
 

 

 

 

 

 

 

 

 

 

 

TRANSITION-STATE OPTIMIZATION METHODS  

USING INTERNAL COORDINATES 



 

i 
 

New Transition-State Optimization Methods 

By 

Carefully Selecting Appropriate Internal Coordinates 

By 

Sandra Rabi 

H.B.Sc. (Chemistry) 

 

A Thesis 

Submitted to the School of Graduate Studies 

in Partial Fulfillment of the Requirements 

for the Degree 

Doctor of Philosophy 

 

 

McMaster University 

©Copyright by Sandra Rabi 

 

 

 



 

ii 
 

DOCTOR OF PHILOSOPHY (2014)         McMaster University   

(Chemistry)                 Hamilton, Ontario. Canada 

 

 

 

 

 

TITLE:      New Transition-State Optimization Methods By Carefully Selecting  

                  Appropriate Internal Coordinates 

AUTHOR:     Sandra Rabi    H.B.Sc. -   Honours Chemistry (Physical and Analytical  

                                                            Specialization) 

                                                             (McMaster University, Hamilton, Ontario. Canada) 

 

 

 

SUPERVISOR: Dr. Paul W. Ayers 

 

 

NUMBER OF PAGES: xxvi, 263 

 

 

 

 

 

 

 



 

iii 
 

ABSTRACT 

Geometry optimization is a key step in the computational modeling of chemical 

reactions because one cannot model a chemical reaction without first accurately 

determining the molecular structure, and electronic energy, of the reactants and products, 

along with the transition state that connects them. These structures are stationary points—

the reactant and product structures are local minima, and the transition state is a saddle 

point with one negative-curvature direction—on the molecular potential energy surface. 

Over the years, many methods for locating these stationary points have been developed. 

In general, the problem of finding reactant and product structures is relatively 

straightforward, and reliable methods exist. Converging to transition states is much more 

challenging. 

 Because of the difficulty of transition-state optimization, researchers have 

designed optimization methods specifically for this problem. These methods try to make 

good choices for the initial geometry, the system of coordinates used to represent the 

molecule, the initial Hessian, the Hessian updating method, and the step-size. The 

transition-state optimization method developed in this thesis required considering all of 

these methods. Specifically, a new method for finding an initial guess geometry was 

developed in chapter 2; good choices for a coordinate system for representing the 

molecule were explored in chapters 2 and 6; different choices for the initial Hessian are 

considered in chapter 5; chapters 3 and 4 present, and test, a sophisticated new method for 

updating the Hessian and controlling the step-size during the optimization. 
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The methods created in the process of this research led to the development of 

Saddle, a general-purpose geometry optimizer for transition states and stable structures, 

with and without constraints on the molecular coordinates. Saddle can be run in 

conjunction with the Gaussian program or almost any other quantum chemistry program, 

and it converges significantly more often than the other traditional methods we tested. 
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PREFACE 

This thesis descibes an optimization method that was developed by the author, 

together with her supervisor (Prof. Paul Ayers) and their collaborator (Dr. Toon 

Verstraelen). This project grew from the author’s frustration with existing techniques for 

optimizing transition state structures in chemical reactions. The method she developed 

applies to additional problem (finding local minima on the molecular potential energy 

surface, constrained geometry optimization, etc.) but the emphasis of the method, and of 

this thesis, is on optimizing transition states. As part of the thesis, the author developed a 

program called Saddle, which can be used to do almost all of the types of geometry 

optimization that are relevant in chemistry. Saddle will eventually be incorporated in the 

Horton program package, but is currently stand-alone software. 

All of the chapters in the thesis were written by the author and edited by Prof. 

Ayers; Prof. Verstraelen also made some minor suggestions for elaboration and revision 

of the document. The first chapter of the thesis provides background, and the next three 

chapters present the key components of, and results for, the transition-state optimizer 

developed by the author. Chapters 5 and 6 present minor variations of the method, 

showing how the method can be simplified and improved by adjusting the initial guess. 

Chapter 7 provides perspective on the results presented in the thesis. 

Chapter 1 is a detailed introduction and literature review about geometry 

optimization, focusing on transition state optimization. The key features of the problem of 

optimizing transition states are discussed, and existing approaches are reviewed. This has 

been submitted as an invited review article in the Journal of Theoretical and 
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Computational Chemistry. 

Chapter 2 presents an extremely efficient and highly effective method for 

approximating the reaction path between a chemical reactant and its product, and 

estimating the transition-state structure along that path. This method is extremely fast 

because it does not require any evaluations of the potential energy surface: it is based on 

interpolating between the reactant and product structures, in redundant internal 

coordinates. Despite its conceptual simplicity and computational efficiency, the estimate 

of the transition-state structure is quite good in almost all cases. The new method was 

programmed by the author, using some utility-routines from Prof. Verstraelen. After 

initial testing by the author, she supervised two undergraduate students (Miss Santa Rabi 

and Mr. Christopher Haddad) as they performed systematic tests. The resulting paper has 

been submitted to the Journal of Chemical Theory and Computation. 

Chapter 3 describes the transition state optimization method that was developed. It 

starts with an idea proposed by Dr. Steven Burger and Prof. Ayers; they recommended 

refining the molecular Hessian using finite-differences in certain key chemical 

coordinates. (These are typically the internuclear distances associated with the bonds that 

break and/or form in the chemical reaction of interest.) The mathematics of the method 

was worked out by the author with the assistance of Prof. Ayers. Prof. Verstraelen then 

helped guide the programming of the method, and Prof. Ayers helped the author debug 

the program and assisted in refining the algorithm. The resulting paper has been 

submitted to the Journal of Chemical Theory and Computation. 

Chapter 4 presents a systematic study of the performance of the method in chapter 
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3, as compared to the conventional approaches available in the Gaussian program. The 

author built the testing database and ran all the calculations. The resulting paper has been 

submitted to the Journal of Chemical Theory and Computation. 

Chapter 5 shows how different choices for the initial Hessian change the 

performance of transition-state optimizers. Somewhat remarkably, one does not need to 

expend much effort in evaluating the initial Hessian:  a calculation with a minimal basis 

set suffices. The idea for this chapter came from the author and Prof. Ayers; the author 

supervised Miss Rabi and Mr. Haddad as they performed the systematic computational 

tests for this chapter. The resulting paper has been submitted to the Journal of Chemical 

Theory and Computation. 

Chapter 6 shows that it is not mandatory for the user to explicitly choose the key 

chemical coordinates in the method of chapter 3: the coordinates can be identified 

automatically. Different ways of automatically selecting the coordinates are considered, 

and their relative efficiency is compared. The methods explored were programmed by the 

author, and tested by Miss Rabi and Mr. Haddad, under the author’s supervision. The 

resulting paper is in preparation for Chemical Physics Letters. 

A summary of the content of the thesis, along with directions for further research, 

is provided in Chapter 7. This chapter also overviews research projects that the author 

was involved in, but which do not appear in the thesis.  



Ph.D. Thesis – Sandra Rabi; McMaster University – Chemistry and Chemical Biology 

 

1 

 

 

 

 

Chapter 1 

 

Introduction 

 

 

 

 

 

 

 

 

 



Ph.D. Thesis – Sandra Rabi; McMaster University – Chemistry and Chemical Biology 

 

2 

 

1.1 Introduction 

Locating stationary points on the molecular potential energy surface that lie along 

the chemical reaction path is the first step in modeling chemical reactions 

computationally. Geometry optimization methods locate these points. For example, the 

endpoints of the chemical reaction path are the reactant and product complexes; these 

structures are minima on the molecular potential energy surface. If there are additional 

minima on the reaction path, those structures correspond to (meta)stable reactive 

intermediates.  Maxima on the chemical reaction path (saddle points on the molecular 

potential energy surface) are transition states.
1,2

 

Once these stable structures (minima) and the transition states linking them have 

been determined, one can estimate many kinetic and thermodynamic properties, including 

rate constants (from the height of reaction barriers, using transition-state theory) and 

equilibrium constants (from the relative depth of the minima).
3
 In many multi-step 

reactions, only the reactant and the final product are observed experimentally. In these 

cases, knowing the minimum energy path of a reaction provides detailed information 

about the reaction mechanism, including all the different intermediates and transition state 

structures. This knowledge can be used to design catalysts, leading to more efficient and 

environmentally friendly synthetic procedures. 

Many methods have been developed for geometry optimization. The efficiency of 

these methods depends on several factors: the choice of coordinates, the initial geometry, 

the initial Hessian (second derivative of the energy), the choice of step size in the iterative 

procedure, and the choice of the Hessian updating methods.
4-9

 It is generally easier to find 
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a minimum structure than it is to optimize to a transition state because in minimization, a 

structure with lower energy is always preferable. In transition-state finding, the total 

energy may either increase or decrease when approaching the saddle point.  

The difficulty of transition-state optimization has led to specialized methods for 

providing good initial guesses of transition state structures and for optimizing transition 

state structures. In this chapter, an overview of recent geometry optimization methods is 

provided, focusing on transition-state finding. For completeness, and to establish our 

notation, we quickly review the definition and properties of the molecular potential 

energy surface. We then compare the different choices of coordinates, internal and 

Cartesian, that can be used to express the potential energy surface, discussing their 

advantages and disadvantages for optimization. Quasi-Newton and step-size control 

methods are also described in detail, with special emphasis on their application to 

transition-state optimization. Finally, methods for finding an accurate initial 

approximation to the transition state structure are reviewed. 
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1.2 The Molecular Potential Energy Surface (PES) 

A. The Born-Oppenheimer Approximation 

The energy operator (Hamiltonian) for a molecule is:
10,11
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The indices α and β refer to atomic nuclei and the indices i and j refer to electrons. The 

electron has charge –e and mass me; the nuclei have charge Zαe and mass Mα. The first 

summation is the kinetic energy of all the atomic nuclei, 
  
T̂

N
; the second term is the total 

kinetic energy of the electrons, 
  
T̂

e
. The remaining terms are the potential-energy terms 

for nucleus-nucleus repulsion, VNN, nucleus-electron attraction, VeN, and electron-electron 

repulsion, Vee. We have introduced a shorthand notation for the separation distance 

between two particles. E.g.,  
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2

+ Z
α

− Z
β( )

2

 , (1.2) 

where 
   
R

α
= X

α
,Y

α
,Z

α( )  is the position of the α
th

 nucleus. Henceforth, we denote the sets 

of nuclear and electronic coordinates as 
 

R
α{ }  and 

  
r

i{ }, respectively. We often 

decompose the molecular Hamiltonian into its nuclear and electronic terms, 

 
   
Ĥ = T̂

N
R

α{ }( ) + V̂
NN

R
α{ }( ) + Ĥ

ele
r

i{ } , R
α{ }( ) 

,
 (1.3) 

where the electronic Hamiltonian is defined as 
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Ĥ

ele
r

i{ } , R
α{ }( ) = T̂

e
r

i{ }( ) + V̂
eN

r
i{ } , R

α{ }( ) + V̂
ee

r
i{ }( )    (1.4) 

 All the properties of a molecule can be determined from the molecular 

wavefunction, which is determined by solving the molecular Schrödinger equation, 

 
   
ĤΨ r

i{ }, R
α{ }( ) = E

total
Ψ r

i{ } , R
α{ }( )   (1.5) 

In practice, it is only possible to accurately solve the molecular Schrödinger equation for 

very small molecules. Addressing the molecules of greatest interest to experimental 

chemists requires approximations.  

 Because nuclei are much heavier than electrons, the electrons in a molecule move 

much faster than its nuclei. If we assume that the electrons instantly adjust to any change 

in nuclear position (that is, that the electrons remain in a stationary state when the nuclear 

positions change), then we can neglect the dynamical correlation between the electrons 

and nuclei. That is, from the viewpoint of the electrons, the slow-moving nuclei are fixed. 

We can therefore neglect the nuclear kinetic energy when solving for the electronic 

portion of the wavefunction, 

 
   

Ĥ
ele

r
i{ } , R

α{ }( ) +V
NN

R
α{ }( )( )ψ ele

r
i{ } , R

α{ }( ) = U R
α{ }( )ψ ele

r
i{ } , R

α{ }( )   

(1.6) 

The atomic nuclei then move on the molecular potential energy surface, 
  
U R

α{ }( ) , due to 

the cloud of electrons that surround them,  

 
   
T̂

N
R

α{ }( ) +U R
α{ }( )( ) χ

N
R

α{ }( ) = E
total

χ
N

R
α{ }( )    (1.7) 

and the molecular wavefunction is approximately 
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Ψ r

i{ } , R
α{ }( ) ≈ χ

N
R

α{ }( )ψ ele
r

i{ } , R
α{ }( )    (1.8) 

Equations (1.6)-(1.8) define the Born-Oppenheimer approximation.
12

  

 Because the nucleus-nucleus repulsion energy does not depend on the electronic 

positions, it can be removed from Eq. (1.6). The remaining terms define the electronic 

Schrödinger equation, 

 
   
Ĥ

ele
r

i{ } , R
α{ }( )ψ ele

r
i{ }, R

α{ }( ) = E
ele

R
α{ }( )ψ ele

r
i{ } , R

α{ }( ) .   (1.9) 

Adding the nucleus-nucleus repulsion to the electronic energy recovers the potential 

energy surface,  

 
  
U R

α{ }( ) = E
ele

R
α{ }( ) +V

NN
R

α{ }( ) .   (1.10) 

Computationally, the molecular potential energy surface is determined by 

repeatedly solving the electronic Schrödinger equation, Eq. (1.9), for specific choices of 

the nuclear positions. Solving the electronic Schrödinger equation is the task of quantum 

chemistry and, more specifically, molecular electronic structure theory. We will not 

review the pantheon of quantum chemistry methods and basis sets that are available, but 

merely note that there are two main types of methods.
10,11,13-15

 Mean-field models like 

Hartree-Fock and Kohn-Sham density functional theory (DFT) are based on the orbital 

picture, and each electron is considered to occupy an orbital, and more quasi-

independently in the effective potential defined by the atomic nuclei and the other 

electrons in the molecule. In post-mean-field (often called post-Hartree-Fock) approaches 

like the configuration interaction, coupled cluster, and Møller-Plesset perturbation theory 
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methods, the electron-electron repulsion is accounted for in a more detailed way, and the 

wavefunction includes contributions from many, partially occupied, orbitals.  

For a molecule with N nuclei, the potential energy surface is a real-valued 

function whose domain is the 3N-dimensional space of nuclear positions. However, 

because the energy of a molecule doesn’t depend on its position or orientation in space, 

only 3N – 6 (3N – 5 for a linear molecule) coordinates suffice to determine the molecular 

conformation and therefore the value of the molecular potential energy surface. That is, 

the value of the molecular potential energy is invariant to translation (3 dimensions) and 

rotation (3 dimensions in general, but only 2 for a linear molecule) of the molecule. The 

molecular potential energy surface is therefore viewed as a function of the 3N – 6 (or 3N 

– 5) internal degrees of freedom of the molecule. 

 

B. Characterization of Potential Energy Surfaces 

A molecule’s potential energy surface (PES) represents how the energy of the 

molecule depends on its geometric conformation. The PES defines an energy landscape 

with valleys (stable molecular conformations) connected by mountain passes (transition 

states). Stationary points on the PES, where 
  
∇U R

α{ }( ) = 0, are the key structures that 

one typically uses to characterize and understand the chemical reaction mechanism.
16

 

Structures at the bottom of valleys (local minima in 
  
U R

α{ }( ) ) are chemically 

stable structures:  reactants, products, and stable intermediates.  With rare exceptions, the 

minimum-energy path between the reactant and product of an elementary reaction goes 
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through a first-order saddle point; the molecular conformation at this saddle point is 

labeled as the transition state structure for the reaction. (At an n
th

-order saddle point the 

PES is a maximum in n directions and a minimum in the other 3N – 6 – n (or 3N – 5 – n) 

directions.  That is, the second derivative matrix of the PES, 
  
∇∇T

U R
α{ }( ), has n 

negative eigenvalues and the remaining eigenvalues are positive). 

Denoting the set of all the nuclear coordinates that are used to specify the 

molecular conformation as x, the gradient of the energy is a vector, 

 

    

g x( ) = ∇U x( ) =

∂U x( )
∂x

1

∂U x( )
∂x

2

⋮

























.   (1.11) 

At the point x, the atomic nuclei feel a force F(x) = –g(x) pushing them towards the 

bottom of the nearest potential-energy well. At a stationary point on the PES, g(x) = 0 and 

no atomic nucleus feels a force in any direction. 

 The second derivative matrix, called the Hessian of the PES, is the matrix of force 

constants, 

 

    

H x( ) = ∇∇T
U x( ) =

∂2
U

∂x
1

2

∂2
U

∂x
1
∂x

2

⋯

∂2
U

∂x
2
∂x

1

∂2
U

∂x
2

2
⋯

⋮ ⋮ ⋱

























.  (1.12) 

The generalized eigenvectors of the Hessian, in the metric defined by the atomic mass 

matrix, are the normal modes of vibrational motion.
17

 At a local minimum on the PES, all 
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the eigenvalues of the Hessian are positive and all the vibrational frequencies are real. At 

a transition state, exactly one eigenvalue of the Hessian is negative and there is one 

imaginary vibrational frequency corresponding to a vector that is tangent to the reaction 

path at the transition state. Chemically, this vector indicates the reaction coordinate for 

the barrier-crossing reactive event. 

 The PES provides fundamental insight into chemical reactions. Figure 1.1 shows 

an example of 4-well 2-dimensional potential energy surface.
18

 In this figure, there are 

four different (meta)stable structures (the minima), and four transition states (the saddle-

points) connecting them. The fundamental thermodynamic and kinetic properties of a 

reaction can be computed from its potential energy surface. The difference in energy 

between two minima (reactant and product) is the reaction energy;
3
 this reaction (free) 

energy determines the equilibrium constant. The energy difference between a minimum 

and a first-order saddle point (reactant and transition state) defines the reaction’s energy 

barrier. Using transition state theory, the rate of an elementary reaction can be 

approximated from the reaction barrier height. Finally, the plausible reaction mechanisms 

can be determined by finding all the low-energy reaction pathways from the reactant 

structure, through transition state(s) and possible reactive intermediates, to the product 

structure.  
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Figure 1.1  A four-well two-dimensional potential energy surface,
18

 showing four 

minima and four saddle points. 

 

 

C. Numerical Calculations Using Potential Energy Surfaces 

For geometry optimization, most methods use only the value of the energy and 

its first derivative, though some methods use the second derivative as well. In general, 

optimization methods that depend on the derivatives of the potential energy function 

require fewer iterations than those depending only on the function value. Moreover, the 

computational cost per iteration tends to be similar because, for most approximate 

methods, the cost of computing the gradient is comparable to the cost of computing the 

energy.
9
 Therefore, most optimization methods rely on the gradient. Mathematical 
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formulas for evaluating the Hessian (second-derivative) are available for most of levels of 

theory, but the cost-of-computation is much higher than it is for the energy and the 

gradient.  

In real chemical reactions, reactant molecules do not transform to product by a 

single pathway. Instead, there is an ensemble of trajectories
19

. Calculating a 

representative sample of these trajectories is computationally expensive, so a single 

representative path is commonly used.  The minimum energy path, MEP, describes the 

lowest-energy way for reactant molecule, interacting with its environment, to become 

product. In an elementary (single-step) reaction, the MEP is just the steepest-descent path 

from the transition state to the reactant and the product. Because usually only the end 

points of the MEP are known initially, determining the MEP without first computing the 

transition state is mathematically and computationally difficult (but not impossible).  

The steepest descent path, 
  
x s( ) , is defined as the solution to the system of 

differential equations, 

 

   

dx s( )
ds

= −
g x s( )( )
g x s( )( )

= −ĝ x s( )( ) ,  (1.13) 

where s is the arc length of the path. Standard methods for the numerical 

integration of differential equations can be used to solve Eq. (1.13), but the equations are 

often ill-conditioned, especially when the path is highly curved. In such cases, 

conventional approaches sometimes converge to spurious “kinked” solutions to the 

path.
20,21

 Several methods for finding the steepest descent path are in common use. 

Examples are the (a) Ishida, Morokuma, Komornicki (IMK) method,
22

 which uses an 
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Euler step with line search, (b) the LQA method
23,24

 of Mclver and Page, which solves 

equation (1.13) analytically, and (c) the second-order implicit trapezoid method of 

Gonzalez and Schlegel (GS2).
25,26

 Burger and Yang generalized the implicit trapezoid 

method to create a family of implicit-explicit methods.
27,28

 

 

1.3 Coordinate Systems for Expressing the Potential Energy Surface 

(PES) 

A. Cartesian Coordinate System 

The choice of coordinate system has a large effect on the efficiency of geometry 

optimization. In general any set of coordinates that provides a complete description of the 

system can be used. However, the structure of the Hessian matrix of the potential energy, 

Eq. (1.12), depends strongly on the choice of coordinate system, and this greatly 

influences the efficiency of optimization, especially when the Hessian matrix must be 

approximated.
29

  

Conceptually, it is simplest to use the Cartesian coordinates, comprising the 

  
X

α
,Y

α
,Z

α( ){ }  coordinates of each atomic nucleus, α. For a molecule with N atoms, there 

are 3N Cartesian coordinates. Cartesian coordinates are straightforward to use because 

methods for approximating the electronic energy and its derivatives usually use Cartesian 

coordinates. Their disadvantage is that the Cartesian coordinates are highly coupled: 

chemical changes in molecular structure (e.g., stretching a bond) typically induce changes 
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in almost all of the molecule’s Cartesian coordinates. The Hessian matrix has large off-

diagonal elements reflecting these couplings, which makes it difficult to approximate. 

This makes it difficult to build a good quadratic approximation to the potential energy 

surface. 

 

B. Systems of Redundant and Nonredundant Internal Coordinates 

 Internal coordinates, comprising bond lengths, bond angles, and dihedral angles 

between bonds, are chemically intuitive and give mathematically compact descriptions of 

chemically important molecular motions. These coordinates are less coupled, so there are 

fewer off-diagonal elements in the Hessian, making it easier to approximate.  

 Since translation and rotation of molecules does not affect the internal 

coordinates, this system of coordinates might be assumed to give potential energy 

surfaces of the desired 3N – 6 (3N – 5 for a linear molecule) dimensionality. This is not 

the case, however, because for molecules with more than two atoms, the number of 

internal coordinates far exceeds the number of internal degrees of freedom that a 

molecule has.
4,6-8,30-41

 This is called the redundancy problem. For example, in a nonlinear 

triatomic molecule, there are three internuclear distances (Rαβ, Rαγ, Rβγ) and three unique 

bond angles (∠αβγ, ∠βαγ, and ∠βγα). Choosing one of the bond lengths, and any two of 

the remaining five coordinates, fully specifies the molecular geometry. For a nonlinear 

triatomic molecule, there are 20 equivalent ways to express the molecular geometry in 

internal coordinates. For molecules with more atoms, the redundancy problem is even 

more severe. 
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 The redundancy problem can be solved by arbitrarily omitting specific coordinates 

to form a non-redundant set of internal coordinates. This is done in the Z-matrix 

approach,
42

 which works reasonably well in most cases. However, leaving out specific 

coordinates can give strong linear and nonlinear couplings between coordinates, and 

determining the best coordinates to include is difficult. In a triatomic molecule, the Z-

matrix includes two bond lengths (e.g.,  Rαβ and Rβγ) and the angle between them (∠αβγ). 

This means that changes in the bond length of the unspecified side of the three-atom ring 

has a complicated mathematical description  

(
  
R

αγ
= R

αβ
cos ∠αβγ( ) − R

βγ( )
2

+ R
αβ

2
sin

2 ∠αβγ( ) ) that couples all of the other 

coordinates describing the ring. Unsurprisingly, in some cases, and especially for 

molecules containing rings, the Z-matrix is not the best choice, and even Cartesian 

coordinates often perform better.
43,44

 

 The natural internal coordinates are a set of nonredundant internal coordinates 

based on local pseudosymmetry.
30,45

 In this set, bonds are individual stretching 

coordinates, but linear combinations of angles and dihedrals are chosen to describe bends 

and torsions (dihedrals) of a system. Unfortunately, generating natural internal 

coordinates automatically is complicated, and particular difficult for molecules containing 

rings—precisely the case where they are most helpful. 

 To remedy this problem, Pulay formulated an approach for geometry optimization 

using the redundant coordinates directly.
6
 (In his early work, he used all possible bonds, 

angles, and dihedrals; this is called the system of primitive redundant internal coordinates. 

Nowadays, subsets of this primitive redundant internal coordinates are often used.) Baker 
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showed how redundant internal coordinates can be simply reduced to a nonredundant set 

of coordinates called delocalized internal coordinates.
31,33

 The delocalized internal 

coordinates are linear combinations of the primitive redundant set; they represent a 

computationally practical alternative to Pulay’s natural internal coordinates. 

 

C. Transforming Between Internal and Cartesian Coordinate Systems 

Because the electronic energy and its derivatives are usually computed using 

Cartesian coordinates, using (redundant) internal coordinates in geometry optimization 

requires methods for converting Cartesian coordinates to internal coordinates, and vice 

versa. The internal coordinates, 
 

q
i{ } , are nonlinear functions of the Cartesian 

coordinates, 
 

x
j{ }, and the Jacobian of the transformation is the Wilson B matrix, with 

elements
17

 

 

 

b
ij

=
∂q

i

∂x
j

  (1.14)      

The Wilson B matrix is rectangular; it has one row for each of the Nint internal coordinate 

and one column for each of the 3N Cartesian coordinates. Note that the transformation 

from Cartesian coordinates to redundant internal coordinates is not invertible. For 

example, there is no molecule (ergo no set of Cartesian coordinates) for which ∠αβγ + 

∠βαγ + ∠βγα ≠ 180 degrees.  

 Using the Wilson matrix, an infinitesimal change in Cartesian coordinates can be 

converted to the corresponding change in internal coordinates,
4
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  δq = B ⋅δ x   (1.15) 

Since it is easy to compute the value of the internal coordinates for any given set of 

Cartesian coordinates, Eq. (1.15) is rarely used except as an intermediate step in 

mathematical derivations. The change in Cartesian coordinates from an infinitesimal 

change in internal coordinates is computed as 

 
 B

+δq = δx   (1.16) 

B
+
 is the Moore-Penrose pseudo-inverse of the rectangular matrix B.  

Using the B matrix and its inverse, the gradient and the Hessian can be converted 

to Cartesian coordinates from internal coordinates, 

 
  
g

x
= BTg

q
  (1.17) 

 
  
H

x
= BT H

q
B + K   (1.18) 

and from Cartesian coordinates to internal coordinates, 

 
  
g

q
= BT( )

+

g
x
  (1.19) 

 
  
H

q
= BT( )

+

H
x

− K( )B+   (1.20) 

The elements of the matrix K involve the second derivative of the internal coordinates 

with respect to the Cartesian coordinates, 

 

   

k
jk

= g
q





i

∂2
q

i

∂x
j
∂x

ki=1

N
int

∑ = g
q





i

∂b
ij

∂x
ki=1

N
int

∑   (1.21) 

 For small (but not infinitesimal) change in internal coordinates, Eq. (1.16) is 

unreliable. Since it is not simple, or even always possible, to convert a change in internal 
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coordinates to a change in Cartesian coordinates, iterative procedures are typically 

used.
4,6-8,30-41

 

 Suppose we wish to find the set of Cartesian coordinates, xtarget for a given set of 

internal coordinates, qtarget. Let x0 denote an initial set of Cartesian coordinates and q0 

denote the corresponding set of internal coordinates. We can estimate the target Cartesian 

coordinates using Eq. (1.16), 

 
   
x

1
= x

0
+ B+s

q
   (1.22) 

where  is the step in internal coordinates,  

 
   
s

q
= q

target
− q

0
  (1.23) 

To assess the accuracy of Eq. (1.22), the set of internal coordinates corresponding to the 

new Cartesian coordinates is computed, 
  
q

1
= q x

1( ) and the discrepancy between this 

value and the target internal coordinates is assessed, 

 
  
∆q = q

target
− q

1
. (1.24) 

If this discrepancy is sufficiently small, then 
  
x

target
= x

1
. Otherwise, one repeats the 

procedure. I.e., for k = 1, 2, …, one computes a new estimate for the Cartesian 

coordinates, 

 
   
x

k+1
= x

k
+ B+∆q

k
 (1.25) 

where  

 

   

∆q
k

= q
target

− q
k

q
k

= q x
k( )

  (1.26) 

q
s
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until 
  
∆q

k
 is sufficiently small. Unfortunately, this procedure does not always converge. 

To ensure that the iterations eventually terminate, whenever 
   
∆q

k
> ∆q

1
, the initial 

estimate obtained by naïvely using Eq. (1.16) is used instead. This most commonly occurs 

when the target internal coordinates are very different from the initial internal 

coordinates, when redundant internal coordinates are used, or when there are nearly linear 

bond angles.   

We have proposed a different approach for transforming internal to Cartesian 

coordinates. We simply choose the set of Cartesian coordinates whose associated internal 

coordinates are as close as possible to the target internal coordinates, 

 

    

min
x

� q
target

− q x( )( )
T

W q
target

− q x( )( )   (1.27) 

W is a positive-definite diagonal matrix; if W were the identity matrix, this would merely 

minimize the (squared) distance between the target internal coordinates and the internal 

coordinates computed from the Cartesian coordinates. However, we found that it was 

better to weight different types of internal coordinates (bond lengths, bond angles, 

dihedral angles) differently. We use 
  
x = x

0
+ B+ q

target
− q

0( )  as the initial guess for this 

minimization (just as in the iterative approach).   

 Geometrically, 
 
q x( )  is a 3N – 6 (or 3N – 5) dimensional manifold embedded in a 

space with the dimensionality of the internal coordinates, Ndim. An arbitrary point in the 

space of internal coordinates, 
  
q

target
, may or may not lie on the manifold of physical 

molecular geometries, 
 
q x( ) . If 

  
q

target
 is on the manifold, Eq. (1.27) finds a corresponding 
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set of Cartesian coordinates (which is unique except for translation and rotation). If 
  
q

target
 

is not on the manifold. Eq. (1.27) finds the closest point on the manifold, and uses the 

Cartesian coordinates from that location as the best possible representation for 
  
q

target
. 

 

D. The Problem of Linear Dihedrals  

In the previous section, we assumed that a given set of Cartesian coordinates gives 

rise to a unique set of internal coordinates.  When this is not true, the mapping 
 
q x( )  is 

not well-defined and the B matrix has an infinite eigenvalue, because an infinitesimal 

change in Cartesian coordinates can cause an arbitrarily large change in internal 

coordinates.  

The mapping from Cartesian to internal coordinates is only ill-defined when one 

of the internal coordinates is a dihedral angle (torsion) ∠αβγδ and one of the bond angles 

∠αβγ or ∠βγδ is 180° (the three atoms are collinear). To define the dihedral angle 

mathematically, one first defines the vectors aligned with the bonds between the atoms,  

 

 

b
αβ

= R
α

− R
β

b
βγ

= R
β

− R
γ

b
γδ

= R
δ

− R
γ

  (1.28) 

The dihedral angle is the angle between the plane formed by the first bond and the central 

bond (bαβ and bβγ) and the plane formed by the last bond and the central bond (bγδ and 

bβγ).  If either the first two vectors or the last two vectors are collinear (i.e., if ∠αβγ or 

∠βγδ is zero or 180°), then they fail to define a plane and the dihedral angle is ill-defined. 
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In practice, when either the first two or the last two bond vectors are nearly collinear, a 

large change in dihedral angle causes only a very small change in the Cartesian 

coordinates. I.e., the mapping 
 
q x( )  is numerically ill-conditioned; this can cause 

algorithms based on internal coordinates to fail. In addition, sometimes all the dihedral 

angles are well-defined in the initial structure, but a linear (or near-linear) dihedral arises 

during the course of the optimization process, causing the dihedral angle to  

become ill-defined and the algorithm to fail.  

 To circumvent these problems, we defined two new coordinates, 

 

  

b
αβ

⋅b
γδ

b
αβ

b
γδ

= b̂
αβ

⋅ b̂
γδ

  (1.29)  

 

  

b
βγ

⋅ b
αβ

× b
γδ( )

b
αβ

b
βγ

b
γδ

= b̂
βγ

⋅ b̂
αβ

× b̂
γδ( )   (1.30) 

which we use in lieu of conventional dihedral angles. The first function is the 1-4 cosine, 

while the second function is the volume of the parallelepiped defined by the bond vectors. 

