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ABSTRACT

Concepts of tree coding and of rate-distortion theory
are applied to the problem of the transmission of analog
signals over digital channels.

Coding schemes are developed which yield improvements
of up to six dB in signal-to-noise ratio over conventional

techniques for the reproduction of speech waveforms.
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CHAPTER I

INTRODUCT ION

This thesis addresses the problem of reproducing analog
signals as faithfully as possible on the basis of information
transmitted over a digital channel of given capacity. We show
that the systems conventionally employed for this purpose fall
short of the performance theoretically attainable, and present
a method by which performance considerably closer to the optimum

can be obtained.

Summary Of Chapters

In chapter 2, we define more precisely the problem we
consider, introducing the concept of a fidelity criterion to
permit the use of rate-distortion theory to establish the
ultimate performance limit for a given source and channel.
Tree source coding is developed as an instrumentable method
of approaching the rate-distortion limit, and the design of
a good tree coding system is shown to comprise the selection
of an appropriate tree code and an effective search algorithm.

Chgpter 3 discusses several search algorithms including

the M-algorithm, which is of central importance to this:work.

In chapter 4, the performance of these search algorithms in a



somewhat artificial, but easily analyzed, situation is compared.

The treatment of actual data sources beginé in chapter 5,
where the search algorithms are applied to several tree codes,
both idealized and practical, in an attempt to reproduce an
uncorrelated Gaussian source. '

Chapter 6 develops approprigte tree codes for use with
correlated sources; in chapter 7, these codes are applied to
the reproduction of sampled speech waveforms, and the improve-
ment which the M-algorithm yields over conventional systems

employing these codes is evaluated.



CHAPTER II

RATE-DISTORTION THEORY AND TREE SOURCE CODING

We are concerned here with the problem of transmitting a
signal, generated by some source, over a communication channel
whose capacity is less than the informational entropy of the
source. We know from standard information theory that the signal
cannot be reproduced perfectly; some distortion must result. If

we define a fidelity criterion which measures the quality of repro-

duction, rate-distortion theory [1] specifies how well the best
possible communication system employing the given channel performs.
To approach the rate-distortion performance limit, it is

usually necessary to employ source encoding to match the source to

the channel. The process of source encoding essentially selects
for transmission those features of the signal which are most impor-
tant (in the fidelity criterion sense) for its reproduction, and
prevents the use of channel capacity for the transmission of redun-
dancies or of unimportant information. In a communication system
employing source encoding (see Fig. 2.1), the source encoder
accepts the input signal X, with entropy Hy >C (the channel capa-
city), and produces the transmitted signal Y, with entropy HY<(C,
in a form acceptable to the channel. If we assume an error-free
channel, as should be the case given suitable channel coding,

the source decoder receives Y unchanged, and generates the re-
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A
produced signal X, an approximation to X, with entropy HE<C.
The sources with which we are concerned generate sequences

of letters chosen from some source alphabet, which may be a set

of discrete symbols, a segment of the real line, or some other
alphabet. We will denote a single source letter as Xy and a se-
quence of these as {x}. We assume a digital channel capable of
the error-free transmission from encoder to decoder of one chan-

. nel digit yi, chosen from an alphabet of d digits, for each source
letter accepted by the encoder. The capacity of the channel is
then R=log,(d) bits/letter. R is also known as the rate of the
source code used. The decoder generates one letter X, chosen

from a reproducing alphabet, to correspond to each source letter.

In a practical situation, the source letters would typi-
cally be produced by sampling a continuous time function at uni-
form intervals Ts=l/fs. For the purpose of theoretical analysis,
however, it is assumed that the source letters are chosen prob-
abilistically according to a specified distribution function.

We have introduced the concept of a fidelity criterion
which somehow measures the resemblence between {x} and {2}. To
employ rate-distortion theory, the fidelity criterion must be
a well-defined function Fy({x}, {#]), where the subscript indi-
cates the length of the sequences compared. The most easily anal-

yzed fidelity criteria are the gingle-letter criteria,for which

FN({x},{i})=_% F(xy,%). Here F(xt,ft) measures the distortion
N
inherent in the reproduction of the single source letter x¢ as

ﬁt, and the fidelity criterion for a sequence of length N is just

the average distortion in the reproduction of the N letters of



the sequence.

In the analog domain, F(x,Xy) is often a difference-
distortion measure; that is, F(xy,X,) = Flx¢-X;). The distortion
then depends only on the difference between the source and repro-
ducing letters, and not on their actual values. A popular diff-
erence-distortion measure is Flxy,X.) = |xt-£t|k. With k=2,
this is the squared-error distortion measure, leading to the
'mean-squared error or MSE single-letter fidelity criterion.

The fidelity criterion should, as far as possible, be chosen
to reflect the quality of reproduction experienced by the ultimate
user of the transmitted information. Unfortunately, in many cases
(and particularly when the source is a sampled speech waveform)
the user's actual quality measurement criterion has not been ex-
pressed in a form suitable for the application of rate-distortion
theory or for use by the source coding techniques we will present.
In such cases, we resort to a criterion which, while not identical
to that of the user, bears some relation to the subjective quality
of reproduction. The MSE criterion is often chosen for the sim-
plicity of analysis it permits.

Ag an example of a rate-distortion performance limit, con-
sider the following: we wish to reproduce letters chosen inde=
pendently from the normal distribution 9#,a2) by means of the
communication system of Fig. 2.1 . The quality of reproduction
is judged by the MSE fidelity criterion. Rate-distortion theory
states [1] that a(R), the minimum distortion attainable when R



bits/letter of information about the source are transmitted, is

given by
A (R) = '92;2'5 (2.1)
Unforﬁunately, the theory does not specify how to construct
a practical source coder which will acheive this level of per-
formance. We next consider some source coding techniques which -
. can perform this well if the encoder is allowed an infinite
amount of storage and an infinite length of time to perform its

task, and show how these techniques can be used to approach the

rate-distortion limit in a practical system.

Block Codes
Block codes are a very general type of source code; pro=
perly applied, they can achieve the rate-distortion performance

1imit. 4 block code of blocklength N and rate R consists of a
R

table or code bock of 2N uniqué code words, each an N-tuple of
letters from the reproducing alphabet. The encoder accepts a
block of N input samples, finds the code word best matching this
block, and transmits to the decoder in the form of N channel
digits (or NR bits) the identity of the selected code word. The
decoder looks up the code word in its code book and releases to
the user the specified N letters of the output sequence. A
suitably-chosen block code will approach a(R) as N->eo,

The code used by the standard pulse-code modulation (PCM)



source coding system is a block code with N=l: each input sample
is quantized independently to one of the d letters of the repro-
ducing alphabet.

The number of code words in a block code increases expo-
nentially with blocklength, implying that the storage (of code
words) and computation (comparisons of the input block with the
various code words) required to implement the code do likewise.
" It is therefore impossible for an encoder of finite speed and
storage capacity to employ a block code of arbitrarily large N,
as is necessary if the system is to approach a(R) arbitrarily

closely. Such a code is termed non-instrumentable.

Tree Codes

A.type of block code which will eventually lead to instru-
mentable coding schemes is the tree code. In a tree code, the
code words cannot be chosen independently, but possess a partie-
ular structure, best described with reference to the code tree
of Fig. 2.2 . A code tree consists of a number of nodes arranged
in levels. From each node at a given level, « branches extend to
nodes at the next level. No two branches terminate on the same
node, and there is thus a unique path consisting of a connected
series of branches from the root of the tree (the one node at
level 0 ) to a given node. Associated with each branch of the
tree are ,3 branch letters chosen from the reproducing alphabet.

The sequence of branch letters encountered in following a
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path through the entire tree forms a code word. If the tree is L

leodb words of

levels deep, the corresponding tree code has «
blocklenigth N=gL. We will assume that each branch contains
only one letter and that¢x=2R =d. It has been shown [1] that

a suitable tree code, in the limit L~°3 achieves a(R).

As with the block codes, the channel digits received by the
decoder specify the code word to be generated. While block de=-
coding is just a table look-up procedure, tree decoding can be
descibed geometrically: the decoder traces a path through the
code tree, with each channel digit specifying which of the d
branches extending from the node last reached is to be followed
to a node at the next level. A4s they define, or map, a path

through the tree, the channel digits are also referred to as

path map digits. The encoder decides on the path map digits

to be transmitted to the decoder by evaluating the fidelity ecri-
terion for the code words produced by various paths. This process
is referred to as searching the code tree.

