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Abstract

Network meta-analysis (NMA) is a process by which several treatments can be si-

multaneously compared for relative effectiveness. When conducted in a Bayesian

framework, the probability that each treatment is ranked 1st, 2nd and so on can

be calculated. A square matrix of these probabilities, referred to as the rank prob-

ability matrix, can be structured with rows representing treatments and columns

representing ranks.

In this thesis, a simulation study was conducted to explore properties of five

proposed rank probability matrix summary measures: determinant, Frobenius norm,

trace, diagonal maximum and diagonal minimum. Each measure is standardized to

approach 1 for absolute certainty. The goal of this simulation is to identify strengths

and weaknesses of these measures for varying networks. The measures are applied

to previously published NMA data for further investigation.

The simulation study and real data analysis revealed pros and cons of each sum-

mary measure; the Frobenius norm was found most effective. All summary measures

yielded higher values with increases in symmetry, relative effect size and number of

studies in the network.
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If the rank probability matrix is used as the primary output of a network meta-

analysis (as is often the case), a simple measure of the overall confidence in the

rankings is beneficial. Future research will require exploration into the distributions

of these measures.
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Chapter 1

Introduction and Background

1.1 History

Science is a cumulative endeavour, and the process of synthesizing research should

be done as scientifically as the individual contributions. Chalmers et al. (2002) in

their review of research synthesis methods, state: “Although the need to synthesize

research evidence has been recognized for well over two centuries, explicit methods

for this form of research were not developed until the 20th century.” The same arti-

cle provides detailed accounts of the first cases of research synthesis: Karl Pearson

in 1904 summarized the results of 11 studies looking at the effectiveness of vaccines

against typhoid, while Joseph Goldberger published an analysis of bacteriuria in

typhoid fever in 1907. Goldberger’s research outlined four steps that are consid-

ered essential in standard practice of modern research synthesis: literature review,

selection of appropriate studies, abstraction of data, and statistical analysis.
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A systematic review is the collection and summary of similar research done in a

comprehensive and transparent way. When quantitative methods are appropriate for

combining results, the process is called a meta-analysis. Broadly speaking, a meta-

analysis can be defined as a systematic literature review supported by statistical

methods where the goal is to aggregate and contrast the findings from several related

studies (Glass, 1976).

These processes have been applied to fields including ecology, education, psychol-

ogy, sociology, and economics, but their importance is most notable in health care.

Randomized control trials (RCTs) are the gold standard of health care research, and

meta-analyses of RCTs are widely conducted. Systematic reviews and meta-analyses

are often found at the top of hierarchies of evidence, and serve as an important link

between research and practice, as these are the best-read publications (Chalmers,

1993).

1.2 Standards of Meta-Analysis

Despite growing popularity of systematic reviews and meta-analyses over the 20th

century, their reliability was limited by the quality and frequency of reviews, which

led to two important developments. First, standards were needed to ensure the

quality of the reviews. To address the suboptimal reporting of meta-analyses, a

guideline called the QUOROM Statement (Quality Of Reporting Of Meta-analyses)

was developed in 1996, which focused on the reporting of meta-analyses of random-

ized controlled trials. This document was later revised to become the PRISMA

2
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Statement, which stands for Preferred Reporting Items for Systematic Reviews and

Meta-Analyses. The PRISMA Statement consists of a 27-item checklist and a four-

phase flow diagram to help ensure the quality of research syntheses (Moher et al.,

2009).

The second important development was the creation of the Cochrane Collabora-

tion. The task of the Cochrane Collaboration is to prepare, maintain and disseminate

systematic, up-to-date reviews of RCTs of health care research, and, when RCTs are

not available, reviews of the most reliable evidence from other sources (Chalmers,

1993).

Systematic reviews and meta-analyses can assess whether or not there is conclu-

sive evidence about a specific treatment. They are often used as a starting point

for developing clinical practice guidelines, they can help to identify whether further

research is needed, and they can highlight inconsistencies in research that require

investigation.

1.3 Comparative Effectiveness Research

By design, meta-analyses amalgamate studies with similar participants, interventions

and designs with the goal of comparing the effectiveness of two treatments. In reality,

health care research is a much more complicated endeavour. Often more than two

treatment options are available, and beyond consideration of efficacy are issues of

harm and cost. The broad study of these issues is called comparative effectiveness

research (CER). CER is defined as the generation and synthesis of evidence that

3
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compares the benefits and harms of alternate methods to prevent, diagnose, treat,

and monitor a clinical condition or to improve the delivery of care (Spine, 2010).

Systematic reviews and meta-analyses are methods that fall under the umbrella of

CER. Methods of CER focus on generating credible and relevant information as

quickly and inexpensively as possible. The rigor demanded of meta-analyses is not

present in all types of CER.

1.4 Network Meta-Analysis (NMA)

Network meta-analysis (NMA) can be viewed as a combination of the strict require-

ments of meta-analyses and the broader investigations of CER. A network meta-

analysis uses a statistical process to synthesize the results of RCTs over a network

of research that compares multiple treatments. Statisticians have only introduced

methods of NMA in the final quarter of the 20th century, and those methods continue

to be developed today. A NMA produces a set of estimates of the efficacy of any

treatment in the network relative to any other (Dias et al., 2011c). The estimates

produced through the NMA allow an optimal treatment to be determined, and a set

of ranks to be assigned to remaining treatments.

1.5 Current State of NMA Research

Research applying the methods of NMA is limited, but this is changing quickly. In

a review of published literature before 2007 by Salanti et al. (2008b), the authors

4
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found 18 English-language articles had applied methods of NMA to treatment net-

works with at least four treatments, where treatments are broadly defined as any kind

of intervention including no treatment or placebo. The earliest publication found was

from 1999. The topics included treatments of epilepsy, rheumatoid arthritis, smok-

ing cessation, prevention of fractures, hypertension, cancer, stroke and myocardial

infarction. Networks of only three treatments were not considered as these have been

studied extensively.

While it is clear that network meta-analyses are becoming more popular, the

methods for conducting them continue to be developed. To ensure validity of find-

ings and minimize error, these studies must be carefully designed and conducted. As

the application of NMA statistical techniques becomes more widespread, the suit-

ability and shortcomings of different methods must be investigated. Li et al. (2011)

write, “Evaluating the performance of the different methods, through simulations

and empirical studies, is critical before they become widely available.” Several pub-

lished papers detail statistical models for NMA, but very few authors have used

simulations in their research (Song et al., 2012; Jonas et al., 2013; Thorlund and

Mills, 2012; Mills et al., 2011). Further exploration of these methods to varying

scenarios through simulation is an important next step in the development of NMA.

1.6 Aims

This thesis aims to explore one current model used widely in NMA - the Bayesian

hierarchical model - to investigate the following two questions through simulation:

5
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• What measures can be used to summarize the overall accuracy of the ranks

yielded in a NMA?

• How will these measures be affected by changes to the network involving effect

sizes, the network’s geometry, and the number of studies contributing to the

network?

These questions are motivated by applications of NMA to health research.

Investigators are not solely interested in accurately identifying the treatment

most likely to be best. Determining a ranking of treatments with some credibility

is also useful. The treatments that are second best, third best, and so on become

important when access is limited due, for example, to cost or drug interactions.

Ranking many possible alternatives may be particularly important for policy makers

from the developing world, where the best available treatment may not be affordable

(Salanti et al., 2008a). For this reason, it is helpful to quantify the overall accuracy of

the ranks generated from the model. Further, networks are not fixed, but change over

time with updated studies and new treatments, so investigating how the accuracy of

ranks is affected by changes to the network is also important.

6



Chapter 2

Methods

2.1 Meta-Analysis

Meta-analysis is a much larger endeavour than the statistical calculations required.

While this section will discuss the statistical methods for meta-analysis, in order to

yield meaningful results, the entire research process must be done to the standards

discussed in the PRISMA statement.

Meta-analysis can be broadly defined as the quantitative review and synthesis

of the results of related but independent studies (Normand, 1999). This section

provides an introduction to the methods used in meta-analysis and how they were

extended and developed to create models for network meta-analysis.