Unlike the dihedral angle, these coordinates are well-defined even when 
 
b

βγ
 is collinear 

with one of the other vectors.    
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1.4 Numerical Methods for Optimization 

A. Newton’s Method 

Given an initial molecular structure with the coordinates x0, it is usually only 

practical to compute the potential energy of the structure, U(x0), as well as some low-

order derivatives of the PES at x0. The goal of a local geometry optimization method is to 

exploit this available information to find a new structure, x1, which is closer to the nearest 

local minimum on the PES (for geometry minimization) or the nearest saddle point on the 

PES (for transition-state optimization). To do this, one develops the potential energy 

surface as a Taylor series, 

 
    
U x( ) = U x

0( ) + g
0

⋅ x − x
0( ) + 1

2
x − x

0( )
T

H
0

x − x
0( ) +⋯   (1.31) 

Because higher-order derivatives are increasingly demanding to compute, this expansion 

is usually (but not always
46

) truncated after the first- or second-order terms. At a 

stationary point on a potential energy surface, the gradient is zero. Using the Taylor series 

for the gradient gives the equation, 

 
   
0 = g x( ) = g

0
+ H

0
x − x

0( ) +⋯  (1.32) 

Defining the step, ∆x = x – x0, and truncating Eq. (1.32) after the second-derivative term, 

one has the system of linear equations, 

 
  
H

0
∆x = −g

0
  (1.33) 

with formal solution 

 
  
∆x = −H

0

−1g
0
  (1.34) 
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This is called the Newton step. If one uses the Newton step to update the structure, xi = xi-

1 + ∆x, and computes the gradient, 
   
g x

i( ) = g x
i−1

+ ∆x( ) , the gradient will not be exactly 

zero because the PES is not exactly quadratic. One must then iterate the procedure by 

repeatedly solving the system of linear equations, 

 
  
H

i
∆x = −g

i
,  (1.35) 

until the gradient is zero. This is Newton’s method of optimization. Almost all numerical 

optimization methods are embellishments of Newton’s method.
47-51

  

Conceptually, in Newton’s method one fits the PES at the location of the current 

structure, xi, with a paraboloid, and then solves for the stationary point (either a 

minimum, a maximum, or a saddle point) of the paraboloid. When the ∆x predicted by 

Newton’s method is too big, higher-derivative terms in Eqs. (1.31) are nonnegligible, the 

paraboloid is no longer a good approximation to the PES, and Newton’s method is 

unreliable. In order to ensure that Newton’s method converges, one must not allow steps 

that stray from the region of the PES where the quadratic approximation in Eq. (1.31) is 

trustworthy. This is often achieved by imposing a trust radius: one attempts to solve Eq. 

(1.35) but if |∆x| is too large, one chooses ∆x so that the gradient  

 
  
g x

i
+ ∆x( ) = g

i
+ H

i
∆x   (1.36) 

is as small as possible, subject to the constraint that |∆x| < τ. The trust radius, τ, is chosen 

so that the quadratic approximation is valid and it is updated throughout the calculation. 

As an alternative to the trust-radius approach, one can consider a more general update, xi 

= xi-1 + α∆x, where α is optimized to ensure that the magnitude of the gradient decreases 

enough to guarantee convergence. This is called the line-search method. Both trust-radius 
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and line-search methods suffice to ensure the convergence of Newton’s method; they are 

discussed in more detail in section 1.4.C. 

 

B. Quasi-Newton Methods 

Newton’s method requires evaluating the second-derivative matrix, or Hessian, of 

the PES at each iteration. Computing the Hessian is computationally prohibitive for large 

molecules and the most accurate post-Hartree-Fock quantum chemistry methods, and 

computationally expensive even for moderately-sized molecules with standard quantum-

chemistry methods. This motivates interest in quasi-Newton methods, where the Hessian 

is approximated using the gradient-calculations from successive steps of the 

optimization.
47-51

 Because the gradient of the PES can typically be computed with little 

computational cost beyond computing the value of the PES itself, quasi-Newton methods 

are much more efficient. 

In quasi-Newton methods, one starts with an initial Hessian, which can be 

computed either exactly or approximately. If the initial Hessian is approximated, one 

often uses semiempirical methods
52,53

 or an inexpensive calculation, like Hartree-Fock 

with a minimal basis set. (In Chapter 5, we show that the latter approach is quite 

effective.) Sometimes one uses a Hessian based on a molecular mechanics force field, 

introducing terms for the stretching-motions, angle-bending, and torsional modes of a 

molecule.
54-56

 In the absence of available information, one can use a scaled identity 

matrix for the Hessian, but starting with this initial Hessian usually leads to a relatively 

slow optimization procedure.
57
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At each step of the procedure, the Hessian is updated using the values and 

gradients of the PES evaluated in previous steps. There are dozens of quasi-Newton 

updates for the Hessian, but the defining feature of any quasi-Newton method is the 

secant condition, which ensures that the gradient of the quadratic model constructed with 

the updated Hessian matches the computed gradient. I.e., 

 
  
g

new − g
old = H

new
x

new − x
old( )  (1.37) 

(Compare Eq. (1.32).) The change in gradient between two iterations is conventionally 

denoted 

 
  y = gnew − gold   (1.38) 

 The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is one of most popular 

and effective quasi-Newton methods
58-62

 

 

   

Hnew = Hold +
yyT

y ⋅ ∆x
−

Hold∆x( ) Hold∆x( )
T

∆x( )
T

Hold∆x  

 (1.39) 

The BFGS method ensures that the Hessian is positive definite (provided the initial 

Hessian is also positive-definite), so BFGS is an effective quasi-Newton approach for 

geometry minimization, but not for transition-state optimization.  

The BFGS is the most famous member of a group of quasi-Newton methods that 

often referred to as the Broyden family. All members of the Broyden family are rank-two 

updates, since the old Hessian is updated with two rank-one corrections in Eq. (1.39). All 

of the quasi-Newton updates in the Broyden family are positive definite. 
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There are simpler rank-one updates, the most popular of which is the symmetric-

rank-1 (SR1) update,
57

  

 

   

Hnew = Hold +
y − Hold∆x( ) y − Hold∆x( )

T

y − H
old∆x( ) ⋅ ∆x

  (1.40) 

The SR1 update is known for providing better approximations to the true Hessian than 

more-sophisticated rank-two updates like BFGS. Unlike the BFGS Hessian, the SR1 

update does not preserve positive-definiteness of the Hessian. This makes SR1 less 

suitable for geometry minimization, but preferable for transition-state optimization. 

However, because the SR1 update can be numerically unstable when |y – H∆x| is small, it 

is seldom used. 

 The Powell-symmetric-Broyden (PSB) update combines the accuracy of the rank-

two updates (like BFGS) with the non-positive-definiteness of the SR1 update (useful for 

transition-state optimization). It is,
49

 

 

   

H
new = H

old +
y − H

old∆x( )∆x
T + ∆x y − H

old∆x( )
T

∆x
2

−
∆x ⋅ y − H

old∆x( )
∆x

4













∆x∆x
T . 

 (1.41) 

The SR1 and PSB methods are both appropriate for transition-state optimization. 

However, as Bofill showed, the linear combination of the two updates is even better for 

transition-state optimization,
63

 

 
  
H

new = 1−φ( )H
SR1

new +φH
PSB

new   (1.42) 
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φ is the square of the sine of the angle between the step,  ∆x , and the error in the old 

Hessian’s approximation to the change in gradient that accompanies the step, 

 

  

φ = 1−
∆x ⋅E

2

∆x
2

E
2

  (1.43) 

 
  E = y − Hold∆x   (1.44) 

Later, Farkas and Schlegel proposed a similar update, using the SR1 and the BFGS 

(instead of the PSB) quasi-Newton updates.
64

 Bofill then revisited the problem, proposing 

two new quasi-Newton methods that are suitable for transition state optimizations and/or 

minimizations.
65

  

 The effectiveness of quasi-Newton methods can be further improved by using 

one’s chemical insight to identify the key chemical coordinates that are involved in a 

transition state. These are typically the coordinates associated with the bonds that are 

breaking or forming during the chemical reaction. As shown in reference 
66

 and Chapters 

3 and 4, excellent results can be obtained if entries in the Hessian matrix corresponding to 

these “reduced coordinates” are accurately computed, e.g., using finite differences of 

gradient calculations. (Since the negative-curvature direction of the Hessian should be 

contained in the reduced subspace, the remaining block of the Hessian can be effectively 

approximated by the damped-BFGS quasi-Newton update.) Other methods for identifying 

key chemical coordinates and infusing the Hessian with extra information about them 

include the QST3 method
67

 and a large family of “dimer methods.”
68,69

  

 The mathematical derivation of the BFGS quasi-Newton update is invalid when 

the curvature condition,   y ⋅ ∆x > 0 is violated and the BFGS update is numerically ill-
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conditioned when  y ⋅ ∆x  is close to zero. The damped-BFGS method avoids this by 

replacing y in Eq. (1.39) with a new vector,
70

 

 ,  (1.45) 

where  is a diagonal matrix containing the damping coefficients. When there are 

no reduced coordinates, the damping coefficients are
57

 

 

   

θ
i
=

1 y ⋅ ∆x ≥ .2 ∆x( )
T

Hold∆x

.8 ∆x( )
T

H
old∆x

∆x( )
T

H
old∆x − y ⋅ ∆x

otherwise













  

 (1.46) 

When there are reduced coordinates, the damped-BFGS procedure is updated so that only 

the non-reduced coordinates are affected.   

In a transition-state optimization the Hessian should have one negative 

eigenvalue; for a geometry minimization, all the eigenvalues of the Hessian should be 

positive. Quasi-Newton updates sometimes give Hessians whose eigenvalues do not 

satisfy these requirements. In such cases, it is helpful to manually adjust the eigenvalue 

spectrum of the Hessian. Some methods for performing these eigenvalue shifts are 

presented in the next section. 
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C. Step-Size Control 

Given a computed value of the gradient and either the exact Hessian (Newton’s 

method) or approximate Hessian (quasi-Newton methods), the direction of the next step 

in the optimization can be determined by solving the system of linear equations (1.35). 

The Hessian provides key information about the length that the step should be, but when 

the quadratic approximation to the PES is not reliable, (quasi-)Newton methods may not 

converge. To ensure convergence, one must ensure that the step does not stray outside the 

region where the quadratic approximation is reliable. That is, convergence requires a 

method to throttle back Newton steps that are too long.
57

   

 

1. Line search method: 

In the line-search method, one uses the Newton step, (1.35), to determine the 

direction of the step, but one adjusts the length of the step to ensure that adequate 

progress towards a solution is made. Explicitly, one defines a unit vector in the direction 

of the Newton step, 

 

  

p̂ = −
Hold( )

−1

gold

Hold( )
−1

gold

  (1.47) 

and considers steps of the form 

 
  x

new = xold + αp̂ .  (1.48) 

For a minimization problem, the best value of the step-size, α, is the value for which the 

value of the PES is minimized. Explicitly, 
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α
optimal

= argmin
α >0

�U xold +αp̂( )   (1.49) 

For a transition-state optimization, the energy could increase or decrease, but one can 

ensure that one is closer to a critical point by minimizing the size of the gradient, 

 

   

α
optimal

= argmin
α >0

� g x
old + αp̂( )

2

.  (1.50) 

 Using the optimal value of α gives a robust, but inefficient, method. The 

inefficiency arises because determining the optimal step-size requires many evaluations 

of the PES (Eq. (1.49)) or its gradient (Eq. (1.50)). One can save many evaluations of the 

PES (or gradient) by only approximately optimizing α and the robustness of the (quasi-

)Newton method is preserved as long as sufficient progress towards the solution is made 

in each iteration. The mathematical analysis of what constitutes “sufficient progress,” that 

is, how sloppy one can be in the optimization of α without compromising numerical 

robustness, was performed by Armijo and Wolfe.
71-73

 

 Treating only minimization problems, Armijo demonstrated that the step reduced 

the value of the function enough if 
71

   

 ( ) ( ) ( )old old old

1
ˆ ˆU U cα α+ ≤ + ⋅x p x g p   (1.51) 

where c1 is a constant, typically chosen between 10
–4

 and 10
–1

.
49,57

 This condition is 

usually supplemented by the Wolfe condition, which forces the slope of the curve 

   
φ α( ) = U x

old + αp̂( )  to decrease,
72,73

 

 
   
p̂ ⋅g x

old + αp̂( ) ≥ c
2
p̂ ⋅gold

,  (1.52) 
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where c2 is a constant, typically chosen between 0.5 and 0.9.
49,57

 In practice, convergence 

is often better when one imposes the strong Wolfe condition, which forces the magnitude 

of the slope of φ α( )  to decrease,
72,73

  

 
   
p̂ ⋅g x

old +αp̂( ) ≥ c
2

p̂ ⋅gold .  (1.53) 

For transition-state optimizations, only Eq. (1.53) may be imposed.  

 

2. Trust radius methods 

The disadvantage of the line search method is that several expensive evaluations 

of the PES are made for each (quasi-)Newton step. This seems particular wasteful in 

quasi-Newton methods:  exploration in new directions adds useful information that is 

used to improve the approximate Hessian, while repeated steps in the same direction does 

not. The trust-radius method is designed so that there is usually only one evaluation of the 

PES for each quasi-Newton step. 

 Trust radius methods are based on the idea that there is a region of radius τ, 

centered at the current point, in which the quadratic model for the PES (cf. Eq. (1.31)) is 

accurate.
49,57

  When solving the quadratic model for the step, as in Eq. (1.34), results in a 

step that is larger than the trust radius, the step can be scaled back to the trust radius. I.e., 

 

  

∆x = − Hold( )
−1

gold ⋅min 1,
τ

H
old( )

−1

g
old

















  (1.54) 

However, it is better to treat the problem as a constrained optimization, 
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opt

∆x( )T
∆x≤τ 2

� U xold( ) + gold ⋅ ∆x + 1
2

∆x( )
T

Hold∆x( ) .  (1.55) 

When the step predicted by the quadratic model is shorter than τ, the constraint is not 

active. When the unconstrained step is larger than τ, the inequality constraint becomes an 

equality constraint that can be enforced using a Lagrange multiplier,  
ɶλ . For a positive-

semidefinite Hessian, the new equation that needs to be solved is, 

 
   
Hold + ɶλI( )∆x = −g ,  (1.56) 

with   
ɶλ > 0 . For a negative-semidefinite Hessian,   

ɶλ < 0 . In any case, rewriting the 

Hessian in terms of its eigenvalues and eigenvectors, 

 ,  (1.57) 

a formal solution can be written as:
63,74

{Helgaker, 1991 #6013} 

 ,  (1.58) 

where   
ɶλ > 0  is determined by solving an equation that forces the step size to be equal to 

the trust radius, 

 
    

∆x ɶλ( )( )
T

∆x ɶλ( ) = τ 2
  (1.59) 

In Eq. (1.58) equation, sgn(λi) denotes the sign (+1 or –1) of λi. This has the effect of 

shifting negative eigenvalues so that they are more negative, and positive eigenvalues so 

that they are more positive.  
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 After a step has been taken, the validity of the quadratic model is assessed by 

comparing the result one would expect if the quadratic model were exact from the result 

one actually obtains by computing the potential energy and its gradient at the new, 

updated point. If the quadratic model is accurate, the trust radius is increased; if it is 

inaccurate, the trust radius is decreased; if the accuracy is moderate, the trust radius 

remains unmodified.
49,57

 Most trust-radius updating schemes are designed primarily for 

minimization of functions. A new method, more appropriate for transition-state 

optimization, is presented in Chapter 3. 

 In addition to the generic trust-radius approach that is presented here, several 

authors have designed variants specifically for transition-state optimization.
63,74-83

 One 

family of methods, often called eigenvector-following techniques, is based on following a 

potential-energy surface uphill in the direction of the lowest eigenvalue. The simplest 

approach requires taking a step in the direction of the lowest eigenvector, and minimizing 

with respect to all other coordinates.
75,84

 A refinement is to consider a step with the form 

of Eq. (1.58), but to choose  
ɶλ  to be the number between the lowest two eigenvalues of 

the Hessian, 
  
λ

1
< ɶλ < λ

2
, that minimizes the length of the step. (If the resulting step is still 

too long, it is scaled back linearly by using the modified Hessian in Eq. (1.54).)
76

 This 

basic approach can be refined in numerous ways.
77-79

 A particularly powerful revision is 

to choose separate Lagrange multipliers for the negative-curvature and positive-curvature 

eigenvectors. This generalizes Eq. (1.58) to 

   (1.60) 
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The nonnegative Lagrange multipliers, λp and λn, must be chosen so that the Hessian has 

the right eigenvector structure. This means, in particular, that one must have 
  
λ

1
− λ

n
< 0  

and 
  
λ

i
+ λ

p
> 0 .  

 The most popular ways to choose the Lagrange multipliers are based on the 

rational function model.
63,68,74,80-83

 The idea is that the third- and higher-order terms in the 

Taylor series expansion of the PES, (1.31), can be mimicked by a Pade approximant, 

 

   

U q( ) ≈ U q
old( ) +

g
old( )

T

q − q
old( ) + 1

2
q − q

old( )
T

H
old

q − q
old( )

1+ q − q
old( )

T

S q − q
old( )

,  (1.61) 

S ≠ 0 should be chosen so that this expression is as accurate as possible. In most 

problems, one has very little information about how one should choose S, so one chooses 

it to be a constant multiple of the identity matrix, S = ςI, where ς is chosen so that the step 

size is equal to or less than the trust radius.   

 The stationary points of the approximate PES in (1.61) are obtained by solving the 

generalized eigenvalue problem, 

    

H
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g
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T
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


  (1.62) 

Taking the lowest eigenvalue gives a step that is appropriate for minimization problems; 

taking the second lowest eigenvalue/eigenvector gives a step that is appropriate for 

transition-state finding. 

 Especially for transition-state searches where the Hessian has more than one 

negative eigenvalue, or where the negative eigenvalue of the Hessian does not correspond 
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to the vibrational mode that one believes to be associated with the transition state, it is 

favorable to consider a more general version of Eq. (1.62) that gives solutions for the 

Lagrange multipliers in Eq. (1.60). First, one reorders the eigenvalues and eigenvectors of 

the Hessian so that the one with direction that corresponds to the transition state 

(typically, the lowest-frequency mode) is listed first. Then one solves two generalized 

eigenvalue problems for the negative-curvature and positive-curvature Lagrange 

multipliers, 

   (1.63) 

 

   

 (1.64) 

One takes the highest eigenvalue of Eq. (1.63) and sets it equal to λn; one takes the lowest 

eigenvalue of Eq. (1.64) and sets it equal to –λp. (In this way both λn and λp are positive 

except when the gradient is zero, where they are zero.)  
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1.5 The Initial Geometry Guess for Transition State Optimization 

A. The Problem of Finding Good Initial Guesses 

Geometry minimization is relatively straightforward:  given a starting point, one 

uses an algorithm to select downhill steps, inexorably converging to a local minimum on 

the PES. Transition-state optimization is more complicated because one must maximize 

the function in one direction, while minimizing it in the others. Good steps could increase 

or decrease the energy and, if the starting point is near a local minimum on the PES, even 

the magnitude of the gradient could increase in a good step.  It is sometimes difficult to 

know, beforehand, which direction one should be maximizing in, and which directions 

one should be minimizing in. For this reason, transition-state optimization is a much less 

forgiving problem. 

In practice, most TS optimizers work well if the initial guess geometry is close 

enough to the transition state for a quadratic model of the PES to reproduce the 

qualitative features of the TS region. Specifically, TS optimizers work well when there is 

one, and only one, negative curvature direction in the initial Hessian, and when this 

curvature direction corresponds to the transition-state-crossing reaction coordinate.  With 

a good initial guess, most TS optimization methods will successfully converge.  With a 

poor initial guess, most TS optimization methods are unreliable. This underscores the 

importance of good initial guesses for TS structures.  

There are three main approaches to guessing transition-state structures.  The most 

common approach is to guess a transition-state structure based on chemical intuition, 

typically gleaned from past experience with similar reactions.  In the hands of an 
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experienced researcher, this approach is often uncannily effective, but it cannot be 

automated. 

The other approaches search for the transition state starting from the molecular 

structures of the reactant and/or product.
2,9

 Single-ended methods exploit either the 

reactant or the product, and can be used to explore reactions where the product (or 

reactant) is unknown. Double-ended methods use both the reactant and the product and 

are usually more reliable, but they are relatively computationally demanding. 

 

B. Single-Ended Methods 

Single-ended methods start from a single point on the PES and build a path, point-

by-point, that leads to a transition-state estimate. Usually the starting point for the path is 

a reactant or product structure, but this is not essential. 

The simplest single-ended method is coordinate driving:  an internal coordinate 

that is believed to characterize a reaction is slowly increased from its value at the starting 

point. This defines a one-dimensional reduced potential energy surface,  

 

   

u q
red( ) = min

q2 ,q3 ,�,q
n

� U q
red

,q
2
,q

3
,�,q

n( ),  (1.65) 

in which the value of the driven coordinate is fixed and the value of all other coordinates 

is optimized. The highest point on the reduced PES is taken as a guess for the transition 

state.  This approach is simple and effective when a single coordinate characterizes the 

reaction pathway, but it often fails when this is not true, which occurs when the reaction 

path is curved. Mathematically, finding an appropriate choice of coordinate always exists, 
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but finding it often requires creativity.  For example, in the isomerization of HCN to 

HNC, a good choice for the coordinate is the HNC angle, which changes from 0° to 180° 

during the course of the reaction. For atom-transfer reactions,  

   D − T⋯⋯A → D⋯⋯T − A ,  (1.66) 

a good choice for the coordinate is often the differential bond length of the transferred 

atom to the donor and the acceptor, qred = |RA – RT| – |RD – RT|. The telltale signs of 

failures in the coordinate-driving methods are discontinuous changes in molecular 

geometry and/or energy.
85-88

 This often occurs when there are molecular torsions that 

accompany a chemical reactions. Other failures occur when the coordinate that is driven 

does not increase (decrease) monotonically during the reaction. 

 Failures of the coordinate-driving method are invariably associated with poor 

choices for the coordinate to be driven. For reactions involving large molecules, such 

failures are so prevalent as to be nearly inevitable. This has led to a number of heuristic 

approaches for choosing (often very complicated) coordinates. The simplest approach is 

to follow the direction-of-least-ascent.
75,84

 This approach works well for small molecules 

and simple reactions, but for larger molecules, all of the most slowly ascending directions 

tend to correspond to conformational changes (e.g., bond torsions) rather than chemical 

reactions. For larger molecules, it is favorable to choose an eigenvector of the Hessian 

that corresponds to the reaction-barrier-crossing motion, and then follow that eigenvector 

uphill to the transition state. This is the essence of the simple eigenvector-following 

transition-state finding methods previewed in the last section,
76,77

 and their later 

refinements.
63,68,74,80-83

 The dimer method
69

 and its refinements
68

 are closely related to the 
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simple eigenvector-following approach, with the feature that it uses gradient calculations 

at two closely-spaced points on the PES to approximate the Hessian. 

 Another approach is to construct a path that is guaranteed to pass through 

stationary points on the potential energy surface. One such path is the gradient-extremal 

path.
89-96

 At a stationary point on a potential energy surface, the gradient is zero and so 

the gradient is an eigenvector of the Hessian. Therefore, starting at any stationary point, 

one can define a pathway that will lead to another stationary point by specifying that at 

every point on the path, the gradient is an eigenvector of the Hessian, Hg = λg. One hopes 

that this path will eventually lead to the transition state of interest, though if it does so, it 

often does so by a circuitous approach.
94

 Different gradient extremal paths (corresponding 

to different eigenvalues of the Hessian) always intersect at stationary points at the PES, so 

intersections of gradient extremal paths are necessary, but not sufficient, conditions for 

stationary points. Like eigenvector following techniques, the direct implementation of this 

approach requires a computationally demanding computation of the Hessian at each 

step.
93,95,96

 

 The need for Hessian information is avoided when one considers reduced-

gradient-following methods. In this approach, one defines a Newton trajectory by 

specifying that the gradient of the PES always points in the same direction. Like gradient 

extremal paths, different Newton trajectories intersect at stationary points.
92,97-102

 The 

reduced gradient following approach is usually implemented using the growing string 

method,
103-105

 though more efficient methods have recently been proposed.
102
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 The fundamental weakness of all these approaches is that one is searching for 

performing a one-dimensional search for the transition-state structure; this is very 

effective for small molecules and model systems, but rarely reliable for complicated 

reactions where the PES can have an enormous number of dimensions. This suggests that 

one search in several dimensions at once. I.e., one should define a reduced set of 

coordinates (which are believed to be the key coordinates) and minimize with respect to 

the remaining coordinates, defining a reduced potential energy surface, 

 

   

u q
1
,q

2
,�,q

r( ) = min
q

r+1 ,q
r+2 ,�,q

n

� U q
1
,q

2
,�,q

r
,q

r+1
,q

r+2
,�,q

n( ).  (1.67) 

Surface-walking methods search for transition states on this higher-dimensional 

surface.
106-109

  The surface-walking method of Bofill
107

 and the scaled-hypersphere 

method of Ohno and Maeda are multidimensional analogues of the coordinate-driving 

approach.
110-113

 The approach of Irikura and Johnson is analogous to the slowest-ascent 

approach.
106

 The fast-marching method is a wavefront propagation method that leads to 

an efficient and unified implementation for many surface-walking methods, including the 

slowest-ascent and geodesic (coordinate-driving) searches.
18,109,114-117

 An advantage of the 

fast-marching approach is that it not only locates stable structures on the PES, but also 

locates a reaction pathway between the starting structure and any other structure of 

interest. 

 Surface walking methods are robust if the set of reduced coordinates is large 

enough, but they are also prohibitively expensive because their computational cost grows 

exponentially with the dimensionality of the reduced PES.  Expanding beyond five or six 

dimensions is computationally prohibitive, and since the reduced PES captures only a tiny 



Ph.D. Thesis – Sandra Rabi; McMaster University – Chemistry and Chemical Biology 

 

40 

 

fraction of the full dimensionality of the full molecular PES, these methods still fail when 

important coordinates are omitted. However, in cases where the most likely key 

coordinates can be identified, surface walking methods tend to be robust, but slow. 

 

C. Double-Ended Methods 

Double-ended methods work by bracketing the transition state between the 

reactant and product structures. This works well because usually (but not always) many of 

the bond lengths and angles have values in the transition-state structure that are in 

between their values in the reactant an product structures.  

There are two main strategies for double-ended methods. In the first strategy, a 

pathway connecting the reactant and product is proposed, and the energy is 

(approximately) maximized along that pathway. The energy-maximizing structure is then 

taken as a guess for the transition state.  The linear synchronous transit (LST)
118

 and 

quadratic synchronous transit (QST)
67

 methods use linear and parabolic paths to connect 

the reactant and product structures. (These paths are typically expressed in terms of 

interatomic distance or internal coordinates; Cartesian coordinates are much less 

effective.) In the QST3 method, a guess for the transition state is used to obtain a better 

parabolic path.   

The first disadvantage of these methods is that they are relatively expensive, since 

several energy/gradient calculations along the path are required. To overcome this 

problem, a new approach that does not require evaluating the PES, but which is still 

extremely effective, is presented in chapter 2. The larger problem is that the pathway is 
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highly approximate:  the true minimum-energy reaction path or (very similar, and usually 

identical) intrinsic reaction coordinate is usually very different from the guessed 

pathway.
19,119

 
120

 

To obtain a good approximation to the minimum-energy reaction path, it is 

necessary to optimize the pathway.  Most approaches for doing this are chains-of-states 

models:  the energy/gradient/Hessian is evaluated (or approximated) at a series of points, 

and the reaction path is a curve that interpolates between these points. The lowest-energy 

pathway is then obtained by minimizing the energy of the points along the path. If one 

minimized the points without constraints, then all the points would fall into the nearest 

local minimum. It is therefore essential to add appropriate constraints to the minimization 

so that the points remain relatively evenly spaced along the pathway. 

In the nudged elastic band (NEB) methods,
121-129

 one imagines the reaction path as 

a series of points (where the PES and its gradient is evaluated) connected by springs, with 

potential 

 
   
V spring x

i( ) = 1
2
k x

i
− x

i−1

2

+ x
i
− x

i+1

2( )  (1.68) 

The springs keep the points nearly equally spaced. To ensure that the NEB path goes 

through the transition state, one should remove the component of the restoring force that 

is normal to the reaction path.  The resulting method uses the gradient of the potential 

energy surface to guide motions perpendicular to the reaction path, and the gradient of the 

spring to guide motions parallel to the path, 

   (1.69) 
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where τi is the tangent to the path at xi and g
PES

 and g
spring

 are the gradients of the PES and 

the spring potential, respectively.  

String methods imagine the reaction path as a necklace of points threaded by a 

string, which is typically a cubic spline.
130-135

  The steepest-descent path connecting the 

transition state to the reactant and the product follows a gradient-descent line; therefore 

the tangent line to the path is parallel to the gradient,  

 .  (1.70) 

For an approximate path, component of the gradient perpendicular to the path, 

   (1.71) 

is not zero. String methods work by updating the path to minimize  |g⊥|
2
. One of the most 

efficient string methods is the quadratic string method (QSM), which constructs an 

approximate quadratic model for minimizing |g⊥|
2
.
134

 

 Because there is no fictitious potential maintaining the spacing between the points 

along the string, the evaluation-points in the string methods are less coupled together than 

the points in nudged elastic band approaches, enhancing convergence. A problem with the 

string methods is that the points along the path need to be periodically redistributed to 

ensure that the transition-state region is adequately sampled. In addition, if the steps are 

too large, the string can become kinked, and artificial forces must be added to the 

potential to straighten out the path. If the steps are too small, convergence is 

unnecessarily slow. Therefore, while string methods converge more quickly than nudged 

elastic band approaches, they also require more parameter-tuning.  



Ph.D. Thesis – Sandra Rabi; McMaster University – Chemistry and Chemical Biology 

 

43 

 

 Closely related to string methods are splined-saddle approaches.
136,137

 In splined-

saddle methods, the ends of the string are not the reactant and the product, but 

intermediate structures that are closer to the transition state. By reducing the length of the 

string, this increases the computation speed with which a transition-state guess may be 

obtained. However, unlike the other double-ended methods presented in this section, 

splined-saddle methods do not guarantee that the located transition state connects the 

reactant and product structures. 

 The sequential quadratic programming method proposed by Burger and Yang is 

similar in spirit to string methods, but simpler to implement.
133

 In it, each point in an 

initial guess for the reaction path is minimized on the hyperplane perpendicular to the 

path using a local quadratic model for the potential energy surface. This approach works 

well for simple reactions but, like the string method by which it was inspired, requires 

periodic redistribution of points and must the monitored to ensure that it does not 

converge to a kinked path. 

 

1.6 Summary 

Building computational models for chemical reactions is among the most 

fundamental and important problems in theoretical chemistry. There are several aspects to 

this problem, from accurate determination of the molecular energy to geometry 

optimization: locating the stationary points on the potential-energy surface that 
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characterize the stable molecular structures (reactants, products, and reactive 

intermediates) and the transition-states that connect them.  

This chapter reviews recent work on geometry optimization, emphasizing the 

difficult problem of transition-state optimization and featuring our recent work on this 

topic. The key ingredients of good geometry optimization methods are discussed. The 

starting point of any optimization problem is a good starting structure. It is usually 

relatively easy to find good starting structures for minimization to a stable 

reactant/product/intermediate, but finding good starting structures for transition-state 

optimization is more challenging. Some methods for estimating transition states are 

reviewed in section 1.5. In chapter 2, we present a new, extremely computationally 

efficient, approach based on interpolating between reactant and product structures in 

redundant internal coordinates. After an initial structure has been obtained, one needs to 

select a coordinate system in which to perform the optimization. In most cases, redundant 

internal coordinates is the best choice, and the mathematical intricacies of this approach 

are reviewed in section 1.3. A fuller account of this approach, including a discussion of 

the robust dihedral coordinates from Eqs. (1.29)-(1.30), is presented in chapter 2.  

Most geometry minimization and transition-state optimization methods are based 

on Newton’s method (in the rare cases where it is affordable to compute the Hessian 

matrix exactly) or quasi-Newton approaches (in which the Hessian is approximated using 

the gradients computed in successive steps of the optimization). These methods are 

described in section 1.4. Chapter 3 presents a new hybrid approach, where the elements of 

the Hessian matrix associated with key chemical changes are explicitly evaluated (by 
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finite difference) and the remaining elements of the Hessian are approximated with quasi-

Newton updates. This approach is tested in Chapter 4, which shows that the method is 

nearly as efficient as the best transition-state optimizers but, importantly, is significantly 

more likely to converge. This new approach is decisively better than conventional 

approaches when the initial guess for the transition-state structure is poor.  