Tree codes as presented are still non-instrumentable;
while the amount of storage required to implement a tree code
is somewhat less that that for a block code of equal blocklength,
due to the fact that the code words of a tree code share certain
letters, it nonetheless increases exponentially with N, If, how-
ever, the decoder can generate branch letters as it requires them
from the path map digits received, the code book can be entirely

eliminated. As an example, consider a tree (with d=2) in which
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the value of a particular branch letter is just the sum of the
path map digits defining the path leading to thé corresponding
branch. Fig. 2.3 illustrates such a tree for L=3, with the two
possible path map digit values assumed to be +1 and -1. A de-
coder employing a code of this type need not store any branch
letters, regardless of blocklengph. If the coding system is to
perform well, of course, it must:cbe capable of generating code
" words appropriate for the reproduction of any input block the
source may produce. (It is easily seen that the code Just des-
cribed is that used by linear delta modulation, which is well
suited to sources whose successive letters are highly correl-
ated and therefore do not differ greatly from one letter to the
next.)

The elimination of the code book is not in itself a guar-
antee of instrumentability, as the problem of exponentially
increasing computation remains. An encoder employing the code
tree of Fig. 2.3 would still have to compare a given input block
with every code word to ensure finding the best match. To reduce
the required computation to the level of instrumentability, it is
necessary to abandon this exhaustive search of the code tree in

favour of a selective search algorithm which considers only the

most promising portions of the code tree.

The design of an effective instrumentable tree coding system
thus involves two problems; the choice of a good code which can be
generated from path map digits, and the choice of an efficient

search algorithm.



CHAPTER III

SEARCH ALGORITHMS

In discussing search algorithm operation and performance
it is convenient to introduce a second tree structure, called

"the metric tree. The metric tree differs from the code tree in

that the letter (called the path metric) associated with a given
branch is not a member of the reproducing alphabet, but is the
value of the fidelity criterion evaluated for a given input
sequence over the output sequence generated by the path leading
to that branch. Choosing the best code word for the reproduction
of an input block is equivalent to finding the path through the
metric tree which leads to the branch at the final level of the
tree with the best path metric.

An exhaustive search will always find this path; as we have
seen, however, such a search is feasible only for tree codes of
short blocklength. To allow longer blocklengths, we are forced
to adopt a non-exhaustive search algorithm. Such algorithms
basically rely on the assumption that good paths tend to remain
good, and poor to remain poor. For example, if a particular
path has a very poor path metric partway through the tree, the
search algorithm might well decide that none of the deeper ex-
tensions of this path is likely to be very good, and so choose

not to explore the portion of the tree stemming from it.

12
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The Random Search

This most extreme of the non-exhaustive seérch algorithms
involves no searching whatever; the encoder simply chooses a path
at random, or equivalently transmits randomly-chosen channel
digits. Useless in practice, the random search merely serves as
a limiting case against which to compare the performance of a

more intelligent algorithm.

The Single-Path Search

The simplest search algorithm of any practical value is
the single-path search. Having reached a node at some level,
the algorithm examines the path metrics of the d branches ex-
tending from that node and follows the best branch to a node at
the next level. This process is repeated until the end of the
tree is reached; the path map digits defining the one path which
the algorithm has traced through the tree are then transmitted
to the decoder.

We define W, the computational work performed by a search
algorithm, as the average number of branches whose path metrics
must be examined to encode a source letter. For the single-path
algorithm, W = d, regardless of the blocklength of the code. As
described, however, the single-path search is non-instrumentable;
N path map digits must be stored for transmission when the end of
the tree is reached. A simple modification of the algorithm re-
moves this difficulty. Once the algorithm has selected a branch
at a given level, it is certain that the finally chosen path will
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include this branch, and the channel digit defining the selected
branch can be released to the decoder immediately without com-
promising the action of the algorithm at future levels. No
channel digit storage is then required, and the single-path algo-
rithm, coupled with a code whose branch letters can be calcu-
lated from received path map digits, is fully instrumentable.

In fact, this search algorithm forms the basis of the PCM,

' differential PCM (DPCM), and delta modulation systems in common
use.

The major failing of the single-path search is that it
completely disregards the possibility that the best path to level
L may not extend from the beast path to an earlier level. The
multi-path search algorithms try to take this possibility into
account.

Before leaving the single-path algorithm, it should be
mentioned that, with certain code trees, the best path to level
L must indeed extend from the best to any previous level, and a
single-path search will therefore perform just as well as an
exhaustive search. Such a tree is that used by the simple quan-
tization (PCM) type of source coder. We have said that this
system employs a block code of blocklength 1; it is also equi-
valent to a tree source coder employing the single-path algo-
rithm to search a tree of infinite blocklength which populates
the d branches extending from each node with the same set of

branch letters. Becaase the tree possesses this repetitive
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structure, the same set of output sequences is available from
every node at a particular level, and the best path through the

entire tree must extend from the best to that level.

Multi-Path Searches

A simple multi-path search algorithm is the (M,l)-algorithm,

or simply the M-algorittml[ZJ . This algorithm proceeds through
the metric tree along M paths of equal length. At any level in

the tree, there will be M nodes, called saved nodes, to which .

these paths have led. The algorithm examines the path metrics
of the dM branches extending from the saved nodes, and follows
the M best of these branches to nodes at the next level. The
process is repeated until the final level is reached, and the
path map digits defining the best of the M paths through the
entire tree are then transmitted to the decoder.

From the standpoint of computation, the M-algorithm is
instrumentable; W = dM for any blocklength. However, the problem
of path map digit storage remains. Since in general none of the
path map digits is decided upon until the end of the tree is
reached, they cannot be transmitted synchronously with the input
(that is, one digit transmitted as each source letter ie accep-
ted) as was done with the single-path algorithm. To allow a
finite amount of path map digit storage to suffice for any block-
length, we can make use of a characteristic of the paths gen-

erated by the M-algorithm in searching many types of metric tree:
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the M paths retained at a given level usually stem from a single
node not too many levels back in the tree. This implies that
the path map digits defining the path leading to this single
node have already been decided upon, and could be transmitted to
the decoder without affecting the future operation of the algo-
rithm. We can therefore modify the algorithm as follows: the
best branch of the dM examined at each level is found, and the
'path map digit 1 levels back along the path leading to this
branch is transmitted. This limits the path map digit storage
to a finite value £1M, for any blocklength. Of course, the M
paths at some level will not necessarily always have a common
predecessor node no more than 1 levels back. To allow for this,
the algorithm must choose the M branches to be followed to the
next level from only those of the dM examined which do stem from
the node specified by the transmitted path map digit. (This
requirement may in fact occasionally limit the number of branches
available to less than M.) The modified algorithm is fully
instrumentable, and operates synchronously with the input.
Unlike the single-path algorithm, however, the channel digits
transmitted (and therefore the decoder's reconstruction of the
input sequence) lag behind the input by a fixed encoding delay
of 1 samples.

Multi-path algorithms other than the M-algorithm have been
proposed [3], [h-], [5] . The attractiveness of the M-algorithm

stems from the simplicity of its operation, the synchronous
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nature of its output (some algorithms require buffering to
transmit a uniform stream of channel digits) and the relatively
small amount of computation it requires to produce a useful
improvement over the single-path search. It appears that the
main area of interest for the M-algorithm is the region of low
computation (i.e., small M), for other algorithms approach a(R)
more closely if a high computational load is permitted. For a
" comparison of several algorithms in terms of the amount of
computation required to approach A(R) to various tolerances,

see Anderson ES] .



CHAPTER IV

SEARCH ALGORITHM PERFORMANCE ON THE

EXPONENTIAL METRIC TREE

The study of search algorithm performance is complicated
by the fact that even the metric tree generated by a simple code
tree and an elementary source letter probability distribution
has a complex structure which makes analysis difficult. To per-
mit the comparison of experimental results with theoretical pre-
dictions, we will first apply the search algorithms to a metric
tree generated probabilistically from a distribution (of path
metric values) chosen to facilitate analysis.

