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CHAPTER I 

GALOIS FIELDS AND ORTHOGONAL LATIN SQUARES 

' 
A Latin square of side m is an arran~ement of m letters 

into m2 subsquares of a square in such a way that every row and 

every column contains every letter exactly once. If one takes 

two Latin squares of the same dimension and superimposes one 

upon the other, and finds that no ordered pair of letters are 

the same, then the two Latin squares are termed orthogonal. 

The following Latin squares 

A B C 

B C A 

C A B 

are orthogonal. In this chapter we will consider methods for 

constructing orthogonal Latin squares. 

In order to fully comprehend the methods of constructing 

Latin squares certain concepts of algebra and the theory of num­

bers must be known. 

Let a, b and m be integers. We say that ~ is congruent 

to b modulo m, a~b(m), if m divides a-b. We will make use of 

the following properties of congruences. 

(1) If a=. b(m), then a! c =b r c (m), ac =.be (m). 

(2) If ac =bc(m) and (m,c) = t then a=: b('P-).
1 

Uspensky and Heaslet, Elementary Number Theory. New York: 

McGraw-Hill, 1939, pp. 128-133. 

1 
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In the following work we shall always consider the 

least positive residue modulo p, that is, we replace each number 

by the remainder, r, obtained by division by p, where 0 ~ ·r < p. 

Fo,...rm the following pattern wher~ p is a prime 

0 1 ••• 'p-1 

j 1 t;l . . . p-ltj 

L :: 2j 1 r-2j p-1t-2j j :: 1, 2, ••• , p-1.j 

• 

(p-1)j 1 t-(p-1) j ... (p-1) -t-(p-1) j 

All the numbers in Lj are the lea~t positive residues modulo p. 

~e shall show that Lj is a Latin square. Suppose Lj were not a 

Latin square. Then in some row or column a number would appear 

twice. Consider the ith row as being such a row where the element 

in the rth column is the same as the element in the kth column. 

Thus (k-l)+(i-1) j:: (r-1) + (1-1) j .CP). From this relationship 

k=: r (p). Then since 0 < k,r~ p, k =r. Similarly we can show that 

every column contains every number only once. Thus Lj (j= 1,2, 

••• ,~ is a Latin square. 

Vle shall show next that L1 is orthogonal to Lj if 1 f j. 

Assume that 11 is a'f,atin square which is not orthogonal to Lj. 

Then there would be two cells in which the ordered pair of numbers 

would be the same. Suppose ~ is the pair that occurs twice. 

Suppose also that it occurs in the ~th row and ~th column and the 

~th row and dth column. Then 
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~ t- «. ~ =d+ ~ '- =n ( p). 

Hence f((i-j) ~ ~ (1-j) (p). But \1-j\ < p and thus (1-j ,p) =-1. 


By the rule of division of congruences we may divide by (1-j). 


We obtain ~ =~ (p), (3 s J (p), and hence Cl( = i , ~::: S This is 


a contradiction. Hence 1 1 is orthogonal to Lj. 


A set of four orthogonal five-sided squares is presented 

as an example: 

Ll 12 L3 L4 

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 

1 2 3 4 0 2 3 1~ 0 1 3 4 0 1 2 4 0 1 2 3 

2 3 4 0 1 4 0 1 2 3 1 2 3 4 0 3 4 0 1 2. 

3 4 0 1 2 1 2 3 4 0 4 0 1 2 3 2 3 4 0 1 

4 0 1 2 3 3 4 0 1 2 2 3 4 0 1 1 2 3 4 0 • 

Note in particular that the uniqueness of division 

was necessary in constructing Lj. Because of this unique char­

acteristic the residues ~,2~, ... , (p-1)~ are (p-1) different 

residues all different from zero provided that afo (p). Thus 

one of these residues must be 1. Accordingly, corresponding to 
1 every residue §;../0 (p) there exists a residue a - called the 

inverse of !!. such that a-la::= 1 (p). 

The method presented for constructing m-1 orthogonal 

Latin squares if m is a prime suggests that m-1 orthogonal Latin 

squares may be constructed if we have a field F consisting of m 

elements which satisfy the following conditions. 

For every pair of elements ~' b in F, there exist two 

uniquely determined elements s+b and ~b in F. The "addition" 
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and "multiplication" have the following properties. 


I 
 The commutative law holds, 

a+b::;:b+a, ab=ba. 

II The associative law holds, 

(a + b)+ c =a + ( b + c) , (ab) c = a (be) • 

III There exist two elements 0, 1 in F such that a+ 0:::: a 

and at=a for every~ in F. 

IV Corresponding to every a/: 0 there exists an element 

1(-a) and an element a- such that 


1
a+ (-a)= 0 and aa- ==- 1. 


-1
The element a is called the inverse of ~· 


V The distributive law holds, 


c(a-t-b) =ca+cb. 

Any system satisfying the above postulates is ealled a field. 

When the number of elements (which are alsoreferred to as the 

marks of the field) is finite, then the field is known as a finite · 

field or Galois field (G.F.). 

Let g0 = 0, gi =- 1, g2 , ••• , gm-l be the elements· of the 

finite field and form the following pattern which forms an addition 

table for the G.F.(•m) since the elements in the first colu-mn are 

all the elements of the field. 

0 1 • • • ~-1 

gi gi+l . . . gi-t-gm-1 

(1.1) Li= gig2-tl • • • (i::::: 1, ... , m-1)gig2 gig2-rgm-l 

• 

gi~-1 gi~-it-1 • • • gigm-l..,..gm-1· 
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1 We have here a set of m-1 orthogonal Latin squares. Fo~r, if L

is not a Latin square, then o~ne column, say the p th column, 

would contain the same number twice, once in the kth row and once 

in the rth row. Thus we should have 

gigk-1 + gp-1 = gigr-lf"gp-1 ' 

gigk-1 = gigr-1 • 

Since g1 f:.o and every non-zero element in a field has an inverse, 

then 
-1 -1 

gi gigk-1 == gi gigr-1 ' 

and gk-l:::: gr-l• Thus k::: r. By a similar arguJment we can sho,...w 

that each row contains every number exactly once. We can now say 

that 1 , (1 =: 1, 2, ••• , m-1) is a Latin square. Now it must be
1 

shown that Lj is orthogonal to Li if 1 Fj. If this were not so 

then we should have the same ordered pair of numbers occuring in 

two different cells of the square formed by superimposing L1 upon 

Lj· Let the pair which occurs twice be in the «th row and dth 

column. Then 

gi~-1 T ~-1 ~ gigt-1+ gcf-1.' 

gjg-<-1+ g~-1~ gj~-1+go--1 • 

By subtraction 

Substituting in the first equation we see that 

have proved the following theorem. 

Theorem 1.1: If g0 =0, == 1, g2, ••• , gm-l are the marksg1 
of a finite field, then the ~esigns 1 of (1.1) form a set of m-11 
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orthogonal Latin squares. 

The following propositions are valid over a field F. 

Proposition 1: 1!•0 _ 0 for every !!• 

Proof: We have a ==a(l+ 0)::::: a+ ao. If we add (-a) to 

both sides of this equation, we obtain Proposition 1. 

Proposition 2: ab=O, afoo implies b~o. 
-1

Proof: This follows by multiplying ab::: 0 by a on the 

left. 

We denot~ by m.x, where m is a positive integer and x is 

a mark ofF, the su~ of m x's. 

Proposition 3: If m is an integer, such that m.l=:O, 

then m.x=O for all x in F. If m.x==O for one xf=o, then m.y::::O 

for all y in F. 

Proof: If m.l ~ 0 then m.x =(m.l)x :::Ox =0. Al S 0 if -m. X ==. 0 

then m.x=:: (m.l)x =0. If x/O then >by Proposition 1 m. 1=0 and
1

therefore m.y· :::0 :for every y. 

Proposition 4: If p is th~ smallest positive integer 

for which p.l ::::-0 then p i~ a prime. 

Proof: Suppose p ==.mn, 0 <m,n <. p, then (m. n) .1 :::::m. (n .1) =0. 

Hence if n.l-= 0 then we get a contradiction, because n <p. By 

Proposi_tion 3 if n. 1 =\: 0, then m. y =0 for all y in F. In particu­

lar m.l::::O, which is impossible•.Hence p is a prime. 

The number p is called the characteristic of the field. 

If there is no integer p for which p.l~o th~n the field is called 

a field of characteristic zero and is necessarily infinite because . 

the elements n.l, n~o,1,2, •.• ,are then all different. 
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Any positive integer m may be written in the form m= 

a+AP, 0 '-a~ p-1, where >. is a non-negative integer. Then 

m.x ~(at AP) .x:::: a.x 

for any element x of F by Proposition 3. Thus we may replace m 

by its least positive residue modulo p in such calculations and 

we shall do so in the proof of the next theorem. We shall also 
, 

rename certain elements in F using ~ to represent either a non­

negative integer or the element of FJa.l, 0,< a~ p-1. Then we 

may write 

a • x :::. (a •1) x ::: ax • 

This should not lead to 'confusion in the work that follows. 

Theorem 1.2: The number of elements in a Galois field 

F is a power of its characteristic p. 

Proof: Put == 1. If. there is a mark w2fa.l=a forw1 
t.f tl...ot.s.~ c:\(,7 ........ ~>t ,"V\d\)d~ a..""''a.rK "''} 

a ~ 0, 1, ••• , p-1 form the marks a
1

w1 +.a2w2 and.., form all the 

marks Cpntinue this process until all the 

marks ofF are exhausted. If w1 , ••• , wm are obtained in this way, 

then a1w1 + ... t amwm (a1 :::; 0,1, ••• , p-1)J represent all the marks1
m

of F and are p in number. For, if 

alwl + ... + amwm ~blwl+ . •. + bmwm , 

then (a1-b1). w1 + ... +(Bm-bm). wm-= 0. Let k be the largest number 

ror which ak-~= -cktf o. Then 
-1 -1 

wk::: ck (al-bl)wl+ • • • +ck (ak-1-~-l)wk-1 

= dlwl + • • • +dk-lwk-1 

where d1 , ••• , dk-l are residues modulo p. But this contradicts 
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the significance of wk. Hence F contains p 
m elements. 

Let o( be any mark of a Galois field, G.F. (pm), and form 
,; It 

1 , o( , "'.J').' ••• , G( , • • • • Since the number of marks is finite we must 

have, for some k >j, 

d.R::::.a_J o(lf-j::: J. 
1 

Definition: The order, t, of an~ element, Q(, in a G. F. (pm) 

1£ the least positive power to which that element must be raised 

to give the identity element of the field. 

Let x1 , ..., x be all the non-zero elements of the
Pm-1 

G.F.(pm). Then 

~xlo{x2 ••• o{ x m = xlx2 • • • x m 
p -1 p -1 

if OJ.F 0, since o( xi ::;-o( xj implies that xi= Xj and thus the elements 

p 
m
-1, must all be distinct. Hence 

pm-1 
0( = 1 for all o(~O. 

We shall continue to prove several additional propositions 

on the order of elements in a finite field. 

Proposition 5: If s is the order of c( and d.==" 1, then 

n::O(s). 
)... a..xd r-

Proof: There exists sn integer!! such that n~)\s t-r, 0 ~ r <s. 
n · k A~

Also~ ==1 implies <( ::::1 since o\ ~ 1. Hence r:::o, since r(s. 

Corollary: If s is the order of o( then pm-1 =o (s). 

Proposition 6: If c<. has the order s and fJ the order t 

and ( s, t) :: 1 then r(p has the order st. 

Proof: For any r >o, if (o<(J) r = 1, then (cr{ {3) rs=- 1 and 

$ 5
hence r=- 1. Also sr~O (t) by Proposition 5. Hence r=:O (t), 

since (s,t)-=1. Again, if (d.~ )'tl, it follows that c(.-ttl and st 
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t"'-.q 

is thus" order of d.{3 • 


Proposition 7: If o( has the order )V,< then c<A has the 


order ,u. 


Proof: Let the order of o<A be s. Then (oCA) 5 == 1. Since 


(ce"t'== l,.)i=:o(s) by Proposition 5.· Since cC4\.s_ 1 and the order of 


d.. is >-.)./., .>.s ~ 0 ("l\p.). From this 1 t follows that s =. 0 yo and 


s ~fl. 

Proposition 8: If s is the largest order of any element 

in a Galois field F and tis 	the order of any element, then saO (t). 

Proof: If s ¢0 ( t) then for some prime p >0, we would 

have s:::p 9 r, t~pfr', (p,r).:::: 	(p,r') ::;;:-1, f>e. For.otherwise, 

every prime factor of t would occur in s to the same power or to a 
e 

higher power and we would have s =o· ( t) • Now cf is an element in 
e 4.. e 

the field F and has order r since (c] ) .::::.1 for if the order of of 
e e 

were g < r then cl g== 1 and p 	 g < s which is impossible since s is 
f I .-t:' f

the order of c< • Similarly p is the order of ~ r since (~ )P= 1. 

r e ' rBY Proposition b since (p , r);::; 1 then ~ P 13 r has order p r. 

Since f > e then pfr > s which is· impossible. Thus our assumption 

is false. Therefore s :s 0 ( t) • 

Definition: An element of order pm-1 in the Galois field 

of order pm is called ~ primitive.root. 

Lemma 1.1: A monic polynomial P n (x):::: Y?-t a1xn-l + ••• +an 

of degree n·with coefficients in G.F.(pm) has at most n roots. 

Now consider the polynomial Pn(x) of degree n. 

Case 1: Pn(x) has no roots in G.F.(pn). 

Our assumption is true since 0 <n. 



10 


Hence 

P n (x) :::: Pn (x) -Pn («1 ) 


n n n-1 n-1 

=- x - G(l +alx -ai'(l +· ..+an-1 (x-O(a) 

=- (x- q 1) Q(x) 

where Q(x) is a monic polynomial of degree n-1. By our induction 

assumption Q(x) has at most n-1 roots and hence Pn(x) may be writ­

ten in the form 
-t, ~ g.

Pn (X) = (X- C(1 ) (X- o(:l ) -. • • (X- a(,_) R ( X) , q'i f; Cl( j , i fo j 1 

where I, 1-..l~ + •. •+1"_. n and R(x) has no roots· in G.F. (pn) and 

also where R(x) is a monic polynonial of degree n-(.f., 1-j?<.,.. •• ·+-4). 
Suppose Pn(x) has a root p different from «1 , 1~1,2, 

••• , k. Thus 

Pn (fl ) '"' 0 == ( fJ -0{1 /' ( fJ -~ l".. . ({) -at,/"R ( /3) where 

R((J )j:. 0. Hence (J must be one of the o(1 , 1 ~ 1,2, ••. ,k. But 

this is impossible by our hypothesis. Therefore the distinct 

roo t s of P n ( x) are o(1 , 1 --= 1 , 2 , ••• , k . 

Suppose ~l is a root of P(x) of multiplicity m1>.f1 • 

This means that 
m 

P (x)::: (x-c(, ) lD(x) where D( o(,) f 0 


and the degree of D(x) is n-m1 • Hence 

i lA m1-P1

(x- ~) <1.••• (x-c:(k) R(x) =(x- oC1) D(x). 

Set x :::: o(1 • Then 

( <(, - ~Jl... . . ( <>l, - q,.~ ( "'' ) :::: 0 • 

Since o(1 ~ o( j for 1, j = 1, 2, 3, •.• ,k, then R(x) has a root 0(1 in G.F. 

(pn) which is impossible. Hence no root occurs with a greater 

multiplicity than shoW11 • Since 1,-r ...I.a. r ... +-4 ~ n the proof of 



11 


Lemma 1.1 is complete. 

Theorem 1.3: A .Galois field q.F.(Rn) of. order~·~ 

~(pn-1) primitive roots where ~(n) denotes~ number of residues 

modulo u which ~ ~r~~ ~ ll· 
o.\'"' de r-

Proof: Lets be the largest integer occurring in G.F.(p0 ). 

Since every order divides s we must have, for every ~ ~ 0 in 

G.F.(pn), 
s 

~ = 1. 

Thus the polynomial in o(~ (1.2), has the roots x1 , ••• ,x n ; i.e., 
n n P -1 

it has at least p -1 roots. But p -l=O(s). Therefore p0 -l==s. 


Thus there exists at least one primitive root. Let this prim­


1
itive root be w. Then w , where (i,pn-1)~1, is also a prim­

itive root. For, lett be the order of w
1 

• Then w1t: 1 and, 


since pn-1 is the order of w then it ~0 (pn-1) or t=o (pn-1). 

i(pn_l) · n

But w == 1 and we may conclude that t == p -1. 

We shall now show that all the primitive roots may be 


obtained this way. Let v be any other primitive root and since 


w is also a prim!tive root, where -wf, j =: 1, 2, ••• , pn 1., there 


exists an integer j such that wj = v, j < p0 -1. Suppose that 


( j.,pn-1) ""'k f 1 . Then wj (pn-1)/k= wj/k[(pn- 1 )'!_ 1 sinae wj/k is 

. j (~-JJ . p_::l. 


an element in G.F.(pn). But w is equal to v " which 


is equal to 1 and thus v is not a primitive root. But this is 


a contradiction. Hence all pri~itive roots are of .the form w1 , 


(i,pn-1) =1 1 and the proof of Theorem _1.3 is complete. 


Once a primitive root is known, the construction of a 


set of orthogonal Latin squares can be simplified considerably. 
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Let w he a primitive root and o,l,x3, ••• ,Xn be the elements of a 

finite field of order n. Then 

0 1 .. . "n 
w 0-ti 

1 t- w 
Ot-1 

• • • Xnt-W 
0-t--1 

Li~ wl+i ltw1+1 
••• Xnt-W 

1?1 (1::: 0 ,1,2, •.• ,n-2) 

n-2+1~-2+1 X r~-2t-ili w 
n 

are n-1 orthogonal Latin squares, for, the elements in the first 

column are all the elements of G.F.(~n) and thtis we have an add­

ition table as in (1.~ It should be observed that Li+l is ob-

te.1ned from -Li by cyclically permuting the last n-1 rows. 

We shall next construct a G.F.(pm) for every m and 

every p. If m === 1 then the residues modulo p form a G. F. (p). 

Consider the polynomials 

p(x)= ~+a1xn-:;._ •• ·+an 

whose coefficients a1, ••• , a are elements of a field. 
n 

Theore~ 1.4: .U. ili) and ~ are polynomicls with 

coefficientl;in .§..field F 1!llm tbere exists .2. polynomial g_(i) 

p ( x) :: 0 (d. ( x) ) , q ( x) =. 0 ( d ( x) ) 

!!1<1 .2Y.£.h .illi!1 p(x) .= O(h(x)) implies d(x) ==. O(h(x)). A!.§.Q there 

exist Eolynomials a(x) and b(x) such that 

a(x)p(x)+ b(x)q(x) ~ d(x). 

If d{x) has the first coefficient one then d(x) is called the 

greatest common divisor of p(x) and q(x) and we shall write 
r 

(p(x) ,q(x));:: d(x). . 
If d(x) satisfies the conditions of the above theorem then ad(x) 
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also satisfies these ·Con~itions for every non-zero element ~ of 

F. Thus if b is the first coefficient of d(x) then b-1d(x) also 

satisfies the conditions of the above theorem and the first 

coefficient will be 1. It follows that the greatest common div­

isor is uniquely determined. 

Proof of Theorem 1.4: From the set of all possible ex­

pressions, d(x), of the form 

(1. 3) a(x)p(x) + b(x)q(x) = d(x) J 


select a d(x) of the lowest possible degree where the polynomial 


zero is not considered to have a degree. We shall now show that the 

polynomial d(x) satisfies the conditions of the theorem. By long 

division there exists a polynomial h(x) such that 

p(x) -~(x) d(x) = r(x) 

where r(x) is either zero or has a degree less thari that of d(x). 

Multiplying (1.4) by h(x) we have 

~(x)a(x)p(x)+~(x)b(x)q(x)= p(x)-r(x). 


Put S:(x) = - [A{x) p (x) -9 , and b(x) =. - [_k(x) b(x)} . 


W& then have 


a(x) p(x) + b(x) q (x) = r(x). 

Since d(x) has the lowest degree of all the polynomials of (1.3) 

it then follows that r(x)= o. Thus p(x) =o(d{x)). By a similar 

argument q(x)=o(d(x)). Finally, if a polynomial h(x) is a fac­

tor of both p(x) and q(x), by (1.3) it is also a factor of d(x). 
~(,<.)

Definition: If a polYnomial with coefficients in ~ field 
. . 


F has !!Q. divisor except a and ag (x) with a in. F, then _gW i§_ 


called irreducible in F. 

Congruences modulo a polynomial m(x) are now defined 
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in exactly the same way as congruences ih the system of all 

integers. Then we calculate modulo m(x) by adding, subtracting, 

and multiplying in the same manner and by always replacing every 

polynomial f(x) by the residue of smallest degree obtained by 

dividing f(x) by m(x). 

Theoren 1. 5: If .&.Us) .1§. irr~du~i'tJl~ in F then t:te 

residues modulo ill) in the system ~ (x) .Qf. ill oolmorqi.a,..ls 

with coefficients in F form ~ field. 

Proof: We see that all the properties of a field hold 

except possibly the fact that an inverse exists. Thus we can 

show that Theorem 1.5 holds true if we can prove the following: 

To every f(x)fO{g(x)) there exists a q(x) such that f(x)q(x)~ 

l(g(x)). In other words we must show that there exists a ~(x) 

such that 

f(x)q(x)-1 ~ ~(x)g(x). 

Since g(x) is irreducible and f(x) j O(g(x)), we see that (f(x), 

g(x)):::: 1. But by Theorem 1·4 we have shown that for any two 

polynomials f(x) and g(x) there exist two polynomials q(x) and 

)\(x) such that a linear combination of the two given polynom­

ials exists and is equal to the greastest co~~on divisor (g.c.d.) 

of f(x) and g(x). Thus there exists a polynomial -~(x) such 

that 

f(x)q(x)-.A (x)g(x)= 1. 

Let F now be the finite field, G.F.(p) of residues 

modulo p. We then have 

Coro1larx to Theorem hl: 1f. .iliJ of degree .uJLllh 
coefficients in G.F~(p) ~ irreducible jn G,F,(p) ~~ 
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nresidues modulo g(x) ~ ~ Galois field with R_ elements. 

Proof: Every polynomial with coefficients in G.F.(p) 

is, modulo g(x), congruent to one of the pn polynomials 
__n-1

ao+alx+ ••• +an-lx-­

where a ,a1 , ••• ,an-1 may be any one of the residues modulo p
0 

nand there are p such polynomials. 

Thus to construct a G.F.(pn) we must find first an 

irreducible polynomial of degree n with coefficients in G.F.(p). 

As an example the polynomial x2+ x +1 is irreducible 

modulo 2, for none of its roots are in the field modulo 2~ 

Hence the residue$ 0, l,x,x + 1 form a G.F. (22). Also 

x 0:: l(x2+ x rl), 

1 x - x(x2+ x+l), 
2 2 

X E: X -t- 1 (X 1- X+ 1) • 

Thus x is a primitive root of this Galois field. We now set up 

the addition table for the elements o, l,x,x~l. 

0 1 X X +1 

0 0 1 X x+-1 

1 1 0 x+l X 

X X xt-1 0 1 

x+l xt-1 X 1 0., 

Since x is a prir1itive root, we obtain from the addi­

tion table three orthogonal Latin squares of side four by eye­

lical1y permuting the last three rows. Replace x by 2 and x +1 

, 
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by 3. We obtain the following orthogonal Latin squares: 

0 1 2 3 0 1 2 3 0 1 2 3 

"">1 0 .3 2 ;::_ 3 0 1 3 2 1 0 

::? 3 0 1 3 2 1 0 1 0 3 2 

3 2 1 0 1 0 3 2 2 3 0 1 . 
As 	 a second illustration the polynomial x 21- x -1 is 

2irreducible modulo 3 since o2 T 0-1.: 2(3), 1 2-t-1-1=1(3), 2 -i- 2 

~1= 2(3). The element xis a primitive root for 

x0 =1, x 4:::::.. 2, 

1 5 
X 	 : X , X S. 2x, 

2x :: 2X + 1 , Xb:::=:.. X -t 2, 

7 
X =X+ 1. 

Forming the addition table we have 

0 0 1 2 X x-t-1 X-t-2 2x 2x-t-l 2xt-2 

1 1 2 0 Xt-1 Xi-.2 X 2xt-l 2xl-2 2x 

2 2 0 1 x+2 X' Xt-1 2X-t-2 2x 2X1··1 

X X X+1 Xt-.2 2x 2x-t-l 2x+2 0 1 2 

x-tl Xt-1 X+2 X 2xt-1 2x+2 2x 1 2 0 

x+2 X+2 y Xt-1 2x+2 2x 2xt-1 2 0 1 

2x 2x 2x+l 2x-t2 0 1 2 X x+l xt-2 

2x+1 2xt-l 2x-t-2 2x 1 2 0 x+l X-t-2 X 

2x+2 2xt-2 2X 2x+-l 2 0 1 Xt-2 X xt-1 • 

Setting x:::: 3 and cyclically permuting the last eight rows we 

obtain the following set of eight orthogonal Latin squares: 



17 

0 1 2 3 4 5 6 7 8 


1 2 0 4 5 3 7 8 6 


2 0 1 5 3 4 8 6 7 


3 4 5 6 7 8 0 1 2 


4 5 3 7 8 6 1 2 0 


5 3 4 8 6 7 2 0 1 


6 7 8 0 1 2 3 4 5 


7 8 6 1 2 0 4 5 3 


8 6 7 2 0 1 5 3 4 


0 1 2 3 4 5 6 7 8 


3 4 5 6 7 8 0 1 2 


4 5 3 7 8 6 1 2 0 


5 3 4 8 6 7 2 0 1 


6 7 8 0 1 2 3 4 5 


7 8 6 1 2 0 4 5 3 


8 6 7 2 0 1 5 3 4 


1 2 0 4 5 3 7 8 6 


2 0 1 5 3 4 8 6 7 


0 1 2 3 4 5 6 7 8 


5 3 4 8 6 7 2 0 1 


6 7 8 0 1 2 3 4 5 


7 8 6 1 2 0 4 5 3 


B 6 7 2 0 1 5 3 4 


1 2 0 4 5 3 7 8 6 


f2 0 1 53 4 8 6 7 


0 1 2 3 4 5 6 7 8 


2 0 1 5 3 4 8 6 7 


3 4 5 6 7 8 0 1 2 


4 5 3 7 8 6 1 2 0 


5 3 4 8 6 7 2 0 1 


6 7 8 0 1 2 3 4 5 


7 8 6 1 2 0 4 5 3 


8 6 7 2 0 1 5 3 4 


1 2 0 4 5 3 7 8 6 


0 1 2 3 4 5 6 7 8 


4 5 3 7 8 6 1 2 0 


5 3 4 8 6 7 2 0 1 


6 7 8 0 1 2 3 4 5 


7 8 6 1 2 0 4 5 3 


8 6 7 2 0 1 5 3 4 


1 2 0 4 5 3 7 8 6 


2 0 1 5 3 4 8 6 7 


3 4 5 6 7 8 0 1 2 


0 1 2 3 4 5 6 7 8 


6 7 8 0 1.2 3 4 5 


7 8 6 1 2 0 4 5 3 


8 6 7 2 0 1 5 3 4 


1 2 0 4 5 3 7 8 6 


2 0 1 5 3 4 8 6 7 


3 4 5 6 7 8 0 1 2 
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3 4 5 6 7 8 0 1 2 4 5 3 7 8 6 1 2 0 

4 5 3 7 8 6 1 2 0 5 3 4 8 6 7 2 0 1 

0 1 2 3 4 5 6 7 8 0,1 2 3 4 56 7 8 

7 8 6 1 2 0 4 5 3 8 6 7 2 0 1 5 3 4 

8 6 7 2 0 1 5 3 4 1 2 0 4 5 3 7 8 6 

1 2 0 4 5 3 7 8 6 2 0 1 5 3 4 8 6 7 

2 0 1 5 3 4 8 6 7 3 4 5 6 7 8 0 1 2 

3 4 5 6 7 8 0 1 2 4 5 3 7 8 6 1 2 0 

4 5 3 7 8 6 1 2 0 5 3 4 g 6 7 2 0 1 

5 3 4 8 6 7 2 0 1 6 7 8 0 1 2 3 4 5 

6 7 s 0 1 2 3 4 5 7 8 6 1 2 0 4 5 3 • 

Lemma 1.2: Every ~odulo p irreducible polynomial of 
r 

degree r is , mod p, a divisor of xP -1-1. 