Another alternative approach is to combine the minimization of the electronic 

degrees of freedom with the minimization of the nuclear degrees of freedom.
138-141

 Such 

an approach can be more efficient than the gradient-based approaches usually considered 

(in which the electronic degrees of freedom and nuclear degrees of freedom are optimized 

sequentially). Applying that approach to quantum chemistry methods (Møller-Plesset 

perturbation theory, coupled-cluster methods, etc.) that are not variational seems quite 

complicated. (It can be done by viewing the geometry optimization as a system of 

nonlinear equations, in which the gradient of the energy with respect to the nuclear 

coordinates is zero. This system of nonlinear equations can then be augmented by the 

nonlinear equations determining the energy in the quantum chemistry method.) In 

practice, the increase in efficiency obtained by simultaneous optimization of electronic 

and nuclear degrees of freedom seems relatively modest, and those techniques are less 

adaptable to transition-state-finding and nonvariational quantum chemistry methods. The 

robustness and flexibility of gradient-based optimization methods explains why that 

approach is usually preferred.   

As emphasized in this chapter, the performance of a transition-state optimizer 

depends on many factors. Chapter 5 shows how the choice of initial Hessian can 
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influence the performance of transition-state finders, and shows that a minimal-basis-set 

Hartree-Fock calculation typically provides an excellent starting point for transition-state 

optimizations. Chapter 6 shows how the method presented in Chapter 3 can be 

transformed into a true black-box transition-state finder by using methods to 

automatically select the chemically-important internal coordinates. Chapter 7 discusses a 

few other key parameters, including the type and selection of dihedral angles, the trust-

radius method, the quasi-Newton update, etc. Finding the best transition-state finder is 

quixotic, but by making good algorithmic choices, robust and rapid transition-state 

optimization methods can be designed. 
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2.1 Overview 

Three new methods for guessing an initial geometry for a transition-state 

optimization, requiring only the reactant and product geometries, are presented and tested 

for a diverse set of 130 reactions. The new approaches are based on interpolation between 

the redundant internal coordinates of the reactant and the product; most of the initial 

geometries have one imaginary frequency (i.e., they lie in the transition-state region) and 

standard transition-state finding algorithms were able to converge 80% of the reactions in 

twenty or fewer steps. We circumvent the linear-dihedral problem by introducing robust 

redundant internal coordinates. In robust redundant internal coordinates, each dihedral 

angle (bond torsion) is replaced by two new coordinates. Robust redundant internal 

coordinates are numerically sound even when the rotating atom is nearly collinear with 

the bond being rotated around.  

 

2.2 Motivation 

The ability to locate transition states on a molecular potential energy surface is the 

sine qua non of computational chemical kinetics.1-4 Once the transition state has been 

located, the rate can be modelled using transition-state theory or, more accurately, by one 

of the many approaches based on molecular dynamics or Monte Carlo sampling. All of 

these approaches rely upon a reasonable guess for the transition state, either as an initial 

guess for a geometry optimization (in the conventional quantum chemistry approach 
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based on transition-state theory5) or to develop a biasing strategy (in conventional 

statistical mechanics approaches based on sampling reactive trajectories6-8). This paper 

proposes, and tests, a very simple and computationally inexpensive strategy for guessing 

the transition state based on interpolation, in internal coordinates, between the reactant 

and product structures. Along the way to this objective, we develop a database of 130 

reactions for testing transition-state methods and propose a new way to resolve the ill-

conditioning associated with internal coordinates, especially the problems of (a) 

converting from redundant internal coordinates to Cartesian coordinates and (b) ill-

conditioning due to dihedral angles,  αβγδ, in which one of the terminal bond angles,  αβγ 

or  βγδ, is nearly linear. 

 

2.3 Background 

A. Methods for Guessing Transition States 

Most existing approaches for guessing the transition state structures of elementary 

chemical reactions fall into one of two categories. Single-ended methods start from the 

reactant (or product) and search the potential-energy surface (PES) for low-energy 

reaction pathways.5,9 Double-ended methods start from the reactant and product structures 

(and sometimes also a guess for the transition-state geometry), attempt to find a reaction 

pathway that links them, and use the geometry of the highest-energy-point on that 

pathway as an estimate for the transition-state structure. 
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The simplest single-ended method is coordinate driving.10-13 In coordinate-driving, 

one simply picks a coordinate whose value is different in the reactants and the products, 

and starting from either the reactant or product, slowly increments the value of the chosen 

coordinate, while minimizing the energy with respect to all the other coordinates. 

Coordinate driving merely requires a series of constrained optimizations along the path, 

so it is relatively computationally efficient. However, it often finds a transition state that 

is too high in energy. Moreover, if the selected coordinate is inappropriate, or if the 

reaction pathway cannot be described by a single geometrical coordinate, the molecular 

geometry and the energy profile can change discontinuously.5  

Most other single-ended methods can be viewed as refinements of the coordinate-

driving idea. In the reduced gradient following method, one starts at a stable structure and 

constructs the Newton trajectory: a curve for which the gradient of the PES always points 

in the same direction. Newton trajectories converge on stationary points.14-20 The reduced 

gradient following approach is usually implemented using the growing string method,21-23 

though more efficient methods have recently been proposed.20 In the eigenvector-

following method, one picks an eigenvalue of the Hessian (typically the eigenvector 

corresponding to the lowest-frequency normal mode of vibration) and moves in that 

direction.24-32 Unlike the other approaches, eigenvector following requires repeated 

evaluations of the Hessian along the pathway, so that the eigenvector-direction can be 

determined. The dimer method is an approach in the same spirit as eigenvector following, 

but in which the Hessian is not explicitly constructed.33,34 
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Methods based on coordinate-driving, eigenvector-following, and reduced-

gradient following often fail to find the relevant transition state when there are many low-

frequency normal modes, many of which correspond to low-barrier conformational shifts 

instead of bond-breaking/forming processes.35 This can be overcome by using surface-

walking methods, where multiple directions are explored at once.36,37 Surface-walking 

methods like the scaled hypersphere search38-41 and the fast-marching method37,42-46 are 

robust if the dimensionality of the search is large enough, but they are quite expensive. 

When a heuristic is used to reduce the dimensionality of the PES that must be explored, 

surface-walking methods become less reliable.21 

 Double-ended methods start from an initial guess for the reaction pathway, or at 

least the portion of the reaction pathway that crosses the transition state. They optimize 

the entire minimum-energy reaction path, or at least the transition-state portion of the 

reaction path.5 

In double-ended methods, a reaction path is formed by interpolating between a 

sequence of geometric structures stretching from the reactant to the product regions of the 

PES. Different approaches differ in the method for selecting points are generated and in 

the type of constrained optimization that is performed when updating the coordinates.47 

The most popular double-ended methods are the string methods47-52 and the nudged 

elastic band methods.53-61 (Many variations of these two methods exist.) Double-ended 

methods are more robust than single-ended methods because they always find a transition 

state between the reactant and product structures, though the transition state will not be 

the lowest-energy transition-state structure unless the initial path is chosen correctly. 
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Unfortunately, double-ended methods are expensive, requiring the PES and its gradient to 

be evaluated at every point on the reaction path even when only the transition-state 

structure is of interest. This is somewhat mitigated by the splined-saddle methods,62,63 

which are string methods where the approximate reaction path does not extend all the way 

to the reactant and product structures. Unlike conventional double-ended methods, 

however, splined-saddle methods require a good guess for the location of the transition-

state region. 

 

B. Redundant Internal Coordinates 

 The computational efficiency of both single-ended and double-ended methods is 

sensitive to the coordinate system one chooses to specify the positions of the atomic 

nuclei. Often Cartesian coordinates are used because the implementation of methods is 

easier in Cartesian coordinates, and quantum chemistry software for determining the PES 

and its derivatives usually uses Cartesian coordinates. Because Cartesian coordinates are 

tightly coupled to each other, however, optimizations in Cartesian coordinates are 

generally less efficient.  

 It is better, computationally and intuitively, to use internal coordinates. Internal 

coordinates allow one to specify the molecular geometry using chemically intuitive 

internuclear (bond) distances, angles between bonds, and torsions around bonds 

(dihedrals). The coupling between these coordinates is much smaller, so the Hessian is 

more diagonally dominant in internal coordinates than it is in Cartesian coordinates, 

which increases the accuracy of quasi-Newton updates for the Hessian.5  
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The problem with internal coordinates is their redundancy: only 3N–6 (3N–5 for 

linear molecules) internal coordinates are needed to specify the molecular geometry of an 

N atom molecule. However, including all of the bond-distances, angles between bonds, 

and torsions around bonds usually gives many more coordinates than required. Arbitrarily 

deleting coordinates reintroduces the strong coupling between coordinates that internal 

coordinates were designed to avoid in the first place. For chain-like systems, it can be 

relatively easy to construct a Z-matrix representation of the molecular geometry that is 

efficient for geometry optimization. However, for cyclic systems, one of the bonds in the 

ring cannot be included in the Z-matrix, and the length of the omitted bond is a very 

complicated function of the other coordinates. Rather than attempt to choose a good set of 

3N–6 internal coordinates, then, it is preferable to find a way to use the redundant set of 

internal coordinates.64-70 Starting from the Cartesian coordinates of the molecule, it is an 

exercise in trigonometry to determine the values of the redundant internal coordinates. 

Converting from redundant internal coordinates to Cartesian coordinates is more 

challenging, partly because there are inconsistent sets of redundant internal coordinates 

that do not correspond to any real molecular geometry. Iterative procedures are usually 

used to convert redundant internal coordinates to Cartesian coordinates.64-79 When 

unrealizable values for the redundant internal coordinates are used, the iterative methods 

fail, and the Cartesian coordinates are either specified by an ad hoc rule or the software 

crashes. 
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C. Preview of Our Results 

This paper emerged from our attempts to design a better approach for converting 

from redundant internal coordinates to Cartesian coordinates. In section 2.4.B, we 

describe the system of internal coordinates we use. In order to maintain good numerical 

properties, our internal coordinates do not include dihedral angles. Instead we introduce 

two new coordinates which fully specify the dihedral angle, but which do not lead to 

numerical ill-conditioning when the first (or last) three atoms in the dihedral are nearly 

collinear. In section 2.4.C, we present a method for converting from redundant internal 

coordinates to Cartesian coordinates. The idea of this method is that the values of the 

redundant internal coordinates that correspond to realizable molecular geometries define a 

3N–6-dimensional manifold in the space of redundant internal coordinates. A nonphysical 

set of redundant internal coordinates is assigned to the nearest point on the manifold of 

molecular structures; the Cartesian coordinates of this point on the manifold are thus 

assigned to the redundant internal coordinates.  

Section 2.4.D uses this idea to estimate the position of a transition state. 

Specifically, weighted-averages of the reactant- and product-structures in redundant 

internal coordinates are shown to give excellent approximations to the transition-state 

structure. Because this approach uses the structure of the reactants and products, it is 

properly classified as a double-ended method. However, because the PES is never 

evaluated (not even for the reactant or product), this method is extremely fast. In section 

2.5 we test this method for a set of 130 diverse reactions, proving that it gives excellent 

results.  
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2.4 Methods 

A. Redundant Internal Coordinates 

 An N-atom molecule can be described with 3N Cartesian coordinates, { }
3

1

N

i i
x

=
 , or 

with (usually redundant) internal coordinates like interatomic distances, bond angles, and 

dihedrals, { } int

1

M

i i
q

=
 . The individual internal coordinates are functions of the Cartesian 

coordinates, qi(x), and the Jacobian of the transformation from Cartesian to internal 

coordinates is the Wilson B matrix, with elements,65,70,80,81 

 

i

ij

j

q
b

x

∂
=

∂    (2.1) 

The Wilson matrix is generally rectangular, with Mint = dim(q) ≥ 3N – 6 rows and 3N = 

dim(x) columns. Usually the number of internal coordinates is several times larger than 

the number of Cartesian coordinates. By definition, the change in internal coordinates 

induced by a small change in the Cartesian coordinates can be computed as, 

 
δ δ=q B x

  (2.2) 

Since the B matrix is rarely square and since it is always singular (because rotation and 

translation of the molecule changes the Cartesian coordinates, but not the internal 

coordinates), the inverse of B does not exist. The inverse transformation is defined 

instead as, 

  
δ δ+=x B q

  (2.3) 
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where B+ is the (Moore-Penrose) pseudoinverse of B. To compute Cartesian coordinates 

corresponding to a given set of internal coordinates, one usually starts with a matched-

pair of Cartesian and internal coordinates, x0(q0), and then uses Eq. (2.3) to estimate the 

change in Cartesian coordinates, x1 = x0 + B
+(q–q0). If the internal coordinates, q1, 

corresponding to x1 are not close enough to the target internal coordinates, then a 

correction is computed, x2 = x1 + B+(q–q1). This procedure is repeated until convergence 

is achieved. Unfortunately, this procedure does not always converge. 

 

B. Choosing Robust Redundant Internal Coordinates 

Before describing our alternative procedure for mapping (redundant) internal 

coordinates to Cartesian coordinates, we should specify the system of internal coordinates 

that we use. Our method is a refinement of the procedure used in the Dalton program.80 

This protocol is, in turn, very similar to the one used in the Gaussian program.70
 

 

1.  Interatomic Distances 

 Our protocol has five types of interatomic distances: regular (covalent) bonds, 

hydrogen bonds, inter-fragment bonds, auxiliary bonds, and linear-chain bonds. Regular 

bonds are included between two atoms, α and β, if the separation between them is less 

than 1.3 times the sum of their covalent radii. Next, hydrogen-bonds are assigned by 

locating all bonds between hydrogen and small electronegative atom that can serve as a 

hydrogen-bond donor, X = N, O, F, P, S, Cl. For each such bond, one searches to see if 

there is another electronegative atom, Y = N, O, F, P, S, Cl, that can serve as the 
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hydrogen-bond acceptor. If the H–Y distance is less than 0.9 times the sum of the atoms 

van der Waals radii and the X–H-----Y angle is greater than 90°, then a hydrogen bond is 

added between this hydrogen atom and Y. 

Next, we evaluate whether the system contains multiple fragments. Atoms are 

assigned to the same fragment if there is a chain of regular bonds between the atoms. If 

there are multiple fragments in the system, interfragment bonds need to be added between 

each pair of fragments. If each fragment contains only one atom, then the atom-atom 

distance is appended to the list of internal coordinates. If one fragment is monatomic but 

the other fragment is polyatomic, then three coordinates are needed to specify the relative 

positions of the fragments. If both fragments are polyatomic, then six coordinates are 

needed to specify their relative positions. In these two cases, at least two interfragment 

bonds are required. The two shortest interfragment distances are considered to be 

interfragment bonds. To mitigate the difficulties associated with interfragment bonds 

disappearing and reappearing during the course of an optimization, additional 

interfragment bonds are defined for all interfragment distances that are less than 2 

Angstroms or 1.3 times the shortest interfragment distance, whichever is larger. To avoid 

adding too many interfragment bonds, the number of interfragment bonds is not allowed 

to exceed the number of non-hydrogen atoms in the larger fragment.  

In order to represent long linear chains in internal coordinates, one often adds 

unphysical “ghost atoms” beside the chain so that meaningful dihedral angles can be 

defined. This is important, for example, when describing the barrier to internal rotations 

around the molecular axis in polynes like Y3(C–C≡C)n–CX3 or the cis-trans isomerization 
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of cumulenes like RCH=(C=C)n=HCR’. We have discovered that we can locate the 

transition states of reactions like these by adding the distance between the first and last 

atoms of the linear chain. (We tried adding additional inter-chain distances, but this does 

not seem to be necessary.)  

Auxiliary bonds are added when the distance between two atoms is less than 2.5 

times the sum of their covalent radii. Most auxiliary bonds correspond to 1,3 interactions. 

(I.e., these are Urey-Bradley coordinates.82) In our approach, auxiliary bonds are never 

included in bond angles or dihedral angles.  

After all of the internal coordinates have been assigned, the rank of the Wilson B 

matrix should be 3N–6 (or 3N–5 for a linear molecule). If the rank of B is less than this, 

the shortest auxiliary bond is upgraded to a regular bond, so that it can be included in 

angles and dihedrals, and then rank(B) is recomputed. This upgrading-procedure for 

auxiliary bonds is repeated until either the rank of B is adequate or all auxiliary bonds are 

upgraded. 

 

2. Angles between Bonds 

The angles between all bonds that are not auxiliary bonds are included as internal 

coordinates. That is, for each set of three atoms, α, β, and γ, in which β is linked to both α 

and γ by non-auxiliary bonds,  αβγ is added to the set of internal coordinates. 
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3.  Dihedral Angles; Rotations Around Bonds 

A dihedral angle,  αβγδ, is defined as the angle between the plane defined by the 

location of the first three atoms and the plane defined by the location of the last three 

atoms. A pictorial representation of the dihedral angle is given in Figure 2.1. 

Figure 2.1.  Representation and notational convention for a dihedral angle. Notice that 

a small change in the Cartesian coordinates of atom α will induce a large 

change in the value of the dihedral angle. This demonstrates the problems 

associated with (nearly) linear dihedrals. 
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We include dihedral angles for rotations around every non-auxiliary bond. 

Keeping all possible dihedral angles leads to an explosion in the number of internal 

coordinates, so we restrict the number of dihedral angles in the following way. Consider a 

non-auxiliary bond between atoms β and γ. Among all atoms that are bonded to β, let α be 

atom that is bonded to the most other atoms. Then the dihedral angles defined by the 

atoms,  αβγ*, where * denotes any atom bonded to γ, are included in the internal 

coordinates. Similarly, if atom δ is the most-bonded atom that is bonded to γ, all dihedral 

angles of the form  *βγδ are included in the set of internal coordinates. For example, in an 

ethane molecule, this approach selects five of the nine possible dihedral angles. 

We use improper dihedrals to facilitate the description of puckering motions in 

planar structures. Consider three atoms, α, β, and δ, which are all to at most two atoms 

and which are all bonded to atom γ. The dihedral angle  αβγδ is included if the sum of the 

angles  αγβ,  αγδ, and  βγδ is greater than 345°.  

To define the dihedral angle mathematically, we first define the bond-unit-vectors 

linking the atoms α, β, γ, and δ. E.g., we denote 

 

ˆ α β

βα

α β

−
=

−

R R
R

R R    (2.4) 

where Rα denotes the Cartesian coordinates of atom α. The plane containing atoms α, β, 

and γ is normal to the vector ˆ ˆ
βγ βα×R R   and the plane containing atoms β, γ, and δ is 
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normal to the vector ˆ ˆ
γβ γδ×R R . The dihedral angle between these planes is the same as 

the angle between the normal-vectors to the planes.  

This conventional mathematical representation of dihedral angles fails when 

atoms α, β, and γ (equivalently, atoms β, γ, and δ) are collinear, because then there is no 

unique plane containing the atoms. Even when the atoms are not exactly collinear, the 

conventionally defined dihedral angle is numerically ill-conditioned because a small 

change in the Cartesian coordinates of one of the atoms will cause a large shift in the 

direction of the normal vector ˆ ˆ
βγ βα×R R   and therefore a large change in the dihedral 

angle. Since a small change in Cartesian coordinate induces a large change in the internal 

coordinate, the condition number of the Wilson B matrix is very large, and the mapping 

between Cartesian coordinates and internal coordinates becomes numerically ill-

conditioned. This is the problem of linear dihedrals, and it is one of the main reasons why 

optimizations in internal coordinates sometimes fail unpredictably. 

To avoid these instabilities, we have chosen an alternative representation for the 

dihedral angle. Each dihedral angle is represented by two coordinates, which we call the 

robust dihedral descriptors,  

 

ˆ ˆ
βα γδ⋅R R

  (2.5) 

 
( )ˆ ˆ ˆ

βγ βα γδ⋅ ×R R R

   (2.6) 

Both functions are needed to provide a full description of the dihedral angle. The first 

function is a replacement for the dihedral cosine; the second is the (signed) volume of the 
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parallelepiped defined by the bond vectors. When ˆ
βγR  is collinear with one of the other 

bond vectors, the volume of the parallelepiped is zero. Our tests demonstrate that the 

robust dihedral descriptors defined by Eqs. (2.5) and (2.6) are not susbject to numerical 

ill-conditioning. 

 

C. Converting from Redundant Internal Coordinates to Cartesian Coordinates 

 The robust set internal coordinates presented in the previous section usually 

provides a highly redundant description of the molecular geometry, with about five times 

more coordinates than are actually required. A random choice of values for the redundant 

internal coordinates, then, is very unlikely to represent a feasible molecular geometry. 

(For example, there is zero probability that a randomly selected choice for the values of 

the redundant internal coordinates would satisfy the requirement that the sum of the 

angles in an n-atom ring is (n–2)×180°.) The physically realizable molecular structures, 

q(x), lie on a 3N–6-dimensional manifold embedded in an Mint-dimensional space. When 

a point in redundant-internal-coordinate space does not lie on this manifold, there is no 

corresponding set of Cartesian coordinates. 

 We wish to map any set of redundant internal coordinates to a set of Cartesian 

coordinates. This mapping will be onto (all sets of Cartesian coordinates are achievable) 

but not one-to-one, since (a) many choices for the 3N Cartesian coordinates correspond to 

the same point on the manifold and (b) the dimensionality of the redundant internal space 

is usually much larger than 3N. The idea is that for the set of redundant internal 

coordinates of interest, q(target), we find the closest point on the manifold, q(x). We then 
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assign q(target) to a set of Cartesian coordinates that correspond to the closest point on the 

manifold. Mathematically,  

 

( )( ) � ( ) ( )( ) ( ) ( )( )target target targetarg min
T

= − −
x

x q q x q W q x q

   (2.7) 

where W is a diagonal matrix of weighting factors that is used to adjust the importance of 

different internal coordinates. We call this approach to assigning Cartesian coordinates to 

a vector of redundant internal coordinates the manifold projection method. 

We generally choose W to be the identity matrix. However, in constrained 

optimizations, where certain coordinates are frozen at fixed values, we assign large 

weights to the frozen coordinates. When we use conventional dihedral angles instead of 

the robust dihedral descriptors from Eqs. (2.5) and (2.6), we reduce the importance of 

converging to the target dihedral values when the first-three or last-three atoms are nearly 

collinear by weighting the dihedral coordinates as ( ) ( )2 2sin sinw αβγδ αβγ βγδ∠ = ∠ ∠ .  

To avoid problems with redundancy and near-linear angles (e.g., 1° and 359° 

represent the same bond angle, but the naïvely-computed bond-angle distance is large) we 

use the cosine of the bond angle to measure the discrepancy of the  

 
( )( ) ( )( )( )

2
targetcos cosθ θ−x

   (2.8) 

Similarly, the discrepancy between conventional dihedrals is computed as  

 
( )( ) ( )( )( ) ( )( ) ( )( )( )

2 2
target targetcos cos sin sinφ φ φ φ− + −x x

  (2.9) 
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The cost function that is minimized in Eq. (2.7) is therefore 

 

( ) ( )( ) ( ) ( )( )

( ) ( )( )( )

( ) ( ) ( ) ( )( )( ) ( ) ( )( )( )

2 2
target target

bonds robust
dihedrals

2
target

bond
angles

2 2
target target2 2

conventional
dihedrals

cos cos

sin sin cos cos sin sin

q q q qαβ αβ αβγδ αβγδ

αβγ αβγ

αβγ βγδ αβγδ αβγδ αβγδ αβγδ

θ θ

θ θ φ φ φ φ

− + −

 
+ − 

 

 
+ − + − 

 

∑ ∑

∑

∑

x x

  

 (2.10) 

To generate an initial guess for the optimization, we start with a previously known 

matched-pair of Cartesian and redundant internal coordinates, q0 and x0. The initial guess 

for the Cartesian coordinates is ( ) ( )( )guess target
0 0

+= + −x x B q q . The optimization is solved 

using Newton’s method with a trust radius. We found that it is important to accept steps 

where the value of the cost function is not changed because the cost function has saddle 

points, so not every step of the optimization reduces the cost. 

 

D. An Inexpensive Double-Ended Transition-State Guesser 

As a first application for the robust dihedral descriptors and the manifold-

projection method, we have developed three double-ended methods for guessing 

transition states. The first method is similar to the linear synchronous transit pathway,83,84 

except for the choice of coordinate-system. Specifically, we construct the line-segment 

between the reactant and the product using redundant internal coordinates  

 
( ) ( ) ( )reactant product1 p p− +q q

 (2.11) 
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The points on this path generally do not correspond to actual physically realizable 

molecular geometries, so we use the manifold projection method to construct a pathway 

from the reactant (p = 0) to the product (p = 1). I.e., 

 

( ) ( ) � ( ) ( ) ( ) ( )
2

Method 1 reactant productmin 1C p p p = − − +  wx

q x q q

   (2.12) 

  

( ) ( ) � ( ) ( ) ( ) ( )
2

Method 1 reactant productarg min 1p p p = − − +  wx

x q x q q

  (2.13) 

By the triangle inequality,  

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )

2
reactant product

2
reactant product

1

1

p p

p p

 − − + 

≤ − − + −

w

W W

q x q q

q x q q x q    (2.14) 

which motivates the choice 

 

( ) ( ) � ( ) ( ) ( ) ( ) ( )( )
2

Method 2 reactant productmin 1C p p p= − − + −
W W

x

q x q q x q

  

  (2.15) 

 

( ) ( ) � ( ) ( ) ( ) ( ) ( )( )
2

Method 2 reactant productarg min 1p p p= − − + −
W W

x

x q x q q x q

  

  (2.16) 

This expression is not differentiable everywhere because magnitudes of vectors appear 

without being squared. This can be remedied by dropping out the cross-term from Eqs. 

(2.15) and (2.16). This motivates our final choice, 

 

 



Ph.D. Thesis – Sandra Rabi; McMaster University – Chemistry and Chemical Biology 

 

75 

 

 

( ) ( ) � ( ) ( ) ( ) ( ) ( )( )2 2Method 3 reactant productmin 1C p p p= − − + −
W W

x

q x q q x q

  

(2.17) 

 

( ) ( ) � ( ) ( ) ( ) ( ) ( )( )2 2Method 3 reactant productarg min 1p p p= − − + −
W W

x

x q x q q x q

   

(2.18) 

In all three approaches, we start by constructing the robust redundant internal coordinates 

of both the reactant and product structures. We then use the union of these reactant-based 

and product-based coordinates to construct these reaction coordinates in Eqs. (2.13), 

(2.16), and (2.18). 

 Conventional synchronous transit methods would then compute the energy at 

various p values along these reaction coordinates and select the point with the highest 

energy as an initial approximation to the transition state. The QST2 method would 

construct an approximate quadratic path, and use a few energy/gradient evaluations along 

the approximate reaction path to find a better estimate for the transition state.84 We use a 

much cheaper, but heuristic, approach. We note that C(p) = 0 for both the reactant and 

product structures, since, by construction, these sets of internal coordinates correspond to 

true molecular geometries. It seems plausible, then, that the transition-state structure can 

be associated with the set of redundant internal coordinates that is furthest from the 

manifold of realizable molecular geometries. Therefore, we define 

 ( )max arg maxp C p=    (2.19) 
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and use x(pmax) as an initial guess for the transition state. As shown in appendix 2.1, for 

Method 2 and Method 3, pmax = 0.5.  

 The quantity p represents the fraction of the reaction coordinate that is traversed 

when one locates the transition state. One can therefore define an expected value for p, a 

posteriori, as 

 
TS product

post

TS reactant TS product

p
−

=
− + −

q q

q q q q
   (2.20) 

This value for p can only be computed when the transition-state is already known, but it is 

useful for assessing the quality of the initial guesses generated by the approximate 

methods. 

 

2.5 Results 

A. Testing Protocol 

 We tested the proposed methods for guessing transition states on a database of 

130 reactions. The database, which is presented in appendix 2.2, includes a variety of 

reactions from various sources,35,85-98,99 including hydrogen-transfer reactions, heavy-

atom-transfer reactions, pericyclic reactions, unimolecular reactions, transition metal 

reactions, etc.. In some cases we functionalized the molecules in the base reaction to 

construct a more challenging test reaction. 

For most of these reactions, the transition state structures were located at the 

HF/6-31++G(d,p) level. Because Hartree-Fock calculations are notoriously unreliable for 

molecules including transition metals, reactions 59 and 60 were optimized at the 
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B3LYP/6-31G(d) level.90 This choice of basis set and electronic structure methods100-103 

should not be taken as an endorsement of these methods for these reactions, but merely as 

an indication that these methods are sensible enough to be used for testing general-

purpose transition-state software. Because many of the reactant and product complexes 

dissociate at the Hartree-Fock level, the reactant and product structures are determined by 

tracing the intrinsic reaction coordinate from the transition state.104 Many of the resulting 

reactant and product structures are multi-fragment molecular complexes, which provides 

a test for the portion of the redundant internal coordinate algorithm involving multi-

fragment molecular systems. Molecular potential energies and gradients were computed 

with Gaussian ’09.105 The methods using internal coordinates and the transition-state-

guesser were implemented outside Gaussian. 

 

B. Overview of Results from the Transition-State Guessing Methods 

 To test the transition-state guessers, the robust redundant internal coordinates 

were generated for the reactant and product structures using the algorithm presented in 

section 2.4. The union of these coordinate sets was used to describe the reaction pathway, 

which was constructed using the three methods from sections 2.5, for p = 0.00, 0.01, 

0.02,…, 0.99, and 1.00. The value of pmax (cf. Eq. (2.19)) was computed for all three 

methods, confirming that only Method 1 ever has pmax ≠ 0.5. The root-mean-square 

deviation of  
( )Method 1
maxp  from p = 0.5 is 0.018, so even for Method 1, the transition-state 

guess tends to be near the midpoint of the pathway from reactant to product. The value of 

ppost was computed from Eq. (2.20). It is observed that Method 1 has a slight, but 
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significant, tendency to have 
( )Method 1
max 0.5p <   when ppost < 0.5, and vice versa. However, 

ppost has a much larger range of values, with a root-mean-square deviation from p = 0.5 of 

0.095. This confirms the diversity of the reaction database, which contains early, late, and 

intermediate transition states.  

For all three methods, we computed transition-state guesses for both pmax and ppost. 

We then performed a frequency calculation to ascertain if the transition-state guess was 

accurate enough for the PES to have one imaginary frequency. As shown in Table 2.1, all 

three methods locate regions on the PES with just one imaginary frequency for well most 

of the reactions considered. Methods 1 and 2 perform best, giving predictions in the 

transition-state region for more than 80% of the reactions. Most failures occur due to 

multiple imaginary frequencies; this mostly seems to reflect excess bond strain in the 

transition-state predictions, and does not seem to impair the ability of transition-state 

algorithms to converge as severely as the absence of any imaginary frequencies (which 

happens rarely for all three methods).  

The root-mean-square deviation of the guessed structures from the true transition-

state structures was computed by aligning the molecules using the Kabsch 

algorithm.106,107  First, the structures are translated so that the center of mass of the 

transition-state guess and the true transition-state structure are both at the origin. Next, 

one computes the matrix, 
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( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

atomsatoms
approx exact

approx exact approx exact approx exact
1 1

approx exact approx exact approx exact

approx exact approx exact approx exact

NN
T

x x x y x z

y x y y y z

z x z y z z

α α
α α

α α α α α α

α α α α α α

α α α α α α

= =

= =  
 
 
 
 
 

∑ ∑H x x

   

(2.21) 

and constructs its singular value decomposition, T=H U VΣ . Assuming that the singular 

vectors are listed starting with the largest singular value and ending with the smallest 

singular value, the rotation matrix that maximizes the molecular alignment is 

 

( )

min 1 0 0

0 1 0

0 0 det

T

T

=  
 
 
 
 
 

R V U

VU

 (2.22) 

So the optimal alignment is ( ) ( )approx approx
minα α←x R xɶ  and the root-mean-square distance 

(RMSD) between the structures is then obtained by the definition  

 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
atoms

approx exact approx exact approx exact

1atoms

1
rmsd ,

N

N
α α α α

α =

= − ⋅ −∑x x x x x xɶ ɶ ɶ

  

(2.23) 

 The RMSD is quite small (about 0.04 Å) for Methods 1 and 2, and much larger for 

Method 3. Most transition-state optimization algorithms are very reliable when the 

guessed transition-state structure is within about 0.05 Å of the true transition state. We 

tested this by optimizing the geometry with the QST3 algorithm84 in Gaussian ’09 using 

the opt(QST3,calcfc,noeigentest) keywords and the reactant, product, and transition-state 
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guess structures. On average, less than 15 iterations were required to converge to the 

transition state. 

 Figure 2.2 provides a visual representation of the convergence of transition-state 

optimization. Consistent with the results in Table 2.1, Methods 1 and 2 are the best 

method for generating transition-state guesses. The performance plot also shows, 

however, that for “easy cases,” where the QST3 algorithm converges in fewer than 10 

iterations, Method 1 and Method 3 converge more quickly.  