7
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2.1.1 Goals of Meta-Analysis

Two important objectives can be met through meta-analysis. First, parameter esti-

mates can be made with more precision and statistical power. Second, an assessment

can be made of the variability between studies, and study characteristics associated

with this variability can be identified. Heterogeneity is defined as the existence of

differing outcomes in studies that is not attributable to chance (Normand, 1999).

2.1.2 Notations

Traditional meta-analysis is used in the synthesis of studies comparing two treat-

ments. To begin, the items of comparison (drugs, surgical techniques, rehab pro-

grams) will be labelled A and B, with treatment A considered the baseline treat-

ment. In practice, this might be a placebo or a standard treatment. To investigate

the relative effects of treatments A and B, all studies directly comparing these two

treatments are collected and reviewed. Those studies deemed to be adequately ran-

domized and similar, up to the standards of the investigators, have their results

combined through a weighted process to yield a (hopefully) more accurate estimate

of the relative effects of treatments A and B. Let the number of studies included that

compare A and B be labelled M . Studies 1 through M will have parameter estimates

of the difference between treatments, yi, where the subscript denotes the study from

which that estimate came. Differences between treatments can be measured in ab-

solute or relative terms depending on the available data. Relative risks and odds

ratios are used to measure relative effects for binary data, taken on the log scale. In

the case of continuous variables, absolute effects are taken typically using a mean

8
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difference, but might also be a standardized mean difference. The odds ratio will be

the outcome measure of interest considered in the simulations found in Chapter 3.

2.1.3 Models

A brief summary of meta-analysis models is provided here, using Normand (1999)

and Fleiss (1993) as references.

Beginning with M separate studies with random allocation to two treatments of

interest, each study effect yi, with i = 1 . . .M is assumed to be independent with

within-study variance σ2
i .

There are two commonly-used models in meta-analysis which differ in their as-

sumptions: fixed effects and random effects.

The fixed-effects model assumes that each study is yielding an estimate of the

same underlying true effect size, and the different results between studies are only

attributable to chance. In other words, fixed effects assumes homogeneity of studies.

However, heterogeneity will often be present between the individual studies mak-

ing up the meta-analysis. Both participant demographics and study design will vary

over the collection, if minimally, which leads to different observed study effects. The

random effects model addresses study differences by assuming that each observed

study effect size is drawn from a study-specific distribution. To determine which

model is appropriate, it is possible to test for the presence of heterogeneity. It can

be done using Cochran’s Q-test, and quantifying the amount of heterogeneity present

in a meta-analysis can be done using the I2 statistic (Higgins and Thompson, 2002).

Detailed models and justifications for their use are included below.

9
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Random Effects Model

From Normand (1999), “It is almost always reasonable to believe that there is some

between-study variation and few reasons to believe it is zero.” The existence of het-

erogeneity in meta-analysis is generally assumed, and the standard model used under

the assumption of the presence of unexplained heterogeneity is the random effects

(RE) model. In this model, each study included in the meta-analysis is considered

to be taken from a hypothetical set of all possible studies. As such, conclusions

of the meta-analysis allow for inference on the true mean treatment effect over the

population of interest.

A random effects model assumes that heterogeneity among study effects is purely

random, and that a single true effect size exists around which the true individual

study effects are distributed normally.

Then, each observed study effect size, yi corresponds to a true study effect size,

θi, through the equation:

yi = θi + ei i = 1, . . . ,M

where

ei ∼ N(0, σ2
i ).

It is then assumed that the study-specific means are distributed about a true

population mean, µ with:

θi = µ+ ui i = 1, . . . ,M

10
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where

ui ∼ N(0, τ 2)

τ 2 is the between-study variance. The aim of the meta-analysis is to estimate µ and

the true amount of heterogeneity between individual study effect sizes, τ 2.

The estimate of µ is found through a weighted average, because contributing

studies may vary greatly in terms of size and within-study variability. With the

weights of study-level effects given by wi = 1/(σ2
i + τ 2), the estimate is calculated:

µ̂ =
Σwiyi
Σwi

.

The standard error is SE(µ̂) = 1/
√

Σwi, which can be used to conduct hypothesis

tests or create confidence intervals. The between-study variance is not known in

practice and can be estimated using the method of moments, maximum likelihood,

or reduced maximum likelihood.

Fixed Effects Model

A fixed effect analysis assumes that each study generates an estimate of the same

parameter µ, subject only to sampling error. The fixed effect model makes the

assumption of homogeneity amongst studies and sets τ 2 = 0.

yi = µ+ ei

11
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where

ei ∼ N(0, σ2
i )

In the fixed effects model, each study estimates the true effect size. It is once

again estimated through a weighted average of the individual study effects, though

the weights are calculated differently:

µ̂ =
Σwiyi
Σwi

where wi = 1/σ2
i .

2.1.4 Heterogeneity and Meta-Regression

Modeling heterogeneity using the random-effects model is not appropriate if there

is a covariate responsible for the differences between effect sizes. Researchers may

suppose that the differences in study-level effect size are related to the demographic

characteristics of the participants or the study design. When heterogeneity is de-

tected and investigated, there is the potential for determining study-level covariate

and treatment interactions. A meta-regression can be conducted using aggregate

covariate measures to determine these interactions. A detailed discussion of meta-

regression can be found in van Houwelingen et al. (2002).

12
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2.2 Network Meta-Analysis

There are several excellent resources for understanding the basics of network meta-

analysis. Fundamental papers including Lu and Ades (2004), Bucher et al. (1997),

Lu and Ades (2006) and Lumley (2002) are valuable references. Three series of

publications are also very thorough resources, the ISPOR documents (Jansen et al.,

2011; Hoaglin et al., 2011), the NICE documents (Dias et al., 2011b,c,a,d), and a

special issue in the journal Research Synthesis Methods (Salanti and Schmid, 2012).

The following summary of network meta-analysis is drawn from these references.

2.2.1 Introduction

A network meta-analysis is a framework for quantitatively synthesizing research of

multiple interventions. It is alternatively called a multiple treatment meta-analysis

(MTM) or a mixed treatment comparison (MTC). Rather than pooling information

on trials comparing treatments A and B, network meta-analysis combines data from

randomised comparisons, A vs B, A vs C, A vs D, B vs D, and so on, to deliver a

set of pairwise relative effects while respecting the randomisation in the evidence.

The network meta-analysis process requires the combination of direct evidence

and indirect evidence. Direct evidence between treatments A and B comes from

combining the results of studies which compare these two treatments. Indirect evi-

dence is drawn from combining other studies in the network. If two treatments, A

and B, have a common comparator C, then A and B can be compared indirectly by

combining the A versus C and B versus C studies as follows:

13



M.Sc. Thesis - Danielle Richer McMaster - Mathematics & Statistics

dAB = dAC − dBC

with variance V ar(AB) = V ar(AC) + V ar(BC). If there are multiple studies that

compare A versus C and B versus C, then the combined evidence can be used,

µI
AB = µD

AC −µD
BC , where I denotes indirect evidence and D denotes direct evidence.

When both direct and indirect evidence are available, they can be combined into a

mixed effect size, µM
AB, using a weighted average.

2.2.2 Assumptions

When conducting a network meta-analysis, three assumptions are made. The first,

carried over from standard meta-analysis, is the assumption of homogeneity for a

fixed-effects model or purely random heterogeneity for a random-effects model. The

second, transitivity, assumes that indirect comparison is a valid way of estimating

the difference between two treatments that have not been directly compared. It is

alternatively referred to as the similarity assumption. The third assumption, consis-

tency, requires that the direct and indirect estimates are in agreement. Consistency

can be thought of as an extension of transitivity over a closed loop of evidence.

2.2.3 The Consistency NMA Model

This section will present a consistency model for binomial data where the outcome

of interest is the odds ratio. Suppose M studies make two-arm comparisons with

any of the T treatments included in the network. We define rik as the number

14
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of events out of the total number of patients in each arm, nik, for arm k of trial

i, we assume that the data generation process follows a Binomial likelihood rik ∼

Binomial(pik, nik) where pik represents the probability of an event in arm k of trial

i, k = 1, 2; i = 1, . . . ,M . By restricting all RCTs to two-arm trials, there is only

one effect estimated in each study, so the consideration of within-trial correlated

estimates is unnecessary.