Specifically, we choose a binary (d = 2) tree employing a

path metric which is the sum of metric increments/u, one for
each branch in the path, chosen independently from the prob-
ability density

gﬁ(x) = e *u(x),
where u(x) is the unit step function. The corresponding dis-
tribution is

Fu(x) = (1-e"*)u(x).

An independent-increment metric tree, which makes analysis

relatively simple, also corresponds to the practical situation of

18
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a symmetric source and metric[l].

In a less artificial situation, where the metric tree is
generated from the interaction of an input sequence, a code tree,
and a fidelity criterion, the average per-letter path metric
can be identified with the average distortion in the reproduction
of the input. We will make this identification here, denoting

the average per-letter path metric as D, despite the fact that

neither {x}nor {8} appears explicitly.

The Random Search

Choosing branches at random yields an average distortion
equal to the expected value of #. That is,
D= Eg/() =1

The Single-Path Search

At each level, the algorithm chooses the branch which has
received the smaller value og/x. The average increase in path
metric from one level to the next is then the expected value of
the minimum of two independent r.v.'s, each with density gﬂ(x).
The density function of this minimum is

f(x) = 2gﬁ(x)(1-§#(x))
= 2e-2xg(x),
the expected value of which is

D=1/2
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The Exhaustive Search

We have calculated (see Appendix A) the performance of an
exhaustive search of this metric tree for blocklengths from one
to seven, and have computer-simulated the same cases. As shown
in Fig. 4.1, the theoretical and experimental values of average
distortion agree very closely. The best performance is achieved

with the longest blocklength, yielding
Dy = .37 . '

Plotted against log N (see Fig. 4.2), the distortion
appears to decrease approximately linearly for 1€N<7. Unfor-
tunately, it was not practical to carry either the theoretical
calculation or the simulation to values of N>7. This prevents
our examining the manner in which the distortion approaches a

limiting value analogous to &(l) as N-=+oe,

The M-Algorithm _

We have derived (see Appendix B) a theoretical prediction
of the average distortion achieved by the M-algorithm with M=2.
We have disregarded the problem of path map digit storage, effec-
tively making 1 infinite. It should be possible to perform
similar calculations for larger M, though even in the present
somewhat- artificial situation they would likely be arduous. We
have simulated the algorithm for 1¢M<£50; since we are not re-
quired here to produce a reconstruction of an input sequence,
there is no need to store any path map digits, and 1 is again

effectively infinite.
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Fig. 4.3 shows the theoretical prediction and the results
of the simulation. At M = 1, where the M-algorithm is equivalent
to the single-path search, we find an experimental value of .49,
close to the theoretical value of .5 . At M= 2, the agreement
between theory and experiment is again good: D = .371 (exper-
imental) as compared to D = .3675 (theoretical). In the sim-
ulation, the distortion decreased monotonically with increasing
"M, reaching D = .252 at M = 50.

We have been unable to calculate a(l), the distortion
attainable for this metric tree with infinite blocklength and
the exhaustive search. We can, however, obtain an approximate
value by extrapolating our M-algorithm results to infinite M,
where the M-algorithm is equivalent to an exhaustive search.

It has been found[éj that some search algorithms approach

optimal performance in the manner

D - a(R) & 1 , as W=+%, and that
(1n C1W)C2

for at least one algorithm C, = 2[3:]. Conjecturing that the
M-algorithm also behaves in this way, we have plotted D vs.

(1n M)~1 and D vs. (1n M)=2 (see Fig. L.4); the first,; equi-
valent to Cy= % , Co=1 , does indeed appear to yield the des-
ired linear relation. Extrapolating to infinite M, we obtain
A(l) = .22 . As a further check on the assumed linear relation,
we have plotted 1n(D-.22) vs. 1n(ln(M)) (see Fig. 4.5). The fact
that the resulting curve is very nearly a straight line for the
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larger values of M verifies the basic form assumed for the asymp-
totic behaviour of the algorithm; the slope of this line, which
is equal to the value of C5, was measured as .98, very close to
the value C, = 1 found above. Assuming that the value found for
A(l), .22, is close to the actual value, the maximum reduction in
distortion over that produced by the single-path search which can
be obtained through multi-path searching is a factor of .22/.5 ,
'equivalent to 3.6 dB. With the M-algorithm, we achieved about
1.3 dB at M =2, 2.1 dB at M =4, 2.5 dB at M =8, and 3.0 dB at
M = 50.

Fig. 4.6 compares the distortion produced by the M-algorithm
and the exhaustive search as functions of computational work. It
is evident that the M-algorithm is by far the more efficient

method for this metric tree.
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CHAPTER V

SEARCH ALGORITHM PERFORMANCE WITH THE

UNCORRELATED GAUSSIAN SOURCE

As a first example of the use of tree source co@ing with
an actual data source, we consider the problem of reproducing
a sequence of source letters chosen independently from a contin-
uous probability distribution; specifically, the zero-mean,
unit-variance normal distribution \J(0,1). We employ the MSE
fidelity criterion, and restrict the channel capacity to one
bit/letter.

The first choice to be made is that of an appropriate code
tree. The conventional choice in this situation would be the
tree of Fig. 5.1, in which the two branches extending from each
node bear the letters +Q and -Q. An encoder employing this tree
is just a two-level quantizer, with quantization levels Q. As
was mentioned in chapter 3, the single-path algorithm will search
this tree optimally; if multi-path searching is not considered,
the combination of the quantizer tree, with suitably optimized
quantization levels, and the single-path search is the best
coding scheme available for this application. It is well-known
that the value of Q which optimizes the quantizer for thejQ(O,l)

28
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source distribution is Q 2\[2—’ yielding an average distortion
of D = 1-%.= .363 . From (2.1), we find that the performance
theoretically attainable is a(l) = .25; thus code trees exist
which perform (when properly searched) significantly better than
the simple quantizer.

One intuitively appealing tree has its branch letters
chosen from the sameJQ(O,l) distribution as the source letters.
This-tree is in fact very nearly optimal, for Berger shows [1]
that a code tree whose branch letters are chosen independently
from the JN(0,.75) distribution yields an average distortion
approaching A(1) arbitrarily closely for this source as N-=eo,
if exhaustively searched.

Fig. 5.2 plots the results of computer simulation of
ensembles ofJO(O,l) anch(O,.75) trees, exhaustively searched,
for small values of N; in this region, such trees are in fact
much worse than the quantizer. Replacing the exhaustive search
with the M-algorithm allows the use of arbitrarily large N, and
produces the results of Fig. 5.3 . It is evident that the per-
formance of these -probabilistically-generated code trees is
worse than that of the quantizer if the single-path search (M=1)
is used. With larger M the distortion falls, until at M = 10
they perform about as well as the quantizer. The theoretically~
optimal code tree (M(0,.75)) performs somewhat better than the
jntuitively.. chosen (N(0,1)) tree for small M, but by M = 10 the
two perform about equally well. Still larger values of M would
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yield lower distortion, but computer time limitations made it im-
practical to carry the simulation further.

It has usually been found in other tree coding applications
[7]that code trees in which the branch letters populating the
branches extending from a given node are in some sense comple-
mentary to one another tend to perform better than non-comple-
mentary trees. We can form complementary trees here by choosing
‘the letter on one of the two branches extending from each node
from the desired distribution, and setting the opposing branch
letter to the negative of the first. A simulation of trees
generated in this way from the distributions used above produced
the results labelled "Complementary" in Fig. 5.3. These trees
perform significantly better than the original trees, with‘N(O,.75)
again slightly superior toJV(O,l), reaching the quantizer dis-
tortion level near M-= 6 and an MSE of about .31 at M =:10. This
lowest value of distortion is about midway between the quantizer
distortion level and the rate-distortion limit.

