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Abstract 
 
 
Reference intervals (RIs) are sets of percentiles that outline the range of laboratory test 

results belonging to healthy individuals. They are essential for the interpretation of 

laboratory test results. A wide variety of factors affect the validity of RIs. Among them 

are the statistical methods used to estimate RIs. However, little investigation has gone 

into the effect that different statistical methods have on the resulting RIs. This is 

particularly needed as the complexity of paediatric data makes it difficult to estimate RIs. 

These difficulties, however, can be addressed using appropriate statistical techniques, 

provided that there is an outline of scenarios under which these techniques are truly 

“appropriate”. 

The objective of this thesis is to provide a thorough investigation into the effect of 

different statistical methods on RIs. A systematic review was first conducted with a focus 

on paediatric RIs. The results of this review revealed that critical analysis steps are often 

overlooked due to complicated paediatric data. Even though a guideline addressing the 

establishment of RIs is available, there is great heterogeneity in the statistical methods 

chosen to estimate paediatric RIs.  

An extensive simulation involving the three most commonly used approaches to 

estimate RIs (the parametric, non-parametric, and robust methods) was also conducted to 
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investigate and compare the performance of the different methods. The simulation results 

show that, when data follows a Gaussian distribution, or close to it, the parametric 

method provides the best estimates. The non-parametric method did not provide the best 

estimates of RIs (compared to the parametric method) unless data was highly skewed 

and/or large sample sizes were used.  

In addition, the bias and MSE associated with the parametric method when data 

follows a Gaussian distribution was mathematically derived, which may lead to the 

development of a bias corrected and more precise approach in the future.  
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Chapter 1 

Introduction 
 
 
When an individual presents symptoms that affect their day-to-day activities, they may 

consult a medical professional to diagnose and treat the cause of these symptoms. The 

diagnosis of a potential illness not only requires careful examination of the patient at 

hand, but also good understanding of individuals presenting “normal” indicators of 

health. Knowing what is “normal” helps clinicians in recognizing abnormalities within a 

patient’s health, investigating them, and reaching an informed diagnosis that will help 

facilitate effective treatment and disease management. However, accurately defining what 

is “normal” is a difficult task, and carries a great responsibility.  

Reference intervals (RIs) provide clinicians a normal range for comparison when 

evaluating and interpreting a patient’s laboratory test results. Current guidelines for 

establishing RIs provided by the Clinical Laboratory Standards Institute (CLSI) define 

RIs as ranges of values within which a specified percentage of measurements from 

healthy individuals would fall (Clinical and Laboratory Standards Institute [CLSI], 2008). 

When clinicians refer to RIs, they rely on the assumption that these RIs properly reflect 

the range of results expected from healthy individuals sharing similar characteristics to a 
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patient in question. If the patient’s test results do not fall within the distribution of healthy 

individuals’ results, then this will raise alarm in regards to the patient’s health status. 

Thus, proper analysis of measurements from healthy individuals leading to the 

establishment of RIs is crucial for the proper interpretation of a patient’s results. 

Traditionally, a RI is established using the central 95% range of measurements 

defined by the 2.5th and 97.5th rank percentiles, as recommended by the CLSI guideline 

(CLSI, 2008). To interpret a patient’s laboratory test result using a RI, a clinician simply 

has to verify whether the patient’s test result falls within the RI or not. If the result falls 

within the RI, then the result is considered “normal”. If the result falls outside the RI, then 

the result is considered “abnormal” and a clinician may relate this abnormality to a known 

illness, or carry out further tests to determine the cause of the abnormality. For example, 

suppose a 16-year-old male presents symptoms of a kidney disease to a physician. The 

physician may send the male to a laboratory with a requisition for blood analysis, with 

creatinine highlighted as an analyte to be tested. Creatinine is an indicator of renal 

function (Daniels, 2010). The physician receives a report for the male’s blood work from 

the laboratory, which indicates the male’s creatinine level as 112 µmol/L. This result is 

accompanied by a 95% RI for 15 to <19-year-old males: 55.1 – 95.5 µmol/L (Colantonio 

et al., 2012). Since 112 µmol/L is outside this RI, the physician recognizes this result as 

abnormal and proceeds with his/her diagnosis for the male. 

A laboratory that analyzes patient samples should accompany test results with RIs 

that are specific to its own practices. To establish RIs anew, a laboratory must collect 
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samples from healthy individuals within its reference population, analyze the samples 

using its own instrumentation, and then use the appropriate statistical methods to compute 

the RIs (CLSI, 2008). For example, the Canadian Laboratory Initiative in Paediatric 

Reference Intervals (CALIPER) group at the Hospital for Sick Children in Toronto, 

Canada established a database of paediatric RIs using samples from healthy children from 

birth to 18 years of age living in the greater Toronto area that were analyzed by the 

Abbott ARCHITECT c8000 analyzer (Colantonio et al., 2012). These RIs may be used 

for comparison with samples from children living in the greater Toronto area that were 

analyzed by the Hospital for Sick Children using the Abbott ARCHITECT c8000 

analyzer.  

A wide variety of factors affect the validity of RIs. These include analytical factors 

such as instrumentation, reference population, sampling strategy, sample size, gender, 

age, and other demographic and lifestyle factors. The statistical methods used to construct 

RIs also play a major role on the RIs. However, they are often overlooked as factors that 

might have a considerable effect on the validity of the RIs. If suitable methods are not 

utilized given the type of data and sample size available, then a RI may deviate from the 

“true” RI for the population, leading to false conclusions of a patient’s test results, which 

results in missed (from false negatives) or unnecessary (from false positives) treatment. 

The CLSI guideline was provided to address the need for a standardized statistical 

approach in selecting which methods to use. However, the methods suggested are not 

practicable for some laboratories due to the nature of their reference populations. In 
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particular, measurements from paediatric populations require extensive analysis due to 

the complex nature of paediatric data. 

Children are continuously growing from birth to adolescence, and hence more age 

partitions than adult populations are often required. In addition to the standard covariates 

for adult populations (e.g., age, body mass index (BMI), gender, and/or ethnicity), 

maturity markers such as Tanner stage can greatly influence the composition of paediatric 

populations for which RIs should be provided. To capture all of these factors and ensure 

RIs are applicable, several partitions are warranted in paediatric data.  

Another important consideration when establishing paediatric RIs is achieving 

sufficient sample size for every partition. This is particularly challenging in paediatric 

populations. Children are smaller than adults and thus blood procurement can be difficult. 

For example, 10 ml of blood could constitute to 10% of blood volume in a baby (Green et 

al., 2003). In addition to Research Ethics Board (REB) constraints, parental consents and 

costs make this a very demanding task.   

Several national projects such as CALIPER, Children’s Health Improvement 

Through Laboratory Diagnostics (CHILDx), German Health Interview and Examination 

Survey for Children and Adolescents (KiGGS), and Lifestyle Of Our Kids (LOOK) are 

currently underway to address the issue of outdated and unreliable paediatric RIs 

published in the past (CALIPER, 2014; Pediatric Reference Intervals, 2014; KiGGS, 

2014; LOOK Lifestyle Study, 2014). With these projects underway, it is very important 

now more than ever to develop an outline of circumstantial methods in order to avoid the 
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unnecessary variability that may exist between these groups’ published RIs, strictly due to 

differences in statistical methodology. Minimizing the differences between 

methodologies and providing a unified framework for selecting appropriate statistical 

methods will help clinicians compare RIs that are produced by various studies and 

identify any differences that may exist between populations. To make this possible, a 

thorough investigation is required to determine the impact various statistical methods 

have on resulting RIs.  

The objective of this thesis is divided into two major components. First, a systematic 

review of medical literature was conducted with the aim of 1) investigating current 

literature on paediatric RIs with a focus on statistical methods that are used to construct 

paediatric-specific RIs, and 2) identifying gaps in the choice and implementation of the 

methods and reporting of the results. Details on the approach used and the results of the 

review are provided in Chapter 3. This work has also been published in Clinical 

Biochemistry (Daly et al., 2013). 

The second objective of this thesis is to empirically evaluate and compare the 

performances of the different methods of RI estimation that are currently being used in 

practice. To this effect, extensive simulations were conducted using scenarios similar to 

real datasets across many sample sizes using Gaussian and skew normal distributions. 

The results of the simulation are provided in Chapter 4. Illustrations using real datasets 

are also provided in Chapter 5. In Chapter 2, the different methods used to estimate RIs 

are provided. Chapter 6 provides a discussion of the results presented in this thesis. 
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Chapter 2 

Methodology 
 
2.1 Background 
 
 
Once reference data from a healthy population is made available, there are three key 

stages involved in the construction of reference intervals (RIs). In most cases, the first 

step is outlier detection. Outliers must be removed from data, even when using samples 

from a healthy population, as there is no guarantee that a “healthy” individual does not 

have an underlying disease that has not been diagnosed or detected.  

There are several methods available to detect outliers. However, a select few pertain 

to RIs, as it is not unusual for analytes to follow a non-Gaussian distribution. Two of the 

most common methods used in the development of RIs are the Dixon method with a 

criterion proposed by Reed et al. and the Tukey method (Dixon, 1953; Reed et al., 1971; 

Tukey, 1977). Both of these methods have been recommended in the Clinical Laboratory 

Standard Institution (CLSI) guideline (CLSI, 2008). The Dixon method compares the 

distance between a suspected outlier and its neighbour to a proportion of the distance 

between the suspected outlier and the opposite endpoint of the data. It can only be applied 
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to one suspected outlier at one time. If it is in the right tail, the following criterion is used: 

𝑥(!) − 𝑥(!!!) >
!
!
𝑥(!) − 𝑥(!)   

where 𝑥(!) can either be the largest suspected outlier or the smallest of a suspected group 

of large outliers. Alternatively, if the suspected outlier is in the left tail, the following 

criterion is used: 

𝑥(!!!) − 𝑥(!) >
!
!
𝑥(!) − 𝑥(!)  

where, 𝑥(!) can either be the smallest suspected outlier or the largest of a suspected group 

of small outliers. If the appropriate criterion is satisfied for a suspected outlier, then the 

outlier, along with any suspected outliers above or below it should be removed, 

depending on whether the outliers lie in the right or left tail, respectively. The Tukey 

method, on the other hand, considers outliers in both tails simultaneously. Any 

observations smaller than the minimum (min) and or larger than the maximum (max) 

values given below should be removed: 

min = Q1− 1.5IQR;max = Q3+ 1.5IQR 

where, Q1 is the first quartile of the observations, Q3 is the third quartile, and IQR is the 

interquartile range, which is defined as the difference between Q1 and Q3. Horn et al. 

recommends that data should be transformed to a Gaussian distribution before conducting 

this test (Horn et al., 2005).  

After screening for outliers, data is partitioned into homogenous groups to reflect the 

changes that occur with various biological parameters. Partitions are generally determined 
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visually, often subjectively, as there is no known way to automatically compute them. 

Traditionally, age and gender are key covariates considered in partitioning data. However, 

with many countries becoming more culturally diverse, ethnicity should not go unnoticed. 

In addition, since many populations are experiencing increasing weight and obesity 

trends, weight factors such as BMI should also be considered. More specifically, for the 

paediatric population, developmental/Tanner stages that mark the progress of puberty are 

imperative for some analytes.   

Although outlier detection is often performed at the initial stage, it is advisable to 

check for outliers after partitioning is done. This is primarily due to the fact that some 

observations may not appear to be extreme values among the entire dataset, but could 

appear to be much larger or smaller than most of the values in their partitioned group. 

A common way to determine partitions is through categorical intervals. For example, 

for age, RIs can be calculated for every one-year interval, for height, ten-inch intervals. 

Another way to determine partitions is through previous clinical knowledge. If various 

stages throughout child development are known to affect a particular analyte, then 

biological covariates can be divided into well-known groups to reflect these stages. 

Finally, partitions can be determined through visual inspection of data. Plotting box-plots 

or parameters such as mean and standard deviation for each age and gender, or any other 

covariate of interest, can provide some insight as to which covariate values share similar 

compositions of analyte values.  
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After creating initial partitions through one of the three methods mentioned above, 

each partition should be tested against subsequent partitions to confirm whether these 

partitions should remain separate, or be combined. The CLSI guideline suggests several 

approaches proposed by Harris et al., Lahti et al., and Sinton et al. in performing these 

tests (Harris et al., 1990; Lahti et al., 2002; Sinton et al., 1986). The method proposed by 

Harris et al. evaluates the difference between the means and spreads of the two groups. 

That is, if at least one of the following two criterions are satisfied: 

z!"#!  >   z!"#$            !!
!!!  !!

< 3   

where,  z!"#! =
!!  !  !!

!!
!

!!
!  !!

!

!!

,  z!"#$ =   3 !!!  !!
!"#

, 𝑥! and 𝑥! are the sample means of the two 

groups in question, 𝑠! and 𝑠! are the sample standard deviations, and 𝑛! and 𝑛! are the 

sample sizes, then the two groups should be kept separate. For this method, both groups 

under question must follow a Gaussian distribution. If not, this may be achieved by using 

a transformation. 

Lahti et al.’s method also requires that the two groups in question follow a Gaussian 

distribution. This method involves the preliminary calculation of RIs for the two groups 

together as one. In the case where the central 95% range of the distribution is taken as the 

RI, the 2.5th and 97.5th percentiles should be calculated for the two groups combined. The 

percentage of values lying outside of these intervals for each group in question should be 



M.Sc. Thesis – Caitlin H Daly  McMaster – Statistics 
 

	   10	  

determined. If one group’s percentage exceeds 4.1% while the other’s is less than 0.9%, 

then partitioning is recommended.  

Similarly, Sinton et al.’s approach first calculates the 95% RI for the two groups 

combined. Then, the difference between the means of the two groups is determined. If the 

difference between the means is at least 25% as large as the difference between the two 

reference limits of the combined groups, partitioning is warranted. Skewness is not 

permitted for the calculation of this method.  

Various hypothesis tests can be also used as alternatives to these three methods. 

These include t-tests or one-way analysis of variance (ANOVA) accompanied with 

pairwise t-tests and Bonferroni’s correction to determine differences between the means 

of two or more groups (Dunn, 1961). The t-test requires that the two populations follow 

the Gaussian distribution and each group is sampled independently of each other from 

their respective populations. One-way ANOVA requires the assumption that the 

population variances are equal, in addition to the assumptions of the t-test. The Mann-

Whitney U-Test (or Wilcoxon Rank Sum Test) can be used as an alternative to the t-test 

when the data does not follow a Gaussian distribution to test for differences in variances 

(Mann et al., 1947).  
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2.2 Reference Interval Estimation 

Once data is checked for outliers and partitioning is appropriately done with respect 

to relevant factors, 95% RIs are estimated for each partition, and confidence intervals 

(typically 90%) for the estimated limits of the RI are provided. This involves estimating 

the 2.5th and 97.5th percentiles of the data, which are also commonly referred to as the 

lower and upper limits of the RI. There are three main approaches currently used to 

calculate RIs. They either employ parametric or non-parametric methods, or involve a 

bootstrapping technique; among them, the non-parametric approach is the most 

commonly used. The parametric method requires the data to follow a Gaussian 

distribution, whereas the other two approaches do not.  