A set of T − 1 basic parameters for relative effects must be selected. Typically,

these basic parameters are taken to be the relative effects between a specified base-

line treatment and each other treatment in the network. Parameters estimating the

treatment effects amongst the non-baseline treatments are called functional param-

eters, and need not be estimated as they can be represented as linear functions of

the basic parameters. Inherent to this structure is the assumption of consistency.

A logit link function is used to map the probabilities to a continuous measure

centered at zero. The models can be re-written with the treatment effect defined

from a study-specific baseline treatment.

For clarity, a meta-analysis is presented first. For random effects,

logit(pi1) = µi

logit(pi2) = µi + δi12

Each µi is a trial-specific baseline, representing the log-odds of the outcome in

the baseline treatment while δi12 are the trial-specific log-odds ratios of success on

the treatment group 2 compared to group 1, with δi12 ∼ N(d12, τ
2). For fixed effects,

15
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logit(pi2) = µi + d12

,

which is equivalent to setting τ 2 to zero.

Note that the subscripts indicating the treatments being compared are unneces-

sary in the case of only two arms; however, similar notation will be used for network

meta-analysis where multiple treatments are considered. For this reason, the sub-

scripts are included. For clarity, some additional notation is introduced here. Let X

and Y represent variable treatments and A,B,C,D will represent fixed treatments,

with the convention that the first letter alphabetically in each trial serves as the

baseline treatment. The subscript b indicates a study-specific baseline.

Then, a fixed-effects model can be written as follows:

logit(pik) = µib, for k = b

logit(pik) = µib + dbk, for k after b

For a random-effects model, dbk is replaced with δibk and yields:

logit(pik) = µib, for k = b

logit(pik) = µib + δibk, for k after b

where δibk ∼ N(dbk, τ
2
bk) where the variance term must be estimated.

It is common to assume a constant between-study variance, τ 2. The assumption
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of equal variances implies that the correlation between any two treatment contrasts

in a multi-arm trial is 0.5.

2.2.4 The Bayesian Framework

A Bayesian framework means that all parameters are considered random variables.

These parameters are assumed to have a distribution, called a prior distribution,

which is updated by the data available to yield a posterior distribution. The prior

assigned to parameters must be specified with hyper-parameters. When the hyper-

parameters are considered random variables with their own prior distributions, the

result is a Bayesian hierarchical model.

The process of combining the prior distributions and the study-level data to

generate posterior distributions is implemented with the use of a Markov Chain

Monte Carlo (MCMC) method. MCMC methods make it possible to simulate the

entire joint posterior distribution of the unknown parameters.

MCMC methods generate pseudo-random draws from probability distributions

via Markov chains. A Markov chain is a sequence of random variables in which

the distribution of each element depends on the value of the previous one. As we

proceed along the sequence, provided that certain regularity conditions are met,

the distributions of the elements stabilize to a common distribution known as the

stationary distribution. In MCMC, one constructs a Markov chain whose stationary

distribution is a distribution of interest. The Markov chain begins at an arbitrary

point and runs for a long time. After deleting several inital values (the burn-in), what

remains is a sequence of dependent random variables all with the desired marginal
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distribution (Schafer, 2010).

Care must be taken in checking convergence of these chains. Posterior distribu-

tions should be examined visually for spikes and unwanted peculiarities, and both the

initial burn-in and posterior samples should be conservatively large. Over-dispersed

starting values should be chosen for a number of independent chains so that conver-

gence can be assessed. Thinning, keeping every nth value after the burn-in period,

is a way of reducing the dependent nature of the chains.

2.2.5 The Bayesian Hierarchical Model

Specifying a Bayesian hierarchical model involves choosing prior distributions for

several parameters. To model a network meta-analysis in a Bayesian framework, prior

distributions must be provided to the basic parameters dXY , the baseline treatment

effects in each study µib, and the between-study variance τ 2.

It is recommended that the following uninformative priors are used (Salanti et al.,

2008a):

µib ∼ N(0, 100000)

dXY ∼ N(0, 100000)

τ ∼ Uniform(0, 2)

The upper limit of 2 in the Uniform distribution represents a huge range of trial-

specific treatment effects. Once specified, the study results are combined with these

prior distributions to form joint posterior distributions for the parameters of interest.

Often, the choice to work in a Bayesian framework is made in order to bring prior
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information to the modeling process, however this is not of interest in the case of

NMA. Rather, the Bayesian framework is appropriate for NMA because it allows

probabilistic conclusions to be made. In particular, the rank probability matrix

would not be possible if a Bayesian framework were not employed.

2.2.6 Further Readings on Bayesian NMA

A discussion of how to conduct meta-analyses with multi-arm trials in a Bayesian

framework is detailed by Lu and Ades (2006). In particular, within-study correlations

between the parameters of interest must be taken into account.

Consistency of treatment effects must hold for the the consistency model de-

scribed here. However, a common criticism of network meta-analysis is the difficulty

assessing consistency. Methods for investigating consistency and alternative models

are presented in Dias et al. (2010), Lu and Ades (2006), and Higgins et al. (2003).

2.2.7 Software for Network Meta-Analysis

As network meta-analysis becomes a well-known method in health research and other

applications, software packages will be developed alongside the statistical models.

Currently, one R package, GeMTC (generating multiple treatment comparisons) has

been created to run network meta-analysis in a Bayesian framework (van Valkenhoef

and Kuiper, 2013). This package allows for the simple implementation of a simulation

study to investigate rank probabilities.
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2.2.8 The Rank Probability Matrix

The Bayesian hierarchical model generates a set of estimates for the basic and func-

tional parameters, dXY . In addition to these effect parameters, the posterior prob-

abilities that each treatment is best, second best, and so on are also of interest and

can be calculated through the MCMC framework.

For each MCMC iteration, the treatments are ranked by their effect relative to

an arbitrary baseline. A frequency table is constructed from these rankings and

normalized by the number of iterations to provide rank probabilities.

These probabilities are presented in a matrix of size T×T , where T is the number

of treatments in the network, displaying the probability that each treatment holds

each of the 1st through T th possible rankings. Rows represent each of the treatments,

while columns represent the ranks in descending order. A rank probability matrix

with absolute certainty of the true ranks, with treatments ordered from most to least

effective, will be the IT matrix. All rank probability matrices are doubly stochastic,

which means all rows and columns sum to one with all entries falling between 0 and

1. For ease of use, the matrix can be reordered so that the treatments are ordered in

rows from most to least effective. In a consistency model, the relative effects between

any two treatments will support a common ordering of the treatments. This is the

order used to order the rows of the rank probability matrix.

As this reordered matrix will be used frequently in future sections, it will be

referred to as the ordered rank probability matrix. In the simulation setting, the

order is fixed by the pre-determined treatment ranks. In the real data applications,

the order is determined by ranking treatments in accordance with the estimates of
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the pairwise differences between treatments yielded from the modelling process. An

example of a 3 × 3 rank probability matrix that has been ordered is included in

Table 2.1.

1st 2nd 3rd
Treatment A 0.95 0.04 0.01
Treatment B 0.03 0.75 0.22
Treatment C 0.02 0.21 0.77

Table 2.1: Example of an Ordered Rank Probability Matrix

2.3 Proposed Measures for Summarizing Rank Prob-

ability Matrices

One of the current shortfalls of network meta-analysis is the lack of an interpretable

and simple measure to summarize the results (Salanti, 2012). With this concern

in mind, five measures for summarizing rank probability matrices are considered.

Standardized determinant, standardized Frobenius norm, standardized trace, diag-

onal maximum and diagonal minimum will be investigated through a simulation

study. Each of these summary measures has been considered for simplicity of calcu-

lation and for the ease of interpretation. Each is calculated from the ordered rank

probability matrix. Measures were selected that would yield maximal values from

identity matrices - implying complete confidence in the ranks. Each measure has

been standardized so that its optimal value is one.

