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CHAPTER I

GALOIS FIEZLDS AND ORTHOGONAL LATIN SQUARES

N\
A Latin square of side m is an arrangement of m letters

2 subsquares of a square in such a way that every row and

into m
every column contains every letter exactly once. If one takes
two Latin squares of the same dimension and superimposes one

upon the other, and finds that no ordered pair of letters are

the same, then the two Latin squares are termed orthogonal.

The following Latin squares

A B C « A 7
B C A ? x B
C A B g ¥ «

are orthogonal. 1In this chapter we will consider methods for
constructing orthogonal Latin squares.

In order to fully comprehend the methods of constructing
Latin squares certain concepts of algebra and the theory of num-
bers must be known.

Let a, b and m be integers. We say that a is congruent
to b modulo m, a=b(m), if m divides a-b. Ve will make use of
the following properties of congruences.

(1) If a=b(m), then atc=b¥c(m), ac=be(m).

(2) If ac=be(m) and (m,c) =t then asb(—’{}).:L

1 _
Uspensky and Heaslet, Elementary Number Theory. New York:
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In the following work we shall always consider the
least positive residue modulo p, that 1s, we replace each number
by the remainder, r, obtained by division by p, where 0$¢.r<p.

Fo'rm the following pattern where p is a prime

0 1l aes p-1
3 B ee. p-1t3

Lj= 23 1+2] ees p-1t23 J=1,2,...,p-1.
(p-1)3  1+(p-1)] «oo (p-1) +(p-1)]

A1l the numbers in Lj are the least positive residues modulo p.

e shall show that L, 1s a Latin square. Suppose LJ were not a

Latin square. Then in some row or column a number would appear
twice. Consider the ith row as being such a row where the element
in the rth column is the same as the element in the kth column.
Thus (k-11-1)J=(r-1) + (£-1)J (p). From this relationship

k=1 (p). Then since 0<k,r{ p, k=r. Similarly we can show that
every column contains every number only once. Thus LJ (3=1,2,
«e+»p) 1s a Latin square.

We shall show next that L, is orthogonal to L, if 1#3.

J
Assume that L, is é@atin square which is not orthogonal to L

i 3
Then there would be two cells in which the ordered pair of numbers
would be the same. Suppose mn is the pair that occurs twice.
Suppose also that it occurs in the «th row and gth column and the

¥th row and dth column. Then

R LY grb’Jsm(P),l



Bray = d+3¥i=n (p).

Hence d(1-1)= ¥(1-3) (p). But |i-jl < p and thus (1-1,p)=1.
By the rule of division of congruences we may divide by (1-J).
We obtain x=¥(p), B =4 (p), and hence «=¥ , f=§ . This is
a contradiction. Hence Li is orthogonal to Lj.
A set of four orthogonal five-sided squares is presented
as an example:
L, L, L3 L4
012314 012314 01234 01234
12340 23401 34012 40123
23401 L0123 12340 34012
34012 12340 40123 23401
L0123 34012 23401 12340.
Note in particular that the uniqueness of division

was necessary in constructing L Because of this unique char-

acteristic the residues a,2a, .?., (p-1)a are (p-1) different
residues all different from zero provided that q#O (p). Thus
one of these residues must be 1. Accordingly, corresponding to
every residue _@'#O (p) there existsa residue a~t called the
=1 (p).

The method presented for constructing m-1 orthogonal

inverse of a such that a”

Latin squares 1f m is a prime suggests that m-1 orthogonal Latin
squares may be constructed if we have a field F consisting of m
elements which satisfy the following conaitions.

For every pair of elements a, b in F, there exist two

uniquely determined elements a¥b and ab in F. The Maddition"



and "multiplicationg have the following properties.
I The commutative law holds,
at+b=b+a, ab=ba.
II The assoclative law holds,
(a+bd)+c=a+(b+c), (ab)e=a(be).
IITI There exist two elements 0O, 1 in F such that a+0=a
and al=a for every a in F. '
IV Corresponding to every a#0 there exists an element

1 such that

a+(-a)=0 and aa~1=1.

(-a) and an element a~

The‘element 2™l 1s called the inverse of a.

V The distributive law holds,

c(a +b) =ca +ch.

Any system satisfying the above postulates is called a field.
When the number of elements ( which are also referred to as the
marks of the field) is finite, thenthe field 1s known as a finite -
field or Galois fleld (G.F.). |

Let 8y= 0, gi::l, Bos eee) gm-1 be the elements:of the
finite field and form the following pattern which forms an addition
table for the G.F.(;m) since the elements in the first colu mn are

all the elements of the fleld.

O 1 s ae gm_l
g4 gqtl coe Byt8y 7
(1.1) Li: gigz gigz+l s e gigz"'gm_—l (121, ss ey m"l)

gigm"l gigm"lfl s e gigm_l-f-gm_ln



We have here a set of m-1 orthogonal Latin squares. Fo r, if Li
is not a Latin square, then o™ne column, say the p th column,
would contain the same number twice, once in the kth row and once
in the rth row. Thus we should have
E18x-1=8318p_7 -
Since gi;EO and every non-zero element in a field has an Inverse,
then
-1 _ -1
€4 gigk—l" g4 gigr-l ’
and gk_1= Br_1° Thus k =r. By a similar argufment we can sho™w
that each row contains every number exactly once. We can now say

that L (1i=1, 2, ..., m-1) is a Latin square. Now it must be

1
shown that Lj is orthogonal to L, if 1#J. If this were not so

then we should have the same ordered palr of numbers occuring in
two different cells of the square formed by superimposing Lj upon
Ly- Let the pair which occurs twice be in the oth row and §th

column. Then

18y 1 T %_1 = gig'_l-f- 86-_1 K

gjg.(—-l* gﬂ—l: gjgy—1+ gg_l .
By subtraction

&-1(85-81) =g, 1(84-84) -
-1

Since gi;é gj ’ (83*51) exists, and 8, -1=8y-1 ° Hence a=7,
Substituting in the first equation we see that ﬂ:c( . Thu's we
have proved the following theoren.

Theorem 1.1: If g0=:0, gl==l, Boy eoey gm—l are the marks

of a finite field, then the designs Li of (1.1) form a set of m-1



orthogonal Latln sguares.

The following propositions are valid over a field F.

Proposition 1: a.0=0 for every a. ‘

Proof: We have a =a(l+ 0)=a+a0. If we add (-a) to
both sides of this equation, we obtain Proposition 1.

Propdsition 2: ab=0, a#0 implies b=o.

Proof: This follows by multiplying ab=0 by a—1 on the
left.

We denote by m.x, where m 1s a positive integer and x is
a mark of ¥, the sumn of m x's,

Proposition 3: If m is an integer, such that m.1=0,
then m.x =0 for all x in F. If m.x=0 for one x#0, then m.y=0
for all y in F. |

Proof: If m.1=0 then m.x=(m.1)x=0x=0. Also if m.x=0
then m.x = (m.1)x=0. If X #0 then by Proposition 1,m. 1=0 and
therefore m.y =0 for every vy.

Proposition 4: If p is the smallest positive integer
for which p.1=0 then p is a prime.

Proof: Suppose p=mn, O <m,ng p, then (m.n).1l=m.(n.1l)=0.
Hence if n.1=0 then we get a confradiction, because n (p. By
Proposition 3 if n. 1%0, then m.y =0 for all y in F. 1In particu-
lar m.1 =0, which is impossible. Hence p 1s a prime.

The number p is called the characteristic of the field.
If there is no integer p for which p.1=0 then the field is called
a field of characteristic zero and is necessarily infinite because .

the elements n.l, n=0,1,2, ..., are then all different.



7 Any positive integer m may be written in the form m=

at+Ap, 0£a$p-1, where A 1s a non-negative integer. Then
m.x ={at+ Ap).x=za.x
for any element x of F by Proposition 3. Thus we may replace m
by 1ts least positive residue modulo p in such calculations and
we shall do so in the proof of the next theorem. We shall also
rename certai; elements in F using a to represent either a non-
negative integer or the element of F,a.l, 0« a { p-1. Then we
may write
a.x =(a.1l)x =ax.

This should not lead to 'confusion in the work that follows.

Theorem 1.2: The number of elements in & Galois field

¥ 1s a nower of its characteristic p.

Proof: Put wy=1. If there is a mark w27£a.l=a for
£ these do mok \‘V\t‘.\uAQ 3 WMArK Wa
a=<0, 1, ..., p~-1 form the marks a1w14:a2w2 andvform all the
marks ayW) +ayWy 4 agw g, Continue this process until all the

marks of F are exhausted. If wy, ..., w, are obtained in this way,

then ajw; 4 ... + amwm7(ai::0’l’ ceny p—l))represent all the marks
of ¥ and are pm in number. For, if

AWy + cee +apWp =byWit oo ¥ bWy,
then (al~bl).wlﬁ-... +(am—bm).wm= 0. Let k be the largest number
for which a,-by = —ck;é 0. Then

~1 -1
WS oo (al—bl)wli-...-fck (a3 _1-Pr-1) W1

= dlwl + *e e w +dk__1wk_1

where d veey dk—l are residues modulo p. But this contradicts

1,



the significance of Wpee Hence F contains pm elements.
Let « be any mark of a Galoils field, G.F.(p™), and form
l,«, e(", ‘; dk, ++s » OSince the number of marks is finite we must
have, for some k) j,
faa’ ghin).
Definition: The order, t, of any element, «, in a G.F.{(p™)

is the least positive power to which that element must be raised

to give the identity element of the fileld.

Let Xy, ¢v., X be all the non-zero elements of the
252 4 pm__l
G.F.(p™). Then

dxldxz L) dx m—l:'- X1X2 «es xpm—l
if x#0, since o(xj_za(x:I implies that x;= x4 and thus the elements
LXKy 5 i=1, ..., pm-l, must all be distinct. Hence

p-1
X =1 for all &#O0.

We shall continue to prove several additiocnal propositions
on the order of elements in a finite field.

Proposition 5: If s is the order of o and a(“: 1, then
n=0(s).

Proof: There exists en integer:)\s?éll'(; that n=As $r, 0§ r<s.
Also a(”= 1 implies c(&:l since O(ii;_ 1. Hence r=0, since r(s.

Corollary: If s is the order of o then pP-1=0 (s).

Proposition 6: If « has the order s and ﬁ the order t
and (s,t)=1 then «8 has the order st.

Proof: For any r >0, if (dﬁ)rs 1, then (c{B)rs:_l and
hence AB°'= 1. Also sr=0 (t) by Proposition 5. Hence r=0 (t),

. B 4
since (s,t) =1. Again, 1f (g )=1, 1t follows that q*t—';l and st



is thusﬁ\\;rder of op .
Proposition 7: If « has the order »z then «2 has the
order u. ' |
Proof: Let the order of o be s. Then'(o(’\)sr—l. Since
(Y= l,/;(:-:o(sj by Proposition 5. Since «**= 1 and the order of
A is nl, As=0 (Au). From this it follows that s=0 (g and
s 2/6{.
Proposition 8: If s is the largest order of any element
in a Galois field F and t is the order of any element, then s=0 (t).
Proof: If s;fo (t) then for some prime p >0, we would

f

have s=p®r, t=p'r’, (p,r)=(p,r') =1, f>e. For otherwise,

every prime factor of t would occur in s to the same power or to a
‘ e
higher power and we would have s=0 (t). NOWaP i1s an element in
e 4 : ]
the field F and has order r since (o(P ) =1 for if the order of of
e
were g< T then of 8= 1 and pg<s which is impossible since s is

/ ¢ T
 is the order of @T since (8%)P=1.

e 7/
By Proposition g since (pf,r)=1 then dpﬁr has order pir.

the order of X . Similarly o

Since f > e then pfr>s which is impossible. Thus our assumption
is false. Therefore s=0 (t).

Definition: An element of order p®-1 in the Galois field

of order p™ is called a primitive root.

Lemma 1.1: A monic polynomial Pn(x)= e alxn'l+ cos Fay

of degree n with coefficients in G.F.(pm) has at most n roots.
Now consider the polynomial Pn(x) of degree n.
Case 1: Pn(x) has no roots in G.F.(p").

Our assumption is true since 0 <(n.

Case 2: Pn(x) has at least one root, o, Then Pn("(l):o'

A
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Hence
Pn(x)::Pn(x)—Pnﬁd,)
= x- o{? +a1xn-1 -alO(Ii-]}-. . .+an_~l(x—c(,)
= (x- o) Q(x)
where Q(x) is a monic polynomial of degree n-1. By our induction
assumption Q(x) has at most n-1 roots and hence P_(x) may be writ-
ten in the form
_ 4 4 8
Pp(x)= (x-o) " (x-o) ... (x- o) "R(x), o, Fks iA3,
where §, + L+ - #hwn and R(x) has no roots in G.F.(p") and
also where R(x) is a monic polynomial of degree n-(4, +£, +...+4).
Supnose Pn(x) has a root ,5 different from di, 1=1,2,
+eey K. Thus
P (B)=0= (,e-a(,)l’(ﬂ ﬂx;,)p‘... (B -q’,‘)é’R(ﬂ) where
R(3 )% 0. Hence 3 must be one of the A, 1=1,2, ...,k. But
thls is impossible by our hypothesis. Therefore the distinct
roots of Pn(x) are of4,1+1,2,...,k.
Suppose o, 1s a root of P(x) of multiplicity m1>_fi-
This means that
P(x)= (x-d )mlD(x) where D(«, )# O
and the degree of D(x) is n-m;. Hence
(x- o .. (x_a(,f* R(x) = (x- o(,)mrilD(x) :
Set x =o . Then
(d, -«;)g’“-.. («, -dk)%(o/, = 0.
Since of; % Ay for 1,3=1,2,3,...,k, then R(x) has a root o, in G.F.
(pn) which is impossible. Hence no root occurs with a greater

multiplicity than shown . Since 4# £, + ...+4$n the proof of
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Lemma 1.1 is complete.

Theorem 1.3: A Galois field G.F.(p") of order p" -has

qﬁ(pn—l) primitive roots where c#(n) denotes the number of residues

modulo n which are prime to n.

urAe(

Proof: Let s be the largest integer occurring in G.F.(pn).
Since every order divides s we must have, for every « # 0 in

G.F.(pn),
(2 =1,

Thus the polynomial in & (1.2), has the roots xl,...,xpn l; i.e.,
it has at least pn—l roots. But pn—1:=0(s). Therefore pn—1:=s.
Thus there exists at least one primitive root. Let this prim-

i

_itiVe}root be w. Then w—, where (i,pn—l):=l, 1s also a prim-

i
itive root. For,let t be the order of w . Then wil= 1 and,

since p'-1 is the order of w then it F0 (p™-1) or t=0 (p"-1).

n
But wi(p '1): 1 and we may conclude that t =p™-1.

.We shall now show that all the primitive roots may be
obtained this way. Let v be any other primitive root and since

w is also a primitive root, whe%e-wi, jé%i;%;vrrj—pg-l, there

exists an integer j such that wj==v, }< pn—l. Suppose that

n n. i k
(i,pn-l):=kfél . Then wj(p _1)/k=:wj/k[(p 21:l sinﬁe wj/ is
: n ' j(EQ:;) | I

an element in G.F.(p"). But w is equal to v KX which
is equal to 1 and thus v is not a primitive root. But this is
a contradletion. Hence all primitive roots are of the form wi,
(i,pn~1)==1, and the proof of Theorem 1.3 is complete.

Once a primitive root is known, the construection of a

set of orthogonal Latin squares can be simplified considerably.
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Let w be a primitive root and 0,1,x3,...,%X,; be the elements of a

finite field of order n. Then

0 1 e Xy
WO*i 1*.w0+i .o xnrwo+i
—_— +
Liz Wl+i l‘l'Wl i oo-Xn"’Wl*i (i= 0,1’2’.-.,!]“2)
- -2+1 -
we 2+1 11'wn 2+ cee anwn 2+

are n-1 orthogonal Latin squares, for, the elements in the first
column are all the elements of G.F.(Xx ) and this we have an add-
ition table as in (1.) It should be observed that £1+1 is ob-
tained from.fi by eyclically permuting the last n-1 rows.

We shall next construct a G.F.(pm) for every m and
every p. If m=1 then the residues modulo p form a{G.F.(p).

Consider the polynomials

p(x)= x" 4 alxn"]q... - 8p

whose coefficients aj,..., a, are elements of a fileld.

Theorem 1.4: If p(x) and g(x) are polynomizls with

coeffigientg';g a field F then there exists a polynomial d(x)

such that
p(x)= 0(d(x)) , a(x}=o0(a(x))
and such that p(x) =0(h(x)) implies d(x)=0(h(x)). Also there

exist polynomials a(x) and b(x) such that
a(x)p(x)+ b(x)q(x) = d(x).
If d(x) has the first coefficient one then d(x) is called the

greatest common divisor of p(x) and q(x) and we shall write

(p(x),a(x)) =d(x).

If d(x) satisfies the conditions of the above theorem then ad(x)
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also satisfies these conditions for every non-zero element a of
F. Thus if b is the £irst goerficient of d(x) then b Td(x) also
satisfies the conditions of the above theorem and the first
coefficient will be 1. It follows that the greatest common div-
isor 1s unlquely determined. ‘
Proof of Theorem 1.4: Fme the set of all possible ex-

pressions, d(x), of the form

(1.3) a(®)p(x) + b a(x) = a(x)

select a d(x) of the lowest possible degree where the polynomial
zero 1s not considered to have a2 degree. We shall now show that the
polynomial d(x) satisfies the conditions of the theorem. By long
division there exists a polynomial h{x) such that

) p(x) -l(x)d(x) = r(x)

where r(x) is either zero or has a degree less than that of a(x).
Multiplying (1.4) by h(x) we have

| B(x)a(x)p(x) + &(x) v(x)a(x)= p(x)-r(x).

Put a(x)= ~[k(x)p(x) —g , and b(x)= ~[ﬁ(x) b(x)} .

Wa then have

2(x)p(0)+ (X a(x)= r(x).

Since d(x) has the lowest degree of all the polynomials of (1.3)
it then follows that r(x)= 0. Thus p(x)=0(d(x)). By a similar
argument q(x}EEO(d(x)). Finally, if a polynomial h(x) is a fac-
tor of both p(x) and q(x), by (1.3) it is also a factor of d(x).

6Y
Definition: If 2 polynomia{?with coefficients in a field

F has no divisor except a and ag(x) with @ in F, then g(x) 1is

called irreducible in F.

Congruences modulo a polynomial m(x) are now defined
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In exactly the same way as congruences in the system of all
integers. Then we calculate modulo m(x) by adding, subtracting,
and multiplying in the same manner and by always replacing every
polynomial f(x) by the residue of smallest degree obtained by
dividing f(x) by m(x).

Theoren 1.5: If g(x) 1s irredueible in F then the

residues modulo g(x) in the system g,(x) of all polynomials

with coefficients in F form a field.

Proof: We see that all the properties of a field hold
except possibly the fact that an Inverse exists. Thus we can
show that Theorem 1.5 holds true if we can prové the followihg:
To evefy f(x);é 0(g(x)) there exists a q(x) such that £(x)q(x)=
1{(g(x)). In other words we must show‘that there exists a A(x)
such that '

_ f(x)a(x)-1 = A(x)g(x).
Since g(x) is irreducible and f(x);éo(g(x)), we see that (f(x),
g(x))=1. But by Theorem {4 we have shown that for any two
polynomials £(x) and g(x) there exist two polynomials q(x) and
)\(x) such that a linear combination of the two given polynom-
ials exists 2nd is equal to the greastest common divisor (g.c.d.)
of £f(x) and g(x). Thus there exists a polynomial - A(x) such
that

£ a(x)-A®e()= 1.

Let F now be the finite field, G.F.(p) of residues
modulo p. We then have )

Corollary to Theorem 1.5: If g(x) of degree n with

coefficients In G.F.(p) is irreducible in G.F,(p) then the
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residues modulo g(x) form z Galois fleld with p. elements.

Proof: Every polynomial with coefficients in G.F.(p)

is, modulo g(x), congruent to one of the pn polynomials
ag4aiXt...+ an__lxn"l

where ao,al,...,an_l may be any one of the residues modulo p
and there are pn such polynomials.

Thus to construct a G.F.(p") we must find first an
irreducible polynomial of degree n with coefficients in G.F.(p).

As an example the polynomial x2+ x4l is irreducible
modulo 2, for none of its roots are in the field modulo 2.

Hence the residues0,l,x,x+1 form a G.F.(22). Also

x%= 1(x2+ x+1),
x%; x(x2+ x+1),

2 2

= x+1(x"+x+1).

Thus x is a primitive root of this Galois field. We now set up

the addition table for the elements 0, 1,x,x+1.

0 1 X x+1
0 0 1 X X+ 1
1 1 0 x+1 X
X X X+ 1 0 1
x+1 x+1 b'd 1 0 .

Since x is a primitive root, we obtain from the addi-
tion table three orthogonal Latin scuares of side four by cye-

lically permuting the last three rows. Replace x by 2 and x+1



by 3.

123

= O

022

n)

301
3210

0

™D

3
1

123
301
210
032

16

Ve obtain the following orthogonal Latin squares:

0123
3210
1032
2301.

As a

irreducible modulo 3 since 02

-1= 2(3) .

The element x is a primitive root for

x°=1, xt= 2,
1
X =X, x5£ 2X,
x252x+1, x65Xf2,
3 7

X"=2x+2,

Forming the addition table we have

X =x+1,

second illustration the polynomial x2+-x-—1 is

+0-1= 2(3), 1%+ 1-1=1(3), 2%4-2

0 0 1 2 X §+1 X2 2xX 2%+l 2x+2
1 1 2 0 x+1 %+2 X 2x+1  2x#2 2%
2 2 0 1 x+2 X X+l X+ 2 2X 2xt+1
X X *+1 X2 2x 2X+1l  2x+2 0 1 2
xt+1 xt+l X42 X 2x+1 2X+4R 2x 1 2 0
X+2 X+2 ¥ X+l 2x%42 2X 2x+1 2 o] 1
2% 2X  2xtl  2x42 0 1 2 x x+¥l  x+2
2x+1 2xtl 2x+2 2x - 1 2 0 X+l x+2 X
Axt2 | 2xt2 2x 2%+l 2 0 1 X+ X xtl .

