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Abstract 

The capability of encrypting top secret information remains as a major research prob­

lem in the GGH cryptosystem, which depends on various attacking methods. The early 

approaches to attacking the GGH cryptosystem mainly relied on special properties of 

the lattice generated by the vectors of the private key. Consequently, those attacks are 

not appropriate for general cases. 

This thesis presents a GGH attacking method for general cases. A lattice basis re­

duction algorithm is applied to the public key to get a better basis, which is used to 

decrypt the ciphertext. In the proposed approach, we concentrate on three lattice re­

duction algorithms: the LLL algorithm, the approximate optimally-reduced algorithm, 

and the optimally-reduced algorithm. We have implemented a package in MATLAB for 

the GGH cryptosystem and the three algorithms. We experimented with two groups of 

experiments and obtained promising results for lattices of low dimensions. 
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Chapter I 

Introduction 

For a long history, we always tend to seek a safe way to exchange messages between 

each other, and prevent the others from gaining unsolicited access to confidential in­

formation. Many mechanisms have been invented for this purpose in different time 

period. For example, people in Egypt's Old Kingdom carved non-standard hieroglyphs 

into stones to keep messages secure in B.C. 2500; the Kama Sutra spread as a technique 

by which lovers can communicate without being discovered in India in A.D. 500. 

Nowadays, cryptology has played an important role in both political and military 

applications through the 20th century. Mathematical cryptography leapt ahead (also 

secretly) after World War I, when cryptosystems were widely used between countries 

and armies. One of the most famous cryptosystem that influenced the world is the the 

Germany's Enigma[35] during the World War II, which was broken by the scientists of 

Poland, Great Britain and the United States at Britain's Bletchley Park. The World War II 

is said to be shortened by at least two years[27, 11] for the break of the Enigma Machine, 

and it led to the development of the first digital computer, whose mathematical model 

is the Turing Machine. The Turing machine model has proven to be of priceless value for 
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the development of the science of data processing, artificial intelligence, mathematics, 

and so on[47]. 

A mechanism that exchanges information secretly is called a Cryptosystem[24]. Bob, 

the sender, encrypts a message ( called the plaintext) into a secret message ( called the 

ciphertext ) by an encryption algorithm with a secret key. Alice, the recipient, receives 

the ciphertext and decrypts it to discover the plaintext by a decryption algorithm using 

a key. Before 1975, all cryptosystems are the Symmetric Cryptography, which required 

the sender and the receiver to agree on the same secret key. The Enigma Machine, for 

example, is a symmetric cryptography. 

In 1977, the RSA Public Key cryptosystem[43, 5], named after inventors Rivest, R. L., 

Shamir, A. and Adleman, L., was introduced to public, which was the first time that the 

concept of Public Key Cryptography circulated in the research community. After the RSA 

cryptosystem, many Public Key Cryptography were proposed, for example, the ElGamal 

Cryptosystem[l3], the NTRU Cryptosystem[24], the GGH Cryptosystem[l6] and so on. 

It is in this spirit that the research activity and this thesis is conducted. This thesis 

uses lattice theory to study the GGH Public Key Cryptosystem and uses lattice reduction 

algorithms to attack it. The lattice reduction algorithms[l4] are designed for producing 

nearly orthogonal bases for a given lattice, which can be applied to many applications. 

We showed in experiments that it was also a feasible method to attack the GGH cryp­

tosystem in general cases. 

I.I Thesis Outline 

The introductory chapter was devoted to give a general understanding of cryptology. 

For the public-key cryptographies, we focus on the GGH scheme in this thesis. The tool 
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we used to cryptanalyze the GGH comes from theory of integer lattices. The research 

also implies that the GGH cryptosystem is not the only one that can be attacked using 

lattices technology, RSA, for example, can also be partially decrypted in terms of lattice 

operations[22, 8, 9]. 

Chapter 2 will present the necessary definitions of lattices and bases. A definition of 

the special integer matrices named Unimodular matrix and the relations between two 

arbitrary bases for a lattice will also be shown in this chapter. In the end of chapter 2, we 

will briefly introduce the two problems related with lattice theory. 

Chapter 3 will provide introductions to the GGH cryptosystem, the Hadamard Ratio 

and the Fundamental Domain. An algorithm called the Babai's algorithm will be intro­

duced along with the GGH cryptosystem, which is widely invoked in many closest vector 

solving algorithms. In the end of this chapter, we will present our method to attack the 

GGH cryptosystem. This method will first produce a new reduced basis by lattice reduc­

tion algorithms from the Public Key, then decrypt the ciphertext with this new basis. 

In chapter 4, we will give a Basic Enumeration algorithm which finds a shortest vec­

tor in a given lattice. The algorithm uses the Gram-Schmidt Orthogonalization and the 

lattice projection technique to estimate a range that includes a shortest vector and other 

candidates. Then the shortest vector will be discovered by comparing all vectors within 

the range. 

Chapter 5 is the most important part of this thesis, which will dedicated to three 

lattice reduction algorithms. The LLL algorithm is a widely used polynomial time al­

gorithm in lattice theory. In this thesis, it will act as a pre-processor to improve the 

performance of the other two algorithms. The Approximate Optimally-Reduced algo­

rithm and the Optimally-Reduced algorithm are the two major algorithms we focus on. 
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Their complexities are exponential, but the bases they produced are much better than 

the LLL-Reduced bases, especially the bases generated by the Optimally-Reduced algo­

rithm, which is even better than the Private Key. 

Chapter 6 will give the our experimental results. We will use the algorithms intro­

duced in chapter 5 to produce reduced bases, and compare the Hadamard Ratios be­

tween the Private Key and the produced bases in the first pat of this chapter. In the 

second part of this chapter, we will count the miss ratios of decrypting the ciphertexts 

with produced bases and the Private Key. 

Finally, the chapter 7 will conclude the research done in this thesis, and the possible 

future works will be proposed as well. 

We attached the experimental results in details in the Appendix. 

1.2 Thesis Contributions 

This thesis presents an approach to attacking the GGH cryptosystem. Differ from other 

GGH attacking methods[38, 19], which depend on special properties of the certain lat­

tices, the method proposed in this thesis works in general cases. This approach takes 

advantage of lattice theory, number theory and lattice reduction algorithms[l4, 42, 48). 

The contributions of this thesis can be categorized as follows: 

1. Implemented the Approximate Optimally-Reduced algorithm and the Optimally­

Reduced algorithm; 

2. Implemented a matrix version LLL algorithm; 

3. Identified the dimension of GGH cryptosystems that can be attacked by the lattice 

reduction algorithms; 
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4. Designed and implemented an iterative procedure to solving sphere decoding prob­

lem in the Optimally-Reduced algorithm; 

As a result of this research, we implemented a GGH cryptosysytem package and a lat­

tice reduction algorithm package which includes the matrix-version LLL-Reduced func­

tion, the approximate Optimally-Reduced function and the Optimally-Reduced func­

tion. They can be imported to MATLAB R2010b and hence be freely invoked by other 

functions. 

5 



Chapter2 

Lattices 

In the recent years, constructing lattices to solve problems are more and more involved 

in many research fields other than number theory. The usage of lattices contributes 

significant progresses both in theoretical and in practical applications, such as wireless 

communication, integer programming, cryptology, and so on. A lattice is a set of discrete 

points in a vector space, which can be represented by integer linear combinations of a 

set of vectors. There are two important problems[l8] related with lattice: the Shortest 

Vector Problem (SVP) and the Closest Vector Problem (CVP). We will introduce them 

later in the second part of this chapter. 

This chapter introduces several important concepts related to lattice theory from 

the point of view of geometry of numbers. Of primary importance in this work is the 

definitions, notions and problems of a lattice that will be shown. In this chapter we state 

only the conclusions about lattices that are necessary for the rest of this thesis, and refer 

the readers to[l8, 24] for a comprehensive introduction. 
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2.1 Lattices and Bases 

Column-version representation for matrices is selected in the definitions and operations 

in this thesis. For example, a matrix BE IRmxn will be partitioned into [b1, b2 , ... , bnJ. 

Definition 2.1.1 (Lattice}. Let B::::: [b1, b2 , ... , bnl E IRmxn be a matrix of full-columned 

rank. The Lattice L generated by the columns of Bmxn is the infinite set of linear com­

binations of vectors { b1, b2 , ... , bn } with coefficients in l. (the set of all integers), in 

other words: 

The set of vectors { b1, b2 , ... , bn} is called a basis for the lattice L. 

Given a lattice Land its generator matrix B::::: [b1, b2 , ... , bnl E IRmxn, when there is 

no confusion, we simply say "L is generated by B", which we mean "L is generated by the 

columns of the generator matrix B", represented with L(B) or L(b1, b2 , ... , bn). 

We can see from the definition that a lattice L is a subset of !Rm, which is closed in 

addition operations and integer scalar multiplication operations. A basis for L is any 

set of n independent vectors that can generate L. For a given lattice L, any such two 

bases are constructed with the same number of vectors. This number is defined as the 

dimension of the lattice L, represented by n::::: dim(L). 

Figure-(2.1) illustrates a lattice L with its two generator matrices A= [a1, a2J and 

B = [b1, b2 J. All discrete points in L can be interpreted as integer linear combinations of 

the columns of matrix A or matrix B. 
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• ' • 

' 

' . 
Figure 2.1: A lattice Land its two bases 

Definition 2.1.2 (Unimodular). A nonsingular integer matrix Mis called unimodular if 

and only if the determinant of M satisfies: 

det(M) = ±1. 

Proposition 2.1.3. Any two bases for a lattice are related with an unimodular matrix. 

Proof Suppose B and B' are two arbitrary generator matrices for a given lattice L. Since 

B generates L, B also generates all columns of B'. Then there must exist an integer matrix 

M of coefficients, such that B' =BM. On the other hand, we can find another integer 

matrix M' such that B = B' M', because B' generates the lattice Las well. 

Therefore, 

B = B' x M' = (B x M) x M'. 

In addition, B and B' are all n dimensional full-column rank matrices. According to 

the Cramer's Rule, M is uniquely determined by B and B', hence M is nonsingular and 

invertible. Since B' = B x M, we know B = B' x M-1. Therefore M' = M- 1. 
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Since the matrices Mand M- 1 are integer matrices, their determinant are integers as 

well. Therefore, the only choice for det(M) and det(M- 1) is det(M) = det(M- 1) = ± 1. D 

Example 2.1.4 (Unimodular Matrix M [24)). Let L be a 3-dimensional lattice generated 

by the generator matrix 

-97 -36 -184 

A= 19 30 -64 

19 86 78 

Then L is identical with the lattice L generated by the generator matrix 

-4179163 -3184353 -5277320 

B= -1882253 -1434201 -2376852 , 

583183 -2376852 736426 

since there exists an unimodular matrix 

4327 3297 5464 

M= -15447 -11770 -19506 , 

23454 17871 29617 

such that B = A x M. We can check that the two lattices generated by the columns of A 

and B are equivalent by calculating det(M) = -1. 

This fact gives us a very nice property in lattice theory that for a given lattice L and its 

any two generator matrices A and B, there always exists an unimodular matrix M such 

that A= BM. Meanwhile, given a generator matrix B for the lattice L, a new generator 

matrix can be constructed by multiplying B with any unimodular matrix. Therefore, the 

absolute value of the determinants of all generator matrices is a constant. Consequently, 
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we define the determinant of a lattice L as this absolute value, which is 

det(L) =I det(B)/ (2.1.1) 

where B is a generator matrix for L. 

2.2 Lattice Related Problems 

Recall the two kinds of problems related with lattices we mentioned at the beginning 

of this chapter. According to the hardness problems related with cryptography, we are 

more interested in algorithms for finding a lattice vector closest to a given arbitrary tar­

get vector, when we attack the GGH[l6] or other lattice based cryptosystems. Solving 

SVP always accompanies with the algorithms of solving CVP. Therefore we will give pre­

cise definitions for those problems[24, Chapter 6]. 

1. The Shortest Vector Problem (SVP) 

Find a shortest nonzero vector in a given lattice L, i.e., search for a vector v EL that 

minimizes the Euclidean norm /lv/12. 

2. The Closest Vector Problem (CVP) 

Given a lattice L and a vector w E ~m, normally w ft. L, find a vector v E L that 

is closest to w among all points of L, i.e., find a vector v E L that minimizes the 

Euclidean norm llw-v/12. 

The complexity of solving CVP has been proved to be l\llJD-hard[ 1, 18]. Solving SVP 

is l\llJD-hard under certain situations as well[34]. Therefore, they are commonly regarded 

10 
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as the problems of same difficulty. In practical terms, solving CVP is considered to be a 

little bit harder than solving SVP under the same dimension. 

Kannan published an exact SVP solving algorithm[25] with super exponential com­

plexity niff(n) in 1983. The algorithm finds a shortest vector by enumerating all possible 

points within certain range. So far the best known algorithm for solving SVP in high 

dimensions comes from Miklos Ajtai, Ravi Kumar and D. Sivakumar[2J, which is a ran­

domized algorithm that takes the complexity P(n)2@(nJ to find a shortest vector, where 

P(n) is polynomial of degree n. Ajtai's algorithm constructs a sequence of sieves that hi­

erarchically filter points of a lattice by their Euclidean Lengths. With a high probability, 

a shortest vector is likely to be discovered. P. Q. Nguyen and T. Vidick[37J proved that 

the Ajtai's algorithm was not only theoretically fast but also practically implementable. 

For most lattice reduction algorithms, whether solving SVP or solving CVP, are all try­

ing to build (or likely try to build) a Minkowski-Reduced bases (whose definition will be 

introduced in the chapter "Lattice Reduction Algorithms"). Bettina Helfrich[23J gave a 

relatively fast algorithm that could construct Minkowski-reduced bases theoretically in 

high dimension. The algorithm runs in polynomial-time operations for a fixed dimen­

sion lattice taking advantages of the LLL algorithm[29] and the Kannan's algorithm[25J. 

There are also two minor lattice related problems : the Approximate Shortest Vector 

Problem (apprSVP) and the Approximate Closest Vector Problem (apprCVP). They are 

required to find a nonzero vector whose length is no more than a given factor 1f!(n) times 

longer than an exact shortest (closest) nonzero vector. For apprSVP, C. P. Schnorr[44] 

showed a polynomial time algorithm to obtain an approximate shortest vector with 

a factor (6k2 )n1 k by a block generation method based on the LLL algorithm, where k 
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is a fixed integer divider of n. The algorithm uses @(n2 ( v'k k+o(kl)) arithmetic opera­

tions. Nicolas Gama[l5] improves Schnorr's algorithm by factor of log2. Perhaps the 

best known algorithm for solving apprSVP is the famous LLL algorithm[29], which takes 

polynomial time to achieve an approximate shortest vector with a factor up to @(2 nz-
1 
), 

the vector it discovered is not the best one though. In practice, the run time of LLL al­

gorithm can be further decreased by a small factor using the Deep Insertion method[ 40, 

Page 150). 

12 



Chapter3 

GGH and Lattice Based Cryptography 

The recorded history of encoding and decoding a message can be up to four thousands 

years, in non-standard hieroglyphs carved into monuments from Egypt's Old Kingdom. 

In the recent days, cryptosystems play a key roles in military applications and national 

securities, especially during World War I and World War II. For example, the most famous 

Enigma Machine of German[35] is a classical cryptosystem in World War II. The widely 

used modern cryptosystems are all based on hardness of a variety of mathematical prob­

lems. For example, ElGamal[13] is based on discrete logarithm problem, and RSA[5] 

takes advantage of factorization of large numbers. Since the complexity of solving CVP 

has been proved to be Nlfll-hard[l, 18] on average cases, the GGH Cryptosystem[l6) is 

designed to be a novel encryption and decryption mechanism based on hardness of 

solving CVP. 