Given an n × n matrix, A with the entry in row i column j denoted aij, the

summary measures are calculated as follows:
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trace(A) =
n∑
i

aii

normF (A) =

√√√√ n∑
i=1

n∑
j=1

a2ij

The determinant of a 3× 3 matrix is calculated:

det(A) = (a11a22a33 + a12a23a31 + a13a21a32)− (a13a22a31 + a12a21a33 + a11a23a32)

The formula for an n × n matrix is similar and can be found in any linear algebra

textbook.

The remaining two summary measures, the diagonal maximum and the diagonal

minimum, are single entries in the matrix and need not be calculated. Interpretations

of each measure are included below.

Standardized Absolute Determinant (det) The determinant is calculated us-

ing all values from the matrix, and has a geometric interpretation representing

a volume in the three-dimensional case. This measure will be larger for matrices

that more closely resemble the identity matrix; maximum volume is obtained

from the unit cube formed by the identity matrix. It must be standardized

for comparison across different matrix dimensions, thus the absolute value and

T th root is taken. Interchanging rows or columns of a matrix changes the sign

of the determinant. By taking the absolute value, the order of the rows in the
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rank probability matrix is inconsequential.

Standardized Frobenius Norm (norm) Matrix norms are used to quantify the

size of a matrix and can be calculated in a variety of ways. Many norm calcu-

lations rely on row or column sums, which are irrelevant for doubly stochastic

matrices. The Frobenius Norm is commonly used and increases as doubly-

stochastic matrices approach the identity. It is standardized for comparison

across different matrix dimensions by dividing the result by a factor of
√
T .

Standardized Trace (trace) The diagonal of the ordered rank probability matrix

captures the total amount of correctly assigned probability. Thus, the trace is a

natural choice for a summary measurement. It is standardized for comparison

across different matrix dimensions by dividing the result by a factor of T .

Diagonal Maximum (max) The single largest value in the ordered rank prob-

ability matrix diagonal. This represents an upper bound on the amount of

certainty there is in the matrix. As it uses only one entry, it is expected to be

highly variable.

Diagonal Minimum (min) The smallest value in the ordered rank probability

matrix diagonal. This represents a lower bound on the amount of certainty

there is in the matrix. It can be thought of as an upper bound on the error of

all probability ranks.

The goal of the summary measures is to assess the overall confidence in the

rankings. Higher values for these summary measures reflect higher entries in the
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rank probability matrix, which indicate more certainty of the proposed rankings.

The trace, diagonal maximum and diagonal minimum measure values on the rank

probability matrix diagonal, thus requiring the rank probability matrix to be ordered.

The determinant and norm do not require this ordering.

Although the diagonal maximum and diagonal minimum are likely over-simplifying

the information in the rank probability matrix, they have been included for inspec-

tion. If either of these measures behaves very similarly to one of the calculated

measures, it might be unnecessary to perform any calculation at all and to use one

of these values as a representation of overall confidence in the network.

The ideal summary measure will provide a tool to compare the overall confidence

captured in different networks. As networks change in ways that should lead to

less confidence in the ranks, (for example, increasing the number of treatments,

reducing the number of studies, reducing the effect size), the summary measure

should reflect these changes. Ideally, the changes in the summary measure will span

much of the 0 to 1 range, so that differences between networks can be clearly seen.

When calculated many times over the same network structure, the variance should

be minimal. Through the simulation study and the real data analysis, features of

the proposed summary measures should be revealed. Additional considerations that

arise will also be discussed.
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Chapter 3

Simulations

The goal of this simulation was to explore the two key questions posed in the intro-

duction of this thesis. First, what summary measures might be used to describe the

confidence in a set of ranks? That is, given an ordered rank probability matrix, what

measurements can be taken to assess the overall confidence of the ranks given in that

matrix? Five summary measures have been proposed and will be considered. Second,

how are these summary measures affected by aspects of the network? Specifically,

how will the summary measures change in response to altering the number of studies,

the effect size and the geometry of the network? The design of this simulation and

the results are presented in the following sections.

Before carrying out the simulation, several patterns were anticipated within and

between these measures. For example, the diagonal maximum, trace and minimum

will always be found in decreasing order, regardless of the original network. Other

patterns make intuitive sense; increasing the effect size or number of studies should
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result in stronger evidence to support the correct rankings, and produce higher sum-

mary measures. Other patterns are less intuitive, such as the changes in summary

measures over different network geometries.

In order to confirm the patterns involving effect size and number of studies, and

to explore the results under different network geometries, a total of 216 simulation

scenarios were considered (3 effect sizes×4 studies per comparison×18 geometries).

3.1 Simulation Design

When designing this simulation, an effort was made to maintain very simple network

structures. First, this simplicity allows attention to be focused on the summary mea-

sures and to ensure that they behave as expected in the most basic cases. Second, the

use of the most simple networks made the implementation straight-forward through

use of the GeMTC R package. Specifically, the decisions to use a dichotomous vari-

able (thus effect size measured using odds ratio), to generate all studies without

introducing any heterogeneity, and to model the network using a consistency model

simplified the process. This simulation design, though unrealistic for comparison to

real studies, is thought to be merely a starting point in the exploration of summary

measures for rank probability matrices.

3.1.1 Parameters Considered

In order to explore the way in which these summary measures behave under different

networks, several parameters were varied in the simulation study.
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Effect Size (ES): Given that the least effective treatment would have a fixed prob-

ability of effectiveness of 0.1, three effect sizes (later called small, medium and

large) were considered based on odds ratios of 1.2, 1.6 and 2. These effect sizes

were fixed between successive treatments. Although odds ratios larger than 2

may be found in practice, preliminary simulations revealed that ordered rank

probability matrices differ minimally, if at all, from identity matrices given

odds ratios above 2.

Network Geometry: Four network geometries were considered in the simulation,

one network of three studies and three networks of four studies.

Triangle (TRI): The only three-treatment network considered is a complete

triangle. This shape was selected to represent the most simple and sym-

metric case.

Complete Square (COMP): The only fully symmetric case of a four-treatment

network is a complete network. While rare in applications, the four-

treatment symmetric case provides valuable insight into the role of sym-

metry.

Star: This four-treatment network only contains comparisons between each

treatment and a single common comparator. All four treatments are

placed in the centre of the star to create four permutations of this ge-

ometry.

Dangle: The final four-treatment network contains a complete triangle be-

tween three treatments and a fourth treatment compared to any one of
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the triangle vertices. Rotating the treatments into different places in the

network yields 12 permutations of this geometry.

Number of Studies per Comparison (SpC): The number of studies per com-

parison was fixed at 1, 2, 5 or 10. These values indicate the number of RCT’s

simulated for each pair of treatments connected in the given network geome-

try. Although imbalance in the number of studies per comparison is standard

in real applications, only balanced cases have been considered here.

Characteristics of Contributing Studies: For simplicity, the contributing stud-

ies were not varied at all. Each contributing study was generated to be a

two-arm study with 100 participants per arm.

A summary of the parameters is available in Table 3.1. A diagram of the different

network geometries under consideration is provided in Figure 3.1. The black arrows

represent basic parameters, and all other direct comparisons in the network are noted

with grey lines.

3.1.2 Simulation Process

Simulation settings were chosen to allow one parameter to vary while others remained

constant, providing an opportunity to investigate the role of each parameter in the

contribution to rank probabilities and summary measures. For each fixed set of

parameters, the simulation process required three steps: simulating the contributing

studies, formatting the data, and applying the Bayesian hierarchical model to the

network.
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Table 3.1: Parameter Descriptions
Parameters Values
Effect Size measured in Odds Ratio Large (OR = 2)

Medium (OR = 1.6)
Small (OR = 1.2)

Studies per Comparison 10, 5, 2, 1
Network Geometry Triangle

Complete Square
Star (4 permutations)
Dangle (12 permutations)

Study size 100 per arm
Treatments per study 2
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●
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Complete Square Network
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●

●

●

1
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Star Network
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●
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●

1

2

3

4

Dangle Network
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●

●

●

1

2

3

4

Figure 3.1: Simulated Network Geometries.
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First, 60000 3- or 4-arm studies were simulated where the number of events

out of 100 participants was randomly determined for each of the A through C or D

treatments, based on a probability calculated inversely from the odds ratio of interest.

