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Abstract 

Artificial neural network (ANNs) is an information processing paradigm inspired by the 

human brain. ANNs have been used in numerous applications to provide complex 

nonlinear input-output mappings. They have the ability to adapt and learn from 

observed data. 

The training of neural networks is an important area of research and 

consideration. Training techniques have to provide high accuracy, fast speed of 

convergence, and avoid premature convergence to local minima. 

In this thesis, a novel training method is proposed. This method is based on the 

relatively new Smooth Variable Structure filter (SVSF) and is formulated for feedforward 

multilayer perceptron training. The SVSF is a state and parameter estimation that is 

based on the Sliding Mode Concept and works in a predictor-corrector fashion. The SVSF 

applies a discontinuous corrective term to estimate state and parameters. Its 

advantages include guaranteed stability, robustness, and fast speed of convergence. 

The proposed training technique is applied to three real-world benchmark 

problems and to a fault detection application in a Ford diesel engine. 

SVSF-based training technique shows an excellent generalization capability and a 

fast speed of convergence. 
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Chapter 1: Introduction 


1.1 Preliminary Remarks 

In the last three decades, a range of intelligent algorithms have been developed and 

applied to pattern classification problems. Amongst these, artificial neural networks 

(ANNs) have been prevalent as they are adaptive and show exceptional non-linear input-

output mapping ability [1]. 

ANNs are information processing models inspired by the human brain. The 

human brain has over 100 billion neurons that communicate with each other and help 

us to see, think, and generate ideas and thoughts. Human brain learns by creating 

connections among these neurons using electrical and chemical signals. Inspired by the 

human brain, ANNs are a mathematical rendition of neurons that communicate with one 

another and learn from experience. Training of an ANN is achieved using training data 

sets that represents a specific input-output mapping. ANNs mimic the information 

processing model of the human brain. It is typically implemented in applications 

requiring adaptation and intelligence such as face and speech recognition, pattern 

classification, and fault detection. 
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ANN training is the process of using input-output training data sets to obtain the 

optimal network weights that represents connections among neurons. Several training 

algorithms have been proposed. The first order gradient descent back-propagation (BP) 

algorithm was introduced in the 80's. It however shows poor performance as it is slow, 

its input-output mapping is inaccurate, and training might easily converge to a local 

minimum. Accordingly, a number of alternative training techniques have been proposed 

to overcome the drawbacks of the BP algorithm. The second-order BP algorithms (e.g.: 

Quasi-Newton, Levenberg-Marquardt) are amongst these techniques. The second order 

BP training algorithm provides a fast speed of convergence and an accurate mapping. 

State estimation techniques such as the famous Kalman filter (KF) and the extended 

Kalman filter (EKF) have also been used to train ANNs by formulating the network as a 

filtering problem. These techniques can provide better generalization and avoid 

premature convergence in local minima. 

Recently, a new filtering approach referred to as the Smooth Variable Structure 

Filter (SVSF) has been proposed. The SVSF is a state and parameter estimation strategy 

that has a predictor-corrector form. Its advantages include accuracy, robustness, 

guaranteed stability, and performance indicators that provide a measure of 

uncertainties in the filter model. 

2 
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The aim of this research is to develop a novel ANNs learning algorithm based on 

the relatively new SVSF and to provide a comparative assessment of its performance. 

1.2 Research Objectives 

The main objective is to develop a new ANNs training methodology based on the SVSF. 

In particular, the training of the feed-forward multilayer perceptron networks (MLP) is 

considered. Research objectives can be stated as follows: 

• 	 Developing a novel SVSF-based MLP training algorithm for pattern 

classification problems in multi-streaming, global mode (GSVSF). 

• 	 Application of the proposed algorithm to three widely used, benchmark 

problems and comparison of its performance with other well-known 

algorithms such as the EKF, and the first and the second order BP algorithms. 

• 	 Application of the new training algorithm to detect and classify faults in a 

FORD Diesel engine. Two faults were considered, namely piston chirp and 

missing bearing faults. 

The performance of the new SVSF-based training method is compared in all cases to 

other classical training techniques. 

3 
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1.3 Thesis Organization 

The dissertation is organized as follows. Chapter 2 involves a literature review of various 

neural networks training techniques including the traditional first order BP algorithm, 

second-order BP, Levenberg-Marquardt, Quasi-Newton, and the EKF. In addition, it also 

reports on the use of various engine fault detection and diagnostic techniques involving 

artificial intelligence methods. 

Chapter 3 describes the common methods used for the training of feed-forward 

MLP. The first and the second order BP algorithms, the EKF-based MLP training in global 

(GEKF) multi-streaming mode are discussed. 

Chapter 4 describes the SVSF estimation method and presents the new SVSF-

based training method. 

Chapter 5 considers the application of the proposed algorithm to three 

benchmark problems. Its performance is compared with the first and second order BP 

algorithms and the EKF. 

Chapter 6 considers the application of the proposed algorithm to fault detection 

and diagnosis using real data from practical and industrial systems. The Chapter 

considers the application of the proposed training algorithm to the detection and 
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classification of fault conditions in a FORD diesel engine. The performance of the SVSF-

based training method is then compared to the above mentioned classical methods. 

Chapter 7 provides conclusions and recommendations for future research. 
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Chapter 2: Neural Networks Training 
Techniques for Pattern Classification 
with Application to Fault Detection 
Problems 

Introduction 

Artificial neural networks (ANNs) are mathematical models that process information and 

adapt in a fashion inspired by the human brain. ANNs are capable of modeling 

relationships between a set of inputs and outputs. ANNs are applied in numerous 

applications such as pattern classification [2], pattern recognition [3], function 

approximation, data processing, and robotics applications [4]. 

The objective of this research is to propose a new ANNs training technique based 

on the relatively new Smooth Variable Structure Filter (SVSF) for its application to fault 

detection and isolation. This chapter provides an introduction and literature review of 

three topics pertinent to this thesis, namely, ANNs training techniques, fault detection 

and isolation methodologies, and the SVSF estimation strategy. 

This chapter is organized as follows: Section 1 provides an introduction to ANNs 

and their various training techniques. Section 2 presents an introduction to different 
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Fault detection and isolation (FDI) techniques, including model and signal-based 

methods, with a focus on Artificial intelligence. Section 3 presents an overview of 

various publications that involve the SVSF as a parameter and state estimation and 

discusses the motivation for using the SVSF for the training of ANNs. 

2.1 ANNs and their Training Techniques 

Over the past three decades, various supervised learning techniques have been 

proposed and applied for pattern classification problems. Amongst these, artificial 

neural networks (ANNs) have been prevalent in the field of pattern classification 

especially for fault detection and diagnosis applications. ANNs show enhanced 

generalization capability, adaptation competency, and potent non-linear input-output 

mapping [1]. In fact, a neural network with sufficient number of neurons can 

approximately model any continuous function with an acceptable degree of accuracy 

[3,5]. 

Accordingly, a list of real-life applications where ANNs are extensively applied are 

as follows [6]: speech recognition [7], automatic vehicle control [8], detection of heart 

abnormalities [9,10,11], finger prints recognition [12], detection of explosives [13], 

underwater targets allocation using sonar signals [14], handwritten character 

recognition [15], chemical engineering applications [16,17], experiment calibration 

7 
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[18,19], business applications such as bank failure prognosis and stock market 

predictions [20,21], metallurgical applications [22]. 

ANNs are sometimes compared to statistical methodologies for regression, 

prediction, and pattern classification [6]. Some researchers classify ANNs as a class of 

non-linear regression [23,3]. Lapedes and Farber show that ANNs' performance can be 

better than conventional statistical techniques in forecasting of two noise-free time 

series [24,23]. [25] and [26] report that ANNs provide enhanced performance compared 

to Box-Jenkins for time series with short memory, while for long memory time series, 

the Box-Jenkins shows better results. In addition, ANNs have been compared to other 

conventional statistical approaches for pattern classification and show enhanced 

performance over conventional discriminant analysis methods in [27,28]. 

One of the main drawbacks of ANNs compared to statistical analysis methods is 

their black-box structure. After training an ANN, even though the trained network can 

operate properly, the internal structure of the network often has no physical significance 

and is very difficult to understand. However, some advanced techniques have been 

proposed to extract knowledge embedded in the network [29]. These methods provide 

an understandable explanation of the knowledge learned by the network during the 

training phase. 

8 
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ANNs can learn (or be trained) from experience (or by example) using training 

algorithms that can establish relationships between input-output datasets. During the 

learning (training) phase, ANNs can adaptively change their internal structure. Several 

ANNs training algorithms have been proposed. These consider accuracy, speed, 

computational complexity, and memory requirements. 

In the next section, a brief introduction to ANNs and the neuron model is 

provided. It is followed by a literature review of training techniques. 

2.1.1 Human and ANNs 

ANNs are computational models that imitate the structure and function of biological 

neural networks found in human's central nervous system. They consist of numerous 

artificial neurons connected to each other to process information. In humans, the 

structure of the biological neuron is as shown in Figure 2.1. The neuron collects signals 

from input channels named dendrites, processes information in its nucleus, and then 

generates an output in a long thin branch called the axon. 

9 
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Structure of :1 Typical Neuron 

Dendrites Axon terminals 

Mye in sheath 
Nucleus 

Figure 2.1. Biological Neuron Structure [30] 

At the end of the axon, a synapse is used to conduct electr ical and chemical 

signals to the dendrites of another neuron . Neurons can thus communicate with one 

another as shown in Figure 2.2. Human learning occu rs adaptively by varying the bond 

strength between these neurons. 

Figure 2.2. Two Biological Neurons Communicating with Each Other 

10 
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2.1.2 Artificial Neuron Model 

The neuron model as shown in Figure 2.3 is inspired by the human nervous system and 

represents a computational unit with multiple inputs and one output. The mathematical 

model of an artificial neuron with three inputs (k = 3) is as follows: 

k=3 

(2.1)n =I PiWi =P1W1 + P2W2 + P3 W3 

i=l 

a= f(n) (2.2) 

Where, Wv W2 , W3 are the network's synaptic weights that resemble the 

bonding strength among neurons. P11 P2, P3 represent the neuron's inputs and a 

denotes the neuron's output. A weighted sum of the network's inputs is calculated 

generating a signal n followed by the application of an activation function f (.) to 

generate the output a. The activation function can be linear or non-linear depending on 

the application. 

11 
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Dendrites 

Axon 

Figure 2.3. Transition from Human Neuron to Artificial Neuron Model 

The history of artificial neural networks starts in 1943. The first artificial neuron 

model was developed by McCullah and Pits [31], the neuron has the same structure as 

above but the computational unit consists of a linear threshold function. The output is 

either 0 or 1 depending on if the neuron cell fires or not [32] . The neuron output is 1 if 

the sum of all the neuron's weighted inputs is more than a fixed threshold and 0 

otherwise. 

Artificial neural network can be made up by using a number of neurons 

interconnected together through synaptic weights. The first artificial neural network was 

developed by Rosenblatt in 1959 and made up of artificial neurons as proposed by 

McCullah and Pitts [33,31]. The only difference between Rosenblatt's neurons and that 

of McCullah and Pitts is the neuron's outputs that are scaled from -1 to 1 instead of 1 to 

12 
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0. Rosenblatt's model is widely known as the "perceptron". ANNs structures were 

further developed in the 1960s by Rosenblatt [34] and by Widrow et al. [35]. 

Neural networks research diminished during the 1970s after the publication of a 

study titled "the Rosenblatt's untimely death" in 1969. The study shows that 

Rosenblatt's network fails to classify linearly inseparable functions such as the XOR [36]. 

The introduction of hidden layers in the perceptron networks by Schalkoff in the 

1980's has overcome this problem. Adding hidden layers to the network can significantly 

enhance the network's computational capability [37]. The discovery has led to what is 

known as the feedforward multilayer perceptron network which is the core of this 

research project. 

2.1.3 ANNs Training Techniques Literature Review 

ANNs learning process operates by adaptively changing the network weights by 

using an error signal as shown in Figure 2.4. Assuming a training data set {x(n),y(n)}, 

where x(n) is the network input and y(n) is the desired output. ANN training is 

performed by continuously adapting the weights according to the error signal The error 

signal E(n), as shown in Figure 2.4, represents the difference between the network's 

actual output z(n) and the target (or desired) output y(n) from the training data set. 

Various algorithms have been presented to train ANNs, they differ in the way they 

propagate the error back to update the weights. 

13 
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Desired (Target) Output "y(n)" 
Inputs 
"x(n)" 

E(n)=z(n)-y(n} 

Update Network weights 

La~l l.i~l 

Figure 2.4. ANNs learning Process 

In the literature, various ANNs training techniques have been implemented . In general, 

ANNs t raining techniques are classified to four main categories as follows : 

(1) 	 First-order gradient descent Back propagation (BP) and its further 

enhancements (e.g. back propagation with momentum and batch-based back 

propagation) . 

(2) Optimization 	 based techniques (e.g. Quasi-Newton, Newton' s method, and 

Levenberg Marquardt) . 

(3) 	 Stochastic-based methods (e .g. genetic algorithms, Simulated annealing (SA), 

and Alopex methods) 

14 



M.A.Sc Thesis McMaster University 


Ryan Ahmed Department of Mechanical Engineering 


(4) Estimation-based methods (e.g. using Kalman filter, Extended Kalman filter, 

Unscented Kalman filter, Particle filter, and the Smooth Variable Structure Filter). 

Since 1980s, several ANNs training techniques have been proposed. Back propagation 

(BP) is one of the first used in training of multilayer perceptrons [38]. It was reported by 

Rumelhart, Hinton, and Williams in 1986 [39]. BP is a first-order stochastic gradient 

descent method that iteratively searches for link weights that minimize the output error 

in a supervised manner. However, since early versions of BP involve a constant learning 

rate, a slow speed of convergence is attained. In fact, several enhanced training 

algorithms have been developed to improve training performance, mapping accuracy, 

and speed of convergence compared to the BP algorithm [40]. For instance, the 

nonlinear least squares Gauss-Newton method is a good candidate to iteratively solve 

supervised neural-network training problems [39]. Nevertheless, it has been shown in 

[41] that the Jacobian Matrix may become rank deficient in some cases, thus resulting in 

the numerical instability of the Gauss-Newton algorithm [42]. The second-order 

Levenberg-Marquardt training algorithm [43] has shown to circumvent the previous 

problems. Watrous [44] verified the application of a Quasi-Newton method to neural 

network training. Quasi-Newton method demonstrated better convergence 

performance than the standard BP algorithm but it requires large memory storage to 

store the Hessian Matrix [45]. 

15 
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The Quasi-Newton and Levenburg-Marquardt demonstrate better performance 

than BP as they involve second-order derivative information. In addition, these 

algorithms are implemented in a batch (multi-streaming) mode where weights are 

updated based on more than one training sample in the training set. This is in contrast 

to the conventional early versions of BP where weights are updated by involving only 

one training sample (a serial mode) [46]. Even though second-order algorithms have 

proven to outperform the classical first-order BP, they may suffer from poor 

convergence properties due to problems with local minima [40}. 

The Kalman filter (KF) is the most popular state estimation tool. It provides a 

statistically optimal estimate for linear systems in the presence of Gaussian white noise. 

In the case of nonlinear systems, the extended Kalman filter is applied by linearizing the 

system or measurement matrices around the current state estimate at each time. An 

EKF-based neural network training technique was first introduced by Singhal and Wu in 

1989 [47]. The EKF provides a powerful neural network training capability compared to 

conventional first-order gradient-based algorithms, such as the BP [40]. In literature, the 

EKF has been widely applied for training of both feed-forward [48} and recurrent 

networks [49,50] in both a global form (GEKF) or in a decoupled form (DEKF). Although 

the EKF demonstrates a close performance compared to a second-order derivative, 

batch-based method, it can avoid local minima problems by encoding second-order 

16 
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information in terms of a state error covariance matrix [40]. Accordingly, the EKF 

represents an efficient and practical alternative to second-order training methods. 

Various enhanced ANNs training techniques have been proposed in several 

studies. A new hybrid learning algorithm that combines the EKF and particle filter has 

been presented in [51]. The new training scheme provides faster speed of convergence 

than the stand-alone EKF. An advanced EKF training technique has been proposed in 

[52]. The advanced form of Kalman filter-based parameter estimation method obtains a 

more accurate estimate of how a Gaussian distribution evolves under a nonlinear 

transformation. It has proven to offer performance advantages over standard EKF 

training. Reference [46] provides suggestions on how to initialize the EKF parameters in 

addition to presenting a new decoupling strategy that reduces the update rate of the 

error covariance matrix. Wan et al. [53] stated the effective use of the Unscented 

Kalman Filter (UKF) of Julier et al. [54] for feed-forward neural networks training. 

A novel, fast ANNs training algorithm that works by decreasing the number of 

synaptic weights in a third-order ANNs is presented in (Zhang 2004) [55]. The algorithm 

uses a trigonometric approach for training of feedforward ANNs on a pattern 

recognition application. The new algorithm is able to reduce the complexity of the 

network while preserving its high classification precision. 

Another training technique based on genetic algorithms is presented by Kawata 

et al. [56]. The new algorithm can overcome problems associated with gradient descent 
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BP algorithms in particular the slow convergence speed. The algorithm can 

simultaneously searches several subspaces to improve computational performance. A 

feedforward ANNs training algorithm has been presented by Looney in [57]. The 

algorithm provides a faster speed of convergence compared to the BP algorithm by 

pruning out unimportant synaptic weights and by iteratively adjusting a momentum 

term during optimization at every epoch. 

Another training technique that has been proposed by Dubrovin el al. can 

evaluate network weights in a non-iterative fashion [58]. It works by applying cluster 

regression approximations to form a network topology. The algorithm is tested on a 

practical problem and results show that it provides a faster speed of convergence 

compared to classical BP training techniques. 

Yang el al. proposed a new ANNs training methodology using the widely known 

Taguchi Method also known as the orthogonal.array method for optimum ANNs design 

[59]. Taguchi method can be used for determining the most suitable network structure, 

including the number of hidden layers and the number of neurons in each layer. This 

method results in faster speed of convergence by dynamically adapting the gradient 

descent BP methods and aid in minimizing lengthy trial and error process to select 

network parameters. 

