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Abstract 


Bohmian mechanics is an alternative formulation of quantum mechanics that in­

corporates the familiar and intuitive picture of particles moving along trajectories and 

yet predicts the same results as the more widely accepted Copenhagen interpretation. 

In recent years there has been renewed interest in this Bohmian view, in part for 

the novel approach that it suggests to certain problems, such as decay processes, both 

from a theoretical and computational stand point. In this thesis we focus on using the 

concepts introduced by the Bohmian framework as a practical computational tool. 

I evaluate a number of implementations of the Bohmian method, get a sense of 

their strengths and weaknesses and attempt to overcome some stability issues that 

arise. For problems in one-dimension (lD), accurate solutions of the time-dependent 

Schrodinger equation produce a wave function from which Bohmian trajectories can 

be computed by integrating along flux lines. For direct integration of the quantum 

Hamilton-Jacobi equations, the main problems that arise are related to evauating the 

quantum potential (QP), especially in regions of low probability density. Sufficient 

accuracy is required to avoid unphysical trajectory crossings. A number of interpola­

tion schemes were investigated, and smoothed splines with special treatment of edge 

effects gave the best results. 

For problems in 2D the alternating direction implicit (ADI) method was employed 

to produce the wave function. Ways of dealing with unphysical reflections from the 

boundaries of a finite size domain were studied. 
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The use of cellular automata, especially the lattice-Boltzmann method (LBM) 

were also considered. Here Bohm trajectories would be propagated by following a 

small set of rules. The main problem identified is that, unless a scheme can be found 

in which the quantum potential is self-generating from an equation of continuity, the 

overhead of computing the QP at each time step, is prohibitive. 
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Chapter 1 

Introduction 

"Things on a very small scale behave like nothing that you have any 

direct experience about. They do not behave like waves, they do not 

behave like particles, they do not behave like clouds, or billiard balls, or 

weights on springs, or like anything that you have ever seen." 

Richard Feynman 

Almost since the inception of quantum mechanics, alternative interpretations have 

existed. One of these, developed by de Broglie and later systematized by Bohm, 

makes use of the familiar and intuitive picture of particles moving along trajectories 

to describe the unfamiliar realm of quantum mechanics. 

Paradoxically Bohmian mechanics (as it came to be known), was met with little 

enthusiasm, even outright hostility in the early days of quantum mechanics and as a 

result proceeded to lay dormant for a few decades. 

Recently there has been renewed interest in this interpretation, in part for the 

novel approach that it suggests to certain problems, such as decay processes, both 

from a theoretical and computational stand point. 

1 
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1.1 Motivation and Objectives 

In this thesis I will further explore the Bohmian perspective as an alternative 

framework for numerical calculations on a given quantum system. 

The motivation for this study is the promise of better CPU scaling with the 

dimensionality of the problem at hand. Common grid based methods often become 

impractical in high dimensionality problems because of their exponential scaling. 

It is said that there is no such thing as a free lunch on Wall Street and the same can 

be said of Computing Street. The performance increase offered by Bohmian methods, 

due to the sparse grids used, normally has a big trade off in the form of inconsistent 

results wherever nodes or interference phenomena develop. 

Since the long time evolution of a quantum system gives rise precisely to such 

interference phenomena, Bohmian methods are usually riddled with stability issues. 

I will investigate the causes of these stability issues, and how to minimize them. I 

will study how different approaches and implementations of the particle method fare, 

in terms of speed and long time stability, the latter usually enhanced at the cost of 

additional computational complexity. The aim is to improve where possible on these 

methods and recognize their strengths and weaknesses. 

1.2 Quantum Mechanics and its Interpretations 

That quantum theory "works" has long been settled by an impressive succession 

of successful experimental predictions, and explanations, so its validity is no longer in 

question. However the thorny issue of how the mathematical formulation of quantum 

theory is to be interpreted is quite another matter. .. 

As a clear sign of its inherent richness, the quantum theory accommodates very 
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many, sometimes disconcerting, interpretations. To paraphrase Richard Feynman in 

one of his series of Auckland lectures on QED: 

"If you think you understand quantum mechanics, you don't understand 

quantum mechanics!" 

We will not exhaustively describe all proposed formulations/interpretations of quan­

tum mechanics, which at last count numbered at least nine, and rapidly increasing. 

Instead we will refer you to the excellent introductory paper "Nine formulations of 

quantum mechanics" [1] for details . 

The list includes some of the more debatable and trendy ones such as "Many 

Worlds" and "Transactional" interpretations of quantum mechanics. For curiosity's 

sake though, I will enumerate from the aforementioned paper [1] the nine formulations 

and two extra interpretations of quantum mechanics: 

• Matrix Formulation (Heisenberg) 

• Wavefunction Formulation (Schrodinger) 

• Path Integral Formulation (Feynman) 

• Phase Space Formulation (Wigner) 

• Density Matrix Formulation 

• Second Quantization Formulation 

• Hamilton-Jacobi Formulation 

• Variational Formulation 

• Many-Worlds interpretation (Everett) 
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• Transactional interpretation (Cramer) 

• Last but not least: The Pilot Wave Formulation (de Broglie-Bohm) 

To some, the Pilot Wave or Bohmian theory is one of those disconcerting formulations, 

regressing as it were to classical concepts such as the moving point particle with a 

definite momentum and position. One must not be prejudiced towards the theory 

because of this, but use it as a tool, and like any tool use it where it works best. 

The two formulations with which we will be concerned are the usual Schrodinger 

representation or wavefunction formulation as it is the basis for common grid based 

computational methods; and the Bohmian formulation as an alternative computa­

tional route. 

1.2.1 Schrodinger Picture: Wave Mechanics 

Erwin Schrodinger had hoped that this formulation would cast quantum mechanics 

in a "congenial" and "intuitive" form but was distressed when he found that his wave 

functions were set in configuration space and not in ordinary three-dimensional space 

([1]). 

In the Schrodinger representation of quantum mechanics we deal with a complex 

wavefunction w(x, t) =< xl'll(t) > where the ket is in Hilbert space representing the 

state of the system. 

The time evolution of the wavefunction is obtained by solving the Time-Dependent 

Schrodinger Equation (TDSE): 

."'&w
'tn- (1.1)

&t 
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Observations of physical quantities (observables) like position, momentum, an­

gular momentum, etc are associated with the "collapse" of the wavefunction onto 

eigenstates of the corresponding observable, i.e. a quantum measurement acts as a 

filter. Those systems that pass through the filter corresponding to some value of an 

observable emerge in the associated eigenstate. The apparatus is described by a sum 

of projectors onto the eigenstates of the operator associated with the particular phys­

ical quantity. The probability amplitude for a particular result is the scalar product 

of the initial wave function with the particular eigenket. In the Schrodinger repre­

sentation, the scalar product is carried out by integration over all space coordinates, 

and summation over spin indices. 

1.2.2 Bohmian Formulation 

The Bohmian formulation of quantum mechanics is also known as the Pilot-Wave 

theory or causal interpretation of quantum mechanics. 

In the practical implementation of this method use is made of an ensemble of 

sampling points representative of the state of the system at time zero. Usually these 

points are chosen to be more dense in regions where the particle has a high occupation 

probability in the initial state. 

In Bohmian mechanics the analogy to classical mechanics is so compelling that 

we will find ourselves sometimes referring to these sampling points very loosely as 

"particles" whose "trajectories" develop in time. It should be understood that we are 

not dealing with particles in the usual sense of the word , but instead when we refer 

to particles in a Bohmian context we are actually referring to the sampling points 

carrying with them some probability volume, which taken as a whole may represent 

the evolution of some "real" particle (such as an electron). 
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It is only in the initial state when we assign these sampling points or "particles" 

that probabilistic arguments are invoked and the rest of the theory is completely 

deterministic thus earning the denomination "causal interpretation". 

Following the initial setup, these point particles evolve in time according to forces 

derived from the sum of the classical and a newly introduced quantum potential. 

The quantum potential in turn depends on the particular distribution of the point 

particles at a given time. 

It is this circular self consistency of the theory that is responsible for all the 

complex quantum behaviour it is able to describe (and also for some computing 

headaches we may add). 

1.3 Historical Perspective 

The historical foundations of Bohmian mechanics can be traced back to the hydro­

dynamical formulation of quantum mechanics due to de Broglie[2] [3] and Madelung 

[4] in the early days of quantum theory (i.e. late 1920's to early 1930's). 

Some basic aspects of pilot-wave theory were already anticipated in de Broglie's 

thesis of 1924. His talk at the 5'th Solvay conference in 1927 included an almost 

complete exposition of the theory (see [5]). 

Probably because of immediate criticism of the theory by Pauli and others (as early 

as the 1927 Solvay conference [5]) the pilot-wave theory of quantum mechanics was 

promptly cast into oblivion until David Bohm independently developed and presented 

it in the early 50's (see [6]). 

David Bohm (from whom Bohmian mechanics takes the name) was incidentally a 

man of many and varied contributions and not only to physics. We pay tribute to his 

memory by quoting Diirr, Goldstein and Zanghi [7] celebrating the life of the then 
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recently deceased David Bohm: 

" ... We focus here on Bohm's contributions to physics. However, he also 

made profound contributions to many other disciplines: to the philosophy 

of science and the philosophy of mind, to ethics and moral philosophy. 

And Bohm labored long for peace and disarmament, for dialog and mutual 

understanding." 

"Richard Feynman once declared Bohm the smartest man he had ever 

met. He was certainly a man of extraordinary commitment to princi­

ple, both scientific - as witnessed by his often lonely pursuit of scientific 

truth, without regard for prevailing fashion - and moral - as witnessed 

by his refusal in 1951 to testify against colleagues before the House of 

Un-American Activities Committee. This act led to his indictment for 

contempt of Congress and his banishment from Princeton and, indeed 

from all of American academia. " 

Bohm's seminal work was followed by another period of relative disinterest in the 

theory until the 1970's, when John Bell became one of the most celebrated physicists 

to back the Bohmian view. In fact the theory is even closely related to one of his most 

celebrated discoveries "Bell's Inequality". According to Bell it was the non-locality 

present in the Bohmian theory that inspired him to develop that result. 

Included in the same paper by Diirr, Goldstein and Zanghi [7] is a private com­

munication by Bell to the Philosopher Renee Webber where the ironic connection 

between David Bohm's Theory and Bell's theorem (which is widely cited in support 

of quantum orthodoxy) is exposed in the words of J. Bell: 

"When I first realized that [Bohm's theory is nonlocal], I asked: "Is that 

inevitable or could somebody smarter than Bohm have done it differently 



8 CHAPTER 1. INTRODUCTION 

and avoided this nonlocality?" That is the problem that [Bell's) Theorem 

is addressed to. The theorem says: "No! Even if you are smarter than 

Bohm, you will not get rid of nonlocality", that any sharp mathematical 

formulation of what is going on will have that nonlocality ... " 

"In my opinion the picture which Bohm proposed then completely disposes 

of all the arguments that you will find among the great founding fathers of 

the subject- that in some way, quantum mechanics was a new departure of 

human thought which necessitated the introduction of the observer, which 

necessitated speculations about the role of consciousness, and so on." 

"All those are simply refuted by Bohm's 1952 theory ... So I think that it 

is somewhat scandalous that this theory is so largely ignored in textbooks 

and is simply ignored by most physicists. They don't know about it." 

The historical record on the computational front, where Bohmian mechanics is used 

in a more practical way as a basis for direct calculation of trajectories, is more recent. 

Early works can be traced to the 1970's in the works of Weiner et al. [8). Then 

after another long hiatus, the computational side of Bohmian mechanics was picked 

up again in the nineties in works by Hua Wu and Sprung[9), Wyatt and Lopreore 

[10], and by Sales Mayor, Askar and Rabitz [11) which set in motion another wave of 

interest in the theory this time from a numerical perspective. A series of works then 

followed over the following years up to the present day by many authors, including 

those aforementioned and, amongst others, E. Bittner , B. Poirier , S. Garashchuk, 

V. Rassolov, S. Goldstein and R.E. Wyatt. 
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1.4 Objections to Bohmian Mechanics 

Bohmian mechanics has never been a short of critics. At the 1927 Solvay confer­

ence Pauli was the first of a long list of eminent physicists to criticize de Broglie's first 

proposal of a Pilot-Wave theory. In 1952, Pauli again leveled criticism on the now 

more developed de Broglie-Bohm theory in his contribution to de Broglie's 60th birth­

day volume deeming it "artificial metaphysics" [12, 13] (Pauli's objections revolved 

around the break in the correspondence between classical and Bohmian mechanics 

pertaining to the symmetric treatment of canonically conjugate variables such as po­

sition and momentum. For other historical criticism a good source is Myrvold's paper 

[14]). Concerning other less damaging accusations, Peter Holland's book ([15]) does 

a good job of summarizing and then shortly addressing them: 

• 	 Cannot prove trajectories are real - Cannot prove empirically the completeness 

postulate either. 

• 	 Predicts nothing new - Does permit more detailed predictions pertaining to 

individual processes. 

• 	 Regression to classical physics - It does depend on the "state" of the whole 

system, represented by the guiding wave (a very non-classical concept) 

• 	 Non-locality- Non-locality seems to be a small price to pay if the alternative is 

to forego any account of objective processes. 

• 	 More complicated than quantum mechanics - It is just a reformulation of quan­

tum mechanics 

• 	 Counter intuitive- Quantum phenomena require quantum intuition 
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• 	 No reciprocal action of the particle on the wave - in fact the wave depends on 

the positions of the representative particle 's trajectories. 



Chapter 2 

Bohmian Mechanics 

For a more exhaustive and complete theoretical treatment of Bohmian mechanics 

the definitive reference is Peter Holland's book " The Quantum Theory of motion" 

[15]. In this chapter we will limit ourselves to aspects of the theory that are relevant 

to calculations in this thesis. 

2.1 Hamilton-Jacobi Theory 

We take the classical Hamilton-Jacobi equation as our starting point since Hamil­

ton Jacobi theory in the shape of the Quantum Hamilton-Jacobi equation (QHJE) 

figures so prominently in Bohmian mechanics. 

as (VS)2- V (2.1)at 2m 

In fact it can be argued (see [16]) that the seed of wave mechanics and Bohmian 

mechanics is contained in the relationship between classical Hamilton-Jacobi theory 

and Geometrical Optics. 

11 
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Goldstein argued along the following line: 

If we consider that the surfaces of constant S (Hamilton's principal function) 

correspond to wavefronts propagating in configuration space we can assign a wave 

velocity to them u = ~. 

Taking the scalar wave equation of optics , 

(2.2) 

which for slowly changing index of refraction n, has a solution of the form ¢ = 

A(r) exp(ik0 (L(r)- ct)) where A is the amplitude of the wavefunction and Lis called 

the optical path length or eikonal of the wave. Substituting ¢ into eq. 2.2 results , 

in the short wavelength approximation, in the eikonal equation of geometrical optics 

(\7L) 2 = n 2 
. The surfaces of constant L are surfaces of constant optical phase that 

define wave fronts just as in the case of S from the classical Hamilton Jacobi equation. 

Classical mechanics corresponds then to the geometrical optics limit of wave mo­

tion. One might ask then what would happen to classical mechanics if we do not take 

the short wavelength approximation. The answer would be the same as in the case of 

wave motion: you would get the full wave equation. In the context of mechanics the 

analog of the full wave equation is of course the celebrated the Schrodinger equation. 

So could Hamilton or his peers have stumbled upon wave mechanics nearly 100 

years before its actual discovery, with all the associated tantalizing scientific and 

technological advances that such an early leap in human knowledge would carry? 

Probably not... there was no reason to suspect that h in .\ = ~ was anything other 

than zero, and classical mechanics was deemed to be rigorously true. Experimental 

evidence suggesting otherwise would not be available until the beginning of the XXth 

century in experiments such as those of Davisson and Germer, and others. 
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2.2 Derivation from the Schrodinger Equation 

The central element in the Bohmian picture is the concept of particle with an 

associated (definite) position and momentum. One can obtain the Bohmian equations 

of motion by writing the wavefunction in polar form: 'll(x, t) = R(x, t)e~s(x,t), where 

Rand S are respectively the amplitude and phase. 

Inserting the polar form of 'll(x, t) into the Schrodinger equation: 

After some manipulations leads to two equations arising from the real and imagi­

nary parts respectively ([15]) 

&R2 + 'V(R2\1S) = 0 
8t m (2.3) 

{ as= _(VS) 2 
_ V +.!f._ v 2 R 

8t 2m 2mR 

The first equation in 2.3 can be interpreted as a continuity equation relative to 

the probability flow R2 
";; . 

The second equation is an analog of the Hamilton-Jacobi equation with an ex­

tra term Q = - ;~ v~R, the quantum potential. This extra term depends on the 

whole of the wavefunction, thus the name pilot wave theory, as Bohmian mechanics 

is sometimes referred to (the wave guides the particle). 

This is the usual way of interpreting that extra term as an non-classical potential. 

Alternatively (and equivalently) we can consider the - 2n~ v~R as being another con­

tribution to the kinetic energy (~~t, a form of a shape induced internal energy akin 

to the role that the internal stress tensor plays in a classical fluid dynamics context. 

Quickly glancing at the quantum term, already we can make a few preliminary 
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observations. We note that as ntends to zero the quantum potential disappears and 

we should expect to get classical behaviour from the system. Because R appears both 

in the denominator and in the numerator (as its gradient) Q will not depend on the 

magnitude of R but on its curvature. When evaluating it numerically, however, we 

can anticipate some difficulties in places where R is zero or very small. 

2.2.1 Eulerian/Lagrangian Frames 

To further clarify on the equations of motion we can, as is done in Hamilton Jacobi 

theory of classical mechanics, associate a velocity field given by v = ;: , parallel to 

the gradient of S which therefore will be perpendicular to a wavefront (a level surface) 

of S. 

At this point we need to discuss the concepts of Lagrangian and Eulerian frames of 

reference. In classical fluid dynamics if we take a "moving with the fluid" perspective, 

then the change of a physical quantity at each fluid "particle" is given by its material 

derivative (also called substantive derivative), its intrinsic change plus its variation in 

space: 1£ = %t + 'Vv . This is the so called Lagrangian frame where the grid evolves 

in time with the moving fluid particles as opposed to the Eulerian view where the 

grid is fixed in space. 

Taking the gradient of the Quantum Hamilton Jacobi equation (QHJE) eq 2.3, 

R2with p = and working in the Lagrangian frame of reference, we obtain a more 

familiar set of equations([15]): 

-ftp + p'Vv = 0 

~~ = -~'V(V + Q) (2.4) 

Q = _!f._ V'2R 
2m R 
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Here we can still recognize the first as the continuity equation, but now the second 

equation reveals itself as just a statement of Newton's second law F = ma with the 

now familiar extra quantum force term. 

2.3 The Quantum Potential 

That last term in eq. 2.4 is the quantum potential, the essence of Bohmian 

mechanics. It is Q which is solely responsible for all the quantum behaviour of 

the system and it incorporates both properties of the particle such as momentum 

and position, and properties of the whole system such as potential and observing 

apparatus. 

n,2 \72R 
Q=---- (2.5)

2m R 

It is quite peculiar in that it can vary rapidly in places where V, the classical 

potential, is almost constant. Even more strange is that since we have a normalizing 

factor in the denominator, it does not depend on the magnitude of the density p itself, 

but rather on its curvature (or more appropriately on the curvature of its square root 

R), so we could have a very large quantum potential in an area where you have a 

negligible probability density (as is the case for instance of interference between two 

Gaussians as we shall see in later chapters). This can be seen by scaling R by an 

arbitrary factor .X: Q =_..!E._ \7
2 
>.R = _..!E._ \7 

2 
R

2m >.R 2m R 

Numerically speaking, given that in general p can vary exponentially, and thus 

has an enormous dynamic range, computationally it will be beneficial to represent it 

instead by its logarithm C = log p. Not only are we compressing the range of p but 

also for instance in the case of Gaussian wavepackets we are going from ea2 x 
2
+a1x+ao 
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to a2x2 + a1x + ao obviously a form more amenable to polynomial interpolation. 