Setting x=3 and cyclically permuting the last eight rows we

obtaln the following set of eight orthogonal Latin squares:



o 3 N W = O
o g W > O N

(]

N N0t W
NN B3 W WU,

N -~ 2 0t O

[ IS N s Y I
H O 3 o . P~ N
LS TS S S N ™ T o « S W ]
(VLY T R S N A T
> W O N 2 W
W I v W >

N O O~ W - O N
N OO 8 N1 0y WO

= O 3 o0 ® O W N
L TS N N I = < BTN B« W
w om0 N N e T

MW = O0N
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345678012 453786120
L, 53786120 34867201
012345678 012345678
786120453 867201534
867201534 120453786
120453786 201534867
201534867 345678012
345678012 L53786120
L 53786120 534867201
534867201 678012345
678012345 786120453 .

Lemma 1.2: Every modulo p irreducible polynomial of
degree r is , mod p, a divisor of xpr'l*l.

The congruence relationship a(x)= b(x) mod (f(x),p)
stated in full says that a(x)-b(x) is divisible by f(x) where
the coefficients of f(x) are elements of the G.F.(p). The set
of polynomial residues mod (f(x),p) form a Galols field of order
pr. Hence, since x is an element of the G.F.(p"),

P 121 (£(x),p).
Therefore it follows that
‘ pt-1 .~
x* T-1=0 (£(x),p)
which is Lemma 1.2.
Lemma 1.3: If f(x) is irreducible mod p and of degree

T
s >r then f(x) is, mod p, not a divisor of xP -1.:.

r-1
Assume that xP "T_1=¢ (f(x),p) and consider the Galois
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field of residues mod (f(x),p). The order of this Galois field
is ps. Every element of this Galois fleld is of the form a tar X

+ ...+-akxk, k< s, where the coefficients 843875058

. aTe res-
r

idues mod,p. By our assumption xP = x(f(x),p). Now (ao1-a1x-+

...f.akxk)p::§:::: p! agagt.‘. agxq‘f2q1+...+qu.

3°+3‘+"'3‘I=‘P ia.'ﬁ.,"" f{!.l
Since the coefficients of a multinomial are integers, the qqi,

1=0,1,2,...,%, are all factors of pl!. Thus the coefficients
are all multiples of p, since p is a prime, and hence congruent
to zero mod p, exepf in the case where one of the ;4 =p (caus-
ing the rest of the qi's to be zero) in which case the factorial

expression reduces to the value one. Thus we have

k
k)pE agﬁ-aixp+ ...rraix P (p).

By mathematical induction it may be shown that

k T T T .r T k r
(ao+- 81X+ .00 +a,X P = ag+a§ xP+ ...+a§ P (p) .

(ao+~a1x-+...—fakx

T : r
Since ag = a4 (p)l, 1=0,1,2,...,k, and also ¥P= x™(£(x),p)

form=1,2,...,k, then it follows that
k, pTt .k
(aoj—alx+-...-rakx = agtajx ... +ax (f(x),p).

Hence the order of our G.F.(ps) is ps. Since s >r, this is im-
r_
possible. Thus we conclude that xP 1—1740 (£(x),p).

Definition: The derivative with respect to x of a poly-
nomial
. ‘ 2 N
f(x)= a t 81X +a,x ...-+anxn (p)

— n-1
f'(x)::al+-2a2x—f...'fnanx (p).

1MécDuffee,C.C. Introduction to Abstract Algebra., New York:
Wiley, 1940, p. 25.
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Theorem 1.6: The derivative of an integer is congruent

to zero. The derivative of x is congruent to one. The derivative

of a sum is congruent to the sum of the derivatives. The deri-

vative of a product f(x)g(x) is congruent to
£1(x)e(x) +£(x)g'(x) (p).
The proofs of the flrst three statements follow directly

e
from the definition above. To prove the fourth statment, set

f(x)= f aixi , g(x= ib xY ,

L=o J=o

£(x) g(x)= Zia .

{zo =S

Thus thelderivative of f{x)g(x) is then
Zi(i+3)ai X3 iiaixi lzb J+2__aixi_z;1b -1
o ,f.(x)g(x)”(x)g SHOY
Theorem 1.7: If (x-xl) is the highest Qggg; of Xx-X;

LS

which divides f(x), and if (p,h)=1, then (x—-xl) ;_sl he

highest power of x-x, which divides £r(x).

Proof: Let f(x)Es(x—xl)hg(x).- Then by the above
theorem
£1(x) = (x-x1) g () + h(X-Xl)h—lg(X)
= (x-x,) h-1 [(x-xl) g (x)+ hg(x)]
and thus (x—xl)h-l divides f!'(x), mod p. Now if (x-xl)h is the

highest power of x-x, that divides f(x), x-xj cannot divide

1
g(x), and since (p, h)=1, x-X, cannot divide [Ex-xl)g'(x)1—

hg(x?} since hg(x)# 0, mod p. Thus (x-xl)h"l is the highest

power of x-x., which divides ft(x), mod D.

1
Lemma 1l.4: The polynomlal ¥%-1 has no double roots

mod p if m,éo (p).



We see that, from Theorem 1.7, if f(x) has a double
root then f(x) and af/dx have a common factor by putting h=2.
If x®-1 and mxm"l have, mod p, a common root, sav 4o, then

4120 (p) , mk®T=0 (p).
Since (m,p)=1,
«M=1 (p) and «"=0 (p)
which 1s impossible.
Theorerm 1.8: There exists a Galois field of order pT

for everv prime p and every r.

Proof: The polynomial xpé‘l—l contains, mod p, no
irreducible factor of degree >r, by lemma 1.3. All the irre-
ducible polynomials of degree f<r are, mod p, factors of xpr‘l-l,
by lemma 1.2, Now consider all the irreducible factors of xpr'l-l
of degree f<{r. By lemma 1,2 these factors, i1f any, are all in
xpf"l~l and by lemma 1., they occur at most once in xP -1,

Hence the sum of the degrees of these factors cannot exceed the

£
degree of xP ‘1-1. Thus the sum of the degrees of all the factors

of degree less than r 1s at most
A ~f

Z(D 1)<pr- p’ ‘P<P__Tl<p -1.
The factors, if any, that are of degree <r, which are reducible
are included in the irreducible factors of degree < r. Thus
_there is at least one irreducible factor of degree r. Let £(x)
be this polynomial. Then the polynomial set of residues of the
form

a°+-alx1—...1-ar_lxr'1 (£(x),p)
form a Galois field of order p¥ by the corollary to Theotem l.5.



22

Definition: Two flelds F and F' are called isomorphic

if there exists a bi-unigue correspondenee a«—>»a', a jin F, a!
in F', such that ae—sa', be«—>b' implies a +b<~—af 4+ b?,
abHa'b' .

Theorem 1.9: Any two Galols fields with pn marks are

1
isomorphic.

We have thus essentially only one Galols field with pn
marks. We shall refer to this field as G.F.(pn). Let o be any
primitive root of the Galois field. This root satisfies the
equation

S S
Consider the elements of the form.aoﬁ-élx-i- ...+-an_lxn'l.
Among these elements are the elements of our set of residues,
mod p, which we call the integral marks of the G.F.(p™).
~Hence of satisfies a polynomial equation whose coefficienté are
integral marks oflthe field. Let k be the lowest degree of such
equations satisfied by « . Then « satisfies an equation of
the form
(v-5) b’kxk+ B’k_lxk—l-b cese ¥ X+ P S0
where b’k}é 0. If k is to be the lowest degree for such an equa-
tion satisfied by o, then (1.5) is an irreducible equation in
the sense that the first member cannot be separgted into factors
of positive iﬁ%%ééés with coefficients which are integral marks
of the fileld since otherwise k would not be the lowest degree.

Thus o(k and hence every power of & can be expressed in the

1l
Birkoff G. and McLane S, A Survey of Modern Algebra. New York:

MacMillan, 1948, p. 429,
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form

auy a'k-ldk-lf ‘Yk-zdk—z* e P Vs

where (o, a’l,..., dk-l are integral markspf the field not all
zero. Suppose that 0(m can be expressed by the following two
expresslions, viz., ]

(1.7) c(m=Pk~1°‘k—l+ pk_.zxk—'zf"'fﬁo ’

k k-2

-1
« "= Sk_lo( T gk-zq toeset go’

from which we obtain
) k-1 k-2 -
(017 By o (dy g B )X Pt b= 0.
But thls equation satisfied by & 1s of degree k-1 which is less
than k. This 1s impossible. Therefore qm has a unique repre-
sentation in the form (1.7). But every non-zero element of this
field 1is given by O(m for some value of m. Thus every non-zero
element of the fleld is given by
k-1 k-2
xk-—l“ + b’k_zoc A eee b a’o
in one and only one way. The number of ways of writing (1.7) is
pk-l ( the -1 for the case where Y =¥, =ecee= @ = 0). But
: o) 1 k-1
every expression of this form {s an element of the fleld. Hence
the pk—l possible non-zero forms are all the p -1 non-zero
elements of the field. Therefore
ph-1 = p¥-1
from which it follows that n=k. Hence

. .
Theorem 1.10: A primitive root of a G.F.(p") satifies

an irreducible eguation of the form

n-1 _
xn+clx Foeee k=0

where ¢,,C,,+.+,¢, are integral marks of the G.F. ().

n
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Corollary 1: A primitive root satisfies no equation

of degree less than n, the coefficients of which are integral

marks of the G.F.(p").

Proof: In the proof of the above theorem we saw that
the lowest degree was n.
Corollary 2: The quotient
xP -x

n n-1
X +clx + ...*.Cn

can be expressed as a polynomial i1n x with coefficients which

are integral marks of the field.

Proof: This is equivalent to Lemma 1l.2.

For any x in the field of residues mod (f(x),p) if
xm—1;§0 (£(x),p) for m<p -1 and x®-1=0 (£(x),p) for m=p -1
then x is a primitive root. Then if G.F.(pn) is to be represent-
ed by the residues mod (f(x),p) in such a way that x is to be

n_
P-1 1 a11 the ractors

a2 primitive root we must remove ffom x
which are also factors of x@-1 for m <p°-l. Hence the remain-
ing polynomial has as its roots all the primitive roots of G.F.
(p™) and by Theorem 1.3 it has degree cr(pn—l). This is called
the cyclotomle polynomial of order pn—l.

As an example, to construct G.F.(23) form the cycloto-
mic polynomial of order 23—l==7. Its degree is 1P(7): 6.
Since x-1 is a factor of x7-1 where m=147, dividing out the
factor x-1 from x7-l we obtain

6.5

X +x +x4+ x31- x2+x+l.

By Theorem 1.10, this polynomial must, mod 2, decompose into two
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factors of degree three each. Thus

4 2 2

< - —
(x6+- x5+ x4+ x3+ X +x+1)= (x3+ax + bx t+c) (x3+ ax“+bx +e) (2).
Hence, equéting the constant terms, we have ce=1 (2) and ¢c=C=
1. The coefficient of x is cbwébb+rb=1 (2). We may take b=0,

b=1l. The coefficient of x2 is act+ac +bb=a+a=1 (2). The

coefficient of x° 1s ceésabrab=a=1 (2). Hence a=1 and a=0.
Therefore ‘ |
x6+ x5+ xA-g- x>+ xz+ x+1= (x3+x2'+ 1) (x3+ x+1) (2).

Since x31- X+1 1s irreducible mod 2,then

x°= 1, xﬁ'é‘ x2+ X,

xla X, xsz— x2+ x+1,

xza x2, xéz x21— 1,

XBE‘. x+1, x7£ l,.

from which we see that x is a primitive root. Forming the

addition table we have

0 1 x  xt1 x2 x%1  x%x xAxH
0 0 1 x  x+l x2 X2+ 1 ‘ngx xg+k+l
1 1 0 xtl x x%+1 X% x%x+l x2+x
x x x+1 0 1 x2+ X x2+ X+l x° x%+1
X+l x+l X 1 0 x4 x+l xAx  xl x°
<2 ¥ 241 xAx izl 0 1 x x+1
x% 1 x%1 x*  x%xel x%x 1 0 x+l x
x4 x X% x X% x4l x*  x*1 x x+l 0 1
%% x4 | X% x4l Xex xFl x° x+1 X 1 0.

Setting x =2 and cyclically permuting the last seven rows we
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obtain the following set of seven orthbgonal Latin squares of

side eight:
0123456717 01234567
10325476 23016745
23016745 32107654
32107654 L5670123
L 5670123 54761032
54761032 674523001
67452301 76543210
76543210 10325476
01234567 01234567
32107 6 5 4 45670123
L5670123 54761032
54761032 67452301
67452301 76543210
76543210 10325476
10325476 23016745
23016745 32107654
01234567 01234567
547610302 67452301
67452301 76543210
76543210 10325476
10325476 23016745
23016745 32107654
32107654 45670123
45670123 547 61032
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567
210
4T 6
7T 4 5
6 5 4
3
2
1

H 3 o

12
03

[ A SR T < W o)

~3 U n W o o
b~ ~J o O W \n N
(S B o S S e B o S TS R W
N I'-‘. O ~I [ X NNAN ] w P~

30

If we use the method of decomposing the cyclotomic
polynomial of order pr~l,it becomes rather laborious to find
mod p 1lrreducible polynomlals of degree r fqr higher values of
pr-l. Should we be willing to dispense’with the advantage of
having x as a primitive root then we can find irreducible poly-
nomials by other methods. For instance, 1f p is odd then there

always existf residues a for which x25 a (p) has no solution}

Hence'xz-a is irreducible mod p. The polynomial X2+ 2% =0 (3)
for 0+0=0 (3), 12 =0 (3), and 224 2%=0 (3). Hence x3f2x+l

3+2x+l has no linear factors, mod 3,

,é 0 (3). This shows that x
and hence the expression x3%2x+l 1s irreducible mod 3. The poly-
nomial xArxrl is irreducible mod 2. Since 0 and 1 are not roots,
there cannot be any lineaf factors of x*x+l. Hence the only 4.

possible decomposition would be of the form

xbex A = ();2+bx+l) (x2+—'5x+1) (2).

1 .
Uspensky and Heaslet, Elementary Number Theory. pp. 203-204.
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Equating coefficients we get the following congruence relation-

ships: b+D=1 (2) and b+ b=0 (2) which is impossible. In a

similar manner we can obtain the following irredueible polynomials:
rmdz:x%x&,x&xﬂ,xﬁxﬂ,x%&%&;

xmdB:xax&,xani;

mod 5: x2+2;

mod 7: x%—l.

This set accounts for all the Galoils fields with less
than 63 elements and these satisfy all the needs that have arisen
to date in the design of experiments. |

From Theorem 1.8 and Theorem 1.1 we see fhat a set of
m-1 orthogonal Latin squares of side m can always be constructed
if m is the power of a prime. If m is not the power of a prime
then m can be decomposed into prime powers such that

m=p§' p:s where py#py for 1,J=1,2,...,s.
Next construct the following system in which we consider the
"points?

1 () (s e,
b)::(gl),g y cessE B, gu) in G.F.(p(i)).
Addition and multiplication are defined by the rules

6}+6, (é])g@) 0--,8(8)))( (gzyg(z eeey B 2
= (¢ eoz'),gl;tgw cEPLE (;))-

As an illustration, consider m =12, We decompose 12
into its prime powers, viz.,
12 =2°.3,
We have already found that the elements of the‘G.F.(22) are
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0,1,x, and x+1. The G.F.(3) consists of the marks 0,1,2.
From these two fields construct the following set of "points™:
(0,0), (0,1), (o,x), (0,x+1), (1,0), (1,1), (1,x), (1,x+1),
(2,0), (2,1), (2,x), (2,x+1). The addition of two "points",
say (1,x) and (2,x t1), by definition, gives

(1,x) + (2,x+1)=(0,1)
since 1+2=0 (3) and x+x+1=1 (x%x+1,2). Also the multi-
plication of these Mpoints" gives, by definitionm,

(1,x) X (2,x+1)= (2,1)

since () (2)=2 (3) and (x) (x+1)=1 (x3x+1,2).

The system constructed is not a field, since the element
(0,1,1,...,1) has no multiplicative inverse. However, referring
to the postulates governing a field, we see that conditions I-IV
for addition and I-III for multiplication and postulate V are
fulfilled. All the "points" which have no zero among their coor-
dinates possess inverses. In general the identity element for
addition is (0,0,...,0) and that for multiplication ig (1,1,...,1).

Let

() d) éi)

0, gy =1y Bnseeey Seiq ’
i

be the marks of G.F. (pe‘) Then, if r==mini(piﬁl), the "points"
1)) % = ((?, g‘z),...,g‘s’ 0<igr

possess Inverses and also ¥ -7, has an inverse if j #1 since |
and Xi contain no zero among their coordinates and corresponding
coordinates are different elements from the same field. We now
number the "points" ¥ in such a way that the first r marks are

given by (1.8) and construct the arrays LJ which form the body
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of the additlion tables:

0 1 e Yo
Y 0 1 cee ¥ g
(1.9) yJ Y yj+l ,j,,gm_l (3= 1,2,000,T)
8382 XJ 82 XJ X’>+l s Jj d a)m_
ijm—l 83 8111—1 a) a) +l cee ijm-fa)m-l .

Continuing with our example we have that pl1 22 and
22 3 from which r=min (p: -1) 2. Therefore we will have
two arrays of the form (1.9). First, we find ¥, and ¥, . By
definition = (gl) 2)) =(1,1) and 3’1——(g2, éz))”(2 x) .
Next form table L, by putting J=1 in (1.9). Thus we have L1
given by the table on the following page. In order to get the

second table, L., set j=2 and proceed as in (1.9). This

gives us the table L2 on page 32.



(0,0) (1,1) (2,x) (0,1) (0,x) (0,x+1) (1,0) (1,x) (L,x#l) (2,0) (2,1) (2,x+)

(0,0) (0,0) (1,1) (2,x) (0,1) (0,x) (0,xt1) (1,0) (3,x) (1,x+1) (2,0) (2,1) (2,x+l)
(1,1) (1,1) (2,0) (0,xx1) (1,0) (1,x+1) (1,x) (2,1) (2,x+1) (2,x) (0,1) (o,0) (O,x)
(2,x) (2,x) (0,x+1) (1,0) (2,x+1) (2,0) (2,1) (o,x) (0,0) (0,1) (1,x) (1,x+l) (1,1)
(0,1) (0,1) (1,0) (2,x+1) (0,0) (0,x+1) (0,x) (1,1) (1,x+r1) (1,x) (2,1) (2,0) (2,x)
(0,x) (0,x) (1,x+1) (2,0) (0,x+1) (0,0) (0,1) (1,x) (1,0) (1,1) (2,x) (2,x¥l) (2,1)
L= (0,xr1) | (0,x+1) (1,x) (2,1) (0,x) (0,1) (0,0) (1,x1) (1,1) (1,0) (2,x+1) (2,x) (2,0)
(1,0) (1,0) (2,1) (o,x) (1,1) (1,x) (1,x+1) (2,0) (2,x) (2,xt1) (0,0) (0,1) (o,xsl)
(1,x) (1,x) (2,xt1) (0,0) (1,x+1) (1,0) (1,1) (2,x) (2,0) (2,1) (0,x) (0,xt1) (0,1)
(1,x+1) | (1,x+1) (2,x) (0,1) (1,x) (1,1) (1,0) (2,x+1) (2,1) (=2,0) (0,x+l) (0,x) (0,0)
(2,0) (2,0) (0,1) (1,x) (2,1) (2,x) (2,x+1) (0,0) (o0,x) (0,x+1) (1,0) (1,1) (1,x+1)
(2,1) (2,1) -(0,0) (1,xt1l) (2,0) (2,x#1) (2,x) (0,1) (0,x+1) (0,x) (1,1) (1,0) (1,x)
(2,x+1) | (2,x+1) (0,x) (1,1) (2,x) (=2,1) (2,0) (0,x+1) (0,1) (0,0) (1,x+1) (1,x) (1,0)

T¢e
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(0,0) (1,1 (2, (0,1) (0,x) (0,xA1) (1,0) (1,x) (1,x+1) (2,0) (2,1) (2,x+1)
(0,0) (0,0) (1,1) (2,x) (0,1) (0,x) (0,x+1) (1,0) (1,x) (1,x+#1) (2,0) (2,1) (2,x+1)
(2,x) | (2, (0,x1) (1,0) (2,x+1) (2,0) (2,1) (0,0 (0,0) (0,1) (1,x) (1,x+1) (1,1)
@,x+1)] (3,x+1) (2,x) (0,1) (1,x) (1,1} (1,0) (2,x+l) (2,1) (2,0) (o0,x+1)(0,x) (0,0)
(0,x) (0,x) (1,x+1) (2,0) (0,x+) (0,0) (0,1) (1,%) (1,0) (1,1) (2,%) (2,x+1) (2,1)
O,x+1) |- (0,x+1) (1,x) (2,1) (o,x) {(0,1) (0,0) (1,x+1) (1,1) (3,0) (2,x+l) (2,x) (2,0)
(0,1) (0,1) (1,0) (2,x+1) (0,0) (0,x+1) (0,x) (1,1) (1,xA1) (1,x) (2,1) (2,0) (2,x)
(2,0) (2,0) (0,1) (1,x) (2,1) (2,x) (2,xt1) (0,0) (0,x) (0,x+1) (1,0) (1,1) (1,x1)
(2,xt1) | (2,x+1) (0,x) (1,1) (2,x) (2,1) (2,0) (0,%r1) (0,1) (0,0) (1,x4) (1,x) (1,0)
(2,1) (2,1) (0,0) (1,x+1) (2,0) (2,x41) (2,x) (0,1) (0,x+l) (0,x) (1,1) (1,0) (1,x)
(1,0) (1,0) (2,1) (0,%) (3,1} (1,x) (1,x¢1) (2,0) (2,x) (2,x1) (0,0) (0,1) (0,x+])
(1,x) (1,x) (2,x+1) (0,0) (1,x+1) (1,0) (1,1) (2,x) (2,0} (2,1) (0,x) (0,x+1) (0,1)
(1,1) (1,1) (2,0) (0,xR) (1,0) (1,x+1) (1,x) (2,1) (2,xtl) (2,x) (0,1) (0,0) (0,x)

(43
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In order to simplify the tables, L, and L2, asslgn the numbers

1

0,1,2,...,11 to the set of "points" (0,0),(1,1),(2,x), (0,1),.. «,

(2;x+1) respectively; i.e., set (0,0)=0, ¥\ = 1, 3= 2,...,3, = 11.

