c. a(wrd)  blwrd) (wa)?) o l 0,

This equation is same as Gluck (22) except the factor

d which is omitted. The error has been noted and suggested

by Biswas and Tso (24).

4.3 Computé: Program

A computer program based on the ~analysis has
been writtén. This program covers the general configuration
and the special configuration in Case-A (Fig. 4.2.11).
subjected to.concentrated force and/or torque at top; The
input data are the geometric and elastic properties of the
shear wall. The program determines the value of constants
STILPYAREE Ks (eq. 4.2.52) by solving a set of linear
simultaneous equation ;obtained from the boundary conditions.
' The output consists of the generalised displacement of reference
point O, shear force in the connecfing beams and bending

moment of the individual piers at chosen levels. The computer

program is included in Appendix B.

4.4 Experiment

An experiment was done on a small scale model (fig.
4.4.1). It consisted of two equal angles connected by floor
beams at equal spacing. The model was made from plexiglas
sheet. It was loaded by a concentratea force at the top by

hanging weights over a pulley system (Fig. 4.4.2). A
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second loading configuration consists of a torque applied at
top éf the same structure. This was done by applying two
equal but opposite forces as shown in fig. 4.4.3. Strain
gauges and dial gauges were fixed at different points of

the model (Fig. 4.4.4) and readings were taken at every
increment of loading. Strain gauge and dial gauge readings
are tabﬁlated in Appendix~C. The some set of instruments

used for static test of model with floor (Chapter 2) was used.

4.5 Results and Discussion

The linearity of the test structure is checked in fig.

4,8.10,. The rotation and displacement of the model subjected
to concentrated load and torque at top are plotted in fig. 4.5.1
to fig. 4.5.4. The moment in pier 1 in the principal directions
and distribu?ed shear force g in the conneéting beam are
plotted in fig. 4.5.5. From the moment diagram, the theoretical
strains at different points in level AA and BB (Fig. 4.4.4)
are determined. The strain distribution thus obtained
together with the experimental strains are plotted in Fig.
4.5.6 to 4.5.9.

The experimental results of rotation and displacement
compared reasonably well with the theory except for the‘case
of displacement measured due to an applied torque as shown
in fig. 4.5.3. The probable reason for difference in fig.
4.5.3 may be due to the imperfection of the torgue applying
device. It is conceivable that some lateral load may

develop in addition to the applied torque during the test.
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The effect of axial deformation of piers is found to
have no effect on results for loading case with appiied
torqﬁé. However, the effect is considerable for in the'case‘
of laferal loading. The displacement at top decreases by

37% and rotation at top decreases by 7% aé a result of
neglecting axial deformation. The error introduced by neglect-
ing axial deformation becomes significant if the axial force
in the piers is largeAas in the case of the lateral loading.

A comparison from the shear (g) plot in fig. 4.5.5 shows that
the shear is about five times in the case of applied loading
as compared to the case of applied torque. Since the axial
force in the piers is the sum of the distributed shear q,
neglecting the deformation due to axial force in the case

of applied loading affect the results considerably.

In the strain diagrams (Fig. 4.5.6 to 4.5.9) the
comparison between the experiment and the theory is less
- favourable. Since strain is a local measure, the experimental
results are affected by the local imperfection of the test
model. The éontinuum approach used in the analysis is expected
to give results to the overall behaviour of the structure
but with less accurate results to the local behaviour.
Nevertheless, the trend of the sirain distribution as predicted
" by the theory is varified by the experimental points.

In general it is expected tha£ the continuum approach
of analysis ié best suited for structures with a’ large number
of stories. 1In the present study, the modei used in the ’
experiment consists of eight floor beams only. Yet, the

results obtained from the analysis compare well with the
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experimental points.