So with p = ecand R = e~c, inserted into equation 2.5 the quantum potential 

then takes the simplified form: 

(2.6) 

We can see how, as a consequence of the presence of the differential operators \7and 

\72 
, the quantum potential encodes at each point information about its neighbours 

and ultimately about the state of the whole system. 

This is essentially the reason for the non-locality observed in quantum phenomena 

such as entangled states where two potentially very distant parts of the system main­

tain high correlation among themselves, as for example in Einstein's EPR paradox 

(see [17]). 

2.4 Bohmian Trajectories 

2.4.1 Definition 

The Bohmian trajectories are determined, just as in classical mechanics, from the 

velocity field generated from S according to the definition v = ;: . 

At each point the particle moves perpendicular (parallel to the gradient) to the 

wavefront of S. 

2.4.2 Important Properties 

In Bohmian mechanics trajectories may not cross or even touch each other. If they 

were to cross, at the crossing point two "particles" with distinct momenta would share 
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Figure 2.1: Node avoidance property 

( From Hua Wu and D.W.L. Sprung [9]) 


the same space-time point which would imply that the underlying wavefunction should 

have two distinct values at the same point in space. Since the wavefunction is single 

valued, trajectory crossings are forbidden (see [15) and [9]). So if we see trajectories 

crossing we immediately know that something is wrong in our calculations. 

Furthermore at nodes of the pilot wavefunction W, the phase S is undefined and 

there will be no particle paths going through those points , instead we may have 

avoided crossings and or vortices (see [9]) develop around these points as illustrated 

in Fig. 2.1. Fig. 2.1 represents the steady state of a 2D L-shaped quantum wire at 

a particular energy (in this case JtJ 2 ~ 0.25). Solid lines enclose regions containing 

vortices and the inset shows behaviour near a stationary point of the velocity, where 

the flow divides. At nodes S is no longer single valued and may undergo discrete 

jumps: Sn = S +21rnn where n is an integer. The contour integral of v around a node 

will be f v.dl = f;;: dl = f dS = 2~1in and will define a vortex when n =I= 0 (see [9]) 

These sudden jumps in S will give rise to big gradients and can cause numerical 

instability in algorithms, commonly referred to the node problem. 

To illustrate the above, we use a compact Gaussian as the envelope of our ini­
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tial wavepacket . It is positive definite everywhere thereby making the node problem 

aforementioned less likely to occur. The reason for that resides with the continu­

ity equation which determines evolution of p(x, t) = p(x0 , 0) exp(- J; \7v(x(t) , t)dt) 

therefore if p(x0 , 0) > 0 then p(x , t) > 0 for all t ime. 

We can also make use of Ehrenfest's theorem which gives the evolution of the 

expectation value of an Hermitian operator to calculate the average values for the 

position and momentum of the system. For an arbitrary operator A, 

d 8A i 

dt < A>=< 8t > +h < [H,A] > (2.7) 


here the expectation value < A > stands for the average value of measurements of 

the observable A in a state 17/J > . By taking A to be the position operator x or 

momentum operator p, we obtain Ehrenfest 's theorem, the equations of motion for 

their mean values. ( eq. 2.8) 

Ji < X >= <p> 
dt m (2.8) 

{ ft < p >=- < \7V(x ) > 

We can then use eqs. 2.8 which agree with the classical equations of motion, to 

monitor the quality of our numerical solution by monitoring the average position and 

momentum along the trajectories. 

2.5 	 Compatibility with the Copenhagen Interpreta­

tion 

The ultimate test for any physical theory is agreement with experiment so we duly 

note that both standard quantum theory and Bohmian mechanics predict the same 
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experimental results, at least for single-particle problems. 

One can always recover the wavefunction having solved the Bohmian trajectories 

by integrating along them the density and phase given by respectively the continuity 

equation and the Quantum Hamilton Jacobi equation. 

But how does a totally deterministic theory with point particles and trajectories 

accommodate key quantum concepts such as uncertainty in results of measurement? 

The reason we "recover" these uncertainties and thus converge to the same results 

as conventional quantum mechanics, is that the initial conditions are not perfectly 

known (by design?) . We are given a statistical ensemble for the initial conditions 

corresponding to the wavefunction at that time, say p(r0 , t0 ) = lw(r0 , t0)l 2 (where t0 

is the initial time and r 0 is some surface on which the boundary conditions are ap­

plied). From the solution of the TDSE, everything else will follow and the trajectories 

will retain their statistical weight through time, yielding measurements that are also 

probabilistic in nature. 

2.6 	 Practical Advantages of the Trajectory Formu­

lation 

Not counting the supposed practical computing advantages, sometimes it is even 

advantageous to recalculate Bohmian trajectories from pre-existing time-dependent 

wavefunction solutions, since the former will give us a clearer understanding of some 

underlying physical concept(such as arrival time). 

In some problems , when we are trying to answer kinds of questions that are bet­

ter posed in a classical domain, the trajectory formulation makes it possible to give 

intuitive yet quantum mechanically correct answers. Such is the case for instance 
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when calculating lifetimes of particles when we want to know the probability a par­

ticular wavefunction will be contained by some potential. In the trajectory view one 

simply counts the number of particles/ trajectories that have crossed a predetermined 

boundary. 

An example of this is illustrated in figure 2.2, the deterministic individual trajec­

tories are perfectly suited to explore questions of time of flight , lifetime etc. which 

are present in time-dependent quantum problems such as a decay. We can see that 

in the second case this probability is actually an oscillatory function of time [18], as 

we have trajectories that for a while tunnel in and out of the boundary . 

Note that when using Bohmian trajectories we can determine with no ambiguity 

which part of the wavepacket passes and which part remains within the barrier. For 

instance we can also see in Fig. 2.2 that most of the transmittance is due to the front 

of the wavepacket and not the rear. This is something unthinkable in conventional 

quantum theory where the wavefunction is taken as a whole, and such information 

would be unavailable. 

Besides these practical advantages of Bohmian mechanics, there is an important 

conceptual continuity between classical and quantum physics afforded by Bohmian 

theory[12] (at the cost of non-locality). 

The emergence of classical phenomena out of a quantum world continues to be a 

major unsolved problem in Physics . The fact that Bohmian mechanics preserves the 

concepts of trajectories and particles from classical physics is a hint that Bohmian 

mechanics may have a role to play and be a more appropriate tool to approach this 

problem. 
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r(t) 

0 ~----~----~----~--~ 
10 11 12 13 14 

Figure 2.2: Evolution of Bohmian Trajectories in an escape problem 
(From Nogami et al.[18]) 

2.7 Calculating Trajectories 

2.7.1 From Wavefunction 

Calculating trajectories from the wavefunction w(x, t) is really a two step process: 

1. Solve the time dependent Schrodinger equation (TDSE). 

2. Integrate the velocity field determined by the phase of the newly calculated W. 

We can solve the TDSE analytically for a relatively small number of simple systems 

( see [15, 19]). 

For the vast majority of cases that cannot be solved analytically, with the advent 

of cheap and powerful computing, a suitable time propagation method can be used 

to numerically solve the TDSE in low dimensional systems. 

There are many methods that can be used to solve the TDSE. We can for instance 

project the initial wavefunction onto stationary states of the system's Hamiltonian, 

and then evolve these according to their eigen-energies (spectral methods). 
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We can discretize the TDSE on a fixed space-time grid. This can be done using 

FFT methods, Feynman Path integrals, Monte Carlo techniques, or operator splitting 

methods, etc. We use the latter in a Crank-Nicholson scheme as represented in eq. 

2.10 in conjunction with transparent boundary conditions as described in Moyer's 

paper ([20]) and in appendix A to setup a "golden" standard to which we can compare 

the various particle method implementations. 

w(r, t + bt) exp(-iHM/n) x 'll(r, t) (2.9) 
-zH8t 1-iHk 

e-n- ~ 21l (2.10)
1 + iH8t

21l 

In fact, we should note that this simple Crank-Nicholson method for 1D problems, 

has recently been generalized to higher orders described recently by W. van Dijk and 

F. M. Toyama (see [21]). They have obtained a dramatic improvement in attainable 

precision, for a given amount of computation. 

2.7.2 Direct Trajectory Integration 

In this method we directly use the Bohmian framework to make numerical cal­

culations. The trajectories come out naturally as a constituent of the calculating 

procedure. 

The direct Bohmian method is a more efficient way of calculating trajectories and 

because we use grids that are much sparser than those used in wave based methods, 

it usually is orders of magnitude faster. However it is vulnerable to numerical insta­

bilities when interference effects are dominant. We will give more details on this in 

the next chapter. 
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Figure 2.3: Bohmian trajectories x(t) for a two-gaussian initial state. 

2.8 Conservation of Probability 

After we discretize the initial wavepacket into a representative statistical ensem­

ble of particles, each of them can be thought of as carrying an associated probability 

volume. This probability volume will evolve in time according to (d~:) = p~~ + J~, 

which using the continuity equation can be put in the form pl. \lv + J( -p\lv) = 0 

which is always zero. So it will remain constant in time, that is to say that each 

particle will have the volume "assigned to it" expand and compress as the probability 

density decreases or increases respectively, but it always represents the same prob­

ability volume. This is illustrated on Fig. 2.3, the inital state has two Gaussians 

placed symmetrically about the origin. As the wave packets spread they interfere 

but the trajectories do not cross. The shaded volume represents the same probability 

volume 1/N at all times and initially experiences expansion as the probability density 

decreases while the Gaussian packet is expanding, but then experiences compression 

when the Gaussian packet "meets" trajectories from the neighbouring packet, giving 

rise to an increased probability density. 

This probability volume can be used to effectively label each particle (as is done 
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in [22]) since each one can easily (at least in lD) be assigned a cumulative probability 

that will remain constant throughout time: P(xi, t) = f~oo p(x', t)dx' 

In fact, in the Newtonian code of Sec. 3.4.2, which is how we will select our particle 

ensemble from w(x, 0): we will place a particle whenever the cumulative probability 

has increased by 1/N where N is the chosen number of particles. Thus between two 

trajectories there will always be the same amount of probability -ft with the possible 

exception of the two particles at the extreme boundaries. 



Chapter 3 

Calculations 

3.1 Prelude: Units 

Quantum mechanical phenomena are mainly observed in the atomic domain, al­

though increasingly they are relevant in meso and nanoscopic systems. When studying 

such systems, physicists and chemists find it convenient to work in the atomic sys­

tem of units where n= m = 1. The resulting Schrodinger equation for an electron 

simplifies to: i~~ = -~\72 \lf + Vw 

On Table 3.1 for convenience, we include the conversion factors between the atomic 

system of units and the SI system. 

SI units I I I Physical quantity IAtomic Units I Description 
34 J sAction i; Planck's constant n=1 1.054571 * 10 

length Bohr Radius 5.2917 * w-11 ma0 = 1 
electron's mass mass 9.109382 *w-31 kgme= 1 

4.35974 * 10 ·lS JEnergy Hartree energy Eh = 1 

Table 3.1: Atomic units ([23]) 

25 
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3.2 Relevance of Time-Dependent Methods 

Why use a time dependent method? Since inception of quantum theory, time 

independent methods have always been preferred as being more tractable and efficient, 

and in most cases synthesizing the relevant physical processes taking place in a system. 

Obviously if we are dealing with a time dependent Hamiltonian we have no choice 

but to use a time dependent method. However even in the case of a time independent 

Hamiltonian it can sometimes be advantageous to use a time dependent method. 

To illustrate this let us consider spectral methods. The standard way these work 

is by projecting the initial wavefunction onto the eigenvector basis (stationary states) 

of the system, and then evolve in time a linear combination of these projections. 

(3.1) 

with ak =< ¢klw(O) >and H¢k = Ek¢k 

This is often the preferred route since initially we deal with space only and not 

space and time. However in some cases (i.e. scattering) the eigenstates become con­

tinuum functions making the discrete sum in equation 3.1 an integral over continuum 

states and if the calculation is required at very large times, it may be difficult to 

perform the Fourier integrals with sufficient accuracy. In such cases a time dependent 

method may be advantageous, an early example of which is in Heller's work ([24]). 

3.3 Wavefunction Based Calculations 

As we saw at the end of the previous chapter, Bohmian trajectories can be calcu­

lated a posteriori, after the full time evolution of the wavefunction 'll(x, t) is known. 

Since, apart from a handful of cases, analytical solutions are generally not available we 
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must turn to calculating the time evolution of the system via some standard method 

that is known to work. One such method, augmented by transparent boundary con­

ditions, is described in the next sections. 

3.3.1 Time Propagation 

If we wish to compare the efficiency and accuracy of a Bohmian method, we need 

some standard to which it can be compared. Towards that objective we implemented 

a fixed grid split operator method that will serve as a "gold standard" in later sections. 

The main reason we choose a particular method (see [20]) over other standard 

methods is that for this one, transparent boundary conditions have been devised 

and it is quite efficient. As for the method specifically, it uses the Crank-Nicholson 

scheme to propagate the system in time by symmetrizing the propagator : e-tH8t ~ 

1 + iH<5t- ~H 2<5t2 into the Cayley form: e-iHlit = ~~:Z~~j~ + 0(<5t3 
) , which is second 

order accurate, and more importantly unitary. The Numerov algorithm is used to 

extend the accuracy in the spatial domain to fifth order. 

3.3.2 Boundary conditions 

Transparent Boundary Conditions (TBC) are very convenient in that they allow 

us to concentrate on a small volume with great detail where the "interesting" physics 

may be happening, without worrying about unwanted wave reflections from artificial 

boundaries. Complex potentials are sometimes used as an absorbing layer on the 

boundaries to avoid having to enlarge the computing domain, but they never work 

perfectly. 

In our case TBCs are also essential for easy comparisons between wave and particle 

methods, as TBCs are inherent to the Bohmian method (that is one of its advantages). 
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Figure 3.1: Time evolution of a free wavepacket in 1D 

(no reflection is apparent at the domain boundaries, TBCs are working) 


TBCs for different kinds of differential equations are discussed by Matthias Ehrhardt 

m [25]. In particular discrete TBCs in one dimension for the Schrodinger equation 

were derived in [26] and an adaptation to the Numerov method is presented by Moyer 

([20]). 

We can observe the time evolution of a free Gaussian with some initial momentum 

to the right , in Fig. 3.1; the packet spreads in time but no reflection occurs when it 

hits the domain walls because TBCs are enabled. 

We should note that implementation of TBCs comes at a cost of the minor incon­

venience that we need to record the wavefunction at the boundaries at each time step, 

and store this history. This has an increasing performance cost as time progresses. 

The reason these values are needed, is that at the system boundaries, there are fluxes 

of probability in both directions, and it is not valid to suppose purely outgoing flux, 

even when the net flux is to the right. 
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-

Figure 3.2: Schematic of a double barrier potential 

A more detailed description of the TBC used is presented in appendix A. 

3.3.3 Calculation of Trajectories 

Let us take a more interesting example of a Gaussian packet hitting a double 

barrier, as illustrated by the potential in Fig. 3.2. We can observe the resulting 

time evolution in picture 3.3. Some reflection to the left from the first barrier, some 

transmission to the right past the second barrier and indeed some metastable states 

that become temporarily trapped in between the barriers (and eventually leak out) 

are seen. 

We were faced with an interesting problem when trying to calculate trajectories 

from the wavefunction results. Remembering from Sec. 2.4 that the trajectories are 

determined by the particle velocities v = V S/ m, we then need a way to extract the 

phase information from the wavefunction, which is represented by a set of complex 

numbers. Unfortunately the standard way of simply taking the arctan(Imag/Real) 

will only give results in the ±1r domain, so we need to monitor the function for points 

where sudden jumps of 27r are required for continuity. These are indicate a crossing 

of the ordinate axis as illustrated by Fig. 3.4 . If we were to take just the gradient 

of the phase provided by the computer code, we would be presented with unphysical 

velocity jumps at those points, resulting in erroneous trajectories. 
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Figure 3.3: Time evolution of the wavepacket incident on a double barrier potential , 
from the left. 

( otice the transmitted and metastable states to the right and in the middle 
respectively) 

60,----,---~-~-~-~----, 

so 

40 

30 

20 
-1 

10_, . 

-3 


_, OL_------,1-',0 40-0---,50~0_
0--2,-',00------,'-300,------~ _JSOO -loo;------;,~oo--,:;;;oo;-------;;: soo3o:-o-~.o;:-o---;so=o-----:!.

(a) computed phase showing jumps of 1r (b) same, but with discontinuities resolved. 

Figure 3.4: Example of phase wrapping around ±1r and its solution, in lD 
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Figure 3.5: Bohmian trajectories corresponding to the wave function of Fig. 3.3 
( viewing angle is rotated by 90 degrees, time is now x axis) 

Once we have the correctly calculated velocities we can proceed to integrate the 

position x = Jvdt from v = ~~ to get the updated positions of the particles and 

thereby define the trajectories. 

An example of trajectories calculated from the wavefunction can be seen in Fig. 

3.5. The metastable orbits inside the double barrier can more easily be seen than 

in Fig. 3.3 (as can their eventual tunneling to escape to the right or left side of the 

barrier). 

3.3.4 Web Interface 

We should add that, for convenience, at the time we developed a website that took 

as inputs the various parameters of a calculation such as dimensions, time steps, po­

tential , initial wavepacket, etc and then fed these to a background running program. 

After a calculation related delay, a webpage with both the wavefunction solution and 
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Figure 3.6: Typical run of the code via web interface 

the corresponding calculated trajectories is output by the program. 

A screenshot of a typical screen is shown in figure 3.6, the resulting page will 

present similar contents to figs 3.3 and 3.5. 

We should also mention that recently, an improvement to the Crank-Nicholson 

scheme was introduced by W. van Dijk and F. M. Toyama (see [21]) that can be ap­

plied to further increase the accuracy of these wavefunction based calculations. Their 

method uses high order formulae in both space and time domains, typically of order 

h20 , where his the step length. The extra labour per step is greatly overcompensated 

by using large steps in both space and time, reducing the overall computing time by 

several orders of magnitude. However, they have not yet incorporated TBC into their 
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methods. 

3.4 Bohmian Calculations 

First a word about boundary conditions. In trajectory based calculations the 

system is generally unbounded, as we simply keep track of the numerical value of 

the current position of each particle. In fact we can easily incorporate any kind of 

boundary conditions in the potential calculation. 

This is in a marked contrast to grid based methods as illustrated in appendix A 

where we note that to enforce transparent boundary conditions (zero outside poten­

tial) an elaborate procedure is necessary that becomes more and more computation­

ally intensive as time progresses (we need to keep a history of boundary values of the 

wavefunction). 

3.4.1 Particle Approaches 

As we noted in Sec. 2.4, the cumulative probability can be used as a convenient 

label for each particle, i.e. each particle carries with it a certain volume of probability 

volume through time that can be used to calculate the probability density. We can 

then choose one of two courses: 

We can work with probability densities which we will have to update at each step 

via ~ = p0e-"il.v and then evaluate p' and p" to compute the quantum potential. 

Or we can label each particle with its cumulative probability P(x) at each spatial 

point which will then be constant in time at the cost of when p is required we use ~~ 

(from P(x) = J:.oo p(y)dy) , thus increasing by one order the derivatives required for 

the Q calculation. We will implement both methods of keeping track of the probability 
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density and compare them in terms of stability. 

3.4.2 Algorithms- Newtonian Equations of Motion 

Let us recall the Bohmian Equations of motion of Sec. 2.2.1: 

ftp+ p\lv = 0 

dv = _..!.\J(V + Q) (3.2)
dt m 

= _.!E._ V'zR
Q 2m R 


Using this set of equations the procedure to follow is this: 

• 	 Start with a statistical ensemble representative of the initial state of the system 

{Xi, Vi, Pi} (we shall use a linked list for storage). 

• 	If using P, from {xi,~} calculate p. 

• 	 Calculate Q from {xi,~} or {xi, Pi} depending on the labeling method used 

(more on this later). 

• 	 Update vi via the gradient of V + Q (~~ = -~\l(V + Q)). 

• 	 Update xt from vt (x = ~~). 

• 	If we are not using P we need to update Pi according to 1f = p0 e-'V.v 

• 	 At this point we have advanced by <5t in time and the whole process is repeated. 

