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CHAPTER I

1,1 Real Projective n-space

By a real projective n-space, n 2 1, we mean a set g"
of objects called spaces along with a 1-1 mapping of _En onto the set
of all subspaces of a real (n+l)-dimensional vector space, As usual
one defines the inclusion relation L C M between spaces, the inter-
section LN M of spaces and the span IM of spaces, For a

collection of spaces, the intersection is denoted by /N L, and
i

the span by viLi'

A space of _En is said to have dimension k if the vector
subspace corresponding to it has dimension k + 1, Let Eﬁ denote
the set of all k-spaces, -1 <k <n, The unique (-1)-space is
denoted by &, The elements of P and 2_2-1 are called points and

-0
hyperplanes of _?_n respectively,

1.2 A topology on _gn

Let R be the real number system, Then IR ntl is a real

(n+1)-dimensional vector space, We first define a topology on the points
of f_n.

Denote [R o+l _ Rt {5} where O is the null vector

of R n+1. Since the one-dimensional subspace:of [R n+l are the

lines passing through the null vector, every non-zero vector x ¢ R o+l

determines a unique one dimensional subspace of IR n+1‘ We define



an equivalence relation P on R o+l by x P, ¥ iff x, ¥

. . . - - n+l
determine the same one-dimensional subspace where x, y ¢ .

We now identify _I_’_n with _f_P\; n+l/pn by the usual coordinatization

of zn. Then we define a topology on the points of _Ifn; i,e, fg,

to be the quotient topology of the topology of _ﬁ\_' n+l induced by Pn'
We now extend the topology on fg to the rest of _En . Let

(Li) be a sequence of spaces in Bn. We define (Li) to converge to

a limit space L of P iff each sequence (xi), x; € L, converges to

some point of L and each point of L is a limit of some sequence

(xi) where x, € L.. Or alternately, if L and M are spaces in

_1_3.", we define L to be sufficiently close to M iff each point of L

belongs to a sufficiently small neighbourhood of some point of M, Thus

each _l_’_l; is compact and connected and g" is compact; cf, Bourbaki,

If L is a k-space, =1 <k < n-2, then the set g“’k"l(L)
of all spaces containing L is a projective space, where the '"points"
in _En-k-l(L) are all (ktl)-spaces of _Ifn containing L and the

"j-spaces" in gn—k-l(L) are a1l (k+j+l)-spaces of _I:n containing L,

It is readily seen from above that if (Li)’ (Mi) are two
convergent sequences of spaces and LiC Mi for i=1, 2, ¢uay then
lim L, € lim M,, hence a sequence in _Izn~k.1(L) converges in
_lfn-k.l(L) iff it converges in P,

1,3 Directly differentiable arcs

Let J be an ordered topological space which is isomorphic with

the ordered topological space R , A set X<€ J is called an interval



if there exist p, q € J with p <q such that

X= (Paq)’ [p,al, (P’q]o or [p,al.

Thus [p,q) ={ reJ | p<r <q}. Bya two sided (deleted, left,
right) neighbourhood of p € J we mean a set u(p) = (q,r) (u'(p) =
(q,p) U (p,r), u (p) = (q,p), u + (p) = (p,r)) where pc u(p) and
q<p<r. If X is a finite subset of J we write IX| for the

number of elements of J,

Let a mapping A: J— Pg and a k-space L be given, For

i hat i A(q)L i
p € J it may happen tha qEEPp (g)L exists,
q#p

in which case we denote it by A(p)/L.

We say A is directly differentiable at p if there exist

spaces

AP e B, -1<k<n,

such that Ao(p) = A(p) and Ak(p) = A(p)/Ak_l(p), 0£k<n,
Thus if A is directly differentiable at p it is also continuous

at p.

By an arc we mean a mapping A: J-"—ng vhich is

directly differentiable at each pe J, If A is an arc then Ak(p)

is called the osculating k-space of A at p, and p e J is said to

be a point of A,

1,3,1 Lemma: Let A be an arc and L a hyperplane, For each p e J

there exists a u'(p) such that A(q) £ L if q ¢ u'(p).



Proof: Let peJ be given, Let Ak(p) be the largest
osculating space of p contained in L, Assuming L meets every
u'(p), there exists a sequence p;—> P, p; # p and A(pi) c L,

Then %1(p) = ql_gnp A(q) Ak(p) is contained in L, a contradiction,
q#p
Corollary 1: If n2>2, the image of an arc cannot contain

a line segment,

Corollary 2: If XeJ is compact, then for any hyperplane

L, A(p) € L for only finitely many p ¢ X,

1,4 Dually differentiable arcs

We have defined .I_‘fn such that each k-space L corresponds to
a (ktl)-dimensional subspace of a real (n+l) dimensional vector space
(say V), If we now associate to L the corresponding (n-k)-dimensional
subspace of V*, the dual of V, then _En is again a projective space

* *
called the dual P" of P', One has E. =P° -1<k<n,

k  “n-k-1?

*
Let A be an arc in Pn. Define a mapping A*: J——)_lfg by

A*(p) = &_ ,(p)

n~-1
for all p e J, We say A is dually differentiable if A* is an arc

]
in P and forall peJ

Ar(p) =4, .(p), -1 <k <nm,



If A* 1is an arc, then for pe J, -1 <k <n,

A* (p)/Al’;(p)

An_k(p) = Al"(+1(p)

"

: * *
q:[._:._glp A*(q) Ak(p)
q#p

L]

lm A ()N A (p).

qQ—p n-k-1
qQ#p

Therefore, A is dually differentiable iff Ak(p) =q'E“-;mp An-l( an Ak%l(p)

qQ#p
for all P ¢ J, -1 <k <n-l,

1. 4,1 Lenmas If A is dually differentiable then A , is

1

continuous, If P ¢ _128 and p £ J, then there exists a u'(p) such

that p ¢ An_l(q) for all q ¢ u'(p),

Proof: 4.3.1,

A



CHAPTER II

In this and the following two chapters, all our considerations

will be limited to _I_’_a unless stated otherwise,

2,1 Projection

Let A be an arc, p a point of A and P c_Pg. We define
n(P, p) to be the dimension of the largest osculating space &t p

which does not contain P, We now define

A (PP, -1<k<n (P,p)

'xk(p) = if
Ak+1(p), n(P,p) <k <1,
. -y - -y . . 1 .
2.1,1 Theorem: A= {Ao(p)'p € J} is an arc in P (P) with

‘Kk(p) as its osculating k-space at p,
v 2
Proof: Since A (p) is a (k+1)-space in P and
Pe :‘k(p)’ -1 <k<1, Kk(p) ¢ PX (P), Now there exists a u'(p) such
=%= =x
that A(qQ) #P if q € u'(p), We may assume P # A(p) and PA(p)

is a line, Then u'(p) exists from 1, 3,1, Therefore wish to show
A = Rp)/K_, ().
Case 1: -1 <k <w (Pyp). Then P g A (p) and
(= ’ A5 Lo LY
/by (p) = vim K@) Ky ()
qQ#p
= lin Alq) A _,(p)P
qQ#p
6



_E'(p)

Figure II,1



Case 2: n(P,p) <k <1, Then Pc¢ Ak(p) and

Rp)/hy_y(p) = Lim (AGQ)P) A (p)
q#p

= q{igp A(q) Ak(p)
qa#p

= AL, () = & (p),

v
The arc A is called the projection of A from P, In

-

general, we denote A by A/P, In Figure II,1, we have an example
of projection from a point p of A where we assume Al(p) does not

meet A outside of p.

2,2 Secants of an arc

Let A be an arc and L be a k-space, Let (&(p,L)) A
6(p,L)
be (the dimension of) the largest osculating space at p which is

contained in Lj thus -1 < 6(p,L) <k and

<
Vo pn® <
X
for any X ¢ J, If the inclusion is improper we say L is a k-secant

of X,

In the Buclidean plene one considers secants to be lines which
pass through exactly two points of a figure., But in 2?, a l-secant
may mecet an arc at only one point as, for example, in Figure II, 1,

taking L = Al(p).



We will now consider some basic properties of secants in 22.
In most cases the proofs given with minimal modification will apply to

results in Chapter V, Section 3,

A/P, Then

[t}

2,2,1 Lemma: Let P be a point of a k-space L, A

6(p,L) if -1 < &(p,I) < =(P,p),

5(p,L) =
6(p,L)-1 if =n(P,p) < &(p,L) < k.

Proof: If &(p,L) < n(P,p), then Xé(p,L)(p) = Ab(p’L)(p)P.

Since P e L, A y(») cL and 8(p,L) < o(p,L), The equality

6(p,L
follows since Aé(p,L)+l(p) ¢ L.

Ir =(P,p) < 6(p,L) then Xb(p,L)(p) = A (p) and

6(p,L)+1
6(p,L) < 6(p,l)., But Aé(p'L)_l(p) = Ab(p’L)(p) or Ab(p’L)_l(p)P.

In either case it is contained in L and the result follows,

2,2,2  lemma: A kespace L with A(p) € L is a k-secant of X

iff it is a (k-1l)-secant of X on A/p, where p e X,

Proof: Let X = {a¢x|nlpq) < b(q,L)} and
X,= { acX|6(qL) <nlp,g)} . Then X=X UX, If L isa

k-secant of X then

L

v Aé( L)(q)

V #(q,0) V V C @
l



10,11

By 2,2,1 and projection from p,

w L

qcXy qeX,
= Vv Ay (g v v A~ _(q)
q8x1 6(q,L) qexz 6(q,L)
= vV R‘“ (q).
qeX 6(q,L)
2,2,3 Theorem? The set of all k-secants of a connected set X C J
is pointwise connected, -1 <k <2,
Proof: Since the set of O-secants of X is the continuous

image of X and there is only one 2-secant, we may restrict ourselves

to the consideration of l-secants only,

The set of l-secants of X which contain an element p e X
is the set of O-secants of X on A/pby 2.2.2 and hence are pointwise

connected by same argument as above,

Now let L and M be l-secants of X, Teke p, q in X such
that A(p)c L and A(q) € M, Let N be a l-secant of X containing
A(p) and A(q), Then we can construct a path from L to M by constructing

a path from L to N and then from N to M,

2,2,4 let L be a k-secant of X C J, Then

k < { T (olp,L) + 1)} -1,

peX

When there is equality L is said to be an jindependent k-secant of X,
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X is said to be k~independent iff every k-secant of X is independent,

If L is an independent k-secant of X then L meets X at
most k + 1 times, Otherwise if L meets X at Potoeer Py

distinct points then 6(pi,1-) 20 for i=0,1, ...y ktl, and

k+1
S (ap)+1)-1 > Z (6(pg,L)+1)-1
pex i=0
2 (k+2)=1 = ktl,
a contradiction,
2,2,5 Lemma: let X be k-independent and L be a k-secant of X

on A, -1<k<1l, let A(p) ¢ L.Then if q#p in X,A(p) ¢ Ay 1)@
9

Proof: If k=0 then 0= 2 (8(q,L)+1)-1 implies
aeX
2 (6(q,L)+1) =1 and L meets X exactly once, Since A(p)C L
qeX
then A(p) = L and Ab(q’L)(q) = g,
= ' ' 3
If k=1 and A(p)C Ab(q',L)(q) for some @' # p in X
then A(p) = A(q*) or A(p) # A(q') and Al(q') =L, If A(p) = A(q'")
then from Figure II,2, N is a l-secant of X but N is not

independent since

2. (6(q,N)+1)-1 = 6(q*,N) + 6(p,N) + 6(r,N) + 2 > 2,
qex

& contradiction,

If A(p) # A(q') and Al(q') = L then



Figure II,2

15



1k

D (6(g,L)+1)-1 > 6(1,L) + 6(q',L) + 1 > 2;

pEX

egain a contradiction,
Corollary: If X is l-independent, then X is O-independent,

2,2,6  lerma: If X is k-independent and p ¢ X then X is

(k-1)-independent on A/p,

Proof: Iet L be a (k-l)-secant of X on A/p. By 2,2.2

L is a k-secant of X on A with A(p)C L, Define X , X  as

1t "2
in 2,.2.2 thenX = X1\) X2 and
k= & (6(q,L)+1) + 2 (6(q,L)+1) - 1
chl ch2
= 2 (8(q,1)+2) + 2. (8(g,L)+1) - 1 by 2,2.1
ch1 qcx2

1 = C =
Since X; {jq € X ' A(p) Ab(q,L)(q)} then X { p} by 2,2,5 and
" ' ("9 ~
k= o(p 02 + 2 (8(q,L)+1) = 1
qeX-{p}
and the result follows,

Ve have already comnented upon the fact that an independent
k-secant of X on A meets X at most kt+tl times, The converse
does not hold as can be seen in Figure II,2 for the case k =1 and

X = A,

2,3 Representations of secants

Jet L bYe a k-secant of X on A which meets X at m+l



Figure I1,3
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Points po, eeey P Let L be independent.Then m < k,

If m=k then 6(pi,L)=0 for i =0, ,.., k and

‘{po, ooy pk}' uniquel& determine L, If m < k then since

k= 2 (s(p, L)1) -1
pex
there is a Py with 6(p3,L) > 0, For example, if b(pj, L) = x then
L meets X only at pj and pj uniquely determines L, If
=k = ereisp, i )< .
6(pj,L) k -1 then thereisp, # p; in X such that A(pl) L\Ak—l(pj)

Hence { Pys pj}- uniquely determine L,

Thus an independent k-secant L of X on A is uniquely
determined by the points at vhich L meets ¥, If L is not independent
then L is still determined by the points of which L meets X though
no longer uniquely, As, for example, in Figure II.3, L is a l-secant
of A, not independent and {po, pl} . {po, pa} N {pl, pa} all

represent; that is, determine 1L,
Putting these observations in more precise form, we define
inductively the mapping

Ak gl -1<k<2,

2
E,
by requiring that

A'l( ) e 231

and

k k-1
A (pyy ooy p) = A(p /A" (pg,y oeus P10 Sk <2,

We note that Ak(p, ceey D) = Ak(p).



Figure II. b4
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2,3,  Theoren: Ak(Xk+1) is the set of all k-secants of X,

Proof: The result holds trivially for k = -1, O, and 2, Let
{ . . . » - 1l )
pb’ p;} C X be given, By projecting A from po, A(pl) = A (pO, pl
and Al(po, pl) is a O-seccant of X on A= A/po. By 2,2,2,

A'(po, pl) is a l-secant of X on A,

Conversely, let a l-gsecant L of X on A be given, Let
pe X with A(p)C L, By projecting A from p and 2.2.2, L is

a O-secant of X on A/p, hence L = (4/p)(q) = A'(p,q).

Now at this point one is tempted to say that X is k-independent
iff Ak is 1-1, However, Ak is a mapping of tuples, hence we are now
also concerned with the order of appearance of poixits in a given tuple;

that is, permutation of the components,

The ideal situation would be to have Ak independent of
permutations, however this is not always the case, Consider Figure II, 4,

where A is a régular arcy cf, Section 6, Let X = (po, ps), then
1 - - -
A (X) = A(ps)/A(po) = A(pj)/A(pj) = Al(pB)
but y = (ps, po) is & permutation of X and
aY(y) = A (p) # A (p) = AL(X)
R R .

Suppose p e J and x=(p0, ...,pk)ch+l, -1 <k<L2

Define Yy (p,x) = { z l} -1, Tus Y (p,x) Lo(p, AX(x))
p;=p
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and equality occurs iff Ak(x) is an independent k-secant of X iff

the components of x uniquely determine Ak(x).

: ' k c ik
Since Y (p, x) < 6(p, A"(x), then pz& A'Y(p,X)(p) A% (x),

When the inclusion is improper we say X is independent,

2,3,2.  Lemmas: If Ak(x) is an independent k-secant of X then x

is independent but not conversely,

Proof': Since AN(x) 1is independent, Y (p, x) = a(p, 25 (x))
and

- _ 4k
pr A‘f(p,x)(p) = pZX A 6(p,Ak(x))(p) = A(x),

That the converse is not true; in Figure II,3, x = (p., p.)
' o' *1

is independent but L = AITX) is a dependent secant,

2,3,3  Lemma: If X is independent, then X(x) = Ak(y) if y

is a permtation of x ¢ Jk+l.

Proof: Since Y (p, y) = Y (p, x) for all permutations y

of x, then

k)2 v = = Ak

and the result follows,

Thus by 2,3.2 and 2,3.3, if A%(x) is an independent k-secant,
than it is also indepcndent of the permutations of x, Now if Ak(x)
is not k-independent then from above there is a p ¢ X such that

k+l

(p,x) < &(p Ak(X)). Hence there is at least one z ¢ J with the
Y py '

property that Y (p, z) = 6(p, 2%(2)) and A¥(z) = aA%(x). Hence,



2,34 Theorem: Iet XC€CJ and L= Ak(x) be a k-secant of X

where x ¢ Xk+1. Then L is an independent secant of X iff L = Ak(y),

where y ¢ Xk+1, holds exactly for the permutations y of x,
As can be readily seen in Figure II 4, x = (po,p3) is not
independent since

1
pZA AY(p,X)(p) = A(po) A(pB) = A(po) = A(ps) # A (x).

In fact we have the following result,

2,3,5 Lemma: let x ¢ Jk+1. Then x is independent for k = 1 [k = 2]

iff the components of x are not equal [not collinear],

Proof: The result follows since the independence of x is .

based upon the dimension of space spanned by its components,

2,3,6  Theorem: Let -1 <k <1, Then X< J is k-independent

iff every x ¢ Xk+2 is independent,

Proof: Let X be k-independent and x ¢ Xk+2. Then
L=V A (p)c A¥*1(x) is an h-secant of X,
Y(pyx)
peX

h.s‘k +1, If h=k+ 1 the result follows, so assume h <k + 1,
Then h <k <1l and L is an h-independent secant of X on A by
the Corollary of 2,2,5, Since &(p,L) > Y (p,x) for all pe X, we
have

h= 3 (6(p,L)+1)-1

peEX

> Z (Y (p,x)+1)-1,

pex



21

But Y (p,x) = Z 1-1, hence Y (pyx)+1 = Z 1.

L p,=p

Since x ¢ Xk+2,

Z (y(p,x)+1) = Z Z 1 =k + 2,

peX peX \ p.=p
Hence h > k+l; a contradiction,

Conversely, if L is a dependent k-secant, say L = Ak(y),
y e Xk+1, then we can always construct from y @n x ¢ Xb 2 which
is dependent, For example, in Figure II3, let k=1 and y = (p,, pl).
Then x = (y, p2) = (po, Ps pa) is dependent since p,, p,, p, are

collinear,

2,4 Order

. Let A be an arc and XC€ J, -1 <k <2, Let k be fixed,
If S(X,L) = {p e X I A(p) c L} is finite for every k-space L, we
say X has finite P -order.
If in addition

-l;l = sup IS(X,L)‘

2
Lep,

is finite, we say X has bounded Ei-order m, By the order of X,

we mean the Ei-order.

If X has at least k + 1 points and is k-independent, then
it has gi-order k + 1, since we can construct a k-secant through
the k + 1 points,
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Any compact set X C J is of finite order and, in particular, A

is locally of finite order. This follows from the corollaries if 1,3.1.

2.4,1 Theorem: If (p,q) has order 2 then [p,q) and (p,q] are

l-independent,

Proof: First of all we note that in P', if (p,q) has
order 1 then [p,q) and (p,q] are O-independent, For if A(p) = A(s)
for some & ¢ (p,q) then [p,8] will be a closed subarc of [p,q)
in P' and by continuity of A there is ry # r, in (p,s) such that
A(rl) E A(rz). But then (p,q) is at least of order 2 in 2}, a

contradiction,

Our method of proof will be to show (p,q) is l-independent

and then extend the independence to [p,q).