It is known that as the size of the network is increased, the number of training 

samples must also increase to achieve good results. Accordingly, for large networks, 
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training might become a time-consuming process. Chang et al proposed an updated 

version of the Taguchi-based training methodology to solve the aforementioned 

problem by using orthogonal arrays to perform sample selection [60]. Applying 

orthogonal arrays can significantly decrease the required training samples while 

maintaining the network's accuracy. 

2.2 Fault Detection and Isolation 

Fault detection and Isolation {FDI) techniques are used for detecting fault conditions, 

isolating them, and generating an alarm signal whenever a malfunction occurs in the 

monitored system. Therefore FDI plays an important role in modern engineering 

systems due to increasing demand for safety and reliability, especially in the automotive 

and the aerospace sectors. 

In the literature, while different classical FDI techniques have been implemented, 

Artificial intelligence based methods such as Neural Networks and Fuzzy logic have been 

prevalent. These methods have proven to increase the system's reliability and decrease 

the probability of producing false alarms. 

In this section, a general overview of fault detection techniques is presented 

followed by classification of FDI techniques as discussed in the literature. These 

techniques are classified into three main groups, namely model-based FDI, signal-based 

FDI, and intelligent techniques. ANNs can be used in all three groups. 
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2.2.1 General overview of fault detection techniques 

A fault is an unpredictable change in a system's behaviour that deteriorates its 

performance. Two types of faults are considered: Intermittent and permanent faults. 

Intermittent faults occur at irregular intervals and last for limited periods of time while 

the latter exist permanently from their inception until the faulty component or system is 

replaced or repaired. 

Fault diagnosis algorithms start by fault detection which is to detect the 

presence of a fault within the system under diagnosis. It is followed by the fault 

isolation process that is used to determine the location of the fault. The next step is 

fault identification that involves estimating the severity of the fault [61]. 

2.2.2 Fault Detection Systems (FDS) 

FDS can be applied using analytical [62,63] or hardware redundancy [64]. In analytical 

(or sometimes called functional or model based) techniques, fault detection is achieved 

by establishing an intrinsic relationship between measured variables and a mathematical 

model of the system under diagnosis [5]. State estimation methods are then used to 

track changes in the system behaviour with respect to a baseline model. 

Hardware redundancy is implemented by incorporating additional hardware into 

the system to detect faults. Hardware redundancy is divided into two categories namely, 

static or dynamic hardware redundancy. In the former, more than one sensor (or 
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actuator) are used to measure (or control) the system. Faults can be detected by 

acquiring different measurements followed by performing a consistency check amongst 

signals. For the later, standby modules are subsequently activated in case of a failure 

condition to provide a fail-safe system. 

Hardware redundancy has several drawbacks and increases system overhead. 

Duplicating components in the system increases weight, equipment and maintenance 

costs, and the space requirement. Consequently, hardware redundancy is limited to 

safety critical applications (e.g.: aerospace and nuclear reactors) [61]. Reference [65] 

provides recommendations for how to select hardware or analytical redundancies for 

different applications. 

2.2.3 Classification of Fault Detection Techniques 

Fault detection techniques have been divided into three main categories: Signal-based 

fault detection, Model-Based fault detection, and artificial intelligent techniques. In the 

following sections, an overview of these three methodologies is presented. 

2.2.3.1 Signal-based Fault Detection 

Signal based fault detection involves extracting the fault signature by comparing system 

measurements against their nominal operational trends. Analysis is performed in the 

time domain or in the frequency domain for extracting features or trends that can be 

attributed to fault conditions [61]. 
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In the literature, various signal-based FDI techniques especially for the internal 

combustion engine fault detection have been discussed. Most of these FDI techniques 

use either noise levels as well as pressure, or vibration signals to detect faults. 

In 1979, Chung et al. implemented an engine fault detection methodology using 

sound measurements by acquiring sound intensities using microphones. This technique 

is one of the oldest practices that were implemented at General Motors Research 

Laboratories. The method can effectively generate a thorough mapping of an engine's 

noise using cross-spectral analysis. This method is able to identify the noise source by 

using a noise source ranking methodology. In 2002, Leitzinger provided a comparison 

between laser Doppler vibro-meters, microphones, and accelerometers to detect engine 

faults. The research concludes that microphones provide an easy, non-contact 

measuring system but they might generate inconsistent results and produce false 

alarms. In addition, the research shows that accelerometers and laser Doppler vibro­

meters provide more reliable measurements. Acoustic tests on internal combustion 

engines in a production environment using two overhead microphones to measure 

sound pressure are described in [66] 

In literature, the Qualitative trend analysis (QTA) is one of the most widely used 

feature extraction techniques. QTA is a data-driven FDI methodology that works by 
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extracting features (trends) from the measured signals and accordingly takes decisions. 

QTA has been extensively applied for process fault detection and diagnosis [67]. 

Alternatively, Feature extraction can be performed using Discrete Wavelet-based 

techniques [68]. Fault detection using discrete wavelet transforms (DWT) is broadly 

deliberated in [69]. DWT techniques involve two main steps: First, measured signal 

decomposition followed by signal edge detection that occurs due to faults. 

Artificial Neural Networks (ANNs)-based feature extraction methods have been 

broadly discussed through the literature. Since ANNs are the core of this research, 

Signal-based fault detection using ANNs will be explicitly discussed later in section 

2.2.4.1 (Artificial intelligent methods). 

After feature extraction using one of the previously mentioned methodologies, a 

trend interpretation algorithm is applied to arrive at meaningful conclusions pertaining 

to the fault conditions. The Hidden Markov Model is one of the most common trend 

interpretation algorithms. It is applied for matching extracted feature signal trends with 

those of a nominal one [70]. 

2.2.3.2 Model-based fault detection 

Model-based fault detection is mainly based on residual generation. Residuals represent 

inconsistencies between the actual physical system measurements and the system's 

mathematical model output. Figure 2.5 shows a block diagram of the most common 
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form of model-based fault detection. It consists of a plant under consideration, a 

baselined mathematical model block that represents the healthy system with no faults, 

a residual generator, and a decision making block that performs residual evaluation. 

The fault detection algorithm involves applying the same input to both the actual 

physical system as well as the baselined nominal model. Their outputs are compared 

using the residual generation algorithm. Ideally, the residual block output should be zero 

while a non-zero value indicates a fault condition. The decision block interprets the 

residual value by comparison against a threshold to diagnose the fault condition. It then 

produces an alarm signal if a fault condition is detected. The Residual evaluation stage 

(or decision block) is critically important as it presents a trade-off between the tendency 

to produce a false alarm and the potential failure of flagging an actual fault condition. 

Decision or 
ResidualsInput Alarm

Residual I 
I Residual IPlant ~~ Generation I Evaluation I 

L 
Nominal 
Model 

Figure 2.5. General Model-based FDI Block Diagram [71] 

A list of advantages and drawbacks of model-based FDI is presented in [72,73] as 

follows: 
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• 	 Advantages 

(1) 	The FDI methodology is able to detect the systems' transient faults. 

(2) Model-based FDI provides an excellent fault detection capability if an accurate 

system model is provided. They provide a minimum probability of generating 

false alarms and minimum probability of missing a fault condition. 

(3} Models can be generated based on physical principals. 

• 	 Disadvantages 

(1) 	Model-based FDI is not applicable for complex dynamic systems where attaining 

an accurate system model is complicated task. 

(2) 	 Modeling uncertainties might lead to generation of false alarms. 

(3) 	Large systems have high computational requirements. 

Model-based fault detection and isolation approaches can be divided into two main 

categories depending on the fault diagnosis data being measured as follows: 

Discrete event model-based approaches 

These methods are applied when the system under diagnosis can be described as a 

discrete-event system (DES}. In DESs, the operation of a system is characterised by a 

chronological sequence of events. Each event takes place at a specific period of time and 
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performs a change in the system state. Finite state machines (FSM) and Petri nets (PN) 

are used to model DESs. PNs are widely used as a modeling tool for DESs compared to 

FSM. PNs provide clearer graphical descriptions, process synchronization, and simple 

mathematical formulation. DES Fault detection task is performed by comparing the 

discrete-events model output against the observed events from the system under 

diagnosis [74,75]. 

Differential or difference equations model-based approaches 

These FDI approaches are applicable when the system's state variables can be 

numerically obtained or simulated. Differential or difference equations can be derived to 

obtain a physical model of the system. 

This research is concerned with the second category of differential model-based 

systems since it deals with continuous time systems. 

In general, three model-based FDI can generate residuals by using observers, 

parameter estimation, and parity space comparison as follows. 

• Observer and Filter-based FDI 

In the literature, observer-based residual generation techniques have been broadly 

applied in several FDI applications. Observers or filters are systems used to estimate the 

system's states and its output. Observer-based FDI techniques provide the ability of 
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designing a residual generator that is robust to model uncertainties (76]. Examples of 

observer-based FDI applications can be found in several studies [77, 78,79]. 

Observer-based FDI can be classified into deterministic or stochastic settings 

approaches depending on how the system outputs are estimated from measurements. 

In deterministic setting approaches, the system outputs are estimated from the 

measurements by using linear or non-linear observers, high gain non-linear observers 

[80], and sliding mode observers [81]. In Stochastic setting, different estimation 

techniques have been applied to FDI problems including the Kalman filter (82], extended 

Kalman filter {EKF) [83], Unscented Kalman filter {UKF) [84], and the relatively new 

smooth variable structure filter {SVSF) [85]. 

A model-based engine fault detection using cylinder pressure estimates, 

combustion heat release, and torque estimates from non-linear observers is 

implemented by Kao and Moskwa [86,87]. Results from the proposed methodology have 

shown good performance, with fast convergence, and stability. 

A neural network-based adaptive observer for aircraft engine parameter 

estimation is provided in [88]. This adaptive observer combines the Kalman filter with 

Neural Networks and is able to compensate for non-linearities that cannot be handled 

by the filter. 
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An adaptive observer based fault detection scheme is presented in [89]. With the 

aid of nonlinear adaptive observer theory, an approach of constructing adaptive residual 

generators is developed. Accordingly, this approach enhances robustness of residual 

generators with respect to model uncertainties. This FDI methodology has been applied 

to detect and classify Actuator faults based on estimations, results show good accuracy. 

Patton and Chen introduced a new approach to the design of optimal observer-

based residual generators for detecting incipient faults in flight control. The new 

approach reduced the probability of generating false alarms [90]. 

An observer-based fault detection system in robots using nonlinear and fuzzy logic 

residual evaluation is discussed in [91]. This FDI methodology makes use of non-

measurable process information as an alternative of setting up numerous sensors. A 

fuzzy-based approach is used for threshold selection with the objective of improving 

robustness in fault detection thus minimizing the probability of producing false alarms. 

The suggested approach has been successfully implemented and experimental results 

show the benefits of the adaptive threshold. 

A fault diagnostic scheme for aircraft engine sensor fault is presented in [92]. The 

proposed methodology can distinguish between modeling uncertainties and occurrence 

of faults in order to reduce false alarms. It encompasses a dynamic threshold algorithm 

that detects parametric uncertainties using a bank of observers. A robust fault detection 

observer is proposed for a class of nonlinear third order hydraulic systems [93]. 
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Observer-based fault detection for a drive-train of a Jaguar car involving an 

automatic transmission is presented in [94]. A model representing the drive-train of the 

vehicle is derived using nonlinear polynomials that relate manifold pressure, engine 

speed, and the wheel speed. A non-linear full-order observer is designed and used for 

generating residuals by comparing the model output to the systems output. The 

proposed FDI methodology can detect three fault scenarios with high accuracy. 

• FDI using parameter estimation 

In this approach, faults are detected by estimating the system parameters online using 

parameter estimation techniques then comparing them with the parameters of a known 

healthy system. Consider a monitored system in the form: 

y(t) = f(u(t), e(t), 8, x(t)) (2.3) 

Where, u(t) represents the system input vector, y(t) is the output vector, fJ 

represents systems parameters affected by fault occurrence and they cannot be 

measured, e(t) denotes modeling errors and external disturbances (noise), and x(t) 

denotes systems states. 

The parameter-based FDI algorithm, as shown in Figure 2.6, is summarized by the 

following process [95]: 

{1) Development of a baseline model for the healthy fault-free system model, 
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y(t) = f(u(t), 8) 	 (2.4) 

(2) 	Establishing a physical meaning for model parameters (}i by linking them to 

physical parameters Pj· 

(3) 	Model parameters (}i estimation using inputs-outputs datasets. 

{f(t) = g(y(l), ... ,y(t), u(l), ... ,u(t)) (2.5) 

(4) 	Physical parameters estimation p(t) from the model parameters {i(t). 

(5) 	Comparing the baseline model parameters Pi(t) to the estimated 

parameters p(t) followed by generation of residuals r(t) where 

r(t) = p(t) - p(t) (2.6) 

For fault-free systems, the residuals should be almost zero if the model is accurate and 

good estimates are provided by the parameter estimation technique [96]. 

(6) 	Fault conditions are detected by comparing parameters values to 

predetermined thresholds or by using advanced statistical methodologies. 
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Figure 2.6. Parameter Estimation-based Fault Detection [95] 

Parameter estimation FDI can be applied to both linear and non-linear systems 

only if estimated parameters have a physical significance. Reference [97] provides a brief 

summary of fault-detection methods using parameter estimation techniques. 

A nonlinear fault detection, isolation, and recovery (FDIR) for satellites models is 

presented in [98]. FDIR involves the construction of residual generators that are based 

on least-squares parameter estimation techniques. In addition, a fault recovery 
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procedure is also presented; it works by estimating system parameters and adaptively 

redesigning and reconfiguring the controller. 

Motor faults as inter-turn short circuit and increased winding resistance have been 

detected in [99]. An adaptive Kalman filter is applied for recursively estimating system 

parameters for fault detection. 

• Parity space FDI 

In this FDI methodology, parity-functions are used to generate residuals using 

input-output data. Parity space FDI techniques check the consistency between different 

set of measurements collected over a specified interval of time. A detailed discussion of 

the parity space FDI technique is presented in [100]. The definition of Parity functions 

and Parity equations was first presented by Potter and Suman in 1977 [101]. This paper 

represents the first introduction of the analytical redundancy concept. Then, a 

generalized form of parity space for fault detection and residual generation was first 

introduced by Chow and Willsky in 1984 [102]. Parity space FDI were originally 

developed and applied to linear systems then extended to non-linear ones in [103]. 

The most important advantage of using parity equations is that they involve 

simple mathematics [100]. In addition, all residuals and parity functions can be 

represented by only one vector which makes it easy to manipulate. However, Parity 
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space techniques are more sensitive to uncertainties and sensor measurements noise 

than observer-based ones [61]. 

A universal Parity space approach, which represents an extension of the original 

parity equations, was introduced by Hofling in 1993 [104]. This research introduced 

parity space equations that are valid for continuous linear systems besides being valid 

for discrete systems. 

Fault detection using Parity space approaches have been discussed in several survey 

papers [105,106,107]. In [107], Patton and Chen provided a review of parity space FDI 

approaches for the aerospace industry. This paper concludes that residual generation 

using parity space provides a robust method for differentiating change caused by 

external effects versus system's uncertainties. 

A parity space approach for fault detection and isolation {FDI) of a cryogenic 

rocket engine combustion chamber is presented in [108]. This methodology can 

generate residuals based on three measurements followed by the application of 

spherical co-ordinates to map these residuals to faults. The fault detection 

methodologies are evaluated based on three main indicators, namely, probability to 

generate false alarms, missed alarms, and time taken to perform fault detection. 

Parity space-based FDI to detect faults in rotary systems is presented by 

Bachschmid et al in [109]. This FDI methodology can detect rotor cracks that occur due 

to thermal effects using vibration measurements. Furthermore, the authors present a 
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more advanced FDI technique that detects the depth of the crack in [110]. The proposed 

method can identify the position of the rotor cracks and depth using vibration 

measurements with high accuracy. By comparing the static bending moment to the 

identified periodical bending moment (which indicates the presence of cracks), the crack 

depth is estimated. Experimental results show that the proposed methodology is able to 

detect crack depths with high accuracy. 

2.2.4 Artificial Intelligence Techniques 

Since the 1990s, Artificial intelligence-based fault detection and diagnosis approaches 

have been broadly established and applied to various complex engineering problems. 

Patton and Lopez [111] provided a general overview of artificial intelligence-based 

techniques used for fault detection and diagnosis. Artificial intelligence-based FDI are 

divided into two main categories: Neural Networks-based and Expert system-based. 

The following sections discuss these two techniques in more details. 

2.2.4.1 Artificial Neural Networks (ANNs)-based FDI 

ANNs have been successfully applied to a broad spectrum of real world data intensive 

applications including system identification, pattern recognition, classification, filtering, 

data clustering, and feature extraction. Accordingly, ANNs provide a powerful tool for 

fault detection and prognosis. Throughout the literature, three main FDI approaches 

where ANNs are prevalent are as follows: 
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• ANNs for fault modeling and residual generation 

In this approach, an ANNs-based diagnostic system learns the non-linear dynamics using 

input-output training data sets. A mathematical model representing the healthy system 

is obtained and the baseline model acts as a reference point for fault diagnosis. More 

precisely, an occurrence of fault is detected whenever a measurement violates the 

expected value obtained from the ANN model. The process starts by applying the same 

input to both the actual physical system and the trained ANN representing the healthy 

system model. The outputs are compared and an alarm signal is generated if a fault is 

detected. Ideally the residual block output should be zero and non-zero otherwise. 

As stated in the literature, models that are generated by using Neural Networks 

can be more accurate than those generated by traditional system identification and 

estimation techniques [112]. This is due to the fact that ANNs have powerful self-

learning and self-adapting characteristics, effective online adaptation algorithms besides 

their parallel and pipeline processing characteristics, good noise rejection capabilities, 

and excellent nonlinear approximation properties [5]. Furthermore, ANNs provide the 

aptitude to include models with partly known physical structure, resulting in semi-

physical models {Wang et a/. [113)). There, a blend of physical modelling of main 

features followed by modeling of secondary effects by ANNs results in an enhanced 

overall performance. 
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The NN-based non-linear system identification process can be classified into 

three categories according to the network structure [114]. The first category is the 

Recurrent Multi-Layer Perceptron (RMLP). This network has been established by K. 