The congruence relationship a(x)= b(x) mod (f(x),p) 

stated in full says that a(x)-b(x) is divisible by f(x) where 

the coefficients of f(x) are elements of the G.F.(p). The set 

of polynomial residues mod (f(x),p) form a Galois field of order 

pr. Hence, since xis an element of the G.F.(pr), 

xPr-1:::!1 (f(x),p). 

Therefore it follows that 
r 

xP -l-1=0 (f(x) ,p) 

which is Lemma 1.2. 

Lemma 1.3: If f(x) is irreducible mod p and of degree 

s /r then r(x) is, mod p, not a divisor of xpr-1-1. 
pr-1

Assume that x -1 =.o (f(x) ,p) and consider the Galois 
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field of residues mod (f(x),p). The order of this Galois field 

8is p • Every element of this Galois field is of the form a ra1x
0

r ... + akx
k 

, k <:. s, where the coefficients a ,a1 , · •• ,ak are res­0 
r

idues mod,p. By our assumption xP 2 x(f(x) ,p). Now (a -t- a1x + 
0 

• •. t akxk) p ==) PI I a~i' ... ak~q, r 2q1..+• ••-rk~. 
~ tilol ... 0o+f.+•· ·~It:::. .p DD · 0 1 • 0~ • 

Since the coefficients of a_ multinomial are integers, the qi!, 

i:::::O,l,2, ••• ,k, are all factors of p,l. Thus the coefficients 

are all multiples of p, since p is a prime, and hence congruent 

to zero mod p, exept in the case where one of the q1 = p (caus­

ing the rest pf the q1 rs to be zero) in which case the factorial 

expression reduces to the value one. Thus we have 
. k)P P- P p p kp

( a -r a1x -t ••• -t akx ~ a -t- a 1x -t- ••• -1-akx (p).
0 0 

By mathematical induction it may be shown that 
k Pr pr r r Pr kpr

(a + a1x + •.. + akx ) = a 0 +al xP+ •.. + ak x (p) •
0 

Since a~r=: a 1 (p) 1, ·i~O,l,2, ••• ,k, and also :x:InPr xm(f(x),p) 

for m == 1,2, ••• ,k, then it follows that 
k r · k 

(a .+ a1x + ••• +akx )P= a + a1x + ••• t-akx (f(x) ,p).
0 0 

5Hence the order of our G.F.(p 5 
) is p • Since s >r, this is im­

possible. Thus we conclude that xPr-1-1;'0 (f(x),p). 

Definition: The derivative with respect to~ Q£ ~ QQlz­

nomial 

lyaeDuffee,c.c. Introduction to Abstract Algebra. New York: 

Wilex~ 1940, p. 25. 
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Theorem 1.6: The derivative of ~ integer is congruent 

to ~· The derivative .Q.f. x is congruent to .Qlli!· .I.h§. derivative 

.Qf. ~ .m is congruent to the .§.Y!a of the derivatives. ~ deri­

vative of~ product f(x)g(x) is congruent to 

f' (x) g(x) + f(x) g' (x) (p). 

The proofs of the first three statements follow directly 
e 

from the definition above. To prove the fourth sta(ment, set 

f(x) at aixi , g(xr= ~bjxj , 

e ~ i+j
f(x) g(x)=: ,~ 1;: a1bjx (p). 

Thus the derivative of f(x)g(x) is then 
~ ~ i+j-1_ t. 1-l~ j .i 1 ~ j-1
i.~ ~ (i t-J) aibjx =- .-?oiaix f;-; bjx + f;oaix fr.; jbjx 

== f' (x) g(x) + f(x) gt (x) (p). 

Theorem 1.7: If (x-x1) h is the highest power of x-x1 

which divides f(x), and if (p,h):::. 1, then (x-xl)h-l .ll ~ 

highest power of x-xl which divides r•(x). 
Proof: Let f(x) =(x-x1)hg(x). · Then by the above 

theorem 
h h-1

f' (x) ~ (x-xl) gt {x) +- h(x-x1) g(x) 
h-1 L ,1=: (x-x1) L(x-x1) g' (x) + hg(x~ , 

and thus (x-x1)h-l divides f'(x), mod p. Now if (x-x1)h is the 

highest power of x-x that tlivides f(x), x-x1 cannot divide
1 

g(x), and since (p, h)= l, x-x1 cannot divide ~x-x1) gl (x) + 
hg(x~ since hg(x)¢o, mod p. Thus (x-~)h-l is the highest 

power of x-x
1 

which divides r•(x), mod p. 

Lemma 1.4: The polynomial tm-1 has no double roots 

mod p if mf. 0 ( p) • 
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We see that, from Theorem 1.7, if f(x) has a double 

root then r(x) and df/dx have a common fac.tor by putting b::: 2. 
mIf x -1 and __m-1mx have, mod p, a common root, sav ~, then 

m 
G( -13 0 ( p) , m-1 

m o( =: 0 (p) • 

Since (m ,p) ~ 1, 

which is !~possible. 

TheoreM 1.8: There exists ~ Galois fteld of order Rr 

for everv prime ~ and every ~· 
r 

Proof: The polynomial xP -l-1 contai~s, mod p, no 

irreducible factor of degree > r, by lemma 1.3. All the irre­
r 

ducible polynomials of degree f <r are, mod p, factors of xP -1-1, 
r 

by lemma 1.2. Now consider all the irreducible factors of xP -1-1 

of degree f <r. By lemma 1,2 these factors, if any, are all in 
pf-1 1 d pf-1x - an by lemma 1.4 they occur at most once in x -1. 

Hence the sum of the degrees of these factors cannot exceed the 
f 

degree of xP -l-1. Thus the sum of the degrees of all the factors 

of degree less than r is at most 
..t-J ...t~r r 

_["(pf-1) <.[Pf~ P -p <Pri?~ pr-1. 
p:::. I P~l p-1 p-

The factors, if any, that are of degree <r, which are reducible 

are included in the irreducible factors of degree < r. Thus 

there is at least one irreducible factor of degree r. ~et f(x) 

be this polynomial. Then the polynomial set of residues of the 

form. 

a 
0 
+ a

1
x + ••• -r ar_1xr-l (f(x) ,p) 

form a Galois field of order pr by the corollary to Theorem 1.5. 
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Definition: Two fields F ·~ F' ~ called ~somorphic 

if there exists~ bi-unique correspondenee a~a•, a in F, at 

in F', · ~ .t.b!1 a~a', b~b' implies a +b~a' + b', 

ab~a'b'. 

nTheorem ~: Any 1!Q Galois fields with p marks ~ 
1

isomorphic. 

We have thus essentially only one Galois field with pn 

marks. We shall refer to this field as G.F.(pn). Let ~ be any 

primitive root of the Galois field. This root satisfies the 

equation 

Consider the elements of the form a + a1x + 
0 

Among these elements are the elements of our set of residues, 


mod p, which we call the integral marks of the G.F.(pn) • 


. Hence o( satisfies a polynomial equation whose coefficients are 

integral marks of the field. Let k be the lowest degree of such 

equations satisfied by 0( • Then 0( satisfies an equation of 

the form 

t \ . 5) cYkxk r (l'k -1xk-1+ .. •1- ~1 x -t ~o == 0 

where b'k"! 0. If k is to be the lowest degree for such an equa­

tion satisfied by ~' then (1.5) is an irreducible equation in 

the sense that the first member cannot be separated into factors 
de%r'(_'(.

of positive 1nt8ge~s with coefficients which are integral marks 


of the field since otherwise k would not be the lowest degree. 


Thus (( k and hence every power of « can be expressed in the 


Birkoff G. and McLane s, A Survey of Modern Algebra. New York: 

MacMillan, 1948, p. 429. 

1 
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k-1 k-2rk-1« t- cY k-2 c:( -t- ••• -r r,oc...,... ~0 
where ( , (/1 , ••• , c1 k-l are integral markspr the field not all 

0 
m 

zero. Suppose that ~ can be expressed by the following two 

expressions, viz., 
m p a( k-1 12 k-2 r;_(1.7) o( = k-1 + ,..., k-20( + .•• i- ~ 0 , 

m r k-1 r k-2 r 
~ ::: d k-10( t- 0 k-2 0(. + .•. + () 0 ' 

from which we obtain 

( sk-1- t9k-1) <X k-l-t- ( Jk-2- ~k-2)o( k-
2t· ..... f0 -f:io ~ 0 • 

But this equation satisfied by ~ is of degree k-1 which is less 

than·k. This is impossible. Therefore Dtm has a unique repre­

sentation in the form (1.7). But every non-zero element of this 

field is given by 0(. m for some value of m. Thus every non-zero 

'element of the field is given by 

v k-1 k-2 
ok-1 Ol + ~k-20(. + • • • +· '¥ o 

in one and only one way. The number of ways of writing (1.7) is 

pk-1 ( the -1 for the case where }/ ::: 111 :::::. •••.-:::: i =: 0) • But 
0 k-1 

every expression of this form is an element of the field. Hence 

the pk-1 possible non-zero forms are all the pn-1 non-zero 

elements of the field. Therefore 

pn-1.:: pk-1 

from which 1 t follows that n ::o k. Hence 
"~!" n

Theorem~: A primitive !2Q1 Q£ ~ G.F.(v) satifies 

~ irreducible eguation Qf the fQrm 
__n n-1 
x-- t- c1x + . . . + en== 0 
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Corollary 1: A Rrimitive·~ satisfies DQ equation 

of degree less than n, the coefficients of which ~ integral 

marks of the G.F.(pn). 

Proof: In the proof of the above theorem we saw that 

the lowest degree was n. 

Corollary 2: The quotient 
n 

xP -X 
n n-1 · 

X i- ClX -t- ••• -t-Cn 

~ be expressed ~ ~ polynomial 1u ~ with coefficients which 

~ integral marks Q( ~ field •. 

Proof: This is equivalent to Lemma 1.2. 

For any x in the field of residues mod (f(x),p) if 

xm-1Fo (f(x) ,p) form <pn-1 and ~-l!:iO (f{x) ,p) for m=pn-1 

then xis a primitive root. Then if G.F.(pn) is to be represent­

ed by the residues mod (f(x),p) in such a way that xis to be 
pn-1 

a primitive root we must remove from x -1 all the factors 

which are also factors of XM-1 for m~pn-1. Hence the remain­

ing polynomial has as its roots all the primitive roots of G.F. 

(pn) and by Theorem 1.3 it has degree ~(pn-1). This is called 
nthe cyclotomic polynomial of order p -1. 

As an example, to construct G.F.(23) fo~m the cycloto­

mic polynomial of order 23-1:::: 7. Its degree is f (7) ~ 6. 

Since x-1 is a factor of x 7-1 where m~ 1 ~ 7, dividing out the 

factor x-1 from x7-1 we obtain 

x6 +x5+x4+x3 -r x 
2
-t-xt-l. 

By Theorem 1.10, this polynomial must, mod 2, decompose into two 
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factors of degree 	three each. Thus 
2 2(x6-t- x5+ X4+ XJ+ x +-X -t-1) =(x3+ax -r bx 1-C) (x3

1"" ax2+ bx -1-C) (2). 

Hence, equating the constant terms, we have cc=:l (2) and c=c==­

1. The coefficient of x is c.Wb=b t- b =: 1 {2). We may take b =o, 

b ~ 1. The coefficient of x2 is ac-r ac 1- bb =a+ a :=.1 (2). The 

coefficient of x3 is C.tc-ta~+ib =a:.= 1 (2). Hence a =-1 and a::: o. 

Therefore 

3Since x -t- x + 1 is 	irreducible mod 2"-then 

X o_l 4' 2 
::: , 	 X :: X 1- X 1 

5 2x1~ x, X :; X 1- X+ 1, 
6 2x2=: x2, X 	 :::! X t- 1 1 

7 I.3 
X : X +1, X ~ 1, 

from which we see that x is a primitive root. Forming the 

addition table we have 

0 

1 

X 

xt-1 
2 

X 

0 1 x x+l 

0 1 x x+l 2 
X x 2+1 x 2 -rx 

2 . 
X+X+l 

1 0 x+l x x 2+1 x2 x 2+x+l x 2+x 

x x+l 0 1 
2 

X+X x~x+-1 x2 x 2+1 

Xt-1 X 1 0 x 2+x+l x2-t-x x 2+1 x2 

x 2 x 
2
+1 x2+ X x2+ XJ.l 0 1 X x+l 

x~l x 2 x2+xtl x~ x 1 0 x+l X 

x2+ X x2 
t- x+l x2 x;.l X Xt-1 0 1 

X~ X+-1 :x2 
-t- X x 

2+ 1 x 2 x+l X 1 o. 

Setting x~2 and cyclically permuting the last seven rows we 
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obtain the following set of 

side eight: 

0 1 2 3 4 5 6 7 

1 0 3 2 5 4 7 6 

2 3 0 1 6 7 4 5 

3 2 1 0 7 6 5 4 

4 5 6 7 0 1 2 .3 

5 4 7 6 1 0 J 2 

6 7 4 5 2 .3 0 1 

7 6 5 4 3 2 1 0 

0 1 2 3 4 5 6 7 

32107654 

4 5 6 7 0 1 2 3 

5 4 7 6 1 0 3 2 

6 7 4 5 2 .3 0 1 

7 6 5 4 3 2 1 0 

1 0 3 2 5 4 7 6 

2 3 0 1 6 7 4 5 

0 1 2 3 4 5 6 7 

5 4 7 6 1 0 3 2 

6 7 4 5 2 3 0 1 
r 

7 6 5 4 3 2 1 ·o 

1 0 3 2 5 4 7 6 

2 3 0 1 6 7 4 5 

3 2 1 0 7 6 5 4 

4 5 6 7 0 1 2 3 

seven orthogonal Latin squares of 

0 1 2 3 4 5 6 7 

2 3 0 1 6 7 4 5 

3 2 1 0 7 6 5 4 

4 5 6 7 0 1 2 .3 

5 4 7 6 1 0 3 2 

6 7 4 5 2 3 0 1 

7 6 5 4 3 2 1 0 

1 0 .3 2 5 4 7 6 

0 1 2 3 4 5 6 7 

4 5 6 7 0 1 2 3 

5 4 7 6 1 0 3 2 

6 7 4 5 2 3 0 1 

7 6 5 4 3 2 1 0 

1 0 3 2 5 4 7 6 

2 3 0 1 6 7 4 5 

.3 2 1 0 7 6 5 4 

0 1 2 3 4 5 6 7 

6 7 4 5 2 3 0 1 

7 6 5 4 3 2 1 0 

1 0 3 2 5 4 7 6 

2 3 0 1 6 7 4 5 

3 2 1 0 7 6 5 4 

4 5 6 7 0 1 2 3 

547 61032 
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0 1 2 3 4 5 6 7 

7 6 5 4 3 2 1 0 

1 0 3 2 5 4 7 6 

2 3 0 1 6 7 4 5 

3 2 1 0 7 6 5 4 

4 5 6 7 0 1 2 3 

5 4 7 6 1 0 3 2 

6 7 4 5 2 3 0 1 • 

If we use the method of decomposing the cyclotomic 

polynomial of order pr-l,it becomes rather laborious to find 

mod p irred~cible polynomials of degree r for higher values of 

pr-1. Should we be willing to dispense with the advantage of 

having x as a primitive root then we can find irreducible poly­

nomials by other methods. For instance, if p is odd then there 

always existN residues ~ for which x2=a (p) has no solution: 

Hence x2-a is irreducible mod p. The polynomial x3+2x~o (3) 

for ~ -t-0 =:Q (3), 13+2 ~a (3), and 23+ 22 =. 0 (3). Hence x 3+2xt-l 

f 0 (.3). This shows that x3+2x+l has no linear factors, mod 3, 

and hence the expression x3+ 2x+l is irreducible mod 3. The poly­

nomial x4rxrl is irreducible mod 2. Since 0 and 1 are not roots, 

there cannot be any linear factors of x4+x+l. Hence the only f; 

possible decomposition would be of the form 

Uspensky and Heaslet, Elementarx Number Theory. pp. 203-204. 
1 
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Equating coefficients we get the following congruence relation­

ships: b +b ===-1 (2) and b t- b ::.o (2) which is impossible. In a 

similar manner we can obtain the following irreducible polynomials: 

mod 2: x2+x+l1 x.3+X+-1_. x\x+l, x5+x2+1; 


mod 3: x2+x+2, x3+2x+l; 


mod 5: x2+2; 

2

mod 7: X +1. 

This set accounts for all the Galois fields with less 

than 63 elements and these satisfy all the needs that have arisen 

to date in the design of experiments. 

From Theorem 1.8 and Theorem 1.1 we see that a set of 

m-1 orthogonal Latin squares of side m can always be constructed 

if m is the power of a prime. If m is not the power of a prime 

then m can be decomposed into prime powers such that 

m == p~· ••• p:s where p1 ;;i Pj for i,j =1,2, ••• ,s. 
Next construct the following system in which we consider the 

"points" 
(]) (2) (sl

~:::(g ,g' ••• ,g), 

Addition and multiplication are defined by the rules 

(, t ~=(~,If, ... •J~>) t <fi,~~ ... ,g~)) 
_ (1}+ CU (;?) (?} <s) -t (s)
~(~Xg;'gli~, •.• ,g1Xg2 ). 

As an illustration, consider m~12. We decompose 12 

into its prime powers, viz., 
2 1

12 ~ 2 • 3 • 

We have already found that the elements of the_G.F.(22) are 
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O,l,x, and x+l. The G.F.(3) consists of the marks, 0,1,2. 

From these two fields construct the following set of "points": 

(o,o), (O,l), (o,x), (O,x..f-1), (l,O), (1,1), (l,x), (l,x+l), 

(2,0), (2,1), (2,x), (2,x t-1). The addition of two npointstt, 

say (l,x) and (2,x+l), by defin1tion1 gives 

(l,x) t- (2,x+ 1) = (0,1) 

since 1 -t- 2 =. 0 (J) and x-+ x+ 1 =::il (x2-tx+l, 2). Also the multi­

plication of these "points" gives, by definition, 

(l,x) X (2,x+l)= (2,1) 

since (1)(2)=2 (3) and (x)(x+l)~l (x2+x-tl,2). 

The system constructed is not a field, since the element 

(0,1,1, ••• ,1) has no multiplicative inverse. However, referring 

to the postulates governing a field, we see that conditions I-IV 

for addition and I-III for multiplication and postulate V are 

fulfilled. All the "points" which have no zero among their coor­

dinates possess inverses. In general the identity element for 

addition is (o,o, ••• ,o) and that for multiplication iS (1,1, ••• ,1). 

Let 
ti) (1) (1) 

0 , gl =1 , g 2 , ••• ' g e. , 
p, ·-1 
" e· ebe the marks of G.F. (p" '). Then, if r ~min1 (p1Ll), the "points" 

?1.· (l) (2) ls)
{ \ ·l") ~ =:(gj, gj, ••• ,g--j ) 0 <j 'r 

possess inverses and also ~·-)'~ has an inverse if j f-1 since <1.; 

and ~· contain no zero among their coordinates and corresponding 

coordinates are different elements from the same field. We now 

number the "points'' 1 in such a way that the first r marks are 

given by (1.8) and construct the arrays Lj which form the body 
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of tbe addition tables: 

0 1 ••• ~ 1m­

0 

(1.9) ¥j 

rji2 

• 
• 
• 

'i j~m-1 

0 

~j 

ij 'N 2 

• 
• 
• 

cij clm-1 

1 ••• 'K 1 


¥+1 
j 

• • • 

~j c¥2+1 • • • 

• 

m­

(j = 1,2, ••• ,r)~-t"m-1 

'j d21-~m-1 

• 
• 

dj ~m-l+l ... ~j J'm-1-t d'm-1 • 

el 2
Continuing with our example we have that p ~ 2 and1

e2 1 ei 
p = 3 from which r::: min (p -1) ::7 2. Therefore VIe will have

12 1 
two arrays of the form (1. 9). First, we find ~~ and ~1 • By 

(1) (2) lU ~)
definition ~' =(g1 , gl ) ==- (1, 1) and ~J..::: ( g2, g2 ) == (2,x). 

Next form table 11 by putting j~l in (1.9). Thus we have 1 
1 

given by the table on the following page. In order to get the 

second table, L
2

, set j= 2 and proceed as in (1.9). This 

gives us the table 1 on page 32.
2 



(o,o) (1,1) (2,x) (0,1) ( 0, x) (0, x+1) (1, 0) (l,x) (1,xrl) (2,0) (2,1) (2,x+l) 

(o,o) 

(1, 1) 

(2,x) 

(0,1) 

(O,x) 

L,= (O,xot-1) 

(1., 0) 

(l,x) 

(l,x-tl) 

(2,0) 

(2,1) 

(2,xtl) 

(o,o) 

(1,1) 

(2,x) 

(0,1) 

(o,x) 

(O,xt-1) 

(1,0) 

(l,x) 

(l,xtl) 

(2,0) 

(2,1) 

(2,xrl) 

(1,1) 

(2,0) 

(O,xf-1) 

(1,0) 

(l,x-t-1) 

(1,x) 

(2,1) 

(2,xtl) 

(2,x) 

(0,1) 

·(0,0) 

(o,x) 

(2,x) 

(O,xt-1) 

(1,0) 

(2,x-tl) 

(2,0) 

(2,1) 

(O,x) 

(0,0) 

(0,1) 

(l,x) 

(l,xt-1) 

(1;1) 

(0,1) 

(1,0) 

(2,x+-l) 

(o,o) 

(o,x..-1) 

(O,x) 

(1,1) 

(l,x+-1) 

(l,x) 

(2 ,1) 

(2,0) 

(2,x) 

(o,x) 

(l,x+l) 

(2,0) 

(O,x+1) 

(o,o) 

(o, 1) 

(l,x) 

(1,0) 

(1,1) 

(2,x) 

(2,xf-l) 

(2, 1) 

(O,xrl) 

(1,x) 

(2,1) 

(O,x) 

(0,1) 

(o,o) 

(l,x+1) 

(1,1) 

(1,0) 

(2,xt-l) 

(2,x) 

(2,0) 

(1,0) 

(2,1) 

(o,x) 

(1, 1) 

(l,x) 

(l,x+-1) 

(2,0) 

(2,x) 

(2,x+l) 

(o,o) 

(o,l) 

(O,x-tl) 

(l,x) 


(2,x+l) 


(o,o) 


( 1 1 X~1) 


(1,0) 


(1,1) 


(2,x) 


(2,0) 


(2,1) 


(o,x) 

(1,x-tl) (2,0) 

(2,x) (0,1) 

(0,1) (l,x) 

(1, X) (2,1) 

(1,1) (2, x) 

(1,0) (2,x+l) 

(2,x+1) (o,o) 

(2,1) (O,x) 

(2,0) (O,x-t1) 

(O,x+l) (l,O) 

(o,x~l) (o,x) (1,1) 


(2,1) (2,xtl) 

(o,o) (O,x) 

(l,x+1) (1,1) 

(2,0) (2,x) 

(2 ,x-tl) ( 2 ,1) 

(2,x) (2,0) 

(0,1) (o,xl-1) 

(O,xt-1) (0,1) 

(O,x) (o,o) 

(1,1) (1, x+1) 

(l,O) (l,x) 

(0,1) (o,o) (l,x+l) (l,x) (1,0) 

'v..> 
...... 