Iet s ¢ (p,q) and L be a line through s, then L meets

(py8) U (8,q) at most once and (p,s) has order 1 on A = A/s, ‘Hence

A(r) A(s) =

L]

=%
if p<r<s<gq, then A(r)¢ Al(s) otherwise A(r)

Al(s) = A(s), a contradiction (Figure II,5),

Let L be a l-secant of (p,q), then there is t ¢ (p,q) such
that A(t) € L, Let r be the first such point in (p,q). Then
(r,q) has order 1 on A= A/r and for any s ¢ (r,q), Alr) ¢ Al(s)
from above. Hence 6(g,L) = 6(s,L) by 2.2.1. Since [r,q) is

O-independent on A/r,



Alg)

AL)= A,

~

A

-

Figure 11,5
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0= X (s(s,L)+1)-1
selr,q)

= (5(r,1)+1) + 2 (8(s,L)+1)-1

sc(r,q)
= (o(r,L2) + 2. (6(s,L)+1)-1,
sc(r,q)
Therefore 1= 2 (6(s,L)+1)-1 and L is an independence secant

se(r,q)

of [r,q) on A, Hence (p,q) is l-independent,

We now wish to show that A(p) & Al(s) for any s ¢ (p,q).
Since (p,q) is l-independent on A, by 2,2,6, (p,q) is O-independent
on A/s if s ¢ (p,q), From the comments in the beginning of this
section, (p,q) is of order 1 on A/s and hence [p,q) is O-independent

on A/s and A(p)¢A1(s) for s ¢ (p,q).

Furthermore, [p,q) has order 2, For if p < p; <p, <q and
Ps Pys P, are collinear then [p, pa) is at least of order 2 on A/'p2
a contradiction, But [p,q) hes order 2 on A implies (p,q) has

order 1 on A/p and [p,q) is O-independent on A/p.

Finally, let L be a l-secant of [p,q) with A(p) ¢ L, Then
L is O-independent on A/p, Since A(p)d¢ Al(s) for s ¢ (p,q),
[ $Y
6(s,L) = 6(s,1) and L ies an independent secant of [p,q) on 4

as above, Hence [p,q) as l-independent on A,

The symmetric argument holds for (p,ql.
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Corollary 1: A is an arc of order 2 iff A is l-independent,

Corollary 2: If (p,q) has order 2 on A and r ¢ [p,q]

then (p,q) has order 1 on A/r,

Corollary 3: If (p,q) has order 2 on A and s ¢ (p,q)
then
Al(s) N Alp,q] = A(s),

Let A be an arc of order 2 and L and oriented line such that
A(p)¢ L for pec J, Then for each x ¢ J2, ANl isa point
p(x) of L, We assume there exists a point P ¥ p(x) for all

X € J2. Ve put (po, pl) < (qo, ql) iff p,<q, and p, <aq,.

2,4,2 Theorem: ¢ is (strictly) monotone,

Proof: We prove the result locally and since J is connected,

we can then extend the result to the whole arc,

Let pyp, q, be three distinct points of the arc (Figure I1I1,6),
Since A is of order 2, A/po is of order 1 by 2,4,1, Cor., 2, hence
the mapping p— \p(po, p) is monotone, Similarly p— tp(qo, p)
is monotone, Therefore we now need to show that the monotonicity does
not depend on the choice of a given component; that is, p— ¥ (po,p)

and p— t?(qo,q) are monotone in the same sense,

Take r, and r, with p, <r, <r, (Figure I11,7), We may

assume the orientation of L is such that (po,rl) LYY (po,rz).

Then there exists a u(po) such that if q ¢ u(po) then
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\y (qo,rl) < \P(qo,rz). Otherwise all of L will be the image of
32 under Y . Thus p—-—)\')(qo,p) has the same sence for all

g, € u(po).

2,5 Characteristic of a point

A line L is said to support A at p if there is a line
E  such that K #L, Alp) ¢ E anda u' (p) such that Au'(p))
is contained in one of the two open half spaces determined by L and
%n' When L does not support A at p wesay L cuts A at p,

since by 1.3.1, A(u'(p)) does not contain any segment of L,

2,5.1 lempma: Let -1 <k <1l, Let Sk be the set of all lines

L with &(p,L) =K for pc J fixed, Then

1, S, is connected,

k

2, The elements of Sk either all support or all cut A
at p,

Proof: 1, Since in a projective plane any two lines meet,

every L e S_; meets Al(p) outside A(p). Conversely, given any

P 4: Al(p) and Q¢ Al(p) - A(p), PQ € S—l' Therefore S_, is isomorphic

1

to the real line TR . Hence S. is connected,

1
Since S, is a singleton set consisting of Al(p) it is

connected,

By projection from p, the elements of SO

21 - {A(p)} y Where A = Afp. The result 1 now follows,

are projected onto
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2, Let L, LesS,

that A(U'(p)) ¢ L[Li]; otherwise (Figure II,8, k = 0) there exist points

with L,—> L, Then there is u'(p) such

q; with g, —> p, qi#p and integers j(i) with A(qi)ch(i).

But then A(qi) Ak(p) < Lj(i) by hypothesis and Ak+l(p) cL, a

‘contradiction, Hence if all LI support [cut] A at p then L

supports [cuts] A at p, Thus the set of lines of Sk which support

(cut] A at p is closed, But Sk is connected and result follows,

So far by the study of order, projection and secants we have
been getting a global picture of arcs, But since each p € J has its
well defined osculating spaces, by the above uniformity theorem we
can describe in detail a point and its neighbourhood in the arc, As
it turns out there are four different types of points distinguished by
255.) in the real projective plane and later we shall give examples of

each,

Let peJ and -1 <k <1, Wedefine 6,(p)=0 or 1
according as the elements of Sk support or cut A at p, Thus
6:1(p) = 0, The oharacteristic (ao(p), a.l(p)) of p is defined by

taking ai(p) =1 or 2 and requiring that

it

ao(p) + ak(p) ‘Tk(p) (mod 2), 0 <k L1,

We also define numbers

k
B = L alp), 0<kg1 ‘
i=0

and B_l(p) = 0, Therefore Bk(p) ES G'k(p) (mod 2), -2 <k <1,
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We say p is regular if ao(p) =1= Ql(p). We say p is a

point of inflection if ao(p) = 1 and al(p)=2. An arc A is regular

(has at most inflections) if each point is regular (regular or an
inflection. In Figures II-9 to II-12, the four different types of
characteristic of a point p of an arc in 2? are shown, In

Figures 11,9 [II,10] p is regular [inflection], Whereas in Figures II,11
and 11,12, the characteristic of p is (2,1) and (2,2) respectively,

In all cases the line L # Al(p).

Upon projection, say from a point P, we have seen that

AP  if -1 <k < w(P,p)
Ak(p) =
Ak+1(p) if =(P,p) <k L1,
v A
where Ak(p), -1 £k £1 are the osculationg spaces of p in A = A/P,
w
Since the Ak(p) are dependent on Ak(p) and n(P,p), it is fair to
v
assume that the characteristic of p in A will depend only on

n(P,p) and the characteristic of p on A, This is in fact the case,

A
2,5.2 _ Theorem: Iet P be a point and A = A/P, Then

G'°<p) + 6 (P P=A(p), -1 <k<O
1. E:k(p)s ° () -1 < k < n(P,p)
%y (P -1 < n(P,p) <k <O,
e (p) 0 < =(P,p)
2, a2 a (p) +a (p) 0 = n(P,p)

al(b) 0 > n(P,p)
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where the congruences are (mod 2) and

- Bl(p) - Bo(p) P = A(p)
3. Bo(p) =
Bo(p) 0< K(P,p) )
Proof: Cose 1, P = A(p), let L and Hw be distinct

wA
lines with 6(p,L) = k+1 and 6(p,lgb) = 0, Then 6(p,L) =k and
g(p,Hw) =0-«1 in A, Now some u'(p) is contained in the same
open half-space determined by 1L and }{n iff both support or both

intersect A at p iff

fo(p) + (p) = 0 (mod 2),

(V)
k+l

If -1 <k <=n(P,p), let L and B be lines such that P < LN B,
6(p,L) = K and &(p, Hm) = =1, Since k < n(P,p), v(;(p,L) = 8(p,L)
WA
by 2.2,1, Then as above L supports A at p iff W_l(p) + ‘rk(p) =0

(mod 2). Hence c“Fk(p>= o (o),

If -1 <n(P,p) <k <0, Consider the lines L and B with
PCLN HQ, 6(p,L) = k + 1 and 6(p,Ew) = «1, Then ‘g(P'L) =

6(p,L)-1 = k by 2,2,1 and rk(p) = € _(p).

k+1l
Case 2. If O <n(P,p), then G (p) = o, (p) for k=-1,0,
by = ; g i -
Hence ao(p) O(p) = 0(p) = ao(p) (mod 2), Since |ao(p) ao(p)l <2,

the result follows, Similarly, :o(p) e al(p) if =n(p,p) <O,

If 0 = n(P,p), then G'o(p) = G"l(p). Since 6'1(p) = ao(p) + al(p)
(mod 2), we have

ao(®) = ay(p) + a,(p) (moa 2),
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Cese 3, If P = A(p) then ‘;O(p) = al(p). Hence

Bol®) =a(») = a;(p) = 8, (p) - B (p).

2,6 Ordinary and singular points

The order of a point p is the minimum order which a neighbourhood
of p can possess, A point p is ordinary if it is of order 2; other~
wise p is a singularity., If there exist u + (p), u - (p) of order 2,
we say p is elementary., An arc is ordinary [elementary] if each of

its points is ordinary [elementary].

It should be noted that in P*,. if a point p is ordinary,
then it is regular, Considering the case of the real projective plane,
let pe J be ordinary, Then there is u(p) of order 2 on A, Take
q € u(p), q # p (Figure I1I,13), by 2,4.1, Cor, 2. u(p) has order 1 on
both A/p point A/q, Writing 2= A/p and f\: = A/q. Zo(p) = al(p) by
2,5.2. Since A(q) ¢ A (p) by 2,4,1, Cor 3, we have Eo(p) = a,(p).

But 20(1)) =1= ;0(p)' hence p is regular,

2,6.1 Lemma: An ordinary point is regular., Thus an ordinary arc

is regular,

In our study of secants, it was established that Ak(xk+ 1) is
the set of all k-secants of X on A4 where XC J, The question that
naturally arises is, when is Ak continuous? Trivially, for k = -1, O
and 2, it is continuous into _13_2. Hence we need only consider the
continuity of 1l-secants, But we already have a tool for the study of

lines namely order,
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If an axc A has order 2 and & line L meets A at distinct
points p &and q., It seems intuitively true that if we hold say p
constant and vary q continuously on J, L will vary continuously

on A since L can meet A at most twice, This is in fact what happens,

2,6,2  Theorems If (p,q) is of order 2 then 2% ie continuous

on [p, )y -1 <k 2,

Proof: In 2,4,1, it was shown that if - (p,q) has order 2
then [p,q) and (p,q] is l~independent, hence also of order 2, There-

fore we need only consider the case k =1,

Case 1, X = (po, pl) ¢ [p, q)z, Py # Py. Then there
exists a neighbourhood U of x in [p,q)2 such that if y = (qo, ql) e U
then q, # q;. Now (p,q) is of order 2 hence [p,q) is l-independent

and for any r ¢ [p,q)

6(r,A'(y)) = \’ (r,y) <0 for ye U,
Therefore

A'(y) =V A . (r)
p<r<g 6(r,A'(3))

is continuous on U since A and A 1 are continuous,

Case 2, x = (r,r) ¢ (p,q)z. Consider x, ¢ (p,q)2 such
that x,—>x and Al(xi)——> L, By holding one component of the

x, fixed, A(r)c L, Since (p,q) is of order 2, it is ordinary and

i

regular by 2,6,1, Hence we are considering a case as in Figure 11,14,

We wish to show L = Al'(x) = Al(r).



Ve may assume L meets [ﬁ,qj only at r and there exists a
line E_ = which does not meet [p,q]. Then p,q lie in the same open
half-space determined by M = K?xi) and H = iff

a) if M neets A at two distinct points then it either

supports or cuts A at both points,

or b) if M meets A exactly once then it supports A at
that point}
that is

zz G-a(S,M)(S) is even,

pés<g
But since (p,q) is regular and l-independent
6(S,M)
Z B G(S,M)(S) = Z Z'; ai(S) (mod 2)
P<sgq p<s<q \ i=0
6(s,M)
= ) > (mod 2)
r<e<q i=0
S :E: (6(s,M)+1) (mod 2)
p<s<g
and 1 = ji (6(s,M)+1)-1, Hence
p<s<q
2. (s(s,m+1) = 2 (mod 2)



U5 |

— - — - -— = e - e -

Figure II,1k



42

Therefore L supports A at r, If L contains A(r) but
L # AY¥(r) then since r is regular, L cuts A at rj a

contradiction, Hence L = Al(x) = Al(r).

Case 3, x = (pyp) ¢ 2, Let P bea point with =(P,p) = O,
Put L = PA(r) for fixed r ¢ (p,q), (Figure II,15). Since A is
continuous and A(p) # A(r), there exists u+(p) such that for any
ye (u+(p)), A(y)¢ L, Then by 2,4,2 put @ (y) = Al(y) NnL for
ye (u'.'(p,")z. Since Y (y) # A(r), ¢ is monotone, Let Q = y%_i_)mx.f ¢ (y),
Since there exist y, ¢ u+(p)2 such that y, —> X and Al(yi)—; Al(x),

one has P = Q,

Now let x, be a sequence in [p,q)2 with X —0 (p,p) and
Al(xi)-—-> M, Since A is continuous, A(p) C M, Now we can construct
a sequence y; € (p,q)a such that y,—3x and A'(yi)———-> M, But

then since \p (yi) c Al(yi), P = lim (yi) CM and M= Al(p).
Corollary: If A is elementary then AY is continuous,

Proof: Let pc J be elementary. Then there exist
w(p) = (r,p), u'(p) = (p,q) where r <p <q such that u (p}, u (p)
ar‘e of order 2, From above, Al is continuous on (r, p] and [p,q),
hence A' 1is continuous on (r,q).

Using 2,6,2, ve can derive further propert‘ies of ordinary points,

2,6,3 Lemma: Let p be ordinary and n(P,p) =1 then p is

ordinary on A/P,

Proof: If p is not ordinary on A/P then for every

neighbourhood ui(p), there exists a l-secant which meets ui(p)
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at points say Poy Pyge Then pji-——-)p for j=0,1 and
PC Al(pOi‘ pli) for al1 i, But Rl is continuous, by 2,6.2, and

Pc Al(p,p) = Al(p); a contradiction,

2.6.4  Lemma: Suppose L is a line with A(p) ¢ L for all

ped, Put ¢ (p) = Al(p)/\ L for ped. If A is ordinary then \p

is monotone,

Proof: Put Y (x) = A NL if xe u(p)2 where u(p)
is a neighbourhood of p, We may take wu(p) to be of order 2 and by

2,6.2, ¥V %) # L, Hence by 2,4,2, Y and \p are monotone,

2,6,5 Lemma: Let A bYe of order 2, For any P, there exist

p € J such that p ¢ Al(p).

Proof: Trivially there exists q ¢ J such that P ¥ A(q),
Let L be a line through P with A(q) ¢ L, (Figure II,16), Since
A is continwous, there exists u(q) such that A(r)¢ L for r e Uq).
Put Y (r) = Al(r) N L. By 2,6,4, \pis monotone, Hence there exists

some point p such that (p) # P; that is, P ¢Al(p).
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_ CHAPTER III

3.1 Barner Ares

We call an arc a Barner arc if there exists a continuous mapping

B: J—-—-}_l{i such that

6(p,B(x)) = B x)(p)-l

Y(P’
for all pecdJd and x¢ J,

In this section we shall assume A is a Barner arc unless
stated otherwise, Some elementary properties of Barner arcs are immediate

from the definition, namely:

(3.,1.1) A(q) € B(p) iff q = p,.

(3.1.2) 6(p,B(p}) = Bo(p)-l for all p e J,

(3.1.3) If p#q then A(p) # Alq).

(3.1.4) If p#q and A(p) c Al(q) then Bo(q) =1,

Proof: Since A(p)C Al(q) then Al(q) # B(g) and

8(q,B(q)) = 0, Hence from (3,1,2), ﬁo(q) =1,

In view of the above properties, Barner arcs are simple arcs;
that is, arcs where A 1is 1-1, Moreover, through each point of the
arc we can draw & line which does not meet the arc elsewhere, Since

B.(p) = & (p) is either one or two, the line B(p) may or may not be
0 0 ’

L6
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a tangent line of A at p, And B(p) = Al(p) iff Bo(p) =g (p) =2

%o
iff non-tangent lines through p all support A at p,

Thus, for instance, if A is regular (Figure III,1) or if A
has at most inflectious (Figure III,2), B(p) # Al(p) and B(p) cuts
A at p.

It is worthwhile to point out that in 21 en arc A is called

a Barner arc if A # _13%.

3,1,5 _Theorem: Let qc¢J, If ao(q) =1, then A/q is a Barner

arc, If ao(q) = 2, then the restriction of A/q to either component

of J~{q} is a Barner arc.

Proof: If ay(q) =1, then Blq) # Al(q). Consider the point

B(q) in A A/q, B(q)#\x(q) and B(q)#\z(p) if p ¥ q, otherwise

A(q) A(p) since A is simple, But then A(p) € B(q),

a contradiction, Hence A is not the whole of }%

B(q) = Alp)

It ay(q) =2, then Blg) = A(g) and Alg) = Blg), Trivially

" wA
A(q) # A(p) for any p € J~{q} and the result follows.,

3,1,6  Theorem: let pe J, Then p cannot have the characteristic

(2,2),

Proof': If p has characteristic (2,2) then B(p) = Al(p)
supports A at p, Take u'(p) and a line H such that A(p)d‘»%
and A(g) ¢ Al(p), A(q) ¢ H forall qe¢ u' (p). Upon projecting from
Py ‘go(p) = ao(p) = 2, Thus there exist points Py Py € u’(p) with
P, <p<p, andaline L= A(p) A(pl) A(pa). We may assume A(pl), A(pz)

lie on same side of Al(p). If say A(pl) lies between A(p) and A(pa),
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then there exists q ¢ [pl, pa] such that 4A(q) = A(pl) C B(pl) a
contradiction. Similarly A(pz) does not lie between A(p) and A(pl).
But then both L and Ai(p) cannot support A at p, (Figure IIL,3),

since A(p)C L N Al(p).

