N.M.R. STUDIES IN STRONG ACID SOLVENTS

.

.

.

N.M.R. STUDIES OF PROTONATION AND HYDROGEN BONDING

IN STRONG ACID SOLVENTS

by

THOMAS BIRCHALL, A.R.I.C.

.

A Thesis

Submitted to the Faculty of Graduate Studies

in Partial Fulfillment of the Requirements

for the Degree

Doctor of Philosophy

McMaster University

August 1963

DOCTOR OF PHILOSOPHY (1963) (Chemistry) McMASTER UNIVERSITY Hamilton, Ontario.

TITLE: N.m.r. Studies of Protonation and Hydrogen Bonding in Strong Acid Solvents

AUTHOR: Thomas Birchall, A.R.I.C.

SUPERVISOR: Professor R.J. Gillespie -

NUMBER OF PAGES: xiii, 231

SCOPE AND CONTENTS:

The protonation for several classes of weak bases has been studied by n.m.r. techniques and the structure of the conjugate acids determined. The rates of proton transfer and the activation energies for some of the processes have been calculated and in the cases of the methylbenzene-HSO₃F systems the mechanism of the proton transfer process has been elucidated.

The acidity function (H_0) for the HSO₃F/SbF₅ system has been redetermined and extended to higher concentrations of SbF₅. The application of some n.m.r. methods to the measurement of H₀ is discussed.

The behaviour of the n.m.r. spectra of sulphuric and fluorosulphuric acids upon the addition of electrolytes has been studied and the results interpreted.

ACKNOWLEDGEMENTS

The author wishes to sincerely thank Dr. R.J. Gillespie for suggesting the problem and under whose supervision the work was done.

Thanks are also due to Mr. J. Bacon for maintainance of the n.m.r. equipment.

Finally the author wishes to thank The Dow Chemical Company of Canada Ltd. for financial assistance during the period 1962-1963.

TABLE OF CONTENTS

				Page
CHAPTER	I:	Intro	luction	l
		(1)	Historical	1
		(2)	Objects of the present work	16
CHAPTER	II:	Experi	imental	17
		(1)	Preparation and purification of meterials.	. 17
		(2)	Nuclear magnetic resonance spectra	25
		(3)	Ultra-violet and visible spectra	27
CHAPTER	III:	Proto: sulpho	nation of amides, thioamides, ureas, and onamides	28
		(1)	Introduction	28
		(2)	Amides	33
		(3)	Thioamides	51
		(4)	Ureas	57
		(5)	Sulphonamides	, 66
CHAPTER	IV:	Proto fluor	nation of methylbenzenes and anisole in osulphuric acid	, 71
		(1)	Introduction	. 71
		(2)	Spectra of hydrocarbon conjugate acids	73
		(3)	Rates of proton exchange	. 85
		(4)	Activation energies	, 100
		(5)	Discussion	10 6

			Page
CHAPTER V:	Proto	nation of oxygen bases	109
	(1)	Introduction	109
	(2)	Nuclear magnetic resonance spectra of oxygen bases in fluorosulphuric acid	110
	(3)	Rates of proton exchange and activation energies	122
CHAPTER VI:	Proton arsen:	nation of nitrogen, phosphorus, and ic bases	131
	(1)	Introduction	131
	(2)	Protonation of nitrogen bases	133
	(3)	Protonation of triphenylphosphine and triphenylarsine	152
CHAPTER VII:	Deter	mination of pK_{BH} and H_o values	154
	(1)	Introduction	1 54
	(2)	Measurement of ionisation ratios, $\rm pK_{BH}^{+},$ and $\rm H_{O}$ by the spectrophotometric method .	156
	(3)	Correlation of the n.m.r. data on anilines with H _o	176
	(4)	Application of F^{19} chemical shifts to the measurement of $H_0 \cdot \cdot$	180
	(5)	The correlation of rates of proton exchange with H _o	1 89
	(6)	Discussion	195
CHAPTER VIII:	Effec of H ₂ S	ts of electrolytes on the chemical shifts 50_{μ} and $HSO_{3}F$	196
	(1)	Introduction	196
	(2)	Solutions of MHSO ₁ in H ₂ SO ₁	199
	(3)	Solutions of MSO3F in HSO3F · · · · · ·	215
REFERENCES			225

LIST OF TABLES

Table		Page
I	Chemical shifts of amides in fluorosulphuric acid	42
II	Chemical shifts for solutions of thioamides	54
III	Chemical shifts for solutions of ureas and thioureas	61
IV	Chemical shifts for sulphamide and some sulphonamides in fluorosulphuric acid	67
V	Chemical shifts of methylbenzenes and anisole in fluorosulphuric acid	77
VI	Line widths, relaxation times, and rate constants for solutions of mesitylene in fluorosulphuric acid	90
VII	Line widths, relaxation times, and rate constants for solutions of durene in fluorosulphuric acid	92
VIII	Line widths, relaxation times, and rate constants for solutions of hexamethylbenzene in fluorosulphuric acid	94
IX	Line widths, relaxation times, and rate constants for solutions of pentamethylbenzene in fluorosulphuric acid	95
x	Line widths, relaxation times, and rate constants for solutions of <u>m</u> -xylene in fluorosulphuric acid	96
XI	Rate constants for proton exchange at -20 ⁰	97
XII	Broadening of the solvent line with increasing temperature	98
XIII	Activation energies (E) and frequency factors (k _o) for methylbenzenes in fluorosulphuric acid	101.
VIX	Chemical shifts of the conjugate acids of para- substituted acetophenones	117
XV	Chemical shifts of $=OH^+$, pK_{BH}^+ , and \checkmark^+ values for para-substituted acetophenones	117

.

Table		Page
XVI	Chemical shifts of the conjugate acids of some cxygen bases	118
XVII	Chemical shifts of the conjugate acids of some oxygen bases	119
XVIII	Line widths and exchange rates for benzophenone and benzoic acid solutions	125
XIX	Line widths, relaxation times, and exchange rates for para-substituted acetophenones in fluorosulphuric acid	126
XX	Rate data for solutions of ketones in fluorosulphuric acid	128
XXI	Chemical shifts of p-nitroaniline in H ₂ O/H ₂ SO ₄ mixtures	138
XXII	Chemical shifts of p-nitroaniline in $CF_3COOH/H_2SO_{l_1}$ solutions	139
XXIII	Chemical shifts of p-nitroaniline in CH_3NO_2/H_2SO_4 solutions	140
XXIV	Chemical shifts of l_1 -chloro-2-nitroaniline in CF ₃ COOH/H ₂ SO _{l4} solutions	171
XXV	Chemical shifts of 2-chloro-4-nitroaniline in CF ₃ COOH/H ₂ SO ₄ solutions	142
XXVI	Chemical shifts of N-methyl-2-chloro-4-nitroaniline in H ₂ O/H ₂ SO ₄ solutions	1)13
XXVII	Chemical shifts of N-methyl-2-chlorc-4-nitroaniline in CF3COOH/H2SO4 solutions	143
XXVIII	Chemical shifts of N-methyl-4-chloro-2-nitroaniline in H ₂ O/H ₂ SO ₄ solutions	յիլ
XXIX	Chemical shifts of N-methyl-4-chloro-2-nitrosniline in CF ₃ COOH/H ₂ SO ₄ solutions	145
XXX	Chemical shifts of N-methyl-2,4-dinitroaniline in H ₂ SO ₄ /HSO ₃ F solutions	146

Table		Page
XXXI	Chemical shifts of N,N-dimethyl-2,4-dinitroaniline in CF3COOH/H2SO4 solutions	1 47
XXXII	Chemical shifts of N,N-dimethyl-2,4,6-trinitroaniline in H ₂ SO ₄ /HSO ₃ F solutions	148
XXXIII	Chemical shifts of N,N-dimethyl-2,4,6-trinitroaniline in CF ₃ COOH/H ₂ SO ₄ solutions	1 <u>1</u> 48
XXXIV	Chemical shifts of pyridine in acid solutions	1 49
XXXV	Chemical shifts of triphenylphosphine in H ₂ O/H ₂ SO _{l4} solutions	153
XXXVI	Chemical shifts of triphenylphosphine in CH3NO2/H2SO4 solutions	153
XXXVII	Extinction coefficients of 2,4-dinitrotoluene in fluorosulphuric acid solutions	160
XXXVIII	Extinction coefficients of 1-fluoro-2,4-dinitrobenzene in fluorosulphuric acid solutions	161
XXXIX	Extinction coefficients of 1- chloro-2,4-dinitrobenzene in fluorosulphuric acid solutions	163
XL	Extinction coefficients of 2,1,6-trinitrotoluene in fluorosulphuric acid solutions	1 6lı
XLI	Extinction coefficients of 1,3,5-trinitrobenzene in fluorosulphuric acid solutions	166
XLII	Indicator ratios of 2,4-dinitrotoluene in fluoro- sulphuric acid solutions	167
XLIII	Indicator ratios of 1-fluoro-2,4-dinitrobenzene in fluorosulphuric acid solutions	16 7
XLIV	Indicator ratios of 1-chloro-2,4-dinitrobenzene in fluorosulphuric acid solutions	16 8
XLV	Indicator ratios of 2,4,6-trinitrotoluene in fluorosulphuric acid solutions	16 8
XIVI	Indicator ratios of 1,3,5-trinitrobenzene in fluorosulphuric acid solutions	169

Table		Page
XIVII	Solutions of anilines: Relationship between $pK_{\rm BH}\text{+}$ and $H_{\scriptstyle O}\text{+}$	176
XIVIII	H_0 values at inflection points of curves in Fig. 43	177
XLIX	F ¹⁹ chemical shifts of l-fluoro-4-nitrobenzene in oleum solutions	184
L	F19 chemical shifts of 1-fluoro-2,4-dinitrobenzene in oleum solutions	185
LI	F ¹⁹ chemical shifts of fluoronitrobenzenes in fluorosulphuric acid solutions	186
LII	Rate data for solutions of acetone in fluorosulphuric acid containing 6 mole % SbF5	191
LIII	Rate data for solutions of acetone (2.4-3.05 mole %) in fluorosulphuric acid containing varying amounts of SbF ₅	1 91
LIV	Solutions of MHSO ₁ in H ₂ SO ₁ : Proton chemical shifts	2 0 5
LV	Solutions of MHSO ₄ in H ₂ SO ₄ : Ratio 5/p	211
IVI	Solutions of MSO ₃ F in HSO ₃ F: H ¹ and F ¹⁹ chemical shifts	218
LVII	Solutions of MSO3F in HSO3F: Ratio 6/x	220

LIST OF FIGURES

Fig.		Page
1.	Spin arrangements of methylene group protons	7
2.	Fluorosulphuric acid distillation apparatus	24
3.	N.m.r. spectrum of a solution of acetamide in fluorosulphuric acid at 25°	<u>}</u> ,
4.	N.m.r. spectrum of a solution of acetamide in fluorosulphuric acid at -80°	45
5.	N.m.r. spectrum of a solution of acetamide in fluorosulphuric acid at -92°	4 6
6.	N.m.r. spectrum of a solution of N.N-dimethyl- acetamide in fluorosulphuric acid	47
7.	N.m.r. spectrum of (a) liquid formamide and (b,c,d) a solution of formamide in fluorosulphuric acid	48
8.	N.m.r. spectrum of a solution of N,N-dimethyl- formamide in fluorosulphuric acid at 25°	49
9.	N.m.r. spectrum of a solution of N,N-dimethyl- formamide in fluorosulphuric acid at -80°	50
10.	N.m.r. spectrum of thioacetamide in fluorc- sulphuric acid	55
11.	N.m.r. spectrum of thicacetanilide in fluorosulphuric acid	56
12.	N.m.r. spectrum of N-methylthicurea in triflucracetic acid	63
13 8.	N.m.r. spectrum cf N-methylthicurea in fluorosulphuric acid	64
13b.	N.m.r. spectrum of a solution of N-methylthicurea in fluorosulphuric acid containing 4.47 mole % antimony pentafluoride	65

Fig.		Page
14.	N.m.r. spectrum of N-methyl-p-toluenesulphonamide in fluorosulphuric acid	68
15.	N.m.r. spectrum of N,N-dimethyl-p-toluenesulphon- amide in fluorosulphuric acid	69
16.	N.m.r. spectrum of sulphamide in fluorosulphuric acid	70
17.	N.m.r. spectrum of a solution of mesitylene (6.16 mole %) in fluorosulphuric acid	79
18.	N.m.r. spectrum of a solution of durene (1.12 mole %) in fluorosulphuric acid	80
19.	N.m.r. spectrum of pentamethylbenzene (2.82 mole %) in fluorosulphuric acid	81
20.	N.m.r. spectrum of a solution of hexamethylbenzene (2.7 mole %) in fluorosulphuric acid	82
21.	N.m.r. spectrum of a solution of <u>m</u> -xylene in fluorosulphuric acid containing 12 mole % antimony pentafluoride	83
22.	N.m.r. spectra of a solution of anisole in fluorosulphuric acid	84
23.	Solutions of mesitylene in fluorosulphuric acid: Line widths of CH and CH ₂ peaks	99
24.	Solutions of mesitylene in fluorosulphuric acid: Log k against 1/T	102
25.	Solutions of durene in fluorosulphuric acid: Log k against 1/T	103
26.	Solutions of hexamethylbenzene in fluorosulphuric acid: Log k against 1/T	10 4
27.	Solutions of pentamethylbenzene (1,2) and m-xylene (3) in fluorosulphuric acid: Log k against 1/T	1 0 5
28.	Solutions of acetophenones in fluorosulphuric acid: Aromatic proton spectra	120
29.	Solutions of acetophenones in fluorosulphuric acid: =OH ⁺ proton chemical shifts against pK _{BH} +.	121

.

Fig.		Page
30.	Solutions of acetophenones in fluorosulphuric acid: =OH ⁺ proton chemical shifts against σ +	121
31.	Solutions of benzophenone and benzoic acid in fluorosulphuric acid: Log k against 1/T	129
32.	Solutions of acetophenones in fluorosulphuric acid: Log k against 1/T	130
33.	Solutions of anilines: NH ⁺ proton chemical shifts against concentration of H ₂ SO ₄ or HSO ₃ F	150
34.	Ring proton spectra of pyridine in solutions of varying acidity	151
35.	Solutions of 2,4-dinitrotoluene: Absorption spectra	170
36.	Solutions of 1-fluoro-2,4-dinitrobenzene: Absorption spectra	171
37.	Solutions of 1-chloro-2,b-dinitrobenzene: Absorption spectra	171
38.	Solutions of 2,4,6-trinitrotoluene: Absorption spectra	172
39.	Solutions of 1,3,5-trinitrobenzene: Absorption spectra	172
40.	Solutions of nitrobenzenes in H ₂ SO ₄ /HSO ₃ F: Ionisation ratios	173
11.	Solutions of nitrobenzenes in KSO3F/HSO3F and SbF5/HSO3F: Ionisation ratios	17 4
42.	H _o for solutions of KSO3F and SbF5 in fluoro- sulphuric acid	175
43.	Solutions of N-methylanilines: N-CH ₃ line widths against H _o	179
44.	Solutions of fluoronitrobenzenes in H_2SO_4/SO_3 and H_2SO_4/HSO_3F : F ¹⁹ chemical shifts against H_0	187

Fig.		Page
45.	Solutions of 1-fluoro-2,4-dinitrobenzene in HSO ₃ F/SbF ₅ : F ¹⁹ chemical shifts against mole % SbF ₅	188
46.	Solutions of acetone on SbF5/HSO3F (varying SbF5 conc. 2.4-3.05 mole % acetone): Log k against 1/T	192
47•	Solutions of acetone in SbF5/HSO3F (varying acetone conc. 6 mole % SbF5): Log k against 1/T	193
48.	Solutions of acetone in SbF5/HSO3F: Log k00 against mole % acetone and mole % SbF5	194
49.	Solutions of MHSO _{l,} in H ₂ SO _l : Proton chemical shifts	212
50.	Solutions of MHSO ₄ in H ₂ SO ₄ : Proton chemical shifts	213
51.	Solutions of M(HSO ₄) ₂ in H ₂ SO ₄ : Proton chemical shifts	21)4
52.	Solutions of MSO ₃ F in HSO ₃ F: Proton chemical shifts	221
53.	Solutions of M(SO ₃ F) ₂ in HSO ₃ F: Proton chemical shifts	222
54.	Solutions of MSO ₃ F in HSO ₃ F: F ¹⁹ chemical shifts	223
55.	Solutions of M(SO ₃ F) ₂ in HSO ₃ F: F ¹⁹ chemical shifts	224

xiii

CHAPTER I

INTRODUCTION

(1) HISTORICAL

(a) <u>General</u>

This thesis describes an investigation of the behaviour of acids and bases in solution by means of nuclear magnetic resonance spectroscopy. This technique can be used particularly to study the rates of proton exchange between acids and bases, and the nature and relative amounts of the species present in acid-base equilibria.

In nuclear magnetic resonance spectroscopy, a nucleus is used as a magnetic probe to investigate local magnetic effects inside a molecular system. The local magnetic field near a particular nucleus depends on its chemical environment and is determined by a number of factors including the polarisation of remote parts of the sample, magnetic moments of neighbouring nuclei, and intramolecular effects due to other nuclei and electrons in the same molecule. This form of spectroscopy is therefore of great value in the investigation of molecular structure and environmental effects and its application to many chemical problems has followed a rapidly upon the development and refinement of experimental techniques.

(b) The Nuclear Magnetic Resonance Experiment.

If a nucleus with a magnetic moment is placed in a uniform magnetic field H'_0 in the z direction, its energy is $-\mu_z H'_0$, where μ_z is the component of the nuclear moment in the z direction. For a nucleus of

spin I there are 2I + 1 allowed orientations of the magnetic moment with energies $-\mu H'_0$, $-\underline{I} - \underline{1} \mu H'_0$,, $\underline{I} - \underline{1} \mu H'_0$, $\mu H'_0$ (1.1)

These energy levels are equally spaced and separated by $\mu H'_0$. The basis of the n.m.r. experiment is to induce transitions between these levels. This is done by irradiating the nuclear magnet situated in a magnetic field, with electromagnetic radiation of the appropriate frequency. Only transitions between neighbouring levels are allowed by the selection rules, hence the frequency ψ that will cause transitions is given by

$$h \mathbf{v} = \frac{\mu H_0}{I}$$
(1.2)

where h is Planck's constant. Equation (1.2) is known as the resonance condition and is often written in the form

$$\mathbf{v} = \frac{\mathbf{\lambda}_{\text{Ho}}}{2\pi} \tag{1.3}$$

where δ is the gyromagnetic ratio. Thus for a given magnetic field H'_{0} , and provided that all environmental effects are ignored, transitions are observed at a characteristic frequency for each species of nucleus, that is proportional to both H'_{0} and δ .

(c) The Chemical Shift

The nuclear magnetic resonance frequency of a particular nucleus actually occurs at different values of a given applied magnetic field, according to the nature of the chemical environment of the nucleus. This arises from the fact that when an atom or molecule is placed in a magnetic field, of strength H'_0 , it acquires a diamagnetic moment by virtue of the induced orbital motions of its electrons. These moving electrons constitute effective currents within the molecule thereby producing a secondary magnetic field which acts in opposition to the applied field: the magnitude of this secondary field is proportional to the applied field. Thus the magnetic field at the site of the nucleus is given by

$$H = H_{o} (1 - \sigma)$$
 (1.)

where σ is the screening constant. The value of σ depends on the chemical environment of the nucleus under consideration.

Nuclei of the same kind in chemically non-equivalent positions in a molecule i.e. with different screening constants, resonate at different applied fields, hence they give signals in different parts of the spectrum. The displacement between these signals is referred to as a chemical shift. Such shifts are measured from some reference signal: proton resonances are generally quoted with respect to the single tetramethylsilane resonance. Since the chemical shift, measured in cycles per sec (c.p.s.), is proportional to the applied field, it is convenient to use the nondimensional unit, δ , defined by

where δ is in parts per million (p.p.m.), and H and Hr are the resonance fields of the sample being measured and that of a reference substance. Since the resonance frequency and applied field are proportional (1.3), an equivalent expression for the chemical shift is

$$\mathbf{O} = \frac{\mathbf{v} - \mathbf{v}_{\mathbf{r}}}{\mathbf{v}_{\mathbf{r}}} \times 10^6 \tag{1.6}$$

which can be replaced by

$$\delta = \frac{\sqrt{-v_r} \times 10^6}{\text{oscillator frequency in Mc.p.s.}}$$
(1.7)

since v and vr differ only very slightly from the oscillator frequency. The spectrum of ethyl alcohol, under conditions of low resolution,

consists of three separate signals corresponding to the three different types of hydrogen atoms present. As a consequence of the fact that the area of a peak depends only upon the number of nuclei from which the signal originates, and since the peaks have relative areas of 1: 2: 3, it is possible to assign the three peaks in ethyl alcohol to the OH, CH₂ and CH₃ groups.

Different functional groups have chemical shifts which are characteristic of the group and which vary only over a limited range for each group. Thus the positions of resonance lines used in conjunction with area measurements can be used to identify the presence of functional groups and the relative numbers of nuclei in each environment in a liquid or gaseous system.

(d) Spin-Spin Interactions

Under high resolution conditions the spectrum of ethyl alcohol, containing a small amount of acid, contains more lines than can be accounted for on the basis of chemical shift considerations. This is because the nuclei in one position can affect the nuclei at another position by electron-coupled spin-spin interaction. The spins of the two protons of the methylene group may be combined in four possible ways as shown in Fig. 1.

		Total spin
1	↑	+ 1
1	Ļ	0
ł	1	0
ţ	↓	- 1

Fig. 1 SPIN ARRANGEMENTS OF METHYLENE GROUP PROTONS

Each possible value of the total spin produces a different magnetic field at the methyl protons, and consequently the methyl proton resonance is split into a triplet whose components have the relative intensities 1: 2: 1 (there is twice the probability for the total spin to be zero). In a similar manner the spins of the methyl group can combine to give a total spin of $+\frac{3}{2}$, $+\frac{1}{2}$, $-\frac{1}{2}$, or $-\frac{3}{2}$ with relative probabilities of 1: 3: 3: 1, hence the signal from the methylene group is a quartet with these relative intensities. The separation (in c.p.s.) between the components of a multiplet is a measure of the spin-spin coupling constant J, which is independent of the applied magnetic field.

(e) Exchange Effects

The n.m.r. spectrum may be modified if the nuclei being examined are taking part in a rate process e.g. exchange between different chemical positions. If the exchange is rapid a coalescence of some signals will be observed in accordance with the equation.

$$\tau \Delta \mathbf{v} \approx \frac{1}{2\pi} \tag{1.8}$$

where γ is the smallest time for which the two separate states can be distinguished and Δv is the separation of the corresponding resonance lines. Thus when the exchange is sufficiently rapid, the lifetimes of the states become less than this critical value, and the signals coalesce. The simplest exchange process is that in which a particular type of nucleus is moving from site A to site B: if the exchange rate is slow two signals are observed; if it is rapid, only one signal is observed in an appropriately averaged position. The theory for such an exchange process has been given by Gutowsky et al, and by McConnell .

The Bloch equations apply to the macroscopic moment M when all the nuclei are acted upon by the same field Ho. Consider two non-equivalent nuclei A and B with a chemical shift given by $\frac{W_A - W_B}{2}$ c.p.s. where

 $\omega = 2\pi v = X$ Ho is the Larmor frequency. Under conditions of no exchange between the positions A and B, there will be two independent macroscopic moments, with complex G components obeying equations

$$\frac{d_{G_A}}{dt} + \propto A^G A = -1 + H_1 M_{OA}$$
(1.9)

$$\frac{d_{GB}}{dt} + \propto B^{G}B = -i \ \ H_{1}M_{OB}$$
(1.10)

where H_1 is the rotating field perpendicular to Ho, Mo is equilibrium value of the macroscopic moment, which is given by Mo = χ oHo (χ o being the volume magnetic susceptibility), and \propto_A and \propto_B are complex quantities defined by

$$\propto_{A} = \frac{1}{T_{2A}} - i(\omega_{A} - \omega)$$
(1.11)

$$\approx_{\mathcal{B}} = \frac{1}{T_{\mathcal{A}\mathcal{B}}} - i(\omega_{\mathcal{B}} - \omega)$$
 (1.12)

 T_{2A} and T_{2B} being the transverse relaxation times of nuclei in the two positions in the absence of exchange.

By allowing for the exchange of nuclei between positions A and B the following expression for the total complex moment is obtained $G = G_A + G_B = -i \bigvee H_1 M_0 \underbrace{\gamma_A + \gamma_B + \gamma_A \gamma_B}_{(1 + \alpha_A \gamma_A)(1 + \alpha_B \gamma_B)} = (1.13)$ where γ_A and γ_B are the mean lifetimes for the nucleus on sites A and B, and P_A and P_B are the fractional populations of sites A and B. These are related by the equations

The intensity of absorption at frequency is then proportional to the imaginary part of G in equation (1.13). Simplified versions of these equations can be used, to calculate rates of exchange, under certain special conditions, such as those of very slow or very rapid exchange.

Collapse of spin-spin multiplets can also be caused by exchange. The OH resonance of ethyl alcohol, containing a trace of acid, is observed as a single line, instead of the triplet that might be expected as a result of spin-spin coupling with the methylene protons, because the acid catalysed exchange of protons between OH groups causes the triplet to collapse.

The rates of proton exchange can be followed by calculation of theoretical line shapes and comparing these with shapes obtained experimentally. This was first developed by Arnold for exchange between water and alcohols in the presence of small amounts of acid or base. Meiboom 5,6and co-workers have studied the exchange processes occurring in water at different pH values as well as the processes involved in aqueous alcohol systems. The barrier and rate of rotation about the C-N bond in amides, has been calculated from the collapse of the $N(CH_3)_2$ doublet with increasing temperature, by application of the equation for inter-7mediate exchange rates $\frac{7}{2}$

(f) Applications of Nuclear Magnetic Resonance to Acid-Base Equilibria and Rates of Proton Exchange

Equilibria between acids and bases in solution can be studied conveniently by n.m.r., particularly with regard to the site from which a proton is removed or to which it becomes attached, and the rate of proton exchange. For example, the rate of proton extraction from

substituted acetylenes in basic solution has been studied by n.m.r. techniques . By observing the changes in the n.m.r. spectrum of aqueous solutions of methylammonium chloride with pH, Grunwald, Loewenstein, and Meiboom were able to obtain quantitative information about the protolysis 10 rate and mechanism. These workers also studied the protolysis of diand trimethylamine in aqueous solution. Loewenstein and Meiboom have studied di-and trimethylamine solutions and find that the rate of exchange via the solvent increases with increasing methyl substitution. Activation energies of proton transfer reactions in solutions of NH_{li}^+ and $MeNH_3^+$ have 13,14 12 Japanese workers have studied the protonation also been obtained of anilines and pyridine in acetic acid solution. Rapid proton exchange between the base and acid was observed at room temperature. Exchange rates and activation energies for the exchange of N,N-dimethylanilinium ion in trifluoracetic acid solutions have been calculated from the collapse, with increasing temperature, of the methyl doublet due to H-N-CH₃ spin-spin coupling. Protonation of pyridine in trifluoracetic 16 acid has been studied by other workers

A slow proton exchange was postulated to account for the broadness 17 of the β and δ protons in the ring. Danyluk and Schneider found that the n.m.r. spectra of solutions of azulene in CCl₄ and CF₃COOH differed considerably in that the CF₃COOH solution contained an extra peak. This peak, at much higher field than the signal from the aromatic protons of azulene, must be due to a "methylene" group resulting from protonation of the azulene. The site of protonation was deduced from a consideration of the other features of the spectrum. 18-20

MacLean and co-workers have also observed the appearance of

a "methylene" peak in the spectra of protonated polycyclic aromatic hydrocarbons and polymethyl benzenes. Strongly acidic solvents and in some cases low temperatures were necessary for the observation of the 19 methylene peak. corrected the observed chemical shifts These workers obtained for the conjugate acids for the effect of ring currents, and compared the shifts with localised charge densities predicted on the basis of molecular orbital theories. From their work on methylbenzenes 20 in HF/BF3 solution, MacLean and Mackor have proposed mechanisms for These will be discussed in detail in Chapter IV. proton exchange. have also shown that anisole is protonated on a ring These workers carbon atom rather than the oxygen atom.

The question of O- or N- protonation in amides has been an open 21 Jones and Katritzky one for many years. have recently reviewed the evidence, including the results of n.m.r. studies, that show that protonation occurs predominantly on oxygen. It has been pointed out 22 however that the n.m.r. evidence is rather indirect as no signal from the proton supposedly captured by the oxygen atom on the O- protonated form had been observed in any case. It is shown in this thesis that a separate signal for the OH peak of protonated amides can be obtained by cooling fluorosulphuric acid solutions to low temperatures so that the lifetime of the captured proton becomes long enough for it to give rise 23 to a separate peak in the n.m.r. spectrum These results are . discussed in Chapter III. A low temperature n.m.r. study in HF/BF2 2Ц solution of water, ethyl alcohol, and acetone enabled MacLean and Mackor to obtain the n.m.r. spectra of their protonated forms. Luz and Silver have followed the rate and mechanism of proton exchange for the

Me₃PH ion in aqueous solution by observation of the P-H and CH₃-H spinspin coupling patterns and have calculated a pK_{BH} of 8.80 for Me₃PH.

Edward et al. have attempted to use n.m.r. to measure the extent of protonation of oxygen bases having ethyl groups attached to the site 20 of protonation. MacLean and Mackor were able to observe peaks due to both the protonated and unprotonated forms of some methylbenzenes in solutions of HF/BF₃ under suitable conditions. By measuring the areas of these peaks the extent of protonation was estimated.

(g) The Hammett Acidity Function Ho

The extent of ionisation of acids and bases depends on the solvent. In any protonic solvent the strongest acid and base that can exist in that solvent are the characteristic cation and anion produced in the autoprotolysis of the solvent. In water acids such as HCl, HNO₃, $H_2SO_{l_1}$, and CH₃COOH ionise completely to give H₃O. Thus it is not possible to detect any differences in the intrinsic strengths of these acids. Indeed the strongest acid that can exist in aqueous solution is the hydronium ion H₃O. In order to differentiate between the relative strengths of acids such as HCl, HNO₃ and HClO_{l1} it is necessary to use a less basic solvent than water. If sulphuric acid is used as the solvent only HClO_{l1} of the acids mentioned above shows any acid properties. It ionises according to equation (1.15)

$$HClO_{1} + H_{2}SO_{1} = H_{3}SO_{1} + ClO_{1}$$
 (1.15)

Sulphuric acid undergoes autoprotolysis according to

$$2H_2SO_{l_1} = H_3SO_{l_1} + HSO_{l_1}$$
(1.16)

and an acid may be defined as any compound that produces H₃SO₁, ions and

* base as one which produces HSO_{l_1} . HSO_3F and $HB(HSO_{l_1})_{l_1}$ are two substances which ionise to produce $H_3SO_{l_1}^+$ ions in sulphuric acid solution.

In a similar way HSO₃F undergoes autoprotolysis to give $\frac{1}{42}SO_3F$ and SO₃F and substances which produce H_2SO_3F ions, such as SbF₅, are auids, and those which produce $SO_3\tilde{F}$ ions are bases e.g. KSO₃F. By usesuring the extents of ionisation in a suitable acidic or basic solvent an estimate of the relative strengths of acids and bases can be obtained. However it is difficult to compare the results of an investigation in one solvent system with those in another solvent system. The best method for comparing acid strengths in an absolute manner would be to measure the hydrogen ion activities, $a_{\rm H}^+$. This is not possible but it was shown by Hammett that a related quantity can be conveniently used.

The dammett acidity function, Ho, is a measure of the tendancy of a medium to transfer a proton to a base.