Pairs of arms were taken from the available arms to match the direct comparisons in

the geometry and the number of studies per comparison necessary for the simulation

setting. For example, in the star network with one study per comparison, from the

60000 × 4 matrix of data generated, outcomes from treatments A and B would be

selected from the first row, outcomes from treatments A and C would be selected

from the second row, and outcomes A and D would be selected from the third row.

Since the simulation was repeated 1000 times for each scenario, this process would

be repeated beginning with the next unused row. Depending on the complexity of

the geometry, anywhere from 3000 to 60000 of the randomly generated multi-arm

studies were employed. One of the interpretations of the consistency assumption is

that arms can be thought of as missing at random. Since the data is all generated

randomly, it is in line with the assumptions of NMA to generate multi-arm studies

and sample treatment arms from them in the simulation process.

The second step of the simulation process required reformatting the groups of

generated studies for input into the GeMTC R package (van Valkenhoef and Kuiper,

2013). This involved placing the data in a long-form structure and ensuring that

entries were classified correctly.

The third step was the implementation of the GeMTC package. It provides

options for model type, the number of chains to be used in the MCMC process,

variance scaling factor for the starting values, link and likelihood to be used, and
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random or fixed effects model options. For this simulation, a consistency model

with random effects was selected with binomial and logit used for the likelihood

and link, respectively. The recommended default values, 2.5 and 4, were used for the

variance scaling factor and number of chains, respectively. The model specifies which

parameters are basic and the plot function displays these parameters. Samples are

generated based on these specifications, and a Bayesian hierarchical model is built

that takes into account all direct and indirect evidence to generate an estimate of the

effect of all included treatments and a rank probability matrix. The tuning phase,

burn-in, thinning and length of the MCMC chains can be specified. This simulation

used the default values of 5000 tuning, 20000 burn-in and chain length of 20000, with

a thinning factor of 10.

For each simulation setting, the 1000 rank probability matrices were stored in a

1000 × 4 × 4 array. Summary measures from these arrays were taken in order to

answer the questions of interest.

3.2 Results

Included in this section are tables and graphs that illustrate properties of the five

summary measures when calculated from varying networks. The properties of these

summary measures, the changes that take place by varying parameters, and the effect

of introducing a new treatment are all considered.

To describe the simulation results clearly and succinctly, the following terms will

be used repeatedly:
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Effect Size The effect size refers to the change in treatment success expected if one

treatment is substituted for another. In this simulation, the effect size refers to

the three fixed odds ratios of 1.2, 1.6 and 2.0 (small, medium and large) that

were used to calculate success probabilities and generate study results.

Studies per Comparison Within a network, the number of individual studies con-

tributing to each direct comparison is fixed. This single value refers to the

number of studies comparing all pair-wise direct comparisons, as this value is

balanced in all simulation scenarios.

Geometry In this simulation, the influence of geometry is limited to the four net-

work geometries considered.

3.2.1 Properties of Summary Measures

To display some of the trends in summary measures under various parameter changes,

a table with selected results is provided in Table 3.2. The summary measures

reported are based on the average values over the simulation size of 1000, and the

accompanying standard deviation addresses the variability in these 1000 values.

There are several patterns to observe in this table. Both decreases in effect size

and in studies per comparison lead to smaller values for all five summary measures.

Modifying the network from a complete square to a star geometry has the same

result. This change in geometry lowers the total number of studies in the network

and introduces asymmetry in the network. It is likely that both of these factors

contribute to the decreased summary measures, which will be discussed later in
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more detail.

Smaller summary measures reflect lower values on the ordered rank probability

matrix diagonal, and hence less confidence in the ranks. The decrease in these

values is generally paired with an increase in standard deviation. It is useful to

note that some summary measures are more variable than others. The determinant

consistently yields more variability than the norm. The diagonal maximum varies

less than the diagonal minimum, with the trace variability in between. The most

variable measure is consistently either the diagonal minimum or the determinant,

while the least variable measure is always either the norm or the diagonal maximum.

Generally, the summary measures closer to 1 vary less, and summary measures that

are further from 1 vary more.

While not all geometries are present, the complete square and star have been

included here to demonstrate the loss of confidence when shifting from a symmetric

geometry to a non-symmetric geometry. The variability of all values increases with

the loss of symmetry. Inevitably, the number of studies required to have a symmetric

network is less than the number of studies that exist in an asymmetric network when

the studies per comparison are fixed. Further patterns will be explored in a number

of plots below.
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Geom ES SpC Det DetSD Norm NormSD Max MaxSD Min MinSD Tra TraSD

Complete

2

10 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000
5 0.9999 0.0004 0.9999 0.0004 1.0000 0.0000 0.9999 0.0009 0.9999 0.0004
2 0.9858 0.0212 0.9871 0.0154 0.9972 0.0060 0.9759 0.0330 0.9865 0.0177
1 0.8548 0.0857 0.8870 0.0434 0.9477 0.0357 0.8029 0.0997 0.8727 0.0591

1.6

10 0.9998 0.0012 0.9998 0.0012 1.0000 0.0000 0.9996 0.0024 0.9998 0.0012
5 0.9929 0.0222 0.9940 0.0117 0.9994 0.0027 0.9878 0.0284 0.9936 0.0145
2 0.8932 0.0962 0.9238 0.0447 0.9773 0.0356 0.8430 0.1221 0.9091 0.0698
1 0.6701 0.1508 0.7958 0.0506 0.8919 0.0733 0.6047 0.1381 0.7379 0.0920

1.2

10 0.8273 0.1452 0.8962 0.0518 0.9691 0.0542 0.7607 0.1641 0.8628 0.0935
5 0.6588 0.1684 0.8109 0.0607 0.9171 0.0901 0.5530 0.1892 0.7194 0.1247
2 0.4511 0.1754 0.7016 0.0715 0.8021 0.1323 0.3727 0.1564 0.5417 0.1384
1 0.3333 0.1490 0.6417 0.0592 0.7135 0.1329 0.2881 0.1233 0.4401 0.1192

Star

2

10 0.9935 0.0158 0.9943 0.0118 0.9999 0.0005 0.9879 0.0270 0.9939 0.0135
5 0.9467 0.0743 0.9610 0.0307 0.9960 0.0084 0.9140 0.0915 0.9548 0.0463
2 0.6945 0.1343 0.8058 0.0469 0.9093 0.0607 0.6231 0.1319 0.7556 0.0820
1 0.3767 0.0852 0.6449 0.0099 0.7074 0.0600 0.3717 0.0690 0.5175 0.0430

1.6

10 0.9425 0.0721 0.9585 0.0325 0.9961 0.0105 0.9056 0.1006 0.9508 0.0509
5 0.8097 0.1381 0.8845 0.0455 0.9698 0.0429 0.7332 0.1602 0.8481 0.0881
2 0.5185 0.1423 0.7335 0.0419 0.8434 0.0914 0.4412 0.1346 0.6162 0.0960
1 0.3180 0.1025 0.6321 0.0216 0.6841 0.0732 0.2962 0.0782 0.4530 0.0597

1.2

10 0.5409 0.1565 0.7576 0.0498 0.8811 0.1004 0.4158 0.1635 0.6131 0.1213
5 0.4230 0.1626 0.6954 0.0576 0.7931 0.1221 0.2918 0.1380 0.4839 0.1210
2 0.3251 0.1460 0.6304 0.0535 0.6741 0.1267 0.1999 0.0899 0.3575 0.0972
1 0.2920 0.1221 0.6113 0.0427 0.6382 0.1106 0.1662 0.0805 0.3038 0.0900

Table 3.2: Table of Summary Measures from Simulation
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The first two sets of graphs included below illustrate that all five summary mea-

sures behave as predicted with increases in effect size and studies per comparison. In

Figure 3.2, all summary measures have been taken for each of the four geometries

with the number of studies per comparison fixed at two. All summary measures

increase with increases in effect size. It is somewhat evident here, and will be dis-

cussed later, that the triangle and complete square geometries yield higher summary

measures than the star and dangle networks. There is a more significant increase

in summary measures between the low and medium effect sizes than between the

medium and high effect sizes.