3.1.7 Lemmas ' If (p,q) is ordinary then A(p)cf—' Al(q).

Remark: In 21, if (p, q) 1is ordinary and not equal to Eé
then (p,q) is of order 1, Otherwise there is a point of inflection

on (p,q) which contradicts the regularity of (p,a).
Proof: If ay(q) = 2, then Blq) = Al(q) and result follows,

L)

Assume a (q) =1 and Alp) C A;(q). Then A=4/q isa

v “w wh

Barner arc and A(p) = A(q), Therefore (p,q) is not ordinary on A,
wvi

from above Remark, Let P € (pyq) be the first singularity on A,
Since P, is ordinary on A, then A(q) < Al(pl) by 2,6.3. We
now project (pl’ q) from p and in the same manner as above, we

obtain q, € (p,,q) such that A(p,) € A (q.).
1 1 1l 1°71

Consider the set S of intervals (r,s) such that (r,s)cC (pl,ql)
and A(r) € Al(s). Let s, be the infinum of the s ¢ (pl,ql) for
which there exists an r with (r,s) ¢ S, Since Py is ordinary, there
exists u(pl) C (p,q) such that u(pl) is of order 2 on A and

A(p1)¢ Al(s) for any & ¢ u(pl); hence, P <so. Let (ri, si) be

such f:hat (ri, Si) € 8, r; converges, to say Tor e@nd s,—3 5,
Since s, is ordinary, r, <s, and A(rJ c Al(so), as gbove, Repeating

the argument of the preceeding paragraph, we obtain: (r,s)C (ro,so)

such that A(r) C Al(s), contradicting the definition of 5ge
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3,1.8  Theorem: If (p,q) is ordinary then [p,q] is of order 2.
Proof: If [p,q] is of order 3, then there exist

. s

PSP <p,< P; £q such that p, Pyr Py are collinear, Since (p,q)
WA

is ordinary, then ao(pa) =1 and A= A/p, is Barner, Since there
exists u(pa) such that u(pa) has order 2 on A, then p, is
regular on A/p2 by 2,4,1, corollary 2, If r ¢ (p,q), r # P, then
A(pz) ¢ Al(r) by 3,1,7, and r is ordinary on A/p2 by 2.6,3. There-
fore (p,q) is ordinary on A/pa. Since li/p2 is an arc in _E_’_l, (p,q)

v A
is of order 1 on A/p,. But A(pl) = A(ps); a contradiction,

Corollary: Let A be a Barner arc, Then A is ordinary

iff A is of order 2,

3,1.9 Lemma: If p<q<r and (q,r) is ordinary then

Alp) ¢ Al(q) N Al(r).

Proof: Assume A(p) C Al(q) N Al(r), (FigureIII &), Since
(q,r) is of order 2 on A, there exists 5y € (q,r) such that
A(p) ¢Al(so), by 2,6,5, and A, 1is continuous on (q,r), by 2.6,.2,
Hence there exist gq,, r, such that q < 9% < 55 <Try ST, Alp) ¢ Al(s)

for s ¢ (qo,ro), and A(p) C Al(qo) N Al(ro).

Since (qo,ro) is ordinary and n(p,s) =1 for s ¢ (qo,ro),

(qo,ro) as ordinary on A/p by 2.6.3 .

Since A is simple, A(p), A(qo), and A(ro) are not colinear,
Put I, = Al(qo), L, = Al(ro). Then if s ¢ (qo,rOJ, A(s) ¢ L, otheruise
(qo,so) would not be ordinary on A/p from the Remark of 3,1,7. There~

fore for s ¢ (qo,ro), A(s)¢ Liyi=1,2. let L be a line such that
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LA A[qo,rO] =@ and A(p)C L, Put
Y (s) = Al(s)n L

for s ¢ [qo, ro]. Since A, is continuous so i& \p | moreover, {p
is monotone on [qo,r()] by 2,6.4. But Y (qo) = \p (ro) and hence (P

cannot exist,

3.2 Regular Barner arcs

In this section, unless stated otherwise, we assume A is a
Barner arc with at most inflections, The following notation will be
used: Hco is a line which does not meet a given closed interval [p,ql.
Take, for example, H = B(r), r £ [pyq]. Let two -points P,Q not in
Hm determine a line L, Now L will meet 12» and P,Q divides L
into two components, Denote by L [Lf] the open segment [aot]

containing L N I%:o’

~ The major result to be proved in this section is that a regular

Barner arc has order 2,

3,2.1  Lemmas Suppose (p,q) has order 2 and E is a line not
meeting [p,q). Let L = A(p) A(q), Then Al(r)r\ Lel forall

r ¢ (p,q).

Proof: Since (p,q) has order 2, (p,q) is ordinary on A
and Al(r) supports A at r for r ¢ (p,q). Moreover, Al(r) does

not meet [p,q] outside of r by 2,4.1, Corcllary 3. Hence A(p), Alq)
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lie in some open half-space determined by HE = and Al(r), (Figure III,5),

and the result follows,

3,2,2  Lemmat Suppose p <q <r, Let Ho) and L = A(p) alq)
be given, If (q,r) is of order 2 and A(p) C Al(r), then Al(s)

meets Lf for all s ¢ (q,r).

Proof:  Since Alp) C A (r), A(P)¢ A (s) for all & c (q,r),
by 3.1,9. Therefore n(p,s8) =1 for all s ¢ (é;r) and (q,r) is
ordinary and of order 1 en A/p = % by 2,6,3 and the Remark of 3,1,7
But then ?\(q) # :(s) for a1l s ¢ (q,r) and Z(B) #z(t) for all
s #t in (q,r). Hence neither A(p), A(q), A(s) nor A(p), A(t), A(s)

are collinear, Thus

LAAg,r) =g
and

Alp) ¢ al(s, t)

for s #t in (q,r). Since A(p)¢A1(s) for s ¢ (q,r), the
restriction s # t can be dropped, From 2,4,1, [q,r) is l-independent;
thus

Alq) ¢ Al(s,t)

for s,t in (q,r), Since A' is continuous on (q,r), we have

Al(s,t) meets either Lf or L for all s,tc (q,r),
Since L n Alq,r) = @, we may define

w (t) = e n L



Figure III.8
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for all t ¢ [q,r], (Figure III.6), Then 2 is momotone and continuocus,
Now \p(r) = Al(r) N L=Ap) and (q) = Alq),

Since (q,r) is' ordinary, it is wegular and ao(r) =1,
Therefore B(r) # Al(r) and B(r) cuts A at r., Then [p,q] lies
in one of the open half-spaces determined by B(r) and Hm and
B(r) meets L in Lm' But @ (t) # B(r) for all t e (q,r) by the
definition of B(r), Since Y (t) moves continuocusly from A(q) to

A(p) as t moves from q to r, there is a t, such that

1
Y (t)) = A(r,t )N L e L.

Thus A'(5,t) meets Lf for all s,t ¢ (q,r).

It is interesting to note that the condition pr<q<r and
A(p) C Al(r) determines the concavity (towards) of (q,r) of order 2 with
respect to P, If we retain the origiral hypothesis with the exception
that A(p) C Al(q) now, then since A(p) ¢A1(r) by 3,1,9 (q,r)

is concave away from p (Figure III.7),

3;2.3 Lemma: Suppose A is regular and that there exists p <aq,

q ordinary such that A(p) C Al(q). ' Then there exist rysy with s

" Bingular, such that Al(s) cuts A at r,

Proof: Take & as swall as possible such that (s,q) is
ordinary, (This s exists, otherwise (pyq) is ordinary which is
impossible by 3,1,8), Therefore & is singular, p <s <gq, and (8,q)
is of order 2 on A, Let H Dbe a line not meeting [p,q] and put

P = A(s) A(q), S = A(p) Alg), Q = A(p) A(s), (Figure III,8).
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For any t ¢ (s,q), A,(t) meets B by 3,2,1 and U by
2:2,2, Thus A, (%) umeets Sg¢. Since A(p)c Al(q), A(p) & Al(s) by
3,1.9 and Alq) ¢ Al(a)“ since (q,8) 1is of order 2, Therefore Al(s)
meets Sg since A, is continuous on (8,q) and Al(t) meets S

for t ¢ (s,q). Since Al(s) does not meet (s,q), there is an

r ¢ (p,8) such that Al(s) meets A at r, Since s is regular, the

result follows,

It should be noted that the arc depicted in Figure III,8 is
not a regular arc but an arc with at most inflections, However it is a
Barner arc since through each point of the arc, a line can be drawn
through that point which does not meet the arc elsewhere., It is this
fact, that it is impossible to construct a regular Barner arc such
that A(p) < Al(q) for some two distinct points of the arc, which
indicates that a regular Barner arc is of order 2, In fact, we shall

use 3,2,% primarily to prove that a regular Barner arc is of order 2,

3.2.4t a) In the Remark of 3,1,7, it was stated that if A is a

regular arc in 29' not equal to P. then A is of order 1, Hence,

-

$

if A is a regular Barner arc in E} then A is of order 1,

b) Iet A be a Barner arc in 2}, if A has a singularity

then it is an elementary singularity,

Proof: If A has no elementary singularity, then it has an
inflection point P,. Then there is a neighbourhood (ql,rl) of py
such that A(p) # A(p,) for all pe (ql,pl)lJ (pl,rl). We may assume

J Y 'y
A(ql) = A(rl) and A(p) ## A(ql) for all pe (ql,rl). Since p, is
not elementary then (ql,pl) (and) or (pl,rl) contains an inflection,

Let xl be the interval containing an inflection and Y, pe the other

1l
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interval, Then X, N ¥, =¢ and A(Xl) = A(Yl).

Repeat the above argument using Xy instead of J, Thus

Ppy» Qps Ty X, and Y, are defined, Continuing indefinitely, one

obtains sequences X,y Y; such that X, N Yi = g, AX,) = A(Yi),

and Xy Y4

i=1,2, ... . Since J is isomorphic to the set of real numbers and

1€ X35 i=1,2, ... It follows that A(Yiﬂ): A(Xi+1) c A(Xi),

-{Xl} is a nested sequence of intervals in J, then there exists a

®
point P ¢ N X..
i=1 !
®
Hence P=A(p)e N A(Xi). But then P meets each Y,
i=l . .

and since the Yi are disjoint, P meets [ql,rlJ an infinite number

of times, a contradiction by 4,3.1,

3:.2.5 Lemma: If A is not of order 2, then there exist p < q

such that &(p, Al(q)) = 0,

Proof: Anot of order 2 implies there exist three points
wA (51 vl w
p <p, <p, which are collinear, Consider A = A/p, In A, A(pl) = A(pa)
i
and therefore (p,pz) is not of order 1 on A, By 3,24, (p,pa) is

L)

not regular on A,

A
If there exists only one inflection point q of A on (p,pa)
A
then (p,q) is regular and of order 1 on A by 3.2,4t, But then
v (")
Al(p) = A(p) # Al(g)= A(p) A(q) and Al(p) # Al(q). Since ao(q) =2

and from 2,5,2
ao(q) 0 < n(p,q)

a(a) =4 a (@) + a (q) 0 = n(pyq)
al(q) 0 > n(p,q), (mod 2)



63

0 = n(p,q); otherwise, n(p,q) = =7 a contradiction since A is Barner
or n{p,q) =1 and zo(q) = ao(q) = 2, a contradiction, Since A(p)cC Al(q),

the result follows,

If g, <q, are inflections of % in (plpa) then by 3,2k,
there is an ordinary point a5 of R in (ql,qa). Take
a Sq < a5 < qsv‘_g q, such that (q,_},qs) is the largest regular su:arc
of (ql,qz) in A, Then there exists a point of inflection q of A
such that :(p) # X(q); otherwise K(p) = X(qh) = X(qs) and (q,+,q5)
is not regular on X. Since 2(p) # X(q) for some inflection q of

wn

A, the result follows as in the preceding paragraph,

3,2.6  Lomma: If A is regular but not of order 2 then there exist

p<q<r, q singular and A(p) A(q) A(r) a line which cuts A at p.

Proof: By 3.2,5, there exist 8 <q with a(s,Al(q)) = 0,
Since ao(s) = 1, Al(q) cuts A at s, By 3,2,3, we may assume that
q is singular, Projecting from q, i(q) = X(s) and z(q) cuts VA:
at q. Hence there exists r with q <r and E(r) cutting 2 at
p < q; that is, A(r) A(p) A(q) is & line which cuts A at p.

(Figure III,9),

3:2.7 __ Theorem: Let A be a Barner arc, Then

a) if A is regular A is of order 2,

b) if A has at most inflections and A, is continuous, A

1l
has an ordinary point,

Proof: a) Assume A is not of order 2, Take Pys Gy Ty

with the properties of p,q,r in 3,2,6. Let X) be a neighbourhood of q,
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such that r, 4 X, and for any q ¢ X, A(q) A(rl) meets A in a
point p ¢ Xl' p < qy. Since a9y is a singularity, we may repeat this
> and XZ.

and Xi; i=1,2, ... such that

argument using Xl instead of J and obtain Pos 9y ¥
Continuing one obtains Pis Q40 Ty

xi+l<:-xi’ rs 4 Xi, a4 < rs and for q € X,

410 A(q) A(ri+l) meets

XN Xy dn p<quaidi=1,2, ... ., We may assume g? X, = { q} .

in a

Then q <r;3i=1,2,... . Also Alq) A(ri+l) meets X

i
point p<q,i=1,2, .., Since q is regulér on A it is regular
W
on A = A/q. Therefore there exists, ulq) = u - (q) U{q} v u+ (q)
“ v v
of order 1 on Aj that is A(u-(q)) N A(u+(q)) = @, Taking X, C u(q),

we obtain a contradiction,

b) Suppose A has no ordinary point, By 3,2,5, there exist
p <q such that &(p ,Al(q)) = 0, Now Al(q) cuts A at p. Let
xl, Yl be disjoint neighbourhood of p ,q respectively such that
Al(q) meets X, if q ¢ Y, This is possible since by hypothesis A

is continuous, Repeating this process and using X1 instead of J

one obtains XZ’Y » Continuing indefinitley one obtains contradiction

as in 3,2,4,

3.3 FExistence theorers

3,3,  Lepma: Let A be an arc such that for each p ¢ J, aigﬂ =2

for at most one ij ‘i =1, 2, If there is a point P such that

w
A= A/p is of order 1 and
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1 P regular
x(P,p) = if
i ai(p) = 2

for all p e J, then A is a Barner arc,

~
Proof: Put B(x) = A(x) for x ¢ J., Since A is continuous,

so is B, Put & =n5(p,B(x)) and & = 8(p,B(x)), We must show

6 (p)-1

- f3'Y(p,x)
for all p, x ¢ J, Since A is of order 1, 6 = Y (p,x).

wn
1l implies 6 =6 by

Case 1, p is regular, =n(P,p)
Y{(p,x). If ¥ (pyx) =0, BY(p’X)(p)—l =
0, If Y(pix) = -1, BY(p’x)(p)ol = B_(p)-1 = -1,

AV, ]
2,2,1 and 6 =5

ﬂo(p)ol = ao(p)-l

There fore the result follous,

Case 2. ai(p) =2, Then by 2,2,1,
6 <1 <6 <n(P,p) =4
v
5 =
6=1 i=n(P,p) <6<1,

and

k*1  4f -1<k<i
Bk(p) =
k+2  if 4 <k <1,

n
Therefore iff 6 <i, 6 = 5 = Y (p,x) andh B{(p,x)(p) = Y (pyx) + 1;

hence & = B x)(p)--l. If 6>i,6=06~1= Y (p,x) + 1, Thus

Y (Pt
Y (pyx) 2 i and BY(P x)(p) = Y (p,x) + 2, The result now follows,
]
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3.3.2 _ Theoren: Barner arcs exist in the real projective plane,

- Proof: Iet A be an arc and let (p,q) be of order 2,
By 2.6.1, (p,q) is regular on A and by 2,4,1, Corollary 2, (p,q)

has order 1 on A/p. Applying 2,3,1 with P = A(p), we are finished,

In 3,2,7 b) it was proved that a Barner arc, with at most
inflections on which Al is continuous, has an ordinary point, The
remainder of this section is involved in proving a more general statement

about ordinary points; namel y that every arc has an ordinary point,

2e303 _ Lemmnas Let W Dbe a non-empty set of points of an arc A

such that Al

X which contains a point of W such that if p,q € Xl pr#q,peV,

is continuous at each point of W, Then there is a subarc

then Al(p) does not cut A at q.

Proof: Suppose that for every subarc X with XN W # @, there
exist p,q e X, p#q, pe W such that Al(p) cuts A at q, Let
P19, € J be two such points, Since P, € W and qy £ ¥, there are
disjoint neighbourhoods Xl’Yl of P9y respectively, such that if

1
construction replacing J by X,, and so on, As in 3,2,7 b), ve get

pe X then Al(p) meets Y., Since P; € Xy we may repeat this

& contradiction,

3,34  Lemma: Consider the following properties of arcs in 2}.

a) Every arc has an ordinary point,

Proof: This is trivial by 3,24 (v), since an arc in Pl hes

at most inflections,
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b) If A is a Barner arc, then either A is of order 1

or A has an elementary inflection,

Proof: If A ha no singularity then A is ordinary. If

A has a singularity then it is elementary by 3,2,4 (b),

3.%.5 Lemma: Let A be an arc and L be a line such that A(p)¢- L

for all pe J, Let { Pi'i = 1,2,...} be a dense set of points in
L, Then there exists a sequence Xi; i=1,2,... of open intervals

such that X, has order 1 on A(i)z A/Pi and {X} is nested,
i

Proof: Consider A(l)-- A/P1 an arc in 21.- By 3,3,k(a),
there exists P, € J such that Py is ordinary on A(l). Let Xl

be a neighbourhood of Py such that )Ll has order 1 on A(l), Now

consider X, and P, instead of X and P,. By 3.3,4(a), there

1
exists P, € X; such that P, is ordinary on A(z) . Let X, bea
neighbourhood of P, such that iz < )& and XZ has order 1 on A(Z) R

Repeating the construction for i = 3,4,,,., the result follows,

3,3,6 Lemma: Let A be an arc with at most inflections, Then

there exists a point at which Al is continuous,

Proof: Ve may assume there exists a line I such that
Alp)d L for pe J, Let { Pi|i = 1,2,...} be a set of points
of L which is dense in L, By 3,3,5, there exists a nested sequence

{ xi} of open intervals such that X, is of order 1 on

i
®
A/P.3 i =124, . Take pe /N X, and put P=A1(p)n L,
i =1 i

We wich to show A, is continuous at p, hence lim A, (gdn L =P,
q-p
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Let U(P) be a neighbour*ood of P on L, say one with end
points Pi'P;j where i < j, Take q <p<rj q,r¢ XJ.. Since xj
is of order 1 on A/‘Pj, A(s) # A(t) for s,t ¢ Xj, 8 #t, Ve may

define a continuous path (Figure III,10) in gf by

v, Y "
Ay (p) — 1y APIAG) —2 3 A(Q)A(r) —2 A, (q)

vhere
¥ ,(s) = Alp)a(s) s ¢ (p,r)
\fz(s) = A(g)A(r) it 8 ¢ (q,p)
\93(6) = Alg)A(s) s ¢ (q,r).

Since X 3 is of order 1 on A/Pi, A/P g0 WO line of this path, except
possibly Al(q) contains P, or Pj' For if eay \Pl(s) = A(p)A(s)
contains P, then (A/Pi)(p) = (A/Pi)(s) on A/Pi; a contradiction,
Hence Al(q) N LeU(p) end similarly Al(r) N L e U(P), The path

is continuous since A is continuous, Since q and r are arbitrary
points of X

with p < q <r, the continuity of A, at p follows,

J 1

In Figure III,10, the path moves along sy &as i increases,
Hence \p, moves from Al(p) to A(p)a(r), \¢p , from A(p)A(r)

to A(q)A(r) and finally ¢ 3 form A(q)A(r) to Al(q).

Corollary: Let A be an arc with at most inflections,
lLet W be the set of points at which A1 is continuous, then W is

dense in A,

Proof': If W is not dense in A there exists q ¢ J such

that q is not the limit of any sequence of W, Hence there exists U(q)



Figure III, 10



such that U(q) N W=@, But U(q)C A has at most inflections,

a contradiction by 3,3,6.