It always motivates us to introduce cryptosystems based on various hard mathemat­

ical problems, hence the top secrete information encoded by more than one algorithm 

remains secure even part of them is broken. Lattice based cryptosystems are born with 

many advantages[24J, for example, the encoding and decoding progresses are much 
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faster than the cryptosystems based on discrete logarithm and the large number factor­

ization. Besides, the property of matrix operations makes the GGH cryptosystem easier 

to be implemented in hardware and software of modem computers than RSA and ElGa­

mal. 

After the definitions of lattices and bases in the last chapter, this chapter will give the 

most commonly used measurement for the bases of a lattice, the Hadamard Ratio[24]. 

Then we will introduce the Fundamental Domain and the Babai's algorithm. Those are 

widely involved in lattice based cryptosystems. After that, the GGH cryptosystem will 

then be described that as the major problem of this thesis, which is a direct application 

in terms of the hardness of solving CVP. 

3.1 Basic Definitions 

GGH is not the only lattice based cryptosystem that underlies the hardness of solving 

CVP or SVP. The Ajtai-Dwork cryptosystem and the NTRU cyrptosystem introduced by 

Hoffstein, Pipher and Silverman are all based on the difficulty of solving CVP [24]. Due 

to similarities oflattice operations for those cryptosystems, we will introduce a few basis 

definitions which are necessary for constructing them. 

3.1.1 Hadamard Ratio 

Since a lattice owns more than one basis, we always tend to find a" good" one, especially 

the orthogonal ones. However, for most lattices there exists no orthogonal basis. There­

fore, a standard principle must be clarified to judge a given basis is a good one, or needs 

to be improved further. Intuitively, a good basis should help us handle the lattice related 

14 
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problems, and hence could produce high quality results during lattice operations. Of 

course the term "high quality" is ambiguous. 

The Gram-Schmidt algorithm in vector space sparks us on how to measure the qual-

ity of a given basis. The vectors in a good basis for a lattice should be as short as possible. 

Hadamard[24] introduced a quantitative formula for the lattice bases measurement. 

Definition 3.1.1 (Hadamard Ratio). Given a basis B = { b1, b2 , ... , bn } and the n di-

mensional lattice L generated by B, the Hadamard Ratio of the basis B is defined by the 

quantity: 
det(L) 

Jt'(B) = ( )lln. 
llh1112 · llh2 ll2 · · · llbn 112 

(3.1.1) 

where II· 11 2 represents the Euclidean Norm of · . 

The reciprocal of the Hadamard Ratio is also known as orthogonality defect. The 

Hermite-Hadamard lnequality[4] shows a relation between the determinant of a lattice 

L, the determinant of its arbitrary basis B, and the lengths of the vectors in B, 

det(L) =I det(B) I ~ llh1112 · llh2 ll2 · · · llbn 112. 

Therefore, the range of Hadamard Ratio can be derived from the above inequation 

that: 

0 < Jt'(B) ~ 1 (3.1.2) 

We will use the Equation-(3.1.1) as one measurement to judge the qualities of bases 

produced by lattice reduction algorithms in the thesis. The more orthogonal a basis B 

is, the closer to 1 its Hadamard Ratio Jt'(B) is. 
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3.1.2 Fundamental Domain 

By connecting the points at the tip of elements in a basis for a lattice, a parallelepiped 

area could be created, which is called Fundamental Domain[24]. 

Definition 3.1.2 (Fundamental Domain). Let L be a lattice of dimension n and let B be 

a basis for L. The fundamental domain (or equivalently the fundamental parallelepiped) 

for L corresponding to this basis B is the set 

$(B) = {Br I 0 ~ ri < 1, (1 ~ i ~ n) }. 

We define the volume of$ (B) as the volume of the corresponding parallelepiped in 

~n, which is constructed by connecting all the points of vectors in B together. It turns 

out that the volume of the fundamental domains defined above for the lattice L is an 

extremely important concept. Just like the determinant of the lattice, the volume of 

fundamental domains for a lattice is an invariant which is independent of the choice 

of bases for the lattice. 

Corollary 3.1.3. Let L c ~n be a lattice of dimension n. Then every fundamental domain 

of L has the same volume. Hence Vol($) is an invariant of the given lattice L, independent 

of the particular fundamental domain used to compute it, that is: 

Vol($) = det(L). 

The whole proof of the above Corollary can be found in (24, Chapter 6.4]. Recall the 

property of determinants of bases for a lattice L, we can arrive at the two invariants of 

the lattice theory that 

det(L) =Vol($)= I det(B)I, 
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for an arbitrary basis B and its fundamental domain$ (B). 

The Figure-(3.2) illustrates two fundamental domains. The two bases B = { b1, b2 } 

and A= { a1, a2 } form two independent fundamental domains for the 2-dimensional 

lattice. They are distinguished by different shadows. Although the two fundamental 

domains have different shapes, the areas they covered are the same. 

' 

. ' 

b .L .... ,, 

. 

' ' • 

' ' 

.· ... ·:·.:;:;:.::::···"' 
• . ~:"· t .: . .'· .· 

' 

' • 

' 

' ' 

' 

Figure 3.2: A lattice with its two fundamental domain $s 

The following proposition builds up a feasible theoretical foundation for lattice based 

cryptosystems, GGH, for example. The proof of this proposition is given in (24], which 

uses a counterexample and it is not only very long but also hard to follow. We will intro-

duce a different but much easier and simpler proof by taking advantage of Cramer's Rule 

in a vector space. 

Proposition 3.1.4. Let L c !Rn be a lattice of dimension n and$ be a fundamental do-

main for L with respected to a basis B. Then every vector w E !Rn can be written in the 

form: 

w = t + v, for a unique t E $ and a unique v E L. (3.1.3) 

17 
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Equivalently, the union of the translated fundamental domains with respected to a 

vectorv 

$+v= {t+vl tE$, vEL} (3.1.4) 

exactly covers ~n as v ranges over all vectors in the lattice L. 

Proof Since Bnxn is a generator matrix for the lattice L that gives the fundamental do-

main$ and dim(L) = n, we know that vectors b1, b2, ... ,bn of Bare linearly independent 

in ~n. Hence the columns of B span the vector space ~n. 

Moreover, by the classical Cramer's Rule in linear algebra, for any vector w E ~n, there 

exists an unique real coefficient vector x E ~n, such that w = Bx. 

Set: 

{ 

Zi = LxiJ 

ri =Xi - Zi 

for all i (1 sis n), where LxJ represents the biggest integer z, such that z s x. 

Let v = Bz and t =Br, we know that for each i, the inequation Os ri < 1 holds. Thus 

the vector Br is in the fundamental domain parallelepiped by the lattice generator ma­

trix B. Therefore, we have uniquely constructed the two vectors v EL and t E $success-

fully, such that w = t + v. 0 

3.1.3 Babai's Algorithm 

Given an n dimensional lattice Land its generator matrix B, the Proposition-(3.1.4) tells 

us that for any vector w E ~n (w <t. L), an unique decomposition w = t + v can always be 

found, such that v E L and t locates in the fundamental domain corresponding to the 

basis B. This proposition gives us an idea to solve CVP, that is, to identify the translated 
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fundamental domain-(3 .1.4) with respected to v E L, in which the target vector w locates. 

A commonly used algorithm encouraged by the Proposition-(3.1.4) is the Babai's 

algorithm[24], which is an approximation algorithm for solving the CVP. This algorithm, 

also known as the Nearest Plane Algorithm, was developed by L. Babai in 1986[3]. It in-

tegerizes every fractional coefficients to the nearest integral to identify the translated 

fundamental domain that the target vector locates. In an n dimensional lattice, the al­

gorithm will produce an approximate closest vector with a factor ratio of 2 ( ~) n to the 

exact closest vector[3]. 

Lemma 3.1.5 (Babai's Closest Vertex Algorithm). Let L c ~ n be a lattice generated by a 

basis B, and letw E ~n be an arbitrary vector. If the vectors in the basis B are sufficiently 

orthogonal to each other, then the following algorithm solves apprCVP: 

Algorithm 1: BABAI'S CLOSEST VERTEX ALGORITHM 
input : A basis B for the lattice and a vector w E ~n 

output: An approximate closest vector v E L 

i Solve w = Br with r E ~n ; 

2 for i - 1 to n do 
3 L Set Zi - lri 1 ; 

4 return the vector v = Bz ; 

The notation Lril in line 3 means Zi is set to be an integer nearest ri. 

The quality of the output vector v from BABAI'S algorithm-(1) heavily depends on 

how orthogonal the vectors of the basis B are. In general, if the vectors in the basis are 

reasonably orthogonal to each other, then the algorithm solves some versions of CVP 

very well, but if the basis vectors are highly nonorthogonal, then the vector v returned 

by the algorithm is generally far away from the exact closest lattice vector of w. 
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We will illustrate the accuracy of the vector v produced by BABAI'S CLOSEST VERTEX 

ALGORITHM-(1) (short as BABAI'S algorithm-(1)) in the Example-(3.2.1). 

3.2 The GGH Public Key Cryptosystem 

In 1996, Oded Goldreich, Shafi Goldwasser, and Shai Halevi[16] introduced a new Public­

Key cryptographic system based on the hardness of solving CVP in a high dimension lat­

tice called the GGH cryptosystem named after the authors. Comparing with traditional 

cryptosystems such as RSA, ElGamal and Diffie-Hellman, the GGH cryptosystem is sur­

prisingly simple but born with high performance taking advantage of matrix operations 

of modern computers. Besides, GGH is hard to break even in average case [24]. 

The basic idea of the GGH cryptosystem is a straightforward mathematical problem. 

Given a target point and a lattice with two different bases, namely the Private Key and 

the Public Key. The Private Key is a nearly orthogonal basis Bgood· and the Public Key 

Bbad is a bad basis that is far away from being orthogonal. According to the BABAI's 

algorithm-(1), for the target point, the good basis Bgood can find the correct closest lat­

tice point with a high possibility, but Bbad cannot solve CVP in the lattice. In such way, 

the message will be transfered successfully yet keep security. 

However, the security analysis of GGH is not well researched as other cryptosystems, 

such as RSA and ElGamal. It is fair to say that decrypting the GGH using the Babai's 

algorithm and the Public Key is as hard as solving CVP in a given lattice[24]. 
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3.2.1 GGH Cryptosystem 

To initiate a GGH cryptosystem, Alice begins with constructing a Private Key, which 

will be kept secretly throughout the whole information exchanging process. In order 

to achieving this, she selects a full-column rank integer matrix: 

The columns in V are reasonably orthogonal to one another, which can be checked 

by calculating the Hadamard Ratio of the matrix V. Alice then chooses this matrix V as 

her Private Key. 

Suppose Lis the lattice generated by the columns of the matrix V. Alice then ran­

domly generates an integer n-by-n unimodular matrix U, which satisfies det(U) = ±1. 

To construct the unimodular matrix U, Alice can randomly generate a sequence of el­

ementary matrices and multiply them together. Hence a new matrix W can be created 

by computing W =VU, and w-1 is easily to be discovered. Alice keeps computing the 

integer matrix W repeatedly until the the Hadamard Ratio of W is small enough. Then 

the integer matrix W can be chosen as the Public Key and be published to audience. 

According to the Proposition-(2.1.3), W is another generator matrix of the lattice L. 

1. ENCRYPTION PROCESS 

A plaintext m for GGH is an integer vector of the same dimension, which agrees 

the lattice L. Bob encrypts the plaintext m with the Public Key W. A small per­

turbation integer vector r called an ephemeral key will be added to the encrypted 

vector at the same time. Geometrically, the Euclidean Length of r should be less 

than a half of the shortest distance of any two adjacent points in L. By doing this, 
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the plaintext m is then encrypted to an integer ciphertext vector e which does not 

belong to the lattice L; 

i.e., 

e= Wm+r (3.2.l) 

In order to check the correctness of the plain text m that Alice decrypted, Bob can 

hash the plaintext m and send the hashed value h to Alice at the same time. Vari­

ous hash methods are available to choose, the widely used hash function MDS, for 

example. 

2. DECRYPTION PROCESS 

Decrypting the ciphertext e is straightforward. Alice uses her Private Key V to find 

the closest vector v of the ciphertext vector e by the BABAI's algorithm-(1). To 

discover the original plaintext m, Alice can simply compute it with the Public Key 

W by the formula below: 

(3.2.:2) 

Alice can check the correctness of the plain text m by comparing it with the hashed 

value h. 

3. SECURITY PROTECTION 

If a third person Eva listened the ciphertext e, the only basis available to her is the 

Public Key W, which is a hardly orthogonal basis for the lattice L. Therefore, the 

closest vector v she decodes is far away from the exact closest point v. Hence, the 

plaintext Iil decrypted by Eva is incorrect. The original information m keeps safe. 
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The Figure-(3.3) illustrates how the GGH cryptosystem protects a plaintext m. The 

Private Key V and Public Key W generate the same two dimensional lattice. A ciphertext 

point e is shown as a solid circle in the graph. The exact closest vector in the lattice L is v. 

However, what Eva can find is v by the BABAI's algorithm-(1) and the Public Key, which 

is not the correct vector. 

' t 

' 

' 

' 
v 

' 

' 

···'' 

' ' 
v' 

' 

' ' 

' 

' 

Figure 3.3: Decrypting the closest vector by two bases 

In summary, the GGH cryptosystem works with the following steps as illustrated in 

Table-(3.1) : 

To guarantee the GGH cryptosystem works, one has to choose an appropriate per­

turbation vector r. It cannot be too small such that the closest point v can be discovered 

using the Public Key without any difficulties, and it cannot be too large that it is impos­

sible to be decrypted even by the Private Key. 

Example 3.2.1(A3-dimensional GGH example). We demonstrate the GGH cryptosys­

tem with the lattice and the bases in Example-(2.1.4) of chapter 2. 

Suppose the Private Key V chosen by Alice is in Example-(2.1.4), and the Public Key 

is B. Their Hadamard Ratios are: 
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Jf'(V) ~ 0.75, Jf'(W) ~ 0.00002. 

Hence they both fulfil the orthogonality conditions that the GGH cryptosystem requires. 

If Bob wants to send Alice a vector message m = [86 - 35 - 32] T, he can randomly 

generate a perturbation vector r = [-4 - 3 - 2] T with relatively small entries comparing 

with the vectors in Public Key, and he encrypts the plaintext m with Equation-(3.2.1) to 

produce the ciphertext: 

e= [-79081427 -35617462 11035473JT. 

To decrypt the ciphertext e, Alice first computes the real solution of the linear equa­

tion system Vx = e, using the privaite key V. It is: 

Xv~ [81878.97 - 292300.00 443815.04] T. 

According to the BABAI's algorithm-(1), Alice rounds the elements of xv into the 

nearest integers, then she gets an integer coefficient vector corresponding to the pri-

vaite key V: 

zv = [81879 - 292300 443815] T. 

Therefore, the closest vector Alice discovers is: 

vv = Vzv = [-79081423 -35617459 11035471Jr. 

Then, the last step Alice does is to recover the plaintext mv by solving the integer 

linear equation system Wmv = vv, which gives her the formula: 

W -1 mv = vv. 

Finally, Alice discovers a plaintext: 
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mv=[86 -35 -32]r. 

which is identical with the original plaintext m. We can see, Alice successfully de­

crypts the plaintext m back by the Private Key V and the BABAI's algorithm-(1). 