From the equation

$$BH^{\dagger} \Rightarrow B + H^{\dagger}$$
 (1.17)

the dissociation constant of the conjugate acid BH^{τ} is given by

$$K_{BH}^{+} = \frac{C_B \cdot C_{H}^{+}}{C_{BH}^{+}} \cdot \frac{f_B \cdot f_{H}^{+}}{f_{BH}^{+}}$$

$$= a_{H}^{+} \cdot \frac{C_B}{C_{BH}^{+}} \cdot \frac{f_B}{f_{BH}^{+}} \quad (1.18)$$

where a 14 the activity, C is the molar concentration and f is the activity coefficient. The assumption is then made that the ratio f_B is $\overline{f_{BH}}^+$

independent of B and its concentration, which is always small.

Hence

$$\mathbf{h}_{o} = \mathbf{K}_{BH}^{+} \cdot \frac{\mathbf{C}_{BH}^{+}}{\mathbf{C}_{B}} = \mathbf{e}_{H}^{+} \cdot \frac{\mathbf{f}_{B}}{\mathbf{f}_{BH}^{+}}$$
(1.19)

is a property of the solution and

$$H_{o} = -\log ho = pK_{BH}^{+} -\log \frac{C_{BH}^{+}}{C_{B_{o}}}$$
(1.20)

The measurement of Ho then resolves itself into the measurement of the ratio of the concentration of the protonated form to the concentration of the unprotonated form of a base of known pK_{BH}^+ dissolved in the solvent being studied. The amounts of BH⁺ and B have generally been measured by means of absorption spectra using bases (indicators) that have unprotonated forms. If the extinction coefficients of the fully ionised base ξ ion, and of the unionised form ξ B are known at a particular wave-length, then for a solution in which the base is incompletely ionised

$$\frac{C_{BH^+}}{C_B} = \frac{\xi \text{ ion } -\xi}{\xi - \xi_B}$$
(1.21)

where ξ is the molar extinction coefficient of the base at the same wavelength.

A plot of log
$$\frac{C_{BH}}{C_B}$$
 against acid composition of the medium, for
each base, gives a series of curves which overlap and are roughly parallel
over a limited acid concentration range. By choosing an acid concentration
where the overlap between two bases is good, and knowing the pK_{BH} of one
base, the pK_{BH} of the other base can be calculated from (1.22).

$$H_{o} = pK_{B'H} + -\log \frac{C_{B'H}}{C_{B'}} = pK_{B''H} + -\log \frac{C_{B''H}}{C_{B''}}$$
(1.22)

In this manner it is possible to measure the acidity of solutions of

progressively higher acidity by the use of a series of suitable indicators of decreasing basicity.

(h) Acidity Functions and Nuclear Magnetic Resonance

Values of pK_{BH}^{+} for weak bases have generally been determined 29 26by Hammett's spectrophotometric method . Edward et al. have used the chemical shift difference between the CH₃ and CH₂ protons in ethyl compounds to estimate the relative amounts of BH⁺ and B (section (e)). A plot of this chemical shift difference against the acidity function Ho, of the solvent, gave a sigmoid type curve. The steepest portion of this curve was assumed to give the solvent composition at which $C_{BH^+} = C_B$. Equation (1.20) then reduces to

Ho = pK_{RH}+

(1.23)

30

and hence the pK_{BH}+ of the base was obtained. Taft and Levins have used the relatively large chemical shift between the resonances of the protonated and unprotonated forms of fluorobenzene derivatives in the F^{19} n.m.r. spectrum as a means of quantitative pK_{BH}^+ determination. By plotting F^{19} chemical shifts vs. the acidity function (Ho) they obtained sigmoid curves and from the point of inflection they obtained pK_{BH}+ as described above. These workers have stated that they intend to use this method to determine acidity functions. Utyanskaya et al. have estimated the acidity function of HF solutions from F19 n.m.r. data; the results agree with Ho values obtained by the more usual spectrophotometric method but doubt has been cast on their interpretation of the chemical shifts.

(i) Acid Dissociation, Solvation, and Hydrogen Bonding

Because the rate of proton exchange is rapid in aqueous solutions

of electrolytes the chemical shift of an exchanging proton appears as a weighted average of the chemical shifts of all the species present. This fact has been used to calculate dissociation constants for strong Gutowsky and Saika , Masuda and Kanda , Hood et al. , acids. 36 37,38 Gillespie and White , and others have all examined the dissociation of acids by n.m.r. techniques. Agreement with other physical methods is not always good . In studying the dissociation of water in 35,36 sulphuric acid attempts have been made to obtain absolute chemical shifts for H_3O^+ and $HSO_{L_2}^-$, but different values have been obtained for

 $H_3 \tilde{O}$ and HSO_4 in two independent investigations as a consequence of different assumptions made in the interpretation of the results. Hood and Reilly assumed that the chemical shifts of the various species are independent of the composition of the solution over the whole range from water to sulphuric acid, whereas Gillespie and White assume constancy of the chemical shifts over a limited composition range only. In view of the large body of experimental data on the effect of electrolytes upon the chemical shift of ions in solution the assumption of the constancy of chemical shifts is probably not justified and these results probably need some reinterpretation.

It is well recognised that in protonic solvents such as water, ammonia and sulphuric acid intermolecular hydrogen bonding occurs to a greater or lesser extent. It is also known that when ions are present in solution they are generally solvated i.e. associated with a number of solvent molecules. When ions that have a tendancy to solvate are present in a hydrogen-bonded solvent it is clear that they will in general have an effect on the structure of the solvent. Such changes in the solvent

suructure will affect the environment around any magnetic nuclei present and hence affect the chemical shifts in their n.m.r. spectra. А comprehensive review of the study of the hydration of ions in aqueous solution by n.m.r. techniques has appeared recently which critically discusses the literature up to 1961. Chemical shifts produced by addition of electrolytes are interpreted in terms of solvation, polarisation and structure breaking effects. Attempts have been made to separate effects such as polarisation and solvation for individual h0in a recent paper has analysed the chemical shifts ions. Hindman produced by salts in water in terms of bond breaking, structural, 36 polarisation, and nonelectrostatic effects. Gillespie and White have studied the effect of added metal hydrogen sulphates to the proton resonance of sulphuric acid: they obtained an order for the extent of solvation of cations which is in agreement with other measurements.

(2) OBJECTS OF THE PRESENT WORK

One of the objects of the present work was to study the protonation of very weak bases in strong acid solvents. In view of its high acidity and low freezing point, and because a general study of the fluorosulphuric acid solvent system was being carried out in our laboratories, fluorosulphuric acid was chosen as a solvent that appeared to be very suitable for the elucidation of the structures of the protonated forms of weak bases. It was also hoped that by comparison of the extent of protonation of a variety of weak bases in several acid solvents such as HF, HSO₃F and H_2SO_4 it would be possible to obtain information on the relative acidity of these solvents, their mixtures with each other and with water. In particular it was hoped to devise an n.m.r. method for measuring the acidity function for these systems.

In order to provide some background information that might prove useful in the interpretation of chemical shifts in the n.m.r. spectra of bases in acid solvents, it was also decided to extend the work of 36Gillespie and White , on the effect of metal hydrogen sulphates on the proton magnetic resonance spectra of sulphuric acid, to include the effect of metal fluorosulphates and other bases on the HSO₃F proton and fluorine resonances.

CHAPTER II

EXPERIMENTAL

(1) PREPARATION AND PURIFICATION OF MATERIALS

Sulphuric Acid

100% sulphuric acid was prepared by mixing C.P. Reagent grade sulphuric acid and Reagent grade fuming sulphuric acid (30% free SO₃) until a product having a maximum freezing point of 10.37° was obtained . Oleums

Oleums of known composition were obtained by distilling sulphur trioxide from stabilised liquid sulphur trioxide ("Sulphan B"), into a weighed amount of 100% sulphuric acid.

Fluorosulphuric Acid

Technical grade fluorosulphuric acid was distilled twice at atmospheric pressure in the apparatus shown in Fig. 1. Before use the still was dried out by passing dry air through it and at the same time warming with a Bunsen flame. The pure acid had a boiling point of $103 - 154^{\circ}$.

Tetrahydrogensulphato boric acid

The stoichiometric amount of boric acid, twice recrystallised from water and dried at 120° , was dissolved in oleum of known sulphur trioxide concentration to give the required composition of tetrahydrogen- $\frac{12}{42}$ sulphato boric acid in sulphuric acid .

Trifluoracetic acid

Reagent grade trifluoracetic acid was distilled using a 20" fractionating column packed with glass helices. The fraction boiling at 72° (lit. b.p. 72.4°) was collected.

Sulphates

Except for those listed below all the sulphates were "Analar" salts dried at 120° and stored over phosphoric oxide until required. Lithium sulphate

The "Analar" monohydrate was heated at 190° to constant weight, then stored over phosphoric oxide.

Rubidium sulphate

"Analar" rubidium carbonate was dissolved in water and titrated with 0.2N sulphuric acid to neutrality. The neutral aqueous solution was evaporated until the rubidium sulphate began to crystallise, then cooled, filtered, washed with acetone, then ether; finally dried at 120° and stored over phosphoric oxide.

Calcium sulphate

Calcium sulphate dihydrate was dissolved in 100% sulphuric acid, the solution filtered through a sintered glass filter and the dihydrate precipitated by pouring the solution into distilled water. The precipitate was filtered, washed free of SO_{l_1} , dried and ignited at red heat in a platinum crucible to constant weight. The calcium sulphatwas stored over phosphoric oxide.

Tetraethylammonium sulphate

To a solution of tetraethylammonium bromide in water was added an excess of freshly prepared silver oxide and the mixture shaken to ensure thorough mixing. The excess silver oxide and the precipitated

silver bromide were filtered off. A portion of the filtrate was tested for the presence of bromide ion with silver nitrate; all of the bromide ion had been removed. The filtrate was titrated to pH7 with 0.2 N H_2SO_{li} , evaporated until crystallisation occurred, cooled, filtered in a dry atmosphere and washed with dry ether. The pale yellow crystals obtained were redissolved in distilled water. the solution treated with active charcoal and filtered after standing for a few minutes; the filtrate was clear and colourless. Evaporation to dryness was effected by heating at 110° on an oil bath while a current of dry, filtered air was blown over the surface. This stream of dry air over the heated crystals was continued for several hours with frequent stirring to ensure that all the moisture was removed. Finally the salt was allowed to cool. under vacuum over phosphoric oxide. The crystals were very hygroscopic

Analysis

% SO_L = 26.11 (Calculated 26.95)

Tetraphenylarsonium sulphate

30 gms. of anhydrous aluminium chloride, 30 gms. of triphenyl arsine and 15.6 gms. of bromobenzene were heated at 200° under reflux (air condenser) for one hour. A vigorous reaction occurred which later subsided. The temperature was then raised to 280° over a period of half an hour and maintained at this temperature for a further half hour. The mixture was poured into 1200 mls. water, boiled with active charcoal, filtered and when cold, the filtrate was treated with 30 gms. KI dissolved in a few mls. of water. Crude $Ph_{ij}AsI_{3}$ was obtained as yellow crystals which were filtered off and recrystallised from hot water containing KI and 10 gms. Na_2SO_3 to yield pure $Ph_{ij}AsI_3$.

Analysis

% SO₁₁ = 10.86, 10.91 (Calculated 11.14)

Fluorosulphates

Metal fluorosulphates were prepared by distillation of excess fluorosulphuric acid on to the anhydrous metal chlorides, then removing the hydrogen chloride formed and the excess fluorosulphuric acid by heating on a water bath under high vacuum . The fluorosulphates were used within a few days of their preparation.

Antimony Pentafluoride

Commercial antimony pentafluoride was distilled twice in a dry atmosphere, a low boiling fraction being rejected both times. The fraction boiling between $142 - 144^{\circ}$ was collected for use.

Organic Solvents

Carbon tetrachloride and chloroform of "Spectrochemical" grade were used without further purification.

Dioxan

Purification was effected by refluxing over sodium, followed by fractional distillation through a 20" column packed with glass helices. The fraction boiling between 101 - 102° (lit. b.p. 101-5°) was collected for use.

Acetone

Commercial acetone was refluxed with successive small quantities of potassium permanganate until the violet colour persisted. It was then dried with anhydrous calcium sulphate, filtered from the desiccant, and fractionally distilled: care was taken to exclude moisture. The fraction boiling between $56 - 56.5^{\circ}$ (lit. b.p. 56°) was collected. Nitromethane

Commercial nitromethane was dried over calcium chloride then distilled using a 20" column packed with glass helices. The fraction boiling between 100 - 101° (lit. b.p. 101°) was collected for use. Organic Bases

The organic bases used were generally obtained commercially; solids were recrystallised from suitable solvents and stored over phosphoric oxide, liquids were used without further purification except those listed below. In all cases the n.m.r. spectra, run at high gain, showed no peaks which could be attributed to impurities.

Acetophenone

Acetophenone was distilled from a flask fitted with an air condenser and take off. The fraction boiling between $201 - 202^{\circ}$ was collected (lit. b.p. 202°).

N-Methyl-2,4-dinitroaniline

To a solution of 1-chloro-2,4-dinitrobenzene in n-butanol was added the stoichiometric amount of methylamine. On standing yellow crystals of N-methyl-2,4-dinitroaniline were formed which were filtered, washed with butanol, recrystallised from butanol, dried and stored over phosphoric oxide. m.p. 85° (lit. m.p. $85 - 86^{\circ}$).

N, N-Dimethyl-2, 4-dinitroaniline

Dimethylamine was added, in stoichiometric quantity, to a solution of 1 chloro-2,4-dinitrobenzene in n-butanol when a yellow solution resulted. This solution was treated with NaOH, until excess base was present, then shaken vigorously until yellow crystals formed. These were filtered, recrystallised from aqueous ethanol, dried and stored over phosphoric oxide m.p. 79° (lit. m.p. 80°). N-Methyl-2-chloro-4-nitroaniline

8.2 gms. of 2-chloro-4-nitroaniline were mixed with 4.5 mls.of Me_2SO_4 and the mixture heated on a waterbath for one hour. Aqueous NaOH solution was added, the mixture cooled, the solid filtered off, washed well with water and finally recrystallised from aqueous ethanol. The yellow crystals were dried and stored over phosphoric oxide. m.p. 116° (lit. m.p. 116 - 117°).

N-Methyl-4-chloro-2-nitroaniline

This was prepared from h-chloro-2-nitroaniline by the same procedure as above. The orange crystalline product had a m.p. of 105° (lit. m.p. 106 - 106.5°).

46 N.N-Dimethyl-2,4,6-trinitroaniline

Dimethylamine was added to a hot solution of 1-chloro-2,4,6trinitrobenzene in 95% ethanol when crystals were rapidly precipitated. These were filtered off, recrystallised from benzene, dried and the melting point determined. m.p. 138-139° (lit. m.p. 138°).

N-Methyl-p-toluenesulphonamide

To 1 gm. of methylamine was added 20 mls. of a 10% sodium hydroxide solution and 1 gm. of p-toluenesulphonyl chloride. The mixture
was shaken vigorously then filtered. The filtrate was acidified with concentrated HCl and cooled: the solid produced was filtered off, washed well with water, recrystallised from 95% ethyl alcohol, dried and stored over phosphoric oxide. m.p. 78° (lit. m.p. 78 - 79°).

N, N-Dimethyl-p-toluenesulphonamide

This was prepared from dimethylamine by the same procedure as above. In this case acidification was not necessary since the product is insoluble in NaOH solution. The product was recrystallised from 95% ethyl alcohol, dried and stored over phosphoric oxide. $m_{\circ}p_{\circ}$ 86 - 87° (lit. $m_{\circ}p_{\circ}$ 86 - 87°).

Urea

The gift of a sample of N^{15} urea from Dr. K. Yates is gratefully acknowledged.

Dry Air

Air was dried by passing it successively through tubes containing anhydrous calcium chloride and anhydrous magnesium perchlorate. Dust from the drying agents was removed from the gas stream by plugs of glass wool.

Fig. 2 FLUOROSULPHURIC ACID DISTILLATION APPARATUS

(2) NUCLEAR MAGNETIC RESONANCE SPECTRA

The n.m.r. Spectra were recorded with a Varian H.R-60 N.M.R. spectrometer equipped with a field homogeneity control unit, an integrator, and a variable temperature probe. Proton spectra were recorded at 60 Mc.p.s., except where stated, and Fluorine¹⁹ spectra at 56.4 Mc.p.s.

Samples were contained in 5 m.m. O.D. "Pyrex" tubes made from carefully selected tubing. Except where the solvent was an organic one external references were used throughout. The reference liquid was contained in a thin walled capillary tube held central in the sample tube by a tightly fitting teflon cap. Signal separations were measured by the side-band technique due to Arnold and Packard⁴⁷. The magnetic field is modulated with a low-amplitude audio-frequency signal which produces side bands on either side of the resonance signals in the spectrum. The separation of these side bands from the resonance signal is equal to the modulation frequency. By judicious choice of one, or more, modulation frequencies, the separation of all the peaks in the spectrum, from the reference signal, are accurately determined.

The separations of the peaks in a spectrum found by the above method is a measure of the chemical shift between the species present. These separations may be expressed in frequency or magnetic field units, and the two units may be interconverted by the equation for the resonance condition (1.2). However it is more usual to express chemical shifts in a nondimensional unit defined by (1.7).

Diamagnetic susceptibility corrections

Due to the difference between the bulk diamagnetic susceptibilities

of the sample and the reference compound contained in a thin walled capillary, a correction must be applied to the observed chemical shift. For a cylinder of length large compared with the radius the field is given by (2.1).

$$H = H_{obs} \left(1 - \frac{2\pi r}{3} \mathcal{K}_{V}\right)$$
(2.1)

where X_V is the volume susceptibility of the liquid. Hence

$$\delta = \frac{H - Hr}{Hr} + \frac{2\pi}{3} (X_{vref} - X_{v})$$

= $\delta obs + \frac{2}{3} (X_{vref} - X_{v})$ (2.2)

The volume susceptibility X_V is related to the molar magnetic susceptibility X_M by (2.3)

$$\mathcal{X}_{M} = \underbrace{M \times V}_{d}$$
(2.3)

where M is the molecular weight and d the density. For a mixture of diamagnetic substances the molar susceptibility of the mixture is given by Wiedemann's additivity law.

$$\chi_{M \text{ mixt}} = \chi_1 \chi_{M1} + \chi_2 \chi_{M2}$$
 (2.4)

where x_1 and x_2 are the mole fractions and x_{M1} and x_{M2} the molar susceptibilities of the pure components.

Where bulk diamagnetic susceptibility corrections were applied, \$48\$ X_M was calculated from Pascal constants for the constitutive elements .

(3) ULTRA-VIOLET AND VISIBLE SPECTRA

Ultra-violet and visible spectra were recorded on a Bausch and Lomb "Spectronic 505" spectrometer; quartz 1 cm. cells were used throughout. The pure, dry base was weighed directly into a 25 mls. volumetric flask and the solvent added to the graduation mark. After thorough mixing 1 ml. of this solution was pipetted into a 50 mls. volumetric flask and diluted to the mark. The spectrum of this solution was recorded.

CHAPTER III

23

PROTONATION OF AMIDES. THIOAMIDES. UREAS AND SULPHONAMIDES.

(1) INTRODUCTION

The basic nature of amides has long been recognised, but the structure of the ion formed when they are protonated has been the subject 49 of discussion since Hantzsch first presented evidence for O-protonation of benzamide in concentrated sulphuric acid from ultra-violet absorption spectra studies. A variety of other evidence has since been put forward by other workers in support of O-protonation I, but much evidence has also been adduced in favour of N-protonation II.

Support for N-protonation has been obtained from vibrational spectra. It has been suggested that the frequency of the CO stretching vibration should be lower for the O-protonated cation than the value for the parent Strong bands, assumed to be carbonyl bands, have been found for amide. 50–5և at frequencies higher than those in the parent several amide cations 53 amide and hence it was argued that there is N-protonation. Urea nitrate , 54 and the hydrochlorides of urea, thiourea and acetamide give bands in their infra-red spectra which have been considered diagnostic of $-NH_3^{+}$ and hence of N-protonation. Edward and coworkers have used ultra-violet absorption spectra to study the basicities of substituted benzamides and concluded

that their results were best explained on the basis of N-protonation although O-protonation was not completely excluded. N-protonation has 56 also been reported for the protonation of thicacetamide on the basis of an ultra-violet absorption spectra study.

One might expect that O-protonation would be favoured from a consideration of the resonance forms possible for the amide III, and 57 indeed Pauling has calculated on this basis that O-protonation is much favoured.

$$\begin{array}{c} 0 \\ R \\ 1 \end{array} \xrightarrow{R_2} \\ R_1 \end{array} \xrightarrow{R_2} \\ \end{array} \begin{array}{c} 0 \\ R_1 \end{array} \xrightarrow{R_2} \\ R_1 \end{array} \xrightarrow{R_2} \\ R_1 \end{array}$$

However he assumed, without justification, that the resonance energy of Some infra-red and an amide and its O-protonated form are the same. 58-63 ultra-violet absorption spectra studies indicate O-or S- protonation for amides, thicamides and urea's. However in these investigations the 59 assignment of the bands is not always unambiguous. Stewart and Muenster have prepared O¹⁸ labelled dicyclohexyl urea and its p-toluenesulphonate and found that the carbonyl band in the labelled urea shows the expected shift to lower frequency but the band at 1669cm⁻¹ in the salt is unaffected by isotopic substitution and is therefore not a carbonyl stretching frequency as other workers have assumed. The crystal structures of 65 acet mide hemihydrochloride and N-methylurea nitrate have been determined by X-ray diffraction. In both cases the distances between the anions and the carbonyl oxygen is short strongly suggesting that this is a hydrogen bond with the proton located on exygen.

By far the strongest evidence for O-protonation has come from proton magnetic resonance studies. For example, the spectrum of pure

liquid dimethylformamide shows two peaks of equal area for the N-methyl 5,66 It was concluded that the two methyl groups have different groups environments because of restricted rotation about the OC-NMe2 bond, due 67 to its partial double bond character (III above). Fraenkel and Niemann have shown that these two peaks remain unchanged in solution in aqueous strong acids and in 100% $H_2SO_{l_1}$ and $D_2SO_{l_2}$. They concluded that in the Oprotonated form (I) rotation around the OC-NMe, bond would still be restricted while in the N-protonated form (II) the NHMe, group would be free to rotate; and therefore that the O-protonated form predominates in these strong acid solutions. For N-methyl formamide the signal from the N-methyl protons is a doublet attributed to spin-spin coupling with the single hydrogen attached directly to nitrogen. This doublet collapses to a single peak in basic or weakly acidic solutions but reappears again as a doublet, and not a triplet, in strongly acidic media which rules out the possibility of an NH_Me group. Similar results have been obtained for 62 N-methylacetamide , and for N,N-dimethylthiobenzamide . Fraenkel and have shown that there is an increase in the activation energy Franconi for the barrier to rotation about the OC-N bond when amides are protonated. This can only be explained by protonation on oxygen. If protonation had occurred on nitrogen, as in I, then the nitrogen lone pair could not be used to give double bond character to the C-N bond as in IIIb and rotation about the C-N bond would be increased i.e. the barrier to rotation decreased. Protonation on oxygen on the other hand would be a favoured by structure IIIb and the barrier to rotation thereby increased. Fraenkel and Franconi conclude that there is O-protonation. They also found that a solution of acetamide in 100% sulphuric acid gives a spectrum consisting

Spinner, who obtained infra-red evidence for N-protonation has suggested, however, that the n.m.r. results can also be explained on this 22 basis. For example, he attributes the doublet N-methyl group signal observed in the spectrum of protonated N-methyl acetamide to the nonequivalent hydrogen atoms H_a and H_b resulting from restricted rotation about the C-N bond in the N-protonated form IV. However this would give

components of the methyl group signal of relative areas 1:2 and not 1:1 as observed. It must also be assumed that the expected spin-spin coupling between the N-methyl group and the two hydrogens directly attached to nitrogen is too weak to be observed.

All of the work up to 1961 was critically reviewed by Jones and 21 Katritzky who concluded that amides are predominantly protonated on 22 oxygen, or sulphur in the case of thioamides. However, Spinner points out that all the n.m.r. evidence is rather indirect as in no case has a signal been observed in the spectrum from the proton supposedly captured

by the oxygen atom in the O-protonated form. This has been attributed by other workers to rapid exchange of this proton with the solvent.

It was evident that the site of protonation could be determined unambiguously if the rate of exchange of the captured proton with the solvent could be slowed down sufficiently so that a separate signal for this proton could be observed in the spectrum. Fluorosulphuric acid is 71 a stronger acid and a weaker base than 100% sulphuric acid and has the added advantage of a low freezing point of -89.0° 72. By recording the spectra of fluorosulphuric acid solutions of amides at sufficiently low temperatures it has been possible to observe for the first time the signal from the captured proton and thus to determine unambiguously the site of protonation. The solutions which were approximately 6 mole % with respect to the amide. were prepared at the temperature of an acetone - solid carbon dioxide mixture $(c_{\bullet}a_{\bullet} - 85^{\circ})$ and stored at this temperature until their n.m.r. spectra were recorded. Spectra were recorded at the lowest temperature first and then at successively higher temperatures. This procedure ensured that reactions between the amides and the solvent were minimised.

(2) AMIDES

Table I summarizes the chemical shifts and spin-spin coupling constants for the protonated forms of acetamide, formamide, benzamide, and their N-methyl and N.N-dimethyl derivatives.

Acetamide

The proton magnetic resonance spectrum of a 6 mole % solution of acetamide in fluorosulphuric acid at 25° consists of two peaks. B and C, of relative areas 2.04:3.00 in addition to a signal due to the solvent Essentially the same spectrum has been obtained previously (Fig. 3). for an aqueous solution of pH7 and for a solution in 100% sulphuric acid and the peaks have been assigned to the NH2 and CH3 groups. The NH2 peak B is approximately 70-80 c.p.s. wide due to N¹¹⁴-H coupling and quadrupole relaxation of the N¹¹¹ nucleus. As the temperature is lowered the NH2 peak becomes sharper and eventually splits into a doublet. At -80° another peak, A, becomes visible on the high field side of the solvent peak (Fig.4) which shifts to higher field as the temperature is further decreased until at -92° it was recorded as a separate well resolved peak (Fig. 5). This new peak can only be assigned to a proton on the carbonyl oxygen, and in agreement with this conclusion the relative areas of the three peaks were found to be A:B:C:: 1.07: 2.10: 3.00, confirming their assignment to the OH, NH2 and CH3 groups respectively. Protonation on nitrogen with no exchange would give a spectrum consisting of two peaks of equal area.

The splitting of the NH_2 resonance may be attributed to nonequivalence of the two hydrogens as a consequence of restricted rotation about the C-N bond due to its partial double-bond character. The loss of resolution in the NH_2 doublet at -92° can probably be attributed to

the increased viscosity of the solution, which is very close to the freezing point or possibly slightly supercooled. Even at -92° the OH peak has a width of 23.2 c.p.s. and although some of this broadening is perhaps due to the increased viscosity of the solutions much of it can probably be attributed to slow OH -solvent proton exchange.

N-Methylacetamide

The proton magnetic resonance spectrum of a solution of Mag methylacetamide in fluorosulphuric acid at 25° consists of three peaks of relative areas 0.83: 3.05: 3.00, in addition to that of the solvent, which can be attributed to the NH, N-CH3 and C-CH3 groups respectively. The NH₂ peak is 52-65 c.p.s. wide due to N¹¹⁴-H coupling and quadrupole relaxation of the N¹¹ nucleus. Spin-spin coupling (J = 5.03 c.p.s.) is also observed between the NH and the N-CH2 protons resulting in the latter peak having a doublet structure. At -85° an additional peak appears, with a chemical shift of approximately -10 p.p.m. which is assigned to the protonated carbonyl oxygen atom. In agreement with this assignment the relative areas of the four peaks were found to be 1.17: 1.05: 3.11: 3.0. The width of the OH peak is 12.5 c.p.s. suggesting that exchange is still occurring with the solvent. Addition of antimony pentafluoride to the solution has the effect of reducing the basicity of the solvent and the C=O-H line width decreases indicating a further reduction in the rate of proton exchange.

N, N-Dimethylacetamide

The spectrum of a solution of N,N-dimethylacetamide in fluorosulphuric acid at 25° contains only two signals, due to the N(CH₃)₂ and C.CH₃ groups respectively. On decreasing the temperature a new peak, A,

3Li

appears with a chemical shift of approximately -10 p.p.m. which is at first broad and then gradually narrows until it has a width of only 2.8 c.p.s. at This peak may be assigned to the protonated cxygen atom by -79° (Fig. 6). comparison with the similar peak which occurs in the spectrum of acetamide at low temperatures. No further change occurs below -79°, indicating that exchange of the captured proton with the solvent has become very slow. The relative areas of the three peaks at -79° were found to be A:B:C:: 0.96: 5.91: 3.00 and they are assigned to the OH, N(CH₃)₂, and C.CH₃ groups respectively. If N-protonation occurred three peaks of relative area 1: 6: 3 would be expected as for O-protonation. However the new peak due to the captured proton has a chemical shift of -9.80 p.p.m., which is close to the chemical shifts of -10.40 p.p.m. and -10.15 p.p.m. for the analogous peaks in the acetamide and N-methylacetamide spectra which can be unambiguously assigned to the =OH group. Moreover. A is a single sharp line showing no evidence of fine structure, although if N-protonation occurred spin-spin coupling between the NH and N(CH3)2 protons would be expected, since in a solution of N-methylacetamide in fluorosulphuric acid J H.N.CH₃ = 5.03 c.p.s. At all temperatures the $N(CH_3)_2$ signal is essentially a single peak, although its width (2.4 c.p.s. at 25° and 5.6 c.p.s. at -79°), its unsymmetrical shape, and the presence of several illdefined shoulders strongly indicate that it has an unresolved fine structure. This can presumably be attributed to a very small chemical shift between the two methyl groups, their non-equivalence being due to restricted rotation about the central C-N bond, and mutual spin-spin There is possibly also some coupling with the OH and C.CH3 coupling. The greater width of the $N(CH_3)_2$ signal at -79°C can perhaps protons.

be attributed to a small increase in the chemical shift between the two methyl groups with decreasing temperature. In the pure liquid, and in solution in various organic solvents, the signals from the two N-methyl groups are clearly separated at room temperature . However, in 100% sulphuric acid Fraenkel and Franconi were unable to resolve the two separate methyl groups. They attributed this to the broadening of the peaks caused by the high viscosity of sulphuric acid. However, as the viscosity of fluorosulphuric is only 1/10 that of sulphuric acid , this cannot be the only factor involved. Presumably the chemical shift between the N-methyl groups is smaller in the protonated than in the It is interesting to note that a recent study of the neutral amide. spectra of solutions of dimethylacetamide in a variety of organic solvents has shown that the chemical shift between the two methyl groups is solvent and concentration dependent and can become zero or even change sign in suitable solvents .

Formamide

The spectrum of pure liquid formamide at room temperature is shown in Fig. 7a. The broad peak C can be attributed to the NH_2 protons and the peak B to the formyl proton H_1 split by coupling with the H_3 proton $^{74}_{(v)}$. The chemical shifts between the three protons are relatively small and they will not therefore give rise to a simple first-order

$$rac{r}{V}$$

spectrum, which is the reason for the unsymmetrical nature of the formyl proton doublet. In solution in fluorosulphuric acid the spectrum changes

to that shown in Fig. 7b. It seems clear that the broad NH₂ beak has now split into the triplet expected as a result of N^{1/1}-H coupling and that the middle peak of this triplet lies beneath the sharper doublet that can be attributed to H₁. Unresolved splitting due to coupling with H₂, in addition to H₃, is evident in the form of shoulders on the centre peak. The observed separation of the outer components of the NH₂ triplet gives $J_{\rm NH} = 62 \pm 5$ c.p.s., which is in good agreement with the value of 60 \pm 4 75 c.p.s. obtained by Roberts for pure liquid formamide at temperatures above 50°. An integrated spectrum gave relative areas for the three peaks of 0.74: 1.55: 0.71, which is in reasonable agreement with the expected values of C.67: 1.66: 0.67 in view of the extensive overlap of the broad peaks.