3.35,7 Lemmas Every arc contains a Barner arc with at most inflections.
Proof: We may assume there is a line L not meeting A,

Let Pl # P2 be po:"mts on L. By 3,3.5, there exist subarcs Xl,XZ

such that ch Xl

X, has at most inflections on A; for if, p eX,, Py or P, '4 Al(p),
Q)

say Py £ Al(p). Since p is regular on A and =n(P,p) = 1,

and X, has order 1 on PAE2 APy i =1,2, Then

1= a%)(p) = ao(p) and p is at most an inflection on A,

Applying 3,3.6 to X, there exists a point p ¢ X2 such that
A, 1is continuous at p. Choose P and U(p)C X, such that P{ Al(q)
for all q ¢ U(p). By 3,3.4 (a), there exists XC U(P) of order 1 on

A/P. Then X is a Barner arc by 3.3,1.

3,3,8 For the remainder of this section we assume A is a Barner
arc with at most inflections, Moreover, the following notation will
remain fixed: Py is a point at which Al is continuous, P l,pa) is
a neighbourhood of Py and Hm a line which does not meet [pl,pal.
Al(po) meets [pl,p2] only at p, and A(pl) C Al(p ) for any

pe (po,pz). Since A is a Barner arc, L = A(pl) A(po) is a line,
Let Lm[Lf] be the open segment of L with end points A(pl) ,A(po)

which does [not] meet Hw‘

3,3.9 lemnat Given the above hypothesis, (po,pa) has order 1 on

A= A/p1 and A(po,pz) N L=4g,



Proof: Since n(pl,p) =1 for all p c(;b,pz)
a,(p) = a (p) =1 forall pec (p,p,). a(p) =1 and hence A is
Barner by 3,1,5. Therefore (pb,pa) is a regular Barner subarc of A

=

and by 3,2,4(a), (pb,pz) has order 1 on A4,

v w
If L meets (po,pa) at & point gq, then A(po) = A(g) and
there exist an inflection point q1 € (pb,q), a contradiction from

above,

343,10 Jemma: Suppose Po is an inflection, If there is a
"
Py € (po,pa) such that (po,pB) has order 1 on A = A/po, then for

each pe¢ (po,p3) either Al(p) meets Lf or A(pb) c Al(p).

Proof: Since ao(po) + al(pb) = 3, Al(pb) cuts A at p,
and A(pl), A(pj) lie on opposite sides of A1<p°)' Since A, is
continuous at p,, we can choose p, € (po,pa) such that A(pl),A(pB)

lie on opposite sides of A(p.)A(p,), (Figure III,11),
0 4

Since (po,pa) is of order 1 on A/pb, (pb,pz) and hence
p, is regular on A Therefore A(pk) cuts A at p, and A(po)A(pq)
cuts A at p,. Since A(RO)A(ph) meets (pb,pj) only at p,, we
have that A(pl) and A(po,pu) lie on the same side of A(pb)A(pa).
Now by projecting from p,» we find that (po,ph) is not of order 1 on

A/p, and there exists Ps € (po,ph) such that A(pE)A(ph) meets L.,

Let p#qc (po,ps). Since (pb,p3) is of order 1 on both
A/p by 3,3,9, and A/p, by hypothesis, neither A(pb) nor A(pl) lie

on A(p)a(g), Since A(ph)A(ps) meets L., the continuity of A

f’
implies that A(p)A(q) meets L, for p,<p<gq< P3e
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'3.3,11 Theorem: Every arc A has an ordinary point,
Proof: By 3.3.7, we c¢an consider A to be a Barner arc

with at most inflections, Let W be the set of points of J at which
A, is continuous, W # ¢ by 3,3,6. Choose X as in 3,3,3 and the
Py € XN W, We may take X =J and hence if pc ¥, Al(p) does not
cut A at any point except possibly p. Note also that m now

applies,

Cage 1. p, is regular, Then Al(po) supports A at pj
and pp, lie on the same side of A, (py). ‘Since A, is continuous
at po, choose ;p3 € (po,pz) such that PP, lie on the same side
of Al(p) for all p ¢ (po,pB). Therefore Al(p) supports A at p
for all p ¢ (po,p3) NVY and each p ¢ (po,pj) N W is regular, We
claim that (po,pB) is itself regular, heace of order 2, by 3,2,7, and

thus ordinary,

Let q ¢ (po,pj), then there are points q ¢ (po,ps)/\ W such
that q; —> q by the corollary of 3,3,6. lLet M be & line of accumilation
of Al(qi). Let (rl,rz) c (po,p3) be a neighbourhood of q such that
Al(q) meets [rl,raj only at q., This is possible by 1,3,l., Since
qj € (po,ps)n W is regular and there exists ’ q € (rl,rz) such that
ry,r, lie on the same side of Al(qi) iff they lie on the same side
of M,M supvorts A at gq. But then since ao(q) =1, M= Al(q)

and q is regular,

Case 2, is an inflection,

Po
(i) If there exists Py € (po,pa) such that (po,pB) is of

order 1 on A/po. By 3.3.6, there existe a point p ¢ (po,p3)/) W,



If Al(p) meets L, then Al(p) cuts A at a point of (pl,pz), a
contradiction by 3,3,3, Yhere X = J, Therefore by 3,3,10, A(p,) é:Al(p).
Ir Al(p)#Al(po) then ao(po) = 1 implies Al(p) cuts A at p,,
a contradiction, If Al(p) = Al(po) then since p, is an inflection

Al(p) cuts A at p, again, a contradiction, Therefore this case

cannot occur,

(ii) No u+(p0) is of order 1 on A/po, But A/po is an arc
in B' and it is Barner since ao(po) = 1, Therefore (po,pa) has an
elementary inflection on A/p0 by 3,3,4(b), Therefore there exist
points p3,p4,p5 such that Py < Py < p3 < p5 < Ps 4 p3 is an inflection

on A/po and (ph,pB),(pé,ps) are of order 1 on A = A/po.

Since p; is at most an inflection on 4, ao(pj) =1 and

a.l(pj) =1 or 2, Now P; is an inflection on A iff ao(p3) = 2,

+

But then ‘20<p3) = ag(p,) + a)(p;) (mod 2) end nlpy,p;) = 0 that is,

A(po)C Al(pB)' Since 2 E 1 + al(p3) (mod 2) implies ao(pB) =1 aud

124 is regular on A, Hence Py is regular on A/pj.

A(po)C Al(pB) implies (A/ps)(po) = (A/pB)(pB) on A/p3.
Therefore p3 does not have a neighbourhood of order 1 on A/p5 and
there exists p, ¢ (ph,pB) v (p3,p5) gsuch that (A/pB)(pz is equal to
some (A/p3)( q) for q # P3e But (A/ps)(po) = (A/pB)(pB) implies th‘at
q¢ (pl,po). Hence A(p6)A<p3) meets L.,

Suppose 'p6 € (p3,p5). Since (ps,p5) is of order 1 on A/po,

for any p#q ¢ (pj,ps), A(po)¢ A(p)A(q), From 3,3,9, (po,pj) is of

order 1 on A/pl, hence A(pl) ¢ A(p)A(q) also, Since A(ps)A(pB) neets
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Lf,

we reriove the restriction p #q and let r = p,q, then Al(r) meets

by the continuity of A, A(p)A(q) meets L, for these p,q. If

Le U‘{A(po)} for all r ¢ (p3,p5). Take T, £ r, € (p3,p5)/w wiﬁ By
the arguments of Case 2(i), we obtain A(py) = Alr;) = A(r,) in A = A/p,,
which contradicts (p3’p5) of order 1 on A, Similarily, pg ¢ (ph’?B)

will give a contradiction, hence this case cannot happen,

Figure III 12 is not accurate construction of Case 2(ii), Since
this case cannot happen, an accurate construction cannot be made, It is

meant to be only a visual aid in the understanding of 3,3,11.

35 3,12 Theorem: Let A be a Barner arc with at most inflections
and A1 continuous, Then ei‘her A 1is of order 2 or A has an
elementary inflection,

Proof: Let W be the set of inflections of A, If W =§,
A is regular and of order 2 by 3,2,7. Hence we may assume W # @, As

in 3,3,11, we take X = J, Assume Py € W,

Case 1. There exists Py € (po,pa) such that Gpo,ps) has
order 1 on A/po. If there exists p ¢ (po,QB)/\ W, then Al(p) meets
L, or A(po)c Al(p) by 3.3,10. But Al(p) meets L.
cuts (pl,po). Since A, 1is continuous, this is a contradiction by

implies Al(p)
1
3.3,3. Hence A(pb)¢: Al(p), but since p, is a point of inflection

Al(p) cuts A at Pps @ contradiction, Therefore there is no such Pge

Case 2, No u+(po) is of order 1 on A/po. By 3,2,7, every
w'(p) contains an inflection on A/bo. By 3,3.4(b), there exist
8 < P, < P < Ps < P, such that Py is an inflection on A/po,

every neighbourhood of Py»Pg contains an inflection on A/po, and



78

(p'*'p3)’ (ps,ps) are of order 1 <1 4A/p..

If p is an inflection on A/po vthen p is regular on A
and A(pO)C Al(p), by 3,3,11, Case 2, Since every neighbourhood of
Py and p5 containg an inflection and Al is continuous,
A(po) C Al(pk) N Al(pS)‘ Since Py is regular on A and A(po) C Al(p5),
projecting from Py it follows that there is a pg ¢ (Pl.pp3) v (pj,ps)

such that A{pG)A(p3) meets L.,

Suppose p € (p#,pB), then as in 3,3,11 for each p ¢ (pu,pB),
Al(p) meets L, U{A(po)} . Hence (ph,p3) is not ordinary by 3,1.9.
By 3,2,7(a), there is r, € (ph,pB) A W, Since Al(r) meets LfU[A(po)}
then Al(rl) = Al(%) as in 3,3,11, Repeating this argument for (rl,pB),
one obtains T, ¢ (rl’pB) N W such that Al(rz) = Al(po) = Al(rl). By

projecting from p,, (Pl#’PB) is not of order 1 on A/p,, a contradiction,

Similarly pg € (p3, p5) gives a contradiction, Therefore there
exists u+(p0) of order 2, Symmetrically, there exists u-(po) of

order 2, Thus p is an elementary inflection,



CHAPTER IV

4,1 Dually Differentiable Arca

If A is a dually differentiable arc, then by l,4, the *points!?
of A* are the tangent lines of A and the tangent lines of A* are

the points of J, Moreover Al is continuous on A,

4,1,1 et p be a point of the arc A, Let P, ¢ Ai(p) - A, . (p)

i il
for i =0, 12, 2, Then {TPO' Pl’ Pzi} are independent and are the
vertices of four open 2-simpleces, (Figure IV,1), Let S  be that open

2-simplex which contains some U (p), Let E. bé the open segment of

1
. . Hh - - -
POP1 with end points Pb, Pl ich is an edge of S and E2 be
the open segment of P0P2 with end points PO’PZ which is not an edge

of S°, Similarly we define E;, st for i= 1,2,

0 iff E;+1=E;+l,k=o, 1.

Proof: G-o(p) O iff PP, supports A at p iff

£,1,2 Lemma: G‘k(p)

1t

s*, 87 1ie on the same side of PyP, iff the edges of s*, s on
. - ¥
Pb , are the same iff E1 = El'

The result follows similarly for k = 1,

Let p be e dually differentiable point, Take P, st 5™, E;, E]

as in 4,1,1, By 1,4.1, thore are neighbourhoods U*(p), U (p) such that

P, ¢ Aa) for any q c UT(p) v U(p), i =0, 1,2,

79
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A.(p)

Figure IV,1
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Put T;(p) = 0 [0°;(p) = 1] if Al(q) meets [does not meet]

E;ﬂ_ for all q ¢ U (p) where k = 0,1, Define G‘;(p) similarly

and put Q":l(p) =0=9 " (p).

-1
4,1,3, Theorem: At any point p of a dually differentiable arc
rl.:E G—:k... G:k+ (T'-;-;- 0";4- T1+ 0_1 (mod 2)
for k = 0,1,
Proof: Let Pa = P0P1’ Pi = PoPa,' and Pé = P].PZ' Then P;

* [
are points in _132 with P; CA; < A;_l(p), 0<1<2, Forall qc¢J,
put
W(q) = A*(q)P}

This is a line in P} since Pj = PP, is not equal to Al(q) = A*(q)

for q € J, Now Y(p)= A‘(p)PE = Al(p) N PP, =P # Ai(p). Hence
G‘a(p) =0 iff Y (p) supports A* at p iff there exists U'(p)

such that A*(U'(p)) 1lie in some open half-space determined by ‘p (p)

and PiP3, since PiP3 = PP, NPP =P, and PR3 N ) =

P4, (q) = A2, (p).

Therefore G a(p) = 0 iff there exists U'(p) such that for
any q € U‘(p), A (q) meets PP, in the same open segment determined
by 1;1,P2. Choose U+(p), U (p) such that Pi¢ Al(q) for i =0,1,2
and q € Ul(p) = U+(p) UV U (p). Then Al(q) meets PP, in the.same

open segment iff G‘o(p) + G—g(p) + 0 5(p) 20 (moa 2),

+ - . -
If G‘o(p)-o then E = E] and if Al(q) meets E for
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all q ¢ U'(p), we have Al(q) meets E;[EI] for all q ¢ U (p)

[U+(p)]. Thus ;(p) =0= G +(p) and the result follows, If

1

q ¢ U'(p) then Al(q) does not meet EI for all q ¢ U'(p). Thus,

€ o(») =0 and O ;(p) =1 and the result follows, Similarly A (q)

+ , - ) +
fo(p) =1 then E # E, and if Al(q) meets say E. for all

meets PoPa in the same open segment determined by POPZ for all

qc Ul(p) iff G‘l(p) + (l.;_(p) + G I(p) £ 0 (mod 2).

Combining these results, Al(q) meets the same open segment of
PP, for all gqc¢ u'(p) iff Al(q) meets the same [different] segments
of POPl and POP2 simultaneously, If this were not so then the two

possible cases Figure IV,2 and Figure IV,3 indicate & contradiction,

The;'e fore

(mod 2),

Similarly the result follows for k = 1,

Corollary: For any point p of a dually differentiable arc,

a{c;al-k+ G‘;_k+ G‘I_k-f G‘:k+ S':k (mod 2)
for k = 0,1,
. . = = of = .
Proof: For k=0, ¢« 0= 2 and To = e Therefore
a*;.:,q-"+cr++ oo+ ¢++(<r +q.) (mod 2)
0 (o] (o) 1l 1l 0 1l
and
[+ G = = =
o* 18 *tayta 22, +a Fa (mod 2),
For k=1, T*2C7+ &1+ S (moa 2),

1l 1 1l 1



Figure IV,2
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Figure IV,3
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(mod 25

(mod 2)
(mod 2)
(mod 2)

(mod 2)

A point p of an arc is strongly left finite if for every (1-k)-

space L, k = 0, 1; there exists a U (p) such that no k-secant of
U.ﬁp) meets L, We define strong right finiteness symmetrically, A
points is stongly finite if it is both strongly left and right finite,

An arc is strongly finite, if each of its points is strongly finite,

W
b.2,1  Lemma: Iet A= A/P, P a point, If p is strongly finite

on A the it is strongly finite on A,

Proof: Let L be a point of A, Then L is a line in 2?
with Pe L, p strongly finite implies there exist U (p), U {p)
such that L does not meet A(UT(p)), AU (p)). Since P e L, then
for q € U (p) [U+(p)], ‘K(q) = A(q)P, Hence Z(q) does not meet L
in Z‘ and p is strongly left [right] finite on ZL

Let p be a strongly left finite point of an arc, Take Pi’

s-, E;

; anis 4,1,1 and U (p) such that no l-secant of U (p) meets



86

the points P_.; i = 0,1,2, Consider the l-space vhere

it Popmu)
M(1) =1 or 2, Let S (12(1)) be the open l~simplex with vertices

PorPy(y) Which meets the 1-secants of U (p), This makes sense since

any two lines in a projective plane must nmeet.

4,2,2 Theorem: E§(1)= SfUﬂ(l” for M(1) =1 or 2,

Proof: Let S~ be the open 2-simplex which contains U (p)
and take q ¢ U (p) such that A(q)A(p) does not meet (q,p) (Figure IV,4),
Then A(q)A(p) divides S~ into two open tfiangles and (q,p) is
contained in the triangle which has E; as an edge, Let r ¢ (q,p)

such that A(g)A(r) meets E; and E;. Thus & l-secant of U (p) meets

E

1? E

20
In Figure IV,5, an arc different from the one in Figure IV,4, is

used in the construction to illustrate that 4,2,2 is independent of the

type of construction used in its proof,

42,3 Lomma: et p be a point of an arc A, Let UC E_i be a
neighbourhood of Al(p) and U (p) be given, Then there is a l-gecant

L of U (p) such that L ¢ U(Al(p)).

Proof: Assume U is open, Since

Al(p) = A(p)/A(p) = q}iPp A(q)A(p)
a#p

there exists a q € U (p) such that A(q)A(p) € U, Then there exists
U' (p) such that A(Q)M c¢ U for all Me U'(p). Otherwise of

MM (JU for a1l Me U'(p), then ylim, AGqH = Alq)A(p) ¢ CU,
M#£P
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since U is open, a contradiction, Since A(q)M for Me ' (p)

is a l-secant, the result follows,

.

h,2,4  Theorem: Let p be a strongly left finite point of an arc A,

Then Al is continucus at py that is, Al(po,pl)-—g Al(p) where

p; <p, i=0,1 and (po,pl)-—-)(p,p).

Proof: Since AY(J%) is the set of all l-secants of A, we
must show that given a neighbourhood U(Al(p)), there exists U (p) such
that

B e u(a, (p)),

Let L be a line such that A(p) ¢ L for pe J, lLet
P ::Al(p)/\ L and let U be a neighbourhood of P on L, determined
by some U(Al(p)), with end points Q,, QZ; (Figure IV,6), Let U(p)
be & neighbourhood of p such that QM ¢ U(Al(p)) for any Q ¢ U(P)

and M e U(p),

p is strongly left finite; hence, there exist U;(p), U;(p)
such that no l-secant of U'i'(p) meets Q. i =1,2, Let
U (p) C U;(p)/\ U;(p) such that U (p) € U(p), Then by 4,2,3, there
js a l-secant L of U (p) such that L meets U(p), Since no
l-secant of U (p) meets Q or Q, and the set of l-secants of

U"(p) is connected, every l-secant of U (p) meets U(p),

4,2,5 _Temmas Let p be a strongly left finite point of an arc

A, Let P ¢ Ai(p) - Ai-l(p)i i=0,1,2, Then q}:?p'Al(q) N PPen = B

for k = 0,1,
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Proof: Let U(Pk) be a neighbourhood of P on

PPyt k= 0,1, Take U (p) such that no h-secant of U (p) meets
any (1-h)-space spannned by the P., and no l-secant of U (p) meets ths

end points of U(Pk).