2.2.1 Parametric Method of Estimating RIs 

A theoretical 100(1-α)% RI (θ) can be calculated for a population from a Gaussian 

distribution using  

θ = θL,θU( )

= µ − zα /2σ , µ + zα /2σ( ),

where, θL and θU are the lower and upper limits of the RI, respectively, µ is the known 

mean of the Gaussian distribution, 𝑧!/! is the upper !!
th percentile from a standard normal 

distribution, and σ is the known standard deviation of the Gaussian distribution. 
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A 100(1-α)% RI (θ̂ )  for a dataset can be estimated using 

θ̂ = θ̂L, θ̂U( )
= x − zα /2s, x + zα /2s( )

where, 𝑥 is the sample mean and 𝑠 is the sample standard deviation (Soldberg, 2006). 

This method requires the data to have an underlying Gaussian distribution. Non-Gaussian 

data may be transformed to an approximate Gaussian distribution to permit the 

application of this method.  

Confidence intervals for RIs estimated by the parametric method are not readily 

available in RI literature and are not mentioned in the CLSI guideline. Confidence 

intervals for each limit, however, can be derived as follows. Let x1,…,xn be a random 

sample from a N(µ, σ2) distribution. A 100(1-c)% confidence interval for the lower limit 

an be approximately calculated as 

θ̂L ± zc/2se θ̂L( )
where, 

θ̂L ± zc/2se θ̂L( ) = x − zα /2s± zc/2se x − zα /2s( ) and

se x − zα /2s( ) = Var x − zα /2s( )

= Var x( )+ zα /22 Var s( )

= Var x( )+ zα /22 Var
σ
n−1

n−1
σ

s
"

#
$

%

&
'
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= Var x( )+ zα /22
σ 2

n−1
Var n−1

σ
s

"

#
$

%

&
'.

Note that  x ~ N µ,σ
2

n
!

"
#

$

%
& and n−1

σ
s ~ χn−1 , where 𝜒!!! is the chi distribution. Hence,

se x − zα /2s( ) = σ 2

n
+ zα /2

2 σ 2

n−1
n−1( )− 2

Γ
n
2
#

$
%
&

'
(

Γ
n−1
2

#

$
%

&

'
(

#

$

%
%
%
%

&

'

(
(
(
(

2)

*

+
+
+
+

,

-

.

.

.

.

=
σ 2

n
+ zα /2

2 σ 2

n−1
n−1( )− 2

Γ
n
2
#

$
%
&

'
(

Γ
n−1
2

#

$
%

&

'
(

#

$

%
%
%
%

&

'

(
(
(
(

2)

*

+
+
+
+

,

-

.

.

.

.

.

We can estimate the standard error by using s2 in place of σ2. Thus, 

x − zα /2s± zc/2
s2

n
+ zα /2

2 s2

n−1
n−1( )− 2

Γ
n
2
#

$
%
&

'
(

Γ
n−1
2

#

$
%

&

'
(

#

$

%
%
%
%

&

'

(
(
(
(

2)

*

+
+
+
+

,

-

.

.

.

.

is a 100(1-c)% confidence interval for the lower limit of a 100(1-α)% RI estimated by the 

parametric method. Similarly,  

x + zα /2s± zc/2
s2

n
+ zα /2

2 s2

n−1
n−1( )− 2

Γ
n
2
#

$
%
&

'
(

Γ
n−1
2

#

$
%

&

'
(

#

$

%
%
%
%

&

'

(
(
(
(

2)

*

+
+
+
+

,

-

.

.

.

.



M.Sc. Thesis – Caitlin H Daly McMaster – Statistics 

14	  

is a 100(1-c)% confidence interval for the upper limit of a 100(1-α)% RI estimated by the 

parametric method. 

2.2.2 Non-Parametric Method of Estimating RIs 

The non-parametric method is a simple way to calculate RIs empirically using ranks and 

does not require any assumptions regarding the distribution of the data (CLSI, 2008). To 

calculate the central 100(1-α)% RIs using the non-parametric method, the sample values 

for a given partition must be sorted from least to greatest, then ranked using whole 

numbers from 1 to 𝑛, where 𝑛 is the size of the sample. Next, the following are 

calculated: r! =
𝛼
2 𝑛 + 1

r! = 1−
𝛼
2 𝑛 + 1 .  

The observations whose ranks correspond to r! and r! are then recorded as the !!
th and 

1− !
!

th percentiles, respectively. 

The CLSI guideline notes that a minimum sample size of 𝑛 = 100/P − 1 is 

required to distinguish between percentiles that are P% apart (CLSI, 2008). Thus, when 

95% RIs are desired, (requiring the 2.5th and 97.5th percentiles to be distinguished from 

the 5th and 95th, respectively), a minimum sample size of 𝑛 = 100/2.5 − 1 = 39 is 

required.  

Ranked observations are used to define confidence intervals for RIs established by 

the non-parametric rank method. The ranks of the observations that define a 100(1−
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𝑐)% confidence interval for the !!
th percentile are determined by the highest integer 𝑎 and 

smallest integer 𝑏 such that  

𝑛
𝑖

𝛼
2

!
1−

𝛼
2

!!!
≥ 1− 𝑐.

!!!

!!!

  

The ranks of the observations that define a 100(1− 𝑐)% confidence interval for the 

1− ∝
!

th percentile are determined by 𝑦 = 𝑛 − 𝑏 + 1 and 𝑧 = 𝑛 − 𝑎 + 1. 

2.2.3 Robust Method of Estimating RIs 

The coined “robust method” uses an iterative process to compute a measure of the center 

of a dataset, denoted by 𝑇!", to derive 100(1-α)% RIs (Horn et al., 2005). First, 𝑇!" is 

taken to be the median (𝑥) of the 𝑛 observations (𝑥! , 𝑖 = 1,… ,𝑛) of a dataset and the 

median absolute deviation (MAD) is calculated using: 

𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑥! − 𝑥|). 

Then, the observations of the dataset are weighted using 

𝑤! =
𝑥!(1− 𝑥!!)!   if   𝑢! < 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where, 

𝑢! =
𝑥! − 𝑇!"

3.7 𝑀𝐴𝐷
0.6745

. 
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Note that 3.7 is a tuning constant chosen to permit the estimation of 𝑇!" with minimal 

impact from outliers, and 0.6745 is chosen since 𝜎 ≈ !"#
!.!"#$

 when data is from a N(µ, σ2) 

distribution. For further details, refer to (Horn et al., 2005). 𝑇!" is then updated with the 

weighted data using 

𝑇!" =
𝒘𝒊𝒙𝒊𝒏

𝒊!𝟏
𝒘𝒊𝒏

𝒊!𝟏
. 

The weighted observations are then reweighted using the updated value of 𝑇!", and the 

updated value of 𝑇!" is once again updated using the above calculations. This process is 

repeated until the change in consecutive updated values of 𝑇!" is insignificant. The 100(1-

α)% RIs are then computed using 

𝑇!" ± 𝑡!!!,∝/! 𝑆!![3.7]+ 𝑠!"! [𝑐!]  

where, 𝑡!!!,∝/! is the upper !!
th percentile from a Student’s t-distribution with (𝑛 − 1) 

degrees of freedom, 

𝑐! =
!

!.!"#$!!.!"#$$#(!!∝)
 , where, 0.05 ≤ α ≤ 0.50, 

𝑆![3.7] = 3.7 𝑠!" 3.7
!!
! !!!!

! !
!!!!!!!

!!!!
! !!!!!

!
!!!!!!!   !"# !,!!! !!!!

! !!!!!
!

!!!!!!!
 , 

where, 𝑣! =
!!!!!"

!.!(!!" !.! )
, 

𝑠!" 3.7 = 3.7𝑠
! !!

! !!!!
! !

!!!!!!!

!!!!
! !!!!!

!
!!!!!!!   !"# !,!!! !!!!

! !!!!!
!

!!!!!!!
 , 
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where, 𝑤! =
!!!!
!.!!

  and 𝑠 = !"#
!.!"#$

,  and  

𝑠!" 𝑐! = 205.6𝑠
! !!

! !!!!
! !

!!!!!!!

!!!!
! !!!!!

!
!!!!!!!   !"# !,!!! !!!!

! !!!!!
!

!!!!!!!
 , 

where,  𝑧! =
!!!!
!!!

 and 𝑠 = !"#
!.!"#$

. Note that 205.6 is a tuning constant chosen to capture 

the variability of the data. For further details, refer to (Horn et al., 2005). 

Although a Gaussian distribution is not required for this method, Horn et al. 

recommends transformation to a more symmetric dataset to help better estimate RIs for 

skewed distributions (Horn et al., 2005). Percentile bootstrap estimates are used to 

construct 100(1− 𝑐)% confidence intervals for RIs established using the robust method 

(Efron et al., 1993).
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Chapter 3 

Systematic Review of Methods in Paediatric 
RIs 
 
3.1 Background 
 
 
Systematic reviews are a commonly used approach in biomedial sciences. They are 

literature reviews that collect and screen articles presenting evidence that address a 

specific research question (Higgins et al., 2011). The systematic nature of these reviews 

minimizes the bias that may be introduced when researchers gather articles without a well 

defined plan. To conduct a systematic review, search terms relevant to the research 

question, along with inclusion and exclusion criteria must be predefined prior to 

conducting the literature search. In addition, at least two reviewers must screen relevant 

articles against the inclusion and exclusion criteria and agree upon which articles to 

include and exclude. This should return a wide range of relevant articles to review. The 

relevant articles are then assessed and key characterestics of each study are presented in a 

final report.  
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The first part of this thesis involves a systematic review of current literature with 

respect to statistical methods used to establish paediatric reference intervals (RIs). The 

review was conducted with the aim of 1) investigating current practice on paediatric RIs 

with a focus on statistical methods that are used to construct paediatric-specific RIs, 2) 

identifying gaps in the choice and implementation of the methods and reporting of the 

results, and 3) tailor the investigative work into the methodology behind the estimation of 

paediatric RIs so that weak areas of practice can be improved. This systematic review is 

published in Clinical Biochemistry and a portion of it is provided in the following 

sections of this chapter (Daly et al., 2013). 

3.2 Search Criteria and Review Strategy 
 
 
An electronic search on the Embase, MEDLINE and PubMed databases was conducted 

on May 28, 2012. Three themes were pre-identified as the search criteria. These themes 

were: “establishing”, “paediatric”, and “reference intervals”. Within each theme, a list of 

keywords or phrases was developed, which included various synonyms of the three 

themes commonly used in past literature. Effort was made in the search to ensure that 

some combination of the three themes was necessary for an article to be included in the 

search results. Search terms within each theme were combined with “OR”, and themes 

were combined with “AND”. Figure 3.1 represents the three themes, as well as the search 

words within each theme, that were used in the search of literature.  
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English articles published from January 1st, 2011 to May 18, 2012 were considered 

in this systematic review. Duplicated articles were deleted before the initial screening 

process. After removing duplicates, two reviewers were then presented with the resulting 

unique articles. The reviewers proceeded to independently review the title and abstracts 

of these articles against predetermined inclusion and exclusion criteria. Articles included 

in the systematic review presented new paediatric RIs established by the authors for 

intended public or in-house use. Articles were excluded if the RIs were calculated based 

on unhealthy samples, samples were outside the birth to less than 19 year age range, 

and/or samples were from a non-human population. In addition, if a study in the article 

used longitudinal data, strictly cited RIs for diagnostic or validation purposes, or simply 

did not establish new RIs, it was excluded. Following the exclusion of irrelevant articles, 

the same two reviewers screened the resulting articles’ full text against the inclusion and 

exclusion criteria. If any disagreement arose during these processes, it was resolved either 

by discussion or consultation through a third reviewer. After reviewing all prospective 

articles, the reference lists of the included full-text articles were screened for additional 

relevant articles.  
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Figure 3.1: Search criteria used in the systematic review. 

3.3 Results of Systematic Review 

In total, 373 articles were initially returned from the keyword search, of which 195 were 

found to be unique. Through the initial screening of titles and abstracts, using the 

inclusion/exclusion criteria outlined in the Section 3.2, 37 articles were considered 

relevant. Following review of these articles’ full texts, a final number of 22 articles were 

kept for the review. The reference lists of these articles were reviewed for any additional 

relevant articles. However, none were found. Figure 3.2 illustrates this process in more 

detail.  
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Figure 3.2: Flow chart describing the review process.  

The distributions of the studies, with respect to the statistical methods used in the 

process of establishing RIs, are provided in Table 1. Among the articles included in our 

review, 59% stated that an outlier detection method was employed in the analysis of data. 

In terms of partitioning, the majority (about 96%) of the studies addressed variability with 

respect to covariates, identified the need for partitioning, and performed partitioning. 

373	  records	  identiHied	  
through	  database	  

searching	  

195	  titles	  and	  
abstracts	  screened	  

37	  full	  texts	  assesed	  
for	  eligibility	  

22	  articles	  included	  in	  
review	  

15	  articles	  excluded	  

0	  records	  retrieved	  
through	  references	  

158	  articles	  excluded	  

178	  duplicates	  
removed	  
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Even though the remaining articles (4%) investigated the influence various covariates had 

on the mean analyte values, they did not account for this in the estimation of RIs through 

partitioning.  

Among the studies that performed partitioning, 24% of articles did not mention any 

application of statistical methods to test the appropriateness of partitions. Of the articles 

that performed partitioning, 9% created partitions based on clinical knowledge, 9% 

determined partitions visually, and 5% did not explicitly state the method they used to 

determine their partitions. The remainder used categorical partitions, that is, covariates 

were divided into equal, identifiable intervals. Of the studies that tested appropriateness 

of partitions, 31% did not collapse all insignificant partitions.  

A large percentage of included articles (59%) employed some variation of methods 

recommended by the Clinical and Laboratory Standards Institute (CLSI) guideline to 

calculate RIs. However, only 32% of articles directly cited and followed the CLSI 

guideline, ensuring the use of appropriate methods when the minimum sample size of 120 

was not met.  
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Table 1: Distribution of studies included in the systematic review with respect  
to the statistical methods required in the process of establishing of RIs. 

 Percentage of Studies 
included in the reviewa 

 Used methods mentioned in CLSI guideline b 
 
 Directly made a reference to and followed the     
 recommendations provided in CLSI guideline 
 
 Performed Partitioning 
 
     Tested for differences among the partitions 
 
          Collapsed insignificant partitions 
 
 Checked for outliers 
 
     Checked two way outlier detectionc 
 
 Statistical methods used 
 
 Non-parametric 
 
     Appropriatelyd 

 
     Inappropriatelyd 
        
  Parametric 
 
  Robust 
 
  Othere 
 
 Reported confidence intervals 
 
     For all 
 
     For some 

59.1% 
 
31.8% 
 
 
95.5% 
 
76.2% 
 
68.8% 
 
59.1% 
 
15.4% 
 
 
 
31.8% 
 
85.7% 
 
14.3% 
 
22.7% 
 
13.6% 
 
40.9% 
 
18.2% 
 
75% 
 
25% 

                    a All percentages are out of the total number of studies included in the systematic review 
                    b One or more of the methods used in the process to establish RIs is recognized by the CLSI       
             guideline. 
                    c Of those studies that detected outliers, consideration was given before and after partitioning. 
                    d The non-parametric method was used appropriately when there was a minimum of 120 samples. 

       e Obtained limits from reference curves, or did not explicitly states how percentiles were derived. 
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Among the studies that utilized methods that are not strictly outlined in the CLSI 

guideline is the study by Uemera et al., where RIs for serum creatinine levels were 

established (Uemura et al., 2011). In this study, reference to the CLSI guideline was not 

made and it is not clear how outliers were detected or handled. However, the authors 

addressed the issue of gender, age and body size variability through partitioning. Age and 

body length were considered separately as partitioning criteria. That is, RIs were 

calculated with age as the partitioning factor and again with body length as the 

partitioning factor. In both cases, predetermined categorical intervals were used leading to 

large number of partitions. This might have led to small sample sizes for some of the 

partitions. The RIs were established using the 2.5th and 97.5th percentiles. However, there 

was no mention of how these percentiles were calculated (e.g., parametric vs. non-

parametric). Moreover, similar to the majority of the articles included in this review, 

confidence intervals or any measurements of variability (e.g., standard error) were not 

given.  