Considering the inner squaresonly, we have

01 2 3 4 5 6 7 8 91011 0 1 2 3 4 5 6 7 8 91011
1 9 5 6 8 7 10112 3 0 4 2 5 6 119 104 0 3 7 & 1
2 5 6 119 104 0 3 7 8 1 8 2 3 7 16 11109 5 4 0
3 611 0 5 4 1 8 7 109 2 4 8 9 5 0 3 7 6 1 21110
L 8 9 50 3 7 6 1 21110 5 7 104 3 0 8 1 6 112 9
5 710 4 3 0 8 1 6 112 9 3 6 110 5 4 1 8 7 109 2
6 104 1 7 8 9 2 110 3 5 9 3 7 102 110 4 5 6 1 8
7 110 8 6 1 2 9 104 5 3 114 1 2 109 5 3 0 8 7 6
8 2 3 7 1 6 11109 5 4 0 100 8 9 112 3 5 4 1 6 7
9 3 7 102 110 4 5 6 1 8 ¢ 104 1 7 8 9 2 110 3 5
100 8 9 112 3 5 4 1 6 7 7 110 8 6 1 2 9 104 5 3
114 1 2 109 5 3 0 8 7 6 1 9 5 6 8 7 10112 3 0 4

as our representations of Ll and L2.

We prove first that (1.9) is a Latin square. Suppose
the O(th row could contain an element twice, say in the k +1 th
and £+1 th columns. Then

¥ 9 TV =¥ %oy +2,
Since XJ ¥4 has an additive inverse, we obtain ¥x=3 , from
which it follows that k =.4. Suppose that the ith column contains

the same element twice. Then

%q+ﬁ&==&ﬂ+%8p where jJ s r.
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Sinceviﬁ has a multiplicative ihverse, this implies that . &;==3b 3
from which «=<@, From the argument presented we have shown
that no element occurs more than once in each row and in each
column. Since the set of "points" 1s closed under addition and
multiplication, every element must occur once‘in every row and
every column. Hence (1.2) is a Latin square.

We shall now prove that L is orthégoqal to Lj’ if 1#3.
Suppose that they are not orthogonal. Superimposing Li on Lj’
we should have two cells in the resulting square containing the
same ordered palr of "points". If this pair occurs in the «th
row and [?th column in one and in the g°th row and Tth column

in the other, we should have

8¥&~l+b}0|—‘88f1 T‘,)

d(‘ b’q'q] 'fa,ﬂ—'l = a}f,go-,\ 1'81:_4 .
Subtracting, we have

(¥ - %) = (¥ - %) e
Since )’i- XJ has an inverse for 17‘3, it follows that b:(..g =5)_,/
which implies that o=6, This in turn implies that R3=T.

As a result we have

‘Theorem 1.11: Let gi ,éz),...,éﬁz, denote the elements

LmGF(pl),---,GF(pes) respectively, where ()J.sthe

(1
zera element and gl) is the unity element of G.F-(pi Yo _Fp¥m

thg'pgints"
(gm gQ) g(S))
i, i)“" is

which are multiplied and addgd by multiplying and adding their

coordinates. Further, let
D () (s) €1
_(é "":g ): O(J\(r=mini(pi’ -1)
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and nuznber the remaining "points" in any arbitrary wgy from

e e
r+l tom= pllp 2...pss_1§ such a way that Jdm=0= (g é?,...,

(s) 2
g ). Then the arrays
o

0 1 v Ym—l
a’J 831-1 e *JJH -
sz b’jgz 6’3924'1 . -B’J Xzfim__l (J=1,2,044,1)
X581 B¥n-1tl - ¥ g¥n ¥

form a set of orthogonal Latin squares.

This result is the best that has been obtained up to
date. No case of more than r==mini(pii-l) orthogonal squares
is known up to the present time. Tarry ( Le Probleme de 36
Officiers. Comptes Rendus de ltAssociation Francaise pour Ltavance-
ment des Sciences II (1901) pp. 170-203) found by a skillful,
tactical enumeratiocn that no six-sided orthogonal pair exists.
R.H.Bruck and H.J.Ryser have since proved (Canad. J. of Math.
Vol. 1, pp. 88-93) the non-existence of m-l1 orthogonal squares
of side m if m=1,2,(4) and the square free part.of m is divisible
by a prime of the form Lk + 3. For numbers greater than six which
are not powers of a prime the problem has remained unsolved al-
though this problem has been confronting mathematicians long
before Latin squares were applied in the design of experiments..
It can be shown that not more than m-l1 orthogonal Latin

squares of side m can exist. For let r be the maximum number



of orthogonal Latin squéres of side m. By renumbering we can
make the elements of the first row of each of these renumbered
Latin squares be 1,2,...,m. FEach of these rénumbered Latin
squares 1s still a Latin square. If we take any two of the re-
nunbered squares we still get the m2 different ﬁairs as before
but in a different order and hence the two squares ére still
orthogonal. For any twé squares the ordered number pairs in

the first row are (1,1),(2,2),...,(m,m). The ordered pair in
the second row and first column must consist of numbers not
equal to each other since all palrs of equal numbers appear in
the first row. Hence the numbers apnearing in the second‘row
and first column of our r orthogonal Latin squares nmust be diff-
erent from each other and selected from the m-1 numbers 2,3,...,
m. Hence the maximum number of orthogonal Latin squares of side
m cannot exceed m-1.

Historically 1t may be remarked that the proof of the
existence of m-1 orthoéonal Latin squares if m 1s a prime power
seems to have been given by McNeish (Annals of Mathematies, Vol.
XIII, pp. 221-227.) The methods for the construction of orthogo-

nal Latin squares presented in this chapter are due to R.C.Bose.

(8ankhya 1939).



CHAPTER II
THE CONSTRUCTION OF INCOMPLETE BALANCED BLOCK DESIGNS

An Incomplete balanced block design is any arrangement
of v varieties into b blocks of k plots each, such that:

(1) no block contains the same variety twice;

(2) every variety is repeated r times;

(3) every variety v1 occurs with every other variety
v‘1 In exactly ) blocks.

Finite projective geometries are used extensively in
the construction of incomplete balanced block designs and pro-
duce whole series of these designs. It will be sufficient for
the work presented here that we consider finite analytic geom-
etries. Several of the main cdncepts will now be defined. We
shall consider the G.F.(p"). A point in the m dimensional
finite geometry P.G.(m,pn) is an ordered set of m+1 elements
of the G.F.(pn), not all of which are equal to zero. Two sets
(gl,gz,...,gm+l), (g{,gé,...,g;+1) represent the same point if
gi=4ﬁg£, 1=0,1,2,...,m+1, for some AZO and in the G.F.(p").
For any two distinct points pl==(gl,g2,...,gm+1), p2==(g£, gé,
...,gé+l), we define as the line joining them the set of all
points of the form

APt APy = (Are1t AEgs -+ s A 1Enpit AaEnen)s
where A, A,, are in the G.F.(p"), and where at least one of the

A's is different from zero.

This set of lines and points 1s called the analytic

37
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projective geometry of the G.F.(p") of m dimensions and is de-
noted by P.G.(m,p").

As an example consider the G.F.(22) whose elements are
0,1,x,x+l. The point (0,1,x,x) in the P.G.(3,22) is the same
as the point (0,x+l,1,1) since the second point may be obtained
by multiplying the first point by A=x+l.

First, we find the total number of points 1p & P.G.(m,p?)..
Taking all possible selections of m+l elements of the P.G.{(m,p")
there are pn(m+1) ordered sets. Since, from above, the set
(0,0,¢4.,0) must be excluded, the total number of ordered sets

n(m+1)
that have at least one non-zero element 1s p -1. Since

<g1’82""’gm+—1) = ( A8, ABoreees ABy,y) for all AFO in the
G.F.(p"), the ordered sets above may be divided into groups of
pn-l sets, the members of a given group represent the same point,
Thus the number of distinct points is

pn(mﬂ)—l - 1+pn+ eve +pnm.

pr-1
The lines are given by the form Mpy+ l,pz where py and p, are
distinet points. The points of this line are given by thelr line
coordinates },,A,. Two polnts AN, Ay, 4,4, Will be distinct if
( A, A 7£ ))(/a,)//;) for a1l ¥ in G.F.(p"). Hence the points
of a line form an analytic one dimensional geometry.

We have seen that the number of points in such a geom-

etry 1s pn+-1. Thus the number of polnts on a line is pn+-l.

Consider next the k dimensional subspaces of the P.G.(m,

n). Let DyyPrsees,yD be k+l linearly independent points.
P 1252 k+1
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' This means that thé relation

APyt eee + A ey1Pipr = (0,0,404,0),
implies that ML= Ap= eee=Ap, = 0. Consider next all points of
the form Alpl*'Aépzi'"'*”hkflpkfl' These, by definition, form

a k dimensional subspace. Suppose that two of these polnts are

equal. Then

ALPy AP+ coet Apyy Py = V(lrpy + oyt ooty 1Ppeen) s
(Al")},«l) pl+ ( 7\2- Wz) p2+ toe+ ( )\k.g.l- Wk.}—l)Pkf.l::{O)OJ e '}o) .

Since PysPoseessPy 4y are linearly independent points, this implies
that

A= %>4, AQ:')éaQ ) e zkﬁ=:y¢akH )
Thus we may represent a point in the k dimensional subspace by
coordinates (/\l, Aoseses Ayps1)e For k21, the subspaces con-
tain, for every two points, the line joining them. ng consider
the k dimensional space consisting of all the polnts

APyHtAgPot e e et Ay 1Pyl

where the ,Ai's are not all zero. Represent any two points by

Py = ApaPrt ApyPot eovt Apyd 1Pkqas

Pa= AP+ AgaP,t eee +Axyy 2Py g0
where

( }\11, A21’...’Akfl,l)%}/ (7)12,)\22)""Ak+1’2)

for all % in the G.F.(p"). The points of the line determined

by Pl and P2 are given by

/“/Pl "'/"QPZ,;/“'E;RI:!PL' +/M*i>\i1h
- =t =t
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+
=§;(/Qha+jﬁln)ﬁ .

‘The points are in the k dimensional space if the coefficients of
the P,'s are not all zero. We may assume /«360,/u3?b, since P

1 1
and P2 are in the k dimensional space. If
/“/ht:{ +/dQALZ=O ? 1:1,2’000’k1’1,
then ' -
Aiy: ,a; Ac;

and hence P1==P2, which is impossible. Hence the coefficlents
are not all zero and /apl+x@P2 lies in the k dimensional space.
We conclude that every k dimensional subspace of a P.G.Oﬂypn)
1s 1tself a P.G.(k,p") and therefore consists of 1-+p+ v..+p"
points.

Conslider any two distinct poirits, say P and Pos of

the P.6G.(kx,p"). If p. and p, are linearly dependent there exist

1 .
Ar and A, not both zero such that /\,pl%-/\zp = 0. Suppose one

2
of the A's, say M,, is zero. Thus we have h,p2==0, which implies
that Py must be zeroc which 1s impossible. Otherwise, since A, and
Ay are not zero, then Py -(hz/h;)pz which by definition, shows
that 12 and p, are not distinct. Hence, any two distinct points
are linearly independent. .

Now conslder k points pl,pz,...,pk, which are linearly
independent and hence determine a P.G.(k,p"). Let P, be any
point not contalned in the P.G.(k,pn). We shall prove that P1s
pz,.. . ,pk,pk+1 are linearly independent. Assume that they are
linearly dependent. Then there exist A,Ay,e.., Aysr Aeys DO

all zero such that

P : —
A1 it '\2p2'f' ---+Akpk+/\k1_1pkfl— 0.


http:A/O,p.,.lo
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But A l{1_]_7@(), since otherwise PysPoseeesPy 'would be linearly

dependent. Hence
Ai

Pk+1:=“A;;Pl“;ezpz""'”i%ipk

and since pk+17!0, the (A /), )'s are not all zero and thus py 4y
lies in the P.G.(k,p") which is impossible. Hence pj,Doseee,
kaf_1 are linearly indevendent and thus determine a P.G.(k+1,pn).

Next, we compute the number of P.G.(k,pn)'s contained
in P.G.(m,p"). Every P.G.(k,p") is determined by a set of kel
independent points. The first point, say Py, may be chosen in
1t p 4. . o402 ways. Next, p, may be chosen in the remaining Pt
p2n1-...+pmn ways. The number of points onsthe line through Pys

and pz,from previous work, is pn*i. Thus the number of choices

2n _3n

remaining for p,, not on the line through Py and Py is p™+p 7+

3
...+pmn. After the £ th point has been chosen, where l(k&l,

the (4#1)th point may be chosen from all the points not in the

P.G. (£-1,p™), which 1s determined by PysDpse-+5Pg+ But the P.GC.

£-1)n
(/-1,p") contains l+p +p24r...*p( ) points. This leaves p .

(Qfl)qr...fp cholces for the (£+1)th point. Proceeding in

this manner, the number of distinct ordered sets of ktl indepen-

dent points in the P.G. (m,pn) is

(2.1) (140 o o +D™) (00" o v 4D ™y L (R ( ")n+---+pmn)-

From (2.1) the number of ordered sets of k+l independent

points in the P.G.(k,p") is given by

2n ( (k-l)g RE

kn
(1+pn+o--‘t‘pm)(pn+p ‘\"ov-“'p )'-o p

L4

Multiplylng the above number by the number of P.G.(k,pn)'s in our
P.G.(m,p") we obtain the number in (2.1). Thus the number of P.G.
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(k,p™) s contained in the P.G.(m,p") ‘is

n mn 2n mn kn (k+l)n mn
(14 teeotp ) (D™D % voetp Deue(p 4D FeeodD )

n n 2n kn k~1)n kn
(140 4 o o D) (D 4D 4o+ oD )---(p( ) o) p

We want to find, finally, the number of P.G.(s,p™)'s

in the P.G. (m,p") which contain a given P.G.(k,p"). First,

choose a point Pyyn not contained in the given P.G.(k,pn). This

x#a)n (kR)n
point, Py yps mAY be chosen in p( ) i (

k+2)2  (k
ways. Similarly p, ., may be chosen from the p( 1—p( *B)nf

o} +...+pmn different

co+

mn
p points that are not contained in the P.G.(k+l,pn) which con-

tains Pyyo and the given P.G.(k,pn). Following this argument

through, we can obtain a P.G.(s,p") containing the given P.G.(k,p")

in

(p(k¢1)3+p(k+2)l..‘Tpmn)(p(kfz)n+p(kf3)éf...1_pmn)...(p

*oootD

ways.

Consider a given P.G.(s,p") obtained in this way.

The number of ways in which we can select s+l linearly independent

points from this P.G.(s,pn), k+1l of which are a fixed set of
linearly independent points from the P.G.(k,pn), may be found

by setting m=s in the above formula giving us
k12
(etdyn , Get2dn, ooy (kt2)n, p (k43)n,

sn)

(p NEE o 4

Thus for k€ s{m we must have
k¥2)n
(p{ETLIm m

(p(kfl)n+p(kf2)n

mr n stl)n mn
e e 4D ),..(ps+p( ) feee +P )

-1)n . Sn
(s-1)n jsny,

sn
FeeotD Jeoop
different P.G.(s,p")'s in the P.G.(m,p") which contain a given
P.G. (k,p").

Summarizing, we have:

+1)n
snfp(s )

)

(p{571)7, SRy psn
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(1) Every P.G.(m,p") contains exactly 1+ p ... +D70 points.

(2) Every P.G.(m,p") contains exactly

mn)...(pkn+...+pmn)
kn. k-1)n

(lfpnf'C‘.fp )o.-(p( ) i'p}gl)p}g1

n
+* s
(1*p reeetp distinct P.G.(k,pn)'so

(3) Every P.G.(k,pn) in P.G.(m,pn) is contained in

Kk m ‘sn mn
(p( My ™) (0% 2™ distinct P.G.(s,p )'s

k+l)n -
(p( T s o)

for k<sg&m.
For k==0,l,'in particular, we obtain:
A. Every peoint 1s contained in

. sn mn
I‘:(pn+"'+pmn).0'<p +.a-+p )
sn s-1)n sn
) (p( +p°Mp

n
(p +..-fp

LI I ]

distinet P.G.(s,p")'s of a P.G.(m,p") where O< s<m.

B. Every line is contained in

n mn sn- m
‘.(p +tseetP )oo-(pfc-ofp )

A
-
(s 1)n+psn)psn

(0™ e ep™) . (p

distinet P.G.(s,p )'s for 1<s<m.

Every P.G.(s,pn) contains, with every palir of points,
the whole line joining them. Hence every pair of points is con-
tained in A different P.G.(s,pn)’s.

In the following theorem we identify points with varieties
and the P.G.(s,pn)'s with blocks. '

Theorem 2.1l: The P.G.(s,pn)'s contained in a P.G.(m,p")

form a balanced incomplete bloek design with the following para-

meters:

bz(lfp teestD )---(Psn¥--°*p ) ::b(S,m’Pn):
) (p( +p n) psn

n
(14D +eeotp
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which gives the number of blocks, i.e., the number of differa:n:
P.G.(s,pn)'s contained in the P.G.(m,pn);

v = l+pn1- .o + pmn: v(m,pn) ,
1.e., the number of varieties is equal to the total number of
points in the P.G.(m,pn);

K=1+p 4.ee 4D 0 =k(s,p%),
i.e., the number of plots in one block 1s the number of points

n
contained in the P.G.(s,p );

mn sn mn
_ (P74 vevrD Dana(p PR ) : n
(p(s—l)n+psn)psn = r(s,m,p"),

(p + -ac+ps )..-

i.e., the number of replications is equal to the number of points
common to all the different P.G.(s,p")!'s formed from a given P.G.
(m,0") 3

1 if s =1,

2n mn sn mn
(P77 % eev D Deuelp 4 eoetp )

2n sn (s-1)n ‘sn
(0% cee D Deau(p +p° M

=)\(s,m,pn) if 1< s¢m,
where ) is the number of times two points of the P.G.(m,pn)
occur in pairs iIn different blocks. In the case where s =1, the
blocks are the lines of the P.G.(m,pn).

We shall prove that any P.G.(s,p ) is either contained
in a given P.G.(m—l,pn) or has a P.G.(s—l,pn) in common with it.
Consider a P.G.(s,p’) which is not contained in the P.G.(m—l,pn).
Let p; be a point of the P.G.(s,pn) which is not in the P.G.(m-1,
pn). Let ql,...,qm;p}\be linearly independent points in the
P.G.(m-1,p"). Then d15+++54 ,P) are m+1 linearly independent

points and hence every point of the P.G.(m,pn) is of the form
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Let s+1 linearly independent points of the P.G.(s,p")
n

be PysPyssvesPg qe Since every point in the P.G.(s,p ) is con-
tained in the P.G.(m,pn) and since every point in the P.G.(m,pn)
may be'expréssed in terms of the above m+1 linearly independent
points, we have

(2.2) A+ 2 ) 1=2,3 s +1

L} ’ = p1+ ql+"'+Am1”lq'm’ goery L]
Hence the points pi Py ),pl, 1=2,3,.s.,8+1, are contained in
the P.G.(m-1,p").

The points p2,p3,...,p are now shown to be llnearly

s+l
independent. Suppose that they are linearly dependent. Then

there must be a relation

/ / / -
(2.3) APot AoP3teee + A Pgyy ™0
where not all the Ai's-O. From (2.2) and (2.3) we have
(i+1)
(2.4) 3 APia= Z)‘i( 1" AP,

vol

z)\iphl pli)\ /\(iﬂ) 0.

But Dys>PyseessPgyq &TE linearly independent points. Hence (2.4)
holds true only if all the coefflicients of the pi's in (2.4) are
zero. This is true only if Ay = Ay = ess =A = 0, Thus we see
that pé,pé,...,p;+l are linearly independent. Hence the P.G.(s-1,
pn) consisting of points of the form

(2.5) )\Zpé+...1— As*-lp;fl’

is contained in the P.G.(m-1,p"). _But these points are also all
the points of the given P.G.(s,pn) which are contained in the P.G.

(m-1,p"). For suppose that there is another point pi’of the P.G..
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(s,p™) contained in the P.G.(m-1,p") and which is linearly inde-
pendent of the points pé,...,péfl. Then all the points of the
P.G.(s,pn) could be renresented by

lei t szé tee- t ’g+1p;+i ’
and would be in the P.G.(m—l,pn) contrary to our original assump-
tion.

Thus every P.G.(s,p") of the P.G.(m,p") is either entirely
contained in a given P.G.(m—l,pn) or has a P.G.(s~l,pn) in common
with it.

Considering a P.G.(m,pn) and deleting any given P.G.(m-l,'
pn) we obtain another system of points and lines which is called
the finite Fuclidean Geometry E.G.(m,pn) of m dimensions. Con-
sidering a P.G.(s,pn) which is not wholly contained in the P.G.,
m-1,p?), a P.G.(s-1,p") is removed from the P.G.(s,p") turning
it into a E.G.(s,pﬁ).

The number of points contained in an E.G.(m,pn) is deter~
mined by taking’§he number of points in a P.G.(m,p") and removing
from these all the points common to a P.G.(m-1,p"),1.e.,

v(m,p™)~v(w-1,p") =p™.

The number’ of E.G.(s,p")'s contained in an F.G.(m,p") is
determined by finding the number of P.G.(s,p )'s contained in a
P.G.(m,pn) which is b(s,m,pn). From this number we next delete
the number of P.G.(s,pn)'s contained in a P.G.(m-l,pn) which is
b(s,m-1,p"). For, to form an E.G.(m,pn) we delete a P.G.(m-l,pn)
from the P.G.(m,pn) which in turn deletes b(s,m—l,pn) P.G.(s,p")'s
from the P.G.(m,pn). This leaves b(s,m,pn)-b(s,m-l,pn) P.G.(s,pn)'s

n
from whiech a P.G.(s-1,p™) is removed forming a E.G.(s,p ). Hence
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an E.G.{(m,p") contains b(s,m,p™)-b(s,m-1,p") E.G.(s,pn)'s.
Consider a given E.G.(k,pn), k¢{s. It arose from a P.G.
(x,p") contained in the P.G.(m,p") but not wholly contained in the
P.G.(m-1,p"). The P.G.(k,p") is contained in a certain number,
say ¢, of P.G.(s,pn)'s. Since the given P.G.(k,pn) is not wholly
contained in the P.G.{(m-1,p™) then neither are the P.G.(s,p™) s
which contain 1t. When the P.G.(m-1,p™) is removed the P.G.(k,p")
becomes an E.G.(s,p") and all the P.G.(s,p")'s become E.G.(s,pn)'s
containing tee given F.G.(k,p") . Hence the number of E.G-(s,pn)'s
containing a given E.G.(k,pn) is the same as the number of P.G.

(s,pn)'slcontaining a given P.G.(k,pn). We now have

Theorem 2.2: The E.G.(s,p")'s contained in an E.G.(m,p )

form a balanced incomvlete blocls desikn with the following

parameters:

b=b(s,m,p")-b(s,m-1,p"), since the E.G.(s,p")'s
reoresent blocks;

v =p 2, since the points of the E.G. (m,p") represent
varieties;

k= p°n, since the points in an E.G.(s,p ) represent
plots;

: r=r(s,m,p);

N= A(s,m,p ).