Case 1. k=0, Let L be a point on U (p), (Figure IV.7).
Now L # A(p) hence LA(p) is a line which meets U(PO) at Po. Let
U(p) be a neighbourhood of p in A such that L ¢ U(p) and LM meets
U(Po) for any M e U(p), Trivially U (p) n U(p) # &, hence there is
a l-secant of U (p) which meets U(PO). Since the l-secants of U (p)

are connected and do not meet the end points of U(I?O), the result follows

Case 2, k = 1, Follows from 4.,2,3 and Figure 1v.8,
4.2,6 Theorenm: A strongly finite arc A is dually differentiable

and ai(p) = al_k(p) for all pe d, k= 0,1,

Proof: Now A is dually differentiable iff Ak(p) = ql_i;np Al(q)n

q#p
Ak+l(p)’ -1 <k<1,, Let p be a point of A and choose P, i=0,1,2,

and U (p) as in 4,2,5, Therefore for any q ¢ U (p), P, ' Al(p) for
i=0,1,2 and Al(q) N Ald-l(p) is a k-space where =1 <k <1, Iet L
be a k-space of accumulation of Al(q) n Ak+1(p), q —>p. Since

PoeeoPryy Shq(P)y by 42,5

i . N = 3 =
q]___:__gp_Al(q) PPl PquEgsp_Al(q) n Ak+1(p) L
Then Po...PkC L and L= Ak(p). Similarly
q:_Li.;:f Al(q) N Ak+1(p) = Ak(p)

and hence A is dually differentiable,
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Figure IV,8
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From 4.2,2, A,(q) meets E, E; for all q € U"(p). Therefore

T I(p) = 0= T (p), Similarly G“;(p) = 0= r;<p> and then

ai =8y ) for k = 0,1 ' from the Corollary of Egl,é.

4,2.7 Theorem: An elementary arc is strongly finite,

Proof: Let p be a point of A and U (p) of order 2, Let
L be a line, then by 1,3.1 there is U'(p) such that U'(p) N U (p) # &
and LN AWU'(p)) = P, Therefore we need only consider points P in
P2

If P = A(p) then since U (p) is of order 2, no l-secant of

U (p) meets P by 2,4,1

2.4.1,
If P # A(p) then L = PA(p) is a line and as in preceeding

paragraph there exists U;(p)c:'U-(p) such that L N A(UI(p)) = g,

Put tp (x) = A AL for xe (Ui(p))z, (Figure IV,9), Then ¢ is

monotone, Now r{igp.tp(q,r) = A(p) where q,r ¢ U;(p). But

L rSA(U;(p)) = @ implies there exists U;(p)CZ UI(p) such that

\P (x) #P for x¢ (U;(p))2 and the result follows,

Corollary: Iet P be a point, If p is an elementary point

wr
of an ar¢ A then p is also elementary on A = &/P,

Proof: Take U (p) of order 2 such that no l-secant of U (p)
“v w -
meets P, Therefore if A(ql) = A(qa) for q £aq, in U (p), the

l-secant A(ql)A(qZ) contains P, a contradiction,

L,3 Arecs with towers

Spaces Hk € Ei, -1 £k L2, are said to be a tower if



Figure IV,9
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H_lc Ho c H1 < HZ’ An arc with tower is an arc for which there exist

a tower satisfying

Kk(p) 4 Hl-k =g

for any ped, -1 <k<2,

4,3,1  Theoren: et A be an arc with tower and A1 continuous,
Then 1, If A has at most inflections, A is a Barner arc,

2, If A is regular, A is of order 2,

Proof: Since a regular Barner arc is of order 2, we need
only prove 1,

wt
Consider A = A/Ho. Since -HO P4 Al(p) for any pe J,

A wA
zo(p) = ao(p) = 1, Therefore A is regular, Put Hj = H,, Then
[ % w e w
A(p)n H, = A(p)HOIN Hy=Hyj=f# in A and hence A is not all of

E%. Therefore A is Barner and of order 1 by 3,2,4 (a), The result

now follows from 3.3,7.

4.3.2 The Schepk-Derry duality theorem: Let A be an arc of order 2,

Then A is dually differentiable and A* has order 2,

Proof: A is of order 2, hence A is elementary'and strongly
finite by 4.2,7, Therefore A is dually differentiable and aﬁ = ay 1
k = 0,1 by 4,2,6.
A is of order 2, hence ordinary and regular by 2,6,1. But
* = s 1 LI : * - ®
A regular and a =8y implies A* is regular., Since A1 AO’ A1

is continuous, Therefore we need only show A* is an arc with tower

and result follows from %.3.1.



97

Let (q,r) be an interval of A,(q,r) is of order 2 and by
2,4,1, AlQ)¢ A (p) for any pe (q,r), Put HE = Ai(q) and H = Ag).
Then (q,r) is an arc with tower on A*, But g and r are abitrary,

hence A* is an arc with order 2,

Corallary: If A is elementary, then A is drally differentiable

and A* is elementary,

The above theorem point out an important fact about arcs with
tower; namely, it is a local property, In ofher words, we can prove
many things about an arc by localizing to a point and constructing (if
possible) a neighbourhood with tower for that point, We shall see

more examples of this in Chapter VI,

Points which have neighbourhoods with tower are available.
For example, a point p ¢ J which is elementary and hence strongly finite,
One can easily construct a neighbourhood of a strongly finite point,

which has a tower,
Let L be a line, Put
w(p,L) = Bb(p,L)(p)

for a1l p e J. We call u(p,L) the multiplicity with which L meets A
at P; Counting multiplicities facilitates giving precise information

about the order of point, as will be seen in 4,3.k,

b,3,3 _Theorem: Let A be an arc with tower such that every regular

subarc of A is of order 2, Then

owe s (2 2 (ap-n) | 2

ped ped i=0
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1

Proof: If Z Z (ai(p)-l) is infinite, the result holds
ped i=0

trivially, If the theorem is true for finite number of p in J, then

)

1
S sl s ) 2 (alp-1) + 2

PyrecesPy ped =0

e

for all n <o, Hence if Z wlp,L) is infinite, so is

1 ped
Z_ Z (ai(p)-—l) + 2,

ped i=0

1
Therefore ve may assume both sides are finite, But Z (ai(p)wl) £0
’ i=0 :

for only finitely many points implies there are only finitely many non-
regular points on A, Since by hypethesis, regular subarcs are of order 23§

A is elementary,

Suppose A is an arc with tower in _1_’_1 such that A has
finitely many non-regular points, Let L be a point in 21 and suppose

L meets A k-times and h < k of these are points of inflection, Then

Z plp,L) = h + k,
ped

But L = A(p) k-times implies that each of the k-1 intervals determined
by these points contains a point of inflection, Hence A has at least

h+ k -1 points of inflection, Then

h+ka-1KZ Z (ao(p)-l)
ped
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and the result follows that

2 weD) s 2 (a (1) +1
ped ped

for any p e J,

A is an arc with tower, Take { Hi} to be a tower with
4 Al(q) for any q ¢ J and A(q)¢ H forany qeJd, Let L a

line be given,

Sy
If HOC L then consider A = A/Ho. A is an arc with tower in
21, as proved in 4,3,1, Since A has only finitely many non-regular

-t e
points and ao(p) = ao(p), then A has only finitely many non-regular

points, From above,

L Mens 2 G-va.
ped ped

Since Hy 4 Al(p) for any p e J, we have &(p,L) <O and n(Ho,p) =1

wy

A%
for all p e J, Then Tx = Bg = Bb = Bb =p by 2,2,1 and 2,5,2., Hence

Towpl) = 2 G (p-1) +2
ped ped

> (a,(p)-1) + 1
ped

1

> 2 (a(p-D) +2

ped i=0

IAn
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L)
If Ho 4 Ll put P=1LAN Hl and consider A = A/P, H'.I. does

w
A(q) for some q € J and hence A(gq)c H,

a contradiction, Thus A is an arc with tower and finitely many inflections.

ta
not meet A otherwise, Hl

Then

> oRem s 2. G-+ 1,

ped ped

Since A 1is elementary, A is strongly. finite and dually

differentiable with 81:. =a, i k=0, 1, Now Hln A =g, therefore

put

¢ (p) = Hln Al(p)

for a1l peJd, In A*, (p) is the line HlA‘(p). In Figure IV,10
and IV,11, A and the corresponding A* are illustrated, Projecting

W *
from Hl’ Y = A‘/Hl = A* is an arc in _Ijl o Moreover P is an arc with
|
tower in 21 s since Hy F4 Al(p) for all p e J, hence A*(p) ¢ B,
*
for all pe J and Hog’: Y in _Ijl . Since A has finitely many

L) wA
for k=0,1, and a* =a% or al, A*

non-regular points, al’: = a o3 1 1t

1=k
has finitely many inflections. Therefore

w 1 w
Y Wi ) G-+
ped ped
for any point L' in A*, In particular since M)A H = A(PINH =g
for a11 pe J, w(H,p) =1 and :a(p) = aa(p) = al(p) for all pe J,

Hence

Z Wp,L') < Z (a,(p)-1) + 1,
ped ped



103

Let X = { pc J’P € Al(p)} vhere P is defined above,
Let pcX, then PEH NLNA(p) and P=EHIA(p) in A°,
Ww Lol “
Therefore L = A*(p) in' A* and &*(p,L) = 0, Since

\‘{l*(PQL) = \Bg‘(p,L)(p)’
‘;t"(p,L) = véa(p) =:6(p) = al(p). Therefore

Z_ al(p) = Z Tx‘(p,L)

peX ped

< 2 w*(p,1)
ped

< Z_ (a,(p)-1) + 1 .
ped

Considering again A = A/P where Pe Ln Hy, If 6(p,L) <0

La
for some p ¢ J, then P¢ Al(p) and n(f,p) = 1, Hence p =jp and

result follows as before, If 6(p, L) =1 then PeglL = Al(p) and p e X,

Since 6(p,L) = 6(p,L) =~ 1,
Bp,L) = By (p)
=35(») + (u(pL) = a (p) - a (p)

= u(p,L) - (ao(p) + al(p) +;o(p)).
Then
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o= 2 el + 2 uipl)

ped 6(p,L)<0 6(p,L)=1

T Sem e 2 Glablay (e ()
6(p,L)=0 6(p,L)=1

> e+ 2 ((ag(p)+a (2))-a,(p))
ped peX

IA

= 2 e v 2 (ag(p)-deay (9)-(a (p)-1)),
ped peX .

Now

Z p,1) < Z (;O(p)-1)+1
ped ped

G+ 2 Gy + 1
peX . ptX

IA

and if p £ X, 6(p,L) = 0 and 6(P,p) = 1. Hence from above zo(p) = ao(p).

But then

S owep s 2 (am-D) ¢ A a (p) + 1

ped ped peX

2 (a(p)-1) + 2 (a,(p)-1) + 2
ped ped

A

and the result follows,
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h,3.4 Denk's Theorem: Let p be an elementary point of an arc,

Then Ord(p) = ao(p) + al(p) vwhere Ord(p) is defined to be the ord p

counting multiplicities,

Proof: Take U (p), U'(p) of order 2, such that
U(p) =T (pu{ p} U U+(p) is an arc with tower, This is possible since

A, is continuous on U(p) and p is strongly finite. Then by 4,3.3,

.
1l
2 rlq,L) < Z 2 (ai(p)-l)+2.
peU(p) qeU(p) =0

Since q # p implies q is regular where q ¢ U (p)v U+(p),

ai(q) -1=0 for i= 0,1, Hence

2 (g, < ao(p) + a (p),
qeU(p) N

The equality follows by taking L = Al(p).

Corollary: An elementary regular point is ordinary,

L. 4 Pinite arcs

A point p of an arc A is left finite, if for every (1-k)-space

L there exists U™(p) such that
Ak(q)ﬂ L= ¢

for all q ¢ U (p), k = 0,1, Right finjteness is similarly defined, A
point p is finite if it is both left and right finite, A is finite

if cach of its points is finite,
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Trivially if A is strongly finite it is finite and in 2},

strong finiteness is exactly finiteness; that is, given only two points

P,q in _131, there exists U (p) of p such that A(q)gﬁA(U.(p)).

A3
b}  Lemma: Let A = A/P vhere A is an arc and P a point,

LY
If p is finite on A, it is finite on A,

The proof is as in 4,2,1,

4,4 2 Theorem: Let p be left finite, and some U (p) have at

most inflections, then p is strongly left finite.

Proof: Let P be a point, Since p is left finite, there
is U;(p)(: U7(p) such that P ¢ Al(q) for any q € U;(p). Thus
- “ L
Ul(p) is regular on A = A/P an arc in 2}. If A(Ul(p)) is equal to

- v
PY, then there is U;(p) C.Ui(p) such that A(U;(p)) # Pé and hence

0'
e
Uz(p) is Barner on A and of order 1 by _3,2,4,
Let M be a line through P, Since P ¢ A(q), M #£ Al(q) and
("
5(q,M) = 6(q,M) <O by 2,2,1, for a1l q e U (p). If M meets U;(p),
then
dim V A (@) < dim M =1,
qcug(p) 6(q,M)
If M meets U;(p) only once then M is not a l-secant of U;(p)
since M # A(q) for all q ¢ U;(p). Assume M meets Ug(p) at least

twice, then by 2,2,4

Z (6(q,M)+1) ~ 1
qcUz(p)

(-
IA

2. (8(qm+1) - 1,
qcU;(p)
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[ ¥
Since M is a O-secant of Ua(p) on A by 2,2,2 and Uz(p) has

order 1 on A,

1< 2 (5(q,M1) - 1
qcUE(p)

=0

a contradiction. Hence no l-secant of U,(p) contains P,

Let L be a line, by 1,3,1 there is U;(p) C U;(p) such that

A(Q) ¢ L for all q ¢ U;(p). Then p is strongly left-finite,

bli,3  Theorem: Let p be left finite and some U (p) regular,

Then there is a U (p) of order 2,

Proof: Let P # A(p) be a point and UI(p) be regular such
that P ¢1A1(q) for all q ¢ UI(p). Then U;(p) is regular on A/P
and there is U;(p)ci U;(p) of order 1 on A/P, Since =(P,q) =1

for q ¢ U;(p), U;(p) is a Barner arc by 3,3,1, and of order 2 by 3,2,7.
Covrollary: A regular finite arc is ordinary,

Proof: Since A is finite, every pe A has U (p), U+(p)
of order2 onA by L,4.3, Hence p is regular elementary point, which
is ordinary by 4,3.54,

b It  Theorem: If a finite arc A has a singularity, it has an

elementary singularity,

Proof: If A has at most inflections, we may assume A has

an inflection point P, by the Corollary of 4,4,3, and A is strongly
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finite by 4,4,2. Then A is dually differentiable and al‘: =ay
for k =0,1 by 4,2.6, Let L be a line with A(pl) £ L, Since p

is strongly finite we may assume A(p) ¢ L for all pe Jd, Put
¢ (p) = Al(p)/\ L

for all pe J,

As in 4,3,3, the mapping p is the projection of A* from L,

Put A* = A*/L = ¢ , Since A(p) N L =g, ar(p) =al(p) =a(p) for
all p ¢ J, Therefore Py is an inflection point of \R‘. Since an
ordinary point is regular, 13 is a singularity of X‘. But K“ is an
arc in 21" therefore Y has an elementary singularity P, by 3.2,4,
Let U+(p2) be of order 1 on 2“ then :a(q) =1 for all q ¢ U+(p2).
Hence a.l(q) =1 forall qc¢ U+(p2) and there is U;(pz) is of order 2
on A by 44,3, Similarly, there exists U;(pz) of order 2 on A and

hence Py is an elementary singularity,

Assume only that A has a singularity Pp. Wle can again choose
point P such that P ¢ Al(q) for all q e J, If A= A/P is ordinary
then A has at most inflections and result follows, If 2 has an
elementary singularity p,, take U-(pa), U+(p2) of order 1 on \X.

Then both are regulaxr on z and have at most inflections on A, If
either contains an inflection the theorem foliows. Otherwise both are
regular and p, is elementary on A by b.b,3, Since 2 = ;O(pa) =

ao(pa), P, is an elementary singularity,
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L,5 Regular simple arcs

In Chapter III, it was pointed out that a Barner arc in EF
is simple, Hence by 3,2,7, a regular simple arc which is Barner is of
order 2, In 2,6,1, it was proved that if A is.an arc of order 2 then
A is regular,

The question naturally arises if a regular arc is of order 2,
The answer is no, for in Figure IV,12, A is a regular arc which is not
of order 2, Moreover a regular simple arc which is not Barner is not
of order 2, as can be seen in Figure IV,13, The most we will be able

to show in this chapter is that a regular simple arc is ordinary,

4,51  Theorems: Let (p,q) be an ordinary simple subarc of an arc

A, Let '{Hi} be a tower of spaces such that Hl does not meet A,
If the lines L = A(p)HO and M= A(q)HO are distinct and do not cut

(p,q), then(p,q) is of order 2.

(It should be noted that the hypothesis does not state A is

an arc with tower {.Hi} s 6&ince no restriction is made upon Ho € Hl.)

Proof: Cose 1, If p and q are ordinary, let r ¢ (p,q),

then r is elementary and strongly finite by 4,2,7. Thus there exist
U+(r), U (r) such that H, A Al(t) for te U'(r) UU(r). Since J

is isomorphic to /R as a topological space and [p,q] is closed in

J, [p,al is compact, Since A is continuous, Alp,q] is compact,

Hence there are only finitely many points r ¢ (p,q) such that H, e Al(r).

Iet r <..0 <r

1 K be such points, Put p =

and q = r

Yo k+1*
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Put Li

= A(r)Hy, 0 <1 <ktl, hence L, = A(ry) for 1<icgk,
Now consider (ri_l,ri), 0<igk+l, Since Hy{ Al(r) for
re (ri-l’ri)’ then (ri-l’ri) is an arc with towerw{H;}. Moreover

(ri-l'ri) is strongly finite and dually differentiable by 4,2,6.

H = A' . . (3
ence A = A3 is continuous on (ri-l'ri) and (ri_l,ri) is of order

2 by 4,3.1; 0 <i <k+tl, Thus if k = 0, (p,q) is of order 2,

1

through HO‘ as being vertical and order so0 L <M, Since L and M

do not meet (p,q), L < L, <M for i=0,...y ktl, We may assuue

(p.rl) lies above the line A(p)A(rl), (Figure IV,14),

Suppose k > 1, We think of the lines distinct from H_,

Now r, is regular, hence A(p)A(rl) and A(rl)A(rZ) both
cut Aat r,, Then (rl,rz) lies below the line A(rl)A(rZ); other-
wise Hj £ Al(rz), since r, is also regular, (Figure IV,15), But

then (rl,rz) is contained in an open half-space determined by L and

Ly hence L <L, <L <M, (Figure IV,16), Since A is simple and

2 "1
L<L, <L, <M, then k22, But then we have (r2,r3) lie above
A(rZ)A(rB) and L <L, <Ly <L <M. Hence k2 3. Continuing, it

follows that k is arbitrarily large; a contradiction,

Case 2, If p is not necessarily ordinary, Take r e (p,q)
such that the lines L and A(r)HO are distinct and do not meet (p,r),
For any p, € (p,r), there is a p, ¢ (p|p1) such that A(pO)HO does
not meet (pe,r): But then taking L = A(pa)Hb and M= A(rl)Ho,
(pa,r) is of order 2 by case 1, Since (pl,r)<: (pz,r), (pl,r) is of
of order 2, But Py is arbitrary, hence (p,r) is of order 2, Similarly.

q has a left neighbourhood of order 2 and the result follows,
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Figure IV, 612
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Figure IV,13
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4,5,2  Theorem: Suppose a regular simple arc has a singularity Poe

Let {.Hi} be a tower af spaces such that Hll) A = ¢, Then there
exist points Py19;sT such that 12 is singular, Py £ [ql’r1] and

A(pl)Hb lies between A(ql)Hb and A(rl)Ho.