The average distortion to be expected at M = 1 with a com-
plementary code tree can be calculated easily. (A4 similar calcu-
lation is possible for the non-complementary trees, but is much
more difficult to perform.) At each node, the algorithm chooses
from the two available branch letters the one which is closest in
value to the source letter. Because of the symmetry of the two
branch letters about zero, the one which agrees in sign with the

source letter will be chosen. The average distortion is then
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just the mean-square value of the difference between two r.v.'s
whose density functions are those of the absolute values of the
source and branch letters. For theJQ(O,l) source letter and
.N(O,ag) branch letter distributions, this calculation gives
D=1+o3-#a- (5.1)

This relation yields:

.73, 02 =1

D = .65, of = .75

The experimental values in Fig. 5.3 agree well with this calcu~s

lation. The value of ¢ which minimizes (5.1) is c? =4 ,
: 2

™
for a value of D = .595 . Using this value of 02 for the var-

D

iance of the branch letters produces a code tree which performs
better than the JV(0,1) and 0,.75) trees at M = 1, but which
becomes worse than either of these for M > 4.
As in chapter 4, we conjecture that D - a(l) =« (In M)-Cg.
Fig. 5.4 suggests that such a relationship exists here, with
C, =1 for the original trees and C, = 2 for the complementary
trees. However, the lack of experimental points for values of
M above 10 reduces the reliability of these estimates of C,.
From these results, it appears that trees whose branch
letters are chosen from a continuous distribution require a
large amount of computation before their performance even matches
that of the low-computation quantizer tree. To improve on the

quantizer, however, there must be a range of branch letter
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values available. In the hope of finding a tree which will out-
perform the quantizer at a moderate level of computation, we
investigate trees whose branch letters are chosen from a discrete
alphabet. For example, we can consider an extension of the quan-
tizer tree in which the quantization levels are chosen at each
node as either +A or +B. For simplicity, we initially assume
that the choice is made independently at each node, and that the
" the two possible choices are equally likely. With the single-
path search, we will then effectively be quantizing the source

to +A half the time, and to 1B the other half. The resulting
distortion will be the average of the distortions produced by

+A and #B quantizers, or '

2
D =Dy + (Q-4) + (Q—B)2 ;
2

where Q is the optimal quantization level (very nearly .8 in this
case) and Dy the distortion of the optimal quantizer (.363).

We have experimentally evaluated the distortion produced
by this type of tree when searched by the M-algorithm, with M
ranging from 1 to 10. At M =1, A = B = Q performs best,as
expected (see Fig. 5.5). M = 2 yields significant improvement
in the performance obtained with widely-spaced quantization
levels; it allows (A,B) = (.6,1.0) to perform as well as (.8,.8)
(that is, the standard quantizer). It seems likely that a com-
bination of levels not investigated (perhaps (.75,.85)) would
actualiy improve upon the optimized quantizer at M = 2. At M=,
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(o,B) = (.6,1.0) gives D = .33, while at M = 10, (.6,1.0),
(.4,1.2), and (.2,1.2) all achieve D = .32; both of these values
of distortion are somewhat lower than that of the optimized quan-
tizer.

The effect of these four-level trees and the M-algorithm

can also be considered to be an improvement in the dynamic range

of the coding system. In many practical situations, the ampli-
‘tude of the input signal can vary over a considerable range, and
while a particular system may be capable of good performance
when optimized for an assumed input amplitude, a deviation from
the assumed value may cause a significant degradation in the
quality of reproduction.

For example, assume that the source we have been considering
has a variance in the range (0.5, 2.0) rather than it being fixed
at 1. It can be shown {see Appendix C) that choosing the quan-
tization levels of a two-level quantizer to minimize the maximum

value of the normalized distortion _D over this range of variance

62

limits _D to a maximum value of .434 . This is about 20% worse

o2

than the performance of quantizers individually optimized for
each value of variance. It can be seen from Fig. 5.5, however,
that at M = 10 the quantization levels of the four-level tree
can vary from (.2,.8) to (.4,1.6) (equivalent to a 4:1 change

in variance) without the distortion exceeding .37 . This value is
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only 3% above the optimal two-level quantizer distortion level
for a fixed value of variance.

While the trees whose branch letters are chosen from the
discrete, four-letter alphabet perform much better at small M
than those whose branch letter distribution is continuous, it
is still necessary to employ a value of M of at least 10 in
order to close the gap between the rate-distortion performance
.1imit and the performance actually attained to half the value

reached by the two-level quantizer.

Convolutionally-Generated Trees

The trees so far considered are non-instrumentable; since
we have not introduced any deterministic structure into the choice
of branch letters, they cannot be calculated from path map digits,
and it would be necessary in any implementation to store the
entire code tree. One method of generating branch letters from
path maps which has been found to be very valuable in the digital-

data case [ 2] is the convolutional approach. Here the path map

digits are inserted sequentially into a shift register of length
v (v is called the constraint length of the code). Each of the

ﬂbranch letters associated with the branch defined by the path
map digits is generated as a weighted sum of the digits in the
shift register. The circuit of Fig. 5.6, which performs the
convolution described, is used by the encoder to generate branch

letters as required, and forms the entire source decoder. In
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the digital case, the multiplications and additions are done
modulo the reproducing alphabet size; where the reproducing
alphabet is the real line, the circuit becomes a finite-impulse-
response (or transversal) digital filter. In an efficient
coding system, the channel digits must be essentially uncor-
related; otherwise, there would be redundancy in the channel
digit sequence which could be removed by further coding. If the
‘original source is correlated, the digital filter source decoder
can be used to generate output sequences having approximately
the same correlation function as the source. In the case of an
uncorrelated source,however, the correlations introduced by such
a filter are undesirable.

The convolutional decoder can be modified to suit uncor-
related continuous-alphabet sources by relacing the linear rela-
tion between path map digits and branch letters with an arbitrary
non-linear relation. Consider the generation of a binary, four-
level tree like those discussed above. We insert V path map
digits (in this case, bits) into a shift register, associated
with which are two mod-2 summers fed from different combinations
of shift register stages. The four unique combinations of summer
outputs ( (0,0), (0,1), (1,0), (1,1) ) are paired with the four
branch letter values (+A, <A, 4B, -B) . This pairing can be
implemented as a table look-up procedure in which the summer out-
puts form an address to a table conﬁaining the members of the

branch letter alphabet. The connections between the summers and
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the shift register can be described in terms of masks,V-bit
words in which a "1" indicates that the corresponding path map
digit participates in the summation with which the mask is assoc-
jated. With largeV, the code tree approaches the purely prob-
abilistic tree, in which it is equally probable for any branch
letter to follow any others. Trees generated in the way de=
seribed above permit a range of branch letter values, but do not
'impose a specific correlation function on the output sequences.

We have applied the M-algorithm to convolutionally-generated
code trees with values of v ranging from 1 to 16. Fig. 5.7 is a
contour plot representative of the performance of a good convo-
lutional tree at M = 2. Here the masks used are 100...0 and
1110 1101 0100 1000. Since two masks are used, the reproducing
alphabet again has four members. The point (.8,.8) corresponds
as before to the optimal two-level quantizer and achieves D=.,363,
The optimal set of levels has become (.5,1.1), with D=,345 . It
appears that, as the number of paths searched increases, the op-
timal quantization levels spread out symmetrically from the value
(.8) which is optimal for the single-path search. The performance
of trees generated by different masks of a given constraint length
varies widely; however, the best code found for v =5 reaches
D = .34 at M = 4 (performance only slightly poorer than the best
probabilistic tree), and the best found for V416 gives D = .30

at M = L . Not only are the convolutional trees instrumentable,
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then, but the best members of the group perform significantly
better than the average randomly chosen tree. These results are
analogous to those reported by Anderson for the digital-data
case[[27].

With the convolutional trees, we have found an instru-
mentable coding scheme which performs about midway between the
optimal quantizer and the rate-distortion limit and which
'requires only a quite moderate amount of computation (eight

branches per letter examined for the binary tree at M = L),



CHAPTER VI

SOURCE CODES __FOR _CORRELATED

CONT INUOUS- ALPRABET SOURCES

As was mentioned in chapter 5, convolutional source decoders
are well-suited to the reproduction of correlated sources. Fig.6.1
shows such a decoder for a continuous-alphabet source. Incoming
channel digits §{y} are first mapped into corresponding quantiz-
ation levels {q} and then applied to a transversal digital

reconstruction filter which generates the output sequence iﬁ}

according to the rule N

A t
Xy = 2 C§Q4_ (6.1)
t §=c it-1

The z-transfer function of this filter is
N

C(Z) = Zt Ciz-i

We can derive the structure of an encoder which employs
the single-path algorithm to search the code tree produced by
this decoder. With the single-path search, the encoder will
have released the channel digits up to ¥i_j before having
accepted x, from the source. This implies that Qt = coqt+§£,

Ne

where'§£ = ;Zl ¢jQt_j is independent of the choice of qg.