To establish the last two equalities we consider the
following argument.

Consider a point contained in the E.G.(m,pn). This

point was also in the P.G.(m,pn) and, from previous work, was in
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r(s,m,p )P.C.(s,p™) ts. Since the point is in the E.C.(m,p ) it
was not in the P.G.(m-1,p") which was deleted from the P.G.(m,pn)'
Hence all the P.G.(s,pn)'s which contalned that point were not
wholly contained in the P.G.(m-l,pn) and hence are carried over
into r(s,m,pn) E.G-(s,pn)'s containing that point.  Thus, the
number of times that every point is éontained in different E.G.
(s,p)'s is r(s,m,pn).

Finally,-‘a(s,m,pn) is the number of times a given pair
of points, p; and P,» say, appear in different P.G.(s,pn)'s. After
the P.G.(m—l,pn) has been removed, either Py»P, are not contained
in the E.G.(m,pn) or thevy appear together in the E.G.(s,p™)'s
derived from the P.G.(s,pn)'s which contain them. Hence every
pair of points in the E.G.(m,pn) is contained in exactly ,A(s,m,pn)
F.G.(s,pn)'s.

As an 1llustration we shall form the lines of the P.G.
(3,2) and the E.G.(3,2). Every line of the P.G.(3,2) forms a
P.G.(1,2). The number of points contained in a P.G.(1,2), by an
earlier theorem, is 1+2=3. Hence every line of the P.G.(3,2)
contains three points. This can be seen also by forming all
possible combinations of ,A1p11-,azp2., where P and p2 are dis-
tinet points and Al’ A2 form all possible non-proportional pairs
of the G.F,(2) where Ay and A, are not both zero. The number
of points in the P.C.(3,2) is 15. The number of lines contalned
In the P.G.(3,2) is 35. To find the number of lines containing
a given point corresponds to finding the number of P.G,(1,2)'s

in the P.C.(3,2) that contain the given point. This is seen to be
r=(2 +2°42°)/2=7.
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The E.G.(3,2) contains 2%=8 points. The number of points on
each line of an E.G.(3,2) is two. Hence the number of lines in
the F.GC.(3,2) is 8(:2-=28. The number of lines on which a point
appears in an E.G.(1,?) is the same as finding the number of times
a point appears in an P.G.(1,2) which, from above, is seven.

Hence we form the incomplete balanced block designs
with the feollowing parameters:

b=35 v=15 r=7 k=3 N=1,

b=28 v=8 r=7 k=2 A=1.

The G.F.(2) consisting of the elements 0,1 is the field
use@ in obtaining all the points of the P.G.(3,2). Thus we have

the following points:

pl==1000, p5::llOO, p9::0101, p13=1011,
pp 0100, P =1010, Py=0011,  p,,=01l1,
Py =0010, p,=1001, p,;=1110, p;g-1111.
p,=0001, p,=0110, pi5=1101;

Taking all pairs of distinct points in the P.G.(B,Z) and
forming all possible combinations of the form Alpl+-A2p2 where
(A.)Al) consists of all pairs of polnts of the G.F.(2) where at
least one A 1s not zero,i.e.,

(Aydg) =(0,1), (1,0), (1,1);
we thus form all the lines contained in the P.G.(3,2). From this
we see, for example, that pl,pz, and psz:pl+p2 are the three
points on the line through pysP,. Hence, if any two of P1sP,sPs
are glven, the llne through the two given points determines the

third point. Working in a systematical manner the lines of the
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P.G.(3,2) are the following:

plp2p5 ’ 9293P8 ’ p3p5pll’ pﬁpllplﬁ, p6P12p14,
P1P3p6 ’ p2p4p9 ) 93p7p13: PsPePgs PaPaPy 59
plp497 ’ p2p6pll’ 93p9p14’ PgPryPg» PrP11P14»

P1PgP1ys PoPyPyss  PaPyaPys PsPigPygr PgPg Bos
P1PgP1os  PyPygPy s P PP s PsPysPy,s  PgPyoPl3s
P1P1oP137 PoP13Pyss P,PePras PePrP1gs  PgPpPpse
PPy P1sr P3P, Py s PiPePiys PePo Pygs P1oP1yPpy ¢

To form an E.G.(3,2) we must delete a P.G.(2,2) from the
P.G.(3,2). Every line of the P.G.(2,Z) contains three points.
Also a P.G.(2,2) contains 11—2-r22==7 points.. Since pl,pz,p3
are three linearly independent points, they genefété a P.G.(2,2)
contained in the P.G.(3,2). Thus, in forming an E.G.(3,2), we
must remove & set of seven points which 1s determined by forming
all possible conbinations of Alplf-A2p2+-A3p3 where at least one
of the A's 1s not zero. The set of points obtained in this
manner 1s pl,pz,pj,p5,p6,p8,pll. It should be noted that this
set of points forming a P.G.(2,2) is that set of points formed by
chbosing the points whose last coordinate is zero. This is possi-
ble since ﬁhis set of points 1s closed under addition.

Since the lines of the F.G.(3,2) contaln two points
thén the total number of combinations of pairs of the remaining
28 points represent all the lines in the E.G.(B,z). They are

-

as follows:
PP » P,P10> P,Py3s P,P15s PyPys

PAPQ‘; p4p12} p4p14, p7p9, p7p10’
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PrPqss PoPq 55 p9p14’ P10P15» p13p15’
PPiys  PgPios  PigPros  ProPrys  P1uPise
PPy, PPy PyoPiys P12P1,7
PyPigs  PgPly PioPys  PypPyg

-

Notice that each point in the E.C.(3,2) appears in exactly seven
lines as did each point in the P.G.(3,2).

As an example of a finite Euclidean geometry we now con-
struct the E.G.{(2,3). The P.G.(2,3) has 11'3A-32= 13 points.
The E.G.(2,3) has 32= 9 points. Forming the 13 distinct points,
we have

p, =1,0,0, p,=0,0,D, Py =1,0,-1,

p,=0,1,0, pg=0,1,), pyp=(1,1,1

P, =0,0,1, », =1,1,1, py71,-1,1)

p4=U,1J% pszﬂﬂ-l,@, =Q,1,~1)
Py5=(0,-1,1.

Pys

The number of polnts in a line is the number of points
contained in a P.0.(1,3) which is four. The line through PysP,
is of the form.‘Alpl1-A2p2 and contains the points pl,pz,pA,p8
for (As));) equal to (1,0),(0,1),(1,1), and (1,-1) respectively.
In a systematic fashion we obtain the r(1,2,3) =13 limes of the
P.G.(2,3), viz.,

P1P,P, g5 PoP3PePyyr  PyPgPi P s
PyP3P5D s PPP.D s P P.PoPygs N
PyPD P 2 PoPoP1oP1,?  PiPePoPy;? 7879713
plpllplZPIB’ P3P PyP1ps PP DD >
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Now from the P.G.(2,3) delete a P.G.(1,3) forming an
E.G.(2,3) which contains 3°=9 points. But any P.C.(1,3) is a
line in the P.G.(2,3) containing four points. Thus, by deieting

any line, say plpzp Pgs the remaining nine points form an E.G.(2,3).

4 .
Since every line contained in the E.G.{(2,3) has three points, and
since there are b(1,2,3)-b(1,1,3) =12 lines in the E.G.(2,3), we

have, as the lines of the E.G.(2,3), the following:
P3p599, 9396913: p3p7pl2, p6p9911’

P1aP1oP137 PoP1o®1nr PsPioPiy? PrPolise

The above system of nine points and twelve lines is the E;G-(Z,B).
An E.G.(2,0") may be constructed in another way using a
set of orthogonal Latin squares. From the previous chapter we
have shown that it 1s possible to construct pn—l orthogonal Latin
squares from a Galois fleld of order pn, where p is a prime. Since
the Latin sqguares have side pn, the number of compartments in each
Latin square is pzn. From the set of orthogonal Latin scuares we
can form pzn sets gf ordgred numbers (aijl’aijz""’aij,pn-l
where 2y 4% is the number in the 1th row and Jjth column of the kth
Latin square. These sets of numbers are arranged in a square
where the above general set would appear in the 1th row and Jjth
column. These sets are then called the points of our E.G.(z,pn)
and are p2n in number. The lines of the E.G.(2,pn) are then given
by the columns, the rows, and by theﬁ@n~l)sets of points whose ith
number is & (o= 0,1,...,p"-1;1=1,2,...,p7-1). The p+1 sets

of lines obtained in this way are called parallel lines since no

twc lines in a given set have a point in common. FEach set contains
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n
p" lines so that all together p(p 4 1) lines are obtained.
As an 1llustration consider the E.G.(2,3). The two ortho-

gonal Latin squares formed from the G.T.(3) are

0 },2 012
120 201
201 120.

Superimposing the second upon the first we obtain the following set
of points:
(0,2)  (3,1)  (2,2)
(1,2) (2,00  (o,1)
(2,1) (0,2) (1,0).
In order to i1llustrate the above argument more clearly we shall
label the above set of points in their respective positlons as
follows:
Py P Py
Pe Py Fig

P13 P1a Pqype
The points are labelled in the above manner in order to simplify

the comparision with the results obtained earlier. The rows

and the columns give the following set of lines respectively:

P3 plOEl p3 P7 P12
Ps P Py Ps P1oP13
P7 Py Pq, Pg Pg Py3°

These are the same lines as obtained in our first construction of
an F.G.(2,3).
In order to extend this E.G.(2,p%) to form the P.G.(2,p")
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we nmust add additional points, the same point to each set of
parallel 11ne§ and different points to intersecting lines. Finally
we take all the points that were added and form an additlonal
line through them. |

Returning to our example, we see that in order to form
the P.G.(2,3), we must add Py to the first set, p, to the second,
pa to the third set, and p4 to the fourth set. 1In addition, add
the line plpszpA. Thus, the resulting‘P.G.(2,3) has 13 lines of
the P.G.(2,3) which we have labelled in the same manner as the 13
lines of the P.G.(2,3) in the previous example.

An E.G.(2,p") has p2n points. So does the design whose
construction we havé described. - The number of lines in ah E.G.
(2,0") is the number of E.G.(l,pn)'s contained in it which is,

for s=1,

‘ n, n
b(l,z,pn)'b(lxl)pn) :(”f’”‘?uXPn "): (l‘f‘p )p

Gepmyp? (1 +p)p"

n n
=p (p +1),

and our design has this property also.
The number of times a point appears on a line in an E.G.
n
(2,p) 1s, for s 1 and m=2
n 21
r(1,2,n) = (p"+ p) n

— = 1ltp .
P

£

This holds for our deslgn since every point appears once and only
once in a set of parallel liwnes and we have lf-pn such sets.

The number of times that a pair of points appear together
on an E.G.(1,p"), or line, in an E.G.(Z,pn) is

A = A(1,2,pM) =1.
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We shall show that our design has this property. Con-
sider any pair of noints. If the two noints are In a row they lie
on oneg Tow line and one no other line. A similar remark applies if
thevy lie in a colunn. Suppose the points lie on two lines whieh
are neither row nor column lines. One of these lines will arise
from some fixed 1 =1, and «x::q]; the other from i==12,au=au .
This means that the two ordered sets of numbers which are our points

would both have o, in the 1_th place and d% in the i,nd place.

1
This is impossible since, from the definition of orbhogonal Latin
squares every ordered pair of numbers from the set O,l,.,.,pn-l
appears in these positions once and only once.

Thus the alternative approach does lead to an E.G.(2,pn).

Finite geometries furnish whole series of balanced incom-
rlete block designs. Most of these designs are of little practi-
cal interest since the number of replications should, in most
cases, not exceed ten.

By applying two theorems first proved by R.C.Bose (An-
nals of REugeniecs,9 (1939) op. 358-399), other serigs of these
designs can be obtained. Before proceeding to these theorems we
must first introduce the concept of a module. A module is a sys-

tem of elements such that to each pair of elements,a,b, there is

uniquely defined a sum a+b satisfying the postulates I,I1,II1,IV,
for addition in a field. For example, the residues mod m form a
module for every m. A mocule,M, with a finite number of elements
is called a finite module. If M has n elements then M is called

a module of order n.
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Let M now be a module of order n and let m varietiles éiﬁ
...,Az, {=1,...,n, correspond to every element Aﬂ of the module.
We form blocks of these mn varieties as follows:

G e, G0
where the va;ieties in a block are distinct but not necessarily
so in differént blocks.

As an illustration consider the module consisting of the
elements 0,1,2,3,4 whicgquded together in the usual fashion , the
resulting sums being reduced nmodulo 5. In the case where the
numbér of varieties corresponding to every element in the module
is two, we have the following varieties: 01,02,11,12,21,22,31,32,
41,42. Taking k=3, we can form the following blocks from the
above module: '

(01,12,21) ’ (02,31542).

Given a block of k varieties we can write kP 2=x%x(x-1)

expressions of the form

Ap-Bg = (A'B)a’é
where A and B are any two varieties in the block. This expression
is called a difference of type ¥s.

From our example computing the differences for (01,12,21)
we have

01-1,=(0-1), = 41, (5)
01f2if‘(0-2)1l==311 (5) ,
1,-01 = (1-0) ), =1,, (5) ,
12“21 = (1‘2) 21 _—“421 (5) ’
2,-01 =(2-0),, =211 (5) ,
2,715 =(2-1)4, =1,, (5)
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The differences for (02,31,42) are the following:
0,-31 = 251,
02427 12p»

31-02 3315
4y=05= hoos
bo=31=1215
3174, %

Differences of the type 4&F , say Adp , are called pure if «4=0
and are called mixed if « #p3

If, in t blocks, every pure difference, Ay, , except Oy
1s repeated A times and every mixed difference, Aqp, 1c repeated
the same number of times, including O%ﬂ, the differences are said

to be symmetrically repeated.

Theozxem 2.3: Let M be a module containing the elements
(o) én -1) (1) @)

V yecey s and let m varieties VY seeesVy correspond to every

i

element éi‘. The variety vy 1is said to belong to the Jth class.

Cuppose that there exist t blocks of elements Bl"' ”Bt’ not

necessarily containing the same number of elements, such that:

(1) No two varieties appearing in the same block are

alike. However, the same variety may appear in different blocks.

(2) Among the elements in B,»Bys...,B, exactly r varieties

belong to each of the m classes.

(3) The differences formed from B are symmetri-

B2’ QI,B

1’ t

cally repeated, each occurring A times.

Also 12

(L. (':g)
(Vq geve ,de)

e
L_yg_e_iub;_o_cisz 2’”,,Bkandv +e—v let
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Biez(Vq|, --., qu,.

Form all the blocks By for all i and all é contained in M. Then

A. In the blocks Biﬂ every varlety occurs r times.
B. Any two varieties occcur together ip the same block

-exactly A iinmes.

Proof of Theorem 2.3: Corresponding to everyv pair of
elements vu) and v(p) of M there exists exactly one ©® in N such that
viqxroavﬂ? This relation is velid since efefy non-zero element
in a module has an inverse.

From the r varietles belonging to the ith class, take
one and add all possible values of 8 to it. This will give all
the varietles with subscript 1 exactly once. Thus, working with
the r varleties belonging to the ith class, we obtain each variety
in the ith class r times. Hence, considering all values of 1 we
obtain everfffgkgach class exactly r tinmes.

Every palr of varietiss, mf’ and Wf), where o may be
equal to B3 or 1 equal to J but both equalities not holding togethev

tzer, occur together exactly « times in the blocks B if and only

i
if there exist exactly _« blocks in the Bl""’Bt each containing

‘I of .
a pair of elements v&‘i Wg) and, corresponding to each such pair,

there exists an element & of the module such that

., ;
vé hev',
o .
v +0:vu'.
< ¢ W W YR I L
Thus v -v =V ‘ -vJ =d and 6= v“ —v‘ =V -v‘). Hence the pair

<) @) ‘
vd),qg arises exactly as many times as the difference d arises

as a difference of the type a3 in the original blocks. If o=

/ / o W 3 4
this implies that 1=#j. Hence v:)~7? %=q#1 is not a difference
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of the type Oqq and the number of dyy's is A by hypothesis. If
‘_-I M

d #£43 , v; )-V:)’: dq{(3 may be of the type O"P but whether it 1s or

not there are exactly X such differences by hypothesis. Hence

AL= )\ /-

Corollary to Theorem ‘Q.3: If each block By contains the

sane number of varieties the blocks Bi form an incomplete balan-

ced block design with v=mn, b=nt and r,k, N, 2as in the theorem.

i

As an example consider the group of residues mod 2t +1
and the pairs
(1,2t), (2,2t-1), ..., (t,t+1).
Every difference different from zero arises from these pairs exact-
ly once. Next, consider the blocks

(11,(2t)1302)1 (21:(2t"1)1)02), ey (tl’(t*l)l’oz);
(1,,(2¢)5,03), (2,,(2t-1),5,05), «..y (t,,(£41),,04);
(14,(28) 5,00), (23,(2¢-2)5,01), o .oy (25, (242) 5,0:);

(09,04,05) +

From the first two elements of the first 3t blocks we
obtaln all the pure differences exactly once. All non-zero mixed
differences of types 1,2 and 2,1 arise exactly once from the
first set of t blocks, those of types 2,3, and 3,2 exactly once
from the second set of t blocks, and those of types 1,3 and 3,1
exactly once from the third set of blocks. The zero mixed differ-
ences arlse exactly.once from the block (01,02,03). The system
of blocks formed above contains 6tt+ 3 varietles, three iIn each

block. When we form the Bia's, © may take on any of the 2t+1
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values 0,1,2,...,2t leading to (3t+1)(2t+1) blocks. The original
set of blocks has 3t+ 1 elements in gach of the classes 1,2, and 3.
From Theorem 2.3 we can construct an incomplete balanced block
design with the example above with the parameters v=6t+3, b=
(3tt1)(2t+1), r=3t+1, k=3, A= 1.

For exampie, put t =2, then 2t+1=5. Arranging the ini-
tial blocks in the first row and forming each successive row of
blocks by adding 1,2,3,4 as the values of © respectively we have.
the following design consisting of 35 blocks:

(11541505) (21531502 (15542503) (25,32, 03) (13545,01) (25,33,01)
(07,0,,05)
(2,0,15) (315h1s1) (22:05,15) (3,0hp015) (23505,1)) (33043,1)
(1151215)
(3151152, (4150152,) (35535523) (400,552, (35,15,2) (43,05,2))
(21,25,23)
(4152953,) (03,2,535) (45,25,3,) (05515,3,) (43,25,3)) (04,15,3,)
(31535534)
(01,31;42) (11,21,42) (02,32,43) (12,22,43) (03,33,41) (13,23,41)
(41,42,43)5

Notice that in the above 35 blocks each variety occu"rs seven
times and every pair of varieties is repeated‘exacp;y once.
To the module M adjoin the symbol e which obeys the follow-

ing rule under addition. For every element a contained in M

Bt =0,

—— — —— oo—

s) n-1

)
U yeeeyll . To every element u there corresponds m varieties
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[
ula ugd,...,ugﬁ. One variety corresponds to the element «. The

variety u?) belongs to the ith class and the u?"s are said to be

finite varieties for all i1 and all o . Suppose there exist t+s

!
blOCKS Bl’oo.’B BI‘.’.’.,BS Su(!h that:

t’
I The varieties in each bloek are different from each

other.

ITI The blocks Bl""’B contain exactly k finite varieties

t
each and do not contain the element e while Bi,...,B; contain

exactly k-1 finite varieties and 0.

ITIY Among the varieties in Bl""’Bt exactly ns-A

/ /

belong to each class, while among the varieties in Bl""’Bs’

exactly ) belong to each class.

IV The differences arising from the finite varieties are

symmetrically repeated, each occurring A times.
/
je
Then the blocks Bp,rsj;3 , 1=1,...,t;3=1,...,s, form

The blocks Byg,B are defined as in the previous theorem.

an Incomplete balanced block design with the parameters v=mn +1,

b=n(t+s), r=ns, k, A .
Proof: From III exactly ns- 2+ X varieties belong to

each class., Thus, from Theorem 2.3, each variety occurs exactly
/
jo

occurs exactly ) times together in all the blocks BiO’B;e' The

symbol ¢« appears exactly once in each of the B;e biocks, j=1,

ns times in the blocks Bie’B » and every palr of finite varieties

+.+.,8. Hence the variety o0 occurs also exactly ns times. Again,

from III and Theorem 2.3, each variety in the B’ occurs exactly

je

A times. Hence o0 occurs with every finite variety A times in

the same block. Thus every pair of varietles, oo being considered
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Je*
Now applyling the Corollary to Theorem 2.3 to the above argument

a variety, occur exactly A times together in the blocks Bio’B

the proof of Theorem 2./ 1s complete.

As an example we shall construct designs with the para-
meters v=12t+4, b=(3t+1)(4t+1), r=4ttl, k=4, and A= 1,
where At+ 1 is a power of a prime.

" We take the eleménts of the G.F.(4tt+1) as our module M
where addition is the operation involved. Let X be a primitive
root. We shall now show that -there exist odd numbers « and g
such that (x "+ 1)/(x*-1) = x9.

Since x is'a primitive root the non-zero elements of the
G.F. (4t +1) are generated by different powers of x. These elements

o _1 xAt-l

are given by x ,x,..., . We shall consider expressions of

the form (x+1)/(x*-1). $Since x is a primitive root of the G.F.
(4t +1) then x*t= l,i.e., (x2t-1) (x2t+l)= 0. Since xm}él, then
x2§=-l. Since x°%?l 1s a non-zero element in the G.F.(Ati-l).for
d # 0,2t, and since every non-zero eiement in the field has a mul-
tiplicative inverse, we have

X+l

=x3, where 1¢q%4t-1,

(2.6)
xf-l

and o= 1,2,...,2t-1,...,4t-1. From (2.6) x'= (x%1)/(x%-1).
This relation is valid since x -1 is a non-zero element in the
G.F.(4t+1). Hence, to every «# 0,2t, there exists a unic;ue .
value q740,2t, and contained among the residues l,2,...,ét-l,...,
4t-1. Among these remaining residues there are 2t odd residues

and 2t-2 even residues. Now X and g can be palred so that both

are even residues, or one is even and the other odd, or both are
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odd. In the extreme case, where either & is odd and q is even,

or vice versa, we have two pairs of odd residues remaining after
pairing « with q. Hence,to at least two odd residues)there corres-
ponds an odd residue.