Funahashi and Y. Nakamura [115]. In this research, they proved that any finite time 

continuous function can be approximately modeled by the internal states of a RMLP 

network given a sufficient number of output units, hidden layers, and proper initial 

conditions. In addition, a real-time RMLP that captures the non-linear dynamic 

behaviour is presented in [116,117]. Talebi and Korasani applied a recurrent Neural 

Network-based sensor and actuator FDI to detect faults in a satellite's attitude control 

subsystem using partial state measurements [118]. 

The second category is by using a static neural network with tapped delay lines 

(TDL}, the TDL increase the ability of the network to capture non-linear dynamics 

[119,120]. The third category is dynamic neural networks. As shown in Figure 2.7, the 

neuron transfer function is presented as a discrete or a continuous time dynamic system 

by incorporating an ARMA-filter within the neuron itself [121]. In this category, the ANN 

training algorithm adjusts the network parameters including weights and filter 

coefficients using the provided input-output training data set. Yazdizadeh and Khorasani 

introduced another form of dynamic neural networks. It consists of an all-pole filter 
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augmented after the neuron activation function in order to generate a dynamic 

relationship between neuron inputs and outputs [114]. 

Figure 2.7 Dynamic Elementary Processor with P inputs [12] 

Numerous FDI applications that involve ANNs have been reported. Space shuttle 

main engine (SSME) modeling using feed-forward Neural Network with a sigmoidal 

activation function is presented in [122]. The Gamma model was introduced by Principe 

and Motter. The Gamma neural model works by involving an adaptive short memory to 

store past signal trends. The Gamma model is able to capture substantial features of the 

system dynamics and is used for non-linear system identification [123,124]. Leonard and 

Kramer discussed the application of the radial basis function networks (RBFNs) for fault 

diagnosis and classification [125]. {Naidu et al.) applied back-propagation neural 

networks for sensor failure detection in process control systems [126]. Terra and Tinos 

applied Neural Network-based FDI to a 3-joint PUMA manipulator [127]. They used a 
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multilayer perceptron (MLP) trained with back propagation to reproduce the robot's 

dynamic behaviour. The ANN outputs are compared with measurements of the joints 

positions and velocities for residual generation. 

• Neural Networks for decision making (Residual Classification ANN): 

After residual generation (from the previous stage), a trained Neural Networks can be 

trained to analyze the residuals and decide whether a fault has occurred or not. As 

shown in Figure 2.8, a two stage neural networks for fault detection and isolation is 

presented in [61]. The first stage generates the residuals by one of the three previously 

mentioned methods (i.e.: RMLP, static with TDL, Dynamic NN) followed by a decision-

making stage that identifies multiple features and generates fault detection and 

isolation information. 
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Figure 2.8. Two stage fault detection and isolation [112] 

A residual generation and residuals evaluation-based ANNs FDI technique to detect 

and classify sensor faults is presented in [128]. In this paper, the application of a 

probabilistic neural network to check temperature sensor readings is performed . This 

FDI process includes two phases, the first phase involves a comparison between the 

measurements and trained network predict ions to generate residuals . In the second 

phase, another neural network is used to analyze probable fault conditions by classifying 

residual patterns. The second phase ANNs has to be trained first to map known residual 

patterns to assigned faults that might occur in the measurement system. 
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A neural network-based residual evaluation technique to detect and classify faults 

online in an industrial actuator benchmark problem is presented in [129]. The actuator 

in this benchmark problem is a brushless synchronous DC motor. Two faults are 

considered, namely, actuator current fault due to an end-stop switch and position 

sensor (potentiometer) fault. Results show that the proposed ANN algorithm can predict 

and classify faults with an acceptable accuracy. 

An FDI methodology to detect faults in robotic manipulators for non-trained 

trajectories is presented in [130]. Two-level neural networks are used for residual 

generation and residual evaluations. False alarms that occur due to modeling errors are 

avoided since the FDI methodology does not use a model. 

• 	 Neural Networks for fault feature extraction and pattern recognition: 

Pattern recognition has been a subject of concern in several engineering 

disciplines. Pattern recognition is the process of mapping patterns to various groups or 

categories [131]. It aims at classifying patterns to groups that share the same set of 

properties [132]. It has been implemented in many applications such as machine vision 

[133] , speech recognition [134], image processing and analysis [135], medical diagnosis 

[136], and fault detection and diagnostics [137]. 
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Pattern recognition can be divided into two subcategories, supervised and 

unsupervised pattern recognition [132]. In supervised pattern recognition, which is 

known as pattern classification, input-output training data is clearly provided and 

labeled. A classifier is then designed to properly classify inputs to categories (or classes) 

through an iterative learning procedure. In unsupervised learning (clustering), the 

training data set is not labeled (inputs don't belong to a known class) and the algorithm 

is supposed to catch intrinsic patterns that can be used later to classify new input 

patterns. 

This research project is concerned with supervised pattern classification. 

Throughout the literature, various pattern classification techniques have been presented 

such as linear discriminant methods (support vector machines {SVM) and Fisher's linear 

discrimination [138]), statistical classification techniques (Bayesian and k-nearest 

neighbour) [139], and nonlinear discriminant methods (artificial neural networks (ANNs) 

and decision trees) [140]. 

Artificial Neural Networks for pattern classification is our main research focus. In 

pattern recognition approaches, Neural Networks are used as a fault classifier to detect 

the probability of a fault occurrence or a system abnormality. 

Published work in this area of research includes a robust multi-sensor FDI 

technique applied to marine diesel engine is presented in [141]. Here, four engine faults 
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are induced and since all of these malfunctions affect pressure, temperature, and 

vibration measurements, an ensemble of three neural networks are trained, one for 

each of the three mentioned signals. Consequently, a system that is resistant to sensor 

failure is obtained. The output of the ensemble is created by taking a majority vote over 

the three networks. 

The Neural Network-based fault detection algorithm has also been applied to 

locomotive diesel engines to detect lubrication faults using vibrations frequency domain 

analysis in [142]. Experimental result on more than SO lubrication pumps shows the 

effectiveness of the proposed methodology. 

Neural networks with N-version programming have been applied in [143]. The 

idea of N-version programming is to train multiple networks with different 

measurements signals (e.g.: pressure, vibration, and temperature) for detecting fault 

conditions and selecting using a voting system for fault classification. This technique can 

be applied for safety critical systems [144]. 

Detection of motor bearing faults using signal-based ANN FDI technique is 

discussed in [145]. Since motors faults are closely related to the bearing assembly, fault 

detection in motor bearings is important. In this research, networks are trained using 

vibration data and results show the effectiveness of the proposed ANN method. 

A comparison between different fault detection techniques has been published. 

Rengaswamy provided a comparative study between model-based and Neural Network­
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based diagnostic methods in an industrial case study showing the relative advantages 

and drawbacks of the two approaches [146]. Advantages and drawbacks of neural 

networks-based FDI as reported by Venkatasubramanian et al., and Katipamula et al, 

and Rengaswamy in [72,73,147] are listed below: 

Advantages: 

(1) 	Neural networks-based FDI are appropriate for complex systems where attaining 

a system model is hard. 

(2) 	ANNs are appropriate for systems where training data is easy to acquire. 

(3) 	 ANNs have less computational requirements. 

(4) 	Systems' physical knowledge is not essential. 

Disadvantages: 

(1) A knowledge of all possible faults that might occur must be known beforehand to 

train the network. 

(2) 	 If a fault is not included in the training data, fault detection is not attained. 

(3) 	After network training, it is hard to relate network's weights to physical 

parameters (Block-box modeling) 
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2.2.4.2 Expert systems (knowledge-based approaches) 

Expert systems or knowledge based approaches use heuristics to associate symptoms to 

faults. The diagnostic expert system imitates the way humans think and how decisions 

are made using available information. 

In expert systems FDI, the a-priori knowledge is presented in the form of causal 

relationships between faults and symptoms [148]. 

Figure 2.9 shows a simple fault-symptom-tree, it consists of a knowledge base 

that stores relationships between faults Fi and symptoms Si. These relations are learned 

{or trained) experimentally and stored in the diagnosis system database in the form of 

rules: 

IF <condition> THEN <conclusion> 

The condition part is called the premise which contains facts on symptoms Si 

and, the conclusion part indicates the events Ei. A combination of different events may 

indicate a fault Fi, these combinations are in the form of AND, OR connections as 

follows: 

IF <51 AND 52> THEN <E2> 
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------' 

Figure 2.9. Fault symptom tree [82] 

In the classical fault-tree analysis, symptoms, events, and faults are considered as 

binary variables. The condition part of the rules can be calculated by Boolean equations 

[149]. 

Fuzzy logic was first introduced in 1967 [150], fuzzy logic gained considerable 

attention among researchers due to its ability to model human reasoning in a linguistic 

form. Fuzzy logic has been applied in numerous applications especially in Fault detection 

and isolation. In fuzzy logic FDI, unlike crisp logic-based FDI, where the system state is 

either 0 (fault-free) or 1 (faulty system), the system's state can range in degree between 

0 and 1. Fuzzy logic FDI is used to express transitions from normal operation to faulty 

cases. In other words, system under consideration might not be "fault-free" and at the 

same time they are not totally "damaged" but they are in an intermediate state. Fuzzy 
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logic FDI provides each item with a certain membership degree in a given set as shown 

in Figure 2.10. 

Membership 
Fault-free Semi-damaged Totally damaged 

function 

1 

0 
System condition 

Figure 2.10. Fuzzy membership functions for System Condition 

A fuzzy logic-based diagnosis has some advantages; it allows for an easy 

incorporation of a-priori known rules, enables the user to understand the inference of 

the system and provide a high degree of transparency and an increased robustness. 

In the literature, several heuristic knowledge-based FDI have been published. 

Fuzzy Logic-based fault detection in a three phase induction motor has been presented 

in [151]. This FDI system can perform an on-line condition monitoring using a fuzzy logic 

controller. 

A fault detection strategy on a gas turbine engines using fuzzy logic has been 

presented in [152]. Engine model parameter residuals acquired during the flight cycle 
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are used as FDI system inputs to prognoses high-pressure spool failure. The presented 

FDI methodology shows reliable prediction horizons using few system parameters. The 

FDI system is modular and can be applied to any engine with similar characteristics. 

A fuzzy logic-based FDI in a hydraulic system is discussed in [153]. Simulation 

results show the ability of the proposed FDI technique to detect the severity of the fault 

at a high level of accuracy using residuals generated by a non-linear observer. The 

difference between the desired and actual velocities is used for residual calculation then 

these residuals are evaluated using a fuzzy logic inference controller to detect the 

severity of faults. 

A similar approach applied to industrial robots is presented in [91] with the 

addition of an adaptive threshold that is used to minimize the probability of generating 

false alarms. Other applications of Fuzzy rule-based diagnosis system include the 

consideration of turbo machines using observed vibrations in [154], an internal 

combustion engines as in [155,156], and DC motors in [157]. 

2.3 The Smooth Variable Structure Filter 

The recently proposed SVSF has been successfully applied for parameter and state 

estimation in several studies [158,85]. The SVSF has demonstrated better performance 

over the EKF in target tracking applications in terms of computational complexity and 

robustness to model uncertainties [159]. 
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The SVSF provides an advantage that it is able to extract information on 

modeling uncertainties using two performance indicators, referred to as the primary and 

the secondary indicators. The primary indicators are the estimation errors or the error 

covariance matrix, while the second one includes the chattering signals due to the 

discontinuous gain application. 

The SVSF has been applied to control application and was combined with sliding 

mode control {SMC) in [160]. A comparative study of the SVSF and the EKF in a nonlinear 

state estimation problem has demonstrated that both techniques are comparable in 

terms of accuracy and estimation convergence when applied to a system with a known 

model [161]. 

The EKF is marginally more accurate than the SVSF given an accurate model but 

its performance deteriorates considerably in the presence of uncertainties. Therefore, a 

combined variable structure and Kalman filtering approach for parameter estimation has 

been proposed in [162]. In this study, a blend of SVSF-EKF has been introduced to add 

robustness to the EKF and provide a guaranteed stability. A comparison between the 

EKF, the SVSF, the Particle Filter, and the unscented Kalman filter on a bearing-Only 

target tracking problem is demonstrated in [163]. 

The SVSF concepts are further investigated in [164]. In this research, an 

enhanced form known as the general TOEPLITZ/OBSERVABILITY Smooth Variable 

Structure Filter is proposed. This filter introduces the Toeplitz and the Observability 

48 



M.A.Sc Thesis McMaster University 


Ryan Ahmed Department of Mechanical Engineering 


matrices to overcome the SVSF's limitations that arise due to the use of the Luenberger 

technique regarding sensitivity to noise and modeling errors. In addition, the chattering 

signals are used to create a monitoring algorithm that is capable of detecting added 

uncertainties in the system. Furthermore, a novel parameter estimation technique 

referred to as the Iterative Bi-Section/Shooting Method (IBSS) is derived. The proposed 

SVSF estimation technique is used to estimate the system's states provided that the 

model structure only is known. 

In this research project, the SVSF is applied for the training of the feed-forward 

neural network. The SVSF is applied in global {GSVSF), multi-streaming mode. The GSVSF 

performance is compared against the standard first and second-order derivative BP 

algorithms, and the EKF on a standard benchmark problem. In addition, the proposed 

training algorithm is applied to detect and classify faults on a FORD diesel engine using 

vibration data. 
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Chapter 3: Multi-Layer Feedforward 
Networks and their Training Techniques 

3.1 Introduction 

A multilayer feedforward network, also known as multilayer perceptron network (MLP), 

is a class of artificial neural networks. It has various applications including pattern 

recognition, interpolation, and system identification. In addition, MLPs are able to solve 

extremely complex problems which can imitate human behaviour such as speech 

processing, machine translation, and image recognition. MLP is a mathematical model 

that maps a set of inputs to output patterns. MLP entails supervised learning techniques 

in which a teacher or a pattern of training data set is required to perform the network 

training. 

This research focuses on feed-forward MLP and its training techniques. This chapter, 

as shown in Figure 3.1, is organized as follows; section 3.2 discusses various MLP 

configurations including feedforward and feedback MLP networks. Section 3.3 involves 

feedforward MLP networks and their mathematical representation including single and 

multi-neuron models in addition to signal follow diagrams. Section 3.4 provides a 

description of various training algorithms including the first-order back (BP) propagation, 

Newton's method, Levenberg-Marquardt (LM), and Quasi-Newton (QN). Finally, section 
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3.5 describes the extended Kalman filter (EKF) and its application to MLP tra ining. These 

algorithms are applied to benchmark problems later in chapters four and five and 

compared against the SVSF. 

Chapter 3 

Feedforward
MLP 

Mothemotica/
Can[tgurotlons 

representation 

Training 
Techniques 

Extended Kalman 

Filter 

(EKF} 


Figure 3.1. Chapter Three Hierarchy 

3.2 MLPs Network Configuration 

A MLP network, as shown in Figure 3.2, cons ists of one input layer, a number of 

hidden layers, and one output layer. Each layer consist s of a number of neurons where 

each neuron is fully (or partially) connected to all neurons in its preceding layer. The 

network shown in Figure 3.2 is a fully connected multilayer perceptron (MLP) network; a 
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fully connected network is characterized by a complete connect ion between every 

neuron (node) in a layer and its preceding layer. 

MLP networks have two categories; feedforward MLP and feedback MLP. In a 

feedforward MLP, as in Figure 3.2, signals propagate across layers in a forward fash ion. 

In feedback MLP or sometimes called recurrent multilayer perceptron RMLP as shown in 

Figure 3.3, a signal is fed back from the output layer or from one of the hidden layers 

and inserted as an input to the network after adding a delay (memory) element ( z - 1). 

The delay element introduces an internal state and thus RMLP can introduce dynamic 

behaviou r. Consequently, RMLP are extensively used in handwriting recognition and 

system identification. 

Input Hidden Output 

Layer Layer Layer 


Inputs Outputs 

Figure 3.2. Feedforward Multilayer Perceptron Network 
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Two types of signals are recognized in any MLP, they involve function signals and 

error signals [39] . A function signal originates from the input and crosses the network 

hidden layers and eventually exits as an output. On the other hand, an error signal arises 

from the output and propagates in a backward fashion across the network. Error signals 

are discussed later in this chapter; they are used during network training to adjust 

network synaptic we ights. 

Layer Layer Layer 
1 2 k 

OutputsInputs 

Recurrent J
lnputs ~ 

Figure 3.3. Feedback (Recurrent Multilayer Perceptron) Network 

53 



M.A.Sc Thesis McMaster University 

Ryan Ahmed Department of Mechanical Engineering 


3.3 Feed-Forward Multilayer Perceptron Networks 

A multi-layer feed-forward network consists mainly of sensory units that constitute the 

input layer, one or more hidden layers and an output layer. As shown in Figure 3.4, a 

fully connected MLP where each node is connected to all nodes in the adjacent layer by 

links (weights), and computes a weighted sum of the inputs. An offset (bias) is added to 

the resultant sum followed by a nonlinear activation function. The input signal 

propagates through the network in a forward direction on a layer-by-layer basis. 

Consequently, the network represents a static mapping between the inputs and the 

outputs. 

Layer k Layer 2 Layer 1 

X~ (f) 

Figure 3.4. Schematic of feed-forward multilayer perceptron network 
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3.3.1 Single and Multiple Neuron Mathematical Representation 

Let k denote the total number of layers, including the input and output layers. 

Node(n, i) denotes the ith node in the nth layer, and Nn - 1 is the total number of 

nodes in the nth layer. As shown in Figure 3.5, the operation of node(n + 1, i) is 

described by the following equation: 

Nn-1 

xr+ 1 (t) = cp( I wrj xt(t) + b(+1 
) (3.1) 

j==l 

Layern+l 

n+l 

Xi 1 

--"~. 
Xvn 

Figure 3.5. Node (n+l, i) representation 

Where, x((t) denotes the output of node(n,j) for the t training pattern, wri 

denotes the link weight from node(n,j) to the node(n + 1, i). hi is the node offset 

(bias) for node(n, i). The function cp(.) is a nonlinear sigmoid activation function 

defined by: 
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1 
a > 0 and - oo < w < oo (3.2)<p(w) = 1 + e-aw 

For simplicity, the node bias is considered as a link weight by setting the last input Nn 

to node(n + 1, i) to a value of one as follows: 

xn (t) = 1 1$n$k
Nn ' 

1~n~k-1 

Consequently, Equation (3.1) can be rewritten in the following form: 

Nn 

xr+1 (t) = <p(I wrj xj(t)) (3.3) 
j=l 

3.3.2 Signal Flow Representation 

The MLP can also be viewed as shown in Figure 3.6 using signal-flow graph. This 

representation is useful in highlighting connections between neurons for both function 

and error signals. In addition, most of the training techniques in section 3 will be 

discussed using signal flow diagrams. The signal-flow diagram notation is as follows [39]. 