(o,o) (1,]) (2,x) (0,1) (O,x) (O,x+-1) (1,0) (l,x) (1,x+l) (2,0) (2,1) (2,xrl) 

(0,0) 


( 2, :x) 


(;L,x-r1) 


(O,x) 


(O,xt-1) 


L. (0,1)
L = 

(2,0) 

(2,xt-l) 

(2,1) 

(1,0) 

(l,x) 

(1,1) 

(o,o) (1,1) (2,x) (0,1) (O,x) 

(2,x) (O,xt-1) (1,0) (2,xt-l) (~ 1 0) 

(l,x+l) (2,x) (0,1) (l,x) (1,1) 

(o,x) (1,x-rl) (2,0) (O,x+1) (o,o) 

· (O,x+l) (l,x) (2,1) (0, x) · ( 0,1) 

(0,1) (1,0) (2,x-t-l) (o,o) (O,x+-1) 

(2,0) (0,1) (l,x) (2,1) ( 2, x) 

(2,xt-1) (O,x) (1,1) (2,x) (2,1) 

(2,1) (o,o) (1,xt-l) (2,0) (2,xt-l) 

(1,0) (2,1) (o,x) (1,1) (1, x) 

(l,x) (2,x+l) (o,o) (l,x+l) (l,o) 

(1,1) ( 2, 0) (0, x4-l) (1,0) (1,x t-1) 

(O,xrl) (1,0) (l,x) (l,x+l) (2,0) (2 1 1) (2,xt-l) 
.. 

(2,1) (O,x) (o,o) (0,1) (l,x) (1,x+l) (1,1) 

(1,0) (2,x+l) (2,1) (2,0) (O,x+-1) (o,x) (o,o) 

(0,1) (l,x) (1,0) (1,1) (2,x) (2,xrl) (2,1) 

(o,o) (1,x+l) (1,1) (1,0) (2,x~l) (2,x) (2,0) 

(o,x) (1,1) (l,x-t-1) (l,x) (2,1) 

( 2,xrl) (o, o) (o,x) (O,x+1) (l,O) 

(2,0) (O,xrl) (0,1) (o,o) (l,x4-l) 

(2,x) (0,1) (O,x+l) (o,x) (1,1) 

(1,xt-1) ( 2, 0) (2,x) (2,x+l) (o,o) 

(1,1) (2,.x) (2,0) (2,1) (o,x) 

(1,x) ( 2, 1) ( 2, x+l) (2, x) (0,1) 

(2,0) (2,x) 

(1,1) (l,xt--1) 

(l,x) (1,0) 

(1,0) (l,x)· 

(0 1 1) (O,x+l) 

(o,x~l) (o,l) 

(o,o) (O,x) 

...,., 
1\.) 



3.3 

In order to simplify the tables, L and L2, assign the numbers
1 

0,1,2, ••• ,11 to the set of "points" (o,o),(l,l),(2,x), (0,1), ••• , 

( 2 ;x+l) respectively; i.e., set (0, 0) =0, 1?, ::: 11 ~'i. :z:: 2, ••• , <I" -== 11. 

Considering the inner squaresonly, we have 

0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6 7 8 9 10 11 

1 9 5 6 8 7 10 11 2 3 0 4 2 5 6 11 9 10 4 0 3 7 8 1 

2 5 6 11 9 10 4 0 3 7 8 1 8 2 3 7 1 6 11 10 9 5 4 0 

3 6 11 0 5 4 1 8 7 10 9 2 4 8 9 5 0 3 7 6 1 2 11 10 

4 8 9 5 0 3 7 6 1 2 11 10 5 7 10 4 3 0 8 1 6 11 2 9 

5 7 10 4 3 0 8 1 6 11 2 9 3 6 11 0 5 4 1 8 7 10 9 2 

6 10 4 1 7 8 9 2 11 0 3 5 9 3 7 10 2 11 0 4 5 6 1 8 

7 11 0 8 6 1 2 9 10 4 5 3 11 4 1 2 10 9 5 3 0 8 7 6 

8 2 3 7 1 6 11 10 9 5 4 0 10 0 8 9 11 2 3 5 4 1 6 7 

9 3 7 10 2 11 0 4 5 6 1 8 6 10 4 1 7 8 9 2 11 0 3 5 

10 0 8 9 11 2 3 5 4 1 6 7 7 11 0 8 6 1 2 9 10 4 5 3 

11 4 1 2 10 9 5 3 0 8 7 6 1 9 5 6 8 7 10 11 2 3 0 4 

as our representations of 1 and L •
1 2

We prove first that (1.9) is a Latin square. Suppose 

the Ot'th row could contain an element twice, say in the k 1-1 th 

and 1 rl th colurms. Then 

~· 'N.,_, + ~k ::: ~; ~-1 + ~, . 

Since ~· ~ ...1 has an additive inverse, we obtain ~lc==·i.e , from 

which 1 t follows that k -==,/. Suppose that the 1th column contains 

the same element twice. Then 

where j ~ r. 
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Since. aJ has a multiplicative inverse, this implies that. ~c~..= ~P 1 

from which «==-(3 • Froi!l the argllr.lent presented we have shown 

that no element occurs more t·han once in each row and in each 

column. Since the set of "points" is closed under addition and 

multiplication, every element must occur once in every row and 

every column. Hence (1.9) is a.Latin square. 

V!e shall now prove that L1 is orthogo~al to L j, if 1 ;t j. 

Suppose that they are not orthogonal. Superimposing 1 1 on Lj, 

we should have two cells in the resulting square containing the 

same ordered pair of "points". If this pair occurs in the c<. th 

row and {3th colurm in one and in the a-th row and ~th column 

in the other, we should have 

~j ¥ct-\ -r· ~(3-1 ~ ~ '(/~_, + ¥1:'- J J 

~i ll«.-1 1- <t'(3-t =- O'i. ?lrr-\ t" ~t-1 · 
Subtracting, we have 

(_?(i- ~) ~-1 ::: (?I~- ~j) 8r~J • 

Since i1- (/j has an inverse for i j j, 1t follows that ~o{-l ~ ¥cr-~ 

which implies that C( =- ~. This in turn implies that (?> ;:;-?:: • 

As a result we have 
Cl) l2) ls)

.Theorem 1.11: 1~~ g1 ,g1 , ••• ,gi , denote the elements 
el e 1 1. ""'S (1)

Qf ~ G.F.(p ), ••• ,G.F.(p 5 ) respectively, where g ~the1 (1) s eo 
zero element and g is the unity element~ G.F.(p 1). F~ 

1 1 
t.M._~pointsn 

0) (2) (s) 
¥= ( g • , gi ' .•. '·g i )

:t, .l ....., 

woJJ:~h are .m.ultipl_ied and added _Qy multiplying !1-D_c! adding their 

.coordinates. Further, ~-~t 

(]) (2) (s) ei 
~"=(g.,g., ••• ,g. ), 0 <j f r =min . ( p. -1) 

&J J J J L L 



• • • 
• • • 
• • • 
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~ nu:nber the remaining "points" in any arbitrary way from 
el e2 es '-' (l) l2)

r +1 to m= p p ••• p in such a way that oM-=0 = (g0 ,~, ••• ,1 2 s ---- - 0 
(s) )g • Then the arrays 
0 

0 1 · · · ~m-1 
a'j--r1 • • • ¥. +"i 1~j j m-

L :::: (j-==1,2, ••• ,r)
j tji2 lj '¥2-1-i · · · ~j 'i2tjm-1 

~jtm-1 'ijlm-1+1 • • • "lfi~m-1+¥m-1 

form a set of orthogonal Latin squares. 

This result is the best that has been obtained up to 
e 

date. No case of more than r~min1 (p11-l) orthogonal squares 

is known up to the present time. Tarry ( Le Probleme de 36 

Off1ciers. Comptes Rendus de !'Association Francaise pour L'avance­


ment des Sciences II (1901) pp. 170-203) found by a skillful, 


tactical enumeration that no six-sided orthogonal pair exists. 


R.H.Bruck and H.J.Ryser have since proved (Canad. J. of Math. 


Vol. 1, pp. S8-93) the non-existence of m-1 orthogonal squares 


of side m if m~1,2,(4) and the square ~ree part of m is divisible 

by a prime of the form 4k t- 3. For numbers greater than six which 

are not powers of a prime the problem .has remained unsolved al­

though this problem has been confronting mathematicians long 

before Latin squares were applied in the design of experiments •. 

It can be shown that not more than m-1 orthogonal Latin 

squares of side m can exist. For let r be the maximum·number 
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of orthogonal Latin squares of side m. By renumbering we can 

make the elements of the first row of each of these renumbered 

Latin squares be 1,2, ••• ,m. Each of these renumbered Latin 

squares is still a Latin square. If we take any two of the re­
2numbered squares we still get the m different pairs as before 

but in a different order and hence the two squares are still 

orthogonal. For any two squares the ordered number pairs in 

the first row are (1,1),(2,2), ••• ,(m,m). The ordered pair in 

the- second row and first column must consist of numbers not 

equal to eaeh other since all pairs of equal numbers appear in 

the first ro¥:. Hence the numbers ap:9earing in the second row 

and first column of. our r orthogonal Latin squares must be diff­

erent from each other and selected from the m-1 numbers 2,.3, ••• , 

m. Hence the maximum nu~ber of orthogonal Latin squares of side 

m cannot exceed m-1. 

Historically it may be remarked that the proof of the 

existence of m-1 orthogonal Latin squares if m is a prime power 

seems to have been given by McNeish (Annals of Mathematics, Vol. 

XIII, pp. 221-227.) The methods for the construction of orthogo­

nal Latin squares presented in this chapter are due to R.C.Bose. 

(Sankhya 1939). 

.r 



CHAPTER II 


THE CONSTRUCTION OF INCOMPLETE BALANCED BLOCK DESIGNS 

An incomplete balanced block design is any arrangement 

of v varieties into b blocks of k plots each, such that: 

(1) no block contains the same variety twice; 

(2) every variety is repeated r times; 

(3) every variety v occurs with every other variety
1 

v j in exactly )\ blocks. 

Finite projeetive geometries are used extensively in 

the construction of incomplete balanced block designs and pro­

duce whole series of these designs. It will be sufficient for 

the work presented here that we consider finite analytic geom­

etries. Several of the main concepts will now be defined. We 

shall consider the G.F.(pn). A point in them dimensional 

finite geometry P. G. (m, pn) is an ordered set of m-t-1 elements 

of the G.F.(pn), not all of which are equal to zero. Two sets 

(g1 ,g2,.,.,gm~l), (g{,g~, ••• ,g~+l) represent the same point if 

g
1

::a t\g~, 1==- O,l,2, ••• ,m+-l, for some A1 0 and in the G.F.(pn). 

For any two distinct points P1 = (g ,g2, • • • ,gm+-l), P2 = (g{, g;,
1

••• , g~1..1 ), we define as the line joining them the set of all 

points of the form 

"1pl + A2P2 ==. ( )\1gl-r )\2g~, • •• I A 1 ~tl+ )\2g~+1)' 

where A,, ).1 , are in the G.F. (pn), and where at least one of the 

A 's is different from zero. , 

This set of lines and points is called the analytic 

37 
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projective geometry of the G.F.(pn) or m dimensions and is de­

noted by P.G.(m,pn). 
2As an example consider the G.F.(2 ) whose elements are 

O,l,x,xTl. The point (O,l,x,x) in the P.G.(3,22) is the same 

as the point (O,xt-1,1,1) since the second point may be o·btained 

by multiplying the first point by A= X1-l. 

First, we find the total number of points in ··a P. G. (m, pn) •. 

Taking all possible selections of m~l elements of the P.G.(m,pn) 
n(m+l)

there are p ordered sets. Since, from above, the set 

(o,o, ••• ,o) must be excluded, the total number or ordered sets 
n(m+l)

that have at least one non-zero element 1s p - 1 • Since 

(gl,g2, ••• ,gm+·l) =( ~gl, f\g 2 , ••• , .A~,..1) for all i\~0 in the 

G.F.(pn), the o'rdered sets above may be divided into groups of 

pn-1 sets, the members of a given group represent the same point. 

Thus the number of distinct points is 
n(mrl) n nm 

p -1 - 1 + p ,.. ••• i- p • 

pn-1 

The lines are given by the form ~•Pl ... ~2 where p1 and p are2 
distinct points. The points of this line are given by their line 

coordinates >t1 ,~,.. Two points 1\1, 1\11,.«, 1,.11~1 will be distinct if 

( ~~ 
1 

Aa.) f: V(ft 1 ;4,.) for all -/ in G.F. (pn). Hence the points 

or a line form an analytic one dimensional geometry. 

We have seen that the number of points in such a geom­

etry is pn+ 1. Thus the number of points on a line is pn-f- 1. 

Consider next the k dimensional subspaces or the P.G.(m, 
n 

p ). Let p1 ,p2, ••• ,pk+l be ktl linearly independent points. 



This means that the relation 

lllPl+ ••• ~ )\k-t-lPktl::. (o,o, •.•• ,o),. 
implies that ~l::; ;..2 = ••• ~ J\k+-l::: 0. Consider next all points of 

the form l\1P1t- /\2P2 t- ••• ~ J\k-tlPkt-l• These, by definition, form 

a ~ dimensional subspace. Suppose that two or· these points are 

equal. Then 

A1P1 t- ~2P2 + • • •+ ltki-lpk+l =:: V~1PI+-.ff2P2r • • •+~kt-lpk+l)' 

(.Al-.V_.ul)pl+ < /\2- "f«'2)P2+ • • • + <Ak+l-ltdk.,_l)pkt-l=(o,o,. • .,o) • 

Since p1 ,p2, ••• ,pk+l are linearly independent points, this implies 

that 

Thus we may represent a point in the k dimensional subspace by 

coordinates ( A1 , }\ 2 , ••• , )l k+l). For k ~1, the subspaces con­

tain, for every two points, the line joining them. Fo~ consider 

the k dimensional space consisting of all the points 

~ 1P1+A2P2+ • • • + ."k+lpk-t-1 

where the ~ 1 ' s are not all zero. Represent any two points by 

pl ~ ra11P1+ A21P2 + • • • + ~kt-lalpk-tl' 

where 

for all ~ 1n the G.F.(pn). The points of the line determined 

by P1 and P2 are given by 
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.The points are in the k dimensional space if the coefficients of 

the P
1 

•s are not all zero. We may assume A/O,p.,.lo, since P
1 

and P2 are in the k dimensional space. If 

1 :::::1,2, ••• ,kt-l, 

then 

and hence P =- P , which is impossible. Hence the coefficients
1 2

are not all zero and ~f1+~~2 lies in the k dimensional space. 

We conclude that every k dimensional subspace of a P.G.(~pn) 
n n mis 1tself a P. G. (k,p ) and therefore consists of 1 + p + ••• -tP 

points. 

Consider any two distinct poiqts, say p1 and p2, of 

the P.6.(k,pn). If p and p are linearly dependent there exist
1 2 

Suppose one 

of the 1\ 's, say "•' is zero. Thus we have ~p2: o, which implies 

that p must be zero which is impossible. Otherwise, since A1 and1 
A1 are not zero, then p1~ -(~~~~~ )p2 which by definition~ shows 

that p and p are not distinct. Hence, any two distinct points
1 2 

are linearly independent. • 

Now consider k points p1 ,p
2

, ••• ,pk' which are linearly 

independent and hence determine a P.G.(k,pn). Let pk+l be any 

point not contained in the P.G.(k,pn). We shall prove that p1 , 

P2, ••• ,pk,Pk~l are linearly independent. Assume that they are 

linearly dependent. Then there exist A11 ~1, ••• , A k' ;\ k1"l' not 

all zero such that 

http:A/O,p.,.lo
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But Ak-tllo, since otherwise p1 ,p2, ••• ,pk would be linearly 


dependent. Hence 


- - AI p - ~ p - - ~tr Pk
Pk-tl- A 1 .1. 2 • • • ).k"tt ,. 'lrt-1 · K1"1 

and sinee 	pk+110, the (Ai /). k';t) 's are not all zero and thus pk tl 

lies in the·P.G.(k,pn) which is impossible. Hence p1,p2, ••• , 

PkTl are linearly independent and thus determine a P.G.(k+l,pn). 

Next, we compute the number of P.G.(k,pn)'s contained 

in P.G.(m,pn). Every P.G.(k,pn) is determined by a set of k~l 

independent points. The first point, say p1 , may be chosen in 

· l~Pn+•••tPmn ways. Next, p2 may be chosen in the remaining Pn+ 
2n mn p + ···~P ways. The number of points on,the line through p1, 

and p ,rrom previous wor~, is pn~l. Thus the number of choices
2 

remaining for p , not on the line through p1 and p2, is p2nrp3n~
3

•• •+Pmn. After the J th point has been chosen, where ./. <k+l, 

the (1+l)th point may be chosen from all the points no~ in the 

P.G. (.l-l,pn)., which is determined by p1 ,p2, •• • ,pt. But the P.G. 
n n 2n (-i-l)n .t

(.f-liP ) contains 1-t-p +P + ••• t-P points. This leaves p n + 
p (4 +-l)·n_,. •• •tPmn choices f-or the (.i-tl) th point. Proceeding in 

this mannerJ the n~~ber of distinct ordered sets o£ k+l indepen­

dent points 1n the P.G.(m,pn) is 

( ( n mn) ( n 2n mn) ( kn (k'f'l)n mn
2.1) ltp +• ••t-P · P tP +• • •+P •. • P +P ~· • •t-P ) • 

From (2.1) the number of ordered sets of k+l independent 

points 	in the P.G.(k,pn) is given by 

n kn n 2n kn (k-l)n kn 1m
(1 +p + • • • tl> ) ( P --t-P + • • • t-P ) • • • (p -t P ) P • 

Multiplying the above numb~r by the number of P.G.(k,pn)'s in our 

P.G. (m,pn) we obtain the number in (2.1) •. Thus the number qf P.G. 
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(k,pn)'s contained in the P.G.(m,pn)~is 
n mn n 2n mn kn (k+l)n mn 

( 1-rp .y • • • i-P ) ( P +P + • • • ~P ) • • • ( P -+ P + • • •t p ) 
n 1m n 2n kn (k-l)n 1m kn

(l+p +•••tP )(p +P 't•••tP ) ••• (p +P )p 

We want to find, finally, the number of P.G.(s,pn)'s 

in the P.G. (m,pn) which contain a given P.G.(k,pn). First, 

choose a point pk+2 not contained in the given P.G.(k,pn). This 
(k+l)n (kt2)n mn 

point, pk+2, may be chosen in p r p + •. •tP different 
(k~2)n (kt-J)n 

ways. Similarly pk+-J may be chosen from the p t- p + . ~ .. + 
pmn points that are not contained in the P.G.(ktl,pn) which con­

tains pkr2 and the given P.G.(k,pn). Following this argument 

through, we can obtain a P.G.(s,pn) containing the given P.G.(k,pn) 

in 
(k-t-l)n (k-t2)n mn) ( (k~2)n (ktJ)n mn) ( sn (s+-l)n( P +P T • • • tP P +P t ••• --t p • • • p -t- p 

-t-• •• +Pmn) 

ways. 

Consider a given P.G.(s,p0 
) obtained in this way. 

The number of ways in which we can select s+l linearly independent 
n

points from this P.G.(s,p ), k~l of which are a fixed set of 

linearly independent points from the P.G.(k,pn), may be found 

by setting m~s in the above fo~ula giving us 

(p(k~l)n+P(k~)nt•••+Psn)(p(kr2)n~p(k~3)n+•••+Psn) ••• (p(s-l)n+Psn)psn. 

Thus for k ( s ~ m we must have 
(k-rl)n (k t2)n mn) ( sn ( STl)n mn)

P 1- p t- • • • tP , • • P +P + • • • r P( 
(ktl)n (k...-2)n sn> ______Ts-l)n--.. --·;n·>--- sn --------­< 

(P tP T•••+P ••• P +P P 

different P.G.(s,pn)'s in the P.G.(m,pn) which contain a given 

P.G.(k,pn). 

Summarizing, we have: 
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n 	 n mn(1) Every P.G.(m,p) contains exactly l~p +···~P points. 

(2) Every P.G.(m,pn) contains exactly 

(lTPnT•••tPmn) ••• (pkn~···TPmn) n 
n kn ( (k-l)n kn kn distinct P.G.(k,p )'s. 

(11-p t-•••tP ) ••• P +p )p 

(J) Every P.G.(k,pn) in P.G.(m,pn) is contained in 

( (k+i)n mn) ( ·sn mn) n
P 1" • • • -tP • • • P + • • • -tP d1st1nct P • G. ( s, p ) t s 

( (kTl)n sn) ( (s-l)n sn) sn 
P -t • • •t"'P • • • P +P P 

for k < s ~ m. 

For k=-0,1, in particular, w~ obtain: 

A. 	 Every point is contained in 

n .. mn) ( sn mn)(r 	_ P + • • • +P • • • P 1- • • • +P 
- ( n sn ( ( s-1) n sn sn 

P+•••tP ) ••• P tP )p 

· distinct P.G.(s,pn)'s of a P.G.(m,p0 
) where O< s~m. 

B. 	 Every line is contained in 
2n mn sn· mn 

)\- (p +•••tP ) ••• (p t •••tP } 
- ( 2n sn (s-l)n sn sn 

P t-•••+P ) ••• (p +P )p 


distinct P.G. (s,pn) 's for 1 <s ~ m. 


Every P.G.(s,pn) contains, with every pair of p~ints, 

the whole line joining them. Hence every pair of points is con­

tained in /\ different P. G. ( s, pn) 's. 

In the. following theorem we identify points with varieties 

and the P.G.(s,p
n
)'s with blocks. 

Theorem 2.1: The P.G.(s,p
n
)'s contained in~ P.G.(m,pn) 

form a balanced incomolete bloek design with the following para­

meters: 


n mn) · ( sn mn)

b::( l+p -r._. •t-p • • • P -t • • •+P = b(s,m,pn), 


n sn) ( (s-l)n sn sn
(1-t-p T•••tP ••• p +P )p 
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which gives the number of blocks, i.e., the number of diff 10 r•.•r. • 
n nP.G.(s,p )ts contained in the P.G.(m,p ); 

n mn n 
v =1-t p r ... +p =v(m, p ) , 

i.e., the number of varieties is equal to the total number of 
npoints in the P.G.(~,p ); 

n sn n 
k ::: 1-f.p + • • • t p .::: k ( S 1 p ) J 

i.e., the number of plots in one block is the number of points 
n

contained in the P.G.(s,p ); 

n rnn) ( sn mn) ,( _ P + • • · r P • • • P + • • • +P · n 
r- ( n sn) ( (s-l)n sn) sn ~ r(s,m,p ),

P +- • • •+P • • • P +P P 

i.e., the number of replications is equal to the number of points 

common to all the different P.G.(s,p0 )'s formed from a given P.G. 

(m,pn ); 

1 if s ~ 1, 
2n mn sn mn 

( p + • • • + p ) • • • ( p -r • • • +P ) 
--( 2n sn (s-l)n ·sn sn 

P 1- • • • 1- P ) • • • (p t- P ) P 

~A (s ,m, pn) if 1 < s ~ m, 

where ~is the number of times two points of the P.G.(m,pn) 

occur in pairs in different blocks. In the case where s~l, the 

blocks are the lines of the P.G.(m,pn). 

We shall prove that any P.G.(s,pn) is either contained 

in a given P.G.(m-l,pn) or has a P.G.(s-l,pn) in comnon with it. 

Consider a P.G.(s,pn) which is not contained in the P.G.(m-l,pn). 

Let p1 be a point of the P.G.(s,pn) which is not in the P.G.(m-1, 
n 

p ). Let q
1

, ••• ,~,~ be linearly independent points in the 

P.G.(m-l,pn). Then q1 , ••• ,qm,pl are m+l linearly independent 

points and hence every point of the P.G.(m,pn) is of the form 
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A,pl +.A2ql + • • •tJ\mtlqm. 

Let s +1 linearly independent points of the P.G. (s,pn) 

be p1 ,p
2

,1 •• ,p
5

T1 - Since every point in the P.G.(s,pn) is con­

tained in the P.G.(m,pn) and ·since every point in the P.G.(m,pn) 

may be expressed in terns of the above m+l linearly independent 

points, we have 
~) ~J C~)

(2.2) ~ ~.P1 + ,.>\~q 1 + ... t l\ m-tl~ , 1:::2,3, ••• ,s +·1.p1 
Ci)

Hence the points p1 
1 ::::p -,X p

1
, 1= 2,3, • •• ,s+1, are contained in

1 1


the P.G.(m-l,pn). 

1

The points pI 

2,p
3
I , ••• ,pst-l are now shown to be linearly 


independent. Suppose that they are linearly dependent. Then 


there must be a relation 


} 1 I I - Q( 2 3)• ''' P2 t- ,\ 2 P 3 +·: • t- As Ps -t1 ­

where not all the A1 t s ~ 0. From (2. 2) and (2. 3) we have 


(:2. 4 ) t \1P~t-1::. D1(p1t-1- ~i1H) p1) ' 
.;c1 t.~• 

.:t"1pi-t-1-plt)\ 1 )\ iiTl) ::::. o. 
lO::f '~I 


But p1 ,p2, ••• ,psrl are linearly independen~ points. Hence (2.4) 


holds true only if all the coefficients of the pi's in (2.4) are 


zero. This is true only if }\ 
1 
~ p.

2 
.:::.. ••• = )\ 5 ~= 0. Thus we see 


I I I l d
that p ,p3 , ••• ,ps+l are linear yin ependent. Hence the P.G.(s-1,
2


pn) consisting of points of the form 


(2. 5) A2.P; + • • •t- 1\ s..-lP~-t-1' 

is contained in the P.G.(m-l,pn). But these points are also all 


the points of the given P.G.(s,pn) which are contained in the P.G. 

(m-l,pn). For suppose that there is another point p{of the P.G., 
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(s,p0 
) contained in the P.G~(m-l,p0) and which is linearly inde­

dpen ent I Iof the points p2, ••• ,ps~l· Then all the points of the 
n

P.G.(s,p) could be represented by 

I 

i1P1 -t 
J I 
0 2P2 +· · · + 

....1 I 
6 s+1Pst-l ' 

and would be in the P.G.(m-l,pn) contrary to our original assump­

tion. 

Thus every P.G.(s,p~) of t~e P.G.(m,pn) is either entirely 

contained in a given P.G.(m-l,pn) or has a P.G.(s-l,pn) in common 

with it. 

Considering a P.G.(m,pn) and deleting any given P.G.(m-1 1 · 

Pn) we obtain another system of points and lines which is called 

the finite Euclidean Geometry E.G.(m,p0 
) of m dimensions. Con­

sidering a P.G.(s,pn) which is not wholly contained in the P.G. 

m-l,pn), a P.G.(s-l,pn) is removed from the P.G.(s,pn) turning 

it into a E.G.(s,pn). 