However, the basis Eva can use to decrypt the cipertext e using the BABAI's algorithm 

is the Public Key W, the corresponding vectors of the above steps are: 

The real solution of the linear equation system Wx = e: 

XW ~ (75. 76 - 34.52 - 24.18] T. 

The rounded integer coefficient vector corresponding to the Public Key W: 

zw = (76 -35 -24]r. 

The closest vector Eva discovers is: 

vw = Wzw = [-79508353 -35809745 11095049]r. 

The plaintext that Eva decrypts finally is: 

mw = [76 -35 -24]r. 

which is far from the original plaintext m. 

3.2.2 Attacks on GGH 

The first remarkable attack to the GGH cryptosystem comes from Phong Nguyen[38] 

in 1999. The attack works by carefully choosing n linearly independent lattice points, 

then constructing a new basis to generate a sublattice of the original lattice by those n 

points. Then we attack the sub lattice to identify the potential properties of the original 

lattice. Nguyen shows that the dimension of GGH lattice should be larger than 350 to 
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guarantee the security. The attack followed was introduced by Han, Daewan and Kim, 

Myung-Hwan and Yeom, Yongjin[l9J, who constructed a Paeng-Jung-Ha cryptosystem, 

and use lattice reduction algorithms to attack GGH using this scheme. It shows that the 

signature encrypted with the GGH cryptosystem is insecure in certain special situations. 

When the special stiuation occurs, the GGH signature is insecure even the dimension of 

the GGH is as large as I 000. 

Since the GGH cryptosystem relies on the orthogonality of the bases for a lattice, i.e., 

the Private Key V must be much more orthogonal than the Public Key W. Therefore, Al­

ice can always find the correct closest vector of the ciphertext e simply taking advantages 

of the good basis V, but Eva cannot. So an intuitive idea would be "Can Eva discover a 

more orthogonal basis from the Public Key ? ". It turns out that the Lattice Reduction 

algorithms can produce nearly orthogonal bases based on the Public Key. Hence run­

ning Lattice Reduction algorithms on the Public Key will give us good bases that can be 

regarded as quasi private keys to attack the GGH cryptosystem. 

The three Lattice Reduction algorithms, the LLL algorithm, the approximate Optimal 

Reduction algorithm and the Optimal Reduction algorithm, will be introduced in the 

chapter 5. The experimental data of the GGH attacking from those three algorithms will 

be shown in the chapter 6. 
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Allee Bob 

Key Creation 
1 Choose a nearly orthogonal basis V as 

the Private Key; 
Choose an unimodular matrix U; 

Compute a bad basis W = VU; 

Publish W as the Public Key. 

Encryption 

Choose an integer plaintext vector m; 

Choose an ephemeral key r; 

Use Alice's Public Key to encrypt: 

e= Wm+r. 

Hash the plaintext m to get h; 

Send the ciphertext e and h to Alice. 

Decryption 

Use the Private Key V and the BABAI's 
algorithm-(!) to decrypt the closest vec-
torvE L of e; 
Compute w-1v to discover m; 

Check the correctness by comparing 
hash value of m with h. 

Table 3.1: The GGH Cryptosystem 
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Chapter4 

Enumeration Algorithms for Solving 

SVP 

Although the GGH and other lattice related cryptosystems are mainly based on the hard­

ness of solving CVP, solving SVP is unavoidable during the research activities. In fact, 

finding a shortest vector in a lattice is a fundamental and basic process in lattice re­

duction algorithms. Because it is always possible to transform another lattice related 

problems to an SVP solving problem by applying corresponding strategies. In Chapter 

5, we will show how heavily the lattice reduction algorithms rely on the shortest vector 

discovered. Various qualities of bases can be produced by the same lattice reduction 

algorithm, if we plug different SVP solving methods into it. Just like the qualities of 

produced bases are greatly influenced by SVP solving algorithms, the performance of 

lattice reduction algorithms are dominanted by the performance of those SVP solving 

algorithms as well. 

Not surprising, many approaches have been proposed to solve SVP and apprSVP. 

For example, the LLL algorithm[29] and Schnoor's algorithm[44J are good choices for 
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discovering an approximate shortest vector in polynomial time. Likewise, the Kannan's 

algorithm[25, 26] andAjtai's algorithm[2] are more expensive, yet give us an exact short­

est vector for a given lattice. 

This chapter focuses on exact SVP solving algorithms, among which the main algo­

rithm we will describe is the Basis Enumeration algorithm. In the first half part of this 

chapter, we will introduce the Gram-Schmidt Orthogonalization algorithm. Although 

the Gram-Schmidt Orthogonalization is a widely used algorithm in vector space opera­

tions, it is still a valuable tool on estimations of the searching ranges in which all candi­

dates located for the basic enumeration algorithm. This algorithm will be shown in the 

second half part of this chapter. In the end of this chapter, we will give a brief introduc­

tion to other SVP solving algorithms, the Kannan's algorithm and the Ajtai's algorithm, 

for example. 

4.1 Gram-Schmidt Orthogonalization 

Usually there are more than one basis for a given lattice L, and the bases are all related 

with each other by an unimodular matrix according to the Proposition-(2.1.3). We are 

more interested in a special group of bases named orthogonal bases, which may not exist 

in the most of the cases though. It has been shown in chapter 3 that for a given lattice, 

the Private Key is much better than the public when they are both acting as bases of the 

lattice where the GGH cryptosystem constructs. In this thesis, the Hadamard Ratio is 

introduced as the measurement tool to identify the qualities of the keys. 

Given a lattice L and its basis B = { h1, b2 , ... , bn } , B is called an orthogonal basis if 

every pair of vectors in basis B satisfies: 
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where "< ·, ·)" is the inner product of two vectors. Additionally, B is called an orthonor­

mal basis, if llbi 112 = 1 ( 1 ~ i ~ n), where !!bi 112 = VbI,i + bf,2 + · · · + bf,n· In general, a 

lattice has no orthogonal basis. 

Remark 4.1.1 (Gram-Schmidt Orthogonalization). Let B = [bi.b2 , .•• ,bnl E ~mxn be a 

full-column matrix whose columns span a vector space V c ~m. Then the following al-

gorithm creates an orthogonal matrix B* = [ b~, b;, ... , b~] from the given matrix B: 

i-1 

b; =bi- I µi,jbj. 
j=l 

Algorithm 2: GRAM-SCHMIDT ORTHOGONALIZATION 

input : A full-column rank matrix B 

output: A Modified orthogonal matrix B* 

(4.1.1) 

II special treatment for the first vector 
2 for i ........ 2 to n do 
3 for j ........ 1 to i - 1 do 

l (b;.b~) 
4 Compute µij = lib* / 2 ; 

J 2 

S t b * b ~i-1 b* . s e i=i-'--j==lµijj• 

6 returnB*; 

LetB* bethematrixconstructedin GRAM-SCHMIDT ORTHOGONALIZATION algorithm-

(2) from the given matrix B, it has been proved[46] that the vector space spanned by the 

columns of B* is identical with the vector space V that the columns of B spanned. This 
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remark tells us that the Gram-Schmidt Orthogonalization can be freely invoked in ma­

trix transformation algorithms of vector spaces. 

On the contrary, the Gram-Schmidt Orthogonalization (shortened as GSO in the rest 

of the thesis) cannot be used directly in lattice bases transformations in general. It de­

stroys the integral-coefficient property preserved according to the definition of lattice. 

However, the main idea of Gram-Schmidt Orthogonalization acts as a key procedure in 

some special lattice bases operations, lattice Projection, for example. 

4.2 Lattice Projection 

We have introduced the GRAM-SCHMIDT ORTHOGONALIZATION algorithm-(2) in the pre­

vious section. However, the geometric meaning of GSO has not been mentioned yet. 

The progress of GSO turns out to be an important technique for estimating the length 

of vectors in SVP solving algorithms named Projection. It is necessary to give an intro­

duction to the details of the Projection[23, 36, 12] . 

LetBmxn = [b1, h2, ... , bn l beafull-columnrankmatrix, andB* = [b~, b;, ... , b~] 

be the orthogonal matrix which is constructed using GRAM-SCHMIDT ORTHOGONAL­

IZATION algorithm-(2) from the given matrix B. Denote Span(B), (or equivalently 

Span(b1, b2 , ... , bn)), the Vector Space spanned by the columns of the matrixB, 

that is: 

Span(B) = Span(b1, h2, ... , bn) = {Br I rE ~n }. 

We can see that Span(B) is a subset of ~m. Also, it is easy to prove that , 
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Suppose L is an n dimensional lattice generated by the columns of matrix B, Then 

the lattice Lis included in the vector space spanned by the columns of B, that is L(B) c: 

Spa.n(B). 

Definition 4.2.1 (Orthogonal Complement). Let Bmxn be a full-column rank matrices, 

and Wmxp (p $ n) be a submatrix of B. The orthogonal complement of Span(W) (in the 

vector space Span(B)) represented by Span1- (W) is: 

Span1-(W) = { vE Span(B) I (v, w) = 0, for all WE Span(W) }. 

Assume that Wpxn = [w1, w2 , .•• , wpJ, we define Span1-(W) = Span1-(w1, wz, ... , Wp). It 

has been proved[24, Chapter 6] that anyvectorv E Span(B) can be uniquely decomposed 

as: 

v=v+w (4.2.1) 

for an unique vector v E Span(W) , and an unique vector w E Span1- (W). 

Assume W* = [ w~,w;, ... ,w~ J is the orthogonal matrix constructed using GRAM­

SCHMIDT ORTHOGONALIZATION algorithm-(2) from the matrix w. Then the vector v in 

Equation-(4.2.1) can be computed by, 

(4.2.2) 

h (v, w~) " . 
w ere µi = Hw;il~, ior 1 $ l $ p. 

Definition4.2.2 (Projection). Let Bmxn be a full-column rank matrix, and let Wmxp (p $ 

n) be a submatrixof B. For a vectorvE Span(B), thevectorvin Equation-(4.2.1) is called 

the Projection of vector v on the orthogonal complement of Span(W). 
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Given a lattice L and its generator matrix B = [b1, b2 , ... , bnl. Let v be an arbitrary 

vector in !Rn, we denote v(k), (for all 1 ~ k ~ n), the projection of the given vector v on 

Span1-(b1, b2 , ... , bk-il· Accordingly, Lk(b1, hz, ... , bn) represents the projection oflat-

tice L(b1, b2, ... , bn) on the vector space Span1-(bi. b2 , ... , bk_1). When there is no confu-

sion, we use a simple symbol Lk for Lk(b1, hz, ... , bn). For the special case k = l, it is not 

hard to see that v(l) = v and L1 = L. 

The Figure-(4.4) illustrates the projections of a given lattice Land its generator ma-

trix B = [b1, hz, ... , hnl· 

hk+l (1) 

hk+l (2) 

bk(k) bk+l (k) 

hk+1Ck+l) 
bn(k) 

bn(k+l) 

Figure 4.4: Projections of a lattice L with a basis B 

It has been proved[23] that the set of projected vectors { bk(k), bk+1(k), ... , bn(k)} 

forms a basis for the projected lattice Lk of dimension n - k + 1, for all k (1 :5 k :5 n). 

Recall the process of GRAM-SCHMIDT ORTHOGONALIZATION algorithm-(2), we can see 

thatthe operation of Projecting Lon Span1- (b1, b2 , ... , bk_ i) is actually applying the GSO 

algorithm to the columns of Bon the columns { b1,b2 , •.• ,bk-l }. Thus the projected 

basis for the projected lattice Lk are obtained with the following equations: 

i-1 

bk(i) =bk- L. µkjbj(j), 
j=l 
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h 
(bk>bj(j)) 

w ere µkj = < b
1

CjJ, bjCjl >. 

We show in Figure-(4.5) the process of projection in a 2-dimensional lattice Land its 

generator matrix B = [b1, b2J. The vector b2 (1) is created by projecting the vector b2 on 

the orthogonal complement of Span(bi). 

However, b2 is not the only vector that can produce the projected vector b2 (1). For 

example, if we project another vector u2 on the orthogonal complement of Span(b1), 

the projected vector is also b2 (1). The fact that a projected vector can be produced by 

many vectors before the projection process, can help us to formulate the estimation of 

searching ranges for the basic enumeration algorithm. 

Figure 4.5: Projecting the vector b2 and u2 in lattice L 

4.3 Basic Enumeration Algorithm 

To find a shortest vector in a given lattice L, an intuitive and natural idea is to enumerate 

all possible candidates, then compare them to discover the one with the shortest length. 

This exhaustive searching method is the basic idea among all exact SVP solving algo­

rithms, such as Kannan's algorithm[25, 26], Ajtai's algorithm[2]. A common approach 
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for SVP solving algorithms is to embed an enumeration searching procedure in low di-

mension operations, and reduce the lengths of the vectors in bases in high dimension 

operations simultaneously. There are a few accelerating algorithms can be attached to 

decease the size of exhaustive candidates set. For example, the LLL algorithm can re­

duce the set to 2@Cn
2
l candidates[45] to speed up the searching procedure. 

Given a lattice L, its generatormatrixB and the orthogonalmatrixB* =[bi ,b~ , ... ,b~] 

from the GSO algorithm-(2). Assume v = Bz is a shortest vector in L, where z is a coeffi-

cients vector in zn. Then, 

n 
v = [zibi 

i=l 
n i-1 

= [zi(b; + [µi,jbj) (bytheEquation-(4.1.1)) 
i=l j=l 

n n 

= L (Zj + L µi,jZj)bj 
j=l i=j+I 

(4.3.1) 

Combining the two Equations (4.2.3) and (4.3.1), we can derive a sequence of pro­

jections of the shortest vector v on the orthogonal complement of the hyperspheres 

Span..L(b1, b2, ... , bk_i): 

and the norms of projections by 

n n 
llv(k)ll2=[lzj+ [ µi,jZil·llhjll2, (l'.Sk'.Sn). 

j=k i=j+l 
(4.3.2) 

According to Pythagorean theorem[28, Chapter ll], the Formula-(4.3.2) gives us the 

relation between the vector v and its n projections in term of their lengths, that 

llv(k) 112 '.5 llvllz, (1 '.5 k '.5 n). 
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We can see the above n inequations also show that all the n projections agree to the 

same upper bound. This upper bound is the length of the shortest vector. Therefore, 

by searching all projected vectors within this upper bound, finding a shortest vector is 

possible. 

To start an enumeration search in the lattice, we have to give a guess P for the up-

per bound as the estimation of the length of a shortest vector. For example, we can let 

P == llb11J 2 , or P = ffnVol(L) 11 n[33], where Yn is the Hermite Constant, which can be es­

timated by the inequation y n ~ 1 + ~. We will choose this y n to estimate the length of a 

shortest vector in our algorithms. 

Taking advantage of the guessed upper bound P of the target vector v, we can find 

the target vector v by enumerating all possible coefficients z in the equation v = Bz,. 