Consider a hidden neuron j being fed by inputs Yi(n). The inputs are then 

multiplied by the synaptic weights denoted as wji (n) (in addition to bias bj(n)) and 

summed together generating a local field signal Yj(n). Thus for a single neuron}, the 

local filed Yj(n) can be expressed as follows: 
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m 

Yj(n) = Lwji(n)yi(n) (3.4) 

i=O 

The local field signal Yj(n) represents the weighted summation at epoch n for all 

weights directed to neuron j. The local field function signal is then processed by the 

non-linear activation function <fJj(·) to generate the output Yj(n). 

Yo =+l c{(n) 

Hidden Neuron j Output Neuron k 

Figure 3.6. Signal flow from a hidden neuron j to the output neuron k [39] 

The activation function <fJj(·) might be linear or non-linear but it has to be 

continuous as the derivative is a major requirement in the training process (gradient 
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calculation). The most frequently used activation function (used throughout the thesis) 

is the sigmoid nonlinear function expressed as follows: 

{3.5) 

Where, a> 0 and- oo < yj(n) < oo 

Two cases are to be considered here: 

Case 1: 

If the neuronj denotes the network's input layer, then the signal yj(n) is denoted as 

xj (n) 

(3.6) 

Where, xj(n) is obtained from the training data set. 

Case 2: 

If the neuron j is in the output layer of the network, then: 

{3.7) 

Where Oj (n) is the /h component of the actual network's output. The error signal 

ek(n) is calculated by subtracting the desired output (obtained from the training data 

set) dk(n)from the actual network output ok(n) as follows: 
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(3.8) 

The error signal is then used to update network weights as discussed in the following 

section. 

3.4 MLP Training Techniques 

In this section, most of the popular neural networks training techniques are discussed. 

They include the widely used back-Propagation algorithm, Newton method, Quasi-

Newton, and Levenberg-Marquardt. These are classical training techniques that have 

been extensively used throughout the literature in various applications. These training 

techniques are being compared to the relatively new Smooth Variable Structure Filter 

(SVSF) later on. 

3.4.1 Back Propagation Algorithm 

Back propagation (BP) is one of the most famous classical ANNs training techniques 

widely used in the 80's. It's a supervised learning algorithm that mainly applies the delta 

rule (or gradient descent rule) to minimize the output error. The delta rule used to 

update network weights can be generally expressed as follows: 

(3.9) 
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Where, a denotes the learning rate, dj is the target signal, Yi is the neuron output, cp 

is the activation function, cp' is the first order derivative of the activation function cp, hj 

is the weighted sum ofthe neuron's inputs, and xi is the ith input. 

The BP algorithm consists mainly of two paths, namely a forward and a backward 

path. The forward path involves the application of a training data set pattern on the 

input, the signal then propagates across the network on a layer-by-layer basis until the 

network's output is generated. The backward path involves the calculation of the output 

error using the training data set target and propagation of the error back to update 

weights and thus perform training. 

3.4.1.1 BP Training Procedure 

Figure 3.7 represents the operation of BP algorithm on a network with three inputs, one 

hidden layer with three neurons, and three output nodes in the output layer. The upper 

portion demonstrates the forward pass (feedforward network running phase) that 

represents function signals stated earlier. During the forward pass, network weights 

remain unchanged and function signals are generated on a layer-by-layer basis until the 

actual network's output is generated. The lower portion depicts the backward pass. The 

backward pass includes error signals where all local gradients are calculated in order to 

update network weights. 
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Assume N training samples in the following form : 

{x(n), d(n)}Nn=l 

Where, x(n) represents the network input and d(n) depicts the desired target at the 

nth training sample. Assuming a sequential training fashion, back propagation algorithm 

is summarized as follows [39]: 

w <2l 
31 

J (ll c<l ) ~ ( l ) ~(2) ~(2) &,2) 
1 0 2_ v 3 

V 1 v 2 3 

Figure 3.7. Signal flow using back propagation algorithm [39] 
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Step 1: Initialization 

The network weights and biases are randomly initialized using a uniform distribution 

with zero mean and unity standard deviation. A random initialization strategy reduces 

the probability of premature early convergence to local minima. 

Step 2: Forward Run 

It involves applying an input signal to generate the output by first computing local fields 

(weighted sum before activation function) followed by applying the activation function 

on a layer-by-layer basis as discussed in the previous section. Let the local fields for 

neuron j in layer l for the training sample n be denoted as: rP) (n) and expressed as: 

(3.10) 


A non-linear sigmoidal activation function <p(.) is then applied to generate the neuron's 

j output as follows: 

(3 .II) 


• w~0 (n) is the weight from neuron i in layer l - 1 directed towards neuron j in1
layer l. 
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• 	 Y?-l) (n) is the ith neuron's function signal of the layer (l- 1) calculated at the 

nth epochs. 

As stated in section 3.2, for an easier representation of the network bias, the bias is 

considered as a network's weight while setting an input to unity. As shown in Figure 3.7 

fori= 0: 

(3.12) 


(3.13) 


For the two cases stated earlier in the previous section, if the neuron j is located in the 

input layer, the input layer is treated as l = 0, and relabelled such that: 

(3.14) 


While if the neuron j is positioned in the output layer, the variable l is set to L where L 

is the number of layers, and the output is relabelled such that: 

(3.15) 


In our example as shown in Figure 3.7, L is set to 2 and each layer is made to have 3 

neurons with m 0 = m 1 = m 2 = 3 
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Step 3: Error Calculation 

For a feedforward MLP network, assume the output of neuron j at iteration k is o1(n). 

Assume that the target at n's training sample is d1(n). The error signal for sample n is 

defined as: 

(3.16) 


Step 4: Gradient Calculation (Backward Pass) 

Network's local gradients are calculated in this step. Two cases are considered here 

depending on the neurons' location in the hidden layer or on the output layer as follows: 

Case 1: If the neuron j is located in the output layer 1L': 

(3.17) 


Case 2: if the neuron j is placed in the hidden layer 1l': 

As shown in Figure 3.7, local gradients are calculated using the following equation [40] 

of0 (n) = <p'i (rf°Cn)) L 6~1 + 1\n) w~~+ 1\n) (3.18) 

k 
Where the derivative <p' (.) for the sigmoidal activation function is calculated as: 

, ( ) _ a exp(-ay1(n)) 
<p YJ(n) - -[l-+-ex_p_(---ay~-(n-)-)]-2 (3.19)1


In a simpler form, by removing the exponential term from the previous equation as 

follows: 
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, n _ a[1+exp(-ay1 (n))-1] 
q:> (rj( ) ) - [1 + exp(-ayj(n))] 2 

(3.20)=a [1 + exp(~ayj(n))- [1 + exp(~ayj(n))] 21 
= ayJn)[1- Yj(n)] 

Step 5: Weight Update 

The network's synaptic weights are adjusted using the delta rule as discussed earlier and 

as follows: 

Where, fJ is the learning rate and 11 is the momentum constant. The momentum 

introduces the old weight change in computing the new weight change. Accordingly, the 

momentum is used for stabilizing oscillations in case of problems with a narrow 

minimum zone thus speed up convergence. The momentum constant works as follows, 

in areas where the error surface is flat the algorithm uses large steps and traverse these 

areas rapidly. On the other hand, when the surface is rough, the step size is decreased 

thus the algorithm speed is enhanced. The momentum constant is selected as follows: 
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Step 6: Shuffling Training Data and Learning Rate Annealing 

Training data sets are shuffled every epoch (following each weight update) in addition to 

annealing of learning rate and momentum. Shuffling is important to make sure that 

training data set correctly represents the data mix thus helps in removing any drift or 

bias that might occur if the same order of the training data set is applied every epoch. 

Annealing means that the values are decreased by a constant value from one epoch to 

another. For example, throughout the thesis, the learning rate p is primarily set to one 

and linearly reduced to 10-4 in order to prevent over-training. 

Steps 2-5 are iteratively repeated until a stopping criteria is met as follows. 

3.4.1.2 Training Algorithm Stopping Criteria 

During neural networks training, the training data set is divided into 50%, 25%, 25% of 

the overall content for training, validation, and testing, respectively. Training portion is 

used to calculate the gradient and for weight and bias update. Validation set is used to 

perform cross-validation checks which are executed to assess training quality as training 

proceeds. Cross-validation is implemented to overcome over-fitting (over-training) 

[165]. Over-fitting may happen when the training algorithm focuses on training set 

peculiarities at the cost of losing generalization ability [166]. In other words, the trained 

network mean squared error (MSE) might be low during training but afterwards during 

testing the network would exhibit poor generalization performance. 
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In this paper, cross-validation is performed by using an early stopping technique. 

Early stopping is accomplished by constantly observing the mean square error. In normal 

cases, validation error should be decreasing as training proceeds but if over-fitting 

occurs, the error on the validation set starts to increase. Training is stopped whenever 

one of following three conditions occurs: If the GLa stopping criterion discussed below is 

achieved or if the training progress is below a specified value or if maximum number of 

epochs are reached. The three stopping criteria are further discussed below. 

For the first stopping criterion, training is terminated when the Generalization 

Loss (GL) becomes higher than a certain threshold. According to [165], the 

generalization Joss at epoch t is defined as the relative increase of the validation error 

over the minimum-so-far {in percent). 

GL(t) = 100 ( Evalid(t) - 1) {3.22)
Eoptimal (t) 

Eoptimat(t) =min Evaud(t') {3.23)t'st 

Where, Evaud(t) is the validation set squared error at epoch t, where E is the 

error function defined later in {3.25). Eoptima1(t) is the least validation set squared error 

obtained up to epoch t. When high generalization loss occurs, it indicates that the 

algorithm is focusing on training signal peculiarities and ignoring general regular 
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behavior. Accordingly, training should be terminated whenever a GL exceeds a pre­

determined threshold value a (set to 0.01}. 

The second stopping criterion is called training progress. It is performed by 

calculating the squared error of training and validation data set after a pre-specified 

number of epochs called the strip length k (set to five epochs in this paper). The 

sequence is numbered as n + 1, n + 2, .. n + k provided that n is divisible by k. Training 

progress is calculated using the following formula: 

Pk(t) = _( L~'E t-k+l ...t Etrain (t') _ 1)1000 (3.24)
1k. mmt'.E t-k+l...t Etrain(t) 

This ratio specifies the relation between the average and minimum training error that 

occurs within one strip. 

The network performance function (error function) used is the mean squared 

error between the network and target outputs. For the ith output node, the squared 

error per training sample is calculated as follows: 

E(o, t) =L(oi- td 2 
(3.25) 

i 

Where 0 1 is output target node and ti is the target. MSE is calculated using the 

whole data set. The mean squared error is selected as it is independent of the training 
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data set size. Error normalization is performed and squared error percentage is 

calculated as follows [165]: 

p N 

E = 100 omax mm. - t (3.26)-o II( .)2
N. p Opi Pt 

P==li==l 

Where, N represents the number of output nodes. P indicates number of 

training samples used. Dmax and Omin represent maximum and minimum values for the 

output nodes, respectively. In addition to MSE variations during training, training 

algorithms are evaluated according to classification performance [167]. According to the 

benchmark rules, training performance is measured based upon classification accuracy. 

It represents the percentage of wrongly classified data points. 

The third stopping criterion is when the maximum number of epochs is attained. 

The selection of the maximum number of epochs depends on the network's application 

and on the complexity of the problem. Training is limited to 1000 epochs in this 

research. 

3.4.2 Optimization-Based Techniques 

The basic idea of training is to iteratively update network's weights in order to minimize 

the output error using a given training data set. Consequently, training process can be 

visualized as an optimization problem whose objective is to find the network's best 
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weights that minimize error. Various optimization techniques have been proposed for 

network training in the literature; Newton's method for instance is one of the most 

prominently applied optimization techniques. In addition, Quasi-Newton, Levenberg-

Marquardt, and Gauss Newton are also commonly applied to train feedforward MLP 

networks. 

In order to apply any optimization techniques, a cost function (or objective 

function) must be defined. The cost function determines the effectiveness of the 

optimization technique. The selection of the cost function is crucial as it would reflect 

the required objective. In other words, in neural networks, selection of the error 

function specifies the objective of the search. If this goal is not properly specified, poor 

results will be attained. The 'mean square error' is one of the most prevalent cost 

functions used in regression problems. 

Numerous optimization techniques have been proposed for network training 

[168,169,170] . Ideally, they seek the global minimum. In practice, optimization 

algorithms vary in probability of discovering the global minimum, their rate of 

convergence, and their robustness [171]. Algorithms might get stuck in local minima and 

fail to find the global minimum. Local and global minima are as shown in Figure3.8 below. 
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Figure3.8. Local and Global minima [172] 

Optimization techniques are more widely used in neural networks training 

compared to first-order BP algorithm due to their comparatively faster speed of 

convergence. In this section, a detailed discussion of various optimization techniques 

that are frequently used in neural networks training is discussed . More specifically, 

Quasi-Newton and Levenberg Marquardt methods are described . The performance of 

these techn iques is later compared to a new method proposed in this research based on 

the Smooth Variable Structure filter (SVSF). 

As a start, Newton's method is being highlighted as it provides the basis of all 

other second-order optimization techniques because it makes use of first and second 
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order derivative information. Consequently, it represents a benchmark where all other 

optimization techniques are compared against. 

3.4.2.1 Newton's method 

Optimization techniques in general are categorized into first order and second order. In 

first-order optimization techniques, the error surface is approximated to be linear (line 

search). The cost function and its first order derivatives only are used. While in second-

order optimization techniques, a quadratic error surface is assumed and the second 

order derivative of the cost function is also utilized. Newton's method is a form of 

second-order optimization method that achieves a faster speed of convergence 

compared to the back propagation algorithm. Second-order derivatives are stored in a 

matrix form widely known as the Hessian matrix. The Hessian matrix is a square matrix 

that involves a given function's local curvature by including the function's second-order 

partial derivatives. Let Di be the differentiation operator with respect to the ith 

element, for a function f(x), the Hessian matrix can be obtained as follows: 

(3.27) 

Second order optimization techniques are very effective in the "neighbourhood 

of the global minimum". Using Newton's method, if the approximated error function is 

originally quadratic, the solution (global minimum) can be achieved in one step. On a 
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larger scale, second order techniques are not efficient as they might get stuck in a local 

minimum rather than find the global one. 

Newton's method uses and stores the full Hessian matrix which is a 

computationally expensive process. Newton's method uses a quadratic error function as 

follows [171]: 

(3.28) 


Where, 

aE
D g: is the gradient vector (awl 

D H: is the cost function's second-order derivatives matrix (Hessian matrix) with 

02 
elements hij = ; (H must be a positive definite matrix) 

0Wiuw1 

By differentiating equation (3.28) with respect to w and equating the resultant to zero, 

then: 

g +Hw = 0 (3.29) 

By re-arranging, and given that H is positive definite, the solution is obtained as follows: 

(3.30) 


Thus if the function E(w) is originally quadratic, the global minimum can be 

attained in only one epoch. Various iterations might be required if the function is not 

perfectly quadratic. When several iterations are required, a step size parameter r must 
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be included and it is being selected by the user. For multiple iterations, the following 

formula used is: 

w(t + 1) = w(t)- rH-1g {3.31) 

The advantages of Newton's method are: 

1. Provides fast speed of convergence in the neighbourhood of the minimum. For 

quadratic error functions, given that e = w- w*, the optimization process is 

quadratic and takes the form: 

{3.32) 


2. It acts as a benchmark for comparison against other optimization techniques as it 

makes use of the full Hessian matrix. 

The disadvantages of Newton's method are: 

1. It requires the Hessian matrix calculation and it must be positive definite. This is 

not usually the case in non-linear systems. 

2. The Hessian matrix H might be rank deficient in neural networks applications. In 

this case, saturation of the network's hidden neurons might occur. 

3. Selection of the step size is crucial, as T should be selected as follows: 
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0 < T < 2/flmax {3.23) 

Where, Bmax is the Hessian matrix's largest Eigen value. Eigen values of a matrix 

A represent the solution l to the equation: 

det(A -ll) = 0 {3.34) 

If the step size value is selected to be large for fast convergence, then the system 

might overshoot beyond the neighbourhood of the minimum. Accordingly, the 

step size must be chosen small enough so that the system does not overshoot 

the minimum. 

As a result of the above deficiency, the Quasi-Newton algorithm has been proposed. 

3.4.2.2 Quasi-Newton (Variable metric) algorithm 

Quasi-newton (QN) method overcomes the problems related to the Newton's method. It 

basically overcomes the problem of computing and getting the Hessian matrix's inverse. 

By utilizing first order gradients only, an approximation of the Hessian matrix is 

obtained. The most famous Quasi-Newton algorithm (also used throughout the thesis) is 

known as BFGS and was developed in 1970 [173]. BFGS stands for Broyden, Fletcher, 

Goldfarb, and Shanno. 

QN technique provides fast speed of convergence compared to the back 

propagation algorithm. However, one of its main drawbacks is that there is no guarantee 
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that the algorithm will converge to the global minimum as it might get stuck in a local 

minimum [39,171]. QN algorithm is summarized as follows: 

Step 1: Random initialization of the matrix S 

The 5 matrix is used later in calculating the direction vector. S(O) must be a positive 

definite matrix. 

Step 2: Calculation of the direction vector 

Define the direction vector s(n) as follows: 

s(n) = -S(n)g(n) {3.35) 

Where g(n) is the first-order gradient vector. The matrix S(n) is a positive definite 

matrix and throughout every epoch it is being tuned such that the direction vector s(n) 

points to the same direction as the newton's method (direction to the global minimum). 