If we want to avoid dealing with P (and its 3rd order derivatives for Q) we can use 

p instead, provided we update it at each time step using the continuity equation as 

illustrated in the following section. 
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3.4.3 Algorithms- QHJ Equations of Motion 

Also we can minimize the numerically troublesome task of taking gradients by 

using the Quantum Hamilton-Jacobi version of the equations of motion from 2.2, this 

time taking care to update the velocity of each particle as v = ';;: 

~ + \7 (p '::) = 0 

as= _C'i1S)2 _ (V + Q) (3.3)at 2m 

Q =_.ft._ V'2R 
2m R 

Using this set of equations the procedure to follow is this: 

• 	 Start with a statistical ensemble representative of the initial state of the system 

• 	 Calculate Q from {Xi, Pi} 

• 	 Update S via the Quantum Hamilton-Jacobi Equation ~~ = - <~~
2 

- (V + Q) 

( i.e. in an explicit central differences implementation, time evolution will take 

the form: S(t + 8t) = S(t- 8t) - 28t [ (V'~~))2 + (V + Q)J ) 

• 	 Calculate vi from v = Y'S 
m 

• 	 Update Xi from vi 

• 	 Update Pi according to !f{f = p0e-V'.v or equivalently !f{f = p0e-(V' 
2
S)jm 

• 	 At this point we have advanced by ot in time and the whole process can be 

repeated. 
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3.4.4 Construction of the Wavefunction 

At any time we can recover the standard wavefunction view of the system ([8]) by 

integrating both phase and density along a trajectory . 

The evolved density is determined by integrating the equation of continuity: 

p(x, t) = p(x, O)e- f~C'v.v(x,t))dt 

Evolution of the phase is obtained by integrating the quantum Hamilton-Jacobi 

Equation: 

2

JdS J (\7S)S(x, t) = S(x, 0) + (dt )dt = S(x, 0) + ( m - (V + Q))dt
2

Or combining both terms and referring to the original wavefunction we get: 

w(x, t) = w(x, O)ef~('v.v)dte* J~((~~t -(V+Q))dt (3.4) 

3.4.5 Choice of Integrators 

Given the equations of motion the question arises, what kind of integrator to use 

to evolve these in time. Since the time integration will be at the core of our procedure, 

special care in terms of accuracy and efficiency is required in picking the numerical 

integrator to use. 

One other consideration is that since, as we can see from Sec. 3.4.2, we are 

integrating an Hamiltonian system, we would like certain constants of motion such as 

energy for a classical system and normalization, in a quantum system, to be conserved. 

The symplectic class of integrators, widely used in the fields of celestial mechanics 

and molecular dynamics, are designed with those properties in mind, so its remains 
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I Coefficient I II k=l II k=2 II k=3 II k=4 
1-2-3-2--3 1-2-3-2--3 2+2!+T-32+2!+T!ak 6 6 6 6 

0bk ~~ ~ 
2-23 1-23 2-23 

Table 3.2: Coefficient values for method S4a at each intermediate step k 
(reproduced from (28)[29]) 

to choose one from that class. 

To help us do that we refer to the paper by Gray (1994) (28] where he compares 

a range of symplectic integrators as well as more standard ones such as fourth order 

Runge-Kutta, in terms of their speed and conservation properties in a molecular 

dynamics context. 

We selected the fourth order method S4a (which was originally introduced in (29]) 

because from all the methods examined it provided the best balance between speed 

and accuracy. The coefficients used, ak and bk, are taken from (28] and listed in table 

3.2. They are used to integrate the equations of motion as directed by eq. 3.5. 

. &Hp=-aq 
(3.5) 

. &H 

q = &p


{ 

where F = - ~~ and G = ~~ = ~ = v and you take four steps k = 1..4 to update 

the values of p and q. 

3.5 Evaluation of the Quantum Potential 

We have seen in Sec. 2.4 that each particle carries with it a predetermined amount 

of probability. We usually pick ~ for each trajectory when using the Newtonian form 

of the Bohmian equations. In the QHJE case we often use an initially uniform grid 
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in which each probability volume will be set but different for each trajectory. In 

either case the cumulative probability that it carries (at least in lD) unequivocally 

identifies the particle and can be used to label it. When required we can calculate the 

probability density asp= ~~ which follows from the definition of P(x) = f~oo p(y)dy 

Depending then on which variables we choose to work with (they are going to 

vary as with different methods of interpolation), Q the quantum potential and FQ 

the quantum force will be given by: 

or, with R = Vf5, 

(3.6) 

(3.7) 

In terms of P, 

(3.8) 

(3.9) 

Or instead, using p and determining its logarithm we obtain with C = log R = 

~ logp: 

(3.10) 
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(3.11) 

This logarithmic form has a number of advantages: 

• 	 It more naturally represents an exponentially decaying probability. 

• 	It avoids the problem of dividing by a possibly very small number . 

• 	 Last but not least, C lends itself more naturally to a polynomial interpolation 

than p (i.e. for a Gaussian C is a quadratic polynomial). 

The non-locality of Q is patent in the V' and \72 terms and presents a significant 

numerical challenge. In the next few sections we will present some ways of extracting 

their values from our discrete set of trajectories. 

3.6 Interpolation Schemes 

3.6.1 Quantum Potential by Polynomial Interpolation 

We are given a set of discrete points and are asked to calculate gradients, the 

simplest and more intuitive choice is to approximate these points by continuous poly­

nomial functions which can easily be differentiated. 

This interpolation scheme yields the most local approximations to Q and in fact 

for the case of 1 or 2 neighbouring points it will reduce to the common two and three 

point formulas for the first derivative, respectively. 

Given a particle and its N-1 nearest neighbours at distances ~Xn with values Yn 

we want to determine the coefficients of the interpolation polynomial y = c1 + c2x + 

C3X
2 + ... where Cn = ~! ~ lx=xo 
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Figure 3.7: Induced oscillations in a high degree polynomial fit 

( the underlying is a simple parabola with only one offset point near x=5) 


They are determined by solution of the linear system: 

1 L}.xl (L}.x1) 2 (L}.x1)
3 

Y1 

1 L}.x2 (L}.x2) 
2 

(L}.x2)
3 

1 L}.x3 (.6.x3) 2 (.6.x3)3 (3.12) 

1 Llx4 (.6.x4)2 (.6.x4)3 
Y4 

As the book Numerical Recipes [31] reminds us, this is a Vandermonde Matrix 

which can be quite ill-conditioned, so we can expect the coefficients thus obtained to 

be undesirably sensitive to small variations in the data points. 

Instability is especially obvious when a large number of points is involved in the 

polynomial interpolation. This is illustrated in Fig. 3.7 where we start with a perfect 

parabolic distribution of points and slightly shift only one point (near 5). We can 

observe how a high degree polynomial fit tends to oscillate wildly around the interpo­

lated points as it tries to pass exactly through each and every one of them (Runge's 

Phenomenon). 

Lagrange interpolation thus has some desirable characteristics such as simplicity 
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and the fact that it hits each point exactly but as one makes it less local (by including 

more neighbouring points in the interpolation) it becomes less and less stable. 

One should note as well that given the form of eq. 3.11 and in particular its 

\13C term that the polynomial used should be of at least fourth degree in order to 

contribute to that term in the quantum force. This observation holds for other types 

of interpolation that depend on polynomials such as the one discussed in the next 

section. 

3.6.2 Least Squares Approximation 

We noted before that Q is non-local, so one can attempt to capture more of this 

non-locality by including a larger number of nearest neighbours in the polynomial 

interpolation. Unfortunately as we saw in Sec. 3.6.1 and illustrated by Fig. 3.7 the 

polynomial interpolation does not do well with many points, becoming hypersensitive 

to noise. 

If we increase the number of points in the interpolation without increasing the 

degree of the polynomial we get an overdetermined system of equations that we can 

solve optimally using the least squares method. 

We wish to fit a polynomial function of the type: 

Again we get a linear system similar to eq. 3.12 but now for M points, we have 

a MxN matrix with M > N which we can solve using for instance the SVD method 

(Singular Value Decomposition, see [56) ). This is now a semi-local evaluation of the 

derivatives since we are taking information from more and more distant neighbouring 

particles when evaluating gradients. 
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-35,'---'----'--"'--___.,.._....___.__ __..__---:------',0 

Figure 3.8: Least squares approximation to the same points as in Fig. 3.7 

The difference is dramatic in Fig. 3.8, specially when we compare it with Fig. 

3.7 of the polynomial interpolation. The interpolating points are the same for both 

cases, yet we can see how the least squares approximation reproduces almost exactly 

the original generating quadratic form. 

Overall the least squares method results in a smoother approximation to the un­

derlying distribution and therefore should lead to more physically valid results when 

evaluating its gradients (especially if we have some previous knowledge of the un­

derlying distribution). We note however that because of this weighted approach the 

interpolating function will not, in general, pass through each point. In fact in Fig. 

3.8 we can see that it basically ignores the sixth point from the left. This averaging 

property can lead to trajectory crossings down the line (more on these in the next 

chapter). 

3.6.3 Other Approaches 

The interpolation methods described in this chapter tend to be unsatisfactory in 

all but the simplest situations. In the next chapter we will explore alternative ways 

of evaluating Q with better stability properties. 
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Figure 3.9: Example of free packet evolution using least squares interpolation 

Top: Phase diagram 


Middle: Space-time diagram 

Bottom: Dynamical timescale (here it is always increasing) 
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As a testimony to the computational versatility of the Bohmian interpretation, 

there are a plethora of numerical implementations of the basic Bohmian equations. 

Some of the methods we didn't mention here include the derivative propagation 

method, covering function , Wigner function approach, etc. (see [8] for an overview). 



Chapter 4 

Numerical Breakdown 

The particle method works quite well and is known to be stable for Gaussian 

packets in free space, linear and quadratic potentials, where the time evolution of 

the wavefunction is shape preserving (these are incidentally, cases where analytical 

solutions also exist). 

However, if we introduce a minute cubic or quartic term in the potential or a 

barrier, the system will, given enough time steps, become unstable, eventually leading 

to nonsensical conditions such as trajectory crossings, the telltale sign that something 

has gone wrong. 

In this chapter we will explore the causes and conditions that affect the stability 

of the particle method. We will be very interested in what role numerical instabili­

ties caused by interference play in this, and finally we will introduce some alternate 

ways of evaluating the quantum potential that may have better stability and fidelity 

properties. 

45 




46 CHAPTER 4. NUMERICAL BREAKDOWN 

Figure 4.1: Trajectory crossings caused by numerical errors 

4.1 Anatomy of a Trajectory Crossing 

Referring back to Sec. 2.4.2, we recall that one of the important properties men­

tioned was that particle trajectories should not cross; this is a consequence of the 

single-valuedness of the underlying wavefunction. If we do observe crossings, we can 

be assured that something has gone wrong with the calculations that led to those 

crossings (see Fig. 4.1). 

When two trajectories approach each other in a sudden manner, it becomes diffi­

cult to reliably estimate p from ~~. Furthermore because of the denominator term in 

Q, when p tends to 0 , we can expect to see big swings in the value of Q ( and high 

gradients) which in turn lead to high particle velocities which may then catapult a 

particle towards another. In fact because p = ~~ when they cross, dx tends to zero 

and thus p becomes infinite, or in numerical terms "diverges", that can be seen by the 

sudden scattering of particles in Fig. 4.1. 

In the real world there has to be a force that prevents the trajectories from getting 

too close. This is the quantum force term (Sec. 3.5), and a trajectory crossing is an 

indication of too big a time step or a badly calculated quantum force (i.e. insufficient 

magnitude or pointing in the wrong direction). 

To illustrate how this could happen, let us take the example of the least squares 
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Figure 4.2: Rotated view of \7S 

(points near 0.2 are about to cause a trajectory crossing) 


Figure 4.3: The smoothing property of Least Squares 
(it largely ignores the particle shift near 5) 

method of Sec. 3.6.2. 

We start with an uniform sampling of points taken from a simple quadratic form. 

Now we artificially move particle 6 to the left (see Fig. 4.3). We can see that the 

characteristic smoothing responsible for the stabilization of the derivatives here works 

against us and smoothes out the crucial area between the now almost overlapping 

points 5 and 6. This smoothing prevents the particles from "seeing" each other when 

calculating Q with the least squares interpolation and thus we don't have a suitable 

quantum force to "repel" the particles and thereby prevent a crossover. 

There are then two issues that should be addressed in order to prevent particles 
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from getting excessively close to each other: The proper interpolation of Q and a 

time step small enough to enable the particles to respond to Q and decelerate. The 

time step issue will be addressed in the next Sec. 4.3.2. 

4.2 Remedies 

4.2.1 Artificial Friction Term 

By introducing a term of the form Vj = - fc ~~ in the Hamiltonian ([44][45]) where 

fc is the friction coefficient, we artificially introduce dissipation into the system. We 

will obviously destroy any energy conservation properties so it is certainly not a way 

to get the proper time evolution of the system. However a slight amount of artificial 

friction can be beneficial to the stability of the simulation and may be introduced so 

as to dampen spurious numerical oscillations that typically occur in the evaluation of 

gradients. If the friction is low enough, we can do this without completely changing 

the character of the system. 

If one takes this to an extreme, and increases the friction too much, the system 

will evolve into its ground state. The ground state in a Bohmian context is peculiar in 

that all movement stops as the particles remain static at the bottom of the potential. 

In Fig. 4.4 we can see the system relaxing towards the ground state of a potential 

well. 

4.2.2 Fourier Residues 

This is an alternate interpolation scheme that combines a polynomial least squares 

interpolation with a Fourier expansion to approximate the log density. 

The rough rationale for this combination is that the polynomial form arises nat­
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Figure 4.4: Wavepacket evolution with a large friction coefficient 

From top to bottom: Phase space, time-evolution and dynamic time scale 


Figure 4.5: Resulting linear time-evolution of the system of Fig. 4.4 

(note the convergence to the ground state, where the Bohmian particles remain 


motionless) 
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Figure 4.6: Example of interference 

Top: log density profile 


Bottom: Corresponding -Q 

(Sampling particles spaced by 1% probability ) 


urally from the use of Gaussian wavepackets (where the log density is a quadratic 

form) and the fact that when we have potential reflection we should expect interfer­

ence terms to start developing in the density function (see Fig. 4.6). 

These interference terms are characteristically oscillatory in nature and thus fa­

vorably inclined to be represented by a Fourier expansion. 

Mathematically the approximation to the density with an oscillatory residue is: 

The polynomial (of order m) part of C, the log density, can be determined for 
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Figure 4.7: The residue of a particular wavefunction and the result oflow pass filtering 

instance in a least squares way. Once that is determined, the residue Res(x) = 

C(x)- Polym(x) is calculated and can be expanded in a (discrete) sine series (DST) 

as in equation 4.1. 

y(k) - ~:;'= 1 x(n) sin(n Nk: ), k = 1, ... , N (4.1)
1 

Recalling equation 3.11, in order to calculate the quantum force we will require 

C',C"and C 111 
: 

The calculation of derivatives for the polynomial part of C is straightforward. To 

determine the derivatives for the residue part we should differentiate in Fourier space. 
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Since we are now working in Fourier space, at this point if desired, we can low-

pass filter the residue in momentum space (Fig. 4. 7) by adjusting the coefficients 

of Res(k), and then make use of the differentiating property of Fourier transforms 

F('/!J = ikF(J) to calculate the needed derivatives of the residue as shown on the 

right side of eqs. 4.2 

C' - Poly'+ F-1 (ik.Res(k)) 

C" (4.2) 

C 111 Poly"'+ F-1
( -ik3 .Res(k)) 

Here F-1 is the inverse discrete sine transform (IDST) that takes us back to position 

space and is the reverse of eq. 4.1: 

K . knx(n) L.k= 1y(k) sm(1r N + 
1

), n = 1, ... , K (4.3) 

This is the ultimate non-local approximation to Q since we take information from 

every other point to evaluate the gradients C(n) at each location. Practically, although 

the estimates for C(o) correlate very well with C , the estimated gradients tend to 

oscillate for points near the edge, giving rise to problems in future time steps. 

4.2.3 Spline Interpolation 

We have seen in Sec. 3.6.2 that the least squares method, although less local, 

smoother and more reasonable looking than the polynomial interpolation, will not 

prevent trajectory crossings because it doesn't pass through every point. 
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(a) Polynomial interpolation (b) Spline interpolation 

Figure 4.8: Comparison of two interpolation methods with same arbitrarily dis­
tributed points 

(The spline method is distinctly more physical) 

Ideally we would like to have an interpolation of C or p, that although smooth and 

taking information from as many points as possible, still manages to pass through 

each point exactly so that trajectory crossings may be avoided. 

This should be in the spirit of the polynomial interpolation but without the sta­

bility issues that riddle the former, and somewhat in the spirit of the least squares 

approximation which takes information from as many points as possible, but being 

certain to pass through each fitted point, exactly. A method that satisfies both re­

quirements is the spline approximation, where you approximate piecewise with poly­

nomials. 

In Fig. 4.8 illustrate the difference between the polynomial and the spline methods, 

and in particular the fact that the splines still pass through every point, while the 

overall function looks much more smooth( and physical) than the polynomial. 

In Fig. 4.9 we see the effect of shifting that sixth point towards the left in the 

least squares and splines method, the latter passes through each point and doesn't 
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(a) Least Squares interpolation (b) Least Squares interpolation (c) Spline interpolation 

Figure 4.9: Interpolation methods compared 

seem to suffer from big oscillations as does Lagrange interpolation. 

To calculate the quantum force, we will use C instead of p, as its predominantly 

polynomial shape is better suited to being interpolated by splines. Because we need 

terms of order \73C in eq. 3.11, if we are using P , the cumulative probability, the 

degree of splines we should use is four to make the quantum force term continuous . 

Therefore we want to use at a minimum quartic splines instead of the more commonly 

used cubic splines (see [31]) to interpolate C (a good guide on the method of splines 

is Carl De Boor's book[38] ). 

4.2.4 Smoothed Splines 

Unfortunately the spline interpolation is liable to develop oscillations in Q at the 

edge of the interpolating domain. These propagate in time and eventually compromise 

the whole simulation. An example of this phenomenon is presented in Fig. 4.10. 

As we saw in the previous section the spline method has so many other desirable 

properties, that we should try to fix this edge effect. One way of doing that is to use a 

smoothing spline with a site dependent parameter p that will make the interpolation 

smoother at the edges, and less sensitive to numerical oscillations. 
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Figure 4.10: 'Ifajectories x(t) where edge instabilities develop 

The smoothing spline SS will minimize: 

p t w(j)(C- SS(x)) 2 + (1- p) j )..(x)('\72SS) 2dx 
j=l 

The parameter p will control how smooth the spline will be by emphasizing the 

point distance (p- 1) or the low gradients (p ---t 0). Cis the usual log-density known 

at sites x1 and w and ).. are site dependent weights. We can, by adjusting this local 

parameter p, generate a smoother interpolation of C near the edges while remaining 

close to the original splines in the middle points. 

4.2.5 Train of Gaussians 

This alternate interpolation scheme takes its inspiration from the field of digital 

signal processing, in particular in the Shannon sampling of a discrete signal, and 

specifically of an irregularly sampled discrete signal as our Bohmian points really are. 

Because the density is at all times positive definite we should enforce this by 

substituting the sine function from Shannon sampling which allows for negative values 
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Figure 4.11: p representation by a train of Gaussians 

(the solid line is the resulting p and arrows represent sampling points ) 


with a Gaussian shape that is convolved at each sample point represented by a delta 

function. This procedure is illustrated graphically in Fig. 4.11. 

Normally each point represents the same probability volume, thus the Gaussians 

will have the same volume, resulting in sharper distributions when points are closer 

together and more diffuse ones when points are far apart. Mathematically what we are 

doing is convolving a series of delta functions (the particle locations) with Gaussians 

of varying standard deviation but the same area (thus the different heights in Fig. 

4.11). 