 We also considered various ways to further improve the results. First of all, we 

tried to improve the guess by choosing the weight matrix, W, so that the key coordinates 

(typically the bonds that were being formed/broken in the chemical reaction) were 

weighted more than the other coordinates in the molecules. (The data we have presented 

chose W to be the identity matrix.) This did not significantly change the results for 

Method 1 and Method 2, but it dramatically decreased the RMSD for Method 3 by a 

factor of three (from 0.128 Å to 0.042 Å). 
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Table 2.1.  Assessment of the overall performance of the three different methods of 

guessing transition states. 

 Method 1 

(Eq. (2.13)) 
Method 2 

(Eq. (2.16)) 
Method 3 

(Eq. (2.18)) 
pmax ppost pmax = 

0.5 
ppost pmax = 

0.5 
ppost 

1 imaginary 
frequency 

108 112 109 99 86 112 

0 imaginary 
frequencies 

2 2 2 7 3 2 

2 or more 
imaginary 
frequencies 

20 16 19 24 41 16 

Mean RMSD in 
Å 

0.0414 0.0408 0.0406 0.0449 0.1281 0.0411 

Mean number of 
steps for TS opt.  

9.6 11.2 11.0 12.6 14.5 10.3 

# of rxns. 
converged 

118 119 119 119 114 124 

  

 
Second, we wondered if finding a better method for estimating the p value would 

improve the results. Inserting the a posteriori p value from Eq. (2.20) provides a 

reasonable estimate of how much we could improve the results by finding a better model 

for the choice of p. As seen from Table 2.1 and Figure 2.3, choosing ppost vastly improves 

the accuracy of Method 3, somewhat improves the reliability (in terms of having the 

appropriate number of imaginary frequencies) of Method 1, and is actually 

counterproductive for Method 2. Method 3 becomes decisively better for the easier 

reactions (those which converge in less than 10 steps) and slightly better even for the 

more difficult cases. With both the approximate (pmax = .5) and a posterior (ppost) values 
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of p, more than 90% of the reactions converged within 20 steps using the guess from 

Method 2. 

Figure 2.2.  A performance plot showing the percentage of reactions (y axis) that have 

converged within a given number iterations (x axis) for initial transition-

state guesses obtained by the three different methods when pmax  

(Eq. (2.19)) is chosen. 
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Figure 2.3.  A performance plot showing the percentage of reactions (y axis) that had 

converged within a given number iterations (x axis) for initial transition-

state guesses obtained by the three different methods when ppost  

(Eq. (2.20)) is chosen.  
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2.6 Summary 

This paper grew out of our attempts to develop a reliable way to transform highly 

redundant sets of internal coordinates to Cartesian coordinates, for the purpose of 

transition-state optimization. Conventional methods from the literature failed for some of 

the reactions we tried (a subset of which are reported in Appendix 2.2), either because of 

problems with nearly-linear bond angles in dihedrals or because the usual fixed-point 

iteration method for converting between internal coordinates and Cartesian coordinates 

failed to converge. We eliminate the former error by introducing robust dihedral 

descriptors that are not affected by the linear-angle problem, cf. Eqs. (2.5) and (2.6). We 

avoid the second problem by mapping each possible choice of internal coordinates to the 

closest point on the (3N–6)-dimensional manifold of allowed internal coordinates, where 

the manifold is parameterized using the Cartesian coordinates.  

This manifold projection technique (cf. Eq. (2.7)) is so robust that even extremely 

nonphysical sets of redundant internal coordinates can be mapped to Cartesian 

coordinates. This gave us the courage to consider the internal-coordinate generalization of 

the linear synchronous transit method (Method 1; Eqs. (2.12)-(2.13)) and, even more 

daring, the approximate reaction pathways that result when the triangle inequality is 

applied to the synchronous transit approach (Methods 2 and 3; Eqs. (2.15)-(2.18)). All 

three methods provide good guesses for the transition state, but Method 1 is particularly 

promising: more than 80% of the 130 reactions in our database have exactly one 

imaginary frequency; the root-mean-square distance between the guessed transition-state 

structure and the true transition state is about 0.04 Å; starting from the guessed structure, 
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80% of the reactions in our database converge with 20 iterations using the QST3 method. 

It appears that some improvements could be obtained by finding a protocol for points 

further from the midpoint of the approximate reaction path for the initial guess. 

(However, for Methods 1 and 2, it seems likely that subsequent improvements will be 

small.) All three methods produce reaction paths that pass reasonably near the transition 

states for the reactions we tested, and are therefore suitable as initial guesses in much 

more expensive energy-based double-ended methods like string and nudged-elastic-band 

methods. 
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Appendix 2.1: Proof that pmax = 0.5 for Method 2 and Method 3 

In this appendix we demonstrate that pmax = 0.5 for Method 2 and Method 3. For 

simplicity, we will only treat the case where W = 1, as that is the case of primary interest 

to this paper. 

The maximum value of p occurs where 

 
� ( ) ( ) ( ) ( ) ( )( )

2
reactant product0 min 1

d
p p

dp
= − − + −

x

q x q q x q

   (2.24) 

Let x(p) denote the minimizing value of x. Then 

 

( ) ( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( )( )

reactant product

reactant product

2
reactant product

0 2 1

1

p p p p

p p

d
p p p p

dp

 = − − + −
 

× − − + −

+∇ − − + − ⋅x

q x q q x q

q x q q x q

x
q x q q x q

   (2.25) 

The term in square brackets is positive because the reactant and product structures are 

distinct. The term on the last line is zero because, for the minimizing value of x at a 

specific p, 

 
( ) ( )( ) ( ) ( )( ) ( )( )

2
reactant product0 1 p p p p= ∇ − − + −x q x q q x q

   (2.26) 

Equation (2.25) therefore implies that  

  
( )( ) ( ) ( )( ) ( )reactant product

p p− = −q x q q x q

  (2.27) 

It is intuitively obvious that if q(x(pmax)) is equidistant from the reactant and product 

structures, pmax = 0.5. To demonstrate this mathematically, simplify Eq. (2.26) to 
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( ) ( )
( )( ) ( )

( )( ) ( )
( )( ) ( )( )

( )
( )( ) ( )

( )( ) ( )
( )( ) ( )( )

product

2 reactant

reactant

reactant

product2

product

1 1

1

p
p p p p

p

p
p p p p

p

 −
 = − + − − ⋅
 −
 

 −
 + + − − ⋅
 −
 

q x q
0 q x q B

q x q

q x q
q x q B

q x q

  

 (2.28) 

Substitute the solution (2.27) into Eq. (2.28). One obtains the equation 

 

( ) ( ) ( )( ) ( )( )
( ) ( )( ) ( )( )

( )
( ) ( )( ) ( )( )

( )( ) ( )( )

2 reactant
max max max max

product2
max max max max

reactant
max max

max product
max max

1 1

1

1
1 2

p p p p

p p p p

p p
p

p p

 = − + − − ⋅
 

 + + − − ⋅ 

 − − ⋅
 = −
 − − ⋅  

0 q x q B

q x q B

q x q B
0

q x q B

   (2.29) 

with solution pmax = 0.5. 

  The proof that pmax = 0.5 is similar for Method 3. The maximum value of p occurs 

when  

 
� ( ) ( ) ( ) ( ) ( )( )2 2reactant product0 min 1

d
p p

dp

 
= − − + − 

 x

q x q q x q

   (2.30) 

Let x(p) denote the minimizing value of x from the inner optimization. Then, 

  

( ) ( )( ) ( ) ( )( ) ( )( )
( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( ) ( )( ) ( )

2 2reactant product

2 2reactant product

2 2reactant product

0 1

1

d
p p p p

dp

p p

d p
p p p p

dp

= − − + −

= − − + −

+∇ − − + − ⋅x

q x q q x q

q x q q x q

x
q x q q x q

 

  (2.31) 
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The term on the last line is zero for the minimizing value of x. This implies that  

 
( )( ) ( ) ( )( ) ( )2 2reactant product

max maxp p− = −q x q q x q

   (2.32) 

Since q(x(pmax)) is equidistant from the reactant and product structures, pmax = 0.5. 



Ph.D. Thesis – Sandra Rabi; McMaster University – Chemistry and Chemical Biology 

 

89 

 

Appendix 2.2: Reaction Database 

This appendix presents the chemical reactions we used for testing the transition-

state guessing approaches presented in this paper. All transition states were determined 

using HF/6-31++G(d,p) except for reactions 59-60, which were determined using 

B3LYP/6-31G(d). These reactions are from benchmark reaction sets, primarily those used 

for validation of density functionals.85-89,92 For example, reactions 1-28, 63-66, and 71-

101 are taken from the database compiled by Goerigk and Grimme.89 Reactions 29-52 are 

taken from the collection of Baker and Chan, who propose these reactions as being 

especially suitable for testing transition-state optimizers.93 Reaction 53 is taken from our 

own work on the epoxide hydrolase enzyme.35,108 Reaction 55 has previously been used 

by us to test the fast-marching method.42 Reactions 54,94 56-58,96 and 6191 come from the 

meticulous work on potential-energy curves performed by the Toro-Labbe group. 

Reactions 59 and 60 are from the work of Coyle et al..90 Reaction 62 is from the work of 

Jenkins.97 Reactions 102-130 are “decorated” versions of other reactions in the dataset. In 

these reactions we functionalized molecules in the other reactions. By increasing the 

conformational space, we hope these reactions will reveal transition-state optimizers that 

fail to cope with low-barrier conformational changes. Some of these reactions have 

significant steric constraints. 
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Number Reaction  

1 

 

2 

 

3 

 

4 

 

5 

 
6 

 
7 

 
8 
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9 

 
10 

 
11 

 
12 

 
13 

 
14 

 
15 

 
16 

 
17 
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18 

 
19 

 
20 

 
21 

 
22 

 
23 

 
24 

 
25 

 
26 
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27 

 
28 

 
29 

 
 

 

30  

 
 

31  

 
 

32 

 
33 

 
34 

 
35 
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36 

 
37 

 
38 

 
39 

 
40 

 
41 

 
42 

 
43 

 
44 

 
45 

 
46 
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47 

 
48 

(rotation

) 

      

 
 

49 

(rotation

) 

 

 
 

50 

 
51 

 
52 

 
53 

 
54 

 
55 
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56 

 
57 

 
58 

 
59 

 
60 

 
61 

 
62 

 
 

63  
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64  

 
 

65  

 
 

66  

 
 

67  

 
 

68  

 
 

69  

 
 

70  

 
 

71 
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72  

 
 

73  

 
 

74  

 
 

75  

 
 

76  

 
 

77  

 
 

78 
 

 

79  

 

 

80  
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83  

 

 

84  

 

 

85  
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88  
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3.1 Overview 

We present a novel method for geometry minimization and transition-state 

optimization using redundant internal coordinates. The salient feature of this method is 

the identification of certain key chemical coordinates, typically the internal coordinates 

associated with the bond-breaking/bond-forming processes of interest. The elements of 

the Hessian associated with these coordinates are approximated with finite differences, 

while the remainder of the Hessian is updated using quasi-Newton methods. We also 

utilize a newly proposed description of dihedral angles and an unconventional method for 

converting from redundant internal coordinates to Cartesian coordinates. We introduce a 

trust-radius algorithm that uses only gradient information and a method for ensuring that 

the Hessian matrix has the correct eigenvalue structure. The efficiency of this method for 

transition-state optimization is assessed using twenty chemical reactions, and results are 

compared to those obtained using the default Berny transition-state optimization method 

in the Gaussian program. Unlike the conventional method, the new approach converges 

to the targeted transition state in all cases, with comparable computational cost. 

 

3.2 Introduction 

Computational methods for geometry optimization in quantum chemistry have 

been under continual development for more than thirty years.
1,2

 So why are we 

developing yet another approach? We are motivated by our frustration with existing 

methods, which occasionally fail for reasons that are difficult to decipher, much less 

remedy. Rather than the expensive (in terms of human time and frustration) task of 
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restarting a calculation with a new initial guess or an alternative choice of algorithm-

adjusting parameters, we would prefer a computational method that converges robustly, 

even if that method requires slightly more computational effort. The method developed in 

this chapter does this. 

We believe that for geometry minimization, no computational approach should 

ever fail: any method that systematically makes downhill moves on the molecular 

potential energy surface (PES) should eventually converge to the nearest local minimum. 

For geometry minimization, then, the only acceptable failure is a failure of the quantum 

chemistry method used to evaluate the gradient. (Actually, we also find these failures 

unacceptable, but fixing these problems is beyond the scope of this work.) Robust 

methods for redundant internal coordinates, recently introduced by us, move us closer to 

this goal.
3
  

Transition-state optimization is much more difficult than geometry minimization 

because  a preferred move could increase or decrease the energy and, if the initial guess 

for the transition state is poor, the norm of the gradient may need to increase during the 

optimization.  Unfortunately, it is much easier to generate good initial geometries for 

stable structures (geometry minimization) than it is for transition states. Transition state 

structures are sometimes counterintuitive, and are rarely predictable using simple force-

field-type approaches.
4
 This has motivated an entirely different approach to transition-

state optimization, where entire reaction paths
5-21

 (or at least the reactant and 

product
22,23,24

) or even entire regions of the PES are computed
25-35

 in pursuit of the 

transition state. Such methods are more robust, but their cost grows exponentially with 
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the dimensionality of the problem, and often require many thousands (or more) 

evaluations of the PES. In this work, we are primarily focussed on the conventional 

transition-state-finding approaches. 

Failures in transition-state optimization usually occur because (1) the underlying 

quantum chemistry method fails to compute the gradient, (2) the system of internal 

coordinates, or a move computed in internal coordinates, is unphysical, (3) the 

(approximate) Hessian matrix is inaccurate, leading to poor optimization steps, (4) the 

method converges, but converges to a transition state other than the one of interest (e.g., 

one corresponding to a conformational change, instead of bond-breaking) or to a 

stationary point on the PES with more (or less) than one imaginary frequency. The first 

problem is more severe for transition states because failures in self-consistent-field 

methods are most probable when the HOMO-LUMO gap is small, and this is more 

probable near transition states, which often correspond to avoided crossings between 

ground- and excited-state potential energy surfaces. This problem is beyond the scope of 

this work. The second problem can be solved using the robust redundant internal 

coordinate methods we have recently presented.
36

 In this work, we address the third and 

fourth problems by having the user specify certain key chemical coordinates associated 

with the reaction of interest; we then evaluate the elements of the Hessian that are 

associated with these coordinates accurately (using finite differences). A reliable 

approach for automatically selecting the chemical coordinates will be presented in chapter 

6. 
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The basic idea of using finite-difference information for coordinates associated 

with the chemical reaction is not new. We have previously implemented such an approach 

using the z-matrix or Cartesian coordinates of reactive atoms;
37

 we use redundant internal 

coordinates in this work. The QST2 and QST3 methods of Peng and Schlegel are 

similar,
23

 as are various approaches in the family of dimer methods.
38,39

 (Both these 

methods selectively refine the portion of the quasi-Newton Hessian associated with the 

reaction coordinate.) 

 While the focus of our research is on developing robust transition state 

optimization approaches, we wish to do so with minimal loss of efficiency. The efficiency 

of transition-state optimization methods is controlled by several factors, including the 

choice of internal coordinates (we use redundant internal coordinates), the choice of 

initial Hessian (we use the exact Hessian to initialize the algorithm), the choice of quasi-

Newton Hessian updating method, and the method of step-size control. We explore 

several different Hessian-updating approaches in this work, all of which use finite 

differences in a reduced-dimensional space associated with the key chemical coordinates 

governing the reaction of interest. We explore three trust-radius-based approaches 

(including the popular rational function optimization method) for controlling the step-

size.  

In section 3.3, we present the details of our new approach to transition-state 

optimization, as implemented in a program we call Saddle. Section 3.4 is a brief overview 

of Saddle, leading into section 3.5, where different variants of Saddle are tested against 

the standard Berny transition-state optimizer,
40

 as implemented in the Gaussian 
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program.
41

 In this chapter, we consider a set of twenty reactions, including some of the 

frequently tested (and quite challenging) reactions proposed by Baker.
42

 We find that our 

best methods are more robust (they converge more frequently) than the Berny optimizer, 

but they require a few additional gradient evaluations. Chapter 4 considers a systematic 

test for many different initial guesses (of various quality) and a diverse test-set of 131 

reactions. Unless otherwise noted, all quantities in this chapter are reported in atomic 

units. 

 

3.3 Key Components of the Saddle Algorithm  

A. Initialization 

The efficiency and robustness of transition-state optimizers is sensitive to the 

initial guess for the transition-state structure and the initial choice for the Hessian matrix. 

Finding a good initial guess is particularly difficult for large and floppy molecules, 

because there are many low-frequency motions and low-barrier pathways on the PES 

associated with conformational changes, rather than chemical reactions. We recently 

developed a very efficient approach for constructing initial guesses for transition-state 

optimization based on interpolating between the reactant and product structures in 

redundant internal coordinates.
43

 This approach gives good estimates for the reactions 

considered here. 

Our method requires the user to provide an initial guess for the molecular 

structure of the transition state in Cartesian coordinates, along with an initial guess for the 

Hessian in Cartesian coordinates. In the tests reported here, we always initialize the 
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method by calculating the exact Hessian for the initial structure. We have observed, 

however, that the method works equally well when initializing with Hartree-Fock 

calculations in a minimal basis set, and that it converges, albeit more slowly, when the 

initial Hessian is taken from a semiempirical method. We will present our results for 

initial Hessian approximations in chapter 5. 

 

B. Choice of robust redundant internal coordinates 

The efficiency of geometry optimization methods is sensitive to the choice of 

coordinate-system for the molecular potential energy surface.
44,45

 The most 

straightforward system of coordinates, and the one to which most computational chemists 

revert when all else fails, is the system of Cartesian coordinates constructed from the Xα, 

Yα, and Zα coordinates for each atom α.  Geometry optimization in Cartesian coordinates 

is relatively inefficient, and so more natural systems based on internal coordinates, 

including internuclear (bond) distances, bond angles, and dihedral rotations around bonds, 

are often used. The Z-matrix is the conventional system of internal coordinates.
46

 The 

problem with the Z-matrix approach is that there are many different Z-matrices for the 

same molecular structure, depending on the order in which the atoms are listed, and the 

performance of geometry optimization methods deteriorates if a poor atom-ordering is 

chosen.  For molecules containing rings, there is no way to treat each atom in the ring 

equivalently using a Z-matrix; Z-matrices work so poorly in this case that Cartesian 

coordinates are usually better.
44
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Following the work of Pulay, in this work we use a system of redundant internal 

coordinates.
47

 In this approach, we overdetermine the molecular geometry by specifying 

even more bond distance, angles, and dihedral torsions than are required to fully specify 

the molecular geometry. Overall, redundant internal coordinates is the most efficient 

coordinate system for geometry optimization.48-63 

The redundancy of coordinates can either be dealt with directly or the redundancy 

can be eliminated by selecting a linearly independent set of 3N – 6 (3N – 5 for a linear 

molecule) coordinates; these coordinates are generally linear combinations of the 

fundamental, chemically intuitive, redundant internal coordinates. In our work, we have 

tried both approaches, and the algorithm we present does not seem to be especially 

sensitive to the approach we take. Our simplest method, which is presented in this 

chapter, is based on a system of coordinates that is very closely related to the delocalized 

internal coordinates that Baker proposed,
50

 partly as a computationally and 

algorithmically feasible approach to Pulay’s natural internal coordinate set.
47

 

The system of robust redundant internal coordinates we use is fully described in 

chapter 2. Here we mention only its salient features. It includes (covalent) bond lengths, 

hydrogen-bond lengths, internuclear distances between fragments, and end-to-end 

internuclear distances for linear chains. Bond-angle and dihedral-angle coordinates are 

built using these types of bonds. The specific criteria for defining these coordinates is 

based on the system of redundant internal coordinates developed by Peng and Schlegel 

for the Gaussian program,
55

 and augmented by auxiliary bonds (to describe 1,3 

interactions), as proposed by Bakken and Helgaker for the Dalton program.
4
 Auxiliary 
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bonds are usually not included in bond-angles or dihedral-angles, but we include angle-

coordinates using auxiliary bonds when this is needed to ensure a complete set of 3N – 6 

(or 3N – 5) coordinates.  Our minor revisions to Bakken and Helgaker’s protocol include 

an algorithm for assigning interfragment bonds that ensures that the relative orientation of 

the fragments is always fully specified and the decision to add end-to-end distances for 

molecules containing long linear chains.  

All interatomic lengths are measured in atomic units (1 Bohr = 0.52917725 

Angstroms). Rather than using bond angles directly as internal coordinates, we use the 

cosine of the bond angles. This improves the robustness of the program when  αβγ is 

nearly linear. 

The most important change in our robust redundant coordinate system is the way 

we define dihedral angles. For each non-auxiliary bond, βγ, the atom α that is bonded (not 

with an auxiliary bond) to β and bonded to the most other atoms besides β is identified.  

Then all possible dihedrals angles, αβγ*, where * is a wild card referring to any atom that 

is bonded to γ by a non-auxiliary bond are added to the system of internal coordinates. 

Similarly, the dihedrals defined by *βγδ are included, where δ is the most-connected atom 

that is bonded to γ. This set of dihedral angles tends to be larger than the set used by 

Bakken and Helgaker, but except for very large molecules, this does not present a 

problem.  

The problem of linear dihedrals refers to the fact that when either the bond angle 

 αβγ or the bond angle  βγδ is nearly linear (e.g., sin( αβγ) ≈ 0), then the dihedral angle is 
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ill-defined since a small change in the Cartesian coordinates can cause an enormous 

change in the dihedral angle. To avoid numerical difficulties associated with linear 

dihedrals, instead of describing torsions with dihedral angles, we use the alternative 

dihedral coordinates, 

 ˆ ˆ
βα γδ⋅R R   (3.1) 

 ( )ˆ ˆ ˆ
βγ βα γδ⋅ ×R R R   (3.2) 

where  

 ˆ β α

αβ

β α

−
=

−

R R
R

R R
  (3.3) 

is the unit vector connecting atoms α and β. Using the robust dihedral descriptors from 

Eqs. (3.1) and (3.2) prevents many of the problems other approaches have when 

converting internal coordinates to Cartesian coordinates. In all of our testing, we have 

never observed a problem with coordinate transformation between robust redundant 

internal coordinates and Cartesian coordinates. 

 

C. Coordinate transformations between Cartesian and redundant internal 

coordinates 

The Wilson B matrix is the Jacobian matrix for the transformation from the 

3Natoms Cartesian coordinates, denoted { } atoms3

1

N

j j
x

=
, to the Nint internal coordinates, denoted 

{ } int

1

N

i i
q

=
.  
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Computing the elements of the Jacobian matrix, 

 i

ij

j

q
b

x

∂
=

∂
 (3.4)    

is a straightforward but tedious exercise in trigonometry. The B matrix is rectangular 

(usually there are far more rows than columns) and singular because the molecule’s 

geometry is specified by just 3Natoms – 6 (3Natoms – 5 for a linear molecule) internal 

coordinates. The nonsingular vectors of B are called the delocalized internal 

coordinates.
50,52

  

 By definition, the Wilson B matrix allows one to express a small change in 

Cartesian coordinates as a small change in internal coordinates,  

 δ δ=B x q  (3.5) 

The inverse of this transformation is nonunique because the redundant internal 

coordinates do not specify the location or orientation of the molecule, while the Cartesian 

coordinates do. We decided that a change in internal coordinates should preserve the 

position and orientation of the molecule and, therefore, that the smallest Cartesian move 

that is consistent with a given perturbation of the internal coordinates should be preferred. 

This suggests that we should prefer the inverse transformation with minimum norm, 

which is the Moore-Penrose pseudoinverse of B, 

 δ δ+ =B q x                                                             (3.6) 

 Not every change in redundant internal coordinates is physically allowable. For 

example, in a three atom ring, most changes in internal coordinates will violate the 

constraint that  αβγ +  βαγ +  βγα ≠ 180°. We can project an unrealizable change of 



Ph.D. Thesis – Sandra Rabi; McMaster University – Chemistry and Chemical Biology 

126 

 

redundant internal coordinates into its realizable component by first converting the 

change to Cartesian coordinates, and then converting it back. I.e.,  

 δ δ=q P qɶ   (3.7) 

with 

 +=P BB  (3.8) 

In numerical optimization, we also need expressions for the derivatives of the 

molecular potential energy with respect to Cartesian and internal coordinates.  We denote 

the energy gradients in Cartesian and internal coordinates as gx and gq, respectively. 

Similarly, we denote the second-derivative matrices (Hessians) in Cartesian and internal 

coordinates as Hx and Hq, respectively. Then, from the definition of B, 

 
T

x q=g B g  (3.9) 

 
T

x q= +H B H B K
,
 (3.10) 

where K is given by, 

 jk q ijki
i

K b' =  ∑ g

,

 (3.11) 

where [gq]i denotes the i
th

 component of the gradient in internal coordinates and  

 
2

iji
ijk

j k k

bq
b

x x x

∂∂
′ ≡ =

∂ ∂ ∂
  (3.12) 

denotes the derivative of an element of the Wilson B matrix. Applying B
+
 to equations 

(3.9) and (3.10) gives equations for energy derivatives in internal coordinates, 

 ( )T

q x

+

=g B g  (3.13) 
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 ( ) ( )T

q x

+ += −H B H K B  (3.14) 

These expressions are required because quantum chemistry packages compute derivatives 

in Cartesian coordinates. All of the preceding equations are standard,
4,49

 and are included 

here only for the sake of completeness.  

 Because the mapping between Cartesian and internal coordinates is nonlinear, 

Eqs. (3.5) and (3.6) are only valid for infinitesimal geometric changes. Converting a point 

in Cartesian coordinates to the corresponding point in the space of redundant internal 

coordinates, q(x), is a straightforward exercise in trigonometry. The inverse 

transformation is not always defined, because there is only a (3Natoms – 6)-dimensional 

manifold of realizable redundant internal coordinates. If one starts with a point on this 

manifold, qk, and takes the noninfinitesimal step mandated by some optimization 

procedure,  

 
1k k k+ = +q q s

,
 (3.15) 

the resulting point will rarely be on the manifold. That is, the set of Cartesian coordinates 

computed using Eq. (3.6), 

 k k

+= +x x B s  (3.16) 

will usually not exactly correspond to the target set of internal coordinates. We choose 

xk+1 by finding the point, q(x), on the manifold of realizable internal coordinates that is 

closest to the target value, qk+1 from Eq. (3.15). To do this, we use Eq. (3.16) as an initial 

guess for xk+1 and then minimize the distance in redundant internal space, 

 � ( )
2

1 1arg min  k k+ +≡ −
x

x q x q
.
 (3.17) 
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Details of this procedure can be found in chapter 2. Equation (3.17) is more reliable than 

the conventional iterative procedures for converting from redundant internal to Cartesian 

coordinates.
4,47,49,50,54,55,64

 

 

D. On-the-fly addition of new internal coordinates 

Occasionally a change in molecular geometry during the optimization process 

causes the set of robust redundant internal coordinates to change (cf. 3.3.B and chapter 2). 

We never remove internal coordinates during the optimization, though we have observed 

that having excess redundant internal coordinates can cause performance to deteriorate 

slightly. However, when our coordinate-selection procedure suggests that a new internal 

coordinate should be added, we add it.  

When new coordinates are added, we need to compute the Hessian in the new set 

of internal coordinates. To do this, we use 

 ( ) ( )( ) ( ) ( ) ( )( ) ( )( )new new old old new old
T

q q

+ +

=H B B H B B   (3.18) 

This is equivalent to transforming the Hessian from the old set of internal coordinates to 

Cartesian coordinates, and then transforming the Cartesian Hessian to the new set of 

redundant internal coordinates. In performing this transformation, there is the possibility 

of discarding useful information that has been built up from the quasi-Newton updates. 

This motivated our decision to allow important internal coordinates to be added during 

the course of the optimization, but never to allow coordinates (which might then need to 

be added, again, in a later iteration) to be removed. 
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E. “Reduced” coordinates to describe key chemical changes 

Most chemical reactions can be characterized by a few key internal coordinates, 

typically those associated with bond-breaking and bond-forming processes, as well as 

conformational changes that are tightly coupled to the reaction coordinate. This has 

motivated us, and others, to use reduced-dimensionality potential energy surfaces (in 

which the potential energy is minimized with respect to all of the “spectator coordinates”) 

to characterize chemical reactions.
32,65-68

 We adopt the same perspective here:  the user is 

expected to identify key internal coordinates that are involved in the elementary chemical 

reaction whose transition-state is being targeted. Our goal is to ensure that the PES is 

accurately described for the coordinates. We will achieve this by using finite differences 

to approximate the elements of the Hessian matrix associated with these key coordinates.  

If the user does not wish to manually choose internal coordinates, she can provide 

the molecular structures of the reactant and product. A set of internal coordinates is 

generated by the union of the sets of internal coordinates for the reactant, product, and 

transition-state-guess structures. An interatomic distance is selected as a reduced 

coordinate if its length changes by more than half the sum of the covalent radii of its 

composing atoms when comparing any two of the three available structures 

(reactant/product, reactant/transition-state guess, or product/transition-state guess). An 

angle,  αβγ, is treated as a reduced coordinate if (a) atoms α, β, and γ are all involved in at 

least one reduced bond-length coordinate and (b) the angle changes by at least 30° 

between the reactant, product, and transition-state structures. We could not find a simple 

and reliable criterion for selecting dihedral angles, so these must be manually selected.  
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We will report results on the automatic generation of reduced coordinates 

separately. For the reactions considered in this chapter, all the reduced coordinates were 

selected manually. (The reactions considered, and their associated reduced coordinates, 

are presented in Appendix 3.2.) After selecting the R reduced coordinates, we reorder the 

list of redundant internal coordinates so that they appear first. 

 

F. The V matrix of delocalized reduced and internal coordinates 

The geometry optimization method we have developed uses a set of 3Natoms – 6 

(3Natoms – 5 for a linear molecule) nonredundant delocalized orthogonal internal 

coordinates; this is analogous to the set proposed by Baker,
50,52

 but is different because 

the reduced coordinates are treated separately. The nonredundant coordinates, denoted

( ){ }
( )atoms3 6 5

1

N
j

j
v

−

=
, are linear combinations of the redundant internal coordinates,  

 
( ) ( )

int

1

N
j j

i i

i

v v q
=

=∑   (3.19) 

The Jacobian for the transformation from delocalized internal coordinates to redundant 

internal coordinates is a Nint × 3Natoms – 6(5) dimensional matrix, denoted 

 
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

atoms

atoms

atoms

int int int

3 6(5)1 2

1 1 1

3 6(5)1 2

2 2 2

3 6(5)1 2

N

N

N

N N N

v v v

v v v

v v v

−

−

−

=  
 
 
 
 
 
 
 

V
⋯

⋯

⋮ ⋮ ⋮

⋯

  (3.20) 
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 The first step in the construction of the V matrix is the generation of delocalized 

internal coordinates. We choose the 3Natoms – 6(5) non-singular vectors from the singular 

value decomposition of the Wilson B matrix, which we denote 

 ( )
int

( ) ( ) ( ) ( )

1 2 atoms, ,..., 1, 2,...,3 6 5
T

i i i i

Na a a i N = = − a  (3.21) 

Though our procedure for generating these coordinates is different, these vectors span the 

same space as Baker’s delocalized internal coordinates because they are eigenvectors of 

BB
T
.
50,52

 

Making a small change in one of the reduced redundant internal coordinates, 

without changing any of the other internal coordinates, usually gives an unrealizable set 

of redundant internal coordinates. Therefore, we first consider only realizable 

perturbations of the reduced coordinates (cf. Eqs. (3.7) and (3.8)) 

 
( ) ( ) ( )ˆ ˆ 1,2,

j j j
j R

+= = =b Pe BB e …   (3.22) 

Here ( )ˆ j
e  is a unit vector with elements ijδ ; it is zero except for a 1 in the j

th
 position. 

(Remember that we chose to order the internal coordinates with the reduced coordinates 

appearing first.) 

 The vectors b
(j)

 are not orthogonal. We orthogonalize them by forming the 

Grammian, 

 
(1) (1) (1) (2) (1) ( )

(2) (1) (2) (2) (2) ( )

( ) (1) ( ) (2) ( ) ( )

R

R

R R R R

=  
⋅ ⋅ ⋅ 

 ⋅ ⋅ ⋅
 
 
 

⋅ ⋅ ⋅ 

G
b b b b b b

b b b b b b

b b b b b b

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 (3.23) 
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An orthogonal basis for the reduced space can be constructed from the Grammian’s 

eigenvectors, Gg
(j)

 = λ
(j)

g
(j)

. Specifically the delocalized internal coordinates 

corresponding to the reduced space are defined as 

  
( ) ( ) ( )

1

1, 2, ,
R

j j r

r

r

g j R
=

= =∑v bɶ …  (3.24) 

If the Grammian has zero (or negligibly small) eigenvalues, this indicates that the reduced 

space has redundancies. In this case, we reduce the dimensionality of the reduced space 

by including only the g
(j)

 with nonzero eigenvalues. 