Step 3: Weight update equation 

Weight update is performed by knowing the direction vector s(n) and the learning rate 

parameter J..L(n)as follows: 

w(n + 1) = w(n) + s(n)J..L(n) {3.36) 

The J..L(n) is set to 1 in case of applying the BFGS-Quasi Newton algorithm. 
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Step 4: Getting second order (Curvature) information 

Second order information is obtained without the need of computing the Hessian 

matrix. This requires the knowledge of four major variables: 

w(n), w(n + 1), g(n), g(n + 1) 

First, the difference between the current weights and the previous weights is calculated: 

L1w(n) = w(n +1)- w(n) (3.37) 

followed by the difference between two successive gradients: 

q(n) = g(n +1)- g(n) (3.38) 

Note that q(n) can be approximated as: 

a (3.39)
q(n) =Caw g(n))ilw(n) 

Step 5: Hessian matrix approximation 

If the objective function is quadratic, the two following equations provide the exact 

Hessian matrix. However, if the objective function is not quadratic (which is the case of 

non-linear neural networks), the following equations can be used to get an 

approximation of the Hessian matrix H: 

H =: [q(O), q(1), ... ,q(W- 1)] * (3.40) 

[.1w(0),.1w(1), ... ,ilw(W -1)]-1 

The inverse Hessian matrix H-1 can in turn be approximated as follows: 
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H-1 :: [.1w(0),.1w(1), ... ,.1w(W -1)][q(O),q(1), ... ,q(W -1)]-1 (3.41) 

Step 6: Update the matrix S(n + 1) from its previous value S(n) using the 

following recursive formula: 

.1w(n).1wT(n) S(n)q(n)qT (n)S(n) (3.42)
) ((n + 1 =S n) + qT(n)q(n) - qT(n)S(n)q(n) 


+8(n)[qT(n)S(n)q(n)][v(n)vT (n)] 


Under condition that: 

0 :5 8(n) :51 fora/In 

Where, 

S(n)q(n) (3.43)v(n) = .1w(n) 

.1wT(n).1w(n) qT(n)S(n)q(n) 


Step 7: Iterative repetition until the global minimum is achieved. 

The algorithm is iteratively repeated until a stopping condition is reached. 

3.4.2.3 Levenberg Marquardt 

The Levenberg-Marquardt applies the two main advantages of the gradient descent and 

second-order methods. The Levenberg-Marquardt switches from the gradient descent 

method to Newton's method as it reaches the vicinity of the minimum. 

Levenberg-Marquardt is a blend of the gradient descent algorithm and Newton's 

algorithm. It overcomes the drawbacks of Newton's method where the Hessian matrix 

has to be positive definite. In general, when the optimization process starts at a remote 
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point away from the optimal global minimum, the Hessian matrix tends to be indefinite 

and thus Newton's method might provide poor convergence properties [171]. 

Accordingly, the gradient method is used first as it guarantees convergence to the 

vicinity of a minimum irrespective of where the optimization process starts. After that, 

the algorithm shifts to Newton's method as it is much faster than gradient methods. 

The Levenberg Marquardt algorithm is governed by the following equation: 

(3.44) 

The parameter a starts as a large value, thus, the algorithm behaves as a 

gradient descent algorithm. As the algorithm goes on, the parameter a decreases and as 

it approaches zero the algorithm converts to the Newton's method for the final 

convergence to the minimum (global or local) [39]. 

The Levenberg-Marquardt method described above stores the Hessian matrix in 

addition to getting the Hessian matrix's inverse. However, an approximation known as 

the "outer-product approximation" is applied. As such, the Levenberg-Marquardt 

method can be viewed as a first-order algorithm. Instead of fully computing the Hessian 

matrix, an approximation is computed to reduce the Levenberg-Marquardt computation 

complexity. Outer product approximation is used when the cost function is the mean-

squared error function. The approximated Hessian matrix is computed using the average 

of the gradient vector's outer products as follows. Given that the desired (Target) signal 
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from the training data set is d and the actual network output is y, the error function E 

can be defined as: 

(3.45) 

Where (.) denotes the average for the entire training data set. Recall that the gradient 

gi for the weight wi is defined as: 

(3.46) 

Substituting equation {3.45) in {3.46): 

aE ay
9j =- = 2 ((d- y)-) (3.47)

awj awl 

Recall that the Hessian matrix H is defined as hii =~. Substituting equation (3.47) 
awtawj 

in the previous equation then: 

(3.48) 

Note that for obtaining the derivative of equation (3.48), the product rule is applied as 

follows: 

(f.g)' = f'.g + f.g' 

Equation (3.48) can be re-written in the following form: 

H = 2(-P + Q) (3.49) 
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8
Where the first term, P = ( Y ay} = (ggr}, embodies the first-order 

8wtawj 

82 
(gradient's) average outer product while the second term Q = ((d- y) a Y } involves 

Wj 8W} 

the second order terms. For all cases, the term P is real and symmetric. Accordingly, the 

matrix is positive definite. Such that: 

{3.50) 

In order for the matrix P to have a full rank, the number of training samples must 

be more than the total number of network weights [171]. The approximation is based on 

the fact that the second order terms Q have a negligible value compared to the first-

order ones P in the vicinity of the global minimum. Consequently, the second-order 

terms should be ignored on the condition that the residual errors (d- y) have zero 

mean and be uncorrelated with second order derivatives. 

3.5 The Extended Kalman Filter (EKF) 

The Kalman filter {KF) is the most popular state estimation tool. It provides optimal 

estimates for linear systems in the presence of Gaussian white noise. In the case of 

nonlinear systems, the extended Kalman filter (EKF) is applied by linearizing the system 

around the latest state estimate at each time interval. An EKF-based neural network 

training technique was first introduced by Singhal and Wu in 1989 [47]. 

The EKF provides a powerful neural network training capability compared to 

conventional first-order gradient descent algorithms, such as the BP [40]. In literature, 
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the EKF has been extensively applied for training of both feed-forward [48] and 

recurrent networks [49,50] in both a global form (GEKF) or in a decoupled form (DEKF). 

Although the EKF demonstrates a close performance compared to a second-order 

derivative, batch-based optimization method, it can avoid local minima problems by 

encoding second-order information in terms of a state error covariance matrix [40]. 

Accordingly, the EKF represents an efficient and practical alternative to second-order 

training methods. 

The EKF has been tailored for training feed-forward neural networks by 

formulating the network as a filtering problem [174]. Accordingly, feedforward 

multilayer perceptron network behaviour can be described by a nonlinear discrete-time 

state space representation [175] such that: 

wk+1 = wk + wk (3.51) 

Yk = Ck(wk, uk) + vk (3.52) 

Equation (3.51) represents the system equation. It demonstrates the neural 

network as a stationary system with an additional zero mean, white system noise wk 

with a covariance described by [wkw 1T] = ok,LQk. Neural network weights and biases 

wk are regarded as the system's state. Equation (3.52) is the measurement (observation) 

equation. It is a nonlinear equation relating the network's desired (target) response Yk 

to the network's input uk and weights wk. The nonlinear function Ck represents the 

82 



M.A.Sc Thesis McMaster University 

Ryan Ahmed Department of Mechanical Engineering 


measurements function, it is a nonlinear function based on the sigmoidal function and 

the number of layers. A zero-mean, white measurement noise vk is added with a 

As previously mentioned, the KF provides an optimal state estimate for linear 

systems. However, for network training, the EKF must be used due to the nonlinearity of 

sigmoidal function <p. 

Consider a feed-forward multi-layer perceptron network with two hidden layers 

as shown in Figure 3.9. All activation functions of the first, second and output layers are 

nonlinear sigmoidal functions denoted as <p1, <fJu and <p0 respectively. The network 

transfer function in terms of network weights, inputs, and activation functions can be 

mathematically defined as: 

Yi(k) = <fJo ( Wo,(k) <fJu ( Wu(k) <p1(wi(k)u(k)))) 
{3.53) 

for i=1,2..m 

Where m denotes the number of output neurons, w1, Wu, w0 are weight matrices 

for the first hidden layer, the second hidden layer and the output layer, respectively. 

where, 

• 	 w 1 E ~CCzxt 1)xl) is the vector representing weights from the input to the 

first hidden layer 

• 	 wn E ~((1 1 xlz)xl) from first to second hidden layer 

• 	 w0 E ~((lzxm)xl) from second hidden layer to output layer 
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Where, l1 and l2 represent the number of hidden neurons in the first and the 

second hidden layers respectively, and z specifies the number of input neurons 

W1 (k) ~J_k) 

(/JI fPJ1 (' 
w-.--;.,.;1l4(k) 

~ 
I 

I 
I 

l~(k) 

Figure 3.9. Feed-forward multilayer perceptron with 'z' inputs, 2 hidden layers and 'm' 

outputs 

Linearization is performed by differentiating the network transfer function with 

respect to the network synaptic weights (i.e. deriving the Jacobian). The Jacobian matrix 

Ckllinearized can be mathematically expressed as follows: 

ayl ayl ayl 

awl awz awNT 

ayz ayz ayz 

ckjlinearized = (3.54)awl aw2 awNT 

aym aym aym 

awl awz awNT 
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Where, Nr denotes the total number of synaptic weights (including bias). By 

differentiating Equation (3.53) with respect to the different weight groups w1, wu, w0 

and fori, 1=1, 2 ... m the following is obtained: 

ayi = {¢o (Wo/Pu(Wu<pi(wlu))) <pu(Wu<pJ(WJU) ), if i = l 
(3.55) 

awol 0, otherwise 

(3.56) 

(3.57) 

By placing (3.49), (3.50), and (3.51) in one matrix: 

ay 
(3.58)ckllinearized = [aw 

0 

Ckllinearized is the m-by-Nr measurement matrix of the linearized model around the 

current weight estimate. 

The EKF-based neural network training introduced by Singhal and Wu is known as 

the global extended Kalman filter (GEKF) [47]. In the GEKF algorithm, all network weights 

and biases are simultaneously processed and a second-order information matrix 

correlating each pair of network weights is obtained and updated [40]. Consequently, 
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the GEKF computational complexity is O(m N/). A storage capacity of O(Nr 2 
) is 

required, which is relatively high compared to the standard BP algorithm. 

The DEKF-based neural network training algorithm illustrated below and 

represents the most general EKF-based neural network training method. The GEKF is a 

special form of the DEKF where the weight group number g is set to one. Weights that 

are directed to the same neuron are considered to belong to a specific weight group. 

Neural network training using the DEKF algorithm can be expressed as follows (176]: 

g 

rk = [L cc1)r P1 ci + Rkr1 {3.59) 

i=l 

Kkalman~ = Pk (Ck)T fk {3.60) 

ak = dk- ak {3.61) 

wk+l = wk + Kkalman~ ak {3.62) 

Pk+l = Pk - Kkalmank Ck Pk + Qt {3.63) 

Where, the following nomenclature applies: 

r E mCmxm) is the global scaling matrix (or global conversion factor). 

C E mCmxn,) is the gradient matrix, it involves weights gradient w.r.t every output 

node. 

a E mCmxl) is the innovation which is the difference between desired (target) and 

actual network output. 

P E mCn,xni) is the error covariance matrix. 

Q E mCn,xni) is the process (system) noise covariance matrix. 
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Kkalman E 91Cn;xm) is the Kalman gain matrix. 


R E 91Cmxm) is the measurement noise covariance matrix. 


The above DEKF training algorithm operates in a serial mode fashion. In the serial 

mode, one training sample is involved in the error calculation, gradients computation 

and synaptic weight update. A problem known as recency phenomenon arises with 

serial mode when training tends to be influenced by the most recent samples [40]. 

Consequently, a trained network fails to remember former input-output mappings and 

thus serial-mode training results in deteriorated performance. The recency phenomenon 

can be circumvented by using the multi-streaming training technique [177,178,179]. 

In the multi-streaming EKF training, multiple training samples are batched and 

processed. It involves training M identical neural networks using several training 

samples followed by weight update using the overall networks' errors. The algorithm of 

equations (3.59) to (3.63) can be applied to multi-streaming mode by replacing the 

matrix dimension min r, C, a, KKalman• and R with M X m [46]. 
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Chapter 4: Neural Networks Training 
Using the Smooth Variable Structure 
Fi Iter 

In this chapter, a new proposed neural networks training technique is proposed. The 

technique is based on a relatively new filtration strategy known as the Smooth Variable 

Structure Filter (SVSF). The SVSF is a state and parameter estimation method that works 

in a predictor-corrector fashion and provides guaranteed stability and robust dynamic 

adaptation to modeling uncertainties. The SVSF has been successfully applied to train 

feedforward multilayer perceptron (MLP) networks and provides an excellent 

generalization capability and minimum mean squared error compared to other training 

techniques. 

This Chapter is divided into two sections, namely, Section 4.1 provides a 

description of the SVSF and discusses its derivation. Section 4.2 discusses the 

formulation of the SVSF for the training of feedforward multilayer perceptron 

networks. The algorithm is used later in Chapter 5 to train feed-forward multilayer 

perceptron network on benchmark problems. 
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4.1 The SVSF Concepts and Applications 

State and Parameter estimation methods have been implemented in numerous 

engineering applications including those related to fault detection and diagnosis. These 

methods can detect if faults occur in a system and identify their source. In their 

application to fault detection and diagnosis, they are classified as model-based methods, 

and operate as follows. A physical model of the system is obtained used in conjunction 

with the filter for tracking model parameters given measurements from the system. 

Consequently, the filter can therefore identify deviations in system parameters and 

departures from normal operating conditions. 

As stated in chapter two, common parameter estimation methods such as the 

Kalman filter, the Unscented Kalman filter, and the Particle filter have been extensively 

used for fault detection and diagnosis applications. The SVSF is a relatively new filter 

that can guarantee stability given bounded uncertainties. One of its important 

advantages is that the SVSF provides an extra performance indicator besides the 

estimation error and the error covariance matrix. 

In this section, the SVSF theory and stability guarantee criteria are discussed. The 

SVSF gain calculation and the smoothing boundary layer introduction to overcome the 

chattering problem are provided, and finally, the SVSF algorithm for parameter and state 

estimation is described. 
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4.1.1 The SVSF theory 

The SVSF was initially inspired by the variable structure control (VSC) and systems theory 

where the state space of a function f(x, u) is separated by a discontinuous hyperplane 

[180]. For instance, assume a control signal ui(x, t) which is a function of the state 

vector x. By assuming a discontinuity surface Si(x) that separates two continuous 

regions, a control signal ui(x, t) can be defined as follows: 

ut(x, t) when Si(x) > 0
ui (x,t) = { (4.1)

u{(x, t) when Si(x) < 0 

Where in each segment of the state space, the function f(x, u) is continuous and 

differentiable. By forcing system states to be directed to the hyper plane and slide 

across it, a category of VSC widely known as the sliding mode control {SMC) is obtained. 

The SMC uses a discontinuous control signal to remain on the sliding surface and while 

on this surface achieves robustness to disturbances and modeling uncertainties. 

The Variable Structure Filter {VSF) is a filtration strategy that is an extension to the 

sliding mode concept [181]. In the VSF, as shown in Figure 4.1, an estimate of the state 

trajectory is generated and is forced towards the actual state trajectory. The estimates 

then remain within a neighbourhood of the actual state trajectory, known as the 

existence subspace. The width of the existence subspace is a function of uncertainty in 

the filter model and varies with time. In the existence subspace, a switching gain is 

90 



Amplitude 

. 

;• 
Initial Value of the 
Estimated States 

Existence 
Subspace 

System 

M.A.Sc Thesis McMaster University 

Ryan Ahmed Department of Mechanical Engineering 


applied so that the state estimates switch back and forth along the true (desired) state 

trajectory. The period for the states to reach the existence subspace is known as the 

reachability phase [181]. 

State Trajectory 

Time 

Figure 4.1. SVSF State Estimation 

Based on the degree of uncertainties, the thickness of the existence subspace is 

determined. Consequently, for bounded uncertainties, a bounded existence subspace 

can be assumed and the state estimates are restricted to chatter within the existence 

subspace along the true state trajectory. 

The SVSF can be applied to both linear and non-linear dynamic systems. Two 

versions of the SVSF have been developed in 
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the literature; an original form of the SVSF without involving the state error 

covariance matrix Pk+llk and one that includes the covariance matrix [182]. In this 

research project, the original form of the SVSF will be discussed and applied to train 

feed-forward MLP networks. 

Consider the following nonlinear system where f is a nonlinear function and H is 

the linearized output matrix of the following form: 

xk+l = f(xk, uk, wk) (4.2) 

zk = Hxk + vk (4.3) 

Where xk are the system's states, uk is the system's input, wk is the system noise, 

vk is the measurement noise, and zk is the measured output. Recall that the EKF 

assumes that the system and measurement noise are white Gaussian noise with 

covariance matrices Rk and Qk. 

The SVSF algorithm is analogous to the Kalman filter algorithm stated earlier in 

Chapter three. First, using the system model, an a-priori state estimate xk+llk is 

calculated as follows: 

(4.4) 


Secondly, a discontinuous switching corrective term Kk is calculated and used to 

force the state estimates to be directed towards the actual (correct) state trajectory. 
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This is achieved by updating the a-priori state estimate and generating an a-posteriori 

state estimate xk+1lk+1 as follows: 

(4.5) 


In Figure 4.2, by applying the corrective SVSF gain Kk, the path of the estimated 

state is reversed whenever it crosses the actual state trajectory. 

As such the actual state trajectory can be considered as the switching hyperplane as 

shown in Figure 4.2, the estimation error is decreased and the state estimate 

approaches the true state trajectory. 

ezklk and ezklk-1 are the a-posteriori and a-priori measurement errors, 

respectively. They are defined as: 

ezklk =zk - iklk (4.6) 
(4.7)ezklk-1 = zk - ZkJk-1 

The SVSF's stability can be proven by using a discrete Lyapunov function, the Lyapunov 

function is used to validate stability of a given dynamic system. Let the discrete 

Lyapunov function be defined as: 

(4.8) 


The estimation process is stable if: 
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Thus, the SVSF corrective term Kk can be derived as follows. Re-arranging equation (4.9) 

then the condition of stability can be restated as: 

Magnitude 

ActualState Trajectory 
InitialstateEstimate ,....:::.·· ~ 

.._····-·- ........... ... 