Many other articles used predefined categorical partitions, however, a select few 

articles included in this review conducted tests for differences within predefined 

categorical partitions (Adibi et al., 2012; Clifford et al., 2011; Goh et al., 2011; Tamimi et 

al., 2011; and Tamimi et al., 2012). In addition, Cinaz et al. and Hulecki et al. included 

regression analysis to explore possible significant covariates (Cinaz et al., 2012; Hulecki 

et al., 2011). However, statistically insignificant differences and/or significant covariates 

were not considered in the establishment of the final RIs as the categorical partitions had 
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already been determined. Nonetheless, the findings were stated in the papers for future 

consideration. 

The majority of articles employed either the parametric (23%), non-parametric 

(32%), or robust (14%) methods to construct RIs. Of the articles that used the non-

parametric approach, 14% of them did not meet the minimum sample size of 120 to 

estimate their RIs. Furthermore, an alarmingly small percentage of articles (18%) 

accompanied their RIs with confidence intervals.  

3.4 Identified Gaps and Recommendations 
 
 
There are a number of steps involved in the establishment of RIs, and in a paediatric 

setting, this process can become quite cumbersome as children are continuously growing 

from birth to adolescence. This systematic review has shown that the complexity of 

paediatric data is being acknowledged by many and some measures are being taken to 

address these problems. However, the review has also identified gaps in the establishment 

(estimation) and reporting of paediatric RIs, and there is still room for improvement. 

Moreover, guidelines specific to paediatric populations are needed to encourage 

appropriate and more standardized use of statistical methods. 

The first step in the establishment of RIs is outlier detection and handling of the 

identified outliers. Removing outliers from data is a common practice, even when using 

samples from a healthy population, as there is no guarantee that a “healthy” individual 

does not have an underlying disease that has not been diagnosed/detected. However, 
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outliers may also tell us important information about a given analyte and may represent a 

natural variability within a given dataset. Hence, careful consideration must be taken 

before their removal. It is also helpful to perform sensitivity analysis to investigate the 

robustness of the RIs with respect to outlier observations. 

There are several existing statistical methods available to detect outliers (Sen et al., 

1990). However, a select few pertain to RIs. Two of the most commonly used outlier 

detection methods in the development of RIs are the Dixon method with a criterion 

proposed by Reed et al. and the Tukey method (Dixon, 1953; Reed et al., 1971;Tukey, 

1977). Both of these methods have been recommended in the CLSI guideline (CLSI, 

2008). However, it is not clear why these specific approaches were selected. We are not 

aware of any study done to formally assess their performance under different situations. 

For instance, both the Dixon and Tukey methods were developed under the assumption of 

a Gaussian distribution and may not be appropriate for non-Gaussian data. Even when 

data follows a Gaussian distribution, these approaches may not be optimal for small 

sample size. Studies are, therefore, needed to understand the behavior of these methods 

under many scenarios.  

After screening for outliers, data is often partitioned into homogenous groups to 

reflect the changes that occur with various biological parameters. This is particularly 

important in paediatric populations, where more partitions (than adult populations) are 

required to reflect child development. 
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A common way to determine partitions is through categorical intervals. For example, 

for age, RIs can be calculated for every 1-year, 2-year or 5-year interval. Some studies 

included in this review produced RIs for categorical 1-year age intervals. However, this is 

not recommended. Not only does this create partitions that are not practical for clinical 

use, but also creates an unnecessarily large number of partitions leading to insufficient 

sample size for all or some of the partitions.  

An alternative way of determining partitions is by visually investigating the data for 

possible homogenous groups. Visual examination of the data allows the researcher to 

identify groups that are similar in terms of their central location and spread of analyte 

values. This approach can be useful even when partitions have been established using pre-

defined categories or clinical knowledge, allowing researchers to update their partitions 

based on the findings. Visual assessment can be performed by using simple scatter or box 

plots against age, gender, Tanner stage, ethnicity, or other relevant covariates to identify 

possible changes in the value of the analyte. This can be further improved by including a 

measure of variation, e.g., plot coefficient of variation instead of the mean. 

Once partitions are made, different statistical methods can be used to compare the 

partitions and confirm whether they should remain separate or collapsed. This can be 

done using a simple sequential t-test or the Harris et al. method of comparing means and 

standard deviations for Gaussian data, and the Mann-Whitney U-Test (or Wilcoxon Rank 

Sum Test) for non-Gaussian (skewed) data (Harris et al., 1990; Mann et al., 1947). 

Alternatively, RIs can be calculated for all potential partitions and the resulting limits of 



M.Sc. Thesis – Caitlin H Daly  McMaster – Statistics 
 

	   29	  

different groups are compared using the methods described by Lahti et al. and Sinton et 

al., as mentioned in the CLSI guideline (Lahti et al., 2002; Sinton et al., 1986). However, 

the guideline does not provide when, why and how to choose the optimal approach. 

In addition, we would like to emphasize that testing partitions often involves 

performing multiple tests, leading to increasing false positive rates (type I error), leading 

to the conclusion that partitions are significantly different, when in fact they are not. To 

overcome this challenge, we recommend adjusting for multiple comparisons using 

methods such as the Bonferroni correction or the less conservative adjustment of Sidak 

(Dunn, 1961; Sidak, 1967). Note that, although outlier detection is traditionally conducted 

first when dealing with any type of dataset, we recommend the use of outlier detection 

and partitioning interchangeably. This combination of methods avoids the potential 

masking of outliers and false detection of significant differences or lack thereof between 

partitions or groups. 

The large variation in methods used to establish RIs is a striking observation gathered 

from this systematic review. Some of the methods used by the studies considered in this 

review include: parametric, non-parametric, robust, parametric fractional polynomial 

curves, lambda-mu-sigma curves (referred to as the LMS method (Cole et al., 1992)), as 

well as some ad hoc approaches using the mean and standard deviation of the data.  

When selecting a method to compute RIs, it is important to note that each method 

uses an underlying assumption and comes with its own advantages and disadvantages. In 

terms of the three main methods discussed in the CLSI guideline, the parametric approach 



M.Sc. Thesis – Caitlin H Daly  McMaster – Statistics 
 

	   30	  

offers the advantage of more precise estimates over the non-parametric approach when 

the data follows a Gaussian distribution. This approach also requires less sample size than 

the non-parametric approach. However, the CLSI guideline does not state how much 

sample size is enough for the parametric approach and how the distributional assumptions 

(Gaussian) should be investigated. We strongly encourage researchers to use normal 

probability plots to investigate the distribution of the data and assess skewness before 

deciding to use (or not to use) the parametric approach. 

When the data does not follow a Gaussian distribution, the CLSI guideline suggests 

the non-parametric method as a preferable approach. The guideline recommends a 

minimum sample size of 120 in order to calculate confidence intervals using the non-

parametric approach (CLSI, 2008). When this condition is not met, the robust method is 

recommended.  

In addition to methodological gaps, this review has also revealed gaps in the 

reporting of RIs. The majority of studies included in this review did not include 

confidence intervals for the reference limits and hence the RIs may not be reliable. 

Comparing the sizes of the confidence intervals to the sizes of the RIs provides some 

insight as to how precise (good) a RI is. For instance, it has been recommended that the 

width of a 90% confidence interval should be less than 0.2 times the width of a 95% RI 

(Harris et al., 1990). Consequently, if the width of a confidence interval is clinically 

unacceptable, then the estimate is not reliable. Moreover, the width of confidence 

intervals for each of the limits is a measure of the precision of the estimates and provides 
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information on the sampling variability of the RIs. Furthermore, confidence intervals (or 

standard error of) the reference limits can be used to judge the adequacy of the sample 

size being used in the analysis. For instance, a larger sample size may be required for a 

particular partition in order to increase the precision of the reference limits and hence 

improve the reliability of the RI. 

The lack of confidence intervals in literature could perhaps be due to the absence of a 

method for calculating confidence intervals for the parametric method, and/or the 

difficulty of collecting sufficient sample size (as recommended by the CLSI guideline) for 

the non-parametric method. We recommend use of the bootstrap methods, where 

confidence intervals are calculated by re-sampling from the data (Efron, 1982). We would 

like to point out that, due to recent advances in computational power, bootstrapping and 

other re-sampling approaches are becoming more feasible for use by many medical 

researchers to calculate confidence intervals for estimates. These approaches are currently 

available in most statistical software packages and researchers providing RIs are 

encouraged to calculate confidence intervals using these approaches.  

Several useful recommendations are made in the CLSI guideline, including which 

statistical methods to use to detect outliers and develop RIs, as well as recommendations 

regarding how much sample size is required. However, limited work has been done to 

study the impact the statistical methods have on the resulting RIs. Recently, a group from 

Utah performed an empirical comparison of three methods (parametric, transformed 

parametric, and bootstrap) using data from an adult population (Pavlov et al., 2012). Their 
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study highlights the advantages and shortcomings of the three methods in given scenarios. 

The scenarios include small or large sample sizes as well as data from analytes with 

Gaussian or non-Gaussian distributions.  However, the study did not consider the most 

commonly used non-parametric approach, nor did it include the robust method to 

investigate its performance for small samples, and only used one outlier detection 

method. In addition, the empirical comparison was limited to adult populations and did 

not consider partitioning.   

Moving forward, it would be beneficial to perform similar studies with more 

extensive coverage of statistical methods used in the RI estimation process. Such studies 

should also include an extensive simulation to assess performance of each method under 

different scenarios. Simulations allow researchers to compare estimates with the true 

values, which means a quantitative measure can be obtained to reflect the precision of a 

method. This would enable the development of a paediatric-specific guideline, which 

would help research groups calculate paediatric RIs using an appropriate and more 

standardized fashion. To this effect, a simulation study investigating the performance of 

three most commonly used approaches, the parametric, non-parametric, and robust 

methods, is presented in Chapter 4. 
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Chapter 4 

Simulation 
 
4.1 Motivation of Simulation  
 
 
The systematic review presented in the previous chapter revealed two main statistical 

issues that can be addressed immediately (Daly et al., 2013). One is the selection of the 

method for reference interval (RI) estimation. Several methods were used in addition to 

the non-parametric and robust methods highlighted in the Clinical Laboratory Standards 

Institute (CLSI) guideline. However, the parametric, non-parametric, and robust methods 

are the most popular approaches being used. There is still some hesitancy regarding the 

selection of these methods based on the characteristics of the data available (such as 

normality and sample size). Therefore, there is a need to develop a guideline that covers 

the various scenarios related to the assumption of normality and sample size that arise in 

paediatric data and explicitly deliver recommendations pertaining to these scenarios.  

The second issue that can be addressed immediately is the lack of confidence 

intervals or measure of precision of the RI estimates. This may be because of absence of 

literature describing confidence intervals for the parametric method, no alternative to 
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producing confidence intervals for non-parametric RIs with sample sizes less than 120, or 

the complex appearance of the robust method that drives laboratories away from using it. 

A confidence interval for RIs estimated by the parametric method is derived in this thesis 

and is presented in Chapter 2. We performed an extensive simulation to investigate the 

performance of the different methods of estimating RIs and the results are presented in 

this chapter. 

4.2 Description of Simulation 
 
 
Extensive simulations were performed to investigate the performances of the parametric, 

non-parametric, and robust methods for estimating RIs, where a total of 216 scenarios 

was generated, using combination of parameters provided in Table 2 below. 

Table 2: Mean, variance, sample size, and skewness used to generate data for 
 simulation. 

 Distribution 

Gaussian Skew Normal 

𝜇 2.45, 20, 74.82 2.45, 20, 74.82 

𝜎! 0.01, 9, 132.70 0.01, 9, 132.70 

n 
40, 80, 120, 160, 200, 240,  

280, 320, 360, 400, 440, 480 

40, 80, 120, 160, 200, 240,  

280, 320, 360, 400, 440, 480 

Skew 0 0.10, 0.25, 0.50, 0.75, 0.95 

 
Essentially, data were generated from different distributions for each sample size. The 

mean, variance and skewness values were used to determine the distribution we were 
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investigating. The choice of parameters was motivated by real data, along with observed 

changes in bias and mean squared error (MSE) due to variance, not mean. As a result, 

small, moderate, and large values of variance were selected. The distribution with small 

variance (𝜇 = 2.45,𝜎! = 0.01) was generated to mimic the distribution of calcium values 

for females and males aged 1 to less than 19 years, collected by the Canadian Laboratory 

Initiative for Paediatric Reference Intervals (CALIPER) group (CALIPER, 2014). The 

distribution with large variance (𝜇 = 74.82,𝜎! = 132.70) was generated to mimic the 

distribution of creatinine (enzymatic) values for males aged 15 to less than 19 years, 

collected by the CALIPER group (CALIPER, 2014). The distribution with moderate 

variance (𝜇 = 20,𝜎! = 9) was generated to permit the examination of the performances 

of the methods with respect to variance increase. The variance of this distribution was 

specifically chosen as a value between the variances of the first and second distributions 

just mentioned.  

For each scenario, 1000 datasets were generated from which RIs and their 

corresponding confidence intervals were computed using the parametric, non-parametric, 

and robust methods. The bias, Bias θ̂ j, θ j( ) = E θ̂ j −θ j( ) , and MSE,

MSE θ̂ j, θ j( ) = Var θ̂ j( )+ Bias θ̂ j, θ j( )( )
2

, for each limit were then empirically estimated, 

where, θ̂ j  is the estimated reference limit ( j = L, U for the lower and upper limits, 

respectively) of the RI and θ j  is the corresponding limit of the true RI. The limits of the 
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true RI were computed as the theoretical percentiles of the distribution under 

consideration. This was repeated 50 times to generate 50 estimates of bias and MSE, and 

the results were averaged over the 50 repetitions.  

4.3 Calculation of Parameters for the Skew Normal 
Distributions 
 
 
For simulation scenarios involving skewed distributions, the parameters of the skew 

normal distributions, for comparison purposes, were calculated so that the scenarios had 

the same mean and variance as the Gaussian scenarios. This was done as follows. 

Consider the density of the skewed normal distribution 

𝜑 𝑧;𝛼 = 2𝜙 𝑧 Φ 𝛼𝑧 , −∞ < 𝑧 < ∞, 

denoted by SN(α), where ϕ and Φ are the density and distribution functions of a standard 

normal random variable, respectively (Azzalini, 2005). If Z~SN(α) and Y = ξ +ωZ , 

where, ξ ∈  R , ω ∈  R+ , then Y~SN(ξ,ω2,α), where ξ is the location parameter and ω is 

the shape parameter (Azzalini, 2005).  

Suppose X~ N(µ, σ2) and Y~SN(ξ,ω2,α). Note the following mean, variance, 

skewness, and kurtosis of the random variable Y: 

E Y( ) = ξ +ω 2
π
δ,  Var Y( ) =ω 2 1− 2δ

2

π

"

#
$

%

&
',   
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γ1 =
4−π
2
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π
δ
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1− 2δ
2

π
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γ2 = 2 π −3( )
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π
δ
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&
'
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$
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&
'

2

 

where, δ = α

1+α 2
.  