CHAPTER V

CONCLUSIONS AND RECOMMENDATION§

5.1 Conclusions

The results from the static analysis and the testing
of shear wal1 model with floors show that floor slab can
provide considerable torsional stiffness by providing
 restraint against warping. Neglectvof the floor slab stiff-
ness will underestimate the stiffness of the structure.
Moreover the actual structure is not as stiff as predicted by
considerigg both torsional and flexural stiffness of the
slabs. The bending stiffness of the slab is less effective
due to the local rotation of the joints and a modified bending
stiffness is to be considered. This is taken into account
by a factor K in eg. 2.6.2. Theoretical values thus obtained
compafe reasonably well with experiments for displacement
and strain measurements.

In the dynamic study of shear wall with floor slabs, the
mass and mass moment of inertia of the slabs have to be con-
sidered iﬁ addition to the stiffness provided. The vibration
is in general coupled. The first mode is a torsion predominant

one and the second mode is bending predominant. The theoretical

Pl AR ;‘;‘ .

frequency~chparedreasonably,with the experimental values
except for the se;ond frequency which is 16% higher. This is
due to the neglect of shear deformatibn in the theory, which
have considerable effect on the frequency for bending pre-

dominant modes.
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In the static and dynamic ahalysis of shear walls with
floors, the 'Matrix Transfer' method has been used. The
method is ideal for continuous systems with discrete points.
The main advantage is that the size of the matrix handled
in the anélysis is independent of the number of floors.

An increase of the number of floors will only increase the
number of matrix multiplication which can be done easily
in a digital computer.

The nonvplanér coupled shear wall was analysed using
the continuum method. It is shown that the effect of
neglecting axial deférmation of piers will lead to gross
overestimation of stiffness of the structure for certain
ﬁases. Simplicity can be achieved by this assumption but
should always be done with caution. The theoretical
analysis shows reasonable agreement with the experimental
results for displacements but less favourable for strains.
So it can be concluded that continﬁum method gives good
results for overall behaviour but is less accurate for

local behaviour of a structure.

5.2- Recormendations

The present study of shear wall structures with special
interest on floor slabs and floor beams are carried out on
simple structures. The arrangement of the shear walls in an
actual multi-storey building is very complex. The analysis is
also complex due to various interacting elements. Simpli-
city can be achieved by assumption but a complete understanding

of the behaviour of different interacting elements
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is necessary for making reasonable assumptions.

More experimental and theoretical study on the behaviour
of_leor slab with different geometrical arrangement is
necessary. In such cases, it may not be justified to treat
the floor slab as a series of beams but as an elastically
supported plate. |

Extension of the formulation on non-planar coupled
shear wall is necessary for more generalised cases. The
present analysis is applicable for two shear walls
connected By a single row of beams. Extension for cases with
more piers and more rows of connecting beam is required. A
study on the aynamic analysis for non-planar coupled shear
walls is also recomended.

In general, the analytical tools presently available
to design engineers are very limited and most of the time
very restricted in its applications. Therefore, more
" theoretical work supported by experimental data is necessary
in the shear wall field to aséist £he practicing engineers to
analyse and design structures which will be safe at the

same time economic.
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APPENDIX A

VLASOV;S THEORY OF THIN WALLED BEAM

The method of analysis used in the present work is
based on the theory presented by Vlasov (8). Vlasov's
theory is based on fwo gecmetric hypothesis:

(a) a thin walled beam of open section can be
considered as a shell of rigid (undeformable) -cross section.

(b} the shear deformation of the middle surface
(characterising change in the angle between the cd«ofdinate
line) can be neglected. '

In shear wall structure, the concrete clear wall can
be treated as thin walled beams connected by floor slabs
ﬁhich are normally located at regular intervals. The action
of the floor élab is to prevent any deformation of the
section which supports the hypothesis (a). Hypothesis (b)
requires shear deformation to be negligible compared with the
torsional and flexural deformatiaons. Vlasov states that this
is satisfied if for the structure shown in Fig. A.1l

t/d < 0.1 and d/% < 0.1

For components of tall building this conditions aré satisfied.