~ ~-~···-·-\··~······r ../ .....-·I \ ' ~ EstimatedState 

' ' I ~ ' \ ~ .../ Trajectory' ' /' 
~-

' \ /'' \ ..........

".......... 

Time 

Figure 4.2. SVSF State Estimation Concept 

(4.10) 


Given the condition in equation (4.10), let the corrective gain be defined as: 
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(4.11) 

Where y E Rmxm is a diagonal matrix with elements within the range of 0 to 1. From 

equation (4.11), 

(4.12) 

Given y's definition, then: 

(4.13) 

Then, 

(4.14) 

Since from (4.11): 

(4.15) 

Then from equation (4.13): 

(4.16) 


From equation (4.3), (4.5), (4.7) get, 

(4.17) 

Substituting equation (4.17) into (4.16) then, 
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Consequently, the stability condition is satisfied and the corrective SVSF gain from 

equation {4.11) results in stability. 

Substituting from equations (4.3), {4.6), and {4.7), then equation {4.10) can be 

expanded to: 

(4.18) 


Then, for a completely observable and controllable system, if the output matrix H is 

a positive, diagonal matrix, and vk is white noise then: 

(4.19) 


Where E[.] is the expectation. 

Consequently, as the estimation algorithm proceeds, the expectation of the 

estimation error decreases. In other words, since the output estimates will eventually 

converge, this will lead to the convergence of the state estimates too. 

Due to the application of a sgn(.) function during the SVSF gain calculation, a 

discontinuous, high frequency, chattering arises in the state estimates. Chattering can be 

reduced or eliminated by introducing a smoothing function with a boundary layer 

thickness 'I'. The smoothing function thickness can be tuned during the estimation 

process while the existence subspace ~ width is unknown and a function of uncertain 
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dynamics related to modeling uncertainties. The smoothing function 'P, as shown in 

Figure 4.3 and Figure 4.4, can remove the effect of chattering if its width is greater than 

the existence subspace ~- It will otherwise fail to do so. To elaborate further, consider 

the following two cases. 

Case 1: t/J larger than the existence subspace {3 

Consider Figure 4.3 where the smoothing subspace t{J is selected to be larger than the 

existence subspace f3. In this case, after the state estimates are forced to the existence 

subspace, they remain within the smoothing boundary layer and the chattering effect is 

removed by applying a continuous corrective action through a saturation term sat(.) as 

follows: 

(4.20) 

System 
State Trajectory _, 

\ 
~···?·······,.Estimated State 

Trajectory 

Existence 
Subspace 
(width~) 

L---------------------------•Time 

Figure 4.3. Smoothing Boundary Layer [183] 
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Where the saturation function sat(.) is defined as follows: 

1, ez,k+llk/1/J ;;::: 1 (4.21) 

sat(ez,k+llk• 1/J) = ez,k+llk/1/J, -1 < ez,k+llk/1/J < 1 
{ -1, ez,k+llk/1/J :S -1 

Case 2: t/J smaller than the existence subspace p 

As shown in Figure 4.4, if the smoothing layer is smaller than the existence subspace, the 

estimates will exit the smoothing boundary layer and the saturation function effectively 

reverts to a sign function. The corrective action becomes discontinuous and chattering 

occurs indicating that the upper boundary of uncertainties has been incorrectly 

underestimated. 

System 
State Trajectory 

Amplitude 

Initial Value 

L---------------------------~~Time 

Figure 4.4. Chattering Concept Illustration [183] 
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4.2 The SVSF algorithm 

The SVSF algorithm has two forms, an original algorithm as stated in [181] that does not 

include a covariance derivation and a revised from that includes a state error covariance 

matrix Pk+lik as discussed in [184]. In the following subsection, the original form is 

presented first followed by the revised form. 

4.2.1 The original SVSF algorithm 

According to the previous section, if the SVSF gain satisfies the stability condition of 

lezklkl > lez k+llk+ll' the SVSF algorithm is stable and provides convergence. The SVSF 

algorithm can be summarized as follows, assuming a non-linear dynamic system with 

state and measurement equations defined as follows: 

xk+lik = f(xklk' uk, wk) (4.22) 
(4.23)zk+1ik = Hxk+1ik + vk 

Where f is a non-linear function and H is the measurement matrix. For linear systems, 

the system equation is defined as follows: 

(4.24) 

Where F, G are the state and input matrices respectively. 

The SVSF process is as follows, 

1. First step involves calculation of an a-priori state estimates xk+l!k 
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(4.25) 

Followed by the predicted measurement zk+lik' 

(4.26) 


The measurement error ez,k+llk can be calculated as the difference between the actual 

measurements and its predicted value: 

(4.27) 


2. Next comes the calculation of the SVSF gain as a function of the a-priori 

measurement error ezk+tlk' the a-posteriori measurement error ezklk' the 

convergence rate y, and the smoothing boundary layer thickness\(! such that: 

(4.28) 

3. The a-posteriori state estimate xk+llk+l is then calculated as follows: 

(4.29) 


4. Finally, the new updated measurement estimates are used for the next iteration: 

zk+llk+l = Hxk+llk+l (4.30) 

eZk+tlk+l = zk+l - zk+llk+l (4.31) 
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4.2.2 Revised SVSF form 

By including the state error covariance matrix Pk+llk, and using the same dynamic 

system described in equations (4.23), (4.24), the revised SVSF algorithm is as follows 

[184]. In addition to calculating the predicted state estimates xk+llk as discussed under 

step 1 in the previous subsection, the state error covariance matrix Pk+llk is also 

calculated as follows: 

(4.32) 


The SVSF gain is revised in step 2 as: 

Where, 1.jJ is a diagonal matrix representing boundary layer thicknesses form number of 

measurements. 

1 
0 0 

l/Jl
-ifj-1 = 0 0 (4.34) 

1 
0 0 

l/Jm 

The state estimate update equation of step 3 is altered as: 

(4.35) 
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Note that the revised gain of equation (4.33) does not alter the a-priori estimate and 

that, 

(4.36) 

As such the stability proof of the SVSF is not altered and the revised form only allows an 

iterative process for calculation the error covariance matrix. The covariance matrix is 

updated under step 4 as: 

(4.37) 

The revised SVSF algorithm is iteratively repeated similar to the original SVSF discussed 

in section 1.2.1. In the following, the SVSF is tailored to train feed-forward multilayer 

perceptron networks. The original algorithm is used in a multi-streaming global mode. 

4.3 The SVSF -based Neural Network Training 

The SVSF can be applied for training nonlinear feed-forward neural networks through 

estimation of the network weights. In this section, the formulation of the SVSF-based 

feedforward MLP training algorithm is presented. 

4.3.1 The SVSF Training Algorithm 

The SVSF can be applied for training nonlinear feed-forward neural networks by 

estimating network weights. In the same fashion as the Kalman filter, the SVSF has been 
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adapted to train feed-forward neural networks by visualizing the network as a filtering 

problem where F, G, and Ck are the system, input, and output matrices, respectively as 

follows: 

(4.38) 

(4.39) 


Where F =/, G = 0, and Ck is similar to the Extended Kalman filter case 

discussed earlier. The global SVSF training algorithm is iterative and is summarized by 

the following steps, assuming a training data set {xk, zk}. 

Step 1: Network weights initialization 

The a-priori state estimates or network weights, wklk' are randomly initialized ranging 

from -1, 1. 

Step 2: Calculation of the predicted (a-priori} weight estimates wk+llk 

from (4.38} 

For neural networks training, the system matrix F is an identity matrix and G matrix is 

set to zero. Consequently, when the algorithm is initialized, the a-priori weight matrix is 

the same as the a-posteriori from the previous step as follows: 

(4.40) 
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Step 3: Jacobian Matrix calculation (Linearization) of the measurement 

matrix ck 

The algorithm for the Jacobian matrix calculation is as follows, assuming the use of 

nonlinear sigmoidal activation functions denoted as <p1, <rn and <p0 for the first, second 

and output layers respectively shown in Figure 4.5, the network transfer function can be 

mathematically defined as: 

(4.41) 

for i=1,2..m 

Where m denotes the number of output neurons, w1, wii, and w0 are the group 

weight matrices for the first hidden layer, the second hidden layer and the output layer, 

respectively. Linearization is performed by differentiating the network transfer function 

with respect to network synaptic weights (i.e., deriving the Jacobian). The Jacobian 

matrix ckllinearized can be mathematically expressed as follows: 

ayl ayl ayl 

awl aw2 awNT 
ay2 ay2 ay2 

(4.42)
ckllinearized = awl aw2 awNT 

aym aym aym 

awl aw2 awNT 
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Where Nr denotes the total number of synaptic weights (including bias) and z 

specifies number of input neurons. By differentiating (4.41) with respect to different 

weight groups w1, wu, w0 and fori, l=l, 2 ... m the following is obtained: 

ay, = {qJo (W0 ;<'Pu(Wu(/JJ(wlu))) (/Ju(Wu(/JI(wlu)), if i = l (4.43) 
awol 0, otherwise 

(4.44) 

(4.45) 

By placing (4.43), (4.44), and (4.45) in a matrix form, then: 

ay (4.46)
ckllinearized = [aw 

0 

Ckllinearized is the m-by-Nr matrix of the linearized model around the current weight 

estimate. After linearization, the measurement equation is in the following form: 

(4.47) 

Thus by multiplying the linearized Jacobian measurement matrix Ckllinearized by the 

a-priori network weights wk+llk then network output vector prediction ik+tlk is 
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generated. In this SVSF formulation, the states are treated as the weights of the system 

and the output vector is a linearly related to the states by the matrix Ckllinearized· 

Step 4: Perform state transformation 

State transformation is applied so that the output vector is related to the states using an 

identity matrix I. A new state vector .Xk+llkis formulated and used instead of the old 

state vector wk+lik by replacing the term Ckilinearizedwk+likwith xk+llk as follows: 

(4.48) 


Note that the system and output equations in {4.40) and {4.47) after the previous step 

becomes 

(4.49) 

(4.50) 


Step 5: Network's a-priori output (measurements) zk+llk calculation 

(4.51) 


Step 6: Measurement error ezk+llk calculation 

Using the output ik+lik and the corresponding target (from the neural network training 

data set) z, measurement errors ezk+llk can be calculated as follows: 

(4.52) 
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Step 7: SVSF gain calculation 

The SVSF gain is a function of the a priori and the a posteriori measurement errors 

ezk+llk and ezklk' the smoothing boundary layer widths l/J, the SVSF memory or 

convergence rate y, as well as the linear measurement matrix Ckllinearized· The SVSF 

gain is defined as a diagonal matrix such that: 

(4.53) 

Step 8: Weight update 

The a-posteriori weights xk+llk+l are obtained as: 

(4.54) 

Step 9: The a-posteriori output estimate and error calculation 

ik+llk+l and measurement errors ezk+llk+l are calculated to be used for the next 

iteration: 

(4.55) 

(4.56) 

Step 10: The actual weights (states) calculation 

Get the actual weight estimates (states) wk+llk from the states xk+llk as follows: 
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(4.57) 

Steps 3 to 10 are iteratively repeated while shuffling (randomly shifting) the training 

data set each epoch. Shuffling process involves training the network by presenting 

training data sets in a random order each epoch. Shuffling aims at enhancing 

performance by allowing training process to be unbiased. For back propagation 

algorithm discussed earlier, shuffling helps in removing undesirable effects such as 

convergence to local minimum or oscillations that might occur during training. 

Training proceeds until one of the stopping conditions is reached as previously 

discussed in chapter 3. 

4.4 Pseudo-inverse instability 

Numerous authors have experienced abrupt and unexpected instabilities with 

the pseudoinverse [185,186]. A sudden growth of the Jacobian matrix elements when 

calculating the pseudoinverse during the SVSF gain calculation occurs at each epoch, as 

in (4.57). Consequently, the network's outputs and thus the mean squared error 

between the targets and outputs increase significantly. A stabilizing adjustment is 

performed to avoid this problem. 
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w1 (k) ~Jk) 
rpl 

~(k) ~(k) 

Figure 4.5. Feed-Forward Multilayer Perceptron with 'z' Inputs, 2 Hidden Layers and 

'm' Outputs 

The problem has been extensively analyzed in [185], and occurs due to the 

presence of singularities. Singularities occur when the Jacobian matrix loses rank. Small 

singular values of H might arise in the vicinity of these singularities. Consequently, larger 

values ensue when obtaining the pseudoinverse of the Jacobian H + thus creating larger 

error values which leads to instability. According to [187], it is rather difficult to detect 

these singularities. A traditional method of solving this instability problem is to replace 

the pseudoinverse H+ with the following equation : 

(4.58) 
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Where, p is called the damping parameter. The effect of the added damping is that it 

mitigates the effect of small singular values when computing the inverse. Its 

disadvantage is that a small error is introduced when calculating the inverse. 
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Chapter 5 Application of the SVSF 
Training Method to Benchmark 
Problems 

Introduction 

In this chapter, the application of the SVSF-based training method on a benchmark 

problem is discussed. The benchmark problem is known as PROBEN! and it is widely 

applied in the literature to assess the performance of various training techniques. The 

SVSF-based training method is compared to classical training techniques such as the first 

order back propagation (BP) algorithm, the Levenberg-Marquardt (LM), Quasi-Newton 

(QN), and the extended Kalman Filter (EKF) using these benchmark problems. This 

chapter is divided to three sections. Section 5.1 involves the description of the three 

benchmark problems under consideration. Section 5.2 provides benchmarking rules 

followed during training. Section 5.3 includes simulation results of the SVSF-based 

training algorithm in addition to other previously mentioned classical training 

techniques. 

5.1 Benchmark classification problem (PROBENl) 

PROBEN! is a standard set of classification oriented problems, conventions, and 

guidelines that are used in assessing algorithms [165]. PROBEN! is a collection of 15 data 

sets form 12 diverse fields that represent real world data in both continuous and binary 
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values. In addition, PROBEN1 includes a set of rules on how to conduct a benchmark 

neural network training test to allow easy comparisons of training algorithms. PROBEN1 

has overcome various deficiencies related to previously published scientific projects in 

the field of artificial neural networks as stated in [165] as follows: 

(1) 	 Most of the problems used were artificial problems like XOR and n-parity. 

They have solid a-priori consistencies among training samples which make 

it unfair to test training algorithm generalization competences. 

(2) 	 There was barely enough statistical assessment of the simulation results. 

(3) 	 Information about various parameters and network topologies were not 

adequately communicated to enable other researchers to reproduce the 

results. 

PROBEN1 consists of training data sets from the University of California, Irvine (UCI) 

learning database archive [165]1
. PROBEN1 provides three different versions of the same 

data set according to the order of the training samples within the dataset. For example, 

three versions of data set for Cancer diagnosis are available namely, Cancerl, Cancer2, 

and Cancer3 that differs in the ordering of dataset. In this paper, the datasets are used 

for neural network training by splitting them in parts into 50%, 25%, 25% segments 

representing training, validation, and testing sets, respectively. In this research, a fully 

connected feed forward multilayer perceptron with two hidden layers is used. The 

network topology varies depending on the classification problem. Networks were 

1 
Data is available for download through: (ics.ci.edu, directory /pub/machine-learning-database) 
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trained using the SVSF, EKF, the batch mode first-order BP, and the second order BP 

algorithms namely, Levenberg-Marquardt (LM) and Quasi-Newton (QN). 

PROBEN! includes 15 classification problems. Of these, three classification problems 

with different training difficulty levels are selected. They include Cancer, diabetes, and 

glass problems. 

5.1.1 Cancer Problem 

Data sets were originally obtained by Dr. W. H. Wolberg, University of Wisconsin 

Hospitals, Madison [188]. This problem represents classification of breast tumour to 

either malignant or benign. 699 training data sets, with nine inputs and two outputs 

each, are collected using microscopic investigations. Inputs represent attributes used for 

cancer classification includes: 1-Ciump Thickness, 2-Uniformity of Cell Size, 3-Uniformity 

of Cell Shape, 4-Marginal Adhesion, 5-Single Epithelial Cell Size, 6-Bare Nuclei, 7-Biand 

Chromatic, 8-Normal Nucleoli, and 9-Mitoses. Outputs represent 0 or 1 depending on 

the classification of cancer to either malignant or benign. 

Three forms of the same problem namely cancer!, cancer2, cancer3 are presented 

according to the order of data set. Cancer! only has been implemented in this research. 

Datasets are split into three segments for training (SO%), validation (25%), and testing 

(25%). Table 5.1 shows different class distributions and percentages. There are 16 
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missing values for attribute (input) 6 that are replaced by a constant value of 0.3 instead 

for network training. 

Table 5.1 Cancer Problem Class Distribution 

Output Class 

Distribution Benign Malignant Total 

Total# 458 241 699 

Total% 66 34 100 

5.1.2 Diabetes Problem 

This data set is from the "Pima Indians diabetes" folder from the UCI database archive. 

The problem tackles classification of "Pima Indian" individuals to either diabetes positive 

or not. The Datasets consist of 768 examples with eight inputs and two outputs. Inputs 

represent eight personal and experimental data as follows: 1-Number of times pregnant, 

2-Piasma glucose concentration in 2 hours in an oral glucose tolerance test, 3-Diastolic 

blood pressure, 4-Triceps skin fold thickness (mm), 5-2-Hour serum insulin (mu U/ml), 6­

Body mass index (weight in kg/(height in m)2 ), 7-Diabetes pedigree function, 8-Age 

(years). Two binary outputs provide classification of Pima Indian individuals to either 

diabetes negative {0) or diabetes positive (1). 65.1% of the examples are diabetes 

negative. Table 5.2 shows diabetes dataset distribution and percentages of samples. 
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Table 5.2. Diabetes Problem Class Distribution 

Output Class 

Distribution Diabetes No diabetes Total 

Total# 268 500 768 

Total% 34 66 100 

5.1.3 Glass Problem 

The third dataset is fetched from the "glass" problem in UCI database archive. This 

problem tackles classification of glass to one of six categories. Glass data set consists of 

nine inputs: one representing glass refractive index (1) and the remaining eight inputs 

represent percentage content of eight glass splinter chemical elements namely, Na-

sodium (2), Mg-magnesium (3), Al-aluminum (4), Si-silicon (5), K-potassium (6), Ca-

calcium (7), Ba-barium (8), and Fe-iron (9). 