Considering the projected components, we can rewrite (in a few steps of computation 

though) the Formula-(4.3.2) ton inequations, which are useful to estimate the distribu-

tion ranges of the coefficients z: 

(Zn)
2 

· IJb~JJ~ ~ P 2 

(Zn-1 + µn,n-1Zn)
2 

• llb~-1 II~~ P2 
- (Zn)

2 
· llb~ll~ 

n n n 

(Zk+ L µi,jZi) 2 ·1lhZll~~P2 - L (Zj+ L µi,jZd2 ·11bjll~ 
i=k+l j=k+l i=j+l 

n n n 

(z1 + L µi,jZi)
2 ·lib~ II~~ P2 

- L (Zj + L µi,jZd
2 

· llbj II~ 
i=2 j=2 i=j+l 

Let variable k be the cursor point to the index of the coefficient we are searching 

currently. We start the exhaustive search from estimating the last coefficient Zn (k = n) 
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to the first one z1 (k = 1). When k equals n, the possible range where the coefficient Zn 

locates can be determined by lznl :::; 11~ 11 • Iteratively calculating coefficients Zi Ck< i:::; 

n) according to the above n inequations until i = k, we can get the interval Ik for the 

coefficient Zb such that Zk E: h· Hence the ranges of coefficients Zb Zk+ l • ... , Zn are 

discovered. When the index k reaches l, the enumerating search of coefficients z will 

give us a shortest vector v. 

The algorithm ENUMERATE-(3) mimics the n inequations to find a shortest vector. 

Algorithm 3: ENUMERATE 

Input : A full-column rank matrix B, an estimation P 

Output: An integer vector Zmin such that B · Zmin forms a shortest vector 

l Set B * - GSO (B) ; 

2 Set Zmin = (0,0, ... ,0), z = (0,0, ... ,0), l = (0,0, ... ,0); 

3 i- n; 

4 while i :::; n do 

s Set li = (z; + Lj>i Zjµj,;)
2 11b; II~; 

s if(f..J=ilj:s;P)then 

1 if i > 1 then 

8 i=i-1; 

9 Zi =Floor(- L.}=i+I Zjµj,i -

10 

ll 

12 

13 

14 

15 

else 

else 
l 

P = f..}= 1 lj; 

Zmin=Z; 

Zi = Zi + 1; 

L Zi = Zi + 1; 

16 return Zmin 

The running time of the algorithm ENUMERATE-(3) can be significantly decreased if 

37 



M.Sc. Thesis - Zhaofei Tian McMaster - Computing and Software 

we have a good guess P for the upper bound of the length of a shortest vector, which sub­

stitutes as an input parameter in the algorithm. The implementation of ENUMERATE-(3) 

uses a depth first search strategy[lO, 20]. The vectors z in line 2 represents the integer 

coefficients to be enumerated, and the vector I represents the length of the enumerated 

point of the coefficients z. As soon as the length of the vector that z represents is shorter 

than P, Pis decreased to current length in order to reduce the searching ranges calcu­

lated. in line 11. The line 12 updates Zmin under which the shorter length is enumerated. 

VVhen the algorithm ENUMERATE-(3) terminates, the integer vector Zmin is returned, 

such that B · Zmin forms a shortest vector. 

4.4 Other Algorithms for Solving SVP 

Kannan's deterministic method[25, 26] is another enumeration algorithm, which enu­

merates the set of candidate points in a super-exponential complexity @(n9n). After 

taking advantage of a quasi-HKZ-reduced basis, a stronger reduced basis than the LLL­

Reduced basis[45J, the Kannan's enumeration set can be significantly narrowed, such 

that the complexity of finding a shortest vector is reduced to @(nn+o(nl). If we embed 

the LLL reduction algorithm into Kannan's algorithm to transform the given basis into a 

quasi-HKZ-reduced basis, the complexity can be further reduced to P(n)2@Cnlognl with 

a polynomial P(n) of fixed n. Helfrich[23] improved the complexity of Kannan's algo­

rithm to an upper bound of n°-5n+o(nJ in 1985. Guillaume Hanrot and Damien Stehle[20] 

re-analyzed Kannan's algorithm and improved the above upper bound to n~+o(nJ ~ 

n°· 184n+o(n) in worst case. 

The main idea of the Kannan's algorithm is to construct a quasi-HKZ-reduced ba­

sis. After producing this basis, the first vector b1 of the constructed basis is a shortest 
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vector of the given lattice at the end of the algorithm. In order to build the quasi-HKZ­

reduced basis, Kannan projected the given basis B to the first vector to achieve an n - 1 

dimensional projected lattice and its corresponding projected basis. By projecting the 

projected basis ( which is one dimension less than B ) recursively until the dimension is 

1, the shortest projected vector can be easily found. Then Kannan lifts[l2] the projected 

basis recursively back to dimension n. The shortest vector found is lifted back to the 

original lattice at the same time. 

Ajtai's algorithm[2] is a randomized algorithm with exponential complexity 2'17 (n) 

times a fixed polynomial. The algorithm gives us a totally different strategy in finding 

a shortest vector under a overwhelming probability. The Ajtai's algorithm introduces 

a "sieving" method instead of reducing bases and enumerating potential points. P. Q. 

Nguyen and T. Vidick[37] shows that the Ajtai's algorithm is not only theoretically cur­

rent but also implementable in practice. However, one of its drawback is that the algo­

rithm needs exponential space during the sieving operations. 
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Chapters 

Lattice Reduction Algorithms 

We have seen in the chapter "Attacks on GGH" that one way of attacking the GGH cryp­

tosystem, is to produce a basis better than the Public Key. Hence the closest vector dis­

covered by this better basis is likely closer to the exact closest vector, comparing with the 

one found using the Public Key. Therefore, the decrypted plaintext message will have 

more same elements with the exact plaintext. Many algorithms have been proposed on 

the purpose of transforming a bad lattice basis to reasonably good ones. Those algo­

rithms are called lattice reduction algorithms. 

The Hadamard Ratio has been introduced to measure the quality of a given lattice 

basis in the chapter "GGH and Lattice Based Cryptography". When we try to generate 

a new basis using lattice reduction algorithms, the quality of the new produced basis is 

mainly determined by two issues. Firstly, it depends on what lattice reduction algorithm 

it used. Secondly, this quality also highly relies on the approach of finding a shortest vec­

tor within the lattice reduction algorithm. Therefore, when we plug different SVP solv­

ing algorithms to a lattice reduction algorithm, we can achieve various reduced bases 

of different qualities. For example, LLL algorithm[29] and Schnoor's algorithm[44] are 
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good choices for creating an approximate orthogonal basis in polynomial time. Kan­

nan's algorithm[25] and Ajtai's algorithm[2] are more expensive, yet can be used to con­

struct highly qualitative and nearly orthogonal bases. 

In the beginning of this chapter, We will give a definition of the necessary condition 

named "Size Reduced" for all lattice reduction algorithms. After that, three lattice re­

duction algorithms will be introduced as the main algorithms of this thesis. The LLL 

algorithm is a polynomial time algorithm which is commonly used as an accelerator of 

other lattice reduction algorithms. Then we will introduce an approximate Optimally­

Reduced algorithm. Its complexity is exponential, yet creates a much better basis for the 

given lattice. The last algorithm is an exact Optimally-Reduced lattice algorithm, which 

is the most expensive algorithm among the three methods, but generates the best basis 

for the lattice. 

5.1 Size Reduced Bases 

Given a lattice L and its generator matrix A, we know the column vectors in A are linearly 

independent. If applying the GRAM-SCHMIDT ORTHOGONALIZATION algorithm-(2) on 

A, we can form a QR-Decomposition[l 7, 14] of the matrix A. Then a new generator ma­

trix B can be constructed further by: 

B=AZ 

=Q*U=QDU 

=QR 
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where the unimodular matrix Z acts as a matrix operator that transforms the matrix A to 

the matrix B. The two matrices Q* = [q~, q;, ... , q~] and U = [µi,jlnxn are respectively 

the orthogonal matrix and the upper triangular matrix produced right after the GRAM­

SCHMIDT ORTHOGONALIZATION algorithm-(2). We compute the Orthonormal matrix 

Q = [ q 1, q2, ... , Qnl with column vectors Qi from the matrix Q*, such that Qi = q; I II q; llz, 

which gives us llqi 112 = 1. LetDbeadiagonalmatrixthatD = diag(llq~ 112, llq; 112, ... , liq~ llz). 

After this, we set R = DU= [ri,jlnxn to an upper triangular matrix, such that ri,j = 

µi,j x liq; 11 2. Hence, a QR-Decomposition is finished. 

Definition 5.1.1 (Size-Reduced). A lattice generator matrix B = [b1, bz, ... , hnl is called 

Size-Reduced, if the output matrices u or R of the GRAM-SCHMIDT ORTHOGONALIZA-· 

TION algorithm-(2) of Bin (5.1.1) satisfy: 

lµi):::;! or lri):::;!lrul. (l:::;i<j:::;n). 

Size-Reduced is a necessary condition for lattice reduction algorithms. The geomet-· 

ric meaning of it is quite clear. It shows that the Euclidean Lengths of vectors in the 

matrix Bare the shortest ones when runs the GSO algorithm-(2). Therefore the bases 

cannot be further reduced by Gaussian Elimination Method[24, Chapter 6] under cur-­

rent situations. 

To find a best reduced basis, one may use the Minkowski Minima[32, 14] as a rule for 

determining the quality of bases produced by lattice reduction algorithms. Measuring 

their lengths by the Euclidean Norm, we say that Ak ( 1 :::; k:::; n) is the kth successive 

minimum with respect to the given lattice L, if Ak is the lower bound of the following 

sphere of the radius ..tk: 

sk = { v I v EL and llvll2 :::; Ak}, 

42 



M.Sc. Thesis - Zhaofei Tian McMaster - Computing and Software 

which contains k linearly independent lattice points. 

It is not hard to see that the Minkowski Minimas are actually the set of minimal Eu­

clidean Lengths with respect to any n linearly independent vectors of the lattice L. N atu­

rally, one may think we can combine a set of n vectors corresponding to the n Minkowski 

Minimas as the best basis for the lattice L. 

Definition 5.1.2 (Minkowski-Reduced). Given a lattice Land its generator matrix B = 

[b1, b2 , ..• , bnl. Bis called Minkowski-Reduced, if 

llbdl2 = Aj, (1::; i::; n). 

For a lattice L of dimension n, it is not true that any n independent vectors can form 

a basis for the lattice. Thus the Minkowski-Reduced basis does not always exist. In the 

nineteenth century, Korkine and Zolotarev[40, Chapter 2) first discovered that a lattice 

may not have a Minkowski-Reduced bases. 

Example 5.1.3 (A counterexample of Minkowski Reduced basis[l4]). Suppose Lis a 5-

dimensional lattice generated by columns of the following matrix B: 

We construct a vector 

2 0 0 0 1 

0 2 0 0 1 

B= O 0 2 0 1 

0 0 0 2 1 

0 0 0 0 1 

V = [0 0 0 0 2]T 

= -b1 - b2 - b3 - b4 + 2b5 
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such that v EL and l!vll2 = 2. 

Thus, the five Minkowski Minimas are all equal 2. Their Euclidean Norms all equal 2. 

However, the columns of matrix B' = [b1, hz, b3, b4, v] cannot generate the given lattice 

L, because the vector b5 E L cannot be represented by any linear combinations of the 

columns of B'. 

Since the Minkowski-Reduced bases may not exist. We will introduce and define a 

new Optimal-Reduced basis and an algorithm for constructing it in the Chapter "Opti­

mal Reduced Algorithm". 

5.2 LLL Reduction Algorithm 

The LLL algorithm[29] is one of the most important milestones on research oflattice re·· 

duction methods, although it was first proposed in order to factorize polynomials. The·· 

oretically, it runs in polynomial time @(n4 logP) (where n is the dimension of a given 

lattice L and P is the maximal Euclidean Length of vectors in the given basis). It pro­

duces a reduced basis, whose shortest vector can be regarded as a solution of apprSVP 

with a factor of 2ln-l)/Z to the length of a exact shortest vector. Though the above fac­

tor is exponential in theory, it performs surprisingly well in practice. Because of the 

high performance of the LLL algorithm in practice, it has become a fundamental tool in 

lattice reduction algorithms. Many SVP and CVP solving algorithms embed it as a pre­

computing procedure, for example, Kannan's SVP algorithm[25, 26], Schnorr's apprSVP 

algorithm[44], Ajtai's SVP algorithm[2], etc. 

Definition 5.2.1 (LLL-Reduced). Given a lattice L, a parameter w E (0.25, 1.0) and its 

generator matrix B, Bis called LLL-Reduced if the upper triangular matrix R from the 
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QR-Decomposition-(5.1.1) of B satisfies the following two conditions: 

1 
lri,jl ~ 21ri.il, (1 ~ i < j $ n) (Size - Reduced Condition) (5.2.la) 

2 2 2 
ri,i + ri-1,i::::::: wri-l,i-1• (Lovasz Condition) (5.2.lb) 

The Lovasz Condition-(5.2.lb) above implies that the vectors in an LLL-Reduced 

generator matrix B are roughly sorted under a weak condition. Think about the two 

vectors in every 2 x 2 sub-matrix along the diagonal of the matrix R, the second vector 

cannot be too much shorter than the previous one. Recall the concepts of projection 

in the Chapter "Lattice Projection", we know that the condition (5.2.lb) also demon-

strates the relation of projections between bi and hi-l on the orthogonal complement 

of hypersphere Span(b1, bz, ... , bi_z). 

Theoretically, the most commonly used value of the parameter w is~· [14, 29] show 

that columns in LLL-Reduced generator matrices are approximations of Minkowski Min-

imas with a factor of 2n, i.e., for an n dimensional LLL-Reduced generator matrix B* = 

[bi, b~, ... , b~J and Minkowski Minimas of the lattice L generated by the columns of 

matrix B *, we have 

Especially, b~ is an approximate solution of SVP for the lattice L, such that 

lib~ II~$ 2n- 1 11vshortestll~. 

where Vshortest is a shortest vector of the lattice L. 

We can see in the definition of the LLL-Reduced basis that w cannot be 1. When w 

equals 1, the algorithm of constructing an LLL-Reduced basis does not always guaran­

tee convergence. This extreme case that w equals 1 is called Optimal LLL-Reduced. If 
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it converges, the Optimal LLL-Reduced bases satisfy a very nice property that lib; 11 2 ~ 

~II b; + 1 11 2 , (1 ~ i ~ n - 1). Within a few steps, we can arrive at an approximation of a 

shortest vector with the Optimal-LLL reduced factor that llh1 II ~ (~)n- 1 llA-1 II. Unfortu­

nately, there is no algorithm known so far which can provably produce an optimal-LLL 

reduced basis efficiently (polynomial time in the lattice's dimension n). As a result, we 

commonly set w to a number that is close to 1 instead of ~ in practice. We will intro­

duce a slightly modified version of LLL algorithm[31, 39] for the convenience of matrix 

operations in this thesis. 

Before introducing the LLL algorithm, we first give two procedures that will be in­

voked in the algorithm. They are procedure DECREASE() and procedure SWAP RESTORE O. 

The two procedures will be presented in this chapter are the matrix-based version of 

Franklin T. Luk and Sanzheng Qiao [30]. 

Given an integer matrix A of full-column rank whose columns generate a lattice L, 

the GRAM-SCHMIDT ORTHOGONALIZATION algorithm-(2) forms another lattice genera­

tor matrix B =AZ= QR. The procedure DECREASE() checks the Size-Reduced condi­

tion (5.2.la) required for lattice reduced bases with two input parameters (i, j) and then 

reduce the corresponding basis vectors that conflict with the condition (5.2.la); i.e., ilf 

we got lri,jl > ~lrul in some steps of process, the procedure DECREASE() updates Rand 

Z to make sure lri,jl ~ ilrul. and hence the modified vectors satisfy the Size-Reduced 

condition (5.2.la). The notation In in DECREASE() represents the identity matrix of di­

mension n, and ei denotes the ith unit vector. 