With decreasing temperature the NH₂ signal collapses to a single peak that is coincident with the peak due to the formyl proton (Fig. 7c). At -80° a new peak, A, appears at low field which may be attributed to the C = $\stackrel{+}{OH}$ group. At -96° the A peak has a chemical shift of -10.69 p.p.m. and integration of the spectrum gave relative peak areas A: B + C:: 1.00: 3.03, in agreement with their assignment to the C = $\stackrel{+}{OH}$ and NH₂ plus CH groups respectively. The width of the C = $\stackrel{+}{OH}$ peak (lh.9 c.p.s.) presumably indicates that exchange of this proton with the solvent is still occurring at -98° , although some of the broadening could be due to the increased viscosity of the solvent at this temperature.

N-Methylformamide

The n.m.r. spectrum of N-methylformamide in fluorosulphuric acid solution at 25° consists of two well defined peaks due to the formyl proton and the N-CH₃ proton: in addition there is a broad peak with the same

chemical shift as the formyl proton. This peak is attributed to the proton attached to nitrogen. In agreement with this assignment the relative areas of the combined formyl +NH protons to the N-CH₃ peak is 2.18: 3.00. The N-CH₃ peak has a doublet structure due to spin-spin coupling with the N-H proton $(J_{H_2}, C_{H_3} = 4.4 \text{ c.p.s.})$ VI.

In addition the formyl proton further splits each peak of the CH_3 doublet into a smaller doublet $(J_{H_1}, CH_3 = 1 \text{ c.p.s.})$ and it is also coupled to H_2 $(J_{H_1}, H_2 = h.5 \text{ c.p.s.})$. These results are consistent with protonation on oxygen with rapid exchange. Upon lowering the temperature a new peak appears at -10.48 p.p.m. which can be attributed to the captured proton attached to the carbonyl oxygen. Area measurements confirm this conclusion $(H-0=C : H_1 + H_2 : NCH_3 :: 1.04: 1.90: 3.0)$. However the H-0=C peak is quite broad at -85° indicating that exchange is still eccurring. In a solution containing $\sim 3 \mod \%$ SbF5 the rate of proton exchange can be slowed down sufficiently so that a doublet structure for the HO=C peak can be observed: this is attributed to spin-spin coupling with H₁.

N, N-Dimethylformamide

The spectrum of a solution of dimethylformamide in fluorosulphuric acid at 25° consists of the peak B, due to the formyl proton, and the doublet C, due to the two N-methyl groups (Fig. 8). For the pure liquid dimethylformamide and for solutions in a large number of organic solvents, it has been found that two peaks are obtained for the N-methyl groups. and it has been shown that this is because they are non-equivalent as a 5,66,73 consequence of hindered rotation about the OC-N bond . The beak at higher field is split into a doublet of separation 1.1 c.p.s. and the peak at lower field is split into a doublet of 0.7 c.p.s. These splittings are almost exactly twice as large as those found by Hatton and 73 Richards for the pure liquid (0.65 and 0.3 c.p.s. respectively). The splitting is attributed to coupling of the N-methyl groups with the formyl proton, and the high-field peak is assigned to the CH₃ group trans to the formyl hydrogen and the low-field peak CH₃ group cis to the formyl proton (VII).

The greater coupling between the formyl proton and the N-methyl groups in the protonated form than in the neutral amide may reasonably be associated with a greater double-bond character of the central C-N bond in the protonated form. In solutions of dimethylformamide in 100% sulphuric 69 acid Fraenkel and Franconi found rather larger splittings of the Nmethyl resonances of 1.2 and 1.7 c.p.s. respectively. The reason for the difference between their results and those reported here is not clear. The resonance of the formyl proton is somewhat broad (2.9 c.p.s.) and a number of shoulders on the line strongly indicate unresolved fine structure. This must arise from spin-spin coupling between the formyl proton and the N-methyl groups. At low temperatures a new peak, A, appears in the spectrum at low field (-9.98 p.p.m.), which can evidently be attributed to the OH group of the O-protonated form. At -80° (Fig.9) the relative areas of the peaks were found to be A:B:C:: 1.04: 0.96: 6.00

in agreement with the suggested assignment. The OH and CH peaks are both doublets due to mutual spin-spin coupling, $J_{CH,OH} = 4.7$ c.p.s. That the resolution of the CH doubletis poorer than that of the OH doublet is presumably due to weak spin-spin coupling of the CH proton with the two N-methyl groups. The reason for the loss of the fine structure in the doublet C due to the N-methyl groups is, however, not clear. Benzamide, N-methyl benzamide, and N,N-dimethylbenzamide

In fluorosulphuric acid solution these bases give n.m.r. spectra at 25° C which are very similar to those observed in a neutral medium. Thus benzamide gives a spectrum which consists of two peaks due to NH₂ and phenyl protons; N-methylbenzamide gives three peaks of relative area 1.01: 5.22: 3.00 corresponding to the NH, C₆H₅, and N-CH₃ protons. The N-CH₃ peak is observed as a doublet (J = 5.37 c.p.s.) due to spin-spin coupling with the N-H proton indicating that the N-H proton is not exchanging. Only two peaks are observed for N,N-dimethylbenzamide of relative area 5.09: 6.00 which are assigned to the C₆H₅ and N(CH₃)₂ protons. Restricted rotation about the C-N bond results in the methyl groups having different chemical shifts and a separation of 9.48 c.p.s. is observed.

Upon lowering the temperature a new peak appears at ~ -10 p.p.m. which by comparison with the other amides studied is assigned to a proton attached to the carbonyl oxygen. Area measurements confirm this assignment; for benzamide at -85° the relative areas of OH: $NH_2 + C_6H_5$ were found to be 0.83: 7.00; for N-methylbenzamide at -86° , OH: NH: C_6H_5 : N.CH₃ :: 1.01: 1.07: 5.18: 3.00; and for N,N-dimethylbenzamide at -72° , OH: C_6H_5 : $N(CH_3)_2$:: 0.89: 4.98: 6.00. In each case (except

N,N-dimethylbenzamide) the OH peak is somewhat broad at -85°, indicating that even at this low temperature there is slow proton exchange between the solvent and the conjugate acid of the amide. It is found that the doublet separation of the N-methyl peak of N.N-dimethylbenzamide in fluorosulphuric acid solution changes from 9.46 c.p.s. at 25° to 6.74 c.p.s. 73 at -85°. Hatton and Richards have attributed the changes in chemical shifts of the methyl groups of N,N-dimethylamides, in aromatic solvents, to the association of the amide with a solvent molecule: this association producing an effect which is different for each methyl group hence the change in separation of the doublet. If in a similar way lowering the temperature of a solution of N,N-dimethylbenzamide in HSO₂F, in addition to slowing down the proton exchange, also increases the extent of hydrogen bonding between the carbonyl oxygen and solvent molecules then this may in turn effect the chemical shift of one methyl group more than the other: the result being a decrease in the chemical shift between these groups.

TABLE I

CHEMICAL SHIFTS OF AMIDES IN FLUOROSULPHURIC ACID

Amide	Temp. (°C)	- o (p.p.m.) from Ext. T.M.S. J					
		0 - H	CR1	N-R ₂	N-R ₃	(c.p.s.)	
Acetamide	+25		2.76	8.28	8.28		
	-80	10.72	2.67	8.24	8.36		
	- 92	10.40	2.67	8.26	8.36		
N-Methylacetamide	25	-	2.69	8.31	3.36	JR2, R3 5.0	
	-85	10. 15	2.58	8.27	3.25		
N,N-Dimethylacetamide	+25	-	2.73	3.55	3.55		
	-7 9	9.80	2.64	3.45	3.45		
Formamide	+25	-	8.55	8.68	8.68	$J_{N,R_{2,3}}$ 62 ± 5 $J_{R_{1},R_{3}}$ 8.5	
	-84.5	10. 81	8 . 60	8.60	8.60		
	-98	10. 69	8.60	8.60	8.60		
N-Methylformamide	25	-	8.50	~8.5 8	3.44	J _{R29} R3 4.4	
						J _{R1,R3} 1.0	
						J _{R1,R2} 4.5	
	-85	10. 49	8.48	8.66	3.33		
	- 69*	10. 39	8.57	8.76	3.46	J _{R1,0H} 3.5	

* Solution in 10 mole % SbF5 in fluorosulphuric acid.

TABLE I (Contd.)

Anide	Temp. (°C)	- δ (p.p.m.) from Ext. T.M.S. J					
		0- H	C-R1	N-R2	N-R3	(c.p.:	5.)
N, N-Dimethylformamide	+25	63	8.38	3•49	3.59	J _R ₁ ,R ₃	1.1
						J _{R1,R2}	0.7
	-80	9.98	8.38	3.43	3•53	J _{R1,0H}	4•7
Benzamide	25	-	8.08	8.59	8.59		
	-85	10.20	8.03	8.72	8.72		
N-Methylbenzamide	25	-	7.93	8.61	3.54	J _{R2} ,R2	5.4
	-71	10.37	7•97	8.72	3.50	2.)	
	-86	10.34	7•93	8.73	3.47		
N,N-Dimethylbenzamide	25	-	7.85	3.72	3.56		
	-72 ,	9.91	7.84	3.61	3.49		
	- 85	9.95	7.85	3.63	3.51		

.

Fig. 3 N.m.r. SPECTRUM OF A SOLUTION OF ACETAMIDE IN FLUOROSULPHURIC ACID AT 25°.

Ħ

Fig. 4 N.m.r. SPECTRUM OF A SOLUTION OF ACETAMIDE IN FLUOROSULPHURIC ACID AT -80°.

Fig. 7 N.m.r. SPECTRA OF (a) LIQUID FORMAMIDE AND (b,c,d) A SOLUTION OF FORMAMIDE IN FLUOROSULPHURIC ACID.

Fig. 9 N.m.r. SPECTRUM OF A SOLUTION OF N, N-DIMETHYLFORMAMIDE IN FLUOROSULPHURIC ACID AT -80°.

(3) THIOAMIDES

As with O-amides some workers have presented evidence for 58,60,62,63protonation on the sulphur atom of thicamides while others 54,56have concluded that protonation occurs on nitrogen . The results for thicacetamide and thicacetanilide presented in Table II clearly establish that protonation occurs on sulphur.

Thioacetamide

The spectrum of a solution of thicacetamide in fluorosulphuric acid at 25° contained in addition to the solvent and tetramethylsilane peaks, three peaks A, B and C of relative areas 1.98: 0.90: 3.00 which may be assigned to the NH₂, C=SH and CH₃ groups respectively (Fig.10). It is interesting to note that the C=SH peak (B) is quite sharp indicating that proton exchange with the solvent is slow even at 25° . The NH₂ peak (A) is a broad triplet due to N¹¹⁴-H coupling. Reducing the temperature causes this triplet to collapse to a single line as has also been found to occur in the case of acetamide and formaride. Thicacetanilide

A solution of thicacetanilide in acetone gives a spectrum with three peaks, in addition to the solvent and reference peaks, that may be attributed to the NH, $C_{6}H_{5}$ and CH_{3} protons. In fluorosulphuric acid at 25° an additional peak appears that may be assigned to the C=SH group. The spectrum at -40° (Fig. 11) is essentially the same except that the NH peak is sharper and is more clearly resolved from the solvent peaks the four peaks A, B, C and D may be attributed to the NH, $C_{6}H_{5}$, C=SH and CH_{3} groups respectively. The C=SH resonance occurs at approximately -5.5 p.p.m. from tetramethylsilane which is at considerably higher field than the C=OH resonance (~-10 p.p.m.). The chemical shifts for the S-H group in thiophenol and thiolacetic acid are -3.2 and -4.73 p.p.m. 76,77 respectively , whereas the chemical shifts for the OH group in 1 77 phenol and acetic acid are ~-7.5 and -11.37 p.p.m. respectively. The sharpness of the C=SH resonance at 25° indicates that proton exchange is very much slower than for the C=OH group under the same conditions.

A rough comparison of the lifetimes of the conjugate acids of acetamide and thioacetamide was made as follows.

The width of the OH peak of protonated acetamide is still somewhat broad at -92° indicating that exchange is still occurring. Since there are distinct signals for the solvent and $O^{+}H$ the conditions for slow exchange may be applied to equation (1.13) which reduces to

$$G \simeq G_A \approx -i \qquad H_1 M_0 \qquad \frac{P_A \uparrow_A}{1 + \alpha_A} \uparrow_A \qquad (3.1)$$

The imaginary part is

$$\mathbf{v} = - \mathbf{v} \mathbf{H}_{1}\mathbf{M}_{0} \frac{\mathbf{P}_{A} \mathbf{T}_{2}^{A}}{1 + (\mathbf{T}'_{2A})^{2}(\omega_{A} - \omega)^{2}}$$
(3.2)

i.e. there will be a broadened signal centred at ω_A with width given by the parameter

$$T_{2A}^{,-1} = T_{2A}^{,-1} + \gamma_{A}^{-1}$$
 (3.3)

Thus if T_{2A} is known \bigwedge_{A} can be found from the width of the broadened signal $T_{2A}^{\dagger -1}$. If T_{2A}^{-1} is taken as $\pi \cdot 6.0 \text{ sec}^{-1}$ (estimated from linewidths of 0⁺H of protonated ketones at c.a. -90° Chapter V) then \bigwedge^{-1} will have a value of ($\pi \cdot 23.2 - \pi \cdot 6.0$) sec⁻¹ = $\pi \cdot 17.2 \text{ sec}^{-1}$ and this is equal to k, the rate constant for proton loss by the conjugate acid. The dependence of the rate of proton exchange on the temperature can be expressed by the Arrhenius equation

$$k = k_0 e^{-E/RT}$$
(3.4)

From this equation an estimate of the rate of proton exchange for the conjugate acid of acetamide at 25° can be calculated. This was found to be $1.5 \ge 10^7 \sec^{-1}$ (appropriate value for E of 11.5 K cals was estimated from data on the conjugate acids of ketones Chapter V). Since $\stackrel{+}{}$ the S H peak of protonated thioacetamide is quite sharp and has a chemical shift from the solvent of approximately 5.8 p.p.m. the lifetime of the captured proton on the sulphur atom at 25° must be greater than $\frac{1}{207.350}$ sec. or k = 2.2 $\ge 10^3$ sec⁻¹.

Thus the lifetime of the conjugate acid of thioacetamide is considerably greater than that of the conjugate acid of acetamide. This might appear to suggest that thioacetamide is a stronger base than acetamide. Nowever the value of pK_{BH}^{+} for thioacetamide of -1.76 indicates that it is 79a weaker base than acetamide pK_{BH}^{+} +0.37 and -0.51 . In agreement 81 with this it has also been found that thiolactams are weaker bases than 82lactams . If thioacetamide is indeed a weaker base than acetamide then one must conclude that the rate of proton exchange of amides and thioamides is influenced by several other factors in addition to their basic strengths.

TABLE II

CHEMICAL SHIFTS FOR SOLUTIONS OF THIOAMIDES

Amide	Temp. (°C)	Solvent	<u>-б(р</u> S-Н	C-CH3	from Ex N-R ₂	n-R3	<u>.S.</u> (:.p.s.)
<u>ى سەر سەر سەر بەر بەر بەر بەر بەر بەر بەر بەر بەر ب</u>	na ng ng ng ng ng ng ng ng ng				97 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -		unna all nasioni i nomenation.⊄Cai
Thioacetaride	25	acetone	-	2.35	8.47	8.47	
	11	water	-	2•9l4	9•48	9.48	J _N I ¹ , R 50\$8
	17	fluorosulphuric acid	5.75	3.00	9.25	9.25	
	-50	57	5.69	2.89	9.21	9.21	
	-81	tr	5.72	2.92	9.29	9.29	
Thicacetenilide	25	acetone	-	2.47	10.55	7.19	
	11	fluorosulphuric acid	5.45	3.17	~10. 5*	7.72	
	-40		5.39	3.09	10.64	7.68	

* N-H peak broad and very close to solvent.

Fig. 10 N.m.r. SPECTRUM OF THIOACETAMIDE IN FLUOROSULPHURIC ACID.

л Л

Fig. 11 N.m.r. SPECTRUM OF THIOACETANILIDE IN FLUOROSULPHURIC ACID

56

(4) UREAS

The results for thiourea, N-methylthiourea, urea and N,N-dimethylurea are given in Table III.

Thiourea and N-methylthiourea

The spectrum of thiourea in water or trifluoracetic acid contains only one line due to the NH2 group in addition to the solvent peak. The fact that the trifluoracetic acid peak is quite broad suggests that although protonation occurs in this medium proton exchange is rapid at 25°. In the more acidic (and less basic) medium sulphuric acid, a new peak appears in the spectrum at approximately -5 p.p.m. that can be attributed to the C=SH group and the NH2 peak disappears. In fluorosulphuric acid the spectrum is essentially the same except that the C=SH peak is somewhat narrower indicating that proton exchange with the solvent is slower than in sulphuric acid. Decreasing the temperature causes a further narrowing of this line, as expected. At the same time the solvent peak increases in width with decreasing temperature. This observation and the disappearance of the NH2 peak can only be reasonably interpreted as being due to diprotonation, the first proton being attached to sulphur and exchanging only very slowly with the solvent and the second proton being attached to nitrogen and exchanging rather rapidly with the solvent.

The behaviour of N-methylthiourea is similar. In water and trifluoracetic acid the spectrum consists of three peaks A, B and C, due to the NH, NH₂ and N-CH₃ groups respectively (Fig. 12). The latter peak is a doublet due to spin-spin coupling with the NH proton (J = 4 c.p.s.) Area measurements gave a ratio A + B: C = 2.8: 3.0. Fig. 13a shows the spectrum of a fluorosulphuric acid solution at -47.5°. A C=SH peak (B)

has appeared, the NH peak has disappeared and the N-CH₃ peak (C) has collapsed to a single line. The relative areas were found to be A:B:C = 1.81: 0.95: 3.00. It must be concluded that a second protonation occurs on the nitrogen of the NH.CH₃ group but proton exchange between the ⁺ NH₂.CH₃ group and the solvent is quite rapid even at -80°. By using a less basic SbF₅/HSO₃F mixture as solvent it was found possible to reduce the rate of this exchange sufficiently, so that at -67°, a new peak D is observed in the spectrum at -8.19 p.p.m. (Fig. 13b) which can presumably be attributed to the two protons on the methylated nitrogen atom. The N-CH₃ peak was found to have a width of 15 c.p.s. which must be at least partly due to slow proton exchange: in the absence of exchange this peak would be expected to be a triplet due to coupling with the NH₂ protons. At low temperatures these solutions become very viscous and this is also partly responsible for the broadness of the signals.

The conclusion that protonation of thiourea and its N-methyl derivatives occurs first on sulphur is in agreement with ultra-violet and 58,60 63 infra-red spectroscopic studies and wide line n.m.r. studies on thiourea salts. It appears that a second protonation occurs on the nitrogen atom in very strong acid solution.

Urea and N,N¹-dimethylurea

In dilute aqueous solution the spectrum of urea consists of an NH_2 peak. In sulphuric and fluorosulphuric acids this peak disappears and no peak was observed for urea even at -86° or in fluorosulphuric acid containing 10% SbF₅ at -88° . However in both these latter cases the solvent peak is quite broad indicating that, contrary to the behaviour of other amides, proton exchange is fairly slow but not slow enough for a
separate peak from the conjugate acid of urea to be observed. That the disappearance of the N-H resonance is not due to quadrupole relaxation was demonstrated by the use of N¹⁵ urea (N¹⁵ has spin $\frac{1}{2}$ and hence no quadrupole moment): as before no peaks were observed.

Only a single peak was observed due to NCH3 group in the spectrum of a 6 mole % solution of N.N:-dimethylurea in water. Thus it appears that in this case the NH protons exchange with the solvent even in dilute aqueous solution. Redpath and Smith however observed both an NH peak (width = 23 c.p.s.) and an unsymetrical methyl doublet (J = 4.3 c.p.s.) in a solution containing 0.6 weight fraction of N.N'-dimethylurea in water. This doublet collapses in sulphuric acid solution. Although, as in the case of urea, the solvent peak became very broad at low temperatures it was not possible to slow down exchange sufficiently, even at -88° in HSO_3F containing 10% SbF₅, to observe peaks due to NH₂ or C=OH. Unfortunately these results do not enable any definite conclusions to be drawn concerning the site of protonation in urea and N,N-dimethylurea. In the case of simple amides, by decreasing the basicity of the solvent, the rate of proton exchange with the solvent can be decreased sufficiently so that a separate n.m.r. signal from the conjugate acid can be observed. However in the case of urea and its derivatives decreasing the basicity (and therefore increasing the acidity) of the solvent probably leads to a second protonation of the amide and the diprotonated species exchanges more rapidly with the solvent than the conjugate acids of simple amides. Evidence for the diprotonation of tetraethylurea has been obtained from freezing-point measurements in 100% sulphuric acid . Evidence that the site of the first protonation is on the oxygen atom is given by the

⁶⁵ results of an X-ray diffraction study of the crystal structure of Nmethylurea nitrate in which a short hydrogen bond was found between the ⁶³ carbonyl oxygen and an oxygen of the nitrate ion. Redpath and Smith have also obtained evidence from the line-widths in the n.m.r. spectra of various crystalline use salts that the conjugate acid of usea has a proton on the carbonyl oxygen. The infra-red and ultra-viclet spectra ⁵⁸ of usea hydrochloride have also been interpreted on the basis of protonation on the carbonyl oxygen.

TABLE III

Urea	Temp (°C)	Solvent	- 8 (p.p.m. Solvent) from Ext. T X-H	.M.S. N-H	N-CH3	J (c.p.s.)
Thiourea	25	water	5.12	**	7.66	-	·····
	R	trifluoracetic acid	11.95(22)+	-	7.83	-	
	Ħ	sulphuric acid	10.89(29)	5-25(山)	-	-	
	Ħ	fluorosulphuric acid	10.30(15)	4.87(21)	- .	-	
·	-50	11	10.63(46)	4.81(~5)	-	-	
	-73	19	11.05(69)	4.84(~5)	••	-	
N-Methylthiourea	25	water	-	-	8.07,7.59	3.33	J _{H,CH3} 3.8
	Iŧ	trifluoracetic acid	11.45(21)	-	8.02,7.55	3.16	J _{H,CH3} 4.2
	Ħ	sulphuric acid	11.21(29)	5.21(broad)	7.84	3.56)	No coupling
	-47.5	fluorosulphuric acid	11.11(33)	4.79(sharp)	7.29) 3.24)	observed
	-67.5	fluorosulphuric acid*	10.81(29)	4.86	8.19,7.32	3.35	
+ Values in brac	kets den	ote line width	# F]10/	rosulnhuric	acid soluti	an aanti	

,

CHEMICAL SHIFTS FOR SOLUTIONS OF UREAS AND THIOUREAS

Fluorosulphuric acid solution contains 4.47 mole % SbF5

TABLE	III ((Contd.)

Urea	Temp (°C)	Solvent	- 8 (p.p.m. Solvent) from Ext. X-H	T.M.S. N-H	J N-CH3 (c.p.s.)
Urea	25	water	5.13	-	6.08	-
	11	trifluoracetic	10.11(13)	-	-	-
	Ħ	sulphuric acid	10.81(~ <u>h</u>)	-	-	-
	11	fluorosulphuric acid≝	9 .10(~ 5)	-	-	-
	-60	18	9.38(16)		-	-
	-80	12	9.52(34)	-	-	-
N,N'-dimethyl urea	25	water	5.32	-	-	3.08
	Ħ	trifluoracetic acid	11.09(8)	-	-	2.97
	IT	sulphuric acid	10.94	-	-	3.43
	-86	fluorosulphuric acid	11.67(64)	-	-	3.33(31)
	25	fluorosulphuric acid*	9.97	-	-	3.34
	-88	17	11.94(93)	-	-	3.59(~120)

+ Values in brackets denote line width

* Fluorosulphuric acid solution contains 4.47 mole % SbF5

Fig. 12 N.m.r. SPECTRUM OF N-METHYLTHIOUREA IN TRIFLUORACETIC ACID.

Fig. 13 a N.m.r. SPECTRUM OF N-METHYLTHIOUREA IN FLUOROSULPHURIC ACID.

,

Fig. 13 b N.m.r. SPECTRUM OF A SOLUTION OF N-METHYLTHIOUREA IN FLUOROSULPHURIC ACID CONTAINING 4.47 MOLE % ANTIMONY PENTAFLUORIDE.

(5) SULPHONAMIDES

The results are summarised in Table IV. The conjugate acids of these bases undergo extremely slow proton exchange with the solvent even at room temperature. Fig. 14 shows the spectrum of N-methyl-ptoluenesulphonamide at -5° : A is assigned to the $C_{6H_{4}}$ and N_{2}^{+} protons, B to the N-CH₃ group and C to the p-CH₃ group. This assignment is confirmed by the relative areas of the peaks which were found to be A: B: C = 6.13: 3.05: 3.00 and the fact that B is a poorly resolved triplet due to spin-spin coupling with the NH₂ protons. Fig. 15 shows the spectrum of N,N-dimethyl-p-toluenesulphonamide at 25° . A is assigned to the C₆H₄ and NH protons, B to the N-CH₃ group and C to the p-CH₃ group. This assignment is confirmed by the relative areas of the peaks which were found to be A: B: C = 4.87: 6.30: 3.00 and the fact that B is a doublet due to spin-spin coupling with the NH proton. It is clear that in both these cases protonation is on nitrogen.

Sulphamide

A solution of sulphamide in fluorosulphuric acid at 25° gave the spectrum in Fig. 16, consisting of a moderately broad peak superimposed on a very broad peak. The former is assigned to the NH₃ group and the the latter to the NH₂ group in the conjugate acid of sulphamide O=S(NH₂)(NH₃). No peaks other than the solvent peak were visible in the spectrum of a sulphuric acid solution at room temperature presumably because of relatively rapid proton exchange between the conjugate acid of sulphamide acid of sulpham

TABLE IV

CHEMICAL SHIFTS OF SULPHAMIDE AND SOME SULPHONAMIDES

IN FLUOROSULPHURIC ACID

Sulphonamide	Temp. (°C)	- 6 (p.p.m.) Phenyl N-H	from Ext. N-CH3	T.M.S. C-CH ₃	ن د.p.s.
		99 - 99 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9		1	
N-Methyl-p-toluenesulphonamide	25	8.06 ~7.79	3.30	2.77	
	- 5	8.06 ~7.79	3.29	2.74	^J н, сн ₃ 5.Ц
	-70	8.06 ~ 7.79	3.26	2.68	
N.N-Dimethyl-p-toluenesulphonamide	25	8.06 ~7.56	3.32	2.76	JH,CH35.
	-50	8.04 ~7.56	3.29	2.74	
		NH3	NH2		
Salphamide	25	8.21	7.68		

Fig. 14 N.m.r. SPECTRUM OF N-METHYL-P-TOLUENE-SULPHONAMIDE IN FLUOROSULPHURIC ACID.

Fig. 15 N.m.r. SPECTRUM OF N, N-DIMETHYL-P-TOLUENE-SULPHONAMIDE IN FLUOROSULPHURIC ACID.

Fig. 16 N.m.r. SPECTRUM OF SULPHAMIDE IN FLUOROSULPHURIC ACID.

CHAPTER IV

PROTONATION OF METHYL BENZENES AND ANISOLE IN FLUOROSULPHURIC ACID

(1) INTRODUCTION

The protonation and relative basicities of the various methyl-88 81-88 benzenes has been discussed in a number of papers Mackor et al. have measured the basicity constants for a large number of aromatic The electronic absorption spectra of aromatic hydrecarbons in HF solution. 87 carbonium ions of type AH have been studied and π -electron resonance energies calculated. It has been assumed that the proton adds to one carbon atom thereby forming an "aliphatic" CH2 group as first suggested by Gold and Tye in the case of anthracene. Definite evidence in support of this assumption has been obtained from the n.m.r. spectra of the conjugate acids of a number of aromatic hydrocarbons obtained by dissolving the hydrocarbon in astrongly acid medium such as $BF_3 \cdot H_2 O/CF_3 COOH$ or EF_2/HF^{19} . Although for pentamethylbenzene in BF_3/HF a rather broad line due to the CH₂ group was observed at room temperature, in the case of hexamethylbenzene, mesitylene and other weaker bases it was necessary to make measurements at low temperatures in order to observe the resonance of the CH₂ protons. This has been attributed to the exchange of the CH₂ protons by one or more of three processes.

(i) Exchange with the solvent HS

$$AH^+ + S^- = A + HS \qquad (4.1)$$

(ii) Intermolecular exchange between the aromatic hydrocārbon and its conjugate acid

$$A + AH^+ = AH^+ + A \qquad (L_02)$$

(iii) Intramolecular exchange of the proton between positions of equal proton affinity on the same carbonium ion, e.g.

From the results of their studies of the protonation of aromatic 20hydrocarbons in HF/BF₃ MacLean and Mackor have concluded that for hexamethylbenzene, durene and prehnitene exchange proceeds by ($l_{1.3}$) for mesitylene by ($l_{1.2}$) and ($l_{1.1}$) and for <u>m</u> -xylene by process ($l_{1.2}$) while for pentamethylbenzene they observed no exchange.

Fluorosulphuric acid has a somewhat greater acid strength than HF and a similar low freezing point, but unlike HF can be handled in conventional glass apparatus. It was hoped that useful information on the exchange of protons between aromatic hydrocarbon and acid solvents would be obtained by a parallel study to that carried out by MacLean and coworkers using HSO_3F rather than HF as a solvent. One particular aim was to ascertain if the novel mechanism (4.3) also operates in HSO_3F solutions.

(2) SPECTRA OF HYDROCARBON CONJUGATE ACIDS

For each of the hydrocarbons studied it was found that at sufficiently low temperatures and under sufficiently acid conditions the lifetime of the hydrocarbon conjugate acid is long enough for its n.m.r. spectrum to be observed. Table V contains chemical shift data for these bases.

Mesitylene

The spectrum of a 6.16 mole % (1.2 molar) solution of mesitylene in fluorcsulphuric acid at -79° is shown in Fig. 17. It consists of three peaks A, B and C of relative areas 2.02: 1.96: 9.08. These three peaks must arise from the two aromatic protons A, the two "methylene" protons B, and the three methyl groups C respectively, indicating that protonation has occurred on one of the ring carbon atoms. Since the three methyl groups are no longer equivalent the methyl resonance actually consists of two overlapping peaks of relative The spectra of other solutions with concentrations in the area 1:2. range 2-6 mole % are all quite similar. No signals were observed for any of the solutions that could be attributed to the unprotonated mesitylene indicating that, under the experimental conditions, the protonation of mesitylene is essentially complete. This is of some interest since MacLean and Mackor's n.m.r. spectrum of a 3.5 molar solution in anhydrous hydrogen fluoride saturated with boron trifluoride indicated that only 60% of the mesitylene was present in the protonated form, the remainder being present as the free base.

No fine structure due to spin-spin coupling was observed, although in HF solution MacLean and Mackor found that the paramethyl group was a triplet. They attributed this to spin-spin coupling with the "methylene" group although the expected quartet splitting of the methylene signal was not observed.

Durene

Four peaks, A, B, C, and D are observed in the spectrum of durene in fluorosulphuric acid at low temperature (Fig. 18). These may be attributed to the CH, and CH₂ groups and two nonequivalent methyl groups respectively. The relative areas were found to be A: B: C: D = 0.87: 1.79: 6.0 in agreement with the proposed assignment.