The nu~ber of points contained in an E.G.(m,pn) is deter­

mined by taking the number of points in a P.G.(m,pn) and removing
I' • 

from these all the points common to a P.G.(m-l,pn),i.e., 

v(m, pn) -v(m-1, pn) =-pmn. 

The number'of E.G.(s,p0 )•s contained in an E.G.(m,pn) is 

determined by finding the number of P.G.(s,pn)'s contained in a 
n n

P.G.(m,p) which is b(s,m,p ). From this number we next delete 

the number of P.G.(s,pn)'s contained in a P.G.(m-l,pn) which is 
n n nb(s,m-l,p ). Fo~ to form an E.G.(m,p) we delete a P.G.(m-l,p) 

from the P.G.(m,pn) which in turn deletes b(s,m-l,pn) P.G.(s,p0 )'s 

from the P.G.(m,pn). This leaves b(s,m,pn)-b(s,m-l,pn) P.G.(s,pn)'s 

from which a P.G.(s-l,pn) is removed forming a E.G.(s,pn). Hence 
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an E.G.(m,pn) contains b(s,m,pn)-b(s,m-l,pn) E.G.(s,pn)'s. 

Consider a given E. G. (k, pn), k <s. It arose fror.1 a P. G. 

(k,pn) contained in the P.G.(m,pn) but not wholly contained in the 

P.G.(m-l,pn). The- P.G.(k,pn) is contained in a certain nu~ber, 

say c, of P.G.(s,pn)•s. Since the given P.G.(k,pn) is not wholly 

contained in the P.G.(m-l,pn) then neither are the P.G.(s,pn)'s 
. n 

which contain it. When tbe P.G.(m-l,pn) is removed the P.G .. (k,p) 

becomes an E.G.(s,pn) and all the P.G.(s,pn)'s become E.G.(s,pn)'s 

containing tlte given E. G. (k,pn) • Hence the number of E. G. (s,pn) 's 

containing a given E.G.(k,pn) is the same as the nunber of P.G. 

(s,pn)'s, containing a given P.G.(k,pn). We now have 
n · nTheorem 2.2: The E.G.(s,p )ts contained in~ E.G.(m,p) 

form !!_ balanced inconrolete blocl·~ design ~ the followin~ 

12arameters: 

b ==-b(s,m,pn)-b(s,m-l,pn), since the E.G.{s,pn) 's 

represent blocks; 

v~pmn, since the points of the E.G.(m,pn) represent 

varieties; 

k=p 8n, since the points in an E.G.(s,pn) represent 

plots; 

" r= r(s,m,pn); 

"= A(s,m,pn). 

To establish the last two equalities we consider the 

following argument. 

Cons~der a point contained in the E.G.(m,pn). This 

point was also in the P. G. (m, pn) and, from previous .work, was in 
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n
Since the point is in the E.G.(m,p) it 

was not in the P.G.(m-l,pn) which was deleted from the P.G.(m,pn) .. 
Hence all the P.G.(s,pn)'s which contained that point were not 

wholly contained in the P.G.(m-l,pn) and hence are carried over 
n ( ninto r(s,m,p) E.G. s,p )'s containing that point. Thus, the 

number of times that every point is contained in different E.G. 

of points, and p appear in different P.G.(s,p ) 1 s. After 

n n(s,p )•s is r(s,m,p ). 
nFinally, -~(s,m,p) is the number of times a given pair 

n 
2

, say,p1 

the P.G.(m-l,pn) has been removed, either p1 ,p2 are not contained 

in the E.G.(m,pn) or they appear together in the E.G.(s,pn)'s 

derived from the P.G.(s,pn)'s which contain them. Hence every 

pair of points in the E.G.(m,pn) is contained in exactly ~(s,m,pn) 

F.G.(s,pn)'s. 

As an illustration we shall form the lines of the P.G. 

(3,2) and the E.G.(3,2). Every line of the P.G.(3,2) forms a 

P.G.(l,2). The number of points contained in a P.G.(l,2), by an 

earlier theorem, is 1 --t 2:::3. Hence every line of the P. G. (3, 2) 

contains three points. This can be seen also by forming all 

possible combinations of A
1

P1 -r A
2

p 2., where p1 and p2 are dis­

tinct points and A1 , A
2 

form 	all possible non-propor~ional pairs 

of the G. F. (2) "rhere /t 1 and 	 /\ 2 are not both zero. The number 

of points in the P.G.(3,2) is 15. The number of lines contained 

in the P.G.(3,2) is 35. To find the number of lines containing 

a given point corresponds to finding the number of P.G.(l,2)'s 

in the P.G.(3,2) that contain 	the given point. This is seen to be 

2 3
r -=(2 + 2 +2 )/2=7. 
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3The E.G.(3,2) contains 2:8 points. The number of points on 

each line of an E.G.(J,2) is two. Hence the number of lines in 

the E. G. (.3, 2) :ls 8 C2 ~ 28. The number of 11nes on which a point 

appears in an E.G.(l,2) is the same as finding the number of times 

a point appears in an P.G.(l,2) which, from above, is seven. 

Hence we form the incomplete balanced block designs 

with the following parameters: 

b =35 v :::::::15 r-==7 k =:3 

·b == 28 v==8 k ==2 

The G.F.(2) consisting of the elements 0,1 is the field 

used.in obtaining all the points of the P.G.(3,2). Thus we have 

the following points: 

pl:::::; 1000, p5 =-1100, p9::::::: 0101, pl3-=10ll, 

p 2 ~0100, p6:;;1010, p10-::: 0011, p14~ 0111, 

P)-:::: 0010 I p7 =-1001, pl1--1110, p15-=1111. 

p ==-OOOlt Pg:::: 0110, p ::: 1101,
4 12 

Taking all pairs of distinct points in the P.G.(3,2) and 

forming all possible combinations of the form A1p1+ A P2 where2
(~.,A~) consists of all pairs of points of the G.F.(2) where at 

least one }. is not zero, i.e., 

(~.}'~4)=(0,1), (1,0), (1,1); 

we thus f.orm all the lines contained in the P.G.(3,2). From this 

we see, for exrunple, that p1 ,p2, and p 5 ~p1rp2 are the three 

points on the line through p1 ,p2• Hence, if any two of p1 ,p2,p

are given, the line through the two given points determines the 

third point. Working in a systematical manner the lines of the 

5 
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P.G.(3,2) are the foliowing: 

plp2p5 ' p2p3p8 , p3p5pll' p4pllpl5' P6P12P14' 

plp.3p6 , p2p4p9 ' p3p7pl3' PsP6P8' p7p8pl5' 

plp4p7 p2p6pll' ~.3p9pl4' PsP7P9' p7pllpl4'' 
PlPgPll' ·p2p7pl2' p3pl2pl'5 p5plppl5' PgP9 £o' 
plp9pl2' p2p10p14' p4p5pl2' PsP1Jp14' PgP12P13' 

plpl0pl.3' p2pl.3pl5' p4p6pl3' P6P7PlO' P9P11P1.3' 

plpl4pl5' P3P4P1o' p4p8pl4' p6p9 pl5' P1oP11P12 • 

To form an E.G.(3,2) we must delete a P.G.(2,2) from the 

P.G~(3,2). Every line of the P.G.(2,2) contains three points. 

Also a P. G. (2, 2) contains 1 + 2 t-l = 7 points •. Si.nce p1 ,p2 ,p3 
are three linearly independent points, they generate a P.G.(2,2) 

contained in ·the P.G.(3,2). Thus, in forming an E.G.(3,2), we 

must remove a ·set of seven poirits which is determined by forming 

all possible coMbinations of ~1P1+ 1\ 2P2 + A3P3 where at least one 

of the A's is not zero. The set of points obtained in this 

manner is pl,p2,pJ,p5,p6,p8,pll. It shoul~ be noted that this 

set of points forming a P.G.(2,2) is that set of points formed by 

choosing the points whose last coordinate is zero. This is possi­

ble since this set of points is closed under addition. 

Since the lines of the E.G.(J,2) contaln two points 
\ 

then the total number of combinations of pairs of the remaining 

28 points represent all the lines in the E.G.(3,2). They are 
• 

as follows: 
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p7pl2' P9Pl5' p9pl4' P1oP15' pl3pl5' 

p7pl3' P9P1o' PloP12' pl2pl3' P14P1s· 

p7pl4' p9pl2' pl0pl3' pl2pl4' 

p7pl5' p9pl3 1 PlOP14' pl2pl5' 

Notice that each point in the E.G.(3,2) appears in exactly seven 

lines as did each point in the P.G.(3,2). 

As an example of a finite Euclidean geometry we now con­
2struct the E. G. (2;, 3). The P. G. (2, 3) has 1 t- 3 .+ 3 = 13 points. 

The E.G.(2,3) has 3 2 ~ 9 points. Forming the 13 distinct points, 

we have 

p
1 

=U,o ,o), p 5 =a., 0, 1), p9 =ll, 0, -JJ, 

p 2 ::::; (0 Jl 1 , 0), P6 =(0' 1,1), Plo= rl,l,l), 

pJ =(OJIO,]), p7 ==(1, 1, l), pll={1, -1, 1), 

p4 =(l, 1 , 0), p ~(1,-l,O), pl2 =ll, 1, -1),
8 

plJ::::(0,-1,1). 

The number of points in a line is the number of points 

contained in a P.G.(l,3) which is four. The line through p1,p2 
is of the form AlPl +~2p2 and contains tbe points p1 ,p2,p4 ,p8 
for (~,)~1 ) equal to (l,O),(O,l),(l,l), and (1,-1) respectively. 

In a systematic fashion we obtain the r(l,2,J) ::::1.3 lia•s of the 

P.G.(2,.3), viz., 

plp2p4p8, p2p3p6pl.3' p3p8pl0pll' 

plp3p5p9, p2p5p7pll' p4p5pl0plJ' 
p7p8p9pl3.

PlP6P7Plo' p2p9pl0pl2' p4p6p9pll' 

p1pllpl2pl3 1 p3p4p7pl2' p5p6p8pl2' 
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Now from the P.G.(2,3) delete a· P.G.(l,J) forming an 

E.G.(2,3) which contains 32=9 points. But any P.G.(l,3) is a 

line in the P.G.(2,3) containing four points. Thus, by deleting 

any line, say p1p2p
4

p8 , the remain~ng nine points form an E.G.(2,~). 

Since every line contained in the E.G.(2,J) 

since there are b(l,2,3)-b(l,l,J)=l2 lines 

have, as the lfnes of the·E.G.(2,3), the following: 

has three points, 

in the E.G.(2,3), 

and 

we 

P3P5P9, 

_P6P7Plo' 

pllpl2plJ 1 

l?JP6P1J' 

P;P7Pll' 

p9pl0pl2 1 

p3p7pl2' 

P3P10P11'. 

p5pl0pl3' 

p6p9pll' 

P5P6Pl2' 

p7p9pl3. 

The above syste~ of nine points and twelve lines is the E.G.(2,3). 

An E.G.(2,pn) may be constructed in another way using a 

set of orthogonal Latin squares. From the previous chapter we 

have shown that it is possible to construct p n-1 orthogonal Latin 

squares from a Galois field of order p n , where p is a prime. Since 

the La tin squares have side pn, the number of coinpartments in each 
2nLatin square is p • From the set o~ orthogonal Latin squares we 

can form p2n sets of ordered numbers (a1 j ,a j , ••• ,a j,pll_ )
1 1 2 1 1

where aijk is the number in the !th row and lth column of the kth 

Latin square. These sets of numbers are arranged in a square 

where the above general set would appear in the 1th row and lth 

column. These sets are then called the points of our E.G.(2,pn) 
2and are p n in number. The lines of the E.G.(2,pn) are then given 

by the columns, the rows, and by theP~n-l)sets of points whose ith 
n · n

number is o( (a(= O,l, ••• ,p -l;i~l,2, ••• ,p -1). The p0 +1 sets 

of lines obtained in this way are called parallel lines since no 

two lines in a given set have a point in common. Each set contains 
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pn lines 	so that all together pn(pn+l) lines are obtained. 

As an illustration consider the E.G.(2,3). The two ortho­

gonal Latin squares formed from the G.~.(3) are 

0 1 2 

2 0 1 

2 0 1 1 2 0 • 

Superimposing the second upon the first we obtain the follo~ing set 

of points: 

(o,o) (1,1) (2,2) 

(1, 2) (2,0) (0,1) 

(2,1) (o, 2) (1,0). 

In order to illustrate the above argument more clearly we shall 

label the above set of points in their respective positions as 

follows: 

p3 p5 p9 

p6 p7 P1o 

pl3 pll pl2. 

The points are labelled in the above manner in order to si~plify 

the comparision with the results obtained earlier. The rows 

and the colu~s give the following set of lines respectively: 

P3 P1o£1 p3 p7 pl2 


p5 p6 pl2 p5 plOP13 


P7 p9 plJ p6 p9 p11. 


These are the same lines as obtained in our first construction of 

an F.G.(2,3). 

In order to extend this E.G.(2,p0 
) to form the P.G.(2,pn) 
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we must add additional points, the sane point to each set of 

parallel lines and different points to intersecti11g lines. Finally 

we take all the points that were added and form an additional 

line through them. 

Returning to our exa~ple, we see that in order to form 

the P. G. (2·, J), we crust add p
1 

to the first set, p2 to the second, 

p to the third set, and p to the fourth set. In addition, add
8 4 
t~e line p p p p. Thus, the resulting P.G.(2,3) has 13 lines of 

. 1 2 8 4 
the P.G.(2,J) which we have labelled in the same manner as the 13 

lines of the P.G.(2,3) in the previous example. 

An E.G.(~,pn) has p2n points. So does the design whose 

construction we have described. -The number of lines in an E.G. 

(2,pn) is the number of E.G.(l,pn)'s contained in it which is, 

and our design has this property also. 

The nu~ber of times a point appears on a line in an E.G. 
n 

(2,p) is, for s ::-1 and m=::.2 

r(l, 2, pn) =(Pnt- p2n) n 
=: lt"p •n 

p 

This holds for our design since every point appears once and only 
n 

once 1n a set of parallel 11Y\.9s and we have 1 r p such sets. 

The nu~ber of times that a pair of points appear together 

on an E.G.(l,pn), or line, in an E.G.(2,pn) is 

.:\ ~ A(1, 2, pn) .=; 1. 
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We shall show that our design has this property. Con­

sider any pair of points. If the two points are in a row they lie 

on on~ row line and one no other line. A similar remark applies if 

they lie in a column. Suppose the points lie on two lines which 

are neither row nor column lines. One of these lines will arise 

from some fixed 1 =;11 and o( =:o(,. the other from 1-=i..,,o<:::;-or~. 
) ~ 

This means that the two ordered sets of numbers which are our points 

would both have ~.in the 1 th place and~ in the 12nd place.
1


This is impossible since, from the definition of orh~ogonal Latin 


squares every ordered pair of numbers fran the set O,l, ••• ,p n-1 


appears in these positions once and only once. 

n

Thus the alternative approach does lead to an E.G.(2,p ). 

Finite geometries furnish whole series of balanced incom­

plete block designs. Most of these designs are of little practi­

cal interest since the number of replications should, in most 

cases, not exceed ten. 

By applying two theorems first proved by R.C.Bose (An­

nals of Eugenics,9 (19.39) pp. 35g-399), other seri~s of these 

designs can be obtained. Before proceeding to these theorems we 

must first introduce the concept of a module. A module is a sys­

tem of elements such that to each pair of elements,a,e_, there is 

uniquely defined a sum a+b satisfying the postulates I,II,III,IV, 

for addition in a field. For example, the residues mod ~ form a 

rnodule fQr every m. A mocule,M, with a finite number of elements 

is called a finite module. If M has n elements then M is called 

a module of order n. 
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Let M now be a module of order n and let :n varieties J~, 

• • • , E.
(1)

' 1 -::;-1, ••• ,n, correspond to every element 11> of the module • m 
We for:n blocks of these .:nn varieties as follows: 

Cot,) ((\) ({J,) (~)
(A , ••• ,A1" ),(Aj , ••• ,Aj ), ••• ,

11 
where the varieties in a block are distinct but not necessarily 

so in different blocks. 

As an illustration consider the module consisting of the 
Q.'r( 

ele~ents 0,1,2,3,4 which•added together in the usual fashion , the 

resulting sums being reduced modulo 5. In the case where the 

number of varieties corresponding to every element in the module 

is two, we haVe the following varieties: o ,o ,1 ,1 ,2 ,2 ,3 ,3 ,1 2 1 2 1 2 1 2
4

1
,42: Taking k= 3, we can form the following blocks from the 

above module: 

(01,12,21) ' (02,3{,42). 

Given a bl.ock of k varieties we can write k P 2;:. k (k-1) 

expressions of the form 

A1 -Bc5-=. (A-B)~d 

where A and B are any two varieties in the block. This expression 

is called a difference of type iJ. 
From our example computing the differenc~for (0 ,1 ,2 )1 2 1

we have 

,01-12 ==. (0-1) 12 = 412 ( 5) 

01-21' =-~ (0-2) -= J ( 5) , . 11 11 

12-01 ::= (1-0) =1 ( 5) ,/ 21 21 

12-21::: (1-2) 21 =421 ( 5) , 

21-01 ::: (2-0) 11 =211 ( 5) , 

21-12 = ( 2-1) 12 :=.112 ( 5) • 
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The differences for (0 2,3 ,42) are the following:
1 

02-31 =221' 

0 2-42 = 122' 

31·-o2 ::: 312' 

42-0 2 = 422' 

42-31 =121' 

31-42 =. 412. 

Differences of the type ((} , say Atl.(j , are called pure if q ::::(3 

and are called mixed if <I (3 • 

If, in t blocks, every pure difference, A~•' except 0~• 

1s repeated A times and every mixed difference, Ar:(p, is repeated 

the same number of times, including O~f' the differences are said 

to be sywnetrically repeated. 

The~~em ~: Let Mbe a ~odule ~ontaining the elements 
Co) (n -JJ CiJ (iJ 

v , ••• ,v , and let~ varieties , ••• ,vrn corres~ond ~everyv1 
(i1\ element v • The variet_y 4 is said to belo.ng to ~ J.th class. 

Suppo~e that there exis~ t blocks o~ elements B1 , ••• ,Bt' not 

necessarilx containin£ the ~ nu~ber of element~, sucb that: 

(1) No two varietie~ appearin~ in the sam~ block ~ 

alike. However,~ mg, variety may apn~C!!:_ in different blo'cks. 

(2) Amo~g the elements in B ,B2, ••• ,Bt exactlx r varieties
1

belong to eacB of the mclasses. 

(3) The diffe~ences formed from B ,B2 , •• ,Bt ~ symmetri­
1

ca:JJ:z rep..eateq, each occurring A .:tl.mes .• 

Also i~ 

.
ie je 

:1.§ anY one Q! ~ blocks B B R and v + e == v1' 2' ••• , -k 



(i,) (~\ 
Bie == (vcv.' ••• , vq'"). 

For:-1 ill ~ blocks B1 for ail 1 and .ill 6 containerl .in M. .I.hfn. 

A • .!n tre blocks B1~ ever;z_ var:!.et_y occurs I. times. 

B. Any 1!:Q. varieties occur. togeth£r 1n ..lli!:. same block 

.exactl,Y 	 )\ tiMes. 

Proof of Theorem 2.3: Corresponding to every pair of 
~) r~J

elements v and v of M there· exists exactly one e in M such that 

vco<)+9.,vlt9~ This relation is valid since every non-zero ele:t:!lent 

in a module has an inverse. 

From t~e r varieties belonging to the ith class, take 

one and add all possible values of 8 to it. This will give all 

the varieties with subscript 1 exactly once. Thus, working with 

the r varieties belonging to the !th class, we obtain each variety 

in the ith class r times. Hence, considering all values of 1 we 
... arl~ty


obtain everyvin each clasp exactly r ti~es. 


,,·J (j)
Every pair of varieti:t.S1 v• and vi! , where ~ may be 

equal to (3 or i equal to J. but both equalities not holding toge~he ,~ 

~, occur together exactly )U ti~es in the blocks B if and only1 

if there exist exactly~ blocks in the B1 , ••• ,Bt each containing 


d.') W'J 

a pair of 	elements v~, v~ and, corresponding to each such pair, 

there exists an element B of the module such that 

- .,) <i 


v(t +6~v 1, 

"') <.jlv 'J +B::::v 	 ·• 
c.~') (J·r) ll) (j) L\ ti) li') til li')


Thus v -v ::- v -v = d and 0':; v -v = v -v • Hence the pair 

(i) (j) 

v~ ,v~ arises exactly as many times a~ the difference d arises 

as a difference of the type Cl(-3 in the original blocks. If C( ~(. 

this implies that {f: j~ Hence v~i')-'f3(j')=:~I'· is not a difference 

http:varieti:t.S1
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of the type Oqc( and the number of dc<ct 's is )\ by hypothesis. If 
U.') (..l) 

o( 1=(1 , vO( -v(J ~ dq(3 may be of the type ofl{£3 but whether it is or 

not there are exactly A such differences by hypothesis. Hence 
,..M:.).. ,; 

Co:r:o_llaa .iQ. Theorem~: If each block B1 contains ~ 

same nu~be~ of varieties the blocks B1 fQrg an incomplete b~­

~ block qe~ign with v==mn, b=-nt ~ r,k,)\, Min the theorem. 

As an example consider the group of residues mod 2t +1 

and the pairs 

(1,2t), (2,2t-l), .•• , (t,tt-1). 

Every difference different fro~ zero arises from these pairs exact­

ly once. Next, consider the blocks 

(11 ,(2t) ,o2), (21,(2t-1) 1,o2), ••• , (t ,(t+1) 1,o2);1 1

(12,(2t) 2,o3), (22,(2t-1) 2,o ), ••• , (t2,(t+l) 2,o3);
3

(13,(2t) ,o1), (23,(2t-1) ,o1), •.• ,(t ,(t+l) 3,o1);
3 3 3

(o1 ,o2,o3). 

From the first two elements of the first Jt blocks we 

obtain all the pure differences exactly once. All non-zero mixed 

differences of types 1,2 and 2,1 arise exactly once from the 

first set of t blocks, those of types 2,3, and 3,2 exactly once 

from the second set of t blocks, and those of types 1,3 and 3,1 

exactly once from the third set of blocks. The zero mixed differ­

ences arise exactly.once from the block (o1 ,o2,o3). The system 

of blocks formed above contains 6t+3 varieties, three in each 

block. When we form the B1e 's, e may take on any of the 2t + 1 
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values 0,1,2, ... ,2t leading to (Jt + 1) (2t -+-1) blocks. The. original 

set of blocks has Jt+l elements in each of the classes 1,2, and J. 

From Theorem 2.3 we can construct an incomplete balanced block 

design with the example above with the parameters v::::: 6t -r 3, b == 

(3tt-1)(2tt-l), r=:Jt-t-1, k::J, ~ == 1. 

For example, put t = 2, then. 2t+-l =5. Arranging the ini­

tial blocks in the first row and forming each successive row of 

blocks by adding 1,2,3,4 as the values of e respectively we have. 

the following design consisting of 35 blocks: 

(11,41,02) (21,31,02) (12,42,0.3) (22,32, 03) (13,43,01) (23,33,01) 

(01,02,0.3). 

(21' 01, 12) ( 31,41 J 12) (22, 02, 1.3) (32,42,1.3) (23,03' 11) ( 33 ,4.3' 11) 

(11,12,1.3) 

(31,11,22) (41,01,22) (.32~12,23) (42,02,23) (3.3,13,21) (43,03,21) 

(21,22,23) 

(41,21,32) (01,11,32) (42,22,33) (02,12,33) (43,23,31) (03,13,31) 

(.31,.32,.33) 

(01,31,42) (11,21,42) (02,32,43) (12,22,43) (03,33,41) (13,2.3,41) 

(41 ,42,43) •. 

Notice that in the above 35 blocks each variety occu---rs seven 

times and every pair of varieties is repeated ·exac~ly one~. 

To the module M adjoin the symbol oo which. obeys the follow­

ing rule under addition.. For every element ~ cont~ined in M 

001-tt,=cC. 

Theorem ~: ~ M~ ~ module !i1h ~ n elements u 
(Q) 

, 
~ m-U ~ u , ••• ,u • To every element u there corresponds mvarieties 
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(c() (a( ) ( ar)
ul, u , ••• , um • One variety corresponds to the element tJO. ~ 2 
variety u{) belongs to the ith class and the ut> •s ~~to be 

finite varieties for all 1 and all o< • Suppose there exist t + s 
I I

blocks B1 , ••• ,Bt,B1 , ••• ,B such that:
5 

I The varieties in each block ~ different from ~ 

other.-
II The blocks B , ••.• ,Bt contain exactly k finite varieties1 

I I
each and do not contain the ele]1ent eo while B1 , .•• ,B contain

5 

exactly k-1 finite varieties and co. 

III Among the varieties in B1 , ••• ,Bt exactly ns-A 

belong to~ class, while among the varieties in B1
/ 
, ... ,B

I 
,

5 

exactly A belong to each class. 

IV The differences arising from the finite varieties are 

symmetrically repeated, each·occurring A times. 

The blocks B18 ~Bj
I 
6 are defined as in the previous theorem. 

Then the blocks Bi
9 

,Bje
I 

, i :::1, ••• , t; j .:: 1, •.• , s, form 

M incomplete balanced block design with the parameters v -=-mn -tl, 

b:: n(t-ts), r :::ns, k, A • 

Proof: From III exactly ns- "'t- \ varieties belong to 

each class. Thus, from Theorem 2.3, each variety occurs exactly 
I ns times in the blocks Bie'Bje' and every pair of finite varieties 

occurs exactly A times together in all the blocks B1.,B; • The
8 

I , 

symbol o0 appears exactly once in each of the Bje .blocks, j:::::: 1, 

... , s. Hence the variety o0 occurs also exactly ns times. Again, 

from III and Theorem 2.3, each variety in the Bj
I 

occurs exactly
8 

)\ times. Hence o0 occurs with every finite variety 1\ times in 

the same block. Thus every pair of varieties, o0 being considered 
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I 
a variety, occur exactly A times together in the blocks B18 ,Bje. 