Proof: There is a point p such that Hj ¢ Al(p), otherwise

A is a Barner arc by 3,3.1, and of order 2 by 3,2.7, a& contradiction,

Case 1, Hy € Al(p) for some singularity p., Let (q,r) be
a neighbourhood of p such that A(q)n'o = A(r)HO = L say, We may
assune Al(p) and L are distinct and do not meet (q,p) or (p,r).
One of these intervals contains a singularity 9% for otherwise, they
are of order 2 by 4,5,1 and p is elementary, But then p is ordinary
by 4,3.4, a contradiction, If P, € (q,p), choose qq =Py Ty =T

and the result follows,

Case 2, Hj e Al(p) only for ordinary points, Let (p,q) be
a neighbourhood of the singularity pgy, such that A(p)Ho and A(q)Ho
are distinct and do not meet (p,q). Let r ¢ (p,q) such that Hy € Al(r)
and Al(r) does not meet (p,r), (Figure IV,16), If no such r exists,

then by 4,5,1, (p,q) has order 2, a contradiction,

Take & ¢ (r,q) such that A(s) ¢ Al(r) and Al(r) does not
meet (r,s). Since Py is singular, we can always consider a sufficiently
small (p,q) such that s ¢ (r,q) exists, Take t ¢ (r,s) such that
H, e Al(t) and Al(t) does not meet (r,t) or (t,s), Take wu ¢ (p,r)
such that A(u) C.Al(t) and Al(t) does not meet (u,r),
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Then u<r <t<s, Byk&5,1, (u,s) contains a singularity
pyi for otherwise, (u,8) is of order 2 and P € (u,s) is ordinary,
Since Hb € Al(r)/\ Al(t), by assumption p, #r and 1 #t. If

¢ (r,t) or (t,s), we can choose q,s7; appropriately and the

P 1

result follows,
4,5.3 Theorem: Every regular simple arc A is ordinary,

Proof: Suppose A has a singularity Pge Let {'Hi} be

a tower such that H, does not meet some neighbourhood U. of pb.

1 0
Take p,9,.r; in Uy as in 4,5,2. Let U; be a neighbourhood of p,
T.C = ’
such that U,C U,, U N [ql.rl] g and A(p)Ho lies between

A(ql)Ho and A(rl)Ho for all p e U, Applying 4,5.2 repeatedly,

one obtains pi,qi,ri;ui such that p; € U Uic: U,

i’ i-1?
rpeU 4, 0N [qi,ri] =g and A(gg)ﬂb, lies between A(qi)HO and

9 and

A(r,)H, for all pec U, Take pe /V U,, Then A(p)H. meets each
i’"o i 421 0]

of the disjoint intervals [qi,ril, contradicting 1,3.1,

As can be observed, the arc in Figure IV,17, is an arc with at

most inflections and not regular as 4,5.2 requires,



CHAPTER V

In these last three chapters, we shall be concerned with arcs
in a real projective three-space only, In many instances, results will
not be proved in detail or may not be proved at all, In all these cases
the proofs follow along the lines of proofs of analogous results in 2?.
The only difference in the procfs will be that of dimension. Namely,
instead of considering points and lines in 2?, one considers lines and

planes in ‘2?, and so on,

5.1 Projection

let P¢ Eg and p be a point of an arc A, Define

A (p)P if -1 <k < n(P,p)

Ak(p) =

ml(p) if =(P,p) <k 2.

“ “ } 2
5,1,1 Theorem: A ='( Ao(p)lp € JJ is an arc in P (P) with
\n
Ak(p) as the osculating k-spaces at p, =1 <k L2,

w\
One should note that A 1is now an arc in a real projective

plane, (Figure V,1), One can generalize this definition of projection
to the case of & line in 2?. et L¢ Ei, the projection A/L of A
from L is defined by

118
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£(P)

Figure V,1
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(A/L)(p) = A(p)/L = q{igp A(Q)L
qa#p

for all p e J,

5.1,2  Theorer: A/L is an arc in EF(L) where L ¢ Ei.

w
Proof: Talte a point P e L, Then A/P = A is an arc in
w
w
_122(P) with Le g(a)(P). Thus A = (A/P)/L is an arc in 21(1.),

(Figure V,2)., But

((a/P)/L)(p)

ql_i__)mp (A/p)(q)L
q#p

Alp)/L
(A/L)(p).

5.2 Characteristic of a point

Let L be a k-space, =1 <k <3 and let pe J, Then
6(p,L) is the dimension of the largest osculating space of p which

is contained in 1L,

"
5:2,)  Lemma: Let P be a point of a k-space L and A = A/P,
Then

6{p,L) if -1 < &6(p,L) < =n(P,p)

g(p,L) =
6(p,L)-1 if =n(P,p) < 6(p,L) <k.

We define a plane L to support A at p if there is a plane

B with B #L, Alp) £ H anda U'(p) such that A(U"(p)) is
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contained in one of the two open half-spaces determined by L and %D.

When L does not support A at p, wesay L cuts A at p,

By 1,3,1, every plane in E? either supports or cuts a given

point of an arc, Let S be the set of all planes L with 6(p,L) = k

for a fixed p e J,

5:2.2 _ Lemmas TLet =1 k<2, Let peJ be fixed and the

corresponding Sk be given, Then

a) S, is comnnected, -1<k<2.

b) the elements of S

" either all support or all cut A at p,

Proof: (a) If k=2, then S, = { Az(p)} and is connected,

If k =1, then since Aa(p) 4 S,3 projecting from Al(p), S, is

projected onto E}(Al(p))‘~(A/Al(p))(p). Thus S, will be isomorphic

1
to the real line and hence connected, If k = 0, 1let 2= A/p and

wA w
let S_, be defined for p in A, Since A is an arc in ‘BZ(P), it
w
is connected by 2,5.1. But Lec S, iff Le §,, (Figure V.3); hence

So is connected,

Since in 2?, every plane meets a given line in at least one
point, S 5 is exactly the set of planes of 23 which meet Al(p) at
exactly one point q £ p. For if L ¢ S_, ‘then Al(p)qflu Conversely
if a plane L meets Al(p) exactly at one point q # p, then

6(p,L) = -1, Thus the result follows for k = -1,

(b) See 2,5,1.
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We can now characterize a given point p of anarc A by

describing whether S cuts or supports A at p; =1 <k L2,

k
We define for p's J, @ k(p) = 0 or 1 according to whether

Sk supports or cuts A at p respectively, -1 <k <2, The characteristic

(ao(p), al(p), aa(p)) of pe J is defined by taking ai(p) =1 or2

and requiring that

k
G_k(p) H Z ai(p) (mod 2),
=0 ’
Lastly we define
k
B, (p) = A a(p), 0Skg2
i=0

and B__l(p) =0,

»
3.2.3 _ Theorem: Let P be a point and A = A/P, Then

Tolp) + G-w_l(p) n(P,p) = ~1 <k <1

3k(p):‘: G'K(p) -1 < k < n(P,p)
Q‘k+1(p) -1 <n(P,p) <k <1,
ak(p) 0 <k < n(P,p)

a(ME{ al)+a ()  k=nP@p
a.k+1(p) n(P,p) <k <1,

where the congruences are (mod 2), and
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5 (o) = jﬁ Bier(P) = By(p) n(P,p) = -1 <k L1
k \ 'Bk(p) -1 < k < n(P,p).

In Figure V., p is a point on A with =(P,p) =1 and
characteristic (1,2,1). The planes L, ¢ 8, i=0,1,2, Note that

since P ¢ Ll' L, is not projected into 2?(?) and the characteristic

1
L3
of p in A is (1,1),
Since a projection from & line was defined as a projection from
a point on theline followed by a projection from the projected image of
the line, one can obtain the characteristice of a projected image of a

point of an arc when projecting from a line by applying the formulas in
5.2,3 twice,

Since for any P ¥ Pl, P and P points on L and pe J.

((A/P)/LY(p) = ((a/PH)/L)(p),

the characteristics of p upon projection from L is independent of
the choice of P in L, In the following théorem, we shall prove this
independence by direct calculation of the characteristic and at the same
time.derive the formula for the characteristic of a point with respect

to each L ¢ Ei.

5.2.4 Theorem: et pedJ and Le¢ fi. let P be a point on L
w > -2

and write A = A/P, A = (A/P)/L. The characteristic of p in A[A,A)

is (ao(p), al(p), az(p)) [(go(p),‘al(p)), (Eo(p))]. Then 'Eo(p) is

independent of P ¢ L,
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[
Proof: Case 1, L= Al(p), go(p) = a,(p).

It P4 AGD) then w(P,p) =0 and By(p) = a () + a (p),

Ql(p) = az(p). Moreover, X(p) = A(p)P =L and =n(L,p) = -1, Hence
Eo(p) = al(p) = a,(p). If P=A(p) then n(P,p) = -1, aj(p) = al(p)

and gl(p) = aa(p). Since n(L,p) =<1, the result follows,

Case 2, L#A(p) and Lec A, (p)
- 2
(1) If LaAa®) £A®) then a(p) = 2 a(p) (mod 2),
i=0
Ir P/ Al(p) then go(p) = ao(p) and ‘gl(p) = al(p) + az(p)
(mod 2), Alp) = A(p)P # L and A (p) = A(p)P = A,(P)> L implies

n(L,p) = O and the result follows,
If Pe¢ Al(p)\ A(p) then Eo(p)' 2 a,(p) + al(p)(mod 2) and
gl(p) = az(p). n(L,p) = O implies the result,

(i) If LA A(p) = Alp) then %To(p) = ) (p) + ay(p) (uod 2).

‘If P{ Al(p) then Mao(p) = ao(p) and gl(p)_E al(p) + az(p)
(mod 2), Tﬁ(p) = A(p)P = L and hence réo(p) = gl(p) and the result

follows,

If P=Alp), ay(p) =2 (p) and a (p) = av%(p). But P = A(p)
implies A(p) = Al(p) # L. Hence n(L,p) =0 and Eo(p) =\§o(p) + al(p)
(mod 2),

Case 3. L¢ Aa(p). _



128

A
(i) If Lna(p) £ A (p) then ay(p) = a,(p).

It P ¢ A, (p), 8y(p) = a(p) and () = a(p). A (p) =4 (p) = PL,

a. -
hence n(L,p) =1 and ao(p) = ao(p) = ao(p).

If Pec Ay(p) then n(P,p) =1 and £o(p) = a,(p), El(p) =
a,(p) + a (p) (mod 2). Xl(p> = 4 (PP = A(p)P L and the result

follows,

(1) It LAA ¢ A (p) N A(p) then a (p) = a (p) + a,(p)

(mod 2).

“vy L i
I P ¢ A(p), ai(p) = ai(p) for i =0, 1, Al(p) = Al(p)P=> L

and ’X(p) = A(p)P #L imply w(L,p) =0 and Eo(p) = Eo(p) +31(p)
(mod 2),

Ifr Pe Az(p) then P ¢ Al(p) by assumption, Hence n(P,p) =0
and ;O(p) = ao(p) + al(p) (mod 2), %(p) = al(p). Al(p) = llz(p)JS L,
hence n(L,p) =1 and go(p) = Eo(p).

(iii) If L NA,(p) = A(p) then i‘o(p) = a, (p),

If P¢ A2(p) then gi(p) = ai(p) for i = 0,1, X(p) = A(p)P = L
hence n(L,p) = ~1 and %o(p) = Zl(p) = al(p).

If Pe Az(p) then P = A2(p) and 'z;i(p) =a, .(p) for i=0,1,

~

’n ~
n(L,p) = 1 implies ao(p) = ao(p) = al(p).

i+l

5.3 Secants

Iet A be anarc and L be a k-space -1 <k <3, L is said

to be a k-secant of XCJ if
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vV A (p):L
peX 6(p,L)

L is said to be an independent k-secant of X if

k = Z (6(p,L)+1) = 1
peX
X is said to be k-independent, <1 <k <3, if every k-secant of X

is independent,

We define the mapping

k

A Jk+1

‘—"‘)P?s
-k
-1 <k £ 3, inductively by requiring that A.l( ) = ¢ and
k _ k-1 '
A (poj LN Y Pk) - A(pk)/A (po’ [ E RN pk-l)o
We denote an element (po, ceey pk) R by x and define

Y(p,x) = Z:, 1 -1
P;=P
where Py are the components of x, We define x to be independent if

v (p) = A¥(x).
ped AY(P*X) P ¥

Then using arguments similar to those found in Chapter II, the
results of 2,3 and 2,4 can be extended to the case of a real projective

three space,

5.3.) Lemma: A kespace L with A(p)C L is a kesecant of X iff

it is a (k-1)-secant of X on A/p, where p e X,
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5e3.2 Lenmma: The set of all k-secants of a connected set XC J

is pathwise connected, -1 <k <3,

5¢3,3 Lemma: Suppose -1 <h £k <2, If X is k-independent

it is also h-independent,

Proof: let L bYe an h-secant of X, By 1,3,1, there are
B2Y Dy eeey P, distinct points of X such that h + r = k,
A(pi)9£ LA(pl)”'A(pi-l) for i =1, ..e, r and LA(pl)...A(pr) is

a k-secant of X,

If L is not independent then

h< 2. (6(p,L)+1)-1
peX

= 2. (8(p,L)+1)-1

peX
p#pi
Therefore
r
nir < 2. (6(p,L)+1) + 2 (5(p; ,A(p, )+1)-1
peX i=1 .
PPy

Since I ang A(pi) are contained in LA(pl)...A(pr) for i=1,,..,r,
then

6(p,L), é(pi,A(pi) < 6(p,LA(p1),..A(pr)
for all pe X and i=1,.,..,, r, Hence
k=hr < 2 (6(p,LA(p)) .. Ap )+1)-1;

pcX

a contradiction,
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5.3.4 _ lemma: Let X be k-independent, -1 <k <2, and L be

a k-secant of X on A (with A(p)c L. Then if q #p, Alp)¢E Aé(q'L)(q).

5.3,5 _ Lemma: If X is k-independent and p € X then X is (k-1)-

independent on A/p,

5.3,6 _Theorem: Ak(Xk+1) is the set of all k~secants of X,

-1 <k < 3.

5.3,7 Theorem: Let X€J and x ¢ Xk+1. Then Ak(x) is an

independent k-secant of X iff b(p,Ak(x)) = ‘{ (p,x) for all pe X,
irr A¥(x) = Ak(y), where y ¢ ¥ po1ds exactly for the permutations

of X,

5,3,8 Lemma: xed for k=1 [(k=2, k=3] -is independent iff

the components of x are not equal [not collinear, not coplanar],

5.3.9 Theoren: Let «1 <k<2, Then XC J is k-independent

iff every x € X°'° is independent.

5.4 Order and monotonicity

Iet A beanarc, XCJ, and L a k-space, -1 <k <3,
Ir s(x,L) = { p e X|A(p) C L} is finite for every k-space L, k

fixed; we say that X has finite _Pi order, Moreover, it

sup |S(X,L)| is bounded, then we say X has bounded _jP_i order.,

Lepy

We speak of the order of X when k = 2,

5.4,1  Theorem: If (p,q) has order 3 then (p,q] and [p,q) are

2-independent,
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Corollary 1: An arc has order 3 iff it is 2-independent,

Corollary 2: If (pyq) has order 3on A and r ¢ [p,q]

then (p,q) has order 2 on A/r,

Corollary 3: If (p,q) has order 3on A and s ¢ (p,q)
then

AZ(B) n A[p'CI] = A(S)o

Let A be an arc of order 3, L an oriented line and assume
no l-secant of A meets L, Then for x ¢ J° . )N L is a point
1/ (x) of L, (Figure V,5), We assume there is a point P e L such

that P # @(x) for xe¢ 3> and define
(pO’pl’pZ) s (q09q19q2)

if Py < 9y for i = 0,1,2,

5.,4,2  Theorem: p is (strictly) monotone,

Proof: Since A has order 3, A is 2-independent by 5,4,1

and hence A2 and p are symmetric for x ¢ J3 by 5.2.77 that is
\F (poiplapz) = LP (plipaipo) = \P(pavpotpl)

and 8o on where x = (po,pl,pa).

Suppose (pO’Pl’pZ) < (qo,ql,qa). In 2,4,2, it was proved that P

is monotone in a real projective plane, hence for p ¢ J

P— P (pypysp)

is monotone, If P is say increasing, then
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¥ {pgep)spy) £ P (Bypy09,)
= \P (pO’ql’qE)
< \P (qO’ql’qZ)

by symmetry of %

We define a point b to be ordinary if it iz of order 3, where
the order of p is defined to be the minimum order which a neighbourhood
of p can possess, If p is not ordinary; it is said to be singular,
An elementary point has a right and left neighbourhood of order 3., A
point p is regular if ai(p) =1.for i=0,1,2 and an inflection if

ao(p) ='a1(p) =1 and aa(p) = 2,

S.4,3  Lemma: An ordinary point is regular,

Proof: Use 2,6.1 and 5,4, upon projecting from distinct

points of U(p) where p is ordinary and U(p) has order 3.

S.,4.4  Theorem: If (p,q) is of order 3, then &% is continuous
q)k'l'l

on [p, s 1<k <2,

)
Proof: The result holds trivially for k = <1 and O, If

k=1, let x = (po,pl) € [p,q)2 and take 4,49, such that
P; <49y <, <q

for i = 0,1, Then

1

2 ' 2 :
A7 (pgepy) = A%(a ,p5,09) N A%(a,4mp0p;)
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1
for all (pé, pi) € EP,Q)E. But (A/qi)(pé,pi) is continuous on

[p,q)2 by 2,6,2. Since

o0 vy a2 1
(4/a,)"(pyyp)) = A%(q 4Dpep; )

for i = 0,1, the result follows for k =1,

~

For the proof of k = 2, see 2,6,2,

Corollary: If A is elementary, then Ak is continuous

for -1<k<2,



CHAPTER VI

6,1 Arcs with tower

A set { Hi] -1 <iX 3} of spaces is called a tower if

C C ) :
H-l c Ho Hl H2 C H3' An arc with tower }s an arc A for

which there exists a tower { Hil such that
(p)N H =
Ac'p ook = 2

for all peJ, =1 <k <3, (Figure VI, 1),

In the study of arcs in a real projective plane, the most useful
and important tool developed was the Barner arc, In 23, arcswith
tower assume the central role in the theory resulting in a number of

simplifications,

6,1.1 Lemma: Let A be a regular arc with tower in Pn, Ak
continuwous for -1 <k <n<3, Let pec A, then
{ H .y HO’ HOA(p), eer Hn-lA(p)} is a tower for each of the components

of A determined by p.

Proof: Let n =1, Since B, # A(p) for peg J then

HOA(p) meets A only at p and the result follows,
~ 1
Let, n =2, Consider A = A/Ho an arc in P°, Hy 4 Al(q),

A ~ ~
therefore a,(q) =1 for all q e J and A is regular, Put Ho=H_ .,

-1 <k <1, Since

H

~ o
Ak(q) n H_k = Ak(q)Ho N Hl_k = H,

136
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Figure VI, 1
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~ . w ~ ~r A }
A is en arc with tover { Hk} . Therefore { H ,, Hy, HOA(p)
.
is a tower for each of the components of A determined by p from
n =1, Since a regular arc in _1;"_1 is of order 1, if q # p then

X(q) # Z(p). Thus

M@y M AR, = A(g) A Alp) = B,
and

A(qQ) N HOA(p) =g,

Hence { H,, Hy, HOA(p), HlA(p)} is a tower for each component of

A determined by p,

Ar
Let n =3, Again consider A = A/Ry, Hy f Aa(q) for any q ¢ J,

A

(o .
‘therefore A is regular, Put Hk = Hk+ for -1 <k <2, By the same

1
~N A 2
argument as above, A 1is an arc with tower { Hk} in P7, Since
~r ) ~ la % ~
= A 1
A (q 1{@)H,, A, ds continuous and { H,, H,

is a tower for each component of A determined by p from n = 2,

?I'OA(p), ?flA(p) }

Taking q # p,

A(q)Ho N H A(p) = Alq) N HA(p) = H,
and hence

Alg) n HlA(p) =g,

By 4. 3.1, A 1is of order 2 and by 2,4,1, Corollary 3,
L] “
Al(q)Hoﬂ HOA(p) = Al(q) n A(p) = Hoe
Then
A (@) N HA(p) = 4,

and the result follows,
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For the remainder of this section, we assume that A is a

regular arc with tower and A, continuous, -1 <k £2,

k

NH,, there is at most one pe J

61,2 Lemma: For any P e H\H

such that PG Aa(p).