 The projection operator onto the reduced space is: 

 ( )( ) ( ) ( ) ( )

reduced

1

R
j j r r

r=

= ⋅∑P a a v vɶ ɶ  (3.25) 

and the projection onto the non-reduced space is therefore 

 ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

reduced

1

R
j j j j r r

r=

≡ − = − ⋅∑d I P a a a v v  (3.26) 

The vectors d
(j)

 are not orthogonal. We orthogonalize them by forming the Grammian, 
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( ) ( ) ( ) ( )
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3 6(5)(1) (1) (1) (2) (1)
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⋯

⋯
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⋯

 

            (3.27) 
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The Grammian has R zero eigenvalues. Using only the eigenvectors, Ff
(j)

 = λ
(j)

f
(j)

, of the 

Grammian with nonzero eigenvalues, we can construct an orthogonal basis for the 

nonreduced space,  

( ) ( )
atoms3 6(5)

( ) ( )

atoms

1

1, 2, 3 6(5) ; 0
N

j jR j i

i

i

j N R λ
−

+

=

= = − − >∑v f dɶ …  

(3.28) 

At each iteration in the optimization process, the Vɶ  matrix constructed from the 

vectors in Eqs. (3.24) and (3.28) is constructed using the preceding procedure, Eqs. (3.20)

-(3.28). The specific choice of basis for the nonredundant delocalized orthogonal 

coordinates is almost arbitrary, so after we have determined Vɶ , we allow rotation of the 

basis so that the alignment with the previous V matrix is maximized. That is, we find the 

orthogonal matrix, Q, for which 

 

 ( )

{ }
�

( )( ) ( )( )min old old
arg min

T T

T

= =

≡ − −
Q QQ Q Q I

Q VQ V VQ Vɶ ɶ  (3.29) 

This is a Procrustes problem. It is solved by maximizing the overlap between the basis 

sets. Using the singular-value decomposition of the overlap matrix 

 ( )oldT T= =S V V U Wɶ Σ ,  (3.30) 

the optimal orthogonal matrix is 

 ( )min T=Q UW   (3.31) 

and the maximally aligned basis is 

 =V VQɶ .  (3.32) 
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This procedure can be criticized because it allows the reduced coordinates and the 

nonreduced coordinates to mix. We did not observe this to be problematic. 

 At each iteration, we map the molecular structure in redundant internal 

coordinates, q, onto a set of nonredundant delocalized internal coordinates, v, that are 

linear combinations of the redundant internals. That is, for this iteration, we consider V to 

be fixed, rather than as a function of q.  This makes the conversion of gradients, Hessians, 

and steps from redundant internals to nonredundant internals straightforward.  

Specifically, we have 

 
T

v q=g V g   (3.33) 

 q v=g Vg   (3.34) 

 
T

v q=H V H V   (3.35) 

 
T

q v=H VH V   (3.36) 

 T∆ = ∆v V q   (3.37) 

 ∆ = ∆q V v   (3.38) 

If we considered V to be a function of q within each iteration, then transforming a step 

from v-coordinates to q-coordinates would require a similar procedure to Eq. (3.17). 

More problematic, we would need to construct a matrix analogous to the K matrix in Eq. 

(3.14), requiring us to compute  

 
( )2 iT

k j k

v

q q q

∂ ∂
=

∂ ∂ ∂

V
.  (3.39) 
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This could be computed, but we view it as an undesirable complication. Therefore we 

merely treat V as a computational tool for specifying a system of nonredundant 

coordinates at any given step. As discussed in the next subsection and in Appendix 3.1, 

the dependence of V on molecular geometry will be approximately accounted for in the 

quasi-Newton updating procedure; it is only when (a) we are initializing the Hessian and 

(b) when we are adding new coordinates to the Hessian (cf. Section 3.3.D) that Eq. (3.35) 

is used.  

 

G. Updating procedure for the Hessian matrix:  The secant condition in v-

coordinates. 

As in other quasi-Newton methods, in our method the Hessian is updated using 

the differences in gradient-calculations from previous iterations. Since our optimization 

procedure works in the v-coordinates, we need to derive a secant condition for updating 

Hv. As explained in Appendix 3.1, this is not entirely straightforward because V depends 

on the molecular geometry. In our work, we have selected the secant condition, 

 ( ) ( ) ( ) ( )( )old old old old old old
T T T

v v v q
δ δ δ δ

+

≈ − +H v g V B B Vg B g ,  (3.40) 

because we judged it to be among the simplest of the reasonable choices.  

H. Updating procedure for the Hessian matrix:  Finite differences 

Our program is based on the idea that the key to effective transition-state 

optimization is to provide high accuracy for the Hessian elements associated with the key 

chemical modes, the reduced coordinates 
( ){ }

1

R
r

r=
v . (This idea was originally explored in 
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ref. 37.) We therefore use finite differences to approximate the first R rows (and columns, 

by symmetry) of the v-coordinate Hessian. The finite-difference approximation for the r
th

 

row/column of the Hessian is given by the secant update formula, (3.40), using the 

perturbation δv = εer, where er is a unit vector that is zero except for the value one in the 

r
th

 position. Specifically, 

 1,2,

T

T Tv
r v q

d d d
r R

d d dε ε ε
+
  

= − + =     

g V B
He V B B g g …    

(3.41) 

where the  matrices and vectors on the right-hand-side of the equation are computed at the 

unperturbed geometry,  and all the derivatives that appear are approximated with the 

finite difference approximation,  

 
( ) ( ) ( )r rd

d

ε ε

ε ε

+ + −
=

f v e f v e f v
.  (3.42) 

The results we present in this chapter use ε = 0.001.  

 Because the elements of the Hessian corresponding to the reduced coordinates are 

often quite accurate, it is inefficient, and unnecessary, to update the Hessian with finite-

differences at each iteration. Therefore, we only update the Hessian with finite differences 

for reduced coordinates if 

 
( )

atoms3 6(5)

r v

v
g

N
ω>

−

g
  (3.43) 

and  

 ( ) ( ) ( )1 1k k k

v r v r v rυ− −
− >H e H e H e   (3.44) 



Ph.D. Thesis – Sandra Rabi; McMaster University – Chemistry and Chemical Biology 

137 

 

where 
( )1k

v

+
H   and 

( )k

vH  are the Hessian approximations for the next iteration and from the 

present iteration, respectively. The user parameters ω and υ should be optimized, but we 

have not done this because the ω = υ = 1.0 has worked satisfactorily in all our tests. 

 Criterion (3.43) is important because if the gradient in a specific direction is lower 

than the root-mean-square gradient, then the optimization in that direction is not 

hindering the overall rate of convergence, and so no intervention is needed. Criterion 

(3.44) reflects the fact that when the quasi-Newton update for a row of the Hessian is 

relatively small, the quasi-Newton update for that row of the Hessian is probably 

sufficiently accurate, and the computationally expensive finite-difference approximation 

can be avoided. With these criteria and reasonable values for the parameters ω and υ, we 

notice that finite-difference updates are relatively common during the first few iterations, 

but very rare after that. 

 

I. Updating procedure for the Hessian matrix:  Quasi-Newton methods 

After each new gradient calculation, the v-coordinate Hessian is updated using a 

quasi-Newton updating formula. The ingredients in this update are the last step taken by 

the algorithm, 

 
( ) ( ) ( )1k k k

v

+
= −s v v   (3.45) 
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and the secant condition for updating the Hessian, 
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  (3.46) 

We have considered more than 100 different quasi-Newton updates; results of those 

comparisons will be reported separately. In this chapter, we consider only four updates:  

the simple-rank-one update (SR1)
69,70
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  (3.47) 

 

the Powell-symmetric-Broyden update (PSB)
70,71
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the Broyden-Fletcher-Goldfarb-Shanno update (BFGS)
72-76

 

 ( ) ( )

( ) ( )( )
( )( ) ( )

( ) ( )( ) ( ) ( )( )
( )( ) ( ) ( )

1

T T
k k k k k k

v v v v v vk k

v v T T
k k k k k

v v v v v

+
= + −

y y H s H s
H H

y s s H s

  (3.49) 

 

 and Bofill’s 1994 update (Bofill),
77

 which mixes the SR1 and PSB updates 

 
( ) ( ) ( ) ( )1 +1 1

Bofill SR1 PSB1
k k kψ ψ+ +

= − +H H H   (3.50) 

 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )
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2 2
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1

k k k k k k k k
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k k k k k k k k

v v v v v v v v

ψ
⋅ − × −

= − =
− −

s y H s s y H s

s y H s s y H s
  (3.51) 

ψ is the square of the sine of the angle between the step, 
( )1k

v

+
s , and the error in the old 

Hessian’s approximation to the change in gradient that accompanies the step. The form of 

the SR1 update in Eq. (3.47) is designed to avoid divide-by-zero errors. 

 The SR1 and PSB updates do not preserve positive (semi)definiteness in the 

Hessian approximations; they are therefore appropriate for finding transition states.
77

  The 

SR1 update, in particular, has the desirable characteristic of leading to very accurate 

approximations to the Hessian,
78

 although it tends to converge more slowly than rank-two 

updates. The Bofill update is a good compromise, performing better than either PSB or 

SR1.
77

   

 The BFGS update maintains positive (semi)definiteness of the Hessian. Moreover, 

the mathematical derivation of the BFGS quasi-Newton update is invalid when the 

curvature condition, 
( ) ( )

0
k k

v v⋅ >y s  is violated and the BFGS update is numerically ill-
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conditioned when 
( ) ( )

0
k k

v v⋅ ≈y s . The curvature condition and positive-definiteness of the 

Hessian is maintained in the damped-BFGS procedure.
79,80

 For transition-state 

optimization, however, we wish to allow violations of the curvature condition for motions 

associated with the transition-state. We therefore introduce a new damped-BFGS 

procedure, where only the non-reduced coordinates are included in the damping 

procedure.  The damped BFGS update defines an effective y-vector, 

 
( ) ( ) ( ) ( ) ( )k k k k

v v v v= + −r y I H sΘ Θ   (3.52) 

in terms of the diagonal matrix Θij = δijθi. The elements corresponding to the reduced 

coordinates are never damped, 

 1 1, 2, ,
i

i Rθ = = …   (3.53) 

The non-reduced coordinates, i > R are damped according to the formula 
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

∑

  (3.54) 

The damped-BFGS update is obtained by replacing 
( )k

vy  with 
( )k

vr  in the BFGS update 

formula, Eq. (3.49). 

 Especially when using updates based on the BFGS formula, we observed that the 

quasi-Newton update often caused large changes in elements of the Hessian 

corresponding to the reduced coordinates. We wish to prevent the quasi-Newton updates 

from making large changes to these elements of the Hessian, which have usually been 
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fairly accurately determined by the finite-difference procedure. Accordingly, the 

row/column of the Hessian corresponding to the reduced subspace is only updated if the 

following condition is satisfied: 

 ( ) ( ) ( )1 1
1, 2, ,

k k k

v r v r v r r Rκ− −
− < =H e H e H e …

.
 (3.55) 

Optimal values for the user-parameter κ should be determined, but we have not done this. 

However, choosing κ = 1 has sufficed for our tests.  

 

J. Updating procedure for the Hessian matrix:  Eigenstructure Modification 

At the transition state, the Hessian should have exactly one negative eigenvalue. 

Moreover, we expect that the eigenvector that corresponds to that eigenvalue will feature 

motions of the reduced coordinates, as these are the key coordinates associated with the 

chemical change. In cases where the approximate Hessian matrix does not have this 

structure, either because the molecular structure under consideration is far from the 

transition state or because the Hessian is inaccurate, we modify the Hessian to force this 

structure. (This revision is similar, conceptually, to eigenvector-following methods.81-84)  

First we ensure that the non-reduced block of the Hessian, is positive semidefinite. 

If the non-reduced block of the Hessian is not positive semidefinite, we replace it by the 

nearest positive semidefinite matrix. This is achieved by diagonalizing the non-reduced 

Hessian, setting all negative eigenvalues to zero, and then reconstructing the non-reduced 

Hessian. 

Second, we ensure that the reduced block of the Hessian has one, sufficiently 

negative, eigenvalue. The reduced-Hessian is diagonalized, and if the smallest eigenvalue 
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is larger than a threshold, λn, we reset the eigenvalue to that threshold. (We have not 

optimized the choice of this parameter, instead opting for the value λn = –0.005 a.u., 

which we believe to be reasonable.)  If the reduced-Hessian has more than one negative 

eigenvalue, all but the smallest (most negative) eigenvalues are set equal to zero. The 

reduced Hessian therefore has exactly one negative frequency, and that frequency is less 

than or equal to λn. 

We then diagonalize the entire Hessian matrix and examine its eigenstructure, 

 ( )
3 6(5)

1

N
k T

v i i i

i

λ
−

=

= ∑H χ χ ,  (3.56) 

where it is assumed that the eigenvalues, λi and their associated normalized eigenvectors, 

ξi, are listed in nondecreasing order, 
atoms1 2 3 6(5)Nλ λ λ −≤ ≤ ≤⋯ . We wish to have one 

eigenvalue that is less than or equal to λn, and 3Natoms – 7(6) eigenvalues that are greater 

than or equal to a positive threshold, λp. (We have chosen λp = 0.005 for our numerical 

tests.)  I.e., the correct eigenstructure is 

 
1

atoms2,3, 3 6(5)

n

i p
i N

λ λ

λ λ

≤

≥ = −…
  (3.57) 

In most cases we observe that the Hessian matrix has an acceptable eigenstructure. 

  If the eigenvalues of the Hessian do not satisfy Eq. (3.57), but the Hessian has one 

negative eigenvalue, we modify the eigenstructure by making the replacements 

 
( )

( )
1 1

atoms

min ,

max , 2,3, ,3 6(5)

n

i i p
i N

λ λ λ

λ λ λ

=

= = −…
  (3.58) 

in Eq. (3.56). 
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 If the Hessian has multiple negative eigenvalues, we need to select one as the 

candidate for the negative-curvature direction. To do this, for each eigenvector with a 

negative eigenvalue, we compute the fraction of the eigenvector that resides in the 

reduced space,  

 
2

;

1

R

i i r

r

p χ
=

=∑   (3.59) 

The eigenvector that has the largest value of pi is chosen to retain a negative eigenvalue; 

if its eigenvalue is larger than the negative threshold, then its eigenvalue is replaced by λn. 

The other eigenvectors will have their corresponding eigenvalues changed to max(λp,λi).  

 If the Hessian has no negative eigenvalues, we compute the fraction of each 

eigenvector that lies in the reduced space using Eq. (3.59). Among the eigenvectors that 

are predominately in the reduced space (pi ≥ 0.5), we select the one with the smallest 

eigenvalue. The eigenvalue of this eigenvector is set equal to the negative threshold; the 

other eigenvalues are forced to be no smaller than the positive threshold. 

 

K. Step direction:  Scaled-Newton or rational function step? 

Given an (approximate) Hessian matrix with the correct eigenstructure and the 

gradient of the molecular potential energy for a particular molecular geometry, Newton’s 

method predicts that the transition state—the geometry that has zero gradient—is located 

at 
( ) ( ) ( )1k k k

v

+
= +v v s , where 

( )k

vs  is obtained by solving the linear equations, 

 
( ) ( ) ( )k k k

v v v= −H s g   (3.60) 
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In terms of the eigenvectors and eigenvalues of the Hessian, the Newton step can be 

expressed as 

 ( )
( )3 6(5)

1

kTN
k i v

v i

i i
λ

−

=

 
= −   

 
∑

g
s

χ
χ   (3.61) 

Taking the Newton step would lead to the exact transition-state if (a) the Hessian were 

computed exactly, instead of approximately and (b) cubic and higher-order terms in the 

Taylor expansion of the molecular potential energy surface were negligible. Neither of 

these assumptions is true. The cubic and higher-order terms are negligible, however, if the 

stepsize, ( )k

vs , is short enough. This motivates the idea of a trust radius:  one uses the step 

from Eq. (3.60) as long as the step lies within a spherical region, defined by the trust 

radius, τ, centered on the current molecular conformation. When the stepsize obtained 

from Eq. (3.60) is larger than the trust radius, the step should not be trusted because the 

quadratic approximation to the molecular potential energy surface is not reliable for steps 

that large. Instead, we should make the best-possible-step with stepsize equal to the trust 

radius. We considered two different definitions for the best-possible-step. 

 

1. Trust-region image potential (TRIM) (Scaled Newton step) 

 The trust-region image potential (TRIM) step is obtained by increasing the 

magnitude of the eigenvalues by the amount 0λ ≥ɶ ,
85,86

 

 ( ) ( )
( ) ( )3 6(5)

1
1

21

k kT TN
k v i v

v i

i i

λ
λ λ λ λ

−

=

   
= − −      − +   

∑
g g

s ɶ
ɶ ɶ

χ χ
χ χ   (3.62) 
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until the stepsize matches the trust radius,  

 
( ) ( )

2
2k

v λ τ=s ɶ   (3.63) 

Eq. (3.63) is a one-dimensional nonlinear equation which is easy to solve using a method 

like Ridder’s method.
87

 

 

2. Rational function optimization (RFO) 

   The rational function optimization (RFO) step uses a Pade approximant to 

estimate the effects of higher-order terms in the Taylor series.
38,77,86,88-91

 It is a refinement 

of Eq. (3.62) because it uses separate shifts for  the negative and positive eigenvalues, 

 
( ) ( )

( )

( )

( )

( )

3 6(5)

1
1

21

k kT TN
k v i v

v i

ip i n

ς
λ λ ς λ λ ς

−

=

   
= − −     − +  

∑
g g

s
ɶ ɶ

χ χ
χ χ   (3.64) 

The eigenvalue-shift parameters are obtained by solving the generalized eigenvalue 

problems 

 ( ) ( ) ( )

1 1

1

0

0 10

j j jT

T

λ
ςλ

− − −
=   

   
   

  

u u
g
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χ

χ

  (3.65) 
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 (3.66) 
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(This assumes a diagonal scaling matrix; this is not essential but the mathematics is more 

difficult in other cases.) The shift-parameter for the negative curvature mode is the 

highest eigenvalue of Eq. (3.65); ( ) ( )( )max 0n jλ ς λ −
= >ɶ ; the shift parameter for the 

positive-curvature modes is minus the lowest eigenvalue of Eq. (3.66), 

( ) ( )( )min 0p jλ ς λ +
= − >ɶ . The value of ς is determined by requiring that the stepsize is 

equal to the trust radius, as in Eq. (3.63). 

 

L. Step-size determination:  Trust radius methods 

The length of the steps computed by TRIM or RFO are limited by a trust radius, 

which should be chosen to be large enough for rapid convergence but small enough to 

ensure the accuracy of the quadratic approximation to the potential energy surface. In 

order to ensure that the step never gets too large or too small, we define a minimum and 

maximum trust radius, 

 max atoms  a.u.Nτ =    (3.67) 

 1
min atoms10

 a.u.Nτ =    (3.68) 

Our initial trust radius was initial atoms.35  a.u.Nτ = .    

 In our approach, we start by comparing the Cartesian gradient before and after the 

step. If the magnitude of the gradient has decreased, ( ) ( )1k k

x x

+
<g g , then we accept the 

proposed step and update the trust radius using either (a) the energy-based criterion or (b) 

the gradient-based criteria described in the following paragraphs.  If the magnitude of the 
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gradient increases, we decrease the trust radius by a factor of four, τnew = τold/4. We then 

compute a step with this new shorter length, hoping that the magnitude of the gradient 

will decrease. We do not wish to allow steps that are too short, because we strongly 

believe that the quadratic model is accurate when none of the Cartesian coordinates 

change by more than about .1 a.u.. Therefore, if τnew < τmin/10, we set τnew = τmin and take 

the step whether the magnitude of the gradient increases or not. This last criterion is very 

useful when the initial guess for the transition-state structure is poor. If the current 

molecular structure lies in a region of the potential energy surface where all the 

frequencies are positive, a short uphill step in the direction of the transition state will 

cause the norm of the gradient to increase. The preceding method ensures that such uphill 

steps are allowed.  

 Our program includes two different approaches for updating the trust radius. 

 

1. Energy-based trust radius updating 

The predicted change in energy between the new geometry and the previous 

geometry is computed using the quadratic approximation to the energy in v-space, 

 ( ) ( ) ( ) ( )( ) ( ) ( )1
2

T
k k k k k k

v v v v vm∆ = ⋅ +g s s H s   (3.69) 

This change is compared to the actual change in energy, ( ) ( )( ) ( )( )1k k k
U U U

+
∆ = −x x . If 

the quadratic approximation is accurate, the actual change in energy should be very close 

to the change predicted by the quadratic model. If  

 
( )

( )

2 3

3 2

k

k

m

U

∆
< <

∆
,  (3.70) 
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then the quadratic model for the molecular potential energy is highly accurate and we 

double the trust radius, ( )( )new old min maxmin max 2 , ,τ τ τ τ= . The inner maximum in this 

criterion is needed because sometimes the trust radius that has been obtained after 

repeated rejection of a step is much less than 
minτ . If  

 
( )

( )

1
3

3

k

k

m

U

∆
< <

∆
,  (3.71) 

then the quadratic model is of moderate accuracy and we retain the trust radius, 

( )new old minmax ,τ τ τ= . Otherwise, the quadratic model is inaccurate for steps as large as 

the one we just accepted, so we reduce the trust radius by a factor of four, 

( )1
new old min4

min ,τ τ τ= . Notice that when the quadratic model predicts a change in energy 

that differs in sign from the true change in energy, the trust radius is always reduced. 

 

2. Gradient-based trust radius updating 

The energy-based trust radius updating scheme used in the preceding section is 

traditional,
37,80

 and it is clearly appropriate for minimization of the energy. Such an 

approach is less clearly appropriate when the objective is to find a saddle point; in saddle-

point problems, it seems more natural to update the trust radius based on the accuracy of 

the predicted, 

 
( ) ( ) ( ) ( )1

;predicted

k k k k

v v v v

+
= +g g H s .  (3.72) 
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Specifically, we will adjust the trust radius based on (1) whether the change in the 

magnitude of the gradient that is predicted resembles the observed change in magnitude 

of the gradient, as measured by the ratio 

 

( ) ( )

( ) ( )

1

;predicted

1

k k

v v

k k

v v

ρ

+

+

−
=

−

g g

g g
  (3.73) 

and (2) whether the change in direction of gradient that is predicted is aligned with the 

change in gradient direction that is observed, as measured by the cosine, 

 ( )
( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )

1 1

;predicted

1 1

;predicted

cos

k k k k

v v v v

k k k k

v v v v

θ

+ +

+ +

− ⋅ −
=

− ⋅ −

g g g g

g g g g
  (3.74) 

As the dimension increases, the chance of two vectors having a cosine close to one 

decreases:  it is much more rare for random vectors in high-dimensional spaces to be 

aligned than it is for vectors in low-dimensional spaces. For example, if one generates a 

large number of random vectors in d dimensions, then 10% of them will satisfy 

 ( ) ( )10 2

1.6424 1.11
cos p d

d d
θ ≥ ≈ +   (3.75) 

and 40% of them will satisfy  

 ( ) ( )40 2

0.064175 0.0946
cos p d

d d
θ ≥ ≈ + .  (3.76) 

The approximate expressions above were derived by least-squares fitting to much more 

complicated analytical expressions, and are quite accurate for vectors with ten or more 

dimensions. The complete mathematical treatment of the gradient-based trust-radius 

update is quite involved, and will be published separately. 
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 When a step is accepted, we compute Eqs. (3.73) and (3.74). If  

 
( ) ( )

54
5 4

10 atoms3 6(5) cosp N

ρ

θ

< <

− <
  (3.77) 

then the quadratic model is predicting accurate gradients, and the trust radius is doubled, 

( )( )new old min maxmin max 2 , ,τ τ τ τ= .  

 
( ) ( )

1
5

40 atoms

6

3 6(5) cosp N

ρ

θ

< <

− <
  (3.78) 

then the approximate gradient was of moderate accuracy, and the trust radius is retained, 

( )new old minmax ,τ τ τ= . Otherwise the last step went outside the region where the gradient 

approximated using Eq. (3.72) is inaccurate, so we halve the trust radius, 

( )1
new old min2

min ,τ τ τ= .  

 

3. Summary 

 Our trust-radius algorithm can be summarized in two steps: 

1. If ( ) ( )1k k

x x

+
<g g , accept step and update the trust radius using either (a) the 

energy-based method or (b) the gradient-based method. 

2. Otherwise, change the trust radius to 1
new old4

τ τ= . If 1
new min10

τ τ≥ , attempt a 

new step with this length and go back to step 1. Otherwise, set 
new minτ τ=  and 

always accept this step.   
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M. Convergence Criteria 

The program is flexible with respect to stopping conditions. In our studies, we 

have used the protocol proposed by Baker and Chan.
42

 Convergence is considered to have 

been achieved if (a) the largest component of the Cartesian gradient is less than 3.0 × 10
–4

 

a.u. and (b) either the energy change in the last iteration is less than 1.0 × 10
–6

 a.u. or the 

largest component of the step (in Cartesian coordinates) is less than 3.0 × 10
–4

 a.u.. If the 

method does not converge in 200 iterations, then we consider this to be a convergence 

failure. We observed that calculations that fail to converge in 200 iterations rarely 

converge even in 1000 iterations and, even if they do eventually converge, rarely 

converge to the targeted transition state. 

 

3.4 Overview of Saddle 

Putting together the methods described in the previous section, the final Saddle 

algorithm follows. Steps i to iv are initialization steps. Steps v is the Hessian-modification 

step, where finite-difference approximations to the key “reduced” coordinates are made 

(if necessary) and where the Hessian is modified to have a desirable eigenstructure. Step 

vi is where the step is computed. Steps vii to xi are associated with accepting/rejecting the 

step, updating the trust radius, the quasi-Newton update to the Hessian, and other 

preliminaries that are necessary to prepare for the next step. 

i. The input is the initial structure in Cartesian coordinates, the initial Hessian, and 

an initial trust radius.  
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ii. Select a system of redundant coordinates. If the user does not specify reduced 

coordinates, select reduced coordinates automatically. In the calculations we 

report, the reduced coordinates were always manually specified. 

iii. Calculate the molecular potential energy and its gradient using an external 

program/subroutine. (We are using Gaussian ’09, but the program is flexible.) 

Compute the Wilson B matrix, Eq. (3.4), and transform initial Hessian and 

gradient to the internal space using equations (3.13) and (3.14). 

iv. Construct the V matrix and transform the gradient and Hessian to v-space using 

equations (3.33) and (3.35). 

v. Check to see if finite-difference updates to the elements of the Hessian involving 

the reduced coordinates are needed. In the first step, the user has the option to skip 

finite-difference updates (this is useful if the exact, or an accurate, initial Hessian 

is used) or to use only the gradient condition, Eq. (3.43). In subsequent steps, 

finite-difference updates are performed only if both criteria (3.43) and (3.44) are 

satisfied. Modify the eigenstructure of the v-space Hessian, as described in section 

3.3.J.   

vi. Diagonalize the Hessian and take a step with length given by the trust radius, 

using either the scaled Newton step (i.e., trust region image method, TRIM; Eq. 

(3.62)) or the step from the rational function optimization procedure (RFO; Eq. 

(3.64)). 

vii. Express the step in internal coordinates, Eq. (3.38), and then convert the step in 

internal coordinates to Cartesian coordinates using the manifold-projection 
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method, Eq. (3.17). Calculate the molecular potential energy and its gradient using 

an external program/subroutine. 

viii. If the magnitude of the gradient decreased, accept the step. Otherwise, decrease 

the trust radius and go back to vi to compute a shorter step. If the trust radius is 

less than τmin/10, a step of length τmin is taken, and automatically accepted. 

ix. Now that the step is accepted, update the trust radius using either the energy-based 

(section 3.3.L.1) or gradient-based (section 3.3.L.2) procedures.  

x. Construct a new v-space, and transform the gradient and step vector to the new v-

space. 

xi. Update the Hessian in the new v-space using one of the methods in section 3.3.I. 

xii. Check to see if the convergence criteria, section 3.3.M, are satisfied. If the 

calculation has not converged, check to see if new internal coordinates are present 

and, if so, add them and update the Hessian accordingly.  Go back to step v to 

modify the Hessian in preparation for the next iteration. 
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3.5 Numerical Tests 

A. Computational Methods 

To assess the efficiency of the algorithm summarized in the previous section, we 

optimized the transition states for 20 chemical reactions. These reactions, together with 

the reduced coordinates we chose, are listed in appendix 3.2. All the calculations were 

performed using HF/3-21G(d); the quasi-Newton procedure was initialized by calculating 

the Hessian exactly at the initial geometry. Gaussian ’09 was used for the electronic 

structure calculations.
41

 

 

B. Assessment: Methods for step direction (TRIM, RFO) and step size (trust 

radius) 

To test the different algorithmic approaches for controlling the step-size and step-

direction, we tested the proposed trust-radius methods (energy-based and gradient-based) 

with the TRIM (scaled-Newton) and rational function optimization (RFO) methods for 

computing the step. We used the Bofill-1994 update (Eq. (3.50)) for this test, updating the 

reduced coordinates only when the condition in Eq. (3.55) was satisfied. We compared 

these approaches to the popular Berny optimization algorithm,40 as implemented in 

Gaussian ’09, with the standard convergence criteria. (The Gaussian command was 

opt(ts, calcfc, noeigentest).)  

The results of these tests are presented in Table 3.1. The TRIM step required, on 

average, 50% fewer iterations than the RFO step. The gradient-based trust radius required 
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slightly fewer iterations.  We select the TRIM step with the gradient-based trust radius as 

a computationally efficient and robust transition-state optimization protocol.   

 

C. Assessment: Quasi-Newton methods 

In table 3.2, we compare the performance of three quasi-Newton methods:  

Bofill’s 1994 update (Eqs. (3.50)-(3.51)), the conventional BFGS method (Eq. (3.49)), 

and the damped-BFGS method (Eqs. (3.49), (3.52)-(3.54)). The BFGS method would 

usually be expected to fail, because it assumes that the Hessian is positive semidefinite. 

However, the key chemical blocks of the Hessian are updated with finite-differences, and 

therefore have the correct structure. In addition, the eigenstructure of the Hessian is 

modified (see section 3.3.J) to make it more appropriate for transition-states. Because of 

this, the BFGS method converges in most cases; this is especially true if large quasi-

Newton updates to the reduced blocks of the Hessian are prevented by imposing the 

condition in Eq. (3.55).  Our adaptation of the damped-BFGS method, using Eqs. (3.52)-

(3.54), is further removed from the traditional positive-semidefinite BFGS update. It 

performed better than the traditional BFGS approach.  However, the Bofill-1994 update, 

which is explicitly designed to be appropriate for transition states and which has no link 

to any positive-semidefinite Hessian updating procedure, is the best of all the methods we 

tested: it performs better for every reaction we tested. Because the Bofill update can 

preserve the negative-curvature directions of the Hessian, it is less important to prevent 

large revisions to the reduced elements of the Hessian in this case. Nonetheless, 

marginally better results are obtained when the condition in Eq. (3.55) was imposed. We 
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conclude using the condition in Eq. (3.55) to prevent large updates to the reduced 

elements of the Hessian is often helpful (every method we considered converged for all of 

our test reactions when this condition was imposed) and almost never harmful.  

 

D. Assessment: Comparison to the Berny Optimizer 

One of the best and most popular conventional transition-state optimizers is the 

Berny optimizer, as implemented in the Gaussian program. The data presented in Table 

3.1 allows the reader to compare our preferred protocol—TRIM with the Bofill-1994 

quasi-Newton update and condition (3.55) to prevent spurious updates of the key 

“reduced” elements of the Hessian—to the Berny optimizer. Our method is expected to be 

slower for the easy cases because some gradient calculations are used to refine the 

Hessian, instead of making steps towards the transition state. Table 3.1 confirms this 

trend:  the Berny optimizer is never the most efficient method if it requires more than 15 

gradient calculations. Our method uses additional information about the nature of the 

targeted transition state (specifically, information about which internal coordinates are 

implicated in the chemical reaction of interest) and is expected to be more robust. Table 

3.1 confirms this trend also: the Berny optimizer fails in 3 cases, while our preferred 

method converges for all the reactions we tested. In reaction #1, the Berny optimizer 

converged to the wrong transition state after 109 iterations; our methods avoid this fate 

because the chemically important coordinates are singled out for special treatment. In 

reactions #17 and #19, the Berny optimizer crashed because of an error associated with 
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problems in the internal coordinate system. The robust dihedral descriptors (Eqs. (3.2)-

(3.3)) and manifold-projection method (Eq. (3.17)) used by Saddle avoid these problems. 