1 N (p(x) - N'L.n= 16(x- Xn) *Gn x, ern) 

p(x) ~L.;[=lGn(X- Xn, ern) 

where Gn(x, ern) represents a Gaussian centered at 0 with a standard deviation of ern. 
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(4.4) 


Recalling the form of the quantum force when using p as in eq. 3.7 we are going 

to need terms of the form v;p, ("7)3and 'il~~
2

P. Since we can analytically differentiate 

the Gaussians, it is just a (laborious) matter of calculating Gn,G~,G~ and G~' and 

combining these according to eq. 3.7 to get an analytic form of Q for a given particle 

distribution: 

G' (x, a) 

G" (x, a) 

G111 (x, a) 

Having the different derivatives of G we can now express the needed terms of p (x) 

as: 

p (x) 1 N
N~n=lGn (x- Xn,an) 

Vp(x) 
-

~~=l- (x- Xn) Gn (x- Xn, an) 
p (x) a2 N p (x) 

V 2p (x) ~~= 1 ( (x- Xn) 2 
- a 2) Gn (x- Xn, an) 

p (x) a4N p (x) 
\13p (x) ~~=1 ( (x- Xn) (3a2 

- (x- Xn) 2 
)) Gn (x- Xn, an) 

-
p (x) a6 Np(x) 

Finally we can plug these values in the quantum potential or the quantum force 



58 CHAPTER 4. NUMERICAL BREAKDOWN 

Figure 4.12: Trajectories x(t) for the harmonic oscillator in the classical limit (t vs 
x) 

as required: 

Classical limit from vanishing Q The classical limit is approached whenever the 

system's action is large compared to nor alternatively Q ---+ 0. 

By turning off the quantum potential we can appreciate the differences between 

the classical and quantum worlds. 

In Figure 4.12, which represents an harmonic oscillator, we can see that with Q = 0 

we have trajectory crossings and every particle follows a sinusoidal path independent 

of the other particles. 

Fig. 4.13 represents the same potential. Here we can see that the quantum 

trajectories are no longer independent, and they do not cross. 

Finally in Fig. 4.14 we have a hint of how classical behaviour may emerge from 
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16 1 B 02 04 06 08 12 14 ta 1 a 

(a) Classical 	 (b) Quantum case, note the trajectories do not 
colapse 

Figure 4.13: Detail of effect of "turning on" the quantum potential, over a quarter 
period of the oscillation (t vs x) 

Bohmian trajectories. In this case we use the train of Gaussians interpolation method, 

but with somewhat sharper density distributions than usual. 

Looking at Fig. 4.15 it is apparent that we don't actually have trajectory crossings 

but if we add a property of indistinguishability to the neighbouring particles those 

trajectories would appear to cross when we zoom out back to Fig. 4.14 . This is 

speculative but it would seem that Bohmian mechanics would, in this way, enable a 

natural emergence of classical behaviour. 

4.3 Interference 

"The double slit experiment has in it the heart of quantum mechanics. In 

reality it contains the only mystery .." 

Richard Feynman 

How does interference arise in our bohmian context? To study that, we are going 

to use two Gaussians freely evolving in space and eventually interfering together. To 
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Figure 4.14: Avoided crossings between two Gaussians using sharply defined interpo­
lation kernels 
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Figure 4.15: Trajectory detail of Fig. 4.14 



61 4.3. INTERFERENCE 
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Figure 4.16: Wavefunction of two compact Gaussian packets interfering 

= - ~ - 1~ 1= 1­ 1­ 1­ = 
Timestep (.1 fs} 

Figure 4.17: Trajectories corresponding to Fig. 4.16 

(In this figure the space and time axes have been interchanged as compared to Fig. 


4.16) 


obtain the proper trajectories, we first calculate the wavefunction using the techniques 

of Sec. 3.3. · In Fig. 4.16 we can see regions of compression (in red) and expansion (in 

blue) typical of interference patterns emerging as time passes. 

In the frames of Fig. 4.19 we can readily see one reason why it may be difficult to 

capture this behaviour using the traditional particle treatment: insufficient sampling. 
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Figure 4.18: Trajectory detail of interference between two extended Gaussians 

The interference emerges from a zone of negligible density where there are very few 

particles encoding for the log-density field. In a density weighted particle distribution 

for this case, the majority of the particles will initially be far away from the zone where 

interference develops and so will not be able to account for it, some resampling of that 

area will be in order if we want to capture that information earlier in the simulation. 

4.3.1 Dynamic Resampling 

It is that little blip near x = 0 in the quantum potential of Fig. 4.19 and the 

associated discontinuity in the velocity fields of Fig. 4.20 that are going to self feed 

in time and grow into the interference patterns of the density distribution. 

There is no mystery as to how a trajectory on the far right "knows" that there is 

a trajectory on the far left, that information is carried by the quantum potential and 

it has its origin in that small bump in Q between the two Gaussians. 
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Figure 4.19: Evolution of the log-density (upper graphs) and quantum potential Q 
(lower graphs) at selected times. 
On each panel, representing a particular timestep, the log density and corresponding 

Q are drawn versus space 
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..... 

Figure 4.20: Evolution of the velocity profiles for two Gaussian packets with different 
separations (x vs v) 
(Left panels: the Gaussians are initially centered at ±7, and right panels, ±15 units 

of distance) 
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(a) linear 

Figure 4.21: Thajectory compression and expansion in a barrier scattering problem 

How can we hope to capture this behaviour? Besides the obvious importance of 

having a physically acceptable interpolation method, one possibility is that we must 

change the premise that we need only sample regions of space where the probability 

density is significant, as we have already seen that the quantum potential does not 

depend on absolute densities. 

Instead we should resample regions where the inter-particle distance is contracting 

and where that distance is above a certain threshold (to avoid oversampling) in order 

to properly capture the highly variable gradients in Q and S or v that will develop in 

the region. The reason for the distance criterion is related to the Shannon sampling 

theorem in that, if we have interparticle spacing of ~x, we can only hope to obtain 

momentum information of order :S ix. Since we will have high gradients in the 

interference area, we should decrease the average ~x in this region. 

4.3.2 Dynamic Timescale 

In order to estimate the error in our calculation at the end of each time step, we 

compare the results (as measured by the particle positions or more accurately by the 
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gradients of a field like S or C) with the errors obtained by taking two half steps. This 

way we can monitor the error and maintain it below some predetermined threshold 

by making dynamical adjustments to the time step. At the end of the process we get 

to keep the more accurate two half step result so the extra calculations involved are 

not completely wasted. 

In our particular calculations we are cutting the time step in half in case of too 

large an error and increasing it by 1% if the error is acceptable, this enables the time 

step to "recover" from very low values in regions where such is possible, as illustrated 

in Fig. 4.22. 

In the case of a Gaussian packet in a parabolic potential, we get a decreasing time 

step as the packet approaches the bottom of the potential where it has maximum 

momentum and highest density of trajectories (and therefore where we need a smaller 

time step). 

Following this point of maximum trajectory density, circa step 750 in Fig. 4.22, 

the time step gradually recovers to larger values accelerating the simulation. 

Furthermore if a more serious error condition is detected such as a trajectory 

crossing (as opposed to the error simply exceeding some threshold), the time step 

is again cut in half, and in addition we restore the system to the state of some 

predetermined number of time steps in the past, to enable it to avoid an evolution to 

the serious error condition. 

In Fig. 4.24 we can see the reason why we have to go back a couple of time steps 

in order to correct a trajectory crossing. It is that usually, by the time it becomes 

apparent that the positions of the particles are erroneous, the background fields (such 

as Q and S ) have been compromised for quite a while. Indeed some interpolation 

methods (i.e. splines) are prone to develop nasty oscillatory perturbations by the 
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Figure 4.22: Dynamic timescale, abrupt declines represent time step adjustments 
caused by error conditions 
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Figure 4.23: Linear time scale 

(Using the recorded time steps from Fig. 4.22 we can convert the space-time graph 


back to a linear time scale where the Harmonic oscillator trajectories are more easily 

recognized) 
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10 

Figure 4.24: Perturbation in secondary fields not yet apparent in the log probability 
Clockwise from top left: log probability C , Q , \728 and \78 

edges that will self-feed after many time steps and give rise to trajectory crossings. 

Because of this lag in cause and effect , we must use different monitoring functions for 

different methods. 

Areas that are troublesome when evaluating derivatives with splines, are the com­

pression areas, where the trajectories are coming closer together and thus the density 

is increasing leading to higher numerical error in the differentiation. These areas can 

be identified by \728 < 0 or equivalently \7v < 0, that area is readily visible in the 

right bottom panel of Fig. 4.24. 

A useful monitoring function for problematic zones that does a good job of catching 

unstable conditions early on, is the time evolution of the quantum potential, 
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Figure 4.25: High frequency oscillations in \14 S for the system of Fig. 4.24 

which we can for error monitoring purposes approximate by its more problematic first 

term \14 S that is represented in Fig. 4.25. By comparing all fields represented in that 

figure and the previous one, we can see an illustration of the lag in the propagation of 

instabilities as these are quite evident in \14S as high frequency spacial oscillations and 

are already somewhat developed in Q of Fig. 4.24 but they are not yet recognizable 

in C at that particular time step. 

Quality of Fit An added bonus of using a dynamical timescale is that we are given 

a measure of the quality of the simulation at each point in time. The dynamical time 

step tends to be very small in regions where the system is encountering errors and 

when the time evolution is relatively error free it will increase as in Fig. 4.22. 

Furthermore, we can make use of the fact that the Ehrenfest theorem should 

hold, as this is a quantum system, so we can take the average of observables such 

as position and momentum and compare their values to those expected in a purely 

classical system, according to eq. 2.8. At each time step we compute the average 

position < x > of the trajectories we are following, and compare them to those of the 

classical trajectories arising from the mean initial values. 



Chapter 5 

Validation, Test Cases 

To check the validity of the trajectories and to test the performance of the various 

interpolation methods we start by choosing a couple of (the very few) systems for 

which an analytical solution is known. We then apply the same tests to a propagating 

problem with interference similar to that of Sec. 4.3, that is known to have long time 

stability issues in Bohmian calculations. 

5.1 	 Comparisons of Accuracy and Performance with 

Standard Techniques 

The following tests were done on an Intel Dual Core Duo 3GHz machine with 

4Gb RAM under MATLAB in Linux, we used single threaded code for our tests. 

The tests consisted of measuring the running time and flagging error conditions (if 

any) for wave packet propagation in certain standard quantum potentials using our 

Bohmian code. 

It is our experience that using the quantum Hamilton-Jacobi equations (QHJE) of 
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motion of Sec. 3.4.3 as opposed to the Newtonian code of 3.4.2, results in both faster 

execution and more stable numerics. The reason for that is probably linked with the 

higher order of numerical differentiations that the usage of P and the algorithms of 

Sec. 3.4.2 carry and the fact that \7Q is not calculated directly but instead Q is 

combined with the kinetic energy and the classical potential in ~~. 

Therefore in the following calculations, intended to compare interpolation rou­

tines, we will be using the QHJE code, modified in the following way: 

So that comparisons are easier to make we use a fixed time step (dt = 5 x 10-3 ) 

for all trials. This fixed time step, which we get by turning off the dynamic time 

step machinery, will cause trajectory crossings to be more frequent than would nor­

mally happen, but the trajectory crossings will still depend on the quality of the 

interpolation methods used. 

When the run is successful we compare the end wavepacket with the one obtained 

using the split operator method (see sec. 3.3). If on the other hand error conditions 

do occur a note is taken of the time step when that happened, giving us a rough 

measure of which interpolation used is more susceptible to numerical instabilities. 

5.1.1 Table Description 

A brief explanation of the parameters seen in the following tables 5.1, 5.2 and 5.3 

follow. 

The column entitled CPU(s) is self explanatory and it is simply the time in seconds 

that it takes to run the code. Note that unlike the Moyer code, no optimization was 

attempted on the Bohmian code and visualization and debugging code is run inside 

the main calculating loop. For our purposes of comparing interpolation methods this 

is not an issue though since they all run the same unoptimized code. 
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Tstop is the time step at which execution is interrupted, either because we have 

reached our predetermined maximum number of time steps or because an error con­

clition such as trajectory crossing is encountered, that information is included in the 

next column "Traj". 

In the next two columns estimates of the error of the final wavefunction are given 

as compared to the analytic solution of the same problem or to the Moyer solution 

(it was not necessary to use a numerical solution for the first two tables as analytic 

solutions exist for those potentials but we always compute the Moyer solution in all 

cases). 

The error is the difference between our solution and the wavebased solution in the 

spatial domain common to both. In< (P-Pm) >we have the error in the density while 

in < ( C - Cm) >the error in the log density ( x ~) is represented, these are presented 

as an average value ± the standard deviation CJP = J(P-;t_"i_) 
2 

or CJc = J(C;~rr_;_) 2 • 

Finally the last column gives us an estimate of the relative speed of all the methods 

in time steps per second of CPU time. 

The Moyer grid method with a parameter 2048 x 2000 means that it was run on 

a 2048 point space grid for 2000 time steps . 

P is the number of trajectories or particles used and in the polynomial method D 

stands for the polynomial degree used. At each point we find the D nearest neighbours 

and fit a polynomial to them to get estimates of the derivatives (for instance if D=2 

we get the usual central difference formula for the curvature). 

Part of the least square method is an extra parameter N, the number of nearest 

neighbours considered at each point. In the case N>D+l, the higher theN the more 

averaging occurs in the least squares estimate. 

In the sines method, the LPFilter parameter represents the percentage of low pass 
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Figure 5.1: Sample run for the free wavepacket 

Top to bottom panels are: C, Q, '\! S, '\!4S 


filtering done in momentum space as discussed in Sec. 4.2.2. 

In the smoothed splines method B represents the number of points considered at 

left or right "edges", and smoothed according to the procedure of Sec. 4.2.4. 

5.1.2 Free Wavepacket Propagation 

This is the simplest case where there is no external potential and only one initial 

Gaussian packet exists. No interference effects are expected. 

The free Gaussian wavepacket evolves ([15]) in time according to : 

'lf(x, t) = (21fSt)-t exp(- (~:::r) with St = ao(1 + i 2n!aJ 
All interpolation methods deal quite well with this very simplest of cases of a single 

decaying Gaussian. The one exception is when we increase the number of points in 

the polynomial interpolation to 32; there the simulation doesn't quite make it to 500 

timesteps and there is a trajectory crossing at 469. This is probably due to the high 

order of polynomial used causing oscillations as pictured in the Runge phenomenon 

in Fig. 3.7. 
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Description/Parameters I CPU(s) I Tstop I Traj I <p-Pm > 10 5 I steps/s I 
Moyer grid 2048x2000 I 49 I 2000 I NIA I 0 I 40.8 I 

Poly P=50 D=2 83 500 Stable -1.54 ± 2.3 6.02 
Poly P=50 D=5 137 500 Stable -1.54 ± 2.3 3.65 
Poly P=50 D=6 141 500 Stable -1.54 ± 2.3 3.55 
Poly P=50 D=8 142 500 Stable -1.54 ± 2.3 3.52 

Poly P=50 D=16 145 500 Stable -1.54 ± 2.3 3.45 
Poly P=50 D=32 161 469 Cross N/A 3.11 

LeastSq P=50 D=2 N=6 85 500 Stable -1.54 ± 2.3 5.88 
LeastSq P=50 D=6 N=8 139 500 Stable -1.54 ± 2.3 3.60 

I Smes P=50 LPFllter=10% 16.4 500 I Stable I -1.54 ± 2.3 30.5 

Gaussians P=50 23.3 500 I Stable I -1.54 ± 2.3 21.5I 
Splines P=50 16.8 500 I Stable I -1.54 ± 2.3 30.5I 

I SmoothSplines P=50 B=12 21 500 I Stable I -1.54 ± 2.3 23.8 

Table 5.1: Free Gaussian packet evolution 

One can also observe where the different methods stand in terms of performance 

relative to each other. We see that in general the polynomial and least squares 

methods are much slower than the rest. In the polynomial or least squares methods, 

the routine has to consider each point, determine a local neighbourhood of size N, and 

then construct an approximation in that neighbourhood. In other methods (such as 

splines) we first get a global approximation to the log density and then we get updated 

values to every trajectory at the same time. In other words we do operations to the 

whole vector of positions instead of each point separately, with performance gains. 

This is particularly true as the number of trajectories increases. 

5.1.3 Harmonic Oscillator 

Another analytically solvable system, the harmonic oscillator's time evolution al­

ternates between periods of compression and expansion as illustrated in Fig. 5.2. Here 

the potential used is a weak quadratic centered around x = 0, V(x) = 5 x w-2 (x)2. 
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12 

Figure 5.2: Sample run in an harmonic oscillator potential 

Fig. 5.2 looks somewhat different from Fig. 4.23 because we are using an uniform 

distribution of initial points as opposed to distributed as 1 in Fig. 4.23. 

Description/Parameters I CPU(s) I Tstap Traj I < p-Pm > 10-5 I steps/s I 
Moyer grid 2048x2000 I 49 I 2ooo NIA I 0 I 40.8 I 

5.78 
Poly P=50 D=3 

-9.73 ± 5391000 StablePoly P=50 D=2 173 
-9.73 ± 539 5.88 

Poly P=50 D=6 
170 Stable1000 

3.39 
Poly P=50 D=10 

-9.73 ± 5391000 Stable295 
-9.73 ± 539 3.39 


LeastSq P=50 D=2 N=6 


Stable295 1000 
6.10 


LeastSq P=50 D=6 N=8 

-9.73 ± 539164 1000 Stable 

3.61 

Smes P=50 LPFilter=10% 31 1000 I Stable I 5400 ± 15200 32.2 

290 ± 5300277 1000 Stable 

Gaussians P=50 45 1000 I Stable I -13.7 ± 41 22.2 

Splines P=50 33 1000 I Stable I -1990 ± 4610 30.5 

SmoothSplines P=50 B=12 40.8 1000 Stable -9.73 ± 539 24.5 
SmoothSplines P=50 B=12 361 10000 Stable -182 ± 820 27.7 

Table 5.2: Gaussian packet evolution in an harmonic potential 
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5.1.4 Interference of Two Gaussians 

Here we apply the same tests to a system that will develop interference patterns 

similar to those that we discussed in Sec. 4.3. We have two Gaussians that are placed 

side by side and let them interfere together with no external potential applied. The 

evolution of the system is represented in Fig. 5.3 which was taken from a run of the 

smoothed splines method (last item on table 5.3). 

3Description/Parameters ICPU(s) I Tstop Traj I < p-Pm > 10 I stepsjs \ 
Moyer grid=2048x2000 I 49 1 2ooo N/A I 0 I 40.8 I 

Poly P=50 D=2 132 862 Cross N/A 6.5 
Poly P=50 D=3 135 840 Cross N/A 6.2 
Poly P=50 D=4 212 814 Cross N/A 3.8 
Poly P=50 D=5 211 737 Cross N/A 3.5 
Poly P=50 D=6 NjA 736 Cross N/A N/A 
Poly P=50 D=10 NjA 652 Cross N/A N/A 

Least Sq P=50 D=2 N=4 70 416 Cross N/A 5.9 
Least Sq P=50 D=2 N=5 108 640 Cross N/A 5.9 
Least Sq P=50 D=2 N=6 110 686 Cross N/A 6.2 

/ Sines P=50 LPFilter=10% I 17.5 472 Cross N/A 27 

Gaussians P=50 NjA 332 Cross N/A N/A 
Splines P=50 NjA 629 Cross N/A N/A 

SmoothedSplines B=12 75 2000 Stable -0.15 ± 1.5 26.7 
SmoothedSplines B=12 392 10000 Stable -La± 2.8 25.5 

Table 5.3: Two Gaussian packets interfering 

We can see from table 5.3 that most methods lead to trajectory crossings. We 

remind the reader that we have turned off the dynamic time scale control mechanism. 

The objective here is not to avoid trajectory crossings, but to evaluate different in­

terpolation methods, and so by looking at table 5.3, and specifically at which time 

step trajectory crossings were observed, we can say that a certain method is more 

stable than another. Of course, the proper stable choice here should be the smoothed 
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Figure 5.3: Trajectories x(t) for smoothed spline calculation, 10,000 timesteps 

Figure 5.4: Detail of Fig. 5.3 

splines method as it is the only one that doesn't result in crossed trajectories. 