45
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To minimize the magnitude of the reproduction error

ey = xt-ﬁt, the encoder must choose q; to minimize lxtfﬁtl=

Ixe-Xr-c0as}: a quantizer with input x¢-X; and the possible
t~Xt-C0% g L
0

values of q, as quantization levels does just that. In addition
to the quantizer, the encoder must contain a circuit which will
generate it; this is just a transversal filter

~ Ne
cl(z) = ZIE cqz (6.3)

i=1
The resulting encoder is shown in Fig. 6.2 .
In practice, it is often convenient to employ a recursive

reconstruction filter, which generates i&} according to

R
Xp = G + 2 ai¥e-g (6.4)
i=]
If we define Ngr -1
A(z) = 7 ayz (6.5)
i=]
then the transfer function of the recursive filter is 1 .
1-4(z)
Such a filter is equivalent to a transversal filter of the form

th sample of the impulse

of (6.2), where c; has the value of the i
response of the recursive filter. In general, this transversal
equivalent is of infinite length. If the recursive filter is
stable, however, the cj eventually approach zero as i—»oe, In
a practical system, the transversal filter can be truncated at

the point where the further c; are below the precision level of

the arithmetic used.
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Proceeding as for the transversal filter, we define

~ Nr
Xy = é{l aiit-i , and take q, to be the quantized value of

=

(xt-ﬁt). Fig. 6.3 shows an encoder and decodér employing the
recursive reconstruction filter; conventional DPCM systems employ
this structure [831.

| The use of the recursive filter permits a theoretical opti-
‘mization of the predictor A(z). The mean-square value of the
reproduction error is<r§ = E(eg), which is also the mean-square
error in the quantization of p, = xt-ﬁt. For a given form of the
probability density of py, the minimum value of‘0§ attainable
through proper choice of the quantization levels is given by
ci = qui, where K@ is a parameter determined by the density
function of Py and by the number of quantization levels employed.
Maxf9 Jgives a method of finding the optimal choice of levels
for a given probability density, and derives the value of Kq for
the normal distribution for various numbers of levels. To min-
imize 0§, we must minimize Gi. This implies that xg should be as

close as possible to x;: for this reason, §£ is considered to be

a prediction of xt, and Py is known as the prediction error. If

. . A .
we assume good reproduction, (i.e., X = x;) we can approximate

T

?c't by L ayXg_ 4 - (O*Neal statesC 8 Jthat this assumption is
i=1
valid for quantizers with at least 8 levels.) Under this assump-

tion, we can calculate the ag which minimize 0% for a given Np by

means of LMS (least mean square) prediction theory [7 ], if the
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autocorrelation function Ry, (kT.) is known for k = 0,1,2,...,Np.
Assuming that a',% = 1, the signal-to-noise ratio, or SNR,

of the DPCM system is 1 . If we let ay =0 for all i, the
%D
system reduces to PCM, with an SNR of Kl_ . (Since Py = Xt,

0% =1,) DPCM thus performs at an SNR a factor of _1_greater
' 2

o
.than PCM. This factor, usually expressed in dB, is cagled the
signal-to-noise improvement or SNI of the DPCM system. It

has been found [10]that for speech sampled at 8KHz, an SNI of
about 10 dB can be achieved with a three-tap predictor (NR = 3),
and that more taps are of little additional benefit.

The code tree produced by LMS prediction is optimal for the
single-path search in the limit of perfect quantization (i.e., an
infinite number of levels). With coarse quantization, or a multi-
path search, the LMS code need not be (and indeed is not) optimal.
The following two approaches suggest modifications of the LMS

code for use in such situations:

Rate-Distortion Optimal Codes

Berger shows[ 1 Jthat the optimal code for use with a
certain type of correlated continuous-alphabet source is generated
by filtering i.i.d. Gaussian variates with a recursive filter
identical to that used in conventional DPCM, in cascade with a

low-pass transversal filter. Substituting the chosen sequence of
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quantization levels for the Gaussian variates produces an instru-

mentable, DPCM-like coding scheme.

Smoothed IMS Codes

Subjectively, one of the major effects of coarse quantiz-
ation is to introduce a prominent tone at half the sampling
frequency into the reconstruction. In addition to this tone,
.other noise falling mainly in the high-frequency range of the
reconstruction bandwidth is also introduced. To remove the
tone, and to reduce the high-frequency noise, it has been sug-
gested that a low-pass transversal filter B(z) = gs biz-i,

i=0
called a smoothing filter, be placed in cascade with the con-

ventioanl reconstruction filter.

Anderson [l 7 J discusses in detail these three code classes
(L¥S, Rate-Distortion Optimal, Smoothed IM3). Fig. 6.4 shows a

typical path map and the corresponding output sequences gener-

ated by:
A)A typical recursive reconstruction filter
B)The filter of A) followed by the smoother B(z)= 14271 .

2
Because the DPCM and DPCM-like code trees do not repeat
the same set of branch letters at each node, the single-path
search is not optimal; we can expect an improvement in SNR if

a multi-path search algorithm is applied to such a tree.
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The fact that a multi-path search algorithm ie used has no
effect on the structure of the decoder; the encoder, however,
becomes more complex. In conventienal DPCM, the quantizer em-
bodies the logic of the single-path search, while multi-path
DPCM requires an encoder structure like that shown in Fig. 6.5 .
The "Search Algorithm Unit™ selects a number of path maps from
those available to the encoder and applies each in turn to the
."Decoder Model"™, which generates the same reproducing letters
that would be produced if the corresponding path maps were to
be transmitted to the actual decoder. The present source letter
and these reproducing letters are presented to the "Metric Cal-
culation Unit", whose output is a measure of the distortion in-
volved in the various proposed reconstructions of the input. An
examination of this metric information allows the "Search Algo-
rithm Unit" to decide on the best path map digit to transmit to
the decoder.

The discussion in this chapter applies to systems con-
cerned with the transmission of any correlated continuous-
alphabet source, and using any search algorithm. In the following
chapter, we specialize to the case of a coding system employing

the M-algorithm in the transmission of sampled speech waveforms.
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CHAPTER VII

SIMULATION OF MULTI-PATH

SPEECH SOURCE CODING

A system capable of simulating and evaluating single-
and multi-path DPCM speech source coders has been implemented
on a CDC 1700 computer. The input to the simulation consists
of digitized speech samples stored on the computer's magnetic
disk. Very fine digitization (14 bits) is employed, allowing
the source alphabet to be considered to be continuous. Both
encoder and decoder are simulated; the decoder output is stored
on disk for later real-time playback. This permits subjective
comparisons to be made between the original speech and the coded
version, and between reconstructioné generated by systems with
differring parameters. Objective evaluation is done on the
basis of the signal-to-noise ratio of the decoder output, as
calculated by the simulation program.

The speech used as input to the simulation was taken from
a standard speech processing test tape[]J.J; to permit meaningful
comparisons between different coders, each processed the same
spoken sentence, of approximately two seconds duration. A samp-
1ing rate of 8Khz was used for the majority of the tests, with the

speech bandlimited prior to sampling by Butterworth high- and low-

55
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pass filters with cutoff frequencies of 30Hz and 3KHz respectively,
and with asymptotic attenuation rates of 24 dB/octave. Code

rates of one and two bits/sample were employed, for channel data
rates of 8K and 16K bits/second. Further tests were performed
with a sampling rate of 5KHz; here, the upper band limit was set
by a Butterworth filter with cutoff frequency 2.5 KHz and an
asymptotic attenuation rate of 96 dB/octave. Acode rate of

'2 bits/sample was used, for a data rate of 10K bits/second.

The reconstruction filters employed were of the smoothed
and unsmoothed "LMS" type described in chapter 6. The LMS
predictors, with Ny fixed at three, were matched to one of two
autocorrelation functions: an average speech autocorrelation
reported by McDonald {10] and the autocorrelation corresponding
to a two-pole Butterworth low-pass power spectrum with cutoff
frequency 1KHz. The Butterworth spectrum was chosen to approx-
imate the long-term average speech autocorrelation while yielding
a reconstruction filter of short impulse response. The two
autocorrelation functions used are shown in Fig. 7.1 .