A similar result is shown in Figure 3.3, where the number of studies per com-

parison is varied while the effect size is held constant at the medium value.

Although only one permutation for each of the star and dangle geometries has

been included in Figures 3.2 and 3.3, it was verified that all permutations have the

desired increases seen in these plots. For example, the four star permutations with

changes to summary measures over increased studies per comparison are plotted in

Figure 3.4. The rank of the star’s central treatment is noted, S-1 indicates the best

treatment is at the centre and so on. The summary measures all show an increasing

trend, though there is some variation between the plots. Further investigation of the

asymmetric geometries is included in the next section.

3.2.2 Comparison of Summary Measures

A clear visual of the changes in the summary measures over different geometries is

depicted in Figure 3.5. Each network included had a medium effect size and two
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Figure 3.2: Summary Measures over Changes in Odds Ratios.
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Figure 3.3: Summary Measures over Changes in Number of Studies per Comparison.
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Figure 3.4: Changes to Summary Measures with Differing Permutations of Star
Network.
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studies per comparison.

To keep the labelling brief and intuitive, the star and dangle geometry permuta-

tions are labelled as follows: S-1 through S-4 represent star geometries with treatment

ranks 1 through 4 at each center; dangle geometries are described by the rank of the

treatment on the dangling arm and the rank of the treatment to which it is directly

compared. For example, D2-3 indicates that the dangling treatment is the second

best treatment and it has been compared directly with the third best treatment.

From this graph, it is clear to see that the triangle and complete square geometries

yield higher summary measures. The star networks, which are the most asymmetric

networks, have the lowest values. Within the asymmetric star and dangle geometries,

the summary measures vary considerably. In the star permutations, having one of

the extreme ranks, 1st or 4th, in the centre created the lowest summary measures. In

the dangle permutations, having one of the central ranks, 2nd or 3rd, on the dangling

arm created the lowest summary measures.

Regardless of geometry, the summary measures always take on values in the same

order, from highest to lowest: diagonal max, Frobenius norm, trace, determinant and

diagonal minimum.

A subset of the previous graph, looking only at the symmetric triangle and com-

plete square geometries is shown in Figure 3.6. One might suppose that the network

with only three treatments should yield more confident ranks. However, in this

graph, both networks have been simulated using two studies per comparison. In

total, the triangle network includes six studies while the complete square network

contains twelve. It seems that these additional studies provide additional confidence
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Figure 3.5: Summary Measures Over Four Geometries.
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to the ranks, resulting in higher summary measures for the complete square network

versus the triangle.

In order to verify that the triangle network is, in fact, easier to rank given equal

amounts of information, the complete square network with two studies per compari-

son was compared to the triangle network with three studies per comparison. In this

way, the treatments of both networks would be involved in exactly six studies. The

values are very similar, but the triangle network yields slightly higher values, despite

having fewer contributing studies overall. These differences isolate the effect of an

added treatment to the network: given the same number of studies per treatment,

fewer treatments yields more confidence in the ranking process and higher summary

measures. The results are shown in Figure 3.7.

3.2.3 Introduction of a New Study and the Effects on Sum-

mary Measures

Although a network is analyzed at a specific point in time, it is important to remem-

ber that networks evolve over time. The dangle geometry was chosen for inclusion

in this simulation because it seems to be a likely shape as a network grows. If

three treatments exist and comparisons have been made between them, when a new

treatment is introduced, it will likely be tested against only one of the pre-existing

treatments creating a dangle geometry.

With this network growth in mind, consideration should be given to the case when

only one study is available for the dangling comparison. When a new treatment

is introduced, it is fair to assume that only one study will be available initially,
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Figure 3.6: Comparison of Symmetric Networks with Three and Four Treatments.

42



M.Sc. Thesis - Danielle Richer McMaster - Mathematics & Statistics

●

●

●

●

●

●

●

●

●

●

0.84

0.88

0.92

0.96

COMP TRI
Geometry

S
ta

nd
ar

di
ze

d 
V

al
ue

s

Measurement

●

●

●

●

●

det

norm

max

min

trace

Symmetric Geometries with Three Studies per Treatment
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thus creating a triangle network with any number of studies per comparison, and a

dangling arm with only one study per comparison.

To investigate the effect of adding a treatment to an existing triangle network,

the summary measures of a triangle network with two studies per comparison have

been compared to the summary measures of a dangle network with two studies per

comparison in the closed loop and one study on the dangling arm. The results are

displayed in Figure 3.8.

It is evident in the plot that adding a single treatment significantly lowers the

summary measures, indicating a loss of confidence in the rankings. The rank of the

newly introduced treatment plays a large role in how much the summary measures

decrease - if the treatment on the dangling arm is ranked either 2nd or 3rd, this has

the largest impact on lowering summary measures.

Assuming that a new treatment to the network will be studied beyond a single

RCT, the improvement from having only one study on the dangling arm to having

a matching number of studies to the other comparisons in the network is displayed

in Figure 3.9. In this comparison, a medium effect size is taken, and the number

of studies per comparison within the closed loop is five. The two plots illustrate

the differences in summary measures when one or five studies is used to make the

dangling comparison. Based on the plot, it is clear that the summary measures

increase significantly with the additional information from the new studies. This

pattern is reassuring that, although introducing a new study to a network might cause

uncertainty in the ranks of the treatments temporarily, that with further research

the confidence in the rankings can be regained.
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Figure 3.9: Dangle Geometry with One or Five Studies on the Dangling Arm

3.3 Comments on Summary Measures

Before exploring real data sets, a few comments about the summary measures are

included.

First, the diagonal maximum and diagonal minimum values do not appear to be

well chosen. For the maximum, the values are consistently high despite changes to

the network, which can be misleading. If the goal is to get a sense of the overall

confidence of a set of ranks, using a single rank probability is insufficient. If a

network of four treatments has one that is clearly worst, the maximum will reflect

the confidence in this single rank, while the interpreter may be primarily interested

in the top two treatments. Similarly, the diagonal minimum does not provide enough

information. It was also highly variable in the simulation study.

The norm, determinant and trace all provide a better overview of the ranks.

The determinant is the most variable of these three measures, so either the trace
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or the norm might be better options for summarizing the rank probability matrix.

The applied data sets are used in the next section to gain more insight into which

measures are most appropriate for summarizing the confidence in a set of ranks.
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Chapter 4

Application to Real Data

In this chapter, each of the proposed summary measures is applied to previously pub-

lished network meta-analyses. Each of these studies has been previously formatted

into a file that is compatible with the GeMTC package for use in demonstrations of

the software. For ease of labelling, the examples have been provided with reference

names based on the study topic, provided in Table 4.1.

Table 4.1: Summary of Example Data Sets
Ex Reference Name Data Source Topic

1 Smoking Lu and Ades (2006) Smoking Cessation Methods
2 Thrombolysis Lu and Ades (2006) Thrombolysis after Acute MI
3 Anti-Depressants Cipriani et al. (2009) Anti-Depressant Efficacy
4 Systolic BP Welton et al. (2009) Interventions for CHD Patients
5 Cholesterol Welton et al. (2009) Interventions for CHD Patients
6 Parkinson Dias et al. (2011c) Drugs to Reduce Mean Off-Time
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Table 4.2: Summary of Example Networks
Reference Name Treatments Studies Participants Direct

Comparisons
(Present/Possible)

Multi-Arm
Studies

Smoking 4 24 16737 6/6 2
Thrombolytic 8 26 145822 12/28 2
Anti-Depressant 12 111 24595 38/66 2
Systolic BP 2 9 2262 1/1 0
Cholesterol 2 14 3093 1/1 0
Parkinson 5 7 1613 6/10 1

4.1 Summary of the Real Data Examples

Each of the first three examples involves binary data and the odds ratio on the log

scale is used to measure relative effects. The last three examples use continuous data

with mean difference used to measure relative effects. Each data set will be described

briefly and summarized in Table 4.2. In the next section, a consistency model is

applied to the data and the proposed summary measures are calculated based on the

rank probability matrix that is generated.