A surprising fact is that D = 2 poly, which is really nothing more than fitting 

parabolas at each point, (resulting in the familiar central differences formula) doesn't 

do too badly compared to other methods and outperforms the least square method 

and even the basic spline method (crosses at 862 vs 629). 
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5.2 Numerical Instabilities and an Alternate Crite­

rion for ~t 

As we saw in Sec. 4.3.2 and Figs. 4.24,4.25, by the time we notice that there is 

something wrong with the C or the S fields, usually the root cause of that problem 

already occured a few time steps previous, and a typical signature is high frequency 

oscillations in '\14 8. 

Oscillations suggest that we are integrating some trajectories too far in the direc­

tion of other particles, resulting in an excessive repulsive force and oscillations down 

the line. Why this tends to happen in problem areas of compression is linked to the 

fact that the absolute error of a derivative goes approximately as fx times the error 

of the underlying field, so as particles are packed closer together and t5x becomes 

smaller, so grows the error in the gradients estimated in that area. In fact for '\12 the 

error will be of order 4/ (8x)2; therefore it is imperative, when using non-averaging 

(such as least square) interpolations, that we reduce the time intervals in lockstep 

with a minimum inter-particle distance to minimize integration errors . 

Let's take a look at the QHJE equations of motion: 

x VS 

1 2 1( 2 2s --(VS) +- "\! C + (VC) ) - V
2 2 

6 _!v2s 
2 

where X is the position, S the phase and C the log-density. For a moment let's ignore 

any errors in the X field and concentrate in the fields S ± s and C ± c with absolute 

http:4.24,4.25
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errors s and c respectively. 

In the case of simple numerical differentiation, every time we are evaluate \7 S we 

get an error of order ±2sj8x, for \728 the error is ±4s/(8x)2 and for (V'S) 2 we get 

± (4s/(8x) 2 
) \i'S. Similarly for C. 

Let's see what happens in just one Euler integration over dt, of the equations of 

motion: 

If now we consider S0 = S0 ± s0 and C0 = 00 ± c0 where the bar denotes the 

noiseless fields, using the expressions for the errors in the gradients we have the error 

estimates: 

s1 ~ so + dt x ~ ( ( ± 8:\7So) .so ± 8~2 co ± \7Co!co) 

c1 ~ co± dt x ~ (8~2 so) 

For small 8x, the 8x2 term will dominate in the first equation and we can further 

simplify: 

2dt ,....,_,....,_sl so± (8x)2co 

2dt ,....,_,....,_cl co± (8x) 2so 
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If we extend to further time steps, these equations define a recursive relation 

between two variables s and c for time step n: 

2dtn-1 
Sn ~ Sn-1 ± (~ )2 Cn-1 

VXn-1 

2dtn-1 
Cn ~ Cn-1 ± (~ )2 Sn-1 

UXn-1 

"th ±2dtn-1OrWl an= ~, 
oXn-1 

To get a general expression for the errors we sum both equations, 

So in general 

± 2Now an = ..dt2n , so we want an as small as possible which implies an alternative 
oXn 

criterion for t:lt : 
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Where t5xmin is the minimum inter-particle distance. This will mean that some­

times the whole simulation will have to slow down by virtue of a small dt in order 

to integrate accurately zones of compression. If we are using a local interpolation 

method, this could probably be relaxed to integrating only the neighbourhood of 

small t5x with a reduced timescale, in a sort of adiabatic approximation where the 

rest of the field would be "frozen", but we have not yet explored that possibility. 

5.3 Conclusion on Interpolation Methods Tested 

There is a delicate balance between the demands of having a stable estimation 

and having an accurate estimation of the gradients in our Bohmian calculations. As 

we saw in chapter 4 the accurate estimation is crucial, to make sure that particles 

avoid each other. However with this added sensitivity to local conditions also comes 

sensitivity to numerical noise and the possibility of inducing numerical oscillations in 

the solution. On the other hand, the low noise and stable estimation of derivatives 

afforded by an averaging method come at the cost of not being accurate enough when 

genuine local fluctuations do exist. 

A compromise between these is present in the smoothing splines method where 

we can specify (sec. 4.2.4) zones of higher or less sharpness in the interpolation. (A 

more computationally costly but valid possibility is to have a least squares method 

with a locally adjustable number of fitting neighbours) 

In any case, from the data in the previous tables, it seems reasonable to pick the 

smoothing splines method of Sec. 4.2.4 as it is the only method in our sample to deal 
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successfully with the interference of Fig. 5.3. Also, because the smoothed splines are 

calculated as a global approximation to all points, it is relatively fast compared to 

other interpolation methods, that require a local calculation in the neighbourhood of 

each point. 

5.4 	 Other Existing Methods - Covering function, W 

splitting, etc. 

For completeness sake we should mention that besides variations on resampling 

and or interpolation methods, there are some very different numerical takes on the 

Bohmian interpretation that we did not explore. One such case is the derivative 

propagation method (see (32]). Another one is based on the Wigner function formu­

lation (see [57]) . The arbitrary Lagrangian-Eulerian method of Wyatt and coworkers 

([8]) is a way to deal with insufficient data points in zones of interest for the fields, 

conveniently letting us specify the grid that we wish to work with at each time step. 

Finally as a way to deal with the problematic nodal zones, we mention the covering 

function method of Babyuk and Wyatt ([33]), where the wavefunction is split into 

two nodeless components (to be independently evolved), and in the work of Poirier 

and Trahan ([34, 35, 36]) where the wavefunction is represented by two counter­

propagating traveling waves. 



Chapter 6 

2D and Higher Dimensions 

Generalization of Bohmian methods to two and higher dimensions should be rel­

atively straightforward. Unfortunately the same cannot be said of the wave based 

methods. When it comes to boundary conditions it is not so straightforward and even 

when it comes to integrating techniques they can look quite different in lD, 2D and 

higher dimensions. In fact we do not know of an equivalent transparent boundary 

condition scheme in 2D to the one we used in Sec. 3.3.2 for lD. Instead we revert 

to the imperfect technique of complex absorbing potentials as an approximation to 

TBCs. 

6.1 Wave Based Calculations 

As we did in Sec. 3, we begin with the wavefunction based methods to serve as a 

baseline for comparison to the trajectory methods. 

83 
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6.1.1 ADI Method 

To get the time evolution of the wavefunction we will use the ADI method 

(Alternating-Direction Implicit see [56]). This method is second order accurate both 

in space and time and it is an efficient way of solving a parabolic diffusion equation 

such as the Schrodinger equation. 

For a general parabolic partial differential equation (assuming D to be constant): 

the 2D ADI method in discretized form reads: 

t+~ - t 8t t+~ t+~ t+~ t t t 
'1/Jx,y - '1/Jx,y + D 28x2 ( 'l/Jx+1,y + 'l/Jx-1,y - 2'1/Jx,y + '1/Jx,y+l + '1/Jx,y-1 - '1/Jx,y) (fi.l) 

1 1 1 1 
{ 0 /,t+1 _ 0 /,t+2 D 8t (n/,t+2 n/,t+2 2n/,t+2 0 /,t+1 0 /,t+1 0 /,t+1)

'f/x,y - 'f/X,y + 28x2 'f/x+1,y + 'f/x-1,y - 'f/X,y + 'f/x,y+1 + 'f/x,y-1 - 'f/x,y 

The name ADI comes from the fact that we split the time evolution into two half 

steps. In the first we mix a forward and a backwards Euler scheme for the x and y 

directions and in the second half step those roles are reversed, thus earning the name 

alternating direction. 

6.1.2 Boundary Conditions 

As we mentioned in Sec. 6, in 2D and higher dimensions we are faced with the 

need to minimize unphysical reflections of the wavefunction from artificial domain 

walls. To achieve this we tried a couple of different approaches, with varying degrees 

of success. 

We present in the next few sections the propagation of a free Gaussian in a box (as 
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Figure 6.1: Initial wavepacket (t=O) 

shown in Fig.6.1) with different boundary conditions: Hard wall (Fig. 6.2), periodic 

(Fig. 6.3) and complex absorbing potential (Figs. 6.5 6.4). The wavepacket is given 

some initial momentum in the y direction so that after a few time steps, interaction 

with the boundary can be more easily be seen. 

Obviously the ideal result would be the analytical one where the wavepacket re­

tains its Gaussian shape for all time and merely becomes more diffuse (larger (j) 

with time. While that does not happen for any of the pseudo transparent boundary 

condition methods tried, some do better than others in minimizing reflections and 

retaining the Gaussian shape, as we shall see. 

Hard Wall Boundary Conditions 

This is just the default type of boundary condition and we include it for comparison 

with the others. In this case we assume that the wavefunction suddenly encounters an 

infinite potential at the domain walls and thus necessarily vanishes on the boundaries. 

Unsurprisingly, as we can see in Fig. 6.2, reflections from the boundaries are quite 

obvious at t=800. 
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Figure 6.2: Hard Wall boundary conditions in 2D, at t= 800 
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(a) Schematic of the bound­ (b) t = 800 

ary conditions 


Figure 6.3: Periodic boundary conditions in 2D, and the resulting wavefunction 

Periodic Boundary Conditions 

In this case the domain walls are assumed to be transparent and periodic. The 

wavefunction exits from one side, only to reappear on the opposite side domain wall. 

As we can see by comparing Fig. 6.3 to Fig. 6.2 at the same time step, the periodic 

system seems to have fewer interference fringes than the hard wall case, so it is 

marginally better suited to our purposes. 
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Figure 6.4: Profile of the absorbing imaginary potential 

Complex Absorbing Potentials 

In this section, we combine the marginal benefits of the periodic boundary con­

ditions with a more effective complex absorbing potential "coating" on the domain 

walls, as used by Muga et al. [37]. The complex part of the potential is pictured in 

Fig. 6.4. The top of the potential surface represents zero potential, while the sides of 

that surface are where absorption occurs. 

This combination seems to be a more sensible approximation to 2D transparent 

boundary conditions as judged by the relative integrity of the Gaussian shape shown 

in Fig. 6.5 at the same time step, as compared to the previous figures. For longer 

simulation times we still get reflection and interference phenomena that eventually 

overcome the characteristic Gaussian shape of the original packet, because we are 

dealing with only approximations to 2D TBCs. 

6.2 Trajectories and Phase Unwrapping in 2D 

Recall that to calculate the trajectories in Sec. 3.3.3 we had to unwrap the lD 

phase of the wavefunction. In 2D we have the same problem, except that now we 

have to monitor for jumps of 21r in any direction. 

In Fig. 6.6 we display a simple case where the phase is increasing mainly in one 
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Figure 6.5: Pseudo-Transparent boundary conditions (with an imaginary potential 
near the walls) and resulting wavefunction 
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Figure 6.6 : A simple phase angle problem in 2d 
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Figure 6.7: A practical case of the phase problem and its solution 

direction 	and in Fig. 6.7 a more realistic case is shown, as well as its resolution. 

6.3 	 Bohmian Methods in 2D 

The basic algorithms (Sec. 3.4.2 and 3.4.3) that we used to implement the 

Bohmian equations of motion remain the same. The only adjustments that we have 

to make are to account for the fact that we are now dealing with position and mo­

mentum vectors with N= 2 coordinates instead of just scalars. Most interpolation 

techniques translate to 2-D and higher dimensions relatively straightforwardly. 

6.3.1 	 Instance of Generalizing from ID to 2D: Least Squares 

Method 

As a simple example of how these methods transpose to higher dimensions, we 

show the time evolution of an initially resting Gaussian wavepacket in Fig. 6.8. 

Here we use the least squares method to calculate Q from the density of the 25 

particle cloud. Note that given this particular visualization method of projecting 
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Figure 6.8: 2D Bohmian evolution of an inhomogeneous packet as viewed from the 
z-axis 

a cross-section of what really is a 3D surface (2 space+ l time) into a 2D picture, 

the trajectories may appear to cross. In the actual 3D space the non-crossing of 

trajectories is of course still observed. 

As one increases the number of particles the computational effort should scale 

linearly, independent of the dimensionality of the space in which we are working. 

This is in marked contrast to traditional wave based methods, where in going from 

lD to 2D we square the number of grid points , and in general that number scales 

exponentially as ND, leaving us with no choice but to use coarser grids when working 

in higher dimensions. Here lies one of the big advantages of Bohmian methods where 

the grid stays with the wavefunction. 



Chapter 7 

Cellular Automata and Lattice 

Boltzmann Methods 

In this chapter we explore a possible connection between simulation of Bohmian 

mechanics and the world of cellular automata, of which lattice Boltzmann methods 

are a subset. 

7.1 Cellular Automata 

Since they were invented by von Neumann is the 1940s, cellular automata have 

been successfully used to simulate an enormous range of systems, including bacterial 

growth, forest wildfires, rush hour traffic in a busy city and classical fluid dynamics 

[39, 40). These cellular automata operate according to a tantalizingly simple set of 

rules (that is supposed to capture the microphysics of the process), from which the 

macroscopically complex behaviour of the system gradually emerges. It is conceivable 

that by using a proper set of rules we may be able to reproduce the behaviour of a 

quantum fluid in the Bohmian sense, thus approaching the problem from a completely 
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different viewpoint . 

Recently re-popularized by Steven Wolfram [40], Cellular Automata or CA have 

been with us for decades. As we mentioned they are particularly well suited to model 

complex and chaotic systems as well as more "classical" problems. This versatility 

should not surprise us since they have been demonstrated [42] to be formally equiv­

alent to a Thring machine, so theoretically they are capable of carrying out any well 

posed calculation. To emphasize this point we should note that the calculations of 

previous chapters were done on Thring machines (standard computers). 

The question remains, are there are advantages to using cellular automata in the 

context of time evolution of a quantum system, as opposed to more conventional 

techniques , and in particular can we marry the framework of Bohmian mechanics to 

the gear of cellular automata? That is what we explore in this section. 

7.1.1 Conway's Game of Life 

There are many and interesting cellular automata implementations that have been 

studied ([40]). The reader is probably already familiar with at least one of these. In 

Conway's "Game of life", a simple set of rules gives rise, totally deterministically, to 

quite complex behaviour of its constituents, mimicking organisms that live, die and 

even self replicate on the computer screen. Incidentally a Thring machine has been 

constructed with Conway's game of life "parts"; it is described in [43]. 
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7.2 Cellular Automata and Fluid Mechanics 


7.2.1 Lattice Gas Cellular Automata (LGCA) 

Historically, these models are the original catalysts for the usage of cellular au­

tomata in fluid simulation. Originally introduced in the 1970's by Hardy, Pomeaux 

and de Pazzis, these simulations consist of an underlying lattice on which two basic 

steps are performed to advance in time : 

• 	 A free streaming step, where particles move with whatever momentum has been 

assigned to them. 

• 	 A collision step, where particles collide with each other in momentum and par­

ticle number conserving exchanges. 

Finally if at some point in time we wish to recover the physically relevant macroscopic 

fields, an averaging over many lattice sites is done. 

Amazingly, together with a judicious choice of underlying lattice, this is all that 

it takes to make a respectable simulation of a simple fluid. Following are some his­

torically famous choices for the lattice and the corresponding collision rules. 

"HPP" LCGA 

This is the original model by Hardy, Pomeaux and de Pazzis (HPP). Here, the 

chosen lattice is square, and the simple collision rules are illustrated in Fig. 7.1. This 

is mostly a toy model and the simple choice of lattice ends up having consequences in 

terms of the resultant flow not being isotropic. In fact this lattice gives rise to fluid 

vortices which are square instead of circular. 
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Figure 7.1 : Lattice and collision rules for HPP model 

"FHP" LGCA 

Later introduced by Frish, Hasslacher and Poumeaux, this CA does not suffer from 

the anisotropic anomaly of the HPP model. This is thanks to using an hexagonal 

lattice and a correspondingly larger set of collision rules (see Fig. 7.2). 
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Figure 7.2: Lattice and collision rules for FHP model 

Other Lattices 

As you move to higher dimensions, the complexity of the lattices necessary to 

preserve isotropy quickly escalates and the number of collision rules that we need to 

track, rises exponentially. 

Figure 7.3: Example of 3D lattice for a LGCA model 

The main advantage of LGCA methods for 2D is the small storage requirement 

and fast collision calculations (dealing with logical operations) given the Boolean 

nature of the collision operators. In the 1980's and 1990's a couple of machines were 
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specifically built to efficiently implement these methods in hardware. On the other 

hand modern computers are more and more engineered towards efficient floating point 

calculations. 

7.3 Lattice Boltzmann Methods 

One of the disadvantages of the previously mentioned LGCA methods is their high 

statistical noise, a consequence of their discrete nature whereby a lattice direction 

either is or is not occupied. A natural evolution from these ideas is presented in 

the Lattice Boltzmann method where one replaces the Boolean particle number by 

its average value resulting in a continuous density distribution function f(f, iJ, t), 

defined in phase space . The evolution off is governed by the Boltzmann equation 

(7.1) 

Here Vx the velocity and F x the force in the x direction. The collision operator D can 

be a very complex function that needs to be approximated. Approximation of D by 

Aj(fj - Jr) constitutes the quasi-linear LBE method. Going one step further we 

get the fully linear approximation, the BGK (Bhatnagar,Gross, Krook [58]) collision 

operator:D = ~(fo- f). 

7.4 Cellular Automata and Quantum Mechanics 

Now that we have established a link between cellular automata, lattice Boltz­

mann and fluid mechanics, we use Succi ([50]) as a guide to illustrate the link in one 

dimension between the Dirac equation and lattice Boltzmann methods. 
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7.4.1 Dirac Equation 


In 3D the usual way of writting the Dirac equation is, 

with ax,y,z 	= CJx,y,z 0 ] ' (3 = [ 0 I ] and where 	ax,y,z are the usual Pauli 
[ 0 -CJx,y,z I 0 

matrices: 

CJx,y,z = ( 	 0 1 ) ' ( ~ -i ) ' ( 1 0 ) 
1 0 '/, 0 0 -1 

7.4.2 Majorana Representation 

In the Majorana representation, where w1 = (a~k + if31k)wk , the Dirac equation 

is represented by 

(7.2) 


W 2here J.L = 0, 1, 2, 3 and Wlk = r51k ,W1 = ax, = (3 , W 3 = -az (all real 4 by 4 

matrices). The modified mass term M1k = -imaY + qV61k contains the rest mass 

and an external potential term. This form is reminiscent of a 4-phase fluid (the two 

Dirac spinors each with their 2 components) interacting via a scattering matrix Mjk· 

Restricting ourselves to 1-D and taking W = , where u and d represent the 
dr 

d! 
top and bottom Dirac spinors with components u 1 = ur, u2 = u!, d1 = dr, d2 = d!, 
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eq. 7.2 becomes: 

8tu1,2- azu1 ,2 = md2,1 + igu2,1 
(7.3) 

{ 8td1,2 + 8zd1,2 = -mu2,1 + igd1 ,2 

7.4.3 Formal Connection to LBE 

Looking at eq. 7.3 and eq. 7.1 , if we make the substitutions /i = d, u , vi = =F1 , 

f 1e = ~h , f ?. = -~!I , we can make a formal mapping of the Dirac equation onto 
9 9 

two Lattice Boltzmann equations, one for fi = d and another for f i = u, 

That is to say that the quantum system is formally equivalent to a 1-D Lattice 

Boltzmann system with four channels (up and down spinors) that will intermix be­

cause !I depends on h and vice versa . 

7.5 Numerical Experiments 

7.5.1 Algorithm 

We use natural units as in Sec. 3, setting n= c = 1. If we discretize the eqs. 7.3 

in a Crank-Nicolson scheme we obtain: 

ui,2- u1,2 = W'(d;,2d2,1) + i ~(u2,1 + u2,1) 
(7.4) 

{ d;,2 - d1 ,2 = - W' (u2,~1 +u2,1) + iHd;,2 + d1 ,2 ) 

Where the hat ~ on a variable means that time has advanced by one step. This is an 

implicit scheme, as can be seen by the presence of advanced terms on both sides of 



99 7.5. NUMERICAL EXPERIMENTS 

the equation. To make it explicit and refer only to known values, we solve the linear 

system for u and d, giving us the following equations: 

Where the coefficients a and bare given by: 

a= ~1-0/4
1+0/4-ig 

{ b- m 
- 1+0/4-ig 

This convenient linear system will be the basis of our lattice propagation and 

collision calculations. Note that if desired we can easily include non-linear and/or 

self-consistent terms by suitably changing the potential term g (i.e. if we want it to 

be a function of the density we can make it a function of ( u2 + d2)). In that case the 

coefficients a and b will no longer be constant and will have to be recomputed at each 

time step. 