The smoothers, with Ng 2 or 3, were generally chosen
heuristically; the main considerations in choosing these were
the presence of a zero at fs/2 (to null out the tone produced by
coarse quantization) and a minimal amount of delay in the pass-
band. A low-pass filter specified by rate-distortion theory,
called the R(D) smoother, was also employed. Further details of

the choice of reconstruction filters are found in Anderson L 7 ].
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The tree-searching function was performed by the M-algorithm;
the fidelity criterion chosen was mean-square error. To avoid
excessively long simulation runs, M was limited to values no
greater than 10. This is also the region of practical interest
for this search algorithm, since other algorithms can be more
efficient if a large amount of computation is permitted. It is
desirable for 1 to be large if the M-algorithm is to perform as
‘well as possible; however, to allow the manipulation of path maps
as single computer words (16 bits in the CDC 1700) it was neces-
sary to limit R+l to 16. This limitation was not considered
likely to have an important effect on the performance of the:algo-
rithm. ’

Very efficient filter operation was achieved by pre-calcu=
lating the filter output for each possible path map and storing
these in a tabtle. Then, in the course of the simulation, the
branch letters corresponding to a particular path map were found
by a simple look-up not requiring any arithmetic operations. With
the filter output table limited to 1024 words, a maximum of 10
path map bits can affect the branch letter value. This requires
that the reconstruction filters have finite-length impulse res-
ponses lasting no more than 10 samples at R =1 bit/sample, or
5 samples at R = 2. To achieve this, the composite reconstruc-
tion filters (i.e., recursive filter-smoother cascades) were
expressed in transversal form and truncated to the required

length. Fig. 7.2 shows the transversal equivalents (that is,
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the impulse responses) of several composite filters out to 10
samples at fg = 8KHz. It is evident that little'is sacrificed
in truncating the filter matched to the Butterworth autocor-
relation,while the truncation of the McDonald-matched filter

has a more severe :efflect on the filter impulse response.

Simulation Results

1) R =1, fg = 8KHz,

With a code rate of one bit/sample, q, can assume one of
two values. We chose these two possible values to be +s, where
s is the step size of the system. This choice produces a type of
complementary code tree, as the two branch letters stemming from
a node are symmetrical about the prediction §£. Varying s for
best performance is equivalent to adjusting the amplitude of the
input signal to best match the encoder. Fig. 7.3 plots SNR as a
function of s, at M = 1, for several choices of reconstruction
filter. (At M =1 the system reduces to single-bit DPCM, or
predictive delta modulation.) With the McDonald-matched filter,
the maximum value of SNR achieved was about 8 dB, some 1.5 dB
better than that attained with the Butterworth-matched filter.
The use of a smoother with coefficients (1.,0.8, -0.2) in cas-
cade with the latter filter raised the maximum value of SNR to
about 8.5 dB; various smoothers tried in conjunction with the
former filter only degraded the performance of the system, by

up to 2 dB.
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In chapter 6 the SNR of a DPCM system was expressed as
l .1 , or _1 .SHI , where the SNI produced by a given recon-

Kq 0‘12, Kq

struction filter can be calculated if the encoder is assumed to
employ infinitely-fine quantization. However, this prediction

of SNR breaks down with the coarse quantization used here. If
we assume that the probability density of the prediction error

is a two-sided exponential (that is, fp(x) = 3 e-alx|; for exper-

2
imental results supporting this assumption, see Stroh and Paez

[12]), (L =3.01 dB at R=L. From the theoretical values of

q
SNI for the unsmoothed filters above, we would expect to reach

a maximum SNR value of 13dB with the Butterworth-matched filter
and about 15 dB with the McDonald-matched filter, rather than
the observed values of 6.5 dB and 8 dB. However, the difference
between the two values of SNR does seem to reflect a corresponding
difference in the SNI values.

Increasing M (from M = 1, used above) produced larger .
signal-to-noise ratios for every reconstruction filter and at
every value of s, with the amount of SNR improvement varying
widely with different filters. This is illustrated by Fig. 7.4,
in which SNR is plotted as a function of s for the unsmoothed
Butterworth-matched filter and the McDonald-matched filter fol-
lowed by a smoother with coefficients (.5,.5), for M = 1,2,4.
The increase in maximum SNR between M =1 and M = 4 for the

former filter is only .2 dB, while for the latter it is 5.5 dB.
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The unsmoothed McDonald-matched filter also displays only a small
SNR increase (.6 dB) to M = 4, while smoothed filters gain from
1.75 dB to the 5.5 dB improvement mentioned above.

These results indicate that the code trees produced by the
smoothed filters include paths which match the speech source well
but which are somehow hidden, and thus unavailable to the single-
path search algorithm. The unsmoothed filters, however, are well-
ﬁatched to the single-path search; it appears that the single-path
algorithm chooses the correct path through the code trees produced

by these filters nearly as often as does a more complete search.

2) R = 2, £y = 8KHz.

A code rate of two bits/sample allows q, to assume one of
four quantization levels, which we chose to be (+s, irs) where
O£r€1l. For the single-path search, where {p} is simply quan-
tized, the value of r (denoted ropt) which minimizes the mean-
square quantization error can be calculated for an assumed prob-
ability density of py. If, as above, we assume this density to

be a two-sided exponential, r = ,229. For comparison, assuming

opt
a uniform distribution gives Topt = .333, while a Gaussian dis-
tribution gives Topt = .30 . To check the assumption of an expo=«
nential density function for py, and to determine the optimal
value of r for M>1l, where the analytical determination of Topt

does not apply, encoders employing two different reconstruction
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filters were evaluated at M-=1 and M = 4. The value of s was
varied from .0l to .07, and that of r from .1 to .4 . The two
filters used were:

1) Butterworth-matched, with rate-distortion derived
smoother; coefficients (1.89, 1.20, .90, .46, .15)

2) A "triangular" filter, coefficients (1.0, .8, .6, .4, .2)
The contour plots of Fig. 7.5 (a) and (b) show the SNR obtained
at M= 1 for varying s and r. Filter 1) reaches a maximum SNR of
16.6 dB at (s,r) = (.04, .25); filter 2) gives 14.15 dB at (.045,
.25) and 14.13 dB at (.045, .20). Fig. 7.5 {(c) and (d) are for
M = 4; here filter 1) reaches 18.1 dB at (.04,.25), and filter 2)
15.1 dB at (.04,.2). These results agree well with the calculated
value of Topt for the exponential density function, and suggest
that the value of M does not significantly affect rgopy. On this
basis, we chose to hold r constant at .23 for the tests performed
at R = 2.

For a two-bit quantizer optimized for the exponential dis=<
tribution, _1 = 7.54 dB. With the Butterworth-matched filter,
then, we woﬁ%d expect an SNR of 17.2 dB at M =1, With the McDon-
ald-matched filter, we would expect 19.5 dB. Fig. 7.6 shows the
M = 1 performance of these two filters and of some smoothed versions
of them. The unsmoothed Butterworth-matched achieves an actual
maximum SNR of 16.1 dB, only 1.1 dB short of the predicted value.
The unsmoothed McDonald-matched reaches only 14.0 dB, some 5.5 dB
below the prediction. In both cases, however, the discrepancy

between the predicted and observed values of maximum SNR is less
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than that at R = 1. | '

The best filter at M = 1 was the Butterworth-matched with
rate-distortion smoother, which gave a maximum SNR of 16.5 dB.
The other smoothers tried degraded the performance of the system
at M = 1. The most striking example of a smoother causing poorer
performance occurred with the (.5,.5)-smoothed, McDohnald-matched
filter. Here the maximum SNR was only 5.2 dB, actually 1.1 dB
jgggg than the same filter at R =1,

The reason for this apparently anomalous result becomes
clear when one attempts to calculate the SNI of this reconstruc-
tion filter. To obtain the correct form of the filter for the
application of the SNI calculation algorithm, it is necessary
to find the inverse of the filter transfer function; an inverse
which, for this filter, does not converge. This implies that the
ideal, perfect-quantization encoder matched to this reconstruction
filter would be unstable. The coarse quéntizers we have employed
act as limiters to prevent complete encoder failure; however, the
four-level (R = 2) quantizer does not limit the encoder insta-
bility to the same degree as the two-level (R = 1) quantizer. The
greater tendency to instability thus apparently outweighs the ad-
vantage of finer quantization, and poorer performance results at
the higher code rate.