Line 3 of the procedure DECREASE() constructs an n x n matrix Zi,j, we can easily 

check det(Zi,j) = 1. Thus Zi,j is an unimodular matrix that guarantees it does not change 
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Procedure Decrease(i, j) 
Input : R,Z of the GRAM-SCHMIDT ORTHOGONALIZATION algorithm-(2) for 

the lattice basis B 

Output: Modified R, Z that fulfilled the Size-Reduced condition-(5.2.la) 

1 if Ir· ·I> ljr· ·I then l,j 2 l,l 

2 Set y - an integer nearest to (ri,j I ru) ; 

a FormMatrix Zij = In -yeieJ ; 

4 SetR-RZij; 

s SetZ-ZZij; 

6 return modified R, Z 

the lattice L. Line 4 and 5 modify the matrices R and Z to satisfy the Size-Reduced con-

dition (5.2.la). 

To construct an LLL-Reduced basis, another condition (5.2.lb) should be satisfied at 

the same time. The procedure SWAP RESTORE() deals with every two adjacent vectors of 

a generator matrix to check the Lovasz Condition (5.2.lb). It swaps the two columns of 

the matrix which are invalid to the condition (5.2.lb) such that the Lovasz Condition is 

fulfilled, then it restores the modified matrix R back to the upper triangular form. 

Procedure SwapRestore(i) 
Input : R, Zand Q 
Output: Modified R, Zand Q that fulfilled the Lovasz Condition (5.2.lb) 

·r 2 2 2 th 1 1 ri.i + ri-1.i < wri-l,i-l en 
2 Compute a plane reflection 2 x 2 matrix h; 
a FormMatrix Qi= diagUi-2• ]j, In-d; 

4 FormMatrix Ili = diag[Ii-2• P, ln-il ; 

5 Set R - QiRni ; 

6 Set z - zni; 
1 Set Q - QQi ; 

s return modified R, Zand Q 
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In line 2 of the procedure SWAP RESTORE(), we construct a plane reflection matrix h 

of the form 

[

c s 
Ii= 

s -c 

The purpose of his to let hRi-1,ip be a 2 x 2 upper triangular matrix, where Ri-1.i 

is the 2 x 2 sub-matrix of R along its diagonal with the index (i -1, i), and the matrix P 

satisfies, 

Hence, Pis a permutation matrix, which swaps the two columns Cbi-1• bi) of the gen-

erator matrix B. Line 4 builds then dimensional permutation matrix rri which swaps 

bi-I and bi. Therefore, at line 5 and 6, the permutation matrix works. The matrix Qi 

constructed in line 3 will restore the swapped matrices R back to an upper triangular 

matrix. Then the Lovasz Condition (5.2.lb) for the two elements (ri-l• ri) is satisfied in 

the modified matrix R. For more details on how to construct h and the rest of the pro­

cedure, see [31, Page 447-448] or [30]. 

Theorem 5.2.2 (MATRIX LLL ALGORITHM). Given a lattice L c ~n, a parameter OJ, ( 

0.25 <OJ < 1 ), and one of its generator matrix B = [b1, b2, ... , bn] E ~nxn. Let R 

and Q be the upper triangular matrix and the orthogonal matrix constructed in QR­

Decomposition-(5.1. I). The following algorithm computes an integer unimodular matrix 

Z, and overwrites the matrices Q and R, such that BZ forms an LLL-Reduced generator 

matrix. 
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Algorithm 4: MATRIX LLL REDUCTION ALGORITHM 

Input : R,Q 

Output: Modified R, Q and an Unimodular Matirx Z 

l Set Z - I and Q - I ; 

2 k-2; 

3 while k ~ n do 

4 iflrk-1,kl > ~lrk-I,k-11 then 
5 L DECREASE(k-1, k); 

6 

7 

8 

9 

10 

11 

12 

13 

·r z z z th 1 rk,k + rk-I,k < wrk-Lk-1 en 
SWAPRESTORE(k) ; 

k - Max (k- 1, 2) ; 

else 
for i - (k - 2) downto 1 do 

l if lri, kl> ~lri, ii then 
L DECREASE(i, k); 

k-k+I; 

14 return the Unimodular Matrix Z 
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Proof. For any w such that 0.25 < w < 1, the MATRIX LLL REDUCTION algorithm-(4) 

guarantees terminates. Every "SWAP" action decreases the Euclidean Length of the cor­

responding basis vectors with a factor at least ..,/W, which makes the algorithm goes to­

ward to termination eventually. The procedure SWAPRESTORE(k) in while loop will be 

called in polynomial time if the generator matrix B is an integer matrix, see [29] for the 

~~cl D 

The LLL REDUCTION algorithm-(4) first sets a variable k as a cursor. The algorithm 

terminates when k arrives at n + 1. It checks the two conditions (5.2.la) and (5.2.lb) 

required for the LLL-Reduced bases, if the indexed vector conflicts with Size-Reduced 

condition in line 4, the procedure DECREASE() will be invoked in line 5. Line 6 is one 

of the key processes. The algorithm identifies whether the Lovasz Condition (5.2.lb) is 

fulfilled at each 2-by-2 submatrix (rk_ 1, rk) along the matrix R's diagonal at line 6. If the 

condition (5.2.lb) is not satisfied, it calls SWAPRESTORE(k) to swap the two vectors and 

restore R to an upper triangular form. Then the while loop restarts from the previous 

k, or 2 if k equals 2. The unimodular matrix Z will be produced at the end of whole 

algorithm, such that B Z forms an LLL-Reduced basis. 

5.3 Approximate Optimal Reduced Algorithm 

We have seen in the previous section that the LLL Reduction algorithm is an excellent 

algorithm. It gives us a upper bound with the factor 2ln-1J/Z for an approximation of 

a shortest vector in polynomial time. The LLL algorithm can also produce a quasi or­

thogonal basis that can be used to accelerate the performance of other SVP solving al­

gorithms. However, for many high precision required cases, the basis produced by the 
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LLL algorithm is not good enough. At the same time, the Minkowski reduced basis is not 

so easily to be constructed, besides the Minkowski reduced basis may not exist, see the 

counter Example-(5.1.3). 

Recently, F. Luk and S. Qiao [ 14] defined a new lattice reduced basis named Optimally­

Reduced bases that combines the advantages of Minkowski reduced bases, and most 

importantly guarantees existence. An algorithm that constructs approximate Optimal­

Reduced bases is also given at the same time. 

5.3.1 Bases Definitions 

Definition 5.3.1 (SubLattice[7]). Let L be a lattice in ~n. We say Mis a SubLattice of L, 

if Mis a lattice and is also a subset of L. 

Suppose W is a generator matrix for the sublattice M, then even the number of 

columns in W is less than n, the sublattice M generated by the columns of W is still 

a lattice in ~n. Clearly, the sublattices of Lare also subgroups of Land Lis a sublattice 

of itself. If the dimension of a sublattice M equals to the dimension of L, we say that M 

is a full-rank sublattice of L. 

Definition 5.3.2 (0ptimally-Reduced[l4]). Given a lattice L, a generator matrix B = 

[b1, b2, ... , bnl of Lis called Optimally-Reduced, if for each bi ( i = 1, 2, ... , n ), its 

Euclidean Length llbi 112 = min(llhillz, llhi+1 ll2, ... , llhnllz) over all sets {bi, hi+l , ... , bn 

} of lattice points such that the matrix [b1, b2, ... , bi-I• bi, bi+l, ... , hnl generates the 

given lattice L. 

The definition of Optimal-Reduced bases is similar with the definition of Minkowski­

Reduced bases. The main difference between them is that the Optimally-Reduced bases 
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choose only those shortest lattice vectors which can generate the original lattice if they 

are combined together as a basis. Therefore, the Optimal-Reduced basis is always exists, 

but Minkowski-Reduced bases do not always exist. It is not hard to see that, 

(5.3.1) 

Hence, if there is a Minkowski-Reduced basis, it must be an Optimally-Reduced one as 

well. In term of sublattice, each bi is a shortest vector in the sublattice generated by the 

vectors {bi, bi+l• ... , bn} grouped as a basis. 

5.3.2 Approximate Optimally Reduced Algorithm 

In Kannan's SVP solving algorithm[25, 26], Kannan introduces a method named SE­

LECTBASIS () for bases transformations. This method inserts a target vector v into the 

current basis B to create a set of n + 1 vectors which includes v and n other vectors of 

B. Then the method SELECTBASIS() transforms this set to a basis of n vectors that gen­

erates the original lattice. The bases transformation works as finding the fractional co­

efficients for an equation system of n unknowns. Unfortunately, the method is unprac­

tical when being implemented in modern computers[41). Because modern comput­

ers all operate floating-point numbers, which introduces errors during floating-point 

arithmetics. We will substitute the method SELECTBASIS() of Kannan's algorithm with a 

novel Plane Unimodular Transformation[14] algorithm, which will solve the same prob­

lem in Optimal Reduction algorithms in this thesis. The approach of this transformation 

uses the Extended Euclidean Algorithm. 
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Suppose we are given an integer vector z = [p q] T with gcd(p, q) = d. Then accord-

ing to the Extended Euclidean Algorithm, two integrals (a, b) can be found such that 

ap+ bq = d. Hence, we can construct an integer nonsingular matrix M (assuming d "I- O 

) with those integers, that is: 

M= [pld -b]· 
qld a 

Since Mis an integer nonsingular matrix, Mis invertible. The inverse of matrix Mis: 

_ 1 [ a b 1 
M = -q/d pld . 

We can see that M- 1 is an integer matrix as well, and M- 1 satisfies: 

Since both Mand M-1 are integer matrices, Mis an unimodular matrix. The con-

struction process of the unimodular matrix M still holds if q = 0 or p = 0, in which case 

we have gcd(p, 0) = p or gcd(O, q) = q, respectively. A special case that must be men­

tioned is p = q = 0, then gcd(p, q) = 0. If this happens, we set M to a 2-dimensional 

identity matrix in order to maintain the properties that Mis an unimodular matrix and 

M- 1 z = [d OJ T ( d = 0 in this case). The algorithm of constructing M gives us the follow­

ing fact. 

Fact 5.3.3 (Algorithm UNIM2 (p, q)). Let z = [p q] T be a nonzero integer vector and 

gcd(p, q) = d. An unimodular matrix M as above can be constructed, such that M-1 z = 

The algorithm UNIM2 (p, q) can be applied to expand a vector b 1 into a basis A just 

like what the Kannan's method SELECT BASIS() does. Suppose A is an integer matrix that 
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its columns generate a 2-dimensional lattice L. Let the integer vector z = [p qJ T be the 

coefficients of the lattice point b 1, such that Az = b 1• However, not every vectors in the 

lattice L can be expanded to a basis. The vector b 1 is expandable to a basis, if and only if 

the greatest common dividers of the entries of the coefficients vector z is ±1[25], which 

means gcd(p, q) = ± 1. 

Therefore, 

==> z = M x [± 1 OJ T ( Ax z = h1 ) (5.3.2) 

==> A x M x [± 1 OJ T = b1 
~ 

Unimodular 

For an n dimensional lattice L and a coefficient vector z = [z1, zz, ... , Zn] that in-

eludes more than two entries, we can use the case of Expanded Euclidean Algorithm of 

more than two numbers[21J. 

Which is, 

(5.3.3) 

In the case of n (n ~ 2) entries, we apply the algorithm UNIM2() repeartedly from 

the last coefficient Zn to the first one z1. During this transformation, the given generator 

matrix A is transformed into a new generator matrix B, whose first column is the vector 

b 1 represented by the coefficient vector z. 

Similarly, if there are n such equations A x z; = b; ( 1 ~ i ~ n ) , and each z; satisfies 

gcd (zu, · · · , Zi,j,. · · , z;,n) = ± 1, for 1 ~ j ~ n. By applying the above transform of n (n ~ 2) 

entries with algorithm UNIM2 () vector by vector, we can find a sequence of unimodular 

matrices M;. Each M; transforms the current generator matrix into a new generator 
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matrix, whose ith column is the vector bi. The matrix A then can be transformed to 

another generator matrix B = [b1, b2, ... , bn]. Let M be the product of Mi, that is, 

Then Mis also an unimodular matrix. According to the Proposition-(2.1.3), B must 

be a generator matrix of the lattice generated by the columns of the matrix A. 

Given a lattice Land its generator matrix B = [b1, hz, ... , bnl· Let Q and R be the 

matrices of the QR-Decomposition-(5.1.1) of the given matrix B. Denote L(Bk) the sub­

lattice generated by the column vectors of the submatrix Bk= [bb hk+l• ... , bnl· Let R 

be the matrix [r1, r2 , .•. , rnl· Denote Rb a submatrixof R, the matrix [rb rk+l• ... , rnl· 

Let v = Rkz be a vector in the sublattice L(Bk). Using the algorithm UNIM2() repeat-

edly, the following procedure TRANSFORM(k,z) transforms the generator matrix Bk into 

a new generator matrix ih, which includes the vector v as the first column, such that 

The for loop from line 1 to line 10 applies the Expanded Euclidean algorithm-(5.3.3) 

iteratively. The matrix Zj constructed at line 5 protects the first k- 1 vectors of the given 

generator matrix B, such that they will never be touched in the procedure. Line 4, 6 

and 7 synchronize the coefficient vector z with the matrices of QR-Decomposition of 

the current matrix B. Therefore, the vector bk in B becomes Rkz when z is unimmed to 

the identical vector at the end of the procedure. 

Line 8 requires us to find a plane reflection matrix Qj which restores the destroyed 

upper triangular structure of Rat line 6. However, the functionality of matrix Qj is not 

as simple as only recovering the upper triangular structure of the matrix R, it has to 

maintain the properties of Q as an orthogonormal matrix as well. 
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Procedure Transform(k, z) 
Input : R, Z, Q and z 

Output: Modified R, Z and Q 

i for j - n - k + 1 downto 2 do 
2 

3 

4 

5 

6 

7 

8 

9 

10 

Mj = UNIM2(Zj-1,Zj); 

Uj -diagUj-2,Mj,In-j-k+1); 
z- U-: 1z; 

1 

Zj - diag(h-1, Uj); 

R-RZj; 

z-zzj; 
Call PLANEREFLECTION() to find a plane reflection Qj that restores the 
structure of R ; 

R-QjR; 

Q-QQj; 

11 return modified R, Z and Q 

Fact 5.3.4 (Procedure PLANEREFLECTION(Rzxz) [31]). The symmetric matrix Qj E Rnxn 

denotes a Plane Reflection matrix in the (j -1, j) plane, where 2 ~ j ~ n. It has the follow-

ingform: 

c s 
(5.3.4) 

s -c 

ln-j 

where c2 + s2 = 1. 

The purpose of the procedure PLANEREFLECTION(R2x2) becomes clear, when we 

know the function of the constructed matrix Qj is to convert the production of two ma-

trices into an upper triangular matrix, that is: 
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[
c s 1 x [rj-1,j-1 rj-l.jl = ['j-1.j-1 

s -c r· ·-1 r· · 0 j.] j.J 

fj-1,j 

f .. 
],] 

This problem can be easily solved by choosing sand c, such that rj-1.j-l x c+ rj,j-l x 

s = 0. If the element r j,j-l happens to be 0, the plane reflection Q j can just be set as an 

n dimensional identity matrix. 

Another procedure BLOCKDECREASE(i,j) is involved in the forthcoming approxi-

mate Optimal-Reduction algorithm. It checks the the Size-Reduced condition-(5.2.la) 

on the submatrix [bb hk+l• ... , hnL and updates the submatrix to make sure the condi­

tion (5.2.la) is always fulfilled in the new constructed generator matrix. The procedure 

DECREASE(i, j) invoked in BLOCKDECREASE(i,j) is identical with the one that has been 

introduced in the chapter "LLL Reduction Algorithm". 