7.5.2 Quantum Systems studied 

To test the algorithm we are going to use similar systems to those of Sec. 5.1, 

whose analytical solutions are well known. 

Free Packet 

We start with a Gaussian packet centered in the middle of our array and given a 

certain momentum p towards the right. The fact that the Gaussian disperses in time 
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WavefuncUon Evolut1on 
~~~~--~ ~~--~~~ 
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Figure 7.4: Free packet dispersion (2 different momenta) 

is clearly visible in Fig. 7.4. How that dispersion relates to the expected analytical 

value is represented in Fig. 7.5. Also represented in the same figure is the average 

value for the position of the packet, which follows a path consistent with Ehrenfest's 

theorem. The expressions for both expection values are: 

Po<X>= Xo + -t 
m 

and 

800 

~ 1000 

1200 

1400 

a(t) = 

Looking carefully at the graphs of Fig. 7.5 we note that as the wavepacket ap­

proaches the boundary our values deviate further from the theoretical values, as we 

start to observe some numerical reflection from the walls. This is particularly visible 

in the right panel of Fig. 7.4. 
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Figure 7.7: Wavepacket hitting a barrier 

Harmonic Oscillator 

In the next case we begin with a Gaussian packet with zero initial momentum 

placed in an harmonic oscillator potential. In Fig. 7.6 we see when plotting the mean 

position of the packet that there is some numerical dissipation present as the position 

is slightly smaller after one period. 

Barrier Penetration 

Finally in the last case, instead of having zero potential everywhere, we place a 

20 unit long barrier at position 1300. In Fig. 7.8 intense interference can be seen at 

the edge of the "wall" and a weak evanescent wave continues along the interrupted 

path of the Gaussian packet, across the barrier to the left side of Fig. 7.7. Here we 

don't face the same problems with nodes or interference as in the Bohmian methods 

we considered before. The reason for this is that we are dealing more with a wave 

based method closer in its internals to our reference Moyer method of Sec. 3.3. 
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(a) t=800 (b) t=llOO 

Figure 7.8: Interference and exponential decay inside the potential barrier 

7.6 Critique of the Majorama LBE Method 

As we have seen the Majorama Lattice Boltzmann method seems to work, however 

as we just saw it really should belong to the class of wavefunction based methods 

such as the split operator method we used previously in 3.3. We still have hard 

domain walls and a fixed space-time grid, with all the associated limitations. What 

this method does do however, is give us a glimpse of a connection between cellular 

automata and quantum simulation, and in doing so it gives us a hint that an equivalent 

Bohmian based cellular automaton may also be devisable. 

7.7 A Look Back at the Bohmian Picture 

Looking back at the Bohmian equations of motion, with Q = - ;~ 'iljf and where 

gt represents the material derivative: 

~~ + \7 (pv) = 0 {::} ~ + p\7v = 0 
(7.5)

{ ~~ + (v\l)v = -~\l(V + Q) = ~~ 

And then looking at the equation for a classical fluid (Euler equation): 



104CHAPTER 7. CELLULAR AUTOMATA AND LATTICE BOLTZMANN METHODS 


avi 1 1 - + (vV)v· = --811;- -8·6· ·P (7.6)t t J t]at m mp 

We see that the first equation 7.5 expresses the conservation of probability, and the 

second maps term by term onto the classical fluid equation 7.6 except for the pressure 

term that must map to Q for the analogy to hold. In fact ([15]), if we substitute the 

pressure tensor [{1 by O"ij = - ';~Paij log p plus any tensor whose divergence is zero, 

we get two formally equivalent equations. 

So a Bohmian system is, at least formally, equivalent to an inviscid (i.e. time 

reversible and non-dissipative) irrotational and compressible fluid. When trying to 

extrapolate this fact to the lattice Boltzmann framework we will have two macroscopic 

real fields to work with, v the velocity and p the probability density, an analog of the 

fluid density. 

7.7.1 Lattice Boltzmann Revisited 

We reintroduce the Boltzmann formalism in a lattice space with N discretized 

velocity vectors Vi. In the i direction, the Boltzmann equation in the BGK([58]) 

approximation reads: 

At each lattice site, these N discrete directions combine in the following way to 

reconstitute the real macroscopic fields: 
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(7.7) 


higher order terms 

where the lattice specific weights mi are determined in order to preserve isotropy. For 

instance, in the D2Q9 lattice, a two dimensional lattice with 9 velocity vectors, the 

diagonal terms will have to be weighted differently since they have different lengths. 

Now fo can be quite complicated, but we are going to consider a Taylor expan­

sion in the macroscopic fields v and p, thus establishing a connection between the 

macroscopic equilibrium and the collisional microphysics. 

0 fii.il 
fi = ap + bp- + CPViaVtf3UaUf3 + ....2v 

Here a, b and c are coefficients to be determined; p and v are the macroscopic fields, 

and ui are the lattice vectors. 

We can now insert this Taylor expanded form of the Boltzmann equilibrium func­

tion in the equations of eq. 7. 7. The first equation implies that in a "collision" or 

"step" L mdP = p, which will give a lattice-dependent value for a (in the D2Q9 case 

a = ~). Similarly the remaining coefficients of fP can be determined ([52]), given 

enough conservation relations as those of eq. 7. 7. 

7.7.2 Lattice Boltzmann Method and Bohmian Mechanics 

In general, the Lattice Boltzmann method works for problems that can be set 

up in the form equations of continuity which are the result of one or more conserva­

tion laws([53]). For instance for some hypothetical macroscopic fields Y and Z, the 

conservation relations for the zeroth and first moments, 
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(7.8) 


together with the space-time evolution given by the Boltzmann equation f(r+f:lte"a,, t+ 

f:lt) = ~ JP + ( 1 - ~) JP, will generate the macroscopic differential relation (of conti­

nuity): 

a~~) + \l (Z) = 0 + O(c) (7.9) 

So for instance if we want fJf - \7 (pu) = 0 to apply, we can identify Y = p and 

Z = pu, which are generated if we set X= 1, giving: 

these may now used to determine coefficients in our particular form for the function 

f~, as shown in Sec. 7.7.1. 

Bohmian Case 

We need to work with the Bohmian equations of motion, in an Eulerian frame 

since the LBM lattice is fixed in space: 

fff+ \lpu=O 

~~ + u\lu =-~ \l(V + Q) (7.10) 

Q = _.!f_ \lyP 
2m yP 

We already saw in the previous section how we can generate the first of these 

equations, the probability conservation relation by setting X = 1, Y = p and Z = pu. 
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Now we wish to generate something of the form, with Q = - 2~"j/ : 

8u 1 - + u\lu = --\l(V + Q)
8t M 

We certainly cannot use La f~ = u for this one since we already set it to p. 

We can however set X= e~ in eq. 7.8, generating: 

(7.11) 


We now see that Y = pu this time and Z should be chosen so that the final 

equation coincides with the Bohmian momentum equation . This is a little bit tricky 

as we shall see. Looking at the equations 7.11 we have set Y = pu, so we want a 

term in ~ = u!fjf + p~~. We can use the equation of continuity here, and obtain 

P&u = !!1!:'!:. + u\lpu = !!1!:'!:. + \lupu- pu\lu
&t &t &t 

Substituting back in eqs. 7.10 we get: 

!f/i+Vpu=O 
8pu p 

~ + Vupu- pu\lu + pu\lu = -if\l(V + Q) {::} ot + \lupu =- M \l(V + Q) 

Q = - !£_ "v'P 
2m ,;p 

which is equivalent to an Euler Fluid with a pressure term -iJV(V + Q) (or an 

external force term). 

We can further pull the potential term inside the differential operator, thus ex­

pressing all the Bohmian equations in terms of continuity relations 
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~+\lpu=O 

~ + \1 (upu + if(V + Q)) = 0 

Q = - !i... '\l.,ft 
2m ..;P 

Thus our Z should be equal to upu+if(V+Q) , giving the complete set of conservation 

relations for our model: 

~ccfg = P 

~a fg eAa = pu (7.12) 

~a fgeai"e~j = upu + if(V + Q) 

ow we define 

(7.13) 

which, together with the 2DQ9 lattice properties: 

will set some constraints on the coefficients in eq. 7.13 via the same procedure of Sec. 

7.7.1. The resultant behaviour of this lattice Boltzmann system should be a close 

analog of the Bohmian equations: 
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Wf + Vpu = 0 + 0 (E
2 

) 


~ + V (upu + fi(V + Q)) = 0 + ER2 + 0(E2
) 


Q = _.!f._ '\ly!p 
2m yip 

with an extra term ([59]) R2, a viscous term that can be tuned via T, since R2 = 

( 
1 ) ( 82 n;~) + 8

2 P,~
0

2 ) 'th 0 _ "' f.O d pO _ "' jO
T- 2 8t 8x 8t 8xk Wl 7Tij - LJa aeaieaJan ~jk - LJa aeaieaJeak·0 01 

We pause here because we realize that by setting Z = upu + fi(V + Q) in eqs. 

7.12, we are going to end up with Q intact in the Boltzmann distribution function f. 

That is to say that, unlike in the standard lattice Boltzmann method, where we have 

constant coefficients in f, here at each different lattice point, we are going to have to 

compute V 2p and Vp, which is an enormous extra overhead for the method. 

7.8 Comments 

First it should be noted that the classic Lattice Boltzmann method already has a 

significant overhead on its own (since it deals with N velocity vectors at each site), 

this hindrance is usually compensated by the ability to tune the microphysics to deal 

with specialized problems, complex boundaries, phase mixtures, etc. 

Secondly, our Bohmian lattice Boltzmann method is set in an Euler frame (see 

eq. 7.10), so it does not benefit from the speed increase yielded by sparse grids of the 

Lagrangian implementations of previous chapters. 

Finally, to my knowledge the only other way to include the quantum term in the 

Lattice Boltzmann theory is in the form of an external applied force. This means that 

the quantum force term still has to be calculated at each lattice point and does not 

"emerge" as some sort of collective behaviour (as say viscosity does in classic LBM). 

Given the non-local form of Q, this is a very expensive computational operation to 
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perform at each point. 

Having concluded that the lattice Boltzmann method is probably not the optimal 

way to implement the Bohmian equations, we should take care not to discount cellular 

automata methods in general as a means of a quantum simulation. We are aware of 

the amazing things that different cellular automata can simulate ([43]) and other CA 

methods certainly will warrant further investigations. 



Chapter 8 

Conclusion 

"I think I can safely say that nobody understands quantum mechanics" 

Richard Feynman [55] 

On a conceptual level it is somewhat comforting that Bohmian mechanics provides 

us with an ontological continuity between the worlds of the microscopic and macro­

scopic, quantum and classical, as we make use of the same concepts of trajectories, 

velocities, etc. which are familiar in the macroscopic world. This is what drew us 

to explore some aspects of the numerical side of Bohmian mechanics. To this effect 

we implemented fixed grid methods in lD and 2D from which Bohmian trajectories 

were calculated. After a partial survey of direct numerical Bohmian methods, we 

considered different interpolation methods as ways of improving the stability of the 

calculations. In particular, we concluded that the smoothed splines method was more 

robust when simulating a model system for interference. Finally we investigated a 

possible link between Lattice Boltzmann Methods of theCA world and our Bohmian 

equations of motion. 

We have concluded that as a numerical tool, direct Bohmian methods have some 
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stability shortcomings in specific situations (node problem, interference) , and some 

performance drawbacks (Lattice Boltzmann). One has to realize though, we can't get 

something for nothing and this comes as a trade off from the extreme sparseness of 

the grids it uses which makes this method a viable alternative in situations where the 

dimensionality of the problem makes traditional grid methods with high resolution 

impracticable. Furthermore we saw problems that afflict Bohmian methods can be 

minimized by judicious use of point resampling, appropriate interpolation techniques 

and dynamical time integration scales. 

Despite these remedies, one should not indiscriminately use Bohmian methods to 

solve every numerical problem, just as it would be unwise to use fixed grid methods 

to approach high dimensional problems, or situations where specific boundary condi­

tions are required. (An exception is for lD where TBCs are practical for grid based 

methods). 

These two aspects, sparse grids and ability to impose arbitrary boundary condi­

tions are then the major strengths of the Bohmian methods. These, incidentally are 

the shortcomings of fixed grid methods, just as the ability to deal well with nodes 

and interference is a source of trouble in the Bohmian methods , in a complementary 

fashion. 

We should take away the idea that Bohmian methods and fixed grid methods 

complement each other nicely, and that , armed with both views we are much bet­

ter equipped to face such numerical problems. This duality between these disparate 

approaches to the same numerical problems would almost be disconcerting were we 

not talking about quantum mechanics, the mother of innumerable dualities and para­

doxes .... 
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Appendix A- Transparent Boundary 

Conditions 

This is a summary of the algorithm we used, based on Moyer's([20]) implementa­

tion of transparent boundary conditions (TBC). 

It is a fixed grid method whose core is the Cayley approximation to the system 

propagator: 

1- iH.6./2
ll!(x, t + !:!.) ~ 1 + iH .6./2 ll!(x, t) 

This is rewritten with y(x, t) = ll!(x, t+l:!.) + ll!(x, t), a function of two consecutive 

time steps as: 

11 ( .2) .4y- V-'t- y='t­
.6. ,6. 

or y" = gy + f with g = V- 2i and f = i-;!: , a form suitable to be discretized on a 

uniform grid with spacing h. The Numerov scheme is used resulting in: 

(8.1) 

where d = 1- h 2 f2 and w = dy- h 2 --f-2 . We see that Eq. 8.1 is a recursion relation 
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that depends on three consecutive points j -1, j, j + 1. It can be put in terms of two 