Proof: Since Hy f\Al(p) =@ for all pe J, put

P (p) = BN Az(p).

Since 4, is continuous, so is {f and @ (p) # By for all peJ,

Suppose there is p, <p, in J such that \( (pl) = Y (pz) = p,

(Figure VI, 2),

Since A, is continuous and (pl) = (pa), there exists a
qe (pl,pa) such that \p ((pl,pa)) lies in one of the closed segments
of Hl :ith end points Ho and Q = Y (q), Call this segment S,
Denote A = A/Al(q). By 5.2.4 and the regularity of q, go(q) = a,(q) =1,
Since ﬁ is an arc in _Pl taking Hl = 21, we have Ho £ :A“ and since

™

kA A

A(q) cuts A at q, there is a point r ¢ J such that Alr) £ S. But

]

Alr) = A(r)Al(q) N H, and since q ¢ (p;,p,) we may assume r ¢ (pl,pz).
w

Put R = A(r)Al(q)f\ Hy £ S and let A = A/R,

Now R¢ S implies R ¥ Aa(q) for any q € (pl,pa) and hence

- wA
(pl,pa) is regular on A, Moreover A is an arc with tower

A

. -
{ R, H, H,, HB} in B%, Since A (p) = A (p)R for pe (py4py)y AL

is continuous for =1 <k £ 2. Hence by 4,3,1, (pl,pz) is of order 2
[V

on A, But
w [V
A(r) = A(r)RC Al(q)R = Al(q),

a contradiction by 2,4,1,
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AJ,(fI)

Ho

Figure VI, 2
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6,1,3 Lemma: If p<gq then A(P)?ﬁ Aa(q).
Proof: Put P = Az(q) N H. By 6.1,2, Pe Az(r) iff r=q.

1’123

~ ~ ~
is a tower for X on A and since Ak = AkP, Ak is continuous for

Hence X = {r/r<q} is regular on A = A/P, Now {P H ,H H}

-1 <k £1, Therefore X has order 2 by 4,3.1 and the result follows

from 2,4,1,

6,1.4 Theorem: If A is a regular arc with tower and Ak is

continuous, ~1l <k <2, then A is of order 3,

Proof: Assume A is not of order 3, hence there are points
Py < 1Y < P < Py such that they are coplanar, Let X = i_p/b > po'} R
By 6.1,3, A(po) ¢-A2(p) for any p e Xy hence X is regular on
A= A/po. By 6.1.1, { H—l’ ceey H2A(po) } is a tower for X on Aj
therefore {A(pc), HOA(pO), HlA(po), HZA(pO)} is a tower for X on A.
Since Xk(p) = Ak(p) A(po), Xk is continuous for -1 <k <2 and X
has order 2 en A by 4,3,1. But Py < p2'< p; are collinear on X7

a contradiction,

6,2 Piniteness

A point p of an arc is right finite (strong right finite) if
for every (2-k)-space L, 0 <k <2, there is a U (p) such that no
osculating k-space (no k-secant) of U+(p) meets L, The point p is

finite [strongly finite]l] if it is both right and left finite [both

strong right and strong left finitel], where left finiteness (strong left

finiteness) is defined similarly., An arc is finite (strongly finite)

if each of its points is finite (strongly finite),
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6.2.1 Lemma: A finite (strongly finite) point p is finite

(strongly finite) on any projection A/P,

’

6,2,2 _Theorem: An elementary arc A is strongly finite,

Proof: et p be a point on the arc, If L is a plane, by
1,3.1 there exists U+(p) such that L (TA(U*(p)) = @, Hence we need

only consider points and lines in ‘23.

Let P be a point in 2} and U+(p) be of order 3. If P = A(p),
no 2-secant of U+(p) contains P by 5,4,1, Let P # A(p) and

L = PA(p),

-\
Since U+(p) has order 3, then U+(p) has order 2 on A = A/P
by 5,4,1, Then p will be elementary on A and thus p is strongly

finite on A by 4,2,7, and there exists Uz(p)(: U+(p) such that no

l-secant of UI(p) meets L, Put
2
$x) =a"GoNL

for x ¢ (UI(p))B, \{ is monotone by 54,2, If q ¢ UI(p) then
(Figure VI, 3)

lim | ¢ (q,q,r) = A(p),
r—p

+
Since P # A(p), there is a U;(p)c: Ul(p) such that ‘P (x) #P for

all x ¢ (U+(p))3. Hence, no 2-secant of U.(p) contains P,
2 2

Let L be a line and choose a point P ¢ L, By the above,
choose U;(p) such that no 2-secant of U;(p) contains P, Suppose
there is a plane H through P which meets U;(p) at points P} 9Py Pse

+
Since Uz(p) is of order 3, it is 2-independent by 5.4,1 and
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Figure VI, ,3
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H= A(pl)A(pZ)A(pB)' Then H is a 2-secant of U;(p); a contradiction,
Hence U;(p) has order 2 on A/P, it is thus elementary and strongly
finite, by 4,2,7, on A/P, Therefore there exists U;(p) C_U;(p) such
that no l-secant of U;(p) on A/P meets L, Since P ¢ L, the

result follows,

Corollary: An elementary point p of an arc A is elementary

on any projection A/P,

Proof: Let P be an elementary point of A, Since P is
elementary, it is strongly finite on A, Therefore there exists U+(p)
(U"(p)) of order 3 such that no 2-secant of U (p)(U"(p)) meets P,
Then as above, no plane through three points of U (p)(U™(p)) meets P

and the result follows,

6,2.3 Lemma: A regular elementary point p is ordinary.
Proof: Let { Hi} be a tower of spaces such that

AR(PNH, =g for 0Sk<2, By§,2,2, there exist " (p), U (p)

of order 3 such that

ADNE, , =7

for all q € U (p) U UT(p)., Then U(p) = U (p) v{p}v U (p) is an
arc Qith tower which is regular by 5.4,3 . Ak is continuous on U(p)

by 5.4.4, hence U(p) is of order 3 by 6,1.k4.

Corollary: If p is an ordinary point or an elementary

inflection, and w(P,p) =2 then p is ordinary on A/P,
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It should be noted that the 2 dimensional analogue of 6,2.2

was proved by Denk's Theorem,

6,2, 4 Lemma: Let pe J, Given U+(p) and a neighbourhood

IICZE? of Ak(p), there is a k-secant L of U+(p) with L ¢ U(Ak(p)),

0<kXZ2,

6,2.5 _Theorem: Let p be a strongly right finite point of an

arc A, Then
Apgs vees 1) —>A (D)

as (pb, coey pk)-—->(p, eesy D) where P; >py i=0, u.., k.

k(3%*1)  is the set of all k-secants of A,

Proof: Since A
we must show that given a neighbourhood U(Ak(p)) of Ak(p), there is

a U*(p) such that
(T (Y € ua (o)),

Let k =1, Let Q, Q, be points with Q4 4 Ai(p) for i=1,2
and QlAl(p) # QzAl(p). Let U(Qin(p)) be a neighbourhood of QiAl(p)
in A/Q, such that M AN, . U(Al(p)) if M e U(QiAl(p)); i=1,2

(Figure VI, 4),

By projection form Q; and 4,2,4, there is U'(p) such that
WA
every l-secant of U+(p) on A/Qi is in U(QiAl(p)); i = 1,2, Hence
if M is a l-secant of U+(p) on A, then QiM is a l-zsecant of U+(p)

on A/Qi; i=1,2, But M= QlMl\ QZH and the result follows,
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Let K=2, Let L be a line with Al(p)n L=g¢g, Put
P= Aa(p)/\ L. Let U(P) be a neighbourhood of P on L, with end
points Q;,Q,. Let U(Al(p)) be a neighbourhood of Al(p) such that
QM ¢ U(Aa(p)) for all Q¢ U(P), M¢e U(Al(p)), (Figure VI,5), Since
p is strongly finite, applying the case k = 1, take U (p) such
that no 2-secant of U+(p) contains Ql or Q2 and every l-secant of
U+(p) is in U(Al(p)). By 6,2,4, there is a 2-secant of U (p) which

meets U(P), Since U'(p) is connected, every 2-secant of U (p) meets

U(P) vy 5,3.2.

6,2,6 Theorem: A finite arc with at most inflections is strongly

finite,

6.2.7 _ Theorem: A regular finite arc with tower is of order 3.
Proof: By 6,2,6, a regular finite arc is strongly finite and

A 1 £k <3 is continuous by 6,2,5. Hence it is of order 3 by 6.1.%,

Corollary: A regular finite arc is ordinary,

6,3 Behaviour of secants

In Chapter IV, we constructed a way of describing the real
projective plane, depending only on a poiﬁt p of an arc, The method
consisted of choosing independent points from the osculating spaces of
p and then the 2-simplices determined by these points formed a covering

for the plane, We now extend this construction to 2?.
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Let p be a point of an are A, Let P € Ai(p) - Ai_l(p),
0<i<3. Then { Po,gl,Pa,PB'} are independent and the vertices of
9 open 3-simplices,

If 1<i<3 and i is odd [even] let E; be the open
segment of PP, with end points PorPis (Figure VI ,6), which is

(is not] and edge of s', where S is that open 3-simplex which contains
?

some U+(p). Similarly E; and S  are defined using some U (p),

Let p be a strongly right finite point of an arc, Choose
U+(p) such that no k-secant of U (p) meets a (2-k)-space spanned by
the points P;, 0 <i <3, Then the k-secants of U+(p) meet any
(3-k)-space spanned by the P

i° ‘

Consider the (3-k)-space Pme(l) eoe Pﬁ(B-k) where
0 <m(1)<,,. <m(3-k) <3, Let S+(m(1),..., m(3~k)) be the open
(3-k)-simple with vertices Pb, Pm(l)""' Pm(}-k) which the k-secants

of U+(p) meet, One can choose one open (3-k)-simplex since U+(p)

+
is connected and thus the k-secants of U (p) are connected,

6,3.1 _ Theorem: E 4y is an edge of S'(m(1), ..., m(3-K)) iff

i isodd; 1<i<3k, 0<k<2,

Proof': For 1 =0, S+(m(1), ooy m(8) = 87 and the result

follows,

Let k = 1, First consider Figure VI,?, Here m(i) = ij;

= 1,2, Projecting from Pl.:Po,P2 and S’ are projected onto

A Cad
P, and S, Put M= E;/Pl, then M # E; whereas S+(1,2) is

[
projected on S (1), Hence, E; is not edge of S+(1,2). Now
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Figure VI, 6
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projecting from P2 instead of P1 we find that EI is an edge of

+
s (1,2),
More generally, the projections of PO’Pm(Z) from Pm(l) are
P ; i Th i £ st i §+ h th
PosPh(o).y Tespectively. e projection o is , hence the

+ \ v .
projection of Em(Z) is the open segment of POPm(Z)-l different from

o

+
B(2)-1°

hence E;(z) is not an edge of S*(w(1),m(2)), By projecting from

But S+(m(1),m(2)) is projected onto ‘§+(m(l),m(2)) and

+ , +
P (2)s We have that E .y is an edge of S (u(1),m(2)),

+
et k = 2, We now have to show that Eh( = 8 (m(1)). Suppose

1)

m(1l) > 1, Project A from A(q) into the plane PoPy Py  Bince m(1) = 2,

+, o+ . . + Vit +
From k =1, El(EZ) is (is not) an edge of S (1,2), Also S = S (1,2),

“+ +
Hence Ei = Ei’

+ + + +
E1 and E2' Thus S (2) = EZ'

. . - ey pt
i =1,2, Since Al(q) meets E, and E, Az(q) meets

6,4 Dually differentiable arcs

*
Let A be an arc in f?. Define a mapping A*: J-—~49£g by

A*(p) = Az(p) for all pe J, We say A is dually differentiable if

* s s 5 .. -
A* is an arc in 23 and Ak = AZ-k’ 1<k<3.
If A is dually differentiable then Aa is continuous and if

Pe Eg and p e J, there exists Ul(p) such that P ¢ Az(q) for all

q € Ul(p). Morcover, A is dually differentiable iff

(p) = 1im A (DN A
% q—>7p 2

k+1(p)

for all pedJd, -1 <k<2,
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Let p be a point of an arc A, Take Pi,S+,S-,E;,E; as
in Section 6,3, If A is dually differentiable tlhien by the above
comment, there exists Ul(p) such that P, £ Aa(q) for all q ¢ Ul(p),
i=0,1,2, Put G (0 = 0 [ g (p) = 1] if A(q) meets (does not

meet] E. for all q € U+(p), 0<k<2, Also put G :1(p) =0

k+l
and define T;(p), -1 £ k £ 2, similarly.

. L
6,4,1 Lemma: G k(p) =0 iff B, =K ., 0<k<2,

6,4,2 Theorem: At any point of a dually differentiable arc,
. - + - + R -
(Tk ot Tt Tox? (Tz + 0,4 0‘2 (moq 2),
0<k(<L2

) : * o Gt - Gt -
Corollary ax=a,  +O,  + T+ T (mod 2),
0<ks<a

6,4,3 Lemma: Let p be a strongly right finite point of an arc A,

Let P, e A;(p) - A, ,(p), 0 <i<3. Then

lim , A(Q)NPRP =P, 0SkZ2,
q—>p

: ) i

Proof Let U(Pk be a neighbourhood of B on PkPk+l'
Take U (p) such that no h-secants of U+(p) meets a (2-h)-space
spanned by the points Pi’ 0<h<2 and 0 <i < 3; moreover, no

2-secant of U (p) contains an end point of U(Pk).
Let L be a (1-k)-secant of U+(p). Then L does not meet

any k + 1 = 2-(1-k) space spanned by the P,y hence

LNA_ . (p) =g
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and LAk(p) is a plane, (See Fi—ure VI,8 for the case k = 0,) Now

LAk(p)f\ PP 4y = P otherwise P .

Let U(Ak(p)) be a neighbourhood of Ak(p) such that LA M =@ and

C 1A (p) and LAA.(p) #0.

IM meets U(Pk) for all Me¢ U(Ak(p)). This is permissible by the
continuity of Ak; cf, 6,2.5. By 6,2,4, there is a k-secant M of
U+(p) such that Mg U(Ak(p)). Since LM meets U(Pk)’ then all

2-secants of U+(p) meets U(Pk) by 5.3.2 and the result follows,

6.,4,4  Theorem: A strongly finite arc isidually differentiable and

ar(p) = a,  (p)
for a1l ped, 0<k<L2,

6.4,5 The Schepk-Derry duality theorem: The dual A* of an arc of

order 3 is also of order 3,

Proof: A is of order 3, hence elementary and strongly finite
by 6.,2,2., Therefore A is dually differentiable by 6.4,4, By 5.4.3
A 1is regular and since ai(p) = a2-k(p) for all peJ, 0Lk <2,
A* is also regular, By 5.4.4, Ai = A2-k is continuous for 0 <k £ 2,
Therefore by 5,4,1, for any p,q € J, {'Ai(p)-} is a tower for (p,q)
on A, Hence { A;(p)} is a tower for (p,q) on A*, Then (p,q)

has order 3 on A* by 6,1.4 and hence A* has order 3,

Corollary 1: The dual of an elementary arc is elementary,
Corollary 2: Let A be of order 3, For any point P there

exists p e J such that P £ Az(p).
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Proof: If Pe Az(p) for all pe J, then A*(p)C P, a

-
plane in 23 for all p ¢ Jj a ‘ontradiction by 1,3.1,

We have already seen in 6,2,3 that a regular elementary point
is ordinary, The question then is whether there eixst any elementary
singular points, In 4,4,4, it was shown that if a finite arc in 2?
has a singularity then it has an elementary singularity, This result
can be extended to 2? using the proof of 4,44 with dimensional

modifications, But to be able to dec this, we must first consider dual

*
projections from a line in ‘2? .

6,4,6 Lemma: Let p be a point of a strongly finite arc, Let

P, € Ai(p) - Ai_l(p); 0 <i <3, The dual projection of A into the

line P,_P has the characteristic (a (p)) at p, 0<k <2,
a v 0S5k

k "k+1
Proof: Since A is strongly finite, it is dually differentiable
x o . = 2 . 2 . -
and ap = a8, .3 k = 0,1,2. Keeping in mind that the line Pk Pk+1 in
A is also a line (Pk Pk+1)‘ in A*, we wish to project A* from

(Pk Pk+1)*' In the following, we shall use 5.2,4 as a reference, Denote
N
)
o » *
A* = A /(PoPl) .
A )
- * - * o * » -
If k=0, then (PoPl) = (Al(p)) = Al(p) and ao(p =
= -—
ae(p) = ao(p).
— * %® o
If k=1, (PP) ¢A2(p) since A(p)¢ PP, But

(P1P2)‘/\ Aé(p) = PyP,P, = A*(p), hence 'ga(p) = ai(p) = al(p).

If k=2, A*(p) £ (papB)‘ since P293 ¢A2(p). Moreover,
[

(PZPB)‘ Ai(p) = PPy Al(p) = Aj(p) = @g*, Hence ;B(p) = aa(p) = az(p).
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6,4,7 Theorem: If a finite avc has a singularity it has an

elementary singularity.

Let L be a plane, Put

for a1l p e J, We call u(p,L) the multiplicity with which L meets

A at p.

6,4,8 Theorem: Let A be an elementary arc with tower. Then

2
Z s 2 L (a1
ped ped  i=0

for every plane L,

6,4,9 Denk's Theorem: Let p be an elementary point, the
2

oralp) = 2. a(p).
i=0




CHAPTER VII

L)

7.1 Barner Arcs

An arc is Barner if there exists a continuous mapping
B: J2—~——9§g
such that |
6(p,B(x)) = B.{(p’x)(p)-l
for all ped, x¢ J2,

2,1.)  Lemma: Let A be an arc such that for each p ¢ J, ai(p) = 2
for at most one i; 0 < i <2, If there exists a point P such that

A/P is of order 2 and

=n(P,p) = { 2 if p regular

i if ai(p) =2

for 811 p € J, then A is a Barner arc,

Z2.1.2 Theoren: et A be an arc with tower and with at most

inflections, Let Ak be continucus, O <k <2, Then A is a Barner
arc,

‘iroof: let ( Hi} be a towver, Since Ho £ Aa(q) for any
qed, A= A/Ho is a regular arc with tower '{ Hb’Hl’HZ’HB} . Moreover

L%
Ak(p) = Ak(p)Ho is continuous for k =1, Then A is of order 2 by

4,3,1, and A is Barner by 7,1,1

158
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It should be noted that any (p,q) of order 3 where p,q € J

is Barner by Z7.1.1.