The expression of longitudinal stress in Vlasov's
theory is

IY

4 Bw (A.1)

X
g =
i Iw

> 2

The first three terms coincide with the equation known

from elementary theory. The last term of the expression is
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the longitudinal stress due to warping. The notations of the
‘last terms are explaingd as:

Bimoment B is a generalised balanded syétem of forces
statically equivalent to zero. Units are force x (length)2
e.g. lbs. in2.

w is the sectorial area of the point on the section
where the stress is being measured. Units are (length)2
e.g. inz. -

Iw is sectorial moment of Inertia of the section and is

defined as - wsz units are (length)6 e.é. in6.

‘A
The distribution of sectorial co-ordinate fbr somé
- open section is shown in Fig. A.2. Right hand co-ordinate
system used in the present work (Fig. A.3). The generalised
displacement variables are shear center displacements u, V
and € in xy plane and centroidal displacement s in z di-
rectién (Fig. A.4). Sign Eonvention for generalised forces
are shown in Fig. A.5.

The relation between the genéralised forces and

displacement variables are:

EAs', M_ = Eva", M = EIyu",

N = % v

B = —EING", H= - Elwe 'Y+ GJe', ' (a.2)
= - LA = - 1t

Vy "EI_v''', V EIyu -

Of these quantities, axial force and bending moments are
refered to the centroid and shear forces and torque are
refered to the shear center of the section.

The longitudianl stress at any point can be expressed
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in terms of displacement variables as:

g =E[s' - u'"'x - v''y - 8"'"'w] (A.3)

Displécement of any point in z direction is obtained as:
§ = s -u'x-v'y - 0'w | (A.3a)

Tensile stress and displacements in the direction of positive X,Y &
2 are pqsitive in eg. A.3 and eq. A.3a, When referred to
principal generaliséd co-ordinates of an open section, the
differential equation of a thin walled beam statically
loaded at its endé are:

— EAs'' = 0 )

v
EI,v =10 \ (A.4)
ET a'v =0
Y
e 6" - G3e'' =0
w | , )

Differential equations for free vibration of -a thin walled

beam are:
EAs'' - pAs‘f =0 \
.o el .
EL vV + pav’’ - pIv - pRa 8 =0
'v » . e 11 LY
EI_u + pAu - PI u + pAa_f = Q L
v P © v p 3y {A.5)
E1 6" - GIe'' +pI 8 -pI 6 | +phau  -phay =0
w P . w" piay PRy J

Eg. A.4 and eq. A.5 are refered in Chapter 2 and Chapter

3 and solved accordingly as they appeared in the analysis.
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COMPUTER PROGRAMS
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TABLE C1l
STRAIN DATA FOR MODEL WITH FLOORS

ﬁ strain in v in/in for load at 8th floor

Strain Loading
Gauge
No. 2.5 lbs. 5 Lbs. 7.5 lbs. 10 1bs. 12.5 1bs.
1 -30 -56 -92 -116 ~140
2 +24 +48 +68 +86 +106
3 -28 ~56 ~84 -110 -130
4 +14 +38  +64 +94 +118
5 -30 -56 ~84 -114 -138
6 +18- +50 + 80 +112 +142
7 +15 +30  +48  +60 +76
8 0 -10 -22 -34 -46
9 *
10 -22 -48 -74 -100 -126
11 +5 +5 +7 +8 +9
12 -12 -25 -40 -55 -68
13 -20 -44 -72 -96 ~120
14 +14 + 36 +48 +60 +70
15 -14 -36 -52 -64 -78
" 16 -3 -7 -11 -15 ~20
17 -14 -28 -38 -42 ~54
18 +6 +16 +32 +48 +60
19 -8 -24 -42 -56 -70
20 +25 +58 +98 +134 +170
21 -28 -58 -90 -118 -148
22 +16 +38 +60 +84 +108
23 +6 +12 + 20 +28 + 34
24 +14 + 36 +56 +78 +98

* Strain Gauge out of order



TABLE Cl (continued)
STRAIN DATA FOR MODEL WITH FLOOR
i strain in y in/in for load at 8th floor