These results suggested that we have designed a method with the properties we 

sought: it is very robust, with little additional computational cost beyond more 

conventional methods.  

  



Ph.D. Thesis – Sandra Rabi; McMaster University – Chemistry and Chemical Biology 

158 

 

Table 3.1.  The number of gradient evaluations required to converge the reactions in 

Appendix 3.2 using the HF/3-21G(d) method for different methods for computing the 

step-direction (cf. section 3.3.K) and controlling the step size with a trust radius (cf. 

section 3.3.L).  The Bofill-1994 quasi-Newton update, with condition (3.55) imposed, 

was used. The average number of gradient evaluations when the method converges to the 

correct transition state is tabulated so that the computational cost of different methods 

can be compared. For each reaction, the result for the most efficient version(s) of our 

approaches is bold-faced. When the Berny transition-state optimization is more efficient 

than any of our approaches, its results are underlined. 

Reaction Trust Radius Image Method Rational Function Model Berny 

Transitio

n-State 

Optimiz

er 

Energy  

Trust Radius 

Gradient Trust 

Radius 

Energy  

Trust Radius 

Gradient  

Trust 

Radius 

1 9 9 14 14 fails 

2 14 14 15 15 6 

3 17 16 20 22 13 

4 14 14 20 31 20 

5 21 25 23 22 13 

6 13 12 10 10 7 

7 25 22 26 27 15 

8 22 21 15 15 51 

9 12 13 86 86 19 

10 6 6 6 6 4 

11 8 8 7 7 8 

12 10 10 13 13 8 

13 6 6 6 6 3 

14 17 18 16 19 31 

15 15 15 49 49 17 

16 27 32 59 28 13 

17 16 15 36 36 fails 

18 27 17 21 17 8 

19 18 19 17 20 fails 

20 11 11 9 9 7 

Avg. # of 

gradient 

evaluations 15.4 15.2 23.4 22.6 14.3 

Failures 0 0 0 0 3 
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Table 3.2.  The number of gradient evaluations required to converge the reactions in 

Appendix 3.2 using the HF/3-21G(d) method for different quasi-Newton methods from 

section 3.3.I, depending on whether condition (3.55), restricting quasi-Newton updates to 

reduced elements of the Hessian, is imposed. The gradient-based trust radius and the 

scaled-Newton (trust region image method, TRIM) were used. The average number of 

gradient evaluations when the method converges to the correct transition state is 

tabulated as a measure of computational cost. For each reaction, the result for the most 

efficient version(s) of our approaches is bold-faced.  

Reaction Bofill BFGS damped-BFGS 

Standard Using 

eq. 

(3.55) 

Standard Using eq. 

(3.55) 

Standard Using 

eq. 

(3.55) 

1 9 9 10 10 10 10 

2 14 14 40 28 191 29 

3 16 16 fails 101 63 46 

4 14 14 11 11 11 11 

5 25 25 138 71 117 40 

6 11 12 21 22 21 22 

7 22 22 fails 78 77 69 

8 21 21 fails fails fails 36 

9 13 13 fails 16 fails fails 

10 6 6 15 23 15 23 

11 8 8 8 8 8 8 

12 10 10 56 26 43 40 

13 6 6 8 8 8 8 

14 18 18 44 fails 68 29 

15 15 15 15 15 15 15 

16 31 32 fails fails fails fails 

17 15 15 87 14 30 21 

18 17 17 53 59 52 45 

19 19 19 177 83 80 55 

20 11 11 40 93 40 83 

Avg. # of 

gradient 

evaluations 15.1 15.2 48.2 39.7 49.9 32.8 

# of 

failures 0 0 5 3 3 2 
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3.6 Summary 

We have presented a new approach for transition-state optimization where the 

chemically-important “reduced” coordinates are singled out for special treatment. Most 

importantly, elements of the Hessian involving the reduced coordinates are accurately 

computed using finite differences. This work is essentially an adaptation of the approach 

in ref. 
37

, which took a similar approach using Cartesian coordinates, to redundant internal 

coordinates. The adaptation was much more difficult than we expected, and several new 

ideas were needed. 

The introduction of robust dihedral descriptors and the manifold-project method 

gives us a failsafe way to convert between redundant internal coordinates and Cartesian 

coordinates. These developments are described in chapter 2. For computational 

efficiency, we need to avoid using finite-differences in each iteration; the criteria in Eqs. 

(3.43) and (3.44) are used to ensure this. We found that several finite-difference steps are 

used to update the Hessian in early iterations, but in later iterations (near convergence) 

finite-difference steps are rare. The condition in Eq. (3.55) prevents large changes to the 

reduced blocks of the Hessian from quasi-Newton update and is especially useful when 

the quasi-Newton update is poor. Most trust-radius updating methods are based on the 

accuracy of quadratic model for the energy, but it is the gradient that is being optimized 

in saddle-point problems. This led us to develop the gradient-based trust radius update in 

section 3.3.L.2; for transition-state optimization, the gradient-based trust-radius scheme 

method outperforms methods based on the value of the objective function. Finally, we 

tested the trust-region image method (TRIM, scaled Newton) and the  rational function 
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optimization (RFO) steps; TRIM outperforms RFO in our tests. We recommend using the 

Bofill-1994 quasi-Newton Hessian update, together with the TRIM step using a trust 

radius computed by the gradient-based approach. 

In chapter 4 we will provide more systematic tests of this approach. Even from the 

limited data provided in this chapter, it seems clear that this new approach is more robust 

than traditional methods. The new method is more expensive, but the additional 

computational expense is small.  

The additional computational cost is probably even less than one might assume: 

there are many user parameters in this model, associated with (a) when finite-difference 

updates to the Hessian are performed, (b) when the quasi-Newton update is allowed to 

modify reduced blocks of the Hessian, (c) how the eigenstructure of the Hessian is 

modified (especially threshold values on the smallest positive and largest negative 

eigenvalues of the Hessian), and (d) the trust-radius update and the criteria for 

accepting/rejecting steps. We have not systematically optimized the values of these 

parameters, or even performed a casual search for parameter-values associated with good 

performance. Instead, we have chosen what we felt were reasonable “round numbers” for 

the values of these parameters. In our future work, we hope to find better choices for the 

values for these parameters. 
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Appendix 3.1.  The secant condition in delocalized nonredundant internal 

coordinates. 

There are several different ways to correct the naïve secant condition in v-

coordinates, 

 ( ) ( )v v vδ δ≈ + −H v g v v g v   (3.79) 

to approximately account for the dependence of V on the molecular geometry. The 

method we use in the program is derived starting from the secant condition in Cartesian 

coordinates, 

 
old

x xδ δ≈H x g   (3.80) 

where “new” refers to quantities evaluated at the point x +  δx, “old” refers to quantities 

evaluated at x, and δf denotes f
new

 – f
old

. To obtain an expression containing the Hessian 

in v-coordinates, we use the chain rule for the second derivative of the molecular 

potential energy, U, 
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∑ ∑

∑ ∑

x
H x

v

v

  (3.81) 

A second application of the chain rule for second derivatives, together with the secant 

condition in Cartesian coordinates, allows us to simplify the second term 
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( ) ( ) ( )

( ) ( )

atoms atoms int
;old ;old ;old3 3 old 2 old2 2

1 1 1
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m m
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(3.82) 

The first term is simplified using the chain rule for first derivatives, 
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qv v

x q x=
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∑ B V   (3.83) 

and the secant condition. This gives the key intermediate result,  
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  (3.84) 

Multiplying both sides of this equation by 
T +V B  and rearranging terms, we get 

 ( ) ( ) ( ) ( )( )old old old old old old
T T T

v v v qδ δ δ δ
+

≈ − +H v g V B B Vg B g .  (3.85) 

This is the expression we use in our program; it approximately accounts for the 

dependence of the v-coordinates (and also the underlying q-coordinates) on the molecular 

geometry. 

 An alternative secant condition can be obtained starting from the expression, 
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Using the identity, 
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which gives the following secant condition, 

 
( ) ( ) ( ) ( )( )

( ) ( ) ( )
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Implicit in the assumptions of the quadratic model is that taking a step in the –δv 

direction from v
new

 is the same as taking a step in δv from v
old

. Ergo 

 
new old

v vδ δ=H v H v .  (3.89) 

This symmetry is not preserved by these secant updates. One can usually obtain a more 

accurate update by restoring the symmetry. For example, corresponding to Eq. (3.88), one 

has 

 ( ) ( ) ( ) ( )( ) ( )( )old old new new old new1 1
2 2

T T T T
T

v v x x q q
δ δ δ δ δ+ += + + + +H v g V B g V B g V g g   

 (3.90) 
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Appendix 3.2.  The set of reactions used for testing. 

 The following table lists the reactions we used for testing the transition-state finding methods studied in this chapter, along 

with the reduced coordinates for which the Hessian was approximated with the finite-difference method. Reactions 4, 10, 13, and 17 

are taken from the test set of Grimme;
92

 reaction 8 is taken from our own work on the epoxide hydrolase enzyme.
37,93

  All the other 

reactions are taken from the Baker and Chan.
42

  

Number Reaction  Reduced 

coordinates 

1 1,2-migration-(formyloxy) ethyl 

 

R(1-2) 

2 Ring opening bicycle[1.1.0] butane 

TS1 

 

R(1-2) 

R(1-3) 

∡ 1-2-3 
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3 Ring opening bicycle[1.1.0] butane 

TS2 

 

R(1-2) 

R(1-3) 

4 C2H6 + NH2 → C2H5 + NH3 

 

R(1-2) 

R(2-3) 

R(1-3) 

5 CH2CHOH → CH3CHO 

 

R(1-3) 

R(2-3) 

6 CH3O → CH2OH 

 

R(1-2) 

R(2-3) 

7 cyclohexene →Butadiene + ethylene  

 

R(1-2) 

R(3-4) 

8 Epoxide hydrolase cluster model 

 

R(1-2) 

R(1-3) 
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9 H2CNH → HCNH2 

 

R(1-3) 

R(2-3) 

10 HF + CH3 → H+ FCH3  

 

R(1-2) 

R(2-3) 

11 HCN → HNC 

 

R(1-2) 

R(1-3) 

12 HCNH2 → HCN + H2 

 

R(1-2) 

R(1-3) 

13 hexatriene cyclozation  

 

R(1-2) 

14 2HCN + N2 → s-tetrazine 

 

R(1-4)+R(1-7) + 

R(3-6) 

∡ 3-4-5 

∡ 6-7-8 

15 SiH3 + CH2CH3 → SiH2 + CH3CH3  

 

R(1-2) 

16 CO + HCl →HCO + Cl  

 

R(1-2) 

R(2-3) 

∡  1-2-3 

17 OH + NH3 → H2O + NH2  

 

R(1-2) 

R(2-3) 
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18 HNCCS → HNC + CS 

 

R(1-2) 

19 H2PO4
-
 → H2O + PO3

-
  

 

R(1-2) 

R(3-4) 

 

20 CH2CHCH2-O-CHCH2 → 

CH2CHCH2CH2CHO 

 

R(1-2) 

R(3-4) 
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Chapter 4 

 

Systematic Assessment of Transition-State 

Optimization Methods Using Random Transition-

State Guesses for a Database of 131 Reactions 
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4.1 Statement of the Problem 

We recently presented in chapter 3 a new transition-state optimization 

algorithm in which the portion of the Hessian associated with a few reactive 

coordinates was accurately approximated using finite differences, while the 

remainder of the Hessian was updated using quasi-Newton approaches. In this 

work, we develop a protocol for testing transition-state optimizers and compare 

our new method to conventional approaches, specifically the Berny optimizer and 

QST3 methods, as implemented in Gaussian. Our testing protocol is based on a 

database of 131 diverse chemical reactions, superseding many of the standard 

reaction sets. We then add random vectors of specified magnitude to the exact 

transition state structures of these reactions and ascertain whether a method can 

recover the initial transition-state structure. Our new method is marginally slower 

than conventional approaches, but it converges more frequently when the initial 

guess for the transition state is poor. 

 

4.2 Introduction 

With the proliferation of algorithms for optimizing wavefunctions and molecular 

geometries, the need for systematic approaches to compare methods has become acute. 

Most often, people test new approaches against a small dataset, causing skeptical readers 

to wonder if the dataset was designed to demonstrate the advantages, and avoid the 
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disadvantages, of their new method. This paper presents a protocol for assessing the 

quality of numerical optimizations of transition-states, but the same general principles can 

be used in other contexts also. 

The ingredients of the proposed protocol are presented in section 4.3: (A) a broad 

database of chemically-relevant test cases, (B) a systematic procedure for generating 

initial guesses of deteriorating quality, and (C) a method for comparing different methods’ 

performance across the database.  

We are motivated by our recent work to develop a more robust transition-state 

finding algorithm, as well as the proliferation of methods for locating transition states on 

potential energy surfaces.
1-3

 Our goal is to assess traditional transition-state optimizers, 

that is, methods that start from a (hopefully good) initial guess for the transition state and 

then optimize the transition state using some sort of quasi-Newton method.
4-13

 We only 

consider approaches using redundant internal coordinates
14

 because we believe that 

methods based on Cartesian or internal (z-matrix) coordinates are uncompetitive.
15-19

 

Neither will we consider methods based on repeated computation of the exact Hessian of 

the molecular potential energy surface, as they tend to be prohibitively expensive for 

large molecules. Finally, we do not consider single-ended,
5,20-34

 double-ended,
35-42

 and 

surface-walking approaches.
36,43-56

 These methods tend to be more expensive than 

straightforward optimization, and are most efficiently employed for finding a good initial 

guess for a conventional transition-state optimizer. 

We compare three transition-state optimizers with different degrees of 

sophistication. The most traditional method is the Berny optimizer,
4,17

 which is the default 
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method in the Gaussian program.
57

 The default Berny optimizer for transition-states uses 

a trust radius and the Bofill approximation to the quasi-Newton Hessian.
11

 The step is 

computed using the rational-function optimization approach to eigenvector following.
5,32

 

The method we recently presented, called Saddle, is slightly more sophisticated 

because key coordinates involved in the chemical reaction are identified, and the Hessian 

elements that involve differentiation with respect to one or more of these coordinates are 

approximated with finite-differences, rather than through the quasi-Newton Hessian.
12,58

 

This is the only philosophical difference between Saddle and the Berny optimizer, but our 

method also features a more robust choice for the internal coordinates,
59

 a different 

method for converting from internal to Cartesian coordinates,
60

 and a different trust-

radius method.
61

  

Of greatest sophistication is the QST3 method,
62

 which requires not only an initial 

guess for the transition-state geometry, but also the structures of the reactants and 

products. The QST3 algorithm performs an initial refinement of the molecular geometry, 

after which the traditional Berny algorithm is invoked. 

In subsequent sections, we describe our testing protocol, compare the performance 

of Berny optimizer, our optimizer, and the QST3 method, and state some conclusions.  
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4.3 Testing Protocol 

A.  A Database of Chemical Reactions for Testing Transition-State Optimizers 

In order to test a computational algorithm, one first needs to construct a broad and 

relevant database. The present database is based on our previous work,
63

 but we added 

one additional transition-metal reaction and eliminated one atom-exchange reaction. Most 

of the reactions were taken from reaction sets that were used for testing density 

functionals.
64-69

 The Baker-Chan reactions, which are quite commonly used for testing 

transition-state optimizers, are also included.
19

 Several reactions were taken from the 

meticulous work on potential-energy curves performed by the Toro-Labbe group,
70-72

 the 

topological reactivity studies from the Jenkins group,
73

 the chemical vapour deposition 

reactions of Coyle et al.,
74

 and (often unpublished) research from our group.
12,75,76

 Thirty 

reactions were constructed by adding functional groups to molecules from the other 

reactions; this produced several sterically-hindered reactions and requires transition-state 

optimizers to distinguish between true reactions and low-barrier conformational changes. 

All transition states were determined using HF/6-31++G(d,p) except for the copper-

containing reactions of Coyle et al.,
74

 which were determined using B3LYP/6-31G(d). 

We used the Gaussian program.
57
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B.  A Systematic Method for Generating Initial Guesses of Decreasing Quality 

We will assess the computational robustness and efficiency of these transition-

state optimizers by providing initial guesses of varying quality. Our approach is to 

construct initial guesses that are random perturbations of the true transition state. We start 

by generating a random vector, a, in Cartesian coordinates. This vector is projected using 

the Wilson B matrix and its generalized inverse, then normalized, 

 ˆ
+

+
=

B Ba
u

B Ba
   (4.1) 

This specifies a molecular frame by removing ambiguities due to the center-of-mass and 

overall molecular orientation and produces a random perturbation of the internal degrees 

of freedom, with unit length. The Cartesian coordinates of the molecule are then adjusted 

by making a random move away from the true transition-state geometry, 

 t.s. atoms
ˆ 3Nε= +x x u   (4.2) 

The prefactor is designed to ensure that the average change in a specific Cartesian 

coordinate is the same in few-atom and many-atom molecules. We generated 10 random 

initial guesses for each value of ε, increasing ε until the rate of convergence for the 

methods we tested deteriorated dramatically. Specifically, we chose ε = 0.05, 0.1, 0.2, and 

0.3 Bohr. 

 We observed that the initial geometries obtained from Eq. (4.2) were often not 

especially realistic, largely because portions of the molecule (e.g., atoms and functional 

groups that are spectators to the chemical reaction in question) are deformed away from 

equilibrium, which is rarely true in reasonable initial guesses. This motivated us to 
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explore another protocol, in which only the key chemical coordinates used by Saddle 

were allowed to deform. To do this, we generated a random vector in redundant internal 

coordinates with nonzero components for the reduced-dimensional set of key chemical 

coordinates only. We projected this vector into the space of redundant internal 

coordinates, 

 reduced

+
=v BB a    (4.3) 

and then generated the change in the Cartesian coordinates using the method from chapter 

2. That is, we minimized,  

  
�

( ) ( )
2

t.s.min
κ

κ κ− +
x

q x q v  ,  (4.4) 

where qt.s. is the redundant internal coordinates of the transition-state and κ is chosen so 

that the distance of the perturbed Cartesian coordinates from the Cartesian coordinates of 

the true transition state is reducedNε , where Nreduced is the number of redundant internal 

coordinates that are perturbed. In order to remove rotational and translational motion, the 

Cartesian distance is computed using the singular-value-decomposition version of 

Kabsch’s alignment algorithm from chapter 2.
77

 Once again we generated 10 random 

initial guesses for each choice of ε. Since the initial geometries obtained by this procedure 

were more accurate, calculations starting from more severely perturbed geometries still 

converged well, and we chose a larger value of ε (ε = 0.4 Bohr) for our final value. 
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C.  A Criterion for Determining Whether a Method Converges to the Correct 

Transition State 

Because some of the reactions have multiple chemically-equivalent transition 

states (e.g., transition states that differ only due to symmetry, or conformational 

differences of very distant functional groups), we need to develop a criterion for whether 

a calculation converges to the correct transition state.  

To establish whether an approximate transition state is chemically equivalent to 

the true transition state, one should consider both the energy and the geometry of the 

transition-state. Since conformation changes (e.g., methyl rotations) far from the region of 

the reagents where the molecule occurs should not affect whether we accept the transition 

state, and since chemically-equivalent atoms are interchangeable, we use a criterion based 

on interatomic distances. Specifically, we identify as quasi-reduced atoms all atoms that 

are (a) either used to define the reduced coordinates or (b) bonded to a “reduced atom” by 

a regular (not interfragment or auxiliary/Urey-Bradley) bond. We then compute all the 

interatomic distances between the quasi-reduced atoms and sort the lists of interatomic 

distances in increasing order. Next, we compute the percent deviation between respective 

distances in the list. I.e., for the k
th

-smallest interatomic distances in the list, we compute 

 ( )

( ) ( )

( ) ( )( )

;computed ;exact

;computed ;exact1
2

k k

ij ijk

k k

ij ij

R R
p

R R

−
=

+
  (4.5) 

We would like to force small deviations (ca. 2%) on interatomic distances corresponding 

to chemical bonds while allowing larger deviations (ca. 5%) on interatomic distances 

corresponding to 1-3 or 1-4 interactions. This is achieved by defining the measure  
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( )

( ) ( )( ) ( )

2
;computed ;exact1

2

exp
4

k k

ij ijk k
R R

q p

  +  = −  
   

  (4.6) 

If the energy of the located transition state is more than .001 a.u. from the correct energy 

or 
( ) .02
k

q ≥  for any interatomic distances between quasi-reduced atoms, then we consider 

the calculation to have converged to the wrong transition state; this is treated as a 

convergence failure. We found that our conclusions are not sensitive to moderate changes 

in the energy criterion or the threshold for the geometric criterion.  

 

4.4 Results: Comparing the Performance of Transition-State 

Optimizers 

 We assess the relative performance of the standard Berny optimizer, our method 

(Saddle), and the QST3 method by considering the number of gradient calculations 

required by each method when it converges to the correct transition state, averaged over 

all reactions and all initial guesses for which the method converged. Since the 

computational cost is dominated by the computation of the gradient, the relative number 

of gradient calculations represents the relative cost of the methods we consider. We also 

consider the fraction of the initial guesses that converge.  

 In Table 4.1, we compare the number of iterations required to converge to the 

correct transition state when all the atoms are perturbed, as described in Eq. (4.2). 

Unsurprisingly, the number of iterations increases dramatically as the quality of the initial 

guess deteriorates. For good initial guesses, our method requires slightly fewer iterations, 
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on average, than the Berny optimizer and QST3. In addition, QST3 is slower than the 

Berny optimizer; this is because the pre-processing stage in the QST3 method is 

unnecessary for good initial guesses. As the quality of the initial guess deteriorates, QST3 

becomes better than the Berny optimizer and, for our worst initial guesses (ε = .3 Bohr), 

QST3 converges slightly faster than our new method. These results, however, are 

somewhat misleading: one reason that QST3 is slower than the Berny optimizer is that it 

converges more reactions, and the difficult reactions that converge with QST3, but not the 

Berny optimizer, tend to require more iterations. Similarly, our method is slower for bad 

initial guesses (ε = .3 Bohr) mainly because it converges more reactions (83.6%, vs. 

77.6% with QST3).  

While the differences in the computational costs of the methods are practically 

insignificant (within 25%), the differences in the rate of convergence are striking. (See 

Table 4.2.) All methods converge very well for good (ε = 0.1 Bohr) and excellent (ε = 

0.05 Bohr) initial guesses, with the Berny optimizer actually outperforming QST3 for 

these easy cases. (It seems that the pre-processing state of QST3 sometimes leads the 

method away from the initial transition state when the initial guess is excellent.) For poor 

initial guesses, QST3 is decisively better than the Berny optimizer and our method 

converges about 8% more reactions than QST3. For the worst initial guesses (ε = 0.3 

Bohr), only our method converges to the targeted transition state more than 75% of the 

time. 

Further insight into the relative performance of the methods for poor initial 

guesses (ε = 0.3 Bohr) can be gleaned from a performance plot of the percent of reactions 
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that have converged in a set number of iterations; see Figure 4.1. This plot reveals that 

QST3 is very efficient when it converges, but for reactions that require more than about 

40 steps of the QST3 optimizer, or 20 steps of the Berny optimizer, our method is faster. 

This is consistent with our previous observations. The strength of our method is its 

robustness; other methods tend to work better in the “easy” cases, but when other 

methods struggle to converge, the extra information about the potential energy surface in 

the vicinity of the transition state that our method incorporates is useful. In addition, even 

when our new method is slower than existing approaches, it is not uncompetitive. 
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Table 4.1. The number of steps, averaged over all transition-state guesses of a given 

quality for all 131 reactions, required for various methods to converge to the targeted 

transition state. The initial guesses are constructed by randomly perturbing all the 

Cartesian coordinates of the correct transition-state structure by a specified amount, ε, as 

expressed in Eqs. (4.1) and (4.2). If, for a given initial guess, a computational method 

fails (crashes), does not converge within 200 iterations, or converges to the wrong 

transition state, then that calculation is not included in the average. 

  ε (Bohr) 

 

Method 

0.05 0.1 0.2 0.3 

Our Method (Saddle) 8.9 17.4  35.3  56.0 

Gaussian (standard Berny)  12.6 24.2 39.2 47.5 

Gaussian (QST3) 15.7 27.3  42.9 55.8  

 

Table 4.2. The percentage of transition-state guesses of a given quality that converge to 

the targeted transition state for a given method. The initial guesses are 

constructed by randomly perturbing all the Cartesian coordinates of the correct 

transition-state structure by a specified amount, ε, as expressed in Eqs. (4.1) 

and (4.2). Methods are considered to fail if the program crashes, fails to 

converge within 200 iterations, or converges to the wrong transition state. 

  ε (Bohr) 

 

Method 

0.05 0.1 0.2 0.3 

Our Method (Saddle) 99.8%  99.5%  93.1%  77.1%  

Gaussian (standard Berny)  96.1%  87.8%  59.5%  32.3%  

Gaussian (QST3) 93.9%  89.0% 80.8%  69.0%  
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number of gradient calculations. 
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A performance plot indicating the fraction of calculations, using different 

methods, that have converged to the targeted transition state within a given 

number of gradient calculations. The initial guesses are constructed by 

randomly perturbing all the Cartesian coordinates of the correct transition

state structure by ε = 0.3 Bohr. Methods are considered to fail if the 

program crashes, fails to converge within 200 iterations, or converges to 

the wrong transition state.  

As mentioned in section 2.3.B, the initial geometries obtained by deforming all 

the Cartesian coordinates are unrealistic because portions of the molecule for which it is 

easy to make a good initial guess are dramatically deformed. In general, it is only the 
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A performance plot indicating the fraction of calculations, using different 

methods, that have converged to the targeted transition state within a given 

The initial guesses are constructed by 

tesian coordinates of the correct transition-

 = 0.3 Bohr. Methods are considered to fail if the 

, or converges to 

.B, the initial geometries obtained by deforming all 
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portions of the molecule that are directly involved in the chemical reaction for which it is 

difficult to construct a guess geometry. This led us to the second method for constructing 

initial guesses, in which only the “reduced” coordinates involved in the chemical reaction 

are altered. Results for this method of generating initial guesses are reported in Tables 4.3 

and 4.4, and Figure 4.2. 

With these more reasonable initial guesses, our conclusions change somewhat. 

The standard Berny algorithm still converges more rapidly than QST3 for good initial 

guesses; this is mostly due because the QST3 procedure for refining the initial guess is 

counterproductive when the initial guess is already excellent. The average number of 

steps required by our method is typically somewhat larger than both the Berny and QST3 

methods, though it is not uncompetitive. For the worst initial guesses, QST3 is slightly 

faster than the Berny algorithm, which is faster than our approach. However, all of the 

methods are competitive in terms of computational speed. 

Where our method, and also QST3, has a decisive advantage is in terms of 

robustness. Both QST3 and our method converge significantly more often for less-than-

excellent initial guesses (ε = 0.2 and 0.4 Bohr). Only our method converges more than 

85% of the reactions for the worst set of initial guesses.   

The performance plot in Figure 4.2 reveals additional details about the 

performance of the methods for poor initial guesses. The Berny optimizer is best for the 

easy cases, which converge in fifteen or fewer iterations; this reflects the costly pre-

processing stages of QST3 and our method (in Saddle, most of the finite-difference 

calculations are performed in the first few iterations). For cases that are somewhat more 
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difficult, the QST3 method performs very well. It is mainly for the most intractable cases, 

which require 50 or more iterations to converge, where our method distinguishes itself. 

Our method is competitive, however, because it requires, on average, less than 5 extra 

iterations.  

We also considered a less stringent criterion for transition-state convergence. We 

removed the restriction (
( )( )max 0.02
k

q < ) on the error in the transition-state structure 

and relaxed the energetic criterion, so that the method was judged to have correctly 

located the transition state if the energy of the structure it located was within .002 a.u. of 

the correct value.   Relaxing the transition-state-acceptance criterion slightly improved the 

performance of conventional approaches, but had negligible effects on Saddle’s 

performance. (Specifically, the percentage of Berny and QST3 calculations that were 

judged to have converged increased by at most 3%, and the average number of iterations 

decreased by at most 2 iterations.) This suggests that our method is slightly less prone to 

converging to incorrect transition states. This is not surprising because, alone among 

these methods, Saddle has information about which are the key chemical coordinates that 

characterize the transition-state of interest. 
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Table 4.3. The number of steps, averaged over all transition-state guesses of a given 

quality for all 131 reactions, required for various methods to converge to the 

targeted transition state. The initial guesses are constructed by randomly 

perturbing the key chemical coordinates of correct transition-state structure so 

that the deformed structure differs from the true transition-state structure by a 

specified amount, ε. (Cf. Eqs. (4.3) and (4.4).) If, for a given initial guess, a 

computational method fails (crashes), does not converge within 200 iterations, 

or converges to the wrong transition state, then that calculation is not included 

in the average. 

  ε (Bohr) 

 

Method 

0.05 0.1 0.2 0.4 

Our Method (Saddle) 9.5  11.4  14.2  26.3  

Gaussian (standard Berny)  3.8  5.7 9.4  15.3 

Gaussian (QST3) 7.5 8.4  12.4 18.2  

 

 

 

 

 

 



Ph.D. Thesis – Sandra Rabi; McMaster University – Chemistry and Chemical Biology 
 

191 

 

Table 4.4. The percentage of transition-state guesses of a given quality that converge to 

the targeted transition state for a given method. The initial guesses are 

constructed by randomly perturbing the key chemical coordinates of correct 

transition-state structure so that the deformed structure differs from the true 

transition-state structure by a specified amount, ε. Methods are considered to 

fail if the program crashes, fails to converge within 200 iterations, or 

converges to the wrong transition state. 

  ε (Bohr) 

 

Method 

0.05 0.1 0.2 0.4 

Our Method (Saddle) 99.7%  99.9%  98.0%  89.2%  

Gaussian (standard Berny)  99.5%  99.1%  90.0%  59.2%  

Gaussian (QST3) 96.0%  94.8% 90.4%  79.0%  
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A performance plot indicating the fraction of calculations, using different 

methods, that have converged to the targeted transition state within a given 

number of gradient calculations. The initial guesses are constructed by 

randomly perturbing the key chemical coordinates of the correct transition

state structure so that the deformed structure differs from the true 

-state structure by a specified amount, ε = 0.4 Bohr. Methods are 

considered to fail if the program crashes, fails to converge

, or converges to the wrong transition state.  
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4.5 Summary 

The goals of this chapter are to present a testing protocol for transition-state 

optimization methods and to compare our recent approach to the popular methods from 

the Gaussian program. The first key ingredient in our testing protocol is a large and broad 

database of 131 chemical reactions; all of the 130 reactions provided in chapter 2, with 

the addition of the following reaction: 

 

Next, we designed a method for generating initial guesses of decreasing quality; 

this was done by making random perturbations, of specified type and magnitude, away 

from the optimized transition-state geometry. Finally, we assessed how well different 

methods, specifically (1) the standard Berny optimization algorithm for Gaussian, (2) the 

method we recently presented, which uses finite differences to approximate key 

components of the molecular Hessian, and (3) the QST3 method from Gaussian, which 

uses information about the reactant and product geometry to construct better initial 

guesses for the transition state optimizer. We can recommend using the QST3 method and 

our method. The QST3 method is slightly faster (by about five iterations), while our 
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method is significantly more robust. It would be interesting to see if we could further 

improve our method’s performance by using information about the reactant and product 

geometries, in the spirit of the QST3 method. 
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5.1 Overview 

The effects of the initial Hessian calculation on the performance of three different 

quasi-Newton-based approaches for transition-state optimization is assessed using a 

recently presented database of 131 reactions.  All three methods (using the exact Hessian, 

using the Hessian from a Hartree-Fock calculation with a minimal basis set, and using the 

Hessian from the AM1 semiempirical method) suffice. Since Hartree-Fock with a 

minimal basis set performs just as well as using the exact Hessian, the low cost of this 

initial approximation suggests that it should be used more broadly in geometry 

optimization methods. 