Now let three varleties correspond to each element of the

G. F.(4t+1). We form the following 3t+ 1 blocks:
21 2tf2i 2it« 2t+24 +a

( 1 ? 1 2 X2 b X2 );
<1 2trei Qita 2tt2it« .
(X2 } x2 } x3 F ] X3 ); L:O,l,o-c’t_l,

(2L 2Rl ik 2pERLrd
X3 1 X4 » X1 Xg 5

( 00’013 02} 03) *

Now set £¥f1:=xg, x’-l==xv, x2t~l= xp. Now o may be chosen so
that
(2.7) u-v=1 (2),

that 1s, so that q will be oddi
Each of the three classes of varieties occurs 4t times
in the first 3t blocks and once in the last block. The differences
of the type 1,1 occur in the first and third set of blocks.
These differences may be written as

21+2€t+€d t - 21*2513*‘"
(z.8) [=x 2% x? 1)]11— =B 1a0,1

where €,,6, take on the values 0,1 independently. Hence (2.8) rep-

’...,t l)’

resents four differences of the type 1,1 for each value of i. Now

suppose that two of these differences are equal. Then
x21~I~é', 2t *Czct?P 23*621: +6; cc+ﬁ
11 ll
Therefore
2(1 1) 2t(e- e)*«(‘éz—f)

X1 =1,
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that 1is,

(2.9) 2(1-3) + 2t(€, -€,)= - X (€2 =€) (4t).

Since o 1s odd, (2.9) is valid if and only if €,~€, ls even,i.e.,
625‘61 (2). But both ¢, and € are either O or 1. Hence €, must

be equal to G!. Thus, from (2.9), since é,—éf is equal to either

0 or ¥| etther i-j50 (2t) or i-35t (2t). Since 1#J and 0 %1,
£ t-1, both of these congruences are impossible. Thus the 4Lt diff-
erences of type 1,1 are all distinct and different from zero. There-
fore they must contain each of the 4t non-zero elements exactly
once. The above argument may be appllied to differences of the
type 2,2 and 3,3 to show that they contain all the non-zero ele-
ments of the G.F.(4tt+ 1) exactly once.

Now consider mixed differences of the type 1,2. These
differences occur in the first set of blocks and the last block
only. The differences arising from the first set of blocks may
be wrltten as
(2.10) (X21f6,2t_x21+a(f§2t)12,

where €,,€; again take on the values 0,1 independently. The four

differences given by (2.10) are now written more explicitly as

follows: :
21, _ 2l12try [21 « ] _ 2iw
[— x“(x —1)] 12" %15 , | X7 (x -1) 12= X170

24 ] _ 2ivu 21, 2it2t+u

% (x+l)412 x75 , {x x +l)]12—x .

The above expressions may be condensed into the following forms,i.e.,
2ite2t+u 21re2trv

X5 » X5 » where € = 0,1. Thus (2.10) represents 4t

non-zero elements of the G.F.{(4t+1). It remains to show now

that these elements are distinet. Suppose that two of these -diff-

A
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erences are equal. There are two cases to be considered. Consi-

der first
2ire2ttu 2jre2t+

%12 = %12

This implies that 2(i-3) t+2t(€ -¢)=0 (4t), that is, i-3=
t(€ -¢') (2t) which has been shown to be impossible. Next, sup-
pose that p
(2.11) LAt R
Thus 2(1-3) +2t(e -€')= v-u (4t). From this we can conclude that
u-v=0 (2), bﬁt this 1s impossible since u-v=1 (2). Thus (2.10)
represents the At non-zero eiements of the G.F.(4t+ 1) exactly
once. The proof for the other mixed differences 1s analogous.
The zero‘mixed differences all arise from the last block. Thus
all the conditions for Theorem 2.4 are satisfied. Hence we have
an incomplete balanced block design with the following values for
the parameters: b= (3t +1)(4t+1), v=12t+ 3, r= 4t +1, k=4, A~ 1.

As an 1llustration let A4t+1=9. From the Corollary to
Theorem 1.5, the G.F.(Bz) may be expressed as the field of residues
mod (3,y2+ 1). The set of residues is thus 0,1,-1, y,-y,y+1,

~y-1,y-1,-y+1l. We see that x=-y+1 is a primitive root,for

X2= I X6= ¥
x3 = y+1, X7= -y-1,
x4= -1, x8= l,.
x’= y-1,

where the values for the different powers of x are reduced mod yzkl.

If,in (2.6) we set d=1, we obtain

x+1 —y-l x7
6

—_—————

—."x,

= o—_—— =

x-1 -y x
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which gives an odd-powered residue. We shall now form the design
where o« =1. The first two blocks of the initial blocks are
P 2
[ll,(_i)l,XQ’-XQ] y [Xl,—xl,xg,—-xg] .
After substituting for x, the entire set of initial blocks 1s
found to be

(1),5(-1) 5 (-y+1) ;5 (y-1) ¥15-¥15 (7#1) 55 (-y-1) o} 5
1 1 3 1 2

-
(3 (D 3y 56D |5 [r5-7,3 (D) 55 (v-D) ] 5
[tl)s;('1)3;('Y+1)1;(y_1)£]’ [YBB-YB;(Yf1)15(~Y-1)i};

(°°;Ol;02;03) .

In order to simplify the design, let the residues 0,1,-1,y,yt1,
y-1,-y,~-y+1,~-y-1 be represented by 1,2,3,4,5,6,7,8,9 respectively.
"Writing the initial blocks first and adding the residues xo,xl,...,

x7 to the initial blocks, we have the following ﬁesign:

(29521582562) 5 (41571552392) 5 (25532,83,63) 5 (4207225359,)5(23,33,81,61) 5
(497555159905 (0511,1,,1.),(31,1959,,45)5(51581,65,75)5,(35515594544) ,
(55585963573) 5 (355155954705 (5558556,57.),(0,2),2,,25),(9),71,6,,1,),
(21551935045)5(95575563513) 5 (25555,33,45)5(94573561511), (2,555,553, 541)
(00,8,,8,,85)5(51,61525,9,),(715,17,8,,3,)5(5,56,,24,95),(7,,1,,8 53.)
(54563521591) 5 (75513,81531) 5 (0547 545543) 5 (6154153,5575)5(81,715,9,,1,),
(6004293357305 (80259551305 (6354353157105 (85,25,91,11), (20,51, 5 ,55),
(11,21,72,52),(61,91,42,82),(12,22,73,53),(62,92,43,83),(13,23,71,51),
(6359354158105 (€0,31535,34) 5 (4155151558505 (915315 72525) 5 (455555 13,85) 5
(95535573524) 5(43555511,81)5(93,34,79,21) (0 ,61,65,63),(81,91,55,35) »
(13541522,62)5(82,97,53,33) 5 (12,42,23563) 5 (83,93,51531) 5 (13543, 21,61)
(00,71,72:73) 5 (71,81542,22) 5 (3 6 p1 5 ) , (75,85 43,23) 5 (3556,15555) »
(735835415215 (33563511,51),(=0,91,9,,95) -
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If m=1 in Theorem 2.3, the resulting design has the pro-
nerty that every varlety occurs exactly t times in every position
" in the blocks. For the elements of the module represent the var-
ieties and, no matter what element appears in a given position in
a particular Bi’ the addition of all elements of the module to
this element ieads to all the elements of the module in this nosi-
tion in the corresponding Bio's' This type of design 1s useful
when the position in the block influences the yield.

Of particular interest ars designs, which are termed
symmetrical designs, formed by setting v=b, r=k. Once a symme-
trical deéign has been constructed we can obtain three other designs
from it. Denote the blocks of the symmetrical design by Bl’Bz""’

B The residual design is formed by deleting from the remaining

b
blocks all the varieties that appeared in By. The derived design
1s formed by deleting from the symmetrical deslign all the varieties
that do not appear in any one block, say Bl’ and also deleting Bl'
Since there are k plots to a block in the symmetrical
~design and v varieties, there are v-k varieties in the residusal
design. Since one block has been deleteg in forming both designs
and since v =b, the number of blocks in both designs is v-1l. When
forming a residual design we delete all the varieties appearing
in one block, so that the varieties remaining must occur the same
number of times as in the symmetrical design. Similarly, the num-
ber of times a pair of varieties occurs in the same block in the

symmetrical design remains uhchanged in the residual deSign.

The number of varleties in a derived design is k since

the design is formed by considering only those varieties which
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appear in a given bleck and each block has k varieties. Fach
variety in the original design is replicated r times. Since we
must delete one block containing all the varieties to be used,
the numper of times a variety is replicated in the derived design
is k-1 since r=k. By deleting one block in which every pair of
varieties under consideration appears, the number of times that
each palr of varieties in the derived deslgn appears together is
A -1 where A 1is the number of times each pair of varieties occur-
red in the original design.

In order to show that these two designs are incomplete
balanced block designs we need only to show that every block in a
given design contains the same number of plots. We shall show
below that the first block in a symmetrical design has exactly A
varieties in common with every other block. From this it follows
that every block in the residual design contains k-» plots and every
block In the derived design contains A plots. Thus these designs
are incomplete balanced hlock designs.

We now prove that every block in a symmetrical design has
A varieties in common with the first block. Let ay be the number
of varieties common to the first and the ith block, i=2,3,...,b.
Then

. .
(2.12) 2 a =k(r-1),

2 1
since every one of the k varieties in the first block appears r-1l

times in the remaining blocks. Also

(2.13) Say(ay-l) | k()

(:2’ 2 (/\ - ) 2 .

For, in the set By, 1 =2,3,...,b, each pair of the k varieties in
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Bl occur in the same block A-1 times. But there are ) pairs’
of varieties. Hence there are (A ~1)k(32 pairs of wvarieties in
the blocks By, i==2,3,...,b; which also appear in B,. But since

there are ay varieties in B, common t»o Bi’ there must be ai(32 =

1

ai(ai-l)/2 pairs of varieties in B; which are also in B There-

i.
fore ziéi()Z represents the total number of pairs of varieties
=
in 82’33""’Bb which are also in By. Hence (2.13) is valid.
Everv varlety vy occurs in r blocks. In these r blocks

there are r(k-1) varieties different from v Since every pair

5
of varieties occurs among the r blocks exactly A times we have
2.14) r(k-1) = A(v-1).
From (2.12) and (2.13) we have
ZL_(a’i;- A)2 - Zai -2A ) a;+ (b-1) X
“(A -1 k(k-1) +k(r-1) -2Ak(r-1) +(b-2) A,
But since k=r, b=v, and from (2.14) we have
Z(ai- >\)2= k(k_l){); “1+1-2A +,-\}: 0.

Hence ay= A t i:=2,3,...,b.

Thus it follows that the derived and residual designs are
incomplete balanced block designs having the parameter values v==k:
b=vl—l, r=k’-1, k=A , A =X-1 and v=v’—k', b=‘-v/-1, r= k,,kz
k/—7(, A==A‘ respectively where vl,bl,r’,k/,A' are the parameter
values of the original symmetrical design.

As an 1llustration demonstrating the processes of deriva-
tion and residuation consider the symmetrical design 25,25,9,9,3.
This design was constructed by Bhattacharya (Bull. Calcutta Math.
Soc. 36 (1945) pp. 91-96). The design is as follows:
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125 6 111217 2023, 149 1214 15 19 20 24,
129 101517 16 21 25, 146 7 13 16 19 21 23,
127 8 1314172224, 236 7 9 1219 22 25,
347 8 9 1017 20 23, 2 310 11 13 16 19 20 24,
34111213 14172125, 235 8 141519 21 23,
135 7 101218 2124, 245 7 14 16 18 20 25,
139 111416182223, 569 10131417 18 19,
136 8 1315 18 20 25, 579 11 13 15 20 21 22,
246 8 9 11182124, 589 1213 16 23 24 25,
2 41012131518 22 23, 78 11 12 15 16 17 18 19,
345 6 1516 17 22 24, 68 10 12 14 16 20 21 22,
145 8 101119 22 25, 6 7 10 11 14 15 23 24 25,

17 18 19 20 21 22 23 24 25.

From the above symmetrical design form the residual pattern by
deleting all varieties in the last block. The values of the para-
meters from previous work are seen to be v=16, b=24, v=9, k=6,

A = 3. The design is given by the following:

125 6 1112, 127 8 1314, 3 411 12 13 14,
129 101516, 347 8 9 10, 345 6 1516,
145 8 101, 135 7 1012, 569 1013 14,
149 121415, 139 111416, 579 11 13 15,
146 7 1316, 136 8 1315, 589 12 13 16,
236 7 9 12, 246 8 9 11, 7 811 12 15 16,
2310111316, 2410121315, 6 8 10 12 14 16,
235 8 1415, 245 7 1416, 67 10 11 14 15.

Next we form the derived design by considering the varieties


http:b:::::.24
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which appear in the first block only of the symmetrical design.
The parameters for this derived design v,b,r,k, A, have the values

9,24,8,3,2 respectively. The design is given by the following:

1217, 111 23, 211 20, 6 11 23,
1217, 112 20, 2 12 23, 6 12 20,
15 11, 25 20, 56 17, 1112 17,
15 12, 2 5 23, 56 17, 11 12 17,
1 6 20, 26 11, 511 20, 17 20 23,
16 23, 2 612, 512 23, 17 20 23.

Notice the four pairs of identical blocks formed in this design.

Finally we see that from every incomplete balanced block
/
,b l,.'l’

Bé can be formed by nutting into each B; all the varieties not in

the corresponding Bi' The design formed is called the complemen-
§

design Bl,...,B another Incomplete balanced block design B

tary désign.

Since there are k varieties contained in each of the Bi's,
there are v-k varieties in each corresponding B;. Since no variety
appears more than once in a block, r¥ b, In practice r<b, since
r =b and the relation bk=rv imply that k=v. 1In this case every
varlety avnears in every block and the design is not a useful one,

Since r<b, some B, does not contain any given variety and hence

i

this variety is contained in B Thus all v varieties appear in

¢
i° _
the complementary design. Every variety appears in the Bi's exact-
ly r times. Since every variety appears in a B; orice for each
time that 1t doesn't appear in the corresponding Bi’ then each

variety appears in the complementary deslgn exactly b-r times.



72

Consider next a pair of varieties in the Bi‘s. A given
pair of varieties appears in A blocks. FEach variety of the pair
appears in r blocks. Hence the number oftggéwhich one or more of
the varieties appears is 2r-A . The number of blocks in which
neither appear is b-2r+A and this is the number of blocks in
which the pair of varieties will appear in the complementary design.
Hence the parameter values for the complementary design are v,b,
b-r,v-k,b-2r +A .

At the present time there are a great many designs avail-
able but as yet necessary and sufficient conditions for the exis-
tence of an incomplete balanced block design with given parameters
are not known. The relations bk=rv and r(k-1) = A(v-1) are neces-
sary conditions only. Ancther necessary condition, which we shall
now prove is that b2 wv if v>k. Since bk=rv, b2v if and only
if r2X%. From 22.13) and (2. 14) .

gai =(A -1)k(x-1) + gai
:k[(/\ -k tr-)) .

Also from (2.13) the mean of the als is Ei:k(r—l)/(b-l). There-

fore
%(ai-ai) = %[ai—2aiai+ai]
2 R
= z\_ai - (b—l)aiZO.
Thus A
2 2 2 2
Zai;(b-l)é’i:k (r-1)</(b-1).
Hence ‘
2
(2.15) (A-L)k+r-A2 k(r-1) /(b-1).

Since r(k-1) = 3(v-1), we have rk-r= Av-), i.e.,



(2.16) r-) =1k~ AvV.
Subgtituting for r-A in (2.15), we have

(A -1k +rk~/\vak(r—1)2/(b—1),
which can be written as

K(r-1)-k(r-1)%/(b-1)> A {v-k),

or
(2.17) k{r-1) (b-1)/(b-1) = ) (v-X).
From bk =rv we have
M:L .
(2.13) v-k Xk

Since v >k, dividing (2.17) by v-k and using (2.17) we have
r(r-1)2 A(b-1).

Subtracting this from r(k-1) = A(v-1) we have
r(r-k) 2 A(b-v).

But again from bk =rv, (b—y)/v:(r—k)/k. Therefore

r(r-k) = Ak_x_r(r~k)

and
rk{r-k)- Av{r-k) 20
i.e.,
(r-k) (rk- Av) > 0.
But kr- Av=r-A by (2.16). Since v>k and r(k-1) = A(v-1),
1t follows that r-A > 0. Hence r>k and b2 v.
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CHAPTER III
THE ANALYSIS OF LATIN SQUARES

In this chapter we shall consider a test which will be
used in testing linear hypotheées. We consider first a set of
N random variables yl’YQ""’YN and put E(yy) =<y . We now make
the following assumptions.

(1) The y4 are normally and independently distributed
and their variances,v}} are equal.

(2) The .4« are linear functions of p parameters 13 /34,
e+, p» Where p~<N;1.e;, '
(3.1) ﬂq=‘g 9iaf3 ., «=1,...,N,
and the rank of the ma£}ix (gi&) 1s equal to p, where & denotes
the row number.

By eliminating the /36 from (3.1) we see1 that assumption
(2) reduces to the equivalent assumption that the 4 satisfy N-p
restrictions of the form
(3.2) ;)\kd,«,{:o » where k=1,...,N-p,
and the rank of the matrix (Ag,) =N-p.

The hypothesis we wish to test 1s that the ﬁ% satisfy s

independent linear restrictions,i.e.,
P

(3.3) bl k(JpJ- S0, (=1,...,85 S<}-

By eliminating the /3j from {(3.1) and (3.3), the hypothesis (3.3)

.

Attridge,R.F., Linear Regression and Multiple Classification

Designs. 1952, p. 113.
74
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1
may be written 1in the Eorm
(3‘4) 2 g-fkd’“‘so) k:].,ooo’So

It can be shown that equations (3.2) and (3.4) consist of N-p +s
linearly independent equations. We can now introduce the follow-

ing theorems.

Theoren %.1: Let yl,yz,...,y'?\I ke nermally and irdependently

distributed varizhles with the same varicnce and peans Uy U3 4,

respectivelyv. Assume that the Ao satlisfv £he following ind mendent

relations,

N
(3.5) : :Z;)\.'qdo(-‘-o) i=1,...,N-p
In order to test the hyvothesis that the 4 satisfv the relations
N
(3'6) Zf;‘a/f‘d ) 1=1,...,s; s<p,
A=t

vhich are independent of the relations (3.5) and of euch other,

we form the ratio

N-p Q.-
(3.7) F:'——"'

~
where Qa is the minimum with resvect to 4, of ;E(ydjag)z under
Ko

the restrictions (3.5) and (3.6). e relect the hypothesis (3.6)

if FYF_ where P(F2F, |(3.5) and (3.6))=a and o iz 2 fized con-

stant. Then '

(1) the test described above is ecuivalent to the like-

1ihood ratio test for the hypothesis (3.6);

(2) the ratio (2.7) has the F distribution with s and N-p

degrees of freedom respectively.

X
A -
=» .

1
Attridge, p. 114.

2Mann, Analysis and Des of Experiments. Dover 1949. New York,
P 3. ‘
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It should be observed that the relations (3.1) ani (2.3) are equi-

valent to equations (3.5) and (3.6) respectively, viz.,
/“zéyi.{ﬁ; / A=1,...,N,

P

_Z k‘..jﬁd =0

J =t

If b],...bp are the values of [3,,. ..,/3 which minimize

L= 1,..0,s.

I
2{:(y; /%a) under a set of linear restrictions

Zg

is called the regression value of yy-

Iheorem 3.2: Let Hy,...,H, be & sequence of hypotheses

on the means of the variables y with E(yy)=4 of the form

Hyt Uy = Lﬁ Jix 3¢,

P
H. : Ha and Ap. B =0 k=1l,.0.,8
2 1 %;; Mf% Y ? =
: a 2_4g(i=0; - 11, ...
Ht Ht—l an g AR st 2 1 ,st-—l

where s <D,

such that the linear restrictions imnosed by Hs are 11neag§z inde-

(t)

pendent of each other. Let Y, be the regressicn value of Y ob-

tained under the hjnotheeis H & then

gy,( v -t )k Z(Yd xf?’ P (S))2+Z< ()2,

Proof: See Attridge page 145.

Theorem 3 3: Let Q, De the minimum of the guadratic form
Q= :E:(y E(yq)) under the assumption
(3-7) E(Yq)‘ Zﬁi ja T Zﬁd dq ’ d‘:l:"':N’

..‘*,

and Qr 1ts minimum under the additional restrictions é}:O,i=:1,...,s.
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Let by, (L=1,...,s), by {d=s+tl,...,p) be the lecast scuare ecti-

under the assumnption (3.7) 2nd put

w—

nates of By Baseresfp
Uy, b
(.‘G'_'%--‘) = (cij), i,jzl’llC,SO

Then

0,-Q, = ZZcijbibj.

¢t st
Proof: See Attridge, page 151.
The regression coefficient (Qp is called the general mean.

Corollary 3.3: Let the hvpothesis in Theorem 3.3 be

ﬁ::i!ctﬂt =o i=1,...,8¢<p

txy
ghere the rank of (4€it)_1§_§. Put

~
n
ct

“then

The most important snecial case of the above theorem and its cor-

ollary is the case where s =1 and

Theorem 3.4: Let

I 4
E(ya) = Ma= 2813
L=

Assume that

(1) Bpa ™ 1 for all A and hence 3p is the general mean;

(2) g,, is either 0 or 1, 1 =1,...,s, s< p;

(3) 3 gy By= 0 1F 1], 1,545
(1) 5 gh=1, «=1,...,N.
< =1 :
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fwst s
In view of assumptior (2), assumption (4) implies that all thevgi

for any one row are zero except one and its value 1is 1.

If

0= (- 2 ey By

is minimi zed with respect to ﬁ&,...,/?p and

S
‘-;% By=0, 2 #o,

is the only restriction on pﬁ,...,,? (? ani if ‘Al is the

—_—

=

1

o

Lagrange multiplier associated with zft;191-0 then

>

Proof: See Attridge page 161.

We shall now use this theory in the development of the
analysis of a singletnxnxLatin sqguare. We chall assume that the
mean yield E(yijk) of the kth variety on the plot in tre 1th row

and jth column of the Latln square is given by

(3.8) 2 ()= Ayt Myt P tS
(3.9) Z‘:/"“':ZV] :%ﬁz:
J

The quantities ,ﬁﬁ’ yg,‘fk, are called row, column, and varletal
effects respectively where every variety appears once in every row
and column. The first hypothesic we wish to test is

First we must compute Q a? which is the minimun of @, where

(3-10) ZZ(Yijk ’“1 yL jl{ _?)