This latent instability is not unique to this one filter;
in fact, all our heuristically-chosen smoothers, possessing as

they do a zero at f3/2, produce reconstruction filters with
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divergent inverses. Of the smoothers we used, only the rate-
distortion derived smoothers are free of this characteristic.
Despite this seemingly severe failing, the heuristic smoothers
often yield good performance, particularly at larger values of M,
It appears that the multi-path search tends to damp out possible
encoder instability; the ability of such a search topostpone the
choice of a particular path map digit until the consequences of
that choice have been evaluated can explain this effect.

The use of larger values of M again improved the performance
of all the filters (see Fig. 7.7). The unsmoothed Butterworth-
matched filter again showed the least improvement (1.35 dB),
while the McDonald-matched (.5,.5)-smoothed gained 10.6 dB from
M=1toM=28., Other filters showed gains of from 1.8 to 6.9 dB.
Generally, the better the performance of the filter at M = 1, the
less was gained at higher M, and the worse it performed at M = 8.
The best SNR obtained with any filter was 21.0 dB, with the
McDonald-matched, (1.0, .6, -.4)-smoothed filter.

As was found for the code rate of one bit/sample, the code
trees produced by the smoothed reconstruction filters appear to
have better paths which are harder to find than the somewhat
poorer, easily-found paths associated with the unsmoothed filters.
The strong dependence on M of the choice of the best code tree
agrees with results found in the previously -cited digital-data

case.



SNR (dB) . |
4 Mc Donald( 1,.6,-.4)

Butterworth(.5 ,.57)

20 Mc Donald

Butterworth R(D) smoother
18+ / .
. Butterworth

16+

|2| 3 ; l M

Fig. 7.7 Maximum SNR vs. M: fs=8 KHz, R=2

1L



72

3) R = 2, fg = 5KHz.

Informal lisfening tests suggested that speech limited to
bandwidths of between 2KHz and 2.5KHz, rather than the traditional
LKHz, is reasonably intelligible in the absence of distortion
or other interference. To determine the improvement in SNR which
the M-algorithm could yield for such a source, tests were per-
formed at a sampling frequency of 5KHz, with the speech filtered
before sampling as described earlier.

A code rate of two bits/sample was employed, with r = .23
as for the 8 KHz case. The filters tested were matched to:

1) The actual data autocorrelation function

2) A two-pole Butterworth spectrum, f, = 500 Hz

3) A two-pole Butterworth spectrum, f, = 1 KHz
Smoothers with coefficients (.5,.5) and (1.0, .6, ~.4) were
applied to the filters of 2) and 3) .

Fig. 7.8 shows the maximum SNR attained by each filter .as
M varied from 1 to 8. It is evident that the 500 Hz Butterworth
and the data-matched filters perform nearly identically, while the
1 KHz Butterworth-matched is somewhat worse. With smoothing, the
performance is degarded at M = 1, but is improved by up to 2.5 dB
at M = 8. The best SNR (about 15 dB) was obtained with the 500 Hz
Butterworth-matched, (1.0, .6, -.4)-smoothed filter at M = 8.
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Table 7.1 summarizes the results obtained fpr the three
choices of sampling frequency and code rate, listing the highest
value of SNR produced by each filter at each value of M. The
SNR improvement directly attributable to the use of the multi-
path search algorithm is revealed by Fig. 7.9, in which the
maximum SNR attained with any of these filters is plotted as a
function of M for each choice of sampling frequency and code
rate. The use of M = 8 yields values of SNR from 2.8 to 4.6 dB
greater than those found at M = 1, with the largest improvement
occurring at the higher code rate and sampling frequency. The
pronounced flattening of the curves by M = 8 suggests that most
of the improvement available through multi-path searching has

already been obtained by this point.



TABLE 7.1
MAXIMUM SNR ATTAINABLE WITH EACH
RECONSTRUCTION FILTER (dB)

A)R=1, f, = 8 KHz

Filter M=1 M=2 M=
McDonald 7.87 8.33 8.47
" (.5,.5) 6.25 10.35 11.75
v (1.,.8,-.2) 6.71 10.35 11.45
" (1,,.6,-.4) 7.69 10.27 11.23
" (1.,.5,-.5) 7.67 10.08 10.77
Butt. 1 KHz 6.25 6.41 6.45
® (.5,.5) 7.90 10.68 11.13
" (1.,.8,-.2) 8. 44 10.27 10.65
" (1.,.6,-.4) 8.03 9.53 9.79




TABLE 7.1 - CONTINUED

B) R =2, fg = 8 KHz
Filter M=] M=2 M=y M =328
McDonald 14.01 17.79 19.33 19.74
" (,5,.5) 5.21 9.24 13.51 15.83
" (1.,.6,-.4) 12.71 17.93 20.16 21.01
Butt. 1 KHz 16.12 17.07 17.42 17.47
" (,5,.5) 13.53 18,08 19.86 20.46
u (1,,.6,-.4) 14.66 17.28 18.18 18.34
" R(D) smoother 16.45 17.59 18.12 18.27
C)R=2, f, =5 KHz
Filter M=1 M=2 M= M=28
Data-matched 12.05 13.66 14.26 14.47
Butt. 500 Hz 12,23 13.71 14.39 14.63
" (.5,.5) 6.25 10.35 12.36 13.20
" (1,,.6,-.4) 9.82 13.61 14.66 15.07
Butt. 1 KHz 11.80 12.27 12.41 12.43
® (.5,.5) 10.66 13.49 14.64 14.89
" (1,,.6,-.4) 10.85 12.86 13.39 13.49
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CHAPTER VIII

CONCLUSIONS

We have applied the concepts of tree coding and of rate-
distortion theory to the design of source coding systems for
éontinuous-alphabet sources, and have shown that a simple
search algorithm (the M-algorithm) coupled with appropriate
code trees can perform significantly better than conventional
methods relying on classical quantization. The amounts of
storage and computation required to implement the improved

seoders, while larger than those of conventional systems, are
well within present limits of practical feasibility.

With an uncorrelated source, the room for improvement
between conventionally-attainable performance and the rate-
distortion limit is not large, typically only one or two dB
when mean-square error is the fidelity criterion. About half
this potential improvement can be realized with the M-algorithm
at a moderate level of complexity. With the correlated speech
source, however, far greater gains can be made. We have ob-
served improvements in SNR of nearly six dB over conventionally-
optimized DPCM, again at only a modefate complexity level,

It is felt that the non-stationary nature of the speech
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source may contribute substantially to this unexpectedly large
improvement. Certainly the question of the effect of multi-
path coding on non-stationary sources merits further study.

We have seen that the decoders required for single and
multi-path DPCM are identical in structure; this implies that
in a broadcast system where one transmitter serves many receivers
the quality of reproduction of the entire system could be im-
proved by modifying the one encoder to use a multi-path algorithm.
In such a case, the extra cost and complexity of the single more
complex encoder would be negligible in comparison to the total
system.

Though we have concentrated on DPCM systems for speech
transmission, it is important to recognize that the concept of
multi-path tree searching can be applied to any source coding
scheme, and that some improvement in performance over the single-

path encoding algorithm can always be obtained.