Procedure BlockDecrease (k) 
Input : R,Z 

Output: Modified R, Z 

i for i - n - 1 downto 1 do 

2 l for j - n downto Max (i + 1, k) do 
3 L DECREASE(i,j); 

4 return modified R, Z 

Taking advantages of the two procedures above, we can finally give an approximate 

Optimally-Reduced Algorithm (we will state why it is an approximation algorithm in the 

next section). 

Theorem 5.3.5 (APPROXIMATE OPTIMALLY-REDUCED ALGORITHM). Given a lattice Land 

its generator matrix B, suppose the matrices Q and Rare the outputted matrices of QR­

Decompositions-(5.1.1) of B. The following algorithm constructs an unimodular matrix 
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Z for the matrix B, such that B Z forms an approximation of an Optimally-Reduced basis 

that generates the original lattice L. 

Algorithm 5: APPROXIMATE OPTIMAL REDUCTION Algorithm 
Input : A basis B of a given lattice L 

Output: An unimodular matrix Z that transforms an approximate 
Optimally-Reduced basis 

l Initial QR-Decomposition, B =QR and Z - In; 

2 BLOCKDECREASE(l) ; 

3 k-1; 

4 while k < n do 

s Set Rk - [rb rk+l• ... , rnl; 

s Call algorithm-(3) ENUMERATE() to Find a vector z E zn-k+l, such that Rkz 

forms a shortest nonzero vector in the sublattice generated by the columns 
of Rk; 

7 TRANSFORM(k,z); 

8 BLOCKDECREASE(k) ; 

9 Search the smallest p such that llrpll2 > llrqi12, where l 5; p 5; k < q 5; n and 
l!rqll2 =Min (lirjll2L k < j 5; n; 

10 if p 5; k then 

ll I k=p; 

12 else 

13 L k = k+ 1; 

14 return the matrix Z ; 

Let Bk= [ht. hk+l• ... , hnl be the submatrix of the generator matrix B without the 

first k-1 columns, and denotes Bk= [v, hk+l• ... , bnl and B = [b1, b2, ... , bk-1, Bkl be 

the modified submatrix Bk and the matrix B after calling the procedure TRANSFORM(k, z), 

respectively. In the algorithm APPROXIMATE OPTIMAL REDUCTION, the while loop from 

line 4 to 13 works iteratively in every sublattice Lk(Bk) generated by columns of Bt> 

which is created in line 5. An unimodular transformation matrix Z of an approximate 
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Optimally-Reduced basis will be constructed in the end of the while loop. 

Line 6 is a key process of the algorithm, which finds a shortest vector v in the sub lat­

tice Lk(Bk). Various external SVP solving and apprSVP solving algorithms can be used to 

discover the shortest vector v. Sphere decoding methods is recommended in E Luk and 

S. Qiaos' original paper[42], we will choose the algorithm ENUMERATE()-(3) to discover 

v, which is plugged into the algorithm at line 6. In the end of line 6, it returns the integer 

coefficient z of the shortest vector v discovered. 

After finding the shortest vector v, the algorithm invokes the procedure TRANS PO RM() 

to produce a new generator matrix fh for the sublattice Lk(Bk) , which stores v as the 

first element. The corresponding transformation to the generator matrix B of the lattice 

L is that the vector v will be inserted into B as the kth vector, and leaves the first k - 1 

vectors { b1, b2 , ... , bk-l} unchanged. Line 8 checks the new basis with Size-Reduced 

condition(5.2.la). 

The shortest vectors v found in each sublattices Lk(Bk) (1 ~ k ~ n) may not be cor­

rectly ordered since it is an approximate algorithm. Therefore we have to consider sort­

ing the vectors in the matrix B according to the definition of Optimally-Reduced bases 

(5.3.2). That is, after transforming the kth vector into the basis B, we will simply go 

through every single vector in B. If there is a vector located after the kth vector whose 

length is shorter than a vector hp, (p < k) which is located before bb we restart the while 

loop from the incorrect-ordered index p of the vector hp. 

5.3.3 Termination and Complexity Analysis 

We have mentioned that the APPROXIMATE OPTIMAL REDUCTION algorithm-(5) can only 

produce an approximation of an Optimally-Reduced basis. Actually, the shortest vector 
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computed in line 6 is a shortest vector of a particular sublattice, not all possible sublat­

tices. Hence, what the algorithm outputs can be only an approximate of an Optimally­

Reduced basis. 

The action of "Searching for the smallest p" in line 9 raises the question of termina­

tion for the approximate Optimal-Reduction algorithm. The value of the index kin the 

next loop starts either the integer k + 1, or the number p that smaller than k. However, 

the algorithm-(5) guarantees termination. Because every time the index k goes back to 

a smaller p, the length of the shortest vector found in the sublattice Lp (Bp) is at most 

the length of the vector that is shorter than hp. Hence the lengths of vectors found in 

algorithm-(5) will be shorter and shorter. Since the lower bounds of Euclidean Length 

for the columns in the generator matrix are Minkowski's Minimas, the algorithm will 

terminate in a finite step of swaps. 

An interesting phenomenon happens if we use LLL as an algorithm to find an ap­

proximation of a shortest vector in line 6. Since the LLL algorithm-(4) only finds an 

approximate shortest vector with a factor of 2f!Jlnl. the swapping time will have to be ex­

ponential. The extreme case of invoking the LLL algorithm-(4) will lead the algorithm­

(5) to never terminate at all. The reason is when we swap the index k with the index p of 

the longer column vector, the next shortest vector found in sublattice Lp(Bp) might to 

remain the same as hp. This is because the LLL algorithm-(4) is an approximate algo­

rithm that cannot guarantee find a vector shorter than hp. On the other hand, exact SVP 

solving algorithms like ENUMERATE() will reduce the swap times to polynomial time and 

guarantee termination. 

The complexity dominates the algorithm-(5) is the SVP solving algorithm at line 6. 

The call of ENUMERATE() algorithm-(3) will cost 2@tn
2
l composed operations[45], and 
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the complexity of each composed operation is a fixed polynomial of n. Other sphere 

decoding algorithms can reduce the complexity of the algorithm-(5) a little, for example, 

if we use Kannan's algorithm to discover a shortest vector, the worst-case complexity 

would be n~+o(n)::::: n0.184n+o(n) [20). 

5.4 Optimally Reduced Algorithm 

The previous section has introduced an approximate Optimally-Reduction algorithm­

(5), which works as finding a shortest vector in each sublattices and combining them 

together to construct a new basis. The procedure BLOCKDECREASE() involved the vec­

tors of the basis that before the cursor, such that the sublattices are changed. How­

ever, The procedure BLOCKDECREASE() cannot be ignored because it is necessary for 

checking the Size-Reduced condition. Hence the algorithm-(5) can only produce an ap­

proximate Optimally-Reduced basis. Recently, Wen Zhang, Sanzheng Qiao, and Yimin 

Wei[ 48) present a novel algorithm that constructs an exact Optimally-Reduced basis. 

Instead of searching a shortest vectors in particular sublattices[l 4), the new Optimally­

Reduced algorithm discovers shortest vectors in all possible subspaces. The following 

lemma[6, 48) builds the theoretical foundation for the new Optimally-Reduced algo­

rithm we are going to introduce. 

Lemma 5.4.1. Let B = [b1, bz, ... , bnl E ~mxn be an integer full-column rank matrix 

and L be the lattice generated by columns of B. For a vector v = L. 7= 1 Zi b1, ( Zi E Z ) , there 

existsabasisforLcontaining{b1, hz, ... , bp_1, v} if and only if" 

gcd(zp, Zp+l• ... , Zn)= 1. 

Proof. See [6, 48]. 0 
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The Lemma -(5.4.1) points out a very important property for candidate vectors of 

a basis in the lattice L, that if the vector can be inserted into the given generator ma­

trix B as the pth column, the greatest common divider of the coefficients of the vectors 

{hp, hp+l• ... , bn } has to be 1. According to the Lemma-(5.4.1), we can construct a 

basis by searching all the vectors that fulfil the above property, and at the same time, we 

have to make those vectors as short as possible. 

5.4.1 Sphere Decoding Algorithm 

In the approximate Optimally-Reduced algorithm-(5) proposed in the previous section, 

we use the ENUMERATE() algorithm-(3) to discover a shortest vector in a sublattice. In 

order to identify the searching ranges, the ENUMERATE() algorithm-(3) projects a vec­

tor recursively to the orthogonal complement of a hypersphere spanned by a group of 

vectors. In this new exact Optimally-Reduced algorithm, a minor modified version of 

sphere decoding method[48] will be introduced which works in subspaces to find the 

vector mentioned in the Lemma-(5.4.1). 

Let L be an n dimensional lattice generated by the columns of the matrix B E ~m x n, 

and let v E ~m( v ft. L) be a vector to be decoded, the decoding method is to find an 

integer coefficient vector z with respect to a vector v E L, such that that coefficients z 

minimizes the Euclidean Length from the vector v to the vector v, that is: 

MIN{ llBz-vl12 I VzE zn }. (5.4.1) 

Various algorithms are proposed to solve the sphere decoding problem, such as the 

Exhaustive Search algorithm ENUMERATE()-(3), which is based on Kannan's strategy[25, 
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26], the Sieving algorithm based on Ajtai's strategy[2], and so on. The general idea of 

sphere decoding algorithms is to identify a range that includes Bz and exhaustively 

search all points within this range. Hence the closest vector will be discovered. 

Differing from the ENUMERATE() algorithm-(3) which works in sublattices, the new 

decoding algorithm we will describe searches the points and constructs the new genera-

tor matrix in subspaces. The given lattice generator matrix B of the lattice L in equation-

(5.4.1) can be rewritten as: 

B = [Bmx(n-1)• bnJ (5.4.2) 

where bn is the last column of the matrix Band Bmx(n-IJ is an m-by-(n-1) subma-

trix including the first n - I vectors of B. By splitting the matrix Bin (5.4.2), the lattice 

L can be then separated into a sequence of sublattices indexed by listing all possible 

coefficients to the vector bn. Each sublattice has the same dimension (n - 1). The de-

composition of the lattice L can be represented as: 

+oo 

L(B)= LJ {w+unbn/WEL(Bmx(n-1)), UnEZ} (5.4.3) 
lln=-oo 

The parameter Un is called the index of the sublattice L(Bmx(n-1)), because the points 

of those sublattices shown in equation-(5.4.3) are identical but with different offset Unbn. 

Let Span(B) represent the Vector Space spanned by the columns of the matrix B, and de-

fine the subspace Spanun (B) as 

Spanun (B) = { w+ Unbn (n) I WE Span(Bmx(n-1))} (5.4.4) 

where bn(n) is the projection of bn on the orthogonal complement of the vector 
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space Span(Bmx(n-lJ) according to the Formula-(4.2.3), see the Chapter "Lattice Pro-

jection" for more details. Therefore, the orthogonal distance between the vector v of the 

equation-(5.4.1) to the subspace Spanun (B) is 

(v, bn(n)) 
d(v,Spanun(B)) = lun - Uni· llbn(n) 112, where Un=---­

llbn(n)ll~ 
(5.4.5) 

If v, the closest vector of v, lies in a certain subspace Spanut (B) with an index Ut, 

and if the upper bound Pn• such that llv-vll::; Pn is given, then the orthogonal distance 

between v to the subspace Spanut (B) must be not longer than the orthogonal distance 

between v and v, which means 

d(v,Spanu/B))::; Pn· 

Combing the above inequation of the given distance upper bound p n with the equa­

tion (5.4.5), we can calculate the range of the index llt of the subspace Spanut (B) in 

which the closest vector v lies, that is: 

A Pn A Pn ( 77) 
Ut - ::; Ut ::; llt + ' Ut E IL 

llbn(n) 112 llbn(n) 112 
(5.4.6) 

By enumerating each integer Ut within the range of above equation-(5.4.6) and set­

ting Pn-l = J p~ - (/I Ut x b0 (n) 11 2) 2 , we have successfully transformed the original clos­

est vector problem in the n dimensional lattice L(B) to l 11b:C~lllz J closest vector prob­

lems of one dimension less lattice L(Bm x (n-lJ), where lxJ represents the biggest integer 

z, such that z ::; x. The problem (5.4.1) will be solved, if we recursively apply the above 

process until the dimension of subspaces reaches l, 

Summing up all the equations and processes above, the sphere-decoding algorithm 

M-DECODE(R, p) can finally be introduced to find the pth vector mentioned in the 
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Lemma-(5.4.1). This algorithm also solves the integer least square problem-(5.4.1). To 

start the decoding process, the equation-(5.4.6) requires an initial distance Pn• which 

will be set as the length of the pth vector hp of the current generator matrix B of the lat-

tice L. Since at least we can guarantee that hp can be found as a candidate, which makes 

the equation gcd(zp, Zp+l• ... , Zn) == 1 satisfied. Therefore, the algorithm never fails. 

The input parameter R is the upper triangular matrix of the QR-Decomposition-(5.1.1), 

p is the index of the vector we are looking for. 

Algorithm 6: M-DECODE 

input : R,p 
output: An integer coefficient vector z, which minimizes llRzll 2 and 

gcd(zp, Zp+b ... , Zn)== 1 

i Run LLL algorithm-(4) on R; 

2 Set the initial size p - II R(:, p) 11 2 as the upper bound of searching region; 
3 Call M-Search-I(R, p, p) to get an integer coordinate Zmin; 

4 return the Zmin; 

The algorithm M-DECODE() invokes the LLL algorithm as a preprocessor to speed 

up the searching precess at line 1. The upper bound for the length of the target vector is 

set at line 2. Line 3 is a key statement which calls another method M-SEARCH-1() and 

gives us the integer coefficient Zmin of the vector fulfilled conditions mentioned in the 

Lemma-(5.4.1). In the end of algorithm, the Zmin returned in line 3 will be returned. 

The procedure M-SEARCH-1 () returns an integer coordinate vector Zmi n• which min-

imizes Rz for the given index p. Depth-First search is designed as the main approach to 

enumerate all possible coordinates in subspaces. The while loop runs from the last vec­

tor of B to the first vector with a cursor variable i. The variable u records the branches 

of searching coordinates, which varies in the ranges identified by equation-(5.4.6) for 
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Procedure M-Search-1 
input :R,p,p 

output: An integer coordinate Zmin 

l Set Zmin = [0, .•• , OJ T, u = [O, ... , OJ T, l = [O, ... , OJ T; 

2 Seti - n; 

3 while i ~ n do 
4 Compute 1- Ru; 

s if II lll 2 < p then 
6 

7 

8 

9 

IO 

II 

12 

13 

14 

15 

16 

17 

18 

Set z = ConvertLLL (u) ; 

if i = 1 & gcd(zp, Zp+l• ... , Zn)= 1 then 

Set p - 111112 ; 
SetZmin-z; 

Ui = Ui + 1; 

else if i > 1 then 

else 

Set the center b - hu-i - uiR(l: i - 1, i) ; 

Compute Pi-l = J p 2 -11111~ as the upper bound of searching region 

in the subspace ; 

i-i-1; 

Set Ui - new lower index by the equation-(5.4.6); 

l i-i+l; 

Ui = Ui + 1; 

19 return the Zmin ; 
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each index i. However, the equation-(5.4.6) is designed to solve the CVP for a given v. 

Hence in our method, we can set the parameter v to be 0 as the initial vector in order 

to apply equation-(5.4.6) to start the algorithm. In terms of the length of the vector with 

current coordinates u, the variable l will store the current vector computed from Ru and 

its length can be calculated by the Euclidean Norm formula. 