M)

subject to conditions (3.9). Now (3.8) may be written as

(3.11) E(yy g0 = Zj“,//(./ ¥ 2: iVt g;é;k’fkf tf

where é&p is the Kronecker delta. Now apply Theorem 3.4,
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P
where (3. 11) is equivalent to Zikﬁnﬁi , and also where s=m, p=

=)
3m+1 and o il,...,mz. We see that (3.11) has the following pro-
perties regarding the matrix of coefficients (gi‘):
(1) every element in the last column is 1 , i.e., !
for all o
yow
(2) the first s elements in each celumm are either zero
or one;
- , 4 N
(3) the first s columns are orthogonal , i.e., ‘ngiqgj
- o=t od
=0 for 1#3, 1,5 s;
(4) exactly one of the first s elements in each row has
the value one and the rest are zero.
Hence we see that (3.11) satisfies the four postulates of Theorem
3.4. Hence, in finding Qa, we may ignore condition (3.9). Thus,

to find Q_, we minimize Q in (32.10). We have
). 129 =¥ Uy 0 - P) =0
(3.12) Z\u; Jz:;(yijk Ay Py i §1=0

For 1 fixed, as J goes from 1 to m, k goes from 1 to m. Hence (3.12)

reduces to ) ~
fyomyy ‘-mﬂi—O-—kg_fk—mf =0,

which may be further reduced to
(3.13) Yy ~My- P =0,
where y;  1s the mean of the observations in the ith row. Sim-

ilariy BQ/B‘pES 0 gives the following equation,

3.1 -y -P=0
( &) y.;}. ij)
where Y. 3. is the mean of the observations in the jth column. Also
(3.16 198 =S (yie-tti- V=P - P)=0
) £33, =2 e 47y A )

where Ii;zneans the sum over all values of i,), which give our
by
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given value of k. Now (3.16) may be reduced to

» (3.17) Y. .k —fk _f:o’
where y . 1s the mean of all the observations on the kth variety.

Finally
+39 =25 -
2 f (yijk-/{i- }/'j“'y k-f ) =0.

sr Go

This can be reduced to y—5’= O, where y is the grand mean.
Summing up, we see that the estimates of /xi,;ﬁ p ’

and ¢ which minimize Q in (3.10) denoted by/ai, yLJ fk’ and Jo

are
A
Al = yi-.-— Vs
A
’5 = Y_j,’ Yy,
(3.19) A
St =y a0 v
A
§ =

2
Qa-' ii(yijk-yi-.—y’J‘—y..k+ZY) d
Now apply Theorem 3.2 with the following chain of hypothesis:
Bt Bygd sy e ryr pet P 0 M a2

H,: Hy and /Mi=:0, (1=1,...,m),

(3.20) 2
HB: H2 and ;ﬂjz:O, (3=1,...,m),
H4: H3 and j)kf:O, (k =1,...,m).
Now from Hl we have that
(1)
(3.21) Tig =Yg, TV 3. 7Y V-

Under F2 we minimize
™ m

Q= _ZZ(yijk- lfj-fk~f)2

() J‘:l

Hence we have
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which reduces to

(3.22) V.y.- y‘j-fz 0.

Similarly bQ/%fk==0 reduces to

(3.23) Vo P 0

and Bo/af= 0 reduces to

(3.24) y-¢= 0. |
Thus from H, and (3635),(3.23), and (3.24) we have that

Tigk=Y. 3.V Y 7
From H3 and (3.23) and (3.24) we have that

(3) _
Tk =Y, ke
Under H4 and from (3.24) we see that
(4) _
Y- ¥

Thus from Theorem 3.2 we have that

PDEARTIDD NPT LIP I NI KD DA ED D2

(v st
This may be written as

(3.25) 2 9y, N =0 4m(y, Nrndly , N4l 9
G TR E LT TR V.Y

Bquation (3.25) is very convenlent for computing Qa as all the
other sums involved can be computed readlly for a given problem.

The hypothesls we wish to test now is

H:j(/:‘/é(;,:- -.:/{(7”:0

First we must compute Qr where Qr is the minimun of Q in (3.10)
under the original assumptions of (3.9) and our hypothesis.
Hence the expression to bgwpinimized under these conditions becomes
. m
(3.26) | Q 222:(37131(‘ )"J-fk~f)2.

L:l JII


http:3.22),(3.23
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As before s=m. Eince under the present hypothesis we can delete
the first m parameters, we have that p=2m+1. As in the former
case it can be verified that the conditions of Theorem 3.4 hold.

Hence we may ignore the conditiops

Z—Uj :%fk:"

J

Minimizing Q in (3.26) we have

S D N S RS DR,

R ay7
which reduces to ‘
(Btﬂ'?) y - V-" = Oo
2 PR
Similarly BQ/%fKZ'O reduces to
(3.28) V. §u- 5= 0,
and 3Q/3f3= 0 reduces to
(3029) y*f: O.
Hence our estimates of VB,‘f%? and P , which mininize Q in (3.26)
P
are given by ;/\L, fk’ and f . They are
J /\
}5' =5 j--y,
/\
(3.30) $o =v ¥
A * 0
P =v.

It should be observed that the estimates of yS’.fk’,P’ in (3.30)
are exactly the same set of values which were used in determining Q .
a
We shall now set up the chain of hypothes€s Hl’Hz’H3’

where H1 is Hﬁ, H2 is HB’ and H3 is H4 where H,,,HB,H4 are given by

(3.20). Now applying Theorem 3.7 and uslng the above hypotheses

(7,2 (27 ,03)  4(3) L (s
ijk Yi 17 Yijk 1jk, Yijk Yi?]?(’ where Yijk’ S=~‘1,

2,3, are the regression values in determining Qa. We have

¥ yijk =Q ZZ(Y 3.7 *-ZZ(:{ KV +Z§y :

we have that Y
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This may te written

2 2 2
(2.31) LZJZ@ijk“Y) =Q.t mJZ(y'j.-y) + mg(y“k-y) .
Solving for Q_ in (3.31) and using the value of Q, in (3.25) we
have
- 2
(3.32) 0= m 2 (v -N"

In Theorem 3.1 our original assumptions were
/4(.(=£—-3:d[3; , €= 1,...,N,
© where the rank of \g ) is p. In our case, in addition to the
conditions of the above form, we have three additional conditions,
‘viz.,

(3.33) S =Y A =2 9p =C 1,

By eliminating /%m’lfb’jpm from (3.11) wherer¢(m,)fm,5)m are deter-

j,k:l’...’m.
mined from (3.33) we have reduced our problem to a type which can
be solved by using Theorem 3.1.

From (3 3) we have that

(3.34) ﬂh=~z/&{‘ ~—Z;, j)ngyé

Relabel the parameters Aai,...,/xm_l,)/i,...,;ﬁh_l,j9l,...,J°m~l,j9

s ]Ql,...,/gmgl,/Qm,...,/gzmhz, ﬁ%m-l""’ﬁ?am—B’ﬁgBm—E’ respec-
tively. We may write (3.11) in the following form

am-1

(3(35) E(yljk) Zg ijﬂ 1,J=1,...,n,

whe?e the colurm number of the matrix of coefficients (gpij) is
given by p and the row number by 1i}].
OQur problem now reduces to finding the rank of G =(g 13)

1
The rank of G 1s the rank of its Gram matrix sS=G G where G is

1Schwerdtfeger. Introduction to Linear Algebra and The Theory of

Matrices. Groningen, Holland: P. Noordhoff N.V., 1950, p. 142.
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the transnose of G. From (3 11) and (3 34) we have

m..{

(3.36) ng’ Bp = &m)/a/ 1—2(&,/‘ )V‘"*‘Z(‘Ytk - km)fh fj)

From (3.36) we have the following relations,

gp’ij = (S;p éi-_m, p =1,000,m"'l,

(3.37) p:'lJ J ,p-mel a:;m’ P=M,...,2m-2,
p’ij— &’p—zm_z— ka’ p =2m—l’ ) .,2m-—3’
gBm_z,ij :lo 2

Let S-=(ap }, where S is a square matrix of order 3m-2.
q

The general element of S, viz., a 1s the sum of the product

pq’
of the elements in the pth row of G! and the gth column of G.

Since the rows of G' are the columns of G, apo is thus the sum

of the products of the elements in the pth column and the gth

column of G. Hence we see that apq==aqp.

Consider the submatrix (apq), p,a=1,...,m-1, where p
denotes the row number. From (3.27) the diagonal elements 800

are given by
wi

m
8p= c“?;( 5;p gim)

(2) = 2m.
J
The non-diagonal elements are given by

= Z (81 8y (Siqm 83 mra=lies om, pia,
JZ(l)=m.

Hence the submatrix in the upper left hand corner of S would be

dmm ... m
. m 2m .
(3038) Alz . .

-

.
m ees 2M
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Where‘A1 is a square matrix of order m-1.
Next consider the submatrix A, = (apq), p=l,...,m-130=

m,...,2m-2., From (3. ’7) the general term is given by

ZZ( gip" Oz ( S.i,q-m*l" ij)
- by 208 ypm Sy =0

¥
(N ]\/I

J—;j,q--mf-l

since the last sum is zero. We thus have that A2 is a sguare ma-

trix all of whose elements are zero. ©Since apa==aqp we have that

AA’ where A4’=(apq), D=My.e.,2m-2, g <1,...,m-1, is equal to A2.

We compute next AB: (apq), p=l,...,m-1, g=2m-1,...,3m-3.
From (3.37) we have

'P43

p ‘.Z p J;m)( éﬂk,(&-?mQ— gkm)

- S;m)'zzxdi,q-2m+2' é%mi]
ip (Sim) Z(gk g-m+2” gm)]

.‘

Qf—‘lr—"ﬁ

i
since the last sum is zero. This follows from the fact that 1¢

q-2m+2 {m-1. Hence A3 is an (m-1)st zero square matrix. By the

same argument as presented before we have that A7==A3 where A7==

(apq), p ﬂ2m—1,.-. ’Bm—z, q=1,nto,m‘lO
We shall determine next A6==(apq), pP=m,...,2n-2, q=2mn-1,
e.vs3m-3. From (3.37) we have

DS, 6 Sqm e Sy

A\t 3=t -

-z’iw PR RS Y& SRS 98]
S Sp) S Sx,q-omer- i) |

1Y, p- -m4l
=

= 0 )
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since the last sum is zero, which follows since 1 g-2m+2¢ m-1.

Hence A, is the (m-1)st square matrix all of whose elemernits are

6
zero. By previous reasoning we have Ag= A6 where A8==(apq), p=
2m~l,...,3m—3;q :m,- . .,2?11‘2.

We now compute the diagonal submatrix A5= (apq), D3Myeas,

2m-13;9=m,...,2m-1. From (2.37) the diagonal elements are given by

. m 2
LY ;:,(‘g,p-mﬂ' 3o

=

m_
= ;&r(2)= 2m,
wvhers 1 {p-mt+1§m-1. The non-diagonal elements are given by
apQ:L_Z‘%( J ,p-mﬂ.‘ jm)(c{j,q—mi'l‘ jlﬂ),

where p,q =m,..,am-, and p#q. This reduces to

= 1} =m.

2pg = & ()
Hence we have that A5 is the m-1 square matrix given by (3.38).
The remaining matrix tn be computed is the diagonal sub-

9 1
elements are given by

m.ooom ¢ (™ )
®pp ~ 2.0, (Jk,p—2m+2-dm)

LI g T

B Z L ( 5k,p~2m+2“ sz):?]
) 2 {:§(5K,p—2m+2" ka) 2]

:i (2) =2m

(<t

matrix A :=(ap0), p,q =2m-1,...,3n-3. From (3.27) the diagonal

since 1 {p-2m+2¢ m-1. The non- diagonal elements are given by

A
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m
g~ f Z< gk,szmfp" 5km) ( Jk,q—?m-h?" Cgkm) > PFUs

vt .j:‘

n
= ( - -
i[;‘ ’Sk,p-mez ()rkm) ( Jk,q-—sz? (}m)]

=t

) i[g ( Jk’p“zm*f ka)( Jic,q‘—2m+2— ""km)]
) f (-1 (-1) = m.

L=y
1 w n = = A,
Fence e see that A9 Al .

The only remaining elements tc be determined in the matrix
S are the elements in the . last row and last column. Since S is a
symmetric matrix, in essence we have only to compute the elements
in the last column,i.e., we have to compute 25, 3m-2> 1<$p$3m-2.

Since g =1, we have that all the elements in the last col-

dn-2,1§
umn of G are equal to one. From G'G we see that
" m
= 2
A3m-2,3m-2 EZZZ(l)::m .

.‘:4;,':1

Also = A
. wm

“w
a =2 > g . =0, n=1,...,3m 3.

Py3m-2  {=;5 pi) ?

Thus we see that all the elements in the last column of § are zero
2
except the last one which has the value m . Hence we may write & as

A 0

m-1 Om-1 9

oo Pty Op®

Op-1 Om—l Al 0
2

0 0 0 m

1

where Al 1s the (m-1)-rowed square matrix given by (3.38), and

On«l is the {m-1)-rowed zero square matrix. From Laplaces develop-

: 1
ment by columns the value of the determinant of 8 is ecual to

1Dickson, First Course in The Theory of Equations. Wlley, New York,
1982: p. 122.
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mziAl‘B where |A1‘ is the determinant of Al

Consider the kxk determinant

ba ... a2 b a 8 ... 2
a ba...a a-b b-a 0 ... a
" s Yap 0 bea ... 0
a .... b LT
ab 0 0 ... b-a

pr(k-1)a a 8 ...a |
O b'-a O « s . O
= . . . . =[P-+(k-1)$](b—a)k !
0 0 ... 0 hb-a J

Thus, for |A,, b=2m, a=m, k=mn-1, we have
INE mmﬁz[(m—Q)m-me]==mm.
Hence it follows tnat] ]# 0. Since S i1s a square matrix of side
3m-2 its rank must be 3m-2. Hence G is also of rank 3m-Z.
By Theorem 3.1, the rank of Qy» which is also called its
nunber of degrees of freedom, is
mz- (3m-2)= (m-1) (m-2).
It remains to determine the rank of
Q-0 ~mZ(yi”~y .
To do so we need the following two theorenms

Theorem 3.5: The ran¥k of a sum of gquadratic forms is

equal to or less than the sum of the ranks of the forms.

Proof: See Mann pp. 2.10.

Theoren 3.6: If a guadratic form @ = Z:Li where

Ls

Eiaijxj » 1=1,...,p,
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- and the Li are related by h linearly independent linear howmogeneous

reletions,

T(Q) é p"‘h,

where r(Q) denotes the rank of Q.

Proof: See Attridge p. 30.
The above theorem may be applied to Qr"Qa since the presence of
the constant m does not affect the rank of the quadratic fora. We

note that Yy,.7Y is 2 linear form in the yijk!s. Also

"
2_ (yy. -v)= my-my =0,
=7 ‘
so that we have one linear homogeneous relation auong the ¥i..7Y-
2
Hence the rank of m Ez(yi..—y) does not exceed m-1.

m 2 814 2
Similarly the ranks of m 2_(y j -y)" and mig:(y k"Y)
d~l L] . =1 .

. 2
do not exceed m-1. Finally m2y is of rank one, since

ny?= m” [(l/mz) Z 2 Yijk]z
i 2

and every element in the metrix of this quadratic foram is 1/m".
From (3.25)
m m wm -
2 2 2 2 22
= +m - mZ - - m .

Using Theorem 2.5, we have

n°= &Z'J-Zyijk) €x(@) trnXly; 07 rral(y, ;.07

2 22
tr@)(y ) +r@¥9)
£ m2—3m +2+3(m-1)+1-= m2.

Hence the egquality signs hold throughout the above relation and

this is only possible if the quadratic forms

mZ(Yi._-Y)2, mZ(y.jyy)’?, m%(y_ k~y)2
i g

L 4



are .all of rank m-1l.

Hence the rank of Qr‘Qa is m-1 and, by Theoren 3.1,

statistic to use in our hypothesis &, =4 = .

m°-3m+ 2 Q-9

FI m-1

-3m—2

e

90

- = yy=0 1s

mle-my

the

m-T 237 pen [T 3, +>:y .qumy

This final form of F is the one best adapted to computation.

To test the hypothesis that ¥, =) =...=)4, =0 it is only

2
necessary to replace rnEZYi by m}:yzj
analogous change 1s made for testing the hypothesis $<his

The above results are usually exhibited in the form of

an analysis of variance table given by

in the numerator of F. An

:fkao.

Source of Degrees of
Variation Freedom Sum of Squares Mean Square F

Rows m-1 SI= m %:(yi. . -y) Sq = Sl/ (m-1) Fq=5, /s‘
Columns n-1 Sz*zngz(y.3.~y) S, Sz/(m~l) Fé=s2/s‘
Varieties m-1 SB: mgg(y'.k—y) 53’=SB/(m~l) F3=53/s‘
Residual (m-1) (m-2) Qq s, = Qa/[xm-l)(m—zm

2 2
Total m°-1 Y (y
Cog

The value given by the second total follows from (3.25).

The

statistics used to test the hypothes@s U = Lhze.ezdln, ) =)=

2

\
s = = = ese = F .
. )24 ,f, = P2 j%n are, respectively, Fl’ 55 and F3
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We shall now test the hypothesis that g1=g;. Since Qa
1s unaffected by the change of hypotheses, 1t remains unchanged.
To determine Qr-Qa we use Corollary 3.3. Since the hypothesis to
be tested may be written f}—fz= 0, s must be one. From the corollary
we see that 'ff=j%‘*ﬁz corresponds to (3. The rank of the matrix
of coefficients (1,-1) is 1. Since é.\ and j;: are estimates of §
and ﬁ which minimize Qa- we have
b’{ =ﬁ -ﬁ=(y“l->')—(y”2—Y)
=yV,a, e
Since 1 =j =1 the matrix of coefficilents (cij) of Q.-Q, 1is
2., -
b'k

since c11 is a one element matrix.

Since y 1 and y , are each the means of m independent
observations, we have
2 2, 2 2 R
. = 2 (/T = /e =g .
y-o "J.) y.‘.z

Also ¥y 1 and y 5 are Independent since they are means of two

L

sets of observations which have no observation in common. Hence

2 %L - 2 2 2 ~ 2
Tor =g—y“__l__y“2~(1) g /m+ (1) ¢ /m =2 ¢/n.
From Corollary 3.3
2
2
-0 = b* = 2 - .
Qr Qa Cll‘ll (m/”)(Y.'l y.,z)

The number of degrees of freedom of Qr—Qa 1s 1 since it is equal
to the rank of the matrix of coefficients (1,-1). Hence to test

y‘ =§2. we have 2 p
2_:%2:§.m(y..l‘Y,,2)

F= S
2Qa
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In order to test P‘= 0 we can use Theorem 3.3 from which
- 2
Qr'Qa'"cll(y..l‘y..ﬁ)

~

and "
S
o =
11
(T;’--l V..o

By definition

B(y, ) =(UmZE(y, ) =W/ Z (ac i+ ft )
= fl-‘.f’
and
2
() = (1/a%) > Telry ) = /") T X (it o9y 18)

= 5),

Hence
E(yul-y) = E(y. P-E) =9,

Therefore

2 2
Ty, 4y B0 177 F) =E[(y a7 §S )‘(y“fﬂ

2
— G N
=Y ..1J“TY

We have that

Z(I/m)y

LY l-,J

= Z .
y = ZE /)y g

We now make use of the formula

0, = Zzoli (35 05

XY oo xixj

where

1Wilks P. 34.
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‘Since the Yijk are independently distributed

AP XTI CV-OY g > (1/a) T = ¢ /a.
.a y ) LiJ Jl “i
Also 4
.
0y .- a-z/m, crfr = og/mz,

since y 1 and y are the arithmetic means of m and m2 terms res-

pectively. Hence

2 2 2
o‘.:' 1y o (1/m-2/m" + 1/m2) =g (m-1)/m",

o

&
11 F2— a. -

O?(m~1)

4]
oV

\

We now have

2
_m(y -
Q0T o el

The rank of Qr—Qa is the rank of its matrix of coefficients (1)
which 1s 1. Hence, to test §,=20, we use

2 2 2
m -3m¥2 mnm vy 7Y
F:"_——'———.—— . ( o-l “2) .

1 m-1 (34

Repnlicated Latin Squares

We shall now apply the above theory to the case where

we have r Latin squares. Dencte the observations by yijk where

£ signifies the Latin square under consideration. Our assump-

tion 1s
) )
(3.39) E(yijk) /“1 + )# *‘fkfd(l)ﬂ?’

(3.40) Z/»( iPh Z‘(Q)

b"'
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0
The quantities Jﬁ, yf, fﬁ,tﬁw, are called the row, column, varietal,

and replicate effects of the .eth Latin square respectively. To
test the hypothesis

H:,/ﬁ¢£o, 1i=1,.0.,m; £=1,...,r,
we must first compute Q which is the minimum of Q where

@ 2
(3-41) ;ZZ(Yijk " )},;"'_P"'%'P)

ogsr 45

subject to conditions (3.40). We may write (3.39) as

(£) A m A
(3:42) E(yypd =22 doy Sk *ZL et L Sty fﬂn @ *f

¥ .4 Jot

Applying Theorem 3.4 where (3.41) is equivalent to Z:gia(zi,
and also where s=mr, p=2mr+me¢r+l, «=m r. We see that (3.41)
has the followlng properties regarding the matrix of coefficients
(8,0

(1) every element in the last column is 1, i.e., gpq= 1
for all « ;

row
(2) the first s elements in each calumn are either zero

or one;

(3) the firstscolumns are orthogonal, since

ZET duhidglis -
if 4,#8; and,if 4'=g/ 1is equal to

-mﬁii St <

! /
since 11# 13
(4) exactly one of the first s elements in each row has

the value one and the rest are zero.

Hence we see that (3.42) satisfies the requirements for Theorem 3.4.



95

Thus, to find Qabiwe may ignore condition (3.40). Minimizing Q
in (3.41) we have

f r (l) [0 -— —_ =
7 3/(”’ Z(Yijk "’3 S o F )= 0.

J«

This reduces to

(1) @)
Vi, A% f = 05

where Yy.. is the mean of the observations in the ith row of the
AL th Latin square. Similarly ?Q/?Y{—-O gives the following equa-
tion

u;) - #‘?)- %-f= 0
where y.j. is the mean of the observations in the Jjth column of

the Zth Latin square. Also

1 w @@ _
zgﬁ lz,-g(yijk My~ Vy=§i= dp=§ =0
This reduces to

Voo 8" 0

where y " is the mean of the observations on the kth variety over .

all the Latin squares. Similarly

m m
_ @) w (0 )
—273"5@,‘(;;(3’131: My= V= F % -f )0
which reduces to :

@)

y -d@-f’*O
)
where y 1s the mean of all the observations in the £ th Latin

square. Finally

| ) /
Zay ;Z;( 1 A4 ’( 91{ Ww-p)0
which reduces to

y-§=0
where y 1s the grand mesn.