These characteristics can be used to solve for ξ, ω, α, and δ such that 

µ = ξ +ω
2
π
δ,       σ 2 =ω 2 1− 2δ

2

π

"

#
$

%

&
'       and      κ = 4−π

2

2
π
δ

"

#
$

%

&
'

3

1− 2δ
2

π

"

#
$

%

&
'

3/2  

for a desired level of skewness (κ). The values of 𝜉,𝜔,𝛼 for a desired mean (𝜇), variance 

(𝜎!) and skewness (𝜅) can be calculated with 

δ =
π
2

κ
2/3

κ
2/3
+
4−π
2

"

#
$

%

&
'
2/3 , 	  	  	  	  	  	  α =

δ

1−δ 2
, 	  	  	  	  	  ω =

σ 2

1− 2δ
2

π

,       and      ξ = µ −ωδ 2
π
.  

4.4 Simulation Results 
 

4.4.1 Results for the Gaussian Distribution 
 
 
Three Gaussian distributions (N(2.45,0.01), N(20,9), N(74.82,132.70)) were considered, 

where 1000 datasets were generated from each of these distributions. This was executed 

using sample sizes of n = 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, and 480. 
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RIs were estimated for each dataset using the parametric, non-parametric, and robust 

methods (as described in Chapter 2). The bias and MSE of both the lower and upper 

limits were empirically estimated and recorded.  

Results of the simulation for Gaussian data show that the parametric method 

produces lower limit estimates with mostly positive, but negligible, bias and upper limit 

estimates with mostly negative, but negligible, bias when sample size is small. However, 

as the sample size increases, negligible positive and negative biases are observed for both 

the lower and upper limit estimates. Plots of the bias of the lower and upper limit 

estimates for the parametric method are provided in Figure 4.1.  

  
Figure 4.1: Empirical bias, with corresponding 95% confidence intervals (indicated by 
dashed lines), for the parametric method, where data was generated from N(20,9). 
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test results will be incorrectly identified as abnormal because they fall within the area 

below and near the estimated lower limit and within the area above and near the estimated 

upper limit. This chance is most likely non-existent clinically, since the value of the bias 

is negligible compared to the variability in the data. As an illustration, in Figure 4.2, the 

bias is so negligible that one cannot observe the difference between the true RI and the 

estimated RI. 

 
Figure 4.2: True RI vs. estimated RI for the parametric method. 
 

In Figure 4.1, the spread of the bias decreases as sample size increases. This indicates 

that the variability of the bias of estimates for both the lower and upper limits is inversely 

proportional to sample size. In addition, as sample size increases, the distribution of bias 

for the estimates of both the lower and upper limits appears to center around 0, indicating 

that the estimates are asymptotically unbiased. In fact, we show on the following page 

that this indeed is the case mathematically. 
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Let x1,…,xn be a random sample from a N µ,σ 2( ) distribution, and let x = 1
n

xi
n

1

∑ and  

s2 = 1
n−1

xi − x( )2
i=1

n

∑ . Then the bias of the lower limit θ̂L( )  
can be derived as follows:  

Bias θ̂L,θL( ) = E θ̂L −θL( )
= E x − zα /2s( )− µ − zα /2σ( )"# $%

= E x − zα /2s( )−E µ − zα /2σ( )

= E x( )− zα /2E s( )−E µ( )+ zα /2E σ( ).

 

Recall that  x ~ N µ,σ
2

n
!

"
#

$

%
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Bias θ̂L,θL( ) = µ − zα /2E σ
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'+ zα /2σ .

 

Moreover,  n−1
σ

s ~ χn−1 . As a result, 

Bias θ̂L,θL( ) = zα /2σ 1− 1
n−1

2
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(1) 
 

Similarly, the bias of the upper limit θ̂U( )  can be derived as 
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Bias θ̂U,θU( ) = zα /2σ 2
n−1
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Now consider,    
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, it can be re-written as (Graham et al., 1994) 
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⎞
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−∞→ n
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nn
. (3) 

 
This indicates that the bias of both the lower and upper limit estimates converge to 0. 

Thus, the estimates of the lower and upper limits produced by the parametric method are 

indeed asymptotically unbiased. 

The non-parametric method, on the other hand, does not appear to produce unbiased 

estimates for the lower and upper limits. In fact, empirical results show that, as the sample 

size increases, bias for the non-parametric method converges to a constant different from 

zero. Plots of the bias of the lower and upper limit estimates for the non-parametric 

method are provided in Figure 4.3.  
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Figure 4.3: Empirical bias, with corresponding 95% confidence intervals (indicated by 
dashed lines), for the non-parametric method, where data is generated from N(20,9). 

 
In general, the non-parametric method produces lower limit estimates with small, 

negative bias, and upper limit estimates with small, positive bias (Figure 4.3). 

Consequently, the estimated lower limit is smaller than the true lower limit for the 

population, and the estimated upper limit is larger than the true upper limit for the 

population (see Figure 4.4 for illustration). As a result, RIs estimated by the non-

parametric method will be wider than the true RI for the population on average, leading to 

false negatives (missed treatment).  
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Figure 4.4: True RI vs. estimated RI for non-parametric method. 

Compared to the parametric method, the bias for the non-parametric method is 

generally larger across all sample sizes (Table 3). However, like the parametric method, 

the variability of the bias of estimates for both the lower and upper limits obtained using 

the non-parametric method is inversely proportional to sample size (Figure 4.3). As 

sample size increases, the distribution of bias shifts towards 0 for both estimated limits. 

However, it converges to a value close to 0, indicating that the estimates are not 

asymptotically unbiased, unlike the parametric method. It is interesting to note the 

distinction between the distribution of bias when n = 40 and the distributions of bias for 

larger sample sizes (Figure 4.3). Although RIs estimated by the non-parametric method 
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Table 3: Average empirical bias for the three different methods, where data is generated 
from N(20,9). 

n 
Parametric Non-Parametric Robust 

Lower Limit Upper Limit Lower Limit Upper Limit Lower Limit Upper Limit 

40 0.0399 -0.0385 -0.6042 0.5940 -0.2677 0.2715 

80 0.0228 -0.0179 -0.2927 0.2971 -0.1287 0.1351 

120 0.0173 -0.0116 -0.1879 0.1903 -0.0828 0.0904 

160 0.0120 -0.0107 -0.1410 0.1380 -0.0628 0.0660 

200 0.0060 -0.0075 -0.1148 0.1115 -0.0540 0.0535 

240 0.0071 -0.0037 -0.0939 0.0948 -0.0431 0.0470 

280 0.0047 -0.0033 -0.0836 0.0827 -0.0381 0.0401 

320 0.0046 -0.0041 -0.0677 0.0729 -0.0330 0.0339 

360 0.0043 -0.0032 -0.0647 0.0617 -0.0292 0.0304 

400 0.0039 -0.0036 -0.0566 0.0571 -0.0260 0.0268 

440 0.0035 -0.0030 -0.0481 0.0531 -0.0243 0.0241 

480 0.0025 -0.0033 -0.0477 0.0477 -0.0226 0.0219 

 
The patterns of bias observed with the non-parametric method are similar to those 

observed with the robust method. Plots of the bias of the lower and upper limit estimates 

for the robust method are provided in Figure 4.5.  
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Figure 4.5: Empirical bias, with corresponding 95% confidence intervals (indicated by 
dashed lines), for the robust method, where data is generated from N(20,9). 
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Figure 4.6: True RI vs. estimated RI for robust method. 

Similar to the parametric and non-parametric methods, the variability of the bias of 

the lower and upper limit estimates produced by the robust method is inversely 

proportional to sample size (Figure 4.5). As sample size increases, the distribution of bias 

shifts towards 0 for both estimated limits. However, like the non-parametric approach, the 
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robust method is distinct between n = 40 and larger sample sizes (Figure 4.5). Again, one 
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Note that the magnitude of the average bias for the estimated lower and upper limits is 

almost the same to two decimal places for all three methods (Table 3), which one would 

expect with symmetric distributions. As a result, the number of false positives associated 

with test results near the estimated lower limit will be about the same as the number of 

false positives associated with test results near the estimated upper limit, for limits 

estimated by the parametric method. The same is true for limits estimated by the non-

parametric and robust methods, except with false negatives. 

When mean squared error (MSE) is considered, we observed a significant difference 

between the performance of the non-parametric method and the performances of the 

parametric and robust methods. The parametric method provided uniformly lower MSE 

and the robust method slightly larger (almost negligible for some sample sizes) (Figure 

4.7). However, the non-parametric method resulted in much larger MSE, especially when 

the variability of the data is large.  

  
Figure 4.7: Average empirical MSE for the three methods, where data is generated from 
N(20,9). 
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For instance, for data from N(20,9) and n = 40, the average MSE of the non-parametric 

lower and upper limit estimates is more than triple of that of the parametric estimates, and 

almost triple of that of the robust estimates (Table 4). Similarly, when n = 120, the 

average MSE of the non-parametric estimates (approximately 0.62 and 0.61) is almost 

triple of that of the parametric (approximately 0.22 and 0.22) and robust estimates 

(approximately 0.24 and 0.24). When n = 480, the largest sample size considered in this 

simulation study, the difference between the parametric and robust methods is negligible, 

but the MSE for the non-parametric method is still considerably larger. 

Table 4: Average empirical MSE for the three different methods, where data is generated 
from N(20,9). 

n 
Parametric Non-Parametric Robust 

Lower Limit Upper Limit Lower Limit Upper Limit Lower Limit Upper Limit 

40 0.6661 0.6655 2.4101 2.3821 0.8218 0.8259 

80 0.3279 0.3286 1.0050 0.9941 0.3717 0.3777 

120 0.2215 0.2189 0.6200 0.6141 0.2439 0.2437 

160 0.1651 0.1638 0.4445 0.4437 0.1797 0.1799 

200 0.1299 0.1316 0.3476 0.3457 0.1410 0.1430 

240 0.1092 0.1096 0.2866 0.2863 0.1178 0.1185 

280 0.0934 0.0950 0.2444 0.2502 0.1005 0.1021 

320 0.0817 0.0803 0.2112 0.2120 0.0878 0.0860 

360 0.0730 0.0723 0.1884 0.1835 0.0779 0.0775 

400 0.0656 0.0657 0.1685 0.1674 0.0700 0.0701 

440 0.0605 0.0600 0.1517 0.1525 0.0645 0.0637 

480 0.0552 0.0552 0.1380 0.1390 0.0589 0.0586 
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It is important to highlight that the average MSE of the lower limit and upper limit 

are approximately the same within each method, indicating same precision for the lower 

and upper limit estimates. It is also important to note that the MSE for all the three 

methods is monotonically decreasing as sample size increases. In addition, the MSE for 

the parametric method is asymptotically consistent, as shown below. 

Let x1,…,xn be a random sample from a N µ,σ 2( ) distribution, and let x = 1
n

xi
n

1

∑ and  

s2 = 1
n−1

xi − x( )2
i=1

n

∑ . Then the MSE of the lower limit estimates θ̂L( )produced by the 

parametric method can be derived as follows: 

MSE θ̂L( ) = Var θ̂L( )+ Bias θ̂L −θL( )( )
2
 

Note that 
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Similarly, it can be shown that the MSE of the upper limit is equal to the MSE of the 

lower limit. Now recall (3): 
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lim
n→∞
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=1.  

This indicates that the MSE of both the lower and upper limit estimates converge to 0. 

Thus, the estimates of the lower and upper limits produced by the parametric method are 

indeed asymptotically consistent. 

Note that the results presented in Tables 3 and 4 and Figures 4.1 to 4.7 are, without 

loss of generality, for data from a N(20,9) distribution. The findings are similar for 

different means and variances in the sense that the parametric method performed better by 

looking at both bias and MSE. The general pattern of bias, that is, bias decreasing with 

sample size and the asymptotic unbiasedness of the parametric approach still holds for 

different means and variances. The results also indicate that the non-parametric and 

robust methods are asymptotically biased (although the bias is very small) regardless of 

mean and variance. In addition, the MSE of the three methods monotonically decreases 

with sample size, regardless of mean and variance, with the parametric method 

performing uniformly better followed by the robust approach. Moreover, the parametric 

method is asymptotically consistent for different means and variances. 

Nevertheless, we observed that the magnitudes of both bias and MSE increase with 

variance, but both are not affected by the change in mean. Further investigation 

confirmed that the increases in both bias and MSE are directly proportional to variance 

and inversely proportional to sample size. We were able to empirically show that the 
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standardized bias and MSE (Bias/σ and MSE/σ2) are constant for all three methods for a 

given sample size. In fact, we were able to show this analytically for the parametric 

method. Recall the bias of the estimated lower limit (1): 

Bias θ̂L,θL( ) = zα /2σ 1− 2
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Now, if we standardize (divide) the bias of the estimated lower limit by dividing by σ, we 

end up with the expression 

Bias θ̂L,θL( )
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(5) 
 

Note that (5) is a function of sample size only. Similarly, standardizing the bias of the 

estimated upper limit (2) by dividing by σ returns a function of sample size only: 

Bias θ̂U,θU( )
σ
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Note that the right hand side of (5) and (6), respectively, are bias of the lower and upper 

bound estimates, if a standard normal distribution was used.  