 

5.2 Introduction 

The initial approximation to the second-derivative matrix (the Hessian) can 

greatly affect the efficiency of quasi-Newton approaches for molecular structure 

optimization.
1-5

 Partly because of this, there has been significant work on developing 

reasonably accurate, yet computationally inexpensive, approximations to the initial 

Hessian. In geometry minimization, the initial Hessian approximation is less critical, and 

methods based on molecular mechanics force fields are often employed.
1,2,4,6-8

 For 

transition-state optimization, valence force fields are often inadequate,
4
 and it is common 

to use an initial Hessian from quantum chemistry calculations, most frequently by 

initially computing the Hessian exactly, but using a quasi-Newton method thereafter.
2,4

 

Because exact initial computations of the Hessian can be computationally 

expensive, we wanted to investigate whether other, less computationally demanding, 
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quantum chemistry calculations would suffice. Specifically, we will assess how the 

performance of three transition state optimizers for three different choices of the initial 

Hessian. The transition-state optimizers we consider are the standard Berny optimizer3,9 

from the Gaussian program, the Saddle optimizer we recently developed,
10

 and the QST3 

method
11

. The initial Hessian is computed using either the semiempirical AM1 method,
12-

14
 Hartree-Fock with a minimal basis set (STO-3G), or the exact initial Hessian (HF/6-

31++G(d,p). Calculations using the Berny and QST3 methods were completed using the 

Gaussian program;
15

 the Saddle optimizations were performed with our in-house code, 

using energies and gradients from Gaussian.  

All three optimizers use the Bofill94 quasi-Newton update
16

 together with a trust-

radius approach for selecting steps. In the Berny optimizer, steps are made using the 

rational-function approximation, which strives to include the effects of higher-order 

derivatives.
17-19

 Our Saddle optimizer is based on the realization that chemical transitions 

can be described with a reduced-dimensionality energy surface.
20-22

 In Saddle,
23

 elements 

of the Hessian that involve the key chemical coordinates (e.g., the interatomic distances 

between the atoms involved in bond-formation and bond-cleavage) are calculated 

accurately with finite differences,
5
 while the other elements of the Hessian are estimated 

using a normal quasi-Newton method. QST3 also seeks to use information about the key 

chemical coordinates;
11

 it uses the reactant and product structures to provide an initial 

refinement to the transition-state structure; after this initial stage, it reverts to a standard 

(in this case, Berny) transition-state optimizer. 
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5.3 Testing Procedure 

 To test the effect of the initial Hessian approximation, we considered 128 

reactions from the database of reactions that we recently compiled. This reaction database 

includes the usual Baker-Chan set,
24

 as well as reactions used for testing density-

functional theory approximations
25

 and reactions from other sources,
5,26-31

 including about 

thirty reactions from our own unpublished research. All calculations were performed 

using the Gaussian program, with HF/6-31++G(d,p). Three reactions involving copper 

atoms were omitted here, because the AM1 parameters are not available for copper. The 

list of reactions, together with the reactant, product, and transition-state geometries we 

use, are provided as supplementary material. 

 We considered fourteen different initial guesses for each reaction.  Eleven of these 

guesses were obtained by randomly perturbing the system away from the transition state 

using procedures we have previously presented.
32

 The first of these perturbations is a 

random perturbation of the Cartesian coordinates of the atomic nuclei, so that the root-

mean-square displacement of the nuclei is ε = 0.1 a.u.. (The distance between the 

perturbed and unperturbed structures is measured by aligning the structures using the 

Kabsch algorithm,
33

 then measuring the Cartesian distance between the structures.) As 

noted in Chapter 4, this perturbation sometimes generates chemically unreasonable 

transition-state guesses, but it is interesting to verify whether various approaches are 

capable of addressing these challenging initial guesses. To make a more chemically 

reasonable initial guess, we identified the key chemical coordinates involved in the 

transformation; we then randomly perturb these coordinates so that the distance of the 
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perturbed structure from the exact transition-state structure is ε = 0.4 a.u.. In this work, 

we consider one “good guess” (where all atomic coordinates were displaced, with ε = 0.1 

a.u.) and ten “bad guesses” (where only the reduced coordinates were displaced, by ε = 

0.4 a.u.). The second set of ten guesses are representative of the typical “bad guesses” for 

a transition-state geometry that one might manually prepare using a graphical user 

interface (GUI).  

 We also consider three additional guesses using a transition-state-guessing method 

we recently developed.
34

 These guesses are constructed by finding the molecular 

configuration that is as close as possible to the average of the internal coordinates from 

the reactant and product geometries, which we denote as 
( )reactant

q  and 
( )product

q , 

respectively. Specifically, the three deterministic transition-state guesses are: 

 ( )
��

( ) ( ) ( ) ( )
2

Method 1 reactant product
arg max min 1

p

p p = − − + 
x

x q x q q   (5.1) 

 ( )
�

( ) ( ) ( ) ( )( )
2

Method 2 reactant product1 1
2 2

arg min= − + −
x

x q x q q x q   (5.2) 

 
( )

�
( ) ( ) ( ) ( )( )

2 2
Method 3 reactant product1 1

2 2
arg min= − + −

x

x q x q q x q   (5.3) 

These guesses typically are slightly further from the true transition state than the “good 

guess,” but significantly closer than the ten “bad guesses.” However, the “good guess” 

includes substantial displacements of internal coordinates that are totally unrelated to the 

reaction, which can lead a method to locate an incorrect transition state. The guesses 

prepared from Eqs. (5.1)-(5.3), however, tend to be very accurate for all internal 

coordinates that have almost the same value in the reactant and product geometry. 
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Altogether there are 1,792 initial guesses—fourteen initial guess for each of 128 

reactions. 

 From a given initial guess structure, the Hessian is computed exactly, at the AM1, 

or at the HF/STO-3G level. We then attempt to optimize the transition state using the 

Berny optimizer
3,9

 and the QST3 optimizer
11

 in Gaussian ‘09,
15

 or using our own Saddle 

transition-state optimizer (which uses energy and gradient calculations from Gaussian).
35

 

Calculations are considered to fail if the program crashes for any reason, if convergence 

is not achieved in 200 iterations, or if the program converges to the wrong transition state. 

The method is considered to have converged to the wrong transition state if the transition 

state differs from the energy of the targeted transition state by more than 10
–3

 a.u. and if 

the interatomic distances in the vicinity of the reaction site have a weighted percentage 

error of more than 2%. (That is, we are using the same criteria for evaluating successful 

convergence that was used in Chapter 4.) Our results are not sensitive to the way we 

classify whether the program finds the correct transition state. We prefer this criterion 

because it allows minor conformational changes far from the reacting atoms.  

 

5.4 Discussion 

 Table 5.1 reports the number of iterations required to converge from each class of 

initial guesses for the transition state geometry and each method of computing the initial 

Hessian. Reactions that fail to converge are not included in this average. Table 5.2 reports 

the percentage of transition-state guesses that converge for each method. The quality of 

the transition-state guessing methods from Chapter 2 is clear:  transition state guesses 
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from Eqs. (5.1)-(5.3) converge more rapidly (in fewer iterations) and robustly (more 

frequently) to the correct transition state than the randomly generated guesses. The 

quality of our Saddle transition-state optimizer is also clear: while Saddle is somewhat 

more expensive than the other optimizers, it converges a significantly larger fraction of 

the calculations. (Saddle’s computational performance is better than one would infer from 

Table 5.1. It is handicapped by the fact it converges many more reactions, and converging 

to the correct transition state from a poor initial guess requires many additional gradient 

calculations. For reactions where all three optimizers converge, Saddle typically requires 

only a few additional gradient evaluations.) 

 Tables 5.1 and  5.2 show that, when optimizing transition states, a rather 

inexpensive ab initio calculation—Hartree-Fock with a minimal basis set—suffices to 

provide a sufficiently good initial guess for the Hessian. Indeed, for the methods we 

considered, using HF/STO-3G to compute the initial Hessian approximation, instead of 

computing the initial Hessian exactly, did not significantly change the number of 

iterations required. Furthermore, the percentage of reactions that successfully converged 

to the correct transition state is comparable when HF/STO-3G is used to compute the 

initial Hessian. It is difficult to establish a clear preference between constructing the 

initial Hessian exactly, or with HF/STO-3G:  the best choice seems to depend on the 

specific choice of initial guess, and the specific transition-state optimizer being used. 

Given that HF/STO-3G calculations are much more affordable, it may be wise to start 

with the HF/STO-3G initial Hessian, resorting to the exact initial Hessian only if one 

encounters problems converging to the targeted transition state. 
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We did not systematically study whether HF/STO-3G Hessian is a good initial 

guess for transition-state optimizations with density-functional theory and other methods. 

Based on limited experiments, we believe that HF/STO-3G is a suitable guess in most 

cases, but determining the Hessian at the same level of electronic theory, with the STO-

3G basis, might work better. Establishing this would require further tests. It is noteworthy 

that Hartree-Fock calculations often give reliable geometries,
36

 so the HF/STO-3G initial 

Hessian guess is a reasonable protocol even for transition-state optimizations using post-

Hartree-Fock methods. 

If even a minimal basis set Hartree-Fock calculations is unaffordable, the initial 

Hessian can be taken from a semiempirical calculation (here, AM1).  Using AM1 to 

construct the initial Hessian gives consistently inferior results. However, while the AM1 

Hessian gives noticeably worse results, it is not qualitatively inferior.  

Based on these results, we recommend using the Saddle transition-state optimizer, 

with either the HF/STO-3G or the exact initial Hessian.  Among widely available 

algorithms, the QST3 method, with the HF/STO-3G initial Hessian, is a good general-

purpose approach. 
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Table 5.1. Average number of steps for each initial guess as the choice of the initial Hessian was varied. The results for the best 

choice of initial Hessian for each set of initial guesses, for each optimization method, is given in bold. 

Method Saddle Standard Berny Algorithm QST3 Algorithm 

Initial 

Hessian 

 

AM1 HF/ STO-3G Exact Hessian AM1 HF/ STO-3G Exact Hessian AM1 HF/ STO-3G Exact Hessian 

Good 

Guess 
19.8 17.1 17.2 29.7 17.6 22.9 32.4 20.0 27.3 

Bad Guess 29.4 26.7 26.1 19.3 15.4 15.3 22.8 18.3 18.2 

Method 1 13.3 12.5 11.8 20.4 12.6 10.7 22.8 17.0 9.1 

Method 2 13.4 11.9 10.9 13.5 7.7 6.1 16.0 10.4 10.7 

Method 3 16.8 16.4 17.4 18.7 10.0 9.0 24.7 16.5 13.5 

 

 

Table 5.2. Percentage convergence of reactions for each initial guess as the choice of the initial Hessian was varied. The results for the 

most robust choice of initial Hessian for each set of initial guesses, for each optimization method, is given in bold. 

Method Saddle Standard Berny Algorithm QST3 Algorithm 

Initial 

Hessian 

 

AM1 HF/STO-3G Exact Hessian AM1 HF/STO-3G Exact Hessian AM1 HF/STO-3G 
Exact 

Hessian 

Good 

Guess 
95.3% 96.1% 100.0% 84.4% 92.2% 87.5% 88.3% 92.2% 93.8% 

Bad Guess 88.4% 89.8% 89.5% 52.0% 59.1% 59.6% 78.2% 78.8% 80.0% 

Method 1 96.9% 96.9% 97.7% 78.9% 85.2% 84.4% 86.7% 92.2% 89.8% 

Method 2 97.7% 97.7% 97.7% 87.5% 93.8% 93.8% 87.5% 93.0% 90.6% 

Method 3 84.4% 85.9% 86.7% 75.8% 78.9% 81.3% 82.8% 89.8% 85.9% 
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6.1 Overview 

Selecting an appropriate coordinate system and specifying key “reduced” coordinates that 

should be treated with extra care, is critical for robust transition-state optimization 

methods. We develop, and assess, several methods for selecting an appropriate system of 

redundant internal coordinates, and the key reduced coordinates, from the molecular 

structures of the reactant and product and guess for the transition-state structure. While it 

is better to select the key coordinates manually, using chemical intuition, computational 

approaches relying on automatic specification of coordinates still perform well.  

 

6.2 Introduction 

Because of the high dimensionality of molecular potential energy curves, it is 

often advisable to select several key chemical coordinates, which are then subjected to 

greater scrutiny. These key chemical coordinates, which typically correspond to 

internuclear distances of the bonds that fracture and form in the course of the chemical 

reaction, are called reduced chemical coordinates, and the potential (or free) energy 

surface written only as a function of these coordinates is a reduced potential energy 

surface. Reduced coordinates are used in dynamical and deterministic methods for 

exploring chemical reaction pathways,
1-7

 and also to improve the efficiency of geometry 

optimization methods.
8-10,11

 It is this latter problem, and specifically the use of reduced 
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coordinates to improve the robustness of transition-state optimization methods, that we 

focus on here.
12

 

We have recently developed a transition-state optimization method in redundant 

internal coordinates,
13-20,21

 where the elements of the Hessian associated with the reduced 

coordinates are accurately computed with finite differences.
11

 This method, which we call 

Saddle, is slightly slower than the best conventional methods, mainly because it uses 

additional gradient evaluations to ensure that the elements of the Hessian involving the 

reduced coordinates are accurate. However, it is significantly more robust than 

conventional methods, with a much lower failure rate, and a significantly lower 

probability of converging to the wrong transition state.
12

 Unfortunately, Saddle requires 

that the user provide a list of the reduced coordinates, using her chemical intuition. This is 

rarely difficult (we did not exert any special care in selecting the reduced coordinates), 

but it means that Saddle is not a true black-box transition-state optimizer.  

To remedy this, we developed a protocol for the automatic selection of reduced 

coordinates, using the structure of the reactants, the products, and the guess for the 

transition-state structure. The idea is that internal coordinates that change a significant 

amount between these three structures should be treated as reduced coordinates.  
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6.3 Protocol for Automatically Selecting Reduced 

Coordinates 

To select the reduced internal coordinates, we compare the internal coordinates for 

three pairs of structures: (1) reactant and product, (2) reactant and transition state, (3) 

product and transition state. If, for any of these pairs of structures, any internuclear 

distance changes by more than half the sum of the covalent radii of its constituent atoms, 

that internuclear distance is designated as a reduced bond. After all the reduced bonds 

have been identified, we examine angles where all three atoms contribute to a reduced 

bond. (This is almost always the angle between two reduced bonds, but it does not have to 

be.) If these angles differ by more than 30 degrees, then the angle is selected to be 

reduced. With our database of reactions, there was not enough data to identify a robust 

criterion for selecting which dihedral angles should be reduced coordinates;  reduced 

dihedral angles must be specified by the user. 

 

6.4 Testing Protocol 

 To test the efficiency of this method for automatically selecting the reduced 

coordinates, a thorough comparison study was performed using reactions from our test set 

of reactions where the reactant and product do not dissociate.
12

 (That is, when one 

computes the intrinsic reaction coordinate, the final reactant and product structures do not 

consist of two dissociating fragments.) We were left with 60 reactions:  reactions 6, 10-

18, 20, 22-23, 28-33, 35, 37, 39-44, 48-49, 52, 54-61, 63-67, 74, 82-84, 91, 94-95, 98-99, 
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102-105, 120, and 127-129 from reference 12. All the calculations were performed at the 

HF/6-31++G(p,d) level, using the Gaussian program.
22

 

 To test the method, we generated a variety of initial guesses, ranging from very 

good initial guesses to extremely poor initial guesses. Specifically, we interpolated 

between the reactant and product structures, in redundant internal coordinates, using two 

of the methods from reference 21, 

  

( ) ( )
�

( ) ( ) ( ) ( )
2

Method 1 reactant product
arg min 1p p p = − − + 

x

x q x q q

  (6.1) 

 

( ) ( )
�

( ) ( ) ( ) ( ) ( )( )
2 2

Method 3 reactant product
arg min 1p p p= − − + −

x

x q x q q x q

   (6.2) 

Here x denotes the Cartesian coordinate of the atoms and q denotes the molecular 

geometry in redundant internal coordinates.  

The approximate reaction pathways, x(p), were divided into eight equivalent 

segments using the following values of p,  

 

( ) ( )
Method 1

0.125 0,1,2, 8p n n n= = …

  (6.3) 

 

( ) ( )
Method 3

1
1 1

0.125
0,1,2, 8

1
2

0.125

n
p n n

n

 
− − 

 
= =

−

…

  (6.4) 

When n = 4, the indeterminate form in Eq. (6.4) has the value 
( ) ( )
Method 3

4 0.5p = . We 

used the seven structures between the reactant and the product, n = 1,2,…7, as initial 

guesses for the transition-state structure. Clearly the structures from midpoint of the 
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interpolant, n = 4, will be better guesses for the transition-state structure, on average, than 

those near the reactant (n < 4) or product (n > 4) structures.  

 The structures considered here are considerably worse than most of the structures 

we considered in reference 21 (where the reactant and product were set to the endpoints 

of a standard IRC calculation, and not the bottoms of the associated wells of the 

molecular potential energy surface) and the randomly generated structures in reference 

12. For this reason, the tests considered here represent an extremely challenging test for 

transition-state optimizers. In particular, many of the initial guesses for the transition-state 

structure resemble the reactant or product structures much more strongly than they 

resemble the structure of the true transition state. 

 We considered four different ways to construct the redundant internal coordinates 

and to select the reduced coordinates.  

• user+TS. The user specifies the reduced coordinates, and the system 

of redundant coordinates is determined from the transition-state guess. The 

resulting calculations use the version of Saddle presented in refs. [11-12]. 

• user+all. The user specifies the reduced coordinates and the initial 

structures for the transition state, reactant, and product. Redundant 

coordinates are constructed for the reactant, product, and transition-state 

structures and the union of these coordinates is used as the redundant 

internal coordinate system for the calculation. 
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• auto+all. The reduced coordinates are automatically generated using 

the protocol described in the first paragraph of section 6.3. Redundant 

coordinates are constructed for the reactant, product, and transition-state 

structures and the union of these coordinates is used as the redundant 

internal coordinate system for the calculation. 

• both+all. The reduced coordinates are automatically generated, then 

the list of reduced coordinates is amended by any user-specified 

coordinates that were not among the automatically generated coordinates. 

The redundant coordinate system is the union of the redundant coordinate 

systems of the reactant, product, and transition state structures. 

We used the same version of Saddle that was presented in 11, and systematically 

tested in 12, to try to optimize the transition state for these choices of coordinates, with all 

the initial transition state structures (n = 1,2, … 7). The initial Hessian was computed 

exactly. The average number of gradient evaluations required to locate the correct 

transition state (Table 6.1), along with the percentage of reactions that converge to the 

correct transition state (Table 6.2), were computed. As in refs. 12 and 23, a transition-

state optimization is considered to fail if the program crashes for any reason (including 

SCF convergence failure), if convergence is not achieved in 200 iterations, or if the 

program converges to the wrong transition state. A transition state is considered to be 

incorrect if it differs in energy from the targeted transition state by more than 10
–3

 a.u. 

and if the interatomic distances in the vicinity of the reaction site have a weighted 

percentage error of greater than 2%.  
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Table 6.1. Average number of steps for the various methods for choosing the reduced-

coordinates (user-specified, automatically generated, or both (the union of the two sets) 

and the redundant internal coordinates (using only the TS (transition-state structure), or 

using all available structures (the transition-state structure, the reactant structure, and the 

product structure)).  

 Type of Reduced Coordinates – Choice of Redundant Internals 

n user+TS user+all auto+all both+all 

1 56.3 45.4 42.8 44.7 

2 33.5 38.3 38.9 39.6 

3 33.1 32.5 31.8 31.5 

4 29.9 29.9 31.9 29.3 

5 36.2 33.0 33.0 28.8 

6 28.1 29.3 31.3 35.9 

7 46.6 39.5 45.2 41.6 

Average 

(n = 1,2,…7) 36.3 34.5 35.0 34.3 
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Table 6.2. Percentage convergence for the various methods for choosing the reduced-

coordinates (user-specified, automatically generated, or both (the union of the two sets) 

and the redundant internal coordinates (using only the TS (transition-state structure), or 

using all available structures (the transition-state structure, the reactant structure, and the 

product structure)).  

 Type of Reduced Coordinates – Choice of Redundant Internals 

n user+TS user+all auto+all both+all 

1 47.5% 42.5% 31.7% 30.0% 

2 64.2% 63.3% 55.0% 46.7% 

3 78.3% 77.5% 70.0% 66.7% 

4 80.8% 77.5% 74.2% 71.7% 

5 87.5% 81.7% 78.3% 73.3% 

6 65.0% 63.3% 61.7% 65.0% 

7 53.3% 48.3% 36.7% 41.7% 

Average 

(n = 

1,2,…7) 68.1% 64.9% 58.2% 56.4% 
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Figure 6.1. The percentage of reactions that converged in a specified number of steps, 

using an initial structure taken from the midpoint of the approximate reaction path from 

Eqs. (6.1) and (6.2), depending on the choice of reduced and redundant internal 

coordinates.  

 

 

6.5 Results and Discussion 

 The first column (user+TS) of Table 6.1 and Table 6.2 is the traditional 

transition-state optimization protocol:  the reduced coordinates are specified by the user, 

and the redundant internal coordinates are constructed from the initial transition-state 

structure. The method converges relatively robustly (around 80% convergence), and 

relatively quickly (30 to 40 gradient evaluations) for guesses near the midpoint of the 
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approximate reaction paths from Eqs. (6.1) and (6.2). For guesses near the reactant or 

product structures, the number of iterations rises, and the percentage of calculations that 

converge falls to about 50%. 

If the reactant and product structures are available, we can use these structures to 

construct redundant internal coordinate systems; usually these systems will be slightly 

different from the redundant internal coordinate system from the transition-state structure. 

If we take the union of these coordinates (user+all), one might expect that one would 

have an even better system of redundant internal coordinates. As seen in tables 6.1 and 

6.2, and in the performance plot for p = 0.5 (Figure 6.1), this does not seem to be the case. 

In most cases, calculations converge slightly quicker using the enriched coordinate 

system, but this is mainly because some of the most challenging cases fail to converge at 

all. Still, the method is relatively robust (around 80% convergence) for guesses near the 

transition-state. Using all three structures to construct the set of redundant internal 

coordinates is important, however, for initial structures near the reactant or the product (n 

= 1 and n = 7, respectively).  In these cases, using the redundant internal coordinates that 

describe the reactant and product structures is helpful for the early stages of the 

optimization, and it greatly increases the speed of the optimization, while decreasing the 

percentage of reactions that converge by less than 5%. Overall it seems that having a 

coordinate system that is “too redundant” decreases the robustness of the method, but 

increases its speed. 

Next we tested the automatically generated reduced coordinate protocol from 

section 6.3 (auto+all). This tends to generate more reduced coordinates than would be 
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generated by intuition.  Because the number of reduced coordinates is larger, a greater 

fraction of the Hessian is accurately approximated by finite differences in this case. The 

speed of the method is comparable, but significantly fewer reactions converge, especially 

when the guessed structure is far from the true transition-state.  Saddle forces the 

reduced-coordinate block of the Hessian to have exactly one imaginary frequency; this 

helps guide the answer to the transition state. This is more effective, however, when the 

reduced block of the Hessian is small; when the reduced block of the Hessian is larger, it 

is more likely that the procedure assigns an imaginary frequency to the wrong normal 

mode, which can lead the method to converge to the wrong transition state, or cause 

convergence failure. 

We noticed that occasionally the automatic selection of reduced coordinates failed 

to select a coordinate that we had manually identified as important. This led us to try 

adding the user-specified reduced coordinates to the automatically selected reduced 

coordinates (both+all). The resulting calculations converge acceptably quickly, but 

converge less frequently than the analogous cases, where either only the user-specified 

reduced coordinates (user+all) or automatically-selected reduced coordinates (auto+all) 

were used. This is probably because making an even larger reduced space makes it even 

less likely that correct eigenvector of the reduced block of the Hessian will be selected to 

correspond to a negative frequency. 

For guesses near the true transition state (n = 3,4,5), all of the methods we 

considered work well, converging, on average, in 30-40 iterations. Calculations using 

user-specified reduced coordinates converge about 80% of the time. Calculations using 
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automatically-specified reduced coordinates converge about 70% of the time. For initial 

guesses that are further from the transition state, it is more important for the user to 

specify the reduced coordinates by hand.   

While these conclusions are specific to the Saddle program, our procedure for 

selecting reduced coordinates automatically can obviously be applied to other reduced-

coordinate methods.
1-10

 In addition, our results suggest that if one is struggling to 

converge to a transition-state using an optimization method based on redundant internal 

coordinates, it is sometimes beneficial to use the union of the redundant internal 

coordinate systems of the transition-state, reactant, and product structures.  

 

  



Ph.D. Thesis – Sandra Rabi; McMaster University – Chemistry and Chemical Biology 
 

 

226 

 

6.6 References: 

 (1) Laio, A.; Parrinello, M. Proc. Natl. Acad. Sci. 2002, 99, 12562. 

 (2) Ensing, B.; Laio, A.; Gervasio, F. L.; Parrinello, M.; Klein, M. L. J. Am. 

Chem. Soc. 2004, 126, 9492. 

 (3) Wu, Y. D.; Schmitt, J. D.; Car, R. J. Chem. Phys. 2004, 121, 1193. 

 (4) Dey, B. K.; Janicki, M. R.; Ayers, P. W. J. Chem. Phys. 2004, 121, 6667. 

 (5) Burger, S. K.; Liu, Y. L.; Sarkar, U.; Ayers, P. W. J. Chem. Phys. 2009, 

130, 024103. 

 (6) Burger, S. K.; Ayers, P. W. J. Chem. Theory Comp. 2010, 6, 1490. 

 (7) Dey, B. K.; Ayers, P. W. Mol. Phys. 2006, 104, 541. 

 (8) Bofill, J. M.; Anglada, J. M. Theor. Chem. Acc. 2001, 105, 463. 

 (9) Anglada, J. M.; Besalu, E.; Bofill, J. M.; Crehuet, R. J. Comput. Chem. 

2001, 22, 387. 

 (10) Burger, S. K.; Ayers, P. W. J. Chem. Phys. 2010, 132, 234110. 

 (11) Chapter 3 

 (12) Chapter 4 

 (13) Fogarasi, G.; Zhou, X. F.; Taylor, P. W.; Pulay, P. J. Am. Chem. Soc. 

1992, 114, 8191. 

 (14) Pulay, P.; Fogarasi, G. J. Chem. Phys. 1992, 96, 2856. 

 (15) Baker, J.; Kessi, A.; Delley, B. J. Chem. Phys. 1996, 105, 192. 

 (16) Baker, J.; Pulay, P. J. Chem. Phys. 1996, 105, 11100. 

 (17) Baker, J.; Kinghorn, D.; Pulay, P. J. Chem. Phys. 1999, 110, 4986. 



Ph.D. Thesis – Sandra Rabi; McMaster University – Chemistry and Chemical Biology 
 

 

227 

 

 (18) von Arnim, M.; Ahlrichs, R. J. Chem. Phys. 1999, 111, 9183. 

 (19) Peng, C. Y.; Ayala, P. Y.; Schlegel, H. B.; Frisch, M. J. J. Comput. Chem. 

1996, 17, 49. 

 (20) Bakken, V.; Helgaker, T. J. Chem. Phys. 2002, 117, 9160. 

 (21) Chapter 2 

 (22) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. 

A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; 

Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Iszmaylov, A. F.; Bloino, J.; Zheng, 

G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, 

M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; 

Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; 

Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. 

C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; 

Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; 

Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; 

Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; 

Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; 

Fox, D. J.; Gaussian Inc.: Wallingford CT, 2009. 

 (23) Chapter 5 

 

 

 



Ph.D. Thesis – Sandra Rabi; McMaster University – Chemistry and Chemical Biology 
 

228 

 

 

 

Chapter 7 

 

Conclusions & Future Work 

 

 

 

 

 

 

 



 

Ph.D. Thesis – Sandra Rabi; McMaster University – Chemistry and Chemical Biology 
 

229 

 

7.1 Summary 

 This thesis presents new methods for transition-state optimization. While efficient 

transition-state optimizers already exist, they are somewhat unreliable. Our aim was to 

invent a new transition-state optimization method that was much more robust than 

existing methods, but not much (if any) slower. The method presented in chapter 3, and 

tested systematically in chapter 4, achieves this objective. 

 In order to determine a chemical reaction mechanism, one must find the lowest (or 

several of the lowest) energy pathway from the reactant to the product on the molecular 

potential energy surface. The highest point on this path is called the transition state; it 

represents the bottleneck between the reactant and product structures. From knowledge of 

the transition-state, one may estimate the rate of reaction along a given reaction pathway 

using traditional transition-state theory. Transition-state theory, together with 

straightforward corrections for tunnelling, barrier-recrossing, etc., is sufficiently accurate 

for most computational reaction modeling, partly because the approximations inherent in 

transition-state theory are usually smaller than other approximations—neglect or 

approximation of thermal effects and the molecular environment (e.g., solvation), 

approximate values for electronic energies, etc.—that are commonly made.    

Traditionally, quantum chemists have been primarily concerned with computing 

the value of the molecular potential energy surface for a given molecular structure. 

However, now that reliable, accurate, and computationally efficient software for 

evaluating molecular energies is available, the biggest challenge in computational 

modeling of chemical reactions is finding transition states.  Transition-state optimization 
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is an old problem, with modern transition-state optimization methods appearing in the late 

1970’s.  Our work may be viewed as a refinement of these venerable algorithms. 

Transition-state optimization methods are extremely sensitive to the initial guess 

for the transition state structure. Almost any reasonable algorithm will work well if the 

initial guess is good enough, but even the best algorithms will fail if the initial guess is 

very poor. In Chapter 2, we designed a new method for predicting the transition-state 

structure, using synchronous transit paths in redundant internal coordinates. The idea is 

that the transition state structure is approximately a weighted average of the reactant and 

product structures, in redundant internal coordinates. Tested against a large database of 

reactions that we compiled for this purpose, the approaches we designed have surprising 

accuracy of about .1 a.u. root-mean-square deviation from the correct transition state.  

In order to make the transition-state guessing algorithm in chapter 2 robust, we 

developed new tools for working with redundant internal coordinates. The most important 

revision was the introduction of robust dihedral descriptors; these new descriptors replace 

the conventional dihedral angle for measuring molecular torsions. However, unlike the 

conventional dihedral angle, these descriptors do not lead to numerical ill-conditioning 

when the atoms involved in the torsion are nearly linear. Second, we proposed the 

manifold-projection method for converting between redundant internal coordinates and 

Cartesian coordinates. The idea of manifold projection is simple:  given a set of redundant 

internal coordinates, which may or may not be physically realizable by any molecular 

geometry, select the molecular geometry that comes as close as possible to reproducing 

the desired coordinates. The Cartesian coordinates corresponding to this molecular 
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geometry are then used to evaluate the molecular potential energy and its gradient by an 

electronic structure theory method. 

These tools for working with redundant internal coordinates made it possible to 

develop the more robust transition-state optimization method, called Saddle, presented in 

Chapter 3. Saddle is based on the idea that the molecular rearrangements in chemical 

reactions can be described, qualitatively, using only a few internal coordinates (e.g., the 

lengths of the breaking and forming bonds, plus the angles between them). These key 

coordinates define a reduced-dimensionality potential energy surface; transition-state 

optimizers that treat the reduced coordinates with extra care are expected to be more 

robust than traditional approaches. Our idea is to use finite-differences, as necessary, to 

ensure that the components of the Hessian involving the reduced coordinates are accurate. 

This gives an algorithm that is more robust, but not much more costly, than traditional 

approaches. 

In the process of developing Saddle, we designed new quasi-Newton updates that 

are appropriate for systems containing reduced coordinates. We also designed a gradient-

based trust region method that seems more appropriate for optimizations to stationary 

points, instead of extrema.  

The impressive performance of Saddle, relative to the traditional approaches 

implemented in the Gaussian program, is confirmed in chapter 4. Chapter 4 also presents 

a new protocol for testing transition-state optimization methods. The key components of 

this algorithm are a test-set of chemical reactions (an extension of the set in chapter 2), 

together with a procedure for creating random guesses for their transition states that are a 
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specified distance from the correct structure. By evaluating how different methods 

perform as one gets further and further from the correct structure (as the initial guesses 

become worse and worse), we can assess their relative performance in terms of 

computational cost and robustness. Saddle is slightly more costly than existing methods, 

but it is significantly more robust; it works much better for very poor initial guesses than 

traditional methods. 

Chapters 5 and 6 are refinements of the Saddle algorithm. Chapter 5 shows that 

one does not need to compute the exact initial Hessian; an inexpensive Hessian computed 

with the Hartree-Fock method, using a minimal basis set, works just as well. This insight 

extends to other transition-state finders. Chapter 6 investigates whether Saddle can be 

made into a black-box method, where the user does not need to manually identify the key 

reduced coordinates. The protocol described there requires the structures of the reactant, 

product, and transition-state guess; it identifies larger sets of reduced coordinates than a 

typical human user would choose, but the method converges nearly as well as manually 

selected reduced coordinates.  