Now applying the Corollary to Theorem 2.3 to the above argument 

the proof of Theorem 2.4 is complete. 

As an example we shall construct designs with the para­

meters v ~ 12t + 4, b == (3t -rl) (4t t-1), r ;:;4t t-1, k =4, and A~ 1, 

where 4t+ 1 is a power of a prime. 

We take the elements of the G. F. (4t 1"' 1) as our module M 

where addition is the operation involved. Let x be a primitive 

root. We shall now show that ·there exist odd numbers « and q 

such that (x" + 1) I (x01 -1) =: xq. 

Since x is•a primitive root the non-zero elements of the 

G. F. (4t t- 1) are generated by different powers of x. These elements 
0 1 4t-1 are given by x ,x , •.• ,x . We shall consider expressions of 

the form (x~+l)/(x~~l). Since xis a primitive root of the G.F. 
4t 2t 2t 2t(4t+l) thenx :::l,i.e., (x -l)(x +l)~o. Sincex ~1, then 

2t ~ 
x ::: -1. Since x ± 1 is a non-zero element in the G.F. (4t t-1) .for 

~ F0,2t, and since every non-zero element in the field has a mul­

tiplicative inverse, we have 
et 

X +1 _ q
(2. 6) « -x , where 1 ~ q ~4t-l, 

X -1 

and a1 == 1,2, ••. ,2t-1, .•. ,4t-l. From (2.6) xec= (x~l)/(xq-1). 

This relation. is valid since xq-1 is a non-zero element in the 

G. F. (4t + 1). Hence, to every ot :/: 0, 2t, there exists a unique 

value qt'0,2t, and contained among the residues 1,2, ••• ,2t-l, .•• , 

4t-1. Among these remaining residues there are 2t odd residues 

and 2t-2 even residues. Now o< and q can be paired so that both 

are even residues, or one is even and the other odd, or both are 
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odd. In the extreme case, where either oc. is odd and q is even, 


or vice versa, we have two pairs of odd residues remaining after 


pairing 	« with q. Hence to at least two odd residues, there corres­
1 

ponds an 	odd residue. 


Now let three varieties correspond to each element of the 


G. 	 F.(4t-t 1). We form the following 3t -r l blocks: 

21 2t+2i 21-toC 2ti-21 +ct )


(xl ' xl 	 ' x2 , x2 ; 

21 2 tt-21 21-tct 2t.,.2i+C\' . 
x2 	 , x3 ); L=O,l, •.• ,t-1,(x2 ' ' x3 


2t+2it"o(
21 2t+2i 21+« 
(x3 , 	 ' xl , xl ) ; XJ 

(G0,0
1

, 0 2 , 	 o ).
3


C( u a( v 2t {J

Now set x +1 ~ x , x -1:; x , x -1-== x • Now cJ.. may be chosen so 

that 

(2. 7) 	 u-v=-1 (2), 

that is, 	so that q will be odd. 

Each of the three classes of varieties occurs 4t times 

in the first 3t blocks and once in the last block. The differences 

of the type 1,1 occur in the first and third set of blocks. 

These differences may be written as 
21-t-2€ 1t +~«( 2t-l):l ::: 21+- 2 E,t +~1."'t-fo ( 	 )( 2 • g) 	 [ X X ~ ll 1 1 = 0,1, ••• , t-1 ,x11 


where E, E~ take on the values 0,1 independently. Hence (2.8) rep­
7
resents four differences of. the type 1,1 for each value of 1. Now. 

suppose that two of these differences are equal. Then 
I I

2it(, 2t t-~~«1'~ _ 2j"f"f,2t t-6~ OC+(3 
xll - xll · 

Therefore 
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that is, 

(2.9) 


Since d is odd, (2.9) is valid if and only if fl-€: is even,i.e., 

I .

But both c~ and €~ are either 0 or 1. Hence €.1 must 
I r

be equal to f.:l. Thus, from (2.9), since f, -E, is equal to either 

0 or tl either 1-j ~ 0 (2t) or i-j := t (2t). Since if j and 0 ~ 1, j 

~ t-1, both of these congruences are impossible. Thus the 4t diff­

erences of type 1,1 are all distinct and different from zero. There­

fore they must contain each of the 4t non-zero elements exactly 

once. The above argument may be applied to differences of the 

.type 2,2 and 3,3 to show that they contain all the non-zero ele­

ments of the G.F.(4t~ 1) exactly once. 

Now consider mixed differences of the type 1,2. These 


differences occur in the first set of blocks and the last block 


only. The differences arising from the first set of blocks may 


be written as 

21t e,2t 21 'tc:l(~~t)(2.10) ( -x 12'x 


where E, 1 €~ again take on the values 0,1 independently. The four 


differences giv~n by (2.10) are now written more explicitly as 


follows: 

2 i ~ ~ _ 21-t 2 t +v [ 21 ac ] 21 ,.v

[- X (X -1)j 12 - X12 ' X (X -1) 12 -:: Xl2 ' 

l21( l)l ::::. [- ~ +l)] -::;2i+u 21( 211"'2tt-uL x + .J 12 x12 ' x x 12 x •. 

The above expressions may be condensed into the following forms,i.e., 
21~E2t~u 21~E2trv 

, , where E =- 0,1. Thus (2.10) represents 4t'x12 x12 

non-zero elements of the G.F. (4t r 1). It remains to show now 

that these· elements are distinct. Suppose that two of thes·e ·diff­

.. 
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erences are equal. There are two cases to be considered. Consi­

der first 
I 

2ir~2t~u 2j+E2tT~ 
xl2 -= x12 

This implies that 2(i-j) + 2t( €: - t') == 0 (4t), that is, 1-j = 
t(~ -c') (2t) which has been shown to be impossible. Next, sup­

pose that 
I 

21+'"=2t-tu 2j+E2t+\t
(2.11) xl2 -::: xl2 

Thus 2(1-j) +2t(E -t-
1

) =v-u (4t). From this we can conclude that 

u-v .=: 0 (2), but this is impossible since u-v :i 1 (2). Thus (2.10) 

represents the 4t non-zero elements of the G.F.(4t+l) exactly 

once. The proof for the other mixed differences is analogous. 

The zero mixed differences all arise from the last b~_ock. Thus 

all the conditions for Theorem 2.4 are satisfied. Hence we have 

an incomplete balanced block design with the following values for 

the parameters: b:; (3t -t-1) (4t + 1), v == 12t 1- 3, r:::; 4t -t 1, k =:: 4, /\ .-: 1. 

As an illustration let 4t t- 1 =9. From the Corollary to 

Theorem 1.5, the G.F.(J 2) may be expressed as the field of residues 
2

mod (.3,y + 1). The set of residues is thus 0,1,-1, y,-y,y+--1, 

-y-l,y-1,-y + 1. We see that x= -y 4-l is a primitive root,for 
2 6 

X .::: y, X :::: -y, 

x3 ::; Y+ 1, X 
7 

:::: -y-1, 
g . 


x 4 =-1 X = 1,

' 5

X ::: y-1, 

where the values for the different powers of x are reduced mod y2rl. 

rr,in (2.6) we set Q=l, we obtain 

7
x_+-_1 _ -y-1 _ x :: x , 

- 6x-1 -y X 
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which gives an odd-powered residue. We shall now form the design 

where «~1. The first two blocks of the initial blocks are 

[ 1 ' ( - i) 1 , X 2 , -X ] I [X~, -X~, X~ , -X~ ] ,1 2

After substituting for x, the entire set of initial blocks is 


found to be 

( (1 ) 1; ( - 1) 1; ( -y+l) 3; (y-1) 31 ' ~1; -y1; (yH) 2; ( -y-1 ) ~ ; 

[<1) 2; ( - 1) 2; ( -yH) 3; (y-1 ) 3J' ~2;-y2; (n1 ) 3; ( -y-1 ) 3] ; 

[(1) 3; ( -1) 3; ( -y+l) 1; (y-1) J, [ y3; -yJ; (y-t-1) 1; ( -y-1) J ; 
(oO ;01;02;03) . 


In order to simplify the design, let the residues 0,1,-l,y,y-t 1, 


y-1,-y,-y-t-1,-y-1 be represented by 1,2,3,4,5,6,7,8,9 respectively. 


0 1
·Writing the initial blocks first and adding the residues X ,x , ••. , 
7 x to the initial blocks, we have the following design: 

(21,31,82,62),(41,71,52,92),(22,32,83,63),(42.72,5J,93),(23'33'81'61)'. 

(4 ,7 ,5 ,9 ),(ao,1 ,1 ,1 ),(31 ,11 ,92,42),(51,s1 ,62,72),(32,12,93,43),
3 3 1 1 1 2 3

(52,82,63,73),(33,13,91,41),(53,83,61,71),(o0,21'22,23),(91,71,62,12), 

(21,51,32,42),(92,72,63,13),(22,52,33,43),(93,73,61,11),(23,53,31,41), 

(oo,s1 ,s 2 ,s3),(51 ,61 ,2 2 ,92),(71 ,11 ,s 2 ,3 2),(5 2 ,62 ,23 ,93),(7~,12 ,s 3,J 3 ), 
(53,63,21,91),(73,13,81,31),(o0,41'42'43),(61'41'32,72),(81'?1'92,12), 

(62,42,33,73),(82,22,93,13),(63,43'31'71),(83'23'91,11),(o0,51,~ ,53), 

(11,21,72,52),(61,91,42,82),(12,22,73,5 ),(62,92,43,83),(13,23,71,51),
3 

(b3' 93'41' 8l),(oa,J1,J2,J3),(41' 51' 12' 82),(91'tl' 72' 22),(42' 52' 13' 83)' 
(9 2 ,3 2 ,73 ,23),(43 ,53 ,11 ,81),(93 ,33 ,71 ~21),(ao ,61 ,62 ,63),(81,91 ,52,32), 

(11,41,22,62),(82,92,53,33),(12,42,23,63),(83,93,51,31),(13'43'21'61), 

(oo,71 ,72,73), (71 ,81,4?.,22), (3 J!6l'l 1 sJ ,(72,82,43,23), (32,62,13,53), 

(73,83,41,21),(33,63,11,5l),(c0 ,91,92,93). 
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If m= 1 in Theorem 2. 3, the resulting design has the pro­

nerty that every variety occurs ex~ctly t times in every position 

in the blocks. For the elements of the module represent the var­

ieties and, no matter what element appears in a given position in 

a particular B1, the addition of all elements of the module to 

this element leads to all the elements of the module in this posi­

tion in the corresponding B18 •s. This type of design is useful 

when the position 1~ the block in.fluences the yield. 

Of particular interest are designs, which are termed 

symmetrical designs, formed by setting v=..b, r=k. Once a symme­

trical design has been constructed we can obtain three other designs 

from it. Denote tbe blocks of the sY!Jlmetrical desi~ by B1 ,B2, ••• , 

Bb. The residual desi.gn is formed by d~leting from the re~aining 

blocks all the varieties that appeared in B1 • The derived design 

is formed by deleting from the symmetrical design all the varieties 

that do not appear in any one block, say B1 , and also deletl~g B •1 
Since there are k plots to a block in the symmetrical 

design and v varieties, there are v-k varieties in the residual 

design. Since one block has been delet·ed in forming both designs 

and since v=b, the number of blocks in both designs is v-1. When 

forming a residual design we delete all the varieties appearing 

in one blocl~, so that the varieties remaining must occur the sa.!lle 

number of times as in the syr:tmetrical design. Similarly, the num­

ber of times a pair of varieties occurs in the same block in the 

symmetrical design remains uhchanged in the residual design. 

The number of varieties in a derived design is k since 

the design is formed by considering only those varieties which 
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appear in a given block and each block has k varieties. Each 

variety in the original design is replicated r times. Since we 

must delete one block containing all the varieties to be used, 

the number of times a variety is replicated in the derived design 

is k-1 since r == k. By deleting one block in which every pair of 

varieties un~er consideration appears, the number of times that 

each pair of varieties in the derived design appears together is 

~ -1 where A is the number of times each pair of varieties occur­

red in the original design. 

In order to show that these two designs are incomplete 

balanced block designs we need only to show that every block in a 

given design contains the same number of plots. We shall show 

below that the first bloc~ in a symmetrical design has exactly ~ 

varieties in common with every other block. From this it follows 

that every block in the residual design contains K-~plots and every 

block in the derived design contains A plots. Thus these designs 

are incomplete balanced block designs. 

We now prove that every block in a s~~etrical design has 

A varieties in co~~on with the first block. Let a be the number
1 

of varieties common to the first and the .!_th block, i == 2,3, ••• , b. 

Then 
b 

(2.12) 	 ~a= k(r-1), 
£--1 1 

since every one of the k varieties in the first block appears r-1 · 

times in the remaining blocks. Also 
b 

(2.13) 	 L. a1 (ai-l) _ k(k-1) 
c:~z -2- - (?\ -l) 2 · 

For, in the set Bi, 	i ~2,3, ••• ,b, each pair of the k varieties in 
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B
1 

occur in the same block )\ -1 times. But there are k C2 pairs · 

of varieties. Hence there are (A -l)kC 2 pairs of varieties in 

the blocks B1 , 1 =- 2, 3, . •• , b, which also appear in B1 . But since 

there are a1 varieties in B common t0 B1 , there must be a1 C2 ~ 
1 

a (a -1)/2 pairs of varieties in B1 which are also in Bi. There­1 1
fore ~a10 2 represents the total number of pairs of varieties 

i.=~ 

in B2,B3, .•• ,Bb which are also in B1 . Hence (2.13) is valid. 

Every variety v1 occurs in r blocks. In these r blocks 

there are r(k-1) varieties different from v • Since every pair
1

of varieties occurs among the r blocks exactly ~ times we have 

(2.14) 	 r(k-1) = )\(v-1). 

From (2.12) and (2.13) we have 

L;_cii;_ A) 2 -, La~ -2AL_ai-\- (b-1) l 
'" -:(A, -l)k(k-1)+-k(r-l) -2Ak(r-l) +(b-l)A 2. 

But since k=r, b=v, and from (2.14) we have 
2f= :a1 - A) = k(k-1)[ I\ -1-t-1-2 A+.\}== o. 

Hence ai = 1\ , .1 :: 2 , .3 , • • • , b • 

Thus 1 t follows that tl1e derived and residual designs are 
I 

incomplete balanced block designs having the parameter values v = k, 
I 	 I I ! I I I I 

b == v -1, r ::o k -1 , k == ?\ , A =A -1 and v -::: v - k , b = v -1, r ~ k , k = 
I 1 I I/ 1 / 1k - }\, A==}. respectively where v , b , r ,1{ , /\ are the parameter. 

values of the original symmetrical design. 

As an illustration demonstrating the processes of deriva­

tion and residuation consider the s~~etrical design 25,25,9,9,3. 

This design was constructed by Bhattacharya (Bull. Calcutta Math. 

Soc. 36 (1945) pp. 91-96). The design is as follows: 
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1 2 5 6 11 12 17 20 23, 1 4 9 12 14 15 19 20 24, 

1 2 9 10 15 17 16 21 25, 1 4 6 . 7 13 16 19 21 23, 

1 2 7 8 13 14 17 22 24, 2 3 6 7 9 12 19 22 25, 

3 4 7 8 9 10 17 20 23, 2 3 10 11 13 16 19 20 24, 

3 4 11 12 13 14 17 21 25, 2 3 5 8 14 15 19 21 23, 

1 3 5 7 10 12 18 21 24, 2 4 5 7 14 16 18 20 25, 
A 

1 3 9 11 14 16 18 22 23, 5 6 9 10 13 14 17 18 19, 

1 3 6 8 1.3 15 18 20 25' 5 7 9 11 13 15 20 21 22, 

2 4 6 8 9 11 18 21 24, 5 g 9 12 13 16 23 24 25, 

2 4 10 12 13 15 18 22 23, 7 8 11 12 15 16 17 18 19, 

3 4 5 6 15 16 1'7 22 24, 6 8 10 12 14 16 20 21 22, 

1 4 5 8 10 11 19 22 25, 6 7 10 11 14 15 23 24 25, 

17 18 19 20 21 22 23 24 25. 

From the above symmetrical design form the residual pattern by 

deleting all varieties in the last block. The values of the para­

meters from previous work are seen to be v =16, b:::::.24, r=9, k===6, 

>-. = J. The design is given by the following: 

1 2 5 6 11 12, 1 2 7 8 13 14, 3 4 11 12 13 14, 

1 2 9 10 15 16, 3 4 7 8 9 10, 3 4 5 6 15 16, 

1 4 5 8 10 11, 1 3 5 7 10 12, 5 6 9 10 13 14, 

1 4 9 12 14 15, 1 .3 9 11 14 16, 5 7 9 11 13 15, 

1 4 6 7 13 16, 1 3 6 8 13 15, 5 g 9 12 13 16, 

2 3 0
/ 7 9 12, 2 4 6 8 9 11, 7 8 11 12 15 16, 

2 3 10 11 13 16, 2 4 10 12 13 15, 6 8 10 12 14 16, 

2 3 5 8 14 15, 2 4 5 7 14 16, 6 7 10 11 14 15. 

Next we form the derived design by considering the varieties 

http:b:::::.24
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which appear. in the first block only of the symmetrical design. 

The parameters for this derived design v, b, r ,lc, A, have the values 

9,24,8,3,2 respectively. The design is given by the following: 

1 2 17, 1 11 23, 2 11 20, 6 11 23, 

1 2 17, 1 12 20, 2 12 23, 6 12 20, 

1 5 11, 2 5 20, 5 6 17, 11 12 17, 

1 5 12, 2 5 23, 5 6 17, 11 12 17, 

1 6 20, 2 6 11, 5 11 20, 17 20 23, 

1 6 23, 2 6 l2, 5 12 23, 17 20 23. 

Notic.e the four pairs of identical blocks formed in this design. 

Finally we see that from every incomplete balanced block 

design B1 , ••• ,Bb another incomplete balanced block design B
1
I , ••• , 

BbI can be formed by putting into each B
1 
I all the varieties not in 

the corresponding B • The design formed is called the complemen­
\,' 1 

tary design. 

Since there are k varieties contained in each of the B 's,
1

there are v-k varieties in each corresponding B
/ 

• Since no variety
1

appears mnre than once in a block, r f b. In practice r "( b, since 

r =-b and the relation bk =. rv imply that k -::::...v. In this case every 

variety a~pears in every block and the design is not a useful one. 

Since r < b, some B does not contain any given variety and hence
1 

this variety is contained in B1' • ThU.s all v ·varieties appear in 

the complementary design. Every variety appears in the B 's exact­
1 

ly r times. Since every variety appears in a ' ortce for eachB1 
time that it doesn't appear in the corresponding ~i' then each 

variety appears in the complecrentary design exactly b-r times. 
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Consider next a pair of varieties in the B1 's. A given 

pair of varieties appears in ~ blocks. Each variety of the pair 
~\oc. K.s 

appears in r blocks. Hence the number of~in which one or more of 

the varieties appears is 2r- )\ • The number of blocks in which 

neither appear is b-2r~~ and this is the number of blocks in 

which the pair of varieties will appear in the complementary design. 

Hence the parameter values for the complementary design are v,b, 

b-r,v-k,b-2r ~A • 

At the present time there are a great many designs avail­

able but as yet necessary and sufficient conditions for the exis­

tence of an incomplete balanced block design with given parameters 

are not known. The relations bk ~ rv and r(k-1) = -1(v-l) are neces­

sary condition.s only. Another necessary condition, which we shall 

now prove is that b ~ v if ~ / k. Since bk:::; rv, b ~v if and only 

if r ~ k. From ( 2 .13) and ( 2. 14) 
h 2 h 

~ai ~(/\ -l)k(k-1) + 4.a1 c.-~ c.::o:t 

"k[(/,-l)kt-r-,\j. 

Also from (2.13) the mean of the at s is ai::: k(r-1)/(b-1). There­

fore 

Thus 
~ 2 2 2 2
La1 ~ (b-l)a ~ k (r-1) I (b-1). 

. 1 
(.. 

Hence 


( 2 -15) (A -1) k -t- r-.1\ ~ k(r-1) 
2
I (b-1). 


Since r(k-1) =:: )\ ( v-1), we. have rk-r == Av-A , 1. e., 
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( 2 .16) r- ~ :: rk- )\ v. 

Substituting for r-A in (2.15), we have 

(A -l)k +rk-Av~k(r-1) 2/(b-1), 
which can be written as 

k(r-1) -k(r-1) 2/(b-1)~ A (v-k), 

or 

( 2 .17) k(r-1) (b-r)/(b-1) :::::.A (v-k). 

From bk = rv we have 

(2.18) 

Since v>lt, 

Subtracting 

dividing (2.17) by v-k and 

r(r-1) ~ A (b-1). 

this from r(k-1) :::. A ( v-1) we 

using (2.17) 

have 

'Ne have 

r ( r -<k) :, A (b-v) • 

But again from bk :: rv, (b-v) /v-:- ( r-k) /k. Therefore 

r(r-k) =: ~(r-k) 
k 

and 

· rk(r-k)- A v(r-k) ~ 0 

i.e., 

(r-k) (rk- .\ v) ~ 0. 

But kr- "v =r- A 

1 t follows 

by (2 .16). Since v > k a

that r- A ? o. Hence r >k and 

nd r(k-1) ;:: 

b~ v. 

A(v-1), 

I , 
\ 



CHAPTER III 

THE ~~ALYSIS OF LATIN SQUARES 

In this chapter we shall consider a test which will be 

used in testing linear hypotheses. We consider first a set of 

N random variables y ,y
2

, ••• ,yN and put E(yd() ~,.aD(. We now make 
1 

the following assumptions. 

(1) The Y« are normally and independently distributed 

and their variances, tr 
.,_ 

, are equal. 

(2) The __afll. are linear functions of p parameters /?'l f3~r 

••• , ,. ,. , where p<.N;i.e., 
p 

(3.1) 	 ~« = ;L. ~iq(3 (. ' oC:o:: l, ••• ,N,,.:::, 
and the rank of the matrix ( g1ec) is equal to p, where ex. denotes 

the row number. 
1

By eliminating the ~i from (3.1) we see that assumption 

(2) reduces to the equivalent assumption that the ~ol. satisfy N-p 

restrictions of the form 

(3. 2) 	 ~,Ak"~ == o , \Vhere k =1, ••• ,N-p, 

and 	the rank of the matrix ( .>t l{of. ) =- N-p. 

The hypothesis we wish to test is that the /] satisfy s_ 
I j 

independent linear restrictions,i.e., 
p 

( 3 • 3) ?.- k \j (3j ::: 0 ' i == 1 ' ... ' s ' 5 < ~} . 
J.:::f 

By eliminating the (3j froM (3.1) and (3.3), the hypothesis (3.3) 

1 
Attridge,R.F., Linear Regression and Multiple Classification 

Designs. 1952, p. 113. 
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1 
may be written 

(3 .4) k-=l, ••• ,s. 
2 

It can be sho\'1.71 that eCJuations (3.2) and (3.4) consist of N-p t- s 

linearly independent equations. We can novr introduce t~e follow­

ing theorems. 

Theorc~1 3.1: Let y1 ,y'?, ••• ,y b~ nc:rmHll,y end tr,ccnendently 
~ ~ N - -- -* - IZF 

r0lations, w 
(3. 5) L A,·C'( J).d.. :: 0 J i ~ 1 ' ... ' N- p 

d.~f 

In order to test t~'!e hyD.Qthesis that the ~ satisfv the rEl·a.t:!.ons 
a) 

( 3. 6) L_j,'a J-.(.ot J 1 == 1, ... , S; S ~ p, 
c(::ct 

whtch are independAnt of the relations· i.:k_2) and of e~~ch other, 

~ form the ratio 

F~N-P.~(3. 7) s ~l... , 

a 
N 

where Qa 1.§. the minimum with resryect to./<«. of ,£,CYc( -~) 2 und~r 

the restrictions (3.5) and (3.6). We rejcr:t .~he hypothesis (3.6) 

if F ~ F whe.re P(F ~ F \ (3. 5) and (3. 6)).:: G( and o( is a fixed £Q!l:.
0 0 

sta.nt. ~ 

(1) the test described above ~ ecuivalAnt to tt1 ~ like­

lihood ratio test for the hypothesis (3.6); 

(2) the ratio (3.7) has tr•e F distribution with~ and N-p 

degrees of freedom resrectively. 

Attridge, p. 114. 
~lann, Analysis~ Design of Experiments. Dover 1949. Now York, 
p.. 4''1-·· 

1 

http:sho\'1.71
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, 

It should be observed that the relations (3.1) an,:i (_?.J) are equi­

valent to equations (3.5) and (3.6) respectively, viz., 


.fl.,. ""t-?•,;,(3, ),_, q.:::l, ••• ,N, 
p 

;L kiJ {jJ ==. 0 ' L-- 1._,.;:, , ..• ,s . 

If b , ••• b are the values of (.3,, ... ,(3 which minimize 
N 1 p p 

LCYa~.-,.d,«) 2 under a set of line.'lr restri.ctions 

~~' p 

yrJ.. ~ ~ giot bi 

· is called the regression value of Yec· 

Th8orem 3.2: Let H1 , •.. ,Hs be a sequence of hynotheses 

Q!1 the means of the variables :t.. with E(yot)~~O( of the form 

Hl : ~ c< := #~ i o( (3 i ; 

p 

H'~: and ~tlb:R· .:::OJ k-=l, .•. ,s,H1~ J .::: I '\J f-'ll 

p 

Ht: H and L_ 4.'\j(l.j == 
0 J k -::: s t-2·t-l, .•. 's t-1t-1 .j:::f 

where st-l <p, 


such that the linear rPstrictions imnoseQ ~ H are line~~~ inde­
5

{t) 
n.~ndent of each other.. Le~~ yo( _9e t}-~ rer:ression VUlt!...~ of. yet QQ.­

tained under ·the ~othesis H , then 
2 > ~ro- 2 ~ 5> ..~t ;-- ~ (s-1) (s) 2 ~ (s) 2 

LY"==L..(Yc(-~) +L(~-~) +···+L._(Y4 -Yet) +L..(Y~).
d., C( 0( o( .( 

Proof: See Attridge page 145. 