Recall the MSE of the estimated lower limit (4): 
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Now, if we standardize the MSE of the estimated lower limit estimates by dividing with 

σ2, we end up with the expression 

MSE θ̂L( )
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Similarly, it can be shown that the standardized MSE of the upper limit is equal to the 

standardized MSE of the lower limit. Note that (7) is a function of sample size only and is 

the MSE that will be obtained if data from a standard normal distribution is used. Table 5 

provides the average bias and MSE of the non-parametric method for each of the three 

Gaussian distributions considered and Table 6 provides the standardized average bias and 

MSE. The standardized average bias for the estimated lower limit is approximately the 

same regardless of the distribution, as it is for the estimated upper limit. The same is true 

for the standardized average MSE.  
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Table 5: Average empirical bias and MSE for non-parametric method, where data is generated 
from N(2.45,0.01), N(20,9), N(74.82,132.70). 

n 

Average Bias Average MSE 

N(2.45,0.01) N(20,9) N(74.82,132.70) N(2.45,0.01) N(20,9) N(74.82,132.70) 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

40 -0.0181 0.0178 -0.6042 0.5940 -2.3200 2.2810 0.0022 0.0021 2.4101 2.3821 35.5343 35.1213 

80 -0.0088 0.0089 -0.2927 0.2971 -1.1240 1.1407 0.0009 0.0009 1.0050 0.9941 14.8181 14.6574 

120 -0.0056 0.0057 -0.1879 0.1903 -0.7216 0.7308 0.0006 0.0006 0.6200 0.6141 9.1411 9.0542 

160 -0.0042 0.0041 -0.1410 0.1380 -0.5415 0.5298 0.0004 0.0004 0.4445 0.4437 6.5539 6.5425 

200 -0.0034 0.0033 -0.1148 0.1115 -0.4407 0.4283 0.0003 0.0003 0.3476 0.3457 5.1250 5.0977 

240 -0.0028 0.0028 -0.0939 0.0948 -0.3607 0.3639 0.0003 0.0003 0.2866 0.2863 4.2261 4.2209 

280 -0.0025 0.0025 -0.0836 0.0827 -0.3212 0.3176 0.0002 0.0002 0.2444 0.2502 3.6030 3.6892 

320 -0.0020 0.0022 -0.0677 0.0729 -0.2598 0.2798 0.0002 0.0002 0.2112 0.2120 3.1142 3.1262 

360 -0.0019 0.0019 -0.0647 0.0617 -0.2485 0.2370 0.0002 0.0002 0.1884 0.1835 2.7780 2.7061 

400 -0.0017 0.0017 -0.0566 0.0571 -0.2175 0.2194 0.0002 0.0002 0.1685 0.1674 2.4838 2.4686 

440 -0.0014 0.0016 -0.0481 0.0531 -0.1849 0.2041 0.0001 0.0001 0.1517 0.1525 2.2366 2.2489 

480 -0.0014 0.0014 -0.0477 0.0477 -0.1833 0.1832 0.0001 0.0001 0.1380 0.1390 2.0351 2.0493 
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Table 6: Standardized average empirical bias and MSE for non-parametric method, where data 
is generated from N(2.45,0.01), N(20,9), N(74.82,132.70). 

n 

Average Bias/σ Average MSE/σ2 

N(2.45,0.01) N(20,9) N(74.82,132.70) N(2.45,0.01) N(20,9) N(74.82,132.70) 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

40 -0.2014 0.1980 -0.2014 0.1980 -0.2014 0.1980 0.2678 0.2647 0.2678 0.2647 0.2678 0.2647 

80 -0.0976 0.0990 -0.0976 0.0990 -0.0976 0.0990 0.1117 0.1105 0.1117 0.1105 0.1117 0.1105 

120 -0.0626 0.0634 -0.0626 0.0634 -0.0626 0.0634 0.0689 0.0682 0.0689 0.0682 0.0689 0.0682 

160 -0.0470 0.0460 -0.0470 0.0460 -0.0470 0.0460 0.0494 0.0493 0.0494 0.0493 0.0494 0.0493 

200 -0.0383 0.0372 -0.0383 0.0372 -0.0383 0.0372 0.0386 0.0384 0.0386 0.0384 0.0386 0.0384 

240 -0.0313 0.0316 -0.0313 0.0316 -0.0313 0.0316 0.0318 0.0318 0.0318 0.0318 0.0318 0.0318 

280 -0.0279 0.0276 -0.0279 0.0276 -0.0279 0.0276 0.0272 0.0278 0.0272 0.0278 0.0272 0.0278 

320 -0.0225 0.0243 -0.0226 0.0243 -0.0226 0.0243 0.0235 0.0236 0.0235 0.0236 0.0235 0.0236 

360 -0.0216 0.0206 -0.0216 0.0206 -0.0216 0.0206 0.0209 0.0204 0.0209 0.0204 0.0209 0.0204 

400 -0.0189 0.0190 -0.0189 0.0190 -0.0189 0.0190 0.0187 0.0186 0.0187 0.0186 0.0187 0.0186 

440 -0.0160 0.0177 -0.0160 0.0177 -0.0160 0.0177 0.0169 0.0169 0.0169 0.0169 0.0169 0.0169 

480 -0.0159 0.0159 -0.0159 0.0159 -0.0159 0.0159 0.0153 0.0154 0.0153 0.0154 0.0153 0.0154 

 
Tables 7 and 8 provide the average bias and MSE and standardized average bias and 

MSE, respectively, for the robust method for each of the three Gaussian distributions 

considered. Similar to the non-parametric method, the standardized average bias for the 

estimated lower limit is approximately the same regardless of the distribution, as it is for 

the estimated upper limit. The same is true for the standardized average MSE.  
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Table 7: Average empirical bias and MSE for robust method, where data is generated from 
N(2.45,0.01), N(20,9), N(74.82,132.70). 

n 

Average Bias Average MSE 

N(2.45,0.01) N(20,9) N(74.82,132.70) N(2.45,0.01) N(20,9) N(74.82,132.70) 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

40 -0.0080 0.0081 -0.2677 0.2715 -1.0278 1.0427 0.0007 0.0007 0.8218 0.8259 12.1170 12.1778 

80 -0.0039 0.0041 -0.1287 0.1351 -0.4940 0.5189 0.0003 0.0003 0.3717 0.3777 5.4800 5.5686 

120 -0.0025 0.0027 -0.0828 0.0904 -0.3179 0.3470 0.0002 0.0002 0.2439 0.2437 3.5956 3.5938 

160 -0.0019 0.0020 -0.0628 0.0660 -0.2413 0.2533 0.0002 0.0002 0.1797 0.1799 2.6501 2.6525 

200 -0.0016 0.0016 -0.0540 0.0535 -0.2074 0.2053 0.0001 0.0001 0.1410 0.1430 2.0784 2.1080 

240 -0.0013 0.0014 -0.0431 0.0470 -0.1654 0.1805 0.0001 0.0001 0.1178 0.1185 1.7365 1.7476 

280 -0.0011 0.0012 -0.0381 0.0401 -0.1463 0.1541 0.0001 0.0001 0.1005 0.1021 1.4817 1.5060 

320 -0.0010 0.0010 -0.0330 0.0339 -0.1267 0.1301 0.0001 0.0001 0.0878 0.0860 1.2939 1.2687 

360 -0.0009 0.0009 -0.0292 0.0304 -0.1122 0.1169 0.0001 0.0001 0.0779 0.0775 1.1490 1.1427 

400 -0.0008 0.0008 -0.0260 0.0268 -0.1000 0.1029 0.0001 0.0001 0.0700 0.0701 1.0325 1.0335 

440 -0.0007 0.0007 -0.0243 0.0241 -0.0934 0.0924 0.0001 0.0001 0.0645 0.0637 0.9506 0.9395 

480 -0.0007 0.0007 -0.0226 0.0219 -0.0868 0.0843 0.0001 0.0001 0.0589 0.0586 0.8687 0.8643 
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Table 8: Standardized average empirical bias and MSE for robust method, where data is 
generated from N(2.45,0.01), N(20,9), N(74.82,132.70). 

n 

Average Bias/σ Average MSE/σ2 

N(2.45,0.01) N(20,9) N(74.82,132.70) N(2.45,0.01) N(20,9) N(74.82,132.70) 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

40 -0.0892 0.0905 -0.0892 0.0905 -0.0892 0.0905 0.0913 0.0918 0.0913 0.0918 0.0913 0.0918 

80 -0.0429 0.0450 -0.0429 0.0450 -0.0429 0.0450 0.0413 0.0420 0.0413 0.0420 0.0413 0.0420 

120 -0.0276 0.0301 -0.0276 0.0301 -0.0276 0.0301 0.0271 0.0271 0.0271 0.0271 0.0271 0.0271 

160 -0.0209 0.0220 -0.0209 0.0220 -0.0209 0.0220 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 

200 -0.0180 0.0178 -0.0180 0.0178 -0.0180 0.0178 0.0157 0.0159 0.0157 0.0159 0.0157 0.0159 

240 -0.0144 0.0157 -0.0144 0.0157 -0.0144 0.0157 0.0131 0.0132 0.0131 0.0132 0.0131 0.0132 

280 -0.0127 0.0134 -0.0127 0.0134 -0.0127 0.0134 0.0112 0.0114 0.0112 0.0113 0.0112 0.0113 

320 -0.0110 0.0113 -0.0110 0.0113 -0.0110 0.0113 0.0098 0.0096 0.0098 0.0096 0.0098 0.0096 

360 -0.0097 0.0101 -0.0097 0.0101 -0.0097 0.0101 0.0087 0.0086 0.0087 0.0086 0.0087 0.0086 

400 -0.0087 0.0089 -0.0087 0.0089 -0.0087 0.0089 0.0078 0.0078 0.0078 0.0078 0.0078 0.0078 

440 -0.0081 0.0080 -0.0081 0.0080 -0.0081 0.0080 0.0072 0.0071 0.0072 0.0071 0.0072 0.0071 

480 -0.0075 0.0073 -0.0075 0.0073 -0.0075 0.0073 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 

 
Additional simulations were conducted, where data is generated from a standard 

normal distribution. The standardized average bias and MSE for all three methods are in 

fact consistent with the average bias and MSE produced by the standardized normal 

distribution (Table 9). Consequently, without loss of generality, results regarding the 

performances of the methods from the standard normal distribution can be extended to 

Gaussian distributions with any mean and variance. 
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Table 9: Average empirical bias and MSE for all three methods, where data is generated from 
N(0,1). 

n 

Average Bias Average MSE 

Parametric Non-Parametric Robust Parametric Non-Parametric Robust 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

40 0.0133 -0.0128 -0.2014 0.1980 -0.0892 0.0905 0.0740 0.0739 0.2678 0.2647 0.0913 0.0918 

80 0.0076 -0.0060 -0.0976 0.0990 -0.0429 0.0450 0.0364 0.0365 0.1117 0.1105 0.0413 0.0420 

120 0.0058 -0.0039 -0.0626 0.0634 -0.0276 0.0301 0.0246 0.0243 0.0689 0.0682 0.0271 0.0271 

160 0.0040 -0.0036 -0.0470 0.0460 -0.0210 0.0220 0.0183 0.0182 0.0494 0.0493 0.0200 0.0200 

200 0.0020 -0.0025 -0.0383 0.0372 -0.0180 0.0178 0.0144 0.0146 0.0386 0.0384 0.0157 0.0159 

240 0.0024 -0.0012 -0.0313 0.0316 -0.0144 0.0157 0.0121 0.0122 0.0318 0.0318 0.0131 0.0132 

280 0.0016 -0.0011 -0.0279 0.0276 -0.0127 0.0134 0.0104 0.0106 0.0272 0.0278 0.0112 0.0113 

320 0.0015 -0.0014 -0.0226 0.0243 -0.0110 0.0113 0.0091 0.0089 0.0235 0.0236 0.0098 0.0096 

360 0.0014 -0.0011 -0.0216 0.0206 -0.0097 0.0101 0.0081 0.0080 0.0209 0.0204 0.0087 0.0086 

400 0.0013 -0.0012 -0.0189 0.0190 -0.0087 0.0089 0.0073 0.0073 0.0187 0.0186 0.0078 0.0078 

440 0.0012 -0.0010 -0.0160 0.0177 -0.0081 0.0080 0.0067 0.0067 0.0169 0.0169 0.0072 0.0071 

480 0.0008 -0.0011 -0.0159 0.0159 -0.0075 0.0073 0.0061 0.0061 0.0153 0.0154 0.0065 0.0065 

 
In addition, it is important to note that the standardized bias and MSE for the lower 

and upper limits, obtained theoretically (analytically) (equations 3,4, and 6) (results 

presented in Table 10) are close to the average bias and MSE produced empirically by the 

parametric method for a standard normal data (Table 9), indicating that the empirical bias 

and MSE are good estimates of the true bias and MSE.  
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Table 10: Theoretical standardized bias and MSE for parametric method. 

n 
Bias MSE 

Lower Limit Upper Limit Lower Limit Upper Limit 

40 0.0125 -0.0125 0.0741 0.0741 

80 0.0062 -0.0062 0.0368 0.0368 

120 0.0041 -0.0041 0.0245 0.0245 

160 0.0031 -0.0031 0.0183 0.0183 

200 0.0025 -0.0025 0.0146 0.0146 

240 0.0020 -0.0020 0.0122 0.0122 

280 0.0018 -0.0018 0.0105 0.0105 

320 0.0015 -0.0015 0.0091 0.0091 

360 0.0014 -0.0014 0.0081 0.0081 

400 0.0012 -0.0012 0.0073 0.0073 

440 0.0011 -0.0011 0.0066 0.0066 

480 0.0010 -0.0010 0.0061 0.0061 

 
Finally, consider the coverage probability and width of the 90% confidence intervals 

produced by the parametric, non-parametric, and robust methods. Coverage probabilities 

for confidence intervals of the lower and upper limits estimated by all three methods are 

provided in Table 11. 
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Table 11: Coverage probability for all three methods, where data is generated from 
N(20,9). 

n 

Parametric Non-Parametric Robust 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

40 0.89 0.91 N/A N/A 0.88 0.88 

80 0.90 0.90 N/A N/A 0.88 0.89 

120 0.92 0.91 0.92 0.92 0.90 0.89 

160 0.89 0.90 0.92 0.93 0.88 0.89 

200 0.89 0.90 0.94 0.93 0.88 0.89 

240 0.91 0.91 0.95 0.96 0.90 0.90 

280 0.90 0.91 0.95 0.94 0.90 0.89 

320 0.90 0.90 0.92 0.93 0.89 0.89 

360 0.89 0.91 0.95 0.94 0.88 0.89 

400 0.88 0.89 0.94 0.94 0.87 0.89 

440 0.91 0.91 0.94 0.94 0.90 0.90 

480 0.91 0.91 0.92 0.91 0.89 0.89 

avg 0.90 0.90 0.94 0.93 0.89 0.89 

 
Note that because 120 samples are required to provide confidence intervals for limits 

estimated by the non-parametric method, coverage probabilities could not be provided 

when n = 40 and n = 80. For all three methods, there is no evident relationship between 

sample size and coverage probabilities. The average (avg) coverage probabilities for all 

three methods are very close to the nominal coverage probability of 0.90. However, the 
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coverage probabilities of the non-parametric confidence intervals are consistently larger 

than the nominal coverage probability. This is most likely because the widths of the 

confidence intervals produced by the non-parametric method are consistently wider than 

the widths of the confidence intervals produced by the parametric and robust methods, as 

shown in Table 12. 

Table 12: Confidence interval widths for all three methods, where data is generated 
from N(20,9). 

n 

Parametric Non-Parametric Robust 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

40 2.66 2.66 N/A N/A 2.79 2.80 

80 1.89 1.89 N/A N/A 1.95 1.96 

120 1.54 1.54 2.90 2.92 1.59 1.59 

160 1.34 1.34 2.98 2.98 1.37 1.37 

200 1.19 1.19 2.24 2.25 1.22 1.22 

240 1.09 1.09 2.29 2.40 1.11 1.11 

280 1.01 1.01 1.98 1.97 1.03 1.03 

320 0.94 0.94 1.66 1.67 0.97 0.97 

360 0.89 0.89 1.73 1.77 0.91 0.90 

400 0.84 0.84 1.53 1.53 0.86 0.86 

440 0.80 0.80 1.46 1.47 0.82 0.82 

480 0.77 0.77 1.33 1.33 0.78 0.79 
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The widths of the confidence intervals produced by all three methods have an inversely 

proportional relationship with sample size. The parametric method uniformly provides 

narrower confidence intervals than the non-parametric and robust methods. In addition, 

the widths of the confidence intervals of the lower and upper limit produced by the 

parametric method are exactly the same for each sample size. Confidence intervals that 

accompany the robust method are slightly wider than the confidence intervals that 

accompany the parametric method. As sample size increases, the difference between the 

widths of these two methods becomes negligible. The non-parametric method, on the 

other hand, produces confidence intervals that are significantly wider than the confidence 

intervals provided by the parametric and robust methods. 