Strain Loading

Gauge
No. 10 1bs. 7.5 1bs. 5 lbs. 2.5 lbs. 0
1 -114 -84 -50 - =25 -2
2 +90 +70 +50 +28 +2
3 ~-114 -94 =74 -52 -26
4 +94 +70 +40 +14 0
5 -114 -90 -62 -34 -6
6 +116- +84 +62 +28 +8
7 +62 +48  +36 +20 +2
8 ~38 -24 -10 -2 0
10 -104 -80 -54 -26 0
11 +8 +8 +6 +4
12 +56 +44 +30 +16 +2
13 -100 -74 -50 -26 -2
14 +60 +52 +42 +26 +10
15 -64 -54 - -40 -26 -12
16 ~-15 -12 -8 -5 -2
17 ~44 -36 -23 -13 -2
18 +50 +46 +24 +12 0
19 -60 -46 -32 -22 -11
20 +138 +106 +72 +36 +6
21 -124 ~-94 -66 -38 -10
22 +86 +62 +40 +14 0
23 +28 +18 +12 +4 +2
24

+80 +58 +49 +16 +3

* Strain Gauge out of order
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TABLE C2
DEFLECTION DATA FOR MODEL WITH FLOOR

Deflection in inch for load at 8th floor

Dial Loading
Gauge
No. 2.5 lbs. 5 1lbs. 7.51bs 10 1bs. 12.5 lbs.
1 .011 .032 .055 .079 .097
2 .0285 .0725  .118 .1695 .2125
3 .009 .026  .043 .062 .084
4 .025 .066 .108 .151 .187
5 .007 .022 .041 .061 .083
6 .020 .053  .086 .122 .152
7 .003 .010 .022 .024 .030
8 .010 .030 .048 .069 .085
9 .002 .004 .006 .009 .011
10 .004 .011 .0175 .025 .031
Dial
Gauge
No. 10 1bs. 7.5 1lbs. 5 1bs. 2.5 1lbs. 0
1 .082 .063 .040 .016 .005
2 .1715 .1325  .0885 .040 .010
3 .066 .049  .032 .014  .005
4 .153 .120 .080  .036 .006
5 .064 .047 .028 .011 .003
6 .124 .097  .064 .028 .003
7 -.025 .020 .013 .005 .001
8 .070 .054 .036 .015 .003
9 .008 .007 .005 .002 .001

.025 .020 .013 .090  .002

[
o
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TABLE C3

STRAIN DATA FOR MODEL WITH FLOORS

Strain in y in/in for load at 6th floor

Strain
Gauge
No. 2.5 1bs. 5 1lbs. 7.5 1lbs. 10 1lbs. 12.5 1lbs.

1 -24 -44 -62 -84 . -98
2 +24 +44 - +66 +86 +106
3 -24 ~46 -70 - -92 -116
4 +4 +18 +36 +56 +78
5 -18 -40 -60 -80 ~100
-6 +4 ‘ +18 +40 - _60 +80
7 +8 420 +30 +42 +52
8 -4 -12 -24 -36
. :
10 @ cmmmeemeeemeeeee no reading--—===———=m——me————
11 -4 -8 -12 -17 -22
12 +6 +10 +16 +26 +30
13 -4 -12 -22 -34 -44
14 +10  +18 +28 +36 +42
15 +2 +4 +5 +6 +8
16 -10 -22 -36 -50 -66
17 +5 +10 +18 +26 +34
18 -6 -16 -24 - -30 -38
19 0 -2 -12 -24 -42
20 +14 +32 +50 +72 +92
21 -14 -32 -48 -68 -86
22 +5 +14 +24 +34 +44
23 +12 +32 +46 +62 +78
24 -2 -4 -5 -6 -6

* Strain Gauge out of order
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TABLE C3 (continued)
STRAIN DATA FOR MODEL WITH FLOORS