The upper bound p for the length of the pth vector is reduced within the procedure 

whenever it is possible. Notice that the matrix R sent to M-SEARCH-1() is not the orig­

inal R right after the QR-Decomposion algorithm, because the LLL algorithm has been 

applied to the matrix R in the algorithm M-DECODE(). Therefore, the method gcd(· · ·) 

cannot be used directly to the coordinates u, which has to be converted back to another 

variable z with an LLL transformation function in line 6. If the length of the current vec­

tor is less than the upper bound p and the condition equation gcd(zp, Zp+ 1, ..• , Zn) = 1 

is satisfied at the same time, this vector will become a candidate of the target vector 

we are looking for. Hence the parameter p will be updated in line 8 and the coefficient 

vector z will be recorded as Zmin· 

Line 12 and 13 are actually compute the upper bound Pn-l for the equation-(5.4.6) 

of the next Depth-First-Search level. The variable I stores the coordinates of current 

vector, which is the computed result of Ru, and I is also referred as the offset of the 

upper bound Pn in equation-(5.4.6) during iterative branches, that is Pi-l = J p2 -11111~ 

in line 13. In the end of procedure M-SEARCH-1(), the integer coefficient vector Zmin 

corresponding to the parameter index pis returned, and Rzmin is minimized among all 

possible integral coefficients. 
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5.4.2 Optimally-Reduced Algorithm 

Having the theoretical foundation LEMMA-(5.4.1) and the sphere decoding algorithm M­

DECODE ()-(6), constructing an Optimally-Reduced basis is straightforward[48]. Given 

a lattice L of arbitrary dimension n generated by the columns of a generator matrix 

B, there are two main problems need to be solved in order to construct an Optimally­

Reduced generator matrix M, they are: 

1. Find n independent vectors that fulfil the conditions required in Lemma-(5.4.1). 

2. Combine the n vectors found in step one to construct an Optimally-Reduced basis. 

By the sphere decoding algorithm-(6) M-DECODE(), the pth vector candidate in the 

matrix M can be discovered without any difficulties. Hence, the problem- I can be solved 

by applying M-DECODE() with the cursor p varies from 1 ton. 

However, solving the second problem to form an Optimally-Reduced basis is not 

as simple as putting the n vectors found in step one together. Recall the procedure 

TRANSFORM(k,z) in the APPROXIMATE OPTIMALLY REDUCTION algorithm-(5), which is 

invoked to transform the given generator matrix into a new generator matrix that in­

cludes the shortest vector discovered as a column. Meanwhile, we have to maintain the 

properties of the lattice generated by the new constructed basis, such that it will be the 

same as the original given lattice. We will borrow this idea from the APPROXIMATE OPTI­

MALLY REDUCTION algorithm-(5) to transform vectors found in step one into the given 

generator matrix to construct a new Optimally-Reduced basis. 

Since the algorithm ENUMERATE() embedded in the APPROXIMATE OPTIMALLY RE­

DUCTION algorithm-(5) works in sublattices, but the algorithm M-DECODE() finds the 

pth vector in the original lattice L all the time, we can see the difference between the two 
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vectors, v P found in the algorithm ENUMERATE() and v P discovered in the algorithm M­

D ECO DE(), is that v p involves only the columns of the generator matrix with index larger 

than p, yet v P can be linear combination of all columns of the matrix. 

More precisely, let Bp = [m1, ... , mp_ 1 ,b~, ... , b~] be the currently constructed 

generator matrix of index p in process. Denote mp the pth Optimally Reduced vector 

discovered in the algorithm M-DECODE() with coefficients z = [z1, z2 , ••• , Zn] T. There-

fore, 

mp= Bpz. 

According to the LEMMA-(5.4.1), the vector mp satisfies the following two conditions: 

(5.4.7a) 

ffipartl ffipart2 

gcd(zp, Zp+l• ... , Zn)= 1 (5.4.7b) 

Out goal is to find an unimodular matrix Z, such that 

Bp+I = BpZ 

where the pth column of the matrix Bp+I is mp. and the first p-1 columns of Bp+I and 

Bp are identical. 

Therefore, the pth column of the unimodular matrix Z has to be the coefficient vec­

tor z, and the first p-1 columns of Z must be unit vectors. Thus after multiplying Bp 

with the matrix Z, the pth vector in Bp+I will be mp, and leaves the first p-1 columns 

of B p unchanged. 
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We will construct two unimodular matrices Z1 and Z2 , such that Z = Z1 Z2 [ 48], by: 

lp-1 0 
Z1= 

0 M1 
Zz = 

[

Ip-1 

0 
M21 

In-p+I 

(5.4.8) 

where M1 of Z1 is the unimodular matrix, which is produced by applying the proce-

dureTRANSFORM(p,[zp, Zp+I• ... , ZnlT), whose first column is [zp, Zp+I• ... , Zn]T, and 

hence Z 1 is an unimodular matrix. See Chapter "Approximate Optimally-Reduced Algo­

rithm" or [14, 48] for more details. M 2 is composed by forcing [z1, z2 , ••. , Zp-il T as the 

first column and Os for all other vectors. From the structure of Z2 , it is an unimodular 

matrix. 

For the condition (5.4.7a), we can see that mpartl and mpart2 are the products of Bp 

with the corresponding columns of Z 1 and Z2 , respectively. Thus mp is the pth column 

of the multiplication of BpZ1Z 2. After that, Bp+l = BpZ is obtained. 

Theorem 5.4.2 (OPTIMALLY-REDUCED ALGORITHM). Given an integer full-column rank 

matrix BE ~mxn, (m 2'. n), and a lattice L generated by the columns of B, let the matrices 

Q and R be the matrices of QR-Decompositions-(5.l.l). The following algorithm con-

structs an unimodular matrix Z, such that BZ forms an Optimally-Reduced basis whose 

columns generate the original lattice L. 

The cursor p for the new generator matrix of the OPTIMAL REDUCTION algorithm-(7) 

is set in line 3. The algorithm terminates when p arrives at n. Whenever a new coeffi-

cient vector z for the pth vector is found in line 4, the algorithm transforms the currrent 

generator matrix into a new generator matrix that includes the vector corresponding to 

the coordinates z as the pth column. Line 6 applies the matrix Z2 of equation-(5.4.8) to 

Rand line 7 synchronizes the process with the unimodular matrix Z, therefore in the 
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Algorithm 7: OPTIMAL REDUCTION algorithm 
Input : A generator matrix B of a given lattlce L 

Output: An unimodular matrix Z, such that BZ forms an Optimally-Reduced 
basis 

i Initial QR Decomposition, such that B =QR; 

2 Set Z - In; 

3 for p - 1 to n do 

4 Call M-DECODE(p) to Find a vector z fulfilled Lemma-(5.4.1); 

5 TRANSFORM (p, [Zp, Zp+l• •.. , Zn) T) ; 

6 Set R-RZ2; 

1 Set Z-ZZ2; 

a return the matrix Z ; 

end of the algorithm, the new basis will be the multiplication of B and the unimodular 

matrixZ. 

Proof See [ 48) for the full proof. D 
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Chapter6 

Experimental Results 

We have presented the GGH cryptosystem in chapter 3, and we also introduced the lat­

tice reduction algorithms that can be applied to attack the GGH cryptosystem in chapter 

5. 

They are: 

1. The LLL REDUCTION algorithm-(4); 

2. The APPROXIMATE OPTIMAL REDUCTION algorithm-(5); 

3. The OPTIMAL REDUCTION algorithm-(7). 

In this chapter, we will show the results of two parts experiments by applying the 

three lattice reduction algorithms. The first part of the experiments focuses on the qual­

ities of the bases produced by the algorithms, and the second part presents the cipher­

texts decrypted by those bases in the first part. 

In the first part of this chapter, we show the experimental environment, including the 

hardware, the software and the programming tools we used. Then the detailed organi­

zations of experiment steps will be introduced. The second part compares the qualities 
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of the bases produced by the three algorithms in terms of the Hadamard Ratio, in which 

cases, the dimension of the GGH cryptosystem varies from 2 to 20. In the last part, we 

present the plaintexts decrypted by the bases produced by the algorithms with missing 

ratios. 

6.1 Experimental Environments 

We choose Ubuntu as the main Operating System, which is a branch of Linux operat­

ing system based on the Debian GNU /Linux distribution . The three lattice reduction 

algorithms are implemented using the 32-Bits version MATLAB 2010b. 

The details of experimental environments are shown in the Table-(6.2) below. 

Experimental Environments 

CPU 3.0GHz Quad-Core Intel Core i3 
Hardware Memory 4GB 1066MHz 

Graphics Card ATI Radeon HD 5450 

Hard Disc 500GB 7200-RPM 

Operating System Ubuntu 11.04 32-Bits 
Software Kernel Linux 2.6.38-8-Generic-Pae 

MATLAB 2010b 32-Bits 

The LLL algorlthm-(4) 
Algorithms 

The APPROXIMATE OPTIMALLY-REDUCED algorithm-(5) 

The OPTIMALLY-REDUCED algorithm-(7) 

Table 6.2: The experimental environments 
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6.2 The Organization of the Experiments 

In our experiments, all elements in vectors and bases are integers. After implementing 

the algorithms with Matlab 2010b, our experiments were designed as follows: 

1. Determine the dimension of the GGH cryptosystem; 

The dimension of GGH cryptosystems in our experiments was set from 2 to 20, 

that is, our experiments ran in lattices, whose dimensions varies from 2 to 20. 

2. Choose a range of the integers for the entries in the Private Key; 

We chose 4 different ranges h, (1 ~ k ~ 4) as the integer intervals for the elements 

Pi,j• (1 ~ i, j ~ n) of the Private Key. 

They were: 

-999 ~ Pi.j ~ 999, (k = 1) 

h= 
-9, 999 ~ Pi.j ~ 9, 999, (k = 2) 

-99, 999 ~ Pi.j ~ 99, 999, (k = 3) 

-999, 999 ~ Pi,j ~ 999, 999, (k = 4) 

For the Ephemeral Key r, each of its coordinates was randomly chosen as an in­

teger uniformly distributed between -99 and 99. The integer range of r is fixed, 

independent of h, (1~k~4). 

Compare with the Example-(3.2.1) of the GGH Cryptosystem, this perturbation 

vector r was relatively larger than that of the real world. We chose this large r be­

cause the dimensions of our lattice candidates were relatively small. To enhance 

the effects of the three lattice reduction algorithms, we had to make the distance 
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between the lattice point representing encrypted message e and the exact clos­

est point v as large as possible. We will see from the experimental result that the 

distance was so large, that sometimes even the Private Key did not decrypt the 

message e successfully. 

3. Run the lattice reduction algorithms; 

For each given number n as the dimension of a lattice, we first randomly gener­

ated a Private Key V, such that its Hadamard Ratio fulfilled the requirement of the 

GGH cryptosystem. After this, we constructed the Public Key W based on this Pri­

vate Key, and its Hadamard Ratio was very small, 1.0 x 10-4 for example. Then the 

plaintext m and the Ephemeral Key r were generated randomly. The ciphertext e 

was encrypted by the Formula-(3.2.1}. 

To make the result in our experiments as accurate as possible, we ran the above 

process for 100 times in each dimension n. 

4. Compare the average Hadamard Ratios of the bases produced; 

We applied the LLL REDUCTION algorithm-(4), the APPROXIMATE OPTIMAL RE­

DUCTION algorithm-(5), and the OPTIMAL REDUCTION algorithm-(7) on the Pub­

lic Key W. For each algorithm, the Hadamard Ratios of the reduced bases it pro­

duced were accumulated together, and the average value of the Hadamard Ratio 

was shown in the end of the experiments of each dimension n. 

We compared the difference of the average Hadamard Ratios for the three algo­

rithms in various dimension lattices in tables and figures. 

5. Compare the decoded message by the bases produced; 
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The main purpose of experiments was to compare the decrypted message of the 

three algorithms. We decrypted the ciphertexts using the bases produced by the 

lattice reduction algorithms, and compared them to illustrate their capabilities of 

decryption. 

6. Output of the experimental results. 

In the end of experiments, the result of average Hadamard Ratios and the missing 

ratios of decryption for each algorithm were output. 

The experimental data will be shown in two parts in this chapter: the average Hadamard 

Ratio of 20 lattice dimentions, and the times of decrypting the ciphertext successfully. 

6.3 Experimental Results of Hadamard Ratio 

We have introduced in the chapter 5 that the Hadamard Ratio is proposed to measure 

the qualities of the Private Key and the Public Key, which are the bases of a lattice that 

the GGH cryptosystem works on. The Private Key is a good basis for the lattice that has a 

relatively large Hadamard Ratio, and the Hadamard Ratio of the Public Key is very small. 

In this part, we used the Hadamard Ratio to measure the qualities of the bases pro­

duced by the three lattice reduction algorithms. The Hadamard Ratios are shown in fig­

ures. We attached the detailed experimental results of the Hadamard Ratios in Appendix 

A. 

To start the experiments, we chose the dimension of the GGH cryptosystem from 2 

to 20, iteratively. After selecting the dimension, the Private Key was created randomly, 

and the Public Key was generated such that its Hadamard Ratio was less than 1.0 x 10-4 . 

Then the three lattice reduction algorithms were applied to reduce the Public Key, and 
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we recorded the Hadamard Ratios of the bases produced algorithm by algorithm. The 

above process run 100 times for each fixed dimension. Therefore, the Hadamard Ratio 

shown in figures and table were the average value of 100 samples. 
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Figure 6.6: Hadamard Ratios of bases of integers within range [ -999, 999] 

Figure-(6.6) illustrates the average Hadamard Ratios of the bases which were pro­

duced by applying the three lattice reduction algorithms on the Public Key respectively. 

In this case, each element of the Private Key was randomly generated between -999 to 

999. The bigger that the Hadamard Ratio was, the better that the corresponding bases 

were. 

We can see in Figure-(6.6), the bases produced by the lattice reduction algorithms 

were better then the Private Key. There was no difference between the bases produced 
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by the algorithms when the dimension was less and equal than 6. From the dimension 

7, the quality of the bases produced by the OPTIMAL REDUCTION algorithm-(7) is better 

than all other bases. The average Hadamard Ratios of bases of dimension 7 were: 

Je(B) >=:! 

0.5135, 

0.8418, 

0.8661, 

0.8722, 

( the Private Keys ) 

( the LLL-Reduced bases ) 

( the Approximate Optimally-Reduced bases ) 

( the Optimally-Reduced bases) 

This is reasonable because the definition of Optimally-Reduced basis is much stronger 

than the definition of LLL basis, hence the approximation of an Optimally-Reduced ba­

sis is likely better than a LLL-Reduced basis in a high possibility. In most of the GGH 

cryptosystems whose dimensions is larger than 7, the bases produced by the APPROX­

IMATE OPTIMAL REDUCTION algorithm-(5) were better than the bases created by the 

LLL algorithm-(4). However, in dimension 15, the average Hadamard Ratio of the LLL­

Reduced bases was slightly greater than the approximate Optimally-Reduced bases. This 

fact illustrated that the algorithm-(5) was only an approximation of the Optimal Reduc­

tion algorithm, such that it could not guarantee to produce a basis which was better than 

the one produced by the LLL algorithm. 

Figure-(6. 7) illustrates the average Hadamard Ratios of the bases produced by the 

three lattice reduction algorithms. In this case, each integer in the Private Key was ran­

domly generated between -9, 999 to 9, 999. 