¢!
Hence we see that the estimates of ;é-, wa, Q), )
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/\ \

which minimize Q@ in (3.41) denoted by 4, :? 74” Pk 2y s 15 BTE
‘ A
) 7/
A ygﬂ <l

= N Yoo
0 ;
'j y@,‘ "ylf) s
q .U.
(3.43) % =y W
/‘ L N
R Yy =¥
A
S

We can now write Q as

) 2
ZZi( fjk v vt ¥ ey

(-:(441

Now apply Theorem 3.2 with the following chain of hypotheses,

([) {ﬂ Z (ej

. /t) m/
Hy E(yi,]k) TH VSt t g tf, Z/I( Z-fk ):d(,,

17/
H2: Hl& Y =0, 1=1,...,m; £=1,...,r,

: H2 g lf!a/:o, J

J l’o.o’m; ["‘"1,-..,1‘,

4
(3.43") H,

HA: HB(\, fp=o, k=1,...,m,

B H L p=©, £=1,...,r.

From H, we have

1
rt), i3 ) _ @ _
Ty s ¥y, vV 4 vY YV Y

Under H2 we minimize
(%) (@ 2
=222 (v Wy By Ya-9)"
Thus we have 3Q/a)ff- =0 which gives

(3.44) v y‘ 4y~ 9 0.
Similarly aQ/QYb: 0 reduces to

(3.45) Vo P8 =0
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3Q/day)= O yeduces to

(3.46) | y@-w<f=m

and 9Q/3{= 0 reduces to

(3.47) y-f=0.

Hence from H2 and (f 44) (3.45),(3.46), and (3.47) we have
(¥ w

Tige “Y 3.5 Y77

From H, and (3.4%5), (3.46), and (3.47) we have

3
17/, 7))
Yigk =y, xtv -V

From H, and (3. 46) and (3.47) we have

& v -y,
ijk
Finally from H_ and (3.47) we have
5
Yijk =Y.

From Theorem 3.2 we have

ijk 1..”
é) 2
f%;?(y. k—y) + %1?32 (y7-y)" t gLZ:Z

-«

This may be written

(3.48) ZZZ(”

Y15k

y) =Q +mLZ(ym -y ) +mZZ(ym) -y 2

+mr) (y k"./’) +m Z(Y(I)*Y)
R Z

Notice that Qa may be determined from the above relation as all
the sums involved can be computed readily for a given préblem.
The hyrothesis we wish to test now is
H: d® = 0, 0=1,.0.,m; £-1,...,r.
First we must compute Qr where Qr is the minimum of ¢ in (3.41)

under the original assumptions of (3.40) and our present hyrothesis.


http:3.44),(3.45),(3.46
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Hence the expression to be minimized under these conditions be-

comes
i

(3.49) 0 =15 A p )

‘_, "_t R
As before s ¥mr. Since under the present hypothesis we can delete
the first r parameters we have that p=mr+m+r +1. By reason-
ing analogous to the previous case 1t can be shown that the condl-

tions of Theorem 3.4 hold. This enables us to ignore the conditions
e}
JZYj’ =Z.?k= Z"((z}‘o
~ 4
Minimizing Q@ in (3.48) we have
(@) ) =
yo1.7 ylj' Xy F = 0,

V.. k" ,Pk-f =0,

—O(([)_f—:
and
Y"f:Oo
We see that the estimates of j% N7 s § which are given by

)ﬂ” ?L: d@,ﬁf , which minimize Q in (3.48) are the same values
of the parameters which determine Q. Hence the above estimates

are given by (3.43).
/ / / / !
Set up the chain of hypothesis Hl’Hz’Hg’H4’ where Hi-

Hy s 151,004, where Hy, 1=1,...,4 are given by (3.437).

i+ 1’
Applying Theorem 3.2 and using the above hypothesis we have that
W' Puy
Y - Y ’
ijk Tijk
used in determining Qa‘ We have

(3.50) ;ZZ(gﬁfL)’=Q BN 02, §ZZ(y“k -’
*‘ZZZ(VM-Y) +ZZZY :

Prom (3.50) and (3.48) we have

2
i=l,...,4, where Y

14k are the regression values
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,
0,-Qp=m ;Zz;(yff.ﬂ“}) :

From (2.40) we have

) (£ e
= - z. { = ——Z Vo
(3.51) Mom = = a5 A Vo IR
o At
fm: ‘Z.Pk' J 0{0,_} = —’(2,—‘ d(t,) .
Rl =

From (3.48) and (3.51) we have

m-i ) L, T 1)
(3.52) E(y(;)jk) s ;:f Z 514'(5;;’ ’-J;‘M)/%L'{F W2 le' ((&J’ ""S‘m)’f’m

[’:/ Jf:(

F :fi COp = Sm) B ’”2; (o ~Sen) ety + 8+

In order to applyaTheorem 3.1, to find the rank of Qa’ we need to
¥now the.rank of the matrix of the coefficients of the parameters
which aopear on the right hand side of the equations (3.52). Re-
present this matfix bﬁ the symbol A. First we introduce the follow-

ing theorems.

Theorem 3.5 If of(,e++50m 2nd @B,,...,4» are two sets

of linearly independent vectors and each vector of the first set

!)-'-
7

orthogonal to each vector of the second set so that

A gjéo, 121,...,m; 3=1,...,n,

then the combined set of vectors «,,«-+; dmy@ryo--,3, is linearly

indevendent.

Procof: Assume there exists constants cl,...,cm,dl,...,dn,
such that
Cldl’r‘...rcm“m*"dl@lf ot."'%p n= O-
Multiplying the above equation by “i we obtain
’ m
0’3( = . °

J:r
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Mul tiplying the same equation by (31 we obtain
Sa(8..8)=0
J = j( ﬂi ﬂJ)

This gives a set’of m+n homogenenus enuations in m +n unknowns.

The matrix of coefficients is

C 0
B=( 1)
D
02
where C is the m x m matrix, ( dy - o4}, D is the n x n matrix

(ﬁi.(j’ ), Ol is the m x B zero matrix, and 0, is the n x m zero

matrix. We have |B| = [c/[p]. Also C=A"A where A is the matrix

whose column vectors are yseees o - Since of,..., o, are lin-
early indenendent the rank of A is m. Since C is a Gram matrix,
its rank is also m. Hence |C/#0. Similarly [D|# 0. Therefore
[Bl # o. Hence the set of homogeneous equations has only the tri-

vial solution
C. T C,T aue =cm:=dl= d2= ...:=dn= 0.
Thus a)ye-+s dh,g; s+s+3 @ are linearly independent.

Consider the set of column vectors whose elements are
the coefficients of 4% ’ﬂa ). /{». for a fixed ¢’. Consider the
matrix, & say, whose columns are these vectors. Thus, Al is a
mfr x (Q;l) matrix. The elements in the row corresnonding to ,ﬂ,i,
and j are given by &Q( il -0;m) as £' runs from 1 to m-1. This

element is zero if £#£’ or if i# i’ or m.

Let G = {A = (g ) be the Gram matrix of Al. We have
AN
‘ Sim) (§ig = Sim) =
gp lz'gi ,Q,g) (glp cm) ( 4 - im) gqp

= 2n if p=gq,
= m if p#q.
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1
previous work we know that ]Gﬂ # 0. Hence the rank of Gy is m-1.

Therefore G, is the matrix given by (3.38) of order m-1. Ffrom
8

Therefore r(AJ= m-1. But the rank of Al is the same as the num-
ber of rcolumns of Al. Hence we have that all the columns of Al
are linearly independent. Thus we. may split up the first r(m-1)
column vectors of A into r sets of m-1 vectors.according to the
value of f and eazch set will be made up of linearly independenp
vectors.

By an argument similar to the above we can decompose
the second set of r{m-1) column vectors into r sets of m-1 linear-
ly independent column vectors.

Denote the matrix of the third block of m-1 vectors by

4 where A2 has the dimensions m2r x (m-1). Let G ==A;Aa‘=(gpq)

2 2
be the Gram matrix of A2. The element gpq is given by
;;gd SEAR QN SRR
= 2mr if p=q,
= mr if p#q.

m-1
As before we ses that |G21= r [Gllféo. Hence G, has rank m-1
which implies that A2 has rank m-1 alsn.
Consider the set of r-l1 columm vectors which are the coe-

fficients of the q&?’ £=1,...,7~1. Let A, be the matrix of coeffi-

3
cients. Thus A3 has dimensions m2r x (r-1). Denote the Gram matrix
of A_ by G = The element is given b
5 BY Gy = (gp ) - 8oq g y

wgfu&,, don ) (Jag - Sa) =5,

2

= 2m” if p=q,
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~m® 1f P#q.

Therefore IGBIﬁ mr°1lGll# 0. Hence G, has rank r-1. This implies

that r(A3)==r—l. ’

Since the coefficient of § is always 1, we have that
the rank of the matrix of coefficlents of ¢ , say AL’ in (3.53)
is 1.

We have broken the matrix A up into 2r +3 submatrices
and the column vectors of each submatrix are linearly independent.
We shall show that the column vectors in any submatrlix are ortho-
gonal to the column vectors in all the other submatrices. Taking

a column vector from two of the first r submatrices and forming

their scalar product we have
% _Z{_: %:(XQ/')( J"a" _Jim )(&[;/ )({L‘L.’ —Jim ) o0

since -/7#17. Similarly column vectors selected from ‘any two of
the second set of r submatrices are orthogonal.

Next select a column vector from any one of the first r
submatrices and a second column vector from any one of the second

set of r submatrices and form thelr scalar product to obtain

% z? 511/ (deir -4 )-5@;(%: ~§im) 0.

Forming the scalar product of a column vector from any
of the second set of r submatrices with one from the submatrix
formed from the set of m-1 vectors whose efements are the coeffi-

cients of the fk's, we have

% % ZJJ“ (it = Sim) - (Son - )
- Z[(c)ﬂaa "Jim); (S -ka)] =0
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Fdriming the scalar product of a column vector from any
of the first r submatrices with one from the submatrix formed
from the set of r-l vectors whose elements are the coefficients

of the Yu's, we have

FEE Sl ~im) (e ) =

Again forming the scalar product of a column vector

from the first set of r submatrices with the column vectors of

£ we have QZZ Zéfur(g“‘., -ng)-) = o.

- The abtove procedure can be repeated with the column vec-
tors from any one of the r submatrices of the second set of r(m-l)
column vectors. It can be shown that as before the column vectors
in this case are also ofthogonal.
Next we shall form the scalar product of any c¢olumn vec-
tor from the submatrix formed from the coefflcients of the cﬂ»'s
with any vector from the submatrix comprising the coefficlents

of the ¢4t's. Thus we have

EEE () (B )
Also

%; Z% (Sopt =Sm) -1 =0 .
Similarly

g ZJ'%: (5241 ‘5!A>-]=O .

Hence we have shown that the sets of columm vectors forming the
submatrices of A are mutually orthogonal. Thus the 2r(m-1) tm+r-1

column vectors of A are linearly independent. Hence the rank of
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A is 2r(m-1)+m+r«l.
By Theorem 3.1 the rank of Qa’ which is also called its
number of degrees of freedom, is
mzr—Zr(m—l)—m—r-rl==(m-1)(rm-r—l).

It remains to determine the rank of

Q9= m X2 (v @ “’)2.

Now Qr—Qa is the sum of squares of rm linear relations. We have

, /4
r linear homogeneous relations among the y;) -fv,i.e.,

i‘(yi.. ym)zo, —e:l,.-.,r.

e =t

:0 -y“’appearéag im

only one equation. Therefore by Theorem 3.5 we have

These relations are independent since each y

=0 o= i..
Similarly
- mAi (9 2
rlm 3 D (y ] -9 )é ro-r.
— ot ﬂ:l * *
Also ‘
M\
rEan(y. xY) }é m-1,
and

2
The rank of g:zlz:y is 1.
<
From (3.48) and Theorem 3.5 we have that

m r*r[ZZZ( ‘;gk :)\ rfQ ]+r[ ZZ(Y“’) _ym)ZJ

+r[ ZZ( ';.-Y )]+ r[mr ;(y“k-y) }
+ [’ > 72 _y) ]n[_:;%gﬁ] oy
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Hence the equality signs must hold throughout. Thus the quadra-
tic form Qr-Qa must have rank r{(m-1), and the ranks of the other
quadratic forms are also determined.
To test the hypothesis /@gLO, 1=1,s00,m; £=1,...,T,
the appropriate statistic to use is, by Theorem 3.1,
(3.53) ¢ - (m-l)(rm—r-l).Qr-Qa
r(m-1) Q

a

_(mer)) n )3 (Y )2 w2 2 ()

P2y S2 )+§:z(yé’ )Pl nmifi
‘*'"‘"}

The final form of Fl is the one best adapted to computational

purposes. ,
)

The statistics for testing the hypotheses {f=0, J=lye0.,m,

L = 1,...,r;_fk=0, k =1,...,m;c40=0,-(:'1,...,r, are respectively

(rm-r—l)m§7§-(yf?.—yav)2

FP. =
2 N 2, ’
. ==(rm--r—l). mr Z;(y..k-Y)z ’
3 1 Q,
- 2
(@) (o) W 3 (57 y)
b r-1 Q ’

where Qa is given in (3.53). These results can be expressed com-

pactly in the following analysis of variance table:
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Source of | Degrees of |Sum of Squares Mean S
Variation Freedom 1 een mafare F
Rows r(m-1) S.=m ff(y @ *Ym)z s.= 8_/r(m-1) F =g /s
l VAN io . 1 l l l 5
R
_ @ 2 .
Columns *(m-1 S.=m Zi‘ @ _ =8 - =
[ ) 5 em,j:-(y.;}. v) |s,=8,/r(m-1)  [F=s,/s,
Varieties m-1 S =mrji(y -y)2 s. =8 /(m-1) F =s_/s
3 reT Lk 3 3 3 35
Replications r-1 S =m° 2 f” )2 s /( 1) iy /
- = - s = r- =s,/s
4 Q= y Lo 4 L T4 Ts
Residual (m-1) (mr-r-1) Qa 55=Qa/Km—l)(mr—r—lﬂ
Total m2r ZZZ:(yw) --y)2
7 1ik

The value of the second total follows from (3.48).

ORTHOGONAL LATIN SQUARES

We shall now extend the theory presented in the prefious
sections to the case where we have r orthogonal Latin squares of
side m where r $m-1. Denote the observations by yijk”...k4Where
i,j=1,...,m denote the row and column numbers respectively and

ks’ s=1l,...,r, take on the values from 1 to m. Our assumptions

are
: ) Q) A)
(3.54) E<yijykl)"' k&.) 2/‘(“ *)G:f'fk-fsz. oo +fb4, f'f,
m m 1) i (A) '
(3-55) i//‘\. - Z:L{:- = gfk, = e = ’fk& :o}
¢t vl &t <

The subscripts k l==l,...,r are functions of i and jJ such that

1’

for a fixed 1 (j) they take on each of the values from 1 to m ex-

actly once in some order as ] (i) takes on the values from 1 to m.
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Also the pair of numbers (kz,kﬁ) takes on every possible ordered
pair of numbers exactly once where kl and km are selected indepen-
~ dently from the numbers 1 to m. The parameters _«, _f(tj
l,...,r, represent the row, column, and varietal effects respective-
ly.

In order to test the hypothesis

H: 4; = 0, 1°1,c..,m,
we must first compute Qa which is the minimum of Q subject to con-
ditions (3.55) where

(2.)
(3.56) Z;Z Tigk oo A=Yy f)k -f)

(3 ~

As In the previous section, we may again show that (3.56) satis-
2
fies Theorem 3.4 where s =m, p = 2n+mr+l, and o= m . Thus to find

Qa we may ignore the conditions of (3.55). Hence 9 Q/3«;2 0 reduces

to
Yi" /(i"f = 0,
and d'Q/d% = 0 reduces to
— - :O
YJ y:j f ’

where Yy and yj are the means of the observations of the 1th row

and jth columns respectively. Also we have

G) (A)
QW‘—Z(yijk .ok, oy y"‘fk e fk -$)=0
£

I.l k
where . %;; means summation over the m pairs of values for i and }J
¢ -
(¢)
which give us terms involving 'fk . The equation reduces to
Y, ~ -p=0,
ke 7k
«)
where y 1s the average of the m values of y which have
Ke ' 13k, .00k,
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the given number k as the (Z+2)nd subscript. The expression

?:} dﬁ vanishes in the above relation since k, appears with each
’J/(
value of kn exactly once,i.e.,

SR < 3 far <o
‘:}hf‘ k" knz i k"
Finally
a_.g — =
- y-y 0 .
2P @

Thus the estimates of .« V}"ﬁb and P which minimize (3.56),

1)

N

@ 3
sand £ , are,
-

A A
denoted by /xi, }%, j;

f’Y:

9 ) yw) v
[ 7
(3.57) ;' ke

J :YJ.-Y’

A

ut‘ =Y1'Y-
We may write Qa as

m m U)

) (4.)*( 1) )2
- - - - - T e e e T+ N
SEVik ok V17 g T Yk, y

Now apply Theorem 3.2 with the following chain of hypotheses,

)

¢ (’t\ () N
Byt By g, ok,) S4B P 08 T e Ao TGy o

[ kﬂ k‘

H3: H2& [{j:O, le,oo-,m,

(3057') (/d
HA: ng,‘j%k=o, k=1,...,m,

)
Hr+30 Hrfz&ykl = O, kr: l,-a.,mo

From Hl we have



=y

i

* YJ*'Y fY

)
e e ‘f'y "(I'fl)y
kl kz 4

=y ry *‘Zy ~(r+1)y.

i

3 K,

Under H2 we minimize

=2.Z
S (yi_j,k.,...}%

a )

Thus we have 3Q/Dﬁ,=o which gives

(3.58)

Similarly 9
milarly Q/Bﬁ?l
(3.59)

- Y-p=o0.
yj’/if

= 0 reduces to

{(¢) (2}

yke fk f‘O £=1,...,r,

and BQ/ays 0 reduces to

(3.60)
From H, and (3.58)

From H3 and (3.59)

From H4 and (3.59)

From H5 and (3.59)

y—j" 0.

,(3.59), and (3.60) we have

and (3.60) we have

= Z( Dty
= ngp “(r“l)Y'
and (3.60)

¥ @
Z(yk -y} +y

' (@
= L3, -(z-2)y.

and (3.60)

2
- y';j_j)k _'..-Pka—f)

109
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f( )
-y) +
& Yy Y

A-2

=2 y? —(r—-B)y.

L= RQ

Following through in the same fashion with the remainder of the
hypotheses we have from Hr+2 and (3.59) and (3.60)

(r+2) W
Y = ykl .

Finally we have, under H, 5 and (3.60),

Y(rf3)=

From Theorem 3.2 we have

ZZ yiJ}r“.; = Qa+ {t g (yi"y)2 JrLZJZ_(Yj-Y)z
*;z_&y“’ D IT A
¢ ki ¢ j

This may be written

(3.61) ZZ(yigk y * - Q+rm (v, ) rn.z(yj-y)2
L 1%y A J
+ mZZG‘;— )?

Since all the sums appearing in the above equation are readily
computed, Qa may be determined from (3.61).

The hypothesis we wish to test now 1s

H: «;<0, 1=1,...,m.
First we must compute Qr where Qr is the minimum of ¢ in (3.56)
under the original assumptions of (3.55) and our present hypothe-
sis. Hence the expression to be minimized under these condltions

becomes

(3.62) Q rZJZ(yijk

n)

(1)
- yj-pk'—...-fk{yﬁ.

')..l
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As before s=m. From our vresent hypothesis we have that p =~ m+mr
+ 1. As before we can show that the conditions of Theorem 3.4

' 0 _
hold. Hence we may. ignore the conditions Zﬂ‘ o, Zf

. Re=e
£= 1,...,r. Thus, ninimizing Q in (3.62) we have

VP
(e) ﬂl

and
- = O.
v 5) ()
We see that the estimates of ys,j; and ¢ which minimize Q 1in
(3.62) are given by (3.57).

/ ¢ A
Hz,...,Hr+2, where H, = H

/
Set up the hypotheses H,, 17 %

1l
i=1,...,r+2, are given by (3.57'). Hence we have

(3.63) ZZyiJk K, =q.*t ZZ(y -y) +mZZ( ) -y)2+ZZy2-
< J Y Htt TR ¢

From (3.61) and (3.63) we have
. 2
Qp - Q. 22y, -0
From (3.55) we have

i psy 0 » (@
(3.64) Moy = 2 M) =2, £ "k,zﬁe('
Pt Jg-=f % <!

From (3.54) and (3.64) we have

mt

) Z:( J;f~<51m)@ Z:( J- “ J~ »‘r

E
(yijk”"'kl N
A

+f;§( SRR e % “‘“f‘

In order to apply Theorem 3.1, to find the rank of Qa, we need to

(3.65)

know the rank of the matrix of the coefficients of the parameters
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which appear on the right hand side of equation (2.65). Represent
this matrix by the symbol A.

Consider the set of column vectors whose elements are the
coefficients of /%/, i = l,...,m-1. These form a matrix, Al,
which has m2 rows and m-1 columns. Denote the Gram matrix of Al

by G.= A

1 lA ==(g ), where p,q =1,...,m-1. Hence

E:Z:(g‘ é- J‘-j Y=g

v 1p~ im 19 im qp

=2m i1f p=q,
=m if p# q.
Therefore the matrix G, is given by (3.38), and is of order m-1.
From previous work we know that [G,|# 0. Hence the rank of G, is
m-1. Therefore r(A1)= m-1. Hence the m-1 colums of A, are lin-
early independent.
By an argument similar to the above we can show that the
m-1 column vectors whose elements are the coefficients of y%@
j'z l,...,m-1, are also linearly independent.
Consider next the matrix of the r(m-1) coefficients of the
ﬁh's' Split up these r(m-1) vectors into r sets of m-1 vectors
according to the value of 4. For ¥?=4, denote the matrix of
coefficients by A% and its Gram matrix by G =.A;A:2=(g ) where

2 Pq
p’q=1’!-0,m"lo Hence

ZZ( J‘P—gkg'm)(jh,'ﬁ~ g = &

=t J-I

=Z S p - Sm) (S o -
ézvg.:.( h,‘P k"')( k‘ﬁ'

=2m if p=q,
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=m i p#£q.
Thus G2::G1. Hence the m-1 columns of A2 are linearly inderendent.
Thus each.of the r sets consists of linearly independent vectors.
Since the coefficient of § 1is always 1 the rank of the
matrix, consisting of the coefficlents of P is 1.