Strain in u in/in for locad at 6th floor

Strain Loading
Gauge
No. 10 1bs. 7.5 1lbs. 5 lbs. 2.5 1lbs. 0
1 -88 -72 ~56 -22 -6
2 +88 +68  +46 +26 0
3 -96 -74 -52 ~28 -6
4 +60 +38 +22 +10 +2
5 -82 -64 -44 -26 -6
6 -58 -44 -16 -8 0
7 +42 - . 434 +24 +12
8 -28 -18 -12 -2 0
9 *
10 -————=====--—---no reading-----—-----—————--
11 -18 -13 -9 -4 -2
12 +26 +20 +14 +8 +4
13 -36 -24 -18 -6 -2
14 +34 +28 +20 +10
15 +6 4 +2 0
16 -58 -42 +32 -14 +4
17 +30 +20 +14 +6 0
18 -30 -25 -18 -10 -2
19 -42 -22 -12 =2 0
20 +76 454 +38 +14 +2
21 -72 -54 -36 ~18 -4
22 +34 +24 +15 +6
23 +62 +48 +32 +14
24 -4 -4 -4 -2

* Strain Gauge out of order
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TABLE C4
DEFLECTION DATA FOR MODEL WITH FLOORS

Deflection in inch for load at 6th floor

Dial Loading
Gauge
No. 2.5 1bs. 5 1lbs. 7.5 lbs. 10lbs. 12.5 1bs.
1 .005 .024 .030 .043 .058
2 .015 ,0525  .072 .100 .129
3 .004 .020 .0255 .036 .047
4 .014 .052 .060 097 .1245
5 .004 .018 .023 .033 .046
6 012 .043 .059 .081 .105
7 .002 ~  .010 .012 .017 .022
8 .007 .026 .036 .050 .064
9 .001 .004 .005 .006 °  .008
10 .003 .011 .014 .019 .025
Dial
Gauge

No. 10 1bs. 7.5 1bs. 5 lb.s 2.5 lbs. Q@

1 .044 .032 .019 .008 0

2 .105 .076 .047 .020 .001
3 .038 .027 .016 .006 0

4 .101 .074 .046 .019 .001
5 .036 .024 .014 .005 .001
6 .085 .062 .038 .016 .001
7 .018 .014 .008 .003 Q

8 .052 .038 .023 .009 0

9 .007 .005 .003 .001 0
10 .020 .015 .009 .004 0
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TABLE C5
STRAIN DATA FOR MODEL WITH FLOORS

Strain in p in/in for lecad at 4th floor

Strain Loading
Gauge '

No. 2.5 1bs. 5 1lbs. 7.5 lbs. 10 1lbs. 12.5 1lbs.
1 -21 -36 -54 -68 - -84
2 +18 +40° +60 +82 +100
3 -14 -34 -50 -68 -84
4 0 +6 +18 +34 450
5 -12 -26 -28 -50 -62
6 0 ‘ +6 +14 +26 +40
7 +8 420 +30 +42 +52
8§ e no reading-----=--—----—--—--——
9 *

10 -7 ~-18 -30 -40 -52

11 -4 -8 -12 -17 -22 -

12 +6 +10 +16 +22 +26

13 -4 -12 -22 ~-34 -44

14 +10 +18 +28 +36 +42

15 -2 -4 -5 -6 -8

16 -10 -22 -36 -50 -66

17 +5 +10 +18 +26 +34

18 -6 -16 -24 -30 -38

19 0 -2 -12 -24 -42

20 +14 +32 +50 +72 +92

21 -14 -32 -48 -68 -86

22 +5 +14 +24 +34 +44

23 +12 +32 +46 +62 +78

24 -2 -4 -5 -6 -6

* Strain Gauge out of order
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TABLE C5 (continued)

STRAIN DATA FOR MODEL WITH FLOORS
Strain in u in/in for load at 4th floor

Strain
Gauge

No. 10 lbs. 7.5 lbs. 5 1lbs. 2.5 lbs. 0
1 -72 ~56 44 -28 -10
2 +78 +58 +34 +14 +2
3 -70 -54 -36 -18 -4
4 +40 +34 +24 +10 +6
5 -52 -40 -30 -16 -6
6 +32 +20 +12 +4