recursion relations that involve two new variables e and q defined by wi+1 = e1w1+q1: 

To enforce the TBCs we define at the left boundary (j = 0), w1+1 = aw0 + {3 = 

eowo + qo , with a and {3 determined according to 

eo = a = ao ± J a5 - 1 

{ qo = d0(a0- eo)Wo + do(ao- ao) 2:~= 1 ln-k+lw~ 

subject to Je0 J > 1 , with a0 = 1 + h2g0 /2d0 and d0 = 1 - h2g0/12 (the letter super­

scripts denote time steps and subscripts the position). The last term, a convolution, 

implies that a history of W must be kept at the boundary, constituting an increasing 

performance penalty as the number of time steps increases. The convolved value ln 

has the form 

l = exp(-in¢ ) (P, ( ) _ P, _ ( )) 
n 2n _ n 1-L n 2 1-L1 

where Pn is the Legendre polynomial of order n, and 

..\- 2h2 
- t:,. 

c = 1- i~6d 

a= 1+ h2 ..9...2d 
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The same procedure applied to the other border on the right yields, 

which, using the definition of w, gives '11 advanced in time: 

h2 wn w'r!­
w~+l = -wn + i--1 + _J 

J J 3L). d. d. 
J J 



Appendix B- MATLAB Code 


Listings 

Split Operator code / Fixed Grid Code 

%% SYSTEM TIME AND SPACE 

SIZE=512 %cells 

XL=-40 ;XR=40; %nanometers 

Tl M ESTEPS=2000 

eV=1.6022*1e-19; 

hbar=1.0546*1e-34; 

c_ light=2 .9979*1e8; 

Melectron=0.51099*1e6; 

Meffective=0.067; % GaAs 

MASS=Melectron*Meffective; %eV 

MASSE=MASS ; 

MASS _ KG=MASS*eV/c_light A2; 

m=MASS*eVjc_ light A2; 
MASS=l/2; 
Lenght_scale=l ; 
Time_scale=le3*hbar/(2*m ); 
Energy_ scale=eV*2*m*le-18/hbarA 2; 
Velocity_scale=le-3*2*m/hbar; 
M=m ; 
fsec= Time_ scale; 
%Check 
cprime=c_ lightjle6*Velocity_ scale ; 
DELTA=.! *fsec; %timestep in femtoseconds 
J=SIZE; 
H=(XR-XL)/(SIZE-1) ; %grid size 
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X=XL:H:XR; 
temp=X*O; 
%% SYSTEM MASS AND POTENTIAL 
Vj=temp; % Potential in eV 
% Vj=Vj+1e3*exp(-112/.0125A 2*{X-. 75). A2); 
%X=X*Xmsca le; 
Vj=Vj+(X>-10)&{X<-5)+{X>5)&(X<10); 
Vj=Vj*.25; 
Vj=Vj*Energy _scale; 
%Initial wavefunction 
PsiO=temp; 
wave_ sigma=sqrt{10); 
X0=-25; 
K=0.31; 
PsiO=exp( -112lwave _sigma A2*{X-XO). A2). *exp(i*K*X); 
%Normalize 
%Psi0=Psi0*1lsqrt(norma liz(abs(PsiO. *PsiO),X)); 
%SYSTEM DEFINITION ENDS 
PSI=zeros{TIMESTEPS,SIZE); 
PSI{1,:)=Psi0; 
ALPHAj=temp; 
%Fixed 
Gj=Vj-2*iiDELTA; 
Gj=Gj*{2*MASS); 
Dj=1-H A 2I12*Gj; 
Aj=1+H A2*Gj.I{2*Dj); 
j=J; 
niuJ={1-abs(Aj(j) A 2)) Iabs{1-Aj(j) A 2); 
j=1; 
niu1={1-abs(Aj(j) A 2)) Iabs{1-Aj(j) A 2); 
% If V1=V J then niu1=niuJ symmetrical 
%Calculate all LEGENDRE coeficients (#timesteps) ahead of time index 
% 1->n=O 
%REPEAT 1 For X=1 
j=1; 
lambda=2*HA2IDELTA; %Fixed 
c=1-i*lambdai{6*Dj(j)); %Fixed 
phi=angle{{Aj(j). A2-1).1c); %Fixed 
niu={1-abs(Aj{j) A 2)) Iabs{1-Aj(j) A 2); 
% PLEASE NOTE PN{n) is actually Legrendre polynomial of order n-1 
% So use to refer to PN{m) m=n+1 
PN=temp;LN=temp; 
PN{1)=1;PN{2)=niu; % These are PNO and PN1 
for m=2:{TIMESTEPS-1) 

http:A2-1).1c
http:Vj=Vj*.25
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%generate Legendre polynomials; 
n=m-1; 
PN ( m+ 1 )=2*niu*PN ( m )-PN( m-1 )-( niu*PN( m )-PN ( m-1)) I(n+ 1); 
end ; 
LN(1)=niu*exp(-i*phi); % LN(O) would be -1; LNn is LN(n) 
for n=2:(TIMESTEPS-1) 
m=n+1 ; 
LN( n )=exp( -i*n*phi)l(2*n-1 )*(PN( m )-PN( m-2) ); 
%LN ( n )=exp( -i*n*phi)*( niu*PN (m-1 )-PN ( m-2) )*(2*n+1)I (2*n-1) I(n+ 1 ); 
end; 
LN1=LN ; 
%REPEAT 2 for X=J 
j=J; 
lambda=2*H A 2IDELTA; %Fixed 
c=1-i*lambdai(6*Dj(j)) ; %Fixed 
phi=angle((Aj(j) . A2-1) .1c); %Fixed 
niu=(1-abs( Aj(j) A 2)) Iabs(1-Aj(j) A 2); 
% PLEASE NOTE PN(n) is actually Lagrage polynomial of order n-1 
%So use to refer to PN(m) m=n+1 
PN=temp;LN=temp; 
PN(1)=1 ;PN(2)=niu ; % These are PNO and PN1 
for m=2:(TIMESTEPS-1) 
%generate Legendre polynomials; 
n=m-1; 
PN ( m+ 1 )=2*niu*PN ( m )-PN( m-1 )-( niu*PN ( m )-PN ( m-1)) I(n+ 1); 
end ; 
LN(1)=niu*exp(-i*phi); % LN(O) would be -1 ; LNn is LN(n) 
for n=2:(TIMESTEPS-1) 
m=n+1 ; 
LN( n)=exp( -i*n*phi)l(2*n-1 )*(PN( m )-PN( m-2) ); 
%LN ( n )=exp( -i* n*phi)*( niu*PN (m-1 )-PN( m-2) )*(2*n+1) I (2*n-1)I (n+ 1); 
end; 
LNJ=LN ; 
%################################### 
%################################### 
% LOOP 

%################################### 

%################################### 

for N_ INDEX=l:(TIMESTEPS-1) 

N INDEX 

%################################### 

%STEP 1 

%################################### 

Fj=4*i*PSI(N _ INDEX, :)IDELTA; 


http:A2-1).1c
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Fj=Fj*2*MASS; 
%################################### 
%STEP 2 

%################################### 

%From the left 

% Calc Ej Fixed 

t1=Aj(1)+sqrt(Aj(1) A 2-1); 

t2=Aj( 1 )-sqrt(Aj(1) A 2-1 ); 

if(abs(t1)>1) ALPHAj(1)=tl; else ALPHAj(1)=t2; end; 

Ej(1)=ALPHAj(1); 

%Recurrence 

for j=2:SIZE 


Ej(j)=2* Aj(j)-1/Ej(j-1 ); 
end 
% Calc Qj Variable 
j=1; 
%convolution 
SUM=O; 
for k=1:N INDEX 
n=N_INDEX-k+1; 
SUM=SUM+PSI(k,j)*LN1(n); 
end; 
j=1; 
Qj(j)=conj(Dj(j) )*( conj(Aj(j) )-ALPHAj(j) )*PSI(N _INDEX,j)+Dj(j)*(Aj(j)­
ALPHAj(j) )*SUM; 
%Recurrence 
for j=2:SIZE 

Qj(j)=Qj(j-1) /Ej(j-1 )+H A 2*Fj(j) /Dj(j); 
end 
%################################### 
%STEP 3 

%################################### 

%From the right 

tl=Aj(J)+sqrt(Aj(J) A2-1 ); 

t2=Aj( J)-sqrt(Aj( J) A 2-1 ); 

if(abs(t1)>1) ALPHAj{J)=tl; else ALPHAj{J)=t2; end; 

j=J; 

%convolution 

SUM=O; 

for k=1:N INDEX 

n=N_INDEX-k+1; 

SUM=SUM+PSI(k,j)*LNJ(n); 

end; 

j=J; 
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BETAj(j)=conj(Dj(j) )*( conj( Aj(j) )-ALPHAj(j) )*PSI(N _IN DEX,j)+Dj(j)*( Aj(j)­

ALPHAj(j) )*SUM; 

Wj( J)=( Qj(J-1 )+BETAj( J)*Ej( J-1)) I (1-ALPHAj( J)*Ej( J-1)); 

%Recurrence for Wj 

for j=(J):-1 :2 


Wj(j-1 )=(Wj(j)-Qj(j-1)) /Ej(j-1); 

end 

%############################## 

%STEP 4 

%############################## 

% Calculate Psi from Wj 

PSI(N _INDEX+1, : )=PSI(N _INDEX, :). *(i*H A 2./(3*DELTA *Dj)-1 )+Wj./Dj; 

end; 

figure 

image( abs(PS1)*100); 

ylabei('Timestep (.1 fs)');xlabei('X From -40 to 40 (nm)'); 


Bohmian Code 

Newtonian 

%SIZE=512 %cells 
XL=-40;XR=40; 
nump=40; 
porder=2; 
maxgauss=1; 
TOLERANCE=1e-5*nump; 
SIZE=10000; %for psi,etc 
TIMESTEPS=2000 % 
DELTA=1; 
DELTA=DELTA*fsec; %timestep in femtoseconds 
POTENTIAL='0*0.0061.*X.-4+50*cos(X)*0'; 
J=SIZE; 
H=(XR-XL)/(SIZE-1); %grid size 
X=XL :H:XR; 
temp=X*O; 
%% SYSTEM MASS AND POTENTIAL 
Vj=temp; % Potential in eV 
%Vj=Vj+1e3*exp(-1/2/ . 0125-2*(X- . 75).-2); 
%X=X*Xmscale; 
%Vj=Vj+(X>-10)&(X<-5)+(X>5)&(X<10); 
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%Vj=Vj*.25; 
Vj=Vj+eval(POTENTIAL); 
Vj=Vj*Energy_scale; 
VV=Vj; 
%Initial wavefunction 
PsiO=temp; 
wave_sigma=sqrt(10); 
X0=20; 
K=0.31; 
%PsiO=exp(-1/2/wave_sigma-2*(X-X0).-2).*exp(i*K*X); 
Psi0=exp(-1/2/wave_sigma-2*(X-X0).-2).*exp(i*K*X); 
Psi1=exp(-1/2/wave_sigma-2*(X+X0).-2).*exp(i*K*X); 
PsiO=Psi0+1/2*Psi1; 
%PsiO=eval(PSIO); 
%Normalize 
%PsiO=Psi0*1/sqrt(normaliz(abs(PsiO.*PsiO),X)); 
% SYSTEM DEFINITION ENDS 
PSI=zeros(TIMESTEPS,SIZE); 
PSI(1, :)=PsiO; 
rho=abs(Psi0).-2; 
S=angle(PsiO); 
%S=unwrap(S,[] ,2); 
S=unwrap(S, [],1); 
vel=diff(S); 
%pO=log(abs(PsiO)); 
pO=abs(Psi0).-2; 
cpO=cumtrapz(pO); 
cpO=cpO/cpO(SIZE); 
clear XX; 
XX=ones(nump,TIMESTEPS)*NaN; 
QQ=ones(nump,TIMESTEPS)*NaN; 
PP=XX; 
for i=1:nump 

i; 
%XX(i,1)=(X(siz)-X(1))/(nump+1)*i; %trial points uniformly distributed in spa 

% can also be density dependent on PsiO 
% XX(i,1)=-35+(i-1)*30/nump; 

% tmpr=O; 
% while(!) 
% tmpi=ceil(rand(1)*siz); 

%tmpr=rand(1); 
%if(tmpr<pO(tmpi))XX(i,1)=X(tmpi);break;end; 
%end; 
prob1=1/(nump+1)*i; 

http:Vj=Vj*.25
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XX(i,1)=interpolate(X,cp0,prob1); 
% tmpi=getindex(cp0,1/(nump+1)*i); 
% XX(i,1)=X(tmpi); %dont use X 

% use this instead 

PD(i,1)=1/(nump+1)*i; 

end; 

QQ=XX; 

PP=O*XX; 

FF=XX*O; 

%QF=XX*O; 

%%%%%% LOOP 

dt=DELTA; 

VG=diff(VV);tmp=VG;VG=[tmp VG(SIZE-1)]; 

go_back1step=O; 


tstep=2; 

global FF; 

while(tstep<=TIMESTEPS) 


% this routine will try to get an analytical expression for rho; 
[coefs resiO resi1 resi2 resi3]=analyse_rho21(QQ,PD,tstep-1,porder,maxgauss); 

% resi3=0*resi3; 
% resi2=0*resi2; 
% resi1=0*resi1; 

myresidues=[resi0;resi1;resi2;resi3]; 
if(go_back1step)if(tstep>2)tstep=tstep-1;go__ back1step=O;end;end; % not run h 
tstep 
dt 

notvalid=1; 

error=O; 


while notvalid 
%notvalid 

% go_back1step 
% tstep 

if(go_back1step)if(tstep>2)tstep=tstep-1;go_back1step=O;end;end; 
% tstep 

%error 
%dt+9 
error=O; 
notvalid=O; 
for i=1:nump 

qO=QQ(i,tstep-1); 
pO=PP(i,tstep-1); 

[qf, pf, ff] = symplectic21(qO,pO,dt,X,QQ,PP,VG,i,nump,tstep,PD,coefs, ... 

porder,myresidues); 
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%[qf_2, pf_2, ff_2] = symplectic(qO,p0,2*dt,X,QQ,PP,VG,i,nump,tstep); 

[qh1, phi, fh1] = symplectic21(qO,pO,dt/2,X,QQ,PP,VG,i,nump,tstep,PD, ... 


coefs,porder,myresidues); 

[qh2, ph2, fh2] = symplectic21(qh1,ph1,dt/2,X,QQ,PP,VG,i,nump,tstep,PD, ... 

coefs,porder,myresidues); 

if(-isfinite(qh2)) fsdadsaerrrrrrr;end; 

% error=abs(ph2-pf); %momentum 

error=abs(qh2-qf); %space 

%error_lagre=abs(qf_2-qf); %space 

%MATLAB BUG ;break; end; 

if(error>TOLERANCE) 


not_valid=1;dt=dt/2; 

go_back1step=1; 


end; 

% Check for trajectory crossing 

if((i>1)&(i<nump)) 


if(qh2<QQ(i-1,tstep-1))1(qh2>QQ(i+1,tstep-1)) 

%% bad HACK HACK 

qh2=1/2*(QQ(i-1,tstep-1)+QQ(i+1,tstep-1)); 

ph2=1/2*(PP(i-1,tstep-1)+PP(i+1,tstep-1)); 

% cxzcxz 

if(tstep>3)tstep=tstep-3;end 

not_valid=1;dt=dt/2; 

go_back1step=1; 


% break cant use break because of a matlab bug 

%go back 1 step; 


end;end; 

%if(error_large>TOLERANCE) not_valid=1;dt=dt*1.5;break; end; 

QQ(i,tstep)=qh2; 
FF(i,tstep)=fh2; 
PP(i,tstep)=ph2; 
TT(i,tstep)=dt; 
end; 
%Test for crossings.if crossed try again with timestep=1/2 current 
%Test for accuracy.try with 2x timestep .. if accuracy below threshold timestep= 

if(error<TOLERANCE)&(-go_back1step)not_valid=O;end; 

end; 

%we got valid 

%endkiio 

dt=dt* 1 . 002; 


tstep=tstep+1; 

http:crossings.if
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end; 

subplot(3,1,1); 

pp=QQ+j*PP; 

%plot(pp(:, :) ', 'x-') 

plot(QQ',PP');xlabel('space');ylabel('momentum'); 

subplot(3,1,2); 


% plot(PP','x-') 
plot(QQ');xlabel('time');ylabel('space'); 
subplot(3,1,3); 
plot(TT(1, : ));xlabel('step');ylabel('time delta'); 
z=cumsum(TT'); 
figure 
plot(z,QQ');;ylabel('space');xlabel('linear time '); 

grid 
dt*TIMESTEPS 

( sum(QQ(: ,TIMESTEPS)-=sort(QQ(:,TIMESTEPS))))/nump 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [coefs resiO resi1 resi2 resi3]=analyse_rho22(QQ,PD,time,porder, ... 

maxgauss,fourier_residue) 

% this routine will try to get an analytical expression for rho; 
%Get quadratic coeficients ... 

zx=QQ(:,time);zy=PD; 
rho=gradient(zy,zx); 
CC=1/2*log(rho); 

[siza sizb]=size(rho); 

siz=max(siza,sizb); 

%[maxi,mini,num_max,num_min]=findmaxmin(CC,siz,10,9); 

maxi=siz;mini(1)=1;mini(2)=siz;num_max=1;num_min=2; 

ngauss=num_min-1; 

if(ngauss>maxgauss)ngauss=maxgauss;end; 


%%% ONLY WORKS FOR 1 GAUSSIAN NOW FIXME 
coef=zeros(ngauss,porder+1); 

%generate coefs 
for n=1 : (num_min-1) 

istart=mini(n); 

iend=mini(n+1); 

%%BUG remove this hack 

istart=istart+1; 

iend=iend-1; 

%%BUG remove this hack 
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tempy=CC(istart:iend); 
tempx=QQ(istart:iend,time); 
coef(n,:)=polyfit(tempx,tempy,porder); 

%SANITY CHECK 
if(coef(n,1)>0)coef(n,:)=coef(n,:)*O;end; 
residy=tempy-polyval(coef(n,:),tempx); 
fresidy=dst(residy); 
end; 
specsize=max(max(size(residy))); 
%resO=idst(residy); will be a check later 
resO=zeros(1,specsize); 
res1=zeros(1,specsize); 
res2=zeros(1,specsize); 
res3=zeros(1,specsize); 
%should calculate this with idst ... but like this it is a good check 
N=specsize; 
for n=1:N 

for k=1:N 

%% IF WE WANT TO LOWPASS THIS IS WHERE TO DO IT 

if(k>N/10)fresidy(k)=O;end; % 20% 

ss=sin(pi*k*n/(N+1)); 

cc=cos(pi*k*n/(N+1)); 


resO(n)=resO(n)+fresidy(k)*ss; 
res1(n)=res1(n)+fresidy(k)*Cc*(pi*k/(N+1)); 
res2(n)=res2(n)+fresidy(k)*(-ss)*(pi*k/(N+1))*(pi*k/(N+1));; 
res3(n)=res3(n)+fresidy(k)*(-cc)*(pi*k/(N+1))*(pi*k/(N+1))*(pi*k/(N+1));; 

end; 

end; 

resO=res0*2/(N+1); 

res1=res1*2/(N+1); 

res2=res2*2/(N+1); 

res3=res3*2/(N+1); 

temperr=resO-residy'; 

err_in_idst=max(max(temperr)); 

%coef=polyfit(QQ(:,time),CC,porder); 

%############### 


%DEBUG GOODNESS OF FIT 

figure(1); 

hold off 

subplot(2,1,1); 

plot(QQ(: ,time) ,CC, 'x') 

hold on 

for n=1:ngauss 
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istart=mini(n); 

iend=mini(n+1); 

%%BUG remove this hack 

istart=istart+1; 

iend=iend- 1; 


xstart=QQ(istart,time); 
xend=QQ(iend,time); 
vect=xstart:(xend-xstart)/200:xend; 
drawnow 
subplot(2,1,1); 
plot(vect,polyval(coef(n,:),vect)); 
hold off 
subplot(2,1,2); 
plot(tempx,resO,'x-') 
drawnow; 
end; 
hold off 
%############### 

figure(2) 
plot(QQ(: , 1 :time)'); 
coef 
%z 
coefs=coef; 
resiO=resO; 
resi1=res1;resi2=res2;resi3=res3; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [q2, p2, f1 ] = symplectic21(qO,pO,dt,X,QQ,PP,VG,i,nump,tstep,PD,coefs, . . . 

porder,myresidues) 

% qO=QQ(i,tstep-1); 
% pO=PP(i,tstep-1); 

%get force term from potential 
% curi=getindex(X,qO); 
%if(curi>O) fO=-VG(curi);end; 
%f0=- 2*q0; 
%porder 

fO=extforces21(qO,pO,QQ,PP,i,nump,tstep,PD,coefs,por der,myresidues); 
fO=fO+O; 


p1=p0+dt/2*f0; 

q1=qO+dt/2*p1; 


%get force term from potential 
%curi=getindex(X,q1) ; 
%if(curi>O) f1=-VG(curi);end; 
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%f1=-2*q1; 
f1=extforces21(q1,p1,QQ,PP,i,nump,tstep,PD,coefs,porder,myresidues); 
f1=f1+0; %other forces 

p2=p1+dt/2*f1; 
q2=q1+dt/2*p2; 


[q2, p2, f1]; 

return 


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [retemp QF] =extforces21(qO,pO,QQ,PP,i,nump,tstep,PD,coefs, ... 


porder,myresidues) 

temp=O; 

resi0=myresidues(1,:); 

resi1=myresidues(2,:); 

resi2=myresidues(3,:); 

resi3=myresidues(4,:); 

%for n=1:nump 


% if n==i continue;end; 

% d=((qO-QQ(n,tstep-1))); 


% u=sign(d); 

%temp=temp+100*1/d~2*(u); 

%end; 

%DEPRECATED ################################### DERIVATIVES 

% QVector=QQ(:,tstep-1); 

% list=get_nearest_neigh_wself(QVector,i,5); 

% PD_DIFFS= maple_deriv(QQ(list),PD(list)'); 

% PO=PD_DIFFS(1);P1=PD_DIFFS(2); P2=PD_DIFFS(3);P3=PD_DIFFS(4);P4=PD_DIFFS(5) 


% This is the Q term already diff to give force not potential 

% QF=-1/2*(P4*P1~2+P2~3-2*P2*P3*P1)/P1~3; % 

% temp=QF*0.001; 

%DEPRECATED ################################### 


% #### C=CO+C1*X +C2*X~2 +C3 x~3 .... 

% CD1=C1+2*C2*X+3*C3*X~2+ .... 

% CD2=2*C2+3*2*C3*X+ .... 


%coefs 

% CO=coefs(3); coef(49) (porder 48) 

% C1=coefs(2); coef(48) 

% C2=coefs(1); coef(47) 

% CALC DERIVATIVES ANALYTICALLY 


coef=O; 