Pentamethylbenzene

Protonation of pentamethylbenzene occurs at the only unsubstituted ring position. The spectrum of a fluorosulphuric acid solution at -49° is shown in Fig. 19: it consists of four peaks A, B, C, and D of relative areas A: B: C: D = 1.77: 3.14: 6.09: 6.00 which may be attributed to the CH₂, p-CH₃, o-CH₃, and m-CH₃ groups respectively. Hexamethylbenzene

A solution of hexamethylbenzene (2.7 mole %) in fluorosulphuric acid was found to give at -85° , a spectrum consisting of five peaks of relative areas A: B: C: D: E = 0.99: 3.06: 6.13: 6.35: 3.00 (Fig. 20a). Under favourable conditions E was observed as a poorly resolved doublet due to coupling with the single proton A (J=5.8 c.p.s.) but no corresponding splitting of peak A was observed. In HF/BF₃ solution MacLean and Mackor found $J_{AE} = 6.7$ c.p.s. and also $J_{AB} = 3.5$ c.p.s. 19,20and $J_{AC} = 1$ c.p.s. No fine structure, other than the doublet E, was observed in this investigation.

m-Xylene

Fig. 21 shows the spectrum of a solution of <u>m</u>-xylene in 1.2 mole $\lesssim \text{SbF}_5/\text{HSO}_3\text{F}$ at -50° . The relative areas of the neaks were found to be A:B:C: = 2.91: 1.80: 6.00. The spectrum is best explained by assuming protonation ortho to one methyl and <u>para</u> to the other methyl group. The "doublet" C is due to the nonequivalent methyl groups and B arises from the "methylene" protons. The phenyl part of the spectrum A consists of a peak B due to the proton <u>ortho</u> to both methyl groups superimposed on an AB quartet arising from the other two ring protons. The unequal heights of the methyl peaks may be attributed to unresolved spin-spin coupling causing a greater broadening of one peak than the other.

p-Xylene

The much weaker base p-xylene was examined in a 13 mole % SbF_5/HSO_3F solution. At -63°, which was the lowest temperature at which a reasonable spectrum could be recorded due to the high viscosity of the solution, only two very broad lines were visible in the spectrum; one due to the ring protons and the other to the methyl groups. From an integrated spectrum the relative areas of the two peaks were found to be 4.77: 6.00 indicating that ring protonation had taken place.

Anisole

The spectrum of a solution of anisole in fluorosulphuric acid shown in Fig. 22a closely resembles that obtained in an organic solvent except that the spectrum is shifted 0.6 p.p.m. to lower field. Figs. 22b and 22c show the effect of temperature. At low temperatures a new peak appears at 4.4 p.p.m. below the tetramethylsilane reference; this

can be attributed to a "methylene" group formed by ring protonation. At 0° the lack of resolution in the phenyl spectrum indicates that exchange of the CH₂ protons with the solvent is still occurring, but at $-6h^{\circ}$ fine structure can be observed in the phenyl spectrum and as this does not change further at lower temperatures it is reasonable to suppose that exchange has become very slow. The spectrum is best explained by postulating protonation at the ring position para to the methoxy group as MacLean and Mackor have previously done in order to 20 explain the results of their studies of HF solutions , and not on the oxygen as has been assumed to explain the results of ultra-violet 89 spectroscopic measurements . Evidence for ring protonation has also 20 been obtained recently in the cases of dimethoxybenzene from n.m.r. 90 studies and for trimethoxybenzene from reaction rate studies .

Base	Temp.	Chamical Shifts & (n n m.) from Fort TMS					
	(°C)	Solvent	CH	CH ₂		CH ₃	
Mesitylene	-77	10.99	7.67	4.56	2.93	2.77	
(concn.1.93 mole %)	- 35	10.84	7.68	4.57		2.83	
	- 25	10.61	7.72	4.59		2.85	
Durene	-88	11.19	8.75	5 .0 2	2.85	2.58	
(concn.1.49	-69.5	11.09	8.69	4.99		2.69	
mole % + (9.04 mole % SbF5)	-60	11.06	8.65	5.02		2.68	
Hexamethyl	- 85	11.60	4.19		2.85	2.71 2.41 1.71	
-benzene	- 73	11.59	4.23		2.68	2.53 1.61	
(concn.8.21)	- 62	11.56	4.20		2.58	1.89	
	-46	11.49	4.21			2.51	
Pentamethyl	-49	0.0		6.52	8.43	8.59 8.88	
-benzene * (concn.2.82 mole %+3.39 mole % KSO ₃ F)							

CHEMICAL SHIFTS OF METHYLBENZENES AND ANISOLE IN FLUOROSULPHURIC ACID

TABLE V

• The chemical shifts of these bases were referenced with respect to the solvent.

TABLE V (Contd.)

Base	Temp. Chemical		shifts of	(p.p.m.) fr	om Ext.	m Ext. T.M.S.		
	(°C)	Solvent		henyl	CH ₂	CH3		
<u>m-Xylene*</u>	-80	0.0	1.91 2.04	2.77 2.89	5.97	7.70 7.81		
(concn.7.82 mole % +	- 50	0.0	1.74 1.88	2.62 2.77	5.85	7.55 7.67		
SbF ₅)	-31.5	0.0	1.72 1.85	2.57 2.74	5.78	7.58		
						och3		
Anisole	-64	11.14	8.92 8.76	8.59 8.42	4.34	4.65		
(concn.4.12			7.76 7.60	7.47 7.28				
	0	10.95	8.81 8.46	8.26 7.69	4.40	4.77		
				7•57				
	25	10.79	8.66 8.31	8.15 7.58	-	4.34		
				7.44				

* The chemical shifts of these bases were referenced with respect to the solvent.

•

Fig. 17 N.m.r. SPECTRUM OF A SOLUTION OF MESITYLENE (6.16 mole %) IN FLUOROSULPHURIC ACID.

Fig. 18 N.m.r. SPECTRUM OF A SOLUTION OF DURENE (1.12 mole %) IN FLUOROSULPHURIC ACID.

Fig. 19 N.m.r. SPECTRUM OF PENTAMETHYLBENZENE (2.82 mole %) IN FLUOROSULPHURIC ACID. PEAK A WAS RECORDED AT A HIGHER POWER LEVEL THAN PEAKS B, C, AND D.

.

Fig. 20 N.m.r. SPECTRA OF A SOLUTION OF HEXAMETHYLBENZENE (2.7 mole %) IN FLUOROSULPHURIC ACID.

Fig. 21 N.m.r. SPECTRA OF A SOLUTION OF M-XYLENE IN FLUOROSULPHURIC ACID CONTAINING 12 MOLE % ANTIMONY PENTAFLUORIDE.

Fig. 22 N.m.r. SPECTRA OF A SOLUTION OF ANISOLE IN FLUOROSULPHURIC ACID.

(3) RATES OF PROTON EXCHANGE

On raising the temperature of the solution the lifetime of the conjugate acid decreases and the spectrum changes accordingly. The methyl spectrum collapses to a single line in all cases except pentamethylbenzene, which is the only case for which proton exchange does not lead to equivalence of the <u>o</u>-, <u>m</u>-, and <u>p</u>-CH₃ groups, the "methylene" (or CH.CH₃) and phenyl peaks broaden and eventually merge into the base-line and finally the solvent line broadens somewhat. The collapse of the methyl peaks of the conjugate acid of hexamethylbenzene with increasing rate of proton exchange is illustrated in Fig. 20. The <u>o</u>-CH₃ group is the first to collapse since it has the smallest chemical shift, and the methyl group on the site of protonation is the last since it has the largest chemical shift from the other methyl peaks. These observations may be attributed to proton exchange by one or more of the processes (4.1), (4.2), and (4.3).

The lifetime of the proton in the CH_2 or CH_CH_3 group of the conjugate acid can be obtained from the widths of the CH and CH_2 (or CH_3) signals. Under conditions where these signals can be observed the lifetime of the conjugate acid is large compared with the inverse of the separation of exchangeable sites and the condition for slow exchange may be applied. The broadened signal arising from protons at a site A has a width $(1/T_{24})$ given by the equation (3.3)

$$1/T_{2A}^{*} = 1/T_{2A}^{*} + 1/T_{A}^{*}$$
 (3.3)

where T_A is the lifetime of the proton on site A and $1/T_{2A}$ is the natural line width in the absence of exchange.

The relation between the lifetime of any particular proton in

a hydrocarbon conjugate acid and the lifetime of the conjugate acid τ depends on the conditions under which exchange occurs and on the particular hydrocarbon under consideration. For example, for mesitylene when the concentration of free base is negligibly small the necessary relation may be derived in the following manner. Exchange between the two proton sites a and b occurs by a slow rate determining proton loss to a solvent molecule S followed by rapid addition of another proton from the solvent.

Then if $1/T_{as}$ and $1/T_{ac}$ are the probabilities of an a proton becoming an s proton or a c proton respectively

$$1/T_{as} = 1/2\gamma$$
, $1/T_{ac} = 1/2\gamma$

Since 2/3rds of the c protons are rapidly reconverted to b protons

$$1/T_{ab} = 2/3T_{as} = 1/3T$$

Hence $1/T_{CH_2} = 1/T_{ab} + 1/T_{as} = 5/6T$ Now $1/T_{bc} = T$ and since 1/3 of the c protons are rapidly reconverted to a protons

$$1/T_{ha} = 1/3T_{hc} = 1/3T$$

Hence $1/T_{CH} = 1/T_{ba} = 1/3T$ Thus for mesitylene

$$1/\tau_{\rm CH} = 1/3\tau$$
, $1/\tau_{\rm CH_2} = 5/6\tau$ (4.4a)

The corresponding relations for the other hydrocarbons under the same conditions are

Durene
$$1/T_{CH} = 1/27, 1/T_{CH_2} = 3/47$$
 (4.4b)

Hexamethylbenzene $1/\tau_{CH_{c}CH_{z}} = 1/\tau$ (4.4c)

Pentamethylbenzene
$$1/T_{CH_2} = 1/27$$
 (4.4d)

<u>m-Xylene</u> $1/T_{CH_2} = 3/4T$ (4.4e)

The first order rate constant for proton loss by the conjugate acid is given by (3.4).

$$k = 1/T \tag{3.4}$$

In order to obtain a value for Υ from the measured line widths it is necessary to know $1/T_2$. The CH and CH₂ line widths for mesitylene are plotted against the temperature in Fig. 23. They decrease with decreasing temperature and eventually reach a constant limiting value. At very low temperatures the CH₂ but not the CH line widths increase again somewhat. This may possibly be attributed to a decrease in the relaxation time as a consequence of an increase in γ/T where γ is the viscosity and T is the absolute temperature. The theory of relaxation mechanisms indicates that $1/T_1$, the inverse of the spin-lattice relaxation time, should be proportional to γ/T and Bloembergen et al.⁹¹ have shown this to be true for ethyl alcohol. The equations relating the intra- and intermolecular contributions to the spin-lattice relaxation time are given below, (4.5; 4.6).

$$\begin{array}{ll} (\underline{1}) &= 2\pi \, \underline{\gamma} \, \underline{a}^3 \, \underline{b}^2 \, \underline{\lambda}^4 \\ (\underline{T}_1) & \text{intra} & \underline{b}^0 \, kT \end{array} \tag{4.5}$$

$$\begin{array}{c} (\underline{1}) \\ (\underline{T}_1) \text{ inter} \end{array} = \frac{3\pi^2 \gamma \text{ No} \hbar^2 \gamma^4}{kT} \tag{4.6}$$

Under conditions where the molecules are rotating rapidly, as in liquids, the spin-lattice relaxation time T_1 becomes equal to the spin-spin relaxation time T_2 ; hence $1/T_2$ is proportional to 7/T. The effect of temperature upon the viscosity of fluorosulphuric acid is not known so that a correction to the inverse of the relaxation time $1/T_2$ due to change in 7/T with temperature could not be made. However a partial correction for the effect of temperature alone was made according to $(l_{4},7)$

$$\frac{1}{T_{2b}} = \frac{1}{T_{2a}} \cdot \frac{Ta}{Tb}$$
(4.7)

where T_{2a} is the relaxation time at the lowest temperature T_{a} , when no further changes in the spectrum are produced; T_{2b} is the relaxation time at the higher temperature T_{b} , at which the exchange rate is being measured. The calculated relaxation times, together with the measured line-widths and log of the calculated lifetimes of the conjugate acid are given in Tables VI-X.

The line width of the CH_2 peak is in all cases considerably greater than that of the CH peak. This may be due to unresolved spinspin coupling in the CH_2 signal or to the protons of the methylene group having a shorter relaxation time which might possibly be attributed to these protons being involved in rather strong hydrogen bonding with the solvent. The line widths of the CH and CH_2 peaks in SbF5/HSO₃F solutions are greater than for solutions in HSO₃F alone which is consistent with the greater viscosity of these solutions.

It is clear from Fig. 23 that the line widths are dependent on the concentration of the hydrocarbon base. An increase in the

concentration of hydrocarbon results in an increase in the CH and CH2 line widths and a decrease in the temperature at which broadening is first observed. Evidently the rate of proton exchange increases with increasing concentration of the hydrocarbon base. As the ionisation of the hydrocarbon produces fluorosulphate ion which increases the basicity of the solvent, the increase in exchange rate is attributed to this increase in solvent basicity. A detailed comparison of the rates of proton exchange at -20° of the compounds studied is given in Table XI. In the case of pentamethylbenzene and m-xylene this rate was calculated only from the broadening of the CH2 peak; for hexamethylbenzene from the broadening of the CH.CH, peak and for mesitylene from both the CH and CH, peaks: the rate in the case of durene was calculated only from the CH₂ signal. The reason why the CH peak was not used will be explained later.

The rate increases in every case with increase in the concentration of the hydrocarbon. The suggestion that this may be attributed to the effect of the increased concentration of fluorosulphate ion, resulting from the protonation of the hydrocarbon, is confirmed by the effect of added fluorosulphate ion in increasing the rate in the case of pentamethylbenzene and the effect of added SbF5 in reducing the rate in the 72 cases of mesitylene, durene, hexamethylbenzene, and <u>m</u>-xylene . In this respect these results differ substantially from those of MacLean 20 and Mackor who claim that the rate of proton exchange for hexamethylbenzene, durene, and prehnitene are independent of the concentration of the EF3 in the HF/EF3 solvent and conclude that in these cases exchange occurs by the intramolecular process (h.3). It was found in fact that the addition of SbF_5 to a solution of hexamethylbenzene in fluorosulphuric acid increases the lifetime of the conjugate acid to such an extent that the CH peak does not broaden sufficiently, even at 25°, to enable a lifetime to be measured.

For the compounds studied in this investigation these results clearly exclude the possibility that (4.3) is the only process by which exchange occurs. The solvent line broadens somewhat as the CH and CH, lines broaden with increasing temperature, especially when the concentration of base is appreciable. Results shown in Table XII illustrate this fact. Because of the high concentration of the solvent in the solutions the amount of broadening of the solvent peak is not great enough to enable exchange rates to be calculated, but nevertheless these results clearly indicate that exchange cannot occur only by process $(l_{4},2)$ because this does not involve the solvent. In addition the concentration of free base was very small (not detected by n.m.r. techniques) which makes it unlikely that exchange via process (h.2)could be fast enough to compete to any appreciable extent with (h.l). It is therefore concluded that proton exchange occurs mainly via the solvent a though one cannot entirely rule out the possibility that there might be some exchange by (4.2) and (4.3) under suitable conditions.

TABLE VI

LINE WIDTHS, RELAXATION TIMES, AND RATE CONSTANTS FOR SOLUTIONS OF MESITYLENE IN FLUOROSULPHURIC ACID

Temp. C	1/T ₂ sec ⁻¹	CH 1/T ₂ sec ⁻¹	log.1/T	1/T2 sec ⁻¹	CH2 1/T2 sec ⁻¹	log.1/1
Conc. of	mesityle	ne 1.93 mo	le %			<u></u>
-36.5	17.6	13.2	1.123	42.4	34.8	0.962
-35	21,2	13.1	1.386	46.3	34.6	1.150
-30	25.7	12.8	1,587	56.8	33.9	1.440
- 25	34.3	12.6	1.815	77.0	33.2	1.720
-21.5	42.0	12.4	1.949	87.9	32.7	1.821
Conc. of	mesityle	ne 3.59 mo	le %			
-40	21,8	12.6	1.441	52.6	33.0	1.372
- 33.5	25.1	12.3	1.800	72.1	32.1	1.780
-28,5	48.2	12.0	2.036	101.8	31.4	1.927
- 24 . 5	65.1	11.8	2.203	141.1	30.9	2,120
Conc. of	mesityle	ne 3.71 mo	le %			
-50	-	-	-	42.1	37.1	0.778
-40	27.0	14.2	1.585	54.4	35.5	1.356
-25	83,2	13.3	1,322	-	-	-

TABLE VI (Cont'd.)

Temp. C	1/T ₂	сн 1/т ₂	log.l/T	1/T ₂	CH2 1/T2	log.1/7
	sec ⁻¹	sec ⁻¹		sec ⁻¹	sec ⁻¹	
Conc. of	mesityle	ne 6.16 mo	le %			
-57	16.0	11.6	1,126	40.5	37.8	0,511
-45	26.4	11.0	1.665	66.6	35.8	1.567
-35	65.3	10.5	2,216	149.5	34.3	2.141
-20,5	153.3	9.9	2.634	æ	-	6 79
-12	262.0	9.6	2.879	6	-	-
Conc. of	mesityle	ne 5.79 mo	le %	(Sdf ₅ 4.	29 mole %)	
-33	23.2	17.8	1,212	50.3	42.7	0,960
26	26,4	17.3	1.435	62.2	41.5	1.396
-13	58.7	16.4	2,103	130.7	39.4	2.040
- 8	95.2	16.1	2.375	170.6	38.6	2,200
4	185.3	15.4	2,707	-	-	-

TABLE VII

LINE WIDTHS, RELAXATION TIMES AND RATE CONSTANTS FOR SOLUTIONS OF DURENE IN FLUOROSULPHURIC ACID

Temp. C		СН			CH ₂	
	1/T2	1/T ₂	log.1/7	1/T2	1/T ₂	log.1/7
	sec ⁻¹	sec ⁻¹		sec	 sec	
Conc. o:	f durene l	,12 mole %				
-87.5	34.6	30.7	0.888	-	-	-
-82	48.1	29,8	1,562	64.7	60.1	0.789
-77.8	64.7	29.2	1.852	69.4	58.9	1,151
-74	97.4	28.6	2.139	86.4	57.7	1.583
-72	88 .0	28.3	2.077	90.8	57.1	1.652
-68.5	385	æ	c	129.4	56.5	1.986
-64.5	-	2	-	171.2	55.1	2,190
Conc. o:	f durene l	.74 mole %	(SbF5 4.42	mole %)		
-80	58,4	29.3	1.743	660	-	-
-77.5	62,2	29.0	1.798	68.2	62.5	0.921
-75	76 .0	28 .6	1.957	71.0	61.1	1.119
-70.5	105.6	28.0	2.175	85.1	59.8	1,529
-64.5	134.5	27.2	2.318	101,8	58.0	1.766
-61	185.3	26.7	2.490	126.6	57.1	1.967
-58.5	-	-	-	156.5	56.4	2,125
-56	-	-	-	166.5	55.8	2.169

TABLE VII (Cont'd.)

Temp. [°] C	ז / ב.	СН	10g.1/ r	ז / ײַ	СН ₂	log.1/2
	sec ⁻¹	⇒ -2 sec ^{∞1}		2 sec ⁻¹	-7 -2 sec ⁻¹	
Conc, of	durene	1.49 mole %	(SbF ₅ 9.0 ¹	+ mole %)		
- 75	49.8	38.0	1.370	-	-	-
-69.5	72,4	37.0	1.850	70.3	64.1	0.914
-65	115,6	36.2	2,201	80.0	62.7	1.361
-60.4	209.5	35.4	2.542	102.3	61.3	1.737
-57	•	-	-	129.0	60.4	1.961
-54.5	æ		-	153.7	59.7	2.098
TABLE VIII

LINE WIDTHS, RELAXATION TIMES AND RATE CONSTANTS FOR SOLUTIONS OF HEXAMETHYLBENZENE IN FLUOROSULPHURIC ACID

Temp. C		CH_CH_		
-	1/T:	1/T ₂	log.l/r	
	sec ⁻¹	sec ⁻¹		
Conc. of hexa	methylbenzene 2.74 mc	ole %		
-50	1,6.2	44.0	0.342	
-25	47.1	39.6	0.879	
0	122.8	35.9	1.939	
Conc. of hexa	methylbenzene 4.73 mo	ole %		
-22	64.7	41.2	1.371	
-17	79.8	40.5	1.594	
-13	93•3	39•9	1.728	
-10	123.5	39•3	1.925	
- 4	175.0	38•5	2.135	
Conc. of hexa	methylbenzene 5.67 m	ole %		
-30	51.8	41.6	1.010	
-25	63.8	40.8	1.362	
-1 8 . 5	81.7	39•8	1.622	
-11	153.6	38.6	2.061	
Conc. of hexa	methylbenzene 8.21 m	ole %		
-43	45.7	40.5	0.715	
-36.5	55.8	39.5	1.212	
-34.5	63.6	39.1	1.389	
-31	76.2	38.5	1.577	
-27.5	98.6	38.0	1.783	
-25	8_111	37.6	1.871	

TABLE IX

Тетр.С	l/T ₂ sec ⁻¹	1/T ₂ sec ⁻¹	log.1/7
Conc, of pent	amethylbenzene 4.01	mole %	
-40	47.1	36.9	1.312
-30	61.6	36.1	1.692
-25	72.9	35.2	1.877
-16	106.2	34.0	2.159
Conc. of pent	amethylbenzene 2.82	mole % (KSO ₃ F 3.39	9 mole %)
-35	65.6	38.4	1.736
30.5	78.9	37.7	1.905
- 25	102.7	36.9	2.110
-18	159.0	35.9	2.391

LINE WIDTHS, RELAXATION TIMES AND RATE CONSTANTS FOR SOLUTIONS OF PENTAMETHYLBENZENE IN FLUOROSULPHURIC ACID

TABLE X

Temp. C	l/T ₂ sec ^{~l}	l/T ₂ sec ^{~l}	log.1/7
Conc, of <u>m</u> -xy	lene 7.82 mole % (SbF	5 11.35 mole %)	
-31.5	41,5	35.8	0,882
-23	50,6	34.3	1.332
-20	57.8	34.1	1.500
-13	82,6	33.1	1.819
- 9	100,5	32.7	1.957
- 7	119.4	32.4	2.076

LINE WIDTHS, RELAXATION TIMES AND RATE CONSTANTS FOR SOLUTIONS OF \underline{m} -XYLENE IN FLUOROSULPHURIC ACID

Base		SbF ₅	k
	(Mole %)	(Mole %)	(sec ⁻¹)
Mesitylene	1.93		96.9
	3 .59	e	243.1
	3.71	-	276.5
	6.16	-	843.0
	5.79	4.29	53.7
Durene	1.12	-	1.06 x 10 ⁵
	1.48	9.04	1.04 x 10 ⁴
	1.74	4.42	3.44 x 10 ⁴
Pentamethylbenzene	2 .82 *		200.0
	4.01	-	108.0
Hexamethylbenzene	2.73	-	9.8
	4.73	-	27.5
	5.67	-	38.9
	8.21	-	154.9
	2.85	4.42	†
<u>m</u> -xylene	7.82	11,55	28.0

RATE CONSTANTS FOR PROTON EXCHANGE AT -20°

TABLE XI

* This solution also contained 3.39 mole % potassium fluorosulphate.

+ The rate of exchange was too slow to measure.

Base		Conc. mole %	Temp.	Solvent line width c.p.s.
Mesitylene		3.58	-77	2.2
			-24.5	4.4
		5.79	-26	4.6
	(4.29	SbF5)	4	9.2
Durene		1.34	-89	<u>ل</u> .0
	(4.42	Sdf5)	- 56	6 . 6
Hexamethyl-		4.73	-41	3.2
benzene			- lı	5.4
		8.21	-6 9 . 5	1.8
			-25	4.5

.

TABLE XII

BROADENING OF THE SOLVENT LINE WITH INCREASING TEMPERATURE

Fig. 23 SOLUTIONS OF MESITYLENE IN FLUOROSULPHURIC ACID: LINE WIDTHS OF CH AND CH₂ PEAKS.

(1) ACTIVATION ENERGIES

The dependence of the rate of proton exchange on the temperature can be expressed by the Arrhenius equation

$$k = k_{o} e^{-E/RT} \qquad (4.8)$$

Plots of log k against 1/T are shown in Figs. 24-27 for solutions of mesitylene, durene, hexamethylbenzene, pentamethylbenzene and <u>m</u>-xylene in fluorosulphuric acid. For mesitylene (Fig. 24) it can be seen that the rates obtained from the broadening of the CH and from the CH₂ lines are the same within experimental error. This provides some confirmation of the values chosen for $1/T_{2}$.

Fig. 25 shows a similar plot for the base durene. Except in one case the lines are reasonably parallel. For durene it was found that the rate constant calculated from the CH line broadening was much greater than that obtained from the CH_2 line broadening. This greater rate of exchange may not be due solely to the exchange of the "methylene" protons but could be partly due to the rearrangement of the methyl groups. Durene and prehnitene are both known to rearrange to the more stable 1,2, 203,5-tetramethylbenzene .

The results obtained from Figs. 2h-27 are summarised in Table XIII. It can be seen that, except for pentamethylbenzene, the activation energies fall in the range 13-15 kcals. and are much higher than the values obtained by MacLean and Mackor for HF/BF₃ solutions which are in the range 7-8.5 kcals. This is possibly a reflection of the smaller basicity of the fluorosulphuric acid solvent system.

Base		Sdf 5	Log k.	E
	(Mole %)	(Mole %)		(K cals/mole)
Mesitylene	1.93		13.72	13.6
	3 .59		13.91	13.3
	3.71	-	13.82	13.2
	6.16	-	14.38	13.8
	5.79	4.29	13.89	14.1
Durene	1.12	-	17.92	14.9
	1,48	9.04	17.23	15.3
	1.74	4,42	16,20	13.5
Pentamethylbenzene	4.01	-	10.65	9.9
	2,82*	-	11.52	10,4
Hexamethylbenzene	2.73	-	12.95	13.7
	4.73	-	13.42	13.9
	5.67	-	14.51	15.0
	8.21	-	15,60	15.5
<u>m</u> -xylene	7.82	11,55	13.72	14.2

ACTIVATION ENERGIES (E) AND FREQUENCY FACTORS (k.) FOR METHYLBENZENES IN FLUOROSULPHURIC ACID

TABLE XIII

* This solution also contained 3.39 mole % potassium fluorosulphate.

.

Fig. 24 SOLUTIONS OF MESITYLENE IN FLUOROSULPHURIC ACID: LOG & AGAINST 1/T.

0

k

Fig. 25 SOLUTIONS OF DURENE IN FLUOROSULPHURIC ACID: LOG k AGAINST 1/T.

Fig. 26 SOLUTIONS OF HEXAMETHYLBENZENE IN FLUOROSULPHURIC ACID: LOG k AGAINST 1/T.

Fig. 27 SOLUTIONS OF PENTAMETHYLBENZENE (1,2) AND M-XYLENE (3) IN FLUOROSULPHURIC ACID: LOG & AGAINST 1/T.

(5) DISCUSSION

Since there are some notable differences between the results of MacLean and Mackor on solutions in HF and the results of this investigation on flucrosulphuric acid solutions, some comments are made on their work.

MacLean and Mackor have calculated the rate of proton exchange for hexamethylbenzene by comparing experimentally obtained spectra with theoretical line shapes calculated from the Bloch equations including exchange. The assumption was made that the proton only jumps between adjacent carbon atoms: this presupposes the mechanism proposed. No reason was given for the choice of 2.2 c.p.s. for the line width of the methyl signals and the <u>ortho</u> methyl signal was assigned a width of h.h c.p.s. in order to account for the spin-spin coupling $J_{AC} \implies 1$ c.p.s. This value for the <u>ortho</u> methyl signal appears to be too large for two peaks separated by onlyic.p.s.; nor is the assumption that all methyl peaks have the same width necessarily a good one.

The Dutch workers also state that "whether a proton exchange reaction is intra or intermolecular can in general not be conclusively determined from the shape of the spectra", yet later they say that the spectrum of a solution of hexamethylbenzene in HF/BF_3 at -30° provides conclusive evidence that the exchange is intramclecular. It is remarkable that this spectrum recorded under conditions of rapid exchange shows spin-spin splittings which are better resolved than the 19 supposed quartet for the CH_aCH₃ peak when exchange is extremely slow . They claim that the exchange processes for hexamethylbenzene, durene, and prehnitine are independent of concentration of base and of BF₃ and therefore exchange intramolecularly. However results are oucted for only two different concentrations of hexamethylbenzene, and only one concentration for each of the other two bases. In addition durene is reported as exchanging at nearly the same rate as hexamethylbenzene 84even though it is a much weaker base . In the fluorosulphuric acid system, the exchange rate for durene is much faster than it is for hexamethylbenzene. In fact the rates calculated at -20° (Table XI) increase roughly in the same order as the basicities of the bases decrease.

A noticeable feature of the spectra of MacLean and Mackor is that in the cases where an intermolecular process is proposed, free base is present, but in the cases where an intramclecular exchange is postulated there is no free base present. It seems surprising that the bases were not examined under similar conditions. In the experiments with HSO_3F under no conditions was there any free base present suggesting once again that HSO₂F is much more acidic than HF/BF₃. The calculations by MacLean and Mackor based on the acid line width must also be regarded with suspicion since the large H^1 - F^{19} spin-spin coupling constant may have a considerable effect on the acid line width over the temperature In the presence of appreciable quantities of free base range studied. it is conceivable that exchange process (4.2) may contribute to some extent but in the fluorosulphuric acid system where the concentration of base was very small all of the exchange must occur via process (4.1).

In conclusion it was found that for all the methylbenzenes in fluorosulphuric acid the predominant exchange process is an intermolecular one between the conjugate acid and the solvent. The high

107

activation energies found for the proton transfer probably reflect the low basicity of the solvent rather than being typical of the CH_2 group as suggested by MacLean and Mackor. It is quite likely that some of the differences between the two systems are due to differences in the solvents, but the methylbenzene-HF/EF₃ system needs to be reinvestigated under more uniform conditions.

CHAPTER V

PROTONATION OF OXYGEN BASES

(1) INTRODUCTION

Many organic oxygen bases are known to be fully ionised in strong 92 acid solution. Gillespie and Leisten have reviewed the literature up to 1951 which shows that ketones and most carboxylic acids behave as simple bases

$$B + H_2 SO_{l_1} \longrightarrow BH^+ + HSO_{l_1}^-$$
(5.1)

in 100% sulphuric acid. It has been shown however that alcohols are esterified by sulphuric acid and that certain carboxylic acid ionise according to the equation

$$RCOOH + 2H_2SO_1 \longrightarrow RC = 0 + 2HSO_1 + H_3^{\dagger}$$
(5.2)

A review by Paul and Long , on Hammett acidity function determinations, lists the pK_{BH}^+ values for a number of organic oxygen bases. Edward and 26 coworkers have used the changes produced in the n.m.r. spectra of alcohols and ethers upon protonation to measure pK_{BH}^+ for these bases. In no case did they observe an n.m.r. spectrum due to the captured 24 proton. MacLean and Mackor were the first to observe the spectra of the conjugate acids of acetone, ethyl alcohol and water in solution in anhydrous hydrogen fluoride saturated with boron trifluoride at -75° .

(2) NUCLEAR MAGNETIC RESONANCE SPECTRA OF OXYGEN BASES IN

FLUOROSULPHURIC ACID

In view of the successful observation of the n.m.r. spectra of the conjugate acids of amides and methylbenzenes in fluorosulphuric acid solution, a study of some oxygen bases was carried out in this solvent.