Glass Samples are classified to one of the following six outputs namely, float 

processed (1), non-float processed building windows (2), vehicle windows (3), containers 

(4), tableware (5), and head lamps (6). This benchmark problem is used for forensic 

criminal investigations. 
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214 datasets are used in this test. All inputs are continuous. This benchmark 

problem is quite challenging as fewer number of datasets are available compared to 

cancer and diabetes problems. Hence, it tests the sensitivity of training algorithm to 

discard (waste) information. Table 5.3 shows glass distribution of samples. 

Table 5.3. Glass Problem Class Distribution 

Output Class 

Distribution 1 2 3 4 5 6 Total 

Total# 70 76 17 13 9 29 214 

Total% 32.7 35.5 7.9 6.1 4.2 13.6 100 

The three benchmark problems previously stated characterize different degrees 

of classification difficulties. Cancer provides adequate number of training samples. 

Classes are partially overlapped with complex boundaries amongst them. Hence, it is a 

fairly easy classification task [167]. Diabetes represents higher level of difficulty by 

overlapping classes as well as complex boundaries. Glass increases the level of difficulty 

by providing few training data sets in addition to complex boundaries and overlapping 

classes. Table 5.4 summarizes the training data attributes. For each benchmark problem, 
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it shows number of inputs, input attributes, output classes, number of training data sets, 

and the entropy. 

Input attributes are all continuous. Output attributes are all binary for all 

problems under investigation. The entropy 'E' is a measure of random variable 

uncertainty or unpredictability. As entropy increases, the level of unpredictability 

increases too. Entropy for class probabilities P(c) is defined as follows: 

E = L P(c) log2 (P(c)) (5.1) 
Classes c 

As shown in Table 5.4, cancer and diabetes are relatively predictable. Glass is 

highly unpredictable thus it is much harder problem. 

Table 5.4 Attribute Structures of Classification Problems 

Problem Input values Output Classes Training set # E 

Cancer 9 2 699 0.93 

Diabetes 8 2 768 0.93 

Glass 9 6 214 2.18 
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5.2 Benchmarking Rules 

In this research, benchmarking rules stated in [165] are followed. The training algorithms 

used are briefly discussed in Chapter 3. These are the first order, gradient-based batch 

back propagation algorithm [189], the Levenberg Marquardt algorithm [190,191], the 

Quasi-Newton technique [192], and the extended Kalman filter [178,47]. The 

measurement noise covariance matrix R elements are set to 0.1 such that R = 0.1 * 

lmxm . The process noise covariance matrix Q elements are set to 0.01 such that Q = 

0.01 * lnxn· The initial error covariance matrix P010 elements are set to 0.1 X lnxn· 

The SVSF algorithm is as stated in chapter 4. The boundary layer thickness t/J is 

set to 0.01 and y is set to 0.2. The state error covariance matrix P, measurement noise 

covariance matrix R, and the process noise covariance matrix Q are not required as in 

the case of the EKF, thus fewer parameters are required to be tuned. Using the SVSF, 

only one parameter requires tuning that is the boundary layer thickness t/J reducing the 

complexity of its implementation compared to the EKF. For the SVSF and EKF, weights 

and biases are updated once at the end of each epoch using the multi-streaming 

approach as discussed earlier in chapter 4. 

For input and output data processing, training data sets are processed before 

they are used for training. First, input values that are identical for all input vectors are 

excluded from the training data set. These inputs do not add any information and may 

lead to numerical problems throughout network training [193]. Secondly, to achieve 
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faster training response, input vectors are normalized to the range [-1, 1]. A threshold 

function with value of 0.5 is applied to all neurons in the output layer thus binary 

outputs are attained. 

Concerning training data division and early stopping, the training data set is 

divided into 50%, 25%, 25% segments for training, validation, and testing, respectively. 

Training portion is used to calculate the gradient and for weight and bias update. 

Validation set is used for cross-validation which is performed to assess training quality as 

training proceeds. Cross-validation is implemented to overcome over-fitting (over-

training) [165]. Over-fitting may happen when the training algorithm focuses on training 

set peculiarities at the cost of losing generalization ability [166]. In other words, the 

trained network MSE might be minor during training but throughout testing the network 

may exhibit poor generalization performance. 

In this research, cross-validation is performed by using early stopping techniques 

previously discussed in Chapter 3, namely, generalization loss and training progress 

stopping criteria. In the following section, the SVSF performance is compared to various 

training techniques as applied to the three benchmark problems. 

5.3 SVSF Performance Compared to Classical Training Techniques 

A fully connected feed-forward multilayer perceptron with two hidden layers is used. 

Table 5.5 summarizes the networks' architecture used for the three proposed 
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benchmark problems. All software is developed using MATLAB {2009a, MathWorks). 

The optimized Matlab Neural Networks toolbox is used for implementation of QN, BP, 

and LM algorithms while a non-optimized algorithms for the SVSF and the EKF are 

developed from scratch. A nonlinear sigmoidal activation functions cp(.) as shown 

below is used in the hidden layers while linear neurons are employed in the output 

layer. 

1 
a > 0 and - oo < w < oo {5.2)cp(w) = 1 + e-aw 

Where, a is set to one in this application. 

In this research, multiple training and testing runs have been carried out followed 

by statistical analysis. This is due to the fact that random initialization arises in 

training a neural network. Consequently, different results may occur even by applying 

a similar training technique using the same training data set. Accordingly, 30 runs 

have been carried out followed by calculating the mean, standard deviation, and the 

'best' run using test, training, and validation set error. 
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Table 5.5. Networks Architecture for the Three Benchmark Problems 

Problem 
Networks Architecture 

#Inputs Hidden#l Hidden#2 #Outputs 

Cancer 9 12 12 2 

Diabetes 8 11 10 2 

Glass 9 12 11 6 

Assessment of training techniques, as stated in the literature (chapter 2), is 

performed according to MSE variations during training, trained networks generalization 

capability, ability to avoid premature convergence to local minimum, and number of 

epochs till convergence (or according to training time). Figures 5.1, 5.2, and 5.3 show 

the changing MSE over time for the three different cases for the training algorithms 

using the same network initialization and architecture. For the three benchmark 

problems, the SVSF has provided convergence in minimum number of epochs compared 

to Levenberg-Marquardt, Quasi Newton, and batch first order back propagation 

algorithm. The SVSF achieves comparable performance to the EKF. 

For the Cancer problem, at the 2nd epoch, the SVSF reaches MSE of 0.06007 while 

the MSE for the EKF is 0.095. At the 3rd epoch, the MSE for the SVSF is 0.024 compared 

to 0.0319 for the EKF. For the Glass problem, at the 2nd epoch, the SVSF MSE is 0.125 

while the MSE for the EKF is 0.147. At the 3rd epoch, the MSE for the SVSF is 0.095 

compared to 0.1072 for the EKF. 
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For the Diabetes problem, the SVSF reaches MSE of 0.175 at the 3rd epoch compared 

to 0.201 for the EKF, while Quasi-Newton, Levenberg Marquardt, and first order BP 

achieve 0.263, 0.279, and 0.67 respectively. In conclusion, the SVSF provides stability 

and reaches the minimum MSE in the least number for epochs compared to other 

standard training techniques. 
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BP, LM, and QN algorithms are implemented using the Matlab Neural Networks toolbox 

which is optimized for speed and memory requirements while the SVSF and EKF functions are 

implemented using non-optimized, personally developed, m-file codes. Accordingly, 

comparison between the EKF and the SVSF only is provided. Tables 5.6, 5.7, and 5.8 show the 

average epoch computational time for the EKF and the SVSF. 

Table 5.6. Average Epoch Computational Time for the Cancer Problem 

Training Technique EKF SVSF 

Time (Sec) 16.50 17.15 

For the Cancer problem, the EKF requires less epoch time compared to the SVSF. 

For the diabetes problem, the EKF and the SVSF computational times are comparable 

while for the Glass problem, the SVSF requires less epoch time compared to the EKF. 

Table 5.7. Average Epoch Computational Time for the Diabetes Problem 

Training Technique EKF SVSF 

Time (Sec) 12.2 12.32 
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Table 5.8. Average Epoch Computational Time for the Glass Problem 

Training Technique EKF SVSF 

Time (Sec) 13.14 12.33 

Tables 5.9, 5.10, and 5.11 show simulation results using the proposed SVSF 

training algorithm along with other standard training algorithms. The tables show 

training and generalization (testing) results on the three selected benchmark 

problems. Mean squared error percentage is shown as the performance measure. 

Network weights are initialized 30 times and statistical analysis is performed on the 

data. Mean squared error, mean standard deviation, best, and worst runs have been 

recorded in the table in addition to mean number of epochs until one of the stopping 

criteria stated before is achieved. 

For the Cancer problem, the SVSF has shown better results compared to the EKF, 

LM, and BP. During testing, which is the most important performance measure as it 

tests trained networks generalization capability, the SVSF provides the best mean 

generalization after QN. The SVSF's mean testing error is close to Quasi Newton. 

However, QN algorithm requires more epochs to train which gives the SVSF an 

advantage over the QN. In addition, the SVSF achieves the least level of standard 
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deviation during testing compared to EKF, LM, and BP. The SVSF's standard deviation 

is comparable to the QN. Regarding best and worst runs, SVSF, EKF, LM and QN 

achieve the same best run followed by BP. Regarding worst run, QN achieves the best 

performance followed by the SVSF and the EKF with the same performance, then LM, 

while the first order batch BP is far behind. Regarding number of epochs, the SVSF, 

EKF, and LM achieve the same number of epochs followed by the QN and the first-

order BP. 

For the Glass problem, during testing, the SVSF achieves better training and 

generalization capability (least mean squared error) and mean standard deviation 

compared to the LM, QN, and BP and provides comparable ones to the EKF. The SVSF 

and EKF provide the best runs compared to other training techniques and the EKF 

provides the least of the worst run error. Regarding number of epochs, the EKF, SVSF, 

LM are the same and less than the QN and BP. For diabetes problem, the QN achieves 

slightly less mean squared error percentage and standard deviation compared to the 

SVSF. However, the QN requires more than double the number of epochs to train 

compared to the SVSF. The LM and the EKF mean squared error percentages along 

with number of epochs are comparable with the SVSF's. 

In conclusion, the SVSF has shown excellent generalization capability and 

minimum number of epochs to converge, especially for the cancer problem, which 

makes it a good candidate for feedforward neural networks training. Even though the 
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EKF and SVSF in their global mode are computationally expensive, they provide an 

advantage over BP, QN, and LM that they are able to avoid local minima problems by 

incorporating second order information in the form of the state error covariance 

matrix P (in case of using the revised SVSF form previously stated in chapter 4). In 

addition the SVSF can avoid local minima problems due to the switching corrective 

action that force the state estimates to converge to the actual state estimates. 

The original SVSF provides an advantage over the EKF is that it has only one 

tuning parameter is required that is the boundary layer thickness t/J but three tuning 

parameters are required in case of the EKF representing the error covariance matrix P, 

system noise covariance matrix Q, and measurement noise covariance matrix R. 

The SVSF and EKF computational requirements can be further enhanced using a 

decoupled form. In decupled SVSF and EKF forms, instead of grouping all network 

weights into one single block (as in the global mode), a decoupled SVSF and EKF can be 

implemented by forming groups of weights where all weights that are targeted to one 

neuron are considered as a group. Consequently, instead of processing the entire 

weights simultaneously, small matrices of weights are processed thus helps in 

decreasing computational requirements. 
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Table 5.10. Error Rates Using Glass Data Set for Various Training Techniques 
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Chapter 6 Fault detection using 

Neural Networks trained by the 

Smooth Variable Structure Filter 


Introduction 

In this chapter, the relatively new smooth variable structure filter (SVSF) is used for the 

training of nonlinear multilayered feed forward networks for fault detection 

applications. The SVSF is applied in a global (GSVSF), multi-streaming mode. The SVSF-

based neural networks have been implemented in an industrial application, namely, 

Engine fault detection and classification using vibration data in the crank angle domain 

in a four-stroke, eight-cylinder engine. Furthermore, a comparative study between the 

popular back propagation (BP) method, the extended Kalman filter (EKF), and the SVSF 

is presented for these applications. Experimental results indicate that the SVSF is 

comparable with the EKF, and both methods outperform BP. 

6.1 Engine Fault Detection Application Using Neural Networks 

Throughout the literature, various fault detection and isolation (FDI) techniques have 

been implemented to detect and classify internal combustion engine faults. As stated in 

chapter two, they are divided accordingly to signal-based and model-based FDI 

techniques. In this section, a signal-based FDI technique, as discussed in Chapter four, 
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using neural networks trained by the SVSF is implemented as the fault detection 

strategy. Two faults have been induced in the engine; they involve missing bearing fault 

(MB) and piston chirp (PC) fault. Vibration signals recorded pertaining to these two fault 

cases as well as measurements data from the baseline fault-free engine are used for 

neural networks training. 

6.1.1 Engine Experimental Setup and Operating Conditions 

This section provides a description of the engine's experimental setup and operating 

conditions. The experimental setup is as shown in Figure 6.1, and involves a four stroke, 

5.0 L, eight cylinder, Coyote-VP engine. The test and data collection are performed in a 

semi-anechoic chamber at FORD's Powertrain Research and Development Centre 

(PRDC). The semi-anechoic chamber is used to assure that the recorded vibration signal 

from the system is free from any noise contamination. The system's experimental setup 

is built in an arrangement that closely imitates the actual vehicle conditions. The setup 

involves the engine under consideration, clutch and transmission assembly including: 

alternator, compressor, fan belt, power-steering pump, and engine mounts. The engine 

under consideration is operated at around 600 rpm with idle conditions [194]. The 

engine's temperature can impact vibration signals as high temperatures might affect 

vibration due to changes in clearances due to expansions taking place between engine's 
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rotating parts. Consequently, the engines' oil and cooling water temperatures are held 

constant at around 180-190 °F [194]. 

Figure 6.1. Engine Experimental Setup and Transmission unit [194] 

6.1.2 Data Acquisition System, Transducers Types, and Positioning 

Vibration data is recorded using a charge-type piezoelectric accelerometer. Data is then 

acquired by a PROSIG 5600 data acquisition system with a built-in 16 bit Analogue to 

digital {ADC) Converter. Digital vibration data is stored in a PC for offline analysis in 

order to extract fault condition information. 

6.1.2.1 Data Acquisition system 

The PROSIG ADC card is set at a sampling frequency of 32,768 Hz and with channel 

resolution of 0.3 mV. The data acquisition system, as shown in Figure 6.2, has eight 

135 




M.A.Sc Thesis McMaster University 

Ryan Ahmed Department of Mechanical Engineering 


analogue input channels. Three channels are used in this research. The first channel is 

used for acceleromet er vibration signal acquisition, the second channel is used for Cam 

Identification (CID) sensor signal discussed in more details in subsection 6.1.2.4, and the 

third channel used for measuring rotational speed (RPM). 

Figure 6.2. PROSIG 5600 Data Acquisition System [194] 

The accelerometer's analogue output voltage, that represents a measure of the 

engine's acceleration, is being sampled and conditioned using an anti-aliasing filter 

before being converted to 16-bit digital form using the built-in ADC card. 

For our experimental setup, the continuously changing accelerometer's analogue 

signal is fed to an anti-aliasing filter with a cut off frequency of 13,107 Hz. The 
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frequency range of interest is 0 to 10,000 Hz. In order to satisfy Nyquist-Shannon, since 

the signal's maximum frequency content is 10,000 Hz, the minimum sampling 

frequency that can be used is 20,000 Hz. By adding a safety factor, the sampling 

frequency is set to 32,768 Hz throughout the entire experiment. Thus, 32,768 samples 

are acquired every second. For neural networks training, the engine runs for four 

seconds, thus the total number of samples per engine is as follows: 

Total number of Samples= 32,768 * 4 = 131,072 samples 

6.1.2.2 ADC Resolution Calculation 

The resolution is generally defined as the smallest change in the input that causes 

change in the output. The voltage resolution of an ADC can be calculated by dividing the 

overall voltage measurement range by the number of discrete voltage levels 

. Analogue Voltage Range Vmax- Vmin 
Resolutwn = . = 

Number of dLscrete levels 2N 

The PROSIG resolution is calculated as follows, knowing that the analogue 

voltage range is -10V to + 10V, the resolution is: 

. Vmax- Vmin 10- (-10) 20 
Resolutwn = 2N zl6 =65,536 = 0.3 mV 
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The PROSIG resolution is enhanced by involving a variable gain ranging from 1 to 

1000, consequently, by setting the gain to 1000, the maximum resolution of 0.3 J1V can 

be attained. 

6.1.2.3 Accelerometer Transducers 

Piezoelectric accelerometers have been used to measure engine vibration in order to 

extract fault signatures. The piezoelectric accelerometer uses piezoelectric effect 

piezoelectric effect is a phenomenon where electric charges are accumulated on the 

surface of piezoelectric materials when subjected to mechanical strain. By applying a 

tension or compression force on the piezoelectric material, electric charges are 

produced on both sides of the material with polarity depending on the force direction. 

The piezoelectric effect is relatively important as it represents the link between 

mechanical and electrical states. The piezoelectric effect is reversible; by applying 

electric field on the piezoelectric crystal, internal forces are generated. 

The piezoelectric accelerometer structure, as shown in Figure 6.3, consists 

mainly of a piezoelectric crystal, a seismic mass, preload stud, and built-in electronics 

(amplifier). The seismic mass loads the piezoelectric material through the preload stud. 