)

For the remainder of this section we assume A is a Barner

arc unless otherwise stated,

7:1.3 A(p) ¢ B(pl,pz) iff pe { pi,pz}

Z.1.b4 6(p,B(p,p)) = Bl(p)~1 for a11 pe J,

72.2.5 Al(p)l: B(p,p) for all pe J,

Z.1,6 If p#q then A<p)9ﬁ-A1(q); hence A is simple; that

is, A is 1-1,

;

If p#q and A(P)C Aa(q), then Bl(q) = 2,

N
o]
(o]

L2 )

Lenma: Let qeJ, If ao(q) =1 then A/q is a Barner

arc, If ao(q) = 2, then the restriction of A/q to either component

of J-{q } is a Barner arc,

Proof: Let vy € J be given and put x = (q,yl). Then put

bt 3

LTS w
B(yl) = B(x) in A = A/q and hence B is continuous, Let ao(q) =1,

Case 1, If p=gq then n(q,p) = -1 and by 5,2,3,

( (p,x) -1 and

B () = B, ,1(p) - By(p). Since Y (p,y,)

Bolp)

ao(p) =1,

wh

By(p.yl)(p) -

P Y(P'p y1)+l(p) -1

ﬁ Y(plx) (p) -1,



by 5.2.1, .3(p, ?S(yl)) = 5(p,B(x)) -1, hence

B(p,B(y))) = (8 b (1) <1

Y ¢

= BY (p’yl)(p) -1,
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Case 2. If p#q and AlgQ)c A,(p). Then nlq,p) =1 by

7.2,6. But p#q implies

y (yy) = Y (%) <1,

Therefore

b(p,B(x)

]

BY(p x)"l < Bl(p) "1.
and since A(q) C Az(p), Bl(p) =2 by 4,1.7.

6(p,B(x)) < 2-1=1

w
and b(p,g(yl)) = &(p,B(x)) by 5,2,1. Hence

E'(p,E(yl)) 5(p,B(x))

BY (p,x)(p) -1

s 3Y(p'y)(p) '-1.

Then

Case 3, If p#q and A(q)¢ Aa(p), then n(q,p) = 2 and

the result follows as in Case 2,

Let ao(q) =1 and p=gq, Then

it

BY(p,yl)(p) - BY(p’yl)*Pl(p) - B

(p) - 2,

L]

P Y (py)

(p)
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Therefore
“, & w .
6(p,B(y)) = 8(p,B(x))=1
= (B (0 (P12
“
=B (p)
Yipyyy)
# BY(P,YI)(p)-l.
7.1,9 lemma: A l-space L meets a Barner arc in at most twd points,

Proof: If L meets A at points 1 < P, < p3, Then since
A is simple; A(pl), A(pz) and A(gs) are distinct and collinear,
Let x = (pl,pa), then A(pi)<: B(x) for i = 1,2, Hence

L= A(pl) A(pZ)CZ B(x) and finally A(pB)C: B(pl,pz), a contradiction,

Therefore a l-secant of a Barner arc meets the arc at most
twice, If q e J, then p# q implies A(p)$t>A1(q) for all

ped-{ql by 7.1,6, Hence the result;

7,1.10 Xemmas If A is Barner then A is 1—independent.

2.1.11 Lemma: If ped then ai(p) = 2 for at most one i,

0<ixge,

[ o)
Proof: If ao(p) =1 and al(p) = aa(p) = 2 them A = A/p

P wA
is Barner by 72,1.8, and ao(p) = al(p) =2 = aa(p) = al(p), a contradiction
by 3,1,6. Therefore ao(p) =2, If ao(p) = al(p) = 2 then by Z7.1.k4,

5(p,B(p,p))

Bl(p)-l

ao(p) + al(p)-l
3
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which is impossible since B(p,p) is a plane, Then ao(p) =2 = aa(p)

and al(p) = 2 is the only case possible,

. w
But projecting from Al(p), ao(p) = az(p) =2 by 5,2.4 vhere

2 A &
A= A/Al(p)). Then Ro(p) supports A at p and one obtains points

PP, such that A(pl) Al(p) A(pa). But ao(p) = 2 implies
6(p,B(p2,p)) = Bo(p)-l =1

and hence Al(p)C: B(pz,p). Therefore
A(pl) C Al(p) A(pa) C B(pa,p)

a contradiction,

7,1,12 lemma: If (p,q) is ordinary then A(p)gé-AZ(q).
Proof: If aO(q) = 2 then Az(q) = B(q,q) and the result

follows,

(Y3
Assume ao(q) =1 and A(p)CZ.Az(q). Then A = A/q is Barner
WA L) o
and A(p)<2~Al(q). Therefore (p,q) is not ordinary on A by 3,1.7.
[

But (p,q) ordinary on A and not ordinary on A implies there exists

Py € (p,q) such that A(q) CZ‘AZ(pl) by the corollary of 6.2,2.

Now consider the inerval (pl,q) with A(q)C Aa(pl)°
Repeating the above argument one obtains q € (pl,q) such that
A(pl)CZ Az(ql). Consider the set S of intervals (r,s) C (q,q) such

that A(r) c:.AZ(s). Then by the argument of 3,1.7, one has a contradiction,

7.1,13 Theorem: If (p,q) is ordinary then [p,q] has order 3,
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Proof: Suppose Pl’PZ’pB'Ph are coplanar points with

PSP <P, <Py <P S

wA
(p,q), hence ao(pz) =1 by S,4,3 and A= A/p, is Barnmer by

2.1=8. P, ordinary imphes there exists U(pa) of order 3 on A and

-y
hence of order 2 on A by 5.4,1, Then P> is ordinary on A, In

fact, (p,q) is ordinary on A since A(p2)¢-A2(r) for r ¢ (p,q)

L]

by the Corollary of 6,2.3. Therefore (p,q) has order 2 on A by
A

2.1.8, a contradiction since pz,pB,p4 are collinear on A,

7.1,1% Theorem: If p<q<r and (q,r) ordinary then

Alp) q:Aa(q) Na(r),

Proof: Since (q,r) is ordinary then (q,q) has order 3

by 7.1,13 and A is continuous, k = 1,2 by 5.4k,

Assume A(p)& Az(q) N Aa(r), p<q<r, ByS6.,45, Corollary 2,

there exists 8 ¢ (q,r) such that A(p) ¢ AZ(SO)’ (Pigure VII,1),

Since A2 is continuous, then there exist CINES such that

q L9, <8y <ry <aqn, A(p)¢A2(e) for all s ¢ (qo,ro) and

Alp) C Az(qo) A AZ(rO)'

. Now nl(p,s) =2 for s ¢ (qo,ro) implies (qo,ro) is ordinary

on A= A/p., Since A is l-independent, A(p), A(qo) and A(ro)

are not collinear and M = A(p) A(qo) A(ro) is a plane, Put

L = A(p) A(qo) and L,

For if there exists &' ¢ (qo,roJ such that Al(Sl) /‘ILl # @ then

A(p) A(ro). If S¢ (qo,ro] then Al(S) n L = 2.
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A(qo) =L C Al(S ) A(po) < Al(S ) in A, a contradiction by 3,1,7
LY

since (qo,81)<: (qo,ro) is ordinary on A, Therefore Al(S)IW H is

a point for all S ¢ [qo;rO] and does not lie on L1 or La. Hence

there exists a line I such that L ﬂAl [qo,ro] = g, Put
P s) = AN L

for all s&.¢ [qo,ro]. \( is continuous since A2 is continuous and LP
is monotone by 5.,4,2. But \f (qo) = (r,) and hence \f cannot

exist,

7.2 Regular arcs

The aim of this section is to prove the following three theorems:

7:2.1 If A is a regular Barner arc and Al is continuous then

A is of order 3.

7:2.2 Every arc has an ordinary point,
722:3 If A is a Barner arc with at most inflections and A2 is

continuous, then either A 1is of order 3 or A has an elementary

singularity,

2.2 4 Lermas: Let A be a Barner arc with at most inflections, If

A, is continuous at p, then so is A

2 1°

Proof': By 7,14, &(p,B(p,p)) = Bl(p) -1 for all p e J,

Since A has at most inflections, B.(p) = 2 and hence
! 1l

Al(p) = Az(p) N Blp,p)

Therefore A.t is continuous at p,
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To make our considerations easier, we shall first show that
every arc contains a Barner arc with at most inflections on which A1

is continuous,

7.2,5 Lemmas Let A be an arc on which A1 is continuous, Let

W be the set of points of A at which A2 is continuous. Then W # @

and W is dense in A,

7.2.6  Lemma: Every arc contains a Barner arc with at most inflections
on which A1 is continuous,
Proof: We may assume there exists a plane %D not meetingh .

Let Pl’PZ’P3 be independent points, By 3,3,11, there exist subarcs

)&,}{2,)(3 such that x3c_x2c Xl and Xi has order 2 on A/Pi,
i=1,2,3, Then X3 has at most inflections since for any p ¢ Xl

there exists j with pj 4 Az(p). This follows from the fact the

{ Pi} are independent, But Pj 4 Az(p) implies
s
J -
ai(p) = ai(p)

L ¥ 8] -~ .
for i = 0,1, where A(J) = AA?j. Now X3 has order 2 on A and

hence is regular on Ad by 2,6,1. Therefore ao(p) = al(p) =1 for

any pe J,
But X, having at most inflections implies Pi§£.A1(X3);
- . ; = : “(3) =
i=1,2,3; otherwise n(Pj,p) =0 for some j and aj (p) =

. et 1
ao(p) + al(p) = 0 (mod 2), This is a contradiction since A(J) is

regular, Then

3 3
a@= N 2V = N aer

i=1 i=
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Figure VII,2
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(Figure VII,2), and thus Al is continuous on Xj.

By 7.2,3, there exists p ¢ X3 such that A2 is continuous
at p. Take a point P and U(p) such that qu_Aa(q) for all
q € U(p), By 3,3,11, there cxists X C U(p) such that X has order

2 on K= A/P and hence X is Barner by 7.1.1.

For the remainder of this chapter we assume that A is a Barner

arc with at most inflections and that A1 is continuous,

If qn is a plane and P,Q are distince points not on %D’

then ED(Lf) will denote the segment of the line PQ determined by

P,Q which does (does not) contain LNE.

7,2.7 __ Lemma: Suppose (p,q) is of order 3 and B is a plane not
meeting [p,q). Put L = A(p)A(q). Then Az(r)f\ Le L, for all
r ¢ (p,q).

Proof: Since ordinary points are regular, for every r ¢ (p,q),

Aa(r) cuts (p,q) at r, Since (pi,q) is of order 3, Aa(r) does
not meet [p,q] outside of r by S,4.1, Then A(p) and A(g) 1lie
in different open half-spaces determined by Aa(r) and qn, and the

resul.t follows,

72.2.8  Lemra: Suppose p <q <r, Let %D be a plane not meeting

(p,r]. Put L = A(p)A(q), If (q,r) is of order 3 then Aa(s) meets

L, for all sc¢ (q,r).

Proof: See 3,2.2 and Figure VIL,3,

7.,2,9 Lemmas Suppose A is a regular arc and there exist p <gq,

q ordinary such that A(p)C Aa(q). Then there exist r, s, with s

singular, such that Aa(s) cuts A at r,
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Proof: Take s as small as possible such that (s,q) is
ordinary, Then p <s <q and s is singular by z;;&;g. Hence
(s,q) is of order 3 by 7,1,13. lLet H_ be a plane which does not
meet [p,q] and put P = A(s)A(q), S = A(p)A(g), Q = A(p)A(s),
(Figure VII 4), Now for any t ¢ (s,q), A2(t> meets P by7.2.7 and
Qpby 7242.8; thus Az(t) meets § , (Figure VIL,5),

Since A(p) € A,(q) then A(p)qﬁ A,(s) by 7,11k, Moreover
(s,q) is ordinary and hence A(q)?ﬁ Az(s) by 7,1.12. But then Az(s)

meets § and in fact cuts at s, since s is regular, Since Az(s)

does not meet (sl,q), there exists r ¢ (p,s) such that Az(s) cuts

A at r,

7,2,10 Lemmat If A 1is not of order 3 then there exist p,q with

p <q such that 6(9,A2(q)) = 0,

Proof: A not of order 3 implies that there exist four
-,
distinct coplanar points Py < Py < P, < Pse Consider A = A/p.
W
A has at most inflections, therefore ao(p) =1 and A is Barner,
w
Moreover A is Barner and A(p)qﬁmAl(q), hence Al(q) = Al(q)A(p)
w WA
for all q ¢ (plps) by 7.1.6, Al(q) = Al(q)A(p) implies A, is

continuous on (p,p,),
3

— “
Since ao(p) = al(p) =1 and al(p) = az(p), p is at most

w ‘-
an inflection on A, If p# q then W(p,q) =1 and ao(q) = ag(q)-= 1,

: -
Hence A has at most inflections, Then (p,pj) contains at least one

inflection on A; otherwise (p,p3) is regular and hence of order 2
on A by 3,2.7; a contradiction since 12 < P, < p; are collinear on

.

A,



Figure VIL, 4



172

Figure VII,5
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If there is only one inflection point q of ‘; in (p,pB)
then (p,q) is regular on A and hence of order 2 by 3.2.7. Then
“ by 2,4,1, 'X(p)qi Z\l(q) that is Al(p)qEAl(q)A(p). Now q is an
inflection on X: hence Zb(q) =1, 21(q) =2, Then =n(p,q) =1
otherwise =(3pq) = 2 and therefore we have
:i(q) = al(q) = 1, a contradiction, Then A(p) C Az(q) and Al(p)ﬁi &z(q)

implies 6(p,A2(q)) = 0,

]
Suppose q; < q, are inflections of A in (p,p3) By 3.3.11,
wA
there is an ordinary point q3 of A in (ql,qz). Take qh§5 such
that

99 Sq <4z <a5 9,

wA
and (qu,qs) is the largest regular subarc of (ql,qz) in A, Then

n

(ql,q5 is of order 2on A, If A(p) ¢ A (q) for all inflections gq
“ (7Y

of A in (p,pj) A(p) € A (qh)/q A (qs), a contradiction by 3,1.9.

Hence A(p) 4 A(q) for some inflection q of A in (p’§3) and the

result follows as above,

7:2,11 Lemna: If A is regular but not of order 3, there exist
pya,r with p <q <r, q singular, such that A(p) Al(q) Alr) is a

plane which cuts A at p.

Proof: By 7,2.10, there exist 5 <gq such that 6(s,A2(q)) = 0,
Since az(s) =1, Aa(q) cuts A at s, By 7,2,9, we may assume q
is singular, By projection from Al(q), there is a r with q <r

such that Al(q) A(r) cuts A at a point p<gq,
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Proof of 7,2,1: Assume A 1is not of order 3, Take Py1dysTy

with properties of p,q,r in 2,11, Let Xl be a neighbourhood of 94

such that r, ¢ X, and that for all q ¢ X Al(q) A(rl) meets A

1’
at least in a point p ¢ Xl, p < ay. Since ay is singular, we
may repeat the argument using Xl instead of J, Proceeding with the

construction, we obtain a contradiction as in 3,2,7,

Corollary: Let A be a regular Barner arc, If A2 is
continuous at p the p is ordinary,

Proof:  Take py, p, With A(pi)7£ A(p) for i=1,2, and
Al(p) A(pl) # Al(p) A(pa). Since A, is continuous at p take Ul(p)
such that A(pi) 4; A2(q) for all q ¢ Ul(p); i=1,2, Put A(l) = A/p,.
Then Ul(p) is regular on A(l); i=1,2, By Z.2,4, A, is continuous
at p, By 7.1.6, A(pi) 95 Al(p) and thus

A{i)(p> = A (p) Ap,)

for i=1,2,
By 3.2.7, Ul(p) is of order 2 on A(l); hence p is ordinary
(i)

‘on A for i =1,2, In particular, there exists Uz(p) C Ul(p)

such that Ail) is continuous on Uz(p) for i=1,2, Take U(p)C Uz(p)

such that 2

- (1)
Al(q) = N Ay (q)
i=1
for 811 q ¢ U(p), Then A, is continuous on U(p) and by 7.2.1,
U(p) is of order 3,
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2.2.12 Lenmat Suppose AZ is continuous at each point of a non-
empty set W, Then there is a subarc X which contains a point of W

such that if p,qe X, p#q, pe W then Az(p) does not cut A at q.

The following notation will remain fixed: Py is' a point at
which A2 is continuous, (pl,pz) is a neighbourhood of Py and %n
a plane vhich does not meet [pl,pzj. Az(po)/)AA[pl,pa] = A(po) and
= A L3 -
A(pl)QEAE(p) for any p ¢ (po,pz). L A(po) (pl) a line since A

is simple, and %D(Lf) is the open segment of L with end points

A(pl), A(po) which meets (does not meet) qn'

The immediate result of the above hypothesis is that (pb,pz)

has order 2 on A/p, and Al(p)/\ L=g@g forall pe¢c (pl,pa).

2,13 Lemma: Suppose Py is an inflection, If there is a
Py € (po,pz) such that (po,pz) has order 2 on A/po, then for

each p ¢ <p0’p3) either Aa(p) meets L. or A(po)C: AZ(p)‘

Proof: Since ao(p) + al(p) + az(p) £0 (mod 2), Pis Py

lie on the same side of Az(pb). Since Aa(p) lim Al(p)A(p),

G—>p

Q#p
take p, € (po,ps) such that p),p; lie on the same side A(po)Al(ph).
Since: (po,p3) is of order 2 on A/po, Py is regular on A/po, Hence
by projection from p,, A(po)Al(p#) supports A at p,, (Figure VII,6),
Now A(pO)Al(ph) meets . (po,pB) only at p, otgerw1se (pb,pB) is not
of order 2, p, and (po, p4) lie on the same side of A(po)Al(pu).
Hence by projecting from Al(p#), there exist Pg € (pb,ph) such that

A(pS)Al(ph) cuts (pl,po); that is, A(pS)Al(p4) meets L.,
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Heo

Figure VII,6
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Since (pb,pB) has order 2 on A/'p1 and A/po, neither
A(pl) nor A(po) lie on A(p) Al(q) if p, <p<g< Pz by 2.4,1,

Thus A(p)Al(q) meets L, if p, <p <q< 2 and the result follows.

£

Proof of 7,2.2: Let W be the set of all points at which

A2 is continucus, Since we are assuming A is a Barner arc with at

most inflections on which A, is continuwous, W # @ by Z.2.5. Choose

1
X according to 7,2,12, let Py € XN W, Ve may assume X = J, Then

if pe W, Az(p) does not cut A at any point except possibly at p.

Case 1, Po is regular, Then Py 1P, lie on opposite sides
of Aa(po). Take Py € (pb,pz) such that p,,p,, lie on opposite sides
of Aa(p) for all p € (po,pj). Thus Aa(p) cuts A at p for all
p € (pO,QB). Since A has at most inflections and Al(p) does ﬁot
cut A outside of p for all pe¢ (90,33)’\ W 4y then (po,pB)(i W is
regular, Then (po,pB) is itself regular, by argument as in 3,3,11,
Hence (pb.pB) is a regular Barner arc on which A1 is continuous, the

result now follows from 7,2,1.

Case 2, is a point of inflection, This case leads to

Po
a contradiction by arguments as in 3,3,11,

Proof of 7.,2,3 Let W be the set of inflections of A,
We may assume A is not of order 3, hence W # @ by 7.2.1., Let

X=J and p, e W

Case 1, There exists Py € (pb,pz) such that (po,p3) has
order 2 on A/po. If there is a p c,(po,gB)l\‘i s then by 7.2,13
and an argument as in 3,3,12, we obtain a contradiction, Thus (pb,pB)

is regular and of order 3 by 7,2,1.
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Case 2. No U (p) has order 2 on A/po. By an argument

as in 3,3,12, one obtains a contradiction,
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