Ketones

A series of para-substituted acetophenones were dissolved in fluorosulphuric acid and the n.m.r. spectra of these solutions recorded at various temperatures. In all cases it was possible to observe the spectrum of the conjugate acid, although in the case of p-nitroacetophenone at -88° the $=0H^{+}$ peak had a width of 12.h c.p.s. indicating that exchange was still occurring. For the other acetophenones the $=0H^{+}$ line width reached a minimum value above -38° indicating that exchange was extremely slow. The chemical shifts of the peaks in the n.m.r. spectra of the conjugate acids of these bases are recorded in Table XIV. A notable feature of these low temperature spectra is the very large chemical shift of the captured proton from T.M.S. indicating a very small shielding at this proton. No spin-spin coupling was observed between the captured proton and the methyl protons of the ketone.

The n.m.r. spectra of the phenyl region of these bases is shown in Fig. 28. This would be expected to be of the A_2B_2 or ABCD type, but except for acetophenone and p-fluoroacetophenone it apparently approximates to an AB quartet and shows a typical change in shape as the ratio δ/J changes. One would expect that protonation of the carbonyl oxygen would lead to an increased contribution from II with the result that the HO.C.CH₃ group would become coplanar with the ring and an ABCD spectrum

....0

would be expected. The apparent AB spectrum must be due to negligible cross ring spin-spin coupling with the result that there are two AB quartets with the same chemical shifts. Acetophenone would be expected

to give a complicated pattern for the ring part of the spectrum since there are three different groups of protons all of which can spin-spin interact (Fig. 28a). The ring portion of the spectrum of the conjugate acid of <u>p</u>-fluoroacetophenone (Fig. 28b) is complicated due to spin-spin coupling of the ring protons with the <u>para-fluorine</u> which has a spin of $\frac{1}{2}$.

Fig. 28 and Table XIV illustrate the effect a change of substituent can have on the n.m.r. pattern produced by the aromatic protons and on the position of the resonance due to the captured proton. The $H^{+}_{0.C.CH_3}$ would be expected to be strongly electron withdrawing at the <u>ortho</u>-positions, whereas the OCH₃ group is electron donating at <u>ortho</u>-positions: thus in the conjugate acid of <u>p</u>-methoxyacetophenone (III) the A protons have **quite** a different chemical shift from the B protons. As the substituent <u>para</u> to the ketone group is made less electron donating and becomes more electron withdrawing, it competes more and more with the ketone group for the electron density of the ring, with the result that the two A and the two B protons become more and more equivalent. In <u>p</u>-nitroacetophenone the chemical shifts of the A and B protons are almost the same, indicating

that the electron withdrawing powers of the NO_2 and $HO_{\bullet}C_{\bullet}CH_3$ groups are comparable.

When the para substituent is strongly electron donating, eg. OCH_{39} the $=OH^+$ peak is at higher field than when there is a strongly 94 electron attracting group in the para position eg. NO2. Stewart and Yates have measured the pK_{BH^+} values for a number of substituted acetophenones and attempted to correlate $pK_{\rm BH}\text{+}$ with σ , the Hammett substituent constant. The substituents which gave negative deviations from their plot were all para substituents which can donate electrons by resonance. A σ^+ value has been developed for these substituents where a positive charge is developed in conjugation with the group . A plot of $pK_{\rm BH}^+$ against σ^+ gave a good correlation for the substituted acetophenones except for para-OCH₃. It is thought that although the para-OCH₃ group is strongly electron donating by resonance, it is not quite as strong as the σ^+ value predicts presumably because of strong hydrogen bonding with the solvent. In Table XV and Figs. 29, 30 the chemical shifts obtained for the captured proton of the conjugate acids are compared with the pK_{BH}^{+} and σ^{+} values given by Stewart and Yates . Fig. 29 shows that there is a good correlation between chemical shift and the pK_{BH} + for the conjugate acids: likewise there is a good correlation between the chemical shift and the σ^+ value (Fig. 30) for the p-substituent except for the p-OCH₃ group.

N.m.r. spectra of the conjugate acids of acetone and benzophenone have also been obtained and the chemical shifts are given in Tables XVI and XVII. The spectra of the conjugate acid of acetone will be discussed in Chapter VII. In a solution of benzophenone in an SbE /HSO₃F mixture the

resonance due to the captured proton is clearly visible at 25° although exchange is still occurring (the =OH peak becomes sharper on lowering the temperature). The chemical shifts reported in Table XVII are relative to the solvent. An attempt was made to use methanesulphonylfluoride as an internal reference, but as the temperature was lowered an additional methyl doublet appeared which moved away from the original CH_3SO_2F doublet. It seems likely that some of the "reference" is coordinating with the SbF_5 thus giving rise to two doublets. It was therefore felt that CH_3SO_2F was probably not a reliable reference.

Ethyl Alcohol and Water

The chemical shifts obtained for solutions of ethyl alcohol and water are given in Table XVI.

It can be seen that protonation of ethyl alcohol results in a shift of all the peaks to lower field: this is caused by withdrawal of electron density from the molecule to counteract the positive charge placed at the site of protonation. By cooling the solution to low temperature the spectrum of the conjugate acid was obtained. The areas of the three peaks observed at -95° were in the ratio 1.75: 1.89: 3.00 indicating that the extra proton was attached to the oxygen atom. There was no evidence which suggested that any ethyl fluoride had been formed by the reaction

 $CH_3CH_2OH + HSO_3F \longrightarrow CH_3CH_2F + H_2SO_{l_1}$ (5.3) Formation of ethyl fluoride would result in a spectrum containing only two peaks i.e. CH_3 and CH_2 in addition to the solvent line $HSO_3F + H_2SO_{l_1}$. It was not possible to observe any fine structure in the OH_2^{\dagger} : in HF/BF_3 solution it has been observed as a triplet due to coupling with the methylene protons. The chemical shift between the CH_2 and CH_3 peaks is

found to be increased considerably in the conjugate acid spectrum compared to the unprotonated form. This fact has been used by Edward and co-26 workers to measure the pK_{BH}+ for this and other bases containing ethyl groups attached to the basic atom.

In a solution of water in HSO_3F_5 , or in SbF_5/HSO_3F_5 , it was not possible to detect a peak due to H_3O_6 . A possible reason for this could be hydrolysis according to (5.4)

$$H_2O + HSO_3F \iff HF + H_2SO_{l_1}$$
(5.4)

and rapid exchange of the HF and $H_2SO_{l_1}$ protons with the solvent. However 96Senior has shown that the equilibrium (5.h) lies far to the left and 2hthat protonation is the only significant reaction. MacLean and Mackor observed a peak which they attributed to H_30^+ which occurs at slightly lower field (0.57 p.p.m.) than the peak due to OH_2^+ in protonated ethyl alcohol. Addition of this shift (0.57 p.p.m.) to the value found for OH_2^+ in HSO₃F solutions at -95° gives a value for the expected chemical shift of H_30^+ in HSO₃F solutions of about -10.5 p.p.m. which is very close to the observed value for the chemical shift of the HSO₃F protons at -95° . In viewof the fact that the solvent peak is invariably broad at these temperatures it seems reasonable to suppose that the peak due to H_30^+ is overlapped by the solvent line and is therefore not observed.

Other Oxygen Bases

Solutions of dimethylsulphoxide in fluorosulphuric acid have only one peak in their n.m.r. spectra at 25° . Upon lowering the temperature a new peak appears, at -7.08 p.p.m. from T.M.S. (Table XVI), which is quite sharp at -98° indicating that at this temperature exchange is slow. The relative areas of the two peaks were found to be 0.67: 6.00: the reason for the unexpectedly high ratio is unknown. The absence of any spin-spin coupling in the methyl signal and the chemical shift of the captured proton, indicates that protonation occurs on oxygen rather than on sulphur. A proton on sulphur would be expected to give a signal at $\mathcal{C} \ll -5.5$ p.p.m. from T.M.S. (see Chapter III) which would have a quartet structure as a consequence of spin-spin coupling with the CH₃ protons since they would be separated by only three bonds.

The resonance due to the proton captured by benzoic acid in an SbF_5/HSO_3F solution was observed at low temperatures. In addition to the peaks arising from the phenyl protons only one other peak was visible in the spectrum, apart from the solvent. This peak was located in the same region of the spectrum as the =OH⁺ peaks in the spectra of protonated ketones (Tables XV-XVII) and can therefore be attributed to a proton attached to the carbonyl oxygen, rather than to protonation of the OH oxygen to $-C_5-OH_2^+$. This latter structure might be expected to give a signal in the same region of the spectrum as the OH_2^+ of protonated ethyl alcohol i.e. -10 p.p.m. from T.M.S. or +1.5 p.p.m. from HSO_3F. Protonation of the carbonyl oxygen would give rise to an ion with the resonance structures IV-VII in which the two OH groups are equivalent.

Stewart and Yates have found a close correlation between the basicities of a number of benzoic acids and their acetophenone analogues which also indicates that the carbonyl oxygen is the site of protonation in benzoic acids. It was confirmed that protonation is on oxygen by measuring the relative areas of the peaks which were found to be in the ratio 2.0: 4.96. Only the chemical shifts of the more prominent phenyl peaks are given in Table XVII since the patterns are complex.

The spectrum of nitromesitylene in CCl_{μ} consists of a single line A due to the phenyl and two overlapping lines B, C due to the <u>ortho</u> and <u>para</u> methyl groups. In a strongly acidic solution, at low temperatures, a new peak D appears at - μ .07 p.p.m. from the solvent: the relative areas were found to be D: A: B + C:: 0.95: 1.81: 9.00. The chemical shift between the nonequivalent methyl groups increases from 3.2 c.p.s. in CCl₄ to 13.2 c.p.s. in the acid solution. The absence of any peaks in the "methylene" region of the spectrum, which would be produced by protonation of the aromatic ring (Chapter IV), the area measurements and the fact that the new peak appears in the position now well established for an =OH⁺ proton (Tables XV-XVII), indicate that protonation takes place on one of the oxygen atoms of the nitro group.

TABLE XIV

CHEMICAL SHIFTS OF THE CONJUGATE ACIDS OF PARA-SUBSTITUTED ACETOPHENONES

p-subst.	Temp.	он+	<u>- 6 (1</u> HSO ₃ F	o.p.m.) from ext. T.M.S. Phenyl	ос.сн ₃	X
NO ₂	-84	15.33	11.32	8.87	3.66	
Cl	-79	13.52	11.16	8.67 8.53 7.95 7.82	3.42	
н	-82	13.46				
F	-71	13.34	11.14	8.77 7.76 7.63 7.51	3.44	
сн ₃	-46	12.85	11.04	8.63 8.49 7.83 7.70	3.37	2.74
осн ₃	-81	12. 46	11,26	8.85 8.72 7.61 7.48	3.34	4.38

TABLE XV

CHEMICAL SHIFTS OF OH^+ , pK_{BH}^+ , AND σ^+ values for

PARA-SUBSTITUTED ACETOPHENONES

p-subst.	- 6 p.p.m. of =OH	-рК _{ВН} +	6 ⁺
NO ₂	15.33	7•94	+0.79
Cl	13.52	6 . 52	+0.114
Н	13.46	6.15	0.00
F	13.34	6 .0 6	-0.073
CH3	12.85	5•47	-0.371
осн _з	12.46	4.81	-0. 778

TABLE	XVÏ	

CHEMICAL SHIFTS OF THE CONJUGATE ACIDS OF SOME OXYGEN BASES

	falmont	Tama	Sin	n m) from ort	. m w c	
Dase	DOTAGUE	oC C	он ОН	HSO ₃ F	CH ₂	сн ₃
8845	L / L / L / L / L / L / L / L / L / L /		<u> </u>			2):: 2:::::::::::::::::::::::::::::::::
Acetone	CDC13	25	-		-	2.17
	SbF5/HSO3F	25	14.45		-	3.25
Ethyl 2 ashal	CDC13	25	2.58	-	3.70	1.22
arconor	HSO3F	25	-	10. 92	4.95	1.83
		-82	10. 35	11.65	4.83	1.72
		-95	9.89	11.78 (32)	4.85	1.74
Dimethyl	CDC13	2 5	-	-	-	2.62
surphoxide	HSO3F	-9 8	7.0 8	11.37	-	3.31
Water		25	5.20	-	-	Ð
	SbF5/HSO3F	-80	-	11.24 (14)	-	-
		-90		11.3 (136)	-	-

The figures in () denote the line width.

TABLE XVII

CHEMICAL SHIFTS OF THE CONJUGATE ACIDS OF SOME OXYGEN BASES

Base	Sclvent	Temp. °C	oHt (p.1	CH3	
Benzo phenone	SbF5/HSO3F	25	-1.80	2.09 2.20 2.33 2.46	
		0	-1.75	2.20 2.31 2.46 2.57	
		-26	-1. 72	2.30 2.41 2.55 2.67	
Benzoic	SbF5/HSO3F	9	-1.56	1.59 2.04 2.42	
ac10		-)4	-1. 59	2.14 2.47	
		-75.5	-1.39	2.42 2.82	
Nitro- mesitylene	SbF5/HSO3F	-95	-4.07	3.21	7.92 8.14

-

Fig. 30 SOLUTIONS OF ACETOPHENONES IN FLUOROSULPHURIC ACID: -OH⁺ PROTON CHEMICAL SHIFTS AGAINST σ^+ .

(3) RATES OF PROTON EXCHANGE AND ACTIVATION ENERGIES

Raising the temperature of solutions of these oxygen bases in HSO₃F results in a broadening of the =OH⁺ peak due to a decrease in the lifetime of the conjugate acid. Since there is no overlapping of the =OH⁺ and the solvent peaks the conditions for slow exchange may be applied and equation (3.3) may be used to calculate the rate of proton Values for $1/T_2$, the line width in the absence of exchange, exchange. were obtained for benzophenone and benzoic acid by the same method as used in Chapter IV for the methylbenzene exchange studies. For solutions of acetophenones in HSO_3F the following method was used to obtain $1/T_2$ which eliminates the uncertainty of the $\frac{7}{8}$ /T correction applied in Charman, Vinard, and Kreevoy, during the course of a study Chapter IV. on the rates of proton abstraction from monosubstituted acetylenes, developed, from the Bloch equations as generalised by McConnell, an expression which relates the rate of proton exchange to peak heights (5.5)

$$\frac{1}{7} = \frac{V^{\circ} - V}{V \cdot T_2}$$
(5.5)

where V^{∞} is the height of the peak in the absence of exchange and V the height at an exchange rate 1/7. Since $1/T_2^{\dagger}$ in equation (3.3) and $7^{\circ\circ}$ and V in equation (5.5) are all measurable quantities there are only two unknowns, $1/7^{\circ}$ and $1/T_2$, for any particular temperature: since there are two equations (3.3) and (5.5) relating these quantities, the relaxation time for a particular temperature can be calculated and hence the rate of exchange at that temperature. From the results of these studies activation energies were calculated by means of the Arrhenius equation (4.6). Table XVIII gives the measured line widths at various temperatures, as well as the calculated rate of proton loss from the conjugate acids of benzophenone and benzoic acid. In Fig. 31 a plot of log k against 1/Tgives a straight line for the conjugate acid of benzophenone, but a similar plot for the conjugate acid of benzoic acid shows deviations from a straight line which are much greater than the experimental error. The reason for this is unknown. The plot suggests that there are two exchange processes operating, but protonation at either the C=O oxygen or the COH oxygen would result in equivalence of the two protons and only one exchange process should be observed.

Data for the acetophenones is given in Table XIX. The values obtained for $1/T_2$ for p-nitroacetophenone could not be obtained using equations (3.3) and (5.5) because it was not possible to stop the exchange process completely for this base and hence V was not obtainable. The value for $1/T_2$ at the lowest temperature at which a line width was recorded (-88°) was taken from an experiment in which p-methylacetophenone was used as the base and where exchange at -88° was negligible and therefore (3.3) reduces to $1/T_2' = 1/T_2$. Plots of log k against 1/T(Fig. 32) for these acetophenones give reasonable straight lines from which the activation energies and frequency factors were obtained. These values are given in Table XX. It is seen that the activation energies fall in the range 11-12 k.cals. except for p-nitroacetophenone which was 7.7 k.cals. Whether or not this large difference between p-nitroacetophenone and the other ketones studied is real, or is due to the choice of an incorrect value for T2, could perhaps be answered by carrying out a comparable investigation in a solvent which is more acidic than

 HSO_3F so that proton exchange by the conjugate acid of <u>p</u>-nitroacetophenone could be stopped completely. The small differences in the activation energies for the other bases are not considered to be significant.

It was hoped to obtain a correlation between the rates of proton loss and pK_{BH^+} and σ^+ values for these bases. However it can be seen (Fig. 32 and Table XX) that although there is a general trend of increasing rate of proton exchange with decreasing basicity, the conjugate acids of acetophenone and p-methoxyacetophenone exchange faster than would be 9h expected from their published basicities . Differences in the concentrations of the bases may partly account for this. In the case of p-methoxyacetophenone the calculated rate may not be correct since the conditions for slow exchange may not apply as the =OH⁺ peak is much closer to the solvent peak than it is for the other bases studied (Table XV), and when exchange becomes appreciable some merging of the =OH⁺ and the solvent lines is apparent. Under these conditions the assumption of the slow exchange condition (3.3) may not strictly apply and a more detailed calculation may be necessary. Use of another acidic solvent, where the acid protons are further removed from the =OH⁺ resonance to ensure that conditions for slow exchange applied in all cases, might give a better correlation between the rate of exchange and pKBH+.

TABLE XVIII

LINE WIDTHS AND EXCHANGE RATES FOR BENZOPHENONE AND BENZOIC ACID SOLUTIONS

	$1/T_2^{i} \text{ sec}^{-1}$	log 1/7	1/Tx 10 ³
Benzophenone			
	17.6	0.539	3.8514
	27.6	1.016	3.663
	39.0	1.395	3.546
	45.9	1.501	3.472
	59.4	1.656	3.407
	7 5 . 7	1.789	3.356
Benzoic acid			
	16.7	0.643	3.718
	34.6	1.348	3.677
	81.1	1.838	3.617
	99.9	1.943	3.584
	127.5	2.0 62	3.546

TABLE XIX

LINE	WIDTHS,	RELAXATION	TIMES,	AND	EXCHANGE	RATES	FOR	PARA-
SUBSI	TTUTED	ACETOPHENONE	ES IN F	LUORO	SULPHURIC	CIDA		

1/T ₂ ' sec-1	l/T ₂ sec-l	log 1/7	1/Tx 10 ³
p-nitroacetoph	enone		
39•0	18.2	1.319	5.405
44.1	18.0	1.415	5.361
50.5	17.8	1.514	5.291
72.8	17.3	1.737	5.155
p-chloroacetop	bhenone		
24.2	15.2	0.952	4.785
31.1	14.9	1.209	4.673
33•5	14.4	1.282	4.640
41.9	14.4	1.440	4.587
57•4	13.5	1.643	4.505
acetophenone			
18.9	9.8	0.961	4.919
22.8	9.1	1.138	4.847
35•3	7.6	1.443	4.708
45.8	7•7	1.581	4.669
61.5	7.0	1.736	4.583
p-fluoroacetop	henone		
20.8	14.7	0.785	4.728
26.1	15.1	1.041	4.651
30.0	14.5	1.191	4.598
44.4	14.2	1.1:80	4.505
67.4	13.6	1.731	4.405

,

TABLE XIX (Contd.)

$1/T_2'$ sec ⁻¹	l/T ₂ sec-l	log 1/7	1/Tx 10 ³			
p-methylacetophenone						
16.2	13.3	0.468	4.831			
21.1	12.1	0.936	4.684			
26 . 4	10.8	1. 193	4.566			
36.2	9.9	1.418	4.484			
49•4	9•3	1.603	4.405			
68.8	7•5	1.789	4.329			
p-methoxyaceto	phenone					
14.2	9.4	0.682	4.831			
18.4	9.0	0.970	4.747			
22.4	8.5	1.142	4.678			
32.5	7.6	1.396	4.574			
49.0	6.5	1.629	4.464			

TABLE XX

RATE DATA FOR SOLUTIONS OF KETONES IN FLUOROSULPHURIC ACID

Base	Conc. mole %	E k.cals./ mole	log k _o	log k (-60 ⁰)	-pK _{BH} +
p-nitro- acetophenone	3•28	7.6	10.89	3.10	7.94
p-chloro- acetophenone	2.93	11.4	12.89	1.17	6•52
acetophenone	3.36	11.1	12.64	1.49	6.15
p-fluoro- acetophenone	2.94	12.9	14.14	0.90	6.06
p-methyl- acetophenone	3.22	11.4	12.57	0.87	5.47
p-methoxy- acetophenone	3.10	11.6	12.97	1.08	4.81
benzophenone	3.15	11.2	14.97	-	6.16

Fig. 31 SOLUTIONS OF BENZOPHENONE AND BENZOIC ACID IN FLUOROSULPHURIC ACID: LOG k AGAINST 1/T.

Fig. 32 SOLUTIONS OF ACETOPHENONES IN FLUOROSULPHURIC ACID: LOG & AGAINST 1/T.

CHAPTER VI

PROTONATION OF NITROGEN, PHOSPHORUS, AND ARSENIC BASES

(1) INTRODUCTION

N.m.r. techniques have been used to study the protolysis of methyl-9.10 ammonium ions in aqueous solution. Grunwald and coworkers have obtained quantitative information about the rate and mechanism of proton transfer, between the solvent water molecules and the methylammonium ions. They followed the collapse of the structure of the methyl peak, due to spin-spin coupling with the captured proton, with increasing pH, and also 11,98,99 the broadening of the water line. Other workers have carried out 12 similar studies. Connor and Loewenstein have used n.m.r. methods to measure the activation energies of proton transfer in solutions of $extsf{NH}_{h}^{+}$ and 100 Jardetzky and Jardetzky CH₂NH₂⁺ in water. , and Bovey and Tiers have examined the proton spectra of amino acids in acid solution and obtained information on their structures.

In this investigation the solvents used are much more acidic than those mentioned above, and in order that exchange processes could be studied much weaker bases had to be used. These bases were mostly substituted anilines of the type used in the measurement of the Hammett acidity function by the spectrophotometric method. By varying the number and types of substituents in the aromatic ring and on the nitrogen, a large variation in $pK_{\rm BH^+}$ can be obtained. The protonation of this type of base has been relatively little ll₄ studied by n.m.r. methods. Isobe et al. have examined aniline in glacial acetic acid and observed that the phenyl spectrum, which is complex in an organic solvent, collapses to a single line on protonation. 15 Reynolds and Schaefer recently measured the exchange rate and activation energy of exchange for N,N-dimethylaniline in trifluoracetic acid solution, by observation of the collapse with increasing temperature of the methyl doublet, produced by spin-spin coupling with the captured proton.

(2) PROTONATION OF NITROGEN BASES

Anilines

Most of the anilines studied have been shown by means of cryoscopic studies to ionise by adding a single proton in 100% sulphuric acid, even 2,4,6-trinitroaniline which has a $pK_{BH}^{+} = -9.41$, is extensively protonated in 100% sulphuric acid. Although a base may be effectively 100% protonated in solution, the lifetime of the conjugate acid may not be sufficient for its n.m.r. spectrum to be recorded. For example, the NH⁺₃ peak of the conjugate acid of p-nitroaniline ($pK_{BH}^{+} + 0.99$) is not visible in solution in trifluoracetic acid ($H_0 = 3.0$) although the concentration of the protonated form is approximately 10⁴ times greater than the concentration of the unprotonated form. This phenomenon has also been found for other types of base, but at a sufficiently low temperature the exchange process is slowed down enough so that it is possible to observe the spectrum of the conjugate acid.

In the case of the substituted anilines it is also found that the exchange rate can be changed by altering the acidity of the medium. p-nitreaniline was the strongest base used in this study, and it was found to exchange rapidly with the solvent in CF_3COOH and in $\downarrow0$ mole % H_2SO_{\downarrow}/H_2O solutions. By adding sulphuric acid to both these solutions proton exchange is slowed down and the spectrum of the conjugate acid can be obtained. For weaker bases it is necessary to increase the acidity of the solution accordingly in order to record the conjugate acid spectrum. N.m.r. spectra have been recorded for solutions in mixtures of H_2O/H_2SO_{\downarrow} , $CF_3COOH/H_2SO_{\downarrow}$, $CH_3NO_2/H_2SO_{\downarrow}$, and $HSO_3F/H_2SO_{\downarrow}$ and the chemical shifts are recorded in Tables XXI-XXXIII. Corrections for the bulk diamagnetic susceptibilities of the solution and the external reference were made in all cases.

The rate of proton exchange was followed in a general way by observation of the reappearance of the peak due to the protons attached Protonation of the nitrogen bases results in the disapto nitrogen. pearance of the NH signal as a consequence of rapid exchange with the solvent and it reappears only when the rate of exchange becomes slower than the inverse of the separation of the two exchangeable sites. As the exchange process becomes slower the chemical shift between the two exchanging sites becomes greater. When the rate of exchange is negligible any further increase in the acidity produces no change in the chemical shift between the two sites other than that due to a solvent effect. This is illustrated in Fig. 33 where the chemical shifts of the protons attached to nitrogen are plotted against mole % H₂SO₁, (or HSO₂F). Detection of a signal due to a proton on nitrogen is often difficult due to the fact that the proton signal is frequently very broad as a result 75,103 of interaction with the quadrupole moment of the nitrogen nucleus In addition the signal is also somewhat broadened by the exchange process and becomes sharper as the exchange is slowed down. An attempt is made in a later chapter (VII) to correlate the appearance of the NH peak with the H_o of the solution.

For N-methyl substituted amines it is possible to follow the proton transfer by observation of the structure of the CH₃ peak. For example, N-methyl-4-chloro-2-nitroaniline, in an organic solvent, shows a doublet structure for the CH₃ resonance. Upon dissolving the base in CF_3COOH protonation occurs and the doublet structure collapses to a single line. This broadens as the concentration of H_2SO_4 is increased and eventually becomes a triplet due to spin-spin coupling with the NH_2^+ protons when exchange becomes negligible. The spin-spin coupling constant between the CH₃ and NH protons is usually of the order of 5 c.p.s. The relation between the structure of the CH₃ group resonance in the spectra of N-methylanilines and the acidity of the solution is discussed in Chapter VII.

From Tables XXI-XXXIII it is seen that protonation of the base results in all the peaks in the spectrum being shifted to lower field. This is the result of the positive charge on the nitrogen atom which reduces the shielding at the other hydrogen atoms by varying amounts. The effect is most noticeable for the protons of the aromatic ring. The chemical shifts of the <u>ortho</u> and <u>para</u> protons are most affected by protonation, as a result of conjugation in the aromatic ring, and the shifts of the <u>meta</u> protons the least. This results in a partial collapse of the phenyl part of the spectrum, although in no case was a complete collapse to a single line observed as found previously for aniline . No attempt has been made to analyse the phenyl portion of these spectra in order to obtain chemical shifts and spin-spin coupling constants.

Pyridine

The protonation of pyridine has been investigated by Isobe et al. who found that it was protonated in acetic acid but that there was rapid 16 exchange occurring. Smith and Schneider have studied pyridine in trifluoracetic acid and observed a triplet due to the proton captured by the nitrogen. The triplet structure is the result of spin-spin coupling between the captured proton and the nitrogen. The quadrupole moment of

135

the nitrogen nucleus is apparently not too effective in relaxing the N¹⁴ -H spin-spin coupling which suggests that the nitrogen is in a fairly symmetrical environment. This phenomenon has been discussed by Roberts 103 and others .

The resonance due to the NH⁺ proton was found by Smith and 16 Schneider , and also in this investigation, to occur at very low field 16 for a proton attached to nitrogen. This low value has been compared with that of the NH proton in pyrrole, a correction for the ring current effect made, and the electron density around the pyridinium ion calculated from this and the chemical shifts of the other ring protons. These workers suggest that the broadening of the β and γ protons on protonation is the result of a slow proton exchange between the NH⁺ proton and the solvent.

The n.m.r. spectrum of pyridine in a number of solvents having widely different acidities was recorded and the chemical shifts of the more prominent peaks are given in Table XXXIV. On going from trifluoracetic acid (H_0 -3.0) to the much stronger fluorosulphuric acid (H_0 -13.8) the resonance of the NH⁺ proton is shifted 1.45 p.p.m. to higher field, and the N¹¹ -H spin-spin coupling remains unchanged at 67[±] 1 c.p.s. Fig. 34 shows the ring part of the spectrum in solutions of differing acidity: the signal from the β protons is relatively little changed in the different solvents whereas the signals from the \propto and χ These facts do not appear to be in accord with protons move together. 16 Smith and Schneider's explanation of a slow proton exchange as the cause of the increased width of the B and Y peaks on protonation. Any slow exchange would surely be completely stopped by increasing the $H_{_{\rm C}}$

from -3.0 to -13.8 but in spite of this the β and χ proton peaks remain Furthermore \boldsymbol{J}_{N-H} remains unchanged with increasing acidity. It broad. seems clear that the broadness of the B and Y peaks in the ion is not due to any residual exchange, but may either be due to the overlapping of a large number of resonance lines which cannot be resolved, cr to the nuclear quadrupole relaxation of the N14 nucleus operating at positions in the molecule several bonds removed from the nitrogen nucleus. A spin-spin deccupling experiment in which the proton spectrum is observed while the nitrogen nucleus is being irradiated with a strong radiofrequency magnetic field which causes frequent transitions of the states of the N¹¹ nucleus thus effectively decoupling it from the rest of the system, might enable this problem to be solved. It might also be possible to achieve spin-spin decoupling by observing the proton spectrum of pyridine in HSO₃F solution at low temperatures (-85°) since this was achieved in the case of acetamide (Chapter III).