4.4.2 Results for Skew Normal Distributions 
 
 
A total of fifteen skew normal distributions were considered using combinations of 

different mean, variance and skewness parameters. The means and variances considered 

are the same as those in the Gaussian scenarios, and 5 levels of skewness (κ) were 

integrated into the simulation: κ = 0.10, 0.25, 0.50, 0.75, 0.95. Similar to the simulation 

for the Gaussian scenarios, 1000 datasets were generated from each of the skewed 

distributions with sample sizes of n = 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 

and 480. RIs were estimated for each dataset using the parametric, non-parametric, and 

robust methods. The bias and MSE of the lower and upper limit were computed and 

subsequently averaged over additional 50 samples (repetitions). 
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First consider data from the skew normal distribution, where skewness is very small 

(κ = 0.1). Plots of bias for lower and upper limits estimated by the parametric, non-

parametric and robust methods are provided in Figure 4.8. As can be seen from this 

figure, bias in general remains small for all three methods when data is slightly skewed (κ 

= 0.10). However, compared to the bias of estimates from Gaussian data, the magnitude 

of bias has increased. Overall, the parametric method appears to perform better than the 

non-parametric approach when estimating both the lower and upper limits with small 

sample size. However, with large sample sizes (n ≥ 200), the non-parametric approach 

provides the smallest bias for estimates of both limits (Table 13). The robust method does 

not seem to perform well in estimating the lower limit compared to both the parametric 

and non-parametric approaches, regardless of sample size. However, the robust method 

provides the smallest bias for estimates of the upper limit with small sample sizes (n < 

200).  
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Figure 4.8: Empirical bias, with corresponding 95% confidence intervals (indicated by 
dashed lines), for the three methods, where data is generated from skew normal 
distribution with κ = 0.1. The mean and variance are 20 and 9, respectively. 
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For the parametric method, a change in direction of bias associated with the estimates 

of the lower limit was observed. Instead of the negligible, positive bias observed in the 

Gaussian scenarios, small, negative bias is observed with slightly positive skewed data. 

The upper limit estimates continue to have negative bias with skewed data, as did the 

estimates with Gaussian data. A change in direction of bias is also observed for the robust 

method, except the change is associated with the estimates of the upper limit. Negative 

bias is observed for skewed data (excluding n = 40), contrary to the positive bias observed 

with Gaussian data. The lower limit estimates continue to have negative bias with skewed 

data, as did the estimates with Gaussian data. Due to this shift in the direction of bias, 

both the parametric and robust methods lead to false negatives (missed treatment) near 

the lower limit and false positives (unnecessary treatment) near the upper limit, when data 

is skewed. The non-parametric method, on the other hand, maintains the same the 

direction of bias for both skewed and Gaussian distributions. 

Similar to the results observed with Gaussian data, the variability of bias decreased 

with an increase in sample size (Figure 4.8) and bias appeared to converge to a constant 

for all three methods. However, the constant that bias converges to appears to be a non-

zero constant, indicating that all three methods are asymptotically biased. This is contrary 

to the Gaussian scenarios, where the parametric method resulted in asymptotically 

unbiased estimators.  

Similar patterns in bias are observed as the skewness parameter increases (κ = 0.25). 

However, the magnitude of bias of the estimated lower and upper limits has increased for 
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all three methods, except for lower limits estimated by the non-parametric method (Table 

13). Note that the robust method now estimates the upper limit with negative bias on 

average when n = 40. In addition, the average bias associated with the non-parametric 

method appears to be smaller than the parametric and robust methods, even for a sample 

size as small as n = 80. 

Table 13: Average empirical bias for the three different methods, where data is generated from 
skew normal distributions with small levels of skewness. The mean and variance are 20 and 9, 
respectively. 

n 

Skew = 0.1 Skew = 0.25 

Parametric Non-Parametric Robust Parametric Non-Parametric Robust 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

40 -0.0964 -0.1888 -0.5583 0.6553 -0.4507 0.0759 -0.3039 -0.4171 -0.5034 0.7271 -0.7289 -0.2176 

80 -0.1141 -0.1715 -0.2684 0.3212 -0.3128 -0.0644 -0.3297 -0.3972 -0.2453 0.3549 -0.5996 -0.3538 

120 -0.1265 -0.1645 -0.1823 0.2062 -0.2722 -0.1068 -0.3398 -0.3897 -0.1659 0.2282 -0.5570 -0.3954 

160 -0.1257 -0.1615 -0.1340 0.1524 -0.2455 -0.1287 -0.3376 -0.3876 -0.1205 0.1680 -0.5294 -0.4185 

200 -0.1291 -0.1564 -0.1081 0.1217 -0.2337 -0.1386 -0.3397 -0.3825 -0.0946 0.1351 -0.5160 -0.4282 

240 -0.1313 -0.1548 -0.0887 0.1012 -0.2259 -0.1472 -0.3439 -0.3801 -0.0818 0.1125 -0.5101 -0.4356 

280 -0.1318 -0.1532 -0.0747 0.0931 -0.2205 -0.1539 -0.3445 -0.3785 -0.0661 0.1031 -0.5051 -0.4422 

320 -0.1338 -0.1540 -0.0683 0.0775 -0.2160 -0.1592 -0.3449 -0.3794 -0.0631 0.0863 -0.4990 -0.4477 

360 -0.1308 -0.1535 -0.0575 0.0672 -0.2090 -0.1632 -0.3433 -0.3791 -0.0522 0.0740 -0.4935 -0.4516 

400 -0.1364 -0.1532 -0.0567 0.0611 -0.2112 -0.1661 -0.3477 -0.3783 -0.0518 0.0682 -0.4945 -0.4543 

440 -0.1323 -0.1529 -0.0459 0.0536 -0.2042 -0.1685 -0.3445 -0.3785 -0.0418 0.0592 -0.4884 -0.4571 

480 -0.1325 -0.1526 -0.0429 0.0516 -0.2020 -0.1704 -0.3446 -0.3782 -0.0363 0.0571 -0.4864 -0.4592 
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Now, consider moderately skewed data (κ = 0.50). The magnitude of bias has 

increased compared to symmetric data as well as data with mild skewness (κ = 0.1 and κ 

= 0.25). In fact, we considered even higher skewness levels and observed that the 

magnitude of bias generally increases with skewness (Table 14), with the exception of the 

non-parametric method, where bias associated with the lower limit decreases when 

skewness increases. This, as expected, is due to the positive skewness in the data, where 

many of the data points are accumulated in the lower level percentiles leading to more 

sample size for the lower limit estimates. The direction of bias remained the same for all 

levels of skewness. We would also like to highlight that the variability of bias decreases 

with sample size, regardless of the magnitude of skewness in the data, and bias converges 

to non-zero constants for all three methods, indicating asymptotically biased estimates. 

The bias for the non-parametric method converges to a magnitude smaller than both the 

parametric and non-parametric methods indicating that when data are skewed, it 

asymptotically produces better estimates of lower and upper limits.  
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Table 14: Average empirical bias for the three different methods, where data is generated from skew normal distributions with moderate to large levels of 
skewness. The mean and variance are 20 and 9, respectively. 

n 

Skew = 0.50 Skew = 0.75 Skew = 0.95 

Parametric Non-Parametric Robust Parametric Non-Parametric Robust Parametric Non-Parametric Robust 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

40 -0.7015 -0.7697 -0.4196 0.8106 -1.2595 -0.6735 -1.1969 -1.0824 -0.3023 0.8742 -1.9117 -1.0753 -1.7957 -1.3096 -0.1409 0.9173 -2.6453 -1.3527 

80 -0.7256 -0.7485 -0.1981 0.3958 -1.1310 -0.8057 -1.2239 -1.0591 -0.1479 0.4268 -1.7877 -1.2009 -1.8261 -1.2836 -0.0707 0.4478 -2.5214 -1.4687 

120 -0.7323 -0.7415 -0.1323 0.2546 -1.0850 -0.8467 -1.2306 -1.0517 -0.0994 0.2746 -1.7420 -1.2398 -1.8321 -1.2762 -0.0482 0.2881 -2.4737 -1.5051 

160 -0.7360 -0.7378 -0.1028 0.1873 -1.0630 -0.8670 -1.2323 -1.0485 -0.0740 0.2020 -1.7180 -1.2600 -1.8345 -1.2726 -0.0343 0.2120 -2.4498 -1.5241 

200 -0.7370 -0.7325 -0.0797 0.1505 -1.0488 -0.8766 -1.2344 -1.0426 -0.0575 0.1624 -1.7049 -1.2684 -1.8371 -1.2662 -0.0274 0.1704 -2.4367 -1.5312 

240 -0.7389 -0.7306 -0.0662 0.1253 -1.0407 -0.8842 -1.2367 -1.0404 -0.0507 0.1352 -1.6970 -1.2751 -1.8380 -1.2645 -0.0225 0.1418 -2.4276 -1.5381 

280 -0.7420 -0.7281 -0.0554 0.1148 -1.0384 -0.8898 -1.2413 -1.0370 -0.0430 0.1238 -1.6963 -1.2796 -1.8435 -1.2606 -0.0200 0.1300 -2.4275 -1.5417 

320 -0.7397 -0.7301 -0.0478 0.0960 -1.0299 -0.8966 -1.2375 -1.0399 -0.0357 0.1036 -1.6866 -1.2870 -1.8407 -1.2631 -0.0164 0.1087 -2.4184 -1.5485 

360 -0.7400 -0.7293 -0.0405 0.0824 -1.0263 -0.8997 -1.2382 -1.0388 -0.0292 0.0889 -1.6835 -1.2897 -1.8423 -1.2616 -0.0144 0.0933 -2.4159 -1.5505 

400 -0.7429 -0.7286 -0.0393 0.0760 -1.0256 -0.9025 -1.2409 -1.0381 -0.0302 0.0819 -1.6828 -1.2926 -1.8436 -1.2615 -0.0141 0.0860 -2.4140 -1.5540 

440 -0.7419 -0.7283 -0.0360 0.0659 -1.0216 -0.9043 -1.2401 -1.0378 -0.0260 0.0711 -1.6788 -1.2940 -1.8429 -1.2611 -0.0118 0.0746 -2.4101 -1.5552 

480 -0.7419 -0.7281 -0.0321 0.0637 -1.0196 -0.9066 -1.2402 -1.0374 -0.0239 0.0687 -1.6769 -1.2961 -1.8436 -1.2604 -0.0110 0.0720 -2.4086 -1.5569 
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Now consider the MSE when skewness is small (κ = 0.1). When estimating the lower 

limit, the parametric method uniformly has minimum MSE, compared to the non-

parametric and robust methods. When estimating the upper limit, the difference in MSE 

between the parametric and robust methods is negligible (Figure 4.9, Table 15). The non-

parametric method uniformly has the largest MSE when estimating both the lower and 

upper limits. This shows that, although the non-parametric method produces less biased 

estimates for larger sample sizes, it also produces less precise estimates when data is 

slightly skewed. Careful consideration of the three methods is therefore important.  

  
Figure 4.9: Average empirical MSE for the three methods, where data is generated from 
skewed normal distribution with κ = 0.1. The mean and variance are 20 and 9, 
respectively. 
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Table 15: Average empirical MSE for the three different methods, where data is generated from 
skew normal distributions with small levels of skewness. The mean and variance are 20 and 9, 
respectively. 

n 

Skew = 0.10 Skew = 0.25 

Parametric Non-Parametric Robust Parametric Non-Parametric Robust 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

40 0.6345 0.7471 2.1344 2.8314 0.9424 0.7821 0.6754 0.9688 1.7673 3.4319 1.2755 0.8709 

80 0.3258 0.3828 0.8817 1.1710 0.4546 0.3725 0.3978 0.5537 0.7380 1.4120 0.7147 0.5187 

120 0.2250 0.2643 0.5543 0.7179 0.3086 0.2557 0.3085 0.4184 0.4668 0.8658 0.5434 0.4191 

160 0.1702 0.2021 0.4019 0.5168 0.2326 0.1967 0.2584 0.3475 0.3348 0.6224 0.4542 0.3679 

200 0.1407 0.1653 0.3157 0.4015 0.1926 0.1633 0.2319 0.3042 0.2646 0.4828 0.4053 0.3376 

240 0.1217 0.1418 0.2580 0.3350 0.1670 0.1416 0.2155 0.2767 0.2168 0.4029 0.3764 0.3182 

280 0.1068 0.1252 0.2187 0.2872 0.1478 0.1268 0.2021 0.2577 0.1836 0.3455 0.3550 0.3063 

320 0.0960 0.1112 0.1896 0.2429 0.1332 0.1142 0.1918 0.2425 0.1606 0.2922 0.3359 0.2961 

360 0.0863 0.1020 0.1662 0.2150 0.1199 0.1061 0.1816 0.2319 0.1414 0.2581 0.3191 0.2894 

400 0.0813 0.0945 0.1510 0.1938 0.1136 0.0996 0.1791 0.2228 0.1298 0.2331 0.3137 0.2835 

440 0.0745 0.0883 0.1338 0.1761 0.1046 0.0939 0.1715 0.2162 0.1150 0.2120 0.3014 0.2792 

480 0.0693 0.0830 0.1251 0.1614 0.0978 0.0895 0.1669 0.2099 0.1033 0.1939 0.2939 0.2754 

 
When skewness increases to κ = 0.25, no method is uniformly best across all sample 

sizes (Figure 4.10, Table 15). In terms of the lower limit, the parametric method is 

uniformly the best until a sample size of approximately n = 240 is reached, then the non-

parametric method becomes uniformly the best afterwards. The robust method performs 

better than the non-parametric method up to a sample size of 80, and performs worst 

afterwards. When estimating the upper limit, the robust method performs the best for 
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small sample sizes (up to 120), where the difference in MSE between the robust and 

parametric is negligible. The parametric method performs the best for moderate to large 

sample sizes (120 ≤ n < 440), with negligible to small difference in MSE with the robust. 

The parametric and non-parametric methods have comparable performances for very 

large sample sizes (n ≥ 440), where the non-parametric provides a slightly less MSE 

(Table 15).  