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X=qO; 
CD1=0; 
for n=1:(porder+1-1); 


coef=coefs(n); 

m=porder-n+1; 

CD1=CD1+coef*(m)*x-cm-1); 


end; 
CD2=0; 
for n=1 : (porder+1-2); 


coef=coefs(n); 

m=porder-n+1; 

CD2=CD2+coef*(m)*(m-1)*x-cm-2); 


end ; 
CD3=0; 
if(porder>2) 
for n=1:(porder+1-3); 


coef=coefs(n); 

m=porder-n+1; 

CD3=CD3+coef*(m)*(m-1)*(m-2)*X-(m-3); 


end; 
end; 

% %%%%%%%%%% QF=-(2*cd1*cd2+cd3_ 
QF=(2*CD1*CD2+CD3); 
% temp=0.1*QF; 
%############################################### 

[ngauss temp]=size(coefs); 
rhoO=O;rho1=0;rho2=0;rho3=0; 

% FOURIER RESIDUES 

%APPROX TO LAST PARTICLE ... NOT PRECISELY CORRECT 

resO=O; 

res1=0; 

res2=0; 

res3=0; 

if(i>1)&&(i<nump-1) 

resO=resiO(i); 

res1=resi1(i); 

res2=resi2(i) ; 

res3=resi3(i); 

end; 


% ONLY WORK WITH 1 GAUSSIAN 

%for n=1 :ngauss 

n=1; 


%% RESOLVE ILL CONDITIONING 

a2=coefs(n,1); 
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a1=coefs(n,2); 
aO=coefs(n,3); 


%n 

expo=exp(a2*q0-2+a1*qO+a0); %%BUG 


rhoO=rhoO+expo*exp(resO); 

rho1=rho1+expo*(2*a2*qO+a1+res1); 
rho2=rho2+expo*(2*a2+res2+(2*a2*q0+a1+res1)-2); 
rho3=rho3+expo*(res3+3*(2*a2+res2)*(2*a2*qO+a1+res1)+(2*a2*qO+a1+res1)-3); 

% end; 

%rho0 

%rhoO=rhoO+expo*resO; 

%rho1=rho1+expo*res1; 

%rho2=rho2+expo*res2; 

%rho3=rho2+expo*res3; 

temp=1/2*(rho1-3-2*rho1*rho2*rhoO+rho3*rho0-2)/rho0-3; 

%checkc=(temp/2/alphan-2+miu)/q0; 

% Harmonic osc 

%get force term from potential 

%curi=getindex(X,q1); 

%f1=0; 

%if(curi>O) f1=-VG(curi);end; 


%f1=-2*q1; 

% temp=0.1*QF; 


%% THE -0.001*p0 friction term will stabilize the density function 

%tempi=-.1*q0-0.005*p0;%-0.003*q0-3;; 

xx=q0-5; 


%testing diff force terms 

% tempi=+0.001*sech(xx)*tanh(xx)*1-0*qO-O.OOOO*q0-4; 

% tempi=-sech(xx)*tanh(xx)*i-O*qO-O.OOOO*q0-4; 


ternpi=-sech(xx)*tanh(xx)*O-i*qO-O.OOOO*q0-4; 

retemp=temp+tempi; 


QHJE 

tic 

POTENTIAL='O*t+l*x.-2' 
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ONEHALF=1/2*(1); 

nump=50;porder=6; %linear 

TDLERANCE=1e-5*nump; 

TIMESTEPS=10000 % 

dt=10--2*1; 

clear order points 

global order points 

order=2 

points=order+1 

%points= 

% this last part is assuming X spacing of 1 

clear XX; 

XX=ones(nump,TIMESTEPS)*NaN; 

QQ=ones(nump,TIMESTEPS)*NaN; 

RH=XX;PP=XX; 

VP=XX; 


QQ=XX; 
%PP=O*XX; 
FF=XX*O; 
%Q=XX*O; 

DDSS=PP; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 


X=-10*1:20*1/(nump-1) :10*1; 

% for i=1 :max(size(X)) y(i)=QPotential(1,X(i));end; plot(X,y,'x-') 

% 

clear XX; 

XX=ones(nump,TIMESTEPS)*NaN; 

QQ=ones(nump,TIMESTEPS)*NaN ; 

RH=XX;PP=XX; 

SS=XX; 

VP=XX; 

VP=VP*O; 

for i=1:nump 

QQ(i,1)=X(i); 
RH(i,1)=log(rho(O,X(i)))/2; 
SS(i,1)=Sphase(O,X(i)); 
PP(i,1)=vel(O,X(i)); 
VP(i,1)=Potential(O,X(i)); 

end 
for i=1:TIMESTEPS 
VP( : ,i)=VP(:,1); %time indep for now 
end 
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%initial phase fix 
temp=SS(:,1); 
temp=unwrap(temp,2); 
SS(:,1)=temp; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%STARTHERE 
tstep=1; 
ctime=-dt; %not zero 
while(tstep<=TIMESTEPS), 
dt 
notvalid=1;go_back1step=O; 
while notvalid, 
if(go_back1step) 
tstep=tstep-go_back1step; 
tstep=max(tstep,1); 
go_back1step=O; 
end; 
notvalid==O; 
%{ 
%this is slow somehow 
dt2==dt/2; 
t==ctime; 
for i==1:nump 
x==QQ(i,tstep); 
VP(i,tstep)=O;%eval(POTENTIAL); %time indep for now 
end 
plot(VP, '>-'); 
%%%%%%%%%%% 2 half steps 
%} 
%faster here 
x=QQ(:, tstep); 
%VP(:,tstep)=10*10~-3*(x-2).~2; 

VP(:,tstep)==0*1*10~-4*(x-2).~2.*(x-0).~2; 

%% POTENTIAL HERE 
%VP(:,tstep)==10~1*sech(4*(x-3)); 

VP(:,tstep)=0*8*10~-2*(x).~2; 

qqOO==QQ(:,tstep); 

%{ 

if(tstep>1) 

qp11=calcQP3(qqOO,RH(:,tstep),RH(:,tstep-1),QP(:,tstep-1)); 

else 

qp11=calcQP(qqOO,RH(:,tstep)); 

end 

[pp11 ddss11]==calcPPDDSS(qqOO,SS(:,tstep));% 
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qq12=QQ( : ,tstep)+dt2*pp11;% only 1st order 
%VP(:,tstep)=10*pp11.~2;%0*1*10~-4*(x-2).~2.*(x-0) . ~2; 

%% POTENTIAL HERE 
ss12=SS(:,tstep)+dt2*(0NEHALF*pp11.~2-(VP(:,tstep)+qp11)); 

[ptemp ddss12]=calcPPDDSS(qq12,ss12); 

rh12=RH(: ,tstep)+dt2*(-1/2*ddss12); 

%rh12=RH(: ,tstep)+dt2*(-1/2*ddss11); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

if (tstep>1) 

qp12=calcQP3(qq12,rh12,RH(:,tstep),qp11); 

else 

qp12=calcQP(qq12,rh12); 

end 

[pp12 ddss12]=calcPPDDSS(qq12,ss12);% 

qq22=qq12+dt2*pp12; % only 1st order 

ss22=ss12+dt2*(0NEHALF*pp12.~2-(VP(:,tstep)+qp12)); 

[pp22 ddss22]=calcPPDDSS(qq22,ss22); 
rh22=rh12+dt2*(-1/2*ddss12); 
%rh22=rh12+dt2*(-1/2*ddss11); 
%} 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%{ 
if(tstep>1) 
qp11=calcQP3(qqOO,RH(:,tstep),RH(:,tstep-1),QP(: ,tstep-1)); 
else 
qp11=calcQP(qqOO,RH(:,tstep),qqOO,qqOO); 
end 
% qp11=threshold_smooth(qqOO,qp11,1); 
%qp11=fixborders2(qqOO,qp11,3,0,1); 
[pp11 ddss11]=calcPPDDSS(qqOO,SS( : ,tstep)); %% v=grad(S) 
%pp11=fixborders2(qqOO,pp11,3,0,1); 
%ddss11=fixborders2(qqOO,ddss11,3,0,1); 
% ddss11=threshold_smooth(qqOO,ddss11,10); 
%no need for this block use from prev one 
qq1f=QQ( : ,tstep)+dt*pp11;% only 1st order 
ss1f=SS(:, t step)-dt*(DNEHALF*pp11.~2+(VP(: ,tstep)+qp11)); 
[ptemp ddss1f]=calcPPDDSS(qq1f,ss1f); 
% ddss1 f =fixborders2(qqOO,ddss1f,11,0,1); 
% ddss1f=threshold_smooth(qq1f,ddss1f,10); 
rh1f=RH(:,tstep)+dt*(-1/2*ddss1f); 
%rh1f=RH( : , tstep)+dt*(-1/2*ddss11); 
%} 
ITER_HIGHTHRESH=16; 
ITER_LOWTHRESH=9; 
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THRESHOLD=10~-13; 

XO=QQ(: ,tstep);SO=SS(:,tstep);CO=RH(:,tstep); 

X1=XO;S1=SO;C1=CO; 

% [DSO DDSO]=calcPPDDSS(X1,S1); 

% [DCO DDCO]=calcPPDDSS(X1,C1); 

[DSO DDSO DCO DDCO]=calcPPDDSS_alternate_zones(X1,S1,C1); 

% SO=SO+dt/2*(-(DS0.~2)+DDCO+DC0.~2); 


% DDCO=DDCO*O;DCO=DCO*O; 

% S1=SO+dt/2*(-(DS0.~2)+DDCO+DC0.~2); %jumpstart S1 for zones 

% figure(3);plot(S1); 

notvalid=1; 

while notvalid, 

iter=O;DDS=XO;DDC=XO;err=100; 

while abs(err)>THRESHOLD, 

iter=iter+1; 

LASTDDS=DDS; 

% [DS DDS]=calcPPDDSS_alternate(X1,S1); 

% [DC DDC]=calcPPDDSS_alternate(X1,C1); 

[OS DDS DC DDC]=calcPPDDSS_alternate_zones_varpoly(X1,S1,C1); 

thres=10~-1o; 

% DDC=threshold_smooth2(X1,DDC,thres); 
% DDS=threshold_smooth2(X1,DDS,thres); 
% DC=threshold_smooth2(X1,DC,thres); 
% DS=threshold_smooth2(X1,DS,thres); 
% DDC=DDC*O;DC=DC*O; 
% DDS=fixborders2(X1,DDS,2,0,1); 
% DS=fixborders2(X1,DS,2,0,1); 
% DDC=fixborders2(X1,DDC,2,0,1); 
% DC=fixborders2(X1,DC,2,0,1); 
err=max(max(LASTDDS-DDS)); 
X1=XO+dt*DS; 
S1=SO+dt/2*(-(DS.~2)+DDC+DC.~2); 

C1=CO-dt/2*DDS; 

if(iter>50) errorinfiniteloop; end; 

% plot(XO,DDS);grid;drawnow 

end 

iter 

if(iter>ITER_HIGHTHRESH) 


dt=dt/2; notvalid=1; 
else 
notvalid=O; 
end; 

end; 
%trapezoid semiimpl 
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X1=XO+dt/2*(DS+DSO); 

S1=SO+dt/4*(-(DS . -2)-(DS0.-2)+DDC+DDCO+DC . -2+DC0.-2); 

C1=CO-dt/4*(DDS+DDSO); 

% Xl=XO+dt*DS; 

% S1=SO+dt/2*(-(DS.-2)+DDC+DC.-2); 

% C1=CO-dt/2*DDS; 

%%%%%%%%%%%%%%%%% 

%compare qlf to qq22 

%maxerror=max(abs(qq22-qq1f)); 

%if(maxerror>TOLERANCE) 

% not_valid=l;dt=dt/2; 

% go_back1step=1; 

%end 

qq1f=X1 ; 

if(min(diff(qqlf))<=O) %there was a crossing 

toe 

fefrefre ; 

end 


end; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% use the 2 half step results anyways 

% QP(:,tstep)=qp12; 

% PP(:,tstep)=pp12; 

% DDSS( : ,tstep)=ddss12; 

% QQ(:,tstep+1)=qq22; 

% SS( : ,tstep+1)=ss22; 

% DDSS(: ,tstep+1)=ddss22; 

% RH(: ,tstep+1)=rh22; 

% Or force usage of single big step 

QP( : ,tstep)=-1/2*(DDC+DC.-2); 
PP (: , tstep) =DS; 
DDSS( : ,tstep)=DDS; 
QQ( : ,tstep+1)=X1; 
SS(:,tstep+1)=S1; 
DDSS(:,tstep+l)=DDS; 
RH( :, tstep+1)=C1; 

%pause 
%order bug tstep+l 
%plot(QQ(: , tstep),(RH(: ,tstep)),'x-');drawnow; 
%plot(QQ( : ,tstep),exp(RH( : ,tstep)),'x-');drawnow; 
%plot(QQ( : ,tstep),SS(: ,tstep),'x-');drawnow; 
%plot(QQ(: ,tstep),QP(:,tstep),'x-');drawnow; 
figure (1); 
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subplot(4,1,1); 
plot(QQ(:,tstep),(RH(:,tstep)),'x-'); 
subplot(4,1,2); 
plot(QQ(:,tstep),QP(:,tstep),'x-'); 
subplot(4,1,3); 
plot(QQ(:,tstep),(SS(:,tstep)),'x-'); 
%p12 
%plot(QQ(:,tstep),-1/2*2*ddss22,'x-'); 

[tempi temp2]=calcPPDDSS(QQ(:,tstep),QP(:,tstep)); 

plot(QQ(:,tstep),DS,'x-') 

subplot(4,1,4); 

plot(QQ(:,tstep),DDS,'x-') 

%plot(QQ(:,tstep),temp2,'x-') 

%if(tstep>2)plot(QQ(:,tstep),(QP(:,tstep)-QP(:,tstep-1))./dt,'x-');end 

drawnow; 

if pauses pause; end; 

%plot(QQ(:,tstep),gradient(SS(:,tstep)),'x-');drawnow; 

%pause(2) 

deltat(tstep)=dt; 

ctime=ctime+dt; 

time(tstep)=ctime; 

dt=dt; 

ctime 

tstep=tstep+l 

if(iter<ITER_LOWTHRESH) dt=dt*1.01; end; 

end 

toe 

%}%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [OS DDS DC DDC]=calcPPDDSS_alternate_zones(X,S,C) 

% needs accurate initial S to work! 

siz=max(size(X)); 

my_S=spapi(4,X,S); 

spl=fnder(my_S,1);t1=fnval(sp1,X); 

sp2=fnder(my_S,2);t2=fnval(sp2,X); 

sp3=fnder(my_S,3);t3=fnval(sp3,X);% may have to bump up order of splines 

DSO=tl; DDSO=t2; DDDSO=t3; 

my_C=spapi(4,X,C); 

sp1=fnder(my_C,1);t1=fnval(sp1,X); 

sp2=fnder(my_C,2);t2=fnval(sp2,X); 

sp3=fnder(my_C,3);t3=fnval(sp3,X);% may have to bump up order 


zones=zeros(l,siz); 

zones=(DDC0>10--8); 

%enlarge by 1 


http:dt=dt*1.01
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enl=4; 
zones=smooth(zones,enl*2+1);%zones=zones>O; 
[numz breaks]=getnumtypezones(zones); 
% figure(2);plot(zones,'-x');drawnow; 
starts=!; 
for i=1:numz 
% 0 for normal transition zones 
% -1 for always splines 
% 3 for always least sq 
if(zones(starts)>O) 
%splines or local 
ends=breaks(i); 
DC(starts:ends)=DCO(starts:ends); 
DDC(starts:ends)=DDCO(starts:ends); 
DS(starts:ends)=DSO(starts :ends); 
DDS(starts:ends)=DDSO(starts :ends); 
starts=ends+1; 
else 
ends=breaks(i); 
%least sq or global 
gx=X(starts:ends);gc=C(starts:ends);gs=S(starts:ends); 
my_C=spap2(1,3,gx,gc);my_S=spap2(1,3,gx,gs); 
sp1=fnder(my_C,1);t1=fnval(sp1,gx); 
sp2=fnder(my_C,2);t2=fnval(sp2,gx); 
DC(starts :ends)=t1; 
DDC(starts:ends)=t2; 
sp1=fnder(my_S,1);t1=fnval(sp1,gx); 
sp2=fnder(my_S,2);t2=fnval(sp2,gx); 
DS(starts:ends)=t1 ; 
DDS(starts:ends)=t2; 
starts=ends+1; 
end ; 
end; 
DC=DC';DDC=DDC';DDS=DDS';DS=DS'; 

return; 
% sp=spapi(4,x,yerr); 
% ch = spapi(augknt(x,4,2), [x x], [yerr dy]); 
% ls=spap2(18,3,x,yerr); %1 quadratic pieces=x-k+1; 
% my_sp=spapi(4,X,S);% 3rd order spline (cubic) 
my_S=spap2(1,3,X,S); 
my_C=spap2(1,3,X,C); 
%my_sp=csapi(X,S) ; %reg spline 
% my_sp=csaps(X,S); %smoothed 
sp1=fnder(my_S,1);t1=fnval(sp1,X); 
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sp2=fnder(my_S,2);t2=fnval(sp2,X); 
DS=t1; 
DDS=t2; 

sp1=fnder(my_C,1);t1=fnval(sp1,X); 
sp2=fnder(my_C,2);t2=fnval(sp2,X); 

DC=t1; 
DDC=t2; 

% t1=fixborders(X,t1,2,2); %linear 
% t2=fixborders(X,t2,2,1);% quadratic 
return 
% % 
% % 
siz=max(size(X)); 
order=2; 
points=order+1; 
interpx=zeros(1,points);interpy=interpx; 

t1=interpx;t2=interpx; 
for i=1:siz 
originx=X(i); 
indexes=get_n_neighbours(points,X,originx); 
interpx=X(indexes);interpy=S(indexes); 
sp=polyfit(interpx,interpy,order); 
sp1=polyder(sp);sp2=polyder(sp1); 
tt1=polyval(sp1,originx);tt2=polyval(sp2,originx); 
% t1=tt1;t2=tt2; 
% PP(i)=t1; 
% DDSS(i)=t2; 

t1(i)=tt1; 

t2(i)=tt2; 


end 
t1=fixborders(X,t1,1,2)'; % 
t2=fixborders(X,t2,1,2)'; 
PP=t1'; 
DDSS=t2'; 

return; 
%my_sp_extended=my_sp; 

%fnxtr(my_sp,2); %linear outside domain 
%CC(1)=fnval(my_sp_extended,zx(1)); 

%CC(nump)=fnval(my_sp_extended,zx(nump)); 
%siz=max(size(S)); 
%pvalues=0.99; %optimal value 
%weights=[! 1 ones(l,siz-4) 1 1]; 
%my_sp=csaps(X,S,pvalues,[],weights); i. smoothing aps 
%my_sp=spapi(4,X,S); % 3rd order spline (cubic) 

http:pvalues=0.99
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siz=max(size(S)); 
pvalues=0 . 99; %optimal value 
weights=[1 1 1*ones(1,siz-4) 1 1]; 
%my_sp=csaps(X,S,pvalues,[],weights); 
my_sp=csapi(X,S);% no blending 
sp1=fnder(my_sp,1); 
sp2=fnder(my_sp,2); 
cub=csapi(X,S); 
cub1=fnder(cub,1); 
cub2=fnder(cub,2); 
dasdsadsa 
blend=[O 0 0 0 0 ones(1,siz-10) 0 0 0 0 0]'; 
%must be between 0-->cubic and 1--->smoothed 
PP=fnval(sp1,X).*(blend)+fnval(cub1,X) . *(1-blend); 
DDSS=fnval(sp2,X).*(blend)+fnval(cub2,X).*(1-blend); 
%must blend in csplines with smoothed ones at borders 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%{ 
siz=max(size(X)); 
interpx=zeros(1,points);interpy=interpx; 
for i=1:siz 
originx=X(i); 
indexes=get_n_neighbours(points,X,originx); 
interpx=X(indexes);interpy=S(indexes); 
sp=polyfit(interpx,interpy,order); 
sp1=polyder(sp);sp2=polyder(sp1); 
t1=polyval(sp1,originx);t2=polyval(sp2,originx); 
PP(i)=t1; 
DDSS(i)=t2; 
end 
%} 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function Q=calcQP2_splines(X,RH,prevRH,prevQ) 
delt=RH-prevRH; 
%rescale 
pvalues=0.99-(delt>0)*0.5; 
pvalues=0.99; 
%siz=max(size(X)); 
Q=O; 

%my_sp=spap2(1,3,X,RH);% least sq quadratic 
%my_sp=spapi(4,X,RH);% 3rd order spline (cubic) %continuous 2nd 
%my_sp=csapi(X,RH);% cubic spline 
%my_sp=spaps(X,RH,O);% smoothing aps 
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siz=max(size(RH)); 

%pvalues=0.99; %optimal value 

pvalues=0.99; %optimal value 

weights=[! 1 ones(1,siz-4) 1 1]; 

my_sp=csaps(X,RH,pvalues',[],weights); %smoothing aps 

%my_sp=spap2(1,3,X,RH); %leastsq quadratic->correct behaviour for single gaussians 
my_sp=csapi(X,RH);% cubic spline 
%my_sp=spaps(X,RH,10--3); 
my_sp_extended=my_sp; 

%fnxtr(my_sp,3); %quadratic outside domain 


%CC(1)=fnval(my_sp_extended,zx(1)); 
%CC(nump)=fnval(my_sp_extended,zx(nump)); 


sp1=fnder(my_sp_extended,1); 

sp2=fnder(my_sp_extended,2); 

t1=fnval(sp1,X);t2=fnval(sp2,X); 

Q=-1/2*(t2+t1.-2); 

%Q=Q; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%{ 

siz=max(size(X)); 

Q=O; 

interpx=zeros(1,points);interpy=interpx; 

for i=1:siz 

%order=6; 

%if(i<floor(points/2))l(i>(siz-floor(points/2))) 

%order=2; 

%end; 

originx=X(i); 

originy=RH(i); 

% get n closest points 

indexes=get_n_neighbours(points,X,originx); 

interpx=X(indexes);interpy=RH(indexes); 

sp=polyfit(interpx,interpy,order); 

sp1=polyder(sp);sp2=polyder(sp1); 

t1=polyval(sp1,originx);t2=polyval(sp2,originx); 

tempQ=-1/2*(t2+t1.-2); 

Q(i)=tempQ; 

Q=Q'; 

end 

%} 

function indexes=get_n_neighbours(n,X,originx) 

% gets indexes to nearest n neighbours .. n should be less than sizeX 

[temps tempi]=sort(abs(X-originx)); 
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result=tempi(1:n); 

indexes=sort(result)'; 

% return 

siz=max(size(X)); 

me=tempi (1); 


idx=1:n; 

idx=me+idx-ceil(n/2); 

adjl=min(idx(1)-1,0); 

adjr=max(idx(n)-siz,O); 

index=idx-adjl-adjr; 

%siz=max(size(X)); 

%if(indexes(1)>1)&(indexes(n)<siz) 

%indexes=(result(1):result(1)+n-1)-floor(n/2); 

%end; 


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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