7 +42 +34 +24 +12

S tmntatale bl bl no reading-----—---=--—-—-—---
9 * .
10 -43 -32 -22 -10 -4
11 -18 -13 -10 -5 0
12 +22 +16 +10 +4 0
13 =32 -20 -14 -4 0
14 +34 +28 +20 +10 0
15 -6 -4 -2 -2 0
16 -58 -42 -32 -14 -4
17 +30 +20 +14 +8 0
18 -30 -22 -17 -10 -2
19 -42 -22 -12 -2 0
20 +76 +54 +38 T4+14 42
21 -72 -54 -36 - -18 -4
22 +34 +25 +15 +6 0
23 +62 +48 +32 +14

24 - -4 . -4 -4 -2 ' 0
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TABLE C6
DEFLECTION DATA FOR MODEL WITH FLOOR
Deflection in inch for load at 4th floor
Dial ‘ Loading
Gauge

No. 2.5 1bs. 5 1lbs. 7.5 lbs. 10 lb.s 12.5 1lbs.

L001 .008 .012 .020 .029

1
2 .008 .025 .037 .054 .073
3 .001 .008 .012 .018 .026
4 .007 .024 .037 .055 .074
5 .001 ,007 .011 .017 .025
6 .006 .020 .032 .047 .064
7 .001 .005 .008 .011 .015
8 .005 .015 .023 .034 .046
9 0 .002 .003 .005 .006
10 .002 .007 .010 .015 .020
Dial Loading
Gauge
No. 10 lbs. 7.5 lbs. 5 lbs. 2.5 lbs. 0
1 .023 .017 .012 .007 0
2 .060 .046 .031 .020 .003
3 .021 .016 .011 .007 0
4 .060 .048 ~ .031 .019 .003
5 .019 . .014 .010 .006 .001
6 .052 .040 .026 .016 .003
7 .012 .0095  .007 .004 .001
8 .037 .029 .019 .011 .001
9 .005 .004 .003 .0015 0
10

.016 .012 .008 .006 .001



Strain
Gauge
NO‘

1

A U AW N

11
12
13
14
15
16
17
18
19
20
21

TABLE C7

STRAIN DATA FOR MODEL WITH BEAMS
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Strain in p in/in for lateral load at top

S lbs. 10 1lbs.
-20 -60
-18 -42
-16 -40
no strain

-12 -24
-22 -46
+8 + 24
+22 +42
+ 35 +63
+16 + 38
+14 +24
no strain

~-14 -29
+18 +42
-16 -33
+10 + 30

-54 -138

15 1lbs.

-82
-72
-76

-46
-74
+ 38
+62
+ 83
+62
+ 34

-44
+ 76
+ 50
+ 40
~230

20 1bs.

~120
~104
~112

-52
-98
+52
+82
+103
+ 88
+ 44

-59
+114

-66

+54
-326

25 1bs.

-152°
=132
-140

-64
-124
+64
+110
+123
+114
+54

~73
+ 160
-84
+70
+410
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TABLE C7 (continued)
STRAIN DATA FOR MODEL WITH BEAMS
strain in u in/in for lateral locad at top

Strain Loading

Gauge
No. 20 1bs. 15 lbs. 10 lbs. 5 1bs. 0
1 ~124 ~92 64 ~34 -6
2 -106 -76 -46 ~22 0
3 -120 -86 -56 -26 -4
4 no strain '
5 -54 -42 -26 -14 -2
6 -104- -80 -56 -30 -5
11 +56 +44 +30 +14 0
12 +90 +72 +52 +28 +2
13 +99 +79 465 +41 +6
14 +94 +76 +50 + 26 +4
15 +46 +36 +26 +16 . +2
16 no strain ‘
17 -62 -46 -30 -13 -2
18 +130 +98 +68 + 36 +10
19 -70 -52 ~34 -14 0
20 -60 -50 -34 -20 -2

21 -336 -252 -182 ~76 ~8



Dial
Gauge
No.

W o N e W N

-
o

Dial
Gauge
No.

W 0 2 O oW N -

(=]
o

DEFLECTION DATA FOR MODEL WITH FLOORS

TABLE C8
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Deflection in inch for lateral load at top

5 1bs.

.015
.013
.013
.007
.0036
.024
.019
.016
.009
.0051

20 1bs.