  

Figure 4.10: Average empirical MSE for the three methods, where data is generated from 
skewed normal distribution with κ = 0.25. The mean and the variance are 20 and 9, 
respectively. 
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does not have best performance at sample size of n = 120 (the sample size recommended 

by the Clinical Laboratory Standards Institute (CLSI)) for either of the RI limits. In fact, 

this is not observed until skewness is high (κ = 0.75) (Figure 4.11, Table 16). Thus, when 

estimating RIs with the non-parametric method for symmetric data as well as data with 

small to moderately skewed (skewness of less than 0.75), laboratories are under the 

mistaken impression that they are producing the best estimates possible.  
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Figure 4.11: Average empirical MSE for the three methods, where data is generated from 
data with skewness levels κ = 0.50 (first row), 0.75 (second row) and 0.95 (third row). 
The mean and variances are 20 and 9, respectively. 
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Table 16: Average empirical MSE for the three different methods, where data is generated from skew normal distributions with moderate to 
large levels of skewness. The mean and variance are 20 and 9, respectively. 

n 

Skew = 0.50 Skew = 0.75 Skew = 0.95 

Parametric Non-Parametric Robust Parametric Non-Parametric Robust Parametric Non-Parametric Robust 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

40 1.0150 1.5411 1.2317 4.2554 2.3598 1.3933 1.8889 2.2764 0.6768 4.9494 4.4766 2.2399 3.6381 2.9540 0.1769 5.4493 7.8973 3.0520 

80 0.7835 1.0338 0.5077 1.7500 1.6487 1.1009 1.7260 1.6763 0.2888 2.0354 3.5971 1.9689 3.5408 2.2693 0.0784 2.2410 6.7984 2.7512 

120 0.7072 0.8680 0.3224 1.0731 1.4191 1.0184 1.6653 1.4774 0.1808 1.2481 3.2970 1.8870 3.4929 2.0440 0.0512 1.3741 6.4077 2.6597 

160 0.6703 0.7801 0.2382 0.7714 1.3113 0.9734 1.6318 1.3750 0.1320 0.8972 3.1486 1.8455 3.4681 1.9285 0.0371 0.9879 6.2187 2.6142 

200 0.6451 0.7250 0.1846 0.5984 1.2434 0.9453 1.6150 1.3079 0.1050 0.6959 3.0646 1.8154 3.4572 1.8507 0.0295 0.7662 6.1109 2.5780 

240 0.6312 0.6918 0.1506 0.4994 1.2028 0.9293 1.6057 1.2675 0.0866 0.5809 3.0112 1.7981 3.4474 1.8065 0.0243 0.6395 6.0377 2.5607 

280 0.6239 0.6667 0.1282 0.4282 1.1819 0.9188 1.6060 1.2354 0.0724 0.4981 2.9911 1.7857 3.4584 1.7684 0.0207 0.5484 6.0189 2.5445 

320 0.6116 0.6503 0.1120 0.3621 1.1510 0.9130 1.5886 1.2186 0.0630 0.4211 2.9435 1.7837 3.4401 1.7493 0.0180 0.4637 5.9577 2.5418 

360 0.6042 0.6372 0.0990 0.3201 1.1320 0.9076 1.5831 1.2022 0.0552 0.3723 2.9204 1.7777 3.4394 1.7296 0.0158 0.4099 5.9317 2.5330 

400 0.6026 0.6258 0.0886 0.2890 1.1234 0.9030 1.5855 1.1890 0.0502 0.3361 2.9108 1.7741 3.4403 1.7162 0.0143 0.3700 5.9147 2.5319 

440 0.5966 0.6175 0.0801 0.2627 1.1084 0.8987 1.5787 1.1789 0.0454 0.3056 2.8891 1.7689 3.4337 1.7046 0.0129 0.3364 5.8871 2.5255 

480 0.5933 0.6098 0.0737 0.2403 1.0994 0.8961 1.5759 1.1698 0.0416 0.2794 2.8771 1.7668 3.4334 1.6937 0.0118 0.3077 5.8733 2.5220 
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Overall, MSE of the estimates decreases monotonically with sample size for all three 

methods (Tables 15 and 16, Figures 4.9 to 4.11). Note that when n = 40, the robust 

method consistently performs the worst across all values of skewness, when estimating 

the lower limit (Table 16). Similarly, the non-parametric method consistently performs 

the worst across all values of skewness, when estimating the upper limit. This indicates 

that these two methods are not good choices, contrary to recommendations by the CLSI 

guideline. When κ = 0.95, the non-parametric method performs the best when n ≥ 80. 

However, the difference in the MSE between the lower and upper limit is very noticeable. 

When n = 80, the MSE of the lower and upper limits are approximately 0.08 and 2.24, 

respectively. As sample size increases to 480, the MSE of the lower and upper limits 

decreases to approximately 0.01 and 0.31, respectively. This may be because data is 

concentrated to the area of the lower limit, and thus the variability of the estimates may 

be small. However, this is interestingly the opposite case for the robust method and 

warrants further investigation as to why this may be the case. 

Similar to the Gaussian distributions, standardized bias (bias/σ) and standardized 

MSE (MSE/σ2) were observed to be constant across all the sample sizes when skewness 

is held constant. This indicates that bias and MSE are directly proportional to the 

variability of the data, regardless of mean. Consequently, without loss of generality, 

results from the skew normal distribution with 𝜇 = 0,𝜎! = 1 can be extended to skew 

normal distributions with any mean and variance. 
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Finally, consider the coverage probabilities and widths of the confidence intervals 

that accompany reference limits estimated by the parametric, non-parametric, and robust 

methods. When skewness increases slightly (κ = 0.1), the coverage probabilities decline 

significantly for upper limits estimated by the parametric method, and for both lower and 

upper limits estimated by the robust method (Table 17). Confidence intervals that 

accompany the lower and upper limits estimated by the non-parametric method have a 

coverage probability that is larger than the nominal coverage probability (0.90) on 

average. There is no clear relationship between sample size and coverage probability for 

this small level of skewness. However, as skewness increases to κ = 0.25, an inversely 

proportional relationship between sample size and the coverage probabilities of the 

parametric and robust methods appears to be established (Table 17). Coverage 

probabilities for lower and upper limits estimated by the non-parametric method continue 

to be larger than the nominal coverage probability.  
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Table 17: Coverage probabilities for the three different methods, where data is generated from 
skew normal distributions with small levels of skewness. The mean and variance are 20 and 9, 
respectively. 

n 

Skew = 0.1 Skew = 0.25 

Parametric Non-Parametric Robust Parametric Non-Parametric Robust 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

40 0.91 0.87 N/A N/A 0.87 0.87 0.92 0.80 N/A N/A 0.81 0.84 

80 0.91 0.86 N/A N/A 0.85 0.89 0.88 0.79 N/A N/A 0.74 0.80 

120 0.89 0.89 0.92 0.92 0.84 0.89 0.86 0.77 0.92 0.92 0.71 0.80 

160 0.89 0.86 0.93 0.93 0.83 0.87 0.81 0.74 0.94 0.92 0.64 0.73 

200 0.89 0.84 0.93 0.91 0.83 0.84 0.78 0.68 0.94 0.90 0.61 0.67 

240 0.90 0.86 0.96 0.95 0.84 0.86 0.76 0.69 0.93 0.95 0.57 0.67 

280 0.89 0.85 0.95 0.96 0.83 0.84 0.75 0.64 0.96 0.96 0.54 0.59 

320 0.87 0.84 0.94 0.92 0.81 0.84 0.67 0.61 0.92 0.92 0.48 0.57 

360 0.88 0.82 0.93 0.95 0.83 0.83 0.69 0.60 0.95 0.95 0.48 0.53 

400 0.87 0.80 0.93 0.92 0.81 0.80 0.65 0.53 0.93 0.92 0.43 0.48 

440 0.86 0.84 0.92 0.95 0.79 0.82 0.62 0.56 0.93 0.95 0.40 0.47 

480 0.87 0.80 0.92 0.90 0.80 0.76 0.60 0.50 0.93 0.90 0.37 0.43 

avg 0.88 0.84 0.93 0.93 0.83 0.84 0.75 0.66 0.93 0.93 0.56 0.63 

 
As skewness increases to higher levels (κ = 0.50, 0.75, 0.95), the coverage 

probabilities of confidence intervals for the parametric and robust methods significantly 

decline below the nominal coverage probability (Table 18). The inversely proportional 

relationship between coverage probability and sample size for the parametric and robust 

methods continues for moderate to large levels of skewness.
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Table 18: Coverage probabilities for the three different methods, where data is generated from skew normal distributions with moderate to large 
levels of skewness. The mean and variance are 20 and 9, respectively. 

n 

Skew = 0.50 Skew = 0.75 Skew = 0.95 

Parametric Non-Parametric Robust Parametric Non-Parametric Robust Parametric Non-Parametric Robust 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

40 0.85 0.67 N/A N/A 0.60 0.73 0.58 0.57 N/A N/A 0.27 0.64 0.18 0.50 N/A N/A 0.04 0.57 

80 0.68 0.60 N/A N/A 0.39 0.63 0.24 0.45 N/A N/A 0.06 0.46 0.01 0.34 N/A N/A 0.00 0.37 

120 0.53 0.53 0.92 0.92 0.25 0.53 0.07 0.34 0.92 0.92 0.02 0.34 0.00 0.24 0.92 0.92 0.00 0.23 

160 0.44 0.46 0.93 0.92 0.18 0.42 0.03 0.27 0.93 0.92 0.00 0.23 0.00 0.17 0.93 0.92 0.00 0.15 

200 0.33 0.36 0.92 0.90 0.12 0.32 0.01 0.17 0.94 0.90 0.00 0.14 0.00 0.11 0.92 0.90 0.00 0.08 

240 0.22 0.34 0.94 0.95 0.06 0.27 0.00 0.14 0.95 0.95 0.00 0.09 0.00 0.08 0.94 0.95 0.00 0.05 

280 0.19 0.28 0.94 0.96 0.04 0.20 0.00 0.11 0.95 0.96 0.00 0.07 0.00 0.05 0.94 0.96 0.00 0.02 

320 0.13 0.28 0.93 0.92 0.03 0.19 0.00 0.09 0.93 0.92 0.00 0.04 0.00 0.03 0.93 0.92 0.00 0.01 

360 0.09 0.20 0.94 0.95 0.01 0.12 0.00 0.06 0.94 0.95 0.00 0.03 0.00 0.02 0.94 0.95 0.00 0.01 

400 0.07 0.17 0.90 0.92 0.01 0.10 0.00 0.03 0.93 0.92 0.00 0.01 0.00 0.01 0.93 0.92 0.00 0.00 

440 0.06 0.14 0.93 0.95 0.01 0.07 0.00 0.03 0.92 0.95 0.00 0.01 0.00 0.01 0.92 0.95 0.00 0.00 

480 0.04 0.11 0.91 0.91 0.01 0.06 0.00 0.02 0.90 0.91 0.00 0.01 0.00 0.01 0.93 0.91 0.00 0.00 

avg 0.30 0.34 0.93 0.93 0.14 0.30 0.08 0.19 0.93 0.93 0.03 0.17 0.02 0.13 0.93 0.93 0.00 0.13 
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Although the coverage probabilities of parametric confidence intervals decrease as 

skewness increases, the widths of the confidence intervals remains approximately the 

same for each sample size (Tables 19 and 20). On the other hand, the widths of 

confidence intervals for the lower limit estimated by the non-parametric and robust 

methods decreases as sample size increases, and the widths of confidence intervals for the 

upper limits increases. This relationship corresponds with relationship between the 

average bias of non-parametric RIs and sample size, but is the reverse of that for robust 

RIs. 
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Table 19: Widths of confidence intervals for the three different methods, where data is generated 
from skew normal distributions with small levels of skewness. The mean and variance are 20 and 
9, respectively. 

n 

Skew = 0.1 Skew = 0.25 

Parametric Non-Parametric Robust Parametric Non-Parametric Robust 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

40 2.66 2.66 N/A N/A 2.78 2.83 2.66 2.66 N/A N/A 2.76 2.90 

80 1.89 1.89 N/A N/A 1.94 1.99 1.89 1.89 N/A N/A 1.92 2.04 

120 1.54 1.54 2.75 3.15 1.58 1.61 1.54 1.54 2.53 3.45 1.59 1.66 

160 1.34 1.34 2.80 3.19 1.36 1.39 1.34 1.34 2.56 3.52 1.36 1.44 

200 1.19 1.19 2.12 2.41 1.21 1.24 1.19 1.19 1.97 2.64 1.22 1.28 

240 1.09 1.09 2.19 2.48 1.10 1.13 1.09 1.09 1.99 2.72 1.10 1.17 

280 1.01 1.01 1.88 2.15 1.02 1.04 1.01 1.01 1.73 2.35 1.02 1.08 

320 0.95 0.95 1.59 1.79 0.96 0.98 0.95 0.95 1.47 1.96 0.96 1.02 

360 0.89 0.89 1.66 1.86 0.90 0.92 0.89 0.89 1.52 2.04 0.90 0.95 

400 0.84 0.84 1.48 1.63 0.85 0.87 0.84 0.84 1.32 1.78 0.85 0.91 

440 0.80 0.80 1.37 1.58 0.82 0.83 0.80 0.80 1.28 1.73 0.82 0.86 

480 0.77 0.77 1.24 1.41 0.78 0.80 0.77 0.77 1.14 1.54 0.78 0.83 
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Table 20: Widths of confidence intervals for the three different methods, where data is generated from skew normal distributions with moderate 
to large levels of skewness. The mean and variance are 20 and 9, respectively. 

n 

Skew = 0.50 Skew = 0.75 Skew = 0.95 

Parametric Non-Parametric Robust Parametric Non-Parametric Robust Parametric Non-Parametric Robust 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

40 2.66 2.66 N/A N/A 2.77 3.05 2.67 2.67 N/A N/A 2.84 3.26 2.66 2.66 N/A N/A 2.94 3.44 

80 1.89 1.89 N/A N/A 1.96 2.18 1.89 1.89 N/A N/A 2.02 2.34 1.89 1.89 N/A N/A 2.11 2.48 

120 1.54 1.54 2.16 3.84 1.60 1.77 1.54 1.54 1.58 4.15 1.67 1.91 1.54 1.54 0.83 4.35 1.75 2.02 

160 1.34 1.34 2.13 3.92 1.38 1.54 1.34 1.34 1.59 4.23 1.43 1.65 1.34 1.34 0.84 4.44 1.50 1.76 

200 1.19 1.19 1.60 2.94 1.23 1.36 1.19 1.19 1.23 3.17 1.28 1.47 1.19 1.19 0.64 3.33 1.34 1.56 

240 1.09 1.09 1.66 3.03 1.13 1.25 1.09 1.09 1.25 3.27 1.17 1.35 1.09 1.09 0.66 3.43 1.23 1.44 

280 1.01 1.01 1.44 2.62 1.04 1.15 1.01 1.01 1.07 2.83 1.08 1.24 1.01 1.01 0.57 2.97 1.14 1.32 

320 0.94 0.94 1.23 2.19 0.98 1.09 0.94 0.94 0.92 2.36 1.02 1.17 0.94 0.94 0.49 2.48 1.06 1.25 

360 0.89 0.89 1.26 2.27 0.92 1.02 0.89 0.89 0.95 2.45 0.96 1.10 0.89 0.89 0.51 2.57 1.01 1.17 

400 0.84 0.84 1.11 1.98 0.87 0.97 0.84 0.84 0.85 2.14 0.90 1.04 0.84 0.84 0.45 2.24 0.95 1.11 

440 0.80 0.80 1.06 1.92 0.84 0.92 0.80 0.80 0.78 2.07 0.87 1.00 0.80 0.80 0.42 2.18 0.92 1.06 

480 0.77 0.77 0.97 1.71 0.80 0.89 0.77 0.77 0.71 1.85 0.83 0.95 0.77 0.77 0.38 1.94 0.88 1.01 
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Chapter 5 

Real Data Analysis 
 
 
Paediatric data has the potential to be quite complex because of the growth development 

stages that occur throughout childhood and adolescence. Unlike adult data, where one 

homogeneous group can usually represent the structure of the data across a large age 

range, paediatric data often require partitions into several homogeneous groups to reflect 

the changes in patterns associated with growth development. The collection of data can 

also be tedious, especially for blood analytes, as recruitment of young, healthy children is 

difficult. Laboratories often have to adjust for small sample sizes when estimating 

paediatric reference intervals (RIs) as a result of multiple partitions and limited data 

collection. In this section, we will be focusing on subsets of real data for three blood 

analytes collected by the Canadian Laboratory Initiative for Paediatric Reference 

Intervals (CALIPER): calcium, creatinine and alkaline phosphatase. For details regarding 

the collection of these data, refer to (Colantonio et al., 2012; CALIPER, 2014). Note that 

the RIs for each analyte are estimated for illustrative purposes only and are not intended 

for clinical use.  
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5.1 RI Estimation for Calcium 
 
 
Calcium is a blood analyte associated with the endocrine system (Daniels, 2010). It is 

unique in the sense that it does not necessitate multiple partitions to properly reflect the 

nature of the data, unlike most analytes. In fact, CALIPER only used two age partitions to 

represent its data: 0 - < 1 year and 1 - < 19 years (Colantonio et al., 2012). The 

consistency of values between these two partitions can be observed in Figure 5.1.  