 

7.2 Future Work and Other Projects Not Included in the Thesis 

A. Overview 

In addition to the research presented here, I have been involved in many other 

projects during my Ph.D. years. These projects range from ideas for future work that I 

have formulated but not yet pursued, to projects for which preliminary results are 

available, to completed projects that I chose not to include in the thesis. (There are two 
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published papers,
1,2

 one accepted paper,
3
 and a paper to be submitted to J. Mol. Modeling 

that are not included in the thesis.
4
) In the remainder of this document, I will discuss these 

projects, starting with ones related to the thesis itself (section 7.2.B), concluding with 

peripheral projects that I investigated at various points during my graduate studies 

(section 7.2.C).  

 

B. Extensions and Further Development of the Topics Covered in the Thesis 

1. Improved Initial Guesses for Transition-State Geometries 

 In Chapter 2, three different ways of interpolating between the reactant and 

product structure in redundant internal coordinates were considered. For example,  

 ( ) � ( ) ( ) ( ) ( )
2

reactant product
arg min 1p p p = − − + 

x

x q x q q                 (7.1) 

Typically one selects the midpoint on the path (p = 0.5), or the value of p for which the 

value at the minimum is largest, as the initial guess for the transition state. However, we 

observed that using a better guess for the transition state gives faster convergence. For 

example, the point on the interpolated pathway, (7.1), that is closest to the transition state 

is  

 � ( )
2

closest t.s.
arg min

p

p p= −x x    (7.2) 

Determining pclosest is impossible without already knowing the transition state. However, 

if one knows certain information about the reactant and product, a model for the transition 

state can be constructed. For example, from the energy of the reactant and product, one 

can use the Hammond postulate to estimate whether the transition state will be closer to 
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the reactant (exothermic reactions, pclosest < 0.5) or the product (endothermic reactions, 

pclosest > 0.5). Together with Santa Rabi and Christopher Haddad, I built a model for 

pclosest. It will be interesting to test this model to see whether it improves the quality of the 

initial guess for transition-state optimization. 

 

2. Alternative Secant Conditions for Saddle 

 In the appendix of chapter 3, three versions of the secant condition are presented. 

(Eqs. (85), (88), and (90)). Eq. (90) is a symmetrized version of Eq. (88); there is also a 

symmetrized version of Eq. (85).) We should implement these secant conditions and test 

to see which is the most accurate. 

 

3. Strict Separation of Reduced and Nonredundant Coordinates  

 In order to make the secant condition reliable, after each step, Saddle aligns the 

nonredundant delocalized orthogonal internal coordinates (the v-space) so that they are 

maximally aligned to the previous step. In Saddle we assumed that the most important 

thing was to maximize the alignment between the basis vectors of the old and new v-

spaces, as this should improve the reliability of the secant approximation. However, this 

has the unpleasant feature of mixing the reduced coordinates with the non-reduced 

coordinates at each step.  

 It might be better to prevent this mixing. To do this, one needs to align the 

reduced and non-reduced elements separately.  To do this, one defines a reduced and 

nonreduced portion of the V matrix, 
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atoms

reduced

1 2

nonreduced

1 2 3 6(5)

R

R R N+ + −

=  
  

=  
  

V
v v v

V
v v v

⋯

⋯

   (7.3) 

and aligns the spaces separately. This requires performing two separate singular value 

decompositions, 

 

( )( ) ( )

( )( ) ( )

new old

reduced reduced reduced reduced reduced

new old

nonreduced nonreduced nonreduced nonreduced nonreduced

T
T

T
T

=

=

V V U W

V V U W

ɶ

ɶ

Σ

Σ

   (7.4) 

The maximally aligned vectors, subject to the constraint that the nonreduced and reduced 

spaces do not mix, are 

 

( ) ( )

( ) ( )

new new

reduced reduced reduced reduced

new new

nonreduced nonreduced nonreduced nonreduced

T

T

=

=

V V U W

V V U W

ɶ

ɶ
   (7.5) 

 

4. Nonredundant Alternatives to Delocalized Internal Coordinates  

 The Saddle program uses a basis of nonredundant and orthogonal coordinates that 

is closely related to the delocalized internal coordinates proposed by Baker.
5
 The 

difference is that we have to construct reduced and nonreduced subspaces.   

Denote the elements of the Wilson B matrix as  

 i

ij

j

q
b

x

∂
=

∂
   (7.6) 

where qi is a redundant internal coordinate and xj is a Cartesian coordinate. We project the 

reduced coordinates, ( ) ( ) ( )1 2ˆ ˆ ˆ, , ,
R

s s s…  , to construct “true” reduced coordinates, which are 

realizable with physical displacements of the atoms, 
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 ( ) ( )ˆ 1, 2, ,
k k

k R
+= =r BB s …    (7.7) 

where B
+
 denotes the Moore-Penrose pseudoinverse of the Wilson B matrix. These 

coordinates are not orthogonal. We construct the matrix whose columns are the 

nonorthogonal vectors, 

 
( ) ( ) ( )reduced 1 2 R

=  
  

S
r r r⋯

   (7.8) 

The singular value decomposition of S gives you the form  

 
reduced reduced reduced reduced

T=S U WΣ    (7.9) 

and one can also compose the Grammian, 
reduced reduced reduced

T=G S S  . The first R columns of 

the matrix U form a basis for the reduced space, Vreduced. Another basis is obtained by 

Löwdin orthogonalization of S,
6
  

 ( )1 2

reduced reduced reduced reduced reduced reducedstep
T T−= =V S G U WΣ    (7.10) 

This gives the orthogonal basis that is as close as possible to the original nonorthogonal 

basis;
7-9

 Eq. (7.10) is equivalent to the procedure we used in chapter 3. 1 2

reduced

−G  should be 

computed as a generalized inverse (in case the initial vectors are linearly dependent). In 

the formula based on singular-value decomposition, the same objective is achieved by 

defining  

 ( ) reduced

reduced

reduced

1 elements of  greater than 
step

0 elements of  less than or equal to 

ε

ε


= 


Σ
Σ

Σ
  (7.11) 

where ε > 0 is a small cutoff to allow for roundoff error in the orthogonalization 

procedure. 
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 After constructing the reduced space, we form the nonreduced space. To do this, 

we first form a set of 3Natoms – 6(5) orthogonal vectors, which we took from the singular 

value decomposition of the Wilson B matrix, 

 T= B BB U WΣ    (7.12) 

We then choose the nonsingular vectors of UB,  

 
( ) ( ) ( )atoms

nonreduced 3 6(5)1 2 N −
=  
  

S
u u u⋯

   (7.13) 

and project out the component that lies in the reduced space, 

 
( ) ( ) ( )atoms

nonreduced 3 6(5)1 2

nonreduced reduced reduced nonreduced

N

T

−
=  
  

= −

S
u u u

S V V S

ɶ

ɶ ɶ ɶ⋯    (7.14) 

Taking the singular value decomposition of this matrix, 

 nonreduced nonreduced nonreduced nonreduced

T=S U Wɶ Σ ,  (7.15) 

We can construct a basis for the reduced space from the nonsingular vectors of Unonreduced 

or by Löwdin orthogonalization, 

 
( )

( )

1 2

nonreduced nonreduced nonreduced nonreduced

nonreduced reduced nonreduced
step

T

T

−
 =
  

=

V S S S

U W

ɶ ɶ ɶ

Σ

   (7.16) 

The vectors that are obtained from Eq. (7.16) are as close as possible to the original 

singular vectors of B, and therefore as close as possible to the delocalized internal 

coordinates of Baker.
5
  We tested the singular value decomposition method and the 

orthogonalization method, and found that the Löwdin orthogonalization method worked 

much better.  



 

Ph.D. Thesis – Sandra Rabi; McMaster University – Chemistry and Chemical Biology 
 

238 

 

 Are there even better ways to define the delocalized internal coordinates? For 

example, we can make the Hessian as diagonal as possible by using the normal 

vibrational modes as the initial basis of 3Natoms – 6(5) vectors. (I.e., put the normal 

vibrational modes, obtained by diagonalizing the quasi-Newton Hessian, into Eq. (7.13).) 

Eq. (7.16) would then give the set of nonredundant coordinates that maximally resembled 

the normal vibrational modes. We have not tested this choice, but it may make it easier to 

approximate the quasi-Newton Hessian. 

 Alternatively, we could choose to localize the nonredundant coordinates. Define 

the position of a redundant internal coordinate, in Cartesian coordinates, as  

  
atoms  in internal coordinate 

atoms  in internal coordinate 

k

k

a a

a

k

a

a

m

m

=

∑

∑

q

q

x

x   (7.17) 

where the summations includes only the positions of the two, three, or four atoms that 

contribute to the interatomic distance, angle-bending, or torsional coordinate, 

respectively. The first two moments of the position of a delocalized nonreduced 

nonredundant coordinate are  

  
( ) ( )

int 2

atoms

1

1, 2, 3 6(5)
N

i i

k k

k

v i R R N
=

= = + + −∑y x …   (7.18) 

( )( ) ( )
int2 2 2

atoms

1

1, 2, 3 6(5)
N

i i

k k

k

y v i R R N
=

= = + + −∑ x …  

  (7.19) 
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The Boys localization procedure, applied to the redundant internal coordinate, is 

equivalent to minimizing, over all unitary transformations of the delocalized nonreduced 

nonredundant coordinates,  

 

�
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y y

y y

   (7.20) 

 

5. Redundant Alternatives to Delocalized Internal Coordinates  

 While it is convenient, it is not strictly necessary to use nonredundant coordinates 

in the transition-state optimization. Specifically, one can append the singular vectors (the 

columns of UB with zero eigenvalue) to the v-space, as constructed with one of the 

methods from the previous section. This defines the orthogonal basis 

 
( ) ( ) ( ) ( )atoms atoms int3 6(5) 3 7(6)1 N N N− −

=  
  B B

W
v v u u⋯ ⋯

    (7.21) 

Using W, instead of V, means that the Hessian that is used in the transition-state 

optimization is larger (Nint × Nint instead of 3Natoms – 6(5) × 3Natoms – 6(5)). Because of 

this, the Hessian can store additional information, which we believed would speed the 

optimization. We found, however, that the quasi-Newton Hessian rarely had more than 

3Natoms – 6(5) eigenvalues with significant magnitude. Using W, instead of V, in saddle 

caused small changes in the number of iterations required to converge specific reactions. 

On average, the W-based optimizer required one additional iteration to converge.  
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6. Finding the best Quasi-Newton Hessian  

In Chapter 3, we noticed that the performance of transition-state optimizers is 

highly sensitive to the model that is used to update the Hessian. All methods for updating 

the Hessian use the difference in the gradients between the last two steps, 

  conventional new old= −y g g     (7.22) 

to provide information about the second derivative in the direction of the step; this 

information is used to update the current approximation to the Hessian. However, in 

recent years, authors have examined alternative ways to define the y-vector which 

incorporate partial information about the effects of third derivatives;
10-14

 we have 

implemented seven of these alternative y-vector definitions into Saddle.  

 Any of these seven alternative y-vector definitions can be used in place of the 

conventional definition, Eq. (7.22), in any quasi-Newton formula. We implemented 

thirteen different quasi-Newton methods,
15-21

 all of which can be used either with or 

without damping, into Saddle.  

 To test these methods, we used the protocol from Chapter 4 on the Baker set of 25 

reactions.
22

 Specifically, we used Eq. (4.4) to obtain random displacements in the key 

internal coordinates such that the final structure was either ε = 0.1 a.u. (five “good” 

guesses) or ε = 0.4 a.u. (five “bad” guesses) away from the initial structure. To test the 

quasi-Newton methods for transition-state optimization, we considered deformations of 

the transition-state structure. To test the quasi-Newton methods for geometry 

minimization, we considered deformations of the reactant and product structures. 
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For minimization problems, the most promising optimization methods were the 

BFGS,
23-27

 PSB,
70,71

 Hoshino,
28

 Xie,
29

 and Bofill2003b
15

 updates, together with either the 

conventional definition of the y-vector or the definitions from 
13

, from Eq. (2.14) of 
10

, or 

from Babaie-Kafaki 
14

. For transition-state optimization, we found that the PSB, SR1, 

Bofill2003b, and Bofill’s TS-BFGS formula methods worked best.
17

 The best choices for 

the y-vector were the conventional definitions and the definitions from 
13

 or from Eq. 

(2.14) of 
10

. We should extend our study to the full database of reactions to establish 

stronger preferences between these methods. We also need to investigate whether using 

damped-quasi-Newton methods improves the efficacy of these methods. 

 Among the best quasi-Newton methods for transition-states here are Bofill’s 

hybrid methods, which mix two different quasi-Newton formulae.
30,31

 We should consider 

combinations of quasi-Newton methods that are excellent for minimization with quasi-

Newton methods that work well for transition-state optimization. As was done for the 

initial screening of quasi-Newton methods, these hybrid methods will be tested using 5 

random “good” initial guesses and 5 random “bad” initial guesses. Preliminary results 

will be done for the 25 reactions, and then fewer combinations will be used for the whole 

130 reactions.  

 

7. Testing Robust Dihedral Coordinates  

Chapter 2 presents a new way to represent dihedral angles, termed robust dihedral 

descriptors (cf. Eqs. (2.5) and (2.6)).  These descriptors avoid the numerical problems that 

arise when one describes the dihedral rotation ∠αβγδ in the traditional way if one of the 
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angles ∠αβγ or ∠βγδ is nearly linear. We used the robust dihedral descriptors, instead of 

the conventional dihedral angles, throughout the remainder of the thesis. 

While the robust dihedral descriptors prevent one of the sources of numerical 

instability that can cause other programs to crash, we should test whether or not they 

compromise the performance of our method. (For most optimizations, certainly, there is 

no problem with the conventional approach.) We should also test whether our method for 

choosing which dihedral angles to include in the set of redundant internal coordinates 

works well compared to conventional approaches (e.g., the selection criterion used in the 

Dalton program
32

) or just choosing all dihedral angles, for every bond in the molecule.   

To study this, we considered the two different methods for specifying dihedral 

rotations (our robust description and the conventional method) and three different ways to 

choose the dihedral coordinates (our method from Chapter 2, the method in Dalton, and 

including all dihedrals). We generated ten initial guess geometries for each of the 

reactions in our test set by randomly changing the key internal coordinates such that the 

final structure was either ε = 0.1 a.u. (five “good” guesses) or ε = 0.4 a.u. (five “bad” 

guesses) away from the initial structure. We observed that using the robust dihedral 

descriptors converges a larger percentage of the reactions, and that all the methods have 

roughly similar computational cost for reactions where they all converge.  
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8. Optimizing Program Parameters  

 As discussed at the end of Chapter 3, there are many user parameters in Saddle 

and we have not, thus far, made any attempt to systematically optimize them. Many of the 

choices can be validated separately, and the previous six subsections give insight into 

how this may be done. But, especially when considering parameters that control the step-

size and the Hessian update, it is probably important to optimize the parameters jointly. 

 There are two dichotomic choices (using rational function optimization (RFO) or 

trust region image method (TRIM) to control the step size; using the energy-based or 

gradient-based criteria for updating the trust radius) and nine to eleven numerical 

parameters (ω and υ from Eqs. (3.43)-(3.44), which determine when a finite-difference 

computation for a row/column of the Hessian is performed; κ in Eq. (3.55), which 

determines whether a quasi-Newton update should be performed in the reduced space; λp 

and λn from Eq. (3.57), which control the eigenstructure of the Hessian; the values of the 

maximum, minimum, and initial trust radii; and four to six parameters specifying the trust 

radius scheme (specifying whether a step is good and how much the trust radius should 

increase if so; specifying whether a step is poor and how much the trust radius should 

decrease if so).  

 We did not optimize the values of these parameters, or even search for good 

choices of these parameters by trial-and-error. This suggests that the method is not very 

sensitive to these parameters, within reason. We would like to select two sets of 

parameters:  one that minimizes the failure rate of the algorithm when the initial guess is 

bad, and one that maximizes the speed of the algorithm when the initial guess is good. To 
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do this, we will need to first enhance our testing set: we would like to roughly the double 

the size of our testing database, to 250 reactions, paying special attention to reaction-

types (especially organometallic chemistry and transition-metal chemistry) that are 

underrepresented in the current database. We would also like to form a set of about 50 

very small reactions, which can be studied at the post-Hartree-Fock level. Then, we can 

use ten “good guesses” (random displacements of the reduced coordinates of the 

transition state structure with magnitude ε = 0.1 a.u.) and ten “bad guesses” (ε = 0.4 a.u.) 

to choose optimal parameters for speed (for “good guesses”) and robustness (for “bad 

guesses”). To optimize the parameters, we will use response surface methodology.
33-38

 

 

9. Extensions:  Minimization and Frozen Coordinates  

 The same method we developed for transition-state optimization can be extended 

to minimization. (The only essential change is that one requires the Hessian to have zero 

negative eigenvalues, instead of just one.) For minimization problems, it is also less 

obvious how to choose the reduced coordinates but, fortunately they are less-needed. In 

our initial testing, our algorithm is competitive with other quasi-Newton-based geometry 

minimization methods. More thorough testing will be presented later, together with the 

work on optimizing quasi-Newton methods. 

 It is often interesting to constrain the value of certain coordinates: this allows one 

to restrict conformational changes, and also to drive a reaction from its reactant to its 

product structure. We developed a method to freeze the value of one or more coordinates. 

The idea is quite similar to the method in Chapter 3. First one defines the constraints, 
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requiring certain coordinates (which can be arbitrary linear combinations of redundant 

internal coordinates or atomic positions) to be frozen at specified values, 

 
( ) ( )

int

1

1,2, ,
N

i i

i i

k

c i Fφ
=

= = =∑f q …    (7.23) 

We then form an orthogonal basis for the frozen space using the method we used in 

chapter 3, section 3.3.F to define an orthogonal basis for the reduced coordinates. We 

then project out the components of the reduced coordinates corresponding to the frozen 

subspace, and form an orthogonal basis for the reduced coordinates using the method that 

was used to define the delocalized nonredundant coordinates in chapter 3, section 3.3.F. 

Finally, we project out the components of the delocalized internal coordinates 

corresponding to the frozen and reduced subspaces, and construct an orthogonal basis for 

this subspace. The resulting V matrix, defining the orthogonal vectors in the v-space, has 

the form 

 
( ) ( ) ( ) ( ) ( ) ( )atoms3 6(5)1 1 1 NF F F R F R −+ + + +

=  
  

V
v v v v v v⋯ ⋯ ⋯

   (7.24) 

To prevent the optimization from making large steps in the v-space, we set the diagonal 

elements of frozen-coordinate block of the v-space Hessian to be large positive numbers. 

(This is equivalent to imposing a quadratic penalty constrain the values of these 

coordinates.) An optimization step in v-space is computed, and the components 

corresponding to the frozen subspace (the first F components of the step vector) are set 

equal to zero, so that the constraints are satisfied. Next, the Cartesian step is computed 

using the manifold projection method developed in chapter 2. The weight matrix in Eq. 

(2.7) is given very large components for the frozen coordinates, so that the Cartesian 
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coordinates that we use to evaluate the energy and gradient for the next step of the 

optimization will almost perfectly satisfy the constraints.  

 We have not systematically tested this method, but we have used it in several 

contexts, both for routine computations and for the pathfinding algorithm presented in the 

next section. So far, our approach seems to be more robust than the methods for 

constrained optimization in the Gaussian program. 

 

C. Topics Not Covered in the Thesis 

1. Finding the Reaction Path with Sequential Quadratic Programming 

 This thesis focussed on determining the transition-state structure, which is 

(together with the more easily located reactant and product structures) enough to describe 

chemical kinetics and thermodynamics at the level of transition-state theory. However, 

sometimes one wishes to have not only the structures of the reactant, transition state, and 

product, but the entire reaction coordinate connecting them. This can be useful 

conceptually,
39-42

 but it can also be useful practically, for evaluating corrections to 

traditional transition-state theory.
43-48

 

 Although there are many different ways to define the reaction coordinate, one 

usually uses the minimum energy pathway from the reactant to the product.
49

 This 

pathway is the “leading line” about which reactive trajectories cluster.
50

  

 As part of my Ph.D. research, I developed a new sequential quadratic 

programming method (SQPM) for finding the minimum energy path.
51

 At each step of the 

algorithm, one has an approximate reaction path, which is specified by a list of molecular 
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structures, represented in redundant internal coordinates, { } points

1

N

i i=
q .  Using a cubic spline, 

we define a continuous reaction coordinate, q(t), that passes through the points. The goal 

of the SQPM algorithm is to slide the entire pathway downhill, towards the true minimum 

energy reaction path.  

For the true minimum-energy reaction path, qMEP(t), the gradient of the potential 

energy at each point on the path is perpendicular to the direction of the path. That is,  

 ( )( )
( )MEP

MEP 0
d t

U t
dt

∇ ⋅ =
q

q   (7.25) 

Since this condition holds for the optimal path, imposing at each stage of the optimization 

does not prevent the SQPM method from converging to the true minimum-energy 

pathway. Therefore the SQPM path is updated by minimizing the energy of all the 

intermediate points on the pathway on the hyperplane for which Eq. (7.25) holds.  That is,   
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q q …   (7.26) 

We do not assume that the endpoints of the path are already at local minima, and they are 

optimized without constraints. Each optimization in Eq. (7.26) is a geometry 

minimization, with a frozen coordinate by the constraint  

 
( ) ( )

( )
old old

oldi i
i

d d

dt dt
⋅ = ⋅

q q
q q   (7.27) 

At each step of the SQPM procedure, we perform one step of this optimization using the 

method described in section 7.2.B.8, using a trust radius to ensure that the stepsize does 
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not move beyond the region where our quadratic model for the energy (constructed from 

the computed potential energy and its gradient, along with the approximated quasi-

Newton Hessian) is reliable. Using the new points, we can construct a new reaction path 

and recompute the tangent vector to the path, ( )d t dtq . We are then ready to perform the 

next step of the optimization using the same protocol (Eq. (7.26)).  While the idea of 

SQPM is very simple, there are several nuances that complicate the implementation of the 

idea. First of all, after several steps of the procedure, one usually observes that the points 

have “bunched up” in low-energy regions of the potential energy surface. It is therefore 

necessary to redistribute the points along the pathway. We wish to ensure that there are 

more points in the most important chemical regions (near the reactant, transition-state and 

product structures, where the curvature of the potential energy surface is high); we also 

wish to ensure that there are more points in regions where it is difficult to accurately 

specify the reaction coordinate (where the curvature of the reaction path is high). 

Accordingly, at each stage of the algorithm, we redistribute the points on the path so that 

the points are not bunched together, and so that there are more points where the curvature 

of the energy, and/or the path itself, is high. 

 Second, there is a tendency for the path to develop a kink, which happens when 

the motion of the point creates a path that doubles-back on itself or crosses over itself. 

These kinks can be “cut out” when they are detected, but this slows the convergence of 

the method. We observed that if we relaxed the constraint in Eq. (7.27) by only including 

the key coordinates (by setting all the components of ( )d t dtq  that did not correspond to 

a user-specified coordinate to zero), most problems with kinking could be avoided. 
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Selecting the appropriate coordinates, unfortunately, sometimes requires significant 

insight. 

 We tested this method on a subset of twenty reactions from our transition-state 

database. In general, we were able to converge the path to the point where the magnitude 

of the projected gradient in Eq. (7.25) was less than 0.001 a.u. in around thirty iterations, 

which is significantly faster than the other approaches. (Finding the minimum energy path 

with very high accuracy however, is difficult using the SQPM method.  Other methods 

are more suitable if higher accuracy than this is needed.) We verified that the transition-

state estimate from SQPM was truly excellent; from that starting point, transition-state 

optimizers converge almost immediately. Moreover, a good-enough guess for the 

transition state can be obtained using a looser convergence criterion than what we used in 

our systematic studies; investigating what convergence threshold is appropriate when 

using SQPM to provide initial guesses for transition-state optimization is a topic for 

future work. We also need to design better methods for dealing with the kinking problem. 

As reviewed in the introductory chapter, there are alternative approaches for 

finding minimum energy pathways. I chose to work on SQPM because it seems to be 

especially suitable for reactions where it is challenging to find a good guess for the 

transition state. Other methods, like the quadratic string method,
52,53

 are more appropriate 

when a highly accurate approximation to the minimm energy path is needed. Like string 

methods, SQPM also applies to complex, multi-step reactions with multiple reactive 

intermediates and transition states.  
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2. Study of the Epoxide Hydrolase Enzyme 

 Computational modeling of transition states is especially important for chemical 

reactions involving large molecules, like enzyme-catalyzed reactions. In these cases the 

experimental tools that can be used to elucidate the structure of the transition state are 

very limited. Often the only practical experiment is the measurement of the reaction rate.  

Merely measuring the rate of reaction does not provide much insight into the transition-

state structure. However, if one performs an isotopic substitution on the system and then 

observes a shift in the reaction rate, that suggests that the atom for which the isotopic 

substitution was performed plays an important role in the reaction mechanism. Kinetic-

isotope effects (KIEs) and equilibrium isotope effects (EIEs) therefore provide indirect 

information about the molecular structure of the reactant, transition state, and product.
54-56

  

 To use KIEs to learn the structure of a transition state, one compares the results of 

computed KIEs with experimentally measured KIEs.  If the computed KIEs resemble the 

measured KIEs, this strongly suggests that the computed transition-state structure 

strongly resembles the true structure, validating one’s calculation.
57-60

 KIEs, therefore, are 

one of the few objective tools that one has for validating computational models for 

transition-state structures. 

 During my Ph.D. I worked to develop a program, zebra, for computing kinetic 

isotope effects not only for small molecules, but for large systems computed with 

quantum-mechanics/molecular-mechanics (QM/MM) hybrid methods.
61-73

 In QM/MM 

calculations, the portion of the system (a solute and the nearest solvent molecules; a 

reaction center and nearby portions of a macromolecule) that is subject to bond-
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breaking/bond-forming events is treated explicitly, and the remainder of the system is  

treated using classical molecular mechanics force fields. This allows one to treat chemical 

processes in complex environments, where direct quantum-mechanical modeling is 

impractical. 

 As an initial application of zebra, I computed KIEs for the epoxide hydrolase 

enzyme. Conventionally, KIEs in enzymes are computed by building a cluster model (that 

is, treating only a small fragment of the enzyme), finding the transition-state for the 

cluster model, and comparing the computed KIEs with the measured KIEs. This neglects 

the oft-important electrostatic interactions of the active site with its environment. To 

avoid this approximation, I used QM/MM calculations to compute the KIEs. 

I started by performing a traditional QM/MM study of the enzyme mechanism. In 

particular, I studied the substrate specificity of epoxide hydrolase (EH)  both for the 

human soluble EH (sEH)
74

 and for mycobacterium tuberculosis (Mtb) epoxide hydrolase 

enzyme EHB
75

 for three substrates: trans-1,3-diphenylpropene oxide, trans-stilbene oxide 

and cis-stilbene oxide. I studied the alkylation and the hydrolysis steps for all three 

substrates. For the first substrate, I also studied the regioselectivity of the nucleophilic 

attack of the catalytic aspartate residue on either the benzylic or the homo-benzylic 

carbon for trans-1,3-diphenylpropene oxide. (The other substrates have only one 

dominant reaction site.) In agreement with experiments, my computations showed that the 

hydrolysis of the ester intermediate is the rate limiting step of the reaction, with barriers 

of 13-15 kcal/mol.
76-78

 I also used reactivity indicators from conceptual DFT to elucidate 

the order of reactivity of the different epoxides. The reactivity indicators, especially the 
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dual descriptor,
79-81

 largely predicted the correct trend in reactivity. Finally the 

electrostatic contribution to the stabilization of the transition state for the hydrolysis step 

was studied, which revealed that the transition state is stabilized predominately by seven 

conserved amino acids between human sEH and EHB. 

Next I computed the secondary tritium KIE for the alkylation step. To do this, I 

used the frequencies computed from the QM/MM calculation, with the QM fragment 

fixed in the electrostatic field of the MM atoms. The calculated value was 1.27, in 

agreement with the experimental value 1.30 (for soybean epoxide hydrolase)
82

. 

In performing this calculation, I became aware of several issues that affect the 

computation of kinetic isotope effects.  First, there are several different formulas for 

kinetic isotope effects in the literature,
83

 differing mainly by whether the imaginary 

frequency mode at the transition state (i.e., motion along the reaction coordinate at the 

transition state) is treated as a vibrational
83-86

 or a translational mode.
87-89

 (In my previous 

work, I used the Eyring formulation, where it was treated as a translation.
89

) There is also 

the question of how one should treat tunnelling corrections; I have used the Wigner 

tunnelling correction, but the model of Miller would be a more accurate choice.
90

 

Furthermore, it seems that some of the formulas that are commonly used for kinetic 

isotope effects implicitly include tunnelling corrections;
83

 there is the risk of double-

counting tunnelling effects, then. 

To address which formula is best, one should form a database of unimolecular 

reactions where the kinetic isotope effect has been accurately measured, and then attempt 

to reproduce those results with high-level ab initio calculations. We will focus on 
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reactions where tunnelling makes an important contribution to the kinetic isotope effect. 

(A good rule of thumb is that if the KIE is not bracketed by 1.0 and the equilibrium 

isotope effect, then tunneling and other corrections to transition-state theory may be 

important.
91

) By comparing the results of various theoretical approaches to experiment, 

we can select the best approach to KIE computations. 

The second issue that affects QM/MM simulations is how one should treat the 

vibrations of the environment of the QM region. There is considerable controversy about 

the origins of enzymatic catalysis and, in particular, if vibrations of the enzyme 

environment could possibly play a role in catalysis.
69,92-107

 (There is little debate that 

enzyme vibrations contribute to the overall rate. The question is whether they change the 

rate relative to the solution-phase reaction (in which case they qualify as catalytic effects) 

or not.) Including all the vibrations of the enzyme is impractical and unwise:  the kinetic 

effects of the vibrational modes of the QM system are negligible beside those of the MM 

system. A pragmatic approach is to freeze the atoms in the enzyme environment (e.g., by 

assigning them infinite mass). This, however, does not allow for the possibility that 

vibrations of the enzyme environment may affect the relative rates of the isotopically 

differentiated reactions. 

To address this issue, I started to work with the mobile block Hessian (MBH) 

approach to macromolecular dynamics.
108-113

 The idea is to regard the protein 

environment as a collection of rigid blocks, which can move relative to each other. The 

internal vibrational motions associated with bond-stretching and angle-bending are 

therefore suppressed, and only the low-frequency modes associated with large-scale 
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motions of the protein environment are included. For this reason, computing KIEs for 

enzymatic catalysis with using MBH should be even more accurate than an exact 

computation (where the effects of noncatalytic bond stretches obscure the desired effect) 

or a frozen-environment computation (where the motion of the protein environment is 

neglected). By comparing the KIEs computed from MBH and frozen-environment 

calculations, we can learn how important protein vibrations are for enzymatic kinetics. 

Right now, zebra is in a half-finished state. Completing it would provide a 

valuable tool to the growing community of scientists using KIEs (and EIEs, which are 

easier) to elucidate the chemical reaction mechanisms. To validate zebra, it would be wise 

to first investigate enzymes where very good KIE data is available to us from Prof. Paul 

Berti’s group (e.g., cAMP
114

 and mutY.
115

). Next it would be interesting to study enzymes 

like where the reaction is coupled to a large-scale protein motion, like lysozyme and 

cephalexin (CEX). Finally, we could address enzymes with possible promoting vibrations 

(e.g., alcohol dehydrogenase).  

 

3. Computational & Theoretical Studies of Chemical Reactivity  

 Can removing an electron from a molecule cause the electron density to increase 

in certain regions of the molecule?  Somewhat surprisingly, this effect is nearly 

ubiquitous:  a global decrease in electron number is almost always associated with local 

increases in electron density.
116,117

  I collaborated on two papers where molecules that 

exhibit this effect were studied: in the first paper the focus was on molecules where there 

are multiple reactive frontier orbitals;
2
 in the second paper the focus was on molecules 
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with very small band gaps.
3
 (Most of the molecules in the second paper were developed 

for use in molecular electronics.) These families of molecules were selected because they 

were expected to show dramatic local increases in electron density upon electron 

removal; this was observed. The effect was not as strong as we had hoped, however:  we 

were hoping to find a case where removing an electron from a molecule caused the 

oxidation state of one of the atoms in the molecule to decrease. In these molecules, 

however, the increases in electron density were too delocalized to see this effect. 

 To extend this treatment to cases where one removes (or adds) an electron with a 

specified spin to a molecule, I studied how the energy and other properties of molecules 

respond to changes in the number of electrons with a given spin. The results of that 

inquiry are published in the appendix of ref. 
1
. In unpublished work, I developed the idea 

from that paper more thoroughly and investigated the spin-dependent electron-transfer 

preferences of electrophiles and nucleophiles. 
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