.066
.057
.045
.029
.0124
.147
127
.107
.068
.0289

10 1bs.

.030
.024
.020
.012
.0069
.060
.050
.042
.026
L0115

15 1bs.

.054
.046
.039
.021
.0099
.115
.099
.083
.054

- .0230

Loading
15 1bs.

.052
.046
.037
.019
.0095
.100
.086
071
.045
.0206

Loading
10 1bs.

.035
.029
.033
.015
.0073
.085
.074
.063
.039
.0178

20 1bs.

.064
.056
.042
026
L0119
.132
.113
.100
.060
0270

5 1bs.

.020A

.016

.014
010
.0048
.046
.038
.032
.019
L0121

25 1bs.

.079
.061
.053
03¢
.0127
.167
.144
121
077
.0336

.004
.006
.004
.003
.0013
011
.009
007
.006
.0043



Strain
Gauge
No.

1

Ao W N

11
12
13
14
15
16
17
18
19
20
21

TABLE C9

STRAIN DATA FOR MODEL WITH BEAMS

Strain in p in/in for torque at top

25 lb-in

=72

-30

no strain
~34

-12

+6
-10

+15

+50

-11

+ 10

+ 25
+ 30

+ 26

+10

~-14

-20

50 1lb-in
~-164
-66

-76
-24
+22
-28
+ 38
+113
-24
+23
+ 55
+70
+ 54

) + 23

-22
-32

Loading

~-248
-116

~-124
-38
+ 36
-48
+58
+173
-36
+ 35
+83
+108
+ 89
+ 36

=34

-42

-356
~158

~168
-50

+52

-70
+79
+233
-49
+ 52
+114
+ 154
+117
+48
-47
-56

75 lb-in 100 lb-in 1251b-in

-446
-200

-200
-60
+60
.~88
+101
+ 301
-62
+65
+142
+184
+ 145
+ 64
-62
=~70
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TABLE C9 (continued)
STRAIN DATA FOR MODEL WITH BEAMS

Strain in p in/in for torque at top

Strain Loading
Gauge :
No. 1001b~-in 751b-in 501b-in 251b-in 0
1 -380 -308 ~-212 -92 -15
2 -172 -134 -96 -56 -6
3 no strain
4 . =174 -144 -108 -74 -4
5 -50 -38 ~28 -14 0
6  +54 + 38 ~+25 +16 +2
11 -76 -64 ~-46 -28 -8
12 + 82 +62 +42 +22 + 2
13 + 236 +176 +118 +60 - +4
14 --51 -39 =27 -15 -2
15 -50 -38 . =26 -14 -3
16 + 116 + 89 + 60 + 30 +2
17 - +160 +128 +100 +62 +6
18 +119 +92 +56 +30 +3
19 +52 + 39 + 25 - +14 +2
20 -54 -38 -26 -10 0

21 -50 -43 -33 =22 -2



Dial
Gauge
No.

W 00 J O e W N

[
o

Dial
Gauge
No.

W oo N U W N

et
o

TABLE C10
DEFLECTION DATA FOR MODEL WITH FLOORS

Deflection in inch for torque at top

Loading
251b-in  501lb-in 751b~in 1001lb-in
.004 .008 .018 .023
.003 .007 . .016 .022
.003 .0005 .013 .018
.002 . .004 .008 .011
.0006 .0018 .0041 .0054
.017 .059 .101 .139
.013 .043 .081 .110
.009 .035 .066 .091
.006 .023 .043 .059
.0023 .0099 .019 .0262

Loading
1001bs-in 751b-in 501b-in 25lb-in
.026 .018 011 .008
.023 .016 .010 . .007
.021 .014 .008 .005
.013 .009 .005 .003
.006 .0042 .0024 .0018
.149 .111 .072 .045
.119 .094 .056 .035
.099 .073 .046 .029
.064 - .047 .030 .018

.0284 .0208 .0125 0071

1251b~-in

.031
.028
.025
.015
.0071
.180
.146
.121
.078
.0354

.003
.004
.002
.001
.0009
.008
.007
.004
.003
.001
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