In order to use a consistency model for each of the real data sets, assessments

from the original authors are relied upon to ensure appropriateness. When both

fixed-effects and random-effects models are deemed appropriate, the random-effects

has been applied here. This choice is based on the fact that contributing studies are

usually different, and so the choice of random-effects is both cautious and realistic.
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Figure 4.1: Network Geometries for Example Data.

4.1.1 Smoking

The first example is a smoking cessation study that compares the effectiveness of

four methods. There are 24 trials included, two of which are three-arm while the re-

mainder are two-arm. Each of the six possible pairwise comparisons is made directly

in at least one two-arm trial. The four treatments of interest include no help (A),

self-help (B), individual counseling (C), and group counseling (D). Visuals of this

network and latter examples are available in Figure 4.1. The comparisons serving

as basic parameters are highlighted in black, and all other direct comparisons in the

network are noted with grey lines.
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Lu and Ades (2006) apply both fixed-effects and random-effects models to the

data. The authors find that the data is well fit under the random-effects model and

poorly fit under the fixed-effects model. The choice is made to use a consistency

model as no serious inconsistency is found. Applying the GeMTC default model this

data set is appropriate: a consistency model with random effects. For the number

and length of chains, as well as the burn-in, the default values are used.

Plots to assess convergence of the MCMC chains were produced for each example,

though only the first is included here. In order to assess convergence, the R package

coda is implemented (Plummer et al., 2006). Through this package, a Gelman and

Rubin’s convergence diagnostic and a Gelman-Rubin-Brooks convergence plot can

be produced for inspection. Details on the theory of these diagnostic measures are

available through the coda package and its references. From their description, “The

potential scale reduction factor is calculated for each variable in x, together with

upper and lower condence limits. Approximate convergence is diagnosed when the

upper limit is close to 1.” For each of the real data sets included, the upper limit

remained between 1 and 1.02 for each variable. Figure 4.2 is a Gelman-Rubin-Brooks

convergence plot for the smoking cessation example, which illustrates repeated cal-

culations of the potential scale reduction factor, ensuring that values seen in the

convergence diagnostic did not occur by chance. For each example, the convergence

diagnostic and the convergence plot indicated that the chains converged.
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Figure 4.2: Gelman-Rubin-Brooks Convergence Plot for Smoking Cessation Exam-
ple.
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4.1.2 Thrombolysis

In the second example, 28 trials are combined to compare eight thrombolytic treat-

ments after acute myocardial infarction. The treatments are streptokinase (SK),

alteplase (tPA), accelerated alteplase (AtPA), reteplase (Ret), tenectedplase (Ten),

streptokinase plus alteplase (SKtPA), urokinase (UK), and anistreptilase (ASPAC).

Of the 28 potential pairs of comparisons, 13 pairwise comparisons are available from

direct evidence.

The authors identify a high degree of inconsistency in the model. The inconsis-

tency detected through multiple methods is identified to be caused by two trials in

particular. (Discussion about methods for identifying inconsistency in this and other

data sets is available in Dias et al. (2010)). Removing these two studies essentially

removes the inconsistency issue. Thus, in order to apply a consistency model to

this data, the violating studies were removed as suggested. As a result, 26 trials

are included with 12 direct pairwise comparisons. In the consistency model, similar

results are yielded between random-effects and fixed-effects models, so a random-

effects model is selected here. Due to the large number of treatments, the MCMC

chains and burn-ins were increased to length 50000.

4.1.3 Anti-Depressants

The third example compares the efficacy of 12 anti-depressants. One-hundred-eleven

clinical trials are combined that include a total of 24595 participants. One-hundred-

nine studies are two-arm trials and two are three-arm trials. There is direct evidence

for 40 of 66 possible pairwise comparisons. The drugs considered for the treatment
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of unipolar major depression in adults were buproprion, citalopram, duloxetine, esci-

talopram, fluoxetine, fluvoxamine, milnacipran, mirtazapine, paroxetine, reboxetine,

sertaline and venlafaxine. The authors included studies that fit into a pre-defined

range of follow-up time and had comparable drug dosage levels (classified as high,

medium and low for each drug), and which did not have inadequate random alloca-

tion concealment and blinding. They defined response as the proportion of patients

who had a reduction of at least 50% from the baseline score on the Hamilton depres-

sion rating scale or Montgomerysberg depression rating scale, or who scored much

improved or very much improved on the clinical global impression at 8 weeks.

The assumption of consistency among RCTs was made. Upon exploration, sta-

tistically significant inconsistency was detected in three of 70 evidence loops, which

was thought to align with what might reasonably happen by chance. Heterogeneity

amongst the same pair-wise comparisons was moderate on average, which was ex-

pected due to the low number of studies defining each comparison. As a result, the

consistency model with randome-effects was deemed appropriate. Due to the large

number of treatments, the MCMC chains and burn-ins were increased to length

50000.

4.1.4 Systolic Blood Pressure and Cholesterol

The fourth and fifth examples consider the effect of psychological interventions on

patients with coronary heart disease on several health outcomes. Since psycholog-

ical interventions can involve different components and be difficult to classify, the
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authors grouped treatments involving any of the following components as psycholog-

ical interventions: educational, behavioural, cognitive, relaxation and support. Most

interventions included more than one of these elements. These interventions were

compared with usual care. A variety of outcome measures were considered both

relating to heart health and psychological outcomes such as anxiety and depression.

Three separate NMA’s were conducted based on different outcome measurements,

each using a slightly different set of RCTs. Two of those NMA’s are being investi-

gated in Examples 4 and 5. The fourth example involves nine studies where systolic

blood pressure is the outcome of interest. The fifth example uses 14 studies with

cholesterol as the outcome of interest.

The authors acknowledge the existence of heterogeneity in the varying defini-

tions of usual care and in the various psychological treatments. For this reason, the

random-effects model is clearly appropriate. Since there are only two treatments

in this network, there is no chance of inconsistency, thus the consistency model is

appropriate for both.

Although a network meta-analysis is an unnecessary framework to place on a

network of only two treatments, including these studies provides greater diversity in

the example networks considered with respect to number of treatments, number of

studies, and total number of participants. Thus, these examples are included in the

hope that they will help to reveal trends.
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4.1.5 Parkinson

The sixth and final example compares five treatments for Parkinson’s disease with

evidence from seven trials. One of the seven trials is multi-arm. A total of 1613

participants are included in the contributing trials, and 6 of the possible 10 direct

comparisons are available in the network. The treatments considered are placebo (A)

and four active drugs (B-E) which are dopamine agonists used as adjunct therapy.

More detail on the treatments is not provided in the paper. Mean off-time reduction

in patients is the outcome of interest.

The random and fixed effects model both fit the data well, thus the random effects

model is used here. An assessment of consistency is not included in the original paper,

but is assumed in the modeling process so it is assumed appropriate for this example.

4.2 Results

For each of the examples included, the five summary measures of interest were taken

from the ordered rank probability matrix. A summary of these values is presented

in Table 4.3.

In the case of applications, unlike simulations, the true ranks of treatments are

unknown. In order to use all of the proposed summary measures, the rank probability

matrix must be rearranged into an ordered rank probability matrix without the

assurance of a known order. This is the reality of applications. The order used is

taken from the pair-wise relative effects generated in the modeling process. Since

consistency is assumed, combining all of the pair-wise relative effects yields a list of
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internally consistent ranks.

name treatments studies det norm trace max min
1 Smoking 4 24 0.667 0.755 0.714 0.889 0.597
2 Thrombolysis 8 26 0.108 0.451 0.262 0.505 0.169
3 Anti-Depressants 12 111 0.119 0.512 0.326 0.964 0.091
4 Systolic BP 2 9 0.776 0.825 0.801 0.801 0.801
5 Cholesterol 2 14 0.998 0.999 0.999 0.999 0.999
6 Parkinson 5 7 0.502 0.694 0.614 0.910 0.398

Table 4.3: Summary Measures for Example Networks

Several trends are identifiable from Table 4.3. Consistent with the simulations, for

each example either the maximum or the norm is the highest summary measure and

either the determinant or the minimum is the lowest summary measure. The two-

treatment networks yield maximum, minimum and trace values that are identical,

which is necessary due to the dimension.