TABLE	XXI
	and

CHEMICAL SHIFTS OF p-NITROANILINE IN H20/H2SO14 SOLUTIONS

Mole % H ₂ SO _{li}	Chemical shift Solvent	б (р.р.) NH3	m.) from	n ext. Pho	H2S O J4 enyl	ref.
			_			
76.63	-0. 59	2.17	2.03	2.17	2.77	2.93
75-45	-0.61	2.32	2.04	2.13	2.78	2.92
62.30	-0.67	2.14	1.99	2.14	2.73	2.88
48.18	-0. 38	1.96	1.96	2.10	2.68	2.83
40.66	0.02		1.96	2.11	2.68	2.83
38.60	0.15		1.96	2.12	2.68	2.82
30.96	0.77		1.95	2.11	2.66	2.79
28 .30	1.03		1.95	2.09	2.65	2.80

Conc. of base 1.1 mole %

Mole % H2SO _{l4}	Chemical sh solvent	ift 6 (p. NH3	p.m.) fr	om ext	• H ₂ SO pheny	h ref. 1
100.00	0.0	2.51	2.10	2.25	2.85	3.00
78.97	-0. 13	2.45	2.16	2.31	2.89	3.04
ц ц. 77	-0. 30	2.34	2.23	2.37	2.90	3.05
30. 28	-0.37	2.26	2.26	2.40	2.91	3.06
25.98	-0. 38	2.25	2.29	2.44	2.92	3.10
17.46	-0.44	2.16	2.31	2.45	2.96	3.11
14.80	-0.48	2.16	2.34	2.48	2.97	3.11
13.81	-0.49	2.10	2.31	2.46	2.94	3.09
12.37	-0.51	2.08	2.30	2.48	2.96	3.11
10.95	-0. 53	2.05	2.32	2.47	2.96	3.11
8.19	-0.55	2.03	2.33	2.48	2.97	3.12
5.92	-0. 59	2.00	2.35	2.49	2.97	3.12
4•74	-0. 56	1.99	2.39	2.54	3.02	3.17
4•38	-0.61	1. 96	2.37	2.52	3.00	3 .1 5
2.27	-0. 65	1.87	2.38	2•53	3.01	3.16
0.00	0 •65	-	2.35	2.50	3.02	3.17

TABLE XXII

CHEMICAL SHIFTS OF p-NITROANILINE IN CF3COOH/H2SOL SOLUTIONS

Conc. of base 1.8 mole %

Mole % H ₂ SO ₄	Chemical solvent	shift NH3	6(p.p.	m.) fro phen	m ext. yl	H ₂ SO ₄ ref.	CH3NO2
100.00	-0.02	2.50	2.10	2.25	2.85	3.00	-
87.37	-0.22	2.38	2 .0 8	2.22	2.81	2.95	6.16
81.40	-0.30	2.35	2.07	2.22	2.80	2.95	6.17
76.81	-0.37	2.31	2 .07	2.21	2.78	2.92	6.16
66.36	-0. 38	2.30	2.07	2.26	2.76	2.90	6.38
55 •0 5	-0.41	2.29	2.14	2.29	2.79	2.94	6.19
46.56	-0.40	2.26	2.15	2.26	2.80	2.94	6.21
4 1. 89	-0.34	2.25	2.15	2.29	2•78	2.92	6.23
37.21	-0.26	2.22	2.17	2.32	2.80	2.95	6.27
29.47	-0.19	2.20	2.20	2.35	2.81	2.97	6.32
23.54	-0.17	2.11	2.18	2.33	2.79	2.93	6.35
17.70	-0.12	2.14	2.22	2.37	2.83	2.98	6.35
17.46	-0.09	2.12	2.23	2.38	2.83	2.98	6.35
13.90	-0.03	2.03	2.23	2.38	2.83	2.98	6.43
9.14	-0.11	-	2.26	2.42	2.86	3.01	6,38
8.46	-0.10	-	2.26	2.41	2.86	3.00	6.44
0.00	-		2.72	2.87	4.03	4.16	6.45

TABLE XXIII

CHEMICAL SHIFTS OF p-NITROANILINE IN CH_3NO_2/H_2SO_4 Solutions

Conc. of base 1.2 mole %

T/	ſΒΙ	Έ	XX	IV
Concession.		All . The	All states of the second	1000

CHEMICAL SHIFTS OF 4-CHLORO-2-NITROANILINE IN CF3COOH/H2SO4 SOLUTIONS

Mole % H ₂ SO _{li}	Chemical : Solvent	shift NH3	6 (p.p.m.) :	from e	xt. H2 pheny	50], re. 1	f.
3.00.00			0.02	o ()	0.00	0.0r	2.09
100-00	0.0	2.00	2.21	2.04	2.00	2.95	3.00
71.74	-0.13	1.98	2.28	2.71	2.82	2.95	3 .0 6
66.25	-0.17	1.97	2.30	2.70	2.86	2.94	3.09
37.96	-0.29	1.87	2.36	2.77		2.95	3.12
24.52	-0. 39	1.81	2.41			2.97	
21.10	-0.42	1.82	2.41			2.98	
18.15	-0.46	1.76	2.43			2.99	
12.08	-0. 52	1.65	2.45			3.00	
0.00	-0. 60	-	2.52			3.11	
(CH ₃ NO ₂)		4.31	2 . ùh	3•35	3.51	3•76	3.91
Conc. of base	e 1.5 mole %						

.

Mole % H ₂ SO ₄	Chemical s solvent	hiftş NH3	8(p.p.m.)	from	ext. H phen	2SO ₄ ref. yl
100.00	0.0	2.33	2.13	2.32	2•73	2.88
74.48	-0.14	2.26	2.20	2.36	2.75	2 .90
61.42	-0,20	2.23	2.23	2.39	2.76	2.92
50.73	-0.25	2.19	2.24	2.40	2.77	2.92
31.63	-0.32	2.13	. 2 . 33	2.48	2.83	2 .96
26.26	-0.37	2.08	2.33	2.48	2.83	2.95
23.42	-0.40	2.04	2.32	2.49	2.80	2 •95
11.95	-0.51	-	2.37	2•53	2.83	2.97
0.00	-0.61	-	2.43	2.64	2.98	3.13
(CH3NO2)		5.52	2.66	2.89	3.82	3.98

TABLE XXV

CHEMICAL SHIFTS OF 2-CHLORO-4-NITROANILINE IN CF3COOH/H2SO4 SOLUTIONS

Conc. of base 1.6 mole %

TABLE XXVI

CHEMICAL	SHIFTS	OF	N-METHYL-	-2-CHLORO-4	-NITROANILINE	IN	H ₂ 0/	H ₂ SO ₄	SOLUTIONS
								the second s	

	<u></u>	1 + 04	Sc	0				
MOLE %	solvent	Shlit NH2	O (p•p•m•)	irom	ext. H pheny	1	N.CH3	(c.p.s.)
68.25	-0.67	~ 2 .0 2	2.02	2.18	2.62 2	•77	7.21	
63 . 28	-0.68	~2.02	2.02	2.19	2.61 2	. 76	7.20	
61.28	-0.67	~1. 99	- 2.00	2.16	2.60 2	•76	7.19	
57.82	-0.63	~ 1.95	1.98	2.16	2.58 2	•73	7.19	
52.61	-0.54	-	1.99	2.17	2.56 2	•73	7.17	
47.21	-0. 33	-	2.01	2.18	2.59 2	•74	7.18	
HSO3F	0.29	~2.01	2.01	2.18	2.65 2	• 96	7•35	5.65

Conc. of base 1.2 mole %

TABLE XXVII

CHEMICAL SHIFTS OF N-METHYL-2-CHLORO-4-NITROANILINE IN CF3COOH/H2SO4 SOLUTIONS

Mole % H ₂ SO ₄	Chemical solvent	shift, 6(H	p.p.m.) from ext. H ₂ SO ₄ phenyl	ref. N.CH3	J (c.p.s.)
42.08	-0.31	2.08	2.28 2.41 2.77 2.91	7.38	-
3 4•45	-0.37	2.09	2.25 2.36 2.76 2.91	7. 38	-
18.72	-0.45	2.03	2.31 2.47 2.80 2.93	7.41	-
10. 83	-0.53	1.91	2.35 2.51 2.89 2.96	7.43	-
4.37	-0. 50	-	2.37 2.53 2.82 2.96	7.43	-

Conc. of base 1.6 mole %

TABLE XXVIII

CHEMICAL SHIFTS OF N-METHYL-L-CHLORO-2-NITROANILINE

IN H20/H2SOL SOLUTIONS

Mole % H ₂ SO ₄	Chemical Solvent	shift NH2	δ(p.p.m.) from ext. H ₂ SO ₄ ref. phenyl N.CH	3 K.p.s.)
69.71	-0 ₊ 66	1. 55	2.10 2.50 2.64 2.79 2.94 7.23	Not
62.38	-0. 65	1. 54	2.11 2.50 2.62 2.80 2.94 7.23	resolved
58•33	-0. 64	1.40	2.07 2.45 2.60 2.76 2.89 7.16	
49.51	-0. 44	1.34	2.04 2.45 2.57 2.72 2.86 7.17	
47.19	-0. 36	-	2.02 2.39 2.56 2.67 2.84 7.15	
40.80	-0.01	-	2.04 2.43 2.57 2.70 2.82 7.16	

Conc. of base 1.6 mole %.

TABLE XXIX

CHEMICAL SHIFTS OF N-METHYL-4-CHLORO-2-NITROANILINE

IN CF3COOH/H2SOL SOLUTIONS

Mole % H ₂ SO ₄	Chemical solvent	shift NH2	O (p.p.m.) from ext. H ₂ SO ₄ ref. phenyl	N.CH3	J (c.p.s.)
100.00	-0,02	1.76	2.21 2.61 2.76 2.91 3.08	7•33	L.08
87 .0 6	-0.0 8	1.71	2.26 2.64 2.80 2.95 3.09	7.39	
59.15	-0.20	1.71	2.36 2.77 2.91 3.02 3.17	7•37	4.42
42.64	-0 •28	1.67	2.41 2.79 2.94 3.02 3.15	7.41	5.10
23.49	-0.39	1.55	2.46 2.86 3.02 3.07 3.22	7.49	
21.92	-0.41	1.52	2.41 2.98	7.57	
18.05	-0.44	1.49	2.44 2.99	7.45	
11.02	-0. 52	1.36	2.45 3.01	7.45	
7.18	-0. 56	-	2.46 3.01	7.47	
0.00	-	-	2.50 3.06	7.53	
(CH3NO2)	-	-	2.73 3.24 3.39 3.75 3.89	7. 73	4.59
Conc. of	base 1.8 m	nole %.			

TABLE XXX

CHEMICAL SHIFTS OF N-METHYL-2,4-DINITROANILINE IN

H2SO4/HSO3F SOLUTIONS

Mole % ^{HSO} 3 ^F	Chemical solvent	shift NH2	$\delta(p.p.m.)$ from ext. H ₂ SO ₄ ref	N.CH3	J (c.p.s.)
T00•00	0.33	-	1.30 1.77 1.92 2.56 2.73	7.26	5.6
74.63	0.17	1.76	1.42 1.82 1.99 2.62 2.77	7.30	5.5
56.96	0.09	1.70	1.41 1.82 1.96 2.62 2.76	7.32	5.2
33.82	0.03	1.57	1.38 1.77 1.92 2.55 2.71	7.27	-
27.53	0.02	1.65	1.46 1.76 1.99 2.62 2.77	7.26	-
17.77	0.00	1.58	1.41 1.80 1.94 2.67 2.72	7.26	
8.80	0.00	-	1.39 1.72 1.93 2.55 2.69	7.25	-
0.00	-0.02	-	1.36 1.75 1.89 2.52 2.67	7.28	-

Conc. of base 1.4 mole %.

TABLE XXXI

CHEMICAL SHIFTS OF N, N-DIMETHYL-2,4-DINITROANILINE

IN CF3COOH/H2SO4 SOLUTIONS

Mole % H ₂ SO ₄	Chemical solvent	shift	6(p.p.m.) pheny]	from e	ext.	H2SOL ref. N(CH3)2	^Ј сн ₃ -н
100.00	-0.02	1.39	1.71 1.85	2.38	2.52	7.12	3.1
89.67	-0.0 5	1.40	1.72 1.88	2.38	2•54	7.16	4.25
54.41	-0. 22	1.46	1.77 1.92	2.38	2.53	7.14	4.53
47.61	-0.27	1.56	1.85 2.00	2.46	2.61	7.22	4.41
22.45	-0.40	1. 54	1.81 1.97	2.39	2.55	7.13	4.76
3.08	-0. 62	1.62	1.93 2.09	2.43	2.59	7.21	0.0
0.62	-0. 59	1.62	1.93 2.08	2.42	2.57	7.19	0.0
(CH3NO2)		2.24	2.57 2.73	3.56	3.71	7.73	0.0
NH ⁺ peak	not detect	ed ever	n in 100% H	1 ₂ 504.			
Conc. of	base 1.2 r	nole %					

TABLE XXXII

IN H2SO4/HSO3F SOLUTIONS

CHEMICAL SHIFTS OF N, N-DIMETHYL-2,4,6-TRINITROANILINE

	- Anti-Anti-Anti-Anti-Anti-Anti-Anti-Anti-				
Mole % HSO3F	Chemical s solvent	nift 6 (p.p.) NH ⁺	m.) from ext. phenyl	H ₂ SO ₄ ref. N.CH ₃	J CH ₃ NH ⁺ (c.p.s.)
100.00	0.39	-0,62	1.31	6•96	5.00
66 .0 9	0.12	-0.62	1.33	7.00	5.05
46.41	0.06	-0.43	1.46	6.99	4.47
25•73	0.02	-0.52	1.33	6.98	4.74
0.00	-0.02	-0.43	1.31	6.96	-

Conc. of base 1.3 mole %.

TABLE XXXIII

CHEMICAL SHIFTS OF N, N-DIMETHYL-2, 4, 6-TRINITROANILINE IN

CF3COOH/H2SOL SOLUTIONS

Mole % H ₂ SO ₄	Chemical solvent	shift d (p.) NH ⁺	p.m.) from ext. phenyl	H ₂ SO ₄ ref. N.CH ₃	^J CH3NH ⁺ (0.p.s.)
87.83	-0.07	-	1.34	6.97	3.67
6 7.25	-0.16	-	1.44	6.97	-
57.67	-0.21	-	1.46	7.02	-
51.76	-0.22	-	1.40	6.97	-
33 .1 4	-0.31		1.57	7.11	-
20.48 Conc. of	-0.42 base 1.2 mole	- %.	1.68	7.18	-

TABLE XXXIV

Solvent	Chemical solvent	shift - ar	of(p.p. comatic	.m.) fr proto	om int. ns	T.M.S. 1 NH ⁺	ref. J _{NH} + (c.p.s.)
сғзсоон	11.96	8,98 8,32	8.89 8.21	8.78 8.10	8.65	13.89	67
CF ₃ COOH cont. 32.5 mole % H ₂ SO ₄	10.83	8.42 7.77	8•33 7•67	8•23 7•56	8 .10	12.62	68
н ₂ ѕо _ц *	10. 49	8•33 7•73	8.23 7.62	8.20 7.51	8 .0 9	12.07	68
Solvent	Chemical solvent	shift a	Síp.p. romati	m.) fro c prot	m ext. ons	H ₂ SO _l rei NH ⁺	f. J _{NH} + (c.p.s.)
сғ ₃ соон	-1,19	1.85 2.51	1.93 2.62	2 .06 2.73	2,35	-3.04	68
H2SOL cont. 28.45 mole % CF3COOH	-0. 43	1.89 2.15	1.99 2.48	2.02 2.57	2 .07 2 . 68	-2,06	66
HSO3F*	-0.31	2 .01 2 . 59	2.13 2.69	2.25 2.81		-1.59	67

CHEMICAL SHIFTS OF PYRIDINE IN ACID SOLUTIONS

* The high field component of the NH⁺ triplet is not visible in these solutions since it has the same chemical shift as the solvent.

Fig. 33 SOLUTIONS OF ANILINES: NH⁺ PROTON CHEMICAL SHIFTS AGAINST CONCENTRATION OF H₂SO₄ OR HSO₃F.

Fig. 34 RING PROTON SPECTRA OF PYRIDINE IN SOLUTIONS OF VARYING ACIDITY .

(3) PROTONATION OF TRIPHENYLPHOSPHINE AND TRIPHENYLARSINE

The rate and mechanism of proton exchange in aqueous solutions of the trimethylphosphonium ion have been determined by n.m.r. 25 techniques . Observation of the collapse of the fine structure in both the methyl and P-H proton resonances with increasing pH enabled a pK_a of 8.80 to be determined. It was found that the doublet, due to spin-spin coupling of the P³¹ with the attached proton, did not collapse to a single line but each component merely broadened and rarged into the baseline with increasing rate of exchange.

Examination of a solution of triphenylphosphine in 100% sulphuric acid by n.m.r. showed that protonation had occurred, the proton being attached to the phosphorus atom. That this is the site of protonation is evidenced by the fact that the resonance due to the captured proton is a doublet of J=509 c.p.s. The doublet structure persists even in quite dilute aqueous acid and is also present in CH_3NO_2/H_2SO_1 with a concentration of H_2SO_1 greater than 3.57 mole %. When exchange became rapid the individual components of the doublet broadened and merged with the baseline. The chemical shifts of the main peaks in the spectrum are given in Tables XXXV-XXXVI.

In view of the ease of protonation of triphenylphosphine an attempt was made to observe the spectrum of the conjugate acid of triphenylarsine. However no extra peaks were visible in the n.m.r. spectrum in H_2SO_4 or HSO_3F solutions. Even cooling the solution in HSO_3F to -90° produced no extra peaks. This may be due to the fact that the As nucleus has spin 3/2 and a quadrupole moment which would probably broaden the signal of a proton attached to As to such an extent that it can not be detected.

TABLE XXXV

CHEMICAL S	SHIFTS	FOR	TRIPHENYLPHOSPHINE	IN	H ₂ 0/	H ₂ SO ₄	SOLUTIONS
------------	--------	-----	--------------------	----	-------------------	--------------------------------	-----------

Mole % H ₂ SO ₄	Chemical solvent	shift Ó	(p.p.m pheny	.) from 1	ext. H ₂ SO ₄ 1 P-H	ref. JP-H (c.p.s.)	
100.00	0.0	2.89	2.99	3.08	2.53	509.0	
73.94	-0.60	2.88		3.07	2.41	503.7	
59.56	-0. 63	2.89		3.08	2.36	50 5•3	
43.63	-0.17	2.90		3.08	2.28	508.7	
37.50	0.25			3.14	2.26	512.4	
35.45	0.39			3.12	2.25	512.4	
30.71	0.80			3.15	2.21	509.6	

Conc. of base 1.2 mole %.

TABLE XXXVI

CHEMICAL SHIFTS FOR TRIPHENYLPHOSPHINE IN CH₃NO₂/H₂SO₄ SOLUTIONS

Mole % H ₂ SO ₁₄	Chemical solvent	shifts - 6 P-H	(p.p.m.)) from phenyl	ext. T.1	M.S. CH ₃ NO ₂
13.72	10.84	13.00	7.77	7.89	7.94	4.38
12.32	10.87	12.99	7.77	7.89	7.94	4.37
5.47	11.02	13.04	7•79	7.91	7.96	4.37
4.47	11.14	13.05	7.82	7•93	7.99	4.37
3•57	10.90	13.07	7•79	7.89	7.96	4.37
2.76	11.15	-	7•79	7.90	7.96	4.35
1.82	10.28	-	7•77	7.87	7•95	4.35

Conc. of base 1.1 mole %.

CHAPTER VII

DETERMINATION OF pK_{BH^+} and H_o values

(1) INTRODUCTION

In recent years two groups of workers have attempted to use n.m.r. techniques to determine indicator ratios of bases in acid solutions. As mentioned in Chapter V, Edward et al. followed the protonation of ethyl alcohol in acid solution by means of the change, with H_0 , of the chemical shift between the CH₂ and CH₃ proton resonances. A plot of $\delta_{CH_3} - \delta_{CH_2}$ versus H_0 gave a sigmoid type curve with a point of inflection which corresponded to the pK_{BH^+} of the indicator. This method although giving reasonable results, suffers from the disadvantage that the solvent effects on the proton chemical shifts are often of the same order as the effect of protonation.

A similar technique has been used by Taft and Levins who measured the F^{19} chemical shift produced by protonating <u>para</u>-substituted fluorobenzenes. In this case the solvent effects are small compared with the chemical shifts produced on protonation and this method appeared to be promising as a means of measuring the H_o of strong acid solutions.

30

31 Some Russian workers have calculated H_0 for the hydrofluoroic system from F^{19} chemical shifts. Their agreement with independent results for this system may be fortuitous as their 32 interpretation of the chemical shifts has been questioned .

The n.m.r. studies carried out in this work have suggested some other methods which might be applicable to the measurement of These are discussed in the following sections. H_ In order that some of these results could be interpreted it was necessary to extend 27 on the SbF5/HSO3F system to much higher the H_o measurements of Barr concentrations of SbFg. As stated in Chapter I this necessitates the measurement of $\boldsymbol{\xi}_{\text{ion}}$, $\boldsymbol{\xi}_{\text{B}}$ and $\boldsymbol{\xi}_{\text{for a series of suitable bases.}}$ The measurements carried out by Barr indicated that HSO3F has an Ho It is obvious that the substituted aniline bases used by of -12.85. are much too strong to be used in this system and it was Hammett necessary to use much weaker bases. Brand and coworkers , who measured Ho for cleums, used a series of substituted nitrobenzenes and this type of base has also been used in this investigation.

(2) MEASUREMENT OF IONISATION RATIOS, pK_{BH}+, AND H_o BY THE

SPECTROPHOTOMETRIC METHOD

The ionisation ratios were calculated by equation (1.21). The extinction coefficients were measured at the wave-length of the absorption maximum of the bases and not at the wave-length at which \mathcal{E}_{ion} is measured, since there is generally a solvent effect which shifts the absorption maxima towards shorter wave-lengths with increasing acidity.

The bases used in this investigation were:- 2,4-dinitrotoluene; 1-chloro-2,4-dinitrobenzene; 1-fluoro-2,4-dinitrobenzene; 2,4,6-trinitrotoluene, and 1,3,5-trinitrobenzene. The present results in 27 conjunction with those of Barr and some unpublished measurements of 105 Gillespie et al. , are used to extend the acidity function of HSO_3F solutions from 100% HSO_3F to HSO_3F containing 6 mole % SbF_5 . In addition the $pK_{\rm BH}^+$ values for the above mentioned bases were calculated in the cases where they were not known. Extinction coefficients and ionisation ratios for these bases are given in Tables XXXVII-XLVI.

Figs. 35-39 show the spectra of these bases in HSO₃F solutions containing different amounts of KSO₃F, H₂SO₄, and SbF₅. Brand 104 and coworkers were unable to obtain experimental values for ξ_{ion} for 2,4-dimitrotoluene and weaker bases, and as a result had to resort to calculation in order to obtain ξ_{ion} and pK_{BH}+. In the fluorosulphuric acid system it has been possible to completely protonate all of the bases by addition of suitable quantities of antimony pentafluoride.

The value ξ_{ion} = 13900 for 2, h-dinitrotoluene used by Brand

is retained in this investigation; \mathcal{E}_{ion} for 1-fluoro-2,4-dinitrobenzene was found to be 11570 at 330 m/m; \mathcal{E}_{ion} for 1-chloro-105 2,4-dinitrobenzene is taken as 12590 at 360 m/m (Gillespie et al.); \mathcal{E}_{ion} for 2,4,6-trinitrotoluene was found to be 10440 at 325 m/m. This latter value was the average of \mathcal{E}_{max} at 325 m/m in two HSO₃F solutions containing 0.523 and 1.725 mole % SbF5 respectively. Since \mathcal{E}_{max} in the latter solution had a slightly lower value than in the 0.523 mole % solution it was concluded that protonation was complete in the 0.523 mole % SbF solution and the differences in \mathcal{E}_{max} were due to experimental error.

Since there seems to be some disagreement over the correct 10h value for the pK_{BH}^+ of 2,4-dinitrotoluene (Brand gives -12.6 while 93 Paul and Long give -12.95), it was thought that an independent value 27 might be calculated from the results of Barr for $H_2SO_{\rm h}/HSO_3F$ solutions. Using his data for m-chloronitrobenzene ($pK_{BH}^+ = -12.21$) and 2,4-dinitrotoluene in H_2SO_4/HSO_3F solutions, the pK_{BH}^+ for 2,4dinitrotoluene was found to be -13.06. This agrees well with the 93 value due to Paul and Long . The values of log C_{BH}^+ for the C-

indicator 1-fluoro-2,4-dinitrobenzene obtained in this investigation in H_2SO_4/HSO_3F are shown in Fig. 40 plotted together with Barr's data for the other bases. The overlap is not very good but nevertheless it is possible to calculate a value for the pK_{BH^+} of 1-fluoro-2,4-dinitrobenzene. This value was then used in conjunction with the indicator ratios obtained for the other bases in HSO_3F containing KSO_3F or SbF_5 (Fig. 41) in order to obtain their pK_{BH^+} values and also to extend the H_0

measurements to higher SbF5 concentrations. Tables XLII-XLVI show the indicator ratios, pK_{BH} +s for the bases and H_o values for fluorosulphuric acid containing up to 6 mole % SbF_{5} . The values obtained for H_{0} for solutions of KSO3F and SbF5 in HSO3F are shown in Fig. 42. It has been shown by Barr that ionisation ratios cannot be measured directly in 100% HSO3F as the concentration of the indicator used is larger than the concentration of the ions produced by autoprotolysis. The value of Ho for 100% HSO3F was obtained by interpolation from the plot in Fig. 42 and was found to be -13.8: Barr found a value of -12.9. One possible reason for this difference could be the fact that the . spectrophotometer used by Barr could only scan the spectrum down to 330 m/ and since the peak maximum in SbF5/HSO3F solutions occurs at 315 m μ Barr's extinction coefficients might be too low, resulting in a low interpolated value for 100% HSO3F.

It is seen from Table XXXVII that in a solution of HSO_3F containing 0.165 mole % SbF₅ the extinction coefficient at 315 m/s for 2,4-dinitrotoluene is higher than \mathcal{E}_{ion} used in the calculations of indicator ratios for this base. Gillespie et al. have found that higher concentrations of SbF5 produce still higher values of \mathcal{E} but at a wave-length of 310 m/s. These workers found that a new peak appears in the spectrum of 1-chloro-2,4-dinitrobenzene at 310 m/s when the concentration of SbF5 is increased beyond the value necessary to completely protonate this base: the peak due to the protonated form of this base occurs at 360 m/s. The same effect is noticed in the case of 1-fluoro-2,4-dinitrobenzene, though to a lesser extent since very high concentrations of SbF5 were not used. In view of the appearance of this peak at 310 m/ in solutions containing high concentrations of SbF_5 it is believed that the values chosen for $\boldsymbol{\xi}_{\text{ion}}$ for these dinitrobenzenes are correct even though they are not the maximum values. This peak at 310 m/ is not observed for mononitro bases but only for dinitro bases. It seems reasonable that this new peak might be the result of protonation of the nitracidium ion, i.e. diprotonation of the dinitrobenzene, as a result of the extremely high acidity of the solutions. Alternatively the peak at 310 m/ might be the result of association of the nitracidium ion with SbF_5 as the SbF_5 concentration becomes appreciable.

TABLE XXXVII

EXTINCTION COEFFICIENTS OF 2,4-DINITROTOLUENE IN

FLUOROSULPHURIC ACID SOLUTIONS

.

Wave-length	a de la constante de la consta	Concentration	mole %
(m)	KSO3F	H2SOL	SbF5
	0.156	0.461	0.165
		Extinction coef	ficient
260	13390	9510	5830
270	132li0	8450	657 0
280	12190	6730	801 ¹ 0
290	10410	5360	997 0
300	8720	5350	12330
310	7820	7100	1 h160
320	7660	9490	1l1360
330	7720	11080	13400
340	7290	11280	12270
350	6350	10360	10690
360	5370	8720	8540
370	4090	6550	6180
380	2870	4300	3900
39 0	1870	2490	2090
400	1290	1370	1090
٤	7660	11330	14530

TABLE XXXVIII

EXTINCTION COEFFICIENTS OF 1-FLUORO-2, L-DINITROBENZENE IN

FLUOROSULPHURIC ACID SOLUTIONS

Wave-length (m عمر)	Conce	ntration mo KSO ₃ F	le %		SbF5	
	0.156	0.047 Extinc	0.022 tion coeffi	0.079 cient	0.165	0.523
260	13750	12640	11650	6070	7160	5260
270	12230	10430	10120	4910	488 0	530 0
280	9840	8180	8230	4210	4610	6480
290	7490	6340	6130	4530	5440	8790
300	5360	5340	4930	5730	7080	10700
310	3820	482 0	4370	7520	9210	11910
320	298 0	4660	4410	936 0	10 890	12360
330	2560	山470	4520	10290	11570	12070
340	2210	4070	4270	10030	10970	10890
35 0	1830	3340	3470	8430	9210	8850
360	1350	2490	2530	6040	6170	5960
370	940	1620	1490	3560	3570	2780
380	600	1000	800	1620	1590	1670
390	450	630	390	68 0	540	730
400 -	-	480	-	220	1)+0	340
E ₃₃₀	2560	4470	4520	10290	115 70	

TABLE XXXVIII (Contd.)

EXTINCTION COEFFICIENTS OF 1-FLUORO-2,4-DINITROBENZENE IN

FLUOROSULPHURIC ACID SOLUTIONS

	Concentra	ation mole % H ₂ S	o <u>).</u>		
Wave-length (m معر)	54.95 Extinction	4.938 on coefficient	0.580	0.343	
260	-	13800	11590	10450	
270	-	11010	9050	8110	
280	-	8300	6940	6220	
290	5480	6270	5310	5000	
300	3650	4980	4630	4800	
310	2320	3990	4530	5000	
320	1460	3430	4730	51:70	
330	1030	3050	4830	562)	
340	7 h0	2640	4490	5190	
350	530	2070	3730	4280	
360	330	1600	25110	2890	
370	160	1050	11,20	1620	
380	-	480	650	760	
390	-	320	21:0	310	
E 330	10 30	30 50	4830	5620	

TABLE XXXIX

EXTINCTION COEFFICIENTS OF 1-CHLORO-2, 4-DINITROBENZENE

IN FLUOROSULPHURIC ACID SOLUTIONS

	Concentrat KSO3F	ion mole %	^H 2SOJ4	┉┉┉
Wave-Jongth (m. 14	0.01;7 Extinction	0.022 coefficient	0.416	
260	11020	10100	9550	
270	10950	10220	9190	
280	10160	9450	8340	
290	8850	7930	7100	
300	7130	6230	5910	
310	5800	5040	5370	
320	4960	4540	5260	
330	<u>7</u> 17170	hhho	5370	
340	4170	4510	5670	
350	4170	4740	6080	
360	4150	4910	6220	
370	3790	4580	5770	
38 0	2910	356 0	4440	
390	1880	2250	2720	
400	1020	1170	1380	
٤ 360	4150	4910	6220	

TABLE XL

EXTINCTION COEFFICIENTS OF 2,4,6-TRINITROTOLUENE IN

FLUOROSULPHURIC ACID SOLUTIONS

		Concen	tration mol	le %			
	KSC	3F	SI	^{oF} 5			
Wave-length (m 🍌)	0.156	0.047	0.079 Extinction	0.165 coefficien	0.523 t	1.725	
260	13510	յիրի	10770	7900	6970	7450	
270	10480	1 1560	859 0	569 0	5370	6620	
28 0	7530	8540	6460	4560	4900	6650	
290	5170	6070	5240	4950	5810	7520	
300	3740	4690	49 10	6670	7 530	8980	
310	2970	3800	5120	8350	9290	10020	
320	2360	3080	5330	9350	10410	10340	
330	1930	2610	5070	9110	10290	985 0	
340	1580	2260	4360	7680	90 7 0	8150	
350	1250	1930	3330	5720	7410	6540	
360	950	1510	2390	3950	5320	4720	
370	830	1180	1640	2380	368 0	3230	
380	59 0	875	1010	1260	2210	2070	
E 325	2120	2840	5330	9410	10540	10340	

TABLE XL (Contd.)