Theorer:: 3. 3: Let Qa be the minimum o~ _!!:;.~ quadratic for:n 


Q::: L. (x -E(y~)) 2 
under the assumption
« « --- ----------­

$ p 

(3.7) E(yq):::: ,f,-f31g + L ~dgdd. , o(::.l, ... ,N11Q. 

d::s...,., 

and Qr 1 ts minimum under the additional restrictions f,·= 0, i:::: 1, ..• , s. 
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(3 1 , (3:{, .... ,/3P under the .§._SSU::t\Jti.~.~n (3. 7) and pu~. 

(~~b;r
1

= 	 i. j(c1 j) • 	 = 1 •...• s . 

.s s. 

Qr-Qa::: &fcijbibj" 

Proof: See Attridge, page 151. 

The regression coefficient Pp is called the general mean. 

i-:::l, ••• ,s~p
) 

-' 
( <ib~ b~\ ::: (c )

--=...L:J I 1J ' 
<"J'- ' 

The most important special case of t~e above theoreM and its cor­

ollary is the case where s ::; 1 and 

Theorem 2_._4: Let 
p 

E( y«.) =)l.o< =. 	 ~ gi ~(31.
l=' 

Assume. that 

(1) gPd. ~ 1 fo:r: .§.].._=k --A and hence i3 p is .the gener~1. !I@El!i 

( 2) gM is .~itJ.,~~..r. 0 .Q1: 1, 1 :=.1, ••• , s, s < p; 

(3) 1;; gio<.gj"':.:. 0 if if,j, i,j ~Sj 
(4) 2=_ gt~=l, o<-= l, ... ,N. 

~=I 
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fn·st S 
In view of assumptioP. (2), assuMption (4) implies that all the vg o-;

1
~r an_y ~e row are ~ except o~ ~ its value is 1. 

If 

~ 

.~ti (Ji::. 0,
'-I 

~ the only restriction on (31 , •• • , (3 , ~p' an~ if A1 is ~ 
5 

.J 

Lagrange multiplier as sociated with &;. t 1 ~ 1 =- 0, then A === 0. 
1 

Proof: See Attridge page 161. 

We shall now use this theory in the development of the 

analysis of a single mAm Latin square. We shall assume that the 

mean yield E(yijk) of the kth variety on the plot in the ith row 

and jth column of the Latin square is given by 

(J.8) L (yijk> == A'1 + vj + Jk +f , 

(3.9) ~ p, = Z Yj· :: L J~~ ~ 0 · 
J h 

The quanti ties )11 , Yj, jk' are called row, column, and varietal 

effects respectively where every variety appears once in every row 

and column. The first hypothesis we wish to test is 

H: ,1(1 =o, i=l, ••. ,m. 
First we must compute Qa' which is the minimuo of Q, where 

(3.10) Q ~ t.-t.(yijk- #i- Yj- J\-J / 
subject to conditions (3.9). Now (3.8) may be written as 

(3 .11) E(yijk)"' t-Jii',d'' -r t. ~j'~., + t. ~tt'fk' t j
v-=' J-' R-' 

where ~[3 is the Kronecker delta. Now apply Theorem .:3.4, 
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p 

where (3. 11) is equivalent to L_g (3 , and a~so where s =m, p= 
(::.t iCif 1 

. 2
3m r 1 and c< .::::l, ••• ,m We see that (3.11) has 'the following pro­

perties regarding the matrix of coefficients (g1~): 
(1) every elem~nt in the last column is 1 , i.e., gP1t.:: 1 

for 	all d. ; 
row 

( 2) the first s elements in each c-olttrm- are either zero 

or one; 
N 

(3) the first s columns are orthogonal , 1.e. , f gi<>< g j ol 

~ 0 for 1 t j, 1, j ~ s; 

(4) exactly one of the first s elements in each row has 

the value one and the rest are zero. 

Hence we see that (3.11) satisfies the four postulates of Theorem 

3.4. Hence, in finding Qa' we may ignore condition (3.9). Thus, 

to 	find Qa we minimize Q in (3.10). We have 
"' 

(-1.12) • d4J = \(y - /f- tl- -fJ -f)::::o-l: .-- ~ (- ijk ,-"t 1 y j ) k •'J'.., J: \ 

For 1 fixed, as j goes from 1 to m, k goes from 1 to m. Hence (3.12) · 

reduces to ~ 

1; my1 -m ,ll -0- Lf 	-mr == 0,• • 1 J(~J k 

which may be further 	reduced to 

(3.13) 	 y -4 -r=o,1.. 1 
where Yi •• is the mean of the observations in the ith row. Sim­

ilarly d Q/~ )/;=- 0 gives the following equation,
J 

(3.14) 	 y - v- f= 0
.j. j 

where Y.j. is the mean of the observations in the j_th column. Also 

(3.16) -.L ~ =2._(y1jk- tl - ~- f -f)= 0 
z. ayR l:j i .1 j k , 

where l:: means the sun over all values of 1,j, which give our 
~ 
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given value of k. Now (3.16) may be reduced to 

A ( 3 • 17) Y • • k -! k - j :::a 0' 

where Y•• k is the mean of all the observations on the kth variety. 

Finally 

This can be reEiticed to y- j =- 0, where y is the grand mean. 

Summing up, we see that the estimates of _,a
1

, 0- , p , 
"" "'\ j ..) k 

and j which mir~imize Q in (3 .10) denoted by )A 1 , ycj, Jk' and f, 
are 

,A,{,·""' = Yi •• - y, 

?: = j y,y ­J . .(3.19) 

= y y,
Yt •• k ­

f =: y. 

Then Q is given by the following expression,
a 

Now apply Theorem 3.2 with the following chain of hypothesis: 

H2: Hl and ,.t(.i =0, (1 :::l, ••• ,m), 
( 3. 20) 

H : and ")}- :::0, (j ==l, ••• ,m),H23 j 

H4: H3 and f -:: o, (k .:= 1, ••. ,m) • 
~ k 


Now from H1 we hHVe that 

(1)

(3.21) yijk :: y i •• + y. j. t- y •• k - 2Y. 

Hence we have 
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r. 

n'l 

-L~ -=-L_(y - )r -f -f)=- 0 
z O.'IJ 4=-1 ijk J. k 

which reduces to 

( 3. 22) y • j • - v-j -f== 0. 

Similarly ~~lafk-== 0 reduces to 

(3.23) y -r-J=O,•• k k 

and ~ Q/~f =0 reduces to 

( 3 • 24) y- ~ ::: 0 • 

Thus from H and (3.22),(3.23), and (3.24) we have that
2 

( 2)
yijk~ Y.j.+ Y•• k-y. 

From H and (3.23) and (3.24) we have that
3 

(3)
yijk=-y ••• k 

Under H and. from (3.24) we see that
4 

Y(il-) ::=. y
ijk • 

Thus· from Theorem 3.2 we have that 
~ f\1 2 ~ 2 \~ 2 s- s- 2 2 
L[.Yijk:;Qat- ~~(Y1 •• -y) + ~L:--CY.j.-y) rL:--L(Y••k-y)+Z-LY • 
t ;; I J ;: f l J ( J l _; f, , I 

This may be written as 
mm 2 2 1'1\ 2 tYl ,YV\ 

(3.25) ?;.f,.(yijk-y) =Qa+m~(yi..-y) i" m~(Y.j.-y) + mt;<Y•• k-y)" 

Equation (J.25) is very convenient for computing Q as all the 
8 

other suns involved can be ·computed readily for a given problem. 

The hypothesis we wish to test now is 

H: A :::: fi~ =: ••• =~?17 =0 

First we must compute Qr where Qr is the minimun of Q in (3.10) 

under the original assu8ptions of (3.9) and our hypothesis. 

Hence the expression to be minimized under these conditions becomes 
Y'f\ m .2 

(3.26) Q =~~ (yijk- fj- fk- f) . 

http:3.22),(3.23
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As before s == m. Since under the present hypothesis we can delete 

the first m parameters, we have that p =2m -t-1. As in the former 

case it can be verified that the conditions of Theorem 3.4 hold. 

Hence we may ignore the conditiOQS 

LJJ: =L_p :=:o. 
j J ~ J R 

Minimizing Q in (3.26) we have 

M 

~LeY -1--tJ-j)=-o
4·~, ijk j ) k 

which reduces to 

(3. 27) y - v--y== o • 
• j. j 

Similarly dQ/Jj k ==- 0 reduces to 

(3.28) Y•• k- gk-f:= O, 

and cQ/df:::: 0 reduces to 

( 3. 29)_ y- f ::: 0. 


Hence our estima-tes of vj, f\{' and f , which mininize Q in (3.26) 

r'\ ..-"\ ...., 

are given by Yj, fk' ~and j . They are 

1 ~ Y. j. -y, 

(3.30) Jirr, :::: y k-y, 

~ J =: Y· 

It should be obsArved that the estimates of Yj, Jk' j, in (3.30) 

are exactly the same set of values which were used in determining .Q • 
a 

I I I
We shall now set up the chain of hypotheses H1 ,H2 ,H ,

3I I I 
where H is H2, H is H , a~d H is H where H2,H ,H are given by

1 2 3 3 4 3 4 
(3.20). Now applying Theorem 3.2 and using the above hypotheses 

1 
we have that Y ( 1 ) '- Y ( 2) Y ( 2) ~Y ( 3) y ( .3) ~ y ( 4) h y ( s) 1 

1jk-. ijk' ijk ~ ijk' ijk- ijk' w. ere ijk' s ~ ' 

2,3, are the regression values in determining Qa· We have 
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Solving for Qr in (3.31) and using the value of Qa in (3.25) we 

have 
"N\ 2 

(3.32) 	 Qr -Qa =: m ~(yi .. -y) • 


In Theorem J.l our original assu~ptions were 


fi<l "'- t, ~ •atfJi , .( "' 1, ••• ,N, 

whe~e the rank of (g1~) is p. In our case, in addition to the 

~onditions of the above form, we have three additional conditions, 

viz., 

(3.33) LA,· = L!:· ~ ~Yk ~ (_; , i,j,k ~l, ... ,m.
i · J R

" By eliminating fim' Vm' Jm from (3.11) where _-'-<m' ;-"m' fm are deter­

mined from (3.33) wo have reduced our problem to a type which can 

be solved by using Theorem J.l. 

From (3.33) we have that 
"l'ft -I 	 "'_I 'WI~ I 

1 

(3.34) 	 Jl~:::--2:_/ic.·' K_;-L_}\' j ~~Pk •
/ "' .,_,1"'1- I l'l1 ., 1 "Wl b':l J 

I. - ' 
-

J :;:/ 	 ",, 
Relabel the parameters ;l1.1 , • • •,#m-l, / 1 , · • ·' Y..m-l' .f 1 ' • • • 'Jm-l' f 
as /{Jl' • • ·' (3 m-1' fJm' • • ·' (32m-2' P2m-l' · • ·' f-1 ~rn-3' (3 Jm-2' respec­

tively. We may write (3.11) in the following form 
~ ... -.1. 

E(yijk)" ~ gpij (3 p' 1, j -:::1, ••• ,m, 

whe.~e the colut!ln number of the matrix of coefficients {gpij) is 

g.i ven by p and the row number by ij . 

Our 	problem now reduces to finding the rank of G=(g ij). 
1 I p 

The rank of G is the rank of its Gra~ matrix S=G G ·where G'is 

1 i 

Schwerdtfeger. Introduction to Linear Algebra and The Theory of 

Jlatrices. Groningen, Holland: P. Noordhoff N.V., 1950, P· 142. 
1\ ., ' 
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the transpose of G. From (3.11) and (3.34) we have 

(3. 36) ?;.."-1Nj (jp ~ ( J;·c -Ln\Bi' t _?;'ajj'/ -~·ltr)~r t-~((dkk'- r,t...)f,.· t-fcc: 

From (3.36) we have the following relations, 

gp, ij == c\P- q_m' p =-1, ••• ,m-1, 

( 3 •37) gP' i j = Jj ' P-m.-1- ~m' p -= m' ••• ' 2m-2' 

gp, ij=~' P-2m-2- akm' P =r 2m-l, ••• , 2m-3' 

g.3m-2,1j=l. " 

LetS ~(a ), where Sis a square natrix of order Jm-2. 
pq 

The general element of S, viz., apq' is the sum of the product 

of the elements in the 12.th row of G' and the .9..th column of G. 

Since the rows of G' are the columns of G, a is thus the sum 
pq' 

of the products of the elecrents in the ~th col~~ and the ~th 

column of G. Hence we see that apq ==- aqp. 

Consider the submatrix (apq), p,q=l, ••• ,m-1, where p 

denotes the row number. From (3.37) the diagonal elements a 
pp 

are given by 
~ rV\ ,.., 

app~ ~~( fip- bim)~ 
" .. ' J -I 

== ~ (2) ==2m. 
J 

The non-diagonal elements are given by 

apq =-?= f= (cfip- Jim) ( Siq- dim), p,q = 1,... ,m, p;f q, 

== L.Cl)==m.
j 

Hence the submatrix in the upper left hand corner of S would be 

2m m ••• m 
m 2m 

(3.38) • • 

m ••• 2m 
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• 

where A is a square matrix of order m-1.
1 

Next consider the su~mat.rix A2 =(apq), p =1, ••• ,m-l;q-=. 

m, ••. ,2m-2. From (3.37) the general term is given by 
y'1"\ tY> 

apq"' ,~f,( bip- Jim)( ~,q-m-tl- J'jm) 

=.~( Jj,q-mrl- bjm). ~( fip- fim) :::o 
.J 

since the last sum is zero. We thus have that A2 is a square ma­

trix all of whose elements are zero. Since a =a we have that pq qp 

A
4

, where A ~ (apq), p =m, .•• ,2m-2, q ::1, ••• ,m-1, is equal to A •
4 2

We compute next A == (apq), p ==-1, ••• ,m-1, q =2m-l, ••• ,3m-3.
3 

From (3.37) we have 
m m { 

apq_:::-;;. ~( sip- ~m)( clk,q-2mt2- ilkm) 

,, '1'1\ vY' ( J 
- L ~ Sip- fim) ·L.<Jk,q-2m+2- 1\an)J

l:l J ~I

't- EcSip- Jim)· fcbk,q-2m+T S'km)J 
lJ -r ":::I= 0 

since the last sum is zero. This follows from the fact that 1~ 

q -2m+ 2 ~ m-1. Hence A is an (m-1) st zero square l!latrix. By the
3 

same argument as presented before we have that A = A where A = 
7 3 7 

(apq), p ~2m-1, ••• ,3m-2, q-=l, ••• ,m-1. 

We shall determine next A6 -::::. (a
pq

) , p == m, ••• , 2m-2, q ==- 2m-l, 

•.• ,3m-3. From (3.37) we have 

0 

' 
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since the last su:n is zero, \V~1ich follows since lf q-2rot-2~ m-1. 

Hence A is the (m-l)st sq~are matrix all of whose elements are
6 

zero. By previous reasoning we have A == A where A
8 

=:: (apq), p..::::
8 6 

2m-l, ••• , 3m-3; q =. m, ... , 2m-2. 

We now compute the diagonal submatrix A ~ (apq), p;:; m, ••• ,
5 

2m-l; q ~ m, ••• , 2m-l. From (3. 37) the diagonal e1e~ents are given by 
~TY\( f 2 

app :::: ~ .?= (.:Jj, p-m t-1- jr) 
l ::::1 J :::I 

v:here 1 ~ p-m T 1 ~ m-1. The non-diagonal elements are given by 

where p, q ~ m, ... ,~rn-1 7 and p j a. This reduces to 

apq = ~ (1)"' m. 

Hence we have that A is the ~-1 square matrix given by (3.38).
5 

The remaining matrix t0 be co~puted is t~e diagonal sub­

matrix A :::::(a ), p,q ~2m-1, •.. ,3m-3. From (3.37) the diagonal
9 pq 

elements are given by 
~ ¥1\ YY\ j~ _:~ 2 

app - [ l;. ( k, p-2m+-2 Jkm) 
t :::t J .. , 

~ ~ [~ (:; k,p-2:nt-2- Jk.'!l) ~ 
2~ ~ [~cs k,p-2mt2-Jkm) ] 

--:rn. 
:::; ~ ( 2) ::: 2:n 

L'l 

since 1 f p-2m -r 2 { m-1. The non- diagonal elements are eiven by 
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apq"'" t. t ([k, p-·2m+;:>- $km) ( Jk,q-2mtY J" km)' P ;i-q, 
t.-1 J.::l 

~%. [~c 5k,p-;:>mt-2- Jkm) ( Jk,q-2m-t-;?- ck!ll8 
"'~ [~ ( J k,p-2mt-2- Jkm)( J~,q~2m+2- "km)J 

'l'Y\

::: L (-1) (-1) ~ m·. 
1::, 

Hence we see that A9 =:: A1 ~AL • 

The only remaining ~lernents to be determined in the matrix 

S are the elements in the.last row and last colu:-m. Since Sis a 

symmetric matrix, in essence we have only to compute the elements 

in the last column,i.e., we have to compute ap,3m-2' l~p~3m-2. 

Since g~ . =1, we have that all the e~ements in the last col­
..~m-2,1.j 

umn of G are equal to one. From G'G we see that 
..,., '"'rY1 2 

a 3m-?, 3m-2 == ~.~,(1) == m • 
'- ; ~,,Also 

'W\ -m 

a = L L g ::::: 0 , p :::: 1 , ••• , 3m-3 • 
p,Jm-2 i~• j=• pij 

Thus we see that all the elements in the last column of S are zero 
2

e:xc8pt the last one "Nhich has the value m • Hence we !!lay ~Nri te S as 

s ::: 

Al 0m-l 0m-l 0 

om-1 Al om-1 o 

0 

2 
m 

where A is the (m-1)-rowed squ~re matrix given by (3.38), and
1 

0 is the (m-1)-rowed zero square matrix. From Laplace~ develop­m-1 
. 1 

ment by columns the value of the determinant of S is equal to 

-----------------------------~----1
Dickson, First .Q..Q.l:l-t§..~ iq .I.tlll Theory; of Egua tions. Wiley, New York, 
19~: P• 122. 
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m21 A 13 where is the determinant of A
1

.
1 (A1' 

Consider the kxk determinant 

b a ... a b a a a 

a b a .... a a-b b-a 0 a 
• • .::=; 

a-b 0 b-a 0 

a .... b 
. 


a-b 0 0 . . . b-a 

bt(k-1) a a a ... d 

0 b-a 0 0 
== ~b + (l{-1) a J(b-a) k-1 ••-~ . • . . 


0 0 ... 0 b-a 

Thus, for lAI, b =:.2!'!1, a ::::m, l-:=- o-1, we have 

l m-2 [c ) J r.1A 1 = m m- 2 :n + 2n == m. •I 

Hence it follows thatiSJj 0. Since Sis a square matrix of side 

3m-2 its rank must be J~-2. Hence G is also of rank 3m-2. 

By Theorem J.l, the rank of Qa, which is also called its 

nu~ber of degrees of freedom, is 
2 

m - (3m-2)= (m-1) (m-2). 


It remains to determine the rank of 

.Yn 

2
Q -Q :::; m LeY -y) • 

r a L:.• i • . 
To do so we need the following two theorems 

Theorem _.2.5: The ran~ 9f §. .§.!!.1'1! of quadratic forms is 

eaual to 21: less than the su~ of the ranks of the forms .. 

Proof: See Mann pp. 9.10. 
p 

Theorem 3.6: If .§:. quadratic ~ Q::: ~Li where 
"'l'\ 4,:""1 

Li -"= kaijXj , i ==-1, • • • ,p, 
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~ tua L ~related ~ h linearly i~~e£~ndent linear homogeneous
1 

relations, 

r(~) £:p-h, 

where ili) denotes the ran}: of £. 

Proof: See Attridge p. 30. 

The above theorem ~ay be ~pplied to Qr-Qa since the presence of 

the constant m does not affect the rank of the quadratic for~. We 

note that y 1•. -y is a linear form in the yijk'.s. Also 

11'\ 

.fu= (y1 •• -y) ~my-my =0, 

so that we have one linear homogeneous relation among the y1 •• -Y· 
2 

Hence the rank of m ~(y1 •• -y) does not exceed m-1. 
"Wt ') '1-Yt 2 

Similarly the ranks of m fr,.CY.j.-y)~ and m E<Y..k-y) 

0. 2 2 f k 1do not exceed m-1. Fina11y m y ~s o ran one, s nee 

22 2[ 2'\~ J2 
m y == m (1/m ) T f Yijk 

2and every element in the matrix of this quadratic form is 1/m • 

Fro!!\ (3.25) 

Using Theorem ).5, we have 

. 2 '" 2 ~ 2 \ 2 m -::: r( if·}-Yijk) ~ r(Q~) -tr(my(Y1 •• -Y) ) t-r(m?(Y.j.-Y) ) 

2 2 2 
-t r(m~CY ••k-y) ) tr(m y) 

2 2~ m -3m +2 +3(m-l) -t 1 = m • 

Hence the equality signs hold throughout the above relation and 

this is only possible if the quadratic forms 

m~(Yi..-y)2, m4:.<Y.j.-y)2, m~(Y••k-y)2 
I. J " 
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are.all of rank ~-1. 

Hence the ran~ of Qr-Qa is m-1 and, by Theore~ J.l, the 

statistic to use in our hyp~thesis A, ::,.t("--= .... =.a,_,:::o is 
2

m -Jm+ 2 QrQ§l. 
F' m-1 ·a 

This final for:n of F is the one best adapted to computation. 

To test the hypothesis that /; ::::J{ '=' ••• :::Jf~ =- 0 it is only' 

necessary to replace m~y~ •• by m[y:j. in the numerator of F. An 

analogous change is made for testing the hypothesis .f• ~ f;2::: · · · 'f~r ~f)· 

The above results are usually exhibited in the form of 

an analysis of variance table given by 

Source of 
Variation 

Rows 

Degrees of 
Freedom 

m-1 

·sum of Squares 

Sl::; mf(Yi. • ·-y) 
2 

Mean Square 

s1 ~ s1/ (m-1) 

F 

F1::s,/s 
~ 

Columns rn-1 s :::
2 

2 
mtCY -y)

.; .j. 
s

2 
~ s

2
/ (m-1) F2~s2/s~ 

Varieties 

Residual 

m-1 

(m-1) (m-2) 

s ~ 
3 

2 
mL(y 

1 
-y) 

R • • C 

Qa 

s ~s /(m-1)
3 J 

s4 ::: Qa/ [Cm-1) (m-2~ 

F =s
3
/s

3 • 

Total 
2 

m -1 ~ ~ 
"' 

(yijk-y) 
2 

The value given- by the second total follows from (3.25). The 

statistics used to test the hypotheses A,-::::.~~=:. ••• ::;,A/71(, Y,:: ~ = 

••• == ~ , f, :::. f< ::: ... .:: j...,. 
\ 

are, respectively, F1 ,F2 , and F •
3
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We shall now test the hypothesis that f, :::- f:1.. Since Qa 
is unaffected by the change of hypotheses, it- remains unchanged. 

To determine Qr-Qa we use Corollary J.J. Since the hypothesis to 

be tested may be written f1 -f"J. ':::: 0, s must be one. From the corollary 

we see that f,~ :a f• - f~ corresponds to (3,•. The rank of the matrix 
"'\ ""\ 

of coefficients (1,-1) is 1. Since f. and J< are estimates of f• 
and ft which minimize Qa we have 

b~ ==!. -t =- (y •• 1 -y)- ( y •• 2-y) 

::: y 1-y 2. 

Since 1 :::rj ::::::1 the matrix of coefficients (c j) of Qr-Qa is 

v:. ,_)_ I 1 
V '2 

c ::; If ::: ~(
11 v-"' (Tb* 

I 

since c is a one element matrix.11 

Since Y•• l and Y •• 2 are each the means of m independent 

observations, we have 

cr~ = L (l!m
2

)cr-
2 

== a-2!m :::: ~ • 
Y•• l ~ Y~.2 

Also Y•• l and Y •• 2 are independent since they are means of two 

sets of observations which have no observation in common. Hence 

~1 
r.-1. =:(1) 2 ~/m+(-1) 2 ~/m~2<l=/m.b't ;:: u y • • 1-y• • 2 

From Corollary J.J 
~~ 2 

Q -Q =: cllbl ::: (m/2) (y 1-y 2) •r a • • • . 

The number of degrees of freedom of Q -Q is 1 since it is equalr a 
to the rank of the matrix of coefficients (1,-1). Hence to test 

2 2m -3m-2 m(y 1_y 2) 
F ~ 1 • • • • • 

2Qa 
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In order to test r,~o we can 	use Theorem 3.3 fron which 

2 
Qr-Qa::::. ell (y •• 1-Y•• 2) 

and 

ell:: ~·t 
y. ·1 -y•• 2 • 

By definition 

E(y 1) =(1/m)~E(yijl) =(1/m)~(~,·tvj+fktf)
• • C.)J 	 "JJ 

and 

Hence 

Therefore 

== GY
1 -2.u . t- cr, 

2 
. 

• • 1 y •• lJ y 

We have that 

Y 1 ~ ~(l/m)yijl'
• • "JJ 

Y :::o; ~~(1/m2)yijk' 
1

We now make use of the fornula 

where 
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Since the Yijk are independently distributed 
3Vy == '[ (1/m) (1Im2

) q-,. = L(1/m ) c:r2 
= lim2 

• 
• • lY . 'd Yijl ~~· 

Also 
'1. 2 2 2 2o-y = a- !m, rrY -=a- !m ,
.• 1 

2
since Y•• l andy are the arithmetic means of m and m terms res­

pectively. Hence 

"1. 2( 2 2 rrv - = cr l/m-2/m .,_ 1/m ) 
.... 1 y 

2 2 2 
ell =: ~ - _!!L 

2 m-1 
cr (m-1) 

We now have 

Q -Q:: ~ (y•. 1-y)2. 
r a '771-1 

The rank of Qr-Qa is the rank of its matrix of coefficients (1) 

which is 1. Hence, to test f, ~o, we use 
22 2 

m -3m+2 m (y -y ) 
F~ •• 1 •• 2 


1 m-1 
 ~Q. 