The anti-depressant example, which has the highest number of treatments, yields

the widest variety of summary measures. It is important to note that although the

maximum value is 0.964, which was the probability that the 12th ranked treatment

was in fact worst, the next highest entry in the diagonal of the ordered rank prob-

ability matrix was just above 0.5, with all others well below that. This is a clear

example of why the diagonal maximum can be a misleading summary measure for

the overall confidence in the ranks.

In order to explore potential relationships between network characteristics and

the summary measures, several plots are included. The number of studies, number of

treatments, studies per treatment, and participants per treatment are all considered

as possible factors for the changes in summary measures between examples.
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In Figure 4.3, the example networks are plotted by the number of studies included

in the network. Looking at the plot one colour at a time, the trend in each summary

measure is observable. Based on the plot, there is not a clear increase in summary

measures with an increase in the number of contributing studies.

In Figure 4.4, the example networks are plotted by the number of treatments

included in the network. Again, looking at the plot one colour at a time is beneficial.

There is a clear positive relationship between the summary measures and the number

of treatments in the network. This pattern is clearly seen in all summary measures

except the maximum. The small amount of variation in the maximum over different

networks is consistent with the findings of the simulation study.

In case the relationship between the summary measures and the networks is

somewhat more complex, two additional plots are created that plot the example

network’s summary measures against the average number of studies per treatment

and the average number of participants per treatment. These plots are displayed in

Figure 4.5. Neither of these plots shows a relationship as clear as Figure 4.4.

Based on the simulations and the example data, it appears that the number of

treatments in a network has a significant impact on the confidence in the rankings.

Despite the fact that all summary measures are standardized for the number of

treatments, there are still higher summary measures yielded by networks with fewer

treatments. For comparison across networks of different sizes, the standardization

process may require adjustment.
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Figure 4.3: Summary Measures for Example Data plotted by Number of Studies in
the Network.
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Figure 4.4: Summary Measures for Example Data Plotted by Number of Treatments
in the Network.
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Figure 4.5: Summary Measures for Example Data Plotted by Participants per Treat-
ment in the Network.

4.3 Implications for Summary Measures

The real data examples provide a much broader variety of networks than the simula-

tion, which informs the understanding of various summary measures. It became clear

in the anti-depressants example that the diagonal maximum is not reflective of the

overall confidence in the rankings. Further, when a clear pattern emerged between

the number of treatments in a network and the summary measures in Figure 4.4, the

maximum did not show the same relationship as the other summary measures.

The real data examples also reveal that the determinant yields values around

0.1 for networks with 8 and 12 treatments. The network with 5 treatments had

a determinant value near 0.5. There are several applications where 10 or more

treatments might be included in a network meta-analysis. Based on these results,
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the determinant might be a poor choice for a summary measure since the values

appear to drop off significantly as the number of treatments increases.

An unanticipated issue identified in the analysis of the real data sets was the

possibility of two treatments being found equally effective in the modeling process.

This poses a problem in determining the treatment rankings for creating the ordered

rank probability matrix. Since the determinant and norm are unaffected by changing

the order of rows in the rank probability matrix, this issue only affects the reliability

of the trace, diagonal maximum and diagonal minimum values. One solution to this

issue might be to average the tied rows of the rank probability matrix and use the

results in both row entries. However, this complicates the calculation of the summary

measures, which were proposed based on ease of calculation and interpretation.
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Chapter 5

Discussion and Future Directions

In the discussion section of this paper, findings of the simulation and real data

analysis are summarized. The future directions section discusses limitations of the

current work and provides recommendations for extending this research.

5.1 Discussion

This section provides suggestions as to which summary measures might effectively

characterize the confidence in a set of treatment ranks yielded from a NMA. Based

on the simulation study and the real data analysis, the following insights have been

gained about each of the five summary measures considered:

Standardized Absolute Determinant The determinant does not require order-

ing the rank probability matrix, which allows issues with tied treatments to

be avoided. Determinants were very low (near 0.1) for networks with 8 and
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12 treatments, which suggests that little information may be gained from this

measure in larger networks. The determinant has the potential to be weighted

if certain ranks are considered more important than others, but this process

would not be straight-forward. This measure was found to be one of the most

variable in the simulation study.

Standardized Frobenius Norm The norm does not require ordering the rank

probability matrix, which allows issues with tied treatments to be avoided.

The values taken by the norm remained relatively high (all > 0.45) for all net-

works, despite higher numbers of treatments. The norm has the potential to

be weighted if certain ranks are considered more important than others, but

this process would not be straight-forward. This measure was found to be one

of the least variable in the simulation study.

Standardized Trace The trace requires the rank probability matrix to be ordered,

which might require tie breaking rules. The trace has the potential to be easily

weighted if certain ranks are considered more important than others. The

simulation revealed that its variance was higher than that of the norm.

Diagonal Maximum The maximum value does not vary with significant changes to

networks, suggesting it does not capture enough information. It also requires

the rank probability matrix to be ordered, which might require tie breaking

rules.

Diagonal Minimum The minimum value does not allow for weighting of ranks

deemed more important. It also requires the rank probability matrix to be
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ordered, which might require tie breaking rules.

Based on the results of the simulation and real data sets, the Frobenius norm

appears to be the best choice for a summary measure. It summarizes the confidence

across all ranks and has lower variability than the trace or the determinant. The

case of tied treatments in the network does not require special consideration.

All of the summary measures assume that the accuracy of each rank is equally

important, which might not be the case. One possible issue for using the Frobenius

norm is its inability to be weighted easily. However, if only one or two ranks are of

interest to the investigator, then simply the columns of the rank probability matrix

corresponding to the ranks of interest can be considered.

Several insights were gained from the simulation study beyond assessment of

the summary measures. As predicted, all summary measures increased, reflecting

confidence in the ranks, when the effect size or number of studies per comparison

were increased. The symmetric networks, which have more studies per treatment

than asymmetric networks, yielded higher summary measures. When the number of

studies per treatment was fixed, the triangle network had higher summary measures

than the complete square network. This was the first indication that the summary

measures, although standardized, tend to decrease as the number of treatments in

the network increases.

There was a significant loss of overall confidence when a new treatment was added

to a triangle network through a single study. However, when studies involving the

new treatment were added to the network, the confidence in the treatment ranks was

largely regained.
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The real data examples confirmed that the single-value summary measures, the

diagonal maximum and the diagonal minimum, did not behave similarly to the three

summary measures requiring calculation. The examples also provided insight into

the relationship between the number of treatments in the network and the amount

of confidence in the ranks.

5.2 Future Directions

The field of network meta-analysis is still very young. There are several ways for this

research to be extended.

5.2.1 Extensions to the Simulation

The simulations conducted in this investigation represented over-simplified networks.

The way in which studies were simulated did not introduce any heterogeneity or

inconsistency. All studies were two-arm and simulated to be exactly the same size.

Increasing the number of treatments, varying the size of the individual studies,

introducing inequality in the number of studies per comparison, violating assump-

tions and including multi-arm trials are just a few ways to extend this simulation

study.

5.2.2 Theoretical Considerations

Absent from this thesis is an exploration into the theoretical properties of the pro-

posed summary measures.
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As the rank probability matrix is random, it has an accompanying distribution.

So then do each of the proposed summary measures.

A theoretical approach is needed to fully understand the distributions of the rank

probability matrix and the summary measures of interest. Once these distributions

are known, the usefulness of these summary measures extends beyond point estima-

tion to include confidence intervals and hypothesis testing.

Further, the distributions will help to set benchmark values for the summary

measures that could identify the rank confidence as strong or weak, for example.

The hope is that this thesis will serve as a starting point for the possible assess-

ments of a NMA rank probability matrix, and how it might be summarized with a

simple and informative measure.
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