The accelerometer can be modeled as a damped mass on a spring as shown in Figure 

6.4. 
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HOUSING PRELOAD STUD 
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BUILT-IN 
ELECTRONICS 

GROUND (-) 

Figure 6.3. Piezoelectric Accelerometer Construction 

In practice, the accelerometer is directly attached to the vibrating body, so when 

the accelerometer is subject to excitation, a force is generated according to Newton's 

second law (Force=Mass x Acceleration) on the piezoelectric material by the seismic 

mass which in turn produces electric charge that is proportional to the acceleration 

exerted. Then the output charge is magnified by an amplifier (Built-in electronics) and 

fed through a data acquisition system. 
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Figure 6.4. Piezoelectric modeling as a mass spring damper element 

In our experimental setup, the piezoelectric accelerometer has been attached to 

the engine head in a predefined position (discussed later) in order to detect faults 

conditions of interest. The accelerometer model is of Bruel and Kjaer 4366 charge-type 

piezoelectric accelerometer. Charge-type piezoelectric accelerometers are characterized 

by the ability to withstand high temperatures, capability to produce accurate results in 

harsh envi ronments which in turn makes it a good candidate to measure engine 

vibration . 
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6.1.2.4 The Transducer Locations 

At Ford plant, the experimental setup used four charge-type piezoelectric 

accelerometers mounted on the engine to measure vibration signals. As shown in Figure 

6.5, two accelerometers are placed on the cylinder head and two on the engine lugs. 

These accelerometers are used to measure vibration signal for detecting fault conditions 

by comparison with standard charts. 

In this research project, two types of faults are considered; missing bearing and 

piston chirp that occur in one cylinder and can be detected using vibration signals from 

the upper right accelerometer shown in Figure 6.5. 

In addition to this accelerometer, the engine's crank angle speed (in RPM) and 

position are measured. The engine's rpm is acquired using a tachometer and the signal 

is fed to the PROSIG data acquisition system. The crank angle position is detected using 

a cylinder identification {CID) sensor. The CID is an electromagnetic sensor that 

produces five sinusoidal beats to indicate the location of the camshaft. 
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Location of the upper 
right accelerometer 
(accelerometer of 
interest) 

Figure 6.5. Accelerometers Location on the Engine's Lug and Cylinder Head [194] 

The CID's signal is used for expressing vibration data in terms of the crank angle 

domain rather than the time domain which is later used for neural networks training. 

After data acquisition, the time domain data is converted to the crank angle 

domain using the cam identification {CID) sensor signal. CID sensor is used to detect 

camshaft angle position . 
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Figure 6.6. CID signal showing five sinusoidal pulses 

It is a non-contact sensor mounted on the engine and generates sinusoidal 

pulses at the specific angles of 90°,120°,60°,120°,60°, 180°, and 90° of the engine cycle 

as shown in Figure 6.6. 

The first sinusoidal pulse zero-crossing indicates that the first cylinder is 10° 

away from the top-dead-center (TDC). Accordingly, the positioning of the cylinder is 

determined using the CID signal. 
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Figure 6.7. Vibration Signal in the Time Domain for the Baseline case, Missing Bearing, 

and Piston Chirp faults 

The accelerometer's vibration signal in the time domain captured for the baseline 

case and the two faults of interest are as shown in Figure 6.7. Its conversion to the crank 

angle domain is shown in Figure 6.8. 

144 




M.A.Sc Thesis McMaster University 

Ryan Ahmed Department of Mechanical Engineering 

RUN 1 Accelerometer readings for Baseline data 
(\J 20 
u 
<1> 

E 
(/) 

c 
.Q 0 
~ 
<1> 
Qi 
u 

X: 349 

u 
<( -20 

0 100 200 300 400 500 600 700 

Crank angle(Degrees) 


RUN 1 Accelerometer readings for Missing Bearing 

(\J 
u 
<1> 20 

E 
(/) 

c 
0 0 
~ 
<1> 
Qi 
u -20 
u 
<( 

0 

X: 128 
Y: -0.3041 I 

~~-~ 
I I I 

- - - - - - - l - - - - - - - - ,- - - - - - - - I - - -

100 200 300 400 500 600 700 
Crank angle(Degrees) 

RUN 1 Accelerometer readings for Piston Chirp 
(\J 
u 
<1> 

~ c 
0 

~ 
<1> 

Qi 
u 
u 
<( -20 

0 

X: 128 
Y: 5.991 

100 200 300 400 500 600 700 
Crank angle(Degrees) 

Figure 6.8. Baseline, Missing bearing, and Piston Chirp vibration data in the crank 

angle domain 

By examining the transformed data in the crank angle domain in Figure 6.8, 

there is a clear spike at a crank angle of 349°. The acceleration values for the three 

engine conditions considered (baseline, missing bearing, and piston chirp faults) are 

2.61, 26.26, and 0.1062 mjsec2
• 
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Figure 6.9. Baseline Vibration Data in the Crank Angle Domain for 30 Runs 

Consequently, trained networks using various training techniques are able to 

identify the missing bearing fault with high accuracy, while some networks misclassify 

baseline and piston chirp faults. Another point of interest that differentiates between 

the three faults under consideration is at angle of 128°. 
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Figure 6.10. Piston Chirp Vibration Data in the Crank Angle Domain for 30 Runs 

The acceleration values are 0.3899, -0.3041, and 5.991 mjsec2 for the baseline, 

missing bearing, and piston chirp faults, respectively. Figures 6.9, 6.10, and 6.11 show 

vibration data in the crank angle domain for 30 engine cycles for each fault under 

consideration. 
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6.1.3 Faults detection methodology 

Vibration signals recorded for the two fault conditions {Missing bearing {MB) and 

piston chirp {PC)) as well as for the baseline fault-free engine are used for training the 

neural networks. Data sets include 40 runs with piston chirp fault, 40 with missing 

bearing, and 40 for fault-free engines. The time domain vibration data are transformed 

to the crank angle domain as previously discussed. Examples of recorded and 

transformed data sets for the two faults conditions and the fault-free engines are shown 

in Figure 6.8. 
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Figure 6.11. Missing Bearing Vibration Data in the Crank Angle Domain for 30 Runs 
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In this research, fully connected feedforward multilayer perceptron network 

with one input layer representing the vibration data in the crank angle domain, two 

hidden layers with four neurons each, and one output layer with three neurons is used. 

Trained network are required to classify engines to either one of the two faults or to a 

baseline (fault-free) case as follows: (1, 0, 0: Baseline engine), (0, 1, 0: Piston Chirp fault 

detected), (0, 0, 1: Missing Bearing fault detected). 

The test data has been generated using 40 cycles from each case resulting in 120 

data sets. Of these, 90 runs are used for networks training. The remaining 30 runs (10 

test runs for each case) are used for validation of neural networks performance. 

Networks were trained using the SVSF, EKF, batch first order, and second order 

BP algorithms (Levenberg-Marquardt and Quasi-Newton). Figure 6.12 shows root mean 

square error (RMSE) variation for the first 17 epochs. The SVSF convergence properties 

outperform the conventional first order BP algorithm and it is comparable to the EKF 

and second order BP. At the sixth epoch the SVSF reaches the least RMSE of 0.0221. 

Table 6.1 shows the trained networks RMSE using several training techniques after the 

sixth and the 15th epochs. 
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Table 6.1. RMSE for Various Training Techniques after the 6th and 15th Epochs 

Training Technique 6th Epoch RMSE 15th Epoch RMSE 

Batch First-Order BP 0.4276 0.4052 

Levenberg-Marquardt 0.1215 2.8e-8 

Quasi-Newton 0.1261 0.01189 

EKF 0.0522 0.01796 

SVSF 0.0221 0.006504 

Results are summarized in a matrix form widely known as the confusion matrix. 

The naming convention of the "confusion" is chosen in published literature as it signifies 

if the network is "confused" or correct in classifying the classes. As shown in Figure 6.15, 

each column represents the number and percentage of instances in the actual (Target) 

class. Each row represents number and percentage of instances in the prediction class. 

The training and testing results for the networks using 90 data sets and 30 data sets, 

respectively, are as shown in Figures 6.13 to 6.23. 
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Training and testing results for the three cases shown in Figures 6.13 to 6.23 are 

summarized in Table 6.2. The SVSF achieved the highest testing percentage or correct 

classification in both training and testing along with Quasi-Newton followed by the EKF, 

the Levenberg-Marquardt, and finally the BP. 
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Table 6.2. Overall Training and Testing Classification Results 

Training technique Training% Testing% 

First-order BP 91.1 80 

Levenberg-Marquardt 100 93.3 

Quasi-Newton 100 96.7 

EKF 100 93.3 

SVSF 100 96.7 

Average epoch computational time for the EKF and SVSF are summarized in table 

6.3. As previously stated, the EKF and SVSF are non-optimized codes while BP, LM, QN 

are optimized for speed and memory requirements. The SVSF requires less epoch 

computational time compared to the EKF. 

Table 6.3. Average Epoch Computational Time for Engine Fault Detection Problem 

Training 
Technique 

EKF SVSF 

Time (Sec) 25.67 22.61 
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In Conclusion, in this fault detection application, the GSVSF has been successfully 

applied to train a multilayer feed-forward network and to detect and classify three 

engine faults. The GSVSF demonstrated stability, excellent generalization capability, and 

convergence in minimum number of epochs. The GSVSF training performance 

outperforms first order back propagation algorithms and is comparable with the GEKF, 

and second order optimization algorithms in terms of number of epochs. However, the 

GSVSF has shown better performance compared to EKF in terms of the final RMSE 

accuracy and generalization capability. 
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Chapter 7 Conclusions and 
Recommendations 

7.1 Summary 

The objective of this research is to propose and develop a new ANN training method 

based on a new filter known as the Smooth Variable Structure Filter {SVSF). This new 

method has been tailored to train Feedforward multilayer perceptron (MLP) networks. 

The SVSF training methodology is applied to real-world benchmark problems contained 

in the PROBENl database. PROBENl is internationally recognized and contains training 

data sets of various challenge levels. It also includes standard guidelines and 

benchmarking rules that should be followed to assure consistency and repeatability of 

results. 

The new SVSF-based ANN training technique is also applied to a real industrial 

problem. It is used to detect and classify faults on a Ford diesel engine, namely piston 

chirp and missing bearing faults. SVSF-based trained network generalization capability 

and rate of convergence have been compared to other classical training techniques. 
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7.2 Conclusions and Outcomes 

An accurate SVSF-based feedforward Multilayer perceptron (MLP) training technique is 

developed and tested on several real-world applications. The SVSF, in addition to be an 

excellent parameter and state estimation strategy, it can be tailored to train 

feedforward MLP. The SVSF performance is tested on three real-world benchmark 

problems and compared to other classical training techniques, namely, Back 

propagation (BP), Quasi-Newton (QN), Levenberg Marquardt (LM), and the Extended 

Kalman filter (EKF). In general, the proposed technique achieves guaranteed stability, 

excellent static input-output mapping, good generalization capability, and minimum 

number of epochs compared to other classical, commonly used, training methods. 

For the three benchmark problems (cancer, Glass, and diabetes), simulation 

results show that the proposed SVSF training technique requires minimum number of 

epochs to reach convergence similar to the EKF and LM. In addition, results show that 

the SVSF-based ANN training technique provides comparable performance to other 

training techniques in terms of generalization capability which is the most important 

aspect especially for offline training as it tests the ability of trained networks to classify 

new data not previously seen during training phase. 
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For the Cancer problem, QN achieved best generalization followed by the SVSF, 

then the EKF, LM, and the BP achieves worst performance. However, QN require more 

epochs to train. For the Glass problem, the EKF provides best generalization followed by 

the SVSF, then the LM, QN, and finally the BP. For diabetes problem, QN achieves the 

best generalization followed by the LM, EKF, SVSF, and BP. However, the QN require 

more than double the number of epochs to train compared to EKF, SVSF, and LM. 

The SVSF and EKF in their global form are computationally expensive compared to 

first and second order, optimization-based training techniques. However, the EKF and 

SVSF can avoid premature convergence to local minima problems by incorporating 

second-order information in the state error covariance matrix P. In addition to the state 

error covariance matrix, the SVSF can avoid local minima problems by using a switching 

chattering action in updating network's weights. 

By comparing the original SVSF to the EKF, the SVSF requires only one tuning 

parameter (boundary layer thickness 1/J) while three tuning parameters are required in 

case of the EKF namely, the error covariance matrix P, system noise covariance matrix 

Q, and measurement noise covariance matrix R. 
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A reliable, signal-based, fault detection and isolation strategy applied to industrial 

application is developed. The proposed SVSF-based ANN is applied to detect and classify 

faults in a Ford diesel engine. The proposed signal-based ANN fault detection 

methodology was successful in detecting and classifying two known faults that are 

commonly occurring and were of interest to Ford, namely, piston chirp and missing 

bearing faults. The fault detection methodology was also able to identify fault-free 

(baseline) engines with high accuracy. 

It is concluded that accelerometers used for vibration recording are able to 

provide reliable measurements provided that the test on internal combustion engines is 

performed in a semi-anechoic chamber in order to provide data free from any noise 

contamination. In addition, it is concluded that data transformation to the crank angle 

domain is an essential transformation to allow the networks to detect spikes and 

irregularities that might occur at specific crank angle values. 

The proposed engine fault detection methodology is customizable, it can be 

implemented in a production environment or at dealerships and assembly plants 

provided that the faults are known beforehand thus can significantly decrease the 
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warranty expenses for a company. In addition, the proposed ANN-based FDI can be used 

to detect more new faults by providing training data (vibration measurements) and 

expanding the confusion matrix. 

Experimental results show that the SVSF-based training technique is able to 

achieve excellent training performance in terms of generalization capability. The SVSF 

and QN achieve the same generalization capability with classification accuracy of 96.7% 

followed by the EKF and LM with 93.3% .The first order BP algorithm achieves poor 

generalization capability of 80%. 

7.3 Research Contributions 

(1) 	A novel, accurate FF MLP training technique based on the SVSF. 

(2) 	A comparative assessment of the proposed technique to others. 

• 	 Generalization enhancement while avoiding premature convergence to local 

minima problems. 

• 	 Minimum number of training epochs. 

• 	 Fewer tuning parameters (compared to EKF). 

(3) 	A reliable FDI technique to detect and classify engine faults. 
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• 	 Easy implemented FDI technique at any production environment. 

• 	 Robust FDI system with minimum number of sensors. 

• 	 Warranty cost reductions at dealerships and assembly plants. 

• 	 Customizable FDI to detect new engine faults. 

7.4 Recommendations for Future Research 

There is potential for further research as follows. 

• 	 Application of the proposed SVSF-based ANN training technique should be 

considered for the training of recurrent multilayer perceptron (RMLP) networks. 

RMLP networks comprise feedback from one or more hidden layers that is then 

being fed as an input to the network after using delay elements. Consequently, 

RMLP introduce dynamics to the neural networks in comparison to feedforward 

MLP networks that only involve static input-output mappings. 

• 	 There is a potential for introducing a decoupled form of the SVSF (DSVSF) to train 

feedforward and recurrent MLP networks. The decoupled SVSF-based ANN will 

decrease computational complexity. This is achieved by instead of grouping all 

network weights into one single block (as in the case of the GSVSF), the DSVSF 
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would form groups of weights. All weights that are targeted to one neuron are 

considered as a group. 

• 	 The range of faults considered for the Ford engine can be increased. 

• 	 The combination of the SVSF with other filtration methods such as the EKF can be 

considered for ANN training. 
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APPENDIX 

Experimental data are collected at Ford's Powertrain Research and Development Center 

(PRDC) in Windsor, Ontario, Canada. Data processing and code development are 

performed at Center of Mechatronics and hybrid technologies (CMHT) at McMaster 

University. 

Nomenclature 

-1, + Notation denoting an inverse and a pseudo inverse, 
respectively. 

aCb) The bth Derivative of a. 

1.1 ABS Absolute value 
A Estimation Value 
T Matrix Transpose 

A, A The time-invariant system matrix and its estimate, nxn 
respectively. 

The time-variant system matrix at time k and its estimate, nxn 

respectively 
B,B The time-invariant input matrix and its estimate, nx1 

respectively. 
The time-variant input matrix at time k and its estimate, nx1 
respectively. 

diag(a) Create a diagonal matrix with a elements on its diagonal. 
!::.a Difference between a's actual and estimated values. 

The a posteriori and a priori output's estimation error mx1 
vectors at time k, respectively 
The a posteriori and a priori state's estimation error vectors nx1 
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vk, Vma.x 

wk, Wmax 

at time k, respectively. 
The expectation operator of the element a 
The smoothing boundary layer vector at time nx1 
Network's activation function 

Subscripts used to identify elements of matrices and 1x1 
vectors 
System's number of states 1x1 
Number of measurements 1x1 
The correction gain of the Smooth Variable Structure Filter nx1 
at time k 
Time step value. 1x1 
The identity matrix with dimensions of nxn nxn 
The value of a when b approaches c. 1x1 

Hessian matrix elements 1x1 
The a priori and a posteriori error covariance matrices at nxn 
time k, respectively 

The error covariance matrix initial condition nxn 
The process noise covariance matrix at time k nxn 
The measurements noise covariance matrix at time k mxm 
The root mean square error. 1x1 
The summation of vector a from time b to time c 

First order derivative of the activation function <p 
The sign function of the element a 
The sampling time 

The a-posteriori and a-priori estimates at time k, nx1 
respectively. 
The transformed -posteriori and a-priori estimates at time k nx1 
The output vector at time k and its initial value, mx1 
respectively. 
The measurement noise at time k and its upper bound, mx1 
respectively 
The system noise at time k and its upper bound, respectively nx1 
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Network layer with j number of inputs 
The a posteriori and a priori output's estimation vectors at mx1 
time k, 
respectively. 
The state vector (weight vector) at time k, and its initial and nx1 
boundary conditions, respectively. 
Error Residuals vector 
Delay operator with p delay samples 
Total number of nodes in the nth layer 1x1 
Link weight from node(n,j) to the node(n + 1, i) 1x1 
Learning rate 1x1 
Output neuron j target signal 1x1 
Hessian matrix's largest Eigenvalue 1x1 
Quasi-Newton's direction vector 
Number of output neurons 1x1 
Back propagation's momentum constant 1x1 
Lyapunov function 
activation functions of the first, second and output layers, 
respectively 

Number of training samples 1x1 
The linearized Jacobian matrix mxn 
Validation set squared error at epoch t mx1 
Kalman gain matrix nixm 
Total number of synaptic weights (including bias) lxl 
Global scaling matrix (or global conversion factor) mxm 
Gradient vector 
Node offset (bias) for node(n, i). 1xl 
Neural network's n input-output training data set nx1 
The ith node in the nth layer 
The error function 
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