 

Figure 5.1: Calcium values collected by the CALIPER group. 

Statistically speaking, the calcium data for the 1 - < 19 year age group is ideal for 

illustration because it appears to resemble a Gaussian distribution (Figure 5.2), but has 

small skewness and large sample size (Table 21). Recall that for data with small levels of 

skewness, the non-parametric method produced the least biased estimates for large 
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sample sizes (Table 13). Furthermore, although MSE for the non-parametric method was 

never observed to be smaller than that of the parametric and robust methods, MSE was 

observed to be monotonically decreasing (Figure 4.9). Thus, considering the very large 

sample size of the data, the non-parametric method would estimate RIs the best. The RIs 

(and confidence intervals) estimated by all three methods are presented in Table 22. Note 

that, because the sample size is large and the sample variance is very small (Table 21), the 

difference between the RIs estimated by all three methods is negligible.  

  

  
Figure 5.2: Histogram and QQ plot of calcium values (1 - < 19 years) collected by the 
CALIPER group. 
 

Table 21: Sample mean (𝑥), sample variance (𝑠!), sample size (n) and skewness (𝜅) of 
calcium values. 

Age Gender 𝑥 𝑠! n 𝜅 

1 - < 19 yrs F & M 2.45 0.01 902 0.16 
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Table 22: RIs and confidence intervals of calcium values. 

Age Gender 

Parametric Non-Parametric Robust 

Lower 
Limit (CI) 

Upper Limit 
(CI) 

Lower 
Limit (CI) 

Upper Limit 
(CI) 

Lower 
Limit (CI) 

Upper Limit 
(CI) 

1 - < 19 yrs F & M 
2.28 

(2.27,2.29) 

2.63 

(2.62,2.64) 

2.29 

(2.28,2.30) 

2.64 

(2.63,2.65) 

2.27 

(2.27,2.28) 

2.63 

(2.62,2.64) 

 

5.2 RI Estimation for Creatinine  
 
 
Creatinine is a blood and urine analyte associated with the renal system (Daniels, 2010). 

Unlike calcium, paediatric creatinine values fluctuate with age and gender because of its 

dependency on muscle mass (Daniels, 2010). Creatinine data collected by CALIPER and 

tested through the enzymatic method is displayed in Figure 5.3.  

 

Figure 5.3: Creatinine values collected by the CALIPER group. 
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The general increasing trend presented by the creatinine values makes it difficult to divide 

the data into homogeneous groups (Figure 5.3). CALIPER partitioned this data into 6 age 

groups and for one of these age groups, gender was separated in order to properly 

represent the trends in the data: 0 - 14 days, 15 days - < 2 years, 2 - < 5 years, 5 - < 12 

years, 12 - < 15 years, 15 - < 19 years (females), and 15 - < 19 years (males) (Colantonio 

et al., 2012). Some of these partitions appear to closely resemble a Gaussian distribution, 

such as the 15 - < 19 year old males, as shown in Figure 5.4. Other partitions, such as the 

15 - < 19 year old females, resemble skewed distributions, as shown in Figure 5.5.  

  

Figure 5.4: Histogram and QQ plot of male creatinine values (15 - < 19 years) collected 
by the CALIPER group. 
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Figure 5.5: Histogram and QQ plot of female creatinine values (15 - < 19 years) 
collected by the CALIPER group. 

 
The sample mean (𝑥), sample variance (𝑠!), sample size (n) and skewness (𝜅) of 

creatinine values of females and males aged 15 - < 19 yrs are provided in Table 23. Note 

that the creatinine values for the 15 - < 19 year old females has a moderate to large 

skewness. Based on the results of our simulation study, it is clear that the non-parametric 

would perform the best in estimating RIs for this level of skewness and moderate sample 

size (Tables 14 and 16). Also, although the creatinine values for the 15 - < 19 year old 

males displayed features of a Gaussian distribution in its histogram and QQ plot (Figure 

5.4), the data has small to moderate positive skewness. Note that the close resemblance to 

a Gaussian distribution leads discrepancies between normality tests. For example, the 

Kolmogorov-Smirnov test rejects normality for this data, but the Shapiro-Wilk test does 

not. Thus, if a laboratory was dealing with data with similar characteristics, the choice of 
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the method may not be clear. However, if the choice was based on sample size and 

skewness, our simulation study showed that the non-parametric method would produce 

the least biased estimates (Tables 13 and 14). However, the consistency of the estimates 

produced by the non-parametric method is not as good as the parametric method, 

especially for the upper limit of a RI. 

Table 23: Sample mean (𝑥), sample variance (𝑠!), sample size (n) and skewness (𝜅) of 
creatinine values. 

Age Gender 𝑥 𝑠! n 𝜅 

15 - < 19 yrs F 60.21 91.62 172 0.66 

15 - < 19 yrs M 74.82 132.70 154 0.35 

 
The RIs (and confidence intervals) estimated by all three methods are presented in 

Table 24. The difference between the upper limits of the RIs for the male data estimated 

by the non-parametric and parametric methods is minimal and up for clinical 

interpretation. In this case, the larger MSE for the non-parametric method only seems to 

be reflected by the much wider confidence intervals for the limits, compared to the 

parametric method. 
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Table 24: RIs and confidence intervals of creatinine values. 

Age Gender 

Parametric Non-Parametric Robust 

Lower 
Limit (CI) 

Upper Limit 
(CI) 

Lower 
Limit (CI) 

Upper Limit 
(CI) 

Lower 
Limit (CI) 

Upper Limit 
(CI) 

15 - < 19 yrs F 
41.5 

(39.4,43.5) 

79.0 

(76.9,81.0) 

43.3 

(41.8,45.1) 

84.2 

(80.4,88.5) 

39.8 

(37.7,41.7) 

78.0 

(75.7, 80.6) 

15 - < 19 yrs M 
52.2 

(49.6,54.9) 

97.4 

(94.8,100.0) 

54.0 

(44.8,57.3) 

97.9 

(95.1,117.1) 

51.43 

(48.4, 54.4) 

97.16 

(94.1, 100.0) 

 

5.3 RI Estimation for Alkaline Phosphatase  
 
 
Alkaline phosphatase is a blood analyte associated with the hematological system 

(Daniels, 2010). Like creatinine, paediatric alkaline phosphatase values fluctuate with age 

and gender. For the alkaline phosphatase values collected by CALIPER (Figure 5.6), data 

was partitioned into 7 age groups, and for 3 of the age groups, data was further partitioned 

into gender groups: 0 - 14 days, 15 days - < 1 year, 1 - < 10 years, 10 - < 13 years, 13 - < 

15 years (females), 13 - < 15 years (males), 15 - < 17 years (females), 15 - < 17 years 

(males), 17 - < 19 years (females), and 17 - < 19 years (males). 
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Figure 5.6: Alkaline phosphatase values collected by the CALIPER group. 

Due to the large number of partitions, groups within the 13 - < 19 year range have sample 

sizes of less than 120. Now, the Clinical Laboratory Standards Institute (CLSI) guideline 

would recommend that the robust method should be used to estimate RIs for these small 

datasets. However, would the parametric method be better in estimating the RIs for these 

datasets since data should be transformed to a symmetric distribution when applying the 

robust method? An interesting dataset to look at is the alkaline phosphatase values from 

females 17 to less than 19 years of age. It appears to be slightly skewed (Figure 5.7), yet 

normality tests do not reject normality of this dataset.  
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Figure 5.7: Histogram and QQ plot of female alkaline phosphatase values (17 - < 19 
years) collected by the CALIPER group. 

 
The sample mean (𝑥), sample variance (𝑠!), sample size (n) and skewness (𝜅) of 

alkaline phosphatase values of females aged 17 - < 19 years are provided in Table 25. The 

alkaline values for females aged 17 - < 19 years has small positive skewness. In addition, 

the sample size is very small. For this level of skewness and sample size, the parametric 

method estimated the lower limit with the least amount of bias while the robust method 

estimated the upper limit with the least amount of bias (Table 13). The difference 

between the two methods in terms of MSE was small (Table 15). 

Table 25: Sample mean (𝑥), sample variance (𝑠!), sample size (n) and skewness (𝜅) of 
alkaline phosphtase values. 

Age Gender 𝑥 𝑠! n 𝜅 

17 - < 19 yrs F 71.93 223.32 44 0.2 
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The RIs (and confidence intervals) estimated by all three methods are presented in 

Table 26. The difference between the actual lower and upper limits is quite small, but it is 

up to laboratories to interpret the significance of this difference, noting that the upper 

limit estimated by the parametric method leads to false positives on average, and the 

upper limit estimated by the robust method leads to false negatives on average. If the 

difference is clinically significant for this analyte, then laboratories may wish to have the 

final RI (42.6, 102.0), where the lower limit is estimated by the parametric method, and 

the upper limit is estimated by the robust method. 

Table 26: RIs and confidence intervals of alkaline phosphatase values. 

Age Gender 

Parametric Non-Parametric Robust 

Lower 
Limit (CI) 

Upper Limit 
(CI) 

Lower 
Limit (CI) 

Upper Limit 
(CI) 

Lower 
Limit (CI) 

Upper Limit 
(CI) 

15 - < 19 yrs F 
42.6 

(36.2,49.0) 

101.2 

(94.8,107.6) 

40 

(N/A) 

112 

(N/A) 

41.1 

(33.9,48.3) 

102.0 

(95.0,109.1) 
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Chapter 6 

Discussion  
 
When data comes from a Gaussian distribution, it is clear that the parametric method is 

the best approach to estimate reference intervals (RIs) in the sense that it produces 

estimates with the least bias and mean squared error (MSE) across all sample sizes 

compared to the non-parametric and robust methods. Nevertheless, when dealing with 

data that has large variance and small sample size, the parametric method slightly 

overestimates the lower limit and underestimates the upper limit, possibly leading to false 

positives for abnormality. Note that the occurrence of these false positives is in addition 

to the 5% error in misclassification of healthy individuals when 95% RIs are used. 

However, the occurrence of additional false positives is clinically negligible since the bias 

of the estimates produced by the parametric method is within the variability of the data. 

Therefore, it is not a concern for clinicians.  

In addition, not only does the parametric method produce asymptotically unbiased 

and consistent estimates of RIs, but the confidence intervals that accompany its estimates 

are also statistically sound. The coverage probability of the confidence intervals is close 

to the nominal level, and the width of the confidence intervals is the smallest out of the 

three methods. Furthermore, the simplicity of this method, combined with its applicability 
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to small sample sizes, makes this method attractive as a whole. The lack of attention that 

this method gets from the Clinical Laboratory Standards Institute (CLSI) guideline is 

startling, given all the advantages it has to offer, when data comes from a Gaussian 

distribution and also when data is slightly skewed. Fortunately, the systematic review 

presented in Chapter 3 and (Daly et al., 2013) has found that the parametric method is still 

being used in practice.  

Unfortunately, choosing the best method for data with considerable, moderate and 

large skewness is not as clear as it is for data from Gaussian distributions. Firstly, one 

must note that although data may be skewed, normality tests such as the Anderson-

Darling, Pearson, and Shapiro tests, may not reject normality because of low power 

associated with such tests. In these cases, laboratories may follow recommendation to use 

the parametric method because they are under the impression that they are dealing with 

Gaussian data. We ran a simulation to examine the level and power of these tests with 

data generated from Gaussian and skew normal distributions, where skewness (κ) = 0.10, 

0.25, 0.50, 0.75, and 0.95. When data was generated from a Gaussian distribution, these 

tests performed well. However, when data was generated from a skew normal 

distribution, where κ = 0.10, these tests produced a lot of false negatives (>88%). 

Nevertheless, if a laboratory proceeded to estimate RIs when κ = 0.10, the parametric 

method still provides the best estimates when sample size is small, as shown by our 

simulation results (Chapter 4). Therefore, lack of power is not a concern in this case. 

When data was generated from a skew normal distribution, where κ = 0.95, these tests 
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demonstrated high power with large sample size. However, for small sample size (n = 

40), the tests failed to reject normality at an alarmingly high rate (Anderson-Darling: 

37%, Pearson: 59%, and Shapiro: 32%). For this level of skewness and sample size, the 

simulation results in Chapter 4 show that the parametric method did not produce good 

estimates. Thus, laboratories should also look at QQ plots in addition to conducting 

normality tests when evaluating the normality of their data.  

Another complication of skewed data is, when we observed different levels of 

skewness, no method estimated RIs with the least amount of bias across all samples sizes. 

Moreover, it was often the case that one method estimated the lower limit with the least 

amount of bias, while another method estimated the upper limit with the least amount of 

bias. To our knowledge, it has never been suggested to use one method to estimate the 

lower limit of a RI and another method to estimate the upper limit. However, the 

importance of producing the least biased RIs may sway laboratories to estimate RIs in this 

manner. This is especially true for a particular laboratory test where a false negative result 

for a particular laboratory test may lead to a patient missing life saving treatment, and/or a 

false positive result may lead to a patient undergoing unnecessary invasive and costly 

treatment. Alternatively, if it is more favourable to increase false negatives in order to 

decrease false positives (or vice versa) due to the cost and/or nature of further screening 

and treatment (or lack thereof) that these results can lead to for a particular laboratory 

test, then one of the three methods may serve this purpose for both limits.  
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Along with guidelines outlining the best methods in various circumstances, 

laboratories need to be advised that when they are estimating RIs with highly variable 

data, it is important to use a larger sample size in order to obtain more precise estimates.  

Note that the skewed distributions considered in the simulation are positive. Only 

positively skewed distributions were examined because most distributions of laboratory 

test values are positively skewed, perhaps because the results cannot fall below a value of 

0 or a minimum limit of detection. However, if laboratories do deal with negatively 

skewed distributions, we would expect the above results of the simulation for the lower 

limit to be that of the upper limit and vice versa. Thus, observations noted in the results of 

positively skewed distributions, such as the non-parametric method estimating the lower 

limit better then the upper limit, would be reversed for negatively skewed distributions. 

In addition, transformations of skewed distributions to symmetric distributions were 

not considered in the simulation study, as the observations gathered from the results of 

Gaussian scenarios (and scenarios with slightly skewed data) most likely apply in these 

cases. As mentioned in Chapter 2, it has been suggested that data should be transformed 

to a symmetric distribution before applying the robust method to estimate RIs. This might 

explain the poor performance of the method with skewed distributions. However, with 

Gaussian distributions (and hence symmetric), the parametric method outperformed the 

robust method and will be recommended in these cases going forward.  

In the future, it would be of interest to investigate the possibility of a bias adjusted 

parametric approach. Since the bias of parametric method has been derived in this thesis, 
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this should not be difficult to implement, and the performance of the method could be 

examined through a simulation study similar to this one. In addition, this simulation only 

examined the performances of the methods given that the data has already been 

partitioned. Partitioning is another critical step in establishing RIs, and is particularly 

crucial with paediatric data. There is a less subjective, automatic approach to assist 

laboratories in determining partitions and should be developed. Alternatively, partitioning 

could be avoided altogether with RI estimation methods involving reference curves. Thus, 

the performances of methods available to produce reference curves should be investigated 

in the future. 
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