APPENDIX 4

PEREORMANCE OF THE EXHAUSTIVE SEARCH

ON THE EXPONENTIAL METRIC_TREE

We assume a binary metric tree in which the increase in

path metric gu, the metric increment) from one level to the next
along any path is chosen according to the probability density
gp(x). We denote the probability density of \y, the least metric
attainable with an exhaustive search of the tree from a node at
Jevel k to a node at the last level (L) as fy, (x). Extending the
search one_level further back into the tree involves choosing for
each node at level k-1 that branch of the two available which
possesses the smaller path metric; these metrics are the sum of
two components, one distributed as ka(xf and one as gﬁ(x), and
have density function fgz) (x), where

£y (x) = Fag (x) * fulx) (4.1)
Then fy,_j(x), the density of the minimum of two r.v.'s with
density f;(x), is given by

fag_q (%) = 285, () [1-Fy (x]] (4.2)
If gﬂlx) is known, we may iterate (A.1) and (4.2) to obtain the
density of the minimum metric attainable with a tree of any num-

ber of levels. (At the last level of the tree, fip(x) =% thus
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supplying a starting point for the iteration.)
In particular, let i‘/u.(x) = ¢ “u{x). We assume that faplx)

may be expressed in the form

oo
£, (x) = 7 ae ulx) (4.3)
Ak n=1 n
Then -X
£fs,(x) = £, (x) ¥ e Tu(x)
k k -
= alxe-x + Y .2ne*
n=2 n-1
o0
- ) 2n e IX (a.4)
n=2 n-l
If aj = 0, then fj, (x) can be written as
oo
-nx
f5.(x) =2 b e (4.5)
k n=1 n ’
where € .
by = B ¢ T
n=2 n-1
b ==%n , n>1 (4.6)
L

Now from (4.2), with

we have & -nx
faep (X)) = 2 cpe (4.7)
n=1
with ¢, = 0,
p3 (4.8)
e =2 bibp_ 4 .
n jr_.l J n J , n>1
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The c derived at level k become the a, at level k-1, and
it is thus consistent to assume that a; = 0. As we have said,
= _ -2X
far () =8(; then fp; ,(x) = 2e
desired depth. Given f), (x), the expected value of the path

, and we may iterate to any

e

metric, A, is

* =2 2n (4.9)
n=1 2

n
for the assumed form of flk(X)‘

The iteration of the relations defining the a, at level k
in terms of the a, at level k-1 has been programmed on a.
CDC 6400 computer. The resulting values of DL’ the average path
metric (or T ) are shown in table A.1 for 1€L£7. Comparison
of these results with experiment (see Fig. 4. 1) shows very good
agreement, validating the analysis described above. However,
the particular form assumed for f;k(x) produces values of aj,
which increase seemingly without limit as L increases. This
eventually leads to a breakdown in the computational procedure

due to finite computer word length; an alternate form for ka(x)

may exist which would be more practical for numerical evaluation.



AVERAGE PATH METRIC FOR THE EXHAUSTIVELY-SEARCHED

No. of Levels

TABLE A.1l

EXPONENTIAL METRIC TREE

Average Per-Letter

Searched Path Metric
D O . 5000
2 e eie.e.e.e o0 <4584
3 e ee.0.0 o o .4300
L o o ¢ 0.0 o o o 4,091
B e e e e e o e oo .3928
6 e ee e.e 0. 3796
T o o o o°60 ¢ o o .3687
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APPENDIX B

PERFORMANCE OF THE M-ALGORITHM ON THE

EXPONENTIAL METRIC TREE

We derive a method of calculating the performance of the
M-Algorithm (with M = 2, 1 infinite) on a probabilistically-
generated binary metric tree and apply the method to the expo-
nential tree of Appendix A,

Assume the algorithm has reached some level k. Denote
the lesser of the path metrics of the two paths followed as p
and the greater as /0+X . Denote the corresponding quantities
at the_next level as /o' and /o' + Y¥'. The average per-letter
distortion, D, is then the expected value of ap = /0' -p-

We first calculate the conditional expectation of A/D
for a_.given value of Y, E(API‘(). We next derive the conditional
density function fxg(xl‘l). An iteration of this relation yields
a steady-state solution for fX(X)’ and we find the average dis-
tortion as o

D = g E(aplx) £y(x) dx
Four path metrics are evaluated at level k+l; these are

Py P ,0+‘6'~l;u3 , and /o+b’-yll+, where the 4 are chosen inde-
pendently from the density function f/u(x). We then have
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ap =Min (pyn, Pios P, pHIP) - P
= Min (Min (/‘1’/‘2)’ ¥ + Min (/‘3’/‘4)4 )

If we let/t‘ represent the minimum of two r.v.'s distributed

as t.he/ui, then
f/a(x) = 2flu(x) (1-5;“(x) )

VEA(x) = 1-(1-Fu(x) )? :
and P(le) = f}u(X) (l-F}i(x-‘l) )
+ f/l(XvX) (1-F)2(x) ) (B,2)

Assuming the form of Appendix A for i}«(x),
A = -2X
f}u.(x) 2e u(x)
Fa(x) =1 - e~ 2% y(x)

Substitution into (B.2) gives

£, (x]¥) =0 , x<0
AF -2x
= 2e , 0<x<Y
= he 2 , ¥<x (B.3)
The conditional expectation OfAIo is then
Blapl¥) = { x £, (x[¥) ax
=10 - e;zx) (B.4)

We now consider the conditional density function fx'(xl‘l).
We first calculate the probability that ¥'>x, given¥. We
denote this probability as Gy (x]¥) =1 - Fx,(xl?f). The event

¥'> x can occur in four mutually exclusive ways:

B e g pod i g pa
2) /Al>/,(2+x,/,(3>/u.2+x-x,/Ab>/{42+k-‘(
3) py> ug Y, pp> patxty, f> phytx
L) /“1>/"z,+x”’/’~2>/‘g+"+"/*3>/"a+x
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1) and 2) occur with probability
oo

_ 2
P, = gx;u(o) Gulv+x) Guldx-Y) a0
and 3) and 4) with probability
oo
- 2
Py gt;uhz) Gulv+x) Gulv+x+y) dv
where G/[.(X) = l-F/‘a.(x). Performing these integrations for the

assumed distribution of Vs gives

G,,(xl%) =0 , X <0
= e ¥ (l-e-zxsinh(zx) ), 0<x<Y
= 7% cosh(2)) x>V
N = - G
owva.(xlx) E% X,(x|7)
=0 , X<O0
=e % + e‘z'zx(ex+3e'3x) , 0&<x<¥
= 3e-3X cosh(2¥) , x >¥ (B.5)
We can now find fZ'(X) as__
£4(x) = § £, (x1¥) £5(0) @v (B.6)

By iteration of (B.6), fy(x) can be found for any desired level
of the tree. At k=1, ¥ =0. This leads immediately to

£y(x) = 3¢3% , k=2
and after some calculation to
fx(x) = 5.he-3x + 3.2e"*x , k=3

These results for the first few levels suggest that we assume the

following form for fx(x):
o0

fX(X) = nz’—'B ane"nx (B.7)
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Performing the integration in (B.6) we find that

o0
£yrlx) = 2 bpe ™, where
n=3 .

b, = 2: a n
3 n=3 n n+2)* {n-2

,n>3 (B.8)

bp = -ap.1

4n
(n-1)+(n+l)+*(n-3)
The fact that the assumed form for fX(X) is consistent between
levels allows the iteration of (B.6) to be performed on the
coefficients of (B.7) rather than on the actual density functions,
allowing a simple implementation of the iteration on a digital
computer. We have employed a CDC 6400 computer for this purpose,
repeating the iteration until the solution stabilized. (This
occurred at k=10.) The resulting coefficients for the steady-

state solution of (B.7) are:

ay = 7.114
a, = -7.588
ag = 3.162
ag = -.723
ap = .105
ag = -.011
ag = .001

Performing the integration of (B.l), we find that
(- -

D=1(2- 2 ap_1)
IR n= n+2

= .3675



APPENDIX C

OPTIMAL QUANTIZATION WITH A RANGE OF VARIANCE

A one-bit quantizer with quantizaticn levels (Q,-Q) is to
be used to reproduce source letters chosen from thejV(O,cg)
distribution, where ¢® can range from .5 to 2. We wish to mini-
mize the maximum ratio of mean-square quantization error (D) to
source variance over this range.

For a given value of 02,

D = 6.2 - 29(0-Q + Qz (C-l)
where « = and
JE D=D =1- 240+ Q% (c.2)
2 2
(o (o o
2

The quantizer optimized for ¢ =1 has Q =&, and yields the

A
following values of D:

ﬁ=.36l+ ,c-2==1

= 47k , 0% = .5

= 419 ,0° =2

A
The maximum value of D is minimized by equating D(.5) and D(2):
] - 24Q + Q2 =1 - 2«Q + Q2 (c.3)
;o; 05 2

Solving (C.3) gives Q = L« , and yields
3

ﬁ = ,366 |, o2 =1
= 434 , 0% =.5 2
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