_We have hrolen the matrix A up into r +3 submatrices and
have shorm that the column vectors of ench submatrix are linearly
independent. Ve shall now show that the column vectors in any
submatriy are orthozonal to the column vectors in all the otaer
submatrices. Taking a column vector from the first submatrix and

forming th»e scalar product with a column vector from the second

‘submatrix we have
LY (- )Gy - dim)

. Forming the scalar product of a column vector from the
first submatrix with a vector from any submatrix of the r submatri-

ces which are the coefficients of the j% 's we have
7] .

RO CTER N PR A

;%(J“ m) (Jkk’ kf"):

Repeating this process with the coefficient of j’ we have
Z. Z (Jic’ -J‘-M)-[=o
¢

A similar proof holds if we renlace the vector from the first sub-
matrix by a vector from the sacond submatrix.
Taking any two column vectors from any two submatrices

whose elements are the coefficients of the _f 's we have
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;,(Z,z:—‘,(g’?;#'_ k?‘)((y r~5/?m )=0

sinze as 1 and j indenendently take on the values 1,2,...,m, k,
2

and kn take on all the nossible m nvairs of values selected from

1,2,...,m exactly once.

Finally we have

Z;-J'Z(gklﬂﬂl_ k;u).l
ZZ(S,, Sgm) 1= 0.

Hence we have shown that the sets of column vectors forming the
submatrices of A are mutually orthogonal. Thus the 2(m-1) +r(m-1)
t1 columns of A are linearly independent. Hence the rank of A
is 2m +r(m-1) -1.
By Theorem 3.1 the rank of Qa is
m2—2m~r(m—1)'fl =(m-1) (m-7-1) .
It remains to determine t'e rank of

i 2
.- Q= - .
0p - 0, "n2.(y,-¥)

Now Q@ - Qa 1s the sum of scuares of m linear forms. We have @

linear homogeneous relation such that

%:(.vf:f) = 0.

Thus by Theorem 3.5 we have that

r[m}_l(yi-y){,s m - 1.

[n Y (7, ) _]

Now mzri:(ym’~y) 1s the sum of squares. of mr linear forms. We

Similarly
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have r linear homogeneous relations of the fornm

L<Y,, ~yy=0, 4=1,...,r.
bt

7/
These relations are linearly independent in the (y& ~-y)!'s since
every yﬁ -y appears in only one egquation. Thus by Theorem 3.5 we
4

have

r[m Z,Z(yfe) -y) 2] ¢ r(n-1).
l

The rank of E:EZy' is 1. From (3.61) and Theorem 3.5 we have

0 ~I'[ZZY:ij {J ¢ r[o ]+r[ Z(y1~y) Jfr[ 2.(yy-) ]
| refal Loy ) of 5]

K¢ m -2m-rm +1+ 1 t2(m-1) + r(m—l) +1 =m2.
Hence the equality signs must hold throughout. Thus the guadratic
form Qr - Qa must have rgnk m-1, and the ranks of the other forms
are also determined.

To test the hypothesis 40, 1=1,...,m, the anprovriate
statistic to use is, by Theorem 3.1,
(m-1) (m-r-1) ¢ - Q
— by a

(3.66) F .
m-1 Q

1\
a

mE:y - 2
=(m-r-1).

ZZlek vok; [ ZY +Zy +ZZ(y‘”)) }%-m (rel)y”

where Fl has the F- distribution with m-1 and (m-1)(m-r-1) degrees
of freedom.
The statistics for testing tﬁe hypotheses %fo, J=1,...,m;

) .
P“-O, Rl=l,...,m, £=1,...,r, are respeqtively
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2 2 2
myy, -my
F =(m-r-1). _9 d ,
R
mZ(yL'))2 - m°y?
F = (m-r-1) R ' ’
3
Qa
o R 2 2
(o) -m'y
%
) 2 2 2
m2_ -m
F = (m-r-~1). "“(yk" ) Y ’
T+2 0

a

where Qa is given in (3.66), and the number of degrees of freedom

associated with each F are m-1 and (m-1)(m-r-1).



CHAPTER IV
THE ANALYSIS OF INCOMPLETE BALANCED BLOCK DESIGNS

We recall that an incomplete balanced block design is
an arrangement of v varieties into b blocks of k plots each -
such that:

(1) no block contains the same variety twice;

(2) every variety is replicated r times;

(3) every variety vi occurs with every other variety v
exactly A times in the same block.

We also have two important relations governing an incomplete
balanced block design, viz., Xb=rv, and r(k-1)= A(v-1).

Denote by yiJ the yleld of variety i when planted in

block 3, 1=1,...,v; j=1,...,b. Let n,, (which 1s 0 or 1) be

1]
the number of times variety 1 occurs in block j. Then

[

v b
(4.1) Znijak’ Zn =Ty

p

,\}Where k 1s the number of plots in a block and r is the number of

~replications of each variety. Also

LEI

_[A>
(4-2) Znijnejh [r , £=1

} =A +5Ii(r—h)’

where A 1s the number of times each pair of varieties appears

together 1n the same block. Thus we have

(4.3) Blyy ) =ng, Gy £b00),

117
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where

- :
(4o4) Z Jij

where vy and b, are the varietal and block effects respectively.

J

In order to test the hyoothesis vi==0, i=1,... ,v, we

must determine Q@ which is the minimum of @, where
a

b 2
(4.5) Q =Z£nij(yij-vi—bj~/u) ,

{20 ga

subject to the conditions (4.4). Checking off the assumptions of
Theorem 3., we have that

(1) U is the general mean,

(2) the coefficlents of the vi are either zero or one.
Although (4.2) apnears to be vb eguations, the actual number is
kb (recalling that v >k). However in the mythical equations the
coefficients of the remaining b{v-k) equations are all zero and
a Pow of zeros does not affect the rank of the matrix of coeffi-

cients; Hence we may use the "enlarged" matrix and to verify

condition (3) we wish to show that the v,

1 columns are orthogonal.

A given row corresponds to a pailr of values for i and j. The
portion of the row corresponding to the first v columns either
contains nothing but zeros or a single 1 in the vith column.

Thus conditions (3) and (4) hold. Hence we may ignore the condi-

tions of (4.4) in determining Qa. Thus
J ¢ 3 oy

:Z,;Jznijyij . ‘\:‘Vignij " ijz'ni ) ‘Z‘Znij"f

=G-»rZy —kZ$ - Y
¢ 1 J 3
=G - rvt =0
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4
where G is the total yield. Hence A=y, where y is the grand

mean.
Similarly
_‘37 Vb -
27 J; (yij vy bj #)
b o
QZ yij - vign Znij ] ﬂ%:nij
SV, - rvy - Znijbj -TU=0
Hence
A~ > A
(4.6) V.,=1v, + Ln,. b, +ry

i 1 g 13

where V 2“133’13 is the total yleld of the ith variety.
Also
3@ _ &
oY 2 nyy(vyy7v37PyA0
r
4 =3 =
PRINED éznij g 7 Kby k4= O
Hence
. = o + +
(4.7) Bj ;::,nijvi' kb, *ky

where B Z Ny yi is the sum of the yields of the varleties

planted in the ith block. Let T, = Zniij be the sum of the

totals of all blocks containing the 1th variety.

Multiply (4.7) by n,. and sum witl: respect to j to obtain

1]
i A
(4.8) Ti 5 ;_'ni: n, .m-k.:‘n bj + rky
J
Z[ f'éil(r* 3 ,+anijbj + Tky

= (r- )\)v *k};‘nijbj + Ky,



Yultiply (2.6) by k and subtract (4.3) from it to obtain

A

- =(I - A .
(4.9) KV, Ti (br -1+ )vi
But kr - v +A = r(k-1) +A = A(v-1) + A = Av, Hence (4.9) may be
written

kv, - T

1
(4.10) vy = ———2 .
Av

Substituting in (4.7) we have
W
i\ = - - -
b, (1/k)83 (l/k}\v)‘__z'n”(kvi T,) - vy

Consider the chain of hypotheses :
s T = + = = .
Hy: ’(yij) nij(vi bji—/i), Y_:_.vi szj 0;

H2: ng Vi= 0, 1=1,...,v;

Hyt Hg& bj= 0, 3=1,.0.,b.

Under H, consider the effect of the condition :/:bf 0. Condi-
tions (1) and (2) in Theorem 3.4 are satisfied immediately. Also

any row corresponds to a definite block number. There will be a
F ]

1l in the column corresnonding to the block number and zeros in the
columns corresvonding to the remaining blocks. Hence conditions
(3) and (4) of the theorem hold true also. Thus we may ignore the

condition Xb, =0.
i3
From Hl we have
(@)} - “
Y =% +b +. UL
ij i

. [
= 4. _ - L >
(2
To determine Yij’ under H2 we see that we must minimize

-3 2
Q = %an@“—bj-ﬂ) .

P INEL
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We have JQ/ ) bj=-0 which reduces to

PN
b =

B, - v.
R R
k
Also from 2Q/2u4= 0 we obtain again L =y. Hence

(2) -3, -
k

(3)

Finally we have that Yi;j = y. Then

v b Lo
(4.12) Z_Znijyij =q, ZZn [ 13 i] LZnn(éd-y)ﬁkbyZ.

=t ga Ty gsr ise =

Now

LA b 1 b b
ZZn (gj—y)2=k2(5—y) %5 EJZB? - 2y§_:Bj+kby2

{2 J:q ij J=t

Then

A l A2 1w
(4-13) ZZnMy13 ZZnn[ Ynggoe]” - 528 -

=y J=~1 <f "~ kj:' J

We wish to test the hypothesis: vl:=v2= oo =vv==0.
/

1
1¢_ 2
(4.14) Qp = zznijyij ZJ_:BJ .

From (4.13).and (4.14) we obtain

/
=H2, H =

Renaming the above chain of hypotheses as H 5

H3, we have

b

Zznur ‘Ti % A]Z '

{=) =t ta

Let S, Zn Vs . Then

et

- 1l 2__ 2 2 A X 2
Z?nij(vi—ﬁsj) --rin1 "% g?nijvisf kszSJ
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2
=r29 ——‘ZS ZSJ
:r?vi - E?S? .
But,

iS -ZZinijn v,v { [I\-!- f(r~/\)JX?iﬁi

ix [ ij i i L"lo ot

= (T‘A):?i ’

since the method for minimizing Q is equivalent to the method of

Lagrange multipliers and hence the ?i's satlisfy the condition %ﬂﬁ:o,

Thus
TK-7+A WA@
(4.15) Qp = Qg™ &V,
’ AAY ¥
k =1

Also from (4.13) .
L2 2 1a 2
(4.16) Q =2Lni _ATY¢ - =3B, .

By (4.10)

which is the best form for computing this term of Ha.

Consider the set of bk expressions

E(Y ) Zgiovf'l"z j,‘]J

Denote the column vector of the coefficlents of v, by Vi, the

column vector corresponding to b, by ﬁj, and the column vector

3
corresponding to 4 by I. Every element of I will be unity.
To determine the rank of Qa we need to know the rank of the matrix

A, corresponding to the expressions
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=) b-/
= .- ¢ ¥ - ! .
.E(yij) ‘-g(én Jiv)tv:L JZ( J“ Jjb)bj + L

In terms of the above notation we may write

A =('€"'Lr;¢"¢) . ‘,}f,;_, -}/",’ﬂ,'pb,ﬂl‘ﬂb) ey ﬁb-.‘/gb(l')
‘In order to find the rank of A, we shall first determine the rank
of the matrix

C o BE(AA, B, A

Let 77 be the observational vector whose elements are

‘ the'gij's arranged in the same order as the correspoﬁding rows in
A. Then

7% =V, = the total yleld of the ith variety,
and B

7% =8 < the total yleld of the jth variety.

Since Bj and BJ,, J’#j, are the sums of different obser-

vations,

— 2 -
cov(?Bj,B.j Ys ¢°( ﬂj' ,Qj/) = 0.

Thus ﬁg }s orthogonal to é%r, j‘#j,'and hence the set of vectors
ﬂl,..., ﬁ% are linearly independent.
Consider the expression
AVA T

- vy My %
=% v 7Yy T %y - k20 By

1
- . - 1. f = .{‘ ay.
'7(,}1 ka'nijlﬂd) M¥, say
The matrix
C=(Vn7b'“)ﬁ5@)ﬁW'”/ﬂ#)

has the same rank as the matrix B. We now compute
. =8(Q,,B,) - E B,).
(4.17) COV(Qi,BJ) (9,,3,) (Q, ) E( 5

We have



If variety occurs in block ], then V, and B, have one observation

i, 3

in common, and

E(Vi,Bj) = cov(Vi,BJ) + E(Vi)E(Bj)
= rz +E(Vi)E(BJ).

If variety 1 does not occur 1n block J, then V1 and Bj have no

~observation, and

E(Vi,BJ) =E(vi)E(BJ).

These two results may be combined into a single formula given by

B(YV,,B,) =n 0‘2+E(V1)E(BJ). :

1J
In the same way 1t may be shown that
2
E(B,,B ,) = 3. kT +E(B )E(B /).
(B,B,) = 4, J JE(0)
Hence

E(Qi,Bj)= nijcr 2+E(V )E(B ) - iinij[é fktr +E(B )E(B ,)]'

2
n,,@ “y E(V,)E(B,) - n, @ ‘%—5%-. 14531

»
1]

[ev) - -EZnij,E(BJ')] 5(8,)

n

E(Qi)E(BJ)

Thus, from (4.17))cov(Q1,Bj)::0. Hence 31 is orthogonal to é%
for all values of 1 and j. It follows that '
1 -
(V-i - E?‘nijlﬁj')' 6‘1"0,

that is,

1 n 2
Vy- Ps 'Tc'.;z'nu’( By- By) = Vi+ By ‘i‘ugs '

= i. J -— nijz O.
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Hence y‘i. ,33 =nij. By means of the methods used earlier it can

be shown that
2 _ 2
COV(Vi,vii ) = Jii'rc. "'( )f'i- )}‘11)0—

SO that }/' . )/'il = 11’1'.
Next, we compute the Gram matrix,G, of the matrix

D:(yl’... 3v)o
We have
G= .
‘ ( 31 ii')
where G is a square matrix of order v. Also

- P w o_ 1
Y (v - k%;nij'ﬂjt)'(’yti kdz-niljﬁj),
- 1 1 1 |
’J;Li’r - deni/Jni;] - k}-—rnij’ni’j”k? :‘;}J:nij’ni’j(‘g.i'ﬁ.i’)

51111‘ - %[h t+ 5111 (r- 7«)]

]

- . /
--}%, if 1#4°,
= f_(;:_ll), 1f 1=1",
Thus
A
r k-—-l) -% s e e -T{ \
—L r‘g-l) v s e ’i‘
k k
G= 'i - * L]
- D -2 r(k—_l.)/
k k * 0 k

-1

v
From previous work |G| =[r§k—1)+ﬁ] [-(v-l)ﬁ.+rgk—l]) = 0 since
T k

r(k-1) =A(v-1). The value of the determinant obtained by delet-

ing the first row and first column of |G! is
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[rk 1—; rf-h] v_z[_(v«2)%+ r(}l«é—lﬂ
=(Av/K) " [r\ - (02 2 1)] i ; 0.

Thus the matrix G, and hence D, is of rank v - 1. Hence v - 1 of
the vectors 2&,..., gv_are linearly independent and orthogonal
to the 55'5. By Theorem 3.5, the matrix C and hence the matrix
B is of rank v+b - 1.

Next note that

ina’ ZQE%{%—:(};

m

o,

and hence

O=_ZL:—3’£ = iﬁ”%%z:nqgg :.{ y: “?:é?:

¢ =t it !
Thus any v + b - 1 column vectors from B are linearly independent.
We shall now prove that the matrix

(VL Vi, Y ‘/‘."1 )%’"ﬁy"—r) ﬂi—ﬂb) ﬂl "ﬂb/ oy (B 'ﬂ")

is of rank V-fb - 2. Consider the equation
()

Lcw y&,)+[(@, -8p) =0 .

This equation .may be written in the form

k) o df -3 d

- Eathom) e b~ (x-La) 4

v=! b-t
NCE Zd )w«- (aJ 5_4 G - (62__’_10c +J§'dy)yg,=o

[y
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Since Vi,-..,pﬂﬁ Bl"""gb—l are linearly independent we have

b~
dj +Zd3,=o, 3=1,...,b-1;

N

bt
o] by Zd I:.o’ i-’:l,ooo,v_l;
i J'=t J ‘
| b-/
S, ) d,s0.
';, i j'—’.’[ j

The (b - 1)th order determinant of the coefficients of the first

set of equations is

2 1 1...1

1 2 1 LI l b"'2

. ] = (2 - 1) [(b-2)+2];£_o.
. . .1

1 ceee 1 2

Hence dlz d = .o .db—l= 0. Then, from the second set of equations,

cl: c2= ...:=cv_l= 0. Hence the last equation is also satisfied.

W'V:") ) Vi1 ')}:f)ﬂ' —F‘b SRR ﬁb-n“ﬁh
are linearly independent vectors.
Finally,

(Vo= )T =E5n (S - d=r (3,0~ § =0,

v
and

(By- 1L En (- dip=x 2 Sy-dp)=o.
Thus, by Theorem 3.5, the set of v+b - 1 vectors
Y - Vi, Sy V."r.,—VJ-,-ﬂ, B> ey ﬂb-"‘g‘vl
are linearly independent. Eence r(A)2 v¢b -~ 1 and thus r(Qa):?

vr - v - bt1,
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It remains to determine the rank of Qr - Qa' Since

Y7, =0, it follows that
AV
r[z ‘Z?i]\( v - 1.

B.
Since Z(Ei - y)=kby’k - by =0, we have
J

e £ Gk 07

2
The rank of kby 1is 1.
- From (4.12) and Theorem 3.5 we have

TV = r[ZZn yij}‘ r[Q ]+r[ 2_02].,.1-[1:2(-3 y)] [kby]

=rv - v- b+l+4+v -1+b-1+1~=rv.
Hence the equality signs must hold throughout. Thus the quad-
ratic form Qr - Qa must have rank v - 1.
To test the hypothesils vi'-? 0, i=1,...,v, we use the
statistic iy
. rv -v -b+l‘ bgg:'z:\"i
v-l Z}j:nijyij - ATEY - (/0 X5

rv - v - b+l Z(kv —T4)2
v-1 z: 4 2
Akv Znijyij E:(kVi Ti) ;\v?_Bj

To test the hypotheses vi=-v.j we use the Corollary to

Theorem 3.3. Notice that Qa remains unchanged. From the corol-

lary we see that vy - vj corresponds to 6,*. The rank of the
matrix of coefficients (1,-1) is 1. Since ?i and ?J are the
estimates of v:L and v, which minimize Qa we have

J
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*_'\' A
bl = vy vJ
Also, since 1 =3 =1, the matrix of coefficients (cij) of Q. - Qa
is 2
c =7
110;3
Now A
2 2 2
% =0, o =5[G, -7 -G, - 7))
: Vi-v 1 J 1 J

= E[(ei - E(7) - (w}j - E(\;j))] ?

- p 8
_(n} +O:L 2

“© J g

;‘\)

From (4.10) we have

A—%[(k -1V, - ('ri - vi)]

Since T =Zn B and B =Zn V. v *Zn y
1 T g 1Ty Ty Ty

we have

Z(i n,.v, -nzy )

=1 ¢’~3 ij ij 13 ij ij

iz’f

gt st 137171y

Lf(,
Thus Vi and Ti - Vi have no observations in common and hence

(k-—l)Vi and Ti - Vi are independently distributed. Therefore

2 1
i 1"V
Also . 2 b 2 i
- = <7" =7
Vi ,j-! J"' ij
1

Wilks, p. 35.
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and
: 2 2V b 2 2.".’:
¢ =0y S nins, =T 2[At S (e-a)]
T .V - ij J ":( ii
11 2
SE
2 2
T Alv - )T =7k - 1)T .,
Therefore

2 _ L 2 2 2
G“Qirl\awa.[(k—l) r@ +r(k - 1)@ ]

2
_rk(k - 1)a

Ut kh{v - L)a‘ = k(v - 1)

Since the last expression is independent of 1 we alsc have

‘ 2 2
U5 =x(v - Vg
V3 AP

From Corollary 3.3

2
- [k(V v,)-(Ty- 1,)]

"‘73

aAw [k(V j)-(Ti-zzj)]2 .

The number of degrees of freedom of Qr -Qa is 1. Hence, to test

the hypotﬁesis i==vj we use the statlstic

2
v - bed [k(r- V) - (1 - ]

1l . A
2k A v Qa

where Fi has the F distribution with 1 and rv - v -b+1 degrees

of freedom.

Fa¢h variety appears r times. Suppose we use r blocks
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with v plots so that every variety appears in every block in a

two-way classification design. For this design let

2

2
o_"‘\ = U—/ho
Vi

For the incomplete balanced block design let
2 2
O_Gi = 0’"/01.

Definition: The efficiency factor of an incomplete balanged

block design with respect to the estimate ﬁ}, as compared with

the two-way classification design, is
2 2
e=(a /n}/( 0 /e;) =c /n.

Note that if the incomplete balanced block design has a smaller
variance for 91, then e>1l. The efficiency factors with respect
to varletal differences are defined simllarly. Clearly if there
i1s a choice between two designs, one of which is more efficlent
than the other while both justify the assumption (4.3), then the
experimenter will choose the more efficient design.

In an incomplete balanced block design we already know
that

2

2 .
T = kSV - 1)a .
vy Ave

In a two-way classification design, k=v, A =r, Hence for the
latter design

2 2
Tao av(v-1Do5 _ v-1 5
v AR = g~
A VT *

rv
Thus the efficlency factor with respect to the estimate%i is
-2
V-1l v A AV

RPN,

rv  k(v-1) rk

—~
-

.
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For an incomplete balanced block design
2 2
T A "\—-%T'

For a two-way classification design

2 2
Tp 557
1773 T
Hence the efficiency factor with respect to the estimate v1~v3 is
2AV AV
3—""‘" z_,
r2k Tk

as before.

For example, in the design (v,b,r,k, 3 ) =(16,24,9,6,3),
(8,14,7,4,3),(11,11,5,5,2), and (21,21,5,5,1l,the value of the
efficlency factors with respect to the estimates ¥ and 9i~93 are
8/9,6/7,22/25, and 21/25 respectively.

‘The loss of efficiency will, iﬁ general, bs more than

offset by the reduction in the error variance per plot resulting -

from the use of smaller, more homogeneous, blocks.
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