Compare with the Hadamard Ratios shown in Figure-(6.6), we can see that the Hadamard 

Ratios of bases generated by the three lattice reduction algorithms were different in the 
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GGH cryptosystem of dimensions larger than 5. That was one dimension less the previ-

ous sample. The average Hadamard Ratios of bases of dimension 6 were: 
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Figure 6.8: Hadamard Ratios of bases of integers within range (-99, 999, 99, 999] 

Now we increased the range of the elements of the Private Key to [-99, 999, 99, 999), 

which was approximately 10 times larger than the bases shown in Figure- (6. 7). The Fig­

ure-(6.8) illustrates the average Hadamard Ratios of the bases produced by the three 
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lattice reduction algorithms. 

In this case, the average Hadamard Ratios differed from the dimension 5. The aver-

age Hadamard Ratios of bases of 5-dimensional GGH cryptosystems were: 

0.4618, 

0.9084, 
Jt'(B) ~ 

0.9084, 

0.9118, 

( the Private Keys ) 

( the LLL-Reduced bases ) 

( the Approximate Optimally-Reduced bases ) 

( the Optimally-Reduced bases ) 

Figure 6.9: Hadamard Ratios of bases of integers within range (-999, 999, 999, 999] 

In the last experiments, we increased the integer range to (-999,999, 999,999]. 
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In this case, the average Hadamard Ratios showed a big difference in the GGH cryp­

tosystems of dimension 4. The average Hadamard Ratios of bases in dimension 4 were: 

Jt'(B) >:: 

0.6749, 

0.9056, 

0.9376, 

0.9376, 

( the Private Keys ) 

( the LLL-Reduced bases ) 

(the Approximate Optimally-Reduced bases) 

( the Optimally-Reduced bases ) 

To sum up, from the four Figures-(6.6), (6. 7), (6.8), (6.9), we can see that the qualities 

of the bases that the three lattice reduction algorithm produced are influenced by two 

aspects: 

1. The dimension of the GGH cryptosystem; 

When the dimension of the GGH cryptosystem increases, the Hadamard Ratios of 

the bases produced by the the three algorithms decreases. 

2. The lengths of vectors in the Private Key; 

Comparing the four figures, we can see that when the lengthes of the vectors in 

the Private Key increases, the qualities of the bases produced by the LLL-( 4) de­

creased. Whereas, the increase of elements in the Private Key did not influence the 

qualities of bases produced by the APPROXIMATE OPTIMALLY-REDUCED algorithm­

(5) and the OPTIMALLY-REDUCED algorithm-(7), which means these two algorithms 

are more stable than the LLL-( 4). 
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6.4 Experimental Results of Attacking GGH 

The main purpose of this thesis is to attack the GGH cryptosystem using lattice reduc­

tion algorithms. We decrypted the ciphertexts using the bases produced by the three 

lattice reduction algorithms and the BABAI's algorithm-Cl). To distinguish the results 

of decryption , the missing ratios of attacking the GGH cryptosystem by the bases were 

accounted. We call it a miss if the basis cannot decrypt the ciphertext correctly. 

In this part, the integer range we chose for the elements in the Private Key V as 

[-999, 999], and forced the Hadamard Ratio Jt'(W) of the Public Key W no larger than 

1.0 x 10-4 . The entries of perturbation vector r were randomly selected between -99 and 

99. We used the same integer range for the plaintext m, which was also randomly gener­

ated. The plaintext m was encrypted according to the Formula-(3.2.1). The ciphertext e 

was decrypted by the Formula-(3.2.2) using the bases produced by the three algorithms. 

The dimension of the GGH cryptosystem varied from 1to20. In each dimension, the en­

cryption and decryption processes ran 100 times to get the total missing ratios for each 

lattice reduction algorithm. 

Figure-(6.10) illustrates the results of attacking the GGH cryptosystem. 

When the dimension was less and equal than 9, the ciphertexts could be decrypted 

by all reduced bases and the Private Key V. For dimension 10, the Private Key started 

missing decryption. In the GGH cryptosystems of dimension 16, the bases produced by 

the LLL REDUCTION algorithm-(4) and the APPROXIMATE OPTIMAL REDUCTION algorithm­

(5) could not always decrypted the ciphertext correctly. For the 17 dimensional GGH 

cryptosystem, the OPTIMAL REDUCTION algorithm-(?) started missing. 

To sum up, we can see from the Figure-(6.10) that generating reasonable orthogonal 
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bases by the lattice reduction algorithms is a possible way to attack the GGH cryptosys­

tem. 
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Chapter7 

Conclusion and Future Works 

In this thesis, we proposed a novel method to attack the GGH cryptosystem. That is, 

using the lattice reduction algorithm to generate a better basis based on the Public Key, 

then decrypted the ciphertext using this new produced basis. 

We first introduced the concepts of lattices and bases in chapter 2. Then the GGH 

cryptosystem was presented in chapter 3. The GGH cryptology is a lattice based cryp­

tosystem, which takes advantages of the hardness of finding the closest vector in a lat­

tice. Other related definitions were introduced along side the GGH cryptosystem, in­

cluding the Hadamard Ratio, the Fundamental Domain and the BABAI's algorithm-(1), 

which was a widely used algorithm in order to discover the closest vector in a lattice. The 

BASIC ENUMERATION algorithm-(3) introduced in chapter 4 is an SVP solving algorithm, 

which compares all candidates within a certain range and finds the shortest vector. 

Chapter 5 is the main part of this thesis. It introduced three lattice reduction algo­

rithms, which are the LLL REDUCTION algorithm-(4), the APPROXIMATE OPTIMAL RE­

DUCTION algorithm-(5), and the OPTIMAL REDUCTION algorithm-(7). The BASIC ENU­

MERATION algorithm-(3) was embedded into the APPROXIMATE OPTIMAL REDUCTION 
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algorithm-(5) and the OPTIMAL REDUCTION algorithm-(7). 

The experimental results were shown in chapter 6. The experimental data we gave 

includes two aspects: the Hadamard Ratios of the produced bases and the missing ratios 

of decryption process including private key. 

7. I Conclusion 

We discussed two other methods for attacking the GGH cryptosystem in chapter 3. The 

first method is invented by Phong N guyen[38]. This method works by carefully choosing 

n linearly independent lattice vectors which form a basis for a sublattice of the original 

lattice. Then it attacks this sublattice to identify the potential properties of the original 

lattice. If the ciphertext fulfils the properties discovered, the plain text may be decrypted, 

as least partial information could be discovered. The Phong Nguyen's GGH attacking 

method can be applied to GGH cryptosystems with dimensions up to 350. 

The second method is introduced by Han, Daewan and Kim, Myung-Hwan and Yearn, 

Yongjin, who construct a Paeng-Jung-Ha cryptosystem[l9]. They use lattice reduction al­

gorithms to attack the encrypted signatures according to this constructed Paeng-]ung­

Ha cryptosystem. In some special situations, the signature encrypted using the GGH 

cryptosystem can be broken by this method. This method can attack the signatures pro­

duced by GGH cryptosystem with dimensions up to 1000. 

However, the correctness of the plaintexts decrypted by the above two GGH cryp­

tosystem attacking methods depend on "special" situations[38, 19]. Therefore, they are 

not suitable for general cases. 

The GGH attacking method introduced in this thesis works in general cases. Taking 

advantages of the lattice reduction algorithms, a more orthogonal basis can be produced 
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from the Public Key, which will be invoked to find the closest vector to the ciphertext. 

We claim that for a GGH cryptosystem of arbitrary Public Key, the basis produced by the 

OPTIMAL REDUCTION algorithm-(7) is good enough to decrypt the ciphertext. 

For a randomly generated Private Key and the Public Key W with a very small Hadamard 

Ratio (Jt'(W) 5 1.0 x 10-4), the experiments showed that the bases produced by the 

three lattice reduction algorithms were even better than the Private Key. The LLL RE­

DUCTION algorithm-(4) produced a LLL-Reduced basis in polynomial time. Therefore, 

it was called as a pre-procedure by the other two lattice reduction algorithms, which are 

the APPROXIMATE OPTIMAL REDUCTION algorithm-(5) and the OPTIMAL REDUCTION 

algorithm-(7). These two algorithms also benefit from SVP solving algorithms, such 

that the bases produced by the two algorithm were better than the LLL-Reduced bases. 

However, a main drawback of the two lattice reduction algorithms that should be 

mentioned is the performance. Their complexities are all exponential ( with respects to 

the dimension of the GGH cryptosystem). In our experiments, it took an hour to gener­

ate an Optimally-Reduced basis for a 24-dimensional GGH cryposystem on average, and 

much longer in a GGH cryptosystem with the dimension large than 24. Therefore, for 

the high-dimensional GGH cryptosystems, attacking using lattice reduction algorithms 

is impractical. 

7 .2 Future Works 

We proposed three lattice reduction algorithms in this thesis. They can produce the 

bases which are better than the Public Key. However, we did not give an accurate com­

plexity analysis for the two lattice reduction algorithms, the APPROXIMATE OPTIMAL 
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REDUCTION algorithm-(5) and the OPTIMAL REDUCTION algorithm-(7). What we men­

tioned was that their complexities were exponential with respect to the dimension of 

the GGH cryptosystem. The performance of them were only estimated according to the 

experiments, hence they were very rough. 

The future tasks includes: 

1. The static analysis of complexities for the two algorithms; 

The further research will analyse the complexity of them. The full complexity anal­

ysis will be related to the dimension of the GGH cryptosystem and the Euclidean 

Lengths of the vectors in the Public Key. 

2. Substitute the Basis Enumeration algorithm-(3) in the two algorithms; 

The SVP solving algorithm we chosen in this thesis is the Basis Enumeration algorithm­

(3), which was embedded in the APPROXIMATE OPTIMAL REDUCTION algorithm-

(5) and the OPTIMAL REDUCTION algorithm-(7). In term of the complexity, the 

Basis Enumeration algorithm-(3) is the major cost of the two algorithms. Its per­

formance is worse than the Kannan's algorithm[25, 26] and the Ajtai's algorithm[2]. 

We will substitute the procedure Basis Enumeration with other SVP solving algo­

rithms to increase the performance of the two lattice reduction algorithms in the 

future. 
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Appendix A 

Experimental Result of Hadamard Ratio 

The Table-(A.3) shows the details numbers of the experiments corresponding to the Fig­

ure-(6.6). 
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Average Hadamard Ratios of Bases 

Dimension Private Key LLLReduced Appr-Optimally Reduced Optimally Reduced 

2 0.8671 0.9987 0.9987 0.9987 

3 0.5092 0.9858 0.9858 0.9858 

4 0.4308 0.9537 0.9537 0.9537 

5 0.5096 0.9727 0.9727 0.9727 

6 0.2583 0.9517 0.9517 0.9517 

7 0.5135 0.8418 0.8661 0.8722 

8 0.4965 0.8765 0.8852 0.8868 

9 0.3587 0.8868 0.8899 0.8926 

10 0.3911 0.8417 0.8594 0.8742 

11 0.4142 0.852 0.8562 0.8618 

12 0.3284 0.7744 0.811 0.8208 

13 0.369 0.7504 0.7829 0.798 

14 0.3621 0.741 0.7653 0.7835 

15 0.3373 0.7869 0.7782 0.8025 

16 0.317 0.6951 0.7385 0.7595 

17 0.3241 0.7081 0.7568 0.768 

18 0.3419 0.5915 0.7026 0.7333 

19 0.3434 0.6667 0.7204 0.7364 

20 0.3539 0.6281 0.7022 0.7249 

Table A.3: Hadamard Ratios of integer range [-999, 999) 
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The Table-(A.4) shows the details numbers of the experiments corresponding to the 

Figure- ( 6. 7). 

Average Hadamard Ratios of Bases 

Dimension Private Key LLLReduced Appr-Optimally Reduced Optimally Reduced 

2 0.5329 0.9959 0.9959 0.9959 

3 0.3443 0.9669 0.9669 0.9669 

4 0.7195 0.9802 0.9802 0.9802 

5 0.5238 0.9365 0.9365 0.9365 

6 0.2679 0.8741 0.8685 0.8788 

7 0.3355 0.8987 0.9108 0.9149 

8 0.3315 0.8526 0.8762 0.8826 

9 0.2906 0.8533 0.8895 0.8901 

10 0.2581 0.8627 0.8723 0.8736 

11 0.3647 0.777 0.8382 0.8405 

12 0.4017 0.8113 0.8138 0.8342 

13 0.3023 0.7608 0.8015 0.8115 

14 0.35 0.7705 0.8062 0.8132 

15 0.3286 0.7007 0.763 0.7724 

16 0.3592 0.719 0.7582 0.7726 

17 0.3321 0.7355 0.7554 0.7785 

18 0.3177 0.6382 0.7114 0.7407 

19 0.3159 0.6219 0.6969 0.7154 

20 0.3297 0.6836 0.7094 0.7373 

Table A.4: Hadamard Ratios of integer range [-9, 999, 9, 999] 
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The Table- (A.5) shows the details numbers of the experiments corresponding to the 

Figure-(6.8). 

Average Hadamard Ratios of Bases 

Dimension Private Key LLLReduced Appr-Optimally Reduced Optimally Reduced 

2 0.422 0.9968 0.9968 0.9968 

3 0.3351 0.9945 0.9945 0.9945 

4 0.4177 0.9894 0.9894 0.9894 

5 0.4618 0.9084 0.9084 0.9118 

6 0.3352 0.9377 0.9377 0.9412 

7 0.3506 0.864 0.8904 0.8907 

8 0.465 0.8702 0.8769 0.8783 

9 0.3782 0.8414 0.8646 0.8724 

10 0.4159 0.8305 0.8449 0.8532 

11 0.4131 0.8383 0.8525 0.8583 

12 0.417 0.7963 0.8385 0.8507 

13 0.3868 0.7767 0.8138 0.8166 

14 0.3617 0.7693 0.7869 0.802 

15 0.3592 0.7084 0.7622 0.7776 

16 0.3334 0.7114 0.7559 0.7801 

17 0.3561 0.7065 0.7442 0.7677 

18 0.3953 0.6926 0.7478 0.7627 

19 0.3588 0.6855 0.7227 0.7427 

20 0.347 0.6832 0.7053 0.7308 

Table A.5: Hadamard Ratios of integer range [-99, 999, 99, 999] 
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The Table-(A.6) shows the details numbers of the experiments corresponding to the 

Figure-(6.9). 

Average Hadamard Ratios of Bases 

Dimension Private Key LLLReduced Appr-Optimally Reduced Optimally Reduced 

2 0.604 0.9977 0.9977 0.9977 

3 0.8162 0.9563 0.9563 0.9563 

4 0.6749 0.9056 0.9376 0.9376 

5 0.6562 0.9735 0.9735 0.9735 

6 0.2755 0.9427 0.9427 0.9427 

7 0.4378 0.9383 0.9327 0.9383 

8 0.347 0.8926 0.9004 0.9004 

9 0.4071 0.871 0.8799 0.882 

10 0.3043 0.8348 0.8386 0.8612 

11 0.3914 0.81 0.8431 0.8451 

12 0.3449 0.8397 0.8397 0.8433 

13 0.2668 0.7644 0.7714 0.787 

14 0.365 0.7792 0.7892 0.8061 

15 0.3951 0.7805 0.7767 0.7951 

16 0.3695 0.7082 0.7764 0.7924 

17 0.3302 0.7219 0.7751 0.7873 

18 0.3386 0.6676 0.7186 0.7387 

19 0.3117 0.6702 0.7144 0.7359 

20 0.3241 0.6504 0.6981 0.7198 

Table A.6: Hadamard Ratios of integer range (-999, 999, 999, 999] 
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