EXTINCTION COEFFICIENTS OF 2,4,6-TRINITROTOLUENE IN

FLUOROSULPHURIC ACID SOLUTIONS

	Concentrati	Concentration mole % H ₂ SO ₄				
Wave- le ngth (m سر)	100.00 Ex	4.938 tinction coefficient	0.343			
260	11300	14580	13470			
270	8370	11360	10420			
280	5120	8150	7230			
290	2910	5790	4860			
300	1940	4630	3820			
310	1470	3650	3160			
320	1110	2890	2580			
330	840	2290	193 0			
340	660	1780	1270			
350	430	1450	690			
E 325	960	2190	2240			
TABLE XLI

EXTINCTION COEFFICIENTS OF 1,3,5-TRINITROBENZENE IN

FLUOROSULPHURIC ACID SOLUTIONS

	Concentratio	on mole %
	H2SOJ	SDF5
	0.343	0.260
Wave-length (m عمر)	Extinction (coefficient
260	12040	7570
270	6420	5690
28 0	3260	5800
290	2060	7080
300	1470	0118
310	88 0	7930
320	700	6230
330	-	4330
340	-	2900
350	-	1880
360	-	1250
370	-	910
380	-	420
E 305	1200	8200

INDICATOR R	S FOR 2,4-DINITROTOLUENE		
		V HSO3F SOLUTION	NS —
E _B = 1700	٤١	n = 13900	pK _{BH} + = −13.06
Conc. mole %	٤	$\log C_{BH}^{+}$	Ho
		с _В	
0.156 (KSO ₃ F)	7660	-0.20	-12.86
0.1461 (H2SOL)	11330	0.57	-13.63

TABLE XLII

TABLE XLIII

,

INDICATOR RATIOS, pK_{BH}^+ and H_o values for 1-fluoro-2,4-dinitrobenzene

			303F SOLUTI	IONS
E _B =	920	<pre> ξion = </pre>	11570	pK _{BH} + = -13.84,
Conc.	mole %	٤	$\log \frac{c_{BH}}{c_B}$ +	Н _о
0.156	(KSO3F)	2560	-0.74	-13.10
0.047	**	1,1,70	-0.30	-13.54
0.022	18	4520	-0.29	-13.55
0.079	(SbF5)	10290	0.86	-14.70
54.95	(H ₂ SO ₄)	1030	-].99	-11.85
4.938	19	3050	-0. 60	-13-24
0.580	19	4830	-0.24	-13.60
0.343	19	5620	-0.10	-13.74

TABLE XLIV

INDICATOR RATIOS, pK_{BH^+} and H_o values for 1-Chloro-2,4-DI-

ξ _B = 590	ϵ_{ion}	= 12590	pK _{BH} + = -13.88
Conc. mole %	٤	$\log \frac{C_{BH}^{+}}{2}$	H _o
	and the state of the	с _в	
0.047 (KSO3F)	4150	-0. 38	-13.50
0.022 "	49 10	-0. 25	-13.53
0.416 (H2SO4)	6220	-0.05	-13.83

NITROBENZENE IN FLUOROSULPHURIC ACID SOLUTIONS

TABLE XLV

INDICATOR RATIOS, pK_{BH} + AND H_o VALUES FOR 2,4,6-TRINITROTOLUENE

E _B = 960		$\boldsymbol{\xi}_{\text{ion}}$ -	10440	рК _{BH} += -IJ.32	
Conc.	mole %	٤	$\log C_{BH^+}$	Н _о	
0.1 56	(KSO3F)	2120	-0. 86	-13.46	
0.047	H ,	2840	-0.61	-13.71	
0.0 79	(SbF5)	5330	-0.07	-14.25	
0.165	11	9410	0.91	-15.23	
4.938	(н ₂ so ₁)	2190	-0.83	-13.49	
0.3 43	ŧ	22140	-0.81	-13.51	

IN FLUOROSULPHURIC ACID

TABLE XLVI

INDICATOR RATIOS, pK_{BH+} AND H_o FOR 1,3,5-TRINITROBENZENE

		IN FLUORC	SULPHURIC ACI	
ε _в .	800	ξ _{ion} =	1) ¹ 000	pK _{BH} + = −15.1
Conc.	mole %	٤	$\log \frac{c_{BH}^{+}}{c_{B}^{-}}$	Ho
0. 343	(H ₂ SO ₄)	1200	-1.51	-13.59
0.260	(SdF5)	8200	0.11	-15.21
Result	ts of Gille	105 espie et al.		
0. 475	(SbF5)	6600	-0.11	-1) ₁ ,99
1.163	n	89h0	0.21	-15.31
3.452	11	10420	0.43	-15.53
6.335	ŦŦ	11200	0.57	-15.67

Fig. 35 SOLUTIONS OF 2,4-DINITROTOLUENE: ABSORPTION SPECTRA.

Fig. 37 SOLUTIONS OF 1-CHLORO-2,4-DINITROBENZENE: ABSORPTION SPECTRA.

Fig. 39 SOLUTIONS OF 1,3,5-TRINITROBENZENE: ABSORPTION SPECTRA.

Fig. 40 SOLUTIONS OF NITROBENZENES IN H₂SO₄/HSO₃F: IONISATION RATIOS.

Fig. 42 Ho FOR SOLUTIONS OF KS03F AND SbF5 IN FLUOROSULPHURIC ACID.

(3) CORRELATION OF THE N.M.R. DATA ON ANILINES WITH H_0

It was reported in Chapter VI that by increasing the concentration of sulphuric acid in solutions of anilines in H₂O, CH₃NO₂, and CF₃COOH it is possible to slow down the exchange process so that the spectrum of the conjugate acid can be recorded. Since the appearance of the NH_{x}^{+} resonance occurs at a different acid concentration for each base it was thought that there might be a relation between the acidity at which the NH_x⁺ resonance is first visible and the pK_{BH}⁺ of the base. It is seen from Table XLVII that the value of $-\text{H}_{o}$ at which the NH_x⁺ resonance is first observed does in fact increase as the basicity of the aniline decreases. However the detection of the NH_x⁺ resonance is not always easy because of the broadness of the signal due to the N^{1/1} quadrupole 75moment . In view of this, the further development of these studies as a means of determining H₀ was deemed to be unprofitable.

TABLE XLVII

SOLUTIONS OF ANILINES: RE

RELATIONSHIP BETWEEN pKBH+ AND Ho

Base	рК _{ВН} +	-Ho*	Solvent system
<u>p-nitroaniline</u>	+1.02	6.25	CF3SOOH/H2SO1
2-chloro-4-nitroaniline		8.75	19
4-chloro-2-nitroaniline	-1.03	7.96	"
N-methyl-2-chloro-4-nitroaniling		1.96	89
N-methyl-4-chloro-2-nitroaniline	-1.49	7.86	\$2
N-methyl-2,4-dinitroaniline		11.65	HSO3F/H2SO1

* The value of H_o at which the NH_x^+ resonance is first observed.

As the exchange process is slowed down by increasing the acidity of the solution the N.CH₃ peak of N-methyl anilines is found to change quite rapidly from a single sharp peak, to a broadened peak and finally when exchange is very slow, into apeak with a multiplet structure depending upon the number of protons attached to the nitrogen of the conjugate acid. This change occurs over quite a narrow H_0 range. A plot of the line width of the N.CH₃ peak against H_0 for a number of N-methyl and N,N-dimethyl anilines gives a sigmoid type curve in each case (Fig. 43).

It is presumed that the value of H_0 at which proton exchange becomes very slow is related to the pK_{BH}^+ of the indicator. The point of inflection of these curves is taken as a measure of the acidity of the solution when exchange has become very slow. The results obtained for several bases in different media are given in Table XLVIII which lists the values of H_0 at the point of inflection in the curve for each base.

TABLE XLVIII

Ho VALUES AT INFLECTION POINTS OF CURVES IN FIG. 43.

	Base	pK _{BH} +	-H _o	Solvent
(1)	N,N-dimethyl-2,4-dinitroaniline	-1,00	7.2	сг _з соон/н ₂ sol
(2)	N-methyl-4-chloro-2-nitroaniline	-1.49	7.85	Ħ
(3)	۲Ę	11	7.97	H20/H2SO
(4)	N-methyl-2-chloro-4-nitroaniline	-	8.2	CF3COOH/H2SOL
(5)	11	-	8.25	H ₂ O/H ₂ SO ₁
(6)	N,N-dimethyl-2,4,6-trinitroaniline	-4.81	9•3	CF3COOH/H2SO4/HSO3F
(7)	N-methyl-2,4-dinitroaniline	-	11.4	HSO3F/H2SO4

In the cases where a base has been studied in both trifluoracetic acid/sulphuric acid and water/sulphuric acid, it is noticed that the point of inflection occurs at a slightly higher H_o in the water/ The H_o values used for the aqueous sulphuric sulphuric acid system. acid system are the recently published values of Jorgenson and 106 Those for the trifluoracetic acid/sulphuric acid system Hartter 107 are due to Hyman and Garber and the fluorosulphuric acid results 27 are due to Barr . The small differences found between the aqueous and trifluoracetic acid systems might be experimental error but could also be due to errors in the H_o values for the CF₃COOH/H₂SO_L system. (The results for the aqueous system are very recent and appear to have been determined very carefully.)

Again it is found that as the pK_{BH} + of the base becomes more negative a greater H_o value for the solvent is required in order to stop the exchange process. From the results in Fig. h3 and Table XLVIII it would appear that N-methyl-2-chloro-h-nitroaniline is a weaker base than N-methyl-h-chloro-2-nitroaniline and that N-methyl-2,h-dinitroaniline is a weaker base than N,N-2,h,6-trinitroaniline.

More quantitative results might be obtained if the actual rates of proton exchange were calculated from the collapse of the 15N.CH₃ peak with change in acidity. Reynolds and Schaefer have measured exchange rates for N,N-dimethylaniline in trifluoracetic acid at various temperatures and state that they plan to study the variation of the exchange rate with change in pH. By using the bases mentioned above and others, a wide range of H_o could be covered.

(4) APPLICATION OF F^{19} CHEMICAL SHIFTS TO THE MEASUREMENT OF H_0

Taft and Levins have examined the F^{19} spectra of some parasubstituted fluorobenzenes in acid solution and find that the F^{19} resonance undergoes a large chemical shift when the base is protonated. A plot of F^{19} chemical shift against H_0 gives a sigmoid curve whose inflection point corresponded to the $pK_{\rm BH}^{+}$ of the base.

This method has been applied to strong acid solutions in this investigation. The ionisation of l-fluoro-4-nitrobenzene and l-fluoro-2,4-dinitrobenzene was studied in oleum and in fluorosulphuric acid solutions. The results are given in Tables XLIX-LI.

Fig. 14 shows the variation of the chemical shift for the two bases in oleum solutions and of 1-fluoro-4-nitrobenzene in H_2SO_4/HSO_3F The base 1-fluoro-4-nitrobenzene was examined at two solutions. different concentrations i.e. 5.31 and 1.40 mole % and the Hovalues at the points of inflection are -12.27 and -11.70 respectively. It is evident that the chemical shift is affected by the concentration of the base. This must be due to the fact that as the base is protonated the concentrations of HSO_{1} and $HS_{2}O_{7}$ increase and as a result the acidity of the solution is decreased: the greater the concentration of base therefore, the more the acidity will be reduced and the more the curve will be shifted to higher acidity. This results in a high value for the pK_{BH}^{+} of the base. The value obtained at the lower concentration of base agrees quite well with the value of -11.62 given by Paul and Long . A pK_{BH+} of -11.6 was also obtained for this base in H2SO1/HSO3F at a concentration of 1.45 mole % in excellent agreement with the value obtained in oleum solutions.

For 1-fluoro-2,4-dimitrobenzene in oleum solutions a value for the pK_{BH} + of -13.45 was obtained. This is somewhat lower than the value of -13.84 obtained from the spectrophotometric method. This might be due, in part at least, to the fact that the H_o values used 105 for the oleum solutions are not very well established at the higher concentrations of SO₃.

When this base was studied in HSO3F solutions it was found necessary to add SbF_5 to the solution in order to protonate it. The H_0 of 100% HSO₃F was shown in section (2) to be -13.8 and since the $pK_{\rm BH}^+$ of this base was -13.84 [section (2)] , then this base dissolved in HSO_3F should be 50% protonated and there should be a corresponding large F¹⁹ chemical shift. That this is not observed must again be due to the reduction in acidity by the production of base, in this case SO_3F . Only upon the addition of SbF5 does the F^{19} chemical shift change appreciably. In Fig. 45 the F^{19} chemical shifts for these solutions are plotted against mole % SbF5. It can be seen from Fig. 45 and Table LI that the shift becomes appreciable only when the concentration of SbF_5 approaches that of the base i.e. about 1%, and the point of inflection occurs at a concentration of ${\rm SbF}_5$ which would correspond to an $\rm H_{0}$ of -15.3 if the base was not present. This is a much higher value than was obtained for the $\ensuremath{pK_{\rm BH}}\xspace^+$ of this base by the spectrophotometric method. This difference is much greater than any error that could have been made either in the Ho determinations for these solutions or in the $\ensuremath{pK_{BH}^{+}}$ value for this indicator.

When SbF_5 is dissolved in $\mathrm{HSO}_3\mathrm{F}$ it has been shown that it

ionises according to (7.1),

$$sbF_5 + 2HSO_3F \longrightarrow H_2SO_3F^+ + SbF_5SO_3F^-$$
 (7.1)

i.e. it is a strong acid. Thus as SbF_5 is added to a solution of 1.32 mole % of 1-fluoro-2,4-dinitrobenzene in HSO_3F the base is titrated by the SbF_5 , producing the salt BH^+ . $SbF_5SO_3F^-$ (7.2),

$$B + HSO_3F + SbF_5 = BH^{\dagger} \cdot SbF_5SO_3F^{\dagger}$$
 (7.2)

and it is this process which is being followed by the observation of the change in the F¹⁹ chemical shift. At the point of inflection of this titration curve i.e. when $C_{BH}^{+} = C_{B}^{+}$, the acidity of the solution must be equal to the pK_{BH}^+ of the base -13.84. This inflection point should occur when 0.66 mole % $\rm SbF_5$ has been added, but is actually found to occur at approximately 1 mole %. There are not sufficient data to locate this point precisely and the difference between the observed and expected values is possibly due solely to experimental error. solution of HSO3F containing 0.66 mole % SbF5 would have an Ho of -15.26 (Fig. 42) so that the addition of 1.32 mole % of 1-fluoro-2,4dinitrobenzene must reduce the acidity from -15.26 to -13.84. This solution contains an equivalent amount of base and its conjugate acid. The effects of electrolytes upon H_o has been discussed by Paul and Long and can lead to a reduction in H_0 . It is reasonable to assume that the presence of unprotonated base could also lead to a reduction in Ho. Further addition of SbF5 to this solution would be expected to cause no further increase in acidity until the concentration of SbF_5 exceeds that of the base.

It is clear that this method is applicable only when the

concentration of the base is very much smaller than the concentration of any of the components of the solution, in this case the ${\rm SbF}_{5^{\bullet}}$

Conc. of base 5. 6 (p.p.m.) from ext. CF ₃ COOH	31 mole % mole % SO3	-H _o	Conc. of base 1.1 (p.p.m.) from ext. CF3COOH	1 mole % mole % SO3	-H _o
17.10	0.00	11.3	15.77	0.00	11.30
11.70	5.30	12.16	14.79	0.32	11.45
9.31	7•97	12.33	10.99	1.78	11.70
9•33	8.02	12.35	10.16	2.34	11.82
4.95	15.11,	12.66	7.22	4.14	12.03
1.92	23.81	12.92	5.61	6.18	12.20
1.05	32.79	13.17	3.1:5	8.34	12.35
			1.35	12.35	12.55
			0.34	15.68	12.67
			-4.16	34.12	13.22
			-4.54	38.50	13.33
				mole % H ₂ O	
			17.07	0.92	11.2
			17.97	6.64	10.8

TABLE XLIX

F¹⁹ CHEMICAL SHIFTS OF 1-FLUORO-4-NITROBENZENE IN OLEUM SOLUTIONS

 H_{o} values are those of Gillespie et al. .

Conc. of base 1.06 mole %	na an far far man ga an gan an ann an	
6 (p.p.m.) from ext. CF ₃ COOH	mole % SO3	-H _c
22.68	0.00	11.3
22.19	8.39	12.35
21.46	15.79	12.67
20.37	24.91	12.94
18.35	34.11	13.22
16.53	37.26	13.30
15.3h	44.09	13.48
13.69	47.47	13.57
9.84	61.03	13.93
8.88	70.71	14.20

TABLE L	
The Construction of the American State	

F¹⁹ CHEMICAL SHIFTS OF 1-FLUORO-2,4-DINITROBENZENE IN OLEUM SOLUTIONS

 $H_{\rm o}$ values are those of Gillespie et al. .

TABLE LI

F¹⁹CHEMICAL SHIFTS OF 1-FLUORO-4-NITROBENZENE AND 1-FLUORO-2,4-

DINITROBENZENE IN FLUOROSULPHURIC ACID SOLUTIONS

1-Fluoro-4-ni Conc. of base 1.	trobenzen 45 m <mark>ole %</mark>	e	L-Fluoro-2,4 Conc. of base 1.3	-dinitrobe 2 mole %	nzene
6 (p.p.m.) from ext. CF ₃ COOH	mole % H ₂ SO _{li}	-Hð	δ (p.p.m.) from ext. CF ₃ COOH	mole % H ₂ SO ₄	-H [†]
-0.70	0.00	13.8	22.91	67.30	11.80
0.30	12.28	12.86	22,99	58.45	12.06
1.32	17.18	12.74	22.72	30.70	12.47
4.35	45.99	12.24	22.40	17.93	12.70
5.70	62.58	11.99		mole %	
7.19	66. 78	11.90		SORS	
9.32	80.26	11.66	21.42	0.00	13.80
11.08	86.76	11.54	20.91	0.25	14.77
13.76	92.74	11.37	18.61	0.58	15.11
14.28	96.65	11.20	15.31	1.02	15.30
			10. 68	1.19	15.32
			5.59	2.74	15.147
			0.00	8.21	15.75
			-1.39	12.75	-

* Ho values are those of Barr and this work.

105

+ H values are those of Gillespie et al. and this work.

.

Fig. 44 Solutions of fluoronitrobenzenes in H_2SO_4/SO_3 and H_2SO_4/HSO_3F : F^{19} Chemical shifts against H_0 .

Fig. 45 SOLUTIONS OF 1-FLUORO-2,4-DINITROBENZENE IN HSO₃F/SbF₅: F¹⁹ CHEMICAL SHIFTS AGAINST MOLE % SbF₅.

(5) THE CORE LATION OF PARTS OF PLOROM ELONATION OF THE PL

The data given in Chapter V on the rates of proton exchange but when the conjugate acids of acetophenones and the solvent suggested that there might be some correlation between these rates and the acidity of the solvent.

Acetone was chosen as the base for a more detailed investigation of this possible correlation because of its stability in flucrosulphuric acid and the fact that the rate of proton exchange can be measured over a wide range of SbF_5 concentrations in HSO_3F . The chemical shift data for a typical solution of acetone in HSO_3F containing SbF_5 has been given in Chapter V (Table XVI). Only two peaks are visible in the spectrum of the conjugate acid when exchange is very slow, one due to the CH_3 protons and the other to the proton captured by the carbonyl oxygen. Rates of proton exchange can be calculated for this system by the same method as used in Chapter V for acetophenones.

The rate of proton exchange has been calculated for solutions in HSO_3F containing fixed amounts of acetone, but varying concentrations of SbF_5 and also in solutions containing a fixed amount of SbF_5 but with different concentrations of acetone. Plots of log k against 1/T are shown in Figs. 46 and 47 and the results are summarised in Tables LII and LIII.

It is seen from Table LII that an increase in the concentration of acetone produces an increase in the rate of proton exchange. A plot of log k_0 against mole % acetone gives a smooth curve (Fig. 47), the increase in rate being greatest when the acetone concentration approaches that of the SbF₅. Table LIII shows the variation of rate with change in SbF_5 concentration (constant amount of acetone) and a plot of log k₀o against mole % SbF_5 (Fig. 47) indicates that the rate varies almost linearly until the concentration of SbF_5 becomes less than the concentration of acetone when the rate increases enormously. This increase in rate can be accounted for as explained in the previous section by the titration of $H_2SO_3F^+$ by the acetone which reduces the acidity of the solution to that of 100% HSO_3F in which the rate of proton exchange between the conjugate acid of acetone and the solvent is much more rapid.

It appears that at a sufficiently low concentration of acetone the rate of exchange would become independent of the acetone concentration, and for solutions containing an excess of SbF_5 over acetone the rate is a linear function of H_0 . If this behaviour is general for other bases, then if a sufficient number of overlapping plots of rate against H_0 could be obtained a new method for determining H_0 could be developed.

TABLE LII

Mole %		Act. Energy	log k _o	log k	
Acetone	SbF5	Kcal./mole	·	(0 ⁰)	
2.95	6.29	11.26	10.19	1.18	
3.05	6.29	12.15	10.65	0.93	
4.91	6.15	12.70	12.03	1.86	
5.96	6.08	12.81	13.44	3.19	
6 •30	6.06	10.25	12.06	3.86	

RATE DATA FOR SOLUTIONS OF ACETONE IN FLUOROSULPHURIC ACID CONTAINING 6 MOLE % SbF5.

TABLE LIII

RATE DATA FOR SOLUTIONS OF ACETONE (2.1 - 3.05 MOLE %) IN FLUOROSULPHURIC ACID CONTAINING VARYING AMOUNTS OF SbF5.

Mole %		Act. Energy	log k _o	log k	-H _o
Acetone	SbF5	Kcal./mole		(0 ⁰)	
2.64	7.37	12,12	10.49	0.76	15.72
2.82	8.34	12.44	10.74	0.79	15.77
3.04	6.29	12.15	10.65	0.93	15.66
2.95	6.29	11.26	10,19	1.18	15.65
2.95	5•55	11.96	10.95	1.38	15.63
2.44	4.52	13.05	11.84	1.40	15.57
2.73	3•73	13.13	12.10	1.59	15.53
2•92	2.83	9.95	13.76	5.80	15.48
2.79	1.94	exchange to	o rapid		15.43

Fig. 46 SOLUTIONS OF ACETONE IN SbF5/HSO3F (VARYING SbF5 CONC. 2.4-3.05 MOLE % ACETONE): LOG k AGAINST 1/T.

FLE. 47 SOLUTIONS OF ACETONE IN SbF5/HSO3F (VARYING ACETONE CONC. 6 MOLE % SbF5): LOG & AGAINST 1/T.

(6) DISCUSSION

All of the methods described suffer from the disadvantage that relatively large concentrations of base are required in contrast to the spectrophotometric method where the concentrations are of the order of 10⁻⁵ molar. The method due to Taft and Levins is certainly the simplest since it only involves the measurement of chemical shifts and in addition the pK_{RH^+} is obtained directly. Measurement of the rates of proton exchange and their correlation with H_o is more complicated and suffers from the disadvantage that pK_{BH}^{+} is not obtained directly. However in the case of the bases N-methyl and N, N-dimethylanilines their concentration can be reduced to about 0.2 mole %, since one is observing an n.m.r. signal due to three, or six protons and not just one proton as in the case of acetone. In this case it might be possible to obtain a useful correlation of rate with Ho.

CHAPTER VIII

EFFECTS OF ELECTROLYTES ON THE CHEMICAL SHIFTS OF H_2SO_4 AND HSO_3F

(1) INTRODUCTION

The effect of electrolytes upon the proton resonance of hydrogen-bonded solutions has been the subject of many papers published 108 in recent years. Shoolery and Alder were the first to observe that the chemical shift produced by dissolving electrolyes in water varied with the electrolyte. They were able to separate the contributions of the cation and anion by assuming a value for the chemical shift of ClO, of 0.085 p.p.m./mole. The shifts obtained were interpreted in terms of a low-field shift for the protons of water molecules of hydration. together with a shift to high field due to the breaking up of the hydrogen-bonded structure of the water by the ions. No correction for differences in the bulk diamagnetic susceptibilities of the solution and reference were made. A similar study by Hertz and 109 Spalthoff arrived at essentially the same conclusions, though there are some discrepancies between the two sets of results. Shcherbakov who has reviewed the literature up to 1961, concludes that the results 109 are probably the more accurate since they do of Hertz and Spalthoff make susceptibility corrections. These workers, however, find that Na⁺ gives the same molar shift as K⁺ although Na⁺ is generally recognised as being more solvated than K⁺ 110

Axtmann has recorded the chemical shifts for solutions of nitrates in water and obtained some correlation between the molar shift and pK, for the reaction (9.1).

 $M(H_2O)_6^{x^+} + H_2O \Longrightarrow H_3O^+ + M(H_2O)_5(OH)^{+(x-1)}$ (9.1)

Fabricand and Goldberg have studied the proton resonance shifts of alkali halide solutions and have correlated these shifts with ionic charge, ionic radii and electrolyte concentration. By assuming the value for the molar shift due to Cl to be zero, the molar shifts ll2 for the other ions were obtained. These authors point out that there is a limitation upon the accuracy of their results as a consequence of the fact that the susceptibility corrections are of the same order, and often greater than the measured chemical shifts. Larger shifts to high field were found the greater the size of the cation.

has also examined the effects of 1-1 electrolytes on Hindman the proton resonance of aqueous solutions and has calculated contributions due to the separate ions assuming the chemical shift due to the ammonium ion to be zero. Hindman interprets his results in terms of bond-breaking, structural, polarisation, and non-electrostatic effects and calculates effective hydration numbers for the individual As with the work of Fabricand and Goldberg , the corrections ions. for bulk susceptibility are of the same order as the measured shifts. 40,112 The agreement between the values obtained by these two groups for the actual measured, uncorrected, molar chemical shifts for a particular salt is, in some cases, not particularly good.

Gillespie and White have carried out a study of MHSO₁ salts in $H_2SO_{l_1}$ solutions and interpreted their results in terms of the

breaking-up of the hydrogen-bonded structure by the ions and solvation For a particular nucleus the value at which the n.m.r. effects. frequency actually occurs depends upon the chemical environment for A proton which is involved in a hydrogen bond is less that nucleus. shielded from the applied magnetic field than one which is not involved in a hydrogen bond with the result that the hydrogen-bonded proton gives a resonance at a lower applied field. Thus the breaking of a hydrogen bond results in an increase in the shielding of the proton and a shift of the n.m.r. signal to higher field. This phenomenon is used to interpret the changes in chemical shift which occur when electrolyes are dissolved in sulphuric and fluorosulphuric acids. Other workers have used the chemical shifts of other nuclei to investigate the effects of electrolytes upon the structure of the יורר 113 . and Connick and Poulson solvent: Carrington and Hines studied 115 F¹⁹ spectra, Jackson et al. studied 0¹⁷ spectra. and Gutowsky and 116 studied Tl²⁰³ spectra. McGarvey

(2) SOLUTIONS OF MHSO, IN H₂SO,

The chemical shift produced when a metal hydrogen sulphate is dissolved in sulphuric acid is known to vary with the cation and its $_{36}^{36}$ $_{36}^{36}$ concentration . The investigation begun by Gillespie and White has been extended to include Li⁺, Rb⁺, Cs⁺, Ag⁺, Et N⁺, (C₆H₅) As⁺, $(C_{6}H_{5})_{2}COH^{+}$, Ca⁺⁺ and Ba⁺⁺ and in addition some more results have been obtained for the electrolytes studied by these workers. In this previous work no correction was made for differences in the bulk diamagnetic susceptibilities of the solution and the external reference.

In the present work the solutions were referenced with respect to external 100% sulphuric acid and susceptibility corrections were made where possible. The results obtained are shown in Table LIV and Figs. 49-51. It can be seen (Table LIV) that although the susceptibility corrections are small they are not negligible, however they are much smaller than the corresponding corrections for aqueous 40,111 solution

The chemical shift (\acute{o} p.p.m.) when plotted against the proton fraction p (the proton fraction is that fraction of the total number of protons that is associated with a particular species) gives plots which are in general linear over a considerable concentration range. The slopes of the linear portions of the curves are given in Table LV. Deviations from linearity are sometimes observed at high concentrations, particularly for ions that are generally accepted as being highly solvated in solution; this phenomenon will be explained later. At very low concentrations a slight curvature is observed and the linear portion does not pass through the origin. This can be explained by the fact that small amounts of MHSO, suppress the autoprotolysis of the sulphuric acid and thus remove $H_3SO_{l}^{+}$ from the solution. The sulphuric acidium ion, as a result of its positive charge, would be expected to reduce the shielding at the protons and so cause the proton resonance to shift to Therefore removal of $H_3SO_{ll}^+$ has the effect of producing lower field. a shift to high field which counteracts the low field shift due to the addition of MHSOL. The net effect is a smaller shift to low field than expected.

36 It has been concluded that the effect of a cation on the proton resonance is largely a result of its structure-breaking effect on the solvent. Thus the greater the extent of solvation the greater will be the number of hydrogen bonds broken and the more the resonance will shift to higher fields. For the alkali metal cations except for Li⁺ the order of the proton resonance shift to high field, compared to Cs⁺, is in the order expected from their known solvation numbers in The lithium ion gives a smaller shift to high sulphuric acid . than expected. It has been suggested by Gurney that in aqueous solution cations smaller than potassium are net structure forming, while potassium and larger ions tend to be structure breaking. If this is so in sulphuric acid then the smaller shift to high field than expected for Li⁺ is accounted for; the ordering producing a low field The fact that Na⁺ gives a shift consistent with its solvation shift. number indicates that in sulphuric acid Na⁺ is net structure breaking in contrast to its behaviour in aqueous solution. The deviation from linearity which occurs at p = 0.08 for Li⁺ must arise from the fact

that at high concentrations there is competition for the limited number of solvent molecules and hence the average solvation number of a Li⁺ ion decreases giving a corresponding shift to high field.

In the case of the alkaline earths the same effects are observed. The smaller the cation the greater the solvation, with the result that more structure breaking occurs and the resonance is shifted to higher field. It is found that the relative shift to higher field is in the order $Ca^{++} > Sr^{++} > Ba^{++}$. Deviations from a straight line are also noted in these cases presumably for the same reason as the Li⁺ case. The increased shift to lower field of these ions over those of the alkali metals is to be expected in view of the large low field attributed to the $HSO_{\overline{h}}$ ion since at a given concentration of cation there is twice the concentration of $HSO_{\overline{h}}$ for an alkaline earth hydrogen sulphate than for an alkali metal hydrogen sulphate. In addition it has been suggested that the dipositive ions will give rise to a larger polaris-36

Other simple univalent hydrogen sulphates studied were NH_{μ}^{+} , Ag^{+} , and TI^{+} . The ammonium ion gives a shift to low field which is of the same order as that produced by K^{+} in agreement with the degree of 117 solvation of these ions . The resonance of the protons of the ammonium ion are found to shift very slightly to low field as the con-36 centration of the ion is increased. It has been suggested that this is due to an increase in the strength of the hydrogen bonds between the ammonium ion and the solvent due to the increasing basicity of the solvent. However this increase in hydrogen-bond strength must be very small as the shift is only 0.033 p.p.m. for an increase in p
from 0.0091 to 0.1317. Both Ag^+ and Tl^+ give bigger low field shifts than expected from their cationic radii. This would seem to suggest that these ions are similar to Li^+ in that they are so solvated that they actually are structure forming thus producing a low field shift, which is not very likely for Tl^+ since it has been shown to be very ll7little solvated in sulphuric acid , or that there is ion-pair formation which would withdraw electron density from the hydrogens and give a low field shift. Thallous salts are generally recognised ll6as being associated in aqueous solution and Gutowsky and McGarvey have used the n.m.r. of Tl^{203} to study the nature of the ion pairs formed in solution. Silver ions may behave in the same way.

The ions $(CH_3)_2COH^+$, $(C_6H_5)_2COH^+$, $(C_2H_5)_1N^+$ and $(C_6H_5)_1As^+$ were studied in order to investigate the chemical shift produced by very large ions. The shift produced by these cations is greater than that produced by any of the alkali metals except Cs⁺. However it has been shown (Chapter V) that the =OH" resonances of the conjugate acids of acetone and benzophenone occur at lower field than that due to the HSO_3F or $H_2SO_{l_1}$, and since these conjugate acids are exchanging rapidly with the solvent then part of the low field shift produced by dissolving these bases in H_2SO_h is the result of exchange between $=OH^+$ It is seen (Fig. 50) that at a given proton fraction and the acid. the shift produced by the conjugate acid of acetone is greater than that produced by the conjugate acid of benzophenone: this is in agreement with the positions of the =OH⁺ resonances of the two ions, =OH⁺ for acetone being at lower field by ~ 1.5 p.p.m. than that for

benzophenone. The tetraethylammonium and tetraphenylarscnium ions both give extremely large low field shifts. Since the larger ion, tetraphenylarsonium ion, gives a smaller low field shift than the smaller tetraethylanmonium ion, it must be concluded that this ion is acting as a structure breaker thus causing a shift to high field compared to tetraethylammonium ion: presumably the arsonium ion does not fit too well into the structure of the solution. It should be pointed out that no susceptibility corrections have been applied in the case of the arsonium ion solutions but these are not expected to be very different to those applied to the other solutions and hence would not be large enough to affect the above explanation. One must then assume that the tetraethylammonium ion is neither net structure forming nor structure breaking and so does not affect the chemical shift due to the solvent protons: no appreciable shift is observed for the proton resonance of the ethyl groups of this ion with increase in concentration so that this assumption is perhaps not unreasonable. The whole of the shift to low field must then be attributed to the added hydrogen sulphate ion. If this is so then the chemical shift of the hydrogen sulphate ion can be calculated from (8.1).

$$\delta = \delta_{H_2SO_{l_1}} + p(\delta_{HSO_{l_1}} - \delta_{H_2SO_{l_1}})$$
(8.1)

Since all the chemical shifts are measured relative to 100% H₂SO₁ $\delta_{HSO_{11}}$ is found to be -10.54 p.p.m. This negative value is rather unexpected as one would expect the resonance due to HSO_{11} to be at higher field than H₂SO₄ since the single proton in hydrogen sulphate ion would be expected to have more electron density around it than

the protons in H_2SO_4 . The large low field shift found must be the result of strong hydrogen-bond formation with the solvent.