Renlicated Latin Sauare~ 

We shall now apply the above theory to the case where 
(1)

we have r Latin squares. Denote the observations by yijk where 

J. signifies the Latln square under consideration. Our assump­

tion is 

(J.39) 

(3.40) 
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tl) (~) 
The quanti ties .A"' ~, .f>t , ct{IJ ~ are called the row, column, varietal, 

and replicate effects of the ~th Latin square respectively. To 

test the hypothesis 
d) 

H : /-I{ =0 , 1 ':::' 1 , • • • , m; ..t -= 1 , . • • , r, 

we must first compute Q which is the minimum of Q where a 
/L W1 ·-m tl) til (~} 2 

( 3 • 41) Q :: ) ~ ?= (y - A', - ~- - J'. - ~- .P )r, c..:t .J::' ijk 

subject to conditions (3.40). We may write (3.39) as 

r.l) 1t. ., ( r (IJ -t 1! uj '" --t r c<. t/3
(3.42) E(yijk) :-2:2: (}J.l' o;.;.'Pi' r r l_f..,(,.l't;, -r L s41l'fRt t r. 01(' (J) J. 

JJ 1 ·'~t AL '' JJ ./ J.•:, t'­C.~I c.- \:"'' J:t l"'i -1 

t> 
Applying Theorem 3.4 where (3.41) is equivalent to ~g1~ (31'

(. _, 
and also where s=mr, p~2mr+mt-r+l, c<=m 

2 
r. We see that (3.41) 

has the following properties regarding the matrix of coefficients 

(1) every element in the last column is 1, i.e., g ~ 1
pc( 

for all o( ; 

(2) the first s elements in each column are either zero 

or one; 

(3) the firstscolumns are orthogonal, since 
-'\. 'YY'I -n\ f
[ L L J1,, at.i.' itt., £c:t :;;: o 

.i-:., ~-::, s=, ' • a .t 

if f, 'i R~' and if 1,':: R' is equal to
1 2 1 


~f. J:. ·'d.·.' :: 0
\=• u, ""J. 
I I

since 11 ;': 1 ;
2

(4) exactly one of the first s elements in each row has 

the value one and the rest are zero. 


Hence we see that (3.42) satisfies the requirements for Theorem 3.4. 
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Thus, to find Qrl,; we may ignore condition (.3.40). Minimizing Q 

in (3.41) we have 
d f.) fl Cl> r1J c()-t -Fit) =: s (yijk' -.)-(,· -lj -fk -~~)- f )=0 • 
~, . J-' 

This reduces to · 

where y is the mean of the observations in the _!th row of the1 • • 
./. th Latin square. Similarly J Q/JYj

Jl) 
;% 0 gives the following equa­

tion 
(.l) (/.) 

y - y.- r/q;-j=:. o,
.j. j 

where Y.j. is the mean of the observations in the lth column of 

the 1.. th Latin square. Also 

dl.l - f:. ' ( (.R) ll) (R)
-.!..~ ~ L.. L. y -A - Y.j- Dk_ ct/1,-f ) == o.

'/... ~ Ok f- · · i j k 1 J I VIu J _, '"J 

This reduces to 

y -p-f~o
•• k k 

where Y•• k is the mean of the observations on the kth variety over· 

all the Latin squ~res. Similarly 

_.!_ dQ =f. f_ (yw - /,l'-1
- /~ J - <t-1;-J ) ~ o z '")..~, ·- .- 1 j k 1 j ku -1(} ,_, J _, 

which reduces to 
(R) 

y -d([J-j~ 0 
(1)

where y is the mean of all the observations in the i_ th Latin 

square. Finally 
~ ~ ~ (J) (I} tl)

--' ~4> :::- L L L ( Y - A - f - f - ctftJ - f ) ~ 0z 0y ~:, ,·=, ,j::• 1jk 1 j 'k 
which reduces to 

y -f -,:;Q, 

where y is the grand mean. 
ul (.tJ 

Hence we see that the estimates of P,·, '} , fck)' ct(.t}, y , 
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""' 1\fl} Jl} ..-"\ ..-'\ ' 
which minimize Q in (3.41) denoted by ~·, Yj , fk , ~RJ , f , are 

"" -ytR},.;1/,_rt) :; yll) 

~ 1 ••


;;rt) :; y(LJ - yliJ ' 
""\ .j. 

(3.43) Yt :;' y -y ,
•• k 

..., -Y , 

J -.. y. 

We can now write Qa as 

_ ~ ~ ~ ti) tR.) ftJ + (RJ 2 
Qa- l:;-t;-T;(yijk-Yi •• -Y.j.-Y••k y -;-y) 

Now apply Theorem 3.2 with the following chain of hypotheses, 

( rl) ) _ tLJ tm rll rqJ -
Hl: E y ijk - P,- t'YJ -tffr> -tc((l) tf' ~.A'i =t ~· = ~fk -:::: f q'(b =tJ 

til 
H : Hl ~ /J·=O 1 =l, .•. ,m; .1= l, ... ,r,

2 ( ' 

(3. 43
1 

) H3: H2 &. Vfqj:: 0' j: l, ... ,m; l~ 1, ..• ,r, 

From H1 we have 
tl), (l} (R) (i) 

yijk c y 1 •• t- y. j. ~ y •• k -y -y. 

Under H2 we minimize 

'"' (i.) (0 2Q== L ~ L;.. (yijk- ~- .fk- q{t}- f ) • 
I. ' J v 

- ,(t)
Thus we have aQ/aYJ =o which gives 

tiJ (() 
2( 3 • 44) y - y. - <it~~- 5' 0 . 

• j. j "' 
Similarly '() QlaJ~ :: o reduces to 

(3.45) 
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oQ/artu/:: 0 ;~duces to 
{t) . 

( 3 -46) y - eX(~ - f ~ 0' 

and 'd Q/) V=; 0 reduces to 

( 3 • 47) y - f = 0 • . 


Hence from H2 and (3.44),(3.45),(3.46), and (3.47) we have 

{I)~ t4) 

yijk =y.j.+ Y•• k-y. 

From H3 and (3.45), (3.46), and (3.47) we have 
t.i)3 (.() 

Yijk~Y •• k+-y - Y· 

From H4 and (3.46) and (3.47) we have 
' y(t)"' -- (-') 

ijk- y 

Finally from H and (3.47) we have
5 (,l)b 

yijk ~ y. 

From Theorem 3.2 we have 

L.2:l:_(yco )2~Q ~ LLL:(y(') -f)2 +I.L:L.(y(l) -yr~J)2 
1.. ' J ijk a t , j 1.. e c. J • j • 

-r~;f<Y••k-y)2 + ~~f </')-y)2i- ~~3=l· 

Notice that Q may be determined from the above relation as all 
a 

the sums involved can be computed readily for a given problem. 

The hypothesis we wish to test now is 

H•. Hlf!) Q • 1 11 1.....,. :: , L ~ , ••• ,m; ..(_~ , •.. ,r. 

First we must compute Qr where Qr is the minimum of Q in (3.41) 

under the original assumptions of (3.40) and our present hy~othesis. 

http:3.44),(3.45),(3.46
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Hence the expression to be minimized under these conditions be­

comes 

As before s ~mr. Since under the present hypothesis we can delete 

the first r parameters we have that p::; mr +m +r t-1. By reason­

ing analogous to the previous case it can be sho?m that the condi­

tions of Theorem 3.4 hold. This enables us to ignore the conditions 

Minimizing Q in (3.48) we have 
('J ct) _ 

y • j • - fj - t((IJ- f - 0' 

y •• k- fk- f === 0 ' 
((J 

y -d{()- j;: o, 

and 

y-y.:-o. 

We see that the estimates of ~~~ fR ,dt~ ,y which are given by 

-"'tJI) """\ ""\ "\ ( )YJ , JR, ol(tJ' y , which minimize Q in 3.48 are the same values 

of the parameters which deter~ine Qa. 'Hence the above estimates 

are given by (3-43). 
I I I I I 

Set up the chain of hypothesis H ,H ,H ,H4, where H1 = 
1 2 3

Hi+-l' 1-==1, ••• ,4, where H1, 1=- 1, ••• ,4 ar~ given by (3.43 
1

). 

Applying Theorem 3.2 and using the above hypothesis we have that· 
t.Ll~,1 £f}l£it-·) 	 t.R)i.

Yijk Yijk , i =l, ••• ,4, where Yijk are the regression values 

used in determining Q • We have a 

(3.50) 	 ~ ~~ (1~;~ )'- =Qr +- ~~f (y~~ •-y~) / ~ ~ ~f (y • .k-y/ 

+LLL<Y<~1 -y) 2 +~[I:y2 
• 

.e C:j 	 .l4.j 

From (3.50) and (3.48) 	we have 
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~ ~ ( ( (} tl) ) 2Q -Q =.:mLL Y -y • r a .R ti i .• 

From (3.40) we have 
.., _, c.fJ 

A ::- L fl.:' 
(3.51) m ,·'=' J 

"'-' 
jl?J ::- - L.fw' 1 

Iii'~' 

m -1 It -I 

+ 'f.;, a k~ I - 5km)Jkl 1" tt (SR_f' - J:,A.) o/{.t) -t- y • 

In order to apply Theorem 3.1, to find the rank of Qa' we need to 

know the·rank of the matrix of the coefficients of the parameters 

which anpear on the right hand side of the equations (3.52). Re­

present this matrix by the s~bol A. First we introduce the follow­

ing theoreMs. 

The~ hl: If o( 1 , ••• , d-m and {3s , ••• ,(1 rn_ ~ two sets 

of linearly indepe~qent vectors and each vectot of ~ first ~ 

is orthogonal to each vector of the second set ~ that 

o(i• ~j==O, i=l, ••• ,m; j -=1, ••• ,n, 

then ~ combined set of vectQ_ll o<,, ••• , ri. 1111 f3,, ...J(1, is linearlz 

indenend0nt. 

Proof: Assume there exists constants c
1

, •.. ,cm,d1 , ••• ,dn, 

such that 

c1 eX 1 -r • • • · t c m ~ m + dl (6 1 -r • • • ..,. ~~ n = 0 · 

Multiplying the. above equation by o( 1 we obtain 
l"f"\ 

~cj ( d 1 • ci j) ~ 0. · 
J .r 
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Mul ti,U.ying the same equation by ~ we obta.in
1 

f. dj ( (3 i • A • ) ~ Q.
j':t (- J 

This gives a set~>of m+n homogeneous ef{uations in m+n unknowns. 

The matrix of coefficients is 

B ~(: :l)2 
where C is the JJ! x m. matrix. ( c{ • l( j), D is the n x !l matrix

1
( [61 • ~ j), 0 is the m x !! zero matrix, and 02 is the n x .m zero

1 
1

matrix. We have lBI = Jc) /n/. Also C ~ A A where A is the matrix 

whose column vectors are ol1 , ••• , r1. m. Since o(l, .... , d m are lin"­

early independent tJ~e rank of A is m. Since C is a Grat!l matrix, 

its rank is also m. Hence /c / :f: 0. Similarly Jnl f: 0. Therefore 

/~ F o. Hence the set of homogeneous equations has only the tri­

vial solution 

c ::c :::: ••• :::c =d =ct ::: ••• =d =0.
1 2 m 1 2 n 

Thus ct,, ... , ri'JM, (3 1 , ••• , (J, are linearly independent. 

Consider the set of column vectors whose elements are 
tt'' tl? ft'} 1the coefficients of A, , AI~ , ... '!<;,., for a fi:x~d _L • Consider the 

matrix, A sny, whose columns are these vectors. Thus, A is a
12 1 

m.....r x (!!!:.1) matrix. The elements in the row corresponding to i, 1, 

and j are given by ~{ d~i' - f4..,.,) as 1. 1 runs from 1 to m-1. This 

element is zero if J. i=l 1 or if 1 F i 1 
or m. 

Let =A{A == ( gpq) be the Gram matrix of A • We haveG1 1 1 
J\. ~~ '} 

g =: [ ~ ?. ( ~ t ) ~ ( si p - 5~ lF1) ( f ~. - ~; ,) = gq p 
pq t~l .. -' J;"l 0 

:: 2r.t if p :::: q, 

=mifp~q. 
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Therefore G is t~e matrix given by (3.38) of order m-1. From
1 I • 

previous work we Jmow that Ja
1
l "f 0. · Hence the rank of G1 is m-1. 

Therefore r(A.)= m-1. But the rank of A is the same as the num­
1 

ber of·columns of A • Hence we have that all the columns of A
1 1 

are linearly independent. Thus we. may split up the first r(m-1) 

colu~ vectors of A into r sets of m-1 vectors according to the 

value of ~ and each set will be made up of linearly independent 

vectors. 

By an argument similar to the above we can decompose 

the second set of r(m-1) column vectors into r sets of m-1 linear­

ly independent column vectors. 

Denote the matrix of the third block of m-1 vectors by 

2
A where A has the dimensions m_r x (m-1). Let G =A1A = (g )

2 2 2 a a pq 

be the Gram matrix of A • The element gpq is given by
2

h ,., ~ [. J
~?;~< kp- .lkm)( kq- tlkm) =gqp. 

::; 2mr if p == q, 

~ mr if p -1 q. 


m-1 ./.

As before we see that la J =r \G1 l r 0. Hence G has rank m-1 

2 2 
which 1!11Pli'es that A has rank m-1 also.

2 
Consider the set of r-1 column vectors which are the coe­

fficients of the q~'l' ~'~l, ••• ,r-1. Let A be the matrix of coeffi­3 
cients. Thus A has dimensions m2r x Cr.:.!). Denote the Gram matrix

3 

of A?. by G -:::. A
1
A -= ( g ) • The element g is given by 

~ 3 3 3 pq pq 

g ~~!~c~p-J,~t,)cJ.~/j-£w==-g;
pq (.:::1 J"'' 1;-; lJ qp 

::. 2m2 if p :::: q, 
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~m2 if p ~ q. 

Therefore la31~ mr-liGV# o. Hence G has rank r-1. This implies
3 

that r(A ) =r-1.
J 
Since the coefficient of f is always 1, we have that 

the rank of the matrix of coefficients of f , say A4, in (.3.5.3) 

is 1. 

We have broken the matrix A up into 2rT3 submatrices 

and the column vectors of each submatrix are linearly independent. 

We shall show that the column vectors in any submatrix are ortho­

gonal to the column vectors in all the other submatrices. Taking 

a column vector from two of the first r submatrices and forming 

their scalar product we have 

L L ~(fl.ll)( J. ·f - $. ){J;A I )(f,. •I - J.. ) =: 0 
A • ' "'-C. ,, '"' ...CAC'.z. ' ,, 

-" ' J I 

since 11

1/41• Similarly column vectors selected from ·any two of 

the second set of r submatrices are orthogonal. 

Next select a column vector from any one of the first r 

submatrices and a second column vector from any one of the second . 

set of r submatrices and form their scalar product to obtain 

) 2:. ~ JJf 1 (Jii' - J~m) ·dRf/ { ~j' - ~-'") :::o · L I. J I 

Forming the scalar product of a column'vector from any 

of the second set of r submatrices with one from the submatrix 

formed from the set of m-1 vectors whose e/e.ments are the coe.ffi­

cients of the fR 's, we have 

LLL-~t,(~·c:'-cf,·,..) ·(cf,~, -f~r"')
i i j 

'"' ~[(J<<' --J",,..)~ (cf~11• -J",nJ] "'a 
(, 
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' Fdrming the scalar product of a column vector from any 

of the first r submatrices v1i th one from the submatrix formed 

from the set of r-1 vectors whose elements are the coefficients 

of the ci{dj 's, we have 

0L L 2:. ft,, (d~ ·I - ~i • ( ~L, -~A ) = .wt ) 

.R. i i ' 

Again forming·the scalar product of a column vector 

from the first set of r submatrices with the .column vectors of 
r. 

The above procedure can be repeated with the column. vec­

tors from any one of the r submatrices of the second set of r(m-1)_ 

column vectors. It can be shown that as before the column vectors 

in this case are also orthogonal. 

Next we shall form the scalar product of any column vec­

tor from the submatrix formed from the coefficients of the ~w's 

with any vector from the submatrix comprising the coefficients 

of the fk's. Thus we have 

Also 

Similarly 

Hence we have shown that the sets of column vectors forming the 

submatrices of A are mutu_ally orthogonal. Thus the 2r(m-l) tm-rr-1 

column vectors of A are linearly independent. 'Hence the rank of 
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A is 2r(m-l)+m+r-1. 

By Theorem 3.1 the rank of Qa, which is also called its 

number of degrees of freedom, is 
2

m r-2r(m-l) -m-r t- 1 = (m-1) (rm-r-1). 

It remains to determine the rank of 
'~ (I} fl) 2Q -Qa~ m L_L-(Yi -y ) • 

r .e. ' • • 

Now Q -Q is the sum of squares of rm linear relations. We have r a 
• {l) (I) 

r linear homogeneous relat1ons among the v1•• -Y ,i.e., 

f ( - =0 , ~y (,t) YleJ ) ::: 1, • • • , r • 
•=· 1 •• 

(f) ~) s
These relations are independent since each y •• -Y appear~ 1~

1 
only one equation. Therefore by Theorem 3.5 we have 

Similarly 
""' A. CR) (l) 21

rm~L(Y.j.-y )j~rm-r.[ 
1=• R=,

Also 
2r[mr ~ (y••k-y) ] ~ m-1, 

and 
r_ 2 ~ (tJ 21 r lm b, (y -y) .J ~ r-1. 


2 

The rank of ~~~ y is 1. 

<1( ' J 

From (3.48) and Theorem 3.5 we have that 

m
2
r "'r[~~~(y~~k) 2] ~ r[Q

8
]+r[m ~ t(y~~.-y(qJ) 2] 

2~r[m [[(yC-"jJ -~~)) 21+ r[mr L(y -y) ] 
.Q. ~ • • j R • .k 


-t r[m2 L. (ycqJ -y) 21 + r rIT.I:. /] ~ 
 ""W\1. r 
.f. J ~Q. t j 



Hence the equal~ty signs must hold throughout. Thus the quadra­

tic form Q -Q must have rank r(m-1), and the ranks of the other r_ a 
quadratic forms are also determined. 

tl)
To test the hypothes1s fi,,· ==o, 1 =1, ••• ~m; 1= 1, ••• ,r, 

the appropriate statistic to use is, by Theorem 3.1, 

(3.53) F :: 
1 

The final form of F 
1 

is the one best adapted to computational 

purposes. 

The statistics for 
(I) 

testing the hypotheses 1=-o, j = 1, ••• ,m, 

-- 2
(rm-r-1) mr 2_(y k-y) 


F -:::::: "' • • 

3 1 Qa ' 


2 "~- ( rJ) ) 
2 

( ) ( )F -::: m-1 r.m-r-1 m :e- y -~ __ , 

4 r-1 

where Q is given in (3.53). These results can be expressed com­a 
pactly in the following analysis of variance table: 
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Source of Degrees of Sum of Squares Mean Square F 
Variation Freedom 

k wt lCJ (f) ~ 
Rows r(m-1) s = s /r(m-l) F =s /ss1~m~~,CY1 •• -Y) 1 1 1 1 5 

"' ""'! 

s - m L!(Y rm -!/J) ~Columns r(m-1) s ~ s /r(m-1) F2:==s2/s52 £=1J:::' .j. 
- I

I 2 2
t f 2 IVarieties S ~mr (y -y) I s ::: S /(m-1) F =s /sm-1 

3 t?~· ••k 3 3 3 3 5 
2~ U) 2Replications r-1 S == m y -y) I s ; s I (r-1) tF4-=s4/s54 lb• 4i 4 

Residual ~m-1) (mr-r-1) Qa $ -== Q /f!m-1) (mr-r-1~5 a 
- - -

Total 2 m r l
/}
:2L lR) 2 

,· J (yijk-y) 

The value of the second total follows from (3.48). 

ORTHOGONAL LATIN SQUAfiES 

We shall now extend the theory presented in the previous 

sections to the case where we have r orthogonal Latin squares of 

side m where r ~ m-1. Denote the observations by y where 

i,j ~l, ••• ,m denote the row and column numbers r
ijk,, ••• k.f. 

espectively and 

k 
s 

, s ::1, ••• ,r, talre on the values from 1 to m. Our assumptions 

are 

(J. 54) 

( 3. 55) 

The subscripts ki! 1 ~ l, ••• ,r are functions of 1 and j such that 

for a fixed 1 {j) they take on each of the values from 1 to m ex­

actly once in some order as j (1) takes on the values from 1 to m. 
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~lso the pair of numbers (k1,k~) takes on every·passible ordered 

pair of numbers exactly once where k1 and k are selected indepen­
m (L) 

dently from the numbers 1 to m. The parameters ,A,·, ~· , f~r1 , L = 

l, ••• ,r, represent the row, column, and varietal effects respective­

ly. 

In order to test the hypothesis 

H: A,· = 0 , 1 :I 1 , ••• , m, 

we must first compute Q which is the minimum of Q subject to con­
8 

ditions (3.55) where 

.,., ., . <•) (2.} {A.) 2 
(3.56) Q ~ ..~J~(yijk tt-_ -Ai- Jfj-jk- Pk- fk -y>

• IJ • • • ......,_ I l. ~ 

As in the previous section, we may again show that (3.56) satis­
2 

fies Theorem 3.4 where s =m, p ~ 2cr-tmrtl, and d = m • Thus to find 

Q we may ignore the conditions of (3. 55) • Hence 'a Q/a~.-=0 reduces 
a 

to 

yi- _pi-J::: o, 
and c1'Q/a~: 0 reduces to 

yj-yj-f:::O, 

where y and yj are the means of the observations of the !th row
1 

and lth columns respectively. Also we have 

d 't) = ~ (y - ~I - .J,- ()(I) - f(4) - IJ ) :: 0aD fR.I ~ 1 j k k ;4'\1 ,j_. J k • • • k ) 
.J. ~I J ,P h. • • 4 I ;&

tit: lk_, .J 

where . ~ means summation over the m pairs of values for 1 and j 
c.~~, (I) 

which give us terms involving Jq • The equation reduces to 
c.t> til l 

yk"- j~ -f= o, 
Cl)

where yk is the average of tne m values of yijk k which have 
t ~-·~ ~ 
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the given number k as 	the (1-r 2)nd subscript. The expression 
- ('Y\'

L_ ~~ vanishes in the above relation since k~ appears with each 
{l,j /.It 
value of~ exactly once,i.e., 

Finally 

"dit -= y-J'"O. 
d.f 	 (// 

Thus the estimates of"' ...t<1 , ;/--j, Jk~ and .f which minimize (3. 56), 
.-'\ '"'\ (tJ '1

denoted by ,J.J. , ~j, ~ , and j> , are,
1 ll, "" 

! = y, 
1LJ ((')

.f~ - y -y,
(3.57) 	 ~ k_q 

~ ~ yj-y, 

AJ..i ~yi-y. 

We may write Q as a 

~ ~ 	 (I) (~ {4,) 2 
Q = f- ~ (yijk tr -yi-yj-ylr -y - • • • -y i" (r .,. 1) y) • 

a , • · J - • , , • • •i·-~ "4 k 2 k-1. 

Now apply Theorem 3.2 with the following chain of hypotheses, 

H • 6.. ~=o, i'::::'l, ••• ,m,2. Hl 

H3: H2 &. ~ ~ o, j == l, ... ,m, 
(3.57') 	 (A} 

H .. H3~ J~t =: 0' k, = 1, ••• ,m,
4 k ... 

.H 	 k :::: l, ... ,m •rr3· Rrt-2~ Jk.
(t) 

::: 0 ' r 

From H we have1 
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_11) __ <,) c'2J ()V 
Y y i-t Yj + Yk, TYk.% t-·• • • i-Yk.( -(r T l)y 

~ (R) 
:: y "'"y -t-L y -(r+ l)y.

1 j /;;f kg 

Under H we minimize 
2 

=L z::. (t} C-t.) 2 
Q i . ( yi ji 1c- 'k - Y.j - y.k -..• - f k - .f ) 

J tt"..·~· • •r-.(. ' :.t 

Thus we have oqjJ~.=o which gives 

(3.58) y- 1--p~ o. 
j j 

Similarly ~ Q/ajk., =o reduces to 
(e) ( R) 

(3. 59) yk~-J' kt - f :;-. 0, .R. =1, ••• , r, 

and dQ!dy = 0 reduces to 

( 3 • 60) y- f == 0 • 

From H and (3.58),(3.59), and (3.60) we have2 

~2) ~y -y +- t(;~ -y) ~ y
j R::t ...e 

rtif -ry.-= y
j t=, 'e 

From H and (J.59) and (3.60) we have 
3 

From H and (3.59) and (3.60)
4 

(jJ -t-' (IJ 
y -a }:(y~ -y) t- y

R:r I 
-t,... f (() 

== [y~ -(r-2)y. 
R=1 t 

From H and (3.59) and (3.60)
5 

http:3.58),(3.59
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( 5) A·~ tR) 

y = [ (y: -y) + y 
R=t kt 

~ ...t-< ti)- L yb - ( r-.3) y • 
.R=.t 1'{.( 

Following through in the same fashion with the remainder of the 

hypotheses we have from H and (3.59) and (3.60)
r'~-2 

(r+2) t•> 
y :: yk • 

I 

Finally we have, under Hr~J and (3.60), 

y(rr3)~ y. 