If the value obtained by Gillespie and White for $\delta_{H_2SO_{l_1}}$ from water is added to the above value for $\delta_{HSO_{l_1}}$ the chemical shift of the hydrogensulphate ion from water is found to be -16.44 p.p.m. By using this value and the value for $\delta_{H_3O.HSO_{l_1}}$ of -7.4 found by Gillespie and White a value for $\delta_{H_3O^+}$ can be calculated using (8.2).

$$\delta_{H_{3}0.HSO_{4}} - \frac{\delta_{HSO_{4}}}{\frac{1}{4}} + \frac{3\delta_{H_{3}0^{+}}}{\frac{1}{4}}$$
 (8.2)

The value found is -4.39 p.p.m. from an external water reference, or +1.51 p.p.m. from external H_2SO_{11} . From an external T.M.S. reference the chemical shift would be -9.59 p.p.m. (δ_{H_2O} -5.2¹) which is in quite good agreement with the value for $\delta_{H_3O}^+$ postulated in Chapter V (-10.5).

Hydrogen sulphate	р	Bulk suscept. corrn.(p.p.m.)	Chemical shi measured - $o_{\rm H_2SO_{l_1}}$	fts (p.p.m.) corrected - $\delta_{H_2SO_{L_1}}$
Li.HSOL	0.0159	0 .006	0.07h	0.0 68
	0.03 48	0.012	0.189	0.177
	0.0434	0.015	0.197	0.182
	0.0629	0.022	0.300	0.278
	0.0664	0.024	0.321	0.297
	0.1006	0.036	0.438	0.402
	0.1254	0.045	0.507	0.462
	0.1532	0.057	0.573	0.516
NaHSO	0.0094	0.005	0.010	0.005
-	0.0198	0.011	0.030*	0.019
	0.0407	0.023	0.145	0.122
	0.0645	0.037	0.230*	0.193
	0.0951	0.054	0.360*	0.306
	0.1125	0.065	0.1110*	0.375
KHSO1	0.0045	0.003	0.012	0.009
	0.0260	0.021	0.090*	0.069
	0.0278	0.023	0.137	0.114
	0.0536	0.044	0.268	0.221
	0.0598	0.049	0.270*	0.221

PROTON CHEMICAL SHIFTS FOR SOLUTIONS OF MHSOL IN H2SOL

TABLE LIV

Data of Gillespie and White

TABLE LIV (Contd.)

Hydrogen sulphate	р	Bulk suscept. corrn. (p.p.m.)	Chemical sh: measured - G _{H2} SO _{l4}	ifts (p.p.m.) corrected - $\delta_{H_2SO_{l_1}}$
KHSO _{J4}	0.0899	0.074	0.449	0.375
	0.0907	0.075	0.460*	0.385
	0.1405	0.117	0.720*	0.603
RbHSO1	0.0091	0.009	0.021	0.012
	0.0129	0.017	0.058	0.041
	0.0261	0.036	0.119	0.083
	0.0610	0.087	0.33 8	0.251
	0.1168	0.165	0.703	0.538
CsHSO	0.0080	0.010	0.030	0.020
·	0.0313	0.052	0.206	0.154
	0.0645	0.111	0.429	0.318
	0.1069	0.190	0.745	0.555
AgHSOL	0.0047	0.002	0.041	0.039
,	0.0131	0.023	0.093	0.070
	0 .01 66	0.032	0.103	0.071
	0.0172	0.033	0.109	0.076
	0.0190	0.038	0.125	0.087
	0.0208	0.042	0.182	0.140
	0.0229	0.047	0.159	0.112
	0.0290	0.062	0.214	0.152
	0.0314	0.069	0.224	0.155
	0.0522	0.118 36	0.351	0.233

₩

Data of Gillespie and White

TABLE LIV (Contd.)

Hydrogen sulphate	р	Bulk suscept. corrn.(p.p.m.)	Chemic measur Chemic	cal shi: red 2 ^{SO} 4	fts (p.p corre - S _H	som.) acted SO
TIHSO	0.0083	0.011	0.09*		0.079	 >
-	0.03 25	0.065	0.26*		0,195	5
	0.0444	0.090	0.39*		0.300)
	0.0775	0.159	0.62*		0.463	Ĺ
Hydrogen sulphate	р	Bulk suscept. corrn.(p.p.m.)	Chemical measured • $\delta_{\rm H_2SO_4}$	shifts $\delta_{\rm NH_4^+}$	(p.p.m. corre 6 _{H2} SO ₄	$\delta_{\rm NH_4^+}$
NHLHSOL	0.0091	-0.002	0.025	4.845	0.027	4.843
	0.0209	0.005	0.07*	-	0.065	-
	0.0211	0.005	0.0 88	4.792	0.083	4.797
	0.0573	0.025	0 •26*	4.82#	0.235	4.845
	0.0 655	0.030	0.30*	4.81#	0.270	4.840
	0.0760	0.036	0.36*	4.80*	0.324	4.836
	0.1317	0.065	0. 67*	4.72#	0.605	4.785
			ć	Sc2H5		6 c2H5
(c2H5)UN HSOU	0.0065	-0,001	0.035	9 .51 5	0.036	9.514
• • • •	0.0108	-0.002	0.078	9•532	0.080	9.530
	0.0172	-0.003	0.156	9.514	0. 159	9.511
	0.0257	-0.004	0.258	9.522	0.262	9.518
	0.0 293	-0.00 4 36	0.305	9.515	0.309	9.511

* Data of Gillespie and White

TABLE LIV (Contá.)

Hydrogen sulphate	р	Bulk suscept. corrn.(p.p.m.)	Chemical measured - $\delta_{\rm H_2SQ}$	shifts	(p.p.m correc O _{H2} SO	.) ted
$(C_{6}H_{5})_{1}$, AsHSO1,	0.0026	-	-0,008	3.090		
0 7 4 4	0.0067	-	0.002	3.123		
	0.0083	-	0.010	3.152		
	0.0124	-	0.060	3.112		
	0.0224	-	0.122	3.147		
	0.0352	-	0.202	3.196		
				б сн ₃		б сн ₃
(сн ₃) ₂ сон.нзо ₄	0.0113	-0.010	0.0 42	7.733	0.053	7.722
	0.01 69	-0.011	0.061	7.723	0.072	7.712
	0 .03 62	-0.019	0.271	7.785	0.190	7.766
	0.0547	-0.027	0.279	7•758	0.306	7.731
	0.1246	-0.0 55	0.676	7.774	0.731	7.719
				b C ₆ H ₅		б с _б н _с
(C6H5)2COH.HSOL	0.01 15	-0.013	0.010	-	0.023	-
•	0.0219	-0.020	0.052	2.576	0.072	2.556
	0.02 69	-0.023	0.064	2.571	0.087	2.548
	0.0587	-0.044	0.186	2.516	0.230	2.1:72
	0.0703	-0.052	0.252	2.464	0.30l	2.412
	0.0711	-0.052	0.254	2.446	0.306	2.394
	0.1174	-0.083	0.447	2.333	0.530	2.250
	0.1434	-0.101	0.543	2.301	0.644	2.200

36 Data of Gillespie and White ¥

TABLE LIV (Contd.)

Hydrogen sulphate	р	Bulk suscept. corrn.(p.p.m.)	Chemical shifts measured • $6_{\mathrm{H_2SO_{l_1}}}$	(p.p.m.) corrected $- \delta_{H_2SO_{l_1}}$
Ca(HSO1) 2	0.0066	-0.0014	0.027	0.031
	0.01 36	0.007	0.076	0.069
	0.02 29	0.018	0.U46	0.128
	0.0367	0.034	0.229	0.195
	0.05 39	0.054	0.329	0.275
	0.0 668	0.069	0.403	0.334
$sr(HSO_{4})_{2}$	0.0063	0.002	0.022	0.020
	0.0117	0.011	0.054	0.043
	0.01 64	0.019	0.1 48	0.129
	0.0207	0.025	0.134	0.109
	0.023 8	0.029	0.180	0,151
	0. 0350	0.046	0.239	0.193
	0.055 4	0.077	0.359	0.282
	0.0 667	0.0 94	0.434	0.340
	0.0992	0.143	0.585	0.442
Ba(HSO ₄) ₂	0.0071	0.006	0.029	0.023
	0.0134	0.019	0.06*	0.041
	0.02 38	0.036	0.152	0.116
	0.0 296	0.046	0.191	0.145
* Data o	f Gillespie	36 and White		

TABLE LIV (Contd.)

Hydrogen sulphate	p	Bulk suscept. corrn. (p.p.m.)	Chemical s measured - or H ₂ SO4	shifts $(p.p.m.)$ corrected $- \phi_{H_2SO_{l_1}}$
Ba(HSO _L) ₂	0.0 298	0.046	0.191	0.145
	0.0323	0.051	0.204	0.153
	0.0386	0.061	0.25*	0.189
	0.043h	0.070	0.287	0.217
	0.0509	0.083	0.39*	0.307
	0.0521	0.085	0.316	0.231
	0.0714	0.119	0.413	0.294

36 Data of Gillespie and White ⊁

MHSO _{lt}	$\frac{-\delta_{H^{l}}}{p}$	Cationic radii
Li HSO ₁₄	4.36	0.60
Nahsoli	3•52	0.95
KHSO)4	4•34	1.33
R5HSOL	4.64	1.48
CsHSO ₁₄	5•36	1.69
$\mathrm{NH}_{j_{\downarrow}}\mathrm{HSO}_{j_{\downarrow}}$	4-146	1.48
AgHSO	5.25	1.26
TIHSOL	6.12	1.49
$(C_2H_5)_{l_1}$ NHSO $_{l_1}$	11.71	4.00
Ca(HSO ₎₁)2	5.17	0.99
$Sr(HSO_{1})_{2}$	5.45	1.13
$Ba(HSO_{l_1})_2$	5 .7 2	1.35

*

TABLE LV RATIO OF δ/p FOR SOLUTIONS OF MHSOL IN H₂SOL

Fig. 49 SOLUTIONS OF MHSOL IN H2SOL: PROTON CHEMICAL SHIFTS.

SOLUTIONS OF MHSOL IN H2SOL: PROTON CHEMICAL SHIFTS.

Fig. 51 SOLUTIONS OF M(HSOL)2 IN H2SOL: PROTON CHEMICAL SHIFTS.

(3) SOLUTIONS OF MSO3F IN HSO3F

Solutions of metal fluorosulphates in 100% fluorosulphuric acid produce large low field shifts in the proton resonance of the solvent as has been found for metal sulphates in sulphuric acid. This large low-field shift is presumably the result of a large lowfield shift due to the SO_3F which increases the hydrogen bonding in the solution and so decreases the shielding of the protons. Each cation then produces its own effect which changes the shift produced by SO_3F to give the observed shift. The chemical shifts, measured from an external reference of 100% HSO3F, are given in Table LVI and are plotted against mole fraction (x) in Figs 52 and 53. It can be seen that the shifts produced are much larger than those obtained in the sulphuric acid system. This has been explained on the basis that the intrinsic shift of HSO_{L}^{-} must be to higher field than $H_2SO_{L}^{-}$ and this counteracts the shift to low field produced by interaction with the solvent; whereas the fluorosulphate ion has no proton shift and so the full effect of the increased hydrogen bonding due to the SO_3F ion is obtained.

As with the sulphates each cation produces its own effect on the proton resonance depending upon its solvating power. Thus it is found that, as before, ions which are the most solvated produce the largest shifts to high field and the order found is $\text{Li}^+ > \text{Na}^+ >$ $\text{K}^+ > \text{Rb}^+ > \text{Cs}^+$ in agreement with the relative degrees of solvation found for these ions in fluorosulphuric acid . The alkaline earth cations likewise produce shifts which are in the order expected for their degree of solvation i.e. $Ca^{++} > Sr^{++} > Ba^{++}$ and as with the corresponding sulphates the alkaline earths produce greater chemical shifts. As all the data necessary for the calculation of the susceptibility corrections was not available the results plotted in Figs. 52 and 53 are uncorrected values. The slopes of these plots are given in Table LVII. However where these corrections have been calculated (Table LVI) they are found to be smaller than those for the corresponding sulphates and as the shifts are larger in the HSO₃F system the interpretation of the results would not be appreciably affected by the application of the correction. As in the sulphuric acid system T1⁺ gives a bigger shift to low field than expected for its size which can again be explained by postulating ion-pair formation.

It is found that the F^{19} chemical shift of HSO_3F is also affected by the addition of metal fluorosulphate and like the proton shift is dependent upon the cation. The F^{19} chemical shifts were measured with respect to external HSO_3F and are given in Table LVI and Figs. 54 and 55.

Since the F^{19} chemical shifts are generally an order of magnitude greater than the proton shifts, they are more sensitive to the solvation and hydrogen-bonding effects occurring in these solutions, and marked differences between the different cations are noted. All of the shifts can be accounted for by the explanations already given for the proton shifts. One would expect the fluorine nucleus to be more shielded in the SO₃F⁻ ion than in HSO₃F, but

hydrogen bonding will have the effect of moving it to lower field. However this does not completely overcome the intrinsic high field shift of the SO_3F ion as all the chemical shifts but one are to high field. It is still found that the most solvated ions produce the greatest shift to high field due to the breaking of hydrogen bonds, and the dipositive ions produce the largest shifts. Since no larger ions have been studied, it is not possible to know whether the F^{19} shift is due solely to the SO_3F ion in the case of $CsSO_3F$ solutions. Until some larger ions have been examined in HSO_3F no value can therefore be obtained for the chemical shift of SO_3F .

Thallous fluorosulphate is the only salt which gives a F^{19} shift to low field. This is explained if ion-pair formation occurs since this would produce a large low field shift which in this case must completely counteract the intrinsic high field shift of the fluorosulphate ion.

MSO3F	x	Chemical s	hifts (p.p.m.)	Suscept. corn.
		- 0 _H 1	0 _F 19	(p.p.m.)
LiSO3F	0.0188	0.225	0.099	-
-	0.0357	0.410	0.227	-
	0.0789	0.830	0.528	-
	0.1428	1.583	1.067	-
NaSO3F	0.0286	0.320	0.172	-
	0.05 86	0.670	0. 395	-
	0.0 987	1.143	0.671	-
KSO3F	0.0126	0.155	0.066	-0.001
	0.0445	0.515	0.227	-0.005
	0.0674	0.787	0.385	-0.007
	0.0794	0.913	0.431	-0.008
	0.0955	1.099	0.515	-0.010
RbSO3F	0.0089	0.123	-	-0.003
	0.0160	0.208	0.126	-0.005
	0.0283	0.332	0.124	-0.009
	0.0320	0. 355	0.146	-0.011
	0.0449	0.518	0.176	-0.015
	0.0803	0.925	0.335	-0.027
CsSO ₃ F	0.0115	0.135	-	-
	0.0157	0.198	-	-
	0.0268	0.327	0.057	-
	0.0428	0.515	0.092	-
	0.0697	0.822	0.155	-

TABLE IVI

H¹ AND F¹⁹ CHEMICAL SHIFTS FOR SOLUTIONS OF MSO₃F IN HSO₃F

MSO3F	x	Chemical	shift (p.p.	m.)	Suscept. corn.
		- 6 _H 1	$\mathbf{d}_{\mathrm{NH}_{l_{4}}^{+}}$	6 _F 19	(p.p.m.)
NH ₄ SO3F	0.0205	0.220	4.624		0.002
	0.0772	0.845	4.605	0.318	0.008
	0.0912	0.997	-	0.3 69	0.010
	0.1364	1.487	-	0.537	0.014
TISO3F	0.0209	0.250		-0.057	
-	0.0266	0.322		-0.069	
	0.0354	0.425		-0.106	
	0.05 09	0.613		-0.163	
Ca(SO ₃ F) 2	0.0125	0.262		0.110	
	0.0173	0.383		0.177	
	0.0 236	0.501		0.249	
	0.0337	0.685		0.367	
	0.0377	0. 689		0.367	
Sr(SO3F)2	0.0060	0.148		0.062	
	0.0198	0.468		0.208	
	0.0348	0.768		0.360	
	0.0645	1.345		0.665	
Ba(SO3F)2	0₊00 €?	0.232		-	
	0.0161	0.394		0.082	
	0.0 263	0.625		0.207	
	0.0268	0.639		0.202	
	0.0414	0.957		0.349	

.

TABLE LVI (Contd.)

MSO3F	$\frac{-\delta_{H^1}}{x}$	<u>$\delta_{F^{19}}$</u>	Cationic radii A ^O
Lisor	10 13	6.7	0.60
NaSO ₂ F	11.)	6.8	0.95
KSO ₃ F	11.5	5.4	1.33
RbSO3F	11.5	4.17	1.48
CsSO3F	11.8	2.23	1.69
nhįsozf	10.9	3•93	1.48
TISO ₃ F	12.02	-2.99	1.49
Ca(SO ₃ F) ₂	21.2	10.12	0.99
sr(so ₃ F) ₂	21.7	10.3	1.13
Ba(SO ₃ F) ₂	24.0	10.35	1.35

; ;

TABLE LVII

RATIO OF 6/x FOR SOLUTIONS OF MS03F IN HS03F

Fig. 52 SOLUTIONS OF MSO₃F IN HSO₃F: PROTON CHEMICAL SHIFTS.

Fig. 53 SOLUTIONS OF M(SO₃F)₂ IN HSO₃F: PROTON CHEMICAL SHIFTS.

Fig. 54 SOLUTIONS OF MSO3F IN HSO3F: F¹⁹ CHEMICAL SHIFTS.

Fig. 55 SOLUTIONS OF M(SO₃F)₂ IN HSO₃F: F¹⁹ CHEMICAL SHIFTS.

REFERENCES

1.	J.A. Pople, W.G. Schnieder, and H.J. Bernstein. High Resolution Nuclear Magnetic Resonance. McGraw Hill, New York (1959).
2.	H.S. Gutowsky, D.W. McCall, and C.P. Slichter. J. Chem. Phys. <u>21</u> , 279 (1953).
3.	H.M. McConnell. J. Chem. Phys. 28, 430 (1958).
4.	J.T. Arnold. Phys. Rev. <u>102</u> , 136 (1956).
5.	S. Meiboom, Z. Luz, and D. Gill. J. Chem. Phys. <u>27</u> , 1411 (1957).
6.	S. Meiboom, Z. Luz, and D. Gill. J. Chem. Phys. <u>30</u> , 1540 (1959).
7.	H.S. Gutowsky and C.H. Holm. J. Chem. Phys. 25, 1228 (1956).
8.	H.B. Charman, D.R. Vinard, and M.M. Kreevoy. J. Am. Chem. Soc. <u>84</u> , 347 (1962).
9.	E. Grunwald, A. Loewenstein, and S. Meiboom. J. Chem. Phys. <u>27</u> , 630 (1957).
10.	E. Grunwald, A. Loewenstein, and S. Meiboom. J. Chem. Phys. <u>27</u> , 641 (1957).
11.	A. Loewenstein and S. Meiboom. J. Chem. Phys. 27, 1067 (1957).
12.	T.M. Connor and A. Loewenstein. J. Am. Chem. Soc. 83, 560 (1961).
13.	T. Isobe, T. Ikenoue, and K. Toyoda. J. Chem. Phys. 28, 356 (1958).
14.	T. Isobe, T. Ikenoue, and G. Hazato. J. Chem. Phys. <u>30</u> , 1371 (1959).
15.	W.F. Reynolds and T. Schaefer. Can. J. Chem. <u>41</u> , 540 (1936).

16. I.C. Smith and W.G. Schneider. Can. J. Chem. 39, 1158 (1961). S.S. Danyluk and W.G. Schneider. J. Am. Chem. Soc. 82, 17. 997 (1960). C. MacLean, J.H. van der Waals, and E.L. Mackor. 18. Mol. Phys. 1. 247 (1958). 19. C. MacLean and E.L. Mackor. Mol. Phys. 4, 241 (1961). 20. C. MacLean and E.L. Mackor. Faraday Soc. Discussions. 34, 165 (1962). 21. R.A.Y. Jones and A.R. Katritzky. Chem. and Ind. 35, 722 (1961). 22. J. Phys. Chem. 64, 275 (1960). E. Spinner. 23. T. Birchall and R.J.Gillespie. Can. J. Chem. 41, 148 (1963). 24. C. MacLean and E.L. Mackor. J. Chem. Phys. 34, 2207 (1961). 25. Z. Luz and B. Silver. J. Am. Chem. Soc. 83, 786 (1961). 26. J.T. Edward, J.B. Leane, and I.C. Wang. Can. J. Chem. 40, 1521 (1962). 27. J. Barr. Ph.D. Thesis, University of London, London, England (1959). 28. L.P. Hammett. Physical Organic Chemistry. McGraw Hill, New York, 1940. 29. L.A. Flexser, L.P. Hammett, and A. Dingwall. J. Am. Chem. Soc. 57, 2103 (1935). 30. P.L. Levins and R.W. Taft. Anal. Chem. 34, 436 (1962). E.Z. Utyanskaya, G.U. Strepanyants, M.L. Vinnik, and 31. N.M. Chernov. Dokl. AN SSSR 124, 1095 (1959). 32. Wang I-Ch'iu and F.I. Skipov. Dokl. AN SSSR 136, 58 (1961). 33. H.S. Gutowsky and A. Saika. J. Chem. Phys. 21, 1688 (1953). G. Masuda and T. Kanda. J. Phys. Soc. Japan. 8, 432 (1953); 34. 9, 82 (1954). 35. G.C. Hood, C.A. Reilly, and O. Redlich. J. Chem. Phys. 22, 23, 2229 (1955). 2067 (1954); G.C. Hood and C.A. Reilly. J. Chem. Phys. 27, 1126 (1957);

<u>28, 329 (1958); 32, 127 (1960).</u>

36.	R.J. Gillespie and R.F.M. White. Can. J. Chem. <u>38</u> , 1371 (1960).
37.	A. Loewenstein and J.D. Roberts. J. Am. Chem. Soc. 82, 2705 (1960).
38.	L. Kotin and M. Nagasawa. J. Am. Chem. Soc. <u>83</u> , 1026 (1961).
39.	V.A. Shcherbakov. Zh. Strukt. Khimii. 2, 452 (1961).
4 0.	J.C. Hindman. J. Chem. Phys. <u>36</u> , 1000 (1962).
41.	S.J. Bass and R.J. Gillespie. J. Chem. Soc. 814 (1960).
42 .	R.H. Flowers, R.J. Gillespie, and J.V. Oubridge. J. Chem. Soc. 1925 (1956).
43.	J. Chatt and F.G. Mann. J. Chem. Soc. 1192 (1940).
44.	R.C. Thompson. Ph.D. Thesis, McMaster University. (1962)
45.	H. Lemaire and H.J. Lucas. J. Am. Chem. Soc. <u>73</u> , 5198 (1951).
46 。	N.F. Hall and W.F. Spengman. J. Am. Chem. Soc. <u>52</u> , 2487 (1940).
47.	J.T. Arnold and M.E. Packard. J. Chem. Phys. 19, 507 (1951).
48°	P.W. Selwood. Magnetochemistry 2 ⁶⁶ . Edn. Interscience Public. New York (1956).
49.	A. Hantzsch. Ber. <u>61</u> , 667 (1931).
50.	L. Kahovec and K. Knollmuller. Z. Physik Chim. 51B, 49 (1942).
51.	C.G. Cannon. Microchim. Acta. 562 (1955).
52.	C.H. Smith and S.D. Robinson. J. Am. Chem. Soc. <u>79</u> , 1319 (1957).
53.	M. Davies and L. Hopkins. Trans. Faraday Soc. 53, 1563 (1957).
54.	E. Spinner. Spectrochim. Acta. <u>15</u> , 95 (1959).
55.	J.T. Edward, H.S. Chang, K. Yates, and R. Stewart. Can. J. Chem. <u>38</u> , 1518 (1960).
56.	H. Hosaga, J. Tanaka, and S. Nagakura. Bull. Chem. Soc. Japan. <u>33</u> , 850 (1960),

57.	L. Pauling. Nature of the Chemical Bond. 3 rd . Edn. p.281.
58.	W. Kutzelnigg and R. Mecke. Revue universelle des Mines. 15, 456 (1959).
59.	R. Stewart and L.J. Muenster. Can. J. Chem. 39, 401 (1961).
60.	M.J. Jan ssen. Spectrochim. Acta. <u>17</u> , 475 (1961).
61.	W. Kutzelnigg and R. Mecke. Spectrochim. Acta. <u>17</u> , 530 (1961).
62.	J. Sandstrom. Acta Chemica Scand. 16, 1616 (196?)
63.	C.R. Redpath and J.A.S. Smith. Trans. Faraday Soc. <u>58</u> , 462 (1962).
64.	E.W. Hughes and W. Takei. Report of the Division of Chemistry and Chemical Engineering, California Institute of Technology 1956-57, p.36.
65.	J.H. Bryden. Acta Cryst. <u>10</u> , 714 (1957).
66.	W.D. Phillips. J. Chem. Phys. 23, 1363 (1955).
67.	G. Fraenkel and C. Niemann. Proc. Natl. Acad. Sci. U.S. <u>44</u> , 688 (1958).
68.	A. Berger, A. Loewenstein, and S. Meiboom. J. Am. Chem. Soc. <u>81</u> , 62 (1959).
69.	G. Fraenkel and C. Franconi. J. Am. Chem. Soc. 82, 4478 (1960).
70.	C.A. Bunton, B.N. Figgis, and B. Nayak. Private communication.
71.	J. Barr, R.J. Gillespie, and E.A. Robinson. Can. J. Chem. <u>39</u> , 1266 (1961).
72 .	J. Barr, R.J. Gillespie, and R.C. Thompson. Unpublished results.
73.	J.V. Hatton and R.E. Richards. Mol. Phys. <u>3</u> , 253 (1960); 5, 139 (1962).
74.	L.H. Piette, J.D. Ray, and R.A. Ogg. J. Mol. Snectry. 2, 66 (1958).
7 5.	J.D. Roberts. J. Am. Chem. Soc. <u>78</u> , 4495 (1956).
76.	L.H. Meyer, A. Saika, and H.S. Gutowsky. J. Am. Chem. Soc. 75, 4567 (1953).

- 77. Varian High Resolution N.H.R. Spectra Catalogue. Varian Assoc., Palo Alto, California, U.S.A.
- 78. D. Rosenthal and T.I. Taylor, J. Am. Chem. Soc. <u>79</u>, 2684 (1957).
- 79. A.R. Goldfarb, A. Mele, and N. Gutstein. J. Am. Chem. Soc. <u>77</u>, 6194 (1955).
- 80. A. Bruylants and F. Kezdy. Bull. Soc. chim. France. 947 (1959).
- 81. J.T. Edward and H. Stollar. Can. J. Chem. 11, 721 (1963).
- 82. R. Huisgen, H. Brode, H. Walz, and I. Clogger. Chem. Ber. <u>90</u>, 11,37 (1957).
- 83. A. Hantzsch. Ber. 63B, 1782 (1930).
- 84. D.A. McCauley and A.P. Lien. J. Am. Chem. Soc. <u>73</u>, 2013 (1951).
- 85. V. Gold and F.L. Tye. J. Chem. Soc. 2172 (1952).
- 86. C. Reid. J. Am. Chem. Soc. 76, 3264 (1954).
- 87. G. Dallinga, E.L. Mackor, and A.A. Verrijn Stuart. Mol. Phys. 1, 123 (1958).
- 88. E.L. Mackor, A. Hofstra, and J.H. van der Waals. Trans. Faraday Soc. <u>54</u>, 66, 187 (1958).
- 89. E.M. Arnett and C.Y. Wu. J. Am. Chem. Soc. <u>82</u>, 5660 (1900).
- 90. A.J. Kresge and Y. Chiang. Proc. Chem. Soc. 81 (1961).
- 91. N. Bloembergen, E.M. Purcell, and R.V. Pound. Phys. Revs. 73, 679 (1948).
- 92. R.J. Gillespie and A.P. Leisten. Quart. Pev. 8, 40 (1954).
- 93. M.A. Paul and F.A. Long. Chem. Rev. <u>57</u>, 1 (1957).
- 94. R. Stewart and K. Yates. J. Am. Chem. Soc. 80, 6355 (1958).
- 95. H.C. Brown and Y. Okamoto. J. Am. Chem. Soc. <u>79</u>, 1913 (1957).
 N.C. Deno and W.L. Evans. J. Am. Chem. Soc. <u>79</u>, 5804 (1957).
- 96. J.B. Senior. Fh.D. Thesis, McMaster University. (1962).

- 97. R. Stewart and K. Yates. J. Am. Chem. Soc. 82, 4059 (1960).
- 98. S. Meiboom, A. Loewenstein, and S. Alexander. J. Chem. Phys. 29, 969 (1958).
- 99. M.T. Emerson, E. Grunwald, M.L. Kaplan, and R.A. Kromhout. J. Am. Chem. Soc. 82, 6307 (1960).
- 100. O. Jardetzky and C.D. Jardetzky. J. Biol. Chem. 233, 383 (1958).
- 101. F.A. Bovey and G.V.D. Tiers. J. Am. Chem. Soc. <u>81</u>, 2870 (1959).
- 102. L.P. Hammett and A.J. Deyrup. J. Am. Chem. Soc. <u>55</u>, 1900 (1933).
- 103. R.A. Ogg and J.D. Ray. J. Chem. Phys. 26, 1340 (1957).
- 104. J.C. Brand, W.C. Horning, and M.B. Thornley. J. Chem. Soc. 1374 (1952).
- 105. R.J. Gillespie and A. Janzen. Unpublished results.
- 106. M.J. Jorgenson and D.R. Hartter. J. Am. Chem. Soc. 85, 878 (1963).
- 107. H.H. Hyman and R.A. Garber. J. Am. Chem. Soc. 81, 1847 (1959).
- 108. J.N. Shoolery and B.J. Alder. J. Chem. Phys. 23, 805 (1955).
- 109. H.G. Hertz and W. Spalthoff. Z. Electrochem. 63, 1096 (1959).
- 110. R.A. Robinson and R.H. Stokes. Electrolyte solutions. 2nd. Edn. Butterworths, London.
- 111. R.C. Axtmann. J. Chem. Phys. 30, 340 (1959).
- 112. B.F. Fabricand and S. Goldberg. J. Chem. Phys. <u>31</u>, 1621; (1961).
- 113. A. Carrington and T. Hines. J. Chem. Phys. <u>28</u>, 727 (1958).
- 111. R.E. Connick and R.E. Poulson. J. Am. Chem. Soc. <u>79</u>, 5153 (1957).
- 115. J.A. Jackson, J.F. Lemons, and H. Taube. J. Chem. Phys. 32, 553 (1960).

116.	H.S.	Gutowsky	and	B.R.	McGarvey.	Phys.	Rev.	91,	81	(1953).
		•			•			Constraint of		

- 117. R.J. Gillespie. Rev. Pure and Appl. Chem. 2, 1 (1959).
- 118. R.W. Gurney. Ionic Processes in Solution. McGraw-Hill Book Co. Inc., New York. (1953).