From Theorem 3.2 we have 

2 ~ 2 '\ 2[L yij1.r _k = Qa+- ~ 4 (y1-y) -t-4-~(yj-y)
( j , .. ,) •• J-.... c. J (, J 

+Lr:rc <'? _ ) 
2 +- L"!' 2 •t,.YkY .. Y 

J '1. (. J 
This may be written 

,, 2 ' 2 ~ 2(.3.61) ~~(y11k k -y) =Q + m ~(y1-y) + m ~(yj-y) 
\. J ' • • • ' :.t a ..J 

'~ (I) 2 
+ M£_L_(yk -y) • 

i lf.t. t 

Since all the sums appearing in the above equation are readily 

computed, Q may be determined from (3.61). 
a 


The hypothesis we wish to test now is 


H: ,JJ.i-== o, 1 =-1, ••• ,m. 
First we-must compute Q where Q is the minimum of Q in (3.56)

r r 
under the original assumptions of (3.55) and our present hypothe­

sis. Hence the expression to be minimized under these conditions 

becomes 

(J. 62) 
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As before s ~ m•. From our present hypothesis we have that p.::: m+-mr 

+ 1. As before we can show that the conditions of Theorem 3.4 
>n ...,.. tP) 

hold. Hence we may. ignore the conditions ~r === o 2: f,.. =- o 
·- J , I. t'("t J 

J-1 ""(.:( 

1 = 1~ ••• ,r. Thus, ninimizing Q in (3.62) we have 

,.; yj- ~-y = o, 

(i) w 
YJ.. - 0 - f =- 0P(.t: Jttt , 

and 

y- f::: o. 
(J) 

We see that the esti~ates of 	 vj, f~ and J which minimize Q in 

(3.62) are given by (3.57). 
I I I . I 

Set up the hypotheses H ,H2 , ••• ,Hr+-
2

, where H1 e Hit-l'
1 

.i -==1, ••• ,r 1-2, are given by (3.57'). Hence we have 

(3. 63) 

From 	 (3.61) and (3.63) we have 
. 2

Qr - Q ~ m~(y -y) • 
a ... i · 

From (3.55) we have 

(3.64) 


From (J.54) and (3.64) we have 


(3. 65) 

In order to apply Theorem 3.1, to find the rank of Qa, we need to 

know the rank of the matrix of the coefficients of the parameters 
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which appear on the right hand side of equation (3.65). Represent 

this matrix by the symbol A. 

Consider the set of column vectors whose elements are the 
I 

coefficients of A·
I 
, 1 =1, ••• ,m-1. These form a matrix, A

1
, 

2
which has m rows and m-1 columns. Denote the Gram matrix of A1 
by o

1 
=- A~A1 = (gpq), where p, q -::: 1, ••• ,m-1. Hence 

g ~f..t:.ci" -S ,<! _J_ )= g 
pq .:::1 j=' ip im iq 1m qp 

::::2m if p::::: q, 

:::m if PF q. 

Therefore the matrix G is given by (3.38), and is of order m-1. 
1 

From previous work we know that fa1J ~ 0. Hence the rank of G1 is 

m-1. Therefore r(A1)= m-1. Hence the m-1 columns of A are lin­
1 

early independent. 

By an arguMent similar to the above we can show that the 

m-1 column vectors whose elements are the coefficients of 

j'= l, ••• ,m-1, are also linearly independent. 

Consider next the matrix of the r(m-1) coefficients of the 

~t 1 s. Split up these r(m-1) vectors into r sets of m-1 vectors 

according to the value of J. • For 'l/ =.P, denote the matrix of 

coefficients by A• and 1 ts Grar.1 matrix by G =-A 
I 
A =(g ) where

2 2 2 2 pq 
p,q-:: 1, ••• ,m-1. Hence 

-=2m if p -==-q, 
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== m if p f. q. 

Thus a ::: a • Hence t,1e M-1 colu:1ns of A are linearly inde}'endent.
2 1 2 

Thus e8ch .of the r sets consists of linearly inderendent vectors. 

since t:1e coefficient of f is always l the rank of the 

matrix, conf1isting of t'ne coefficients of f , is 1. 

We have hr~1cen the r!latrix A up into r +3 submatrices and 

have shov.n that the column vectors of e~_ch subMatrix are linearly 

independent. F~ shall now· show t~'1a~ t-:1e column vectors in any 

subnatrix e.re ortr~o,r.:onal to the colu!!!n vectors in all the ot;1er 

submatrices. Taking a column vector from the first submatrix and 

forrnine t 1'e ·scalar product wi t~1 a column vector from t~1e second 

subrnatrix we have 

. Forning the scalar product of a colu~ vector from the 

first submatrix with a vector fron any submatrix of tbe r submatri­

ces which are the coefficients of the fl» 's VIe have 
~ ~ 

~!.:, '( ~•., -d,,. ), . ( J'i•l - Jti.J 
6=f: f (S,,,- J~·-..J(Sk kt'- I~,J = · 

c:=• ~:1 '1. 

Repeating this process v:i th the coefficient of .f we have 

L L ( dc: 'I - cf, )k) . I :: 0 . 
i j 

A similar proof holds if we replace the vector from the first sub-

matrix by a vector from t~e second subMatrix. 

Taking any two column vectors from any two submatrices 

whose elements are the coefficients of the f t s we have 
Itt 
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"'
,
[[<5" 1 ,-

-

Jh>·<{t'_Jk,... ) = o 
tl(' t":/ "-' 1., 1(£-.. ~ 

sinze as 1 and j independently take on the values 1,2, ••• ,m, k 1 
2 

and k take on all the ~ossible m pairs of values selected from 
n 

1,2, ••• ,m exactly once. 

Finally "?!e have 

Hence we have ghovn1 that t~1e sets of column vectors forming the 

submatrices of A are mutually orthogonal. Thus the 2(m-l) t- r(m-1) 

Tl columns of A are linearly independent. Hence the rank of A 

is 2m -tr(m-1) -1. 

By Theore:n 3.1 the rank of Q is 
2 	 . 

a 

r.1 -2rn-r(m-l) + 1 ,:;: (rn-1) (m-r-1). 

It 	remains to deter:-rrine t~·le rank of 
- 2 

Qr - Qa == m~(yi -y) • 

Now Q - Q is the SU'Tl of sauares of m linear forns. Vie hc:.ve a ·r a 
linear homogeneous relation such that 

Thus by TheoreM 3.5 we have that 

rlm~y -y/]~ m- L1
Similarly 

r[m~(yj-y) 2J~ m - L 

Now m~l:<i~ -y) 
2 

is the sum of squares. of mr linear forms. We 
.R. ~-~ -~ 
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every y~ -y appears in only one equation. Thus by Theorem 3.5 

have ~ linear homogeneous relations of the form 

!!!. tl)
2__(yk -y) = o, .f =1, ••• ,r. 
lf~=l '.t 

These relations are linearly independent in the 
f./) 

(y~ -y)'s since 
(Q} 

we 

have 

~~y2The rank of LL_ is 1. From (3.61) and Theore~ 3.5 we have 

L J 


2 
m :: r[[[Yijk ••• l~J ,< r[QaJ +r[m~(y1-y);;J +r[m~(yj-y)

2
}

1 

2+r(r!l'[ L<~htJ -y) ) lr tT: /]
.t 1ft lt.f r. ' J 

2 2
,< m -2!!1-rr.-l + r .- 1 ,.. 2 (m-1) + r(m-1) +-1 = m • 

Hence the equality signs must hold throughout. Thus the'quadratic 

form 0 - Q must have rank m-1, and the ranks of the other formsyr a 

are also determined. 

To test the hypothesis .JI.-::;-0, i~l, .•. ,m, the ap!lropriate 

statistic to use is, by Theore~ 3.1, 

(m-l)(m-r-1) Q - Q _ r a(3. 66) F1­ m-1 

2 2 2 
mr_y - m Y 

=(m-r-1). i 1 
'[ '2 [ 2 2 "~ (12) 2~ 2~. Yijk ••• k-M ~Y t-~yj+L£.. (y~ ) t-m (rt-l)y2 

.. .J I A .. i J ~ lf,q ., 

where F has the F- distribution with m-1 and (m-l)(m-r-1) degrees
1 


of freedom. 


The statistics for testing the hypotheses 1=o, j =l, ••• ,m; 
(I)

f~.t:: o, k.t =- t, ... ,m, ..../. ~1, ••• ,r, are respectively 
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2 2 2 

m3=yj - m y 
F ::: (m-r-1) • ----- ,

2 Qa 

m'c (I)) 2 2 2f. Yt?, - m yF == (:n-r-1) . -~......._______ , 

3 

......... 
'( (;\.} 2 2 2 

m~ Ytt ) - m y
F ::: (m-r-1). ~ 4 ,

r+-2 

where Q is given in (3.66), and the number of degrees of freedom a 
associated with each Fare m-1 and (m-l)(m-r~l). 



CHAPTER IV 

THE ANALYSIS OF INC01~LETE BALANCED BLOCK DESIGNS 

We recall that an incomplete balanced block design is 

an arrangement of v varieties into b blocks of k plots each 

such that: 

(1) no block contains the same variety twice; 

( 2) every variety is replicated r times; 

(3) every variety v occurs with every other variety v 
i j 

exactly A times in the same block. 


vYe also have two important relations governing an incomplete 


balanced block design, viz., kb-:.. rv, and r(k-1) =- A (v-1). 


Denote by y the yield of variety 1 when planted in 
ij 

block j, i:::.l, •.. ,v; j=l, .•. ,b. Let n j (which is 0 or 1) be
1


tQe number of times variety 1 occurs in block j. Then 


v b 

[ n =- k, Ln =r,._,{.:I ij i 1 
J- u 

, ·,,where k is tbe number of plots in a block and r is tbe number of 

. replications of each variety. Also 

"'' .,IF-i}- ('Ln1 jn IJj ={ -A t-o~ (r-;..,), 
.c. r, 1=1 .ci 

where ~ is the number of times each pair of varieties appears 

together in the same block. Thus we have 

(4. 3) 

117 
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where 

(4-4) 

where v and bj are the varietal and block effects respectively.1 
In order to test t~1e hypothesis v ::: 0, 1 =1, .•• · , v, we

1 
must determine Q which is the minimum of Q,. where 

a 
u b 2 

(4.5) Q =LLn (y -v -b -)1.),
L:; I j.::1 1 j i j 1 j 

subje6t to the conditions (4.4). Checking off the assumptions of 

Theorem 3.4 we have that 

(1) ~ is the general mean, 

(2) the coefficients of the v are either zero or one.
1 

Although (4.3) appears to be vb equations, the actual number is 

kb (recalling that v >k). However in the mythical equations the 

coefficients of the remaining b(v-k) equations are all zero and 

a row of zeros does not affect the rank of tpe matrix of coeffi­

cients. Hence we may use the "enlarged" matrix and to verify 

condition (3) we wish to show that the v1 columns are orthogonal. 

A given row corresponds to a pair of values for i and j. The 

portion· of the row corresponding to the first v columns e~ther 

contains nothing but zeros or a single 1 in the v th colu~. 
i 

Thus conditions (3) and (4) hold. Hence we may ignore the condi­

tions of (4.4) in determining 0 • Thus 
~a 

dQ
(3.-t( 

::: 2:Ln y
i j i j i j 

- L.v l:n 
i 1 J i j 

- Lb Ln 
J j i. i j 

- ~~n1J.~ .., 

= G - r [v
i. 1 

- k ~bj
..} 

- 1-tr.,M. 

-== G - rvp.. == 0 
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"\ 
where G is the total yield. Hence ~~y, where y is the grand 

mean. 

Similarly 

~...a b . 

~~In (y -v1-b -;£)

~"i j::, ij ij j 

b 	 b b 

::;-[ n .y - v L n - ~n b - A I:. n 
J::t iJ ij iJ=• ij ,.j=t ij j J ij 

:: V1 - rv1 - t n 1 j b j - r,)( = 0. 

Hence 
b ""' v	 == r-;; .,... Ln b -t- ry

1 1 j•• ij j 

where Vi ~ 'j;
I) 

~ijyij is the total yield of the .!_th variety. 

Also 
aQ .r 
~ i!i ~ J~ n 1/Yij -vi-bj -1t0 

r 	 .r 

~ .~ n:(jYi'j - .:~ n1·j v1 - kbl -k_;.c = o. 
Hence 

(4. 7) 

v 
where Bj == f= n 1,.y ,. is the sura of the yields of the varieties 

. '_, J 1 .1 b 

planted in the j_th block. Let T ::: .J"!;., n jBj be the sum of the
1 1

totals of all blocks containing tr1e 1th variety. 

Multiply (4. 7) by n
1

j and sun ·Ni tl: respect to j t8 obtain 

btr ""' b "" T1~[~n1, n.jv.,.,.kLn b"' +rky 
j ::' 	 i. =• j 1 . l J =• 1 j J 

~ [ ]-"\ b '"'"\ 
.:: [ 1- t- ~1 . (r- A v

1
, +k~n1 b ~ rky 

.;':' 1 J -' j j 
b 

; ( r- 'A ) ;- +k Ln b +- rky.
1 j=-• ij j 
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Multiply 	(1-e. 6) by k and subtract (4. 8) from it to obtain 

(4. 9) 	 k V - T =(kr - r -r A ) v "" •
1 1 1 

But kr r +A ~ r(k-1) +-A = A'(v-1) +A =: Av. Hence (4.9) may be 

writ ton 

(4.10) 

Substituting in (4.7) we have 
.r 

~j ~ (1/k)Bj- (1/k~ v);~ni. (kv - T ) - Y • 1 1 1

Consider the chain of hypotheses : 

H1 : E( yij) .=; nij (vi+ b j +-#- ) , 7vi == f bj = 0; 

H : H l 	 b ~ 0 , j = 1 , • • • , b • 
3 2 	 j 

Under H2. 	consider the effect of the condition L b :::;; 0. Condi­
. 	 J j 

tions (1) and (2) in Theorem 3.4 are satisfied irru:J.ediately. Also 

any row 	corresponds to a definite block number. Ther~ will be a 

1 in the column corresponding to the block number and zeros in the 

colu~s col;'"responding to the rer.1aining blocks. Hence conditions 

(3) and (4) of the theore~ hold true also. Thus we may ignore the 

condition 	 t- bJ.::: 0. 

From H we have 
1 


(].} ~ " 

Y =v +b +A 
ij 1 	 j 

·== A'.,_ (kV1 

To determine 
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We have aQ/ ab j =- 0 which reduces to 

Also from 3Ql'dft-;: 0 we obtain again ~-:::: y. Hence 

(2) 
yij = :1 . 

k 

Finally we have that 
(3)

Y =­
ij 

y. Then 

Now 
b 2 

2yLB +kby 
.J·::, j 

Then 

We wish to test the hypothesis: v ==- v :::: ••• ::v ::: 0.
1 2 v 

I I
Renaming the above chain of h.ypotheses as H :::; H2 , H ~ H , we have

1 2 3

(4.14) 	 Qr ~~~n13 Y~j - ~~B~ • 

From 	 (4.1J),_and (4.14) we obtain 

.r b f: 1 tT ] 2 
Qr - Qa "'~ ~nij l~ - k funt/ij • 
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But, 

since the method for minimizing Q is equivalent to the method of 

Lagrange multipliers and hence the v ' s satisfy the condition _r.,.. ~ o.
1 ' " Thus 

rk-r1"-" ..r _? 

(4.15) Q Q ::. }:~r - a k ~' 1 

v-"2 
==~I:.~ 

k c.'.:::• 1 ' 
Also from (4.13) 

(4 .16) 

By (4.10) 

which is the best form for computing this term of ~ • 
lla 

Consider the set of bk expressions 

Denote the column vector of the coefficients of v
1 

by ¥1' the 

column vector corresponding to bj by aj, and the column vector 

corresponding to ~ by I. Every element of I will be unity. 

To determine the rank of Q we need to know the rank of the matri~ a 
A, corresponding to the expressions 
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In t·erms 	of the above notation we may write 

A =<v.-- ~,. ]1-Yr,.. ~.) ;';._,- 'l:r, ~,-P. I (1~. -!db> ...J {3b-.-f&b J I J 
In order to find the rank of A, we shall first determine the rank 

of the matrix 

B ::; ( f.'~J{} .. ·~ yL.,., !3,) ...)(1 J 
Let '( qe the observational vector whose elements are 

the~ 1 s arranged in the same order as the corresponding rows in 
Jij 

A. 	 Then 

7!.· ~ = Vi = the total yield of ·the 1th variety, 

and 

71.· ~j -= B~ ~ the total yield of the ,lth variety. 

Since Bj 	 and B ,, j'1j, are the sums of different obser­
j 	 . 

vations 1 

cov(B ,B ) :: (f 
2 

( (3 • (J 1) =o. 
j j 	 j j 

Thus (3 	 is orthogonal to ~... ' , j 1~ j, ·and hence the set of, vectors 
j ' 	 .; 

p
1

, ••• , Pb are linearly independent. 


Consider the expression 


Q = ·~v" - V - .!t_v - 1 'n B

1 k 1 	- 1 k - 1 k7 ij j 

0 -= 1· ( vi - ~~nij' (!> j' ) =: ?( i~ ' say. 

The matrix 

has the 	same rank as the matrix B. We now compute 

(4.17) 

We have 
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1 b 


E(Q ,B ) ~ E{V ,Bj) - -k~ nij' E(B ',B ) • 

1 j 1 J-r - j j 

~f variety occurs in block 1, then v and Bj have one observation
1, 


in common, and · 


E(V ,Bj)::: cov(V ,Bj) +- E(V )E(Bj)
1 1 1

2 = v t- E(V ) E(B j) •
1

If variety 1 does not occur in block~~ then v1 and Bj have no 

_observation, and 

These two results may be combined into a single formula given by 

. 2 


E(V ,Bj) -=n j ({"" + E(V )E(Bj).

1 1 1

In the same way it may be shown that 

2 


E (B,., B 1 ) ::: J k <r t- E {B ) E (Bj 1) • 
J j jj' j 


Hence 


2 1 b [' 2 JE(Q
1
,Bj): n1 ju +E(V

1
)E(Bj) - kJnij' ojf u- -t E(Bj)E(Bj,) · 

2 2 b 
~n1j<r +E(V{)E(Bj) -n jq- -~)p;nij•E(Bjt)1 

I :: [E(V ) - ~t_n1l(Bjt)]E(Bj)1

:: E(Q )E(B ) • 
1 j 

Thus, from (4.17)7 cov(Q
1

,Bj) =0. Hence i 1 is orthogonal to ~j 

for all values of 1 and j. It follows that 

( )'\ - ~ f,.n1;1' ~j'). ~j"' o, 

that is, 


It
)/"1, pj - ~~nij' ( (3j • (3;1,) ,. ~ • ~J 

=v'"i.f3J - n =o. · ij 
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Hence Vf. fJ j :::- n1 j. By means of the methods used earlier it can 

be shown that 

cov(Vi'Vi')= Jif' (j2::: ( y.i • 

so that .11 • .Y-1 1 =-~rr. 

Next, we compute the Gram matrix,G, of the matrix 

We have 

G::( ~1. it) 
where G is a square matrix of order v. Also 

t 1 • i i' "' ( y'"i - ~ f, ni j I {1j I ) • (f{1-1 - !7ni' j pj) 

""J;_:[r -~~n1tjnij- !~n1jmi'jrr~~ffn1jtn1 ,j(,gJ.~') 
=Jifr - ! [ i\ .,. Su' (r- ~)J 
=-~ if 1t1 1

,k , 

= r(~-1)' if i ""i' • 

Thus 
}\)\--k ••• --k 

-A. r(~-1) .. . -t
k k 

G == ... 

ll. 
- k ~ • • • t{k-1) 

k • 

From previous work (Gf =[r(~-1)-r~jv-1 [-(v-1): +r(~-1~::: 0 since 

r(k-1) =A(v-1). The value of the determinant obtained by delet­

ing,the first row and first column of IG! is 
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Thus the matrix G, and hence D, is of rank v - 1. Hence -v - 1 of 

the vectors 71 , ••• , ?f are linearly independent and orthogonal
1 v 

to the ~j's. By Theorem 3.5, the matrix C and hence the matrix 

B is of rank v + b - 1. 

Next note that 

and hence 

Thus any 	v r b - 1 column vectors from B are linearly independent. 

We shall now prove that the matrix 

(1,' -~""' r'i -*} ...)~-I ~) (3, -(3,_, ;3). -(3~.,_, ..., (3b~f -j3,)-

iS of rank v +b - 2. Consider the equation 
.,..... , 	 t.-r 

~ ~.<~-~) -rL((3j-~b) ~o · ,=, J=• 


This equation.may be written in the form 


~c, (Y; -~... ) -t ~ d; ~J - fh t, dj'
..,::. 	 e~=' J-

b-' b-1 .,.._, b-1 u ­

= ~c,(JI;-V'.,.) +j5;~j~J -(~~ -~~j)J~~j' 


,. Lc~,- [ dj· ).-'; + [ (dj +I: dj')~ - ( ~ ,._ <~~_aj') v-.r = o 
\,:1 j'=• ;:n .i'=• ,..,, .J - 1 

• 
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Since Vi, ... , Jfv' ~l, ••• , (-3 b-l are linearly independent we have 

d + L
b-1 

d. I=:. 0' j =1' ••• 'b-1;
j J':; ( j 


b .. / 


c - L d , -::::0, i:: 1, •.. , v-1;
1 j'~t j ' 


,._, b-' 


~c1 + f:dj,= 0. 
(. =-t J -I 

. 
The (b - 1)th order determinant of the coefficients of the first 

set of equations is 

2 1 1 1 

1 2 1 ... 1 b-2 ~ ,, 
= (2- 1) ISb- 2)+2_jfo.

1 

1 .... 1 2 

Hence d :::: d ::: ..... db-l == 0. Then, from the .second set of equations,
1 2

c ~ c :::: ••• = c =0. Hence the last equation is also satisfied. 
1 2. v-1 

Thus 

are linearly independent vectors. 

Finally, 

( Vi_• - y'-v). I =~ f nij ( Jg' - ~) =r ~ ( Jii' - fiv) = o, 
and 

Thus, by Theorem 3. 5, the set of v + b - 1 vectors 

Y;- *I ' · 'J )~*;._,- V;-j (31 -(3 b) • ' •J f1b-r -(~bJ I. 

are linearly independent. Hence r(A) ~ v ~ b - 1 and thus r(Q ) == 
a 

vr - v - b t 1. 
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It remains to determine the rank of Qr - Qa· Since 


l:~1=0, 1 t follows that 


r[~v~~l<v-1. 
'-(B; 	_ ) 1Since L 
. k 

- y =kby k - by -= 0, we have 
J 

$ b - 1. 

2 
rank 	of kby is 1. 

From (4.12) and Theorem 3.5 we have 

-:::. rv 	- v - b -t- 1 t v - 1 f- b - 1 + 1 rv.It: 

Hence the equality signs must hold throughout. Thus the quad­

ratic form Q - Q must have rank v - 1. 
r a 

To test the hypothesis v1 ==- 0, 1 =1, ••• , v, we use the 

statistic 

rv -v -b + 1 
F=- 1 v ­

To test the hypotheses v v j we use the Corollary to
1 
~ 

Theorem 3.3. Notice that Q remains unchanged. From the coral­
a 

If'lary 	we see that v - vj corresponds to ~.. The rank of the
1 

matrix of coefficients (1,-1) is 1. Since v and Vj are the
1 

estimates of v and vj which minimize Qa we have
1 
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1t- " " · ::: vi - vj.b1 
Also, since 1 = j ~ 1, the rna trix of coefficients ( c ) of Qr - Q

ij 	 a 
is 

Now 

From (4.10) we 	 have 

~1- .?v-[(k- l)V1 - (T - V1)]
1 

Since T = Ln B and B = Ln 'Yi'j , V ==- L nijY ,
1 j ij j j \.' fj 1 J ij 

we have 

Thus V and T1 - V common and hence 
1 1 

(k-l)V and T - V are independently distributed. Therefore
1 1 i 

2 • [ 2 2 2 1 
o-~ ==. A~ (k - 1) rrv: -t v- ]

1 1 Ti-Vi 

Also 
2 2b 2 21L 2 

q- :: a- L: n :::: () 1..... n = r rr v J;:l ij .j.;;( ij 
i 

Wilks, P• 35. 
1 
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and 

Therefore 
2 __l__c 2 2 2]cr 'Y T ",. "",_ l(k - 1) r a- -t- r(k - 1) v 

1 
2 

rk(k - 1) o- _ 2 2 
== ~'-cr-z. - kl\(v- l)o-::: k(v- 1)fT. 

)\"&. ~.,_ }\ ttl.. 

Since the last expression is independent of 1 we also have 

From Corollary 3.3 

The number of degrees of freedom of Qr -Qa is 1. Hence, to test 

the hypothesis v
1 

-=­ v j we use the statistic 

2 
'· rv - v - b + 1 ( k (Vi- Vj) - (T i - Tj ~ 
F 1 ==­ -----­ • 

· 2k )\v 

where Fi has the F distribution with 1 and rv - v -b +1 degrees 

of freedom. 

Eadh variety appears r times. Suppose we use r blocks 
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with v plots so that every variety appears in every block in a 

two-way classification design. For this design let 

For the incomplete balanced block design let 

2 2 


(T"' ::. a-- I c •

vi 1

Definition: The efficiency factor of !n incompl~te balanced 

.block design with respect !Q the estimate vi,~ compared !11h 

~!!£-way classification design, j& 

e =(a-
2 
/h)/( rr 

2 
/c ):::: c /h.

1 1

Note that if the incomplete balanced block design has a smaller 

variance f0r "v , then e/1. The efficiency factors with respect
1

to varietal differences are defined similarly. Clearly if there 

is a choice between two designs, one of which is more efficient 

than the other while both justify the assumption (4.3), then the 

experimenter will choose the more efficient design. 

In an incomplete balanced hlock design we already know 

that 

In a two-way classification design, k.:: v, ~ ::- r, Hence for the 

latter design 
2 2 

Q""" cv(v - 1) v v - 1 2 v -= a-.1 ...t \f"L 
rv 

Thus the efficiency factor with respect to the estimate "vi is 
2 

v - 1 · v /\ )\ v 
e:::: .-=--. 

rv k(v-1) rk 

.. 



For an incomplete balanced block design 
2 2 

VAt"":::~o-. 
v1-vj )\V 

For a two-way classification design 
2 2 

V'\ A -~o-. 
v1-vj- r 

Hence the efficiency factor with respect to the estimate v -vj is
1

=:- ,e$-.~ 
r2k rk 

as before. 

For exaMple, in the design (v, b,r,k, >.) =(16,24,9,6,3), 

(8,14,7,4,3),(11,11,5,5,2), and (21,21 1 5,5,1~ the value of the 

""' "" ....efficiency factors with respect to the estimates v and v -vj are
11 

8/9,6/7,22/25, and 21/25 respectively. 

The loss of efficiency will, in general, be more than 

offset by the reduction in the error variance per plot resulting · 

from the use of smaller, more homogeneous, blocks. 
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